xref: /openbmc/linux/fs/ocfs2/alloc.h (revision 5e96581a)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.h
5  *
6  * Function prototypes
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #ifndef OCFS2_ALLOC_H
27 #define OCFS2_ALLOC_H
28 
29 
30 /*
31  * For xattr tree leaf, we limit the leaf byte size to be 64K.
32  */
33 #define OCFS2_MAX_XATTR_TREE_LEAF_SIZE 65536
34 
35 /*
36  * ocfs2_extent_tree and ocfs2_extent_tree_operations are used to abstract
37  * the b-tree operations in ocfs2. Now all the b-tree operations are not
38  * limited to ocfs2_dinode only. Any data which need to allocate clusters
39  * to store can use b-tree. And it only needs to implement its ocfs2_extent_tree
40  * and operation.
41  *
42  * ocfs2_extent_tree becomes the first-class object for extent tree
43  * manipulation.  Callers of the alloc.c code need to fill it via one of
44  * the ocfs2_init_*_extent_tree() operations below.
45  *
46  * ocfs2_extent_tree contains info for the root of the b-tree, it must have a
47  * root ocfs2_extent_list and a root_bh so that they can be used in the b-tree
48  * functions.
49  * ocfs2_extent_tree_operations abstract the normal operations we do for
50  * the root of extent b-tree.
51  */
52 struct ocfs2_extent_tree_operations;
53 struct ocfs2_extent_tree {
54 	struct ocfs2_extent_tree_operations	*et_ops;
55 	struct buffer_head			*et_root_bh;
56 	struct ocfs2_extent_list		*et_root_el;
57 	void					*et_object;
58 	unsigned int				et_max_leaf_clusters;
59 };
60 
61 /*
62  * ocfs2_init_*_extent_tree() will fill an ocfs2_extent_tree from the
63  * specified object buffer.
64  */
65 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
66 				   struct inode *inode,
67 				   struct buffer_head *bh);
68 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
69 				       struct inode *inode,
70 				       struct buffer_head *bh);
71 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
72 					struct inode *inode,
73 					struct buffer_head *bh,
74 					struct ocfs2_xattr_value_root *xv);
75 
76 /*
77  * Read an extent block into *bh.  If *bh is NULL, a bh will be
78  * allocated.  This is a cached read.  The extent block will be validated
79  * with ocfs2_validate_extent_block().
80  */
81 int ocfs2_read_extent_block(struct inode *inode, u64 eb_blkno,
82 			    struct buffer_head **bh);
83 
84 struct ocfs2_alloc_context;
85 int ocfs2_insert_extent(struct ocfs2_super *osb,
86 			handle_t *handle,
87 			struct inode *inode,
88 			struct ocfs2_extent_tree *et,
89 			u32 cpos,
90 			u64 start_blk,
91 			u32 new_clusters,
92 			u8 flags,
93 			struct ocfs2_alloc_context *meta_ac);
94 
95 enum ocfs2_alloc_restarted {
96 	RESTART_NONE = 0,
97 	RESTART_TRANS,
98 	RESTART_META
99 };
100 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb,
101 				struct inode *inode,
102 				u32 *logical_offset,
103 				u32 clusters_to_add,
104 				int mark_unwritten,
105 				struct ocfs2_extent_tree *et,
106 				handle_t *handle,
107 				struct ocfs2_alloc_context *data_ac,
108 				struct ocfs2_alloc_context *meta_ac,
109 				enum ocfs2_alloc_restarted *reason_ret);
110 struct ocfs2_cached_dealloc_ctxt;
111 int ocfs2_mark_extent_written(struct inode *inode,
112 			      struct ocfs2_extent_tree *et,
113 			      handle_t *handle, u32 cpos, u32 len, u32 phys,
114 			      struct ocfs2_alloc_context *meta_ac,
115 			      struct ocfs2_cached_dealloc_ctxt *dealloc);
116 int ocfs2_remove_extent(struct inode *inode,
117 			struct ocfs2_extent_tree *et,
118 			u32 cpos, u32 len, handle_t *handle,
119 			struct ocfs2_alloc_context *meta_ac,
120 			struct ocfs2_cached_dealloc_ctxt *dealloc);
121 int ocfs2_remove_btree_range(struct inode *inode,
122 			     struct ocfs2_extent_tree *et,
123 			     u32 cpos, u32 phys_cpos, u32 len,
124 			     struct ocfs2_cached_dealloc_ctxt *dealloc);
125 
126 int ocfs2_num_free_extents(struct ocfs2_super *osb,
127 			   struct inode *inode,
128 			   struct ocfs2_extent_tree *et);
129 
130 /*
131  * how many new metadata chunks would an allocation need at maximum?
132  *
133  * Please note that the caller must make sure that root_el is the root
134  * of extent tree. So for an inode, it should be &fe->id2.i_list. Otherwise
135  * the result may be wrong.
136  */
137 static inline int ocfs2_extend_meta_needed(struct ocfs2_extent_list *root_el)
138 {
139 	/*
140 	 * Rather than do all the work of determining how much we need
141 	 * (involves a ton of reads and locks), just ask for the
142 	 * maximal limit.  That's a tree depth shift.  So, one block for
143 	 * level of the tree (current l_tree_depth), one block for the
144 	 * new tree_depth==0 extent_block, and one block at the new
145 	 * top-of-the tree.
146 	 */
147 	return le16_to_cpu(root_el->l_tree_depth) + 2;
148 }
149 
150 void ocfs2_dinode_new_extent_list(struct inode *inode, struct ocfs2_dinode *di);
151 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di);
152 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
153 					 struct buffer_head *di_bh);
154 
155 int ocfs2_truncate_log_init(struct ocfs2_super *osb);
156 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb);
157 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
158 				       int cancel);
159 int ocfs2_flush_truncate_log(struct ocfs2_super *osb);
160 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
161 				      int slot_num,
162 				      struct ocfs2_dinode **tl_copy);
163 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
164 					 struct ocfs2_dinode *tl_copy);
165 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb);
166 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
167 			      handle_t *handle,
168 			      u64 start_blk,
169 			      unsigned int num_clusters);
170 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb);
171 
172 /*
173  * Process local structure which describes the block unlinks done
174  * during an operation. This is populated via
175  * ocfs2_cache_block_dealloc().
176  *
177  * ocfs2_run_deallocs() should be called after the potentially
178  * de-allocating routines. No journal handles should be open, and most
179  * locks should have been dropped.
180  */
181 struct ocfs2_cached_dealloc_ctxt {
182 	struct ocfs2_per_slot_free_list		*c_first_suballocator;
183 	struct ocfs2_cached_block_free 		*c_global_allocator;
184 };
185 static inline void ocfs2_init_dealloc_ctxt(struct ocfs2_cached_dealloc_ctxt *c)
186 {
187 	c->c_first_suballocator = NULL;
188 	c->c_global_allocator = NULL;
189 }
190 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
191 				u64 blkno, unsigned int bit);
192 static inline int ocfs2_dealloc_has_cluster(struct ocfs2_cached_dealloc_ctxt *c)
193 {
194 	return c->c_global_allocator != NULL;
195 }
196 int ocfs2_run_deallocs(struct ocfs2_super *osb,
197 		       struct ocfs2_cached_dealloc_ctxt *ctxt);
198 
199 struct ocfs2_truncate_context {
200 	struct ocfs2_cached_dealloc_ctxt tc_dealloc;
201 	int tc_ext_alloc_locked; /* is it cluster locked? */
202 	/* these get destroyed once it's passed to ocfs2_commit_truncate. */
203 	struct buffer_head *tc_last_eb_bh;
204 };
205 
206 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
207 				  u64 range_start, u64 range_end);
208 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
209 			   struct inode *inode,
210 			   struct buffer_head *fe_bh,
211 			   struct ocfs2_truncate_context **tc);
212 int ocfs2_commit_truncate(struct ocfs2_super *osb,
213 			  struct inode *inode,
214 			  struct buffer_head *fe_bh,
215 			  struct ocfs2_truncate_context *tc);
216 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
217 			  unsigned int start, unsigned int end, int trunc);
218 
219 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
220 		    u32 cpos, struct buffer_head **leaf_bh);
221 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster);
222 
223 /*
224  * Helper function to look at the # of clusters in an extent record.
225  */
226 static inline unsigned int ocfs2_rec_clusters(struct ocfs2_extent_list *el,
227 					      struct ocfs2_extent_rec *rec)
228 {
229 	/*
230 	 * Cluster count in extent records is slightly different
231 	 * between interior nodes and leaf nodes. This is to support
232 	 * unwritten extents which need a flags field in leaf node
233 	 * records, thus shrinking the available space for a clusters
234 	 * field.
235 	 */
236 	if (el->l_tree_depth)
237 		return le32_to_cpu(rec->e_int_clusters);
238 	else
239 		return le16_to_cpu(rec->e_leaf_clusters);
240 }
241 
242 /*
243  * This is only valid for leaf nodes, which are the only ones that can
244  * have empty extents anyway.
245  */
246 static inline int ocfs2_is_empty_extent(struct ocfs2_extent_rec *rec)
247 {
248 	return !rec->e_leaf_clusters;
249 }
250 
251 #endif /* OCFS2_ALLOC_H */
252