xref: /openbmc/linux/fs/ocfs2/alloc.c (revision d22aa615)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32 #include <linux/blkdev.h>
33 #include <linux/sched/signal.h>
34 
35 #include <cluster/masklog.h>
36 
37 #include "ocfs2.h"
38 
39 #include "alloc.h"
40 #include "aops.h"
41 #include "blockcheck.h"
42 #include "dlmglue.h"
43 #include "extent_map.h"
44 #include "inode.h"
45 #include "journal.h"
46 #include "localalloc.h"
47 #include "suballoc.h"
48 #include "sysfile.h"
49 #include "file.h"
50 #include "super.h"
51 #include "uptodate.h"
52 #include "xattr.h"
53 #include "refcounttree.h"
54 #include "ocfs2_trace.h"
55 
56 #include "buffer_head_io.h"
57 
58 enum ocfs2_contig_type {
59 	CONTIG_NONE = 0,
60 	CONTIG_LEFT,
61 	CONTIG_RIGHT,
62 	CONTIG_LEFTRIGHT,
63 };
64 
65 static enum ocfs2_contig_type
66 	ocfs2_extent_rec_contig(struct super_block *sb,
67 				struct ocfs2_extent_rec *ext,
68 				struct ocfs2_extent_rec *insert_rec);
69 /*
70  * Operations for a specific extent tree type.
71  *
72  * To implement an on-disk btree (extent tree) type in ocfs2, add
73  * an ocfs2_extent_tree_operations structure and the matching
74  * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
75  * for the allocation portion of the extent tree.
76  */
77 struct ocfs2_extent_tree_operations {
78 	/*
79 	 * last_eb_blk is the block number of the right most leaf extent
80 	 * block.  Most on-disk structures containing an extent tree store
81 	 * this value for fast access.  The ->eo_set_last_eb_blk() and
82 	 * ->eo_get_last_eb_blk() operations access this value.  They are
83 	 *  both required.
84 	 */
85 	void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
86 				   u64 blkno);
87 	u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
88 
89 	/*
90 	 * The on-disk structure usually keeps track of how many total
91 	 * clusters are stored in this extent tree.  This function updates
92 	 * that value.  new_clusters is the delta, and must be
93 	 * added to the total.  Required.
94 	 */
95 	void (*eo_update_clusters)(struct ocfs2_extent_tree *et,
96 				   u32 new_clusters);
97 
98 	/*
99 	 * If this extent tree is supported by an extent map, insert
100 	 * a record into the map.
101 	 */
102 	void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et,
103 				     struct ocfs2_extent_rec *rec);
104 
105 	/*
106 	 * If this extent tree is supported by an extent map, truncate the
107 	 * map to clusters,
108 	 */
109 	void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et,
110 				       u32 clusters);
111 
112 	/*
113 	 * If ->eo_insert_check() exists, it is called before rec is
114 	 * inserted into the extent tree.  It is optional.
115 	 */
116 	int (*eo_insert_check)(struct ocfs2_extent_tree *et,
117 			       struct ocfs2_extent_rec *rec);
118 	int (*eo_sanity_check)(struct ocfs2_extent_tree *et);
119 
120 	/*
121 	 * --------------------------------------------------------------
122 	 * The remaining are internal to ocfs2_extent_tree and don't have
123 	 * accessor functions
124 	 */
125 
126 	/*
127 	 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
128 	 * It is required.
129 	 */
130 	void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
131 
132 	/*
133 	 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
134 	 * it exists.  If it does not, et->et_max_leaf_clusters is set
135 	 * to 0 (unlimited).  Optional.
136 	 */
137 	void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et);
138 
139 	/*
140 	 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec
141 	 * are contiguous or not. Optional. Don't need to set it if use
142 	 * ocfs2_extent_rec as the tree leaf.
143 	 */
144 	enum ocfs2_contig_type
145 		(*eo_extent_contig)(struct ocfs2_extent_tree *et,
146 				    struct ocfs2_extent_rec *ext,
147 				    struct ocfs2_extent_rec *insert_rec);
148 };
149 
150 
151 /*
152  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
153  * in the methods.
154  */
155 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
156 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
157 					 u64 blkno);
158 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
159 					 u32 clusters);
160 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
161 					   struct ocfs2_extent_rec *rec);
162 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
163 					     u32 clusters);
164 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
165 				     struct ocfs2_extent_rec *rec);
166 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et);
167 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
168 static const struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
169 	.eo_set_last_eb_blk	= ocfs2_dinode_set_last_eb_blk,
170 	.eo_get_last_eb_blk	= ocfs2_dinode_get_last_eb_blk,
171 	.eo_update_clusters	= ocfs2_dinode_update_clusters,
172 	.eo_extent_map_insert	= ocfs2_dinode_extent_map_insert,
173 	.eo_extent_map_truncate	= ocfs2_dinode_extent_map_truncate,
174 	.eo_insert_check	= ocfs2_dinode_insert_check,
175 	.eo_sanity_check	= ocfs2_dinode_sanity_check,
176 	.eo_fill_root_el	= ocfs2_dinode_fill_root_el,
177 };
178 
179 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
180 					 u64 blkno)
181 {
182 	struct ocfs2_dinode *di = et->et_object;
183 
184 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
185 	di->i_last_eb_blk = cpu_to_le64(blkno);
186 }
187 
188 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
189 {
190 	struct ocfs2_dinode *di = et->et_object;
191 
192 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
193 	return le64_to_cpu(di->i_last_eb_blk);
194 }
195 
196 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
197 					 u32 clusters)
198 {
199 	struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
200 	struct ocfs2_dinode *di = et->et_object;
201 
202 	le32_add_cpu(&di->i_clusters, clusters);
203 	spin_lock(&oi->ip_lock);
204 	oi->ip_clusters = le32_to_cpu(di->i_clusters);
205 	spin_unlock(&oi->ip_lock);
206 }
207 
208 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
209 					   struct ocfs2_extent_rec *rec)
210 {
211 	struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
212 
213 	ocfs2_extent_map_insert_rec(inode, rec);
214 }
215 
216 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
217 					     u32 clusters)
218 {
219 	struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
220 
221 	ocfs2_extent_map_trunc(inode, clusters);
222 }
223 
224 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
225 				     struct ocfs2_extent_rec *rec)
226 {
227 	struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
228 	struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb);
229 
230 	BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL);
231 	mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
232 			(oi->ip_clusters != le32_to_cpu(rec->e_cpos)),
233 			"Device %s, asking for sparse allocation: inode %llu, "
234 			"cpos %u, clusters %u\n",
235 			osb->dev_str,
236 			(unsigned long long)oi->ip_blkno,
237 			rec->e_cpos, oi->ip_clusters);
238 
239 	return 0;
240 }
241 
242 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et)
243 {
244 	struct ocfs2_dinode *di = et->et_object;
245 
246 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
247 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
248 
249 	return 0;
250 }
251 
252 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
253 {
254 	struct ocfs2_dinode *di = et->et_object;
255 
256 	et->et_root_el = &di->id2.i_list;
257 }
258 
259 
260 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
261 {
262 	struct ocfs2_xattr_value_buf *vb = et->et_object;
263 
264 	et->et_root_el = &vb->vb_xv->xr_list;
265 }
266 
267 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
268 					      u64 blkno)
269 {
270 	struct ocfs2_xattr_value_buf *vb = et->et_object;
271 
272 	vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
273 }
274 
275 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
276 {
277 	struct ocfs2_xattr_value_buf *vb = et->et_object;
278 
279 	return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
280 }
281 
282 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et,
283 					      u32 clusters)
284 {
285 	struct ocfs2_xattr_value_buf *vb = et->et_object;
286 
287 	le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
288 }
289 
290 static const struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
291 	.eo_set_last_eb_blk	= ocfs2_xattr_value_set_last_eb_blk,
292 	.eo_get_last_eb_blk	= ocfs2_xattr_value_get_last_eb_blk,
293 	.eo_update_clusters	= ocfs2_xattr_value_update_clusters,
294 	.eo_fill_root_el	= ocfs2_xattr_value_fill_root_el,
295 };
296 
297 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
298 {
299 	struct ocfs2_xattr_block *xb = et->et_object;
300 
301 	et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
302 }
303 
304 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et)
305 {
306 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
307 	et->et_max_leaf_clusters =
308 		ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
309 }
310 
311 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
312 					     u64 blkno)
313 {
314 	struct ocfs2_xattr_block *xb = et->et_object;
315 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
316 
317 	xt->xt_last_eb_blk = cpu_to_le64(blkno);
318 }
319 
320 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
321 {
322 	struct ocfs2_xattr_block *xb = et->et_object;
323 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
324 
325 	return le64_to_cpu(xt->xt_last_eb_blk);
326 }
327 
328 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et,
329 					     u32 clusters)
330 {
331 	struct ocfs2_xattr_block *xb = et->et_object;
332 
333 	le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
334 }
335 
336 static const struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
337 	.eo_set_last_eb_blk	= ocfs2_xattr_tree_set_last_eb_blk,
338 	.eo_get_last_eb_blk	= ocfs2_xattr_tree_get_last_eb_blk,
339 	.eo_update_clusters	= ocfs2_xattr_tree_update_clusters,
340 	.eo_fill_root_el	= ocfs2_xattr_tree_fill_root_el,
341 	.eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
342 };
343 
344 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
345 					  u64 blkno)
346 {
347 	struct ocfs2_dx_root_block *dx_root = et->et_object;
348 
349 	dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
350 }
351 
352 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
353 {
354 	struct ocfs2_dx_root_block *dx_root = et->et_object;
355 
356 	return le64_to_cpu(dx_root->dr_last_eb_blk);
357 }
358 
359 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et,
360 					  u32 clusters)
361 {
362 	struct ocfs2_dx_root_block *dx_root = et->et_object;
363 
364 	le32_add_cpu(&dx_root->dr_clusters, clusters);
365 }
366 
367 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et)
368 {
369 	struct ocfs2_dx_root_block *dx_root = et->et_object;
370 
371 	BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
372 
373 	return 0;
374 }
375 
376 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
377 {
378 	struct ocfs2_dx_root_block *dx_root = et->et_object;
379 
380 	et->et_root_el = &dx_root->dr_list;
381 }
382 
383 static const struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
384 	.eo_set_last_eb_blk	= ocfs2_dx_root_set_last_eb_blk,
385 	.eo_get_last_eb_blk	= ocfs2_dx_root_get_last_eb_blk,
386 	.eo_update_clusters	= ocfs2_dx_root_update_clusters,
387 	.eo_sanity_check	= ocfs2_dx_root_sanity_check,
388 	.eo_fill_root_el	= ocfs2_dx_root_fill_root_el,
389 };
390 
391 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et)
392 {
393 	struct ocfs2_refcount_block *rb = et->et_object;
394 
395 	et->et_root_el = &rb->rf_list;
396 }
397 
398 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
399 						u64 blkno)
400 {
401 	struct ocfs2_refcount_block *rb = et->et_object;
402 
403 	rb->rf_last_eb_blk = cpu_to_le64(blkno);
404 }
405 
406 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
407 {
408 	struct ocfs2_refcount_block *rb = et->et_object;
409 
410 	return le64_to_cpu(rb->rf_last_eb_blk);
411 }
412 
413 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et,
414 						u32 clusters)
415 {
416 	struct ocfs2_refcount_block *rb = et->et_object;
417 
418 	le32_add_cpu(&rb->rf_clusters, clusters);
419 }
420 
421 static enum ocfs2_contig_type
422 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et,
423 				  struct ocfs2_extent_rec *ext,
424 				  struct ocfs2_extent_rec *insert_rec)
425 {
426 	return CONTIG_NONE;
427 }
428 
429 static const struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = {
430 	.eo_set_last_eb_blk	= ocfs2_refcount_tree_set_last_eb_blk,
431 	.eo_get_last_eb_blk	= ocfs2_refcount_tree_get_last_eb_blk,
432 	.eo_update_clusters	= ocfs2_refcount_tree_update_clusters,
433 	.eo_fill_root_el	= ocfs2_refcount_tree_fill_root_el,
434 	.eo_extent_contig	= ocfs2_refcount_tree_extent_contig,
435 };
436 
437 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
438 				     struct ocfs2_caching_info *ci,
439 				     struct buffer_head *bh,
440 				     ocfs2_journal_access_func access,
441 				     void *obj,
442 				     const struct ocfs2_extent_tree_operations *ops)
443 {
444 	et->et_ops = ops;
445 	et->et_root_bh = bh;
446 	et->et_ci = ci;
447 	et->et_root_journal_access = access;
448 	if (!obj)
449 		obj = (void *)bh->b_data;
450 	et->et_object = obj;
451 
452 	et->et_ops->eo_fill_root_el(et);
453 	if (!et->et_ops->eo_fill_max_leaf_clusters)
454 		et->et_max_leaf_clusters = 0;
455 	else
456 		et->et_ops->eo_fill_max_leaf_clusters(et);
457 }
458 
459 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
460 				   struct ocfs2_caching_info *ci,
461 				   struct buffer_head *bh)
462 {
463 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di,
464 				 NULL, &ocfs2_dinode_et_ops);
465 }
466 
467 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
468 				       struct ocfs2_caching_info *ci,
469 				       struct buffer_head *bh)
470 {
471 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb,
472 				 NULL, &ocfs2_xattr_tree_et_ops);
473 }
474 
475 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
476 					struct ocfs2_caching_info *ci,
477 					struct ocfs2_xattr_value_buf *vb)
478 {
479 	__ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb,
480 				 &ocfs2_xattr_value_et_ops);
481 }
482 
483 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
484 				    struct ocfs2_caching_info *ci,
485 				    struct buffer_head *bh)
486 {
487 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr,
488 				 NULL, &ocfs2_dx_root_et_ops);
489 }
490 
491 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et,
492 				     struct ocfs2_caching_info *ci,
493 				     struct buffer_head *bh)
494 {
495 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb,
496 				 NULL, &ocfs2_refcount_tree_et_ops);
497 }
498 
499 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
500 					    u64 new_last_eb_blk)
501 {
502 	et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
503 }
504 
505 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
506 {
507 	return et->et_ops->eo_get_last_eb_blk(et);
508 }
509 
510 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et,
511 					    u32 clusters)
512 {
513 	et->et_ops->eo_update_clusters(et, clusters);
514 }
515 
516 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et,
517 					      struct ocfs2_extent_rec *rec)
518 {
519 	if (et->et_ops->eo_extent_map_insert)
520 		et->et_ops->eo_extent_map_insert(et, rec);
521 }
522 
523 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et,
524 						u32 clusters)
525 {
526 	if (et->et_ops->eo_extent_map_truncate)
527 		et->et_ops->eo_extent_map_truncate(et, clusters);
528 }
529 
530 static inline int ocfs2_et_root_journal_access(handle_t *handle,
531 					       struct ocfs2_extent_tree *et,
532 					       int type)
533 {
534 	return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh,
535 					  type);
536 }
537 
538 static inline enum ocfs2_contig_type
539 	ocfs2_et_extent_contig(struct ocfs2_extent_tree *et,
540 			       struct ocfs2_extent_rec *rec,
541 			       struct ocfs2_extent_rec *insert_rec)
542 {
543 	if (et->et_ops->eo_extent_contig)
544 		return et->et_ops->eo_extent_contig(et, rec, insert_rec);
545 
546 	return ocfs2_extent_rec_contig(
547 				ocfs2_metadata_cache_get_super(et->et_ci),
548 				rec, insert_rec);
549 }
550 
551 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et,
552 					struct ocfs2_extent_rec *rec)
553 {
554 	int ret = 0;
555 
556 	if (et->et_ops->eo_insert_check)
557 		ret = et->et_ops->eo_insert_check(et, rec);
558 	return ret;
559 }
560 
561 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et)
562 {
563 	int ret = 0;
564 
565 	if (et->et_ops->eo_sanity_check)
566 		ret = et->et_ops->eo_sanity_check(et);
567 	return ret;
568 }
569 
570 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
571 					 struct ocfs2_extent_block *eb);
572 static void ocfs2_adjust_rightmost_records(handle_t *handle,
573 					   struct ocfs2_extent_tree *et,
574 					   struct ocfs2_path *path,
575 					   struct ocfs2_extent_rec *insert_rec);
576 /*
577  * Reset the actual path elements so that we can re-use the structure
578  * to build another path. Generally, this involves freeing the buffer
579  * heads.
580  */
581 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
582 {
583 	int i, start = 0, depth = 0;
584 	struct ocfs2_path_item *node;
585 
586 	if (keep_root)
587 		start = 1;
588 
589 	for(i = start; i < path_num_items(path); i++) {
590 		node = &path->p_node[i];
591 
592 		brelse(node->bh);
593 		node->bh = NULL;
594 		node->el = NULL;
595 	}
596 
597 	/*
598 	 * Tree depth may change during truncate, or insert. If we're
599 	 * keeping the root extent list, then make sure that our path
600 	 * structure reflects the proper depth.
601 	 */
602 	if (keep_root)
603 		depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
604 	else
605 		path_root_access(path) = NULL;
606 
607 	path->p_tree_depth = depth;
608 }
609 
610 void ocfs2_free_path(struct ocfs2_path *path)
611 {
612 	if (path) {
613 		ocfs2_reinit_path(path, 0);
614 		kfree(path);
615 	}
616 }
617 
618 /*
619  * All the elements of src into dest. After this call, src could be freed
620  * without affecting dest.
621  *
622  * Both paths should have the same root. Any non-root elements of dest
623  * will be freed.
624  */
625 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
626 {
627 	int i;
628 
629 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
630 	BUG_ON(path_root_el(dest) != path_root_el(src));
631 	BUG_ON(path_root_access(dest) != path_root_access(src));
632 
633 	ocfs2_reinit_path(dest, 1);
634 
635 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
636 		dest->p_node[i].bh = src->p_node[i].bh;
637 		dest->p_node[i].el = src->p_node[i].el;
638 
639 		if (dest->p_node[i].bh)
640 			get_bh(dest->p_node[i].bh);
641 	}
642 }
643 
644 /*
645  * Make the *dest path the same as src and re-initialize src path to
646  * have a root only.
647  */
648 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
649 {
650 	int i;
651 
652 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
653 	BUG_ON(path_root_access(dest) != path_root_access(src));
654 
655 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
656 		brelse(dest->p_node[i].bh);
657 
658 		dest->p_node[i].bh = src->p_node[i].bh;
659 		dest->p_node[i].el = src->p_node[i].el;
660 
661 		src->p_node[i].bh = NULL;
662 		src->p_node[i].el = NULL;
663 	}
664 }
665 
666 /*
667  * Insert an extent block at given index.
668  *
669  * This will not take an additional reference on eb_bh.
670  */
671 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
672 					struct buffer_head *eb_bh)
673 {
674 	struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
675 
676 	/*
677 	 * Right now, no root bh is an extent block, so this helps
678 	 * catch code errors with dinode trees. The assertion can be
679 	 * safely removed if we ever need to insert extent block
680 	 * structures at the root.
681 	 */
682 	BUG_ON(index == 0);
683 
684 	path->p_node[index].bh = eb_bh;
685 	path->p_node[index].el = &eb->h_list;
686 }
687 
688 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
689 					 struct ocfs2_extent_list *root_el,
690 					 ocfs2_journal_access_func access)
691 {
692 	struct ocfs2_path *path;
693 
694 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
695 
696 	path = kzalloc(sizeof(*path), GFP_NOFS);
697 	if (path) {
698 		path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
699 		get_bh(root_bh);
700 		path_root_bh(path) = root_bh;
701 		path_root_el(path) = root_el;
702 		path_root_access(path) = access;
703 	}
704 
705 	return path;
706 }
707 
708 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
709 {
710 	return ocfs2_new_path(path_root_bh(path), path_root_el(path),
711 			      path_root_access(path));
712 }
713 
714 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
715 {
716 	return ocfs2_new_path(et->et_root_bh, et->et_root_el,
717 			      et->et_root_journal_access);
718 }
719 
720 /*
721  * Journal the buffer at depth idx.  All idx>0 are extent_blocks,
722  * otherwise it's the root_access function.
723  *
724  * I don't like the way this function's name looks next to
725  * ocfs2_journal_access_path(), but I don't have a better one.
726  */
727 int ocfs2_path_bh_journal_access(handle_t *handle,
728 				 struct ocfs2_caching_info *ci,
729 				 struct ocfs2_path *path,
730 				 int idx)
731 {
732 	ocfs2_journal_access_func access = path_root_access(path);
733 
734 	if (!access)
735 		access = ocfs2_journal_access;
736 
737 	if (idx)
738 		access = ocfs2_journal_access_eb;
739 
740 	return access(handle, ci, path->p_node[idx].bh,
741 		      OCFS2_JOURNAL_ACCESS_WRITE);
742 }
743 
744 /*
745  * Convenience function to journal all components in a path.
746  */
747 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci,
748 			      handle_t *handle,
749 			      struct ocfs2_path *path)
750 {
751 	int i, ret = 0;
752 
753 	if (!path)
754 		goto out;
755 
756 	for(i = 0; i < path_num_items(path); i++) {
757 		ret = ocfs2_path_bh_journal_access(handle, ci, path, i);
758 		if (ret < 0) {
759 			mlog_errno(ret);
760 			goto out;
761 		}
762 	}
763 
764 out:
765 	return ret;
766 }
767 
768 /*
769  * Return the index of the extent record which contains cluster #v_cluster.
770  * -1 is returned if it was not found.
771  *
772  * Should work fine on interior and exterior nodes.
773  */
774 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
775 {
776 	int ret = -1;
777 	int i;
778 	struct ocfs2_extent_rec *rec;
779 	u32 rec_end, rec_start, clusters;
780 
781 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
782 		rec = &el->l_recs[i];
783 
784 		rec_start = le32_to_cpu(rec->e_cpos);
785 		clusters = ocfs2_rec_clusters(el, rec);
786 
787 		rec_end = rec_start + clusters;
788 
789 		if (v_cluster >= rec_start && v_cluster < rec_end) {
790 			ret = i;
791 			break;
792 		}
793 	}
794 
795 	return ret;
796 }
797 
798 /*
799  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
800  * ocfs2_extent_rec_contig only work properly against leaf nodes!
801  */
802 static int ocfs2_block_extent_contig(struct super_block *sb,
803 				     struct ocfs2_extent_rec *ext,
804 				     u64 blkno)
805 {
806 	u64 blk_end = le64_to_cpu(ext->e_blkno);
807 
808 	blk_end += ocfs2_clusters_to_blocks(sb,
809 				    le16_to_cpu(ext->e_leaf_clusters));
810 
811 	return blkno == blk_end;
812 }
813 
814 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
815 				  struct ocfs2_extent_rec *right)
816 {
817 	u32 left_range;
818 
819 	left_range = le32_to_cpu(left->e_cpos) +
820 		le16_to_cpu(left->e_leaf_clusters);
821 
822 	return (left_range == le32_to_cpu(right->e_cpos));
823 }
824 
825 static enum ocfs2_contig_type
826 	ocfs2_extent_rec_contig(struct super_block *sb,
827 				struct ocfs2_extent_rec *ext,
828 				struct ocfs2_extent_rec *insert_rec)
829 {
830 	u64 blkno = le64_to_cpu(insert_rec->e_blkno);
831 
832 	/*
833 	 * Refuse to coalesce extent records with different flag
834 	 * fields - we don't want to mix unwritten extents with user
835 	 * data.
836 	 */
837 	if (ext->e_flags != insert_rec->e_flags)
838 		return CONTIG_NONE;
839 
840 	if (ocfs2_extents_adjacent(ext, insert_rec) &&
841 	    ocfs2_block_extent_contig(sb, ext, blkno))
842 			return CONTIG_RIGHT;
843 
844 	blkno = le64_to_cpu(ext->e_blkno);
845 	if (ocfs2_extents_adjacent(insert_rec, ext) &&
846 	    ocfs2_block_extent_contig(sb, insert_rec, blkno))
847 		return CONTIG_LEFT;
848 
849 	return CONTIG_NONE;
850 }
851 
852 /*
853  * NOTE: We can have pretty much any combination of contiguousness and
854  * appending.
855  *
856  * The usefulness of APPEND_TAIL is more in that it lets us know that
857  * we'll have to update the path to that leaf.
858  */
859 enum ocfs2_append_type {
860 	APPEND_NONE = 0,
861 	APPEND_TAIL,
862 };
863 
864 enum ocfs2_split_type {
865 	SPLIT_NONE = 0,
866 	SPLIT_LEFT,
867 	SPLIT_RIGHT,
868 };
869 
870 struct ocfs2_insert_type {
871 	enum ocfs2_split_type	ins_split;
872 	enum ocfs2_append_type	ins_appending;
873 	enum ocfs2_contig_type	ins_contig;
874 	int			ins_contig_index;
875 	int			ins_tree_depth;
876 };
877 
878 struct ocfs2_merge_ctxt {
879 	enum ocfs2_contig_type	c_contig_type;
880 	int			c_has_empty_extent;
881 	int			c_split_covers_rec;
882 };
883 
884 static int ocfs2_validate_extent_block(struct super_block *sb,
885 				       struct buffer_head *bh)
886 {
887 	int rc;
888 	struct ocfs2_extent_block *eb =
889 		(struct ocfs2_extent_block *)bh->b_data;
890 
891 	trace_ocfs2_validate_extent_block((unsigned long long)bh->b_blocknr);
892 
893 	BUG_ON(!buffer_uptodate(bh));
894 
895 	/*
896 	 * If the ecc fails, we return the error but otherwise
897 	 * leave the filesystem running.  We know any error is
898 	 * local to this block.
899 	 */
900 	rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
901 	if (rc) {
902 		mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
903 		     (unsigned long long)bh->b_blocknr);
904 		return rc;
905 	}
906 
907 	/*
908 	 * Errors after here are fatal.
909 	 */
910 
911 	if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
912 		rc = ocfs2_error(sb,
913 				 "Extent block #%llu has bad signature %.*s\n",
914 				 (unsigned long long)bh->b_blocknr, 7,
915 				 eb->h_signature);
916 		goto bail;
917 	}
918 
919 	if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
920 		rc = ocfs2_error(sb,
921 				 "Extent block #%llu has an invalid h_blkno of %llu\n",
922 				 (unsigned long long)bh->b_blocknr,
923 				 (unsigned long long)le64_to_cpu(eb->h_blkno));
924 		goto bail;
925 	}
926 
927 	if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
928 		rc = ocfs2_error(sb,
929 				 "Extent block #%llu has an invalid h_fs_generation of #%u\n",
930 				 (unsigned long long)bh->b_blocknr,
931 				 le32_to_cpu(eb->h_fs_generation));
932 		goto bail;
933 	}
934 bail:
935 	return rc;
936 }
937 
938 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno,
939 			    struct buffer_head **bh)
940 {
941 	int rc;
942 	struct buffer_head *tmp = *bh;
943 
944 	rc = ocfs2_read_block(ci, eb_blkno, &tmp,
945 			      ocfs2_validate_extent_block);
946 
947 	/* If ocfs2_read_block() got us a new bh, pass it up. */
948 	if (!rc && !*bh)
949 		*bh = tmp;
950 
951 	return rc;
952 }
953 
954 
955 /*
956  * How many free extents have we got before we need more meta data?
957  */
958 int ocfs2_num_free_extents(struct ocfs2_extent_tree *et)
959 {
960 	int retval;
961 	struct ocfs2_extent_list *el = NULL;
962 	struct ocfs2_extent_block *eb;
963 	struct buffer_head *eb_bh = NULL;
964 	u64 last_eb_blk = 0;
965 
966 	el = et->et_root_el;
967 	last_eb_blk = ocfs2_et_get_last_eb_blk(et);
968 
969 	if (last_eb_blk) {
970 		retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk,
971 						 &eb_bh);
972 		if (retval < 0) {
973 			mlog_errno(retval);
974 			goto bail;
975 		}
976 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
977 		el = &eb->h_list;
978 	}
979 
980 	BUG_ON(el->l_tree_depth != 0);
981 
982 	retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
983 bail:
984 	brelse(eb_bh);
985 
986 	trace_ocfs2_num_free_extents(retval);
987 	return retval;
988 }
989 
990 /* expects array to already be allocated
991  *
992  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
993  * l_count for you
994  */
995 static int ocfs2_create_new_meta_bhs(handle_t *handle,
996 				     struct ocfs2_extent_tree *et,
997 				     int wanted,
998 				     struct ocfs2_alloc_context *meta_ac,
999 				     struct buffer_head *bhs[])
1000 {
1001 	int count, status, i;
1002 	u16 suballoc_bit_start;
1003 	u32 num_got;
1004 	u64 suballoc_loc, first_blkno;
1005 	struct ocfs2_super *osb =
1006 		OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
1007 	struct ocfs2_extent_block *eb;
1008 
1009 	count = 0;
1010 	while (count < wanted) {
1011 		status = ocfs2_claim_metadata(handle,
1012 					      meta_ac,
1013 					      wanted - count,
1014 					      &suballoc_loc,
1015 					      &suballoc_bit_start,
1016 					      &num_got,
1017 					      &first_blkno);
1018 		if (status < 0) {
1019 			mlog_errno(status);
1020 			goto bail;
1021 		}
1022 
1023 		for(i = count;  i < (num_got + count); i++) {
1024 			bhs[i] = sb_getblk(osb->sb, first_blkno);
1025 			if (bhs[i] == NULL) {
1026 				status = -ENOMEM;
1027 				mlog_errno(status);
1028 				goto bail;
1029 			}
1030 			ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]);
1031 
1032 			status = ocfs2_journal_access_eb(handle, et->et_ci,
1033 							 bhs[i],
1034 							 OCFS2_JOURNAL_ACCESS_CREATE);
1035 			if (status < 0) {
1036 				mlog_errno(status);
1037 				goto bail;
1038 			}
1039 
1040 			memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
1041 			eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
1042 			/* Ok, setup the minimal stuff here. */
1043 			strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
1044 			eb->h_blkno = cpu_to_le64(first_blkno);
1045 			eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
1046 			eb->h_suballoc_slot =
1047 				cpu_to_le16(meta_ac->ac_alloc_slot);
1048 			eb->h_suballoc_loc = cpu_to_le64(suballoc_loc);
1049 			eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
1050 			eb->h_list.l_count =
1051 				cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
1052 
1053 			suballoc_bit_start++;
1054 			first_blkno++;
1055 
1056 			/* We'll also be dirtied by the caller, so
1057 			 * this isn't absolutely necessary. */
1058 			ocfs2_journal_dirty(handle, bhs[i]);
1059 		}
1060 
1061 		count += num_got;
1062 	}
1063 
1064 	status = 0;
1065 bail:
1066 	if (status < 0) {
1067 		for(i = 0; i < wanted; i++) {
1068 			brelse(bhs[i]);
1069 			bhs[i] = NULL;
1070 		}
1071 		mlog_errno(status);
1072 	}
1073 	return status;
1074 }
1075 
1076 /*
1077  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1078  *
1079  * Returns the sum of the rightmost extent rec logical offset and
1080  * cluster count.
1081  *
1082  * ocfs2_add_branch() uses this to determine what logical cluster
1083  * value should be populated into the leftmost new branch records.
1084  *
1085  * ocfs2_shift_tree_depth() uses this to determine the # clusters
1086  * value for the new topmost tree record.
1087  */
1088 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
1089 {
1090 	int i;
1091 
1092 	i = le16_to_cpu(el->l_next_free_rec) - 1;
1093 
1094 	return le32_to_cpu(el->l_recs[i].e_cpos) +
1095 		ocfs2_rec_clusters(el, &el->l_recs[i]);
1096 }
1097 
1098 /*
1099  * Change range of the branches in the right most path according to the leaf
1100  * extent block's rightmost record.
1101  */
1102 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1103 					 struct ocfs2_extent_tree *et)
1104 {
1105 	int status;
1106 	struct ocfs2_path *path = NULL;
1107 	struct ocfs2_extent_list *el;
1108 	struct ocfs2_extent_rec *rec;
1109 
1110 	path = ocfs2_new_path_from_et(et);
1111 	if (!path) {
1112 		status = -ENOMEM;
1113 		return status;
1114 	}
1115 
1116 	status = ocfs2_find_path(et->et_ci, path, UINT_MAX);
1117 	if (status < 0) {
1118 		mlog_errno(status);
1119 		goto out;
1120 	}
1121 
1122 	status = ocfs2_extend_trans(handle, path_num_items(path));
1123 	if (status < 0) {
1124 		mlog_errno(status);
1125 		goto out;
1126 	}
1127 
1128 	status = ocfs2_journal_access_path(et->et_ci, handle, path);
1129 	if (status < 0) {
1130 		mlog_errno(status);
1131 		goto out;
1132 	}
1133 
1134 	el = path_leaf_el(path);
1135 	rec = &el->l_recs[le16_to_cpu(el->l_next_free_rec) - 1];
1136 
1137 	ocfs2_adjust_rightmost_records(handle, et, path, rec);
1138 
1139 out:
1140 	ocfs2_free_path(path);
1141 	return status;
1142 }
1143 
1144 /*
1145  * Add an entire tree branch to our inode. eb_bh is the extent block
1146  * to start at, if we don't want to start the branch at the root
1147  * structure.
1148  *
1149  * last_eb_bh is required as we have to update it's next_leaf pointer
1150  * for the new last extent block.
1151  *
1152  * the new branch will be 'empty' in the sense that every block will
1153  * contain a single record with cluster count == 0.
1154  */
1155 static int ocfs2_add_branch(handle_t *handle,
1156 			    struct ocfs2_extent_tree *et,
1157 			    struct buffer_head *eb_bh,
1158 			    struct buffer_head **last_eb_bh,
1159 			    struct ocfs2_alloc_context *meta_ac)
1160 {
1161 	int status, new_blocks, i;
1162 	u64 next_blkno, new_last_eb_blk;
1163 	struct buffer_head *bh;
1164 	struct buffer_head **new_eb_bhs = NULL;
1165 	struct ocfs2_extent_block *eb;
1166 	struct ocfs2_extent_list  *eb_el;
1167 	struct ocfs2_extent_list  *el;
1168 	u32 new_cpos, root_end;
1169 
1170 	BUG_ON(!last_eb_bh || !*last_eb_bh);
1171 
1172 	if (eb_bh) {
1173 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1174 		el = &eb->h_list;
1175 	} else
1176 		el = et->et_root_el;
1177 
1178 	/* we never add a branch to a leaf. */
1179 	BUG_ON(!el->l_tree_depth);
1180 
1181 	new_blocks = le16_to_cpu(el->l_tree_depth);
1182 
1183 	eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1184 	new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1185 	root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1186 
1187 	/*
1188 	 * If there is a gap before the root end and the real end
1189 	 * of the righmost leaf block, we need to remove the gap
1190 	 * between new_cpos and root_end first so that the tree
1191 	 * is consistent after we add a new branch(it will start
1192 	 * from new_cpos).
1193 	 */
1194 	if (root_end > new_cpos) {
1195 		trace_ocfs2_adjust_rightmost_branch(
1196 			(unsigned long long)
1197 			ocfs2_metadata_cache_owner(et->et_ci),
1198 			root_end, new_cpos);
1199 
1200 		status = ocfs2_adjust_rightmost_branch(handle, et);
1201 		if (status) {
1202 			mlog_errno(status);
1203 			goto bail;
1204 		}
1205 	}
1206 
1207 	/* allocate the number of new eb blocks we need */
1208 	new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1209 			     GFP_KERNEL);
1210 	if (!new_eb_bhs) {
1211 		status = -ENOMEM;
1212 		mlog_errno(status);
1213 		goto bail;
1214 	}
1215 
1216 	status = ocfs2_create_new_meta_bhs(handle, et, new_blocks,
1217 					   meta_ac, new_eb_bhs);
1218 	if (status < 0) {
1219 		mlog_errno(status);
1220 		goto bail;
1221 	}
1222 
1223 	/* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1224 	 * linked with the rest of the tree.
1225 	 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1226 	 *
1227 	 * when we leave the loop, new_last_eb_blk will point to the
1228 	 * newest leaf, and next_blkno will point to the topmost extent
1229 	 * block. */
1230 	next_blkno = new_last_eb_blk = 0;
1231 	for(i = 0; i < new_blocks; i++) {
1232 		bh = new_eb_bhs[i];
1233 		eb = (struct ocfs2_extent_block *) bh->b_data;
1234 		/* ocfs2_create_new_meta_bhs() should create it right! */
1235 		BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1236 		eb_el = &eb->h_list;
1237 
1238 		status = ocfs2_journal_access_eb(handle, et->et_ci, bh,
1239 						 OCFS2_JOURNAL_ACCESS_CREATE);
1240 		if (status < 0) {
1241 			mlog_errno(status);
1242 			goto bail;
1243 		}
1244 
1245 		eb->h_next_leaf_blk = 0;
1246 		eb_el->l_tree_depth = cpu_to_le16(i);
1247 		eb_el->l_next_free_rec = cpu_to_le16(1);
1248 		/*
1249 		 * This actually counts as an empty extent as
1250 		 * c_clusters == 0
1251 		 */
1252 		eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1253 		eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1254 		/*
1255 		 * eb_el isn't always an interior node, but even leaf
1256 		 * nodes want a zero'd flags and reserved field so
1257 		 * this gets the whole 32 bits regardless of use.
1258 		 */
1259 		eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1260 		if (!eb_el->l_tree_depth)
1261 			new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1262 
1263 		ocfs2_journal_dirty(handle, bh);
1264 		next_blkno = le64_to_cpu(eb->h_blkno);
1265 	}
1266 
1267 	/* This is a bit hairy. We want to update up to three blocks
1268 	 * here without leaving any of them in an inconsistent state
1269 	 * in case of error. We don't have to worry about
1270 	 * journal_dirty erroring as it won't unless we've aborted the
1271 	 * handle (in which case we would never be here) so reserving
1272 	 * the write with journal_access is all we need to do. */
1273 	status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh,
1274 					 OCFS2_JOURNAL_ACCESS_WRITE);
1275 	if (status < 0) {
1276 		mlog_errno(status);
1277 		goto bail;
1278 	}
1279 	status = ocfs2_et_root_journal_access(handle, et,
1280 					      OCFS2_JOURNAL_ACCESS_WRITE);
1281 	if (status < 0) {
1282 		mlog_errno(status);
1283 		goto bail;
1284 	}
1285 	if (eb_bh) {
1286 		status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh,
1287 						 OCFS2_JOURNAL_ACCESS_WRITE);
1288 		if (status < 0) {
1289 			mlog_errno(status);
1290 			goto bail;
1291 		}
1292 	}
1293 
1294 	/* Link the new branch into the rest of the tree (el will
1295 	 * either be on the root_bh, or the extent block passed in. */
1296 	i = le16_to_cpu(el->l_next_free_rec);
1297 	el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1298 	el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1299 	el->l_recs[i].e_int_clusters = 0;
1300 	le16_add_cpu(&el->l_next_free_rec, 1);
1301 
1302 	/* fe needs a new last extent block pointer, as does the
1303 	 * next_leaf on the previously last-extent-block. */
1304 	ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1305 
1306 	eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1307 	eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1308 
1309 	ocfs2_journal_dirty(handle, *last_eb_bh);
1310 	ocfs2_journal_dirty(handle, et->et_root_bh);
1311 	if (eb_bh)
1312 		ocfs2_journal_dirty(handle, eb_bh);
1313 
1314 	/*
1315 	 * Some callers want to track the rightmost leaf so pass it
1316 	 * back here.
1317 	 */
1318 	brelse(*last_eb_bh);
1319 	get_bh(new_eb_bhs[0]);
1320 	*last_eb_bh = new_eb_bhs[0];
1321 
1322 	status = 0;
1323 bail:
1324 	if (new_eb_bhs) {
1325 		for (i = 0; i < new_blocks; i++)
1326 			brelse(new_eb_bhs[i]);
1327 		kfree(new_eb_bhs);
1328 	}
1329 
1330 	return status;
1331 }
1332 
1333 /*
1334  * adds another level to the allocation tree.
1335  * returns back the new extent block so you can add a branch to it
1336  * after this call.
1337  */
1338 static int ocfs2_shift_tree_depth(handle_t *handle,
1339 				  struct ocfs2_extent_tree *et,
1340 				  struct ocfs2_alloc_context *meta_ac,
1341 				  struct buffer_head **ret_new_eb_bh)
1342 {
1343 	int status, i;
1344 	u32 new_clusters;
1345 	struct buffer_head *new_eb_bh = NULL;
1346 	struct ocfs2_extent_block *eb;
1347 	struct ocfs2_extent_list  *root_el;
1348 	struct ocfs2_extent_list  *eb_el;
1349 
1350 	status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac,
1351 					   &new_eb_bh);
1352 	if (status < 0) {
1353 		mlog_errno(status);
1354 		goto bail;
1355 	}
1356 
1357 	eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1358 	/* ocfs2_create_new_meta_bhs() should create it right! */
1359 	BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1360 
1361 	eb_el = &eb->h_list;
1362 	root_el = et->et_root_el;
1363 
1364 	status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh,
1365 					 OCFS2_JOURNAL_ACCESS_CREATE);
1366 	if (status < 0) {
1367 		mlog_errno(status);
1368 		goto bail;
1369 	}
1370 
1371 	/* copy the root extent list data into the new extent block */
1372 	eb_el->l_tree_depth = root_el->l_tree_depth;
1373 	eb_el->l_next_free_rec = root_el->l_next_free_rec;
1374 	for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1375 		eb_el->l_recs[i] = root_el->l_recs[i];
1376 
1377 	ocfs2_journal_dirty(handle, new_eb_bh);
1378 
1379 	status = ocfs2_et_root_journal_access(handle, et,
1380 					      OCFS2_JOURNAL_ACCESS_WRITE);
1381 	if (status < 0) {
1382 		mlog_errno(status);
1383 		goto bail;
1384 	}
1385 
1386 	new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1387 
1388 	/* update root_bh now */
1389 	le16_add_cpu(&root_el->l_tree_depth, 1);
1390 	root_el->l_recs[0].e_cpos = 0;
1391 	root_el->l_recs[0].e_blkno = eb->h_blkno;
1392 	root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1393 	for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1394 		memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1395 	root_el->l_next_free_rec = cpu_to_le16(1);
1396 
1397 	/* If this is our 1st tree depth shift, then last_eb_blk
1398 	 * becomes the allocated extent block */
1399 	if (root_el->l_tree_depth == cpu_to_le16(1))
1400 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1401 
1402 	ocfs2_journal_dirty(handle, et->et_root_bh);
1403 
1404 	*ret_new_eb_bh = new_eb_bh;
1405 	new_eb_bh = NULL;
1406 	status = 0;
1407 bail:
1408 	brelse(new_eb_bh);
1409 
1410 	return status;
1411 }
1412 
1413 /*
1414  * Should only be called when there is no space left in any of the
1415  * leaf nodes. What we want to do is find the lowest tree depth
1416  * non-leaf extent block with room for new records. There are three
1417  * valid results of this search:
1418  *
1419  * 1) a lowest extent block is found, then we pass it back in
1420  *    *lowest_eb_bh and return '0'
1421  *
1422  * 2) the search fails to find anything, but the root_el has room. We
1423  *    pass NULL back in *lowest_eb_bh, but still return '0'
1424  *
1425  * 3) the search fails to find anything AND the root_el is full, in
1426  *    which case we return > 0
1427  *
1428  * return status < 0 indicates an error.
1429  */
1430 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et,
1431 				    struct buffer_head **target_bh)
1432 {
1433 	int status = 0, i;
1434 	u64 blkno;
1435 	struct ocfs2_extent_block *eb;
1436 	struct ocfs2_extent_list  *el;
1437 	struct buffer_head *bh = NULL;
1438 	struct buffer_head *lowest_bh = NULL;
1439 
1440 	*target_bh = NULL;
1441 
1442 	el = et->et_root_el;
1443 
1444 	while(le16_to_cpu(el->l_tree_depth) > 1) {
1445 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1446 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1447 				    "Owner %llu has empty extent list (next_free_rec == 0)\n",
1448 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
1449 			status = -EIO;
1450 			goto bail;
1451 		}
1452 		i = le16_to_cpu(el->l_next_free_rec) - 1;
1453 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1454 		if (!blkno) {
1455 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1456 				    "Owner %llu has extent list where extent # %d has no physical block start\n",
1457 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i);
1458 			status = -EIO;
1459 			goto bail;
1460 		}
1461 
1462 		brelse(bh);
1463 		bh = NULL;
1464 
1465 		status = ocfs2_read_extent_block(et->et_ci, blkno, &bh);
1466 		if (status < 0) {
1467 			mlog_errno(status);
1468 			goto bail;
1469 		}
1470 
1471 		eb = (struct ocfs2_extent_block *) bh->b_data;
1472 		el = &eb->h_list;
1473 
1474 		if (le16_to_cpu(el->l_next_free_rec) <
1475 		    le16_to_cpu(el->l_count)) {
1476 			brelse(lowest_bh);
1477 			lowest_bh = bh;
1478 			get_bh(lowest_bh);
1479 		}
1480 	}
1481 
1482 	/* If we didn't find one and the fe doesn't have any room,
1483 	 * then return '1' */
1484 	el = et->et_root_el;
1485 	if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1486 		status = 1;
1487 
1488 	*target_bh = lowest_bh;
1489 bail:
1490 	brelse(bh);
1491 
1492 	return status;
1493 }
1494 
1495 /*
1496  * Grow a b-tree so that it has more records.
1497  *
1498  * We might shift the tree depth in which case existing paths should
1499  * be considered invalid.
1500  *
1501  * Tree depth after the grow is returned via *final_depth.
1502  *
1503  * *last_eb_bh will be updated by ocfs2_add_branch().
1504  */
1505 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et,
1506 			   int *final_depth, struct buffer_head **last_eb_bh,
1507 			   struct ocfs2_alloc_context *meta_ac)
1508 {
1509 	int ret, shift;
1510 	struct ocfs2_extent_list *el = et->et_root_el;
1511 	int depth = le16_to_cpu(el->l_tree_depth);
1512 	struct buffer_head *bh = NULL;
1513 
1514 	BUG_ON(meta_ac == NULL);
1515 
1516 	shift = ocfs2_find_branch_target(et, &bh);
1517 	if (shift < 0) {
1518 		ret = shift;
1519 		mlog_errno(ret);
1520 		goto out;
1521 	}
1522 
1523 	/* We traveled all the way to the bottom of the allocation tree
1524 	 * and didn't find room for any more extents - we need to add
1525 	 * another tree level */
1526 	if (shift) {
1527 		BUG_ON(bh);
1528 		trace_ocfs2_grow_tree(
1529 			(unsigned long long)
1530 			ocfs2_metadata_cache_owner(et->et_ci),
1531 			depth);
1532 
1533 		/* ocfs2_shift_tree_depth will return us a buffer with
1534 		 * the new extent block (so we can pass that to
1535 		 * ocfs2_add_branch). */
1536 		ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh);
1537 		if (ret < 0) {
1538 			mlog_errno(ret);
1539 			goto out;
1540 		}
1541 		depth++;
1542 		if (depth == 1) {
1543 			/*
1544 			 * Special case: we have room now if we shifted from
1545 			 * tree_depth 0, so no more work needs to be done.
1546 			 *
1547 			 * We won't be calling add_branch, so pass
1548 			 * back *last_eb_bh as the new leaf. At depth
1549 			 * zero, it should always be null so there's
1550 			 * no reason to brelse.
1551 			 */
1552 			BUG_ON(*last_eb_bh);
1553 			get_bh(bh);
1554 			*last_eb_bh = bh;
1555 			goto out;
1556 		}
1557 	}
1558 
1559 	/* call ocfs2_add_branch to add the final part of the tree with
1560 	 * the new data. */
1561 	ret = ocfs2_add_branch(handle, et, bh, last_eb_bh,
1562 			       meta_ac);
1563 	if (ret < 0) {
1564 		mlog_errno(ret);
1565 		goto out;
1566 	}
1567 
1568 out:
1569 	if (final_depth)
1570 		*final_depth = depth;
1571 	brelse(bh);
1572 	return ret;
1573 }
1574 
1575 /*
1576  * This function will discard the rightmost extent record.
1577  */
1578 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1579 {
1580 	int next_free = le16_to_cpu(el->l_next_free_rec);
1581 	int count = le16_to_cpu(el->l_count);
1582 	unsigned int num_bytes;
1583 
1584 	BUG_ON(!next_free);
1585 	/* This will cause us to go off the end of our extent list. */
1586 	BUG_ON(next_free >= count);
1587 
1588 	num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1589 
1590 	memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1591 }
1592 
1593 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1594 			      struct ocfs2_extent_rec *insert_rec)
1595 {
1596 	int i, insert_index, next_free, has_empty, num_bytes;
1597 	u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1598 	struct ocfs2_extent_rec *rec;
1599 
1600 	next_free = le16_to_cpu(el->l_next_free_rec);
1601 	has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1602 
1603 	BUG_ON(!next_free);
1604 
1605 	/* The tree code before us didn't allow enough room in the leaf. */
1606 	BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1607 
1608 	/*
1609 	 * The easiest way to approach this is to just remove the
1610 	 * empty extent and temporarily decrement next_free.
1611 	 */
1612 	if (has_empty) {
1613 		/*
1614 		 * If next_free was 1 (only an empty extent), this
1615 		 * loop won't execute, which is fine. We still want
1616 		 * the decrement above to happen.
1617 		 */
1618 		for(i = 0; i < (next_free - 1); i++)
1619 			el->l_recs[i] = el->l_recs[i+1];
1620 
1621 		next_free--;
1622 	}
1623 
1624 	/*
1625 	 * Figure out what the new record index should be.
1626 	 */
1627 	for(i = 0; i < next_free; i++) {
1628 		rec = &el->l_recs[i];
1629 
1630 		if (insert_cpos < le32_to_cpu(rec->e_cpos))
1631 			break;
1632 	}
1633 	insert_index = i;
1634 
1635 	trace_ocfs2_rotate_leaf(insert_cpos, insert_index,
1636 				has_empty, next_free,
1637 				le16_to_cpu(el->l_count));
1638 
1639 	BUG_ON(insert_index < 0);
1640 	BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1641 	BUG_ON(insert_index > next_free);
1642 
1643 	/*
1644 	 * No need to memmove if we're just adding to the tail.
1645 	 */
1646 	if (insert_index != next_free) {
1647 		BUG_ON(next_free >= le16_to_cpu(el->l_count));
1648 
1649 		num_bytes = next_free - insert_index;
1650 		num_bytes *= sizeof(struct ocfs2_extent_rec);
1651 		memmove(&el->l_recs[insert_index + 1],
1652 			&el->l_recs[insert_index],
1653 			num_bytes);
1654 	}
1655 
1656 	/*
1657 	 * Either we had an empty extent, and need to re-increment or
1658 	 * there was no empty extent on a non full rightmost leaf node,
1659 	 * in which case we still need to increment.
1660 	 */
1661 	next_free++;
1662 	el->l_next_free_rec = cpu_to_le16(next_free);
1663 	/*
1664 	 * Make sure none of the math above just messed up our tree.
1665 	 */
1666 	BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1667 
1668 	el->l_recs[insert_index] = *insert_rec;
1669 
1670 }
1671 
1672 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1673 {
1674 	int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1675 
1676 	BUG_ON(num_recs == 0);
1677 
1678 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1679 		num_recs--;
1680 		size = num_recs * sizeof(struct ocfs2_extent_rec);
1681 		memmove(&el->l_recs[0], &el->l_recs[1], size);
1682 		memset(&el->l_recs[num_recs], 0,
1683 		       sizeof(struct ocfs2_extent_rec));
1684 		el->l_next_free_rec = cpu_to_le16(num_recs);
1685 	}
1686 }
1687 
1688 /*
1689  * Create an empty extent record .
1690  *
1691  * l_next_free_rec may be updated.
1692  *
1693  * If an empty extent already exists do nothing.
1694  */
1695 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1696 {
1697 	int next_free = le16_to_cpu(el->l_next_free_rec);
1698 
1699 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1700 
1701 	if (next_free == 0)
1702 		goto set_and_inc;
1703 
1704 	if (ocfs2_is_empty_extent(&el->l_recs[0]))
1705 		return;
1706 
1707 	mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1708 			"Asked to create an empty extent in a full list:\n"
1709 			"count = %u, tree depth = %u",
1710 			le16_to_cpu(el->l_count),
1711 			le16_to_cpu(el->l_tree_depth));
1712 
1713 	ocfs2_shift_records_right(el);
1714 
1715 set_and_inc:
1716 	le16_add_cpu(&el->l_next_free_rec, 1);
1717 	memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1718 }
1719 
1720 /*
1721  * For a rotation which involves two leaf nodes, the "root node" is
1722  * the lowest level tree node which contains a path to both leafs. This
1723  * resulting set of information can be used to form a complete "subtree"
1724  *
1725  * This function is passed two full paths from the dinode down to a
1726  * pair of adjacent leaves. It's task is to figure out which path
1727  * index contains the subtree root - this can be the root index itself
1728  * in a worst-case rotation.
1729  *
1730  * The array index of the subtree root is passed back.
1731  */
1732 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et,
1733 			    struct ocfs2_path *left,
1734 			    struct ocfs2_path *right)
1735 {
1736 	int i = 0;
1737 
1738 	/*
1739 	 * Check that the caller passed in two paths from the same tree.
1740 	 */
1741 	BUG_ON(path_root_bh(left) != path_root_bh(right));
1742 
1743 	do {
1744 		i++;
1745 
1746 		/*
1747 		 * The caller didn't pass two adjacent paths.
1748 		 */
1749 		mlog_bug_on_msg(i > left->p_tree_depth,
1750 				"Owner %llu, left depth %u, right depth %u\n"
1751 				"left leaf blk %llu, right leaf blk %llu\n",
1752 				(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
1753 				left->p_tree_depth, right->p_tree_depth,
1754 				(unsigned long long)path_leaf_bh(left)->b_blocknr,
1755 				(unsigned long long)path_leaf_bh(right)->b_blocknr);
1756 	} while (left->p_node[i].bh->b_blocknr ==
1757 		 right->p_node[i].bh->b_blocknr);
1758 
1759 	return i - 1;
1760 }
1761 
1762 typedef void (path_insert_t)(void *, struct buffer_head *);
1763 
1764 /*
1765  * Traverse a btree path in search of cpos, starting at root_el.
1766  *
1767  * This code can be called with a cpos larger than the tree, in which
1768  * case it will return the rightmost path.
1769  */
1770 static int __ocfs2_find_path(struct ocfs2_caching_info *ci,
1771 			     struct ocfs2_extent_list *root_el, u32 cpos,
1772 			     path_insert_t *func, void *data)
1773 {
1774 	int i, ret = 0;
1775 	u32 range;
1776 	u64 blkno;
1777 	struct buffer_head *bh = NULL;
1778 	struct ocfs2_extent_block *eb;
1779 	struct ocfs2_extent_list *el;
1780 	struct ocfs2_extent_rec *rec;
1781 
1782 	el = root_el;
1783 	while (el->l_tree_depth) {
1784 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1785 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1786 				    "Owner %llu has empty extent list at depth %u\n",
1787 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1788 				    le16_to_cpu(el->l_tree_depth));
1789 			ret = -EROFS;
1790 			goto out;
1791 
1792 		}
1793 
1794 		for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1795 			rec = &el->l_recs[i];
1796 
1797 			/*
1798 			 * In the case that cpos is off the allocation
1799 			 * tree, this should just wind up returning the
1800 			 * rightmost record.
1801 			 */
1802 			range = le32_to_cpu(rec->e_cpos) +
1803 				ocfs2_rec_clusters(el, rec);
1804 			if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1805 			    break;
1806 		}
1807 
1808 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1809 		if (blkno == 0) {
1810 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1811 				    "Owner %llu has bad blkno in extent list at depth %u (index %d)\n",
1812 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1813 				    le16_to_cpu(el->l_tree_depth), i);
1814 			ret = -EROFS;
1815 			goto out;
1816 		}
1817 
1818 		brelse(bh);
1819 		bh = NULL;
1820 		ret = ocfs2_read_extent_block(ci, blkno, &bh);
1821 		if (ret) {
1822 			mlog_errno(ret);
1823 			goto out;
1824 		}
1825 
1826 		eb = (struct ocfs2_extent_block *) bh->b_data;
1827 		el = &eb->h_list;
1828 
1829 		if (le16_to_cpu(el->l_next_free_rec) >
1830 		    le16_to_cpu(el->l_count)) {
1831 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1832 				    "Owner %llu has bad count in extent list at block %llu (next free=%u, count=%u)\n",
1833 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1834 				    (unsigned long long)bh->b_blocknr,
1835 				    le16_to_cpu(el->l_next_free_rec),
1836 				    le16_to_cpu(el->l_count));
1837 			ret = -EROFS;
1838 			goto out;
1839 		}
1840 
1841 		if (func)
1842 			func(data, bh);
1843 	}
1844 
1845 out:
1846 	/*
1847 	 * Catch any trailing bh that the loop didn't handle.
1848 	 */
1849 	brelse(bh);
1850 
1851 	return ret;
1852 }
1853 
1854 /*
1855  * Given an initialized path (that is, it has a valid root extent
1856  * list), this function will traverse the btree in search of the path
1857  * which would contain cpos.
1858  *
1859  * The path traveled is recorded in the path structure.
1860  *
1861  * Note that this will not do any comparisons on leaf node extent
1862  * records, so it will work fine in the case that we just added a tree
1863  * branch.
1864  */
1865 struct find_path_data {
1866 	int index;
1867 	struct ocfs2_path *path;
1868 };
1869 static void find_path_ins(void *data, struct buffer_head *bh)
1870 {
1871 	struct find_path_data *fp = data;
1872 
1873 	get_bh(bh);
1874 	ocfs2_path_insert_eb(fp->path, fp->index, bh);
1875 	fp->index++;
1876 }
1877 int ocfs2_find_path(struct ocfs2_caching_info *ci,
1878 		    struct ocfs2_path *path, u32 cpos)
1879 {
1880 	struct find_path_data data;
1881 
1882 	data.index = 1;
1883 	data.path = path;
1884 	return __ocfs2_find_path(ci, path_root_el(path), cpos,
1885 				 find_path_ins, &data);
1886 }
1887 
1888 static void find_leaf_ins(void *data, struct buffer_head *bh)
1889 {
1890 	struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1891 	struct ocfs2_extent_list *el = &eb->h_list;
1892 	struct buffer_head **ret = data;
1893 
1894 	/* We want to retain only the leaf block. */
1895 	if (le16_to_cpu(el->l_tree_depth) == 0) {
1896 		get_bh(bh);
1897 		*ret = bh;
1898 	}
1899 }
1900 /*
1901  * Find the leaf block in the tree which would contain cpos. No
1902  * checking of the actual leaf is done.
1903  *
1904  * Some paths want to call this instead of allocating a path structure
1905  * and calling ocfs2_find_path().
1906  *
1907  * This function doesn't handle non btree extent lists.
1908  */
1909 int ocfs2_find_leaf(struct ocfs2_caching_info *ci,
1910 		    struct ocfs2_extent_list *root_el, u32 cpos,
1911 		    struct buffer_head **leaf_bh)
1912 {
1913 	int ret;
1914 	struct buffer_head *bh = NULL;
1915 
1916 	ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh);
1917 	if (ret) {
1918 		mlog_errno(ret);
1919 		goto out;
1920 	}
1921 
1922 	*leaf_bh = bh;
1923 out:
1924 	return ret;
1925 }
1926 
1927 /*
1928  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1929  *
1930  * Basically, we've moved stuff around at the bottom of the tree and
1931  * we need to fix up the extent records above the changes to reflect
1932  * the new changes.
1933  *
1934  * left_rec: the record on the left.
1935  * right_rec: the record to the right of left_rec
1936  * right_child_el: is the child list pointed to by right_rec
1937  *
1938  * By definition, this only works on interior nodes.
1939  */
1940 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1941 				  struct ocfs2_extent_rec *right_rec,
1942 				  struct ocfs2_extent_list *right_child_el)
1943 {
1944 	u32 left_clusters, right_end;
1945 
1946 	/*
1947 	 * Interior nodes never have holes. Their cpos is the cpos of
1948 	 * the leftmost record in their child list. Their cluster
1949 	 * count covers the full theoretical range of their child list
1950 	 * - the range between their cpos and the cpos of the record
1951 	 * immediately to their right.
1952 	 */
1953 	left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1954 	if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1955 		BUG_ON(right_child_el->l_tree_depth);
1956 		BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1957 		left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1958 	}
1959 	left_clusters -= le32_to_cpu(left_rec->e_cpos);
1960 	left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1961 
1962 	/*
1963 	 * Calculate the rightmost cluster count boundary before
1964 	 * moving cpos - we will need to adjust clusters after
1965 	 * updating e_cpos to keep the same highest cluster count.
1966 	 */
1967 	right_end = le32_to_cpu(right_rec->e_cpos);
1968 	right_end += le32_to_cpu(right_rec->e_int_clusters);
1969 
1970 	right_rec->e_cpos = left_rec->e_cpos;
1971 	le32_add_cpu(&right_rec->e_cpos, left_clusters);
1972 
1973 	right_end -= le32_to_cpu(right_rec->e_cpos);
1974 	right_rec->e_int_clusters = cpu_to_le32(right_end);
1975 }
1976 
1977 /*
1978  * Adjust the adjacent root node records involved in a
1979  * rotation. left_el_blkno is passed in as a key so that we can easily
1980  * find it's index in the root list.
1981  */
1982 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1983 				      struct ocfs2_extent_list *left_el,
1984 				      struct ocfs2_extent_list *right_el,
1985 				      u64 left_el_blkno)
1986 {
1987 	int i;
1988 
1989 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1990 	       le16_to_cpu(left_el->l_tree_depth));
1991 
1992 	for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1993 		if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1994 			break;
1995 	}
1996 
1997 	/*
1998 	 * The path walking code should have never returned a root and
1999 	 * two paths which are not adjacent.
2000 	 */
2001 	BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
2002 
2003 	ocfs2_adjust_adjacent_records(&root_el->l_recs[i],
2004 				      &root_el->l_recs[i + 1], right_el);
2005 }
2006 
2007 /*
2008  * We've changed a leaf block (in right_path) and need to reflect that
2009  * change back up the subtree.
2010  *
2011  * This happens in multiple places:
2012  *   - When we've moved an extent record from the left path leaf to the right
2013  *     path leaf to make room for an empty extent in the left path leaf.
2014  *   - When our insert into the right path leaf is at the leftmost edge
2015  *     and requires an update of the path immediately to it's left. This
2016  *     can occur at the end of some types of rotation and appending inserts.
2017  *   - When we've adjusted the last extent record in the left path leaf and the
2018  *     1st extent record in the right path leaf during cross extent block merge.
2019  */
2020 static void ocfs2_complete_edge_insert(handle_t *handle,
2021 				       struct ocfs2_path *left_path,
2022 				       struct ocfs2_path *right_path,
2023 				       int subtree_index)
2024 {
2025 	int i, idx;
2026 	struct ocfs2_extent_list *el, *left_el, *right_el;
2027 	struct ocfs2_extent_rec *left_rec, *right_rec;
2028 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2029 
2030 	/*
2031 	 * Update the counts and position values within all the
2032 	 * interior nodes to reflect the leaf rotation we just did.
2033 	 *
2034 	 * The root node is handled below the loop.
2035 	 *
2036 	 * We begin the loop with right_el and left_el pointing to the
2037 	 * leaf lists and work our way up.
2038 	 *
2039 	 * NOTE: within this loop, left_el and right_el always refer
2040 	 * to the *child* lists.
2041 	 */
2042 	left_el = path_leaf_el(left_path);
2043 	right_el = path_leaf_el(right_path);
2044 	for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
2045 		trace_ocfs2_complete_edge_insert(i);
2046 
2047 		/*
2048 		 * One nice property of knowing that all of these
2049 		 * nodes are below the root is that we only deal with
2050 		 * the leftmost right node record and the rightmost
2051 		 * left node record.
2052 		 */
2053 		el = left_path->p_node[i].el;
2054 		idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2055 		left_rec = &el->l_recs[idx];
2056 
2057 		el = right_path->p_node[i].el;
2058 		right_rec = &el->l_recs[0];
2059 
2060 		ocfs2_adjust_adjacent_records(left_rec, right_rec, right_el);
2061 
2062 		ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2063 		ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2064 
2065 		/*
2066 		 * Setup our list pointers now so that the current
2067 		 * parents become children in the next iteration.
2068 		 */
2069 		left_el = left_path->p_node[i].el;
2070 		right_el = right_path->p_node[i].el;
2071 	}
2072 
2073 	/*
2074 	 * At the root node, adjust the two adjacent records which
2075 	 * begin our path to the leaves.
2076 	 */
2077 
2078 	el = left_path->p_node[subtree_index].el;
2079 	left_el = left_path->p_node[subtree_index + 1].el;
2080 	right_el = right_path->p_node[subtree_index + 1].el;
2081 
2082 	ocfs2_adjust_root_records(el, left_el, right_el,
2083 				  left_path->p_node[subtree_index + 1].bh->b_blocknr);
2084 
2085 	root_bh = left_path->p_node[subtree_index].bh;
2086 
2087 	ocfs2_journal_dirty(handle, root_bh);
2088 }
2089 
2090 static int ocfs2_rotate_subtree_right(handle_t *handle,
2091 				      struct ocfs2_extent_tree *et,
2092 				      struct ocfs2_path *left_path,
2093 				      struct ocfs2_path *right_path,
2094 				      int subtree_index)
2095 {
2096 	int ret, i;
2097 	struct buffer_head *right_leaf_bh;
2098 	struct buffer_head *left_leaf_bh = NULL;
2099 	struct buffer_head *root_bh;
2100 	struct ocfs2_extent_list *right_el, *left_el;
2101 	struct ocfs2_extent_rec move_rec;
2102 
2103 	left_leaf_bh = path_leaf_bh(left_path);
2104 	left_el = path_leaf_el(left_path);
2105 
2106 	if (left_el->l_next_free_rec != left_el->l_count) {
2107 		ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
2108 			    "Inode %llu has non-full interior leaf node %llu (next free = %u)\n",
2109 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2110 			    (unsigned long long)left_leaf_bh->b_blocknr,
2111 			    le16_to_cpu(left_el->l_next_free_rec));
2112 		return -EROFS;
2113 	}
2114 
2115 	/*
2116 	 * This extent block may already have an empty record, so we
2117 	 * return early if so.
2118 	 */
2119 	if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2120 		return 0;
2121 
2122 	root_bh = left_path->p_node[subtree_index].bh;
2123 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2124 
2125 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2126 					   subtree_index);
2127 	if (ret) {
2128 		mlog_errno(ret);
2129 		goto out;
2130 	}
2131 
2132 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2133 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2134 						   right_path, i);
2135 		if (ret) {
2136 			mlog_errno(ret);
2137 			goto out;
2138 		}
2139 
2140 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2141 						   left_path, i);
2142 		if (ret) {
2143 			mlog_errno(ret);
2144 			goto out;
2145 		}
2146 	}
2147 
2148 	right_leaf_bh = path_leaf_bh(right_path);
2149 	right_el = path_leaf_el(right_path);
2150 
2151 	/* This is a code error, not a disk corruption. */
2152 	mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2153 			"because rightmost leaf block %llu is empty\n",
2154 			(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2155 			(unsigned long long)right_leaf_bh->b_blocknr);
2156 
2157 	ocfs2_create_empty_extent(right_el);
2158 
2159 	ocfs2_journal_dirty(handle, right_leaf_bh);
2160 
2161 	/* Do the copy now. */
2162 	i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2163 	move_rec = left_el->l_recs[i];
2164 	right_el->l_recs[0] = move_rec;
2165 
2166 	/*
2167 	 * Clear out the record we just copied and shift everything
2168 	 * over, leaving an empty extent in the left leaf.
2169 	 *
2170 	 * We temporarily subtract from next_free_rec so that the
2171 	 * shift will lose the tail record (which is now defunct).
2172 	 */
2173 	le16_add_cpu(&left_el->l_next_free_rec, -1);
2174 	ocfs2_shift_records_right(left_el);
2175 	memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2176 	le16_add_cpu(&left_el->l_next_free_rec, 1);
2177 
2178 	ocfs2_journal_dirty(handle, left_leaf_bh);
2179 
2180 	ocfs2_complete_edge_insert(handle, left_path, right_path,
2181 				   subtree_index);
2182 
2183 out:
2184 	return ret;
2185 }
2186 
2187 /*
2188  * Given a full path, determine what cpos value would return us a path
2189  * containing the leaf immediately to the left of the current one.
2190  *
2191  * Will return zero if the path passed in is already the leftmost path.
2192  */
2193 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2194 				  struct ocfs2_path *path, u32 *cpos)
2195 {
2196 	int i, j, ret = 0;
2197 	u64 blkno;
2198 	struct ocfs2_extent_list *el;
2199 
2200 	BUG_ON(path->p_tree_depth == 0);
2201 
2202 	*cpos = 0;
2203 
2204 	blkno = path_leaf_bh(path)->b_blocknr;
2205 
2206 	/* Start at the tree node just above the leaf and work our way up. */
2207 	i = path->p_tree_depth - 1;
2208 	while (i >= 0) {
2209 		el = path->p_node[i].el;
2210 
2211 		/*
2212 		 * Find the extent record just before the one in our
2213 		 * path.
2214 		 */
2215 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2216 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2217 				if (j == 0) {
2218 					if (i == 0) {
2219 						/*
2220 						 * We've determined that the
2221 						 * path specified is already
2222 						 * the leftmost one - return a
2223 						 * cpos of zero.
2224 						 */
2225 						goto out;
2226 					}
2227 					/*
2228 					 * The leftmost record points to our
2229 					 * leaf - we need to travel up the
2230 					 * tree one level.
2231 					 */
2232 					goto next_node;
2233 				}
2234 
2235 				*cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2236 				*cpos = *cpos + ocfs2_rec_clusters(el,
2237 							   &el->l_recs[j - 1]);
2238 				*cpos = *cpos - 1;
2239 				goto out;
2240 			}
2241 		}
2242 
2243 		/*
2244 		 * If we got here, we never found a valid node where
2245 		 * the tree indicated one should be.
2246 		 */
2247 		ocfs2_error(sb, "Invalid extent tree at extent block %llu\n",
2248 			    (unsigned long long)blkno);
2249 		ret = -EROFS;
2250 		goto out;
2251 
2252 next_node:
2253 		blkno = path->p_node[i].bh->b_blocknr;
2254 		i--;
2255 	}
2256 
2257 out:
2258 	return ret;
2259 }
2260 
2261 /*
2262  * Extend the transaction by enough credits to complete the rotation,
2263  * and still leave at least the original number of credits allocated
2264  * to this transaction.
2265  */
2266 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2267 					   int op_credits,
2268 					   struct ocfs2_path *path)
2269 {
2270 	int ret = 0;
2271 	int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2272 
2273 	if (handle->h_buffer_credits < credits)
2274 		ret = ocfs2_extend_trans(handle,
2275 					 credits - handle->h_buffer_credits);
2276 
2277 	return ret;
2278 }
2279 
2280 /*
2281  * Trap the case where we're inserting into the theoretical range past
2282  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2283  * whose cpos is less than ours into the right leaf.
2284  *
2285  * It's only necessary to look at the rightmost record of the left
2286  * leaf because the logic that calls us should ensure that the
2287  * theoretical ranges in the path components above the leaves are
2288  * correct.
2289  */
2290 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2291 						 u32 insert_cpos)
2292 {
2293 	struct ocfs2_extent_list *left_el;
2294 	struct ocfs2_extent_rec *rec;
2295 	int next_free;
2296 
2297 	left_el = path_leaf_el(left_path);
2298 	next_free = le16_to_cpu(left_el->l_next_free_rec);
2299 	rec = &left_el->l_recs[next_free - 1];
2300 
2301 	if (insert_cpos > le32_to_cpu(rec->e_cpos))
2302 		return 1;
2303 	return 0;
2304 }
2305 
2306 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2307 {
2308 	int next_free = le16_to_cpu(el->l_next_free_rec);
2309 	unsigned int range;
2310 	struct ocfs2_extent_rec *rec;
2311 
2312 	if (next_free == 0)
2313 		return 0;
2314 
2315 	rec = &el->l_recs[0];
2316 	if (ocfs2_is_empty_extent(rec)) {
2317 		/* Empty list. */
2318 		if (next_free == 1)
2319 			return 0;
2320 		rec = &el->l_recs[1];
2321 	}
2322 
2323 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2324 	if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2325 		return 1;
2326 	return 0;
2327 }
2328 
2329 /*
2330  * Rotate all the records in a btree right one record, starting at insert_cpos.
2331  *
2332  * The path to the rightmost leaf should be passed in.
2333  *
2334  * The array is assumed to be large enough to hold an entire path (tree depth).
2335  *
2336  * Upon successful return from this function:
2337  *
2338  * - The 'right_path' array will contain a path to the leaf block
2339  *   whose range contains e_cpos.
2340  * - That leaf block will have a single empty extent in list index 0.
2341  * - In the case that the rotation requires a post-insert update,
2342  *   *ret_left_path will contain a valid path which can be passed to
2343  *   ocfs2_insert_path().
2344  */
2345 static int ocfs2_rotate_tree_right(handle_t *handle,
2346 				   struct ocfs2_extent_tree *et,
2347 				   enum ocfs2_split_type split,
2348 				   u32 insert_cpos,
2349 				   struct ocfs2_path *right_path,
2350 				   struct ocfs2_path **ret_left_path)
2351 {
2352 	int ret, start, orig_credits = handle->h_buffer_credits;
2353 	u32 cpos;
2354 	struct ocfs2_path *left_path = NULL;
2355 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2356 
2357 	*ret_left_path = NULL;
2358 
2359 	left_path = ocfs2_new_path_from_path(right_path);
2360 	if (!left_path) {
2361 		ret = -ENOMEM;
2362 		mlog_errno(ret);
2363 		goto out;
2364 	}
2365 
2366 	ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2367 	if (ret) {
2368 		mlog_errno(ret);
2369 		goto out;
2370 	}
2371 
2372 	trace_ocfs2_rotate_tree_right(
2373 		(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2374 		insert_cpos, cpos);
2375 
2376 	/*
2377 	 * What we want to do here is:
2378 	 *
2379 	 * 1) Start with the rightmost path.
2380 	 *
2381 	 * 2) Determine a path to the leaf block directly to the left
2382 	 *    of that leaf.
2383 	 *
2384 	 * 3) Determine the 'subtree root' - the lowest level tree node
2385 	 *    which contains a path to both leaves.
2386 	 *
2387 	 * 4) Rotate the subtree.
2388 	 *
2389 	 * 5) Find the next subtree by considering the left path to be
2390 	 *    the new right path.
2391 	 *
2392 	 * The check at the top of this while loop also accepts
2393 	 * insert_cpos == cpos because cpos is only a _theoretical_
2394 	 * value to get us the left path - insert_cpos might very well
2395 	 * be filling that hole.
2396 	 *
2397 	 * Stop at a cpos of '0' because we either started at the
2398 	 * leftmost branch (i.e., a tree with one branch and a
2399 	 * rotation inside of it), or we've gone as far as we can in
2400 	 * rotating subtrees.
2401 	 */
2402 	while (cpos && insert_cpos <= cpos) {
2403 		trace_ocfs2_rotate_tree_right(
2404 			(unsigned long long)
2405 			ocfs2_metadata_cache_owner(et->et_ci),
2406 			insert_cpos, cpos);
2407 
2408 		ret = ocfs2_find_path(et->et_ci, left_path, cpos);
2409 		if (ret) {
2410 			mlog_errno(ret);
2411 			goto out;
2412 		}
2413 
2414 		mlog_bug_on_msg(path_leaf_bh(left_path) ==
2415 				path_leaf_bh(right_path),
2416 				"Owner %llu: error during insert of %u "
2417 				"(left path cpos %u) results in two identical "
2418 				"paths ending at %llu\n",
2419 				(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2420 				insert_cpos, cpos,
2421 				(unsigned long long)
2422 				path_leaf_bh(left_path)->b_blocknr);
2423 
2424 		if (split == SPLIT_NONE &&
2425 		    ocfs2_rotate_requires_path_adjustment(left_path,
2426 							  insert_cpos)) {
2427 
2428 			/*
2429 			 * We've rotated the tree as much as we
2430 			 * should. The rest is up to
2431 			 * ocfs2_insert_path() to complete, after the
2432 			 * record insertion. We indicate this
2433 			 * situation by returning the left path.
2434 			 *
2435 			 * The reason we don't adjust the records here
2436 			 * before the record insert is that an error
2437 			 * later might break the rule where a parent
2438 			 * record e_cpos will reflect the actual
2439 			 * e_cpos of the 1st nonempty record of the
2440 			 * child list.
2441 			 */
2442 			*ret_left_path = left_path;
2443 			goto out_ret_path;
2444 		}
2445 
2446 		start = ocfs2_find_subtree_root(et, left_path, right_path);
2447 
2448 		trace_ocfs2_rotate_subtree(start,
2449 			(unsigned long long)
2450 			right_path->p_node[start].bh->b_blocknr,
2451 			right_path->p_tree_depth);
2452 
2453 		ret = ocfs2_extend_rotate_transaction(handle, start,
2454 						      orig_credits, right_path);
2455 		if (ret) {
2456 			mlog_errno(ret);
2457 			goto out;
2458 		}
2459 
2460 		ret = ocfs2_rotate_subtree_right(handle, et, left_path,
2461 						 right_path, start);
2462 		if (ret) {
2463 			mlog_errno(ret);
2464 			goto out;
2465 		}
2466 
2467 		if (split != SPLIT_NONE &&
2468 		    ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2469 						insert_cpos)) {
2470 			/*
2471 			 * A rotate moves the rightmost left leaf
2472 			 * record over to the leftmost right leaf
2473 			 * slot. If we're doing an extent split
2474 			 * instead of a real insert, then we have to
2475 			 * check that the extent to be split wasn't
2476 			 * just moved over. If it was, then we can
2477 			 * exit here, passing left_path back -
2478 			 * ocfs2_split_extent() is smart enough to
2479 			 * search both leaves.
2480 			 */
2481 			*ret_left_path = left_path;
2482 			goto out_ret_path;
2483 		}
2484 
2485 		/*
2486 		 * There is no need to re-read the next right path
2487 		 * as we know that it'll be our current left
2488 		 * path. Optimize by copying values instead.
2489 		 */
2490 		ocfs2_mv_path(right_path, left_path);
2491 
2492 		ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2493 		if (ret) {
2494 			mlog_errno(ret);
2495 			goto out;
2496 		}
2497 	}
2498 
2499 out:
2500 	ocfs2_free_path(left_path);
2501 
2502 out_ret_path:
2503 	return ret;
2504 }
2505 
2506 static int ocfs2_update_edge_lengths(handle_t *handle,
2507 				     struct ocfs2_extent_tree *et,
2508 				     struct ocfs2_path *path)
2509 {
2510 	int i, idx, ret;
2511 	struct ocfs2_extent_rec *rec;
2512 	struct ocfs2_extent_list *el;
2513 	struct ocfs2_extent_block *eb;
2514 	u32 range;
2515 
2516 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
2517 	if (ret) {
2518 		mlog_errno(ret);
2519 		goto out;
2520 	}
2521 
2522 	/* Path should always be rightmost. */
2523 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2524 	BUG_ON(eb->h_next_leaf_blk != 0ULL);
2525 
2526 	el = &eb->h_list;
2527 	BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2528 	idx = le16_to_cpu(el->l_next_free_rec) - 1;
2529 	rec = &el->l_recs[idx];
2530 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2531 
2532 	for (i = 0; i < path->p_tree_depth; i++) {
2533 		el = path->p_node[i].el;
2534 		idx = le16_to_cpu(el->l_next_free_rec) - 1;
2535 		rec = &el->l_recs[idx];
2536 
2537 		rec->e_int_clusters = cpu_to_le32(range);
2538 		le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2539 
2540 		ocfs2_journal_dirty(handle, path->p_node[i].bh);
2541 	}
2542 out:
2543 	return ret;
2544 }
2545 
2546 static void ocfs2_unlink_path(handle_t *handle,
2547 			      struct ocfs2_extent_tree *et,
2548 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
2549 			      struct ocfs2_path *path, int unlink_start)
2550 {
2551 	int ret, i;
2552 	struct ocfs2_extent_block *eb;
2553 	struct ocfs2_extent_list *el;
2554 	struct buffer_head *bh;
2555 
2556 	for(i = unlink_start; i < path_num_items(path); i++) {
2557 		bh = path->p_node[i].bh;
2558 
2559 		eb = (struct ocfs2_extent_block *)bh->b_data;
2560 		/*
2561 		 * Not all nodes might have had their final count
2562 		 * decremented by the caller - handle this here.
2563 		 */
2564 		el = &eb->h_list;
2565 		if (le16_to_cpu(el->l_next_free_rec) > 1) {
2566 			mlog(ML_ERROR,
2567 			     "Inode %llu, attempted to remove extent block "
2568 			     "%llu with %u records\n",
2569 			     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2570 			     (unsigned long long)le64_to_cpu(eb->h_blkno),
2571 			     le16_to_cpu(el->l_next_free_rec));
2572 
2573 			ocfs2_journal_dirty(handle, bh);
2574 			ocfs2_remove_from_cache(et->et_ci, bh);
2575 			continue;
2576 		}
2577 
2578 		el->l_next_free_rec = 0;
2579 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2580 
2581 		ocfs2_journal_dirty(handle, bh);
2582 
2583 		ret = ocfs2_cache_extent_block_free(dealloc, eb);
2584 		if (ret)
2585 			mlog_errno(ret);
2586 
2587 		ocfs2_remove_from_cache(et->et_ci, bh);
2588 	}
2589 }
2590 
2591 static void ocfs2_unlink_subtree(handle_t *handle,
2592 				 struct ocfs2_extent_tree *et,
2593 				 struct ocfs2_path *left_path,
2594 				 struct ocfs2_path *right_path,
2595 				 int subtree_index,
2596 				 struct ocfs2_cached_dealloc_ctxt *dealloc)
2597 {
2598 	int i;
2599 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2600 	struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2601 	struct ocfs2_extent_block *eb;
2602 
2603 	eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2604 
2605 	for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2606 		if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2607 			break;
2608 
2609 	BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2610 
2611 	memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2612 	le16_add_cpu(&root_el->l_next_free_rec, -1);
2613 
2614 	eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2615 	eb->h_next_leaf_blk = 0;
2616 
2617 	ocfs2_journal_dirty(handle, root_bh);
2618 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2619 
2620 	ocfs2_unlink_path(handle, et, dealloc, right_path,
2621 			  subtree_index + 1);
2622 }
2623 
2624 static int ocfs2_rotate_subtree_left(handle_t *handle,
2625 				     struct ocfs2_extent_tree *et,
2626 				     struct ocfs2_path *left_path,
2627 				     struct ocfs2_path *right_path,
2628 				     int subtree_index,
2629 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
2630 				     int *deleted)
2631 {
2632 	int ret, i, del_right_subtree = 0, right_has_empty = 0;
2633 	struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2634 	struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2635 	struct ocfs2_extent_block *eb;
2636 
2637 	*deleted = 0;
2638 
2639 	right_leaf_el = path_leaf_el(right_path);
2640 	left_leaf_el = path_leaf_el(left_path);
2641 	root_bh = left_path->p_node[subtree_index].bh;
2642 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2643 
2644 	if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2645 		return 0;
2646 
2647 	eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2648 	if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2649 		/*
2650 		 * It's legal for us to proceed if the right leaf is
2651 		 * the rightmost one and it has an empty extent. There
2652 		 * are two cases to handle - whether the leaf will be
2653 		 * empty after removal or not. If the leaf isn't empty
2654 		 * then just remove the empty extent up front. The
2655 		 * next block will handle empty leaves by flagging
2656 		 * them for unlink.
2657 		 *
2658 		 * Non rightmost leaves will throw -EAGAIN and the
2659 		 * caller can manually move the subtree and retry.
2660 		 */
2661 
2662 		if (eb->h_next_leaf_blk != 0ULL)
2663 			return -EAGAIN;
2664 
2665 		if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2666 			ret = ocfs2_journal_access_eb(handle, et->et_ci,
2667 						      path_leaf_bh(right_path),
2668 						      OCFS2_JOURNAL_ACCESS_WRITE);
2669 			if (ret) {
2670 				mlog_errno(ret);
2671 				goto out;
2672 			}
2673 
2674 			ocfs2_remove_empty_extent(right_leaf_el);
2675 		} else
2676 			right_has_empty = 1;
2677 	}
2678 
2679 	if (eb->h_next_leaf_blk == 0ULL &&
2680 	    le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2681 		/*
2682 		 * We have to update i_last_eb_blk during the meta
2683 		 * data delete.
2684 		 */
2685 		ret = ocfs2_et_root_journal_access(handle, et,
2686 						   OCFS2_JOURNAL_ACCESS_WRITE);
2687 		if (ret) {
2688 			mlog_errno(ret);
2689 			goto out;
2690 		}
2691 
2692 		del_right_subtree = 1;
2693 	}
2694 
2695 	/*
2696 	 * Getting here with an empty extent in the right path implies
2697 	 * that it's the rightmost path and will be deleted.
2698 	 */
2699 	BUG_ON(right_has_empty && !del_right_subtree);
2700 
2701 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2702 					   subtree_index);
2703 	if (ret) {
2704 		mlog_errno(ret);
2705 		goto out;
2706 	}
2707 
2708 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2709 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2710 						   right_path, i);
2711 		if (ret) {
2712 			mlog_errno(ret);
2713 			goto out;
2714 		}
2715 
2716 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2717 						   left_path, i);
2718 		if (ret) {
2719 			mlog_errno(ret);
2720 			goto out;
2721 		}
2722 	}
2723 
2724 	if (!right_has_empty) {
2725 		/*
2726 		 * Only do this if we're moving a real
2727 		 * record. Otherwise, the action is delayed until
2728 		 * after removal of the right path in which case we
2729 		 * can do a simple shift to remove the empty extent.
2730 		 */
2731 		ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2732 		memset(&right_leaf_el->l_recs[0], 0,
2733 		       sizeof(struct ocfs2_extent_rec));
2734 	}
2735 	if (eb->h_next_leaf_blk == 0ULL) {
2736 		/*
2737 		 * Move recs over to get rid of empty extent, decrease
2738 		 * next_free. This is allowed to remove the last
2739 		 * extent in our leaf (setting l_next_free_rec to
2740 		 * zero) - the delete code below won't care.
2741 		 */
2742 		ocfs2_remove_empty_extent(right_leaf_el);
2743 	}
2744 
2745 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2746 	ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2747 
2748 	if (del_right_subtree) {
2749 		ocfs2_unlink_subtree(handle, et, left_path, right_path,
2750 				     subtree_index, dealloc);
2751 		ret = ocfs2_update_edge_lengths(handle, et, left_path);
2752 		if (ret) {
2753 			mlog_errno(ret);
2754 			goto out;
2755 		}
2756 
2757 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2758 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2759 
2760 		/*
2761 		 * Removal of the extent in the left leaf was skipped
2762 		 * above so we could delete the right path
2763 		 * 1st.
2764 		 */
2765 		if (right_has_empty)
2766 			ocfs2_remove_empty_extent(left_leaf_el);
2767 
2768 		ocfs2_journal_dirty(handle, et_root_bh);
2769 
2770 		*deleted = 1;
2771 	} else
2772 		ocfs2_complete_edge_insert(handle, left_path, right_path,
2773 					   subtree_index);
2774 
2775 out:
2776 	return ret;
2777 }
2778 
2779 /*
2780  * Given a full path, determine what cpos value would return us a path
2781  * containing the leaf immediately to the right of the current one.
2782  *
2783  * Will return zero if the path passed in is already the rightmost path.
2784  *
2785  * This looks similar, but is subtly different to
2786  * ocfs2_find_cpos_for_left_leaf().
2787  */
2788 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2789 				   struct ocfs2_path *path, u32 *cpos)
2790 {
2791 	int i, j, ret = 0;
2792 	u64 blkno;
2793 	struct ocfs2_extent_list *el;
2794 
2795 	*cpos = 0;
2796 
2797 	if (path->p_tree_depth == 0)
2798 		return 0;
2799 
2800 	blkno = path_leaf_bh(path)->b_blocknr;
2801 
2802 	/* Start at the tree node just above the leaf and work our way up. */
2803 	i = path->p_tree_depth - 1;
2804 	while (i >= 0) {
2805 		int next_free;
2806 
2807 		el = path->p_node[i].el;
2808 
2809 		/*
2810 		 * Find the extent record just after the one in our
2811 		 * path.
2812 		 */
2813 		next_free = le16_to_cpu(el->l_next_free_rec);
2814 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2815 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2816 				if (j == (next_free - 1)) {
2817 					if (i == 0) {
2818 						/*
2819 						 * We've determined that the
2820 						 * path specified is already
2821 						 * the rightmost one - return a
2822 						 * cpos of zero.
2823 						 */
2824 						goto out;
2825 					}
2826 					/*
2827 					 * The rightmost record points to our
2828 					 * leaf - we need to travel up the
2829 					 * tree one level.
2830 					 */
2831 					goto next_node;
2832 				}
2833 
2834 				*cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2835 				goto out;
2836 			}
2837 		}
2838 
2839 		/*
2840 		 * If we got here, we never found a valid node where
2841 		 * the tree indicated one should be.
2842 		 */
2843 		ocfs2_error(sb, "Invalid extent tree at extent block %llu\n",
2844 			    (unsigned long long)blkno);
2845 		ret = -EROFS;
2846 		goto out;
2847 
2848 next_node:
2849 		blkno = path->p_node[i].bh->b_blocknr;
2850 		i--;
2851 	}
2852 
2853 out:
2854 	return ret;
2855 }
2856 
2857 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle,
2858 					    struct ocfs2_extent_tree *et,
2859 					    struct ocfs2_path *path)
2860 {
2861 	int ret;
2862 	struct buffer_head *bh = path_leaf_bh(path);
2863 	struct ocfs2_extent_list *el = path_leaf_el(path);
2864 
2865 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2866 		return 0;
2867 
2868 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
2869 					   path_num_items(path) - 1);
2870 	if (ret) {
2871 		mlog_errno(ret);
2872 		goto out;
2873 	}
2874 
2875 	ocfs2_remove_empty_extent(el);
2876 	ocfs2_journal_dirty(handle, bh);
2877 
2878 out:
2879 	return ret;
2880 }
2881 
2882 static int __ocfs2_rotate_tree_left(handle_t *handle,
2883 				    struct ocfs2_extent_tree *et,
2884 				    int orig_credits,
2885 				    struct ocfs2_path *path,
2886 				    struct ocfs2_cached_dealloc_ctxt *dealloc,
2887 				    struct ocfs2_path **empty_extent_path)
2888 {
2889 	int ret, subtree_root, deleted;
2890 	u32 right_cpos;
2891 	struct ocfs2_path *left_path = NULL;
2892 	struct ocfs2_path *right_path = NULL;
2893 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2894 
2895 	if (!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])))
2896 		return 0;
2897 
2898 	*empty_extent_path = NULL;
2899 
2900 	ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
2901 	if (ret) {
2902 		mlog_errno(ret);
2903 		goto out;
2904 	}
2905 
2906 	left_path = ocfs2_new_path_from_path(path);
2907 	if (!left_path) {
2908 		ret = -ENOMEM;
2909 		mlog_errno(ret);
2910 		goto out;
2911 	}
2912 
2913 	ocfs2_cp_path(left_path, path);
2914 
2915 	right_path = ocfs2_new_path_from_path(path);
2916 	if (!right_path) {
2917 		ret = -ENOMEM;
2918 		mlog_errno(ret);
2919 		goto out;
2920 	}
2921 
2922 	while (right_cpos) {
2923 		ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
2924 		if (ret) {
2925 			mlog_errno(ret);
2926 			goto out;
2927 		}
2928 
2929 		subtree_root = ocfs2_find_subtree_root(et, left_path,
2930 						       right_path);
2931 
2932 		trace_ocfs2_rotate_subtree(subtree_root,
2933 		     (unsigned long long)
2934 		     right_path->p_node[subtree_root].bh->b_blocknr,
2935 		     right_path->p_tree_depth);
2936 
2937 		ret = ocfs2_extend_rotate_transaction(handle, 0,
2938 						      orig_credits, left_path);
2939 		if (ret) {
2940 			mlog_errno(ret);
2941 			goto out;
2942 		}
2943 
2944 		/*
2945 		 * Caller might still want to make changes to the
2946 		 * tree root, so re-add it to the journal here.
2947 		 */
2948 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2949 						   left_path, 0);
2950 		if (ret) {
2951 			mlog_errno(ret);
2952 			goto out;
2953 		}
2954 
2955 		ret = ocfs2_rotate_subtree_left(handle, et, left_path,
2956 						right_path, subtree_root,
2957 						dealloc, &deleted);
2958 		if (ret == -EAGAIN) {
2959 			/*
2960 			 * The rotation has to temporarily stop due to
2961 			 * the right subtree having an empty
2962 			 * extent. Pass it back to the caller for a
2963 			 * fixup.
2964 			 */
2965 			*empty_extent_path = right_path;
2966 			right_path = NULL;
2967 			goto out;
2968 		}
2969 		if (ret) {
2970 			mlog_errno(ret);
2971 			goto out;
2972 		}
2973 
2974 		/*
2975 		 * The subtree rotate might have removed records on
2976 		 * the rightmost edge. If so, then rotation is
2977 		 * complete.
2978 		 */
2979 		if (deleted)
2980 			break;
2981 
2982 		ocfs2_mv_path(left_path, right_path);
2983 
2984 		ret = ocfs2_find_cpos_for_right_leaf(sb, left_path,
2985 						     &right_cpos);
2986 		if (ret) {
2987 			mlog_errno(ret);
2988 			goto out;
2989 		}
2990 	}
2991 
2992 out:
2993 	ocfs2_free_path(right_path);
2994 	ocfs2_free_path(left_path);
2995 
2996 	return ret;
2997 }
2998 
2999 static int ocfs2_remove_rightmost_path(handle_t *handle,
3000 				struct ocfs2_extent_tree *et,
3001 				struct ocfs2_path *path,
3002 				struct ocfs2_cached_dealloc_ctxt *dealloc)
3003 {
3004 	int ret, subtree_index;
3005 	u32 cpos;
3006 	struct ocfs2_path *left_path = NULL;
3007 	struct ocfs2_extent_block *eb;
3008 	struct ocfs2_extent_list *el;
3009 
3010 	ret = ocfs2_et_sanity_check(et);
3011 	if (ret)
3012 		goto out;
3013 
3014 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
3015 	if (ret) {
3016 		mlog_errno(ret);
3017 		goto out;
3018 	}
3019 
3020 	ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3021 					    path, &cpos);
3022 	if (ret) {
3023 		mlog_errno(ret);
3024 		goto out;
3025 	}
3026 
3027 	if (cpos) {
3028 		/*
3029 		 * We have a path to the left of this one - it needs
3030 		 * an update too.
3031 		 */
3032 		left_path = ocfs2_new_path_from_path(path);
3033 		if (!left_path) {
3034 			ret = -ENOMEM;
3035 			mlog_errno(ret);
3036 			goto out;
3037 		}
3038 
3039 		ret = ocfs2_find_path(et->et_ci, left_path, cpos);
3040 		if (ret) {
3041 			mlog_errno(ret);
3042 			goto out;
3043 		}
3044 
3045 		ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
3046 		if (ret) {
3047 			mlog_errno(ret);
3048 			goto out;
3049 		}
3050 
3051 		subtree_index = ocfs2_find_subtree_root(et, left_path, path);
3052 
3053 		ocfs2_unlink_subtree(handle, et, left_path, path,
3054 				     subtree_index, dealloc);
3055 		ret = ocfs2_update_edge_lengths(handle, et, left_path);
3056 		if (ret) {
3057 			mlog_errno(ret);
3058 			goto out;
3059 		}
3060 
3061 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3062 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3063 	} else {
3064 		/*
3065 		 * 'path' is also the leftmost path which
3066 		 * means it must be the only one. This gets
3067 		 * handled differently because we want to
3068 		 * revert the root back to having extents
3069 		 * in-line.
3070 		 */
3071 		ocfs2_unlink_path(handle, et, dealloc, path, 1);
3072 
3073 		el = et->et_root_el;
3074 		el->l_tree_depth = 0;
3075 		el->l_next_free_rec = 0;
3076 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3077 
3078 		ocfs2_et_set_last_eb_blk(et, 0);
3079 	}
3080 
3081 	ocfs2_journal_dirty(handle, path_root_bh(path));
3082 
3083 out:
3084 	ocfs2_free_path(left_path);
3085 	return ret;
3086 }
3087 
3088 static int ocfs2_remove_rightmost_empty_extent(struct ocfs2_super *osb,
3089 				struct ocfs2_extent_tree *et,
3090 				struct ocfs2_path *path,
3091 				struct ocfs2_cached_dealloc_ctxt *dealloc)
3092 {
3093 	handle_t *handle;
3094 	int ret;
3095 	int credits = path->p_tree_depth * 2 + 1;
3096 
3097 	handle = ocfs2_start_trans(osb, credits);
3098 	if (IS_ERR(handle)) {
3099 		ret = PTR_ERR(handle);
3100 		mlog_errno(ret);
3101 		return ret;
3102 	}
3103 
3104 	ret = ocfs2_remove_rightmost_path(handle, et, path, dealloc);
3105 	if (ret)
3106 		mlog_errno(ret);
3107 
3108 	ocfs2_commit_trans(osb, handle);
3109 	return ret;
3110 }
3111 
3112 /*
3113  * Left rotation of btree records.
3114  *
3115  * In many ways, this is (unsurprisingly) the opposite of right
3116  * rotation. We start at some non-rightmost path containing an empty
3117  * extent in the leaf block. The code works its way to the rightmost
3118  * path by rotating records to the left in every subtree.
3119  *
3120  * This is used by any code which reduces the number of extent records
3121  * in a leaf. After removal, an empty record should be placed in the
3122  * leftmost list position.
3123  *
3124  * This won't handle a length update of the rightmost path records if
3125  * the rightmost tree leaf record is removed so the caller is
3126  * responsible for detecting and correcting that.
3127  */
3128 static int ocfs2_rotate_tree_left(handle_t *handle,
3129 				  struct ocfs2_extent_tree *et,
3130 				  struct ocfs2_path *path,
3131 				  struct ocfs2_cached_dealloc_ctxt *dealloc)
3132 {
3133 	int ret, orig_credits = handle->h_buffer_credits;
3134 	struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3135 	struct ocfs2_extent_block *eb;
3136 	struct ocfs2_extent_list *el;
3137 
3138 	el = path_leaf_el(path);
3139 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3140 		return 0;
3141 
3142 	if (path->p_tree_depth == 0) {
3143 rightmost_no_delete:
3144 		/*
3145 		 * Inline extents. This is trivially handled, so do
3146 		 * it up front.
3147 		 */
3148 		ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path);
3149 		if (ret)
3150 			mlog_errno(ret);
3151 		goto out;
3152 	}
3153 
3154 	/*
3155 	 * Handle rightmost branch now. There's several cases:
3156 	 *  1) simple rotation leaving records in there. That's trivial.
3157 	 *  2) rotation requiring a branch delete - there's no more
3158 	 *     records left. Two cases of this:
3159 	 *     a) There are branches to the left.
3160 	 *     b) This is also the leftmost (the only) branch.
3161 	 *
3162 	 *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
3163 	 *  2a) we need the left branch so that we can update it with the unlink
3164 	 *  2b) we need to bring the root back to inline extents.
3165 	 */
3166 
3167 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3168 	el = &eb->h_list;
3169 	if (eb->h_next_leaf_blk == 0) {
3170 		/*
3171 		 * This gets a bit tricky if we're going to delete the
3172 		 * rightmost path. Get the other cases out of the way
3173 		 * 1st.
3174 		 */
3175 		if (le16_to_cpu(el->l_next_free_rec) > 1)
3176 			goto rightmost_no_delete;
3177 
3178 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
3179 			ret = -EIO;
3180 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3181 				    "Owner %llu has empty extent block at %llu\n",
3182 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
3183 				    (unsigned long long)le64_to_cpu(eb->h_blkno));
3184 			goto out;
3185 		}
3186 
3187 		/*
3188 		 * XXX: The caller can not trust "path" any more after
3189 		 * this as it will have been deleted. What do we do?
3190 		 *
3191 		 * In theory the rotate-for-merge code will never get
3192 		 * here because it'll always ask for a rotate in a
3193 		 * nonempty list.
3194 		 */
3195 
3196 		ret = ocfs2_remove_rightmost_path(handle, et, path,
3197 						  dealloc);
3198 		if (ret)
3199 			mlog_errno(ret);
3200 		goto out;
3201 	}
3202 
3203 	/*
3204 	 * Now we can loop, remembering the path we get from -EAGAIN
3205 	 * and restarting from there.
3206 	 */
3207 try_rotate:
3208 	ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path,
3209 				       dealloc, &restart_path);
3210 	if (ret && ret != -EAGAIN) {
3211 		mlog_errno(ret);
3212 		goto out;
3213 	}
3214 
3215 	while (ret == -EAGAIN) {
3216 		tmp_path = restart_path;
3217 		restart_path = NULL;
3218 
3219 		ret = __ocfs2_rotate_tree_left(handle, et, orig_credits,
3220 					       tmp_path, dealloc,
3221 					       &restart_path);
3222 		if (ret && ret != -EAGAIN) {
3223 			mlog_errno(ret);
3224 			goto out;
3225 		}
3226 
3227 		ocfs2_free_path(tmp_path);
3228 		tmp_path = NULL;
3229 
3230 		if (ret == 0)
3231 			goto try_rotate;
3232 	}
3233 
3234 out:
3235 	ocfs2_free_path(tmp_path);
3236 	ocfs2_free_path(restart_path);
3237 	return ret;
3238 }
3239 
3240 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3241 				int index)
3242 {
3243 	struct ocfs2_extent_rec *rec = &el->l_recs[index];
3244 	unsigned int size;
3245 
3246 	if (rec->e_leaf_clusters == 0) {
3247 		/*
3248 		 * We consumed all of the merged-from record. An empty
3249 		 * extent cannot exist anywhere but the 1st array
3250 		 * position, so move things over if the merged-from
3251 		 * record doesn't occupy that position.
3252 		 *
3253 		 * This creates a new empty extent so the caller
3254 		 * should be smart enough to have removed any existing
3255 		 * ones.
3256 		 */
3257 		if (index > 0) {
3258 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3259 			size = index * sizeof(struct ocfs2_extent_rec);
3260 			memmove(&el->l_recs[1], &el->l_recs[0], size);
3261 		}
3262 
3263 		/*
3264 		 * Always memset - the caller doesn't check whether it
3265 		 * created an empty extent, so there could be junk in
3266 		 * the other fields.
3267 		 */
3268 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3269 	}
3270 }
3271 
3272 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et,
3273 				struct ocfs2_path *left_path,
3274 				struct ocfs2_path **ret_right_path)
3275 {
3276 	int ret;
3277 	u32 right_cpos;
3278 	struct ocfs2_path *right_path = NULL;
3279 	struct ocfs2_extent_list *left_el;
3280 
3281 	*ret_right_path = NULL;
3282 
3283 	/* This function shouldn't be called for non-trees. */
3284 	BUG_ON(left_path->p_tree_depth == 0);
3285 
3286 	left_el = path_leaf_el(left_path);
3287 	BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3288 
3289 	ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3290 					     left_path, &right_cpos);
3291 	if (ret) {
3292 		mlog_errno(ret);
3293 		goto out;
3294 	}
3295 
3296 	/* This function shouldn't be called for the rightmost leaf. */
3297 	BUG_ON(right_cpos == 0);
3298 
3299 	right_path = ocfs2_new_path_from_path(left_path);
3300 	if (!right_path) {
3301 		ret = -ENOMEM;
3302 		mlog_errno(ret);
3303 		goto out;
3304 	}
3305 
3306 	ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
3307 	if (ret) {
3308 		mlog_errno(ret);
3309 		goto out;
3310 	}
3311 
3312 	*ret_right_path = right_path;
3313 out:
3314 	if (ret)
3315 		ocfs2_free_path(right_path);
3316 	return ret;
3317 }
3318 
3319 /*
3320  * Remove split_rec clusters from the record at index and merge them
3321  * onto the beginning of the record "next" to it.
3322  * For index < l_count - 1, the next means the extent rec at index + 1.
3323  * For index == l_count - 1, the "next" means the 1st extent rec of the
3324  * next extent block.
3325  */
3326 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path,
3327 				 handle_t *handle,
3328 				 struct ocfs2_extent_tree *et,
3329 				 struct ocfs2_extent_rec *split_rec,
3330 				 int index)
3331 {
3332 	int ret, next_free, i;
3333 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3334 	struct ocfs2_extent_rec *left_rec;
3335 	struct ocfs2_extent_rec *right_rec;
3336 	struct ocfs2_extent_list *right_el;
3337 	struct ocfs2_path *right_path = NULL;
3338 	int subtree_index = 0;
3339 	struct ocfs2_extent_list *el = path_leaf_el(left_path);
3340 	struct buffer_head *bh = path_leaf_bh(left_path);
3341 	struct buffer_head *root_bh = NULL;
3342 
3343 	BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3344 	left_rec = &el->l_recs[index];
3345 
3346 	if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3347 	    le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3348 		/* we meet with a cross extent block merge. */
3349 		ret = ocfs2_get_right_path(et, left_path, &right_path);
3350 		if (ret) {
3351 			mlog_errno(ret);
3352 			return ret;
3353 		}
3354 
3355 		right_el = path_leaf_el(right_path);
3356 		next_free = le16_to_cpu(right_el->l_next_free_rec);
3357 		BUG_ON(next_free <= 0);
3358 		right_rec = &right_el->l_recs[0];
3359 		if (ocfs2_is_empty_extent(right_rec)) {
3360 			BUG_ON(next_free <= 1);
3361 			right_rec = &right_el->l_recs[1];
3362 		}
3363 
3364 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3365 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3366 		       le32_to_cpu(right_rec->e_cpos));
3367 
3368 		subtree_index = ocfs2_find_subtree_root(et, left_path,
3369 							right_path);
3370 
3371 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3372 						      handle->h_buffer_credits,
3373 						      right_path);
3374 		if (ret) {
3375 			mlog_errno(ret);
3376 			goto out;
3377 		}
3378 
3379 		root_bh = left_path->p_node[subtree_index].bh;
3380 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3381 
3382 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3383 						   subtree_index);
3384 		if (ret) {
3385 			mlog_errno(ret);
3386 			goto out;
3387 		}
3388 
3389 		for (i = subtree_index + 1;
3390 		     i < path_num_items(right_path); i++) {
3391 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3392 							   right_path, i);
3393 			if (ret) {
3394 				mlog_errno(ret);
3395 				goto out;
3396 			}
3397 
3398 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3399 							   left_path, i);
3400 			if (ret) {
3401 				mlog_errno(ret);
3402 				goto out;
3403 			}
3404 		}
3405 
3406 	} else {
3407 		BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3408 		right_rec = &el->l_recs[index + 1];
3409 	}
3410 
3411 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path,
3412 					   path_num_items(left_path) - 1);
3413 	if (ret) {
3414 		mlog_errno(ret);
3415 		goto out;
3416 	}
3417 
3418 	le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3419 
3420 	le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3421 	le64_add_cpu(&right_rec->e_blkno,
3422 		     -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3423 					       split_clusters));
3424 	le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3425 
3426 	ocfs2_cleanup_merge(el, index);
3427 
3428 	ocfs2_journal_dirty(handle, bh);
3429 	if (right_path) {
3430 		ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3431 		ocfs2_complete_edge_insert(handle, left_path, right_path,
3432 					   subtree_index);
3433 	}
3434 out:
3435 	ocfs2_free_path(right_path);
3436 	return ret;
3437 }
3438 
3439 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et,
3440 			       struct ocfs2_path *right_path,
3441 			       struct ocfs2_path **ret_left_path)
3442 {
3443 	int ret;
3444 	u32 left_cpos;
3445 	struct ocfs2_path *left_path = NULL;
3446 
3447 	*ret_left_path = NULL;
3448 
3449 	/* This function shouldn't be called for non-trees. */
3450 	BUG_ON(right_path->p_tree_depth == 0);
3451 
3452 	ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3453 					    right_path, &left_cpos);
3454 	if (ret) {
3455 		mlog_errno(ret);
3456 		goto out;
3457 	}
3458 
3459 	/* This function shouldn't be called for the leftmost leaf. */
3460 	BUG_ON(left_cpos == 0);
3461 
3462 	left_path = ocfs2_new_path_from_path(right_path);
3463 	if (!left_path) {
3464 		ret = -ENOMEM;
3465 		mlog_errno(ret);
3466 		goto out;
3467 	}
3468 
3469 	ret = ocfs2_find_path(et->et_ci, left_path, left_cpos);
3470 	if (ret) {
3471 		mlog_errno(ret);
3472 		goto out;
3473 	}
3474 
3475 	*ret_left_path = left_path;
3476 out:
3477 	if (ret)
3478 		ocfs2_free_path(left_path);
3479 	return ret;
3480 }
3481 
3482 /*
3483  * Remove split_rec clusters from the record at index and merge them
3484  * onto the tail of the record "before" it.
3485  * For index > 0, the "before" means the extent rec at index - 1.
3486  *
3487  * For index == 0, the "before" means the last record of the previous
3488  * extent block. And there is also a situation that we may need to
3489  * remove the rightmost leaf extent block in the right_path and change
3490  * the right path to indicate the new rightmost path.
3491  */
3492 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path,
3493 				handle_t *handle,
3494 				struct ocfs2_extent_tree *et,
3495 				struct ocfs2_extent_rec *split_rec,
3496 				struct ocfs2_cached_dealloc_ctxt *dealloc,
3497 				int index)
3498 {
3499 	int ret, i, subtree_index = 0, has_empty_extent = 0;
3500 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3501 	struct ocfs2_extent_rec *left_rec;
3502 	struct ocfs2_extent_rec *right_rec;
3503 	struct ocfs2_extent_list *el = path_leaf_el(right_path);
3504 	struct buffer_head *bh = path_leaf_bh(right_path);
3505 	struct buffer_head *root_bh = NULL;
3506 	struct ocfs2_path *left_path = NULL;
3507 	struct ocfs2_extent_list *left_el;
3508 
3509 	BUG_ON(index < 0);
3510 
3511 	right_rec = &el->l_recs[index];
3512 	if (index == 0) {
3513 		/* we meet with a cross extent block merge. */
3514 		ret = ocfs2_get_left_path(et, right_path, &left_path);
3515 		if (ret) {
3516 			mlog_errno(ret);
3517 			return ret;
3518 		}
3519 
3520 		left_el = path_leaf_el(left_path);
3521 		BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3522 		       le16_to_cpu(left_el->l_count));
3523 
3524 		left_rec = &left_el->l_recs[
3525 				le16_to_cpu(left_el->l_next_free_rec) - 1];
3526 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3527 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3528 		       le32_to_cpu(split_rec->e_cpos));
3529 
3530 		subtree_index = ocfs2_find_subtree_root(et, left_path,
3531 							right_path);
3532 
3533 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3534 						      handle->h_buffer_credits,
3535 						      left_path);
3536 		if (ret) {
3537 			mlog_errno(ret);
3538 			goto out;
3539 		}
3540 
3541 		root_bh = left_path->p_node[subtree_index].bh;
3542 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3543 
3544 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3545 						   subtree_index);
3546 		if (ret) {
3547 			mlog_errno(ret);
3548 			goto out;
3549 		}
3550 
3551 		for (i = subtree_index + 1;
3552 		     i < path_num_items(right_path); i++) {
3553 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3554 							   right_path, i);
3555 			if (ret) {
3556 				mlog_errno(ret);
3557 				goto out;
3558 			}
3559 
3560 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3561 							   left_path, i);
3562 			if (ret) {
3563 				mlog_errno(ret);
3564 				goto out;
3565 			}
3566 		}
3567 	} else {
3568 		left_rec = &el->l_recs[index - 1];
3569 		if (ocfs2_is_empty_extent(&el->l_recs[0]))
3570 			has_empty_extent = 1;
3571 	}
3572 
3573 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3574 					   path_num_items(right_path) - 1);
3575 	if (ret) {
3576 		mlog_errno(ret);
3577 		goto out;
3578 	}
3579 
3580 	if (has_empty_extent && index == 1) {
3581 		/*
3582 		 * The easy case - we can just plop the record right in.
3583 		 */
3584 		*left_rec = *split_rec;
3585 	} else
3586 		le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3587 
3588 	le32_add_cpu(&right_rec->e_cpos, split_clusters);
3589 	le64_add_cpu(&right_rec->e_blkno,
3590 		     ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3591 					      split_clusters));
3592 	le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3593 
3594 	ocfs2_cleanup_merge(el, index);
3595 
3596 	ocfs2_journal_dirty(handle, bh);
3597 	if (left_path) {
3598 		ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3599 
3600 		/*
3601 		 * In the situation that the right_rec is empty and the extent
3602 		 * block is empty also,  ocfs2_complete_edge_insert can't handle
3603 		 * it and we need to delete the right extent block.
3604 		 */
3605 		if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3606 		    le16_to_cpu(el->l_next_free_rec) == 1) {
3607 			/* extend credit for ocfs2_remove_rightmost_path */
3608 			ret = ocfs2_extend_rotate_transaction(handle, 0,
3609 					handle->h_buffer_credits,
3610 					right_path);
3611 			if (ret) {
3612 				mlog_errno(ret);
3613 				goto out;
3614 			}
3615 
3616 			ret = ocfs2_remove_rightmost_path(handle, et,
3617 							  right_path,
3618 							  dealloc);
3619 			if (ret) {
3620 				mlog_errno(ret);
3621 				goto out;
3622 			}
3623 
3624 			/* Now the rightmost extent block has been deleted.
3625 			 * So we use the new rightmost path.
3626 			 */
3627 			ocfs2_mv_path(right_path, left_path);
3628 			left_path = NULL;
3629 		} else
3630 			ocfs2_complete_edge_insert(handle, left_path,
3631 						   right_path, subtree_index);
3632 	}
3633 out:
3634 	ocfs2_free_path(left_path);
3635 	return ret;
3636 }
3637 
3638 static int ocfs2_try_to_merge_extent(handle_t *handle,
3639 				     struct ocfs2_extent_tree *et,
3640 				     struct ocfs2_path *path,
3641 				     int split_index,
3642 				     struct ocfs2_extent_rec *split_rec,
3643 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
3644 				     struct ocfs2_merge_ctxt *ctxt)
3645 {
3646 	int ret = 0;
3647 	struct ocfs2_extent_list *el = path_leaf_el(path);
3648 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3649 
3650 	BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3651 
3652 	if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3653 		/* extend credit for ocfs2_remove_rightmost_path */
3654 		ret = ocfs2_extend_rotate_transaction(handle, 0,
3655 				handle->h_buffer_credits,
3656 				path);
3657 		if (ret) {
3658 			mlog_errno(ret);
3659 			goto out;
3660 		}
3661 		/*
3662 		 * The merge code will need to create an empty
3663 		 * extent to take the place of the newly
3664 		 * emptied slot. Remove any pre-existing empty
3665 		 * extents - having more than one in a leaf is
3666 		 * illegal.
3667 		 */
3668 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3669 		if (ret) {
3670 			mlog_errno(ret);
3671 			goto out;
3672 		}
3673 		split_index--;
3674 		rec = &el->l_recs[split_index];
3675 	}
3676 
3677 	if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3678 		/*
3679 		 * Left-right contig implies this.
3680 		 */
3681 		BUG_ON(!ctxt->c_split_covers_rec);
3682 
3683 		/*
3684 		 * Since the leftright insert always covers the entire
3685 		 * extent, this call will delete the insert record
3686 		 * entirely, resulting in an empty extent record added to
3687 		 * the extent block.
3688 		 *
3689 		 * Since the adding of an empty extent shifts
3690 		 * everything back to the right, there's no need to
3691 		 * update split_index here.
3692 		 *
3693 		 * When the split_index is zero, we need to merge it to the
3694 		 * prevoius extent block. It is more efficient and easier
3695 		 * if we do merge_right first and merge_left later.
3696 		 */
3697 		ret = ocfs2_merge_rec_right(path, handle, et, split_rec,
3698 					    split_index);
3699 		if (ret) {
3700 			mlog_errno(ret);
3701 			goto out;
3702 		}
3703 
3704 		/*
3705 		 * We can only get this from logic error above.
3706 		 */
3707 		BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3708 
3709 		/* extend credit for ocfs2_remove_rightmost_path */
3710 		ret = ocfs2_extend_rotate_transaction(handle, 0,
3711 					handle->h_buffer_credits,
3712 					path);
3713 		if (ret) {
3714 			mlog_errno(ret);
3715 			goto out;
3716 		}
3717 
3718 		/* The merge left us with an empty extent, remove it. */
3719 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3720 		if (ret) {
3721 			mlog_errno(ret);
3722 			goto out;
3723 		}
3724 
3725 		rec = &el->l_recs[split_index];
3726 
3727 		/*
3728 		 * Note that we don't pass split_rec here on purpose -
3729 		 * we've merged it into the rec already.
3730 		 */
3731 		ret = ocfs2_merge_rec_left(path, handle, et, rec,
3732 					   dealloc, split_index);
3733 
3734 		if (ret) {
3735 			mlog_errno(ret);
3736 			goto out;
3737 		}
3738 
3739 		/* extend credit for ocfs2_remove_rightmost_path */
3740 		ret = ocfs2_extend_rotate_transaction(handle, 0,
3741 				handle->h_buffer_credits,
3742 				path);
3743 		if (ret) {
3744 			mlog_errno(ret);
3745 			goto out;
3746 		}
3747 
3748 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3749 		/*
3750 		 * Error from this last rotate is not critical, so
3751 		 * print but don't bubble it up.
3752 		 */
3753 		if (ret)
3754 			mlog_errno(ret);
3755 		ret = 0;
3756 	} else {
3757 		/*
3758 		 * Merge a record to the left or right.
3759 		 *
3760 		 * 'contig_type' is relative to the existing record,
3761 		 * so for example, if we're "right contig", it's to
3762 		 * the record on the left (hence the left merge).
3763 		 */
3764 		if (ctxt->c_contig_type == CONTIG_RIGHT) {
3765 			ret = ocfs2_merge_rec_left(path, handle, et,
3766 						   split_rec, dealloc,
3767 						   split_index);
3768 			if (ret) {
3769 				mlog_errno(ret);
3770 				goto out;
3771 			}
3772 		} else {
3773 			ret = ocfs2_merge_rec_right(path, handle,
3774 						    et, split_rec,
3775 						    split_index);
3776 			if (ret) {
3777 				mlog_errno(ret);
3778 				goto out;
3779 			}
3780 		}
3781 
3782 		if (ctxt->c_split_covers_rec) {
3783 			/* extend credit for ocfs2_remove_rightmost_path */
3784 			ret = ocfs2_extend_rotate_transaction(handle, 0,
3785 					handle->h_buffer_credits,
3786 					path);
3787 			if (ret) {
3788 				mlog_errno(ret);
3789 				ret = 0;
3790 				goto out;
3791 			}
3792 
3793 			/*
3794 			 * The merge may have left an empty extent in
3795 			 * our leaf. Try to rotate it away.
3796 			 */
3797 			ret = ocfs2_rotate_tree_left(handle, et, path,
3798 						     dealloc);
3799 			if (ret)
3800 				mlog_errno(ret);
3801 			ret = 0;
3802 		}
3803 	}
3804 
3805 out:
3806 	return ret;
3807 }
3808 
3809 static void ocfs2_subtract_from_rec(struct super_block *sb,
3810 				    enum ocfs2_split_type split,
3811 				    struct ocfs2_extent_rec *rec,
3812 				    struct ocfs2_extent_rec *split_rec)
3813 {
3814 	u64 len_blocks;
3815 
3816 	len_blocks = ocfs2_clusters_to_blocks(sb,
3817 				le16_to_cpu(split_rec->e_leaf_clusters));
3818 
3819 	if (split == SPLIT_LEFT) {
3820 		/*
3821 		 * Region is on the left edge of the existing
3822 		 * record.
3823 		 */
3824 		le32_add_cpu(&rec->e_cpos,
3825 			     le16_to_cpu(split_rec->e_leaf_clusters));
3826 		le64_add_cpu(&rec->e_blkno, len_blocks);
3827 		le16_add_cpu(&rec->e_leaf_clusters,
3828 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3829 	} else {
3830 		/*
3831 		 * Region is on the right edge of the existing
3832 		 * record.
3833 		 */
3834 		le16_add_cpu(&rec->e_leaf_clusters,
3835 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3836 	}
3837 }
3838 
3839 /*
3840  * Do the final bits of extent record insertion at the target leaf
3841  * list. If this leaf is part of an allocation tree, it is assumed
3842  * that the tree above has been prepared.
3843  */
3844 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et,
3845 				 struct ocfs2_extent_rec *insert_rec,
3846 				 struct ocfs2_extent_list *el,
3847 				 struct ocfs2_insert_type *insert)
3848 {
3849 	int i = insert->ins_contig_index;
3850 	unsigned int range;
3851 	struct ocfs2_extent_rec *rec;
3852 
3853 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3854 
3855 	if (insert->ins_split != SPLIT_NONE) {
3856 		i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3857 		BUG_ON(i == -1);
3858 		rec = &el->l_recs[i];
3859 		ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
3860 					insert->ins_split, rec,
3861 					insert_rec);
3862 		goto rotate;
3863 	}
3864 
3865 	/*
3866 	 * Contiguous insert - either left or right.
3867 	 */
3868 	if (insert->ins_contig != CONTIG_NONE) {
3869 		rec = &el->l_recs[i];
3870 		if (insert->ins_contig == CONTIG_LEFT) {
3871 			rec->e_blkno = insert_rec->e_blkno;
3872 			rec->e_cpos = insert_rec->e_cpos;
3873 		}
3874 		le16_add_cpu(&rec->e_leaf_clusters,
3875 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3876 		return;
3877 	}
3878 
3879 	/*
3880 	 * Handle insert into an empty leaf.
3881 	 */
3882 	if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3883 	    ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3884 	     ocfs2_is_empty_extent(&el->l_recs[0]))) {
3885 		el->l_recs[0] = *insert_rec;
3886 		el->l_next_free_rec = cpu_to_le16(1);
3887 		return;
3888 	}
3889 
3890 	/*
3891 	 * Appending insert.
3892 	 */
3893 	if (insert->ins_appending == APPEND_TAIL) {
3894 		i = le16_to_cpu(el->l_next_free_rec) - 1;
3895 		rec = &el->l_recs[i];
3896 		range = le32_to_cpu(rec->e_cpos)
3897 			+ le16_to_cpu(rec->e_leaf_clusters);
3898 		BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3899 
3900 		mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3901 				le16_to_cpu(el->l_count),
3902 				"owner %llu, depth %u, count %u, next free %u, "
3903 				"rec.cpos %u, rec.clusters %u, "
3904 				"insert.cpos %u, insert.clusters %u\n",
3905 				ocfs2_metadata_cache_owner(et->et_ci),
3906 				le16_to_cpu(el->l_tree_depth),
3907 				le16_to_cpu(el->l_count),
3908 				le16_to_cpu(el->l_next_free_rec),
3909 				le32_to_cpu(el->l_recs[i].e_cpos),
3910 				le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3911 				le32_to_cpu(insert_rec->e_cpos),
3912 				le16_to_cpu(insert_rec->e_leaf_clusters));
3913 		i++;
3914 		el->l_recs[i] = *insert_rec;
3915 		le16_add_cpu(&el->l_next_free_rec, 1);
3916 		return;
3917 	}
3918 
3919 rotate:
3920 	/*
3921 	 * Ok, we have to rotate.
3922 	 *
3923 	 * At this point, it is safe to assume that inserting into an
3924 	 * empty leaf and appending to a leaf have both been handled
3925 	 * above.
3926 	 *
3927 	 * This leaf needs to have space, either by the empty 1st
3928 	 * extent record, or by virtue of an l_next_rec < l_count.
3929 	 */
3930 	ocfs2_rotate_leaf(el, insert_rec);
3931 }
3932 
3933 static void ocfs2_adjust_rightmost_records(handle_t *handle,
3934 					   struct ocfs2_extent_tree *et,
3935 					   struct ocfs2_path *path,
3936 					   struct ocfs2_extent_rec *insert_rec)
3937 {
3938 	int i, next_free;
3939 	struct buffer_head *bh;
3940 	struct ocfs2_extent_list *el;
3941 	struct ocfs2_extent_rec *rec;
3942 
3943 	/*
3944 	 * Update everything except the leaf block.
3945 	 */
3946 	for (i = 0; i < path->p_tree_depth; i++) {
3947 		bh = path->p_node[i].bh;
3948 		el = path->p_node[i].el;
3949 
3950 		next_free = le16_to_cpu(el->l_next_free_rec);
3951 		if (next_free == 0) {
3952 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3953 				    "Owner %llu has a bad extent list\n",
3954 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
3955 			return;
3956 		}
3957 
3958 		rec = &el->l_recs[next_free - 1];
3959 
3960 		rec->e_int_clusters = insert_rec->e_cpos;
3961 		le32_add_cpu(&rec->e_int_clusters,
3962 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3963 		le32_add_cpu(&rec->e_int_clusters,
3964 			     -le32_to_cpu(rec->e_cpos));
3965 
3966 		ocfs2_journal_dirty(handle, bh);
3967 	}
3968 }
3969 
3970 static int ocfs2_append_rec_to_path(handle_t *handle,
3971 				    struct ocfs2_extent_tree *et,
3972 				    struct ocfs2_extent_rec *insert_rec,
3973 				    struct ocfs2_path *right_path,
3974 				    struct ocfs2_path **ret_left_path)
3975 {
3976 	int ret, next_free;
3977 	struct ocfs2_extent_list *el;
3978 	struct ocfs2_path *left_path = NULL;
3979 
3980 	*ret_left_path = NULL;
3981 
3982 	/*
3983 	 * This shouldn't happen for non-trees. The extent rec cluster
3984 	 * count manipulation below only works for interior nodes.
3985 	 */
3986 	BUG_ON(right_path->p_tree_depth == 0);
3987 
3988 	/*
3989 	 * If our appending insert is at the leftmost edge of a leaf,
3990 	 * then we might need to update the rightmost records of the
3991 	 * neighboring path.
3992 	 */
3993 	el = path_leaf_el(right_path);
3994 	next_free = le16_to_cpu(el->l_next_free_rec);
3995 	if (next_free == 0 ||
3996 	    (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3997 		u32 left_cpos;
3998 
3999 		ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
4000 						    right_path, &left_cpos);
4001 		if (ret) {
4002 			mlog_errno(ret);
4003 			goto out;
4004 		}
4005 
4006 		trace_ocfs2_append_rec_to_path(
4007 			(unsigned long long)
4008 			ocfs2_metadata_cache_owner(et->et_ci),
4009 			le32_to_cpu(insert_rec->e_cpos),
4010 			left_cpos);
4011 
4012 		/*
4013 		 * No need to worry if the append is already in the
4014 		 * leftmost leaf.
4015 		 */
4016 		if (left_cpos) {
4017 			left_path = ocfs2_new_path_from_path(right_path);
4018 			if (!left_path) {
4019 				ret = -ENOMEM;
4020 				mlog_errno(ret);
4021 				goto out;
4022 			}
4023 
4024 			ret = ocfs2_find_path(et->et_ci, left_path,
4025 					      left_cpos);
4026 			if (ret) {
4027 				mlog_errno(ret);
4028 				goto out;
4029 			}
4030 
4031 			/*
4032 			 * ocfs2_insert_path() will pass the left_path to the
4033 			 * journal for us.
4034 			 */
4035 		}
4036 	}
4037 
4038 	ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4039 	if (ret) {
4040 		mlog_errno(ret);
4041 		goto out;
4042 	}
4043 
4044 	ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec);
4045 
4046 	*ret_left_path = left_path;
4047 	ret = 0;
4048 out:
4049 	if (ret != 0)
4050 		ocfs2_free_path(left_path);
4051 
4052 	return ret;
4053 }
4054 
4055 static void ocfs2_split_record(struct ocfs2_extent_tree *et,
4056 			       struct ocfs2_path *left_path,
4057 			       struct ocfs2_path *right_path,
4058 			       struct ocfs2_extent_rec *split_rec,
4059 			       enum ocfs2_split_type split)
4060 {
4061 	int index;
4062 	u32 cpos = le32_to_cpu(split_rec->e_cpos);
4063 	struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4064 	struct ocfs2_extent_rec *rec, *tmprec;
4065 
4066 	right_el = path_leaf_el(right_path);
4067 	if (left_path)
4068 		left_el = path_leaf_el(left_path);
4069 
4070 	el = right_el;
4071 	insert_el = right_el;
4072 	index = ocfs2_search_extent_list(el, cpos);
4073 	if (index != -1) {
4074 		if (index == 0 && left_path) {
4075 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4076 
4077 			/*
4078 			 * This typically means that the record
4079 			 * started in the left path but moved to the
4080 			 * right as a result of rotation. We either
4081 			 * move the existing record to the left, or we
4082 			 * do the later insert there.
4083 			 *
4084 			 * In this case, the left path should always
4085 			 * exist as the rotate code will have passed
4086 			 * it back for a post-insert update.
4087 			 */
4088 
4089 			if (split == SPLIT_LEFT) {
4090 				/*
4091 				 * It's a left split. Since we know
4092 				 * that the rotate code gave us an
4093 				 * empty extent in the left path, we
4094 				 * can just do the insert there.
4095 				 */
4096 				insert_el = left_el;
4097 			} else {
4098 				/*
4099 				 * Right split - we have to move the
4100 				 * existing record over to the left
4101 				 * leaf. The insert will be into the
4102 				 * newly created empty extent in the
4103 				 * right leaf.
4104 				 */
4105 				tmprec = &right_el->l_recs[index];
4106 				ocfs2_rotate_leaf(left_el, tmprec);
4107 				el = left_el;
4108 
4109 				memset(tmprec, 0, sizeof(*tmprec));
4110 				index = ocfs2_search_extent_list(left_el, cpos);
4111 				BUG_ON(index == -1);
4112 			}
4113 		}
4114 	} else {
4115 		BUG_ON(!left_path);
4116 		BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4117 		/*
4118 		 * Left path is easy - we can just allow the insert to
4119 		 * happen.
4120 		 */
4121 		el = left_el;
4122 		insert_el = left_el;
4123 		index = ocfs2_search_extent_list(el, cpos);
4124 		BUG_ON(index == -1);
4125 	}
4126 
4127 	rec = &el->l_recs[index];
4128 	ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4129 				split, rec, split_rec);
4130 	ocfs2_rotate_leaf(insert_el, split_rec);
4131 }
4132 
4133 /*
4134  * This function only does inserts on an allocation b-tree. For tree
4135  * depth = 0, ocfs2_insert_at_leaf() is called directly.
4136  *
4137  * right_path is the path we want to do the actual insert
4138  * in. left_path should only be passed in if we need to update that
4139  * portion of the tree after an edge insert.
4140  */
4141 static int ocfs2_insert_path(handle_t *handle,
4142 			     struct ocfs2_extent_tree *et,
4143 			     struct ocfs2_path *left_path,
4144 			     struct ocfs2_path *right_path,
4145 			     struct ocfs2_extent_rec *insert_rec,
4146 			     struct ocfs2_insert_type *insert)
4147 {
4148 	int ret, subtree_index;
4149 	struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4150 
4151 	if (left_path) {
4152 		/*
4153 		 * There's a chance that left_path got passed back to
4154 		 * us without being accounted for in the
4155 		 * journal. Extend our transaction here to be sure we
4156 		 * can change those blocks.
4157 		 */
4158 		ret = ocfs2_extend_trans(handle, left_path->p_tree_depth);
4159 		if (ret < 0) {
4160 			mlog_errno(ret);
4161 			goto out;
4162 		}
4163 
4164 		ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
4165 		if (ret < 0) {
4166 			mlog_errno(ret);
4167 			goto out;
4168 		}
4169 	}
4170 
4171 	/*
4172 	 * Pass both paths to the journal. The majority of inserts
4173 	 * will be touching all components anyway.
4174 	 */
4175 	ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4176 	if (ret < 0) {
4177 		mlog_errno(ret);
4178 		goto out;
4179 	}
4180 
4181 	if (insert->ins_split != SPLIT_NONE) {
4182 		/*
4183 		 * We could call ocfs2_insert_at_leaf() for some types
4184 		 * of splits, but it's easier to just let one separate
4185 		 * function sort it all out.
4186 		 */
4187 		ocfs2_split_record(et, left_path, right_path,
4188 				   insert_rec, insert->ins_split);
4189 
4190 		/*
4191 		 * Split might have modified either leaf and we don't
4192 		 * have a guarantee that the later edge insert will
4193 		 * dirty this for us.
4194 		 */
4195 		if (left_path)
4196 			ocfs2_journal_dirty(handle,
4197 					    path_leaf_bh(left_path));
4198 	} else
4199 		ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path),
4200 				     insert);
4201 
4202 	ocfs2_journal_dirty(handle, leaf_bh);
4203 
4204 	if (left_path) {
4205 		/*
4206 		 * The rotate code has indicated that we need to fix
4207 		 * up portions of the tree after the insert.
4208 		 *
4209 		 * XXX: Should we extend the transaction here?
4210 		 */
4211 		subtree_index = ocfs2_find_subtree_root(et, left_path,
4212 							right_path);
4213 		ocfs2_complete_edge_insert(handle, left_path, right_path,
4214 					   subtree_index);
4215 	}
4216 
4217 	ret = 0;
4218 out:
4219 	return ret;
4220 }
4221 
4222 static int ocfs2_do_insert_extent(handle_t *handle,
4223 				  struct ocfs2_extent_tree *et,
4224 				  struct ocfs2_extent_rec *insert_rec,
4225 				  struct ocfs2_insert_type *type)
4226 {
4227 	int ret, rotate = 0;
4228 	u32 cpos;
4229 	struct ocfs2_path *right_path = NULL;
4230 	struct ocfs2_path *left_path = NULL;
4231 	struct ocfs2_extent_list *el;
4232 
4233 	el = et->et_root_el;
4234 
4235 	ret = ocfs2_et_root_journal_access(handle, et,
4236 					   OCFS2_JOURNAL_ACCESS_WRITE);
4237 	if (ret) {
4238 		mlog_errno(ret);
4239 		goto out;
4240 	}
4241 
4242 	if (le16_to_cpu(el->l_tree_depth) == 0) {
4243 		ocfs2_insert_at_leaf(et, insert_rec, el, type);
4244 		goto out_update_clusters;
4245 	}
4246 
4247 	right_path = ocfs2_new_path_from_et(et);
4248 	if (!right_path) {
4249 		ret = -ENOMEM;
4250 		mlog_errno(ret);
4251 		goto out;
4252 	}
4253 
4254 	/*
4255 	 * Determine the path to start with. Rotations need the
4256 	 * rightmost path, everything else can go directly to the
4257 	 * target leaf.
4258 	 */
4259 	cpos = le32_to_cpu(insert_rec->e_cpos);
4260 	if (type->ins_appending == APPEND_NONE &&
4261 	    type->ins_contig == CONTIG_NONE) {
4262 		rotate = 1;
4263 		cpos = UINT_MAX;
4264 	}
4265 
4266 	ret = ocfs2_find_path(et->et_ci, right_path, cpos);
4267 	if (ret) {
4268 		mlog_errno(ret);
4269 		goto out;
4270 	}
4271 
4272 	/*
4273 	 * Rotations and appends need special treatment - they modify
4274 	 * parts of the tree's above them.
4275 	 *
4276 	 * Both might pass back a path immediate to the left of the
4277 	 * one being inserted to. This will be cause
4278 	 * ocfs2_insert_path() to modify the rightmost records of
4279 	 * left_path to account for an edge insert.
4280 	 *
4281 	 * XXX: When modifying this code, keep in mind that an insert
4282 	 * can wind up skipping both of these two special cases...
4283 	 */
4284 	if (rotate) {
4285 		ret = ocfs2_rotate_tree_right(handle, et, type->ins_split,
4286 					      le32_to_cpu(insert_rec->e_cpos),
4287 					      right_path, &left_path);
4288 		if (ret) {
4289 			mlog_errno(ret);
4290 			goto out;
4291 		}
4292 
4293 		/*
4294 		 * ocfs2_rotate_tree_right() might have extended the
4295 		 * transaction without re-journaling our tree root.
4296 		 */
4297 		ret = ocfs2_et_root_journal_access(handle, et,
4298 						   OCFS2_JOURNAL_ACCESS_WRITE);
4299 		if (ret) {
4300 			mlog_errno(ret);
4301 			goto out;
4302 		}
4303 	} else if (type->ins_appending == APPEND_TAIL
4304 		   && type->ins_contig != CONTIG_LEFT) {
4305 		ret = ocfs2_append_rec_to_path(handle, et, insert_rec,
4306 					       right_path, &left_path);
4307 		if (ret) {
4308 			mlog_errno(ret);
4309 			goto out;
4310 		}
4311 	}
4312 
4313 	ret = ocfs2_insert_path(handle, et, left_path, right_path,
4314 				insert_rec, type);
4315 	if (ret) {
4316 		mlog_errno(ret);
4317 		goto out;
4318 	}
4319 
4320 out_update_clusters:
4321 	if (type->ins_split == SPLIT_NONE)
4322 		ocfs2_et_update_clusters(et,
4323 					 le16_to_cpu(insert_rec->e_leaf_clusters));
4324 
4325 	ocfs2_journal_dirty(handle, et->et_root_bh);
4326 
4327 out:
4328 	ocfs2_free_path(left_path);
4329 	ocfs2_free_path(right_path);
4330 
4331 	return ret;
4332 }
4333 
4334 static int ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et,
4335 			       struct ocfs2_path *path,
4336 			       struct ocfs2_extent_list *el, int index,
4337 			       struct ocfs2_extent_rec *split_rec,
4338 			       struct ocfs2_merge_ctxt *ctxt)
4339 {
4340 	int status = 0;
4341 	enum ocfs2_contig_type ret = CONTIG_NONE;
4342 	u32 left_cpos, right_cpos;
4343 	struct ocfs2_extent_rec *rec = NULL;
4344 	struct ocfs2_extent_list *new_el;
4345 	struct ocfs2_path *left_path = NULL, *right_path = NULL;
4346 	struct buffer_head *bh;
4347 	struct ocfs2_extent_block *eb;
4348 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
4349 
4350 	if (index > 0) {
4351 		rec = &el->l_recs[index - 1];
4352 	} else if (path->p_tree_depth > 0) {
4353 		status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
4354 		if (status)
4355 			goto exit;
4356 
4357 		if (left_cpos != 0) {
4358 			left_path = ocfs2_new_path_from_path(path);
4359 			if (!left_path) {
4360 				status = -ENOMEM;
4361 				mlog_errno(status);
4362 				goto exit;
4363 			}
4364 
4365 			status = ocfs2_find_path(et->et_ci, left_path,
4366 						 left_cpos);
4367 			if (status)
4368 				goto free_left_path;
4369 
4370 			new_el = path_leaf_el(left_path);
4371 
4372 			if (le16_to_cpu(new_el->l_next_free_rec) !=
4373 			    le16_to_cpu(new_el->l_count)) {
4374 				bh = path_leaf_bh(left_path);
4375 				eb = (struct ocfs2_extent_block *)bh->b_data;
4376 				ocfs2_error(sb,
4377 					    "Extent block #%llu has an invalid l_next_free_rec of %d.  It should have matched the l_count of %d\n",
4378 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4379 					    le16_to_cpu(new_el->l_next_free_rec),
4380 					    le16_to_cpu(new_el->l_count));
4381 				status = -EINVAL;
4382 				goto free_left_path;
4383 			}
4384 			rec = &new_el->l_recs[
4385 				le16_to_cpu(new_el->l_next_free_rec) - 1];
4386 		}
4387 	}
4388 
4389 	/*
4390 	 * We're careful to check for an empty extent record here -
4391 	 * the merge code will know what to do if it sees one.
4392 	 */
4393 	if (rec) {
4394 		if (index == 1 && ocfs2_is_empty_extent(rec)) {
4395 			if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4396 				ret = CONTIG_RIGHT;
4397 		} else {
4398 			ret = ocfs2_et_extent_contig(et, rec, split_rec);
4399 		}
4400 	}
4401 
4402 	rec = NULL;
4403 	if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4404 		rec = &el->l_recs[index + 1];
4405 	else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4406 		 path->p_tree_depth > 0) {
4407 		status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
4408 		if (status)
4409 			goto free_left_path;
4410 
4411 		if (right_cpos == 0)
4412 			goto free_left_path;
4413 
4414 		right_path = ocfs2_new_path_from_path(path);
4415 		if (!right_path) {
4416 			status = -ENOMEM;
4417 			mlog_errno(status);
4418 			goto free_left_path;
4419 		}
4420 
4421 		status = ocfs2_find_path(et->et_ci, right_path, right_cpos);
4422 		if (status)
4423 			goto free_right_path;
4424 
4425 		new_el = path_leaf_el(right_path);
4426 		rec = &new_el->l_recs[0];
4427 		if (ocfs2_is_empty_extent(rec)) {
4428 			if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4429 				bh = path_leaf_bh(right_path);
4430 				eb = (struct ocfs2_extent_block *)bh->b_data;
4431 				ocfs2_error(sb,
4432 					    "Extent block #%llu has an invalid l_next_free_rec of %d\n",
4433 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4434 					    le16_to_cpu(new_el->l_next_free_rec));
4435 				status = -EINVAL;
4436 				goto free_right_path;
4437 			}
4438 			rec = &new_el->l_recs[1];
4439 		}
4440 	}
4441 
4442 	if (rec) {
4443 		enum ocfs2_contig_type contig_type;
4444 
4445 		contig_type = ocfs2_et_extent_contig(et, rec, split_rec);
4446 
4447 		if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4448 			ret = CONTIG_LEFTRIGHT;
4449 		else if (ret == CONTIG_NONE)
4450 			ret = contig_type;
4451 	}
4452 
4453 free_right_path:
4454 	ocfs2_free_path(right_path);
4455 free_left_path:
4456 	ocfs2_free_path(left_path);
4457 exit:
4458 	if (status == 0)
4459 		ctxt->c_contig_type = ret;
4460 
4461 	return status;
4462 }
4463 
4464 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et,
4465 				     struct ocfs2_insert_type *insert,
4466 				     struct ocfs2_extent_list *el,
4467 				     struct ocfs2_extent_rec *insert_rec)
4468 {
4469 	int i;
4470 	enum ocfs2_contig_type contig_type = CONTIG_NONE;
4471 
4472 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4473 
4474 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4475 		contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i],
4476 						     insert_rec);
4477 		if (contig_type != CONTIG_NONE) {
4478 			insert->ins_contig_index = i;
4479 			break;
4480 		}
4481 	}
4482 	insert->ins_contig = contig_type;
4483 
4484 	if (insert->ins_contig != CONTIG_NONE) {
4485 		struct ocfs2_extent_rec *rec =
4486 				&el->l_recs[insert->ins_contig_index];
4487 		unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4488 				   le16_to_cpu(insert_rec->e_leaf_clusters);
4489 
4490 		/*
4491 		 * Caller might want us to limit the size of extents, don't
4492 		 * calculate contiguousness if we might exceed that limit.
4493 		 */
4494 		if (et->et_max_leaf_clusters &&
4495 		    (len > et->et_max_leaf_clusters))
4496 			insert->ins_contig = CONTIG_NONE;
4497 	}
4498 }
4499 
4500 /*
4501  * This should only be called against the righmost leaf extent list.
4502  *
4503  * ocfs2_figure_appending_type() will figure out whether we'll have to
4504  * insert at the tail of the rightmost leaf.
4505  *
4506  * This should also work against the root extent list for tree's with 0
4507  * depth. If we consider the root extent list to be the rightmost leaf node
4508  * then the logic here makes sense.
4509  */
4510 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4511 					struct ocfs2_extent_list *el,
4512 					struct ocfs2_extent_rec *insert_rec)
4513 {
4514 	int i;
4515 	u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4516 	struct ocfs2_extent_rec *rec;
4517 
4518 	insert->ins_appending = APPEND_NONE;
4519 
4520 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4521 
4522 	if (!el->l_next_free_rec)
4523 		goto set_tail_append;
4524 
4525 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4526 		/* Were all records empty? */
4527 		if (le16_to_cpu(el->l_next_free_rec) == 1)
4528 			goto set_tail_append;
4529 	}
4530 
4531 	i = le16_to_cpu(el->l_next_free_rec) - 1;
4532 	rec = &el->l_recs[i];
4533 
4534 	if (cpos >=
4535 	    (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4536 		goto set_tail_append;
4537 
4538 	return;
4539 
4540 set_tail_append:
4541 	insert->ins_appending = APPEND_TAIL;
4542 }
4543 
4544 /*
4545  * Helper function called at the beginning of an insert.
4546  *
4547  * This computes a few things that are commonly used in the process of
4548  * inserting into the btree:
4549  *   - Whether the new extent is contiguous with an existing one.
4550  *   - The current tree depth.
4551  *   - Whether the insert is an appending one.
4552  *   - The total # of free records in the tree.
4553  *
4554  * All of the information is stored on the ocfs2_insert_type
4555  * structure.
4556  */
4557 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et,
4558 				    struct buffer_head **last_eb_bh,
4559 				    struct ocfs2_extent_rec *insert_rec,
4560 				    int *free_records,
4561 				    struct ocfs2_insert_type *insert)
4562 {
4563 	int ret;
4564 	struct ocfs2_extent_block *eb;
4565 	struct ocfs2_extent_list *el;
4566 	struct ocfs2_path *path = NULL;
4567 	struct buffer_head *bh = NULL;
4568 
4569 	insert->ins_split = SPLIT_NONE;
4570 
4571 	el = et->et_root_el;
4572 	insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4573 
4574 	if (el->l_tree_depth) {
4575 		/*
4576 		 * If we have tree depth, we read in the
4577 		 * rightmost extent block ahead of time as
4578 		 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4579 		 * may want it later.
4580 		 */
4581 		ret = ocfs2_read_extent_block(et->et_ci,
4582 					      ocfs2_et_get_last_eb_blk(et),
4583 					      &bh);
4584 		if (ret) {
4585 			mlog_errno(ret);
4586 			goto out;
4587 		}
4588 		eb = (struct ocfs2_extent_block *) bh->b_data;
4589 		el = &eb->h_list;
4590 	}
4591 
4592 	/*
4593 	 * Unless we have a contiguous insert, we'll need to know if
4594 	 * there is room left in our allocation tree for another
4595 	 * extent record.
4596 	 *
4597 	 * XXX: This test is simplistic, we can search for empty
4598 	 * extent records too.
4599 	 */
4600 	*free_records = le16_to_cpu(el->l_count) -
4601 		le16_to_cpu(el->l_next_free_rec);
4602 
4603 	if (!insert->ins_tree_depth) {
4604 		ocfs2_figure_contig_type(et, insert, el, insert_rec);
4605 		ocfs2_figure_appending_type(insert, el, insert_rec);
4606 		return 0;
4607 	}
4608 
4609 	path = ocfs2_new_path_from_et(et);
4610 	if (!path) {
4611 		ret = -ENOMEM;
4612 		mlog_errno(ret);
4613 		goto out;
4614 	}
4615 
4616 	/*
4617 	 * In the case that we're inserting past what the tree
4618 	 * currently accounts for, ocfs2_find_path() will return for
4619 	 * us the rightmost tree path. This is accounted for below in
4620 	 * the appending code.
4621 	 */
4622 	ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos));
4623 	if (ret) {
4624 		mlog_errno(ret);
4625 		goto out;
4626 	}
4627 
4628 	el = path_leaf_el(path);
4629 
4630 	/*
4631 	 * Now that we have the path, there's two things we want to determine:
4632 	 * 1) Contiguousness (also set contig_index if this is so)
4633 	 *
4634 	 * 2) Are we doing an append? We can trivially break this up
4635          *     into two types of appends: simple record append, or a
4636          *     rotate inside the tail leaf.
4637 	 */
4638 	ocfs2_figure_contig_type(et, insert, el, insert_rec);
4639 
4640 	/*
4641 	 * The insert code isn't quite ready to deal with all cases of
4642 	 * left contiguousness. Specifically, if it's an insert into
4643 	 * the 1st record in a leaf, it will require the adjustment of
4644 	 * cluster count on the last record of the path directly to it's
4645 	 * left. For now, just catch that case and fool the layers
4646 	 * above us. This works just fine for tree_depth == 0, which
4647 	 * is why we allow that above.
4648 	 */
4649 	if (insert->ins_contig == CONTIG_LEFT &&
4650 	    insert->ins_contig_index == 0)
4651 		insert->ins_contig = CONTIG_NONE;
4652 
4653 	/*
4654 	 * Ok, so we can simply compare against last_eb to figure out
4655 	 * whether the path doesn't exist. This will only happen in
4656 	 * the case that we're doing a tail append, so maybe we can
4657 	 * take advantage of that information somehow.
4658 	 */
4659 	if (ocfs2_et_get_last_eb_blk(et) ==
4660 	    path_leaf_bh(path)->b_blocknr) {
4661 		/*
4662 		 * Ok, ocfs2_find_path() returned us the rightmost
4663 		 * tree path. This might be an appending insert. There are
4664 		 * two cases:
4665 		 *    1) We're doing a true append at the tail:
4666 		 *	-This might even be off the end of the leaf
4667 		 *    2) We're "appending" by rotating in the tail
4668 		 */
4669 		ocfs2_figure_appending_type(insert, el, insert_rec);
4670 	}
4671 
4672 out:
4673 	ocfs2_free_path(path);
4674 
4675 	if (ret == 0)
4676 		*last_eb_bh = bh;
4677 	else
4678 		brelse(bh);
4679 	return ret;
4680 }
4681 
4682 /*
4683  * Insert an extent into a btree.
4684  *
4685  * The caller needs to update the owning btree's cluster count.
4686  */
4687 int ocfs2_insert_extent(handle_t *handle,
4688 			struct ocfs2_extent_tree *et,
4689 			u32 cpos,
4690 			u64 start_blk,
4691 			u32 new_clusters,
4692 			u8 flags,
4693 			struct ocfs2_alloc_context *meta_ac)
4694 {
4695 	int status;
4696 	int uninitialized_var(free_records);
4697 	struct buffer_head *last_eb_bh = NULL;
4698 	struct ocfs2_insert_type insert = {0, };
4699 	struct ocfs2_extent_rec rec;
4700 
4701 	trace_ocfs2_insert_extent_start(
4702 		(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4703 		cpos, new_clusters);
4704 
4705 	memset(&rec, 0, sizeof(rec));
4706 	rec.e_cpos = cpu_to_le32(cpos);
4707 	rec.e_blkno = cpu_to_le64(start_blk);
4708 	rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4709 	rec.e_flags = flags;
4710 	status = ocfs2_et_insert_check(et, &rec);
4711 	if (status) {
4712 		mlog_errno(status);
4713 		goto bail;
4714 	}
4715 
4716 	status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec,
4717 					  &free_records, &insert);
4718 	if (status < 0) {
4719 		mlog_errno(status);
4720 		goto bail;
4721 	}
4722 
4723 	trace_ocfs2_insert_extent(insert.ins_appending, insert.ins_contig,
4724 				  insert.ins_contig_index, free_records,
4725 				  insert.ins_tree_depth);
4726 
4727 	if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4728 		status = ocfs2_grow_tree(handle, et,
4729 					 &insert.ins_tree_depth, &last_eb_bh,
4730 					 meta_ac);
4731 		if (status) {
4732 			mlog_errno(status);
4733 			goto bail;
4734 		}
4735 	}
4736 
4737 	/* Finally, we can add clusters. This might rotate the tree for us. */
4738 	status = ocfs2_do_insert_extent(handle, et, &rec, &insert);
4739 	if (status < 0)
4740 		mlog_errno(status);
4741 	else
4742 		ocfs2_et_extent_map_insert(et, &rec);
4743 
4744 bail:
4745 	brelse(last_eb_bh);
4746 
4747 	return status;
4748 }
4749 
4750 /*
4751  * Allcate and add clusters into the extent b-tree.
4752  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4753  * The extent b-tree's root is specified by et, and
4754  * it is not limited to the file storage. Any extent tree can use this
4755  * function if it implements the proper ocfs2_extent_tree.
4756  */
4757 int ocfs2_add_clusters_in_btree(handle_t *handle,
4758 				struct ocfs2_extent_tree *et,
4759 				u32 *logical_offset,
4760 				u32 clusters_to_add,
4761 				int mark_unwritten,
4762 				struct ocfs2_alloc_context *data_ac,
4763 				struct ocfs2_alloc_context *meta_ac,
4764 				enum ocfs2_alloc_restarted *reason_ret)
4765 {
4766 	int status = 0, err = 0;
4767 	int need_free = 0;
4768 	int free_extents;
4769 	enum ocfs2_alloc_restarted reason = RESTART_NONE;
4770 	u32 bit_off, num_bits;
4771 	u64 block;
4772 	u8 flags = 0;
4773 	struct ocfs2_super *osb =
4774 		OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
4775 
4776 	BUG_ON(!clusters_to_add);
4777 
4778 	if (mark_unwritten)
4779 		flags = OCFS2_EXT_UNWRITTEN;
4780 
4781 	free_extents = ocfs2_num_free_extents(et);
4782 	if (free_extents < 0) {
4783 		status = free_extents;
4784 		mlog_errno(status);
4785 		goto leave;
4786 	}
4787 
4788 	/* there are two cases which could cause us to EAGAIN in the
4789 	 * we-need-more-metadata case:
4790 	 * 1) we haven't reserved *any*
4791 	 * 2) we are so fragmented, we've needed to add metadata too
4792 	 *    many times. */
4793 	if (!free_extents && !meta_ac) {
4794 		err = -1;
4795 		status = -EAGAIN;
4796 		reason = RESTART_META;
4797 		goto leave;
4798 	} else if ((!free_extents)
4799 		   && (ocfs2_alloc_context_bits_left(meta_ac)
4800 		       < ocfs2_extend_meta_needed(et->et_root_el))) {
4801 		err = -2;
4802 		status = -EAGAIN;
4803 		reason = RESTART_META;
4804 		goto leave;
4805 	}
4806 
4807 	status = __ocfs2_claim_clusters(handle, data_ac, 1,
4808 					clusters_to_add, &bit_off, &num_bits);
4809 	if (status < 0) {
4810 		if (status != -ENOSPC)
4811 			mlog_errno(status);
4812 		goto leave;
4813 	}
4814 
4815 	BUG_ON(num_bits > clusters_to_add);
4816 
4817 	/* reserve our write early -- insert_extent may update the tree root */
4818 	status = ocfs2_et_root_journal_access(handle, et,
4819 					      OCFS2_JOURNAL_ACCESS_WRITE);
4820 	if (status < 0) {
4821 		mlog_errno(status);
4822 		need_free = 1;
4823 		goto bail;
4824 	}
4825 
4826 	block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4827 	trace_ocfs2_add_clusters_in_btree(
4828 	     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4829 	     bit_off, num_bits);
4830 	status = ocfs2_insert_extent(handle, et, *logical_offset, block,
4831 				     num_bits, flags, meta_ac);
4832 	if (status < 0) {
4833 		mlog_errno(status);
4834 		need_free = 1;
4835 		goto bail;
4836 	}
4837 
4838 	ocfs2_journal_dirty(handle, et->et_root_bh);
4839 
4840 	clusters_to_add -= num_bits;
4841 	*logical_offset += num_bits;
4842 
4843 	if (clusters_to_add) {
4844 		err = clusters_to_add;
4845 		status = -EAGAIN;
4846 		reason = RESTART_TRANS;
4847 	}
4848 
4849 bail:
4850 	if (need_free) {
4851 		if (data_ac->ac_which == OCFS2_AC_USE_LOCAL)
4852 			ocfs2_free_local_alloc_bits(osb, handle, data_ac,
4853 					bit_off, num_bits);
4854 		else
4855 			ocfs2_free_clusters(handle,
4856 					data_ac->ac_inode,
4857 					data_ac->ac_bh,
4858 					ocfs2_clusters_to_blocks(osb->sb, bit_off),
4859 					num_bits);
4860 	}
4861 
4862 leave:
4863 	if (reason_ret)
4864 		*reason_ret = reason;
4865 	trace_ocfs2_add_clusters_in_btree_ret(status, reason, err);
4866 	return status;
4867 }
4868 
4869 static void ocfs2_make_right_split_rec(struct super_block *sb,
4870 				       struct ocfs2_extent_rec *split_rec,
4871 				       u32 cpos,
4872 				       struct ocfs2_extent_rec *rec)
4873 {
4874 	u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4875 	u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4876 
4877 	memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4878 
4879 	split_rec->e_cpos = cpu_to_le32(cpos);
4880 	split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4881 
4882 	split_rec->e_blkno = rec->e_blkno;
4883 	le64_add_cpu(&split_rec->e_blkno,
4884 		     ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4885 
4886 	split_rec->e_flags = rec->e_flags;
4887 }
4888 
4889 static int ocfs2_split_and_insert(handle_t *handle,
4890 				  struct ocfs2_extent_tree *et,
4891 				  struct ocfs2_path *path,
4892 				  struct buffer_head **last_eb_bh,
4893 				  int split_index,
4894 				  struct ocfs2_extent_rec *orig_split_rec,
4895 				  struct ocfs2_alloc_context *meta_ac)
4896 {
4897 	int ret = 0, depth;
4898 	unsigned int insert_range, rec_range, do_leftright = 0;
4899 	struct ocfs2_extent_rec tmprec;
4900 	struct ocfs2_extent_list *rightmost_el;
4901 	struct ocfs2_extent_rec rec;
4902 	struct ocfs2_extent_rec split_rec = *orig_split_rec;
4903 	struct ocfs2_insert_type insert;
4904 	struct ocfs2_extent_block *eb;
4905 
4906 leftright:
4907 	/*
4908 	 * Store a copy of the record on the stack - it might move
4909 	 * around as the tree is manipulated below.
4910 	 */
4911 	rec = path_leaf_el(path)->l_recs[split_index];
4912 
4913 	rightmost_el = et->et_root_el;
4914 
4915 	depth = le16_to_cpu(rightmost_el->l_tree_depth);
4916 	if (depth) {
4917 		BUG_ON(!(*last_eb_bh));
4918 		eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4919 		rightmost_el = &eb->h_list;
4920 	}
4921 
4922 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4923 	    le16_to_cpu(rightmost_el->l_count)) {
4924 		ret = ocfs2_grow_tree(handle, et,
4925 				      &depth, last_eb_bh, meta_ac);
4926 		if (ret) {
4927 			mlog_errno(ret);
4928 			goto out;
4929 		}
4930 	}
4931 
4932 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4933 	insert.ins_appending = APPEND_NONE;
4934 	insert.ins_contig = CONTIG_NONE;
4935 	insert.ins_tree_depth = depth;
4936 
4937 	insert_range = le32_to_cpu(split_rec.e_cpos) +
4938 		le16_to_cpu(split_rec.e_leaf_clusters);
4939 	rec_range = le32_to_cpu(rec.e_cpos) +
4940 		le16_to_cpu(rec.e_leaf_clusters);
4941 
4942 	if (split_rec.e_cpos == rec.e_cpos) {
4943 		insert.ins_split = SPLIT_LEFT;
4944 	} else if (insert_range == rec_range) {
4945 		insert.ins_split = SPLIT_RIGHT;
4946 	} else {
4947 		/*
4948 		 * Left/right split. We fake this as a right split
4949 		 * first and then make a second pass as a left split.
4950 		 */
4951 		insert.ins_split = SPLIT_RIGHT;
4952 
4953 		ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4954 					   &tmprec, insert_range, &rec);
4955 
4956 		split_rec = tmprec;
4957 
4958 		BUG_ON(do_leftright);
4959 		do_leftright = 1;
4960 	}
4961 
4962 	ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
4963 	if (ret) {
4964 		mlog_errno(ret);
4965 		goto out;
4966 	}
4967 
4968 	if (do_leftright == 1) {
4969 		u32 cpos;
4970 		struct ocfs2_extent_list *el;
4971 
4972 		do_leftright++;
4973 		split_rec = *orig_split_rec;
4974 
4975 		ocfs2_reinit_path(path, 1);
4976 
4977 		cpos = le32_to_cpu(split_rec.e_cpos);
4978 		ret = ocfs2_find_path(et->et_ci, path, cpos);
4979 		if (ret) {
4980 			mlog_errno(ret);
4981 			goto out;
4982 		}
4983 
4984 		el = path_leaf_el(path);
4985 		split_index = ocfs2_search_extent_list(el, cpos);
4986 		if (split_index == -1) {
4987 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
4988 				    "Owner %llu has an extent at cpos %u which can no longer be found\n",
4989 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4990 				    cpos);
4991 			ret = -EROFS;
4992 			goto out;
4993 		}
4994 		goto leftright;
4995 	}
4996 out:
4997 
4998 	return ret;
4999 }
5000 
5001 static int ocfs2_replace_extent_rec(handle_t *handle,
5002 				    struct ocfs2_extent_tree *et,
5003 				    struct ocfs2_path *path,
5004 				    struct ocfs2_extent_list *el,
5005 				    int split_index,
5006 				    struct ocfs2_extent_rec *split_rec)
5007 {
5008 	int ret;
5009 
5010 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
5011 					   path_num_items(path) - 1);
5012 	if (ret) {
5013 		mlog_errno(ret);
5014 		goto out;
5015 	}
5016 
5017 	el->l_recs[split_index] = *split_rec;
5018 
5019 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
5020 out:
5021 	return ret;
5022 }
5023 
5024 /*
5025  * Split part or all of the extent record at split_index in the leaf
5026  * pointed to by path. Merge with the contiguous extent record if needed.
5027  *
5028  * Care is taken to handle contiguousness so as to not grow the tree.
5029  *
5030  * meta_ac is not strictly necessary - we only truly need it if growth
5031  * of the tree is required. All other cases will degrade into a less
5032  * optimal tree layout.
5033  *
5034  * last_eb_bh should be the rightmost leaf block for any extent
5035  * btree. Since a split may grow the tree or a merge might shrink it,
5036  * the caller cannot trust the contents of that buffer after this call.
5037  *
5038  * This code is optimized for readability - several passes might be
5039  * made over certain portions of the tree. All of those blocks will
5040  * have been brought into cache (and pinned via the journal), so the
5041  * extra overhead is not expressed in terms of disk reads.
5042  */
5043 int ocfs2_split_extent(handle_t *handle,
5044 		       struct ocfs2_extent_tree *et,
5045 		       struct ocfs2_path *path,
5046 		       int split_index,
5047 		       struct ocfs2_extent_rec *split_rec,
5048 		       struct ocfs2_alloc_context *meta_ac,
5049 		       struct ocfs2_cached_dealloc_ctxt *dealloc)
5050 {
5051 	int ret = 0;
5052 	struct ocfs2_extent_list *el = path_leaf_el(path);
5053 	struct buffer_head *last_eb_bh = NULL;
5054 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5055 	struct ocfs2_merge_ctxt ctxt;
5056 
5057 	if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5058 	    ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5059 	     (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5060 		ret = -EIO;
5061 		mlog_errno(ret);
5062 		goto out;
5063 	}
5064 
5065 	ret = ocfs2_figure_merge_contig_type(et, path, el,
5066 					     split_index,
5067 					     split_rec,
5068 					     &ctxt);
5069 	if (ret) {
5070 		mlog_errno(ret);
5071 		goto out;
5072 	}
5073 
5074 	/*
5075 	 * The core merge / split code wants to know how much room is
5076 	 * left in this allocation tree, so we pass the
5077 	 * rightmost extent list.
5078 	 */
5079 	if (path->p_tree_depth) {
5080 		struct ocfs2_extent_block *eb;
5081 
5082 		ret = ocfs2_read_extent_block(et->et_ci,
5083 					      ocfs2_et_get_last_eb_blk(et),
5084 					      &last_eb_bh);
5085 		if (ret) {
5086 			mlog_errno(ret);
5087 			goto out;
5088 		}
5089 
5090 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5091 	}
5092 
5093 	if (rec->e_cpos == split_rec->e_cpos &&
5094 	    rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5095 		ctxt.c_split_covers_rec = 1;
5096 	else
5097 		ctxt.c_split_covers_rec = 0;
5098 
5099 	ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5100 
5101 	trace_ocfs2_split_extent(split_index, ctxt.c_contig_type,
5102 				 ctxt.c_has_empty_extent,
5103 				 ctxt.c_split_covers_rec);
5104 
5105 	if (ctxt.c_contig_type == CONTIG_NONE) {
5106 		if (ctxt.c_split_covers_rec)
5107 			ret = ocfs2_replace_extent_rec(handle, et, path, el,
5108 						       split_index, split_rec);
5109 		else
5110 			ret = ocfs2_split_and_insert(handle, et, path,
5111 						     &last_eb_bh, split_index,
5112 						     split_rec, meta_ac);
5113 		if (ret)
5114 			mlog_errno(ret);
5115 	} else {
5116 		ret = ocfs2_try_to_merge_extent(handle, et, path,
5117 						split_index, split_rec,
5118 						dealloc, &ctxt);
5119 		if (ret)
5120 			mlog_errno(ret);
5121 	}
5122 
5123 out:
5124 	brelse(last_eb_bh);
5125 	return ret;
5126 }
5127 
5128 /*
5129  * Change the flags of the already-existing extent at cpos for len clusters.
5130  *
5131  * new_flags: the flags we want to set.
5132  * clear_flags: the flags we want to clear.
5133  * phys: the new physical offset we want this new extent starts from.
5134  *
5135  * If the existing extent is larger than the request, initiate a
5136  * split. An attempt will be made at merging with adjacent extents.
5137  *
5138  * The caller is responsible for passing down meta_ac if we'll need it.
5139  */
5140 int ocfs2_change_extent_flag(handle_t *handle,
5141 			     struct ocfs2_extent_tree *et,
5142 			     u32 cpos, u32 len, u32 phys,
5143 			     struct ocfs2_alloc_context *meta_ac,
5144 			     struct ocfs2_cached_dealloc_ctxt *dealloc,
5145 			     int new_flags, int clear_flags)
5146 {
5147 	int ret, index;
5148 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5149 	u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys);
5150 	struct ocfs2_extent_rec split_rec;
5151 	struct ocfs2_path *left_path = NULL;
5152 	struct ocfs2_extent_list *el;
5153 	struct ocfs2_extent_rec *rec;
5154 
5155 	left_path = ocfs2_new_path_from_et(et);
5156 	if (!left_path) {
5157 		ret = -ENOMEM;
5158 		mlog_errno(ret);
5159 		goto out;
5160 	}
5161 
5162 	ret = ocfs2_find_path(et->et_ci, left_path, cpos);
5163 	if (ret) {
5164 		mlog_errno(ret);
5165 		goto out;
5166 	}
5167 	el = path_leaf_el(left_path);
5168 
5169 	index = ocfs2_search_extent_list(el, cpos);
5170 	if (index == -1) {
5171 		ocfs2_error(sb,
5172 			    "Owner %llu has an extent at cpos %u which can no longer be found\n",
5173 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5174 			    cpos);
5175 		ret = -EROFS;
5176 		goto out;
5177 	}
5178 
5179 	ret = -EIO;
5180 	rec = &el->l_recs[index];
5181 	if (new_flags && (rec->e_flags & new_flags)) {
5182 		mlog(ML_ERROR, "Owner %llu tried to set %d flags on an "
5183 		     "extent that already had them\n",
5184 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5185 		     new_flags);
5186 		goto out;
5187 	}
5188 
5189 	if (clear_flags && !(rec->e_flags & clear_flags)) {
5190 		mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an "
5191 		     "extent that didn't have them\n",
5192 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5193 		     clear_flags);
5194 		goto out;
5195 	}
5196 
5197 	memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5198 	split_rec.e_cpos = cpu_to_le32(cpos);
5199 	split_rec.e_leaf_clusters = cpu_to_le16(len);
5200 	split_rec.e_blkno = cpu_to_le64(start_blkno);
5201 	split_rec.e_flags = rec->e_flags;
5202 	if (new_flags)
5203 		split_rec.e_flags |= new_flags;
5204 	if (clear_flags)
5205 		split_rec.e_flags &= ~clear_flags;
5206 
5207 	ret = ocfs2_split_extent(handle, et, left_path,
5208 				 index, &split_rec, meta_ac,
5209 				 dealloc);
5210 	if (ret)
5211 		mlog_errno(ret);
5212 
5213 out:
5214 	ocfs2_free_path(left_path);
5215 	return ret;
5216 
5217 }
5218 
5219 /*
5220  * Mark the already-existing extent at cpos as written for len clusters.
5221  * This removes the unwritten extent flag.
5222  *
5223  * If the existing extent is larger than the request, initiate a
5224  * split. An attempt will be made at merging with adjacent extents.
5225  *
5226  * The caller is responsible for passing down meta_ac if we'll need it.
5227  */
5228 int ocfs2_mark_extent_written(struct inode *inode,
5229 			      struct ocfs2_extent_tree *et,
5230 			      handle_t *handle, u32 cpos, u32 len, u32 phys,
5231 			      struct ocfs2_alloc_context *meta_ac,
5232 			      struct ocfs2_cached_dealloc_ctxt *dealloc)
5233 {
5234 	int ret;
5235 
5236 	trace_ocfs2_mark_extent_written(
5237 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
5238 		cpos, len, phys);
5239 
5240 	if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5241 		ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents that are being written to, but the feature bit is not set in the super block\n",
5242 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
5243 		ret = -EROFS;
5244 		goto out;
5245 	}
5246 
5247 	/*
5248 	 * XXX: This should be fixed up so that we just re-insert the
5249 	 * next extent records.
5250 	 */
5251 	ocfs2_et_extent_map_truncate(et, 0);
5252 
5253 	ret = ocfs2_change_extent_flag(handle, et, cpos,
5254 				       len, phys, meta_ac, dealloc,
5255 				       0, OCFS2_EXT_UNWRITTEN);
5256 	if (ret)
5257 		mlog_errno(ret);
5258 
5259 out:
5260 	return ret;
5261 }
5262 
5263 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et,
5264 			    struct ocfs2_path *path,
5265 			    int index, u32 new_range,
5266 			    struct ocfs2_alloc_context *meta_ac)
5267 {
5268 	int ret, depth, credits;
5269 	struct buffer_head *last_eb_bh = NULL;
5270 	struct ocfs2_extent_block *eb;
5271 	struct ocfs2_extent_list *rightmost_el, *el;
5272 	struct ocfs2_extent_rec split_rec;
5273 	struct ocfs2_extent_rec *rec;
5274 	struct ocfs2_insert_type insert;
5275 
5276 	/*
5277 	 * Setup the record to split before we grow the tree.
5278 	 */
5279 	el = path_leaf_el(path);
5280 	rec = &el->l_recs[index];
5281 	ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
5282 				   &split_rec, new_range, rec);
5283 
5284 	depth = path->p_tree_depth;
5285 	if (depth > 0) {
5286 		ret = ocfs2_read_extent_block(et->et_ci,
5287 					      ocfs2_et_get_last_eb_blk(et),
5288 					      &last_eb_bh);
5289 		if (ret < 0) {
5290 			mlog_errno(ret);
5291 			goto out;
5292 		}
5293 
5294 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5295 		rightmost_el = &eb->h_list;
5296 	} else
5297 		rightmost_el = path_leaf_el(path);
5298 
5299 	credits = path->p_tree_depth +
5300 		  ocfs2_extend_meta_needed(et->et_root_el);
5301 	ret = ocfs2_extend_trans(handle, credits);
5302 	if (ret) {
5303 		mlog_errno(ret);
5304 		goto out;
5305 	}
5306 
5307 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5308 	    le16_to_cpu(rightmost_el->l_count)) {
5309 		ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh,
5310 				      meta_ac);
5311 		if (ret) {
5312 			mlog_errno(ret);
5313 			goto out;
5314 		}
5315 	}
5316 
5317 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5318 	insert.ins_appending = APPEND_NONE;
5319 	insert.ins_contig = CONTIG_NONE;
5320 	insert.ins_split = SPLIT_RIGHT;
5321 	insert.ins_tree_depth = depth;
5322 
5323 	ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
5324 	if (ret)
5325 		mlog_errno(ret);
5326 
5327 out:
5328 	brelse(last_eb_bh);
5329 	return ret;
5330 }
5331 
5332 static int ocfs2_truncate_rec(handle_t *handle,
5333 			      struct ocfs2_extent_tree *et,
5334 			      struct ocfs2_path *path, int index,
5335 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
5336 			      u32 cpos, u32 len)
5337 {
5338 	int ret;
5339 	u32 left_cpos, rec_range, trunc_range;
5340 	int is_rightmost_tree_rec = 0;
5341 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5342 	struct ocfs2_path *left_path = NULL;
5343 	struct ocfs2_extent_list *el = path_leaf_el(path);
5344 	struct ocfs2_extent_rec *rec;
5345 	struct ocfs2_extent_block *eb;
5346 
5347 	if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5348 		/* extend credit for ocfs2_remove_rightmost_path */
5349 		ret = ocfs2_extend_rotate_transaction(handle, 0,
5350 				handle->h_buffer_credits,
5351 				path);
5352 		if (ret) {
5353 			mlog_errno(ret);
5354 			goto out;
5355 		}
5356 
5357 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5358 		if (ret) {
5359 			mlog_errno(ret);
5360 			goto out;
5361 		}
5362 
5363 		index--;
5364 	}
5365 
5366 	if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5367 	    path->p_tree_depth) {
5368 		/*
5369 		 * Check whether this is the rightmost tree record. If
5370 		 * we remove all of this record or part of its right
5371 		 * edge then an update of the record lengths above it
5372 		 * will be required.
5373 		 */
5374 		eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5375 		if (eb->h_next_leaf_blk == 0)
5376 			is_rightmost_tree_rec = 1;
5377 	}
5378 
5379 	rec = &el->l_recs[index];
5380 	if (index == 0 && path->p_tree_depth &&
5381 	    le32_to_cpu(rec->e_cpos) == cpos) {
5382 		/*
5383 		 * Changing the leftmost offset (via partial or whole
5384 		 * record truncate) of an interior (or rightmost) path
5385 		 * means we have to update the subtree that is formed
5386 		 * by this leaf and the one to it's left.
5387 		 *
5388 		 * There are two cases we can skip:
5389 		 *   1) Path is the leftmost one in our btree.
5390 		 *   2) The leaf is rightmost and will be empty after
5391 		 *      we remove the extent record - the rotate code
5392 		 *      knows how to update the newly formed edge.
5393 		 */
5394 
5395 		ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
5396 		if (ret) {
5397 			mlog_errno(ret);
5398 			goto out;
5399 		}
5400 
5401 		if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5402 			left_path = ocfs2_new_path_from_path(path);
5403 			if (!left_path) {
5404 				ret = -ENOMEM;
5405 				mlog_errno(ret);
5406 				goto out;
5407 			}
5408 
5409 			ret = ocfs2_find_path(et->et_ci, left_path,
5410 					      left_cpos);
5411 			if (ret) {
5412 				mlog_errno(ret);
5413 				goto out;
5414 			}
5415 		}
5416 	}
5417 
5418 	ret = ocfs2_extend_rotate_transaction(handle, 0,
5419 					      handle->h_buffer_credits,
5420 					      path);
5421 	if (ret) {
5422 		mlog_errno(ret);
5423 		goto out;
5424 	}
5425 
5426 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
5427 	if (ret) {
5428 		mlog_errno(ret);
5429 		goto out;
5430 	}
5431 
5432 	ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
5433 	if (ret) {
5434 		mlog_errno(ret);
5435 		goto out;
5436 	}
5437 
5438 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5439 	trunc_range = cpos + len;
5440 
5441 	if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5442 		int next_free;
5443 
5444 		memset(rec, 0, sizeof(*rec));
5445 		ocfs2_cleanup_merge(el, index);
5446 
5447 		next_free = le16_to_cpu(el->l_next_free_rec);
5448 		if (is_rightmost_tree_rec && next_free > 1) {
5449 			/*
5450 			 * We skip the edge update if this path will
5451 			 * be deleted by the rotate code.
5452 			 */
5453 			rec = &el->l_recs[next_free - 1];
5454 			ocfs2_adjust_rightmost_records(handle, et, path,
5455 						       rec);
5456 		}
5457 	} else if (le32_to_cpu(rec->e_cpos) == cpos) {
5458 		/* Remove leftmost portion of the record. */
5459 		le32_add_cpu(&rec->e_cpos, len);
5460 		le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5461 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5462 	} else if (rec_range == trunc_range) {
5463 		/* Remove rightmost portion of the record */
5464 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5465 		if (is_rightmost_tree_rec)
5466 			ocfs2_adjust_rightmost_records(handle, et, path, rec);
5467 	} else {
5468 		/* Caller should have trapped this. */
5469 		mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) "
5470 		     "(%u, %u)\n",
5471 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5472 		     le32_to_cpu(rec->e_cpos),
5473 		     le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5474 		BUG();
5475 	}
5476 
5477 	if (left_path) {
5478 		int subtree_index;
5479 
5480 		subtree_index = ocfs2_find_subtree_root(et, left_path, path);
5481 		ocfs2_complete_edge_insert(handle, left_path, path,
5482 					   subtree_index);
5483 	}
5484 
5485 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
5486 
5487 	ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5488 	if (ret) {
5489 		mlog_errno(ret);
5490 		goto out;
5491 	}
5492 
5493 out:
5494 	ocfs2_free_path(left_path);
5495 	return ret;
5496 }
5497 
5498 int ocfs2_remove_extent(handle_t *handle,
5499 			struct ocfs2_extent_tree *et,
5500 			u32 cpos, u32 len,
5501 			struct ocfs2_alloc_context *meta_ac,
5502 			struct ocfs2_cached_dealloc_ctxt *dealloc)
5503 {
5504 	int ret, index;
5505 	u32 rec_range, trunc_range;
5506 	struct ocfs2_extent_rec *rec;
5507 	struct ocfs2_extent_list *el;
5508 	struct ocfs2_path *path = NULL;
5509 
5510 	/*
5511 	 * XXX: Why are we truncating to 0 instead of wherever this
5512 	 * affects us?
5513 	 */
5514 	ocfs2_et_extent_map_truncate(et, 0);
5515 
5516 	path = ocfs2_new_path_from_et(et);
5517 	if (!path) {
5518 		ret = -ENOMEM;
5519 		mlog_errno(ret);
5520 		goto out;
5521 	}
5522 
5523 	ret = ocfs2_find_path(et->et_ci, path, cpos);
5524 	if (ret) {
5525 		mlog_errno(ret);
5526 		goto out;
5527 	}
5528 
5529 	el = path_leaf_el(path);
5530 	index = ocfs2_search_extent_list(el, cpos);
5531 	if (index == -1) {
5532 		ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5533 			    "Owner %llu has an extent at cpos %u which can no longer be found\n",
5534 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5535 			    cpos);
5536 		ret = -EROFS;
5537 		goto out;
5538 	}
5539 
5540 	/*
5541 	 * We have 3 cases of extent removal:
5542 	 *   1) Range covers the entire extent rec
5543 	 *   2) Range begins or ends on one edge of the extent rec
5544 	 *   3) Range is in the middle of the extent rec (no shared edges)
5545 	 *
5546 	 * For case 1 we remove the extent rec and left rotate to
5547 	 * fill the hole.
5548 	 *
5549 	 * For case 2 we just shrink the existing extent rec, with a
5550 	 * tree update if the shrinking edge is also the edge of an
5551 	 * extent block.
5552 	 *
5553 	 * For case 3 we do a right split to turn the extent rec into
5554 	 * something case 2 can handle.
5555 	 */
5556 	rec = &el->l_recs[index];
5557 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5558 	trunc_range = cpos + len;
5559 
5560 	BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5561 
5562 	trace_ocfs2_remove_extent(
5563 		(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5564 		cpos, len, index, le32_to_cpu(rec->e_cpos),
5565 		ocfs2_rec_clusters(el, rec));
5566 
5567 	if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5568 		ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5569 					 cpos, len);
5570 		if (ret) {
5571 			mlog_errno(ret);
5572 			goto out;
5573 		}
5574 	} else {
5575 		ret = ocfs2_split_tree(handle, et, path, index,
5576 				       trunc_range, meta_ac);
5577 		if (ret) {
5578 			mlog_errno(ret);
5579 			goto out;
5580 		}
5581 
5582 		/*
5583 		 * The split could have manipulated the tree enough to
5584 		 * move the record location, so we have to look for it again.
5585 		 */
5586 		ocfs2_reinit_path(path, 1);
5587 
5588 		ret = ocfs2_find_path(et->et_ci, path, cpos);
5589 		if (ret) {
5590 			mlog_errno(ret);
5591 			goto out;
5592 		}
5593 
5594 		el = path_leaf_el(path);
5595 		index = ocfs2_search_extent_list(el, cpos);
5596 		if (index == -1) {
5597 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5598 				    "Owner %llu: split at cpos %u lost record\n",
5599 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5600 				    cpos);
5601 			ret = -EROFS;
5602 			goto out;
5603 		}
5604 
5605 		/*
5606 		 * Double check our values here. If anything is fishy,
5607 		 * it's easier to catch it at the top level.
5608 		 */
5609 		rec = &el->l_recs[index];
5610 		rec_range = le32_to_cpu(rec->e_cpos) +
5611 			ocfs2_rec_clusters(el, rec);
5612 		if (rec_range != trunc_range) {
5613 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5614 				    "Owner %llu: error after split at cpos %u trunc len %u, existing record is (%u,%u)\n",
5615 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5616 				    cpos, len, le32_to_cpu(rec->e_cpos),
5617 				    ocfs2_rec_clusters(el, rec));
5618 			ret = -EROFS;
5619 			goto out;
5620 		}
5621 
5622 		ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5623 					 cpos, len);
5624 		if (ret) {
5625 			mlog_errno(ret);
5626 			goto out;
5627 		}
5628 	}
5629 
5630 out:
5631 	ocfs2_free_path(path);
5632 	return ret;
5633 }
5634 
5635 /*
5636  * ocfs2_reserve_blocks_for_rec_trunc() would look basically the
5637  * same as ocfs2_lock_alloctors(), except for it accepts a blocks
5638  * number to reserve some extra blocks, and it only handles meta
5639  * data allocations.
5640  *
5641  * Currently, only ocfs2_remove_btree_range() uses it for truncating
5642  * and punching holes.
5643  */
5644 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode,
5645 					      struct ocfs2_extent_tree *et,
5646 					      u32 extents_to_split,
5647 					      struct ocfs2_alloc_context **ac,
5648 					      int extra_blocks)
5649 {
5650 	int ret = 0, num_free_extents;
5651 	unsigned int max_recs_needed = 2 * extents_to_split;
5652 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5653 
5654 	*ac = NULL;
5655 
5656 	num_free_extents = ocfs2_num_free_extents(et);
5657 	if (num_free_extents < 0) {
5658 		ret = num_free_extents;
5659 		mlog_errno(ret);
5660 		goto out;
5661 	}
5662 
5663 	if (!num_free_extents ||
5664 	    (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed))
5665 		extra_blocks += ocfs2_extend_meta_needed(et->et_root_el);
5666 
5667 	if (extra_blocks) {
5668 		ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac);
5669 		if (ret < 0) {
5670 			if (ret != -ENOSPC)
5671 				mlog_errno(ret);
5672 			goto out;
5673 		}
5674 	}
5675 
5676 out:
5677 	if (ret) {
5678 		if (*ac) {
5679 			ocfs2_free_alloc_context(*ac);
5680 			*ac = NULL;
5681 		}
5682 	}
5683 
5684 	return ret;
5685 }
5686 
5687 int ocfs2_remove_btree_range(struct inode *inode,
5688 			     struct ocfs2_extent_tree *et,
5689 			     u32 cpos, u32 phys_cpos, u32 len, int flags,
5690 			     struct ocfs2_cached_dealloc_ctxt *dealloc,
5691 			     u64 refcount_loc, bool refcount_tree_locked)
5692 {
5693 	int ret, credits = 0, extra_blocks = 0;
5694 	u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5695 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5696 	struct inode *tl_inode = osb->osb_tl_inode;
5697 	handle_t *handle;
5698 	struct ocfs2_alloc_context *meta_ac = NULL;
5699 	struct ocfs2_refcount_tree *ref_tree = NULL;
5700 
5701 	if ((flags & OCFS2_EXT_REFCOUNTED) && len) {
5702 		BUG_ON(!ocfs2_is_refcount_inode(inode));
5703 
5704 		if (!refcount_tree_locked) {
5705 			ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
5706 						       &ref_tree, NULL);
5707 			if (ret) {
5708 				mlog_errno(ret);
5709 				goto bail;
5710 			}
5711 		}
5712 
5713 		ret = ocfs2_prepare_refcount_change_for_del(inode,
5714 							    refcount_loc,
5715 							    phys_blkno,
5716 							    len,
5717 							    &credits,
5718 							    &extra_blocks);
5719 		if (ret < 0) {
5720 			mlog_errno(ret);
5721 			goto bail;
5722 		}
5723 	}
5724 
5725 	ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac,
5726 						 extra_blocks);
5727 	if (ret) {
5728 		mlog_errno(ret);
5729 		goto bail;
5730 	}
5731 
5732 	inode_lock(tl_inode);
5733 
5734 	if (ocfs2_truncate_log_needs_flush(osb)) {
5735 		ret = __ocfs2_flush_truncate_log(osb);
5736 		if (ret < 0) {
5737 			mlog_errno(ret);
5738 			goto out;
5739 		}
5740 	}
5741 
5742 	handle = ocfs2_start_trans(osb,
5743 			ocfs2_remove_extent_credits(osb->sb) + credits);
5744 	if (IS_ERR(handle)) {
5745 		ret = PTR_ERR(handle);
5746 		mlog_errno(ret);
5747 		goto out;
5748 	}
5749 
5750 	ret = ocfs2_et_root_journal_access(handle, et,
5751 					   OCFS2_JOURNAL_ACCESS_WRITE);
5752 	if (ret) {
5753 		mlog_errno(ret);
5754 		goto out_commit;
5755 	}
5756 
5757 	dquot_free_space_nodirty(inode,
5758 				  ocfs2_clusters_to_bytes(inode->i_sb, len));
5759 
5760 	ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc);
5761 	if (ret) {
5762 		mlog_errno(ret);
5763 		goto out_commit;
5764 	}
5765 
5766 	ocfs2_et_update_clusters(et, -len);
5767 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
5768 
5769 	ocfs2_journal_dirty(handle, et->et_root_bh);
5770 
5771 	if (phys_blkno) {
5772 		if (flags & OCFS2_EXT_REFCOUNTED)
5773 			ret = ocfs2_decrease_refcount(inode, handle,
5774 					ocfs2_blocks_to_clusters(osb->sb,
5775 								 phys_blkno),
5776 					len, meta_ac,
5777 					dealloc, 1);
5778 		else
5779 			ret = ocfs2_truncate_log_append(osb, handle,
5780 							phys_blkno, len);
5781 		if (ret)
5782 			mlog_errno(ret);
5783 
5784 	}
5785 
5786 out_commit:
5787 	ocfs2_commit_trans(osb, handle);
5788 out:
5789 	inode_unlock(tl_inode);
5790 bail:
5791 	if (meta_ac)
5792 		ocfs2_free_alloc_context(meta_ac);
5793 
5794 	if (ref_tree)
5795 		ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
5796 
5797 	return ret;
5798 }
5799 
5800 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5801 {
5802 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5803 	struct ocfs2_dinode *di;
5804 	struct ocfs2_truncate_log *tl;
5805 
5806 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5807 	tl = &di->id2.i_dealloc;
5808 
5809 	mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5810 			"slot %d, invalid truncate log parameters: used = "
5811 			"%u, count = %u\n", osb->slot_num,
5812 			le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5813 	return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5814 }
5815 
5816 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5817 					   unsigned int new_start)
5818 {
5819 	unsigned int tail_index;
5820 	unsigned int current_tail;
5821 
5822 	/* No records, nothing to coalesce */
5823 	if (!le16_to_cpu(tl->tl_used))
5824 		return 0;
5825 
5826 	tail_index = le16_to_cpu(tl->tl_used) - 1;
5827 	current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5828 	current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5829 
5830 	return current_tail == new_start;
5831 }
5832 
5833 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5834 			      handle_t *handle,
5835 			      u64 start_blk,
5836 			      unsigned int num_clusters)
5837 {
5838 	int status, index;
5839 	unsigned int start_cluster, tl_count;
5840 	struct inode *tl_inode = osb->osb_tl_inode;
5841 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5842 	struct ocfs2_dinode *di;
5843 	struct ocfs2_truncate_log *tl;
5844 
5845 	BUG_ON(inode_trylock(tl_inode));
5846 
5847 	start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5848 
5849 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5850 
5851 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5852 	 * by the underlying call to ocfs2_read_inode_block(), so any
5853 	 * corruption is a code bug */
5854 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5855 
5856 	tl = &di->id2.i_dealloc;
5857 	tl_count = le16_to_cpu(tl->tl_count);
5858 	mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5859 			tl_count == 0,
5860 			"Truncate record count on #%llu invalid "
5861 			"wanted %u, actual %u\n",
5862 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5863 			ocfs2_truncate_recs_per_inode(osb->sb),
5864 			le16_to_cpu(tl->tl_count));
5865 
5866 	/* Caller should have known to flush before calling us. */
5867 	index = le16_to_cpu(tl->tl_used);
5868 	if (index >= tl_count) {
5869 		status = -ENOSPC;
5870 		mlog_errno(status);
5871 		goto bail;
5872 	}
5873 
5874 	status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5875 					 OCFS2_JOURNAL_ACCESS_WRITE);
5876 	if (status < 0) {
5877 		mlog_errno(status);
5878 		goto bail;
5879 	}
5880 
5881 	trace_ocfs2_truncate_log_append(
5882 		(unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index,
5883 		start_cluster, num_clusters);
5884 	if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5885 		/*
5886 		 * Move index back to the record we are coalescing with.
5887 		 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5888 		 */
5889 		index--;
5890 
5891 		num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5892 		trace_ocfs2_truncate_log_append(
5893 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5894 			index, le32_to_cpu(tl->tl_recs[index].t_start),
5895 			num_clusters);
5896 	} else {
5897 		tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5898 		tl->tl_used = cpu_to_le16(index + 1);
5899 	}
5900 	tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5901 
5902 	ocfs2_journal_dirty(handle, tl_bh);
5903 
5904 	osb->truncated_clusters += num_clusters;
5905 bail:
5906 	return status;
5907 }
5908 
5909 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5910 					 struct inode *data_alloc_inode,
5911 					 struct buffer_head *data_alloc_bh)
5912 {
5913 	int status = 0;
5914 	int i;
5915 	unsigned int num_clusters;
5916 	u64 start_blk;
5917 	struct ocfs2_truncate_rec rec;
5918 	struct ocfs2_dinode *di;
5919 	struct ocfs2_truncate_log *tl;
5920 	struct inode *tl_inode = osb->osb_tl_inode;
5921 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5922 	handle_t *handle;
5923 
5924 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5925 	tl = &di->id2.i_dealloc;
5926 	i = le16_to_cpu(tl->tl_used) - 1;
5927 	while (i >= 0) {
5928 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5929 		if (IS_ERR(handle)) {
5930 			status = PTR_ERR(handle);
5931 			mlog_errno(status);
5932 			goto bail;
5933 		}
5934 
5935 		/* Caller has given us at least enough credits to
5936 		 * update the truncate log dinode */
5937 		status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5938 						 OCFS2_JOURNAL_ACCESS_WRITE);
5939 		if (status < 0) {
5940 			mlog_errno(status);
5941 			goto bail;
5942 		}
5943 
5944 		tl->tl_used = cpu_to_le16(i);
5945 
5946 		ocfs2_journal_dirty(handle, tl_bh);
5947 
5948 		rec = tl->tl_recs[i];
5949 		start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5950 						    le32_to_cpu(rec.t_start));
5951 		num_clusters = le32_to_cpu(rec.t_clusters);
5952 
5953 		/* if start_blk is not set, we ignore the record as
5954 		 * invalid. */
5955 		if (start_blk) {
5956 			trace_ocfs2_replay_truncate_records(
5957 				(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5958 				i, le32_to_cpu(rec.t_start), num_clusters);
5959 
5960 			status = ocfs2_free_clusters(handle, data_alloc_inode,
5961 						     data_alloc_bh, start_blk,
5962 						     num_clusters);
5963 			if (status < 0) {
5964 				mlog_errno(status);
5965 				goto bail;
5966 			}
5967 		}
5968 
5969 		ocfs2_commit_trans(osb, handle);
5970 		i--;
5971 	}
5972 
5973 	osb->truncated_clusters = 0;
5974 
5975 bail:
5976 	return status;
5977 }
5978 
5979 /* Expects you to already be holding tl_inode->i_mutex */
5980 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5981 {
5982 	int status;
5983 	unsigned int num_to_flush;
5984 	struct inode *tl_inode = osb->osb_tl_inode;
5985 	struct inode *data_alloc_inode = NULL;
5986 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5987 	struct buffer_head *data_alloc_bh = NULL;
5988 	struct ocfs2_dinode *di;
5989 	struct ocfs2_truncate_log *tl;
5990 
5991 	BUG_ON(inode_trylock(tl_inode));
5992 
5993 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5994 
5995 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5996 	 * by the underlying call to ocfs2_read_inode_block(), so any
5997 	 * corruption is a code bug */
5998 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5999 
6000 	tl = &di->id2.i_dealloc;
6001 	num_to_flush = le16_to_cpu(tl->tl_used);
6002 	trace_ocfs2_flush_truncate_log(
6003 		(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
6004 		num_to_flush);
6005 	if (!num_to_flush) {
6006 		status = 0;
6007 		goto out;
6008 	}
6009 
6010 	data_alloc_inode = ocfs2_get_system_file_inode(osb,
6011 						       GLOBAL_BITMAP_SYSTEM_INODE,
6012 						       OCFS2_INVALID_SLOT);
6013 	if (!data_alloc_inode) {
6014 		status = -EINVAL;
6015 		mlog(ML_ERROR, "Could not get bitmap inode!\n");
6016 		goto out;
6017 	}
6018 
6019 	inode_lock(data_alloc_inode);
6020 
6021 	status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
6022 	if (status < 0) {
6023 		mlog_errno(status);
6024 		goto out_mutex;
6025 	}
6026 
6027 	status = ocfs2_replay_truncate_records(osb, data_alloc_inode,
6028 					       data_alloc_bh);
6029 	if (status < 0)
6030 		mlog_errno(status);
6031 
6032 	brelse(data_alloc_bh);
6033 	ocfs2_inode_unlock(data_alloc_inode, 1);
6034 
6035 out_mutex:
6036 	inode_unlock(data_alloc_inode);
6037 	iput(data_alloc_inode);
6038 
6039 out:
6040 	return status;
6041 }
6042 
6043 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
6044 {
6045 	int status;
6046 	struct inode *tl_inode = osb->osb_tl_inode;
6047 
6048 	inode_lock(tl_inode);
6049 	status = __ocfs2_flush_truncate_log(osb);
6050 	inode_unlock(tl_inode);
6051 
6052 	return status;
6053 }
6054 
6055 static void ocfs2_truncate_log_worker(struct work_struct *work)
6056 {
6057 	int status;
6058 	struct ocfs2_super *osb =
6059 		container_of(work, struct ocfs2_super,
6060 			     osb_truncate_log_wq.work);
6061 
6062 	status = ocfs2_flush_truncate_log(osb);
6063 	if (status < 0)
6064 		mlog_errno(status);
6065 	else
6066 		ocfs2_init_steal_slots(osb);
6067 }
6068 
6069 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
6070 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
6071 				       int cancel)
6072 {
6073 	if (osb->osb_tl_inode &&
6074 			atomic_read(&osb->osb_tl_disable) == 0) {
6075 		/* We want to push off log flushes while truncates are
6076 		 * still running. */
6077 		if (cancel)
6078 			cancel_delayed_work(&osb->osb_truncate_log_wq);
6079 
6080 		queue_delayed_work(osb->ocfs2_wq, &osb->osb_truncate_log_wq,
6081 				   OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
6082 	}
6083 }
6084 
6085 /*
6086  * Try to flush truncate logs if we can free enough clusters from it.
6087  * As for return value, "< 0" means error, "0" no space and "1" means
6088  * we have freed enough spaces and let the caller try to allocate again.
6089  */
6090 int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
6091 					unsigned int needed)
6092 {
6093 	tid_t target;
6094 	int ret = 0;
6095 	unsigned int truncated_clusters;
6096 
6097 	inode_lock(osb->osb_tl_inode);
6098 	truncated_clusters = osb->truncated_clusters;
6099 	inode_unlock(osb->osb_tl_inode);
6100 
6101 	/*
6102 	 * Check whether we can succeed in allocating if we free
6103 	 * the truncate log.
6104 	 */
6105 	if (truncated_clusters < needed)
6106 		goto out;
6107 
6108 	ret = ocfs2_flush_truncate_log(osb);
6109 	if (ret) {
6110 		mlog_errno(ret);
6111 		goto out;
6112 	}
6113 
6114 	if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
6115 		jbd2_log_wait_commit(osb->journal->j_journal, target);
6116 		ret = 1;
6117 	}
6118 out:
6119 	return ret;
6120 }
6121 
6122 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
6123 				       int slot_num,
6124 				       struct inode **tl_inode,
6125 				       struct buffer_head **tl_bh)
6126 {
6127 	int status;
6128 	struct inode *inode = NULL;
6129 	struct buffer_head *bh = NULL;
6130 
6131 	inode = ocfs2_get_system_file_inode(osb,
6132 					   TRUNCATE_LOG_SYSTEM_INODE,
6133 					   slot_num);
6134 	if (!inode) {
6135 		status = -EINVAL;
6136 		mlog(ML_ERROR, "Could not get load truncate log inode!\n");
6137 		goto bail;
6138 	}
6139 
6140 	status = ocfs2_read_inode_block(inode, &bh);
6141 	if (status < 0) {
6142 		iput(inode);
6143 		mlog_errno(status);
6144 		goto bail;
6145 	}
6146 
6147 	*tl_inode = inode;
6148 	*tl_bh    = bh;
6149 bail:
6150 	return status;
6151 }
6152 
6153 /* called during the 1st stage of node recovery. we stamp a clean
6154  * truncate log and pass back a copy for processing later. if the
6155  * truncate log does not require processing, a *tl_copy is set to
6156  * NULL. */
6157 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
6158 				      int slot_num,
6159 				      struct ocfs2_dinode **tl_copy)
6160 {
6161 	int status;
6162 	struct inode *tl_inode = NULL;
6163 	struct buffer_head *tl_bh = NULL;
6164 	struct ocfs2_dinode *di;
6165 	struct ocfs2_truncate_log *tl;
6166 
6167 	*tl_copy = NULL;
6168 
6169 	trace_ocfs2_begin_truncate_log_recovery(slot_num);
6170 
6171 	status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
6172 	if (status < 0) {
6173 		mlog_errno(status);
6174 		goto bail;
6175 	}
6176 
6177 	di = (struct ocfs2_dinode *) tl_bh->b_data;
6178 
6179 	/* tl_bh is loaded from ocfs2_get_truncate_log_info().  It's
6180 	 * validated by the underlying call to ocfs2_read_inode_block(),
6181 	 * so any corruption is a code bug */
6182 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
6183 
6184 	tl = &di->id2.i_dealloc;
6185 	if (le16_to_cpu(tl->tl_used)) {
6186 		trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl->tl_used));
6187 
6188 		*tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
6189 		if (!(*tl_copy)) {
6190 			status = -ENOMEM;
6191 			mlog_errno(status);
6192 			goto bail;
6193 		}
6194 
6195 		/* Assuming the write-out below goes well, this copy
6196 		 * will be passed back to recovery for processing. */
6197 		memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
6198 
6199 		/* All we need to do to clear the truncate log is set
6200 		 * tl_used. */
6201 		tl->tl_used = 0;
6202 
6203 		ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6204 		status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
6205 		if (status < 0) {
6206 			mlog_errno(status);
6207 			goto bail;
6208 		}
6209 	}
6210 
6211 bail:
6212 	iput(tl_inode);
6213 	brelse(tl_bh);
6214 
6215 	if (status < 0) {
6216 		kfree(*tl_copy);
6217 		*tl_copy = NULL;
6218 		mlog_errno(status);
6219 	}
6220 
6221 	return status;
6222 }
6223 
6224 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6225 					 struct ocfs2_dinode *tl_copy)
6226 {
6227 	int status = 0;
6228 	int i;
6229 	unsigned int clusters, num_recs, start_cluster;
6230 	u64 start_blk;
6231 	handle_t *handle;
6232 	struct inode *tl_inode = osb->osb_tl_inode;
6233 	struct ocfs2_truncate_log *tl;
6234 
6235 	if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6236 		mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6237 		return -EINVAL;
6238 	}
6239 
6240 	tl = &tl_copy->id2.i_dealloc;
6241 	num_recs = le16_to_cpu(tl->tl_used);
6242 	trace_ocfs2_complete_truncate_log_recovery(
6243 		(unsigned long long)le64_to_cpu(tl_copy->i_blkno),
6244 		num_recs);
6245 
6246 	inode_lock(tl_inode);
6247 	for(i = 0; i < num_recs; i++) {
6248 		if (ocfs2_truncate_log_needs_flush(osb)) {
6249 			status = __ocfs2_flush_truncate_log(osb);
6250 			if (status < 0) {
6251 				mlog_errno(status);
6252 				goto bail_up;
6253 			}
6254 		}
6255 
6256 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6257 		if (IS_ERR(handle)) {
6258 			status = PTR_ERR(handle);
6259 			mlog_errno(status);
6260 			goto bail_up;
6261 		}
6262 
6263 		clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6264 		start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6265 		start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6266 
6267 		status = ocfs2_truncate_log_append(osb, handle,
6268 						   start_blk, clusters);
6269 		ocfs2_commit_trans(osb, handle);
6270 		if (status < 0) {
6271 			mlog_errno(status);
6272 			goto bail_up;
6273 		}
6274 	}
6275 
6276 bail_up:
6277 	inode_unlock(tl_inode);
6278 
6279 	return status;
6280 }
6281 
6282 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6283 {
6284 	int status;
6285 	struct inode *tl_inode = osb->osb_tl_inode;
6286 
6287 	atomic_set(&osb->osb_tl_disable, 1);
6288 
6289 	if (tl_inode) {
6290 		cancel_delayed_work(&osb->osb_truncate_log_wq);
6291 		flush_workqueue(osb->ocfs2_wq);
6292 
6293 		status = ocfs2_flush_truncate_log(osb);
6294 		if (status < 0)
6295 			mlog_errno(status);
6296 
6297 		brelse(osb->osb_tl_bh);
6298 		iput(osb->osb_tl_inode);
6299 	}
6300 }
6301 
6302 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6303 {
6304 	int status;
6305 	struct inode *tl_inode = NULL;
6306 	struct buffer_head *tl_bh = NULL;
6307 
6308 	status = ocfs2_get_truncate_log_info(osb,
6309 					     osb->slot_num,
6310 					     &tl_inode,
6311 					     &tl_bh);
6312 	if (status < 0)
6313 		mlog_errno(status);
6314 
6315 	/* ocfs2_truncate_log_shutdown keys on the existence of
6316 	 * osb->osb_tl_inode so we don't set any of the osb variables
6317 	 * until we're sure all is well. */
6318 	INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6319 			  ocfs2_truncate_log_worker);
6320 	atomic_set(&osb->osb_tl_disable, 0);
6321 	osb->osb_tl_bh    = tl_bh;
6322 	osb->osb_tl_inode = tl_inode;
6323 
6324 	return status;
6325 }
6326 
6327 /*
6328  * Delayed de-allocation of suballocator blocks.
6329  *
6330  * Some sets of block de-allocations might involve multiple suballocator inodes.
6331  *
6332  * The locking for this can get extremely complicated, especially when
6333  * the suballocator inodes to delete from aren't known until deep
6334  * within an unrelated codepath.
6335  *
6336  * ocfs2_extent_block structures are a good example of this - an inode
6337  * btree could have been grown by any number of nodes each allocating
6338  * out of their own suballoc inode.
6339  *
6340  * These structures allow the delay of block de-allocation until a
6341  * later time, when locking of multiple cluster inodes won't cause
6342  * deadlock.
6343  */
6344 
6345 /*
6346  * Describe a single bit freed from a suballocator.  For the block
6347  * suballocators, it represents one block.  For the global cluster
6348  * allocator, it represents some clusters and free_bit indicates
6349  * clusters number.
6350  */
6351 struct ocfs2_cached_block_free {
6352 	struct ocfs2_cached_block_free		*free_next;
6353 	u64					free_bg;
6354 	u64					free_blk;
6355 	unsigned int				free_bit;
6356 };
6357 
6358 struct ocfs2_per_slot_free_list {
6359 	struct ocfs2_per_slot_free_list		*f_next_suballocator;
6360 	int					f_inode_type;
6361 	int					f_slot;
6362 	struct ocfs2_cached_block_free		*f_first;
6363 };
6364 
6365 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6366 				    int sysfile_type,
6367 				    int slot,
6368 				    struct ocfs2_cached_block_free *head)
6369 {
6370 	int ret;
6371 	u64 bg_blkno;
6372 	handle_t *handle;
6373 	struct inode *inode;
6374 	struct buffer_head *di_bh = NULL;
6375 	struct ocfs2_cached_block_free *tmp;
6376 
6377 	inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6378 	if (!inode) {
6379 		ret = -EINVAL;
6380 		mlog_errno(ret);
6381 		goto out;
6382 	}
6383 
6384 	inode_lock(inode);
6385 
6386 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
6387 	if (ret) {
6388 		mlog_errno(ret);
6389 		goto out_mutex;
6390 	}
6391 
6392 	while (head) {
6393 		if (head->free_bg)
6394 			bg_blkno = head->free_bg;
6395 		else
6396 			bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6397 							      head->free_bit);
6398 		handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6399 		if (IS_ERR(handle)) {
6400 			ret = PTR_ERR(handle);
6401 			mlog_errno(ret);
6402 			goto out_unlock;
6403 		}
6404 
6405 		trace_ocfs2_free_cached_blocks(
6406 		     (unsigned long long)head->free_blk, head->free_bit);
6407 
6408 		ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6409 					       head->free_bit, bg_blkno, 1);
6410 		if (ret)
6411 			mlog_errno(ret);
6412 
6413 		ocfs2_commit_trans(osb, handle);
6414 
6415 		tmp = head;
6416 		head = head->free_next;
6417 		kfree(tmp);
6418 	}
6419 
6420 out_unlock:
6421 	ocfs2_inode_unlock(inode, 1);
6422 	brelse(di_bh);
6423 out_mutex:
6424 	inode_unlock(inode);
6425 	iput(inode);
6426 out:
6427 	while(head) {
6428 		/* Premature exit may have left some dangling items. */
6429 		tmp = head;
6430 		head = head->free_next;
6431 		kfree(tmp);
6432 	}
6433 
6434 	return ret;
6435 }
6436 
6437 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6438 				u64 blkno, unsigned int bit)
6439 {
6440 	int ret = 0;
6441 	struct ocfs2_cached_block_free *item;
6442 
6443 	item = kzalloc(sizeof(*item), GFP_NOFS);
6444 	if (item == NULL) {
6445 		ret = -ENOMEM;
6446 		mlog_errno(ret);
6447 		return ret;
6448 	}
6449 
6450 	trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno, bit);
6451 
6452 	item->free_blk = blkno;
6453 	item->free_bit = bit;
6454 	item->free_next = ctxt->c_global_allocator;
6455 
6456 	ctxt->c_global_allocator = item;
6457 	return ret;
6458 }
6459 
6460 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6461 				      struct ocfs2_cached_block_free *head)
6462 {
6463 	struct ocfs2_cached_block_free *tmp;
6464 	struct inode *tl_inode = osb->osb_tl_inode;
6465 	handle_t *handle;
6466 	int ret = 0;
6467 
6468 	inode_lock(tl_inode);
6469 
6470 	while (head) {
6471 		if (ocfs2_truncate_log_needs_flush(osb)) {
6472 			ret = __ocfs2_flush_truncate_log(osb);
6473 			if (ret < 0) {
6474 				mlog_errno(ret);
6475 				break;
6476 			}
6477 		}
6478 
6479 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6480 		if (IS_ERR(handle)) {
6481 			ret = PTR_ERR(handle);
6482 			mlog_errno(ret);
6483 			break;
6484 		}
6485 
6486 		ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6487 						head->free_bit);
6488 
6489 		ocfs2_commit_trans(osb, handle);
6490 		tmp = head;
6491 		head = head->free_next;
6492 		kfree(tmp);
6493 
6494 		if (ret < 0) {
6495 			mlog_errno(ret);
6496 			break;
6497 		}
6498 	}
6499 
6500 	inode_unlock(tl_inode);
6501 
6502 	while (head) {
6503 		/* Premature exit may have left some dangling items. */
6504 		tmp = head;
6505 		head = head->free_next;
6506 		kfree(tmp);
6507 	}
6508 
6509 	return ret;
6510 }
6511 
6512 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6513 		       struct ocfs2_cached_dealloc_ctxt *ctxt)
6514 {
6515 	int ret = 0, ret2;
6516 	struct ocfs2_per_slot_free_list *fl;
6517 
6518 	if (!ctxt)
6519 		return 0;
6520 
6521 	while (ctxt->c_first_suballocator) {
6522 		fl = ctxt->c_first_suballocator;
6523 
6524 		if (fl->f_first) {
6525 			trace_ocfs2_run_deallocs(fl->f_inode_type,
6526 						 fl->f_slot);
6527 			ret2 = ocfs2_free_cached_blocks(osb,
6528 							fl->f_inode_type,
6529 							fl->f_slot,
6530 							fl->f_first);
6531 			if (ret2)
6532 				mlog_errno(ret2);
6533 			if (!ret)
6534 				ret = ret2;
6535 		}
6536 
6537 		ctxt->c_first_suballocator = fl->f_next_suballocator;
6538 		kfree(fl);
6539 	}
6540 
6541 	if (ctxt->c_global_allocator) {
6542 		ret2 = ocfs2_free_cached_clusters(osb,
6543 						  ctxt->c_global_allocator);
6544 		if (ret2)
6545 			mlog_errno(ret2);
6546 		if (!ret)
6547 			ret = ret2;
6548 
6549 		ctxt->c_global_allocator = NULL;
6550 	}
6551 
6552 	return ret;
6553 }
6554 
6555 static struct ocfs2_per_slot_free_list *
6556 ocfs2_find_per_slot_free_list(int type,
6557 			      int slot,
6558 			      struct ocfs2_cached_dealloc_ctxt *ctxt)
6559 {
6560 	struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6561 
6562 	while (fl) {
6563 		if (fl->f_inode_type == type && fl->f_slot == slot)
6564 			return fl;
6565 
6566 		fl = fl->f_next_suballocator;
6567 	}
6568 
6569 	fl = kmalloc(sizeof(*fl), GFP_NOFS);
6570 	if (fl) {
6571 		fl->f_inode_type = type;
6572 		fl->f_slot = slot;
6573 		fl->f_first = NULL;
6574 		fl->f_next_suballocator = ctxt->c_first_suballocator;
6575 
6576 		ctxt->c_first_suballocator = fl;
6577 	}
6578 	return fl;
6579 }
6580 
6581 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6582 			      int type, int slot, u64 suballoc,
6583 			      u64 blkno, unsigned int bit)
6584 {
6585 	int ret;
6586 	struct ocfs2_per_slot_free_list *fl;
6587 	struct ocfs2_cached_block_free *item;
6588 
6589 	fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6590 	if (fl == NULL) {
6591 		ret = -ENOMEM;
6592 		mlog_errno(ret);
6593 		goto out;
6594 	}
6595 
6596 	item = kzalloc(sizeof(*item), GFP_NOFS);
6597 	if (item == NULL) {
6598 		ret = -ENOMEM;
6599 		mlog_errno(ret);
6600 		goto out;
6601 	}
6602 
6603 	trace_ocfs2_cache_block_dealloc(type, slot,
6604 					(unsigned long long)suballoc,
6605 					(unsigned long long)blkno, bit);
6606 
6607 	item->free_bg = suballoc;
6608 	item->free_blk = blkno;
6609 	item->free_bit = bit;
6610 	item->free_next = fl->f_first;
6611 
6612 	fl->f_first = item;
6613 
6614 	ret = 0;
6615 out:
6616 	return ret;
6617 }
6618 
6619 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6620 					 struct ocfs2_extent_block *eb)
6621 {
6622 	return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6623 					 le16_to_cpu(eb->h_suballoc_slot),
6624 					 le64_to_cpu(eb->h_suballoc_loc),
6625 					 le64_to_cpu(eb->h_blkno),
6626 					 le16_to_cpu(eb->h_suballoc_bit));
6627 }
6628 
6629 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6630 {
6631 	set_buffer_uptodate(bh);
6632 	mark_buffer_dirty(bh);
6633 	return 0;
6634 }
6635 
6636 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6637 			      unsigned int from, unsigned int to,
6638 			      struct page *page, int zero, u64 *phys)
6639 {
6640 	int ret, partial = 0;
6641 
6642 	ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6643 	if (ret)
6644 		mlog_errno(ret);
6645 
6646 	if (zero)
6647 		zero_user_segment(page, from, to);
6648 
6649 	/*
6650 	 * Need to set the buffers we zero'd into uptodate
6651 	 * here if they aren't - ocfs2_map_page_blocks()
6652 	 * might've skipped some
6653 	 */
6654 	ret = walk_page_buffers(handle, page_buffers(page),
6655 				from, to, &partial,
6656 				ocfs2_zero_func);
6657 	if (ret < 0)
6658 		mlog_errno(ret);
6659 	else if (ocfs2_should_order_data(inode)) {
6660 		ret = ocfs2_jbd2_file_inode(handle, inode);
6661 		if (ret < 0)
6662 			mlog_errno(ret);
6663 	}
6664 
6665 	if (!partial)
6666 		SetPageUptodate(page);
6667 
6668 	flush_dcache_page(page);
6669 }
6670 
6671 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6672 				     loff_t end, struct page **pages,
6673 				     int numpages, u64 phys, handle_t *handle)
6674 {
6675 	int i;
6676 	struct page *page;
6677 	unsigned int from, to = PAGE_SIZE;
6678 	struct super_block *sb = inode->i_sb;
6679 
6680 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6681 
6682 	if (numpages == 0)
6683 		goto out;
6684 
6685 	to = PAGE_SIZE;
6686 	for(i = 0; i < numpages; i++) {
6687 		page = pages[i];
6688 
6689 		from = start & (PAGE_SIZE - 1);
6690 		if ((end >> PAGE_SHIFT) == page->index)
6691 			to = end & (PAGE_SIZE - 1);
6692 
6693 		BUG_ON(from > PAGE_SIZE);
6694 		BUG_ON(to > PAGE_SIZE);
6695 
6696 		ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6697 					 &phys);
6698 
6699 		start = (page->index + 1) << PAGE_SHIFT;
6700 	}
6701 out:
6702 	if (pages)
6703 		ocfs2_unlock_and_free_pages(pages, numpages);
6704 }
6705 
6706 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end,
6707 		     struct page **pages, int *num)
6708 {
6709 	int numpages, ret = 0;
6710 	struct address_space *mapping = inode->i_mapping;
6711 	unsigned long index;
6712 	loff_t last_page_bytes;
6713 
6714 	BUG_ON(start > end);
6715 
6716 	numpages = 0;
6717 	last_page_bytes = PAGE_ALIGN(end);
6718 	index = start >> PAGE_SHIFT;
6719 	do {
6720 		pages[numpages] = find_or_create_page(mapping, index, GFP_NOFS);
6721 		if (!pages[numpages]) {
6722 			ret = -ENOMEM;
6723 			mlog_errno(ret);
6724 			goto out;
6725 		}
6726 
6727 		numpages++;
6728 		index++;
6729 	} while (index < (last_page_bytes >> PAGE_SHIFT));
6730 
6731 out:
6732 	if (ret != 0) {
6733 		if (pages)
6734 			ocfs2_unlock_and_free_pages(pages, numpages);
6735 		numpages = 0;
6736 	}
6737 
6738 	*num = numpages;
6739 
6740 	return ret;
6741 }
6742 
6743 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6744 				struct page **pages, int *num)
6745 {
6746 	struct super_block *sb = inode->i_sb;
6747 
6748 	BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6749 	       (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6750 
6751 	return ocfs2_grab_pages(inode, start, end, pages, num);
6752 }
6753 
6754 /*
6755  * Zero the area past i_size but still within an allocated
6756  * cluster. This avoids exposing nonzero data on subsequent file
6757  * extends.
6758  *
6759  * We need to call this before i_size is updated on the inode because
6760  * otherwise block_write_full_page() will skip writeout of pages past
6761  * i_size. The new_i_size parameter is passed for this reason.
6762  */
6763 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6764 				  u64 range_start, u64 range_end)
6765 {
6766 	int ret = 0, numpages;
6767 	struct page **pages = NULL;
6768 	u64 phys;
6769 	unsigned int ext_flags;
6770 	struct super_block *sb = inode->i_sb;
6771 
6772 	/*
6773 	 * File systems which don't support sparse files zero on every
6774 	 * extend.
6775 	 */
6776 	if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6777 		return 0;
6778 
6779 	pages = kcalloc(ocfs2_pages_per_cluster(sb),
6780 			sizeof(struct page *), GFP_NOFS);
6781 	if (pages == NULL) {
6782 		ret = -ENOMEM;
6783 		mlog_errno(ret);
6784 		goto out;
6785 	}
6786 
6787 	if (range_start == range_end)
6788 		goto out;
6789 
6790 	ret = ocfs2_extent_map_get_blocks(inode,
6791 					  range_start >> sb->s_blocksize_bits,
6792 					  &phys, NULL, &ext_flags);
6793 	if (ret) {
6794 		mlog_errno(ret);
6795 		goto out;
6796 	}
6797 
6798 	/*
6799 	 * Tail is a hole, or is marked unwritten. In either case, we
6800 	 * can count on read and write to return/push zero's.
6801 	 */
6802 	if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6803 		goto out;
6804 
6805 	ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6806 				   &numpages);
6807 	if (ret) {
6808 		mlog_errno(ret);
6809 		goto out;
6810 	}
6811 
6812 	ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6813 				 numpages, phys, handle);
6814 
6815 	/*
6816 	 * Initiate writeout of the pages we zero'd here. We don't
6817 	 * wait on them - the truncate_inode_pages() call later will
6818 	 * do that for us.
6819 	 */
6820 	ret = filemap_fdatawrite_range(inode->i_mapping, range_start,
6821 				       range_end - 1);
6822 	if (ret)
6823 		mlog_errno(ret);
6824 
6825 out:
6826 	kfree(pages);
6827 
6828 	return ret;
6829 }
6830 
6831 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
6832 					     struct ocfs2_dinode *di)
6833 {
6834 	unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
6835 	unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
6836 
6837 	if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
6838 		memset(&di->id2, 0, blocksize -
6839 				    offsetof(struct ocfs2_dinode, id2) -
6840 				    xattrsize);
6841 	else
6842 		memset(&di->id2, 0, blocksize -
6843 				    offsetof(struct ocfs2_dinode, id2));
6844 }
6845 
6846 void ocfs2_dinode_new_extent_list(struct inode *inode,
6847 				  struct ocfs2_dinode *di)
6848 {
6849 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
6850 	di->id2.i_list.l_tree_depth = 0;
6851 	di->id2.i_list.l_next_free_rec = 0;
6852 	di->id2.i_list.l_count = cpu_to_le16(
6853 		ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
6854 }
6855 
6856 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
6857 {
6858 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
6859 	struct ocfs2_inline_data *idata = &di->id2.i_data;
6860 
6861 	spin_lock(&oi->ip_lock);
6862 	oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
6863 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6864 	spin_unlock(&oi->ip_lock);
6865 
6866 	/*
6867 	 * We clear the entire i_data structure here so that all
6868 	 * fields can be properly initialized.
6869 	 */
6870 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
6871 
6872 	idata->id_count = cpu_to_le16(
6873 			ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
6874 }
6875 
6876 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
6877 					 struct buffer_head *di_bh)
6878 {
6879 	int ret, i, has_data, num_pages = 0;
6880 	int need_free = 0;
6881 	u32 bit_off, num;
6882 	handle_t *handle;
6883 	u64 uninitialized_var(block);
6884 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
6885 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6886 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6887 	struct ocfs2_alloc_context *data_ac = NULL;
6888 	struct page **pages = NULL;
6889 	loff_t end = osb->s_clustersize;
6890 	struct ocfs2_extent_tree et;
6891 	int did_quota = 0;
6892 
6893 	has_data = i_size_read(inode) ? 1 : 0;
6894 
6895 	if (has_data) {
6896 		pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
6897 				sizeof(struct page *), GFP_NOFS);
6898 		if (pages == NULL) {
6899 			ret = -ENOMEM;
6900 			mlog_errno(ret);
6901 			return ret;
6902 		}
6903 
6904 		ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
6905 		if (ret) {
6906 			mlog_errno(ret);
6907 			goto free_pages;
6908 		}
6909 	}
6910 
6911 	handle = ocfs2_start_trans(osb,
6912 				   ocfs2_inline_to_extents_credits(osb->sb));
6913 	if (IS_ERR(handle)) {
6914 		ret = PTR_ERR(handle);
6915 		mlog_errno(ret);
6916 		goto out;
6917 	}
6918 
6919 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
6920 				      OCFS2_JOURNAL_ACCESS_WRITE);
6921 	if (ret) {
6922 		mlog_errno(ret);
6923 		goto out_commit;
6924 	}
6925 
6926 	if (has_data) {
6927 		unsigned int page_end;
6928 		u64 phys;
6929 
6930 		ret = dquot_alloc_space_nodirty(inode,
6931 				       ocfs2_clusters_to_bytes(osb->sb, 1));
6932 		if (ret)
6933 			goto out_commit;
6934 		did_quota = 1;
6935 
6936 		data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
6937 
6938 		ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off,
6939 					   &num);
6940 		if (ret) {
6941 			mlog_errno(ret);
6942 			goto out_commit;
6943 		}
6944 
6945 		/*
6946 		 * Save two copies, one for insert, and one that can
6947 		 * be changed by ocfs2_map_and_dirty_page() below.
6948 		 */
6949 		block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
6950 
6951 		/*
6952 		 * Non sparse file systems zero on extend, so no need
6953 		 * to do that now.
6954 		 */
6955 		if (!ocfs2_sparse_alloc(osb) &&
6956 		    PAGE_SIZE < osb->s_clustersize)
6957 			end = PAGE_SIZE;
6958 
6959 		ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
6960 		if (ret) {
6961 			mlog_errno(ret);
6962 			need_free = 1;
6963 			goto out_commit;
6964 		}
6965 
6966 		/*
6967 		 * This should populate the 1st page for us and mark
6968 		 * it up to date.
6969 		 */
6970 		ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
6971 		if (ret) {
6972 			mlog_errno(ret);
6973 			need_free = 1;
6974 			goto out_unlock;
6975 		}
6976 
6977 		page_end = PAGE_SIZE;
6978 		if (PAGE_SIZE > osb->s_clustersize)
6979 			page_end = osb->s_clustersize;
6980 
6981 		for (i = 0; i < num_pages; i++)
6982 			ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
6983 						 pages[i], i > 0, &phys);
6984 	}
6985 
6986 	spin_lock(&oi->ip_lock);
6987 	oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
6988 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6989 	spin_unlock(&oi->ip_lock);
6990 
6991 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
6992 	ocfs2_dinode_new_extent_list(inode, di);
6993 
6994 	ocfs2_journal_dirty(handle, di_bh);
6995 
6996 	if (has_data) {
6997 		/*
6998 		 * An error at this point should be extremely rare. If
6999 		 * this proves to be false, we could always re-build
7000 		 * the in-inode data from our pages.
7001 		 */
7002 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
7003 		ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL);
7004 		if (ret) {
7005 			mlog_errno(ret);
7006 			need_free = 1;
7007 			goto out_unlock;
7008 		}
7009 
7010 		inode->i_blocks = ocfs2_inode_sector_count(inode);
7011 	}
7012 
7013 out_unlock:
7014 	if (pages)
7015 		ocfs2_unlock_and_free_pages(pages, num_pages);
7016 
7017 out_commit:
7018 	if (ret < 0 && did_quota)
7019 		dquot_free_space_nodirty(inode,
7020 					  ocfs2_clusters_to_bytes(osb->sb, 1));
7021 
7022 	if (need_free) {
7023 		if (data_ac->ac_which == OCFS2_AC_USE_LOCAL)
7024 			ocfs2_free_local_alloc_bits(osb, handle, data_ac,
7025 					bit_off, num);
7026 		else
7027 			ocfs2_free_clusters(handle,
7028 					data_ac->ac_inode,
7029 					data_ac->ac_bh,
7030 					ocfs2_clusters_to_blocks(osb->sb, bit_off),
7031 					num);
7032 	}
7033 
7034 	ocfs2_commit_trans(osb, handle);
7035 
7036 out:
7037 	if (data_ac)
7038 		ocfs2_free_alloc_context(data_ac);
7039 free_pages:
7040 	kfree(pages);
7041 	return ret;
7042 }
7043 
7044 /*
7045  * It is expected, that by the time you call this function,
7046  * inode->i_size and fe->i_size have been adjusted.
7047  *
7048  * WARNING: This will kfree the truncate context
7049  */
7050 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7051 			  struct inode *inode,
7052 			  struct buffer_head *di_bh)
7053 {
7054 	int status = 0, i, flags = 0;
7055 	u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff;
7056 	u64 blkno = 0;
7057 	struct ocfs2_extent_list *el;
7058 	struct ocfs2_extent_rec *rec;
7059 	struct ocfs2_path *path = NULL;
7060 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7061 	struct ocfs2_extent_list *root_el = &(di->id2.i_list);
7062 	u64 refcount_loc = le64_to_cpu(di->i_refcount_loc);
7063 	struct ocfs2_extent_tree et;
7064 	struct ocfs2_cached_dealloc_ctxt dealloc;
7065 	struct ocfs2_refcount_tree *ref_tree = NULL;
7066 
7067 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
7068 	ocfs2_init_dealloc_ctxt(&dealloc);
7069 
7070 	new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7071 						     i_size_read(inode));
7072 
7073 	path = ocfs2_new_path(di_bh, &di->id2.i_list,
7074 			      ocfs2_journal_access_di);
7075 	if (!path) {
7076 		status = -ENOMEM;
7077 		mlog_errno(status);
7078 		goto bail;
7079 	}
7080 
7081 	ocfs2_extent_map_trunc(inode, new_highest_cpos);
7082 
7083 start:
7084 	/*
7085 	 * Check that we still have allocation to delete.
7086 	 */
7087 	if (OCFS2_I(inode)->ip_clusters == 0) {
7088 		status = 0;
7089 		goto bail;
7090 	}
7091 
7092 	/*
7093 	 * Truncate always works against the rightmost tree branch.
7094 	 */
7095 	status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX);
7096 	if (status) {
7097 		mlog_errno(status);
7098 		goto bail;
7099 	}
7100 
7101 	trace_ocfs2_commit_truncate(
7102 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
7103 		new_highest_cpos,
7104 		OCFS2_I(inode)->ip_clusters,
7105 		path->p_tree_depth);
7106 
7107 	/*
7108 	 * By now, el will point to the extent list on the bottom most
7109 	 * portion of this tree. Only the tail record is considered in
7110 	 * each pass.
7111 	 *
7112 	 * We handle the following cases, in order:
7113 	 * - empty extent: delete the remaining branch
7114 	 * - remove the entire record
7115 	 * - remove a partial record
7116 	 * - no record needs to be removed (truncate has completed)
7117 	 */
7118 	el = path_leaf_el(path);
7119 	if (le16_to_cpu(el->l_next_free_rec) == 0) {
7120 		ocfs2_error(inode->i_sb,
7121 			    "Inode %llu has empty extent block at %llu\n",
7122 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7123 			    (unsigned long long)path_leaf_bh(path)->b_blocknr);
7124 		status = -EROFS;
7125 		goto bail;
7126 	}
7127 
7128 	i = le16_to_cpu(el->l_next_free_rec) - 1;
7129 	rec = &el->l_recs[i];
7130 	flags = rec->e_flags;
7131 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
7132 
7133 	if (i == 0 && ocfs2_is_empty_extent(rec)) {
7134 		/*
7135 		 * Lower levels depend on this never happening, but it's best
7136 		 * to check it up here before changing the tree.
7137 		*/
7138 		if (root_el->l_tree_depth && rec->e_int_clusters == 0) {
7139 			mlog(ML_ERROR, "Inode %lu has an empty "
7140 				    "extent record, depth %u\n", inode->i_ino,
7141 				    le16_to_cpu(root_el->l_tree_depth));
7142 			status = ocfs2_remove_rightmost_empty_extent(osb,
7143 					&et, path, &dealloc);
7144 			if (status) {
7145 				mlog_errno(status);
7146 				goto bail;
7147 			}
7148 
7149 			ocfs2_reinit_path(path, 1);
7150 			goto start;
7151 		} else {
7152 			trunc_cpos = le32_to_cpu(rec->e_cpos);
7153 			trunc_len = 0;
7154 			blkno = 0;
7155 		}
7156 	} else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) {
7157 		/*
7158 		 * Truncate entire record.
7159 		 */
7160 		trunc_cpos = le32_to_cpu(rec->e_cpos);
7161 		trunc_len = ocfs2_rec_clusters(el, rec);
7162 		blkno = le64_to_cpu(rec->e_blkno);
7163 	} else if (range > new_highest_cpos) {
7164 		/*
7165 		 * Partial truncate. it also should be
7166 		 * the last truncate we're doing.
7167 		 */
7168 		trunc_cpos = new_highest_cpos;
7169 		trunc_len = range - new_highest_cpos;
7170 		coff = new_highest_cpos - le32_to_cpu(rec->e_cpos);
7171 		blkno = le64_to_cpu(rec->e_blkno) +
7172 				ocfs2_clusters_to_blocks(inode->i_sb, coff);
7173 	} else {
7174 		/*
7175 		 * Truncate completed, leave happily.
7176 		 */
7177 		status = 0;
7178 		goto bail;
7179 	}
7180 
7181 	phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
7182 
7183 	if ((flags & OCFS2_EXT_REFCOUNTED) && trunc_len && !ref_tree) {
7184 		status = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
7185 				&ref_tree, NULL);
7186 		if (status) {
7187 			mlog_errno(status);
7188 			goto bail;
7189 		}
7190 	}
7191 
7192 	status = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
7193 					  phys_cpos, trunc_len, flags, &dealloc,
7194 					  refcount_loc, true);
7195 	if (status < 0) {
7196 		mlog_errno(status);
7197 		goto bail;
7198 	}
7199 
7200 	ocfs2_reinit_path(path, 1);
7201 
7202 	/*
7203 	 * The check above will catch the case where we've truncated
7204 	 * away all allocation.
7205 	 */
7206 	goto start;
7207 
7208 bail:
7209 	if (ref_tree)
7210 		ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
7211 
7212 	ocfs2_schedule_truncate_log_flush(osb, 1);
7213 
7214 	ocfs2_run_deallocs(osb, &dealloc);
7215 
7216 	ocfs2_free_path(path);
7217 
7218 	return status;
7219 }
7220 
7221 /*
7222  * 'start' is inclusive, 'end' is not.
7223  */
7224 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7225 			  unsigned int start, unsigned int end, int trunc)
7226 {
7227 	int ret;
7228 	unsigned int numbytes;
7229 	handle_t *handle;
7230 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7231 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7232 	struct ocfs2_inline_data *idata = &di->id2.i_data;
7233 
7234 	if (end > i_size_read(inode))
7235 		end = i_size_read(inode);
7236 
7237 	BUG_ON(start > end);
7238 
7239 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7240 	    !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7241 	    !ocfs2_supports_inline_data(osb)) {
7242 		ocfs2_error(inode->i_sb,
7243 			    "Inline data flags for inode %llu don't agree! Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7244 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7245 			    le16_to_cpu(di->i_dyn_features),
7246 			    OCFS2_I(inode)->ip_dyn_features,
7247 			    osb->s_feature_incompat);
7248 		ret = -EROFS;
7249 		goto out;
7250 	}
7251 
7252 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7253 	if (IS_ERR(handle)) {
7254 		ret = PTR_ERR(handle);
7255 		mlog_errno(ret);
7256 		goto out;
7257 	}
7258 
7259 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7260 				      OCFS2_JOURNAL_ACCESS_WRITE);
7261 	if (ret) {
7262 		mlog_errno(ret);
7263 		goto out_commit;
7264 	}
7265 
7266 	numbytes = end - start;
7267 	memset(idata->id_data + start, 0, numbytes);
7268 
7269 	/*
7270 	 * No need to worry about the data page here - it's been
7271 	 * truncated already and inline data doesn't need it for
7272 	 * pushing zero's to disk, so we'll let readpage pick it up
7273 	 * later.
7274 	 */
7275 	if (trunc) {
7276 		i_size_write(inode, start);
7277 		di->i_size = cpu_to_le64(start);
7278 	}
7279 
7280 	inode->i_blocks = ocfs2_inode_sector_count(inode);
7281 	inode->i_ctime = inode->i_mtime = current_time(inode);
7282 
7283 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7284 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7285 
7286 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
7287 	ocfs2_journal_dirty(handle, di_bh);
7288 
7289 out_commit:
7290 	ocfs2_commit_trans(osb, handle);
7291 
7292 out:
7293 	return ret;
7294 }
7295 
7296 static int ocfs2_trim_extent(struct super_block *sb,
7297 			     struct ocfs2_group_desc *gd,
7298 			     u64 group, u32 start, u32 count)
7299 {
7300 	u64 discard, bcount;
7301 	struct ocfs2_super *osb = OCFS2_SB(sb);
7302 
7303 	bcount = ocfs2_clusters_to_blocks(sb, count);
7304 	discard = ocfs2_clusters_to_blocks(sb, start);
7305 
7306 	/*
7307 	 * For the first cluster group, the gd->bg_blkno is not at the start
7308 	 * of the group, but at an offset from the start. If we add it while
7309 	 * calculating discard for first group, we will wrongly start fstrim a
7310 	 * few blocks after the desried start block and the range can cross
7311 	 * over into the next cluster group. So, add it only if this is not
7312 	 * the first cluster group.
7313 	 */
7314 	if (group != osb->first_cluster_group_blkno)
7315 		discard += le64_to_cpu(gd->bg_blkno);
7316 
7317 	trace_ocfs2_trim_extent(sb, (unsigned long long)discard, bcount);
7318 
7319 	return sb_issue_discard(sb, discard, bcount, GFP_NOFS, 0);
7320 }
7321 
7322 static int ocfs2_trim_group(struct super_block *sb,
7323 			    struct ocfs2_group_desc *gd, u64 group,
7324 			    u32 start, u32 max, u32 minbits)
7325 {
7326 	int ret = 0, count = 0, next;
7327 	void *bitmap = gd->bg_bitmap;
7328 
7329 	if (le16_to_cpu(gd->bg_free_bits_count) < minbits)
7330 		return 0;
7331 
7332 	trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd->bg_blkno),
7333 			       start, max, minbits);
7334 
7335 	while (start < max) {
7336 		start = ocfs2_find_next_zero_bit(bitmap, max, start);
7337 		if (start >= max)
7338 			break;
7339 		next = ocfs2_find_next_bit(bitmap, max, start);
7340 
7341 		if ((next - start) >= minbits) {
7342 			ret = ocfs2_trim_extent(sb, gd, group,
7343 						start, next - start);
7344 			if (ret < 0) {
7345 				mlog_errno(ret);
7346 				break;
7347 			}
7348 			count += next - start;
7349 		}
7350 		start = next + 1;
7351 
7352 		if (fatal_signal_pending(current)) {
7353 			count = -ERESTARTSYS;
7354 			break;
7355 		}
7356 
7357 		if ((le16_to_cpu(gd->bg_free_bits_count) - count) < minbits)
7358 			break;
7359 	}
7360 
7361 	if (ret < 0)
7362 		count = ret;
7363 
7364 	return count;
7365 }
7366 
7367 int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range)
7368 {
7369 	struct ocfs2_super *osb = OCFS2_SB(sb);
7370 	u64 start, len, trimmed, first_group, last_group, group;
7371 	int ret, cnt;
7372 	u32 first_bit, last_bit, minlen;
7373 	struct buffer_head *main_bm_bh = NULL;
7374 	struct inode *main_bm_inode = NULL;
7375 	struct buffer_head *gd_bh = NULL;
7376 	struct ocfs2_dinode *main_bm;
7377 	struct ocfs2_group_desc *gd = NULL;
7378 
7379 	start = range->start >> osb->s_clustersize_bits;
7380 	len = range->len >> osb->s_clustersize_bits;
7381 	minlen = range->minlen >> osb->s_clustersize_bits;
7382 
7383 	if (minlen >= osb->bitmap_cpg || range->len < sb->s_blocksize)
7384 		return -EINVAL;
7385 
7386 	main_bm_inode = ocfs2_get_system_file_inode(osb,
7387 						    GLOBAL_BITMAP_SYSTEM_INODE,
7388 						    OCFS2_INVALID_SLOT);
7389 	if (!main_bm_inode) {
7390 		ret = -EIO;
7391 		mlog_errno(ret);
7392 		goto out;
7393 	}
7394 
7395 	inode_lock(main_bm_inode);
7396 
7397 	ret = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 0);
7398 	if (ret < 0) {
7399 		mlog_errno(ret);
7400 		goto out_mutex;
7401 	}
7402 	main_bm = (struct ocfs2_dinode *)main_bm_bh->b_data;
7403 
7404 	if (start >= le32_to_cpu(main_bm->i_clusters)) {
7405 		ret = -EINVAL;
7406 		goto out_unlock;
7407 	}
7408 
7409 	len = range->len >> osb->s_clustersize_bits;
7410 	if (start + len > le32_to_cpu(main_bm->i_clusters))
7411 		len = le32_to_cpu(main_bm->i_clusters) - start;
7412 
7413 	trace_ocfs2_trim_fs(start, len, minlen);
7414 
7415 	/* Determine first and last group to examine based on start and len */
7416 	first_group = ocfs2_which_cluster_group(main_bm_inode, start);
7417 	if (first_group == osb->first_cluster_group_blkno)
7418 		first_bit = start;
7419 	else
7420 		first_bit = start - ocfs2_blocks_to_clusters(sb, first_group);
7421 	last_group = ocfs2_which_cluster_group(main_bm_inode, start + len - 1);
7422 	last_bit = osb->bitmap_cpg;
7423 
7424 	trimmed = 0;
7425 	for (group = first_group; group <= last_group;) {
7426 		if (first_bit + len >= osb->bitmap_cpg)
7427 			last_bit = osb->bitmap_cpg;
7428 		else
7429 			last_bit = first_bit + len;
7430 
7431 		ret = ocfs2_read_group_descriptor(main_bm_inode,
7432 						  main_bm, group,
7433 						  &gd_bh);
7434 		if (ret < 0) {
7435 			mlog_errno(ret);
7436 			break;
7437 		}
7438 
7439 		gd = (struct ocfs2_group_desc *)gd_bh->b_data;
7440 		cnt = ocfs2_trim_group(sb, gd, group,
7441 				       first_bit, last_bit, minlen);
7442 		brelse(gd_bh);
7443 		gd_bh = NULL;
7444 		if (cnt < 0) {
7445 			ret = cnt;
7446 			mlog_errno(ret);
7447 			break;
7448 		}
7449 
7450 		trimmed += cnt;
7451 		len -= osb->bitmap_cpg - first_bit;
7452 		first_bit = 0;
7453 		if (group == osb->first_cluster_group_blkno)
7454 			group = ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7455 		else
7456 			group += ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7457 	}
7458 	range->len = trimmed * sb->s_blocksize;
7459 out_unlock:
7460 	ocfs2_inode_unlock(main_bm_inode, 0);
7461 	brelse(main_bm_bh);
7462 out_mutex:
7463 	inode_unlock(main_bm_inode);
7464 	iput(main_bm_inode);
7465 out:
7466 	return ret;
7467 }
7468