xref: /openbmc/linux/fs/ocfs2/alloc.c (revision d7283b39)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* -*- mode: c; c-basic-offset: 8; -*-
3  * vim: noexpandtab sw=8 ts=8 sts=0:
4  *
5  * alloc.c
6  *
7  * Extent allocs and frees
8  *
9  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/types.h>
14 #include <linux/slab.h>
15 #include <linux/highmem.h>
16 #include <linux/swap.h>
17 #include <linux/quotaops.h>
18 #include <linux/blkdev.h>
19 #include <linux/sched/signal.h>
20 
21 #include <cluster/masklog.h>
22 
23 #include "ocfs2.h"
24 
25 #include "alloc.h"
26 #include "aops.h"
27 #include "blockcheck.h"
28 #include "dlmglue.h"
29 #include "extent_map.h"
30 #include "inode.h"
31 #include "journal.h"
32 #include "localalloc.h"
33 #include "suballoc.h"
34 #include "sysfile.h"
35 #include "file.h"
36 #include "super.h"
37 #include "uptodate.h"
38 #include "xattr.h"
39 #include "refcounttree.h"
40 #include "ocfs2_trace.h"
41 
42 #include "buffer_head_io.h"
43 
44 enum ocfs2_contig_type {
45 	CONTIG_NONE = 0,
46 	CONTIG_LEFT,
47 	CONTIG_RIGHT,
48 	CONTIG_LEFTRIGHT,
49 };
50 
51 static enum ocfs2_contig_type
52 	ocfs2_extent_rec_contig(struct super_block *sb,
53 				struct ocfs2_extent_rec *ext,
54 				struct ocfs2_extent_rec *insert_rec);
55 /*
56  * Operations for a specific extent tree type.
57  *
58  * To implement an on-disk btree (extent tree) type in ocfs2, add
59  * an ocfs2_extent_tree_operations structure and the matching
60  * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
61  * for the allocation portion of the extent tree.
62  */
63 struct ocfs2_extent_tree_operations {
64 	/*
65 	 * last_eb_blk is the block number of the right most leaf extent
66 	 * block.  Most on-disk structures containing an extent tree store
67 	 * this value for fast access.  The ->eo_set_last_eb_blk() and
68 	 * ->eo_get_last_eb_blk() operations access this value.  They are
69 	 *  both required.
70 	 */
71 	void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
72 				   u64 blkno);
73 	u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
74 
75 	/*
76 	 * The on-disk structure usually keeps track of how many total
77 	 * clusters are stored in this extent tree.  This function updates
78 	 * that value.  new_clusters is the delta, and must be
79 	 * added to the total.  Required.
80 	 */
81 	void (*eo_update_clusters)(struct ocfs2_extent_tree *et,
82 				   u32 new_clusters);
83 
84 	/*
85 	 * If this extent tree is supported by an extent map, insert
86 	 * a record into the map.
87 	 */
88 	void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et,
89 				     struct ocfs2_extent_rec *rec);
90 
91 	/*
92 	 * If this extent tree is supported by an extent map, truncate the
93 	 * map to clusters,
94 	 */
95 	void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et,
96 				       u32 clusters);
97 
98 	/*
99 	 * If ->eo_insert_check() exists, it is called before rec is
100 	 * inserted into the extent tree.  It is optional.
101 	 */
102 	int (*eo_insert_check)(struct ocfs2_extent_tree *et,
103 			       struct ocfs2_extent_rec *rec);
104 	int (*eo_sanity_check)(struct ocfs2_extent_tree *et);
105 
106 	/*
107 	 * --------------------------------------------------------------
108 	 * The remaining are internal to ocfs2_extent_tree and don't have
109 	 * accessor functions
110 	 */
111 
112 	/*
113 	 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
114 	 * It is required.
115 	 */
116 	void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
117 
118 	/*
119 	 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
120 	 * it exists.  If it does not, et->et_max_leaf_clusters is set
121 	 * to 0 (unlimited).  Optional.
122 	 */
123 	void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et);
124 
125 	/*
126 	 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec
127 	 * are contiguous or not. Optional. Don't need to set it if use
128 	 * ocfs2_extent_rec as the tree leaf.
129 	 */
130 	enum ocfs2_contig_type
131 		(*eo_extent_contig)(struct ocfs2_extent_tree *et,
132 				    struct ocfs2_extent_rec *ext,
133 				    struct ocfs2_extent_rec *insert_rec);
134 };
135 
136 
137 /*
138  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
139  * in the methods.
140  */
141 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
142 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
143 					 u64 blkno);
144 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
145 					 u32 clusters);
146 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
147 					   struct ocfs2_extent_rec *rec);
148 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
149 					     u32 clusters);
150 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
151 				     struct ocfs2_extent_rec *rec);
152 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et);
153 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
154 
155 static int ocfs2_reuse_blk_from_dealloc(handle_t *handle,
156 					struct ocfs2_extent_tree *et,
157 					struct buffer_head **new_eb_bh,
158 					int blk_wanted, int *blk_given);
159 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree *et);
160 
161 static const struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
162 	.eo_set_last_eb_blk	= ocfs2_dinode_set_last_eb_blk,
163 	.eo_get_last_eb_blk	= ocfs2_dinode_get_last_eb_blk,
164 	.eo_update_clusters	= ocfs2_dinode_update_clusters,
165 	.eo_extent_map_insert	= ocfs2_dinode_extent_map_insert,
166 	.eo_extent_map_truncate	= ocfs2_dinode_extent_map_truncate,
167 	.eo_insert_check	= ocfs2_dinode_insert_check,
168 	.eo_sanity_check	= ocfs2_dinode_sanity_check,
169 	.eo_fill_root_el	= ocfs2_dinode_fill_root_el,
170 };
171 
172 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
173 					 u64 blkno)
174 {
175 	struct ocfs2_dinode *di = et->et_object;
176 
177 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
178 	di->i_last_eb_blk = cpu_to_le64(blkno);
179 }
180 
181 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
182 {
183 	struct ocfs2_dinode *di = et->et_object;
184 
185 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
186 	return le64_to_cpu(di->i_last_eb_blk);
187 }
188 
189 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
190 					 u32 clusters)
191 {
192 	struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
193 	struct ocfs2_dinode *di = et->et_object;
194 
195 	le32_add_cpu(&di->i_clusters, clusters);
196 	spin_lock(&oi->ip_lock);
197 	oi->ip_clusters = le32_to_cpu(di->i_clusters);
198 	spin_unlock(&oi->ip_lock);
199 }
200 
201 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
202 					   struct ocfs2_extent_rec *rec)
203 {
204 	struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
205 
206 	ocfs2_extent_map_insert_rec(inode, rec);
207 }
208 
209 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
210 					     u32 clusters)
211 {
212 	struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
213 
214 	ocfs2_extent_map_trunc(inode, clusters);
215 }
216 
217 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
218 				     struct ocfs2_extent_rec *rec)
219 {
220 	struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
221 	struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb);
222 
223 	BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL);
224 	mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
225 			(oi->ip_clusters != le32_to_cpu(rec->e_cpos)),
226 			"Device %s, asking for sparse allocation: inode %llu, "
227 			"cpos %u, clusters %u\n",
228 			osb->dev_str,
229 			(unsigned long long)oi->ip_blkno,
230 			rec->e_cpos, oi->ip_clusters);
231 
232 	return 0;
233 }
234 
235 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et)
236 {
237 	struct ocfs2_dinode *di = et->et_object;
238 
239 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
240 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
241 
242 	return 0;
243 }
244 
245 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
246 {
247 	struct ocfs2_dinode *di = et->et_object;
248 
249 	et->et_root_el = &di->id2.i_list;
250 }
251 
252 
253 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
254 {
255 	struct ocfs2_xattr_value_buf *vb = et->et_object;
256 
257 	et->et_root_el = &vb->vb_xv->xr_list;
258 }
259 
260 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
261 					      u64 blkno)
262 {
263 	struct ocfs2_xattr_value_buf *vb = et->et_object;
264 
265 	vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
266 }
267 
268 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
269 {
270 	struct ocfs2_xattr_value_buf *vb = et->et_object;
271 
272 	return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
273 }
274 
275 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et,
276 					      u32 clusters)
277 {
278 	struct ocfs2_xattr_value_buf *vb = et->et_object;
279 
280 	le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
281 }
282 
283 static const struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
284 	.eo_set_last_eb_blk	= ocfs2_xattr_value_set_last_eb_blk,
285 	.eo_get_last_eb_blk	= ocfs2_xattr_value_get_last_eb_blk,
286 	.eo_update_clusters	= ocfs2_xattr_value_update_clusters,
287 	.eo_fill_root_el	= ocfs2_xattr_value_fill_root_el,
288 };
289 
290 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
291 {
292 	struct ocfs2_xattr_block *xb = et->et_object;
293 
294 	et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
295 }
296 
297 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et)
298 {
299 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
300 	et->et_max_leaf_clusters =
301 		ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
302 }
303 
304 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
305 					     u64 blkno)
306 {
307 	struct ocfs2_xattr_block *xb = et->et_object;
308 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
309 
310 	xt->xt_last_eb_blk = cpu_to_le64(blkno);
311 }
312 
313 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
314 {
315 	struct ocfs2_xattr_block *xb = et->et_object;
316 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
317 
318 	return le64_to_cpu(xt->xt_last_eb_blk);
319 }
320 
321 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et,
322 					     u32 clusters)
323 {
324 	struct ocfs2_xattr_block *xb = et->et_object;
325 
326 	le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
327 }
328 
329 static const struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
330 	.eo_set_last_eb_blk	= ocfs2_xattr_tree_set_last_eb_blk,
331 	.eo_get_last_eb_blk	= ocfs2_xattr_tree_get_last_eb_blk,
332 	.eo_update_clusters	= ocfs2_xattr_tree_update_clusters,
333 	.eo_fill_root_el	= ocfs2_xattr_tree_fill_root_el,
334 	.eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
335 };
336 
337 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
338 					  u64 blkno)
339 {
340 	struct ocfs2_dx_root_block *dx_root = et->et_object;
341 
342 	dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
343 }
344 
345 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
346 {
347 	struct ocfs2_dx_root_block *dx_root = et->et_object;
348 
349 	return le64_to_cpu(dx_root->dr_last_eb_blk);
350 }
351 
352 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et,
353 					  u32 clusters)
354 {
355 	struct ocfs2_dx_root_block *dx_root = et->et_object;
356 
357 	le32_add_cpu(&dx_root->dr_clusters, clusters);
358 }
359 
360 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et)
361 {
362 	struct ocfs2_dx_root_block *dx_root = et->et_object;
363 
364 	BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
365 
366 	return 0;
367 }
368 
369 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
370 {
371 	struct ocfs2_dx_root_block *dx_root = et->et_object;
372 
373 	et->et_root_el = &dx_root->dr_list;
374 }
375 
376 static const struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
377 	.eo_set_last_eb_blk	= ocfs2_dx_root_set_last_eb_blk,
378 	.eo_get_last_eb_blk	= ocfs2_dx_root_get_last_eb_blk,
379 	.eo_update_clusters	= ocfs2_dx_root_update_clusters,
380 	.eo_sanity_check	= ocfs2_dx_root_sanity_check,
381 	.eo_fill_root_el	= ocfs2_dx_root_fill_root_el,
382 };
383 
384 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et)
385 {
386 	struct ocfs2_refcount_block *rb = et->et_object;
387 
388 	et->et_root_el = &rb->rf_list;
389 }
390 
391 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
392 						u64 blkno)
393 {
394 	struct ocfs2_refcount_block *rb = et->et_object;
395 
396 	rb->rf_last_eb_blk = cpu_to_le64(blkno);
397 }
398 
399 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
400 {
401 	struct ocfs2_refcount_block *rb = et->et_object;
402 
403 	return le64_to_cpu(rb->rf_last_eb_blk);
404 }
405 
406 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et,
407 						u32 clusters)
408 {
409 	struct ocfs2_refcount_block *rb = et->et_object;
410 
411 	le32_add_cpu(&rb->rf_clusters, clusters);
412 }
413 
414 static enum ocfs2_contig_type
415 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et,
416 				  struct ocfs2_extent_rec *ext,
417 				  struct ocfs2_extent_rec *insert_rec)
418 {
419 	return CONTIG_NONE;
420 }
421 
422 static const struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = {
423 	.eo_set_last_eb_blk	= ocfs2_refcount_tree_set_last_eb_blk,
424 	.eo_get_last_eb_blk	= ocfs2_refcount_tree_get_last_eb_blk,
425 	.eo_update_clusters	= ocfs2_refcount_tree_update_clusters,
426 	.eo_fill_root_el	= ocfs2_refcount_tree_fill_root_el,
427 	.eo_extent_contig	= ocfs2_refcount_tree_extent_contig,
428 };
429 
430 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
431 				     struct ocfs2_caching_info *ci,
432 				     struct buffer_head *bh,
433 				     ocfs2_journal_access_func access,
434 				     void *obj,
435 				     const struct ocfs2_extent_tree_operations *ops)
436 {
437 	et->et_ops = ops;
438 	et->et_root_bh = bh;
439 	et->et_ci = ci;
440 	et->et_root_journal_access = access;
441 	if (!obj)
442 		obj = (void *)bh->b_data;
443 	et->et_object = obj;
444 	et->et_dealloc = NULL;
445 
446 	et->et_ops->eo_fill_root_el(et);
447 	if (!et->et_ops->eo_fill_max_leaf_clusters)
448 		et->et_max_leaf_clusters = 0;
449 	else
450 		et->et_ops->eo_fill_max_leaf_clusters(et);
451 }
452 
453 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
454 				   struct ocfs2_caching_info *ci,
455 				   struct buffer_head *bh)
456 {
457 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di,
458 				 NULL, &ocfs2_dinode_et_ops);
459 }
460 
461 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
462 				       struct ocfs2_caching_info *ci,
463 				       struct buffer_head *bh)
464 {
465 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb,
466 				 NULL, &ocfs2_xattr_tree_et_ops);
467 }
468 
469 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
470 					struct ocfs2_caching_info *ci,
471 					struct ocfs2_xattr_value_buf *vb)
472 {
473 	__ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb,
474 				 &ocfs2_xattr_value_et_ops);
475 }
476 
477 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
478 				    struct ocfs2_caching_info *ci,
479 				    struct buffer_head *bh)
480 {
481 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr,
482 				 NULL, &ocfs2_dx_root_et_ops);
483 }
484 
485 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et,
486 				     struct ocfs2_caching_info *ci,
487 				     struct buffer_head *bh)
488 {
489 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb,
490 				 NULL, &ocfs2_refcount_tree_et_ops);
491 }
492 
493 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
494 					    u64 new_last_eb_blk)
495 {
496 	et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
497 }
498 
499 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
500 {
501 	return et->et_ops->eo_get_last_eb_blk(et);
502 }
503 
504 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et,
505 					    u32 clusters)
506 {
507 	et->et_ops->eo_update_clusters(et, clusters);
508 }
509 
510 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et,
511 					      struct ocfs2_extent_rec *rec)
512 {
513 	if (et->et_ops->eo_extent_map_insert)
514 		et->et_ops->eo_extent_map_insert(et, rec);
515 }
516 
517 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et,
518 						u32 clusters)
519 {
520 	if (et->et_ops->eo_extent_map_truncate)
521 		et->et_ops->eo_extent_map_truncate(et, clusters);
522 }
523 
524 static inline int ocfs2_et_root_journal_access(handle_t *handle,
525 					       struct ocfs2_extent_tree *et,
526 					       int type)
527 {
528 	return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh,
529 					  type);
530 }
531 
532 static inline enum ocfs2_contig_type
533 	ocfs2_et_extent_contig(struct ocfs2_extent_tree *et,
534 			       struct ocfs2_extent_rec *rec,
535 			       struct ocfs2_extent_rec *insert_rec)
536 {
537 	if (et->et_ops->eo_extent_contig)
538 		return et->et_ops->eo_extent_contig(et, rec, insert_rec);
539 
540 	return ocfs2_extent_rec_contig(
541 				ocfs2_metadata_cache_get_super(et->et_ci),
542 				rec, insert_rec);
543 }
544 
545 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et,
546 					struct ocfs2_extent_rec *rec)
547 {
548 	int ret = 0;
549 
550 	if (et->et_ops->eo_insert_check)
551 		ret = et->et_ops->eo_insert_check(et, rec);
552 	return ret;
553 }
554 
555 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et)
556 {
557 	int ret = 0;
558 
559 	if (et->et_ops->eo_sanity_check)
560 		ret = et->et_ops->eo_sanity_check(et);
561 	return ret;
562 }
563 
564 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
565 					 struct ocfs2_extent_block *eb);
566 static void ocfs2_adjust_rightmost_records(handle_t *handle,
567 					   struct ocfs2_extent_tree *et,
568 					   struct ocfs2_path *path,
569 					   struct ocfs2_extent_rec *insert_rec);
570 /*
571  * Reset the actual path elements so that we can re-use the structure
572  * to build another path. Generally, this involves freeing the buffer
573  * heads.
574  */
575 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
576 {
577 	int i, start = 0, depth = 0;
578 	struct ocfs2_path_item *node;
579 
580 	if (keep_root)
581 		start = 1;
582 
583 	for(i = start; i < path_num_items(path); i++) {
584 		node = &path->p_node[i];
585 
586 		brelse(node->bh);
587 		node->bh = NULL;
588 		node->el = NULL;
589 	}
590 
591 	/*
592 	 * Tree depth may change during truncate, or insert. If we're
593 	 * keeping the root extent list, then make sure that our path
594 	 * structure reflects the proper depth.
595 	 */
596 	if (keep_root)
597 		depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
598 	else
599 		path_root_access(path) = NULL;
600 
601 	path->p_tree_depth = depth;
602 }
603 
604 void ocfs2_free_path(struct ocfs2_path *path)
605 {
606 	if (path) {
607 		ocfs2_reinit_path(path, 0);
608 		kfree(path);
609 	}
610 }
611 
612 /*
613  * All the elements of src into dest. After this call, src could be freed
614  * without affecting dest.
615  *
616  * Both paths should have the same root. Any non-root elements of dest
617  * will be freed.
618  */
619 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
620 {
621 	int i;
622 
623 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
624 	BUG_ON(path_root_el(dest) != path_root_el(src));
625 	BUG_ON(path_root_access(dest) != path_root_access(src));
626 
627 	ocfs2_reinit_path(dest, 1);
628 
629 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
630 		dest->p_node[i].bh = src->p_node[i].bh;
631 		dest->p_node[i].el = src->p_node[i].el;
632 
633 		if (dest->p_node[i].bh)
634 			get_bh(dest->p_node[i].bh);
635 	}
636 }
637 
638 /*
639  * Make the *dest path the same as src and re-initialize src path to
640  * have a root only.
641  */
642 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
643 {
644 	int i;
645 
646 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
647 	BUG_ON(path_root_access(dest) != path_root_access(src));
648 
649 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
650 		brelse(dest->p_node[i].bh);
651 
652 		dest->p_node[i].bh = src->p_node[i].bh;
653 		dest->p_node[i].el = src->p_node[i].el;
654 
655 		src->p_node[i].bh = NULL;
656 		src->p_node[i].el = NULL;
657 	}
658 }
659 
660 /*
661  * Insert an extent block at given index.
662  *
663  * This will not take an additional reference on eb_bh.
664  */
665 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
666 					struct buffer_head *eb_bh)
667 {
668 	struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
669 
670 	/*
671 	 * Right now, no root bh is an extent block, so this helps
672 	 * catch code errors with dinode trees. The assertion can be
673 	 * safely removed if we ever need to insert extent block
674 	 * structures at the root.
675 	 */
676 	BUG_ON(index == 0);
677 
678 	path->p_node[index].bh = eb_bh;
679 	path->p_node[index].el = &eb->h_list;
680 }
681 
682 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
683 					 struct ocfs2_extent_list *root_el,
684 					 ocfs2_journal_access_func access)
685 {
686 	struct ocfs2_path *path;
687 
688 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
689 
690 	path = kzalloc(sizeof(*path), GFP_NOFS);
691 	if (path) {
692 		path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
693 		get_bh(root_bh);
694 		path_root_bh(path) = root_bh;
695 		path_root_el(path) = root_el;
696 		path_root_access(path) = access;
697 	}
698 
699 	return path;
700 }
701 
702 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
703 {
704 	return ocfs2_new_path(path_root_bh(path), path_root_el(path),
705 			      path_root_access(path));
706 }
707 
708 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
709 {
710 	return ocfs2_new_path(et->et_root_bh, et->et_root_el,
711 			      et->et_root_journal_access);
712 }
713 
714 /*
715  * Journal the buffer at depth idx.  All idx>0 are extent_blocks,
716  * otherwise it's the root_access function.
717  *
718  * I don't like the way this function's name looks next to
719  * ocfs2_journal_access_path(), but I don't have a better one.
720  */
721 int ocfs2_path_bh_journal_access(handle_t *handle,
722 				 struct ocfs2_caching_info *ci,
723 				 struct ocfs2_path *path,
724 				 int idx)
725 {
726 	ocfs2_journal_access_func access = path_root_access(path);
727 
728 	if (!access)
729 		access = ocfs2_journal_access;
730 
731 	if (idx)
732 		access = ocfs2_journal_access_eb;
733 
734 	return access(handle, ci, path->p_node[idx].bh,
735 		      OCFS2_JOURNAL_ACCESS_WRITE);
736 }
737 
738 /*
739  * Convenience function to journal all components in a path.
740  */
741 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci,
742 			      handle_t *handle,
743 			      struct ocfs2_path *path)
744 {
745 	int i, ret = 0;
746 
747 	if (!path)
748 		goto out;
749 
750 	for(i = 0; i < path_num_items(path); i++) {
751 		ret = ocfs2_path_bh_journal_access(handle, ci, path, i);
752 		if (ret < 0) {
753 			mlog_errno(ret);
754 			goto out;
755 		}
756 	}
757 
758 out:
759 	return ret;
760 }
761 
762 /*
763  * Return the index of the extent record which contains cluster #v_cluster.
764  * -1 is returned if it was not found.
765  *
766  * Should work fine on interior and exterior nodes.
767  */
768 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
769 {
770 	int ret = -1;
771 	int i;
772 	struct ocfs2_extent_rec *rec;
773 	u32 rec_end, rec_start, clusters;
774 
775 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
776 		rec = &el->l_recs[i];
777 
778 		rec_start = le32_to_cpu(rec->e_cpos);
779 		clusters = ocfs2_rec_clusters(el, rec);
780 
781 		rec_end = rec_start + clusters;
782 
783 		if (v_cluster >= rec_start && v_cluster < rec_end) {
784 			ret = i;
785 			break;
786 		}
787 	}
788 
789 	return ret;
790 }
791 
792 /*
793  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
794  * ocfs2_extent_rec_contig only work properly against leaf nodes!
795  */
796 static int ocfs2_block_extent_contig(struct super_block *sb,
797 				     struct ocfs2_extent_rec *ext,
798 				     u64 blkno)
799 {
800 	u64 blk_end = le64_to_cpu(ext->e_blkno);
801 
802 	blk_end += ocfs2_clusters_to_blocks(sb,
803 				    le16_to_cpu(ext->e_leaf_clusters));
804 
805 	return blkno == blk_end;
806 }
807 
808 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
809 				  struct ocfs2_extent_rec *right)
810 {
811 	u32 left_range;
812 
813 	left_range = le32_to_cpu(left->e_cpos) +
814 		le16_to_cpu(left->e_leaf_clusters);
815 
816 	return (left_range == le32_to_cpu(right->e_cpos));
817 }
818 
819 static enum ocfs2_contig_type
820 	ocfs2_extent_rec_contig(struct super_block *sb,
821 				struct ocfs2_extent_rec *ext,
822 				struct ocfs2_extent_rec *insert_rec)
823 {
824 	u64 blkno = le64_to_cpu(insert_rec->e_blkno);
825 
826 	/*
827 	 * Refuse to coalesce extent records with different flag
828 	 * fields - we don't want to mix unwritten extents with user
829 	 * data.
830 	 */
831 	if (ext->e_flags != insert_rec->e_flags)
832 		return CONTIG_NONE;
833 
834 	if (ocfs2_extents_adjacent(ext, insert_rec) &&
835 	    ocfs2_block_extent_contig(sb, ext, blkno))
836 			return CONTIG_RIGHT;
837 
838 	blkno = le64_to_cpu(ext->e_blkno);
839 	if (ocfs2_extents_adjacent(insert_rec, ext) &&
840 	    ocfs2_block_extent_contig(sb, insert_rec, blkno))
841 		return CONTIG_LEFT;
842 
843 	return CONTIG_NONE;
844 }
845 
846 /*
847  * NOTE: We can have pretty much any combination of contiguousness and
848  * appending.
849  *
850  * The usefulness of APPEND_TAIL is more in that it lets us know that
851  * we'll have to update the path to that leaf.
852  */
853 enum ocfs2_append_type {
854 	APPEND_NONE = 0,
855 	APPEND_TAIL,
856 };
857 
858 enum ocfs2_split_type {
859 	SPLIT_NONE = 0,
860 	SPLIT_LEFT,
861 	SPLIT_RIGHT,
862 };
863 
864 struct ocfs2_insert_type {
865 	enum ocfs2_split_type	ins_split;
866 	enum ocfs2_append_type	ins_appending;
867 	enum ocfs2_contig_type	ins_contig;
868 	int			ins_contig_index;
869 	int			ins_tree_depth;
870 };
871 
872 struct ocfs2_merge_ctxt {
873 	enum ocfs2_contig_type	c_contig_type;
874 	int			c_has_empty_extent;
875 	int			c_split_covers_rec;
876 };
877 
878 static int ocfs2_validate_extent_block(struct super_block *sb,
879 				       struct buffer_head *bh)
880 {
881 	int rc;
882 	struct ocfs2_extent_block *eb =
883 		(struct ocfs2_extent_block *)bh->b_data;
884 
885 	trace_ocfs2_validate_extent_block((unsigned long long)bh->b_blocknr);
886 
887 	BUG_ON(!buffer_uptodate(bh));
888 
889 	/*
890 	 * If the ecc fails, we return the error but otherwise
891 	 * leave the filesystem running.  We know any error is
892 	 * local to this block.
893 	 */
894 	rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
895 	if (rc) {
896 		mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
897 		     (unsigned long long)bh->b_blocknr);
898 		return rc;
899 	}
900 
901 	/*
902 	 * Errors after here are fatal.
903 	 */
904 
905 	if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
906 		rc = ocfs2_error(sb,
907 				 "Extent block #%llu has bad signature %.*s\n",
908 				 (unsigned long long)bh->b_blocknr, 7,
909 				 eb->h_signature);
910 		goto bail;
911 	}
912 
913 	if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
914 		rc = ocfs2_error(sb,
915 				 "Extent block #%llu has an invalid h_blkno of %llu\n",
916 				 (unsigned long long)bh->b_blocknr,
917 				 (unsigned long long)le64_to_cpu(eb->h_blkno));
918 		goto bail;
919 	}
920 
921 	if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation)
922 		rc = ocfs2_error(sb,
923 				 "Extent block #%llu has an invalid h_fs_generation of #%u\n",
924 				 (unsigned long long)bh->b_blocknr,
925 				 le32_to_cpu(eb->h_fs_generation));
926 bail:
927 	return rc;
928 }
929 
930 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno,
931 			    struct buffer_head **bh)
932 {
933 	int rc;
934 	struct buffer_head *tmp = *bh;
935 
936 	rc = ocfs2_read_block(ci, eb_blkno, &tmp,
937 			      ocfs2_validate_extent_block);
938 
939 	/* If ocfs2_read_block() got us a new bh, pass it up. */
940 	if (!rc && !*bh)
941 		*bh = tmp;
942 
943 	return rc;
944 }
945 
946 
947 /*
948  * How many free extents have we got before we need more meta data?
949  */
950 int ocfs2_num_free_extents(struct ocfs2_extent_tree *et)
951 {
952 	int retval;
953 	struct ocfs2_extent_list *el = NULL;
954 	struct ocfs2_extent_block *eb;
955 	struct buffer_head *eb_bh = NULL;
956 	u64 last_eb_blk = 0;
957 
958 	el = et->et_root_el;
959 	last_eb_blk = ocfs2_et_get_last_eb_blk(et);
960 
961 	if (last_eb_blk) {
962 		retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk,
963 						 &eb_bh);
964 		if (retval < 0) {
965 			mlog_errno(retval);
966 			goto bail;
967 		}
968 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
969 		el = &eb->h_list;
970 	}
971 
972 	BUG_ON(el->l_tree_depth != 0);
973 
974 	retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
975 bail:
976 	brelse(eb_bh);
977 
978 	trace_ocfs2_num_free_extents(retval);
979 	return retval;
980 }
981 
982 /* expects array to already be allocated
983  *
984  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
985  * l_count for you
986  */
987 static int ocfs2_create_new_meta_bhs(handle_t *handle,
988 				     struct ocfs2_extent_tree *et,
989 				     int wanted,
990 				     struct ocfs2_alloc_context *meta_ac,
991 				     struct buffer_head *bhs[])
992 {
993 	int count, status, i;
994 	u16 suballoc_bit_start;
995 	u32 num_got;
996 	u64 suballoc_loc, first_blkno;
997 	struct ocfs2_super *osb =
998 		OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
999 	struct ocfs2_extent_block *eb;
1000 
1001 	count = 0;
1002 	while (count < wanted) {
1003 		status = ocfs2_claim_metadata(handle,
1004 					      meta_ac,
1005 					      wanted - count,
1006 					      &suballoc_loc,
1007 					      &suballoc_bit_start,
1008 					      &num_got,
1009 					      &first_blkno);
1010 		if (status < 0) {
1011 			mlog_errno(status);
1012 			goto bail;
1013 		}
1014 
1015 		for(i = count;  i < (num_got + count); i++) {
1016 			bhs[i] = sb_getblk(osb->sb, first_blkno);
1017 			if (bhs[i] == NULL) {
1018 				status = -ENOMEM;
1019 				mlog_errno(status);
1020 				goto bail;
1021 			}
1022 			ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]);
1023 
1024 			status = ocfs2_journal_access_eb(handle, et->et_ci,
1025 							 bhs[i],
1026 							 OCFS2_JOURNAL_ACCESS_CREATE);
1027 			if (status < 0) {
1028 				mlog_errno(status);
1029 				goto bail;
1030 			}
1031 
1032 			memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
1033 			eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
1034 			/* Ok, setup the minimal stuff here. */
1035 			strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
1036 			eb->h_blkno = cpu_to_le64(first_blkno);
1037 			eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
1038 			eb->h_suballoc_slot =
1039 				cpu_to_le16(meta_ac->ac_alloc_slot);
1040 			eb->h_suballoc_loc = cpu_to_le64(suballoc_loc);
1041 			eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
1042 			eb->h_list.l_count =
1043 				cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
1044 
1045 			suballoc_bit_start++;
1046 			first_blkno++;
1047 
1048 			/* We'll also be dirtied by the caller, so
1049 			 * this isn't absolutely necessary. */
1050 			ocfs2_journal_dirty(handle, bhs[i]);
1051 		}
1052 
1053 		count += num_got;
1054 	}
1055 
1056 	status = 0;
1057 bail:
1058 	if (status < 0) {
1059 		for(i = 0; i < wanted; i++) {
1060 			brelse(bhs[i]);
1061 			bhs[i] = NULL;
1062 		}
1063 		mlog_errno(status);
1064 	}
1065 	return status;
1066 }
1067 
1068 /*
1069  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1070  *
1071  * Returns the sum of the rightmost extent rec logical offset and
1072  * cluster count.
1073  *
1074  * ocfs2_add_branch() uses this to determine what logical cluster
1075  * value should be populated into the leftmost new branch records.
1076  *
1077  * ocfs2_shift_tree_depth() uses this to determine the # clusters
1078  * value for the new topmost tree record.
1079  */
1080 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
1081 {
1082 	int i;
1083 
1084 	i = le16_to_cpu(el->l_next_free_rec) - 1;
1085 
1086 	return le32_to_cpu(el->l_recs[i].e_cpos) +
1087 		ocfs2_rec_clusters(el, &el->l_recs[i]);
1088 }
1089 
1090 /*
1091  * Change range of the branches in the right most path according to the leaf
1092  * extent block's rightmost record.
1093  */
1094 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1095 					 struct ocfs2_extent_tree *et)
1096 {
1097 	int status;
1098 	struct ocfs2_path *path = NULL;
1099 	struct ocfs2_extent_list *el;
1100 	struct ocfs2_extent_rec *rec;
1101 
1102 	path = ocfs2_new_path_from_et(et);
1103 	if (!path) {
1104 		status = -ENOMEM;
1105 		return status;
1106 	}
1107 
1108 	status = ocfs2_find_path(et->et_ci, path, UINT_MAX);
1109 	if (status < 0) {
1110 		mlog_errno(status);
1111 		goto out;
1112 	}
1113 
1114 	status = ocfs2_extend_trans(handle, path_num_items(path));
1115 	if (status < 0) {
1116 		mlog_errno(status);
1117 		goto out;
1118 	}
1119 
1120 	status = ocfs2_journal_access_path(et->et_ci, handle, path);
1121 	if (status < 0) {
1122 		mlog_errno(status);
1123 		goto out;
1124 	}
1125 
1126 	el = path_leaf_el(path);
1127 	rec = &el->l_recs[le16_to_cpu(el->l_next_free_rec) - 1];
1128 
1129 	ocfs2_adjust_rightmost_records(handle, et, path, rec);
1130 
1131 out:
1132 	ocfs2_free_path(path);
1133 	return status;
1134 }
1135 
1136 /*
1137  * Add an entire tree branch to our inode. eb_bh is the extent block
1138  * to start at, if we don't want to start the branch at the root
1139  * structure.
1140  *
1141  * last_eb_bh is required as we have to update it's next_leaf pointer
1142  * for the new last extent block.
1143  *
1144  * the new branch will be 'empty' in the sense that every block will
1145  * contain a single record with cluster count == 0.
1146  */
1147 static int ocfs2_add_branch(handle_t *handle,
1148 			    struct ocfs2_extent_tree *et,
1149 			    struct buffer_head *eb_bh,
1150 			    struct buffer_head **last_eb_bh,
1151 			    struct ocfs2_alloc_context *meta_ac)
1152 {
1153 	int status, new_blocks, i, block_given = 0;
1154 	u64 next_blkno, new_last_eb_blk;
1155 	struct buffer_head *bh;
1156 	struct buffer_head **new_eb_bhs = NULL;
1157 	struct ocfs2_extent_block *eb;
1158 	struct ocfs2_extent_list  *eb_el;
1159 	struct ocfs2_extent_list  *el;
1160 	u32 new_cpos, root_end;
1161 
1162 	BUG_ON(!last_eb_bh || !*last_eb_bh);
1163 
1164 	if (eb_bh) {
1165 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1166 		el = &eb->h_list;
1167 	} else
1168 		el = et->et_root_el;
1169 
1170 	/* we never add a branch to a leaf. */
1171 	BUG_ON(!el->l_tree_depth);
1172 
1173 	new_blocks = le16_to_cpu(el->l_tree_depth);
1174 
1175 	eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1176 	new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1177 	root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1178 
1179 	/*
1180 	 * If there is a gap before the root end and the real end
1181 	 * of the righmost leaf block, we need to remove the gap
1182 	 * between new_cpos and root_end first so that the tree
1183 	 * is consistent after we add a new branch(it will start
1184 	 * from new_cpos).
1185 	 */
1186 	if (root_end > new_cpos) {
1187 		trace_ocfs2_adjust_rightmost_branch(
1188 			(unsigned long long)
1189 			ocfs2_metadata_cache_owner(et->et_ci),
1190 			root_end, new_cpos);
1191 
1192 		status = ocfs2_adjust_rightmost_branch(handle, et);
1193 		if (status) {
1194 			mlog_errno(status);
1195 			goto bail;
1196 		}
1197 	}
1198 
1199 	/* allocate the number of new eb blocks we need */
1200 	new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1201 			     GFP_KERNEL);
1202 	if (!new_eb_bhs) {
1203 		status = -ENOMEM;
1204 		mlog_errno(status);
1205 		goto bail;
1206 	}
1207 
1208 	/* Firstyly, try to reuse dealloc since we have already estimated how
1209 	 * many extent blocks we may use.
1210 	 */
1211 	if (!ocfs2_is_dealloc_empty(et)) {
1212 		status = ocfs2_reuse_blk_from_dealloc(handle, et,
1213 						      new_eb_bhs, new_blocks,
1214 						      &block_given);
1215 		if (status < 0) {
1216 			mlog_errno(status);
1217 			goto bail;
1218 		}
1219 	}
1220 
1221 	BUG_ON(block_given > new_blocks);
1222 
1223 	if (block_given < new_blocks) {
1224 		BUG_ON(!meta_ac);
1225 		status = ocfs2_create_new_meta_bhs(handle, et,
1226 						   new_blocks - block_given,
1227 						   meta_ac,
1228 						   &new_eb_bhs[block_given]);
1229 		if (status < 0) {
1230 			mlog_errno(status);
1231 			goto bail;
1232 		}
1233 	}
1234 
1235 	/* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1236 	 * linked with the rest of the tree.
1237 	 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1238 	 *
1239 	 * when we leave the loop, new_last_eb_blk will point to the
1240 	 * newest leaf, and next_blkno will point to the topmost extent
1241 	 * block. */
1242 	next_blkno = new_last_eb_blk = 0;
1243 	for(i = 0; i < new_blocks; i++) {
1244 		bh = new_eb_bhs[i];
1245 		eb = (struct ocfs2_extent_block *) bh->b_data;
1246 		/* ocfs2_create_new_meta_bhs() should create it right! */
1247 		BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1248 		eb_el = &eb->h_list;
1249 
1250 		status = ocfs2_journal_access_eb(handle, et->et_ci, bh,
1251 						 OCFS2_JOURNAL_ACCESS_CREATE);
1252 		if (status < 0) {
1253 			mlog_errno(status);
1254 			goto bail;
1255 		}
1256 
1257 		eb->h_next_leaf_blk = 0;
1258 		eb_el->l_tree_depth = cpu_to_le16(i);
1259 		eb_el->l_next_free_rec = cpu_to_le16(1);
1260 		/*
1261 		 * This actually counts as an empty extent as
1262 		 * c_clusters == 0
1263 		 */
1264 		eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1265 		eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1266 		/*
1267 		 * eb_el isn't always an interior node, but even leaf
1268 		 * nodes want a zero'd flags and reserved field so
1269 		 * this gets the whole 32 bits regardless of use.
1270 		 */
1271 		eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1272 		if (!eb_el->l_tree_depth)
1273 			new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1274 
1275 		ocfs2_journal_dirty(handle, bh);
1276 		next_blkno = le64_to_cpu(eb->h_blkno);
1277 	}
1278 
1279 	/* This is a bit hairy. We want to update up to three blocks
1280 	 * here without leaving any of them in an inconsistent state
1281 	 * in case of error. We don't have to worry about
1282 	 * journal_dirty erroring as it won't unless we've aborted the
1283 	 * handle (in which case we would never be here) so reserving
1284 	 * the write with journal_access is all we need to do. */
1285 	status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh,
1286 					 OCFS2_JOURNAL_ACCESS_WRITE);
1287 	if (status < 0) {
1288 		mlog_errno(status);
1289 		goto bail;
1290 	}
1291 	status = ocfs2_et_root_journal_access(handle, et,
1292 					      OCFS2_JOURNAL_ACCESS_WRITE);
1293 	if (status < 0) {
1294 		mlog_errno(status);
1295 		goto bail;
1296 	}
1297 	if (eb_bh) {
1298 		status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh,
1299 						 OCFS2_JOURNAL_ACCESS_WRITE);
1300 		if (status < 0) {
1301 			mlog_errno(status);
1302 			goto bail;
1303 		}
1304 	}
1305 
1306 	/* Link the new branch into the rest of the tree (el will
1307 	 * either be on the root_bh, or the extent block passed in. */
1308 	i = le16_to_cpu(el->l_next_free_rec);
1309 	el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1310 	el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1311 	el->l_recs[i].e_int_clusters = 0;
1312 	le16_add_cpu(&el->l_next_free_rec, 1);
1313 
1314 	/* fe needs a new last extent block pointer, as does the
1315 	 * next_leaf on the previously last-extent-block. */
1316 	ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1317 
1318 	eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1319 	eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1320 
1321 	ocfs2_journal_dirty(handle, *last_eb_bh);
1322 	ocfs2_journal_dirty(handle, et->et_root_bh);
1323 	if (eb_bh)
1324 		ocfs2_journal_dirty(handle, eb_bh);
1325 
1326 	/*
1327 	 * Some callers want to track the rightmost leaf so pass it
1328 	 * back here.
1329 	 */
1330 	brelse(*last_eb_bh);
1331 	get_bh(new_eb_bhs[0]);
1332 	*last_eb_bh = new_eb_bhs[0];
1333 
1334 	status = 0;
1335 bail:
1336 	if (new_eb_bhs) {
1337 		for (i = 0; i < new_blocks; i++)
1338 			brelse(new_eb_bhs[i]);
1339 		kfree(new_eb_bhs);
1340 	}
1341 
1342 	return status;
1343 }
1344 
1345 /*
1346  * adds another level to the allocation tree.
1347  * returns back the new extent block so you can add a branch to it
1348  * after this call.
1349  */
1350 static int ocfs2_shift_tree_depth(handle_t *handle,
1351 				  struct ocfs2_extent_tree *et,
1352 				  struct ocfs2_alloc_context *meta_ac,
1353 				  struct buffer_head **ret_new_eb_bh)
1354 {
1355 	int status, i, block_given = 0;
1356 	u32 new_clusters;
1357 	struct buffer_head *new_eb_bh = NULL;
1358 	struct ocfs2_extent_block *eb;
1359 	struct ocfs2_extent_list  *root_el;
1360 	struct ocfs2_extent_list  *eb_el;
1361 
1362 	if (!ocfs2_is_dealloc_empty(et)) {
1363 		status = ocfs2_reuse_blk_from_dealloc(handle, et,
1364 						      &new_eb_bh, 1,
1365 						      &block_given);
1366 	} else if (meta_ac) {
1367 		status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac,
1368 						   &new_eb_bh);
1369 
1370 	} else {
1371 		BUG();
1372 	}
1373 
1374 	if (status < 0) {
1375 		mlog_errno(status);
1376 		goto bail;
1377 	}
1378 
1379 	eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1380 	/* ocfs2_create_new_meta_bhs() should create it right! */
1381 	BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1382 
1383 	eb_el = &eb->h_list;
1384 	root_el = et->et_root_el;
1385 
1386 	status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh,
1387 					 OCFS2_JOURNAL_ACCESS_CREATE);
1388 	if (status < 0) {
1389 		mlog_errno(status);
1390 		goto bail;
1391 	}
1392 
1393 	/* copy the root extent list data into the new extent block */
1394 	eb_el->l_tree_depth = root_el->l_tree_depth;
1395 	eb_el->l_next_free_rec = root_el->l_next_free_rec;
1396 	for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1397 		eb_el->l_recs[i] = root_el->l_recs[i];
1398 
1399 	ocfs2_journal_dirty(handle, new_eb_bh);
1400 
1401 	status = ocfs2_et_root_journal_access(handle, et,
1402 					      OCFS2_JOURNAL_ACCESS_WRITE);
1403 	if (status < 0) {
1404 		mlog_errno(status);
1405 		goto bail;
1406 	}
1407 
1408 	new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1409 
1410 	/* update root_bh now */
1411 	le16_add_cpu(&root_el->l_tree_depth, 1);
1412 	root_el->l_recs[0].e_cpos = 0;
1413 	root_el->l_recs[0].e_blkno = eb->h_blkno;
1414 	root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1415 	for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1416 		memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1417 	root_el->l_next_free_rec = cpu_to_le16(1);
1418 
1419 	/* If this is our 1st tree depth shift, then last_eb_blk
1420 	 * becomes the allocated extent block */
1421 	if (root_el->l_tree_depth == cpu_to_le16(1))
1422 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1423 
1424 	ocfs2_journal_dirty(handle, et->et_root_bh);
1425 
1426 	*ret_new_eb_bh = new_eb_bh;
1427 	new_eb_bh = NULL;
1428 	status = 0;
1429 bail:
1430 	brelse(new_eb_bh);
1431 
1432 	return status;
1433 }
1434 
1435 /*
1436  * Should only be called when there is no space left in any of the
1437  * leaf nodes. What we want to do is find the lowest tree depth
1438  * non-leaf extent block with room for new records. There are three
1439  * valid results of this search:
1440  *
1441  * 1) a lowest extent block is found, then we pass it back in
1442  *    *lowest_eb_bh and return '0'
1443  *
1444  * 2) the search fails to find anything, but the root_el has room. We
1445  *    pass NULL back in *lowest_eb_bh, but still return '0'
1446  *
1447  * 3) the search fails to find anything AND the root_el is full, in
1448  *    which case we return > 0
1449  *
1450  * return status < 0 indicates an error.
1451  */
1452 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et,
1453 				    struct buffer_head **target_bh)
1454 {
1455 	int status = 0, i;
1456 	u64 blkno;
1457 	struct ocfs2_extent_block *eb;
1458 	struct ocfs2_extent_list  *el;
1459 	struct buffer_head *bh = NULL;
1460 	struct buffer_head *lowest_bh = NULL;
1461 
1462 	*target_bh = NULL;
1463 
1464 	el = et->et_root_el;
1465 
1466 	while(le16_to_cpu(el->l_tree_depth) > 1) {
1467 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1468 			status = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1469 					"Owner %llu has empty extent list (next_free_rec == 0)\n",
1470 					(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
1471 			goto bail;
1472 		}
1473 		i = le16_to_cpu(el->l_next_free_rec) - 1;
1474 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1475 		if (!blkno) {
1476 			status = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1477 					"Owner %llu has extent list where extent # %d has no physical block start\n",
1478 					(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i);
1479 			goto bail;
1480 		}
1481 
1482 		brelse(bh);
1483 		bh = NULL;
1484 
1485 		status = ocfs2_read_extent_block(et->et_ci, blkno, &bh);
1486 		if (status < 0) {
1487 			mlog_errno(status);
1488 			goto bail;
1489 		}
1490 
1491 		eb = (struct ocfs2_extent_block *) bh->b_data;
1492 		el = &eb->h_list;
1493 
1494 		if (le16_to_cpu(el->l_next_free_rec) <
1495 		    le16_to_cpu(el->l_count)) {
1496 			brelse(lowest_bh);
1497 			lowest_bh = bh;
1498 			get_bh(lowest_bh);
1499 		}
1500 	}
1501 
1502 	/* If we didn't find one and the fe doesn't have any room,
1503 	 * then return '1' */
1504 	el = et->et_root_el;
1505 	if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1506 		status = 1;
1507 
1508 	*target_bh = lowest_bh;
1509 bail:
1510 	brelse(bh);
1511 
1512 	return status;
1513 }
1514 
1515 /*
1516  * Grow a b-tree so that it has more records.
1517  *
1518  * We might shift the tree depth in which case existing paths should
1519  * be considered invalid.
1520  *
1521  * Tree depth after the grow is returned via *final_depth.
1522  *
1523  * *last_eb_bh will be updated by ocfs2_add_branch().
1524  */
1525 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et,
1526 			   int *final_depth, struct buffer_head **last_eb_bh,
1527 			   struct ocfs2_alloc_context *meta_ac)
1528 {
1529 	int ret, shift;
1530 	struct ocfs2_extent_list *el = et->et_root_el;
1531 	int depth = le16_to_cpu(el->l_tree_depth);
1532 	struct buffer_head *bh = NULL;
1533 
1534 	BUG_ON(meta_ac == NULL && ocfs2_is_dealloc_empty(et));
1535 
1536 	shift = ocfs2_find_branch_target(et, &bh);
1537 	if (shift < 0) {
1538 		ret = shift;
1539 		mlog_errno(ret);
1540 		goto out;
1541 	}
1542 
1543 	/* We traveled all the way to the bottom of the allocation tree
1544 	 * and didn't find room for any more extents - we need to add
1545 	 * another tree level */
1546 	if (shift) {
1547 		BUG_ON(bh);
1548 		trace_ocfs2_grow_tree(
1549 			(unsigned long long)
1550 			ocfs2_metadata_cache_owner(et->et_ci),
1551 			depth);
1552 
1553 		/* ocfs2_shift_tree_depth will return us a buffer with
1554 		 * the new extent block (so we can pass that to
1555 		 * ocfs2_add_branch). */
1556 		ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh);
1557 		if (ret < 0) {
1558 			mlog_errno(ret);
1559 			goto out;
1560 		}
1561 		depth++;
1562 		if (depth == 1) {
1563 			/*
1564 			 * Special case: we have room now if we shifted from
1565 			 * tree_depth 0, so no more work needs to be done.
1566 			 *
1567 			 * We won't be calling add_branch, so pass
1568 			 * back *last_eb_bh as the new leaf. At depth
1569 			 * zero, it should always be null so there's
1570 			 * no reason to brelse.
1571 			 */
1572 			BUG_ON(*last_eb_bh);
1573 			get_bh(bh);
1574 			*last_eb_bh = bh;
1575 			goto out;
1576 		}
1577 	}
1578 
1579 	/* call ocfs2_add_branch to add the final part of the tree with
1580 	 * the new data. */
1581 	ret = ocfs2_add_branch(handle, et, bh, last_eb_bh,
1582 			       meta_ac);
1583 	if (ret < 0)
1584 		mlog_errno(ret);
1585 
1586 out:
1587 	if (final_depth)
1588 		*final_depth = depth;
1589 	brelse(bh);
1590 	return ret;
1591 }
1592 
1593 /*
1594  * This function will discard the rightmost extent record.
1595  */
1596 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1597 {
1598 	int next_free = le16_to_cpu(el->l_next_free_rec);
1599 	int count = le16_to_cpu(el->l_count);
1600 	unsigned int num_bytes;
1601 
1602 	BUG_ON(!next_free);
1603 	/* This will cause us to go off the end of our extent list. */
1604 	BUG_ON(next_free >= count);
1605 
1606 	num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1607 
1608 	memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1609 }
1610 
1611 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1612 			      struct ocfs2_extent_rec *insert_rec)
1613 {
1614 	int i, insert_index, next_free, has_empty, num_bytes;
1615 	u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1616 	struct ocfs2_extent_rec *rec;
1617 
1618 	next_free = le16_to_cpu(el->l_next_free_rec);
1619 	has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1620 
1621 	BUG_ON(!next_free);
1622 
1623 	/* The tree code before us didn't allow enough room in the leaf. */
1624 	BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1625 
1626 	/*
1627 	 * The easiest way to approach this is to just remove the
1628 	 * empty extent and temporarily decrement next_free.
1629 	 */
1630 	if (has_empty) {
1631 		/*
1632 		 * If next_free was 1 (only an empty extent), this
1633 		 * loop won't execute, which is fine. We still want
1634 		 * the decrement above to happen.
1635 		 */
1636 		for(i = 0; i < (next_free - 1); i++)
1637 			el->l_recs[i] = el->l_recs[i+1];
1638 
1639 		next_free--;
1640 	}
1641 
1642 	/*
1643 	 * Figure out what the new record index should be.
1644 	 */
1645 	for(i = 0; i < next_free; i++) {
1646 		rec = &el->l_recs[i];
1647 
1648 		if (insert_cpos < le32_to_cpu(rec->e_cpos))
1649 			break;
1650 	}
1651 	insert_index = i;
1652 
1653 	trace_ocfs2_rotate_leaf(insert_cpos, insert_index,
1654 				has_empty, next_free,
1655 				le16_to_cpu(el->l_count));
1656 
1657 	BUG_ON(insert_index < 0);
1658 	BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1659 	BUG_ON(insert_index > next_free);
1660 
1661 	/*
1662 	 * No need to memmove if we're just adding to the tail.
1663 	 */
1664 	if (insert_index != next_free) {
1665 		BUG_ON(next_free >= le16_to_cpu(el->l_count));
1666 
1667 		num_bytes = next_free - insert_index;
1668 		num_bytes *= sizeof(struct ocfs2_extent_rec);
1669 		memmove(&el->l_recs[insert_index + 1],
1670 			&el->l_recs[insert_index],
1671 			num_bytes);
1672 	}
1673 
1674 	/*
1675 	 * Either we had an empty extent, and need to re-increment or
1676 	 * there was no empty extent on a non full rightmost leaf node,
1677 	 * in which case we still need to increment.
1678 	 */
1679 	next_free++;
1680 	el->l_next_free_rec = cpu_to_le16(next_free);
1681 	/*
1682 	 * Make sure none of the math above just messed up our tree.
1683 	 */
1684 	BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1685 
1686 	el->l_recs[insert_index] = *insert_rec;
1687 
1688 }
1689 
1690 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1691 {
1692 	int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1693 
1694 	BUG_ON(num_recs == 0);
1695 
1696 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1697 		num_recs--;
1698 		size = num_recs * sizeof(struct ocfs2_extent_rec);
1699 		memmove(&el->l_recs[0], &el->l_recs[1], size);
1700 		memset(&el->l_recs[num_recs], 0,
1701 		       sizeof(struct ocfs2_extent_rec));
1702 		el->l_next_free_rec = cpu_to_le16(num_recs);
1703 	}
1704 }
1705 
1706 /*
1707  * Create an empty extent record .
1708  *
1709  * l_next_free_rec may be updated.
1710  *
1711  * If an empty extent already exists do nothing.
1712  */
1713 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1714 {
1715 	int next_free = le16_to_cpu(el->l_next_free_rec);
1716 
1717 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1718 
1719 	if (next_free == 0)
1720 		goto set_and_inc;
1721 
1722 	if (ocfs2_is_empty_extent(&el->l_recs[0]))
1723 		return;
1724 
1725 	mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1726 			"Asked to create an empty extent in a full list:\n"
1727 			"count = %u, tree depth = %u",
1728 			le16_to_cpu(el->l_count),
1729 			le16_to_cpu(el->l_tree_depth));
1730 
1731 	ocfs2_shift_records_right(el);
1732 
1733 set_and_inc:
1734 	le16_add_cpu(&el->l_next_free_rec, 1);
1735 	memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1736 }
1737 
1738 /*
1739  * For a rotation which involves two leaf nodes, the "root node" is
1740  * the lowest level tree node which contains a path to both leafs. This
1741  * resulting set of information can be used to form a complete "subtree"
1742  *
1743  * This function is passed two full paths from the dinode down to a
1744  * pair of adjacent leaves. It's task is to figure out which path
1745  * index contains the subtree root - this can be the root index itself
1746  * in a worst-case rotation.
1747  *
1748  * The array index of the subtree root is passed back.
1749  */
1750 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et,
1751 			    struct ocfs2_path *left,
1752 			    struct ocfs2_path *right)
1753 {
1754 	int i = 0;
1755 
1756 	/*
1757 	 * Check that the caller passed in two paths from the same tree.
1758 	 */
1759 	BUG_ON(path_root_bh(left) != path_root_bh(right));
1760 
1761 	do {
1762 		i++;
1763 
1764 		/*
1765 		 * The caller didn't pass two adjacent paths.
1766 		 */
1767 		mlog_bug_on_msg(i > left->p_tree_depth,
1768 				"Owner %llu, left depth %u, right depth %u\n"
1769 				"left leaf blk %llu, right leaf blk %llu\n",
1770 				(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
1771 				left->p_tree_depth, right->p_tree_depth,
1772 				(unsigned long long)path_leaf_bh(left)->b_blocknr,
1773 				(unsigned long long)path_leaf_bh(right)->b_blocknr);
1774 	} while (left->p_node[i].bh->b_blocknr ==
1775 		 right->p_node[i].bh->b_blocknr);
1776 
1777 	return i - 1;
1778 }
1779 
1780 typedef void (path_insert_t)(void *, struct buffer_head *);
1781 
1782 /*
1783  * Traverse a btree path in search of cpos, starting at root_el.
1784  *
1785  * This code can be called with a cpos larger than the tree, in which
1786  * case it will return the rightmost path.
1787  */
1788 static int __ocfs2_find_path(struct ocfs2_caching_info *ci,
1789 			     struct ocfs2_extent_list *root_el, u32 cpos,
1790 			     path_insert_t *func, void *data)
1791 {
1792 	int i, ret = 0;
1793 	u32 range;
1794 	u64 blkno;
1795 	struct buffer_head *bh = NULL;
1796 	struct ocfs2_extent_block *eb;
1797 	struct ocfs2_extent_list *el;
1798 	struct ocfs2_extent_rec *rec;
1799 
1800 	el = root_el;
1801 	while (el->l_tree_depth) {
1802 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1803 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1804 				    "Owner %llu has empty extent list at depth %u\n",
1805 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1806 				    le16_to_cpu(el->l_tree_depth));
1807 			ret = -EROFS;
1808 			goto out;
1809 
1810 		}
1811 
1812 		for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1813 			rec = &el->l_recs[i];
1814 
1815 			/*
1816 			 * In the case that cpos is off the allocation
1817 			 * tree, this should just wind up returning the
1818 			 * rightmost record.
1819 			 */
1820 			range = le32_to_cpu(rec->e_cpos) +
1821 				ocfs2_rec_clusters(el, rec);
1822 			if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1823 			    break;
1824 		}
1825 
1826 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1827 		if (blkno == 0) {
1828 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1829 				    "Owner %llu has bad blkno in extent list at depth %u (index %d)\n",
1830 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1831 				    le16_to_cpu(el->l_tree_depth), i);
1832 			ret = -EROFS;
1833 			goto out;
1834 		}
1835 
1836 		brelse(bh);
1837 		bh = NULL;
1838 		ret = ocfs2_read_extent_block(ci, blkno, &bh);
1839 		if (ret) {
1840 			mlog_errno(ret);
1841 			goto out;
1842 		}
1843 
1844 		eb = (struct ocfs2_extent_block *) bh->b_data;
1845 		el = &eb->h_list;
1846 
1847 		if (le16_to_cpu(el->l_next_free_rec) >
1848 		    le16_to_cpu(el->l_count)) {
1849 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1850 				    "Owner %llu has bad count in extent list at block %llu (next free=%u, count=%u)\n",
1851 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1852 				    (unsigned long long)bh->b_blocknr,
1853 				    le16_to_cpu(el->l_next_free_rec),
1854 				    le16_to_cpu(el->l_count));
1855 			ret = -EROFS;
1856 			goto out;
1857 		}
1858 
1859 		if (func)
1860 			func(data, bh);
1861 	}
1862 
1863 out:
1864 	/*
1865 	 * Catch any trailing bh that the loop didn't handle.
1866 	 */
1867 	brelse(bh);
1868 
1869 	return ret;
1870 }
1871 
1872 /*
1873  * Given an initialized path (that is, it has a valid root extent
1874  * list), this function will traverse the btree in search of the path
1875  * which would contain cpos.
1876  *
1877  * The path traveled is recorded in the path structure.
1878  *
1879  * Note that this will not do any comparisons on leaf node extent
1880  * records, so it will work fine in the case that we just added a tree
1881  * branch.
1882  */
1883 struct find_path_data {
1884 	int index;
1885 	struct ocfs2_path *path;
1886 };
1887 static void find_path_ins(void *data, struct buffer_head *bh)
1888 {
1889 	struct find_path_data *fp = data;
1890 
1891 	get_bh(bh);
1892 	ocfs2_path_insert_eb(fp->path, fp->index, bh);
1893 	fp->index++;
1894 }
1895 int ocfs2_find_path(struct ocfs2_caching_info *ci,
1896 		    struct ocfs2_path *path, u32 cpos)
1897 {
1898 	struct find_path_data data;
1899 
1900 	data.index = 1;
1901 	data.path = path;
1902 	return __ocfs2_find_path(ci, path_root_el(path), cpos,
1903 				 find_path_ins, &data);
1904 }
1905 
1906 static void find_leaf_ins(void *data, struct buffer_head *bh)
1907 {
1908 	struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1909 	struct ocfs2_extent_list *el = &eb->h_list;
1910 	struct buffer_head **ret = data;
1911 
1912 	/* We want to retain only the leaf block. */
1913 	if (le16_to_cpu(el->l_tree_depth) == 0) {
1914 		get_bh(bh);
1915 		*ret = bh;
1916 	}
1917 }
1918 /*
1919  * Find the leaf block in the tree which would contain cpos. No
1920  * checking of the actual leaf is done.
1921  *
1922  * Some paths want to call this instead of allocating a path structure
1923  * and calling ocfs2_find_path().
1924  *
1925  * This function doesn't handle non btree extent lists.
1926  */
1927 int ocfs2_find_leaf(struct ocfs2_caching_info *ci,
1928 		    struct ocfs2_extent_list *root_el, u32 cpos,
1929 		    struct buffer_head **leaf_bh)
1930 {
1931 	int ret;
1932 	struct buffer_head *bh = NULL;
1933 
1934 	ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh);
1935 	if (ret) {
1936 		mlog_errno(ret);
1937 		goto out;
1938 	}
1939 
1940 	*leaf_bh = bh;
1941 out:
1942 	return ret;
1943 }
1944 
1945 /*
1946  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1947  *
1948  * Basically, we've moved stuff around at the bottom of the tree and
1949  * we need to fix up the extent records above the changes to reflect
1950  * the new changes.
1951  *
1952  * left_rec: the record on the left.
1953  * right_rec: the record to the right of left_rec
1954  * right_child_el: is the child list pointed to by right_rec
1955  *
1956  * By definition, this only works on interior nodes.
1957  */
1958 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1959 				  struct ocfs2_extent_rec *right_rec,
1960 				  struct ocfs2_extent_list *right_child_el)
1961 {
1962 	u32 left_clusters, right_end;
1963 
1964 	/*
1965 	 * Interior nodes never have holes. Their cpos is the cpos of
1966 	 * the leftmost record in their child list. Their cluster
1967 	 * count covers the full theoretical range of their child list
1968 	 * - the range between their cpos and the cpos of the record
1969 	 * immediately to their right.
1970 	 */
1971 	left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1972 	if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1973 		BUG_ON(right_child_el->l_tree_depth);
1974 		BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1975 		left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1976 	}
1977 	left_clusters -= le32_to_cpu(left_rec->e_cpos);
1978 	left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1979 
1980 	/*
1981 	 * Calculate the rightmost cluster count boundary before
1982 	 * moving cpos - we will need to adjust clusters after
1983 	 * updating e_cpos to keep the same highest cluster count.
1984 	 */
1985 	right_end = le32_to_cpu(right_rec->e_cpos);
1986 	right_end += le32_to_cpu(right_rec->e_int_clusters);
1987 
1988 	right_rec->e_cpos = left_rec->e_cpos;
1989 	le32_add_cpu(&right_rec->e_cpos, left_clusters);
1990 
1991 	right_end -= le32_to_cpu(right_rec->e_cpos);
1992 	right_rec->e_int_clusters = cpu_to_le32(right_end);
1993 }
1994 
1995 /*
1996  * Adjust the adjacent root node records involved in a
1997  * rotation. left_el_blkno is passed in as a key so that we can easily
1998  * find it's index in the root list.
1999  */
2000 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
2001 				      struct ocfs2_extent_list *left_el,
2002 				      struct ocfs2_extent_list *right_el,
2003 				      u64 left_el_blkno)
2004 {
2005 	int i;
2006 
2007 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
2008 	       le16_to_cpu(left_el->l_tree_depth));
2009 
2010 	for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
2011 		if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
2012 			break;
2013 	}
2014 
2015 	/*
2016 	 * The path walking code should have never returned a root and
2017 	 * two paths which are not adjacent.
2018 	 */
2019 	BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
2020 
2021 	ocfs2_adjust_adjacent_records(&root_el->l_recs[i],
2022 				      &root_el->l_recs[i + 1], right_el);
2023 }
2024 
2025 /*
2026  * We've changed a leaf block (in right_path) and need to reflect that
2027  * change back up the subtree.
2028  *
2029  * This happens in multiple places:
2030  *   - When we've moved an extent record from the left path leaf to the right
2031  *     path leaf to make room for an empty extent in the left path leaf.
2032  *   - When our insert into the right path leaf is at the leftmost edge
2033  *     and requires an update of the path immediately to it's left. This
2034  *     can occur at the end of some types of rotation and appending inserts.
2035  *   - When we've adjusted the last extent record in the left path leaf and the
2036  *     1st extent record in the right path leaf during cross extent block merge.
2037  */
2038 static void ocfs2_complete_edge_insert(handle_t *handle,
2039 				       struct ocfs2_path *left_path,
2040 				       struct ocfs2_path *right_path,
2041 				       int subtree_index)
2042 {
2043 	int i, idx;
2044 	struct ocfs2_extent_list *el, *left_el, *right_el;
2045 	struct ocfs2_extent_rec *left_rec, *right_rec;
2046 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2047 
2048 	/*
2049 	 * Update the counts and position values within all the
2050 	 * interior nodes to reflect the leaf rotation we just did.
2051 	 *
2052 	 * The root node is handled below the loop.
2053 	 *
2054 	 * We begin the loop with right_el and left_el pointing to the
2055 	 * leaf lists and work our way up.
2056 	 *
2057 	 * NOTE: within this loop, left_el and right_el always refer
2058 	 * to the *child* lists.
2059 	 */
2060 	left_el = path_leaf_el(left_path);
2061 	right_el = path_leaf_el(right_path);
2062 	for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
2063 		trace_ocfs2_complete_edge_insert(i);
2064 
2065 		/*
2066 		 * One nice property of knowing that all of these
2067 		 * nodes are below the root is that we only deal with
2068 		 * the leftmost right node record and the rightmost
2069 		 * left node record.
2070 		 */
2071 		el = left_path->p_node[i].el;
2072 		idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2073 		left_rec = &el->l_recs[idx];
2074 
2075 		el = right_path->p_node[i].el;
2076 		right_rec = &el->l_recs[0];
2077 
2078 		ocfs2_adjust_adjacent_records(left_rec, right_rec, right_el);
2079 
2080 		ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2081 		ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2082 
2083 		/*
2084 		 * Setup our list pointers now so that the current
2085 		 * parents become children in the next iteration.
2086 		 */
2087 		left_el = left_path->p_node[i].el;
2088 		right_el = right_path->p_node[i].el;
2089 	}
2090 
2091 	/*
2092 	 * At the root node, adjust the two adjacent records which
2093 	 * begin our path to the leaves.
2094 	 */
2095 
2096 	el = left_path->p_node[subtree_index].el;
2097 	left_el = left_path->p_node[subtree_index + 1].el;
2098 	right_el = right_path->p_node[subtree_index + 1].el;
2099 
2100 	ocfs2_adjust_root_records(el, left_el, right_el,
2101 				  left_path->p_node[subtree_index + 1].bh->b_blocknr);
2102 
2103 	root_bh = left_path->p_node[subtree_index].bh;
2104 
2105 	ocfs2_journal_dirty(handle, root_bh);
2106 }
2107 
2108 static int ocfs2_rotate_subtree_right(handle_t *handle,
2109 				      struct ocfs2_extent_tree *et,
2110 				      struct ocfs2_path *left_path,
2111 				      struct ocfs2_path *right_path,
2112 				      int subtree_index)
2113 {
2114 	int ret, i;
2115 	struct buffer_head *right_leaf_bh;
2116 	struct buffer_head *left_leaf_bh = NULL;
2117 	struct buffer_head *root_bh;
2118 	struct ocfs2_extent_list *right_el, *left_el;
2119 	struct ocfs2_extent_rec move_rec;
2120 
2121 	left_leaf_bh = path_leaf_bh(left_path);
2122 	left_el = path_leaf_el(left_path);
2123 
2124 	if (left_el->l_next_free_rec != left_el->l_count) {
2125 		ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
2126 			    "Inode %llu has non-full interior leaf node %llu (next free = %u)\n",
2127 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2128 			    (unsigned long long)left_leaf_bh->b_blocknr,
2129 			    le16_to_cpu(left_el->l_next_free_rec));
2130 		return -EROFS;
2131 	}
2132 
2133 	/*
2134 	 * This extent block may already have an empty record, so we
2135 	 * return early if so.
2136 	 */
2137 	if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2138 		return 0;
2139 
2140 	root_bh = left_path->p_node[subtree_index].bh;
2141 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2142 
2143 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2144 					   subtree_index);
2145 	if (ret) {
2146 		mlog_errno(ret);
2147 		goto out;
2148 	}
2149 
2150 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2151 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2152 						   right_path, i);
2153 		if (ret) {
2154 			mlog_errno(ret);
2155 			goto out;
2156 		}
2157 
2158 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2159 						   left_path, i);
2160 		if (ret) {
2161 			mlog_errno(ret);
2162 			goto out;
2163 		}
2164 	}
2165 
2166 	right_leaf_bh = path_leaf_bh(right_path);
2167 	right_el = path_leaf_el(right_path);
2168 
2169 	/* This is a code error, not a disk corruption. */
2170 	mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2171 			"because rightmost leaf block %llu is empty\n",
2172 			(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2173 			(unsigned long long)right_leaf_bh->b_blocknr);
2174 
2175 	ocfs2_create_empty_extent(right_el);
2176 
2177 	ocfs2_journal_dirty(handle, right_leaf_bh);
2178 
2179 	/* Do the copy now. */
2180 	i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2181 	move_rec = left_el->l_recs[i];
2182 	right_el->l_recs[0] = move_rec;
2183 
2184 	/*
2185 	 * Clear out the record we just copied and shift everything
2186 	 * over, leaving an empty extent in the left leaf.
2187 	 *
2188 	 * We temporarily subtract from next_free_rec so that the
2189 	 * shift will lose the tail record (which is now defunct).
2190 	 */
2191 	le16_add_cpu(&left_el->l_next_free_rec, -1);
2192 	ocfs2_shift_records_right(left_el);
2193 	memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2194 	le16_add_cpu(&left_el->l_next_free_rec, 1);
2195 
2196 	ocfs2_journal_dirty(handle, left_leaf_bh);
2197 
2198 	ocfs2_complete_edge_insert(handle, left_path, right_path,
2199 				   subtree_index);
2200 
2201 out:
2202 	return ret;
2203 }
2204 
2205 /*
2206  * Given a full path, determine what cpos value would return us a path
2207  * containing the leaf immediately to the left of the current one.
2208  *
2209  * Will return zero if the path passed in is already the leftmost path.
2210  */
2211 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2212 				  struct ocfs2_path *path, u32 *cpos)
2213 {
2214 	int i, j, ret = 0;
2215 	u64 blkno;
2216 	struct ocfs2_extent_list *el;
2217 
2218 	BUG_ON(path->p_tree_depth == 0);
2219 
2220 	*cpos = 0;
2221 
2222 	blkno = path_leaf_bh(path)->b_blocknr;
2223 
2224 	/* Start at the tree node just above the leaf and work our way up. */
2225 	i = path->p_tree_depth - 1;
2226 	while (i >= 0) {
2227 		el = path->p_node[i].el;
2228 
2229 		/*
2230 		 * Find the extent record just before the one in our
2231 		 * path.
2232 		 */
2233 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2234 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2235 				if (j == 0) {
2236 					if (i == 0) {
2237 						/*
2238 						 * We've determined that the
2239 						 * path specified is already
2240 						 * the leftmost one - return a
2241 						 * cpos of zero.
2242 						 */
2243 						goto out;
2244 					}
2245 					/*
2246 					 * The leftmost record points to our
2247 					 * leaf - we need to travel up the
2248 					 * tree one level.
2249 					 */
2250 					goto next_node;
2251 				}
2252 
2253 				*cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2254 				*cpos = *cpos + ocfs2_rec_clusters(el,
2255 							   &el->l_recs[j - 1]);
2256 				*cpos = *cpos - 1;
2257 				goto out;
2258 			}
2259 		}
2260 
2261 		/*
2262 		 * If we got here, we never found a valid node where
2263 		 * the tree indicated one should be.
2264 		 */
2265 		ocfs2_error(sb, "Invalid extent tree at extent block %llu\n",
2266 			    (unsigned long long)blkno);
2267 		ret = -EROFS;
2268 		goto out;
2269 
2270 next_node:
2271 		blkno = path->p_node[i].bh->b_blocknr;
2272 		i--;
2273 	}
2274 
2275 out:
2276 	return ret;
2277 }
2278 
2279 /*
2280  * Extend the transaction by enough credits to complete the rotation,
2281  * and still leave at least the original number of credits allocated
2282  * to this transaction.
2283  */
2284 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2285 					   int op_credits,
2286 					   struct ocfs2_path *path)
2287 {
2288 	int ret = 0;
2289 	int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2290 
2291 	if (handle->h_buffer_credits < credits)
2292 		ret = ocfs2_extend_trans(handle,
2293 					 credits - handle->h_buffer_credits);
2294 
2295 	return ret;
2296 }
2297 
2298 /*
2299  * Trap the case where we're inserting into the theoretical range past
2300  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2301  * whose cpos is less than ours into the right leaf.
2302  *
2303  * It's only necessary to look at the rightmost record of the left
2304  * leaf because the logic that calls us should ensure that the
2305  * theoretical ranges in the path components above the leaves are
2306  * correct.
2307  */
2308 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2309 						 u32 insert_cpos)
2310 {
2311 	struct ocfs2_extent_list *left_el;
2312 	struct ocfs2_extent_rec *rec;
2313 	int next_free;
2314 
2315 	left_el = path_leaf_el(left_path);
2316 	next_free = le16_to_cpu(left_el->l_next_free_rec);
2317 	rec = &left_el->l_recs[next_free - 1];
2318 
2319 	if (insert_cpos > le32_to_cpu(rec->e_cpos))
2320 		return 1;
2321 	return 0;
2322 }
2323 
2324 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2325 {
2326 	int next_free = le16_to_cpu(el->l_next_free_rec);
2327 	unsigned int range;
2328 	struct ocfs2_extent_rec *rec;
2329 
2330 	if (next_free == 0)
2331 		return 0;
2332 
2333 	rec = &el->l_recs[0];
2334 	if (ocfs2_is_empty_extent(rec)) {
2335 		/* Empty list. */
2336 		if (next_free == 1)
2337 			return 0;
2338 		rec = &el->l_recs[1];
2339 	}
2340 
2341 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2342 	if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2343 		return 1;
2344 	return 0;
2345 }
2346 
2347 /*
2348  * Rotate all the records in a btree right one record, starting at insert_cpos.
2349  *
2350  * The path to the rightmost leaf should be passed in.
2351  *
2352  * The array is assumed to be large enough to hold an entire path (tree depth).
2353  *
2354  * Upon successful return from this function:
2355  *
2356  * - The 'right_path' array will contain a path to the leaf block
2357  *   whose range contains e_cpos.
2358  * - That leaf block will have a single empty extent in list index 0.
2359  * - In the case that the rotation requires a post-insert update,
2360  *   *ret_left_path will contain a valid path which can be passed to
2361  *   ocfs2_insert_path().
2362  */
2363 static int ocfs2_rotate_tree_right(handle_t *handle,
2364 				   struct ocfs2_extent_tree *et,
2365 				   enum ocfs2_split_type split,
2366 				   u32 insert_cpos,
2367 				   struct ocfs2_path *right_path,
2368 				   struct ocfs2_path **ret_left_path)
2369 {
2370 	int ret, start, orig_credits = handle->h_buffer_credits;
2371 	u32 cpos;
2372 	struct ocfs2_path *left_path = NULL;
2373 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2374 
2375 	*ret_left_path = NULL;
2376 
2377 	left_path = ocfs2_new_path_from_path(right_path);
2378 	if (!left_path) {
2379 		ret = -ENOMEM;
2380 		mlog_errno(ret);
2381 		goto out;
2382 	}
2383 
2384 	ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2385 	if (ret) {
2386 		mlog_errno(ret);
2387 		goto out;
2388 	}
2389 
2390 	trace_ocfs2_rotate_tree_right(
2391 		(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2392 		insert_cpos, cpos);
2393 
2394 	/*
2395 	 * What we want to do here is:
2396 	 *
2397 	 * 1) Start with the rightmost path.
2398 	 *
2399 	 * 2) Determine a path to the leaf block directly to the left
2400 	 *    of that leaf.
2401 	 *
2402 	 * 3) Determine the 'subtree root' - the lowest level tree node
2403 	 *    which contains a path to both leaves.
2404 	 *
2405 	 * 4) Rotate the subtree.
2406 	 *
2407 	 * 5) Find the next subtree by considering the left path to be
2408 	 *    the new right path.
2409 	 *
2410 	 * The check at the top of this while loop also accepts
2411 	 * insert_cpos == cpos because cpos is only a _theoretical_
2412 	 * value to get us the left path - insert_cpos might very well
2413 	 * be filling that hole.
2414 	 *
2415 	 * Stop at a cpos of '0' because we either started at the
2416 	 * leftmost branch (i.e., a tree with one branch and a
2417 	 * rotation inside of it), or we've gone as far as we can in
2418 	 * rotating subtrees.
2419 	 */
2420 	while (cpos && insert_cpos <= cpos) {
2421 		trace_ocfs2_rotate_tree_right(
2422 			(unsigned long long)
2423 			ocfs2_metadata_cache_owner(et->et_ci),
2424 			insert_cpos, cpos);
2425 
2426 		ret = ocfs2_find_path(et->et_ci, left_path, cpos);
2427 		if (ret) {
2428 			mlog_errno(ret);
2429 			goto out;
2430 		}
2431 
2432 		mlog_bug_on_msg(path_leaf_bh(left_path) ==
2433 				path_leaf_bh(right_path),
2434 				"Owner %llu: error during insert of %u "
2435 				"(left path cpos %u) results in two identical "
2436 				"paths ending at %llu\n",
2437 				(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2438 				insert_cpos, cpos,
2439 				(unsigned long long)
2440 				path_leaf_bh(left_path)->b_blocknr);
2441 
2442 		if (split == SPLIT_NONE &&
2443 		    ocfs2_rotate_requires_path_adjustment(left_path,
2444 							  insert_cpos)) {
2445 
2446 			/*
2447 			 * We've rotated the tree as much as we
2448 			 * should. The rest is up to
2449 			 * ocfs2_insert_path() to complete, after the
2450 			 * record insertion. We indicate this
2451 			 * situation by returning the left path.
2452 			 *
2453 			 * The reason we don't adjust the records here
2454 			 * before the record insert is that an error
2455 			 * later might break the rule where a parent
2456 			 * record e_cpos will reflect the actual
2457 			 * e_cpos of the 1st nonempty record of the
2458 			 * child list.
2459 			 */
2460 			*ret_left_path = left_path;
2461 			goto out_ret_path;
2462 		}
2463 
2464 		start = ocfs2_find_subtree_root(et, left_path, right_path);
2465 
2466 		trace_ocfs2_rotate_subtree(start,
2467 			(unsigned long long)
2468 			right_path->p_node[start].bh->b_blocknr,
2469 			right_path->p_tree_depth);
2470 
2471 		ret = ocfs2_extend_rotate_transaction(handle, start,
2472 						      orig_credits, right_path);
2473 		if (ret) {
2474 			mlog_errno(ret);
2475 			goto out;
2476 		}
2477 
2478 		ret = ocfs2_rotate_subtree_right(handle, et, left_path,
2479 						 right_path, start);
2480 		if (ret) {
2481 			mlog_errno(ret);
2482 			goto out;
2483 		}
2484 
2485 		if (split != SPLIT_NONE &&
2486 		    ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2487 						insert_cpos)) {
2488 			/*
2489 			 * A rotate moves the rightmost left leaf
2490 			 * record over to the leftmost right leaf
2491 			 * slot. If we're doing an extent split
2492 			 * instead of a real insert, then we have to
2493 			 * check that the extent to be split wasn't
2494 			 * just moved over. If it was, then we can
2495 			 * exit here, passing left_path back -
2496 			 * ocfs2_split_extent() is smart enough to
2497 			 * search both leaves.
2498 			 */
2499 			*ret_left_path = left_path;
2500 			goto out_ret_path;
2501 		}
2502 
2503 		/*
2504 		 * There is no need to re-read the next right path
2505 		 * as we know that it'll be our current left
2506 		 * path. Optimize by copying values instead.
2507 		 */
2508 		ocfs2_mv_path(right_path, left_path);
2509 
2510 		ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2511 		if (ret) {
2512 			mlog_errno(ret);
2513 			goto out;
2514 		}
2515 	}
2516 
2517 out:
2518 	ocfs2_free_path(left_path);
2519 
2520 out_ret_path:
2521 	return ret;
2522 }
2523 
2524 static int ocfs2_update_edge_lengths(handle_t *handle,
2525 				     struct ocfs2_extent_tree *et,
2526 				     struct ocfs2_path *path)
2527 {
2528 	int i, idx, ret;
2529 	struct ocfs2_extent_rec *rec;
2530 	struct ocfs2_extent_list *el;
2531 	struct ocfs2_extent_block *eb;
2532 	u32 range;
2533 
2534 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
2535 	if (ret) {
2536 		mlog_errno(ret);
2537 		goto out;
2538 	}
2539 
2540 	/* Path should always be rightmost. */
2541 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2542 	BUG_ON(eb->h_next_leaf_blk != 0ULL);
2543 
2544 	el = &eb->h_list;
2545 	BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2546 	idx = le16_to_cpu(el->l_next_free_rec) - 1;
2547 	rec = &el->l_recs[idx];
2548 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2549 
2550 	for (i = 0; i < path->p_tree_depth; i++) {
2551 		el = path->p_node[i].el;
2552 		idx = le16_to_cpu(el->l_next_free_rec) - 1;
2553 		rec = &el->l_recs[idx];
2554 
2555 		rec->e_int_clusters = cpu_to_le32(range);
2556 		le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2557 
2558 		ocfs2_journal_dirty(handle, path->p_node[i].bh);
2559 	}
2560 out:
2561 	return ret;
2562 }
2563 
2564 static void ocfs2_unlink_path(handle_t *handle,
2565 			      struct ocfs2_extent_tree *et,
2566 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
2567 			      struct ocfs2_path *path, int unlink_start)
2568 {
2569 	int ret, i;
2570 	struct ocfs2_extent_block *eb;
2571 	struct ocfs2_extent_list *el;
2572 	struct buffer_head *bh;
2573 
2574 	for(i = unlink_start; i < path_num_items(path); i++) {
2575 		bh = path->p_node[i].bh;
2576 
2577 		eb = (struct ocfs2_extent_block *)bh->b_data;
2578 		/*
2579 		 * Not all nodes might have had their final count
2580 		 * decremented by the caller - handle this here.
2581 		 */
2582 		el = &eb->h_list;
2583 		if (le16_to_cpu(el->l_next_free_rec) > 1) {
2584 			mlog(ML_ERROR,
2585 			     "Inode %llu, attempted to remove extent block "
2586 			     "%llu with %u records\n",
2587 			     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2588 			     (unsigned long long)le64_to_cpu(eb->h_blkno),
2589 			     le16_to_cpu(el->l_next_free_rec));
2590 
2591 			ocfs2_journal_dirty(handle, bh);
2592 			ocfs2_remove_from_cache(et->et_ci, bh);
2593 			continue;
2594 		}
2595 
2596 		el->l_next_free_rec = 0;
2597 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2598 
2599 		ocfs2_journal_dirty(handle, bh);
2600 
2601 		ret = ocfs2_cache_extent_block_free(dealloc, eb);
2602 		if (ret)
2603 			mlog_errno(ret);
2604 
2605 		ocfs2_remove_from_cache(et->et_ci, bh);
2606 	}
2607 }
2608 
2609 static void ocfs2_unlink_subtree(handle_t *handle,
2610 				 struct ocfs2_extent_tree *et,
2611 				 struct ocfs2_path *left_path,
2612 				 struct ocfs2_path *right_path,
2613 				 int subtree_index,
2614 				 struct ocfs2_cached_dealloc_ctxt *dealloc)
2615 {
2616 	int i;
2617 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2618 	struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2619 	struct ocfs2_extent_block *eb;
2620 
2621 	eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2622 
2623 	for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2624 		if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2625 			break;
2626 
2627 	BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2628 
2629 	memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2630 	le16_add_cpu(&root_el->l_next_free_rec, -1);
2631 
2632 	eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2633 	eb->h_next_leaf_blk = 0;
2634 
2635 	ocfs2_journal_dirty(handle, root_bh);
2636 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2637 
2638 	ocfs2_unlink_path(handle, et, dealloc, right_path,
2639 			  subtree_index + 1);
2640 }
2641 
2642 static int ocfs2_rotate_subtree_left(handle_t *handle,
2643 				     struct ocfs2_extent_tree *et,
2644 				     struct ocfs2_path *left_path,
2645 				     struct ocfs2_path *right_path,
2646 				     int subtree_index,
2647 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
2648 				     int *deleted)
2649 {
2650 	int ret, i, del_right_subtree = 0, right_has_empty = 0;
2651 	struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2652 	struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2653 	struct ocfs2_extent_block *eb;
2654 
2655 	*deleted = 0;
2656 
2657 	right_leaf_el = path_leaf_el(right_path);
2658 	left_leaf_el = path_leaf_el(left_path);
2659 	root_bh = left_path->p_node[subtree_index].bh;
2660 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2661 
2662 	if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2663 		return 0;
2664 
2665 	eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2666 	if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2667 		/*
2668 		 * It's legal for us to proceed if the right leaf is
2669 		 * the rightmost one and it has an empty extent. There
2670 		 * are two cases to handle - whether the leaf will be
2671 		 * empty after removal or not. If the leaf isn't empty
2672 		 * then just remove the empty extent up front. The
2673 		 * next block will handle empty leaves by flagging
2674 		 * them for unlink.
2675 		 *
2676 		 * Non rightmost leaves will throw -EAGAIN and the
2677 		 * caller can manually move the subtree and retry.
2678 		 */
2679 
2680 		if (eb->h_next_leaf_blk != 0ULL)
2681 			return -EAGAIN;
2682 
2683 		if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2684 			ret = ocfs2_journal_access_eb(handle, et->et_ci,
2685 						      path_leaf_bh(right_path),
2686 						      OCFS2_JOURNAL_ACCESS_WRITE);
2687 			if (ret) {
2688 				mlog_errno(ret);
2689 				goto out;
2690 			}
2691 
2692 			ocfs2_remove_empty_extent(right_leaf_el);
2693 		} else
2694 			right_has_empty = 1;
2695 	}
2696 
2697 	if (eb->h_next_leaf_blk == 0ULL &&
2698 	    le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2699 		/*
2700 		 * We have to update i_last_eb_blk during the meta
2701 		 * data delete.
2702 		 */
2703 		ret = ocfs2_et_root_journal_access(handle, et,
2704 						   OCFS2_JOURNAL_ACCESS_WRITE);
2705 		if (ret) {
2706 			mlog_errno(ret);
2707 			goto out;
2708 		}
2709 
2710 		del_right_subtree = 1;
2711 	}
2712 
2713 	/*
2714 	 * Getting here with an empty extent in the right path implies
2715 	 * that it's the rightmost path and will be deleted.
2716 	 */
2717 	BUG_ON(right_has_empty && !del_right_subtree);
2718 
2719 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2720 					   subtree_index);
2721 	if (ret) {
2722 		mlog_errno(ret);
2723 		goto out;
2724 	}
2725 
2726 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2727 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2728 						   right_path, i);
2729 		if (ret) {
2730 			mlog_errno(ret);
2731 			goto out;
2732 		}
2733 
2734 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2735 						   left_path, i);
2736 		if (ret) {
2737 			mlog_errno(ret);
2738 			goto out;
2739 		}
2740 	}
2741 
2742 	if (!right_has_empty) {
2743 		/*
2744 		 * Only do this if we're moving a real
2745 		 * record. Otherwise, the action is delayed until
2746 		 * after removal of the right path in which case we
2747 		 * can do a simple shift to remove the empty extent.
2748 		 */
2749 		ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2750 		memset(&right_leaf_el->l_recs[0], 0,
2751 		       sizeof(struct ocfs2_extent_rec));
2752 	}
2753 	if (eb->h_next_leaf_blk == 0ULL) {
2754 		/*
2755 		 * Move recs over to get rid of empty extent, decrease
2756 		 * next_free. This is allowed to remove the last
2757 		 * extent in our leaf (setting l_next_free_rec to
2758 		 * zero) - the delete code below won't care.
2759 		 */
2760 		ocfs2_remove_empty_extent(right_leaf_el);
2761 	}
2762 
2763 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2764 	ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2765 
2766 	if (del_right_subtree) {
2767 		ocfs2_unlink_subtree(handle, et, left_path, right_path,
2768 				     subtree_index, dealloc);
2769 		ret = ocfs2_update_edge_lengths(handle, et, left_path);
2770 		if (ret) {
2771 			mlog_errno(ret);
2772 			goto out;
2773 		}
2774 
2775 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2776 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2777 
2778 		/*
2779 		 * Removal of the extent in the left leaf was skipped
2780 		 * above so we could delete the right path
2781 		 * 1st.
2782 		 */
2783 		if (right_has_empty)
2784 			ocfs2_remove_empty_extent(left_leaf_el);
2785 
2786 		ocfs2_journal_dirty(handle, et_root_bh);
2787 
2788 		*deleted = 1;
2789 	} else
2790 		ocfs2_complete_edge_insert(handle, left_path, right_path,
2791 					   subtree_index);
2792 
2793 out:
2794 	return ret;
2795 }
2796 
2797 /*
2798  * Given a full path, determine what cpos value would return us a path
2799  * containing the leaf immediately to the right of the current one.
2800  *
2801  * Will return zero if the path passed in is already the rightmost path.
2802  *
2803  * This looks similar, but is subtly different to
2804  * ocfs2_find_cpos_for_left_leaf().
2805  */
2806 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2807 				   struct ocfs2_path *path, u32 *cpos)
2808 {
2809 	int i, j, ret = 0;
2810 	u64 blkno;
2811 	struct ocfs2_extent_list *el;
2812 
2813 	*cpos = 0;
2814 
2815 	if (path->p_tree_depth == 0)
2816 		return 0;
2817 
2818 	blkno = path_leaf_bh(path)->b_blocknr;
2819 
2820 	/* Start at the tree node just above the leaf and work our way up. */
2821 	i = path->p_tree_depth - 1;
2822 	while (i >= 0) {
2823 		int next_free;
2824 
2825 		el = path->p_node[i].el;
2826 
2827 		/*
2828 		 * Find the extent record just after the one in our
2829 		 * path.
2830 		 */
2831 		next_free = le16_to_cpu(el->l_next_free_rec);
2832 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2833 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2834 				if (j == (next_free - 1)) {
2835 					if (i == 0) {
2836 						/*
2837 						 * We've determined that the
2838 						 * path specified is already
2839 						 * the rightmost one - return a
2840 						 * cpos of zero.
2841 						 */
2842 						goto out;
2843 					}
2844 					/*
2845 					 * The rightmost record points to our
2846 					 * leaf - we need to travel up the
2847 					 * tree one level.
2848 					 */
2849 					goto next_node;
2850 				}
2851 
2852 				*cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2853 				goto out;
2854 			}
2855 		}
2856 
2857 		/*
2858 		 * If we got here, we never found a valid node where
2859 		 * the tree indicated one should be.
2860 		 */
2861 		ocfs2_error(sb, "Invalid extent tree at extent block %llu\n",
2862 			    (unsigned long long)blkno);
2863 		ret = -EROFS;
2864 		goto out;
2865 
2866 next_node:
2867 		blkno = path->p_node[i].bh->b_blocknr;
2868 		i--;
2869 	}
2870 
2871 out:
2872 	return ret;
2873 }
2874 
2875 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle,
2876 					    struct ocfs2_extent_tree *et,
2877 					    struct ocfs2_path *path)
2878 {
2879 	int ret;
2880 	struct buffer_head *bh = path_leaf_bh(path);
2881 	struct ocfs2_extent_list *el = path_leaf_el(path);
2882 
2883 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2884 		return 0;
2885 
2886 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
2887 					   path_num_items(path) - 1);
2888 	if (ret) {
2889 		mlog_errno(ret);
2890 		goto out;
2891 	}
2892 
2893 	ocfs2_remove_empty_extent(el);
2894 	ocfs2_journal_dirty(handle, bh);
2895 
2896 out:
2897 	return ret;
2898 }
2899 
2900 static int __ocfs2_rotate_tree_left(handle_t *handle,
2901 				    struct ocfs2_extent_tree *et,
2902 				    int orig_credits,
2903 				    struct ocfs2_path *path,
2904 				    struct ocfs2_cached_dealloc_ctxt *dealloc,
2905 				    struct ocfs2_path **empty_extent_path)
2906 {
2907 	int ret, subtree_root, deleted;
2908 	u32 right_cpos;
2909 	struct ocfs2_path *left_path = NULL;
2910 	struct ocfs2_path *right_path = NULL;
2911 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2912 
2913 	if (!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])))
2914 		return 0;
2915 
2916 	*empty_extent_path = NULL;
2917 
2918 	ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
2919 	if (ret) {
2920 		mlog_errno(ret);
2921 		goto out;
2922 	}
2923 
2924 	left_path = ocfs2_new_path_from_path(path);
2925 	if (!left_path) {
2926 		ret = -ENOMEM;
2927 		mlog_errno(ret);
2928 		goto out;
2929 	}
2930 
2931 	ocfs2_cp_path(left_path, path);
2932 
2933 	right_path = ocfs2_new_path_from_path(path);
2934 	if (!right_path) {
2935 		ret = -ENOMEM;
2936 		mlog_errno(ret);
2937 		goto out;
2938 	}
2939 
2940 	while (right_cpos) {
2941 		ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
2942 		if (ret) {
2943 			mlog_errno(ret);
2944 			goto out;
2945 		}
2946 
2947 		subtree_root = ocfs2_find_subtree_root(et, left_path,
2948 						       right_path);
2949 
2950 		trace_ocfs2_rotate_subtree(subtree_root,
2951 		     (unsigned long long)
2952 		     right_path->p_node[subtree_root].bh->b_blocknr,
2953 		     right_path->p_tree_depth);
2954 
2955 		ret = ocfs2_extend_rotate_transaction(handle, 0,
2956 						      orig_credits, left_path);
2957 		if (ret) {
2958 			mlog_errno(ret);
2959 			goto out;
2960 		}
2961 
2962 		/*
2963 		 * Caller might still want to make changes to the
2964 		 * tree root, so re-add it to the journal here.
2965 		 */
2966 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2967 						   left_path, 0);
2968 		if (ret) {
2969 			mlog_errno(ret);
2970 			goto out;
2971 		}
2972 
2973 		ret = ocfs2_rotate_subtree_left(handle, et, left_path,
2974 						right_path, subtree_root,
2975 						dealloc, &deleted);
2976 		if (ret == -EAGAIN) {
2977 			/*
2978 			 * The rotation has to temporarily stop due to
2979 			 * the right subtree having an empty
2980 			 * extent. Pass it back to the caller for a
2981 			 * fixup.
2982 			 */
2983 			*empty_extent_path = right_path;
2984 			right_path = NULL;
2985 			goto out;
2986 		}
2987 		if (ret) {
2988 			mlog_errno(ret);
2989 			goto out;
2990 		}
2991 
2992 		/*
2993 		 * The subtree rotate might have removed records on
2994 		 * the rightmost edge. If so, then rotation is
2995 		 * complete.
2996 		 */
2997 		if (deleted)
2998 			break;
2999 
3000 		ocfs2_mv_path(left_path, right_path);
3001 
3002 		ret = ocfs2_find_cpos_for_right_leaf(sb, left_path,
3003 						     &right_cpos);
3004 		if (ret) {
3005 			mlog_errno(ret);
3006 			goto out;
3007 		}
3008 	}
3009 
3010 out:
3011 	ocfs2_free_path(right_path);
3012 	ocfs2_free_path(left_path);
3013 
3014 	return ret;
3015 }
3016 
3017 static int ocfs2_remove_rightmost_path(handle_t *handle,
3018 				struct ocfs2_extent_tree *et,
3019 				struct ocfs2_path *path,
3020 				struct ocfs2_cached_dealloc_ctxt *dealloc)
3021 {
3022 	int ret, subtree_index;
3023 	u32 cpos;
3024 	struct ocfs2_path *left_path = NULL;
3025 	struct ocfs2_extent_block *eb;
3026 	struct ocfs2_extent_list *el;
3027 
3028 	ret = ocfs2_et_sanity_check(et);
3029 	if (ret)
3030 		goto out;
3031 
3032 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
3033 	if (ret) {
3034 		mlog_errno(ret);
3035 		goto out;
3036 	}
3037 
3038 	ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3039 					    path, &cpos);
3040 	if (ret) {
3041 		mlog_errno(ret);
3042 		goto out;
3043 	}
3044 
3045 	if (cpos) {
3046 		/*
3047 		 * We have a path to the left of this one - it needs
3048 		 * an update too.
3049 		 */
3050 		left_path = ocfs2_new_path_from_path(path);
3051 		if (!left_path) {
3052 			ret = -ENOMEM;
3053 			mlog_errno(ret);
3054 			goto out;
3055 		}
3056 
3057 		ret = ocfs2_find_path(et->et_ci, left_path, cpos);
3058 		if (ret) {
3059 			mlog_errno(ret);
3060 			goto out;
3061 		}
3062 
3063 		ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
3064 		if (ret) {
3065 			mlog_errno(ret);
3066 			goto out;
3067 		}
3068 
3069 		subtree_index = ocfs2_find_subtree_root(et, left_path, path);
3070 
3071 		ocfs2_unlink_subtree(handle, et, left_path, path,
3072 				     subtree_index, dealloc);
3073 		ret = ocfs2_update_edge_lengths(handle, et, left_path);
3074 		if (ret) {
3075 			mlog_errno(ret);
3076 			goto out;
3077 		}
3078 
3079 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3080 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3081 	} else {
3082 		/*
3083 		 * 'path' is also the leftmost path which
3084 		 * means it must be the only one. This gets
3085 		 * handled differently because we want to
3086 		 * revert the root back to having extents
3087 		 * in-line.
3088 		 */
3089 		ocfs2_unlink_path(handle, et, dealloc, path, 1);
3090 
3091 		el = et->et_root_el;
3092 		el->l_tree_depth = 0;
3093 		el->l_next_free_rec = 0;
3094 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3095 
3096 		ocfs2_et_set_last_eb_blk(et, 0);
3097 	}
3098 
3099 	ocfs2_journal_dirty(handle, path_root_bh(path));
3100 
3101 out:
3102 	ocfs2_free_path(left_path);
3103 	return ret;
3104 }
3105 
3106 static int ocfs2_remove_rightmost_empty_extent(struct ocfs2_super *osb,
3107 				struct ocfs2_extent_tree *et,
3108 				struct ocfs2_path *path,
3109 				struct ocfs2_cached_dealloc_ctxt *dealloc)
3110 {
3111 	handle_t *handle;
3112 	int ret;
3113 	int credits = path->p_tree_depth * 2 + 1;
3114 
3115 	handle = ocfs2_start_trans(osb, credits);
3116 	if (IS_ERR(handle)) {
3117 		ret = PTR_ERR(handle);
3118 		mlog_errno(ret);
3119 		return ret;
3120 	}
3121 
3122 	ret = ocfs2_remove_rightmost_path(handle, et, path, dealloc);
3123 	if (ret)
3124 		mlog_errno(ret);
3125 
3126 	ocfs2_commit_trans(osb, handle);
3127 	return ret;
3128 }
3129 
3130 /*
3131  * Left rotation of btree records.
3132  *
3133  * In many ways, this is (unsurprisingly) the opposite of right
3134  * rotation. We start at some non-rightmost path containing an empty
3135  * extent in the leaf block. The code works its way to the rightmost
3136  * path by rotating records to the left in every subtree.
3137  *
3138  * This is used by any code which reduces the number of extent records
3139  * in a leaf. After removal, an empty record should be placed in the
3140  * leftmost list position.
3141  *
3142  * This won't handle a length update of the rightmost path records if
3143  * the rightmost tree leaf record is removed so the caller is
3144  * responsible for detecting and correcting that.
3145  */
3146 static int ocfs2_rotate_tree_left(handle_t *handle,
3147 				  struct ocfs2_extent_tree *et,
3148 				  struct ocfs2_path *path,
3149 				  struct ocfs2_cached_dealloc_ctxt *dealloc)
3150 {
3151 	int ret, orig_credits = handle->h_buffer_credits;
3152 	struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3153 	struct ocfs2_extent_block *eb;
3154 	struct ocfs2_extent_list *el;
3155 
3156 	el = path_leaf_el(path);
3157 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3158 		return 0;
3159 
3160 	if (path->p_tree_depth == 0) {
3161 rightmost_no_delete:
3162 		/*
3163 		 * Inline extents. This is trivially handled, so do
3164 		 * it up front.
3165 		 */
3166 		ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path);
3167 		if (ret)
3168 			mlog_errno(ret);
3169 		goto out;
3170 	}
3171 
3172 	/*
3173 	 * Handle rightmost branch now. There's several cases:
3174 	 *  1) simple rotation leaving records in there. That's trivial.
3175 	 *  2) rotation requiring a branch delete - there's no more
3176 	 *     records left. Two cases of this:
3177 	 *     a) There are branches to the left.
3178 	 *     b) This is also the leftmost (the only) branch.
3179 	 *
3180 	 *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
3181 	 *  2a) we need the left branch so that we can update it with the unlink
3182 	 *  2b) we need to bring the root back to inline extents.
3183 	 */
3184 
3185 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3186 	el = &eb->h_list;
3187 	if (eb->h_next_leaf_blk == 0) {
3188 		/*
3189 		 * This gets a bit tricky if we're going to delete the
3190 		 * rightmost path. Get the other cases out of the way
3191 		 * 1st.
3192 		 */
3193 		if (le16_to_cpu(el->l_next_free_rec) > 1)
3194 			goto rightmost_no_delete;
3195 
3196 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
3197 			ret = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3198 					"Owner %llu has empty extent block at %llu\n",
3199 					(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
3200 					(unsigned long long)le64_to_cpu(eb->h_blkno));
3201 			goto out;
3202 		}
3203 
3204 		/*
3205 		 * XXX: The caller can not trust "path" any more after
3206 		 * this as it will have been deleted. What do we do?
3207 		 *
3208 		 * In theory the rotate-for-merge code will never get
3209 		 * here because it'll always ask for a rotate in a
3210 		 * nonempty list.
3211 		 */
3212 
3213 		ret = ocfs2_remove_rightmost_path(handle, et, path,
3214 						  dealloc);
3215 		if (ret)
3216 			mlog_errno(ret);
3217 		goto out;
3218 	}
3219 
3220 	/*
3221 	 * Now we can loop, remembering the path we get from -EAGAIN
3222 	 * and restarting from there.
3223 	 */
3224 try_rotate:
3225 	ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path,
3226 				       dealloc, &restart_path);
3227 	if (ret && ret != -EAGAIN) {
3228 		mlog_errno(ret);
3229 		goto out;
3230 	}
3231 
3232 	while (ret == -EAGAIN) {
3233 		tmp_path = restart_path;
3234 		restart_path = NULL;
3235 
3236 		ret = __ocfs2_rotate_tree_left(handle, et, orig_credits,
3237 					       tmp_path, dealloc,
3238 					       &restart_path);
3239 		if (ret && ret != -EAGAIN) {
3240 			mlog_errno(ret);
3241 			goto out;
3242 		}
3243 
3244 		ocfs2_free_path(tmp_path);
3245 		tmp_path = NULL;
3246 
3247 		if (ret == 0)
3248 			goto try_rotate;
3249 	}
3250 
3251 out:
3252 	ocfs2_free_path(tmp_path);
3253 	ocfs2_free_path(restart_path);
3254 	return ret;
3255 }
3256 
3257 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3258 				int index)
3259 {
3260 	struct ocfs2_extent_rec *rec = &el->l_recs[index];
3261 	unsigned int size;
3262 
3263 	if (rec->e_leaf_clusters == 0) {
3264 		/*
3265 		 * We consumed all of the merged-from record. An empty
3266 		 * extent cannot exist anywhere but the 1st array
3267 		 * position, so move things over if the merged-from
3268 		 * record doesn't occupy that position.
3269 		 *
3270 		 * This creates a new empty extent so the caller
3271 		 * should be smart enough to have removed any existing
3272 		 * ones.
3273 		 */
3274 		if (index > 0) {
3275 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3276 			size = index * sizeof(struct ocfs2_extent_rec);
3277 			memmove(&el->l_recs[1], &el->l_recs[0], size);
3278 		}
3279 
3280 		/*
3281 		 * Always memset - the caller doesn't check whether it
3282 		 * created an empty extent, so there could be junk in
3283 		 * the other fields.
3284 		 */
3285 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3286 	}
3287 }
3288 
3289 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et,
3290 				struct ocfs2_path *left_path,
3291 				struct ocfs2_path **ret_right_path)
3292 {
3293 	int ret;
3294 	u32 right_cpos;
3295 	struct ocfs2_path *right_path = NULL;
3296 	struct ocfs2_extent_list *left_el;
3297 
3298 	*ret_right_path = NULL;
3299 
3300 	/* This function shouldn't be called for non-trees. */
3301 	BUG_ON(left_path->p_tree_depth == 0);
3302 
3303 	left_el = path_leaf_el(left_path);
3304 	BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3305 
3306 	ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3307 					     left_path, &right_cpos);
3308 	if (ret) {
3309 		mlog_errno(ret);
3310 		goto out;
3311 	}
3312 
3313 	/* This function shouldn't be called for the rightmost leaf. */
3314 	BUG_ON(right_cpos == 0);
3315 
3316 	right_path = ocfs2_new_path_from_path(left_path);
3317 	if (!right_path) {
3318 		ret = -ENOMEM;
3319 		mlog_errno(ret);
3320 		goto out;
3321 	}
3322 
3323 	ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
3324 	if (ret) {
3325 		mlog_errno(ret);
3326 		goto out;
3327 	}
3328 
3329 	*ret_right_path = right_path;
3330 out:
3331 	if (ret)
3332 		ocfs2_free_path(right_path);
3333 	return ret;
3334 }
3335 
3336 /*
3337  * Remove split_rec clusters from the record at index and merge them
3338  * onto the beginning of the record "next" to it.
3339  * For index < l_count - 1, the next means the extent rec at index + 1.
3340  * For index == l_count - 1, the "next" means the 1st extent rec of the
3341  * next extent block.
3342  */
3343 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path,
3344 				 handle_t *handle,
3345 				 struct ocfs2_extent_tree *et,
3346 				 struct ocfs2_extent_rec *split_rec,
3347 				 int index)
3348 {
3349 	int ret, next_free, i;
3350 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3351 	struct ocfs2_extent_rec *left_rec;
3352 	struct ocfs2_extent_rec *right_rec;
3353 	struct ocfs2_extent_list *right_el;
3354 	struct ocfs2_path *right_path = NULL;
3355 	int subtree_index = 0;
3356 	struct ocfs2_extent_list *el = path_leaf_el(left_path);
3357 	struct buffer_head *bh = path_leaf_bh(left_path);
3358 	struct buffer_head *root_bh = NULL;
3359 
3360 	BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3361 	left_rec = &el->l_recs[index];
3362 
3363 	if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3364 	    le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3365 		/* we meet with a cross extent block merge. */
3366 		ret = ocfs2_get_right_path(et, left_path, &right_path);
3367 		if (ret) {
3368 			mlog_errno(ret);
3369 			return ret;
3370 		}
3371 
3372 		right_el = path_leaf_el(right_path);
3373 		next_free = le16_to_cpu(right_el->l_next_free_rec);
3374 		BUG_ON(next_free <= 0);
3375 		right_rec = &right_el->l_recs[0];
3376 		if (ocfs2_is_empty_extent(right_rec)) {
3377 			BUG_ON(next_free <= 1);
3378 			right_rec = &right_el->l_recs[1];
3379 		}
3380 
3381 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3382 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3383 		       le32_to_cpu(right_rec->e_cpos));
3384 
3385 		subtree_index = ocfs2_find_subtree_root(et, left_path,
3386 							right_path);
3387 
3388 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3389 						      handle->h_buffer_credits,
3390 						      right_path);
3391 		if (ret) {
3392 			mlog_errno(ret);
3393 			goto out;
3394 		}
3395 
3396 		root_bh = left_path->p_node[subtree_index].bh;
3397 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3398 
3399 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3400 						   subtree_index);
3401 		if (ret) {
3402 			mlog_errno(ret);
3403 			goto out;
3404 		}
3405 
3406 		for (i = subtree_index + 1;
3407 		     i < path_num_items(right_path); i++) {
3408 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3409 							   right_path, i);
3410 			if (ret) {
3411 				mlog_errno(ret);
3412 				goto out;
3413 			}
3414 
3415 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3416 							   left_path, i);
3417 			if (ret) {
3418 				mlog_errno(ret);
3419 				goto out;
3420 			}
3421 		}
3422 
3423 	} else {
3424 		BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3425 		right_rec = &el->l_recs[index + 1];
3426 	}
3427 
3428 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path,
3429 					   path_num_items(left_path) - 1);
3430 	if (ret) {
3431 		mlog_errno(ret);
3432 		goto out;
3433 	}
3434 
3435 	le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3436 
3437 	le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3438 	le64_add_cpu(&right_rec->e_blkno,
3439 		     -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3440 					       split_clusters));
3441 	le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3442 
3443 	ocfs2_cleanup_merge(el, index);
3444 
3445 	ocfs2_journal_dirty(handle, bh);
3446 	if (right_path) {
3447 		ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3448 		ocfs2_complete_edge_insert(handle, left_path, right_path,
3449 					   subtree_index);
3450 	}
3451 out:
3452 	ocfs2_free_path(right_path);
3453 	return ret;
3454 }
3455 
3456 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et,
3457 			       struct ocfs2_path *right_path,
3458 			       struct ocfs2_path **ret_left_path)
3459 {
3460 	int ret;
3461 	u32 left_cpos;
3462 	struct ocfs2_path *left_path = NULL;
3463 
3464 	*ret_left_path = NULL;
3465 
3466 	/* This function shouldn't be called for non-trees. */
3467 	BUG_ON(right_path->p_tree_depth == 0);
3468 
3469 	ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3470 					    right_path, &left_cpos);
3471 	if (ret) {
3472 		mlog_errno(ret);
3473 		goto out;
3474 	}
3475 
3476 	/* This function shouldn't be called for the leftmost leaf. */
3477 	BUG_ON(left_cpos == 0);
3478 
3479 	left_path = ocfs2_new_path_from_path(right_path);
3480 	if (!left_path) {
3481 		ret = -ENOMEM;
3482 		mlog_errno(ret);
3483 		goto out;
3484 	}
3485 
3486 	ret = ocfs2_find_path(et->et_ci, left_path, left_cpos);
3487 	if (ret) {
3488 		mlog_errno(ret);
3489 		goto out;
3490 	}
3491 
3492 	*ret_left_path = left_path;
3493 out:
3494 	if (ret)
3495 		ocfs2_free_path(left_path);
3496 	return ret;
3497 }
3498 
3499 /*
3500  * Remove split_rec clusters from the record at index and merge them
3501  * onto the tail of the record "before" it.
3502  * For index > 0, the "before" means the extent rec at index - 1.
3503  *
3504  * For index == 0, the "before" means the last record of the previous
3505  * extent block. And there is also a situation that we may need to
3506  * remove the rightmost leaf extent block in the right_path and change
3507  * the right path to indicate the new rightmost path.
3508  */
3509 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path,
3510 				handle_t *handle,
3511 				struct ocfs2_extent_tree *et,
3512 				struct ocfs2_extent_rec *split_rec,
3513 				struct ocfs2_cached_dealloc_ctxt *dealloc,
3514 				int index)
3515 {
3516 	int ret, i, subtree_index = 0, has_empty_extent = 0;
3517 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3518 	struct ocfs2_extent_rec *left_rec;
3519 	struct ocfs2_extent_rec *right_rec;
3520 	struct ocfs2_extent_list *el = path_leaf_el(right_path);
3521 	struct buffer_head *bh = path_leaf_bh(right_path);
3522 	struct buffer_head *root_bh = NULL;
3523 	struct ocfs2_path *left_path = NULL;
3524 	struct ocfs2_extent_list *left_el;
3525 
3526 	BUG_ON(index < 0);
3527 
3528 	right_rec = &el->l_recs[index];
3529 	if (index == 0) {
3530 		/* we meet with a cross extent block merge. */
3531 		ret = ocfs2_get_left_path(et, right_path, &left_path);
3532 		if (ret) {
3533 			mlog_errno(ret);
3534 			return ret;
3535 		}
3536 
3537 		left_el = path_leaf_el(left_path);
3538 		BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3539 		       le16_to_cpu(left_el->l_count));
3540 
3541 		left_rec = &left_el->l_recs[
3542 				le16_to_cpu(left_el->l_next_free_rec) - 1];
3543 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3544 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3545 		       le32_to_cpu(split_rec->e_cpos));
3546 
3547 		subtree_index = ocfs2_find_subtree_root(et, left_path,
3548 							right_path);
3549 
3550 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3551 						      handle->h_buffer_credits,
3552 						      left_path);
3553 		if (ret) {
3554 			mlog_errno(ret);
3555 			goto out;
3556 		}
3557 
3558 		root_bh = left_path->p_node[subtree_index].bh;
3559 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3560 
3561 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3562 						   subtree_index);
3563 		if (ret) {
3564 			mlog_errno(ret);
3565 			goto out;
3566 		}
3567 
3568 		for (i = subtree_index + 1;
3569 		     i < path_num_items(right_path); i++) {
3570 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3571 							   right_path, i);
3572 			if (ret) {
3573 				mlog_errno(ret);
3574 				goto out;
3575 			}
3576 
3577 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3578 							   left_path, i);
3579 			if (ret) {
3580 				mlog_errno(ret);
3581 				goto out;
3582 			}
3583 		}
3584 	} else {
3585 		left_rec = &el->l_recs[index - 1];
3586 		if (ocfs2_is_empty_extent(&el->l_recs[0]))
3587 			has_empty_extent = 1;
3588 	}
3589 
3590 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3591 					   path_num_items(right_path) - 1);
3592 	if (ret) {
3593 		mlog_errno(ret);
3594 		goto out;
3595 	}
3596 
3597 	if (has_empty_extent && index == 1) {
3598 		/*
3599 		 * The easy case - we can just plop the record right in.
3600 		 */
3601 		*left_rec = *split_rec;
3602 	} else
3603 		le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3604 
3605 	le32_add_cpu(&right_rec->e_cpos, split_clusters);
3606 	le64_add_cpu(&right_rec->e_blkno,
3607 		     ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3608 					      split_clusters));
3609 	le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3610 
3611 	ocfs2_cleanup_merge(el, index);
3612 
3613 	ocfs2_journal_dirty(handle, bh);
3614 	if (left_path) {
3615 		ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3616 
3617 		/*
3618 		 * In the situation that the right_rec is empty and the extent
3619 		 * block is empty also,  ocfs2_complete_edge_insert can't handle
3620 		 * it and we need to delete the right extent block.
3621 		 */
3622 		if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3623 		    le16_to_cpu(el->l_next_free_rec) == 1) {
3624 			/* extend credit for ocfs2_remove_rightmost_path */
3625 			ret = ocfs2_extend_rotate_transaction(handle, 0,
3626 					handle->h_buffer_credits,
3627 					right_path);
3628 			if (ret) {
3629 				mlog_errno(ret);
3630 				goto out;
3631 			}
3632 
3633 			ret = ocfs2_remove_rightmost_path(handle, et,
3634 							  right_path,
3635 							  dealloc);
3636 			if (ret) {
3637 				mlog_errno(ret);
3638 				goto out;
3639 			}
3640 
3641 			/* Now the rightmost extent block has been deleted.
3642 			 * So we use the new rightmost path.
3643 			 */
3644 			ocfs2_mv_path(right_path, left_path);
3645 			left_path = NULL;
3646 		} else
3647 			ocfs2_complete_edge_insert(handle, left_path,
3648 						   right_path, subtree_index);
3649 	}
3650 out:
3651 	ocfs2_free_path(left_path);
3652 	return ret;
3653 }
3654 
3655 static int ocfs2_try_to_merge_extent(handle_t *handle,
3656 				     struct ocfs2_extent_tree *et,
3657 				     struct ocfs2_path *path,
3658 				     int split_index,
3659 				     struct ocfs2_extent_rec *split_rec,
3660 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
3661 				     struct ocfs2_merge_ctxt *ctxt)
3662 {
3663 	int ret = 0;
3664 	struct ocfs2_extent_list *el = path_leaf_el(path);
3665 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3666 
3667 	BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3668 
3669 	if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3670 		/* extend credit for ocfs2_remove_rightmost_path */
3671 		ret = ocfs2_extend_rotate_transaction(handle, 0,
3672 				handle->h_buffer_credits,
3673 				path);
3674 		if (ret) {
3675 			mlog_errno(ret);
3676 			goto out;
3677 		}
3678 		/*
3679 		 * The merge code will need to create an empty
3680 		 * extent to take the place of the newly
3681 		 * emptied slot. Remove any pre-existing empty
3682 		 * extents - having more than one in a leaf is
3683 		 * illegal.
3684 		 */
3685 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3686 		if (ret) {
3687 			mlog_errno(ret);
3688 			goto out;
3689 		}
3690 		split_index--;
3691 		rec = &el->l_recs[split_index];
3692 	}
3693 
3694 	if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3695 		/*
3696 		 * Left-right contig implies this.
3697 		 */
3698 		BUG_ON(!ctxt->c_split_covers_rec);
3699 
3700 		/*
3701 		 * Since the leftright insert always covers the entire
3702 		 * extent, this call will delete the insert record
3703 		 * entirely, resulting in an empty extent record added to
3704 		 * the extent block.
3705 		 *
3706 		 * Since the adding of an empty extent shifts
3707 		 * everything back to the right, there's no need to
3708 		 * update split_index here.
3709 		 *
3710 		 * When the split_index is zero, we need to merge it to the
3711 		 * prevoius extent block. It is more efficient and easier
3712 		 * if we do merge_right first and merge_left later.
3713 		 */
3714 		ret = ocfs2_merge_rec_right(path, handle, et, split_rec,
3715 					    split_index);
3716 		if (ret) {
3717 			mlog_errno(ret);
3718 			goto out;
3719 		}
3720 
3721 		/*
3722 		 * We can only get this from logic error above.
3723 		 */
3724 		BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3725 
3726 		/* extend credit for ocfs2_remove_rightmost_path */
3727 		ret = ocfs2_extend_rotate_transaction(handle, 0,
3728 					handle->h_buffer_credits,
3729 					path);
3730 		if (ret) {
3731 			mlog_errno(ret);
3732 			goto out;
3733 		}
3734 
3735 		/* The merge left us with an empty extent, remove it. */
3736 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3737 		if (ret) {
3738 			mlog_errno(ret);
3739 			goto out;
3740 		}
3741 
3742 		rec = &el->l_recs[split_index];
3743 
3744 		/*
3745 		 * Note that we don't pass split_rec here on purpose -
3746 		 * we've merged it into the rec already.
3747 		 */
3748 		ret = ocfs2_merge_rec_left(path, handle, et, rec,
3749 					   dealloc, split_index);
3750 
3751 		if (ret) {
3752 			mlog_errno(ret);
3753 			goto out;
3754 		}
3755 
3756 		/* extend credit for ocfs2_remove_rightmost_path */
3757 		ret = ocfs2_extend_rotate_transaction(handle, 0,
3758 				handle->h_buffer_credits,
3759 				path);
3760 		if (ret) {
3761 			mlog_errno(ret);
3762 			goto out;
3763 		}
3764 
3765 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3766 		/*
3767 		 * Error from this last rotate is not critical, so
3768 		 * print but don't bubble it up.
3769 		 */
3770 		if (ret)
3771 			mlog_errno(ret);
3772 		ret = 0;
3773 	} else {
3774 		/*
3775 		 * Merge a record to the left or right.
3776 		 *
3777 		 * 'contig_type' is relative to the existing record,
3778 		 * so for example, if we're "right contig", it's to
3779 		 * the record on the left (hence the left merge).
3780 		 */
3781 		if (ctxt->c_contig_type == CONTIG_RIGHT) {
3782 			ret = ocfs2_merge_rec_left(path, handle, et,
3783 						   split_rec, dealloc,
3784 						   split_index);
3785 			if (ret) {
3786 				mlog_errno(ret);
3787 				goto out;
3788 			}
3789 		} else {
3790 			ret = ocfs2_merge_rec_right(path, handle,
3791 						    et, split_rec,
3792 						    split_index);
3793 			if (ret) {
3794 				mlog_errno(ret);
3795 				goto out;
3796 			}
3797 		}
3798 
3799 		if (ctxt->c_split_covers_rec) {
3800 			/* extend credit for ocfs2_remove_rightmost_path */
3801 			ret = ocfs2_extend_rotate_transaction(handle, 0,
3802 					handle->h_buffer_credits,
3803 					path);
3804 			if (ret) {
3805 				mlog_errno(ret);
3806 				ret = 0;
3807 				goto out;
3808 			}
3809 
3810 			/*
3811 			 * The merge may have left an empty extent in
3812 			 * our leaf. Try to rotate it away.
3813 			 */
3814 			ret = ocfs2_rotate_tree_left(handle, et, path,
3815 						     dealloc);
3816 			if (ret)
3817 				mlog_errno(ret);
3818 			ret = 0;
3819 		}
3820 	}
3821 
3822 out:
3823 	return ret;
3824 }
3825 
3826 static void ocfs2_subtract_from_rec(struct super_block *sb,
3827 				    enum ocfs2_split_type split,
3828 				    struct ocfs2_extent_rec *rec,
3829 				    struct ocfs2_extent_rec *split_rec)
3830 {
3831 	u64 len_blocks;
3832 
3833 	len_blocks = ocfs2_clusters_to_blocks(sb,
3834 				le16_to_cpu(split_rec->e_leaf_clusters));
3835 
3836 	if (split == SPLIT_LEFT) {
3837 		/*
3838 		 * Region is on the left edge of the existing
3839 		 * record.
3840 		 */
3841 		le32_add_cpu(&rec->e_cpos,
3842 			     le16_to_cpu(split_rec->e_leaf_clusters));
3843 		le64_add_cpu(&rec->e_blkno, len_blocks);
3844 		le16_add_cpu(&rec->e_leaf_clusters,
3845 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3846 	} else {
3847 		/*
3848 		 * Region is on the right edge of the existing
3849 		 * record.
3850 		 */
3851 		le16_add_cpu(&rec->e_leaf_clusters,
3852 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3853 	}
3854 }
3855 
3856 /*
3857  * Do the final bits of extent record insertion at the target leaf
3858  * list. If this leaf is part of an allocation tree, it is assumed
3859  * that the tree above has been prepared.
3860  */
3861 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et,
3862 				 struct ocfs2_extent_rec *insert_rec,
3863 				 struct ocfs2_extent_list *el,
3864 				 struct ocfs2_insert_type *insert)
3865 {
3866 	int i = insert->ins_contig_index;
3867 	unsigned int range;
3868 	struct ocfs2_extent_rec *rec;
3869 
3870 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3871 
3872 	if (insert->ins_split != SPLIT_NONE) {
3873 		i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3874 		BUG_ON(i == -1);
3875 		rec = &el->l_recs[i];
3876 		ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
3877 					insert->ins_split, rec,
3878 					insert_rec);
3879 		goto rotate;
3880 	}
3881 
3882 	/*
3883 	 * Contiguous insert - either left or right.
3884 	 */
3885 	if (insert->ins_contig != CONTIG_NONE) {
3886 		rec = &el->l_recs[i];
3887 		if (insert->ins_contig == CONTIG_LEFT) {
3888 			rec->e_blkno = insert_rec->e_blkno;
3889 			rec->e_cpos = insert_rec->e_cpos;
3890 		}
3891 		le16_add_cpu(&rec->e_leaf_clusters,
3892 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3893 		return;
3894 	}
3895 
3896 	/*
3897 	 * Handle insert into an empty leaf.
3898 	 */
3899 	if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3900 	    ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3901 	     ocfs2_is_empty_extent(&el->l_recs[0]))) {
3902 		el->l_recs[0] = *insert_rec;
3903 		el->l_next_free_rec = cpu_to_le16(1);
3904 		return;
3905 	}
3906 
3907 	/*
3908 	 * Appending insert.
3909 	 */
3910 	if (insert->ins_appending == APPEND_TAIL) {
3911 		i = le16_to_cpu(el->l_next_free_rec) - 1;
3912 		rec = &el->l_recs[i];
3913 		range = le32_to_cpu(rec->e_cpos)
3914 			+ le16_to_cpu(rec->e_leaf_clusters);
3915 		BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3916 
3917 		mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3918 				le16_to_cpu(el->l_count),
3919 				"owner %llu, depth %u, count %u, next free %u, "
3920 				"rec.cpos %u, rec.clusters %u, "
3921 				"insert.cpos %u, insert.clusters %u\n",
3922 				ocfs2_metadata_cache_owner(et->et_ci),
3923 				le16_to_cpu(el->l_tree_depth),
3924 				le16_to_cpu(el->l_count),
3925 				le16_to_cpu(el->l_next_free_rec),
3926 				le32_to_cpu(el->l_recs[i].e_cpos),
3927 				le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3928 				le32_to_cpu(insert_rec->e_cpos),
3929 				le16_to_cpu(insert_rec->e_leaf_clusters));
3930 		i++;
3931 		el->l_recs[i] = *insert_rec;
3932 		le16_add_cpu(&el->l_next_free_rec, 1);
3933 		return;
3934 	}
3935 
3936 rotate:
3937 	/*
3938 	 * Ok, we have to rotate.
3939 	 *
3940 	 * At this point, it is safe to assume that inserting into an
3941 	 * empty leaf and appending to a leaf have both been handled
3942 	 * above.
3943 	 *
3944 	 * This leaf needs to have space, either by the empty 1st
3945 	 * extent record, or by virtue of an l_next_rec < l_count.
3946 	 */
3947 	ocfs2_rotate_leaf(el, insert_rec);
3948 }
3949 
3950 static void ocfs2_adjust_rightmost_records(handle_t *handle,
3951 					   struct ocfs2_extent_tree *et,
3952 					   struct ocfs2_path *path,
3953 					   struct ocfs2_extent_rec *insert_rec)
3954 {
3955 	int i, next_free;
3956 	struct buffer_head *bh;
3957 	struct ocfs2_extent_list *el;
3958 	struct ocfs2_extent_rec *rec;
3959 
3960 	/*
3961 	 * Update everything except the leaf block.
3962 	 */
3963 	for (i = 0; i < path->p_tree_depth; i++) {
3964 		bh = path->p_node[i].bh;
3965 		el = path->p_node[i].el;
3966 
3967 		next_free = le16_to_cpu(el->l_next_free_rec);
3968 		if (next_free == 0) {
3969 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3970 				    "Owner %llu has a bad extent list\n",
3971 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
3972 			return;
3973 		}
3974 
3975 		rec = &el->l_recs[next_free - 1];
3976 
3977 		rec->e_int_clusters = insert_rec->e_cpos;
3978 		le32_add_cpu(&rec->e_int_clusters,
3979 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3980 		le32_add_cpu(&rec->e_int_clusters,
3981 			     -le32_to_cpu(rec->e_cpos));
3982 
3983 		ocfs2_journal_dirty(handle, bh);
3984 	}
3985 }
3986 
3987 static int ocfs2_append_rec_to_path(handle_t *handle,
3988 				    struct ocfs2_extent_tree *et,
3989 				    struct ocfs2_extent_rec *insert_rec,
3990 				    struct ocfs2_path *right_path,
3991 				    struct ocfs2_path **ret_left_path)
3992 {
3993 	int ret, next_free;
3994 	struct ocfs2_extent_list *el;
3995 	struct ocfs2_path *left_path = NULL;
3996 
3997 	*ret_left_path = NULL;
3998 
3999 	/*
4000 	 * This shouldn't happen for non-trees. The extent rec cluster
4001 	 * count manipulation below only works for interior nodes.
4002 	 */
4003 	BUG_ON(right_path->p_tree_depth == 0);
4004 
4005 	/*
4006 	 * If our appending insert is at the leftmost edge of a leaf,
4007 	 * then we might need to update the rightmost records of the
4008 	 * neighboring path.
4009 	 */
4010 	el = path_leaf_el(right_path);
4011 	next_free = le16_to_cpu(el->l_next_free_rec);
4012 	if (next_free == 0 ||
4013 	    (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
4014 		u32 left_cpos;
4015 
4016 		ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
4017 						    right_path, &left_cpos);
4018 		if (ret) {
4019 			mlog_errno(ret);
4020 			goto out;
4021 		}
4022 
4023 		trace_ocfs2_append_rec_to_path(
4024 			(unsigned long long)
4025 			ocfs2_metadata_cache_owner(et->et_ci),
4026 			le32_to_cpu(insert_rec->e_cpos),
4027 			left_cpos);
4028 
4029 		/*
4030 		 * No need to worry if the append is already in the
4031 		 * leftmost leaf.
4032 		 */
4033 		if (left_cpos) {
4034 			left_path = ocfs2_new_path_from_path(right_path);
4035 			if (!left_path) {
4036 				ret = -ENOMEM;
4037 				mlog_errno(ret);
4038 				goto out;
4039 			}
4040 
4041 			ret = ocfs2_find_path(et->et_ci, left_path,
4042 					      left_cpos);
4043 			if (ret) {
4044 				mlog_errno(ret);
4045 				goto out;
4046 			}
4047 
4048 			/*
4049 			 * ocfs2_insert_path() will pass the left_path to the
4050 			 * journal for us.
4051 			 */
4052 		}
4053 	}
4054 
4055 	ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4056 	if (ret) {
4057 		mlog_errno(ret);
4058 		goto out;
4059 	}
4060 
4061 	ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec);
4062 
4063 	*ret_left_path = left_path;
4064 	ret = 0;
4065 out:
4066 	if (ret != 0)
4067 		ocfs2_free_path(left_path);
4068 
4069 	return ret;
4070 }
4071 
4072 static void ocfs2_split_record(struct ocfs2_extent_tree *et,
4073 			       struct ocfs2_path *left_path,
4074 			       struct ocfs2_path *right_path,
4075 			       struct ocfs2_extent_rec *split_rec,
4076 			       enum ocfs2_split_type split)
4077 {
4078 	int index;
4079 	u32 cpos = le32_to_cpu(split_rec->e_cpos);
4080 	struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4081 	struct ocfs2_extent_rec *rec, *tmprec;
4082 
4083 	right_el = path_leaf_el(right_path);
4084 	if (left_path)
4085 		left_el = path_leaf_el(left_path);
4086 
4087 	el = right_el;
4088 	insert_el = right_el;
4089 	index = ocfs2_search_extent_list(el, cpos);
4090 	if (index != -1) {
4091 		if (index == 0 && left_path) {
4092 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4093 
4094 			/*
4095 			 * This typically means that the record
4096 			 * started in the left path but moved to the
4097 			 * right as a result of rotation. We either
4098 			 * move the existing record to the left, or we
4099 			 * do the later insert there.
4100 			 *
4101 			 * In this case, the left path should always
4102 			 * exist as the rotate code will have passed
4103 			 * it back for a post-insert update.
4104 			 */
4105 
4106 			if (split == SPLIT_LEFT) {
4107 				/*
4108 				 * It's a left split. Since we know
4109 				 * that the rotate code gave us an
4110 				 * empty extent in the left path, we
4111 				 * can just do the insert there.
4112 				 */
4113 				insert_el = left_el;
4114 			} else {
4115 				/*
4116 				 * Right split - we have to move the
4117 				 * existing record over to the left
4118 				 * leaf. The insert will be into the
4119 				 * newly created empty extent in the
4120 				 * right leaf.
4121 				 */
4122 				tmprec = &right_el->l_recs[index];
4123 				ocfs2_rotate_leaf(left_el, tmprec);
4124 				el = left_el;
4125 
4126 				memset(tmprec, 0, sizeof(*tmprec));
4127 				index = ocfs2_search_extent_list(left_el, cpos);
4128 				BUG_ON(index == -1);
4129 			}
4130 		}
4131 	} else {
4132 		BUG_ON(!left_path);
4133 		BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4134 		/*
4135 		 * Left path is easy - we can just allow the insert to
4136 		 * happen.
4137 		 */
4138 		el = left_el;
4139 		insert_el = left_el;
4140 		index = ocfs2_search_extent_list(el, cpos);
4141 		BUG_ON(index == -1);
4142 	}
4143 
4144 	rec = &el->l_recs[index];
4145 	ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4146 				split, rec, split_rec);
4147 	ocfs2_rotate_leaf(insert_el, split_rec);
4148 }
4149 
4150 /*
4151  * This function only does inserts on an allocation b-tree. For tree
4152  * depth = 0, ocfs2_insert_at_leaf() is called directly.
4153  *
4154  * right_path is the path we want to do the actual insert
4155  * in. left_path should only be passed in if we need to update that
4156  * portion of the tree after an edge insert.
4157  */
4158 static int ocfs2_insert_path(handle_t *handle,
4159 			     struct ocfs2_extent_tree *et,
4160 			     struct ocfs2_path *left_path,
4161 			     struct ocfs2_path *right_path,
4162 			     struct ocfs2_extent_rec *insert_rec,
4163 			     struct ocfs2_insert_type *insert)
4164 {
4165 	int ret, subtree_index;
4166 	struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4167 
4168 	if (left_path) {
4169 		/*
4170 		 * There's a chance that left_path got passed back to
4171 		 * us without being accounted for in the
4172 		 * journal. Extend our transaction here to be sure we
4173 		 * can change those blocks.
4174 		 */
4175 		ret = ocfs2_extend_trans(handle, left_path->p_tree_depth);
4176 		if (ret < 0) {
4177 			mlog_errno(ret);
4178 			goto out;
4179 		}
4180 
4181 		ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
4182 		if (ret < 0) {
4183 			mlog_errno(ret);
4184 			goto out;
4185 		}
4186 	}
4187 
4188 	/*
4189 	 * Pass both paths to the journal. The majority of inserts
4190 	 * will be touching all components anyway.
4191 	 */
4192 	ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4193 	if (ret < 0) {
4194 		mlog_errno(ret);
4195 		goto out;
4196 	}
4197 
4198 	if (insert->ins_split != SPLIT_NONE) {
4199 		/*
4200 		 * We could call ocfs2_insert_at_leaf() for some types
4201 		 * of splits, but it's easier to just let one separate
4202 		 * function sort it all out.
4203 		 */
4204 		ocfs2_split_record(et, left_path, right_path,
4205 				   insert_rec, insert->ins_split);
4206 
4207 		/*
4208 		 * Split might have modified either leaf and we don't
4209 		 * have a guarantee that the later edge insert will
4210 		 * dirty this for us.
4211 		 */
4212 		if (left_path)
4213 			ocfs2_journal_dirty(handle,
4214 					    path_leaf_bh(left_path));
4215 	} else
4216 		ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path),
4217 				     insert);
4218 
4219 	ocfs2_journal_dirty(handle, leaf_bh);
4220 
4221 	if (left_path) {
4222 		/*
4223 		 * The rotate code has indicated that we need to fix
4224 		 * up portions of the tree after the insert.
4225 		 *
4226 		 * XXX: Should we extend the transaction here?
4227 		 */
4228 		subtree_index = ocfs2_find_subtree_root(et, left_path,
4229 							right_path);
4230 		ocfs2_complete_edge_insert(handle, left_path, right_path,
4231 					   subtree_index);
4232 	}
4233 
4234 	ret = 0;
4235 out:
4236 	return ret;
4237 }
4238 
4239 static int ocfs2_do_insert_extent(handle_t *handle,
4240 				  struct ocfs2_extent_tree *et,
4241 				  struct ocfs2_extent_rec *insert_rec,
4242 				  struct ocfs2_insert_type *type)
4243 {
4244 	int ret, rotate = 0;
4245 	u32 cpos;
4246 	struct ocfs2_path *right_path = NULL;
4247 	struct ocfs2_path *left_path = NULL;
4248 	struct ocfs2_extent_list *el;
4249 
4250 	el = et->et_root_el;
4251 
4252 	ret = ocfs2_et_root_journal_access(handle, et,
4253 					   OCFS2_JOURNAL_ACCESS_WRITE);
4254 	if (ret) {
4255 		mlog_errno(ret);
4256 		goto out;
4257 	}
4258 
4259 	if (le16_to_cpu(el->l_tree_depth) == 0) {
4260 		ocfs2_insert_at_leaf(et, insert_rec, el, type);
4261 		goto out_update_clusters;
4262 	}
4263 
4264 	right_path = ocfs2_new_path_from_et(et);
4265 	if (!right_path) {
4266 		ret = -ENOMEM;
4267 		mlog_errno(ret);
4268 		goto out;
4269 	}
4270 
4271 	/*
4272 	 * Determine the path to start with. Rotations need the
4273 	 * rightmost path, everything else can go directly to the
4274 	 * target leaf.
4275 	 */
4276 	cpos = le32_to_cpu(insert_rec->e_cpos);
4277 	if (type->ins_appending == APPEND_NONE &&
4278 	    type->ins_contig == CONTIG_NONE) {
4279 		rotate = 1;
4280 		cpos = UINT_MAX;
4281 	}
4282 
4283 	ret = ocfs2_find_path(et->et_ci, right_path, cpos);
4284 	if (ret) {
4285 		mlog_errno(ret);
4286 		goto out;
4287 	}
4288 
4289 	/*
4290 	 * Rotations and appends need special treatment - they modify
4291 	 * parts of the tree's above them.
4292 	 *
4293 	 * Both might pass back a path immediate to the left of the
4294 	 * one being inserted to. This will be cause
4295 	 * ocfs2_insert_path() to modify the rightmost records of
4296 	 * left_path to account for an edge insert.
4297 	 *
4298 	 * XXX: When modifying this code, keep in mind that an insert
4299 	 * can wind up skipping both of these two special cases...
4300 	 */
4301 	if (rotate) {
4302 		ret = ocfs2_rotate_tree_right(handle, et, type->ins_split,
4303 					      le32_to_cpu(insert_rec->e_cpos),
4304 					      right_path, &left_path);
4305 		if (ret) {
4306 			mlog_errno(ret);
4307 			goto out;
4308 		}
4309 
4310 		/*
4311 		 * ocfs2_rotate_tree_right() might have extended the
4312 		 * transaction without re-journaling our tree root.
4313 		 */
4314 		ret = ocfs2_et_root_journal_access(handle, et,
4315 						   OCFS2_JOURNAL_ACCESS_WRITE);
4316 		if (ret) {
4317 			mlog_errno(ret);
4318 			goto out;
4319 		}
4320 	} else if (type->ins_appending == APPEND_TAIL
4321 		   && type->ins_contig != CONTIG_LEFT) {
4322 		ret = ocfs2_append_rec_to_path(handle, et, insert_rec,
4323 					       right_path, &left_path);
4324 		if (ret) {
4325 			mlog_errno(ret);
4326 			goto out;
4327 		}
4328 	}
4329 
4330 	ret = ocfs2_insert_path(handle, et, left_path, right_path,
4331 				insert_rec, type);
4332 	if (ret) {
4333 		mlog_errno(ret);
4334 		goto out;
4335 	}
4336 
4337 out_update_clusters:
4338 	if (type->ins_split == SPLIT_NONE)
4339 		ocfs2_et_update_clusters(et,
4340 					 le16_to_cpu(insert_rec->e_leaf_clusters));
4341 
4342 	ocfs2_journal_dirty(handle, et->et_root_bh);
4343 
4344 out:
4345 	ocfs2_free_path(left_path);
4346 	ocfs2_free_path(right_path);
4347 
4348 	return ret;
4349 }
4350 
4351 static int ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et,
4352 			       struct ocfs2_path *path,
4353 			       struct ocfs2_extent_list *el, int index,
4354 			       struct ocfs2_extent_rec *split_rec,
4355 			       struct ocfs2_merge_ctxt *ctxt)
4356 {
4357 	int status = 0;
4358 	enum ocfs2_contig_type ret = CONTIG_NONE;
4359 	u32 left_cpos, right_cpos;
4360 	struct ocfs2_extent_rec *rec = NULL;
4361 	struct ocfs2_extent_list *new_el;
4362 	struct ocfs2_path *left_path = NULL, *right_path = NULL;
4363 	struct buffer_head *bh;
4364 	struct ocfs2_extent_block *eb;
4365 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
4366 
4367 	if (index > 0) {
4368 		rec = &el->l_recs[index - 1];
4369 	} else if (path->p_tree_depth > 0) {
4370 		status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
4371 		if (status)
4372 			goto exit;
4373 
4374 		if (left_cpos != 0) {
4375 			left_path = ocfs2_new_path_from_path(path);
4376 			if (!left_path) {
4377 				status = -ENOMEM;
4378 				mlog_errno(status);
4379 				goto exit;
4380 			}
4381 
4382 			status = ocfs2_find_path(et->et_ci, left_path,
4383 						 left_cpos);
4384 			if (status)
4385 				goto free_left_path;
4386 
4387 			new_el = path_leaf_el(left_path);
4388 
4389 			if (le16_to_cpu(new_el->l_next_free_rec) !=
4390 			    le16_to_cpu(new_el->l_count)) {
4391 				bh = path_leaf_bh(left_path);
4392 				eb = (struct ocfs2_extent_block *)bh->b_data;
4393 				status = ocfs2_error(sb,
4394 						"Extent block #%llu has an invalid l_next_free_rec of %d.  It should have matched the l_count of %d\n",
4395 						(unsigned long long)le64_to_cpu(eb->h_blkno),
4396 						le16_to_cpu(new_el->l_next_free_rec),
4397 						le16_to_cpu(new_el->l_count));
4398 				goto free_left_path;
4399 			}
4400 			rec = &new_el->l_recs[
4401 				le16_to_cpu(new_el->l_next_free_rec) - 1];
4402 		}
4403 	}
4404 
4405 	/*
4406 	 * We're careful to check for an empty extent record here -
4407 	 * the merge code will know what to do if it sees one.
4408 	 */
4409 	if (rec) {
4410 		if (index == 1 && ocfs2_is_empty_extent(rec)) {
4411 			if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4412 				ret = CONTIG_RIGHT;
4413 		} else {
4414 			ret = ocfs2_et_extent_contig(et, rec, split_rec);
4415 		}
4416 	}
4417 
4418 	rec = NULL;
4419 	if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4420 		rec = &el->l_recs[index + 1];
4421 	else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4422 		 path->p_tree_depth > 0) {
4423 		status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
4424 		if (status)
4425 			goto free_left_path;
4426 
4427 		if (right_cpos == 0)
4428 			goto free_left_path;
4429 
4430 		right_path = ocfs2_new_path_from_path(path);
4431 		if (!right_path) {
4432 			status = -ENOMEM;
4433 			mlog_errno(status);
4434 			goto free_left_path;
4435 		}
4436 
4437 		status = ocfs2_find_path(et->et_ci, right_path, right_cpos);
4438 		if (status)
4439 			goto free_right_path;
4440 
4441 		new_el = path_leaf_el(right_path);
4442 		rec = &new_el->l_recs[0];
4443 		if (ocfs2_is_empty_extent(rec)) {
4444 			if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4445 				bh = path_leaf_bh(right_path);
4446 				eb = (struct ocfs2_extent_block *)bh->b_data;
4447 				status = ocfs2_error(sb,
4448 						"Extent block #%llu has an invalid l_next_free_rec of %d\n",
4449 						(unsigned long long)le64_to_cpu(eb->h_blkno),
4450 						le16_to_cpu(new_el->l_next_free_rec));
4451 				goto free_right_path;
4452 			}
4453 			rec = &new_el->l_recs[1];
4454 		}
4455 	}
4456 
4457 	if (rec) {
4458 		enum ocfs2_contig_type contig_type;
4459 
4460 		contig_type = ocfs2_et_extent_contig(et, rec, split_rec);
4461 
4462 		if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4463 			ret = CONTIG_LEFTRIGHT;
4464 		else if (ret == CONTIG_NONE)
4465 			ret = contig_type;
4466 	}
4467 
4468 free_right_path:
4469 	ocfs2_free_path(right_path);
4470 free_left_path:
4471 	ocfs2_free_path(left_path);
4472 exit:
4473 	if (status == 0)
4474 		ctxt->c_contig_type = ret;
4475 
4476 	return status;
4477 }
4478 
4479 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et,
4480 				     struct ocfs2_insert_type *insert,
4481 				     struct ocfs2_extent_list *el,
4482 				     struct ocfs2_extent_rec *insert_rec)
4483 {
4484 	int i;
4485 	enum ocfs2_contig_type contig_type = CONTIG_NONE;
4486 
4487 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4488 
4489 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4490 		contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i],
4491 						     insert_rec);
4492 		if (contig_type != CONTIG_NONE) {
4493 			insert->ins_contig_index = i;
4494 			break;
4495 		}
4496 	}
4497 	insert->ins_contig = contig_type;
4498 
4499 	if (insert->ins_contig != CONTIG_NONE) {
4500 		struct ocfs2_extent_rec *rec =
4501 				&el->l_recs[insert->ins_contig_index];
4502 		unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4503 				   le16_to_cpu(insert_rec->e_leaf_clusters);
4504 
4505 		/*
4506 		 * Caller might want us to limit the size of extents, don't
4507 		 * calculate contiguousness if we might exceed that limit.
4508 		 */
4509 		if (et->et_max_leaf_clusters &&
4510 		    (len > et->et_max_leaf_clusters))
4511 			insert->ins_contig = CONTIG_NONE;
4512 	}
4513 }
4514 
4515 /*
4516  * This should only be called against the righmost leaf extent list.
4517  *
4518  * ocfs2_figure_appending_type() will figure out whether we'll have to
4519  * insert at the tail of the rightmost leaf.
4520  *
4521  * This should also work against the root extent list for tree's with 0
4522  * depth. If we consider the root extent list to be the rightmost leaf node
4523  * then the logic here makes sense.
4524  */
4525 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4526 					struct ocfs2_extent_list *el,
4527 					struct ocfs2_extent_rec *insert_rec)
4528 {
4529 	int i;
4530 	u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4531 	struct ocfs2_extent_rec *rec;
4532 
4533 	insert->ins_appending = APPEND_NONE;
4534 
4535 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4536 
4537 	if (!el->l_next_free_rec)
4538 		goto set_tail_append;
4539 
4540 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4541 		/* Were all records empty? */
4542 		if (le16_to_cpu(el->l_next_free_rec) == 1)
4543 			goto set_tail_append;
4544 	}
4545 
4546 	i = le16_to_cpu(el->l_next_free_rec) - 1;
4547 	rec = &el->l_recs[i];
4548 
4549 	if (cpos >=
4550 	    (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4551 		goto set_tail_append;
4552 
4553 	return;
4554 
4555 set_tail_append:
4556 	insert->ins_appending = APPEND_TAIL;
4557 }
4558 
4559 /*
4560  * Helper function called at the beginning of an insert.
4561  *
4562  * This computes a few things that are commonly used in the process of
4563  * inserting into the btree:
4564  *   - Whether the new extent is contiguous with an existing one.
4565  *   - The current tree depth.
4566  *   - Whether the insert is an appending one.
4567  *   - The total # of free records in the tree.
4568  *
4569  * All of the information is stored on the ocfs2_insert_type
4570  * structure.
4571  */
4572 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et,
4573 				    struct buffer_head **last_eb_bh,
4574 				    struct ocfs2_extent_rec *insert_rec,
4575 				    int *free_records,
4576 				    struct ocfs2_insert_type *insert)
4577 {
4578 	int ret;
4579 	struct ocfs2_extent_block *eb;
4580 	struct ocfs2_extent_list *el;
4581 	struct ocfs2_path *path = NULL;
4582 	struct buffer_head *bh = NULL;
4583 
4584 	insert->ins_split = SPLIT_NONE;
4585 
4586 	el = et->et_root_el;
4587 	insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4588 
4589 	if (el->l_tree_depth) {
4590 		/*
4591 		 * If we have tree depth, we read in the
4592 		 * rightmost extent block ahead of time as
4593 		 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4594 		 * may want it later.
4595 		 */
4596 		ret = ocfs2_read_extent_block(et->et_ci,
4597 					      ocfs2_et_get_last_eb_blk(et),
4598 					      &bh);
4599 		if (ret) {
4600 			mlog_errno(ret);
4601 			goto out;
4602 		}
4603 		eb = (struct ocfs2_extent_block *) bh->b_data;
4604 		el = &eb->h_list;
4605 	}
4606 
4607 	/*
4608 	 * Unless we have a contiguous insert, we'll need to know if
4609 	 * there is room left in our allocation tree for another
4610 	 * extent record.
4611 	 *
4612 	 * XXX: This test is simplistic, we can search for empty
4613 	 * extent records too.
4614 	 */
4615 	*free_records = le16_to_cpu(el->l_count) -
4616 		le16_to_cpu(el->l_next_free_rec);
4617 
4618 	if (!insert->ins_tree_depth) {
4619 		ocfs2_figure_contig_type(et, insert, el, insert_rec);
4620 		ocfs2_figure_appending_type(insert, el, insert_rec);
4621 		return 0;
4622 	}
4623 
4624 	path = ocfs2_new_path_from_et(et);
4625 	if (!path) {
4626 		ret = -ENOMEM;
4627 		mlog_errno(ret);
4628 		goto out;
4629 	}
4630 
4631 	/*
4632 	 * In the case that we're inserting past what the tree
4633 	 * currently accounts for, ocfs2_find_path() will return for
4634 	 * us the rightmost tree path. This is accounted for below in
4635 	 * the appending code.
4636 	 */
4637 	ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos));
4638 	if (ret) {
4639 		mlog_errno(ret);
4640 		goto out;
4641 	}
4642 
4643 	el = path_leaf_el(path);
4644 
4645 	/*
4646 	 * Now that we have the path, there's two things we want to determine:
4647 	 * 1) Contiguousness (also set contig_index if this is so)
4648 	 *
4649 	 * 2) Are we doing an append? We can trivially break this up
4650          *     into two types of appends: simple record append, or a
4651          *     rotate inside the tail leaf.
4652 	 */
4653 	ocfs2_figure_contig_type(et, insert, el, insert_rec);
4654 
4655 	/*
4656 	 * The insert code isn't quite ready to deal with all cases of
4657 	 * left contiguousness. Specifically, if it's an insert into
4658 	 * the 1st record in a leaf, it will require the adjustment of
4659 	 * cluster count on the last record of the path directly to it's
4660 	 * left. For now, just catch that case and fool the layers
4661 	 * above us. This works just fine for tree_depth == 0, which
4662 	 * is why we allow that above.
4663 	 */
4664 	if (insert->ins_contig == CONTIG_LEFT &&
4665 	    insert->ins_contig_index == 0)
4666 		insert->ins_contig = CONTIG_NONE;
4667 
4668 	/*
4669 	 * Ok, so we can simply compare against last_eb to figure out
4670 	 * whether the path doesn't exist. This will only happen in
4671 	 * the case that we're doing a tail append, so maybe we can
4672 	 * take advantage of that information somehow.
4673 	 */
4674 	if (ocfs2_et_get_last_eb_blk(et) ==
4675 	    path_leaf_bh(path)->b_blocknr) {
4676 		/*
4677 		 * Ok, ocfs2_find_path() returned us the rightmost
4678 		 * tree path. This might be an appending insert. There are
4679 		 * two cases:
4680 		 *    1) We're doing a true append at the tail:
4681 		 *	-This might even be off the end of the leaf
4682 		 *    2) We're "appending" by rotating in the tail
4683 		 */
4684 		ocfs2_figure_appending_type(insert, el, insert_rec);
4685 	}
4686 
4687 out:
4688 	ocfs2_free_path(path);
4689 
4690 	if (ret == 0)
4691 		*last_eb_bh = bh;
4692 	else
4693 		brelse(bh);
4694 	return ret;
4695 }
4696 
4697 /*
4698  * Insert an extent into a btree.
4699  *
4700  * The caller needs to update the owning btree's cluster count.
4701  */
4702 int ocfs2_insert_extent(handle_t *handle,
4703 			struct ocfs2_extent_tree *et,
4704 			u32 cpos,
4705 			u64 start_blk,
4706 			u32 new_clusters,
4707 			u8 flags,
4708 			struct ocfs2_alloc_context *meta_ac)
4709 {
4710 	int status;
4711 	int uninitialized_var(free_records);
4712 	struct buffer_head *last_eb_bh = NULL;
4713 	struct ocfs2_insert_type insert = {0, };
4714 	struct ocfs2_extent_rec rec;
4715 
4716 	trace_ocfs2_insert_extent_start(
4717 		(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4718 		cpos, new_clusters);
4719 
4720 	memset(&rec, 0, sizeof(rec));
4721 	rec.e_cpos = cpu_to_le32(cpos);
4722 	rec.e_blkno = cpu_to_le64(start_blk);
4723 	rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4724 	rec.e_flags = flags;
4725 	status = ocfs2_et_insert_check(et, &rec);
4726 	if (status) {
4727 		mlog_errno(status);
4728 		goto bail;
4729 	}
4730 
4731 	status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec,
4732 					  &free_records, &insert);
4733 	if (status < 0) {
4734 		mlog_errno(status);
4735 		goto bail;
4736 	}
4737 
4738 	trace_ocfs2_insert_extent(insert.ins_appending, insert.ins_contig,
4739 				  insert.ins_contig_index, free_records,
4740 				  insert.ins_tree_depth);
4741 
4742 	if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4743 		status = ocfs2_grow_tree(handle, et,
4744 					 &insert.ins_tree_depth, &last_eb_bh,
4745 					 meta_ac);
4746 		if (status) {
4747 			mlog_errno(status);
4748 			goto bail;
4749 		}
4750 	}
4751 
4752 	/* Finally, we can add clusters. This might rotate the tree for us. */
4753 	status = ocfs2_do_insert_extent(handle, et, &rec, &insert);
4754 	if (status < 0)
4755 		mlog_errno(status);
4756 	else
4757 		ocfs2_et_extent_map_insert(et, &rec);
4758 
4759 bail:
4760 	brelse(last_eb_bh);
4761 
4762 	return status;
4763 }
4764 
4765 /*
4766  * Allcate and add clusters into the extent b-tree.
4767  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4768  * The extent b-tree's root is specified by et, and
4769  * it is not limited to the file storage. Any extent tree can use this
4770  * function if it implements the proper ocfs2_extent_tree.
4771  */
4772 int ocfs2_add_clusters_in_btree(handle_t *handle,
4773 				struct ocfs2_extent_tree *et,
4774 				u32 *logical_offset,
4775 				u32 clusters_to_add,
4776 				int mark_unwritten,
4777 				struct ocfs2_alloc_context *data_ac,
4778 				struct ocfs2_alloc_context *meta_ac,
4779 				enum ocfs2_alloc_restarted *reason_ret)
4780 {
4781 	int status = 0, err = 0;
4782 	int need_free = 0;
4783 	int free_extents;
4784 	enum ocfs2_alloc_restarted reason = RESTART_NONE;
4785 	u32 bit_off, num_bits;
4786 	u64 block;
4787 	u8 flags = 0;
4788 	struct ocfs2_super *osb =
4789 		OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
4790 
4791 	BUG_ON(!clusters_to_add);
4792 
4793 	if (mark_unwritten)
4794 		flags = OCFS2_EXT_UNWRITTEN;
4795 
4796 	free_extents = ocfs2_num_free_extents(et);
4797 	if (free_extents < 0) {
4798 		status = free_extents;
4799 		mlog_errno(status);
4800 		goto leave;
4801 	}
4802 
4803 	/* there are two cases which could cause us to EAGAIN in the
4804 	 * we-need-more-metadata case:
4805 	 * 1) we haven't reserved *any*
4806 	 * 2) we are so fragmented, we've needed to add metadata too
4807 	 *    many times. */
4808 	if (!free_extents && !meta_ac) {
4809 		err = -1;
4810 		status = -EAGAIN;
4811 		reason = RESTART_META;
4812 		goto leave;
4813 	} else if ((!free_extents)
4814 		   && (ocfs2_alloc_context_bits_left(meta_ac)
4815 		       < ocfs2_extend_meta_needed(et->et_root_el))) {
4816 		err = -2;
4817 		status = -EAGAIN;
4818 		reason = RESTART_META;
4819 		goto leave;
4820 	}
4821 
4822 	status = __ocfs2_claim_clusters(handle, data_ac, 1,
4823 					clusters_to_add, &bit_off, &num_bits);
4824 	if (status < 0) {
4825 		if (status != -ENOSPC)
4826 			mlog_errno(status);
4827 		goto leave;
4828 	}
4829 
4830 	BUG_ON(num_bits > clusters_to_add);
4831 
4832 	/* reserve our write early -- insert_extent may update the tree root */
4833 	status = ocfs2_et_root_journal_access(handle, et,
4834 					      OCFS2_JOURNAL_ACCESS_WRITE);
4835 	if (status < 0) {
4836 		mlog_errno(status);
4837 		need_free = 1;
4838 		goto bail;
4839 	}
4840 
4841 	block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4842 	trace_ocfs2_add_clusters_in_btree(
4843 	     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4844 	     bit_off, num_bits);
4845 	status = ocfs2_insert_extent(handle, et, *logical_offset, block,
4846 				     num_bits, flags, meta_ac);
4847 	if (status < 0) {
4848 		mlog_errno(status);
4849 		need_free = 1;
4850 		goto bail;
4851 	}
4852 
4853 	ocfs2_journal_dirty(handle, et->et_root_bh);
4854 
4855 	clusters_to_add -= num_bits;
4856 	*logical_offset += num_bits;
4857 
4858 	if (clusters_to_add) {
4859 		err = clusters_to_add;
4860 		status = -EAGAIN;
4861 		reason = RESTART_TRANS;
4862 	}
4863 
4864 bail:
4865 	if (need_free) {
4866 		if (data_ac->ac_which == OCFS2_AC_USE_LOCAL)
4867 			ocfs2_free_local_alloc_bits(osb, handle, data_ac,
4868 					bit_off, num_bits);
4869 		else
4870 			ocfs2_free_clusters(handle,
4871 					data_ac->ac_inode,
4872 					data_ac->ac_bh,
4873 					ocfs2_clusters_to_blocks(osb->sb, bit_off),
4874 					num_bits);
4875 	}
4876 
4877 leave:
4878 	if (reason_ret)
4879 		*reason_ret = reason;
4880 	trace_ocfs2_add_clusters_in_btree_ret(status, reason, err);
4881 	return status;
4882 }
4883 
4884 static void ocfs2_make_right_split_rec(struct super_block *sb,
4885 				       struct ocfs2_extent_rec *split_rec,
4886 				       u32 cpos,
4887 				       struct ocfs2_extent_rec *rec)
4888 {
4889 	u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4890 	u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4891 
4892 	memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4893 
4894 	split_rec->e_cpos = cpu_to_le32(cpos);
4895 	split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4896 
4897 	split_rec->e_blkno = rec->e_blkno;
4898 	le64_add_cpu(&split_rec->e_blkno,
4899 		     ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4900 
4901 	split_rec->e_flags = rec->e_flags;
4902 }
4903 
4904 static int ocfs2_split_and_insert(handle_t *handle,
4905 				  struct ocfs2_extent_tree *et,
4906 				  struct ocfs2_path *path,
4907 				  struct buffer_head **last_eb_bh,
4908 				  int split_index,
4909 				  struct ocfs2_extent_rec *orig_split_rec,
4910 				  struct ocfs2_alloc_context *meta_ac)
4911 {
4912 	int ret = 0, depth;
4913 	unsigned int insert_range, rec_range, do_leftright = 0;
4914 	struct ocfs2_extent_rec tmprec;
4915 	struct ocfs2_extent_list *rightmost_el;
4916 	struct ocfs2_extent_rec rec;
4917 	struct ocfs2_extent_rec split_rec = *orig_split_rec;
4918 	struct ocfs2_insert_type insert;
4919 	struct ocfs2_extent_block *eb;
4920 
4921 leftright:
4922 	/*
4923 	 * Store a copy of the record on the stack - it might move
4924 	 * around as the tree is manipulated below.
4925 	 */
4926 	rec = path_leaf_el(path)->l_recs[split_index];
4927 
4928 	rightmost_el = et->et_root_el;
4929 
4930 	depth = le16_to_cpu(rightmost_el->l_tree_depth);
4931 	if (depth) {
4932 		BUG_ON(!(*last_eb_bh));
4933 		eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4934 		rightmost_el = &eb->h_list;
4935 	}
4936 
4937 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4938 	    le16_to_cpu(rightmost_el->l_count)) {
4939 		ret = ocfs2_grow_tree(handle, et,
4940 				      &depth, last_eb_bh, meta_ac);
4941 		if (ret) {
4942 			mlog_errno(ret);
4943 			goto out;
4944 		}
4945 	}
4946 
4947 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4948 	insert.ins_appending = APPEND_NONE;
4949 	insert.ins_contig = CONTIG_NONE;
4950 	insert.ins_tree_depth = depth;
4951 
4952 	insert_range = le32_to_cpu(split_rec.e_cpos) +
4953 		le16_to_cpu(split_rec.e_leaf_clusters);
4954 	rec_range = le32_to_cpu(rec.e_cpos) +
4955 		le16_to_cpu(rec.e_leaf_clusters);
4956 
4957 	if (split_rec.e_cpos == rec.e_cpos) {
4958 		insert.ins_split = SPLIT_LEFT;
4959 	} else if (insert_range == rec_range) {
4960 		insert.ins_split = SPLIT_RIGHT;
4961 	} else {
4962 		/*
4963 		 * Left/right split. We fake this as a right split
4964 		 * first and then make a second pass as a left split.
4965 		 */
4966 		insert.ins_split = SPLIT_RIGHT;
4967 
4968 		ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4969 					   &tmprec, insert_range, &rec);
4970 
4971 		split_rec = tmprec;
4972 
4973 		BUG_ON(do_leftright);
4974 		do_leftright = 1;
4975 	}
4976 
4977 	ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
4978 	if (ret) {
4979 		mlog_errno(ret);
4980 		goto out;
4981 	}
4982 
4983 	if (do_leftright == 1) {
4984 		u32 cpos;
4985 		struct ocfs2_extent_list *el;
4986 
4987 		do_leftright++;
4988 		split_rec = *orig_split_rec;
4989 
4990 		ocfs2_reinit_path(path, 1);
4991 
4992 		cpos = le32_to_cpu(split_rec.e_cpos);
4993 		ret = ocfs2_find_path(et->et_ci, path, cpos);
4994 		if (ret) {
4995 			mlog_errno(ret);
4996 			goto out;
4997 		}
4998 
4999 		el = path_leaf_el(path);
5000 		split_index = ocfs2_search_extent_list(el, cpos);
5001 		if (split_index == -1) {
5002 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5003 				    "Owner %llu has an extent at cpos %u which can no longer be found\n",
5004 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5005 				    cpos);
5006 			ret = -EROFS;
5007 			goto out;
5008 		}
5009 		goto leftright;
5010 	}
5011 out:
5012 
5013 	return ret;
5014 }
5015 
5016 static int ocfs2_replace_extent_rec(handle_t *handle,
5017 				    struct ocfs2_extent_tree *et,
5018 				    struct ocfs2_path *path,
5019 				    struct ocfs2_extent_list *el,
5020 				    int split_index,
5021 				    struct ocfs2_extent_rec *split_rec)
5022 {
5023 	int ret;
5024 
5025 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
5026 					   path_num_items(path) - 1);
5027 	if (ret) {
5028 		mlog_errno(ret);
5029 		goto out;
5030 	}
5031 
5032 	el->l_recs[split_index] = *split_rec;
5033 
5034 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
5035 out:
5036 	return ret;
5037 }
5038 
5039 /*
5040  * Split part or all of the extent record at split_index in the leaf
5041  * pointed to by path. Merge with the contiguous extent record if needed.
5042  *
5043  * Care is taken to handle contiguousness so as to not grow the tree.
5044  *
5045  * meta_ac is not strictly necessary - we only truly need it if growth
5046  * of the tree is required. All other cases will degrade into a less
5047  * optimal tree layout.
5048  *
5049  * last_eb_bh should be the rightmost leaf block for any extent
5050  * btree. Since a split may grow the tree or a merge might shrink it,
5051  * the caller cannot trust the contents of that buffer after this call.
5052  *
5053  * This code is optimized for readability - several passes might be
5054  * made over certain portions of the tree. All of those blocks will
5055  * have been brought into cache (and pinned via the journal), so the
5056  * extra overhead is not expressed in terms of disk reads.
5057  */
5058 int ocfs2_split_extent(handle_t *handle,
5059 		       struct ocfs2_extent_tree *et,
5060 		       struct ocfs2_path *path,
5061 		       int split_index,
5062 		       struct ocfs2_extent_rec *split_rec,
5063 		       struct ocfs2_alloc_context *meta_ac,
5064 		       struct ocfs2_cached_dealloc_ctxt *dealloc)
5065 {
5066 	int ret = 0;
5067 	struct ocfs2_extent_list *el = path_leaf_el(path);
5068 	struct buffer_head *last_eb_bh = NULL;
5069 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5070 	struct ocfs2_merge_ctxt ctxt;
5071 
5072 	if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5073 	    ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5074 	     (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5075 		ret = -EIO;
5076 		mlog_errno(ret);
5077 		goto out;
5078 	}
5079 
5080 	ret = ocfs2_figure_merge_contig_type(et, path, el,
5081 					     split_index,
5082 					     split_rec,
5083 					     &ctxt);
5084 	if (ret) {
5085 		mlog_errno(ret);
5086 		goto out;
5087 	}
5088 
5089 	/*
5090 	 * The core merge / split code wants to know how much room is
5091 	 * left in this allocation tree, so we pass the
5092 	 * rightmost extent list.
5093 	 */
5094 	if (path->p_tree_depth) {
5095 		ret = ocfs2_read_extent_block(et->et_ci,
5096 					      ocfs2_et_get_last_eb_blk(et),
5097 					      &last_eb_bh);
5098 		if (ret) {
5099 			mlog_errno(ret);
5100 			goto out;
5101 		}
5102 	}
5103 
5104 	if (rec->e_cpos == split_rec->e_cpos &&
5105 	    rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5106 		ctxt.c_split_covers_rec = 1;
5107 	else
5108 		ctxt.c_split_covers_rec = 0;
5109 
5110 	ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5111 
5112 	trace_ocfs2_split_extent(split_index, ctxt.c_contig_type,
5113 				 ctxt.c_has_empty_extent,
5114 				 ctxt.c_split_covers_rec);
5115 
5116 	if (ctxt.c_contig_type == CONTIG_NONE) {
5117 		if (ctxt.c_split_covers_rec)
5118 			ret = ocfs2_replace_extent_rec(handle, et, path, el,
5119 						       split_index, split_rec);
5120 		else
5121 			ret = ocfs2_split_and_insert(handle, et, path,
5122 						     &last_eb_bh, split_index,
5123 						     split_rec, meta_ac);
5124 		if (ret)
5125 			mlog_errno(ret);
5126 	} else {
5127 		ret = ocfs2_try_to_merge_extent(handle, et, path,
5128 						split_index, split_rec,
5129 						dealloc, &ctxt);
5130 		if (ret)
5131 			mlog_errno(ret);
5132 	}
5133 
5134 out:
5135 	brelse(last_eb_bh);
5136 	return ret;
5137 }
5138 
5139 /*
5140  * Change the flags of the already-existing extent at cpos for len clusters.
5141  *
5142  * new_flags: the flags we want to set.
5143  * clear_flags: the flags we want to clear.
5144  * phys: the new physical offset we want this new extent starts from.
5145  *
5146  * If the existing extent is larger than the request, initiate a
5147  * split. An attempt will be made at merging with adjacent extents.
5148  *
5149  * The caller is responsible for passing down meta_ac if we'll need it.
5150  */
5151 int ocfs2_change_extent_flag(handle_t *handle,
5152 			     struct ocfs2_extent_tree *et,
5153 			     u32 cpos, u32 len, u32 phys,
5154 			     struct ocfs2_alloc_context *meta_ac,
5155 			     struct ocfs2_cached_dealloc_ctxt *dealloc,
5156 			     int new_flags, int clear_flags)
5157 {
5158 	int ret, index;
5159 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5160 	u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys);
5161 	struct ocfs2_extent_rec split_rec;
5162 	struct ocfs2_path *left_path = NULL;
5163 	struct ocfs2_extent_list *el;
5164 	struct ocfs2_extent_rec *rec;
5165 
5166 	left_path = ocfs2_new_path_from_et(et);
5167 	if (!left_path) {
5168 		ret = -ENOMEM;
5169 		mlog_errno(ret);
5170 		goto out;
5171 	}
5172 
5173 	ret = ocfs2_find_path(et->et_ci, left_path, cpos);
5174 	if (ret) {
5175 		mlog_errno(ret);
5176 		goto out;
5177 	}
5178 	el = path_leaf_el(left_path);
5179 
5180 	index = ocfs2_search_extent_list(el, cpos);
5181 	if (index == -1) {
5182 		ocfs2_error(sb,
5183 			    "Owner %llu has an extent at cpos %u which can no longer be found\n",
5184 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5185 			    cpos);
5186 		ret = -EROFS;
5187 		goto out;
5188 	}
5189 
5190 	ret = -EIO;
5191 	rec = &el->l_recs[index];
5192 	if (new_flags && (rec->e_flags & new_flags)) {
5193 		mlog(ML_ERROR, "Owner %llu tried to set %d flags on an "
5194 		     "extent that already had them\n",
5195 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5196 		     new_flags);
5197 		goto out;
5198 	}
5199 
5200 	if (clear_flags && !(rec->e_flags & clear_flags)) {
5201 		mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an "
5202 		     "extent that didn't have them\n",
5203 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5204 		     clear_flags);
5205 		goto out;
5206 	}
5207 
5208 	memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5209 	split_rec.e_cpos = cpu_to_le32(cpos);
5210 	split_rec.e_leaf_clusters = cpu_to_le16(len);
5211 	split_rec.e_blkno = cpu_to_le64(start_blkno);
5212 	split_rec.e_flags = rec->e_flags;
5213 	if (new_flags)
5214 		split_rec.e_flags |= new_flags;
5215 	if (clear_flags)
5216 		split_rec.e_flags &= ~clear_flags;
5217 
5218 	ret = ocfs2_split_extent(handle, et, left_path,
5219 				 index, &split_rec, meta_ac,
5220 				 dealloc);
5221 	if (ret)
5222 		mlog_errno(ret);
5223 
5224 out:
5225 	ocfs2_free_path(left_path);
5226 	return ret;
5227 
5228 }
5229 
5230 /*
5231  * Mark the already-existing extent at cpos as written for len clusters.
5232  * This removes the unwritten extent flag.
5233  *
5234  * If the existing extent is larger than the request, initiate a
5235  * split. An attempt will be made at merging with adjacent extents.
5236  *
5237  * The caller is responsible for passing down meta_ac if we'll need it.
5238  */
5239 int ocfs2_mark_extent_written(struct inode *inode,
5240 			      struct ocfs2_extent_tree *et,
5241 			      handle_t *handle, u32 cpos, u32 len, u32 phys,
5242 			      struct ocfs2_alloc_context *meta_ac,
5243 			      struct ocfs2_cached_dealloc_ctxt *dealloc)
5244 {
5245 	int ret;
5246 
5247 	trace_ocfs2_mark_extent_written(
5248 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
5249 		cpos, len, phys);
5250 
5251 	if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5252 		ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents that are being written to, but the feature bit is not set in the super block\n",
5253 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
5254 		ret = -EROFS;
5255 		goto out;
5256 	}
5257 
5258 	/*
5259 	 * XXX: This should be fixed up so that we just re-insert the
5260 	 * next extent records.
5261 	 */
5262 	ocfs2_et_extent_map_truncate(et, 0);
5263 
5264 	ret = ocfs2_change_extent_flag(handle, et, cpos,
5265 				       len, phys, meta_ac, dealloc,
5266 				       0, OCFS2_EXT_UNWRITTEN);
5267 	if (ret)
5268 		mlog_errno(ret);
5269 
5270 out:
5271 	return ret;
5272 }
5273 
5274 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et,
5275 			    struct ocfs2_path *path,
5276 			    int index, u32 new_range,
5277 			    struct ocfs2_alloc_context *meta_ac)
5278 {
5279 	int ret, depth, credits;
5280 	struct buffer_head *last_eb_bh = NULL;
5281 	struct ocfs2_extent_block *eb;
5282 	struct ocfs2_extent_list *rightmost_el, *el;
5283 	struct ocfs2_extent_rec split_rec;
5284 	struct ocfs2_extent_rec *rec;
5285 	struct ocfs2_insert_type insert;
5286 
5287 	/*
5288 	 * Setup the record to split before we grow the tree.
5289 	 */
5290 	el = path_leaf_el(path);
5291 	rec = &el->l_recs[index];
5292 	ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
5293 				   &split_rec, new_range, rec);
5294 
5295 	depth = path->p_tree_depth;
5296 	if (depth > 0) {
5297 		ret = ocfs2_read_extent_block(et->et_ci,
5298 					      ocfs2_et_get_last_eb_blk(et),
5299 					      &last_eb_bh);
5300 		if (ret < 0) {
5301 			mlog_errno(ret);
5302 			goto out;
5303 		}
5304 
5305 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5306 		rightmost_el = &eb->h_list;
5307 	} else
5308 		rightmost_el = path_leaf_el(path);
5309 
5310 	credits = path->p_tree_depth +
5311 		  ocfs2_extend_meta_needed(et->et_root_el);
5312 	ret = ocfs2_extend_trans(handle, credits);
5313 	if (ret) {
5314 		mlog_errno(ret);
5315 		goto out;
5316 	}
5317 
5318 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5319 	    le16_to_cpu(rightmost_el->l_count)) {
5320 		ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh,
5321 				      meta_ac);
5322 		if (ret) {
5323 			mlog_errno(ret);
5324 			goto out;
5325 		}
5326 	}
5327 
5328 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5329 	insert.ins_appending = APPEND_NONE;
5330 	insert.ins_contig = CONTIG_NONE;
5331 	insert.ins_split = SPLIT_RIGHT;
5332 	insert.ins_tree_depth = depth;
5333 
5334 	ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
5335 	if (ret)
5336 		mlog_errno(ret);
5337 
5338 out:
5339 	brelse(last_eb_bh);
5340 	return ret;
5341 }
5342 
5343 static int ocfs2_truncate_rec(handle_t *handle,
5344 			      struct ocfs2_extent_tree *et,
5345 			      struct ocfs2_path *path, int index,
5346 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
5347 			      u32 cpos, u32 len)
5348 {
5349 	int ret;
5350 	u32 left_cpos, rec_range, trunc_range;
5351 	int is_rightmost_tree_rec = 0;
5352 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5353 	struct ocfs2_path *left_path = NULL;
5354 	struct ocfs2_extent_list *el = path_leaf_el(path);
5355 	struct ocfs2_extent_rec *rec;
5356 	struct ocfs2_extent_block *eb;
5357 
5358 	if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5359 		/* extend credit for ocfs2_remove_rightmost_path */
5360 		ret = ocfs2_extend_rotate_transaction(handle, 0,
5361 				handle->h_buffer_credits,
5362 				path);
5363 		if (ret) {
5364 			mlog_errno(ret);
5365 			goto out;
5366 		}
5367 
5368 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5369 		if (ret) {
5370 			mlog_errno(ret);
5371 			goto out;
5372 		}
5373 
5374 		index--;
5375 	}
5376 
5377 	if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5378 	    path->p_tree_depth) {
5379 		/*
5380 		 * Check whether this is the rightmost tree record. If
5381 		 * we remove all of this record or part of its right
5382 		 * edge then an update of the record lengths above it
5383 		 * will be required.
5384 		 */
5385 		eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5386 		if (eb->h_next_leaf_blk == 0)
5387 			is_rightmost_tree_rec = 1;
5388 	}
5389 
5390 	rec = &el->l_recs[index];
5391 	if (index == 0 && path->p_tree_depth &&
5392 	    le32_to_cpu(rec->e_cpos) == cpos) {
5393 		/*
5394 		 * Changing the leftmost offset (via partial or whole
5395 		 * record truncate) of an interior (or rightmost) path
5396 		 * means we have to update the subtree that is formed
5397 		 * by this leaf and the one to it's left.
5398 		 *
5399 		 * There are two cases we can skip:
5400 		 *   1) Path is the leftmost one in our btree.
5401 		 *   2) The leaf is rightmost and will be empty after
5402 		 *      we remove the extent record - the rotate code
5403 		 *      knows how to update the newly formed edge.
5404 		 */
5405 
5406 		ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
5407 		if (ret) {
5408 			mlog_errno(ret);
5409 			goto out;
5410 		}
5411 
5412 		if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5413 			left_path = ocfs2_new_path_from_path(path);
5414 			if (!left_path) {
5415 				ret = -ENOMEM;
5416 				mlog_errno(ret);
5417 				goto out;
5418 			}
5419 
5420 			ret = ocfs2_find_path(et->et_ci, left_path,
5421 					      left_cpos);
5422 			if (ret) {
5423 				mlog_errno(ret);
5424 				goto out;
5425 			}
5426 		}
5427 	}
5428 
5429 	ret = ocfs2_extend_rotate_transaction(handle, 0,
5430 					      handle->h_buffer_credits,
5431 					      path);
5432 	if (ret) {
5433 		mlog_errno(ret);
5434 		goto out;
5435 	}
5436 
5437 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
5438 	if (ret) {
5439 		mlog_errno(ret);
5440 		goto out;
5441 	}
5442 
5443 	ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
5444 	if (ret) {
5445 		mlog_errno(ret);
5446 		goto out;
5447 	}
5448 
5449 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5450 	trunc_range = cpos + len;
5451 
5452 	if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5453 		int next_free;
5454 
5455 		memset(rec, 0, sizeof(*rec));
5456 		ocfs2_cleanup_merge(el, index);
5457 
5458 		next_free = le16_to_cpu(el->l_next_free_rec);
5459 		if (is_rightmost_tree_rec && next_free > 1) {
5460 			/*
5461 			 * We skip the edge update if this path will
5462 			 * be deleted by the rotate code.
5463 			 */
5464 			rec = &el->l_recs[next_free - 1];
5465 			ocfs2_adjust_rightmost_records(handle, et, path,
5466 						       rec);
5467 		}
5468 	} else if (le32_to_cpu(rec->e_cpos) == cpos) {
5469 		/* Remove leftmost portion of the record. */
5470 		le32_add_cpu(&rec->e_cpos, len);
5471 		le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5472 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5473 	} else if (rec_range == trunc_range) {
5474 		/* Remove rightmost portion of the record */
5475 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5476 		if (is_rightmost_tree_rec)
5477 			ocfs2_adjust_rightmost_records(handle, et, path, rec);
5478 	} else {
5479 		/* Caller should have trapped this. */
5480 		mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) "
5481 		     "(%u, %u)\n",
5482 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5483 		     le32_to_cpu(rec->e_cpos),
5484 		     le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5485 		BUG();
5486 	}
5487 
5488 	if (left_path) {
5489 		int subtree_index;
5490 
5491 		subtree_index = ocfs2_find_subtree_root(et, left_path, path);
5492 		ocfs2_complete_edge_insert(handle, left_path, path,
5493 					   subtree_index);
5494 	}
5495 
5496 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
5497 
5498 	ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5499 	if (ret)
5500 		mlog_errno(ret);
5501 
5502 out:
5503 	ocfs2_free_path(left_path);
5504 	return ret;
5505 }
5506 
5507 int ocfs2_remove_extent(handle_t *handle,
5508 			struct ocfs2_extent_tree *et,
5509 			u32 cpos, u32 len,
5510 			struct ocfs2_alloc_context *meta_ac,
5511 			struct ocfs2_cached_dealloc_ctxt *dealloc)
5512 {
5513 	int ret, index;
5514 	u32 rec_range, trunc_range;
5515 	struct ocfs2_extent_rec *rec;
5516 	struct ocfs2_extent_list *el;
5517 	struct ocfs2_path *path = NULL;
5518 
5519 	/*
5520 	 * XXX: Why are we truncating to 0 instead of wherever this
5521 	 * affects us?
5522 	 */
5523 	ocfs2_et_extent_map_truncate(et, 0);
5524 
5525 	path = ocfs2_new_path_from_et(et);
5526 	if (!path) {
5527 		ret = -ENOMEM;
5528 		mlog_errno(ret);
5529 		goto out;
5530 	}
5531 
5532 	ret = ocfs2_find_path(et->et_ci, path, cpos);
5533 	if (ret) {
5534 		mlog_errno(ret);
5535 		goto out;
5536 	}
5537 
5538 	el = path_leaf_el(path);
5539 	index = ocfs2_search_extent_list(el, cpos);
5540 	if (index == -1) {
5541 		ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5542 			    "Owner %llu has an extent at cpos %u which can no longer be found\n",
5543 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5544 			    cpos);
5545 		ret = -EROFS;
5546 		goto out;
5547 	}
5548 
5549 	/*
5550 	 * We have 3 cases of extent removal:
5551 	 *   1) Range covers the entire extent rec
5552 	 *   2) Range begins or ends on one edge of the extent rec
5553 	 *   3) Range is in the middle of the extent rec (no shared edges)
5554 	 *
5555 	 * For case 1 we remove the extent rec and left rotate to
5556 	 * fill the hole.
5557 	 *
5558 	 * For case 2 we just shrink the existing extent rec, with a
5559 	 * tree update if the shrinking edge is also the edge of an
5560 	 * extent block.
5561 	 *
5562 	 * For case 3 we do a right split to turn the extent rec into
5563 	 * something case 2 can handle.
5564 	 */
5565 	rec = &el->l_recs[index];
5566 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5567 	trunc_range = cpos + len;
5568 
5569 	BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5570 
5571 	trace_ocfs2_remove_extent(
5572 		(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5573 		cpos, len, index, le32_to_cpu(rec->e_cpos),
5574 		ocfs2_rec_clusters(el, rec));
5575 
5576 	if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5577 		ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5578 					 cpos, len);
5579 		if (ret) {
5580 			mlog_errno(ret);
5581 			goto out;
5582 		}
5583 	} else {
5584 		ret = ocfs2_split_tree(handle, et, path, index,
5585 				       trunc_range, meta_ac);
5586 		if (ret) {
5587 			mlog_errno(ret);
5588 			goto out;
5589 		}
5590 
5591 		/*
5592 		 * The split could have manipulated the tree enough to
5593 		 * move the record location, so we have to look for it again.
5594 		 */
5595 		ocfs2_reinit_path(path, 1);
5596 
5597 		ret = ocfs2_find_path(et->et_ci, path, cpos);
5598 		if (ret) {
5599 			mlog_errno(ret);
5600 			goto out;
5601 		}
5602 
5603 		el = path_leaf_el(path);
5604 		index = ocfs2_search_extent_list(el, cpos);
5605 		if (index == -1) {
5606 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5607 				    "Owner %llu: split at cpos %u lost record\n",
5608 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5609 				    cpos);
5610 			ret = -EROFS;
5611 			goto out;
5612 		}
5613 
5614 		/*
5615 		 * Double check our values here. If anything is fishy,
5616 		 * it's easier to catch it at the top level.
5617 		 */
5618 		rec = &el->l_recs[index];
5619 		rec_range = le32_to_cpu(rec->e_cpos) +
5620 			ocfs2_rec_clusters(el, rec);
5621 		if (rec_range != trunc_range) {
5622 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5623 				    "Owner %llu: error after split at cpos %u trunc len %u, existing record is (%u,%u)\n",
5624 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5625 				    cpos, len, le32_to_cpu(rec->e_cpos),
5626 				    ocfs2_rec_clusters(el, rec));
5627 			ret = -EROFS;
5628 			goto out;
5629 		}
5630 
5631 		ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5632 					 cpos, len);
5633 		if (ret)
5634 			mlog_errno(ret);
5635 	}
5636 
5637 out:
5638 	ocfs2_free_path(path);
5639 	return ret;
5640 }
5641 
5642 /*
5643  * ocfs2_reserve_blocks_for_rec_trunc() would look basically the
5644  * same as ocfs2_lock_alloctors(), except for it accepts a blocks
5645  * number to reserve some extra blocks, and it only handles meta
5646  * data allocations.
5647  *
5648  * Currently, only ocfs2_remove_btree_range() uses it for truncating
5649  * and punching holes.
5650  */
5651 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode,
5652 					      struct ocfs2_extent_tree *et,
5653 					      u32 extents_to_split,
5654 					      struct ocfs2_alloc_context **ac,
5655 					      int extra_blocks)
5656 {
5657 	int ret = 0, num_free_extents;
5658 	unsigned int max_recs_needed = 2 * extents_to_split;
5659 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5660 
5661 	*ac = NULL;
5662 
5663 	num_free_extents = ocfs2_num_free_extents(et);
5664 	if (num_free_extents < 0) {
5665 		ret = num_free_extents;
5666 		mlog_errno(ret);
5667 		goto out;
5668 	}
5669 
5670 	if (!num_free_extents ||
5671 	    (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed))
5672 		extra_blocks += ocfs2_extend_meta_needed(et->et_root_el);
5673 
5674 	if (extra_blocks) {
5675 		ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac);
5676 		if (ret < 0) {
5677 			if (ret != -ENOSPC)
5678 				mlog_errno(ret);
5679 		}
5680 	}
5681 
5682 out:
5683 	if (ret) {
5684 		if (*ac) {
5685 			ocfs2_free_alloc_context(*ac);
5686 			*ac = NULL;
5687 		}
5688 	}
5689 
5690 	return ret;
5691 }
5692 
5693 int ocfs2_remove_btree_range(struct inode *inode,
5694 			     struct ocfs2_extent_tree *et,
5695 			     u32 cpos, u32 phys_cpos, u32 len, int flags,
5696 			     struct ocfs2_cached_dealloc_ctxt *dealloc,
5697 			     u64 refcount_loc, bool refcount_tree_locked)
5698 {
5699 	int ret, credits = 0, extra_blocks = 0;
5700 	u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5701 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5702 	struct inode *tl_inode = osb->osb_tl_inode;
5703 	handle_t *handle;
5704 	struct ocfs2_alloc_context *meta_ac = NULL;
5705 	struct ocfs2_refcount_tree *ref_tree = NULL;
5706 
5707 	if ((flags & OCFS2_EXT_REFCOUNTED) && len) {
5708 		BUG_ON(!ocfs2_is_refcount_inode(inode));
5709 
5710 		if (!refcount_tree_locked) {
5711 			ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
5712 						       &ref_tree, NULL);
5713 			if (ret) {
5714 				mlog_errno(ret);
5715 				goto bail;
5716 			}
5717 		}
5718 
5719 		ret = ocfs2_prepare_refcount_change_for_del(inode,
5720 							    refcount_loc,
5721 							    phys_blkno,
5722 							    len,
5723 							    &credits,
5724 							    &extra_blocks);
5725 		if (ret < 0) {
5726 			mlog_errno(ret);
5727 			goto bail;
5728 		}
5729 	}
5730 
5731 	ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac,
5732 						 extra_blocks);
5733 	if (ret) {
5734 		mlog_errno(ret);
5735 		goto bail;
5736 	}
5737 
5738 	inode_lock(tl_inode);
5739 
5740 	if (ocfs2_truncate_log_needs_flush(osb)) {
5741 		ret = __ocfs2_flush_truncate_log(osb);
5742 		if (ret < 0) {
5743 			mlog_errno(ret);
5744 			goto out;
5745 		}
5746 	}
5747 
5748 	handle = ocfs2_start_trans(osb,
5749 			ocfs2_remove_extent_credits(osb->sb) + credits);
5750 	if (IS_ERR(handle)) {
5751 		ret = PTR_ERR(handle);
5752 		mlog_errno(ret);
5753 		goto out;
5754 	}
5755 
5756 	ret = ocfs2_et_root_journal_access(handle, et,
5757 					   OCFS2_JOURNAL_ACCESS_WRITE);
5758 	if (ret) {
5759 		mlog_errno(ret);
5760 		goto out_commit;
5761 	}
5762 
5763 	dquot_free_space_nodirty(inode,
5764 				  ocfs2_clusters_to_bytes(inode->i_sb, len));
5765 
5766 	ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc);
5767 	if (ret) {
5768 		mlog_errno(ret);
5769 		goto out_commit;
5770 	}
5771 
5772 	ocfs2_et_update_clusters(et, -len);
5773 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
5774 
5775 	ocfs2_journal_dirty(handle, et->et_root_bh);
5776 
5777 	if (phys_blkno) {
5778 		if (flags & OCFS2_EXT_REFCOUNTED)
5779 			ret = ocfs2_decrease_refcount(inode, handle,
5780 					ocfs2_blocks_to_clusters(osb->sb,
5781 								 phys_blkno),
5782 					len, meta_ac,
5783 					dealloc, 1);
5784 		else
5785 			ret = ocfs2_truncate_log_append(osb, handle,
5786 							phys_blkno, len);
5787 		if (ret)
5788 			mlog_errno(ret);
5789 
5790 	}
5791 
5792 out_commit:
5793 	ocfs2_commit_trans(osb, handle);
5794 out:
5795 	inode_unlock(tl_inode);
5796 bail:
5797 	if (meta_ac)
5798 		ocfs2_free_alloc_context(meta_ac);
5799 
5800 	if (ref_tree)
5801 		ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
5802 
5803 	return ret;
5804 }
5805 
5806 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5807 {
5808 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5809 	struct ocfs2_dinode *di;
5810 	struct ocfs2_truncate_log *tl;
5811 
5812 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5813 	tl = &di->id2.i_dealloc;
5814 
5815 	mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5816 			"slot %d, invalid truncate log parameters: used = "
5817 			"%u, count = %u\n", osb->slot_num,
5818 			le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5819 	return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5820 }
5821 
5822 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5823 					   unsigned int new_start)
5824 {
5825 	unsigned int tail_index;
5826 	unsigned int current_tail;
5827 
5828 	/* No records, nothing to coalesce */
5829 	if (!le16_to_cpu(tl->tl_used))
5830 		return 0;
5831 
5832 	tail_index = le16_to_cpu(tl->tl_used) - 1;
5833 	current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5834 	current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5835 
5836 	return current_tail == new_start;
5837 }
5838 
5839 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5840 			      handle_t *handle,
5841 			      u64 start_blk,
5842 			      unsigned int num_clusters)
5843 {
5844 	int status, index;
5845 	unsigned int start_cluster, tl_count;
5846 	struct inode *tl_inode = osb->osb_tl_inode;
5847 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5848 	struct ocfs2_dinode *di;
5849 	struct ocfs2_truncate_log *tl;
5850 
5851 	BUG_ON(inode_trylock(tl_inode));
5852 
5853 	start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5854 
5855 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5856 
5857 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5858 	 * by the underlying call to ocfs2_read_inode_block(), so any
5859 	 * corruption is a code bug */
5860 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5861 
5862 	tl = &di->id2.i_dealloc;
5863 	tl_count = le16_to_cpu(tl->tl_count);
5864 	mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5865 			tl_count == 0,
5866 			"Truncate record count on #%llu invalid "
5867 			"wanted %u, actual %u\n",
5868 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5869 			ocfs2_truncate_recs_per_inode(osb->sb),
5870 			le16_to_cpu(tl->tl_count));
5871 
5872 	/* Caller should have known to flush before calling us. */
5873 	index = le16_to_cpu(tl->tl_used);
5874 	if (index >= tl_count) {
5875 		status = -ENOSPC;
5876 		mlog_errno(status);
5877 		goto bail;
5878 	}
5879 
5880 	status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5881 					 OCFS2_JOURNAL_ACCESS_WRITE);
5882 	if (status < 0) {
5883 		mlog_errno(status);
5884 		goto bail;
5885 	}
5886 
5887 	trace_ocfs2_truncate_log_append(
5888 		(unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index,
5889 		start_cluster, num_clusters);
5890 	if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5891 		/*
5892 		 * Move index back to the record we are coalescing with.
5893 		 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5894 		 */
5895 		index--;
5896 
5897 		num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5898 		trace_ocfs2_truncate_log_append(
5899 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5900 			index, le32_to_cpu(tl->tl_recs[index].t_start),
5901 			num_clusters);
5902 	} else {
5903 		tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5904 		tl->tl_used = cpu_to_le16(index + 1);
5905 	}
5906 	tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5907 
5908 	ocfs2_journal_dirty(handle, tl_bh);
5909 
5910 	osb->truncated_clusters += num_clusters;
5911 bail:
5912 	return status;
5913 }
5914 
5915 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5916 					 struct inode *data_alloc_inode,
5917 					 struct buffer_head *data_alloc_bh)
5918 {
5919 	int status = 0;
5920 	int i;
5921 	unsigned int num_clusters;
5922 	u64 start_blk;
5923 	struct ocfs2_truncate_rec rec;
5924 	struct ocfs2_dinode *di;
5925 	struct ocfs2_truncate_log *tl;
5926 	struct inode *tl_inode = osb->osb_tl_inode;
5927 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5928 	handle_t *handle;
5929 
5930 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5931 	tl = &di->id2.i_dealloc;
5932 	i = le16_to_cpu(tl->tl_used) - 1;
5933 	while (i >= 0) {
5934 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5935 		if (IS_ERR(handle)) {
5936 			status = PTR_ERR(handle);
5937 			mlog_errno(status);
5938 			goto bail;
5939 		}
5940 
5941 		/* Caller has given us at least enough credits to
5942 		 * update the truncate log dinode */
5943 		status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5944 						 OCFS2_JOURNAL_ACCESS_WRITE);
5945 		if (status < 0) {
5946 			mlog_errno(status);
5947 			goto bail;
5948 		}
5949 
5950 		tl->tl_used = cpu_to_le16(i);
5951 
5952 		ocfs2_journal_dirty(handle, tl_bh);
5953 
5954 		rec = tl->tl_recs[i];
5955 		start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5956 						    le32_to_cpu(rec.t_start));
5957 		num_clusters = le32_to_cpu(rec.t_clusters);
5958 
5959 		/* if start_blk is not set, we ignore the record as
5960 		 * invalid. */
5961 		if (start_blk) {
5962 			trace_ocfs2_replay_truncate_records(
5963 				(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5964 				i, le32_to_cpu(rec.t_start), num_clusters);
5965 
5966 			status = ocfs2_free_clusters(handle, data_alloc_inode,
5967 						     data_alloc_bh, start_blk,
5968 						     num_clusters);
5969 			if (status < 0) {
5970 				mlog_errno(status);
5971 				goto bail;
5972 			}
5973 		}
5974 
5975 		ocfs2_commit_trans(osb, handle);
5976 		i--;
5977 	}
5978 
5979 	osb->truncated_clusters = 0;
5980 
5981 bail:
5982 	return status;
5983 }
5984 
5985 /* Expects you to already be holding tl_inode->i_mutex */
5986 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5987 {
5988 	int status;
5989 	unsigned int num_to_flush;
5990 	struct inode *tl_inode = osb->osb_tl_inode;
5991 	struct inode *data_alloc_inode = NULL;
5992 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5993 	struct buffer_head *data_alloc_bh = NULL;
5994 	struct ocfs2_dinode *di;
5995 	struct ocfs2_truncate_log *tl;
5996 	struct ocfs2_journal *journal = osb->journal;
5997 
5998 	BUG_ON(inode_trylock(tl_inode));
5999 
6000 	di = (struct ocfs2_dinode *) tl_bh->b_data;
6001 
6002 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
6003 	 * by the underlying call to ocfs2_read_inode_block(), so any
6004 	 * corruption is a code bug */
6005 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
6006 
6007 	tl = &di->id2.i_dealloc;
6008 	num_to_flush = le16_to_cpu(tl->tl_used);
6009 	trace_ocfs2_flush_truncate_log(
6010 		(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
6011 		num_to_flush);
6012 	if (!num_to_flush) {
6013 		status = 0;
6014 		goto out;
6015 	}
6016 
6017 	/* Appending truncate log(TA) and and flushing truncate log(TF) are
6018 	 * two separated transactions. They can be both committed but not
6019 	 * checkpointed. If crash occurs then, both two transaction will be
6020 	 * replayed with several already released to global bitmap clusters.
6021 	 * Then truncate log will be replayed resulting in cluster double free.
6022 	 */
6023 	jbd2_journal_lock_updates(journal->j_journal);
6024 	status = jbd2_journal_flush(journal->j_journal);
6025 	jbd2_journal_unlock_updates(journal->j_journal);
6026 	if (status < 0) {
6027 		mlog_errno(status);
6028 		goto out;
6029 	}
6030 
6031 	data_alloc_inode = ocfs2_get_system_file_inode(osb,
6032 						       GLOBAL_BITMAP_SYSTEM_INODE,
6033 						       OCFS2_INVALID_SLOT);
6034 	if (!data_alloc_inode) {
6035 		status = -EINVAL;
6036 		mlog(ML_ERROR, "Could not get bitmap inode!\n");
6037 		goto out;
6038 	}
6039 
6040 	inode_lock(data_alloc_inode);
6041 
6042 	status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
6043 	if (status < 0) {
6044 		mlog_errno(status);
6045 		goto out_mutex;
6046 	}
6047 
6048 	status = ocfs2_replay_truncate_records(osb, data_alloc_inode,
6049 					       data_alloc_bh);
6050 	if (status < 0)
6051 		mlog_errno(status);
6052 
6053 	brelse(data_alloc_bh);
6054 	ocfs2_inode_unlock(data_alloc_inode, 1);
6055 
6056 out_mutex:
6057 	inode_unlock(data_alloc_inode);
6058 	iput(data_alloc_inode);
6059 
6060 out:
6061 	return status;
6062 }
6063 
6064 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
6065 {
6066 	int status;
6067 	struct inode *tl_inode = osb->osb_tl_inode;
6068 
6069 	inode_lock(tl_inode);
6070 	status = __ocfs2_flush_truncate_log(osb);
6071 	inode_unlock(tl_inode);
6072 
6073 	return status;
6074 }
6075 
6076 static void ocfs2_truncate_log_worker(struct work_struct *work)
6077 {
6078 	int status;
6079 	struct ocfs2_super *osb =
6080 		container_of(work, struct ocfs2_super,
6081 			     osb_truncate_log_wq.work);
6082 
6083 	status = ocfs2_flush_truncate_log(osb);
6084 	if (status < 0)
6085 		mlog_errno(status);
6086 	else
6087 		ocfs2_init_steal_slots(osb);
6088 }
6089 
6090 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
6091 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
6092 				       int cancel)
6093 {
6094 	if (osb->osb_tl_inode &&
6095 			atomic_read(&osb->osb_tl_disable) == 0) {
6096 		/* We want to push off log flushes while truncates are
6097 		 * still running. */
6098 		if (cancel)
6099 			cancel_delayed_work(&osb->osb_truncate_log_wq);
6100 
6101 		queue_delayed_work(osb->ocfs2_wq, &osb->osb_truncate_log_wq,
6102 				   OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
6103 	}
6104 }
6105 
6106 /*
6107  * Try to flush truncate logs if we can free enough clusters from it.
6108  * As for return value, "< 0" means error, "0" no space and "1" means
6109  * we have freed enough spaces and let the caller try to allocate again.
6110  */
6111 int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
6112 					unsigned int needed)
6113 {
6114 	tid_t target;
6115 	int ret = 0;
6116 	unsigned int truncated_clusters;
6117 
6118 	inode_lock(osb->osb_tl_inode);
6119 	truncated_clusters = osb->truncated_clusters;
6120 	inode_unlock(osb->osb_tl_inode);
6121 
6122 	/*
6123 	 * Check whether we can succeed in allocating if we free
6124 	 * the truncate log.
6125 	 */
6126 	if (truncated_clusters < needed)
6127 		goto out;
6128 
6129 	ret = ocfs2_flush_truncate_log(osb);
6130 	if (ret) {
6131 		mlog_errno(ret);
6132 		goto out;
6133 	}
6134 
6135 	if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
6136 		jbd2_log_wait_commit(osb->journal->j_journal, target);
6137 		ret = 1;
6138 	}
6139 out:
6140 	return ret;
6141 }
6142 
6143 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
6144 				       int slot_num,
6145 				       struct inode **tl_inode,
6146 				       struct buffer_head **tl_bh)
6147 {
6148 	int status;
6149 	struct inode *inode = NULL;
6150 	struct buffer_head *bh = NULL;
6151 
6152 	inode = ocfs2_get_system_file_inode(osb,
6153 					   TRUNCATE_LOG_SYSTEM_INODE,
6154 					   slot_num);
6155 	if (!inode) {
6156 		status = -EINVAL;
6157 		mlog(ML_ERROR, "Could not get load truncate log inode!\n");
6158 		goto bail;
6159 	}
6160 
6161 	status = ocfs2_read_inode_block(inode, &bh);
6162 	if (status < 0) {
6163 		iput(inode);
6164 		mlog_errno(status);
6165 		goto bail;
6166 	}
6167 
6168 	*tl_inode = inode;
6169 	*tl_bh    = bh;
6170 bail:
6171 	return status;
6172 }
6173 
6174 /* called during the 1st stage of node recovery. we stamp a clean
6175  * truncate log and pass back a copy for processing later. if the
6176  * truncate log does not require processing, a *tl_copy is set to
6177  * NULL. */
6178 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
6179 				      int slot_num,
6180 				      struct ocfs2_dinode **tl_copy)
6181 {
6182 	int status;
6183 	struct inode *tl_inode = NULL;
6184 	struct buffer_head *tl_bh = NULL;
6185 	struct ocfs2_dinode *di;
6186 	struct ocfs2_truncate_log *tl;
6187 
6188 	*tl_copy = NULL;
6189 
6190 	trace_ocfs2_begin_truncate_log_recovery(slot_num);
6191 
6192 	status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
6193 	if (status < 0) {
6194 		mlog_errno(status);
6195 		goto bail;
6196 	}
6197 
6198 	di = (struct ocfs2_dinode *) tl_bh->b_data;
6199 
6200 	/* tl_bh is loaded from ocfs2_get_truncate_log_info().  It's
6201 	 * validated by the underlying call to ocfs2_read_inode_block(),
6202 	 * so any corruption is a code bug */
6203 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
6204 
6205 	tl = &di->id2.i_dealloc;
6206 	if (le16_to_cpu(tl->tl_used)) {
6207 		trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl->tl_used));
6208 
6209 		/*
6210 		 * Assuming the write-out below goes well, this copy will be
6211 		 * passed back to recovery for processing.
6212 		 */
6213 		*tl_copy = kmemdup(tl_bh->b_data, tl_bh->b_size, GFP_KERNEL);
6214 		if (!(*tl_copy)) {
6215 			status = -ENOMEM;
6216 			mlog_errno(status);
6217 			goto bail;
6218 		}
6219 
6220 		/* All we need to do to clear the truncate log is set
6221 		 * tl_used. */
6222 		tl->tl_used = 0;
6223 
6224 		ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6225 		status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
6226 		if (status < 0) {
6227 			mlog_errno(status);
6228 			goto bail;
6229 		}
6230 	}
6231 
6232 bail:
6233 	iput(tl_inode);
6234 	brelse(tl_bh);
6235 
6236 	if (status < 0) {
6237 		kfree(*tl_copy);
6238 		*tl_copy = NULL;
6239 		mlog_errno(status);
6240 	}
6241 
6242 	return status;
6243 }
6244 
6245 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6246 					 struct ocfs2_dinode *tl_copy)
6247 {
6248 	int status = 0;
6249 	int i;
6250 	unsigned int clusters, num_recs, start_cluster;
6251 	u64 start_blk;
6252 	handle_t *handle;
6253 	struct inode *tl_inode = osb->osb_tl_inode;
6254 	struct ocfs2_truncate_log *tl;
6255 
6256 	if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6257 		mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6258 		return -EINVAL;
6259 	}
6260 
6261 	tl = &tl_copy->id2.i_dealloc;
6262 	num_recs = le16_to_cpu(tl->tl_used);
6263 	trace_ocfs2_complete_truncate_log_recovery(
6264 		(unsigned long long)le64_to_cpu(tl_copy->i_blkno),
6265 		num_recs);
6266 
6267 	inode_lock(tl_inode);
6268 	for(i = 0; i < num_recs; i++) {
6269 		if (ocfs2_truncate_log_needs_flush(osb)) {
6270 			status = __ocfs2_flush_truncate_log(osb);
6271 			if (status < 0) {
6272 				mlog_errno(status);
6273 				goto bail_up;
6274 			}
6275 		}
6276 
6277 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6278 		if (IS_ERR(handle)) {
6279 			status = PTR_ERR(handle);
6280 			mlog_errno(status);
6281 			goto bail_up;
6282 		}
6283 
6284 		clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6285 		start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6286 		start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6287 
6288 		status = ocfs2_truncate_log_append(osb, handle,
6289 						   start_blk, clusters);
6290 		ocfs2_commit_trans(osb, handle);
6291 		if (status < 0) {
6292 			mlog_errno(status);
6293 			goto bail_up;
6294 		}
6295 	}
6296 
6297 bail_up:
6298 	inode_unlock(tl_inode);
6299 
6300 	return status;
6301 }
6302 
6303 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6304 {
6305 	int status;
6306 	struct inode *tl_inode = osb->osb_tl_inode;
6307 
6308 	atomic_set(&osb->osb_tl_disable, 1);
6309 
6310 	if (tl_inode) {
6311 		cancel_delayed_work(&osb->osb_truncate_log_wq);
6312 		flush_workqueue(osb->ocfs2_wq);
6313 
6314 		status = ocfs2_flush_truncate_log(osb);
6315 		if (status < 0)
6316 			mlog_errno(status);
6317 
6318 		brelse(osb->osb_tl_bh);
6319 		iput(osb->osb_tl_inode);
6320 	}
6321 }
6322 
6323 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6324 {
6325 	int status;
6326 	struct inode *tl_inode = NULL;
6327 	struct buffer_head *tl_bh = NULL;
6328 
6329 	status = ocfs2_get_truncate_log_info(osb,
6330 					     osb->slot_num,
6331 					     &tl_inode,
6332 					     &tl_bh);
6333 	if (status < 0)
6334 		mlog_errno(status);
6335 
6336 	/* ocfs2_truncate_log_shutdown keys on the existence of
6337 	 * osb->osb_tl_inode so we don't set any of the osb variables
6338 	 * until we're sure all is well. */
6339 	INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6340 			  ocfs2_truncate_log_worker);
6341 	atomic_set(&osb->osb_tl_disable, 0);
6342 	osb->osb_tl_bh    = tl_bh;
6343 	osb->osb_tl_inode = tl_inode;
6344 
6345 	return status;
6346 }
6347 
6348 /*
6349  * Delayed de-allocation of suballocator blocks.
6350  *
6351  * Some sets of block de-allocations might involve multiple suballocator inodes.
6352  *
6353  * The locking for this can get extremely complicated, especially when
6354  * the suballocator inodes to delete from aren't known until deep
6355  * within an unrelated codepath.
6356  *
6357  * ocfs2_extent_block structures are a good example of this - an inode
6358  * btree could have been grown by any number of nodes each allocating
6359  * out of their own suballoc inode.
6360  *
6361  * These structures allow the delay of block de-allocation until a
6362  * later time, when locking of multiple cluster inodes won't cause
6363  * deadlock.
6364  */
6365 
6366 /*
6367  * Describe a single bit freed from a suballocator.  For the block
6368  * suballocators, it represents one block.  For the global cluster
6369  * allocator, it represents some clusters and free_bit indicates
6370  * clusters number.
6371  */
6372 struct ocfs2_cached_block_free {
6373 	struct ocfs2_cached_block_free		*free_next;
6374 	u64					free_bg;
6375 	u64					free_blk;
6376 	unsigned int				free_bit;
6377 };
6378 
6379 struct ocfs2_per_slot_free_list {
6380 	struct ocfs2_per_slot_free_list		*f_next_suballocator;
6381 	int					f_inode_type;
6382 	int					f_slot;
6383 	struct ocfs2_cached_block_free		*f_first;
6384 };
6385 
6386 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6387 				    int sysfile_type,
6388 				    int slot,
6389 				    struct ocfs2_cached_block_free *head)
6390 {
6391 	int ret;
6392 	u64 bg_blkno;
6393 	handle_t *handle;
6394 	struct inode *inode;
6395 	struct buffer_head *di_bh = NULL;
6396 	struct ocfs2_cached_block_free *tmp;
6397 
6398 	inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6399 	if (!inode) {
6400 		ret = -EINVAL;
6401 		mlog_errno(ret);
6402 		goto out;
6403 	}
6404 
6405 	inode_lock(inode);
6406 
6407 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
6408 	if (ret) {
6409 		mlog_errno(ret);
6410 		goto out_mutex;
6411 	}
6412 
6413 	while (head) {
6414 		if (head->free_bg)
6415 			bg_blkno = head->free_bg;
6416 		else
6417 			bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6418 							      head->free_bit);
6419 		handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6420 		if (IS_ERR(handle)) {
6421 			ret = PTR_ERR(handle);
6422 			mlog_errno(ret);
6423 			goto out_unlock;
6424 		}
6425 
6426 		trace_ocfs2_free_cached_blocks(
6427 		     (unsigned long long)head->free_blk, head->free_bit);
6428 
6429 		ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6430 					       head->free_bit, bg_blkno, 1);
6431 		if (ret)
6432 			mlog_errno(ret);
6433 
6434 		ocfs2_commit_trans(osb, handle);
6435 
6436 		tmp = head;
6437 		head = head->free_next;
6438 		kfree(tmp);
6439 	}
6440 
6441 out_unlock:
6442 	ocfs2_inode_unlock(inode, 1);
6443 	brelse(di_bh);
6444 out_mutex:
6445 	inode_unlock(inode);
6446 	iput(inode);
6447 out:
6448 	while(head) {
6449 		/* Premature exit may have left some dangling items. */
6450 		tmp = head;
6451 		head = head->free_next;
6452 		kfree(tmp);
6453 	}
6454 
6455 	return ret;
6456 }
6457 
6458 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6459 				u64 blkno, unsigned int bit)
6460 {
6461 	int ret = 0;
6462 	struct ocfs2_cached_block_free *item;
6463 
6464 	item = kzalloc(sizeof(*item), GFP_NOFS);
6465 	if (item == NULL) {
6466 		ret = -ENOMEM;
6467 		mlog_errno(ret);
6468 		return ret;
6469 	}
6470 
6471 	trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno, bit);
6472 
6473 	item->free_blk = blkno;
6474 	item->free_bit = bit;
6475 	item->free_next = ctxt->c_global_allocator;
6476 
6477 	ctxt->c_global_allocator = item;
6478 	return ret;
6479 }
6480 
6481 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6482 				      struct ocfs2_cached_block_free *head)
6483 {
6484 	struct ocfs2_cached_block_free *tmp;
6485 	struct inode *tl_inode = osb->osb_tl_inode;
6486 	handle_t *handle;
6487 	int ret = 0;
6488 
6489 	inode_lock(tl_inode);
6490 
6491 	while (head) {
6492 		if (ocfs2_truncate_log_needs_flush(osb)) {
6493 			ret = __ocfs2_flush_truncate_log(osb);
6494 			if (ret < 0) {
6495 				mlog_errno(ret);
6496 				break;
6497 			}
6498 		}
6499 
6500 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6501 		if (IS_ERR(handle)) {
6502 			ret = PTR_ERR(handle);
6503 			mlog_errno(ret);
6504 			break;
6505 		}
6506 
6507 		ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6508 						head->free_bit);
6509 
6510 		ocfs2_commit_trans(osb, handle);
6511 		tmp = head;
6512 		head = head->free_next;
6513 		kfree(tmp);
6514 
6515 		if (ret < 0) {
6516 			mlog_errno(ret);
6517 			break;
6518 		}
6519 	}
6520 
6521 	inode_unlock(tl_inode);
6522 
6523 	while (head) {
6524 		/* Premature exit may have left some dangling items. */
6525 		tmp = head;
6526 		head = head->free_next;
6527 		kfree(tmp);
6528 	}
6529 
6530 	return ret;
6531 }
6532 
6533 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6534 		       struct ocfs2_cached_dealloc_ctxt *ctxt)
6535 {
6536 	int ret = 0, ret2;
6537 	struct ocfs2_per_slot_free_list *fl;
6538 
6539 	if (!ctxt)
6540 		return 0;
6541 
6542 	while (ctxt->c_first_suballocator) {
6543 		fl = ctxt->c_first_suballocator;
6544 
6545 		if (fl->f_first) {
6546 			trace_ocfs2_run_deallocs(fl->f_inode_type,
6547 						 fl->f_slot);
6548 			ret2 = ocfs2_free_cached_blocks(osb,
6549 							fl->f_inode_type,
6550 							fl->f_slot,
6551 							fl->f_first);
6552 			if (ret2)
6553 				mlog_errno(ret2);
6554 			if (!ret)
6555 				ret = ret2;
6556 		}
6557 
6558 		ctxt->c_first_suballocator = fl->f_next_suballocator;
6559 		kfree(fl);
6560 	}
6561 
6562 	if (ctxt->c_global_allocator) {
6563 		ret2 = ocfs2_free_cached_clusters(osb,
6564 						  ctxt->c_global_allocator);
6565 		if (ret2)
6566 			mlog_errno(ret2);
6567 		if (!ret)
6568 			ret = ret2;
6569 
6570 		ctxt->c_global_allocator = NULL;
6571 	}
6572 
6573 	return ret;
6574 }
6575 
6576 static struct ocfs2_per_slot_free_list *
6577 ocfs2_find_per_slot_free_list(int type,
6578 			      int slot,
6579 			      struct ocfs2_cached_dealloc_ctxt *ctxt)
6580 {
6581 	struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6582 
6583 	while (fl) {
6584 		if (fl->f_inode_type == type && fl->f_slot == slot)
6585 			return fl;
6586 
6587 		fl = fl->f_next_suballocator;
6588 	}
6589 
6590 	fl = kmalloc(sizeof(*fl), GFP_NOFS);
6591 	if (fl) {
6592 		fl->f_inode_type = type;
6593 		fl->f_slot = slot;
6594 		fl->f_first = NULL;
6595 		fl->f_next_suballocator = ctxt->c_first_suballocator;
6596 
6597 		ctxt->c_first_suballocator = fl;
6598 	}
6599 	return fl;
6600 }
6601 
6602 static struct ocfs2_per_slot_free_list *
6603 ocfs2_find_preferred_free_list(int type,
6604 			       int preferred_slot,
6605 			       int *real_slot,
6606 			       struct ocfs2_cached_dealloc_ctxt *ctxt)
6607 {
6608 	struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6609 
6610 	while (fl) {
6611 		if (fl->f_inode_type == type && fl->f_slot == preferred_slot) {
6612 			*real_slot = fl->f_slot;
6613 			return fl;
6614 		}
6615 
6616 		fl = fl->f_next_suballocator;
6617 	}
6618 
6619 	/* If we can't find any free list matching preferred slot, just use
6620 	 * the first one.
6621 	 */
6622 	fl = ctxt->c_first_suballocator;
6623 	*real_slot = fl->f_slot;
6624 
6625 	return fl;
6626 }
6627 
6628 /* Return Value 1 indicates empty */
6629 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree *et)
6630 {
6631 	struct ocfs2_per_slot_free_list *fl = NULL;
6632 
6633 	if (!et->et_dealloc)
6634 		return 1;
6635 
6636 	fl = et->et_dealloc->c_first_suballocator;
6637 	if (!fl)
6638 		return 1;
6639 
6640 	if (!fl->f_first)
6641 		return 1;
6642 
6643 	return 0;
6644 }
6645 
6646 /* If extent was deleted from tree due to extent rotation and merging, and
6647  * no metadata is reserved ahead of time. Try to reuse some extents
6648  * just deleted. This is only used to reuse extent blocks.
6649  * It is supposed to find enough extent blocks in dealloc if our estimation
6650  * on metadata is accurate.
6651  */
6652 static int ocfs2_reuse_blk_from_dealloc(handle_t *handle,
6653 					struct ocfs2_extent_tree *et,
6654 					struct buffer_head **new_eb_bh,
6655 					int blk_wanted, int *blk_given)
6656 {
6657 	int i, status = 0, real_slot;
6658 	struct ocfs2_cached_dealloc_ctxt *dealloc;
6659 	struct ocfs2_per_slot_free_list *fl;
6660 	struct ocfs2_cached_block_free *bf;
6661 	struct ocfs2_extent_block *eb;
6662 	struct ocfs2_super *osb =
6663 		OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
6664 
6665 	*blk_given = 0;
6666 
6667 	/* If extent tree doesn't have a dealloc, this is not faulty. Just
6668 	 * tell upper caller dealloc can't provide any block and it should
6669 	 * ask for alloc to claim more space.
6670 	 */
6671 	dealloc = et->et_dealloc;
6672 	if (!dealloc)
6673 		goto bail;
6674 
6675 	for (i = 0; i < blk_wanted; i++) {
6676 		/* Prefer to use local slot */
6677 		fl = ocfs2_find_preferred_free_list(EXTENT_ALLOC_SYSTEM_INODE,
6678 						    osb->slot_num, &real_slot,
6679 						    dealloc);
6680 		/* If no more block can be reused, we should claim more
6681 		 * from alloc. Just return here normally.
6682 		 */
6683 		if (!fl) {
6684 			status = 0;
6685 			break;
6686 		}
6687 
6688 		bf = fl->f_first;
6689 		fl->f_first = bf->free_next;
6690 
6691 		new_eb_bh[i] = sb_getblk(osb->sb, bf->free_blk);
6692 		if (new_eb_bh[i] == NULL) {
6693 			status = -ENOMEM;
6694 			mlog_errno(status);
6695 			goto bail;
6696 		}
6697 
6698 		mlog(0, "Reusing block(%llu) from "
6699 		     "dealloc(local slot:%d, real slot:%d)\n",
6700 		     bf->free_blk, osb->slot_num, real_slot);
6701 
6702 		ocfs2_set_new_buffer_uptodate(et->et_ci, new_eb_bh[i]);
6703 
6704 		status = ocfs2_journal_access_eb(handle, et->et_ci,
6705 						 new_eb_bh[i],
6706 						 OCFS2_JOURNAL_ACCESS_CREATE);
6707 		if (status < 0) {
6708 			mlog_errno(status);
6709 			goto bail;
6710 		}
6711 
6712 		memset(new_eb_bh[i]->b_data, 0, osb->sb->s_blocksize);
6713 		eb = (struct ocfs2_extent_block *) new_eb_bh[i]->b_data;
6714 
6715 		/* We can't guarantee that buffer head is still cached, so
6716 		 * polutlate the extent block again.
6717 		 */
6718 		strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
6719 		eb->h_blkno = cpu_to_le64(bf->free_blk);
6720 		eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
6721 		eb->h_suballoc_slot = cpu_to_le16(real_slot);
6722 		eb->h_suballoc_loc = cpu_to_le64(bf->free_bg);
6723 		eb->h_suballoc_bit = cpu_to_le16(bf->free_bit);
6724 		eb->h_list.l_count =
6725 			cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
6726 
6727 		/* We'll also be dirtied by the caller, so
6728 		 * this isn't absolutely necessary.
6729 		 */
6730 		ocfs2_journal_dirty(handle, new_eb_bh[i]);
6731 
6732 		if (!fl->f_first) {
6733 			dealloc->c_first_suballocator = fl->f_next_suballocator;
6734 			kfree(fl);
6735 		}
6736 		kfree(bf);
6737 	}
6738 
6739 	*blk_given = i;
6740 
6741 bail:
6742 	if (unlikely(status < 0)) {
6743 		for (i = 0; i < blk_wanted; i++)
6744 			brelse(new_eb_bh[i]);
6745 	}
6746 
6747 	return status;
6748 }
6749 
6750 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6751 			      int type, int slot, u64 suballoc,
6752 			      u64 blkno, unsigned int bit)
6753 {
6754 	int ret;
6755 	struct ocfs2_per_slot_free_list *fl;
6756 	struct ocfs2_cached_block_free *item;
6757 
6758 	fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6759 	if (fl == NULL) {
6760 		ret = -ENOMEM;
6761 		mlog_errno(ret);
6762 		goto out;
6763 	}
6764 
6765 	item = kzalloc(sizeof(*item), GFP_NOFS);
6766 	if (item == NULL) {
6767 		ret = -ENOMEM;
6768 		mlog_errno(ret);
6769 		goto out;
6770 	}
6771 
6772 	trace_ocfs2_cache_block_dealloc(type, slot,
6773 					(unsigned long long)suballoc,
6774 					(unsigned long long)blkno, bit);
6775 
6776 	item->free_bg = suballoc;
6777 	item->free_blk = blkno;
6778 	item->free_bit = bit;
6779 	item->free_next = fl->f_first;
6780 
6781 	fl->f_first = item;
6782 
6783 	ret = 0;
6784 out:
6785 	return ret;
6786 }
6787 
6788 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6789 					 struct ocfs2_extent_block *eb)
6790 {
6791 	return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6792 					 le16_to_cpu(eb->h_suballoc_slot),
6793 					 le64_to_cpu(eb->h_suballoc_loc),
6794 					 le64_to_cpu(eb->h_blkno),
6795 					 le16_to_cpu(eb->h_suballoc_bit));
6796 }
6797 
6798 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6799 {
6800 	set_buffer_uptodate(bh);
6801 	mark_buffer_dirty(bh);
6802 	return 0;
6803 }
6804 
6805 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6806 			      unsigned int from, unsigned int to,
6807 			      struct page *page, int zero, u64 *phys)
6808 {
6809 	int ret, partial = 0;
6810 	loff_t start_byte = ((loff_t)page->index << PAGE_SHIFT) + from;
6811 	loff_t length = to - from;
6812 
6813 	ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6814 	if (ret)
6815 		mlog_errno(ret);
6816 
6817 	if (zero)
6818 		zero_user_segment(page, from, to);
6819 
6820 	/*
6821 	 * Need to set the buffers we zero'd into uptodate
6822 	 * here if they aren't - ocfs2_map_page_blocks()
6823 	 * might've skipped some
6824 	 */
6825 	ret = walk_page_buffers(handle, page_buffers(page),
6826 				from, to, &partial,
6827 				ocfs2_zero_func);
6828 	if (ret < 0)
6829 		mlog_errno(ret);
6830 	else if (ocfs2_should_order_data(inode)) {
6831 		ret = ocfs2_jbd2_inode_add_write(handle, inode,
6832 						 start_byte, length);
6833 		if (ret < 0)
6834 			mlog_errno(ret);
6835 	}
6836 
6837 	if (!partial)
6838 		SetPageUptodate(page);
6839 
6840 	flush_dcache_page(page);
6841 }
6842 
6843 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6844 				     loff_t end, struct page **pages,
6845 				     int numpages, u64 phys, handle_t *handle)
6846 {
6847 	int i;
6848 	struct page *page;
6849 	unsigned int from, to = PAGE_SIZE;
6850 	struct super_block *sb = inode->i_sb;
6851 
6852 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6853 
6854 	if (numpages == 0)
6855 		goto out;
6856 
6857 	to = PAGE_SIZE;
6858 	for(i = 0; i < numpages; i++) {
6859 		page = pages[i];
6860 
6861 		from = start & (PAGE_SIZE - 1);
6862 		if ((end >> PAGE_SHIFT) == page->index)
6863 			to = end & (PAGE_SIZE - 1);
6864 
6865 		BUG_ON(from > PAGE_SIZE);
6866 		BUG_ON(to > PAGE_SIZE);
6867 
6868 		ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6869 					 &phys);
6870 
6871 		start = (page->index + 1) << PAGE_SHIFT;
6872 	}
6873 out:
6874 	if (pages)
6875 		ocfs2_unlock_and_free_pages(pages, numpages);
6876 }
6877 
6878 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end,
6879 		     struct page **pages, int *num)
6880 {
6881 	int numpages, ret = 0;
6882 	struct address_space *mapping = inode->i_mapping;
6883 	unsigned long index;
6884 	loff_t last_page_bytes;
6885 
6886 	BUG_ON(start > end);
6887 
6888 	numpages = 0;
6889 	last_page_bytes = PAGE_ALIGN(end);
6890 	index = start >> PAGE_SHIFT;
6891 	do {
6892 		pages[numpages] = find_or_create_page(mapping, index, GFP_NOFS);
6893 		if (!pages[numpages]) {
6894 			ret = -ENOMEM;
6895 			mlog_errno(ret);
6896 			goto out;
6897 		}
6898 
6899 		numpages++;
6900 		index++;
6901 	} while (index < (last_page_bytes >> PAGE_SHIFT));
6902 
6903 out:
6904 	if (ret != 0) {
6905 		if (pages)
6906 			ocfs2_unlock_and_free_pages(pages, numpages);
6907 		numpages = 0;
6908 	}
6909 
6910 	*num = numpages;
6911 
6912 	return ret;
6913 }
6914 
6915 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6916 				struct page **pages, int *num)
6917 {
6918 	struct super_block *sb = inode->i_sb;
6919 
6920 	BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6921 	       (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6922 
6923 	return ocfs2_grab_pages(inode, start, end, pages, num);
6924 }
6925 
6926 /*
6927  * Zero the area past i_size but still within an allocated
6928  * cluster. This avoids exposing nonzero data on subsequent file
6929  * extends.
6930  *
6931  * We need to call this before i_size is updated on the inode because
6932  * otherwise block_write_full_page() will skip writeout of pages past
6933  * i_size. The new_i_size parameter is passed for this reason.
6934  */
6935 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6936 				  u64 range_start, u64 range_end)
6937 {
6938 	int ret = 0, numpages;
6939 	struct page **pages = NULL;
6940 	u64 phys;
6941 	unsigned int ext_flags;
6942 	struct super_block *sb = inode->i_sb;
6943 
6944 	/*
6945 	 * File systems which don't support sparse files zero on every
6946 	 * extend.
6947 	 */
6948 	if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6949 		return 0;
6950 
6951 	pages = kcalloc(ocfs2_pages_per_cluster(sb),
6952 			sizeof(struct page *), GFP_NOFS);
6953 	if (pages == NULL) {
6954 		ret = -ENOMEM;
6955 		mlog_errno(ret);
6956 		goto out;
6957 	}
6958 
6959 	if (range_start == range_end)
6960 		goto out;
6961 
6962 	ret = ocfs2_extent_map_get_blocks(inode,
6963 					  range_start >> sb->s_blocksize_bits,
6964 					  &phys, NULL, &ext_flags);
6965 	if (ret) {
6966 		mlog_errno(ret);
6967 		goto out;
6968 	}
6969 
6970 	/*
6971 	 * Tail is a hole, or is marked unwritten. In either case, we
6972 	 * can count on read and write to return/push zero's.
6973 	 */
6974 	if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6975 		goto out;
6976 
6977 	ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6978 				   &numpages);
6979 	if (ret) {
6980 		mlog_errno(ret);
6981 		goto out;
6982 	}
6983 
6984 	ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6985 				 numpages, phys, handle);
6986 
6987 	/*
6988 	 * Initiate writeout of the pages we zero'd here. We don't
6989 	 * wait on them - the truncate_inode_pages() call later will
6990 	 * do that for us.
6991 	 */
6992 	ret = filemap_fdatawrite_range(inode->i_mapping, range_start,
6993 				       range_end - 1);
6994 	if (ret)
6995 		mlog_errno(ret);
6996 
6997 out:
6998 	kfree(pages);
6999 
7000 	return ret;
7001 }
7002 
7003 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
7004 					     struct ocfs2_dinode *di)
7005 {
7006 	unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
7007 	unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
7008 
7009 	if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
7010 		memset(&di->id2, 0, blocksize -
7011 				    offsetof(struct ocfs2_dinode, id2) -
7012 				    xattrsize);
7013 	else
7014 		memset(&di->id2, 0, blocksize -
7015 				    offsetof(struct ocfs2_dinode, id2));
7016 }
7017 
7018 void ocfs2_dinode_new_extent_list(struct inode *inode,
7019 				  struct ocfs2_dinode *di)
7020 {
7021 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
7022 	di->id2.i_list.l_tree_depth = 0;
7023 	di->id2.i_list.l_next_free_rec = 0;
7024 	di->id2.i_list.l_count = cpu_to_le16(
7025 		ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
7026 }
7027 
7028 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
7029 {
7030 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
7031 	struct ocfs2_inline_data *idata = &di->id2.i_data;
7032 
7033 	spin_lock(&oi->ip_lock);
7034 	oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
7035 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7036 	spin_unlock(&oi->ip_lock);
7037 
7038 	/*
7039 	 * We clear the entire i_data structure here so that all
7040 	 * fields can be properly initialized.
7041 	 */
7042 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
7043 
7044 	idata->id_count = cpu_to_le16(
7045 			ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
7046 }
7047 
7048 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
7049 					 struct buffer_head *di_bh)
7050 {
7051 	int ret, i, has_data, num_pages = 0;
7052 	int need_free = 0;
7053 	u32 bit_off, num;
7054 	handle_t *handle;
7055 	u64 uninitialized_var(block);
7056 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
7057 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7058 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7059 	struct ocfs2_alloc_context *data_ac = NULL;
7060 	struct page **pages = NULL;
7061 	loff_t end = osb->s_clustersize;
7062 	struct ocfs2_extent_tree et;
7063 	int did_quota = 0;
7064 
7065 	has_data = i_size_read(inode) ? 1 : 0;
7066 
7067 	if (has_data) {
7068 		pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
7069 				sizeof(struct page *), GFP_NOFS);
7070 		if (pages == NULL) {
7071 			ret = -ENOMEM;
7072 			mlog_errno(ret);
7073 			return ret;
7074 		}
7075 
7076 		ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
7077 		if (ret) {
7078 			mlog_errno(ret);
7079 			goto free_pages;
7080 		}
7081 	}
7082 
7083 	handle = ocfs2_start_trans(osb,
7084 				   ocfs2_inline_to_extents_credits(osb->sb));
7085 	if (IS_ERR(handle)) {
7086 		ret = PTR_ERR(handle);
7087 		mlog_errno(ret);
7088 		goto out;
7089 	}
7090 
7091 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7092 				      OCFS2_JOURNAL_ACCESS_WRITE);
7093 	if (ret) {
7094 		mlog_errno(ret);
7095 		goto out_commit;
7096 	}
7097 
7098 	if (has_data) {
7099 		unsigned int page_end;
7100 		u64 phys;
7101 
7102 		ret = dquot_alloc_space_nodirty(inode,
7103 				       ocfs2_clusters_to_bytes(osb->sb, 1));
7104 		if (ret)
7105 			goto out_commit;
7106 		did_quota = 1;
7107 
7108 		data_ac->ac_resv = &oi->ip_la_data_resv;
7109 
7110 		ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off,
7111 					   &num);
7112 		if (ret) {
7113 			mlog_errno(ret);
7114 			goto out_commit;
7115 		}
7116 
7117 		/*
7118 		 * Save two copies, one for insert, and one that can
7119 		 * be changed by ocfs2_map_and_dirty_page() below.
7120 		 */
7121 		block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
7122 
7123 		/*
7124 		 * Non sparse file systems zero on extend, so no need
7125 		 * to do that now.
7126 		 */
7127 		if (!ocfs2_sparse_alloc(osb) &&
7128 		    PAGE_SIZE < osb->s_clustersize)
7129 			end = PAGE_SIZE;
7130 
7131 		ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
7132 		if (ret) {
7133 			mlog_errno(ret);
7134 			need_free = 1;
7135 			goto out_commit;
7136 		}
7137 
7138 		/*
7139 		 * This should populate the 1st page for us and mark
7140 		 * it up to date.
7141 		 */
7142 		ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
7143 		if (ret) {
7144 			mlog_errno(ret);
7145 			need_free = 1;
7146 			goto out_unlock;
7147 		}
7148 
7149 		page_end = PAGE_SIZE;
7150 		if (PAGE_SIZE > osb->s_clustersize)
7151 			page_end = osb->s_clustersize;
7152 
7153 		for (i = 0; i < num_pages; i++)
7154 			ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
7155 						 pages[i], i > 0, &phys);
7156 	}
7157 
7158 	spin_lock(&oi->ip_lock);
7159 	oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
7160 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7161 	spin_unlock(&oi->ip_lock);
7162 
7163 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
7164 	ocfs2_dinode_new_extent_list(inode, di);
7165 
7166 	ocfs2_journal_dirty(handle, di_bh);
7167 
7168 	if (has_data) {
7169 		/*
7170 		 * An error at this point should be extremely rare. If
7171 		 * this proves to be false, we could always re-build
7172 		 * the in-inode data from our pages.
7173 		 */
7174 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
7175 		ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL);
7176 		if (ret) {
7177 			mlog_errno(ret);
7178 			need_free = 1;
7179 			goto out_unlock;
7180 		}
7181 
7182 		inode->i_blocks = ocfs2_inode_sector_count(inode);
7183 	}
7184 
7185 out_unlock:
7186 	if (pages)
7187 		ocfs2_unlock_and_free_pages(pages, num_pages);
7188 
7189 out_commit:
7190 	if (ret < 0 && did_quota)
7191 		dquot_free_space_nodirty(inode,
7192 					  ocfs2_clusters_to_bytes(osb->sb, 1));
7193 
7194 	if (need_free) {
7195 		if (data_ac->ac_which == OCFS2_AC_USE_LOCAL)
7196 			ocfs2_free_local_alloc_bits(osb, handle, data_ac,
7197 					bit_off, num);
7198 		else
7199 			ocfs2_free_clusters(handle,
7200 					data_ac->ac_inode,
7201 					data_ac->ac_bh,
7202 					ocfs2_clusters_to_blocks(osb->sb, bit_off),
7203 					num);
7204 	}
7205 
7206 	ocfs2_commit_trans(osb, handle);
7207 
7208 out:
7209 	if (data_ac)
7210 		ocfs2_free_alloc_context(data_ac);
7211 free_pages:
7212 	kfree(pages);
7213 	return ret;
7214 }
7215 
7216 /*
7217  * It is expected, that by the time you call this function,
7218  * inode->i_size and fe->i_size have been adjusted.
7219  *
7220  * WARNING: This will kfree the truncate context
7221  */
7222 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7223 			  struct inode *inode,
7224 			  struct buffer_head *di_bh)
7225 {
7226 	int status = 0, i, flags = 0;
7227 	u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff;
7228 	u64 blkno = 0;
7229 	struct ocfs2_extent_list *el;
7230 	struct ocfs2_extent_rec *rec;
7231 	struct ocfs2_path *path = NULL;
7232 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7233 	struct ocfs2_extent_list *root_el = &(di->id2.i_list);
7234 	u64 refcount_loc = le64_to_cpu(di->i_refcount_loc);
7235 	struct ocfs2_extent_tree et;
7236 	struct ocfs2_cached_dealloc_ctxt dealloc;
7237 	struct ocfs2_refcount_tree *ref_tree = NULL;
7238 
7239 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
7240 	ocfs2_init_dealloc_ctxt(&dealloc);
7241 
7242 	new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7243 						     i_size_read(inode));
7244 
7245 	path = ocfs2_new_path(di_bh, &di->id2.i_list,
7246 			      ocfs2_journal_access_di);
7247 	if (!path) {
7248 		status = -ENOMEM;
7249 		mlog_errno(status);
7250 		goto bail;
7251 	}
7252 
7253 	ocfs2_extent_map_trunc(inode, new_highest_cpos);
7254 
7255 start:
7256 	/*
7257 	 * Check that we still have allocation to delete.
7258 	 */
7259 	if (OCFS2_I(inode)->ip_clusters == 0) {
7260 		status = 0;
7261 		goto bail;
7262 	}
7263 
7264 	/*
7265 	 * Truncate always works against the rightmost tree branch.
7266 	 */
7267 	status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX);
7268 	if (status) {
7269 		mlog_errno(status);
7270 		goto bail;
7271 	}
7272 
7273 	trace_ocfs2_commit_truncate(
7274 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
7275 		new_highest_cpos,
7276 		OCFS2_I(inode)->ip_clusters,
7277 		path->p_tree_depth);
7278 
7279 	/*
7280 	 * By now, el will point to the extent list on the bottom most
7281 	 * portion of this tree. Only the tail record is considered in
7282 	 * each pass.
7283 	 *
7284 	 * We handle the following cases, in order:
7285 	 * - empty extent: delete the remaining branch
7286 	 * - remove the entire record
7287 	 * - remove a partial record
7288 	 * - no record needs to be removed (truncate has completed)
7289 	 */
7290 	el = path_leaf_el(path);
7291 	if (le16_to_cpu(el->l_next_free_rec) == 0) {
7292 		ocfs2_error(inode->i_sb,
7293 			    "Inode %llu has empty extent block at %llu\n",
7294 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7295 			    (unsigned long long)path_leaf_bh(path)->b_blocknr);
7296 		status = -EROFS;
7297 		goto bail;
7298 	}
7299 
7300 	i = le16_to_cpu(el->l_next_free_rec) - 1;
7301 	rec = &el->l_recs[i];
7302 	flags = rec->e_flags;
7303 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
7304 
7305 	if (i == 0 && ocfs2_is_empty_extent(rec)) {
7306 		/*
7307 		 * Lower levels depend on this never happening, but it's best
7308 		 * to check it up here before changing the tree.
7309 		*/
7310 		if (root_el->l_tree_depth && rec->e_int_clusters == 0) {
7311 			mlog(ML_ERROR, "Inode %lu has an empty "
7312 				    "extent record, depth %u\n", inode->i_ino,
7313 				    le16_to_cpu(root_el->l_tree_depth));
7314 			status = ocfs2_remove_rightmost_empty_extent(osb,
7315 					&et, path, &dealloc);
7316 			if (status) {
7317 				mlog_errno(status);
7318 				goto bail;
7319 			}
7320 
7321 			ocfs2_reinit_path(path, 1);
7322 			goto start;
7323 		} else {
7324 			trunc_cpos = le32_to_cpu(rec->e_cpos);
7325 			trunc_len = 0;
7326 			blkno = 0;
7327 		}
7328 	} else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) {
7329 		/*
7330 		 * Truncate entire record.
7331 		 */
7332 		trunc_cpos = le32_to_cpu(rec->e_cpos);
7333 		trunc_len = ocfs2_rec_clusters(el, rec);
7334 		blkno = le64_to_cpu(rec->e_blkno);
7335 	} else if (range > new_highest_cpos) {
7336 		/*
7337 		 * Partial truncate. it also should be
7338 		 * the last truncate we're doing.
7339 		 */
7340 		trunc_cpos = new_highest_cpos;
7341 		trunc_len = range - new_highest_cpos;
7342 		coff = new_highest_cpos - le32_to_cpu(rec->e_cpos);
7343 		blkno = le64_to_cpu(rec->e_blkno) +
7344 				ocfs2_clusters_to_blocks(inode->i_sb, coff);
7345 	} else {
7346 		/*
7347 		 * Truncate completed, leave happily.
7348 		 */
7349 		status = 0;
7350 		goto bail;
7351 	}
7352 
7353 	phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
7354 
7355 	if ((flags & OCFS2_EXT_REFCOUNTED) && trunc_len && !ref_tree) {
7356 		status = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
7357 				&ref_tree, NULL);
7358 		if (status) {
7359 			mlog_errno(status);
7360 			goto bail;
7361 		}
7362 	}
7363 
7364 	status = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
7365 					  phys_cpos, trunc_len, flags, &dealloc,
7366 					  refcount_loc, true);
7367 	if (status < 0) {
7368 		mlog_errno(status);
7369 		goto bail;
7370 	}
7371 
7372 	ocfs2_reinit_path(path, 1);
7373 
7374 	/*
7375 	 * The check above will catch the case where we've truncated
7376 	 * away all allocation.
7377 	 */
7378 	goto start;
7379 
7380 bail:
7381 	if (ref_tree)
7382 		ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
7383 
7384 	ocfs2_schedule_truncate_log_flush(osb, 1);
7385 
7386 	ocfs2_run_deallocs(osb, &dealloc);
7387 
7388 	ocfs2_free_path(path);
7389 
7390 	return status;
7391 }
7392 
7393 /*
7394  * 'start' is inclusive, 'end' is not.
7395  */
7396 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7397 			  unsigned int start, unsigned int end, int trunc)
7398 {
7399 	int ret;
7400 	unsigned int numbytes;
7401 	handle_t *handle;
7402 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7403 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7404 	struct ocfs2_inline_data *idata = &di->id2.i_data;
7405 
7406 	if (end > i_size_read(inode))
7407 		end = i_size_read(inode);
7408 
7409 	BUG_ON(start > end);
7410 
7411 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7412 	    !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7413 	    !ocfs2_supports_inline_data(osb)) {
7414 		ocfs2_error(inode->i_sb,
7415 			    "Inline data flags for inode %llu don't agree! Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7416 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7417 			    le16_to_cpu(di->i_dyn_features),
7418 			    OCFS2_I(inode)->ip_dyn_features,
7419 			    osb->s_feature_incompat);
7420 		ret = -EROFS;
7421 		goto out;
7422 	}
7423 
7424 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7425 	if (IS_ERR(handle)) {
7426 		ret = PTR_ERR(handle);
7427 		mlog_errno(ret);
7428 		goto out;
7429 	}
7430 
7431 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7432 				      OCFS2_JOURNAL_ACCESS_WRITE);
7433 	if (ret) {
7434 		mlog_errno(ret);
7435 		goto out_commit;
7436 	}
7437 
7438 	numbytes = end - start;
7439 	memset(idata->id_data + start, 0, numbytes);
7440 
7441 	/*
7442 	 * No need to worry about the data page here - it's been
7443 	 * truncated already and inline data doesn't need it for
7444 	 * pushing zero's to disk, so we'll let readpage pick it up
7445 	 * later.
7446 	 */
7447 	if (trunc) {
7448 		i_size_write(inode, start);
7449 		di->i_size = cpu_to_le64(start);
7450 	}
7451 
7452 	inode->i_blocks = ocfs2_inode_sector_count(inode);
7453 	inode->i_ctime = inode->i_mtime = current_time(inode);
7454 
7455 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7456 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7457 
7458 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
7459 	ocfs2_journal_dirty(handle, di_bh);
7460 
7461 out_commit:
7462 	ocfs2_commit_trans(osb, handle);
7463 
7464 out:
7465 	return ret;
7466 }
7467 
7468 static int ocfs2_trim_extent(struct super_block *sb,
7469 			     struct ocfs2_group_desc *gd,
7470 			     u64 group, u32 start, u32 count)
7471 {
7472 	u64 discard, bcount;
7473 	struct ocfs2_super *osb = OCFS2_SB(sb);
7474 
7475 	bcount = ocfs2_clusters_to_blocks(sb, count);
7476 	discard = ocfs2_clusters_to_blocks(sb, start);
7477 
7478 	/*
7479 	 * For the first cluster group, the gd->bg_blkno is not at the start
7480 	 * of the group, but at an offset from the start. If we add it while
7481 	 * calculating discard for first group, we will wrongly start fstrim a
7482 	 * few blocks after the desried start block and the range can cross
7483 	 * over into the next cluster group. So, add it only if this is not
7484 	 * the first cluster group.
7485 	 */
7486 	if (group != osb->first_cluster_group_blkno)
7487 		discard += le64_to_cpu(gd->bg_blkno);
7488 
7489 	trace_ocfs2_trim_extent(sb, (unsigned long long)discard, bcount);
7490 
7491 	return sb_issue_discard(sb, discard, bcount, GFP_NOFS, 0);
7492 }
7493 
7494 static int ocfs2_trim_group(struct super_block *sb,
7495 			    struct ocfs2_group_desc *gd, u64 group,
7496 			    u32 start, u32 max, u32 minbits)
7497 {
7498 	int ret = 0, count = 0, next;
7499 	void *bitmap = gd->bg_bitmap;
7500 
7501 	if (le16_to_cpu(gd->bg_free_bits_count) < minbits)
7502 		return 0;
7503 
7504 	trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd->bg_blkno),
7505 			       start, max, minbits);
7506 
7507 	while (start < max) {
7508 		start = ocfs2_find_next_zero_bit(bitmap, max, start);
7509 		if (start >= max)
7510 			break;
7511 		next = ocfs2_find_next_bit(bitmap, max, start);
7512 
7513 		if ((next - start) >= minbits) {
7514 			ret = ocfs2_trim_extent(sb, gd, group,
7515 						start, next - start);
7516 			if (ret < 0) {
7517 				mlog_errno(ret);
7518 				break;
7519 			}
7520 			count += next - start;
7521 		}
7522 		start = next + 1;
7523 
7524 		if (fatal_signal_pending(current)) {
7525 			count = -ERESTARTSYS;
7526 			break;
7527 		}
7528 
7529 		if ((le16_to_cpu(gd->bg_free_bits_count) - count) < minbits)
7530 			break;
7531 	}
7532 
7533 	if (ret < 0)
7534 		count = ret;
7535 
7536 	return count;
7537 }
7538 
7539 static
7540 int ocfs2_trim_mainbm(struct super_block *sb, struct fstrim_range *range)
7541 {
7542 	struct ocfs2_super *osb = OCFS2_SB(sb);
7543 	u64 start, len, trimmed = 0, first_group, last_group = 0, group = 0;
7544 	int ret, cnt;
7545 	u32 first_bit, last_bit, minlen;
7546 	struct buffer_head *main_bm_bh = NULL;
7547 	struct inode *main_bm_inode = NULL;
7548 	struct buffer_head *gd_bh = NULL;
7549 	struct ocfs2_dinode *main_bm;
7550 	struct ocfs2_group_desc *gd = NULL;
7551 
7552 	start = range->start >> osb->s_clustersize_bits;
7553 	len = range->len >> osb->s_clustersize_bits;
7554 	minlen = range->minlen >> osb->s_clustersize_bits;
7555 
7556 	if (minlen >= osb->bitmap_cpg || range->len < sb->s_blocksize)
7557 		return -EINVAL;
7558 
7559 	trace_ocfs2_trim_mainbm(start, len, minlen);
7560 
7561 next_group:
7562 	main_bm_inode = ocfs2_get_system_file_inode(osb,
7563 						    GLOBAL_BITMAP_SYSTEM_INODE,
7564 						    OCFS2_INVALID_SLOT);
7565 	if (!main_bm_inode) {
7566 		ret = -EIO;
7567 		mlog_errno(ret);
7568 		goto out;
7569 	}
7570 
7571 	inode_lock(main_bm_inode);
7572 
7573 	ret = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 0);
7574 	if (ret < 0) {
7575 		mlog_errno(ret);
7576 		goto out_mutex;
7577 	}
7578 	main_bm = (struct ocfs2_dinode *)main_bm_bh->b_data;
7579 
7580 	/*
7581 	 * Do some check before trim the first group.
7582 	 */
7583 	if (!group) {
7584 		if (start >= le32_to_cpu(main_bm->i_clusters)) {
7585 			ret = -EINVAL;
7586 			goto out_unlock;
7587 		}
7588 
7589 		if (start + len > le32_to_cpu(main_bm->i_clusters))
7590 			len = le32_to_cpu(main_bm->i_clusters) - start;
7591 
7592 		/*
7593 		 * Determine first and last group to examine based on
7594 		 * start and len
7595 		 */
7596 		first_group = ocfs2_which_cluster_group(main_bm_inode, start);
7597 		if (first_group == osb->first_cluster_group_blkno)
7598 			first_bit = start;
7599 		else
7600 			first_bit = start - ocfs2_blocks_to_clusters(sb,
7601 								first_group);
7602 		last_group = ocfs2_which_cluster_group(main_bm_inode,
7603 						       start + len - 1);
7604 		group = first_group;
7605 	}
7606 
7607 	do {
7608 		if (first_bit + len >= osb->bitmap_cpg)
7609 			last_bit = osb->bitmap_cpg;
7610 		else
7611 			last_bit = first_bit + len;
7612 
7613 		ret = ocfs2_read_group_descriptor(main_bm_inode,
7614 						  main_bm, group,
7615 						  &gd_bh);
7616 		if (ret < 0) {
7617 			mlog_errno(ret);
7618 			break;
7619 		}
7620 
7621 		gd = (struct ocfs2_group_desc *)gd_bh->b_data;
7622 		cnt = ocfs2_trim_group(sb, gd, group,
7623 				       first_bit, last_bit, minlen);
7624 		brelse(gd_bh);
7625 		gd_bh = NULL;
7626 		if (cnt < 0) {
7627 			ret = cnt;
7628 			mlog_errno(ret);
7629 			break;
7630 		}
7631 
7632 		trimmed += cnt;
7633 		len -= osb->bitmap_cpg - first_bit;
7634 		first_bit = 0;
7635 		if (group == osb->first_cluster_group_blkno)
7636 			group = ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7637 		else
7638 			group += ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7639 	} while (0);
7640 
7641 out_unlock:
7642 	ocfs2_inode_unlock(main_bm_inode, 0);
7643 	brelse(main_bm_bh);
7644 	main_bm_bh = NULL;
7645 out_mutex:
7646 	inode_unlock(main_bm_inode);
7647 	iput(main_bm_inode);
7648 
7649 	/*
7650 	 * If all the groups trim are not done or failed, but we should release
7651 	 * main_bm related locks for avoiding the current IO starve, then go to
7652 	 * trim the next group
7653 	 */
7654 	if (ret >= 0 && group <= last_group)
7655 		goto next_group;
7656 out:
7657 	range->len = trimmed * sb->s_blocksize;
7658 	return ret;
7659 }
7660 
7661 int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range)
7662 {
7663 	int ret;
7664 	struct ocfs2_super *osb = OCFS2_SB(sb);
7665 	struct ocfs2_trim_fs_info info, *pinfo = NULL;
7666 
7667 	ocfs2_trim_fs_lock_res_init(osb);
7668 
7669 	trace_ocfs2_trim_fs(range->start, range->len, range->minlen);
7670 
7671 	ret = ocfs2_trim_fs_lock(osb, NULL, 1);
7672 	if (ret < 0) {
7673 		if (ret != -EAGAIN) {
7674 			mlog_errno(ret);
7675 			ocfs2_trim_fs_lock_res_uninit(osb);
7676 			return ret;
7677 		}
7678 
7679 		mlog(ML_NOTICE, "Wait for trim on device (%s) to "
7680 		     "finish, which is running from another node.\n",
7681 		     osb->dev_str);
7682 		ret = ocfs2_trim_fs_lock(osb, &info, 0);
7683 		if (ret < 0) {
7684 			mlog_errno(ret);
7685 			ocfs2_trim_fs_lock_res_uninit(osb);
7686 			return ret;
7687 		}
7688 
7689 		if (info.tf_valid && info.tf_success &&
7690 		    info.tf_start == range->start &&
7691 		    info.tf_len == range->len &&
7692 		    info.tf_minlen == range->minlen) {
7693 			/* Avoid sending duplicated trim to a shared device */
7694 			mlog(ML_NOTICE, "The same trim on device (%s) was "
7695 			     "just done from node (%u), return.\n",
7696 			     osb->dev_str, info.tf_nodenum);
7697 			range->len = info.tf_trimlen;
7698 			goto out;
7699 		}
7700 	}
7701 
7702 	info.tf_nodenum = osb->node_num;
7703 	info.tf_start = range->start;
7704 	info.tf_len = range->len;
7705 	info.tf_minlen = range->minlen;
7706 
7707 	ret = ocfs2_trim_mainbm(sb, range);
7708 
7709 	info.tf_trimlen = range->len;
7710 	info.tf_success = (ret < 0 ? 0 : 1);
7711 	pinfo = &info;
7712 out:
7713 	ocfs2_trim_fs_unlock(osb, pinfo);
7714 	ocfs2_trim_fs_lock_res_uninit(osb);
7715 	return ret;
7716 }
7717