1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * alloc.c 5 * 6 * Extent allocs and frees 7 * 8 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/swap.h> 31 #include <linux/quotaops.h> 32 33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC 34 #include <cluster/masklog.h> 35 36 #include "ocfs2.h" 37 38 #include "alloc.h" 39 #include "aops.h" 40 #include "blockcheck.h" 41 #include "dlmglue.h" 42 #include "extent_map.h" 43 #include "inode.h" 44 #include "journal.h" 45 #include "localalloc.h" 46 #include "suballoc.h" 47 #include "sysfile.h" 48 #include "file.h" 49 #include "super.h" 50 #include "uptodate.h" 51 #include "xattr.h" 52 #include "refcounttree.h" 53 54 #include "buffer_head_io.h" 55 56 enum ocfs2_contig_type { 57 CONTIG_NONE = 0, 58 CONTIG_LEFT, 59 CONTIG_RIGHT, 60 CONTIG_LEFTRIGHT, 61 }; 62 63 static enum ocfs2_contig_type 64 ocfs2_extent_rec_contig(struct super_block *sb, 65 struct ocfs2_extent_rec *ext, 66 struct ocfs2_extent_rec *insert_rec); 67 /* 68 * Operations for a specific extent tree type. 69 * 70 * To implement an on-disk btree (extent tree) type in ocfs2, add 71 * an ocfs2_extent_tree_operations structure and the matching 72 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it 73 * for the allocation portion of the extent tree. 74 */ 75 struct ocfs2_extent_tree_operations { 76 /* 77 * last_eb_blk is the block number of the right most leaf extent 78 * block. Most on-disk structures containing an extent tree store 79 * this value for fast access. The ->eo_set_last_eb_blk() and 80 * ->eo_get_last_eb_blk() operations access this value. They are 81 * both required. 82 */ 83 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et, 84 u64 blkno); 85 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et); 86 87 /* 88 * The on-disk structure usually keeps track of how many total 89 * clusters are stored in this extent tree. This function updates 90 * that value. new_clusters is the delta, and must be 91 * added to the total. Required. 92 */ 93 void (*eo_update_clusters)(struct ocfs2_extent_tree *et, 94 u32 new_clusters); 95 96 /* 97 * If this extent tree is supported by an extent map, insert 98 * a record into the map. 99 */ 100 void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et, 101 struct ocfs2_extent_rec *rec); 102 103 /* 104 * If this extent tree is supported by an extent map, truncate the 105 * map to clusters, 106 */ 107 void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et, 108 u32 clusters); 109 110 /* 111 * If ->eo_insert_check() exists, it is called before rec is 112 * inserted into the extent tree. It is optional. 113 */ 114 int (*eo_insert_check)(struct ocfs2_extent_tree *et, 115 struct ocfs2_extent_rec *rec); 116 int (*eo_sanity_check)(struct ocfs2_extent_tree *et); 117 118 /* 119 * -------------------------------------------------------------- 120 * The remaining are internal to ocfs2_extent_tree and don't have 121 * accessor functions 122 */ 123 124 /* 125 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el. 126 * It is required. 127 */ 128 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et); 129 130 /* 131 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if 132 * it exists. If it does not, et->et_max_leaf_clusters is set 133 * to 0 (unlimited). Optional. 134 */ 135 void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et); 136 137 /* 138 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec 139 * are contiguous or not. Optional. Don't need to set it if use 140 * ocfs2_extent_rec as the tree leaf. 141 */ 142 enum ocfs2_contig_type 143 (*eo_extent_contig)(struct ocfs2_extent_tree *et, 144 struct ocfs2_extent_rec *ext, 145 struct ocfs2_extent_rec *insert_rec); 146 }; 147 148 149 /* 150 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check 151 * in the methods. 152 */ 153 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et); 154 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 155 u64 blkno); 156 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, 157 u32 clusters); 158 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et, 159 struct ocfs2_extent_rec *rec); 160 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et, 161 u32 clusters); 162 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, 163 struct ocfs2_extent_rec *rec); 164 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et); 165 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et); 166 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = { 167 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk, 168 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk, 169 .eo_update_clusters = ocfs2_dinode_update_clusters, 170 .eo_extent_map_insert = ocfs2_dinode_extent_map_insert, 171 .eo_extent_map_truncate = ocfs2_dinode_extent_map_truncate, 172 .eo_insert_check = ocfs2_dinode_insert_check, 173 .eo_sanity_check = ocfs2_dinode_sanity_check, 174 .eo_fill_root_el = ocfs2_dinode_fill_root_el, 175 }; 176 177 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 178 u64 blkno) 179 { 180 struct ocfs2_dinode *di = et->et_object; 181 182 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 183 di->i_last_eb_blk = cpu_to_le64(blkno); 184 } 185 186 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et) 187 { 188 struct ocfs2_dinode *di = et->et_object; 189 190 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 191 return le64_to_cpu(di->i_last_eb_blk); 192 } 193 194 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, 195 u32 clusters) 196 { 197 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); 198 struct ocfs2_dinode *di = et->et_object; 199 200 le32_add_cpu(&di->i_clusters, clusters); 201 spin_lock(&oi->ip_lock); 202 oi->ip_clusters = le32_to_cpu(di->i_clusters); 203 spin_unlock(&oi->ip_lock); 204 } 205 206 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et, 207 struct ocfs2_extent_rec *rec) 208 { 209 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode; 210 211 ocfs2_extent_map_insert_rec(inode, rec); 212 } 213 214 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et, 215 u32 clusters) 216 { 217 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode; 218 219 ocfs2_extent_map_trunc(inode, clusters); 220 } 221 222 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, 223 struct ocfs2_extent_rec *rec) 224 { 225 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); 226 struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb); 227 228 BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL); 229 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) && 230 (oi->ip_clusters != le32_to_cpu(rec->e_cpos)), 231 "Device %s, asking for sparse allocation: inode %llu, " 232 "cpos %u, clusters %u\n", 233 osb->dev_str, 234 (unsigned long long)oi->ip_blkno, 235 rec->e_cpos, oi->ip_clusters); 236 237 return 0; 238 } 239 240 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et) 241 { 242 struct ocfs2_dinode *di = et->et_object; 243 244 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 245 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 246 247 return 0; 248 } 249 250 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et) 251 { 252 struct ocfs2_dinode *di = et->et_object; 253 254 et->et_root_el = &di->id2.i_list; 255 } 256 257 258 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et) 259 { 260 struct ocfs2_xattr_value_buf *vb = et->et_object; 261 262 et->et_root_el = &vb->vb_xv->xr_list; 263 } 264 265 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et, 266 u64 blkno) 267 { 268 struct ocfs2_xattr_value_buf *vb = et->et_object; 269 270 vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno); 271 } 272 273 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et) 274 { 275 struct ocfs2_xattr_value_buf *vb = et->et_object; 276 277 return le64_to_cpu(vb->vb_xv->xr_last_eb_blk); 278 } 279 280 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et, 281 u32 clusters) 282 { 283 struct ocfs2_xattr_value_buf *vb = et->et_object; 284 285 le32_add_cpu(&vb->vb_xv->xr_clusters, clusters); 286 } 287 288 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = { 289 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk, 290 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk, 291 .eo_update_clusters = ocfs2_xattr_value_update_clusters, 292 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el, 293 }; 294 295 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et) 296 { 297 struct ocfs2_xattr_block *xb = et->et_object; 298 299 et->et_root_el = &xb->xb_attrs.xb_root.xt_list; 300 } 301 302 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et) 303 { 304 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 305 et->et_max_leaf_clusters = 306 ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE); 307 } 308 309 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 310 u64 blkno) 311 { 312 struct ocfs2_xattr_block *xb = et->et_object; 313 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 314 315 xt->xt_last_eb_blk = cpu_to_le64(blkno); 316 } 317 318 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 319 { 320 struct ocfs2_xattr_block *xb = et->et_object; 321 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 322 323 return le64_to_cpu(xt->xt_last_eb_blk); 324 } 325 326 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et, 327 u32 clusters) 328 { 329 struct ocfs2_xattr_block *xb = et->et_object; 330 331 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters); 332 } 333 334 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = { 335 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk, 336 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk, 337 .eo_update_clusters = ocfs2_xattr_tree_update_clusters, 338 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el, 339 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters, 340 }; 341 342 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et, 343 u64 blkno) 344 { 345 struct ocfs2_dx_root_block *dx_root = et->et_object; 346 347 dx_root->dr_last_eb_blk = cpu_to_le64(blkno); 348 } 349 350 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et) 351 { 352 struct ocfs2_dx_root_block *dx_root = et->et_object; 353 354 return le64_to_cpu(dx_root->dr_last_eb_blk); 355 } 356 357 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et, 358 u32 clusters) 359 { 360 struct ocfs2_dx_root_block *dx_root = et->et_object; 361 362 le32_add_cpu(&dx_root->dr_clusters, clusters); 363 } 364 365 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et) 366 { 367 struct ocfs2_dx_root_block *dx_root = et->et_object; 368 369 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root)); 370 371 return 0; 372 } 373 374 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et) 375 { 376 struct ocfs2_dx_root_block *dx_root = et->et_object; 377 378 et->et_root_el = &dx_root->dr_list; 379 } 380 381 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = { 382 .eo_set_last_eb_blk = ocfs2_dx_root_set_last_eb_blk, 383 .eo_get_last_eb_blk = ocfs2_dx_root_get_last_eb_blk, 384 .eo_update_clusters = ocfs2_dx_root_update_clusters, 385 .eo_sanity_check = ocfs2_dx_root_sanity_check, 386 .eo_fill_root_el = ocfs2_dx_root_fill_root_el, 387 }; 388 389 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et) 390 { 391 struct ocfs2_refcount_block *rb = et->et_object; 392 393 et->et_root_el = &rb->rf_list; 394 } 395 396 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 397 u64 blkno) 398 { 399 struct ocfs2_refcount_block *rb = et->et_object; 400 401 rb->rf_last_eb_blk = cpu_to_le64(blkno); 402 } 403 404 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 405 { 406 struct ocfs2_refcount_block *rb = et->et_object; 407 408 return le64_to_cpu(rb->rf_last_eb_blk); 409 } 410 411 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et, 412 u32 clusters) 413 { 414 struct ocfs2_refcount_block *rb = et->et_object; 415 416 le32_add_cpu(&rb->rf_clusters, clusters); 417 } 418 419 static enum ocfs2_contig_type 420 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et, 421 struct ocfs2_extent_rec *ext, 422 struct ocfs2_extent_rec *insert_rec) 423 { 424 return CONTIG_NONE; 425 } 426 427 static struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = { 428 .eo_set_last_eb_blk = ocfs2_refcount_tree_set_last_eb_blk, 429 .eo_get_last_eb_blk = ocfs2_refcount_tree_get_last_eb_blk, 430 .eo_update_clusters = ocfs2_refcount_tree_update_clusters, 431 .eo_fill_root_el = ocfs2_refcount_tree_fill_root_el, 432 .eo_extent_contig = ocfs2_refcount_tree_extent_contig, 433 }; 434 435 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et, 436 struct ocfs2_caching_info *ci, 437 struct buffer_head *bh, 438 ocfs2_journal_access_func access, 439 void *obj, 440 struct ocfs2_extent_tree_operations *ops) 441 { 442 et->et_ops = ops; 443 et->et_root_bh = bh; 444 et->et_ci = ci; 445 et->et_root_journal_access = access; 446 if (!obj) 447 obj = (void *)bh->b_data; 448 et->et_object = obj; 449 450 et->et_ops->eo_fill_root_el(et); 451 if (!et->et_ops->eo_fill_max_leaf_clusters) 452 et->et_max_leaf_clusters = 0; 453 else 454 et->et_ops->eo_fill_max_leaf_clusters(et); 455 } 456 457 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et, 458 struct ocfs2_caching_info *ci, 459 struct buffer_head *bh) 460 { 461 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di, 462 NULL, &ocfs2_dinode_et_ops); 463 } 464 465 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et, 466 struct ocfs2_caching_info *ci, 467 struct buffer_head *bh) 468 { 469 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb, 470 NULL, &ocfs2_xattr_tree_et_ops); 471 } 472 473 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et, 474 struct ocfs2_caching_info *ci, 475 struct ocfs2_xattr_value_buf *vb) 476 { 477 __ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb, 478 &ocfs2_xattr_value_et_ops); 479 } 480 481 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et, 482 struct ocfs2_caching_info *ci, 483 struct buffer_head *bh) 484 { 485 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr, 486 NULL, &ocfs2_dx_root_et_ops); 487 } 488 489 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et, 490 struct ocfs2_caching_info *ci, 491 struct buffer_head *bh) 492 { 493 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb, 494 NULL, &ocfs2_refcount_tree_et_ops); 495 } 496 497 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et, 498 u64 new_last_eb_blk) 499 { 500 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk); 501 } 502 503 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et) 504 { 505 return et->et_ops->eo_get_last_eb_blk(et); 506 } 507 508 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et, 509 u32 clusters) 510 { 511 et->et_ops->eo_update_clusters(et, clusters); 512 } 513 514 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et, 515 struct ocfs2_extent_rec *rec) 516 { 517 if (et->et_ops->eo_extent_map_insert) 518 et->et_ops->eo_extent_map_insert(et, rec); 519 } 520 521 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et, 522 u32 clusters) 523 { 524 if (et->et_ops->eo_extent_map_truncate) 525 et->et_ops->eo_extent_map_truncate(et, clusters); 526 } 527 528 static inline int ocfs2_et_root_journal_access(handle_t *handle, 529 struct ocfs2_extent_tree *et, 530 int type) 531 { 532 return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh, 533 type); 534 } 535 536 static inline enum ocfs2_contig_type 537 ocfs2_et_extent_contig(struct ocfs2_extent_tree *et, 538 struct ocfs2_extent_rec *rec, 539 struct ocfs2_extent_rec *insert_rec) 540 { 541 if (et->et_ops->eo_extent_contig) 542 return et->et_ops->eo_extent_contig(et, rec, insert_rec); 543 544 return ocfs2_extent_rec_contig( 545 ocfs2_metadata_cache_get_super(et->et_ci), 546 rec, insert_rec); 547 } 548 549 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et, 550 struct ocfs2_extent_rec *rec) 551 { 552 int ret = 0; 553 554 if (et->et_ops->eo_insert_check) 555 ret = et->et_ops->eo_insert_check(et, rec); 556 return ret; 557 } 558 559 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et) 560 { 561 int ret = 0; 562 563 if (et->et_ops->eo_sanity_check) 564 ret = et->et_ops->eo_sanity_check(et); 565 return ret; 566 } 567 568 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc); 569 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 570 struct ocfs2_extent_block *eb); 571 static void ocfs2_adjust_rightmost_records(handle_t *handle, 572 struct ocfs2_extent_tree *et, 573 struct ocfs2_path *path, 574 struct ocfs2_extent_rec *insert_rec); 575 /* 576 * Reset the actual path elements so that we can re-use the structure 577 * to build another path. Generally, this involves freeing the buffer 578 * heads. 579 */ 580 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root) 581 { 582 int i, start = 0, depth = 0; 583 struct ocfs2_path_item *node; 584 585 if (keep_root) 586 start = 1; 587 588 for(i = start; i < path_num_items(path); i++) { 589 node = &path->p_node[i]; 590 591 brelse(node->bh); 592 node->bh = NULL; 593 node->el = NULL; 594 } 595 596 /* 597 * Tree depth may change during truncate, or insert. If we're 598 * keeping the root extent list, then make sure that our path 599 * structure reflects the proper depth. 600 */ 601 if (keep_root) 602 depth = le16_to_cpu(path_root_el(path)->l_tree_depth); 603 else 604 path_root_access(path) = NULL; 605 606 path->p_tree_depth = depth; 607 } 608 609 void ocfs2_free_path(struct ocfs2_path *path) 610 { 611 if (path) { 612 ocfs2_reinit_path(path, 0); 613 kfree(path); 614 } 615 } 616 617 /* 618 * All the elements of src into dest. After this call, src could be freed 619 * without affecting dest. 620 * 621 * Both paths should have the same root. Any non-root elements of dest 622 * will be freed. 623 */ 624 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src) 625 { 626 int i; 627 628 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 629 BUG_ON(path_root_el(dest) != path_root_el(src)); 630 BUG_ON(path_root_access(dest) != path_root_access(src)); 631 632 ocfs2_reinit_path(dest, 1); 633 634 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 635 dest->p_node[i].bh = src->p_node[i].bh; 636 dest->p_node[i].el = src->p_node[i].el; 637 638 if (dest->p_node[i].bh) 639 get_bh(dest->p_node[i].bh); 640 } 641 } 642 643 /* 644 * Make the *dest path the same as src and re-initialize src path to 645 * have a root only. 646 */ 647 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src) 648 { 649 int i; 650 651 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 652 BUG_ON(path_root_access(dest) != path_root_access(src)); 653 654 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 655 brelse(dest->p_node[i].bh); 656 657 dest->p_node[i].bh = src->p_node[i].bh; 658 dest->p_node[i].el = src->p_node[i].el; 659 660 src->p_node[i].bh = NULL; 661 src->p_node[i].el = NULL; 662 } 663 } 664 665 /* 666 * Insert an extent block at given index. 667 * 668 * This will not take an additional reference on eb_bh. 669 */ 670 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index, 671 struct buffer_head *eb_bh) 672 { 673 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data; 674 675 /* 676 * Right now, no root bh is an extent block, so this helps 677 * catch code errors with dinode trees. The assertion can be 678 * safely removed if we ever need to insert extent block 679 * structures at the root. 680 */ 681 BUG_ON(index == 0); 682 683 path->p_node[index].bh = eb_bh; 684 path->p_node[index].el = &eb->h_list; 685 } 686 687 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh, 688 struct ocfs2_extent_list *root_el, 689 ocfs2_journal_access_func access) 690 { 691 struct ocfs2_path *path; 692 693 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH); 694 695 path = kzalloc(sizeof(*path), GFP_NOFS); 696 if (path) { 697 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth); 698 get_bh(root_bh); 699 path_root_bh(path) = root_bh; 700 path_root_el(path) = root_el; 701 path_root_access(path) = access; 702 } 703 704 return path; 705 } 706 707 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path) 708 { 709 return ocfs2_new_path(path_root_bh(path), path_root_el(path), 710 path_root_access(path)); 711 } 712 713 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et) 714 { 715 return ocfs2_new_path(et->et_root_bh, et->et_root_el, 716 et->et_root_journal_access); 717 } 718 719 /* 720 * Journal the buffer at depth idx. All idx>0 are extent_blocks, 721 * otherwise it's the root_access function. 722 * 723 * I don't like the way this function's name looks next to 724 * ocfs2_journal_access_path(), but I don't have a better one. 725 */ 726 int ocfs2_path_bh_journal_access(handle_t *handle, 727 struct ocfs2_caching_info *ci, 728 struct ocfs2_path *path, 729 int idx) 730 { 731 ocfs2_journal_access_func access = path_root_access(path); 732 733 if (!access) 734 access = ocfs2_journal_access; 735 736 if (idx) 737 access = ocfs2_journal_access_eb; 738 739 return access(handle, ci, path->p_node[idx].bh, 740 OCFS2_JOURNAL_ACCESS_WRITE); 741 } 742 743 /* 744 * Convenience function to journal all components in a path. 745 */ 746 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci, 747 handle_t *handle, 748 struct ocfs2_path *path) 749 { 750 int i, ret = 0; 751 752 if (!path) 753 goto out; 754 755 for(i = 0; i < path_num_items(path); i++) { 756 ret = ocfs2_path_bh_journal_access(handle, ci, path, i); 757 if (ret < 0) { 758 mlog_errno(ret); 759 goto out; 760 } 761 } 762 763 out: 764 return ret; 765 } 766 767 /* 768 * Return the index of the extent record which contains cluster #v_cluster. 769 * -1 is returned if it was not found. 770 * 771 * Should work fine on interior and exterior nodes. 772 */ 773 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster) 774 { 775 int ret = -1; 776 int i; 777 struct ocfs2_extent_rec *rec; 778 u32 rec_end, rec_start, clusters; 779 780 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 781 rec = &el->l_recs[i]; 782 783 rec_start = le32_to_cpu(rec->e_cpos); 784 clusters = ocfs2_rec_clusters(el, rec); 785 786 rec_end = rec_start + clusters; 787 788 if (v_cluster >= rec_start && v_cluster < rec_end) { 789 ret = i; 790 break; 791 } 792 } 793 794 return ret; 795 } 796 797 /* 798 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and 799 * ocfs2_extent_rec_contig only work properly against leaf nodes! 800 */ 801 static int ocfs2_block_extent_contig(struct super_block *sb, 802 struct ocfs2_extent_rec *ext, 803 u64 blkno) 804 { 805 u64 blk_end = le64_to_cpu(ext->e_blkno); 806 807 blk_end += ocfs2_clusters_to_blocks(sb, 808 le16_to_cpu(ext->e_leaf_clusters)); 809 810 return blkno == blk_end; 811 } 812 813 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left, 814 struct ocfs2_extent_rec *right) 815 { 816 u32 left_range; 817 818 left_range = le32_to_cpu(left->e_cpos) + 819 le16_to_cpu(left->e_leaf_clusters); 820 821 return (left_range == le32_to_cpu(right->e_cpos)); 822 } 823 824 static enum ocfs2_contig_type 825 ocfs2_extent_rec_contig(struct super_block *sb, 826 struct ocfs2_extent_rec *ext, 827 struct ocfs2_extent_rec *insert_rec) 828 { 829 u64 blkno = le64_to_cpu(insert_rec->e_blkno); 830 831 /* 832 * Refuse to coalesce extent records with different flag 833 * fields - we don't want to mix unwritten extents with user 834 * data. 835 */ 836 if (ext->e_flags != insert_rec->e_flags) 837 return CONTIG_NONE; 838 839 if (ocfs2_extents_adjacent(ext, insert_rec) && 840 ocfs2_block_extent_contig(sb, ext, blkno)) 841 return CONTIG_RIGHT; 842 843 blkno = le64_to_cpu(ext->e_blkno); 844 if (ocfs2_extents_adjacent(insert_rec, ext) && 845 ocfs2_block_extent_contig(sb, insert_rec, blkno)) 846 return CONTIG_LEFT; 847 848 return CONTIG_NONE; 849 } 850 851 /* 852 * NOTE: We can have pretty much any combination of contiguousness and 853 * appending. 854 * 855 * The usefulness of APPEND_TAIL is more in that it lets us know that 856 * we'll have to update the path to that leaf. 857 */ 858 enum ocfs2_append_type { 859 APPEND_NONE = 0, 860 APPEND_TAIL, 861 }; 862 863 enum ocfs2_split_type { 864 SPLIT_NONE = 0, 865 SPLIT_LEFT, 866 SPLIT_RIGHT, 867 }; 868 869 struct ocfs2_insert_type { 870 enum ocfs2_split_type ins_split; 871 enum ocfs2_append_type ins_appending; 872 enum ocfs2_contig_type ins_contig; 873 int ins_contig_index; 874 int ins_tree_depth; 875 }; 876 877 struct ocfs2_merge_ctxt { 878 enum ocfs2_contig_type c_contig_type; 879 int c_has_empty_extent; 880 int c_split_covers_rec; 881 }; 882 883 static int ocfs2_validate_extent_block(struct super_block *sb, 884 struct buffer_head *bh) 885 { 886 int rc; 887 struct ocfs2_extent_block *eb = 888 (struct ocfs2_extent_block *)bh->b_data; 889 890 mlog(0, "Validating extent block %llu\n", 891 (unsigned long long)bh->b_blocknr); 892 893 BUG_ON(!buffer_uptodate(bh)); 894 895 /* 896 * If the ecc fails, we return the error but otherwise 897 * leave the filesystem running. We know any error is 898 * local to this block. 899 */ 900 rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check); 901 if (rc) { 902 mlog(ML_ERROR, "Checksum failed for extent block %llu\n", 903 (unsigned long long)bh->b_blocknr); 904 return rc; 905 } 906 907 /* 908 * Errors after here are fatal. 909 */ 910 911 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 912 ocfs2_error(sb, 913 "Extent block #%llu has bad signature %.*s", 914 (unsigned long long)bh->b_blocknr, 7, 915 eb->h_signature); 916 return -EINVAL; 917 } 918 919 if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) { 920 ocfs2_error(sb, 921 "Extent block #%llu has an invalid h_blkno " 922 "of %llu", 923 (unsigned long long)bh->b_blocknr, 924 (unsigned long long)le64_to_cpu(eb->h_blkno)); 925 return -EINVAL; 926 } 927 928 if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) { 929 ocfs2_error(sb, 930 "Extent block #%llu has an invalid " 931 "h_fs_generation of #%u", 932 (unsigned long long)bh->b_blocknr, 933 le32_to_cpu(eb->h_fs_generation)); 934 return -EINVAL; 935 } 936 937 return 0; 938 } 939 940 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno, 941 struct buffer_head **bh) 942 { 943 int rc; 944 struct buffer_head *tmp = *bh; 945 946 rc = ocfs2_read_block(ci, eb_blkno, &tmp, 947 ocfs2_validate_extent_block); 948 949 /* If ocfs2_read_block() got us a new bh, pass it up. */ 950 if (!rc && !*bh) 951 *bh = tmp; 952 953 return rc; 954 } 955 956 957 /* 958 * How many free extents have we got before we need more meta data? 959 */ 960 int ocfs2_num_free_extents(struct ocfs2_super *osb, 961 struct ocfs2_extent_tree *et) 962 { 963 int retval; 964 struct ocfs2_extent_list *el = NULL; 965 struct ocfs2_extent_block *eb; 966 struct buffer_head *eb_bh = NULL; 967 u64 last_eb_blk = 0; 968 969 mlog_entry_void(); 970 971 el = et->et_root_el; 972 last_eb_blk = ocfs2_et_get_last_eb_blk(et); 973 974 if (last_eb_blk) { 975 retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk, 976 &eb_bh); 977 if (retval < 0) { 978 mlog_errno(retval); 979 goto bail; 980 } 981 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 982 el = &eb->h_list; 983 } 984 985 BUG_ON(el->l_tree_depth != 0); 986 987 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec); 988 bail: 989 brelse(eb_bh); 990 991 mlog_exit(retval); 992 return retval; 993 } 994 995 /* expects array to already be allocated 996 * 997 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and 998 * l_count for you 999 */ 1000 static int ocfs2_create_new_meta_bhs(handle_t *handle, 1001 struct ocfs2_extent_tree *et, 1002 int wanted, 1003 struct ocfs2_alloc_context *meta_ac, 1004 struct buffer_head *bhs[]) 1005 { 1006 int count, status, i; 1007 u16 suballoc_bit_start; 1008 u32 num_got; 1009 u64 suballoc_loc, first_blkno; 1010 struct ocfs2_super *osb = 1011 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 1012 struct ocfs2_extent_block *eb; 1013 1014 mlog_entry_void(); 1015 1016 count = 0; 1017 while (count < wanted) { 1018 status = ocfs2_claim_metadata(handle, 1019 meta_ac, 1020 wanted - count, 1021 &suballoc_loc, 1022 &suballoc_bit_start, 1023 &num_got, 1024 &first_blkno); 1025 if (status < 0) { 1026 mlog_errno(status); 1027 goto bail; 1028 } 1029 1030 for(i = count; i < (num_got + count); i++) { 1031 bhs[i] = sb_getblk(osb->sb, first_blkno); 1032 if (bhs[i] == NULL) { 1033 status = -EIO; 1034 mlog_errno(status); 1035 goto bail; 1036 } 1037 ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]); 1038 1039 status = ocfs2_journal_access_eb(handle, et->et_ci, 1040 bhs[i], 1041 OCFS2_JOURNAL_ACCESS_CREATE); 1042 if (status < 0) { 1043 mlog_errno(status); 1044 goto bail; 1045 } 1046 1047 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize); 1048 eb = (struct ocfs2_extent_block *) bhs[i]->b_data; 1049 /* Ok, setup the minimal stuff here. */ 1050 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); 1051 eb->h_blkno = cpu_to_le64(first_blkno); 1052 eb->h_fs_generation = cpu_to_le32(osb->fs_generation); 1053 eb->h_suballoc_slot = 1054 cpu_to_le16(meta_ac->ac_alloc_slot); 1055 eb->h_suballoc_loc = cpu_to_le64(suballoc_loc); 1056 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start); 1057 eb->h_list.l_count = 1058 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); 1059 1060 suballoc_bit_start++; 1061 first_blkno++; 1062 1063 /* We'll also be dirtied by the caller, so 1064 * this isn't absolutely necessary. */ 1065 ocfs2_journal_dirty(handle, bhs[i]); 1066 } 1067 1068 count += num_got; 1069 } 1070 1071 status = 0; 1072 bail: 1073 if (status < 0) { 1074 for(i = 0; i < wanted; i++) { 1075 brelse(bhs[i]); 1076 bhs[i] = NULL; 1077 } 1078 } 1079 mlog_exit(status); 1080 return status; 1081 } 1082 1083 /* 1084 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth(). 1085 * 1086 * Returns the sum of the rightmost extent rec logical offset and 1087 * cluster count. 1088 * 1089 * ocfs2_add_branch() uses this to determine what logical cluster 1090 * value should be populated into the leftmost new branch records. 1091 * 1092 * ocfs2_shift_tree_depth() uses this to determine the # clusters 1093 * value for the new topmost tree record. 1094 */ 1095 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el) 1096 { 1097 int i; 1098 1099 i = le16_to_cpu(el->l_next_free_rec) - 1; 1100 1101 return le32_to_cpu(el->l_recs[i].e_cpos) + 1102 ocfs2_rec_clusters(el, &el->l_recs[i]); 1103 } 1104 1105 /* 1106 * Change range of the branches in the right most path according to the leaf 1107 * extent block's rightmost record. 1108 */ 1109 static int ocfs2_adjust_rightmost_branch(handle_t *handle, 1110 struct ocfs2_extent_tree *et) 1111 { 1112 int status; 1113 struct ocfs2_path *path = NULL; 1114 struct ocfs2_extent_list *el; 1115 struct ocfs2_extent_rec *rec; 1116 1117 path = ocfs2_new_path_from_et(et); 1118 if (!path) { 1119 status = -ENOMEM; 1120 return status; 1121 } 1122 1123 status = ocfs2_find_path(et->et_ci, path, UINT_MAX); 1124 if (status < 0) { 1125 mlog_errno(status); 1126 goto out; 1127 } 1128 1129 status = ocfs2_extend_trans(handle, path_num_items(path)); 1130 if (status < 0) { 1131 mlog_errno(status); 1132 goto out; 1133 } 1134 1135 status = ocfs2_journal_access_path(et->et_ci, handle, path); 1136 if (status < 0) { 1137 mlog_errno(status); 1138 goto out; 1139 } 1140 1141 el = path_leaf_el(path); 1142 rec = &el->l_recs[le32_to_cpu(el->l_next_free_rec) - 1]; 1143 1144 ocfs2_adjust_rightmost_records(handle, et, path, rec); 1145 1146 out: 1147 ocfs2_free_path(path); 1148 return status; 1149 } 1150 1151 /* 1152 * Add an entire tree branch to our inode. eb_bh is the extent block 1153 * to start at, if we don't want to start the branch at the root 1154 * structure. 1155 * 1156 * last_eb_bh is required as we have to update it's next_leaf pointer 1157 * for the new last extent block. 1158 * 1159 * the new branch will be 'empty' in the sense that every block will 1160 * contain a single record with cluster count == 0. 1161 */ 1162 static int ocfs2_add_branch(handle_t *handle, 1163 struct ocfs2_extent_tree *et, 1164 struct buffer_head *eb_bh, 1165 struct buffer_head **last_eb_bh, 1166 struct ocfs2_alloc_context *meta_ac) 1167 { 1168 int status, new_blocks, i; 1169 u64 next_blkno, new_last_eb_blk; 1170 struct buffer_head *bh; 1171 struct buffer_head **new_eb_bhs = NULL; 1172 struct ocfs2_extent_block *eb; 1173 struct ocfs2_extent_list *eb_el; 1174 struct ocfs2_extent_list *el; 1175 u32 new_cpos, root_end; 1176 1177 mlog_entry_void(); 1178 1179 BUG_ON(!last_eb_bh || !*last_eb_bh); 1180 1181 if (eb_bh) { 1182 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 1183 el = &eb->h_list; 1184 } else 1185 el = et->et_root_el; 1186 1187 /* we never add a branch to a leaf. */ 1188 BUG_ON(!el->l_tree_depth); 1189 1190 new_blocks = le16_to_cpu(el->l_tree_depth); 1191 1192 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data; 1193 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list); 1194 root_end = ocfs2_sum_rightmost_rec(et->et_root_el); 1195 1196 /* 1197 * If there is a gap before the root end and the real end 1198 * of the righmost leaf block, we need to remove the gap 1199 * between new_cpos and root_end first so that the tree 1200 * is consistent after we add a new branch(it will start 1201 * from new_cpos). 1202 */ 1203 if (root_end > new_cpos) { 1204 mlog(0, "adjust the cluster end from %u to %u\n", 1205 root_end, new_cpos); 1206 status = ocfs2_adjust_rightmost_branch(handle, et); 1207 if (status) { 1208 mlog_errno(status); 1209 goto bail; 1210 } 1211 } 1212 1213 /* allocate the number of new eb blocks we need */ 1214 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *), 1215 GFP_KERNEL); 1216 if (!new_eb_bhs) { 1217 status = -ENOMEM; 1218 mlog_errno(status); 1219 goto bail; 1220 } 1221 1222 status = ocfs2_create_new_meta_bhs(handle, et, new_blocks, 1223 meta_ac, new_eb_bhs); 1224 if (status < 0) { 1225 mlog_errno(status); 1226 goto bail; 1227 } 1228 1229 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be 1230 * linked with the rest of the tree. 1231 * conversly, new_eb_bhs[0] is the new bottommost leaf. 1232 * 1233 * when we leave the loop, new_last_eb_blk will point to the 1234 * newest leaf, and next_blkno will point to the topmost extent 1235 * block. */ 1236 next_blkno = new_last_eb_blk = 0; 1237 for(i = 0; i < new_blocks; i++) { 1238 bh = new_eb_bhs[i]; 1239 eb = (struct ocfs2_extent_block *) bh->b_data; 1240 /* ocfs2_create_new_meta_bhs() should create it right! */ 1241 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1242 eb_el = &eb->h_list; 1243 1244 status = ocfs2_journal_access_eb(handle, et->et_ci, bh, 1245 OCFS2_JOURNAL_ACCESS_CREATE); 1246 if (status < 0) { 1247 mlog_errno(status); 1248 goto bail; 1249 } 1250 1251 eb->h_next_leaf_blk = 0; 1252 eb_el->l_tree_depth = cpu_to_le16(i); 1253 eb_el->l_next_free_rec = cpu_to_le16(1); 1254 /* 1255 * This actually counts as an empty extent as 1256 * c_clusters == 0 1257 */ 1258 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos); 1259 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno); 1260 /* 1261 * eb_el isn't always an interior node, but even leaf 1262 * nodes want a zero'd flags and reserved field so 1263 * this gets the whole 32 bits regardless of use. 1264 */ 1265 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0); 1266 if (!eb_el->l_tree_depth) 1267 new_last_eb_blk = le64_to_cpu(eb->h_blkno); 1268 1269 ocfs2_journal_dirty(handle, bh); 1270 next_blkno = le64_to_cpu(eb->h_blkno); 1271 } 1272 1273 /* This is a bit hairy. We want to update up to three blocks 1274 * here without leaving any of them in an inconsistent state 1275 * in case of error. We don't have to worry about 1276 * journal_dirty erroring as it won't unless we've aborted the 1277 * handle (in which case we would never be here) so reserving 1278 * the write with journal_access is all we need to do. */ 1279 status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh, 1280 OCFS2_JOURNAL_ACCESS_WRITE); 1281 if (status < 0) { 1282 mlog_errno(status); 1283 goto bail; 1284 } 1285 status = ocfs2_et_root_journal_access(handle, et, 1286 OCFS2_JOURNAL_ACCESS_WRITE); 1287 if (status < 0) { 1288 mlog_errno(status); 1289 goto bail; 1290 } 1291 if (eb_bh) { 1292 status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh, 1293 OCFS2_JOURNAL_ACCESS_WRITE); 1294 if (status < 0) { 1295 mlog_errno(status); 1296 goto bail; 1297 } 1298 } 1299 1300 /* Link the new branch into the rest of the tree (el will 1301 * either be on the root_bh, or the extent block passed in. */ 1302 i = le16_to_cpu(el->l_next_free_rec); 1303 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno); 1304 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos); 1305 el->l_recs[i].e_int_clusters = 0; 1306 le16_add_cpu(&el->l_next_free_rec, 1); 1307 1308 /* fe needs a new last extent block pointer, as does the 1309 * next_leaf on the previously last-extent-block. */ 1310 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk); 1311 1312 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 1313 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk); 1314 1315 ocfs2_journal_dirty(handle, *last_eb_bh); 1316 ocfs2_journal_dirty(handle, et->et_root_bh); 1317 if (eb_bh) 1318 ocfs2_journal_dirty(handle, eb_bh); 1319 1320 /* 1321 * Some callers want to track the rightmost leaf so pass it 1322 * back here. 1323 */ 1324 brelse(*last_eb_bh); 1325 get_bh(new_eb_bhs[0]); 1326 *last_eb_bh = new_eb_bhs[0]; 1327 1328 status = 0; 1329 bail: 1330 if (new_eb_bhs) { 1331 for (i = 0; i < new_blocks; i++) 1332 brelse(new_eb_bhs[i]); 1333 kfree(new_eb_bhs); 1334 } 1335 1336 mlog_exit(status); 1337 return status; 1338 } 1339 1340 /* 1341 * adds another level to the allocation tree. 1342 * returns back the new extent block so you can add a branch to it 1343 * after this call. 1344 */ 1345 static int ocfs2_shift_tree_depth(handle_t *handle, 1346 struct ocfs2_extent_tree *et, 1347 struct ocfs2_alloc_context *meta_ac, 1348 struct buffer_head **ret_new_eb_bh) 1349 { 1350 int status, i; 1351 u32 new_clusters; 1352 struct buffer_head *new_eb_bh = NULL; 1353 struct ocfs2_extent_block *eb; 1354 struct ocfs2_extent_list *root_el; 1355 struct ocfs2_extent_list *eb_el; 1356 1357 mlog_entry_void(); 1358 1359 status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac, 1360 &new_eb_bh); 1361 if (status < 0) { 1362 mlog_errno(status); 1363 goto bail; 1364 } 1365 1366 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data; 1367 /* ocfs2_create_new_meta_bhs() should create it right! */ 1368 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1369 1370 eb_el = &eb->h_list; 1371 root_el = et->et_root_el; 1372 1373 status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh, 1374 OCFS2_JOURNAL_ACCESS_CREATE); 1375 if (status < 0) { 1376 mlog_errno(status); 1377 goto bail; 1378 } 1379 1380 /* copy the root extent list data into the new extent block */ 1381 eb_el->l_tree_depth = root_el->l_tree_depth; 1382 eb_el->l_next_free_rec = root_el->l_next_free_rec; 1383 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1384 eb_el->l_recs[i] = root_el->l_recs[i]; 1385 1386 ocfs2_journal_dirty(handle, new_eb_bh); 1387 1388 status = ocfs2_et_root_journal_access(handle, et, 1389 OCFS2_JOURNAL_ACCESS_WRITE); 1390 if (status < 0) { 1391 mlog_errno(status); 1392 goto bail; 1393 } 1394 1395 new_clusters = ocfs2_sum_rightmost_rec(eb_el); 1396 1397 /* update root_bh now */ 1398 le16_add_cpu(&root_el->l_tree_depth, 1); 1399 root_el->l_recs[0].e_cpos = 0; 1400 root_el->l_recs[0].e_blkno = eb->h_blkno; 1401 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters); 1402 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1403 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 1404 root_el->l_next_free_rec = cpu_to_le16(1); 1405 1406 /* If this is our 1st tree depth shift, then last_eb_blk 1407 * becomes the allocated extent block */ 1408 if (root_el->l_tree_depth == cpu_to_le16(1)) 1409 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 1410 1411 ocfs2_journal_dirty(handle, et->et_root_bh); 1412 1413 *ret_new_eb_bh = new_eb_bh; 1414 new_eb_bh = NULL; 1415 status = 0; 1416 bail: 1417 brelse(new_eb_bh); 1418 1419 mlog_exit(status); 1420 return status; 1421 } 1422 1423 /* 1424 * Should only be called when there is no space left in any of the 1425 * leaf nodes. What we want to do is find the lowest tree depth 1426 * non-leaf extent block with room for new records. There are three 1427 * valid results of this search: 1428 * 1429 * 1) a lowest extent block is found, then we pass it back in 1430 * *lowest_eb_bh and return '0' 1431 * 1432 * 2) the search fails to find anything, but the root_el has room. We 1433 * pass NULL back in *lowest_eb_bh, but still return '0' 1434 * 1435 * 3) the search fails to find anything AND the root_el is full, in 1436 * which case we return > 0 1437 * 1438 * return status < 0 indicates an error. 1439 */ 1440 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et, 1441 struct buffer_head **target_bh) 1442 { 1443 int status = 0, i; 1444 u64 blkno; 1445 struct ocfs2_extent_block *eb; 1446 struct ocfs2_extent_list *el; 1447 struct buffer_head *bh = NULL; 1448 struct buffer_head *lowest_bh = NULL; 1449 1450 mlog_entry_void(); 1451 1452 *target_bh = NULL; 1453 1454 el = et->et_root_el; 1455 1456 while(le16_to_cpu(el->l_tree_depth) > 1) { 1457 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1458 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 1459 "Owner %llu has empty " 1460 "extent list (next_free_rec == 0)", 1461 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 1462 status = -EIO; 1463 goto bail; 1464 } 1465 i = le16_to_cpu(el->l_next_free_rec) - 1; 1466 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1467 if (!blkno) { 1468 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 1469 "Owner %llu has extent " 1470 "list where extent # %d has no physical " 1471 "block start", 1472 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i); 1473 status = -EIO; 1474 goto bail; 1475 } 1476 1477 brelse(bh); 1478 bh = NULL; 1479 1480 status = ocfs2_read_extent_block(et->et_ci, blkno, &bh); 1481 if (status < 0) { 1482 mlog_errno(status); 1483 goto bail; 1484 } 1485 1486 eb = (struct ocfs2_extent_block *) bh->b_data; 1487 el = &eb->h_list; 1488 1489 if (le16_to_cpu(el->l_next_free_rec) < 1490 le16_to_cpu(el->l_count)) { 1491 brelse(lowest_bh); 1492 lowest_bh = bh; 1493 get_bh(lowest_bh); 1494 } 1495 } 1496 1497 /* If we didn't find one and the fe doesn't have any room, 1498 * then return '1' */ 1499 el = et->et_root_el; 1500 if (!lowest_bh && (el->l_next_free_rec == el->l_count)) 1501 status = 1; 1502 1503 *target_bh = lowest_bh; 1504 bail: 1505 brelse(bh); 1506 1507 mlog_exit(status); 1508 return status; 1509 } 1510 1511 /* 1512 * Grow a b-tree so that it has more records. 1513 * 1514 * We might shift the tree depth in which case existing paths should 1515 * be considered invalid. 1516 * 1517 * Tree depth after the grow is returned via *final_depth. 1518 * 1519 * *last_eb_bh will be updated by ocfs2_add_branch(). 1520 */ 1521 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et, 1522 int *final_depth, struct buffer_head **last_eb_bh, 1523 struct ocfs2_alloc_context *meta_ac) 1524 { 1525 int ret, shift; 1526 struct ocfs2_extent_list *el = et->et_root_el; 1527 int depth = le16_to_cpu(el->l_tree_depth); 1528 struct buffer_head *bh = NULL; 1529 1530 BUG_ON(meta_ac == NULL); 1531 1532 shift = ocfs2_find_branch_target(et, &bh); 1533 if (shift < 0) { 1534 ret = shift; 1535 mlog_errno(ret); 1536 goto out; 1537 } 1538 1539 /* We traveled all the way to the bottom of the allocation tree 1540 * and didn't find room for any more extents - we need to add 1541 * another tree level */ 1542 if (shift) { 1543 BUG_ON(bh); 1544 mlog(0, "need to shift tree depth (current = %d)\n", depth); 1545 1546 /* ocfs2_shift_tree_depth will return us a buffer with 1547 * the new extent block (so we can pass that to 1548 * ocfs2_add_branch). */ 1549 ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh); 1550 if (ret < 0) { 1551 mlog_errno(ret); 1552 goto out; 1553 } 1554 depth++; 1555 if (depth == 1) { 1556 /* 1557 * Special case: we have room now if we shifted from 1558 * tree_depth 0, so no more work needs to be done. 1559 * 1560 * We won't be calling add_branch, so pass 1561 * back *last_eb_bh as the new leaf. At depth 1562 * zero, it should always be null so there's 1563 * no reason to brelse. 1564 */ 1565 BUG_ON(*last_eb_bh); 1566 get_bh(bh); 1567 *last_eb_bh = bh; 1568 goto out; 1569 } 1570 } 1571 1572 /* call ocfs2_add_branch to add the final part of the tree with 1573 * the new data. */ 1574 mlog(0, "add branch. bh = %p\n", bh); 1575 ret = ocfs2_add_branch(handle, et, bh, last_eb_bh, 1576 meta_ac); 1577 if (ret < 0) { 1578 mlog_errno(ret); 1579 goto out; 1580 } 1581 1582 out: 1583 if (final_depth) 1584 *final_depth = depth; 1585 brelse(bh); 1586 return ret; 1587 } 1588 1589 /* 1590 * This function will discard the rightmost extent record. 1591 */ 1592 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el) 1593 { 1594 int next_free = le16_to_cpu(el->l_next_free_rec); 1595 int count = le16_to_cpu(el->l_count); 1596 unsigned int num_bytes; 1597 1598 BUG_ON(!next_free); 1599 /* This will cause us to go off the end of our extent list. */ 1600 BUG_ON(next_free >= count); 1601 1602 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free; 1603 1604 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes); 1605 } 1606 1607 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el, 1608 struct ocfs2_extent_rec *insert_rec) 1609 { 1610 int i, insert_index, next_free, has_empty, num_bytes; 1611 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos); 1612 struct ocfs2_extent_rec *rec; 1613 1614 next_free = le16_to_cpu(el->l_next_free_rec); 1615 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]); 1616 1617 BUG_ON(!next_free); 1618 1619 /* The tree code before us didn't allow enough room in the leaf. */ 1620 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty); 1621 1622 /* 1623 * The easiest way to approach this is to just remove the 1624 * empty extent and temporarily decrement next_free. 1625 */ 1626 if (has_empty) { 1627 /* 1628 * If next_free was 1 (only an empty extent), this 1629 * loop won't execute, which is fine. We still want 1630 * the decrement above to happen. 1631 */ 1632 for(i = 0; i < (next_free - 1); i++) 1633 el->l_recs[i] = el->l_recs[i+1]; 1634 1635 next_free--; 1636 } 1637 1638 /* 1639 * Figure out what the new record index should be. 1640 */ 1641 for(i = 0; i < next_free; i++) { 1642 rec = &el->l_recs[i]; 1643 1644 if (insert_cpos < le32_to_cpu(rec->e_cpos)) 1645 break; 1646 } 1647 insert_index = i; 1648 1649 mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n", 1650 insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count)); 1651 1652 BUG_ON(insert_index < 0); 1653 BUG_ON(insert_index >= le16_to_cpu(el->l_count)); 1654 BUG_ON(insert_index > next_free); 1655 1656 /* 1657 * No need to memmove if we're just adding to the tail. 1658 */ 1659 if (insert_index != next_free) { 1660 BUG_ON(next_free >= le16_to_cpu(el->l_count)); 1661 1662 num_bytes = next_free - insert_index; 1663 num_bytes *= sizeof(struct ocfs2_extent_rec); 1664 memmove(&el->l_recs[insert_index + 1], 1665 &el->l_recs[insert_index], 1666 num_bytes); 1667 } 1668 1669 /* 1670 * Either we had an empty extent, and need to re-increment or 1671 * there was no empty extent on a non full rightmost leaf node, 1672 * in which case we still need to increment. 1673 */ 1674 next_free++; 1675 el->l_next_free_rec = cpu_to_le16(next_free); 1676 /* 1677 * Make sure none of the math above just messed up our tree. 1678 */ 1679 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count)); 1680 1681 el->l_recs[insert_index] = *insert_rec; 1682 1683 } 1684 1685 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el) 1686 { 1687 int size, num_recs = le16_to_cpu(el->l_next_free_rec); 1688 1689 BUG_ON(num_recs == 0); 1690 1691 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 1692 num_recs--; 1693 size = num_recs * sizeof(struct ocfs2_extent_rec); 1694 memmove(&el->l_recs[0], &el->l_recs[1], size); 1695 memset(&el->l_recs[num_recs], 0, 1696 sizeof(struct ocfs2_extent_rec)); 1697 el->l_next_free_rec = cpu_to_le16(num_recs); 1698 } 1699 } 1700 1701 /* 1702 * Create an empty extent record . 1703 * 1704 * l_next_free_rec may be updated. 1705 * 1706 * If an empty extent already exists do nothing. 1707 */ 1708 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el) 1709 { 1710 int next_free = le16_to_cpu(el->l_next_free_rec); 1711 1712 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 1713 1714 if (next_free == 0) 1715 goto set_and_inc; 1716 1717 if (ocfs2_is_empty_extent(&el->l_recs[0])) 1718 return; 1719 1720 mlog_bug_on_msg(el->l_count == el->l_next_free_rec, 1721 "Asked to create an empty extent in a full list:\n" 1722 "count = %u, tree depth = %u", 1723 le16_to_cpu(el->l_count), 1724 le16_to_cpu(el->l_tree_depth)); 1725 1726 ocfs2_shift_records_right(el); 1727 1728 set_and_inc: 1729 le16_add_cpu(&el->l_next_free_rec, 1); 1730 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 1731 } 1732 1733 /* 1734 * For a rotation which involves two leaf nodes, the "root node" is 1735 * the lowest level tree node which contains a path to both leafs. This 1736 * resulting set of information can be used to form a complete "subtree" 1737 * 1738 * This function is passed two full paths from the dinode down to a 1739 * pair of adjacent leaves. It's task is to figure out which path 1740 * index contains the subtree root - this can be the root index itself 1741 * in a worst-case rotation. 1742 * 1743 * The array index of the subtree root is passed back. 1744 */ 1745 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et, 1746 struct ocfs2_path *left, 1747 struct ocfs2_path *right) 1748 { 1749 int i = 0; 1750 1751 /* 1752 * Check that the caller passed in two paths from the same tree. 1753 */ 1754 BUG_ON(path_root_bh(left) != path_root_bh(right)); 1755 1756 do { 1757 i++; 1758 1759 /* 1760 * The caller didn't pass two adjacent paths. 1761 */ 1762 mlog_bug_on_msg(i > left->p_tree_depth, 1763 "Owner %llu, left depth %u, right depth %u\n" 1764 "left leaf blk %llu, right leaf blk %llu\n", 1765 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 1766 left->p_tree_depth, right->p_tree_depth, 1767 (unsigned long long)path_leaf_bh(left)->b_blocknr, 1768 (unsigned long long)path_leaf_bh(right)->b_blocknr); 1769 } while (left->p_node[i].bh->b_blocknr == 1770 right->p_node[i].bh->b_blocknr); 1771 1772 return i - 1; 1773 } 1774 1775 typedef void (path_insert_t)(void *, struct buffer_head *); 1776 1777 /* 1778 * Traverse a btree path in search of cpos, starting at root_el. 1779 * 1780 * This code can be called with a cpos larger than the tree, in which 1781 * case it will return the rightmost path. 1782 */ 1783 static int __ocfs2_find_path(struct ocfs2_caching_info *ci, 1784 struct ocfs2_extent_list *root_el, u32 cpos, 1785 path_insert_t *func, void *data) 1786 { 1787 int i, ret = 0; 1788 u32 range; 1789 u64 blkno; 1790 struct buffer_head *bh = NULL; 1791 struct ocfs2_extent_block *eb; 1792 struct ocfs2_extent_list *el; 1793 struct ocfs2_extent_rec *rec; 1794 1795 el = root_el; 1796 while (el->l_tree_depth) { 1797 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1798 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1799 "Owner %llu has empty extent list at " 1800 "depth %u\n", 1801 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1802 le16_to_cpu(el->l_tree_depth)); 1803 ret = -EROFS; 1804 goto out; 1805 1806 } 1807 1808 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) { 1809 rec = &el->l_recs[i]; 1810 1811 /* 1812 * In the case that cpos is off the allocation 1813 * tree, this should just wind up returning the 1814 * rightmost record. 1815 */ 1816 range = le32_to_cpu(rec->e_cpos) + 1817 ocfs2_rec_clusters(el, rec); 1818 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 1819 break; 1820 } 1821 1822 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1823 if (blkno == 0) { 1824 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1825 "Owner %llu has bad blkno in extent list " 1826 "at depth %u (index %d)\n", 1827 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1828 le16_to_cpu(el->l_tree_depth), i); 1829 ret = -EROFS; 1830 goto out; 1831 } 1832 1833 brelse(bh); 1834 bh = NULL; 1835 ret = ocfs2_read_extent_block(ci, blkno, &bh); 1836 if (ret) { 1837 mlog_errno(ret); 1838 goto out; 1839 } 1840 1841 eb = (struct ocfs2_extent_block *) bh->b_data; 1842 el = &eb->h_list; 1843 1844 if (le16_to_cpu(el->l_next_free_rec) > 1845 le16_to_cpu(el->l_count)) { 1846 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1847 "Owner %llu has bad count in extent list " 1848 "at block %llu (next free=%u, count=%u)\n", 1849 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1850 (unsigned long long)bh->b_blocknr, 1851 le16_to_cpu(el->l_next_free_rec), 1852 le16_to_cpu(el->l_count)); 1853 ret = -EROFS; 1854 goto out; 1855 } 1856 1857 if (func) 1858 func(data, bh); 1859 } 1860 1861 out: 1862 /* 1863 * Catch any trailing bh that the loop didn't handle. 1864 */ 1865 brelse(bh); 1866 1867 return ret; 1868 } 1869 1870 /* 1871 * Given an initialized path (that is, it has a valid root extent 1872 * list), this function will traverse the btree in search of the path 1873 * which would contain cpos. 1874 * 1875 * The path traveled is recorded in the path structure. 1876 * 1877 * Note that this will not do any comparisons on leaf node extent 1878 * records, so it will work fine in the case that we just added a tree 1879 * branch. 1880 */ 1881 struct find_path_data { 1882 int index; 1883 struct ocfs2_path *path; 1884 }; 1885 static void find_path_ins(void *data, struct buffer_head *bh) 1886 { 1887 struct find_path_data *fp = data; 1888 1889 get_bh(bh); 1890 ocfs2_path_insert_eb(fp->path, fp->index, bh); 1891 fp->index++; 1892 } 1893 int ocfs2_find_path(struct ocfs2_caching_info *ci, 1894 struct ocfs2_path *path, u32 cpos) 1895 { 1896 struct find_path_data data; 1897 1898 data.index = 1; 1899 data.path = path; 1900 return __ocfs2_find_path(ci, path_root_el(path), cpos, 1901 find_path_ins, &data); 1902 } 1903 1904 static void find_leaf_ins(void *data, struct buffer_head *bh) 1905 { 1906 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data; 1907 struct ocfs2_extent_list *el = &eb->h_list; 1908 struct buffer_head **ret = data; 1909 1910 /* We want to retain only the leaf block. */ 1911 if (le16_to_cpu(el->l_tree_depth) == 0) { 1912 get_bh(bh); 1913 *ret = bh; 1914 } 1915 } 1916 /* 1917 * Find the leaf block in the tree which would contain cpos. No 1918 * checking of the actual leaf is done. 1919 * 1920 * Some paths want to call this instead of allocating a path structure 1921 * and calling ocfs2_find_path(). 1922 * 1923 * This function doesn't handle non btree extent lists. 1924 */ 1925 int ocfs2_find_leaf(struct ocfs2_caching_info *ci, 1926 struct ocfs2_extent_list *root_el, u32 cpos, 1927 struct buffer_head **leaf_bh) 1928 { 1929 int ret; 1930 struct buffer_head *bh = NULL; 1931 1932 ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh); 1933 if (ret) { 1934 mlog_errno(ret); 1935 goto out; 1936 } 1937 1938 *leaf_bh = bh; 1939 out: 1940 return ret; 1941 } 1942 1943 /* 1944 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation. 1945 * 1946 * Basically, we've moved stuff around at the bottom of the tree and 1947 * we need to fix up the extent records above the changes to reflect 1948 * the new changes. 1949 * 1950 * left_rec: the record on the left. 1951 * left_child_el: is the child list pointed to by left_rec 1952 * right_rec: the record to the right of left_rec 1953 * right_child_el: is the child list pointed to by right_rec 1954 * 1955 * By definition, this only works on interior nodes. 1956 */ 1957 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec, 1958 struct ocfs2_extent_list *left_child_el, 1959 struct ocfs2_extent_rec *right_rec, 1960 struct ocfs2_extent_list *right_child_el) 1961 { 1962 u32 left_clusters, right_end; 1963 1964 /* 1965 * Interior nodes never have holes. Their cpos is the cpos of 1966 * the leftmost record in their child list. Their cluster 1967 * count covers the full theoretical range of their child list 1968 * - the range between their cpos and the cpos of the record 1969 * immediately to their right. 1970 */ 1971 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos); 1972 if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) { 1973 BUG_ON(right_child_el->l_tree_depth); 1974 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1); 1975 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos); 1976 } 1977 left_clusters -= le32_to_cpu(left_rec->e_cpos); 1978 left_rec->e_int_clusters = cpu_to_le32(left_clusters); 1979 1980 /* 1981 * Calculate the rightmost cluster count boundary before 1982 * moving cpos - we will need to adjust clusters after 1983 * updating e_cpos to keep the same highest cluster count. 1984 */ 1985 right_end = le32_to_cpu(right_rec->e_cpos); 1986 right_end += le32_to_cpu(right_rec->e_int_clusters); 1987 1988 right_rec->e_cpos = left_rec->e_cpos; 1989 le32_add_cpu(&right_rec->e_cpos, left_clusters); 1990 1991 right_end -= le32_to_cpu(right_rec->e_cpos); 1992 right_rec->e_int_clusters = cpu_to_le32(right_end); 1993 } 1994 1995 /* 1996 * Adjust the adjacent root node records involved in a 1997 * rotation. left_el_blkno is passed in as a key so that we can easily 1998 * find it's index in the root list. 1999 */ 2000 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el, 2001 struct ocfs2_extent_list *left_el, 2002 struct ocfs2_extent_list *right_el, 2003 u64 left_el_blkno) 2004 { 2005 int i; 2006 2007 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <= 2008 le16_to_cpu(left_el->l_tree_depth)); 2009 2010 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) { 2011 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno) 2012 break; 2013 } 2014 2015 /* 2016 * The path walking code should have never returned a root and 2017 * two paths which are not adjacent. 2018 */ 2019 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1)); 2020 2021 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el, 2022 &root_el->l_recs[i + 1], right_el); 2023 } 2024 2025 /* 2026 * We've changed a leaf block (in right_path) and need to reflect that 2027 * change back up the subtree. 2028 * 2029 * This happens in multiple places: 2030 * - When we've moved an extent record from the left path leaf to the right 2031 * path leaf to make room for an empty extent in the left path leaf. 2032 * - When our insert into the right path leaf is at the leftmost edge 2033 * and requires an update of the path immediately to it's left. This 2034 * can occur at the end of some types of rotation and appending inserts. 2035 * - When we've adjusted the last extent record in the left path leaf and the 2036 * 1st extent record in the right path leaf during cross extent block merge. 2037 */ 2038 static void ocfs2_complete_edge_insert(handle_t *handle, 2039 struct ocfs2_path *left_path, 2040 struct ocfs2_path *right_path, 2041 int subtree_index) 2042 { 2043 int i, idx; 2044 struct ocfs2_extent_list *el, *left_el, *right_el; 2045 struct ocfs2_extent_rec *left_rec, *right_rec; 2046 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2047 2048 /* 2049 * Update the counts and position values within all the 2050 * interior nodes to reflect the leaf rotation we just did. 2051 * 2052 * The root node is handled below the loop. 2053 * 2054 * We begin the loop with right_el and left_el pointing to the 2055 * leaf lists and work our way up. 2056 * 2057 * NOTE: within this loop, left_el and right_el always refer 2058 * to the *child* lists. 2059 */ 2060 left_el = path_leaf_el(left_path); 2061 right_el = path_leaf_el(right_path); 2062 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) { 2063 mlog(0, "Adjust records at index %u\n", i); 2064 2065 /* 2066 * One nice property of knowing that all of these 2067 * nodes are below the root is that we only deal with 2068 * the leftmost right node record and the rightmost 2069 * left node record. 2070 */ 2071 el = left_path->p_node[i].el; 2072 idx = le16_to_cpu(left_el->l_next_free_rec) - 1; 2073 left_rec = &el->l_recs[idx]; 2074 2075 el = right_path->p_node[i].el; 2076 right_rec = &el->l_recs[0]; 2077 2078 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec, 2079 right_el); 2080 2081 ocfs2_journal_dirty(handle, left_path->p_node[i].bh); 2082 ocfs2_journal_dirty(handle, right_path->p_node[i].bh); 2083 2084 /* 2085 * Setup our list pointers now so that the current 2086 * parents become children in the next iteration. 2087 */ 2088 left_el = left_path->p_node[i].el; 2089 right_el = right_path->p_node[i].el; 2090 } 2091 2092 /* 2093 * At the root node, adjust the two adjacent records which 2094 * begin our path to the leaves. 2095 */ 2096 2097 el = left_path->p_node[subtree_index].el; 2098 left_el = left_path->p_node[subtree_index + 1].el; 2099 right_el = right_path->p_node[subtree_index + 1].el; 2100 2101 ocfs2_adjust_root_records(el, left_el, right_el, 2102 left_path->p_node[subtree_index + 1].bh->b_blocknr); 2103 2104 root_bh = left_path->p_node[subtree_index].bh; 2105 2106 ocfs2_journal_dirty(handle, root_bh); 2107 } 2108 2109 static int ocfs2_rotate_subtree_right(handle_t *handle, 2110 struct ocfs2_extent_tree *et, 2111 struct ocfs2_path *left_path, 2112 struct ocfs2_path *right_path, 2113 int subtree_index) 2114 { 2115 int ret, i; 2116 struct buffer_head *right_leaf_bh; 2117 struct buffer_head *left_leaf_bh = NULL; 2118 struct buffer_head *root_bh; 2119 struct ocfs2_extent_list *right_el, *left_el; 2120 struct ocfs2_extent_rec move_rec; 2121 2122 left_leaf_bh = path_leaf_bh(left_path); 2123 left_el = path_leaf_el(left_path); 2124 2125 if (left_el->l_next_free_rec != left_el->l_count) { 2126 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 2127 "Inode %llu has non-full interior leaf node %llu" 2128 "(next free = %u)", 2129 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2130 (unsigned long long)left_leaf_bh->b_blocknr, 2131 le16_to_cpu(left_el->l_next_free_rec)); 2132 return -EROFS; 2133 } 2134 2135 /* 2136 * This extent block may already have an empty record, so we 2137 * return early if so. 2138 */ 2139 if (ocfs2_is_empty_extent(&left_el->l_recs[0])) 2140 return 0; 2141 2142 root_bh = left_path->p_node[subtree_index].bh; 2143 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2144 2145 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 2146 subtree_index); 2147 if (ret) { 2148 mlog_errno(ret); 2149 goto out; 2150 } 2151 2152 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2153 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2154 right_path, i); 2155 if (ret) { 2156 mlog_errno(ret); 2157 goto out; 2158 } 2159 2160 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2161 left_path, i); 2162 if (ret) { 2163 mlog_errno(ret); 2164 goto out; 2165 } 2166 } 2167 2168 right_leaf_bh = path_leaf_bh(right_path); 2169 right_el = path_leaf_el(right_path); 2170 2171 /* This is a code error, not a disk corruption. */ 2172 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails " 2173 "because rightmost leaf block %llu is empty\n", 2174 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2175 (unsigned long long)right_leaf_bh->b_blocknr); 2176 2177 ocfs2_create_empty_extent(right_el); 2178 2179 ocfs2_journal_dirty(handle, right_leaf_bh); 2180 2181 /* Do the copy now. */ 2182 i = le16_to_cpu(left_el->l_next_free_rec) - 1; 2183 move_rec = left_el->l_recs[i]; 2184 right_el->l_recs[0] = move_rec; 2185 2186 /* 2187 * Clear out the record we just copied and shift everything 2188 * over, leaving an empty extent in the left leaf. 2189 * 2190 * We temporarily subtract from next_free_rec so that the 2191 * shift will lose the tail record (which is now defunct). 2192 */ 2193 le16_add_cpu(&left_el->l_next_free_rec, -1); 2194 ocfs2_shift_records_right(left_el); 2195 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2196 le16_add_cpu(&left_el->l_next_free_rec, 1); 2197 2198 ocfs2_journal_dirty(handle, left_leaf_bh); 2199 2200 ocfs2_complete_edge_insert(handle, left_path, right_path, 2201 subtree_index); 2202 2203 out: 2204 return ret; 2205 } 2206 2207 /* 2208 * Given a full path, determine what cpos value would return us a path 2209 * containing the leaf immediately to the left of the current one. 2210 * 2211 * Will return zero if the path passed in is already the leftmost path. 2212 */ 2213 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb, 2214 struct ocfs2_path *path, u32 *cpos) 2215 { 2216 int i, j, ret = 0; 2217 u64 blkno; 2218 struct ocfs2_extent_list *el; 2219 2220 BUG_ON(path->p_tree_depth == 0); 2221 2222 *cpos = 0; 2223 2224 blkno = path_leaf_bh(path)->b_blocknr; 2225 2226 /* Start at the tree node just above the leaf and work our way up. */ 2227 i = path->p_tree_depth - 1; 2228 while (i >= 0) { 2229 el = path->p_node[i].el; 2230 2231 /* 2232 * Find the extent record just before the one in our 2233 * path. 2234 */ 2235 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2236 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2237 if (j == 0) { 2238 if (i == 0) { 2239 /* 2240 * We've determined that the 2241 * path specified is already 2242 * the leftmost one - return a 2243 * cpos of zero. 2244 */ 2245 goto out; 2246 } 2247 /* 2248 * The leftmost record points to our 2249 * leaf - we need to travel up the 2250 * tree one level. 2251 */ 2252 goto next_node; 2253 } 2254 2255 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos); 2256 *cpos = *cpos + ocfs2_rec_clusters(el, 2257 &el->l_recs[j - 1]); 2258 *cpos = *cpos - 1; 2259 goto out; 2260 } 2261 } 2262 2263 /* 2264 * If we got here, we never found a valid node where 2265 * the tree indicated one should be. 2266 */ 2267 ocfs2_error(sb, 2268 "Invalid extent tree at extent block %llu\n", 2269 (unsigned long long)blkno); 2270 ret = -EROFS; 2271 goto out; 2272 2273 next_node: 2274 blkno = path->p_node[i].bh->b_blocknr; 2275 i--; 2276 } 2277 2278 out: 2279 return ret; 2280 } 2281 2282 /* 2283 * Extend the transaction by enough credits to complete the rotation, 2284 * and still leave at least the original number of credits allocated 2285 * to this transaction. 2286 */ 2287 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth, 2288 int op_credits, 2289 struct ocfs2_path *path) 2290 { 2291 int ret = 0; 2292 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits; 2293 2294 if (handle->h_buffer_credits < credits) 2295 ret = ocfs2_extend_trans(handle, 2296 credits - handle->h_buffer_credits); 2297 2298 return ret; 2299 } 2300 2301 /* 2302 * Trap the case where we're inserting into the theoretical range past 2303 * the _actual_ left leaf range. Otherwise, we'll rotate a record 2304 * whose cpos is less than ours into the right leaf. 2305 * 2306 * It's only necessary to look at the rightmost record of the left 2307 * leaf because the logic that calls us should ensure that the 2308 * theoretical ranges in the path components above the leaves are 2309 * correct. 2310 */ 2311 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path, 2312 u32 insert_cpos) 2313 { 2314 struct ocfs2_extent_list *left_el; 2315 struct ocfs2_extent_rec *rec; 2316 int next_free; 2317 2318 left_el = path_leaf_el(left_path); 2319 next_free = le16_to_cpu(left_el->l_next_free_rec); 2320 rec = &left_el->l_recs[next_free - 1]; 2321 2322 if (insert_cpos > le32_to_cpu(rec->e_cpos)) 2323 return 1; 2324 return 0; 2325 } 2326 2327 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos) 2328 { 2329 int next_free = le16_to_cpu(el->l_next_free_rec); 2330 unsigned int range; 2331 struct ocfs2_extent_rec *rec; 2332 2333 if (next_free == 0) 2334 return 0; 2335 2336 rec = &el->l_recs[0]; 2337 if (ocfs2_is_empty_extent(rec)) { 2338 /* Empty list. */ 2339 if (next_free == 1) 2340 return 0; 2341 rec = &el->l_recs[1]; 2342 } 2343 2344 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2345 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 2346 return 1; 2347 return 0; 2348 } 2349 2350 /* 2351 * Rotate all the records in a btree right one record, starting at insert_cpos. 2352 * 2353 * The path to the rightmost leaf should be passed in. 2354 * 2355 * The array is assumed to be large enough to hold an entire path (tree depth). 2356 * 2357 * Upon successful return from this function: 2358 * 2359 * - The 'right_path' array will contain a path to the leaf block 2360 * whose range contains e_cpos. 2361 * - That leaf block will have a single empty extent in list index 0. 2362 * - In the case that the rotation requires a post-insert update, 2363 * *ret_left_path will contain a valid path which can be passed to 2364 * ocfs2_insert_path(). 2365 */ 2366 static int ocfs2_rotate_tree_right(handle_t *handle, 2367 struct ocfs2_extent_tree *et, 2368 enum ocfs2_split_type split, 2369 u32 insert_cpos, 2370 struct ocfs2_path *right_path, 2371 struct ocfs2_path **ret_left_path) 2372 { 2373 int ret, start, orig_credits = handle->h_buffer_credits; 2374 u32 cpos; 2375 struct ocfs2_path *left_path = NULL; 2376 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 2377 2378 *ret_left_path = NULL; 2379 2380 left_path = ocfs2_new_path_from_path(right_path); 2381 if (!left_path) { 2382 ret = -ENOMEM; 2383 mlog_errno(ret); 2384 goto out; 2385 } 2386 2387 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); 2388 if (ret) { 2389 mlog_errno(ret); 2390 goto out; 2391 } 2392 2393 mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos); 2394 2395 /* 2396 * What we want to do here is: 2397 * 2398 * 1) Start with the rightmost path. 2399 * 2400 * 2) Determine a path to the leaf block directly to the left 2401 * of that leaf. 2402 * 2403 * 3) Determine the 'subtree root' - the lowest level tree node 2404 * which contains a path to both leaves. 2405 * 2406 * 4) Rotate the subtree. 2407 * 2408 * 5) Find the next subtree by considering the left path to be 2409 * the new right path. 2410 * 2411 * The check at the top of this while loop also accepts 2412 * insert_cpos == cpos because cpos is only a _theoretical_ 2413 * value to get us the left path - insert_cpos might very well 2414 * be filling that hole. 2415 * 2416 * Stop at a cpos of '0' because we either started at the 2417 * leftmost branch (i.e., a tree with one branch and a 2418 * rotation inside of it), or we've gone as far as we can in 2419 * rotating subtrees. 2420 */ 2421 while (cpos && insert_cpos <= cpos) { 2422 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n", 2423 insert_cpos, cpos); 2424 2425 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 2426 if (ret) { 2427 mlog_errno(ret); 2428 goto out; 2429 } 2430 2431 mlog_bug_on_msg(path_leaf_bh(left_path) == 2432 path_leaf_bh(right_path), 2433 "Owner %llu: error during insert of %u " 2434 "(left path cpos %u) results in two identical " 2435 "paths ending at %llu\n", 2436 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2437 insert_cpos, cpos, 2438 (unsigned long long) 2439 path_leaf_bh(left_path)->b_blocknr); 2440 2441 if (split == SPLIT_NONE && 2442 ocfs2_rotate_requires_path_adjustment(left_path, 2443 insert_cpos)) { 2444 2445 /* 2446 * We've rotated the tree as much as we 2447 * should. The rest is up to 2448 * ocfs2_insert_path() to complete, after the 2449 * record insertion. We indicate this 2450 * situation by returning the left path. 2451 * 2452 * The reason we don't adjust the records here 2453 * before the record insert is that an error 2454 * later might break the rule where a parent 2455 * record e_cpos will reflect the actual 2456 * e_cpos of the 1st nonempty record of the 2457 * child list. 2458 */ 2459 *ret_left_path = left_path; 2460 goto out_ret_path; 2461 } 2462 2463 start = ocfs2_find_subtree_root(et, left_path, right_path); 2464 2465 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n", 2466 start, 2467 (unsigned long long) right_path->p_node[start].bh->b_blocknr, 2468 right_path->p_tree_depth); 2469 2470 ret = ocfs2_extend_rotate_transaction(handle, start, 2471 orig_credits, right_path); 2472 if (ret) { 2473 mlog_errno(ret); 2474 goto out; 2475 } 2476 2477 ret = ocfs2_rotate_subtree_right(handle, et, left_path, 2478 right_path, start); 2479 if (ret) { 2480 mlog_errno(ret); 2481 goto out; 2482 } 2483 2484 if (split != SPLIT_NONE && 2485 ocfs2_leftmost_rec_contains(path_leaf_el(right_path), 2486 insert_cpos)) { 2487 /* 2488 * A rotate moves the rightmost left leaf 2489 * record over to the leftmost right leaf 2490 * slot. If we're doing an extent split 2491 * instead of a real insert, then we have to 2492 * check that the extent to be split wasn't 2493 * just moved over. If it was, then we can 2494 * exit here, passing left_path back - 2495 * ocfs2_split_extent() is smart enough to 2496 * search both leaves. 2497 */ 2498 *ret_left_path = left_path; 2499 goto out_ret_path; 2500 } 2501 2502 /* 2503 * There is no need to re-read the next right path 2504 * as we know that it'll be our current left 2505 * path. Optimize by copying values instead. 2506 */ 2507 ocfs2_mv_path(right_path, left_path); 2508 2509 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); 2510 if (ret) { 2511 mlog_errno(ret); 2512 goto out; 2513 } 2514 } 2515 2516 out: 2517 ocfs2_free_path(left_path); 2518 2519 out_ret_path: 2520 return ret; 2521 } 2522 2523 static int ocfs2_update_edge_lengths(handle_t *handle, 2524 struct ocfs2_extent_tree *et, 2525 int subtree_index, struct ocfs2_path *path) 2526 { 2527 int i, idx, ret; 2528 struct ocfs2_extent_rec *rec; 2529 struct ocfs2_extent_list *el; 2530 struct ocfs2_extent_block *eb; 2531 u32 range; 2532 2533 /* 2534 * In normal tree rotation process, we will never touch the 2535 * tree branch above subtree_index and ocfs2_extend_rotate_transaction 2536 * doesn't reserve the credits for them either. 2537 * 2538 * But we do have a special case here which will update the rightmost 2539 * records for all the bh in the path. 2540 * So we have to allocate extra credits and access them. 2541 */ 2542 ret = ocfs2_extend_trans(handle, subtree_index); 2543 if (ret) { 2544 mlog_errno(ret); 2545 goto out; 2546 } 2547 2548 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 2549 if (ret) { 2550 mlog_errno(ret); 2551 goto out; 2552 } 2553 2554 /* Path should always be rightmost. */ 2555 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 2556 BUG_ON(eb->h_next_leaf_blk != 0ULL); 2557 2558 el = &eb->h_list; 2559 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 2560 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2561 rec = &el->l_recs[idx]; 2562 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2563 2564 for (i = 0; i < path->p_tree_depth; i++) { 2565 el = path->p_node[i].el; 2566 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2567 rec = &el->l_recs[idx]; 2568 2569 rec->e_int_clusters = cpu_to_le32(range); 2570 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos)); 2571 2572 ocfs2_journal_dirty(handle, path->p_node[i].bh); 2573 } 2574 out: 2575 return ret; 2576 } 2577 2578 static void ocfs2_unlink_path(handle_t *handle, 2579 struct ocfs2_extent_tree *et, 2580 struct ocfs2_cached_dealloc_ctxt *dealloc, 2581 struct ocfs2_path *path, int unlink_start) 2582 { 2583 int ret, i; 2584 struct ocfs2_extent_block *eb; 2585 struct ocfs2_extent_list *el; 2586 struct buffer_head *bh; 2587 2588 for(i = unlink_start; i < path_num_items(path); i++) { 2589 bh = path->p_node[i].bh; 2590 2591 eb = (struct ocfs2_extent_block *)bh->b_data; 2592 /* 2593 * Not all nodes might have had their final count 2594 * decremented by the caller - handle this here. 2595 */ 2596 el = &eb->h_list; 2597 if (le16_to_cpu(el->l_next_free_rec) > 1) { 2598 mlog(ML_ERROR, 2599 "Inode %llu, attempted to remove extent block " 2600 "%llu with %u records\n", 2601 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2602 (unsigned long long)le64_to_cpu(eb->h_blkno), 2603 le16_to_cpu(el->l_next_free_rec)); 2604 2605 ocfs2_journal_dirty(handle, bh); 2606 ocfs2_remove_from_cache(et->et_ci, bh); 2607 continue; 2608 } 2609 2610 el->l_next_free_rec = 0; 2611 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2612 2613 ocfs2_journal_dirty(handle, bh); 2614 2615 ret = ocfs2_cache_extent_block_free(dealloc, eb); 2616 if (ret) 2617 mlog_errno(ret); 2618 2619 ocfs2_remove_from_cache(et->et_ci, bh); 2620 } 2621 } 2622 2623 static void ocfs2_unlink_subtree(handle_t *handle, 2624 struct ocfs2_extent_tree *et, 2625 struct ocfs2_path *left_path, 2626 struct ocfs2_path *right_path, 2627 int subtree_index, 2628 struct ocfs2_cached_dealloc_ctxt *dealloc) 2629 { 2630 int i; 2631 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2632 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el; 2633 struct ocfs2_extent_list *el; 2634 struct ocfs2_extent_block *eb; 2635 2636 el = path_leaf_el(left_path); 2637 2638 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data; 2639 2640 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 2641 if (root_el->l_recs[i].e_blkno == eb->h_blkno) 2642 break; 2643 2644 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec)); 2645 2646 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 2647 le16_add_cpu(&root_el->l_next_free_rec, -1); 2648 2649 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2650 eb->h_next_leaf_blk = 0; 2651 2652 ocfs2_journal_dirty(handle, root_bh); 2653 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2654 2655 ocfs2_unlink_path(handle, et, dealloc, right_path, 2656 subtree_index + 1); 2657 } 2658 2659 static int ocfs2_rotate_subtree_left(handle_t *handle, 2660 struct ocfs2_extent_tree *et, 2661 struct ocfs2_path *left_path, 2662 struct ocfs2_path *right_path, 2663 int subtree_index, 2664 struct ocfs2_cached_dealloc_ctxt *dealloc, 2665 int *deleted) 2666 { 2667 int ret, i, del_right_subtree = 0, right_has_empty = 0; 2668 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path); 2669 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el; 2670 struct ocfs2_extent_block *eb; 2671 2672 *deleted = 0; 2673 2674 right_leaf_el = path_leaf_el(right_path); 2675 left_leaf_el = path_leaf_el(left_path); 2676 root_bh = left_path->p_node[subtree_index].bh; 2677 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2678 2679 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0])) 2680 return 0; 2681 2682 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data; 2683 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) { 2684 /* 2685 * It's legal for us to proceed if the right leaf is 2686 * the rightmost one and it has an empty extent. There 2687 * are two cases to handle - whether the leaf will be 2688 * empty after removal or not. If the leaf isn't empty 2689 * then just remove the empty extent up front. The 2690 * next block will handle empty leaves by flagging 2691 * them for unlink. 2692 * 2693 * Non rightmost leaves will throw -EAGAIN and the 2694 * caller can manually move the subtree and retry. 2695 */ 2696 2697 if (eb->h_next_leaf_blk != 0ULL) 2698 return -EAGAIN; 2699 2700 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) { 2701 ret = ocfs2_journal_access_eb(handle, et->et_ci, 2702 path_leaf_bh(right_path), 2703 OCFS2_JOURNAL_ACCESS_WRITE); 2704 if (ret) { 2705 mlog_errno(ret); 2706 goto out; 2707 } 2708 2709 ocfs2_remove_empty_extent(right_leaf_el); 2710 } else 2711 right_has_empty = 1; 2712 } 2713 2714 if (eb->h_next_leaf_blk == 0ULL && 2715 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) { 2716 /* 2717 * We have to update i_last_eb_blk during the meta 2718 * data delete. 2719 */ 2720 ret = ocfs2_et_root_journal_access(handle, et, 2721 OCFS2_JOURNAL_ACCESS_WRITE); 2722 if (ret) { 2723 mlog_errno(ret); 2724 goto out; 2725 } 2726 2727 del_right_subtree = 1; 2728 } 2729 2730 /* 2731 * Getting here with an empty extent in the right path implies 2732 * that it's the rightmost path and will be deleted. 2733 */ 2734 BUG_ON(right_has_empty && !del_right_subtree); 2735 2736 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 2737 subtree_index); 2738 if (ret) { 2739 mlog_errno(ret); 2740 goto out; 2741 } 2742 2743 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2744 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2745 right_path, i); 2746 if (ret) { 2747 mlog_errno(ret); 2748 goto out; 2749 } 2750 2751 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2752 left_path, i); 2753 if (ret) { 2754 mlog_errno(ret); 2755 goto out; 2756 } 2757 } 2758 2759 if (!right_has_empty) { 2760 /* 2761 * Only do this if we're moving a real 2762 * record. Otherwise, the action is delayed until 2763 * after removal of the right path in which case we 2764 * can do a simple shift to remove the empty extent. 2765 */ 2766 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]); 2767 memset(&right_leaf_el->l_recs[0], 0, 2768 sizeof(struct ocfs2_extent_rec)); 2769 } 2770 if (eb->h_next_leaf_blk == 0ULL) { 2771 /* 2772 * Move recs over to get rid of empty extent, decrease 2773 * next_free. This is allowed to remove the last 2774 * extent in our leaf (setting l_next_free_rec to 2775 * zero) - the delete code below won't care. 2776 */ 2777 ocfs2_remove_empty_extent(right_leaf_el); 2778 } 2779 2780 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2781 ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 2782 2783 if (del_right_subtree) { 2784 ocfs2_unlink_subtree(handle, et, left_path, right_path, 2785 subtree_index, dealloc); 2786 ret = ocfs2_update_edge_lengths(handle, et, subtree_index, 2787 left_path); 2788 if (ret) { 2789 mlog_errno(ret); 2790 goto out; 2791 } 2792 2793 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2794 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 2795 2796 /* 2797 * Removal of the extent in the left leaf was skipped 2798 * above so we could delete the right path 2799 * 1st. 2800 */ 2801 if (right_has_empty) 2802 ocfs2_remove_empty_extent(left_leaf_el); 2803 2804 ocfs2_journal_dirty(handle, et_root_bh); 2805 2806 *deleted = 1; 2807 } else 2808 ocfs2_complete_edge_insert(handle, left_path, right_path, 2809 subtree_index); 2810 2811 out: 2812 return ret; 2813 } 2814 2815 /* 2816 * Given a full path, determine what cpos value would return us a path 2817 * containing the leaf immediately to the right of the current one. 2818 * 2819 * Will return zero if the path passed in is already the rightmost path. 2820 * 2821 * This looks similar, but is subtly different to 2822 * ocfs2_find_cpos_for_left_leaf(). 2823 */ 2824 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb, 2825 struct ocfs2_path *path, u32 *cpos) 2826 { 2827 int i, j, ret = 0; 2828 u64 blkno; 2829 struct ocfs2_extent_list *el; 2830 2831 *cpos = 0; 2832 2833 if (path->p_tree_depth == 0) 2834 return 0; 2835 2836 blkno = path_leaf_bh(path)->b_blocknr; 2837 2838 /* Start at the tree node just above the leaf and work our way up. */ 2839 i = path->p_tree_depth - 1; 2840 while (i >= 0) { 2841 int next_free; 2842 2843 el = path->p_node[i].el; 2844 2845 /* 2846 * Find the extent record just after the one in our 2847 * path. 2848 */ 2849 next_free = le16_to_cpu(el->l_next_free_rec); 2850 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2851 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2852 if (j == (next_free - 1)) { 2853 if (i == 0) { 2854 /* 2855 * We've determined that the 2856 * path specified is already 2857 * the rightmost one - return a 2858 * cpos of zero. 2859 */ 2860 goto out; 2861 } 2862 /* 2863 * The rightmost record points to our 2864 * leaf - we need to travel up the 2865 * tree one level. 2866 */ 2867 goto next_node; 2868 } 2869 2870 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos); 2871 goto out; 2872 } 2873 } 2874 2875 /* 2876 * If we got here, we never found a valid node where 2877 * the tree indicated one should be. 2878 */ 2879 ocfs2_error(sb, 2880 "Invalid extent tree at extent block %llu\n", 2881 (unsigned long long)blkno); 2882 ret = -EROFS; 2883 goto out; 2884 2885 next_node: 2886 blkno = path->p_node[i].bh->b_blocknr; 2887 i--; 2888 } 2889 2890 out: 2891 return ret; 2892 } 2893 2894 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle, 2895 struct ocfs2_extent_tree *et, 2896 struct ocfs2_path *path) 2897 { 2898 int ret; 2899 struct buffer_head *bh = path_leaf_bh(path); 2900 struct ocfs2_extent_list *el = path_leaf_el(path); 2901 2902 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 2903 return 0; 2904 2905 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path, 2906 path_num_items(path) - 1); 2907 if (ret) { 2908 mlog_errno(ret); 2909 goto out; 2910 } 2911 2912 ocfs2_remove_empty_extent(el); 2913 ocfs2_journal_dirty(handle, bh); 2914 2915 out: 2916 return ret; 2917 } 2918 2919 static int __ocfs2_rotate_tree_left(handle_t *handle, 2920 struct ocfs2_extent_tree *et, 2921 int orig_credits, 2922 struct ocfs2_path *path, 2923 struct ocfs2_cached_dealloc_ctxt *dealloc, 2924 struct ocfs2_path **empty_extent_path) 2925 { 2926 int ret, subtree_root, deleted; 2927 u32 right_cpos; 2928 struct ocfs2_path *left_path = NULL; 2929 struct ocfs2_path *right_path = NULL; 2930 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 2931 2932 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0]))); 2933 2934 *empty_extent_path = NULL; 2935 2936 ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos); 2937 if (ret) { 2938 mlog_errno(ret); 2939 goto out; 2940 } 2941 2942 left_path = ocfs2_new_path_from_path(path); 2943 if (!left_path) { 2944 ret = -ENOMEM; 2945 mlog_errno(ret); 2946 goto out; 2947 } 2948 2949 ocfs2_cp_path(left_path, path); 2950 2951 right_path = ocfs2_new_path_from_path(path); 2952 if (!right_path) { 2953 ret = -ENOMEM; 2954 mlog_errno(ret); 2955 goto out; 2956 } 2957 2958 while (right_cpos) { 2959 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); 2960 if (ret) { 2961 mlog_errno(ret); 2962 goto out; 2963 } 2964 2965 subtree_root = ocfs2_find_subtree_root(et, left_path, 2966 right_path); 2967 2968 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n", 2969 subtree_root, 2970 (unsigned long long) 2971 right_path->p_node[subtree_root].bh->b_blocknr, 2972 right_path->p_tree_depth); 2973 2974 ret = ocfs2_extend_rotate_transaction(handle, subtree_root, 2975 orig_credits, left_path); 2976 if (ret) { 2977 mlog_errno(ret); 2978 goto out; 2979 } 2980 2981 /* 2982 * Caller might still want to make changes to the 2983 * tree root, so re-add it to the journal here. 2984 */ 2985 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2986 left_path, 0); 2987 if (ret) { 2988 mlog_errno(ret); 2989 goto out; 2990 } 2991 2992 ret = ocfs2_rotate_subtree_left(handle, et, left_path, 2993 right_path, subtree_root, 2994 dealloc, &deleted); 2995 if (ret == -EAGAIN) { 2996 /* 2997 * The rotation has to temporarily stop due to 2998 * the right subtree having an empty 2999 * extent. Pass it back to the caller for a 3000 * fixup. 3001 */ 3002 *empty_extent_path = right_path; 3003 right_path = NULL; 3004 goto out; 3005 } 3006 if (ret) { 3007 mlog_errno(ret); 3008 goto out; 3009 } 3010 3011 /* 3012 * The subtree rotate might have removed records on 3013 * the rightmost edge. If so, then rotation is 3014 * complete. 3015 */ 3016 if (deleted) 3017 break; 3018 3019 ocfs2_mv_path(left_path, right_path); 3020 3021 ret = ocfs2_find_cpos_for_right_leaf(sb, left_path, 3022 &right_cpos); 3023 if (ret) { 3024 mlog_errno(ret); 3025 goto out; 3026 } 3027 } 3028 3029 out: 3030 ocfs2_free_path(right_path); 3031 ocfs2_free_path(left_path); 3032 3033 return ret; 3034 } 3035 3036 static int ocfs2_remove_rightmost_path(handle_t *handle, 3037 struct ocfs2_extent_tree *et, 3038 struct ocfs2_path *path, 3039 struct ocfs2_cached_dealloc_ctxt *dealloc) 3040 { 3041 int ret, subtree_index; 3042 u32 cpos; 3043 struct ocfs2_path *left_path = NULL; 3044 struct ocfs2_extent_block *eb; 3045 struct ocfs2_extent_list *el; 3046 3047 3048 ret = ocfs2_et_sanity_check(et); 3049 if (ret) 3050 goto out; 3051 /* 3052 * There's two ways we handle this depending on 3053 * whether path is the only existing one. 3054 */ 3055 ret = ocfs2_extend_rotate_transaction(handle, 0, 3056 handle->h_buffer_credits, 3057 path); 3058 if (ret) { 3059 mlog_errno(ret); 3060 goto out; 3061 } 3062 3063 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 3064 if (ret) { 3065 mlog_errno(ret); 3066 goto out; 3067 } 3068 3069 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3070 path, &cpos); 3071 if (ret) { 3072 mlog_errno(ret); 3073 goto out; 3074 } 3075 3076 if (cpos) { 3077 /* 3078 * We have a path to the left of this one - it needs 3079 * an update too. 3080 */ 3081 left_path = ocfs2_new_path_from_path(path); 3082 if (!left_path) { 3083 ret = -ENOMEM; 3084 mlog_errno(ret); 3085 goto out; 3086 } 3087 3088 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 3089 if (ret) { 3090 mlog_errno(ret); 3091 goto out; 3092 } 3093 3094 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 3095 if (ret) { 3096 mlog_errno(ret); 3097 goto out; 3098 } 3099 3100 subtree_index = ocfs2_find_subtree_root(et, left_path, path); 3101 3102 ocfs2_unlink_subtree(handle, et, left_path, path, 3103 subtree_index, dealloc); 3104 ret = ocfs2_update_edge_lengths(handle, et, subtree_index, 3105 left_path); 3106 if (ret) { 3107 mlog_errno(ret); 3108 goto out; 3109 } 3110 3111 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 3112 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 3113 } else { 3114 /* 3115 * 'path' is also the leftmost path which 3116 * means it must be the only one. This gets 3117 * handled differently because we want to 3118 * revert the root back to having extents 3119 * in-line. 3120 */ 3121 ocfs2_unlink_path(handle, et, dealloc, path, 1); 3122 3123 el = et->et_root_el; 3124 el->l_tree_depth = 0; 3125 el->l_next_free_rec = 0; 3126 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3127 3128 ocfs2_et_set_last_eb_blk(et, 0); 3129 } 3130 3131 ocfs2_journal_dirty(handle, path_root_bh(path)); 3132 3133 out: 3134 ocfs2_free_path(left_path); 3135 return ret; 3136 } 3137 3138 /* 3139 * Left rotation of btree records. 3140 * 3141 * In many ways, this is (unsurprisingly) the opposite of right 3142 * rotation. We start at some non-rightmost path containing an empty 3143 * extent in the leaf block. The code works its way to the rightmost 3144 * path by rotating records to the left in every subtree. 3145 * 3146 * This is used by any code which reduces the number of extent records 3147 * in a leaf. After removal, an empty record should be placed in the 3148 * leftmost list position. 3149 * 3150 * This won't handle a length update of the rightmost path records if 3151 * the rightmost tree leaf record is removed so the caller is 3152 * responsible for detecting and correcting that. 3153 */ 3154 static int ocfs2_rotate_tree_left(handle_t *handle, 3155 struct ocfs2_extent_tree *et, 3156 struct ocfs2_path *path, 3157 struct ocfs2_cached_dealloc_ctxt *dealloc) 3158 { 3159 int ret, orig_credits = handle->h_buffer_credits; 3160 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL; 3161 struct ocfs2_extent_block *eb; 3162 struct ocfs2_extent_list *el; 3163 3164 el = path_leaf_el(path); 3165 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 3166 return 0; 3167 3168 if (path->p_tree_depth == 0) { 3169 rightmost_no_delete: 3170 /* 3171 * Inline extents. This is trivially handled, so do 3172 * it up front. 3173 */ 3174 ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path); 3175 if (ret) 3176 mlog_errno(ret); 3177 goto out; 3178 } 3179 3180 /* 3181 * Handle rightmost branch now. There's several cases: 3182 * 1) simple rotation leaving records in there. That's trivial. 3183 * 2) rotation requiring a branch delete - there's no more 3184 * records left. Two cases of this: 3185 * a) There are branches to the left. 3186 * b) This is also the leftmost (the only) branch. 3187 * 3188 * 1) is handled via ocfs2_rotate_rightmost_leaf_left() 3189 * 2a) we need the left branch so that we can update it with the unlink 3190 * 2b) we need to bring the root back to inline extents. 3191 */ 3192 3193 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 3194 el = &eb->h_list; 3195 if (eb->h_next_leaf_blk == 0) { 3196 /* 3197 * This gets a bit tricky if we're going to delete the 3198 * rightmost path. Get the other cases out of the way 3199 * 1st. 3200 */ 3201 if (le16_to_cpu(el->l_next_free_rec) > 1) 3202 goto rightmost_no_delete; 3203 3204 if (le16_to_cpu(el->l_next_free_rec) == 0) { 3205 ret = -EIO; 3206 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 3207 "Owner %llu has empty extent block at %llu", 3208 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 3209 (unsigned long long)le64_to_cpu(eb->h_blkno)); 3210 goto out; 3211 } 3212 3213 /* 3214 * XXX: The caller can not trust "path" any more after 3215 * this as it will have been deleted. What do we do? 3216 * 3217 * In theory the rotate-for-merge code will never get 3218 * here because it'll always ask for a rotate in a 3219 * nonempty list. 3220 */ 3221 3222 ret = ocfs2_remove_rightmost_path(handle, et, path, 3223 dealloc); 3224 if (ret) 3225 mlog_errno(ret); 3226 goto out; 3227 } 3228 3229 /* 3230 * Now we can loop, remembering the path we get from -EAGAIN 3231 * and restarting from there. 3232 */ 3233 try_rotate: 3234 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path, 3235 dealloc, &restart_path); 3236 if (ret && ret != -EAGAIN) { 3237 mlog_errno(ret); 3238 goto out; 3239 } 3240 3241 while (ret == -EAGAIN) { 3242 tmp_path = restart_path; 3243 restart_path = NULL; 3244 3245 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, 3246 tmp_path, dealloc, 3247 &restart_path); 3248 if (ret && ret != -EAGAIN) { 3249 mlog_errno(ret); 3250 goto out; 3251 } 3252 3253 ocfs2_free_path(tmp_path); 3254 tmp_path = NULL; 3255 3256 if (ret == 0) 3257 goto try_rotate; 3258 } 3259 3260 out: 3261 ocfs2_free_path(tmp_path); 3262 ocfs2_free_path(restart_path); 3263 return ret; 3264 } 3265 3266 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el, 3267 int index) 3268 { 3269 struct ocfs2_extent_rec *rec = &el->l_recs[index]; 3270 unsigned int size; 3271 3272 if (rec->e_leaf_clusters == 0) { 3273 /* 3274 * We consumed all of the merged-from record. An empty 3275 * extent cannot exist anywhere but the 1st array 3276 * position, so move things over if the merged-from 3277 * record doesn't occupy that position. 3278 * 3279 * This creates a new empty extent so the caller 3280 * should be smart enough to have removed any existing 3281 * ones. 3282 */ 3283 if (index > 0) { 3284 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 3285 size = index * sizeof(struct ocfs2_extent_rec); 3286 memmove(&el->l_recs[1], &el->l_recs[0], size); 3287 } 3288 3289 /* 3290 * Always memset - the caller doesn't check whether it 3291 * created an empty extent, so there could be junk in 3292 * the other fields. 3293 */ 3294 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3295 } 3296 } 3297 3298 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et, 3299 struct ocfs2_path *left_path, 3300 struct ocfs2_path **ret_right_path) 3301 { 3302 int ret; 3303 u32 right_cpos; 3304 struct ocfs2_path *right_path = NULL; 3305 struct ocfs2_extent_list *left_el; 3306 3307 *ret_right_path = NULL; 3308 3309 /* This function shouldn't be called for non-trees. */ 3310 BUG_ON(left_path->p_tree_depth == 0); 3311 3312 left_el = path_leaf_el(left_path); 3313 BUG_ON(left_el->l_next_free_rec != left_el->l_count); 3314 3315 ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3316 left_path, &right_cpos); 3317 if (ret) { 3318 mlog_errno(ret); 3319 goto out; 3320 } 3321 3322 /* This function shouldn't be called for the rightmost leaf. */ 3323 BUG_ON(right_cpos == 0); 3324 3325 right_path = ocfs2_new_path_from_path(left_path); 3326 if (!right_path) { 3327 ret = -ENOMEM; 3328 mlog_errno(ret); 3329 goto out; 3330 } 3331 3332 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); 3333 if (ret) { 3334 mlog_errno(ret); 3335 goto out; 3336 } 3337 3338 *ret_right_path = right_path; 3339 out: 3340 if (ret) 3341 ocfs2_free_path(right_path); 3342 return ret; 3343 } 3344 3345 /* 3346 * Remove split_rec clusters from the record at index and merge them 3347 * onto the beginning of the record "next" to it. 3348 * For index < l_count - 1, the next means the extent rec at index + 1. 3349 * For index == l_count - 1, the "next" means the 1st extent rec of the 3350 * next extent block. 3351 */ 3352 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path, 3353 handle_t *handle, 3354 struct ocfs2_extent_tree *et, 3355 struct ocfs2_extent_rec *split_rec, 3356 int index) 3357 { 3358 int ret, next_free, i; 3359 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3360 struct ocfs2_extent_rec *left_rec; 3361 struct ocfs2_extent_rec *right_rec; 3362 struct ocfs2_extent_list *right_el; 3363 struct ocfs2_path *right_path = NULL; 3364 int subtree_index = 0; 3365 struct ocfs2_extent_list *el = path_leaf_el(left_path); 3366 struct buffer_head *bh = path_leaf_bh(left_path); 3367 struct buffer_head *root_bh = NULL; 3368 3369 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec)); 3370 left_rec = &el->l_recs[index]; 3371 3372 if (index == le16_to_cpu(el->l_next_free_rec) - 1 && 3373 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) { 3374 /* we meet with a cross extent block merge. */ 3375 ret = ocfs2_get_right_path(et, left_path, &right_path); 3376 if (ret) { 3377 mlog_errno(ret); 3378 goto out; 3379 } 3380 3381 right_el = path_leaf_el(right_path); 3382 next_free = le16_to_cpu(right_el->l_next_free_rec); 3383 BUG_ON(next_free <= 0); 3384 right_rec = &right_el->l_recs[0]; 3385 if (ocfs2_is_empty_extent(right_rec)) { 3386 BUG_ON(next_free <= 1); 3387 right_rec = &right_el->l_recs[1]; 3388 } 3389 3390 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3391 le16_to_cpu(left_rec->e_leaf_clusters) != 3392 le32_to_cpu(right_rec->e_cpos)); 3393 3394 subtree_index = ocfs2_find_subtree_root(et, left_path, 3395 right_path); 3396 3397 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3398 handle->h_buffer_credits, 3399 right_path); 3400 if (ret) { 3401 mlog_errno(ret); 3402 goto out; 3403 } 3404 3405 root_bh = left_path->p_node[subtree_index].bh; 3406 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3407 3408 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3409 subtree_index); 3410 if (ret) { 3411 mlog_errno(ret); 3412 goto out; 3413 } 3414 3415 for (i = subtree_index + 1; 3416 i < path_num_items(right_path); i++) { 3417 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3418 right_path, i); 3419 if (ret) { 3420 mlog_errno(ret); 3421 goto out; 3422 } 3423 3424 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3425 left_path, i); 3426 if (ret) { 3427 mlog_errno(ret); 3428 goto out; 3429 } 3430 } 3431 3432 } else { 3433 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1); 3434 right_rec = &el->l_recs[index + 1]; 3435 } 3436 3437 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path, 3438 path_num_items(left_path) - 1); 3439 if (ret) { 3440 mlog_errno(ret); 3441 goto out; 3442 } 3443 3444 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters); 3445 3446 le32_add_cpu(&right_rec->e_cpos, -split_clusters); 3447 le64_add_cpu(&right_rec->e_blkno, 3448 -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), 3449 split_clusters)); 3450 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters); 3451 3452 ocfs2_cleanup_merge(el, index); 3453 3454 ocfs2_journal_dirty(handle, bh); 3455 if (right_path) { 3456 ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 3457 ocfs2_complete_edge_insert(handle, left_path, right_path, 3458 subtree_index); 3459 } 3460 out: 3461 if (right_path) 3462 ocfs2_free_path(right_path); 3463 return ret; 3464 } 3465 3466 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et, 3467 struct ocfs2_path *right_path, 3468 struct ocfs2_path **ret_left_path) 3469 { 3470 int ret; 3471 u32 left_cpos; 3472 struct ocfs2_path *left_path = NULL; 3473 3474 *ret_left_path = NULL; 3475 3476 /* This function shouldn't be called for non-trees. */ 3477 BUG_ON(right_path->p_tree_depth == 0); 3478 3479 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3480 right_path, &left_cpos); 3481 if (ret) { 3482 mlog_errno(ret); 3483 goto out; 3484 } 3485 3486 /* This function shouldn't be called for the leftmost leaf. */ 3487 BUG_ON(left_cpos == 0); 3488 3489 left_path = ocfs2_new_path_from_path(right_path); 3490 if (!left_path) { 3491 ret = -ENOMEM; 3492 mlog_errno(ret); 3493 goto out; 3494 } 3495 3496 ret = ocfs2_find_path(et->et_ci, left_path, left_cpos); 3497 if (ret) { 3498 mlog_errno(ret); 3499 goto out; 3500 } 3501 3502 *ret_left_path = left_path; 3503 out: 3504 if (ret) 3505 ocfs2_free_path(left_path); 3506 return ret; 3507 } 3508 3509 /* 3510 * Remove split_rec clusters from the record at index and merge them 3511 * onto the tail of the record "before" it. 3512 * For index > 0, the "before" means the extent rec at index - 1. 3513 * 3514 * For index == 0, the "before" means the last record of the previous 3515 * extent block. And there is also a situation that we may need to 3516 * remove the rightmost leaf extent block in the right_path and change 3517 * the right path to indicate the new rightmost path. 3518 */ 3519 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path, 3520 handle_t *handle, 3521 struct ocfs2_extent_tree *et, 3522 struct ocfs2_extent_rec *split_rec, 3523 struct ocfs2_cached_dealloc_ctxt *dealloc, 3524 int index) 3525 { 3526 int ret, i, subtree_index = 0, has_empty_extent = 0; 3527 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3528 struct ocfs2_extent_rec *left_rec; 3529 struct ocfs2_extent_rec *right_rec; 3530 struct ocfs2_extent_list *el = path_leaf_el(right_path); 3531 struct buffer_head *bh = path_leaf_bh(right_path); 3532 struct buffer_head *root_bh = NULL; 3533 struct ocfs2_path *left_path = NULL; 3534 struct ocfs2_extent_list *left_el; 3535 3536 BUG_ON(index < 0); 3537 3538 right_rec = &el->l_recs[index]; 3539 if (index == 0) { 3540 /* we meet with a cross extent block merge. */ 3541 ret = ocfs2_get_left_path(et, right_path, &left_path); 3542 if (ret) { 3543 mlog_errno(ret); 3544 goto out; 3545 } 3546 3547 left_el = path_leaf_el(left_path); 3548 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) != 3549 le16_to_cpu(left_el->l_count)); 3550 3551 left_rec = &left_el->l_recs[ 3552 le16_to_cpu(left_el->l_next_free_rec) - 1]; 3553 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3554 le16_to_cpu(left_rec->e_leaf_clusters) != 3555 le32_to_cpu(split_rec->e_cpos)); 3556 3557 subtree_index = ocfs2_find_subtree_root(et, left_path, 3558 right_path); 3559 3560 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3561 handle->h_buffer_credits, 3562 left_path); 3563 if (ret) { 3564 mlog_errno(ret); 3565 goto out; 3566 } 3567 3568 root_bh = left_path->p_node[subtree_index].bh; 3569 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3570 3571 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3572 subtree_index); 3573 if (ret) { 3574 mlog_errno(ret); 3575 goto out; 3576 } 3577 3578 for (i = subtree_index + 1; 3579 i < path_num_items(right_path); i++) { 3580 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3581 right_path, i); 3582 if (ret) { 3583 mlog_errno(ret); 3584 goto out; 3585 } 3586 3587 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3588 left_path, i); 3589 if (ret) { 3590 mlog_errno(ret); 3591 goto out; 3592 } 3593 } 3594 } else { 3595 left_rec = &el->l_recs[index - 1]; 3596 if (ocfs2_is_empty_extent(&el->l_recs[0])) 3597 has_empty_extent = 1; 3598 } 3599 3600 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3601 path_num_items(right_path) - 1); 3602 if (ret) { 3603 mlog_errno(ret); 3604 goto out; 3605 } 3606 3607 if (has_empty_extent && index == 1) { 3608 /* 3609 * The easy case - we can just plop the record right in. 3610 */ 3611 *left_rec = *split_rec; 3612 3613 has_empty_extent = 0; 3614 } else 3615 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters); 3616 3617 le32_add_cpu(&right_rec->e_cpos, split_clusters); 3618 le64_add_cpu(&right_rec->e_blkno, 3619 ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), 3620 split_clusters)); 3621 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters); 3622 3623 ocfs2_cleanup_merge(el, index); 3624 3625 ocfs2_journal_dirty(handle, bh); 3626 if (left_path) { 3627 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 3628 3629 /* 3630 * In the situation that the right_rec is empty and the extent 3631 * block is empty also, ocfs2_complete_edge_insert can't handle 3632 * it and we need to delete the right extent block. 3633 */ 3634 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 && 3635 le16_to_cpu(el->l_next_free_rec) == 1) { 3636 3637 ret = ocfs2_remove_rightmost_path(handle, et, 3638 right_path, 3639 dealloc); 3640 if (ret) { 3641 mlog_errno(ret); 3642 goto out; 3643 } 3644 3645 /* Now the rightmost extent block has been deleted. 3646 * So we use the new rightmost path. 3647 */ 3648 ocfs2_mv_path(right_path, left_path); 3649 left_path = NULL; 3650 } else 3651 ocfs2_complete_edge_insert(handle, left_path, 3652 right_path, subtree_index); 3653 } 3654 out: 3655 if (left_path) 3656 ocfs2_free_path(left_path); 3657 return ret; 3658 } 3659 3660 static int ocfs2_try_to_merge_extent(handle_t *handle, 3661 struct ocfs2_extent_tree *et, 3662 struct ocfs2_path *path, 3663 int split_index, 3664 struct ocfs2_extent_rec *split_rec, 3665 struct ocfs2_cached_dealloc_ctxt *dealloc, 3666 struct ocfs2_merge_ctxt *ctxt) 3667 { 3668 int ret = 0; 3669 struct ocfs2_extent_list *el = path_leaf_el(path); 3670 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 3671 3672 BUG_ON(ctxt->c_contig_type == CONTIG_NONE); 3673 3674 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) { 3675 /* 3676 * The merge code will need to create an empty 3677 * extent to take the place of the newly 3678 * emptied slot. Remove any pre-existing empty 3679 * extents - having more than one in a leaf is 3680 * illegal. 3681 */ 3682 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3683 if (ret) { 3684 mlog_errno(ret); 3685 goto out; 3686 } 3687 split_index--; 3688 rec = &el->l_recs[split_index]; 3689 } 3690 3691 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) { 3692 /* 3693 * Left-right contig implies this. 3694 */ 3695 BUG_ON(!ctxt->c_split_covers_rec); 3696 3697 /* 3698 * Since the leftright insert always covers the entire 3699 * extent, this call will delete the insert record 3700 * entirely, resulting in an empty extent record added to 3701 * the extent block. 3702 * 3703 * Since the adding of an empty extent shifts 3704 * everything back to the right, there's no need to 3705 * update split_index here. 3706 * 3707 * When the split_index is zero, we need to merge it to the 3708 * prevoius extent block. It is more efficient and easier 3709 * if we do merge_right first and merge_left later. 3710 */ 3711 ret = ocfs2_merge_rec_right(path, handle, et, split_rec, 3712 split_index); 3713 if (ret) { 3714 mlog_errno(ret); 3715 goto out; 3716 } 3717 3718 /* 3719 * We can only get this from logic error above. 3720 */ 3721 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0])); 3722 3723 /* The merge left us with an empty extent, remove it. */ 3724 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3725 if (ret) { 3726 mlog_errno(ret); 3727 goto out; 3728 } 3729 3730 rec = &el->l_recs[split_index]; 3731 3732 /* 3733 * Note that we don't pass split_rec here on purpose - 3734 * we've merged it into the rec already. 3735 */ 3736 ret = ocfs2_merge_rec_left(path, handle, et, rec, 3737 dealloc, split_index); 3738 3739 if (ret) { 3740 mlog_errno(ret); 3741 goto out; 3742 } 3743 3744 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3745 /* 3746 * Error from this last rotate is not critical, so 3747 * print but don't bubble it up. 3748 */ 3749 if (ret) 3750 mlog_errno(ret); 3751 ret = 0; 3752 } else { 3753 /* 3754 * Merge a record to the left or right. 3755 * 3756 * 'contig_type' is relative to the existing record, 3757 * so for example, if we're "right contig", it's to 3758 * the record on the left (hence the left merge). 3759 */ 3760 if (ctxt->c_contig_type == CONTIG_RIGHT) { 3761 ret = ocfs2_merge_rec_left(path, handle, et, 3762 split_rec, dealloc, 3763 split_index); 3764 if (ret) { 3765 mlog_errno(ret); 3766 goto out; 3767 } 3768 } else { 3769 ret = ocfs2_merge_rec_right(path, handle, 3770 et, split_rec, 3771 split_index); 3772 if (ret) { 3773 mlog_errno(ret); 3774 goto out; 3775 } 3776 } 3777 3778 if (ctxt->c_split_covers_rec) { 3779 /* 3780 * The merge may have left an empty extent in 3781 * our leaf. Try to rotate it away. 3782 */ 3783 ret = ocfs2_rotate_tree_left(handle, et, path, 3784 dealloc); 3785 if (ret) 3786 mlog_errno(ret); 3787 ret = 0; 3788 } 3789 } 3790 3791 out: 3792 return ret; 3793 } 3794 3795 static void ocfs2_subtract_from_rec(struct super_block *sb, 3796 enum ocfs2_split_type split, 3797 struct ocfs2_extent_rec *rec, 3798 struct ocfs2_extent_rec *split_rec) 3799 { 3800 u64 len_blocks; 3801 3802 len_blocks = ocfs2_clusters_to_blocks(sb, 3803 le16_to_cpu(split_rec->e_leaf_clusters)); 3804 3805 if (split == SPLIT_LEFT) { 3806 /* 3807 * Region is on the left edge of the existing 3808 * record. 3809 */ 3810 le32_add_cpu(&rec->e_cpos, 3811 le16_to_cpu(split_rec->e_leaf_clusters)); 3812 le64_add_cpu(&rec->e_blkno, len_blocks); 3813 le16_add_cpu(&rec->e_leaf_clusters, 3814 -le16_to_cpu(split_rec->e_leaf_clusters)); 3815 } else { 3816 /* 3817 * Region is on the right edge of the existing 3818 * record. 3819 */ 3820 le16_add_cpu(&rec->e_leaf_clusters, 3821 -le16_to_cpu(split_rec->e_leaf_clusters)); 3822 } 3823 } 3824 3825 /* 3826 * Do the final bits of extent record insertion at the target leaf 3827 * list. If this leaf is part of an allocation tree, it is assumed 3828 * that the tree above has been prepared. 3829 */ 3830 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et, 3831 struct ocfs2_extent_rec *insert_rec, 3832 struct ocfs2_extent_list *el, 3833 struct ocfs2_insert_type *insert) 3834 { 3835 int i = insert->ins_contig_index; 3836 unsigned int range; 3837 struct ocfs2_extent_rec *rec; 3838 3839 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 3840 3841 if (insert->ins_split != SPLIT_NONE) { 3842 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos)); 3843 BUG_ON(i == -1); 3844 rec = &el->l_recs[i]; 3845 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci), 3846 insert->ins_split, rec, 3847 insert_rec); 3848 goto rotate; 3849 } 3850 3851 /* 3852 * Contiguous insert - either left or right. 3853 */ 3854 if (insert->ins_contig != CONTIG_NONE) { 3855 rec = &el->l_recs[i]; 3856 if (insert->ins_contig == CONTIG_LEFT) { 3857 rec->e_blkno = insert_rec->e_blkno; 3858 rec->e_cpos = insert_rec->e_cpos; 3859 } 3860 le16_add_cpu(&rec->e_leaf_clusters, 3861 le16_to_cpu(insert_rec->e_leaf_clusters)); 3862 return; 3863 } 3864 3865 /* 3866 * Handle insert into an empty leaf. 3867 */ 3868 if (le16_to_cpu(el->l_next_free_rec) == 0 || 3869 ((le16_to_cpu(el->l_next_free_rec) == 1) && 3870 ocfs2_is_empty_extent(&el->l_recs[0]))) { 3871 el->l_recs[0] = *insert_rec; 3872 el->l_next_free_rec = cpu_to_le16(1); 3873 return; 3874 } 3875 3876 /* 3877 * Appending insert. 3878 */ 3879 if (insert->ins_appending == APPEND_TAIL) { 3880 i = le16_to_cpu(el->l_next_free_rec) - 1; 3881 rec = &el->l_recs[i]; 3882 range = le32_to_cpu(rec->e_cpos) 3883 + le16_to_cpu(rec->e_leaf_clusters); 3884 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range); 3885 3886 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >= 3887 le16_to_cpu(el->l_count), 3888 "owner %llu, depth %u, count %u, next free %u, " 3889 "rec.cpos %u, rec.clusters %u, " 3890 "insert.cpos %u, insert.clusters %u\n", 3891 ocfs2_metadata_cache_owner(et->et_ci), 3892 le16_to_cpu(el->l_tree_depth), 3893 le16_to_cpu(el->l_count), 3894 le16_to_cpu(el->l_next_free_rec), 3895 le32_to_cpu(el->l_recs[i].e_cpos), 3896 le16_to_cpu(el->l_recs[i].e_leaf_clusters), 3897 le32_to_cpu(insert_rec->e_cpos), 3898 le16_to_cpu(insert_rec->e_leaf_clusters)); 3899 i++; 3900 el->l_recs[i] = *insert_rec; 3901 le16_add_cpu(&el->l_next_free_rec, 1); 3902 return; 3903 } 3904 3905 rotate: 3906 /* 3907 * Ok, we have to rotate. 3908 * 3909 * At this point, it is safe to assume that inserting into an 3910 * empty leaf and appending to a leaf have both been handled 3911 * above. 3912 * 3913 * This leaf needs to have space, either by the empty 1st 3914 * extent record, or by virtue of an l_next_rec < l_count. 3915 */ 3916 ocfs2_rotate_leaf(el, insert_rec); 3917 } 3918 3919 static void ocfs2_adjust_rightmost_records(handle_t *handle, 3920 struct ocfs2_extent_tree *et, 3921 struct ocfs2_path *path, 3922 struct ocfs2_extent_rec *insert_rec) 3923 { 3924 int ret, i, next_free; 3925 struct buffer_head *bh; 3926 struct ocfs2_extent_list *el; 3927 struct ocfs2_extent_rec *rec; 3928 3929 /* 3930 * Update everything except the leaf block. 3931 */ 3932 for (i = 0; i < path->p_tree_depth; i++) { 3933 bh = path->p_node[i].bh; 3934 el = path->p_node[i].el; 3935 3936 next_free = le16_to_cpu(el->l_next_free_rec); 3937 if (next_free == 0) { 3938 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 3939 "Owner %llu has a bad extent list", 3940 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 3941 ret = -EIO; 3942 return; 3943 } 3944 3945 rec = &el->l_recs[next_free - 1]; 3946 3947 rec->e_int_clusters = insert_rec->e_cpos; 3948 le32_add_cpu(&rec->e_int_clusters, 3949 le16_to_cpu(insert_rec->e_leaf_clusters)); 3950 le32_add_cpu(&rec->e_int_clusters, 3951 -le32_to_cpu(rec->e_cpos)); 3952 3953 ocfs2_journal_dirty(handle, bh); 3954 } 3955 } 3956 3957 static int ocfs2_append_rec_to_path(handle_t *handle, 3958 struct ocfs2_extent_tree *et, 3959 struct ocfs2_extent_rec *insert_rec, 3960 struct ocfs2_path *right_path, 3961 struct ocfs2_path **ret_left_path) 3962 { 3963 int ret, next_free; 3964 struct ocfs2_extent_list *el; 3965 struct ocfs2_path *left_path = NULL; 3966 3967 *ret_left_path = NULL; 3968 3969 /* 3970 * This shouldn't happen for non-trees. The extent rec cluster 3971 * count manipulation below only works for interior nodes. 3972 */ 3973 BUG_ON(right_path->p_tree_depth == 0); 3974 3975 /* 3976 * If our appending insert is at the leftmost edge of a leaf, 3977 * then we might need to update the rightmost records of the 3978 * neighboring path. 3979 */ 3980 el = path_leaf_el(right_path); 3981 next_free = le16_to_cpu(el->l_next_free_rec); 3982 if (next_free == 0 || 3983 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) { 3984 u32 left_cpos; 3985 3986 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3987 right_path, &left_cpos); 3988 if (ret) { 3989 mlog_errno(ret); 3990 goto out; 3991 } 3992 3993 mlog(0, "Append may need a left path update. cpos: %u, " 3994 "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos), 3995 left_cpos); 3996 3997 /* 3998 * No need to worry if the append is already in the 3999 * leftmost leaf. 4000 */ 4001 if (left_cpos) { 4002 left_path = ocfs2_new_path_from_path(right_path); 4003 if (!left_path) { 4004 ret = -ENOMEM; 4005 mlog_errno(ret); 4006 goto out; 4007 } 4008 4009 ret = ocfs2_find_path(et->et_ci, left_path, 4010 left_cpos); 4011 if (ret) { 4012 mlog_errno(ret); 4013 goto out; 4014 } 4015 4016 /* 4017 * ocfs2_insert_path() will pass the left_path to the 4018 * journal for us. 4019 */ 4020 } 4021 } 4022 4023 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path); 4024 if (ret) { 4025 mlog_errno(ret); 4026 goto out; 4027 } 4028 4029 ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec); 4030 4031 *ret_left_path = left_path; 4032 ret = 0; 4033 out: 4034 if (ret != 0) 4035 ocfs2_free_path(left_path); 4036 4037 return ret; 4038 } 4039 4040 static void ocfs2_split_record(struct ocfs2_extent_tree *et, 4041 struct ocfs2_path *left_path, 4042 struct ocfs2_path *right_path, 4043 struct ocfs2_extent_rec *split_rec, 4044 enum ocfs2_split_type split) 4045 { 4046 int index; 4047 u32 cpos = le32_to_cpu(split_rec->e_cpos); 4048 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el; 4049 struct ocfs2_extent_rec *rec, *tmprec; 4050 4051 right_el = path_leaf_el(right_path); 4052 if (left_path) 4053 left_el = path_leaf_el(left_path); 4054 4055 el = right_el; 4056 insert_el = right_el; 4057 index = ocfs2_search_extent_list(el, cpos); 4058 if (index != -1) { 4059 if (index == 0 && left_path) { 4060 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 4061 4062 /* 4063 * This typically means that the record 4064 * started in the left path but moved to the 4065 * right as a result of rotation. We either 4066 * move the existing record to the left, or we 4067 * do the later insert there. 4068 * 4069 * In this case, the left path should always 4070 * exist as the rotate code will have passed 4071 * it back for a post-insert update. 4072 */ 4073 4074 if (split == SPLIT_LEFT) { 4075 /* 4076 * It's a left split. Since we know 4077 * that the rotate code gave us an 4078 * empty extent in the left path, we 4079 * can just do the insert there. 4080 */ 4081 insert_el = left_el; 4082 } else { 4083 /* 4084 * Right split - we have to move the 4085 * existing record over to the left 4086 * leaf. The insert will be into the 4087 * newly created empty extent in the 4088 * right leaf. 4089 */ 4090 tmprec = &right_el->l_recs[index]; 4091 ocfs2_rotate_leaf(left_el, tmprec); 4092 el = left_el; 4093 4094 memset(tmprec, 0, sizeof(*tmprec)); 4095 index = ocfs2_search_extent_list(left_el, cpos); 4096 BUG_ON(index == -1); 4097 } 4098 } 4099 } else { 4100 BUG_ON(!left_path); 4101 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0])); 4102 /* 4103 * Left path is easy - we can just allow the insert to 4104 * happen. 4105 */ 4106 el = left_el; 4107 insert_el = left_el; 4108 index = ocfs2_search_extent_list(el, cpos); 4109 BUG_ON(index == -1); 4110 } 4111 4112 rec = &el->l_recs[index]; 4113 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci), 4114 split, rec, split_rec); 4115 ocfs2_rotate_leaf(insert_el, split_rec); 4116 } 4117 4118 /* 4119 * This function only does inserts on an allocation b-tree. For tree 4120 * depth = 0, ocfs2_insert_at_leaf() is called directly. 4121 * 4122 * right_path is the path we want to do the actual insert 4123 * in. left_path should only be passed in if we need to update that 4124 * portion of the tree after an edge insert. 4125 */ 4126 static int ocfs2_insert_path(handle_t *handle, 4127 struct ocfs2_extent_tree *et, 4128 struct ocfs2_path *left_path, 4129 struct ocfs2_path *right_path, 4130 struct ocfs2_extent_rec *insert_rec, 4131 struct ocfs2_insert_type *insert) 4132 { 4133 int ret, subtree_index; 4134 struct buffer_head *leaf_bh = path_leaf_bh(right_path); 4135 4136 if (left_path) { 4137 /* 4138 * There's a chance that left_path got passed back to 4139 * us without being accounted for in the 4140 * journal. Extend our transaction here to be sure we 4141 * can change those blocks. 4142 */ 4143 ret = ocfs2_extend_trans(handle, left_path->p_tree_depth); 4144 if (ret < 0) { 4145 mlog_errno(ret); 4146 goto out; 4147 } 4148 4149 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 4150 if (ret < 0) { 4151 mlog_errno(ret); 4152 goto out; 4153 } 4154 } 4155 4156 /* 4157 * Pass both paths to the journal. The majority of inserts 4158 * will be touching all components anyway. 4159 */ 4160 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path); 4161 if (ret < 0) { 4162 mlog_errno(ret); 4163 goto out; 4164 } 4165 4166 if (insert->ins_split != SPLIT_NONE) { 4167 /* 4168 * We could call ocfs2_insert_at_leaf() for some types 4169 * of splits, but it's easier to just let one separate 4170 * function sort it all out. 4171 */ 4172 ocfs2_split_record(et, left_path, right_path, 4173 insert_rec, insert->ins_split); 4174 4175 /* 4176 * Split might have modified either leaf and we don't 4177 * have a guarantee that the later edge insert will 4178 * dirty this for us. 4179 */ 4180 if (left_path) 4181 ocfs2_journal_dirty(handle, 4182 path_leaf_bh(left_path)); 4183 } else 4184 ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path), 4185 insert); 4186 4187 ocfs2_journal_dirty(handle, leaf_bh); 4188 4189 if (left_path) { 4190 /* 4191 * The rotate code has indicated that we need to fix 4192 * up portions of the tree after the insert. 4193 * 4194 * XXX: Should we extend the transaction here? 4195 */ 4196 subtree_index = ocfs2_find_subtree_root(et, left_path, 4197 right_path); 4198 ocfs2_complete_edge_insert(handle, left_path, right_path, 4199 subtree_index); 4200 } 4201 4202 ret = 0; 4203 out: 4204 return ret; 4205 } 4206 4207 static int ocfs2_do_insert_extent(handle_t *handle, 4208 struct ocfs2_extent_tree *et, 4209 struct ocfs2_extent_rec *insert_rec, 4210 struct ocfs2_insert_type *type) 4211 { 4212 int ret, rotate = 0; 4213 u32 cpos; 4214 struct ocfs2_path *right_path = NULL; 4215 struct ocfs2_path *left_path = NULL; 4216 struct ocfs2_extent_list *el; 4217 4218 el = et->et_root_el; 4219 4220 ret = ocfs2_et_root_journal_access(handle, et, 4221 OCFS2_JOURNAL_ACCESS_WRITE); 4222 if (ret) { 4223 mlog_errno(ret); 4224 goto out; 4225 } 4226 4227 if (le16_to_cpu(el->l_tree_depth) == 0) { 4228 ocfs2_insert_at_leaf(et, insert_rec, el, type); 4229 goto out_update_clusters; 4230 } 4231 4232 right_path = ocfs2_new_path_from_et(et); 4233 if (!right_path) { 4234 ret = -ENOMEM; 4235 mlog_errno(ret); 4236 goto out; 4237 } 4238 4239 /* 4240 * Determine the path to start with. Rotations need the 4241 * rightmost path, everything else can go directly to the 4242 * target leaf. 4243 */ 4244 cpos = le32_to_cpu(insert_rec->e_cpos); 4245 if (type->ins_appending == APPEND_NONE && 4246 type->ins_contig == CONTIG_NONE) { 4247 rotate = 1; 4248 cpos = UINT_MAX; 4249 } 4250 4251 ret = ocfs2_find_path(et->et_ci, right_path, cpos); 4252 if (ret) { 4253 mlog_errno(ret); 4254 goto out; 4255 } 4256 4257 /* 4258 * Rotations and appends need special treatment - they modify 4259 * parts of the tree's above them. 4260 * 4261 * Both might pass back a path immediate to the left of the 4262 * one being inserted to. This will be cause 4263 * ocfs2_insert_path() to modify the rightmost records of 4264 * left_path to account for an edge insert. 4265 * 4266 * XXX: When modifying this code, keep in mind that an insert 4267 * can wind up skipping both of these two special cases... 4268 */ 4269 if (rotate) { 4270 ret = ocfs2_rotate_tree_right(handle, et, type->ins_split, 4271 le32_to_cpu(insert_rec->e_cpos), 4272 right_path, &left_path); 4273 if (ret) { 4274 mlog_errno(ret); 4275 goto out; 4276 } 4277 4278 /* 4279 * ocfs2_rotate_tree_right() might have extended the 4280 * transaction without re-journaling our tree root. 4281 */ 4282 ret = ocfs2_et_root_journal_access(handle, et, 4283 OCFS2_JOURNAL_ACCESS_WRITE); 4284 if (ret) { 4285 mlog_errno(ret); 4286 goto out; 4287 } 4288 } else if (type->ins_appending == APPEND_TAIL 4289 && type->ins_contig != CONTIG_LEFT) { 4290 ret = ocfs2_append_rec_to_path(handle, et, insert_rec, 4291 right_path, &left_path); 4292 if (ret) { 4293 mlog_errno(ret); 4294 goto out; 4295 } 4296 } 4297 4298 ret = ocfs2_insert_path(handle, et, left_path, right_path, 4299 insert_rec, type); 4300 if (ret) { 4301 mlog_errno(ret); 4302 goto out; 4303 } 4304 4305 out_update_clusters: 4306 if (type->ins_split == SPLIT_NONE) 4307 ocfs2_et_update_clusters(et, 4308 le16_to_cpu(insert_rec->e_leaf_clusters)); 4309 4310 ocfs2_journal_dirty(handle, et->et_root_bh); 4311 4312 out: 4313 ocfs2_free_path(left_path); 4314 ocfs2_free_path(right_path); 4315 4316 return ret; 4317 } 4318 4319 static enum ocfs2_contig_type 4320 ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et, 4321 struct ocfs2_path *path, 4322 struct ocfs2_extent_list *el, int index, 4323 struct ocfs2_extent_rec *split_rec) 4324 { 4325 int status; 4326 enum ocfs2_contig_type ret = CONTIG_NONE; 4327 u32 left_cpos, right_cpos; 4328 struct ocfs2_extent_rec *rec = NULL; 4329 struct ocfs2_extent_list *new_el; 4330 struct ocfs2_path *left_path = NULL, *right_path = NULL; 4331 struct buffer_head *bh; 4332 struct ocfs2_extent_block *eb; 4333 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 4334 4335 if (index > 0) { 4336 rec = &el->l_recs[index - 1]; 4337 } else if (path->p_tree_depth > 0) { 4338 status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos); 4339 if (status) 4340 goto out; 4341 4342 if (left_cpos != 0) { 4343 left_path = ocfs2_new_path_from_path(path); 4344 if (!left_path) 4345 goto out; 4346 4347 status = ocfs2_find_path(et->et_ci, left_path, 4348 left_cpos); 4349 if (status) 4350 goto out; 4351 4352 new_el = path_leaf_el(left_path); 4353 4354 if (le16_to_cpu(new_el->l_next_free_rec) != 4355 le16_to_cpu(new_el->l_count)) { 4356 bh = path_leaf_bh(left_path); 4357 eb = (struct ocfs2_extent_block *)bh->b_data; 4358 ocfs2_error(sb, 4359 "Extent block #%llu has an " 4360 "invalid l_next_free_rec of " 4361 "%d. It should have " 4362 "matched the l_count of %d", 4363 (unsigned long long)le64_to_cpu(eb->h_blkno), 4364 le16_to_cpu(new_el->l_next_free_rec), 4365 le16_to_cpu(new_el->l_count)); 4366 status = -EINVAL; 4367 goto out; 4368 } 4369 rec = &new_el->l_recs[ 4370 le16_to_cpu(new_el->l_next_free_rec) - 1]; 4371 } 4372 } 4373 4374 /* 4375 * We're careful to check for an empty extent record here - 4376 * the merge code will know what to do if it sees one. 4377 */ 4378 if (rec) { 4379 if (index == 1 && ocfs2_is_empty_extent(rec)) { 4380 if (split_rec->e_cpos == el->l_recs[index].e_cpos) 4381 ret = CONTIG_RIGHT; 4382 } else { 4383 ret = ocfs2_et_extent_contig(et, rec, split_rec); 4384 } 4385 } 4386 4387 rec = NULL; 4388 if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) 4389 rec = &el->l_recs[index + 1]; 4390 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) && 4391 path->p_tree_depth > 0) { 4392 status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos); 4393 if (status) 4394 goto out; 4395 4396 if (right_cpos == 0) 4397 goto out; 4398 4399 right_path = ocfs2_new_path_from_path(path); 4400 if (!right_path) 4401 goto out; 4402 4403 status = ocfs2_find_path(et->et_ci, right_path, right_cpos); 4404 if (status) 4405 goto out; 4406 4407 new_el = path_leaf_el(right_path); 4408 rec = &new_el->l_recs[0]; 4409 if (ocfs2_is_empty_extent(rec)) { 4410 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) { 4411 bh = path_leaf_bh(right_path); 4412 eb = (struct ocfs2_extent_block *)bh->b_data; 4413 ocfs2_error(sb, 4414 "Extent block #%llu has an " 4415 "invalid l_next_free_rec of %d", 4416 (unsigned long long)le64_to_cpu(eb->h_blkno), 4417 le16_to_cpu(new_el->l_next_free_rec)); 4418 status = -EINVAL; 4419 goto out; 4420 } 4421 rec = &new_el->l_recs[1]; 4422 } 4423 } 4424 4425 if (rec) { 4426 enum ocfs2_contig_type contig_type; 4427 4428 contig_type = ocfs2_et_extent_contig(et, rec, split_rec); 4429 4430 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT) 4431 ret = CONTIG_LEFTRIGHT; 4432 else if (ret == CONTIG_NONE) 4433 ret = contig_type; 4434 } 4435 4436 out: 4437 if (left_path) 4438 ocfs2_free_path(left_path); 4439 if (right_path) 4440 ocfs2_free_path(right_path); 4441 4442 return ret; 4443 } 4444 4445 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et, 4446 struct ocfs2_insert_type *insert, 4447 struct ocfs2_extent_list *el, 4448 struct ocfs2_extent_rec *insert_rec) 4449 { 4450 int i; 4451 enum ocfs2_contig_type contig_type = CONTIG_NONE; 4452 4453 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4454 4455 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 4456 contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i], 4457 insert_rec); 4458 if (contig_type != CONTIG_NONE) { 4459 insert->ins_contig_index = i; 4460 break; 4461 } 4462 } 4463 insert->ins_contig = contig_type; 4464 4465 if (insert->ins_contig != CONTIG_NONE) { 4466 struct ocfs2_extent_rec *rec = 4467 &el->l_recs[insert->ins_contig_index]; 4468 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) + 4469 le16_to_cpu(insert_rec->e_leaf_clusters); 4470 4471 /* 4472 * Caller might want us to limit the size of extents, don't 4473 * calculate contiguousness if we might exceed that limit. 4474 */ 4475 if (et->et_max_leaf_clusters && 4476 (len > et->et_max_leaf_clusters)) 4477 insert->ins_contig = CONTIG_NONE; 4478 } 4479 } 4480 4481 /* 4482 * This should only be called against the righmost leaf extent list. 4483 * 4484 * ocfs2_figure_appending_type() will figure out whether we'll have to 4485 * insert at the tail of the rightmost leaf. 4486 * 4487 * This should also work against the root extent list for tree's with 0 4488 * depth. If we consider the root extent list to be the rightmost leaf node 4489 * then the logic here makes sense. 4490 */ 4491 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert, 4492 struct ocfs2_extent_list *el, 4493 struct ocfs2_extent_rec *insert_rec) 4494 { 4495 int i; 4496 u32 cpos = le32_to_cpu(insert_rec->e_cpos); 4497 struct ocfs2_extent_rec *rec; 4498 4499 insert->ins_appending = APPEND_NONE; 4500 4501 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4502 4503 if (!el->l_next_free_rec) 4504 goto set_tail_append; 4505 4506 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 4507 /* Were all records empty? */ 4508 if (le16_to_cpu(el->l_next_free_rec) == 1) 4509 goto set_tail_append; 4510 } 4511 4512 i = le16_to_cpu(el->l_next_free_rec) - 1; 4513 rec = &el->l_recs[i]; 4514 4515 if (cpos >= 4516 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters))) 4517 goto set_tail_append; 4518 4519 return; 4520 4521 set_tail_append: 4522 insert->ins_appending = APPEND_TAIL; 4523 } 4524 4525 /* 4526 * Helper function called at the begining of an insert. 4527 * 4528 * This computes a few things that are commonly used in the process of 4529 * inserting into the btree: 4530 * - Whether the new extent is contiguous with an existing one. 4531 * - The current tree depth. 4532 * - Whether the insert is an appending one. 4533 * - The total # of free records in the tree. 4534 * 4535 * All of the information is stored on the ocfs2_insert_type 4536 * structure. 4537 */ 4538 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et, 4539 struct buffer_head **last_eb_bh, 4540 struct ocfs2_extent_rec *insert_rec, 4541 int *free_records, 4542 struct ocfs2_insert_type *insert) 4543 { 4544 int ret; 4545 struct ocfs2_extent_block *eb; 4546 struct ocfs2_extent_list *el; 4547 struct ocfs2_path *path = NULL; 4548 struct buffer_head *bh = NULL; 4549 4550 insert->ins_split = SPLIT_NONE; 4551 4552 el = et->et_root_el; 4553 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth); 4554 4555 if (el->l_tree_depth) { 4556 /* 4557 * If we have tree depth, we read in the 4558 * rightmost extent block ahead of time as 4559 * ocfs2_figure_insert_type() and ocfs2_add_branch() 4560 * may want it later. 4561 */ 4562 ret = ocfs2_read_extent_block(et->et_ci, 4563 ocfs2_et_get_last_eb_blk(et), 4564 &bh); 4565 if (ret) { 4566 mlog_exit(ret); 4567 goto out; 4568 } 4569 eb = (struct ocfs2_extent_block *) bh->b_data; 4570 el = &eb->h_list; 4571 } 4572 4573 /* 4574 * Unless we have a contiguous insert, we'll need to know if 4575 * there is room left in our allocation tree for another 4576 * extent record. 4577 * 4578 * XXX: This test is simplistic, we can search for empty 4579 * extent records too. 4580 */ 4581 *free_records = le16_to_cpu(el->l_count) - 4582 le16_to_cpu(el->l_next_free_rec); 4583 4584 if (!insert->ins_tree_depth) { 4585 ocfs2_figure_contig_type(et, insert, el, insert_rec); 4586 ocfs2_figure_appending_type(insert, el, insert_rec); 4587 return 0; 4588 } 4589 4590 path = ocfs2_new_path_from_et(et); 4591 if (!path) { 4592 ret = -ENOMEM; 4593 mlog_errno(ret); 4594 goto out; 4595 } 4596 4597 /* 4598 * In the case that we're inserting past what the tree 4599 * currently accounts for, ocfs2_find_path() will return for 4600 * us the rightmost tree path. This is accounted for below in 4601 * the appending code. 4602 */ 4603 ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos)); 4604 if (ret) { 4605 mlog_errno(ret); 4606 goto out; 4607 } 4608 4609 el = path_leaf_el(path); 4610 4611 /* 4612 * Now that we have the path, there's two things we want to determine: 4613 * 1) Contiguousness (also set contig_index if this is so) 4614 * 4615 * 2) Are we doing an append? We can trivially break this up 4616 * into two types of appends: simple record append, or a 4617 * rotate inside the tail leaf. 4618 */ 4619 ocfs2_figure_contig_type(et, insert, el, insert_rec); 4620 4621 /* 4622 * The insert code isn't quite ready to deal with all cases of 4623 * left contiguousness. Specifically, if it's an insert into 4624 * the 1st record in a leaf, it will require the adjustment of 4625 * cluster count on the last record of the path directly to it's 4626 * left. For now, just catch that case and fool the layers 4627 * above us. This works just fine for tree_depth == 0, which 4628 * is why we allow that above. 4629 */ 4630 if (insert->ins_contig == CONTIG_LEFT && 4631 insert->ins_contig_index == 0) 4632 insert->ins_contig = CONTIG_NONE; 4633 4634 /* 4635 * Ok, so we can simply compare against last_eb to figure out 4636 * whether the path doesn't exist. This will only happen in 4637 * the case that we're doing a tail append, so maybe we can 4638 * take advantage of that information somehow. 4639 */ 4640 if (ocfs2_et_get_last_eb_blk(et) == 4641 path_leaf_bh(path)->b_blocknr) { 4642 /* 4643 * Ok, ocfs2_find_path() returned us the rightmost 4644 * tree path. This might be an appending insert. There are 4645 * two cases: 4646 * 1) We're doing a true append at the tail: 4647 * -This might even be off the end of the leaf 4648 * 2) We're "appending" by rotating in the tail 4649 */ 4650 ocfs2_figure_appending_type(insert, el, insert_rec); 4651 } 4652 4653 out: 4654 ocfs2_free_path(path); 4655 4656 if (ret == 0) 4657 *last_eb_bh = bh; 4658 else 4659 brelse(bh); 4660 return ret; 4661 } 4662 4663 /* 4664 * Insert an extent into a btree. 4665 * 4666 * The caller needs to update the owning btree's cluster count. 4667 */ 4668 int ocfs2_insert_extent(handle_t *handle, 4669 struct ocfs2_extent_tree *et, 4670 u32 cpos, 4671 u64 start_blk, 4672 u32 new_clusters, 4673 u8 flags, 4674 struct ocfs2_alloc_context *meta_ac) 4675 { 4676 int status; 4677 int uninitialized_var(free_records); 4678 struct buffer_head *last_eb_bh = NULL; 4679 struct ocfs2_insert_type insert = {0, }; 4680 struct ocfs2_extent_rec rec; 4681 4682 mlog(0, "add %u clusters at position %u to owner %llu\n", 4683 new_clusters, cpos, 4684 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 4685 4686 memset(&rec, 0, sizeof(rec)); 4687 rec.e_cpos = cpu_to_le32(cpos); 4688 rec.e_blkno = cpu_to_le64(start_blk); 4689 rec.e_leaf_clusters = cpu_to_le16(new_clusters); 4690 rec.e_flags = flags; 4691 status = ocfs2_et_insert_check(et, &rec); 4692 if (status) { 4693 mlog_errno(status); 4694 goto bail; 4695 } 4696 4697 status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec, 4698 &free_records, &insert); 4699 if (status < 0) { 4700 mlog_errno(status); 4701 goto bail; 4702 } 4703 4704 mlog(0, "Insert.appending: %u, Insert.Contig: %u, " 4705 "Insert.contig_index: %d, Insert.free_records: %d, " 4706 "Insert.tree_depth: %d\n", 4707 insert.ins_appending, insert.ins_contig, insert.ins_contig_index, 4708 free_records, insert.ins_tree_depth); 4709 4710 if (insert.ins_contig == CONTIG_NONE && free_records == 0) { 4711 status = ocfs2_grow_tree(handle, et, 4712 &insert.ins_tree_depth, &last_eb_bh, 4713 meta_ac); 4714 if (status) { 4715 mlog_errno(status); 4716 goto bail; 4717 } 4718 } 4719 4720 /* Finally, we can add clusters. This might rotate the tree for us. */ 4721 status = ocfs2_do_insert_extent(handle, et, &rec, &insert); 4722 if (status < 0) 4723 mlog_errno(status); 4724 else 4725 ocfs2_et_extent_map_insert(et, &rec); 4726 4727 bail: 4728 brelse(last_eb_bh); 4729 4730 mlog_exit(status); 4731 return status; 4732 } 4733 4734 /* 4735 * Allcate and add clusters into the extent b-tree. 4736 * The new clusters(clusters_to_add) will be inserted at logical_offset. 4737 * The extent b-tree's root is specified by et, and 4738 * it is not limited to the file storage. Any extent tree can use this 4739 * function if it implements the proper ocfs2_extent_tree. 4740 */ 4741 int ocfs2_add_clusters_in_btree(handle_t *handle, 4742 struct ocfs2_extent_tree *et, 4743 u32 *logical_offset, 4744 u32 clusters_to_add, 4745 int mark_unwritten, 4746 struct ocfs2_alloc_context *data_ac, 4747 struct ocfs2_alloc_context *meta_ac, 4748 enum ocfs2_alloc_restarted *reason_ret) 4749 { 4750 int status = 0; 4751 int free_extents; 4752 enum ocfs2_alloc_restarted reason = RESTART_NONE; 4753 u32 bit_off, num_bits; 4754 u64 block; 4755 u8 flags = 0; 4756 struct ocfs2_super *osb = 4757 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 4758 4759 BUG_ON(!clusters_to_add); 4760 4761 if (mark_unwritten) 4762 flags = OCFS2_EXT_UNWRITTEN; 4763 4764 free_extents = ocfs2_num_free_extents(osb, et); 4765 if (free_extents < 0) { 4766 status = free_extents; 4767 mlog_errno(status); 4768 goto leave; 4769 } 4770 4771 /* there are two cases which could cause us to EAGAIN in the 4772 * we-need-more-metadata case: 4773 * 1) we haven't reserved *any* 4774 * 2) we are so fragmented, we've needed to add metadata too 4775 * many times. */ 4776 if (!free_extents && !meta_ac) { 4777 mlog(0, "we haven't reserved any metadata!\n"); 4778 status = -EAGAIN; 4779 reason = RESTART_META; 4780 goto leave; 4781 } else if ((!free_extents) 4782 && (ocfs2_alloc_context_bits_left(meta_ac) 4783 < ocfs2_extend_meta_needed(et->et_root_el))) { 4784 mlog(0, "filesystem is really fragmented...\n"); 4785 status = -EAGAIN; 4786 reason = RESTART_META; 4787 goto leave; 4788 } 4789 4790 status = __ocfs2_claim_clusters(handle, data_ac, 1, 4791 clusters_to_add, &bit_off, &num_bits); 4792 if (status < 0) { 4793 if (status != -ENOSPC) 4794 mlog_errno(status); 4795 goto leave; 4796 } 4797 4798 BUG_ON(num_bits > clusters_to_add); 4799 4800 /* reserve our write early -- insert_extent may update the tree root */ 4801 status = ocfs2_et_root_journal_access(handle, et, 4802 OCFS2_JOURNAL_ACCESS_WRITE); 4803 if (status < 0) { 4804 mlog_errno(status); 4805 goto leave; 4806 } 4807 4808 block = ocfs2_clusters_to_blocks(osb->sb, bit_off); 4809 mlog(0, "Allocating %u clusters at block %u for owner %llu\n", 4810 num_bits, bit_off, 4811 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 4812 status = ocfs2_insert_extent(handle, et, *logical_offset, block, 4813 num_bits, flags, meta_ac); 4814 if (status < 0) { 4815 mlog_errno(status); 4816 goto leave; 4817 } 4818 4819 ocfs2_journal_dirty(handle, et->et_root_bh); 4820 4821 clusters_to_add -= num_bits; 4822 *logical_offset += num_bits; 4823 4824 if (clusters_to_add) { 4825 mlog(0, "need to alloc once more, wanted = %u\n", 4826 clusters_to_add); 4827 status = -EAGAIN; 4828 reason = RESTART_TRANS; 4829 } 4830 4831 leave: 4832 mlog_exit(status); 4833 if (reason_ret) 4834 *reason_ret = reason; 4835 return status; 4836 } 4837 4838 static void ocfs2_make_right_split_rec(struct super_block *sb, 4839 struct ocfs2_extent_rec *split_rec, 4840 u32 cpos, 4841 struct ocfs2_extent_rec *rec) 4842 { 4843 u32 rec_cpos = le32_to_cpu(rec->e_cpos); 4844 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters); 4845 4846 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec)); 4847 4848 split_rec->e_cpos = cpu_to_le32(cpos); 4849 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos); 4850 4851 split_rec->e_blkno = rec->e_blkno; 4852 le64_add_cpu(&split_rec->e_blkno, 4853 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos)); 4854 4855 split_rec->e_flags = rec->e_flags; 4856 } 4857 4858 static int ocfs2_split_and_insert(handle_t *handle, 4859 struct ocfs2_extent_tree *et, 4860 struct ocfs2_path *path, 4861 struct buffer_head **last_eb_bh, 4862 int split_index, 4863 struct ocfs2_extent_rec *orig_split_rec, 4864 struct ocfs2_alloc_context *meta_ac) 4865 { 4866 int ret = 0, depth; 4867 unsigned int insert_range, rec_range, do_leftright = 0; 4868 struct ocfs2_extent_rec tmprec; 4869 struct ocfs2_extent_list *rightmost_el; 4870 struct ocfs2_extent_rec rec; 4871 struct ocfs2_extent_rec split_rec = *orig_split_rec; 4872 struct ocfs2_insert_type insert; 4873 struct ocfs2_extent_block *eb; 4874 4875 leftright: 4876 /* 4877 * Store a copy of the record on the stack - it might move 4878 * around as the tree is manipulated below. 4879 */ 4880 rec = path_leaf_el(path)->l_recs[split_index]; 4881 4882 rightmost_el = et->et_root_el; 4883 4884 depth = le16_to_cpu(rightmost_el->l_tree_depth); 4885 if (depth) { 4886 BUG_ON(!(*last_eb_bh)); 4887 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 4888 rightmost_el = &eb->h_list; 4889 } 4890 4891 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 4892 le16_to_cpu(rightmost_el->l_count)) { 4893 ret = ocfs2_grow_tree(handle, et, 4894 &depth, last_eb_bh, meta_ac); 4895 if (ret) { 4896 mlog_errno(ret); 4897 goto out; 4898 } 4899 } 4900 4901 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 4902 insert.ins_appending = APPEND_NONE; 4903 insert.ins_contig = CONTIG_NONE; 4904 insert.ins_tree_depth = depth; 4905 4906 insert_range = le32_to_cpu(split_rec.e_cpos) + 4907 le16_to_cpu(split_rec.e_leaf_clusters); 4908 rec_range = le32_to_cpu(rec.e_cpos) + 4909 le16_to_cpu(rec.e_leaf_clusters); 4910 4911 if (split_rec.e_cpos == rec.e_cpos) { 4912 insert.ins_split = SPLIT_LEFT; 4913 } else if (insert_range == rec_range) { 4914 insert.ins_split = SPLIT_RIGHT; 4915 } else { 4916 /* 4917 * Left/right split. We fake this as a right split 4918 * first and then make a second pass as a left split. 4919 */ 4920 insert.ins_split = SPLIT_RIGHT; 4921 4922 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci), 4923 &tmprec, insert_range, &rec); 4924 4925 split_rec = tmprec; 4926 4927 BUG_ON(do_leftright); 4928 do_leftright = 1; 4929 } 4930 4931 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert); 4932 if (ret) { 4933 mlog_errno(ret); 4934 goto out; 4935 } 4936 4937 if (do_leftright == 1) { 4938 u32 cpos; 4939 struct ocfs2_extent_list *el; 4940 4941 do_leftright++; 4942 split_rec = *orig_split_rec; 4943 4944 ocfs2_reinit_path(path, 1); 4945 4946 cpos = le32_to_cpu(split_rec.e_cpos); 4947 ret = ocfs2_find_path(et->et_ci, path, cpos); 4948 if (ret) { 4949 mlog_errno(ret); 4950 goto out; 4951 } 4952 4953 el = path_leaf_el(path); 4954 split_index = ocfs2_search_extent_list(el, cpos); 4955 goto leftright; 4956 } 4957 out: 4958 4959 return ret; 4960 } 4961 4962 static int ocfs2_replace_extent_rec(handle_t *handle, 4963 struct ocfs2_extent_tree *et, 4964 struct ocfs2_path *path, 4965 struct ocfs2_extent_list *el, 4966 int split_index, 4967 struct ocfs2_extent_rec *split_rec) 4968 { 4969 int ret; 4970 4971 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path, 4972 path_num_items(path) - 1); 4973 if (ret) { 4974 mlog_errno(ret); 4975 goto out; 4976 } 4977 4978 el->l_recs[split_index] = *split_rec; 4979 4980 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 4981 out: 4982 return ret; 4983 } 4984 4985 /* 4986 * Split part or all of the extent record at split_index in the leaf 4987 * pointed to by path. Merge with the contiguous extent record if needed. 4988 * 4989 * Care is taken to handle contiguousness so as to not grow the tree. 4990 * 4991 * meta_ac is not strictly necessary - we only truly need it if growth 4992 * of the tree is required. All other cases will degrade into a less 4993 * optimal tree layout. 4994 * 4995 * last_eb_bh should be the rightmost leaf block for any extent 4996 * btree. Since a split may grow the tree or a merge might shrink it, 4997 * the caller cannot trust the contents of that buffer after this call. 4998 * 4999 * This code is optimized for readability - several passes might be 5000 * made over certain portions of the tree. All of those blocks will 5001 * have been brought into cache (and pinned via the journal), so the 5002 * extra overhead is not expressed in terms of disk reads. 5003 */ 5004 int ocfs2_split_extent(handle_t *handle, 5005 struct ocfs2_extent_tree *et, 5006 struct ocfs2_path *path, 5007 int split_index, 5008 struct ocfs2_extent_rec *split_rec, 5009 struct ocfs2_alloc_context *meta_ac, 5010 struct ocfs2_cached_dealloc_ctxt *dealloc) 5011 { 5012 int ret = 0; 5013 struct ocfs2_extent_list *el = path_leaf_el(path); 5014 struct buffer_head *last_eb_bh = NULL; 5015 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 5016 struct ocfs2_merge_ctxt ctxt; 5017 struct ocfs2_extent_list *rightmost_el; 5018 5019 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) || 5020 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) < 5021 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) { 5022 ret = -EIO; 5023 mlog_errno(ret); 5024 goto out; 5025 } 5026 5027 ctxt.c_contig_type = ocfs2_figure_merge_contig_type(et, path, el, 5028 split_index, 5029 split_rec); 5030 5031 /* 5032 * The core merge / split code wants to know how much room is 5033 * left in this allocation tree, so we pass the 5034 * rightmost extent list. 5035 */ 5036 if (path->p_tree_depth) { 5037 struct ocfs2_extent_block *eb; 5038 5039 ret = ocfs2_read_extent_block(et->et_ci, 5040 ocfs2_et_get_last_eb_blk(et), 5041 &last_eb_bh); 5042 if (ret) { 5043 mlog_exit(ret); 5044 goto out; 5045 } 5046 5047 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5048 rightmost_el = &eb->h_list; 5049 } else 5050 rightmost_el = path_root_el(path); 5051 5052 if (rec->e_cpos == split_rec->e_cpos && 5053 rec->e_leaf_clusters == split_rec->e_leaf_clusters) 5054 ctxt.c_split_covers_rec = 1; 5055 else 5056 ctxt.c_split_covers_rec = 0; 5057 5058 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]); 5059 5060 mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n", 5061 split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent, 5062 ctxt.c_split_covers_rec); 5063 5064 if (ctxt.c_contig_type == CONTIG_NONE) { 5065 if (ctxt.c_split_covers_rec) 5066 ret = ocfs2_replace_extent_rec(handle, et, path, el, 5067 split_index, split_rec); 5068 else 5069 ret = ocfs2_split_and_insert(handle, et, path, 5070 &last_eb_bh, split_index, 5071 split_rec, meta_ac); 5072 if (ret) 5073 mlog_errno(ret); 5074 } else { 5075 ret = ocfs2_try_to_merge_extent(handle, et, path, 5076 split_index, split_rec, 5077 dealloc, &ctxt); 5078 if (ret) 5079 mlog_errno(ret); 5080 } 5081 5082 out: 5083 brelse(last_eb_bh); 5084 return ret; 5085 } 5086 5087 /* 5088 * Change the flags of the already-existing extent at cpos for len clusters. 5089 * 5090 * new_flags: the flags we want to set. 5091 * clear_flags: the flags we want to clear. 5092 * phys: the new physical offset we want this new extent starts from. 5093 * 5094 * If the existing extent is larger than the request, initiate a 5095 * split. An attempt will be made at merging with adjacent extents. 5096 * 5097 * The caller is responsible for passing down meta_ac if we'll need it. 5098 */ 5099 int ocfs2_change_extent_flag(handle_t *handle, 5100 struct ocfs2_extent_tree *et, 5101 u32 cpos, u32 len, u32 phys, 5102 struct ocfs2_alloc_context *meta_ac, 5103 struct ocfs2_cached_dealloc_ctxt *dealloc, 5104 int new_flags, int clear_flags) 5105 { 5106 int ret, index; 5107 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 5108 u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys); 5109 struct ocfs2_extent_rec split_rec; 5110 struct ocfs2_path *left_path = NULL; 5111 struct ocfs2_extent_list *el; 5112 struct ocfs2_extent_rec *rec; 5113 5114 left_path = ocfs2_new_path_from_et(et); 5115 if (!left_path) { 5116 ret = -ENOMEM; 5117 mlog_errno(ret); 5118 goto out; 5119 } 5120 5121 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 5122 if (ret) { 5123 mlog_errno(ret); 5124 goto out; 5125 } 5126 el = path_leaf_el(left_path); 5127 5128 index = ocfs2_search_extent_list(el, cpos); 5129 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 5130 ocfs2_error(sb, 5131 "Owner %llu has an extent at cpos %u which can no " 5132 "longer be found.\n", 5133 (unsigned long long) 5134 ocfs2_metadata_cache_owner(et->et_ci), cpos); 5135 ret = -EROFS; 5136 goto out; 5137 } 5138 5139 ret = -EIO; 5140 rec = &el->l_recs[index]; 5141 if (new_flags && (rec->e_flags & new_flags)) { 5142 mlog(ML_ERROR, "Owner %llu tried to set %d flags on an " 5143 "extent that already had them", 5144 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5145 new_flags); 5146 goto out; 5147 } 5148 5149 if (clear_flags && !(rec->e_flags & clear_flags)) { 5150 mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an " 5151 "extent that didn't have them", 5152 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5153 clear_flags); 5154 goto out; 5155 } 5156 5157 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec)); 5158 split_rec.e_cpos = cpu_to_le32(cpos); 5159 split_rec.e_leaf_clusters = cpu_to_le16(len); 5160 split_rec.e_blkno = cpu_to_le64(start_blkno); 5161 split_rec.e_flags = rec->e_flags; 5162 if (new_flags) 5163 split_rec.e_flags |= new_flags; 5164 if (clear_flags) 5165 split_rec.e_flags &= ~clear_flags; 5166 5167 ret = ocfs2_split_extent(handle, et, left_path, 5168 index, &split_rec, meta_ac, 5169 dealloc); 5170 if (ret) 5171 mlog_errno(ret); 5172 5173 out: 5174 ocfs2_free_path(left_path); 5175 return ret; 5176 5177 } 5178 5179 /* 5180 * Mark the already-existing extent at cpos as written for len clusters. 5181 * This removes the unwritten extent flag. 5182 * 5183 * If the existing extent is larger than the request, initiate a 5184 * split. An attempt will be made at merging with adjacent extents. 5185 * 5186 * The caller is responsible for passing down meta_ac if we'll need it. 5187 */ 5188 int ocfs2_mark_extent_written(struct inode *inode, 5189 struct ocfs2_extent_tree *et, 5190 handle_t *handle, u32 cpos, u32 len, u32 phys, 5191 struct ocfs2_alloc_context *meta_ac, 5192 struct ocfs2_cached_dealloc_ctxt *dealloc) 5193 { 5194 int ret; 5195 5196 mlog(0, "Inode %lu cpos %u, len %u, phys clusters %u\n", 5197 inode->i_ino, cpos, len, phys); 5198 5199 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) { 5200 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents " 5201 "that are being written to, but the feature bit " 5202 "is not set in the super block.", 5203 (unsigned long long)OCFS2_I(inode)->ip_blkno); 5204 ret = -EROFS; 5205 goto out; 5206 } 5207 5208 /* 5209 * XXX: This should be fixed up so that we just re-insert the 5210 * next extent records. 5211 */ 5212 ocfs2_et_extent_map_truncate(et, 0); 5213 5214 ret = ocfs2_change_extent_flag(handle, et, cpos, 5215 len, phys, meta_ac, dealloc, 5216 0, OCFS2_EXT_UNWRITTEN); 5217 if (ret) 5218 mlog_errno(ret); 5219 5220 out: 5221 return ret; 5222 } 5223 5224 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et, 5225 struct ocfs2_path *path, 5226 int index, u32 new_range, 5227 struct ocfs2_alloc_context *meta_ac) 5228 { 5229 int ret, depth, credits; 5230 struct buffer_head *last_eb_bh = NULL; 5231 struct ocfs2_extent_block *eb; 5232 struct ocfs2_extent_list *rightmost_el, *el; 5233 struct ocfs2_extent_rec split_rec; 5234 struct ocfs2_extent_rec *rec; 5235 struct ocfs2_insert_type insert; 5236 5237 /* 5238 * Setup the record to split before we grow the tree. 5239 */ 5240 el = path_leaf_el(path); 5241 rec = &el->l_recs[index]; 5242 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci), 5243 &split_rec, new_range, rec); 5244 5245 depth = path->p_tree_depth; 5246 if (depth > 0) { 5247 ret = ocfs2_read_extent_block(et->et_ci, 5248 ocfs2_et_get_last_eb_blk(et), 5249 &last_eb_bh); 5250 if (ret < 0) { 5251 mlog_errno(ret); 5252 goto out; 5253 } 5254 5255 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5256 rightmost_el = &eb->h_list; 5257 } else 5258 rightmost_el = path_leaf_el(path); 5259 5260 credits = path->p_tree_depth + 5261 ocfs2_extend_meta_needed(et->et_root_el); 5262 ret = ocfs2_extend_trans(handle, credits); 5263 if (ret) { 5264 mlog_errno(ret); 5265 goto out; 5266 } 5267 5268 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 5269 le16_to_cpu(rightmost_el->l_count)) { 5270 ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh, 5271 meta_ac); 5272 if (ret) { 5273 mlog_errno(ret); 5274 goto out; 5275 } 5276 } 5277 5278 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 5279 insert.ins_appending = APPEND_NONE; 5280 insert.ins_contig = CONTIG_NONE; 5281 insert.ins_split = SPLIT_RIGHT; 5282 insert.ins_tree_depth = depth; 5283 5284 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert); 5285 if (ret) 5286 mlog_errno(ret); 5287 5288 out: 5289 brelse(last_eb_bh); 5290 return ret; 5291 } 5292 5293 static int ocfs2_truncate_rec(handle_t *handle, 5294 struct ocfs2_extent_tree *et, 5295 struct ocfs2_path *path, int index, 5296 struct ocfs2_cached_dealloc_ctxt *dealloc, 5297 u32 cpos, u32 len) 5298 { 5299 int ret; 5300 u32 left_cpos, rec_range, trunc_range; 5301 int wants_rotate = 0, is_rightmost_tree_rec = 0; 5302 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 5303 struct ocfs2_path *left_path = NULL; 5304 struct ocfs2_extent_list *el = path_leaf_el(path); 5305 struct ocfs2_extent_rec *rec; 5306 struct ocfs2_extent_block *eb; 5307 5308 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) { 5309 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 5310 if (ret) { 5311 mlog_errno(ret); 5312 goto out; 5313 } 5314 5315 index--; 5316 } 5317 5318 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) && 5319 path->p_tree_depth) { 5320 /* 5321 * Check whether this is the rightmost tree record. If 5322 * we remove all of this record or part of its right 5323 * edge then an update of the record lengths above it 5324 * will be required. 5325 */ 5326 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 5327 if (eb->h_next_leaf_blk == 0) 5328 is_rightmost_tree_rec = 1; 5329 } 5330 5331 rec = &el->l_recs[index]; 5332 if (index == 0 && path->p_tree_depth && 5333 le32_to_cpu(rec->e_cpos) == cpos) { 5334 /* 5335 * Changing the leftmost offset (via partial or whole 5336 * record truncate) of an interior (or rightmost) path 5337 * means we have to update the subtree that is formed 5338 * by this leaf and the one to it's left. 5339 * 5340 * There are two cases we can skip: 5341 * 1) Path is the leftmost one in our btree. 5342 * 2) The leaf is rightmost and will be empty after 5343 * we remove the extent record - the rotate code 5344 * knows how to update the newly formed edge. 5345 */ 5346 5347 ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos); 5348 if (ret) { 5349 mlog_errno(ret); 5350 goto out; 5351 } 5352 5353 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) { 5354 left_path = ocfs2_new_path_from_path(path); 5355 if (!left_path) { 5356 ret = -ENOMEM; 5357 mlog_errno(ret); 5358 goto out; 5359 } 5360 5361 ret = ocfs2_find_path(et->et_ci, left_path, 5362 left_cpos); 5363 if (ret) { 5364 mlog_errno(ret); 5365 goto out; 5366 } 5367 } 5368 } 5369 5370 ret = ocfs2_extend_rotate_transaction(handle, 0, 5371 handle->h_buffer_credits, 5372 path); 5373 if (ret) { 5374 mlog_errno(ret); 5375 goto out; 5376 } 5377 5378 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 5379 if (ret) { 5380 mlog_errno(ret); 5381 goto out; 5382 } 5383 5384 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 5385 if (ret) { 5386 mlog_errno(ret); 5387 goto out; 5388 } 5389 5390 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5391 trunc_range = cpos + len; 5392 5393 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) { 5394 int next_free; 5395 5396 memset(rec, 0, sizeof(*rec)); 5397 ocfs2_cleanup_merge(el, index); 5398 wants_rotate = 1; 5399 5400 next_free = le16_to_cpu(el->l_next_free_rec); 5401 if (is_rightmost_tree_rec && next_free > 1) { 5402 /* 5403 * We skip the edge update if this path will 5404 * be deleted by the rotate code. 5405 */ 5406 rec = &el->l_recs[next_free - 1]; 5407 ocfs2_adjust_rightmost_records(handle, et, path, 5408 rec); 5409 } 5410 } else if (le32_to_cpu(rec->e_cpos) == cpos) { 5411 /* Remove leftmost portion of the record. */ 5412 le32_add_cpu(&rec->e_cpos, len); 5413 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len)); 5414 le16_add_cpu(&rec->e_leaf_clusters, -len); 5415 } else if (rec_range == trunc_range) { 5416 /* Remove rightmost portion of the record */ 5417 le16_add_cpu(&rec->e_leaf_clusters, -len); 5418 if (is_rightmost_tree_rec) 5419 ocfs2_adjust_rightmost_records(handle, et, path, rec); 5420 } else { 5421 /* Caller should have trapped this. */ 5422 mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) " 5423 "(%u, %u)\n", 5424 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5425 le32_to_cpu(rec->e_cpos), 5426 le16_to_cpu(rec->e_leaf_clusters), cpos, len); 5427 BUG(); 5428 } 5429 5430 if (left_path) { 5431 int subtree_index; 5432 5433 subtree_index = ocfs2_find_subtree_root(et, left_path, path); 5434 ocfs2_complete_edge_insert(handle, left_path, path, 5435 subtree_index); 5436 } 5437 5438 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 5439 5440 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 5441 if (ret) { 5442 mlog_errno(ret); 5443 goto out; 5444 } 5445 5446 out: 5447 ocfs2_free_path(left_path); 5448 return ret; 5449 } 5450 5451 int ocfs2_remove_extent(handle_t *handle, 5452 struct ocfs2_extent_tree *et, 5453 u32 cpos, u32 len, 5454 struct ocfs2_alloc_context *meta_ac, 5455 struct ocfs2_cached_dealloc_ctxt *dealloc) 5456 { 5457 int ret, index; 5458 u32 rec_range, trunc_range; 5459 struct ocfs2_extent_rec *rec; 5460 struct ocfs2_extent_list *el; 5461 struct ocfs2_path *path = NULL; 5462 5463 /* 5464 * XXX: Why are we truncating to 0 instead of wherever this 5465 * affects us? 5466 */ 5467 ocfs2_et_extent_map_truncate(et, 0); 5468 5469 path = ocfs2_new_path_from_et(et); 5470 if (!path) { 5471 ret = -ENOMEM; 5472 mlog_errno(ret); 5473 goto out; 5474 } 5475 5476 ret = ocfs2_find_path(et->et_ci, path, cpos); 5477 if (ret) { 5478 mlog_errno(ret); 5479 goto out; 5480 } 5481 5482 el = path_leaf_el(path); 5483 index = ocfs2_search_extent_list(el, cpos); 5484 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 5485 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5486 "Owner %llu has an extent at cpos %u which can no " 5487 "longer be found.\n", 5488 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5489 cpos); 5490 ret = -EROFS; 5491 goto out; 5492 } 5493 5494 /* 5495 * We have 3 cases of extent removal: 5496 * 1) Range covers the entire extent rec 5497 * 2) Range begins or ends on one edge of the extent rec 5498 * 3) Range is in the middle of the extent rec (no shared edges) 5499 * 5500 * For case 1 we remove the extent rec and left rotate to 5501 * fill the hole. 5502 * 5503 * For case 2 we just shrink the existing extent rec, with a 5504 * tree update if the shrinking edge is also the edge of an 5505 * extent block. 5506 * 5507 * For case 3 we do a right split to turn the extent rec into 5508 * something case 2 can handle. 5509 */ 5510 rec = &el->l_recs[index]; 5511 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5512 trunc_range = cpos + len; 5513 5514 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range); 5515 5516 mlog(0, "Owner %llu, remove (cpos %u, len %u). Existing index %d " 5517 "(cpos %u, len %u)\n", 5518 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5519 cpos, len, index, 5520 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec)); 5521 5522 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) { 5523 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc, 5524 cpos, len); 5525 if (ret) { 5526 mlog_errno(ret); 5527 goto out; 5528 } 5529 } else { 5530 ret = ocfs2_split_tree(handle, et, path, index, 5531 trunc_range, meta_ac); 5532 if (ret) { 5533 mlog_errno(ret); 5534 goto out; 5535 } 5536 5537 /* 5538 * The split could have manipulated the tree enough to 5539 * move the record location, so we have to look for it again. 5540 */ 5541 ocfs2_reinit_path(path, 1); 5542 5543 ret = ocfs2_find_path(et->et_ci, path, cpos); 5544 if (ret) { 5545 mlog_errno(ret); 5546 goto out; 5547 } 5548 5549 el = path_leaf_el(path); 5550 index = ocfs2_search_extent_list(el, cpos); 5551 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 5552 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5553 "Owner %llu: split at cpos %u lost record.", 5554 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5555 cpos); 5556 ret = -EROFS; 5557 goto out; 5558 } 5559 5560 /* 5561 * Double check our values here. If anything is fishy, 5562 * it's easier to catch it at the top level. 5563 */ 5564 rec = &el->l_recs[index]; 5565 rec_range = le32_to_cpu(rec->e_cpos) + 5566 ocfs2_rec_clusters(el, rec); 5567 if (rec_range != trunc_range) { 5568 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5569 "Owner %llu: error after split at cpos %u" 5570 "trunc len %u, existing record is (%u,%u)", 5571 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5572 cpos, len, le32_to_cpu(rec->e_cpos), 5573 ocfs2_rec_clusters(el, rec)); 5574 ret = -EROFS; 5575 goto out; 5576 } 5577 5578 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc, 5579 cpos, len); 5580 if (ret) { 5581 mlog_errno(ret); 5582 goto out; 5583 } 5584 } 5585 5586 out: 5587 ocfs2_free_path(path); 5588 return ret; 5589 } 5590 5591 /* 5592 * ocfs2_reserve_blocks_for_rec_trunc() would look basically the 5593 * same as ocfs2_lock_alloctors(), except for it accepts a blocks 5594 * number to reserve some extra blocks, and it only handles meta 5595 * data allocations. 5596 * 5597 * Currently, only ocfs2_remove_btree_range() uses it for truncating 5598 * and punching holes. 5599 */ 5600 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode, 5601 struct ocfs2_extent_tree *et, 5602 u32 extents_to_split, 5603 struct ocfs2_alloc_context **ac, 5604 int extra_blocks) 5605 { 5606 int ret = 0, num_free_extents; 5607 unsigned int max_recs_needed = 2 * extents_to_split; 5608 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5609 5610 *ac = NULL; 5611 5612 num_free_extents = ocfs2_num_free_extents(osb, et); 5613 if (num_free_extents < 0) { 5614 ret = num_free_extents; 5615 mlog_errno(ret); 5616 goto out; 5617 } 5618 5619 if (!num_free_extents || 5620 (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed)) 5621 extra_blocks += ocfs2_extend_meta_needed(et->et_root_el); 5622 5623 if (extra_blocks) { 5624 ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac); 5625 if (ret < 0) { 5626 if (ret != -ENOSPC) 5627 mlog_errno(ret); 5628 goto out; 5629 } 5630 } 5631 5632 out: 5633 if (ret) { 5634 if (*ac) { 5635 ocfs2_free_alloc_context(*ac); 5636 *ac = NULL; 5637 } 5638 } 5639 5640 return ret; 5641 } 5642 5643 int ocfs2_remove_btree_range(struct inode *inode, 5644 struct ocfs2_extent_tree *et, 5645 u32 cpos, u32 phys_cpos, u32 len, int flags, 5646 struct ocfs2_cached_dealloc_ctxt *dealloc, 5647 u64 refcount_loc) 5648 { 5649 int ret, credits = 0, extra_blocks = 0; 5650 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos); 5651 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5652 struct inode *tl_inode = osb->osb_tl_inode; 5653 handle_t *handle; 5654 struct ocfs2_alloc_context *meta_ac = NULL; 5655 struct ocfs2_refcount_tree *ref_tree = NULL; 5656 5657 if ((flags & OCFS2_EXT_REFCOUNTED) && len) { 5658 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & 5659 OCFS2_HAS_REFCOUNT_FL)); 5660 5661 ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1, 5662 &ref_tree, NULL); 5663 if (ret) { 5664 mlog_errno(ret); 5665 goto out; 5666 } 5667 5668 ret = ocfs2_prepare_refcount_change_for_del(inode, 5669 refcount_loc, 5670 phys_blkno, 5671 len, 5672 &credits, 5673 &extra_blocks); 5674 if (ret < 0) { 5675 mlog_errno(ret); 5676 goto out; 5677 } 5678 } 5679 5680 ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac, 5681 extra_blocks); 5682 if (ret) { 5683 mlog_errno(ret); 5684 return ret; 5685 } 5686 5687 mutex_lock(&tl_inode->i_mutex); 5688 5689 if (ocfs2_truncate_log_needs_flush(osb)) { 5690 ret = __ocfs2_flush_truncate_log(osb); 5691 if (ret < 0) { 5692 mlog_errno(ret); 5693 goto out; 5694 } 5695 } 5696 5697 handle = ocfs2_start_trans(osb, 5698 ocfs2_remove_extent_credits(osb->sb) + credits); 5699 if (IS_ERR(handle)) { 5700 ret = PTR_ERR(handle); 5701 mlog_errno(ret); 5702 goto out; 5703 } 5704 5705 ret = ocfs2_et_root_journal_access(handle, et, 5706 OCFS2_JOURNAL_ACCESS_WRITE); 5707 if (ret) { 5708 mlog_errno(ret); 5709 goto out; 5710 } 5711 5712 dquot_free_space_nodirty(inode, 5713 ocfs2_clusters_to_bytes(inode->i_sb, len)); 5714 5715 ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc); 5716 if (ret) { 5717 mlog_errno(ret); 5718 goto out_commit; 5719 } 5720 5721 ocfs2_et_update_clusters(et, -len); 5722 5723 ocfs2_journal_dirty(handle, et->et_root_bh); 5724 5725 if (phys_blkno) { 5726 if (flags & OCFS2_EXT_REFCOUNTED) 5727 ret = ocfs2_decrease_refcount(inode, handle, 5728 ocfs2_blocks_to_clusters(osb->sb, 5729 phys_blkno), 5730 len, meta_ac, 5731 dealloc, 1); 5732 else 5733 ret = ocfs2_truncate_log_append(osb, handle, 5734 phys_blkno, len); 5735 if (ret) 5736 mlog_errno(ret); 5737 5738 } 5739 5740 out_commit: 5741 ocfs2_commit_trans(osb, handle); 5742 out: 5743 mutex_unlock(&tl_inode->i_mutex); 5744 5745 if (meta_ac) 5746 ocfs2_free_alloc_context(meta_ac); 5747 5748 if (ref_tree) 5749 ocfs2_unlock_refcount_tree(osb, ref_tree, 1); 5750 5751 return ret; 5752 } 5753 5754 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb) 5755 { 5756 struct buffer_head *tl_bh = osb->osb_tl_bh; 5757 struct ocfs2_dinode *di; 5758 struct ocfs2_truncate_log *tl; 5759 5760 di = (struct ocfs2_dinode *) tl_bh->b_data; 5761 tl = &di->id2.i_dealloc; 5762 5763 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count), 5764 "slot %d, invalid truncate log parameters: used = " 5765 "%u, count = %u\n", osb->slot_num, 5766 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count)); 5767 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count); 5768 } 5769 5770 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl, 5771 unsigned int new_start) 5772 { 5773 unsigned int tail_index; 5774 unsigned int current_tail; 5775 5776 /* No records, nothing to coalesce */ 5777 if (!le16_to_cpu(tl->tl_used)) 5778 return 0; 5779 5780 tail_index = le16_to_cpu(tl->tl_used) - 1; 5781 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start); 5782 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters); 5783 5784 return current_tail == new_start; 5785 } 5786 5787 int ocfs2_truncate_log_append(struct ocfs2_super *osb, 5788 handle_t *handle, 5789 u64 start_blk, 5790 unsigned int num_clusters) 5791 { 5792 int status, index; 5793 unsigned int start_cluster, tl_count; 5794 struct inode *tl_inode = osb->osb_tl_inode; 5795 struct buffer_head *tl_bh = osb->osb_tl_bh; 5796 struct ocfs2_dinode *di; 5797 struct ocfs2_truncate_log *tl; 5798 5799 mlog_entry("start_blk = %llu, num_clusters = %u\n", 5800 (unsigned long long)start_blk, num_clusters); 5801 5802 BUG_ON(mutex_trylock(&tl_inode->i_mutex)); 5803 5804 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk); 5805 5806 di = (struct ocfs2_dinode *) tl_bh->b_data; 5807 5808 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 5809 * by the underlying call to ocfs2_read_inode_block(), so any 5810 * corruption is a code bug */ 5811 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5812 5813 tl = &di->id2.i_dealloc; 5814 tl_count = le16_to_cpu(tl->tl_count); 5815 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) || 5816 tl_count == 0, 5817 "Truncate record count on #%llu invalid " 5818 "wanted %u, actual %u\n", 5819 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5820 ocfs2_truncate_recs_per_inode(osb->sb), 5821 le16_to_cpu(tl->tl_count)); 5822 5823 /* Caller should have known to flush before calling us. */ 5824 index = le16_to_cpu(tl->tl_used); 5825 if (index >= tl_count) { 5826 status = -ENOSPC; 5827 mlog_errno(status); 5828 goto bail; 5829 } 5830 5831 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, 5832 OCFS2_JOURNAL_ACCESS_WRITE); 5833 if (status < 0) { 5834 mlog_errno(status); 5835 goto bail; 5836 } 5837 5838 mlog(0, "Log truncate of %u clusters starting at cluster %u to " 5839 "%llu (index = %d)\n", num_clusters, start_cluster, 5840 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index); 5841 5842 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) { 5843 /* 5844 * Move index back to the record we are coalescing with. 5845 * ocfs2_truncate_log_can_coalesce() guarantees nonzero 5846 */ 5847 index--; 5848 5849 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters); 5850 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n", 5851 index, le32_to_cpu(tl->tl_recs[index].t_start), 5852 num_clusters); 5853 } else { 5854 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster); 5855 tl->tl_used = cpu_to_le16(index + 1); 5856 } 5857 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters); 5858 5859 ocfs2_journal_dirty(handle, tl_bh); 5860 5861 bail: 5862 mlog_exit(status); 5863 return status; 5864 } 5865 5866 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb, 5867 handle_t *handle, 5868 struct inode *data_alloc_inode, 5869 struct buffer_head *data_alloc_bh) 5870 { 5871 int status = 0; 5872 int i; 5873 unsigned int num_clusters; 5874 u64 start_blk; 5875 struct ocfs2_truncate_rec rec; 5876 struct ocfs2_dinode *di; 5877 struct ocfs2_truncate_log *tl; 5878 struct inode *tl_inode = osb->osb_tl_inode; 5879 struct buffer_head *tl_bh = osb->osb_tl_bh; 5880 5881 mlog_entry_void(); 5882 5883 di = (struct ocfs2_dinode *) tl_bh->b_data; 5884 tl = &di->id2.i_dealloc; 5885 i = le16_to_cpu(tl->tl_used) - 1; 5886 while (i >= 0) { 5887 /* Caller has given us at least enough credits to 5888 * update the truncate log dinode */ 5889 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, 5890 OCFS2_JOURNAL_ACCESS_WRITE); 5891 if (status < 0) { 5892 mlog_errno(status); 5893 goto bail; 5894 } 5895 5896 tl->tl_used = cpu_to_le16(i); 5897 5898 ocfs2_journal_dirty(handle, tl_bh); 5899 5900 /* TODO: Perhaps we can calculate the bulk of the 5901 * credits up front rather than extending like 5902 * this. */ 5903 status = ocfs2_extend_trans(handle, 5904 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC); 5905 if (status < 0) { 5906 mlog_errno(status); 5907 goto bail; 5908 } 5909 5910 rec = tl->tl_recs[i]; 5911 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb, 5912 le32_to_cpu(rec.t_start)); 5913 num_clusters = le32_to_cpu(rec.t_clusters); 5914 5915 /* if start_blk is not set, we ignore the record as 5916 * invalid. */ 5917 if (start_blk) { 5918 mlog(0, "free record %d, start = %u, clusters = %u\n", 5919 i, le32_to_cpu(rec.t_start), num_clusters); 5920 5921 status = ocfs2_free_clusters(handle, data_alloc_inode, 5922 data_alloc_bh, start_blk, 5923 num_clusters); 5924 if (status < 0) { 5925 mlog_errno(status); 5926 goto bail; 5927 } 5928 } 5929 i--; 5930 } 5931 5932 bail: 5933 mlog_exit(status); 5934 return status; 5935 } 5936 5937 /* Expects you to already be holding tl_inode->i_mutex */ 5938 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb) 5939 { 5940 int status; 5941 unsigned int num_to_flush; 5942 handle_t *handle; 5943 struct inode *tl_inode = osb->osb_tl_inode; 5944 struct inode *data_alloc_inode = NULL; 5945 struct buffer_head *tl_bh = osb->osb_tl_bh; 5946 struct buffer_head *data_alloc_bh = NULL; 5947 struct ocfs2_dinode *di; 5948 struct ocfs2_truncate_log *tl; 5949 5950 mlog_entry_void(); 5951 5952 BUG_ON(mutex_trylock(&tl_inode->i_mutex)); 5953 5954 di = (struct ocfs2_dinode *) tl_bh->b_data; 5955 5956 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 5957 * by the underlying call to ocfs2_read_inode_block(), so any 5958 * corruption is a code bug */ 5959 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5960 5961 tl = &di->id2.i_dealloc; 5962 num_to_flush = le16_to_cpu(tl->tl_used); 5963 mlog(0, "Flush %u records from truncate log #%llu\n", 5964 num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno); 5965 if (!num_to_flush) { 5966 status = 0; 5967 goto out; 5968 } 5969 5970 data_alloc_inode = ocfs2_get_system_file_inode(osb, 5971 GLOBAL_BITMAP_SYSTEM_INODE, 5972 OCFS2_INVALID_SLOT); 5973 if (!data_alloc_inode) { 5974 status = -EINVAL; 5975 mlog(ML_ERROR, "Could not get bitmap inode!\n"); 5976 goto out; 5977 } 5978 5979 mutex_lock(&data_alloc_inode->i_mutex); 5980 5981 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1); 5982 if (status < 0) { 5983 mlog_errno(status); 5984 goto out_mutex; 5985 } 5986 5987 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 5988 if (IS_ERR(handle)) { 5989 status = PTR_ERR(handle); 5990 mlog_errno(status); 5991 goto out_unlock; 5992 } 5993 5994 status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode, 5995 data_alloc_bh); 5996 if (status < 0) 5997 mlog_errno(status); 5998 5999 ocfs2_commit_trans(osb, handle); 6000 6001 out_unlock: 6002 brelse(data_alloc_bh); 6003 ocfs2_inode_unlock(data_alloc_inode, 1); 6004 6005 out_mutex: 6006 mutex_unlock(&data_alloc_inode->i_mutex); 6007 iput(data_alloc_inode); 6008 6009 out: 6010 mlog_exit(status); 6011 return status; 6012 } 6013 6014 int ocfs2_flush_truncate_log(struct ocfs2_super *osb) 6015 { 6016 int status; 6017 struct inode *tl_inode = osb->osb_tl_inode; 6018 6019 mutex_lock(&tl_inode->i_mutex); 6020 status = __ocfs2_flush_truncate_log(osb); 6021 mutex_unlock(&tl_inode->i_mutex); 6022 6023 return status; 6024 } 6025 6026 static void ocfs2_truncate_log_worker(struct work_struct *work) 6027 { 6028 int status; 6029 struct ocfs2_super *osb = 6030 container_of(work, struct ocfs2_super, 6031 osb_truncate_log_wq.work); 6032 6033 mlog_entry_void(); 6034 6035 status = ocfs2_flush_truncate_log(osb); 6036 if (status < 0) 6037 mlog_errno(status); 6038 else 6039 ocfs2_init_steal_slots(osb); 6040 6041 mlog_exit(status); 6042 } 6043 6044 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ) 6045 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb, 6046 int cancel) 6047 { 6048 if (osb->osb_tl_inode) { 6049 /* We want to push off log flushes while truncates are 6050 * still running. */ 6051 if (cancel) 6052 cancel_delayed_work(&osb->osb_truncate_log_wq); 6053 6054 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq, 6055 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL); 6056 } 6057 } 6058 6059 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb, 6060 int slot_num, 6061 struct inode **tl_inode, 6062 struct buffer_head **tl_bh) 6063 { 6064 int status; 6065 struct inode *inode = NULL; 6066 struct buffer_head *bh = NULL; 6067 6068 inode = ocfs2_get_system_file_inode(osb, 6069 TRUNCATE_LOG_SYSTEM_INODE, 6070 slot_num); 6071 if (!inode) { 6072 status = -EINVAL; 6073 mlog(ML_ERROR, "Could not get load truncate log inode!\n"); 6074 goto bail; 6075 } 6076 6077 status = ocfs2_read_inode_block(inode, &bh); 6078 if (status < 0) { 6079 iput(inode); 6080 mlog_errno(status); 6081 goto bail; 6082 } 6083 6084 *tl_inode = inode; 6085 *tl_bh = bh; 6086 bail: 6087 mlog_exit(status); 6088 return status; 6089 } 6090 6091 /* called during the 1st stage of node recovery. we stamp a clean 6092 * truncate log and pass back a copy for processing later. if the 6093 * truncate log does not require processing, a *tl_copy is set to 6094 * NULL. */ 6095 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb, 6096 int slot_num, 6097 struct ocfs2_dinode **tl_copy) 6098 { 6099 int status; 6100 struct inode *tl_inode = NULL; 6101 struct buffer_head *tl_bh = NULL; 6102 struct ocfs2_dinode *di; 6103 struct ocfs2_truncate_log *tl; 6104 6105 *tl_copy = NULL; 6106 6107 mlog(0, "recover truncate log from slot %d\n", slot_num); 6108 6109 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh); 6110 if (status < 0) { 6111 mlog_errno(status); 6112 goto bail; 6113 } 6114 6115 di = (struct ocfs2_dinode *) tl_bh->b_data; 6116 6117 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's 6118 * validated by the underlying call to ocfs2_read_inode_block(), 6119 * so any corruption is a code bug */ 6120 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 6121 6122 tl = &di->id2.i_dealloc; 6123 if (le16_to_cpu(tl->tl_used)) { 6124 mlog(0, "We'll have %u logs to recover\n", 6125 le16_to_cpu(tl->tl_used)); 6126 6127 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL); 6128 if (!(*tl_copy)) { 6129 status = -ENOMEM; 6130 mlog_errno(status); 6131 goto bail; 6132 } 6133 6134 /* Assuming the write-out below goes well, this copy 6135 * will be passed back to recovery for processing. */ 6136 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size); 6137 6138 /* All we need to do to clear the truncate log is set 6139 * tl_used. */ 6140 tl->tl_used = 0; 6141 6142 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check); 6143 status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode)); 6144 if (status < 0) { 6145 mlog_errno(status); 6146 goto bail; 6147 } 6148 } 6149 6150 bail: 6151 if (tl_inode) 6152 iput(tl_inode); 6153 brelse(tl_bh); 6154 6155 if (status < 0 && (*tl_copy)) { 6156 kfree(*tl_copy); 6157 *tl_copy = NULL; 6158 } 6159 6160 mlog_exit(status); 6161 return status; 6162 } 6163 6164 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb, 6165 struct ocfs2_dinode *tl_copy) 6166 { 6167 int status = 0; 6168 int i; 6169 unsigned int clusters, num_recs, start_cluster; 6170 u64 start_blk; 6171 handle_t *handle; 6172 struct inode *tl_inode = osb->osb_tl_inode; 6173 struct ocfs2_truncate_log *tl; 6174 6175 mlog_entry_void(); 6176 6177 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) { 6178 mlog(ML_ERROR, "Asked to recover my own truncate log!\n"); 6179 return -EINVAL; 6180 } 6181 6182 tl = &tl_copy->id2.i_dealloc; 6183 num_recs = le16_to_cpu(tl->tl_used); 6184 mlog(0, "cleanup %u records from %llu\n", num_recs, 6185 (unsigned long long)le64_to_cpu(tl_copy->i_blkno)); 6186 6187 mutex_lock(&tl_inode->i_mutex); 6188 for(i = 0; i < num_recs; i++) { 6189 if (ocfs2_truncate_log_needs_flush(osb)) { 6190 status = __ocfs2_flush_truncate_log(osb); 6191 if (status < 0) { 6192 mlog_errno(status); 6193 goto bail_up; 6194 } 6195 } 6196 6197 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6198 if (IS_ERR(handle)) { 6199 status = PTR_ERR(handle); 6200 mlog_errno(status); 6201 goto bail_up; 6202 } 6203 6204 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters); 6205 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start); 6206 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster); 6207 6208 status = ocfs2_truncate_log_append(osb, handle, 6209 start_blk, clusters); 6210 ocfs2_commit_trans(osb, handle); 6211 if (status < 0) { 6212 mlog_errno(status); 6213 goto bail_up; 6214 } 6215 } 6216 6217 bail_up: 6218 mutex_unlock(&tl_inode->i_mutex); 6219 6220 mlog_exit(status); 6221 return status; 6222 } 6223 6224 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb) 6225 { 6226 int status; 6227 struct inode *tl_inode = osb->osb_tl_inode; 6228 6229 mlog_entry_void(); 6230 6231 if (tl_inode) { 6232 cancel_delayed_work(&osb->osb_truncate_log_wq); 6233 flush_workqueue(ocfs2_wq); 6234 6235 status = ocfs2_flush_truncate_log(osb); 6236 if (status < 0) 6237 mlog_errno(status); 6238 6239 brelse(osb->osb_tl_bh); 6240 iput(osb->osb_tl_inode); 6241 } 6242 6243 mlog_exit_void(); 6244 } 6245 6246 int ocfs2_truncate_log_init(struct ocfs2_super *osb) 6247 { 6248 int status; 6249 struct inode *tl_inode = NULL; 6250 struct buffer_head *tl_bh = NULL; 6251 6252 mlog_entry_void(); 6253 6254 status = ocfs2_get_truncate_log_info(osb, 6255 osb->slot_num, 6256 &tl_inode, 6257 &tl_bh); 6258 if (status < 0) 6259 mlog_errno(status); 6260 6261 /* ocfs2_truncate_log_shutdown keys on the existence of 6262 * osb->osb_tl_inode so we don't set any of the osb variables 6263 * until we're sure all is well. */ 6264 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq, 6265 ocfs2_truncate_log_worker); 6266 osb->osb_tl_bh = tl_bh; 6267 osb->osb_tl_inode = tl_inode; 6268 6269 mlog_exit(status); 6270 return status; 6271 } 6272 6273 /* 6274 * Delayed de-allocation of suballocator blocks. 6275 * 6276 * Some sets of block de-allocations might involve multiple suballocator inodes. 6277 * 6278 * The locking for this can get extremely complicated, especially when 6279 * the suballocator inodes to delete from aren't known until deep 6280 * within an unrelated codepath. 6281 * 6282 * ocfs2_extent_block structures are a good example of this - an inode 6283 * btree could have been grown by any number of nodes each allocating 6284 * out of their own suballoc inode. 6285 * 6286 * These structures allow the delay of block de-allocation until a 6287 * later time, when locking of multiple cluster inodes won't cause 6288 * deadlock. 6289 */ 6290 6291 /* 6292 * Describe a single bit freed from a suballocator. For the block 6293 * suballocators, it represents one block. For the global cluster 6294 * allocator, it represents some clusters and free_bit indicates 6295 * clusters number. 6296 */ 6297 struct ocfs2_cached_block_free { 6298 struct ocfs2_cached_block_free *free_next; 6299 u64 free_bg; 6300 u64 free_blk; 6301 unsigned int free_bit; 6302 }; 6303 6304 struct ocfs2_per_slot_free_list { 6305 struct ocfs2_per_slot_free_list *f_next_suballocator; 6306 int f_inode_type; 6307 int f_slot; 6308 struct ocfs2_cached_block_free *f_first; 6309 }; 6310 6311 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb, 6312 int sysfile_type, 6313 int slot, 6314 struct ocfs2_cached_block_free *head) 6315 { 6316 int ret; 6317 u64 bg_blkno; 6318 handle_t *handle; 6319 struct inode *inode; 6320 struct buffer_head *di_bh = NULL; 6321 struct ocfs2_cached_block_free *tmp; 6322 6323 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot); 6324 if (!inode) { 6325 ret = -EINVAL; 6326 mlog_errno(ret); 6327 goto out; 6328 } 6329 6330 mutex_lock(&inode->i_mutex); 6331 6332 ret = ocfs2_inode_lock(inode, &di_bh, 1); 6333 if (ret) { 6334 mlog_errno(ret); 6335 goto out_mutex; 6336 } 6337 6338 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE); 6339 if (IS_ERR(handle)) { 6340 ret = PTR_ERR(handle); 6341 mlog_errno(ret); 6342 goto out_unlock; 6343 } 6344 6345 while (head) { 6346 if (head->free_bg) 6347 bg_blkno = head->free_bg; 6348 else 6349 bg_blkno = ocfs2_which_suballoc_group(head->free_blk, 6350 head->free_bit); 6351 mlog(0, "Free bit: (bit %u, blkno %llu)\n", 6352 head->free_bit, (unsigned long long)head->free_blk); 6353 6354 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh, 6355 head->free_bit, bg_blkno, 1); 6356 if (ret) { 6357 mlog_errno(ret); 6358 goto out_journal; 6359 } 6360 6361 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE); 6362 if (ret) { 6363 mlog_errno(ret); 6364 goto out_journal; 6365 } 6366 6367 tmp = head; 6368 head = head->free_next; 6369 kfree(tmp); 6370 } 6371 6372 out_journal: 6373 ocfs2_commit_trans(osb, handle); 6374 6375 out_unlock: 6376 ocfs2_inode_unlock(inode, 1); 6377 brelse(di_bh); 6378 out_mutex: 6379 mutex_unlock(&inode->i_mutex); 6380 iput(inode); 6381 out: 6382 while(head) { 6383 /* Premature exit may have left some dangling items. */ 6384 tmp = head; 6385 head = head->free_next; 6386 kfree(tmp); 6387 } 6388 6389 return ret; 6390 } 6391 6392 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6393 u64 blkno, unsigned int bit) 6394 { 6395 int ret = 0; 6396 struct ocfs2_cached_block_free *item; 6397 6398 item = kzalloc(sizeof(*item), GFP_NOFS); 6399 if (item == NULL) { 6400 ret = -ENOMEM; 6401 mlog_errno(ret); 6402 return ret; 6403 } 6404 6405 mlog(0, "Insert clusters: (bit %u, blk %llu)\n", 6406 bit, (unsigned long long)blkno); 6407 6408 item->free_blk = blkno; 6409 item->free_bit = bit; 6410 item->free_next = ctxt->c_global_allocator; 6411 6412 ctxt->c_global_allocator = item; 6413 return ret; 6414 } 6415 6416 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb, 6417 struct ocfs2_cached_block_free *head) 6418 { 6419 struct ocfs2_cached_block_free *tmp; 6420 struct inode *tl_inode = osb->osb_tl_inode; 6421 handle_t *handle; 6422 int ret = 0; 6423 6424 mutex_lock(&tl_inode->i_mutex); 6425 6426 while (head) { 6427 if (ocfs2_truncate_log_needs_flush(osb)) { 6428 ret = __ocfs2_flush_truncate_log(osb); 6429 if (ret < 0) { 6430 mlog_errno(ret); 6431 break; 6432 } 6433 } 6434 6435 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6436 if (IS_ERR(handle)) { 6437 ret = PTR_ERR(handle); 6438 mlog_errno(ret); 6439 break; 6440 } 6441 6442 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk, 6443 head->free_bit); 6444 6445 ocfs2_commit_trans(osb, handle); 6446 tmp = head; 6447 head = head->free_next; 6448 kfree(tmp); 6449 6450 if (ret < 0) { 6451 mlog_errno(ret); 6452 break; 6453 } 6454 } 6455 6456 mutex_unlock(&tl_inode->i_mutex); 6457 6458 while (head) { 6459 /* Premature exit may have left some dangling items. */ 6460 tmp = head; 6461 head = head->free_next; 6462 kfree(tmp); 6463 } 6464 6465 return ret; 6466 } 6467 6468 int ocfs2_run_deallocs(struct ocfs2_super *osb, 6469 struct ocfs2_cached_dealloc_ctxt *ctxt) 6470 { 6471 int ret = 0, ret2; 6472 struct ocfs2_per_slot_free_list *fl; 6473 6474 if (!ctxt) 6475 return 0; 6476 6477 while (ctxt->c_first_suballocator) { 6478 fl = ctxt->c_first_suballocator; 6479 6480 if (fl->f_first) { 6481 mlog(0, "Free items: (type %u, slot %d)\n", 6482 fl->f_inode_type, fl->f_slot); 6483 ret2 = ocfs2_free_cached_blocks(osb, 6484 fl->f_inode_type, 6485 fl->f_slot, 6486 fl->f_first); 6487 if (ret2) 6488 mlog_errno(ret2); 6489 if (!ret) 6490 ret = ret2; 6491 } 6492 6493 ctxt->c_first_suballocator = fl->f_next_suballocator; 6494 kfree(fl); 6495 } 6496 6497 if (ctxt->c_global_allocator) { 6498 ret2 = ocfs2_free_cached_clusters(osb, 6499 ctxt->c_global_allocator); 6500 if (ret2) 6501 mlog_errno(ret2); 6502 if (!ret) 6503 ret = ret2; 6504 6505 ctxt->c_global_allocator = NULL; 6506 } 6507 6508 return ret; 6509 } 6510 6511 static struct ocfs2_per_slot_free_list * 6512 ocfs2_find_per_slot_free_list(int type, 6513 int slot, 6514 struct ocfs2_cached_dealloc_ctxt *ctxt) 6515 { 6516 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; 6517 6518 while (fl) { 6519 if (fl->f_inode_type == type && fl->f_slot == slot) 6520 return fl; 6521 6522 fl = fl->f_next_suballocator; 6523 } 6524 6525 fl = kmalloc(sizeof(*fl), GFP_NOFS); 6526 if (fl) { 6527 fl->f_inode_type = type; 6528 fl->f_slot = slot; 6529 fl->f_first = NULL; 6530 fl->f_next_suballocator = ctxt->c_first_suballocator; 6531 6532 ctxt->c_first_suballocator = fl; 6533 } 6534 return fl; 6535 } 6536 6537 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6538 int type, int slot, u64 suballoc, 6539 u64 blkno, unsigned int bit) 6540 { 6541 int ret; 6542 struct ocfs2_per_slot_free_list *fl; 6543 struct ocfs2_cached_block_free *item; 6544 6545 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt); 6546 if (fl == NULL) { 6547 ret = -ENOMEM; 6548 mlog_errno(ret); 6549 goto out; 6550 } 6551 6552 item = kzalloc(sizeof(*item), GFP_NOFS); 6553 if (item == NULL) { 6554 ret = -ENOMEM; 6555 mlog_errno(ret); 6556 goto out; 6557 } 6558 6559 mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n", 6560 type, slot, bit, (unsigned long long)blkno); 6561 6562 item->free_bg = suballoc; 6563 item->free_blk = blkno; 6564 item->free_bit = bit; 6565 item->free_next = fl->f_first; 6566 6567 fl->f_first = item; 6568 6569 ret = 0; 6570 out: 6571 return ret; 6572 } 6573 6574 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 6575 struct ocfs2_extent_block *eb) 6576 { 6577 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE, 6578 le16_to_cpu(eb->h_suballoc_slot), 6579 le64_to_cpu(eb->h_suballoc_loc), 6580 le64_to_cpu(eb->h_blkno), 6581 le16_to_cpu(eb->h_suballoc_bit)); 6582 } 6583 6584 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh) 6585 { 6586 set_buffer_uptodate(bh); 6587 mark_buffer_dirty(bh); 6588 return 0; 6589 } 6590 6591 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle, 6592 unsigned int from, unsigned int to, 6593 struct page *page, int zero, u64 *phys) 6594 { 6595 int ret, partial = 0; 6596 6597 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0); 6598 if (ret) 6599 mlog_errno(ret); 6600 6601 if (zero) 6602 zero_user_segment(page, from, to); 6603 6604 /* 6605 * Need to set the buffers we zero'd into uptodate 6606 * here if they aren't - ocfs2_map_page_blocks() 6607 * might've skipped some 6608 */ 6609 ret = walk_page_buffers(handle, page_buffers(page), 6610 from, to, &partial, 6611 ocfs2_zero_func); 6612 if (ret < 0) 6613 mlog_errno(ret); 6614 else if (ocfs2_should_order_data(inode)) { 6615 ret = ocfs2_jbd2_file_inode(handle, inode); 6616 if (ret < 0) 6617 mlog_errno(ret); 6618 } 6619 6620 if (!partial) 6621 SetPageUptodate(page); 6622 6623 flush_dcache_page(page); 6624 } 6625 6626 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start, 6627 loff_t end, struct page **pages, 6628 int numpages, u64 phys, handle_t *handle) 6629 { 6630 int i; 6631 struct page *page; 6632 unsigned int from, to = PAGE_CACHE_SIZE; 6633 struct super_block *sb = inode->i_sb; 6634 6635 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb))); 6636 6637 if (numpages == 0) 6638 goto out; 6639 6640 to = PAGE_CACHE_SIZE; 6641 for(i = 0; i < numpages; i++) { 6642 page = pages[i]; 6643 6644 from = start & (PAGE_CACHE_SIZE - 1); 6645 if ((end >> PAGE_CACHE_SHIFT) == page->index) 6646 to = end & (PAGE_CACHE_SIZE - 1); 6647 6648 BUG_ON(from > PAGE_CACHE_SIZE); 6649 BUG_ON(to > PAGE_CACHE_SIZE); 6650 6651 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1, 6652 &phys); 6653 6654 start = (page->index + 1) << PAGE_CACHE_SHIFT; 6655 } 6656 out: 6657 if (pages) 6658 ocfs2_unlock_and_free_pages(pages, numpages); 6659 } 6660 6661 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end, 6662 struct page **pages, int *num) 6663 { 6664 int numpages, ret = 0; 6665 struct address_space *mapping = inode->i_mapping; 6666 unsigned long index; 6667 loff_t last_page_bytes; 6668 6669 BUG_ON(start > end); 6670 6671 numpages = 0; 6672 last_page_bytes = PAGE_ALIGN(end); 6673 index = start >> PAGE_CACHE_SHIFT; 6674 do { 6675 pages[numpages] = find_or_create_page(mapping, index, GFP_NOFS); 6676 if (!pages[numpages]) { 6677 ret = -ENOMEM; 6678 mlog_errno(ret); 6679 goto out; 6680 } 6681 6682 numpages++; 6683 index++; 6684 } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT)); 6685 6686 out: 6687 if (ret != 0) { 6688 if (pages) 6689 ocfs2_unlock_and_free_pages(pages, numpages); 6690 numpages = 0; 6691 } 6692 6693 *num = numpages; 6694 6695 return ret; 6696 } 6697 6698 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end, 6699 struct page **pages, int *num) 6700 { 6701 struct super_block *sb = inode->i_sb; 6702 6703 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits != 6704 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits); 6705 6706 return ocfs2_grab_pages(inode, start, end, pages, num); 6707 } 6708 6709 /* 6710 * Zero the area past i_size but still within an allocated 6711 * cluster. This avoids exposing nonzero data on subsequent file 6712 * extends. 6713 * 6714 * We need to call this before i_size is updated on the inode because 6715 * otherwise block_write_full_page() will skip writeout of pages past 6716 * i_size. The new_i_size parameter is passed for this reason. 6717 */ 6718 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle, 6719 u64 range_start, u64 range_end) 6720 { 6721 int ret = 0, numpages; 6722 struct page **pages = NULL; 6723 u64 phys; 6724 unsigned int ext_flags; 6725 struct super_block *sb = inode->i_sb; 6726 6727 /* 6728 * File systems which don't support sparse files zero on every 6729 * extend. 6730 */ 6731 if (!ocfs2_sparse_alloc(OCFS2_SB(sb))) 6732 return 0; 6733 6734 pages = kcalloc(ocfs2_pages_per_cluster(sb), 6735 sizeof(struct page *), GFP_NOFS); 6736 if (pages == NULL) { 6737 ret = -ENOMEM; 6738 mlog_errno(ret); 6739 goto out; 6740 } 6741 6742 if (range_start == range_end) 6743 goto out; 6744 6745 ret = ocfs2_extent_map_get_blocks(inode, 6746 range_start >> sb->s_blocksize_bits, 6747 &phys, NULL, &ext_flags); 6748 if (ret) { 6749 mlog_errno(ret); 6750 goto out; 6751 } 6752 6753 /* 6754 * Tail is a hole, or is marked unwritten. In either case, we 6755 * can count on read and write to return/push zero's. 6756 */ 6757 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN) 6758 goto out; 6759 6760 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages, 6761 &numpages); 6762 if (ret) { 6763 mlog_errno(ret); 6764 goto out; 6765 } 6766 6767 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages, 6768 numpages, phys, handle); 6769 6770 /* 6771 * Initiate writeout of the pages we zero'd here. We don't 6772 * wait on them - the truncate_inode_pages() call later will 6773 * do that for us. 6774 */ 6775 ret = filemap_fdatawrite_range(inode->i_mapping, range_start, 6776 range_end - 1); 6777 if (ret) 6778 mlog_errno(ret); 6779 6780 out: 6781 if (pages) 6782 kfree(pages); 6783 6784 return ret; 6785 } 6786 6787 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode, 6788 struct ocfs2_dinode *di) 6789 { 6790 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits; 6791 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size); 6792 6793 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL) 6794 memset(&di->id2, 0, blocksize - 6795 offsetof(struct ocfs2_dinode, id2) - 6796 xattrsize); 6797 else 6798 memset(&di->id2, 0, blocksize - 6799 offsetof(struct ocfs2_dinode, id2)); 6800 } 6801 6802 void ocfs2_dinode_new_extent_list(struct inode *inode, 6803 struct ocfs2_dinode *di) 6804 { 6805 ocfs2_zero_dinode_id2_with_xattr(inode, di); 6806 di->id2.i_list.l_tree_depth = 0; 6807 di->id2.i_list.l_next_free_rec = 0; 6808 di->id2.i_list.l_count = cpu_to_le16( 6809 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di)); 6810 } 6811 6812 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di) 6813 { 6814 struct ocfs2_inode_info *oi = OCFS2_I(inode); 6815 struct ocfs2_inline_data *idata = &di->id2.i_data; 6816 6817 spin_lock(&oi->ip_lock); 6818 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL; 6819 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 6820 spin_unlock(&oi->ip_lock); 6821 6822 /* 6823 * We clear the entire i_data structure here so that all 6824 * fields can be properly initialized. 6825 */ 6826 ocfs2_zero_dinode_id2_with_xattr(inode, di); 6827 6828 idata->id_count = cpu_to_le16( 6829 ocfs2_max_inline_data_with_xattr(inode->i_sb, di)); 6830 } 6831 6832 int ocfs2_convert_inline_data_to_extents(struct inode *inode, 6833 struct buffer_head *di_bh) 6834 { 6835 int ret, i, has_data, num_pages = 0; 6836 handle_t *handle; 6837 u64 uninitialized_var(block); 6838 struct ocfs2_inode_info *oi = OCFS2_I(inode); 6839 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 6840 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 6841 struct ocfs2_alloc_context *data_ac = NULL; 6842 struct page **pages = NULL; 6843 loff_t end = osb->s_clustersize; 6844 struct ocfs2_extent_tree et; 6845 int did_quota = 0; 6846 6847 has_data = i_size_read(inode) ? 1 : 0; 6848 6849 if (has_data) { 6850 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb), 6851 sizeof(struct page *), GFP_NOFS); 6852 if (pages == NULL) { 6853 ret = -ENOMEM; 6854 mlog_errno(ret); 6855 goto out; 6856 } 6857 6858 ret = ocfs2_reserve_clusters(osb, 1, &data_ac); 6859 if (ret) { 6860 mlog_errno(ret); 6861 goto out; 6862 } 6863 } 6864 6865 handle = ocfs2_start_trans(osb, 6866 ocfs2_inline_to_extents_credits(osb->sb)); 6867 if (IS_ERR(handle)) { 6868 ret = PTR_ERR(handle); 6869 mlog_errno(ret); 6870 goto out_unlock; 6871 } 6872 6873 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 6874 OCFS2_JOURNAL_ACCESS_WRITE); 6875 if (ret) { 6876 mlog_errno(ret); 6877 goto out_commit; 6878 } 6879 6880 if (has_data) { 6881 u32 bit_off, num; 6882 unsigned int page_end; 6883 u64 phys; 6884 6885 ret = dquot_alloc_space_nodirty(inode, 6886 ocfs2_clusters_to_bytes(osb->sb, 1)); 6887 if (ret) 6888 goto out_commit; 6889 did_quota = 1; 6890 6891 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 6892 6893 ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off, 6894 &num); 6895 if (ret) { 6896 mlog_errno(ret); 6897 goto out_commit; 6898 } 6899 6900 /* 6901 * Save two copies, one for insert, and one that can 6902 * be changed by ocfs2_map_and_dirty_page() below. 6903 */ 6904 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off); 6905 6906 /* 6907 * Non sparse file systems zero on extend, so no need 6908 * to do that now. 6909 */ 6910 if (!ocfs2_sparse_alloc(osb) && 6911 PAGE_CACHE_SIZE < osb->s_clustersize) 6912 end = PAGE_CACHE_SIZE; 6913 6914 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages); 6915 if (ret) { 6916 mlog_errno(ret); 6917 goto out_commit; 6918 } 6919 6920 /* 6921 * This should populate the 1st page for us and mark 6922 * it up to date. 6923 */ 6924 ret = ocfs2_read_inline_data(inode, pages[0], di_bh); 6925 if (ret) { 6926 mlog_errno(ret); 6927 goto out_commit; 6928 } 6929 6930 page_end = PAGE_CACHE_SIZE; 6931 if (PAGE_CACHE_SIZE > osb->s_clustersize) 6932 page_end = osb->s_clustersize; 6933 6934 for (i = 0; i < num_pages; i++) 6935 ocfs2_map_and_dirty_page(inode, handle, 0, page_end, 6936 pages[i], i > 0, &phys); 6937 } 6938 6939 spin_lock(&oi->ip_lock); 6940 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL; 6941 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 6942 spin_unlock(&oi->ip_lock); 6943 6944 ocfs2_dinode_new_extent_list(inode, di); 6945 6946 ocfs2_journal_dirty(handle, di_bh); 6947 6948 if (has_data) { 6949 /* 6950 * An error at this point should be extremely rare. If 6951 * this proves to be false, we could always re-build 6952 * the in-inode data from our pages. 6953 */ 6954 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 6955 ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL); 6956 if (ret) { 6957 mlog_errno(ret); 6958 goto out_commit; 6959 } 6960 6961 inode->i_blocks = ocfs2_inode_sector_count(inode); 6962 } 6963 6964 out_commit: 6965 if (ret < 0 && did_quota) 6966 dquot_free_space_nodirty(inode, 6967 ocfs2_clusters_to_bytes(osb->sb, 1)); 6968 6969 ocfs2_commit_trans(osb, handle); 6970 6971 out_unlock: 6972 if (data_ac) 6973 ocfs2_free_alloc_context(data_ac); 6974 6975 out: 6976 if (pages) { 6977 ocfs2_unlock_and_free_pages(pages, num_pages); 6978 kfree(pages); 6979 } 6980 6981 return ret; 6982 } 6983 6984 /* 6985 * It is expected, that by the time you call this function, 6986 * inode->i_size and fe->i_size have been adjusted. 6987 * 6988 * WARNING: This will kfree the truncate context 6989 */ 6990 int ocfs2_commit_truncate(struct ocfs2_super *osb, 6991 struct inode *inode, 6992 struct buffer_head *di_bh) 6993 { 6994 int status = 0, i, flags = 0; 6995 u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff; 6996 u64 blkno = 0; 6997 struct ocfs2_extent_list *el; 6998 struct ocfs2_extent_rec *rec; 6999 struct ocfs2_path *path = NULL; 7000 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7001 struct ocfs2_extent_list *root_el = &(di->id2.i_list); 7002 u64 refcount_loc = le64_to_cpu(di->i_refcount_loc); 7003 struct ocfs2_extent_tree et; 7004 struct ocfs2_cached_dealloc_ctxt dealloc; 7005 7006 mlog_entry_void(); 7007 7008 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 7009 ocfs2_init_dealloc_ctxt(&dealloc); 7010 7011 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb, 7012 i_size_read(inode)); 7013 7014 path = ocfs2_new_path(di_bh, &di->id2.i_list, 7015 ocfs2_journal_access_di); 7016 if (!path) { 7017 status = -ENOMEM; 7018 mlog_errno(status); 7019 goto bail; 7020 } 7021 7022 ocfs2_extent_map_trunc(inode, new_highest_cpos); 7023 7024 start: 7025 /* 7026 * Check that we still have allocation to delete. 7027 */ 7028 if (OCFS2_I(inode)->ip_clusters == 0) { 7029 status = 0; 7030 goto bail; 7031 } 7032 7033 /* 7034 * Truncate always works against the rightmost tree branch. 7035 */ 7036 status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX); 7037 if (status) { 7038 mlog_errno(status); 7039 goto bail; 7040 } 7041 7042 mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n", 7043 OCFS2_I(inode)->ip_clusters, path->p_tree_depth); 7044 7045 /* 7046 * By now, el will point to the extent list on the bottom most 7047 * portion of this tree. Only the tail record is considered in 7048 * each pass. 7049 * 7050 * We handle the following cases, in order: 7051 * - empty extent: delete the remaining branch 7052 * - remove the entire record 7053 * - remove a partial record 7054 * - no record needs to be removed (truncate has completed) 7055 */ 7056 el = path_leaf_el(path); 7057 if (le16_to_cpu(el->l_next_free_rec) == 0) { 7058 ocfs2_error(inode->i_sb, 7059 "Inode %llu has empty extent block at %llu\n", 7060 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7061 (unsigned long long)path_leaf_bh(path)->b_blocknr); 7062 status = -EROFS; 7063 goto bail; 7064 } 7065 7066 i = le16_to_cpu(el->l_next_free_rec) - 1; 7067 rec = &el->l_recs[i]; 7068 flags = rec->e_flags; 7069 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 7070 7071 if (i == 0 && ocfs2_is_empty_extent(rec)) { 7072 /* 7073 * Lower levels depend on this never happening, but it's best 7074 * to check it up here before changing the tree. 7075 */ 7076 if (root_el->l_tree_depth && rec->e_int_clusters == 0) { 7077 ocfs2_error(inode->i_sb, "Inode %lu has an empty " 7078 "extent record, depth %u\n", inode->i_ino, 7079 le16_to_cpu(root_el->l_tree_depth)); 7080 status = -EROFS; 7081 goto bail; 7082 } 7083 trunc_cpos = le32_to_cpu(rec->e_cpos); 7084 trunc_len = 0; 7085 blkno = 0; 7086 } else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) { 7087 /* 7088 * Truncate entire record. 7089 */ 7090 trunc_cpos = le32_to_cpu(rec->e_cpos); 7091 trunc_len = ocfs2_rec_clusters(el, rec); 7092 blkno = le64_to_cpu(rec->e_blkno); 7093 } else if (range > new_highest_cpos) { 7094 /* 7095 * Partial truncate. it also should be 7096 * the last truncate we're doing. 7097 */ 7098 trunc_cpos = new_highest_cpos; 7099 trunc_len = range - new_highest_cpos; 7100 coff = new_highest_cpos - le32_to_cpu(rec->e_cpos); 7101 blkno = le64_to_cpu(rec->e_blkno) + 7102 ocfs2_clusters_to_blocks(inode->i_sb, coff); 7103 } else { 7104 /* 7105 * Truncate completed, leave happily. 7106 */ 7107 status = 0; 7108 goto bail; 7109 } 7110 7111 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 7112 7113 status = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 7114 phys_cpos, trunc_len, flags, &dealloc, 7115 refcount_loc); 7116 if (status < 0) { 7117 mlog_errno(status); 7118 goto bail; 7119 } 7120 7121 ocfs2_reinit_path(path, 1); 7122 7123 /* 7124 * The check above will catch the case where we've truncated 7125 * away all allocation. 7126 */ 7127 goto start; 7128 7129 bail: 7130 7131 ocfs2_schedule_truncate_log_flush(osb, 1); 7132 7133 ocfs2_run_deallocs(osb, &dealloc); 7134 7135 ocfs2_free_path(path); 7136 7137 mlog_exit(status); 7138 return status; 7139 } 7140 7141 /* 7142 * Expects the inode to already be locked. 7143 */ 7144 int ocfs2_prepare_truncate(struct ocfs2_super *osb, 7145 struct inode *inode, 7146 struct buffer_head *fe_bh, 7147 struct ocfs2_truncate_context **tc) 7148 { 7149 int status; 7150 unsigned int new_i_clusters; 7151 struct ocfs2_dinode *fe; 7152 struct ocfs2_extent_block *eb; 7153 struct buffer_head *last_eb_bh = NULL; 7154 7155 mlog_entry_void(); 7156 7157 *tc = NULL; 7158 7159 new_i_clusters = ocfs2_clusters_for_bytes(osb->sb, 7160 i_size_read(inode)); 7161 fe = (struct ocfs2_dinode *) fe_bh->b_data; 7162 7163 mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size =" 7164 "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters, 7165 (unsigned long long)le64_to_cpu(fe->i_size)); 7166 7167 *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL); 7168 if (!(*tc)) { 7169 status = -ENOMEM; 7170 mlog_errno(status); 7171 goto bail; 7172 } 7173 ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc); 7174 7175 if (fe->id2.i_list.l_tree_depth) { 7176 status = ocfs2_read_extent_block(INODE_CACHE(inode), 7177 le64_to_cpu(fe->i_last_eb_blk), 7178 &last_eb_bh); 7179 if (status < 0) { 7180 mlog_errno(status); 7181 goto bail; 7182 } 7183 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 7184 } 7185 7186 (*tc)->tc_last_eb_bh = last_eb_bh; 7187 7188 status = 0; 7189 bail: 7190 if (status < 0) { 7191 if (*tc) 7192 ocfs2_free_truncate_context(*tc); 7193 *tc = NULL; 7194 } 7195 mlog_exit_void(); 7196 return status; 7197 } 7198 7199 /* 7200 * 'start' is inclusive, 'end' is not. 7201 */ 7202 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh, 7203 unsigned int start, unsigned int end, int trunc) 7204 { 7205 int ret; 7206 unsigned int numbytes; 7207 handle_t *handle; 7208 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 7209 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7210 struct ocfs2_inline_data *idata = &di->id2.i_data; 7211 7212 if (end > i_size_read(inode)) 7213 end = i_size_read(inode); 7214 7215 BUG_ON(start >= end); 7216 7217 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) || 7218 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) || 7219 !ocfs2_supports_inline_data(osb)) { 7220 ocfs2_error(inode->i_sb, 7221 "Inline data flags for inode %llu don't agree! " 7222 "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n", 7223 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7224 le16_to_cpu(di->i_dyn_features), 7225 OCFS2_I(inode)->ip_dyn_features, 7226 osb->s_feature_incompat); 7227 ret = -EROFS; 7228 goto out; 7229 } 7230 7231 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 7232 if (IS_ERR(handle)) { 7233 ret = PTR_ERR(handle); 7234 mlog_errno(ret); 7235 goto out; 7236 } 7237 7238 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 7239 OCFS2_JOURNAL_ACCESS_WRITE); 7240 if (ret) { 7241 mlog_errno(ret); 7242 goto out_commit; 7243 } 7244 7245 numbytes = end - start; 7246 memset(idata->id_data + start, 0, numbytes); 7247 7248 /* 7249 * No need to worry about the data page here - it's been 7250 * truncated already and inline data doesn't need it for 7251 * pushing zero's to disk, so we'll let readpage pick it up 7252 * later. 7253 */ 7254 if (trunc) { 7255 i_size_write(inode, start); 7256 di->i_size = cpu_to_le64(start); 7257 } 7258 7259 inode->i_blocks = ocfs2_inode_sector_count(inode); 7260 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 7261 7262 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 7263 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 7264 7265 ocfs2_journal_dirty(handle, di_bh); 7266 7267 out_commit: 7268 ocfs2_commit_trans(osb, handle); 7269 7270 out: 7271 return ret; 7272 } 7273 7274 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc) 7275 { 7276 /* 7277 * The caller is responsible for completing deallocation 7278 * before freeing the context. 7279 */ 7280 if (tc->tc_dealloc.c_first_suballocator != NULL) 7281 mlog(ML_NOTICE, 7282 "Truncate completion has non-empty dealloc context\n"); 7283 7284 brelse(tc->tc_last_eb_bh); 7285 7286 kfree(tc); 7287 } 7288