xref: /openbmc/linux/fs/ocfs2/alloc.c (revision f3a8b664)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32 #include <linux/blkdev.h>
33 
34 #include <cluster/masklog.h>
35 
36 #include "ocfs2.h"
37 
38 #include "alloc.h"
39 #include "aops.h"
40 #include "blockcheck.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "localalloc.h"
46 #include "suballoc.h"
47 #include "sysfile.h"
48 #include "file.h"
49 #include "super.h"
50 #include "uptodate.h"
51 #include "xattr.h"
52 #include "refcounttree.h"
53 #include "ocfs2_trace.h"
54 
55 #include "buffer_head_io.h"
56 
57 enum ocfs2_contig_type {
58 	CONTIG_NONE = 0,
59 	CONTIG_LEFT,
60 	CONTIG_RIGHT,
61 	CONTIG_LEFTRIGHT,
62 };
63 
64 static enum ocfs2_contig_type
65 	ocfs2_extent_rec_contig(struct super_block *sb,
66 				struct ocfs2_extent_rec *ext,
67 				struct ocfs2_extent_rec *insert_rec);
68 /*
69  * Operations for a specific extent tree type.
70  *
71  * To implement an on-disk btree (extent tree) type in ocfs2, add
72  * an ocfs2_extent_tree_operations structure and the matching
73  * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
74  * for the allocation portion of the extent tree.
75  */
76 struct ocfs2_extent_tree_operations {
77 	/*
78 	 * last_eb_blk is the block number of the right most leaf extent
79 	 * block.  Most on-disk structures containing an extent tree store
80 	 * this value for fast access.  The ->eo_set_last_eb_blk() and
81 	 * ->eo_get_last_eb_blk() operations access this value.  They are
82 	 *  both required.
83 	 */
84 	void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
85 				   u64 blkno);
86 	u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
87 
88 	/*
89 	 * The on-disk structure usually keeps track of how many total
90 	 * clusters are stored in this extent tree.  This function updates
91 	 * that value.  new_clusters is the delta, and must be
92 	 * added to the total.  Required.
93 	 */
94 	void (*eo_update_clusters)(struct ocfs2_extent_tree *et,
95 				   u32 new_clusters);
96 
97 	/*
98 	 * If this extent tree is supported by an extent map, insert
99 	 * a record into the map.
100 	 */
101 	void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et,
102 				     struct ocfs2_extent_rec *rec);
103 
104 	/*
105 	 * If this extent tree is supported by an extent map, truncate the
106 	 * map to clusters,
107 	 */
108 	void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et,
109 				       u32 clusters);
110 
111 	/*
112 	 * If ->eo_insert_check() exists, it is called before rec is
113 	 * inserted into the extent tree.  It is optional.
114 	 */
115 	int (*eo_insert_check)(struct ocfs2_extent_tree *et,
116 			       struct ocfs2_extent_rec *rec);
117 	int (*eo_sanity_check)(struct ocfs2_extent_tree *et);
118 
119 	/*
120 	 * --------------------------------------------------------------
121 	 * The remaining are internal to ocfs2_extent_tree and don't have
122 	 * accessor functions
123 	 */
124 
125 	/*
126 	 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
127 	 * It is required.
128 	 */
129 	void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
130 
131 	/*
132 	 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
133 	 * it exists.  If it does not, et->et_max_leaf_clusters is set
134 	 * to 0 (unlimited).  Optional.
135 	 */
136 	void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et);
137 
138 	/*
139 	 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec
140 	 * are contiguous or not. Optional. Don't need to set it if use
141 	 * ocfs2_extent_rec as the tree leaf.
142 	 */
143 	enum ocfs2_contig_type
144 		(*eo_extent_contig)(struct ocfs2_extent_tree *et,
145 				    struct ocfs2_extent_rec *ext,
146 				    struct ocfs2_extent_rec *insert_rec);
147 };
148 
149 
150 /*
151  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
152  * in the methods.
153  */
154 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
155 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
156 					 u64 blkno);
157 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
158 					 u32 clusters);
159 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
160 					   struct ocfs2_extent_rec *rec);
161 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
162 					     u32 clusters);
163 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
164 				     struct ocfs2_extent_rec *rec);
165 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et);
166 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
167 static const struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
168 	.eo_set_last_eb_blk	= ocfs2_dinode_set_last_eb_blk,
169 	.eo_get_last_eb_blk	= ocfs2_dinode_get_last_eb_blk,
170 	.eo_update_clusters	= ocfs2_dinode_update_clusters,
171 	.eo_extent_map_insert	= ocfs2_dinode_extent_map_insert,
172 	.eo_extent_map_truncate	= ocfs2_dinode_extent_map_truncate,
173 	.eo_insert_check	= ocfs2_dinode_insert_check,
174 	.eo_sanity_check	= ocfs2_dinode_sanity_check,
175 	.eo_fill_root_el	= ocfs2_dinode_fill_root_el,
176 };
177 
178 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
179 					 u64 blkno)
180 {
181 	struct ocfs2_dinode *di = et->et_object;
182 
183 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
184 	di->i_last_eb_blk = cpu_to_le64(blkno);
185 }
186 
187 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
188 {
189 	struct ocfs2_dinode *di = et->et_object;
190 
191 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
192 	return le64_to_cpu(di->i_last_eb_blk);
193 }
194 
195 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
196 					 u32 clusters)
197 {
198 	struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
199 	struct ocfs2_dinode *di = et->et_object;
200 
201 	le32_add_cpu(&di->i_clusters, clusters);
202 	spin_lock(&oi->ip_lock);
203 	oi->ip_clusters = le32_to_cpu(di->i_clusters);
204 	spin_unlock(&oi->ip_lock);
205 }
206 
207 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
208 					   struct ocfs2_extent_rec *rec)
209 {
210 	struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
211 
212 	ocfs2_extent_map_insert_rec(inode, rec);
213 }
214 
215 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
216 					     u32 clusters)
217 {
218 	struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
219 
220 	ocfs2_extent_map_trunc(inode, clusters);
221 }
222 
223 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
224 				     struct ocfs2_extent_rec *rec)
225 {
226 	struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
227 	struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb);
228 
229 	BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL);
230 	mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
231 			(oi->ip_clusters != le32_to_cpu(rec->e_cpos)),
232 			"Device %s, asking for sparse allocation: inode %llu, "
233 			"cpos %u, clusters %u\n",
234 			osb->dev_str,
235 			(unsigned long long)oi->ip_blkno,
236 			rec->e_cpos, oi->ip_clusters);
237 
238 	return 0;
239 }
240 
241 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et)
242 {
243 	struct ocfs2_dinode *di = et->et_object;
244 
245 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
246 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
247 
248 	return 0;
249 }
250 
251 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
252 {
253 	struct ocfs2_dinode *di = et->et_object;
254 
255 	et->et_root_el = &di->id2.i_list;
256 }
257 
258 
259 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
260 {
261 	struct ocfs2_xattr_value_buf *vb = et->et_object;
262 
263 	et->et_root_el = &vb->vb_xv->xr_list;
264 }
265 
266 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
267 					      u64 blkno)
268 {
269 	struct ocfs2_xattr_value_buf *vb = et->et_object;
270 
271 	vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
272 }
273 
274 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
275 {
276 	struct ocfs2_xattr_value_buf *vb = et->et_object;
277 
278 	return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
279 }
280 
281 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et,
282 					      u32 clusters)
283 {
284 	struct ocfs2_xattr_value_buf *vb = et->et_object;
285 
286 	le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
287 }
288 
289 static const struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
290 	.eo_set_last_eb_blk	= ocfs2_xattr_value_set_last_eb_blk,
291 	.eo_get_last_eb_blk	= ocfs2_xattr_value_get_last_eb_blk,
292 	.eo_update_clusters	= ocfs2_xattr_value_update_clusters,
293 	.eo_fill_root_el	= ocfs2_xattr_value_fill_root_el,
294 };
295 
296 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
297 {
298 	struct ocfs2_xattr_block *xb = et->et_object;
299 
300 	et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
301 }
302 
303 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et)
304 {
305 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
306 	et->et_max_leaf_clusters =
307 		ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
308 }
309 
310 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
311 					     u64 blkno)
312 {
313 	struct ocfs2_xattr_block *xb = et->et_object;
314 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
315 
316 	xt->xt_last_eb_blk = cpu_to_le64(blkno);
317 }
318 
319 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
320 {
321 	struct ocfs2_xattr_block *xb = et->et_object;
322 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
323 
324 	return le64_to_cpu(xt->xt_last_eb_blk);
325 }
326 
327 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et,
328 					     u32 clusters)
329 {
330 	struct ocfs2_xattr_block *xb = et->et_object;
331 
332 	le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
333 }
334 
335 static const struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
336 	.eo_set_last_eb_blk	= ocfs2_xattr_tree_set_last_eb_blk,
337 	.eo_get_last_eb_blk	= ocfs2_xattr_tree_get_last_eb_blk,
338 	.eo_update_clusters	= ocfs2_xattr_tree_update_clusters,
339 	.eo_fill_root_el	= ocfs2_xattr_tree_fill_root_el,
340 	.eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
341 };
342 
343 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
344 					  u64 blkno)
345 {
346 	struct ocfs2_dx_root_block *dx_root = et->et_object;
347 
348 	dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
349 }
350 
351 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
352 {
353 	struct ocfs2_dx_root_block *dx_root = et->et_object;
354 
355 	return le64_to_cpu(dx_root->dr_last_eb_blk);
356 }
357 
358 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et,
359 					  u32 clusters)
360 {
361 	struct ocfs2_dx_root_block *dx_root = et->et_object;
362 
363 	le32_add_cpu(&dx_root->dr_clusters, clusters);
364 }
365 
366 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et)
367 {
368 	struct ocfs2_dx_root_block *dx_root = et->et_object;
369 
370 	BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
371 
372 	return 0;
373 }
374 
375 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
376 {
377 	struct ocfs2_dx_root_block *dx_root = et->et_object;
378 
379 	et->et_root_el = &dx_root->dr_list;
380 }
381 
382 static const struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
383 	.eo_set_last_eb_blk	= ocfs2_dx_root_set_last_eb_blk,
384 	.eo_get_last_eb_blk	= ocfs2_dx_root_get_last_eb_blk,
385 	.eo_update_clusters	= ocfs2_dx_root_update_clusters,
386 	.eo_sanity_check	= ocfs2_dx_root_sanity_check,
387 	.eo_fill_root_el	= ocfs2_dx_root_fill_root_el,
388 };
389 
390 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et)
391 {
392 	struct ocfs2_refcount_block *rb = et->et_object;
393 
394 	et->et_root_el = &rb->rf_list;
395 }
396 
397 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
398 						u64 blkno)
399 {
400 	struct ocfs2_refcount_block *rb = et->et_object;
401 
402 	rb->rf_last_eb_blk = cpu_to_le64(blkno);
403 }
404 
405 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
406 {
407 	struct ocfs2_refcount_block *rb = et->et_object;
408 
409 	return le64_to_cpu(rb->rf_last_eb_blk);
410 }
411 
412 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et,
413 						u32 clusters)
414 {
415 	struct ocfs2_refcount_block *rb = et->et_object;
416 
417 	le32_add_cpu(&rb->rf_clusters, clusters);
418 }
419 
420 static enum ocfs2_contig_type
421 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et,
422 				  struct ocfs2_extent_rec *ext,
423 				  struct ocfs2_extent_rec *insert_rec)
424 {
425 	return CONTIG_NONE;
426 }
427 
428 static const struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = {
429 	.eo_set_last_eb_blk	= ocfs2_refcount_tree_set_last_eb_blk,
430 	.eo_get_last_eb_blk	= ocfs2_refcount_tree_get_last_eb_blk,
431 	.eo_update_clusters	= ocfs2_refcount_tree_update_clusters,
432 	.eo_fill_root_el	= ocfs2_refcount_tree_fill_root_el,
433 	.eo_extent_contig	= ocfs2_refcount_tree_extent_contig,
434 };
435 
436 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
437 				     struct ocfs2_caching_info *ci,
438 				     struct buffer_head *bh,
439 				     ocfs2_journal_access_func access,
440 				     void *obj,
441 				     const struct ocfs2_extent_tree_operations *ops)
442 {
443 	et->et_ops = ops;
444 	et->et_root_bh = bh;
445 	et->et_ci = ci;
446 	et->et_root_journal_access = access;
447 	if (!obj)
448 		obj = (void *)bh->b_data;
449 	et->et_object = obj;
450 
451 	et->et_ops->eo_fill_root_el(et);
452 	if (!et->et_ops->eo_fill_max_leaf_clusters)
453 		et->et_max_leaf_clusters = 0;
454 	else
455 		et->et_ops->eo_fill_max_leaf_clusters(et);
456 }
457 
458 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
459 				   struct ocfs2_caching_info *ci,
460 				   struct buffer_head *bh)
461 {
462 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di,
463 				 NULL, &ocfs2_dinode_et_ops);
464 }
465 
466 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
467 				       struct ocfs2_caching_info *ci,
468 				       struct buffer_head *bh)
469 {
470 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb,
471 				 NULL, &ocfs2_xattr_tree_et_ops);
472 }
473 
474 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
475 					struct ocfs2_caching_info *ci,
476 					struct ocfs2_xattr_value_buf *vb)
477 {
478 	__ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb,
479 				 &ocfs2_xattr_value_et_ops);
480 }
481 
482 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
483 				    struct ocfs2_caching_info *ci,
484 				    struct buffer_head *bh)
485 {
486 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr,
487 				 NULL, &ocfs2_dx_root_et_ops);
488 }
489 
490 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et,
491 				     struct ocfs2_caching_info *ci,
492 				     struct buffer_head *bh)
493 {
494 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb,
495 				 NULL, &ocfs2_refcount_tree_et_ops);
496 }
497 
498 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
499 					    u64 new_last_eb_blk)
500 {
501 	et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
502 }
503 
504 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
505 {
506 	return et->et_ops->eo_get_last_eb_blk(et);
507 }
508 
509 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et,
510 					    u32 clusters)
511 {
512 	et->et_ops->eo_update_clusters(et, clusters);
513 }
514 
515 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et,
516 					      struct ocfs2_extent_rec *rec)
517 {
518 	if (et->et_ops->eo_extent_map_insert)
519 		et->et_ops->eo_extent_map_insert(et, rec);
520 }
521 
522 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et,
523 						u32 clusters)
524 {
525 	if (et->et_ops->eo_extent_map_truncate)
526 		et->et_ops->eo_extent_map_truncate(et, clusters);
527 }
528 
529 static inline int ocfs2_et_root_journal_access(handle_t *handle,
530 					       struct ocfs2_extent_tree *et,
531 					       int type)
532 {
533 	return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh,
534 					  type);
535 }
536 
537 static inline enum ocfs2_contig_type
538 	ocfs2_et_extent_contig(struct ocfs2_extent_tree *et,
539 			       struct ocfs2_extent_rec *rec,
540 			       struct ocfs2_extent_rec *insert_rec)
541 {
542 	if (et->et_ops->eo_extent_contig)
543 		return et->et_ops->eo_extent_contig(et, rec, insert_rec);
544 
545 	return ocfs2_extent_rec_contig(
546 				ocfs2_metadata_cache_get_super(et->et_ci),
547 				rec, insert_rec);
548 }
549 
550 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et,
551 					struct ocfs2_extent_rec *rec)
552 {
553 	int ret = 0;
554 
555 	if (et->et_ops->eo_insert_check)
556 		ret = et->et_ops->eo_insert_check(et, rec);
557 	return ret;
558 }
559 
560 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et)
561 {
562 	int ret = 0;
563 
564 	if (et->et_ops->eo_sanity_check)
565 		ret = et->et_ops->eo_sanity_check(et);
566 	return ret;
567 }
568 
569 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
570 					 struct ocfs2_extent_block *eb);
571 static void ocfs2_adjust_rightmost_records(handle_t *handle,
572 					   struct ocfs2_extent_tree *et,
573 					   struct ocfs2_path *path,
574 					   struct ocfs2_extent_rec *insert_rec);
575 /*
576  * Reset the actual path elements so that we can re-use the structure
577  * to build another path. Generally, this involves freeing the buffer
578  * heads.
579  */
580 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
581 {
582 	int i, start = 0, depth = 0;
583 	struct ocfs2_path_item *node;
584 
585 	if (keep_root)
586 		start = 1;
587 
588 	for(i = start; i < path_num_items(path); i++) {
589 		node = &path->p_node[i];
590 
591 		brelse(node->bh);
592 		node->bh = NULL;
593 		node->el = NULL;
594 	}
595 
596 	/*
597 	 * Tree depth may change during truncate, or insert. If we're
598 	 * keeping the root extent list, then make sure that our path
599 	 * structure reflects the proper depth.
600 	 */
601 	if (keep_root)
602 		depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
603 	else
604 		path_root_access(path) = NULL;
605 
606 	path->p_tree_depth = depth;
607 }
608 
609 void ocfs2_free_path(struct ocfs2_path *path)
610 {
611 	if (path) {
612 		ocfs2_reinit_path(path, 0);
613 		kfree(path);
614 	}
615 }
616 
617 /*
618  * All the elements of src into dest. After this call, src could be freed
619  * without affecting dest.
620  *
621  * Both paths should have the same root. Any non-root elements of dest
622  * will be freed.
623  */
624 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
625 {
626 	int i;
627 
628 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
629 	BUG_ON(path_root_el(dest) != path_root_el(src));
630 	BUG_ON(path_root_access(dest) != path_root_access(src));
631 
632 	ocfs2_reinit_path(dest, 1);
633 
634 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
635 		dest->p_node[i].bh = src->p_node[i].bh;
636 		dest->p_node[i].el = src->p_node[i].el;
637 
638 		if (dest->p_node[i].bh)
639 			get_bh(dest->p_node[i].bh);
640 	}
641 }
642 
643 /*
644  * Make the *dest path the same as src and re-initialize src path to
645  * have a root only.
646  */
647 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
648 {
649 	int i;
650 
651 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
652 	BUG_ON(path_root_access(dest) != path_root_access(src));
653 
654 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
655 		brelse(dest->p_node[i].bh);
656 
657 		dest->p_node[i].bh = src->p_node[i].bh;
658 		dest->p_node[i].el = src->p_node[i].el;
659 
660 		src->p_node[i].bh = NULL;
661 		src->p_node[i].el = NULL;
662 	}
663 }
664 
665 /*
666  * Insert an extent block at given index.
667  *
668  * This will not take an additional reference on eb_bh.
669  */
670 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
671 					struct buffer_head *eb_bh)
672 {
673 	struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
674 
675 	/*
676 	 * Right now, no root bh is an extent block, so this helps
677 	 * catch code errors with dinode trees. The assertion can be
678 	 * safely removed if we ever need to insert extent block
679 	 * structures at the root.
680 	 */
681 	BUG_ON(index == 0);
682 
683 	path->p_node[index].bh = eb_bh;
684 	path->p_node[index].el = &eb->h_list;
685 }
686 
687 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
688 					 struct ocfs2_extent_list *root_el,
689 					 ocfs2_journal_access_func access)
690 {
691 	struct ocfs2_path *path;
692 
693 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
694 
695 	path = kzalloc(sizeof(*path), GFP_NOFS);
696 	if (path) {
697 		path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
698 		get_bh(root_bh);
699 		path_root_bh(path) = root_bh;
700 		path_root_el(path) = root_el;
701 		path_root_access(path) = access;
702 	}
703 
704 	return path;
705 }
706 
707 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
708 {
709 	return ocfs2_new_path(path_root_bh(path), path_root_el(path),
710 			      path_root_access(path));
711 }
712 
713 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
714 {
715 	return ocfs2_new_path(et->et_root_bh, et->et_root_el,
716 			      et->et_root_journal_access);
717 }
718 
719 /*
720  * Journal the buffer at depth idx.  All idx>0 are extent_blocks,
721  * otherwise it's the root_access function.
722  *
723  * I don't like the way this function's name looks next to
724  * ocfs2_journal_access_path(), but I don't have a better one.
725  */
726 int ocfs2_path_bh_journal_access(handle_t *handle,
727 				 struct ocfs2_caching_info *ci,
728 				 struct ocfs2_path *path,
729 				 int idx)
730 {
731 	ocfs2_journal_access_func access = path_root_access(path);
732 
733 	if (!access)
734 		access = ocfs2_journal_access;
735 
736 	if (idx)
737 		access = ocfs2_journal_access_eb;
738 
739 	return access(handle, ci, path->p_node[idx].bh,
740 		      OCFS2_JOURNAL_ACCESS_WRITE);
741 }
742 
743 /*
744  * Convenience function to journal all components in a path.
745  */
746 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci,
747 			      handle_t *handle,
748 			      struct ocfs2_path *path)
749 {
750 	int i, ret = 0;
751 
752 	if (!path)
753 		goto out;
754 
755 	for(i = 0; i < path_num_items(path); i++) {
756 		ret = ocfs2_path_bh_journal_access(handle, ci, path, i);
757 		if (ret < 0) {
758 			mlog_errno(ret);
759 			goto out;
760 		}
761 	}
762 
763 out:
764 	return ret;
765 }
766 
767 /*
768  * Return the index of the extent record which contains cluster #v_cluster.
769  * -1 is returned if it was not found.
770  *
771  * Should work fine on interior and exterior nodes.
772  */
773 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
774 {
775 	int ret = -1;
776 	int i;
777 	struct ocfs2_extent_rec *rec;
778 	u32 rec_end, rec_start, clusters;
779 
780 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
781 		rec = &el->l_recs[i];
782 
783 		rec_start = le32_to_cpu(rec->e_cpos);
784 		clusters = ocfs2_rec_clusters(el, rec);
785 
786 		rec_end = rec_start + clusters;
787 
788 		if (v_cluster >= rec_start && v_cluster < rec_end) {
789 			ret = i;
790 			break;
791 		}
792 	}
793 
794 	return ret;
795 }
796 
797 /*
798  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
799  * ocfs2_extent_rec_contig only work properly against leaf nodes!
800  */
801 static int ocfs2_block_extent_contig(struct super_block *sb,
802 				     struct ocfs2_extent_rec *ext,
803 				     u64 blkno)
804 {
805 	u64 blk_end = le64_to_cpu(ext->e_blkno);
806 
807 	blk_end += ocfs2_clusters_to_blocks(sb,
808 				    le16_to_cpu(ext->e_leaf_clusters));
809 
810 	return blkno == blk_end;
811 }
812 
813 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
814 				  struct ocfs2_extent_rec *right)
815 {
816 	u32 left_range;
817 
818 	left_range = le32_to_cpu(left->e_cpos) +
819 		le16_to_cpu(left->e_leaf_clusters);
820 
821 	return (left_range == le32_to_cpu(right->e_cpos));
822 }
823 
824 static enum ocfs2_contig_type
825 	ocfs2_extent_rec_contig(struct super_block *sb,
826 				struct ocfs2_extent_rec *ext,
827 				struct ocfs2_extent_rec *insert_rec)
828 {
829 	u64 blkno = le64_to_cpu(insert_rec->e_blkno);
830 
831 	/*
832 	 * Refuse to coalesce extent records with different flag
833 	 * fields - we don't want to mix unwritten extents with user
834 	 * data.
835 	 */
836 	if (ext->e_flags != insert_rec->e_flags)
837 		return CONTIG_NONE;
838 
839 	if (ocfs2_extents_adjacent(ext, insert_rec) &&
840 	    ocfs2_block_extent_contig(sb, ext, blkno))
841 			return CONTIG_RIGHT;
842 
843 	blkno = le64_to_cpu(ext->e_blkno);
844 	if (ocfs2_extents_adjacent(insert_rec, ext) &&
845 	    ocfs2_block_extent_contig(sb, insert_rec, blkno))
846 		return CONTIG_LEFT;
847 
848 	return CONTIG_NONE;
849 }
850 
851 /*
852  * NOTE: We can have pretty much any combination of contiguousness and
853  * appending.
854  *
855  * The usefulness of APPEND_TAIL is more in that it lets us know that
856  * we'll have to update the path to that leaf.
857  */
858 enum ocfs2_append_type {
859 	APPEND_NONE = 0,
860 	APPEND_TAIL,
861 };
862 
863 enum ocfs2_split_type {
864 	SPLIT_NONE = 0,
865 	SPLIT_LEFT,
866 	SPLIT_RIGHT,
867 };
868 
869 struct ocfs2_insert_type {
870 	enum ocfs2_split_type	ins_split;
871 	enum ocfs2_append_type	ins_appending;
872 	enum ocfs2_contig_type	ins_contig;
873 	int			ins_contig_index;
874 	int			ins_tree_depth;
875 };
876 
877 struct ocfs2_merge_ctxt {
878 	enum ocfs2_contig_type	c_contig_type;
879 	int			c_has_empty_extent;
880 	int			c_split_covers_rec;
881 };
882 
883 static int ocfs2_validate_extent_block(struct super_block *sb,
884 				       struct buffer_head *bh)
885 {
886 	int rc;
887 	struct ocfs2_extent_block *eb =
888 		(struct ocfs2_extent_block *)bh->b_data;
889 
890 	trace_ocfs2_validate_extent_block((unsigned long long)bh->b_blocknr);
891 
892 	BUG_ON(!buffer_uptodate(bh));
893 
894 	/*
895 	 * If the ecc fails, we return the error but otherwise
896 	 * leave the filesystem running.  We know any error is
897 	 * local to this block.
898 	 */
899 	rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
900 	if (rc) {
901 		mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
902 		     (unsigned long long)bh->b_blocknr);
903 		return rc;
904 	}
905 
906 	/*
907 	 * Errors after here are fatal.
908 	 */
909 
910 	if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
911 		rc = ocfs2_error(sb,
912 				 "Extent block #%llu has bad signature %.*s\n",
913 				 (unsigned long long)bh->b_blocknr, 7,
914 				 eb->h_signature);
915 		goto bail;
916 	}
917 
918 	if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
919 		rc = ocfs2_error(sb,
920 				 "Extent block #%llu has an invalid h_blkno of %llu\n",
921 				 (unsigned long long)bh->b_blocknr,
922 				 (unsigned long long)le64_to_cpu(eb->h_blkno));
923 		goto bail;
924 	}
925 
926 	if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
927 		rc = ocfs2_error(sb,
928 				 "Extent block #%llu has an invalid h_fs_generation of #%u\n",
929 				 (unsigned long long)bh->b_blocknr,
930 				 le32_to_cpu(eb->h_fs_generation));
931 		goto bail;
932 	}
933 bail:
934 	return rc;
935 }
936 
937 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno,
938 			    struct buffer_head **bh)
939 {
940 	int rc;
941 	struct buffer_head *tmp = *bh;
942 
943 	rc = ocfs2_read_block(ci, eb_blkno, &tmp,
944 			      ocfs2_validate_extent_block);
945 
946 	/* If ocfs2_read_block() got us a new bh, pass it up. */
947 	if (!rc && !*bh)
948 		*bh = tmp;
949 
950 	return rc;
951 }
952 
953 
954 /*
955  * How many free extents have we got before we need more meta data?
956  */
957 int ocfs2_num_free_extents(struct ocfs2_super *osb,
958 			   struct ocfs2_extent_tree *et)
959 {
960 	int retval;
961 	struct ocfs2_extent_list *el = NULL;
962 	struct ocfs2_extent_block *eb;
963 	struct buffer_head *eb_bh = NULL;
964 	u64 last_eb_blk = 0;
965 
966 	el = et->et_root_el;
967 	last_eb_blk = ocfs2_et_get_last_eb_blk(et);
968 
969 	if (last_eb_blk) {
970 		retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk,
971 						 &eb_bh);
972 		if (retval < 0) {
973 			mlog_errno(retval);
974 			goto bail;
975 		}
976 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
977 		el = &eb->h_list;
978 	}
979 
980 	BUG_ON(el->l_tree_depth != 0);
981 
982 	retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
983 bail:
984 	brelse(eb_bh);
985 
986 	trace_ocfs2_num_free_extents(retval);
987 	return retval;
988 }
989 
990 /* expects array to already be allocated
991  *
992  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
993  * l_count for you
994  */
995 static int ocfs2_create_new_meta_bhs(handle_t *handle,
996 				     struct ocfs2_extent_tree *et,
997 				     int wanted,
998 				     struct ocfs2_alloc_context *meta_ac,
999 				     struct buffer_head *bhs[])
1000 {
1001 	int count, status, i;
1002 	u16 suballoc_bit_start;
1003 	u32 num_got;
1004 	u64 suballoc_loc, first_blkno;
1005 	struct ocfs2_super *osb =
1006 		OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
1007 	struct ocfs2_extent_block *eb;
1008 
1009 	count = 0;
1010 	while (count < wanted) {
1011 		status = ocfs2_claim_metadata(handle,
1012 					      meta_ac,
1013 					      wanted - count,
1014 					      &suballoc_loc,
1015 					      &suballoc_bit_start,
1016 					      &num_got,
1017 					      &first_blkno);
1018 		if (status < 0) {
1019 			mlog_errno(status);
1020 			goto bail;
1021 		}
1022 
1023 		for(i = count;  i < (num_got + count); i++) {
1024 			bhs[i] = sb_getblk(osb->sb, first_blkno);
1025 			if (bhs[i] == NULL) {
1026 				status = -ENOMEM;
1027 				mlog_errno(status);
1028 				goto bail;
1029 			}
1030 			ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]);
1031 
1032 			status = ocfs2_journal_access_eb(handle, et->et_ci,
1033 							 bhs[i],
1034 							 OCFS2_JOURNAL_ACCESS_CREATE);
1035 			if (status < 0) {
1036 				mlog_errno(status);
1037 				goto bail;
1038 			}
1039 
1040 			memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
1041 			eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
1042 			/* Ok, setup the minimal stuff here. */
1043 			strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
1044 			eb->h_blkno = cpu_to_le64(first_blkno);
1045 			eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
1046 			eb->h_suballoc_slot =
1047 				cpu_to_le16(meta_ac->ac_alloc_slot);
1048 			eb->h_suballoc_loc = cpu_to_le64(suballoc_loc);
1049 			eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
1050 			eb->h_list.l_count =
1051 				cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
1052 
1053 			suballoc_bit_start++;
1054 			first_blkno++;
1055 
1056 			/* We'll also be dirtied by the caller, so
1057 			 * this isn't absolutely necessary. */
1058 			ocfs2_journal_dirty(handle, bhs[i]);
1059 		}
1060 
1061 		count += num_got;
1062 	}
1063 
1064 	status = 0;
1065 bail:
1066 	if (status < 0) {
1067 		for(i = 0; i < wanted; i++) {
1068 			brelse(bhs[i]);
1069 			bhs[i] = NULL;
1070 		}
1071 		mlog_errno(status);
1072 	}
1073 	return status;
1074 }
1075 
1076 /*
1077  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1078  *
1079  * Returns the sum of the rightmost extent rec logical offset and
1080  * cluster count.
1081  *
1082  * ocfs2_add_branch() uses this to determine what logical cluster
1083  * value should be populated into the leftmost new branch records.
1084  *
1085  * ocfs2_shift_tree_depth() uses this to determine the # clusters
1086  * value for the new topmost tree record.
1087  */
1088 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
1089 {
1090 	int i;
1091 
1092 	i = le16_to_cpu(el->l_next_free_rec) - 1;
1093 
1094 	return le32_to_cpu(el->l_recs[i].e_cpos) +
1095 		ocfs2_rec_clusters(el, &el->l_recs[i]);
1096 }
1097 
1098 /*
1099  * Change range of the branches in the right most path according to the leaf
1100  * extent block's rightmost record.
1101  */
1102 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1103 					 struct ocfs2_extent_tree *et)
1104 {
1105 	int status;
1106 	struct ocfs2_path *path = NULL;
1107 	struct ocfs2_extent_list *el;
1108 	struct ocfs2_extent_rec *rec;
1109 
1110 	path = ocfs2_new_path_from_et(et);
1111 	if (!path) {
1112 		status = -ENOMEM;
1113 		return status;
1114 	}
1115 
1116 	status = ocfs2_find_path(et->et_ci, path, UINT_MAX);
1117 	if (status < 0) {
1118 		mlog_errno(status);
1119 		goto out;
1120 	}
1121 
1122 	status = ocfs2_extend_trans(handle, path_num_items(path));
1123 	if (status < 0) {
1124 		mlog_errno(status);
1125 		goto out;
1126 	}
1127 
1128 	status = ocfs2_journal_access_path(et->et_ci, handle, path);
1129 	if (status < 0) {
1130 		mlog_errno(status);
1131 		goto out;
1132 	}
1133 
1134 	el = path_leaf_el(path);
1135 	rec = &el->l_recs[le16_to_cpu(el->l_next_free_rec) - 1];
1136 
1137 	ocfs2_adjust_rightmost_records(handle, et, path, rec);
1138 
1139 out:
1140 	ocfs2_free_path(path);
1141 	return status;
1142 }
1143 
1144 /*
1145  * Add an entire tree branch to our inode. eb_bh is the extent block
1146  * to start at, if we don't want to start the branch at the root
1147  * structure.
1148  *
1149  * last_eb_bh is required as we have to update it's next_leaf pointer
1150  * for the new last extent block.
1151  *
1152  * the new branch will be 'empty' in the sense that every block will
1153  * contain a single record with cluster count == 0.
1154  */
1155 static int ocfs2_add_branch(handle_t *handle,
1156 			    struct ocfs2_extent_tree *et,
1157 			    struct buffer_head *eb_bh,
1158 			    struct buffer_head **last_eb_bh,
1159 			    struct ocfs2_alloc_context *meta_ac)
1160 {
1161 	int status, new_blocks, i;
1162 	u64 next_blkno, new_last_eb_blk;
1163 	struct buffer_head *bh;
1164 	struct buffer_head **new_eb_bhs = NULL;
1165 	struct ocfs2_extent_block *eb;
1166 	struct ocfs2_extent_list  *eb_el;
1167 	struct ocfs2_extent_list  *el;
1168 	u32 new_cpos, root_end;
1169 
1170 	BUG_ON(!last_eb_bh || !*last_eb_bh);
1171 
1172 	if (eb_bh) {
1173 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1174 		el = &eb->h_list;
1175 	} else
1176 		el = et->et_root_el;
1177 
1178 	/* we never add a branch to a leaf. */
1179 	BUG_ON(!el->l_tree_depth);
1180 
1181 	new_blocks = le16_to_cpu(el->l_tree_depth);
1182 
1183 	eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1184 	new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1185 	root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1186 
1187 	/*
1188 	 * If there is a gap before the root end and the real end
1189 	 * of the righmost leaf block, we need to remove the gap
1190 	 * between new_cpos and root_end first so that the tree
1191 	 * is consistent after we add a new branch(it will start
1192 	 * from new_cpos).
1193 	 */
1194 	if (root_end > new_cpos) {
1195 		trace_ocfs2_adjust_rightmost_branch(
1196 			(unsigned long long)
1197 			ocfs2_metadata_cache_owner(et->et_ci),
1198 			root_end, new_cpos);
1199 
1200 		status = ocfs2_adjust_rightmost_branch(handle, et);
1201 		if (status) {
1202 			mlog_errno(status);
1203 			goto bail;
1204 		}
1205 	}
1206 
1207 	/* allocate the number of new eb blocks we need */
1208 	new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1209 			     GFP_KERNEL);
1210 	if (!new_eb_bhs) {
1211 		status = -ENOMEM;
1212 		mlog_errno(status);
1213 		goto bail;
1214 	}
1215 
1216 	status = ocfs2_create_new_meta_bhs(handle, et, new_blocks,
1217 					   meta_ac, new_eb_bhs);
1218 	if (status < 0) {
1219 		mlog_errno(status);
1220 		goto bail;
1221 	}
1222 
1223 	/* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1224 	 * linked with the rest of the tree.
1225 	 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1226 	 *
1227 	 * when we leave the loop, new_last_eb_blk will point to the
1228 	 * newest leaf, and next_blkno will point to the topmost extent
1229 	 * block. */
1230 	next_blkno = new_last_eb_blk = 0;
1231 	for(i = 0; i < new_blocks; i++) {
1232 		bh = new_eb_bhs[i];
1233 		eb = (struct ocfs2_extent_block *) bh->b_data;
1234 		/* ocfs2_create_new_meta_bhs() should create it right! */
1235 		BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1236 		eb_el = &eb->h_list;
1237 
1238 		status = ocfs2_journal_access_eb(handle, et->et_ci, bh,
1239 						 OCFS2_JOURNAL_ACCESS_CREATE);
1240 		if (status < 0) {
1241 			mlog_errno(status);
1242 			goto bail;
1243 		}
1244 
1245 		eb->h_next_leaf_blk = 0;
1246 		eb_el->l_tree_depth = cpu_to_le16(i);
1247 		eb_el->l_next_free_rec = cpu_to_le16(1);
1248 		/*
1249 		 * This actually counts as an empty extent as
1250 		 * c_clusters == 0
1251 		 */
1252 		eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1253 		eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1254 		/*
1255 		 * eb_el isn't always an interior node, but even leaf
1256 		 * nodes want a zero'd flags and reserved field so
1257 		 * this gets the whole 32 bits regardless of use.
1258 		 */
1259 		eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1260 		if (!eb_el->l_tree_depth)
1261 			new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1262 
1263 		ocfs2_journal_dirty(handle, bh);
1264 		next_blkno = le64_to_cpu(eb->h_blkno);
1265 	}
1266 
1267 	/* This is a bit hairy. We want to update up to three blocks
1268 	 * here without leaving any of them in an inconsistent state
1269 	 * in case of error. We don't have to worry about
1270 	 * journal_dirty erroring as it won't unless we've aborted the
1271 	 * handle (in which case we would never be here) so reserving
1272 	 * the write with journal_access is all we need to do. */
1273 	status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh,
1274 					 OCFS2_JOURNAL_ACCESS_WRITE);
1275 	if (status < 0) {
1276 		mlog_errno(status);
1277 		goto bail;
1278 	}
1279 	status = ocfs2_et_root_journal_access(handle, et,
1280 					      OCFS2_JOURNAL_ACCESS_WRITE);
1281 	if (status < 0) {
1282 		mlog_errno(status);
1283 		goto bail;
1284 	}
1285 	if (eb_bh) {
1286 		status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh,
1287 						 OCFS2_JOURNAL_ACCESS_WRITE);
1288 		if (status < 0) {
1289 			mlog_errno(status);
1290 			goto bail;
1291 		}
1292 	}
1293 
1294 	/* Link the new branch into the rest of the tree (el will
1295 	 * either be on the root_bh, or the extent block passed in. */
1296 	i = le16_to_cpu(el->l_next_free_rec);
1297 	el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1298 	el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1299 	el->l_recs[i].e_int_clusters = 0;
1300 	le16_add_cpu(&el->l_next_free_rec, 1);
1301 
1302 	/* fe needs a new last extent block pointer, as does the
1303 	 * next_leaf on the previously last-extent-block. */
1304 	ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1305 
1306 	eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1307 	eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1308 
1309 	ocfs2_journal_dirty(handle, *last_eb_bh);
1310 	ocfs2_journal_dirty(handle, et->et_root_bh);
1311 	if (eb_bh)
1312 		ocfs2_journal_dirty(handle, eb_bh);
1313 
1314 	/*
1315 	 * Some callers want to track the rightmost leaf so pass it
1316 	 * back here.
1317 	 */
1318 	brelse(*last_eb_bh);
1319 	get_bh(new_eb_bhs[0]);
1320 	*last_eb_bh = new_eb_bhs[0];
1321 
1322 	status = 0;
1323 bail:
1324 	if (new_eb_bhs) {
1325 		for (i = 0; i < new_blocks; i++)
1326 			brelse(new_eb_bhs[i]);
1327 		kfree(new_eb_bhs);
1328 	}
1329 
1330 	return status;
1331 }
1332 
1333 /*
1334  * adds another level to the allocation tree.
1335  * returns back the new extent block so you can add a branch to it
1336  * after this call.
1337  */
1338 static int ocfs2_shift_tree_depth(handle_t *handle,
1339 				  struct ocfs2_extent_tree *et,
1340 				  struct ocfs2_alloc_context *meta_ac,
1341 				  struct buffer_head **ret_new_eb_bh)
1342 {
1343 	int status, i;
1344 	u32 new_clusters;
1345 	struct buffer_head *new_eb_bh = NULL;
1346 	struct ocfs2_extent_block *eb;
1347 	struct ocfs2_extent_list  *root_el;
1348 	struct ocfs2_extent_list  *eb_el;
1349 
1350 	status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac,
1351 					   &new_eb_bh);
1352 	if (status < 0) {
1353 		mlog_errno(status);
1354 		goto bail;
1355 	}
1356 
1357 	eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1358 	/* ocfs2_create_new_meta_bhs() should create it right! */
1359 	BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1360 
1361 	eb_el = &eb->h_list;
1362 	root_el = et->et_root_el;
1363 
1364 	status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh,
1365 					 OCFS2_JOURNAL_ACCESS_CREATE);
1366 	if (status < 0) {
1367 		mlog_errno(status);
1368 		goto bail;
1369 	}
1370 
1371 	/* copy the root extent list data into the new extent block */
1372 	eb_el->l_tree_depth = root_el->l_tree_depth;
1373 	eb_el->l_next_free_rec = root_el->l_next_free_rec;
1374 	for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1375 		eb_el->l_recs[i] = root_el->l_recs[i];
1376 
1377 	ocfs2_journal_dirty(handle, new_eb_bh);
1378 
1379 	status = ocfs2_et_root_journal_access(handle, et,
1380 					      OCFS2_JOURNAL_ACCESS_WRITE);
1381 	if (status < 0) {
1382 		mlog_errno(status);
1383 		goto bail;
1384 	}
1385 
1386 	new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1387 
1388 	/* update root_bh now */
1389 	le16_add_cpu(&root_el->l_tree_depth, 1);
1390 	root_el->l_recs[0].e_cpos = 0;
1391 	root_el->l_recs[0].e_blkno = eb->h_blkno;
1392 	root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1393 	for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1394 		memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1395 	root_el->l_next_free_rec = cpu_to_le16(1);
1396 
1397 	/* If this is our 1st tree depth shift, then last_eb_blk
1398 	 * becomes the allocated extent block */
1399 	if (root_el->l_tree_depth == cpu_to_le16(1))
1400 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1401 
1402 	ocfs2_journal_dirty(handle, et->et_root_bh);
1403 
1404 	*ret_new_eb_bh = new_eb_bh;
1405 	new_eb_bh = NULL;
1406 	status = 0;
1407 bail:
1408 	brelse(new_eb_bh);
1409 
1410 	return status;
1411 }
1412 
1413 /*
1414  * Should only be called when there is no space left in any of the
1415  * leaf nodes. What we want to do is find the lowest tree depth
1416  * non-leaf extent block with room for new records. There are three
1417  * valid results of this search:
1418  *
1419  * 1) a lowest extent block is found, then we pass it back in
1420  *    *lowest_eb_bh and return '0'
1421  *
1422  * 2) the search fails to find anything, but the root_el has room. We
1423  *    pass NULL back in *lowest_eb_bh, but still return '0'
1424  *
1425  * 3) the search fails to find anything AND the root_el is full, in
1426  *    which case we return > 0
1427  *
1428  * return status < 0 indicates an error.
1429  */
1430 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et,
1431 				    struct buffer_head **target_bh)
1432 {
1433 	int status = 0, i;
1434 	u64 blkno;
1435 	struct ocfs2_extent_block *eb;
1436 	struct ocfs2_extent_list  *el;
1437 	struct buffer_head *bh = NULL;
1438 	struct buffer_head *lowest_bh = NULL;
1439 
1440 	*target_bh = NULL;
1441 
1442 	el = et->et_root_el;
1443 
1444 	while(le16_to_cpu(el->l_tree_depth) > 1) {
1445 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1446 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1447 				    "Owner %llu has empty extent list (next_free_rec == 0)\n",
1448 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
1449 			status = -EIO;
1450 			goto bail;
1451 		}
1452 		i = le16_to_cpu(el->l_next_free_rec) - 1;
1453 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1454 		if (!blkno) {
1455 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1456 				    "Owner %llu has extent list where extent # %d has no physical block start\n",
1457 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i);
1458 			status = -EIO;
1459 			goto bail;
1460 		}
1461 
1462 		brelse(bh);
1463 		bh = NULL;
1464 
1465 		status = ocfs2_read_extent_block(et->et_ci, blkno, &bh);
1466 		if (status < 0) {
1467 			mlog_errno(status);
1468 			goto bail;
1469 		}
1470 
1471 		eb = (struct ocfs2_extent_block *) bh->b_data;
1472 		el = &eb->h_list;
1473 
1474 		if (le16_to_cpu(el->l_next_free_rec) <
1475 		    le16_to_cpu(el->l_count)) {
1476 			brelse(lowest_bh);
1477 			lowest_bh = bh;
1478 			get_bh(lowest_bh);
1479 		}
1480 	}
1481 
1482 	/* If we didn't find one and the fe doesn't have any room,
1483 	 * then return '1' */
1484 	el = et->et_root_el;
1485 	if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1486 		status = 1;
1487 
1488 	*target_bh = lowest_bh;
1489 bail:
1490 	brelse(bh);
1491 
1492 	return status;
1493 }
1494 
1495 /*
1496  * Grow a b-tree so that it has more records.
1497  *
1498  * We might shift the tree depth in which case existing paths should
1499  * be considered invalid.
1500  *
1501  * Tree depth after the grow is returned via *final_depth.
1502  *
1503  * *last_eb_bh will be updated by ocfs2_add_branch().
1504  */
1505 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et,
1506 			   int *final_depth, struct buffer_head **last_eb_bh,
1507 			   struct ocfs2_alloc_context *meta_ac)
1508 {
1509 	int ret, shift;
1510 	struct ocfs2_extent_list *el = et->et_root_el;
1511 	int depth = le16_to_cpu(el->l_tree_depth);
1512 	struct buffer_head *bh = NULL;
1513 
1514 	BUG_ON(meta_ac == NULL);
1515 
1516 	shift = ocfs2_find_branch_target(et, &bh);
1517 	if (shift < 0) {
1518 		ret = shift;
1519 		mlog_errno(ret);
1520 		goto out;
1521 	}
1522 
1523 	/* We traveled all the way to the bottom of the allocation tree
1524 	 * and didn't find room for any more extents - we need to add
1525 	 * another tree level */
1526 	if (shift) {
1527 		BUG_ON(bh);
1528 		trace_ocfs2_grow_tree(
1529 			(unsigned long long)
1530 			ocfs2_metadata_cache_owner(et->et_ci),
1531 			depth);
1532 
1533 		/* ocfs2_shift_tree_depth will return us a buffer with
1534 		 * the new extent block (so we can pass that to
1535 		 * ocfs2_add_branch). */
1536 		ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh);
1537 		if (ret < 0) {
1538 			mlog_errno(ret);
1539 			goto out;
1540 		}
1541 		depth++;
1542 		if (depth == 1) {
1543 			/*
1544 			 * Special case: we have room now if we shifted from
1545 			 * tree_depth 0, so no more work needs to be done.
1546 			 *
1547 			 * We won't be calling add_branch, so pass
1548 			 * back *last_eb_bh as the new leaf. At depth
1549 			 * zero, it should always be null so there's
1550 			 * no reason to brelse.
1551 			 */
1552 			BUG_ON(*last_eb_bh);
1553 			get_bh(bh);
1554 			*last_eb_bh = bh;
1555 			goto out;
1556 		}
1557 	}
1558 
1559 	/* call ocfs2_add_branch to add the final part of the tree with
1560 	 * the new data. */
1561 	ret = ocfs2_add_branch(handle, et, bh, last_eb_bh,
1562 			       meta_ac);
1563 	if (ret < 0) {
1564 		mlog_errno(ret);
1565 		goto out;
1566 	}
1567 
1568 out:
1569 	if (final_depth)
1570 		*final_depth = depth;
1571 	brelse(bh);
1572 	return ret;
1573 }
1574 
1575 /*
1576  * This function will discard the rightmost extent record.
1577  */
1578 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1579 {
1580 	int next_free = le16_to_cpu(el->l_next_free_rec);
1581 	int count = le16_to_cpu(el->l_count);
1582 	unsigned int num_bytes;
1583 
1584 	BUG_ON(!next_free);
1585 	/* This will cause us to go off the end of our extent list. */
1586 	BUG_ON(next_free >= count);
1587 
1588 	num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1589 
1590 	memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1591 }
1592 
1593 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1594 			      struct ocfs2_extent_rec *insert_rec)
1595 {
1596 	int i, insert_index, next_free, has_empty, num_bytes;
1597 	u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1598 	struct ocfs2_extent_rec *rec;
1599 
1600 	next_free = le16_to_cpu(el->l_next_free_rec);
1601 	has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1602 
1603 	BUG_ON(!next_free);
1604 
1605 	/* The tree code before us didn't allow enough room in the leaf. */
1606 	BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1607 
1608 	/*
1609 	 * The easiest way to approach this is to just remove the
1610 	 * empty extent and temporarily decrement next_free.
1611 	 */
1612 	if (has_empty) {
1613 		/*
1614 		 * If next_free was 1 (only an empty extent), this
1615 		 * loop won't execute, which is fine. We still want
1616 		 * the decrement above to happen.
1617 		 */
1618 		for(i = 0; i < (next_free - 1); i++)
1619 			el->l_recs[i] = el->l_recs[i+1];
1620 
1621 		next_free--;
1622 	}
1623 
1624 	/*
1625 	 * Figure out what the new record index should be.
1626 	 */
1627 	for(i = 0; i < next_free; i++) {
1628 		rec = &el->l_recs[i];
1629 
1630 		if (insert_cpos < le32_to_cpu(rec->e_cpos))
1631 			break;
1632 	}
1633 	insert_index = i;
1634 
1635 	trace_ocfs2_rotate_leaf(insert_cpos, insert_index,
1636 				has_empty, next_free,
1637 				le16_to_cpu(el->l_count));
1638 
1639 	BUG_ON(insert_index < 0);
1640 	BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1641 	BUG_ON(insert_index > next_free);
1642 
1643 	/*
1644 	 * No need to memmove if we're just adding to the tail.
1645 	 */
1646 	if (insert_index != next_free) {
1647 		BUG_ON(next_free >= le16_to_cpu(el->l_count));
1648 
1649 		num_bytes = next_free - insert_index;
1650 		num_bytes *= sizeof(struct ocfs2_extent_rec);
1651 		memmove(&el->l_recs[insert_index + 1],
1652 			&el->l_recs[insert_index],
1653 			num_bytes);
1654 	}
1655 
1656 	/*
1657 	 * Either we had an empty extent, and need to re-increment or
1658 	 * there was no empty extent on a non full rightmost leaf node,
1659 	 * in which case we still need to increment.
1660 	 */
1661 	next_free++;
1662 	el->l_next_free_rec = cpu_to_le16(next_free);
1663 	/*
1664 	 * Make sure none of the math above just messed up our tree.
1665 	 */
1666 	BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1667 
1668 	el->l_recs[insert_index] = *insert_rec;
1669 
1670 }
1671 
1672 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1673 {
1674 	int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1675 
1676 	BUG_ON(num_recs == 0);
1677 
1678 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1679 		num_recs--;
1680 		size = num_recs * sizeof(struct ocfs2_extent_rec);
1681 		memmove(&el->l_recs[0], &el->l_recs[1], size);
1682 		memset(&el->l_recs[num_recs], 0,
1683 		       sizeof(struct ocfs2_extent_rec));
1684 		el->l_next_free_rec = cpu_to_le16(num_recs);
1685 	}
1686 }
1687 
1688 /*
1689  * Create an empty extent record .
1690  *
1691  * l_next_free_rec may be updated.
1692  *
1693  * If an empty extent already exists do nothing.
1694  */
1695 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1696 {
1697 	int next_free = le16_to_cpu(el->l_next_free_rec);
1698 
1699 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1700 
1701 	if (next_free == 0)
1702 		goto set_and_inc;
1703 
1704 	if (ocfs2_is_empty_extent(&el->l_recs[0]))
1705 		return;
1706 
1707 	mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1708 			"Asked to create an empty extent in a full list:\n"
1709 			"count = %u, tree depth = %u",
1710 			le16_to_cpu(el->l_count),
1711 			le16_to_cpu(el->l_tree_depth));
1712 
1713 	ocfs2_shift_records_right(el);
1714 
1715 set_and_inc:
1716 	le16_add_cpu(&el->l_next_free_rec, 1);
1717 	memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1718 }
1719 
1720 /*
1721  * For a rotation which involves two leaf nodes, the "root node" is
1722  * the lowest level tree node which contains a path to both leafs. This
1723  * resulting set of information can be used to form a complete "subtree"
1724  *
1725  * This function is passed two full paths from the dinode down to a
1726  * pair of adjacent leaves. It's task is to figure out which path
1727  * index contains the subtree root - this can be the root index itself
1728  * in a worst-case rotation.
1729  *
1730  * The array index of the subtree root is passed back.
1731  */
1732 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et,
1733 			    struct ocfs2_path *left,
1734 			    struct ocfs2_path *right)
1735 {
1736 	int i = 0;
1737 
1738 	/*
1739 	 * Check that the caller passed in two paths from the same tree.
1740 	 */
1741 	BUG_ON(path_root_bh(left) != path_root_bh(right));
1742 
1743 	do {
1744 		i++;
1745 
1746 		/*
1747 		 * The caller didn't pass two adjacent paths.
1748 		 */
1749 		mlog_bug_on_msg(i > left->p_tree_depth,
1750 				"Owner %llu, left depth %u, right depth %u\n"
1751 				"left leaf blk %llu, right leaf blk %llu\n",
1752 				(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
1753 				left->p_tree_depth, right->p_tree_depth,
1754 				(unsigned long long)path_leaf_bh(left)->b_blocknr,
1755 				(unsigned long long)path_leaf_bh(right)->b_blocknr);
1756 	} while (left->p_node[i].bh->b_blocknr ==
1757 		 right->p_node[i].bh->b_blocknr);
1758 
1759 	return i - 1;
1760 }
1761 
1762 typedef void (path_insert_t)(void *, struct buffer_head *);
1763 
1764 /*
1765  * Traverse a btree path in search of cpos, starting at root_el.
1766  *
1767  * This code can be called with a cpos larger than the tree, in which
1768  * case it will return the rightmost path.
1769  */
1770 static int __ocfs2_find_path(struct ocfs2_caching_info *ci,
1771 			     struct ocfs2_extent_list *root_el, u32 cpos,
1772 			     path_insert_t *func, void *data)
1773 {
1774 	int i, ret = 0;
1775 	u32 range;
1776 	u64 blkno;
1777 	struct buffer_head *bh = NULL;
1778 	struct ocfs2_extent_block *eb;
1779 	struct ocfs2_extent_list *el;
1780 	struct ocfs2_extent_rec *rec;
1781 
1782 	el = root_el;
1783 	while (el->l_tree_depth) {
1784 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1785 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1786 				    "Owner %llu has empty extent list at depth %u\n",
1787 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1788 				    le16_to_cpu(el->l_tree_depth));
1789 			ret = -EROFS;
1790 			goto out;
1791 
1792 		}
1793 
1794 		for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1795 			rec = &el->l_recs[i];
1796 
1797 			/*
1798 			 * In the case that cpos is off the allocation
1799 			 * tree, this should just wind up returning the
1800 			 * rightmost record.
1801 			 */
1802 			range = le32_to_cpu(rec->e_cpos) +
1803 				ocfs2_rec_clusters(el, rec);
1804 			if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1805 			    break;
1806 		}
1807 
1808 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1809 		if (blkno == 0) {
1810 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1811 				    "Owner %llu has bad blkno in extent list at depth %u (index %d)\n",
1812 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1813 				    le16_to_cpu(el->l_tree_depth), i);
1814 			ret = -EROFS;
1815 			goto out;
1816 		}
1817 
1818 		brelse(bh);
1819 		bh = NULL;
1820 		ret = ocfs2_read_extent_block(ci, blkno, &bh);
1821 		if (ret) {
1822 			mlog_errno(ret);
1823 			goto out;
1824 		}
1825 
1826 		eb = (struct ocfs2_extent_block *) bh->b_data;
1827 		el = &eb->h_list;
1828 
1829 		if (le16_to_cpu(el->l_next_free_rec) >
1830 		    le16_to_cpu(el->l_count)) {
1831 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1832 				    "Owner %llu has bad count in extent list at block %llu (next free=%u, count=%u)\n",
1833 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1834 				    (unsigned long long)bh->b_blocknr,
1835 				    le16_to_cpu(el->l_next_free_rec),
1836 				    le16_to_cpu(el->l_count));
1837 			ret = -EROFS;
1838 			goto out;
1839 		}
1840 
1841 		if (func)
1842 			func(data, bh);
1843 	}
1844 
1845 out:
1846 	/*
1847 	 * Catch any trailing bh that the loop didn't handle.
1848 	 */
1849 	brelse(bh);
1850 
1851 	return ret;
1852 }
1853 
1854 /*
1855  * Given an initialized path (that is, it has a valid root extent
1856  * list), this function will traverse the btree in search of the path
1857  * which would contain cpos.
1858  *
1859  * The path traveled is recorded in the path structure.
1860  *
1861  * Note that this will not do any comparisons on leaf node extent
1862  * records, so it will work fine in the case that we just added a tree
1863  * branch.
1864  */
1865 struct find_path_data {
1866 	int index;
1867 	struct ocfs2_path *path;
1868 };
1869 static void find_path_ins(void *data, struct buffer_head *bh)
1870 {
1871 	struct find_path_data *fp = data;
1872 
1873 	get_bh(bh);
1874 	ocfs2_path_insert_eb(fp->path, fp->index, bh);
1875 	fp->index++;
1876 }
1877 int ocfs2_find_path(struct ocfs2_caching_info *ci,
1878 		    struct ocfs2_path *path, u32 cpos)
1879 {
1880 	struct find_path_data data;
1881 
1882 	data.index = 1;
1883 	data.path = path;
1884 	return __ocfs2_find_path(ci, path_root_el(path), cpos,
1885 				 find_path_ins, &data);
1886 }
1887 
1888 static void find_leaf_ins(void *data, struct buffer_head *bh)
1889 {
1890 	struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1891 	struct ocfs2_extent_list *el = &eb->h_list;
1892 	struct buffer_head **ret = data;
1893 
1894 	/* We want to retain only the leaf block. */
1895 	if (le16_to_cpu(el->l_tree_depth) == 0) {
1896 		get_bh(bh);
1897 		*ret = bh;
1898 	}
1899 }
1900 /*
1901  * Find the leaf block in the tree which would contain cpos. No
1902  * checking of the actual leaf is done.
1903  *
1904  * Some paths want to call this instead of allocating a path structure
1905  * and calling ocfs2_find_path().
1906  *
1907  * This function doesn't handle non btree extent lists.
1908  */
1909 int ocfs2_find_leaf(struct ocfs2_caching_info *ci,
1910 		    struct ocfs2_extent_list *root_el, u32 cpos,
1911 		    struct buffer_head **leaf_bh)
1912 {
1913 	int ret;
1914 	struct buffer_head *bh = NULL;
1915 
1916 	ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh);
1917 	if (ret) {
1918 		mlog_errno(ret);
1919 		goto out;
1920 	}
1921 
1922 	*leaf_bh = bh;
1923 out:
1924 	return ret;
1925 }
1926 
1927 /*
1928  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1929  *
1930  * Basically, we've moved stuff around at the bottom of the tree and
1931  * we need to fix up the extent records above the changes to reflect
1932  * the new changes.
1933  *
1934  * left_rec: the record on the left.
1935  * left_child_el: is the child list pointed to by left_rec
1936  * right_rec: the record to the right of left_rec
1937  * right_child_el: is the child list pointed to by right_rec
1938  *
1939  * By definition, this only works on interior nodes.
1940  */
1941 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1942 				  struct ocfs2_extent_list *left_child_el,
1943 				  struct ocfs2_extent_rec *right_rec,
1944 				  struct ocfs2_extent_list *right_child_el)
1945 {
1946 	u32 left_clusters, right_end;
1947 
1948 	/*
1949 	 * Interior nodes never have holes. Their cpos is the cpos of
1950 	 * the leftmost record in their child list. Their cluster
1951 	 * count covers the full theoretical range of their child list
1952 	 * - the range between their cpos and the cpos of the record
1953 	 * immediately to their right.
1954 	 */
1955 	left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1956 	if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1957 		BUG_ON(right_child_el->l_tree_depth);
1958 		BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1959 		left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1960 	}
1961 	left_clusters -= le32_to_cpu(left_rec->e_cpos);
1962 	left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1963 
1964 	/*
1965 	 * Calculate the rightmost cluster count boundary before
1966 	 * moving cpos - we will need to adjust clusters after
1967 	 * updating e_cpos to keep the same highest cluster count.
1968 	 */
1969 	right_end = le32_to_cpu(right_rec->e_cpos);
1970 	right_end += le32_to_cpu(right_rec->e_int_clusters);
1971 
1972 	right_rec->e_cpos = left_rec->e_cpos;
1973 	le32_add_cpu(&right_rec->e_cpos, left_clusters);
1974 
1975 	right_end -= le32_to_cpu(right_rec->e_cpos);
1976 	right_rec->e_int_clusters = cpu_to_le32(right_end);
1977 }
1978 
1979 /*
1980  * Adjust the adjacent root node records involved in a
1981  * rotation. left_el_blkno is passed in as a key so that we can easily
1982  * find it's index in the root list.
1983  */
1984 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1985 				      struct ocfs2_extent_list *left_el,
1986 				      struct ocfs2_extent_list *right_el,
1987 				      u64 left_el_blkno)
1988 {
1989 	int i;
1990 
1991 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1992 	       le16_to_cpu(left_el->l_tree_depth));
1993 
1994 	for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1995 		if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1996 			break;
1997 	}
1998 
1999 	/*
2000 	 * The path walking code should have never returned a root and
2001 	 * two paths which are not adjacent.
2002 	 */
2003 	BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
2004 
2005 	ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
2006 				      &root_el->l_recs[i + 1], right_el);
2007 }
2008 
2009 /*
2010  * We've changed a leaf block (in right_path) and need to reflect that
2011  * change back up the subtree.
2012  *
2013  * This happens in multiple places:
2014  *   - When we've moved an extent record from the left path leaf to the right
2015  *     path leaf to make room for an empty extent in the left path leaf.
2016  *   - When our insert into the right path leaf is at the leftmost edge
2017  *     and requires an update of the path immediately to it's left. This
2018  *     can occur at the end of some types of rotation and appending inserts.
2019  *   - When we've adjusted the last extent record in the left path leaf and the
2020  *     1st extent record in the right path leaf during cross extent block merge.
2021  */
2022 static void ocfs2_complete_edge_insert(handle_t *handle,
2023 				       struct ocfs2_path *left_path,
2024 				       struct ocfs2_path *right_path,
2025 				       int subtree_index)
2026 {
2027 	int i, idx;
2028 	struct ocfs2_extent_list *el, *left_el, *right_el;
2029 	struct ocfs2_extent_rec *left_rec, *right_rec;
2030 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2031 
2032 	/*
2033 	 * Update the counts and position values within all the
2034 	 * interior nodes to reflect the leaf rotation we just did.
2035 	 *
2036 	 * The root node is handled below the loop.
2037 	 *
2038 	 * We begin the loop with right_el and left_el pointing to the
2039 	 * leaf lists and work our way up.
2040 	 *
2041 	 * NOTE: within this loop, left_el and right_el always refer
2042 	 * to the *child* lists.
2043 	 */
2044 	left_el = path_leaf_el(left_path);
2045 	right_el = path_leaf_el(right_path);
2046 	for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
2047 		trace_ocfs2_complete_edge_insert(i);
2048 
2049 		/*
2050 		 * One nice property of knowing that all of these
2051 		 * nodes are below the root is that we only deal with
2052 		 * the leftmost right node record and the rightmost
2053 		 * left node record.
2054 		 */
2055 		el = left_path->p_node[i].el;
2056 		idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2057 		left_rec = &el->l_recs[idx];
2058 
2059 		el = right_path->p_node[i].el;
2060 		right_rec = &el->l_recs[0];
2061 
2062 		ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
2063 					      right_el);
2064 
2065 		ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2066 		ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2067 
2068 		/*
2069 		 * Setup our list pointers now so that the current
2070 		 * parents become children in the next iteration.
2071 		 */
2072 		left_el = left_path->p_node[i].el;
2073 		right_el = right_path->p_node[i].el;
2074 	}
2075 
2076 	/*
2077 	 * At the root node, adjust the two adjacent records which
2078 	 * begin our path to the leaves.
2079 	 */
2080 
2081 	el = left_path->p_node[subtree_index].el;
2082 	left_el = left_path->p_node[subtree_index + 1].el;
2083 	right_el = right_path->p_node[subtree_index + 1].el;
2084 
2085 	ocfs2_adjust_root_records(el, left_el, right_el,
2086 				  left_path->p_node[subtree_index + 1].bh->b_blocknr);
2087 
2088 	root_bh = left_path->p_node[subtree_index].bh;
2089 
2090 	ocfs2_journal_dirty(handle, root_bh);
2091 }
2092 
2093 static int ocfs2_rotate_subtree_right(handle_t *handle,
2094 				      struct ocfs2_extent_tree *et,
2095 				      struct ocfs2_path *left_path,
2096 				      struct ocfs2_path *right_path,
2097 				      int subtree_index)
2098 {
2099 	int ret, i;
2100 	struct buffer_head *right_leaf_bh;
2101 	struct buffer_head *left_leaf_bh = NULL;
2102 	struct buffer_head *root_bh;
2103 	struct ocfs2_extent_list *right_el, *left_el;
2104 	struct ocfs2_extent_rec move_rec;
2105 
2106 	left_leaf_bh = path_leaf_bh(left_path);
2107 	left_el = path_leaf_el(left_path);
2108 
2109 	if (left_el->l_next_free_rec != left_el->l_count) {
2110 		ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
2111 			    "Inode %llu has non-full interior leaf node %llu (next free = %u)\n",
2112 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2113 			    (unsigned long long)left_leaf_bh->b_blocknr,
2114 			    le16_to_cpu(left_el->l_next_free_rec));
2115 		return -EROFS;
2116 	}
2117 
2118 	/*
2119 	 * This extent block may already have an empty record, so we
2120 	 * return early if so.
2121 	 */
2122 	if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2123 		return 0;
2124 
2125 	root_bh = left_path->p_node[subtree_index].bh;
2126 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2127 
2128 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2129 					   subtree_index);
2130 	if (ret) {
2131 		mlog_errno(ret);
2132 		goto out;
2133 	}
2134 
2135 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2136 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2137 						   right_path, i);
2138 		if (ret) {
2139 			mlog_errno(ret);
2140 			goto out;
2141 		}
2142 
2143 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2144 						   left_path, i);
2145 		if (ret) {
2146 			mlog_errno(ret);
2147 			goto out;
2148 		}
2149 	}
2150 
2151 	right_leaf_bh = path_leaf_bh(right_path);
2152 	right_el = path_leaf_el(right_path);
2153 
2154 	/* This is a code error, not a disk corruption. */
2155 	mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2156 			"because rightmost leaf block %llu is empty\n",
2157 			(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2158 			(unsigned long long)right_leaf_bh->b_blocknr);
2159 
2160 	ocfs2_create_empty_extent(right_el);
2161 
2162 	ocfs2_journal_dirty(handle, right_leaf_bh);
2163 
2164 	/* Do the copy now. */
2165 	i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2166 	move_rec = left_el->l_recs[i];
2167 	right_el->l_recs[0] = move_rec;
2168 
2169 	/*
2170 	 * Clear out the record we just copied and shift everything
2171 	 * over, leaving an empty extent in the left leaf.
2172 	 *
2173 	 * We temporarily subtract from next_free_rec so that the
2174 	 * shift will lose the tail record (which is now defunct).
2175 	 */
2176 	le16_add_cpu(&left_el->l_next_free_rec, -1);
2177 	ocfs2_shift_records_right(left_el);
2178 	memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2179 	le16_add_cpu(&left_el->l_next_free_rec, 1);
2180 
2181 	ocfs2_journal_dirty(handle, left_leaf_bh);
2182 
2183 	ocfs2_complete_edge_insert(handle, left_path, right_path,
2184 				   subtree_index);
2185 
2186 out:
2187 	return ret;
2188 }
2189 
2190 /*
2191  * Given a full path, determine what cpos value would return us a path
2192  * containing the leaf immediately to the left of the current one.
2193  *
2194  * Will return zero if the path passed in is already the leftmost path.
2195  */
2196 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2197 				  struct ocfs2_path *path, u32 *cpos)
2198 {
2199 	int i, j, ret = 0;
2200 	u64 blkno;
2201 	struct ocfs2_extent_list *el;
2202 
2203 	BUG_ON(path->p_tree_depth == 0);
2204 
2205 	*cpos = 0;
2206 
2207 	blkno = path_leaf_bh(path)->b_blocknr;
2208 
2209 	/* Start at the tree node just above the leaf and work our way up. */
2210 	i = path->p_tree_depth - 1;
2211 	while (i >= 0) {
2212 		el = path->p_node[i].el;
2213 
2214 		/*
2215 		 * Find the extent record just before the one in our
2216 		 * path.
2217 		 */
2218 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2219 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2220 				if (j == 0) {
2221 					if (i == 0) {
2222 						/*
2223 						 * We've determined that the
2224 						 * path specified is already
2225 						 * the leftmost one - return a
2226 						 * cpos of zero.
2227 						 */
2228 						goto out;
2229 					}
2230 					/*
2231 					 * The leftmost record points to our
2232 					 * leaf - we need to travel up the
2233 					 * tree one level.
2234 					 */
2235 					goto next_node;
2236 				}
2237 
2238 				*cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2239 				*cpos = *cpos + ocfs2_rec_clusters(el,
2240 							   &el->l_recs[j - 1]);
2241 				*cpos = *cpos - 1;
2242 				goto out;
2243 			}
2244 		}
2245 
2246 		/*
2247 		 * If we got here, we never found a valid node where
2248 		 * the tree indicated one should be.
2249 		 */
2250 		ocfs2_error(sb, "Invalid extent tree at extent block %llu\n",
2251 			    (unsigned long long)blkno);
2252 		ret = -EROFS;
2253 		goto out;
2254 
2255 next_node:
2256 		blkno = path->p_node[i].bh->b_blocknr;
2257 		i--;
2258 	}
2259 
2260 out:
2261 	return ret;
2262 }
2263 
2264 /*
2265  * Extend the transaction by enough credits to complete the rotation,
2266  * and still leave at least the original number of credits allocated
2267  * to this transaction.
2268  */
2269 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2270 					   int op_credits,
2271 					   struct ocfs2_path *path)
2272 {
2273 	int ret = 0;
2274 	int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2275 
2276 	if (handle->h_buffer_credits < credits)
2277 		ret = ocfs2_extend_trans(handle,
2278 					 credits - handle->h_buffer_credits);
2279 
2280 	return ret;
2281 }
2282 
2283 /*
2284  * Trap the case where we're inserting into the theoretical range past
2285  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2286  * whose cpos is less than ours into the right leaf.
2287  *
2288  * It's only necessary to look at the rightmost record of the left
2289  * leaf because the logic that calls us should ensure that the
2290  * theoretical ranges in the path components above the leaves are
2291  * correct.
2292  */
2293 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2294 						 u32 insert_cpos)
2295 {
2296 	struct ocfs2_extent_list *left_el;
2297 	struct ocfs2_extent_rec *rec;
2298 	int next_free;
2299 
2300 	left_el = path_leaf_el(left_path);
2301 	next_free = le16_to_cpu(left_el->l_next_free_rec);
2302 	rec = &left_el->l_recs[next_free - 1];
2303 
2304 	if (insert_cpos > le32_to_cpu(rec->e_cpos))
2305 		return 1;
2306 	return 0;
2307 }
2308 
2309 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2310 {
2311 	int next_free = le16_to_cpu(el->l_next_free_rec);
2312 	unsigned int range;
2313 	struct ocfs2_extent_rec *rec;
2314 
2315 	if (next_free == 0)
2316 		return 0;
2317 
2318 	rec = &el->l_recs[0];
2319 	if (ocfs2_is_empty_extent(rec)) {
2320 		/* Empty list. */
2321 		if (next_free == 1)
2322 			return 0;
2323 		rec = &el->l_recs[1];
2324 	}
2325 
2326 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2327 	if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2328 		return 1;
2329 	return 0;
2330 }
2331 
2332 /*
2333  * Rotate all the records in a btree right one record, starting at insert_cpos.
2334  *
2335  * The path to the rightmost leaf should be passed in.
2336  *
2337  * The array is assumed to be large enough to hold an entire path (tree depth).
2338  *
2339  * Upon successful return from this function:
2340  *
2341  * - The 'right_path' array will contain a path to the leaf block
2342  *   whose range contains e_cpos.
2343  * - That leaf block will have a single empty extent in list index 0.
2344  * - In the case that the rotation requires a post-insert update,
2345  *   *ret_left_path will contain a valid path which can be passed to
2346  *   ocfs2_insert_path().
2347  */
2348 static int ocfs2_rotate_tree_right(handle_t *handle,
2349 				   struct ocfs2_extent_tree *et,
2350 				   enum ocfs2_split_type split,
2351 				   u32 insert_cpos,
2352 				   struct ocfs2_path *right_path,
2353 				   struct ocfs2_path **ret_left_path)
2354 {
2355 	int ret, start, orig_credits = handle->h_buffer_credits;
2356 	u32 cpos;
2357 	struct ocfs2_path *left_path = NULL;
2358 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2359 
2360 	*ret_left_path = NULL;
2361 
2362 	left_path = ocfs2_new_path_from_path(right_path);
2363 	if (!left_path) {
2364 		ret = -ENOMEM;
2365 		mlog_errno(ret);
2366 		goto out;
2367 	}
2368 
2369 	ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2370 	if (ret) {
2371 		mlog_errno(ret);
2372 		goto out;
2373 	}
2374 
2375 	trace_ocfs2_rotate_tree_right(
2376 		(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2377 		insert_cpos, cpos);
2378 
2379 	/*
2380 	 * What we want to do here is:
2381 	 *
2382 	 * 1) Start with the rightmost path.
2383 	 *
2384 	 * 2) Determine a path to the leaf block directly to the left
2385 	 *    of that leaf.
2386 	 *
2387 	 * 3) Determine the 'subtree root' - the lowest level tree node
2388 	 *    which contains a path to both leaves.
2389 	 *
2390 	 * 4) Rotate the subtree.
2391 	 *
2392 	 * 5) Find the next subtree by considering the left path to be
2393 	 *    the new right path.
2394 	 *
2395 	 * The check at the top of this while loop also accepts
2396 	 * insert_cpos == cpos because cpos is only a _theoretical_
2397 	 * value to get us the left path - insert_cpos might very well
2398 	 * be filling that hole.
2399 	 *
2400 	 * Stop at a cpos of '0' because we either started at the
2401 	 * leftmost branch (i.e., a tree with one branch and a
2402 	 * rotation inside of it), or we've gone as far as we can in
2403 	 * rotating subtrees.
2404 	 */
2405 	while (cpos && insert_cpos <= cpos) {
2406 		trace_ocfs2_rotate_tree_right(
2407 			(unsigned long long)
2408 			ocfs2_metadata_cache_owner(et->et_ci),
2409 			insert_cpos, cpos);
2410 
2411 		ret = ocfs2_find_path(et->et_ci, left_path, cpos);
2412 		if (ret) {
2413 			mlog_errno(ret);
2414 			goto out;
2415 		}
2416 
2417 		mlog_bug_on_msg(path_leaf_bh(left_path) ==
2418 				path_leaf_bh(right_path),
2419 				"Owner %llu: error during insert of %u "
2420 				"(left path cpos %u) results in two identical "
2421 				"paths ending at %llu\n",
2422 				(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2423 				insert_cpos, cpos,
2424 				(unsigned long long)
2425 				path_leaf_bh(left_path)->b_blocknr);
2426 
2427 		if (split == SPLIT_NONE &&
2428 		    ocfs2_rotate_requires_path_adjustment(left_path,
2429 							  insert_cpos)) {
2430 
2431 			/*
2432 			 * We've rotated the tree as much as we
2433 			 * should. The rest is up to
2434 			 * ocfs2_insert_path() to complete, after the
2435 			 * record insertion. We indicate this
2436 			 * situation by returning the left path.
2437 			 *
2438 			 * The reason we don't adjust the records here
2439 			 * before the record insert is that an error
2440 			 * later might break the rule where a parent
2441 			 * record e_cpos will reflect the actual
2442 			 * e_cpos of the 1st nonempty record of the
2443 			 * child list.
2444 			 */
2445 			*ret_left_path = left_path;
2446 			goto out_ret_path;
2447 		}
2448 
2449 		start = ocfs2_find_subtree_root(et, left_path, right_path);
2450 
2451 		trace_ocfs2_rotate_subtree(start,
2452 			(unsigned long long)
2453 			right_path->p_node[start].bh->b_blocknr,
2454 			right_path->p_tree_depth);
2455 
2456 		ret = ocfs2_extend_rotate_transaction(handle, start,
2457 						      orig_credits, right_path);
2458 		if (ret) {
2459 			mlog_errno(ret);
2460 			goto out;
2461 		}
2462 
2463 		ret = ocfs2_rotate_subtree_right(handle, et, left_path,
2464 						 right_path, start);
2465 		if (ret) {
2466 			mlog_errno(ret);
2467 			goto out;
2468 		}
2469 
2470 		if (split != SPLIT_NONE &&
2471 		    ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2472 						insert_cpos)) {
2473 			/*
2474 			 * A rotate moves the rightmost left leaf
2475 			 * record over to the leftmost right leaf
2476 			 * slot. If we're doing an extent split
2477 			 * instead of a real insert, then we have to
2478 			 * check that the extent to be split wasn't
2479 			 * just moved over. If it was, then we can
2480 			 * exit here, passing left_path back -
2481 			 * ocfs2_split_extent() is smart enough to
2482 			 * search both leaves.
2483 			 */
2484 			*ret_left_path = left_path;
2485 			goto out_ret_path;
2486 		}
2487 
2488 		/*
2489 		 * There is no need to re-read the next right path
2490 		 * as we know that it'll be our current left
2491 		 * path. Optimize by copying values instead.
2492 		 */
2493 		ocfs2_mv_path(right_path, left_path);
2494 
2495 		ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2496 		if (ret) {
2497 			mlog_errno(ret);
2498 			goto out;
2499 		}
2500 	}
2501 
2502 out:
2503 	ocfs2_free_path(left_path);
2504 
2505 out_ret_path:
2506 	return ret;
2507 }
2508 
2509 static int ocfs2_update_edge_lengths(handle_t *handle,
2510 				     struct ocfs2_extent_tree *et,
2511 				     int subtree_index, struct ocfs2_path *path)
2512 {
2513 	int i, idx, ret;
2514 	struct ocfs2_extent_rec *rec;
2515 	struct ocfs2_extent_list *el;
2516 	struct ocfs2_extent_block *eb;
2517 	u32 range;
2518 
2519 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
2520 	if (ret) {
2521 		mlog_errno(ret);
2522 		goto out;
2523 	}
2524 
2525 	/* Path should always be rightmost. */
2526 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2527 	BUG_ON(eb->h_next_leaf_blk != 0ULL);
2528 
2529 	el = &eb->h_list;
2530 	BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2531 	idx = le16_to_cpu(el->l_next_free_rec) - 1;
2532 	rec = &el->l_recs[idx];
2533 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2534 
2535 	for (i = 0; i < path->p_tree_depth; i++) {
2536 		el = path->p_node[i].el;
2537 		idx = le16_to_cpu(el->l_next_free_rec) - 1;
2538 		rec = &el->l_recs[idx];
2539 
2540 		rec->e_int_clusters = cpu_to_le32(range);
2541 		le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2542 
2543 		ocfs2_journal_dirty(handle, path->p_node[i].bh);
2544 	}
2545 out:
2546 	return ret;
2547 }
2548 
2549 static void ocfs2_unlink_path(handle_t *handle,
2550 			      struct ocfs2_extent_tree *et,
2551 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
2552 			      struct ocfs2_path *path, int unlink_start)
2553 {
2554 	int ret, i;
2555 	struct ocfs2_extent_block *eb;
2556 	struct ocfs2_extent_list *el;
2557 	struct buffer_head *bh;
2558 
2559 	for(i = unlink_start; i < path_num_items(path); i++) {
2560 		bh = path->p_node[i].bh;
2561 
2562 		eb = (struct ocfs2_extent_block *)bh->b_data;
2563 		/*
2564 		 * Not all nodes might have had their final count
2565 		 * decremented by the caller - handle this here.
2566 		 */
2567 		el = &eb->h_list;
2568 		if (le16_to_cpu(el->l_next_free_rec) > 1) {
2569 			mlog(ML_ERROR,
2570 			     "Inode %llu, attempted to remove extent block "
2571 			     "%llu with %u records\n",
2572 			     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2573 			     (unsigned long long)le64_to_cpu(eb->h_blkno),
2574 			     le16_to_cpu(el->l_next_free_rec));
2575 
2576 			ocfs2_journal_dirty(handle, bh);
2577 			ocfs2_remove_from_cache(et->et_ci, bh);
2578 			continue;
2579 		}
2580 
2581 		el->l_next_free_rec = 0;
2582 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2583 
2584 		ocfs2_journal_dirty(handle, bh);
2585 
2586 		ret = ocfs2_cache_extent_block_free(dealloc, eb);
2587 		if (ret)
2588 			mlog_errno(ret);
2589 
2590 		ocfs2_remove_from_cache(et->et_ci, bh);
2591 	}
2592 }
2593 
2594 static void ocfs2_unlink_subtree(handle_t *handle,
2595 				 struct ocfs2_extent_tree *et,
2596 				 struct ocfs2_path *left_path,
2597 				 struct ocfs2_path *right_path,
2598 				 int subtree_index,
2599 				 struct ocfs2_cached_dealloc_ctxt *dealloc)
2600 {
2601 	int i;
2602 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2603 	struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2604 	struct ocfs2_extent_list *el;
2605 	struct ocfs2_extent_block *eb;
2606 
2607 	el = path_leaf_el(left_path);
2608 
2609 	eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2610 
2611 	for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2612 		if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2613 			break;
2614 
2615 	BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2616 
2617 	memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2618 	le16_add_cpu(&root_el->l_next_free_rec, -1);
2619 
2620 	eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2621 	eb->h_next_leaf_blk = 0;
2622 
2623 	ocfs2_journal_dirty(handle, root_bh);
2624 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2625 
2626 	ocfs2_unlink_path(handle, et, dealloc, right_path,
2627 			  subtree_index + 1);
2628 }
2629 
2630 static int ocfs2_rotate_subtree_left(handle_t *handle,
2631 				     struct ocfs2_extent_tree *et,
2632 				     struct ocfs2_path *left_path,
2633 				     struct ocfs2_path *right_path,
2634 				     int subtree_index,
2635 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
2636 				     int *deleted)
2637 {
2638 	int ret, i, del_right_subtree = 0, right_has_empty = 0;
2639 	struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2640 	struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2641 	struct ocfs2_extent_block *eb;
2642 
2643 	*deleted = 0;
2644 
2645 	right_leaf_el = path_leaf_el(right_path);
2646 	left_leaf_el = path_leaf_el(left_path);
2647 	root_bh = left_path->p_node[subtree_index].bh;
2648 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2649 
2650 	if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2651 		return 0;
2652 
2653 	eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2654 	if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2655 		/*
2656 		 * It's legal for us to proceed if the right leaf is
2657 		 * the rightmost one and it has an empty extent. There
2658 		 * are two cases to handle - whether the leaf will be
2659 		 * empty after removal or not. If the leaf isn't empty
2660 		 * then just remove the empty extent up front. The
2661 		 * next block will handle empty leaves by flagging
2662 		 * them for unlink.
2663 		 *
2664 		 * Non rightmost leaves will throw -EAGAIN and the
2665 		 * caller can manually move the subtree and retry.
2666 		 */
2667 
2668 		if (eb->h_next_leaf_blk != 0ULL)
2669 			return -EAGAIN;
2670 
2671 		if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2672 			ret = ocfs2_journal_access_eb(handle, et->et_ci,
2673 						      path_leaf_bh(right_path),
2674 						      OCFS2_JOURNAL_ACCESS_WRITE);
2675 			if (ret) {
2676 				mlog_errno(ret);
2677 				goto out;
2678 			}
2679 
2680 			ocfs2_remove_empty_extent(right_leaf_el);
2681 		} else
2682 			right_has_empty = 1;
2683 	}
2684 
2685 	if (eb->h_next_leaf_blk == 0ULL &&
2686 	    le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2687 		/*
2688 		 * We have to update i_last_eb_blk during the meta
2689 		 * data delete.
2690 		 */
2691 		ret = ocfs2_et_root_journal_access(handle, et,
2692 						   OCFS2_JOURNAL_ACCESS_WRITE);
2693 		if (ret) {
2694 			mlog_errno(ret);
2695 			goto out;
2696 		}
2697 
2698 		del_right_subtree = 1;
2699 	}
2700 
2701 	/*
2702 	 * Getting here with an empty extent in the right path implies
2703 	 * that it's the rightmost path and will be deleted.
2704 	 */
2705 	BUG_ON(right_has_empty && !del_right_subtree);
2706 
2707 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2708 					   subtree_index);
2709 	if (ret) {
2710 		mlog_errno(ret);
2711 		goto out;
2712 	}
2713 
2714 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2715 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2716 						   right_path, i);
2717 		if (ret) {
2718 			mlog_errno(ret);
2719 			goto out;
2720 		}
2721 
2722 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2723 						   left_path, i);
2724 		if (ret) {
2725 			mlog_errno(ret);
2726 			goto out;
2727 		}
2728 	}
2729 
2730 	if (!right_has_empty) {
2731 		/*
2732 		 * Only do this if we're moving a real
2733 		 * record. Otherwise, the action is delayed until
2734 		 * after removal of the right path in which case we
2735 		 * can do a simple shift to remove the empty extent.
2736 		 */
2737 		ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2738 		memset(&right_leaf_el->l_recs[0], 0,
2739 		       sizeof(struct ocfs2_extent_rec));
2740 	}
2741 	if (eb->h_next_leaf_blk == 0ULL) {
2742 		/*
2743 		 * Move recs over to get rid of empty extent, decrease
2744 		 * next_free. This is allowed to remove the last
2745 		 * extent in our leaf (setting l_next_free_rec to
2746 		 * zero) - the delete code below won't care.
2747 		 */
2748 		ocfs2_remove_empty_extent(right_leaf_el);
2749 	}
2750 
2751 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2752 	ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2753 
2754 	if (del_right_subtree) {
2755 		ocfs2_unlink_subtree(handle, et, left_path, right_path,
2756 				     subtree_index, dealloc);
2757 		ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
2758 						left_path);
2759 		if (ret) {
2760 			mlog_errno(ret);
2761 			goto out;
2762 		}
2763 
2764 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2765 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2766 
2767 		/*
2768 		 * Removal of the extent in the left leaf was skipped
2769 		 * above so we could delete the right path
2770 		 * 1st.
2771 		 */
2772 		if (right_has_empty)
2773 			ocfs2_remove_empty_extent(left_leaf_el);
2774 
2775 		ocfs2_journal_dirty(handle, et_root_bh);
2776 
2777 		*deleted = 1;
2778 	} else
2779 		ocfs2_complete_edge_insert(handle, left_path, right_path,
2780 					   subtree_index);
2781 
2782 out:
2783 	return ret;
2784 }
2785 
2786 /*
2787  * Given a full path, determine what cpos value would return us a path
2788  * containing the leaf immediately to the right of the current one.
2789  *
2790  * Will return zero if the path passed in is already the rightmost path.
2791  *
2792  * This looks similar, but is subtly different to
2793  * ocfs2_find_cpos_for_left_leaf().
2794  */
2795 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2796 				   struct ocfs2_path *path, u32 *cpos)
2797 {
2798 	int i, j, ret = 0;
2799 	u64 blkno;
2800 	struct ocfs2_extent_list *el;
2801 
2802 	*cpos = 0;
2803 
2804 	if (path->p_tree_depth == 0)
2805 		return 0;
2806 
2807 	blkno = path_leaf_bh(path)->b_blocknr;
2808 
2809 	/* Start at the tree node just above the leaf and work our way up. */
2810 	i = path->p_tree_depth - 1;
2811 	while (i >= 0) {
2812 		int next_free;
2813 
2814 		el = path->p_node[i].el;
2815 
2816 		/*
2817 		 * Find the extent record just after the one in our
2818 		 * path.
2819 		 */
2820 		next_free = le16_to_cpu(el->l_next_free_rec);
2821 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2822 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2823 				if (j == (next_free - 1)) {
2824 					if (i == 0) {
2825 						/*
2826 						 * We've determined that the
2827 						 * path specified is already
2828 						 * the rightmost one - return a
2829 						 * cpos of zero.
2830 						 */
2831 						goto out;
2832 					}
2833 					/*
2834 					 * The rightmost record points to our
2835 					 * leaf - we need to travel up the
2836 					 * tree one level.
2837 					 */
2838 					goto next_node;
2839 				}
2840 
2841 				*cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2842 				goto out;
2843 			}
2844 		}
2845 
2846 		/*
2847 		 * If we got here, we never found a valid node where
2848 		 * the tree indicated one should be.
2849 		 */
2850 		ocfs2_error(sb, "Invalid extent tree at extent block %llu\n",
2851 			    (unsigned long long)blkno);
2852 		ret = -EROFS;
2853 		goto out;
2854 
2855 next_node:
2856 		blkno = path->p_node[i].bh->b_blocknr;
2857 		i--;
2858 	}
2859 
2860 out:
2861 	return ret;
2862 }
2863 
2864 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle,
2865 					    struct ocfs2_extent_tree *et,
2866 					    struct ocfs2_path *path)
2867 {
2868 	int ret;
2869 	struct buffer_head *bh = path_leaf_bh(path);
2870 	struct ocfs2_extent_list *el = path_leaf_el(path);
2871 
2872 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2873 		return 0;
2874 
2875 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
2876 					   path_num_items(path) - 1);
2877 	if (ret) {
2878 		mlog_errno(ret);
2879 		goto out;
2880 	}
2881 
2882 	ocfs2_remove_empty_extent(el);
2883 	ocfs2_journal_dirty(handle, bh);
2884 
2885 out:
2886 	return ret;
2887 }
2888 
2889 static int __ocfs2_rotate_tree_left(handle_t *handle,
2890 				    struct ocfs2_extent_tree *et,
2891 				    int orig_credits,
2892 				    struct ocfs2_path *path,
2893 				    struct ocfs2_cached_dealloc_ctxt *dealloc,
2894 				    struct ocfs2_path **empty_extent_path)
2895 {
2896 	int ret, subtree_root, deleted;
2897 	u32 right_cpos;
2898 	struct ocfs2_path *left_path = NULL;
2899 	struct ocfs2_path *right_path = NULL;
2900 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2901 
2902 	if (!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])))
2903 		return 0;
2904 
2905 	*empty_extent_path = NULL;
2906 
2907 	ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
2908 	if (ret) {
2909 		mlog_errno(ret);
2910 		goto out;
2911 	}
2912 
2913 	left_path = ocfs2_new_path_from_path(path);
2914 	if (!left_path) {
2915 		ret = -ENOMEM;
2916 		mlog_errno(ret);
2917 		goto out;
2918 	}
2919 
2920 	ocfs2_cp_path(left_path, path);
2921 
2922 	right_path = ocfs2_new_path_from_path(path);
2923 	if (!right_path) {
2924 		ret = -ENOMEM;
2925 		mlog_errno(ret);
2926 		goto out;
2927 	}
2928 
2929 	while (right_cpos) {
2930 		ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
2931 		if (ret) {
2932 			mlog_errno(ret);
2933 			goto out;
2934 		}
2935 
2936 		subtree_root = ocfs2_find_subtree_root(et, left_path,
2937 						       right_path);
2938 
2939 		trace_ocfs2_rotate_subtree(subtree_root,
2940 		     (unsigned long long)
2941 		     right_path->p_node[subtree_root].bh->b_blocknr,
2942 		     right_path->p_tree_depth);
2943 
2944 		ret = ocfs2_extend_rotate_transaction(handle, 0,
2945 						      orig_credits, left_path);
2946 		if (ret) {
2947 			mlog_errno(ret);
2948 			goto out;
2949 		}
2950 
2951 		/*
2952 		 * Caller might still want to make changes to the
2953 		 * tree root, so re-add it to the journal here.
2954 		 */
2955 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2956 						   left_path, 0);
2957 		if (ret) {
2958 			mlog_errno(ret);
2959 			goto out;
2960 		}
2961 
2962 		ret = ocfs2_rotate_subtree_left(handle, et, left_path,
2963 						right_path, subtree_root,
2964 						dealloc, &deleted);
2965 		if (ret == -EAGAIN) {
2966 			/*
2967 			 * The rotation has to temporarily stop due to
2968 			 * the right subtree having an empty
2969 			 * extent. Pass it back to the caller for a
2970 			 * fixup.
2971 			 */
2972 			*empty_extent_path = right_path;
2973 			right_path = NULL;
2974 			goto out;
2975 		}
2976 		if (ret) {
2977 			mlog_errno(ret);
2978 			goto out;
2979 		}
2980 
2981 		/*
2982 		 * The subtree rotate might have removed records on
2983 		 * the rightmost edge. If so, then rotation is
2984 		 * complete.
2985 		 */
2986 		if (deleted)
2987 			break;
2988 
2989 		ocfs2_mv_path(left_path, right_path);
2990 
2991 		ret = ocfs2_find_cpos_for_right_leaf(sb, left_path,
2992 						     &right_cpos);
2993 		if (ret) {
2994 			mlog_errno(ret);
2995 			goto out;
2996 		}
2997 	}
2998 
2999 out:
3000 	ocfs2_free_path(right_path);
3001 	ocfs2_free_path(left_path);
3002 
3003 	return ret;
3004 }
3005 
3006 static int ocfs2_remove_rightmost_path(handle_t *handle,
3007 				struct ocfs2_extent_tree *et,
3008 				struct ocfs2_path *path,
3009 				struct ocfs2_cached_dealloc_ctxt *dealloc)
3010 {
3011 	int ret, subtree_index;
3012 	u32 cpos;
3013 	struct ocfs2_path *left_path = NULL;
3014 	struct ocfs2_extent_block *eb;
3015 	struct ocfs2_extent_list *el;
3016 
3017 	ret = ocfs2_et_sanity_check(et);
3018 	if (ret)
3019 		goto out;
3020 
3021 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
3022 	if (ret) {
3023 		mlog_errno(ret);
3024 		goto out;
3025 	}
3026 
3027 	ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3028 					    path, &cpos);
3029 	if (ret) {
3030 		mlog_errno(ret);
3031 		goto out;
3032 	}
3033 
3034 	if (cpos) {
3035 		/*
3036 		 * We have a path to the left of this one - it needs
3037 		 * an update too.
3038 		 */
3039 		left_path = ocfs2_new_path_from_path(path);
3040 		if (!left_path) {
3041 			ret = -ENOMEM;
3042 			mlog_errno(ret);
3043 			goto out;
3044 		}
3045 
3046 		ret = ocfs2_find_path(et->et_ci, left_path, cpos);
3047 		if (ret) {
3048 			mlog_errno(ret);
3049 			goto out;
3050 		}
3051 
3052 		ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
3053 		if (ret) {
3054 			mlog_errno(ret);
3055 			goto out;
3056 		}
3057 
3058 		subtree_index = ocfs2_find_subtree_root(et, left_path, path);
3059 
3060 		ocfs2_unlink_subtree(handle, et, left_path, path,
3061 				     subtree_index, dealloc);
3062 		ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
3063 						left_path);
3064 		if (ret) {
3065 			mlog_errno(ret);
3066 			goto out;
3067 		}
3068 
3069 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3070 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3071 	} else {
3072 		/*
3073 		 * 'path' is also the leftmost path which
3074 		 * means it must be the only one. This gets
3075 		 * handled differently because we want to
3076 		 * revert the root back to having extents
3077 		 * in-line.
3078 		 */
3079 		ocfs2_unlink_path(handle, et, dealloc, path, 1);
3080 
3081 		el = et->et_root_el;
3082 		el->l_tree_depth = 0;
3083 		el->l_next_free_rec = 0;
3084 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3085 
3086 		ocfs2_et_set_last_eb_blk(et, 0);
3087 	}
3088 
3089 	ocfs2_journal_dirty(handle, path_root_bh(path));
3090 
3091 out:
3092 	ocfs2_free_path(left_path);
3093 	return ret;
3094 }
3095 
3096 static int ocfs2_remove_rightmost_empty_extent(struct ocfs2_super *osb,
3097 				struct ocfs2_extent_tree *et,
3098 				struct ocfs2_path *path,
3099 				struct ocfs2_cached_dealloc_ctxt *dealloc)
3100 {
3101 	handle_t *handle;
3102 	int ret;
3103 	int credits = path->p_tree_depth * 2 + 1;
3104 
3105 	handle = ocfs2_start_trans(osb, credits);
3106 	if (IS_ERR(handle)) {
3107 		ret = PTR_ERR(handle);
3108 		mlog_errno(ret);
3109 		return ret;
3110 	}
3111 
3112 	ret = ocfs2_remove_rightmost_path(handle, et, path, dealloc);
3113 	if (ret)
3114 		mlog_errno(ret);
3115 
3116 	ocfs2_commit_trans(osb, handle);
3117 	return ret;
3118 }
3119 
3120 /*
3121  * Left rotation of btree records.
3122  *
3123  * In many ways, this is (unsurprisingly) the opposite of right
3124  * rotation. We start at some non-rightmost path containing an empty
3125  * extent in the leaf block. The code works its way to the rightmost
3126  * path by rotating records to the left in every subtree.
3127  *
3128  * This is used by any code which reduces the number of extent records
3129  * in a leaf. After removal, an empty record should be placed in the
3130  * leftmost list position.
3131  *
3132  * This won't handle a length update of the rightmost path records if
3133  * the rightmost tree leaf record is removed so the caller is
3134  * responsible for detecting and correcting that.
3135  */
3136 static int ocfs2_rotate_tree_left(handle_t *handle,
3137 				  struct ocfs2_extent_tree *et,
3138 				  struct ocfs2_path *path,
3139 				  struct ocfs2_cached_dealloc_ctxt *dealloc)
3140 {
3141 	int ret, orig_credits = handle->h_buffer_credits;
3142 	struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3143 	struct ocfs2_extent_block *eb;
3144 	struct ocfs2_extent_list *el;
3145 
3146 	el = path_leaf_el(path);
3147 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3148 		return 0;
3149 
3150 	if (path->p_tree_depth == 0) {
3151 rightmost_no_delete:
3152 		/*
3153 		 * Inline extents. This is trivially handled, so do
3154 		 * it up front.
3155 		 */
3156 		ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path);
3157 		if (ret)
3158 			mlog_errno(ret);
3159 		goto out;
3160 	}
3161 
3162 	/*
3163 	 * Handle rightmost branch now. There's several cases:
3164 	 *  1) simple rotation leaving records in there. That's trivial.
3165 	 *  2) rotation requiring a branch delete - there's no more
3166 	 *     records left. Two cases of this:
3167 	 *     a) There are branches to the left.
3168 	 *     b) This is also the leftmost (the only) branch.
3169 	 *
3170 	 *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
3171 	 *  2a) we need the left branch so that we can update it with the unlink
3172 	 *  2b) we need to bring the root back to inline extents.
3173 	 */
3174 
3175 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3176 	el = &eb->h_list;
3177 	if (eb->h_next_leaf_blk == 0) {
3178 		/*
3179 		 * This gets a bit tricky if we're going to delete the
3180 		 * rightmost path. Get the other cases out of the way
3181 		 * 1st.
3182 		 */
3183 		if (le16_to_cpu(el->l_next_free_rec) > 1)
3184 			goto rightmost_no_delete;
3185 
3186 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
3187 			ret = -EIO;
3188 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3189 				    "Owner %llu has empty extent block at %llu\n",
3190 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
3191 				    (unsigned long long)le64_to_cpu(eb->h_blkno));
3192 			goto out;
3193 		}
3194 
3195 		/*
3196 		 * XXX: The caller can not trust "path" any more after
3197 		 * this as it will have been deleted. What do we do?
3198 		 *
3199 		 * In theory the rotate-for-merge code will never get
3200 		 * here because it'll always ask for a rotate in a
3201 		 * nonempty list.
3202 		 */
3203 
3204 		ret = ocfs2_remove_rightmost_path(handle, et, path,
3205 						  dealloc);
3206 		if (ret)
3207 			mlog_errno(ret);
3208 		goto out;
3209 	}
3210 
3211 	/*
3212 	 * Now we can loop, remembering the path we get from -EAGAIN
3213 	 * and restarting from there.
3214 	 */
3215 try_rotate:
3216 	ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path,
3217 				       dealloc, &restart_path);
3218 	if (ret && ret != -EAGAIN) {
3219 		mlog_errno(ret);
3220 		goto out;
3221 	}
3222 
3223 	while (ret == -EAGAIN) {
3224 		tmp_path = restart_path;
3225 		restart_path = NULL;
3226 
3227 		ret = __ocfs2_rotate_tree_left(handle, et, orig_credits,
3228 					       tmp_path, dealloc,
3229 					       &restart_path);
3230 		if (ret && ret != -EAGAIN) {
3231 			mlog_errno(ret);
3232 			goto out;
3233 		}
3234 
3235 		ocfs2_free_path(tmp_path);
3236 		tmp_path = NULL;
3237 
3238 		if (ret == 0)
3239 			goto try_rotate;
3240 	}
3241 
3242 out:
3243 	ocfs2_free_path(tmp_path);
3244 	ocfs2_free_path(restart_path);
3245 	return ret;
3246 }
3247 
3248 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3249 				int index)
3250 {
3251 	struct ocfs2_extent_rec *rec = &el->l_recs[index];
3252 	unsigned int size;
3253 
3254 	if (rec->e_leaf_clusters == 0) {
3255 		/*
3256 		 * We consumed all of the merged-from record. An empty
3257 		 * extent cannot exist anywhere but the 1st array
3258 		 * position, so move things over if the merged-from
3259 		 * record doesn't occupy that position.
3260 		 *
3261 		 * This creates a new empty extent so the caller
3262 		 * should be smart enough to have removed any existing
3263 		 * ones.
3264 		 */
3265 		if (index > 0) {
3266 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3267 			size = index * sizeof(struct ocfs2_extent_rec);
3268 			memmove(&el->l_recs[1], &el->l_recs[0], size);
3269 		}
3270 
3271 		/*
3272 		 * Always memset - the caller doesn't check whether it
3273 		 * created an empty extent, so there could be junk in
3274 		 * the other fields.
3275 		 */
3276 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3277 	}
3278 }
3279 
3280 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et,
3281 				struct ocfs2_path *left_path,
3282 				struct ocfs2_path **ret_right_path)
3283 {
3284 	int ret;
3285 	u32 right_cpos;
3286 	struct ocfs2_path *right_path = NULL;
3287 	struct ocfs2_extent_list *left_el;
3288 
3289 	*ret_right_path = NULL;
3290 
3291 	/* This function shouldn't be called for non-trees. */
3292 	BUG_ON(left_path->p_tree_depth == 0);
3293 
3294 	left_el = path_leaf_el(left_path);
3295 	BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3296 
3297 	ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3298 					     left_path, &right_cpos);
3299 	if (ret) {
3300 		mlog_errno(ret);
3301 		goto out;
3302 	}
3303 
3304 	/* This function shouldn't be called for the rightmost leaf. */
3305 	BUG_ON(right_cpos == 0);
3306 
3307 	right_path = ocfs2_new_path_from_path(left_path);
3308 	if (!right_path) {
3309 		ret = -ENOMEM;
3310 		mlog_errno(ret);
3311 		goto out;
3312 	}
3313 
3314 	ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
3315 	if (ret) {
3316 		mlog_errno(ret);
3317 		goto out;
3318 	}
3319 
3320 	*ret_right_path = right_path;
3321 out:
3322 	if (ret)
3323 		ocfs2_free_path(right_path);
3324 	return ret;
3325 }
3326 
3327 /*
3328  * Remove split_rec clusters from the record at index and merge them
3329  * onto the beginning of the record "next" to it.
3330  * For index < l_count - 1, the next means the extent rec at index + 1.
3331  * For index == l_count - 1, the "next" means the 1st extent rec of the
3332  * next extent block.
3333  */
3334 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path,
3335 				 handle_t *handle,
3336 				 struct ocfs2_extent_tree *et,
3337 				 struct ocfs2_extent_rec *split_rec,
3338 				 int index)
3339 {
3340 	int ret, next_free, i;
3341 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3342 	struct ocfs2_extent_rec *left_rec;
3343 	struct ocfs2_extent_rec *right_rec;
3344 	struct ocfs2_extent_list *right_el;
3345 	struct ocfs2_path *right_path = NULL;
3346 	int subtree_index = 0;
3347 	struct ocfs2_extent_list *el = path_leaf_el(left_path);
3348 	struct buffer_head *bh = path_leaf_bh(left_path);
3349 	struct buffer_head *root_bh = NULL;
3350 
3351 	BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3352 	left_rec = &el->l_recs[index];
3353 
3354 	if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3355 	    le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3356 		/* we meet with a cross extent block merge. */
3357 		ret = ocfs2_get_right_path(et, left_path, &right_path);
3358 		if (ret) {
3359 			mlog_errno(ret);
3360 			return ret;
3361 		}
3362 
3363 		right_el = path_leaf_el(right_path);
3364 		next_free = le16_to_cpu(right_el->l_next_free_rec);
3365 		BUG_ON(next_free <= 0);
3366 		right_rec = &right_el->l_recs[0];
3367 		if (ocfs2_is_empty_extent(right_rec)) {
3368 			BUG_ON(next_free <= 1);
3369 			right_rec = &right_el->l_recs[1];
3370 		}
3371 
3372 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3373 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3374 		       le32_to_cpu(right_rec->e_cpos));
3375 
3376 		subtree_index = ocfs2_find_subtree_root(et, left_path,
3377 							right_path);
3378 
3379 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3380 						      handle->h_buffer_credits,
3381 						      right_path);
3382 		if (ret) {
3383 			mlog_errno(ret);
3384 			goto out;
3385 		}
3386 
3387 		root_bh = left_path->p_node[subtree_index].bh;
3388 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3389 
3390 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3391 						   subtree_index);
3392 		if (ret) {
3393 			mlog_errno(ret);
3394 			goto out;
3395 		}
3396 
3397 		for (i = subtree_index + 1;
3398 		     i < path_num_items(right_path); i++) {
3399 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3400 							   right_path, i);
3401 			if (ret) {
3402 				mlog_errno(ret);
3403 				goto out;
3404 			}
3405 
3406 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3407 							   left_path, i);
3408 			if (ret) {
3409 				mlog_errno(ret);
3410 				goto out;
3411 			}
3412 		}
3413 
3414 	} else {
3415 		BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3416 		right_rec = &el->l_recs[index + 1];
3417 	}
3418 
3419 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path,
3420 					   path_num_items(left_path) - 1);
3421 	if (ret) {
3422 		mlog_errno(ret);
3423 		goto out;
3424 	}
3425 
3426 	le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3427 
3428 	le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3429 	le64_add_cpu(&right_rec->e_blkno,
3430 		     -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3431 					       split_clusters));
3432 	le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3433 
3434 	ocfs2_cleanup_merge(el, index);
3435 
3436 	ocfs2_journal_dirty(handle, bh);
3437 	if (right_path) {
3438 		ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3439 		ocfs2_complete_edge_insert(handle, left_path, right_path,
3440 					   subtree_index);
3441 	}
3442 out:
3443 	ocfs2_free_path(right_path);
3444 	return ret;
3445 }
3446 
3447 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et,
3448 			       struct ocfs2_path *right_path,
3449 			       struct ocfs2_path **ret_left_path)
3450 {
3451 	int ret;
3452 	u32 left_cpos;
3453 	struct ocfs2_path *left_path = NULL;
3454 
3455 	*ret_left_path = NULL;
3456 
3457 	/* This function shouldn't be called for non-trees. */
3458 	BUG_ON(right_path->p_tree_depth == 0);
3459 
3460 	ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3461 					    right_path, &left_cpos);
3462 	if (ret) {
3463 		mlog_errno(ret);
3464 		goto out;
3465 	}
3466 
3467 	/* This function shouldn't be called for the leftmost leaf. */
3468 	BUG_ON(left_cpos == 0);
3469 
3470 	left_path = ocfs2_new_path_from_path(right_path);
3471 	if (!left_path) {
3472 		ret = -ENOMEM;
3473 		mlog_errno(ret);
3474 		goto out;
3475 	}
3476 
3477 	ret = ocfs2_find_path(et->et_ci, left_path, left_cpos);
3478 	if (ret) {
3479 		mlog_errno(ret);
3480 		goto out;
3481 	}
3482 
3483 	*ret_left_path = left_path;
3484 out:
3485 	if (ret)
3486 		ocfs2_free_path(left_path);
3487 	return ret;
3488 }
3489 
3490 /*
3491  * Remove split_rec clusters from the record at index and merge them
3492  * onto the tail of the record "before" it.
3493  * For index > 0, the "before" means the extent rec at index - 1.
3494  *
3495  * For index == 0, the "before" means the last record of the previous
3496  * extent block. And there is also a situation that we may need to
3497  * remove the rightmost leaf extent block in the right_path and change
3498  * the right path to indicate the new rightmost path.
3499  */
3500 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path,
3501 				handle_t *handle,
3502 				struct ocfs2_extent_tree *et,
3503 				struct ocfs2_extent_rec *split_rec,
3504 				struct ocfs2_cached_dealloc_ctxt *dealloc,
3505 				int index)
3506 {
3507 	int ret, i, subtree_index = 0, has_empty_extent = 0;
3508 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3509 	struct ocfs2_extent_rec *left_rec;
3510 	struct ocfs2_extent_rec *right_rec;
3511 	struct ocfs2_extent_list *el = path_leaf_el(right_path);
3512 	struct buffer_head *bh = path_leaf_bh(right_path);
3513 	struct buffer_head *root_bh = NULL;
3514 	struct ocfs2_path *left_path = NULL;
3515 	struct ocfs2_extent_list *left_el;
3516 
3517 	BUG_ON(index < 0);
3518 
3519 	right_rec = &el->l_recs[index];
3520 	if (index == 0) {
3521 		/* we meet with a cross extent block merge. */
3522 		ret = ocfs2_get_left_path(et, right_path, &left_path);
3523 		if (ret) {
3524 			mlog_errno(ret);
3525 			return ret;
3526 		}
3527 
3528 		left_el = path_leaf_el(left_path);
3529 		BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3530 		       le16_to_cpu(left_el->l_count));
3531 
3532 		left_rec = &left_el->l_recs[
3533 				le16_to_cpu(left_el->l_next_free_rec) - 1];
3534 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3535 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3536 		       le32_to_cpu(split_rec->e_cpos));
3537 
3538 		subtree_index = ocfs2_find_subtree_root(et, left_path,
3539 							right_path);
3540 
3541 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3542 						      handle->h_buffer_credits,
3543 						      left_path);
3544 		if (ret) {
3545 			mlog_errno(ret);
3546 			goto out;
3547 		}
3548 
3549 		root_bh = left_path->p_node[subtree_index].bh;
3550 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3551 
3552 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3553 						   subtree_index);
3554 		if (ret) {
3555 			mlog_errno(ret);
3556 			goto out;
3557 		}
3558 
3559 		for (i = subtree_index + 1;
3560 		     i < path_num_items(right_path); i++) {
3561 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3562 							   right_path, i);
3563 			if (ret) {
3564 				mlog_errno(ret);
3565 				goto out;
3566 			}
3567 
3568 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3569 							   left_path, i);
3570 			if (ret) {
3571 				mlog_errno(ret);
3572 				goto out;
3573 			}
3574 		}
3575 	} else {
3576 		left_rec = &el->l_recs[index - 1];
3577 		if (ocfs2_is_empty_extent(&el->l_recs[0]))
3578 			has_empty_extent = 1;
3579 	}
3580 
3581 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3582 					   path_num_items(right_path) - 1);
3583 	if (ret) {
3584 		mlog_errno(ret);
3585 		goto out;
3586 	}
3587 
3588 	if (has_empty_extent && index == 1) {
3589 		/*
3590 		 * The easy case - we can just plop the record right in.
3591 		 */
3592 		*left_rec = *split_rec;
3593 
3594 		has_empty_extent = 0;
3595 	} else
3596 		le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3597 
3598 	le32_add_cpu(&right_rec->e_cpos, split_clusters);
3599 	le64_add_cpu(&right_rec->e_blkno,
3600 		     ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3601 					      split_clusters));
3602 	le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3603 
3604 	ocfs2_cleanup_merge(el, index);
3605 
3606 	ocfs2_journal_dirty(handle, bh);
3607 	if (left_path) {
3608 		ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3609 
3610 		/*
3611 		 * In the situation that the right_rec is empty and the extent
3612 		 * block is empty also,  ocfs2_complete_edge_insert can't handle
3613 		 * it and we need to delete the right extent block.
3614 		 */
3615 		if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3616 		    le16_to_cpu(el->l_next_free_rec) == 1) {
3617 			/* extend credit for ocfs2_remove_rightmost_path */
3618 			ret = ocfs2_extend_rotate_transaction(handle, 0,
3619 					handle->h_buffer_credits,
3620 					right_path);
3621 			if (ret) {
3622 				mlog_errno(ret);
3623 				goto out;
3624 			}
3625 
3626 			ret = ocfs2_remove_rightmost_path(handle, et,
3627 							  right_path,
3628 							  dealloc);
3629 			if (ret) {
3630 				mlog_errno(ret);
3631 				goto out;
3632 			}
3633 
3634 			/* Now the rightmost extent block has been deleted.
3635 			 * So we use the new rightmost path.
3636 			 */
3637 			ocfs2_mv_path(right_path, left_path);
3638 			left_path = NULL;
3639 		} else
3640 			ocfs2_complete_edge_insert(handle, left_path,
3641 						   right_path, subtree_index);
3642 	}
3643 out:
3644 	ocfs2_free_path(left_path);
3645 	return ret;
3646 }
3647 
3648 static int ocfs2_try_to_merge_extent(handle_t *handle,
3649 				     struct ocfs2_extent_tree *et,
3650 				     struct ocfs2_path *path,
3651 				     int split_index,
3652 				     struct ocfs2_extent_rec *split_rec,
3653 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
3654 				     struct ocfs2_merge_ctxt *ctxt)
3655 {
3656 	int ret = 0;
3657 	struct ocfs2_extent_list *el = path_leaf_el(path);
3658 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3659 
3660 	BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3661 
3662 	if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3663 		/* extend credit for ocfs2_remove_rightmost_path */
3664 		ret = ocfs2_extend_rotate_transaction(handle, 0,
3665 				handle->h_buffer_credits,
3666 				path);
3667 		if (ret) {
3668 			mlog_errno(ret);
3669 			goto out;
3670 		}
3671 		/*
3672 		 * The merge code will need to create an empty
3673 		 * extent to take the place of the newly
3674 		 * emptied slot. Remove any pre-existing empty
3675 		 * extents - having more than one in a leaf is
3676 		 * illegal.
3677 		 */
3678 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3679 		if (ret) {
3680 			mlog_errno(ret);
3681 			goto out;
3682 		}
3683 		split_index--;
3684 		rec = &el->l_recs[split_index];
3685 	}
3686 
3687 	if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3688 		/*
3689 		 * Left-right contig implies this.
3690 		 */
3691 		BUG_ON(!ctxt->c_split_covers_rec);
3692 
3693 		/*
3694 		 * Since the leftright insert always covers the entire
3695 		 * extent, this call will delete the insert record
3696 		 * entirely, resulting in an empty extent record added to
3697 		 * the extent block.
3698 		 *
3699 		 * Since the adding of an empty extent shifts
3700 		 * everything back to the right, there's no need to
3701 		 * update split_index here.
3702 		 *
3703 		 * When the split_index is zero, we need to merge it to the
3704 		 * prevoius extent block. It is more efficient and easier
3705 		 * if we do merge_right first and merge_left later.
3706 		 */
3707 		ret = ocfs2_merge_rec_right(path, handle, et, split_rec,
3708 					    split_index);
3709 		if (ret) {
3710 			mlog_errno(ret);
3711 			goto out;
3712 		}
3713 
3714 		/*
3715 		 * We can only get this from logic error above.
3716 		 */
3717 		BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3718 
3719 		/* extend credit for ocfs2_remove_rightmost_path */
3720 		ret = ocfs2_extend_rotate_transaction(handle, 0,
3721 					handle->h_buffer_credits,
3722 					path);
3723 		if (ret) {
3724 			mlog_errno(ret);
3725 			goto out;
3726 		}
3727 
3728 		/* The merge left us with an empty extent, remove it. */
3729 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3730 		if (ret) {
3731 			mlog_errno(ret);
3732 			goto out;
3733 		}
3734 
3735 		rec = &el->l_recs[split_index];
3736 
3737 		/*
3738 		 * Note that we don't pass split_rec here on purpose -
3739 		 * we've merged it into the rec already.
3740 		 */
3741 		ret = ocfs2_merge_rec_left(path, handle, et, rec,
3742 					   dealloc, split_index);
3743 
3744 		if (ret) {
3745 			mlog_errno(ret);
3746 			goto out;
3747 		}
3748 
3749 		/* extend credit for ocfs2_remove_rightmost_path */
3750 		ret = ocfs2_extend_rotate_transaction(handle, 0,
3751 				handle->h_buffer_credits,
3752 				path);
3753 		if (ret) {
3754 			mlog_errno(ret);
3755 			goto out;
3756 		}
3757 
3758 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3759 		/*
3760 		 * Error from this last rotate is not critical, so
3761 		 * print but don't bubble it up.
3762 		 */
3763 		if (ret)
3764 			mlog_errno(ret);
3765 		ret = 0;
3766 	} else {
3767 		/*
3768 		 * Merge a record to the left or right.
3769 		 *
3770 		 * 'contig_type' is relative to the existing record,
3771 		 * so for example, if we're "right contig", it's to
3772 		 * the record on the left (hence the left merge).
3773 		 */
3774 		if (ctxt->c_contig_type == CONTIG_RIGHT) {
3775 			ret = ocfs2_merge_rec_left(path, handle, et,
3776 						   split_rec, dealloc,
3777 						   split_index);
3778 			if (ret) {
3779 				mlog_errno(ret);
3780 				goto out;
3781 			}
3782 		} else {
3783 			ret = ocfs2_merge_rec_right(path, handle,
3784 						    et, split_rec,
3785 						    split_index);
3786 			if (ret) {
3787 				mlog_errno(ret);
3788 				goto out;
3789 			}
3790 		}
3791 
3792 		if (ctxt->c_split_covers_rec) {
3793 			/* extend credit for ocfs2_remove_rightmost_path */
3794 			ret = ocfs2_extend_rotate_transaction(handle, 0,
3795 					handle->h_buffer_credits,
3796 					path);
3797 			if (ret) {
3798 				mlog_errno(ret);
3799 				ret = 0;
3800 				goto out;
3801 			}
3802 
3803 			/*
3804 			 * The merge may have left an empty extent in
3805 			 * our leaf. Try to rotate it away.
3806 			 */
3807 			ret = ocfs2_rotate_tree_left(handle, et, path,
3808 						     dealloc);
3809 			if (ret)
3810 				mlog_errno(ret);
3811 			ret = 0;
3812 		}
3813 	}
3814 
3815 out:
3816 	return ret;
3817 }
3818 
3819 static void ocfs2_subtract_from_rec(struct super_block *sb,
3820 				    enum ocfs2_split_type split,
3821 				    struct ocfs2_extent_rec *rec,
3822 				    struct ocfs2_extent_rec *split_rec)
3823 {
3824 	u64 len_blocks;
3825 
3826 	len_blocks = ocfs2_clusters_to_blocks(sb,
3827 				le16_to_cpu(split_rec->e_leaf_clusters));
3828 
3829 	if (split == SPLIT_LEFT) {
3830 		/*
3831 		 * Region is on the left edge of the existing
3832 		 * record.
3833 		 */
3834 		le32_add_cpu(&rec->e_cpos,
3835 			     le16_to_cpu(split_rec->e_leaf_clusters));
3836 		le64_add_cpu(&rec->e_blkno, len_blocks);
3837 		le16_add_cpu(&rec->e_leaf_clusters,
3838 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3839 	} else {
3840 		/*
3841 		 * Region is on the right edge of the existing
3842 		 * record.
3843 		 */
3844 		le16_add_cpu(&rec->e_leaf_clusters,
3845 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3846 	}
3847 }
3848 
3849 /*
3850  * Do the final bits of extent record insertion at the target leaf
3851  * list. If this leaf is part of an allocation tree, it is assumed
3852  * that the tree above has been prepared.
3853  */
3854 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et,
3855 				 struct ocfs2_extent_rec *insert_rec,
3856 				 struct ocfs2_extent_list *el,
3857 				 struct ocfs2_insert_type *insert)
3858 {
3859 	int i = insert->ins_contig_index;
3860 	unsigned int range;
3861 	struct ocfs2_extent_rec *rec;
3862 
3863 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3864 
3865 	if (insert->ins_split != SPLIT_NONE) {
3866 		i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3867 		BUG_ON(i == -1);
3868 		rec = &el->l_recs[i];
3869 		ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
3870 					insert->ins_split, rec,
3871 					insert_rec);
3872 		goto rotate;
3873 	}
3874 
3875 	/*
3876 	 * Contiguous insert - either left or right.
3877 	 */
3878 	if (insert->ins_contig != CONTIG_NONE) {
3879 		rec = &el->l_recs[i];
3880 		if (insert->ins_contig == CONTIG_LEFT) {
3881 			rec->e_blkno = insert_rec->e_blkno;
3882 			rec->e_cpos = insert_rec->e_cpos;
3883 		}
3884 		le16_add_cpu(&rec->e_leaf_clusters,
3885 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3886 		return;
3887 	}
3888 
3889 	/*
3890 	 * Handle insert into an empty leaf.
3891 	 */
3892 	if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3893 	    ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3894 	     ocfs2_is_empty_extent(&el->l_recs[0]))) {
3895 		el->l_recs[0] = *insert_rec;
3896 		el->l_next_free_rec = cpu_to_le16(1);
3897 		return;
3898 	}
3899 
3900 	/*
3901 	 * Appending insert.
3902 	 */
3903 	if (insert->ins_appending == APPEND_TAIL) {
3904 		i = le16_to_cpu(el->l_next_free_rec) - 1;
3905 		rec = &el->l_recs[i];
3906 		range = le32_to_cpu(rec->e_cpos)
3907 			+ le16_to_cpu(rec->e_leaf_clusters);
3908 		BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3909 
3910 		mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3911 				le16_to_cpu(el->l_count),
3912 				"owner %llu, depth %u, count %u, next free %u, "
3913 				"rec.cpos %u, rec.clusters %u, "
3914 				"insert.cpos %u, insert.clusters %u\n",
3915 				ocfs2_metadata_cache_owner(et->et_ci),
3916 				le16_to_cpu(el->l_tree_depth),
3917 				le16_to_cpu(el->l_count),
3918 				le16_to_cpu(el->l_next_free_rec),
3919 				le32_to_cpu(el->l_recs[i].e_cpos),
3920 				le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3921 				le32_to_cpu(insert_rec->e_cpos),
3922 				le16_to_cpu(insert_rec->e_leaf_clusters));
3923 		i++;
3924 		el->l_recs[i] = *insert_rec;
3925 		le16_add_cpu(&el->l_next_free_rec, 1);
3926 		return;
3927 	}
3928 
3929 rotate:
3930 	/*
3931 	 * Ok, we have to rotate.
3932 	 *
3933 	 * At this point, it is safe to assume that inserting into an
3934 	 * empty leaf and appending to a leaf have both been handled
3935 	 * above.
3936 	 *
3937 	 * This leaf needs to have space, either by the empty 1st
3938 	 * extent record, or by virtue of an l_next_rec < l_count.
3939 	 */
3940 	ocfs2_rotate_leaf(el, insert_rec);
3941 }
3942 
3943 static void ocfs2_adjust_rightmost_records(handle_t *handle,
3944 					   struct ocfs2_extent_tree *et,
3945 					   struct ocfs2_path *path,
3946 					   struct ocfs2_extent_rec *insert_rec)
3947 {
3948 	int ret, i, next_free;
3949 	struct buffer_head *bh;
3950 	struct ocfs2_extent_list *el;
3951 	struct ocfs2_extent_rec *rec;
3952 
3953 	/*
3954 	 * Update everything except the leaf block.
3955 	 */
3956 	for (i = 0; i < path->p_tree_depth; i++) {
3957 		bh = path->p_node[i].bh;
3958 		el = path->p_node[i].el;
3959 
3960 		next_free = le16_to_cpu(el->l_next_free_rec);
3961 		if (next_free == 0) {
3962 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3963 				    "Owner %llu has a bad extent list\n",
3964 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
3965 			ret = -EIO;
3966 			return;
3967 		}
3968 
3969 		rec = &el->l_recs[next_free - 1];
3970 
3971 		rec->e_int_clusters = insert_rec->e_cpos;
3972 		le32_add_cpu(&rec->e_int_clusters,
3973 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3974 		le32_add_cpu(&rec->e_int_clusters,
3975 			     -le32_to_cpu(rec->e_cpos));
3976 
3977 		ocfs2_journal_dirty(handle, bh);
3978 	}
3979 }
3980 
3981 static int ocfs2_append_rec_to_path(handle_t *handle,
3982 				    struct ocfs2_extent_tree *et,
3983 				    struct ocfs2_extent_rec *insert_rec,
3984 				    struct ocfs2_path *right_path,
3985 				    struct ocfs2_path **ret_left_path)
3986 {
3987 	int ret, next_free;
3988 	struct ocfs2_extent_list *el;
3989 	struct ocfs2_path *left_path = NULL;
3990 
3991 	*ret_left_path = NULL;
3992 
3993 	/*
3994 	 * This shouldn't happen for non-trees. The extent rec cluster
3995 	 * count manipulation below only works for interior nodes.
3996 	 */
3997 	BUG_ON(right_path->p_tree_depth == 0);
3998 
3999 	/*
4000 	 * If our appending insert is at the leftmost edge of a leaf,
4001 	 * then we might need to update the rightmost records of the
4002 	 * neighboring path.
4003 	 */
4004 	el = path_leaf_el(right_path);
4005 	next_free = le16_to_cpu(el->l_next_free_rec);
4006 	if (next_free == 0 ||
4007 	    (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
4008 		u32 left_cpos;
4009 
4010 		ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
4011 						    right_path, &left_cpos);
4012 		if (ret) {
4013 			mlog_errno(ret);
4014 			goto out;
4015 		}
4016 
4017 		trace_ocfs2_append_rec_to_path(
4018 			(unsigned long long)
4019 			ocfs2_metadata_cache_owner(et->et_ci),
4020 			le32_to_cpu(insert_rec->e_cpos),
4021 			left_cpos);
4022 
4023 		/*
4024 		 * No need to worry if the append is already in the
4025 		 * leftmost leaf.
4026 		 */
4027 		if (left_cpos) {
4028 			left_path = ocfs2_new_path_from_path(right_path);
4029 			if (!left_path) {
4030 				ret = -ENOMEM;
4031 				mlog_errno(ret);
4032 				goto out;
4033 			}
4034 
4035 			ret = ocfs2_find_path(et->et_ci, left_path,
4036 					      left_cpos);
4037 			if (ret) {
4038 				mlog_errno(ret);
4039 				goto out;
4040 			}
4041 
4042 			/*
4043 			 * ocfs2_insert_path() will pass the left_path to the
4044 			 * journal for us.
4045 			 */
4046 		}
4047 	}
4048 
4049 	ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4050 	if (ret) {
4051 		mlog_errno(ret);
4052 		goto out;
4053 	}
4054 
4055 	ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec);
4056 
4057 	*ret_left_path = left_path;
4058 	ret = 0;
4059 out:
4060 	if (ret != 0)
4061 		ocfs2_free_path(left_path);
4062 
4063 	return ret;
4064 }
4065 
4066 static void ocfs2_split_record(struct ocfs2_extent_tree *et,
4067 			       struct ocfs2_path *left_path,
4068 			       struct ocfs2_path *right_path,
4069 			       struct ocfs2_extent_rec *split_rec,
4070 			       enum ocfs2_split_type split)
4071 {
4072 	int index;
4073 	u32 cpos = le32_to_cpu(split_rec->e_cpos);
4074 	struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4075 	struct ocfs2_extent_rec *rec, *tmprec;
4076 
4077 	right_el = path_leaf_el(right_path);
4078 	if (left_path)
4079 		left_el = path_leaf_el(left_path);
4080 
4081 	el = right_el;
4082 	insert_el = right_el;
4083 	index = ocfs2_search_extent_list(el, cpos);
4084 	if (index != -1) {
4085 		if (index == 0 && left_path) {
4086 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4087 
4088 			/*
4089 			 * This typically means that the record
4090 			 * started in the left path but moved to the
4091 			 * right as a result of rotation. We either
4092 			 * move the existing record to the left, or we
4093 			 * do the later insert there.
4094 			 *
4095 			 * In this case, the left path should always
4096 			 * exist as the rotate code will have passed
4097 			 * it back for a post-insert update.
4098 			 */
4099 
4100 			if (split == SPLIT_LEFT) {
4101 				/*
4102 				 * It's a left split. Since we know
4103 				 * that the rotate code gave us an
4104 				 * empty extent in the left path, we
4105 				 * can just do the insert there.
4106 				 */
4107 				insert_el = left_el;
4108 			} else {
4109 				/*
4110 				 * Right split - we have to move the
4111 				 * existing record over to the left
4112 				 * leaf. The insert will be into the
4113 				 * newly created empty extent in the
4114 				 * right leaf.
4115 				 */
4116 				tmprec = &right_el->l_recs[index];
4117 				ocfs2_rotate_leaf(left_el, tmprec);
4118 				el = left_el;
4119 
4120 				memset(tmprec, 0, sizeof(*tmprec));
4121 				index = ocfs2_search_extent_list(left_el, cpos);
4122 				BUG_ON(index == -1);
4123 			}
4124 		}
4125 	} else {
4126 		BUG_ON(!left_path);
4127 		BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4128 		/*
4129 		 * Left path is easy - we can just allow the insert to
4130 		 * happen.
4131 		 */
4132 		el = left_el;
4133 		insert_el = left_el;
4134 		index = ocfs2_search_extent_list(el, cpos);
4135 		BUG_ON(index == -1);
4136 	}
4137 
4138 	rec = &el->l_recs[index];
4139 	ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4140 				split, rec, split_rec);
4141 	ocfs2_rotate_leaf(insert_el, split_rec);
4142 }
4143 
4144 /*
4145  * This function only does inserts on an allocation b-tree. For tree
4146  * depth = 0, ocfs2_insert_at_leaf() is called directly.
4147  *
4148  * right_path is the path we want to do the actual insert
4149  * in. left_path should only be passed in if we need to update that
4150  * portion of the tree after an edge insert.
4151  */
4152 static int ocfs2_insert_path(handle_t *handle,
4153 			     struct ocfs2_extent_tree *et,
4154 			     struct ocfs2_path *left_path,
4155 			     struct ocfs2_path *right_path,
4156 			     struct ocfs2_extent_rec *insert_rec,
4157 			     struct ocfs2_insert_type *insert)
4158 {
4159 	int ret, subtree_index;
4160 	struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4161 
4162 	if (left_path) {
4163 		/*
4164 		 * There's a chance that left_path got passed back to
4165 		 * us without being accounted for in the
4166 		 * journal. Extend our transaction here to be sure we
4167 		 * can change those blocks.
4168 		 */
4169 		ret = ocfs2_extend_trans(handle, left_path->p_tree_depth);
4170 		if (ret < 0) {
4171 			mlog_errno(ret);
4172 			goto out;
4173 		}
4174 
4175 		ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
4176 		if (ret < 0) {
4177 			mlog_errno(ret);
4178 			goto out;
4179 		}
4180 	}
4181 
4182 	/*
4183 	 * Pass both paths to the journal. The majority of inserts
4184 	 * will be touching all components anyway.
4185 	 */
4186 	ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4187 	if (ret < 0) {
4188 		mlog_errno(ret);
4189 		goto out;
4190 	}
4191 
4192 	if (insert->ins_split != SPLIT_NONE) {
4193 		/*
4194 		 * We could call ocfs2_insert_at_leaf() for some types
4195 		 * of splits, but it's easier to just let one separate
4196 		 * function sort it all out.
4197 		 */
4198 		ocfs2_split_record(et, left_path, right_path,
4199 				   insert_rec, insert->ins_split);
4200 
4201 		/*
4202 		 * Split might have modified either leaf and we don't
4203 		 * have a guarantee that the later edge insert will
4204 		 * dirty this for us.
4205 		 */
4206 		if (left_path)
4207 			ocfs2_journal_dirty(handle,
4208 					    path_leaf_bh(left_path));
4209 	} else
4210 		ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path),
4211 				     insert);
4212 
4213 	ocfs2_journal_dirty(handle, leaf_bh);
4214 
4215 	if (left_path) {
4216 		/*
4217 		 * The rotate code has indicated that we need to fix
4218 		 * up portions of the tree after the insert.
4219 		 *
4220 		 * XXX: Should we extend the transaction here?
4221 		 */
4222 		subtree_index = ocfs2_find_subtree_root(et, left_path,
4223 							right_path);
4224 		ocfs2_complete_edge_insert(handle, left_path, right_path,
4225 					   subtree_index);
4226 	}
4227 
4228 	ret = 0;
4229 out:
4230 	return ret;
4231 }
4232 
4233 static int ocfs2_do_insert_extent(handle_t *handle,
4234 				  struct ocfs2_extent_tree *et,
4235 				  struct ocfs2_extent_rec *insert_rec,
4236 				  struct ocfs2_insert_type *type)
4237 {
4238 	int ret, rotate = 0;
4239 	u32 cpos;
4240 	struct ocfs2_path *right_path = NULL;
4241 	struct ocfs2_path *left_path = NULL;
4242 	struct ocfs2_extent_list *el;
4243 
4244 	el = et->et_root_el;
4245 
4246 	ret = ocfs2_et_root_journal_access(handle, et,
4247 					   OCFS2_JOURNAL_ACCESS_WRITE);
4248 	if (ret) {
4249 		mlog_errno(ret);
4250 		goto out;
4251 	}
4252 
4253 	if (le16_to_cpu(el->l_tree_depth) == 0) {
4254 		ocfs2_insert_at_leaf(et, insert_rec, el, type);
4255 		goto out_update_clusters;
4256 	}
4257 
4258 	right_path = ocfs2_new_path_from_et(et);
4259 	if (!right_path) {
4260 		ret = -ENOMEM;
4261 		mlog_errno(ret);
4262 		goto out;
4263 	}
4264 
4265 	/*
4266 	 * Determine the path to start with. Rotations need the
4267 	 * rightmost path, everything else can go directly to the
4268 	 * target leaf.
4269 	 */
4270 	cpos = le32_to_cpu(insert_rec->e_cpos);
4271 	if (type->ins_appending == APPEND_NONE &&
4272 	    type->ins_contig == CONTIG_NONE) {
4273 		rotate = 1;
4274 		cpos = UINT_MAX;
4275 	}
4276 
4277 	ret = ocfs2_find_path(et->et_ci, right_path, cpos);
4278 	if (ret) {
4279 		mlog_errno(ret);
4280 		goto out;
4281 	}
4282 
4283 	/*
4284 	 * Rotations and appends need special treatment - they modify
4285 	 * parts of the tree's above them.
4286 	 *
4287 	 * Both might pass back a path immediate to the left of the
4288 	 * one being inserted to. This will be cause
4289 	 * ocfs2_insert_path() to modify the rightmost records of
4290 	 * left_path to account for an edge insert.
4291 	 *
4292 	 * XXX: When modifying this code, keep in mind that an insert
4293 	 * can wind up skipping both of these two special cases...
4294 	 */
4295 	if (rotate) {
4296 		ret = ocfs2_rotate_tree_right(handle, et, type->ins_split,
4297 					      le32_to_cpu(insert_rec->e_cpos),
4298 					      right_path, &left_path);
4299 		if (ret) {
4300 			mlog_errno(ret);
4301 			goto out;
4302 		}
4303 
4304 		/*
4305 		 * ocfs2_rotate_tree_right() might have extended the
4306 		 * transaction without re-journaling our tree root.
4307 		 */
4308 		ret = ocfs2_et_root_journal_access(handle, et,
4309 						   OCFS2_JOURNAL_ACCESS_WRITE);
4310 		if (ret) {
4311 			mlog_errno(ret);
4312 			goto out;
4313 		}
4314 	} else if (type->ins_appending == APPEND_TAIL
4315 		   && type->ins_contig != CONTIG_LEFT) {
4316 		ret = ocfs2_append_rec_to_path(handle, et, insert_rec,
4317 					       right_path, &left_path);
4318 		if (ret) {
4319 			mlog_errno(ret);
4320 			goto out;
4321 		}
4322 	}
4323 
4324 	ret = ocfs2_insert_path(handle, et, left_path, right_path,
4325 				insert_rec, type);
4326 	if (ret) {
4327 		mlog_errno(ret);
4328 		goto out;
4329 	}
4330 
4331 out_update_clusters:
4332 	if (type->ins_split == SPLIT_NONE)
4333 		ocfs2_et_update_clusters(et,
4334 					 le16_to_cpu(insert_rec->e_leaf_clusters));
4335 
4336 	ocfs2_journal_dirty(handle, et->et_root_bh);
4337 
4338 out:
4339 	ocfs2_free_path(left_path);
4340 	ocfs2_free_path(right_path);
4341 
4342 	return ret;
4343 }
4344 
4345 static int ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et,
4346 			       struct ocfs2_path *path,
4347 			       struct ocfs2_extent_list *el, int index,
4348 			       struct ocfs2_extent_rec *split_rec,
4349 			       struct ocfs2_merge_ctxt *ctxt)
4350 {
4351 	int status = 0;
4352 	enum ocfs2_contig_type ret = CONTIG_NONE;
4353 	u32 left_cpos, right_cpos;
4354 	struct ocfs2_extent_rec *rec = NULL;
4355 	struct ocfs2_extent_list *new_el;
4356 	struct ocfs2_path *left_path = NULL, *right_path = NULL;
4357 	struct buffer_head *bh;
4358 	struct ocfs2_extent_block *eb;
4359 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
4360 
4361 	if (index > 0) {
4362 		rec = &el->l_recs[index - 1];
4363 	} else if (path->p_tree_depth > 0) {
4364 		status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
4365 		if (status)
4366 			goto exit;
4367 
4368 		if (left_cpos != 0) {
4369 			left_path = ocfs2_new_path_from_path(path);
4370 			if (!left_path) {
4371 				status = -ENOMEM;
4372 				mlog_errno(status);
4373 				goto exit;
4374 			}
4375 
4376 			status = ocfs2_find_path(et->et_ci, left_path,
4377 						 left_cpos);
4378 			if (status)
4379 				goto free_left_path;
4380 
4381 			new_el = path_leaf_el(left_path);
4382 
4383 			if (le16_to_cpu(new_el->l_next_free_rec) !=
4384 			    le16_to_cpu(new_el->l_count)) {
4385 				bh = path_leaf_bh(left_path);
4386 				eb = (struct ocfs2_extent_block *)bh->b_data;
4387 				ocfs2_error(sb,
4388 					    "Extent block #%llu has an invalid l_next_free_rec of %d.  It should have matched the l_count of %d\n",
4389 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4390 					    le16_to_cpu(new_el->l_next_free_rec),
4391 					    le16_to_cpu(new_el->l_count));
4392 				status = -EINVAL;
4393 				goto free_left_path;
4394 			}
4395 			rec = &new_el->l_recs[
4396 				le16_to_cpu(new_el->l_next_free_rec) - 1];
4397 		}
4398 	}
4399 
4400 	/*
4401 	 * We're careful to check for an empty extent record here -
4402 	 * the merge code will know what to do if it sees one.
4403 	 */
4404 	if (rec) {
4405 		if (index == 1 && ocfs2_is_empty_extent(rec)) {
4406 			if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4407 				ret = CONTIG_RIGHT;
4408 		} else {
4409 			ret = ocfs2_et_extent_contig(et, rec, split_rec);
4410 		}
4411 	}
4412 
4413 	rec = NULL;
4414 	if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4415 		rec = &el->l_recs[index + 1];
4416 	else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4417 		 path->p_tree_depth > 0) {
4418 		status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
4419 		if (status)
4420 			goto free_left_path;
4421 
4422 		if (right_cpos == 0)
4423 			goto free_left_path;
4424 
4425 		right_path = ocfs2_new_path_from_path(path);
4426 		if (!right_path) {
4427 			status = -ENOMEM;
4428 			mlog_errno(status);
4429 			goto free_left_path;
4430 		}
4431 
4432 		status = ocfs2_find_path(et->et_ci, right_path, right_cpos);
4433 		if (status)
4434 			goto free_right_path;
4435 
4436 		new_el = path_leaf_el(right_path);
4437 		rec = &new_el->l_recs[0];
4438 		if (ocfs2_is_empty_extent(rec)) {
4439 			if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4440 				bh = path_leaf_bh(right_path);
4441 				eb = (struct ocfs2_extent_block *)bh->b_data;
4442 				ocfs2_error(sb,
4443 					    "Extent block #%llu has an invalid l_next_free_rec of %d\n",
4444 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4445 					    le16_to_cpu(new_el->l_next_free_rec));
4446 				status = -EINVAL;
4447 				goto free_right_path;
4448 			}
4449 			rec = &new_el->l_recs[1];
4450 		}
4451 	}
4452 
4453 	if (rec) {
4454 		enum ocfs2_contig_type contig_type;
4455 
4456 		contig_type = ocfs2_et_extent_contig(et, rec, split_rec);
4457 
4458 		if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4459 			ret = CONTIG_LEFTRIGHT;
4460 		else if (ret == CONTIG_NONE)
4461 			ret = contig_type;
4462 	}
4463 
4464 free_right_path:
4465 	ocfs2_free_path(right_path);
4466 free_left_path:
4467 	ocfs2_free_path(left_path);
4468 exit:
4469 	if (status == 0)
4470 		ctxt->c_contig_type = ret;
4471 
4472 	return status;
4473 }
4474 
4475 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et,
4476 				     struct ocfs2_insert_type *insert,
4477 				     struct ocfs2_extent_list *el,
4478 				     struct ocfs2_extent_rec *insert_rec)
4479 {
4480 	int i;
4481 	enum ocfs2_contig_type contig_type = CONTIG_NONE;
4482 
4483 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4484 
4485 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4486 		contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i],
4487 						     insert_rec);
4488 		if (contig_type != CONTIG_NONE) {
4489 			insert->ins_contig_index = i;
4490 			break;
4491 		}
4492 	}
4493 	insert->ins_contig = contig_type;
4494 
4495 	if (insert->ins_contig != CONTIG_NONE) {
4496 		struct ocfs2_extent_rec *rec =
4497 				&el->l_recs[insert->ins_contig_index];
4498 		unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4499 				   le16_to_cpu(insert_rec->e_leaf_clusters);
4500 
4501 		/*
4502 		 * Caller might want us to limit the size of extents, don't
4503 		 * calculate contiguousness if we might exceed that limit.
4504 		 */
4505 		if (et->et_max_leaf_clusters &&
4506 		    (len > et->et_max_leaf_clusters))
4507 			insert->ins_contig = CONTIG_NONE;
4508 	}
4509 }
4510 
4511 /*
4512  * This should only be called against the righmost leaf extent list.
4513  *
4514  * ocfs2_figure_appending_type() will figure out whether we'll have to
4515  * insert at the tail of the rightmost leaf.
4516  *
4517  * This should also work against the root extent list for tree's with 0
4518  * depth. If we consider the root extent list to be the rightmost leaf node
4519  * then the logic here makes sense.
4520  */
4521 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4522 					struct ocfs2_extent_list *el,
4523 					struct ocfs2_extent_rec *insert_rec)
4524 {
4525 	int i;
4526 	u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4527 	struct ocfs2_extent_rec *rec;
4528 
4529 	insert->ins_appending = APPEND_NONE;
4530 
4531 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4532 
4533 	if (!el->l_next_free_rec)
4534 		goto set_tail_append;
4535 
4536 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4537 		/* Were all records empty? */
4538 		if (le16_to_cpu(el->l_next_free_rec) == 1)
4539 			goto set_tail_append;
4540 	}
4541 
4542 	i = le16_to_cpu(el->l_next_free_rec) - 1;
4543 	rec = &el->l_recs[i];
4544 
4545 	if (cpos >=
4546 	    (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4547 		goto set_tail_append;
4548 
4549 	return;
4550 
4551 set_tail_append:
4552 	insert->ins_appending = APPEND_TAIL;
4553 }
4554 
4555 /*
4556  * Helper function called at the beginning of an insert.
4557  *
4558  * This computes a few things that are commonly used in the process of
4559  * inserting into the btree:
4560  *   - Whether the new extent is contiguous with an existing one.
4561  *   - The current tree depth.
4562  *   - Whether the insert is an appending one.
4563  *   - The total # of free records in the tree.
4564  *
4565  * All of the information is stored on the ocfs2_insert_type
4566  * structure.
4567  */
4568 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et,
4569 				    struct buffer_head **last_eb_bh,
4570 				    struct ocfs2_extent_rec *insert_rec,
4571 				    int *free_records,
4572 				    struct ocfs2_insert_type *insert)
4573 {
4574 	int ret;
4575 	struct ocfs2_extent_block *eb;
4576 	struct ocfs2_extent_list *el;
4577 	struct ocfs2_path *path = NULL;
4578 	struct buffer_head *bh = NULL;
4579 
4580 	insert->ins_split = SPLIT_NONE;
4581 
4582 	el = et->et_root_el;
4583 	insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4584 
4585 	if (el->l_tree_depth) {
4586 		/*
4587 		 * If we have tree depth, we read in the
4588 		 * rightmost extent block ahead of time as
4589 		 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4590 		 * may want it later.
4591 		 */
4592 		ret = ocfs2_read_extent_block(et->et_ci,
4593 					      ocfs2_et_get_last_eb_blk(et),
4594 					      &bh);
4595 		if (ret) {
4596 			mlog_errno(ret);
4597 			goto out;
4598 		}
4599 		eb = (struct ocfs2_extent_block *) bh->b_data;
4600 		el = &eb->h_list;
4601 	}
4602 
4603 	/*
4604 	 * Unless we have a contiguous insert, we'll need to know if
4605 	 * there is room left in our allocation tree for another
4606 	 * extent record.
4607 	 *
4608 	 * XXX: This test is simplistic, we can search for empty
4609 	 * extent records too.
4610 	 */
4611 	*free_records = le16_to_cpu(el->l_count) -
4612 		le16_to_cpu(el->l_next_free_rec);
4613 
4614 	if (!insert->ins_tree_depth) {
4615 		ocfs2_figure_contig_type(et, insert, el, insert_rec);
4616 		ocfs2_figure_appending_type(insert, el, insert_rec);
4617 		return 0;
4618 	}
4619 
4620 	path = ocfs2_new_path_from_et(et);
4621 	if (!path) {
4622 		ret = -ENOMEM;
4623 		mlog_errno(ret);
4624 		goto out;
4625 	}
4626 
4627 	/*
4628 	 * In the case that we're inserting past what the tree
4629 	 * currently accounts for, ocfs2_find_path() will return for
4630 	 * us the rightmost tree path. This is accounted for below in
4631 	 * the appending code.
4632 	 */
4633 	ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos));
4634 	if (ret) {
4635 		mlog_errno(ret);
4636 		goto out;
4637 	}
4638 
4639 	el = path_leaf_el(path);
4640 
4641 	/*
4642 	 * Now that we have the path, there's two things we want to determine:
4643 	 * 1) Contiguousness (also set contig_index if this is so)
4644 	 *
4645 	 * 2) Are we doing an append? We can trivially break this up
4646          *     into two types of appends: simple record append, or a
4647          *     rotate inside the tail leaf.
4648 	 */
4649 	ocfs2_figure_contig_type(et, insert, el, insert_rec);
4650 
4651 	/*
4652 	 * The insert code isn't quite ready to deal with all cases of
4653 	 * left contiguousness. Specifically, if it's an insert into
4654 	 * the 1st record in a leaf, it will require the adjustment of
4655 	 * cluster count on the last record of the path directly to it's
4656 	 * left. For now, just catch that case and fool the layers
4657 	 * above us. This works just fine for tree_depth == 0, which
4658 	 * is why we allow that above.
4659 	 */
4660 	if (insert->ins_contig == CONTIG_LEFT &&
4661 	    insert->ins_contig_index == 0)
4662 		insert->ins_contig = CONTIG_NONE;
4663 
4664 	/*
4665 	 * Ok, so we can simply compare against last_eb to figure out
4666 	 * whether the path doesn't exist. This will only happen in
4667 	 * the case that we're doing a tail append, so maybe we can
4668 	 * take advantage of that information somehow.
4669 	 */
4670 	if (ocfs2_et_get_last_eb_blk(et) ==
4671 	    path_leaf_bh(path)->b_blocknr) {
4672 		/*
4673 		 * Ok, ocfs2_find_path() returned us the rightmost
4674 		 * tree path. This might be an appending insert. There are
4675 		 * two cases:
4676 		 *    1) We're doing a true append at the tail:
4677 		 *	-This might even be off the end of the leaf
4678 		 *    2) We're "appending" by rotating in the tail
4679 		 */
4680 		ocfs2_figure_appending_type(insert, el, insert_rec);
4681 	}
4682 
4683 out:
4684 	ocfs2_free_path(path);
4685 
4686 	if (ret == 0)
4687 		*last_eb_bh = bh;
4688 	else
4689 		brelse(bh);
4690 	return ret;
4691 }
4692 
4693 /*
4694  * Insert an extent into a btree.
4695  *
4696  * The caller needs to update the owning btree's cluster count.
4697  */
4698 int ocfs2_insert_extent(handle_t *handle,
4699 			struct ocfs2_extent_tree *et,
4700 			u32 cpos,
4701 			u64 start_blk,
4702 			u32 new_clusters,
4703 			u8 flags,
4704 			struct ocfs2_alloc_context *meta_ac)
4705 {
4706 	int status;
4707 	int uninitialized_var(free_records);
4708 	struct buffer_head *last_eb_bh = NULL;
4709 	struct ocfs2_insert_type insert = {0, };
4710 	struct ocfs2_extent_rec rec;
4711 
4712 	trace_ocfs2_insert_extent_start(
4713 		(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4714 		cpos, new_clusters);
4715 
4716 	memset(&rec, 0, sizeof(rec));
4717 	rec.e_cpos = cpu_to_le32(cpos);
4718 	rec.e_blkno = cpu_to_le64(start_blk);
4719 	rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4720 	rec.e_flags = flags;
4721 	status = ocfs2_et_insert_check(et, &rec);
4722 	if (status) {
4723 		mlog_errno(status);
4724 		goto bail;
4725 	}
4726 
4727 	status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec,
4728 					  &free_records, &insert);
4729 	if (status < 0) {
4730 		mlog_errno(status);
4731 		goto bail;
4732 	}
4733 
4734 	trace_ocfs2_insert_extent(insert.ins_appending, insert.ins_contig,
4735 				  insert.ins_contig_index, free_records,
4736 				  insert.ins_tree_depth);
4737 
4738 	if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4739 		status = ocfs2_grow_tree(handle, et,
4740 					 &insert.ins_tree_depth, &last_eb_bh,
4741 					 meta_ac);
4742 		if (status) {
4743 			mlog_errno(status);
4744 			goto bail;
4745 		}
4746 	}
4747 
4748 	/* Finally, we can add clusters. This might rotate the tree for us. */
4749 	status = ocfs2_do_insert_extent(handle, et, &rec, &insert);
4750 	if (status < 0)
4751 		mlog_errno(status);
4752 	else
4753 		ocfs2_et_extent_map_insert(et, &rec);
4754 
4755 bail:
4756 	brelse(last_eb_bh);
4757 
4758 	return status;
4759 }
4760 
4761 /*
4762  * Allcate and add clusters into the extent b-tree.
4763  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4764  * The extent b-tree's root is specified by et, and
4765  * it is not limited to the file storage. Any extent tree can use this
4766  * function if it implements the proper ocfs2_extent_tree.
4767  */
4768 int ocfs2_add_clusters_in_btree(handle_t *handle,
4769 				struct ocfs2_extent_tree *et,
4770 				u32 *logical_offset,
4771 				u32 clusters_to_add,
4772 				int mark_unwritten,
4773 				struct ocfs2_alloc_context *data_ac,
4774 				struct ocfs2_alloc_context *meta_ac,
4775 				enum ocfs2_alloc_restarted *reason_ret)
4776 {
4777 	int status = 0, err = 0;
4778 	int need_free = 0;
4779 	int free_extents;
4780 	enum ocfs2_alloc_restarted reason = RESTART_NONE;
4781 	u32 bit_off, num_bits;
4782 	u64 block;
4783 	u8 flags = 0;
4784 	struct ocfs2_super *osb =
4785 		OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
4786 
4787 	BUG_ON(!clusters_to_add);
4788 
4789 	if (mark_unwritten)
4790 		flags = OCFS2_EXT_UNWRITTEN;
4791 
4792 	free_extents = ocfs2_num_free_extents(osb, et);
4793 	if (free_extents < 0) {
4794 		status = free_extents;
4795 		mlog_errno(status);
4796 		goto leave;
4797 	}
4798 
4799 	/* there are two cases which could cause us to EAGAIN in the
4800 	 * we-need-more-metadata case:
4801 	 * 1) we haven't reserved *any*
4802 	 * 2) we are so fragmented, we've needed to add metadata too
4803 	 *    many times. */
4804 	if (!free_extents && !meta_ac) {
4805 		err = -1;
4806 		status = -EAGAIN;
4807 		reason = RESTART_META;
4808 		goto leave;
4809 	} else if ((!free_extents)
4810 		   && (ocfs2_alloc_context_bits_left(meta_ac)
4811 		       < ocfs2_extend_meta_needed(et->et_root_el))) {
4812 		err = -2;
4813 		status = -EAGAIN;
4814 		reason = RESTART_META;
4815 		goto leave;
4816 	}
4817 
4818 	status = __ocfs2_claim_clusters(handle, data_ac, 1,
4819 					clusters_to_add, &bit_off, &num_bits);
4820 	if (status < 0) {
4821 		if (status != -ENOSPC)
4822 			mlog_errno(status);
4823 		goto leave;
4824 	}
4825 
4826 	BUG_ON(num_bits > clusters_to_add);
4827 
4828 	/* reserve our write early -- insert_extent may update the tree root */
4829 	status = ocfs2_et_root_journal_access(handle, et,
4830 					      OCFS2_JOURNAL_ACCESS_WRITE);
4831 	if (status < 0) {
4832 		mlog_errno(status);
4833 		need_free = 1;
4834 		goto bail;
4835 	}
4836 
4837 	block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4838 	trace_ocfs2_add_clusters_in_btree(
4839 	     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4840 	     bit_off, num_bits);
4841 	status = ocfs2_insert_extent(handle, et, *logical_offset, block,
4842 				     num_bits, flags, meta_ac);
4843 	if (status < 0) {
4844 		mlog_errno(status);
4845 		need_free = 1;
4846 		goto bail;
4847 	}
4848 
4849 	ocfs2_journal_dirty(handle, et->et_root_bh);
4850 
4851 	clusters_to_add -= num_bits;
4852 	*logical_offset += num_bits;
4853 
4854 	if (clusters_to_add) {
4855 		err = clusters_to_add;
4856 		status = -EAGAIN;
4857 		reason = RESTART_TRANS;
4858 	}
4859 
4860 bail:
4861 	if (need_free) {
4862 		if (data_ac->ac_which == OCFS2_AC_USE_LOCAL)
4863 			ocfs2_free_local_alloc_bits(osb, handle, data_ac,
4864 					bit_off, num_bits);
4865 		else
4866 			ocfs2_free_clusters(handle,
4867 					data_ac->ac_inode,
4868 					data_ac->ac_bh,
4869 					ocfs2_clusters_to_blocks(osb->sb, bit_off),
4870 					num_bits);
4871 	}
4872 
4873 leave:
4874 	if (reason_ret)
4875 		*reason_ret = reason;
4876 	trace_ocfs2_add_clusters_in_btree_ret(status, reason, err);
4877 	return status;
4878 }
4879 
4880 static void ocfs2_make_right_split_rec(struct super_block *sb,
4881 				       struct ocfs2_extent_rec *split_rec,
4882 				       u32 cpos,
4883 				       struct ocfs2_extent_rec *rec)
4884 {
4885 	u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4886 	u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4887 
4888 	memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4889 
4890 	split_rec->e_cpos = cpu_to_le32(cpos);
4891 	split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4892 
4893 	split_rec->e_blkno = rec->e_blkno;
4894 	le64_add_cpu(&split_rec->e_blkno,
4895 		     ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4896 
4897 	split_rec->e_flags = rec->e_flags;
4898 }
4899 
4900 static int ocfs2_split_and_insert(handle_t *handle,
4901 				  struct ocfs2_extent_tree *et,
4902 				  struct ocfs2_path *path,
4903 				  struct buffer_head **last_eb_bh,
4904 				  int split_index,
4905 				  struct ocfs2_extent_rec *orig_split_rec,
4906 				  struct ocfs2_alloc_context *meta_ac)
4907 {
4908 	int ret = 0, depth;
4909 	unsigned int insert_range, rec_range, do_leftright = 0;
4910 	struct ocfs2_extent_rec tmprec;
4911 	struct ocfs2_extent_list *rightmost_el;
4912 	struct ocfs2_extent_rec rec;
4913 	struct ocfs2_extent_rec split_rec = *orig_split_rec;
4914 	struct ocfs2_insert_type insert;
4915 	struct ocfs2_extent_block *eb;
4916 
4917 leftright:
4918 	/*
4919 	 * Store a copy of the record on the stack - it might move
4920 	 * around as the tree is manipulated below.
4921 	 */
4922 	rec = path_leaf_el(path)->l_recs[split_index];
4923 
4924 	rightmost_el = et->et_root_el;
4925 
4926 	depth = le16_to_cpu(rightmost_el->l_tree_depth);
4927 	if (depth) {
4928 		BUG_ON(!(*last_eb_bh));
4929 		eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4930 		rightmost_el = &eb->h_list;
4931 	}
4932 
4933 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4934 	    le16_to_cpu(rightmost_el->l_count)) {
4935 		ret = ocfs2_grow_tree(handle, et,
4936 				      &depth, last_eb_bh, meta_ac);
4937 		if (ret) {
4938 			mlog_errno(ret);
4939 			goto out;
4940 		}
4941 	}
4942 
4943 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4944 	insert.ins_appending = APPEND_NONE;
4945 	insert.ins_contig = CONTIG_NONE;
4946 	insert.ins_tree_depth = depth;
4947 
4948 	insert_range = le32_to_cpu(split_rec.e_cpos) +
4949 		le16_to_cpu(split_rec.e_leaf_clusters);
4950 	rec_range = le32_to_cpu(rec.e_cpos) +
4951 		le16_to_cpu(rec.e_leaf_clusters);
4952 
4953 	if (split_rec.e_cpos == rec.e_cpos) {
4954 		insert.ins_split = SPLIT_LEFT;
4955 	} else if (insert_range == rec_range) {
4956 		insert.ins_split = SPLIT_RIGHT;
4957 	} else {
4958 		/*
4959 		 * Left/right split. We fake this as a right split
4960 		 * first and then make a second pass as a left split.
4961 		 */
4962 		insert.ins_split = SPLIT_RIGHT;
4963 
4964 		ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4965 					   &tmprec, insert_range, &rec);
4966 
4967 		split_rec = tmprec;
4968 
4969 		BUG_ON(do_leftright);
4970 		do_leftright = 1;
4971 	}
4972 
4973 	ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
4974 	if (ret) {
4975 		mlog_errno(ret);
4976 		goto out;
4977 	}
4978 
4979 	if (do_leftright == 1) {
4980 		u32 cpos;
4981 		struct ocfs2_extent_list *el;
4982 
4983 		do_leftright++;
4984 		split_rec = *orig_split_rec;
4985 
4986 		ocfs2_reinit_path(path, 1);
4987 
4988 		cpos = le32_to_cpu(split_rec.e_cpos);
4989 		ret = ocfs2_find_path(et->et_ci, path, cpos);
4990 		if (ret) {
4991 			mlog_errno(ret);
4992 			goto out;
4993 		}
4994 
4995 		el = path_leaf_el(path);
4996 		split_index = ocfs2_search_extent_list(el, cpos);
4997 		if (split_index == -1) {
4998 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
4999 				    "Owner %llu has an extent at cpos %u which can no longer be found\n",
5000 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5001 				    cpos);
5002 			ret = -EROFS;
5003 			goto out;
5004 		}
5005 		goto leftright;
5006 	}
5007 out:
5008 
5009 	return ret;
5010 }
5011 
5012 static int ocfs2_replace_extent_rec(handle_t *handle,
5013 				    struct ocfs2_extent_tree *et,
5014 				    struct ocfs2_path *path,
5015 				    struct ocfs2_extent_list *el,
5016 				    int split_index,
5017 				    struct ocfs2_extent_rec *split_rec)
5018 {
5019 	int ret;
5020 
5021 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
5022 					   path_num_items(path) - 1);
5023 	if (ret) {
5024 		mlog_errno(ret);
5025 		goto out;
5026 	}
5027 
5028 	el->l_recs[split_index] = *split_rec;
5029 
5030 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
5031 out:
5032 	return ret;
5033 }
5034 
5035 /*
5036  * Split part or all of the extent record at split_index in the leaf
5037  * pointed to by path. Merge with the contiguous extent record if needed.
5038  *
5039  * Care is taken to handle contiguousness so as to not grow the tree.
5040  *
5041  * meta_ac is not strictly necessary - we only truly need it if growth
5042  * of the tree is required. All other cases will degrade into a less
5043  * optimal tree layout.
5044  *
5045  * last_eb_bh should be the rightmost leaf block for any extent
5046  * btree. Since a split may grow the tree or a merge might shrink it,
5047  * the caller cannot trust the contents of that buffer after this call.
5048  *
5049  * This code is optimized for readability - several passes might be
5050  * made over certain portions of the tree. All of those blocks will
5051  * have been brought into cache (and pinned via the journal), so the
5052  * extra overhead is not expressed in terms of disk reads.
5053  */
5054 int ocfs2_split_extent(handle_t *handle,
5055 		       struct ocfs2_extent_tree *et,
5056 		       struct ocfs2_path *path,
5057 		       int split_index,
5058 		       struct ocfs2_extent_rec *split_rec,
5059 		       struct ocfs2_alloc_context *meta_ac,
5060 		       struct ocfs2_cached_dealloc_ctxt *dealloc)
5061 {
5062 	int ret = 0;
5063 	struct ocfs2_extent_list *el = path_leaf_el(path);
5064 	struct buffer_head *last_eb_bh = NULL;
5065 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5066 	struct ocfs2_merge_ctxt ctxt;
5067 	struct ocfs2_extent_list *rightmost_el;
5068 
5069 	if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5070 	    ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5071 	     (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5072 		ret = -EIO;
5073 		mlog_errno(ret);
5074 		goto out;
5075 	}
5076 
5077 	ret = ocfs2_figure_merge_contig_type(et, path, el,
5078 					     split_index,
5079 					     split_rec,
5080 					     &ctxt);
5081 	if (ret) {
5082 		mlog_errno(ret);
5083 		goto out;
5084 	}
5085 
5086 	/*
5087 	 * The core merge / split code wants to know how much room is
5088 	 * left in this allocation tree, so we pass the
5089 	 * rightmost extent list.
5090 	 */
5091 	if (path->p_tree_depth) {
5092 		struct ocfs2_extent_block *eb;
5093 
5094 		ret = ocfs2_read_extent_block(et->et_ci,
5095 					      ocfs2_et_get_last_eb_blk(et),
5096 					      &last_eb_bh);
5097 		if (ret) {
5098 			mlog_errno(ret);
5099 			goto out;
5100 		}
5101 
5102 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5103 		rightmost_el = &eb->h_list;
5104 	} else
5105 		rightmost_el = path_root_el(path);
5106 
5107 	if (rec->e_cpos == split_rec->e_cpos &&
5108 	    rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5109 		ctxt.c_split_covers_rec = 1;
5110 	else
5111 		ctxt.c_split_covers_rec = 0;
5112 
5113 	ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5114 
5115 	trace_ocfs2_split_extent(split_index, ctxt.c_contig_type,
5116 				 ctxt.c_has_empty_extent,
5117 				 ctxt.c_split_covers_rec);
5118 
5119 	if (ctxt.c_contig_type == CONTIG_NONE) {
5120 		if (ctxt.c_split_covers_rec)
5121 			ret = ocfs2_replace_extent_rec(handle, et, path, el,
5122 						       split_index, split_rec);
5123 		else
5124 			ret = ocfs2_split_and_insert(handle, et, path,
5125 						     &last_eb_bh, split_index,
5126 						     split_rec, meta_ac);
5127 		if (ret)
5128 			mlog_errno(ret);
5129 	} else {
5130 		ret = ocfs2_try_to_merge_extent(handle, et, path,
5131 						split_index, split_rec,
5132 						dealloc, &ctxt);
5133 		if (ret)
5134 			mlog_errno(ret);
5135 	}
5136 
5137 out:
5138 	brelse(last_eb_bh);
5139 	return ret;
5140 }
5141 
5142 /*
5143  * Change the flags of the already-existing extent at cpos for len clusters.
5144  *
5145  * new_flags: the flags we want to set.
5146  * clear_flags: the flags we want to clear.
5147  * phys: the new physical offset we want this new extent starts from.
5148  *
5149  * If the existing extent is larger than the request, initiate a
5150  * split. An attempt will be made at merging with adjacent extents.
5151  *
5152  * The caller is responsible for passing down meta_ac if we'll need it.
5153  */
5154 int ocfs2_change_extent_flag(handle_t *handle,
5155 			     struct ocfs2_extent_tree *et,
5156 			     u32 cpos, u32 len, u32 phys,
5157 			     struct ocfs2_alloc_context *meta_ac,
5158 			     struct ocfs2_cached_dealloc_ctxt *dealloc,
5159 			     int new_flags, int clear_flags)
5160 {
5161 	int ret, index;
5162 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5163 	u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys);
5164 	struct ocfs2_extent_rec split_rec;
5165 	struct ocfs2_path *left_path = NULL;
5166 	struct ocfs2_extent_list *el;
5167 	struct ocfs2_extent_rec *rec;
5168 
5169 	left_path = ocfs2_new_path_from_et(et);
5170 	if (!left_path) {
5171 		ret = -ENOMEM;
5172 		mlog_errno(ret);
5173 		goto out;
5174 	}
5175 
5176 	ret = ocfs2_find_path(et->et_ci, left_path, cpos);
5177 	if (ret) {
5178 		mlog_errno(ret);
5179 		goto out;
5180 	}
5181 	el = path_leaf_el(left_path);
5182 
5183 	index = ocfs2_search_extent_list(el, cpos);
5184 	if (index == -1) {
5185 		ocfs2_error(sb,
5186 			    "Owner %llu has an extent at cpos %u which can no longer be found\n",
5187 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5188 			    cpos);
5189 		ret = -EROFS;
5190 		goto out;
5191 	}
5192 
5193 	ret = -EIO;
5194 	rec = &el->l_recs[index];
5195 	if (new_flags && (rec->e_flags & new_flags)) {
5196 		mlog(ML_ERROR, "Owner %llu tried to set %d flags on an "
5197 		     "extent that already had them",
5198 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5199 		     new_flags);
5200 		goto out;
5201 	}
5202 
5203 	if (clear_flags && !(rec->e_flags & clear_flags)) {
5204 		mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an "
5205 		     "extent that didn't have them",
5206 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5207 		     clear_flags);
5208 		goto out;
5209 	}
5210 
5211 	memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5212 	split_rec.e_cpos = cpu_to_le32(cpos);
5213 	split_rec.e_leaf_clusters = cpu_to_le16(len);
5214 	split_rec.e_blkno = cpu_to_le64(start_blkno);
5215 	split_rec.e_flags = rec->e_flags;
5216 	if (new_flags)
5217 		split_rec.e_flags |= new_flags;
5218 	if (clear_flags)
5219 		split_rec.e_flags &= ~clear_flags;
5220 
5221 	ret = ocfs2_split_extent(handle, et, left_path,
5222 				 index, &split_rec, meta_ac,
5223 				 dealloc);
5224 	if (ret)
5225 		mlog_errno(ret);
5226 
5227 out:
5228 	ocfs2_free_path(left_path);
5229 	return ret;
5230 
5231 }
5232 
5233 /*
5234  * Mark the already-existing extent at cpos as written for len clusters.
5235  * This removes the unwritten extent flag.
5236  *
5237  * If the existing extent is larger than the request, initiate a
5238  * split. An attempt will be made at merging with adjacent extents.
5239  *
5240  * The caller is responsible for passing down meta_ac if we'll need it.
5241  */
5242 int ocfs2_mark_extent_written(struct inode *inode,
5243 			      struct ocfs2_extent_tree *et,
5244 			      handle_t *handle, u32 cpos, u32 len, u32 phys,
5245 			      struct ocfs2_alloc_context *meta_ac,
5246 			      struct ocfs2_cached_dealloc_ctxt *dealloc)
5247 {
5248 	int ret;
5249 
5250 	trace_ocfs2_mark_extent_written(
5251 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
5252 		cpos, len, phys);
5253 
5254 	if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5255 		ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents that are being written to, but the feature bit is not set in the super block\n",
5256 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
5257 		ret = -EROFS;
5258 		goto out;
5259 	}
5260 
5261 	/*
5262 	 * XXX: This should be fixed up so that we just re-insert the
5263 	 * next extent records.
5264 	 */
5265 	ocfs2_et_extent_map_truncate(et, 0);
5266 
5267 	ret = ocfs2_change_extent_flag(handle, et, cpos,
5268 				       len, phys, meta_ac, dealloc,
5269 				       0, OCFS2_EXT_UNWRITTEN);
5270 	if (ret)
5271 		mlog_errno(ret);
5272 
5273 out:
5274 	return ret;
5275 }
5276 
5277 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et,
5278 			    struct ocfs2_path *path,
5279 			    int index, u32 new_range,
5280 			    struct ocfs2_alloc_context *meta_ac)
5281 {
5282 	int ret, depth, credits;
5283 	struct buffer_head *last_eb_bh = NULL;
5284 	struct ocfs2_extent_block *eb;
5285 	struct ocfs2_extent_list *rightmost_el, *el;
5286 	struct ocfs2_extent_rec split_rec;
5287 	struct ocfs2_extent_rec *rec;
5288 	struct ocfs2_insert_type insert;
5289 
5290 	/*
5291 	 * Setup the record to split before we grow the tree.
5292 	 */
5293 	el = path_leaf_el(path);
5294 	rec = &el->l_recs[index];
5295 	ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
5296 				   &split_rec, new_range, rec);
5297 
5298 	depth = path->p_tree_depth;
5299 	if (depth > 0) {
5300 		ret = ocfs2_read_extent_block(et->et_ci,
5301 					      ocfs2_et_get_last_eb_blk(et),
5302 					      &last_eb_bh);
5303 		if (ret < 0) {
5304 			mlog_errno(ret);
5305 			goto out;
5306 		}
5307 
5308 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5309 		rightmost_el = &eb->h_list;
5310 	} else
5311 		rightmost_el = path_leaf_el(path);
5312 
5313 	credits = path->p_tree_depth +
5314 		  ocfs2_extend_meta_needed(et->et_root_el);
5315 	ret = ocfs2_extend_trans(handle, credits);
5316 	if (ret) {
5317 		mlog_errno(ret);
5318 		goto out;
5319 	}
5320 
5321 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5322 	    le16_to_cpu(rightmost_el->l_count)) {
5323 		ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh,
5324 				      meta_ac);
5325 		if (ret) {
5326 			mlog_errno(ret);
5327 			goto out;
5328 		}
5329 	}
5330 
5331 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5332 	insert.ins_appending = APPEND_NONE;
5333 	insert.ins_contig = CONTIG_NONE;
5334 	insert.ins_split = SPLIT_RIGHT;
5335 	insert.ins_tree_depth = depth;
5336 
5337 	ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
5338 	if (ret)
5339 		mlog_errno(ret);
5340 
5341 out:
5342 	brelse(last_eb_bh);
5343 	return ret;
5344 }
5345 
5346 static int ocfs2_truncate_rec(handle_t *handle,
5347 			      struct ocfs2_extent_tree *et,
5348 			      struct ocfs2_path *path, int index,
5349 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
5350 			      u32 cpos, u32 len)
5351 {
5352 	int ret;
5353 	u32 left_cpos, rec_range, trunc_range;
5354 	int is_rightmost_tree_rec = 0;
5355 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5356 	struct ocfs2_path *left_path = NULL;
5357 	struct ocfs2_extent_list *el = path_leaf_el(path);
5358 	struct ocfs2_extent_rec *rec;
5359 	struct ocfs2_extent_block *eb;
5360 
5361 	if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5362 		/* extend credit for ocfs2_remove_rightmost_path */
5363 		ret = ocfs2_extend_rotate_transaction(handle, 0,
5364 				handle->h_buffer_credits,
5365 				path);
5366 		if (ret) {
5367 			mlog_errno(ret);
5368 			goto out;
5369 		}
5370 
5371 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5372 		if (ret) {
5373 			mlog_errno(ret);
5374 			goto out;
5375 		}
5376 
5377 		index--;
5378 	}
5379 
5380 	if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5381 	    path->p_tree_depth) {
5382 		/*
5383 		 * Check whether this is the rightmost tree record. If
5384 		 * we remove all of this record or part of its right
5385 		 * edge then an update of the record lengths above it
5386 		 * will be required.
5387 		 */
5388 		eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5389 		if (eb->h_next_leaf_blk == 0)
5390 			is_rightmost_tree_rec = 1;
5391 	}
5392 
5393 	rec = &el->l_recs[index];
5394 	if (index == 0 && path->p_tree_depth &&
5395 	    le32_to_cpu(rec->e_cpos) == cpos) {
5396 		/*
5397 		 * Changing the leftmost offset (via partial or whole
5398 		 * record truncate) of an interior (or rightmost) path
5399 		 * means we have to update the subtree that is formed
5400 		 * by this leaf and the one to it's left.
5401 		 *
5402 		 * There are two cases we can skip:
5403 		 *   1) Path is the leftmost one in our btree.
5404 		 *   2) The leaf is rightmost and will be empty after
5405 		 *      we remove the extent record - the rotate code
5406 		 *      knows how to update the newly formed edge.
5407 		 */
5408 
5409 		ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
5410 		if (ret) {
5411 			mlog_errno(ret);
5412 			goto out;
5413 		}
5414 
5415 		if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5416 			left_path = ocfs2_new_path_from_path(path);
5417 			if (!left_path) {
5418 				ret = -ENOMEM;
5419 				mlog_errno(ret);
5420 				goto out;
5421 			}
5422 
5423 			ret = ocfs2_find_path(et->et_ci, left_path,
5424 					      left_cpos);
5425 			if (ret) {
5426 				mlog_errno(ret);
5427 				goto out;
5428 			}
5429 		}
5430 	}
5431 
5432 	ret = ocfs2_extend_rotate_transaction(handle, 0,
5433 					      handle->h_buffer_credits,
5434 					      path);
5435 	if (ret) {
5436 		mlog_errno(ret);
5437 		goto out;
5438 	}
5439 
5440 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
5441 	if (ret) {
5442 		mlog_errno(ret);
5443 		goto out;
5444 	}
5445 
5446 	ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
5447 	if (ret) {
5448 		mlog_errno(ret);
5449 		goto out;
5450 	}
5451 
5452 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5453 	trunc_range = cpos + len;
5454 
5455 	if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5456 		int next_free;
5457 
5458 		memset(rec, 0, sizeof(*rec));
5459 		ocfs2_cleanup_merge(el, index);
5460 
5461 		next_free = le16_to_cpu(el->l_next_free_rec);
5462 		if (is_rightmost_tree_rec && next_free > 1) {
5463 			/*
5464 			 * We skip the edge update if this path will
5465 			 * be deleted by the rotate code.
5466 			 */
5467 			rec = &el->l_recs[next_free - 1];
5468 			ocfs2_adjust_rightmost_records(handle, et, path,
5469 						       rec);
5470 		}
5471 	} else if (le32_to_cpu(rec->e_cpos) == cpos) {
5472 		/* Remove leftmost portion of the record. */
5473 		le32_add_cpu(&rec->e_cpos, len);
5474 		le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5475 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5476 	} else if (rec_range == trunc_range) {
5477 		/* Remove rightmost portion of the record */
5478 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5479 		if (is_rightmost_tree_rec)
5480 			ocfs2_adjust_rightmost_records(handle, et, path, rec);
5481 	} else {
5482 		/* Caller should have trapped this. */
5483 		mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) "
5484 		     "(%u, %u)\n",
5485 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5486 		     le32_to_cpu(rec->e_cpos),
5487 		     le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5488 		BUG();
5489 	}
5490 
5491 	if (left_path) {
5492 		int subtree_index;
5493 
5494 		subtree_index = ocfs2_find_subtree_root(et, left_path, path);
5495 		ocfs2_complete_edge_insert(handle, left_path, path,
5496 					   subtree_index);
5497 	}
5498 
5499 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
5500 
5501 	ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5502 	if (ret) {
5503 		mlog_errno(ret);
5504 		goto out;
5505 	}
5506 
5507 out:
5508 	ocfs2_free_path(left_path);
5509 	return ret;
5510 }
5511 
5512 int ocfs2_remove_extent(handle_t *handle,
5513 			struct ocfs2_extent_tree *et,
5514 			u32 cpos, u32 len,
5515 			struct ocfs2_alloc_context *meta_ac,
5516 			struct ocfs2_cached_dealloc_ctxt *dealloc)
5517 {
5518 	int ret, index;
5519 	u32 rec_range, trunc_range;
5520 	struct ocfs2_extent_rec *rec;
5521 	struct ocfs2_extent_list *el;
5522 	struct ocfs2_path *path = NULL;
5523 
5524 	/*
5525 	 * XXX: Why are we truncating to 0 instead of wherever this
5526 	 * affects us?
5527 	 */
5528 	ocfs2_et_extent_map_truncate(et, 0);
5529 
5530 	path = ocfs2_new_path_from_et(et);
5531 	if (!path) {
5532 		ret = -ENOMEM;
5533 		mlog_errno(ret);
5534 		goto out;
5535 	}
5536 
5537 	ret = ocfs2_find_path(et->et_ci, path, cpos);
5538 	if (ret) {
5539 		mlog_errno(ret);
5540 		goto out;
5541 	}
5542 
5543 	el = path_leaf_el(path);
5544 	index = ocfs2_search_extent_list(el, cpos);
5545 	if (index == -1) {
5546 		ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5547 			    "Owner %llu has an extent at cpos %u which can no longer be found\n",
5548 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5549 			    cpos);
5550 		ret = -EROFS;
5551 		goto out;
5552 	}
5553 
5554 	/*
5555 	 * We have 3 cases of extent removal:
5556 	 *   1) Range covers the entire extent rec
5557 	 *   2) Range begins or ends on one edge of the extent rec
5558 	 *   3) Range is in the middle of the extent rec (no shared edges)
5559 	 *
5560 	 * For case 1 we remove the extent rec and left rotate to
5561 	 * fill the hole.
5562 	 *
5563 	 * For case 2 we just shrink the existing extent rec, with a
5564 	 * tree update if the shrinking edge is also the edge of an
5565 	 * extent block.
5566 	 *
5567 	 * For case 3 we do a right split to turn the extent rec into
5568 	 * something case 2 can handle.
5569 	 */
5570 	rec = &el->l_recs[index];
5571 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5572 	trunc_range = cpos + len;
5573 
5574 	BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5575 
5576 	trace_ocfs2_remove_extent(
5577 		(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5578 		cpos, len, index, le32_to_cpu(rec->e_cpos),
5579 		ocfs2_rec_clusters(el, rec));
5580 
5581 	if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5582 		ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5583 					 cpos, len);
5584 		if (ret) {
5585 			mlog_errno(ret);
5586 			goto out;
5587 		}
5588 	} else {
5589 		ret = ocfs2_split_tree(handle, et, path, index,
5590 				       trunc_range, meta_ac);
5591 		if (ret) {
5592 			mlog_errno(ret);
5593 			goto out;
5594 		}
5595 
5596 		/*
5597 		 * The split could have manipulated the tree enough to
5598 		 * move the record location, so we have to look for it again.
5599 		 */
5600 		ocfs2_reinit_path(path, 1);
5601 
5602 		ret = ocfs2_find_path(et->et_ci, path, cpos);
5603 		if (ret) {
5604 			mlog_errno(ret);
5605 			goto out;
5606 		}
5607 
5608 		el = path_leaf_el(path);
5609 		index = ocfs2_search_extent_list(el, cpos);
5610 		if (index == -1) {
5611 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5612 				    "Owner %llu: split at cpos %u lost record\n",
5613 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5614 				    cpos);
5615 			ret = -EROFS;
5616 			goto out;
5617 		}
5618 
5619 		/*
5620 		 * Double check our values here. If anything is fishy,
5621 		 * it's easier to catch it at the top level.
5622 		 */
5623 		rec = &el->l_recs[index];
5624 		rec_range = le32_to_cpu(rec->e_cpos) +
5625 			ocfs2_rec_clusters(el, rec);
5626 		if (rec_range != trunc_range) {
5627 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5628 				    "Owner %llu: error after split at cpos %u trunc len %u, existing record is (%u,%u)\n",
5629 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5630 				    cpos, len, le32_to_cpu(rec->e_cpos),
5631 				    ocfs2_rec_clusters(el, rec));
5632 			ret = -EROFS;
5633 			goto out;
5634 		}
5635 
5636 		ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5637 					 cpos, len);
5638 		if (ret) {
5639 			mlog_errno(ret);
5640 			goto out;
5641 		}
5642 	}
5643 
5644 out:
5645 	ocfs2_free_path(path);
5646 	return ret;
5647 }
5648 
5649 /*
5650  * ocfs2_reserve_blocks_for_rec_trunc() would look basically the
5651  * same as ocfs2_lock_alloctors(), except for it accepts a blocks
5652  * number to reserve some extra blocks, and it only handles meta
5653  * data allocations.
5654  *
5655  * Currently, only ocfs2_remove_btree_range() uses it for truncating
5656  * and punching holes.
5657  */
5658 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode,
5659 					      struct ocfs2_extent_tree *et,
5660 					      u32 extents_to_split,
5661 					      struct ocfs2_alloc_context **ac,
5662 					      int extra_blocks)
5663 {
5664 	int ret = 0, num_free_extents;
5665 	unsigned int max_recs_needed = 2 * extents_to_split;
5666 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5667 
5668 	*ac = NULL;
5669 
5670 	num_free_extents = ocfs2_num_free_extents(osb, et);
5671 	if (num_free_extents < 0) {
5672 		ret = num_free_extents;
5673 		mlog_errno(ret);
5674 		goto out;
5675 	}
5676 
5677 	if (!num_free_extents ||
5678 	    (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed))
5679 		extra_blocks += ocfs2_extend_meta_needed(et->et_root_el);
5680 
5681 	if (extra_blocks) {
5682 		ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac);
5683 		if (ret < 0) {
5684 			if (ret != -ENOSPC)
5685 				mlog_errno(ret);
5686 			goto out;
5687 		}
5688 	}
5689 
5690 out:
5691 	if (ret) {
5692 		if (*ac) {
5693 			ocfs2_free_alloc_context(*ac);
5694 			*ac = NULL;
5695 		}
5696 	}
5697 
5698 	return ret;
5699 }
5700 
5701 int ocfs2_remove_btree_range(struct inode *inode,
5702 			     struct ocfs2_extent_tree *et,
5703 			     u32 cpos, u32 phys_cpos, u32 len, int flags,
5704 			     struct ocfs2_cached_dealloc_ctxt *dealloc,
5705 			     u64 refcount_loc, bool refcount_tree_locked)
5706 {
5707 	int ret, credits = 0, extra_blocks = 0;
5708 	u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5709 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5710 	struct inode *tl_inode = osb->osb_tl_inode;
5711 	handle_t *handle;
5712 	struct ocfs2_alloc_context *meta_ac = NULL;
5713 	struct ocfs2_refcount_tree *ref_tree = NULL;
5714 
5715 	if ((flags & OCFS2_EXT_REFCOUNTED) && len) {
5716 		BUG_ON(!(OCFS2_I(inode)->ip_dyn_features &
5717 			 OCFS2_HAS_REFCOUNT_FL));
5718 
5719 		if (!refcount_tree_locked) {
5720 			ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
5721 						       &ref_tree, NULL);
5722 			if (ret) {
5723 				mlog_errno(ret);
5724 				goto bail;
5725 			}
5726 		}
5727 
5728 		ret = ocfs2_prepare_refcount_change_for_del(inode,
5729 							    refcount_loc,
5730 							    phys_blkno,
5731 							    len,
5732 							    &credits,
5733 							    &extra_blocks);
5734 		if (ret < 0) {
5735 			mlog_errno(ret);
5736 			goto bail;
5737 		}
5738 	}
5739 
5740 	ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac,
5741 						 extra_blocks);
5742 	if (ret) {
5743 		mlog_errno(ret);
5744 		goto bail;
5745 	}
5746 
5747 	inode_lock(tl_inode);
5748 
5749 	if (ocfs2_truncate_log_needs_flush(osb)) {
5750 		ret = __ocfs2_flush_truncate_log(osb);
5751 		if (ret < 0) {
5752 			mlog_errno(ret);
5753 			goto out;
5754 		}
5755 	}
5756 
5757 	handle = ocfs2_start_trans(osb,
5758 			ocfs2_remove_extent_credits(osb->sb) + credits);
5759 	if (IS_ERR(handle)) {
5760 		ret = PTR_ERR(handle);
5761 		mlog_errno(ret);
5762 		goto out;
5763 	}
5764 
5765 	ret = ocfs2_et_root_journal_access(handle, et,
5766 					   OCFS2_JOURNAL_ACCESS_WRITE);
5767 	if (ret) {
5768 		mlog_errno(ret);
5769 		goto out_commit;
5770 	}
5771 
5772 	dquot_free_space_nodirty(inode,
5773 				  ocfs2_clusters_to_bytes(inode->i_sb, len));
5774 
5775 	ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc);
5776 	if (ret) {
5777 		mlog_errno(ret);
5778 		goto out_commit;
5779 	}
5780 
5781 	ocfs2_et_update_clusters(et, -len);
5782 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
5783 
5784 	ocfs2_journal_dirty(handle, et->et_root_bh);
5785 
5786 	if (phys_blkno) {
5787 		if (flags & OCFS2_EXT_REFCOUNTED)
5788 			ret = ocfs2_decrease_refcount(inode, handle,
5789 					ocfs2_blocks_to_clusters(osb->sb,
5790 								 phys_blkno),
5791 					len, meta_ac,
5792 					dealloc, 1);
5793 		else
5794 			ret = ocfs2_truncate_log_append(osb, handle,
5795 							phys_blkno, len);
5796 		if (ret)
5797 			mlog_errno(ret);
5798 
5799 	}
5800 
5801 out_commit:
5802 	ocfs2_commit_trans(osb, handle);
5803 out:
5804 	inode_unlock(tl_inode);
5805 bail:
5806 	if (meta_ac)
5807 		ocfs2_free_alloc_context(meta_ac);
5808 
5809 	if (ref_tree)
5810 		ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
5811 
5812 	return ret;
5813 }
5814 
5815 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5816 {
5817 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5818 	struct ocfs2_dinode *di;
5819 	struct ocfs2_truncate_log *tl;
5820 
5821 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5822 	tl = &di->id2.i_dealloc;
5823 
5824 	mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5825 			"slot %d, invalid truncate log parameters: used = "
5826 			"%u, count = %u\n", osb->slot_num,
5827 			le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5828 	return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5829 }
5830 
5831 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5832 					   unsigned int new_start)
5833 {
5834 	unsigned int tail_index;
5835 	unsigned int current_tail;
5836 
5837 	/* No records, nothing to coalesce */
5838 	if (!le16_to_cpu(tl->tl_used))
5839 		return 0;
5840 
5841 	tail_index = le16_to_cpu(tl->tl_used) - 1;
5842 	current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5843 	current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5844 
5845 	return current_tail == new_start;
5846 }
5847 
5848 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5849 			      handle_t *handle,
5850 			      u64 start_blk,
5851 			      unsigned int num_clusters)
5852 {
5853 	int status, index;
5854 	unsigned int start_cluster, tl_count;
5855 	struct inode *tl_inode = osb->osb_tl_inode;
5856 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5857 	struct ocfs2_dinode *di;
5858 	struct ocfs2_truncate_log *tl;
5859 
5860 	BUG_ON(inode_trylock(tl_inode));
5861 
5862 	start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5863 
5864 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5865 
5866 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5867 	 * by the underlying call to ocfs2_read_inode_block(), so any
5868 	 * corruption is a code bug */
5869 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5870 
5871 	tl = &di->id2.i_dealloc;
5872 	tl_count = le16_to_cpu(tl->tl_count);
5873 	mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5874 			tl_count == 0,
5875 			"Truncate record count on #%llu invalid "
5876 			"wanted %u, actual %u\n",
5877 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5878 			ocfs2_truncate_recs_per_inode(osb->sb),
5879 			le16_to_cpu(tl->tl_count));
5880 
5881 	/* Caller should have known to flush before calling us. */
5882 	index = le16_to_cpu(tl->tl_used);
5883 	if (index >= tl_count) {
5884 		status = -ENOSPC;
5885 		mlog_errno(status);
5886 		goto bail;
5887 	}
5888 
5889 	status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5890 					 OCFS2_JOURNAL_ACCESS_WRITE);
5891 	if (status < 0) {
5892 		mlog_errno(status);
5893 		goto bail;
5894 	}
5895 
5896 	trace_ocfs2_truncate_log_append(
5897 		(unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index,
5898 		start_cluster, num_clusters);
5899 	if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5900 		/*
5901 		 * Move index back to the record we are coalescing with.
5902 		 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5903 		 */
5904 		index--;
5905 
5906 		num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5907 		trace_ocfs2_truncate_log_append(
5908 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5909 			index, le32_to_cpu(tl->tl_recs[index].t_start),
5910 			num_clusters);
5911 	} else {
5912 		tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5913 		tl->tl_used = cpu_to_le16(index + 1);
5914 	}
5915 	tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5916 
5917 	ocfs2_journal_dirty(handle, tl_bh);
5918 
5919 	osb->truncated_clusters += num_clusters;
5920 bail:
5921 	return status;
5922 }
5923 
5924 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5925 					 struct inode *data_alloc_inode,
5926 					 struct buffer_head *data_alloc_bh)
5927 {
5928 	int status = 0;
5929 	int i;
5930 	unsigned int num_clusters;
5931 	u64 start_blk;
5932 	struct ocfs2_truncate_rec rec;
5933 	struct ocfs2_dinode *di;
5934 	struct ocfs2_truncate_log *tl;
5935 	struct inode *tl_inode = osb->osb_tl_inode;
5936 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5937 	handle_t *handle;
5938 
5939 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5940 	tl = &di->id2.i_dealloc;
5941 	i = le16_to_cpu(tl->tl_used) - 1;
5942 	while (i >= 0) {
5943 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5944 		if (IS_ERR(handle)) {
5945 			status = PTR_ERR(handle);
5946 			mlog_errno(status);
5947 			goto bail;
5948 		}
5949 
5950 		/* Caller has given us at least enough credits to
5951 		 * update the truncate log dinode */
5952 		status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5953 						 OCFS2_JOURNAL_ACCESS_WRITE);
5954 		if (status < 0) {
5955 			mlog_errno(status);
5956 			goto bail;
5957 		}
5958 
5959 		tl->tl_used = cpu_to_le16(i);
5960 
5961 		ocfs2_journal_dirty(handle, tl_bh);
5962 
5963 		rec = tl->tl_recs[i];
5964 		start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5965 						    le32_to_cpu(rec.t_start));
5966 		num_clusters = le32_to_cpu(rec.t_clusters);
5967 
5968 		/* if start_blk is not set, we ignore the record as
5969 		 * invalid. */
5970 		if (start_blk) {
5971 			trace_ocfs2_replay_truncate_records(
5972 				(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5973 				i, le32_to_cpu(rec.t_start), num_clusters);
5974 
5975 			status = ocfs2_free_clusters(handle, data_alloc_inode,
5976 						     data_alloc_bh, start_blk,
5977 						     num_clusters);
5978 			if (status < 0) {
5979 				mlog_errno(status);
5980 				goto bail;
5981 			}
5982 		}
5983 
5984 		ocfs2_commit_trans(osb, handle);
5985 		i--;
5986 	}
5987 
5988 	osb->truncated_clusters = 0;
5989 
5990 bail:
5991 	return status;
5992 }
5993 
5994 /* Expects you to already be holding tl_inode->i_mutex */
5995 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5996 {
5997 	int status;
5998 	unsigned int num_to_flush;
5999 	struct inode *tl_inode = osb->osb_tl_inode;
6000 	struct inode *data_alloc_inode = NULL;
6001 	struct buffer_head *tl_bh = osb->osb_tl_bh;
6002 	struct buffer_head *data_alloc_bh = NULL;
6003 	struct ocfs2_dinode *di;
6004 	struct ocfs2_truncate_log *tl;
6005 
6006 	BUG_ON(inode_trylock(tl_inode));
6007 
6008 	di = (struct ocfs2_dinode *) tl_bh->b_data;
6009 
6010 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
6011 	 * by the underlying call to ocfs2_read_inode_block(), so any
6012 	 * corruption is a code bug */
6013 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
6014 
6015 	tl = &di->id2.i_dealloc;
6016 	num_to_flush = le16_to_cpu(tl->tl_used);
6017 	trace_ocfs2_flush_truncate_log(
6018 		(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
6019 		num_to_flush);
6020 	if (!num_to_flush) {
6021 		status = 0;
6022 		goto out;
6023 	}
6024 
6025 	data_alloc_inode = ocfs2_get_system_file_inode(osb,
6026 						       GLOBAL_BITMAP_SYSTEM_INODE,
6027 						       OCFS2_INVALID_SLOT);
6028 	if (!data_alloc_inode) {
6029 		status = -EINVAL;
6030 		mlog(ML_ERROR, "Could not get bitmap inode!\n");
6031 		goto out;
6032 	}
6033 
6034 	inode_lock(data_alloc_inode);
6035 
6036 	status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
6037 	if (status < 0) {
6038 		mlog_errno(status);
6039 		goto out_mutex;
6040 	}
6041 
6042 	status = ocfs2_replay_truncate_records(osb, data_alloc_inode,
6043 					       data_alloc_bh);
6044 	if (status < 0)
6045 		mlog_errno(status);
6046 
6047 	brelse(data_alloc_bh);
6048 	ocfs2_inode_unlock(data_alloc_inode, 1);
6049 
6050 out_mutex:
6051 	inode_unlock(data_alloc_inode);
6052 	iput(data_alloc_inode);
6053 
6054 out:
6055 	return status;
6056 }
6057 
6058 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
6059 {
6060 	int status;
6061 	struct inode *tl_inode = osb->osb_tl_inode;
6062 
6063 	inode_lock(tl_inode);
6064 	status = __ocfs2_flush_truncate_log(osb);
6065 	inode_unlock(tl_inode);
6066 
6067 	return status;
6068 }
6069 
6070 static void ocfs2_truncate_log_worker(struct work_struct *work)
6071 {
6072 	int status;
6073 	struct ocfs2_super *osb =
6074 		container_of(work, struct ocfs2_super,
6075 			     osb_truncate_log_wq.work);
6076 
6077 	status = ocfs2_flush_truncate_log(osb);
6078 	if (status < 0)
6079 		mlog_errno(status);
6080 	else
6081 		ocfs2_init_steal_slots(osb);
6082 }
6083 
6084 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
6085 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
6086 				       int cancel)
6087 {
6088 	if (osb->osb_tl_inode &&
6089 			atomic_read(&osb->osb_tl_disable) == 0) {
6090 		/* We want to push off log flushes while truncates are
6091 		 * still running. */
6092 		if (cancel)
6093 			cancel_delayed_work(&osb->osb_truncate_log_wq);
6094 
6095 		queue_delayed_work(osb->ocfs2_wq, &osb->osb_truncate_log_wq,
6096 				   OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
6097 	}
6098 }
6099 
6100 /*
6101  * Try to flush truncate logs if we can free enough clusters from it.
6102  * As for return value, "< 0" means error, "0" no space and "1" means
6103  * we have freed enough spaces and let the caller try to allocate again.
6104  */
6105 int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
6106 					unsigned int needed)
6107 {
6108 	tid_t target;
6109 	int ret = 0;
6110 	unsigned int truncated_clusters;
6111 
6112 	inode_lock(osb->osb_tl_inode);
6113 	truncated_clusters = osb->truncated_clusters;
6114 	inode_unlock(osb->osb_tl_inode);
6115 
6116 	/*
6117 	 * Check whether we can succeed in allocating if we free
6118 	 * the truncate log.
6119 	 */
6120 	if (truncated_clusters < needed)
6121 		goto out;
6122 
6123 	ret = ocfs2_flush_truncate_log(osb);
6124 	if (ret) {
6125 		mlog_errno(ret);
6126 		goto out;
6127 	}
6128 
6129 	if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
6130 		jbd2_log_wait_commit(osb->journal->j_journal, target);
6131 		ret = 1;
6132 	}
6133 out:
6134 	return ret;
6135 }
6136 
6137 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
6138 				       int slot_num,
6139 				       struct inode **tl_inode,
6140 				       struct buffer_head **tl_bh)
6141 {
6142 	int status;
6143 	struct inode *inode = NULL;
6144 	struct buffer_head *bh = NULL;
6145 
6146 	inode = ocfs2_get_system_file_inode(osb,
6147 					   TRUNCATE_LOG_SYSTEM_INODE,
6148 					   slot_num);
6149 	if (!inode) {
6150 		status = -EINVAL;
6151 		mlog(ML_ERROR, "Could not get load truncate log inode!\n");
6152 		goto bail;
6153 	}
6154 
6155 	status = ocfs2_read_inode_block(inode, &bh);
6156 	if (status < 0) {
6157 		iput(inode);
6158 		mlog_errno(status);
6159 		goto bail;
6160 	}
6161 
6162 	*tl_inode = inode;
6163 	*tl_bh    = bh;
6164 bail:
6165 	return status;
6166 }
6167 
6168 /* called during the 1st stage of node recovery. we stamp a clean
6169  * truncate log and pass back a copy for processing later. if the
6170  * truncate log does not require processing, a *tl_copy is set to
6171  * NULL. */
6172 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
6173 				      int slot_num,
6174 				      struct ocfs2_dinode **tl_copy)
6175 {
6176 	int status;
6177 	struct inode *tl_inode = NULL;
6178 	struct buffer_head *tl_bh = NULL;
6179 	struct ocfs2_dinode *di;
6180 	struct ocfs2_truncate_log *tl;
6181 
6182 	*tl_copy = NULL;
6183 
6184 	trace_ocfs2_begin_truncate_log_recovery(slot_num);
6185 
6186 	status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
6187 	if (status < 0) {
6188 		mlog_errno(status);
6189 		goto bail;
6190 	}
6191 
6192 	di = (struct ocfs2_dinode *) tl_bh->b_data;
6193 
6194 	/* tl_bh is loaded from ocfs2_get_truncate_log_info().  It's
6195 	 * validated by the underlying call to ocfs2_read_inode_block(),
6196 	 * so any corruption is a code bug */
6197 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
6198 
6199 	tl = &di->id2.i_dealloc;
6200 	if (le16_to_cpu(tl->tl_used)) {
6201 		trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl->tl_used));
6202 
6203 		*tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
6204 		if (!(*tl_copy)) {
6205 			status = -ENOMEM;
6206 			mlog_errno(status);
6207 			goto bail;
6208 		}
6209 
6210 		/* Assuming the write-out below goes well, this copy
6211 		 * will be passed back to recovery for processing. */
6212 		memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
6213 
6214 		/* All we need to do to clear the truncate log is set
6215 		 * tl_used. */
6216 		tl->tl_used = 0;
6217 
6218 		ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6219 		status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
6220 		if (status < 0) {
6221 			mlog_errno(status);
6222 			goto bail;
6223 		}
6224 	}
6225 
6226 bail:
6227 	iput(tl_inode);
6228 	brelse(tl_bh);
6229 
6230 	if (status < 0) {
6231 		kfree(*tl_copy);
6232 		*tl_copy = NULL;
6233 		mlog_errno(status);
6234 	}
6235 
6236 	return status;
6237 }
6238 
6239 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6240 					 struct ocfs2_dinode *tl_copy)
6241 {
6242 	int status = 0;
6243 	int i;
6244 	unsigned int clusters, num_recs, start_cluster;
6245 	u64 start_blk;
6246 	handle_t *handle;
6247 	struct inode *tl_inode = osb->osb_tl_inode;
6248 	struct ocfs2_truncate_log *tl;
6249 
6250 	if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6251 		mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6252 		return -EINVAL;
6253 	}
6254 
6255 	tl = &tl_copy->id2.i_dealloc;
6256 	num_recs = le16_to_cpu(tl->tl_used);
6257 	trace_ocfs2_complete_truncate_log_recovery(
6258 		(unsigned long long)le64_to_cpu(tl_copy->i_blkno),
6259 		num_recs);
6260 
6261 	inode_lock(tl_inode);
6262 	for(i = 0; i < num_recs; i++) {
6263 		if (ocfs2_truncate_log_needs_flush(osb)) {
6264 			status = __ocfs2_flush_truncate_log(osb);
6265 			if (status < 0) {
6266 				mlog_errno(status);
6267 				goto bail_up;
6268 			}
6269 		}
6270 
6271 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6272 		if (IS_ERR(handle)) {
6273 			status = PTR_ERR(handle);
6274 			mlog_errno(status);
6275 			goto bail_up;
6276 		}
6277 
6278 		clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6279 		start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6280 		start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6281 
6282 		status = ocfs2_truncate_log_append(osb, handle,
6283 						   start_blk, clusters);
6284 		ocfs2_commit_trans(osb, handle);
6285 		if (status < 0) {
6286 			mlog_errno(status);
6287 			goto bail_up;
6288 		}
6289 	}
6290 
6291 bail_up:
6292 	inode_unlock(tl_inode);
6293 
6294 	return status;
6295 }
6296 
6297 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6298 {
6299 	int status;
6300 	struct inode *tl_inode = osb->osb_tl_inode;
6301 
6302 	atomic_set(&osb->osb_tl_disable, 1);
6303 
6304 	if (tl_inode) {
6305 		cancel_delayed_work(&osb->osb_truncate_log_wq);
6306 		flush_workqueue(osb->ocfs2_wq);
6307 
6308 		status = ocfs2_flush_truncate_log(osb);
6309 		if (status < 0)
6310 			mlog_errno(status);
6311 
6312 		brelse(osb->osb_tl_bh);
6313 		iput(osb->osb_tl_inode);
6314 	}
6315 }
6316 
6317 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6318 {
6319 	int status;
6320 	struct inode *tl_inode = NULL;
6321 	struct buffer_head *tl_bh = NULL;
6322 
6323 	status = ocfs2_get_truncate_log_info(osb,
6324 					     osb->slot_num,
6325 					     &tl_inode,
6326 					     &tl_bh);
6327 	if (status < 0)
6328 		mlog_errno(status);
6329 
6330 	/* ocfs2_truncate_log_shutdown keys on the existence of
6331 	 * osb->osb_tl_inode so we don't set any of the osb variables
6332 	 * until we're sure all is well. */
6333 	INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6334 			  ocfs2_truncate_log_worker);
6335 	atomic_set(&osb->osb_tl_disable, 0);
6336 	osb->osb_tl_bh    = tl_bh;
6337 	osb->osb_tl_inode = tl_inode;
6338 
6339 	return status;
6340 }
6341 
6342 /*
6343  * Delayed de-allocation of suballocator blocks.
6344  *
6345  * Some sets of block de-allocations might involve multiple suballocator inodes.
6346  *
6347  * The locking for this can get extremely complicated, especially when
6348  * the suballocator inodes to delete from aren't known until deep
6349  * within an unrelated codepath.
6350  *
6351  * ocfs2_extent_block structures are a good example of this - an inode
6352  * btree could have been grown by any number of nodes each allocating
6353  * out of their own suballoc inode.
6354  *
6355  * These structures allow the delay of block de-allocation until a
6356  * later time, when locking of multiple cluster inodes won't cause
6357  * deadlock.
6358  */
6359 
6360 /*
6361  * Describe a single bit freed from a suballocator.  For the block
6362  * suballocators, it represents one block.  For the global cluster
6363  * allocator, it represents some clusters and free_bit indicates
6364  * clusters number.
6365  */
6366 struct ocfs2_cached_block_free {
6367 	struct ocfs2_cached_block_free		*free_next;
6368 	u64					free_bg;
6369 	u64					free_blk;
6370 	unsigned int				free_bit;
6371 };
6372 
6373 struct ocfs2_per_slot_free_list {
6374 	struct ocfs2_per_slot_free_list		*f_next_suballocator;
6375 	int					f_inode_type;
6376 	int					f_slot;
6377 	struct ocfs2_cached_block_free		*f_first;
6378 };
6379 
6380 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6381 				    int sysfile_type,
6382 				    int slot,
6383 				    struct ocfs2_cached_block_free *head)
6384 {
6385 	int ret;
6386 	u64 bg_blkno;
6387 	handle_t *handle;
6388 	struct inode *inode;
6389 	struct buffer_head *di_bh = NULL;
6390 	struct ocfs2_cached_block_free *tmp;
6391 
6392 	inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6393 	if (!inode) {
6394 		ret = -EINVAL;
6395 		mlog_errno(ret);
6396 		goto out;
6397 	}
6398 
6399 	inode_lock(inode);
6400 
6401 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
6402 	if (ret) {
6403 		mlog_errno(ret);
6404 		goto out_mutex;
6405 	}
6406 
6407 	while (head) {
6408 		if (head->free_bg)
6409 			bg_blkno = head->free_bg;
6410 		else
6411 			bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6412 							      head->free_bit);
6413 		handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6414 		if (IS_ERR(handle)) {
6415 			ret = PTR_ERR(handle);
6416 			mlog_errno(ret);
6417 			goto out_unlock;
6418 		}
6419 
6420 		trace_ocfs2_free_cached_blocks(
6421 		     (unsigned long long)head->free_blk, head->free_bit);
6422 
6423 		ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6424 					       head->free_bit, bg_blkno, 1);
6425 		if (ret)
6426 			mlog_errno(ret);
6427 
6428 		ocfs2_commit_trans(osb, handle);
6429 
6430 		tmp = head;
6431 		head = head->free_next;
6432 		kfree(tmp);
6433 	}
6434 
6435 out_unlock:
6436 	ocfs2_inode_unlock(inode, 1);
6437 	brelse(di_bh);
6438 out_mutex:
6439 	inode_unlock(inode);
6440 	iput(inode);
6441 out:
6442 	while(head) {
6443 		/* Premature exit may have left some dangling items. */
6444 		tmp = head;
6445 		head = head->free_next;
6446 		kfree(tmp);
6447 	}
6448 
6449 	return ret;
6450 }
6451 
6452 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6453 				u64 blkno, unsigned int bit)
6454 {
6455 	int ret = 0;
6456 	struct ocfs2_cached_block_free *item;
6457 
6458 	item = kzalloc(sizeof(*item), GFP_NOFS);
6459 	if (item == NULL) {
6460 		ret = -ENOMEM;
6461 		mlog_errno(ret);
6462 		return ret;
6463 	}
6464 
6465 	trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno, bit);
6466 
6467 	item->free_blk = blkno;
6468 	item->free_bit = bit;
6469 	item->free_next = ctxt->c_global_allocator;
6470 
6471 	ctxt->c_global_allocator = item;
6472 	return ret;
6473 }
6474 
6475 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6476 				      struct ocfs2_cached_block_free *head)
6477 {
6478 	struct ocfs2_cached_block_free *tmp;
6479 	struct inode *tl_inode = osb->osb_tl_inode;
6480 	handle_t *handle;
6481 	int ret = 0;
6482 
6483 	inode_lock(tl_inode);
6484 
6485 	while (head) {
6486 		if (ocfs2_truncate_log_needs_flush(osb)) {
6487 			ret = __ocfs2_flush_truncate_log(osb);
6488 			if (ret < 0) {
6489 				mlog_errno(ret);
6490 				break;
6491 			}
6492 		}
6493 
6494 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6495 		if (IS_ERR(handle)) {
6496 			ret = PTR_ERR(handle);
6497 			mlog_errno(ret);
6498 			break;
6499 		}
6500 
6501 		ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6502 						head->free_bit);
6503 
6504 		ocfs2_commit_trans(osb, handle);
6505 		tmp = head;
6506 		head = head->free_next;
6507 		kfree(tmp);
6508 
6509 		if (ret < 0) {
6510 			mlog_errno(ret);
6511 			break;
6512 		}
6513 	}
6514 
6515 	inode_unlock(tl_inode);
6516 
6517 	while (head) {
6518 		/* Premature exit may have left some dangling items. */
6519 		tmp = head;
6520 		head = head->free_next;
6521 		kfree(tmp);
6522 	}
6523 
6524 	return ret;
6525 }
6526 
6527 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6528 		       struct ocfs2_cached_dealloc_ctxt *ctxt)
6529 {
6530 	int ret = 0, ret2;
6531 	struct ocfs2_per_slot_free_list *fl;
6532 
6533 	if (!ctxt)
6534 		return 0;
6535 
6536 	while (ctxt->c_first_suballocator) {
6537 		fl = ctxt->c_first_suballocator;
6538 
6539 		if (fl->f_first) {
6540 			trace_ocfs2_run_deallocs(fl->f_inode_type,
6541 						 fl->f_slot);
6542 			ret2 = ocfs2_free_cached_blocks(osb,
6543 							fl->f_inode_type,
6544 							fl->f_slot,
6545 							fl->f_first);
6546 			if (ret2)
6547 				mlog_errno(ret2);
6548 			if (!ret)
6549 				ret = ret2;
6550 		}
6551 
6552 		ctxt->c_first_suballocator = fl->f_next_suballocator;
6553 		kfree(fl);
6554 	}
6555 
6556 	if (ctxt->c_global_allocator) {
6557 		ret2 = ocfs2_free_cached_clusters(osb,
6558 						  ctxt->c_global_allocator);
6559 		if (ret2)
6560 			mlog_errno(ret2);
6561 		if (!ret)
6562 			ret = ret2;
6563 
6564 		ctxt->c_global_allocator = NULL;
6565 	}
6566 
6567 	return ret;
6568 }
6569 
6570 static struct ocfs2_per_slot_free_list *
6571 ocfs2_find_per_slot_free_list(int type,
6572 			      int slot,
6573 			      struct ocfs2_cached_dealloc_ctxt *ctxt)
6574 {
6575 	struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6576 
6577 	while (fl) {
6578 		if (fl->f_inode_type == type && fl->f_slot == slot)
6579 			return fl;
6580 
6581 		fl = fl->f_next_suballocator;
6582 	}
6583 
6584 	fl = kmalloc(sizeof(*fl), GFP_NOFS);
6585 	if (fl) {
6586 		fl->f_inode_type = type;
6587 		fl->f_slot = slot;
6588 		fl->f_first = NULL;
6589 		fl->f_next_suballocator = ctxt->c_first_suballocator;
6590 
6591 		ctxt->c_first_suballocator = fl;
6592 	}
6593 	return fl;
6594 }
6595 
6596 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6597 			      int type, int slot, u64 suballoc,
6598 			      u64 blkno, unsigned int bit)
6599 {
6600 	int ret;
6601 	struct ocfs2_per_slot_free_list *fl;
6602 	struct ocfs2_cached_block_free *item;
6603 
6604 	fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6605 	if (fl == NULL) {
6606 		ret = -ENOMEM;
6607 		mlog_errno(ret);
6608 		goto out;
6609 	}
6610 
6611 	item = kzalloc(sizeof(*item), GFP_NOFS);
6612 	if (item == NULL) {
6613 		ret = -ENOMEM;
6614 		mlog_errno(ret);
6615 		goto out;
6616 	}
6617 
6618 	trace_ocfs2_cache_block_dealloc(type, slot,
6619 					(unsigned long long)suballoc,
6620 					(unsigned long long)blkno, bit);
6621 
6622 	item->free_bg = suballoc;
6623 	item->free_blk = blkno;
6624 	item->free_bit = bit;
6625 	item->free_next = fl->f_first;
6626 
6627 	fl->f_first = item;
6628 
6629 	ret = 0;
6630 out:
6631 	return ret;
6632 }
6633 
6634 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6635 					 struct ocfs2_extent_block *eb)
6636 {
6637 	return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6638 					 le16_to_cpu(eb->h_suballoc_slot),
6639 					 le64_to_cpu(eb->h_suballoc_loc),
6640 					 le64_to_cpu(eb->h_blkno),
6641 					 le16_to_cpu(eb->h_suballoc_bit));
6642 }
6643 
6644 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6645 {
6646 	set_buffer_uptodate(bh);
6647 	mark_buffer_dirty(bh);
6648 	return 0;
6649 }
6650 
6651 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6652 			      unsigned int from, unsigned int to,
6653 			      struct page *page, int zero, u64 *phys)
6654 {
6655 	int ret, partial = 0;
6656 
6657 	ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6658 	if (ret)
6659 		mlog_errno(ret);
6660 
6661 	if (zero)
6662 		zero_user_segment(page, from, to);
6663 
6664 	/*
6665 	 * Need to set the buffers we zero'd into uptodate
6666 	 * here if they aren't - ocfs2_map_page_blocks()
6667 	 * might've skipped some
6668 	 */
6669 	ret = walk_page_buffers(handle, page_buffers(page),
6670 				from, to, &partial,
6671 				ocfs2_zero_func);
6672 	if (ret < 0)
6673 		mlog_errno(ret);
6674 	else if (ocfs2_should_order_data(inode)) {
6675 		ret = ocfs2_jbd2_file_inode(handle, inode);
6676 		if (ret < 0)
6677 			mlog_errno(ret);
6678 	}
6679 
6680 	if (!partial)
6681 		SetPageUptodate(page);
6682 
6683 	flush_dcache_page(page);
6684 }
6685 
6686 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6687 				     loff_t end, struct page **pages,
6688 				     int numpages, u64 phys, handle_t *handle)
6689 {
6690 	int i;
6691 	struct page *page;
6692 	unsigned int from, to = PAGE_SIZE;
6693 	struct super_block *sb = inode->i_sb;
6694 
6695 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6696 
6697 	if (numpages == 0)
6698 		goto out;
6699 
6700 	to = PAGE_SIZE;
6701 	for(i = 0; i < numpages; i++) {
6702 		page = pages[i];
6703 
6704 		from = start & (PAGE_SIZE - 1);
6705 		if ((end >> PAGE_SHIFT) == page->index)
6706 			to = end & (PAGE_SIZE - 1);
6707 
6708 		BUG_ON(from > PAGE_SIZE);
6709 		BUG_ON(to > PAGE_SIZE);
6710 
6711 		ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6712 					 &phys);
6713 
6714 		start = (page->index + 1) << PAGE_SHIFT;
6715 	}
6716 out:
6717 	if (pages)
6718 		ocfs2_unlock_and_free_pages(pages, numpages);
6719 }
6720 
6721 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end,
6722 		     struct page **pages, int *num)
6723 {
6724 	int numpages, ret = 0;
6725 	struct address_space *mapping = inode->i_mapping;
6726 	unsigned long index;
6727 	loff_t last_page_bytes;
6728 
6729 	BUG_ON(start > end);
6730 
6731 	numpages = 0;
6732 	last_page_bytes = PAGE_ALIGN(end);
6733 	index = start >> PAGE_SHIFT;
6734 	do {
6735 		pages[numpages] = find_or_create_page(mapping, index, GFP_NOFS);
6736 		if (!pages[numpages]) {
6737 			ret = -ENOMEM;
6738 			mlog_errno(ret);
6739 			goto out;
6740 		}
6741 
6742 		numpages++;
6743 		index++;
6744 	} while (index < (last_page_bytes >> PAGE_SHIFT));
6745 
6746 out:
6747 	if (ret != 0) {
6748 		if (pages)
6749 			ocfs2_unlock_and_free_pages(pages, numpages);
6750 		numpages = 0;
6751 	}
6752 
6753 	*num = numpages;
6754 
6755 	return ret;
6756 }
6757 
6758 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6759 				struct page **pages, int *num)
6760 {
6761 	struct super_block *sb = inode->i_sb;
6762 
6763 	BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6764 	       (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6765 
6766 	return ocfs2_grab_pages(inode, start, end, pages, num);
6767 }
6768 
6769 /*
6770  * Zero the area past i_size but still within an allocated
6771  * cluster. This avoids exposing nonzero data on subsequent file
6772  * extends.
6773  *
6774  * We need to call this before i_size is updated on the inode because
6775  * otherwise block_write_full_page() will skip writeout of pages past
6776  * i_size. The new_i_size parameter is passed for this reason.
6777  */
6778 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6779 				  u64 range_start, u64 range_end)
6780 {
6781 	int ret = 0, numpages;
6782 	struct page **pages = NULL;
6783 	u64 phys;
6784 	unsigned int ext_flags;
6785 	struct super_block *sb = inode->i_sb;
6786 
6787 	/*
6788 	 * File systems which don't support sparse files zero on every
6789 	 * extend.
6790 	 */
6791 	if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6792 		return 0;
6793 
6794 	pages = kcalloc(ocfs2_pages_per_cluster(sb),
6795 			sizeof(struct page *), GFP_NOFS);
6796 	if (pages == NULL) {
6797 		ret = -ENOMEM;
6798 		mlog_errno(ret);
6799 		goto out;
6800 	}
6801 
6802 	if (range_start == range_end)
6803 		goto out;
6804 
6805 	ret = ocfs2_extent_map_get_blocks(inode,
6806 					  range_start >> sb->s_blocksize_bits,
6807 					  &phys, NULL, &ext_flags);
6808 	if (ret) {
6809 		mlog_errno(ret);
6810 		goto out;
6811 	}
6812 
6813 	/*
6814 	 * Tail is a hole, or is marked unwritten. In either case, we
6815 	 * can count on read and write to return/push zero's.
6816 	 */
6817 	if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6818 		goto out;
6819 
6820 	ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6821 				   &numpages);
6822 	if (ret) {
6823 		mlog_errno(ret);
6824 		goto out;
6825 	}
6826 
6827 	ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6828 				 numpages, phys, handle);
6829 
6830 	/*
6831 	 * Initiate writeout of the pages we zero'd here. We don't
6832 	 * wait on them - the truncate_inode_pages() call later will
6833 	 * do that for us.
6834 	 */
6835 	ret = filemap_fdatawrite_range(inode->i_mapping, range_start,
6836 				       range_end - 1);
6837 	if (ret)
6838 		mlog_errno(ret);
6839 
6840 out:
6841 	kfree(pages);
6842 
6843 	return ret;
6844 }
6845 
6846 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
6847 					     struct ocfs2_dinode *di)
6848 {
6849 	unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
6850 	unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
6851 
6852 	if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
6853 		memset(&di->id2, 0, blocksize -
6854 				    offsetof(struct ocfs2_dinode, id2) -
6855 				    xattrsize);
6856 	else
6857 		memset(&di->id2, 0, blocksize -
6858 				    offsetof(struct ocfs2_dinode, id2));
6859 }
6860 
6861 void ocfs2_dinode_new_extent_list(struct inode *inode,
6862 				  struct ocfs2_dinode *di)
6863 {
6864 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
6865 	di->id2.i_list.l_tree_depth = 0;
6866 	di->id2.i_list.l_next_free_rec = 0;
6867 	di->id2.i_list.l_count = cpu_to_le16(
6868 		ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
6869 }
6870 
6871 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
6872 {
6873 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
6874 	struct ocfs2_inline_data *idata = &di->id2.i_data;
6875 
6876 	spin_lock(&oi->ip_lock);
6877 	oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
6878 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6879 	spin_unlock(&oi->ip_lock);
6880 
6881 	/*
6882 	 * We clear the entire i_data structure here so that all
6883 	 * fields can be properly initialized.
6884 	 */
6885 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
6886 
6887 	idata->id_count = cpu_to_le16(
6888 			ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
6889 }
6890 
6891 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
6892 					 struct buffer_head *di_bh)
6893 {
6894 	int ret, i, has_data, num_pages = 0;
6895 	int need_free = 0;
6896 	u32 bit_off, num;
6897 	handle_t *handle;
6898 	u64 uninitialized_var(block);
6899 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
6900 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6901 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6902 	struct ocfs2_alloc_context *data_ac = NULL;
6903 	struct page **pages = NULL;
6904 	loff_t end = osb->s_clustersize;
6905 	struct ocfs2_extent_tree et;
6906 	int did_quota = 0;
6907 
6908 	has_data = i_size_read(inode) ? 1 : 0;
6909 
6910 	if (has_data) {
6911 		pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
6912 				sizeof(struct page *), GFP_NOFS);
6913 		if (pages == NULL) {
6914 			ret = -ENOMEM;
6915 			mlog_errno(ret);
6916 			return ret;
6917 		}
6918 
6919 		ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
6920 		if (ret) {
6921 			mlog_errno(ret);
6922 			goto free_pages;
6923 		}
6924 	}
6925 
6926 	handle = ocfs2_start_trans(osb,
6927 				   ocfs2_inline_to_extents_credits(osb->sb));
6928 	if (IS_ERR(handle)) {
6929 		ret = PTR_ERR(handle);
6930 		mlog_errno(ret);
6931 		goto out;
6932 	}
6933 
6934 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
6935 				      OCFS2_JOURNAL_ACCESS_WRITE);
6936 	if (ret) {
6937 		mlog_errno(ret);
6938 		goto out_commit;
6939 	}
6940 
6941 	if (has_data) {
6942 		unsigned int page_end;
6943 		u64 phys;
6944 
6945 		ret = dquot_alloc_space_nodirty(inode,
6946 				       ocfs2_clusters_to_bytes(osb->sb, 1));
6947 		if (ret)
6948 			goto out_commit;
6949 		did_quota = 1;
6950 
6951 		data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
6952 
6953 		ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off,
6954 					   &num);
6955 		if (ret) {
6956 			mlog_errno(ret);
6957 			goto out_commit;
6958 		}
6959 
6960 		/*
6961 		 * Save two copies, one for insert, and one that can
6962 		 * be changed by ocfs2_map_and_dirty_page() below.
6963 		 */
6964 		block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
6965 
6966 		/*
6967 		 * Non sparse file systems zero on extend, so no need
6968 		 * to do that now.
6969 		 */
6970 		if (!ocfs2_sparse_alloc(osb) &&
6971 		    PAGE_SIZE < osb->s_clustersize)
6972 			end = PAGE_SIZE;
6973 
6974 		ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
6975 		if (ret) {
6976 			mlog_errno(ret);
6977 			need_free = 1;
6978 			goto out_commit;
6979 		}
6980 
6981 		/*
6982 		 * This should populate the 1st page for us and mark
6983 		 * it up to date.
6984 		 */
6985 		ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
6986 		if (ret) {
6987 			mlog_errno(ret);
6988 			need_free = 1;
6989 			goto out_unlock;
6990 		}
6991 
6992 		page_end = PAGE_SIZE;
6993 		if (PAGE_SIZE > osb->s_clustersize)
6994 			page_end = osb->s_clustersize;
6995 
6996 		for (i = 0; i < num_pages; i++)
6997 			ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
6998 						 pages[i], i > 0, &phys);
6999 	}
7000 
7001 	spin_lock(&oi->ip_lock);
7002 	oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
7003 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7004 	spin_unlock(&oi->ip_lock);
7005 
7006 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
7007 	ocfs2_dinode_new_extent_list(inode, di);
7008 
7009 	ocfs2_journal_dirty(handle, di_bh);
7010 
7011 	if (has_data) {
7012 		/*
7013 		 * An error at this point should be extremely rare. If
7014 		 * this proves to be false, we could always re-build
7015 		 * the in-inode data from our pages.
7016 		 */
7017 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
7018 		ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL);
7019 		if (ret) {
7020 			mlog_errno(ret);
7021 			need_free = 1;
7022 			goto out_unlock;
7023 		}
7024 
7025 		inode->i_blocks = ocfs2_inode_sector_count(inode);
7026 	}
7027 
7028 out_unlock:
7029 	if (pages)
7030 		ocfs2_unlock_and_free_pages(pages, num_pages);
7031 
7032 out_commit:
7033 	if (ret < 0 && did_quota)
7034 		dquot_free_space_nodirty(inode,
7035 					  ocfs2_clusters_to_bytes(osb->sb, 1));
7036 
7037 	if (need_free) {
7038 		if (data_ac->ac_which == OCFS2_AC_USE_LOCAL)
7039 			ocfs2_free_local_alloc_bits(osb, handle, data_ac,
7040 					bit_off, num);
7041 		else
7042 			ocfs2_free_clusters(handle,
7043 					data_ac->ac_inode,
7044 					data_ac->ac_bh,
7045 					ocfs2_clusters_to_blocks(osb->sb, bit_off),
7046 					num);
7047 	}
7048 
7049 	ocfs2_commit_trans(osb, handle);
7050 
7051 out:
7052 	if (data_ac)
7053 		ocfs2_free_alloc_context(data_ac);
7054 free_pages:
7055 	kfree(pages);
7056 	return ret;
7057 }
7058 
7059 /*
7060  * It is expected, that by the time you call this function,
7061  * inode->i_size and fe->i_size have been adjusted.
7062  *
7063  * WARNING: This will kfree the truncate context
7064  */
7065 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7066 			  struct inode *inode,
7067 			  struct buffer_head *di_bh)
7068 {
7069 	int status = 0, i, flags = 0;
7070 	u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff;
7071 	u64 blkno = 0;
7072 	struct ocfs2_extent_list *el;
7073 	struct ocfs2_extent_rec *rec;
7074 	struct ocfs2_path *path = NULL;
7075 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7076 	struct ocfs2_extent_list *root_el = &(di->id2.i_list);
7077 	u64 refcount_loc = le64_to_cpu(di->i_refcount_loc);
7078 	struct ocfs2_extent_tree et;
7079 	struct ocfs2_cached_dealloc_ctxt dealloc;
7080 	struct ocfs2_refcount_tree *ref_tree = NULL;
7081 
7082 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
7083 	ocfs2_init_dealloc_ctxt(&dealloc);
7084 
7085 	new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7086 						     i_size_read(inode));
7087 
7088 	path = ocfs2_new_path(di_bh, &di->id2.i_list,
7089 			      ocfs2_journal_access_di);
7090 	if (!path) {
7091 		status = -ENOMEM;
7092 		mlog_errno(status);
7093 		goto bail;
7094 	}
7095 
7096 	ocfs2_extent_map_trunc(inode, new_highest_cpos);
7097 
7098 start:
7099 	/*
7100 	 * Check that we still have allocation to delete.
7101 	 */
7102 	if (OCFS2_I(inode)->ip_clusters == 0) {
7103 		status = 0;
7104 		goto bail;
7105 	}
7106 
7107 	/*
7108 	 * Truncate always works against the rightmost tree branch.
7109 	 */
7110 	status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX);
7111 	if (status) {
7112 		mlog_errno(status);
7113 		goto bail;
7114 	}
7115 
7116 	trace_ocfs2_commit_truncate(
7117 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
7118 		new_highest_cpos,
7119 		OCFS2_I(inode)->ip_clusters,
7120 		path->p_tree_depth);
7121 
7122 	/*
7123 	 * By now, el will point to the extent list on the bottom most
7124 	 * portion of this tree. Only the tail record is considered in
7125 	 * each pass.
7126 	 *
7127 	 * We handle the following cases, in order:
7128 	 * - empty extent: delete the remaining branch
7129 	 * - remove the entire record
7130 	 * - remove a partial record
7131 	 * - no record needs to be removed (truncate has completed)
7132 	 */
7133 	el = path_leaf_el(path);
7134 	if (le16_to_cpu(el->l_next_free_rec) == 0) {
7135 		ocfs2_error(inode->i_sb,
7136 			    "Inode %llu has empty extent block at %llu\n",
7137 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7138 			    (unsigned long long)path_leaf_bh(path)->b_blocknr);
7139 		status = -EROFS;
7140 		goto bail;
7141 	}
7142 
7143 	i = le16_to_cpu(el->l_next_free_rec) - 1;
7144 	rec = &el->l_recs[i];
7145 	flags = rec->e_flags;
7146 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
7147 
7148 	if (i == 0 && ocfs2_is_empty_extent(rec)) {
7149 		/*
7150 		 * Lower levels depend on this never happening, but it's best
7151 		 * to check it up here before changing the tree.
7152 		*/
7153 		if (root_el->l_tree_depth && rec->e_int_clusters == 0) {
7154 			mlog(ML_ERROR, "Inode %lu has an empty "
7155 				    "extent record, depth %u\n", inode->i_ino,
7156 				    le16_to_cpu(root_el->l_tree_depth));
7157 			status = ocfs2_remove_rightmost_empty_extent(osb,
7158 					&et, path, &dealloc);
7159 			if (status) {
7160 				mlog_errno(status);
7161 				goto bail;
7162 			}
7163 
7164 			ocfs2_reinit_path(path, 1);
7165 			goto start;
7166 		} else {
7167 			trunc_cpos = le32_to_cpu(rec->e_cpos);
7168 			trunc_len = 0;
7169 			blkno = 0;
7170 		}
7171 	} else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) {
7172 		/*
7173 		 * Truncate entire record.
7174 		 */
7175 		trunc_cpos = le32_to_cpu(rec->e_cpos);
7176 		trunc_len = ocfs2_rec_clusters(el, rec);
7177 		blkno = le64_to_cpu(rec->e_blkno);
7178 	} else if (range > new_highest_cpos) {
7179 		/*
7180 		 * Partial truncate. it also should be
7181 		 * the last truncate we're doing.
7182 		 */
7183 		trunc_cpos = new_highest_cpos;
7184 		trunc_len = range - new_highest_cpos;
7185 		coff = new_highest_cpos - le32_to_cpu(rec->e_cpos);
7186 		blkno = le64_to_cpu(rec->e_blkno) +
7187 				ocfs2_clusters_to_blocks(inode->i_sb, coff);
7188 	} else {
7189 		/*
7190 		 * Truncate completed, leave happily.
7191 		 */
7192 		status = 0;
7193 		goto bail;
7194 	}
7195 
7196 	phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
7197 
7198 	if ((flags & OCFS2_EXT_REFCOUNTED) && trunc_len && !ref_tree) {
7199 		status = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
7200 				&ref_tree, NULL);
7201 		if (status) {
7202 			mlog_errno(status);
7203 			goto bail;
7204 		}
7205 	}
7206 
7207 	status = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
7208 					  phys_cpos, trunc_len, flags, &dealloc,
7209 					  refcount_loc, true);
7210 	if (status < 0) {
7211 		mlog_errno(status);
7212 		goto bail;
7213 	}
7214 
7215 	ocfs2_reinit_path(path, 1);
7216 
7217 	/*
7218 	 * The check above will catch the case where we've truncated
7219 	 * away all allocation.
7220 	 */
7221 	goto start;
7222 
7223 bail:
7224 	if (ref_tree)
7225 		ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
7226 
7227 	ocfs2_schedule_truncate_log_flush(osb, 1);
7228 
7229 	ocfs2_run_deallocs(osb, &dealloc);
7230 
7231 	ocfs2_free_path(path);
7232 
7233 	return status;
7234 }
7235 
7236 /*
7237  * 'start' is inclusive, 'end' is not.
7238  */
7239 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7240 			  unsigned int start, unsigned int end, int trunc)
7241 {
7242 	int ret;
7243 	unsigned int numbytes;
7244 	handle_t *handle;
7245 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7246 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7247 	struct ocfs2_inline_data *idata = &di->id2.i_data;
7248 
7249 	if (end > i_size_read(inode))
7250 		end = i_size_read(inode);
7251 
7252 	BUG_ON(start > end);
7253 
7254 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7255 	    !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7256 	    !ocfs2_supports_inline_data(osb)) {
7257 		ocfs2_error(inode->i_sb,
7258 			    "Inline data flags for inode %llu don't agree! Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7259 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7260 			    le16_to_cpu(di->i_dyn_features),
7261 			    OCFS2_I(inode)->ip_dyn_features,
7262 			    osb->s_feature_incompat);
7263 		ret = -EROFS;
7264 		goto out;
7265 	}
7266 
7267 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7268 	if (IS_ERR(handle)) {
7269 		ret = PTR_ERR(handle);
7270 		mlog_errno(ret);
7271 		goto out;
7272 	}
7273 
7274 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7275 				      OCFS2_JOURNAL_ACCESS_WRITE);
7276 	if (ret) {
7277 		mlog_errno(ret);
7278 		goto out_commit;
7279 	}
7280 
7281 	numbytes = end - start;
7282 	memset(idata->id_data + start, 0, numbytes);
7283 
7284 	/*
7285 	 * No need to worry about the data page here - it's been
7286 	 * truncated already and inline data doesn't need it for
7287 	 * pushing zero's to disk, so we'll let readpage pick it up
7288 	 * later.
7289 	 */
7290 	if (trunc) {
7291 		i_size_write(inode, start);
7292 		di->i_size = cpu_to_le64(start);
7293 	}
7294 
7295 	inode->i_blocks = ocfs2_inode_sector_count(inode);
7296 	inode->i_ctime = inode->i_mtime = current_time(inode);
7297 
7298 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7299 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7300 
7301 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
7302 	ocfs2_journal_dirty(handle, di_bh);
7303 
7304 out_commit:
7305 	ocfs2_commit_trans(osb, handle);
7306 
7307 out:
7308 	return ret;
7309 }
7310 
7311 static int ocfs2_trim_extent(struct super_block *sb,
7312 			     struct ocfs2_group_desc *gd,
7313 			     u32 start, u32 count)
7314 {
7315 	u64 discard, bcount;
7316 
7317 	bcount = ocfs2_clusters_to_blocks(sb, count);
7318 	discard = le64_to_cpu(gd->bg_blkno) +
7319 			ocfs2_clusters_to_blocks(sb, start);
7320 
7321 	trace_ocfs2_trim_extent(sb, (unsigned long long)discard, bcount);
7322 
7323 	return sb_issue_discard(sb, discard, bcount, GFP_NOFS, 0);
7324 }
7325 
7326 static int ocfs2_trim_group(struct super_block *sb,
7327 			    struct ocfs2_group_desc *gd,
7328 			    u32 start, u32 max, u32 minbits)
7329 {
7330 	int ret = 0, count = 0, next;
7331 	void *bitmap = gd->bg_bitmap;
7332 
7333 	if (le16_to_cpu(gd->bg_free_bits_count) < minbits)
7334 		return 0;
7335 
7336 	trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd->bg_blkno),
7337 			       start, max, minbits);
7338 
7339 	while (start < max) {
7340 		start = ocfs2_find_next_zero_bit(bitmap, max, start);
7341 		if (start >= max)
7342 			break;
7343 		next = ocfs2_find_next_bit(bitmap, max, start);
7344 
7345 		if ((next - start) >= minbits) {
7346 			ret = ocfs2_trim_extent(sb, gd,
7347 						start, next - start);
7348 			if (ret < 0) {
7349 				mlog_errno(ret);
7350 				break;
7351 			}
7352 			count += next - start;
7353 		}
7354 		start = next + 1;
7355 
7356 		if (fatal_signal_pending(current)) {
7357 			count = -ERESTARTSYS;
7358 			break;
7359 		}
7360 
7361 		if ((le16_to_cpu(gd->bg_free_bits_count) - count) < minbits)
7362 			break;
7363 	}
7364 
7365 	if (ret < 0)
7366 		count = ret;
7367 
7368 	return count;
7369 }
7370 
7371 int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range)
7372 {
7373 	struct ocfs2_super *osb = OCFS2_SB(sb);
7374 	u64 start, len, trimmed, first_group, last_group, group;
7375 	int ret, cnt;
7376 	u32 first_bit, last_bit, minlen;
7377 	struct buffer_head *main_bm_bh = NULL;
7378 	struct inode *main_bm_inode = NULL;
7379 	struct buffer_head *gd_bh = NULL;
7380 	struct ocfs2_dinode *main_bm;
7381 	struct ocfs2_group_desc *gd = NULL;
7382 
7383 	start = range->start >> osb->s_clustersize_bits;
7384 	len = range->len >> osb->s_clustersize_bits;
7385 	minlen = range->minlen >> osb->s_clustersize_bits;
7386 
7387 	if (minlen >= osb->bitmap_cpg || range->len < sb->s_blocksize)
7388 		return -EINVAL;
7389 
7390 	main_bm_inode = ocfs2_get_system_file_inode(osb,
7391 						    GLOBAL_BITMAP_SYSTEM_INODE,
7392 						    OCFS2_INVALID_SLOT);
7393 	if (!main_bm_inode) {
7394 		ret = -EIO;
7395 		mlog_errno(ret);
7396 		goto out;
7397 	}
7398 
7399 	inode_lock(main_bm_inode);
7400 
7401 	ret = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 0);
7402 	if (ret < 0) {
7403 		mlog_errno(ret);
7404 		goto out_mutex;
7405 	}
7406 	main_bm = (struct ocfs2_dinode *)main_bm_bh->b_data;
7407 
7408 	if (start >= le32_to_cpu(main_bm->i_clusters)) {
7409 		ret = -EINVAL;
7410 		goto out_unlock;
7411 	}
7412 
7413 	len = range->len >> osb->s_clustersize_bits;
7414 	if (start + len > le32_to_cpu(main_bm->i_clusters))
7415 		len = le32_to_cpu(main_bm->i_clusters) - start;
7416 
7417 	trace_ocfs2_trim_fs(start, len, minlen);
7418 
7419 	/* Determine first and last group to examine based on start and len */
7420 	first_group = ocfs2_which_cluster_group(main_bm_inode, start);
7421 	if (first_group == osb->first_cluster_group_blkno)
7422 		first_bit = start;
7423 	else
7424 		first_bit = start - ocfs2_blocks_to_clusters(sb, first_group);
7425 	last_group = ocfs2_which_cluster_group(main_bm_inode, start + len - 1);
7426 	last_bit = osb->bitmap_cpg;
7427 
7428 	trimmed = 0;
7429 	for (group = first_group; group <= last_group;) {
7430 		if (first_bit + len >= osb->bitmap_cpg)
7431 			last_bit = osb->bitmap_cpg;
7432 		else
7433 			last_bit = first_bit + len;
7434 
7435 		ret = ocfs2_read_group_descriptor(main_bm_inode,
7436 						  main_bm, group,
7437 						  &gd_bh);
7438 		if (ret < 0) {
7439 			mlog_errno(ret);
7440 			break;
7441 		}
7442 
7443 		gd = (struct ocfs2_group_desc *)gd_bh->b_data;
7444 		cnt = ocfs2_trim_group(sb, gd, first_bit, last_bit, minlen);
7445 		brelse(gd_bh);
7446 		gd_bh = NULL;
7447 		if (cnt < 0) {
7448 			ret = cnt;
7449 			mlog_errno(ret);
7450 			break;
7451 		}
7452 
7453 		trimmed += cnt;
7454 		len -= osb->bitmap_cpg - first_bit;
7455 		first_bit = 0;
7456 		if (group == osb->first_cluster_group_blkno)
7457 			group = ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7458 		else
7459 			group += ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7460 	}
7461 	range->len = trimmed * sb->s_blocksize;
7462 out_unlock:
7463 	ocfs2_inode_unlock(main_bm_inode, 0);
7464 	brelse(main_bm_bh);
7465 out_mutex:
7466 	inode_unlock(main_bm_inode);
7467 	iput(main_bm_inode);
7468 out:
7469 	return ret;
7470 }
7471