xref: /openbmc/linux/fs/ocfs2/alloc.c (revision dd1431e5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * alloc.c
4  *
5  * Extent allocs and frees
6  *
7  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/types.h>
12 #include <linux/slab.h>
13 #include <linux/highmem.h>
14 #include <linux/swap.h>
15 #include <linux/quotaops.h>
16 #include <linux/blkdev.h>
17 #include <linux/sched/signal.h>
18 
19 #include <cluster/masklog.h>
20 
21 #include "ocfs2.h"
22 
23 #include "alloc.h"
24 #include "aops.h"
25 #include "blockcheck.h"
26 #include "dlmglue.h"
27 #include "extent_map.h"
28 #include "inode.h"
29 #include "journal.h"
30 #include "localalloc.h"
31 #include "suballoc.h"
32 #include "sysfile.h"
33 #include "file.h"
34 #include "super.h"
35 #include "uptodate.h"
36 #include "xattr.h"
37 #include "refcounttree.h"
38 #include "ocfs2_trace.h"
39 
40 #include "buffer_head_io.h"
41 
42 enum ocfs2_contig_type {
43 	CONTIG_NONE = 0,
44 	CONTIG_LEFT,
45 	CONTIG_RIGHT,
46 	CONTIG_LEFTRIGHT,
47 };
48 
49 static enum ocfs2_contig_type
50 	ocfs2_extent_rec_contig(struct super_block *sb,
51 				struct ocfs2_extent_rec *ext,
52 				struct ocfs2_extent_rec *insert_rec);
53 /*
54  * Operations for a specific extent tree type.
55  *
56  * To implement an on-disk btree (extent tree) type in ocfs2, add
57  * an ocfs2_extent_tree_operations structure and the matching
58  * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
59  * for the allocation portion of the extent tree.
60  */
61 struct ocfs2_extent_tree_operations {
62 	/*
63 	 * last_eb_blk is the block number of the right most leaf extent
64 	 * block.  Most on-disk structures containing an extent tree store
65 	 * this value for fast access.  The ->eo_set_last_eb_blk() and
66 	 * ->eo_get_last_eb_blk() operations access this value.  They are
67 	 *  both required.
68 	 */
69 	void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
70 				   u64 blkno);
71 	u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
72 
73 	/*
74 	 * The on-disk structure usually keeps track of how many total
75 	 * clusters are stored in this extent tree.  This function updates
76 	 * that value.  new_clusters is the delta, and must be
77 	 * added to the total.  Required.
78 	 */
79 	void (*eo_update_clusters)(struct ocfs2_extent_tree *et,
80 				   u32 new_clusters);
81 
82 	/*
83 	 * If this extent tree is supported by an extent map, insert
84 	 * a record into the map.
85 	 */
86 	void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et,
87 				     struct ocfs2_extent_rec *rec);
88 
89 	/*
90 	 * If this extent tree is supported by an extent map, truncate the
91 	 * map to clusters,
92 	 */
93 	void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et,
94 				       u32 clusters);
95 
96 	/*
97 	 * If ->eo_insert_check() exists, it is called before rec is
98 	 * inserted into the extent tree.  It is optional.
99 	 */
100 	int (*eo_insert_check)(struct ocfs2_extent_tree *et,
101 			       struct ocfs2_extent_rec *rec);
102 	int (*eo_sanity_check)(struct ocfs2_extent_tree *et);
103 
104 	/*
105 	 * --------------------------------------------------------------
106 	 * The remaining are internal to ocfs2_extent_tree and don't have
107 	 * accessor functions
108 	 */
109 
110 	/*
111 	 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
112 	 * It is required.
113 	 */
114 	void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
115 
116 	/*
117 	 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
118 	 * it exists.  If it does not, et->et_max_leaf_clusters is set
119 	 * to 0 (unlimited).  Optional.
120 	 */
121 	void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et);
122 
123 	/*
124 	 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec
125 	 * are contiguous or not. Optional. Don't need to set it if use
126 	 * ocfs2_extent_rec as the tree leaf.
127 	 */
128 	enum ocfs2_contig_type
129 		(*eo_extent_contig)(struct ocfs2_extent_tree *et,
130 				    struct ocfs2_extent_rec *ext,
131 				    struct ocfs2_extent_rec *insert_rec);
132 };
133 
134 
135 /*
136  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
137  * in the methods.
138  */
139 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
140 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
141 					 u64 blkno);
142 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
143 					 u32 clusters);
144 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
145 					   struct ocfs2_extent_rec *rec);
146 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
147 					     u32 clusters);
148 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
149 				     struct ocfs2_extent_rec *rec);
150 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et);
151 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
152 
153 static int ocfs2_reuse_blk_from_dealloc(handle_t *handle,
154 					struct ocfs2_extent_tree *et,
155 					struct buffer_head **new_eb_bh,
156 					int blk_wanted, int *blk_given);
157 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree *et);
158 
159 static const struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
160 	.eo_set_last_eb_blk	= ocfs2_dinode_set_last_eb_blk,
161 	.eo_get_last_eb_blk	= ocfs2_dinode_get_last_eb_blk,
162 	.eo_update_clusters	= ocfs2_dinode_update_clusters,
163 	.eo_extent_map_insert	= ocfs2_dinode_extent_map_insert,
164 	.eo_extent_map_truncate	= ocfs2_dinode_extent_map_truncate,
165 	.eo_insert_check	= ocfs2_dinode_insert_check,
166 	.eo_sanity_check	= ocfs2_dinode_sanity_check,
167 	.eo_fill_root_el	= ocfs2_dinode_fill_root_el,
168 };
169 
170 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
171 					 u64 blkno)
172 {
173 	struct ocfs2_dinode *di = et->et_object;
174 
175 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
176 	di->i_last_eb_blk = cpu_to_le64(blkno);
177 }
178 
179 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
180 {
181 	struct ocfs2_dinode *di = et->et_object;
182 
183 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
184 	return le64_to_cpu(di->i_last_eb_blk);
185 }
186 
187 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
188 					 u32 clusters)
189 {
190 	struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
191 	struct ocfs2_dinode *di = et->et_object;
192 
193 	le32_add_cpu(&di->i_clusters, clusters);
194 	spin_lock(&oi->ip_lock);
195 	oi->ip_clusters = le32_to_cpu(di->i_clusters);
196 	spin_unlock(&oi->ip_lock);
197 }
198 
199 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
200 					   struct ocfs2_extent_rec *rec)
201 {
202 	struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
203 
204 	ocfs2_extent_map_insert_rec(inode, rec);
205 }
206 
207 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
208 					     u32 clusters)
209 {
210 	struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
211 
212 	ocfs2_extent_map_trunc(inode, clusters);
213 }
214 
215 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
216 				     struct ocfs2_extent_rec *rec)
217 {
218 	struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
219 	struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb);
220 
221 	BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL);
222 	mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
223 			(oi->ip_clusters != le32_to_cpu(rec->e_cpos)),
224 			"Device %s, asking for sparse allocation: inode %llu, "
225 			"cpos %u, clusters %u\n",
226 			osb->dev_str,
227 			(unsigned long long)oi->ip_blkno,
228 			rec->e_cpos, oi->ip_clusters);
229 
230 	return 0;
231 }
232 
233 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et)
234 {
235 	struct ocfs2_dinode *di = et->et_object;
236 
237 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
238 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
239 
240 	return 0;
241 }
242 
243 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
244 {
245 	struct ocfs2_dinode *di = et->et_object;
246 
247 	et->et_root_el = &di->id2.i_list;
248 }
249 
250 
251 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
252 {
253 	struct ocfs2_xattr_value_buf *vb = et->et_object;
254 
255 	et->et_root_el = &vb->vb_xv->xr_list;
256 }
257 
258 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
259 					      u64 blkno)
260 {
261 	struct ocfs2_xattr_value_buf *vb = et->et_object;
262 
263 	vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
264 }
265 
266 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
267 {
268 	struct ocfs2_xattr_value_buf *vb = et->et_object;
269 
270 	return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
271 }
272 
273 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et,
274 					      u32 clusters)
275 {
276 	struct ocfs2_xattr_value_buf *vb = et->et_object;
277 
278 	le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
279 }
280 
281 static const struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
282 	.eo_set_last_eb_blk	= ocfs2_xattr_value_set_last_eb_blk,
283 	.eo_get_last_eb_blk	= ocfs2_xattr_value_get_last_eb_blk,
284 	.eo_update_clusters	= ocfs2_xattr_value_update_clusters,
285 	.eo_fill_root_el	= ocfs2_xattr_value_fill_root_el,
286 };
287 
288 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
289 {
290 	struct ocfs2_xattr_block *xb = et->et_object;
291 
292 	et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
293 }
294 
295 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et)
296 {
297 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
298 	et->et_max_leaf_clusters =
299 		ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
300 }
301 
302 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
303 					     u64 blkno)
304 {
305 	struct ocfs2_xattr_block *xb = et->et_object;
306 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
307 
308 	xt->xt_last_eb_blk = cpu_to_le64(blkno);
309 }
310 
311 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
312 {
313 	struct ocfs2_xattr_block *xb = et->et_object;
314 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
315 
316 	return le64_to_cpu(xt->xt_last_eb_blk);
317 }
318 
319 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et,
320 					     u32 clusters)
321 {
322 	struct ocfs2_xattr_block *xb = et->et_object;
323 
324 	le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
325 }
326 
327 static const struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
328 	.eo_set_last_eb_blk	= ocfs2_xattr_tree_set_last_eb_blk,
329 	.eo_get_last_eb_blk	= ocfs2_xattr_tree_get_last_eb_blk,
330 	.eo_update_clusters	= ocfs2_xattr_tree_update_clusters,
331 	.eo_fill_root_el	= ocfs2_xattr_tree_fill_root_el,
332 	.eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
333 };
334 
335 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
336 					  u64 blkno)
337 {
338 	struct ocfs2_dx_root_block *dx_root = et->et_object;
339 
340 	dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
341 }
342 
343 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
344 {
345 	struct ocfs2_dx_root_block *dx_root = et->et_object;
346 
347 	return le64_to_cpu(dx_root->dr_last_eb_blk);
348 }
349 
350 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et,
351 					  u32 clusters)
352 {
353 	struct ocfs2_dx_root_block *dx_root = et->et_object;
354 
355 	le32_add_cpu(&dx_root->dr_clusters, clusters);
356 }
357 
358 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et)
359 {
360 	struct ocfs2_dx_root_block *dx_root = et->et_object;
361 
362 	BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
363 
364 	return 0;
365 }
366 
367 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
368 {
369 	struct ocfs2_dx_root_block *dx_root = et->et_object;
370 
371 	et->et_root_el = &dx_root->dr_list;
372 }
373 
374 static const struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
375 	.eo_set_last_eb_blk	= ocfs2_dx_root_set_last_eb_blk,
376 	.eo_get_last_eb_blk	= ocfs2_dx_root_get_last_eb_blk,
377 	.eo_update_clusters	= ocfs2_dx_root_update_clusters,
378 	.eo_sanity_check	= ocfs2_dx_root_sanity_check,
379 	.eo_fill_root_el	= ocfs2_dx_root_fill_root_el,
380 };
381 
382 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et)
383 {
384 	struct ocfs2_refcount_block *rb = et->et_object;
385 
386 	et->et_root_el = &rb->rf_list;
387 }
388 
389 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
390 						u64 blkno)
391 {
392 	struct ocfs2_refcount_block *rb = et->et_object;
393 
394 	rb->rf_last_eb_blk = cpu_to_le64(blkno);
395 }
396 
397 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
398 {
399 	struct ocfs2_refcount_block *rb = et->et_object;
400 
401 	return le64_to_cpu(rb->rf_last_eb_blk);
402 }
403 
404 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et,
405 						u32 clusters)
406 {
407 	struct ocfs2_refcount_block *rb = et->et_object;
408 
409 	le32_add_cpu(&rb->rf_clusters, clusters);
410 }
411 
412 static enum ocfs2_contig_type
413 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et,
414 				  struct ocfs2_extent_rec *ext,
415 				  struct ocfs2_extent_rec *insert_rec)
416 {
417 	return CONTIG_NONE;
418 }
419 
420 static const struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = {
421 	.eo_set_last_eb_blk	= ocfs2_refcount_tree_set_last_eb_blk,
422 	.eo_get_last_eb_blk	= ocfs2_refcount_tree_get_last_eb_blk,
423 	.eo_update_clusters	= ocfs2_refcount_tree_update_clusters,
424 	.eo_fill_root_el	= ocfs2_refcount_tree_fill_root_el,
425 	.eo_extent_contig	= ocfs2_refcount_tree_extent_contig,
426 };
427 
428 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
429 				     struct ocfs2_caching_info *ci,
430 				     struct buffer_head *bh,
431 				     ocfs2_journal_access_func access,
432 				     void *obj,
433 				     const struct ocfs2_extent_tree_operations *ops)
434 {
435 	et->et_ops = ops;
436 	et->et_root_bh = bh;
437 	et->et_ci = ci;
438 	et->et_root_journal_access = access;
439 	if (!obj)
440 		obj = (void *)bh->b_data;
441 	et->et_object = obj;
442 	et->et_dealloc = NULL;
443 
444 	et->et_ops->eo_fill_root_el(et);
445 	if (!et->et_ops->eo_fill_max_leaf_clusters)
446 		et->et_max_leaf_clusters = 0;
447 	else
448 		et->et_ops->eo_fill_max_leaf_clusters(et);
449 }
450 
451 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
452 				   struct ocfs2_caching_info *ci,
453 				   struct buffer_head *bh)
454 {
455 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di,
456 				 NULL, &ocfs2_dinode_et_ops);
457 }
458 
459 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
460 				       struct ocfs2_caching_info *ci,
461 				       struct buffer_head *bh)
462 {
463 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb,
464 				 NULL, &ocfs2_xattr_tree_et_ops);
465 }
466 
467 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
468 					struct ocfs2_caching_info *ci,
469 					struct ocfs2_xattr_value_buf *vb)
470 {
471 	__ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb,
472 				 &ocfs2_xattr_value_et_ops);
473 }
474 
475 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
476 				    struct ocfs2_caching_info *ci,
477 				    struct buffer_head *bh)
478 {
479 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr,
480 				 NULL, &ocfs2_dx_root_et_ops);
481 }
482 
483 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et,
484 				     struct ocfs2_caching_info *ci,
485 				     struct buffer_head *bh)
486 {
487 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb,
488 				 NULL, &ocfs2_refcount_tree_et_ops);
489 }
490 
491 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
492 					    u64 new_last_eb_blk)
493 {
494 	et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
495 }
496 
497 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
498 {
499 	return et->et_ops->eo_get_last_eb_blk(et);
500 }
501 
502 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et,
503 					    u32 clusters)
504 {
505 	et->et_ops->eo_update_clusters(et, clusters);
506 }
507 
508 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et,
509 					      struct ocfs2_extent_rec *rec)
510 {
511 	if (et->et_ops->eo_extent_map_insert)
512 		et->et_ops->eo_extent_map_insert(et, rec);
513 }
514 
515 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et,
516 						u32 clusters)
517 {
518 	if (et->et_ops->eo_extent_map_truncate)
519 		et->et_ops->eo_extent_map_truncate(et, clusters);
520 }
521 
522 static inline int ocfs2_et_root_journal_access(handle_t *handle,
523 					       struct ocfs2_extent_tree *et,
524 					       int type)
525 {
526 	return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh,
527 					  type);
528 }
529 
530 static inline enum ocfs2_contig_type
531 	ocfs2_et_extent_contig(struct ocfs2_extent_tree *et,
532 			       struct ocfs2_extent_rec *rec,
533 			       struct ocfs2_extent_rec *insert_rec)
534 {
535 	if (et->et_ops->eo_extent_contig)
536 		return et->et_ops->eo_extent_contig(et, rec, insert_rec);
537 
538 	return ocfs2_extent_rec_contig(
539 				ocfs2_metadata_cache_get_super(et->et_ci),
540 				rec, insert_rec);
541 }
542 
543 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et,
544 					struct ocfs2_extent_rec *rec)
545 {
546 	int ret = 0;
547 
548 	if (et->et_ops->eo_insert_check)
549 		ret = et->et_ops->eo_insert_check(et, rec);
550 	return ret;
551 }
552 
553 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et)
554 {
555 	int ret = 0;
556 
557 	if (et->et_ops->eo_sanity_check)
558 		ret = et->et_ops->eo_sanity_check(et);
559 	return ret;
560 }
561 
562 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
563 					 struct ocfs2_extent_block *eb);
564 static void ocfs2_adjust_rightmost_records(handle_t *handle,
565 					   struct ocfs2_extent_tree *et,
566 					   struct ocfs2_path *path,
567 					   struct ocfs2_extent_rec *insert_rec);
568 /*
569  * Reset the actual path elements so that we can re-use the structure
570  * to build another path. Generally, this involves freeing the buffer
571  * heads.
572  */
573 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
574 {
575 	int i, start = 0, depth = 0;
576 	struct ocfs2_path_item *node;
577 
578 	if (keep_root)
579 		start = 1;
580 
581 	for(i = start; i < path_num_items(path); i++) {
582 		node = &path->p_node[i];
583 
584 		brelse(node->bh);
585 		node->bh = NULL;
586 		node->el = NULL;
587 	}
588 
589 	/*
590 	 * Tree depth may change during truncate, or insert. If we're
591 	 * keeping the root extent list, then make sure that our path
592 	 * structure reflects the proper depth.
593 	 */
594 	if (keep_root)
595 		depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
596 	else
597 		path_root_access(path) = NULL;
598 
599 	path->p_tree_depth = depth;
600 }
601 
602 void ocfs2_free_path(struct ocfs2_path *path)
603 {
604 	if (path) {
605 		ocfs2_reinit_path(path, 0);
606 		kfree(path);
607 	}
608 }
609 
610 /*
611  * All the elements of src into dest. After this call, src could be freed
612  * without affecting dest.
613  *
614  * Both paths should have the same root. Any non-root elements of dest
615  * will be freed.
616  */
617 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
618 {
619 	int i;
620 
621 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
622 	BUG_ON(path_root_el(dest) != path_root_el(src));
623 	BUG_ON(path_root_access(dest) != path_root_access(src));
624 
625 	ocfs2_reinit_path(dest, 1);
626 
627 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
628 		dest->p_node[i].bh = src->p_node[i].bh;
629 		dest->p_node[i].el = src->p_node[i].el;
630 
631 		if (dest->p_node[i].bh)
632 			get_bh(dest->p_node[i].bh);
633 	}
634 }
635 
636 /*
637  * Make the *dest path the same as src and re-initialize src path to
638  * have a root only.
639  */
640 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
641 {
642 	int i;
643 
644 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
645 	BUG_ON(path_root_access(dest) != path_root_access(src));
646 
647 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
648 		brelse(dest->p_node[i].bh);
649 
650 		dest->p_node[i].bh = src->p_node[i].bh;
651 		dest->p_node[i].el = src->p_node[i].el;
652 
653 		src->p_node[i].bh = NULL;
654 		src->p_node[i].el = NULL;
655 	}
656 }
657 
658 /*
659  * Insert an extent block at given index.
660  *
661  * This will not take an additional reference on eb_bh.
662  */
663 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
664 					struct buffer_head *eb_bh)
665 {
666 	struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
667 
668 	/*
669 	 * Right now, no root bh is an extent block, so this helps
670 	 * catch code errors with dinode trees. The assertion can be
671 	 * safely removed if we ever need to insert extent block
672 	 * structures at the root.
673 	 */
674 	BUG_ON(index == 0);
675 
676 	path->p_node[index].bh = eb_bh;
677 	path->p_node[index].el = &eb->h_list;
678 }
679 
680 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
681 					 struct ocfs2_extent_list *root_el,
682 					 ocfs2_journal_access_func access)
683 {
684 	struct ocfs2_path *path;
685 
686 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
687 
688 	path = kzalloc(sizeof(*path), GFP_NOFS);
689 	if (path) {
690 		path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
691 		get_bh(root_bh);
692 		path_root_bh(path) = root_bh;
693 		path_root_el(path) = root_el;
694 		path_root_access(path) = access;
695 	}
696 
697 	return path;
698 }
699 
700 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
701 {
702 	return ocfs2_new_path(path_root_bh(path), path_root_el(path),
703 			      path_root_access(path));
704 }
705 
706 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
707 {
708 	return ocfs2_new_path(et->et_root_bh, et->et_root_el,
709 			      et->et_root_journal_access);
710 }
711 
712 /*
713  * Journal the buffer at depth idx.  All idx>0 are extent_blocks,
714  * otherwise it's the root_access function.
715  *
716  * I don't like the way this function's name looks next to
717  * ocfs2_journal_access_path(), but I don't have a better one.
718  */
719 int ocfs2_path_bh_journal_access(handle_t *handle,
720 				 struct ocfs2_caching_info *ci,
721 				 struct ocfs2_path *path,
722 				 int idx)
723 {
724 	ocfs2_journal_access_func access = path_root_access(path);
725 
726 	if (!access)
727 		access = ocfs2_journal_access;
728 
729 	if (idx)
730 		access = ocfs2_journal_access_eb;
731 
732 	return access(handle, ci, path->p_node[idx].bh,
733 		      OCFS2_JOURNAL_ACCESS_WRITE);
734 }
735 
736 /*
737  * Convenience function to journal all components in a path.
738  */
739 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci,
740 			      handle_t *handle,
741 			      struct ocfs2_path *path)
742 {
743 	int i, ret = 0;
744 
745 	if (!path)
746 		goto out;
747 
748 	for(i = 0; i < path_num_items(path); i++) {
749 		ret = ocfs2_path_bh_journal_access(handle, ci, path, i);
750 		if (ret < 0) {
751 			mlog_errno(ret);
752 			goto out;
753 		}
754 	}
755 
756 out:
757 	return ret;
758 }
759 
760 /*
761  * Return the index of the extent record which contains cluster #v_cluster.
762  * -1 is returned if it was not found.
763  *
764  * Should work fine on interior and exterior nodes.
765  */
766 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
767 {
768 	int ret = -1;
769 	int i;
770 	struct ocfs2_extent_rec *rec;
771 	u32 rec_end, rec_start, clusters;
772 
773 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
774 		rec = &el->l_recs[i];
775 
776 		rec_start = le32_to_cpu(rec->e_cpos);
777 		clusters = ocfs2_rec_clusters(el, rec);
778 
779 		rec_end = rec_start + clusters;
780 
781 		if (v_cluster >= rec_start && v_cluster < rec_end) {
782 			ret = i;
783 			break;
784 		}
785 	}
786 
787 	return ret;
788 }
789 
790 /*
791  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
792  * ocfs2_extent_rec_contig only work properly against leaf nodes!
793  */
794 static int ocfs2_block_extent_contig(struct super_block *sb,
795 				     struct ocfs2_extent_rec *ext,
796 				     u64 blkno)
797 {
798 	u64 blk_end = le64_to_cpu(ext->e_blkno);
799 
800 	blk_end += ocfs2_clusters_to_blocks(sb,
801 				    le16_to_cpu(ext->e_leaf_clusters));
802 
803 	return blkno == blk_end;
804 }
805 
806 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
807 				  struct ocfs2_extent_rec *right)
808 {
809 	u32 left_range;
810 
811 	left_range = le32_to_cpu(left->e_cpos) +
812 		le16_to_cpu(left->e_leaf_clusters);
813 
814 	return (left_range == le32_to_cpu(right->e_cpos));
815 }
816 
817 static enum ocfs2_contig_type
818 	ocfs2_extent_rec_contig(struct super_block *sb,
819 				struct ocfs2_extent_rec *ext,
820 				struct ocfs2_extent_rec *insert_rec)
821 {
822 	u64 blkno = le64_to_cpu(insert_rec->e_blkno);
823 
824 	/*
825 	 * Refuse to coalesce extent records with different flag
826 	 * fields - we don't want to mix unwritten extents with user
827 	 * data.
828 	 */
829 	if (ext->e_flags != insert_rec->e_flags)
830 		return CONTIG_NONE;
831 
832 	if (ocfs2_extents_adjacent(ext, insert_rec) &&
833 	    ocfs2_block_extent_contig(sb, ext, blkno))
834 			return CONTIG_RIGHT;
835 
836 	blkno = le64_to_cpu(ext->e_blkno);
837 	if (ocfs2_extents_adjacent(insert_rec, ext) &&
838 	    ocfs2_block_extent_contig(sb, insert_rec, blkno))
839 		return CONTIG_LEFT;
840 
841 	return CONTIG_NONE;
842 }
843 
844 /*
845  * NOTE: We can have pretty much any combination of contiguousness and
846  * appending.
847  *
848  * The usefulness of APPEND_TAIL is more in that it lets us know that
849  * we'll have to update the path to that leaf.
850  */
851 enum ocfs2_append_type {
852 	APPEND_NONE = 0,
853 	APPEND_TAIL,
854 };
855 
856 enum ocfs2_split_type {
857 	SPLIT_NONE = 0,
858 	SPLIT_LEFT,
859 	SPLIT_RIGHT,
860 };
861 
862 struct ocfs2_insert_type {
863 	enum ocfs2_split_type	ins_split;
864 	enum ocfs2_append_type	ins_appending;
865 	enum ocfs2_contig_type	ins_contig;
866 	int			ins_contig_index;
867 	int			ins_tree_depth;
868 };
869 
870 struct ocfs2_merge_ctxt {
871 	enum ocfs2_contig_type	c_contig_type;
872 	int			c_has_empty_extent;
873 	int			c_split_covers_rec;
874 };
875 
876 static int ocfs2_validate_extent_block(struct super_block *sb,
877 				       struct buffer_head *bh)
878 {
879 	int rc;
880 	struct ocfs2_extent_block *eb =
881 		(struct ocfs2_extent_block *)bh->b_data;
882 
883 	trace_ocfs2_validate_extent_block((unsigned long long)bh->b_blocknr);
884 
885 	BUG_ON(!buffer_uptodate(bh));
886 
887 	/*
888 	 * If the ecc fails, we return the error but otherwise
889 	 * leave the filesystem running.  We know any error is
890 	 * local to this block.
891 	 */
892 	rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
893 	if (rc) {
894 		mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
895 		     (unsigned long long)bh->b_blocknr);
896 		return rc;
897 	}
898 
899 	/*
900 	 * Errors after here are fatal.
901 	 */
902 
903 	if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
904 		rc = ocfs2_error(sb,
905 				 "Extent block #%llu has bad signature %.*s\n",
906 				 (unsigned long long)bh->b_blocknr, 7,
907 				 eb->h_signature);
908 		goto bail;
909 	}
910 
911 	if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
912 		rc = ocfs2_error(sb,
913 				 "Extent block #%llu has an invalid h_blkno of %llu\n",
914 				 (unsigned long long)bh->b_blocknr,
915 				 (unsigned long long)le64_to_cpu(eb->h_blkno));
916 		goto bail;
917 	}
918 
919 	if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation)
920 		rc = ocfs2_error(sb,
921 				 "Extent block #%llu has an invalid h_fs_generation of #%u\n",
922 				 (unsigned long long)bh->b_blocknr,
923 				 le32_to_cpu(eb->h_fs_generation));
924 bail:
925 	return rc;
926 }
927 
928 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno,
929 			    struct buffer_head **bh)
930 {
931 	int rc;
932 	struct buffer_head *tmp = *bh;
933 
934 	rc = ocfs2_read_block(ci, eb_blkno, &tmp,
935 			      ocfs2_validate_extent_block);
936 
937 	/* If ocfs2_read_block() got us a new bh, pass it up. */
938 	if (!rc && !*bh)
939 		*bh = tmp;
940 
941 	return rc;
942 }
943 
944 
945 /*
946  * How many free extents have we got before we need more meta data?
947  */
948 int ocfs2_num_free_extents(struct ocfs2_extent_tree *et)
949 {
950 	int retval;
951 	struct ocfs2_extent_list *el = NULL;
952 	struct ocfs2_extent_block *eb;
953 	struct buffer_head *eb_bh = NULL;
954 	u64 last_eb_blk = 0;
955 
956 	el = et->et_root_el;
957 	last_eb_blk = ocfs2_et_get_last_eb_blk(et);
958 
959 	if (last_eb_blk) {
960 		retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk,
961 						 &eb_bh);
962 		if (retval < 0) {
963 			mlog_errno(retval);
964 			goto bail;
965 		}
966 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
967 		el = &eb->h_list;
968 	}
969 
970 	BUG_ON(el->l_tree_depth != 0);
971 
972 	retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
973 bail:
974 	brelse(eb_bh);
975 
976 	trace_ocfs2_num_free_extents(retval);
977 	return retval;
978 }
979 
980 /* expects array to already be allocated
981  *
982  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
983  * l_count for you
984  */
985 static int ocfs2_create_new_meta_bhs(handle_t *handle,
986 				     struct ocfs2_extent_tree *et,
987 				     int wanted,
988 				     struct ocfs2_alloc_context *meta_ac,
989 				     struct buffer_head *bhs[])
990 {
991 	int count, status, i;
992 	u16 suballoc_bit_start;
993 	u32 num_got;
994 	u64 suballoc_loc, first_blkno;
995 	struct ocfs2_super *osb =
996 		OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
997 	struct ocfs2_extent_block *eb;
998 
999 	count = 0;
1000 	while (count < wanted) {
1001 		status = ocfs2_claim_metadata(handle,
1002 					      meta_ac,
1003 					      wanted - count,
1004 					      &suballoc_loc,
1005 					      &suballoc_bit_start,
1006 					      &num_got,
1007 					      &first_blkno);
1008 		if (status < 0) {
1009 			mlog_errno(status);
1010 			goto bail;
1011 		}
1012 
1013 		for(i = count;  i < (num_got + count); i++) {
1014 			bhs[i] = sb_getblk(osb->sb, first_blkno);
1015 			if (bhs[i] == NULL) {
1016 				status = -ENOMEM;
1017 				mlog_errno(status);
1018 				goto bail;
1019 			}
1020 			ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]);
1021 
1022 			status = ocfs2_journal_access_eb(handle, et->et_ci,
1023 							 bhs[i],
1024 							 OCFS2_JOURNAL_ACCESS_CREATE);
1025 			if (status < 0) {
1026 				mlog_errno(status);
1027 				goto bail;
1028 			}
1029 
1030 			memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
1031 			eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
1032 			/* Ok, setup the minimal stuff here. */
1033 			strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
1034 			eb->h_blkno = cpu_to_le64(first_blkno);
1035 			eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
1036 			eb->h_suballoc_slot =
1037 				cpu_to_le16(meta_ac->ac_alloc_slot);
1038 			eb->h_suballoc_loc = cpu_to_le64(suballoc_loc);
1039 			eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
1040 			eb->h_list.l_count =
1041 				cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
1042 
1043 			suballoc_bit_start++;
1044 			first_blkno++;
1045 
1046 			/* We'll also be dirtied by the caller, so
1047 			 * this isn't absolutely necessary. */
1048 			ocfs2_journal_dirty(handle, bhs[i]);
1049 		}
1050 
1051 		count += num_got;
1052 	}
1053 
1054 	status = 0;
1055 bail:
1056 	if (status < 0) {
1057 		for(i = 0; i < wanted; i++) {
1058 			brelse(bhs[i]);
1059 			bhs[i] = NULL;
1060 		}
1061 	}
1062 	return status;
1063 }
1064 
1065 /*
1066  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1067  *
1068  * Returns the sum of the rightmost extent rec logical offset and
1069  * cluster count.
1070  *
1071  * ocfs2_add_branch() uses this to determine what logical cluster
1072  * value should be populated into the leftmost new branch records.
1073  *
1074  * ocfs2_shift_tree_depth() uses this to determine the # clusters
1075  * value for the new topmost tree record.
1076  */
1077 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
1078 {
1079 	int i;
1080 
1081 	i = le16_to_cpu(el->l_next_free_rec) - 1;
1082 
1083 	return le32_to_cpu(el->l_recs[i].e_cpos) +
1084 		ocfs2_rec_clusters(el, &el->l_recs[i]);
1085 }
1086 
1087 /*
1088  * Change range of the branches in the right most path according to the leaf
1089  * extent block's rightmost record.
1090  */
1091 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1092 					 struct ocfs2_extent_tree *et)
1093 {
1094 	int status;
1095 	struct ocfs2_path *path = NULL;
1096 	struct ocfs2_extent_list *el;
1097 	struct ocfs2_extent_rec *rec;
1098 
1099 	path = ocfs2_new_path_from_et(et);
1100 	if (!path) {
1101 		status = -ENOMEM;
1102 		return status;
1103 	}
1104 
1105 	status = ocfs2_find_path(et->et_ci, path, UINT_MAX);
1106 	if (status < 0) {
1107 		mlog_errno(status);
1108 		goto out;
1109 	}
1110 
1111 	status = ocfs2_extend_trans(handle, path_num_items(path));
1112 	if (status < 0) {
1113 		mlog_errno(status);
1114 		goto out;
1115 	}
1116 
1117 	status = ocfs2_journal_access_path(et->et_ci, handle, path);
1118 	if (status < 0) {
1119 		mlog_errno(status);
1120 		goto out;
1121 	}
1122 
1123 	el = path_leaf_el(path);
1124 	rec = &el->l_recs[le16_to_cpu(el->l_next_free_rec) - 1];
1125 
1126 	ocfs2_adjust_rightmost_records(handle, et, path, rec);
1127 
1128 out:
1129 	ocfs2_free_path(path);
1130 	return status;
1131 }
1132 
1133 /*
1134  * Add an entire tree branch to our inode. eb_bh is the extent block
1135  * to start at, if we don't want to start the branch at the root
1136  * structure.
1137  *
1138  * last_eb_bh is required as we have to update it's next_leaf pointer
1139  * for the new last extent block.
1140  *
1141  * the new branch will be 'empty' in the sense that every block will
1142  * contain a single record with cluster count == 0.
1143  */
1144 static int ocfs2_add_branch(handle_t *handle,
1145 			    struct ocfs2_extent_tree *et,
1146 			    struct buffer_head *eb_bh,
1147 			    struct buffer_head **last_eb_bh,
1148 			    struct ocfs2_alloc_context *meta_ac)
1149 {
1150 	int status, new_blocks, i, block_given = 0;
1151 	u64 next_blkno, new_last_eb_blk;
1152 	struct buffer_head *bh;
1153 	struct buffer_head **new_eb_bhs = NULL;
1154 	struct ocfs2_extent_block *eb;
1155 	struct ocfs2_extent_list  *eb_el;
1156 	struct ocfs2_extent_list  *el;
1157 	u32 new_cpos, root_end;
1158 
1159 	BUG_ON(!last_eb_bh || !*last_eb_bh);
1160 
1161 	if (eb_bh) {
1162 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1163 		el = &eb->h_list;
1164 	} else
1165 		el = et->et_root_el;
1166 
1167 	/* we never add a branch to a leaf. */
1168 	BUG_ON(!el->l_tree_depth);
1169 
1170 	new_blocks = le16_to_cpu(el->l_tree_depth);
1171 
1172 	eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1173 	new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1174 	root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1175 
1176 	/*
1177 	 * If there is a gap before the root end and the real end
1178 	 * of the righmost leaf block, we need to remove the gap
1179 	 * between new_cpos and root_end first so that the tree
1180 	 * is consistent after we add a new branch(it will start
1181 	 * from new_cpos).
1182 	 */
1183 	if (root_end > new_cpos) {
1184 		trace_ocfs2_adjust_rightmost_branch(
1185 			(unsigned long long)
1186 			ocfs2_metadata_cache_owner(et->et_ci),
1187 			root_end, new_cpos);
1188 
1189 		status = ocfs2_adjust_rightmost_branch(handle, et);
1190 		if (status) {
1191 			mlog_errno(status);
1192 			goto bail;
1193 		}
1194 	}
1195 
1196 	/* allocate the number of new eb blocks we need */
1197 	new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1198 			     GFP_KERNEL);
1199 	if (!new_eb_bhs) {
1200 		status = -ENOMEM;
1201 		mlog_errno(status);
1202 		goto bail;
1203 	}
1204 
1205 	/* Firstyly, try to reuse dealloc since we have already estimated how
1206 	 * many extent blocks we may use.
1207 	 */
1208 	if (!ocfs2_is_dealloc_empty(et)) {
1209 		status = ocfs2_reuse_blk_from_dealloc(handle, et,
1210 						      new_eb_bhs, new_blocks,
1211 						      &block_given);
1212 		if (status < 0) {
1213 			mlog_errno(status);
1214 			goto bail;
1215 		}
1216 	}
1217 
1218 	BUG_ON(block_given > new_blocks);
1219 
1220 	if (block_given < new_blocks) {
1221 		BUG_ON(!meta_ac);
1222 		status = ocfs2_create_new_meta_bhs(handle, et,
1223 						   new_blocks - block_given,
1224 						   meta_ac,
1225 						   &new_eb_bhs[block_given]);
1226 		if (status < 0) {
1227 			mlog_errno(status);
1228 			goto bail;
1229 		}
1230 	}
1231 
1232 	/* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1233 	 * linked with the rest of the tree.
1234 	 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1235 	 *
1236 	 * when we leave the loop, new_last_eb_blk will point to the
1237 	 * newest leaf, and next_blkno will point to the topmost extent
1238 	 * block. */
1239 	next_blkno = new_last_eb_blk = 0;
1240 	for(i = 0; i < new_blocks; i++) {
1241 		bh = new_eb_bhs[i];
1242 		eb = (struct ocfs2_extent_block *) bh->b_data;
1243 		/* ocfs2_create_new_meta_bhs() should create it right! */
1244 		BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1245 		eb_el = &eb->h_list;
1246 
1247 		status = ocfs2_journal_access_eb(handle, et->et_ci, bh,
1248 						 OCFS2_JOURNAL_ACCESS_CREATE);
1249 		if (status < 0) {
1250 			mlog_errno(status);
1251 			goto bail;
1252 		}
1253 
1254 		eb->h_next_leaf_blk = 0;
1255 		eb_el->l_tree_depth = cpu_to_le16(i);
1256 		eb_el->l_next_free_rec = cpu_to_le16(1);
1257 		/*
1258 		 * This actually counts as an empty extent as
1259 		 * c_clusters == 0
1260 		 */
1261 		eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1262 		eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1263 		/*
1264 		 * eb_el isn't always an interior node, but even leaf
1265 		 * nodes want a zero'd flags and reserved field so
1266 		 * this gets the whole 32 bits regardless of use.
1267 		 */
1268 		eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1269 		if (!eb_el->l_tree_depth)
1270 			new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1271 
1272 		ocfs2_journal_dirty(handle, bh);
1273 		next_blkno = le64_to_cpu(eb->h_blkno);
1274 	}
1275 
1276 	/* This is a bit hairy. We want to update up to three blocks
1277 	 * here without leaving any of them in an inconsistent state
1278 	 * in case of error. We don't have to worry about
1279 	 * journal_dirty erroring as it won't unless we've aborted the
1280 	 * handle (in which case we would never be here) so reserving
1281 	 * the write with journal_access is all we need to do. */
1282 	status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh,
1283 					 OCFS2_JOURNAL_ACCESS_WRITE);
1284 	if (status < 0) {
1285 		mlog_errno(status);
1286 		goto bail;
1287 	}
1288 	status = ocfs2_et_root_journal_access(handle, et,
1289 					      OCFS2_JOURNAL_ACCESS_WRITE);
1290 	if (status < 0) {
1291 		mlog_errno(status);
1292 		goto bail;
1293 	}
1294 	if (eb_bh) {
1295 		status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh,
1296 						 OCFS2_JOURNAL_ACCESS_WRITE);
1297 		if (status < 0) {
1298 			mlog_errno(status);
1299 			goto bail;
1300 		}
1301 	}
1302 
1303 	/* Link the new branch into the rest of the tree (el will
1304 	 * either be on the root_bh, or the extent block passed in. */
1305 	i = le16_to_cpu(el->l_next_free_rec);
1306 	el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1307 	el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1308 	el->l_recs[i].e_int_clusters = 0;
1309 	le16_add_cpu(&el->l_next_free_rec, 1);
1310 
1311 	/* fe needs a new last extent block pointer, as does the
1312 	 * next_leaf on the previously last-extent-block. */
1313 	ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1314 
1315 	eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1316 	eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1317 
1318 	ocfs2_journal_dirty(handle, *last_eb_bh);
1319 	ocfs2_journal_dirty(handle, et->et_root_bh);
1320 	if (eb_bh)
1321 		ocfs2_journal_dirty(handle, eb_bh);
1322 
1323 	/*
1324 	 * Some callers want to track the rightmost leaf so pass it
1325 	 * back here.
1326 	 */
1327 	brelse(*last_eb_bh);
1328 	get_bh(new_eb_bhs[0]);
1329 	*last_eb_bh = new_eb_bhs[0];
1330 
1331 	status = 0;
1332 bail:
1333 	if (new_eb_bhs) {
1334 		for (i = 0; i < new_blocks; i++)
1335 			brelse(new_eb_bhs[i]);
1336 		kfree(new_eb_bhs);
1337 	}
1338 
1339 	return status;
1340 }
1341 
1342 /*
1343  * adds another level to the allocation tree.
1344  * returns back the new extent block so you can add a branch to it
1345  * after this call.
1346  */
1347 static int ocfs2_shift_tree_depth(handle_t *handle,
1348 				  struct ocfs2_extent_tree *et,
1349 				  struct ocfs2_alloc_context *meta_ac,
1350 				  struct buffer_head **ret_new_eb_bh)
1351 {
1352 	int status, i, block_given = 0;
1353 	u32 new_clusters;
1354 	struct buffer_head *new_eb_bh = NULL;
1355 	struct ocfs2_extent_block *eb;
1356 	struct ocfs2_extent_list  *root_el;
1357 	struct ocfs2_extent_list  *eb_el;
1358 
1359 	if (!ocfs2_is_dealloc_empty(et)) {
1360 		status = ocfs2_reuse_blk_from_dealloc(handle, et,
1361 						      &new_eb_bh, 1,
1362 						      &block_given);
1363 	} else if (meta_ac) {
1364 		status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac,
1365 						   &new_eb_bh);
1366 
1367 	} else {
1368 		BUG();
1369 	}
1370 
1371 	if (status < 0) {
1372 		mlog_errno(status);
1373 		goto bail;
1374 	}
1375 
1376 	eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1377 	/* ocfs2_create_new_meta_bhs() should create it right! */
1378 	BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1379 
1380 	eb_el = &eb->h_list;
1381 	root_el = et->et_root_el;
1382 
1383 	status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh,
1384 					 OCFS2_JOURNAL_ACCESS_CREATE);
1385 	if (status < 0) {
1386 		mlog_errno(status);
1387 		goto bail;
1388 	}
1389 
1390 	/* copy the root extent list data into the new extent block */
1391 	eb_el->l_tree_depth = root_el->l_tree_depth;
1392 	eb_el->l_next_free_rec = root_el->l_next_free_rec;
1393 	for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1394 		eb_el->l_recs[i] = root_el->l_recs[i];
1395 
1396 	ocfs2_journal_dirty(handle, new_eb_bh);
1397 
1398 	status = ocfs2_et_root_journal_access(handle, et,
1399 					      OCFS2_JOURNAL_ACCESS_WRITE);
1400 	if (status < 0) {
1401 		mlog_errno(status);
1402 		goto bail;
1403 	}
1404 
1405 	new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1406 
1407 	/* update root_bh now */
1408 	le16_add_cpu(&root_el->l_tree_depth, 1);
1409 	root_el->l_recs[0].e_cpos = 0;
1410 	root_el->l_recs[0].e_blkno = eb->h_blkno;
1411 	root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1412 	for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1413 		memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1414 	root_el->l_next_free_rec = cpu_to_le16(1);
1415 
1416 	/* If this is our 1st tree depth shift, then last_eb_blk
1417 	 * becomes the allocated extent block */
1418 	if (root_el->l_tree_depth == cpu_to_le16(1))
1419 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1420 
1421 	ocfs2_journal_dirty(handle, et->et_root_bh);
1422 
1423 	*ret_new_eb_bh = new_eb_bh;
1424 	new_eb_bh = NULL;
1425 	status = 0;
1426 bail:
1427 	brelse(new_eb_bh);
1428 
1429 	return status;
1430 }
1431 
1432 /*
1433  * Should only be called when there is no space left in any of the
1434  * leaf nodes. What we want to do is find the lowest tree depth
1435  * non-leaf extent block with room for new records. There are three
1436  * valid results of this search:
1437  *
1438  * 1) a lowest extent block is found, then we pass it back in
1439  *    *lowest_eb_bh and return '0'
1440  *
1441  * 2) the search fails to find anything, but the root_el has room. We
1442  *    pass NULL back in *lowest_eb_bh, but still return '0'
1443  *
1444  * 3) the search fails to find anything AND the root_el is full, in
1445  *    which case we return > 0
1446  *
1447  * return status < 0 indicates an error.
1448  */
1449 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et,
1450 				    struct buffer_head **target_bh)
1451 {
1452 	int status = 0, i;
1453 	u64 blkno;
1454 	struct ocfs2_extent_block *eb;
1455 	struct ocfs2_extent_list  *el;
1456 	struct buffer_head *bh = NULL;
1457 	struct buffer_head *lowest_bh = NULL;
1458 
1459 	*target_bh = NULL;
1460 
1461 	el = et->et_root_el;
1462 
1463 	while(le16_to_cpu(el->l_tree_depth) > 1) {
1464 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1465 			status = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1466 					"Owner %llu has empty extent list (next_free_rec == 0)\n",
1467 					(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
1468 			goto bail;
1469 		}
1470 		i = le16_to_cpu(el->l_next_free_rec) - 1;
1471 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1472 		if (!blkno) {
1473 			status = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1474 					"Owner %llu has extent list where extent # %d has no physical block start\n",
1475 					(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i);
1476 			goto bail;
1477 		}
1478 
1479 		brelse(bh);
1480 		bh = NULL;
1481 
1482 		status = ocfs2_read_extent_block(et->et_ci, blkno, &bh);
1483 		if (status < 0) {
1484 			mlog_errno(status);
1485 			goto bail;
1486 		}
1487 
1488 		eb = (struct ocfs2_extent_block *) bh->b_data;
1489 		el = &eb->h_list;
1490 
1491 		if (le16_to_cpu(el->l_next_free_rec) <
1492 		    le16_to_cpu(el->l_count)) {
1493 			brelse(lowest_bh);
1494 			lowest_bh = bh;
1495 			get_bh(lowest_bh);
1496 		}
1497 	}
1498 
1499 	/* If we didn't find one and the fe doesn't have any room,
1500 	 * then return '1' */
1501 	el = et->et_root_el;
1502 	if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1503 		status = 1;
1504 
1505 	*target_bh = lowest_bh;
1506 bail:
1507 	brelse(bh);
1508 
1509 	return status;
1510 }
1511 
1512 /*
1513  * Grow a b-tree so that it has more records.
1514  *
1515  * We might shift the tree depth in which case existing paths should
1516  * be considered invalid.
1517  *
1518  * Tree depth after the grow is returned via *final_depth.
1519  *
1520  * *last_eb_bh will be updated by ocfs2_add_branch().
1521  */
1522 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et,
1523 			   int *final_depth, struct buffer_head **last_eb_bh,
1524 			   struct ocfs2_alloc_context *meta_ac)
1525 {
1526 	int ret, shift;
1527 	struct ocfs2_extent_list *el = et->et_root_el;
1528 	int depth = le16_to_cpu(el->l_tree_depth);
1529 	struct buffer_head *bh = NULL;
1530 
1531 	BUG_ON(meta_ac == NULL && ocfs2_is_dealloc_empty(et));
1532 
1533 	shift = ocfs2_find_branch_target(et, &bh);
1534 	if (shift < 0) {
1535 		ret = shift;
1536 		mlog_errno(ret);
1537 		goto out;
1538 	}
1539 
1540 	/* We traveled all the way to the bottom of the allocation tree
1541 	 * and didn't find room for any more extents - we need to add
1542 	 * another tree level */
1543 	if (shift) {
1544 		BUG_ON(bh);
1545 		trace_ocfs2_grow_tree(
1546 			(unsigned long long)
1547 			ocfs2_metadata_cache_owner(et->et_ci),
1548 			depth);
1549 
1550 		/* ocfs2_shift_tree_depth will return us a buffer with
1551 		 * the new extent block (so we can pass that to
1552 		 * ocfs2_add_branch). */
1553 		ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh);
1554 		if (ret < 0) {
1555 			mlog_errno(ret);
1556 			goto out;
1557 		}
1558 		depth++;
1559 		if (depth == 1) {
1560 			/*
1561 			 * Special case: we have room now if we shifted from
1562 			 * tree_depth 0, so no more work needs to be done.
1563 			 *
1564 			 * We won't be calling add_branch, so pass
1565 			 * back *last_eb_bh as the new leaf. At depth
1566 			 * zero, it should always be null so there's
1567 			 * no reason to brelse.
1568 			 */
1569 			BUG_ON(*last_eb_bh);
1570 			get_bh(bh);
1571 			*last_eb_bh = bh;
1572 			goto out;
1573 		}
1574 	}
1575 
1576 	/* call ocfs2_add_branch to add the final part of the tree with
1577 	 * the new data. */
1578 	ret = ocfs2_add_branch(handle, et, bh, last_eb_bh,
1579 			       meta_ac);
1580 	if (ret < 0)
1581 		mlog_errno(ret);
1582 
1583 out:
1584 	if (final_depth)
1585 		*final_depth = depth;
1586 	brelse(bh);
1587 	return ret;
1588 }
1589 
1590 /*
1591  * This function will discard the rightmost extent record.
1592  */
1593 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1594 {
1595 	int next_free = le16_to_cpu(el->l_next_free_rec);
1596 	int count = le16_to_cpu(el->l_count);
1597 	unsigned int num_bytes;
1598 
1599 	BUG_ON(!next_free);
1600 	/* This will cause us to go off the end of our extent list. */
1601 	BUG_ON(next_free >= count);
1602 
1603 	num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1604 
1605 	memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1606 }
1607 
1608 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1609 			      struct ocfs2_extent_rec *insert_rec)
1610 {
1611 	int i, insert_index, next_free, has_empty, num_bytes;
1612 	u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1613 	struct ocfs2_extent_rec *rec;
1614 
1615 	next_free = le16_to_cpu(el->l_next_free_rec);
1616 	has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1617 
1618 	BUG_ON(!next_free);
1619 
1620 	/* The tree code before us didn't allow enough room in the leaf. */
1621 	BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1622 
1623 	/*
1624 	 * The easiest way to approach this is to just remove the
1625 	 * empty extent and temporarily decrement next_free.
1626 	 */
1627 	if (has_empty) {
1628 		/*
1629 		 * If next_free was 1 (only an empty extent), this
1630 		 * loop won't execute, which is fine. We still want
1631 		 * the decrement above to happen.
1632 		 */
1633 		for(i = 0; i < (next_free - 1); i++)
1634 			el->l_recs[i] = el->l_recs[i+1];
1635 
1636 		next_free--;
1637 	}
1638 
1639 	/*
1640 	 * Figure out what the new record index should be.
1641 	 */
1642 	for(i = 0; i < next_free; i++) {
1643 		rec = &el->l_recs[i];
1644 
1645 		if (insert_cpos < le32_to_cpu(rec->e_cpos))
1646 			break;
1647 	}
1648 	insert_index = i;
1649 
1650 	trace_ocfs2_rotate_leaf(insert_cpos, insert_index,
1651 				has_empty, next_free,
1652 				le16_to_cpu(el->l_count));
1653 
1654 	BUG_ON(insert_index < 0);
1655 	BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1656 	BUG_ON(insert_index > next_free);
1657 
1658 	/*
1659 	 * No need to memmove if we're just adding to the tail.
1660 	 */
1661 	if (insert_index != next_free) {
1662 		BUG_ON(next_free >= le16_to_cpu(el->l_count));
1663 
1664 		num_bytes = next_free - insert_index;
1665 		num_bytes *= sizeof(struct ocfs2_extent_rec);
1666 		memmove(&el->l_recs[insert_index + 1],
1667 			&el->l_recs[insert_index],
1668 			num_bytes);
1669 	}
1670 
1671 	/*
1672 	 * Either we had an empty extent, and need to re-increment or
1673 	 * there was no empty extent on a non full rightmost leaf node,
1674 	 * in which case we still need to increment.
1675 	 */
1676 	next_free++;
1677 	el->l_next_free_rec = cpu_to_le16(next_free);
1678 	/*
1679 	 * Make sure none of the math above just messed up our tree.
1680 	 */
1681 	BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1682 
1683 	el->l_recs[insert_index] = *insert_rec;
1684 
1685 }
1686 
1687 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1688 {
1689 	int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1690 
1691 	BUG_ON(num_recs == 0);
1692 
1693 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1694 		num_recs--;
1695 		size = num_recs * sizeof(struct ocfs2_extent_rec);
1696 		memmove(&el->l_recs[0], &el->l_recs[1], size);
1697 		memset(&el->l_recs[num_recs], 0,
1698 		       sizeof(struct ocfs2_extent_rec));
1699 		el->l_next_free_rec = cpu_to_le16(num_recs);
1700 	}
1701 }
1702 
1703 /*
1704  * Create an empty extent record .
1705  *
1706  * l_next_free_rec may be updated.
1707  *
1708  * If an empty extent already exists do nothing.
1709  */
1710 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1711 {
1712 	int next_free = le16_to_cpu(el->l_next_free_rec);
1713 
1714 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1715 
1716 	if (next_free == 0)
1717 		goto set_and_inc;
1718 
1719 	if (ocfs2_is_empty_extent(&el->l_recs[0]))
1720 		return;
1721 
1722 	mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1723 			"Asked to create an empty extent in a full list:\n"
1724 			"count = %u, tree depth = %u",
1725 			le16_to_cpu(el->l_count),
1726 			le16_to_cpu(el->l_tree_depth));
1727 
1728 	ocfs2_shift_records_right(el);
1729 
1730 set_and_inc:
1731 	le16_add_cpu(&el->l_next_free_rec, 1);
1732 	memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1733 }
1734 
1735 /*
1736  * For a rotation which involves two leaf nodes, the "root node" is
1737  * the lowest level tree node which contains a path to both leafs. This
1738  * resulting set of information can be used to form a complete "subtree"
1739  *
1740  * This function is passed two full paths from the dinode down to a
1741  * pair of adjacent leaves. It's task is to figure out which path
1742  * index contains the subtree root - this can be the root index itself
1743  * in a worst-case rotation.
1744  *
1745  * The array index of the subtree root is passed back.
1746  */
1747 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et,
1748 			    struct ocfs2_path *left,
1749 			    struct ocfs2_path *right)
1750 {
1751 	int i = 0;
1752 
1753 	/*
1754 	 * Check that the caller passed in two paths from the same tree.
1755 	 */
1756 	BUG_ON(path_root_bh(left) != path_root_bh(right));
1757 
1758 	do {
1759 		i++;
1760 
1761 		/*
1762 		 * The caller didn't pass two adjacent paths.
1763 		 */
1764 		mlog_bug_on_msg(i > left->p_tree_depth,
1765 				"Owner %llu, left depth %u, right depth %u\n"
1766 				"left leaf blk %llu, right leaf blk %llu\n",
1767 				(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
1768 				left->p_tree_depth, right->p_tree_depth,
1769 				(unsigned long long)path_leaf_bh(left)->b_blocknr,
1770 				(unsigned long long)path_leaf_bh(right)->b_blocknr);
1771 	} while (left->p_node[i].bh->b_blocknr ==
1772 		 right->p_node[i].bh->b_blocknr);
1773 
1774 	return i - 1;
1775 }
1776 
1777 typedef void (path_insert_t)(void *, struct buffer_head *);
1778 
1779 /*
1780  * Traverse a btree path in search of cpos, starting at root_el.
1781  *
1782  * This code can be called with a cpos larger than the tree, in which
1783  * case it will return the rightmost path.
1784  */
1785 static int __ocfs2_find_path(struct ocfs2_caching_info *ci,
1786 			     struct ocfs2_extent_list *root_el, u32 cpos,
1787 			     path_insert_t *func, void *data)
1788 {
1789 	int i, ret = 0;
1790 	u32 range;
1791 	u64 blkno;
1792 	struct buffer_head *bh = NULL;
1793 	struct ocfs2_extent_block *eb;
1794 	struct ocfs2_extent_list *el;
1795 	struct ocfs2_extent_rec *rec;
1796 
1797 	el = root_el;
1798 	while (el->l_tree_depth) {
1799 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1800 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1801 				    "Owner %llu has empty extent list at depth %u\n",
1802 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1803 				    le16_to_cpu(el->l_tree_depth));
1804 			ret = -EROFS;
1805 			goto out;
1806 
1807 		}
1808 
1809 		for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1810 			rec = &el->l_recs[i];
1811 
1812 			/*
1813 			 * In the case that cpos is off the allocation
1814 			 * tree, this should just wind up returning the
1815 			 * rightmost record.
1816 			 */
1817 			range = le32_to_cpu(rec->e_cpos) +
1818 				ocfs2_rec_clusters(el, rec);
1819 			if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1820 			    break;
1821 		}
1822 
1823 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1824 		if (blkno == 0) {
1825 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1826 				    "Owner %llu has bad blkno in extent list at depth %u (index %d)\n",
1827 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1828 				    le16_to_cpu(el->l_tree_depth), i);
1829 			ret = -EROFS;
1830 			goto out;
1831 		}
1832 
1833 		brelse(bh);
1834 		bh = NULL;
1835 		ret = ocfs2_read_extent_block(ci, blkno, &bh);
1836 		if (ret) {
1837 			mlog_errno(ret);
1838 			goto out;
1839 		}
1840 
1841 		eb = (struct ocfs2_extent_block *) bh->b_data;
1842 		el = &eb->h_list;
1843 
1844 		if (le16_to_cpu(el->l_next_free_rec) >
1845 		    le16_to_cpu(el->l_count)) {
1846 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1847 				    "Owner %llu has bad count in extent list at block %llu (next free=%u, count=%u)\n",
1848 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1849 				    (unsigned long long)bh->b_blocknr,
1850 				    le16_to_cpu(el->l_next_free_rec),
1851 				    le16_to_cpu(el->l_count));
1852 			ret = -EROFS;
1853 			goto out;
1854 		}
1855 
1856 		if (func)
1857 			func(data, bh);
1858 	}
1859 
1860 out:
1861 	/*
1862 	 * Catch any trailing bh that the loop didn't handle.
1863 	 */
1864 	brelse(bh);
1865 
1866 	return ret;
1867 }
1868 
1869 /*
1870  * Given an initialized path (that is, it has a valid root extent
1871  * list), this function will traverse the btree in search of the path
1872  * which would contain cpos.
1873  *
1874  * The path traveled is recorded in the path structure.
1875  *
1876  * Note that this will not do any comparisons on leaf node extent
1877  * records, so it will work fine in the case that we just added a tree
1878  * branch.
1879  */
1880 struct find_path_data {
1881 	int index;
1882 	struct ocfs2_path *path;
1883 };
1884 static void find_path_ins(void *data, struct buffer_head *bh)
1885 {
1886 	struct find_path_data *fp = data;
1887 
1888 	get_bh(bh);
1889 	ocfs2_path_insert_eb(fp->path, fp->index, bh);
1890 	fp->index++;
1891 }
1892 int ocfs2_find_path(struct ocfs2_caching_info *ci,
1893 		    struct ocfs2_path *path, u32 cpos)
1894 {
1895 	struct find_path_data data;
1896 
1897 	data.index = 1;
1898 	data.path = path;
1899 	return __ocfs2_find_path(ci, path_root_el(path), cpos,
1900 				 find_path_ins, &data);
1901 }
1902 
1903 static void find_leaf_ins(void *data, struct buffer_head *bh)
1904 {
1905 	struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1906 	struct ocfs2_extent_list *el = &eb->h_list;
1907 	struct buffer_head **ret = data;
1908 
1909 	/* We want to retain only the leaf block. */
1910 	if (le16_to_cpu(el->l_tree_depth) == 0) {
1911 		get_bh(bh);
1912 		*ret = bh;
1913 	}
1914 }
1915 /*
1916  * Find the leaf block in the tree which would contain cpos. No
1917  * checking of the actual leaf is done.
1918  *
1919  * Some paths want to call this instead of allocating a path structure
1920  * and calling ocfs2_find_path().
1921  *
1922  * This function doesn't handle non btree extent lists.
1923  */
1924 int ocfs2_find_leaf(struct ocfs2_caching_info *ci,
1925 		    struct ocfs2_extent_list *root_el, u32 cpos,
1926 		    struct buffer_head **leaf_bh)
1927 {
1928 	int ret;
1929 	struct buffer_head *bh = NULL;
1930 
1931 	ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh);
1932 	if (ret) {
1933 		mlog_errno(ret);
1934 		goto out;
1935 	}
1936 
1937 	*leaf_bh = bh;
1938 out:
1939 	return ret;
1940 }
1941 
1942 /*
1943  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1944  *
1945  * Basically, we've moved stuff around at the bottom of the tree and
1946  * we need to fix up the extent records above the changes to reflect
1947  * the new changes.
1948  *
1949  * left_rec: the record on the left.
1950  * right_rec: the record to the right of left_rec
1951  * right_child_el: is the child list pointed to by right_rec
1952  *
1953  * By definition, this only works on interior nodes.
1954  */
1955 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1956 				  struct ocfs2_extent_rec *right_rec,
1957 				  struct ocfs2_extent_list *right_child_el)
1958 {
1959 	u32 left_clusters, right_end;
1960 
1961 	/*
1962 	 * Interior nodes never have holes. Their cpos is the cpos of
1963 	 * the leftmost record in their child list. Their cluster
1964 	 * count covers the full theoretical range of their child list
1965 	 * - the range between their cpos and the cpos of the record
1966 	 * immediately to their right.
1967 	 */
1968 	left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1969 	if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1970 		BUG_ON(right_child_el->l_tree_depth);
1971 		BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1972 		left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1973 	}
1974 	left_clusters -= le32_to_cpu(left_rec->e_cpos);
1975 	left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1976 
1977 	/*
1978 	 * Calculate the rightmost cluster count boundary before
1979 	 * moving cpos - we will need to adjust clusters after
1980 	 * updating e_cpos to keep the same highest cluster count.
1981 	 */
1982 	right_end = le32_to_cpu(right_rec->e_cpos);
1983 	right_end += le32_to_cpu(right_rec->e_int_clusters);
1984 
1985 	right_rec->e_cpos = left_rec->e_cpos;
1986 	le32_add_cpu(&right_rec->e_cpos, left_clusters);
1987 
1988 	right_end -= le32_to_cpu(right_rec->e_cpos);
1989 	right_rec->e_int_clusters = cpu_to_le32(right_end);
1990 }
1991 
1992 /*
1993  * Adjust the adjacent root node records involved in a
1994  * rotation. left_el_blkno is passed in as a key so that we can easily
1995  * find it's index in the root list.
1996  */
1997 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1998 				      struct ocfs2_extent_list *left_el,
1999 				      struct ocfs2_extent_list *right_el,
2000 				      u64 left_el_blkno)
2001 {
2002 	int i;
2003 
2004 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
2005 	       le16_to_cpu(left_el->l_tree_depth));
2006 
2007 	for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
2008 		if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
2009 			break;
2010 	}
2011 
2012 	/*
2013 	 * The path walking code should have never returned a root and
2014 	 * two paths which are not adjacent.
2015 	 */
2016 	BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
2017 
2018 	ocfs2_adjust_adjacent_records(&root_el->l_recs[i],
2019 				      &root_el->l_recs[i + 1], right_el);
2020 }
2021 
2022 /*
2023  * We've changed a leaf block (in right_path) and need to reflect that
2024  * change back up the subtree.
2025  *
2026  * This happens in multiple places:
2027  *   - When we've moved an extent record from the left path leaf to the right
2028  *     path leaf to make room for an empty extent in the left path leaf.
2029  *   - When our insert into the right path leaf is at the leftmost edge
2030  *     and requires an update of the path immediately to it's left. This
2031  *     can occur at the end of some types of rotation and appending inserts.
2032  *   - When we've adjusted the last extent record in the left path leaf and the
2033  *     1st extent record in the right path leaf during cross extent block merge.
2034  */
2035 static void ocfs2_complete_edge_insert(handle_t *handle,
2036 				       struct ocfs2_path *left_path,
2037 				       struct ocfs2_path *right_path,
2038 				       int subtree_index)
2039 {
2040 	int i, idx;
2041 	struct ocfs2_extent_list *el, *left_el, *right_el;
2042 	struct ocfs2_extent_rec *left_rec, *right_rec;
2043 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2044 
2045 	/*
2046 	 * Update the counts and position values within all the
2047 	 * interior nodes to reflect the leaf rotation we just did.
2048 	 *
2049 	 * The root node is handled below the loop.
2050 	 *
2051 	 * We begin the loop with right_el and left_el pointing to the
2052 	 * leaf lists and work our way up.
2053 	 *
2054 	 * NOTE: within this loop, left_el and right_el always refer
2055 	 * to the *child* lists.
2056 	 */
2057 	left_el = path_leaf_el(left_path);
2058 	right_el = path_leaf_el(right_path);
2059 	for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
2060 		trace_ocfs2_complete_edge_insert(i);
2061 
2062 		/*
2063 		 * One nice property of knowing that all of these
2064 		 * nodes are below the root is that we only deal with
2065 		 * the leftmost right node record and the rightmost
2066 		 * left node record.
2067 		 */
2068 		el = left_path->p_node[i].el;
2069 		idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2070 		left_rec = &el->l_recs[idx];
2071 
2072 		el = right_path->p_node[i].el;
2073 		right_rec = &el->l_recs[0];
2074 
2075 		ocfs2_adjust_adjacent_records(left_rec, right_rec, right_el);
2076 
2077 		ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2078 		ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2079 
2080 		/*
2081 		 * Setup our list pointers now so that the current
2082 		 * parents become children in the next iteration.
2083 		 */
2084 		left_el = left_path->p_node[i].el;
2085 		right_el = right_path->p_node[i].el;
2086 	}
2087 
2088 	/*
2089 	 * At the root node, adjust the two adjacent records which
2090 	 * begin our path to the leaves.
2091 	 */
2092 
2093 	el = left_path->p_node[subtree_index].el;
2094 	left_el = left_path->p_node[subtree_index + 1].el;
2095 	right_el = right_path->p_node[subtree_index + 1].el;
2096 
2097 	ocfs2_adjust_root_records(el, left_el, right_el,
2098 				  left_path->p_node[subtree_index + 1].bh->b_blocknr);
2099 
2100 	root_bh = left_path->p_node[subtree_index].bh;
2101 
2102 	ocfs2_journal_dirty(handle, root_bh);
2103 }
2104 
2105 static int ocfs2_rotate_subtree_right(handle_t *handle,
2106 				      struct ocfs2_extent_tree *et,
2107 				      struct ocfs2_path *left_path,
2108 				      struct ocfs2_path *right_path,
2109 				      int subtree_index)
2110 {
2111 	int ret, i;
2112 	struct buffer_head *right_leaf_bh;
2113 	struct buffer_head *left_leaf_bh = NULL;
2114 	struct buffer_head *root_bh;
2115 	struct ocfs2_extent_list *right_el, *left_el;
2116 	struct ocfs2_extent_rec move_rec;
2117 
2118 	left_leaf_bh = path_leaf_bh(left_path);
2119 	left_el = path_leaf_el(left_path);
2120 
2121 	if (left_el->l_next_free_rec != left_el->l_count) {
2122 		ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
2123 			    "Inode %llu has non-full interior leaf node %llu (next free = %u)\n",
2124 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2125 			    (unsigned long long)left_leaf_bh->b_blocknr,
2126 			    le16_to_cpu(left_el->l_next_free_rec));
2127 		return -EROFS;
2128 	}
2129 
2130 	/*
2131 	 * This extent block may already have an empty record, so we
2132 	 * return early if so.
2133 	 */
2134 	if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2135 		return 0;
2136 
2137 	root_bh = left_path->p_node[subtree_index].bh;
2138 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2139 
2140 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2141 					   subtree_index);
2142 	if (ret) {
2143 		mlog_errno(ret);
2144 		goto out;
2145 	}
2146 
2147 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2148 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2149 						   right_path, i);
2150 		if (ret) {
2151 			mlog_errno(ret);
2152 			goto out;
2153 		}
2154 
2155 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2156 						   left_path, i);
2157 		if (ret) {
2158 			mlog_errno(ret);
2159 			goto out;
2160 		}
2161 	}
2162 
2163 	right_leaf_bh = path_leaf_bh(right_path);
2164 	right_el = path_leaf_el(right_path);
2165 
2166 	/* This is a code error, not a disk corruption. */
2167 	mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2168 			"because rightmost leaf block %llu is empty\n",
2169 			(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2170 			(unsigned long long)right_leaf_bh->b_blocknr);
2171 
2172 	ocfs2_create_empty_extent(right_el);
2173 
2174 	ocfs2_journal_dirty(handle, right_leaf_bh);
2175 
2176 	/* Do the copy now. */
2177 	i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2178 	move_rec = left_el->l_recs[i];
2179 	right_el->l_recs[0] = move_rec;
2180 
2181 	/*
2182 	 * Clear out the record we just copied and shift everything
2183 	 * over, leaving an empty extent in the left leaf.
2184 	 *
2185 	 * We temporarily subtract from next_free_rec so that the
2186 	 * shift will lose the tail record (which is now defunct).
2187 	 */
2188 	le16_add_cpu(&left_el->l_next_free_rec, -1);
2189 	ocfs2_shift_records_right(left_el);
2190 	memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2191 	le16_add_cpu(&left_el->l_next_free_rec, 1);
2192 
2193 	ocfs2_journal_dirty(handle, left_leaf_bh);
2194 
2195 	ocfs2_complete_edge_insert(handle, left_path, right_path,
2196 				   subtree_index);
2197 
2198 out:
2199 	return ret;
2200 }
2201 
2202 /*
2203  * Given a full path, determine what cpos value would return us a path
2204  * containing the leaf immediately to the left of the current one.
2205  *
2206  * Will return zero if the path passed in is already the leftmost path.
2207  */
2208 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2209 				  struct ocfs2_path *path, u32 *cpos)
2210 {
2211 	int i, j, ret = 0;
2212 	u64 blkno;
2213 	struct ocfs2_extent_list *el;
2214 
2215 	BUG_ON(path->p_tree_depth == 0);
2216 
2217 	*cpos = 0;
2218 
2219 	blkno = path_leaf_bh(path)->b_blocknr;
2220 
2221 	/* Start at the tree node just above the leaf and work our way up. */
2222 	i = path->p_tree_depth - 1;
2223 	while (i >= 0) {
2224 		el = path->p_node[i].el;
2225 
2226 		/*
2227 		 * Find the extent record just before the one in our
2228 		 * path.
2229 		 */
2230 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2231 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2232 				if (j == 0) {
2233 					if (i == 0) {
2234 						/*
2235 						 * We've determined that the
2236 						 * path specified is already
2237 						 * the leftmost one - return a
2238 						 * cpos of zero.
2239 						 */
2240 						goto out;
2241 					}
2242 					/*
2243 					 * The leftmost record points to our
2244 					 * leaf - we need to travel up the
2245 					 * tree one level.
2246 					 */
2247 					goto next_node;
2248 				}
2249 
2250 				*cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2251 				*cpos = *cpos + ocfs2_rec_clusters(el,
2252 							   &el->l_recs[j - 1]);
2253 				*cpos = *cpos - 1;
2254 				goto out;
2255 			}
2256 		}
2257 
2258 		/*
2259 		 * If we got here, we never found a valid node where
2260 		 * the tree indicated one should be.
2261 		 */
2262 		ocfs2_error(sb, "Invalid extent tree at extent block %llu\n",
2263 			    (unsigned long long)blkno);
2264 		ret = -EROFS;
2265 		goto out;
2266 
2267 next_node:
2268 		blkno = path->p_node[i].bh->b_blocknr;
2269 		i--;
2270 	}
2271 
2272 out:
2273 	return ret;
2274 }
2275 
2276 /*
2277  * Extend the transaction by enough credits to complete the rotation,
2278  * and still leave at least the original number of credits allocated
2279  * to this transaction.
2280  */
2281 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2282 					   int op_credits,
2283 					   struct ocfs2_path *path)
2284 {
2285 	int ret = 0;
2286 	int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2287 
2288 	if (jbd2_handle_buffer_credits(handle) < credits)
2289 		ret = ocfs2_extend_trans(handle,
2290 				credits - jbd2_handle_buffer_credits(handle));
2291 
2292 	return ret;
2293 }
2294 
2295 /*
2296  * Trap the case where we're inserting into the theoretical range past
2297  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2298  * whose cpos is less than ours into the right leaf.
2299  *
2300  * It's only necessary to look at the rightmost record of the left
2301  * leaf because the logic that calls us should ensure that the
2302  * theoretical ranges in the path components above the leaves are
2303  * correct.
2304  */
2305 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2306 						 u32 insert_cpos)
2307 {
2308 	struct ocfs2_extent_list *left_el;
2309 	struct ocfs2_extent_rec *rec;
2310 	int next_free;
2311 
2312 	left_el = path_leaf_el(left_path);
2313 	next_free = le16_to_cpu(left_el->l_next_free_rec);
2314 	rec = &left_el->l_recs[next_free - 1];
2315 
2316 	if (insert_cpos > le32_to_cpu(rec->e_cpos))
2317 		return 1;
2318 	return 0;
2319 }
2320 
2321 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2322 {
2323 	int next_free = le16_to_cpu(el->l_next_free_rec);
2324 	unsigned int range;
2325 	struct ocfs2_extent_rec *rec;
2326 
2327 	if (next_free == 0)
2328 		return 0;
2329 
2330 	rec = &el->l_recs[0];
2331 	if (ocfs2_is_empty_extent(rec)) {
2332 		/* Empty list. */
2333 		if (next_free == 1)
2334 			return 0;
2335 		rec = &el->l_recs[1];
2336 	}
2337 
2338 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2339 	if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2340 		return 1;
2341 	return 0;
2342 }
2343 
2344 /*
2345  * Rotate all the records in a btree right one record, starting at insert_cpos.
2346  *
2347  * The path to the rightmost leaf should be passed in.
2348  *
2349  * The array is assumed to be large enough to hold an entire path (tree depth).
2350  *
2351  * Upon successful return from this function:
2352  *
2353  * - The 'right_path' array will contain a path to the leaf block
2354  *   whose range contains e_cpos.
2355  * - That leaf block will have a single empty extent in list index 0.
2356  * - In the case that the rotation requires a post-insert update,
2357  *   *ret_left_path will contain a valid path which can be passed to
2358  *   ocfs2_insert_path().
2359  */
2360 static int ocfs2_rotate_tree_right(handle_t *handle,
2361 				   struct ocfs2_extent_tree *et,
2362 				   enum ocfs2_split_type split,
2363 				   u32 insert_cpos,
2364 				   struct ocfs2_path *right_path,
2365 				   struct ocfs2_path **ret_left_path)
2366 {
2367 	int ret, start, orig_credits = jbd2_handle_buffer_credits(handle);
2368 	u32 cpos;
2369 	struct ocfs2_path *left_path = NULL;
2370 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2371 
2372 	*ret_left_path = NULL;
2373 
2374 	left_path = ocfs2_new_path_from_path(right_path);
2375 	if (!left_path) {
2376 		ret = -ENOMEM;
2377 		mlog_errno(ret);
2378 		goto out;
2379 	}
2380 
2381 	ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2382 	if (ret) {
2383 		mlog_errno(ret);
2384 		goto out;
2385 	}
2386 
2387 	trace_ocfs2_rotate_tree_right(
2388 		(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2389 		insert_cpos, cpos);
2390 
2391 	/*
2392 	 * What we want to do here is:
2393 	 *
2394 	 * 1) Start with the rightmost path.
2395 	 *
2396 	 * 2) Determine a path to the leaf block directly to the left
2397 	 *    of that leaf.
2398 	 *
2399 	 * 3) Determine the 'subtree root' - the lowest level tree node
2400 	 *    which contains a path to both leaves.
2401 	 *
2402 	 * 4) Rotate the subtree.
2403 	 *
2404 	 * 5) Find the next subtree by considering the left path to be
2405 	 *    the new right path.
2406 	 *
2407 	 * The check at the top of this while loop also accepts
2408 	 * insert_cpos == cpos because cpos is only a _theoretical_
2409 	 * value to get us the left path - insert_cpos might very well
2410 	 * be filling that hole.
2411 	 *
2412 	 * Stop at a cpos of '0' because we either started at the
2413 	 * leftmost branch (i.e., a tree with one branch and a
2414 	 * rotation inside of it), or we've gone as far as we can in
2415 	 * rotating subtrees.
2416 	 */
2417 	while (cpos && insert_cpos <= cpos) {
2418 		trace_ocfs2_rotate_tree_right(
2419 			(unsigned long long)
2420 			ocfs2_metadata_cache_owner(et->et_ci),
2421 			insert_cpos, cpos);
2422 
2423 		ret = ocfs2_find_path(et->et_ci, left_path, cpos);
2424 		if (ret) {
2425 			mlog_errno(ret);
2426 			goto out;
2427 		}
2428 
2429 		mlog_bug_on_msg(path_leaf_bh(left_path) ==
2430 				path_leaf_bh(right_path),
2431 				"Owner %llu: error during insert of %u "
2432 				"(left path cpos %u) results in two identical "
2433 				"paths ending at %llu\n",
2434 				(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2435 				insert_cpos, cpos,
2436 				(unsigned long long)
2437 				path_leaf_bh(left_path)->b_blocknr);
2438 
2439 		if (split == SPLIT_NONE &&
2440 		    ocfs2_rotate_requires_path_adjustment(left_path,
2441 							  insert_cpos)) {
2442 
2443 			/*
2444 			 * We've rotated the tree as much as we
2445 			 * should. The rest is up to
2446 			 * ocfs2_insert_path() to complete, after the
2447 			 * record insertion. We indicate this
2448 			 * situation by returning the left path.
2449 			 *
2450 			 * The reason we don't adjust the records here
2451 			 * before the record insert is that an error
2452 			 * later might break the rule where a parent
2453 			 * record e_cpos will reflect the actual
2454 			 * e_cpos of the 1st nonempty record of the
2455 			 * child list.
2456 			 */
2457 			*ret_left_path = left_path;
2458 			goto out_ret_path;
2459 		}
2460 
2461 		start = ocfs2_find_subtree_root(et, left_path, right_path);
2462 
2463 		trace_ocfs2_rotate_subtree(start,
2464 			(unsigned long long)
2465 			right_path->p_node[start].bh->b_blocknr,
2466 			right_path->p_tree_depth);
2467 
2468 		ret = ocfs2_extend_rotate_transaction(handle, start,
2469 						      orig_credits, right_path);
2470 		if (ret) {
2471 			mlog_errno(ret);
2472 			goto out;
2473 		}
2474 
2475 		ret = ocfs2_rotate_subtree_right(handle, et, left_path,
2476 						 right_path, start);
2477 		if (ret) {
2478 			mlog_errno(ret);
2479 			goto out;
2480 		}
2481 
2482 		if (split != SPLIT_NONE &&
2483 		    ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2484 						insert_cpos)) {
2485 			/*
2486 			 * A rotate moves the rightmost left leaf
2487 			 * record over to the leftmost right leaf
2488 			 * slot. If we're doing an extent split
2489 			 * instead of a real insert, then we have to
2490 			 * check that the extent to be split wasn't
2491 			 * just moved over. If it was, then we can
2492 			 * exit here, passing left_path back -
2493 			 * ocfs2_split_extent() is smart enough to
2494 			 * search both leaves.
2495 			 */
2496 			*ret_left_path = left_path;
2497 			goto out_ret_path;
2498 		}
2499 
2500 		/*
2501 		 * There is no need to re-read the next right path
2502 		 * as we know that it'll be our current left
2503 		 * path. Optimize by copying values instead.
2504 		 */
2505 		ocfs2_mv_path(right_path, left_path);
2506 
2507 		ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2508 		if (ret) {
2509 			mlog_errno(ret);
2510 			goto out;
2511 		}
2512 	}
2513 
2514 out:
2515 	ocfs2_free_path(left_path);
2516 
2517 out_ret_path:
2518 	return ret;
2519 }
2520 
2521 static int ocfs2_update_edge_lengths(handle_t *handle,
2522 				     struct ocfs2_extent_tree *et,
2523 				     struct ocfs2_path *path)
2524 {
2525 	int i, idx, ret;
2526 	struct ocfs2_extent_rec *rec;
2527 	struct ocfs2_extent_list *el;
2528 	struct ocfs2_extent_block *eb;
2529 	u32 range;
2530 
2531 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
2532 	if (ret) {
2533 		mlog_errno(ret);
2534 		goto out;
2535 	}
2536 
2537 	/* Path should always be rightmost. */
2538 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2539 	BUG_ON(eb->h_next_leaf_blk != 0ULL);
2540 
2541 	el = &eb->h_list;
2542 	BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2543 	idx = le16_to_cpu(el->l_next_free_rec) - 1;
2544 	rec = &el->l_recs[idx];
2545 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2546 
2547 	for (i = 0; i < path->p_tree_depth; i++) {
2548 		el = path->p_node[i].el;
2549 		idx = le16_to_cpu(el->l_next_free_rec) - 1;
2550 		rec = &el->l_recs[idx];
2551 
2552 		rec->e_int_clusters = cpu_to_le32(range);
2553 		le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2554 
2555 		ocfs2_journal_dirty(handle, path->p_node[i].bh);
2556 	}
2557 out:
2558 	return ret;
2559 }
2560 
2561 static void ocfs2_unlink_path(handle_t *handle,
2562 			      struct ocfs2_extent_tree *et,
2563 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
2564 			      struct ocfs2_path *path, int unlink_start)
2565 {
2566 	int ret, i;
2567 	struct ocfs2_extent_block *eb;
2568 	struct ocfs2_extent_list *el;
2569 	struct buffer_head *bh;
2570 
2571 	for(i = unlink_start; i < path_num_items(path); i++) {
2572 		bh = path->p_node[i].bh;
2573 
2574 		eb = (struct ocfs2_extent_block *)bh->b_data;
2575 		/*
2576 		 * Not all nodes might have had their final count
2577 		 * decremented by the caller - handle this here.
2578 		 */
2579 		el = &eb->h_list;
2580 		if (le16_to_cpu(el->l_next_free_rec) > 1) {
2581 			mlog(ML_ERROR,
2582 			     "Inode %llu, attempted to remove extent block "
2583 			     "%llu with %u records\n",
2584 			     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2585 			     (unsigned long long)le64_to_cpu(eb->h_blkno),
2586 			     le16_to_cpu(el->l_next_free_rec));
2587 
2588 			ocfs2_journal_dirty(handle, bh);
2589 			ocfs2_remove_from_cache(et->et_ci, bh);
2590 			continue;
2591 		}
2592 
2593 		el->l_next_free_rec = 0;
2594 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2595 
2596 		ocfs2_journal_dirty(handle, bh);
2597 
2598 		ret = ocfs2_cache_extent_block_free(dealloc, eb);
2599 		if (ret)
2600 			mlog_errno(ret);
2601 
2602 		ocfs2_remove_from_cache(et->et_ci, bh);
2603 	}
2604 }
2605 
2606 static void ocfs2_unlink_subtree(handle_t *handle,
2607 				 struct ocfs2_extent_tree *et,
2608 				 struct ocfs2_path *left_path,
2609 				 struct ocfs2_path *right_path,
2610 				 int subtree_index,
2611 				 struct ocfs2_cached_dealloc_ctxt *dealloc)
2612 {
2613 	int i;
2614 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2615 	struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2616 	struct ocfs2_extent_block *eb;
2617 
2618 	eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2619 
2620 	for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2621 		if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2622 			break;
2623 
2624 	BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2625 
2626 	memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2627 	le16_add_cpu(&root_el->l_next_free_rec, -1);
2628 
2629 	eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2630 	eb->h_next_leaf_blk = 0;
2631 
2632 	ocfs2_journal_dirty(handle, root_bh);
2633 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2634 
2635 	ocfs2_unlink_path(handle, et, dealloc, right_path,
2636 			  subtree_index + 1);
2637 }
2638 
2639 static int ocfs2_rotate_subtree_left(handle_t *handle,
2640 				     struct ocfs2_extent_tree *et,
2641 				     struct ocfs2_path *left_path,
2642 				     struct ocfs2_path *right_path,
2643 				     int subtree_index,
2644 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
2645 				     int *deleted)
2646 {
2647 	int ret, i, del_right_subtree = 0, right_has_empty = 0;
2648 	struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2649 	struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2650 	struct ocfs2_extent_block *eb;
2651 
2652 	*deleted = 0;
2653 
2654 	right_leaf_el = path_leaf_el(right_path);
2655 	left_leaf_el = path_leaf_el(left_path);
2656 	root_bh = left_path->p_node[subtree_index].bh;
2657 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2658 
2659 	if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2660 		return 0;
2661 
2662 	eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2663 	if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2664 		/*
2665 		 * It's legal for us to proceed if the right leaf is
2666 		 * the rightmost one and it has an empty extent. There
2667 		 * are two cases to handle - whether the leaf will be
2668 		 * empty after removal or not. If the leaf isn't empty
2669 		 * then just remove the empty extent up front. The
2670 		 * next block will handle empty leaves by flagging
2671 		 * them for unlink.
2672 		 *
2673 		 * Non rightmost leaves will throw -EAGAIN and the
2674 		 * caller can manually move the subtree and retry.
2675 		 */
2676 
2677 		if (eb->h_next_leaf_blk != 0ULL)
2678 			return -EAGAIN;
2679 
2680 		if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2681 			ret = ocfs2_journal_access_eb(handle, et->et_ci,
2682 						      path_leaf_bh(right_path),
2683 						      OCFS2_JOURNAL_ACCESS_WRITE);
2684 			if (ret) {
2685 				mlog_errno(ret);
2686 				goto out;
2687 			}
2688 
2689 			ocfs2_remove_empty_extent(right_leaf_el);
2690 		} else
2691 			right_has_empty = 1;
2692 	}
2693 
2694 	if (eb->h_next_leaf_blk == 0ULL &&
2695 	    le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2696 		/*
2697 		 * We have to update i_last_eb_blk during the meta
2698 		 * data delete.
2699 		 */
2700 		ret = ocfs2_et_root_journal_access(handle, et,
2701 						   OCFS2_JOURNAL_ACCESS_WRITE);
2702 		if (ret) {
2703 			mlog_errno(ret);
2704 			goto out;
2705 		}
2706 
2707 		del_right_subtree = 1;
2708 	}
2709 
2710 	/*
2711 	 * Getting here with an empty extent in the right path implies
2712 	 * that it's the rightmost path and will be deleted.
2713 	 */
2714 	BUG_ON(right_has_empty && !del_right_subtree);
2715 
2716 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2717 					   subtree_index);
2718 	if (ret) {
2719 		mlog_errno(ret);
2720 		goto out;
2721 	}
2722 
2723 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2724 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2725 						   right_path, i);
2726 		if (ret) {
2727 			mlog_errno(ret);
2728 			goto out;
2729 		}
2730 
2731 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2732 						   left_path, i);
2733 		if (ret) {
2734 			mlog_errno(ret);
2735 			goto out;
2736 		}
2737 	}
2738 
2739 	if (!right_has_empty) {
2740 		/*
2741 		 * Only do this if we're moving a real
2742 		 * record. Otherwise, the action is delayed until
2743 		 * after removal of the right path in which case we
2744 		 * can do a simple shift to remove the empty extent.
2745 		 */
2746 		ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2747 		memset(&right_leaf_el->l_recs[0], 0,
2748 		       sizeof(struct ocfs2_extent_rec));
2749 	}
2750 	if (eb->h_next_leaf_blk == 0ULL) {
2751 		/*
2752 		 * Move recs over to get rid of empty extent, decrease
2753 		 * next_free. This is allowed to remove the last
2754 		 * extent in our leaf (setting l_next_free_rec to
2755 		 * zero) - the delete code below won't care.
2756 		 */
2757 		ocfs2_remove_empty_extent(right_leaf_el);
2758 	}
2759 
2760 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2761 	ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2762 
2763 	if (del_right_subtree) {
2764 		ocfs2_unlink_subtree(handle, et, left_path, right_path,
2765 				     subtree_index, dealloc);
2766 		ret = ocfs2_update_edge_lengths(handle, et, left_path);
2767 		if (ret) {
2768 			mlog_errno(ret);
2769 			goto out;
2770 		}
2771 
2772 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2773 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2774 
2775 		/*
2776 		 * Removal of the extent in the left leaf was skipped
2777 		 * above so we could delete the right path
2778 		 * 1st.
2779 		 */
2780 		if (right_has_empty)
2781 			ocfs2_remove_empty_extent(left_leaf_el);
2782 
2783 		ocfs2_journal_dirty(handle, et_root_bh);
2784 
2785 		*deleted = 1;
2786 	} else
2787 		ocfs2_complete_edge_insert(handle, left_path, right_path,
2788 					   subtree_index);
2789 
2790 out:
2791 	return ret;
2792 }
2793 
2794 /*
2795  * Given a full path, determine what cpos value would return us a path
2796  * containing the leaf immediately to the right of the current one.
2797  *
2798  * Will return zero if the path passed in is already the rightmost path.
2799  *
2800  * This looks similar, but is subtly different to
2801  * ocfs2_find_cpos_for_left_leaf().
2802  */
2803 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2804 				   struct ocfs2_path *path, u32 *cpos)
2805 {
2806 	int i, j, ret = 0;
2807 	u64 blkno;
2808 	struct ocfs2_extent_list *el;
2809 
2810 	*cpos = 0;
2811 
2812 	if (path->p_tree_depth == 0)
2813 		return 0;
2814 
2815 	blkno = path_leaf_bh(path)->b_blocknr;
2816 
2817 	/* Start at the tree node just above the leaf and work our way up. */
2818 	i = path->p_tree_depth - 1;
2819 	while (i >= 0) {
2820 		int next_free;
2821 
2822 		el = path->p_node[i].el;
2823 
2824 		/*
2825 		 * Find the extent record just after the one in our
2826 		 * path.
2827 		 */
2828 		next_free = le16_to_cpu(el->l_next_free_rec);
2829 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2830 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2831 				if (j == (next_free - 1)) {
2832 					if (i == 0) {
2833 						/*
2834 						 * We've determined that the
2835 						 * path specified is already
2836 						 * the rightmost one - return a
2837 						 * cpos of zero.
2838 						 */
2839 						goto out;
2840 					}
2841 					/*
2842 					 * The rightmost record points to our
2843 					 * leaf - we need to travel up the
2844 					 * tree one level.
2845 					 */
2846 					goto next_node;
2847 				}
2848 
2849 				*cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2850 				goto out;
2851 			}
2852 		}
2853 
2854 		/*
2855 		 * If we got here, we never found a valid node where
2856 		 * the tree indicated one should be.
2857 		 */
2858 		ocfs2_error(sb, "Invalid extent tree at extent block %llu\n",
2859 			    (unsigned long long)blkno);
2860 		ret = -EROFS;
2861 		goto out;
2862 
2863 next_node:
2864 		blkno = path->p_node[i].bh->b_blocknr;
2865 		i--;
2866 	}
2867 
2868 out:
2869 	return ret;
2870 }
2871 
2872 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle,
2873 					    struct ocfs2_extent_tree *et,
2874 					    struct ocfs2_path *path)
2875 {
2876 	int ret;
2877 	struct buffer_head *bh = path_leaf_bh(path);
2878 	struct ocfs2_extent_list *el = path_leaf_el(path);
2879 
2880 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2881 		return 0;
2882 
2883 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
2884 					   path_num_items(path) - 1);
2885 	if (ret) {
2886 		mlog_errno(ret);
2887 		goto out;
2888 	}
2889 
2890 	ocfs2_remove_empty_extent(el);
2891 	ocfs2_journal_dirty(handle, bh);
2892 
2893 out:
2894 	return ret;
2895 }
2896 
2897 static int __ocfs2_rotate_tree_left(handle_t *handle,
2898 				    struct ocfs2_extent_tree *et,
2899 				    int orig_credits,
2900 				    struct ocfs2_path *path,
2901 				    struct ocfs2_cached_dealloc_ctxt *dealloc,
2902 				    struct ocfs2_path **empty_extent_path)
2903 {
2904 	int ret, subtree_root, deleted;
2905 	u32 right_cpos;
2906 	struct ocfs2_path *left_path = NULL;
2907 	struct ocfs2_path *right_path = NULL;
2908 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2909 
2910 	if (!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])))
2911 		return 0;
2912 
2913 	*empty_extent_path = NULL;
2914 
2915 	ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
2916 	if (ret) {
2917 		mlog_errno(ret);
2918 		goto out;
2919 	}
2920 
2921 	left_path = ocfs2_new_path_from_path(path);
2922 	if (!left_path) {
2923 		ret = -ENOMEM;
2924 		mlog_errno(ret);
2925 		goto out;
2926 	}
2927 
2928 	ocfs2_cp_path(left_path, path);
2929 
2930 	right_path = ocfs2_new_path_from_path(path);
2931 	if (!right_path) {
2932 		ret = -ENOMEM;
2933 		mlog_errno(ret);
2934 		goto out;
2935 	}
2936 
2937 	while (right_cpos) {
2938 		ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
2939 		if (ret) {
2940 			mlog_errno(ret);
2941 			goto out;
2942 		}
2943 
2944 		subtree_root = ocfs2_find_subtree_root(et, left_path,
2945 						       right_path);
2946 
2947 		trace_ocfs2_rotate_subtree(subtree_root,
2948 		     (unsigned long long)
2949 		     right_path->p_node[subtree_root].bh->b_blocknr,
2950 		     right_path->p_tree_depth);
2951 
2952 		ret = ocfs2_extend_rotate_transaction(handle, 0,
2953 						      orig_credits, left_path);
2954 		if (ret) {
2955 			mlog_errno(ret);
2956 			goto out;
2957 		}
2958 
2959 		/*
2960 		 * Caller might still want to make changes to the
2961 		 * tree root, so re-add it to the journal here.
2962 		 */
2963 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2964 						   left_path, 0);
2965 		if (ret) {
2966 			mlog_errno(ret);
2967 			goto out;
2968 		}
2969 
2970 		ret = ocfs2_rotate_subtree_left(handle, et, left_path,
2971 						right_path, subtree_root,
2972 						dealloc, &deleted);
2973 		if (ret == -EAGAIN) {
2974 			/*
2975 			 * The rotation has to temporarily stop due to
2976 			 * the right subtree having an empty
2977 			 * extent. Pass it back to the caller for a
2978 			 * fixup.
2979 			 */
2980 			*empty_extent_path = right_path;
2981 			right_path = NULL;
2982 			goto out;
2983 		}
2984 		if (ret) {
2985 			mlog_errno(ret);
2986 			goto out;
2987 		}
2988 
2989 		/*
2990 		 * The subtree rotate might have removed records on
2991 		 * the rightmost edge. If so, then rotation is
2992 		 * complete.
2993 		 */
2994 		if (deleted)
2995 			break;
2996 
2997 		ocfs2_mv_path(left_path, right_path);
2998 
2999 		ret = ocfs2_find_cpos_for_right_leaf(sb, left_path,
3000 						     &right_cpos);
3001 		if (ret) {
3002 			mlog_errno(ret);
3003 			goto out;
3004 		}
3005 	}
3006 
3007 out:
3008 	ocfs2_free_path(right_path);
3009 	ocfs2_free_path(left_path);
3010 
3011 	return ret;
3012 }
3013 
3014 static int ocfs2_remove_rightmost_path(handle_t *handle,
3015 				struct ocfs2_extent_tree *et,
3016 				struct ocfs2_path *path,
3017 				struct ocfs2_cached_dealloc_ctxt *dealloc)
3018 {
3019 	int ret, subtree_index;
3020 	u32 cpos;
3021 	struct ocfs2_path *left_path = NULL;
3022 	struct ocfs2_extent_block *eb;
3023 	struct ocfs2_extent_list *el;
3024 
3025 	ret = ocfs2_et_sanity_check(et);
3026 	if (ret)
3027 		goto out;
3028 
3029 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
3030 	if (ret) {
3031 		mlog_errno(ret);
3032 		goto out;
3033 	}
3034 
3035 	ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3036 					    path, &cpos);
3037 	if (ret) {
3038 		mlog_errno(ret);
3039 		goto out;
3040 	}
3041 
3042 	if (cpos) {
3043 		/*
3044 		 * We have a path to the left of this one - it needs
3045 		 * an update too.
3046 		 */
3047 		left_path = ocfs2_new_path_from_path(path);
3048 		if (!left_path) {
3049 			ret = -ENOMEM;
3050 			mlog_errno(ret);
3051 			goto out;
3052 		}
3053 
3054 		ret = ocfs2_find_path(et->et_ci, left_path, cpos);
3055 		if (ret) {
3056 			mlog_errno(ret);
3057 			goto out;
3058 		}
3059 
3060 		ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
3061 		if (ret) {
3062 			mlog_errno(ret);
3063 			goto out;
3064 		}
3065 
3066 		subtree_index = ocfs2_find_subtree_root(et, left_path, path);
3067 
3068 		ocfs2_unlink_subtree(handle, et, left_path, path,
3069 				     subtree_index, dealloc);
3070 		ret = ocfs2_update_edge_lengths(handle, et, left_path);
3071 		if (ret) {
3072 			mlog_errno(ret);
3073 			goto out;
3074 		}
3075 
3076 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3077 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3078 	} else {
3079 		/*
3080 		 * 'path' is also the leftmost path which
3081 		 * means it must be the only one. This gets
3082 		 * handled differently because we want to
3083 		 * revert the root back to having extents
3084 		 * in-line.
3085 		 */
3086 		ocfs2_unlink_path(handle, et, dealloc, path, 1);
3087 
3088 		el = et->et_root_el;
3089 		el->l_tree_depth = 0;
3090 		el->l_next_free_rec = 0;
3091 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3092 
3093 		ocfs2_et_set_last_eb_blk(et, 0);
3094 	}
3095 
3096 	ocfs2_journal_dirty(handle, path_root_bh(path));
3097 
3098 out:
3099 	ocfs2_free_path(left_path);
3100 	return ret;
3101 }
3102 
3103 static int ocfs2_remove_rightmost_empty_extent(struct ocfs2_super *osb,
3104 				struct ocfs2_extent_tree *et,
3105 				struct ocfs2_path *path,
3106 				struct ocfs2_cached_dealloc_ctxt *dealloc)
3107 {
3108 	handle_t *handle;
3109 	int ret;
3110 	int credits = path->p_tree_depth * 2 + 1;
3111 
3112 	handle = ocfs2_start_trans(osb, credits);
3113 	if (IS_ERR(handle)) {
3114 		ret = PTR_ERR(handle);
3115 		mlog_errno(ret);
3116 		return ret;
3117 	}
3118 
3119 	ret = ocfs2_remove_rightmost_path(handle, et, path, dealloc);
3120 	if (ret)
3121 		mlog_errno(ret);
3122 
3123 	ocfs2_commit_trans(osb, handle);
3124 	return ret;
3125 }
3126 
3127 /*
3128  * Left rotation of btree records.
3129  *
3130  * In many ways, this is (unsurprisingly) the opposite of right
3131  * rotation. We start at some non-rightmost path containing an empty
3132  * extent in the leaf block. The code works its way to the rightmost
3133  * path by rotating records to the left in every subtree.
3134  *
3135  * This is used by any code which reduces the number of extent records
3136  * in a leaf. After removal, an empty record should be placed in the
3137  * leftmost list position.
3138  *
3139  * This won't handle a length update of the rightmost path records if
3140  * the rightmost tree leaf record is removed so the caller is
3141  * responsible for detecting and correcting that.
3142  */
3143 static int ocfs2_rotate_tree_left(handle_t *handle,
3144 				  struct ocfs2_extent_tree *et,
3145 				  struct ocfs2_path *path,
3146 				  struct ocfs2_cached_dealloc_ctxt *dealloc)
3147 {
3148 	int ret, orig_credits = jbd2_handle_buffer_credits(handle);
3149 	struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3150 	struct ocfs2_extent_block *eb;
3151 	struct ocfs2_extent_list *el;
3152 
3153 	el = path_leaf_el(path);
3154 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3155 		return 0;
3156 
3157 	if (path->p_tree_depth == 0) {
3158 rightmost_no_delete:
3159 		/*
3160 		 * Inline extents. This is trivially handled, so do
3161 		 * it up front.
3162 		 */
3163 		ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path);
3164 		if (ret)
3165 			mlog_errno(ret);
3166 		goto out;
3167 	}
3168 
3169 	/*
3170 	 * Handle rightmost branch now. There's several cases:
3171 	 *  1) simple rotation leaving records in there. That's trivial.
3172 	 *  2) rotation requiring a branch delete - there's no more
3173 	 *     records left. Two cases of this:
3174 	 *     a) There are branches to the left.
3175 	 *     b) This is also the leftmost (the only) branch.
3176 	 *
3177 	 *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
3178 	 *  2a) we need the left branch so that we can update it with the unlink
3179 	 *  2b) we need to bring the root back to inline extents.
3180 	 */
3181 
3182 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3183 	el = &eb->h_list;
3184 	if (eb->h_next_leaf_blk == 0) {
3185 		/*
3186 		 * This gets a bit tricky if we're going to delete the
3187 		 * rightmost path. Get the other cases out of the way
3188 		 * 1st.
3189 		 */
3190 		if (le16_to_cpu(el->l_next_free_rec) > 1)
3191 			goto rightmost_no_delete;
3192 
3193 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
3194 			ret = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3195 					"Owner %llu has empty extent block at %llu\n",
3196 					(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
3197 					(unsigned long long)le64_to_cpu(eb->h_blkno));
3198 			goto out;
3199 		}
3200 
3201 		/*
3202 		 * XXX: The caller can not trust "path" any more after
3203 		 * this as it will have been deleted. What do we do?
3204 		 *
3205 		 * In theory the rotate-for-merge code will never get
3206 		 * here because it'll always ask for a rotate in a
3207 		 * nonempty list.
3208 		 */
3209 
3210 		ret = ocfs2_remove_rightmost_path(handle, et, path,
3211 						  dealloc);
3212 		if (ret)
3213 			mlog_errno(ret);
3214 		goto out;
3215 	}
3216 
3217 	/*
3218 	 * Now we can loop, remembering the path we get from -EAGAIN
3219 	 * and restarting from there.
3220 	 */
3221 try_rotate:
3222 	ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path,
3223 				       dealloc, &restart_path);
3224 	if (ret && ret != -EAGAIN) {
3225 		mlog_errno(ret);
3226 		goto out;
3227 	}
3228 
3229 	while (ret == -EAGAIN) {
3230 		tmp_path = restart_path;
3231 		restart_path = NULL;
3232 
3233 		ret = __ocfs2_rotate_tree_left(handle, et, orig_credits,
3234 					       tmp_path, dealloc,
3235 					       &restart_path);
3236 		if (ret && ret != -EAGAIN) {
3237 			mlog_errno(ret);
3238 			goto out;
3239 		}
3240 
3241 		ocfs2_free_path(tmp_path);
3242 		tmp_path = NULL;
3243 
3244 		if (ret == 0)
3245 			goto try_rotate;
3246 	}
3247 
3248 out:
3249 	ocfs2_free_path(tmp_path);
3250 	ocfs2_free_path(restart_path);
3251 	return ret;
3252 }
3253 
3254 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3255 				int index)
3256 {
3257 	struct ocfs2_extent_rec *rec = &el->l_recs[index];
3258 	unsigned int size;
3259 
3260 	if (rec->e_leaf_clusters == 0) {
3261 		/*
3262 		 * We consumed all of the merged-from record. An empty
3263 		 * extent cannot exist anywhere but the 1st array
3264 		 * position, so move things over if the merged-from
3265 		 * record doesn't occupy that position.
3266 		 *
3267 		 * This creates a new empty extent so the caller
3268 		 * should be smart enough to have removed any existing
3269 		 * ones.
3270 		 */
3271 		if (index > 0) {
3272 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3273 			size = index * sizeof(struct ocfs2_extent_rec);
3274 			memmove(&el->l_recs[1], &el->l_recs[0], size);
3275 		}
3276 
3277 		/*
3278 		 * Always memset - the caller doesn't check whether it
3279 		 * created an empty extent, so there could be junk in
3280 		 * the other fields.
3281 		 */
3282 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3283 	}
3284 }
3285 
3286 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et,
3287 				struct ocfs2_path *left_path,
3288 				struct ocfs2_path **ret_right_path)
3289 {
3290 	int ret;
3291 	u32 right_cpos;
3292 	struct ocfs2_path *right_path = NULL;
3293 	struct ocfs2_extent_list *left_el;
3294 
3295 	*ret_right_path = NULL;
3296 
3297 	/* This function shouldn't be called for non-trees. */
3298 	BUG_ON(left_path->p_tree_depth == 0);
3299 
3300 	left_el = path_leaf_el(left_path);
3301 	BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3302 
3303 	ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3304 					     left_path, &right_cpos);
3305 	if (ret) {
3306 		mlog_errno(ret);
3307 		goto out;
3308 	}
3309 
3310 	/* This function shouldn't be called for the rightmost leaf. */
3311 	BUG_ON(right_cpos == 0);
3312 
3313 	right_path = ocfs2_new_path_from_path(left_path);
3314 	if (!right_path) {
3315 		ret = -ENOMEM;
3316 		mlog_errno(ret);
3317 		goto out;
3318 	}
3319 
3320 	ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
3321 	if (ret) {
3322 		mlog_errno(ret);
3323 		goto out;
3324 	}
3325 
3326 	*ret_right_path = right_path;
3327 out:
3328 	if (ret)
3329 		ocfs2_free_path(right_path);
3330 	return ret;
3331 }
3332 
3333 /*
3334  * Remove split_rec clusters from the record at index and merge them
3335  * onto the beginning of the record "next" to it.
3336  * For index < l_count - 1, the next means the extent rec at index + 1.
3337  * For index == l_count - 1, the "next" means the 1st extent rec of the
3338  * next extent block.
3339  */
3340 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path,
3341 				 handle_t *handle,
3342 				 struct ocfs2_extent_tree *et,
3343 				 struct ocfs2_extent_rec *split_rec,
3344 				 int index)
3345 {
3346 	int ret, next_free, i;
3347 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3348 	struct ocfs2_extent_rec *left_rec;
3349 	struct ocfs2_extent_rec *right_rec;
3350 	struct ocfs2_extent_list *right_el;
3351 	struct ocfs2_path *right_path = NULL;
3352 	int subtree_index = 0;
3353 	struct ocfs2_extent_list *el = path_leaf_el(left_path);
3354 	struct buffer_head *bh = path_leaf_bh(left_path);
3355 	struct buffer_head *root_bh = NULL;
3356 
3357 	BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3358 	left_rec = &el->l_recs[index];
3359 
3360 	if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3361 	    le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3362 		/* we meet with a cross extent block merge. */
3363 		ret = ocfs2_get_right_path(et, left_path, &right_path);
3364 		if (ret) {
3365 			mlog_errno(ret);
3366 			return ret;
3367 		}
3368 
3369 		right_el = path_leaf_el(right_path);
3370 		next_free = le16_to_cpu(right_el->l_next_free_rec);
3371 		BUG_ON(next_free <= 0);
3372 		right_rec = &right_el->l_recs[0];
3373 		if (ocfs2_is_empty_extent(right_rec)) {
3374 			BUG_ON(next_free <= 1);
3375 			right_rec = &right_el->l_recs[1];
3376 		}
3377 
3378 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3379 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3380 		       le32_to_cpu(right_rec->e_cpos));
3381 
3382 		subtree_index = ocfs2_find_subtree_root(et, left_path,
3383 							right_path);
3384 
3385 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3386 					jbd2_handle_buffer_credits(handle),
3387 					right_path);
3388 		if (ret) {
3389 			mlog_errno(ret);
3390 			goto out;
3391 		}
3392 
3393 		root_bh = left_path->p_node[subtree_index].bh;
3394 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3395 
3396 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3397 						   subtree_index);
3398 		if (ret) {
3399 			mlog_errno(ret);
3400 			goto out;
3401 		}
3402 
3403 		for (i = subtree_index + 1;
3404 		     i < path_num_items(right_path); i++) {
3405 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3406 							   right_path, i);
3407 			if (ret) {
3408 				mlog_errno(ret);
3409 				goto out;
3410 			}
3411 
3412 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3413 							   left_path, i);
3414 			if (ret) {
3415 				mlog_errno(ret);
3416 				goto out;
3417 			}
3418 		}
3419 
3420 	} else {
3421 		BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3422 		right_rec = &el->l_recs[index + 1];
3423 	}
3424 
3425 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path,
3426 					   path_num_items(left_path) - 1);
3427 	if (ret) {
3428 		mlog_errno(ret);
3429 		goto out;
3430 	}
3431 
3432 	le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3433 
3434 	le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3435 	le64_add_cpu(&right_rec->e_blkno,
3436 		     -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3437 					       split_clusters));
3438 	le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3439 
3440 	ocfs2_cleanup_merge(el, index);
3441 
3442 	ocfs2_journal_dirty(handle, bh);
3443 	if (right_path) {
3444 		ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3445 		ocfs2_complete_edge_insert(handle, left_path, right_path,
3446 					   subtree_index);
3447 	}
3448 out:
3449 	ocfs2_free_path(right_path);
3450 	return ret;
3451 }
3452 
3453 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et,
3454 			       struct ocfs2_path *right_path,
3455 			       struct ocfs2_path **ret_left_path)
3456 {
3457 	int ret;
3458 	u32 left_cpos;
3459 	struct ocfs2_path *left_path = NULL;
3460 
3461 	*ret_left_path = NULL;
3462 
3463 	/* This function shouldn't be called for non-trees. */
3464 	BUG_ON(right_path->p_tree_depth == 0);
3465 
3466 	ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3467 					    right_path, &left_cpos);
3468 	if (ret) {
3469 		mlog_errno(ret);
3470 		goto out;
3471 	}
3472 
3473 	/* This function shouldn't be called for the leftmost leaf. */
3474 	BUG_ON(left_cpos == 0);
3475 
3476 	left_path = ocfs2_new_path_from_path(right_path);
3477 	if (!left_path) {
3478 		ret = -ENOMEM;
3479 		mlog_errno(ret);
3480 		goto out;
3481 	}
3482 
3483 	ret = ocfs2_find_path(et->et_ci, left_path, left_cpos);
3484 	if (ret) {
3485 		mlog_errno(ret);
3486 		goto out;
3487 	}
3488 
3489 	*ret_left_path = left_path;
3490 out:
3491 	if (ret)
3492 		ocfs2_free_path(left_path);
3493 	return ret;
3494 }
3495 
3496 /*
3497  * Remove split_rec clusters from the record at index and merge them
3498  * onto the tail of the record "before" it.
3499  * For index > 0, the "before" means the extent rec at index - 1.
3500  *
3501  * For index == 0, the "before" means the last record of the previous
3502  * extent block. And there is also a situation that we may need to
3503  * remove the rightmost leaf extent block in the right_path and change
3504  * the right path to indicate the new rightmost path.
3505  */
3506 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path,
3507 				handle_t *handle,
3508 				struct ocfs2_extent_tree *et,
3509 				struct ocfs2_extent_rec *split_rec,
3510 				struct ocfs2_cached_dealloc_ctxt *dealloc,
3511 				int index)
3512 {
3513 	int ret, i, subtree_index = 0, has_empty_extent = 0;
3514 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3515 	struct ocfs2_extent_rec *left_rec;
3516 	struct ocfs2_extent_rec *right_rec;
3517 	struct ocfs2_extent_list *el = path_leaf_el(right_path);
3518 	struct buffer_head *bh = path_leaf_bh(right_path);
3519 	struct buffer_head *root_bh = NULL;
3520 	struct ocfs2_path *left_path = NULL;
3521 	struct ocfs2_extent_list *left_el;
3522 
3523 	BUG_ON(index < 0);
3524 
3525 	right_rec = &el->l_recs[index];
3526 	if (index == 0) {
3527 		/* we meet with a cross extent block merge. */
3528 		ret = ocfs2_get_left_path(et, right_path, &left_path);
3529 		if (ret) {
3530 			mlog_errno(ret);
3531 			return ret;
3532 		}
3533 
3534 		left_el = path_leaf_el(left_path);
3535 		BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3536 		       le16_to_cpu(left_el->l_count));
3537 
3538 		left_rec = &left_el->l_recs[
3539 				le16_to_cpu(left_el->l_next_free_rec) - 1];
3540 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3541 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3542 		       le32_to_cpu(split_rec->e_cpos));
3543 
3544 		subtree_index = ocfs2_find_subtree_root(et, left_path,
3545 							right_path);
3546 
3547 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3548 					jbd2_handle_buffer_credits(handle),
3549 					left_path);
3550 		if (ret) {
3551 			mlog_errno(ret);
3552 			goto out;
3553 		}
3554 
3555 		root_bh = left_path->p_node[subtree_index].bh;
3556 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3557 
3558 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3559 						   subtree_index);
3560 		if (ret) {
3561 			mlog_errno(ret);
3562 			goto out;
3563 		}
3564 
3565 		for (i = subtree_index + 1;
3566 		     i < path_num_items(right_path); i++) {
3567 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3568 							   right_path, i);
3569 			if (ret) {
3570 				mlog_errno(ret);
3571 				goto out;
3572 			}
3573 
3574 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3575 							   left_path, i);
3576 			if (ret) {
3577 				mlog_errno(ret);
3578 				goto out;
3579 			}
3580 		}
3581 	} else {
3582 		left_rec = &el->l_recs[index - 1];
3583 		if (ocfs2_is_empty_extent(&el->l_recs[0]))
3584 			has_empty_extent = 1;
3585 	}
3586 
3587 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3588 					   path_num_items(right_path) - 1);
3589 	if (ret) {
3590 		mlog_errno(ret);
3591 		goto out;
3592 	}
3593 
3594 	if (has_empty_extent && index == 1) {
3595 		/*
3596 		 * The easy case - we can just plop the record right in.
3597 		 */
3598 		*left_rec = *split_rec;
3599 	} else
3600 		le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3601 
3602 	le32_add_cpu(&right_rec->e_cpos, split_clusters);
3603 	le64_add_cpu(&right_rec->e_blkno,
3604 		     ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3605 					      split_clusters));
3606 	le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3607 
3608 	ocfs2_cleanup_merge(el, index);
3609 
3610 	ocfs2_journal_dirty(handle, bh);
3611 	if (left_path) {
3612 		ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3613 
3614 		/*
3615 		 * In the situation that the right_rec is empty and the extent
3616 		 * block is empty also,  ocfs2_complete_edge_insert can't handle
3617 		 * it and we need to delete the right extent block.
3618 		 */
3619 		if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3620 		    le16_to_cpu(el->l_next_free_rec) == 1) {
3621 			/* extend credit for ocfs2_remove_rightmost_path */
3622 			ret = ocfs2_extend_rotate_transaction(handle, 0,
3623 					jbd2_handle_buffer_credits(handle),
3624 					right_path);
3625 			if (ret) {
3626 				mlog_errno(ret);
3627 				goto out;
3628 			}
3629 
3630 			ret = ocfs2_remove_rightmost_path(handle, et,
3631 							  right_path,
3632 							  dealloc);
3633 			if (ret) {
3634 				mlog_errno(ret);
3635 				goto out;
3636 			}
3637 
3638 			/* Now the rightmost extent block has been deleted.
3639 			 * So we use the new rightmost path.
3640 			 */
3641 			ocfs2_mv_path(right_path, left_path);
3642 			left_path = NULL;
3643 		} else
3644 			ocfs2_complete_edge_insert(handle, left_path,
3645 						   right_path, subtree_index);
3646 	}
3647 out:
3648 	ocfs2_free_path(left_path);
3649 	return ret;
3650 }
3651 
3652 static int ocfs2_try_to_merge_extent(handle_t *handle,
3653 				     struct ocfs2_extent_tree *et,
3654 				     struct ocfs2_path *path,
3655 				     int split_index,
3656 				     struct ocfs2_extent_rec *split_rec,
3657 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
3658 				     struct ocfs2_merge_ctxt *ctxt)
3659 {
3660 	int ret = 0;
3661 	struct ocfs2_extent_list *el = path_leaf_el(path);
3662 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3663 
3664 	BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3665 
3666 	if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3667 		/* extend credit for ocfs2_remove_rightmost_path */
3668 		ret = ocfs2_extend_rotate_transaction(handle, 0,
3669 				jbd2_handle_buffer_credits(handle),
3670 				path);
3671 		if (ret) {
3672 			mlog_errno(ret);
3673 			goto out;
3674 		}
3675 		/*
3676 		 * The merge code will need to create an empty
3677 		 * extent to take the place of the newly
3678 		 * emptied slot. Remove any pre-existing empty
3679 		 * extents - having more than one in a leaf is
3680 		 * illegal.
3681 		 */
3682 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3683 		if (ret) {
3684 			mlog_errno(ret);
3685 			goto out;
3686 		}
3687 		split_index--;
3688 		rec = &el->l_recs[split_index];
3689 	}
3690 
3691 	if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3692 		/*
3693 		 * Left-right contig implies this.
3694 		 */
3695 		BUG_ON(!ctxt->c_split_covers_rec);
3696 
3697 		/*
3698 		 * Since the leftright insert always covers the entire
3699 		 * extent, this call will delete the insert record
3700 		 * entirely, resulting in an empty extent record added to
3701 		 * the extent block.
3702 		 *
3703 		 * Since the adding of an empty extent shifts
3704 		 * everything back to the right, there's no need to
3705 		 * update split_index here.
3706 		 *
3707 		 * When the split_index is zero, we need to merge it to the
3708 		 * prevoius extent block. It is more efficient and easier
3709 		 * if we do merge_right first and merge_left later.
3710 		 */
3711 		ret = ocfs2_merge_rec_right(path, handle, et, split_rec,
3712 					    split_index);
3713 		if (ret) {
3714 			mlog_errno(ret);
3715 			goto out;
3716 		}
3717 
3718 		/*
3719 		 * We can only get this from logic error above.
3720 		 */
3721 		BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3722 
3723 		/* extend credit for ocfs2_remove_rightmost_path */
3724 		ret = ocfs2_extend_rotate_transaction(handle, 0,
3725 					jbd2_handle_buffer_credits(handle),
3726 					path);
3727 		if (ret) {
3728 			mlog_errno(ret);
3729 			goto out;
3730 		}
3731 
3732 		/* The merge left us with an empty extent, remove it. */
3733 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3734 		if (ret) {
3735 			mlog_errno(ret);
3736 			goto out;
3737 		}
3738 
3739 		rec = &el->l_recs[split_index];
3740 
3741 		/*
3742 		 * Note that we don't pass split_rec here on purpose -
3743 		 * we've merged it into the rec already.
3744 		 */
3745 		ret = ocfs2_merge_rec_left(path, handle, et, rec,
3746 					   dealloc, split_index);
3747 
3748 		if (ret) {
3749 			mlog_errno(ret);
3750 			goto out;
3751 		}
3752 
3753 		/* extend credit for ocfs2_remove_rightmost_path */
3754 		ret = ocfs2_extend_rotate_transaction(handle, 0,
3755 				jbd2_handle_buffer_credits(handle),
3756 				path);
3757 		if (ret) {
3758 			mlog_errno(ret);
3759 			goto out;
3760 		}
3761 
3762 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3763 		/*
3764 		 * Error from this last rotate is not critical, so
3765 		 * print but don't bubble it up.
3766 		 */
3767 		if (ret)
3768 			mlog_errno(ret);
3769 		ret = 0;
3770 	} else {
3771 		/*
3772 		 * Merge a record to the left or right.
3773 		 *
3774 		 * 'contig_type' is relative to the existing record,
3775 		 * so for example, if we're "right contig", it's to
3776 		 * the record on the left (hence the left merge).
3777 		 */
3778 		if (ctxt->c_contig_type == CONTIG_RIGHT) {
3779 			ret = ocfs2_merge_rec_left(path, handle, et,
3780 						   split_rec, dealloc,
3781 						   split_index);
3782 			if (ret) {
3783 				mlog_errno(ret);
3784 				goto out;
3785 			}
3786 		} else {
3787 			ret = ocfs2_merge_rec_right(path, handle,
3788 						    et, split_rec,
3789 						    split_index);
3790 			if (ret) {
3791 				mlog_errno(ret);
3792 				goto out;
3793 			}
3794 		}
3795 
3796 		if (ctxt->c_split_covers_rec) {
3797 			/* extend credit for ocfs2_remove_rightmost_path */
3798 			ret = ocfs2_extend_rotate_transaction(handle, 0,
3799 					jbd2_handle_buffer_credits(handle),
3800 					path);
3801 			if (ret) {
3802 				mlog_errno(ret);
3803 				ret = 0;
3804 				goto out;
3805 			}
3806 
3807 			/*
3808 			 * The merge may have left an empty extent in
3809 			 * our leaf. Try to rotate it away.
3810 			 */
3811 			ret = ocfs2_rotate_tree_left(handle, et, path,
3812 						     dealloc);
3813 			if (ret)
3814 				mlog_errno(ret);
3815 			ret = 0;
3816 		}
3817 	}
3818 
3819 out:
3820 	return ret;
3821 }
3822 
3823 static void ocfs2_subtract_from_rec(struct super_block *sb,
3824 				    enum ocfs2_split_type split,
3825 				    struct ocfs2_extent_rec *rec,
3826 				    struct ocfs2_extent_rec *split_rec)
3827 {
3828 	u64 len_blocks;
3829 
3830 	len_blocks = ocfs2_clusters_to_blocks(sb,
3831 				le16_to_cpu(split_rec->e_leaf_clusters));
3832 
3833 	if (split == SPLIT_LEFT) {
3834 		/*
3835 		 * Region is on the left edge of the existing
3836 		 * record.
3837 		 */
3838 		le32_add_cpu(&rec->e_cpos,
3839 			     le16_to_cpu(split_rec->e_leaf_clusters));
3840 		le64_add_cpu(&rec->e_blkno, len_blocks);
3841 		le16_add_cpu(&rec->e_leaf_clusters,
3842 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3843 	} else {
3844 		/*
3845 		 * Region is on the right edge of the existing
3846 		 * record.
3847 		 */
3848 		le16_add_cpu(&rec->e_leaf_clusters,
3849 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3850 	}
3851 }
3852 
3853 /*
3854  * Do the final bits of extent record insertion at the target leaf
3855  * list. If this leaf is part of an allocation tree, it is assumed
3856  * that the tree above has been prepared.
3857  */
3858 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et,
3859 				 struct ocfs2_extent_rec *insert_rec,
3860 				 struct ocfs2_extent_list *el,
3861 				 struct ocfs2_insert_type *insert)
3862 {
3863 	int i = insert->ins_contig_index;
3864 	unsigned int range;
3865 	struct ocfs2_extent_rec *rec;
3866 
3867 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3868 
3869 	if (insert->ins_split != SPLIT_NONE) {
3870 		i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3871 		BUG_ON(i == -1);
3872 		rec = &el->l_recs[i];
3873 		ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
3874 					insert->ins_split, rec,
3875 					insert_rec);
3876 		goto rotate;
3877 	}
3878 
3879 	/*
3880 	 * Contiguous insert - either left or right.
3881 	 */
3882 	if (insert->ins_contig != CONTIG_NONE) {
3883 		rec = &el->l_recs[i];
3884 		if (insert->ins_contig == CONTIG_LEFT) {
3885 			rec->e_blkno = insert_rec->e_blkno;
3886 			rec->e_cpos = insert_rec->e_cpos;
3887 		}
3888 		le16_add_cpu(&rec->e_leaf_clusters,
3889 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3890 		return;
3891 	}
3892 
3893 	/*
3894 	 * Handle insert into an empty leaf.
3895 	 */
3896 	if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3897 	    ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3898 	     ocfs2_is_empty_extent(&el->l_recs[0]))) {
3899 		el->l_recs[0] = *insert_rec;
3900 		el->l_next_free_rec = cpu_to_le16(1);
3901 		return;
3902 	}
3903 
3904 	/*
3905 	 * Appending insert.
3906 	 */
3907 	if (insert->ins_appending == APPEND_TAIL) {
3908 		i = le16_to_cpu(el->l_next_free_rec) - 1;
3909 		rec = &el->l_recs[i];
3910 		range = le32_to_cpu(rec->e_cpos)
3911 			+ le16_to_cpu(rec->e_leaf_clusters);
3912 		BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3913 
3914 		mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3915 				le16_to_cpu(el->l_count),
3916 				"owner %llu, depth %u, count %u, next free %u, "
3917 				"rec.cpos %u, rec.clusters %u, "
3918 				"insert.cpos %u, insert.clusters %u\n",
3919 				ocfs2_metadata_cache_owner(et->et_ci),
3920 				le16_to_cpu(el->l_tree_depth),
3921 				le16_to_cpu(el->l_count),
3922 				le16_to_cpu(el->l_next_free_rec),
3923 				le32_to_cpu(el->l_recs[i].e_cpos),
3924 				le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3925 				le32_to_cpu(insert_rec->e_cpos),
3926 				le16_to_cpu(insert_rec->e_leaf_clusters));
3927 		i++;
3928 		el->l_recs[i] = *insert_rec;
3929 		le16_add_cpu(&el->l_next_free_rec, 1);
3930 		return;
3931 	}
3932 
3933 rotate:
3934 	/*
3935 	 * Ok, we have to rotate.
3936 	 *
3937 	 * At this point, it is safe to assume that inserting into an
3938 	 * empty leaf and appending to a leaf have both been handled
3939 	 * above.
3940 	 *
3941 	 * This leaf needs to have space, either by the empty 1st
3942 	 * extent record, or by virtue of an l_next_free_rec < l_count.
3943 	 */
3944 	ocfs2_rotate_leaf(el, insert_rec);
3945 }
3946 
3947 static void ocfs2_adjust_rightmost_records(handle_t *handle,
3948 					   struct ocfs2_extent_tree *et,
3949 					   struct ocfs2_path *path,
3950 					   struct ocfs2_extent_rec *insert_rec)
3951 {
3952 	int i, next_free;
3953 	struct buffer_head *bh;
3954 	struct ocfs2_extent_list *el;
3955 	struct ocfs2_extent_rec *rec;
3956 
3957 	/*
3958 	 * Update everything except the leaf block.
3959 	 */
3960 	for (i = 0; i < path->p_tree_depth; i++) {
3961 		bh = path->p_node[i].bh;
3962 		el = path->p_node[i].el;
3963 
3964 		next_free = le16_to_cpu(el->l_next_free_rec);
3965 		if (next_free == 0) {
3966 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3967 				    "Owner %llu has a bad extent list\n",
3968 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
3969 			return;
3970 		}
3971 
3972 		rec = &el->l_recs[next_free - 1];
3973 
3974 		rec->e_int_clusters = insert_rec->e_cpos;
3975 		le32_add_cpu(&rec->e_int_clusters,
3976 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3977 		le32_add_cpu(&rec->e_int_clusters,
3978 			     -le32_to_cpu(rec->e_cpos));
3979 
3980 		ocfs2_journal_dirty(handle, bh);
3981 	}
3982 }
3983 
3984 static int ocfs2_append_rec_to_path(handle_t *handle,
3985 				    struct ocfs2_extent_tree *et,
3986 				    struct ocfs2_extent_rec *insert_rec,
3987 				    struct ocfs2_path *right_path,
3988 				    struct ocfs2_path **ret_left_path)
3989 {
3990 	int ret, next_free;
3991 	struct ocfs2_extent_list *el;
3992 	struct ocfs2_path *left_path = NULL;
3993 
3994 	*ret_left_path = NULL;
3995 
3996 	/*
3997 	 * This shouldn't happen for non-trees. The extent rec cluster
3998 	 * count manipulation below only works for interior nodes.
3999 	 */
4000 	BUG_ON(right_path->p_tree_depth == 0);
4001 
4002 	/*
4003 	 * If our appending insert is at the leftmost edge of a leaf,
4004 	 * then we might need to update the rightmost records of the
4005 	 * neighboring path.
4006 	 */
4007 	el = path_leaf_el(right_path);
4008 	next_free = le16_to_cpu(el->l_next_free_rec);
4009 	if (next_free == 0 ||
4010 	    (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
4011 		u32 left_cpos;
4012 
4013 		ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
4014 						    right_path, &left_cpos);
4015 		if (ret) {
4016 			mlog_errno(ret);
4017 			goto out;
4018 		}
4019 
4020 		trace_ocfs2_append_rec_to_path(
4021 			(unsigned long long)
4022 			ocfs2_metadata_cache_owner(et->et_ci),
4023 			le32_to_cpu(insert_rec->e_cpos),
4024 			left_cpos);
4025 
4026 		/*
4027 		 * No need to worry if the append is already in the
4028 		 * leftmost leaf.
4029 		 */
4030 		if (left_cpos) {
4031 			left_path = ocfs2_new_path_from_path(right_path);
4032 			if (!left_path) {
4033 				ret = -ENOMEM;
4034 				mlog_errno(ret);
4035 				goto out;
4036 			}
4037 
4038 			ret = ocfs2_find_path(et->et_ci, left_path,
4039 					      left_cpos);
4040 			if (ret) {
4041 				mlog_errno(ret);
4042 				goto out;
4043 			}
4044 
4045 			/*
4046 			 * ocfs2_insert_path() will pass the left_path to the
4047 			 * journal for us.
4048 			 */
4049 		}
4050 	}
4051 
4052 	ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4053 	if (ret) {
4054 		mlog_errno(ret);
4055 		goto out;
4056 	}
4057 
4058 	ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec);
4059 
4060 	*ret_left_path = left_path;
4061 	ret = 0;
4062 out:
4063 	if (ret != 0)
4064 		ocfs2_free_path(left_path);
4065 
4066 	return ret;
4067 }
4068 
4069 static void ocfs2_split_record(struct ocfs2_extent_tree *et,
4070 			       struct ocfs2_path *left_path,
4071 			       struct ocfs2_path *right_path,
4072 			       struct ocfs2_extent_rec *split_rec,
4073 			       enum ocfs2_split_type split)
4074 {
4075 	int index;
4076 	u32 cpos = le32_to_cpu(split_rec->e_cpos);
4077 	struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4078 	struct ocfs2_extent_rec *rec, *tmprec;
4079 
4080 	right_el = path_leaf_el(right_path);
4081 	if (left_path)
4082 		left_el = path_leaf_el(left_path);
4083 
4084 	el = right_el;
4085 	insert_el = right_el;
4086 	index = ocfs2_search_extent_list(el, cpos);
4087 	if (index != -1) {
4088 		if (index == 0 && left_path) {
4089 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4090 
4091 			/*
4092 			 * This typically means that the record
4093 			 * started in the left path but moved to the
4094 			 * right as a result of rotation. We either
4095 			 * move the existing record to the left, or we
4096 			 * do the later insert there.
4097 			 *
4098 			 * In this case, the left path should always
4099 			 * exist as the rotate code will have passed
4100 			 * it back for a post-insert update.
4101 			 */
4102 
4103 			if (split == SPLIT_LEFT) {
4104 				/*
4105 				 * It's a left split. Since we know
4106 				 * that the rotate code gave us an
4107 				 * empty extent in the left path, we
4108 				 * can just do the insert there.
4109 				 */
4110 				insert_el = left_el;
4111 			} else {
4112 				/*
4113 				 * Right split - we have to move the
4114 				 * existing record over to the left
4115 				 * leaf. The insert will be into the
4116 				 * newly created empty extent in the
4117 				 * right leaf.
4118 				 */
4119 				tmprec = &right_el->l_recs[index];
4120 				ocfs2_rotate_leaf(left_el, tmprec);
4121 				el = left_el;
4122 
4123 				memset(tmprec, 0, sizeof(*tmprec));
4124 				index = ocfs2_search_extent_list(left_el, cpos);
4125 				BUG_ON(index == -1);
4126 			}
4127 		}
4128 	} else {
4129 		BUG_ON(!left_path);
4130 		BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4131 		/*
4132 		 * Left path is easy - we can just allow the insert to
4133 		 * happen.
4134 		 */
4135 		el = left_el;
4136 		insert_el = left_el;
4137 		index = ocfs2_search_extent_list(el, cpos);
4138 		BUG_ON(index == -1);
4139 	}
4140 
4141 	rec = &el->l_recs[index];
4142 	ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4143 				split, rec, split_rec);
4144 	ocfs2_rotate_leaf(insert_el, split_rec);
4145 }
4146 
4147 /*
4148  * This function only does inserts on an allocation b-tree. For tree
4149  * depth = 0, ocfs2_insert_at_leaf() is called directly.
4150  *
4151  * right_path is the path we want to do the actual insert
4152  * in. left_path should only be passed in if we need to update that
4153  * portion of the tree after an edge insert.
4154  */
4155 static int ocfs2_insert_path(handle_t *handle,
4156 			     struct ocfs2_extent_tree *et,
4157 			     struct ocfs2_path *left_path,
4158 			     struct ocfs2_path *right_path,
4159 			     struct ocfs2_extent_rec *insert_rec,
4160 			     struct ocfs2_insert_type *insert)
4161 {
4162 	int ret, subtree_index;
4163 	struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4164 
4165 	if (left_path) {
4166 		/*
4167 		 * There's a chance that left_path got passed back to
4168 		 * us without being accounted for in the
4169 		 * journal. Extend our transaction here to be sure we
4170 		 * can change those blocks.
4171 		 */
4172 		ret = ocfs2_extend_trans(handle, left_path->p_tree_depth);
4173 		if (ret < 0) {
4174 			mlog_errno(ret);
4175 			goto out;
4176 		}
4177 
4178 		ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
4179 		if (ret < 0) {
4180 			mlog_errno(ret);
4181 			goto out;
4182 		}
4183 	}
4184 
4185 	/*
4186 	 * Pass both paths to the journal. The majority of inserts
4187 	 * will be touching all components anyway.
4188 	 */
4189 	ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4190 	if (ret < 0) {
4191 		mlog_errno(ret);
4192 		goto out;
4193 	}
4194 
4195 	if (insert->ins_split != SPLIT_NONE) {
4196 		/*
4197 		 * We could call ocfs2_insert_at_leaf() for some types
4198 		 * of splits, but it's easier to just let one separate
4199 		 * function sort it all out.
4200 		 */
4201 		ocfs2_split_record(et, left_path, right_path,
4202 				   insert_rec, insert->ins_split);
4203 
4204 		/*
4205 		 * Split might have modified either leaf and we don't
4206 		 * have a guarantee that the later edge insert will
4207 		 * dirty this for us.
4208 		 */
4209 		if (left_path)
4210 			ocfs2_journal_dirty(handle,
4211 					    path_leaf_bh(left_path));
4212 	} else
4213 		ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path),
4214 				     insert);
4215 
4216 	ocfs2_journal_dirty(handle, leaf_bh);
4217 
4218 	if (left_path) {
4219 		/*
4220 		 * The rotate code has indicated that we need to fix
4221 		 * up portions of the tree after the insert.
4222 		 *
4223 		 * XXX: Should we extend the transaction here?
4224 		 */
4225 		subtree_index = ocfs2_find_subtree_root(et, left_path,
4226 							right_path);
4227 		ocfs2_complete_edge_insert(handle, left_path, right_path,
4228 					   subtree_index);
4229 	}
4230 
4231 	ret = 0;
4232 out:
4233 	return ret;
4234 }
4235 
4236 static int ocfs2_do_insert_extent(handle_t *handle,
4237 				  struct ocfs2_extent_tree *et,
4238 				  struct ocfs2_extent_rec *insert_rec,
4239 				  struct ocfs2_insert_type *type)
4240 {
4241 	int ret, rotate = 0;
4242 	u32 cpos;
4243 	struct ocfs2_path *right_path = NULL;
4244 	struct ocfs2_path *left_path = NULL;
4245 	struct ocfs2_extent_list *el;
4246 
4247 	el = et->et_root_el;
4248 
4249 	ret = ocfs2_et_root_journal_access(handle, et,
4250 					   OCFS2_JOURNAL_ACCESS_WRITE);
4251 	if (ret) {
4252 		mlog_errno(ret);
4253 		goto out;
4254 	}
4255 
4256 	if (le16_to_cpu(el->l_tree_depth) == 0) {
4257 		ocfs2_insert_at_leaf(et, insert_rec, el, type);
4258 		goto out_update_clusters;
4259 	}
4260 
4261 	right_path = ocfs2_new_path_from_et(et);
4262 	if (!right_path) {
4263 		ret = -ENOMEM;
4264 		mlog_errno(ret);
4265 		goto out;
4266 	}
4267 
4268 	/*
4269 	 * Determine the path to start with. Rotations need the
4270 	 * rightmost path, everything else can go directly to the
4271 	 * target leaf.
4272 	 */
4273 	cpos = le32_to_cpu(insert_rec->e_cpos);
4274 	if (type->ins_appending == APPEND_NONE &&
4275 	    type->ins_contig == CONTIG_NONE) {
4276 		rotate = 1;
4277 		cpos = UINT_MAX;
4278 	}
4279 
4280 	ret = ocfs2_find_path(et->et_ci, right_path, cpos);
4281 	if (ret) {
4282 		mlog_errno(ret);
4283 		goto out;
4284 	}
4285 
4286 	/*
4287 	 * Rotations and appends need special treatment - they modify
4288 	 * parts of the tree's above them.
4289 	 *
4290 	 * Both might pass back a path immediate to the left of the
4291 	 * one being inserted to. This will be cause
4292 	 * ocfs2_insert_path() to modify the rightmost records of
4293 	 * left_path to account for an edge insert.
4294 	 *
4295 	 * XXX: When modifying this code, keep in mind that an insert
4296 	 * can wind up skipping both of these two special cases...
4297 	 */
4298 	if (rotate) {
4299 		ret = ocfs2_rotate_tree_right(handle, et, type->ins_split,
4300 					      le32_to_cpu(insert_rec->e_cpos),
4301 					      right_path, &left_path);
4302 		if (ret) {
4303 			mlog_errno(ret);
4304 			goto out;
4305 		}
4306 
4307 		/*
4308 		 * ocfs2_rotate_tree_right() might have extended the
4309 		 * transaction without re-journaling our tree root.
4310 		 */
4311 		ret = ocfs2_et_root_journal_access(handle, et,
4312 						   OCFS2_JOURNAL_ACCESS_WRITE);
4313 		if (ret) {
4314 			mlog_errno(ret);
4315 			goto out;
4316 		}
4317 	} else if (type->ins_appending == APPEND_TAIL
4318 		   && type->ins_contig != CONTIG_LEFT) {
4319 		ret = ocfs2_append_rec_to_path(handle, et, insert_rec,
4320 					       right_path, &left_path);
4321 		if (ret) {
4322 			mlog_errno(ret);
4323 			goto out;
4324 		}
4325 	}
4326 
4327 	ret = ocfs2_insert_path(handle, et, left_path, right_path,
4328 				insert_rec, type);
4329 	if (ret) {
4330 		mlog_errno(ret);
4331 		goto out;
4332 	}
4333 
4334 out_update_clusters:
4335 	if (type->ins_split == SPLIT_NONE)
4336 		ocfs2_et_update_clusters(et,
4337 					 le16_to_cpu(insert_rec->e_leaf_clusters));
4338 
4339 	ocfs2_journal_dirty(handle, et->et_root_bh);
4340 
4341 out:
4342 	ocfs2_free_path(left_path);
4343 	ocfs2_free_path(right_path);
4344 
4345 	return ret;
4346 }
4347 
4348 static int ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et,
4349 			       struct ocfs2_path *path,
4350 			       struct ocfs2_extent_list *el, int index,
4351 			       struct ocfs2_extent_rec *split_rec,
4352 			       struct ocfs2_merge_ctxt *ctxt)
4353 {
4354 	int status = 0;
4355 	enum ocfs2_contig_type ret = CONTIG_NONE;
4356 	u32 left_cpos, right_cpos;
4357 	struct ocfs2_extent_rec *rec = NULL;
4358 	struct ocfs2_extent_list *new_el;
4359 	struct ocfs2_path *left_path = NULL, *right_path = NULL;
4360 	struct buffer_head *bh;
4361 	struct ocfs2_extent_block *eb;
4362 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
4363 
4364 	if (index > 0) {
4365 		rec = &el->l_recs[index - 1];
4366 	} else if (path->p_tree_depth > 0) {
4367 		status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
4368 		if (status)
4369 			goto exit;
4370 
4371 		if (left_cpos != 0) {
4372 			left_path = ocfs2_new_path_from_path(path);
4373 			if (!left_path) {
4374 				status = -ENOMEM;
4375 				mlog_errno(status);
4376 				goto exit;
4377 			}
4378 
4379 			status = ocfs2_find_path(et->et_ci, left_path,
4380 						 left_cpos);
4381 			if (status)
4382 				goto free_left_path;
4383 
4384 			new_el = path_leaf_el(left_path);
4385 
4386 			if (le16_to_cpu(new_el->l_next_free_rec) !=
4387 			    le16_to_cpu(new_el->l_count)) {
4388 				bh = path_leaf_bh(left_path);
4389 				eb = (struct ocfs2_extent_block *)bh->b_data;
4390 				status = ocfs2_error(sb,
4391 						"Extent block #%llu has an invalid l_next_free_rec of %d.  It should have matched the l_count of %d\n",
4392 						(unsigned long long)le64_to_cpu(eb->h_blkno),
4393 						le16_to_cpu(new_el->l_next_free_rec),
4394 						le16_to_cpu(new_el->l_count));
4395 				goto free_left_path;
4396 			}
4397 			rec = &new_el->l_recs[
4398 				le16_to_cpu(new_el->l_next_free_rec) - 1];
4399 		}
4400 	}
4401 
4402 	/*
4403 	 * We're careful to check for an empty extent record here -
4404 	 * the merge code will know what to do if it sees one.
4405 	 */
4406 	if (rec) {
4407 		if (index == 1 && ocfs2_is_empty_extent(rec)) {
4408 			if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4409 				ret = CONTIG_RIGHT;
4410 		} else {
4411 			ret = ocfs2_et_extent_contig(et, rec, split_rec);
4412 		}
4413 	}
4414 
4415 	rec = NULL;
4416 	if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4417 		rec = &el->l_recs[index + 1];
4418 	else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4419 		 path->p_tree_depth > 0) {
4420 		status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
4421 		if (status)
4422 			goto free_left_path;
4423 
4424 		if (right_cpos == 0)
4425 			goto free_left_path;
4426 
4427 		right_path = ocfs2_new_path_from_path(path);
4428 		if (!right_path) {
4429 			status = -ENOMEM;
4430 			mlog_errno(status);
4431 			goto free_left_path;
4432 		}
4433 
4434 		status = ocfs2_find_path(et->et_ci, right_path, right_cpos);
4435 		if (status)
4436 			goto free_right_path;
4437 
4438 		new_el = path_leaf_el(right_path);
4439 		rec = &new_el->l_recs[0];
4440 		if (ocfs2_is_empty_extent(rec)) {
4441 			if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4442 				bh = path_leaf_bh(right_path);
4443 				eb = (struct ocfs2_extent_block *)bh->b_data;
4444 				status = ocfs2_error(sb,
4445 						"Extent block #%llu has an invalid l_next_free_rec of %d\n",
4446 						(unsigned long long)le64_to_cpu(eb->h_blkno),
4447 						le16_to_cpu(new_el->l_next_free_rec));
4448 				goto free_right_path;
4449 			}
4450 			rec = &new_el->l_recs[1];
4451 		}
4452 	}
4453 
4454 	if (rec) {
4455 		enum ocfs2_contig_type contig_type;
4456 
4457 		contig_type = ocfs2_et_extent_contig(et, rec, split_rec);
4458 
4459 		if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4460 			ret = CONTIG_LEFTRIGHT;
4461 		else if (ret == CONTIG_NONE)
4462 			ret = contig_type;
4463 	}
4464 
4465 free_right_path:
4466 	ocfs2_free_path(right_path);
4467 free_left_path:
4468 	ocfs2_free_path(left_path);
4469 exit:
4470 	if (status == 0)
4471 		ctxt->c_contig_type = ret;
4472 
4473 	return status;
4474 }
4475 
4476 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et,
4477 				     struct ocfs2_insert_type *insert,
4478 				     struct ocfs2_extent_list *el,
4479 				     struct ocfs2_extent_rec *insert_rec)
4480 {
4481 	int i;
4482 	enum ocfs2_contig_type contig_type = CONTIG_NONE;
4483 
4484 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4485 
4486 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4487 		contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i],
4488 						     insert_rec);
4489 		if (contig_type != CONTIG_NONE) {
4490 			insert->ins_contig_index = i;
4491 			break;
4492 		}
4493 	}
4494 	insert->ins_contig = contig_type;
4495 
4496 	if (insert->ins_contig != CONTIG_NONE) {
4497 		struct ocfs2_extent_rec *rec =
4498 				&el->l_recs[insert->ins_contig_index];
4499 		unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4500 				   le16_to_cpu(insert_rec->e_leaf_clusters);
4501 
4502 		/*
4503 		 * Caller might want us to limit the size of extents, don't
4504 		 * calculate contiguousness if we might exceed that limit.
4505 		 */
4506 		if (et->et_max_leaf_clusters &&
4507 		    (len > et->et_max_leaf_clusters))
4508 			insert->ins_contig = CONTIG_NONE;
4509 	}
4510 }
4511 
4512 /*
4513  * This should only be called against the righmost leaf extent list.
4514  *
4515  * ocfs2_figure_appending_type() will figure out whether we'll have to
4516  * insert at the tail of the rightmost leaf.
4517  *
4518  * This should also work against the root extent list for tree's with 0
4519  * depth. If we consider the root extent list to be the rightmost leaf node
4520  * then the logic here makes sense.
4521  */
4522 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4523 					struct ocfs2_extent_list *el,
4524 					struct ocfs2_extent_rec *insert_rec)
4525 {
4526 	int i;
4527 	u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4528 	struct ocfs2_extent_rec *rec;
4529 
4530 	insert->ins_appending = APPEND_NONE;
4531 
4532 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4533 
4534 	if (!el->l_next_free_rec)
4535 		goto set_tail_append;
4536 
4537 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4538 		/* Were all records empty? */
4539 		if (le16_to_cpu(el->l_next_free_rec) == 1)
4540 			goto set_tail_append;
4541 	}
4542 
4543 	i = le16_to_cpu(el->l_next_free_rec) - 1;
4544 	rec = &el->l_recs[i];
4545 
4546 	if (cpos >=
4547 	    (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4548 		goto set_tail_append;
4549 
4550 	return;
4551 
4552 set_tail_append:
4553 	insert->ins_appending = APPEND_TAIL;
4554 }
4555 
4556 /*
4557  * Helper function called at the beginning of an insert.
4558  *
4559  * This computes a few things that are commonly used in the process of
4560  * inserting into the btree:
4561  *   - Whether the new extent is contiguous with an existing one.
4562  *   - The current tree depth.
4563  *   - Whether the insert is an appending one.
4564  *   - The total # of free records in the tree.
4565  *
4566  * All of the information is stored on the ocfs2_insert_type
4567  * structure.
4568  */
4569 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et,
4570 				    struct buffer_head **last_eb_bh,
4571 				    struct ocfs2_extent_rec *insert_rec,
4572 				    int *free_records,
4573 				    struct ocfs2_insert_type *insert)
4574 {
4575 	int ret;
4576 	struct ocfs2_extent_block *eb;
4577 	struct ocfs2_extent_list *el;
4578 	struct ocfs2_path *path = NULL;
4579 	struct buffer_head *bh = NULL;
4580 
4581 	insert->ins_split = SPLIT_NONE;
4582 
4583 	el = et->et_root_el;
4584 	insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4585 
4586 	if (el->l_tree_depth) {
4587 		/*
4588 		 * If we have tree depth, we read in the
4589 		 * rightmost extent block ahead of time as
4590 		 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4591 		 * may want it later.
4592 		 */
4593 		ret = ocfs2_read_extent_block(et->et_ci,
4594 					      ocfs2_et_get_last_eb_blk(et),
4595 					      &bh);
4596 		if (ret) {
4597 			mlog_errno(ret);
4598 			goto out;
4599 		}
4600 		eb = (struct ocfs2_extent_block *) bh->b_data;
4601 		el = &eb->h_list;
4602 	}
4603 
4604 	/*
4605 	 * Unless we have a contiguous insert, we'll need to know if
4606 	 * there is room left in our allocation tree for another
4607 	 * extent record.
4608 	 *
4609 	 * XXX: This test is simplistic, we can search for empty
4610 	 * extent records too.
4611 	 */
4612 	*free_records = le16_to_cpu(el->l_count) -
4613 		le16_to_cpu(el->l_next_free_rec);
4614 
4615 	if (!insert->ins_tree_depth) {
4616 		ocfs2_figure_contig_type(et, insert, el, insert_rec);
4617 		ocfs2_figure_appending_type(insert, el, insert_rec);
4618 		return 0;
4619 	}
4620 
4621 	path = ocfs2_new_path_from_et(et);
4622 	if (!path) {
4623 		ret = -ENOMEM;
4624 		mlog_errno(ret);
4625 		goto out;
4626 	}
4627 
4628 	/*
4629 	 * In the case that we're inserting past what the tree
4630 	 * currently accounts for, ocfs2_find_path() will return for
4631 	 * us the rightmost tree path. This is accounted for below in
4632 	 * the appending code.
4633 	 */
4634 	ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos));
4635 	if (ret) {
4636 		mlog_errno(ret);
4637 		goto out;
4638 	}
4639 
4640 	el = path_leaf_el(path);
4641 
4642 	/*
4643 	 * Now that we have the path, there's two things we want to determine:
4644 	 * 1) Contiguousness (also set contig_index if this is so)
4645 	 *
4646 	 * 2) Are we doing an append? We can trivially break this up
4647          *     into two types of appends: simple record append, or a
4648          *     rotate inside the tail leaf.
4649 	 */
4650 	ocfs2_figure_contig_type(et, insert, el, insert_rec);
4651 
4652 	/*
4653 	 * The insert code isn't quite ready to deal with all cases of
4654 	 * left contiguousness. Specifically, if it's an insert into
4655 	 * the 1st record in a leaf, it will require the adjustment of
4656 	 * cluster count on the last record of the path directly to it's
4657 	 * left. For now, just catch that case and fool the layers
4658 	 * above us. This works just fine for tree_depth == 0, which
4659 	 * is why we allow that above.
4660 	 */
4661 	if (insert->ins_contig == CONTIG_LEFT &&
4662 	    insert->ins_contig_index == 0)
4663 		insert->ins_contig = CONTIG_NONE;
4664 
4665 	/*
4666 	 * Ok, so we can simply compare against last_eb to figure out
4667 	 * whether the path doesn't exist. This will only happen in
4668 	 * the case that we're doing a tail append, so maybe we can
4669 	 * take advantage of that information somehow.
4670 	 */
4671 	if (ocfs2_et_get_last_eb_blk(et) ==
4672 	    path_leaf_bh(path)->b_blocknr) {
4673 		/*
4674 		 * Ok, ocfs2_find_path() returned us the rightmost
4675 		 * tree path. This might be an appending insert. There are
4676 		 * two cases:
4677 		 *    1) We're doing a true append at the tail:
4678 		 *	-This might even be off the end of the leaf
4679 		 *    2) We're "appending" by rotating in the tail
4680 		 */
4681 		ocfs2_figure_appending_type(insert, el, insert_rec);
4682 	}
4683 
4684 out:
4685 	ocfs2_free_path(path);
4686 
4687 	if (ret == 0)
4688 		*last_eb_bh = bh;
4689 	else
4690 		brelse(bh);
4691 	return ret;
4692 }
4693 
4694 /*
4695  * Insert an extent into a btree.
4696  *
4697  * The caller needs to update the owning btree's cluster count.
4698  */
4699 int ocfs2_insert_extent(handle_t *handle,
4700 			struct ocfs2_extent_tree *et,
4701 			u32 cpos,
4702 			u64 start_blk,
4703 			u32 new_clusters,
4704 			u8 flags,
4705 			struct ocfs2_alloc_context *meta_ac)
4706 {
4707 	int status;
4708 	int free_records;
4709 	struct buffer_head *last_eb_bh = NULL;
4710 	struct ocfs2_insert_type insert = {0, };
4711 	struct ocfs2_extent_rec rec;
4712 
4713 	trace_ocfs2_insert_extent_start(
4714 		(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4715 		cpos, new_clusters);
4716 
4717 	memset(&rec, 0, sizeof(rec));
4718 	rec.e_cpos = cpu_to_le32(cpos);
4719 	rec.e_blkno = cpu_to_le64(start_blk);
4720 	rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4721 	rec.e_flags = flags;
4722 	status = ocfs2_et_insert_check(et, &rec);
4723 	if (status) {
4724 		mlog_errno(status);
4725 		goto bail;
4726 	}
4727 
4728 	status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec,
4729 					  &free_records, &insert);
4730 	if (status < 0) {
4731 		mlog_errno(status);
4732 		goto bail;
4733 	}
4734 
4735 	trace_ocfs2_insert_extent(insert.ins_appending, insert.ins_contig,
4736 				  insert.ins_contig_index, free_records,
4737 				  insert.ins_tree_depth);
4738 
4739 	if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4740 		status = ocfs2_grow_tree(handle, et,
4741 					 &insert.ins_tree_depth, &last_eb_bh,
4742 					 meta_ac);
4743 		if (status) {
4744 			mlog_errno(status);
4745 			goto bail;
4746 		}
4747 	}
4748 
4749 	/* Finally, we can add clusters. This might rotate the tree for us. */
4750 	status = ocfs2_do_insert_extent(handle, et, &rec, &insert);
4751 	if (status < 0)
4752 		mlog_errno(status);
4753 	else
4754 		ocfs2_et_extent_map_insert(et, &rec);
4755 
4756 bail:
4757 	brelse(last_eb_bh);
4758 
4759 	return status;
4760 }
4761 
4762 /*
4763  * Allcate and add clusters into the extent b-tree.
4764  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4765  * The extent b-tree's root is specified by et, and
4766  * it is not limited to the file storage. Any extent tree can use this
4767  * function if it implements the proper ocfs2_extent_tree.
4768  */
4769 int ocfs2_add_clusters_in_btree(handle_t *handle,
4770 				struct ocfs2_extent_tree *et,
4771 				u32 *logical_offset,
4772 				u32 clusters_to_add,
4773 				int mark_unwritten,
4774 				struct ocfs2_alloc_context *data_ac,
4775 				struct ocfs2_alloc_context *meta_ac,
4776 				enum ocfs2_alloc_restarted *reason_ret)
4777 {
4778 	int status = 0, err = 0;
4779 	int need_free = 0;
4780 	int free_extents;
4781 	enum ocfs2_alloc_restarted reason = RESTART_NONE;
4782 	u32 bit_off, num_bits;
4783 	u64 block;
4784 	u8 flags = 0;
4785 	struct ocfs2_super *osb =
4786 		OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
4787 
4788 	BUG_ON(!clusters_to_add);
4789 
4790 	if (mark_unwritten)
4791 		flags = OCFS2_EXT_UNWRITTEN;
4792 
4793 	free_extents = ocfs2_num_free_extents(et);
4794 	if (free_extents < 0) {
4795 		status = free_extents;
4796 		mlog_errno(status);
4797 		goto leave;
4798 	}
4799 
4800 	/* there are two cases which could cause us to EAGAIN in the
4801 	 * we-need-more-metadata case:
4802 	 * 1) we haven't reserved *any*
4803 	 * 2) we are so fragmented, we've needed to add metadata too
4804 	 *    many times. */
4805 	if (!free_extents && !meta_ac) {
4806 		err = -1;
4807 		status = -EAGAIN;
4808 		reason = RESTART_META;
4809 		goto leave;
4810 	} else if ((!free_extents)
4811 		   && (ocfs2_alloc_context_bits_left(meta_ac)
4812 		       < ocfs2_extend_meta_needed(et->et_root_el))) {
4813 		err = -2;
4814 		status = -EAGAIN;
4815 		reason = RESTART_META;
4816 		goto leave;
4817 	}
4818 
4819 	status = __ocfs2_claim_clusters(handle, data_ac, 1,
4820 					clusters_to_add, &bit_off, &num_bits);
4821 	if (status < 0) {
4822 		if (status != -ENOSPC)
4823 			mlog_errno(status);
4824 		goto leave;
4825 	}
4826 
4827 	BUG_ON(num_bits > clusters_to_add);
4828 
4829 	/* reserve our write early -- insert_extent may update the tree root */
4830 	status = ocfs2_et_root_journal_access(handle, et,
4831 					      OCFS2_JOURNAL_ACCESS_WRITE);
4832 	if (status < 0) {
4833 		mlog_errno(status);
4834 		need_free = 1;
4835 		goto bail;
4836 	}
4837 
4838 	block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4839 	trace_ocfs2_add_clusters_in_btree(
4840 	     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4841 	     bit_off, num_bits);
4842 	status = ocfs2_insert_extent(handle, et, *logical_offset, block,
4843 				     num_bits, flags, meta_ac);
4844 	if (status < 0) {
4845 		mlog_errno(status);
4846 		need_free = 1;
4847 		goto bail;
4848 	}
4849 
4850 	ocfs2_journal_dirty(handle, et->et_root_bh);
4851 
4852 	clusters_to_add -= num_bits;
4853 	*logical_offset += num_bits;
4854 
4855 	if (clusters_to_add) {
4856 		err = clusters_to_add;
4857 		status = -EAGAIN;
4858 		reason = RESTART_TRANS;
4859 	}
4860 
4861 bail:
4862 	if (need_free) {
4863 		if (data_ac->ac_which == OCFS2_AC_USE_LOCAL)
4864 			ocfs2_free_local_alloc_bits(osb, handle, data_ac,
4865 					bit_off, num_bits);
4866 		else
4867 			ocfs2_free_clusters(handle,
4868 					data_ac->ac_inode,
4869 					data_ac->ac_bh,
4870 					ocfs2_clusters_to_blocks(osb->sb, bit_off),
4871 					num_bits);
4872 	}
4873 
4874 leave:
4875 	if (reason_ret)
4876 		*reason_ret = reason;
4877 	trace_ocfs2_add_clusters_in_btree_ret(status, reason, err);
4878 	return status;
4879 }
4880 
4881 static void ocfs2_make_right_split_rec(struct super_block *sb,
4882 				       struct ocfs2_extent_rec *split_rec,
4883 				       u32 cpos,
4884 				       struct ocfs2_extent_rec *rec)
4885 {
4886 	u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4887 	u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4888 
4889 	memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4890 
4891 	split_rec->e_cpos = cpu_to_le32(cpos);
4892 	split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4893 
4894 	split_rec->e_blkno = rec->e_blkno;
4895 	le64_add_cpu(&split_rec->e_blkno,
4896 		     ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4897 
4898 	split_rec->e_flags = rec->e_flags;
4899 }
4900 
4901 static int ocfs2_split_and_insert(handle_t *handle,
4902 				  struct ocfs2_extent_tree *et,
4903 				  struct ocfs2_path *path,
4904 				  struct buffer_head **last_eb_bh,
4905 				  int split_index,
4906 				  struct ocfs2_extent_rec *orig_split_rec,
4907 				  struct ocfs2_alloc_context *meta_ac)
4908 {
4909 	int ret = 0, depth;
4910 	unsigned int insert_range, rec_range, do_leftright = 0;
4911 	struct ocfs2_extent_rec tmprec;
4912 	struct ocfs2_extent_list *rightmost_el;
4913 	struct ocfs2_extent_rec rec;
4914 	struct ocfs2_extent_rec split_rec = *orig_split_rec;
4915 	struct ocfs2_insert_type insert;
4916 	struct ocfs2_extent_block *eb;
4917 
4918 leftright:
4919 	/*
4920 	 * Store a copy of the record on the stack - it might move
4921 	 * around as the tree is manipulated below.
4922 	 */
4923 	rec = path_leaf_el(path)->l_recs[split_index];
4924 
4925 	rightmost_el = et->et_root_el;
4926 
4927 	depth = le16_to_cpu(rightmost_el->l_tree_depth);
4928 	if (depth) {
4929 		BUG_ON(!(*last_eb_bh));
4930 		eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4931 		rightmost_el = &eb->h_list;
4932 	}
4933 
4934 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4935 	    le16_to_cpu(rightmost_el->l_count)) {
4936 		ret = ocfs2_grow_tree(handle, et,
4937 				      &depth, last_eb_bh, meta_ac);
4938 		if (ret) {
4939 			mlog_errno(ret);
4940 			goto out;
4941 		}
4942 	}
4943 
4944 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4945 	insert.ins_appending = APPEND_NONE;
4946 	insert.ins_contig = CONTIG_NONE;
4947 	insert.ins_tree_depth = depth;
4948 
4949 	insert_range = le32_to_cpu(split_rec.e_cpos) +
4950 		le16_to_cpu(split_rec.e_leaf_clusters);
4951 	rec_range = le32_to_cpu(rec.e_cpos) +
4952 		le16_to_cpu(rec.e_leaf_clusters);
4953 
4954 	if (split_rec.e_cpos == rec.e_cpos) {
4955 		insert.ins_split = SPLIT_LEFT;
4956 	} else if (insert_range == rec_range) {
4957 		insert.ins_split = SPLIT_RIGHT;
4958 	} else {
4959 		/*
4960 		 * Left/right split. We fake this as a right split
4961 		 * first and then make a second pass as a left split.
4962 		 */
4963 		insert.ins_split = SPLIT_RIGHT;
4964 
4965 		ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4966 					   &tmprec, insert_range, &rec);
4967 
4968 		split_rec = tmprec;
4969 
4970 		BUG_ON(do_leftright);
4971 		do_leftright = 1;
4972 	}
4973 
4974 	ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
4975 	if (ret) {
4976 		mlog_errno(ret);
4977 		goto out;
4978 	}
4979 
4980 	if (do_leftright == 1) {
4981 		u32 cpos;
4982 		struct ocfs2_extent_list *el;
4983 
4984 		do_leftright++;
4985 		split_rec = *orig_split_rec;
4986 
4987 		ocfs2_reinit_path(path, 1);
4988 
4989 		cpos = le32_to_cpu(split_rec.e_cpos);
4990 		ret = ocfs2_find_path(et->et_ci, path, cpos);
4991 		if (ret) {
4992 			mlog_errno(ret);
4993 			goto out;
4994 		}
4995 
4996 		el = path_leaf_el(path);
4997 		split_index = ocfs2_search_extent_list(el, cpos);
4998 		if (split_index == -1) {
4999 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5000 				    "Owner %llu has an extent at cpos %u which can no longer be found\n",
5001 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5002 				    cpos);
5003 			ret = -EROFS;
5004 			goto out;
5005 		}
5006 		goto leftright;
5007 	}
5008 out:
5009 
5010 	return ret;
5011 }
5012 
5013 static int ocfs2_replace_extent_rec(handle_t *handle,
5014 				    struct ocfs2_extent_tree *et,
5015 				    struct ocfs2_path *path,
5016 				    struct ocfs2_extent_list *el,
5017 				    int split_index,
5018 				    struct ocfs2_extent_rec *split_rec)
5019 {
5020 	int ret;
5021 
5022 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
5023 					   path_num_items(path) - 1);
5024 	if (ret) {
5025 		mlog_errno(ret);
5026 		goto out;
5027 	}
5028 
5029 	el->l_recs[split_index] = *split_rec;
5030 
5031 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
5032 out:
5033 	return ret;
5034 }
5035 
5036 /*
5037  * Split part or all of the extent record at split_index in the leaf
5038  * pointed to by path. Merge with the contiguous extent record if needed.
5039  *
5040  * Care is taken to handle contiguousness so as to not grow the tree.
5041  *
5042  * meta_ac is not strictly necessary - we only truly need it if growth
5043  * of the tree is required. All other cases will degrade into a less
5044  * optimal tree layout.
5045  *
5046  * last_eb_bh should be the rightmost leaf block for any extent
5047  * btree. Since a split may grow the tree or a merge might shrink it,
5048  * the caller cannot trust the contents of that buffer after this call.
5049  *
5050  * This code is optimized for readability - several passes might be
5051  * made over certain portions of the tree. All of those blocks will
5052  * have been brought into cache (and pinned via the journal), so the
5053  * extra overhead is not expressed in terms of disk reads.
5054  */
5055 int ocfs2_split_extent(handle_t *handle,
5056 		       struct ocfs2_extent_tree *et,
5057 		       struct ocfs2_path *path,
5058 		       int split_index,
5059 		       struct ocfs2_extent_rec *split_rec,
5060 		       struct ocfs2_alloc_context *meta_ac,
5061 		       struct ocfs2_cached_dealloc_ctxt *dealloc)
5062 {
5063 	int ret = 0;
5064 	struct ocfs2_extent_list *el = path_leaf_el(path);
5065 	struct buffer_head *last_eb_bh = NULL;
5066 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5067 	struct ocfs2_merge_ctxt ctxt;
5068 
5069 	if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5070 	    ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5071 	     (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5072 		ret = -EIO;
5073 		mlog_errno(ret);
5074 		goto out;
5075 	}
5076 
5077 	ret = ocfs2_figure_merge_contig_type(et, path, el,
5078 					     split_index,
5079 					     split_rec,
5080 					     &ctxt);
5081 	if (ret) {
5082 		mlog_errno(ret);
5083 		goto out;
5084 	}
5085 
5086 	/*
5087 	 * The core merge / split code wants to know how much room is
5088 	 * left in this allocation tree, so we pass the
5089 	 * rightmost extent list.
5090 	 */
5091 	if (path->p_tree_depth) {
5092 		ret = ocfs2_read_extent_block(et->et_ci,
5093 					      ocfs2_et_get_last_eb_blk(et),
5094 					      &last_eb_bh);
5095 		if (ret) {
5096 			mlog_errno(ret);
5097 			goto out;
5098 		}
5099 	}
5100 
5101 	if (rec->e_cpos == split_rec->e_cpos &&
5102 	    rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5103 		ctxt.c_split_covers_rec = 1;
5104 	else
5105 		ctxt.c_split_covers_rec = 0;
5106 
5107 	ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5108 
5109 	trace_ocfs2_split_extent(split_index, ctxt.c_contig_type,
5110 				 ctxt.c_has_empty_extent,
5111 				 ctxt.c_split_covers_rec);
5112 
5113 	if (ctxt.c_contig_type == CONTIG_NONE) {
5114 		if (ctxt.c_split_covers_rec)
5115 			ret = ocfs2_replace_extent_rec(handle, et, path, el,
5116 						       split_index, split_rec);
5117 		else
5118 			ret = ocfs2_split_and_insert(handle, et, path,
5119 						     &last_eb_bh, split_index,
5120 						     split_rec, meta_ac);
5121 		if (ret)
5122 			mlog_errno(ret);
5123 	} else {
5124 		ret = ocfs2_try_to_merge_extent(handle, et, path,
5125 						split_index, split_rec,
5126 						dealloc, &ctxt);
5127 		if (ret)
5128 			mlog_errno(ret);
5129 	}
5130 
5131 out:
5132 	brelse(last_eb_bh);
5133 	return ret;
5134 }
5135 
5136 /*
5137  * Change the flags of the already-existing extent at cpos for len clusters.
5138  *
5139  * new_flags: the flags we want to set.
5140  * clear_flags: the flags we want to clear.
5141  * phys: the new physical offset we want this new extent starts from.
5142  *
5143  * If the existing extent is larger than the request, initiate a
5144  * split. An attempt will be made at merging with adjacent extents.
5145  *
5146  * The caller is responsible for passing down meta_ac if we'll need it.
5147  */
5148 int ocfs2_change_extent_flag(handle_t *handle,
5149 			     struct ocfs2_extent_tree *et,
5150 			     u32 cpos, u32 len, u32 phys,
5151 			     struct ocfs2_alloc_context *meta_ac,
5152 			     struct ocfs2_cached_dealloc_ctxt *dealloc,
5153 			     int new_flags, int clear_flags)
5154 {
5155 	int ret, index;
5156 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5157 	u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys);
5158 	struct ocfs2_extent_rec split_rec;
5159 	struct ocfs2_path *left_path = NULL;
5160 	struct ocfs2_extent_list *el;
5161 	struct ocfs2_extent_rec *rec;
5162 
5163 	left_path = ocfs2_new_path_from_et(et);
5164 	if (!left_path) {
5165 		ret = -ENOMEM;
5166 		mlog_errno(ret);
5167 		goto out;
5168 	}
5169 
5170 	ret = ocfs2_find_path(et->et_ci, left_path, cpos);
5171 	if (ret) {
5172 		mlog_errno(ret);
5173 		goto out;
5174 	}
5175 	el = path_leaf_el(left_path);
5176 
5177 	index = ocfs2_search_extent_list(el, cpos);
5178 	if (index == -1) {
5179 		ocfs2_error(sb,
5180 			    "Owner %llu has an extent at cpos %u which can no longer be found\n",
5181 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5182 			    cpos);
5183 		ret = -EROFS;
5184 		goto out;
5185 	}
5186 
5187 	ret = -EIO;
5188 	rec = &el->l_recs[index];
5189 	if (new_flags && (rec->e_flags & new_flags)) {
5190 		mlog(ML_ERROR, "Owner %llu tried to set %d flags on an "
5191 		     "extent that already had them\n",
5192 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5193 		     new_flags);
5194 		goto out;
5195 	}
5196 
5197 	if (clear_flags && !(rec->e_flags & clear_flags)) {
5198 		mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an "
5199 		     "extent that didn't have them\n",
5200 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5201 		     clear_flags);
5202 		goto out;
5203 	}
5204 
5205 	memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5206 	split_rec.e_cpos = cpu_to_le32(cpos);
5207 	split_rec.e_leaf_clusters = cpu_to_le16(len);
5208 	split_rec.e_blkno = cpu_to_le64(start_blkno);
5209 	split_rec.e_flags = rec->e_flags;
5210 	if (new_flags)
5211 		split_rec.e_flags |= new_flags;
5212 	if (clear_flags)
5213 		split_rec.e_flags &= ~clear_flags;
5214 
5215 	ret = ocfs2_split_extent(handle, et, left_path,
5216 				 index, &split_rec, meta_ac,
5217 				 dealloc);
5218 	if (ret)
5219 		mlog_errno(ret);
5220 
5221 out:
5222 	ocfs2_free_path(left_path);
5223 	return ret;
5224 
5225 }
5226 
5227 /*
5228  * Mark the already-existing extent at cpos as written for len clusters.
5229  * This removes the unwritten extent flag.
5230  *
5231  * If the existing extent is larger than the request, initiate a
5232  * split. An attempt will be made at merging with adjacent extents.
5233  *
5234  * The caller is responsible for passing down meta_ac if we'll need it.
5235  */
5236 int ocfs2_mark_extent_written(struct inode *inode,
5237 			      struct ocfs2_extent_tree *et,
5238 			      handle_t *handle, u32 cpos, u32 len, u32 phys,
5239 			      struct ocfs2_alloc_context *meta_ac,
5240 			      struct ocfs2_cached_dealloc_ctxt *dealloc)
5241 {
5242 	int ret;
5243 
5244 	trace_ocfs2_mark_extent_written(
5245 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
5246 		cpos, len, phys);
5247 
5248 	if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5249 		ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents that are being written to, but the feature bit is not set in the super block\n",
5250 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
5251 		ret = -EROFS;
5252 		goto out;
5253 	}
5254 
5255 	/*
5256 	 * XXX: This should be fixed up so that we just re-insert the
5257 	 * next extent records.
5258 	 */
5259 	ocfs2_et_extent_map_truncate(et, 0);
5260 
5261 	ret = ocfs2_change_extent_flag(handle, et, cpos,
5262 				       len, phys, meta_ac, dealloc,
5263 				       0, OCFS2_EXT_UNWRITTEN);
5264 	if (ret)
5265 		mlog_errno(ret);
5266 
5267 out:
5268 	return ret;
5269 }
5270 
5271 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et,
5272 			    struct ocfs2_path *path,
5273 			    int index, u32 new_range,
5274 			    struct ocfs2_alloc_context *meta_ac)
5275 {
5276 	int ret, depth, credits;
5277 	struct buffer_head *last_eb_bh = NULL;
5278 	struct ocfs2_extent_block *eb;
5279 	struct ocfs2_extent_list *rightmost_el, *el;
5280 	struct ocfs2_extent_rec split_rec;
5281 	struct ocfs2_extent_rec *rec;
5282 	struct ocfs2_insert_type insert;
5283 
5284 	/*
5285 	 * Setup the record to split before we grow the tree.
5286 	 */
5287 	el = path_leaf_el(path);
5288 	rec = &el->l_recs[index];
5289 	ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
5290 				   &split_rec, new_range, rec);
5291 
5292 	depth = path->p_tree_depth;
5293 	if (depth > 0) {
5294 		ret = ocfs2_read_extent_block(et->et_ci,
5295 					      ocfs2_et_get_last_eb_blk(et),
5296 					      &last_eb_bh);
5297 		if (ret < 0) {
5298 			mlog_errno(ret);
5299 			goto out;
5300 		}
5301 
5302 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5303 		rightmost_el = &eb->h_list;
5304 	} else
5305 		rightmost_el = path_leaf_el(path);
5306 
5307 	credits = path->p_tree_depth +
5308 		  ocfs2_extend_meta_needed(et->et_root_el);
5309 	ret = ocfs2_extend_trans(handle, credits);
5310 	if (ret) {
5311 		mlog_errno(ret);
5312 		goto out;
5313 	}
5314 
5315 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5316 	    le16_to_cpu(rightmost_el->l_count)) {
5317 		ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh,
5318 				      meta_ac);
5319 		if (ret) {
5320 			mlog_errno(ret);
5321 			goto out;
5322 		}
5323 	}
5324 
5325 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5326 	insert.ins_appending = APPEND_NONE;
5327 	insert.ins_contig = CONTIG_NONE;
5328 	insert.ins_split = SPLIT_RIGHT;
5329 	insert.ins_tree_depth = depth;
5330 
5331 	ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
5332 	if (ret)
5333 		mlog_errno(ret);
5334 
5335 out:
5336 	brelse(last_eb_bh);
5337 	return ret;
5338 }
5339 
5340 static int ocfs2_truncate_rec(handle_t *handle,
5341 			      struct ocfs2_extent_tree *et,
5342 			      struct ocfs2_path *path, int index,
5343 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
5344 			      u32 cpos, u32 len)
5345 {
5346 	int ret;
5347 	u32 left_cpos, rec_range, trunc_range;
5348 	int is_rightmost_tree_rec = 0;
5349 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5350 	struct ocfs2_path *left_path = NULL;
5351 	struct ocfs2_extent_list *el = path_leaf_el(path);
5352 	struct ocfs2_extent_rec *rec;
5353 	struct ocfs2_extent_block *eb;
5354 
5355 	if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5356 		/* extend credit for ocfs2_remove_rightmost_path */
5357 		ret = ocfs2_extend_rotate_transaction(handle, 0,
5358 				jbd2_handle_buffer_credits(handle),
5359 				path);
5360 		if (ret) {
5361 			mlog_errno(ret);
5362 			goto out;
5363 		}
5364 
5365 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5366 		if (ret) {
5367 			mlog_errno(ret);
5368 			goto out;
5369 		}
5370 
5371 		index--;
5372 	}
5373 
5374 	if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5375 	    path->p_tree_depth) {
5376 		/*
5377 		 * Check whether this is the rightmost tree record. If
5378 		 * we remove all of this record or part of its right
5379 		 * edge then an update of the record lengths above it
5380 		 * will be required.
5381 		 */
5382 		eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5383 		if (eb->h_next_leaf_blk == 0)
5384 			is_rightmost_tree_rec = 1;
5385 	}
5386 
5387 	rec = &el->l_recs[index];
5388 	if (index == 0 && path->p_tree_depth &&
5389 	    le32_to_cpu(rec->e_cpos) == cpos) {
5390 		/*
5391 		 * Changing the leftmost offset (via partial or whole
5392 		 * record truncate) of an interior (or rightmost) path
5393 		 * means we have to update the subtree that is formed
5394 		 * by this leaf and the one to it's left.
5395 		 *
5396 		 * There are two cases we can skip:
5397 		 *   1) Path is the leftmost one in our btree.
5398 		 *   2) The leaf is rightmost and will be empty after
5399 		 *      we remove the extent record - the rotate code
5400 		 *      knows how to update the newly formed edge.
5401 		 */
5402 
5403 		ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
5404 		if (ret) {
5405 			mlog_errno(ret);
5406 			goto out;
5407 		}
5408 
5409 		if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5410 			left_path = ocfs2_new_path_from_path(path);
5411 			if (!left_path) {
5412 				ret = -ENOMEM;
5413 				mlog_errno(ret);
5414 				goto out;
5415 			}
5416 
5417 			ret = ocfs2_find_path(et->et_ci, left_path,
5418 					      left_cpos);
5419 			if (ret) {
5420 				mlog_errno(ret);
5421 				goto out;
5422 			}
5423 		}
5424 	}
5425 
5426 	ret = ocfs2_extend_rotate_transaction(handle, 0,
5427 					jbd2_handle_buffer_credits(handle),
5428 					path);
5429 	if (ret) {
5430 		mlog_errno(ret);
5431 		goto out;
5432 	}
5433 
5434 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
5435 	if (ret) {
5436 		mlog_errno(ret);
5437 		goto out;
5438 	}
5439 
5440 	ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
5441 	if (ret) {
5442 		mlog_errno(ret);
5443 		goto out;
5444 	}
5445 
5446 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5447 	trunc_range = cpos + len;
5448 
5449 	if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5450 		int next_free;
5451 
5452 		memset(rec, 0, sizeof(*rec));
5453 		ocfs2_cleanup_merge(el, index);
5454 
5455 		next_free = le16_to_cpu(el->l_next_free_rec);
5456 		if (is_rightmost_tree_rec && next_free > 1) {
5457 			/*
5458 			 * We skip the edge update if this path will
5459 			 * be deleted by the rotate code.
5460 			 */
5461 			rec = &el->l_recs[next_free - 1];
5462 			ocfs2_adjust_rightmost_records(handle, et, path,
5463 						       rec);
5464 		}
5465 	} else if (le32_to_cpu(rec->e_cpos) == cpos) {
5466 		/* Remove leftmost portion of the record. */
5467 		le32_add_cpu(&rec->e_cpos, len);
5468 		le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5469 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5470 	} else if (rec_range == trunc_range) {
5471 		/* Remove rightmost portion of the record */
5472 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5473 		if (is_rightmost_tree_rec)
5474 			ocfs2_adjust_rightmost_records(handle, et, path, rec);
5475 	} else {
5476 		/* Caller should have trapped this. */
5477 		mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) "
5478 		     "(%u, %u)\n",
5479 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5480 		     le32_to_cpu(rec->e_cpos),
5481 		     le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5482 		BUG();
5483 	}
5484 
5485 	if (left_path) {
5486 		int subtree_index;
5487 
5488 		subtree_index = ocfs2_find_subtree_root(et, left_path, path);
5489 		ocfs2_complete_edge_insert(handle, left_path, path,
5490 					   subtree_index);
5491 	}
5492 
5493 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
5494 
5495 	ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5496 	if (ret)
5497 		mlog_errno(ret);
5498 
5499 out:
5500 	ocfs2_free_path(left_path);
5501 	return ret;
5502 }
5503 
5504 int ocfs2_remove_extent(handle_t *handle,
5505 			struct ocfs2_extent_tree *et,
5506 			u32 cpos, u32 len,
5507 			struct ocfs2_alloc_context *meta_ac,
5508 			struct ocfs2_cached_dealloc_ctxt *dealloc)
5509 {
5510 	int ret, index;
5511 	u32 rec_range, trunc_range;
5512 	struct ocfs2_extent_rec *rec;
5513 	struct ocfs2_extent_list *el;
5514 	struct ocfs2_path *path = NULL;
5515 
5516 	/*
5517 	 * XXX: Why are we truncating to 0 instead of wherever this
5518 	 * affects us?
5519 	 */
5520 	ocfs2_et_extent_map_truncate(et, 0);
5521 
5522 	path = ocfs2_new_path_from_et(et);
5523 	if (!path) {
5524 		ret = -ENOMEM;
5525 		mlog_errno(ret);
5526 		goto out;
5527 	}
5528 
5529 	ret = ocfs2_find_path(et->et_ci, path, cpos);
5530 	if (ret) {
5531 		mlog_errno(ret);
5532 		goto out;
5533 	}
5534 
5535 	el = path_leaf_el(path);
5536 	index = ocfs2_search_extent_list(el, cpos);
5537 	if (index == -1) {
5538 		ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5539 			    "Owner %llu has an extent at cpos %u which can no longer be found\n",
5540 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5541 			    cpos);
5542 		ret = -EROFS;
5543 		goto out;
5544 	}
5545 
5546 	/*
5547 	 * We have 3 cases of extent removal:
5548 	 *   1) Range covers the entire extent rec
5549 	 *   2) Range begins or ends on one edge of the extent rec
5550 	 *   3) Range is in the middle of the extent rec (no shared edges)
5551 	 *
5552 	 * For case 1 we remove the extent rec and left rotate to
5553 	 * fill the hole.
5554 	 *
5555 	 * For case 2 we just shrink the existing extent rec, with a
5556 	 * tree update if the shrinking edge is also the edge of an
5557 	 * extent block.
5558 	 *
5559 	 * For case 3 we do a right split to turn the extent rec into
5560 	 * something case 2 can handle.
5561 	 */
5562 	rec = &el->l_recs[index];
5563 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5564 	trunc_range = cpos + len;
5565 
5566 	BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5567 
5568 	trace_ocfs2_remove_extent(
5569 		(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5570 		cpos, len, index, le32_to_cpu(rec->e_cpos),
5571 		ocfs2_rec_clusters(el, rec));
5572 
5573 	if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5574 		ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5575 					 cpos, len);
5576 		if (ret) {
5577 			mlog_errno(ret);
5578 			goto out;
5579 		}
5580 	} else {
5581 		ret = ocfs2_split_tree(handle, et, path, index,
5582 				       trunc_range, meta_ac);
5583 		if (ret) {
5584 			mlog_errno(ret);
5585 			goto out;
5586 		}
5587 
5588 		/*
5589 		 * The split could have manipulated the tree enough to
5590 		 * move the record location, so we have to look for it again.
5591 		 */
5592 		ocfs2_reinit_path(path, 1);
5593 
5594 		ret = ocfs2_find_path(et->et_ci, path, cpos);
5595 		if (ret) {
5596 			mlog_errno(ret);
5597 			goto out;
5598 		}
5599 
5600 		el = path_leaf_el(path);
5601 		index = ocfs2_search_extent_list(el, cpos);
5602 		if (index == -1) {
5603 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5604 				    "Owner %llu: split at cpos %u lost record\n",
5605 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5606 				    cpos);
5607 			ret = -EROFS;
5608 			goto out;
5609 		}
5610 
5611 		/*
5612 		 * Double check our values here. If anything is fishy,
5613 		 * it's easier to catch it at the top level.
5614 		 */
5615 		rec = &el->l_recs[index];
5616 		rec_range = le32_to_cpu(rec->e_cpos) +
5617 			ocfs2_rec_clusters(el, rec);
5618 		if (rec_range != trunc_range) {
5619 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5620 				    "Owner %llu: error after split at cpos %u trunc len %u, existing record is (%u,%u)\n",
5621 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5622 				    cpos, len, le32_to_cpu(rec->e_cpos),
5623 				    ocfs2_rec_clusters(el, rec));
5624 			ret = -EROFS;
5625 			goto out;
5626 		}
5627 
5628 		ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5629 					 cpos, len);
5630 		if (ret)
5631 			mlog_errno(ret);
5632 	}
5633 
5634 out:
5635 	ocfs2_free_path(path);
5636 	return ret;
5637 }
5638 
5639 /*
5640  * ocfs2_reserve_blocks_for_rec_trunc() would look basically the
5641  * same as ocfs2_lock_alloctors(), except for it accepts a blocks
5642  * number to reserve some extra blocks, and it only handles meta
5643  * data allocations.
5644  *
5645  * Currently, only ocfs2_remove_btree_range() uses it for truncating
5646  * and punching holes.
5647  */
5648 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode,
5649 					      struct ocfs2_extent_tree *et,
5650 					      u32 extents_to_split,
5651 					      struct ocfs2_alloc_context **ac,
5652 					      int extra_blocks)
5653 {
5654 	int ret = 0, num_free_extents;
5655 	unsigned int max_recs_needed = 2 * extents_to_split;
5656 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5657 
5658 	*ac = NULL;
5659 
5660 	num_free_extents = ocfs2_num_free_extents(et);
5661 	if (num_free_extents < 0) {
5662 		ret = num_free_extents;
5663 		mlog_errno(ret);
5664 		goto out;
5665 	}
5666 
5667 	if (!num_free_extents ||
5668 	    (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed))
5669 		extra_blocks += ocfs2_extend_meta_needed(et->et_root_el);
5670 
5671 	if (extra_blocks) {
5672 		ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac);
5673 		if (ret < 0) {
5674 			if (ret != -ENOSPC)
5675 				mlog_errno(ret);
5676 		}
5677 	}
5678 
5679 out:
5680 	if (ret) {
5681 		if (*ac) {
5682 			ocfs2_free_alloc_context(*ac);
5683 			*ac = NULL;
5684 		}
5685 	}
5686 
5687 	return ret;
5688 }
5689 
5690 int ocfs2_remove_btree_range(struct inode *inode,
5691 			     struct ocfs2_extent_tree *et,
5692 			     u32 cpos, u32 phys_cpos, u32 len, int flags,
5693 			     struct ocfs2_cached_dealloc_ctxt *dealloc,
5694 			     u64 refcount_loc, bool refcount_tree_locked)
5695 {
5696 	int ret, credits = 0, extra_blocks = 0;
5697 	u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5698 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5699 	struct inode *tl_inode = osb->osb_tl_inode;
5700 	handle_t *handle;
5701 	struct ocfs2_alloc_context *meta_ac = NULL;
5702 	struct ocfs2_refcount_tree *ref_tree = NULL;
5703 
5704 	if ((flags & OCFS2_EXT_REFCOUNTED) && len) {
5705 		BUG_ON(!ocfs2_is_refcount_inode(inode));
5706 
5707 		if (!refcount_tree_locked) {
5708 			ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
5709 						       &ref_tree, NULL);
5710 			if (ret) {
5711 				mlog_errno(ret);
5712 				goto bail;
5713 			}
5714 		}
5715 
5716 		ret = ocfs2_prepare_refcount_change_for_del(inode,
5717 							    refcount_loc,
5718 							    phys_blkno,
5719 							    len,
5720 							    &credits,
5721 							    &extra_blocks);
5722 		if (ret < 0) {
5723 			mlog_errno(ret);
5724 			goto bail;
5725 		}
5726 	}
5727 
5728 	ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac,
5729 						 extra_blocks);
5730 	if (ret) {
5731 		mlog_errno(ret);
5732 		goto bail;
5733 	}
5734 
5735 	inode_lock(tl_inode);
5736 
5737 	if (ocfs2_truncate_log_needs_flush(osb)) {
5738 		ret = __ocfs2_flush_truncate_log(osb);
5739 		if (ret < 0) {
5740 			mlog_errno(ret);
5741 			goto out;
5742 		}
5743 	}
5744 
5745 	handle = ocfs2_start_trans(osb,
5746 			ocfs2_remove_extent_credits(osb->sb) + credits);
5747 	if (IS_ERR(handle)) {
5748 		ret = PTR_ERR(handle);
5749 		mlog_errno(ret);
5750 		goto out;
5751 	}
5752 
5753 	ret = ocfs2_et_root_journal_access(handle, et,
5754 					   OCFS2_JOURNAL_ACCESS_WRITE);
5755 	if (ret) {
5756 		mlog_errno(ret);
5757 		goto out_commit;
5758 	}
5759 
5760 	dquot_free_space_nodirty(inode,
5761 				  ocfs2_clusters_to_bytes(inode->i_sb, len));
5762 
5763 	ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc);
5764 	if (ret) {
5765 		mlog_errno(ret);
5766 		goto out_commit;
5767 	}
5768 
5769 	ocfs2_et_update_clusters(et, -len);
5770 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
5771 
5772 	ocfs2_journal_dirty(handle, et->et_root_bh);
5773 
5774 	if (phys_blkno) {
5775 		if (flags & OCFS2_EXT_REFCOUNTED)
5776 			ret = ocfs2_decrease_refcount(inode, handle,
5777 					ocfs2_blocks_to_clusters(osb->sb,
5778 								 phys_blkno),
5779 					len, meta_ac,
5780 					dealloc, 1);
5781 		else
5782 			ret = ocfs2_truncate_log_append(osb, handle,
5783 							phys_blkno, len);
5784 		if (ret)
5785 			mlog_errno(ret);
5786 
5787 	}
5788 
5789 out_commit:
5790 	ocfs2_commit_trans(osb, handle);
5791 out:
5792 	inode_unlock(tl_inode);
5793 bail:
5794 	if (meta_ac)
5795 		ocfs2_free_alloc_context(meta_ac);
5796 
5797 	if (ref_tree)
5798 		ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
5799 
5800 	return ret;
5801 }
5802 
5803 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5804 {
5805 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5806 	struct ocfs2_dinode *di;
5807 	struct ocfs2_truncate_log *tl;
5808 
5809 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5810 	tl = &di->id2.i_dealloc;
5811 
5812 	mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5813 			"slot %d, invalid truncate log parameters: used = "
5814 			"%u, count = %u\n", osb->slot_num,
5815 			le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5816 	return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5817 }
5818 
5819 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5820 					   unsigned int new_start)
5821 {
5822 	unsigned int tail_index;
5823 	unsigned int current_tail;
5824 
5825 	/* No records, nothing to coalesce */
5826 	if (!le16_to_cpu(tl->tl_used))
5827 		return 0;
5828 
5829 	tail_index = le16_to_cpu(tl->tl_used) - 1;
5830 	current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5831 	current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5832 
5833 	return current_tail == new_start;
5834 }
5835 
5836 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5837 			      handle_t *handle,
5838 			      u64 start_blk,
5839 			      unsigned int num_clusters)
5840 {
5841 	int status, index;
5842 	unsigned int start_cluster, tl_count;
5843 	struct inode *tl_inode = osb->osb_tl_inode;
5844 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5845 	struct ocfs2_dinode *di;
5846 	struct ocfs2_truncate_log *tl;
5847 
5848 	BUG_ON(inode_trylock(tl_inode));
5849 
5850 	start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5851 
5852 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5853 
5854 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5855 	 * by the underlying call to ocfs2_read_inode_block(), so any
5856 	 * corruption is a code bug */
5857 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5858 
5859 	tl = &di->id2.i_dealloc;
5860 	tl_count = le16_to_cpu(tl->tl_count);
5861 	mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5862 			tl_count == 0,
5863 			"Truncate record count on #%llu invalid "
5864 			"wanted %u, actual %u\n",
5865 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5866 			ocfs2_truncate_recs_per_inode(osb->sb),
5867 			le16_to_cpu(tl->tl_count));
5868 
5869 	/* Caller should have known to flush before calling us. */
5870 	index = le16_to_cpu(tl->tl_used);
5871 	if (index >= tl_count) {
5872 		status = -ENOSPC;
5873 		mlog_errno(status);
5874 		goto bail;
5875 	}
5876 
5877 	status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5878 					 OCFS2_JOURNAL_ACCESS_WRITE);
5879 	if (status < 0) {
5880 		mlog_errno(status);
5881 		goto bail;
5882 	}
5883 
5884 	trace_ocfs2_truncate_log_append(
5885 		(unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index,
5886 		start_cluster, num_clusters);
5887 	if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5888 		/*
5889 		 * Move index back to the record we are coalescing with.
5890 		 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5891 		 */
5892 		index--;
5893 
5894 		num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5895 		trace_ocfs2_truncate_log_append(
5896 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5897 			index, le32_to_cpu(tl->tl_recs[index].t_start),
5898 			num_clusters);
5899 	} else {
5900 		tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5901 		tl->tl_used = cpu_to_le16(index + 1);
5902 	}
5903 	tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5904 
5905 	ocfs2_journal_dirty(handle, tl_bh);
5906 
5907 	osb->truncated_clusters += num_clusters;
5908 bail:
5909 	return status;
5910 }
5911 
5912 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5913 					 struct inode *data_alloc_inode,
5914 					 struct buffer_head *data_alloc_bh)
5915 {
5916 	int status = 0;
5917 	int i;
5918 	unsigned int num_clusters;
5919 	u64 start_blk;
5920 	struct ocfs2_truncate_rec rec;
5921 	struct ocfs2_dinode *di;
5922 	struct ocfs2_truncate_log *tl;
5923 	struct inode *tl_inode = osb->osb_tl_inode;
5924 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5925 	handle_t *handle;
5926 
5927 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5928 	tl = &di->id2.i_dealloc;
5929 	i = le16_to_cpu(tl->tl_used) - 1;
5930 	while (i >= 0) {
5931 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5932 		if (IS_ERR(handle)) {
5933 			status = PTR_ERR(handle);
5934 			mlog_errno(status);
5935 			goto bail;
5936 		}
5937 
5938 		/* Caller has given us at least enough credits to
5939 		 * update the truncate log dinode */
5940 		status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5941 						 OCFS2_JOURNAL_ACCESS_WRITE);
5942 		if (status < 0) {
5943 			mlog_errno(status);
5944 			goto bail;
5945 		}
5946 
5947 		tl->tl_used = cpu_to_le16(i);
5948 
5949 		ocfs2_journal_dirty(handle, tl_bh);
5950 
5951 		rec = tl->tl_recs[i];
5952 		start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5953 						    le32_to_cpu(rec.t_start));
5954 		num_clusters = le32_to_cpu(rec.t_clusters);
5955 
5956 		/* if start_blk is not set, we ignore the record as
5957 		 * invalid. */
5958 		if (start_blk) {
5959 			trace_ocfs2_replay_truncate_records(
5960 				(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5961 				i, le32_to_cpu(rec.t_start), num_clusters);
5962 
5963 			status = ocfs2_free_clusters(handle, data_alloc_inode,
5964 						     data_alloc_bh, start_blk,
5965 						     num_clusters);
5966 			if (status < 0) {
5967 				mlog_errno(status);
5968 				goto bail;
5969 			}
5970 		}
5971 
5972 		ocfs2_commit_trans(osb, handle);
5973 		i--;
5974 	}
5975 
5976 	osb->truncated_clusters = 0;
5977 
5978 bail:
5979 	return status;
5980 }
5981 
5982 /* Expects you to already be holding tl_inode->i_mutex */
5983 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5984 {
5985 	int status;
5986 	unsigned int num_to_flush;
5987 	struct inode *tl_inode = osb->osb_tl_inode;
5988 	struct inode *data_alloc_inode = NULL;
5989 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5990 	struct buffer_head *data_alloc_bh = NULL;
5991 	struct ocfs2_dinode *di;
5992 	struct ocfs2_truncate_log *tl;
5993 	struct ocfs2_journal *journal = osb->journal;
5994 
5995 	BUG_ON(inode_trylock(tl_inode));
5996 
5997 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5998 
5999 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
6000 	 * by the underlying call to ocfs2_read_inode_block(), so any
6001 	 * corruption is a code bug */
6002 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
6003 
6004 	tl = &di->id2.i_dealloc;
6005 	num_to_flush = le16_to_cpu(tl->tl_used);
6006 	trace_ocfs2_flush_truncate_log(
6007 		(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
6008 		num_to_flush);
6009 	if (!num_to_flush) {
6010 		status = 0;
6011 		goto out;
6012 	}
6013 
6014 	/* Appending truncate log(TA) and flushing truncate log(TF) are
6015 	 * two separated transactions. They can be both committed but not
6016 	 * checkpointed. If crash occurs then, both two transaction will be
6017 	 * replayed with several already released to global bitmap clusters.
6018 	 * Then truncate log will be replayed resulting in cluster double free.
6019 	 */
6020 	jbd2_journal_lock_updates(journal->j_journal);
6021 	status = jbd2_journal_flush(journal->j_journal);
6022 	jbd2_journal_unlock_updates(journal->j_journal);
6023 	if (status < 0) {
6024 		mlog_errno(status);
6025 		goto out;
6026 	}
6027 
6028 	data_alloc_inode = ocfs2_get_system_file_inode(osb,
6029 						       GLOBAL_BITMAP_SYSTEM_INODE,
6030 						       OCFS2_INVALID_SLOT);
6031 	if (!data_alloc_inode) {
6032 		status = -EINVAL;
6033 		mlog(ML_ERROR, "Could not get bitmap inode!\n");
6034 		goto out;
6035 	}
6036 
6037 	inode_lock(data_alloc_inode);
6038 
6039 	status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
6040 	if (status < 0) {
6041 		mlog_errno(status);
6042 		goto out_mutex;
6043 	}
6044 
6045 	status = ocfs2_replay_truncate_records(osb, data_alloc_inode,
6046 					       data_alloc_bh);
6047 	if (status < 0)
6048 		mlog_errno(status);
6049 
6050 	brelse(data_alloc_bh);
6051 	ocfs2_inode_unlock(data_alloc_inode, 1);
6052 
6053 out_mutex:
6054 	inode_unlock(data_alloc_inode);
6055 	iput(data_alloc_inode);
6056 
6057 out:
6058 	return status;
6059 }
6060 
6061 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
6062 {
6063 	int status;
6064 	struct inode *tl_inode = osb->osb_tl_inode;
6065 
6066 	inode_lock(tl_inode);
6067 	status = __ocfs2_flush_truncate_log(osb);
6068 	inode_unlock(tl_inode);
6069 
6070 	return status;
6071 }
6072 
6073 static void ocfs2_truncate_log_worker(struct work_struct *work)
6074 {
6075 	int status;
6076 	struct ocfs2_super *osb =
6077 		container_of(work, struct ocfs2_super,
6078 			     osb_truncate_log_wq.work);
6079 
6080 	status = ocfs2_flush_truncate_log(osb);
6081 	if (status < 0)
6082 		mlog_errno(status);
6083 	else
6084 		ocfs2_init_steal_slots(osb);
6085 }
6086 
6087 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
6088 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
6089 				       int cancel)
6090 {
6091 	if (osb->osb_tl_inode &&
6092 			atomic_read(&osb->osb_tl_disable) == 0) {
6093 		/* We want to push off log flushes while truncates are
6094 		 * still running. */
6095 		if (cancel)
6096 			cancel_delayed_work(&osb->osb_truncate_log_wq);
6097 
6098 		queue_delayed_work(osb->ocfs2_wq, &osb->osb_truncate_log_wq,
6099 				   OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
6100 	}
6101 }
6102 
6103 /*
6104  * Try to flush truncate logs if we can free enough clusters from it.
6105  * As for return value, "< 0" means error, "0" no space and "1" means
6106  * we have freed enough spaces and let the caller try to allocate again.
6107  */
6108 int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
6109 					unsigned int needed)
6110 {
6111 	tid_t target;
6112 	int ret = 0;
6113 	unsigned int truncated_clusters;
6114 
6115 	inode_lock(osb->osb_tl_inode);
6116 	truncated_clusters = osb->truncated_clusters;
6117 	inode_unlock(osb->osb_tl_inode);
6118 
6119 	/*
6120 	 * Check whether we can succeed in allocating if we free
6121 	 * the truncate log.
6122 	 */
6123 	if (truncated_clusters < needed)
6124 		goto out;
6125 
6126 	ret = ocfs2_flush_truncate_log(osb);
6127 	if (ret) {
6128 		mlog_errno(ret);
6129 		goto out;
6130 	}
6131 
6132 	if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
6133 		jbd2_log_wait_commit(osb->journal->j_journal, target);
6134 		ret = 1;
6135 	}
6136 out:
6137 	return ret;
6138 }
6139 
6140 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
6141 				       int slot_num,
6142 				       struct inode **tl_inode,
6143 				       struct buffer_head **tl_bh)
6144 {
6145 	int status;
6146 	struct inode *inode = NULL;
6147 	struct buffer_head *bh = NULL;
6148 
6149 	inode = ocfs2_get_system_file_inode(osb,
6150 					   TRUNCATE_LOG_SYSTEM_INODE,
6151 					   slot_num);
6152 	if (!inode) {
6153 		status = -EINVAL;
6154 		mlog(ML_ERROR, "Could not get load truncate log inode!\n");
6155 		goto bail;
6156 	}
6157 
6158 	status = ocfs2_read_inode_block(inode, &bh);
6159 	if (status < 0) {
6160 		iput(inode);
6161 		mlog_errno(status);
6162 		goto bail;
6163 	}
6164 
6165 	*tl_inode = inode;
6166 	*tl_bh    = bh;
6167 bail:
6168 	return status;
6169 }
6170 
6171 /* called during the 1st stage of node recovery. we stamp a clean
6172  * truncate log and pass back a copy for processing later. if the
6173  * truncate log does not require processing, a *tl_copy is set to
6174  * NULL. */
6175 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
6176 				      int slot_num,
6177 				      struct ocfs2_dinode **tl_copy)
6178 {
6179 	int status;
6180 	struct inode *tl_inode = NULL;
6181 	struct buffer_head *tl_bh = NULL;
6182 	struct ocfs2_dinode *di;
6183 	struct ocfs2_truncate_log *tl;
6184 
6185 	*tl_copy = NULL;
6186 
6187 	trace_ocfs2_begin_truncate_log_recovery(slot_num);
6188 
6189 	status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
6190 	if (status < 0) {
6191 		mlog_errno(status);
6192 		goto bail;
6193 	}
6194 
6195 	di = (struct ocfs2_dinode *) tl_bh->b_data;
6196 
6197 	/* tl_bh is loaded from ocfs2_get_truncate_log_info().  It's
6198 	 * validated by the underlying call to ocfs2_read_inode_block(),
6199 	 * so any corruption is a code bug */
6200 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
6201 
6202 	tl = &di->id2.i_dealloc;
6203 	if (le16_to_cpu(tl->tl_used)) {
6204 		trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl->tl_used));
6205 
6206 		/*
6207 		 * Assuming the write-out below goes well, this copy will be
6208 		 * passed back to recovery for processing.
6209 		 */
6210 		*tl_copy = kmemdup(tl_bh->b_data, tl_bh->b_size, GFP_KERNEL);
6211 		if (!(*tl_copy)) {
6212 			status = -ENOMEM;
6213 			mlog_errno(status);
6214 			goto bail;
6215 		}
6216 
6217 		/* All we need to do to clear the truncate log is set
6218 		 * tl_used. */
6219 		tl->tl_used = 0;
6220 
6221 		ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6222 		status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
6223 		if (status < 0) {
6224 			mlog_errno(status);
6225 			goto bail;
6226 		}
6227 	}
6228 
6229 bail:
6230 	iput(tl_inode);
6231 	brelse(tl_bh);
6232 
6233 	if (status < 0) {
6234 		kfree(*tl_copy);
6235 		*tl_copy = NULL;
6236 		mlog_errno(status);
6237 	}
6238 
6239 	return status;
6240 }
6241 
6242 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6243 					 struct ocfs2_dinode *tl_copy)
6244 {
6245 	int status = 0;
6246 	int i;
6247 	unsigned int clusters, num_recs, start_cluster;
6248 	u64 start_blk;
6249 	handle_t *handle;
6250 	struct inode *tl_inode = osb->osb_tl_inode;
6251 	struct ocfs2_truncate_log *tl;
6252 
6253 	if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6254 		mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6255 		return -EINVAL;
6256 	}
6257 
6258 	tl = &tl_copy->id2.i_dealloc;
6259 	num_recs = le16_to_cpu(tl->tl_used);
6260 	trace_ocfs2_complete_truncate_log_recovery(
6261 		(unsigned long long)le64_to_cpu(tl_copy->i_blkno),
6262 		num_recs);
6263 
6264 	inode_lock(tl_inode);
6265 	for(i = 0; i < num_recs; i++) {
6266 		if (ocfs2_truncate_log_needs_flush(osb)) {
6267 			status = __ocfs2_flush_truncate_log(osb);
6268 			if (status < 0) {
6269 				mlog_errno(status);
6270 				goto bail_up;
6271 			}
6272 		}
6273 
6274 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6275 		if (IS_ERR(handle)) {
6276 			status = PTR_ERR(handle);
6277 			mlog_errno(status);
6278 			goto bail_up;
6279 		}
6280 
6281 		clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6282 		start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6283 		start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6284 
6285 		status = ocfs2_truncate_log_append(osb, handle,
6286 						   start_blk, clusters);
6287 		ocfs2_commit_trans(osb, handle);
6288 		if (status < 0) {
6289 			mlog_errno(status);
6290 			goto bail_up;
6291 		}
6292 	}
6293 
6294 bail_up:
6295 	inode_unlock(tl_inode);
6296 
6297 	return status;
6298 }
6299 
6300 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6301 {
6302 	int status;
6303 	struct inode *tl_inode = osb->osb_tl_inode;
6304 
6305 	atomic_set(&osb->osb_tl_disable, 1);
6306 
6307 	if (tl_inode) {
6308 		cancel_delayed_work(&osb->osb_truncate_log_wq);
6309 		flush_workqueue(osb->ocfs2_wq);
6310 
6311 		status = ocfs2_flush_truncate_log(osb);
6312 		if (status < 0)
6313 			mlog_errno(status);
6314 
6315 		brelse(osb->osb_tl_bh);
6316 		iput(osb->osb_tl_inode);
6317 	}
6318 }
6319 
6320 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6321 {
6322 	int status;
6323 	struct inode *tl_inode = NULL;
6324 	struct buffer_head *tl_bh = NULL;
6325 
6326 	status = ocfs2_get_truncate_log_info(osb,
6327 					     osb->slot_num,
6328 					     &tl_inode,
6329 					     &tl_bh);
6330 	if (status < 0)
6331 		mlog_errno(status);
6332 
6333 	/* ocfs2_truncate_log_shutdown keys on the existence of
6334 	 * osb->osb_tl_inode so we don't set any of the osb variables
6335 	 * until we're sure all is well. */
6336 	INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6337 			  ocfs2_truncate_log_worker);
6338 	atomic_set(&osb->osb_tl_disable, 0);
6339 	osb->osb_tl_bh    = tl_bh;
6340 	osb->osb_tl_inode = tl_inode;
6341 
6342 	return status;
6343 }
6344 
6345 /*
6346  * Delayed de-allocation of suballocator blocks.
6347  *
6348  * Some sets of block de-allocations might involve multiple suballocator inodes.
6349  *
6350  * The locking for this can get extremely complicated, especially when
6351  * the suballocator inodes to delete from aren't known until deep
6352  * within an unrelated codepath.
6353  *
6354  * ocfs2_extent_block structures are a good example of this - an inode
6355  * btree could have been grown by any number of nodes each allocating
6356  * out of their own suballoc inode.
6357  *
6358  * These structures allow the delay of block de-allocation until a
6359  * later time, when locking of multiple cluster inodes won't cause
6360  * deadlock.
6361  */
6362 
6363 /*
6364  * Describe a single bit freed from a suballocator.  For the block
6365  * suballocators, it represents one block.  For the global cluster
6366  * allocator, it represents some clusters and free_bit indicates
6367  * clusters number.
6368  */
6369 struct ocfs2_cached_block_free {
6370 	struct ocfs2_cached_block_free		*free_next;
6371 	u64					free_bg;
6372 	u64					free_blk;
6373 	unsigned int				free_bit;
6374 };
6375 
6376 struct ocfs2_per_slot_free_list {
6377 	struct ocfs2_per_slot_free_list		*f_next_suballocator;
6378 	int					f_inode_type;
6379 	int					f_slot;
6380 	struct ocfs2_cached_block_free		*f_first;
6381 };
6382 
6383 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6384 				    int sysfile_type,
6385 				    int slot,
6386 				    struct ocfs2_cached_block_free *head)
6387 {
6388 	int ret;
6389 	u64 bg_blkno;
6390 	handle_t *handle;
6391 	struct inode *inode;
6392 	struct buffer_head *di_bh = NULL;
6393 	struct ocfs2_cached_block_free *tmp;
6394 
6395 	inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6396 	if (!inode) {
6397 		ret = -EINVAL;
6398 		mlog_errno(ret);
6399 		goto out;
6400 	}
6401 
6402 	inode_lock(inode);
6403 
6404 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
6405 	if (ret) {
6406 		mlog_errno(ret);
6407 		goto out_mutex;
6408 	}
6409 
6410 	while (head) {
6411 		if (head->free_bg)
6412 			bg_blkno = head->free_bg;
6413 		else
6414 			bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6415 							      head->free_bit);
6416 		handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6417 		if (IS_ERR(handle)) {
6418 			ret = PTR_ERR(handle);
6419 			mlog_errno(ret);
6420 			goto out_unlock;
6421 		}
6422 
6423 		trace_ocfs2_free_cached_blocks(
6424 		     (unsigned long long)head->free_blk, head->free_bit);
6425 
6426 		ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6427 					       head->free_bit, bg_blkno, 1);
6428 		if (ret)
6429 			mlog_errno(ret);
6430 
6431 		ocfs2_commit_trans(osb, handle);
6432 
6433 		tmp = head;
6434 		head = head->free_next;
6435 		kfree(tmp);
6436 	}
6437 
6438 out_unlock:
6439 	ocfs2_inode_unlock(inode, 1);
6440 	brelse(di_bh);
6441 out_mutex:
6442 	inode_unlock(inode);
6443 	iput(inode);
6444 out:
6445 	while(head) {
6446 		/* Premature exit may have left some dangling items. */
6447 		tmp = head;
6448 		head = head->free_next;
6449 		kfree(tmp);
6450 	}
6451 
6452 	return ret;
6453 }
6454 
6455 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6456 				u64 blkno, unsigned int bit)
6457 {
6458 	int ret = 0;
6459 	struct ocfs2_cached_block_free *item;
6460 
6461 	item = kzalloc(sizeof(*item), GFP_NOFS);
6462 	if (item == NULL) {
6463 		ret = -ENOMEM;
6464 		mlog_errno(ret);
6465 		return ret;
6466 	}
6467 
6468 	trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno, bit);
6469 
6470 	item->free_blk = blkno;
6471 	item->free_bit = bit;
6472 	item->free_next = ctxt->c_global_allocator;
6473 
6474 	ctxt->c_global_allocator = item;
6475 	return ret;
6476 }
6477 
6478 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6479 				      struct ocfs2_cached_block_free *head)
6480 {
6481 	struct ocfs2_cached_block_free *tmp;
6482 	struct inode *tl_inode = osb->osb_tl_inode;
6483 	handle_t *handle;
6484 	int ret = 0;
6485 
6486 	inode_lock(tl_inode);
6487 
6488 	while (head) {
6489 		if (ocfs2_truncate_log_needs_flush(osb)) {
6490 			ret = __ocfs2_flush_truncate_log(osb);
6491 			if (ret < 0) {
6492 				mlog_errno(ret);
6493 				break;
6494 			}
6495 		}
6496 
6497 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6498 		if (IS_ERR(handle)) {
6499 			ret = PTR_ERR(handle);
6500 			mlog_errno(ret);
6501 			break;
6502 		}
6503 
6504 		ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6505 						head->free_bit);
6506 
6507 		ocfs2_commit_trans(osb, handle);
6508 		tmp = head;
6509 		head = head->free_next;
6510 		kfree(tmp);
6511 
6512 		if (ret < 0) {
6513 			mlog_errno(ret);
6514 			break;
6515 		}
6516 	}
6517 
6518 	inode_unlock(tl_inode);
6519 
6520 	while (head) {
6521 		/* Premature exit may have left some dangling items. */
6522 		tmp = head;
6523 		head = head->free_next;
6524 		kfree(tmp);
6525 	}
6526 
6527 	return ret;
6528 }
6529 
6530 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6531 		       struct ocfs2_cached_dealloc_ctxt *ctxt)
6532 {
6533 	int ret = 0, ret2;
6534 	struct ocfs2_per_slot_free_list *fl;
6535 
6536 	if (!ctxt)
6537 		return 0;
6538 
6539 	while (ctxt->c_first_suballocator) {
6540 		fl = ctxt->c_first_suballocator;
6541 
6542 		if (fl->f_first) {
6543 			trace_ocfs2_run_deallocs(fl->f_inode_type,
6544 						 fl->f_slot);
6545 			ret2 = ocfs2_free_cached_blocks(osb,
6546 							fl->f_inode_type,
6547 							fl->f_slot,
6548 							fl->f_first);
6549 			if (ret2)
6550 				mlog_errno(ret2);
6551 			if (!ret)
6552 				ret = ret2;
6553 		}
6554 
6555 		ctxt->c_first_suballocator = fl->f_next_suballocator;
6556 		kfree(fl);
6557 	}
6558 
6559 	if (ctxt->c_global_allocator) {
6560 		ret2 = ocfs2_free_cached_clusters(osb,
6561 						  ctxt->c_global_allocator);
6562 		if (ret2)
6563 			mlog_errno(ret2);
6564 		if (!ret)
6565 			ret = ret2;
6566 
6567 		ctxt->c_global_allocator = NULL;
6568 	}
6569 
6570 	return ret;
6571 }
6572 
6573 static struct ocfs2_per_slot_free_list *
6574 ocfs2_find_per_slot_free_list(int type,
6575 			      int slot,
6576 			      struct ocfs2_cached_dealloc_ctxt *ctxt)
6577 {
6578 	struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6579 
6580 	while (fl) {
6581 		if (fl->f_inode_type == type && fl->f_slot == slot)
6582 			return fl;
6583 
6584 		fl = fl->f_next_suballocator;
6585 	}
6586 
6587 	fl = kmalloc(sizeof(*fl), GFP_NOFS);
6588 	if (fl) {
6589 		fl->f_inode_type = type;
6590 		fl->f_slot = slot;
6591 		fl->f_first = NULL;
6592 		fl->f_next_suballocator = ctxt->c_first_suballocator;
6593 
6594 		ctxt->c_first_suballocator = fl;
6595 	}
6596 	return fl;
6597 }
6598 
6599 static struct ocfs2_per_slot_free_list *
6600 ocfs2_find_preferred_free_list(int type,
6601 			       int preferred_slot,
6602 			       int *real_slot,
6603 			       struct ocfs2_cached_dealloc_ctxt *ctxt)
6604 {
6605 	struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6606 
6607 	while (fl) {
6608 		if (fl->f_inode_type == type && fl->f_slot == preferred_slot) {
6609 			*real_slot = fl->f_slot;
6610 			return fl;
6611 		}
6612 
6613 		fl = fl->f_next_suballocator;
6614 	}
6615 
6616 	/* If we can't find any free list matching preferred slot, just use
6617 	 * the first one.
6618 	 */
6619 	fl = ctxt->c_first_suballocator;
6620 	*real_slot = fl->f_slot;
6621 
6622 	return fl;
6623 }
6624 
6625 /* Return Value 1 indicates empty */
6626 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree *et)
6627 {
6628 	struct ocfs2_per_slot_free_list *fl = NULL;
6629 
6630 	if (!et->et_dealloc)
6631 		return 1;
6632 
6633 	fl = et->et_dealloc->c_first_suballocator;
6634 	if (!fl)
6635 		return 1;
6636 
6637 	if (!fl->f_first)
6638 		return 1;
6639 
6640 	return 0;
6641 }
6642 
6643 /* If extent was deleted from tree due to extent rotation and merging, and
6644  * no metadata is reserved ahead of time. Try to reuse some extents
6645  * just deleted. This is only used to reuse extent blocks.
6646  * It is supposed to find enough extent blocks in dealloc if our estimation
6647  * on metadata is accurate.
6648  */
6649 static int ocfs2_reuse_blk_from_dealloc(handle_t *handle,
6650 					struct ocfs2_extent_tree *et,
6651 					struct buffer_head **new_eb_bh,
6652 					int blk_wanted, int *blk_given)
6653 {
6654 	int i, status = 0, real_slot;
6655 	struct ocfs2_cached_dealloc_ctxt *dealloc;
6656 	struct ocfs2_per_slot_free_list *fl;
6657 	struct ocfs2_cached_block_free *bf;
6658 	struct ocfs2_extent_block *eb;
6659 	struct ocfs2_super *osb =
6660 		OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
6661 
6662 	*blk_given = 0;
6663 
6664 	/* If extent tree doesn't have a dealloc, this is not faulty. Just
6665 	 * tell upper caller dealloc can't provide any block and it should
6666 	 * ask for alloc to claim more space.
6667 	 */
6668 	dealloc = et->et_dealloc;
6669 	if (!dealloc)
6670 		goto bail;
6671 
6672 	for (i = 0; i < blk_wanted; i++) {
6673 		/* Prefer to use local slot */
6674 		fl = ocfs2_find_preferred_free_list(EXTENT_ALLOC_SYSTEM_INODE,
6675 						    osb->slot_num, &real_slot,
6676 						    dealloc);
6677 		/* If no more block can be reused, we should claim more
6678 		 * from alloc. Just return here normally.
6679 		 */
6680 		if (!fl) {
6681 			status = 0;
6682 			break;
6683 		}
6684 
6685 		bf = fl->f_first;
6686 		fl->f_first = bf->free_next;
6687 
6688 		new_eb_bh[i] = sb_getblk(osb->sb, bf->free_blk);
6689 		if (new_eb_bh[i] == NULL) {
6690 			status = -ENOMEM;
6691 			mlog_errno(status);
6692 			goto bail;
6693 		}
6694 
6695 		mlog(0, "Reusing block(%llu) from "
6696 		     "dealloc(local slot:%d, real slot:%d)\n",
6697 		     bf->free_blk, osb->slot_num, real_slot);
6698 
6699 		ocfs2_set_new_buffer_uptodate(et->et_ci, new_eb_bh[i]);
6700 
6701 		status = ocfs2_journal_access_eb(handle, et->et_ci,
6702 						 new_eb_bh[i],
6703 						 OCFS2_JOURNAL_ACCESS_CREATE);
6704 		if (status < 0) {
6705 			mlog_errno(status);
6706 			goto bail;
6707 		}
6708 
6709 		memset(new_eb_bh[i]->b_data, 0, osb->sb->s_blocksize);
6710 		eb = (struct ocfs2_extent_block *) new_eb_bh[i]->b_data;
6711 
6712 		/* We can't guarantee that buffer head is still cached, so
6713 		 * polutlate the extent block again.
6714 		 */
6715 		strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
6716 		eb->h_blkno = cpu_to_le64(bf->free_blk);
6717 		eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
6718 		eb->h_suballoc_slot = cpu_to_le16(real_slot);
6719 		eb->h_suballoc_loc = cpu_to_le64(bf->free_bg);
6720 		eb->h_suballoc_bit = cpu_to_le16(bf->free_bit);
6721 		eb->h_list.l_count =
6722 			cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
6723 
6724 		/* We'll also be dirtied by the caller, so
6725 		 * this isn't absolutely necessary.
6726 		 */
6727 		ocfs2_journal_dirty(handle, new_eb_bh[i]);
6728 
6729 		if (!fl->f_first) {
6730 			dealloc->c_first_suballocator = fl->f_next_suballocator;
6731 			kfree(fl);
6732 		}
6733 		kfree(bf);
6734 	}
6735 
6736 	*blk_given = i;
6737 
6738 bail:
6739 	if (unlikely(status < 0)) {
6740 		for (i = 0; i < blk_wanted; i++)
6741 			brelse(new_eb_bh[i]);
6742 	}
6743 
6744 	return status;
6745 }
6746 
6747 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6748 			      int type, int slot, u64 suballoc,
6749 			      u64 blkno, unsigned int bit)
6750 {
6751 	int ret;
6752 	struct ocfs2_per_slot_free_list *fl;
6753 	struct ocfs2_cached_block_free *item;
6754 
6755 	fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6756 	if (fl == NULL) {
6757 		ret = -ENOMEM;
6758 		mlog_errno(ret);
6759 		goto out;
6760 	}
6761 
6762 	item = kzalloc(sizeof(*item), GFP_NOFS);
6763 	if (item == NULL) {
6764 		ret = -ENOMEM;
6765 		mlog_errno(ret);
6766 		goto out;
6767 	}
6768 
6769 	trace_ocfs2_cache_block_dealloc(type, slot,
6770 					(unsigned long long)suballoc,
6771 					(unsigned long long)blkno, bit);
6772 
6773 	item->free_bg = suballoc;
6774 	item->free_blk = blkno;
6775 	item->free_bit = bit;
6776 	item->free_next = fl->f_first;
6777 
6778 	fl->f_first = item;
6779 
6780 	ret = 0;
6781 out:
6782 	return ret;
6783 }
6784 
6785 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6786 					 struct ocfs2_extent_block *eb)
6787 {
6788 	return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6789 					 le16_to_cpu(eb->h_suballoc_slot),
6790 					 le64_to_cpu(eb->h_suballoc_loc),
6791 					 le64_to_cpu(eb->h_blkno),
6792 					 le16_to_cpu(eb->h_suballoc_bit));
6793 }
6794 
6795 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6796 {
6797 	set_buffer_uptodate(bh);
6798 	mark_buffer_dirty(bh);
6799 	return 0;
6800 }
6801 
6802 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6803 			      unsigned int from, unsigned int to,
6804 			      struct page *page, int zero, u64 *phys)
6805 {
6806 	int ret, partial = 0;
6807 	loff_t start_byte = ((loff_t)page->index << PAGE_SHIFT) + from;
6808 	loff_t length = to - from;
6809 
6810 	ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6811 	if (ret)
6812 		mlog_errno(ret);
6813 
6814 	if (zero)
6815 		zero_user_segment(page, from, to);
6816 
6817 	/*
6818 	 * Need to set the buffers we zero'd into uptodate
6819 	 * here if they aren't - ocfs2_map_page_blocks()
6820 	 * might've skipped some
6821 	 */
6822 	ret = walk_page_buffers(handle, page_buffers(page),
6823 				from, to, &partial,
6824 				ocfs2_zero_func);
6825 	if (ret < 0)
6826 		mlog_errno(ret);
6827 	else if (ocfs2_should_order_data(inode)) {
6828 		ret = ocfs2_jbd2_inode_add_write(handle, inode,
6829 						 start_byte, length);
6830 		if (ret < 0)
6831 			mlog_errno(ret);
6832 	}
6833 
6834 	if (!partial)
6835 		SetPageUptodate(page);
6836 
6837 	flush_dcache_page(page);
6838 }
6839 
6840 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6841 				     loff_t end, struct page **pages,
6842 				     int numpages, u64 phys, handle_t *handle)
6843 {
6844 	int i;
6845 	struct page *page;
6846 	unsigned int from, to = PAGE_SIZE;
6847 	struct super_block *sb = inode->i_sb;
6848 
6849 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6850 
6851 	if (numpages == 0)
6852 		goto out;
6853 
6854 	to = PAGE_SIZE;
6855 	for(i = 0; i < numpages; i++) {
6856 		page = pages[i];
6857 
6858 		from = start & (PAGE_SIZE - 1);
6859 		if ((end >> PAGE_SHIFT) == page->index)
6860 			to = end & (PAGE_SIZE - 1);
6861 
6862 		BUG_ON(from > PAGE_SIZE);
6863 		BUG_ON(to > PAGE_SIZE);
6864 
6865 		ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6866 					 &phys);
6867 
6868 		start = (page->index + 1) << PAGE_SHIFT;
6869 	}
6870 out:
6871 	if (pages)
6872 		ocfs2_unlock_and_free_pages(pages, numpages);
6873 }
6874 
6875 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end,
6876 		     struct page **pages, int *num)
6877 {
6878 	int numpages, ret = 0;
6879 	struct address_space *mapping = inode->i_mapping;
6880 	unsigned long index;
6881 	loff_t last_page_bytes;
6882 
6883 	BUG_ON(start > end);
6884 
6885 	numpages = 0;
6886 	last_page_bytes = PAGE_ALIGN(end);
6887 	index = start >> PAGE_SHIFT;
6888 	do {
6889 		pages[numpages] = find_or_create_page(mapping, index, GFP_NOFS);
6890 		if (!pages[numpages]) {
6891 			ret = -ENOMEM;
6892 			mlog_errno(ret);
6893 			goto out;
6894 		}
6895 
6896 		numpages++;
6897 		index++;
6898 	} while (index < (last_page_bytes >> PAGE_SHIFT));
6899 
6900 out:
6901 	if (ret != 0) {
6902 		if (pages)
6903 			ocfs2_unlock_and_free_pages(pages, numpages);
6904 		numpages = 0;
6905 	}
6906 
6907 	*num = numpages;
6908 
6909 	return ret;
6910 }
6911 
6912 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6913 				struct page **pages, int *num)
6914 {
6915 	struct super_block *sb = inode->i_sb;
6916 
6917 	BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6918 	       (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6919 
6920 	return ocfs2_grab_pages(inode, start, end, pages, num);
6921 }
6922 
6923 /*
6924  * Zero the area past i_size but still within an allocated
6925  * cluster. This avoids exposing nonzero data on subsequent file
6926  * extends.
6927  *
6928  * We need to call this before i_size is updated on the inode because
6929  * otherwise block_write_full_page() will skip writeout of pages past
6930  * i_size. The new_i_size parameter is passed for this reason.
6931  */
6932 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6933 				  u64 range_start, u64 range_end)
6934 {
6935 	int ret = 0, numpages;
6936 	struct page **pages = NULL;
6937 	u64 phys;
6938 	unsigned int ext_flags;
6939 	struct super_block *sb = inode->i_sb;
6940 
6941 	/*
6942 	 * File systems which don't support sparse files zero on every
6943 	 * extend.
6944 	 */
6945 	if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6946 		return 0;
6947 
6948 	pages = kcalloc(ocfs2_pages_per_cluster(sb),
6949 			sizeof(struct page *), GFP_NOFS);
6950 	if (pages == NULL) {
6951 		ret = -ENOMEM;
6952 		mlog_errno(ret);
6953 		goto out;
6954 	}
6955 
6956 	if (range_start == range_end)
6957 		goto out;
6958 
6959 	ret = ocfs2_extent_map_get_blocks(inode,
6960 					  range_start >> sb->s_blocksize_bits,
6961 					  &phys, NULL, &ext_flags);
6962 	if (ret) {
6963 		mlog_errno(ret);
6964 		goto out;
6965 	}
6966 
6967 	/*
6968 	 * Tail is a hole, or is marked unwritten. In either case, we
6969 	 * can count on read and write to return/push zero's.
6970 	 */
6971 	if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6972 		goto out;
6973 
6974 	ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6975 				   &numpages);
6976 	if (ret) {
6977 		mlog_errno(ret);
6978 		goto out;
6979 	}
6980 
6981 	ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6982 				 numpages, phys, handle);
6983 
6984 	/*
6985 	 * Initiate writeout of the pages we zero'd here. We don't
6986 	 * wait on them - the truncate_inode_pages() call later will
6987 	 * do that for us.
6988 	 */
6989 	ret = filemap_fdatawrite_range(inode->i_mapping, range_start,
6990 				       range_end - 1);
6991 	if (ret)
6992 		mlog_errno(ret);
6993 
6994 out:
6995 	kfree(pages);
6996 
6997 	return ret;
6998 }
6999 
7000 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
7001 					     struct ocfs2_dinode *di)
7002 {
7003 	unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
7004 	unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
7005 
7006 	if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
7007 		memset(&di->id2, 0, blocksize -
7008 				    offsetof(struct ocfs2_dinode, id2) -
7009 				    xattrsize);
7010 	else
7011 		memset(&di->id2, 0, blocksize -
7012 				    offsetof(struct ocfs2_dinode, id2));
7013 }
7014 
7015 void ocfs2_dinode_new_extent_list(struct inode *inode,
7016 				  struct ocfs2_dinode *di)
7017 {
7018 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
7019 	di->id2.i_list.l_tree_depth = 0;
7020 	di->id2.i_list.l_next_free_rec = 0;
7021 	di->id2.i_list.l_count = cpu_to_le16(
7022 		ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
7023 }
7024 
7025 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
7026 {
7027 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
7028 	struct ocfs2_inline_data *idata = &di->id2.i_data;
7029 
7030 	spin_lock(&oi->ip_lock);
7031 	oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
7032 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7033 	spin_unlock(&oi->ip_lock);
7034 
7035 	/*
7036 	 * We clear the entire i_data structure here so that all
7037 	 * fields can be properly initialized.
7038 	 */
7039 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
7040 
7041 	idata->id_count = cpu_to_le16(
7042 			ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
7043 }
7044 
7045 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
7046 					 struct buffer_head *di_bh)
7047 {
7048 	int ret, i, has_data, num_pages = 0;
7049 	int need_free = 0;
7050 	u32 bit_off, num;
7051 	handle_t *handle;
7052 	u64 block;
7053 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
7054 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7055 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7056 	struct ocfs2_alloc_context *data_ac = NULL;
7057 	struct page **pages = NULL;
7058 	loff_t end = osb->s_clustersize;
7059 	struct ocfs2_extent_tree et;
7060 	int did_quota = 0;
7061 
7062 	has_data = i_size_read(inode) ? 1 : 0;
7063 
7064 	if (has_data) {
7065 		pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
7066 				sizeof(struct page *), GFP_NOFS);
7067 		if (pages == NULL) {
7068 			ret = -ENOMEM;
7069 			mlog_errno(ret);
7070 			return ret;
7071 		}
7072 
7073 		ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
7074 		if (ret) {
7075 			mlog_errno(ret);
7076 			goto free_pages;
7077 		}
7078 	}
7079 
7080 	handle = ocfs2_start_trans(osb,
7081 				   ocfs2_inline_to_extents_credits(osb->sb));
7082 	if (IS_ERR(handle)) {
7083 		ret = PTR_ERR(handle);
7084 		mlog_errno(ret);
7085 		goto out;
7086 	}
7087 
7088 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7089 				      OCFS2_JOURNAL_ACCESS_WRITE);
7090 	if (ret) {
7091 		mlog_errno(ret);
7092 		goto out_commit;
7093 	}
7094 
7095 	if (has_data) {
7096 		unsigned int page_end;
7097 		u64 phys;
7098 
7099 		ret = dquot_alloc_space_nodirty(inode,
7100 				       ocfs2_clusters_to_bytes(osb->sb, 1));
7101 		if (ret)
7102 			goto out_commit;
7103 		did_quota = 1;
7104 
7105 		data_ac->ac_resv = &oi->ip_la_data_resv;
7106 
7107 		ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off,
7108 					   &num);
7109 		if (ret) {
7110 			mlog_errno(ret);
7111 			goto out_commit;
7112 		}
7113 
7114 		/*
7115 		 * Save two copies, one for insert, and one that can
7116 		 * be changed by ocfs2_map_and_dirty_page() below.
7117 		 */
7118 		block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
7119 
7120 		/*
7121 		 * Non sparse file systems zero on extend, so no need
7122 		 * to do that now.
7123 		 */
7124 		if (!ocfs2_sparse_alloc(osb) &&
7125 		    PAGE_SIZE < osb->s_clustersize)
7126 			end = PAGE_SIZE;
7127 
7128 		ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
7129 		if (ret) {
7130 			mlog_errno(ret);
7131 			need_free = 1;
7132 			goto out_commit;
7133 		}
7134 
7135 		/*
7136 		 * This should populate the 1st page for us and mark
7137 		 * it up to date.
7138 		 */
7139 		ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
7140 		if (ret) {
7141 			mlog_errno(ret);
7142 			need_free = 1;
7143 			goto out_unlock;
7144 		}
7145 
7146 		page_end = PAGE_SIZE;
7147 		if (PAGE_SIZE > osb->s_clustersize)
7148 			page_end = osb->s_clustersize;
7149 
7150 		for (i = 0; i < num_pages; i++)
7151 			ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
7152 						 pages[i], i > 0, &phys);
7153 	}
7154 
7155 	spin_lock(&oi->ip_lock);
7156 	oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
7157 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7158 	spin_unlock(&oi->ip_lock);
7159 
7160 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
7161 	ocfs2_dinode_new_extent_list(inode, di);
7162 
7163 	ocfs2_journal_dirty(handle, di_bh);
7164 
7165 	if (has_data) {
7166 		/*
7167 		 * An error at this point should be extremely rare. If
7168 		 * this proves to be false, we could always re-build
7169 		 * the in-inode data from our pages.
7170 		 */
7171 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
7172 		ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL);
7173 		if (ret) {
7174 			mlog_errno(ret);
7175 			need_free = 1;
7176 			goto out_unlock;
7177 		}
7178 
7179 		inode->i_blocks = ocfs2_inode_sector_count(inode);
7180 	}
7181 
7182 out_unlock:
7183 	if (pages)
7184 		ocfs2_unlock_and_free_pages(pages, num_pages);
7185 
7186 out_commit:
7187 	if (ret < 0 && did_quota)
7188 		dquot_free_space_nodirty(inode,
7189 					  ocfs2_clusters_to_bytes(osb->sb, 1));
7190 
7191 	if (need_free) {
7192 		if (data_ac->ac_which == OCFS2_AC_USE_LOCAL)
7193 			ocfs2_free_local_alloc_bits(osb, handle, data_ac,
7194 					bit_off, num);
7195 		else
7196 			ocfs2_free_clusters(handle,
7197 					data_ac->ac_inode,
7198 					data_ac->ac_bh,
7199 					ocfs2_clusters_to_blocks(osb->sb, bit_off),
7200 					num);
7201 	}
7202 
7203 	ocfs2_commit_trans(osb, handle);
7204 
7205 out:
7206 	if (data_ac)
7207 		ocfs2_free_alloc_context(data_ac);
7208 free_pages:
7209 	kfree(pages);
7210 	return ret;
7211 }
7212 
7213 /*
7214  * It is expected, that by the time you call this function,
7215  * inode->i_size and fe->i_size have been adjusted.
7216  *
7217  * WARNING: This will kfree the truncate context
7218  */
7219 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7220 			  struct inode *inode,
7221 			  struct buffer_head *di_bh)
7222 {
7223 	int status = 0, i, flags = 0;
7224 	u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff;
7225 	u64 blkno = 0;
7226 	struct ocfs2_extent_list *el;
7227 	struct ocfs2_extent_rec *rec;
7228 	struct ocfs2_path *path = NULL;
7229 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7230 	struct ocfs2_extent_list *root_el = &(di->id2.i_list);
7231 	u64 refcount_loc = le64_to_cpu(di->i_refcount_loc);
7232 	struct ocfs2_extent_tree et;
7233 	struct ocfs2_cached_dealloc_ctxt dealloc;
7234 	struct ocfs2_refcount_tree *ref_tree = NULL;
7235 
7236 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
7237 	ocfs2_init_dealloc_ctxt(&dealloc);
7238 
7239 	new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7240 						     i_size_read(inode));
7241 
7242 	path = ocfs2_new_path(di_bh, &di->id2.i_list,
7243 			      ocfs2_journal_access_di);
7244 	if (!path) {
7245 		status = -ENOMEM;
7246 		mlog_errno(status);
7247 		goto bail;
7248 	}
7249 
7250 	ocfs2_extent_map_trunc(inode, new_highest_cpos);
7251 
7252 start:
7253 	/*
7254 	 * Check that we still have allocation to delete.
7255 	 */
7256 	if (OCFS2_I(inode)->ip_clusters == 0) {
7257 		status = 0;
7258 		goto bail;
7259 	}
7260 
7261 	/*
7262 	 * Truncate always works against the rightmost tree branch.
7263 	 */
7264 	status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX);
7265 	if (status) {
7266 		mlog_errno(status);
7267 		goto bail;
7268 	}
7269 
7270 	trace_ocfs2_commit_truncate(
7271 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
7272 		new_highest_cpos,
7273 		OCFS2_I(inode)->ip_clusters,
7274 		path->p_tree_depth);
7275 
7276 	/*
7277 	 * By now, el will point to the extent list on the bottom most
7278 	 * portion of this tree. Only the tail record is considered in
7279 	 * each pass.
7280 	 *
7281 	 * We handle the following cases, in order:
7282 	 * - empty extent: delete the remaining branch
7283 	 * - remove the entire record
7284 	 * - remove a partial record
7285 	 * - no record needs to be removed (truncate has completed)
7286 	 */
7287 	el = path_leaf_el(path);
7288 	if (le16_to_cpu(el->l_next_free_rec) == 0) {
7289 		ocfs2_error(inode->i_sb,
7290 			    "Inode %llu has empty extent block at %llu\n",
7291 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7292 			    (unsigned long long)path_leaf_bh(path)->b_blocknr);
7293 		status = -EROFS;
7294 		goto bail;
7295 	}
7296 
7297 	i = le16_to_cpu(el->l_next_free_rec) - 1;
7298 	rec = &el->l_recs[i];
7299 	flags = rec->e_flags;
7300 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
7301 
7302 	if (i == 0 && ocfs2_is_empty_extent(rec)) {
7303 		/*
7304 		 * Lower levels depend on this never happening, but it's best
7305 		 * to check it up here before changing the tree.
7306 		*/
7307 		if (root_el->l_tree_depth && rec->e_int_clusters == 0) {
7308 			mlog(ML_ERROR, "Inode %lu has an empty "
7309 				    "extent record, depth %u\n", inode->i_ino,
7310 				    le16_to_cpu(root_el->l_tree_depth));
7311 			status = ocfs2_remove_rightmost_empty_extent(osb,
7312 					&et, path, &dealloc);
7313 			if (status) {
7314 				mlog_errno(status);
7315 				goto bail;
7316 			}
7317 
7318 			ocfs2_reinit_path(path, 1);
7319 			goto start;
7320 		} else {
7321 			trunc_cpos = le32_to_cpu(rec->e_cpos);
7322 			trunc_len = 0;
7323 			blkno = 0;
7324 		}
7325 	} else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) {
7326 		/*
7327 		 * Truncate entire record.
7328 		 */
7329 		trunc_cpos = le32_to_cpu(rec->e_cpos);
7330 		trunc_len = ocfs2_rec_clusters(el, rec);
7331 		blkno = le64_to_cpu(rec->e_blkno);
7332 	} else if (range > new_highest_cpos) {
7333 		/*
7334 		 * Partial truncate. it also should be
7335 		 * the last truncate we're doing.
7336 		 */
7337 		trunc_cpos = new_highest_cpos;
7338 		trunc_len = range - new_highest_cpos;
7339 		coff = new_highest_cpos - le32_to_cpu(rec->e_cpos);
7340 		blkno = le64_to_cpu(rec->e_blkno) +
7341 				ocfs2_clusters_to_blocks(inode->i_sb, coff);
7342 	} else {
7343 		/*
7344 		 * Truncate completed, leave happily.
7345 		 */
7346 		status = 0;
7347 		goto bail;
7348 	}
7349 
7350 	phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
7351 
7352 	if ((flags & OCFS2_EXT_REFCOUNTED) && trunc_len && !ref_tree) {
7353 		status = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
7354 				&ref_tree, NULL);
7355 		if (status) {
7356 			mlog_errno(status);
7357 			goto bail;
7358 		}
7359 	}
7360 
7361 	status = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
7362 					  phys_cpos, trunc_len, flags, &dealloc,
7363 					  refcount_loc, true);
7364 	if (status < 0) {
7365 		mlog_errno(status);
7366 		goto bail;
7367 	}
7368 
7369 	ocfs2_reinit_path(path, 1);
7370 
7371 	/*
7372 	 * The check above will catch the case where we've truncated
7373 	 * away all allocation.
7374 	 */
7375 	goto start;
7376 
7377 bail:
7378 	if (ref_tree)
7379 		ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
7380 
7381 	ocfs2_schedule_truncate_log_flush(osb, 1);
7382 
7383 	ocfs2_run_deallocs(osb, &dealloc);
7384 
7385 	ocfs2_free_path(path);
7386 
7387 	return status;
7388 }
7389 
7390 /*
7391  * 'start' is inclusive, 'end' is not.
7392  */
7393 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7394 			  unsigned int start, unsigned int end, int trunc)
7395 {
7396 	int ret;
7397 	unsigned int numbytes;
7398 	handle_t *handle;
7399 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7400 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7401 	struct ocfs2_inline_data *idata = &di->id2.i_data;
7402 
7403 	/* No need to punch hole beyond i_size. */
7404 	if (start >= i_size_read(inode))
7405 		return 0;
7406 
7407 	if (end > i_size_read(inode))
7408 		end = i_size_read(inode);
7409 
7410 	BUG_ON(start > end);
7411 
7412 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7413 	    !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7414 	    !ocfs2_supports_inline_data(osb)) {
7415 		ocfs2_error(inode->i_sb,
7416 			    "Inline data flags for inode %llu don't agree! Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7417 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7418 			    le16_to_cpu(di->i_dyn_features),
7419 			    OCFS2_I(inode)->ip_dyn_features,
7420 			    osb->s_feature_incompat);
7421 		ret = -EROFS;
7422 		goto out;
7423 	}
7424 
7425 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7426 	if (IS_ERR(handle)) {
7427 		ret = PTR_ERR(handle);
7428 		mlog_errno(ret);
7429 		goto out;
7430 	}
7431 
7432 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7433 				      OCFS2_JOURNAL_ACCESS_WRITE);
7434 	if (ret) {
7435 		mlog_errno(ret);
7436 		goto out_commit;
7437 	}
7438 
7439 	numbytes = end - start;
7440 	memset(idata->id_data + start, 0, numbytes);
7441 
7442 	/*
7443 	 * No need to worry about the data page here - it's been
7444 	 * truncated already and inline data doesn't need it for
7445 	 * pushing zero's to disk, so we'll let readpage pick it up
7446 	 * later.
7447 	 */
7448 	if (trunc) {
7449 		i_size_write(inode, start);
7450 		di->i_size = cpu_to_le64(start);
7451 	}
7452 
7453 	inode->i_blocks = ocfs2_inode_sector_count(inode);
7454 	inode->i_ctime = inode->i_mtime = current_time(inode);
7455 
7456 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7457 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7458 
7459 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
7460 	ocfs2_journal_dirty(handle, di_bh);
7461 
7462 out_commit:
7463 	ocfs2_commit_trans(osb, handle);
7464 
7465 out:
7466 	return ret;
7467 }
7468 
7469 static int ocfs2_trim_extent(struct super_block *sb,
7470 			     struct ocfs2_group_desc *gd,
7471 			     u64 group, u32 start, u32 count)
7472 {
7473 	u64 discard, bcount;
7474 	struct ocfs2_super *osb = OCFS2_SB(sb);
7475 
7476 	bcount = ocfs2_clusters_to_blocks(sb, count);
7477 	discard = ocfs2_clusters_to_blocks(sb, start);
7478 
7479 	/*
7480 	 * For the first cluster group, the gd->bg_blkno is not at the start
7481 	 * of the group, but at an offset from the start. If we add it while
7482 	 * calculating discard for first group, we will wrongly start fstrim a
7483 	 * few blocks after the desried start block and the range can cross
7484 	 * over into the next cluster group. So, add it only if this is not
7485 	 * the first cluster group.
7486 	 */
7487 	if (group != osb->first_cluster_group_blkno)
7488 		discard += le64_to_cpu(gd->bg_blkno);
7489 
7490 	trace_ocfs2_trim_extent(sb, (unsigned long long)discard, bcount);
7491 
7492 	return sb_issue_discard(sb, discard, bcount, GFP_NOFS, 0);
7493 }
7494 
7495 static int ocfs2_trim_group(struct super_block *sb,
7496 			    struct ocfs2_group_desc *gd, u64 group,
7497 			    u32 start, u32 max, u32 minbits)
7498 {
7499 	int ret = 0, count = 0, next;
7500 	void *bitmap = gd->bg_bitmap;
7501 
7502 	if (le16_to_cpu(gd->bg_free_bits_count) < minbits)
7503 		return 0;
7504 
7505 	trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd->bg_blkno),
7506 			       start, max, minbits);
7507 
7508 	while (start < max) {
7509 		start = ocfs2_find_next_zero_bit(bitmap, max, start);
7510 		if (start >= max)
7511 			break;
7512 		next = ocfs2_find_next_bit(bitmap, max, start);
7513 
7514 		if ((next - start) >= minbits) {
7515 			ret = ocfs2_trim_extent(sb, gd, group,
7516 						start, next - start);
7517 			if (ret < 0) {
7518 				mlog_errno(ret);
7519 				break;
7520 			}
7521 			count += next - start;
7522 		}
7523 		start = next + 1;
7524 
7525 		if (fatal_signal_pending(current)) {
7526 			count = -ERESTARTSYS;
7527 			break;
7528 		}
7529 
7530 		if ((le16_to_cpu(gd->bg_free_bits_count) - count) < minbits)
7531 			break;
7532 	}
7533 
7534 	if (ret < 0)
7535 		count = ret;
7536 
7537 	return count;
7538 }
7539 
7540 static
7541 int ocfs2_trim_mainbm(struct super_block *sb, struct fstrim_range *range)
7542 {
7543 	struct ocfs2_super *osb = OCFS2_SB(sb);
7544 	u64 start, len, trimmed = 0, first_group, last_group = 0, group = 0;
7545 	int ret, cnt;
7546 	u32 first_bit, last_bit, minlen;
7547 	struct buffer_head *main_bm_bh = NULL;
7548 	struct inode *main_bm_inode = NULL;
7549 	struct buffer_head *gd_bh = NULL;
7550 	struct ocfs2_dinode *main_bm;
7551 	struct ocfs2_group_desc *gd = NULL;
7552 
7553 	start = range->start >> osb->s_clustersize_bits;
7554 	len = range->len >> osb->s_clustersize_bits;
7555 	minlen = range->minlen >> osb->s_clustersize_bits;
7556 
7557 	if (minlen >= osb->bitmap_cpg || range->len < sb->s_blocksize)
7558 		return -EINVAL;
7559 
7560 	trace_ocfs2_trim_mainbm(start, len, minlen);
7561 
7562 next_group:
7563 	main_bm_inode = ocfs2_get_system_file_inode(osb,
7564 						    GLOBAL_BITMAP_SYSTEM_INODE,
7565 						    OCFS2_INVALID_SLOT);
7566 	if (!main_bm_inode) {
7567 		ret = -EIO;
7568 		mlog_errno(ret);
7569 		goto out;
7570 	}
7571 
7572 	inode_lock(main_bm_inode);
7573 
7574 	ret = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 0);
7575 	if (ret < 0) {
7576 		mlog_errno(ret);
7577 		goto out_mutex;
7578 	}
7579 	main_bm = (struct ocfs2_dinode *)main_bm_bh->b_data;
7580 
7581 	/*
7582 	 * Do some check before trim the first group.
7583 	 */
7584 	if (!group) {
7585 		if (start >= le32_to_cpu(main_bm->i_clusters)) {
7586 			ret = -EINVAL;
7587 			goto out_unlock;
7588 		}
7589 
7590 		if (start + len > le32_to_cpu(main_bm->i_clusters))
7591 			len = le32_to_cpu(main_bm->i_clusters) - start;
7592 
7593 		/*
7594 		 * Determine first and last group to examine based on
7595 		 * start and len
7596 		 */
7597 		first_group = ocfs2_which_cluster_group(main_bm_inode, start);
7598 		if (first_group == osb->first_cluster_group_blkno)
7599 			first_bit = start;
7600 		else
7601 			first_bit = start - ocfs2_blocks_to_clusters(sb,
7602 								first_group);
7603 		last_group = ocfs2_which_cluster_group(main_bm_inode,
7604 						       start + len - 1);
7605 		group = first_group;
7606 	}
7607 
7608 	do {
7609 		if (first_bit + len >= osb->bitmap_cpg)
7610 			last_bit = osb->bitmap_cpg;
7611 		else
7612 			last_bit = first_bit + len;
7613 
7614 		ret = ocfs2_read_group_descriptor(main_bm_inode,
7615 						  main_bm, group,
7616 						  &gd_bh);
7617 		if (ret < 0) {
7618 			mlog_errno(ret);
7619 			break;
7620 		}
7621 
7622 		gd = (struct ocfs2_group_desc *)gd_bh->b_data;
7623 		cnt = ocfs2_trim_group(sb, gd, group,
7624 				       first_bit, last_bit, minlen);
7625 		brelse(gd_bh);
7626 		gd_bh = NULL;
7627 		if (cnt < 0) {
7628 			ret = cnt;
7629 			mlog_errno(ret);
7630 			break;
7631 		}
7632 
7633 		trimmed += cnt;
7634 		len -= osb->bitmap_cpg - first_bit;
7635 		first_bit = 0;
7636 		if (group == osb->first_cluster_group_blkno)
7637 			group = ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7638 		else
7639 			group += ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7640 	} while (0);
7641 
7642 out_unlock:
7643 	ocfs2_inode_unlock(main_bm_inode, 0);
7644 	brelse(main_bm_bh);
7645 	main_bm_bh = NULL;
7646 out_mutex:
7647 	inode_unlock(main_bm_inode);
7648 	iput(main_bm_inode);
7649 
7650 	/*
7651 	 * If all the groups trim are not done or failed, but we should release
7652 	 * main_bm related locks for avoiding the current IO starve, then go to
7653 	 * trim the next group
7654 	 */
7655 	if (ret >= 0 && group <= last_group) {
7656 		cond_resched();
7657 		goto next_group;
7658 	}
7659 out:
7660 	range->len = trimmed * sb->s_blocksize;
7661 	return ret;
7662 }
7663 
7664 int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range)
7665 {
7666 	int ret;
7667 	struct ocfs2_super *osb = OCFS2_SB(sb);
7668 	struct ocfs2_trim_fs_info info, *pinfo = NULL;
7669 
7670 	ocfs2_trim_fs_lock_res_init(osb);
7671 
7672 	trace_ocfs2_trim_fs(range->start, range->len, range->minlen);
7673 
7674 	ret = ocfs2_trim_fs_lock(osb, NULL, 1);
7675 	if (ret < 0) {
7676 		if (ret != -EAGAIN) {
7677 			mlog_errno(ret);
7678 			ocfs2_trim_fs_lock_res_uninit(osb);
7679 			return ret;
7680 		}
7681 
7682 		mlog(ML_NOTICE, "Wait for trim on device (%s) to "
7683 		     "finish, which is running from another node.\n",
7684 		     osb->dev_str);
7685 		ret = ocfs2_trim_fs_lock(osb, &info, 0);
7686 		if (ret < 0) {
7687 			mlog_errno(ret);
7688 			ocfs2_trim_fs_lock_res_uninit(osb);
7689 			return ret;
7690 		}
7691 
7692 		if (info.tf_valid && info.tf_success &&
7693 		    info.tf_start == range->start &&
7694 		    info.tf_len == range->len &&
7695 		    info.tf_minlen == range->minlen) {
7696 			/* Avoid sending duplicated trim to a shared device */
7697 			mlog(ML_NOTICE, "The same trim on device (%s) was "
7698 			     "just done from node (%u), return.\n",
7699 			     osb->dev_str, info.tf_nodenum);
7700 			range->len = info.tf_trimlen;
7701 			goto out;
7702 		}
7703 	}
7704 
7705 	info.tf_nodenum = osb->node_num;
7706 	info.tf_start = range->start;
7707 	info.tf_len = range->len;
7708 	info.tf_minlen = range->minlen;
7709 
7710 	ret = ocfs2_trim_mainbm(sb, range);
7711 
7712 	info.tf_trimlen = range->len;
7713 	info.tf_success = (ret < 0 ? 0 : 1);
7714 	pinfo = &info;
7715 out:
7716 	ocfs2_trim_fs_unlock(osb, pinfo);
7717 	ocfs2_trim_fs_lock_res_uninit(osb);
7718 	return ret;
7719 }
7720