xref: /openbmc/linux/fs/ocfs2/alloc.c (revision e190bfe5)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32 
33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
34 #include <cluster/masklog.h>
35 
36 #include "ocfs2.h"
37 
38 #include "alloc.h"
39 #include "aops.h"
40 #include "blockcheck.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "localalloc.h"
46 #include "suballoc.h"
47 #include "sysfile.h"
48 #include "file.h"
49 #include "super.h"
50 #include "uptodate.h"
51 #include "xattr.h"
52 #include "refcounttree.h"
53 
54 #include "buffer_head_io.h"
55 
56 enum ocfs2_contig_type {
57 	CONTIG_NONE = 0,
58 	CONTIG_LEFT,
59 	CONTIG_RIGHT,
60 	CONTIG_LEFTRIGHT,
61 };
62 
63 static enum ocfs2_contig_type
64 	ocfs2_extent_rec_contig(struct super_block *sb,
65 				struct ocfs2_extent_rec *ext,
66 				struct ocfs2_extent_rec *insert_rec);
67 /*
68  * Operations for a specific extent tree type.
69  *
70  * To implement an on-disk btree (extent tree) type in ocfs2, add
71  * an ocfs2_extent_tree_operations structure and the matching
72  * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
73  * for the allocation portion of the extent tree.
74  */
75 struct ocfs2_extent_tree_operations {
76 	/*
77 	 * last_eb_blk is the block number of the right most leaf extent
78 	 * block.  Most on-disk structures containing an extent tree store
79 	 * this value for fast access.  The ->eo_set_last_eb_blk() and
80 	 * ->eo_get_last_eb_blk() operations access this value.  They are
81 	 *  both required.
82 	 */
83 	void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
84 				   u64 blkno);
85 	u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
86 
87 	/*
88 	 * The on-disk structure usually keeps track of how many total
89 	 * clusters are stored in this extent tree.  This function updates
90 	 * that value.  new_clusters is the delta, and must be
91 	 * added to the total.  Required.
92 	 */
93 	void (*eo_update_clusters)(struct ocfs2_extent_tree *et,
94 				   u32 new_clusters);
95 
96 	/*
97 	 * If this extent tree is supported by an extent map, insert
98 	 * a record into the map.
99 	 */
100 	void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et,
101 				     struct ocfs2_extent_rec *rec);
102 
103 	/*
104 	 * If this extent tree is supported by an extent map, truncate the
105 	 * map to clusters,
106 	 */
107 	void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et,
108 				       u32 clusters);
109 
110 	/*
111 	 * If ->eo_insert_check() exists, it is called before rec is
112 	 * inserted into the extent tree.  It is optional.
113 	 */
114 	int (*eo_insert_check)(struct ocfs2_extent_tree *et,
115 			       struct ocfs2_extent_rec *rec);
116 	int (*eo_sanity_check)(struct ocfs2_extent_tree *et);
117 
118 	/*
119 	 * --------------------------------------------------------------
120 	 * The remaining are internal to ocfs2_extent_tree and don't have
121 	 * accessor functions
122 	 */
123 
124 	/*
125 	 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
126 	 * It is required.
127 	 */
128 	void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
129 
130 	/*
131 	 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
132 	 * it exists.  If it does not, et->et_max_leaf_clusters is set
133 	 * to 0 (unlimited).  Optional.
134 	 */
135 	void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et);
136 
137 	/*
138 	 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec
139 	 * are contiguous or not. Optional. Don't need to set it if use
140 	 * ocfs2_extent_rec as the tree leaf.
141 	 */
142 	enum ocfs2_contig_type
143 		(*eo_extent_contig)(struct ocfs2_extent_tree *et,
144 				    struct ocfs2_extent_rec *ext,
145 				    struct ocfs2_extent_rec *insert_rec);
146 };
147 
148 
149 /*
150  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
151  * in the methods.
152  */
153 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
154 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
155 					 u64 blkno);
156 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
157 					 u32 clusters);
158 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
159 					   struct ocfs2_extent_rec *rec);
160 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
161 					     u32 clusters);
162 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
163 				     struct ocfs2_extent_rec *rec);
164 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et);
165 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
166 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
167 	.eo_set_last_eb_blk	= ocfs2_dinode_set_last_eb_blk,
168 	.eo_get_last_eb_blk	= ocfs2_dinode_get_last_eb_blk,
169 	.eo_update_clusters	= ocfs2_dinode_update_clusters,
170 	.eo_extent_map_insert	= ocfs2_dinode_extent_map_insert,
171 	.eo_extent_map_truncate	= ocfs2_dinode_extent_map_truncate,
172 	.eo_insert_check	= ocfs2_dinode_insert_check,
173 	.eo_sanity_check	= ocfs2_dinode_sanity_check,
174 	.eo_fill_root_el	= ocfs2_dinode_fill_root_el,
175 };
176 
177 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
178 					 u64 blkno)
179 {
180 	struct ocfs2_dinode *di = et->et_object;
181 
182 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
183 	di->i_last_eb_blk = cpu_to_le64(blkno);
184 }
185 
186 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
187 {
188 	struct ocfs2_dinode *di = et->et_object;
189 
190 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
191 	return le64_to_cpu(di->i_last_eb_blk);
192 }
193 
194 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
195 					 u32 clusters)
196 {
197 	struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
198 	struct ocfs2_dinode *di = et->et_object;
199 
200 	le32_add_cpu(&di->i_clusters, clusters);
201 	spin_lock(&oi->ip_lock);
202 	oi->ip_clusters = le32_to_cpu(di->i_clusters);
203 	spin_unlock(&oi->ip_lock);
204 }
205 
206 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
207 					   struct ocfs2_extent_rec *rec)
208 {
209 	struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
210 
211 	ocfs2_extent_map_insert_rec(inode, rec);
212 }
213 
214 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
215 					     u32 clusters)
216 {
217 	struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
218 
219 	ocfs2_extent_map_trunc(inode, clusters);
220 }
221 
222 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
223 				     struct ocfs2_extent_rec *rec)
224 {
225 	struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
226 	struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb);
227 
228 	BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL);
229 	mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
230 			(oi->ip_clusters != le32_to_cpu(rec->e_cpos)),
231 			"Device %s, asking for sparse allocation: inode %llu, "
232 			"cpos %u, clusters %u\n",
233 			osb->dev_str,
234 			(unsigned long long)oi->ip_blkno,
235 			rec->e_cpos, oi->ip_clusters);
236 
237 	return 0;
238 }
239 
240 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et)
241 {
242 	struct ocfs2_dinode *di = et->et_object;
243 
244 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
245 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
246 
247 	return 0;
248 }
249 
250 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
251 {
252 	struct ocfs2_dinode *di = et->et_object;
253 
254 	et->et_root_el = &di->id2.i_list;
255 }
256 
257 
258 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
259 {
260 	struct ocfs2_xattr_value_buf *vb = et->et_object;
261 
262 	et->et_root_el = &vb->vb_xv->xr_list;
263 }
264 
265 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
266 					      u64 blkno)
267 {
268 	struct ocfs2_xattr_value_buf *vb = et->et_object;
269 
270 	vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
271 }
272 
273 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
274 {
275 	struct ocfs2_xattr_value_buf *vb = et->et_object;
276 
277 	return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
278 }
279 
280 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et,
281 					      u32 clusters)
282 {
283 	struct ocfs2_xattr_value_buf *vb = et->et_object;
284 
285 	le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
286 }
287 
288 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
289 	.eo_set_last_eb_blk	= ocfs2_xattr_value_set_last_eb_blk,
290 	.eo_get_last_eb_blk	= ocfs2_xattr_value_get_last_eb_blk,
291 	.eo_update_clusters	= ocfs2_xattr_value_update_clusters,
292 	.eo_fill_root_el	= ocfs2_xattr_value_fill_root_el,
293 };
294 
295 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
296 {
297 	struct ocfs2_xattr_block *xb = et->et_object;
298 
299 	et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
300 }
301 
302 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et)
303 {
304 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
305 	et->et_max_leaf_clusters =
306 		ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
307 }
308 
309 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
310 					     u64 blkno)
311 {
312 	struct ocfs2_xattr_block *xb = et->et_object;
313 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
314 
315 	xt->xt_last_eb_blk = cpu_to_le64(blkno);
316 }
317 
318 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
319 {
320 	struct ocfs2_xattr_block *xb = et->et_object;
321 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
322 
323 	return le64_to_cpu(xt->xt_last_eb_blk);
324 }
325 
326 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et,
327 					     u32 clusters)
328 {
329 	struct ocfs2_xattr_block *xb = et->et_object;
330 
331 	le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
332 }
333 
334 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
335 	.eo_set_last_eb_blk	= ocfs2_xattr_tree_set_last_eb_blk,
336 	.eo_get_last_eb_blk	= ocfs2_xattr_tree_get_last_eb_blk,
337 	.eo_update_clusters	= ocfs2_xattr_tree_update_clusters,
338 	.eo_fill_root_el	= ocfs2_xattr_tree_fill_root_el,
339 	.eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
340 };
341 
342 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
343 					  u64 blkno)
344 {
345 	struct ocfs2_dx_root_block *dx_root = et->et_object;
346 
347 	dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
348 }
349 
350 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
351 {
352 	struct ocfs2_dx_root_block *dx_root = et->et_object;
353 
354 	return le64_to_cpu(dx_root->dr_last_eb_blk);
355 }
356 
357 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et,
358 					  u32 clusters)
359 {
360 	struct ocfs2_dx_root_block *dx_root = et->et_object;
361 
362 	le32_add_cpu(&dx_root->dr_clusters, clusters);
363 }
364 
365 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et)
366 {
367 	struct ocfs2_dx_root_block *dx_root = et->et_object;
368 
369 	BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
370 
371 	return 0;
372 }
373 
374 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
375 {
376 	struct ocfs2_dx_root_block *dx_root = et->et_object;
377 
378 	et->et_root_el = &dx_root->dr_list;
379 }
380 
381 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
382 	.eo_set_last_eb_blk	= ocfs2_dx_root_set_last_eb_blk,
383 	.eo_get_last_eb_blk	= ocfs2_dx_root_get_last_eb_blk,
384 	.eo_update_clusters	= ocfs2_dx_root_update_clusters,
385 	.eo_sanity_check	= ocfs2_dx_root_sanity_check,
386 	.eo_fill_root_el	= ocfs2_dx_root_fill_root_el,
387 };
388 
389 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et)
390 {
391 	struct ocfs2_refcount_block *rb = et->et_object;
392 
393 	et->et_root_el = &rb->rf_list;
394 }
395 
396 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
397 						u64 blkno)
398 {
399 	struct ocfs2_refcount_block *rb = et->et_object;
400 
401 	rb->rf_last_eb_blk = cpu_to_le64(blkno);
402 }
403 
404 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
405 {
406 	struct ocfs2_refcount_block *rb = et->et_object;
407 
408 	return le64_to_cpu(rb->rf_last_eb_blk);
409 }
410 
411 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et,
412 						u32 clusters)
413 {
414 	struct ocfs2_refcount_block *rb = et->et_object;
415 
416 	le32_add_cpu(&rb->rf_clusters, clusters);
417 }
418 
419 static enum ocfs2_contig_type
420 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et,
421 				  struct ocfs2_extent_rec *ext,
422 				  struct ocfs2_extent_rec *insert_rec)
423 {
424 	return CONTIG_NONE;
425 }
426 
427 static struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = {
428 	.eo_set_last_eb_blk	= ocfs2_refcount_tree_set_last_eb_blk,
429 	.eo_get_last_eb_blk	= ocfs2_refcount_tree_get_last_eb_blk,
430 	.eo_update_clusters	= ocfs2_refcount_tree_update_clusters,
431 	.eo_fill_root_el	= ocfs2_refcount_tree_fill_root_el,
432 	.eo_extent_contig	= ocfs2_refcount_tree_extent_contig,
433 };
434 
435 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
436 				     struct ocfs2_caching_info *ci,
437 				     struct buffer_head *bh,
438 				     ocfs2_journal_access_func access,
439 				     void *obj,
440 				     struct ocfs2_extent_tree_operations *ops)
441 {
442 	et->et_ops = ops;
443 	et->et_root_bh = bh;
444 	et->et_ci = ci;
445 	et->et_root_journal_access = access;
446 	if (!obj)
447 		obj = (void *)bh->b_data;
448 	et->et_object = obj;
449 
450 	et->et_ops->eo_fill_root_el(et);
451 	if (!et->et_ops->eo_fill_max_leaf_clusters)
452 		et->et_max_leaf_clusters = 0;
453 	else
454 		et->et_ops->eo_fill_max_leaf_clusters(et);
455 }
456 
457 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
458 				   struct ocfs2_caching_info *ci,
459 				   struct buffer_head *bh)
460 {
461 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di,
462 				 NULL, &ocfs2_dinode_et_ops);
463 }
464 
465 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
466 				       struct ocfs2_caching_info *ci,
467 				       struct buffer_head *bh)
468 {
469 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb,
470 				 NULL, &ocfs2_xattr_tree_et_ops);
471 }
472 
473 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
474 					struct ocfs2_caching_info *ci,
475 					struct ocfs2_xattr_value_buf *vb)
476 {
477 	__ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb,
478 				 &ocfs2_xattr_value_et_ops);
479 }
480 
481 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
482 				    struct ocfs2_caching_info *ci,
483 				    struct buffer_head *bh)
484 {
485 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr,
486 				 NULL, &ocfs2_dx_root_et_ops);
487 }
488 
489 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et,
490 				     struct ocfs2_caching_info *ci,
491 				     struct buffer_head *bh)
492 {
493 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb,
494 				 NULL, &ocfs2_refcount_tree_et_ops);
495 }
496 
497 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
498 					    u64 new_last_eb_blk)
499 {
500 	et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
501 }
502 
503 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
504 {
505 	return et->et_ops->eo_get_last_eb_blk(et);
506 }
507 
508 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et,
509 					    u32 clusters)
510 {
511 	et->et_ops->eo_update_clusters(et, clusters);
512 }
513 
514 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et,
515 					      struct ocfs2_extent_rec *rec)
516 {
517 	if (et->et_ops->eo_extent_map_insert)
518 		et->et_ops->eo_extent_map_insert(et, rec);
519 }
520 
521 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et,
522 						u32 clusters)
523 {
524 	if (et->et_ops->eo_extent_map_truncate)
525 		et->et_ops->eo_extent_map_truncate(et, clusters);
526 }
527 
528 static inline int ocfs2_et_root_journal_access(handle_t *handle,
529 					       struct ocfs2_extent_tree *et,
530 					       int type)
531 {
532 	return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh,
533 					  type);
534 }
535 
536 static inline enum ocfs2_contig_type
537 	ocfs2_et_extent_contig(struct ocfs2_extent_tree *et,
538 			       struct ocfs2_extent_rec *rec,
539 			       struct ocfs2_extent_rec *insert_rec)
540 {
541 	if (et->et_ops->eo_extent_contig)
542 		return et->et_ops->eo_extent_contig(et, rec, insert_rec);
543 
544 	return ocfs2_extent_rec_contig(
545 				ocfs2_metadata_cache_get_super(et->et_ci),
546 				rec, insert_rec);
547 }
548 
549 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et,
550 					struct ocfs2_extent_rec *rec)
551 {
552 	int ret = 0;
553 
554 	if (et->et_ops->eo_insert_check)
555 		ret = et->et_ops->eo_insert_check(et, rec);
556 	return ret;
557 }
558 
559 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et)
560 {
561 	int ret = 0;
562 
563 	if (et->et_ops->eo_sanity_check)
564 		ret = et->et_ops->eo_sanity_check(et);
565 	return ret;
566 }
567 
568 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
569 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
570 					 struct ocfs2_extent_block *eb);
571 static void ocfs2_adjust_rightmost_records(handle_t *handle,
572 					   struct ocfs2_extent_tree *et,
573 					   struct ocfs2_path *path,
574 					   struct ocfs2_extent_rec *insert_rec);
575 /*
576  * Reset the actual path elements so that we can re-use the structure
577  * to build another path. Generally, this involves freeing the buffer
578  * heads.
579  */
580 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
581 {
582 	int i, start = 0, depth = 0;
583 	struct ocfs2_path_item *node;
584 
585 	if (keep_root)
586 		start = 1;
587 
588 	for(i = start; i < path_num_items(path); i++) {
589 		node = &path->p_node[i];
590 
591 		brelse(node->bh);
592 		node->bh = NULL;
593 		node->el = NULL;
594 	}
595 
596 	/*
597 	 * Tree depth may change during truncate, or insert. If we're
598 	 * keeping the root extent list, then make sure that our path
599 	 * structure reflects the proper depth.
600 	 */
601 	if (keep_root)
602 		depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
603 	else
604 		path_root_access(path) = NULL;
605 
606 	path->p_tree_depth = depth;
607 }
608 
609 void ocfs2_free_path(struct ocfs2_path *path)
610 {
611 	if (path) {
612 		ocfs2_reinit_path(path, 0);
613 		kfree(path);
614 	}
615 }
616 
617 /*
618  * All the elements of src into dest. After this call, src could be freed
619  * without affecting dest.
620  *
621  * Both paths should have the same root. Any non-root elements of dest
622  * will be freed.
623  */
624 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
625 {
626 	int i;
627 
628 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
629 	BUG_ON(path_root_el(dest) != path_root_el(src));
630 	BUG_ON(path_root_access(dest) != path_root_access(src));
631 
632 	ocfs2_reinit_path(dest, 1);
633 
634 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
635 		dest->p_node[i].bh = src->p_node[i].bh;
636 		dest->p_node[i].el = src->p_node[i].el;
637 
638 		if (dest->p_node[i].bh)
639 			get_bh(dest->p_node[i].bh);
640 	}
641 }
642 
643 /*
644  * Make the *dest path the same as src and re-initialize src path to
645  * have a root only.
646  */
647 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
648 {
649 	int i;
650 
651 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
652 	BUG_ON(path_root_access(dest) != path_root_access(src));
653 
654 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
655 		brelse(dest->p_node[i].bh);
656 
657 		dest->p_node[i].bh = src->p_node[i].bh;
658 		dest->p_node[i].el = src->p_node[i].el;
659 
660 		src->p_node[i].bh = NULL;
661 		src->p_node[i].el = NULL;
662 	}
663 }
664 
665 /*
666  * Insert an extent block at given index.
667  *
668  * This will not take an additional reference on eb_bh.
669  */
670 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
671 					struct buffer_head *eb_bh)
672 {
673 	struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
674 
675 	/*
676 	 * Right now, no root bh is an extent block, so this helps
677 	 * catch code errors with dinode trees. The assertion can be
678 	 * safely removed if we ever need to insert extent block
679 	 * structures at the root.
680 	 */
681 	BUG_ON(index == 0);
682 
683 	path->p_node[index].bh = eb_bh;
684 	path->p_node[index].el = &eb->h_list;
685 }
686 
687 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
688 					 struct ocfs2_extent_list *root_el,
689 					 ocfs2_journal_access_func access)
690 {
691 	struct ocfs2_path *path;
692 
693 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
694 
695 	path = kzalloc(sizeof(*path), GFP_NOFS);
696 	if (path) {
697 		path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
698 		get_bh(root_bh);
699 		path_root_bh(path) = root_bh;
700 		path_root_el(path) = root_el;
701 		path_root_access(path) = access;
702 	}
703 
704 	return path;
705 }
706 
707 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
708 {
709 	return ocfs2_new_path(path_root_bh(path), path_root_el(path),
710 			      path_root_access(path));
711 }
712 
713 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
714 {
715 	return ocfs2_new_path(et->et_root_bh, et->et_root_el,
716 			      et->et_root_journal_access);
717 }
718 
719 /*
720  * Journal the buffer at depth idx.  All idx>0 are extent_blocks,
721  * otherwise it's the root_access function.
722  *
723  * I don't like the way this function's name looks next to
724  * ocfs2_journal_access_path(), but I don't have a better one.
725  */
726 int ocfs2_path_bh_journal_access(handle_t *handle,
727 				 struct ocfs2_caching_info *ci,
728 				 struct ocfs2_path *path,
729 				 int idx)
730 {
731 	ocfs2_journal_access_func access = path_root_access(path);
732 
733 	if (!access)
734 		access = ocfs2_journal_access;
735 
736 	if (idx)
737 		access = ocfs2_journal_access_eb;
738 
739 	return access(handle, ci, path->p_node[idx].bh,
740 		      OCFS2_JOURNAL_ACCESS_WRITE);
741 }
742 
743 /*
744  * Convenience function to journal all components in a path.
745  */
746 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci,
747 			      handle_t *handle,
748 			      struct ocfs2_path *path)
749 {
750 	int i, ret = 0;
751 
752 	if (!path)
753 		goto out;
754 
755 	for(i = 0; i < path_num_items(path); i++) {
756 		ret = ocfs2_path_bh_journal_access(handle, ci, path, i);
757 		if (ret < 0) {
758 			mlog_errno(ret);
759 			goto out;
760 		}
761 	}
762 
763 out:
764 	return ret;
765 }
766 
767 /*
768  * Return the index of the extent record which contains cluster #v_cluster.
769  * -1 is returned if it was not found.
770  *
771  * Should work fine on interior and exterior nodes.
772  */
773 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
774 {
775 	int ret = -1;
776 	int i;
777 	struct ocfs2_extent_rec *rec;
778 	u32 rec_end, rec_start, clusters;
779 
780 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
781 		rec = &el->l_recs[i];
782 
783 		rec_start = le32_to_cpu(rec->e_cpos);
784 		clusters = ocfs2_rec_clusters(el, rec);
785 
786 		rec_end = rec_start + clusters;
787 
788 		if (v_cluster >= rec_start && v_cluster < rec_end) {
789 			ret = i;
790 			break;
791 		}
792 	}
793 
794 	return ret;
795 }
796 
797 /*
798  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
799  * ocfs2_extent_rec_contig only work properly against leaf nodes!
800  */
801 static int ocfs2_block_extent_contig(struct super_block *sb,
802 				     struct ocfs2_extent_rec *ext,
803 				     u64 blkno)
804 {
805 	u64 blk_end = le64_to_cpu(ext->e_blkno);
806 
807 	blk_end += ocfs2_clusters_to_blocks(sb,
808 				    le16_to_cpu(ext->e_leaf_clusters));
809 
810 	return blkno == blk_end;
811 }
812 
813 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
814 				  struct ocfs2_extent_rec *right)
815 {
816 	u32 left_range;
817 
818 	left_range = le32_to_cpu(left->e_cpos) +
819 		le16_to_cpu(left->e_leaf_clusters);
820 
821 	return (left_range == le32_to_cpu(right->e_cpos));
822 }
823 
824 static enum ocfs2_contig_type
825 	ocfs2_extent_rec_contig(struct super_block *sb,
826 				struct ocfs2_extent_rec *ext,
827 				struct ocfs2_extent_rec *insert_rec)
828 {
829 	u64 blkno = le64_to_cpu(insert_rec->e_blkno);
830 
831 	/*
832 	 * Refuse to coalesce extent records with different flag
833 	 * fields - we don't want to mix unwritten extents with user
834 	 * data.
835 	 */
836 	if (ext->e_flags != insert_rec->e_flags)
837 		return CONTIG_NONE;
838 
839 	if (ocfs2_extents_adjacent(ext, insert_rec) &&
840 	    ocfs2_block_extent_contig(sb, ext, blkno))
841 			return CONTIG_RIGHT;
842 
843 	blkno = le64_to_cpu(ext->e_blkno);
844 	if (ocfs2_extents_adjacent(insert_rec, ext) &&
845 	    ocfs2_block_extent_contig(sb, insert_rec, blkno))
846 		return CONTIG_LEFT;
847 
848 	return CONTIG_NONE;
849 }
850 
851 /*
852  * NOTE: We can have pretty much any combination of contiguousness and
853  * appending.
854  *
855  * The usefulness of APPEND_TAIL is more in that it lets us know that
856  * we'll have to update the path to that leaf.
857  */
858 enum ocfs2_append_type {
859 	APPEND_NONE = 0,
860 	APPEND_TAIL,
861 };
862 
863 enum ocfs2_split_type {
864 	SPLIT_NONE = 0,
865 	SPLIT_LEFT,
866 	SPLIT_RIGHT,
867 };
868 
869 struct ocfs2_insert_type {
870 	enum ocfs2_split_type	ins_split;
871 	enum ocfs2_append_type	ins_appending;
872 	enum ocfs2_contig_type	ins_contig;
873 	int			ins_contig_index;
874 	int			ins_tree_depth;
875 };
876 
877 struct ocfs2_merge_ctxt {
878 	enum ocfs2_contig_type	c_contig_type;
879 	int			c_has_empty_extent;
880 	int			c_split_covers_rec;
881 };
882 
883 static int ocfs2_validate_extent_block(struct super_block *sb,
884 				       struct buffer_head *bh)
885 {
886 	int rc;
887 	struct ocfs2_extent_block *eb =
888 		(struct ocfs2_extent_block *)bh->b_data;
889 
890 	mlog(0, "Validating extent block %llu\n",
891 	     (unsigned long long)bh->b_blocknr);
892 
893 	BUG_ON(!buffer_uptodate(bh));
894 
895 	/*
896 	 * If the ecc fails, we return the error but otherwise
897 	 * leave the filesystem running.  We know any error is
898 	 * local to this block.
899 	 */
900 	rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
901 	if (rc) {
902 		mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
903 		     (unsigned long long)bh->b_blocknr);
904 		return rc;
905 	}
906 
907 	/*
908 	 * Errors after here are fatal.
909 	 */
910 
911 	if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
912 		ocfs2_error(sb,
913 			    "Extent block #%llu has bad signature %.*s",
914 			    (unsigned long long)bh->b_blocknr, 7,
915 			    eb->h_signature);
916 		return -EINVAL;
917 	}
918 
919 	if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
920 		ocfs2_error(sb,
921 			    "Extent block #%llu has an invalid h_blkno "
922 			    "of %llu",
923 			    (unsigned long long)bh->b_blocknr,
924 			    (unsigned long long)le64_to_cpu(eb->h_blkno));
925 		return -EINVAL;
926 	}
927 
928 	if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
929 		ocfs2_error(sb,
930 			    "Extent block #%llu has an invalid "
931 			    "h_fs_generation of #%u",
932 			    (unsigned long long)bh->b_blocknr,
933 			    le32_to_cpu(eb->h_fs_generation));
934 		return -EINVAL;
935 	}
936 
937 	return 0;
938 }
939 
940 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno,
941 			    struct buffer_head **bh)
942 {
943 	int rc;
944 	struct buffer_head *tmp = *bh;
945 
946 	rc = ocfs2_read_block(ci, eb_blkno, &tmp,
947 			      ocfs2_validate_extent_block);
948 
949 	/* If ocfs2_read_block() got us a new bh, pass it up. */
950 	if (!rc && !*bh)
951 		*bh = tmp;
952 
953 	return rc;
954 }
955 
956 
957 /*
958  * How many free extents have we got before we need more meta data?
959  */
960 int ocfs2_num_free_extents(struct ocfs2_super *osb,
961 			   struct ocfs2_extent_tree *et)
962 {
963 	int retval;
964 	struct ocfs2_extent_list *el = NULL;
965 	struct ocfs2_extent_block *eb;
966 	struct buffer_head *eb_bh = NULL;
967 	u64 last_eb_blk = 0;
968 
969 	mlog_entry_void();
970 
971 	el = et->et_root_el;
972 	last_eb_blk = ocfs2_et_get_last_eb_blk(et);
973 
974 	if (last_eb_blk) {
975 		retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk,
976 						 &eb_bh);
977 		if (retval < 0) {
978 			mlog_errno(retval);
979 			goto bail;
980 		}
981 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
982 		el = &eb->h_list;
983 	}
984 
985 	BUG_ON(el->l_tree_depth != 0);
986 
987 	retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
988 bail:
989 	brelse(eb_bh);
990 
991 	mlog_exit(retval);
992 	return retval;
993 }
994 
995 /* expects array to already be allocated
996  *
997  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
998  * l_count for you
999  */
1000 static int ocfs2_create_new_meta_bhs(handle_t *handle,
1001 				     struct ocfs2_extent_tree *et,
1002 				     int wanted,
1003 				     struct ocfs2_alloc_context *meta_ac,
1004 				     struct buffer_head *bhs[])
1005 {
1006 	int count, status, i;
1007 	u16 suballoc_bit_start;
1008 	u32 num_got;
1009 	u64 suballoc_loc, first_blkno;
1010 	struct ocfs2_super *osb =
1011 		OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
1012 	struct ocfs2_extent_block *eb;
1013 
1014 	mlog_entry_void();
1015 
1016 	count = 0;
1017 	while (count < wanted) {
1018 		status = ocfs2_claim_metadata(handle,
1019 					      meta_ac,
1020 					      wanted - count,
1021 					      &suballoc_loc,
1022 					      &suballoc_bit_start,
1023 					      &num_got,
1024 					      &first_blkno);
1025 		if (status < 0) {
1026 			mlog_errno(status);
1027 			goto bail;
1028 		}
1029 
1030 		for(i = count;  i < (num_got + count); i++) {
1031 			bhs[i] = sb_getblk(osb->sb, first_blkno);
1032 			if (bhs[i] == NULL) {
1033 				status = -EIO;
1034 				mlog_errno(status);
1035 				goto bail;
1036 			}
1037 			ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]);
1038 
1039 			status = ocfs2_journal_access_eb(handle, et->et_ci,
1040 							 bhs[i],
1041 							 OCFS2_JOURNAL_ACCESS_CREATE);
1042 			if (status < 0) {
1043 				mlog_errno(status);
1044 				goto bail;
1045 			}
1046 
1047 			memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
1048 			eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
1049 			/* Ok, setup the minimal stuff here. */
1050 			strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
1051 			eb->h_blkno = cpu_to_le64(first_blkno);
1052 			eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
1053 			eb->h_suballoc_slot =
1054 				cpu_to_le16(meta_ac->ac_alloc_slot);
1055 			eb->h_suballoc_loc = cpu_to_le64(suballoc_loc);
1056 			eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
1057 			eb->h_list.l_count =
1058 				cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
1059 
1060 			suballoc_bit_start++;
1061 			first_blkno++;
1062 
1063 			/* We'll also be dirtied by the caller, so
1064 			 * this isn't absolutely necessary. */
1065 			ocfs2_journal_dirty(handle, bhs[i]);
1066 		}
1067 
1068 		count += num_got;
1069 	}
1070 
1071 	status = 0;
1072 bail:
1073 	if (status < 0) {
1074 		for(i = 0; i < wanted; i++) {
1075 			brelse(bhs[i]);
1076 			bhs[i] = NULL;
1077 		}
1078 	}
1079 	mlog_exit(status);
1080 	return status;
1081 }
1082 
1083 /*
1084  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1085  *
1086  * Returns the sum of the rightmost extent rec logical offset and
1087  * cluster count.
1088  *
1089  * ocfs2_add_branch() uses this to determine what logical cluster
1090  * value should be populated into the leftmost new branch records.
1091  *
1092  * ocfs2_shift_tree_depth() uses this to determine the # clusters
1093  * value for the new topmost tree record.
1094  */
1095 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
1096 {
1097 	int i;
1098 
1099 	i = le16_to_cpu(el->l_next_free_rec) - 1;
1100 
1101 	return le32_to_cpu(el->l_recs[i].e_cpos) +
1102 		ocfs2_rec_clusters(el, &el->l_recs[i]);
1103 }
1104 
1105 /*
1106  * Change range of the branches in the right most path according to the leaf
1107  * extent block's rightmost record.
1108  */
1109 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1110 					 struct ocfs2_extent_tree *et)
1111 {
1112 	int status;
1113 	struct ocfs2_path *path = NULL;
1114 	struct ocfs2_extent_list *el;
1115 	struct ocfs2_extent_rec *rec;
1116 
1117 	path = ocfs2_new_path_from_et(et);
1118 	if (!path) {
1119 		status = -ENOMEM;
1120 		return status;
1121 	}
1122 
1123 	status = ocfs2_find_path(et->et_ci, path, UINT_MAX);
1124 	if (status < 0) {
1125 		mlog_errno(status);
1126 		goto out;
1127 	}
1128 
1129 	status = ocfs2_extend_trans(handle, path_num_items(path));
1130 	if (status < 0) {
1131 		mlog_errno(status);
1132 		goto out;
1133 	}
1134 
1135 	status = ocfs2_journal_access_path(et->et_ci, handle, path);
1136 	if (status < 0) {
1137 		mlog_errno(status);
1138 		goto out;
1139 	}
1140 
1141 	el = path_leaf_el(path);
1142 	rec = &el->l_recs[le32_to_cpu(el->l_next_free_rec) - 1];
1143 
1144 	ocfs2_adjust_rightmost_records(handle, et, path, rec);
1145 
1146 out:
1147 	ocfs2_free_path(path);
1148 	return status;
1149 }
1150 
1151 /*
1152  * Add an entire tree branch to our inode. eb_bh is the extent block
1153  * to start at, if we don't want to start the branch at the root
1154  * structure.
1155  *
1156  * last_eb_bh is required as we have to update it's next_leaf pointer
1157  * for the new last extent block.
1158  *
1159  * the new branch will be 'empty' in the sense that every block will
1160  * contain a single record with cluster count == 0.
1161  */
1162 static int ocfs2_add_branch(handle_t *handle,
1163 			    struct ocfs2_extent_tree *et,
1164 			    struct buffer_head *eb_bh,
1165 			    struct buffer_head **last_eb_bh,
1166 			    struct ocfs2_alloc_context *meta_ac)
1167 {
1168 	int status, new_blocks, i;
1169 	u64 next_blkno, new_last_eb_blk;
1170 	struct buffer_head *bh;
1171 	struct buffer_head **new_eb_bhs = NULL;
1172 	struct ocfs2_extent_block *eb;
1173 	struct ocfs2_extent_list  *eb_el;
1174 	struct ocfs2_extent_list  *el;
1175 	u32 new_cpos, root_end;
1176 
1177 	mlog_entry_void();
1178 
1179 	BUG_ON(!last_eb_bh || !*last_eb_bh);
1180 
1181 	if (eb_bh) {
1182 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1183 		el = &eb->h_list;
1184 	} else
1185 		el = et->et_root_el;
1186 
1187 	/* we never add a branch to a leaf. */
1188 	BUG_ON(!el->l_tree_depth);
1189 
1190 	new_blocks = le16_to_cpu(el->l_tree_depth);
1191 
1192 	eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1193 	new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1194 	root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1195 
1196 	/*
1197 	 * If there is a gap before the root end and the real end
1198 	 * of the righmost leaf block, we need to remove the gap
1199 	 * between new_cpos and root_end first so that the tree
1200 	 * is consistent after we add a new branch(it will start
1201 	 * from new_cpos).
1202 	 */
1203 	if (root_end > new_cpos) {
1204 		mlog(0, "adjust the cluster end from %u to %u\n",
1205 		     root_end, new_cpos);
1206 		status = ocfs2_adjust_rightmost_branch(handle, et);
1207 		if (status) {
1208 			mlog_errno(status);
1209 			goto bail;
1210 		}
1211 	}
1212 
1213 	/* allocate the number of new eb blocks we need */
1214 	new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1215 			     GFP_KERNEL);
1216 	if (!new_eb_bhs) {
1217 		status = -ENOMEM;
1218 		mlog_errno(status);
1219 		goto bail;
1220 	}
1221 
1222 	status = ocfs2_create_new_meta_bhs(handle, et, new_blocks,
1223 					   meta_ac, new_eb_bhs);
1224 	if (status < 0) {
1225 		mlog_errno(status);
1226 		goto bail;
1227 	}
1228 
1229 	/* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1230 	 * linked with the rest of the tree.
1231 	 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1232 	 *
1233 	 * when we leave the loop, new_last_eb_blk will point to the
1234 	 * newest leaf, and next_blkno will point to the topmost extent
1235 	 * block. */
1236 	next_blkno = new_last_eb_blk = 0;
1237 	for(i = 0; i < new_blocks; i++) {
1238 		bh = new_eb_bhs[i];
1239 		eb = (struct ocfs2_extent_block *) bh->b_data;
1240 		/* ocfs2_create_new_meta_bhs() should create it right! */
1241 		BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1242 		eb_el = &eb->h_list;
1243 
1244 		status = ocfs2_journal_access_eb(handle, et->et_ci, bh,
1245 						 OCFS2_JOURNAL_ACCESS_CREATE);
1246 		if (status < 0) {
1247 			mlog_errno(status);
1248 			goto bail;
1249 		}
1250 
1251 		eb->h_next_leaf_blk = 0;
1252 		eb_el->l_tree_depth = cpu_to_le16(i);
1253 		eb_el->l_next_free_rec = cpu_to_le16(1);
1254 		/*
1255 		 * This actually counts as an empty extent as
1256 		 * c_clusters == 0
1257 		 */
1258 		eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1259 		eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1260 		/*
1261 		 * eb_el isn't always an interior node, but even leaf
1262 		 * nodes want a zero'd flags and reserved field so
1263 		 * this gets the whole 32 bits regardless of use.
1264 		 */
1265 		eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1266 		if (!eb_el->l_tree_depth)
1267 			new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1268 
1269 		ocfs2_journal_dirty(handle, bh);
1270 		next_blkno = le64_to_cpu(eb->h_blkno);
1271 	}
1272 
1273 	/* This is a bit hairy. We want to update up to three blocks
1274 	 * here without leaving any of them in an inconsistent state
1275 	 * in case of error. We don't have to worry about
1276 	 * journal_dirty erroring as it won't unless we've aborted the
1277 	 * handle (in which case we would never be here) so reserving
1278 	 * the write with journal_access is all we need to do. */
1279 	status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh,
1280 					 OCFS2_JOURNAL_ACCESS_WRITE);
1281 	if (status < 0) {
1282 		mlog_errno(status);
1283 		goto bail;
1284 	}
1285 	status = ocfs2_et_root_journal_access(handle, et,
1286 					      OCFS2_JOURNAL_ACCESS_WRITE);
1287 	if (status < 0) {
1288 		mlog_errno(status);
1289 		goto bail;
1290 	}
1291 	if (eb_bh) {
1292 		status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh,
1293 						 OCFS2_JOURNAL_ACCESS_WRITE);
1294 		if (status < 0) {
1295 			mlog_errno(status);
1296 			goto bail;
1297 		}
1298 	}
1299 
1300 	/* Link the new branch into the rest of the tree (el will
1301 	 * either be on the root_bh, or the extent block passed in. */
1302 	i = le16_to_cpu(el->l_next_free_rec);
1303 	el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1304 	el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1305 	el->l_recs[i].e_int_clusters = 0;
1306 	le16_add_cpu(&el->l_next_free_rec, 1);
1307 
1308 	/* fe needs a new last extent block pointer, as does the
1309 	 * next_leaf on the previously last-extent-block. */
1310 	ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1311 
1312 	eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1313 	eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1314 
1315 	ocfs2_journal_dirty(handle, *last_eb_bh);
1316 	ocfs2_journal_dirty(handle, et->et_root_bh);
1317 	if (eb_bh)
1318 		ocfs2_journal_dirty(handle, eb_bh);
1319 
1320 	/*
1321 	 * Some callers want to track the rightmost leaf so pass it
1322 	 * back here.
1323 	 */
1324 	brelse(*last_eb_bh);
1325 	get_bh(new_eb_bhs[0]);
1326 	*last_eb_bh = new_eb_bhs[0];
1327 
1328 	status = 0;
1329 bail:
1330 	if (new_eb_bhs) {
1331 		for (i = 0; i < new_blocks; i++)
1332 			brelse(new_eb_bhs[i]);
1333 		kfree(new_eb_bhs);
1334 	}
1335 
1336 	mlog_exit(status);
1337 	return status;
1338 }
1339 
1340 /*
1341  * adds another level to the allocation tree.
1342  * returns back the new extent block so you can add a branch to it
1343  * after this call.
1344  */
1345 static int ocfs2_shift_tree_depth(handle_t *handle,
1346 				  struct ocfs2_extent_tree *et,
1347 				  struct ocfs2_alloc_context *meta_ac,
1348 				  struct buffer_head **ret_new_eb_bh)
1349 {
1350 	int status, i;
1351 	u32 new_clusters;
1352 	struct buffer_head *new_eb_bh = NULL;
1353 	struct ocfs2_extent_block *eb;
1354 	struct ocfs2_extent_list  *root_el;
1355 	struct ocfs2_extent_list  *eb_el;
1356 
1357 	mlog_entry_void();
1358 
1359 	status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac,
1360 					   &new_eb_bh);
1361 	if (status < 0) {
1362 		mlog_errno(status);
1363 		goto bail;
1364 	}
1365 
1366 	eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1367 	/* ocfs2_create_new_meta_bhs() should create it right! */
1368 	BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1369 
1370 	eb_el = &eb->h_list;
1371 	root_el = et->et_root_el;
1372 
1373 	status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh,
1374 					 OCFS2_JOURNAL_ACCESS_CREATE);
1375 	if (status < 0) {
1376 		mlog_errno(status);
1377 		goto bail;
1378 	}
1379 
1380 	/* copy the root extent list data into the new extent block */
1381 	eb_el->l_tree_depth = root_el->l_tree_depth;
1382 	eb_el->l_next_free_rec = root_el->l_next_free_rec;
1383 	for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1384 		eb_el->l_recs[i] = root_el->l_recs[i];
1385 
1386 	ocfs2_journal_dirty(handle, new_eb_bh);
1387 
1388 	status = ocfs2_et_root_journal_access(handle, et,
1389 					      OCFS2_JOURNAL_ACCESS_WRITE);
1390 	if (status < 0) {
1391 		mlog_errno(status);
1392 		goto bail;
1393 	}
1394 
1395 	new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1396 
1397 	/* update root_bh now */
1398 	le16_add_cpu(&root_el->l_tree_depth, 1);
1399 	root_el->l_recs[0].e_cpos = 0;
1400 	root_el->l_recs[0].e_blkno = eb->h_blkno;
1401 	root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1402 	for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1403 		memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1404 	root_el->l_next_free_rec = cpu_to_le16(1);
1405 
1406 	/* If this is our 1st tree depth shift, then last_eb_blk
1407 	 * becomes the allocated extent block */
1408 	if (root_el->l_tree_depth == cpu_to_le16(1))
1409 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1410 
1411 	ocfs2_journal_dirty(handle, et->et_root_bh);
1412 
1413 	*ret_new_eb_bh = new_eb_bh;
1414 	new_eb_bh = NULL;
1415 	status = 0;
1416 bail:
1417 	brelse(new_eb_bh);
1418 
1419 	mlog_exit(status);
1420 	return status;
1421 }
1422 
1423 /*
1424  * Should only be called when there is no space left in any of the
1425  * leaf nodes. What we want to do is find the lowest tree depth
1426  * non-leaf extent block with room for new records. There are three
1427  * valid results of this search:
1428  *
1429  * 1) a lowest extent block is found, then we pass it back in
1430  *    *lowest_eb_bh and return '0'
1431  *
1432  * 2) the search fails to find anything, but the root_el has room. We
1433  *    pass NULL back in *lowest_eb_bh, but still return '0'
1434  *
1435  * 3) the search fails to find anything AND the root_el is full, in
1436  *    which case we return > 0
1437  *
1438  * return status < 0 indicates an error.
1439  */
1440 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et,
1441 				    struct buffer_head **target_bh)
1442 {
1443 	int status = 0, i;
1444 	u64 blkno;
1445 	struct ocfs2_extent_block *eb;
1446 	struct ocfs2_extent_list  *el;
1447 	struct buffer_head *bh = NULL;
1448 	struct buffer_head *lowest_bh = NULL;
1449 
1450 	mlog_entry_void();
1451 
1452 	*target_bh = NULL;
1453 
1454 	el = et->et_root_el;
1455 
1456 	while(le16_to_cpu(el->l_tree_depth) > 1) {
1457 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1458 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1459 				    "Owner %llu has empty "
1460 				    "extent list (next_free_rec == 0)",
1461 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
1462 			status = -EIO;
1463 			goto bail;
1464 		}
1465 		i = le16_to_cpu(el->l_next_free_rec) - 1;
1466 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1467 		if (!blkno) {
1468 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1469 				    "Owner %llu has extent "
1470 				    "list where extent # %d has no physical "
1471 				    "block start",
1472 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i);
1473 			status = -EIO;
1474 			goto bail;
1475 		}
1476 
1477 		brelse(bh);
1478 		bh = NULL;
1479 
1480 		status = ocfs2_read_extent_block(et->et_ci, blkno, &bh);
1481 		if (status < 0) {
1482 			mlog_errno(status);
1483 			goto bail;
1484 		}
1485 
1486 		eb = (struct ocfs2_extent_block *) bh->b_data;
1487 		el = &eb->h_list;
1488 
1489 		if (le16_to_cpu(el->l_next_free_rec) <
1490 		    le16_to_cpu(el->l_count)) {
1491 			brelse(lowest_bh);
1492 			lowest_bh = bh;
1493 			get_bh(lowest_bh);
1494 		}
1495 	}
1496 
1497 	/* If we didn't find one and the fe doesn't have any room,
1498 	 * then return '1' */
1499 	el = et->et_root_el;
1500 	if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1501 		status = 1;
1502 
1503 	*target_bh = lowest_bh;
1504 bail:
1505 	brelse(bh);
1506 
1507 	mlog_exit(status);
1508 	return status;
1509 }
1510 
1511 /*
1512  * Grow a b-tree so that it has more records.
1513  *
1514  * We might shift the tree depth in which case existing paths should
1515  * be considered invalid.
1516  *
1517  * Tree depth after the grow is returned via *final_depth.
1518  *
1519  * *last_eb_bh will be updated by ocfs2_add_branch().
1520  */
1521 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et,
1522 			   int *final_depth, struct buffer_head **last_eb_bh,
1523 			   struct ocfs2_alloc_context *meta_ac)
1524 {
1525 	int ret, shift;
1526 	struct ocfs2_extent_list *el = et->et_root_el;
1527 	int depth = le16_to_cpu(el->l_tree_depth);
1528 	struct buffer_head *bh = NULL;
1529 
1530 	BUG_ON(meta_ac == NULL);
1531 
1532 	shift = ocfs2_find_branch_target(et, &bh);
1533 	if (shift < 0) {
1534 		ret = shift;
1535 		mlog_errno(ret);
1536 		goto out;
1537 	}
1538 
1539 	/* We traveled all the way to the bottom of the allocation tree
1540 	 * and didn't find room for any more extents - we need to add
1541 	 * another tree level */
1542 	if (shift) {
1543 		BUG_ON(bh);
1544 		mlog(0, "need to shift tree depth (current = %d)\n", depth);
1545 
1546 		/* ocfs2_shift_tree_depth will return us a buffer with
1547 		 * the new extent block (so we can pass that to
1548 		 * ocfs2_add_branch). */
1549 		ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh);
1550 		if (ret < 0) {
1551 			mlog_errno(ret);
1552 			goto out;
1553 		}
1554 		depth++;
1555 		if (depth == 1) {
1556 			/*
1557 			 * Special case: we have room now if we shifted from
1558 			 * tree_depth 0, so no more work needs to be done.
1559 			 *
1560 			 * We won't be calling add_branch, so pass
1561 			 * back *last_eb_bh as the new leaf. At depth
1562 			 * zero, it should always be null so there's
1563 			 * no reason to brelse.
1564 			 */
1565 			BUG_ON(*last_eb_bh);
1566 			get_bh(bh);
1567 			*last_eb_bh = bh;
1568 			goto out;
1569 		}
1570 	}
1571 
1572 	/* call ocfs2_add_branch to add the final part of the tree with
1573 	 * the new data. */
1574 	mlog(0, "add branch. bh = %p\n", bh);
1575 	ret = ocfs2_add_branch(handle, et, bh, last_eb_bh,
1576 			       meta_ac);
1577 	if (ret < 0) {
1578 		mlog_errno(ret);
1579 		goto out;
1580 	}
1581 
1582 out:
1583 	if (final_depth)
1584 		*final_depth = depth;
1585 	brelse(bh);
1586 	return ret;
1587 }
1588 
1589 /*
1590  * This function will discard the rightmost extent record.
1591  */
1592 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1593 {
1594 	int next_free = le16_to_cpu(el->l_next_free_rec);
1595 	int count = le16_to_cpu(el->l_count);
1596 	unsigned int num_bytes;
1597 
1598 	BUG_ON(!next_free);
1599 	/* This will cause us to go off the end of our extent list. */
1600 	BUG_ON(next_free >= count);
1601 
1602 	num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1603 
1604 	memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1605 }
1606 
1607 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1608 			      struct ocfs2_extent_rec *insert_rec)
1609 {
1610 	int i, insert_index, next_free, has_empty, num_bytes;
1611 	u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1612 	struct ocfs2_extent_rec *rec;
1613 
1614 	next_free = le16_to_cpu(el->l_next_free_rec);
1615 	has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1616 
1617 	BUG_ON(!next_free);
1618 
1619 	/* The tree code before us didn't allow enough room in the leaf. */
1620 	BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1621 
1622 	/*
1623 	 * The easiest way to approach this is to just remove the
1624 	 * empty extent and temporarily decrement next_free.
1625 	 */
1626 	if (has_empty) {
1627 		/*
1628 		 * If next_free was 1 (only an empty extent), this
1629 		 * loop won't execute, which is fine. We still want
1630 		 * the decrement above to happen.
1631 		 */
1632 		for(i = 0; i < (next_free - 1); i++)
1633 			el->l_recs[i] = el->l_recs[i+1];
1634 
1635 		next_free--;
1636 	}
1637 
1638 	/*
1639 	 * Figure out what the new record index should be.
1640 	 */
1641 	for(i = 0; i < next_free; i++) {
1642 		rec = &el->l_recs[i];
1643 
1644 		if (insert_cpos < le32_to_cpu(rec->e_cpos))
1645 			break;
1646 	}
1647 	insert_index = i;
1648 
1649 	mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1650 	     insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1651 
1652 	BUG_ON(insert_index < 0);
1653 	BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1654 	BUG_ON(insert_index > next_free);
1655 
1656 	/*
1657 	 * No need to memmove if we're just adding to the tail.
1658 	 */
1659 	if (insert_index != next_free) {
1660 		BUG_ON(next_free >= le16_to_cpu(el->l_count));
1661 
1662 		num_bytes = next_free - insert_index;
1663 		num_bytes *= sizeof(struct ocfs2_extent_rec);
1664 		memmove(&el->l_recs[insert_index + 1],
1665 			&el->l_recs[insert_index],
1666 			num_bytes);
1667 	}
1668 
1669 	/*
1670 	 * Either we had an empty extent, and need to re-increment or
1671 	 * there was no empty extent on a non full rightmost leaf node,
1672 	 * in which case we still need to increment.
1673 	 */
1674 	next_free++;
1675 	el->l_next_free_rec = cpu_to_le16(next_free);
1676 	/*
1677 	 * Make sure none of the math above just messed up our tree.
1678 	 */
1679 	BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1680 
1681 	el->l_recs[insert_index] = *insert_rec;
1682 
1683 }
1684 
1685 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1686 {
1687 	int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1688 
1689 	BUG_ON(num_recs == 0);
1690 
1691 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1692 		num_recs--;
1693 		size = num_recs * sizeof(struct ocfs2_extent_rec);
1694 		memmove(&el->l_recs[0], &el->l_recs[1], size);
1695 		memset(&el->l_recs[num_recs], 0,
1696 		       sizeof(struct ocfs2_extent_rec));
1697 		el->l_next_free_rec = cpu_to_le16(num_recs);
1698 	}
1699 }
1700 
1701 /*
1702  * Create an empty extent record .
1703  *
1704  * l_next_free_rec may be updated.
1705  *
1706  * If an empty extent already exists do nothing.
1707  */
1708 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1709 {
1710 	int next_free = le16_to_cpu(el->l_next_free_rec);
1711 
1712 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1713 
1714 	if (next_free == 0)
1715 		goto set_and_inc;
1716 
1717 	if (ocfs2_is_empty_extent(&el->l_recs[0]))
1718 		return;
1719 
1720 	mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1721 			"Asked to create an empty extent in a full list:\n"
1722 			"count = %u, tree depth = %u",
1723 			le16_to_cpu(el->l_count),
1724 			le16_to_cpu(el->l_tree_depth));
1725 
1726 	ocfs2_shift_records_right(el);
1727 
1728 set_and_inc:
1729 	le16_add_cpu(&el->l_next_free_rec, 1);
1730 	memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1731 }
1732 
1733 /*
1734  * For a rotation which involves two leaf nodes, the "root node" is
1735  * the lowest level tree node which contains a path to both leafs. This
1736  * resulting set of information can be used to form a complete "subtree"
1737  *
1738  * This function is passed two full paths from the dinode down to a
1739  * pair of adjacent leaves. It's task is to figure out which path
1740  * index contains the subtree root - this can be the root index itself
1741  * in a worst-case rotation.
1742  *
1743  * The array index of the subtree root is passed back.
1744  */
1745 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et,
1746 			    struct ocfs2_path *left,
1747 			    struct ocfs2_path *right)
1748 {
1749 	int i = 0;
1750 
1751 	/*
1752 	 * Check that the caller passed in two paths from the same tree.
1753 	 */
1754 	BUG_ON(path_root_bh(left) != path_root_bh(right));
1755 
1756 	do {
1757 		i++;
1758 
1759 		/*
1760 		 * The caller didn't pass two adjacent paths.
1761 		 */
1762 		mlog_bug_on_msg(i > left->p_tree_depth,
1763 				"Owner %llu, left depth %u, right depth %u\n"
1764 				"left leaf blk %llu, right leaf blk %llu\n",
1765 				(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
1766 				left->p_tree_depth, right->p_tree_depth,
1767 				(unsigned long long)path_leaf_bh(left)->b_blocknr,
1768 				(unsigned long long)path_leaf_bh(right)->b_blocknr);
1769 	} while (left->p_node[i].bh->b_blocknr ==
1770 		 right->p_node[i].bh->b_blocknr);
1771 
1772 	return i - 1;
1773 }
1774 
1775 typedef void (path_insert_t)(void *, struct buffer_head *);
1776 
1777 /*
1778  * Traverse a btree path in search of cpos, starting at root_el.
1779  *
1780  * This code can be called with a cpos larger than the tree, in which
1781  * case it will return the rightmost path.
1782  */
1783 static int __ocfs2_find_path(struct ocfs2_caching_info *ci,
1784 			     struct ocfs2_extent_list *root_el, u32 cpos,
1785 			     path_insert_t *func, void *data)
1786 {
1787 	int i, ret = 0;
1788 	u32 range;
1789 	u64 blkno;
1790 	struct buffer_head *bh = NULL;
1791 	struct ocfs2_extent_block *eb;
1792 	struct ocfs2_extent_list *el;
1793 	struct ocfs2_extent_rec *rec;
1794 
1795 	el = root_el;
1796 	while (el->l_tree_depth) {
1797 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1798 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1799 				    "Owner %llu has empty extent list at "
1800 				    "depth %u\n",
1801 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1802 				    le16_to_cpu(el->l_tree_depth));
1803 			ret = -EROFS;
1804 			goto out;
1805 
1806 		}
1807 
1808 		for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1809 			rec = &el->l_recs[i];
1810 
1811 			/*
1812 			 * In the case that cpos is off the allocation
1813 			 * tree, this should just wind up returning the
1814 			 * rightmost record.
1815 			 */
1816 			range = le32_to_cpu(rec->e_cpos) +
1817 				ocfs2_rec_clusters(el, rec);
1818 			if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1819 			    break;
1820 		}
1821 
1822 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1823 		if (blkno == 0) {
1824 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1825 				    "Owner %llu has bad blkno in extent list "
1826 				    "at depth %u (index %d)\n",
1827 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1828 				    le16_to_cpu(el->l_tree_depth), i);
1829 			ret = -EROFS;
1830 			goto out;
1831 		}
1832 
1833 		brelse(bh);
1834 		bh = NULL;
1835 		ret = ocfs2_read_extent_block(ci, blkno, &bh);
1836 		if (ret) {
1837 			mlog_errno(ret);
1838 			goto out;
1839 		}
1840 
1841 		eb = (struct ocfs2_extent_block *) bh->b_data;
1842 		el = &eb->h_list;
1843 
1844 		if (le16_to_cpu(el->l_next_free_rec) >
1845 		    le16_to_cpu(el->l_count)) {
1846 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1847 				    "Owner %llu has bad count in extent list "
1848 				    "at block %llu (next free=%u, count=%u)\n",
1849 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1850 				    (unsigned long long)bh->b_blocknr,
1851 				    le16_to_cpu(el->l_next_free_rec),
1852 				    le16_to_cpu(el->l_count));
1853 			ret = -EROFS;
1854 			goto out;
1855 		}
1856 
1857 		if (func)
1858 			func(data, bh);
1859 	}
1860 
1861 out:
1862 	/*
1863 	 * Catch any trailing bh that the loop didn't handle.
1864 	 */
1865 	brelse(bh);
1866 
1867 	return ret;
1868 }
1869 
1870 /*
1871  * Given an initialized path (that is, it has a valid root extent
1872  * list), this function will traverse the btree in search of the path
1873  * which would contain cpos.
1874  *
1875  * The path traveled is recorded in the path structure.
1876  *
1877  * Note that this will not do any comparisons on leaf node extent
1878  * records, so it will work fine in the case that we just added a tree
1879  * branch.
1880  */
1881 struct find_path_data {
1882 	int index;
1883 	struct ocfs2_path *path;
1884 };
1885 static void find_path_ins(void *data, struct buffer_head *bh)
1886 {
1887 	struct find_path_data *fp = data;
1888 
1889 	get_bh(bh);
1890 	ocfs2_path_insert_eb(fp->path, fp->index, bh);
1891 	fp->index++;
1892 }
1893 int ocfs2_find_path(struct ocfs2_caching_info *ci,
1894 		    struct ocfs2_path *path, u32 cpos)
1895 {
1896 	struct find_path_data data;
1897 
1898 	data.index = 1;
1899 	data.path = path;
1900 	return __ocfs2_find_path(ci, path_root_el(path), cpos,
1901 				 find_path_ins, &data);
1902 }
1903 
1904 static void find_leaf_ins(void *data, struct buffer_head *bh)
1905 {
1906 	struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1907 	struct ocfs2_extent_list *el = &eb->h_list;
1908 	struct buffer_head **ret = data;
1909 
1910 	/* We want to retain only the leaf block. */
1911 	if (le16_to_cpu(el->l_tree_depth) == 0) {
1912 		get_bh(bh);
1913 		*ret = bh;
1914 	}
1915 }
1916 /*
1917  * Find the leaf block in the tree which would contain cpos. No
1918  * checking of the actual leaf is done.
1919  *
1920  * Some paths want to call this instead of allocating a path structure
1921  * and calling ocfs2_find_path().
1922  *
1923  * This function doesn't handle non btree extent lists.
1924  */
1925 int ocfs2_find_leaf(struct ocfs2_caching_info *ci,
1926 		    struct ocfs2_extent_list *root_el, u32 cpos,
1927 		    struct buffer_head **leaf_bh)
1928 {
1929 	int ret;
1930 	struct buffer_head *bh = NULL;
1931 
1932 	ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh);
1933 	if (ret) {
1934 		mlog_errno(ret);
1935 		goto out;
1936 	}
1937 
1938 	*leaf_bh = bh;
1939 out:
1940 	return ret;
1941 }
1942 
1943 /*
1944  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1945  *
1946  * Basically, we've moved stuff around at the bottom of the tree and
1947  * we need to fix up the extent records above the changes to reflect
1948  * the new changes.
1949  *
1950  * left_rec: the record on the left.
1951  * left_child_el: is the child list pointed to by left_rec
1952  * right_rec: the record to the right of left_rec
1953  * right_child_el: is the child list pointed to by right_rec
1954  *
1955  * By definition, this only works on interior nodes.
1956  */
1957 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1958 				  struct ocfs2_extent_list *left_child_el,
1959 				  struct ocfs2_extent_rec *right_rec,
1960 				  struct ocfs2_extent_list *right_child_el)
1961 {
1962 	u32 left_clusters, right_end;
1963 
1964 	/*
1965 	 * Interior nodes never have holes. Their cpos is the cpos of
1966 	 * the leftmost record in their child list. Their cluster
1967 	 * count covers the full theoretical range of their child list
1968 	 * - the range between their cpos and the cpos of the record
1969 	 * immediately to their right.
1970 	 */
1971 	left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1972 	if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1973 		BUG_ON(right_child_el->l_tree_depth);
1974 		BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1975 		left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1976 	}
1977 	left_clusters -= le32_to_cpu(left_rec->e_cpos);
1978 	left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1979 
1980 	/*
1981 	 * Calculate the rightmost cluster count boundary before
1982 	 * moving cpos - we will need to adjust clusters after
1983 	 * updating e_cpos to keep the same highest cluster count.
1984 	 */
1985 	right_end = le32_to_cpu(right_rec->e_cpos);
1986 	right_end += le32_to_cpu(right_rec->e_int_clusters);
1987 
1988 	right_rec->e_cpos = left_rec->e_cpos;
1989 	le32_add_cpu(&right_rec->e_cpos, left_clusters);
1990 
1991 	right_end -= le32_to_cpu(right_rec->e_cpos);
1992 	right_rec->e_int_clusters = cpu_to_le32(right_end);
1993 }
1994 
1995 /*
1996  * Adjust the adjacent root node records involved in a
1997  * rotation. left_el_blkno is passed in as a key so that we can easily
1998  * find it's index in the root list.
1999  */
2000 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
2001 				      struct ocfs2_extent_list *left_el,
2002 				      struct ocfs2_extent_list *right_el,
2003 				      u64 left_el_blkno)
2004 {
2005 	int i;
2006 
2007 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
2008 	       le16_to_cpu(left_el->l_tree_depth));
2009 
2010 	for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
2011 		if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
2012 			break;
2013 	}
2014 
2015 	/*
2016 	 * The path walking code should have never returned a root and
2017 	 * two paths which are not adjacent.
2018 	 */
2019 	BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
2020 
2021 	ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
2022 				      &root_el->l_recs[i + 1], right_el);
2023 }
2024 
2025 /*
2026  * We've changed a leaf block (in right_path) and need to reflect that
2027  * change back up the subtree.
2028  *
2029  * This happens in multiple places:
2030  *   - When we've moved an extent record from the left path leaf to the right
2031  *     path leaf to make room for an empty extent in the left path leaf.
2032  *   - When our insert into the right path leaf is at the leftmost edge
2033  *     and requires an update of the path immediately to it's left. This
2034  *     can occur at the end of some types of rotation and appending inserts.
2035  *   - When we've adjusted the last extent record in the left path leaf and the
2036  *     1st extent record in the right path leaf during cross extent block merge.
2037  */
2038 static void ocfs2_complete_edge_insert(handle_t *handle,
2039 				       struct ocfs2_path *left_path,
2040 				       struct ocfs2_path *right_path,
2041 				       int subtree_index)
2042 {
2043 	int i, idx;
2044 	struct ocfs2_extent_list *el, *left_el, *right_el;
2045 	struct ocfs2_extent_rec *left_rec, *right_rec;
2046 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2047 
2048 	/*
2049 	 * Update the counts and position values within all the
2050 	 * interior nodes to reflect the leaf rotation we just did.
2051 	 *
2052 	 * The root node is handled below the loop.
2053 	 *
2054 	 * We begin the loop with right_el and left_el pointing to the
2055 	 * leaf lists and work our way up.
2056 	 *
2057 	 * NOTE: within this loop, left_el and right_el always refer
2058 	 * to the *child* lists.
2059 	 */
2060 	left_el = path_leaf_el(left_path);
2061 	right_el = path_leaf_el(right_path);
2062 	for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
2063 		mlog(0, "Adjust records at index %u\n", i);
2064 
2065 		/*
2066 		 * One nice property of knowing that all of these
2067 		 * nodes are below the root is that we only deal with
2068 		 * the leftmost right node record and the rightmost
2069 		 * left node record.
2070 		 */
2071 		el = left_path->p_node[i].el;
2072 		idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2073 		left_rec = &el->l_recs[idx];
2074 
2075 		el = right_path->p_node[i].el;
2076 		right_rec = &el->l_recs[0];
2077 
2078 		ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
2079 					      right_el);
2080 
2081 		ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2082 		ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2083 
2084 		/*
2085 		 * Setup our list pointers now so that the current
2086 		 * parents become children in the next iteration.
2087 		 */
2088 		left_el = left_path->p_node[i].el;
2089 		right_el = right_path->p_node[i].el;
2090 	}
2091 
2092 	/*
2093 	 * At the root node, adjust the two adjacent records which
2094 	 * begin our path to the leaves.
2095 	 */
2096 
2097 	el = left_path->p_node[subtree_index].el;
2098 	left_el = left_path->p_node[subtree_index + 1].el;
2099 	right_el = right_path->p_node[subtree_index + 1].el;
2100 
2101 	ocfs2_adjust_root_records(el, left_el, right_el,
2102 				  left_path->p_node[subtree_index + 1].bh->b_blocknr);
2103 
2104 	root_bh = left_path->p_node[subtree_index].bh;
2105 
2106 	ocfs2_journal_dirty(handle, root_bh);
2107 }
2108 
2109 static int ocfs2_rotate_subtree_right(handle_t *handle,
2110 				      struct ocfs2_extent_tree *et,
2111 				      struct ocfs2_path *left_path,
2112 				      struct ocfs2_path *right_path,
2113 				      int subtree_index)
2114 {
2115 	int ret, i;
2116 	struct buffer_head *right_leaf_bh;
2117 	struct buffer_head *left_leaf_bh = NULL;
2118 	struct buffer_head *root_bh;
2119 	struct ocfs2_extent_list *right_el, *left_el;
2120 	struct ocfs2_extent_rec move_rec;
2121 
2122 	left_leaf_bh = path_leaf_bh(left_path);
2123 	left_el = path_leaf_el(left_path);
2124 
2125 	if (left_el->l_next_free_rec != left_el->l_count) {
2126 		ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
2127 			    "Inode %llu has non-full interior leaf node %llu"
2128 			    "(next free = %u)",
2129 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2130 			    (unsigned long long)left_leaf_bh->b_blocknr,
2131 			    le16_to_cpu(left_el->l_next_free_rec));
2132 		return -EROFS;
2133 	}
2134 
2135 	/*
2136 	 * This extent block may already have an empty record, so we
2137 	 * return early if so.
2138 	 */
2139 	if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2140 		return 0;
2141 
2142 	root_bh = left_path->p_node[subtree_index].bh;
2143 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2144 
2145 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2146 					   subtree_index);
2147 	if (ret) {
2148 		mlog_errno(ret);
2149 		goto out;
2150 	}
2151 
2152 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2153 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2154 						   right_path, i);
2155 		if (ret) {
2156 			mlog_errno(ret);
2157 			goto out;
2158 		}
2159 
2160 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2161 						   left_path, i);
2162 		if (ret) {
2163 			mlog_errno(ret);
2164 			goto out;
2165 		}
2166 	}
2167 
2168 	right_leaf_bh = path_leaf_bh(right_path);
2169 	right_el = path_leaf_el(right_path);
2170 
2171 	/* This is a code error, not a disk corruption. */
2172 	mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2173 			"because rightmost leaf block %llu is empty\n",
2174 			(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2175 			(unsigned long long)right_leaf_bh->b_blocknr);
2176 
2177 	ocfs2_create_empty_extent(right_el);
2178 
2179 	ocfs2_journal_dirty(handle, right_leaf_bh);
2180 
2181 	/* Do the copy now. */
2182 	i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2183 	move_rec = left_el->l_recs[i];
2184 	right_el->l_recs[0] = move_rec;
2185 
2186 	/*
2187 	 * Clear out the record we just copied and shift everything
2188 	 * over, leaving an empty extent in the left leaf.
2189 	 *
2190 	 * We temporarily subtract from next_free_rec so that the
2191 	 * shift will lose the tail record (which is now defunct).
2192 	 */
2193 	le16_add_cpu(&left_el->l_next_free_rec, -1);
2194 	ocfs2_shift_records_right(left_el);
2195 	memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2196 	le16_add_cpu(&left_el->l_next_free_rec, 1);
2197 
2198 	ocfs2_journal_dirty(handle, left_leaf_bh);
2199 
2200 	ocfs2_complete_edge_insert(handle, left_path, right_path,
2201 				   subtree_index);
2202 
2203 out:
2204 	return ret;
2205 }
2206 
2207 /*
2208  * Given a full path, determine what cpos value would return us a path
2209  * containing the leaf immediately to the left of the current one.
2210  *
2211  * Will return zero if the path passed in is already the leftmost path.
2212  */
2213 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2214 				  struct ocfs2_path *path, u32 *cpos)
2215 {
2216 	int i, j, ret = 0;
2217 	u64 blkno;
2218 	struct ocfs2_extent_list *el;
2219 
2220 	BUG_ON(path->p_tree_depth == 0);
2221 
2222 	*cpos = 0;
2223 
2224 	blkno = path_leaf_bh(path)->b_blocknr;
2225 
2226 	/* Start at the tree node just above the leaf and work our way up. */
2227 	i = path->p_tree_depth - 1;
2228 	while (i >= 0) {
2229 		el = path->p_node[i].el;
2230 
2231 		/*
2232 		 * Find the extent record just before the one in our
2233 		 * path.
2234 		 */
2235 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2236 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2237 				if (j == 0) {
2238 					if (i == 0) {
2239 						/*
2240 						 * We've determined that the
2241 						 * path specified is already
2242 						 * the leftmost one - return a
2243 						 * cpos of zero.
2244 						 */
2245 						goto out;
2246 					}
2247 					/*
2248 					 * The leftmost record points to our
2249 					 * leaf - we need to travel up the
2250 					 * tree one level.
2251 					 */
2252 					goto next_node;
2253 				}
2254 
2255 				*cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2256 				*cpos = *cpos + ocfs2_rec_clusters(el,
2257 							   &el->l_recs[j - 1]);
2258 				*cpos = *cpos - 1;
2259 				goto out;
2260 			}
2261 		}
2262 
2263 		/*
2264 		 * If we got here, we never found a valid node where
2265 		 * the tree indicated one should be.
2266 		 */
2267 		ocfs2_error(sb,
2268 			    "Invalid extent tree at extent block %llu\n",
2269 			    (unsigned long long)blkno);
2270 		ret = -EROFS;
2271 		goto out;
2272 
2273 next_node:
2274 		blkno = path->p_node[i].bh->b_blocknr;
2275 		i--;
2276 	}
2277 
2278 out:
2279 	return ret;
2280 }
2281 
2282 /*
2283  * Extend the transaction by enough credits to complete the rotation,
2284  * and still leave at least the original number of credits allocated
2285  * to this transaction.
2286  */
2287 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2288 					   int op_credits,
2289 					   struct ocfs2_path *path)
2290 {
2291 	int ret = 0;
2292 	int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2293 
2294 	if (handle->h_buffer_credits < credits)
2295 		ret = ocfs2_extend_trans(handle,
2296 					 credits - handle->h_buffer_credits);
2297 
2298 	return ret;
2299 }
2300 
2301 /*
2302  * Trap the case where we're inserting into the theoretical range past
2303  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2304  * whose cpos is less than ours into the right leaf.
2305  *
2306  * It's only necessary to look at the rightmost record of the left
2307  * leaf because the logic that calls us should ensure that the
2308  * theoretical ranges in the path components above the leaves are
2309  * correct.
2310  */
2311 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2312 						 u32 insert_cpos)
2313 {
2314 	struct ocfs2_extent_list *left_el;
2315 	struct ocfs2_extent_rec *rec;
2316 	int next_free;
2317 
2318 	left_el = path_leaf_el(left_path);
2319 	next_free = le16_to_cpu(left_el->l_next_free_rec);
2320 	rec = &left_el->l_recs[next_free - 1];
2321 
2322 	if (insert_cpos > le32_to_cpu(rec->e_cpos))
2323 		return 1;
2324 	return 0;
2325 }
2326 
2327 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2328 {
2329 	int next_free = le16_to_cpu(el->l_next_free_rec);
2330 	unsigned int range;
2331 	struct ocfs2_extent_rec *rec;
2332 
2333 	if (next_free == 0)
2334 		return 0;
2335 
2336 	rec = &el->l_recs[0];
2337 	if (ocfs2_is_empty_extent(rec)) {
2338 		/* Empty list. */
2339 		if (next_free == 1)
2340 			return 0;
2341 		rec = &el->l_recs[1];
2342 	}
2343 
2344 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2345 	if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2346 		return 1;
2347 	return 0;
2348 }
2349 
2350 /*
2351  * Rotate all the records in a btree right one record, starting at insert_cpos.
2352  *
2353  * The path to the rightmost leaf should be passed in.
2354  *
2355  * The array is assumed to be large enough to hold an entire path (tree depth).
2356  *
2357  * Upon successful return from this function:
2358  *
2359  * - The 'right_path' array will contain a path to the leaf block
2360  *   whose range contains e_cpos.
2361  * - That leaf block will have a single empty extent in list index 0.
2362  * - In the case that the rotation requires a post-insert update,
2363  *   *ret_left_path will contain a valid path which can be passed to
2364  *   ocfs2_insert_path().
2365  */
2366 static int ocfs2_rotate_tree_right(handle_t *handle,
2367 				   struct ocfs2_extent_tree *et,
2368 				   enum ocfs2_split_type split,
2369 				   u32 insert_cpos,
2370 				   struct ocfs2_path *right_path,
2371 				   struct ocfs2_path **ret_left_path)
2372 {
2373 	int ret, start, orig_credits = handle->h_buffer_credits;
2374 	u32 cpos;
2375 	struct ocfs2_path *left_path = NULL;
2376 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2377 
2378 	*ret_left_path = NULL;
2379 
2380 	left_path = ocfs2_new_path_from_path(right_path);
2381 	if (!left_path) {
2382 		ret = -ENOMEM;
2383 		mlog_errno(ret);
2384 		goto out;
2385 	}
2386 
2387 	ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2388 	if (ret) {
2389 		mlog_errno(ret);
2390 		goto out;
2391 	}
2392 
2393 	mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
2394 
2395 	/*
2396 	 * What we want to do here is:
2397 	 *
2398 	 * 1) Start with the rightmost path.
2399 	 *
2400 	 * 2) Determine a path to the leaf block directly to the left
2401 	 *    of that leaf.
2402 	 *
2403 	 * 3) Determine the 'subtree root' - the lowest level tree node
2404 	 *    which contains a path to both leaves.
2405 	 *
2406 	 * 4) Rotate the subtree.
2407 	 *
2408 	 * 5) Find the next subtree by considering the left path to be
2409 	 *    the new right path.
2410 	 *
2411 	 * The check at the top of this while loop also accepts
2412 	 * insert_cpos == cpos because cpos is only a _theoretical_
2413 	 * value to get us the left path - insert_cpos might very well
2414 	 * be filling that hole.
2415 	 *
2416 	 * Stop at a cpos of '0' because we either started at the
2417 	 * leftmost branch (i.e., a tree with one branch and a
2418 	 * rotation inside of it), or we've gone as far as we can in
2419 	 * rotating subtrees.
2420 	 */
2421 	while (cpos && insert_cpos <= cpos) {
2422 		mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2423 		     insert_cpos, cpos);
2424 
2425 		ret = ocfs2_find_path(et->et_ci, left_path, cpos);
2426 		if (ret) {
2427 			mlog_errno(ret);
2428 			goto out;
2429 		}
2430 
2431 		mlog_bug_on_msg(path_leaf_bh(left_path) ==
2432 				path_leaf_bh(right_path),
2433 				"Owner %llu: error during insert of %u "
2434 				"(left path cpos %u) results in two identical "
2435 				"paths ending at %llu\n",
2436 				(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2437 				insert_cpos, cpos,
2438 				(unsigned long long)
2439 				path_leaf_bh(left_path)->b_blocknr);
2440 
2441 		if (split == SPLIT_NONE &&
2442 		    ocfs2_rotate_requires_path_adjustment(left_path,
2443 							  insert_cpos)) {
2444 
2445 			/*
2446 			 * We've rotated the tree as much as we
2447 			 * should. The rest is up to
2448 			 * ocfs2_insert_path() to complete, after the
2449 			 * record insertion. We indicate this
2450 			 * situation by returning the left path.
2451 			 *
2452 			 * The reason we don't adjust the records here
2453 			 * before the record insert is that an error
2454 			 * later might break the rule where a parent
2455 			 * record e_cpos will reflect the actual
2456 			 * e_cpos of the 1st nonempty record of the
2457 			 * child list.
2458 			 */
2459 			*ret_left_path = left_path;
2460 			goto out_ret_path;
2461 		}
2462 
2463 		start = ocfs2_find_subtree_root(et, left_path, right_path);
2464 
2465 		mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2466 		     start,
2467 		     (unsigned long long) right_path->p_node[start].bh->b_blocknr,
2468 		     right_path->p_tree_depth);
2469 
2470 		ret = ocfs2_extend_rotate_transaction(handle, start,
2471 						      orig_credits, right_path);
2472 		if (ret) {
2473 			mlog_errno(ret);
2474 			goto out;
2475 		}
2476 
2477 		ret = ocfs2_rotate_subtree_right(handle, et, left_path,
2478 						 right_path, start);
2479 		if (ret) {
2480 			mlog_errno(ret);
2481 			goto out;
2482 		}
2483 
2484 		if (split != SPLIT_NONE &&
2485 		    ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2486 						insert_cpos)) {
2487 			/*
2488 			 * A rotate moves the rightmost left leaf
2489 			 * record over to the leftmost right leaf
2490 			 * slot. If we're doing an extent split
2491 			 * instead of a real insert, then we have to
2492 			 * check that the extent to be split wasn't
2493 			 * just moved over. If it was, then we can
2494 			 * exit here, passing left_path back -
2495 			 * ocfs2_split_extent() is smart enough to
2496 			 * search both leaves.
2497 			 */
2498 			*ret_left_path = left_path;
2499 			goto out_ret_path;
2500 		}
2501 
2502 		/*
2503 		 * There is no need to re-read the next right path
2504 		 * as we know that it'll be our current left
2505 		 * path. Optimize by copying values instead.
2506 		 */
2507 		ocfs2_mv_path(right_path, left_path);
2508 
2509 		ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2510 		if (ret) {
2511 			mlog_errno(ret);
2512 			goto out;
2513 		}
2514 	}
2515 
2516 out:
2517 	ocfs2_free_path(left_path);
2518 
2519 out_ret_path:
2520 	return ret;
2521 }
2522 
2523 static int ocfs2_update_edge_lengths(handle_t *handle,
2524 				     struct ocfs2_extent_tree *et,
2525 				     int subtree_index, struct ocfs2_path *path)
2526 {
2527 	int i, idx, ret;
2528 	struct ocfs2_extent_rec *rec;
2529 	struct ocfs2_extent_list *el;
2530 	struct ocfs2_extent_block *eb;
2531 	u32 range;
2532 
2533 	/*
2534 	 * In normal tree rotation process, we will never touch the
2535 	 * tree branch above subtree_index and ocfs2_extend_rotate_transaction
2536 	 * doesn't reserve the credits for them either.
2537 	 *
2538 	 * But we do have a special case here which will update the rightmost
2539 	 * records for all the bh in the path.
2540 	 * So we have to allocate extra credits and access them.
2541 	 */
2542 	ret = ocfs2_extend_trans(handle, subtree_index);
2543 	if (ret) {
2544 		mlog_errno(ret);
2545 		goto out;
2546 	}
2547 
2548 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
2549 	if (ret) {
2550 		mlog_errno(ret);
2551 		goto out;
2552 	}
2553 
2554 	/* Path should always be rightmost. */
2555 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2556 	BUG_ON(eb->h_next_leaf_blk != 0ULL);
2557 
2558 	el = &eb->h_list;
2559 	BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2560 	idx = le16_to_cpu(el->l_next_free_rec) - 1;
2561 	rec = &el->l_recs[idx];
2562 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2563 
2564 	for (i = 0; i < path->p_tree_depth; i++) {
2565 		el = path->p_node[i].el;
2566 		idx = le16_to_cpu(el->l_next_free_rec) - 1;
2567 		rec = &el->l_recs[idx];
2568 
2569 		rec->e_int_clusters = cpu_to_le32(range);
2570 		le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2571 
2572 		ocfs2_journal_dirty(handle, path->p_node[i].bh);
2573 	}
2574 out:
2575 	return ret;
2576 }
2577 
2578 static void ocfs2_unlink_path(handle_t *handle,
2579 			      struct ocfs2_extent_tree *et,
2580 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
2581 			      struct ocfs2_path *path, int unlink_start)
2582 {
2583 	int ret, i;
2584 	struct ocfs2_extent_block *eb;
2585 	struct ocfs2_extent_list *el;
2586 	struct buffer_head *bh;
2587 
2588 	for(i = unlink_start; i < path_num_items(path); i++) {
2589 		bh = path->p_node[i].bh;
2590 
2591 		eb = (struct ocfs2_extent_block *)bh->b_data;
2592 		/*
2593 		 * Not all nodes might have had their final count
2594 		 * decremented by the caller - handle this here.
2595 		 */
2596 		el = &eb->h_list;
2597 		if (le16_to_cpu(el->l_next_free_rec) > 1) {
2598 			mlog(ML_ERROR,
2599 			     "Inode %llu, attempted to remove extent block "
2600 			     "%llu with %u records\n",
2601 			     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2602 			     (unsigned long long)le64_to_cpu(eb->h_blkno),
2603 			     le16_to_cpu(el->l_next_free_rec));
2604 
2605 			ocfs2_journal_dirty(handle, bh);
2606 			ocfs2_remove_from_cache(et->et_ci, bh);
2607 			continue;
2608 		}
2609 
2610 		el->l_next_free_rec = 0;
2611 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2612 
2613 		ocfs2_journal_dirty(handle, bh);
2614 
2615 		ret = ocfs2_cache_extent_block_free(dealloc, eb);
2616 		if (ret)
2617 			mlog_errno(ret);
2618 
2619 		ocfs2_remove_from_cache(et->et_ci, bh);
2620 	}
2621 }
2622 
2623 static void ocfs2_unlink_subtree(handle_t *handle,
2624 				 struct ocfs2_extent_tree *et,
2625 				 struct ocfs2_path *left_path,
2626 				 struct ocfs2_path *right_path,
2627 				 int subtree_index,
2628 				 struct ocfs2_cached_dealloc_ctxt *dealloc)
2629 {
2630 	int i;
2631 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2632 	struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2633 	struct ocfs2_extent_list *el;
2634 	struct ocfs2_extent_block *eb;
2635 
2636 	el = path_leaf_el(left_path);
2637 
2638 	eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2639 
2640 	for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2641 		if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2642 			break;
2643 
2644 	BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2645 
2646 	memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2647 	le16_add_cpu(&root_el->l_next_free_rec, -1);
2648 
2649 	eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2650 	eb->h_next_leaf_blk = 0;
2651 
2652 	ocfs2_journal_dirty(handle, root_bh);
2653 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2654 
2655 	ocfs2_unlink_path(handle, et, dealloc, right_path,
2656 			  subtree_index + 1);
2657 }
2658 
2659 static int ocfs2_rotate_subtree_left(handle_t *handle,
2660 				     struct ocfs2_extent_tree *et,
2661 				     struct ocfs2_path *left_path,
2662 				     struct ocfs2_path *right_path,
2663 				     int subtree_index,
2664 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
2665 				     int *deleted)
2666 {
2667 	int ret, i, del_right_subtree = 0, right_has_empty = 0;
2668 	struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2669 	struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2670 	struct ocfs2_extent_block *eb;
2671 
2672 	*deleted = 0;
2673 
2674 	right_leaf_el = path_leaf_el(right_path);
2675 	left_leaf_el = path_leaf_el(left_path);
2676 	root_bh = left_path->p_node[subtree_index].bh;
2677 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2678 
2679 	if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2680 		return 0;
2681 
2682 	eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2683 	if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2684 		/*
2685 		 * It's legal for us to proceed if the right leaf is
2686 		 * the rightmost one and it has an empty extent. There
2687 		 * are two cases to handle - whether the leaf will be
2688 		 * empty after removal or not. If the leaf isn't empty
2689 		 * then just remove the empty extent up front. The
2690 		 * next block will handle empty leaves by flagging
2691 		 * them for unlink.
2692 		 *
2693 		 * Non rightmost leaves will throw -EAGAIN and the
2694 		 * caller can manually move the subtree and retry.
2695 		 */
2696 
2697 		if (eb->h_next_leaf_blk != 0ULL)
2698 			return -EAGAIN;
2699 
2700 		if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2701 			ret = ocfs2_journal_access_eb(handle, et->et_ci,
2702 						      path_leaf_bh(right_path),
2703 						      OCFS2_JOURNAL_ACCESS_WRITE);
2704 			if (ret) {
2705 				mlog_errno(ret);
2706 				goto out;
2707 			}
2708 
2709 			ocfs2_remove_empty_extent(right_leaf_el);
2710 		} else
2711 			right_has_empty = 1;
2712 	}
2713 
2714 	if (eb->h_next_leaf_blk == 0ULL &&
2715 	    le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2716 		/*
2717 		 * We have to update i_last_eb_blk during the meta
2718 		 * data delete.
2719 		 */
2720 		ret = ocfs2_et_root_journal_access(handle, et,
2721 						   OCFS2_JOURNAL_ACCESS_WRITE);
2722 		if (ret) {
2723 			mlog_errno(ret);
2724 			goto out;
2725 		}
2726 
2727 		del_right_subtree = 1;
2728 	}
2729 
2730 	/*
2731 	 * Getting here with an empty extent in the right path implies
2732 	 * that it's the rightmost path and will be deleted.
2733 	 */
2734 	BUG_ON(right_has_empty && !del_right_subtree);
2735 
2736 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2737 					   subtree_index);
2738 	if (ret) {
2739 		mlog_errno(ret);
2740 		goto out;
2741 	}
2742 
2743 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2744 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2745 						   right_path, i);
2746 		if (ret) {
2747 			mlog_errno(ret);
2748 			goto out;
2749 		}
2750 
2751 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2752 						   left_path, i);
2753 		if (ret) {
2754 			mlog_errno(ret);
2755 			goto out;
2756 		}
2757 	}
2758 
2759 	if (!right_has_empty) {
2760 		/*
2761 		 * Only do this if we're moving a real
2762 		 * record. Otherwise, the action is delayed until
2763 		 * after removal of the right path in which case we
2764 		 * can do a simple shift to remove the empty extent.
2765 		 */
2766 		ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2767 		memset(&right_leaf_el->l_recs[0], 0,
2768 		       sizeof(struct ocfs2_extent_rec));
2769 	}
2770 	if (eb->h_next_leaf_blk == 0ULL) {
2771 		/*
2772 		 * Move recs over to get rid of empty extent, decrease
2773 		 * next_free. This is allowed to remove the last
2774 		 * extent in our leaf (setting l_next_free_rec to
2775 		 * zero) - the delete code below won't care.
2776 		 */
2777 		ocfs2_remove_empty_extent(right_leaf_el);
2778 	}
2779 
2780 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2781 	ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2782 
2783 	if (del_right_subtree) {
2784 		ocfs2_unlink_subtree(handle, et, left_path, right_path,
2785 				     subtree_index, dealloc);
2786 		ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
2787 						left_path);
2788 		if (ret) {
2789 			mlog_errno(ret);
2790 			goto out;
2791 		}
2792 
2793 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2794 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2795 
2796 		/*
2797 		 * Removal of the extent in the left leaf was skipped
2798 		 * above so we could delete the right path
2799 		 * 1st.
2800 		 */
2801 		if (right_has_empty)
2802 			ocfs2_remove_empty_extent(left_leaf_el);
2803 
2804 		ocfs2_journal_dirty(handle, et_root_bh);
2805 
2806 		*deleted = 1;
2807 	} else
2808 		ocfs2_complete_edge_insert(handle, left_path, right_path,
2809 					   subtree_index);
2810 
2811 out:
2812 	return ret;
2813 }
2814 
2815 /*
2816  * Given a full path, determine what cpos value would return us a path
2817  * containing the leaf immediately to the right of the current one.
2818  *
2819  * Will return zero if the path passed in is already the rightmost path.
2820  *
2821  * This looks similar, but is subtly different to
2822  * ocfs2_find_cpos_for_left_leaf().
2823  */
2824 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2825 				   struct ocfs2_path *path, u32 *cpos)
2826 {
2827 	int i, j, ret = 0;
2828 	u64 blkno;
2829 	struct ocfs2_extent_list *el;
2830 
2831 	*cpos = 0;
2832 
2833 	if (path->p_tree_depth == 0)
2834 		return 0;
2835 
2836 	blkno = path_leaf_bh(path)->b_blocknr;
2837 
2838 	/* Start at the tree node just above the leaf and work our way up. */
2839 	i = path->p_tree_depth - 1;
2840 	while (i >= 0) {
2841 		int next_free;
2842 
2843 		el = path->p_node[i].el;
2844 
2845 		/*
2846 		 * Find the extent record just after the one in our
2847 		 * path.
2848 		 */
2849 		next_free = le16_to_cpu(el->l_next_free_rec);
2850 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2851 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2852 				if (j == (next_free - 1)) {
2853 					if (i == 0) {
2854 						/*
2855 						 * We've determined that the
2856 						 * path specified is already
2857 						 * the rightmost one - return a
2858 						 * cpos of zero.
2859 						 */
2860 						goto out;
2861 					}
2862 					/*
2863 					 * The rightmost record points to our
2864 					 * leaf - we need to travel up the
2865 					 * tree one level.
2866 					 */
2867 					goto next_node;
2868 				}
2869 
2870 				*cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2871 				goto out;
2872 			}
2873 		}
2874 
2875 		/*
2876 		 * If we got here, we never found a valid node where
2877 		 * the tree indicated one should be.
2878 		 */
2879 		ocfs2_error(sb,
2880 			    "Invalid extent tree at extent block %llu\n",
2881 			    (unsigned long long)blkno);
2882 		ret = -EROFS;
2883 		goto out;
2884 
2885 next_node:
2886 		blkno = path->p_node[i].bh->b_blocknr;
2887 		i--;
2888 	}
2889 
2890 out:
2891 	return ret;
2892 }
2893 
2894 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle,
2895 					    struct ocfs2_extent_tree *et,
2896 					    struct ocfs2_path *path)
2897 {
2898 	int ret;
2899 	struct buffer_head *bh = path_leaf_bh(path);
2900 	struct ocfs2_extent_list *el = path_leaf_el(path);
2901 
2902 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2903 		return 0;
2904 
2905 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
2906 					   path_num_items(path) - 1);
2907 	if (ret) {
2908 		mlog_errno(ret);
2909 		goto out;
2910 	}
2911 
2912 	ocfs2_remove_empty_extent(el);
2913 	ocfs2_journal_dirty(handle, bh);
2914 
2915 out:
2916 	return ret;
2917 }
2918 
2919 static int __ocfs2_rotate_tree_left(handle_t *handle,
2920 				    struct ocfs2_extent_tree *et,
2921 				    int orig_credits,
2922 				    struct ocfs2_path *path,
2923 				    struct ocfs2_cached_dealloc_ctxt *dealloc,
2924 				    struct ocfs2_path **empty_extent_path)
2925 {
2926 	int ret, subtree_root, deleted;
2927 	u32 right_cpos;
2928 	struct ocfs2_path *left_path = NULL;
2929 	struct ocfs2_path *right_path = NULL;
2930 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2931 
2932 	BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2933 
2934 	*empty_extent_path = NULL;
2935 
2936 	ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
2937 	if (ret) {
2938 		mlog_errno(ret);
2939 		goto out;
2940 	}
2941 
2942 	left_path = ocfs2_new_path_from_path(path);
2943 	if (!left_path) {
2944 		ret = -ENOMEM;
2945 		mlog_errno(ret);
2946 		goto out;
2947 	}
2948 
2949 	ocfs2_cp_path(left_path, path);
2950 
2951 	right_path = ocfs2_new_path_from_path(path);
2952 	if (!right_path) {
2953 		ret = -ENOMEM;
2954 		mlog_errno(ret);
2955 		goto out;
2956 	}
2957 
2958 	while (right_cpos) {
2959 		ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
2960 		if (ret) {
2961 			mlog_errno(ret);
2962 			goto out;
2963 		}
2964 
2965 		subtree_root = ocfs2_find_subtree_root(et, left_path,
2966 						       right_path);
2967 
2968 		mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2969 		     subtree_root,
2970 		     (unsigned long long)
2971 		     right_path->p_node[subtree_root].bh->b_blocknr,
2972 		     right_path->p_tree_depth);
2973 
2974 		ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2975 						      orig_credits, left_path);
2976 		if (ret) {
2977 			mlog_errno(ret);
2978 			goto out;
2979 		}
2980 
2981 		/*
2982 		 * Caller might still want to make changes to the
2983 		 * tree root, so re-add it to the journal here.
2984 		 */
2985 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2986 						   left_path, 0);
2987 		if (ret) {
2988 			mlog_errno(ret);
2989 			goto out;
2990 		}
2991 
2992 		ret = ocfs2_rotate_subtree_left(handle, et, left_path,
2993 						right_path, subtree_root,
2994 						dealloc, &deleted);
2995 		if (ret == -EAGAIN) {
2996 			/*
2997 			 * The rotation has to temporarily stop due to
2998 			 * the right subtree having an empty
2999 			 * extent. Pass it back to the caller for a
3000 			 * fixup.
3001 			 */
3002 			*empty_extent_path = right_path;
3003 			right_path = NULL;
3004 			goto out;
3005 		}
3006 		if (ret) {
3007 			mlog_errno(ret);
3008 			goto out;
3009 		}
3010 
3011 		/*
3012 		 * The subtree rotate might have removed records on
3013 		 * the rightmost edge. If so, then rotation is
3014 		 * complete.
3015 		 */
3016 		if (deleted)
3017 			break;
3018 
3019 		ocfs2_mv_path(left_path, right_path);
3020 
3021 		ret = ocfs2_find_cpos_for_right_leaf(sb, left_path,
3022 						     &right_cpos);
3023 		if (ret) {
3024 			mlog_errno(ret);
3025 			goto out;
3026 		}
3027 	}
3028 
3029 out:
3030 	ocfs2_free_path(right_path);
3031 	ocfs2_free_path(left_path);
3032 
3033 	return ret;
3034 }
3035 
3036 static int ocfs2_remove_rightmost_path(handle_t *handle,
3037 				struct ocfs2_extent_tree *et,
3038 				struct ocfs2_path *path,
3039 				struct ocfs2_cached_dealloc_ctxt *dealloc)
3040 {
3041 	int ret, subtree_index;
3042 	u32 cpos;
3043 	struct ocfs2_path *left_path = NULL;
3044 	struct ocfs2_extent_block *eb;
3045 	struct ocfs2_extent_list *el;
3046 
3047 
3048 	ret = ocfs2_et_sanity_check(et);
3049 	if (ret)
3050 		goto out;
3051 	/*
3052 	 * There's two ways we handle this depending on
3053 	 * whether path is the only existing one.
3054 	 */
3055 	ret = ocfs2_extend_rotate_transaction(handle, 0,
3056 					      handle->h_buffer_credits,
3057 					      path);
3058 	if (ret) {
3059 		mlog_errno(ret);
3060 		goto out;
3061 	}
3062 
3063 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
3064 	if (ret) {
3065 		mlog_errno(ret);
3066 		goto out;
3067 	}
3068 
3069 	ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3070 					    path, &cpos);
3071 	if (ret) {
3072 		mlog_errno(ret);
3073 		goto out;
3074 	}
3075 
3076 	if (cpos) {
3077 		/*
3078 		 * We have a path to the left of this one - it needs
3079 		 * an update too.
3080 		 */
3081 		left_path = ocfs2_new_path_from_path(path);
3082 		if (!left_path) {
3083 			ret = -ENOMEM;
3084 			mlog_errno(ret);
3085 			goto out;
3086 		}
3087 
3088 		ret = ocfs2_find_path(et->et_ci, left_path, cpos);
3089 		if (ret) {
3090 			mlog_errno(ret);
3091 			goto out;
3092 		}
3093 
3094 		ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
3095 		if (ret) {
3096 			mlog_errno(ret);
3097 			goto out;
3098 		}
3099 
3100 		subtree_index = ocfs2_find_subtree_root(et, left_path, path);
3101 
3102 		ocfs2_unlink_subtree(handle, et, left_path, path,
3103 				     subtree_index, dealloc);
3104 		ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
3105 						left_path);
3106 		if (ret) {
3107 			mlog_errno(ret);
3108 			goto out;
3109 		}
3110 
3111 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3112 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3113 	} else {
3114 		/*
3115 		 * 'path' is also the leftmost path which
3116 		 * means it must be the only one. This gets
3117 		 * handled differently because we want to
3118 		 * revert the root back to having extents
3119 		 * in-line.
3120 		 */
3121 		ocfs2_unlink_path(handle, et, dealloc, path, 1);
3122 
3123 		el = et->et_root_el;
3124 		el->l_tree_depth = 0;
3125 		el->l_next_free_rec = 0;
3126 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3127 
3128 		ocfs2_et_set_last_eb_blk(et, 0);
3129 	}
3130 
3131 	ocfs2_journal_dirty(handle, path_root_bh(path));
3132 
3133 out:
3134 	ocfs2_free_path(left_path);
3135 	return ret;
3136 }
3137 
3138 /*
3139  * Left rotation of btree records.
3140  *
3141  * In many ways, this is (unsurprisingly) the opposite of right
3142  * rotation. We start at some non-rightmost path containing an empty
3143  * extent in the leaf block. The code works its way to the rightmost
3144  * path by rotating records to the left in every subtree.
3145  *
3146  * This is used by any code which reduces the number of extent records
3147  * in a leaf. After removal, an empty record should be placed in the
3148  * leftmost list position.
3149  *
3150  * This won't handle a length update of the rightmost path records if
3151  * the rightmost tree leaf record is removed so the caller is
3152  * responsible for detecting and correcting that.
3153  */
3154 static int ocfs2_rotate_tree_left(handle_t *handle,
3155 				  struct ocfs2_extent_tree *et,
3156 				  struct ocfs2_path *path,
3157 				  struct ocfs2_cached_dealloc_ctxt *dealloc)
3158 {
3159 	int ret, orig_credits = handle->h_buffer_credits;
3160 	struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3161 	struct ocfs2_extent_block *eb;
3162 	struct ocfs2_extent_list *el;
3163 
3164 	el = path_leaf_el(path);
3165 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3166 		return 0;
3167 
3168 	if (path->p_tree_depth == 0) {
3169 rightmost_no_delete:
3170 		/*
3171 		 * Inline extents. This is trivially handled, so do
3172 		 * it up front.
3173 		 */
3174 		ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path);
3175 		if (ret)
3176 			mlog_errno(ret);
3177 		goto out;
3178 	}
3179 
3180 	/*
3181 	 * Handle rightmost branch now. There's several cases:
3182 	 *  1) simple rotation leaving records in there. That's trivial.
3183 	 *  2) rotation requiring a branch delete - there's no more
3184 	 *     records left. Two cases of this:
3185 	 *     a) There are branches to the left.
3186 	 *     b) This is also the leftmost (the only) branch.
3187 	 *
3188 	 *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
3189 	 *  2a) we need the left branch so that we can update it with the unlink
3190 	 *  2b) we need to bring the root back to inline extents.
3191 	 */
3192 
3193 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3194 	el = &eb->h_list;
3195 	if (eb->h_next_leaf_blk == 0) {
3196 		/*
3197 		 * This gets a bit tricky if we're going to delete the
3198 		 * rightmost path. Get the other cases out of the way
3199 		 * 1st.
3200 		 */
3201 		if (le16_to_cpu(el->l_next_free_rec) > 1)
3202 			goto rightmost_no_delete;
3203 
3204 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
3205 			ret = -EIO;
3206 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3207 				    "Owner %llu has empty extent block at %llu",
3208 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
3209 				    (unsigned long long)le64_to_cpu(eb->h_blkno));
3210 			goto out;
3211 		}
3212 
3213 		/*
3214 		 * XXX: The caller can not trust "path" any more after
3215 		 * this as it will have been deleted. What do we do?
3216 		 *
3217 		 * In theory the rotate-for-merge code will never get
3218 		 * here because it'll always ask for a rotate in a
3219 		 * nonempty list.
3220 		 */
3221 
3222 		ret = ocfs2_remove_rightmost_path(handle, et, path,
3223 						  dealloc);
3224 		if (ret)
3225 			mlog_errno(ret);
3226 		goto out;
3227 	}
3228 
3229 	/*
3230 	 * Now we can loop, remembering the path we get from -EAGAIN
3231 	 * and restarting from there.
3232 	 */
3233 try_rotate:
3234 	ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path,
3235 				       dealloc, &restart_path);
3236 	if (ret && ret != -EAGAIN) {
3237 		mlog_errno(ret);
3238 		goto out;
3239 	}
3240 
3241 	while (ret == -EAGAIN) {
3242 		tmp_path = restart_path;
3243 		restart_path = NULL;
3244 
3245 		ret = __ocfs2_rotate_tree_left(handle, et, orig_credits,
3246 					       tmp_path, dealloc,
3247 					       &restart_path);
3248 		if (ret && ret != -EAGAIN) {
3249 			mlog_errno(ret);
3250 			goto out;
3251 		}
3252 
3253 		ocfs2_free_path(tmp_path);
3254 		tmp_path = NULL;
3255 
3256 		if (ret == 0)
3257 			goto try_rotate;
3258 	}
3259 
3260 out:
3261 	ocfs2_free_path(tmp_path);
3262 	ocfs2_free_path(restart_path);
3263 	return ret;
3264 }
3265 
3266 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3267 				int index)
3268 {
3269 	struct ocfs2_extent_rec *rec = &el->l_recs[index];
3270 	unsigned int size;
3271 
3272 	if (rec->e_leaf_clusters == 0) {
3273 		/*
3274 		 * We consumed all of the merged-from record. An empty
3275 		 * extent cannot exist anywhere but the 1st array
3276 		 * position, so move things over if the merged-from
3277 		 * record doesn't occupy that position.
3278 		 *
3279 		 * This creates a new empty extent so the caller
3280 		 * should be smart enough to have removed any existing
3281 		 * ones.
3282 		 */
3283 		if (index > 0) {
3284 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3285 			size = index * sizeof(struct ocfs2_extent_rec);
3286 			memmove(&el->l_recs[1], &el->l_recs[0], size);
3287 		}
3288 
3289 		/*
3290 		 * Always memset - the caller doesn't check whether it
3291 		 * created an empty extent, so there could be junk in
3292 		 * the other fields.
3293 		 */
3294 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3295 	}
3296 }
3297 
3298 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et,
3299 				struct ocfs2_path *left_path,
3300 				struct ocfs2_path **ret_right_path)
3301 {
3302 	int ret;
3303 	u32 right_cpos;
3304 	struct ocfs2_path *right_path = NULL;
3305 	struct ocfs2_extent_list *left_el;
3306 
3307 	*ret_right_path = NULL;
3308 
3309 	/* This function shouldn't be called for non-trees. */
3310 	BUG_ON(left_path->p_tree_depth == 0);
3311 
3312 	left_el = path_leaf_el(left_path);
3313 	BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3314 
3315 	ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3316 					     left_path, &right_cpos);
3317 	if (ret) {
3318 		mlog_errno(ret);
3319 		goto out;
3320 	}
3321 
3322 	/* This function shouldn't be called for the rightmost leaf. */
3323 	BUG_ON(right_cpos == 0);
3324 
3325 	right_path = ocfs2_new_path_from_path(left_path);
3326 	if (!right_path) {
3327 		ret = -ENOMEM;
3328 		mlog_errno(ret);
3329 		goto out;
3330 	}
3331 
3332 	ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
3333 	if (ret) {
3334 		mlog_errno(ret);
3335 		goto out;
3336 	}
3337 
3338 	*ret_right_path = right_path;
3339 out:
3340 	if (ret)
3341 		ocfs2_free_path(right_path);
3342 	return ret;
3343 }
3344 
3345 /*
3346  * Remove split_rec clusters from the record at index and merge them
3347  * onto the beginning of the record "next" to it.
3348  * For index < l_count - 1, the next means the extent rec at index + 1.
3349  * For index == l_count - 1, the "next" means the 1st extent rec of the
3350  * next extent block.
3351  */
3352 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path,
3353 				 handle_t *handle,
3354 				 struct ocfs2_extent_tree *et,
3355 				 struct ocfs2_extent_rec *split_rec,
3356 				 int index)
3357 {
3358 	int ret, next_free, i;
3359 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3360 	struct ocfs2_extent_rec *left_rec;
3361 	struct ocfs2_extent_rec *right_rec;
3362 	struct ocfs2_extent_list *right_el;
3363 	struct ocfs2_path *right_path = NULL;
3364 	int subtree_index = 0;
3365 	struct ocfs2_extent_list *el = path_leaf_el(left_path);
3366 	struct buffer_head *bh = path_leaf_bh(left_path);
3367 	struct buffer_head *root_bh = NULL;
3368 
3369 	BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3370 	left_rec = &el->l_recs[index];
3371 
3372 	if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3373 	    le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3374 		/* we meet with a cross extent block merge. */
3375 		ret = ocfs2_get_right_path(et, left_path, &right_path);
3376 		if (ret) {
3377 			mlog_errno(ret);
3378 			goto out;
3379 		}
3380 
3381 		right_el = path_leaf_el(right_path);
3382 		next_free = le16_to_cpu(right_el->l_next_free_rec);
3383 		BUG_ON(next_free <= 0);
3384 		right_rec = &right_el->l_recs[0];
3385 		if (ocfs2_is_empty_extent(right_rec)) {
3386 			BUG_ON(next_free <= 1);
3387 			right_rec = &right_el->l_recs[1];
3388 		}
3389 
3390 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3391 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3392 		       le32_to_cpu(right_rec->e_cpos));
3393 
3394 		subtree_index = ocfs2_find_subtree_root(et, left_path,
3395 							right_path);
3396 
3397 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3398 						      handle->h_buffer_credits,
3399 						      right_path);
3400 		if (ret) {
3401 			mlog_errno(ret);
3402 			goto out;
3403 		}
3404 
3405 		root_bh = left_path->p_node[subtree_index].bh;
3406 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3407 
3408 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3409 						   subtree_index);
3410 		if (ret) {
3411 			mlog_errno(ret);
3412 			goto out;
3413 		}
3414 
3415 		for (i = subtree_index + 1;
3416 		     i < path_num_items(right_path); i++) {
3417 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3418 							   right_path, i);
3419 			if (ret) {
3420 				mlog_errno(ret);
3421 				goto out;
3422 			}
3423 
3424 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3425 							   left_path, i);
3426 			if (ret) {
3427 				mlog_errno(ret);
3428 				goto out;
3429 			}
3430 		}
3431 
3432 	} else {
3433 		BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3434 		right_rec = &el->l_recs[index + 1];
3435 	}
3436 
3437 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path,
3438 					   path_num_items(left_path) - 1);
3439 	if (ret) {
3440 		mlog_errno(ret);
3441 		goto out;
3442 	}
3443 
3444 	le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3445 
3446 	le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3447 	le64_add_cpu(&right_rec->e_blkno,
3448 		     -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3449 					       split_clusters));
3450 	le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3451 
3452 	ocfs2_cleanup_merge(el, index);
3453 
3454 	ocfs2_journal_dirty(handle, bh);
3455 	if (right_path) {
3456 		ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3457 		ocfs2_complete_edge_insert(handle, left_path, right_path,
3458 					   subtree_index);
3459 	}
3460 out:
3461 	if (right_path)
3462 		ocfs2_free_path(right_path);
3463 	return ret;
3464 }
3465 
3466 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et,
3467 			       struct ocfs2_path *right_path,
3468 			       struct ocfs2_path **ret_left_path)
3469 {
3470 	int ret;
3471 	u32 left_cpos;
3472 	struct ocfs2_path *left_path = NULL;
3473 
3474 	*ret_left_path = NULL;
3475 
3476 	/* This function shouldn't be called for non-trees. */
3477 	BUG_ON(right_path->p_tree_depth == 0);
3478 
3479 	ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3480 					    right_path, &left_cpos);
3481 	if (ret) {
3482 		mlog_errno(ret);
3483 		goto out;
3484 	}
3485 
3486 	/* This function shouldn't be called for the leftmost leaf. */
3487 	BUG_ON(left_cpos == 0);
3488 
3489 	left_path = ocfs2_new_path_from_path(right_path);
3490 	if (!left_path) {
3491 		ret = -ENOMEM;
3492 		mlog_errno(ret);
3493 		goto out;
3494 	}
3495 
3496 	ret = ocfs2_find_path(et->et_ci, left_path, left_cpos);
3497 	if (ret) {
3498 		mlog_errno(ret);
3499 		goto out;
3500 	}
3501 
3502 	*ret_left_path = left_path;
3503 out:
3504 	if (ret)
3505 		ocfs2_free_path(left_path);
3506 	return ret;
3507 }
3508 
3509 /*
3510  * Remove split_rec clusters from the record at index and merge them
3511  * onto the tail of the record "before" it.
3512  * For index > 0, the "before" means the extent rec at index - 1.
3513  *
3514  * For index == 0, the "before" means the last record of the previous
3515  * extent block. And there is also a situation that we may need to
3516  * remove the rightmost leaf extent block in the right_path and change
3517  * the right path to indicate the new rightmost path.
3518  */
3519 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path,
3520 				handle_t *handle,
3521 				struct ocfs2_extent_tree *et,
3522 				struct ocfs2_extent_rec *split_rec,
3523 				struct ocfs2_cached_dealloc_ctxt *dealloc,
3524 				int index)
3525 {
3526 	int ret, i, subtree_index = 0, has_empty_extent = 0;
3527 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3528 	struct ocfs2_extent_rec *left_rec;
3529 	struct ocfs2_extent_rec *right_rec;
3530 	struct ocfs2_extent_list *el = path_leaf_el(right_path);
3531 	struct buffer_head *bh = path_leaf_bh(right_path);
3532 	struct buffer_head *root_bh = NULL;
3533 	struct ocfs2_path *left_path = NULL;
3534 	struct ocfs2_extent_list *left_el;
3535 
3536 	BUG_ON(index < 0);
3537 
3538 	right_rec = &el->l_recs[index];
3539 	if (index == 0) {
3540 		/* we meet with a cross extent block merge. */
3541 		ret = ocfs2_get_left_path(et, right_path, &left_path);
3542 		if (ret) {
3543 			mlog_errno(ret);
3544 			goto out;
3545 		}
3546 
3547 		left_el = path_leaf_el(left_path);
3548 		BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3549 		       le16_to_cpu(left_el->l_count));
3550 
3551 		left_rec = &left_el->l_recs[
3552 				le16_to_cpu(left_el->l_next_free_rec) - 1];
3553 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3554 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3555 		       le32_to_cpu(split_rec->e_cpos));
3556 
3557 		subtree_index = ocfs2_find_subtree_root(et, left_path,
3558 							right_path);
3559 
3560 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3561 						      handle->h_buffer_credits,
3562 						      left_path);
3563 		if (ret) {
3564 			mlog_errno(ret);
3565 			goto out;
3566 		}
3567 
3568 		root_bh = left_path->p_node[subtree_index].bh;
3569 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3570 
3571 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3572 						   subtree_index);
3573 		if (ret) {
3574 			mlog_errno(ret);
3575 			goto out;
3576 		}
3577 
3578 		for (i = subtree_index + 1;
3579 		     i < path_num_items(right_path); i++) {
3580 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3581 							   right_path, i);
3582 			if (ret) {
3583 				mlog_errno(ret);
3584 				goto out;
3585 			}
3586 
3587 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3588 							   left_path, i);
3589 			if (ret) {
3590 				mlog_errno(ret);
3591 				goto out;
3592 			}
3593 		}
3594 	} else {
3595 		left_rec = &el->l_recs[index - 1];
3596 		if (ocfs2_is_empty_extent(&el->l_recs[0]))
3597 			has_empty_extent = 1;
3598 	}
3599 
3600 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3601 					   path_num_items(right_path) - 1);
3602 	if (ret) {
3603 		mlog_errno(ret);
3604 		goto out;
3605 	}
3606 
3607 	if (has_empty_extent && index == 1) {
3608 		/*
3609 		 * The easy case - we can just plop the record right in.
3610 		 */
3611 		*left_rec = *split_rec;
3612 
3613 		has_empty_extent = 0;
3614 	} else
3615 		le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3616 
3617 	le32_add_cpu(&right_rec->e_cpos, split_clusters);
3618 	le64_add_cpu(&right_rec->e_blkno,
3619 		     ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3620 					      split_clusters));
3621 	le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3622 
3623 	ocfs2_cleanup_merge(el, index);
3624 
3625 	ocfs2_journal_dirty(handle, bh);
3626 	if (left_path) {
3627 		ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3628 
3629 		/*
3630 		 * In the situation that the right_rec is empty and the extent
3631 		 * block is empty also,  ocfs2_complete_edge_insert can't handle
3632 		 * it and we need to delete the right extent block.
3633 		 */
3634 		if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3635 		    le16_to_cpu(el->l_next_free_rec) == 1) {
3636 
3637 			ret = ocfs2_remove_rightmost_path(handle, et,
3638 							  right_path,
3639 							  dealloc);
3640 			if (ret) {
3641 				mlog_errno(ret);
3642 				goto out;
3643 			}
3644 
3645 			/* Now the rightmost extent block has been deleted.
3646 			 * So we use the new rightmost path.
3647 			 */
3648 			ocfs2_mv_path(right_path, left_path);
3649 			left_path = NULL;
3650 		} else
3651 			ocfs2_complete_edge_insert(handle, left_path,
3652 						   right_path, subtree_index);
3653 	}
3654 out:
3655 	if (left_path)
3656 		ocfs2_free_path(left_path);
3657 	return ret;
3658 }
3659 
3660 static int ocfs2_try_to_merge_extent(handle_t *handle,
3661 				     struct ocfs2_extent_tree *et,
3662 				     struct ocfs2_path *path,
3663 				     int split_index,
3664 				     struct ocfs2_extent_rec *split_rec,
3665 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
3666 				     struct ocfs2_merge_ctxt *ctxt)
3667 {
3668 	int ret = 0;
3669 	struct ocfs2_extent_list *el = path_leaf_el(path);
3670 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3671 
3672 	BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3673 
3674 	if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3675 		/*
3676 		 * The merge code will need to create an empty
3677 		 * extent to take the place of the newly
3678 		 * emptied slot. Remove any pre-existing empty
3679 		 * extents - having more than one in a leaf is
3680 		 * illegal.
3681 		 */
3682 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3683 		if (ret) {
3684 			mlog_errno(ret);
3685 			goto out;
3686 		}
3687 		split_index--;
3688 		rec = &el->l_recs[split_index];
3689 	}
3690 
3691 	if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3692 		/*
3693 		 * Left-right contig implies this.
3694 		 */
3695 		BUG_ON(!ctxt->c_split_covers_rec);
3696 
3697 		/*
3698 		 * Since the leftright insert always covers the entire
3699 		 * extent, this call will delete the insert record
3700 		 * entirely, resulting in an empty extent record added to
3701 		 * the extent block.
3702 		 *
3703 		 * Since the adding of an empty extent shifts
3704 		 * everything back to the right, there's no need to
3705 		 * update split_index here.
3706 		 *
3707 		 * When the split_index is zero, we need to merge it to the
3708 		 * prevoius extent block. It is more efficient and easier
3709 		 * if we do merge_right first and merge_left later.
3710 		 */
3711 		ret = ocfs2_merge_rec_right(path, handle, et, split_rec,
3712 					    split_index);
3713 		if (ret) {
3714 			mlog_errno(ret);
3715 			goto out;
3716 		}
3717 
3718 		/*
3719 		 * We can only get this from logic error above.
3720 		 */
3721 		BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3722 
3723 		/* The merge left us with an empty extent, remove it. */
3724 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3725 		if (ret) {
3726 			mlog_errno(ret);
3727 			goto out;
3728 		}
3729 
3730 		rec = &el->l_recs[split_index];
3731 
3732 		/*
3733 		 * Note that we don't pass split_rec here on purpose -
3734 		 * we've merged it into the rec already.
3735 		 */
3736 		ret = ocfs2_merge_rec_left(path, handle, et, rec,
3737 					   dealloc, split_index);
3738 
3739 		if (ret) {
3740 			mlog_errno(ret);
3741 			goto out;
3742 		}
3743 
3744 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3745 		/*
3746 		 * Error from this last rotate is not critical, so
3747 		 * print but don't bubble it up.
3748 		 */
3749 		if (ret)
3750 			mlog_errno(ret);
3751 		ret = 0;
3752 	} else {
3753 		/*
3754 		 * Merge a record to the left or right.
3755 		 *
3756 		 * 'contig_type' is relative to the existing record,
3757 		 * so for example, if we're "right contig", it's to
3758 		 * the record on the left (hence the left merge).
3759 		 */
3760 		if (ctxt->c_contig_type == CONTIG_RIGHT) {
3761 			ret = ocfs2_merge_rec_left(path, handle, et,
3762 						   split_rec, dealloc,
3763 						   split_index);
3764 			if (ret) {
3765 				mlog_errno(ret);
3766 				goto out;
3767 			}
3768 		} else {
3769 			ret = ocfs2_merge_rec_right(path, handle,
3770 						    et, split_rec,
3771 						    split_index);
3772 			if (ret) {
3773 				mlog_errno(ret);
3774 				goto out;
3775 			}
3776 		}
3777 
3778 		if (ctxt->c_split_covers_rec) {
3779 			/*
3780 			 * The merge may have left an empty extent in
3781 			 * our leaf. Try to rotate it away.
3782 			 */
3783 			ret = ocfs2_rotate_tree_left(handle, et, path,
3784 						     dealloc);
3785 			if (ret)
3786 				mlog_errno(ret);
3787 			ret = 0;
3788 		}
3789 	}
3790 
3791 out:
3792 	return ret;
3793 }
3794 
3795 static void ocfs2_subtract_from_rec(struct super_block *sb,
3796 				    enum ocfs2_split_type split,
3797 				    struct ocfs2_extent_rec *rec,
3798 				    struct ocfs2_extent_rec *split_rec)
3799 {
3800 	u64 len_blocks;
3801 
3802 	len_blocks = ocfs2_clusters_to_blocks(sb,
3803 				le16_to_cpu(split_rec->e_leaf_clusters));
3804 
3805 	if (split == SPLIT_LEFT) {
3806 		/*
3807 		 * Region is on the left edge of the existing
3808 		 * record.
3809 		 */
3810 		le32_add_cpu(&rec->e_cpos,
3811 			     le16_to_cpu(split_rec->e_leaf_clusters));
3812 		le64_add_cpu(&rec->e_blkno, len_blocks);
3813 		le16_add_cpu(&rec->e_leaf_clusters,
3814 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3815 	} else {
3816 		/*
3817 		 * Region is on the right edge of the existing
3818 		 * record.
3819 		 */
3820 		le16_add_cpu(&rec->e_leaf_clusters,
3821 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3822 	}
3823 }
3824 
3825 /*
3826  * Do the final bits of extent record insertion at the target leaf
3827  * list. If this leaf is part of an allocation tree, it is assumed
3828  * that the tree above has been prepared.
3829  */
3830 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et,
3831 				 struct ocfs2_extent_rec *insert_rec,
3832 				 struct ocfs2_extent_list *el,
3833 				 struct ocfs2_insert_type *insert)
3834 {
3835 	int i = insert->ins_contig_index;
3836 	unsigned int range;
3837 	struct ocfs2_extent_rec *rec;
3838 
3839 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3840 
3841 	if (insert->ins_split != SPLIT_NONE) {
3842 		i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3843 		BUG_ON(i == -1);
3844 		rec = &el->l_recs[i];
3845 		ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
3846 					insert->ins_split, rec,
3847 					insert_rec);
3848 		goto rotate;
3849 	}
3850 
3851 	/*
3852 	 * Contiguous insert - either left or right.
3853 	 */
3854 	if (insert->ins_contig != CONTIG_NONE) {
3855 		rec = &el->l_recs[i];
3856 		if (insert->ins_contig == CONTIG_LEFT) {
3857 			rec->e_blkno = insert_rec->e_blkno;
3858 			rec->e_cpos = insert_rec->e_cpos;
3859 		}
3860 		le16_add_cpu(&rec->e_leaf_clusters,
3861 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3862 		return;
3863 	}
3864 
3865 	/*
3866 	 * Handle insert into an empty leaf.
3867 	 */
3868 	if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3869 	    ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3870 	     ocfs2_is_empty_extent(&el->l_recs[0]))) {
3871 		el->l_recs[0] = *insert_rec;
3872 		el->l_next_free_rec = cpu_to_le16(1);
3873 		return;
3874 	}
3875 
3876 	/*
3877 	 * Appending insert.
3878 	 */
3879 	if (insert->ins_appending == APPEND_TAIL) {
3880 		i = le16_to_cpu(el->l_next_free_rec) - 1;
3881 		rec = &el->l_recs[i];
3882 		range = le32_to_cpu(rec->e_cpos)
3883 			+ le16_to_cpu(rec->e_leaf_clusters);
3884 		BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3885 
3886 		mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3887 				le16_to_cpu(el->l_count),
3888 				"owner %llu, depth %u, count %u, next free %u, "
3889 				"rec.cpos %u, rec.clusters %u, "
3890 				"insert.cpos %u, insert.clusters %u\n",
3891 				ocfs2_metadata_cache_owner(et->et_ci),
3892 				le16_to_cpu(el->l_tree_depth),
3893 				le16_to_cpu(el->l_count),
3894 				le16_to_cpu(el->l_next_free_rec),
3895 				le32_to_cpu(el->l_recs[i].e_cpos),
3896 				le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3897 				le32_to_cpu(insert_rec->e_cpos),
3898 				le16_to_cpu(insert_rec->e_leaf_clusters));
3899 		i++;
3900 		el->l_recs[i] = *insert_rec;
3901 		le16_add_cpu(&el->l_next_free_rec, 1);
3902 		return;
3903 	}
3904 
3905 rotate:
3906 	/*
3907 	 * Ok, we have to rotate.
3908 	 *
3909 	 * At this point, it is safe to assume that inserting into an
3910 	 * empty leaf and appending to a leaf have both been handled
3911 	 * above.
3912 	 *
3913 	 * This leaf needs to have space, either by the empty 1st
3914 	 * extent record, or by virtue of an l_next_rec < l_count.
3915 	 */
3916 	ocfs2_rotate_leaf(el, insert_rec);
3917 }
3918 
3919 static void ocfs2_adjust_rightmost_records(handle_t *handle,
3920 					   struct ocfs2_extent_tree *et,
3921 					   struct ocfs2_path *path,
3922 					   struct ocfs2_extent_rec *insert_rec)
3923 {
3924 	int ret, i, next_free;
3925 	struct buffer_head *bh;
3926 	struct ocfs2_extent_list *el;
3927 	struct ocfs2_extent_rec *rec;
3928 
3929 	/*
3930 	 * Update everything except the leaf block.
3931 	 */
3932 	for (i = 0; i < path->p_tree_depth; i++) {
3933 		bh = path->p_node[i].bh;
3934 		el = path->p_node[i].el;
3935 
3936 		next_free = le16_to_cpu(el->l_next_free_rec);
3937 		if (next_free == 0) {
3938 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3939 				    "Owner %llu has a bad extent list",
3940 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
3941 			ret = -EIO;
3942 			return;
3943 		}
3944 
3945 		rec = &el->l_recs[next_free - 1];
3946 
3947 		rec->e_int_clusters = insert_rec->e_cpos;
3948 		le32_add_cpu(&rec->e_int_clusters,
3949 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3950 		le32_add_cpu(&rec->e_int_clusters,
3951 			     -le32_to_cpu(rec->e_cpos));
3952 
3953 		ocfs2_journal_dirty(handle, bh);
3954 	}
3955 }
3956 
3957 static int ocfs2_append_rec_to_path(handle_t *handle,
3958 				    struct ocfs2_extent_tree *et,
3959 				    struct ocfs2_extent_rec *insert_rec,
3960 				    struct ocfs2_path *right_path,
3961 				    struct ocfs2_path **ret_left_path)
3962 {
3963 	int ret, next_free;
3964 	struct ocfs2_extent_list *el;
3965 	struct ocfs2_path *left_path = NULL;
3966 
3967 	*ret_left_path = NULL;
3968 
3969 	/*
3970 	 * This shouldn't happen for non-trees. The extent rec cluster
3971 	 * count manipulation below only works for interior nodes.
3972 	 */
3973 	BUG_ON(right_path->p_tree_depth == 0);
3974 
3975 	/*
3976 	 * If our appending insert is at the leftmost edge of a leaf,
3977 	 * then we might need to update the rightmost records of the
3978 	 * neighboring path.
3979 	 */
3980 	el = path_leaf_el(right_path);
3981 	next_free = le16_to_cpu(el->l_next_free_rec);
3982 	if (next_free == 0 ||
3983 	    (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3984 		u32 left_cpos;
3985 
3986 		ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3987 						    right_path, &left_cpos);
3988 		if (ret) {
3989 			mlog_errno(ret);
3990 			goto out;
3991 		}
3992 
3993 		mlog(0, "Append may need a left path update. cpos: %u, "
3994 		     "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3995 		     left_cpos);
3996 
3997 		/*
3998 		 * No need to worry if the append is already in the
3999 		 * leftmost leaf.
4000 		 */
4001 		if (left_cpos) {
4002 			left_path = ocfs2_new_path_from_path(right_path);
4003 			if (!left_path) {
4004 				ret = -ENOMEM;
4005 				mlog_errno(ret);
4006 				goto out;
4007 			}
4008 
4009 			ret = ocfs2_find_path(et->et_ci, left_path,
4010 					      left_cpos);
4011 			if (ret) {
4012 				mlog_errno(ret);
4013 				goto out;
4014 			}
4015 
4016 			/*
4017 			 * ocfs2_insert_path() will pass the left_path to the
4018 			 * journal for us.
4019 			 */
4020 		}
4021 	}
4022 
4023 	ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4024 	if (ret) {
4025 		mlog_errno(ret);
4026 		goto out;
4027 	}
4028 
4029 	ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec);
4030 
4031 	*ret_left_path = left_path;
4032 	ret = 0;
4033 out:
4034 	if (ret != 0)
4035 		ocfs2_free_path(left_path);
4036 
4037 	return ret;
4038 }
4039 
4040 static void ocfs2_split_record(struct ocfs2_extent_tree *et,
4041 			       struct ocfs2_path *left_path,
4042 			       struct ocfs2_path *right_path,
4043 			       struct ocfs2_extent_rec *split_rec,
4044 			       enum ocfs2_split_type split)
4045 {
4046 	int index;
4047 	u32 cpos = le32_to_cpu(split_rec->e_cpos);
4048 	struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4049 	struct ocfs2_extent_rec *rec, *tmprec;
4050 
4051 	right_el = path_leaf_el(right_path);
4052 	if (left_path)
4053 		left_el = path_leaf_el(left_path);
4054 
4055 	el = right_el;
4056 	insert_el = right_el;
4057 	index = ocfs2_search_extent_list(el, cpos);
4058 	if (index != -1) {
4059 		if (index == 0 && left_path) {
4060 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4061 
4062 			/*
4063 			 * This typically means that the record
4064 			 * started in the left path but moved to the
4065 			 * right as a result of rotation. We either
4066 			 * move the existing record to the left, or we
4067 			 * do the later insert there.
4068 			 *
4069 			 * In this case, the left path should always
4070 			 * exist as the rotate code will have passed
4071 			 * it back for a post-insert update.
4072 			 */
4073 
4074 			if (split == SPLIT_LEFT) {
4075 				/*
4076 				 * It's a left split. Since we know
4077 				 * that the rotate code gave us an
4078 				 * empty extent in the left path, we
4079 				 * can just do the insert there.
4080 				 */
4081 				insert_el = left_el;
4082 			} else {
4083 				/*
4084 				 * Right split - we have to move the
4085 				 * existing record over to the left
4086 				 * leaf. The insert will be into the
4087 				 * newly created empty extent in the
4088 				 * right leaf.
4089 				 */
4090 				tmprec = &right_el->l_recs[index];
4091 				ocfs2_rotate_leaf(left_el, tmprec);
4092 				el = left_el;
4093 
4094 				memset(tmprec, 0, sizeof(*tmprec));
4095 				index = ocfs2_search_extent_list(left_el, cpos);
4096 				BUG_ON(index == -1);
4097 			}
4098 		}
4099 	} else {
4100 		BUG_ON(!left_path);
4101 		BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4102 		/*
4103 		 * Left path is easy - we can just allow the insert to
4104 		 * happen.
4105 		 */
4106 		el = left_el;
4107 		insert_el = left_el;
4108 		index = ocfs2_search_extent_list(el, cpos);
4109 		BUG_ON(index == -1);
4110 	}
4111 
4112 	rec = &el->l_recs[index];
4113 	ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4114 				split, rec, split_rec);
4115 	ocfs2_rotate_leaf(insert_el, split_rec);
4116 }
4117 
4118 /*
4119  * This function only does inserts on an allocation b-tree. For tree
4120  * depth = 0, ocfs2_insert_at_leaf() is called directly.
4121  *
4122  * right_path is the path we want to do the actual insert
4123  * in. left_path should only be passed in if we need to update that
4124  * portion of the tree after an edge insert.
4125  */
4126 static int ocfs2_insert_path(handle_t *handle,
4127 			     struct ocfs2_extent_tree *et,
4128 			     struct ocfs2_path *left_path,
4129 			     struct ocfs2_path *right_path,
4130 			     struct ocfs2_extent_rec *insert_rec,
4131 			     struct ocfs2_insert_type *insert)
4132 {
4133 	int ret, subtree_index;
4134 	struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4135 
4136 	if (left_path) {
4137 		/*
4138 		 * There's a chance that left_path got passed back to
4139 		 * us without being accounted for in the
4140 		 * journal. Extend our transaction here to be sure we
4141 		 * can change those blocks.
4142 		 */
4143 		ret = ocfs2_extend_trans(handle, left_path->p_tree_depth);
4144 		if (ret < 0) {
4145 			mlog_errno(ret);
4146 			goto out;
4147 		}
4148 
4149 		ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
4150 		if (ret < 0) {
4151 			mlog_errno(ret);
4152 			goto out;
4153 		}
4154 	}
4155 
4156 	/*
4157 	 * Pass both paths to the journal. The majority of inserts
4158 	 * will be touching all components anyway.
4159 	 */
4160 	ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4161 	if (ret < 0) {
4162 		mlog_errno(ret);
4163 		goto out;
4164 	}
4165 
4166 	if (insert->ins_split != SPLIT_NONE) {
4167 		/*
4168 		 * We could call ocfs2_insert_at_leaf() for some types
4169 		 * of splits, but it's easier to just let one separate
4170 		 * function sort it all out.
4171 		 */
4172 		ocfs2_split_record(et, left_path, right_path,
4173 				   insert_rec, insert->ins_split);
4174 
4175 		/*
4176 		 * Split might have modified either leaf and we don't
4177 		 * have a guarantee that the later edge insert will
4178 		 * dirty this for us.
4179 		 */
4180 		if (left_path)
4181 			ocfs2_journal_dirty(handle,
4182 					    path_leaf_bh(left_path));
4183 	} else
4184 		ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path),
4185 				     insert);
4186 
4187 	ocfs2_journal_dirty(handle, leaf_bh);
4188 
4189 	if (left_path) {
4190 		/*
4191 		 * The rotate code has indicated that we need to fix
4192 		 * up portions of the tree after the insert.
4193 		 *
4194 		 * XXX: Should we extend the transaction here?
4195 		 */
4196 		subtree_index = ocfs2_find_subtree_root(et, left_path,
4197 							right_path);
4198 		ocfs2_complete_edge_insert(handle, left_path, right_path,
4199 					   subtree_index);
4200 	}
4201 
4202 	ret = 0;
4203 out:
4204 	return ret;
4205 }
4206 
4207 static int ocfs2_do_insert_extent(handle_t *handle,
4208 				  struct ocfs2_extent_tree *et,
4209 				  struct ocfs2_extent_rec *insert_rec,
4210 				  struct ocfs2_insert_type *type)
4211 {
4212 	int ret, rotate = 0;
4213 	u32 cpos;
4214 	struct ocfs2_path *right_path = NULL;
4215 	struct ocfs2_path *left_path = NULL;
4216 	struct ocfs2_extent_list *el;
4217 
4218 	el = et->et_root_el;
4219 
4220 	ret = ocfs2_et_root_journal_access(handle, et,
4221 					   OCFS2_JOURNAL_ACCESS_WRITE);
4222 	if (ret) {
4223 		mlog_errno(ret);
4224 		goto out;
4225 	}
4226 
4227 	if (le16_to_cpu(el->l_tree_depth) == 0) {
4228 		ocfs2_insert_at_leaf(et, insert_rec, el, type);
4229 		goto out_update_clusters;
4230 	}
4231 
4232 	right_path = ocfs2_new_path_from_et(et);
4233 	if (!right_path) {
4234 		ret = -ENOMEM;
4235 		mlog_errno(ret);
4236 		goto out;
4237 	}
4238 
4239 	/*
4240 	 * Determine the path to start with. Rotations need the
4241 	 * rightmost path, everything else can go directly to the
4242 	 * target leaf.
4243 	 */
4244 	cpos = le32_to_cpu(insert_rec->e_cpos);
4245 	if (type->ins_appending == APPEND_NONE &&
4246 	    type->ins_contig == CONTIG_NONE) {
4247 		rotate = 1;
4248 		cpos = UINT_MAX;
4249 	}
4250 
4251 	ret = ocfs2_find_path(et->et_ci, right_path, cpos);
4252 	if (ret) {
4253 		mlog_errno(ret);
4254 		goto out;
4255 	}
4256 
4257 	/*
4258 	 * Rotations and appends need special treatment - they modify
4259 	 * parts of the tree's above them.
4260 	 *
4261 	 * Both might pass back a path immediate to the left of the
4262 	 * one being inserted to. This will be cause
4263 	 * ocfs2_insert_path() to modify the rightmost records of
4264 	 * left_path to account for an edge insert.
4265 	 *
4266 	 * XXX: When modifying this code, keep in mind that an insert
4267 	 * can wind up skipping both of these two special cases...
4268 	 */
4269 	if (rotate) {
4270 		ret = ocfs2_rotate_tree_right(handle, et, type->ins_split,
4271 					      le32_to_cpu(insert_rec->e_cpos),
4272 					      right_path, &left_path);
4273 		if (ret) {
4274 			mlog_errno(ret);
4275 			goto out;
4276 		}
4277 
4278 		/*
4279 		 * ocfs2_rotate_tree_right() might have extended the
4280 		 * transaction without re-journaling our tree root.
4281 		 */
4282 		ret = ocfs2_et_root_journal_access(handle, et,
4283 						   OCFS2_JOURNAL_ACCESS_WRITE);
4284 		if (ret) {
4285 			mlog_errno(ret);
4286 			goto out;
4287 		}
4288 	} else if (type->ins_appending == APPEND_TAIL
4289 		   && type->ins_contig != CONTIG_LEFT) {
4290 		ret = ocfs2_append_rec_to_path(handle, et, insert_rec,
4291 					       right_path, &left_path);
4292 		if (ret) {
4293 			mlog_errno(ret);
4294 			goto out;
4295 		}
4296 	}
4297 
4298 	ret = ocfs2_insert_path(handle, et, left_path, right_path,
4299 				insert_rec, type);
4300 	if (ret) {
4301 		mlog_errno(ret);
4302 		goto out;
4303 	}
4304 
4305 out_update_clusters:
4306 	if (type->ins_split == SPLIT_NONE)
4307 		ocfs2_et_update_clusters(et,
4308 					 le16_to_cpu(insert_rec->e_leaf_clusters));
4309 
4310 	ocfs2_journal_dirty(handle, et->et_root_bh);
4311 
4312 out:
4313 	ocfs2_free_path(left_path);
4314 	ocfs2_free_path(right_path);
4315 
4316 	return ret;
4317 }
4318 
4319 static enum ocfs2_contig_type
4320 ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et,
4321 			       struct ocfs2_path *path,
4322 			       struct ocfs2_extent_list *el, int index,
4323 			       struct ocfs2_extent_rec *split_rec)
4324 {
4325 	int status;
4326 	enum ocfs2_contig_type ret = CONTIG_NONE;
4327 	u32 left_cpos, right_cpos;
4328 	struct ocfs2_extent_rec *rec = NULL;
4329 	struct ocfs2_extent_list *new_el;
4330 	struct ocfs2_path *left_path = NULL, *right_path = NULL;
4331 	struct buffer_head *bh;
4332 	struct ocfs2_extent_block *eb;
4333 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
4334 
4335 	if (index > 0) {
4336 		rec = &el->l_recs[index - 1];
4337 	} else if (path->p_tree_depth > 0) {
4338 		status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
4339 		if (status)
4340 			goto out;
4341 
4342 		if (left_cpos != 0) {
4343 			left_path = ocfs2_new_path_from_path(path);
4344 			if (!left_path)
4345 				goto out;
4346 
4347 			status = ocfs2_find_path(et->et_ci, left_path,
4348 						 left_cpos);
4349 			if (status)
4350 				goto out;
4351 
4352 			new_el = path_leaf_el(left_path);
4353 
4354 			if (le16_to_cpu(new_el->l_next_free_rec) !=
4355 			    le16_to_cpu(new_el->l_count)) {
4356 				bh = path_leaf_bh(left_path);
4357 				eb = (struct ocfs2_extent_block *)bh->b_data;
4358 				ocfs2_error(sb,
4359 					    "Extent block #%llu has an "
4360 					    "invalid l_next_free_rec of "
4361 					    "%d.  It should have "
4362 					    "matched the l_count of %d",
4363 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4364 					    le16_to_cpu(new_el->l_next_free_rec),
4365 					    le16_to_cpu(new_el->l_count));
4366 				status = -EINVAL;
4367 				goto out;
4368 			}
4369 			rec = &new_el->l_recs[
4370 				le16_to_cpu(new_el->l_next_free_rec) - 1];
4371 		}
4372 	}
4373 
4374 	/*
4375 	 * We're careful to check for an empty extent record here -
4376 	 * the merge code will know what to do if it sees one.
4377 	 */
4378 	if (rec) {
4379 		if (index == 1 && ocfs2_is_empty_extent(rec)) {
4380 			if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4381 				ret = CONTIG_RIGHT;
4382 		} else {
4383 			ret = ocfs2_et_extent_contig(et, rec, split_rec);
4384 		}
4385 	}
4386 
4387 	rec = NULL;
4388 	if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4389 		rec = &el->l_recs[index + 1];
4390 	else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4391 		 path->p_tree_depth > 0) {
4392 		status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
4393 		if (status)
4394 			goto out;
4395 
4396 		if (right_cpos == 0)
4397 			goto out;
4398 
4399 		right_path = ocfs2_new_path_from_path(path);
4400 		if (!right_path)
4401 			goto out;
4402 
4403 		status = ocfs2_find_path(et->et_ci, right_path, right_cpos);
4404 		if (status)
4405 			goto out;
4406 
4407 		new_el = path_leaf_el(right_path);
4408 		rec = &new_el->l_recs[0];
4409 		if (ocfs2_is_empty_extent(rec)) {
4410 			if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4411 				bh = path_leaf_bh(right_path);
4412 				eb = (struct ocfs2_extent_block *)bh->b_data;
4413 				ocfs2_error(sb,
4414 					    "Extent block #%llu has an "
4415 					    "invalid l_next_free_rec of %d",
4416 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4417 					    le16_to_cpu(new_el->l_next_free_rec));
4418 				status = -EINVAL;
4419 				goto out;
4420 			}
4421 			rec = &new_el->l_recs[1];
4422 		}
4423 	}
4424 
4425 	if (rec) {
4426 		enum ocfs2_contig_type contig_type;
4427 
4428 		contig_type = ocfs2_et_extent_contig(et, rec, split_rec);
4429 
4430 		if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4431 			ret = CONTIG_LEFTRIGHT;
4432 		else if (ret == CONTIG_NONE)
4433 			ret = contig_type;
4434 	}
4435 
4436 out:
4437 	if (left_path)
4438 		ocfs2_free_path(left_path);
4439 	if (right_path)
4440 		ocfs2_free_path(right_path);
4441 
4442 	return ret;
4443 }
4444 
4445 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et,
4446 				     struct ocfs2_insert_type *insert,
4447 				     struct ocfs2_extent_list *el,
4448 				     struct ocfs2_extent_rec *insert_rec)
4449 {
4450 	int i;
4451 	enum ocfs2_contig_type contig_type = CONTIG_NONE;
4452 
4453 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4454 
4455 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4456 		contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i],
4457 						     insert_rec);
4458 		if (contig_type != CONTIG_NONE) {
4459 			insert->ins_contig_index = i;
4460 			break;
4461 		}
4462 	}
4463 	insert->ins_contig = contig_type;
4464 
4465 	if (insert->ins_contig != CONTIG_NONE) {
4466 		struct ocfs2_extent_rec *rec =
4467 				&el->l_recs[insert->ins_contig_index];
4468 		unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4469 				   le16_to_cpu(insert_rec->e_leaf_clusters);
4470 
4471 		/*
4472 		 * Caller might want us to limit the size of extents, don't
4473 		 * calculate contiguousness if we might exceed that limit.
4474 		 */
4475 		if (et->et_max_leaf_clusters &&
4476 		    (len > et->et_max_leaf_clusters))
4477 			insert->ins_contig = CONTIG_NONE;
4478 	}
4479 }
4480 
4481 /*
4482  * This should only be called against the righmost leaf extent list.
4483  *
4484  * ocfs2_figure_appending_type() will figure out whether we'll have to
4485  * insert at the tail of the rightmost leaf.
4486  *
4487  * This should also work against the root extent list for tree's with 0
4488  * depth. If we consider the root extent list to be the rightmost leaf node
4489  * then the logic here makes sense.
4490  */
4491 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4492 					struct ocfs2_extent_list *el,
4493 					struct ocfs2_extent_rec *insert_rec)
4494 {
4495 	int i;
4496 	u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4497 	struct ocfs2_extent_rec *rec;
4498 
4499 	insert->ins_appending = APPEND_NONE;
4500 
4501 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4502 
4503 	if (!el->l_next_free_rec)
4504 		goto set_tail_append;
4505 
4506 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4507 		/* Were all records empty? */
4508 		if (le16_to_cpu(el->l_next_free_rec) == 1)
4509 			goto set_tail_append;
4510 	}
4511 
4512 	i = le16_to_cpu(el->l_next_free_rec) - 1;
4513 	rec = &el->l_recs[i];
4514 
4515 	if (cpos >=
4516 	    (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4517 		goto set_tail_append;
4518 
4519 	return;
4520 
4521 set_tail_append:
4522 	insert->ins_appending = APPEND_TAIL;
4523 }
4524 
4525 /*
4526  * Helper function called at the begining of an insert.
4527  *
4528  * This computes a few things that are commonly used in the process of
4529  * inserting into the btree:
4530  *   - Whether the new extent is contiguous with an existing one.
4531  *   - The current tree depth.
4532  *   - Whether the insert is an appending one.
4533  *   - The total # of free records in the tree.
4534  *
4535  * All of the information is stored on the ocfs2_insert_type
4536  * structure.
4537  */
4538 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et,
4539 				    struct buffer_head **last_eb_bh,
4540 				    struct ocfs2_extent_rec *insert_rec,
4541 				    int *free_records,
4542 				    struct ocfs2_insert_type *insert)
4543 {
4544 	int ret;
4545 	struct ocfs2_extent_block *eb;
4546 	struct ocfs2_extent_list *el;
4547 	struct ocfs2_path *path = NULL;
4548 	struct buffer_head *bh = NULL;
4549 
4550 	insert->ins_split = SPLIT_NONE;
4551 
4552 	el = et->et_root_el;
4553 	insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4554 
4555 	if (el->l_tree_depth) {
4556 		/*
4557 		 * If we have tree depth, we read in the
4558 		 * rightmost extent block ahead of time as
4559 		 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4560 		 * may want it later.
4561 		 */
4562 		ret = ocfs2_read_extent_block(et->et_ci,
4563 					      ocfs2_et_get_last_eb_blk(et),
4564 					      &bh);
4565 		if (ret) {
4566 			mlog_exit(ret);
4567 			goto out;
4568 		}
4569 		eb = (struct ocfs2_extent_block *) bh->b_data;
4570 		el = &eb->h_list;
4571 	}
4572 
4573 	/*
4574 	 * Unless we have a contiguous insert, we'll need to know if
4575 	 * there is room left in our allocation tree for another
4576 	 * extent record.
4577 	 *
4578 	 * XXX: This test is simplistic, we can search for empty
4579 	 * extent records too.
4580 	 */
4581 	*free_records = le16_to_cpu(el->l_count) -
4582 		le16_to_cpu(el->l_next_free_rec);
4583 
4584 	if (!insert->ins_tree_depth) {
4585 		ocfs2_figure_contig_type(et, insert, el, insert_rec);
4586 		ocfs2_figure_appending_type(insert, el, insert_rec);
4587 		return 0;
4588 	}
4589 
4590 	path = ocfs2_new_path_from_et(et);
4591 	if (!path) {
4592 		ret = -ENOMEM;
4593 		mlog_errno(ret);
4594 		goto out;
4595 	}
4596 
4597 	/*
4598 	 * In the case that we're inserting past what the tree
4599 	 * currently accounts for, ocfs2_find_path() will return for
4600 	 * us the rightmost tree path. This is accounted for below in
4601 	 * the appending code.
4602 	 */
4603 	ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos));
4604 	if (ret) {
4605 		mlog_errno(ret);
4606 		goto out;
4607 	}
4608 
4609 	el = path_leaf_el(path);
4610 
4611 	/*
4612 	 * Now that we have the path, there's two things we want to determine:
4613 	 * 1) Contiguousness (also set contig_index if this is so)
4614 	 *
4615 	 * 2) Are we doing an append? We can trivially break this up
4616          *     into two types of appends: simple record append, or a
4617          *     rotate inside the tail leaf.
4618 	 */
4619 	ocfs2_figure_contig_type(et, insert, el, insert_rec);
4620 
4621 	/*
4622 	 * The insert code isn't quite ready to deal with all cases of
4623 	 * left contiguousness. Specifically, if it's an insert into
4624 	 * the 1st record in a leaf, it will require the adjustment of
4625 	 * cluster count on the last record of the path directly to it's
4626 	 * left. For now, just catch that case and fool the layers
4627 	 * above us. This works just fine for tree_depth == 0, which
4628 	 * is why we allow that above.
4629 	 */
4630 	if (insert->ins_contig == CONTIG_LEFT &&
4631 	    insert->ins_contig_index == 0)
4632 		insert->ins_contig = CONTIG_NONE;
4633 
4634 	/*
4635 	 * Ok, so we can simply compare against last_eb to figure out
4636 	 * whether the path doesn't exist. This will only happen in
4637 	 * the case that we're doing a tail append, so maybe we can
4638 	 * take advantage of that information somehow.
4639 	 */
4640 	if (ocfs2_et_get_last_eb_blk(et) ==
4641 	    path_leaf_bh(path)->b_blocknr) {
4642 		/*
4643 		 * Ok, ocfs2_find_path() returned us the rightmost
4644 		 * tree path. This might be an appending insert. There are
4645 		 * two cases:
4646 		 *    1) We're doing a true append at the tail:
4647 		 *	-This might even be off the end of the leaf
4648 		 *    2) We're "appending" by rotating in the tail
4649 		 */
4650 		ocfs2_figure_appending_type(insert, el, insert_rec);
4651 	}
4652 
4653 out:
4654 	ocfs2_free_path(path);
4655 
4656 	if (ret == 0)
4657 		*last_eb_bh = bh;
4658 	else
4659 		brelse(bh);
4660 	return ret;
4661 }
4662 
4663 /*
4664  * Insert an extent into a btree.
4665  *
4666  * The caller needs to update the owning btree's cluster count.
4667  */
4668 int ocfs2_insert_extent(handle_t *handle,
4669 			struct ocfs2_extent_tree *et,
4670 			u32 cpos,
4671 			u64 start_blk,
4672 			u32 new_clusters,
4673 			u8 flags,
4674 			struct ocfs2_alloc_context *meta_ac)
4675 {
4676 	int status;
4677 	int uninitialized_var(free_records);
4678 	struct buffer_head *last_eb_bh = NULL;
4679 	struct ocfs2_insert_type insert = {0, };
4680 	struct ocfs2_extent_rec rec;
4681 
4682 	mlog(0, "add %u clusters at position %u to owner %llu\n",
4683 	     new_clusters, cpos,
4684 	     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
4685 
4686 	memset(&rec, 0, sizeof(rec));
4687 	rec.e_cpos = cpu_to_le32(cpos);
4688 	rec.e_blkno = cpu_to_le64(start_blk);
4689 	rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4690 	rec.e_flags = flags;
4691 	status = ocfs2_et_insert_check(et, &rec);
4692 	if (status) {
4693 		mlog_errno(status);
4694 		goto bail;
4695 	}
4696 
4697 	status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec,
4698 					  &free_records, &insert);
4699 	if (status < 0) {
4700 		mlog_errno(status);
4701 		goto bail;
4702 	}
4703 
4704 	mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4705 	     "Insert.contig_index: %d, Insert.free_records: %d, "
4706 	     "Insert.tree_depth: %d\n",
4707 	     insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4708 	     free_records, insert.ins_tree_depth);
4709 
4710 	if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4711 		status = ocfs2_grow_tree(handle, et,
4712 					 &insert.ins_tree_depth, &last_eb_bh,
4713 					 meta_ac);
4714 		if (status) {
4715 			mlog_errno(status);
4716 			goto bail;
4717 		}
4718 	}
4719 
4720 	/* Finally, we can add clusters. This might rotate the tree for us. */
4721 	status = ocfs2_do_insert_extent(handle, et, &rec, &insert);
4722 	if (status < 0)
4723 		mlog_errno(status);
4724 	else
4725 		ocfs2_et_extent_map_insert(et, &rec);
4726 
4727 bail:
4728 	brelse(last_eb_bh);
4729 
4730 	mlog_exit(status);
4731 	return status;
4732 }
4733 
4734 /*
4735  * Allcate and add clusters into the extent b-tree.
4736  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4737  * The extent b-tree's root is specified by et, and
4738  * it is not limited to the file storage. Any extent tree can use this
4739  * function if it implements the proper ocfs2_extent_tree.
4740  */
4741 int ocfs2_add_clusters_in_btree(handle_t *handle,
4742 				struct ocfs2_extent_tree *et,
4743 				u32 *logical_offset,
4744 				u32 clusters_to_add,
4745 				int mark_unwritten,
4746 				struct ocfs2_alloc_context *data_ac,
4747 				struct ocfs2_alloc_context *meta_ac,
4748 				enum ocfs2_alloc_restarted *reason_ret)
4749 {
4750 	int status = 0;
4751 	int free_extents;
4752 	enum ocfs2_alloc_restarted reason = RESTART_NONE;
4753 	u32 bit_off, num_bits;
4754 	u64 block;
4755 	u8 flags = 0;
4756 	struct ocfs2_super *osb =
4757 		OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
4758 
4759 	BUG_ON(!clusters_to_add);
4760 
4761 	if (mark_unwritten)
4762 		flags = OCFS2_EXT_UNWRITTEN;
4763 
4764 	free_extents = ocfs2_num_free_extents(osb, et);
4765 	if (free_extents < 0) {
4766 		status = free_extents;
4767 		mlog_errno(status);
4768 		goto leave;
4769 	}
4770 
4771 	/* there are two cases which could cause us to EAGAIN in the
4772 	 * we-need-more-metadata case:
4773 	 * 1) we haven't reserved *any*
4774 	 * 2) we are so fragmented, we've needed to add metadata too
4775 	 *    many times. */
4776 	if (!free_extents && !meta_ac) {
4777 		mlog(0, "we haven't reserved any metadata!\n");
4778 		status = -EAGAIN;
4779 		reason = RESTART_META;
4780 		goto leave;
4781 	} else if ((!free_extents)
4782 		   && (ocfs2_alloc_context_bits_left(meta_ac)
4783 		       < ocfs2_extend_meta_needed(et->et_root_el))) {
4784 		mlog(0, "filesystem is really fragmented...\n");
4785 		status = -EAGAIN;
4786 		reason = RESTART_META;
4787 		goto leave;
4788 	}
4789 
4790 	status = __ocfs2_claim_clusters(handle, data_ac, 1,
4791 					clusters_to_add, &bit_off, &num_bits);
4792 	if (status < 0) {
4793 		if (status != -ENOSPC)
4794 			mlog_errno(status);
4795 		goto leave;
4796 	}
4797 
4798 	BUG_ON(num_bits > clusters_to_add);
4799 
4800 	/* reserve our write early -- insert_extent may update the tree root */
4801 	status = ocfs2_et_root_journal_access(handle, et,
4802 					      OCFS2_JOURNAL_ACCESS_WRITE);
4803 	if (status < 0) {
4804 		mlog_errno(status);
4805 		goto leave;
4806 	}
4807 
4808 	block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4809 	mlog(0, "Allocating %u clusters at block %u for owner %llu\n",
4810 	     num_bits, bit_off,
4811 	     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
4812 	status = ocfs2_insert_extent(handle, et, *logical_offset, block,
4813 				     num_bits, flags, meta_ac);
4814 	if (status < 0) {
4815 		mlog_errno(status);
4816 		goto leave;
4817 	}
4818 
4819 	ocfs2_journal_dirty(handle, et->et_root_bh);
4820 
4821 	clusters_to_add -= num_bits;
4822 	*logical_offset += num_bits;
4823 
4824 	if (clusters_to_add) {
4825 		mlog(0, "need to alloc once more, wanted = %u\n",
4826 		     clusters_to_add);
4827 		status = -EAGAIN;
4828 		reason = RESTART_TRANS;
4829 	}
4830 
4831 leave:
4832 	mlog_exit(status);
4833 	if (reason_ret)
4834 		*reason_ret = reason;
4835 	return status;
4836 }
4837 
4838 static void ocfs2_make_right_split_rec(struct super_block *sb,
4839 				       struct ocfs2_extent_rec *split_rec,
4840 				       u32 cpos,
4841 				       struct ocfs2_extent_rec *rec)
4842 {
4843 	u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4844 	u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4845 
4846 	memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4847 
4848 	split_rec->e_cpos = cpu_to_le32(cpos);
4849 	split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4850 
4851 	split_rec->e_blkno = rec->e_blkno;
4852 	le64_add_cpu(&split_rec->e_blkno,
4853 		     ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4854 
4855 	split_rec->e_flags = rec->e_flags;
4856 }
4857 
4858 static int ocfs2_split_and_insert(handle_t *handle,
4859 				  struct ocfs2_extent_tree *et,
4860 				  struct ocfs2_path *path,
4861 				  struct buffer_head **last_eb_bh,
4862 				  int split_index,
4863 				  struct ocfs2_extent_rec *orig_split_rec,
4864 				  struct ocfs2_alloc_context *meta_ac)
4865 {
4866 	int ret = 0, depth;
4867 	unsigned int insert_range, rec_range, do_leftright = 0;
4868 	struct ocfs2_extent_rec tmprec;
4869 	struct ocfs2_extent_list *rightmost_el;
4870 	struct ocfs2_extent_rec rec;
4871 	struct ocfs2_extent_rec split_rec = *orig_split_rec;
4872 	struct ocfs2_insert_type insert;
4873 	struct ocfs2_extent_block *eb;
4874 
4875 leftright:
4876 	/*
4877 	 * Store a copy of the record on the stack - it might move
4878 	 * around as the tree is manipulated below.
4879 	 */
4880 	rec = path_leaf_el(path)->l_recs[split_index];
4881 
4882 	rightmost_el = et->et_root_el;
4883 
4884 	depth = le16_to_cpu(rightmost_el->l_tree_depth);
4885 	if (depth) {
4886 		BUG_ON(!(*last_eb_bh));
4887 		eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4888 		rightmost_el = &eb->h_list;
4889 	}
4890 
4891 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4892 	    le16_to_cpu(rightmost_el->l_count)) {
4893 		ret = ocfs2_grow_tree(handle, et,
4894 				      &depth, last_eb_bh, meta_ac);
4895 		if (ret) {
4896 			mlog_errno(ret);
4897 			goto out;
4898 		}
4899 	}
4900 
4901 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4902 	insert.ins_appending = APPEND_NONE;
4903 	insert.ins_contig = CONTIG_NONE;
4904 	insert.ins_tree_depth = depth;
4905 
4906 	insert_range = le32_to_cpu(split_rec.e_cpos) +
4907 		le16_to_cpu(split_rec.e_leaf_clusters);
4908 	rec_range = le32_to_cpu(rec.e_cpos) +
4909 		le16_to_cpu(rec.e_leaf_clusters);
4910 
4911 	if (split_rec.e_cpos == rec.e_cpos) {
4912 		insert.ins_split = SPLIT_LEFT;
4913 	} else if (insert_range == rec_range) {
4914 		insert.ins_split = SPLIT_RIGHT;
4915 	} else {
4916 		/*
4917 		 * Left/right split. We fake this as a right split
4918 		 * first and then make a second pass as a left split.
4919 		 */
4920 		insert.ins_split = SPLIT_RIGHT;
4921 
4922 		ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4923 					   &tmprec, insert_range, &rec);
4924 
4925 		split_rec = tmprec;
4926 
4927 		BUG_ON(do_leftright);
4928 		do_leftright = 1;
4929 	}
4930 
4931 	ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
4932 	if (ret) {
4933 		mlog_errno(ret);
4934 		goto out;
4935 	}
4936 
4937 	if (do_leftright == 1) {
4938 		u32 cpos;
4939 		struct ocfs2_extent_list *el;
4940 
4941 		do_leftright++;
4942 		split_rec = *orig_split_rec;
4943 
4944 		ocfs2_reinit_path(path, 1);
4945 
4946 		cpos = le32_to_cpu(split_rec.e_cpos);
4947 		ret = ocfs2_find_path(et->et_ci, path, cpos);
4948 		if (ret) {
4949 			mlog_errno(ret);
4950 			goto out;
4951 		}
4952 
4953 		el = path_leaf_el(path);
4954 		split_index = ocfs2_search_extent_list(el, cpos);
4955 		goto leftright;
4956 	}
4957 out:
4958 
4959 	return ret;
4960 }
4961 
4962 static int ocfs2_replace_extent_rec(handle_t *handle,
4963 				    struct ocfs2_extent_tree *et,
4964 				    struct ocfs2_path *path,
4965 				    struct ocfs2_extent_list *el,
4966 				    int split_index,
4967 				    struct ocfs2_extent_rec *split_rec)
4968 {
4969 	int ret;
4970 
4971 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
4972 					   path_num_items(path) - 1);
4973 	if (ret) {
4974 		mlog_errno(ret);
4975 		goto out;
4976 	}
4977 
4978 	el->l_recs[split_index] = *split_rec;
4979 
4980 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
4981 out:
4982 	return ret;
4983 }
4984 
4985 /*
4986  * Split part or all of the extent record at split_index in the leaf
4987  * pointed to by path. Merge with the contiguous extent record if needed.
4988  *
4989  * Care is taken to handle contiguousness so as to not grow the tree.
4990  *
4991  * meta_ac is not strictly necessary - we only truly need it if growth
4992  * of the tree is required. All other cases will degrade into a less
4993  * optimal tree layout.
4994  *
4995  * last_eb_bh should be the rightmost leaf block for any extent
4996  * btree. Since a split may grow the tree or a merge might shrink it,
4997  * the caller cannot trust the contents of that buffer after this call.
4998  *
4999  * This code is optimized for readability - several passes might be
5000  * made over certain portions of the tree. All of those blocks will
5001  * have been brought into cache (and pinned via the journal), so the
5002  * extra overhead is not expressed in terms of disk reads.
5003  */
5004 int ocfs2_split_extent(handle_t *handle,
5005 		       struct ocfs2_extent_tree *et,
5006 		       struct ocfs2_path *path,
5007 		       int split_index,
5008 		       struct ocfs2_extent_rec *split_rec,
5009 		       struct ocfs2_alloc_context *meta_ac,
5010 		       struct ocfs2_cached_dealloc_ctxt *dealloc)
5011 {
5012 	int ret = 0;
5013 	struct ocfs2_extent_list *el = path_leaf_el(path);
5014 	struct buffer_head *last_eb_bh = NULL;
5015 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5016 	struct ocfs2_merge_ctxt ctxt;
5017 	struct ocfs2_extent_list *rightmost_el;
5018 
5019 	if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5020 	    ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5021 	     (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5022 		ret = -EIO;
5023 		mlog_errno(ret);
5024 		goto out;
5025 	}
5026 
5027 	ctxt.c_contig_type = ocfs2_figure_merge_contig_type(et, path, el,
5028 							    split_index,
5029 							    split_rec);
5030 
5031 	/*
5032 	 * The core merge / split code wants to know how much room is
5033 	 * left in this allocation tree, so we pass the
5034 	 * rightmost extent list.
5035 	 */
5036 	if (path->p_tree_depth) {
5037 		struct ocfs2_extent_block *eb;
5038 
5039 		ret = ocfs2_read_extent_block(et->et_ci,
5040 					      ocfs2_et_get_last_eb_blk(et),
5041 					      &last_eb_bh);
5042 		if (ret) {
5043 			mlog_exit(ret);
5044 			goto out;
5045 		}
5046 
5047 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5048 		rightmost_el = &eb->h_list;
5049 	} else
5050 		rightmost_el = path_root_el(path);
5051 
5052 	if (rec->e_cpos == split_rec->e_cpos &&
5053 	    rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5054 		ctxt.c_split_covers_rec = 1;
5055 	else
5056 		ctxt.c_split_covers_rec = 0;
5057 
5058 	ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5059 
5060 	mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
5061 	     split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
5062 	     ctxt.c_split_covers_rec);
5063 
5064 	if (ctxt.c_contig_type == CONTIG_NONE) {
5065 		if (ctxt.c_split_covers_rec)
5066 			ret = ocfs2_replace_extent_rec(handle, et, path, el,
5067 						       split_index, split_rec);
5068 		else
5069 			ret = ocfs2_split_and_insert(handle, et, path,
5070 						     &last_eb_bh, split_index,
5071 						     split_rec, meta_ac);
5072 		if (ret)
5073 			mlog_errno(ret);
5074 	} else {
5075 		ret = ocfs2_try_to_merge_extent(handle, et, path,
5076 						split_index, split_rec,
5077 						dealloc, &ctxt);
5078 		if (ret)
5079 			mlog_errno(ret);
5080 	}
5081 
5082 out:
5083 	brelse(last_eb_bh);
5084 	return ret;
5085 }
5086 
5087 /*
5088  * Change the flags of the already-existing extent at cpos for len clusters.
5089  *
5090  * new_flags: the flags we want to set.
5091  * clear_flags: the flags we want to clear.
5092  * phys: the new physical offset we want this new extent starts from.
5093  *
5094  * If the existing extent is larger than the request, initiate a
5095  * split. An attempt will be made at merging with adjacent extents.
5096  *
5097  * The caller is responsible for passing down meta_ac if we'll need it.
5098  */
5099 int ocfs2_change_extent_flag(handle_t *handle,
5100 			     struct ocfs2_extent_tree *et,
5101 			     u32 cpos, u32 len, u32 phys,
5102 			     struct ocfs2_alloc_context *meta_ac,
5103 			     struct ocfs2_cached_dealloc_ctxt *dealloc,
5104 			     int new_flags, int clear_flags)
5105 {
5106 	int ret, index;
5107 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5108 	u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys);
5109 	struct ocfs2_extent_rec split_rec;
5110 	struct ocfs2_path *left_path = NULL;
5111 	struct ocfs2_extent_list *el;
5112 	struct ocfs2_extent_rec *rec;
5113 
5114 	left_path = ocfs2_new_path_from_et(et);
5115 	if (!left_path) {
5116 		ret = -ENOMEM;
5117 		mlog_errno(ret);
5118 		goto out;
5119 	}
5120 
5121 	ret = ocfs2_find_path(et->et_ci, left_path, cpos);
5122 	if (ret) {
5123 		mlog_errno(ret);
5124 		goto out;
5125 	}
5126 	el = path_leaf_el(left_path);
5127 
5128 	index = ocfs2_search_extent_list(el, cpos);
5129 	if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5130 		ocfs2_error(sb,
5131 			    "Owner %llu has an extent at cpos %u which can no "
5132 			    "longer be found.\n",
5133 			     (unsigned long long)
5134 			     ocfs2_metadata_cache_owner(et->et_ci), cpos);
5135 		ret = -EROFS;
5136 		goto out;
5137 	}
5138 
5139 	ret = -EIO;
5140 	rec = &el->l_recs[index];
5141 	if (new_flags && (rec->e_flags & new_flags)) {
5142 		mlog(ML_ERROR, "Owner %llu tried to set %d flags on an "
5143 		     "extent that already had them",
5144 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5145 		     new_flags);
5146 		goto out;
5147 	}
5148 
5149 	if (clear_flags && !(rec->e_flags & clear_flags)) {
5150 		mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an "
5151 		     "extent that didn't have them",
5152 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5153 		     clear_flags);
5154 		goto out;
5155 	}
5156 
5157 	memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5158 	split_rec.e_cpos = cpu_to_le32(cpos);
5159 	split_rec.e_leaf_clusters = cpu_to_le16(len);
5160 	split_rec.e_blkno = cpu_to_le64(start_blkno);
5161 	split_rec.e_flags = rec->e_flags;
5162 	if (new_flags)
5163 		split_rec.e_flags |= new_flags;
5164 	if (clear_flags)
5165 		split_rec.e_flags &= ~clear_flags;
5166 
5167 	ret = ocfs2_split_extent(handle, et, left_path,
5168 				 index, &split_rec, meta_ac,
5169 				 dealloc);
5170 	if (ret)
5171 		mlog_errno(ret);
5172 
5173 out:
5174 	ocfs2_free_path(left_path);
5175 	return ret;
5176 
5177 }
5178 
5179 /*
5180  * Mark the already-existing extent at cpos as written for len clusters.
5181  * This removes the unwritten extent flag.
5182  *
5183  * If the existing extent is larger than the request, initiate a
5184  * split. An attempt will be made at merging with adjacent extents.
5185  *
5186  * The caller is responsible for passing down meta_ac if we'll need it.
5187  */
5188 int ocfs2_mark_extent_written(struct inode *inode,
5189 			      struct ocfs2_extent_tree *et,
5190 			      handle_t *handle, u32 cpos, u32 len, u32 phys,
5191 			      struct ocfs2_alloc_context *meta_ac,
5192 			      struct ocfs2_cached_dealloc_ctxt *dealloc)
5193 {
5194 	int ret;
5195 
5196 	mlog(0, "Inode %lu cpos %u, len %u, phys clusters %u\n",
5197 	     inode->i_ino, cpos, len, phys);
5198 
5199 	if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5200 		ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
5201 			    "that are being written to, but the feature bit "
5202 			    "is not set in the super block.",
5203 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
5204 		ret = -EROFS;
5205 		goto out;
5206 	}
5207 
5208 	/*
5209 	 * XXX: This should be fixed up so that we just re-insert the
5210 	 * next extent records.
5211 	 */
5212 	ocfs2_et_extent_map_truncate(et, 0);
5213 
5214 	ret = ocfs2_change_extent_flag(handle, et, cpos,
5215 				       len, phys, meta_ac, dealloc,
5216 				       0, OCFS2_EXT_UNWRITTEN);
5217 	if (ret)
5218 		mlog_errno(ret);
5219 
5220 out:
5221 	return ret;
5222 }
5223 
5224 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et,
5225 			    struct ocfs2_path *path,
5226 			    int index, u32 new_range,
5227 			    struct ocfs2_alloc_context *meta_ac)
5228 {
5229 	int ret, depth, credits;
5230 	struct buffer_head *last_eb_bh = NULL;
5231 	struct ocfs2_extent_block *eb;
5232 	struct ocfs2_extent_list *rightmost_el, *el;
5233 	struct ocfs2_extent_rec split_rec;
5234 	struct ocfs2_extent_rec *rec;
5235 	struct ocfs2_insert_type insert;
5236 
5237 	/*
5238 	 * Setup the record to split before we grow the tree.
5239 	 */
5240 	el = path_leaf_el(path);
5241 	rec = &el->l_recs[index];
5242 	ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
5243 				   &split_rec, new_range, rec);
5244 
5245 	depth = path->p_tree_depth;
5246 	if (depth > 0) {
5247 		ret = ocfs2_read_extent_block(et->et_ci,
5248 					      ocfs2_et_get_last_eb_blk(et),
5249 					      &last_eb_bh);
5250 		if (ret < 0) {
5251 			mlog_errno(ret);
5252 			goto out;
5253 		}
5254 
5255 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5256 		rightmost_el = &eb->h_list;
5257 	} else
5258 		rightmost_el = path_leaf_el(path);
5259 
5260 	credits = path->p_tree_depth +
5261 		  ocfs2_extend_meta_needed(et->et_root_el);
5262 	ret = ocfs2_extend_trans(handle, credits);
5263 	if (ret) {
5264 		mlog_errno(ret);
5265 		goto out;
5266 	}
5267 
5268 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5269 	    le16_to_cpu(rightmost_el->l_count)) {
5270 		ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh,
5271 				      meta_ac);
5272 		if (ret) {
5273 			mlog_errno(ret);
5274 			goto out;
5275 		}
5276 	}
5277 
5278 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5279 	insert.ins_appending = APPEND_NONE;
5280 	insert.ins_contig = CONTIG_NONE;
5281 	insert.ins_split = SPLIT_RIGHT;
5282 	insert.ins_tree_depth = depth;
5283 
5284 	ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
5285 	if (ret)
5286 		mlog_errno(ret);
5287 
5288 out:
5289 	brelse(last_eb_bh);
5290 	return ret;
5291 }
5292 
5293 static int ocfs2_truncate_rec(handle_t *handle,
5294 			      struct ocfs2_extent_tree *et,
5295 			      struct ocfs2_path *path, int index,
5296 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
5297 			      u32 cpos, u32 len)
5298 {
5299 	int ret;
5300 	u32 left_cpos, rec_range, trunc_range;
5301 	int wants_rotate = 0, is_rightmost_tree_rec = 0;
5302 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5303 	struct ocfs2_path *left_path = NULL;
5304 	struct ocfs2_extent_list *el = path_leaf_el(path);
5305 	struct ocfs2_extent_rec *rec;
5306 	struct ocfs2_extent_block *eb;
5307 
5308 	if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5309 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5310 		if (ret) {
5311 			mlog_errno(ret);
5312 			goto out;
5313 		}
5314 
5315 		index--;
5316 	}
5317 
5318 	if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5319 	    path->p_tree_depth) {
5320 		/*
5321 		 * Check whether this is the rightmost tree record. If
5322 		 * we remove all of this record or part of its right
5323 		 * edge then an update of the record lengths above it
5324 		 * will be required.
5325 		 */
5326 		eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5327 		if (eb->h_next_leaf_blk == 0)
5328 			is_rightmost_tree_rec = 1;
5329 	}
5330 
5331 	rec = &el->l_recs[index];
5332 	if (index == 0 && path->p_tree_depth &&
5333 	    le32_to_cpu(rec->e_cpos) == cpos) {
5334 		/*
5335 		 * Changing the leftmost offset (via partial or whole
5336 		 * record truncate) of an interior (or rightmost) path
5337 		 * means we have to update the subtree that is formed
5338 		 * by this leaf and the one to it's left.
5339 		 *
5340 		 * There are two cases we can skip:
5341 		 *   1) Path is the leftmost one in our btree.
5342 		 *   2) The leaf is rightmost and will be empty after
5343 		 *      we remove the extent record - the rotate code
5344 		 *      knows how to update the newly formed edge.
5345 		 */
5346 
5347 		ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
5348 		if (ret) {
5349 			mlog_errno(ret);
5350 			goto out;
5351 		}
5352 
5353 		if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5354 			left_path = ocfs2_new_path_from_path(path);
5355 			if (!left_path) {
5356 				ret = -ENOMEM;
5357 				mlog_errno(ret);
5358 				goto out;
5359 			}
5360 
5361 			ret = ocfs2_find_path(et->et_ci, left_path,
5362 					      left_cpos);
5363 			if (ret) {
5364 				mlog_errno(ret);
5365 				goto out;
5366 			}
5367 		}
5368 	}
5369 
5370 	ret = ocfs2_extend_rotate_transaction(handle, 0,
5371 					      handle->h_buffer_credits,
5372 					      path);
5373 	if (ret) {
5374 		mlog_errno(ret);
5375 		goto out;
5376 	}
5377 
5378 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
5379 	if (ret) {
5380 		mlog_errno(ret);
5381 		goto out;
5382 	}
5383 
5384 	ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
5385 	if (ret) {
5386 		mlog_errno(ret);
5387 		goto out;
5388 	}
5389 
5390 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5391 	trunc_range = cpos + len;
5392 
5393 	if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5394 		int next_free;
5395 
5396 		memset(rec, 0, sizeof(*rec));
5397 		ocfs2_cleanup_merge(el, index);
5398 		wants_rotate = 1;
5399 
5400 		next_free = le16_to_cpu(el->l_next_free_rec);
5401 		if (is_rightmost_tree_rec && next_free > 1) {
5402 			/*
5403 			 * We skip the edge update if this path will
5404 			 * be deleted by the rotate code.
5405 			 */
5406 			rec = &el->l_recs[next_free - 1];
5407 			ocfs2_adjust_rightmost_records(handle, et, path,
5408 						       rec);
5409 		}
5410 	} else if (le32_to_cpu(rec->e_cpos) == cpos) {
5411 		/* Remove leftmost portion of the record. */
5412 		le32_add_cpu(&rec->e_cpos, len);
5413 		le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5414 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5415 	} else if (rec_range == trunc_range) {
5416 		/* Remove rightmost portion of the record */
5417 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5418 		if (is_rightmost_tree_rec)
5419 			ocfs2_adjust_rightmost_records(handle, et, path, rec);
5420 	} else {
5421 		/* Caller should have trapped this. */
5422 		mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) "
5423 		     "(%u, %u)\n",
5424 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5425 		     le32_to_cpu(rec->e_cpos),
5426 		     le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5427 		BUG();
5428 	}
5429 
5430 	if (left_path) {
5431 		int subtree_index;
5432 
5433 		subtree_index = ocfs2_find_subtree_root(et, left_path, path);
5434 		ocfs2_complete_edge_insert(handle, left_path, path,
5435 					   subtree_index);
5436 	}
5437 
5438 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
5439 
5440 	ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5441 	if (ret) {
5442 		mlog_errno(ret);
5443 		goto out;
5444 	}
5445 
5446 out:
5447 	ocfs2_free_path(left_path);
5448 	return ret;
5449 }
5450 
5451 int ocfs2_remove_extent(handle_t *handle,
5452 			struct ocfs2_extent_tree *et,
5453 			u32 cpos, u32 len,
5454 			struct ocfs2_alloc_context *meta_ac,
5455 			struct ocfs2_cached_dealloc_ctxt *dealloc)
5456 {
5457 	int ret, index;
5458 	u32 rec_range, trunc_range;
5459 	struct ocfs2_extent_rec *rec;
5460 	struct ocfs2_extent_list *el;
5461 	struct ocfs2_path *path = NULL;
5462 
5463 	/*
5464 	 * XXX: Why are we truncating to 0 instead of wherever this
5465 	 * affects us?
5466 	 */
5467 	ocfs2_et_extent_map_truncate(et, 0);
5468 
5469 	path = ocfs2_new_path_from_et(et);
5470 	if (!path) {
5471 		ret = -ENOMEM;
5472 		mlog_errno(ret);
5473 		goto out;
5474 	}
5475 
5476 	ret = ocfs2_find_path(et->et_ci, path, cpos);
5477 	if (ret) {
5478 		mlog_errno(ret);
5479 		goto out;
5480 	}
5481 
5482 	el = path_leaf_el(path);
5483 	index = ocfs2_search_extent_list(el, cpos);
5484 	if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5485 		ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5486 			    "Owner %llu has an extent at cpos %u which can no "
5487 			    "longer be found.\n",
5488 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5489 			    cpos);
5490 		ret = -EROFS;
5491 		goto out;
5492 	}
5493 
5494 	/*
5495 	 * We have 3 cases of extent removal:
5496 	 *   1) Range covers the entire extent rec
5497 	 *   2) Range begins or ends on one edge of the extent rec
5498 	 *   3) Range is in the middle of the extent rec (no shared edges)
5499 	 *
5500 	 * For case 1 we remove the extent rec and left rotate to
5501 	 * fill the hole.
5502 	 *
5503 	 * For case 2 we just shrink the existing extent rec, with a
5504 	 * tree update if the shrinking edge is also the edge of an
5505 	 * extent block.
5506 	 *
5507 	 * For case 3 we do a right split to turn the extent rec into
5508 	 * something case 2 can handle.
5509 	 */
5510 	rec = &el->l_recs[index];
5511 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5512 	trunc_range = cpos + len;
5513 
5514 	BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5515 
5516 	mlog(0, "Owner %llu, remove (cpos %u, len %u). Existing index %d "
5517 	     "(cpos %u, len %u)\n",
5518 	     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5519 	     cpos, len, index,
5520 	     le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
5521 
5522 	if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5523 		ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5524 					 cpos, len);
5525 		if (ret) {
5526 			mlog_errno(ret);
5527 			goto out;
5528 		}
5529 	} else {
5530 		ret = ocfs2_split_tree(handle, et, path, index,
5531 				       trunc_range, meta_ac);
5532 		if (ret) {
5533 			mlog_errno(ret);
5534 			goto out;
5535 		}
5536 
5537 		/*
5538 		 * The split could have manipulated the tree enough to
5539 		 * move the record location, so we have to look for it again.
5540 		 */
5541 		ocfs2_reinit_path(path, 1);
5542 
5543 		ret = ocfs2_find_path(et->et_ci, path, cpos);
5544 		if (ret) {
5545 			mlog_errno(ret);
5546 			goto out;
5547 		}
5548 
5549 		el = path_leaf_el(path);
5550 		index = ocfs2_search_extent_list(el, cpos);
5551 		if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5552 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5553 				    "Owner %llu: split at cpos %u lost record.",
5554 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5555 				    cpos);
5556 			ret = -EROFS;
5557 			goto out;
5558 		}
5559 
5560 		/*
5561 		 * Double check our values here. If anything is fishy,
5562 		 * it's easier to catch it at the top level.
5563 		 */
5564 		rec = &el->l_recs[index];
5565 		rec_range = le32_to_cpu(rec->e_cpos) +
5566 			ocfs2_rec_clusters(el, rec);
5567 		if (rec_range != trunc_range) {
5568 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5569 				    "Owner %llu: error after split at cpos %u"
5570 				    "trunc len %u, existing record is (%u,%u)",
5571 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5572 				    cpos, len, le32_to_cpu(rec->e_cpos),
5573 				    ocfs2_rec_clusters(el, rec));
5574 			ret = -EROFS;
5575 			goto out;
5576 		}
5577 
5578 		ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5579 					 cpos, len);
5580 		if (ret) {
5581 			mlog_errno(ret);
5582 			goto out;
5583 		}
5584 	}
5585 
5586 out:
5587 	ocfs2_free_path(path);
5588 	return ret;
5589 }
5590 
5591 /*
5592  * ocfs2_reserve_blocks_for_rec_trunc() would look basically the
5593  * same as ocfs2_lock_alloctors(), except for it accepts a blocks
5594  * number to reserve some extra blocks, and it only handles meta
5595  * data allocations.
5596  *
5597  * Currently, only ocfs2_remove_btree_range() uses it for truncating
5598  * and punching holes.
5599  */
5600 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode,
5601 					      struct ocfs2_extent_tree *et,
5602 					      u32 extents_to_split,
5603 					      struct ocfs2_alloc_context **ac,
5604 					      int extra_blocks)
5605 {
5606 	int ret = 0, num_free_extents;
5607 	unsigned int max_recs_needed = 2 * extents_to_split;
5608 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5609 
5610 	*ac = NULL;
5611 
5612 	num_free_extents = ocfs2_num_free_extents(osb, et);
5613 	if (num_free_extents < 0) {
5614 		ret = num_free_extents;
5615 		mlog_errno(ret);
5616 		goto out;
5617 	}
5618 
5619 	if (!num_free_extents ||
5620 	    (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed))
5621 		extra_blocks += ocfs2_extend_meta_needed(et->et_root_el);
5622 
5623 	if (extra_blocks) {
5624 		ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac);
5625 		if (ret < 0) {
5626 			if (ret != -ENOSPC)
5627 				mlog_errno(ret);
5628 			goto out;
5629 		}
5630 	}
5631 
5632 out:
5633 	if (ret) {
5634 		if (*ac) {
5635 			ocfs2_free_alloc_context(*ac);
5636 			*ac = NULL;
5637 		}
5638 	}
5639 
5640 	return ret;
5641 }
5642 
5643 int ocfs2_remove_btree_range(struct inode *inode,
5644 			     struct ocfs2_extent_tree *et,
5645 			     u32 cpos, u32 phys_cpos, u32 len, int flags,
5646 			     struct ocfs2_cached_dealloc_ctxt *dealloc,
5647 			     u64 refcount_loc)
5648 {
5649 	int ret, credits = 0, extra_blocks = 0;
5650 	u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5651 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5652 	struct inode *tl_inode = osb->osb_tl_inode;
5653 	handle_t *handle;
5654 	struct ocfs2_alloc_context *meta_ac = NULL;
5655 	struct ocfs2_refcount_tree *ref_tree = NULL;
5656 
5657 	if ((flags & OCFS2_EXT_REFCOUNTED) && len) {
5658 		BUG_ON(!(OCFS2_I(inode)->ip_dyn_features &
5659 			 OCFS2_HAS_REFCOUNT_FL));
5660 
5661 		ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
5662 					       &ref_tree, NULL);
5663 		if (ret) {
5664 			mlog_errno(ret);
5665 			goto out;
5666 		}
5667 
5668 		ret = ocfs2_prepare_refcount_change_for_del(inode,
5669 							    refcount_loc,
5670 							    phys_blkno,
5671 							    len,
5672 							    &credits,
5673 							    &extra_blocks);
5674 		if (ret < 0) {
5675 			mlog_errno(ret);
5676 			goto out;
5677 		}
5678 	}
5679 
5680 	ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac,
5681 						 extra_blocks);
5682 	if (ret) {
5683 		mlog_errno(ret);
5684 		return ret;
5685 	}
5686 
5687 	mutex_lock(&tl_inode->i_mutex);
5688 
5689 	if (ocfs2_truncate_log_needs_flush(osb)) {
5690 		ret = __ocfs2_flush_truncate_log(osb);
5691 		if (ret < 0) {
5692 			mlog_errno(ret);
5693 			goto out;
5694 		}
5695 	}
5696 
5697 	handle = ocfs2_start_trans(osb,
5698 			ocfs2_remove_extent_credits(osb->sb) + credits);
5699 	if (IS_ERR(handle)) {
5700 		ret = PTR_ERR(handle);
5701 		mlog_errno(ret);
5702 		goto out;
5703 	}
5704 
5705 	ret = ocfs2_et_root_journal_access(handle, et,
5706 					   OCFS2_JOURNAL_ACCESS_WRITE);
5707 	if (ret) {
5708 		mlog_errno(ret);
5709 		goto out;
5710 	}
5711 
5712 	dquot_free_space_nodirty(inode,
5713 				  ocfs2_clusters_to_bytes(inode->i_sb, len));
5714 
5715 	ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc);
5716 	if (ret) {
5717 		mlog_errno(ret);
5718 		goto out_commit;
5719 	}
5720 
5721 	ocfs2_et_update_clusters(et, -len);
5722 
5723 	ocfs2_journal_dirty(handle, et->et_root_bh);
5724 
5725 	if (phys_blkno) {
5726 		if (flags & OCFS2_EXT_REFCOUNTED)
5727 			ret = ocfs2_decrease_refcount(inode, handle,
5728 					ocfs2_blocks_to_clusters(osb->sb,
5729 								 phys_blkno),
5730 					len, meta_ac,
5731 					dealloc, 1);
5732 		else
5733 			ret = ocfs2_truncate_log_append(osb, handle,
5734 							phys_blkno, len);
5735 		if (ret)
5736 			mlog_errno(ret);
5737 
5738 	}
5739 
5740 out_commit:
5741 	ocfs2_commit_trans(osb, handle);
5742 out:
5743 	mutex_unlock(&tl_inode->i_mutex);
5744 
5745 	if (meta_ac)
5746 		ocfs2_free_alloc_context(meta_ac);
5747 
5748 	if (ref_tree)
5749 		ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
5750 
5751 	return ret;
5752 }
5753 
5754 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5755 {
5756 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5757 	struct ocfs2_dinode *di;
5758 	struct ocfs2_truncate_log *tl;
5759 
5760 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5761 	tl = &di->id2.i_dealloc;
5762 
5763 	mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5764 			"slot %d, invalid truncate log parameters: used = "
5765 			"%u, count = %u\n", osb->slot_num,
5766 			le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5767 	return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5768 }
5769 
5770 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5771 					   unsigned int new_start)
5772 {
5773 	unsigned int tail_index;
5774 	unsigned int current_tail;
5775 
5776 	/* No records, nothing to coalesce */
5777 	if (!le16_to_cpu(tl->tl_used))
5778 		return 0;
5779 
5780 	tail_index = le16_to_cpu(tl->tl_used) - 1;
5781 	current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5782 	current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5783 
5784 	return current_tail == new_start;
5785 }
5786 
5787 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5788 			      handle_t *handle,
5789 			      u64 start_blk,
5790 			      unsigned int num_clusters)
5791 {
5792 	int status, index;
5793 	unsigned int start_cluster, tl_count;
5794 	struct inode *tl_inode = osb->osb_tl_inode;
5795 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5796 	struct ocfs2_dinode *di;
5797 	struct ocfs2_truncate_log *tl;
5798 
5799 	mlog_entry("start_blk = %llu, num_clusters = %u\n",
5800 		   (unsigned long long)start_blk, num_clusters);
5801 
5802 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5803 
5804 	start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5805 
5806 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5807 
5808 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5809 	 * by the underlying call to ocfs2_read_inode_block(), so any
5810 	 * corruption is a code bug */
5811 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5812 
5813 	tl = &di->id2.i_dealloc;
5814 	tl_count = le16_to_cpu(tl->tl_count);
5815 	mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5816 			tl_count == 0,
5817 			"Truncate record count on #%llu invalid "
5818 			"wanted %u, actual %u\n",
5819 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5820 			ocfs2_truncate_recs_per_inode(osb->sb),
5821 			le16_to_cpu(tl->tl_count));
5822 
5823 	/* Caller should have known to flush before calling us. */
5824 	index = le16_to_cpu(tl->tl_used);
5825 	if (index >= tl_count) {
5826 		status = -ENOSPC;
5827 		mlog_errno(status);
5828 		goto bail;
5829 	}
5830 
5831 	status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5832 					 OCFS2_JOURNAL_ACCESS_WRITE);
5833 	if (status < 0) {
5834 		mlog_errno(status);
5835 		goto bail;
5836 	}
5837 
5838 	mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5839 	     "%llu (index = %d)\n", num_clusters, start_cluster,
5840 	     (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
5841 
5842 	if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5843 		/*
5844 		 * Move index back to the record we are coalescing with.
5845 		 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5846 		 */
5847 		index--;
5848 
5849 		num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5850 		mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5851 		     index, le32_to_cpu(tl->tl_recs[index].t_start),
5852 		     num_clusters);
5853 	} else {
5854 		tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5855 		tl->tl_used = cpu_to_le16(index + 1);
5856 	}
5857 	tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5858 
5859 	ocfs2_journal_dirty(handle, tl_bh);
5860 
5861 bail:
5862 	mlog_exit(status);
5863 	return status;
5864 }
5865 
5866 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5867 					 handle_t *handle,
5868 					 struct inode *data_alloc_inode,
5869 					 struct buffer_head *data_alloc_bh)
5870 {
5871 	int status = 0;
5872 	int i;
5873 	unsigned int num_clusters;
5874 	u64 start_blk;
5875 	struct ocfs2_truncate_rec rec;
5876 	struct ocfs2_dinode *di;
5877 	struct ocfs2_truncate_log *tl;
5878 	struct inode *tl_inode = osb->osb_tl_inode;
5879 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5880 
5881 	mlog_entry_void();
5882 
5883 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5884 	tl = &di->id2.i_dealloc;
5885 	i = le16_to_cpu(tl->tl_used) - 1;
5886 	while (i >= 0) {
5887 		/* Caller has given us at least enough credits to
5888 		 * update the truncate log dinode */
5889 		status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5890 						 OCFS2_JOURNAL_ACCESS_WRITE);
5891 		if (status < 0) {
5892 			mlog_errno(status);
5893 			goto bail;
5894 		}
5895 
5896 		tl->tl_used = cpu_to_le16(i);
5897 
5898 		ocfs2_journal_dirty(handle, tl_bh);
5899 
5900 		/* TODO: Perhaps we can calculate the bulk of the
5901 		 * credits up front rather than extending like
5902 		 * this. */
5903 		status = ocfs2_extend_trans(handle,
5904 					    OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5905 		if (status < 0) {
5906 			mlog_errno(status);
5907 			goto bail;
5908 		}
5909 
5910 		rec = tl->tl_recs[i];
5911 		start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5912 						    le32_to_cpu(rec.t_start));
5913 		num_clusters = le32_to_cpu(rec.t_clusters);
5914 
5915 		/* if start_blk is not set, we ignore the record as
5916 		 * invalid. */
5917 		if (start_blk) {
5918 			mlog(0, "free record %d, start = %u, clusters = %u\n",
5919 			     i, le32_to_cpu(rec.t_start), num_clusters);
5920 
5921 			status = ocfs2_free_clusters(handle, data_alloc_inode,
5922 						     data_alloc_bh, start_blk,
5923 						     num_clusters);
5924 			if (status < 0) {
5925 				mlog_errno(status);
5926 				goto bail;
5927 			}
5928 		}
5929 		i--;
5930 	}
5931 
5932 bail:
5933 	mlog_exit(status);
5934 	return status;
5935 }
5936 
5937 /* Expects you to already be holding tl_inode->i_mutex */
5938 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5939 {
5940 	int status;
5941 	unsigned int num_to_flush;
5942 	handle_t *handle;
5943 	struct inode *tl_inode = osb->osb_tl_inode;
5944 	struct inode *data_alloc_inode = NULL;
5945 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5946 	struct buffer_head *data_alloc_bh = NULL;
5947 	struct ocfs2_dinode *di;
5948 	struct ocfs2_truncate_log *tl;
5949 
5950 	mlog_entry_void();
5951 
5952 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5953 
5954 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5955 
5956 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5957 	 * by the underlying call to ocfs2_read_inode_block(), so any
5958 	 * corruption is a code bug */
5959 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5960 
5961 	tl = &di->id2.i_dealloc;
5962 	num_to_flush = le16_to_cpu(tl->tl_used);
5963 	mlog(0, "Flush %u records from truncate log #%llu\n",
5964 	     num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5965 	if (!num_to_flush) {
5966 		status = 0;
5967 		goto out;
5968 	}
5969 
5970 	data_alloc_inode = ocfs2_get_system_file_inode(osb,
5971 						       GLOBAL_BITMAP_SYSTEM_INODE,
5972 						       OCFS2_INVALID_SLOT);
5973 	if (!data_alloc_inode) {
5974 		status = -EINVAL;
5975 		mlog(ML_ERROR, "Could not get bitmap inode!\n");
5976 		goto out;
5977 	}
5978 
5979 	mutex_lock(&data_alloc_inode->i_mutex);
5980 
5981 	status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5982 	if (status < 0) {
5983 		mlog_errno(status);
5984 		goto out_mutex;
5985 	}
5986 
5987 	handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5988 	if (IS_ERR(handle)) {
5989 		status = PTR_ERR(handle);
5990 		mlog_errno(status);
5991 		goto out_unlock;
5992 	}
5993 
5994 	status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5995 					       data_alloc_bh);
5996 	if (status < 0)
5997 		mlog_errno(status);
5998 
5999 	ocfs2_commit_trans(osb, handle);
6000 
6001 out_unlock:
6002 	brelse(data_alloc_bh);
6003 	ocfs2_inode_unlock(data_alloc_inode, 1);
6004 
6005 out_mutex:
6006 	mutex_unlock(&data_alloc_inode->i_mutex);
6007 	iput(data_alloc_inode);
6008 
6009 out:
6010 	mlog_exit(status);
6011 	return status;
6012 }
6013 
6014 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
6015 {
6016 	int status;
6017 	struct inode *tl_inode = osb->osb_tl_inode;
6018 
6019 	mutex_lock(&tl_inode->i_mutex);
6020 	status = __ocfs2_flush_truncate_log(osb);
6021 	mutex_unlock(&tl_inode->i_mutex);
6022 
6023 	return status;
6024 }
6025 
6026 static void ocfs2_truncate_log_worker(struct work_struct *work)
6027 {
6028 	int status;
6029 	struct ocfs2_super *osb =
6030 		container_of(work, struct ocfs2_super,
6031 			     osb_truncate_log_wq.work);
6032 
6033 	mlog_entry_void();
6034 
6035 	status = ocfs2_flush_truncate_log(osb);
6036 	if (status < 0)
6037 		mlog_errno(status);
6038 	else
6039 		ocfs2_init_steal_slots(osb);
6040 
6041 	mlog_exit(status);
6042 }
6043 
6044 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
6045 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
6046 				       int cancel)
6047 {
6048 	if (osb->osb_tl_inode) {
6049 		/* We want to push off log flushes while truncates are
6050 		 * still running. */
6051 		if (cancel)
6052 			cancel_delayed_work(&osb->osb_truncate_log_wq);
6053 
6054 		queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
6055 				   OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
6056 	}
6057 }
6058 
6059 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
6060 				       int slot_num,
6061 				       struct inode **tl_inode,
6062 				       struct buffer_head **tl_bh)
6063 {
6064 	int status;
6065 	struct inode *inode = NULL;
6066 	struct buffer_head *bh = NULL;
6067 
6068 	inode = ocfs2_get_system_file_inode(osb,
6069 					   TRUNCATE_LOG_SYSTEM_INODE,
6070 					   slot_num);
6071 	if (!inode) {
6072 		status = -EINVAL;
6073 		mlog(ML_ERROR, "Could not get load truncate log inode!\n");
6074 		goto bail;
6075 	}
6076 
6077 	status = ocfs2_read_inode_block(inode, &bh);
6078 	if (status < 0) {
6079 		iput(inode);
6080 		mlog_errno(status);
6081 		goto bail;
6082 	}
6083 
6084 	*tl_inode = inode;
6085 	*tl_bh    = bh;
6086 bail:
6087 	mlog_exit(status);
6088 	return status;
6089 }
6090 
6091 /* called during the 1st stage of node recovery. we stamp a clean
6092  * truncate log and pass back a copy for processing later. if the
6093  * truncate log does not require processing, a *tl_copy is set to
6094  * NULL. */
6095 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
6096 				      int slot_num,
6097 				      struct ocfs2_dinode **tl_copy)
6098 {
6099 	int status;
6100 	struct inode *tl_inode = NULL;
6101 	struct buffer_head *tl_bh = NULL;
6102 	struct ocfs2_dinode *di;
6103 	struct ocfs2_truncate_log *tl;
6104 
6105 	*tl_copy = NULL;
6106 
6107 	mlog(0, "recover truncate log from slot %d\n", slot_num);
6108 
6109 	status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
6110 	if (status < 0) {
6111 		mlog_errno(status);
6112 		goto bail;
6113 	}
6114 
6115 	di = (struct ocfs2_dinode *) tl_bh->b_data;
6116 
6117 	/* tl_bh is loaded from ocfs2_get_truncate_log_info().  It's
6118 	 * validated by the underlying call to ocfs2_read_inode_block(),
6119 	 * so any corruption is a code bug */
6120 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
6121 
6122 	tl = &di->id2.i_dealloc;
6123 	if (le16_to_cpu(tl->tl_used)) {
6124 		mlog(0, "We'll have %u logs to recover\n",
6125 		     le16_to_cpu(tl->tl_used));
6126 
6127 		*tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
6128 		if (!(*tl_copy)) {
6129 			status = -ENOMEM;
6130 			mlog_errno(status);
6131 			goto bail;
6132 		}
6133 
6134 		/* Assuming the write-out below goes well, this copy
6135 		 * will be passed back to recovery for processing. */
6136 		memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
6137 
6138 		/* All we need to do to clear the truncate log is set
6139 		 * tl_used. */
6140 		tl->tl_used = 0;
6141 
6142 		ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6143 		status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
6144 		if (status < 0) {
6145 			mlog_errno(status);
6146 			goto bail;
6147 		}
6148 	}
6149 
6150 bail:
6151 	if (tl_inode)
6152 		iput(tl_inode);
6153 	brelse(tl_bh);
6154 
6155 	if (status < 0 && (*tl_copy)) {
6156 		kfree(*tl_copy);
6157 		*tl_copy = NULL;
6158 	}
6159 
6160 	mlog_exit(status);
6161 	return status;
6162 }
6163 
6164 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6165 					 struct ocfs2_dinode *tl_copy)
6166 {
6167 	int status = 0;
6168 	int i;
6169 	unsigned int clusters, num_recs, start_cluster;
6170 	u64 start_blk;
6171 	handle_t *handle;
6172 	struct inode *tl_inode = osb->osb_tl_inode;
6173 	struct ocfs2_truncate_log *tl;
6174 
6175 	mlog_entry_void();
6176 
6177 	if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6178 		mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6179 		return -EINVAL;
6180 	}
6181 
6182 	tl = &tl_copy->id2.i_dealloc;
6183 	num_recs = le16_to_cpu(tl->tl_used);
6184 	mlog(0, "cleanup %u records from %llu\n", num_recs,
6185 	     (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
6186 
6187 	mutex_lock(&tl_inode->i_mutex);
6188 	for(i = 0; i < num_recs; i++) {
6189 		if (ocfs2_truncate_log_needs_flush(osb)) {
6190 			status = __ocfs2_flush_truncate_log(osb);
6191 			if (status < 0) {
6192 				mlog_errno(status);
6193 				goto bail_up;
6194 			}
6195 		}
6196 
6197 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6198 		if (IS_ERR(handle)) {
6199 			status = PTR_ERR(handle);
6200 			mlog_errno(status);
6201 			goto bail_up;
6202 		}
6203 
6204 		clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6205 		start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6206 		start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6207 
6208 		status = ocfs2_truncate_log_append(osb, handle,
6209 						   start_blk, clusters);
6210 		ocfs2_commit_trans(osb, handle);
6211 		if (status < 0) {
6212 			mlog_errno(status);
6213 			goto bail_up;
6214 		}
6215 	}
6216 
6217 bail_up:
6218 	mutex_unlock(&tl_inode->i_mutex);
6219 
6220 	mlog_exit(status);
6221 	return status;
6222 }
6223 
6224 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6225 {
6226 	int status;
6227 	struct inode *tl_inode = osb->osb_tl_inode;
6228 
6229 	mlog_entry_void();
6230 
6231 	if (tl_inode) {
6232 		cancel_delayed_work(&osb->osb_truncate_log_wq);
6233 		flush_workqueue(ocfs2_wq);
6234 
6235 		status = ocfs2_flush_truncate_log(osb);
6236 		if (status < 0)
6237 			mlog_errno(status);
6238 
6239 		brelse(osb->osb_tl_bh);
6240 		iput(osb->osb_tl_inode);
6241 	}
6242 
6243 	mlog_exit_void();
6244 }
6245 
6246 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6247 {
6248 	int status;
6249 	struct inode *tl_inode = NULL;
6250 	struct buffer_head *tl_bh = NULL;
6251 
6252 	mlog_entry_void();
6253 
6254 	status = ocfs2_get_truncate_log_info(osb,
6255 					     osb->slot_num,
6256 					     &tl_inode,
6257 					     &tl_bh);
6258 	if (status < 0)
6259 		mlog_errno(status);
6260 
6261 	/* ocfs2_truncate_log_shutdown keys on the existence of
6262 	 * osb->osb_tl_inode so we don't set any of the osb variables
6263 	 * until we're sure all is well. */
6264 	INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6265 			  ocfs2_truncate_log_worker);
6266 	osb->osb_tl_bh    = tl_bh;
6267 	osb->osb_tl_inode = tl_inode;
6268 
6269 	mlog_exit(status);
6270 	return status;
6271 }
6272 
6273 /*
6274  * Delayed de-allocation of suballocator blocks.
6275  *
6276  * Some sets of block de-allocations might involve multiple suballocator inodes.
6277  *
6278  * The locking for this can get extremely complicated, especially when
6279  * the suballocator inodes to delete from aren't known until deep
6280  * within an unrelated codepath.
6281  *
6282  * ocfs2_extent_block structures are a good example of this - an inode
6283  * btree could have been grown by any number of nodes each allocating
6284  * out of their own suballoc inode.
6285  *
6286  * These structures allow the delay of block de-allocation until a
6287  * later time, when locking of multiple cluster inodes won't cause
6288  * deadlock.
6289  */
6290 
6291 /*
6292  * Describe a single bit freed from a suballocator.  For the block
6293  * suballocators, it represents one block.  For the global cluster
6294  * allocator, it represents some clusters and free_bit indicates
6295  * clusters number.
6296  */
6297 struct ocfs2_cached_block_free {
6298 	struct ocfs2_cached_block_free		*free_next;
6299 	u64					free_bg;
6300 	u64					free_blk;
6301 	unsigned int				free_bit;
6302 };
6303 
6304 struct ocfs2_per_slot_free_list {
6305 	struct ocfs2_per_slot_free_list		*f_next_suballocator;
6306 	int					f_inode_type;
6307 	int					f_slot;
6308 	struct ocfs2_cached_block_free		*f_first;
6309 };
6310 
6311 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6312 				    int sysfile_type,
6313 				    int slot,
6314 				    struct ocfs2_cached_block_free *head)
6315 {
6316 	int ret;
6317 	u64 bg_blkno;
6318 	handle_t *handle;
6319 	struct inode *inode;
6320 	struct buffer_head *di_bh = NULL;
6321 	struct ocfs2_cached_block_free *tmp;
6322 
6323 	inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6324 	if (!inode) {
6325 		ret = -EINVAL;
6326 		mlog_errno(ret);
6327 		goto out;
6328 	}
6329 
6330 	mutex_lock(&inode->i_mutex);
6331 
6332 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
6333 	if (ret) {
6334 		mlog_errno(ret);
6335 		goto out_mutex;
6336 	}
6337 
6338 	handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6339 	if (IS_ERR(handle)) {
6340 		ret = PTR_ERR(handle);
6341 		mlog_errno(ret);
6342 		goto out_unlock;
6343 	}
6344 
6345 	while (head) {
6346 		if (head->free_bg)
6347 			bg_blkno = head->free_bg;
6348 		else
6349 			bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6350 							      head->free_bit);
6351 		mlog(0, "Free bit: (bit %u, blkno %llu)\n",
6352 		     head->free_bit, (unsigned long long)head->free_blk);
6353 
6354 		ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6355 					       head->free_bit, bg_blkno, 1);
6356 		if (ret) {
6357 			mlog_errno(ret);
6358 			goto out_journal;
6359 		}
6360 
6361 		ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
6362 		if (ret) {
6363 			mlog_errno(ret);
6364 			goto out_journal;
6365 		}
6366 
6367 		tmp = head;
6368 		head = head->free_next;
6369 		kfree(tmp);
6370 	}
6371 
6372 out_journal:
6373 	ocfs2_commit_trans(osb, handle);
6374 
6375 out_unlock:
6376 	ocfs2_inode_unlock(inode, 1);
6377 	brelse(di_bh);
6378 out_mutex:
6379 	mutex_unlock(&inode->i_mutex);
6380 	iput(inode);
6381 out:
6382 	while(head) {
6383 		/* Premature exit may have left some dangling items. */
6384 		tmp = head;
6385 		head = head->free_next;
6386 		kfree(tmp);
6387 	}
6388 
6389 	return ret;
6390 }
6391 
6392 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6393 				u64 blkno, unsigned int bit)
6394 {
6395 	int ret = 0;
6396 	struct ocfs2_cached_block_free *item;
6397 
6398 	item = kzalloc(sizeof(*item), GFP_NOFS);
6399 	if (item == NULL) {
6400 		ret = -ENOMEM;
6401 		mlog_errno(ret);
6402 		return ret;
6403 	}
6404 
6405 	mlog(0, "Insert clusters: (bit %u, blk %llu)\n",
6406 	     bit, (unsigned long long)blkno);
6407 
6408 	item->free_blk = blkno;
6409 	item->free_bit = bit;
6410 	item->free_next = ctxt->c_global_allocator;
6411 
6412 	ctxt->c_global_allocator = item;
6413 	return ret;
6414 }
6415 
6416 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6417 				      struct ocfs2_cached_block_free *head)
6418 {
6419 	struct ocfs2_cached_block_free *tmp;
6420 	struct inode *tl_inode = osb->osb_tl_inode;
6421 	handle_t *handle;
6422 	int ret = 0;
6423 
6424 	mutex_lock(&tl_inode->i_mutex);
6425 
6426 	while (head) {
6427 		if (ocfs2_truncate_log_needs_flush(osb)) {
6428 			ret = __ocfs2_flush_truncate_log(osb);
6429 			if (ret < 0) {
6430 				mlog_errno(ret);
6431 				break;
6432 			}
6433 		}
6434 
6435 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6436 		if (IS_ERR(handle)) {
6437 			ret = PTR_ERR(handle);
6438 			mlog_errno(ret);
6439 			break;
6440 		}
6441 
6442 		ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6443 						head->free_bit);
6444 
6445 		ocfs2_commit_trans(osb, handle);
6446 		tmp = head;
6447 		head = head->free_next;
6448 		kfree(tmp);
6449 
6450 		if (ret < 0) {
6451 			mlog_errno(ret);
6452 			break;
6453 		}
6454 	}
6455 
6456 	mutex_unlock(&tl_inode->i_mutex);
6457 
6458 	while (head) {
6459 		/* Premature exit may have left some dangling items. */
6460 		tmp = head;
6461 		head = head->free_next;
6462 		kfree(tmp);
6463 	}
6464 
6465 	return ret;
6466 }
6467 
6468 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6469 		       struct ocfs2_cached_dealloc_ctxt *ctxt)
6470 {
6471 	int ret = 0, ret2;
6472 	struct ocfs2_per_slot_free_list *fl;
6473 
6474 	if (!ctxt)
6475 		return 0;
6476 
6477 	while (ctxt->c_first_suballocator) {
6478 		fl = ctxt->c_first_suballocator;
6479 
6480 		if (fl->f_first) {
6481 			mlog(0, "Free items: (type %u, slot %d)\n",
6482 			     fl->f_inode_type, fl->f_slot);
6483 			ret2 = ocfs2_free_cached_blocks(osb,
6484 							fl->f_inode_type,
6485 							fl->f_slot,
6486 							fl->f_first);
6487 			if (ret2)
6488 				mlog_errno(ret2);
6489 			if (!ret)
6490 				ret = ret2;
6491 		}
6492 
6493 		ctxt->c_first_suballocator = fl->f_next_suballocator;
6494 		kfree(fl);
6495 	}
6496 
6497 	if (ctxt->c_global_allocator) {
6498 		ret2 = ocfs2_free_cached_clusters(osb,
6499 						  ctxt->c_global_allocator);
6500 		if (ret2)
6501 			mlog_errno(ret2);
6502 		if (!ret)
6503 			ret = ret2;
6504 
6505 		ctxt->c_global_allocator = NULL;
6506 	}
6507 
6508 	return ret;
6509 }
6510 
6511 static struct ocfs2_per_slot_free_list *
6512 ocfs2_find_per_slot_free_list(int type,
6513 			      int slot,
6514 			      struct ocfs2_cached_dealloc_ctxt *ctxt)
6515 {
6516 	struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6517 
6518 	while (fl) {
6519 		if (fl->f_inode_type == type && fl->f_slot == slot)
6520 			return fl;
6521 
6522 		fl = fl->f_next_suballocator;
6523 	}
6524 
6525 	fl = kmalloc(sizeof(*fl), GFP_NOFS);
6526 	if (fl) {
6527 		fl->f_inode_type = type;
6528 		fl->f_slot = slot;
6529 		fl->f_first = NULL;
6530 		fl->f_next_suballocator = ctxt->c_first_suballocator;
6531 
6532 		ctxt->c_first_suballocator = fl;
6533 	}
6534 	return fl;
6535 }
6536 
6537 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6538 			      int type, int slot, u64 suballoc,
6539 			      u64 blkno, unsigned int bit)
6540 {
6541 	int ret;
6542 	struct ocfs2_per_slot_free_list *fl;
6543 	struct ocfs2_cached_block_free *item;
6544 
6545 	fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6546 	if (fl == NULL) {
6547 		ret = -ENOMEM;
6548 		mlog_errno(ret);
6549 		goto out;
6550 	}
6551 
6552 	item = kzalloc(sizeof(*item), GFP_NOFS);
6553 	if (item == NULL) {
6554 		ret = -ENOMEM;
6555 		mlog_errno(ret);
6556 		goto out;
6557 	}
6558 
6559 	mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
6560 	     type, slot, bit, (unsigned long long)blkno);
6561 
6562 	item->free_bg = suballoc;
6563 	item->free_blk = blkno;
6564 	item->free_bit = bit;
6565 	item->free_next = fl->f_first;
6566 
6567 	fl->f_first = item;
6568 
6569 	ret = 0;
6570 out:
6571 	return ret;
6572 }
6573 
6574 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6575 					 struct ocfs2_extent_block *eb)
6576 {
6577 	return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6578 					 le16_to_cpu(eb->h_suballoc_slot),
6579 					 le64_to_cpu(eb->h_suballoc_loc),
6580 					 le64_to_cpu(eb->h_blkno),
6581 					 le16_to_cpu(eb->h_suballoc_bit));
6582 }
6583 
6584 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6585 {
6586 	set_buffer_uptodate(bh);
6587 	mark_buffer_dirty(bh);
6588 	return 0;
6589 }
6590 
6591 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6592 			      unsigned int from, unsigned int to,
6593 			      struct page *page, int zero, u64 *phys)
6594 {
6595 	int ret, partial = 0;
6596 
6597 	ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6598 	if (ret)
6599 		mlog_errno(ret);
6600 
6601 	if (zero)
6602 		zero_user_segment(page, from, to);
6603 
6604 	/*
6605 	 * Need to set the buffers we zero'd into uptodate
6606 	 * here if they aren't - ocfs2_map_page_blocks()
6607 	 * might've skipped some
6608 	 */
6609 	ret = walk_page_buffers(handle, page_buffers(page),
6610 				from, to, &partial,
6611 				ocfs2_zero_func);
6612 	if (ret < 0)
6613 		mlog_errno(ret);
6614 	else if (ocfs2_should_order_data(inode)) {
6615 		ret = ocfs2_jbd2_file_inode(handle, inode);
6616 		if (ret < 0)
6617 			mlog_errno(ret);
6618 	}
6619 
6620 	if (!partial)
6621 		SetPageUptodate(page);
6622 
6623 	flush_dcache_page(page);
6624 }
6625 
6626 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6627 				     loff_t end, struct page **pages,
6628 				     int numpages, u64 phys, handle_t *handle)
6629 {
6630 	int i;
6631 	struct page *page;
6632 	unsigned int from, to = PAGE_CACHE_SIZE;
6633 	struct super_block *sb = inode->i_sb;
6634 
6635 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6636 
6637 	if (numpages == 0)
6638 		goto out;
6639 
6640 	to = PAGE_CACHE_SIZE;
6641 	for(i = 0; i < numpages; i++) {
6642 		page = pages[i];
6643 
6644 		from = start & (PAGE_CACHE_SIZE - 1);
6645 		if ((end >> PAGE_CACHE_SHIFT) == page->index)
6646 			to = end & (PAGE_CACHE_SIZE - 1);
6647 
6648 		BUG_ON(from > PAGE_CACHE_SIZE);
6649 		BUG_ON(to > PAGE_CACHE_SIZE);
6650 
6651 		ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6652 					 &phys);
6653 
6654 		start = (page->index + 1) << PAGE_CACHE_SHIFT;
6655 	}
6656 out:
6657 	if (pages)
6658 		ocfs2_unlock_and_free_pages(pages, numpages);
6659 }
6660 
6661 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end,
6662 		     struct page **pages, int *num)
6663 {
6664 	int numpages, ret = 0;
6665 	struct address_space *mapping = inode->i_mapping;
6666 	unsigned long index;
6667 	loff_t last_page_bytes;
6668 
6669 	BUG_ON(start > end);
6670 
6671 	numpages = 0;
6672 	last_page_bytes = PAGE_ALIGN(end);
6673 	index = start >> PAGE_CACHE_SHIFT;
6674 	do {
6675 		pages[numpages] = grab_cache_page(mapping, index);
6676 		if (!pages[numpages]) {
6677 			ret = -ENOMEM;
6678 			mlog_errno(ret);
6679 			goto out;
6680 		}
6681 
6682 		numpages++;
6683 		index++;
6684 	} while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6685 
6686 out:
6687 	if (ret != 0) {
6688 		if (pages)
6689 			ocfs2_unlock_and_free_pages(pages, numpages);
6690 		numpages = 0;
6691 	}
6692 
6693 	*num = numpages;
6694 
6695 	return ret;
6696 }
6697 
6698 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6699 				struct page **pages, int *num)
6700 {
6701 	struct super_block *sb = inode->i_sb;
6702 
6703 	BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6704 	       (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6705 
6706 	return ocfs2_grab_pages(inode, start, end, pages, num);
6707 }
6708 
6709 /*
6710  * Zero the area past i_size but still within an allocated
6711  * cluster. This avoids exposing nonzero data on subsequent file
6712  * extends.
6713  *
6714  * We need to call this before i_size is updated on the inode because
6715  * otherwise block_write_full_page() will skip writeout of pages past
6716  * i_size. The new_i_size parameter is passed for this reason.
6717  */
6718 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6719 				  u64 range_start, u64 range_end)
6720 {
6721 	int ret = 0, numpages;
6722 	struct page **pages = NULL;
6723 	u64 phys;
6724 	unsigned int ext_flags;
6725 	struct super_block *sb = inode->i_sb;
6726 
6727 	/*
6728 	 * File systems which don't support sparse files zero on every
6729 	 * extend.
6730 	 */
6731 	if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6732 		return 0;
6733 
6734 	pages = kcalloc(ocfs2_pages_per_cluster(sb),
6735 			sizeof(struct page *), GFP_NOFS);
6736 	if (pages == NULL) {
6737 		ret = -ENOMEM;
6738 		mlog_errno(ret);
6739 		goto out;
6740 	}
6741 
6742 	if (range_start == range_end)
6743 		goto out;
6744 
6745 	ret = ocfs2_extent_map_get_blocks(inode,
6746 					  range_start >> sb->s_blocksize_bits,
6747 					  &phys, NULL, &ext_flags);
6748 	if (ret) {
6749 		mlog_errno(ret);
6750 		goto out;
6751 	}
6752 
6753 	/*
6754 	 * Tail is a hole, or is marked unwritten. In either case, we
6755 	 * can count on read and write to return/push zero's.
6756 	 */
6757 	if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6758 		goto out;
6759 
6760 	ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6761 				   &numpages);
6762 	if (ret) {
6763 		mlog_errno(ret);
6764 		goto out;
6765 	}
6766 
6767 	ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6768 				 numpages, phys, handle);
6769 
6770 	/*
6771 	 * Initiate writeout of the pages we zero'd here. We don't
6772 	 * wait on them - the truncate_inode_pages() call later will
6773 	 * do that for us.
6774 	 */
6775 	ret = filemap_fdatawrite_range(inode->i_mapping, range_start,
6776 				       range_end - 1);
6777 	if (ret)
6778 		mlog_errno(ret);
6779 
6780 out:
6781 	if (pages)
6782 		kfree(pages);
6783 
6784 	return ret;
6785 }
6786 
6787 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
6788 					     struct ocfs2_dinode *di)
6789 {
6790 	unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
6791 	unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
6792 
6793 	if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
6794 		memset(&di->id2, 0, blocksize -
6795 				    offsetof(struct ocfs2_dinode, id2) -
6796 				    xattrsize);
6797 	else
6798 		memset(&di->id2, 0, blocksize -
6799 				    offsetof(struct ocfs2_dinode, id2));
6800 }
6801 
6802 void ocfs2_dinode_new_extent_list(struct inode *inode,
6803 				  struct ocfs2_dinode *di)
6804 {
6805 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
6806 	di->id2.i_list.l_tree_depth = 0;
6807 	di->id2.i_list.l_next_free_rec = 0;
6808 	di->id2.i_list.l_count = cpu_to_le16(
6809 		ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
6810 }
6811 
6812 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
6813 {
6814 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
6815 	struct ocfs2_inline_data *idata = &di->id2.i_data;
6816 
6817 	spin_lock(&oi->ip_lock);
6818 	oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
6819 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6820 	spin_unlock(&oi->ip_lock);
6821 
6822 	/*
6823 	 * We clear the entire i_data structure here so that all
6824 	 * fields can be properly initialized.
6825 	 */
6826 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
6827 
6828 	idata->id_count = cpu_to_le16(
6829 			ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
6830 }
6831 
6832 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
6833 					 struct buffer_head *di_bh)
6834 {
6835 	int ret, i, has_data, num_pages = 0;
6836 	handle_t *handle;
6837 	u64 uninitialized_var(block);
6838 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
6839 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6840 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6841 	struct ocfs2_alloc_context *data_ac = NULL;
6842 	struct page **pages = NULL;
6843 	loff_t end = osb->s_clustersize;
6844 	struct ocfs2_extent_tree et;
6845 	int did_quota = 0;
6846 
6847 	has_data = i_size_read(inode) ? 1 : 0;
6848 
6849 	if (has_data) {
6850 		pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
6851 				sizeof(struct page *), GFP_NOFS);
6852 		if (pages == NULL) {
6853 			ret = -ENOMEM;
6854 			mlog_errno(ret);
6855 			goto out;
6856 		}
6857 
6858 		ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
6859 		if (ret) {
6860 			mlog_errno(ret);
6861 			goto out;
6862 		}
6863 	}
6864 
6865 	handle = ocfs2_start_trans(osb,
6866 				   ocfs2_inline_to_extents_credits(osb->sb));
6867 	if (IS_ERR(handle)) {
6868 		ret = PTR_ERR(handle);
6869 		mlog_errno(ret);
6870 		goto out_unlock;
6871 	}
6872 
6873 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
6874 				      OCFS2_JOURNAL_ACCESS_WRITE);
6875 	if (ret) {
6876 		mlog_errno(ret);
6877 		goto out_commit;
6878 	}
6879 
6880 	if (has_data) {
6881 		u32 bit_off, num;
6882 		unsigned int page_end;
6883 		u64 phys;
6884 
6885 		ret = dquot_alloc_space_nodirty(inode,
6886 				       ocfs2_clusters_to_bytes(osb->sb, 1));
6887 		if (ret)
6888 			goto out_commit;
6889 		did_quota = 1;
6890 
6891 		data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
6892 
6893 		ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off,
6894 					   &num);
6895 		if (ret) {
6896 			mlog_errno(ret);
6897 			goto out_commit;
6898 		}
6899 
6900 		/*
6901 		 * Save two copies, one for insert, and one that can
6902 		 * be changed by ocfs2_map_and_dirty_page() below.
6903 		 */
6904 		block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
6905 
6906 		/*
6907 		 * Non sparse file systems zero on extend, so no need
6908 		 * to do that now.
6909 		 */
6910 		if (!ocfs2_sparse_alloc(osb) &&
6911 		    PAGE_CACHE_SIZE < osb->s_clustersize)
6912 			end = PAGE_CACHE_SIZE;
6913 
6914 		ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
6915 		if (ret) {
6916 			mlog_errno(ret);
6917 			goto out_commit;
6918 		}
6919 
6920 		/*
6921 		 * This should populate the 1st page for us and mark
6922 		 * it up to date.
6923 		 */
6924 		ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
6925 		if (ret) {
6926 			mlog_errno(ret);
6927 			goto out_commit;
6928 		}
6929 
6930 		page_end = PAGE_CACHE_SIZE;
6931 		if (PAGE_CACHE_SIZE > osb->s_clustersize)
6932 			page_end = osb->s_clustersize;
6933 
6934 		for (i = 0; i < num_pages; i++)
6935 			ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
6936 						 pages[i], i > 0, &phys);
6937 	}
6938 
6939 	spin_lock(&oi->ip_lock);
6940 	oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
6941 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6942 	spin_unlock(&oi->ip_lock);
6943 
6944 	ocfs2_dinode_new_extent_list(inode, di);
6945 
6946 	ocfs2_journal_dirty(handle, di_bh);
6947 
6948 	if (has_data) {
6949 		/*
6950 		 * An error at this point should be extremely rare. If
6951 		 * this proves to be false, we could always re-build
6952 		 * the in-inode data from our pages.
6953 		 */
6954 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
6955 		ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL);
6956 		if (ret) {
6957 			mlog_errno(ret);
6958 			goto out_commit;
6959 		}
6960 
6961 		inode->i_blocks = ocfs2_inode_sector_count(inode);
6962 	}
6963 
6964 out_commit:
6965 	if (ret < 0 && did_quota)
6966 		dquot_free_space_nodirty(inode,
6967 					  ocfs2_clusters_to_bytes(osb->sb, 1));
6968 
6969 	ocfs2_commit_trans(osb, handle);
6970 
6971 out_unlock:
6972 	if (data_ac)
6973 		ocfs2_free_alloc_context(data_ac);
6974 
6975 out:
6976 	if (pages) {
6977 		ocfs2_unlock_and_free_pages(pages, num_pages);
6978 		kfree(pages);
6979 	}
6980 
6981 	return ret;
6982 }
6983 
6984 /*
6985  * It is expected, that by the time you call this function,
6986  * inode->i_size and fe->i_size have been adjusted.
6987  *
6988  * WARNING: This will kfree the truncate context
6989  */
6990 int ocfs2_commit_truncate(struct ocfs2_super *osb,
6991 			  struct inode *inode,
6992 			  struct buffer_head *di_bh)
6993 {
6994 	int status = 0, i, flags = 0;
6995 	u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff;
6996 	u64 blkno = 0;
6997 	struct ocfs2_extent_list *el;
6998 	struct ocfs2_extent_rec *rec;
6999 	struct ocfs2_path *path = NULL;
7000 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7001 	struct ocfs2_extent_list *root_el = &(di->id2.i_list);
7002 	u64 refcount_loc = le64_to_cpu(di->i_refcount_loc);
7003 	struct ocfs2_extent_tree et;
7004 	struct ocfs2_cached_dealloc_ctxt dealloc;
7005 
7006 	mlog_entry_void();
7007 
7008 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
7009 	ocfs2_init_dealloc_ctxt(&dealloc);
7010 
7011 	new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7012 						     i_size_read(inode));
7013 
7014 	path = ocfs2_new_path(di_bh, &di->id2.i_list,
7015 			      ocfs2_journal_access_di);
7016 	if (!path) {
7017 		status = -ENOMEM;
7018 		mlog_errno(status);
7019 		goto bail;
7020 	}
7021 
7022 	ocfs2_extent_map_trunc(inode, new_highest_cpos);
7023 
7024 start:
7025 	/*
7026 	 * Check that we still have allocation to delete.
7027 	 */
7028 	if (OCFS2_I(inode)->ip_clusters == 0) {
7029 		status = 0;
7030 		goto bail;
7031 	}
7032 
7033 	/*
7034 	 * Truncate always works against the rightmost tree branch.
7035 	 */
7036 	status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX);
7037 	if (status) {
7038 		mlog_errno(status);
7039 		goto bail;
7040 	}
7041 
7042 	mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
7043 	     OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
7044 
7045 	/*
7046 	 * By now, el will point to the extent list on the bottom most
7047 	 * portion of this tree. Only the tail record is considered in
7048 	 * each pass.
7049 	 *
7050 	 * We handle the following cases, in order:
7051 	 * - empty extent: delete the remaining branch
7052 	 * - remove the entire record
7053 	 * - remove a partial record
7054 	 * - no record needs to be removed (truncate has completed)
7055 	 */
7056 	el = path_leaf_el(path);
7057 	if (le16_to_cpu(el->l_next_free_rec) == 0) {
7058 		ocfs2_error(inode->i_sb,
7059 			    "Inode %llu has empty extent block at %llu\n",
7060 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7061 			    (unsigned long long)path_leaf_bh(path)->b_blocknr);
7062 		status = -EROFS;
7063 		goto bail;
7064 	}
7065 
7066 	i = le16_to_cpu(el->l_next_free_rec) - 1;
7067 	rec = &el->l_recs[i];
7068 	flags = rec->e_flags;
7069 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
7070 
7071 	if (i == 0 && ocfs2_is_empty_extent(rec)) {
7072 		/*
7073 		 * Lower levels depend on this never happening, but it's best
7074 		 * to check it up here before changing the tree.
7075 		*/
7076 		if (root_el->l_tree_depth && rec->e_int_clusters == 0) {
7077 			ocfs2_error(inode->i_sb, "Inode %lu has an empty "
7078 				    "extent record, depth %u\n", inode->i_ino,
7079 				    le16_to_cpu(root_el->l_tree_depth));
7080 			status = -EROFS;
7081 			goto bail;
7082 		}
7083 		trunc_cpos = le32_to_cpu(rec->e_cpos);
7084 		trunc_len = 0;
7085 		blkno = 0;
7086 	} else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) {
7087 		/*
7088 		 * Truncate entire record.
7089 		 */
7090 		trunc_cpos = le32_to_cpu(rec->e_cpos);
7091 		trunc_len = ocfs2_rec_clusters(el, rec);
7092 		blkno = le64_to_cpu(rec->e_blkno);
7093 	} else if (range > new_highest_cpos) {
7094 		/*
7095 		 * Partial truncate. it also should be
7096 		 * the last truncate we're doing.
7097 		 */
7098 		trunc_cpos = new_highest_cpos;
7099 		trunc_len = range - new_highest_cpos;
7100 		coff = new_highest_cpos - le32_to_cpu(rec->e_cpos);
7101 		blkno = le64_to_cpu(rec->e_blkno) +
7102 				ocfs2_clusters_to_blocks(inode->i_sb, coff);
7103 	} else {
7104 		/*
7105 		 * Truncate completed, leave happily.
7106 		 */
7107 		status = 0;
7108 		goto bail;
7109 	}
7110 
7111 	phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
7112 
7113 	status = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
7114 					  phys_cpos, trunc_len, flags, &dealloc,
7115 					  refcount_loc);
7116 	if (status < 0) {
7117 		mlog_errno(status);
7118 		goto bail;
7119 	}
7120 
7121 	ocfs2_reinit_path(path, 1);
7122 
7123 	/*
7124 	 * The check above will catch the case where we've truncated
7125 	 * away all allocation.
7126 	 */
7127 	goto start;
7128 
7129 bail:
7130 
7131 	ocfs2_schedule_truncate_log_flush(osb, 1);
7132 
7133 	ocfs2_run_deallocs(osb, &dealloc);
7134 
7135 	ocfs2_free_path(path);
7136 
7137 	mlog_exit(status);
7138 	return status;
7139 }
7140 
7141 /*
7142  * Expects the inode to already be locked.
7143  */
7144 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
7145 			   struct inode *inode,
7146 			   struct buffer_head *fe_bh,
7147 			   struct ocfs2_truncate_context **tc)
7148 {
7149 	int status;
7150 	unsigned int new_i_clusters;
7151 	struct ocfs2_dinode *fe;
7152 	struct ocfs2_extent_block *eb;
7153 	struct buffer_head *last_eb_bh = NULL;
7154 
7155 	mlog_entry_void();
7156 
7157 	*tc = NULL;
7158 
7159 	new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
7160 						  i_size_read(inode));
7161 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
7162 
7163 	mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
7164 	     "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
7165 	     (unsigned long long)le64_to_cpu(fe->i_size));
7166 
7167 	*tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
7168 	if (!(*tc)) {
7169 		status = -ENOMEM;
7170 		mlog_errno(status);
7171 		goto bail;
7172 	}
7173 	ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
7174 
7175 	if (fe->id2.i_list.l_tree_depth) {
7176 		status = ocfs2_read_extent_block(INODE_CACHE(inode),
7177 						 le64_to_cpu(fe->i_last_eb_blk),
7178 						 &last_eb_bh);
7179 		if (status < 0) {
7180 			mlog_errno(status);
7181 			goto bail;
7182 		}
7183 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
7184 	}
7185 
7186 	(*tc)->tc_last_eb_bh = last_eb_bh;
7187 
7188 	status = 0;
7189 bail:
7190 	if (status < 0) {
7191 		if (*tc)
7192 			ocfs2_free_truncate_context(*tc);
7193 		*tc = NULL;
7194 	}
7195 	mlog_exit_void();
7196 	return status;
7197 }
7198 
7199 /*
7200  * 'start' is inclusive, 'end' is not.
7201  */
7202 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7203 			  unsigned int start, unsigned int end, int trunc)
7204 {
7205 	int ret;
7206 	unsigned int numbytes;
7207 	handle_t *handle;
7208 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7209 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7210 	struct ocfs2_inline_data *idata = &di->id2.i_data;
7211 
7212 	if (end > i_size_read(inode))
7213 		end = i_size_read(inode);
7214 
7215 	BUG_ON(start >= end);
7216 
7217 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7218 	    !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7219 	    !ocfs2_supports_inline_data(osb)) {
7220 		ocfs2_error(inode->i_sb,
7221 			    "Inline data flags for inode %llu don't agree! "
7222 			    "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7223 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7224 			    le16_to_cpu(di->i_dyn_features),
7225 			    OCFS2_I(inode)->ip_dyn_features,
7226 			    osb->s_feature_incompat);
7227 		ret = -EROFS;
7228 		goto out;
7229 	}
7230 
7231 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7232 	if (IS_ERR(handle)) {
7233 		ret = PTR_ERR(handle);
7234 		mlog_errno(ret);
7235 		goto out;
7236 	}
7237 
7238 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7239 				      OCFS2_JOURNAL_ACCESS_WRITE);
7240 	if (ret) {
7241 		mlog_errno(ret);
7242 		goto out_commit;
7243 	}
7244 
7245 	numbytes = end - start;
7246 	memset(idata->id_data + start, 0, numbytes);
7247 
7248 	/*
7249 	 * No need to worry about the data page here - it's been
7250 	 * truncated already and inline data doesn't need it for
7251 	 * pushing zero's to disk, so we'll let readpage pick it up
7252 	 * later.
7253 	 */
7254 	if (trunc) {
7255 		i_size_write(inode, start);
7256 		di->i_size = cpu_to_le64(start);
7257 	}
7258 
7259 	inode->i_blocks = ocfs2_inode_sector_count(inode);
7260 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7261 
7262 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7263 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7264 
7265 	ocfs2_journal_dirty(handle, di_bh);
7266 
7267 out_commit:
7268 	ocfs2_commit_trans(osb, handle);
7269 
7270 out:
7271 	return ret;
7272 }
7273 
7274 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
7275 {
7276 	/*
7277 	 * The caller is responsible for completing deallocation
7278 	 * before freeing the context.
7279 	 */
7280 	if (tc->tc_dealloc.c_first_suballocator != NULL)
7281 		mlog(ML_NOTICE,
7282 		     "Truncate completion has non-empty dealloc context\n");
7283 
7284 	brelse(tc->tc_last_eb_bh);
7285 
7286 	kfree(tc);
7287 }
7288