xref: /openbmc/linux/fs/ocfs2/alloc.h (revision 9b7895ef)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.h
5  *
6  * Function prototypes
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #ifndef OCFS2_ALLOC_H
27 #define OCFS2_ALLOC_H
28 
29 
30 /*
31  * For xattr tree leaf, we limit the leaf byte size to be 64K.
32  */
33 #define OCFS2_MAX_XATTR_TREE_LEAF_SIZE 65536
34 
35 /*
36  * ocfs2_extent_tree and ocfs2_extent_tree_operations are used to abstract
37  * the b-tree operations in ocfs2. Now all the b-tree operations are not
38  * limited to ocfs2_dinode only. Any data which need to allocate clusters
39  * to store can use b-tree. And it only needs to implement its ocfs2_extent_tree
40  * and operation.
41  *
42  * ocfs2_extent_tree becomes the first-class object for extent tree
43  * manipulation.  Callers of the alloc.c code need to fill it via one of
44  * the ocfs2_init_*_extent_tree() operations below.
45  *
46  * ocfs2_extent_tree contains info for the root of the b-tree, it must have a
47  * root ocfs2_extent_list and a root_bh so that they can be used in the b-tree
48  * functions.  With metadata ecc, we now call different journal_access
49  * functions for each type of metadata, so it must have the
50  * root_journal_access function.
51  * ocfs2_extent_tree_operations abstract the normal operations we do for
52  * the root of extent b-tree.
53  */
54 struct ocfs2_extent_tree_operations;
55 struct ocfs2_extent_tree {
56 	struct ocfs2_extent_tree_operations	*et_ops;
57 	struct buffer_head			*et_root_bh;
58 	struct ocfs2_extent_list		*et_root_el;
59 	ocfs2_journal_access_func		et_root_journal_access;
60 	void					*et_object;
61 	unsigned int				et_max_leaf_clusters;
62 };
63 
64 /*
65  * ocfs2_init_*_extent_tree() will fill an ocfs2_extent_tree from the
66  * specified object buffer.
67  */
68 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
69 				   struct inode *inode,
70 				   struct buffer_head *bh);
71 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
72 				       struct inode *inode,
73 				       struct buffer_head *bh);
74 struct ocfs2_xattr_value_buf;
75 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
76 					struct inode *inode,
77 					struct ocfs2_xattr_value_buf *vb);
78 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
79 				    struct inode *inode,
80 				    struct buffer_head *bh);
81 
82 /*
83  * Read an extent block into *bh.  If *bh is NULL, a bh will be
84  * allocated.  This is a cached read.  The extent block will be validated
85  * with ocfs2_validate_extent_block().
86  */
87 int ocfs2_read_extent_block(struct inode *inode, u64 eb_blkno,
88 			    struct buffer_head **bh);
89 
90 struct ocfs2_alloc_context;
91 int ocfs2_insert_extent(struct ocfs2_super *osb,
92 			handle_t *handle,
93 			struct inode *inode,
94 			struct ocfs2_extent_tree *et,
95 			u32 cpos,
96 			u64 start_blk,
97 			u32 new_clusters,
98 			u8 flags,
99 			struct ocfs2_alloc_context *meta_ac);
100 
101 enum ocfs2_alloc_restarted {
102 	RESTART_NONE = 0,
103 	RESTART_TRANS,
104 	RESTART_META
105 };
106 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb,
107 				struct inode *inode,
108 				u32 *logical_offset,
109 				u32 clusters_to_add,
110 				int mark_unwritten,
111 				struct ocfs2_extent_tree *et,
112 				handle_t *handle,
113 				struct ocfs2_alloc_context *data_ac,
114 				struct ocfs2_alloc_context *meta_ac,
115 				enum ocfs2_alloc_restarted *reason_ret);
116 struct ocfs2_cached_dealloc_ctxt;
117 int ocfs2_mark_extent_written(struct inode *inode,
118 			      struct ocfs2_extent_tree *et,
119 			      handle_t *handle, u32 cpos, u32 len, u32 phys,
120 			      struct ocfs2_alloc_context *meta_ac,
121 			      struct ocfs2_cached_dealloc_ctxt *dealloc);
122 int ocfs2_remove_extent(struct inode *inode,
123 			struct ocfs2_extent_tree *et,
124 			u32 cpos, u32 len, handle_t *handle,
125 			struct ocfs2_alloc_context *meta_ac,
126 			struct ocfs2_cached_dealloc_ctxt *dealloc);
127 int ocfs2_remove_btree_range(struct inode *inode,
128 			     struct ocfs2_extent_tree *et,
129 			     u32 cpos, u32 phys_cpos, u32 len,
130 			     struct ocfs2_cached_dealloc_ctxt *dealloc);
131 
132 int ocfs2_num_free_extents(struct ocfs2_super *osb,
133 			   struct inode *inode,
134 			   struct ocfs2_extent_tree *et);
135 
136 /*
137  * how many new metadata chunks would an allocation need at maximum?
138  *
139  * Please note that the caller must make sure that root_el is the root
140  * of extent tree. So for an inode, it should be &fe->id2.i_list. Otherwise
141  * the result may be wrong.
142  */
143 static inline int ocfs2_extend_meta_needed(struct ocfs2_extent_list *root_el)
144 {
145 	/*
146 	 * Rather than do all the work of determining how much we need
147 	 * (involves a ton of reads and locks), just ask for the
148 	 * maximal limit.  That's a tree depth shift.  So, one block for
149 	 * level of the tree (current l_tree_depth), one block for the
150 	 * new tree_depth==0 extent_block, and one block at the new
151 	 * top-of-the tree.
152 	 */
153 	return le16_to_cpu(root_el->l_tree_depth) + 2;
154 }
155 
156 void ocfs2_dinode_new_extent_list(struct inode *inode, struct ocfs2_dinode *di);
157 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di);
158 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
159 					 struct buffer_head *di_bh);
160 
161 int ocfs2_truncate_log_init(struct ocfs2_super *osb);
162 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb);
163 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
164 				       int cancel);
165 int ocfs2_flush_truncate_log(struct ocfs2_super *osb);
166 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
167 				      int slot_num,
168 				      struct ocfs2_dinode **tl_copy);
169 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
170 					 struct ocfs2_dinode *tl_copy);
171 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb);
172 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
173 			      handle_t *handle,
174 			      u64 start_blk,
175 			      unsigned int num_clusters);
176 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb);
177 
178 /*
179  * Process local structure which describes the block unlinks done
180  * during an operation. This is populated via
181  * ocfs2_cache_block_dealloc().
182  *
183  * ocfs2_run_deallocs() should be called after the potentially
184  * de-allocating routines. No journal handles should be open, and most
185  * locks should have been dropped.
186  */
187 struct ocfs2_cached_dealloc_ctxt {
188 	struct ocfs2_per_slot_free_list		*c_first_suballocator;
189 	struct ocfs2_cached_block_free 		*c_global_allocator;
190 };
191 static inline void ocfs2_init_dealloc_ctxt(struct ocfs2_cached_dealloc_ctxt *c)
192 {
193 	c->c_first_suballocator = NULL;
194 	c->c_global_allocator = NULL;
195 }
196 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
197 				u64 blkno, unsigned int bit);
198 static inline int ocfs2_dealloc_has_cluster(struct ocfs2_cached_dealloc_ctxt *c)
199 {
200 	return c->c_global_allocator != NULL;
201 }
202 int ocfs2_run_deallocs(struct ocfs2_super *osb,
203 		       struct ocfs2_cached_dealloc_ctxt *ctxt);
204 
205 struct ocfs2_truncate_context {
206 	struct ocfs2_cached_dealloc_ctxt tc_dealloc;
207 	int tc_ext_alloc_locked; /* is it cluster locked? */
208 	/* these get destroyed once it's passed to ocfs2_commit_truncate. */
209 	struct buffer_head *tc_last_eb_bh;
210 };
211 
212 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
213 				  u64 range_start, u64 range_end);
214 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
215 			   struct inode *inode,
216 			   struct buffer_head *fe_bh,
217 			   struct ocfs2_truncate_context **tc);
218 int ocfs2_commit_truncate(struct ocfs2_super *osb,
219 			  struct inode *inode,
220 			  struct buffer_head *fe_bh,
221 			  struct ocfs2_truncate_context *tc);
222 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
223 			  unsigned int start, unsigned int end, int trunc);
224 
225 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
226 		    u32 cpos, struct buffer_head **leaf_bh);
227 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster);
228 
229 /*
230  * Helper function to look at the # of clusters in an extent record.
231  */
232 static inline unsigned int ocfs2_rec_clusters(struct ocfs2_extent_list *el,
233 					      struct ocfs2_extent_rec *rec)
234 {
235 	/*
236 	 * Cluster count in extent records is slightly different
237 	 * between interior nodes and leaf nodes. This is to support
238 	 * unwritten extents which need a flags field in leaf node
239 	 * records, thus shrinking the available space for a clusters
240 	 * field.
241 	 */
242 	if (el->l_tree_depth)
243 		return le32_to_cpu(rec->e_int_clusters);
244 	else
245 		return le16_to_cpu(rec->e_leaf_clusters);
246 }
247 
248 /*
249  * This is only valid for leaf nodes, which are the only ones that can
250  * have empty extents anyway.
251  */
252 static inline int ocfs2_is_empty_extent(struct ocfs2_extent_rec *rec)
253 {
254 	return !rec->e_leaf_clusters;
255 }
256 
257 #endif /* OCFS2_ALLOC_H */
258