1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* -*- mode: c; c-basic-offset: 8; -*- 3 * vim: noexpandtab sw=8 ts=8 sts=0: 4 * 5 * alloc.h 6 * 7 * Function prototypes 8 * 9 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 10 */ 11 12 #ifndef OCFS2_ALLOC_H 13 #define OCFS2_ALLOC_H 14 15 16 /* 17 * For xattr tree leaf, we limit the leaf byte size to be 64K. 18 */ 19 #define OCFS2_MAX_XATTR_TREE_LEAF_SIZE 65536 20 21 /* 22 * ocfs2_extent_tree and ocfs2_extent_tree_operations are used to abstract 23 * the b-tree operations in ocfs2. Now all the b-tree operations are not 24 * limited to ocfs2_dinode only. Any data which need to allocate clusters 25 * to store can use b-tree. And it only needs to implement its ocfs2_extent_tree 26 * and operation. 27 * 28 * ocfs2_extent_tree becomes the first-class object for extent tree 29 * manipulation. Callers of the alloc.c code need to fill it via one of 30 * the ocfs2_init_*_extent_tree() operations below. 31 * 32 * ocfs2_extent_tree contains info for the root of the b-tree, it must have a 33 * root ocfs2_extent_list and a root_bh so that they can be used in the b-tree 34 * functions. It needs the ocfs2_caching_info structure associated with 35 * I/O on the tree. With metadata ecc, we now call different journal_access 36 * functions for each type of metadata, so it must have the 37 * root_journal_access function. 38 * ocfs2_extent_tree_operations abstract the normal operations we do for 39 * the root of extent b-tree. 40 */ 41 struct ocfs2_extent_tree_operations; 42 struct ocfs2_extent_tree { 43 const struct ocfs2_extent_tree_operations *et_ops; 44 struct buffer_head *et_root_bh; 45 struct ocfs2_extent_list *et_root_el; 46 struct ocfs2_caching_info *et_ci; 47 ocfs2_journal_access_func et_root_journal_access; 48 void *et_object; 49 unsigned int et_max_leaf_clusters; 50 struct ocfs2_cached_dealloc_ctxt *et_dealloc; 51 }; 52 53 /* 54 * ocfs2_init_*_extent_tree() will fill an ocfs2_extent_tree from the 55 * specified object buffer. 56 */ 57 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et, 58 struct ocfs2_caching_info *ci, 59 struct buffer_head *bh); 60 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et, 61 struct ocfs2_caching_info *ci, 62 struct buffer_head *bh); 63 struct ocfs2_xattr_value_buf; 64 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et, 65 struct ocfs2_caching_info *ci, 66 struct ocfs2_xattr_value_buf *vb); 67 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et, 68 struct ocfs2_caching_info *ci, 69 struct buffer_head *bh); 70 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et, 71 struct ocfs2_caching_info *ci, 72 struct buffer_head *bh); 73 74 /* 75 * Read an extent block into *bh. If *bh is NULL, a bh will be 76 * allocated. This is a cached read. The extent block will be validated 77 * with ocfs2_validate_extent_block(). 78 */ 79 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno, 80 struct buffer_head **bh); 81 82 struct ocfs2_alloc_context; 83 int ocfs2_insert_extent(handle_t *handle, 84 struct ocfs2_extent_tree *et, 85 u32 cpos, 86 u64 start_blk, 87 u32 new_clusters, 88 u8 flags, 89 struct ocfs2_alloc_context *meta_ac); 90 91 enum ocfs2_alloc_restarted { 92 RESTART_NONE = 0, 93 RESTART_TRANS, 94 RESTART_META 95 }; 96 int ocfs2_add_clusters_in_btree(handle_t *handle, 97 struct ocfs2_extent_tree *et, 98 u32 *logical_offset, 99 u32 clusters_to_add, 100 int mark_unwritten, 101 struct ocfs2_alloc_context *data_ac, 102 struct ocfs2_alloc_context *meta_ac, 103 enum ocfs2_alloc_restarted *reason_ret); 104 struct ocfs2_cached_dealloc_ctxt; 105 struct ocfs2_path; 106 int ocfs2_split_extent(handle_t *handle, 107 struct ocfs2_extent_tree *et, 108 struct ocfs2_path *path, 109 int split_index, 110 struct ocfs2_extent_rec *split_rec, 111 struct ocfs2_alloc_context *meta_ac, 112 struct ocfs2_cached_dealloc_ctxt *dealloc); 113 int ocfs2_mark_extent_written(struct inode *inode, 114 struct ocfs2_extent_tree *et, 115 handle_t *handle, u32 cpos, u32 len, u32 phys, 116 struct ocfs2_alloc_context *meta_ac, 117 struct ocfs2_cached_dealloc_ctxt *dealloc); 118 int ocfs2_change_extent_flag(handle_t *handle, 119 struct ocfs2_extent_tree *et, 120 u32 cpos, u32 len, u32 phys, 121 struct ocfs2_alloc_context *meta_ac, 122 struct ocfs2_cached_dealloc_ctxt *dealloc, 123 int new_flags, int clear_flags); 124 int ocfs2_remove_extent(handle_t *handle, struct ocfs2_extent_tree *et, 125 u32 cpos, u32 len, 126 struct ocfs2_alloc_context *meta_ac, 127 struct ocfs2_cached_dealloc_ctxt *dealloc); 128 int ocfs2_remove_btree_range(struct inode *inode, 129 struct ocfs2_extent_tree *et, 130 u32 cpos, u32 phys_cpos, u32 len, int flags, 131 struct ocfs2_cached_dealloc_ctxt *dealloc, 132 u64 refcount_loc, bool refcount_tree_locked); 133 134 int ocfs2_num_free_extents(struct ocfs2_extent_tree *et); 135 136 /* 137 * how many new metadata chunks would an allocation need at maximum? 138 * 139 * Please note that the caller must make sure that root_el is the root 140 * of extent tree. So for an inode, it should be &fe->id2.i_list. Otherwise 141 * the result may be wrong. 142 */ 143 static inline int ocfs2_extend_meta_needed(struct ocfs2_extent_list *root_el) 144 { 145 /* 146 * Rather than do all the work of determining how much we need 147 * (involves a ton of reads and locks), just ask for the 148 * maximal limit. That's a tree depth shift. So, one block for 149 * level of the tree (current l_tree_depth), one block for the 150 * new tree_depth==0 extent_block, and one block at the new 151 * top-of-the tree. 152 */ 153 return le16_to_cpu(root_el->l_tree_depth) + 2; 154 } 155 156 void ocfs2_dinode_new_extent_list(struct inode *inode, struct ocfs2_dinode *di); 157 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di); 158 int ocfs2_convert_inline_data_to_extents(struct inode *inode, 159 struct buffer_head *di_bh); 160 161 int ocfs2_truncate_log_init(struct ocfs2_super *osb); 162 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb); 163 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb, 164 int cancel); 165 int ocfs2_flush_truncate_log(struct ocfs2_super *osb); 166 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb, 167 int slot_num, 168 struct ocfs2_dinode **tl_copy); 169 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb, 170 struct ocfs2_dinode *tl_copy); 171 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb); 172 int ocfs2_truncate_log_append(struct ocfs2_super *osb, 173 handle_t *handle, 174 u64 start_blk, 175 unsigned int num_clusters); 176 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb); 177 int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb, 178 unsigned int needed); 179 180 /* 181 * Process local structure which describes the block unlinks done 182 * during an operation. This is populated via 183 * ocfs2_cache_block_dealloc(). 184 * 185 * ocfs2_run_deallocs() should be called after the potentially 186 * de-allocating routines. No journal handles should be open, and most 187 * locks should have been dropped. 188 */ 189 struct ocfs2_cached_dealloc_ctxt { 190 struct ocfs2_per_slot_free_list *c_first_suballocator; 191 struct ocfs2_cached_block_free *c_global_allocator; 192 }; 193 static inline void ocfs2_init_dealloc_ctxt(struct ocfs2_cached_dealloc_ctxt *c) 194 { 195 c->c_first_suballocator = NULL; 196 c->c_global_allocator = NULL; 197 } 198 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 199 u64 blkno, unsigned int bit); 200 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 201 int type, int slot, u64 suballoc, u64 blkno, 202 unsigned int bit); 203 static inline int ocfs2_dealloc_has_cluster(struct ocfs2_cached_dealloc_ctxt *c) 204 { 205 return c->c_global_allocator != NULL; 206 } 207 int ocfs2_run_deallocs(struct ocfs2_super *osb, 208 struct ocfs2_cached_dealloc_ctxt *ctxt); 209 210 struct ocfs2_truncate_context { 211 struct ocfs2_cached_dealloc_ctxt tc_dealloc; 212 int tc_ext_alloc_locked; /* is it cluster locked? */ 213 /* these get destroyed once it's passed to ocfs2_commit_truncate. */ 214 struct buffer_head *tc_last_eb_bh; 215 }; 216 217 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle, 218 u64 range_start, u64 range_end); 219 int ocfs2_commit_truncate(struct ocfs2_super *osb, 220 struct inode *inode, 221 struct buffer_head *di_bh); 222 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh, 223 unsigned int start, unsigned int end, int trunc); 224 225 int ocfs2_find_leaf(struct ocfs2_caching_info *ci, 226 struct ocfs2_extent_list *root_el, u32 cpos, 227 struct buffer_head **leaf_bh); 228 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster); 229 230 int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range); 231 /* 232 * Helper function to look at the # of clusters in an extent record. 233 */ 234 static inline unsigned int ocfs2_rec_clusters(struct ocfs2_extent_list *el, 235 struct ocfs2_extent_rec *rec) 236 { 237 /* 238 * Cluster count in extent records is slightly different 239 * between interior nodes and leaf nodes. This is to support 240 * unwritten extents which need a flags field in leaf node 241 * records, thus shrinking the available space for a clusters 242 * field. 243 */ 244 if (el->l_tree_depth) 245 return le32_to_cpu(rec->e_int_clusters); 246 else 247 return le16_to_cpu(rec->e_leaf_clusters); 248 } 249 250 /* 251 * This is only valid for leaf nodes, which are the only ones that can 252 * have empty extents anyway. 253 */ 254 static inline int ocfs2_is_empty_extent(struct ocfs2_extent_rec *rec) 255 { 256 return !rec->e_leaf_clusters; 257 } 258 259 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end, 260 struct page **pages, int *num); 261 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle, 262 unsigned int from, unsigned int to, 263 struct page *page, int zero, u64 *phys); 264 /* 265 * Structures which describe a path through a btree, and functions to 266 * manipulate them. 267 * 268 * The idea here is to be as generic as possible with the tree 269 * manipulation code. 270 */ 271 struct ocfs2_path_item { 272 struct buffer_head *bh; 273 struct ocfs2_extent_list *el; 274 }; 275 276 #define OCFS2_MAX_PATH_DEPTH 5 277 278 struct ocfs2_path { 279 int p_tree_depth; 280 ocfs2_journal_access_func p_root_access; 281 struct ocfs2_path_item p_node[OCFS2_MAX_PATH_DEPTH]; 282 }; 283 284 #define path_root_bh(_path) ((_path)->p_node[0].bh) 285 #define path_root_el(_path) ((_path)->p_node[0].el) 286 #define path_root_access(_path)((_path)->p_root_access) 287 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh) 288 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el) 289 #define path_num_items(_path) ((_path)->p_tree_depth + 1) 290 291 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root); 292 void ocfs2_free_path(struct ocfs2_path *path); 293 int ocfs2_find_path(struct ocfs2_caching_info *ci, 294 struct ocfs2_path *path, 295 u32 cpos); 296 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path); 297 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et); 298 int ocfs2_path_bh_journal_access(handle_t *handle, 299 struct ocfs2_caching_info *ci, 300 struct ocfs2_path *path, 301 int idx); 302 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci, 303 handle_t *handle, 304 struct ocfs2_path *path); 305 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb, 306 struct ocfs2_path *path, u32 *cpos); 307 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb, 308 struct ocfs2_path *path, u32 *cpos); 309 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et, 310 struct ocfs2_path *left, 311 struct ocfs2_path *right); 312 #endif /* OCFS2_ALLOC_H */ 313