1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * alloc.c 4 * 5 * Extent allocs and frees 6 * 7 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 8 */ 9 10 #include <linux/fs.h> 11 #include <linux/types.h> 12 #include <linux/slab.h> 13 #include <linux/highmem.h> 14 #include <linux/swap.h> 15 #include <linux/quotaops.h> 16 #include <linux/blkdev.h> 17 #include <linux/sched/signal.h> 18 19 #include <cluster/masklog.h> 20 21 #include "ocfs2.h" 22 23 #include "alloc.h" 24 #include "aops.h" 25 #include "blockcheck.h" 26 #include "dlmglue.h" 27 #include "extent_map.h" 28 #include "inode.h" 29 #include "journal.h" 30 #include "localalloc.h" 31 #include "suballoc.h" 32 #include "sysfile.h" 33 #include "file.h" 34 #include "super.h" 35 #include "uptodate.h" 36 #include "xattr.h" 37 #include "refcounttree.h" 38 #include "ocfs2_trace.h" 39 40 #include "buffer_head_io.h" 41 42 enum ocfs2_contig_type { 43 CONTIG_NONE = 0, 44 CONTIG_LEFT, 45 CONTIG_RIGHT, 46 CONTIG_LEFTRIGHT, 47 }; 48 49 static enum ocfs2_contig_type 50 ocfs2_extent_rec_contig(struct super_block *sb, 51 struct ocfs2_extent_rec *ext, 52 struct ocfs2_extent_rec *insert_rec); 53 /* 54 * Operations for a specific extent tree type. 55 * 56 * To implement an on-disk btree (extent tree) type in ocfs2, add 57 * an ocfs2_extent_tree_operations structure and the matching 58 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it 59 * for the allocation portion of the extent tree. 60 */ 61 struct ocfs2_extent_tree_operations { 62 /* 63 * last_eb_blk is the block number of the right most leaf extent 64 * block. Most on-disk structures containing an extent tree store 65 * this value for fast access. The ->eo_set_last_eb_blk() and 66 * ->eo_get_last_eb_blk() operations access this value. They are 67 * both required. 68 */ 69 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et, 70 u64 blkno); 71 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et); 72 73 /* 74 * The on-disk structure usually keeps track of how many total 75 * clusters are stored in this extent tree. This function updates 76 * that value. new_clusters is the delta, and must be 77 * added to the total. Required. 78 */ 79 void (*eo_update_clusters)(struct ocfs2_extent_tree *et, 80 u32 new_clusters); 81 82 /* 83 * If this extent tree is supported by an extent map, insert 84 * a record into the map. 85 */ 86 void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et, 87 struct ocfs2_extent_rec *rec); 88 89 /* 90 * If this extent tree is supported by an extent map, truncate the 91 * map to clusters, 92 */ 93 void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et, 94 u32 clusters); 95 96 /* 97 * If ->eo_insert_check() exists, it is called before rec is 98 * inserted into the extent tree. It is optional. 99 */ 100 int (*eo_insert_check)(struct ocfs2_extent_tree *et, 101 struct ocfs2_extent_rec *rec); 102 int (*eo_sanity_check)(struct ocfs2_extent_tree *et); 103 104 /* 105 * -------------------------------------------------------------- 106 * The remaining are internal to ocfs2_extent_tree and don't have 107 * accessor functions 108 */ 109 110 /* 111 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el. 112 * It is required. 113 */ 114 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et); 115 116 /* 117 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if 118 * it exists. If it does not, et->et_max_leaf_clusters is set 119 * to 0 (unlimited). Optional. 120 */ 121 void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et); 122 123 /* 124 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec 125 * are contiguous or not. Optional. Don't need to set it if use 126 * ocfs2_extent_rec as the tree leaf. 127 */ 128 enum ocfs2_contig_type 129 (*eo_extent_contig)(struct ocfs2_extent_tree *et, 130 struct ocfs2_extent_rec *ext, 131 struct ocfs2_extent_rec *insert_rec); 132 }; 133 134 135 /* 136 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check 137 * in the methods. 138 */ 139 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et); 140 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 141 u64 blkno); 142 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, 143 u32 clusters); 144 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et, 145 struct ocfs2_extent_rec *rec); 146 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et, 147 u32 clusters); 148 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, 149 struct ocfs2_extent_rec *rec); 150 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et); 151 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et); 152 153 static int ocfs2_reuse_blk_from_dealloc(handle_t *handle, 154 struct ocfs2_extent_tree *et, 155 struct buffer_head **new_eb_bh, 156 int blk_wanted, int *blk_given); 157 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree *et); 158 159 static const struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = { 160 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk, 161 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk, 162 .eo_update_clusters = ocfs2_dinode_update_clusters, 163 .eo_extent_map_insert = ocfs2_dinode_extent_map_insert, 164 .eo_extent_map_truncate = ocfs2_dinode_extent_map_truncate, 165 .eo_insert_check = ocfs2_dinode_insert_check, 166 .eo_sanity_check = ocfs2_dinode_sanity_check, 167 .eo_fill_root_el = ocfs2_dinode_fill_root_el, 168 }; 169 170 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 171 u64 blkno) 172 { 173 struct ocfs2_dinode *di = et->et_object; 174 175 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 176 di->i_last_eb_blk = cpu_to_le64(blkno); 177 } 178 179 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et) 180 { 181 struct ocfs2_dinode *di = et->et_object; 182 183 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 184 return le64_to_cpu(di->i_last_eb_blk); 185 } 186 187 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, 188 u32 clusters) 189 { 190 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); 191 struct ocfs2_dinode *di = et->et_object; 192 193 le32_add_cpu(&di->i_clusters, clusters); 194 spin_lock(&oi->ip_lock); 195 oi->ip_clusters = le32_to_cpu(di->i_clusters); 196 spin_unlock(&oi->ip_lock); 197 } 198 199 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et, 200 struct ocfs2_extent_rec *rec) 201 { 202 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode; 203 204 ocfs2_extent_map_insert_rec(inode, rec); 205 } 206 207 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et, 208 u32 clusters) 209 { 210 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode; 211 212 ocfs2_extent_map_trunc(inode, clusters); 213 } 214 215 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, 216 struct ocfs2_extent_rec *rec) 217 { 218 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); 219 struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb); 220 221 BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL); 222 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) && 223 (oi->ip_clusters != le32_to_cpu(rec->e_cpos)), 224 "Device %s, asking for sparse allocation: inode %llu, " 225 "cpos %u, clusters %u\n", 226 osb->dev_str, 227 (unsigned long long)oi->ip_blkno, 228 rec->e_cpos, oi->ip_clusters); 229 230 return 0; 231 } 232 233 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et) 234 { 235 struct ocfs2_dinode *di = et->et_object; 236 237 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 238 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 239 240 return 0; 241 } 242 243 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et) 244 { 245 struct ocfs2_dinode *di = et->et_object; 246 247 et->et_root_el = &di->id2.i_list; 248 } 249 250 251 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et) 252 { 253 struct ocfs2_xattr_value_buf *vb = et->et_object; 254 255 et->et_root_el = &vb->vb_xv->xr_list; 256 } 257 258 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et, 259 u64 blkno) 260 { 261 struct ocfs2_xattr_value_buf *vb = et->et_object; 262 263 vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno); 264 } 265 266 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et) 267 { 268 struct ocfs2_xattr_value_buf *vb = et->et_object; 269 270 return le64_to_cpu(vb->vb_xv->xr_last_eb_blk); 271 } 272 273 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et, 274 u32 clusters) 275 { 276 struct ocfs2_xattr_value_buf *vb = et->et_object; 277 278 le32_add_cpu(&vb->vb_xv->xr_clusters, clusters); 279 } 280 281 static const struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = { 282 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk, 283 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk, 284 .eo_update_clusters = ocfs2_xattr_value_update_clusters, 285 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el, 286 }; 287 288 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et) 289 { 290 struct ocfs2_xattr_block *xb = et->et_object; 291 292 et->et_root_el = &xb->xb_attrs.xb_root.xt_list; 293 } 294 295 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et) 296 { 297 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 298 et->et_max_leaf_clusters = 299 ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE); 300 } 301 302 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 303 u64 blkno) 304 { 305 struct ocfs2_xattr_block *xb = et->et_object; 306 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 307 308 xt->xt_last_eb_blk = cpu_to_le64(blkno); 309 } 310 311 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 312 { 313 struct ocfs2_xattr_block *xb = et->et_object; 314 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 315 316 return le64_to_cpu(xt->xt_last_eb_blk); 317 } 318 319 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et, 320 u32 clusters) 321 { 322 struct ocfs2_xattr_block *xb = et->et_object; 323 324 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters); 325 } 326 327 static const struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = { 328 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk, 329 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk, 330 .eo_update_clusters = ocfs2_xattr_tree_update_clusters, 331 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el, 332 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters, 333 }; 334 335 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et, 336 u64 blkno) 337 { 338 struct ocfs2_dx_root_block *dx_root = et->et_object; 339 340 dx_root->dr_last_eb_blk = cpu_to_le64(blkno); 341 } 342 343 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et) 344 { 345 struct ocfs2_dx_root_block *dx_root = et->et_object; 346 347 return le64_to_cpu(dx_root->dr_last_eb_blk); 348 } 349 350 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et, 351 u32 clusters) 352 { 353 struct ocfs2_dx_root_block *dx_root = et->et_object; 354 355 le32_add_cpu(&dx_root->dr_clusters, clusters); 356 } 357 358 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et) 359 { 360 struct ocfs2_dx_root_block *dx_root = et->et_object; 361 362 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root)); 363 364 return 0; 365 } 366 367 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et) 368 { 369 struct ocfs2_dx_root_block *dx_root = et->et_object; 370 371 et->et_root_el = &dx_root->dr_list; 372 } 373 374 static const struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = { 375 .eo_set_last_eb_blk = ocfs2_dx_root_set_last_eb_blk, 376 .eo_get_last_eb_blk = ocfs2_dx_root_get_last_eb_blk, 377 .eo_update_clusters = ocfs2_dx_root_update_clusters, 378 .eo_sanity_check = ocfs2_dx_root_sanity_check, 379 .eo_fill_root_el = ocfs2_dx_root_fill_root_el, 380 }; 381 382 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et) 383 { 384 struct ocfs2_refcount_block *rb = et->et_object; 385 386 et->et_root_el = &rb->rf_list; 387 } 388 389 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 390 u64 blkno) 391 { 392 struct ocfs2_refcount_block *rb = et->et_object; 393 394 rb->rf_last_eb_blk = cpu_to_le64(blkno); 395 } 396 397 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 398 { 399 struct ocfs2_refcount_block *rb = et->et_object; 400 401 return le64_to_cpu(rb->rf_last_eb_blk); 402 } 403 404 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et, 405 u32 clusters) 406 { 407 struct ocfs2_refcount_block *rb = et->et_object; 408 409 le32_add_cpu(&rb->rf_clusters, clusters); 410 } 411 412 static enum ocfs2_contig_type 413 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et, 414 struct ocfs2_extent_rec *ext, 415 struct ocfs2_extent_rec *insert_rec) 416 { 417 return CONTIG_NONE; 418 } 419 420 static const struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = { 421 .eo_set_last_eb_blk = ocfs2_refcount_tree_set_last_eb_blk, 422 .eo_get_last_eb_blk = ocfs2_refcount_tree_get_last_eb_blk, 423 .eo_update_clusters = ocfs2_refcount_tree_update_clusters, 424 .eo_fill_root_el = ocfs2_refcount_tree_fill_root_el, 425 .eo_extent_contig = ocfs2_refcount_tree_extent_contig, 426 }; 427 428 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et, 429 struct ocfs2_caching_info *ci, 430 struct buffer_head *bh, 431 ocfs2_journal_access_func access, 432 void *obj, 433 const struct ocfs2_extent_tree_operations *ops) 434 { 435 et->et_ops = ops; 436 et->et_root_bh = bh; 437 et->et_ci = ci; 438 et->et_root_journal_access = access; 439 if (!obj) 440 obj = (void *)bh->b_data; 441 et->et_object = obj; 442 et->et_dealloc = NULL; 443 444 et->et_ops->eo_fill_root_el(et); 445 if (!et->et_ops->eo_fill_max_leaf_clusters) 446 et->et_max_leaf_clusters = 0; 447 else 448 et->et_ops->eo_fill_max_leaf_clusters(et); 449 } 450 451 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et, 452 struct ocfs2_caching_info *ci, 453 struct buffer_head *bh) 454 { 455 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di, 456 NULL, &ocfs2_dinode_et_ops); 457 } 458 459 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et, 460 struct ocfs2_caching_info *ci, 461 struct buffer_head *bh) 462 { 463 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb, 464 NULL, &ocfs2_xattr_tree_et_ops); 465 } 466 467 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et, 468 struct ocfs2_caching_info *ci, 469 struct ocfs2_xattr_value_buf *vb) 470 { 471 __ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb, 472 &ocfs2_xattr_value_et_ops); 473 } 474 475 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et, 476 struct ocfs2_caching_info *ci, 477 struct buffer_head *bh) 478 { 479 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr, 480 NULL, &ocfs2_dx_root_et_ops); 481 } 482 483 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et, 484 struct ocfs2_caching_info *ci, 485 struct buffer_head *bh) 486 { 487 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb, 488 NULL, &ocfs2_refcount_tree_et_ops); 489 } 490 491 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et, 492 u64 new_last_eb_blk) 493 { 494 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk); 495 } 496 497 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et) 498 { 499 return et->et_ops->eo_get_last_eb_blk(et); 500 } 501 502 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et, 503 u32 clusters) 504 { 505 et->et_ops->eo_update_clusters(et, clusters); 506 } 507 508 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et, 509 struct ocfs2_extent_rec *rec) 510 { 511 if (et->et_ops->eo_extent_map_insert) 512 et->et_ops->eo_extent_map_insert(et, rec); 513 } 514 515 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et, 516 u32 clusters) 517 { 518 if (et->et_ops->eo_extent_map_truncate) 519 et->et_ops->eo_extent_map_truncate(et, clusters); 520 } 521 522 static inline int ocfs2_et_root_journal_access(handle_t *handle, 523 struct ocfs2_extent_tree *et, 524 int type) 525 { 526 return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh, 527 type); 528 } 529 530 static inline enum ocfs2_contig_type 531 ocfs2_et_extent_contig(struct ocfs2_extent_tree *et, 532 struct ocfs2_extent_rec *rec, 533 struct ocfs2_extent_rec *insert_rec) 534 { 535 if (et->et_ops->eo_extent_contig) 536 return et->et_ops->eo_extent_contig(et, rec, insert_rec); 537 538 return ocfs2_extent_rec_contig( 539 ocfs2_metadata_cache_get_super(et->et_ci), 540 rec, insert_rec); 541 } 542 543 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et, 544 struct ocfs2_extent_rec *rec) 545 { 546 int ret = 0; 547 548 if (et->et_ops->eo_insert_check) 549 ret = et->et_ops->eo_insert_check(et, rec); 550 return ret; 551 } 552 553 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et) 554 { 555 int ret = 0; 556 557 if (et->et_ops->eo_sanity_check) 558 ret = et->et_ops->eo_sanity_check(et); 559 return ret; 560 } 561 562 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 563 struct ocfs2_extent_block *eb); 564 static void ocfs2_adjust_rightmost_records(handle_t *handle, 565 struct ocfs2_extent_tree *et, 566 struct ocfs2_path *path, 567 struct ocfs2_extent_rec *insert_rec); 568 /* 569 * Reset the actual path elements so that we can re-use the structure 570 * to build another path. Generally, this involves freeing the buffer 571 * heads. 572 */ 573 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root) 574 { 575 int i, start = 0, depth = 0; 576 struct ocfs2_path_item *node; 577 578 if (keep_root) 579 start = 1; 580 581 for(i = start; i < path_num_items(path); i++) { 582 node = &path->p_node[i]; 583 584 brelse(node->bh); 585 node->bh = NULL; 586 node->el = NULL; 587 } 588 589 /* 590 * Tree depth may change during truncate, or insert. If we're 591 * keeping the root extent list, then make sure that our path 592 * structure reflects the proper depth. 593 */ 594 if (keep_root) 595 depth = le16_to_cpu(path_root_el(path)->l_tree_depth); 596 else 597 path_root_access(path) = NULL; 598 599 path->p_tree_depth = depth; 600 } 601 602 void ocfs2_free_path(struct ocfs2_path *path) 603 { 604 if (path) { 605 ocfs2_reinit_path(path, 0); 606 kfree(path); 607 } 608 } 609 610 /* 611 * All the elements of src into dest. After this call, src could be freed 612 * without affecting dest. 613 * 614 * Both paths should have the same root. Any non-root elements of dest 615 * will be freed. 616 */ 617 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src) 618 { 619 int i; 620 621 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 622 BUG_ON(path_root_el(dest) != path_root_el(src)); 623 BUG_ON(path_root_access(dest) != path_root_access(src)); 624 625 ocfs2_reinit_path(dest, 1); 626 627 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 628 dest->p_node[i].bh = src->p_node[i].bh; 629 dest->p_node[i].el = src->p_node[i].el; 630 631 if (dest->p_node[i].bh) 632 get_bh(dest->p_node[i].bh); 633 } 634 } 635 636 /* 637 * Make the *dest path the same as src and re-initialize src path to 638 * have a root only. 639 */ 640 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src) 641 { 642 int i; 643 644 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 645 BUG_ON(path_root_access(dest) != path_root_access(src)); 646 647 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 648 brelse(dest->p_node[i].bh); 649 650 dest->p_node[i].bh = src->p_node[i].bh; 651 dest->p_node[i].el = src->p_node[i].el; 652 653 src->p_node[i].bh = NULL; 654 src->p_node[i].el = NULL; 655 } 656 } 657 658 /* 659 * Insert an extent block at given index. 660 * 661 * This will not take an additional reference on eb_bh. 662 */ 663 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index, 664 struct buffer_head *eb_bh) 665 { 666 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data; 667 668 /* 669 * Right now, no root bh is an extent block, so this helps 670 * catch code errors with dinode trees. The assertion can be 671 * safely removed if we ever need to insert extent block 672 * structures at the root. 673 */ 674 BUG_ON(index == 0); 675 676 path->p_node[index].bh = eb_bh; 677 path->p_node[index].el = &eb->h_list; 678 } 679 680 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh, 681 struct ocfs2_extent_list *root_el, 682 ocfs2_journal_access_func access) 683 { 684 struct ocfs2_path *path; 685 686 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH); 687 688 path = kzalloc(sizeof(*path), GFP_NOFS); 689 if (path) { 690 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth); 691 get_bh(root_bh); 692 path_root_bh(path) = root_bh; 693 path_root_el(path) = root_el; 694 path_root_access(path) = access; 695 } 696 697 return path; 698 } 699 700 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path) 701 { 702 return ocfs2_new_path(path_root_bh(path), path_root_el(path), 703 path_root_access(path)); 704 } 705 706 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et) 707 { 708 return ocfs2_new_path(et->et_root_bh, et->et_root_el, 709 et->et_root_journal_access); 710 } 711 712 /* 713 * Journal the buffer at depth idx. All idx>0 are extent_blocks, 714 * otherwise it's the root_access function. 715 * 716 * I don't like the way this function's name looks next to 717 * ocfs2_journal_access_path(), but I don't have a better one. 718 */ 719 int ocfs2_path_bh_journal_access(handle_t *handle, 720 struct ocfs2_caching_info *ci, 721 struct ocfs2_path *path, 722 int idx) 723 { 724 ocfs2_journal_access_func access = path_root_access(path); 725 726 if (!access) 727 access = ocfs2_journal_access; 728 729 if (idx) 730 access = ocfs2_journal_access_eb; 731 732 return access(handle, ci, path->p_node[idx].bh, 733 OCFS2_JOURNAL_ACCESS_WRITE); 734 } 735 736 /* 737 * Convenience function to journal all components in a path. 738 */ 739 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci, 740 handle_t *handle, 741 struct ocfs2_path *path) 742 { 743 int i, ret = 0; 744 745 if (!path) 746 goto out; 747 748 for(i = 0; i < path_num_items(path); i++) { 749 ret = ocfs2_path_bh_journal_access(handle, ci, path, i); 750 if (ret < 0) { 751 mlog_errno(ret); 752 goto out; 753 } 754 } 755 756 out: 757 return ret; 758 } 759 760 /* 761 * Return the index of the extent record which contains cluster #v_cluster. 762 * -1 is returned if it was not found. 763 * 764 * Should work fine on interior and exterior nodes. 765 */ 766 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster) 767 { 768 int ret = -1; 769 int i; 770 struct ocfs2_extent_rec *rec; 771 u32 rec_end, rec_start, clusters; 772 773 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 774 rec = &el->l_recs[i]; 775 776 rec_start = le32_to_cpu(rec->e_cpos); 777 clusters = ocfs2_rec_clusters(el, rec); 778 779 rec_end = rec_start + clusters; 780 781 if (v_cluster >= rec_start && v_cluster < rec_end) { 782 ret = i; 783 break; 784 } 785 } 786 787 return ret; 788 } 789 790 /* 791 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and 792 * ocfs2_extent_rec_contig only work properly against leaf nodes! 793 */ 794 static int ocfs2_block_extent_contig(struct super_block *sb, 795 struct ocfs2_extent_rec *ext, 796 u64 blkno) 797 { 798 u64 blk_end = le64_to_cpu(ext->e_blkno); 799 800 blk_end += ocfs2_clusters_to_blocks(sb, 801 le16_to_cpu(ext->e_leaf_clusters)); 802 803 return blkno == blk_end; 804 } 805 806 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left, 807 struct ocfs2_extent_rec *right) 808 { 809 u32 left_range; 810 811 left_range = le32_to_cpu(left->e_cpos) + 812 le16_to_cpu(left->e_leaf_clusters); 813 814 return (left_range == le32_to_cpu(right->e_cpos)); 815 } 816 817 static enum ocfs2_contig_type 818 ocfs2_extent_rec_contig(struct super_block *sb, 819 struct ocfs2_extent_rec *ext, 820 struct ocfs2_extent_rec *insert_rec) 821 { 822 u64 blkno = le64_to_cpu(insert_rec->e_blkno); 823 824 /* 825 * Refuse to coalesce extent records with different flag 826 * fields - we don't want to mix unwritten extents with user 827 * data. 828 */ 829 if (ext->e_flags != insert_rec->e_flags) 830 return CONTIG_NONE; 831 832 if (ocfs2_extents_adjacent(ext, insert_rec) && 833 ocfs2_block_extent_contig(sb, ext, blkno)) 834 return CONTIG_RIGHT; 835 836 blkno = le64_to_cpu(ext->e_blkno); 837 if (ocfs2_extents_adjacent(insert_rec, ext) && 838 ocfs2_block_extent_contig(sb, insert_rec, blkno)) 839 return CONTIG_LEFT; 840 841 return CONTIG_NONE; 842 } 843 844 /* 845 * NOTE: We can have pretty much any combination of contiguousness and 846 * appending. 847 * 848 * The usefulness of APPEND_TAIL is more in that it lets us know that 849 * we'll have to update the path to that leaf. 850 */ 851 enum ocfs2_append_type { 852 APPEND_NONE = 0, 853 APPEND_TAIL, 854 }; 855 856 enum ocfs2_split_type { 857 SPLIT_NONE = 0, 858 SPLIT_LEFT, 859 SPLIT_RIGHT, 860 }; 861 862 struct ocfs2_insert_type { 863 enum ocfs2_split_type ins_split; 864 enum ocfs2_append_type ins_appending; 865 enum ocfs2_contig_type ins_contig; 866 int ins_contig_index; 867 int ins_tree_depth; 868 }; 869 870 struct ocfs2_merge_ctxt { 871 enum ocfs2_contig_type c_contig_type; 872 int c_has_empty_extent; 873 int c_split_covers_rec; 874 }; 875 876 static int ocfs2_validate_extent_block(struct super_block *sb, 877 struct buffer_head *bh) 878 { 879 int rc; 880 struct ocfs2_extent_block *eb = 881 (struct ocfs2_extent_block *)bh->b_data; 882 883 trace_ocfs2_validate_extent_block((unsigned long long)bh->b_blocknr); 884 885 BUG_ON(!buffer_uptodate(bh)); 886 887 /* 888 * If the ecc fails, we return the error but otherwise 889 * leave the filesystem running. We know any error is 890 * local to this block. 891 */ 892 rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check); 893 if (rc) { 894 mlog(ML_ERROR, "Checksum failed for extent block %llu\n", 895 (unsigned long long)bh->b_blocknr); 896 return rc; 897 } 898 899 /* 900 * Errors after here are fatal. 901 */ 902 903 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 904 rc = ocfs2_error(sb, 905 "Extent block #%llu has bad signature %.*s\n", 906 (unsigned long long)bh->b_blocknr, 7, 907 eb->h_signature); 908 goto bail; 909 } 910 911 if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) { 912 rc = ocfs2_error(sb, 913 "Extent block #%llu has an invalid h_blkno of %llu\n", 914 (unsigned long long)bh->b_blocknr, 915 (unsigned long long)le64_to_cpu(eb->h_blkno)); 916 goto bail; 917 } 918 919 if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) 920 rc = ocfs2_error(sb, 921 "Extent block #%llu has an invalid h_fs_generation of #%u\n", 922 (unsigned long long)bh->b_blocknr, 923 le32_to_cpu(eb->h_fs_generation)); 924 bail: 925 return rc; 926 } 927 928 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno, 929 struct buffer_head **bh) 930 { 931 int rc; 932 struct buffer_head *tmp = *bh; 933 934 rc = ocfs2_read_block(ci, eb_blkno, &tmp, 935 ocfs2_validate_extent_block); 936 937 /* If ocfs2_read_block() got us a new bh, pass it up. */ 938 if (!rc && !*bh) 939 *bh = tmp; 940 941 return rc; 942 } 943 944 945 /* 946 * How many free extents have we got before we need more meta data? 947 */ 948 int ocfs2_num_free_extents(struct ocfs2_extent_tree *et) 949 { 950 int retval; 951 struct ocfs2_extent_list *el = NULL; 952 struct ocfs2_extent_block *eb; 953 struct buffer_head *eb_bh = NULL; 954 u64 last_eb_blk = 0; 955 956 el = et->et_root_el; 957 last_eb_blk = ocfs2_et_get_last_eb_blk(et); 958 959 if (last_eb_blk) { 960 retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk, 961 &eb_bh); 962 if (retval < 0) { 963 mlog_errno(retval); 964 goto bail; 965 } 966 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 967 el = &eb->h_list; 968 } 969 970 BUG_ON(el->l_tree_depth != 0); 971 972 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec); 973 bail: 974 brelse(eb_bh); 975 976 trace_ocfs2_num_free_extents(retval); 977 return retval; 978 } 979 980 /* expects array to already be allocated 981 * 982 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and 983 * l_count for you 984 */ 985 static int ocfs2_create_new_meta_bhs(handle_t *handle, 986 struct ocfs2_extent_tree *et, 987 int wanted, 988 struct ocfs2_alloc_context *meta_ac, 989 struct buffer_head *bhs[]) 990 { 991 int count, status, i; 992 u16 suballoc_bit_start; 993 u32 num_got; 994 u64 suballoc_loc, first_blkno; 995 struct ocfs2_super *osb = 996 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 997 struct ocfs2_extent_block *eb; 998 999 count = 0; 1000 while (count < wanted) { 1001 status = ocfs2_claim_metadata(handle, 1002 meta_ac, 1003 wanted - count, 1004 &suballoc_loc, 1005 &suballoc_bit_start, 1006 &num_got, 1007 &first_blkno); 1008 if (status < 0) { 1009 mlog_errno(status); 1010 goto bail; 1011 } 1012 1013 for(i = count; i < (num_got + count); i++) { 1014 bhs[i] = sb_getblk(osb->sb, first_blkno); 1015 if (bhs[i] == NULL) { 1016 status = -ENOMEM; 1017 mlog_errno(status); 1018 goto bail; 1019 } 1020 ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]); 1021 1022 status = ocfs2_journal_access_eb(handle, et->et_ci, 1023 bhs[i], 1024 OCFS2_JOURNAL_ACCESS_CREATE); 1025 if (status < 0) { 1026 mlog_errno(status); 1027 goto bail; 1028 } 1029 1030 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize); 1031 eb = (struct ocfs2_extent_block *) bhs[i]->b_data; 1032 /* Ok, setup the minimal stuff here. */ 1033 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); 1034 eb->h_blkno = cpu_to_le64(first_blkno); 1035 eb->h_fs_generation = cpu_to_le32(osb->fs_generation); 1036 eb->h_suballoc_slot = 1037 cpu_to_le16(meta_ac->ac_alloc_slot); 1038 eb->h_suballoc_loc = cpu_to_le64(suballoc_loc); 1039 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start); 1040 eb->h_list.l_count = 1041 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); 1042 1043 suballoc_bit_start++; 1044 first_blkno++; 1045 1046 /* We'll also be dirtied by the caller, so 1047 * this isn't absolutely necessary. */ 1048 ocfs2_journal_dirty(handle, bhs[i]); 1049 } 1050 1051 count += num_got; 1052 } 1053 1054 status = 0; 1055 bail: 1056 if (status < 0) { 1057 for(i = 0; i < wanted; i++) { 1058 brelse(bhs[i]); 1059 bhs[i] = NULL; 1060 } 1061 } 1062 return status; 1063 } 1064 1065 /* 1066 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth(). 1067 * 1068 * Returns the sum of the rightmost extent rec logical offset and 1069 * cluster count. 1070 * 1071 * ocfs2_add_branch() uses this to determine what logical cluster 1072 * value should be populated into the leftmost new branch records. 1073 * 1074 * ocfs2_shift_tree_depth() uses this to determine the # clusters 1075 * value for the new topmost tree record. 1076 */ 1077 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el) 1078 { 1079 int i; 1080 1081 i = le16_to_cpu(el->l_next_free_rec) - 1; 1082 1083 return le32_to_cpu(el->l_recs[i].e_cpos) + 1084 ocfs2_rec_clusters(el, &el->l_recs[i]); 1085 } 1086 1087 /* 1088 * Change range of the branches in the right most path according to the leaf 1089 * extent block's rightmost record. 1090 */ 1091 static int ocfs2_adjust_rightmost_branch(handle_t *handle, 1092 struct ocfs2_extent_tree *et) 1093 { 1094 int status; 1095 struct ocfs2_path *path = NULL; 1096 struct ocfs2_extent_list *el; 1097 struct ocfs2_extent_rec *rec; 1098 1099 path = ocfs2_new_path_from_et(et); 1100 if (!path) { 1101 status = -ENOMEM; 1102 return status; 1103 } 1104 1105 status = ocfs2_find_path(et->et_ci, path, UINT_MAX); 1106 if (status < 0) { 1107 mlog_errno(status); 1108 goto out; 1109 } 1110 1111 status = ocfs2_extend_trans(handle, path_num_items(path)); 1112 if (status < 0) { 1113 mlog_errno(status); 1114 goto out; 1115 } 1116 1117 status = ocfs2_journal_access_path(et->et_ci, handle, path); 1118 if (status < 0) { 1119 mlog_errno(status); 1120 goto out; 1121 } 1122 1123 el = path_leaf_el(path); 1124 rec = &el->l_recs[le16_to_cpu(el->l_next_free_rec) - 1]; 1125 1126 ocfs2_adjust_rightmost_records(handle, et, path, rec); 1127 1128 out: 1129 ocfs2_free_path(path); 1130 return status; 1131 } 1132 1133 /* 1134 * Add an entire tree branch to our inode. eb_bh is the extent block 1135 * to start at, if we don't want to start the branch at the root 1136 * structure. 1137 * 1138 * last_eb_bh is required as we have to update it's next_leaf pointer 1139 * for the new last extent block. 1140 * 1141 * the new branch will be 'empty' in the sense that every block will 1142 * contain a single record with cluster count == 0. 1143 */ 1144 static int ocfs2_add_branch(handle_t *handle, 1145 struct ocfs2_extent_tree *et, 1146 struct buffer_head *eb_bh, 1147 struct buffer_head **last_eb_bh, 1148 struct ocfs2_alloc_context *meta_ac) 1149 { 1150 int status, new_blocks, i, block_given = 0; 1151 u64 next_blkno, new_last_eb_blk; 1152 struct buffer_head *bh; 1153 struct buffer_head **new_eb_bhs = NULL; 1154 struct ocfs2_extent_block *eb; 1155 struct ocfs2_extent_list *eb_el; 1156 struct ocfs2_extent_list *el; 1157 u32 new_cpos, root_end; 1158 1159 BUG_ON(!last_eb_bh || !*last_eb_bh); 1160 1161 if (eb_bh) { 1162 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 1163 el = &eb->h_list; 1164 } else 1165 el = et->et_root_el; 1166 1167 /* we never add a branch to a leaf. */ 1168 BUG_ON(!el->l_tree_depth); 1169 1170 new_blocks = le16_to_cpu(el->l_tree_depth); 1171 1172 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data; 1173 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list); 1174 root_end = ocfs2_sum_rightmost_rec(et->et_root_el); 1175 1176 /* 1177 * If there is a gap before the root end and the real end 1178 * of the righmost leaf block, we need to remove the gap 1179 * between new_cpos and root_end first so that the tree 1180 * is consistent after we add a new branch(it will start 1181 * from new_cpos). 1182 */ 1183 if (root_end > new_cpos) { 1184 trace_ocfs2_adjust_rightmost_branch( 1185 (unsigned long long) 1186 ocfs2_metadata_cache_owner(et->et_ci), 1187 root_end, new_cpos); 1188 1189 status = ocfs2_adjust_rightmost_branch(handle, et); 1190 if (status) { 1191 mlog_errno(status); 1192 goto bail; 1193 } 1194 } 1195 1196 /* allocate the number of new eb blocks we need */ 1197 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *), 1198 GFP_KERNEL); 1199 if (!new_eb_bhs) { 1200 status = -ENOMEM; 1201 mlog_errno(status); 1202 goto bail; 1203 } 1204 1205 /* Firstyly, try to reuse dealloc since we have already estimated how 1206 * many extent blocks we may use. 1207 */ 1208 if (!ocfs2_is_dealloc_empty(et)) { 1209 status = ocfs2_reuse_blk_from_dealloc(handle, et, 1210 new_eb_bhs, new_blocks, 1211 &block_given); 1212 if (status < 0) { 1213 mlog_errno(status); 1214 goto bail; 1215 } 1216 } 1217 1218 BUG_ON(block_given > new_blocks); 1219 1220 if (block_given < new_blocks) { 1221 BUG_ON(!meta_ac); 1222 status = ocfs2_create_new_meta_bhs(handle, et, 1223 new_blocks - block_given, 1224 meta_ac, 1225 &new_eb_bhs[block_given]); 1226 if (status < 0) { 1227 mlog_errno(status); 1228 goto bail; 1229 } 1230 } 1231 1232 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be 1233 * linked with the rest of the tree. 1234 * conversly, new_eb_bhs[0] is the new bottommost leaf. 1235 * 1236 * when we leave the loop, new_last_eb_blk will point to the 1237 * newest leaf, and next_blkno will point to the topmost extent 1238 * block. */ 1239 next_blkno = new_last_eb_blk = 0; 1240 for(i = 0; i < new_blocks; i++) { 1241 bh = new_eb_bhs[i]; 1242 eb = (struct ocfs2_extent_block *) bh->b_data; 1243 /* ocfs2_create_new_meta_bhs() should create it right! */ 1244 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1245 eb_el = &eb->h_list; 1246 1247 status = ocfs2_journal_access_eb(handle, et->et_ci, bh, 1248 OCFS2_JOURNAL_ACCESS_CREATE); 1249 if (status < 0) { 1250 mlog_errno(status); 1251 goto bail; 1252 } 1253 1254 eb->h_next_leaf_blk = 0; 1255 eb_el->l_tree_depth = cpu_to_le16(i); 1256 eb_el->l_next_free_rec = cpu_to_le16(1); 1257 /* 1258 * This actually counts as an empty extent as 1259 * c_clusters == 0 1260 */ 1261 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos); 1262 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno); 1263 /* 1264 * eb_el isn't always an interior node, but even leaf 1265 * nodes want a zero'd flags and reserved field so 1266 * this gets the whole 32 bits regardless of use. 1267 */ 1268 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0); 1269 if (!eb_el->l_tree_depth) 1270 new_last_eb_blk = le64_to_cpu(eb->h_blkno); 1271 1272 ocfs2_journal_dirty(handle, bh); 1273 next_blkno = le64_to_cpu(eb->h_blkno); 1274 } 1275 1276 /* This is a bit hairy. We want to update up to three blocks 1277 * here without leaving any of them in an inconsistent state 1278 * in case of error. We don't have to worry about 1279 * journal_dirty erroring as it won't unless we've aborted the 1280 * handle (in which case we would never be here) so reserving 1281 * the write with journal_access is all we need to do. */ 1282 status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh, 1283 OCFS2_JOURNAL_ACCESS_WRITE); 1284 if (status < 0) { 1285 mlog_errno(status); 1286 goto bail; 1287 } 1288 status = ocfs2_et_root_journal_access(handle, et, 1289 OCFS2_JOURNAL_ACCESS_WRITE); 1290 if (status < 0) { 1291 mlog_errno(status); 1292 goto bail; 1293 } 1294 if (eb_bh) { 1295 status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh, 1296 OCFS2_JOURNAL_ACCESS_WRITE); 1297 if (status < 0) { 1298 mlog_errno(status); 1299 goto bail; 1300 } 1301 } 1302 1303 /* Link the new branch into the rest of the tree (el will 1304 * either be on the root_bh, or the extent block passed in. */ 1305 i = le16_to_cpu(el->l_next_free_rec); 1306 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno); 1307 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos); 1308 el->l_recs[i].e_int_clusters = 0; 1309 le16_add_cpu(&el->l_next_free_rec, 1); 1310 1311 /* fe needs a new last extent block pointer, as does the 1312 * next_leaf on the previously last-extent-block. */ 1313 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk); 1314 1315 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 1316 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk); 1317 1318 ocfs2_journal_dirty(handle, *last_eb_bh); 1319 ocfs2_journal_dirty(handle, et->et_root_bh); 1320 if (eb_bh) 1321 ocfs2_journal_dirty(handle, eb_bh); 1322 1323 /* 1324 * Some callers want to track the rightmost leaf so pass it 1325 * back here. 1326 */ 1327 brelse(*last_eb_bh); 1328 get_bh(new_eb_bhs[0]); 1329 *last_eb_bh = new_eb_bhs[0]; 1330 1331 status = 0; 1332 bail: 1333 if (new_eb_bhs) { 1334 for (i = 0; i < new_blocks; i++) 1335 brelse(new_eb_bhs[i]); 1336 kfree(new_eb_bhs); 1337 } 1338 1339 return status; 1340 } 1341 1342 /* 1343 * adds another level to the allocation tree. 1344 * returns back the new extent block so you can add a branch to it 1345 * after this call. 1346 */ 1347 static int ocfs2_shift_tree_depth(handle_t *handle, 1348 struct ocfs2_extent_tree *et, 1349 struct ocfs2_alloc_context *meta_ac, 1350 struct buffer_head **ret_new_eb_bh) 1351 { 1352 int status, i, block_given = 0; 1353 u32 new_clusters; 1354 struct buffer_head *new_eb_bh = NULL; 1355 struct ocfs2_extent_block *eb; 1356 struct ocfs2_extent_list *root_el; 1357 struct ocfs2_extent_list *eb_el; 1358 1359 if (!ocfs2_is_dealloc_empty(et)) { 1360 status = ocfs2_reuse_blk_from_dealloc(handle, et, 1361 &new_eb_bh, 1, 1362 &block_given); 1363 } else if (meta_ac) { 1364 status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac, 1365 &new_eb_bh); 1366 1367 } else { 1368 BUG(); 1369 } 1370 1371 if (status < 0) { 1372 mlog_errno(status); 1373 goto bail; 1374 } 1375 1376 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data; 1377 /* ocfs2_create_new_meta_bhs() should create it right! */ 1378 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1379 1380 eb_el = &eb->h_list; 1381 root_el = et->et_root_el; 1382 1383 status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh, 1384 OCFS2_JOURNAL_ACCESS_CREATE); 1385 if (status < 0) { 1386 mlog_errno(status); 1387 goto bail; 1388 } 1389 1390 /* copy the root extent list data into the new extent block */ 1391 eb_el->l_tree_depth = root_el->l_tree_depth; 1392 eb_el->l_next_free_rec = root_el->l_next_free_rec; 1393 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1394 eb_el->l_recs[i] = root_el->l_recs[i]; 1395 1396 ocfs2_journal_dirty(handle, new_eb_bh); 1397 1398 status = ocfs2_et_root_journal_access(handle, et, 1399 OCFS2_JOURNAL_ACCESS_WRITE); 1400 if (status < 0) { 1401 mlog_errno(status); 1402 goto bail; 1403 } 1404 1405 new_clusters = ocfs2_sum_rightmost_rec(eb_el); 1406 1407 /* update root_bh now */ 1408 le16_add_cpu(&root_el->l_tree_depth, 1); 1409 root_el->l_recs[0].e_cpos = 0; 1410 root_el->l_recs[0].e_blkno = eb->h_blkno; 1411 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters); 1412 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1413 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 1414 root_el->l_next_free_rec = cpu_to_le16(1); 1415 1416 /* If this is our 1st tree depth shift, then last_eb_blk 1417 * becomes the allocated extent block */ 1418 if (root_el->l_tree_depth == cpu_to_le16(1)) 1419 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 1420 1421 ocfs2_journal_dirty(handle, et->et_root_bh); 1422 1423 *ret_new_eb_bh = new_eb_bh; 1424 new_eb_bh = NULL; 1425 status = 0; 1426 bail: 1427 brelse(new_eb_bh); 1428 1429 return status; 1430 } 1431 1432 /* 1433 * Should only be called when there is no space left in any of the 1434 * leaf nodes. What we want to do is find the lowest tree depth 1435 * non-leaf extent block with room for new records. There are three 1436 * valid results of this search: 1437 * 1438 * 1) a lowest extent block is found, then we pass it back in 1439 * *lowest_eb_bh and return '0' 1440 * 1441 * 2) the search fails to find anything, but the root_el has room. We 1442 * pass NULL back in *lowest_eb_bh, but still return '0' 1443 * 1444 * 3) the search fails to find anything AND the root_el is full, in 1445 * which case we return > 0 1446 * 1447 * return status < 0 indicates an error. 1448 */ 1449 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et, 1450 struct buffer_head **target_bh) 1451 { 1452 int status = 0, i; 1453 u64 blkno; 1454 struct ocfs2_extent_block *eb; 1455 struct ocfs2_extent_list *el; 1456 struct buffer_head *bh = NULL; 1457 struct buffer_head *lowest_bh = NULL; 1458 1459 *target_bh = NULL; 1460 1461 el = et->et_root_el; 1462 1463 while(le16_to_cpu(el->l_tree_depth) > 1) { 1464 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1465 status = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 1466 "Owner %llu has empty extent list (next_free_rec == 0)\n", 1467 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 1468 goto bail; 1469 } 1470 i = le16_to_cpu(el->l_next_free_rec) - 1; 1471 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1472 if (!blkno) { 1473 status = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 1474 "Owner %llu has extent list where extent # %d has no physical block start\n", 1475 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i); 1476 goto bail; 1477 } 1478 1479 brelse(bh); 1480 bh = NULL; 1481 1482 status = ocfs2_read_extent_block(et->et_ci, blkno, &bh); 1483 if (status < 0) { 1484 mlog_errno(status); 1485 goto bail; 1486 } 1487 1488 eb = (struct ocfs2_extent_block *) bh->b_data; 1489 el = &eb->h_list; 1490 1491 if (le16_to_cpu(el->l_next_free_rec) < 1492 le16_to_cpu(el->l_count)) { 1493 brelse(lowest_bh); 1494 lowest_bh = bh; 1495 get_bh(lowest_bh); 1496 } 1497 } 1498 1499 /* If we didn't find one and the fe doesn't have any room, 1500 * then return '1' */ 1501 el = et->et_root_el; 1502 if (!lowest_bh && (el->l_next_free_rec == el->l_count)) 1503 status = 1; 1504 1505 *target_bh = lowest_bh; 1506 bail: 1507 brelse(bh); 1508 1509 return status; 1510 } 1511 1512 /* 1513 * Grow a b-tree so that it has more records. 1514 * 1515 * We might shift the tree depth in which case existing paths should 1516 * be considered invalid. 1517 * 1518 * Tree depth after the grow is returned via *final_depth. 1519 * 1520 * *last_eb_bh will be updated by ocfs2_add_branch(). 1521 */ 1522 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et, 1523 int *final_depth, struct buffer_head **last_eb_bh, 1524 struct ocfs2_alloc_context *meta_ac) 1525 { 1526 int ret, shift; 1527 struct ocfs2_extent_list *el = et->et_root_el; 1528 int depth = le16_to_cpu(el->l_tree_depth); 1529 struct buffer_head *bh = NULL; 1530 1531 BUG_ON(meta_ac == NULL && ocfs2_is_dealloc_empty(et)); 1532 1533 shift = ocfs2_find_branch_target(et, &bh); 1534 if (shift < 0) { 1535 ret = shift; 1536 mlog_errno(ret); 1537 goto out; 1538 } 1539 1540 /* We traveled all the way to the bottom of the allocation tree 1541 * and didn't find room for any more extents - we need to add 1542 * another tree level */ 1543 if (shift) { 1544 BUG_ON(bh); 1545 trace_ocfs2_grow_tree( 1546 (unsigned long long) 1547 ocfs2_metadata_cache_owner(et->et_ci), 1548 depth); 1549 1550 /* ocfs2_shift_tree_depth will return us a buffer with 1551 * the new extent block (so we can pass that to 1552 * ocfs2_add_branch). */ 1553 ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh); 1554 if (ret < 0) { 1555 mlog_errno(ret); 1556 goto out; 1557 } 1558 depth++; 1559 if (depth == 1) { 1560 /* 1561 * Special case: we have room now if we shifted from 1562 * tree_depth 0, so no more work needs to be done. 1563 * 1564 * We won't be calling add_branch, so pass 1565 * back *last_eb_bh as the new leaf. At depth 1566 * zero, it should always be null so there's 1567 * no reason to brelse. 1568 */ 1569 BUG_ON(*last_eb_bh); 1570 get_bh(bh); 1571 *last_eb_bh = bh; 1572 goto out; 1573 } 1574 } 1575 1576 /* call ocfs2_add_branch to add the final part of the tree with 1577 * the new data. */ 1578 ret = ocfs2_add_branch(handle, et, bh, last_eb_bh, 1579 meta_ac); 1580 if (ret < 0) 1581 mlog_errno(ret); 1582 1583 out: 1584 if (final_depth) 1585 *final_depth = depth; 1586 brelse(bh); 1587 return ret; 1588 } 1589 1590 /* 1591 * This function will discard the rightmost extent record. 1592 */ 1593 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el) 1594 { 1595 int next_free = le16_to_cpu(el->l_next_free_rec); 1596 int count = le16_to_cpu(el->l_count); 1597 unsigned int num_bytes; 1598 1599 BUG_ON(!next_free); 1600 /* This will cause us to go off the end of our extent list. */ 1601 BUG_ON(next_free >= count); 1602 1603 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free; 1604 1605 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes); 1606 } 1607 1608 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el, 1609 struct ocfs2_extent_rec *insert_rec) 1610 { 1611 int i, insert_index, next_free, has_empty, num_bytes; 1612 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos); 1613 struct ocfs2_extent_rec *rec; 1614 1615 next_free = le16_to_cpu(el->l_next_free_rec); 1616 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]); 1617 1618 BUG_ON(!next_free); 1619 1620 /* The tree code before us didn't allow enough room in the leaf. */ 1621 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty); 1622 1623 /* 1624 * The easiest way to approach this is to just remove the 1625 * empty extent and temporarily decrement next_free. 1626 */ 1627 if (has_empty) { 1628 /* 1629 * If next_free was 1 (only an empty extent), this 1630 * loop won't execute, which is fine. We still want 1631 * the decrement above to happen. 1632 */ 1633 for(i = 0; i < (next_free - 1); i++) 1634 el->l_recs[i] = el->l_recs[i+1]; 1635 1636 next_free--; 1637 } 1638 1639 /* 1640 * Figure out what the new record index should be. 1641 */ 1642 for(i = 0; i < next_free; i++) { 1643 rec = &el->l_recs[i]; 1644 1645 if (insert_cpos < le32_to_cpu(rec->e_cpos)) 1646 break; 1647 } 1648 insert_index = i; 1649 1650 trace_ocfs2_rotate_leaf(insert_cpos, insert_index, 1651 has_empty, next_free, 1652 le16_to_cpu(el->l_count)); 1653 1654 BUG_ON(insert_index < 0); 1655 BUG_ON(insert_index >= le16_to_cpu(el->l_count)); 1656 BUG_ON(insert_index > next_free); 1657 1658 /* 1659 * No need to memmove if we're just adding to the tail. 1660 */ 1661 if (insert_index != next_free) { 1662 BUG_ON(next_free >= le16_to_cpu(el->l_count)); 1663 1664 num_bytes = next_free - insert_index; 1665 num_bytes *= sizeof(struct ocfs2_extent_rec); 1666 memmove(&el->l_recs[insert_index + 1], 1667 &el->l_recs[insert_index], 1668 num_bytes); 1669 } 1670 1671 /* 1672 * Either we had an empty extent, and need to re-increment or 1673 * there was no empty extent on a non full rightmost leaf node, 1674 * in which case we still need to increment. 1675 */ 1676 next_free++; 1677 el->l_next_free_rec = cpu_to_le16(next_free); 1678 /* 1679 * Make sure none of the math above just messed up our tree. 1680 */ 1681 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count)); 1682 1683 el->l_recs[insert_index] = *insert_rec; 1684 1685 } 1686 1687 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el) 1688 { 1689 int size, num_recs = le16_to_cpu(el->l_next_free_rec); 1690 1691 BUG_ON(num_recs == 0); 1692 1693 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 1694 num_recs--; 1695 size = num_recs * sizeof(struct ocfs2_extent_rec); 1696 memmove(&el->l_recs[0], &el->l_recs[1], size); 1697 memset(&el->l_recs[num_recs], 0, 1698 sizeof(struct ocfs2_extent_rec)); 1699 el->l_next_free_rec = cpu_to_le16(num_recs); 1700 } 1701 } 1702 1703 /* 1704 * Create an empty extent record . 1705 * 1706 * l_next_free_rec may be updated. 1707 * 1708 * If an empty extent already exists do nothing. 1709 */ 1710 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el) 1711 { 1712 int next_free = le16_to_cpu(el->l_next_free_rec); 1713 1714 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 1715 1716 if (next_free == 0) 1717 goto set_and_inc; 1718 1719 if (ocfs2_is_empty_extent(&el->l_recs[0])) 1720 return; 1721 1722 mlog_bug_on_msg(el->l_count == el->l_next_free_rec, 1723 "Asked to create an empty extent in a full list:\n" 1724 "count = %u, tree depth = %u", 1725 le16_to_cpu(el->l_count), 1726 le16_to_cpu(el->l_tree_depth)); 1727 1728 ocfs2_shift_records_right(el); 1729 1730 set_and_inc: 1731 le16_add_cpu(&el->l_next_free_rec, 1); 1732 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 1733 } 1734 1735 /* 1736 * For a rotation which involves two leaf nodes, the "root node" is 1737 * the lowest level tree node which contains a path to both leafs. This 1738 * resulting set of information can be used to form a complete "subtree" 1739 * 1740 * This function is passed two full paths from the dinode down to a 1741 * pair of adjacent leaves. It's task is to figure out which path 1742 * index contains the subtree root - this can be the root index itself 1743 * in a worst-case rotation. 1744 * 1745 * The array index of the subtree root is passed back. 1746 */ 1747 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et, 1748 struct ocfs2_path *left, 1749 struct ocfs2_path *right) 1750 { 1751 int i = 0; 1752 1753 /* 1754 * Check that the caller passed in two paths from the same tree. 1755 */ 1756 BUG_ON(path_root_bh(left) != path_root_bh(right)); 1757 1758 do { 1759 i++; 1760 1761 /* 1762 * The caller didn't pass two adjacent paths. 1763 */ 1764 mlog_bug_on_msg(i > left->p_tree_depth, 1765 "Owner %llu, left depth %u, right depth %u\n" 1766 "left leaf blk %llu, right leaf blk %llu\n", 1767 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 1768 left->p_tree_depth, right->p_tree_depth, 1769 (unsigned long long)path_leaf_bh(left)->b_blocknr, 1770 (unsigned long long)path_leaf_bh(right)->b_blocknr); 1771 } while (left->p_node[i].bh->b_blocknr == 1772 right->p_node[i].bh->b_blocknr); 1773 1774 return i - 1; 1775 } 1776 1777 typedef void (path_insert_t)(void *, struct buffer_head *); 1778 1779 /* 1780 * Traverse a btree path in search of cpos, starting at root_el. 1781 * 1782 * This code can be called with a cpos larger than the tree, in which 1783 * case it will return the rightmost path. 1784 */ 1785 static int __ocfs2_find_path(struct ocfs2_caching_info *ci, 1786 struct ocfs2_extent_list *root_el, u32 cpos, 1787 path_insert_t *func, void *data) 1788 { 1789 int i, ret = 0; 1790 u32 range; 1791 u64 blkno; 1792 struct buffer_head *bh = NULL; 1793 struct ocfs2_extent_block *eb; 1794 struct ocfs2_extent_list *el; 1795 struct ocfs2_extent_rec *rec; 1796 1797 el = root_el; 1798 while (el->l_tree_depth) { 1799 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1800 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1801 "Owner %llu has empty extent list at depth %u\n", 1802 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1803 le16_to_cpu(el->l_tree_depth)); 1804 ret = -EROFS; 1805 goto out; 1806 1807 } 1808 1809 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) { 1810 rec = &el->l_recs[i]; 1811 1812 /* 1813 * In the case that cpos is off the allocation 1814 * tree, this should just wind up returning the 1815 * rightmost record. 1816 */ 1817 range = le32_to_cpu(rec->e_cpos) + 1818 ocfs2_rec_clusters(el, rec); 1819 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 1820 break; 1821 } 1822 1823 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1824 if (blkno == 0) { 1825 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1826 "Owner %llu has bad blkno in extent list at depth %u (index %d)\n", 1827 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1828 le16_to_cpu(el->l_tree_depth), i); 1829 ret = -EROFS; 1830 goto out; 1831 } 1832 1833 brelse(bh); 1834 bh = NULL; 1835 ret = ocfs2_read_extent_block(ci, blkno, &bh); 1836 if (ret) { 1837 mlog_errno(ret); 1838 goto out; 1839 } 1840 1841 eb = (struct ocfs2_extent_block *) bh->b_data; 1842 el = &eb->h_list; 1843 1844 if (le16_to_cpu(el->l_next_free_rec) > 1845 le16_to_cpu(el->l_count)) { 1846 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1847 "Owner %llu has bad count in extent list at block %llu (next free=%u, count=%u)\n", 1848 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1849 (unsigned long long)bh->b_blocknr, 1850 le16_to_cpu(el->l_next_free_rec), 1851 le16_to_cpu(el->l_count)); 1852 ret = -EROFS; 1853 goto out; 1854 } 1855 1856 if (func) 1857 func(data, bh); 1858 } 1859 1860 out: 1861 /* 1862 * Catch any trailing bh that the loop didn't handle. 1863 */ 1864 brelse(bh); 1865 1866 return ret; 1867 } 1868 1869 /* 1870 * Given an initialized path (that is, it has a valid root extent 1871 * list), this function will traverse the btree in search of the path 1872 * which would contain cpos. 1873 * 1874 * The path traveled is recorded in the path structure. 1875 * 1876 * Note that this will not do any comparisons on leaf node extent 1877 * records, so it will work fine in the case that we just added a tree 1878 * branch. 1879 */ 1880 struct find_path_data { 1881 int index; 1882 struct ocfs2_path *path; 1883 }; 1884 static void find_path_ins(void *data, struct buffer_head *bh) 1885 { 1886 struct find_path_data *fp = data; 1887 1888 get_bh(bh); 1889 ocfs2_path_insert_eb(fp->path, fp->index, bh); 1890 fp->index++; 1891 } 1892 int ocfs2_find_path(struct ocfs2_caching_info *ci, 1893 struct ocfs2_path *path, u32 cpos) 1894 { 1895 struct find_path_data data; 1896 1897 data.index = 1; 1898 data.path = path; 1899 return __ocfs2_find_path(ci, path_root_el(path), cpos, 1900 find_path_ins, &data); 1901 } 1902 1903 static void find_leaf_ins(void *data, struct buffer_head *bh) 1904 { 1905 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data; 1906 struct ocfs2_extent_list *el = &eb->h_list; 1907 struct buffer_head **ret = data; 1908 1909 /* We want to retain only the leaf block. */ 1910 if (le16_to_cpu(el->l_tree_depth) == 0) { 1911 get_bh(bh); 1912 *ret = bh; 1913 } 1914 } 1915 /* 1916 * Find the leaf block in the tree which would contain cpos. No 1917 * checking of the actual leaf is done. 1918 * 1919 * Some paths want to call this instead of allocating a path structure 1920 * and calling ocfs2_find_path(). 1921 * 1922 * This function doesn't handle non btree extent lists. 1923 */ 1924 int ocfs2_find_leaf(struct ocfs2_caching_info *ci, 1925 struct ocfs2_extent_list *root_el, u32 cpos, 1926 struct buffer_head **leaf_bh) 1927 { 1928 int ret; 1929 struct buffer_head *bh = NULL; 1930 1931 ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh); 1932 if (ret) { 1933 mlog_errno(ret); 1934 goto out; 1935 } 1936 1937 *leaf_bh = bh; 1938 out: 1939 return ret; 1940 } 1941 1942 /* 1943 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation. 1944 * 1945 * Basically, we've moved stuff around at the bottom of the tree and 1946 * we need to fix up the extent records above the changes to reflect 1947 * the new changes. 1948 * 1949 * left_rec: the record on the left. 1950 * right_rec: the record to the right of left_rec 1951 * right_child_el: is the child list pointed to by right_rec 1952 * 1953 * By definition, this only works on interior nodes. 1954 */ 1955 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec, 1956 struct ocfs2_extent_rec *right_rec, 1957 struct ocfs2_extent_list *right_child_el) 1958 { 1959 u32 left_clusters, right_end; 1960 1961 /* 1962 * Interior nodes never have holes. Their cpos is the cpos of 1963 * the leftmost record in their child list. Their cluster 1964 * count covers the full theoretical range of their child list 1965 * - the range between their cpos and the cpos of the record 1966 * immediately to their right. 1967 */ 1968 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos); 1969 if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) { 1970 BUG_ON(right_child_el->l_tree_depth); 1971 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1); 1972 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos); 1973 } 1974 left_clusters -= le32_to_cpu(left_rec->e_cpos); 1975 left_rec->e_int_clusters = cpu_to_le32(left_clusters); 1976 1977 /* 1978 * Calculate the rightmost cluster count boundary before 1979 * moving cpos - we will need to adjust clusters after 1980 * updating e_cpos to keep the same highest cluster count. 1981 */ 1982 right_end = le32_to_cpu(right_rec->e_cpos); 1983 right_end += le32_to_cpu(right_rec->e_int_clusters); 1984 1985 right_rec->e_cpos = left_rec->e_cpos; 1986 le32_add_cpu(&right_rec->e_cpos, left_clusters); 1987 1988 right_end -= le32_to_cpu(right_rec->e_cpos); 1989 right_rec->e_int_clusters = cpu_to_le32(right_end); 1990 } 1991 1992 /* 1993 * Adjust the adjacent root node records involved in a 1994 * rotation. left_el_blkno is passed in as a key so that we can easily 1995 * find it's index in the root list. 1996 */ 1997 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el, 1998 struct ocfs2_extent_list *left_el, 1999 struct ocfs2_extent_list *right_el, 2000 u64 left_el_blkno) 2001 { 2002 int i; 2003 2004 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <= 2005 le16_to_cpu(left_el->l_tree_depth)); 2006 2007 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) { 2008 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno) 2009 break; 2010 } 2011 2012 /* 2013 * The path walking code should have never returned a root and 2014 * two paths which are not adjacent. 2015 */ 2016 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1)); 2017 2018 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], 2019 &root_el->l_recs[i + 1], right_el); 2020 } 2021 2022 /* 2023 * We've changed a leaf block (in right_path) and need to reflect that 2024 * change back up the subtree. 2025 * 2026 * This happens in multiple places: 2027 * - When we've moved an extent record from the left path leaf to the right 2028 * path leaf to make room for an empty extent in the left path leaf. 2029 * - When our insert into the right path leaf is at the leftmost edge 2030 * and requires an update of the path immediately to it's left. This 2031 * can occur at the end of some types of rotation and appending inserts. 2032 * - When we've adjusted the last extent record in the left path leaf and the 2033 * 1st extent record in the right path leaf during cross extent block merge. 2034 */ 2035 static void ocfs2_complete_edge_insert(handle_t *handle, 2036 struct ocfs2_path *left_path, 2037 struct ocfs2_path *right_path, 2038 int subtree_index) 2039 { 2040 int i, idx; 2041 struct ocfs2_extent_list *el, *left_el, *right_el; 2042 struct ocfs2_extent_rec *left_rec, *right_rec; 2043 struct buffer_head *root_bh; 2044 2045 /* 2046 * Update the counts and position values within all the 2047 * interior nodes to reflect the leaf rotation we just did. 2048 * 2049 * The root node is handled below the loop. 2050 * 2051 * We begin the loop with right_el and left_el pointing to the 2052 * leaf lists and work our way up. 2053 * 2054 * NOTE: within this loop, left_el and right_el always refer 2055 * to the *child* lists. 2056 */ 2057 left_el = path_leaf_el(left_path); 2058 right_el = path_leaf_el(right_path); 2059 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) { 2060 trace_ocfs2_complete_edge_insert(i); 2061 2062 /* 2063 * One nice property of knowing that all of these 2064 * nodes are below the root is that we only deal with 2065 * the leftmost right node record and the rightmost 2066 * left node record. 2067 */ 2068 el = left_path->p_node[i].el; 2069 idx = le16_to_cpu(left_el->l_next_free_rec) - 1; 2070 left_rec = &el->l_recs[idx]; 2071 2072 el = right_path->p_node[i].el; 2073 right_rec = &el->l_recs[0]; 2074 2075 ocfs2_adjust_adjacent_records(left_rec, right_rec, right_el); 2076 2077 ocfs2_journal_dirty(handle, left_path->p_node[i].bh); 2078 ocfs2_journal_dirty(handle, right_path->p_node[i].bh); 2079 2080 /* 2081 * Setup our list pointers now so that the current 2082 * parents become children in the next iteration. 2083 */ 2084 left_el = left_path->p_node[i].el; 2085 right_el = right_path->p_node[i].el; 2086 } 2087 2088 /* 2089 * At the root node, adjust the two adjacent records which 2090 * begin our path to the leaves. 2091 */ 2092 2093 el = left_path->p_node[subtree_index].el; 2094 left_el = left_path->p_node[subtree_index + 1].el; 2095 right_el = right_path->p_node[subtree_index + 1].el; 2096 2097 ocfs2_adjust_root_records(el, left_el, right_el, 2098 left_path->p_node[subtree_index + 1].bh->b_blocknr); 2099 2100 root_bh = left_path->p_node[subtree_index].bh; 2101 2102 ocfs2_journal_dirty(handle, root_bh); 2103 } 2104 2105 static int ocfs2_rotate_subtree_right(handle_t *handle, 2106 struct ocfs2_extent_tree *et, 2107 struct ocfs2_path *left_path, 2108 struct ocfs2_path *right_path, 2109 int subtree_index) 2110 { 2111 int ret, i; 2112 struct buffer_head *right_leaf_bh; 2113 struct buffer_head *left_leaf_bh = NULL; 2114 struct buffer_head *root_bh; 2115 struct ocfs2_extent_list *right_el, *left_el; 2116 struct ocfs2_extent_rec move_rec; 2117 2118 left_leaf_bh = path_leaf_bh(left_path); 2119 left_el = path_leaf_el(left_path); 2120 2121 if (left_el->l_next_free_rec != left_el->l_count) { 2122 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 2123 "Inode %llu has non-full interior leaf node %llu (next free = %u)\n", 2124 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2125 (unsigned long long)left_leaf_bh->b_blocknr, 2126 le16_to_cpu(left_el->l_next_free_rec)); 2127 return -EROFS; 2128 } 2129 2130 /* 2131 * This extent block may already have an empty record, so we 2132 * return early if so. 2133 */ 2134 if (ocfs2_is_empty_extent(&left_el->l_recs[0])) 2135 return 0; 2136 2137 root_bh = left_path->p_node[subtree_index].bh; 2138 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2139 2140 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 2141 subtree_index); 2142 if (ret) { 2143 mlog_errno(ret); 2144 goto out; 2145 } 2146 2147 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2148 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2149 right_path, i); 2150 if (ret) { 2151 mlog_errno(ret); 2152 goto out; 2153 } 2154 2155 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2156 left_path, i); 2157 if (ret) { 2158 mlog_errno(ret); 2159 goto out; 2160 } 2161 } 2162 2163 right_leaf_bh = path_leaf_bh(right_path); 2164 right_el = path_leaf_el(right_path); 2165 2166 /* This is a code error, not a disk corruption. */ 2167 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails " 2168 "because rightmost leaf block %llu is empty\n", 2169 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2170 (unsigned long long)right_leaf_bh->b_blocknr); 2171 2172 ocfs2_create_empty_extent(right_el); 2173 2174 ocfs2_journal_dirty(handle, right_leaf_bh); 2175 2176 /* Do the copy now. */ 2177 i = le16_to_cpu(left_el->l_next_free_rec) - 1; 2178 move_rec = left_el->l_recs[i]; 2179 right_el->l_recs[0] = move_rec; 2180 2181 /* 2182 * Clear out the record we just copied and shift everything 2183 * over, leaving an empty extent in the left leaf. 2184 * 2185 * We temporarily subtract from next_free_rec so that the 2186 * shift will lose the tail record (which is now defunct). 2187 */ 2188 le16_add_cpu(&left_el->l_next_free_rec, -1); 2189 ocfs2_shift_records_right(left_el); 2190 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2191 le16_add_cpu(&left_el->l_next_free_rec, 1); 2192 2193 ocfs2_journal_dirty(handle, left_leaf_bh); 2194 2195 ocfs2_complete_edge_insert(handle, left_path, right_path, 2196 subtree_index); 2197 2198 out: 2199 return ret; 2200 } 2201 2202 /* 2203 * Given a full path, determine what cpos value would return us a path 2204 * containing the leaf immediately to the left of the current one. 2205 * 2206 * Will return zero if the path passed in is already the leftmost path. 2207 */ 2208 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb, 2209 struct ocfs2_path *path, u32 *cpos) 2210 { 2211 int i, j, ret = 0; 2212 u64 blkno; 2213 struct ocfs2_extent_list *el; 2214 2215 BUG_ON(path->p_tree_depth == 0); 2216 2217 *cpos = 0; 2218 2219 blkno = path_leaf_bh(path)->b_blocknr; 2220 2221 /* Start at the tree node just above the leaf and work our way up. */ 2222 i = path->p_tree_depth - 1; 2223 while (i >= 0) { 2224 el = path->p_node[i].el; 2225 2226 /* 2227 * Find the extent record just before the one in our 2228 * path. 2229 */ 2230 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2231 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2232 if (j == 0) { 2233 if (i == 0) { 2234 /* 2235 * We've determined that the 2236 * path specified is already 2237 * the leftmost one - return a 2238 * cpos of zero. 2239 */ 2240 goto out; 2241 } 2242 /* 2243 * The leftmost record points to our 2244 * leaf - we need to travel up the 2245 * tree one level. 2246 */ 2247 goto next_node; 2248 } 2249 2250 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos); 2251 *cpos = *cpos + ocfs2_rec_clusters(el, 2252 &el->l_recs[j - 1]); 2253 *cpos = *cpos - 1; 2254 goto out; 2255 } 2256 } 2257 2258 /* 2259 * If we got here, we never found a valid node where 2260 * the tree indicated one should be. 2261 */ 2262 ocfs2_error(sb, "Invalid extent tree at extent block %llu\n", 2263 (unsigned long long)blkno); 2264 ret = -EROFS; 2265 goto out; 2266 2267 next_node: 2268 blkno = path->p_node[i].bh->b_blocknr; 2269 i--; 2270 } 2271 2272 out: 2273 return ret; 2274 } 2275 2276 /* 2277 * Extend the transaction by enough credits to complete the rotation, 2278 * and still leave at least the original number of credits allocated 2279 * to this transaction. 2280 */ 2281 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth, 2282 int op_credits, 2283 struct ocfs2_path *path) 2284 { 2285 int ret = 0; 2286 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits; 2287 2288 if (jbd2_handle_buffer_credits(handle) < credits) 2289 ret = ocfs2_extend_trans(handle, 2290 credits - jbd2_handle_buffer_credits(handle)); 2291 2292 return ret; 2293 } 2294 2295 /* 2296 * Trap the case where we're inserting into the theoretical range past 2297 * the _actual_ left leaf range. Otherwise, we'll rotate a record 2298 * whose cpos is less than ours into the right leaf. 2299 * 2300 * It's only necessary to look at the rightmost record of the left 2301 * leaf because the logic that calls us should ensure that the 2302 * theoretical ranges in the path components above the leaves are 2303 * correct. 2304 */ 2305 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path, 2306 u32 insert_cpos) 2307 { 2308 struct ocfs2_extent_list *left_el; 2309 struct ocfs2_extent_rec *rec; 2310 int next_free; 2311 2312 left_el = path_leaf_el(left_path); 2313 next_free = le16_to_cpu(left_el->l_next_free_rec); 2314 rec = &left_el->l_recs[next_free - 1]; 2315 2316 if (insert_cpos > le32_to_cpu(rec->e_cpos)) 2317 return 1; 2318 return 0; 2319 } 2320 2321 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos) 2322 { 2323 int next_free = le16_to_cpu(el->l_next_free_rec); 2324 unsigned int range; 2325 struct ocfs2_extent_rec *rec; 2326 2327 if (next_free == 0) 2328 return 0; 2329 2330 rec = &el->l_recs[0]; 2331 if (ocfs2_is_empty_extent(rec)) { 2332 /* Empty list. */ 2333 if (next_free == 1) 2334 return 0; 2335 rec = &el->l_recs[1]; 2336 } 2337 2338 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2339 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 2340 return 1; 2341 return 0; 2342 } 2343 2344 /* 2345 * Rotate all the records in a btree right one record, starting at insert_cpos. 2346 * 2347 * The path to the rightmost leaf should be passed in. 2348 * 2349 * The array is assumed to be large enough to hold an entire path (tree depth). 2350 * 2351 * Upon successful return from this function: 2352 * 2353 * - The 'right_path' array will contain a path to the leaf block 2354 * whose range contains e_cpos. 2355 * - That leaf block will have a single empty extent in list index 0. 2356 * - In the case that the rotation requires a post-insert update, 2357 * *ret_left_path will contain a valid path which can be passed to 2358 * ocfs2_insert_path(). 2359 */ 2360 static int ocfs2_rotate_tree_right(handle_t *handle, 2361 struct ocfs2_extent_tree *et, 2362 enum ocfs2_split_type split, 2363 u32 insert_cpos, 2364 struct ocfs2_path *right_path, 2365 struct ocfs2_path **ret_left_path) 2366 { 2367 int ret, start, orig_credits = jbd2_handle_buffer_credits(handle); 2368 u32 cpos; 2369 struct ocfs2_path *left_path = NULL; 2370 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 2371 2372 *ret_left_path = NULL; 2373 2374 left_path = ocfs2_new_path_from_path(right_path); 2375 if (!left_path) { 2376 ret = -ENOMEM; 2377 mlog_errno(ret); 2378 goto out; 2379 } 2380 2381 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); 2382 if (ret) { 2383 mlog_errno(ret); 2384 goto out; 2385 } 2386 2387 trace_ocfs2_rotate_tree_right( 2388 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2389 insert_cpos, cpos); 2390 2391 /* 2392 * What we want to do here is: 2393 * 2394 * 1) Start with the rightmost path. 2395 * 2396 * 2) Determine a path to the leaf block directly to the left 2397 * of that leaf. 2398 * 2399 * 3) Determine the 'subtree root' - the lowest level tree node 2400 * which contains a path to both leaves. 2401 * 2402 * 4) Rotate the subtree. 2403 * 2404 * 5) Find the next subtree by considering the left path to be 2405 * the new right path. 2406 * 2407 * The check at the top of this while loop also accepts 2408 * insert_cpos == cpos because cpos is only a _theoretical_ 2409 * value to get us the left path - insert_cpos might very well 2410 * be filling that hole. 2411 * 2412 * Stop at a cpos of '0' because we either started at the 2413 * leftmost branch (i.e., a tree with one branch and a 2414 * rotation inside of it), or we've gone as far as we can in 2415 * rotating subtrees. 2416 */ 2417 while (cpos && insert_cpos <= cpos) { 2418 trace_ocfs2_rotate_tree_right( 2419 (unsigned long long) 2420 ocfs2_metadata_cache_owner(et->et_ci), 2421 insert_cpos, cpos); 2422 2423 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 2424 if (ret) { 2425 mlog_errno(ret); 2426 goto out; 2427 } 2428 2429 mlog_bug_on_msg(path_leaf_bh(left_path) == 2430 path_leaf_bh(right_path), 2431 "Owner %llu: error during insert of %u " 2432 "(left path cpos %u) results in two identical " 2433 "paths ending at %llu\n", 2434 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2435 insert_cpos, cpos, 2436 (unsigned long long) 2437 path_leaf_bh(left_path)->b_blocknr); 2438 2439 if (split == SPLIT_NONE && 2440 ocfs2_rotate_requires_path_adjustment(left_path, 2441 insert_cpos)) { 2442 2443 /* 2444 * We've rotated the tree as much as we 2445 * should. The rest is up to 2446 * ocfs2_insert_path() to complete, after the 2447 * record insertion. We indicate this 2448 * situation by returning the left path. 2449 * 2450 * The reason we don't adjust the records here 2451 * before the record insert is that an error 2452 * later might break the rule where a parent 2453 * record e_cpos will reflect the actual 2454 * e_cpos of the 1st nonempty record of the 2455 * child list. 2456 */ 2457 *ret_left_path = left_path; 2458 goto out_ret_path; 2459 } 2460 2461 start = ocfs2_find_subtree_root(et, left_path, right_path); 2462 2463 trace_ocfs2_rotate_subtree(start, 2464 (unsigned long long) 2465 right_path->p_node[start].bh->b_blocknr, 2466 right_path->p_tree_depth); 2467 2468 ret = ocfs2_extend_rotate_transaction(handle, start, 2469 orig_credits, right_path); 2470 if (ret) { 2471 mlog_errno(ret); 2472 goto out; 2473 } 2474 2475 ret = ocfs2_rotate_subtree_right(handle, et, left_path, 2476 right_path, start); 2477 if (ret) { 2478 mlog_errno(ret); 2479 goto out; 2480 } 2481 2482 if (split != SPLIT_NONE && 2483 ocfs2_leftmost_rec_contains(path_leaf_el(right_path), 2484 insert_cpos)) { 2485 /* 2486 * A rotate moves the rightmost left leaf 2487 * record over to the leftmost right leaf 2488 * slot. If we're doing an extent split 2489 * instead of a real insert, then we have to 2490 * check that the extent to be split wasn't 2491 * just moved over. If it was, then we can 2492 * exit here, passing left_path back - 2493 * ocfs2_split_extent() is smart enough to 2494 * search both leaves. 2495 */ 2496 *ret_left_path = left_path; 2497 goto out_ret_path; 2498 } 2499 2500 /* 2501 * There is no need to re-read the next right path 2502 * as we know that it'll be our current left 2503 * path. Optimize by copying values instead. 2504 */ 2505 ocfs2_mv_path(right_path, left_path); 2506 2507 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); 2508 if (ret) { 2509 mlog_errno(ret); 2510 goto out; 2511 } 2512 } 2513 2514 out: 2515 ocfs2_free_path(left_path); 2516 2517 out_ret_path: 2518 return ret; 2519 } 2520 2521 static int ocfs2_update_edge_lengths(handle_t *handle, 2522 struct ocfs2_extent_tree *et, 2523 struct ocfs2_path *path) 2524 { 2525 int i, idx, ret; 2526 struct ocfs2_extent_rec *rec; 2527 struct ocfs2_extent_list *el; 2528 struct ocfs2_extent_block *eb; 2529 u32 range; 2530 2531 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 2532 if (ret) { 2533 mlog_errno(ret); 2534 goto out; 2535 } 2536 2537 /* Path should always be rightmost. */ 2538 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 2539 BUG_ON(eb->h_next_leaf_blk != 0ULL); 2540 2541 el = &eb->h_list; 2542 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 2543 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2544 rec = &el->l_recs[idx]; 2545 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2546 2547 for (i = 0; i < path->p_tree_depth; i++) { 2548 el = path->p_node[i].el; 2549 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2550 rec = &el->l_recs[idx]; 2551 2552 rec->e_int_clusters = cpu_to_le32(range); 2553 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos)); 2554 2555 ocfs2_journal_dirty(handle, path->p_node[i].bh); 2556 } 2557 out: 2558 return ret; 2559 } 2560 2561 static void ocfs2_unlink_path(handle_t *handle, 2562 struct ocfs2_extent_tree *et, 2563 struct ocfs2_cached_dealloc_ctxt *dealloc, 2564 struct ocfs2_path *path, int unlink_start) 2565 { 2566 int ret, i; 2567 struct ocfs2_extent_block *eb; 2568 struct ocfs2_extent_list *el; 2569 struct buffer_head *bh; 2570 2571 for(i = unlink_start; i < path_num_items(path); i++) { 2572 bh = path->p_node[i].bh; 2573 2574 eb = (struct ocfs2_extent_block *)bh->b_data; 2575 /* 2576 * Not all nodes might have had their final count 2577 * decremented by the caller - handle this here. 2578 */ 2579 el = &eb->h_list; 2580 if (le16_to_cpu(el->l_next_free_rec) > 1) { 2581 mlog(ML_ERROR, 2582 "Inode %llu, attempted to remove extent block " 2583 "%llu with %u records\n", 2584 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2585 (unsigned long long)le64_to_cpu(eb->h_blkno), 2586 le16_to_cpu(el->l_next_free_rec)); 2587 2588 ocfs2_journal_dirty(handle, bh); 2589 ocfs2_remove_from_cache(et->et_ci, bh); 2590 continue; 2591 } 2592 2593 el->l_next_free_rec = 0; 2594 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2595 2596 ocfs2_journal_dirty(handle, bh); 2597 2598 ret = ocfs2_cache_extent_block_free(dealloc, eb); 2599 if (ret) 2600 mlog_errno(ret); 2601 2602 ocfs2_remove_from_cache(et->et_ci, bh); 2603 } 2604 } 2605 2606 static void ocfs2_unlink_subtree(handle_t *handle, 2607 struct ocfs2_extent_tree *et, 2608 struct ocfs2_path *left_path, 2609 struct ocfs2_path *right_path, 2610 int subtree_index, 2611 struct ocfs2_cached_dealloc_ctxt *dealloc) 2612 { 2613 int i; 2614 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2615 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el; 2616 struct ocfs2_extent_block *eb; 2617 2618 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data; 2619 2620 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 2621 if (root_el->l_recs[i].e_blkno == eb->h_blkno) 2622 break; 2623 2624 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec)); 2625 2626 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 2627 le16_add_cpu(&root_el->l_next_free_rec, -1); 2628 2629 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2630 eb->h_next_leaf_blk = 0; 2631 2632 ocfs2_journal_dirty(handle, root_bh); 2633 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2634 2635 ocfs2_unlink_path(handle, et, dealloc, right_path, 2636 subtree_index + 1); 2637 } 2638 2639 static int ocfs2_rotate_subtree_left(handle_t *handle, 2640 struct ocfs2_extent_tree *et, 2641 struct ocfs2_path *left_path, 2642 struct ocfs2_path *right_path, 2643 int subtree_index, 2644 struct ocfs2_cached_dealloc_ctxt *dealloc, 2645 int *deleted) 2646 { 2647 int ret, i, del_right_subtree = 0, right_has_empty = 0; 2648 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path); 2649 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el; 2650 struct ocfs2_extent_block *eb; 2651 2652 *deleted = 0; 2653 2654 right_leaf_el = path_leaf_el(right_path); 2655 left_leaf_el = path_leaf_el(left_path); 2656 root_bh = left_path->p_node[subtree_index].bh; 2657 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2658 2659 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0])) 2660 return 0; 2661 2662 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data; 2663 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) { 2664 /* 2665 * It's legal for us to proceed if the right leaf is 2666 * the rightmost one and it has an empty extent. There 2667 * are two cases to handle - whether the leaf will be 2668 * empty after removal or not. If the leaf isn't empty 2669 * then just remove the empty extent up front. The 2670 * next block will handle empty leaves by flagging 2671 * them for unlink. 2672 * 2673 * Non rightmost leaves will throw -EAGAIN and the 2674 * caller can manually move the subtree and retry. 2675 */ 2676 2677 if (eb->h_next_leaf_blk != 0ULL) 2678 return -EAGAIN; 2679 2680 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) { 2681 ret = ocfs2_journal_access_eb(handle, et->et_ci, 2682 path_leaf_bh(right_path), 2683 OCFS2_JOURNAL_ACCESS_WRITE); 2684 if (ret) { 2685 mlog_errno(ret); 2686 goto out; 2687 } 2688 2689 ocfs2_remove_empty_extent(right_leaf_el); 2690 } else 2691 right_has_empty = 1; 2692 } 2693 2694 if (eb->h_next_leaf_blk == 0ULL && 2695 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) { 2696 /* 2697 * We have to update i_last_eb_blk during the meta 2698 * data delete. 2699 */ 2700 ret = ocfs2_et_root_journal_access(handle, et, 2701 OCFS2_JOURNAL_ACCESS_WRITE); 2702 if (ret) { 2703 mlog_errno(ret); 2704 goto out; 2705 } 2706 2707 del_right_subtree = 1; 2708 } 2709 2710 /* 2711 * Getting here with an empty extent in the right path implies 2712 * that it's the rightmost path and will be deleted. 2713 */ 2714 BUG_ON(right_has_empty && !del_right_subtree); 2715 2716 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 2717 subtree_index); 2718 if (ret) { 2719 mlog_errno(ret); 2720 goto out; 2721 } 2722 2723 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2724 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2725 right_path, i); 2726 if (ret) { 2727 mlog_errno(ret); 2728 goto out; 2729 } 2730 2731 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2732 left_path, i); 2733 if (ret) { 2734 mlog_errno(ret); 2735 goto out; 2736 } 2737 } 2738 2739 if (!right_has_empty) { 2740 /* 2741 * Only do this if we're moving a real 2742 * record. Otherwise, the action is delayed until 2743 * after removal of the right path in which case we 2744 * can do a simple shift to remove the empty extent. 2745 */ 2746 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]); 2747 memset(&right_leaf_el->l_recs[0], 0, 2748 sizeof(struct ocfs2_extent_rec)); 2749 } 2750 if (eb->h_next_leaf_blk == 0ULL) { 2751 /* 2752 * Move recs over to get rid of empty extent, decrease 2753 * next_free. This is allowed to remove the last 2754 * extent in our leaf (setting l_next_free_rec to 2755 * zero) - the delete code below won't care. 2756 */ 2757 ocfs2_remove_empty_extent(right_leaf_el); 2758 } 2759 2760 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2761 ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 2762 2763 if (del_right_subtree) { 2764 ocfs2_unlink_subtree(handle, et, left_path, right_path, 2765 subtree_index, dealloc); 2766 ret = ocfs2_update_edge_lengths(handle, et, left_path); 2767 if (ret) { 2768 mlog_errno(ret); 2769 goto out; 2770 } 2771 2772 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2773 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 2774 2775 /* 2776 * Removal of the extent in the left leaf was skipped 2777 * above so we could delete the right path 2778 * 1st. 2779 */ 2780 if (right_has_empty) 2781 ocfs2_remove_empty_extent(left_leaf_el); 2782 2783 ocfs2_journal_dirty(handle, et_root_bh); 2784 2785 *deleted = 1; 2786 } else 2787 ocfs2_complete_edge_insert(handle, left_path, right_path, 2788 subtree_index); 2789 2790 out: 2791 return ret; 2792 } 2793 2794 /* 2795 * Given a full path, determine what cpos value would return us a path 2796 * containing the leaf immediately to the right of the current one. 2797 * 2798 * Will return zero if the path passed in is already the rightmost path. 2799 * 2800 * This looks similar, but is subtly different to 2801 * ocfs2_find_cpos_for_left_leaf(). 2802 */ 2803 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb, 2804 struct ocfs2_path *path, u32 *cpos) 2805 { 2806 int i, j, ret = 0; 2807 u64 blkno; 2808 struct ocfs2_extent_list *el; 2809 2810 *cpos = 0; 2811 2812 if (path->p_tree_depth == 0) 2813 return 0; 2814 2815 blkno = path_leaf_bh(path)->b_blocknr; 2816 2817 /* Start at the tree node just above the leaf and work our way up. */ 2818 i = path->p_tree_depth - 1; 2819 while (i >= 0) { 2820 int next_free; 2821 2822 el = path->p_node[i].el; 2823 2824 /* 2825 * Find the extent record just after the one in our 2826 * path. 2827 */ 2828 next_free = le16_to_cpu(el->l_next_free_rec); 2829 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2830 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2831 if (j == (next_free - 1)) { 2832 if (i == 0) { 2833 /* 2834 * We've determined that the 2835 * path specified is already 2836 * the rightmost one - return a 2837 * cpos of zero. 2838 */ 2839 goto out; 2840 } 2841 /* 2842 * The rightmost record points to our 2843 * leaf - we need to travel up the 2844 * tree one level. 2845 */ 2846 goto next_node; 2847 } 2848 2849 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos); 2850 goto out; 2851 } 2852 } 2853 2854 /* 2855 * If we got here, we never found a valid node where 2856 * the tree indicated one should be. 2857 */ 2858 ocfs2_error(sb, "Invalid extent tree at extent block %llu\n", 2859 (unsigned long long)blkno); 2860 ret = -EROFS; 2861 goto out; 2862 2863 next_node: 2864 blkno = path->p_node[i].bh->b_blocknr; 2865 i--; 2866 } 2867 2868 out: 2869 return ret; 2870 } 2871 2872 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle, 2873 struct ocfs2_extent_tree *et, 2874 struct ocfs2_path *path) 2875 { 2876 int ret; 2877 struct buffer_head *bh = path_leaf_bh(path); 2878 struct ocfs2_extent_list *el = path_leaf_el(path); 2879 2880 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 2881 return 0; 2882 2883 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path, 2884 path_num_items(path) - 1); 2885 if (ret) { 2886 mlog_errno(ret); 2887 goto out; 2888 } 2889 2890 ocfs2_remove_empty_extent(el); 2891 ocfs2_journal_dirty(handle, bh); 2892 2893 out: 2894 return ret; 2895 } 2896 2897 static int __ocfs2_rotate_tree_left(handle_t *handle, 2898 struct ocfs2_extent_tree *et, 2899 int orig_credits, 2900 struct ocfs2_path *path, 2901 struct ocfs2_cached_dealloc_ctxt *dealloc, 2902 struct ocfs2_path **empty_extent_path) 2903 { 2904 int ret, subtree_root, deleted; 2905 u32 right_cpos; 2906 struct ocfs2_path *left_path = NULL; 2907 struct ocfs2_path *right_path = NULL; 2908 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 2909 2910 if (!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0]))) 2911 return 0; 2912 2913 *empty_extent_path = NULL; 2914 2915 ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos); 2916 if (ret) { 2917 mlog_errno(ret); 2918 goto out; 2919 } 2920 2921 left_path = ocfs2_new_path_from_path(path); 2922 if (!left_path) { 2923 ret = -ENOMEM; 2924 mlog_errno(ret); 2925 goto out; 2926 } 2927 2928 ocfs2_cp_path(left_path, path); 2929 2930 right_path = ocfs2_new_path_from_path(path); 2931 if (!right_path) { 2932 ret = -ENOMEM; 2933 mlog_errno(ret); 2934 goto out; 2935 } 2936 2937 while (right_cpos) { 2938 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); 2939 if (ret) { 2940 mlog_errno(ret); 2941 goto out; 2942 } 2943 2944 subtree_root = ocfs2_find_subtree_root(et, left_path, 2945 right_path); 2946 2947 trace_ocfs2_rotate_subtree(subtree_root, 2948 (unsigned long long) 2949 right_path->p_node[subtree_root].bh->b_blocknr, 2950 right_path->p_tree_depth); 2951 2952 ret = ocfs2_extend_rotate_transaction(handle, 0, 2953 orig_credits, left_path); 2954 if (ret) { 2955 mlog_errno(ret); 2956 goto out; 2957 } 2958 2959 /* 2960 * Caller might still want to make changes to the 2961 * tree root, so re-add it to the journal here. 2962 */ 2963 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2964 left_path, 0); 2965 if (ret) { 2966 mlog_errno(ret); 2967 goto out; 2968 } 2969 2970 ret = ocfs2_rotate_subtree_left(handle, et, left_path, 2971 right_path, subtree_root, 2972 dealloc, &deleted); 2973 if (ret == -EAGAIN) { 2974 /* 2975 * The rotation has to temporarily stop due to 2976 * the right subtree having an empty 2977 * extent. Pass it back to the caller for a 2978 * fixup. 2979 */ 2980 *empty_extent_path = right_path; 2981 right_path = NULL; 2982 goto out; 2983 } 2984 if (ret) { 2985 mlog_errno(ret); 2986 goto out; 2987 } 2988 2989 /* 2990 * The subtree rotate might have removed records on 2991 * the rightmost edge. If so, then rotation is 2992 * complete. 2993 */ 2994 if (deleted) 2995 break; 2996 2997 ocfs2_mv_path(left_path, right_path); 2998 2999 ret = ocfs2_find_cpos_for_right_leaf(sb, left_path, 3000 &right_cpos); 3001 if (ret) { 3002 mlog_errno(ret); 3003 goto out; 3004 } 3005 } 3006 3007 out: 3008 ocfs2_free_path(right_path); 3009 ocfs2_free_path(left_path); 3010 3011 return ret; 3012 } 3013 3014 static int ocfs2_remove_rightmost_path(handle_t *handle, 3015 struct ocfs2_extent_tree *et, 3016 struct ocfs2_path *path, 3017 struct ocfs2_cached_dealloc_ctxt *dealloc) 3018 { 3019 int ret, subtree_index; 3020 u32 cpos; 3021 struct ocfs2_path *left_path = NULL; 3022 struct ocfs2_extent_block *eb; 3023 struct ocfs2_extent_list *el; 3024 3025 ret = ocfs2_et_sanity_check(et); 3026 if (ret) 3027 goto out; 3028 3029 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 3030 if (ret) { 3031 mlog_errno(ret); 3032 goto out; 3033 } 3034 3035 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3036 path, &cpos); 3037 if (ret) { 3038 mlog_errno(ret); 3039 goto out; 3040 } 3041 3042 if (cpos) { 3043 /* 3044 * We have a path to the left of this one - it needs 3045 * an update too. 3046 */ 3047 left_path = ocfs2_new_path_from_path(path); 3048 if (!left_path) { 3049 ret = -ENOMEM; 3050 mlog_errno(ret); 3051 goto out; 3052 } 3053 3054 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 3055 if (ret) { 3056 mlog_errno(ret); 3057 goto out; 3058 } 3059 3060 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 3061 if (ret) { 3062 mlog_errno(ret); 3063 goto out; 3064 } 3065 3066 subtree_index = ocfs2_find_subtree_root(et, left_path, path); 3067 3068 ocfs2_unlink_subtree(handle, et, left_path, path, 3069 subtree_index, dealloc); 3070 ret = ocfs2_update_edge_lengths(handle, et, left_path); 3071 if (ret) { 3072 mlog_errno(ret); 3073 goto out; 3074 } 3075 3076 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 3077 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 3078 } else { 3079 /* 3080 * 'path' is also the leftmost path which 3081 * means it must be the only one. This gets 3082 * handled differently because we want to 3083 * revert the root back to having extents 3084 * in-line. 3085 */ 3086 ocfs2_unlink_path(handle, et, dealloc, path, 1); 3087 3088 el = et->et_root_el; 3089 el->l_tree_depth = 0; 3090 el->l_next_free_rec = 0; 3091 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3092 3093 ocfs2_et_set_last_eb_blk(et, 0); 3094 } 3095 3096 ocfs2_journal_dirty(handle, path_root_bh(path)); 3097 3098 out: 3099 ocfs2_free_path(left_path); 3100 return ret; 3101 } 3102 3103 static int ocfs2_remove_rightmost_empty_extent(struct ocfs2_super *osb, 3104 struct ocfs2_extent_tree *et, 3105 struct ocfs2_path *path, 3106 struct ocfs2_cached_dealloc_ctxt *dealloc) 3107 { 3108 handle_t *handle; 3109 int ret; 3110 int credits = path->p_tree_depth * 2 + 1; 3111 3112 handle = ocfs2_start_trans(osb, credits); 3113 if (IS_ERR(handle)) { 3114 ret = PTR_ERR(handle); 3115 mlog_errno(ret); 3116 return ret; 3117 } 3118 3119 ret = ocfs2_remove_rightmost_path(handle, et, path, dealloc); 3120 if (ret) 3121 mlog_errno(ret); 3122 3123 ocfs2_commit_trans(osb, handle); 3124 return ret; 3125 } 3126 3127 /* 3128 * Left rotation of btree records. 3129 * 3130 * In many ways, this is (unsurprisingly) the opposite of right 3131 * rotation. We start at some non-rightmost path containing an empty 3132 * extent in the leaf block. The code works its way to the rightmost 3133 * path by rotating records to the left in every subtree. 3134 * 3135 * This is used by any code which reduces the number of extent records 3136 * in a leaf. After removal, an empty record should be placed in the 3137 * leftmost list position. 3138 * 3139 * This won't handle a length update of the rightmost path records if 3140 * the rightmost tree leaf record is removed so the caller is 3141 * responsible for detecting and correcting that. 3142 */ 3143 static int ocfs2_rotate_tree_left(handle_t *handle, 3144 struct ocfs2_extent_tree *et, 3145 struct ocfs2_path *path, 3146 struct ocfs2_cached_dealloc_ctxt *dealloc) 3147 { 3148 int ret, orig_credits = jbd2_handle_buffer_credits(handle); 3149 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL; 3150 struct ocfs2_extent_block *eb; 3151 struct ocfs2_extent_list *el; 3152 3153 el = path_leaf_el(path); 3154 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 3155 return 0; 3156 3157 if (path->p_tree_depth == 0) { 3158 rightmost_no_delete: 3159 /* 3160 * Inline extents. This is trivially handled, so do 3161 * it up front. 3162 */ 3163 ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path); 3164 if (ret) 3165 mlog_errno(ret); 3166 goto out; 3167 } 3168 3169 /* 3170 * Handle rightmost branch now. There's several cases: 3171 * 1) simple rotation leaving records in there. That's trivial. 3172 * 2) rotation requiring a branch delete - there's no more 3173 * records left. Two cases of this: 3174 * a) There are branches to the left. 3175 * b) This is also the leftmost (the only) branch. 3176 * 3177 * 1) is handled via ocfs2_rotate_rightmost_leaf_left() 3178 * 2a) we need the left branch so that we can update it with the unlink 3179 * 2b) we need to bring the root back to inline extents. 3180 */ 3181 3182 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 3183 el = &eb->h_list; 3184 if (eb->h_next_leaf_blk == 0) { 3185 /* 3186 * This gets a bit tricky if we're going to delete the 3187 * rightmost path. Get the other cases out of the way 3188 * 1st. 3189 */ 3190 if (le16_to_cpu(el->l_next_free_rec) > 1) 3191 goto rightmost_no_delete; 3192 3193 if (le16_to_cpu(el->l_next_free_rec) == 0) { 3194 ret = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 3195 "Owner %llu has empty extent block at %llu\n", 3196 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 3197 (unsigned long long)le64_to_cpu(eb->h_blkno)); 3198 goto out; 3199 } 3200 3201 /* 3202 * XXX: The caller can not trust "path" any more after 3203 * this as it will have been deleted. What do we do? 3204 * 3205 * In theory the rotate-for-merge code will never get 3206 * here because it'll always ask for a rotate in a 3207 * nonempty list. 3208 */ 3209 3210 ret = ocfs2_remove_rightmost_path(handle, et, path, 3211 dealloc); 3212 if (ret) 3213 mlog_errno(ret); 3214 goto out; 3215 } 3216 3217 /* 3218 * Now we can loop, remembering the path we get from -EAGAIN 3219 * and restarting from there. 3220 */ 3221 try_rotate: 3222 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path, 3223 dealloc, &restart_path); 3224 if (ret && ret != -EAGAIN) { 3225 mlog_errno(ret); 3226 goto out; 3227 } 3228 3229 while (ret == -EAGAIN) { 3230 tmp_path = restart_path; 3231 restart_path = NULL; 3232 3233 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, 3234 tmp_path, dealloc, 3235 &restart_path); 3236 if (ret && ret != -EAGAIN) { 3237 mlog_errno(ret); 3238 goto out; 3239 } 3240 3241 ocfs2_free_path(tmp_path); 3242 tmp_path = NULL; 3243 3244 if (ret == 0) 3245 goto try_rotate; 3246 } 3247 3248 out: 3249 ocfs2_free_path(tmp_path); 3250 ocfs2_free_path(restart_path); 3251 return ret; 3252 } 3253 3254 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el, 3255 int index) 3256 { 3257 struct ocfs2_extent_rec *rec = &el->l_recs[index]; 3258 unsigned int size; 3259 3260 if (rec->e_leaf_clusters == 0) { 3261 /* 3262 * We consumed all of the merged-from record. An empty 3263 * extent cannot exist anywhere but the 1st array 3264 * position, so move things over if the merged-from 3265 * record doesn't occupy that position. 3266 * 3267 * This creates a new empty extent so the caller 3268 * should be smart enough to have removed any existing 3269 * ones. 3270 */ 3271 if (index > 0) { 3272 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 3273 size = index * sizeof(struct ocfs2_extent_rec); 3274 memmove(&el->l_recs[1], &el->l_recs[0], size); 3275 } 3276 3277 /* 3278 * Always memset - the caller doesn't check whether it 3279 * created an empty extent, so there could be junk in 3280 * the other fields. 3281 */ 3282 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3283 } 3284 } 3285 3286 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et, 3287 struct ocfs2_path *left_path, 3288 struct ocfs2_path **ret_right_path) 3289 { 3290 int ret; 3291 u32 right_cpos; 3292 struct ocfs2_path *right_path = NULL; 3293 struct ocfs2_extent_list *left_el; 3294 3295 *ret_right_path = NULL; 3296 3297 /* This function shouldn't be called for non-trees. */ 3298 BUG_ON(left_path->p_tree_depth == 0); 3299 3300 left_el = path_leaf_el(left_path); 3301 BUG_ON(left_el->l_next_free_rec != left_el->l_count); 3302 3303 ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3304 left_path, &right_cpos); 3305 if (ret) { 3306 mlog_errno(ret); 3307 goto out; 3308 } 3309 3310 /* This function shouldn't be called for the rightmost leaf. */ 3311 BUG_ON(right_cpos == 0); 3312 3313 right_path = ocfs2_new_path_from_path(left_path); 3314 if (!right_path) { 3315 ret = -ENOMEM; 3316 mlog_errno(ret); 3317 goto out; 3318 } 3319 3320 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); 3321 if (ret) { 3322 mlog_errno(ret); 3323 goto out; 3324 } 3325 3326 *ret_right_path = right_path; 3327 out: 3328 if (ret) 3329 ocfs2_free_path(right_path); 3330 return ret; 3331 } 3332 3333 /* 3334 * Remove split_rec clusters from the record at index and merge them 3335 * onto the beginning of the record "next" to it. 3336 * For index < l_count - 1, the next means the extent rec at index + 1. 3337 * For index == l_count - 1, the "next" means the 1st extent rec of the 3338 * next extent block. 3339 */ 3340 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path, 3341 handle_t *handle, 3342 struct ocfs2_extent_tree *et, 3343 struct ocfs2_extent_rec *split_rec, 3344 int index) 3345 { 3346 int ret, next_free, i; 3347 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3348 struct ocfs2_extent_rec *left_rec; 3349 struct ocfs2_extent_rec *right_rec; 3350 struct ocfs2_extent_list *right_el; 3351 struct ocfs2_path *right_path = NULL; 3352 int subtree_index = 0; 3353 struct ocfs2_extent_list *el = path_leaf_el(left_path); 3354 struct buffer_head *bh = path_leaf_bh(left_path); 3355 struct buffer_head *root_bh = NULL; 3356 3357 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec)); 3358 left_rec = &el->l_recs[index]; 3359 3360 if (index == le16_to_cpu(el->l_next_free_rec) - 1 && 3361 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) { 3362 /* we meet with a cross extent block merge. */ 3363 ret = ocfs2_get_right_path(et, left_path, &right_path); 3364 if (ret) { 3365 mlog_errno(ret); 3366 return ret; 3367 } 3368 3369 right_el = path_leaf_el(right_path); 3370 next_free = le16_to_cpu(right_el->l_next_free_rec); 3371 BUG_ON(next_free <= 0); 3372 right_rec = &right_el->l_recs[0]; 3373 if (ocfs2_is_empty_extent(right_rec)) { 3374 BUG_ON(next_free <= 1); 3375 right_rec = &right_el->l_recs[1]; 3376 } 3377 3378 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3379 le16_to_cpu(left_rec->e_leaf_clusters) != 3380 le32_to_cpu(right_rec->e_cpos)); 3381 3382 subtree_index = ocfs2_find_subtree_root(et, left_path, 3383 right_path); 3384 3385 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3386 jbd2_handle_buffer_credits(handle), 3387 right_path); 3388 if (ret) { 3389 mlog_errno(ret); 3390 goto out; 3391 } 3392 3393 root_bh = left_path->p_node[subtree_index].bh; 3394 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3395 3396 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3397 subtree_index); 3398 if (ret) { 3399 mlog_errno(ret); 3400 goto out; 3401 } 3402 3403 for (i = subtree_index + 1; 3404 i < path_num_items(right_path); i++) { 3405 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3406 right_path, i); 3407 if (ret) { 3408 mlog_errno(ret); 3409 goto out; 3410 } 3411 3412 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3413 left_path, i); 3414 if (ret) { 3415 mlog_errno(ret); 3416 goto out; 3417 } 3418 } 3419 3420 } else { 3421 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1); 3422 right_rec = &el->l_recs[index + 1]; 3423 } 3424 3425 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path, 3426 path_num_items(left_path) - 1); 3427 if (ret) { 3428 mlog_errno(ret); 3429 goto out; 3430 } 3431 3432 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters); 3433 3434 le32_add_cpu(&right_rec->e_cpos, -split_clusters); 3435 le64_add_cpu(&right_rec->e_blkno, 3436 -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), 3437 split_clusters)); 3438 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters); 3439 3440 ocfs2_cleanup_merge(el, index); 3441 3442 ocfs2_journal_dirty(handle, bh); 3443 if (right_path) { 3444 ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 3445 ocfs2_complete_edge_insert(handle, left_path, right_path, 3446 subtree_index); 3447 } 3448 out: 3449 ocfs2_free_path(right_path); 3450 return ret; 3451 } 3452 3453 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et, 3454 struct ocfs2_path *right_path, 3455 struct ocfs2_path **ret_left_path) 3456 { 3457 int ret; 3458 u32 left_cpos; 3459 struct ocfs2_path *left_path = NULL; 3460 3461 *ret_left_path = NULL; 3462 3463 /* This function shouldn't be called for non-trees. */ 3464 BUG_ON(right_path->p_tree_depth == 0); 3465 3466 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3467 right_path, &left_cpos); 3468 if (ret) { 3469 mlog_errno(ret); 3470 goto out; 3471 } 3472 3473 /* This function shouldn't be called for the leftmost leaf. */ 3474 BUG_ON(left_cpos == 0); 3475 3476 left_path = ocfs2_new_path_from_path(right_path); 3477 if (!left_path) { 3478 ret = -ENOMEM; 3479 mlog_errno(ret); 3480 goto out; 3481 } 3482 3483 ret = ocfs2_find_path(et->et_ci, left_path, left_cpos); 3484 if (ret) { 3485 mlog_errno(ret); 3486 goto out; 3487 } 3488 3489 *ret_left_path = left_path; 3490 out: 3491 if (ret) 3492 ocfs2_free_path(left_path); 3493 return ret; 3494 } 3495 3496 /* 3497 * Remove split_rec clusters from the record at index and merge them 3498 * onto the tail of the record "before" it. 3499 * For index > 0, the "before" means the extent rec at index - 1. 3500 * 3501 * For index == 0, the "before" means the last record of the previous 3502 * extent block. And there is also a situation that we may need to 3503 * remove the rightmost leaf extent block in the right_path and change 3504 * the right path to indicate the new rightmost path. 3505 */ 3506 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path, 3507 handle_t *handle, 3508 struct ocfs2_extent_tree *et, 3509 struct ocfs2_extent_rec *split_rec, 3510 struct ocfs2_cached_dealloc_ctxt *dealloc, 3511 int index) 3512 { 3513 int ret, i, subtree_index = 0, has_empty_extent = 0; 3514 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3515 struct ocfs2_extent_rec *left_rec; 3516 struct ocfs2_extent_rec *right_rec; 3517 struct ocfs2_extent_list *el = path_leaf_el(right_path); 3518 struct buffer_head *bh = path_leaf_bh(right_path); 3519 struct buffer_head *root_bh = NULL; 3520 struct ocfs2_path *left_path = NULL; 3521 struct ocfs2_extent_list *left_el; 3522 3523 BUG_ON(index < 0); 3524 3525 right_rec = &el->l_recs[index]; 3526 if (index == 0) { 3527 /* we meet with a cross extent block merge. */ 3528 ret = ocfs2_get_left_path(et, right_path, &left_path); 3529 if (ret) { 3530 mlog_errno(ret); 3531 return ret; 3532 } 3533 3534 left_el = path_leaf_el(left_path); 3535 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) != 3536 le16_to_cpu(left_el->l_count)); 3537 3538 left_rec = &left_el->l_recs[ 3539 le16_to_cpu(left_el->l_next_free_rec) - 1]; 3540 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3541 le16_to_cpu(left_rec->e_leaf_clusters) != 3542 le32_to_cpu(split_rec->e_cpos)); 3543 3544 subtree_index = ocfs2_find_subtree_root(et, left_path, 3545 right_path); 3546 3547 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3548 jbd2_handle_buffer_credits(handle), 3549 left_path); 3550 if (ret) { 3551 mlog_errno(ret); 3552 goto out; 3553 } 3554 3555 root_bh = left_path->p_node[subtree_index].bh; 3556 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3557 3558 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3559 subtree_index); 3560 if (ret) { 3561 mlog_errno(ret); 3562 goto out; 3563 } 3564 3565 for (i = subtree_index + 1; 3566 i < path_num_items(right_path); i++) { 3567 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3568 right_path, i); 3569 if (ret) { 3570 mlog_errno(ret); 3571 goto out; 3572 } 3573 3574 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3575 left_path, i); 3576 if (ret) { 3577 mlog_errno(ret); 3578 goto out; 3579 } 3580 } 3581 } else { 3582 left_rec = &el->l_recs[index - 1]; 3583 if (ocfs2_is_empty_extent(&el->l_recs[0])) 3584 has_empty_extent = 1; 3585 } 3586 3587 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3588 path_num_items(right_path) - 1); 3589 if (ret) { 3590 mlog_errno(ret); 3591 goto out; 3592 } 3593 3594 if (has_empty_extent && index == 1) { 3595 /* 3596 * The easy case - we can just plop the record right in. 3597 */ 3598 *left_rec = *split_rec; 3599 } else 3600 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters); 3601 3602 le32_add_cpu(&right_rec->e_cpos, split_clusters); 3603 le64_add_cpu(&right_rec->e_blkno, 3604 ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), 3605 split_clusters)); 3606 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters); 3607 3608 ocfs2_cleanup_merge(el, index); 3609 3610 ocfs2_journal_dirty(handle, bh); 3611 if (left_path) { 3612 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 3613 3614 /* 3615 * In the situation that the right_rec is empty and the extent 3616 * block is empty also, ocfs2_complete_edge_insert can't handle 3617 * it and we need to delete the right extent block. 3618 */ 3619 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 && 3620 le16_to_cpu(el->l_next_free_rec) == 1) { 3621 /* extend credit for ocfs2_remove_rightmost_path */ 3622 ret = ocfs2_extend_rotate_transaction(handle, 0, 3623 jbd2_handle_buffer_credits(handle), 3624 right_path); 3625 if (ret) { 3626 mlog_errno(ret); 3627 goto out; 3628 } 3629 3630 ret = ocfs2_remove_rightmost_path(handle, et, 3631 right_path, 3632 dealloc); 3633 if (ret) { 3634 mlog_errno(ret); 3635 goto out; 3636 } 3637 3638 /* Now the rightmost extent block has been deleted. 3639 * So we use the new rightmost path. 3640 */ 3641 ocfs2_mv_path(right_path, left_path); 3642 left_path = NULL; 3643 } else 3644 ocfs2_complete_edge_insert(handle, left_path, 3645 right_path, subtree_index); 3646 } 3647 out: 3648 ocfs2_free_path(left_path); 3649 return ret; 3650 } 3651 3652 static int ocfs2_try_to_merge_extent(handle_t *handle, 3653 struct ocfs2_extent_tree *et, 3654 struct ocfs2_path *path, 3655 int split_index, 3656 struct ocfs2_extent_rec *split_rec, 3657 struct ocfs2_cached_dealloc_ctxt *dealloc, 3658 struct ocfs2_merge_ctxt *ctxt) 3659 { 3660 int ret = 0; 3661 struct ocfs2_extent_list *el = path_leaf_el(path); 3662 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 3663 3664 BUG_ON(ctxt->c_contig_type == CONTIG_NONE); 3665 3666 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) { 3667 /* extend credit for ocfs2_remove_rightmost_path */ 3668 ret = ocfs2_extend_rotate_transaction(handle, 0, 3669 jbd2_handle_buffer_credits(handle), 3670 path); 3671 if (ret) { 3672 mlog_errno(ret); 3673 goto out; 3674 } 3675 /* 3676 * The merge code will need to create an empty 3677 * extent to take the place of the newly 3678 * emptied slot. Remove any pre-existing empty 3679 * extents - having more than one in a leaf is 3680 * illegal. 3681 */ 3682 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3683 if (ret) { 3684 mlog_errno(ret); 3685 goto out; 3686 } 3687 split_index--; 3688 rec = &el->l_recs[split_index]; 3689 } 3690 3691 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) { 3692 /* 3693 * Left-right contig implies this. 3694 */ 3695 BUG_ON(!ctxt->c_split_covers_rec); 3696 3697 /* 3698 * Since the leftright insert always covers the entire 3699 * extent, this call will delete the insert record 3700 * entirely, resulting in an empty extent record added to 3701 * the extent block. 3702 * 3703 * Since the adding of an empty extent shifts 3704 * everything back to the right, there's no need to 3705 * update split_index here. 3706 * 3707 * When the split_index is zero, we need to merge it to the 3708 * prevoius extent block. It is more efficient and easier 3709 * if we do merge_right first and merge_left later. 3710 */ 3711 ret = ocfs2_merge_rec_right(path, handle, et, split_rec, 3712 split_index); 3713 if (ret) { 3714 mlog_errno(ret); 3715 goto out; 3716 } 3717 3718 /* 3719 * We can only get this from logic error above. 3720 */ 3721 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0])); 3722 3723 /* extend credit for ocfs2_remove_rightmost_path */ 3724 ret = ocfs2_extend_rotate_transaction(handle, 0, 3725 jbd2_handle_buffer_credits(handle), 3726 path); 3727 if (ret) { 3728 mlog_errno(ret); 3729 goto out; 3730 } 3731 3732 /* The merge left us with an empty extent, remove it. */ 3733 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3734 if (ret) { 3735 mlog_errno(ret); 3736 goto out; 3737 } 3738 3739 rec = &el->l_recs[split_index]; 3740 3741 /* 3742 * Note that we don't pass split_rec here on purpose - 3743 * we've merged it into the rec already. 3744 */ 3745 ret = ocfs2_merge_rec_left(path, handle, et, rec, 3746 dealloc, split_index); 3747 3748 if (ret) { 3749 mlog_errno(ret); 3750 goto out; 3751 } 3752 3753 /* extend credit for ocfs2_remove_rightmost_path */ 3754 ret = ocfs2_extend_rotate_transaction(handle, 0, 3755 jbd2_handle_buffer_credits(handle), 3756 path); 3757 if (ret) { 3758 mlog_errno(ret); 3759 goto out; 3760 } 3761 3762 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3763 /* 3764 * Error from this last rotate is not critical, so 3765 * print but don't bubble it up. 3766 */ 3767 if (ret) 3768 mlog_errno(ret); 3769 ret = 0; 3770 } else { 3771 /* 3772 * Merge a record to the left or right. 3773 * 3774 * 'contig_type' is relative to the existing record, 3775 * so for example, if we're "right contig", it's to 3776 * the record on the left (hence the left merge). 3777 */ 3778 if (ctxt->c_contig_type == CONTIG_RIGHT) { 3779 ret = ocfs2_merge_rec_left(path, handle, et, 3780 split_rec, dealloc, 3781 split_index); 3782 if (ret) { 3783 mlog_errno(ret); 3784 goto out; 3785 } 3786 } else { 3787 ret = ocfs2_merge_rec_right(path, handle, 3788 et, split_rec, 3789 split_index); 3790 if (ret) { 3791 mlog_errno(ret); 3792 goto out; 3793 } 3794 } 3795 3796 if (ctxt->c_split_covers_rec) { 3797 /* extend credit for ocfs2_remove_rightmost_path */ 3798 ret = ocfs2_extend_rotate_transaction(handle, 0, 3799 jbd2_handle_buffer_credits(handle), 3800 path); 3801 if (ret) { 3802 mlog_errno(ret); 3803 ret = 0; 3804 goto out; 3805 } 3806 3807 /* 3808 * The merge may have left an empty extent in 3809 * our leaf. Try to rotate it away. 3810 */ 3811 ret = ocfs2_rotate_tree_left(handle, et, path, 3812 dealloc); 3813 if (ret) 3814 mlog_errno(ret); 3815 ret = 0; 3816 } 3817 } 3818 3819 out: 3820 return ret; 3821 } 3822 3823 static void ocfs2_subtract_from_rec(struct super_block *sb, 3824 enum ocfs2_split_type split, 3825 struct ocfs2_extent_rec *rec, 3826 struct ocfs2_extent_rec *split_rec) 3827 { 3828 u64 len_blocks; 3829 3830 len_blocks = ocfs2_clusters_to_blocks(sb, 3831 le16_to_cpu(split_rec->e_leaf_clusters)); 3832 3833 if (split == SPLIT_LEFT) { 3834 /* 3835 * Region is on the left edge of the existing 3836 * record. 3837 */ 3838 le32_add_cpu(&rec->e_cpos, 3839 le16_to_cpu(split_rec->e_leaf_clusters)); 3840 le64_add_cpu(&rec->e_blkno, len_blocks); 3841 le16_add_cpu(&rec->e_leaf_clusters, 3842 -le16_to_cpu(split_rec->e_leaf_clusters)); 3843 } else { 3844 /* 3845 * Region is on the right edge of the existing 3846 * record. 3847 */ 3848 le16_add_cpu(&rec->e_leaf_clusters, 3849 -le16_to_cpu(split_rec->e_leaf_clusters)); 3850 } 3851 } 3852 3853 /* 3854 * Do the final bits of extent record insertion at the target leaf 3855 * list. If this leaf is part of an allocation tree, it is assumed 3856 * that the tree above has been prepared. 3857 */ 3858 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et, 3859 struct ocfs2_extent_rec *insert_rec, 3860 struct ocfs2_extent_list *el, 3861 struct ocfs2_insert_type *insert) 3862 { 3863 int i = insert->ins_contig_index; 3864 unsigned int range; 3865 struct ocfs2_extent_rec *rec; 3866 3867 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 3868 3869 if (insert->ins_split != SPLIT_NONE) { 3870 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos)); 3871 BUG_ON(i == -1); 3872 rec = &el->l_recs[i]; 3873 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci), 3874 insert->ins_split, rec, 3875 insert_rec); 3876 goto rotate; 3877 } 3878 3879 /* 3880 * Contiguous insert - either left or right. 3881 */ 3882 if (insert->ins_contig != CONTIG_NONE) { 3883 rec = &el->l_recs[i]; 3884 if (insert->ins_contig == CONTIG_LEFT) { 3885 rec->e_blkno = insert_rec->e_blkno; 3886 rec->e_cpos = insert_rec->e_cpos; 3887 } 3888 le16_add_cpu(&rec->e_leaf_clusters, 3889 le16_to_cpu(insert_rec->e_leaf_clusters)); 3890 return; 3891 } 3892 3893 /* 3894 * Handle insert into an empty leaf. 3895 */ 3896 if (le16_to_cpu(el->l_next_free_rec) == 0 || 3897 ((le16_to_cpu(el->l_next_free_rec) == 1) && 3898 ocfs2_is_empty_extent(&el->l_recs[0]))) { 3899 el->l_recs[0] = *insert_rec; 3900 el->l_next_free_rec = cpu_to_le16(1); 3901 return; 3902 } 3903 3904 /* 3905 * Appending insert. 3906 */ 3907 if (insert->ins_appending == APPEND_TAIL) { 3908 i = le16_to_cpu(el->l_next_free_rec) - 1; 3909 rec = &el->l_recs[i]; 3910 range = le32_to_cpu(rec->e_cpos) 3911 + le16_to_cpu(rec->e_leaf_clusters); 3912 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range); 3913 3914 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >= 3915 le16_to_cpu(el->l_count), 3916 "owner %llu, depth %u, count %u, next free %u, " 3917 "rec.cpos %u, rec.clusters %u, " 3918 "insert.cpos %u, insert.clusters %u\n", 3919 ocfs2_metadata_cache_owner(et->et_ci), 3920 le16_to_cpu(el->l_tree_depth), 3921 le16_to_cpu(el->l_count), 3922 le16_to_cpu(el->l_next_free_rec), 3923 le32_to_cpu(el->l_recs[i].e_cpos), 3924 le16_to_cpu(el->l_recs[i].e_leaf_clusters), 3925 le32_to_cpu(insert_rec->e_cpos), 3926 le16_to_cpu(insert_rec->e_leaf_clusters)); 3927 i++; 3928 el->l_recs[i] = *insert_rec; 3929 le16_add_cpu(&el->l_next_free_rec, 1); 3930 return; 3931 } 3932 3933 rotate: 3934 /* 3935 * Ok, we have to rotate. 3936 * 3937 * At this point, it is safe to assume that inserting into an 3938 * empty leaf and appending to a leaf have both been handled 3939 * above. 3940 * 3941 * This leaf needs to have space, either by the empty 1st 3942 * extent record, or by virtue of an l_next_free_rec < l_count. 3943 */ 3944 ocfs2_rotate_leaf(el, insert_rec); 3945 } 3946 3947 static void ocfs2_adjust_rightmost_records(handle_t *handle, 3948 struct ocfs2_extent_tree *et, 3949 struct ocfs2_path *path, 3950 struct ocfs2_extent_rec *insert_rec) 3951 { 3952 int i, next_free; 3953 struct buffer_head *bh; 3954 struct ocfs2_extent_list *el; 3955 struct ocfs2_extent_rec *rec; 3956 3957 /* 3958 * Update everything except the leaf block. 3959 */ 3960 for (i = 0; i < path->p_tree_depth; i++) { 3961 bh = path->p_node[i].bh; 3962 el = path->p_node[i].el; 3963 3964 next_free = le16_to_cpu(el->l_next_free_rec); 3965 if (next_free == 0) { 3966 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 3967 "Owner %llu has a bad extent list\n", 3968 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 3969 return; 3970 } 3971 3972 rec = &el->l_recs[next_free - 1]; 3973 3974 rec->e_int_clusters = insert_rec->e_cpos; 3975 le32_add_cpu(&rec->e_int_clusters, 3976 le16_to_cpu(insert_rec->e_leaf_clusters)); 3977 le32_add_cpu(&rec->e_int_clusters, 3978 -le32_to_cpu(rec->e_cpos)); 3979 3980 ocfs2_journal_dirty(handle, bh); 3981 } 3982 } 3983 3984 static int ocfs2_append_rec_to_path(handle_t *handle, 3985 struct ocfs2_extent_tree *et, 3986 struct ocfs2_extent_rec *insert_rec, 3987 struct ocfs2_path *right_path, 3988 struct ocfs2_path **ret_left_path) 3989 { 3990 int ret, next_free; 3991 struct ocfs2_extent_list *el; 3992 struct ocfs2_path *left_path = NULL; 3993 3994 *ret_left_path = NULL; 3995 3996 /* 3997 * This shouldn't happen for non-trees. The extent rec cluster 3998 * count manipulation below only works for interior nodes. 3999 */ 4000 BUG_ON(right_path->p_tree_depth == 0); 4001 4002 /* 4003 * If our appending insert is at the leftmost edge of a leaf, 4004 * then we might need to update the rightmost records of the 4005 * neighboring path. 4006 */ 4007 el = path_leaf_el(right_path); 4008 next_free = le16_to_cpu(el->l_next_free_rec); 4009 if (next_free == 0 || 4010 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) { 4011 u32 left_cpos; 4012 4013 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 4014 right_path, &left_cpos); 4015 if (ret) { 4016 mlog_errno(ret); 4017 goto out; 4018 } 4019 4020 trace_ocfs2_append_rec_to_path( 4021 (unsigned long long) 4022 ocfs2_metadata_cache_owner(et->et_ci), 4023 le32_to_cpu(insert_rec->e_cpos), 4024 left_cpos); 4025 4026 /* 4027 * No need to worry if the append is already in the 4028 * leftmost leaf. 4029 */ 4030 if (left_cpos) { 4031 left_path = ocfs2_new_path_from_path(right_path); 4032 if (!left_path) { 4033 ret = -ENOMEM; 4034 mlog_errno(ret); 4035 goto out; 4036 } 4037 4038 ret = ocfs2_find_path(et->et_ci, left_path, 4039 left_cpos); 4040 if (ret) { 4041 mlog_errno(ret); 4042 goto out; 4043 } 4044 4045 /* 4046 * ocfs2_insert_path() will pass the left_path to the 4047 * journal for us. 4048 */ 4049 } 4050 } 4051 4052 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path); 4053 if (ret) { 4054 mlog_errno(ret); 4055 goto out; 4056 } 4057 4058 ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec); 4059 4060 *ret_left_path = left_path; 4061 ret = 0; 4062 out: 4063 if (ret != 0) 4064 ocfs2_free_path(left_path); 4065 4066 return ret; 4067 } 4068 4069 static void ocfs2_split_record(struct ocfs2_extent_tree *et, 4070 struct ocfs2_path *left_path, 4071 struct ocfs2_path *right_path, 4072 struct ocfs2_extent_rec *split_rec, 4073 enum ocfs2_split_type split) 4074 { 4075 int index; 4076 u32 cpos = le32_to_cpu(split_rec->e_cpos); 4077 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el; 4078 struct ocfs2_extent_rec *rec, *tmprec; 4079 4080 right_el = path_leaf_el(right_path); 4081 if (left_path) 4082 left_el = path_leaf_el(left_path); 4083 4084 el = right_el; 4085 insert_el = right_el; 4086 index = ocfs2_search_extent_list(el, cpos); 4087 if (index != -1) { 4088 if (index == 0 && left_path) { 4089 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 4090 4091 /* 4092 * This typically means that the record 4093 * started in the left path but moved to the 4094 * right as a result of rotation. We either 4095 * move the existing record to the left, or we 4096 * do the later insert there. 4097 * 4098 * In this case, the left path should always 4099 * exist as the rotate code will have passed 4100 * it back for a post-insert update. 4101 */ 4102 4103 if (split == SPLIT_LEFT) { 4104 /* 4105 * It's a left split. Since we know 4106 * that the rotate code gave us an 4107 * empty extent in the left path, we 4108 * can just do the insert there. 4109 */ 4110 insert_el = left_el; 4111 } else { 4112 /* 4113 * Right split - we have to move the 4114 * existing record over to the left 4115 * leaf. The insert will be into the 4116 * newly created empty extent in the 4117 * right leaf. 4118 */ 4119 tmprec = &right_el->l_recs[index]; 4120 ocfs2_rotate_leaf(left_el, tmprec); 4121 el = left_el; 4122 4123 memset(tmprec, 0, sizeof(*tmprec)); 4124 index = ocfs2_search_extent_list(left_el, cpos); 4125 BUG_ON(index == -1); 4126 } 4127 } 4128 } else { 4129 BUG_ON(!left_path); 4130 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0])); 4131 /* 4132 * Left path is easy - we can just allow the insert to 4133 * happen. 4134 */ 4135 el = left_el; 4136 insert_el = left_el; 4137 index = ocfs2_search_extent_list(el, cpos); 4138 BUG_ON(index == -1); 4139 } 4140 4141 rec = &el->l_recs[index]; 4142 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci), 4143 split, rec, split_rec); 4144 ocfs2_rotate_leaf(insert_el, split_rec); 4145 } 4146 4147 /* 4148 * This function only does inserts on an allocation b-tree. For tree 4149 * depth = 0, ocfs2_insert_at_leaf() is called directly. 4150 * 4151 * right_path is the path we want to do the actual insert 4152 * in. left_path should only be passed in if we need to update that 4153 * portion of the tree after an edge insert. 4154 */ 4155 static int ocfs2_insert_path(handle_t *handle, 4156 struct ocfs2_extent_tree *et, 4157 struct ocfs2_path *left_path, 4158 struct ocfs2_path *right_path, 4159 struct ocfs2_extent_rec *insert_rec, 4160 struct ocfs2_insert_type *insert) 4161 { 4162 int ret, subtree_index; 4163 struct buffer_head *leaf_bh = path_leaf_bh(right_path); 4164 4165 if (left_path) { 4166 /* 4167 * There's a chance that left_path got passed back to 4168 * us without being accounted for in the 4169 * journal. Extend our transaction here to be sure we 4170 * can change those blocks. 4171 */ 4172 ret = ocfs2_extend_trans(handle, left_path->p_tree_depth); 4173 if (ret < 0) { 4174 mlog_errno(ret); 4175 goto out; 4176 } 4177 4178 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 4179 if (ret < 0) { 4180 mlog_errno(ret); 4181 goto out; 4182 } 4183 } 4184 4185 /* 4186 * Pass both paths to the journal. The majority of inserts 4187 * will be touching all components anyway. 4188 */ 4189 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path); 4190 if (ret < 0) { 4191 mlog_errno(ret); 4192 goto out; 4193 } 4194 4195 if (insert->ins_split != SPLIT_NONE) { 4196 /* 4197 * We could call ocfs2_insert_at_leaf() for some types 4198 * of splits, but it's easier to just let one separate 4199 * function sort it all out. 4200 */ 4201 ocfs2_split_record(et, left_path, right_path, 4202 insert_rec, insert->ins_split); 4203 4204 /* 4205 * Split might have modified either leaf and we don't 4206 * have a guarantee that the later edge insert will 4207 * dirty this for us. 4208 */ 4209 if (left_path) 4210 ocfs2_journal_dirty(handle, 4211 path_leaf_bh(left_path)); 4212 } else 4213 ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path), 4214 insert); 4215 4216 ocfs2_journal_dirty(handle, leaf_bh); 4217 4218 if (left_path) { 4219 /* 4220 * The rotate code has indicated that we need to fix 4221 * up portions of the tree after the insert. 4222 * 4223 * XXX: Should we extend the transaction here? 4224 */ 4225 subtree_index = ocfs2_find_subtree_root(et, left_path, 4226 right_path); 4227 ocfs2_complete_edge_insert(handle, left_path, right_path, 4228 subtree_index); 4229 } 4230 4231 ret = 0; 4232 out: 4233 return ret; 4234 } 4235 4236 static int ocfs2_do_insert_extent(handle_t *handle, 4237 struct ocfs2_extent_tree *et, 4238 struct ocfs2_extent_rec *insert_rec, 4239 struct ocfs2_insert_type *type) 4240 { 4241 int ret, rotate = 0; 4242 u32 cpos; 4243 struct ocfs2_path *right_path = NULL; 4244 struct ocfs2_path *left_path = NULL; 4245 struct ocfs2_extent_list *el; 4246 4247 el = et->et_root_el; 4248 4249 ret = ocfs2_et_root_journal_access(handle, et, 4250 OCFS2_JOURNAL_ACCESS_WRITE); 4251 if (ret) { 4252 mlog_errno(ret); 4253 goto out; 4254 } 4255 4256 if (le16_to_cpu(el->l_tree_depth) == 0) { 4257 ocfs2_insert_at_leaf(et, insert_rec, el, type); 4258 goto out_update_clusters; 4259 } 4260 4261 right_path = ocfs2_new_path_from_et(et); 4262 if (!right_path) { 4263 ret = -ENOMEM; 4264 mlog_errno(ret); 4265 goto out; 4266 } 4267 4268 /* 4269 * Determine the path to start with. Rotations need the 4270 * rightmost path, everything else can go directly to the 4271 * target leaf. 4272 */ 4273 cpos = le32_to_cpu(insert_rec->e_cpos); 4274 if (type->ins_appending == APPEND_NONE && 4275 type->ins_contig == CONTIG_NONE) { 4276 rotate = 1; 4277 cpos = UINT_MAX; 4278 } 4279 4280 ret = ocfs2_find_path(et->et_ci, right_path, cpos); 4281 if (ret) { 4282 mlog_errno(ret); 4283 goto out; 4284 } 4285 4286 /* 4287 * Rotations and appends need special treatment - they modify 4288 * parts of the tree's above them. 4289 * 4290 * Both might pass back a path immediate to the left of the 4291 * one being inserted to. This will be cause 4292 * ocfs2_insert_path() to modify the rightmost records of 4293 * left_path to account for an edge insert. 4294 * 4295 * XXX: When modifying this code, keep in mind that an insert 4296 * can wind up skipping both of these two special cases... 4297 */ 4298 if (rotate) { 4299 ret = ocfs2_rotate_tree_right(handle, et, type->ins_split, 4300 le32_to_cpu(insert_rec->e_cpos), 4301 right_path, &left_path); 4302 if (ret) { 4303 mlog_errno(ret); 4304 goto out; 4305 } 4306 4307 /* 4308 * ocfs2_rotate_tree_right() might have extended the 4309 * transaction without re-journaling our tree root. 4310 */ 4311 ret = ocfs2_et_root_journal_access(handle, et, 4312 OCFS2_JOURNAL_ACCESS_WRITE); 4313 if (ret) { 4314 mlog_errno(ret); 4315 goto out; 4316 } 4317 } else if (type->ins_appending == APPEND_TAIL 4318 && type->ins_contig != CONTIG_LEFT) { 4319 ret = ocfs2_append_rec_to_path(handle, et, insert_rec, 4320 right_path, &left_path); 4321 if (ret) { 4322 mlog_errno(ret); 4323 goto out; 4324 } 4325 } 4326 4327 ret = ocfs2_insert_path(handle, et, left_path, right_path, 4328 insert_rec, type); 4329 if (ret) { 4330 mlog_errno(ret); 4331 goto out; 4332 } 4333 4334 out_update_clusters: 4335 if (type->ins_split == SPLIT_NONE) 4336 ocfs2_et_update_clusters(et, 4337 le16_to_cpu(insert_rec->e_leaf_clusters)); 4338 4339 ocfs2_journal_dirty(handle, et->et_root_bh); 4340 4341 out: 4342 ocfs2_free_path(left_path); 4343 ocfs2_free_path(right_path); 4344 4345 return ret; 4346 } 4347 4348 static int ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et, 4349 struct ocfs2_path *path, 4350 struct ocfs2_extent_list *el, int index, 4351 struct ocfs2_extent_rec *split_rec, 4352 struct ocfs2_merge_ctxt *ctxt) 4353 { 4354 int status = 0; 4355 enum ocfs2_contig_type ret = CONTIG_NONE; 4356 u32 left_cpos, right_cpos; 4357 struct ocfs2_extent_rec *rec = NULL; 4358 struct ocfs2_extent_list *new_el; 4359 struct ocfs2_path *left_path = NULL, *right_path = NULL; 4360 struct buffer_head *bh; 4361 struct ocfs2_extent_block *eb; 4362 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 4363 4364 if (index > 0) { 4365 rec = &el->l_recs[index - 1]; 4366 } else if (path->p_tree_depth > 0) { 4367 status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos); 4368 if (status) 4369 goto exit; 4370 4371 if (left_cpos != 0) { 4372 left_path = ocfs2_new_path_from_path(path); 4373 if (!left_path) { 4374 status = -ENOMEM; 4375 mlog_errno(status); 4376 goto exit; 4377 } 4378 4379 status = ocfs2_find_path(et->et_ci, left_path, 4380 left_cpos); 4381 if (status) 4382 goto free_left_path; 4383 4384 new_el = path_leaf_el(left_path); 4385 4386 if (le16_to_cpu(new_el->l_next_free_rec) != 4387 le16_to_cpu(new_el->l_count)) { 4388 bh = path_leaf_bh(left_path); 4389 eb = (struct ocfs2_extent_block *)bh->b_data; 4390 status = ocfs2_error(sb, 4391 "Extent block #%llu has an invalid l_next_free_rec of %d. It should have matched the l_count of %d\n", 4392 (unsigned long long)le64_to_cpu(eb->h_blkno), 4393 le16_to_cpu(new_el->l_next_free_rec), 4394 le16_to_cpu(new_el->l_count)); 4395 goto free_left_path; 4396 } 4397 rec = &new_el->l_recs[ 4398 le16_to_cpu(new_el->l_next_free_rec) - 1]; 4399 } 4400 } 4401 4402 /* 4403 * We're careful to check for an empty extent record here - 4404 * the merge code will know what to do if it sees one. 4405 */ 4406 if (rec) { 4407 if (index == 1 && ocfs2_is_empty_extent(rec)) { 4408 if (split_rec->e_cpos == el->l_recs[index].e_cpos) 4409 ret = CONTIG_RIGHT; 4410 } else { 4411 ret = ocfs2_et_extent_contig(et, rec, split_rec); 4412 } 4413 } 4414 4415 rec = NULL; 4416 if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) 4417 rec = &el->l_recs[index + 1]; 4418 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) && 4419 path->p_tree_depth > 0) { 4420 status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos); 4421 if (status) 4422 goto free_left_path; 4423 4424 if (right_cpos == 0) 4425 goto free_left_path; 4426 4427 right_path = ocfs2_new_path_from_path(path); 4428 if (!right_path) { 4429 status = -ENOMEM; 4430 mlog_errno(status); 4431 goto free_left_path; 4432 } 4433 4434 status = ocfs2_find_path(et->et_ci, right_path, right_cpos); 4435 if (status) 4436 goto free_right_path; 4437 4438 new_el = path_leaf_el(right_path); 4439 rec = &new_el->l_recs[0]; 4440 if (ocfs2_is_empty_extent(rec)) { 4441 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) { 4442 bh = path_leaf_bh(right_path); 4443 eb = (struct ocfs2_extent_block *)bh->b_data; 4444 status = ocfs2_error(sb, 4445 "Extent block #%llu has an invalid l_next_free_rec of %d\n", 4446 (unsigned long long)le64_to_cpu(eb->h_blkno), 4447 le16_to_cpu(new_el->l_next_free_rec)); 4448 goto free_right_path; 4449 } 4450 rec = &new_el->l_recs[1]; 4451 } 4452 } 4453 4454 if (rec) { 4455 enum ocfs2_contig_type contig_type; 4456 4457 contig_type = ocfs2_et_extent_contig(et, rec, split_rec); 4458 4459 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT) 4460 ret = CONTIG_LEFTRIGHT; 4461 else if (ret == CONTIG_NONE) 4462 ret = contig_type; 4463 } 4464 4465 free_right_path: 4466 ocfs2_free_path(right_path); 4467 free_left_path: 4468 ocfs2_free_path(left_path); 4469 exit: 4470 if (status == 0) 4471 ctxt->c_contig_type = ret; 4472 4473 return status; 4474 } 4475 4476 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et, 4477 struct ocfs2_insert_type *insert, 4478 struct ocfs2_extent_list *el, 4479 struct ocfs2_extent_rec *insert_rec) 4480 { 4481 int i; 4482 enum ocfs2_contig_type contig_type = CONTIG_NONE; 4483 4484 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4485 4486 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 4487 contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i], 4488 insert_rec); 4489 if (contig_type != CONTIG_NONE) { 4490 insert->ins_contig_index = i; 4491 break; 4492 } 4493 } 4494 insert->ins_contig = contig_type; 4495 4496 if (insert->ins_contig != CONTIG_NONE) { 4497 struct ocfs2_extent_rec *rec = 4498 &el->l_recs[insert->ins_contig_index]; 4499 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) + 4500 le16_to_cpu(insert_rec->e_leaf_clusters); 4501 4502 /* 4503 * Caller might want us to limit the size of extents, don't 4504 * calculate contiguousness if we might exceed that limit. 4505 */ 4506 if (et->et_max_leaf_clusters && 4507 (len > et->et_max_leaf_clusters)) 4508 insert->ins_contig = CONTIG_NONE; 4509 } 4510 } 4511 4512 /* 4513 * This should only be called against the righmost leaf extent list. 4514 * 4515 * ocfs2_figure_appending_type() will figure out whether we'll have to 4516 * insert at the tail of the rightmost leaf. 4517 * 4518 * This should also work against the root extent list for tree's with 0 4519 * depth. If we consider the root extent list to be the rightmost leaf node 4520 * then the logic here makes sense. 4521 */ 4522 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert, 4523 struct ocfs2_extent_list *el, 4524 struct ocfs2_extent_rec *insert_rec) 4525 { 4526 int i; 4527 u32 cpos = le32_to_cpu(insert_rec->e_cpos); 4528 struct ocfs2_extent_rec *rec; 4529 4530 insert->ins_appending = APPEND_NONE; 4531 4532 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4533 4534 if (!el->l_next_free_rec) 4535 goto set_tail_append; 4536 4537 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 4538 /* Were all records empty? */ 4539 if (le16_to_cpu(el->l_next_free_rec) == 1) 4540 goto set_tail_append; 4541 } 4542 4543 i = le16_to_cpu(el->l_next_free_rec) - 1; 4544 rec = &el->l_recs[i]; 4545 4546 if (cpos >= 4547 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters))) 4548 goto set_tail_append; 4549 4550 return; 4551 4552 set_tail_append: 4553 insert->ins_appending = APPEND_TAIL; 4554 } 4555 4556 /* 4557 * Helper function called at the beginning of an insert. 4558 * 4559 * This computes a few things that are commonly used in the process of 4560 * inserting into the btree: 4561 * - Whether the new extent is contiguous with an existing one. 4562 * - The current tree depth. 4563 * - Whether the insert is an appending one. 4564 * - The total # of free records in the tree. 4565 * 4566 * All of the information is stored on the ocfs2_insert_type 4567 * structure. 4568 */ 4569 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et, 4570 struct buffer_head **last_eb_bh, 4571 struct ocfs2_extent_rec *insert_rec, 4572 int *free_records, 4573 struct ocfs2_insert_type *insert) 4574 { 4575 int ret; 4576 struct ocfs2_extent_block *eb; 4577 struct ocfs2_extent_list *el; 4578 struct ocfs2_path *path = NULL; 4579 struct buffer_head *bh = NULL; 4580 4581 insert->ins_split = SPLIT_NONE; 4582 4583 el = et->et_root_el; 4584 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth); 4585 4586 if (el->l_tree_depth) { 4587 /* 4588 * If we have tree depth, we read in the 4589 * rightmost extent block ahead of time as 4590 * ocfs2_figure_insert_type() and ocfs2_add_branch() 4591 * may want it later. 4592 */ 4593 ret = ocfs2_read_extent_block(et->et_ci, 4594 ocfs2_et_get_last_eb_blk(et), 4595 &bh); 4596 if (ret) { 4597 mlog_errno(ret); 4598 goto out; 4599 } 4600 eb = (struct ocfs2_extent_block *) bh->b_data; 4601 el = &eb->h_list; 4602 } 4603 4604 /* 4605 * Unless we have a contiguous insert, we'll need to know if 4606 * there is room left in our allocation tree for another 4607 * extent record. 4608 * 4609 * XXX: This test is simplistic, we can search for empty 4610 * extent records too. 4611 */ 4612 *free_records = le16_to_cpu(el->l_count) - 4613 le16_to_cpu(el->l_next_free_rec); 4614 4615 if (!insert->ins_tree_depth) { 4616 ocfs2_figure_contig_type(et, insert, el, insert_rec); 4617 ocfs2_figure_appending_type(insert, el, insert_rec); 4618 return 0; 4619 } 4620 4621 path = ocfs2_new_path_from_et(et); 4622 if (!path) { 4623 ret = -ENOMEM; 4624 mlog_errno(ret); 4625 goto out; 4626 } 4627 4628 /* 4629 * In the case that we're inserting past what the tree 4630 * currently accounts for, ocfs2_find_path() will return for 4631 * us the rightmost tree path. This is accounted for below in 4632 * the appending code. 4633 */ 4634 ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos)); 4635 if (ret) { 4636 mlog_errno(ret); 4637 goto out; 4638 } 4639 4640 el = path_leaf_el(path); 4641 4642 /* 4643 * Now that we have the path, there's two things we want to determine: 4644 * 1) Contiguousness (also set contig_index if this is so) 4645 * 4646 * 2) Are we doing an append? We can trivially break this up 4647 * into two types of appends: simple record append, or a 4648 * rotate inside the tail leaf. 4649 */ 4650 ocfs2_figure_contig_type(et, insert, el, insert_rec); 4651 4652 /* 4653 * The insert code isn't quite ready to deal with all cases of 4654 * left contiguousness. Specifically, if it's an insert into 4655 * the 1st record in a leaf, it will require the adjustment of 4656 * cluster count on the last record of the path directly to it's 4657 * left. For now, just catch that case and fool the layers 4658 * above us. This works just fine for tree_depth == 0, which 4659 * is why we allow that above. 4660 */ 4661 if (insert->ins_contig == CONTIG_LEFT && 4662 insert->ins_contig_index == 0) 4663 insert->ins_contig = CONTIG_NONE; 4664 4665 /* 4666 * Ok, so we can simply compare against last_eb to figure out 4667 * whether the path doesn't exist. This will only happen in 4668 * the case that we're doing a tail append, so maybe we can 4669 * take advantage of that information somehow. 4670 */ 4671 if (ocfs2_et_get_last_eb_blk(et) == 4672 path_leaf_bh(path)->b_blocknr) { 4673 /* 4674 * Ok, ocfs2_find_path() returned us the rightmost 4675 * tree path. This might be an appending insert. There are 4676 * two cases: 4677 * 1) We're doing a true append at the tail: 4678 * -This might even be off the end of the leaf 4679 * 2) We're "appending" by rotating in the tail 4680 */ 4681 ocfs2_figure_appending_type(insert, el, insert_rec); 4682 } 4683 4684 out: 4685 ocfs2_free_path(path); 4686 4687 if (ret == 0) 4688 *last_eb_bh = bh; 4689 else 4690 brelse(bh); 4691 return ret; 4692 } 4693 4694 /* 4695 * Insert an extent into a btree. 4696 * 4697 * The caller needs to update the owning btree's cluster count. 4698 */ 4699 int ocfs2_insert_extent(handle_t *handle, 4700 struct ocfs2_extent_tree *et, 4701 u32 cpos, 4702 u64 start_blk, 4703 u32 new_clusters, 4704 u8 flags, 4705 struct ocfs2_alloc_context *meta_ac) 4706 { 4707 int status; 4708 int free_records; 4709 struct buffer_head *last_eb_bh = NULL; 4710 struct ocfs2_insert_type insert = {0, }; 4711 struct ocfs2_extent_rec rec; 4712 4713 trace_ocfs2_insert_extent_start( 4714 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 4715 cpos, new_clusters); 4716 4717 memset(&rec, 0, sizeof(rec)); 4718 rec.e_cpos = cpu_to_le32(cpos); 4719 rec.e_blkno = cpu_to_le64(start_blk); 4720 rec.e_leaf_clusters = cpu_to_le16(new_clusters); 4721 rec.e_flags = flags; 4722 status = ocfs2_et_insert_check(et, &rec); 4723 if (status) { 4724 mlog_errno(status); 4725 goto bail; 4726 } 4727 4728 status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec, 4729 &free_records, &insert); 4730 if (status < 0) { 4731 mlog_errno(status); 4732 goto bail; 4733 } 4734 4735 trace_ocfs2_insert_extent(insert.ins_appending, insert.ins_contig, 4736 insert.ins_contig_index, free_records, 4737 insert.ins_tree_depth); 4738 4739 if (insert.ins_contig == CONTIG_NONE && free_records == 0) { 4740 status = ocfs2_grow_tree(handle, et, 4741 &insert.ins_tree_depth, &last_eb_bh, 4742 meta_ac); 4743 if (status) { 4744 mlog_errno(status); 4745 goto bail; 4746 } 4747 } 4748 4749 /* Finally, we can add clusters. This might rotate the tree for us. */ 4750 status = ocfs2_do_insert_extent(handle, et, &rec, &insert); 4751 if (status < 0) 4752 mlog_errno(status); 4753 else 4754 ocfs2_et_extent_map_insert(et, &rec); 4755 4756 bail: 4757 brelse(last_eb_bh); 4758 4759 return status; 4760 } 4761 4762 /* 4763 * Allcate and add clusters into the extent b-tree. 4764 * The new clusters(clusters_to_add) will be inserted at logical_offset. 4765 * The extent b-tree's root is specified by et, and 4766 * it is not limited to the file storage. Any extent tree can use this 4767 * function if it implements the proper ocfs2_extent_tree. 4768 */ 4769 int ocfs2_add_clusters_in_btree(handle_t *handle, 4770 struct ocfs2_extent_tree *et, 4771 u32 *logical_offset, 4772 u32 clusters_to_add, 4773 int mark_unwritten, 4774 struct ocfs2_alloc_context *data_ac, 4775 struct ocfs2_alloc_context *meta_ac, 4776 enum ocfs2_alloc_restarted *reason_ret) 4777 { 4778 int status = 0, err = 0; 4779 int need_free = 0; 4780 int free_extents; 4781 enum ocfs2_alloc_restarted reason = RESTART_NONE; 4782 u32 bit_off, num_bits; 4783 u64 block; 4784 u8 flags = 0; 4785 struct ocfs2_super *osb = 4786 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 4787 4788 BUG_ON(!clusters_to_add); 4789 4790 if (mark_unwritten) 4791 flags = OCFS2_EXT_UNWRITTEN; 4792 4793 free_extents = ocfs2_num_free_extents(et); 4794 if (free_extents < 0) { 4795 status = free_extents; 4796 mlog_errno(status); 4797 goto leave; 4798 } 4799 4800 /* there are two cases which could cause us to EAGAIN in the 4801 * we-need-more-metadata case: 4802 * 1) we haven't reserved *any* 4803 * 2) we are so fragmented, we've needed to add metadata too 4804 * many times. */ 4805 if (!free_extents && !meta_ac) { 4806 err = -1; 4807 status = -EAGAIN; 4808 reason = RESTART_META; 4809 goto leave; 4810 } else if ((!free_extents) 4811 && (ocfs2_alloc_context_bits_left(meta_ac) 4812 < ocfs2_extend_meta_needed(et->et_root_el))) { 4813 err = -2; 4814 status = -EAGAIN; 4815 reason = RESTART_META; 4816 goto leave; 4817 } 4818 4819 status = __ocfs2_claim_clusters(handle, data_ac, 1, 4820 clusters_to_add, &bit_off, &num_bits); 4821 if (status < 0) { 4822 if (status != -ENOSPC) 4823 mlog_errno(status); 4824 goto leave; 4825 } 4826 4827 BUG_ON(num_bits > clusters_to_add); 4828 4829 /* reserve our write early -- insert_extent may update the tree root */ 4830 status = ocfs2_et_root_journal_access(handle, et, 4831 OCFS2_JOURNAL_ACCESS_WRITE); 4832 if (status < 0) { 4833 mlog_errno(status); 4834 need_free = 1; 4835 goto bail; 4836 } 4837 4838 block = ocfs2_clusters_to_blocks(osb->sb, bit_off); 4839 trace_ocfs2_add_clusters_in_btree( 4840 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 4841 bit_off, num_bits); 4842 status = ocfs2_insert_extent(handle, et, *logical_offset, block, 4843 num_bits, flags, meta_ac); 4844 if (status < 0) { 4845 mlog_errno(status); 4846 need_free = 1; 4847 goto bail; 4848 } 4849 4850 ocfs2_journal_dirty(handle, et->et_root_bh); 4851 4852 clusters_to_add -= num_bits; 4853 *logical_offset += num_bits; 4854 4855 if (clusters_to_add) { 4856 err = clusters_to_add; 4857 status = -EAGAIN; 4858 reason = RESTART_TRANS; 4859 } 4860 4861 bail: 4862 if (need_free) { 4863 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL) 4864 ocfs2_free_local_alloc_bits(osb, handle, data_ac, 4865 bit_off, num_bits); 4866 else 4867 ocfs2_free_clusters(handle, 4868 data_ac->ac_inode, 4869 data_ac->ac_bh, 4870 ocfs2_clusters_to_blocks(osb->sb, bit_off), 4871 num_bits); 4872 } 4873 4874 leave: 4875 if (reason_ret) 4876 *reason_ret = reason; 4877 trace_ocfs2_add_clusters_in_btree_ret(status, reason, err); 4878 return status; 4879 } 4880 4881 static void ocfs2_make_right_split_rec(struct super_block *sb, 4882 struct ocfs2_extent_rec *split_rec, 4883 u32 cpos, 4884 struct ocfs2_extent_rec *rec) 4885 { 4886 u32 rec_cpos = le32_to_cpu(rec->e_cpos); 4887 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters); 4888 4889 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec)); 4890 4891 split_rec->e_cpos = cpu_to_le32(cpos); 4892 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos); 4893 4894 split_rec->e_blkno = rec->e_blkno; 4895 le64_add_cpu(&split_rec->e_blkno, 4896 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos)); 4897 4898 split_rec->e_flags = rec->e_flags; 4899 } 4900 4901 static int ocfs2_split_and_insert(handle_t *handle, 4902 struct ocfs2_extent_tree *et, 4903 struct ocfs2_path *path, 4904 struct buffer_head **last_eb_bh, 4905 int split_index, 4906 struct ocfs2_extent_rec *orig_split_rec, 4907 struct ocfs2_alloc_context *meta_ac) 4908 { 4909 int ret = 0, depth; 4910 unsigned int insert_range, rec_range, do_leftright = 0; 4911 struct ocfs2_extent_rec tmprec; 4912 struct ocfs2_extent_list *rightmost_el; 4913 struct ocfs2_extent_rec rec; 4914 struct ocfs2_extent_rec split_rec = *orig_split_rec; 4915 struct ocfs2_insert_type insert; 4916 struct ocfs2_extent_block *eb; 4917 4918 leftright: 4919 /* 4920 * Store a copy of the record on the stack - it might move 4921 * around as the tree is manipulated below. 4922 */ 4923 rec = path_leaf_el(path)->l_recs[split_index]; 4924 4925 rightmost_el = et->et_root_el; 4926 4927 depth = le16_to_cpu(rightmost_el->l_tree_depth); 4928 if (depth) { 4929 BUG_ON(!(*last_eb_bh)); 4930 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 4931 rightmost_el = &eb->h_list; 4932 } 4933 4934 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 4935 le16_to_cpu(rightmost_el->l_count)) { 4936 ret = ocfs2_grow_tree(handle, et, 4937 &depth, last_eb_bh, meta_ac); 4938 if (ret) { 4939 mlog_errno(ret); 4940 goto out; 4941 } 4942 } 4943 4944 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 4945 insert.ins_appending = APPEND_NONE; 4946 insert.ins_contig = CONTIG_NONE; 4947 insert.ins_tree_depth = depth; 4948 4949 insert_range = le32_to_cpu(split_rec.e_cpos) + 4950 le16_to_cpu(split_rec.e_leaf_clusters); 4951 rec_range = le32_to_cpu(rec.e_cpos) + 4952 le16_to_cpu(rec.e_leaf_clusters); 4953 4954 if (split_rec.e_cpos == rec.e_cpos) { 4955 insert.ins_split = SPLIT_LEFT; 4956 } else if (insert_range == rec_range) { 4957 insert.ins_split = SPLIT_RIGHT; 4958 } else { 4959 /* 4960 * Left/right split. We fake this as a right split 4961 * first and then make a second pass as a left split. 4962 */ 4963 insert.ins_split = SPLIT_RIGHT; 4964 4965 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci), 4966 &tmprec, insert_range, &rec); 4967 4968 split_rec = tmprec; 4969 4970 BUG_ON(do_leftright); 4971 do_leftright = 1; 4972 } 4973 4974 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert); 4975 if (ret) { 4976 mlog_errno(ret); 4977 goto out; 4978 } 4979 4980 if (do_leftright == 1) { 4981 u32 cpos; 4982 struct ocfs2_extent_list *el; 4983 4984 do_leftright++; 4985 split_rec = *orig_split_rec; 4986 4987 ocfs2_reinit_path(path, 1); 4988 4989 cpos = le32_to_cpu(split_rec.e_cpos); 4990 ret = ocfs2_find_path(et->et_ci, path, cpos); 4991 if (ret) { 4992 mlog_errno(ret); 4993 goto out; 4994 } 4995 4996 el = path_leaf_el(path); 4997 split_index = ocfs2_search_extent_list(el, cpos); 4998 if (split_index == -1) { 4999 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5000 "Owner %llu has an extent at cpos %u which can no longer be found\n", 5001 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5002 cpos); 5003 ret = -EROFS; 5004 goto out; 5005 } 5006 goto leftright; 5007 } 5008 out: 5009 5010 return ret; 5011 } 5012 5013 static int ocfs2_replace_extent_rec(handle_t *handle, 5014 struct ocfs2_extent_tree *et, 5015 struct ocfs2_path *path, 5016 struct ocfs2_extent_list *el, 5017 int split_index, 5018 struct ocfs2_extent_rec *split_rec) 5019 { 5020 int ret; 5021 5022 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path, 5023 path_num_items(path) - 1); 5024 if (ret) { 5025 mlog_errno(ret); 5026 goto out; 5027 } 5028 5029 el->l_recs[split_index] = *split_rec; 5030 5031 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 5032 out: 5033 return ret; 5034 } 5035 5036 /* 5037 * Split part or all of the extent record at split_index in the leaf 5038 * pointed to by path. Merge with the contiguous extent record if needed. 5039 * 5040 * Care is taken to handle contiguousness so as to not grow the tree. 5041 * 5042 * meta_ac is not strictly necessary - we only truly need it if growth 5043 * of the tree is required. All other cases will degrade into a less 5044 * optimal tree layout. 5045 * 5046 * last_eb_bh should be the rightmost leaf block for any extent 5047 * btree. Since a split may grow the tree or a merge might shrink it, 5048 * the caller cannot trust the contents of that buffer after this call. 5049 * 5050 * This code is optimized for readability - several passes might be 5051 * made over certain portions of the tree. All of those blocks will 5052 * have been brought into cache (and pinned via the journal), so the 5053 * extra overhead is not expressed in terms of disk reads. 5054 */ 5055 int ocfs2_split_extent(handle_t *handle, 5056 struct ocfs2_extent_tree *et, 5057 struct ocfs2_path *path, 5058 int split_index, 5059 struct ocfs2_extent_rec *split_rec, 5060 struct ocfs2_alloc_context *meta_ac, 5061 struct ocfs2_cached_dealloc_ctxt *dealloc) 5062 { 5063 int ret = 0; 5064 struct ocfs2_extent_list *el = path_leaf_el(path); 5065 struct buffer_head *last_eb_bh = NULL; 5066 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 5067 struct ocfs2_merge_ctxt ctxt; 5068 5069 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) || 5070 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) < 5071 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) { 5072 ret = -EIO; 5073 mlog_errno(ret); 5074 goto out; 5075 } 5076 5077 ret = ocfs2_figure_merge_contig_type(et, path, el, 5078 split_index, 5079 split_rec, 5080 &ctxt); 5081 if (ret) { 5082 mlog_errno(ret); 5083 goto out; 5084 } 5085 5086 /* 5087 * The core merge / split code wants to know how much room is 5088 * left in this allocation tree, so we pass the 5089 * rightmost extent list. 5090 */ 5091 if (path->p_tree_depth) { 5092 ret = ocfs2_read_extent_block(et->et_ci, 5093 ocfs2_et_get_last_eb_blk(et), 5094 &last_eb_bh); 5095 if (ret) { 5096 mlog_errno(ret); 5097 goto out; 5098 } 5099 } 5100 5101 if (rec->e_cpos == split_rec->e_cpos && 5102 rec->e_leaf_clusters == split_rec->e_leaf_clusters) 5103 ctxt.c_split_covers_rec = 1; 5104 else 5105 ctxt.c_split_covers_rec = 0; 5106 5107 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]); 5108 5109 trace_ocfs2_split_extent(split_index, ctxt.c_contig_type, 5110 ctxt.c_has_empty_extent, 5111 ctxt.c_split_covers_rec); 5112 5113 if (ctxt.c_contig_type == CONTIG_NONE) { 5114 if (ctxt.c_split_covers_rec) 5115 ret = ocfs2_replace_extent_rec(handle, et, path, el, 5116 split_index, split_rec); 5117 else 5118 ret = ocfs2_split_and_insert(handle, et, path, 5119 &last_eb_bh, split_index, 5120 split_rec, meta_ac); 5121 if (ret) 5122 mlog_errno(ret); 5123 } else { 5124 ret = ocfs2_try_to_merge_extent(handle, et, path, 5125 split_index, split_rec, 5126 dealloc, &ctxt); 5127 if (ret) 5128 mlog_errno(ret); 5129 } 5130 5131 out: 5132 brelse(last_eb_bh); 5133 return ret; 5134 } 5135 5136 /* 5137 * Change the flags of the already-existing extent at cpos for len clusters. 5138 * 5139 * new_flags: the flags we want to set. 5140 * clear_flags: the flags we want to clear. 5141 * phys: the new physical offset we want this new extent starts from. 5142 * 5143 * If the existing extent is larger than the request, initiate a 5144 * split. An attempt will be made at merging with adjacent extents. 5145 * 5146 * The caller is responsible for passing down meta_ac if we'll need it. 5147 */ 5148 int ocfs2_change_extent_flag(handle_t *handle, 5149 struct ocfs2_extent_tree *et, 5150 u32 cpos, u32 len, u32 phys, 5151 struct ocfs2_alloc_context *meta_ac, 5152 struct ocfs2_cached_dealloc_ctxt *dealloc, 5153 int new_flags, int clear_flags) 5154 { 5155 int ret, index; 5156 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 5157 u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys); 5158 struct ocfs2_extent_rec split_rec; 5159 struct ocfs2_path *left_path = NULL; 5160 struct ocfs2_extent_list *el; 5161 struct ocfs2_extent_rec *rec; 5162 5163 left_path = ocfs2_new_path_from_et(et); 5164 if (!left_path) { 5165 ret = -ENOMEM; 5166 mlog_errno(ret); 5167 goto out; 5168 } 5169 5170 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 5171 if (ret) { 5172 mlog_errno(ret); 5173 goto out; 5174 } 5175 el = path_leaf_el(left_path); 5176 5177 index = ocfs2_search_extent_list(el, cpos); 5178 if (index == -1) { 5179 ocfs2_error(sb, 5180 "Owner %llu has an extent at cpos %u which can no longer be found\n", 5181 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5182 cpos); 5183 ret = -EROFS; 5184 goto out; 5185 } 5186 5187 ret = -EIO; 5188 rec = &el->l_recs[index]; 5189 if (new_flags && (rec->e_flags & new_flags)) { 5190 mlog(ML_ERROR, "Owner %llu tried to set %d flags on an " 5191 "extent that already had them\n", 5192 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5193 new_flags); 5194 goto out; 5195 } 5196 5197 if (clear_flags && !(rec->e_flags & clear_flags)) { 5198 mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an " 5199 "extent that didn't have them\n", 5200 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5201 clear_flags); 5202 goto out; 5203 } 5204 5205 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec)); 5206 split_rec.e_cpos = cpu_to_le32(cpos); 5207 split_rec.e_leaf_clusters = cpu_to_le16(len); 5208 split_rec.e_blkno = cpu_to_le64(start_blkno); 5209 split_rec.e_flags = rec->e_flags; 5210 if (new_flags) 5211 split_rec.e_flags |= new_flags; 5212 if (clear_flags) 5213 split_rec.e_flags &= ~clear_flags; 5214 5215 ret = ocfs2_split_extent(handle, et, left_path, 5216 index, &split_rec, meta_ac, 5217 dealloc); 5218 if (ret) 5219 mlog_errno(ret); 5220 5221 out: 5222 ocfs2_free_path(left_path); 5223 return ret; 5224 5225 } 5226 5227 /* 5228 * Mark the already-existing extent at cpos as written for len clusters. 5229 * This removes the unwritten extent flag. 5230 * 5231 * If the existing extent is larger than the request, initiate a 5232 * split. An attempt will be made at merging with adjacent extents. 5233 * 5234 * The caller is responsible for passing down meta_ac if we'll need it. 5235 */ 5236 int ocfs2_mark_extent_written(struct inode *inode, 5237 struct ocfs2_extent_tree *et, 5238 handle_t *handle, u32 cpos, u32 len, u32 phys, 5239 struct ocfs2_alloc_context *meta_ac, 5240 struct ocfs2_cached_dealloc_ctxt *dealloc) 5241 { 5242 int ret; 5243 5244 trace_ocfs2_mark_extent_written( 5245 (unsigned long long)OCFS2_I(inode)->ip_blkno, 5246 cpos, len, phys); 5247 5248 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) { 5249 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents that are being written to, but the feature bit is not set in the super block\n", 5250 (unsigned long long)OCFS2_I(inode)->ip_blkno); 5251 ret = -EROFS; 5252 goto out; 5253 } 5254 5255 /* 5256 * XXX: This should be fixed up so that we just re-insert the 5257 * next extent records. 5258 */ 5259 ocfs2_et_extent_map_truncate(et, 0); 5260 5261 ret = ocfs2_change_extent_flag(handle, et, cpos, 5262 len, phys, meta_ac, dealloc, 5263 0, OCFS2_EXT_UNWRITTEN); 5264 if (ret) 5265 mlog_errno(ret); 5266 5267 out: 5268 return ret; 5269 } 5270 5271 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et, 5272 struct ocfs2_path *path, 5273 int index, u32 new_range, 5274 struct ocfs2_alloc_context *meta_ac) 5275 { 5276 int ret, depth, credits; 5277 struct buffer_head *last_eb_bh = NULL; 5278 struct ocfs2_extent_block *eb; 5279 struct ocfs2_extent_list *rightmost_el, *el; 5280 struct ocfs2_extent_rec split_rec; 5281 struct ocfs2_extent_rec *rec; 5282 struct ocfs2_insert_type insert; 5283 5284 /* 5285 * Setup the record to split before we grow the tree. 5286 */ 5287 el = path_leaf_el(path); 5288 rec = &el->l_recs[index]; 5289 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci), 5290 &split_rec, new_range, rec); 5291 5292 depth = path->p_tree_depth; 5293 if (depth > 0) { 5294 ret = ocfs2_read_extent_block(et->et_ci, 5295 ocfs2_et_get_last_eb_blk(et), 5296 &last_eb_bh); 5297 if (ret < 0) { 5298 mlog_errno(ret); 5299 goto out; 5300 } 5301 5302 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5303 rightmost_el = &eb->h_list; 5304 } else 5305 rightmost_el = path_leaf_el(path); 5306 5307 credits = path->p_tree_depth + 5308 ocfs2_extend_meta_needed(et->et_root_el); 5309 ret = ocfs2_extend_trans(handle, credits); 5310 if (ret) { 5311 mlog_errno(ret); 5312 goto out; 5313 } 5314 5315 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 5316 le16_to_cpu(rightmost_el->l_count)) { 5317 ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh, 5318 meta_ac); 5319 if (ret) { 5320 mlog_errno(ret); 5321 goto out; 5322 } 5323 } 5324 5325 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 5326 insert.ins_appending = APPEND_NONE; 5327 insert.ins_contig = CONTIG_NONE; 5328 insert.ins_split = SPLIT_RIGHT; 5329 insert.ins_tree_depth = depth; 5330 5331 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert); 5332 if (ret) 5333 mlog_errno(ret); 5334 5335 out: 5336 brelse(last_eb_bh); 5337 return ret; 5338 } 5339 5340 static int ocfs2_truncate_rec(handle_t *handle, 5341 struct ocfs2_extent_tree *et, 5342 struct ocfs2_path *path, int index, 5343 struct ocfs2_cached_dealloc_ctxt *dealloc, 5344 u32 cpos, u32 len) 5345 { 5346 int ret; 5347 u32 left_cpos, rec_range, trunc_range; 5348 int is_rightmost_tree_rec = 0; 5349 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 5350 struct ocfs2_path *left_path = NULL; 5351 struct ocfs2_extent_list *el = path_leaf_el(path); 5352 struct ocfs2_extent_rec *rec; 5353 struct ocfs2_extent_block *eb; 5354 5355 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) { 5356 /* extend credit for ocfs2_remove_rightmost_path */ 5357 ret = ocfs2_extend_rotate_transaction(handle, 0, 5358 jbd2_handle_buffer_credits(handle), 5359 path); 5360 if (ret) { 5361 mlog_errno(ret); 5362 goto out; 5363 } 5364 5365 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 5366 if (ret) { 5367 mlog_errno(ret); 5368 goto out; 5369 } 5370 5371 index--; 5372 } 5373 5374 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) && 5375 path->p_tree_depth) { 5376 /* 5377 * Check whether this is the rightmost tree record. If 5378 * we remove all of this record or part of its right 5379 * edge then an update of the record lengths above it 5380 * will be required. 5381 */ 5382 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 5383 if (eb->h_next_leaf_blk == 0) 5384 is_rightmost_tree_rec = 1; 5385 } 5386 5387 rec = &el->l_recs[index]; 5388 if (index == 0 && path->p_tree_depth && 5389 le32_to_cpu(rec->e_cpos) == cpos) { 5390 /* 5391 * Changing the leftmost offset (via partial or whole 5392 * record truncate) of an interior (or rightmost) path 5393 * means we have to update the subtree that is formed 5394 * by this leaf and the one to it's left. 5395 * 5396 * There are two cases we can skip: 5397 * 1) Path is the leftmost one in our btree. 5398 * 2) The leaf is rightmost and will be empty after 5399 * we remove the extent record - the rotate code 5400 * knows how to update the newly formed edge. 5401 */ 5402 5403 ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos); 5404 if (ret) { 5405 mlog_errno(ret); 5406 goto out; 5407 } 5408 5409 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) { 5410 left_path = ocfs2_new_path_from_path(path); 5411 if (!left_path) { 5412 ret = -ENOMEM; 5413 mlog_errno(ret); 5414 goto out; 5415 } 5416 5417 ret = ocfs2_find_path(et->et_ci, left_path, 5418 left_cpos); 5419 if (ret) { 5420 mlog_errno(ret); 5421 goto out; 5422 } 5423 } 5424 } 5425 5426 ret = ocfs2_extend_rotate_transaction(handle, 0, 5427 jbd2_handle_buffer_credits(handle), 5428 path); 5429 if (ret) { 5430 mlog_errno(ret); 5431 goto out; 5432 } 5433 5434 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 5435 if (ret) { 5436 mlog_errno(ret); 5437 goto out; 5438 } 5439 5440 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 5441 if (ret) { 5442 mlog_errno(ret); 5443 goto out; 5444 } 5445 5446 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5447 trunc_range = cpos + len; 5448 5449 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) { 5450 int next_free; 5451 5452 memset(rec, 0, sizeof(*rec)); 5453 ocfs2_cleanup_merge(el, index); 5454 5455 next_free = le16_to_cpu(el->l_next_free_rec); 5456 if (is_rightmost_tree_rec && next_free > 1) { 5457 /* 5458 * We skip the edge update if this path will 5459 * be deleted by the rotate code. 5460 */ 5461 rec = &el->l_recs[next_free - 1]; 5462 ocfs2_adjust_rightmost_records(handle, et, path, 5463 rec); 5464 } 5465 } else if (le32_to_cpu(rec->e_cpos) == cpos) { 5466 /* Remove leftmost portion of the record. */ 5467 le32_add_cpu(&rec->e_cpos, len); 5468 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len)); 5469 le16_add_cpu(&rec->e_leaf_clusters, -len); 5470 } else if (rec_range == trunc_range) { 5471 /* Remove rightmost portion of the record */ 5472 le16_add_cpu(&rec->e_leaf_clusters, -len); 5473 if (is_rightmost_tree_rec) 5474 ocfs2_adjust_rightmost_records(handle, et, path, rec); 5475 } else { 5476 /* Caller should have trapped this. */ 5477 mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) " 5478 "(%u, %u)\n", 5479 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5480 le32_to_cpu(rec->e_cpos), 5481 le16_to_cpu(rec->e_leaf_clusters), cpos, len); 5482 BUG(); 5483 } 5484 5485 if (left_path) { 5486 int subtree_index; 5487 5488 subtree_index = ocfs2_find_subtree_root(et, left_path, path); 5489 ocfs2_complete_edge_insert(handle, left_path, path, 5490 subtree_index); 5491 } 5492 5493 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 5494 5495 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 5496 if (ret) 5497 mlog_errno(ret); 5498 5499 out: 5500 ocfs2_free_path(left_path); 5501 return ret; 5502 } 5503 5504 int ocfs2_remove_extent(handle_t *handle, 5505 struct ocfs2_extent_tree *et, 5506 u32 cpos, u32 len, 5507 struct ocfs2_alloc_context *meta_ac, 5508 struct ocfs2_cached_dealloc_ctxt *dealloc) 5509 { 5510 int ret, index; 5511 u32 rec_range, trunc_range; 5512 struct ocfs2_extent_rec *rec; 5513 struct ocfs2_extent_list *el; 5514 struct ocfs2_path *path = NULL; 5515 5516 /* 5517 * XXX: Why are we truncating to 0 instead of wherever this 5518 * affects us? 5519 */ 5520 ocfs2_et_extent_map_truncate(et, 0); 5521 5522 path = ocfs2_new_path_from_et(et); 5523 if (!path) { 5524 ret = -ENOMEM; 5525 mlog_errno(ret); 5526 goto out; 5527 } 5528 5529 ret = ocfs2_find_path(et->et_ci, path, cpos); 5530 if (ret) { 5531 mlog_errno(ret); 5532 goto out; 5533 } 5534 5535 el = path_leaf_el(path); 5536 index = ocfs2_search_extent_list(el, cpos); 5537 if (index == -1) { 5538 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5539 "Owner %llu has an extent at cpos %u which can no longer be found\n", 5540 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5541 cpos); 5542 ret = -EROFS; 5543 goto out; 5544 } 5545 5546 /* 5547 * We have 3 cases of extent removal: 5548 * 1) Range covers the entire extent rec 5549 * 2) Range begins or ends on one edge of the extent rec 5550 * 3) Range is in the middle of the extent rec (no shared edges) 5551 * 5552 * For case 1 we remove the extent rec and left rotate to 5553 * fill the hole. 5554 * 5555 * For case 2 we just shrink the existing extent rec, with a 5556 * tree update if the shrinking edge is also the edge of an 5557 * extent block. 5558 * 5559 * For case 3 we do a right split to turn the extent rec into 5560 * something case 2 can handle. 5561 */ 5562 rec = &el->l_recs[index]; 5563 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5564 trunc_range = cpos + len; 5565 5566 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range); 5567 5568 trace_ocfs2_remove_extent( 5569 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5570 cpos, len, index, le32_to_cpu(rec->e_cpos), 5571 ocfs2_rec_clusters(el, rec)); 5572 5573 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) { 5574 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc, 5575 cpos, len); 5576 if (ret) { 5577 mlog_errno(ret); 5578 goto out; 5579 } 5580 } else { 5581 ret = ocfs2_split_tree(handle, et, path, index, 5582 trunc_range, meta_ac); 5583 if (ret) { 5584 mlog_errno(ret); 5585 goto out; 5586 } 5587 5588 /* 5589 * The split could have manipulated the tree enough to 5590 * move the record location, so we have to look for it again. 5591 */ 5592 ocfs2_reinit_path(path, 1); 5593 5594 ret = ocfs2_find_path(et->et_ci, path, cpos); 5595 if (ret) { 5596 mlog_errno(ret); 5597 goto out; 5598 } 5599 5600 el = path_leaf_el(path); 5601 index = ocfs2_search_extent_list(el, cpos); 5602 if (index == -1) { 5603 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5604 "Owner %llu: split at cpos %u lost record\n", 5605 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5606 cpos); 5607 ret = -EROFS; 5608 goto out; 5609 } 5610 5611 /* 5612 * Double check our values here. If anything is fishy, 5613 * it's easier to catch it at the top level. 5614 */ 5615 rec = &el->l_recs[index]; 5616 rec_range = le32_to_cpu(rec->e_cpos) + 5617 ocfs2_rec_clusters(el, rec); 5618 if (rec_range != trunc_range) { 5619 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5620 "Owner %llu: error after split at cpos %u trunc len %u, existing record is (%u,%u)\n", 5621 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5622 cpos, len, le32_to_cpu(rec->e_cpos), 5623 ocfs2_rec_clusters(el, rec)); 5624 ret = -EROFS; 5625 goto out; 5626 } 5627 5628 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc, 5629 cpos, len); 5630 if (ret) 5631 mlog_errno(ret); 5632 } 5633 5634 out: 5635 ocfs2_free_path(path); 5636 return ret; 5637 } 5638 5639 /* 5640 * ocfs2_reserve_blocks_for_rec_trunc() would look basically the 5641 * same as ocfs2_lock_alloctors(), except for it accepts a blocks 5642 * number to reserve some extra blocks, and it only handles meta 5643 * data allocations. 5644 * 5645 * Currently, only ocfs2_remove_btree_range() uses it for truncating 5646 * and punching holes. 5647 */ 5648 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode, 5649 struct ocfs2_extent_tree *et, 5650 u32 extents_to_split, 5651 struct ocfs2_alloc_context **ac, 5652 int extra_blocks) 5653 { 5654 int ret = 0, num_free_extents; 5655 unsigned int max_recs_needed = 2 * extents_to_split; 5656 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5657 5658 *ac = NULL; 5659 5660 num_free_extents = ocfs2_num_free_extents(et); 5661 if (num_free_extents < 0) { 5662 ret = num_free_extents; 5663 mlog_errno(ret); 5664 goto out; 5665 } 5666 5667 if (!num_free_extents || 5668 (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed)) 5669 extra_blocks += ocfs2_extend_meta_needed(et->et_root_el); 5670 5671 if (extra_blocks) { 5672 ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac); 5673 if (ret < 0) { 5674 if (ret != -ENOSPC) 5675 mlog_errno(ret); 5676 } 5677 } 5678 5679 out: 5680 if (ret) { 5681 if (*ac) { 5682 ocfs2_free_alloc_context(*ac); 5683 *ac = NULL; 5684 } 5685 } 5686 5687 return ret; 5688 } 5689 5690 int ocfs2_remove_btree_range(struct inode *inode, 5691 struct ocfs2_extent_tree *et, 5692 u32 cpos, u32 phys_cpos, u32 len, int flags, 5693 struct ocfs2_cached_dealloc_ctxt *dealloc, 5694 u64 refcount_loc, bool refcount_tree_locked) 5695 { 5696 int ret, credits = 0, extra_blocks = 0; 5697 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos); 5698 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5699 struct inode *tl_inode = osb->osb_tl_inode; 5700 handle_t *handle; 5701 struct ocfs2_alloc_context *meta_ac = NULL; 5702 struct ocfs2_refcount_tree *ref_tree = NULL; 5703 5704 if ((flags & OCFS2_EXT_REFCOUNTED) && len) { 5705 BUG_ON(!ocfs2_is_refcount_inode(inode)); 5706 5707 if (!refcount_tree_locked) { 5708 ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1, 5709 &ref_tree, NULL); 5710 if (ret) { 5711 mlog_errno(ret); 5712 goto bail; 5713 } 5714 } 5715 5716 ret = ocfs2_prepare_refcount_change_for_del(inode, 5717 refcount_loc, 5718 phys_blkno, 5719 len, 5720 &credits, 5721 &extra_blocks); 5722 if (ret < 0) { 5723 mlog_errno(ret); 5724 goto bail; 5725 } 5726 } 5727 5728 ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac, 5729 extra_blocks); 5730 if (ret) { 5731 mlog_errno(ret); 5732 goto bail; 5733 } 5734 5735 inode_lock(tl_inode); 5736 5737 if (ocfs2_truncate_log_needs_flush(osb)) { 5738 ret = __ocfs2_flush_truncate_log(osb); 5739 if (ret < 0) { 5740 mlog_errno(ret); 5741 goto out; 5742 } 5743 } 5744 5745 handle = ocfs2_start_trans(osb, 5746 ocfs2_remove_extent_credits(osb->sb) + credits); 5747 if (IS_ERR(handle)) { 5748 ret = PTR_ERR(handle); 5749 mlog_errno(ret); 5750 goto out; 5751 } 5752 5753 ret = ocfs2_et_root_journal_access(handle, et, 5754 OCFS2_JOURNAL_ACCESS_WRITE); 5755 if (ret) { 5756 mlog_errno(ret); 5757 goto out_commit; 5758 } 5759 5760 dquot_free_space_nodirty(inode, 5761 ocfs2_clusters_to_bytes(inode->i_sb, len)); 5762 5763 ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc); 5764 if (ret) { 5765 mlog_errno(ret); 5766 goto out_commit; 5767 } 5768 5769 ocfs2_et_update_clusters(et, -len); 5770 ocfs2_update_inode_fsync_trans(handle, inode, 1); 5771 5772 ocfs2_journal_dirty(handle, et->et_root_bh); 5773 5774 if (phys_blkno) { 5775 if (flags & OCFS2_EXT_REFCOUNTED) 5776 ret = ocfs2_decrease_refcount(inode, handle, 5777 ocfs2_blocks_to_clusters(osb->sb, 5778 phys_blkno), 5779 len, meta_ac, 5780 dealloc, 1); 5781 else 5782 ret = ocfs2_truncate_log_append(osb, handle, 5783 phys_blkno, len); 5784 if (ret) 5785 mlog_errno(ret); 5786 5787 } 5788 5789 out_commit: 5790 ocfs2_commit_trans(osb, handle); 5791 out: 5792 inode_unlock(tl_inode); 5793 bail: 5794 if (meta_ac) 5795 ocfs2_free_alloc_context(meta_ac); 5796 5797 if (ref_tree) 5798 ocfs2_unlock_refcount_tree(osb, ref_tree, 1); 5799 5800 return ret; 5801 } 5802 5803 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb) 5804 { 5805 struct buffer_head *tl_bh = osb->osb_tl_bh; 5806 struct ocfs2_dinode *di; 5807 struct ocfs2_truncate_log *tl; 5808 5809 di = (struct ocfs2_dinode *) tl_bh->b_data; 5810 tl = &di->id2.i_dealloc; 5811 5812 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count), 5813 "slot %d, invalid truncate log parameters: used = " 5814 "%u, count = %u\n", osb->slot_num, 5815 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count)); 5816 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count); 5817 } 5818 5819 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl, 5820 unsigned int new_start) 5821 { 5822 unsigned int tail_index; 5823 unsigned int current_tail; 5824 5825 /* No records, nothing to coalesce */ 5826 if (!le16_to_cpu(tl->tl_used)) 5827 return 0; 5828 5829 tail_index = le16_to_cpu(tl->tl_used) - 1; 5830 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start); 5831 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters); 5832 5833 return current_tail == new_start; 5834 } 5835 5836 int ocfs2_truncate_log_append(struct ocfs2_super *osb, 5837 handle_t *handle, 5838 u64 start_blk, 5839 unsigned int num_clusters) 5840 { 5841 int status, index; 5842 unsigned int start_cluster, tl_count; 5843 struct inode *tl_inode = osb->osb_tl_inode; 5844 struct buffer_head *tl_bh = osb->osb_tl_bh; 5845 struct ocfs2_dinode *di; 5846 struct ocfs2_truncate_log *tl; 5847 5848 BUG_ON(inode_trylock(tl_inode)); 5849 5850 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk); 5851 5852 di = (struct ocfs2_dinode *) tl_bh->b_data; 5853 5854 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 5855 * by the underlying call to ocfs2_read_inode_block(), so any 5856 * corruption is a code bug */ 5857 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5858 5859 tl = &di->id2.i_dealloc; 5860 tl_count = le16_to_cpu(tl->tl_count); 5861 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) || 5862 tl_count == 0, 5863 "Truncate record count on #%llu invalid " 5864 "wanted %u, actual %u\n", 5865 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5866 ocfs2_truncate_recs_per_inode(osb->sb), 5867 le16_to_cpu(tl->tl_count)); 5868 5869 /* Caller should have known to flush before calling us. */ 5870 index = le16_to_cpu(tl->tl_used); 5871 if (index >= tl_count) { 5872 status = -ENOSPC; 5873 mlog_errno(status); 5874 goto bail; 5875 } 5876 5877 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, 5878 OCFS2_JOURNAL_ACCESS_WRITE); 5879 if (status < 0) { 5880 mlog_errno(status); 5881 goto bail; 5882 } 5883 5884 trace_ocfs2_truncate_log_append( 5885 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index, 5886 start_cluster, num_clusters); 5887 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) { 5888 /* 5889 * Move index back to the record we are coalescing with. 5890 * ocfs2_truncate_log_can_coalesce() guarantees nonzero 5891 */ 5892 index--; 5893 5894 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters); 5895 trace_ocfs2_truncate_log_append( 5896 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5897 index, le32_to_cpu(tl->tl_recs[index].t_start), 5898 num_clusters); 5899 } else { 5900 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster); 5901 tl->tl_used = cpu_to_le16(index + 1); 5902 } 5903 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters); 5904 5905 ocfs2_journal_dirty(handle, tl_bh); 5906 5907 osb->truncated_clusters += num_clusters; 5908 bail: 5909 return status; 5910 } 5911 5912 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb, 5913 struct inode *data_alloc_inode, 5914 struct buffer_head *data_alloc_bh) 5915 { 5916 int status = 0; 5917 int i; 5918 unsigned int num_clusters; 5919 u64 start_blk; 5920 struct ocfs2_truncate_rec rec; 5921 struct ocfs2_dinode *di; 5922 struct ocfs2_truncate_log *tl; 5923 struct inode *tl_inode = osb->osb_tl_inode; 5924 struct buffer_head *tl_bh = osb->osb_tl_bh; 5925 handle_t *handle; 5926 5927 di = (struct ocfs2_dinode *) tl_bh->b_data; 5928 tl = &di->id2.i_dealloc; 5929 i = le16_to_cpu(tl->tl_used) - 1; 5930 while (i >= 0) { 5931 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC); 5932 if (IS_ERR(handle)) { 5933 status = PTR_ERR(handle); 5934 mlog_errno(status); 5935 goto bail; 5936 } 5937 5938 /* Caller has given us at least enough credits to 5939 * update the truncate log dinode */ 5940 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, 5941 OCFS2_JOURNAL_ACCESS_WRITE); 5942 if (status < 0) { 5943 ocfs2_commit_trans(osb, handle); 5944 mlog_errno(status); 5945 goto bail; 5946 } 5947 5948 tl->tl_used = cpu_to_le16(i); 5949 5950 ocfs2_journal_dirty(handle, tl_bh); 5951 5952 rec = tl->tl_recs[i]; 5953 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb, 5954 le32_to_cpu(rec.t_start)); 5955 num_clusters = le32_to_cpu(rec.t_clusters); 5956 5957 /* if start_blk is not set, we ignore the record as 5958 * invalid. */ 5959 if (start_blk) { 5960 trace_ocfs2_replay_truncate_records( 5961 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5962 i, le32_to_cpu(rec.t_start), num_clusters); 5963 5964 status = ocfs2_free_clusters(handle, data_alloc_inode, 5965 data_alloc_bh, start_blk, 5966 num_clusters); 5967 if (status < 0) { 5968 ocfs2_commit_trans(osb, handle); 5969 mlog_errno(status); 5970 goto bail; 5971 } 5972 } 5973 5974 ocfs2_commit_trans(osb, handle); 5975 i--; 5976 } 5977 5978 osb->truncated_clusters = 0; 5979 5980 bail: 5981 return status; 5982 } 5983 5984 /* Expects you to already be holding tl_inode->i_mutex */ 5985 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb) 5986 { 5987 int status; 5988 unsigned int num_to_flush; 5989 struct inode *tl_inode = osb->osb_tl_inode; 5990 struct inode *data_alloc_inode = NULL; 5991 struct buffer_head *tl_bh = osb->osb_tl_bh; 5992 struct buffer_head *data_alloc_bh = NULL; 5993 struct ocfs2_dinode *di; 5994 struct ocfs2_truncate_log *tl; 5995 struct ocfs2_journal *journal = osb->journal; 5996 5997 BUG_ON(inode_trylock(tl_inode)); 5998 5999 di = (struct ocfs2_dinode *) tl_bh->b_data; 6000 6001 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 6002 * by the underlying call to ocfs2_read_inode_block(), so any 6003 * corruption is a code bug */ 6004 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 6005 6006 tl = &di->id2.i_dealloc; 6007 num_to_flush = le16_to_cpu(tl->tl_used); 6008 trace_ocfs2_flush_truncate_log( 6009 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 6010 num_to_flush); 6011 if (!num_to_flush) { 6012 status = 0; 6013 goto out; 6014 } 6015 6016 /* Appending truncate log(TA) and flushing truncate log(TF) are 6017 * two separated transactions. They can be both committed but not 6018 * checkpointed. If crash occurs then, both two transaction will be 6019 * replayed with several already released to global bitmap clusters. 6020 * Then truncate log will be replayed resulting in cluster double free. 6021 */ 6022 jbd2_journal_lock_updates(journal->j_journal); 6023 status = jbd2_journal_flush(journal->j_journal, 0); 6024 jbd2_journal_unlock_updates(journal->j_journal); 6025 if (status < 0) { 6026 mlog_errno(status); 6027 goto out; 6028 } 6029 6030 data_alloc_inode = ocfs2_get_system_file_inode(osb, 6031 GLOBAL_BITMAP_SYSTEM_INODE, 6032 OCFS2_INVALID_SLOT); 6033 if (!data_alloc_inode) { 6034 status = -EINVAL; 6035 mlog(ML_ERROR, "Could not get bitmap inode!\n"); 6036 goto out; 6037 } 6038 6039 inode_lock(data_alloc_inode); 6040 6041 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1); 6042 if (status < 0) { 6043 mlog_errno(status); 6044 goto out_mutex; 6045 } 6046 6047 status = ocfs2_replay_truncate_records(osb, data_alloc_inode, 6048 data_alloc_bh); 6049 if (status < 0) 6050 mlog_errno(status); 6051 6052 brelse(data_alloc_bh); 6053 ocfs2_inode_unlock(data_alloc_inode, 1); 6054 6055 out_mutex: 6056 inode_unlock(data_alloc_inode); 6057 iput(data_alloc_inode); 6058 6059 out: 6060 return status; 6061 } 6062 6063 int ocfs2_flush_truncate_log(struct ocfs2_super *osb) 6064 { 6065 int status; 6066 struct inode *tl_inode = osb->osb_tl_inode; 6067 6068 inode_lock(tl_inode); 6069 status = __ocfs2_flush_truncate_log(osb); 6070 inode_unlock(tl_inode); 6071 6072 return status; 6073 } 6074 6075 static void ocfs2_truncate_log_worker(struct work_struct *work) 6076 { 6077 int status; 6078 struct ocfs2_super *osb = 6079 container_of(work, struct ocfs2_super, 6080 osb_truncate_log_wq.work); 6081 6082 status = ocfs2_flush_truncate_log(osb); 6083 if (status < 0) 6084 mlog_errno(status); 6085 else 6086 ocfs2_init_steal_slots(osb); 6087 } 6088 6089 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ) 6090 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb, 6091 int cancel) 6092 { 6093 if (osb->osb_tl_inode && 6094 atomic_read(&osb->osb_tl_disable) == 0) { 6095 /* We want to push off log flushes while truncates are 6096 * still running. */ 6097 if (cancel) 6098 cancel_delayed_work(&osb->osb_truncate_log_wq); 6099 6100 queue_delayed_work(osb->ocfs2_wq, &osb->osb_truncate_log_wq, 6101 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL); 6102 } 6103 } 6104 6105 /* 6106 * Try to flush truncate logs if we can free enough clusters from it. 6107 * As for return value, "< 0" means error, "0" no space and "1" means 6108 * we have freed enough spaces and let the caller try to allocate again. 6109 */ 6110 int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb, 6111 unsigned int needed) 6112 { 6113 tid_t target; 6114 int ret = 0; 6115 unsigned int truncated_clusters; 6116 6117 inode_lock(osb->osb_tl_inode); 6118 truncated_clusters = osb->truncated_clusters; 6119 inode_unlock(osb->osb_tl_inode); 6120 6121 /* 6122 * Check whether we can succeed in allocating if we free 6123 * the truncate log. 6124 */ 6125 if (truncated_clusters < needed) 6126 goto out; 6127 6128 ret = ocfs2_flush_truncate_log(osb); 6129 if (ret) { 6130 mlog_errno(ret); 6131 goto out; 6132 } 6133 6134 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) { 6135 jbd2_log_wait_commit(osb->journal->j_journal, target); 6136 ret = 1; 6137 } 6138 out: 6139 return ret; 6140 } 6141 6142 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb, 6143 int slot_num, 6144 struct inode **tl_inode, 6145 struct buffer_head **tl_bh) 6146 { 6147 int status; 6148 struct inode *inode = NULL; 6149 struct buffer_head *bh = NULL; 6150 6151 inode = ocfs2_get_system_file_inode(osb, 6152 TRUNCATE_LOG_SYSTEM_INODE, 6153 slot_num); 6154 if (!inode) { 6155 status = -EINVAL; 6156 mlog(ML_ERROR, "Could not get load truncate log inode!\n"); 6157 goto bail; 6158 } 6159 6160 status = ocfs2_read_inode_block(inode, &bh); 6161 if (status < 0) { 6162 iput(inode); 6163 mlog_errno(status); 6164 goto bail; 6165 } 6166 6167 *tl_inode = inode; 6168 *tl_bh = bh; 6169 bail: 6170 return status; 6171 } 6172 6173 /* called during the 1st stage of node recovery. we stamp a clean 6174 * truncate log and pass back a copy for processing later. if the 6175 * truncate log does not require processing, a *tl_copy is set to 6176 * NULL. */ 6177 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb, 6178 int slot_num, 6179 struct ocfs2_dinode **tl_copy) 6180 { 6181 int status; 6182 struct inode *tl_inode = NULL; 6183 struct buffer_head *tl_bh = NULL; 6184 struct ocfs2_dinode *di; 6185 struct ocfs2_truncate_log *tl; 6186 6187 *tl_copy = NULL; 6188 6189 trace_ocfs2_begin_truncate_log_recovery(slot_num); 6190 6191 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh); 6192 if (status < 0) { 6193 mlog_errno(status); 6194 goto bail; 6195 } 6196 6197 di = (struct ocfs2_dinode *) tl_bh->b_data; 6198 6199 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's 6200 * validated by the underlying call to ocfs2_read_inode_block(), 6201 * so any corruption is a code bug */ 6202 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 6203 6204 tl = &di->id2.i_dealloc; 6205 if (le16_to_cpu(tl->tl_used)) { 6206 trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl->tl_used)); 6207 6208 /* 6209 * Assuming the write-out below goes well, this copy will be 6210 * passed back to recovery for processing. 6211 */ 6212 *tl_copy = kmemdup(tl_bh->b_data, tl_bh->b_size, GFP_KERNEL); 6213 if (!(*tl_copy)) { 6214 status = -ENOMEM; 6215 mlog_errno(status); 6216 goto bail; 6217 } 6218 6219 /* All we need to do to clear the truncate log is set 6220 * tl_used. */ 6221 tl->tl_used = 0; 6222 6223 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check); 6224 status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode)); 6225 if (status < 0) { 6226 mlog_errno(status); 6227 goto bail; 6228 } 6229 } 6230 6231 bail: 6232 iput(tl_inode); 6233 brelse(tl_bh); 6234 6235 if (status < 0) { 6236 kfree(*tl_copy); 6237 *tl_copy = NULL; 6238 mlog_errno(status); 6239 } 6240 6241 return status; 6242 } 6243 6244 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb, 6245 struct ocfs2_dinode *tl_copy) 6246 { 6247 int status = 0; 6248 int i; 6249 unsigned int clusters, num_recs, start_cluster; 6250 u64 start_blk; 6251 handle_t *handle; 6252 struct inode *tl_inode = osb->osb_tl_inode; 6253 struct ocfs2_truncate_log *tl; 6254 6255 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) { 6256 mlog(ML_ERROR, "Asked to recover my own truncate log!\n"); 6257 return -EINVAL; 6258 } 6259 6260 tl = &tl_copy->id2.i_dealloc; 6261 num_recs = le16_to_cpu(tl->tl_used); 6262 trace_ocfs2_complete_truncate_log_recovery( 6263 (unsigned long long)le64_to_cpu(tl_copy->i_blkno), 6264 num_recs); 6265 6266 inode_lock(tl_inode); 6267 for(i = 0; i < num_recs; i++) { 6268 if (ocfs2_truncate_log_needs_flush(osb)) { 6269 status = __ocfs2_flush_truncate_log(osb); 6270 if (status < 0) { 6271 mlog_errno(status); 6272 goto bail_up; 6273 } 6274 } 6275 6276 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6277 if (IS_ERR(handle)) { 6278 status = PTR_ERR(handle); 6279 mlog_errno(status); 6280 goto bail_up; 6281 } 6282 6283 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters); 6284 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start); 6285 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster); 6286 6287 status = ocfs2_truncate_log_append(osb, handle, 6288 start_blk, clusters); 6289 ocfs2_commit_trans(osb, handle); 6290 if (status < 0) { 6291 mlog_errno(status); 6292 goto bail_up; 6293 } 6294 } 6295 6296 bail_up: 6297 inode_unlock(tl_inode); 6298 6299 return status; 6300 } 6301 6302 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb) 6303 { 6304 int status; 6305 struct inode *tl_inode = osb->osb_tl_inode; 6306 6307 atomic_set(&osb->osb_tl_disable, 1); 6308 6309 if (tl_inode) { 6310 cancel_delayed_work(&osb->osb_truncate_log_wq); 6311 flush_workqueue(osb->ocfs2_wq); 6312 6313 status = ocfs2_flush_truncate_log(osb); 6314 if (status < 0) 6315 mlog_errno(status); 6316 6317 brelse(osb->osb_tl_bh); 6318 iput(osb->osb_tl_inode); 6319 } 6320 } 6321 6322 int ocfs2_truncate_log_init(struct ocfs2_super *osb) 6323 { 6324 int status; 6325 struct inode *tl_inode = NULL; 6326 struct buffer_head *tl_bh = NULL; 6327 6328 status = ocfs2_get_truncate_log_info(osb, 6329 osb->slot_num, 6330 &tl_inode, 6331 &tl_bh); 6332 if (status < 0) 6333 mlog_errno(status); 6334 6335 /* ocfs2_truncate_log_shutdown keys on the existence of 6336 * osb->osb_tl_inode so we don't set any of the osb variables 6337 * until we're sure all is well. */ 6338 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq, 6339 ocfs2_truncate_log_worker); 6340 atomic_set(&osb->osb_tl_disable, 0); 6341 osb->osb_tl_bh = tl_bh; 6342 osb->osb_tl_inode = tl_inode; 6343 6344 return status; 6345 } 6346 6347 /* 6348 * Delayed de-allocation of suballocator blocks. 6349 * 6350 * Some sets of block de-allocations might involve multiple suballocator inodes. 6351 * 6352 * The locking for this can get extremely complicated, especially when 6353 * the suballocator inodes to delete from aren't known until deep 6354 * within an unrelated codepath. 6355 * 6356 * ocfs2_extent_block structures are a good example of this - an inode 6357 * btree could have been grown by any number of nodes each allocating 6358 * out of their own suballoc inode. 6359 * 6360 * These structures allow the delay of block de-allocation until a 6361 * later time, when locking of multiple cluster inodes won't cause 6362 * deadlock. 6363 */ 6364 6365 /* 6366 * Describe a single bit freed from a suballocator. For the block 6367 * suballocators, it represents one block. For the global cluster 6368 * allocator, it represents some clusters and free_bit indicates 6369 * clusters number. 6370 */ 6371 struct ocfs2_cached_block_free { 6372 struct ocfs2_cached_block_free *free_next; 6373 u64 free_bg; 6374 u64 free_blk; 6375 unsigned int free_bit; 6376 }; 6377 6378 struct ocfs2_per_slot_free_list { 6379 struct ocfs2_per_slot_free_list *f_next_suballocator; 6380 int f_inode_type; 6381 int f_slot; 6382 struct ocfs2_cached_block_free *f_first; 6383 }; 6384 6385 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb, 6386 int sysfile_type, 6387 int slot, 6388 struct ocfs2_cached_block_free *head) 6389 { 6390 int ret; 6391 u64 bg_blkno; 6392 handle_t *handle; 6393 struct inode *inode; 6394 struct buffer_head *di_bh = NULL; 6395 struct ocfs2_cached_block_free *tmp; 6396 6397 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot); 6398 if (!inode) { 6399 ret = -EINVAL; 6400 mlog_errno(ret); 6401 goto out; 6402 } 6403 6404 inode_lock(inode); 6405 6406 ret = ocfs2_inode_lock(inode, &di_bh, 1); 6407 if (ret) { 6408 mlog_errno(ret); 6409 goto out_mutex; 6410 } 6411 6412 while (head) { 6413 if (head->free_bg) 6414 bg_blkno = head->free_bg; 6415 else 6416 bg_blkno = ocfs2_which_suballoc_group(head->free_blk, 6417 head->free_bit); 6418 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE); 6419 if (IS_ERR(handle)) { 6420 ret = PTR_ERR(handle); 6421 mlog_errno(ret); 6422 goto out_unlock; 6423 } 6424 6425 trace_ocfs2_free_cached_blocks( 6426 (unsigned long long)head->free_blk, head->free_bit); 6427 6428 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh, 6429 head->free_bit, bg_blkno, 1); 6430 if (ret) 6431 mlog_errno(ret); 6432 6433 ocfs2_commit_trans(osb, handle); 6434 6435 tmp = head; 6436 head = head->free_next; 6437 kfree(tmp); 6438 } 6439 6440 out_unlock: 6441 ocfs2_inode_unlock(inode, 1); 6442 brelse(di_bh); 6443 out_mutex: 6444 inode_unlock(inode); 6445 iput(inode); 6446 out: 6447 while(head) { 6448 /* Premature exit may have left some dangling items. */ 6449 tmp = head; 6450 head = head->free_next; 6451 kfree(tmp); 6452 } 6453 6454 return ret; 6455 } 6456 6457 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6458 u64 blkno, unsigned int bit) 6459 { 6460 int ret = 0; 6461 struct ocfs2_cached_block_free *item; 6462 6463 item = kzalloc(sizeof(*item), GFP_NOFS); 6464 if (item == NULL) { 6465 ret = -ENOMEM; 6466 mlog_errno(ret); 6467 return ret; 6468 } 6469 6470 trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno, bit); 6471 6472 item->free_blk = blkno; 6473 item->free_bit = bit; 6474 item->free_next = ctxt->c_global_allocator; 6475 6476 ctxt->c_global_allocator = item; 6477 return ret; 6478 } 6479 6480 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb, 6481 struct ocfs2_cached_block_free *head) 6482 { 6483 struct ocfs2_cached_block_free *tmp; 6484 struct inode *tl_inode = osb->osb_tl_inode; 6485 handle_t *handle; 6486 int ret = 0; 6487 6488 inode_lock(tl_inode); 6489 6490 while (head) { 6491 if (ocfs2_truncate_log_needs_flush(osb)) { 6492 ret = __ocfs2_flush_truncate_log(osb); 6493 if (ret < 0) { 6494 mlog_errno(ret); 6495 break; 6496 } 6497 } 6498 6499 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6500 if (IS_ERR(handle)) { 6501 ret = PTR_ERR(handle); 6502 mlog_errno(ret); 6503 break; 6504 } 6505 6506 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk, 6507 head->free_bit); 6508 6509 ocfs2_commit_trans(osb, handle); 6510 tmp = head; 6511 head = head->free_next; 6512 kfree(tmp); 6513 6514 if (ret < 0) { 6515 mlog_errno(ret); 6516 break; 6517 } 6518 } 6519 6520 inode_unlock(tl_inode); 6521 6522 while (head) { 6523 /* Premature exit may have left some dangling items. */ 6524 tmp = head; 6525 head = head->free_next; 6526 kfree(tmp); 6527 } 6528 6529 return ret; 6530 } 6531 6532 int ocfs2_run_deallocs(struct ocfs2_super *osb, 6533 struct ocfs2_cached_dealloc_ctxt *ctxt) 6534 { 6535 int ret = 0, ret2; 6536 struct ocfs2_per_slot_free_list *fl; 6537 6538 if (!ctxt) 6539 return 0; 6540 6541 while (ctxt->c_first_suballocator) { 6542 fl = ctxt->c_first_suballocator; 6543 6544 if (fl->f_first) { 6545 trace_ocfs2_run_deallocs(fl->f_inode_type, 6546 fl->f_slot); 6547 ret2 = ocfs2_free_cached_blocks(osb, 6548 fl->f_inode_type, 6549 fl->f_slot, 6550 fl->f_first); 6551 if (ret2) 6552 mlog_errno(ret2); 6553 if (!ret) 6554 ret = ret2; 6555 } 6556 6557 ctxt->c_first_suballocator = fl->f_next_suballocator; 6558 kfree(fl); 6559 } 6560 6561 if (ctxt->c_global_allocator) { 6562 ret2 = ocfs2_free_cached_clusters(osb, 6563 ctxt->c_global_allocator); 6564 if (ret2) 6565 mlog_errno(ret2); 6566 if (!ret) 6567 ret = ret2; 6568 6569 ctxt->c_global_allocator = NULL; 6570 } 6571 6572 return ret; 6573 } 6574 6575 static struct ocfs2_per_slot_free_list * 6576 ocfs2_find_per_slot_free_list(int type, 6577 int slot, 6578 struct ocfs2_cached_dealloc_ctxt *ctxt) 6579 { 6580 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; 6581 6582 while (fl) { 6583 if (fl->f_inode_type == type && fl->f_slot == slot) 6584 return fl; 6585 6586 fl = fl->f_next_suballocator; 6587 } 6588 6589 fl = kmalloc(sizeof(*fl), GFP_NOFS); 6590 if (fl) { 6591 fl->f_inode_type = type; 6592 fl->f_slot = slot; 6593 fl->f_first = NULL; 6594 fl->f_next_suballocator = ctxt->c_first_suballocator; 6595 6596 ctxt->c_first_suballocator = fl; 6597 } 6598 return fl; 6599 } 6600 6601 static struct ocfs2_per_slot_free_list * 6602 ocfs2_find_preferred_free_list(int type, 6603 int preferred_slot, 6604 int *real_slot, 6605 struct ocfs2_cached_dealloc_ctxt *ctxt) 6606 { 6607 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; 6608 6609 while (fl) { 6610 if (fl->f_inode_type == type && fl->f_slot == preferred_slot) { 6611 *real_slot = fl->f_slot; 6612 return fl; 6613 } 6614 6615 fl = fl->f_next_suballocator; 6616 } 6617 6618 /* If we can't find any free list matching preferred slot, just use 6619 * the first one. 6620 */ 6621 fl = ctxt->c_first_suballocator; 6622 *real_slot = fl->f_slot; 6623 6624 return fl; 6625 } 6626 6627 /* Return Value 1 indicates empty */ 6628 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree *et) 6629 { 6630 struct ocfs2_per_slot_free_list *fl = NULL; 6631 6632 if (!et->et_dealloc) 6633 return 1; 6634 6635 fl = et->et_dealloc->c_first_suballocator; 6636 if (!fl) 6637 return 1; 6638 6639 if (!fl->f_first) 6640 return 1; 6641 6642 return 0; 6643 } 6644 6645 /* If extent was deleted from tree due to extent rotation and merging, and 6646 * no metadata is reserved ahead of time. Try to reuse some extents 6647 * just deleted. This is only used to reuse extent blocks. 6648 * It is supposed to find enough extent blocks in dealloc if our estimation 6649 * on metadata is accurate. 6650 */ 6651 static int ocfs2_reuse_blk_from_dealloc(handle_t *handle, 6652 struct ocfs2_extent_tree *et, 6653 struct buffer_head **new_eb_bh, 6654 int blk_wanted, int *blk_given) 6655 { 6656 int i, status = 0, real_slot; 6657 struct ocfs2_cached_dealloc_ctxt *dealloc; 6658 struct ocfs2_per_slot_free_list *fl; 6659 struct ocfs2_cached_block_free *bf; 6660 struct ocfs2_extent_block *eb; 6661 struct ocfs2_super *osb = 6662 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 6663 6664 *blk_given = 0; 6665 6666 /* If extent tree doesn't have a dealloc, this is not faulty. Just 6667 * tell upper caller dealloc can't provide any block and it should 6668 * ask for alloc to claim more space. 6669 */ 6670 dealloc = et->et_dealloc; 6671 if (!dealloc) 6672 goto bail; 6673 6674 for (i = 0; i < blk_wanted; i++) { 6675 /* Prefer to use local slot */ 6676 fl = ocfs2_find_preferred_free_list(EXTENT_ALLOC_SYSTEM_INODE, 6677 osb->slot_num, &real_slot, 6678 dealloc); 6679 /* If no more block can be reused, we should claim more 6680 * from alloc. Just return here normally. 6681 */ 6682 if (!fl) { 6683 status = 0; 6684 break; 6685 } 6686 6687 bf = fl->f_first; 6688 fl->f_first = bf->free_next; 6689 6690 new_eb_bh[i] = sb_getblk(osb->sb, bf->free_blk); 6691 if (new_eb_bh[i] == NULL) { 6692 status = -ENOMEM; 6693 mlog_errno(status); 6694 goto bail; 6695 } 6696 6697 mlog(0, "Reusing block(%llu) from " 6698 "dealloc(local slot:%d, real slot:%d)\n", 6699 bf->free_blk, osb->slot_num, real_slot); 6700 6701 ocfs2_set_new_buffer_uptodate(et->et_ci, new_eb_bh[i]); 6702 6703 status = ocfs2_journal_access_eb(handle, et->et_ci, 6704 new_eb_bh[i], 6705 OCFS2_JOURNAL_ACCESS_CREATE); 6706 if (status < 0) { 6707 mlog_errno(status); 6708 goto bail; 6709 } 6710 6711 memset(new_eb_bh[i]->b_data, 0, osb->sb->s_blocksize); 6712 eb = (struct ocfs2_extent_block *) new_eb_bh[i]->b_data; 6713 6714 /* We can't guarantee that buffer head is still cached, so 6715 * polutlate the extent block again. 6716 */ 6717 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); 6718 eb->h_blkno = cpu_to_le64(bf->free_blk); 6719 eb->h_fs_generation = cpu_to_le32(osb->fs_generation); 6720 eb->h_suballoc_slot = cpu_to_le16(real_slot); 6721 eb->h_suballoc_loc = cpu_to_le64(bf->free_bg); 6722 eb->h_suballoc_bit = cpu_to_le16(bf->free_bit); 6723 eb->h_list.l_count = 6724 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); 6725 6726 /* We'll also be dirtied by the caller, so 6727 * this isn't absolutely necessary. 6728 */ 6729 ocfs2_journal_dirty(handle, new_eb_bh[i]); 6730 6731 if (!fl->f_first) { 6732 dealloc->c_first_suballocator = fl->f_next_suballocator; 6733 kfree(fl); 6734 } 6735 kfree(bf); 6736 } 6737 6738 *blk_given = i; 6739 6740 bail: 6741 if (unlikely(status < 0)) { 6742 for (i = 0; i < blk_wanted; i++) 6743 brelse(new_eb_bh[i]); 6744 } 6745 6746 return status; 6747 } 6748 6749 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6750 int type, int slot, u64 suballoc, 6751 u64 blkno, unsigned int bit) 6752 { 6753 int ret; 6754 struct ocfs2_per_slot_free_list *fl; 6755 struct ocfs2_cached_block_free *item; 6756 6757 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt); 6758 if (fl == NULL) { 6759 ret = -ENOMEM; 6760 mlog_errno(ret); 6761 goto out; 6762 } 6763 6764 item = kzalloc(sizeof(*item), GFP_NOFS); 6765 if (item == NULL) { 6766 ret = -ENOMEM; 6767 mlog_errno(ret); 6768 goto out; 6769 } 6770 6771 trace_ocfs2_cache_block_dealloc(type, slot, 6772 (unsigned long long)suballoc, 6773 (unsigned long long)blkno, bit); 6774 6775 item->free_bg = suballoc; 6776 item->free_blk = blkno; 6777 item->free_bit = bit; 6778 item->free_next = fl->f_first; 6779 6780 fl->f_first = item; 6781 6782 ret = 0; 6783 out: 6784 return ret; 6785 } 6786 6787 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 6788 struct ocfs2_extent_block *eb) 6789 { 6790 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE, 6791 le16_to_cpu(eb->h_suballoc_slot), 6792 le64_to_cpu(eb->h_suballoc_loc), 6793 le64_to_cpu(eb->h_blkno), 6794 le16_to_cpu(eb->h_suballoc_bit)); 6795 } 6796 6797 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh) 6798 { 6799 set_buffer_uptodate(bh); 6800 mark_buffer_dirty(bh); 6801 return 0; 6802 } 6803 6804 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle, 6805 unsigned int from, unsigned int to, 6806 struct page *page, int zero, u64 *phys) 6807 { 6808 int ret, partial = 0; 6809 loff_t start_byte = ((loff_t)page->index << PAGE_SHIFT) + from; 6810 loff_t length = to - from; 6811 6812 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0); 6813 if (ret) 6814 mlog_errno(ret); 6815 6816 if (zero) 6817 zero_user_segment(page, from, to); 6818 6819 /* 6820 * Need to set the buffers we zero'd into uptodate 6821 * here if they aren't - ocfs2_map_page_blocks() 6822 * might've skipped some 6823 */ 6824 ret = walk_page_buffers(handle, page_buffers(page), 6825 from, to, &partial, 6826 ocfs2_zero_func); 6827 if (ret < 0) 6828 mlog_errno(ret); 6829 else if (ocfs2_should_order_data(inode)) { 6830 ret = ocfs2_jbd2_inode_add_write(handle, inode, 6831 start_byte, length); 6832 if (ret < 0) 6833 mlog_errno(ret); 6834 } 6835 6836 if (!partial) 6837 SetPageUptodate(page); 6838 6839 flush_dcache_page(page); 6840 } 6841 6842 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start, 6843 loff_t end, struct page **pages, 6844 int numpages, u64 phys, handle_t *handle) 6845 { 6846 int i; 6847 struct page *page; 6848 unsigned int from, to = PAGE_SIZE; 6849 struct super_block *sb = inode->i_sb; 6850 6851 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb))); 6852 6853 if (numpages == 0) 6854 goto out; 6855 6856 to = PAGE_SIZE; 6857 for(i = 0; i < numpages; i++) { 6858 page = pages[i]; 6859 6860 from = start & (PAGE_SIZE - 1); 6861 if ((end >> PAGE_SHIFT) == page->index) 6862 to = end & (PAGE_SIZE - 1); 6863 6864 BUG_ON(from > PAGE_SIZE); 6865 BUG_ON(to > PAGE_SIZE); 6866 6867 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1, 6868 &phys); 6869 6870 start = (page->index + 1) << PAGE_SHIFT; 6871 } 6872 out: 6873 if (pages) 6874 ocfs2_unlock_and_free_pages(pages, numpages); 6875 } 6876 6877 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end, 6878 struct page **pages, int *num) 6879 { 6880 int numpages, ret = 0; 6881 struct address_space *mapping = inode->i_mapping; 6882 unsigned long index; 6883 loff_t last_page_bytes; 6884 6885 BUG_ON(start > end); 6886 6887 numpages = 0; 6888 last_page_bytes = PAGE_ALIGN(end); 6889 index = start >> PAGE_SHIFT; 6890 do { 6891 pages[numpages] = find_or_create_page(mapping, index, GFP_NOFS); 6892 if (!pages[numpages]) { 6893 ret = -ENOMEM; 6894 mlog_errno(ret); 6895 goto out; 6896 } 6897 6898 numpages++; 6899 index++; 6900 } while (index < (last_page_bytes >> PAGE_SHIFT)); 6901 6902 out: 6903 if (ret != 0) { 6904 if (pages) 6905 ocfs2_unlock_and_free_pages(pages, numpages); 6906 numpages = 0; 6907 } 6908 6909 *num = numpages; 6910 6911 return ret; 6912 } 6913 6914 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end, 6915 struct page **pages, int *num) 6916 { 6917 struct super_block *sb = inode->i_sb; 6918 6919 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits != 6920 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits); 6921 6922 return ocfs2_grab_pages(inode, start, end, pages, num); 6923 } 6924 6925 /* 6926 * Zero partial cluster for a hole punch or truncate. This avoids exposing 6927 * nonzero data on subsequent file extends. 6928 * 6929 * We need to call this before i_size is updated on the inode because 6930 * otherwise block_write_full_page() will skip writeout of pages past 6931 * i_size. 6932 */ 6933 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle, 6934 u64 range_start, u64 range_end) 6935 { 6936 int ret = 0, numpages; 6937 struct page **pages = NULL; 6938 u64 phys; 6939 unsigned int ext_flags; 6940 struct super_block *sb = inode->i_sb; 6941 6942 /* 6943 * File systems which don't support sparse files zero on every 6944 * extend. 6945 */ 6946 if (!ocfs2_sparse_alloc(OCFS2_SB(sb))) 6947 return 0; 6948 6949 /* 6950 * Avoid zeroing pages fully beyond current i_size. It is pointless as 6951 * underlying blocks of those pages should be already zeroed out and 6952 * page writeback will skip them anyway. 6953 */ 6954 range_end = min_t(u64, range_end, i_size_read(inode)); 6955 if (range_start >= range_end) 6956 return 0; 6957 6958 pages = kcalloc(ocfs2_pages_per_cluster(sb), 6959 sizeof(struct page *), GFP_NOFS); 6960 if (pages == NULL) { 6961 ret = -ENOMEM; 6962 mlog_errno(ret); 6963 goto out; 6964 } 6965 6966 ret = ocfs2_extent_map_get_blocks(inode, 6967 range_start >> sb->s_blocksize_bits, 6968 &phys, NULL, &ext_flags); 6969 if (ret) { 6970 mlog_errno(ret); 6971 goto out; 6972 } 6973 6974 /* 6975 * Tail is a hole, or is marked unwritten. In either case, we 6976 * can count on read and write to return/push zero's. 6977 */ 6978 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN) 6979 goto out; 6980 6981 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages, 6982 &numpages); 6983 if (ret) { 6984 mlog_errno(ret); 6985 goto out; 6986 } 6987 6988 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages, 6989 numpages, phys, handle); 6990 6991 /* 6992 * Initiate writeout of the pages we zero'd here. We don't 6993 * wait on them - the truncate_inode_pages() call later will 6994 * do that for us. 6995 */ 6996 ret = filemap_fdatawrite_range(inode->i_mapping, range_start, 6997 range_end - 1); 6998 if (ret) 6999 mlog_errno(ret); 7000 7001 out: 7002 kfree(pages); 7003 7004 return ret; 7005 } 7006 7007 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode, 7008 struct ocfs2_dinode *di) 7009 { 7010 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits; 7011 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size); 7012 7013 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL) 7014 memset(&di->id2, 0, blocksize - 7015 offsetof(struct ocfs2_dinode, id2) - 7016 xattrsize); 7017 else 7018 memset(&di->id2, 0, blocksize - 7019 offsetof(struct ocfs2_dinode, id2)); 7020 } 7021 7022 void ocfs2_dinode_new_extent_list(struct inode *inode, 7023 struct ocfs2_dinode *di) 7024 { 7025 ocfs2_zero_dinode_id2_with_xattr(inode, di); 7026 di->id2.i_list.l_tree_depth = 0; 7027 di->id2.i_list.l_next_free_rec = 0; 7028 di->id2.i_list.l_count = cpu_to_le16( 7029 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di)); 7030 } 7031 7032 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di) 7033 { 7034 struct ocfs2_inode_info *oi = OCFS2_I(inode); 7035 struct ocfs2_inline_data *idata = &di->id2.i_data; 7036 7037 spin_lock(&oi->ip_lock); 7038 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL; 7039 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 7040 spin_unlock(&oi->ip_lock); 7041 7042 /* 7043 * We clear the entire i_data structure here so that all 7044 * fields can be properly initialized. 7045 */ 7046 ocfs2_zero_dinode_id2_with_xattr(inode, di); 7047 7048 idata->id_count = cpu_to_le16( 7049 ocfs2_max_inline_data_with_xattr(inode->i_sb, di)); 7050 } 7051 7052 int ocfs2_convert_inline_data_to_extents(struct inode *inode, 7053 struct buffer_head *di_bh) 7054 { 7055 int ret, has_data, num_pages = 0; 7056 int need_free = 0; 7057 u32 bit_off, num; 7058 handle_t *handle; 7059 u64 block; 7060 struct ocfs2_inode_info *oi = OCFS2_I(inode); 7061 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 7062 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7063 struct ocfs2_alloc_context *data_ac = NULL; 7064 struct page *page = NULL; 7065 struct ocfs2_extent_tree et; 7066 int did_quota = 0; 7067 7068 has_data = i_size_read(inode) ? 1 : 0; 7069 7070 if (has_data) { 7071 ret = ocfs2_reserve_clusters(osb, 1, &data_ac); 7072 if (ret) { 7073 mlog_errno(ret); 7074 goto out; 7075 } 7076 } 7077 7078 handle = ocfs2_start_trans(osb, 7079 ocfs2_inline_to_extents_credits(osb->sb)); 7080 if (IS_ERR(handle)) { 7081 ret = PTR_ERR(handle); 7082 mlog_errno(ret); 7083 goto out; 7084 } 7085 7086 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 7087 OCFS2_JOURNAL_ACCESS_WRITE); 7088 if (ret) { 7089 mlog_errno(ret); 7090 goto out_commit; 7091 } 7092 7093 if (has_data) { 7094 unsigned int page_end = min_t(unsigned, PAGE_SIZE, 7095 osb->s_clustersize); 7096 u64 phys; 7097 7098 ret = dquot_alloc_space_nodirty(inode, 7099 ocfs2_clusters_to_bytes(osb->sb, 1)); 7100 if (ret) 7101 goto out_commit; 7102 did_quota = 1; 7103 7104 data_ac->ac_resv = &oi->ip_la_data_resv; 7105 7106 ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off, 7107 &num); 7108 if (ret) { 7109 mlog_errno(ret); 7110 goto out_commit; 7111 } 7112 7113 /* 7114 * Save two copies, one for insert, and one that can 7115 * be changed by ocfs2_map_and_dirty_page() below. 7116 */ 7117 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off); 7118 7119 ret = ocfs2_grab_eof_pages(inode, 0, page_end, &page, 7120 &num_pages); 7121 if (ret) { 7122 mlog_errno(ret); 7123 need_free = 1; 7124 goto out_commit; 7125 } 7126 7127 /* 7128 * This should populate the 1st page for us and mark 7129 * it up to date. 7130 */ 7131 ret = ocfs2_read_inline_data(inode, page, di_bh); 7132 if (ret) { 7133 mlog_errno(ret); 7134 need_free = 1; 7135 goto out_unlock; 7136 } 7137 7138 ocfs2_map_and_dirty_page(inode, handle, 0, page_end, page, 0, 7139 &phys); 7140 } 7141 7142 spin_lock(&oi->ip_lock); 7143 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL; 7144 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 7145 spin_unlock(&oi->ip_lock); 7146 7147 ocfs2_update_inode_fsync_trans(handle, inode, 1); 7148 ocfs2_dinode_new_extent_list(inode, di); 7149 7150 ocfs2_journal_dirty(handle, di_bh); 7151 7152 if (has_data) { 7153 /* 7154 * An error at this point should be extremely rare. If 7155 * this proves to be false, we could always re-build 7156 * the in-inode data from our pages. 7157 */ 7158 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 7159 ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL); 7160 if (ret) { 7161 mlog_errno(ret); 7162 need_free = 1; 7163 goto out_unlock; 7164 } 7165 7166 inode->i_blocks = ocfs2_inode_sector_count(inode); 7167 } 7168 7169 out_unlock: 7170 if (page) 7171 ocfs2_unlock_and_free_pages(&page, num_pages); 7172 7173 out_commit: 7174 if (ret < 0 && did_quota) 7175 dquot_free_space_nodirty(inode, 7176 ocfs2_clusters_to_bytes(osb->sb, 1)); 7177 7178 if (need_free) { 7179 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL) 7180 ocfs2_free_local_alloc_bits(osb, handle, data_ac, 7181 bit_off, num); 7182 else 7183 ocfs2_free_clusters(handle, 7184 data_ac->ac_inode, 7185 data_ac->ac_bh, 7186 ocfs2_clusters_to_blocks(osb->sb, bit_off), 7187 num); 7188 } 7189 7190 ocfs2_commit_trans(osb, handle); 7191 7192 out: 7193 if (data_ac) 7194 ocfs2_free_alloc_context(data_ac); 7195 return ret; 7196 } 7197 7198 /* 7199 * It is expected, that by the time you call this function, 7200 * inode->i_size and fe->i_size have been adjusted. 7201 * 7202 * WARNING: This will kfree the truncate context 7203 */ 7204 int ocfs2_commit_truncate(struct ocfs2_super *osb, 7205 struct inode *inode, 7206 struct buffer_head *di_bh) 7207 { 7208 int status = 0, i, flags = 0; 7209 u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff; 7210 u64 blkno = 0; 7211 struct ocfs2_extent_list *el; 7212 struct ocfs2_extent_rec *rec; 7213 struct ocfs2_path *path = NULL; 7214 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7215 struct ocfs2_extent_list *root_el = &(di->id2.i_list); 7216 u64 refcount_loc = le64_to_cpu(di->i_refcount_loc); 7217 struct ocfs2_extent_tree et; 7218 struct ocfs2_cached_dealloc_ctxt dealloc; 7219 struct ocfs2_refcount_tree *ref_tree = NULL; 7220 7221 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 7222 ocfs2_init_dealloc_ctxt(&dealloc); 7223 7224 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb, 7225 i_size_read(inode)); 7226 7227 path = ocfs2_new_path(di_bh, &di->id2.i_list, 7228 ocfs2_journal_access_di); 7229 if (!path) { 7230 status = -ENOMEM; 7231 mlog_errno(status); 7232 goto bail; 7233 } 7234 7235 ocfs2_extent_map_trunc(inode, new_highest_cpos); 7236 7237 start: 7238 /* 7239 * Check that we still have allocation to delete. 7240 */ 7241 if (OCFS2_I(inode)->ip_clusters == 0) { 7242 status = 0; 7243 goto bail; 7244 } 7245 7246 /* 7247 * Truncate always works against the rightmost tree branch. 7248 */ 7249 status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX); 7250 if (status) { 7251 mlog_errno(status); 7252 goto bail; 7253 } 7254 7255 trace_ocfs2_commit_truncate( 7256 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7257 new_highest_cpos, 7258 OCFS2_I(inode)->ip_clusters, 7259 path->p_tree_depth); 7260 7261 /* 7262 * By now, el will point to the extent list on the bottom most 7263 * portion of this tree. Only the tail record is considered in 7264 * each pass. 7265 * 7266 * We handle the following cases, in order: 7267 * - empty extent: delete the remaining branch 7268 * - remove the entire record 7269 * - remove a partial record 7270 * - no record needs to be removed (truncate has completed) 7271 */ 7272 el = path_leaf_el(path); 7273 if (le16_to_cpu(el->l_next_free_rec) == 0) { 7274 ocfs2_error(inode->i_sb, 7275 "Inode %llu has empty extent block at %llu\n", 7276 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7277 (unsigned long long)path_leaf_bh(path)->b_blocknr); 7278 status = -EROFS; 7279 goto bail; 7280 } 7281 7282 i = le16_to_cpu(el->l_next_free_rec) - 1; 7283 rec = &el->l_recs[i]; 7284 flags = rec->e_flags; 7285 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 7286 7287 if (i == 0 && ocfs2_is_empty_extent(rec)) { 7288 /* 7289 * Lower levels depend on this never happening, but it's best 7290 * to check it up here before changing the tree. 7291 */ 7292 if (root_el->l_tree_depth && rec->e_int_clusters == 0) { 7293 mlog(ML_ERROR, "Inode %lu has an empty " 7294 "extent record, depth %u\n", inode->i_ino, 7295 le16_to_cpu(root_el->l_tree_depth)); 7296 status = ocfs2_remove_rightmost_empty_extent(osb, 7297 &et, path, &dealloc); 7298 if (status) { 7299 mlog_errno(status); 7300 goto bail; 7301 } 7302 7303 ocfs2_reinit_path(path, 1); 7304 goto start; 7305 } else { 7306 trunc_cpos = le32_to_cpu(rec->e_cpos); 7307 trunc_len = 0; 7308 blkno = 0; 7309 } 7310 } else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) { 7311 /* 7312 * Truncate entire record. 7313 */ 7314 trunc_cpos = le32_to_cpu(rec->e_cpos); 7315 trunc_len = ocfs2_rec_clusters(el, rec); 7316 blkno = le64_to_cpu(rec->e_blkno); 7317 } else if (range > new_highest_cpos) { 7318 /* 7319 * Partial truncate. it also should be 7320 * the last truncate we're doing. 7321 */ 7322 trunc_cpos = new_highest_cpos; 7323 trunc_len = range - new_highest_cpos; 7324 coff = new_highest_cpos - le32_to_cpu(rec->e_cpos); 7325 blkno = le64_to_cpu(rec->e_blkno) + 7326 ocfs2_clusters_to_blocks(inode->i_sb, coff); 7327 } else { 7328 /* 7329 * Truncate completed, leave happily. 7330 */ 7331 status = 0; 7332 goto bail; 7333 } 7334 7335 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 7336 7337 if ((flags & OCFS2_EXT_REFCOUNTED) && trunc_len && !ref_tree) { 7338 status = ocfs2_lock_refcount_tree(osb, refcount_loc, 1, 7339 &ref_tree, NULL); 7340 if (status) { 7341 mlog_errno(status); 7342 goto bail; 7343 } 7344 } 7345 7346 status = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 7347 phys_cpos, trunc_len, flags, &dealloc, 7348 refcount_loc, true); 7349 if (status < 0) { 7350 mlog_errno(status); 7351 goto bail; 7352 } 7353 7354 ocfs2_reinit_path(path, 1); 7355 7356 /* 7357 * The check above will catch the case where we've truncated 7358 * away all allocation. 7359 */ 7360 goto start; 7361 7362 bail: 7363 if (ref_tree) 7364 ocfs2_unlock_refcount_tree(osb, ref_tree, 1); 7365 7366 ocfs2_schedule_truncate_log_flush(osb, 1); 7367 7368 ocfs2_run_deallocs(osb, &dealloc); 7369 7370 ocfs2_free_path(path); 7371 7372 return status; 7373 } 7374 7375 /* 7376 * 'start' is inclusive, 'end' is not. 7377 */ 7378 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh, 7379 unsigned int start, unsigned int end, int trunc) 7380 { 7381 int ret; 7382 unsigned int numbytes; 7383 handle_t *handle; 7384 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 7385 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7386 struct ocfs2_inline_data *idata = &di->id2.i_data; 7387 7388 /* No need to punch hole beyond i_size. */ 7389 if (start >= i_size_read(inode)) 7390 return 0; 7391 7392 if (end > i_size_read(inode)) 7393 end = i_size_read(inode); 7394 7395 BUG_ON(start > end); 7396 7397 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) || 7398 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) || 7399 !ocfs2_supports_inline_data(osb)) { 7400 ocfs2_error(inode->i_sb, 7401 "Inline data flags for inode %llu don't agree! Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n", 7402 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7403 le16_to_cpu(di->i_dyn_features), 7404 OCFS2_I(inode)->ip_dyn_features, 7405 osb->s_feature_incompat); 7406 ret = -EROFS; 7407 goto out; 7408 } 7409 7410 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 7411 if (IS_ERR(handle)) { 7412 ret = PTR_ERR(handle); 7413 mlog_errno(ret); 7414 goto out; 7415 } 7416 7417 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 7418 OCFS2_JOURNAL_ACCESS_WRITE); 7419 if (ret) { 7420 mlog_errno(ret); 7421 goto out_commit; 7422 } 7423 7424 numbytes = end - start; 7425 memset(idata->id_data + start, 0, numbytes); 7426 7427 /* 7428 * No need to worry about the data page here - it's been 7429 * truncated already and inline data doesn't need it for 7430 * pushing zero's to disk, so we'll let readpage pick it up 7431 * later. 7432 */ 7433 if (trunc) { 7434 i_size_write(inode, start); 7435 di->i_size = cpu_to_le64(start); 7436 } 7437 7438 inode->i_blocks = ocfs2_inode_sector_count(inode); 7439 inode->i_ctime = inode->i_mtime = current_time(inode); 7440 7441 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 7442 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 7443 7444 ocfs2_update_inode_fsync_trans(handle, inode, 1); 7445 ocfs2_journal_dirty(handle, di_bh); 7446 7447 out_commit: 7448 ocfs2_commit_trans(osb, handle); 7449 7450 out: 7451 return ret; 7452 } 7453 7454 static int ocfs2_trim_extent(struct super_block *sb, 7455 struct ocfs2_group_desc *gd, 7456 u64 group, u32 start, u32 count) 7457 { 7458 u64 discard, bcount; 7459 struct ocfs2_super *osb = OCFS2_SB(sb); 7460 7461 bcount = ocfs2_clusters_to_blocks(sb, count); 7462 discard = ocfs2_clusters_to_blocks(sb, start); 7463 7464 /* 7465 * For the first cluster group, the gd->bg_blkno is not at the start 7466 * of the group, but at an offset from the start. If we add it while 7467 * calculating discard for first group, we will wrongly start fstrim a 7468 * few blocks after the desried start block and the range can cross 7469 * over into the next cluster group. So, add it only if this is not 7470 * the first cluster group. 7471 */ 7472 if (group != osb->first_cluster_group_blkno) 7473 discard += le64_to_cpu(gd->bg_blkno); 7474 7475 trace_ocfs2_trim_extent(sb, (unsigned long long)discard, bcount); 7476 7477 return sb_issue_discard(sb, discard, bcount, GFP_NOFS, 0); 7478 } 7479 7480 static int ocfs2_trim_group(struct super_block *sb, 7481 struct ocfs2_group_desc *gd, u64 group, 7482 u32 start, u32 max, u32 minbits) 7483 { 7484 int ret = 0, count = 0, next; 7485 void *bitmap = gd->bg_bitmap; 7486 7487 if (le16_to_cpu(gd->bg_free_bits_count) < minbits) 7488 return 0; 7489 7490 trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd->bg_blkno), 7491 start, max, minbits); 7492 7493 while (start < max) { 7494 start = ocfs2_find_next_zero_bit(bitmap, max, start); 7495 if (start >= max) 7496 break; 7497 next = ocfs2_find_next_bit(bitmap, max, start); 7498 7499 if ((next - start) >= minbits) { 7500 ret = ocfs2_trim_extent(sb, gd, group, 7501 start, next - start); 7502 if (ret < 0) { 7503 mlog_errno(ret); 7504 break; 7505 } 7506 count += next - start; 7507 } 7508 start = next + 1; 7509 7510 if (fatal_signal_pending(current)) { 7511 count = -ERESTARTSYS; 7512 break; 7513 } 7514 7515 if ((le16_to_cpu(gd->bg_free_bits_count) - count) < minbits) 7516 break; 7517 } 7518 7519 if (ret < 0) 7520 count = ret; 7521 7522 return count; 7523 } 7524 7525 static 7526 int ocfs2_trim_mainbm(struct super_block *sb, struct fstrim_range *range) 7527 { 7528 struct ocfs2_super *osb = OCFS2_SB(sb); 7529 u64 start, len, trimmed = 0, first_group, last_group = 0, group = 0; 7530 int ret, cnt; 7531 u32 first_bit, last_bit, minlen; 7532 struct buffer_head *main_bm_bh = NULL; 7533 struct inode *main_bm_inode = NULL; 7534 struct buffer_head *gd_bh = NULL; 7535 struct ocfs2_dinode *main_bm; 7536 struct ocfs2_group_desc *gd = NULL; 7537 7538 start = range->start >> osb->s_clustersize_bits; 7539 len = range->len >> osb->s_clustersize_bits; 7540 minlen = range->minlen >> osb->s_clustersize_bits; 7541 7542 if (minlen >= osb->bitmap_cpg || range->len < sb->s_blocksize) 7543 return -EINVAL; 7544 7545 trace_ocfs2_trim_mainbm(start, len, minlen); 7546 7547 next_group: 7548 main_bm_inode = ocfs2_get_system_file_inode(osb, 7549 GLOBAL_BITMAP_SYSTEM_INODE, 7550 OCFS2_INVALID_SLOT); 7551 if (!main_bm_inode) { 7552 ret = -EIO; 7553 mlog_errno(ret); 7554 goto out; 7555 } 7556 7557 inode_lock(main_bm_inode); 7558 7559 ret = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 0); 7560 if (ret < 0) { 7561 mlog_errno(ret); 7562 goto out_mutex; 7563 } 7564 main_bm = (struct ocfs2_dinode *)main_bm_bh->b_data; 7565 7566 /* 7567 * Do some check before trim the first group. 7568 */ 7569 if (!group) { 7570 if (start >= le32_to_cpu(main_bm->i_clusters)) { 7571 ret = -EINVAL; 7572 goto out_unlock; 7573 } 7574 7575 if (start + len > le32_to_cpu(main_bm->i_clusters)) 7576 len = le32_to_cpu(main_bm->i_clusters) - start; 7577 7578 /* 7579 * Determine first and last group to examine based on 7580 * start and len 7581 */ 7582 first_group = ocfs2_which_cluster_group(main_bm_inode, start); 7583 if (first_group == osb->first_cluster_group_blkno) 7584 first_bit = start; 7585 else 7586 first_bit = start - ocfs2_blocks_to_clusters(sb, 7587 first_group); 7588 last_group = ocfs2_which_cluster_group(main_bm_inode, 7589 start + len - 1); 7590 group = first_group; 7591 } 7592 7593 do { 7594 if (first_bit + len >= osb->bitmap_cpg) 7595 last_bit = osb->bitmap_cpg; 7596 else 7597 last_bit = first_bit + len; 7598 7599 ret = ocfs2_read_group_descriptor(main_bm_inode, 7600 main_bm, group, 7601 &gd_bh); 7602 if (ret < 0) { 7603 mlog_errno(ret); 7604 break; 7605 } 7606 7607 gd = (struct ocfs2_group_desc *)gd_bh->b_data; 7608 cnt = ocfs2_trim_group(sb, gd, group, 7609 first_bit, last_bit, minlen); 7610 brelse(gd_bh); 7611 gd_bh = NULL; 7612 if (cnt < 0) { 7613 ret = cnt; 7614 mlog_errno(ret); 7615 break; 7616 } 7617 7618 trimmed += cnt; 7619 len -= osb->bitmap_cpg - first_bit; 7620 first_bit = 0; 7621 if (group == osb->first_cluster_group_blkno) 7622 group = ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg); 7623 else 7624 group += ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg); 7625 } while (0); 7626 7627 out_unlock: 7628 ocfs2_inode_unlock(main_bm_inode, 0); 7629 brelse(main_bm_bh); 7630 main_bm_bh = NULL; 7631 out_mutex: 7632 inode_unlock(main_bm_inode); 7633 iput(main_bm_inode); 7634 7635 /* 7636 * If all the groups trim are not done or failed, but we should release 7637 * main_bm related locks for avoiding the current IO starve, then go to 7638 * trim the next group 7639 */ 7640 if (ret >= 0 && group <= last_group) { 7641 cond_resched(); 7642 goto next_group; 7643 } 7644 out: 7645 range->len = trimmed * sb->s_blocksize; 7646 return ret; 7647 } 7648 7649 int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range) 7650 { 7651 int ret; 7652 struct ocfs2_super *osb = OCFS2_SB(sb); 7653 struct ocfs2_trim_fs_info info, *pinfo = NULL; 7654 7655 ocfs2_trim_fs_lock_res_init(osb); 7656 7657 trace_ocfs2_trim_fs(range->start, range->len, range->minlen); 7658 7659 ret = ocfs2_trim_fs_lock(osb, NULL, 1); 7660 if (ret < 0) { 7661 if (ret != -EAGAIN) { 7662 mlog_errno(ret); 7663 ocfs2_trim_fs_lock_res_uninit(osb); 7664 return ret; 7665 } 7666 7667 mlog(ML_NOTICE, "Wait for trim on device (%s) to " 7668 "finish, which is running from another node.\n", 7669 osb->dev_str); 7670 ret = ocfs2_trim_fs_lock(osb, &info, 0); 7671 if (ret < 0) { 7672 mlog_errno(ret); 7673 ocfs2_trim_fs_lock_res_uninit(osb); 7674 return ret; 7675 } 7676 7677 if (info.tf_valid && info.tf_success && 7678 info.tf_start == range->start && 7679 info.tf_len == range->len && 7680 info.tf_minlen == range->minlen) { 7681 /* Avoid sending duplicated trim to a shared device */ 7682 mlog(ML_NOTICE, "The same trim on device (%s) was " 7683 "just done from node (%u), return.\n", 7684 osb->dev_str, info.tf_nodenum); 7685 range->len = info.tf_trimlen; 7686 goto out; 7687 } 7688 } 7689 7690 info.tf_nodenum = osb->node_num; 7691 info.tf_start = range->start; 7692 info.tf_len = range->len; 7693 info.tf_minlen = range->minlen; 7694 7695 ret = ocfs2_trim_mainbm(sb, range); 7696 7697 info.tf_trimlen = range->len; 7698 info.tf_success = (ret < 0 ? 0 : 1); 7699 pinfo = &info; 7700 out: 7701 ocfs2_trim_fs_unlock(osb, pinfo); 7702 ocfs2_trim_fs_lock_res_uninit(osb); 7703 return ret; 7704 } 7705