xref: /openbmc/linux/fs/ocfs2/alloc.c (revision c495dd24)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32 
33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
34 #include <cluster/masklog.h>
35 
36 #include "ocfs2.h"
37 
38 #include "alloc.h"
39 #include "aops.h"
40 #include "blockcheck.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "localalloc.h"
46 #include "suballoc.h"
47 #include "sysfile.h"
48 #include "file.h"
49 #include "super.h"
50 #include "uptodate.h"
51 #include "xattr.h"
52 
53 #include "buffer_head_io.h"
54 
55 
56 /*
57  * Operations for a specific extent tree type.
58  *
59  * To implement an on-disk btree (extent tree) type in ocfs2, add
60  * an ocfs2_extent_tree_operations structure and the matching
61  * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
62  * for the allocation portion of the extent tree.
63  */
64 struct ocfs2_extent_tree_operations {
65 	/*
66 	 * last_eb_blk is the block number of the right most leaf extent
67 	 * block.  Most on-disk structures containing an extent tree store
68 	 * this value for fast access.  The ->eo_set_last_eb_blk() and
69 	 * ->eo_get_last_eb_blk() operations access this value.  They are
70 	 *  both required.
71 	 */
72 	void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
73 				   u64 blkno);
74 	u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
75 
76 	/*
77 	 * The on-disk structure usually keeps track of how many total
78 	 * clusters are stored in this extent tree.  This function updates
79 	 * that value.  new_clusters is the delta, and must be
80 	 * added to the total.  Required.
81 	 */
82 	void (*eo_update_clusters)(struct ocfs2_extent_tree *et,
83 				   u32 new_clusters);
84 
85 	/*
86 	 * If ->eo_insert_check() exists, it is called before rec is
87 	 * inserted into the extent tree.  It is optional.
88 	 */
89 	int (*eo_insert_check)(struct ocfs2_extent_tree *et,
90 			       struct ocfs2_extent_rec *rec);
91 	int (*eo_sanity_check)(struct ocfs2_extent_tree *et);
92 
93 	/*
94 	 * --------------------------------------------------------------
95 	 * The remaining are internal to ocfs2_extent_tree and don't have
96 	 * accessor functions
97 	 */
98 
99 	/*
100 	 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
101 	 * It is required.
102 	 */
103 	void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
104 
105 	/*
106 	 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
107 	 * it exists.  If it does not, et->et_max_leaf_clusters is set
108 	 * to 0 (unlimited).  Optional.
109 	 */
110 	void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et);
111 };
112 
113 
114 /*
115  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
116  * in the methods.
117  */
118 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
119 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
120 					 u64 blkno);
121 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
122 					 u32 clusters);
123 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
124 				     struct ocfs2_extent_rec *rec);
125 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et);
126 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
127 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
128 	.eo_set_last_eb_blk	= ocfs2_dinode_set_last_eb_blk,
129 	.eo_get_last_eb_blk	= ocfs2_dinode_get_last_eb_blk,
130 	.eo_update_clusters	= ocfs2_dinode_update_clusters,
131 	.eo_insert_check	= ocfs2_dinode_insert_check,
132 	.eo_sanity_check	= ocfs2_dinode_sanity_check,
133 	.eo_fill_root_el	= ocfs2_dinode_fill_root_el,
134 };
135 
136 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
137 					 u64 blkno)
138 {
139 	struct ocfs2_dinode *di = et->et_object;
140 
141 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
142 	di->i_last_eb_blk = cpu_to_le64(blkno);
143 }
144 
145 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
146 {
147 	struct ocfs2_dinode *di = et->et_object;
148 
149 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
150 	return le64_to_cpu(di->i_last_eb_blk);
151 }
152 
153 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
154 					 u32 clusters)
155 {
156 	struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
157 	struct ocfs2_dinode *di = et->et_object;
158 
159 	le32_add_cpu(&di->i_clusters, clusters);
160 	spin_lock(&oi->ip_lock);
161 	oi->ip_clusters = le32_to_cpu(di->i_clusters);
162 	spin_unlock(&oi->ip_lock);
163 }
164 
165 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
166 				     struct ocfs2_extent_rec *rec)
167 {
168 	struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
169 	struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb);
170 
171 	BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL);
172 	mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
173 			(oi->ip_clusters != le32_to_cpu(rec->e_cpos)),
174 			"Device %s, asking for sparse allocation: inode %llu, "
175 			"cpos %u, clusters %u\n",
176 			osb->dev_str,
177 			(unsigned long long)oi->ip_blkno,
178 			rec->e_cpos, oi->ip_clusters);
179 
180 	return 0;
181 }
182 
183 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et)
184 {
185 	struct ocfs2_dinode *di = et->et_object;
186 
187 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
188 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
189 
190 	return 0;
191 }
192 
193 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
194 {
195 	struct ocfs2_dinode *di = et->et_object;
196 
197 	et->et_root_el = &di->id2.i_list;
198 }
199 
200 
201 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
202 {
203 	struct ocfs2_xattr_value_buf *vb = et->et_object;
204 
205 	et->et_root_el = &vb->vb_xv->xr_list;
206 }
207 
208 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
209 					      u64 blkno)
210 {
211 	struct ocfs2_xattr_value_buf *vb = et->et_object;
212 
213 	vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
214 }
215 
216 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
217 {
218 	struct ocfs2_xattr_value_buf *vb = et->et_object;
219 
220 	return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
221 }
222 
223 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et,
224 					      u32 clusters)
225 {
226 	struct ocfs2_xattr_value_buf *vb = et->et_object;
227 
228 	le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
229 }
230 
231 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
232 	.eo_set_last_eb_blk	= ocfs2_xattr_value_set_last_eb_blk,
233 	.eo_get_last_eb_blk	= ocfs2_xattr_value_get_last_eb_blk,
234 	.eo_update_clusters	= ocfs2_xattr_value_update_clusters,
235 	.eo_fill_root_el	= ocfs2_xattr_value_fill_root_el,
236 };
237 
238 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
239 {
240 	struct ocfs2_xattr_block *xb = et->et_object;
241 
242 	et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
243 }
244 
245 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et)
246 {
247 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
248 	et->et_max_leaf_clusters =
249 		ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
250 }
251 
252 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
253 					     u64 blkno)
254 {
255 	struct ocfs2_xattr_block *xb = et->et_object;
256 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
257 
258 	xt->xt_last_eb_blk = cpu_to_le64(blkno);
259 }
260 
261 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
262 {
263 	struct ocfs2_xattr_block *xb = et->et_object;
264 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
265 
266 	return le64_to_cpu(xt->xt_last_eb_blk);
267 }
268 
269 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et,
270 					     u32 clusters)
271 {
272 	struct ocfs2_xattr_block *xb = et->et_object;
273 
274 	le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
275 }
276 
277 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
278 	.eo_set_last_eb_blk	= ocfs2_xattr_tree_set_last_eb_blk,
279 	.eo_get_last_eb_blk	= ocfs2_xattr_tree_get_last_eb_blk,
280 	.eo_update_clusters	= ocfs2_xattr_tree_update_clusters,
281 	.eo_fill_root_el	= ocfs2_xattr_tree_fill_root_el,
282 	.eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
283 };
284 
285 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
286 					  u64 blkno)
287 {
288 	struct ocfs2_dx_root_block *dx_root = et->et_object;
289 
290 	dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
291 }
292 
293 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
294 {
295 	struct ocfs2_dx_root_block *dx_root = et->et_object;
296 
297 	return le64_to_cpu(dx_root->dr_last_eb_blk);
298 }
299 
300 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et,
301 					  u32 clusters)
302 {
303 	struct ocfs2_dx_root_block *dx_root = et->et_object;
304 
305 	le32_add_cpu(&dx_root->dr_clusters, clusters);
306 }
307 
308 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et)
309 {
310 	struct ocfs2_dx_root_block *dx_root = et->et_object;
311 
312 	BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
313 
314 	return 0;
315 }
316 
317 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
318 {
319 	struct ocfs2_dx_root_block *dx_root = et->et_object;
320 
321 	et->et_root_el = &dx_root->dr_list;
322 }
323 
324 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
325 	.eo_set_last_eb_blk	= ocfs2_dx_root_set_last_eb_blk,
326 	.eo_get_last_eb_blk	= ocfs2_dx_root_get_last_eb_blk,
327 	.eo_update_clusters	= ocfs2_dx_root_update_clusters,
328 	.eo_sanity_check	= ocfs2_dx_root_sanity_check,
329 	.eo_fill_root_el	= ocfs2_dx_root_fill_root_el,
330 };
331 
332 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
333 				     struct inode *inode,
334 				     struct buffer_head *bh,
335 				     ocfs2_journal_access_func access,
336 				     void *obj,
337 				     struct ocfs2_extent_tree_operations *ops)
338 {
339 	et->et_ops = ops;
340 	et->et_root_bh = bh;
341 	et->et_ci = INODE_CACHE(inode);
342 	et->et_root_journal_access = access;
343 	if (!obj)
344 		obj = (void *)bh->b_data;
345 	et->et_object = obj;
346 
347 	et->et_ops->eo_fill_root_el(et);
348 	if (!et->et_ops->eo_fill_max_leaf_clusters)
349 		et->et_max_leaf_clusters = 0;
350 	else
351 		et->et_ops->eo_fill_max_leaf_clusters(et);
352 }
353 
354 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
355 				   struct inode *inode,
356 				   struct buffer_head *bh)
357 {
358 	__ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_di,
359 				 NULL, &ocfs2_dinode_et_ops);
360 }
361 
362 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
363 				       struct inode *inode,
364 				       struct buffer_head *bh)
365 {
366 	__ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_xb,
367 				 NULL, &ocfs2_xattr_tree_et_ops);
368 }
369 
370 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
371 					struct inode *inode,
372 					struct ocfs2_xattr_value_buf *vb)
373 {
374 	__ocfs2_init_extent_tree(et, inode, vb->vb_bh, vb->vb_access, vb,
375 				 &ocfs2_xattr_value_et_ops);
376 }
377 
378 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
379 				    struct inode *inode,
380 				    struct buffer_head *bh)
381 {
382 	__ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_dr,
383 				 NULL, &ocfs2_dx_root_et_ops);
384 }
385 
386 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
387 					    u64 new_last_eb_blk)
388 {
389 	et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
390 }
391 
392 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
393 {
394 	return et->et_ops->eo_get_last_eb_blk(et);
395 }
396 
397 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et,
398 					    u32 clusters)
399 {
400 	et->et_ops->eo_update_clusters(et, clusters);
401 }
402 
403 static inline int ocfs2_et_root_journal_access(handle_t *handle,
404 					       struct ocfs2_extent_tree *et,
405 					       int type)
406 {
407 	return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh,
408 					  type);
409 }
410 
411 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et,
412 					struct ocfs2_extent_rec *rec)
413 {
414 	int ret = 0;
415 
416 	if (et->et_ops->eo_insert_check)
417 		ret = et->et_ops->eo_insert_check(et, rec);
418 	return ret;
419 }
420 
421 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et)
422 {
423 	int ret = 0;
424 
425 	if (et->et_ops->eo_sanity_check)
426 		ret = et->et_ops->eo_sanity_check(et);
427 	return ret;
428 }
429 
430 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
431 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
432 					 struct ocfs2_extent_block *eb);
433 
434 /*
435  * Structures which describe a path through a btree, and functions to
436  * manipulate them.
437  *
438  * The idea here is to be as generic as possible with the tree
439  * manipulation code.
440  */
441 struct ocfs2_path_item {
442 	struct buffer_head		*bh;
443 	struct ocfs2_extent_list	*el;
444 };
445 
446 #define OCFS2_MAX_PATH_DEPTH	5
447 
448 struct ocfs2_path {
449 	int				p_tree_depth;
450 	ocfs2_journal_access_func	p_root_access;
451 	struct ocfs2_path_item		p_node[OCFS2_MAX_PATH_DEPTH];
452 };
453 
454 #define path_root_bh(_path) ((_path)->p_node[0].bh)
455 #define path_root_el(_path) ((_path)->p_node[0].el)
456 #define path_root_access(_path)((_path)->p_root_access)
457 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
458 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
459 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
460 
461 static int ocfs2_find_path(struct ocfs2_caching_info *ci,
462 			   struct ocfs2_path *path, u32 cpos);
463 static void ocfs2_adjust_rightmost_records(struct inode *inode,
464 					   handle_t *handle,
465 					   struct ocfs2_path *path,
466 					   struct ocfs2_extent_rec *insert_rec);
467 /*
468  * Reset the actual path elements so that we can re-use the structure
469  * to build another path. Generally, this involves freeing the buffer
470  * heads.
471  */
472 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
473 {
474 	int i, start = 0, depth = 0;
475 	struct ocfs2_path_item *node;
476 
477 	if (keep_root)
478 		start = 1;
479 
480 	for(i = start; i < path_num_items(path); i++) {
481 		node = &path->p_node[i];
482 
483 		brelse(node->bh);
484 		node->bh = NULL;
485 		node->el = NULL;
486 	}
487 
488 	/*
489 	 * Tree depth may change during truncate, or insert. If we're
490 	 * keeping the root extent list, then make sure that our path
491 	 * structure reflects the proper depth.
492 	 */
493 	if (keep_root)
494 		depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
495 	else
496 		path_root_access(path) = NULL;
497 
498 	path->p_tree_depth = depth;
499 }
500 
501 static void ocfs2_free_path(struct ocfs2_path *path)
502 {
503 	if (path) {
504 		ocfs2_reinit_path(path, 0);
505 		kfree(path);
506 	}
507 }
508 
509 /*
510  * All the elements of src into dest. After this call, src could be freed
511  * without affecting dest.
512  *
513  * Both paths should have the same root. Any non-root elements of dest
514  * will be freed.
515  */
516 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
517 {
518 	int i;
519 
520 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
521 	BUG_ON(path_root_el(dest) != path_root_el(src));
522 	BUG_ON(path_root_access(dest) != path_root_access(src));
523 
524 	ocfs2_reinit_path(dest, 1);
525 
526 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
527 		dest->p_node[i].bh = src->p_node[i].bh;
528 		dest->p_node[i].el = src->p_node[i].el;
529 
530 		if (dest->p_node[i].bh)
531 			get_bh(dest->p_node[i].bh);
532 	}
533 }
534 
535 /*
536  * Make the *dest path the same as src and re-initialize src path to
537  * have a root only.
538  */
539 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
540 {
541 	int i;
542 
543 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
544 	BUG_ON(path_root_access(dest) != path_root_access(src));
545 
546 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
547 		brelse(dest->p_node[i].bh);
548 
549 		dest->p_node[i].bh = src->p_node[i].bh;
550 		dest->p_node[i].el = src->p_node[i].el;
551 
552 		src->p_node[i].bh = NULL;
553 		src->p_node[i].el = NULL;
554 	}
555 }
556 
557 /*
558  * Insert an extent block at given index.
559  *
560  * This will not take an additional reference on eb_bh.
561  */
562 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
563 					struct buffer_head *eb_bh)
564 {
565 	struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
566 
567 	/*
568 	 * Right now, no root bh is an extent block, so this helps
569 	 * catch code errors with dinode trees. The assertion can be
570 	 * safely removed if we ever need to insert extent block
571 	 * structures at the root.
572 	 */
573 	BUG_ON(index == 0);
574 
575 	path->p_node[index].bh = eb_bh;
576 	path->p_node[index].el = &eb->h_list;
577 }
578 
579 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
580 					 struct ocfs2_extent_list *root_el,
581 					 ocfs2_journal_access_func access)
582 {
583 	struct ocfs2_path *path;
584 
585 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
586 
587 	path = kzalloc(sizeof(*path), GFP_NOFS);
588 	if (path) {
589 		path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
590 		get_bh(root_bh);
591 		path_root_bh(path) = root_bh;
592 		path_root_el(path) = root_el;
593 		path_root_access(path) = access;
594 	}
595 
596 	return path;
597 }
598 
599 static struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
600 {
601 	return ocfs2_new_path(path_root_bh(path), path_root_el(path),
602 			      path_root_access(path));
603 }
604 
605 static struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
606 {
607 	return ocfs2_new_path(et->et_root_bh, et->et_root_el,
608 			      et->et_root_journal_access);
609 }
610 
611 /*
612  * Journal the buffer at depth idx.  All idx>0 are extent_blocks,
613  * otherwise it's the root_access function.
614  *
615  * I don't like the way this function's name looks next to
616  * ocfs2_journal_access_path(), but I don't have a better one.
617  */
618 static int ocfs2_path_bh_journal_access(handle_t *handle,
619 					struct ocfs2_caching_info *ci,
620 					struct ocfs2_path *path,
621 					int idx)
622 {
623 	ocfs2_journal_access_func access = path_root_access(path);
624 
625 	if (!access)
626 		access = ocfs2_journal_access;
627 
628 	if (idx)
629 		access = ocfs2_journal_access_eb;
630 
631 	return access(handle, ci, path->p_node[idx].bh,
632 		      OCFS2_JOURNAL_ACCESS_WRITE);
633 }
634 
635 /*
636  * Convenience function to journal all components in a path.
637  */
638 static int ocfs2_journal_access_path(struct ocfs2_caching_info *ci,
639 				     handle_t *handle,
640 				     struct ocfs2_path *path)
641 {
642 	int i, ret = 0;
643 
644 	if (!path)
645 		goto out;
646 
647 	for(i = 0; i < path_num_items(path); i++) {
648 		ret = ocfs2_path_bh_journal_access(handle, ci, path, i);
649 		if (ret < 0) {
650 			mlog_errno(ret);
651 			goto out;
652 		}
653 	}
654 
655 out:
656 	return ret;
657 }
658 
659 /*
660  * Return the index of the extent record which contains cluster #v_cluster.
661  * -1 is returned if it was not found.
662  *
663  * Should work fine on interior and exterior nodes.
664  */
665 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
666 {
667 	int ret = -1;
668 	int i;
669 	struct ocfs2_extent_rec *rec;
670 	u32 rec_end, rec_start, clusters;
671 
672 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
673 		rec = &el->l_recs[i];
674 
675 		rec_start = le32_to_cpu(rec->e_cpos);
676 		clusters = ocfs2_rec_clusters(el, rec);
677 
678 		rec_end = rec_start + clusters;
679 
680 		if (v_cluster >= rec_start && v_cluster < rec_end) {
681 			ret = i;
682 			break;
683 		}
684 	}
685 
686 	return ret;
687 }
688 
689 enum ocfs2_contig_type {
690 	CONTIG_NONE = 0,
691 	CONTIG_LEFT,
692 	CONTIG_RIGHT,
693 	CONTIG_LEFTRIGHT,
694 };
695 
696 
697 /*
698  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
699  * ocfs2_extent_contig only work properly against leaf nodes!
700  */
701 static int ocfs2_block_extent_contig(struct super_block *sb,
702 				     struct ocfs2_extent_rec *ext,
703 				     u64 blkno)
704 {
705 	u64 blk_end = le64_to_cpu(ext->e_blkno);
706 
707 	blk_end += ocfs2_clusters_to_blocks(sb,
708 				    le16_to_cpu(ext->e_leaf_clusters));
709 
710 	return blkno == blk_end;
711 }
712 
713 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
714 				  struct ocfs2_extent_rec *right)
715 {
716 	u32 left_range;
717 
718 	left_range = le32_to_cpu(left->e_cpos) +
719 		le16_to_cpu(left->e_leaf_clusters);
720 
721 	return (left_range == le32_to_cpu(right->e_cpos));
722 }
723 
724 static enum ocfs2_contig_type
725 	ocfs2_extent_contig(struct inode *inode,
726 			    struct ocfs2_extent_rec *ext,
727 			    struct ocfs2_extent_rec *insert_rec)
728 {
729 	u64 blkno = le64_to_cpu(insert_rec->e_blkno);
730 
731 	/*
732 	 * Refuse to coalesce extent records with different flag
733 	 * fields - we don't want to mix unwritten extents with user
734 	 * data.
735 	 */
736 	if (ext->e_flags != insert_rec->e_flags)
737 		return CONTIG_NONE;
738 
739 	if (ocfs2_extents_adjacent(ext, insert_rec) &&
740 	    ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
741 			return CONTIG_RIGHT;
742 
743 	blkno = le64_to_cpu(ext->e_blkno);
744 	if (ocfs2_extents_adjacent(insert_rec, ext) &&
745 	    ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
746 		return CONTIG_LEFT;
747 
748 	return CONTIG_NONE;
749 }
750 
751 /*
752  * NOTE: We can have pretty much any combination of contiguousness and
753  * appending.
754  *
755  * The usefulness of APPEND_TAIL is more in that it lets us know that
756  * we'll have to update the path to that leaf.
757  */
758 enum ocfs2_append_type {
759 	APPEND_NONE = 0,
760 	APPEND_TAIL,
761 };
762 
763 enum ocfs2_split_type {
764 	SPLIT_NONE = 0,
765 	SPLIT_LEFT,
766 	SPLIT_RIGHT,
767 };
768 
769 struct ocfs2_insert_type {
770 	enum ocfs2_split_type	ins_split;
771 	enum ocfs2_append_type	ins_appending;
772 	enum ocfs2_contig_type	ins_contig;
773 	int			ins_contig_index;
774 	int			ins_tree_depth;
775 };
776 
777 struct ocfs2_merge_ctxt {
778 	enum ocfs2_contig_type	c_contig_type;
779 	int			c_has_empty_extent;
780 	int			c_split_covers_rec;
781 };
782 
783 static int ocfs2_validate_extent_block(struct super_block *sb,
784 				       struct buffer_head *bh)
785 {
786 	int rc;
787 	struct ocfs2_extent_block *eb =
788 		(struct ocfs2_extent_block *)bh->b_data;
789 
790 	mlog(0, "Validating extent block %llu\n",
791 	     (unsigned long long)bh->b_blocknr);
792 
793 	BUG_ON(!buffer_uptodate(bh));
794 
795 	/*
796 	 * If the ecc fails, we return the error but otherwise
797 	 * leave the filesystem running.  We know any error is
798 	 * local to this block.
799 	 */
800 	rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
801 	if (rc) {
802 		mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
803 		     (unsigned long long)bh->b_blocknr);
804 		return rc;
805 	}
806 
807 	/*
808 	 * Errors after here are fatal.
809 	 */
810 
811 	if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
812 		ocfs2_error(sb,
813 			    "Extent block #%llu has bad signature %.*s",
814 			    (unsigned long long)bh->b_blocknr, 7,
815 			    eb->h_signature);
816 		return -EINVAL;
817 	}
818 
819 	if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
820 		ocfs2_error(sb,
821 			    "Extent block #%llu has an invalid h_blkno "
822 			    "of %llu",
823 			    (unsigned long long)bh->b_blocknr,
824 			    (unsigned long long)le64_to_cpu(eb->h_blkno));
825 		return -EINVAL;
826 	}
827 
828 	if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
829 		ocfs2_error(sb,
830 			    "Extent block #%llu has an invalid "
831 			    "h_fs_generation of #%u",
832 			    (unsigned long long)bh->b_blocknr,
833 			    le32_to_cpu(eb->h_fs_generation));
834 		return -EINVAL;
835 	}
836 
837 	return 0;
838 }
839 
840 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno,
841 			    struct buffer_head **bh)
842 {
843 	int rc;
844 	struct buffer_head *tmp = *bh;
845 
846 	rc = ocfs2_read_block(ci, eb_blkno, &tmp,
847 			      ocfs2_validate_extent_block);
848 
849 	/* If ocfs2_read_block() got us a new bh, pass it up. */
850 	if (!rc && !*bh)
851 		*bh = tmp;
852 
853 	return rc;
854 }
855 
856 
857 /*
858  * How many free extents have we got before we need more meta data?
859  */
860 int ocfs2_num_free_extents(struct ocfs2_super *osb,
861 			   struct ocfs2_extent_tree *et)
862 {
863 	int retval;
864 	struct ocfs2_extent_list *el = NULL;
865 	struct ocfs2_extent_block *eb;
866 	struct buffer_head *eb_bh = NULL;
867 	u64 last_eb_blk = 0;
868 
869 	mlog_entry_void();
870 
871 	el = et->et_root_el;
872 	last_eb_blk = ocfs2_et_get_last_eb_blk(et);
873 
874 	if (last_eb_blk) {
875 		retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk,
876 						 &eb_bh);
877 		if (retval < 0) {
878 			mlog_errno(retval);
879 			goto bail;
880 		}
881 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
882 		el = &eb->h_list;
883 	}
884 
885 	BUG_ON(el->l_tree_depth != 0);
886 
887 	retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
888 bail:
889 	brelse(eb_bh);
890 
891 	mlog_exit(retval);
892 	return retval;
893 }
894 
895 /* expects array to already be allocated
896  *
897  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
898  * l_count for you
899  */
900 static int ocfs2_create_new_meta_bhs(handle_t *handle,
901 				     struct ocfs2_extent_tree *et,
902 				     int wanted,
903 				     struct ocfs2_alloc_context *meta_ac,
904 				     struct buffer_head *bhs[])
905 {
906 	int count, status, i;
907 	u16 suballoc_bit_start;
908 	u32 num_got;
909 	u64 first_blkno;
910 	struct ocfs2_super *osb =
911 		OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
912 	struct ocfs2_extent_block *eb;
913 
914 	mlog_entry_void();
915 
916 	count = 0;
917 	while (count < wanted) {
918 		status = ocfs2_claim_metadata(osb,
919 					      handle,
920 					      meta_ac,
921 					      wanted - count,
922 					      &suballoc_bit_start,
923 					      &num_got,
924 					      &first_blkno);
925 		if (status < 0) {
926 			mlog_errno(status);
927 			goto bail;
928 		}
929 
930 		for(i = count;  i < (num_got + count); i++) {
931 			bhs[i] = sb_getblk(osb->sb, first_blkno);
932 			if (bhs[i] == NULL) {
933 				status = -EIO;
934 				mlog_errno(status);
935 				goto bail;
936 			}
937 			ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]);
938 
939 			status = ocfs2_journal_access_eb(handle, et->et_ci,
940 							 bhs[i],
941 							 OCFS2_JOURNAL_ACCESS_CREATE);
942 			if (status < 0) {
943 				mlog_errno(status);
944 				goto bail;
945 			}
946 
947 			memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
948 			eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
949 			/* Ok, setup the minimal stuff here. */
950 			strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
951 			eb->h_blkno = cpu_to_le64(first_blkno);
952 			eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
953 			eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
954 			eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
955 			eb->h_list.l_count =
956 				cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
957 
958 			suballoc_bit_start++;
959 			first_blkno++;
960 
961 			/* We'll also be dirtied by the caller, so
962 			 * this isn't absolutely necessary. */
963 			status = ocfs2_journal_dirty(handle, bhs[i]);
964 			if (status < 0) {
965 				mlog_errno(status);
966 				goto bail;
967 			}
968 		}
969 
970 		count += num_got;
971 	}
972 
973 	status = 0;
974 bail:
975 	if (status < 0) {
976 		for(i = 0; i < wanted; i++) {
977 			brelse(bhs[i]);
978 			bhs[i] = NULL;
979 		}
980 	}
981 	mlog_exit(status);
982 	return status;
983 }
984 
985 /*
986  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
987  *
988  * Returns the sum of the rightmost extent rec logical offset and
989  * cluster count.
990  *
991  * ocfs2_add_branch() uses this to determine what logical cluster
992  * value should be populated into the leftmost new branch records.
993  *
994  * ocfs2_shift_tree_depth() uses this to determine the # clusters
995  * value for the new topmost tree record.
996  */
997 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
998 {
999 	int i;
1000 
1001 	i = le16_to_cpu(el->l_next_free_rec) - 1;
1002 
1003 	return le32_to_cpu(el->l_recs[i].e_cpos) +
1004 		ocfs2_rec_clusters(el, &el->l_recs[i]);
1005 }
1006 
1007 /*
1008  * Change range of the branches in the right most path according to the leaf
1009  * extent block's rightmost record.
1010  */
1011 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1012 					 struct inode *inode,
1013 					 struct ocfs2_extent_tree *et)
1014 {
1015 	int status;
1016 	struct ocfs2_path *path = NULL;
1017 	struct ocfs2_extent_list *el;
1018 	struct ocfs2_extent_rec *rec;
1019 
1020 	path = ocfs2_new_path_from_et(et);
1021 	if (!path) {
1022 		status = -ENOMEM;
1023 		return status;
1024 	}
1025 
1026 	status = ocfs2_find_path(et->et_ci, path, UINT_MAX);
1027 	if (status < 0) {
1028 		mlog_errno(status);
1029 		goto out;
1030 	}
1031 
1032 	status = ocfs2_extend_trans(handle, path_num_items(path) +
1033 				    handle->h_buffer_credits);
1034 	if (status < 0) {
1035 		mlog_errno(status);
1036 		goto out;
1037 	}
1038 
1039 	status = ocfs2_journal_access_path(INODE_CACHE(inode), handle, path);
1040 	if (status < 0) {
1041 		mlog_errno(status);
1042 		goto out;
1043 	}
1044 
1045 	el = path_leaf_el(path);
1046 	rec = &el->l_recs[le32_to_cpu(el->l_next_free_rec) - 1];
1047 
1048 	ocfs2_adjust_rightmost_records(inode, handle, path, rec);
1049 
1050 out:
1051 	ocfs2_free_path(path);
1052 	return status;
1053 }
1054 
1055 /*
1056  * Add an entire tree branch to our inode. eb_bh is the extent block
1057  * to start at, if we don't want to start the branch at the dinode
1058  * structure.
1059  *
1060  * last_eb_bh is required as we have to update it's next_leaf pointer
1061  * for the new last extent block.
1062  *
1063  * the new branch will be 'empty' in the sense that every block will
1064  * contain a single record with cluster count == 0.
1065  */
1066 static int ocfs2_add_branch(struct ocfs2_super *osb,
1067 			    handle_t *handle,
1068 			    struct inode *inode,
1069 			    struct ocfs2_extent_tree *et,
1070 			    struct buffer_head *eb_bh,
1071 			    struct buffer_head **last_eb_bh,
1072 			    struct ocfs2_alloc_context *meta_ac)
1073 {
1074 	int status, new_blocks, i;
1075 	u64 next_blkno, new_last_eb_blk;
1076 	struct buffer_head *bh;
1077 	struct buffer_head **new_eb_bhs = NULL;
1078 	struct ocfs2_extent_block *eb;
1079 	struct ocfs2_extent_list  *eb_el;
1080 	struct ocfs2_extent_list  *el;
1081 	u32 new_cpos, root_end;
1082 
1083 	mlog_entry_void();
1084 
1085 	BUG_ON(!last_eb_bh || !*last_eb_bh);
1086 
1087 	if (eb_bh) {
1088 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1089 		el = &eb->h_list;
1090 	} else
1091 		el = et->et_root_el;
1092 
1093 	/* we never add a branch to a leaf. */
1094 	BUG_ON(!el->l_tree_depth);
1095 
1096 	new_blocks = le16_to_cpu(el->l_tree_depth);
1097 
1098 	eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1099 	new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1100 	root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1101 
1102 	/*
1103 	 * If there is a gap before the root end and the real end
1104 	 * of the righmost leaf block, we need to remove the gap
1105 	 * between new_cpos and root_end first so that the tree
1106 	 * is consistent after we add a new branch(it will start
1107 	 * from new_cpos).
1108 	 */
1109 	if (root_end > new_cpos) {
1110 		mlog(0, "adjust the cluster end from %u to %u\n",
1111 		     root_end, new_cpos);
1112 		status = ocfs2_adjust_rightmost_branch(handle, inode, et);
1113 		if (status) {
1114 			mlog_errno(status);
1115 			goto bail;
1116 		}
1117 	}
1118 
1119 	/* allocate the number of new eb blocks we need */
1120 	new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1121 			     GFP_KERNEL);
1122 	if (!new_eb_bhs) {
1123 		status = -ENOMEM;
1124 		mlog_errno(status);
1125 		goto bail;
1126 	}
1127 
1128 	status = ocfs2_create_new_meta_bhs(handle, et, new_blocks,
1129 					   meta_ac, new_eb_bhs);
1130 	if (status < 0) {
1131 		mlog_errno(status);
1132 		goto bail;
1133 	}
1134 
1135 	/* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1136 	 * linked with the rest of the tree.
1137 	 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1138 	 *
1139 	 * when we leave the loop, new_last_eb_blk will point to the
1140 	 * newest leaf, and next_blkno will point to the topmost extent
1141 	 * block. */
1142 	next_blkno = new_last_eb_blk = 0;
1143 	for(i = 0; i < new_blocks; i++) {
1144 		bh = new_eb_bhs[i];
1145 		eb = (struct ocfs2_extent_block *) bh->b_data;
1146 		/* ocfs2_create_new_meta_bhs() should create it right! */
1147 		BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1148 		eb_el = &eb->h_list;
1149 
1150 		status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), bh,
1151 						 OCFS2_JOURNAL_ACCESS_CREATE);
1152 		if (status < 0) {
1153 			mlog_errno(status);
1154 			goto bail;
1155 		}
1156 
1157 		eb->h_next_leaf_blk = 0;
1158 		eb_el->l_tree_depth = cpu_to_le16(i);
1159 		eb_el->l_next_free_rec = cpu_to_le16(1);
1160 		/*
1161 		 * This actually counts as an empty extent as
1162 		 * c_clusters == 0
1163 		 */
1164 		eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1165 		eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1166 		/*
1167 		 * eb_el isn't always an interior node, but even leaf
1168 		 * nodes want a zero'd flags and reserved field so
1169 		 * this gets the whole 32 bits regardless of use.
1170 		 */
1171 		eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1172 		if (!eb_el->l_tree_depth)
1173 			new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1174 
1175 		status = ocfs2_journal_dirty(handle, bh);
1176 		if (status < 0) {
1177 			mlog_errno(status);
1178 			goto bail;
1179 		}
1180 
1181 		next_blkno = le64_to_cpu(eb->h_blkno);
1182 	}
1183 
1184 	/* This is a bit hairy. We want to update up to three blocks
1185 	 * here without leaving any of them in an inconsistent state
1186 	 * in case of error. We don't have to worry about
1187 	 * journal_dirty erroring as it won't unless we've aborted the
1188 	 * handle (in which case we would never be here) so reserving
1189 	 * the write with journal_access is all we need to do. */
1190 	status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), *last_eb_bh,
1191 					 OCFS2_JOURNAL_ACCESS_WRITE);
1192 	if (status < 0) {
1193 		mlog_errno(status);
1194 		goto bail;
1195 	}
1196 	status = ocfs2_et_root_journal_access(handle, et,
1197 					      OCFS2_JOURNAL_ACCESS_WRITE);
1198 	if (status < 0) {
1199 		mlog_errno(status);
1200 		goto bail;
1201 	}
1202 	if (eb_bh) {
1203 		status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), eb_bh,
1204 						 OCFS2_JOURNAL_ACCESS_WRITE);
1205 		if (status < 0) {
1206 			mlog_errno(status);
1207 			goto bail;
1208 		}
1209 	}
1210 
1211 	/* Link the new branch into the rest of the tree (el will
1212 	 * either be on the root_bh, or the extent block passed in. */
1213 	i = le16_to_cpu(el->l_next_free_rec);
1214 	el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1215 	el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1216 	el->l_recs[i].e_int_clusters = 0;
1217 	le16_add_cpu(&el->l_next_free_rec, 1);
1218 
1219 	/* fe needs a new last extent block pointer, as does the
1220 	 * next_leaf on the previously last-extent-block. */
1221 	ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1222 
1223 	eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1224 	eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1225 
1226 	status = ocfs2_journal_dirty(handle, *last_eb_bh);
1227 	if (status < 0)
1228 		mlog_errno(status);
1229 	status = ocfs2_journal_dirty(handle, et->et_root_bh);
1230 	if (status < 0)
1231 		mlog_errno(status);
1232 	if (eb_bh) {
1233 		status = ocfs2_journal_dirty(handle, eb_bh);
1234 		if (status < 0)
1235 			mlog_errno(status);
1236 	}
1237 
1238 	/*
1239 	 * Some callers want to track the rightmost leaf so pass it
1240 	 * back here.
1241 	 */
1242 	brelse(*last_eb_bh);
1243 	get_bh(new_eb_bhs[0]);
1244 	*last_eb_bh = new_eb_bhs[0];
1245 
1246 	status = 0;
1247 bail:
1248 	if (new_eb_bhs) {
1249 		for (i = 0; i < new_blocks; i++)
1250 			brelse(new_eb_bhs[i]);
1251 		kfree(new_eb_bhs);
1252 	}
1253 
1254 	mlog_exit(status);
1255 	return status;
1256 }
1257 
1258 /*
1259  * adds another level to the allocation tree.
1260  * returns back the new extent block so you can add a branch to it
1261  * after this call.
1262  */
1263 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
1264 				  handle_t *handle,
1265 				  struct inode *inode,
1266 				  struct ocfs2_extent_tree *et,
1267 				  struct ocfs2_alloc_context *meta_ac,
1268 				  struct buffer_head **ret_new_eb_bh)
1269 {
1270 	int status, i;
1271 	u32 new_clusters;
1272 	struct buffer_head *new_eb_bh = NULL;
1273 	struct ocfs2_extent_block *eb;
1274 	struct ocfs2_extent_list  *root_el;
1275 	struct ocfs2_extent_list  *eb_el;
1276 
1277 	mlog_entry_void();
1278 
1279 	status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac,
1280 					   &new_eb_bh);
1281 	if (status < 0) {
1282 		mlog_errno(status);
1283 		goto bail;
1284 	}
1285 
1286 	eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1287 	/* ocfs2_create_new_meta_bhs() should create it right! */
1288 	BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1289 
1290 	eb_el = &eb->h_list;
1291 	root_el = et->et_root_el;
1292 
1293 	status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), new_eb_bh,
1294 					 OCFS2_JOURNAL_ACCESS_CREATE);
1295 	if (status < 0) {
1296 		mlog_errno(status);
1297 		goto bail;
1298 	}
1299 
1300 	/* copy the root extent list data into the new extent block */
1301 	eb_el->l_tree_depth = root_el->l_tree_depth;
1302 	eb_el->l_next_free_rec = root_el->l_next_free_rec;
1303 	for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1304 		eb_el->l_recs[i] = root_el->l_recs[i];
1305 
1306 	status = ocfs2_journal_dirty(handle, new_eb_bh);
1307 	if (status < 0) {
1308 		mlog_errno(status);
1309 		goto bail;
1310 	}
1311 
1312 	status = ocfs2_et_root_journal_access(handle, et,
1313 					      OCFS2_JOURNAL_ACCESS_WRITE);
1314 	if (status < 0) {
1315 		mlog_errno(status);
1316 		goto bail;
1317 	}
1318 
1319 	new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1320 
1321 	/* update root_bh now */
1322 	le16_add_cpu(&root_el->l_tree_depth, 1);
1323 	root_el->l_recs[0].e_cpos = 0;
1324 	root_el->l_recs[0].e_blkno = eb->h_blkno;
1325 	root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1326 	for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1327 		memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1328 	root_el->l_next_free_rec = cpu_to_le16(1);
1329 
1330 	/* If this is our 1st tree depth shift, then last_eb_blk
1331 	 * becomes the allocated extent block */
1332 	if (root_el->l_tree_depth == cpu_to_le16(1))
1333 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1334 
1335 	status = ocfs2_journal_dirty(handle, et->et_root_bh);
1336 	if (status < 0) {
1337 		mlog_errno(status);
1338 		goto bail;
1339 	}
1340 
1341 	*ret_new_eb_bh = new_eb_bh;
1342 	new_eb_bh = NULL;
1343 	status = 0;
1344 bail:
1345 	brelse(new_eb_bh);
1346 
1347 	mlog_exit(status);
1348 	return status;
1349 }
1350 
1351 /*
1352  * Should only be called when there is no space left in any of the
1353  * leaf nodes. What we want to do is find the lowest tree depth
1354  * non-leaf extent block with room for new records. There are three
1355  * valid results of this search:
1356  *
1357  * 1) a lowest extent block is found, then we pass it back in
1358  *    *lowest_eb_bh and return '0'
1359  *
1360  * 2) the search fails to find anything, but the root_el has room. We
1361  *    pass NULL back in *lowest_eb_bh, but still return '0'
1362  *
1363  * 3) the search fails to find anything AND the root_el is full, in
1364  *    which case we return > 0
1365  *
1366  * return status < 0 indicates an error.
1367  */
1368 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
1369 				    struct ocfs2_extent_tree *et,
1370 				    struct buffer_head **target_bh)
1371 {
1372 	int status = 0, i;
1373 	u64 blkno;
1374 	struct ocfs2_extent_block *eb;
1375 	struct ocfs2_extent_list  *el;
1376 	struct buffer_head *bh = NULL;
1377 	struct buffer_head *lowest_bh = NULL;
1378 
1379 	mlog_entry_void();
1380 
1381 	*target_bh = NULL;
1382 
1383 	el = et->et_root_el;
1384 
1385 	while(le16_to_cpu(el->l_tree_depth) > 1) {
1386 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1387 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1388 				    "Owner %llu has empty "
1389 				    "extent list (next_free_rec == 0)",
1390 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
1391 			status = -EIO;
1392 			goto bail;
1393 		}
1394 		i = le16_to_cpu(el->l_next_free_rec) - 1;
1395 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1396 		if (!blkno) {
1397 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1398 				    "Owner %llu has extent "
1399 				    "list where extent # %d has no physical "
1400 				    "block start",
1401 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i);
1402 			status = -EIO;
1403 			goto bail;
1404 		}
1405 
1406 		brelse(bh);
1407 		bh = NULL;
1408 
1409 		status = ocfs2_read_extent_block(et->et_ci, blkno, &bh);
1410 		if (status < 0) {
1411 			mlog_errno(status);
1412 			goto bail;
1413 		}
1414 
1415 		eb = (struct ocfs2_extent_block *) bh->b_data;
1416 		el = &eb->h_list;
1417 
1418 		if (le16_to_cpu(el->l_next_free_rec) <
1419 		    le16_to_cpu(el->l_count)) {
1420 			brelse(lowest_bh);
1421 			lowest_bh = bh;
1422 			get_bh(lowest_bh);
1423 		}
1424 	}
1425 
1426 	/* If we didn't find one and the fe doesn't have any room,
1427 	 * then return '1' */
1428 	el = et->et_root_el;
1429 	if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1430 		status = 1;
1431 
1432 	*target_bh = lowest_bh;
1433 bail:
1434 	brelse(bh);
1435 
1436 	mlog_exit(status);
1437 	return status;
1438 }
1439 
1440 /*
1441  * Grow a b-tree so that it has more records.
1442  *
1443  * We might shift the tree depth in which case existing paths should
1444  * be considered invalid.
1445  *
1446  * Tree depth after the grow is returned via *final_depth.
1447  *
1448  * *last_eb_bh will be updated by ocfs2_add_branch().
1449  */
1450 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
1451 			   struct ocfs2_extent_tree *et, int *final_depth,
1452 			   struct buffer_head **last_eb_bh,
1453 			   struct ocfs2_alloc_context *meta_ac)
1454 {
1455 	int ret, shift;
1456 	struct ocfs2_extent_list *el = et->et_root_el;
1457 	int depth = le16_to_cpu(el->l_tree_depth);
1458 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1459 	struct buffer_head *bh = NULL;
1460 
1461 	BUG_ON(meta_ac == NULL);
1462 
1463 	shift = ocfs2_find_branch_target(osb, et, &bh);
1464 	if (shift < 0) {
1465 		ret = shift;
1466 		mlog_errno(ret);
1467 		goto out;
1468 	}
1469 
1470 	/* We traveled all the way to the bottom of the allocation tree
1471 	 * and didn't find room for any more extents - we need to add
1472 	 * another tree level */
1473 	if (shift) {
1474 		BUG_ON(bh);
1475 		mlog(0, "need to shift tree depth (current = %d)\n", depth);
1476 
1477 		/* ocfs2_shift_tree_depth will return us a buffer with
1478 		 * the new extent block (so we can pass that to
1479 		 * ocfs2_add_branch). */
1480 		ret = ocfs2_shift_tree_depth(osb, handle, inode, et,
1481 					     meta_ac, &bh);
1482 		if (ret < 0) {
1483 			mlog_errno(ret);
1484 			goto out;
1485 		}
1486 		depth++;
1487 		if (depth == 1) {
1488 			/*
1489 			 * Special case: we have room now if we shifted from
1490 			 * tree_depth 0, so no more work needs to be done.
1491 			 *
1492 			 * We won't be calling add_branch, so pass
1493 			 * back *last_eb_bh as the new leaf. At depth
1494 			 * zero, it should always be null so there's
1495 			 * no reason to brelse.
1496 			 */
1497 			BUG_ON(*last_eb_bh);
1498 			get_bh(bh);
1499 			*last_eb_bh = bh;
1500 			goto out;
1501 		}
1502 	}
1503 
1504 	/* call ocfs2_add_branch to add the final part of the tree with
1505 	 * the new data. */
1506 	mlog(0, "add branch. bh = %p\n", bh);
1507 	ret = ocfs2_add_branch(osb, handle, inode, et, bh, last_eb_bh,
1508 			       meta_ac);
1509 	if (ret < 0) {
1510 		mlog_errno(ret);
1511 		goto out;
1512 	}
1513 
1514 out:
1515 	if (final_depth)
1516 		*final_depth = depth;
1517 	brelse(bh);
1518 	return ret;
1519 }
1520 
1521 /*
1522  * This function will discard the rightmost extent record.
1523  */
1524 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1525 {
1526 	int next_free = le16_to_cpu(el->l_next_free_rec);
1527 	int count = le16_to_cpu(el->l_count);
1528 	unsigned int num_bytes;
1529 
1530 	BUG_ON(!next_free);
1531 	/* This will cause us to go off the end of our extent list. */
1532 	BUG_ON(next_free >= count);
1533 
1534 	num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1535 
1536 	memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1537 }
1538 
1539 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1540 			      struct ocfs2_extent_rec *insert_rec)
1541 {
1542 	int i, insert_index, next_free, has_empty, num_bytes;
1543 	u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1544 	struct ocfs2_extent_rec *rec;
1545 
1546 	next_free = le16_to_cpu(el->l_next_free_rec);
1547 	has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1548 
1549 	BUG_ON(!next_free);
1550 
1551 	/* The tree code before us didn't allow enough room in the leaf. */
1552 	BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1553 
1554 	/*
1555 	 * The easiest way to approach this is to just remove the
1556 	 * empty extent and temporarily decrement next_free.
1557 	 */
1558 	if (has_empty) {
1559 		/*
1560 		 * If next_free was 1 (only an empty extent), this
1561 		 * loop won't execute, which is fine. We still want
1562 		 * the decrement above to happen.
1563 		 */
1564 		for(i = 0; i < (next_free - 1); i++)
1565 			el->l_recs[i] = el->l_recs[i+1];
1566 
1567 		next_free--;
1568 	}
1569 
1570 	/*
1571 	 * Figure out what the new record index should be.
1572 	 */
1573 	for(i = 0; i < next_free; i++) {
1574 		rec = &el->l_recs[i];
1575 
1576 		if (insert_cpos < le32_to_cpu(rec->e_cpos))
1577 			break;
1578 	}
1579 	insert_index = i;
1580 
1581 	mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1582 	     insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1583 
1584 	BUG_ON(insert_index < 0);
1585 	BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1586 	BUG_ON(insert_index > next_free);
1587 
1588 	/*
1589 	 * No need to memmove if we're just adding to the tail.
1590 	 */
1591 	if (insert_index != next_free) {
1592 		BUG_ON(next_free >= le16_to_cpu(el->l_count));
1593 
1594 		num_bytes = next_free - insert_index;
1595 		num_bytes *= sizeof(struct ocfs2_extent_rec);
1596 		memmove(&el->l_recs[insert_index + 1],
1597 			&el->l_recs[insert_index],
1598 			num_bytes);
1599 	}
1600 
1601 	/*
1602 	 * Either we had an empty extent, and need to re-increment or
1603 	 * there was no empty extent on a non full rightmost leaf node,
1604 	 * in which case we still need to increment.
1605 	 */
1606 	next_free++;
1607 	el->l_next_free_rec = cpu_to_le16(next_free);
1608 	/*
1609 	 * Make sure none of the math above just messed up our tree.
1610 	 */
1611 	BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1612 
1613 	el->l_recs[insert_index] = *insert_rec;
1614 
1615 }
1616 
1617 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1618 {
1619 	int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1620 
1621 	BUG_ON(num_recs == 0);
1622 
1623 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1624 		num_recs--;
1625 		size = num_recs * sizeof(struct ocfs2_extent_rec);
1626 		memmove(&el->l_recs[0], &el->l_recs[1], size);
1627 		memset(&el->l_recs[num_recs], 0,
1628 		       sizeof(struct ocfs2_extent_rec));
1629 		el->l_next_free_rec = cpu_to_le16(num_recs);
1630 	}
1631 }
1632 
1633 /*
1634  * Create an empty extent record .
1635  *
1636  * l_next_free_rec may be updated.
1637  *
1638  * If an empty extent already exists do nothing.
1639  */
1640 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1641 {
1642 	int next_free = le16_to_cpu(el->l_next_free_rec);
1643 
1644 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1645 
1646 	if (next_free == 0)
1647 		goto set_and_inc;
1648 
1649 	if (ocfs2_is_empty_extent(&el->l_recs[0]))
1650 		return;
1651 
1652 	mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1653 			"Asked to create an empty extent in a full list:\n"
1654 			"count = %u, tree depth = %u",
1655 			le16_to_cpu(el->l_count),
1656 			le16_to_cpu(el->l_tree_depth));
1657 
1658 	ocfs2_shift_records_right(el);
1659 
1660 set_and_inc:
1661 	le16_add_cpu(&el->l_next_free_rec, 1);
1662 	memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1663 }
1664 
1665 /*
1666  * For a rotation which involves two leaf nodes, the "root node" is
1667  * the lowest level tree node which contains a path to both leafs. This
1668  * resulting set of information can be used to form a complete "subtree"
1669  *
1670  * This function is passed two full paths from the dinode down to a
1671  * pair of adjacent leaves. It's task is to figure out which path
1672  * index contains the subtree root - this can be the root index itself
1673  * in a worst-case rotation.
1674  *
1675  * The array index of the subtree root is passed back.
1676  */
1677 static int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et,
1678 				   struct ocfs2_path *left,
1679 				   struct ocfs2_path *right)
1680 {
1681 	int i = 0;
1682 
1683 	/*
1684 	 * Check that the caller passed in two paths from the same tree.
1685 	 */
1686 	BUG_ON(path_root_bh(left) != path_root_bh(right));
1687 
1688 	do {
1689 		i++;
1690 
1691 		/*
1692 		 * The caller didn't pass two adjacent paths.
1693 		 */
1694 		mlog_bug_on_msg(i > left->p_tree_depth,
1695 				"Owner %llu, left depth %u, right depth %u\n"
1696 				"left leaf blk %llu, right leaf blk %llu\n",
1697 				(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
1698 				left->p_tree_depth, right->p_tree_depth,
1699 				(unsigned long long)path_leaf_bh(left)->b_blocknr,
1700 				(unsigned long long)path_leaf_bh(right)->b_blocknr);
1701 	} while (left->p_node[i].bh->b_blocknr ==
1702 		 right->p_node[i].bh->b_blocknr);
1703 
1704 	return i - 1;
1705 }
1706 
1707 typedef void (path_insert_t)(void *, struct buffer_head *);
1708 
1709 /*
1710  * Traverse a btree path in search of cpos, starting at root_el.
1711  *
1712  * This code can be called with a cpos larger than the tree, in which
1713  * case it will return the rightmost path.
1714  */
1715 static int __ocfs2_find_path(struct ocfs2_caching_info *ci,
1716 			     struct ocfs2_extent_list *root_el, u32 cpos,
1717 			     path_insert_t *func, void *data)
1718 {
1719 	int i, ret = 0;
1720 	u32 range;
1721 	u64 blkno;
1722 	struct buffer_head *bh = NULL;
1723 	struct ocfs2_extent_block *eb;
1724 	struct ocfs2_extent_list *el;
1725 	struct ocfs2_extent_rec *rec;
1726 
1727 	el = root_el;
1728 	while (el->l_tree_depth) {
1729 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1730 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1731 				    "Owner %llu has empty extent list at "
1732 				    "depth %u\n",
1733 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1734 				    le16_to_cpu(el->l_tree_depth));
1735 			ret = -EROFS;
1736 			goto out;
1737 
1738 		}
1739 
1740 		for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1741 			rec = &el->l_recs[i];
1742 
1743 			/*
1744 			 * In the case that cpos is off the allocation
1745 			 * tree, this should just wind up returning the
1746 			 * rightmost record.
1747 			 */
1748 			range = le32_to_cpu(rec->e_cpos) +
1749 				ocfs2_rec_clusters(el, rec);
1750 			if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1751 			    break;
1752 		}
1753 
1754 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1755 		if (blkno == 0) {
1756 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1757 				    "Owner %llu has bad blkno in extent list "
1758 				    "at depth %u (index %d)\n",
1759 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1760 				    le16_to_cpu(el->l_tree_depth), i);
1761 			ret = -EROFS;
1762 			goto out;
1763 		}
1764 
1765 		brelse(bh);
1766 		bh = NULL;
1767 		ret = ocfs2_read_extent_block(ci, blkno, &bh);
1768 		if (ret) {
1769 			mlog_errno(ret);
1770 			goto out;
1771 		}
1772 
1773 		eb = (struct ocfs2_extent_block *) bh->b_data;
1774 		el = &eb->h_list;
1775 
1776 		if (le16_to_cpu(el->l_next_free_rec) >
1777 		    le16_to_cpu(el->l_count)) {
1778 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1779 				    "Owner %llu has bad count in extent list "
1780 				    "at block %llu (next free=%u, count=%u)\n",
1781 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1782 				    (unsigned long long)bh->b_blocknr,
1783 				    le16_to_cpu(el->l_next_free_rec),
1784 				    le16_to_cpu(el->l_count));
1785 			ret = -EROFS;
1786 			goto out;
1787 		}
1788 
1789 		if (func)
1790 			func(data, bh);
1791 	}
1792 
1793 out:
1794 	/*
1795 	 * Catch any trailing bh that the loop didn't handle.
1796 	 */
1797 	brelse(bh);
1798 
1799 	return ret;
1800 }
1801 
1802 /*
1803  * Given an initialized path (that is, it has a valid root extent
1804  * list), this function will traverse the btree in search of the path
1805  * which would contain cpos.
1806  *
1807  * The path traveled is recorded in the path structure.
1808  *
1809  * Note that this will not do any comparisons on leaf node extent
1810  * records, so it will work fine in the case that we just added a tree
1811  * branch.
1812  */
1813 struct find_path_data {
1814 	int index;
1815 	struct ocfs2_path *path;
1816 };
1817 static void find_path_ins(void *data, struct buffer_head *bh)
1818 {
1819 	struct find_path_data *fp = data;
1820 
1821 	get_bh(bh);
1822 	ocfs2_path_insert_eb(fp->path, fp->index, bh);
1823 	fp->index++;
1824 }
1825 static int ocfs2_find_path(struct ocfs2_caching_info *ci,
1826 			   struct ocfs2_path *path, u32 cpos)
1827 {
1828 	struct find_path_data data;
1829 
1830 	data.index = 1;
1831 	data.path = path;
1832 	return __ocfs2_find_path(ci, path_root_el(path), cpos,
1833 				 find_path_ins, &data);
1834 }
1835 
1836 static void find_leaf_ins(void *data, struct buffer_head *bh)
1837 {
1838 	struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1839 	struct ocfs2_extent_list *el = &eb->h_list;
1840 	struct buffer_head **ret = data;
1841 
1842 	/* We want to retain only the leaf block. */
1843 	if (le16_to_cpu(el->l_tree_depth) == 0) {
1844 		get_bh(bh);
1845 		*ret = bh;
1846 	}
1847 }
1848 /*
1849  * Find the leaf block in the tree which would contain cpos. No
1850  * checking of the actual leaf is done.
1851  *
1852  * Some paths want to call this instead of allocating a path structure
1853  * and calling ocfs2_find_path().
1854  *
1855  * This function doesn't handle non btree extent lists.
1856  */
1857 int ocfs2_find_leaf(struct ocfs2_caching_info *ci,
1858 		    struct ocfs2_extent_list *root_el, u32 cpos,
1859 		    struct buffer_head **leaf_bh)
1860 {
1861 	int ret;
1862 	struct buffer_head *bh = NULL;
1863 
1864 	ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh);
1865 	if (ret) {
1866 		mlog_errno(ret);
1867 		goto out;
1868 	}
1869 
1870 	*leaf_bh = bh;
1871 out:
1872 	return ret;
1873 }
1874 
1875 /*
1876  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1877  *
1878  * Basically, we've moved stuff around at the bottom of the tree and
1879  * we need to fix up the extent records above the changes to reflect
1880  * the new changes.
1881  *
1882  * left_rec: the record on the left.
1883  * left_child_el: is the child list pointed to by left_rec
1884  * right_rec: the record to the right of left_rec
1885  * right_child_el: is the child list pointed to by right_rec
1886  *
1887  * By definition, this only works on interior nodes.
1888  */
1889 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1890 				  struct ocfs2_extent_list *left_child_el,
1891 				  struct ocfs2_extent_rec *right_rec,
1892 				  struct ocfs2_extent_list *right_child_el)
1893 {
1894 	u32 left_clusters, right_end;
1895 
1896 	/*
1897 	 * Interior nodes never have holes. Their cpos is the cpos of
1898 	 * the leftmost record in their child list. Their cluster
1899 	 * count covers the full theoretical range of their child list
1900 	 * - the range between their cpos and the cpos of the record
1901 	 * immediately to their right.
1902 	 */
1903 	left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1904 	if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1905 		BUG_ON(right_child_el->l_tree_depth);
1906 		BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1907 		left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1908 	}
1909 	left_clusters -= le32_to_cpu(left_rec->e_cpos);
1910 	left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1911 
1912 	/*
1913 	 * Calculate the rightmost cluster count boundary before
1914 	 * moving cpos - we will need to adjust clusters after
1915 	 * updating e_cpos to keep the same highest cluster count.
1916 	 */
1917 	right_end = le32_to_cpu(right_rec->e_cpos);
1918 	right_end += le32_to_cpu(right_rec->e_int_clusters);
1919 
1920 	right_rec->e_cpos = left_rec->e_cpos;
1921 	le32_add_cpu(&right_rec->e_cpos, left_clusters);
1922 
1923 	right_end -= le32_to_cpu(right_rec->e_cpos);
1924 	right_rec->e_int_clusters = cpu_to_le32(right_end);
1925 }
1926 
1927 /*
1928  * Adjust the adjacent root node records involved in a
1929  * rotation. left_el_blkno is passed in as a key so that we can easily
1930  * find it's index in the root list.
1931  */
1932 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1933 				      struct ocfs2_extent_list *left_el,
1934 				      struct ocfs2_extent_list *right_el,
1935 				      u64 left_el_blkno)
1936 {
1937 	int i;
1938 
1939 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1940 	       le16_to_cpu(left_el->l_tree_depth));
1941 
1942 	for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1943 		if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1944 			break;
1945 	}
1946 
1947 	/*
1948 	 * The path walking code should have never returned a root and
1949 	 * two paths which are not adjacent.
1950 	 */
1951 	BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1952 
1953 	ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1954 				      &root_el->l_recs[i + 1], right_el);
1955 }
1956 
1957 /*
1958  * We've changed a leaf block (in right_path) and need to reflect that
1959  * change back up the subtree.
1960  *
1961  * This happens in multiple places:
1962  *   - When we've moved an extent record from the left path leaf to the right
1963  *     path leaf to make room for an empty extent in the left path leaf.
1964  *   - When our insert into the right path leaf is at the leftmost edge
1965  *     and requires an update of the path immediately to it's left. This
1966  *     can occur at the end of some types of rotation and appending inserts.
1967  *   - When we've adjusted the last extent record in the left path leaf and the
1968  *     1st extent record in the right path leaf during cross extent block merge.
1969  */
1970 static void ocfs2_complete_edge_insert(handle_t *handle,
1971 				       struct ocfs2_path *left_path,
1972 				       struct ocfs2_path *right_path,
1973 				       int subtree_index)
1974 {
1975 	int ret, i, idx;
1976 	struct ocfs2_extent_list *el, *left_el, *right_el;
1977 	struct ocfs2_extent_rec *left_rec, *right_rec;
1978 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1979 
1980 	/*
1981 	 * Update the counts and position values within all the
1982 	 * interior nodes to reflect the leaf rotation we just did.
1983 	 *
1984 	 * The root node is handled below the loop.
1985 	 *
1986 	 * We begin the loop with right_el and left_el pointing to the
1987 	 * leaf lists and work our way up.
1988 	 *
1989 	 * NOTE: within this loop, left_el and right_el always refer
1990 	 * to the *child* lists.
1991 	 */
1992 	left_el = path_leaf_el(left_path);
1993 	right_el = path_leaf_el(right_path);
1994 	for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
1995 		mlog(0, "Adjust records at index %u\n", i);
1996 
1997 		/*
1998 		 * One nice property of knowing that all of these
1999 		 * nodes are below the root is that we only deal with
2000 		 * the leftmost right node record and the rightmost
2001 		 * left node record.
2002 		 */
2003 		el = left_path->p_node[i].el;
2004 		idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2005 		left_rec = &el->l_recs[idx];
2006 
2007 		el = right_path->p_node[i].el;
2008 		right_rec = &el->l_recs[0];
2009 
2010 		ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
2011 					      right_el);
2012 
2013 		ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2014 		if (ret)
2015 			mlog_errno(ret);
2016 
2017 		ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2018 		if (ret)
2019 			mlog_errno(ret);
2020 
2021 		/*
2022 		 * Setup our list pointers now so that the current
2023 		 * parents become children in the next iteration.
2024 		 */
2025 		left_el = left_path->p_node[i].el;
2026 		right_el = right_path->p_node[i].el;
2027 	}
2028 
2029 	/*
2030 	 * At the root node, adjust the two adjacent records which
2031 	 * begin our path to the leaves.
2032 	 */
2033 
2034 	el = left_path->p_node[subtree_index].el;
2035 	left_el = left_path->p_node[subtree_index + 1].el;
2036 	right_el = right_path->p_node[subtree_index + 1].el;
2037 
2038 	ocfs2_adjust_root_records(el, left_el, right_el,
2039 				  left_path->p_node[subtree_index + 1].bh->b_blocknr);
2040 
2041 	root_bh = left_path->p_node[subtree_index].bh;
2042 
2043 	ret = ocfs2_journal_dirty(handle, root_bh);
2044 	if (ret)
2045 		mlog_errno(ret);
2046 }
2047 
2048 static int ocfs2_rotate_subtree_right(handle_t *handle,
2049 				      struct ocfs2_extent_tree *et,
2050 				      struct ocfs2_path *left_path,
2051 				      struct ocfs2_path *right_path,
2052 				      int subtree_index)
2053 {
2054 	int ret, i;
2055 	struct buffer_head *right_leaf_bh;
2056 	struct buffer_head *left_leaf_bh = NULL;
2057 	struct buffer_head *root_bh;
2058 	struct ocfs2_extent_list *right_el, *left_el;
2059 	struct ocfs2_extent_rec move_rec;
2060 
2061 	left_leaf_bh = path_leaf_bh(left_path);
2062 	left_el = path_leaf_el(left_path);
2063 
2064 	if (left_el->l_next_free_rec != left_el->l_count) {
2065 		ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
2066 			    "Inode %llu has non-full interior leaf node %llu"
2067 			    "(next free = %u)",
2068 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2069 			    (unsigned long long)left_leaf_bh->b_blocknr,
2070 			    le16_to_cpu(left_el->l_next_free_rec));
2071 		return -EROFS;
2072 	}
2073 
2074 	/*
2075 	 * This extent block may already have an empty record, so we
2076 	 * return early if so.
2077 	 */
2078 	if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2079 		return 0;
2080 
2081 	root_bh = left_path->p_node[subtree_index].bh;
2082 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2083 
2084 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2085 					   subtree_index);
2086 	if (ret) {
2087 		mlog_errno(ret);
2088 		goto out;
2089 	}
2090 
2091 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2092 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2093 						   right_path, i);
2094 		if (ret) {
2095 			mlog_errno(ret);
2096 			goto out;
2097 		}
2098 
2099 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2100 						   left_path, i);
2101 		if (ret) {
2102 			mlog_errno(ret);
2103 			goto out;
2104 		}
2105 	}
2106 
2107 	right_leaf_bh = path_leaf_bh(right_path);
2108 	right_el = path_leaf_el(right_path);
2109 
2110 	/* This is a code error, not a disk corruption. */
2111 	mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2112 			"because rightmost leaf block %llu is empty\n",
2113 			(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2114 			(unsigned long long)right_leaf_bh->b_blocknr);
2115 
2116 	ocfs2_create_empty_extent(right_el);
2117 
2118 	ret = ocfs2_journal_dirty(handle, right_leaf_bh);
2119 	if (ret) {
2120 		mlog_errno(ret);
2121 		goto out;
2122 	}
2123 
2124 	/* Do the copy now. */
2125 	i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2126 	move_rec = left_el->l_recs[i];
2127 	right_el->l_recs[0] = move_rec;
2128 
2129 	/*
2130 	 * Clear out the record we just copied and shift everything
2131 	 * over, leaving an empty extent in the left leaf.
2132 	 *
2133 	 * We temporarily subtract from next_free_rec so that the
2134 	 * shift will lose the tail record (which is now defunct).
2135 	 */
2136 	le16_add_cpu(&left_el->l_next_free_rec, -1);
2137 	ocfs2_shift_records_right(left_el);
2138 	memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2139 	le16_add_cpu(&left_el->l_next_free_rec, 1);
2140 
2141 	ret = ocfs2_journal_dirty(handle, left_leaf_bh);
2142 	if (ret) {
2143 		mlog_errno(ret);
2144 		goto out;
2145 	}
2146 
2147 	ocfs2_complete_edge_insert(handle, left_path, right_path,
2148 				   subtree_index);
2149 
2150 out:
2151 	return ret;
2152 }
2153 
2154 /*
2155  * Given a full path, determine what cpos value would return us a path
2156  * containing the leaf immediately to the left of the current one.
2157  *
2158  * Will return zero if the path passed in is already the leftmost path.
2159  */
2160 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2161 					 struct ocfs2_path *path, u32 *cpos)
2162 {
2163 	int i, j, ret = 0;
2164 	u64 blkno;
2165 	struct ocfs2_extent_list *el;
2166 
2167 	BUG_ON(path->p_tree_depth == 0);
2168 
2169 	*cpos = 0;
2170 
2171 	blkno = path_leaf_bh(path)->b_blocknr;
2172 
2173 	/* Start at the tree node just above the leaf and work our way up. */
2174 	i = path->p_tree_depth - 1;
2175 	while (i >= 0) {
2176 		el = path->p_node[i].el;
2177 
2178 		/*
2179 		 * Find the extent record just before the one in our
2180 		 * path.
2181 		 */
2182 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2183 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2184 				if (j == 0) {
2185 					if (i == 0) {
2186 						/*
2187 						 * We've determined that the
2188 						 * path specified is already
2189 						 * the leftmost one - return a
2190 						 * cpos of zero.
2191 						 */
2192 						goto out;
2193 					}
2194 					/*
2195 					 * The leftmost record points to our
2196 					 * leaf - we need to travel up the
2197 					 * tree one level.
2198 					 */
2199 					goto next_node;
2200 				}
2201 
2202 				*cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2203 				*cpos = *cpos + ocfs2_rec_clusters(el,
2204 							   &el->l_recs[j - 1]);
2205 				*cpos = *cpos - 1;
2206 				goto out;
2207 			}
2208 		}
2209 
2210 		/*
2211 		 * If we got here, we never found a valid node where
2212 		 * the tree indicated one should be.
2213 		 */
2214 		ocfs2_error(sb,
2215 			    "Invalid extent tree at extent block %llu\n",
2216 			    (unsigned long long)blkno);
2217 		ret = -EROFS;
2218 		goto out;
2219 
2220 next_node:
2221 		blkno = path->p_node[i].bh->b_blocknr;
2222 		i--;
2223 	}
2224 
2225 out:
2226 	return ret;
2227 }
2228 
2229 /*
2230  * Extend the transaction by enough credits to complete the rotation,
2231  * and still leave at least the original number of credits allocated
2232  * to this transaction.
2233  */
2234 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2235 					   int op_credits,
2236 					   struct ocfs2_path *path)
2237 {
2238 	int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2239 
2240 	if (handle->h_buffer_credits < credits)
2241 		return ocfs2_extend_trans(handle, credits);
2242 
2243 	return 0;
2244 }
2245 
2246 /*
2247  * Trap the case where we're inserting into the theoretical range past
2248  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2249  * whose cpos is less than ours into the right leaf.
2250  *
2251  * It's only necessary to look at the rightmost record of the left
2252  * leaf because the logic that calls us should ensure that the
2253  * theoretical ranges in the path components above the leaves are
2254  * correct.
2255  */
2256 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2257 						 u32 insert_cpos)
2258 {
2259 	struct ocfs2_extent_list *left_el;
2260 	struct ocfs2_extent_rec *rec;
2261 	int next_free;
2262 
2263 	left_el = path_leaf_el(left_path);
2264 	next_free = le16_to_cpu(left_el->l_next_free_rec);
2265 	rec = &left_el->l_recs[next_free - 1];
2266 
2267 	if (insert_cpos > le32_to_cpu(rec->e_cpos))
2268 		return 1;
2269 	return 0;
2270 }
2271 
2272 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2273 {
2274 	int next_free = le16_to_cpu(el->l_next_free_rec);
2275 	unsigned int range;
2276 	struct ocfs2_extent_rec *rec;
2277 
2278 	if (next_free == 0)
2279 		return 0;
2280 
2281 	rec = &el->l_recs[0];
2282 	if (ocfs2_is_empty_extent(rec)) {
2283 		/* Empty list. */
2284 		if (next_free == 1)
2285 			return 0;
2286 		rec = &el->l_recs[1];
2287 	}
2288 
2289 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2290 	if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2291 		return 1;
2292 	return 0;
2293 }
2294 
2295 /*
2296  * Rotate all the records in a btree right one record, starting at insert_cpos.
2297  *
2298  * The path to the rightmost leaf should be passed in.
2299  *
2300  * The array is assumed to be large enough to hold an entire path (tree depth).
2301  *
2302  * Upon succesful return from this function:
2303  *
2304  * - The 'right_path' array will contain a path to the leaf block
2305  *   whose range contains e_cpos.
2306  * - That leaf block will have a single empty extent in list index 0.
2307  * - In the case that the rotation requires a post-insert update,
2308  *   *ret_left_path will contain a valid path which can be passed to
2309  *   ocfs2_insert_path().
2310  */
2311 static int ocfs2_rotate_tree_right(handle_t *handle,
2312 				   struct ocfs2_extent_tree *et,
2313 				   enum ocfs2_split_type split,
2314 				   u32 insert_cpos,
2315 				   struct ocfs2_path *right_path,
2316 				   struct ocfs2_path **ret_left_path)
2317 {
2318 	int ret, start, orig_credits = handle->h_buffer_credits;
2319 	u32 cpos;
2320 	struct ocfs2_path *left_path = NULL;
2321 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2322 
2323 	*ret_left_path = NULL;
2324 
2325 	left_path = ocfs2_new_path_from_path(right_path);
2326 	if (!left_path) {
2327 		ret = -ENOMEM;
2328 		mlog_errno(ret);
2329 		goto out;
2330 	}
2331 
2332 	ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2333 	if (ret) {
2334 		mlog_errno(ret);
2335 		goto out;
2336 	}
2337 
2338 	mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
2339 
2340 	/*
2341 	 * What we want to do here is:
2342 	 *
2343 	 * 1) Start with the rightmost path.
2344 	 *
2345 	 * 2) Determine a path to the leaf block directly to the left
2346 	 *    of that leaf.
2347 	 *
2348 	 * 3) Determine the 'subtree root' - the lowest level tree node
2349 	 *    which contains a path to both leaves.
2350 	 *
2351 	 * 4) Rotate the subtree.
2352 	 *
2353 	 * 5) Find the next subtree by considering the left path to be
2354 	 *    the new right path.
2355 	 *
2356 	 * The check at the top of this while loop also accepts
2357 	 * insert_cpos == cpos because cpos is only a _theoretical_
2358 	 * value to get us the left path - insert_cpos might very well
2359 	 * be filling that hole.
2360 	 *
2361 	 * Stop at a cpos of '0' because we either started at the
2362 	 * leftmost branch (i.e., a tree with one branch and a
2363 	 * rotation inside of it), or we've gone as far as we can in
2364 	 * rotating subtrees.
2365 	 */
2366 	while (cpos && insert_cpos <= cpos) {
2367 		mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2368 		     insert_cpos, cpos);
2369 
2370 		ret = ocfs2_find_path(et->et_ci, left_path, cpos);
2371 		if (ret) {
2372 			mlog_errno(ret);
2373 			goto out;
2374 		}
2375 
2376 		mlog_bug_on_msg(path_leaf_bh(left_path) ==
2377 				path_leaf_bh(right_path),
2378 				"Owner %llu: error during insert of %u "
2379 				"(left path cpos %u) results in two identical "
2380 				"paths ending at %llu\n",
2381 				(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2382 				insert_cpos, cpos,
2383 				(unsigned long long)
2384 				path_leaf_bh(left_path)->b_blocknr);
2385 
2386 		if (split == SPLIT_NONE &&
2387 		    ocfs2_rotate_requires_path_adjustment(left_path,
2388 							  insert_cpos)) {
2389 
2390 			/*
2391 			 * We've rotated the tree as much as we
2392 			 * should. The rest is up to
2393 			 * ocfs2_insert_path() to complete, after the
2394 			 * record insertion. We indicate this
2395 			 * situation by returning the left path.
2396 			 *
2397 			 * The reason we don't adjust the records here
2398 			 * before the record insert is that an error
2399 			 * later might break the rule where a parent
2400 			 * record e_cpos will reflect the actual
2401 			 * e_cpos of the 1st nonempty record of the
2402 			 * child list.
2403 			 */
2404 			*ret_left_path = left_path;
2405 			goto out_ret_path;
2406 		}
2407 
2408 		start = ocfs2_find_subtree_root(et, left_path, right_path);
2409 
2410 		mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2411 		     start,
2412 		     (unsigned long long) right_path->p_node[start].bh->b_blocknr,
2413 		     right_path->p_tree_depth);
2414 
2415 		ret = ocfs2_extend_rotate_transaction(handle, start,
2416 						      orig_credits, right_path);
2417 		if (ret) {
2418 			mlog_errno(ret);
2419 			goto out;
2420 		}
2421 
2422 		ret = ocfs2_rotate_subtree_right(handle, et, left_path,
2423 						 right_path, start);
2424 		if (ret) {
2425 			mlog_errno(ret);
2426 			goto out;
2427 		}
2428 
2429 		if (split != SPLIT_NONE &&
2430 		    ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2431 						insert_cpos)) {
2432 			/*
2433 			 * A rotate moves the rightmost left leaf
2434 			 * record over to the leftmost right leaf
2435 			 * slot. If we're doing an extent split
2436 			 * instead of a real insert, then we have to
2437 			 * check that the extent to be split wasn't
2438 			 * just moved over. If it was, then we can
2439 			 * exit here, passing left_path back -
2440 			 * ocfs2_split_extent() is smart enough to
2441 			 * search both leaves.
2442 			 */
2443 			*ret_left_path = left_path;
2444 			goto out_ret_path;
2445 		}
2446 
2447 		/*
2448 		 * There is no need to re-read the next right path
2449 		 * as we know that it'll be our current left
2450 		 * path. Optimize by copying values instead.
2451 		 */
2452 		ocfs2_mv_path(right_path, left_path);
2453 
2454 		ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2455 		if (ret) {
2456 			mlog_errno(ret);
2457 			goto out;
2458 		}
2459 	}
2460 
2461 out:
2462 	ocfs2_free_path(left_path);
2463 
2464 out_ret_path:
2465 	return ret;
2466 }
2467 
2468 static int ocfs2_update_edge_lengths(handle_t *handle,
2469 				     struct ocfs2_extent_tree *et,
2470 				     int subtree_index, struct ocfs2_path *path)
2471 {
2472 	int i, idx, ret;
2473 	struct ocfs2_extent_rec *rec;
2474 	struct ocfs2_extent_list *el;
2475 	struct ocfs2_extent_block *eb;
2476 	u32 range;
2477 
2478 	/*
2479 	 * In normal tree rotation process, we will never touch the
2480 	 * tree branch above subtree_index and ocfs2_extend_rotate_transaction
2481 	 * doesn't reserve the credits for them either.
2482 	 *
2483 	 * But we do have a special case here which will update the rightmost
2484 	 * records for all the bh in the path.
2485 	 * So we have to allocate extra credits and access them.
2486 	 */
2487 	ret = ocfs2_extend_trans(handle,
2488 				 handle->h_buffer_credits + subtree_index);
2489 	if (ret) {
2490 		mlog_errno(ret);
2491 		goto out;
2492 	}
2493 
2494 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
2495 	if (ret) {
2496 		mlog_errno(ret);
2497 		goto out;
2498 	}
2499 
2500 	/* Path should always be rightmost. */
2501 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2502 	BUG_ON(eb->h_next_leaf_blk != 0ULL);
2503 
2504 	el = &eb->h_list;
2505 	BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2506 	idx = le16_to_cpu(el->l_next_free_rec) - 1;
2507 	rec = &el->l_recs[idx];
2508 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2509 
2510 	for (i = 0; i < path->p_tree_depth; i++) {
2511 		el = path->p_node[i].el;
2512 		idx = le16_to_cpu(el->l_next_free_rec) - 1;
2513 		rec = &el->l_recs[idx];
2514 
2515 		rec->e_int_clusters = cpu_to_le32(range);
2516 		le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2517 
2518 		ocfs2_journal_dirty(handle, path->p_node[i].bh);
2519 	}
2520 out:
2521 	return ret;
2522 }
2523 
2524 static void ocfs2_unlink_path(handle_t *handle,
2525 			      struct ocfs2_extent_tree *et,
2526 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
2527 			      struct ocfs2_path *path, int unlink_start)
2528 {
2529 	int ret, i;
2530 	struct ocfs2_extent_block *eb;
2531 	struct ocfs2_extent_list *el;
2532 	struct buffer_head *bh;
2533 
2534 	for(i = unlink_start; i < path_num_items(path); i++) {
2535 		bh = path->p_node[i].bh;
2536 
2537 		eb = (struct ocfs2_extent_block *)bh->b_data;
2538 		/*
2539 		 * Not all nodes might have had their final count
2540 		 * decremented by the caller - handle this here.
2541 		 */
2542 		el = &eb->h_list;
2543 		if (le16_to_cpu(el->l_next_free_rec) > 1) {
2544 			mlog(ML_ERROR,
2545 			     "Inode %llu, attempted to remove extent block "
2546 			     "%llu with %u records\n",
2547 			     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2548 			     (unsigned long long)le64_to_cpu(eb->h_blkno),
2549 			     le16_to_cpu(el->l_next_free_rec));
2550 
2551 			ocfs2_journal_dirty(handle, bh);
2552 			ocfs2_remove_from_cache(et->et_ci, bh);
2553 			continue;
2554 		}
2555 
2556 		el->l_next_free_rec = 0;
2557 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2558 
2559 		ocfs2_journal_dirty(handle, bh);
2560 
2561 		ret = ocfs2_cache_extent_block_free(dealloc, eb);
2562 		if (ret)
2563 			mlog_errno(ret);
2564 
2565 		ocfs2_remove_from_cache(et->et_ci, bh);
2566 	}
2567 }
2568 
2569 static void ocfs2_unlink_subtree(handle_t *handle,
2570 				 struct ocfs2_extent_tree *et,
2571 				 struct ocfs2_path *left_path,
2572 				 struct ocfs2_path *right_path,
2573 				 int subtree_index,
2574 				 struct ocfs2_cached_dealloc_ctxt *dealloc)
2575 {
2576 	int i;
2577 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2578 	struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2579 	struct ocfs2_extent_list *el;
2580 	struct ocfs2_extent_block *eb;
2581 
2582 	el = path_leaf_el(left_path);
2583 
2584 	eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2585 
2586 	for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2587 		if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2588 			break;
2589 
2590 	BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2591 
2592 	memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2593 	le16_add_cpu(&root_el->l_next_free_rec, -1);
2594 
2595 	eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2596 	eb->h_next_leaf_blk = 0;
2597 
2598 	ocfs2_journal_dirty(handle, root_bh);
2599 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2600 
2601 	ocfs2_unlink_path(handle, et, dealloc, right_path,
2602 			  subtree_index + 1);
2603 }
2604 
2605 static int ocfs2_rotate_subtree_left(handle_t *handle,
2606 				     struct ocfs2_extent_tree *et,
2607 				     struct ocfs2_path *left_path,
2608 				     struct ocfs2_path *right_path,
2609 				     int subtree_index,
2610 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
2611 				     int *deleted)
2612 {
2613 	int ret, i, del_right_subtree = 0, right_has_empty = 0;
2614 	struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2615 	struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2616 	struct ocfs2_extent_block *eb;
2617 
2618 	*deleted = 0;
2619 
2620 	right_leaf_el = path_leaf_el(right_path);
2621 	left_leaf_el = path_leaf_el(left_path);
2622 	root_bh = left_path->p_node[subtree_index].bh;
2623 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2624 
2625 	if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2626 		return 0;
2627 
2628 	eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2629 	if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2630 		/*
2631 		 * It's legal for us to proceed if the right leaf is
2632 		 * the rightmost one and it has an empty extent. There
2633 		 * are two cases to handle - whether the leaf will be
2634 		 * empty after removal or not. If the leaf isn't empty
2635 		 * then just remove the empty extent up front. The
2636 		 * next block will handle empty leaves by flagging
2637 		 * them for unlink.
2638 		 *
2639 		 * Non rightmost leaves will throw -EAGAIN and the
2640 		 * caller can manually move the subtree and retry.
2641 		 */
2642 
2643 		if (eb->h_next_leaf_blk != 0ULL)
2644 			return -EAGAIN;
2645 
2646 		if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2647 			ret = ocfs2_journal_access_eb(handle, et->et_ci,
2648 						      path_leaf_bh(right_path),
2649 						      OCFS2_JOURNAL_ACCESS_WRITE);
2650 			if (ret) {
2651 				mlog_errno(ret);
2652 				goto out;
2653 			}
2654 
2655 			ocfs2_remove_empty_extent(right_leaf_el);
2656 		} else
2657 			right_has_empty = 1;
2658 	}
2659 
2660 	if (eb->h_next_leaf_blk == 0ULL &&
2661 	    le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2662 		/*
2663 		 * We have to update i_last_eb_blk during the meta
2664 		 * data delete.
2665 		 */
2666 		ret = ocfs2_et_root_journal_access(handle, et,
2667 						   OCFS2_JOURNAL_ACCESS_WRITE);
2668 		if (ret) {
2669 			mlog_errno(ret);
2670 			goto out;
2671 		}
2672 
2673 		del_right_subtree = 1;
2674 	}
2675 
2676 	/*
2677 	 * Getting here with an empty extent in the right path implies
2678 	 * that it's the rightmost path and will be deleted.
2679 	 */
2680 	BUG_ON(right_has_empty && !del_right_subtree);
2681 
2682 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2683 					   subtree_index);
2684 	if (ret) {
2685 		mlog_errno(ret);
2686 		goto out;
2687 	}
2688 
2689 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2690 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2691 						   right_path, i);
2692 		if (ret) {
2693 			mlog_errno(ret);
2694 			goto out;
2695 		}
2696 
2697 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2698 						   left_path, i);
2699 		if (ret) {
2700 			mlog_errno(ret);
2701 			goto out;
2702 		}
2703 	}
2704 
2705 	if (!right_has_empty) {
2706 		/*
2707 		 * Only do this if we're moving a real
2708 		 * record. Otherwise, the action is delayed until
2709 		 * after removal of the right path in which case we
2710 		 * can do a simple shift to remove the empty extent.
2711 		 */
2712 		ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2713 		memset(&right_leaf_el->l_recs[0], 0,
2714 		       sizeof(struct ocfs2_extent_rec));
2715 	}
2716 	if (eb->h_next_leaf_blk == 0ULL) {
2717 		/*
2718 		 * Move recs over to get rid of empty extent, decrease
2719 		 * next_free. This is allowed to remove the last
2720 		 * extent in our leaf (setting l_next_free_rec to
2721 		 * zero) - the delete code below won't care.
2722 		 */
2723 		ocfs2_remove_empty_extent(right_leaf_el);
2724 	}
2725 
2726 	ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2727 	if (ret)
2728 		mlog_errno(ret);
2729 	ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2730 	if (ret)
2731 		mlog_errno(ret);
2732 
2733 	if (del_right_subtree) {
2734 		ocfs2_unlink_subtree(handle, et, left_path, right_path,
2735 				     subtree_index, dealloc);
2736 		ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
2737 						left_path);
2738 		if (ret) {
2739 			mlog_errno(ret);
2740 			goto out;
2741 		}
2742 
2743 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2744 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2745 
2746 		/*
2747 		 * Removal of the extent in the left leaf was skipped
2748 		 * above so we could delete the right path
2749 		 * 1st.
2750 		 */
2751 		if (right_has_empty)
2752 			ocfs2_remove_empty_extent(left_leaf_el);
2753 
2754 		ret = ocfs2_journal_dirty(handle, et_root_bh);
2755 		if (ret)
2756 			mlog_errno(ret);
2757 
2758 		*deleted = 1;
2759 	} else
2760 		ocfs2_complete_edge_insert(handle, left_path, right_path,
2761 					   subtree_index);
2762 
2763 out:
2764 	return ret;
2765 }
2766 
2767 /*
2768  * Given a full path, determine what cpos value would return us a path
2769  * containing the leaf immediately to the right of the current one.
2770  *
2771  * Will return zero if the path passed in is already the rightmost path.
2772  *
2773  * This looks similar, but is subtly different to
2774  * ocfs2_find_cpos_for_left_leaf().
2775  */
2776 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2777 					  struct ocfs2_path *path, u32 *cpos)
2778 {
2779 	int i, j, ret = 0;
2780 	u64 blkno;
2781 	struct ocfs2_extent_list *el;
2782 
2783 	*cpos = 0;
2784 
2785 	if (path->p_tree_depth == 0)
2786 		return 0;
2787 
2788 	blkno = path_leaf_bh(path)->b_blocknr;
2789 
2790 	/* Start at the tree node just above the leaf and work our way up. */
2791 	i = path->p_tree_depth - 1;
2792 	while (i >= 0) {
2793 		int next_free;
2794 
2795 		el = path->p_node[i].el;
2796 
2797 		/*
2798 		 * Find the extent record just after the one in our
2799 		 * path.
2800 		 */
2801 		next_free = le16_to_cpu(el->l_next_free_rec);
2802 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2803 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2804 				if (j == (next_free - 1)) {
2805 					if (i == 0) {
2806 						/*
2807 						 * We've determined that the
2808 						 * path specified is already
2809 						 * the rightmost one - return a
2810 						 * cpos of zero.
2811 						 */
2812 						goto out;
2813 					}
2814 					/*
2815 					 * The rightmost record points to our
2816 					 * leaf - we need to travel up the
2817 					 * tree one level.
2818 					 */
2819 					goto next_node;
2820 				}
2821 
2822 				*cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2823 				goto out;
2824 			}
2825 		}
2826 
2827 		/*
2828 		 * If we got here, we never found a valid node where
2829 		 * the tree indicated one should be.
2830 		 */
2831 		ocfs2_error(sb,
2832 			    "Invalid extent tree at extent block %llu\n",
2833 			    (unsigned long long)blkno);
2834 		ret = -EROFS;
2835 		goto out;
2836 
2837 next_node:
2838 		blkno = path->p_node[i].bh->b_blocknr;
2839 		i--;
2840 	}
2841 
2842 out:
2843 	return ret;
2844 }
2845 
2846 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle,
2847 					    struct ocfs2_extent_tree *et,
2848 					    struct ocfs2_path *path)
2849 {
2850 	int ret;
2851 	struct buffer_head *bh = path_leaf_bh(path);
2852 	struct ocfs2_extent_list *el = path_leaf_el(path);
2853 
2854 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2855 		return 0;
2856 
2857 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
2858 					   path_num_items(path) - 1);
2859 	if (ret) {
2860 		mlog_errno(ret);
2861 		goto out;
2862 	}
2863 
2864 	ocfs2_remove_empty_extent(el);
2865 
2866 	ret = ocfs2_journal_dirty(handle, bh);
2867 	if (ret)
2868 		mlog_errno(ret);
2869 
2870 out:
2871 	return ret;
2872 }
2873 
2874 static int __ocfs2_rotate_tree_left(handle_t *handle,
2875 				    struct ocfs2_extent_tree *et,
2876 				    int orig_credits,
2877 				    struct ocfs2_path *path,
2878 				    struct ocfs2_cached_dealloc_ctxt *dealloc,
2879 				    struct ocfs2_path **empty_extent_path)
2880 {
2881 	int ret, subtree_root, deleted;
2882 	u32 right_cpos;
2883 	struct ocfs2_path *left_path = NULL;
2884 	struct ocfs2_path *right_path = NULL;
2885 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2886 
2887 	BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2888 
2889 	*empty_extent_path = NULL;
2890 
2891 	ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
2892 	if (ret) {
2893 		mlog_errno(ret);
2894 		goto out;
2895 	}
2896 
2897 	left_path = ocfs2_new_path_from_path(path);
2898 	if (!left_path) {
2899 		ret = -ENOMEM;
2900 		mlog_errno(ret);
2901 		goto out;
2902 	}
2903 
2904 	ocfs2_cp_path(left_path, path);
2905 
2906 	right_path = ocfs2_new_path_from_path(path);
2907 	if (!right_path) {
2908 		ret = -ENOMEM;
2909 		mlog_errno(ret);
2910 		goto out;
2911 	}
2912 
2913 	while (right_cpos) {
2914 		ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
2915 		if (ret) {
2916 			mlog_errno(ret);
2917 			goto out;
2918 		}
2919 
2920 		subtree_root = ocfs2_find_subtree_root(et, left_path,
2921 						       right_path);
2922 
2923 		mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2924 		     subtree_root,
2925 		     (unsigned long long)
2926 		     right_path->p_node[subtree_root].bh->b_blocknr,
2927 		     right_path->p_tree_depth);
2928 
2929 		ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2930 						      orig_credits, left_path);
2931 		if (ret) {
2932 			mlog_errno(ret);
2933 			goto out;
2934 		}
2935 
2936 		/*
2937 		 * Caller might still want to make changes to the
2938 		 * tree root, so re-add it to the journal here.
2939 		 */
2940 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2941 						   left_path, 0);
2942 		if (ret) {
2943 			mlog_errno(ret);
2944 			goto out;
2945 		}
2946 
2947 		ret = ocfs2_rotate_subtree_left(handle, et, left_path,
2948 						right_path, subtree_root,
2949 						dealloc, &deleted);
2950 		if (ret == -EAGAIN) {
2951 			/*
2952 			 * The rotation has to temporarily stop due to
2953 			 * the right subtree having an empty
2954 			 * extent. Pass it back to the caller for a
2955 			 * fixup.
2956 			 */
2957 			*empty_extent_path = right_path;
2958 			right_path = NULL;
2959 			goto out;
2960 		}
2961 		if (ret) {
2962 			mlog_errno(ret);
2963 			goto out;
2964 		}
2965 
2966 		/*
2967 		 * The subtree rotate might have removed records on
2968 		 * the rightmost edge. If so, then rotation is
2969 		 * complete.
2970 		 */
2971 		if (deleted)
2972 			break;
2973 
2974 		ocfs2_mv_path(left_path, right_path);
2975 
2976 		ret = ocfs2_find_cpos_for_right_leaf(sb, left_path,
2977 						     &right_cpos);
2978 		if (ret) {
2979 			mlog_errno(ret);
2980 			goto out;
2981 		}
2982 	}
2983 
2984 out:
2985 	ocfs2_free_path(right_path);
2986 	ocfs2_free_path(left_path);
2987 
2988 	return ret;
2989 }
2990 
2991 static int ocfs2_remove_rightmost_path(handle_t *handle,
2992 				struct ocfs2_extent_tree *et,
2993 				struct ocfs2_path *path,
2994 				struct ocfs2_cached_dealloc_ctxt *dealloc)
2995 {
2996 	int ret, subtree_index;
2997 	u32 cpos;
2998 	struct ocfs2_path *left_path = NULL;
2999 	struct ocfs2_extent_block *eb;
3000 	struct ocfs2_extent_list *el;
3001 
3002 
3003 	ret = ocfs2_et_sanity_check(et);
3004 	if (ret)
3005 		goto out;
3006 	/*
3007 	 * There's two ways we handle this depending on
3008 	 * whether path is the only existing one.
3009 	 */
3010 	ret = ocfs2_extend_rotate_transaction(handle, 0,
3011 					      handle->h_buffer_credits,
3012 					      path);
3013 	if (ret) {
3014 		mlog_errno(ret);
3015 		goto out;
3016 	}
3017 
3018 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
3019 	if (ret) {
3020 		mlog_errno(ret);
3021 		goto out;
3022 	}
3023 
3024 	ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3025 					    path, &cpos);
3026 	if (ret) {
3027 		mlog_errno(ret);
3028 		goto out;
3029 	}
3030 
3031 	if (cpos) {
3032 		/*
3033 		 * We have a path to the left of this one - it needs
3034 		 * an update too.
3035 		 */
3036 		left_path = ocfs2_new_path_from_path(path);
3037 		if (!left_path) {
3038 			ret = -ENOMEM;
3039 			mlog_errno(ret);
3040 			goto out;
3041 		}
3042 
3043 		ret = ocfs2_find_path(et->et_ci, left_path, cpos);
3044 		if (ret) {
3045 			mlog_errno(ret);
3046 			goto out;
3047 		}
3048 
3049 		ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
3050 		if (ret) {
3051 			mlog_errno(ret);
3052 			goto out;
3053 		}
3054 
3055 		subtree_index = ocfs2_find_subtree_root(et, left_path, path);
3056 
3057 		ocfs2_unlink_subtree(handle, et, left_path, path,
3058 				     subtree_index, dealloc);
3059 		ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
3060 						left_path);
3061 		if (ret) {
3062 			mlog_errno(ret);
3063 			goto out;
3064 		}
3065 
3066 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3067 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3068 	} else {
3069 		/*
3070 		 * 'path' is also the leftmost path which
3071 		 * means it must be the only one. This gets
3072 		 * handled differently because we want to
3073 		 * revert the root back to having extents
3074 		 * in-line.
3075 		 */
3076 		ocfs2_unlink_path(handle, et, dealloc, path, 1);
3077 
3078 		el = et->et_root_el;
3079 		el->l_tree_depth = 0;
3080 		el->l_next_free_rec = 0;
3081 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3082 
3083 		ocfs2_et_set_last_eb_blk(et, 0);
3084 	}
3085 
3086 	ocfs2_journal_dirty(handle, path_root_bh(path));
3087 
3088 out:
3089 	ocfs2_free_path(left_path);
3090 	return ret;
3091 }
3092 
3093 /*
3094  * Left rotation of btree records.
3095  *
3096  * In many ways, this is (unsurprisingly) the opposite of right
3097  * rotation. We start at some non-rightmost path containing an empty
3098  * extent in the leaf block. The code works its way to the rightmost
3099  * path by rotating records to the left in every subtree.
3100  *
3101  * This is used by any code which reduces the number of extent records
3102  * in a leaf. After removal, an empty record should be placed in the
3103  * leftmost list position.
3104  *
3105  * This won't handle a length update of the rightmost path records if
3106  * the rightmost tree leaf record is removed so the caller is
3107  * responsible for detecting and correcting that.
3108  */
3109 static int ocfs2_rotate_tree_left(handle_t *handle,
3110 				  struct ocfs2_extent_tree *et,
3111 				  struct ocfs2_path *path,
3112 				  struct ocfs2_cached_dealloc_ctxt *dealloc)
3113 {
3114 	int ret, orig_credits = handle->h_buffer_credits;
3115 	struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3116 	struct ocfs2_extent_block *eb;
3117 	struct ocfs2_extent_list *el;
3118 
3119 	el = path_leaf_el(path);
3120 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3121 		return 0;
3122 
3123 	if (path->p_tree_depth == 0) {
3124 rightmost_no_delete:
3125 		/*
3126 		 * Inline extents. This is trivially handled, so do
3127 		 * it up front.
3128 		 */
3129 		ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path);
3130 		if (ret)
3131 			mlog_errno(ret);
3132 		goto out;
3133 	}
3134 
3135 	/*
3136 	 * Handle rightmost branch now. There's several cases:
3137 	 *  1) simple rotation leaving records in there. That's trivial.
3138 	 *  2) rotation requiring a branch delete - there's no more
3139 	 *     records left. Two cases of this:
3140 	 *     a) There are branches to the left.
3141 	 *     b) This is also the leftmost (the only) branch.
3142 	 *
3143 	 *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
3144 	 *  2a) we need the left branch so that we can update it with the unlink
3145 	 *  2b) we need to bring the root back to inline extents.
3146 	 */
3147 
3148 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3149 	el = &eb->h_list;
3150 	if (eb->h_next_leaf_blk == 0) {
3151 		/*
3152 		 * This gets a bit tricky if we're going to delete the
3153 		 * rightmost path. Get the other cases out of the way
3154 		 * 1st.
3155 		 */
3156 		if (le16_to_cpu(el->l_next_free_rec) > 1)
3157 			goto rightmost_no_delete;
3158 
3159 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
3160 			ret = -EIO;
3161 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3162 				    "Owner %llu has empty extent block at %llu",
3163 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
3164 				    (unsigned long long)le64_to_cpu(eb->h_blkno));
3165 			goto out;
3166 		}
3167 
3168 		/*
3169 		 * XXX: The caller can not trust "path" any more after
3170 		 * this as it will have been deleted. What do we do?
3171 		 *
3172 		 * In theory the rotate-for-merge code will never get
3173 		 * here because it'll always ask for a rotate in a
3174 		 * nonempty list.
3175 		 */
3176 
3177 		ret = ocfs2_remove_rightmost_path(handle, et, path,
3178 						  dealloc);
3179 		if (ret)
3180 			mlog_errno(ret);
3181 		goto out;
3182 	}
3183 
3184 	/*
3185 	 * Now we can loop, remembering the path we get from -EAGAIN
3186 	 * and restarting from there.
3187 	 */
3188 try_rotate:
3189 	ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path,
3190 				       dealloc, &restart_path);
3191 	if (ret && ret != -EAGAIN) {
3192 		mlog_errno(ret);
3193 		goto out;
3194 	}
3195 
3196 	while (ret == -EAGAIN) {
3197 		tmp_path = restart_path;
3198 		restart_path = NULL;
3199 
3200 		ret = __ocfs2_rotate_tree_left(handle, et, orig_credits,
3201 					       tmp_path, dealloc,
3202 					       &restart_path);
3203 		if (ret && ret != -EAGAIN) {
3204 			mlog_errno(ret);
3205 			goto out;
3206 		}
3207 
3208 		ocfs2_free_path(tmp_path);
3209 		tmp_path = NULL;
3210 
3211 		if (ret == 0)
3212 			goto try_rotate;
3213 	}
3214 
3215 out:
3216 	ocfs2_free_path(tmp_path);
3217 	ocfs2_free_path(restart_path);
3218 	return ret;
3219 }
3220 
3221 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3222 				int index)
3223 {
3224 	struct ocfs2_extent_rec *rec = &el->l_recs[index];
3225 	unsigned int size;
3226 
3227 	if (rec->e_leaf_clusters == 0) {
3228 		/*
3229 		 * We consumed all of the merged-from record. An empty
3230 		 * extent cannot exist anywhere but the 1st array
3231 		 * position, so move things over if the merged-from
3232 		 * record doesn't occupy that position.
3233 		 *
3234 		 * This creates a new empty extent so the caller
3235 		 * should be smart enough to have removed any existing
3236 		 * ones.
3237 		 */
3238 		if (index > 0) {
3239 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3240 			size = index * sizeof(struct ocfs2_extent_rec);
3241 			memmove(&el->l_recs[1], &el->l_recs[0], size);
3242 		}
3243 
3244 		/*
3245 		 * Always memset - the caller doesn't check whether it
3246 		 * created an empty extent, so there could be junk in
3247 		 * the other fields.
3248 		 */
3249 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3250 	}
3251 }
3252 
3253 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et,
3254 				struct ocfs2_path *left_path,
3255 				struct ocfs2_path **ret_right_path)
3256 {
3257 	int ret;
3258 	u32 right_cpos;
3259 	struct ocfs2_path *right_path = NULL;
3260 	struct ocfs2_extent_list *left_el;
3261 
3262 	*ret_right_path = NULL;
3263 
3264 	/* This function shouldn't be called for non-trees. */
3265 	BUG_ON(left_path->p_tree_depth == 0);
3266 
3267 	left_el = path_leaf_el(left_path);
3268 	BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3269 
3270 	ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3271 					     left_path, &right_cpos);
3272 	if (ret) {
3273 		mlog_errno(ret);
3274 		goto out;
3275 	}
3276 
3277 	/* This function shouldn't be called for the rightmost leaf. */
3278 	BUG_ON(right_cpos == 0);
3279 
3280 	right_path = ocfs2_new_path_from_path(left_path);
3281 	if (!right_path) {
3282 		ret = -ENOMEM;
3283 		mlog_errno(ret);
3284 		goto out;
3285 	}
3286 
3287 	ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
3288 	if (ret) {
3289 		mlog_errno(ret);
3290 		goto out;
3291 	}
3292 
3293 	*ret_right_path = right_path;
3294 out:
3295 	if (ret)
3296 		ocfs2_free_path(right_path);
3297 	return ret;
3298 }
3299 
3300 /*
3301  * Remove split_rec clusters from the record at index and merge them
3302  * onto the beginning of the record "next" to it.
3303  * For index < l_count - 1, the next means the extent rec at index + 1.
3304  * For index == l_count - 1, the "next" means the 1st extent rec of the
3305  * next extent block.
3306  */
3307 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path,
3308 				 handle_t *handle,
3309 				 struct ocfs2_extent_tree *et,
3310 				 struct ocfs2_extent_rec *split_rec,
3311 				 int index)
3312 {
3313 	int ret, next_free, i;
3314 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3315 	struct ocfs2_extent_rec *left_rec;
3316 	struct ocfs2_extent_rec *right_rec;
3317 	struct ocfs2_extent_list *right_el;
3318 	struct ocfs2_path *right_path = NULL;
3319 	int subtree_index = 0;
3320 	struct ocfs2_extent_list *el = path_leaf_el(left_path);
3321 	struct buffer_head *bh = path_leaf_bh(left_path);
3322 	struct buffer_head *root_bh = NULL;
3323 
3324 	BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3325 	left_rec = &el->l_recs[index];
3326 
3327 	if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3328 	    le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3329 		/* we meet with a cross extent block merge. */
3330 		ret = ocfs2_get_right_path(et, left_path, &right_path);
3331 		if (ret) {
3332 			mlog_errno(ret);
3333 			goto out;
3334 		}
3335 
3336 		right_el = path_leaf_el(right_path);
3337 		next_free = le16_to_cpu(right_el->l_next_free_rec);
3338 		BUG_ON(next_free <= 0);
3339 		right_rec = &right_el->l_recs[0];
3340 		if (ocfs2_is_empty_extent(right_rec)) {
3341 			BUG_ON(next_free <= 1);
3342 			right_rec = &right_el->l_recs[1];
3343 		}
3344 
3345 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3346 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3347 		       le32_to_cpu(right_rec->e_cpos));
3348 
3349 		subtree_index = ocfs2_find_subtree_root(et, left_path,
3350 							right_path);
3351 
3352 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3353 						      handle->h_buffer_credits,
3354 						      right_path);
3355 		if (ret) {
3356 			mlog_errno(ret);
3357 			goto out;
3358 		}
3359 
3360 		root_bh = left_path->p_node[subtree_index].bh;
3361 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3362 
3363 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3364 						   subtree_index);
3365 		if (ret) {
3366 			mlog_errno(ret);
3367 			goto out;
3368 		}
3369 
3370 		for (i = subtree_index + 1;
3371 		     i < path_num_items(right_path); i++) {
3372 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3373 							   right_path, i);
3374 			if (ret) {
3375 				mlog_errno(ret);
3376 				goto out;
3377 			}
3378 
3379 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3380 							   left_path, i);
3381 			if (ret) {
3382 				mlog_errno(ret);
3383 				goto out;
3384 			}
3385 		}
3386 
3387 	} else {
3388 		BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3389 		right_rec = &el->l_recs[index + 1];
3390 	}
3391 
3392 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path,
3393 					   path_num_items(left_path) - 1);
3394 	if (ret) {
3395 		mlog_errno(ret);
3396 		goto out;
3397 	}
3398 
3399 	le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3400 
3401 	le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3402 	le64_add_cpu(&right_rec->e_blkno,
3403 		     -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3404 					       split_clusters));
3405 	le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3406 
3407 	ocfs2_cleanup_merge(el, index);
3408 
3409 	ret = ocfs2_journal_dirty(handle, bh);
3410 	if (ret)
3411 		mlog_errno(ret);
3412 
3413 	if (right_path) {
3414 		ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3415 		if (ret)
3416 			mlog_errno(ret);
3417 
3418 		ocfs2_complete_edge_insert(handle, left_path, right_path,
3419 					   subtree_index);
3420 	}
3421 out:
3422 	if (right_path)
3423 		ocfs2_free_path(right_path);
3424 	return ret;
3425 }
3426 
3427 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et,
3428 			       struct ocfs2_path *right_path,
3429 			       struct ocfs2_path **ret_left_path)
3430 {
3431 	int ret;
3432 	u32 left_cpos;
3433 	struct ocfs2_path *left_path = NULL;
3434 
3435 	*ret_left_path = NULL;
3436 
3437 	/* This function shouldn't be called for non-trees. */
3438 	BUG_ON(right_path->p_tree_depth == 0);
3439 
3440 	ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3441 					    right_path, &left_cpos);
3442 	if (ret) {
3443 		mlog_errno(ret);
3444 		goto out;
3445 	}
3446 
3447 	/* This function shouldn't be called for the leftmost leaf. */
3448 	BUG_ON(left_cpos == 0);
3449 
3450 	left_path = ocfs2_new_path_from_path(right_path);
3451 	if (!left_path) {
3452 		ret = -ENOMEM;
3453 		mlog_errno(ret);
3454 		goto out;
3455 	}
3456 
3457 	ret = ocfs2_find_path(et->et_ci, left_path, left_cpos);
3458 	if (ret) {
3459 		mlog_errno(ret);
3460 		goto out;
3461 	}
3462 
3463 	*ret_left_path = left_path;
3464 out:
3465 	if (ret)
3466 		ocfs2_free_path(left_path);
3467 	return ret;
3468 }
3469 
3470 /*
3471  * Remove split_rec clusters from the record at index and merge them
3472  * onto the tail of the record "before" it.
3473  * For index > 0, the "before" means the extent rec at index - 1.
3474  *
3475  * For index == 0, the "before" means the last record of the previous
3476  * extent block. And there is also a situation that we may need to
3477  * remove the rightmost leaf extent block in the right_path and change
3478  * the right path to indicate the new rightmost path.
3479  */
3480 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path,
3481 				handle_t *handle,
3482 				struct ocfs2_extent_tree *et,
3483 				struct ocfs2_extent_rec *split_rec,
3484 				struct ocfs2_cached_dealloc_ctxt *dealloc,
3485 				int index)
3486 {
3487 	int ret, i, subtree_index = 0, has_empty_extent = 0;
3488 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3489 	struct ocfs2_extent_rec *left_rec;
3490 	struct ocfs2_extent_rec *right_rec;
3491 	struct ocfs2_extent_list *el = path_leaf_el(right_path);
3492 	struct buffer_head *bh = path_leaf_bh(right_path);
3493 	struct buffer_head *root_bh = NULL;
3494 	struct ocfs2_path *left_path = NULL;
3495 	struct ocfs2_extent_list *left_el;
3496 
3497 	BUG_ON(index < 0);
3498 
3499 	right_rec = &el->l_recs[index];
3500 	if (index == 0) {
3501 		/* we meet with a cross extent block merge. */
3502 		ret = ocfs2_get_left_path(et, right_path, &left_path);
3503 		if (ret) {
3504 			mlog_errno(ret);
3505 			goto out;
3506 		}
3507 
3508 		left_el = path_leaf_el(left_path);
3509 		BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3510 		       le16_to_cpu(left_el->l_count));
3511 
3512 		left_rec = &left_el->l_recs[
3513 				le16_to_cpu(left_el->l_next_free_rec) - 1];
3514 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3515 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3516 		       le32_to_cpu(split_rec->e_cpos));
3517 
3518 		subtree_index = ocfs2_find_subtree_root(et, left_path,
3519 							right_path);
3520 
3521 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3522 						      handle->h_buffer_credits,
3523 						      left_path);
3524 		if (ret) {
3525 			mlog_errno(ret);
3526 			goto out;
3527 		}
3528 
3529 		root_bh = left_path->p_node[subtree_index].bh;
3530 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3531 
3532 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3533 						   subtree_index);
3534 		if (ret) {
3535 			mlog_errno(ret);
3536 			goto out;
3537 		}
3538 
3539 		for (i = subtree_index + 1;
3540 		     i < path_num_items(right_path); i++) {
3541 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3542 							   right_path, i);
3543 			if (ret) {
3544 				mlog_errno(ret);
3545 				goto out;
3546 			}
3547 
3548 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3549 							   left_path, i);
3550 			if (ret) {
3551 				mlog_errno(ret);
3552 				goto out;
3553 			}
3554 		}
3555 	} else {
3556 		left_rec = &el->l_recs[index - 1];
3557 		if (ocfs2_is_empty_extent(&el->l_recs[0]))
3558 			has_empty_extent = 1;
3559 	}
3560 
3561 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3562 					   path_num_items(right_path) - 1);
3563 	if (ret) {
3564 		mlog_errno(ret);
3565 		goto out;
3566 	}
3567 
3568 	if (has_empty_extent && index == 1) {
3569 		/*
3570 		 * The easy case - we can just plop the record right in.
3571 		 */
3572 		*left_rec = *split_rec;
3573 
3574 		has_empty_extent = 0;
3575 	} else
3576 		le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3577 
3578 	le32_add_cpu(&right_rec->e_cpos, split_clusters);
3579 	le64_add_cpu(&right_rec->e_blkno,
3580 		     ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3581 					      split_clusters));
3582 	le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3583 
3584 	ocfs2_cleanup_merge(el, index);
3585 
3586 	ret = ocfs2_journal_dirty(handle, bh);
3587 	if (ret)
3588 		mlog_errno(ret);
3589 
3590 	if (left_path) {
3591 		ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3592 		if (ret)
3593 			mlog_errno(ret);
3594 
3595 		/*
3596 		 * In the situation that the right_rec is empty and the extent
3597 		 * block is empty also,  ocfs2_complete_edge_insert can't handle
3598 		 * it and we need to delete the right extent block.
3599 		 */
3600 		if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3601 		    le16_to_cpu(el->l_next_free_rec) == 1) {
3602 
3603 			ret = ocfs2_remove_rightmost_path(handle, et,
3604 							  right_path,
3605 							  dealloc);
3606 			if (ret) {
3607 				mlog_errno(ret);
3608 				goto out;
3609 			}
3610 
3611 			/* Now the rightmost extent block has been deleted.
3612 			 * So we use the new rightmost path.
3613 			 */
3614 			ocfs2_mv_path(right_path, left_path);
3615 			left_path = NULL;
3616 		} else
3617 			ocfs2_complete_edge_insert(handle, left_path,
3618 						   right_path, subtree_index);
3619 	}
3620 out:
3621 	if (left_path)
3622 		ocfs2_free_path(left_path);
3623 	return ret;
3624 }
3625 
3626 static int ocfs2_try_to_merge_extent(handle_t *handle,
3627 				     struct ocfs2_extent_tree *et,
3628 				     struct ocfs2_path *path,
3629 				     int split_index,
3630 				     struct ocfs2_extent_rec *split_rec,
3631 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
3632 				     struct ocfs2_merge_ctxt *ctxt)
3633 {
3634 	int ret = 0;
3635 	struct ocfs2_extent_list *el = path_leaf_el(path);
3636 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3637 
3638 	BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3639 
3640 	if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3641 		/*
3642 		 * The merge code will need to create an empty
3643 		 * extent to take the place of the newly
3644 		 * emptied slot. Remove any pre-existing empty
3645 		 * extents - having more than one in a leaf is
3646 		 * illegal.
3647 		 */
3648 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3649 		if (ret) {
3650 			mlog_errno(ret);
3651 			goto out;
3652 		}
3653 		split_index--;
3654 		rec = &el->l_recs[split_index];
3655 	}
3656 
3657 	if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3658 		/*
3659 		 * Left-right contig implies this.
3660 		 */
3661 		BUG_ON(!ctxt->c_split_covers_rec);
3662 
3663 		/*
3664 		 * Since the leftright insert always covers the entire
3665 		 * extent, this call will delete the insert record
3666 		 * entirely, resulting in an empty extent record added to
3667 		 * the extent block.
3668 		 *
3669 		 * Since the adding of an empty extent shifts
3670 		 * everything back to the right, there's no need to
3671 		 * update split_index here.
3672 		 *
3673 		 * When the split_index is zero, we need to merge it to the
3674 		 * prevoius extent block. It is more efficient and easier
3675 		 * if we do merge_right first and merge_left later.
3676 		 */
3677 		ret = ocfs2_merge_rec_right(path, handle, et, split_rec,
3678 					    split_index);
3679 		if (ret) {
3680 			mlog_errno(ret);
3681 			goto out;
3682 		}
3683 
3684 		/*
3685 		 * We can only get this from logic error above.
3686 		 */
3687 		BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3688 
3689 		/* The merge left us with an empty extent, remove it. */
3690 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3691 		if (ret) {
3692 			mlog_errno(ret);
3693 			goto out;
3694 		}
3695 
3696 		rec = &el->l_recs[split_index];
3697 
3698 		/*
3699 		 * Note that we don't pass split_rec here on purpose -
3700 		 * we've merged it into the rec already.
3701 		 */
3702 		ret = ocfs2_merge_rec_left(path, handle, et, rec,
3703 					   dealloc, split_index);
3704 
3705 		if (ret) {
3706 			mlog_errno(ret);
3707 			goto out;
3708 		}
3709 
3710 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3711 		/*
3712 		 * Error from this last rotate is not critical, so
3713 		 * print but don't bubble it up.
3714 		 */
3715 		if (ret)
3716 			mlog_errno(ret);
3717 		ret = 0;
3718 	} else {
3719 		/*
3720 		 * Merge a record to the left or right.
3721 		 *
3722 		 * 'contig_type' is relative to the existing record,
3723 		 * so for example, if we're "right contig", it's to
3724 		 * the record on the left (hence the left merge).
3725 		 */
3726 		if (ctxt->c_contig_type == CONTIG_RIGHT) {
3727 			ret = ocfs2_merge_rec_left(path, handle, et,
3728 						   split_rec, dealloc,
3729 						   split_index);
3730 			if (ret) {
3731 				mlog_errno(ret);
3732 				goto out;
3733 			}
3734 		} else {
3735 			ret = ocfs2_merge_rec_right(path, handle,
3736 						    et, split_rec,
3737 						    split_index);
3738 			if (ret) {
3739 				mlog_errno(ret);
3740 				goto out;
3741 			}
3742 		}
3743 
3744 		if (ctxt->c_split_covers_rec) {
3745 			/*
3746 			 * The merge may have left an empty extent in
3747 			 * our leaf. Try to rotate it away.
3748 			 */
3749 			ret = ocfs2_rotate_tree_left(handle, et, path,
3750 						     dealloc);
3751 			if (ret)
3752 				mlog_errno(ret);
3753 			ret = 0;
3754 		}
3755 	}
3756 
3757 out:
3758 	return ret;
3759 }
3760 
3761 static void ocfs2_subtract_from_rec(struct super_block *sb,
3762 				    enum ocfs2_split_type split,
3763 				    struct ocfs2_extent_rec *rec,
3764 				    struct ocfs2_extent_rec *split_rec)
3765 {
3766 	u64 len_blocks;
3767 
3768 	len_blocks = ocfs2_clusters_to_blocks(sb,
3769 				le16_to_cpu(split_rec->e_leaf_clusters));
3770 
3771 	if (split == SPLIT_LEFT) {
3772 		/*
3773 		 * Region is on the left edge of the existing
3774 		 * record.
3775 		 */
3776 		le32_add_cpu(&rec->e_cpos,
3777 			     le16_to_cpu(split_rec->e_leaf_clusters));
3778 		le64_add_cpu(&rec->e_blkno, len_blocks);
3779 		le16_add_cpu(&rec->e_leaf_clusters,
3780 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3781 	} else {
3782 		/*
3783 		 * Region is on the right edge of the existing
3784 		 * record.
3785 		 */
3786 		le16_add_cpu(&rec->e_leaf_clusters,
3787 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3788 	}
3789 }
3790 
3791 /*
3792  * Do the final bits of extent record insertion at the target leaf
3793  * list. If this leaf is part of an allocation tree, it is assumed
3794  * that the tree above has been prepared.
3795  */
3796 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
3797 				 struct ocfs2_extent_list *el,
3798 				 struct ocfs2_insert_type *insert,
3799 				 struct inode *inode)
3800 {
3801 	int i = insert->ins_contig_index;
3802 	unsigned int range;
3803 	struct ocfs2_extent_rec *rec;
3804 
3805 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3806 
3807 	if (insert->ins_split != SPLIT_NONE) {
3808 		i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3809 		BUG_ON(i == -1);
3810 		rec = &el->l_recs[i];
3811 		ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3812 					insert_rec);
3813 		goto rotate;
3814 	}
3815 
3816 	/*
3817 	 * Contiguous insert - either left or right.
3818 	 */
3819 	if (insert->ins_contig != CONTIG_NONE) {
3820 		rec = &el->l_recs[i];
3821 		if (insert->ins_contig == CONTIG_LEFT) {
3822 			rec->e_blkno = insert_rec->e_blkno;
3823 			rec->e_cpos = insert_rec->e_cpos;
3824 		}
3825 		le16_add_cpu(&rec->e_leaf_clusters,
3826 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3827 		return;
3828 	}
3829 
3830 	/*
3831 	 * Handle insert into an empty leaf.
3832 	 */
3833 	if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3834 	    ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3835 	     ocfs2_is_empty_extent(&el->l_recs[0]))) {
3836 		el->l_recs[0] = *insert_rec;
3837 		el->l_next_free_rec = cpu_to_le16(1);
3838 		return;
3839 	}
3840 
3841 	/*
3842 	 * Appending insert.
3843 	 */
3844 	if (insert->ins_appending == APPEND_TAIL) {
3845 		i = le16_to_cpu(el->l_next_free_rec) - 1;
3846 		rec = &el->l_recs[i];
3847 		range = le32_to_cpu(rec->e_cpos)
3848 			+ le16_to_cpu(rec->e_leaf_clusters);
3849 		BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3850 
3851 		mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3852 				le16_to_cpu(el->l_count),
3853 				"inode %lu, depth %u, count %u, next free %u, "
3854 				"rec.cpos %u, rec.clusters %u, "
3855 				"insert.cpos %u, insert.clusters %u\n",
3856 				inode->i_ino,
3857 				le16_to_cpu(el->l_tree_depth),
3858 				le16_to_cpu(el->l_count),
3859 				le16_to_cpu(el->l_next_free_rec),
3860 				le32_to_cpu(el->l_recs[i].e_cpos),
3861 				le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3862 				le32_to_cpu(insert_rec->e_cpos),
3863 				le16_to_cpu(insert_rec->e_leaf_clusters));
3864 		i++;
3865 		el->l_recs[i] = *insert_rec;
3866 		le16_add_cpu(&el->l_next_free_rec, 1);
3867 		return;
3868 	}
3869 
3870 rotate:
3871 	/*
3872 	 * Ok, we have to rotate.
3873 	 *
3874 	 * At this point, it is safe to assume that inserting into an
3875 	 * empty leaf and appending to a leaf have both been handled
3876 	 * above.
3877 	 *
3878 	 * This leaf needs to have space, either by the empty 1st
3879 	 * extent record, or by virtue of an l_next_rec < l_count.
3880 	 */
3881 	ocfs2_rotate_leaf(el, insert_rec);
3882 }
3883 
3884 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3885 					   handle_t *handle,
3886 					   struct ocfs2_path *path,
3887 					   struct ocfs2_extent_rec *insert_rec)
3888 {
3889 	int ret, i, next_free;
3890 	struct buffer_head *bh;
3891 	struct ocfs2_extent_list *el;
3892 	struct ocfs2_extent_rec *rec;
3893 
3894 	/*
3895 	 * Update everything except the leaf block.
3896 	 */
3897 	for (i = 0; i < path->p_tree_depth; i++) {
3898 		bh = path->p_node[i].bh;
3899 		el = path->p_node[i].el;
3900 
3901 		next_free = le16_to_cpu(el->l_next_free_rec);
3902 		if (next_free == 0) {
3903 			ocfs2_error(inode->i_sb,
3904 				    "Dinode %llu has a bad extent list",
3905 				    (unsigned long long)OCFS2_I(inode)->ip_blkno);
3906 			ret = -EIO;
3907 			return;
3908 		}
3909 
3910 		rec = &el->l_recs[next_free - 1];
3911 
3912 		rec->e_int_clusters = insert_rec->e_cpos;
3913 		le32_add_cpu(&rec->e_int_clusters,
3914 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3915 		le32_add_cpu(&rec->e_int_clusters,
3916 			     -le32_to_cpu(rec->e_cpos));
3917 
3918 		ret = ocfs2_journal_dirty(handle, bh);
3919 		if (ret)
3920 			mlog_errno(ret);
3921 
3922 	}
3923 }
3924 
3925 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3926 				    struct ocfs2_extent_rec *insert_rec,
3927 				    struct ocfs2_path *right_path,
3928 				    struct ocfs2_path **ret_left_path)
3929 {
3930 	int ret, next_free;
3931 	struct ocfs2_extent_list *el;
3932 	struct ocfs2_path *left_path = NULL;
3933 
3934 	*ret_left_path = NULL;
3935 
3936 	/*
3937 	 * This shouldn't happen for non-trees. The extent rec cluster
3938 	 * count manipulation below only works for interior nodes.
3939 	 */
3940 	BUG_ON(right_path->p_tree_depth == 0);
3941 
3942 	/*
3943 	 * If our appending insert is at the leftmost edge of a leaf,
3944 	 * then we might need to update the rightmost records of the
3945 	 * neighboring path.
3946 	 */
3947 	el = path_leaf_el(right_path);
3948 	next_free = le16_to_cpu(el->l_next_free_rec);
3949 	if (next_free == 0 ||
3950 	    (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3951 		u32 left_cpos;
3952 
3953 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3954 						    &left_cpos);
3955 		if (ret) {
3956 			mlog_errno(ret);
3957 			goto out;
3958 		}
3959 
3960 		mlog(0, "Append may need a left path update. cpos: %u, "
3961 		     "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3962 		     left_cpos);
3963 
3964 		/*
3965 		 * No need to worry if the append is already in the
3966 		 * leftmost leaf.
3967 		 */
3968 		if (left_cpos) {
3969 			left_path = ocfs2_new_path_from_path(right_path);
3970 			if (!left_path) {
3971 				ret = -ENOMEM;
3972 				mlog_errno(ret);
3973 				goto out;
3974 			}
3975 
3976 			ret = ocfs2_find_path(INODE_CACHE(inode), left_path,
3977 					      left_cpos);
3978 			if (ret) {
3979 				mlog_errno(ret);
3980 				goto out;
3981 			}
3982 
3983 			/*
3984 			 * ocfs2_insert_path() will pass the left_path to the
3985 			 * journal for us.
3986 			 */
3987 		}
3988 	}
3989 
3990 	ret = ocfs2_journal_access_path(INODE_CACHE(inode), handle, right_path);
3991 	if (ret) {
3992 		mlog_errno(ret);
3993 		goto out;
3994 	}
3995 
3996 	ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
3997 
3998 	*ret_left_path = left_path;
3999 	ret = 0;
4000 out:
4001 	if (ret != 0)
4002 		ocfs2_free_path(left_path);
4003 
4004 	return ret;
4005 }
4006 
4007 static void ocfs2_split_record(struct inode *inode,
4008 			       struct ocfs2_path *left_path,
4009 			       struct ocfs2_path *right_path,
4010 			       struct ocfs2_extent_rec *split_rec,
4011 			       enum ocfs2_split_type split)
4012 {
4013 	int index;
4014 	u32 cpos = le32_to_cpu(split_rec->e_cpos);
4015 	struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4016 	struct ocfs2_extent_rec *rec, *tmprec;
4017 
4018 	right_el = path_leaf_el(right_path);
4019 	if (left_path)
4020 		left_el = path_leaf_el(left_path);
4021 
4022 	el = right_el;
4023 	insert_el = right_el;
4024 	index = ocfs2_search_extent_list(el, cpos);
4025 	if (index != -1) {
4026 		if (index == 0 && left_path) {
4027 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4028 
4029 			/*
4030 			 * This typically means that the record
4031 			 * started in the left path but moved to the
4032 			 * right as a result of rotation. We either
4033 			 * move the existing record to the left, or we
4034 			 * do the later insert there.
4035 			 *
4036 			 * In this case, the left path should always
4037 			 * exist as the rotate code will have passed
4038 			 * it back for a post-insert update.
4039 			 */
4040 
4041 			if (split == SPLIT_LEFT) {
4042 				/*
4043 				 * It's a left split. Since we know
4044 				 * that the rotate code gave us an
4045 				 * empty extent in the left path, we
4046 				 * can just do the insert there.
4047 				 */
4048 				insert_el = left_el;
4049 			} else {
4050 				/*
4051 				 * Right split - we have to move the
4052 				 * existing record over to the left
4053 				 * leaf. The insert will be into the
4054 				 * newly created empty extent in the
4055 				 * right leaf.
4056 				 */
4057 				tmprec = &right_el->l_recs[index];
4058 				ocfs2_rotate_leaf(left_el, tmprec);
4059 				el = left_el;
4060 
4061 				memset(tmprec, 0, sizeof(*tmprec));
4062 				index = ocfs2_search_extent_list(left_el, cpos);
4063 				BUG_ON(index == -1);
4064 			}
4065 		}
4066 	} else {
4067 		BUG_ON(!left_path);
4068 		BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4069 		/*
4070 		 * Left path is easy - we can just allow the insert to
4071 		 * happen.
4072 		 */
4073 		el = left_el;
4074 		insert_el = left_el;
4075 		index = ocfs2_search_extent_list(el, cpos);
4076 		BUG_ON(index == -1);
4077 	}
4078 
4079 	rec = &el->l_recs[index];
4080 	ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
4081 	ocfs2_rotate_leaf(insert_el, split_rec);
4082 }
4083 
4084 /*
4085  * This function only does inserts on an allocation b-tree. For tree
4086  * depth = 0, ocfs2_insert_at_leaf() is called directly.
4087  *
4088  * right_path is the path we want to do the actual insert
4089  * in. left_path should only be passed in if we need to update that
4090  * portion of the tree after an edge insert.
4091  */
4092 static int ocfs2_insert_path(struct inode *inode,
4093 			     handle_t *handle,
4094 			     struct ocfs2_extent_tree *et,
4095 			     struct ocfs2_path *left_path,
4096 			     struct ocfs2_path *right_path,
4097 			     struct ocfs2_extent_rec *insert_rec,
4098 			     struct ocfs2_insert_type *insert)
4099 {
4100 	int ret, subtree_index;
4101 	struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4102 
4103 	if (left_path) {
4104 		int credits = handle->h_buffer_credits;
4105 
4106 		/*
4107 		 * There's a chance that left_path got passed back to
4108 		 * us without being accounted for in the
4109 		 * journal. Extend our transaction here to be sure we
4110 		 * can change those blocks.
4111 		 */
4112 		credits += left_path->p_tree_depth;
4113 
4114 		ret = ocfs2_extend_trans(handle, credits);
4115 		if (ret < 0) {
4116 			mlog_errno(ret);
4117 			goto out;
4118 		}
4119 
4120 		ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
4121 		if (ret < 0) {
4122 			mlog_errno(ret);
4123 			goto out;
4124 		}
4125 	}
4126 
4127 	/*
4128 	 * Pass both paths to the journal. The majority of inserts
4129 	 * will be touching all components anyway.
4130 	 */
4131 	ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4132 	if (ret < 0) {
4133 		mlog_errno(ret);
4134 		goto out;
4135 	}
4136 
4137 	if (insert->ins_split != SPLIT_NONE) {
4138 		/*
4139 		 * We could call ocfs2_insert_at_leaf() for some types
4140 		 * of splits, but it's easier to just let one separate
4141 		 * function sort it all out.
4142 		 */
4143 		ocfs2_split_record(inode, left_path, right_path,
4144 				   insert_rec, insert->ins_split);
4145 
4146 		/*
4147 		 * Split might have modified either leaf and we don't
4148 		 * have a guarantee that the later edge insert will
4149 		 * dirty this for us.
4150 		 */
4151 		if (left_path)
4152 			ret = ocfs2_journal_dirty(handle,
4153 						  path_leaf_bh(left_path));
4154 			if (ret)
4155 				mlog_errno(ret);
4156 	} else
4157 		ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
4158 				     insert, inode);
4159 
4160 	ret = ocfs2_journal_dirty(handle, leaf_bh);
4161 	if (ret)
4162 		mlog_errno(ret);
4163 
4164 	if (left_path) {
4165 		/*
4166 		 * The rotate code has indicated that we need to fix
4167 		 * up portions of the tree after the insert.
4168 		 *
4169 		 * XXX: Should we extend the transaction here?
4170 		 */
4171 		subtree_index = ocfs2_find_subtree_root(et, left_path,
4172 							right_path);
4173 		ocfs2_complete_edge_insert(handle, left_path, right_path,
4174 					   subtree_index);
4175 	}
4176 
4177 	ret = 0;
4178 out:
4179 	return ret;
4180 }
4181 
4182 static int ocfs2_do_insert_extent(struct inode *inode,
4183 				  handle_t *handle,
4184 				  struct ocfs2_extent_tree *et,
4185 				  struct ocfs2_extent_rec *insert_rec,
4186 				  struct ocfs2_insert_type *type)
4187 {
4188 	int ret, rotate = 0;
4189 	u32 cpos;
4190 	struct ocfs2_path *right_path = NULL;
4191 	struct ocfs2_path *left_path = NULL;
4192 	struct ocfs2_extent_list *el;
4193 
4194 	el = et->et_root_el;
4195 
4196 	ret = ocfs2_et_root_journal_access(handle, et,
4197 					   OCFS2_JOURNAL_ACCESS_WRITE);
4198 	if (ret) {
4199 		mlog_errno(ret);
4200 		goto out;
4201 	}
4202 
4203 	if (le16_to_cpu(el->l_tree_depth) == 0) {
4204 		ocfs2_insert_at_leaf(insert_rec, el, type, inode);
4205 		goto out_update_clusters;
4206 	}
4207 
4208 	right_path = ocfs2_new_path_from_et(et);
4209 	if (!right_path) {
4210 		ret = -ENOMEM;
4211 		mlog_errno(ret);
4212 		goto out;
4213 	}
4214 
4215 	/*
4216 	 * Determine the path to start with. Rotations need the
4217 	 * rightmost path, everything else can go directly to the
4218 	 * target leaf.
4219 	 */
4220 	cpos = le32_to_cpu(insert_rec->e_cpos);
4221 	if (type->ins_appending == APPEND_NONE &&
4222 	    type->ins_contig == CONTIG_NONE) {
4223 		rotate = 1;
4224 		cpos = UINT_MAX;
4225 	}
4226 
4227 	ret = ocfs2_find_path(et->et_ci, right_path, cpos);
4228 	if (ret) {
4229 		mlog_errno(ret);
4230 		goto out;
4231 	}
4232 
4233 	/*
4234 	 * Rotations and appends need special treatment - they modify
4235 	 * parts of the tree's above them.
4236 	 *
4237 	 * Both might pass back a path immediate to the left of the
4238 	 * one being inserted to. This will be cause
4239 	 * ocfs2_insert_path() to modify the rightmost records of
4240 	 * left_path to account for an edge insert.
4241 	 *
4242 	 * XXX: When modifying this code, keep in mind that an insert
4243 	 * can wind up skipping both of these two special cases...
4244 	 */
4245 	if (rotate) {
4246 		ret = ocfs2_rotate_tree_right(handle, et, type->ins_split,
4247 					      le32_to_cpu(insert_rec->e_cpos),
4248 					      right_path, &left_path);
4249 		if (ret) {
4250 			mlog_errno(ret);
4251 			goto out;
4252 		}
4253 
4254 		/*
4255 		 * ocfs2_rotate_tree_right() might have extended the
4256 		 * transaction without re-journaling our tree root.
4257 		 */
4258 		ret = ocfs2_et_root_journal_access(handle, et,
4259 						   OCFS2_JOURNAL_ACCESS_WRITE);
4260 		if (ret) {
4261 			mlog_errno(ret);
4262 			goto out;
4263 		}
4264 	} else if (type->ins_appending == APPEND_TAIL
4265 		   && type->ins_contig != CONTIG_LEFT) {
4266 		ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
4267 					       right_path, &left_path);
4268 		if (ret) {
4269 			mlog_errno(ret);
4270 			goto out;
4271 		}
4272 	}
4273 
4274 	ret = ocfs2_insert_path(inode, handle, et, left_path, right_path,
4275 				insert_rec, type);
4276 	if (ret) {
4277 		mlog_errno(ret);
4278 		goto out;
4279 	}
4280 
4281 out_update_clusters:
4282 	if (type->ins_split == SPLIT_NONE)
4283 		ocfs2_et_update_clusters(et,
4284 					 le16_to_cpu(insert_rec->e_leaf_clusters));
4285 
4286 	ret = ocfs2_journal_dirty(handle, et->et_root_bh);
4287 	if (ret)
4288 		mlog_errno(ret);
4289 
4290 out:
4291 	ocfs2_free_path(left_path);
4292 	ocfs2_free_path(right_path);
4293 
4294 	return ret;
4295 }
4296 
4297 static enum ocfs2_contig_type
4298 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path,
4299 			       struct ocfs2_extent_list *el, int index,
4300 			       struct ocfs2_extent_rec *split_rec)
4301 {
4302 	int status;
4303 	enum ocfs2_contig_type ret = CONTIG_NONE;
4304 	u32 left_cpos, right_cpos;
4305 	struct ocfs2_extent_rec *rec = NULL;
4306 	struct ocfs2_extent_list *new_el;
4307 	struct ocfs2_path *left_path = NULL, *right_path = NULL;
4308 	struct buffer_head *bh;
4309 	struct ocfs2_extent_block *eb;
4310 
4311 	if (index > 0) {
4312 		rec = &el->l_recs[index - 1];
4313 	} else if (path->p_tree_depth > 0) {
4314 		status = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
4315 						       path, &left_cpos);
4316 		if (status)
4317 			goto out;
4318 
4319 		if (left_cpos != 0) {
4320 			left_path = ocfs2_new_path_from_path(path);
4321 			if (!left_path)
4322 				goto out;
4323 
4324 			status = ocfs2_find_path(INODE_CACHE(inode),
4325 						 left_path, left_cpos);
4326 			if (status)
4327 				goto out;
4328 
4329 			new_el = path_leaf_el(left_path);
4330 
4331 			if (le16_to_cpu(new_el->l_next_free_rec) !=
4332 			    le16_to_cpu(new_el->l_count)) {
4333 				bh = path_leaf_bh(left_path);
4334 				eb = (struct ocfs2_extent_block *)bh->b_data;
4335 				ocfs2_error(inode->i_sb,
4336 					    "Extent block #%llu has an "
4337 					    "invalid l_next_free_rec of "
4338 					    "%d.  It should have "
4339 					    "matched the l_count of %d",
4340 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4341 					    le16_to_cpu(new_el->l_next_free_rec),
4342 					    le16_to_cpu(new_el->l_count));
4343 				status = -EINVAL;
4344 				goto out;
4345 			}
4346 			rec = &new_el->l_recs[
4347 				le16_to_cpu(new_el->l_next_free_rec) - 1];
4348 		}
4349 	}
4350 
4351 	/*
4352 	 * We're careful to check for an empty extent record here -
4353 	 * the merge code will know what to do if it sees one.
4354 	 */
4355 	if (rec) {
4356 		if (index == 1 && ocfs2_is_empty_extent(rec)) {
4357 			if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4358 				ret = CONTIG_RIGHT;
4359 		} else {
4360 			ret = ocfs2_extent_contig(inode, rec, split_rec);
4361 		}
4362 	}
4363 
4364 	rec = NULL;
4365 	if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4366 		rec = &el->l_recs[index + 1];
4367 	else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4368 		 path->p_tree_depth > 0) {
4369 		status = ocfs2_find_cpos_for_right_leaf(inode->i_sb,
4370 							path, &right_cpos);
4371 		if (status)
4372 			goto out;
4373 
4374 		if (right_cpos == 0)
4375 			goto out;
4376 
4377 		right_path = ocfs2_new_path_from_path(path);
4378 		if (!right_path)
4379 			goto out;
4380 
4381 		status = ocfs2_find_path(INODE_CACHE(inode), right_path, right_cpos);
4382 		if (status)
4383 			goto out;
4384 
4385 		new_el = path_leaf_el(right_path);
4386 		rec = &new_el->l_recs[0];
4387 		if (ocfs2_is_empty_extent(rec)) {
4388 			if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4389 				bh = path_leaf_bh(right_path);
4390 				eb = (struct ocfs2_extent_block *)bh->b_data;
4391 				ocfs2_error(inode->i_sb,
4392 					    "Extent block #%llu has an "
4393 					    "invalid l_next_free_rec of %d",
4394 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4395 					    le16_to_cpu(new_el->l_next_free_rec));
4396 				status = -EINVAL;
4397 				goto out;
4398 			}
4399 			rec = &new_el->l_recs[1];
4400 		}
4401 	}
4402 
4403 	if (rec) {
4404 		enum ocfs2_contig_type contig_type;
4405 
4406 		contig_type = ocfs2_extent_contig(inode, rec, split_rec);
4407 
4408 		if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4409 			ret = CONTIG_LEFTRIGHT;
4410 		else if (ret == CONTIG_NONE)
4411 			ret = contig_type;
4412 	}
4413 
4414 out:
4415 	if (left_path)
4416 		ocfs2_free_path(left_path);
4417 	if (right_path)
4418 		ocfs2_free_path(right_path);
4419 
4420 	return ret;
4421 }
4422 
4423 static void ocfs2_figure_contig_type(struct inode *inode,
4424 				     struct ocfs2_insert_type *insert,
4425 				     struct ocfs2_extent_list *el,
4426 				     struct ocfs2_extent_rec *insert_rec,
4427 				     struct ocfs2_extent_tree *et)
4428 {
4429 	int i;
4430 	enum ocfs2_contig_type contig_type = CONTIG_NONE;
4431 
4432 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4433 
4434 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4435 		contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
4436 						  insert_rec);
4437 		if (contig_type != CONTIG_NONE) {
4438 			insert->ins_contig_index = i;
4439 			break;
4440 		}
4441 	}
4442 	insert->ins_contig = contig_type;
4443 
4444 	if (insert->ins_contig != CONTIG_NONE) {
4445 		struct ocfs2_extent_rec *rec =
4446 				&el->l_recs[insert->ins_contig_index];
4447 		unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4448 				   le16_to_cpu(insert_rec->e_leaf_clusters);
4449 
4450 		/*
4451 		 * Caller might want us to limit the size of extents, don't
4452 		 * calculate contiguousness if we might exceed that limit.
4453 		 */
4454 		if (et->et_max_leaf_clusters &&
4455 		    (len > et->et_max_leaf_clusters))
4456 			insert->ins_contig = CONTIG_NONE;
4457 	}
4458 }
4459 
4460 /*
4461  * This should only be called against the righmost leaf extent list.
4462  *
4463  * ocfs2_figure_appending_type() will figure out whether we'll have to
4464  * insert at the tail of the rightmost leaf.
4465  *
4466  * This should also work against the root extent list for tree's with 0
4467  * depth. If we consider the root extent list to be the rightmost leaf node
4468  * then the logic here makes sense.
4469  */
4470 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4471 					struct ocfs2_extent_list *el,
4472 					struct ocfs2_extent_rec *insert_rec)
4473 {
4474 	int i;
4475 	u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4476 	struct ocfs2_extent_rec *rec;
4477 
4478 	insert->ins_appending = APPEND_NONE;
4479 
4480 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4481 
4482 	if (!el->l_next_free_rec)
4483 		goto set_tail_append;
4484 
4485 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4486 		/* Were all records empty? */
4487 		if (le16_to_cpu(el->l_next_free_rec) == 1)
4488 			goto set_tail_append;
4489 	}
4490 
4491 	i = le16_to_cpu(el->l_next_free_rec) - 1;
4492 	rec = &el->l_recs[i];
4493 
4494 	if (cpos >=
4495 	    (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4496 		goto set_tail_append;
4497 
4498 	return;
4499 
4500 set_tail_append:
4501 	insert->ins_appending = APPEND_TAIL;
4502 }
4503 
4504 /*
4505  * Helper function called at the begining of an insert.
4506  *
4507  * This computes a few things that are commonly used in the process of
4508  * inserting into the btree:
4509  *   - Whether the new extent is contiguous with an existing one.
4510  *   - The current tree depth.
4511  *   - Whether the insert is an appending one.
4512  *   - The total # of free records in the tree.
4513  *
4514  * All of the information is stored on the ocfs2_insert_type
4515  * structure.
4516  */
4517 static int ocfs2_figure_insert_type(struct inode *inode,
4518 				    struct ocfs2_extent_tree *et,
4519 				    struct buffer_head **last_eb_bh,
4520 				    struct ocfs2_extent_rec *insert_rec,
4521 				    int *free_records,
4522 				    struct ocfs2_insert_type *insert)
4523 {
4524 	int ret;
4525 	struct ocfs2_extent_block *eb;
4526 	struct ocfs2_extent_list *el;
4527 	struct ocfs2_path *path = NULL;
4528 	struct buffer_head *bh = NULL;
4529 
4530 	insert->ins_split = SPLIT_NONE;
4531 
4532 	el = et->et_root_el;
4533 	insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4534 
4535 	if (el->l_tree_depth) {
4536 		/*
4537 		 * If we have tree depth, we read in the
4538 		 * rightmost extent block ahead of time as
4539 		 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4540 		 * may want it later.
4541 		 */
4542 		ret = ocfs2_read_extent_block(et->et_ci,
4543 					      ocfs2_et_get_last_eb_blk(et),
4544 					      &bh);
4545 		if (ret) {
4546 			mlog_exit(ret);
4547 			goto out;
4548 		}
4549 		eb = (struct ocfs2_extent_block *) bh->b_data;
4550 		el = &eb->h_list;
4551 	}
4552 
4553 	/*
4554 	 * Unless we have a contiguous insert, we'll need to know if
4555 	 * there is room left in our allocation tree for another
4556 	 * extent record.
4557 	 *
4558 	 * XXX: This test is simplistic, we can search for empty
4559 	 * extent records too.
4560 	 */
4561 	*free_records = le16_to_cpu(el->l_count) -
4562 		le16_to_cpu(el->l_next_free_rec);
4563 
4564 	if (!insert->ins_tree_depth) {
4565 		ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4566 		ocfs2_figure_appending_type(insert, el, insert_rec);
4567 		return 0;
4568 	}
4569 
4570 	path = ocfs2_new_path_from_et(et);
4571 	if (!path) {
4572 		ret = -ENOMEM;
4573 		mlog_errno(ret);
4574 		goto out;
4575 	}
4576 
4577 	/*
4578 	 * In the case that we're inserting past what the tree
4579 	 * currently accounts for, ocfs2_find_path() will return for
4580 	 * us the rightmost tree path. This is accounted for below in
4581 	 * the appending code.
4582 	 */
4583 	ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos));
4584 	if (ret) {
4585 		mlog_errno(ret);
4586 		goto out;
4587 	}
4588 
4589 	el = path_leaf_el(path);
4590 
4591 	/*
4592 	 * Now that we have the path, there's two things we want to determine:
4593 	 * 1) Contiguousness (also set contig_index if this is so)
4594 	 *
4595 	 * 2) Are we doing an append? We can trivially break this up
4596          *     into two types of appends: simple record append, or a
4597          *     rotate inside the tail leaf.
4598 	 */
4599 	ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4600 
4601 	/*
4602 	 * The insert code isn't quite ready to deal with all cases of
4603 	 * left contiguousness. Specifically, if it's an insert into
4604 	 * the 1st record in a leaf, it will require the adjustment of
4605 	 * cluster count on the last record of the path directly to it's
4606 	 * left. For now, just catch that case and fool the layers
4607 	 * above us. This works just fine for tree_depth == 0, which
4608 	 * is why we allow that above.
4609 	 */
4610 	if (insert->ins_contig == CONTIG_LEFT &&
4611 	    insert->ins_contig_index == 0)
4612 		insert->ins_contig = CONTIG_NONE;
4613 
4614 	/*
4615 	 * Ok, so we can simply compare against last_eb to figure out
4616 	 * whether the path doesn't exist. This will only happen in
4617 	 * the case that we're doing a tail append, so maybe we can
4618 	 * take advantage of that information somehow.
4619 	 */
4620 	if (ocfs2_et_get_last_eb_blk(et) ==
4621 	    path_leaf_bh(path)->b_blocknr) {
4622 		/*
4623 		 * Ok, ocfs2_find_path() returned us the rightmost
4624 		 * tree path. This might be an appending insert. There are
4625 		 * two cases:
4626 		 *    1) We're doing a true append at the tail:
4627 		 *	-This might even be off the end of the leaf
4628 		 *    2) We're "appending" by rotating in the tail
4629 		 */
4630 		ocfs2_figure_appending_type(insert, el, insert_rec);
4631 	}
4632 
4633 out:
4634 	ocfs2_free_path(path);
4635 
4636 	if (ret == 0)
4637 		*last_eb_bh = bh;
4638 	else
4639 		brelse(bh);
4640 	return ret;
4641 }
4642 
4643 /*
4644  * Insert an extent into an inode btree.
4645  *
4646  * The caller needs to update fe->i_clusters
4647  */
4648 int ocfs2_insert_extent(struct ocfs2_super *osb,
4649 			handle_t *handle,
4650 			struct inode *inode,
4651 			struct ocfs2_extent_tree *et,
4652 			u32 cpos,
4653 			u64 start_blk,
4654 			u32 new_clusters,
4655 			u8 flags,
4656 			struct ocfs2_alloc_context *meta_ac)
4657 {
4658 	int status;
4659 	int uninitialized_var(free_records);
4660 	struct buffer_head *last_eb_bh = NULL;
4661 	struct ocfs2_insert_type insert = {0, };
4662 	struct ocfs2_extent_rec rec;
4663 
4664 	mlog(0, "add %u clusters at position %u to inode %llu\n",
4665 	     new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4666 
4667 	memset(&rec, 0, sizeof(rec));
4668 	rec.e_cpos = cpu_to_le32(cpos);
4669 	rec.e_blkno = cpu_to_le64(start_blk);
4670 	rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4671 	rec.e_flags = flags;
4672 	status = ocfs2_et_insert_check(et, &rec);
4673 	if (status) {
4674 		mlog_errno(status);
4675 		goto bail;
4676 	}
4677 
4678 	status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec,
4679 					  &free_records, &insert);
4680 	if (status < 0) {
4681 		mlog_errno(status);
4682 		goto bail;
4683 	}
4684 
4685 	mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4686 	     "Insert.contig_index: %d, Insert.free_records: %d, "
4687 	     "Insert.tree_depth: %d\n",
4688 	     insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4689 	     free_records, insert.ins_tree_depth);
4690 
4691 	if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4692 		status = ocfs2_grow_tree(inode, handle, et,
4693 					 &insert.ins_tree_depth, &last_eb_bh,
4694 					 meta_ac);
4695 		if (status) {
4696 			mlog_errno(status);
4697 			goto bail;
4698 		}
4699 	}
4700 
4701 	/* Finally, we can add clusters. This might rotate the tree for us. */
4702 	status = ocfs2_do_insert_extent(inode, handle, et, &rec, &insert);
4703 	if (status < 0)
4704 		mlog_errno(status);
4705 	else if (et->et_ops == &ocfs2_dinode_et_ops)
4706 		ocfs2_extent_map_insert_rec(inode, &rec);
4707 
4708 bail:
4709 	brelse(last_eb_bh);
4710 
4711 	mlog_exit(status);
4712 	return status;
4713 }
4714 
4715 /*
4716  * Allcate and add clusters into the extent b-tree.
4717  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4718  * The extent b-tree's root is specified by et, and
4719  * it is not limited to the file storage. Any extent tree can use this
4720  * function if it implements the proper ocfs2_extent_tree.
4721  */
4722 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb,
4723 				struct inode *inode,
4724 				u32 *logical_offset,
4725 				u32 clusters_to_add,
4726 				int mark_unwritten,
4727 				struct ocfs2_extent_tree *et,
4728 				handle_t *handle,
4729 				struct ocfs2_alloc_context *data_ac,
4730 				struct ocfs2_alloc_context *meta_ac,
4731 				enum ocfs2_alloc_restarted *reason_ret)
4732 {
4733 	int status = 0;
4734 	int free_extents;
4735 	enum ocfs2_alloc_restarted reason = RESTART_NONE;
4736 	u32 bit_off, num_bits;
4737 	u64 block;
4738 	u8 flags = 0;
4739 
4740 	BUG_ON(!clusters_to_add);
4741 
4742 	if (mark_unwritten)
4743 		flags = OCFS2_EXT_UNWRITTEN;
4744 
4745 	free_extents = ocfs2_num_free_extents(osb, et);
4746 	if (free_extents < 0) {
4747 		status = free_extents;
4748 		mlog_errno(status);
4749 		goto leave;
4750 	}
4751 
4752 	/* there are two cases which could cause us to EAGAIN in the
4753 	 * we-need-more-metadata case:
4754 	 * 1) we haven't reserved *any*
4755 	 * 2) we are so fragmented, we've needed to add metadata too
4756 	 *    many times. */
4757 	if (!free_extents && !meta_ac) {
4758 		mlog(0, "we haven't reserved any metadata!\n");
4759 		status = -EAGAIN;
4760 		reason = RESTART_META;
4761 		goto leave;
4762 	} else if ((!free_extents)
4763 		   && (ocfs2_alloc_context_bits_left(meta_ac)
4764 		       < ocfs2_extend_meta_needed(et->et_root_el))) {
4765 		mlog(0, "filesystem is really fragmented...\n");
4766 		status = -EAGAIN;
4767 		reason = RESTART_META;
4768 		goto leave;
4769 	}
4770 
4771 	status = __ocfs2_claim_clusters(osb, handle, data_ac, 1,
4772 					clusters_to_add, &bit_off, &num_bits);
4773 	if (status < 0) {
4774 		if (status != -ENOSPC)
4775 			mlog_errno(status);
4776 		goto leave;
4777 	}
4778 
4779 	BUG_ON(num_bits > clusters_to_add);
4780 
4781 	/* reserve our write early -- insert_extent may update the tree root */
4782 	status = ocfs2_et_root_journal_access(handle, et,
4783 					      OCFS2_JOURNAL_ACCESS_WRITE);
4784 	if (status < 0) {
4785 		mlog_errno(status);
4786 		goto leave;
4787 	}
4788 
4789 	block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4790 	mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
4791 	     num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4792 	status = ocfs2_insert_extent(osb, handle, inode, et,
4793 				     *logical_offset, block,
4794 				     num_bits, flags, meta_ac);
4795 	if (status < 0) {
4796 		mlog_errno(status);
4797 		goto leave;
4798 	}
4799 
4800 	status = ocfs2_journal_dirty(handle, et->et_root_bh);
4801 	if (status < 0) {
4802 		mlog_errno(status);
4803 		goto leave;
4804 	}
4805 
4806 	clusters_to_add -= num_bits;
4807 	*logical_offset += num_bits;
4808 
4809 	if (clusters_to_add) {
4810 		mlog(0, "need to alloc once more, wanted = %u\n",
4811 		     clusters_to_add);
4812 		status = -EAGAIN;
4813 		reason = RESTART_TRANS;
4814 	}
4815 
4816 leave:
4817 	mlog_exit(status);
4818 	if (reason_ret)
4819 		*reason_ret = reason;
4820 	return status;
4821 }
4822 
4823 static void ocfs2_make_right_split_rec(struct super_block *sb,
4824 				       struct ocfs2_extent_rec *split_rec,
4825 				       u32 cpos,
4826 				       struct ocfs2_extent_rec *rec)
4827 {
4828 	u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4829 	u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4830 
4831 	memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4832 
4833 	split_rec->e_cpos = cpu_to_le32(cpos);
4834 	split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4835 
4836 	split_rec->e_blkno = rec->e_blkno;
4837 	le64_add_cpu(&split_rec->e_blkno,
4838 		     ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4839 
4840 	split_rec->e_flags = rec->e_flags;
4841 }
4842 
4843 static int ocfs2_split_and_insert(struct inode *inode,
4844 				  handle_t *handle,
4845 				  struct ocfs2_path *path,
4846 				  struct ocfs2_extent_tree *et,
4847 				  struct buffer_head **last_eb_bh,
4848 				  int split_index,
4849 				  struct ocfs2_extent_rec *orig_split_rec,
4850 				  struct ocfs2_alloc_context *meta_ac)
4851 {
4852 	int ret = 0, depth;
4853 	unsigned int insert_range, rec_range, do_leftright = 0;
4854 	struct ocfs2_extent_rec tmprec;
4855 	struct ocfs2_extent_list *rightmost_el;
4856 	struct ocfs2_extent_rec rec;
4857 	struct ocfs2_extent_rec split_rec = *orig_split_rec;
4858 	struct ocfs2_insert_type insert;
4859 	struct ocfs2_extent_block *eb;
4860 
4861 leftright:
4862 	/*
4863 	 * Store a copy of the record on the stack - it might move
4864 	 * around as the tree is manipulated below.
4865 	 */
4866 	rec = path_leaf_el(path)->l_recs[split_index];
4867 
4868 	rightmost_el = et->et_root_el;
4869 
4870 	depth = le16_to_cpu(rightmost_el->l_tree_depth);
4871 	if (depth) {
4872 		BUG_ON(!(*last_eb_bh));
4873 		eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4874 		rightmost_el = &eb->h_list;
4875 	}
4876 
4877 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4878 	    le16_to_cpu(rightmost_el->l_count)) {
4879 		ret = ocfs2_grow_tree(inode, handle, et,
4880 				      &depth, last_eb_bh, meta_ac);
4881 		if (ret) {
4882 			mlog_errno(ret);
4883 			goto out;
4884 		}
4885 	}
4886 
4887 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4888 	insert.ins_appending = APPEND_NONE;
4889 	insert.ins_contig = CONTIG_NONE;
4890 	insert.ins_tree_depth = depth;
4891 
4892 	insert_range = le32_to_cpu(split_rec.e_cpos) +
4893 		le16_to_cpu(split_rec.e_leaf_clusters);
4894 	rec_range = le32_to_cpu(rec.e_cpos) +
4895 		le16_to_cpu(rec.e_leaf_clusters);
4896 
4897 	if (split_rec.e_cpos == rec.e_cpos) {
4898 		insert.ins_split = SPLIT_LEFT;
4899 	} else if (insert_range == rec_range) {
4900 		insert.ins_split = SPLIT_RIGHT;
4901 	} else {
4902 		/*
4903 		 * Left/right split. We fake this as a right split
4904 		 * first and then make a second pass as a left split.
4905 		 */
4906 		insert.ins_split = SPLIT_RIGHT;
4907 
4908 		ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
4909 					   &rec);
4910 
4911 		split_rec = tmprec;
4912 
4913 		BUG_ON(do_leftright);
4914 		do_leftright = 1;
4915 	}
4916 
4917 	ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
4918 	if (ret) {
4919 		mlog_errno(ret);
4920 		goto out;
4921 	}
4922 
4923 	if (do_leftright == 1) {
4924 		u32 cpos;
4925 		struct ocfs2_extent_list *el;
4926 
4927 		do_leftright++;
4928 		split_rec = *orig_split_rec;
4929 
4930 		ocfs2_reinit_path(path, 1);
4931 
4932 		cpos = le32_to_cpu(split_rec.e_cpos);
4933 		ret = ocfs2_find_path(et->et_ci, path, cpos);
4934 		if (ret) {
4935 			mlog_errno(ret);
4936 			goto out;
4937 		}
4938 
4939 		el = path_leaf_el(path);
4940 		split_index = ocfs2_search_extent_list(el, cpos);
4941 		goto leftright;
4942 	}
4943 out:
4944 
4945 	return ret;
4946 }
4947 
4948 static int ocfs2_replace_extent_rec(struct inode *inode,
4949 				    handle_t *handle,
4950 				    struct ocfs2_path *path,
4951 				    struct ocfs2_extent_list *el,
4952 				    int split_index,
4953 				    struct ocfs2_extent_rec *split_rec)
4954 {
4955 	int ret;
4956 
4957 	ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), path,
4958 					   path_num_items(path) - 1);
4959 	if (ret) {
4960 		mlog_errno(ret);
4961 		goto out;
4962 	}
4963 
4964 	el->l_recs[split_index] = *split_rec;
4965 
4966 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
4967 out:
4968 	return ret;
4969 }
4970 
4971 /*
4972  * Mark part or all of the extent record at split_index in the leaf
4973  * pointed to by path as written. This removes the unwritten
4974  * extent flag.
4975  *
4976  * Care is taken to handle contiguousness so as to not grow the tree.
4977  *
4978  * meta_ac is not strictly necessary - we only truly need it if growth
4979  * of the tree is required. All other cases will degrade into a less
4980  * optimal tree layout.
4981  *
4982  * last_eb_bh should be the rightmost leaf block for any extent
4983  * btree. Since a split may grow the tree or a merge might shrink it,
4984  * the caller cannot trust the contents of that buffer after this call.
4985  *
4986  * This code is optimized for readability - several passes might be
4987  * made over certain portions of the tree. All of those blocks will
4988  * have been brought into cache (and pinned via the journal), so the
4989  * extra overhead is not expressed in terms of disk reads.
4990  */
4991 static int __ocfs2_mark_extent_written(struct inode *inode,
4992 				       struct ocfs2_extent_tree *et,
4993 				       handle_t *handle,
4994 				       struct ocfs2_path *path,
4995 				       int split_index,
4996 				       struct ocfs2_extent_rec *split_rec,
4997 				       struct ocfs2_alloc_context *meta_ac,
4998 				       struct ocfs2_cached_dealloc_ctxt *dealloc)
4999 {
5000 	int ret = 0;
5001 	struct ocfs2_extent_list *el = path_leaf_el(path);
5002 	struct buffer_head *last_eb_bh = NULL;
5003 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5004 	struct ocfs2_merge_ctxt ctxt;
5005 	struct ocfs2_extent_list *rightmost_el;
5006 
5007 	if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
5008 		ret = -EIO;
5009 		mlog_errno(ret);
5010 		goto out;
5011 	}
5012 
5013 	if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5014 	    ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5015 	     (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5016 		ret = -EIO;
5017 		mlog_errno(ret);
5018 		goto out;
5019 	}
5020 
5021 	ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el,
5022 							    split_index,
5023 							    split_rec);
5024 
5025 	/*
5026 	 * The core merge / split code wants to know how much room is
5027 	 * left in this inodes allocation tree, so we pass the
5028 	 * rightmost extent list.
5029 	 */
5030 	if (path->p_tree_depth) {
5031 		struct ocfs2_extent_block *eb;
5032 
5033 		ret = ocfs2_read_extent_block(et->et_ci,
5034 					      ocfs2_et_get_last_eb_blk(et),
5035 					      &last_eb_bh);
5036 		if (ret) {
5037 			mlog_exit(ret);
5038 			goto out;
5039 		}
5040 
5041 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5042 		rightmost_el = &eb->h_list;
5043 	} else
5044 		rightmost_el = path_root_el(path);
5045 
5046 	if (rec->e_cpos == split_rec->e_cpos &&
5047 	    rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5048 		ctxt.c_split_covers_rec = 1;
5049 	else
5050 		ctxt.c_split_covers_rec = 0;
5051 
5052 	ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5053 
5054 	mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
5055 	     split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
5056 	     ctxt.c_split_covers_rec);
5057 
5058 	if (ctxt.c_contig_type == CONTIG_NONE) {
5059 		if (ctxt.c_split_covers_rec)
5060 			ret = ocfs2_replace_extent_rec(inode, handle,
5061 						       path, el,
5062 						       split_index, split_rec);
5063 		else
5064 			ret = ocfs2_split_and_insert(inode, handle, path, et,
5065 						     &last_eb_bh, split_index,
5066 						     split_rec, meta_ac);
5067 		if (ret)
5068 			mlog_errno(ret);
5069 	} else {
5070 		ret = ocfs2_try_to_merge_extent(handle, et, path,
5071 						split_index, split_rec,
5072 						dealloc, &ctxt);
5073 		if (ret)
5074 			mlog_errno(ret);
5075 	}
5076 
5077 out:
5078 	brelse(last_eb_bh);
5079 	return ret;
5080 }
5081 
5082 /*
5083  * Mark the already-existing extent at cpos as written for len clusters.
5084  *
5085  * If the existing extent is larger than the request, initiate a
5086  * split. An attempt will be made at merging with adjacent extents.
5087  *
5088  * The caller is responsible for passing down meta_ac if we'll need it.
5089  */
5090 int ocfs2_mark_extent_written(struct inode *inode,
5091 			      struct ocfs2_extent_tree *et,
5092 			      handle_t *handle, u32 cpos, u32 len, u32 phys,
5093 			      struct ocfs2_alloc_context *meta_ac,
5094 			      struct ocfs2_cached_dealloc_ctxt *dealloc)
5095 {
5096 	int ret, index;
5097 	u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
5098 	struct ocfs2_extent_rec split_rec;
5099 	struct ocfs2_path *left_path = NULL;
5100 	struct ocfs2_extent_list *el;
5101 
5102 	mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
5103 	     inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
5104 
5105 	if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5106 		ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
5107 			    "that are being written to, but the feature bit "
5108 			    "is not set in the super block.",
5109 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
5110 		ret = -EROFS;
5111 		goto out;
5112 	}
5113 
5114 	/*
5115 	 * XXX: This should be fixed up so that we just re-insert the
5116 	 * next extent records.
5117 	 *
5118 	 * XXX: This is a hack on the extent tree, maybe it should be
5119 	 * an op?
5120 	 */
5121 	if (et->et_ops == &ocfs2_dinode_et_ops)
5122 		ocfs2_extent_map_trunc(inode, 0);
5123 
5124 	left_path = ocfs2_new_path_from_et(et);
5125 	if (!left_path) {
5126 		ret = -ENOMEM;
5127 		mlog_errno(ret);
5128 		goto out;
5129 	}
5130 
5131 	ret = ocfs2_find_path(et->et_ci, left_path, cpos);
5132 	if (ret) {
5133 		mlog_errno(ret);
5134 		goto out;
5135 	}
5136 	el = path_leaf_el(left_path);
5137 
5138 	index = ocfs2_search_extent_list(el, cpos);
5139 	if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5140 		ocfs2_error(inode->i_sb,
5141 			    "Inode %llu has an extent at cpos %u which can no "
5142 			    "longer be found.\n",
5143 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5144 		ret = -EROFS;
5145 		goto out;
5146 	}
5147 
5148 	memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5149 	split_rec.e_cpos = cpu_to_le32(cpos);
5150 	split_rec.e_leaf_clusters = cpu_to_le16(len);
5151 	split_rec.e_blkno = cpu_to_le64(start_blkno);
5152 	split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
5153 	split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
5154 
5155 	ret = __ocfs2_mark_extent_written(inode, et, handle, left_path,
5156 					  index, &split_rec, meta_ac,
5157 					  dealloc);
5158 	if (ret)
5159 		mlog_errno(ret);
5160 
5161 out:
5162 	ocfs2_free_path(left_path);
5163 	return ret;
5164 }
5165 
5166 static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et,
5167 			    handle_t *handle, struct ocfs2_path *path,
5168 			    int index, u32 new_range,
5169 			    struct ocfs2_alloc_context *meta_ac)
5170 {
5171 	int ret, depth, credits = handle->h_buffer_credits;
5172 	struct buffer_head *last_eb_bh = NULL;
5173 	struct ocfs2_extent_block *eb;
5174 	struct ocfs2_extent_list *rightmost_el, *el;
5175 	struct ocfs2_extent_rec split_rec;
5176 	struct ocfs2_extent_rec *rec;
5177 	struct ocfs2_insert_type insert;
5178 
5179 	/*
5180 	 * Setup the record to split before we grow the tree.
5181 	 */
5182 	el = path_leaf_el(path);
5183 	rec = &el->l_recs[index];
5184 	ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
5185 
5186 	depth = path->p_tree_depth;
5187 	if (depth > 0) {
5188 		ret = ocfs2_read_extent_block(et->et_ci,
5189 					      ocfs2_et_get_last_eb_blk(et),
5190 					      &last_eb_bh);
5191 		if (ret < 0) {
5192 			mlog_errno(ret);
5193 			goto out;
5194 		}
5195 
5196 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5197 		rightmost_el = &eb->h_list;
5198 	} else
5199 		rightmost_el = path_leaf_el(path);
5200 
5201 	credits += path->p_tree_depth +
5202 		   ocfs2_extend_meta_needed(et->et_root_el);
5203 	ret = ocfs2_extend_trans(handle, credits);
5204 	if (ret) {
5205 		mlog_errno(ret);
5206 		goto out;
5207 	}
5208 
5209 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5210 	    le16_to_cpu(rightmost_el->l_count)) {
5211 		ret = ocfs2_grow_tree(inode, handle, et, &depth, &last_eb_bh,
5212 				      meta_ac);
5213 		if (ret) {
5214 			mlog_errno(ret);
5215 			goto out;
5216 		}
5217 	}
5218 
5219 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5220 	insert.ins_appending = APPEND_NONE;
5221 	insert.ins_contig = CONTIG_NONE;
5222 	insert.ins_split = SPLIT_RIGHT;
5223 	insert.ins_tree_depth = depth;
5224 
5225 	ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
5226 	if (ret)
5227 		mlog_errno(ret);
5228 
5229 out:
5230 	brelse(last_eb_bh);
5231 	return ret;
5232 }
5233 
5234 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
5235 			      struct ocfs2_path *path, int index,
5236 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
5237 			      u32 cpos, u32 len,
5238 			      struct ocfs2_extent_tree *et)
5239 {
5240 	int ret;
5241 	u32 left_cpos, rec_range, trunc_range;
5242 	int wants_rotate = 0, is_rightmost_tree_rec = 0;
5243 	struct super_block *sb = inode->i_sb;
5244 	struct ocfs2_path *left_path = NULL;
5245 	struct ocfs2_extent_list *el = path_leaf_el(path);
5246 	struct ocfs2_extent_rec *rec;
5247 	struct ocfs2_extent_block *eb;
5248 
5249 	if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5250 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5251 		if (ret) {
5252 			mlog_errno(ret);
5253 			goto out;
5254 		}
5255 
5256 		index--;
5257 	}
5258 
5259 	if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5260 	    path->p_tree_depth) {
5261 		/*
5262 		 * Check whether this is the rightmost tree record. If
5263 		 * we remove all of this record or part of its right
5264 		 * edge then an update of the record lengths above it
5265 		 * will be required.
5266 		 */
5267 		eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5268 		if (eb->h_next_leaf_blk == 0)
5269 			is_rightmost_tree_rec = 1;
5270 	}
5271 
5272 	rec = &el->l_recs[index];
5273 	if (index == 0 && path->p_tree_depth &&
5274 	    le32_to_cpu(rec->e_cpos) == cpos) {
5275 		/*
5276 		 * Changing the leftmost offset (via partial or whole
5277 		 * record truncate) of an interior (or rightmost) path
5278 		 * means we have to update the subtree that is formed
5279 		 * by this leaf and the one to it's left.
5280 		 *
5281 		 * There are two cases we can skip:
5282 		 *   1) Path is the leftmost one in our inode tree.
5283 		 *   2) The leaf is rightmost and will be empty after
5284 		 *      we remove the extent record - the rotate code
5285 		 *      knows how to update the newly formed edge.
5286 		 */
5287 
5288 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
5289 						    &left_cpos);
5290 		if (ret) {
5291 			mlog_errno(ret);
5292 			goto out;
5293 		}
5294 
5295 		if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5296 			left_path = ocfs2_new_path_from_path(path);
5297 			if (!left_path) {
5298 				ret = -ENOMEM;
5299 				mlog_errno(ret);
5300 				goto out;
5301 			}
5302 
5303 			ret = ocfs2_find_path(et->et_ci, left_path,
5304 					      left_cpos);
5305 			if (ret) {
5306 				mlog_errno(ret);
5307 				goto out;
5308 			}
5309 		}
5310 	}
5311 
5312 	ret = ocfs2_extend_rotate_transaction(handle, 0,
5313 					      handle->h_buffer_credits,
5314 					      path);
5315 	if (ret) {
5316 		mlog_errno(ret);
5317 		goto out;
5318 	}
5319 
5320 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
5321 	if (ret) {
5322 		mlog_errno(ret);
5323 		goto out;
5324 	}
5325 
5326 	ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
5327 	if (ret) {
5328 		mlog_errno(ret);
5329 		goto out;
5330 	}
5331 
5332 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5333 	trunc_range = cpos + len;
5334 
5335 	if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5336 		int next_free;
5337 
5338 		memset(rec, 0, sizeof(*rec));
5339 		ocfs2_cleanup_merge(el, index);
5340 		wants_rotate = 1;
5341 
5342 		next_free = le16_to_cpu(el->l_next_free_rec);
5343 		if (is_rightmost_tree_rec && next_free > 1) {
5344 			/*
5345 			 * We skip the edge update if this path will
5346 			 * be deleted by the rotate code.
5347 			 */
5348 			rec = &el->l_recs[next_free - 1];
5349 			ocfs2_adjust_rightmost_records(inode, handle, path,
5350 						       rec);
5351 		}
5352 	} else if (le32_to_cpu(rec->e_cpos) == cpos) {
5353 		/* Remove leftmost portion of the record. */
5354 		le32_add_cpu(&rec->e_cpos, len);
5355 		le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5356 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5357 	} else if (rec_range == trunc_range) {
5358 		/* Remove rightmost portion of the record */
5359 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5360 		if (is_rightmost_tree_rec)
5361 			ocfs2_adjust_rightmost_records(inode, handle, path, rec);
5362 	} else {
5363 		/* Caller should have trapped this. */
5364 		mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
5365 		     "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
5366 		     le32_to_cpu(rec->e_cpos),
5367 		     le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5368 		BUG();
5369 	}
5370 
5371 	if (left_path) {
5372 		int subtree_index;
5373 
5374 		subtree_index = ocfs2_find_subtree_root(et, left_path, path);
5375 		ocfs2_complete_edge_insert(handle, left_path, path,
5376 					   subtree_index);
5377 	}
5378 
5379 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
5380 
5381 	ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5382 	if (ret) {
5383 		mlog_errno(ret);
5384 		goto out;
5385 	}
5386 
5387 out:
5388 	ocfs2_free_path(left_path);
5389 	return ret;
5390 }
5391 
5392 int ocfs2_remove_extent(struct inode *inode,
5393 			struct ocfs2_extent_tree *et,
5394 			u32 cpos, u32 len, handle_t *handle,
5395 			struct ocfs2_alloc_context *meta_ac,
5396 			struct ocfs2_cached_dealloc_ctxt *dealloc)
5397 {
5398 	int ret, index;
5399 	u32 rec_range, trunc_range;
5400 	struct ocfs2_extent_rec *rec;
5401 	struct ocfs2_extent_list *el;
5402 	struct ocfs2_path *path = NULL;
5403 
5404 	ocfs2_extent_map_trunc(inode, 0);
5405 
5406 	path = ocfs2_new_path_from_et(et);
5407 	if (!path) {
5408 		ret = -ENOMEM;
5409 		mlog_errno(ret);
5410 		goto out;
5411 	}
5412 
5413 	ret = ocfs2_find_path(et->et_ci, path, cpos);
5414 	if (ret) {
5415 		mlog_errno(ret);
5416 		goto out;
5417 	}
5418 
5419 	el = path_leaf_el(path);
5420 	index = ocfs2_search_extent_list(el, cpos);
5421 	if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5422 		ocfs2_error(inode->i_sb,
5423 			    "Inode %llu has an extent at cpos %u which can no "
5424 			    "longer be found.\n",
5425 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5426 		ret = -EROFS;
5427 		goto out;
5428 	}
5429 
5430 	/*
5431 	 * We have 3 cases of extent removal:
5432 	 *   1) Range covers the entire extent rec
5433 	 *   2) Range begins or ends on one edge of the extent rec
5434 	 *   3) Range is in the middle of the extent rec (no shared edges)
5435 	 *
5436 	 * For case 1 we remove the extent rec and left rotate to
5437 	 * fill the hole.
5438 	 *
5439 	 * For case 2 we just shrink the existing extent rec, with a
5440 	 * tree update if the shrinking edge is also the edge of an
5441 	 * extent block.
5442 	 *
5443 	 * For case 3 we do a right split to turn the extent rec into
5444 	 * something case 2 can handle.
5445 	 */
5446 	rec = &el->l_recs[index];
5447 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5448 	trunc_range = cpos + len;
5449 
5450 	BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5451 
5452 	mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
5453 	     "(cpos %u, len %u)\n",
5454 	     (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
5455 	     le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
5456 
5457 	if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5458 		ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5459 					 cpos, len, et);
5460 		if (ret) {
5461 			mlog_errno(ret);
5462 			goto out;
5463 		}
5464 	} else {
5465 		ret = ocfs2_split_tree(inode, et, handle, path, index,
5466 				       trunc_range, meta_ac);
5467 		if (ret) {
5468 			mlog_errno(ret);
5469 			goto out;
5470 		}
5471 
5472 		/*
5473 		 * The split could have manipulated the tree enough to
5474 		 * move the record location, so we have to look for it again.
5475 		 */
5476 		ocfs2_reinit_path(path, 1);
5477 
5478 		ret = ocfs2_find_path(et->et_ci, path, cpos);
5479 		if (ret) {
5480 			mlog_errno(ret);
5481 			goto out;
5482 		}
5483 
5484 		el = path_leaf_el(path);
5485 		index = ocfs2_search_extent_list(el, cpos);
5486 		if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5487 			ocfs2_error(inode->i_sb,
5488 				    "Inode %llu: split at cpos %u lost record.",
5489 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
5490 				    cpos);
5491 			ret = -EROFS;
5492 			goto out;
5493 		}
5494 
5495 		/*
5496 		 * Double check our values here. If anything is fishy,
5497 		 * it's easier to catch it at the top level.
5498 		 */
5499 		rec = &el->l_recs[index];
5500 		rec_range = le32_to_cpu(rec->e_cpos) +
5501 			ocfs2_rec_clusters(el, rec);
5502 		if (rec_range != trunc_range) {
5503 			ocfs2_error(inode->i_sb,
5504 				    "Inode %llu: error after split at cpos %u"
5505 				    "trunc len %u, existing record is (%u,%u)",
5506 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
5507 				    cpos, len, le32_to_cpu(rec->e_cpos),
5508 				    ocfs2_rec_clusters(el, rec));
5509 			ret = -EROFS;
5510 			goto out;
5511 		}
5512 
5513 		ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5514 					 cpos, len, et);
5515 		if (ret) {
5516 			mlog_errno(ret);
5517 			goto out;
5518 		}
5519 	}
5520 
5521 out:
5522 	ocfs2_free_path(path);
5523 	return ret;
5524 }
5525 
5526 int ocfs2_remove_btree_range(struct inode *inode,
5527 			     struct ocfs2_extent_tree *et,
5528 			     u32 cpos, u32 phys_cpos, u32 len,
5529 			     struct ocfs2_cached_dealloc_ctxt *dealloc)
5530 {
5531 	int ret;
5532 	u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5533 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5534 	struct inode *tl_inode = osb->osb_tl_inode;
5535 	handle_t *handle;
5536 	struct ocfs2_alloc_context *meta_ac = NULL;
5537 
5538 	ret = ocfs2_lock_allocators(inode, et, 0, 1, NULL, &meta_ac);
5539 	if (ret) {
5540 		mlog_errno(ret);
5541 		return ret;
5542 	}
5543 
5544 	mutex_lock(&tl_inode->i_mutex);
5545 
5546 	if (ocfs2_truncate_log_needs_flush(osb)) {
5547 		ret = __ocfs2_flush_truncate_log(osb);
5548 		if (ret < 0) {
5549 			mlog_errno(ret);
5550 			goto out;
5551 		}
5552 	}
5553 
5554 	handle = ocfs2_start_trans(osb, ocfs2_remove_extent_credits(osb->sb));
5555 	if (IS_ERR(handle)) {
5556 		ret = PTR_ERR(handle);
5557 		mlog_errno(ret);
5558 		goto out;
5559 	}
5560 
5561 	ret = ocfs2_et_root_journal_access(handle, et,
5562 					   OCFS2_JOURNAL_ACCESS_WRITE);
5563 	if (ret) {
5564 		mlog_errno(ret);
5565 		goto out;
5566 	}
5567 
5568 	vfs_dq_free_space_nodirty(inode,
5569 				  ocfs2_clusters_to_bytes(inode->i_sb, len));
5570 
5571 	ret = ocfs2_remove_extent(inode, et, cpos, len, handle, meta_ac,
5572 				  dealloc);
5573 	if (ret) {
5574 		mlog_errno(ret);
5575 		goto out_commit;
5576 	}
5577 
5578 	ocfs2_et_update_clusters(et, -len);
5579 
5580 	ret = ocfs2_journal_dirty(handle, et->et_root_bh);
5581 	if (ret) {
5582 		mlog_errno(ret);
5583 		goto out_commit;
5584 	}
5585 
5586 	ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len);
5587 	if (ret)
5588 		mlog_errno(ret);
5589 
5590 out_commit:
5591 	ocfs2_commit_trans(osb, handle);
5592 out:
5593 	mutex_unlock(&tl_inode->i_mutex);
5594 
5595 	if (meta_ac)
5596 		ocfs2_free_alloc_context(meta_ac);
5597 
5598 	return ret;
5599 }
5600 
5601 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5602 {
5603 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5604 	struct ocfs2_dinode *di;
5605 	struct ocfs2_truncate_log *tl;
5606 
5607 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5608 	tl = &di->id2.i_dealloc;
5609 
5610 	mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5611 			"slot %d, invalid truncate log parameters: used = "
5612 			"%u, count = %u\n", osb->slot_num,
5613 			le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5614 	return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5615 }
5616 
5617 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5618 					   unsigned int new_start)
5619 {
5620 	unsigned int tail_index;
5621 	unsigned int current_tail;
5622 
5623 	/* No records, nothing to coalesce */
5624 	if (!le16_to_cpu(tl->tl_used))
5625 		return 0;
5626 
5627 	tail_index = le16_to_cpu(tl->tl_used) - 1;
5628 	current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5629 	current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5630 
5631 	return current_tail == new_start;
5632 }
5633 
5634 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5635 			      handle_t *handle,
5636 			      u64 start_blk,
5637 			      unsigned int num_clusters)
5638 {
5639 	int status, index;
5640 	unsigned int start_cluster, tl_count;
5641 	struct inode *tl_inode = osb->osb_tl_inode;
5642 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5643 	struct ocfs2_dinode *di;
5644 	struct ocfs2_truncate_log *tl;
5645 
5646 	mlog_entry("start_blk = %llu, num_clusters = %u\n",
5647 		   (unsigned long long)start_blk, num_clusters);
5648 
5649 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5650 
5651 	start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5652 
5653 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5654 
5655 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5656 	 * by the underlying call to ocfs2_read_inode_block(), so any
5657 	 * corruption is a code bug */
5658 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5659 
5660 	tl = &di->id2.i_dealloc;
5661 	tl_count = le16_to_cpu(tl->tl_count);
5662 	mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5663 			tl_count == 0,
5664 			"Truncate record count on #%llu invalid "
5665 			"wanted %u, actual %u\n",
5666 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5667 			ocfs2_truncate_recs_per_inode(osb->sb),
5668 			le16_to_cpu(tl->tl_count));
5669 
5670 	/* Caller should have known to flush before calling us. */
5671 	index = le16_to_cpu(tl->tl_used);
5672 	if (index >= tl_count) {
5673 		status = -ENOSPC;
5674 		mlog_errno(status);
5675 		goto bail;
5676 	}
5677 
5678 	status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5679 					 OCFS2_JOURNAL_ACCESS_WRITE);
5680 	if (status < 0) {
5681 		mlog_errno(status);
5682 		goto bail;
5683 	}
5684 
5685 	mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5686 	     "%llu (index = %d)\n", num_clusters, start_cluster,
5687 	     (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
5688 
5689 	if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5690 		/*
5691 		 * Move index back to the record we are coalescing with.
5692 		 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5693 		 */
5694 		index--;
5695 
5696 		num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5697 		mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5698 		     index, le32_to_cpu(tl->tl_recs[index].t_start),
5699 		     num_clusters);
5700 	} else {
5701 		tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5702 		tl->tl_used = cpu_to_le16(index + 1);
5703 	}
5704 	tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5705 
5706 	status = ocfs2_journal_dirty(handle, tl_bh);
5707 	if (status < 0) {
5708 		mlog_errno(status);
5709 		goto bail;
5710 	}
5711 
5712 bail:
5713 	mlog_exit(status);
5714 	return status;
5715 }
5716 
5717 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5718 					 handle_t *handle,
5719 					 struct inode *data_alloc_inode,
5720 					 struct buffer_head *data_alloc_bh)
5721 {
5722 	int status = 0;
5723 	int i;
5724 	unsigned int num_clusters;
5725 	u64 start_blk;
5726 	struct ocfs2_truncate_rec rec;
5727 	struct ocfs2_dinode *di;
5728 	struct ocfs2_truncate_log *tl;
5729 	struct inode *tl_inode = osb->osb_tl_inode;
5730 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5731 
5732 	mlog_entry_void();
5733 
5734 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5735 	tl = &di->id2.i_dealloc;
5736 	i = le16_to_cpu(tl->tl_used) - 1;
5737 	while (i >= 0) {
5738 		/* Caller has given us at least enough credits to
5739 		 * update the truncate log dinode */
5740 		status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5741 						 OCFS2_JOURNAL_ACCESS_WRITE);
5742 		if (status < 0) {
5743 			mlog_errno(status);
5744 			goto bail;
5745 		}
5746 
5747 		tl->tl_used = cpu_to_le16(i);
5748 
5749 		status = ocfs2_journal_dirty(handle, tl_bh);
5750 		if (status < 0) {
5751 			mlog_errno(status);
5752 			goto bail;
5753 		}
5754 
5755 		/* TODO: Perhaps we can calculate the bulk of the
5756 		 * credits up front rather than extending like
5757 		 * this. */
5758 		status = ocfs2_extend_trans(handle,
5759 					    OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5760 		if (status < 0) {
5761 			mlog_errno(status);
5762 			goto bail;
5763 		}
5764 
5765 		rec = tl->tl_recs[i];
5766 		start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5767 						    le32_to_cpu(rec.t_start));
5768 		num_clusters = le32_to_cpu(rec.t_clusters);
5769 
5770 		/* if start_blk is not set, we ignore the record as
5771 		 * invalid. */
5772 		if (start_blk) {
5773 			mlog(0, "free record %d, start = %u, clusters = %u\n",
5774 			     i, le32_to_cpu(rec.t_start), num_clusters);
5775 
5776 			status = ocfs2_free_clusters(handle, data_alloc_inode,
5777 						     data_alloc_bh, start_blk,
5778 						     num_clusters);
5779 			if (status < 0) {
5780 				mlog_errno(status);
5781 				goto bail;
5782 			}
5783 		}
5784 		i--;
5785 	}
5786 
5787 bail:
5788 	mlog_exit(status);
5789 	return status;
5790 }
5791 
5792 /* Expects you to already be holding tl_inode->i_mutex */
5793 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5794 {
5795 	int status;
5796 	unsigned int num_to_flush;
5797 	handle_t *handle;
5798 	struct inode *tl_inode = osb->osb_tl_inode;
5799 	struct inode *data_alloc_inode = NULL;
5800 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5801 	struct buffer_head *data_alloc_bh = NULL;
5802 	struct ocfs2_dinode *di;
5803 	struct ocfs2_truncate_log *tl;
5804 
5805 	mlog_entry_void();
5806 
5807 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5808 
5809 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5810 
5811 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5812 	 * by the underlying call to ocfs2_read_inode_block(), so any
5813 	 * corruption is a code bug */
5814 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5815 
5816 	tl = &di->id2.i_dealloc;
5817 	num_to_flush = le16_to_cpu(tl->tl_used);
5818 	mlog(0, "Flush %u records from truncate log #%llu\n",
5819 	     num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5820 	if (!num_to_flush) {
5821 		status = 0;
5822 		goto out;
5823 	}
5824 
5825 	data_alloc_inode = ocfs2_get_system_file_inode(osb,
5826 						       GLOBAL_BITMAP_SYSTEM_INODE,
5827 						       OCFS2_INVALID_SLOT);
5828 	if (!data_alloc_inode) {
5829 		status = -EINVAL;
5830 		mlog(ML_ERROR, "Could not get bitmap inode!\n");
5831 		goto out;
5832 	}
5833 
5834 	mutex_lock(&data_alloc_inode->i_mutex);
5835 
5836 	status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5837 	if (status < 0) {
5838 		mlog_errno(status);
5839 		goto out_mutex;
5840 	}
5841 
5842 	handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5843 	if (IS_ERR(handle)) {
5844 		status = PTR_ERR(handle);
5845 		mlog_errno(status);
5846 		goto out_unlock;
5847 	}
5848 
5849 	status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5850 					       data_alloc_bh);
5851 	if (status < 0)
5852 		mlog_errno(status);
5853 
5854 	ocfs2_commit_trans(osb, handle);
5855 
5856 out_unlock:
5857 	brelse(data_alloc_bh);
5858 	ocfs2_inode_unlock(data_alloc_inode, 1);
5859 
5860 out_mutex:
5861 	mutex_unlock(&data_alloc_inode->i_mutex);
5862 	iput(data_alloc_inode);
5863 
5864 out:
5865 	mlog_exit(status);
5866 	return status;
5867 }
5868 
5869 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5870 {
5871 	int status;
5872 	struct inode *tl_inode = osb->osb_tl_inode;
5873 
5874 	mutex_lock(&tl_inode->i_mutex);
5875 	status = __ocfs2_flush_truncate_log(osb);
5876 	mutex_unlock(&tl_inode->i_mutex);
5877 
5878 	return status;
5879 }
5880 
5881 static void ocfs2_truncate_log_worker(struct work_struct *work)
5882 {
5883 	int status;
5884 	struct ocfs2_super *osb =
5885 		container_of(work, struct ocfs2_super,
5886 			     osb_truncate_log_wq.work);
5887 
5888 	mlog_entry_void();
5889 
5890 	status = ocfs2_flush_truncate_log(osb);
5891 	if (status < 0)
5892 		mlog_errno(status);
5893 	else
5894 		ocfs2_init_inode_steal_slot(osb);
5895 
5896 	mlog_exit(status);
5897 }
5898 
5899 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5900 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
5901 				       int cancel)
5902 {
5903 	if (osb->osb_tl_inode) {
5904 		/* We want to push off log flushes while truncates are
5905 		 * still running. */
5906 		if (cancel)
5907 			cancel_delayed_work(&osb->osb_truncate_log_wq);
5908 
5909 		queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
5910 				   OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
5911 	}
5912 }
5913 
5914 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
5915 				       int slot_num,
5916 				       struct inode **tl_inode,
5917 				       struct buffer_head **tl_bh)
5918 {
5919 	int status;
5920 	struct inode *inode = NULL;
5921 	struct buffer_head *bh = NULL;
5922 
5923 	inode = ocfs2_get_system_file_inode(osb,
5924 					   TRUNCATE_LOG_SYSTEM_INODE,
5925 					   slot_num);
5926 	if (!inode) {
5927 		status = -EINVAL;
5928 		mlog(ML_ERROR, "Could not get load truncate log inode!\n");
5929 		goto bail;
5930 	}
5931 
5932 	status = ocfs2_read_inode_block(inode, &bh);
5933 	if (status < 0) {
5934 		iput(inode);
5935 		mlog_errno(status);
5936 		goto bail;
5937 	}
5938 
5939 	*tl_inode = inode;
5940 	*tl_bh    = bh;
5941 bail:
5942 	mlog_exit(status);
5943 	return status;
5944 }
5945 
5946 /* called during the 1st stage of node recovery. we stamp a clean
5947  * truncate log and pass back a copy for processing later. if the
5948  * truncate log does not require processing, a *tl_copy is set to
5949  * NULL. */
5950 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
5951 				      int slot_num,
5952 				      struct ocfs2_dinode **tl_copy)
5953 {
5954 	int status;
5955 	struct inode *tl_inode = NULL;
5956 	struct buffer_head *tl_bh = NULL;
5957 	struct ocfs2_dinode *di;
5958 	struct ocfs2_truncate_log *tl;
5959 
5960 	*tl_copy = NULL;
5961 
5962 	mlog(0, "recover truncate log from slot %d\n", slot_num);
5963 
5964 	status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
5965 	if (status < 0) {
5966 		mlog_errno(status);
5967 		goto bail;
5968 	}
5969 
5970 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5971 
5972 	/* tl_bh is loaded from ocfs2_get_truncate_log_info().  It's
5973 	 * validated by the underlying call to ocfs2_read_inode_block(),
5974 	 * so any corruption is a code bug */
5975 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5976 
5977 	tl = &di->id2.i_dealloc;
5978 	if (le16_to_cpu(tl->tl_used)) {
5979 		mlog(0, "We'll have %u logs to recover\n",
5980 		     le16_to_cpu(tl->tl_used));
5981 
5982 		*tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
5983 		if (!(*tl_copy)) {
5984 			status = -ENOMEM;
5985 			mlog_errno(status);
5986 			goto bail;
5987 		}
5988 
5989 		/* Assuming the write-out below goes well, this copy
5990 		 * will be passed back to recovery for processing. */
5991 		memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
5992 
5993 		/* All we need to do to clear the truncate log is set
5994 		 * tl_used. */
5995 		tl->tl_used = 0;
5996 
5997 		ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
5998 		status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
5999 		if (status < 0) {
6000 			mlog_errno(status);
6001 			goto bail;
6002 		}
6003 	}
6004 
6005 bail:
6006 	if (tl_inode)
6007 		iput(tl_inode);
6008 	brelse(tl_bh);
6009 
6010 	if (status < 0 && (*tl_copy)) {
6011 		kfree(*tl_copy);
6012 		*tl_copy = NULL;
6013 	}
6014 
6015 	mlog_exit(status);
6016 	return status;
6017 }
6018 
6019 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6020 					 struct ocfs2_dinode *tl_copy)
6021 {
6022 	int status = 0;
6023 	int i;
6024 	unsigned int clusters, num_recs, start_cluster;
6025 	u64 start_blk;
6026 	handle_t *handle;
6027 	struct inode *tl_inode = osb->osb_tl_inode;
6028 	struct ocfs2_truncate_log *tl;
6029 
6030 	mlog_entry_void();
6031 
6032 	if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6033 		mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6034 		return -EINVAL;
6035 	}
6036 
6037 	tl = &tl_copy->id2.i_dealloc;
6038 	num_recs = le16_to_cpu(tl->tl_used);
6039 	mlog(0, "cleanup %u records from %llu\n", num_recs,
6040 	     (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
6041 
6042 	mutex_lock(&tl_inode->i_mutex);
6043 	for(i = 0; i < num_recs; i++) {
6044 		if (ocfs2_truncate_log_needs_flush(osb)) {
6045 			status = __ocfs2_flush_truncate_log(osb);
6046 			if (status < 0) {
6047 				mlog_errno(status);
6048 				goto bail_up;
6049 			}
6050 		}
6051 
6052 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6053 		if (IS_ERR(handle)) {
6054 			status = PTR_ERR(handle);
6055 			mlog_errno(status);
6056 			goto bail_up;
6057 		}
6058 
6059 		clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6060 		start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6061 		start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6062 
6063 		status = ocfs2_truncate_log_append(osb, handle,
6064 						   start_blk, clusters);
6065 		ocfs2_commit_trans(osb, handle);
6066 		if (status < 0) {
6067 			mlog_errno(status);
6068 			goto bail_up;
6069 		}
6070 	}
6071 
6072 bail_up:
6073 	mutex_unlock(&tl_inode->i_mutex);
6074 
6075 	mlog_exit(status);
6076 	return status;
6077 }
6078 
6079 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6080 {
6081 	int status;
6082 	struct inode *tl_inode = osb->osb_tl_inode;
6083 
6084 	mlog_entry_void();
6085 
6086 	if (tl_inode) {
6087 		cancel_delayed_work(&osb->osb_truncate_log_wq);
6088 		flush_workqueue(ocfs2_wq);
6089 
6090 		status = ocfs2_flush_truncate_log(osb);
6091 		if (status < 0)
6092 			mlog_errno(status);
6093 
6094 		brelse(osb->osb_tl_bh);
6095 		iput(osb->osb_tl_inode);
6096 	}
6097 
6098 	mlog_exit_void();
6099 }
6100 
6101 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6102 {
6103 	int status;
6104 	struct inode *tl_inode = NULL;
6105 	struct buffer_head *tl_bh = NULL;
6106 
6107 	mlog_entry_void();
6108 
6109 	status = ocfs2_get_truncate_log_info(osb,
6110 					     osb->slot_num,
6111 					     &tl_inode,
6112 					     &tl_bh);
6113 	if (status < 0)
6114 		mlog_errno(status);
6115 
6116 	/* ocfs2_truncate_log_shutdown keys on the existence of
6117 	 * osb->osb_tl_inode so we don't set any of the osb variables
6118 	 * until we're sure all is well. */
6119 	INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6120 			  ocfs2_truncate_log_worker);
6121 	osb->osb_tl_bh    = tl_bh;
6122 	osb->osb_tl_inode = tl_inode;
6123 
6124 	mlog_exit(status);
6125 	return status;
6126 }
6127 
6128 /*
6129  * Delayed de-allocation of suballocator blocks.
6130  *
6131  * Some sets of block de-allocations might involve multiple suballocator inodes.
6132  *
6133  * The locking for this can get extremely complicated, especially when
6134  * the suballocator inodes to delete from aren't known until deep
6135  * within an unrelated codepath.
6136  *
6137  * ocfs2_extent_block structures are a good example of this - an inode
6138  * btree could have been grown by any number of nodes each allocating
6139  * out of their own suballoc inode.
6140  *
6141  * These structures allow the delay of block de-allocation until a
6142  * later time, when locking of multiple cluster inodes won't cause
6143  * deadlock.
6144  */
6145 
6146 /*
6147  * Describe a single bit freed from a suballocator.  For the block
6148  * suballocators, it represents one block.  For the global cluster
6149  * allocator, it represents some clusters and free_bit indicates
6150  * clusters number.
6151  */
6152 struct ocfs2_cached_block_free {
6153 	struct ocfs2_cached_block_free		*free_next;
6154 	u64					free_blk;
6155 	unsigned int				free_bit;
6156 };
6157 
6158 struct ocfs2_per_slot_free_list {
6159 	struct ocfs2_per_slot_free_list		*f_next_suballocator;
6160 	int					f_inode_type;
6161 	int					f_slot;
6162 	struct ocfs2_cached_block_free		*f_first;
6163 };
6164 
6165 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6166 				    int sysfile_type,
6167 				    int slot,
6168 				    struct ocfs2_cached_block_free *head)
6169 {
6170 	int ret;
6171 	u64 bg_blkno;
6172 	handle_t *handle;
6173 	struct inode *inode;
6174 	struct buffer_head *di_bh = NULL;
6175 	struct ocfs2_cached_block_free *tmp;
6176 
6177 	inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6178 	if (!inode) {
6179 		ret = -EINVAL;
6180 		mlog_errno(ret);
6181 		goto out;
6182 	}
6183 
6184 	mutex_lock(&inode->i_mutex);
6185 
6186 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
6187 	if (ret) {
6188 		mlog_errno(ret);
6189 		goto out_mutex;
6190 	}
6191 
6192 	handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6193 	if (IS_ERR(handle)) {
6194 		ret = PTR_ERR(handle);
6195 		mlog_errno(ret);
6196 		goto out_unlock;
6197 	}
6198 
6199 	while (head) {
6200 		bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6201 						      head->free_bit);
6202 		mlog(0, "Free bit: (bit %u, blkno %llu)\n",
6203 		     head->free_bit, (unsigned long long)head->free_blk);
6204 
6205 		ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6206 					       head->free_bit, bg_blkno, 1);
6207 		if (ret) {
6208 			mlog_errno(ret);
6209 			goto out_journal;
6210 		}
6211 
6212 		ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
6213 		if (ret) {
6214 			mlog_errno(ret);
6215 			goto out_journal;
6216 		}
6217 
6218 		tmp = head;
6219 		head = head->free_next;
6220 		kfree(tmp);
6221 	}
6222 
6223 out_journal:
6224 	ocfs2_commit_trans(osb, handle);
6225 
6226 out_unlock:
6227 	ocfs2_inode_unlock(inode, 1);
6228 	brelse(di_bh);
6229 out_mutex:
6230 	mutex_unlock(&inode->i_mutex);
6231 	iput(inode);
6232 out:
6233 	while(head) {
6234 		/* Premature exit may have left some dangling items. */
6235 		tmp = head;
6236 		head = head->free_next;
6237 		kfree(tmp);
6238 	}
6239 
6240 	return ret;
6241 }
6242 
6243 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6244 				u64 blkno, unsigned int bit)
6245 {
6246 	int ret = 0;
6247 	struct ocfs2_cached_block_free *item;
6248 
6249 	item = kmalloc(sizeof(*item), GFP_NOFS);
6250 	if (item == NULL) {
6251 		ret = -ENOMEM;
6252 		mlog_errno(ret);
6253 		return ret;
6254 	}
6255 
6256 	mlog(0, "Insert clusters: (bit %u, blk %llu)\n",
6257 	     bit, (unsigned long long)blkno);
6258 
6259 	item->free_blk = blkno;
6260 	item->free_bit = bit;
6261 	item->free_next = ctxt->c_global_allocator;
6262 
6263 	ctxt->c_global_allocator = item;
6264 	return ret;
6265 }
6266 
6267 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6268 				      struct ocfs2_cached_block_free *head)
6269 {
6270 	struct ocfs2_cached_block_free *tmp;
6271 	struct inode *tl_inode = osb->osb_tl_inode;
6272 	handle_t *handle;
6273 	int ret = 0;
6274 
6275 	mutex_lock(&tl_inode->i_mutex);
6276 
6277 	while (head) {
6278 		if (ocfs2_truncate_log_needs_flush(osb)) {
6279 			ret = __ocfs2_flush_truncate_log(osb);
6280 			if (ret < 0) {
6281 				mlog_errno(ret);
6282 				break;
6283 			}
6284 		}
6285 
6286 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6287 		if (IS_ERR(handle)) {
6288 			ret = PTR_ERR(handle);
6289 			mlog_errno(ret);
6290 			break;
6291 		}
6292 
6293 		ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6294 						head->free_bit);
6295 
6296 		ocfs2_commit_trans(osb, handle);
6297 		tmp = head;
6298 		head = head->free_next;
6299 		kfree(tmp);
6300 
6301 		if (ret < 0) {
6302 			mlog_errno(ret);
6303 			break;
6304 		}
6305 	}
6306 
6307 	mutex_unlock(&tl_inode->i_mutex);
6308 
6309 	while (head) {
6310 		/* Premature exit may have left some dangling items. */
6311 		tmp = head;
6312 		head = head->free_next;
6313 		kfree(tmp);
6314 	}
6315 
6316 	return ret;
6317 }
6318 
6319 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6320 		       struct ocfs2_cached_dealloc_ctxt *ctxt)
6321 {
6322 	int ret = 0, ret2;
6323 	struct ocfs2_per_slot_free_list *fl;
6324 
6325 	if (!ctxt)
6326 		return 0;
6327 
6328 	while (ctxt->c_first_suballocator) {
6329 		fl = ctxt->c_first_suballocator;
6330 
6331 		if (fl->f_first) {
6332 			mlog(0, "Free items: (type %u, slot %d)\n",
6333 			     fl->f_inode_type, fl->f_slot);
6334 			ret2 = ocfs2_free_cached_blocks(osb,
6335 							fl->f_inode_type,
6336 							fl->f_slot,
6337 							fl->f_first);
6338 			if (ret2)
6339 				mlog_errno(ret2);
6340 			if (!ret)
6341 				ret = ret2;
6342 		}
6343 
6344 		ctxt->c_first_suballocator = fl->f_next_suballocator;
6345 		kfree(fl);
6346 	}
6347 
6348 	if (ctxt->c_global_allocator) {
6349 		ret2 = ocfs2_free_cached_clusters(osb,
6350 						  ctxt->c_global_allocator);
6351 		if (ret2)
6352 			mlog_errno(ret2);
6353 		if (!ret)
6354 			ret = ret2;
6355 
6356 		ctxt->c_global_allocator = NULL;
6357 	}
6358 
6359 	return ret;
6360 }
6361 
6362 static struct ocfs2_per_slot_free_list *
6363 ocfs2_find_per_slot_free_list(int type,
6364 			      int slot,
6365 			      struct ocfs2_cached_dealloc_ctxt *ctxt)
6366 {
6367 	struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6368 
6369 	while (fl) {
6370 		if (fl->f_inode_type == type && fl->f_slot == slot)
6371 			return fl;
6372 
6373 		fl = fl->f_next_suballocator;
6374 	}
6375 
6376 	fl = kmalloc(sizeof(*fl), GFP_NOFS);
6377 	if (fl) {
6378 		fl->f_inode_type = type;
6379 		fl->f_slot = slot;
6380 		fl->f_first = NULL;
6381 		fl->f_next_suballocator = ctxt->c_first_suballocator;
6382 
6383 		ctxt->c_first_suballocator = fl;
6384 	}
6385 	return fl;
6386 }
6387 
6388 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6389 				     int type, int slot, u64 blkno,
6390 				     unsigned int bit)
6391 {
6392 	int ret;
6393 	struct ocfs2_per_slot_free_list *fl;
6394 	struct ocfs2_cached_block_free *item;
6395 
6396 	fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6397 	if (fl == NULL) {
6398 		ret = -ENOMEM;
6399 		mlog_errno(ret);
6400 		goto out;
6401 	}
6402 
6403 	item = kmalloc(sizeof(*item), GFP_NOFS);
6404 	if (item == NULL) {
6405 		ret = -ENOMEM;
6406 		mlog_errno(ret);
6407 		goto out;
6408 	}
6409 
6410 	mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
6411 	     type, slot, bit, (unsigned long long)blkno);
6412 
6413 	item->free_blk = blkno;
6414 	item->free_bit = bit;
6415 	item->free_next = fl->f_first;
6416 
6417 	fl->f_first = item;
6418 
6419 	ret = 0;
6420 out:
6421 	return ret;
6422 }
6423 
6424 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6425 					 struct ocfs2_extent_block *eb)
6426 {
6427 	return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6428 					 le16_to_cpu(eb->h_suballoc_slot),
6429 					 le64_to_cpu(eb->h_blkno),
6430 					 le16_to_cpu(eb->h_suballoc_bit));
6431 }
6432 
6433 /* This function will figure out whether the currently last extent
6434  * block will be deleted, and if it will, what the new last extent
6435  * block will be so we can update his h_next_leaf_blk field, as well
6436  * as the dinodes i_last_eb_blk */
6437 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
6438 				       unsigned int clusters_to_del,
6439 				       struct ocfs2_path *path,
6440 				       struct buffer_head **new_last_eb)
6441 {
6442 	int next_free, ret = 0;
6443 	u32 cpos;
6444 	struct ocfs2_extent_rec *rec;
6445 	struct ocfs2_extent_block *eb;
6446 	struct ocfs2_extent_list *el;
6447 	struct buffer_head *bh = NULL;
6448 
6449 	*new_last_eb = NULL;
6450 
6451 	/* we have no tree, so of course, no last_eb. */
6452 	if (!path->p_tree_depth)
6453 		goto out;
6454 
6455 	/* trunc to zero special case - this makes tree_depth = 0
6456 	 * regardless of what it is.  */
6457 	if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
6458 		goto out;
6459 
6460 	el = path_leaf_el(path);
6461 	BUG_ON(!el->l_next_free_rec);
6462 
6463 	/*
6464 	 * Make sure that this extent list will actually be empty
6465 	 * after we clear away the data. We can shortcut out if
6466 	 * there's more than one non-empty extent in the
6467 	 * list. Otherwise, a check of the remaining extent is
6468 	 * necessary.
6469 	 */
6470 	next_free = le16_to_cpu(el->l_next_free_rec);
6471 	rec = NULL;
6472 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6473 		if (next_free > 2)
6474 			goto out;
6475 
6476 		/* We may have a valid extent in index 1, check it. */
6477 		if (next_free == 2)
6478 			rec = &el->l_recs[1];
6479 
6480 		/*
6481 		 * Fall through - no more nonempty extents, so we want
6482 		 * to delete this leaf.
6483 		 */
6484 	} else {
6485 		if (next_free > 1)
6486 			goto out;
6487 
6488 		rec = &el->l_recs[0];
6489 	}
6490 
6491 	if (rec) {
6492 		/*
6493 		 * Check it we'll only be trimming off the end of this
6494 		 * cluster.
6495 		 */
6496 		if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
6497 			goto out;
6498 	}
6499 
6500 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
6501 	if (ret) {
6502 		mlog_errno(ret);
6503 		goto out;
6504 	}
6505 
6506 	ret = ocfs2_find_leaf(INODE_CACHE(inode), path_root_el(path), cpos, &bh);
6507 	if (ret) {
6508 		mlog_errno(ret);
6509 		goto out;
6510 	}
6511 
6512 	eb = (struct ocfs2_extent_block *) bh->b_data;
6513 	el = &eb->h_list;
6514 
6515 	/* ocfs2_find_leaf() gets the eb from ocfs2_read_extent_block().
6516 	 * Any corruption is a code bug. */
6517 	BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
6518 
6519 	*new_last_eb = bh;
6520 	get_bh(*new_last_eb);
6521 	mlog(0, "returning block %llu, (cpos: %u)\n",
6522 	     (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
6523 out:
6524 	brelse(bh);
6525 
6526 	return ret;
6527 }
6528 
6529 /*
6530  * Trim some clusters off the rightmost edge of a tree. Only called
6531  * during truncate.
6532  *
6533  * The caller needs to:
6534  *   - start journaling of each path component.
6535  *   - compute and fully set up any new last ext block
6536  */
6537 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
6538 			   handle_t *handle, struct ocfs2_truncate_context *tc,
6539 			   u32 clusters_to_del, u64 *delete_start)
6540 {
6541 	int ret, i, index = path->p_tree_depth;
6542 	u32 new_edge = 0;
6543 	u64 deleted_eb = 0;
6544 	struct buffer_head *bh;
6545 	struct ocfs2_extent_list *el;
6546 	struct ocfs2_extent_rec *rec;
6547 
6548 	*delete_start = 0;
6549 
6550 	while (index >= 0) {
6551 		bh = path->p_node[index].bh;
6552 		el = path->p_node[index].el;
6553 
6554 		mlog(0, "traveling tree (index = %d, block = %llu)\n",
6555 		     index,  (unsigned long long)bh->b_blocknr);
6556 
6557 		BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
6558 
6559 		if (index !=
6560 		    (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
6561 			ocfs2_error(inode->i_sb,
6562 				    "Inode %lu has invalid ext. block %llu",
6563 				    inode->i_ino,
6564 				    (unsigned long long)bh->b_blocknr);
6565 			ret = -EROFS;
6566 			goto out;
6567 		}
6568 
6569 find_tail_record:
6570 		i = le16_to_cpu(el->l_next_free_rec) - 1;
6571 		rec = &el->l_recs[i];
6572 
6573 		mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
6574 		     "next = %u\n", i, le32_to_cpu(rec->e_cpos),
6575 		     ocfs2_rec_clusters(el, rec),
6576 		     (unsigned long long)le64_to_cpu(rec->e_blkno),
6577 		     le16_to_cpu(el->l_next_free_rec));
6578 
6579 		BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
6580 
6581 		if (le16_to_cpu(el->l_tree_depth) == 0) {
6582 			/*
6583 			 * If the leaf block contains a single empty
6584 			 * extent and no records, we can just remove
6585 			 * the block.
6586 			 */
6587 			if (i == 0 && ocfs2_is_empty_extent(rec)) {
6588 				memset(rec, 0,
6589 				       sizeof(struct ocfs2_extent_rec));
6590 				el->l_next_free_rec = cpu_to_le16(0);
6591 
6592 				goto delete;
6593 			}
6594 
6595 			/*
6596 			 * Remove any empty extents by shifting things
6597 			 * left. That should make life much easier on
6598 			 * the code below. This condition is rare
6599 			 * enough that we shouldn't see a performance
6600 			 * hit.
6601 			 */
6602 			if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6603 				le16_add_cpu(&el->l_next_free_rec, -1);
6604 
6605 				for(i = 0;
6606 				    i < le16_to_cpu(el->l_next_free_rec); i++)
6607 					el->l_recs[i] = el->l_recs[i + 1];
6608 
6609 				memset(&el->l_recs[i], 0,
6610 				       sizeof(struct ocfs2_extent_rec));
6611 
6612 				/*
6613 				 * We've modified our extent list. The
6614 				 * simplest way to handle this change
6615 				 * is to being the search from the
6616 				 * start again.
6617 				 */
6618 				goto find_tail_record;
6619 			}
6620 
6621 			le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
6622 
6623 			/*
6624 			 * We'll use "new_edge" on our way back up the
6625 			 * tree to know what our rightmost cpos is.
6626 			 */
6627 			new_edge = le16_to_cpu(rec->e_leaf_clusters);
6628 			new_edge += le32_to_cpu(rec->e_cpos);
6629 
6630 			/*
6631 			 * The caller will use this to delete data blocks.
6632 			 */
6633 			*delete_start = le64_to_cpu(rec->e_blkno)
6634 				+ ocfs2_clusters_to_blocks(inode->i_sb,
6635 					le16_to_cpu(rec->e_leaf_clusters));
6636 
6637 			/*
6638 			 * If it's now empty, remove this record.
6639 			 */
6640 			if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
6641 				memset(rec, 0,
6642 				       sizeof(struct ocfs2_extent_rec));
6643 				le16_add_cpu(&el->l_next_free_rec, -1);
6644 			}
6645 		} else {
6646 			if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
6647 				memset(rec, 0,
6648 				       sizeof(struct ocfs2_extent_rec));
6649 				le16_add_cpu(&el->l_next_free_rec, -1);
6650 
6651 				goto delete;
6652 			}
6653 
6654 			/* Can this actually happen? */
6655 			if (le16_to_cpu(el->l_next_free_rec) == 0)
6656 				goto delete;
6657 
6658 			/*
6659 			 * We never actually deleted any clusters
6660 			 * because our leaf was empty. There's no
6661 			 * reason to adjust the rightmost edge then.
6662 			 */
6663 			if (new_edge == 0)
6664 				goto delete;
6665 
6666 			rec->e_int_clusters = cpu_to_le32(new_edge);
6667 			le32_add_cpu(&rec->e_int_clusters,
6668 				     -le32_to_cpu(rec->e_cpos));
6669 
6670 			 /*
6671 			  * A deleted child record should have been
6672 			  * caught above.
6673 			  */
6674 			 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
6675 		}
6676 
6677 delete:
6678 		ret = ocfs2_journal_dirty(handle, bh);
6679 		if (ret) {
6680 			mlog_errno(ret);
6681 			goto out;
6682 		}
6683 
6684 		mlog(0, "extent list container %llu, after: record %d: "
6685 		     "(%u, %u, %llu), next = %u.\n",
6686 		     (unsigned long long)bh->b_blocknr, i,
6687 		     le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
6688 		     (unsigned long long)le64_to_cpu(rec->e_blkno),
6689 		     le16_to_cpu(el->l_next_free_rec));
6690 
6691 		/*
6692 		 * We must be careful to only attempt delete of an
6693 		 * extent block (and not the root inode block).
6694 		 */
6695 		if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
6696 			struct ocfs2_extent_block *eb =
6697 				(struct ocfs2_extent_block *)bh->b_data;
6698 
6699 			/*
6700 			 * Save this for use when processing the
6701 			 * parent block.
6702 			 */
6703 			deleted_eb = le64_to_cpu(eb->h_blkno);
6704 
6705 			mlog(0, "deleting this extent block.\n");
6706 
6707 			ocfs2_remove_from_cache(INODE_CACHE(inode), bh);
6708 
6709 			BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
6710 			BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
6711 			BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
6712 
6713 			ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
6714 			/* An error here is not fatal. */
6715 			if (ret < 0)
6716 				mlog_errno(ret);
6717 		} else {
6718 			deleted_eb = 0;
6719 		}
6720 
6721 		index--;
6722 	}
6723 
6724 	ret = 0;
6725 out:
6726 	return ret;
6727 }
6728 
6729 static int ocfs2_do_truncate(struct ocfs2_super *osb,
6730 			     unsigned int clusters_to_del,
6731 			     struct inode *inode,
6732 			     struct buffer_head *fe_bh,
6733 			     handle_t *handle,
6734 			     struct ocfs2_truncate_context *tc,
6735 			     struct ocfs2_path *path)
6736 {
6737 	int status;
6738 	struct ocfs2_dinode *fe;
6739 	struct ocfs2_extent_block *last_eb = NULL;
6740 	struct ocfs2_extent_list *el;
6741 	struct buffer_head *last_eb_bh = NULL;
6742 	u64 delete_blk = 0;
6743 
6744 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
6745 
6746 	status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
6747 					     path, &last_eb_bh);
6748 	if (status < 0) {
6749 		mlog_errno(status);
6750 		goto bail;
6751 	}
6752 
6753 	/*
6754 	 * Each component will be touched, so we might as well journal
6755 	 * here to avoid having to handle errors later.
6756 	 */
6757 	status = ocfs2_journal_access_path(INODE_CACHE(inode), handle, path);
6758 	if (status < 0) {
6759 		mlog_errno(status);
6760 		goto bail;
6761 	}
6762 
6763 	if (last_eb_bh) {
6764 		status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), last_eb_bh,
6765 						 OCFS2_JOURNAL_ACCESS_WRITE);
6766 		if (status < 0) {
6767 			mlog_errno(status);
6768 			goto bail;
6769 		}
6770 
6771 		last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6772 	}
6773 
6774 	el = &(fe->id2.i_list);
6775 
6776 	/*
6777 	 * Lower levels depend on this never happening, but it's best
6778 	 * to check it up here before changing the tree.
6779 	 */
6780 	if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
6781 		ocfs2_error(inode->i_sb,
6782 			    "Inode %lu has an empty extent record, depth %u\n",
6783 			    inode->i_ino, le16_to_cpu(el->l_tree_depth));
6784 		status = -EROFS;
6785 		goto bail;
6786 	}
6787 
6788 	vfs_dq_free_space_nodirty(inode,
6789 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_del));
6790 	spin_lock(&OCFS2_I(inode)->ip_lock);
6791 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
6792 				      clusters_to_del;
6793 	spin_unlock(&OCFS2_I(inode)->ip_lock);
6794 	le32_add_cpu(&fe->i_clusters, -clusters_to_del);
6795 	inode->i_blocks = ocfs2_inode_sector_count(inode);
6796 
6797 	status = ocfs2_trim_tree(inode, path, handle, tc,
6798 				 clusters_to_del, &delete_blk);
6799 	if (status) {
6800 		mlog_errno(status);
6801 		goto bail;
6802 	}
6803 
6804 	if (le32_to_cpu(fe->i_clusters) == 0) {
6805 		/* trunc to zero is a special case. */
6806 		el->l_tree_depth = 0;
6807 		fe->i_last_eb_blk = 0;
6808 	} else if (last_eb)
6809 		fe->i_last_eb_blk = last_eb->h_blkno;
6810 
6811 	status = ocfs2_journal_dirty(handle, fe_bh);
6812 	if (status < 0) {
6813 		mlog_errno(status);
6814 		goto bail;
6815 	}
6816 
6817 	if (last_eb) {
6818 		/* If there will be a new last extent block, then by
6819 		 * definition, there cannot be any leaves to the right of
6820 		 * him. */
6821 		last_eb->h_next_leaf_blk = 0;
6822 		status = ocfs2_journal_dirty(handle, last_eb_bh);
6823 		if (status < 0) {
6824 			mlog_errno(status);
6825 			goto bail;
6826 		}
6827 	}
6828 
6829 	if (delete_blk) {
6830 		status = ocfs2_truncate_log_append(osb, handle, delete_blk,
6831 						   clusters_to_del);
6832 		if (status < 0) {
6833 			mlog_errno(status);
6834 			goto bail;
6835 		}
6836 	}
6837 	status = 0;
6838 bail:
6839 	brelse(last_eb_bh);
6840 	mlog_exit(status);
6841 	return status;
6842 }
6843 
6844 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6845 {
6846 	set_buffer_uptodate(bh);
6847 	mark_buffer_dirty(bh);
6848 	return 0;
6849 }
6850 
6851 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6852 				     unsigned int from, unsigned int to,
6853 				     struct page *page, int zero, u64 *phys)
6854 {
6855 	int ret, partial = 0;
6856 
6857 	ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6858 	if (ret)
6859 		mlog_errno(ret);
6860 
6861 	if (zero)
6862 		zero_user_segment(page, from, to);
6863 
6864 	/*
6865 	 * Need to set the buffers we zero'd into uptodate
6866 	 * here if they aren't - ocfs2_map_page_blocks()
6867 	 * might've skipped some
6868 	 */
6869 	ret = walk_page_buffers(handle, page_buffers(page),
6870 				from, to, &partial,
6871 				ocfs2_zero_func);
6872 	if (ret < 0)
6873 		mlog_errno(ret);
6874 	else if (ocfs2_should_order_data(inode)) {
6875 		ret = ocfs2_jbd2_file_inode(handle, inode);
6876 		if (ret < 0)
6877 			mlog_errno(ret);
6878 	}
6879 
6880 	if (!partial)
6881 		SetPageUptodate(page);
6882 
6883 	flush_dcache_page(page);
6884 }
6885 
6886 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6887 				     loff_t end, struct page **pages,
6888 				     int numpages, u64 phys, handle_t *handle)
6889 {
6890 	int i;
6891 	struct page *page;
6892 	unsigned int from, to = PAGE_CACHE_SIZE;
6893 	struct super_block *sb = inode->i_sb;
6894 
6895 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6896 
6897 	if (numpages == 0)
6898 		goto out;
6899 
6900 	to = PAGE_CACHE_SIZE;
6901 	for(i = 0; i < numpages; i++) {
6902 		page = pages[i];
6903 
6904 		from = start & (PAGE_CACHE_SIZE - 1);
6905 		if ((end >> PAGE_CACHE_SHIFT) == page->index)
6906 			to = end & (PAGE_CACHE_SIZE - 1);
6907 
6908 		BUG_ON(from > PAGE_CACHE_SIZE);
6909 		BUG_ON(to > PAGE_CACHE_SIZE);
6910 
6911 		ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6912 					 &phys);
6913 
6914 		start = (page->index + 1) << PAGE_CACHE_SHIFT;
6915 	}
6916 out:
6917 	if (pages)
6918 		ocfs2_unlock_and_free_pages(pages, numpages);
6919 }
6920 
6921 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6922 				struct page **pages, int *num)
6923 {
6924 	int numpages, ret = 0;
6925 	struct super_block *sb = inode->i_sb;
6926 	struct address_space *mapping = inode->i_mapping;
6927 	unsigned long index;
6928 	loff_t last_page_bytes;
6929 
6930 	BUG_ON(start > end);
6931 
6932 	BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6933 	       (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6934 
6935 	numpages = 0;
6936 	last_page_bytes = PAGE_ALIGN(end);
6937 	index = start >> PAGE_CACHE_SHIFT;
6938 	do {
6939 		pages[numpages] = grab_cache_page(mapping, index);
6940 		if (!pages[numpages]) {
6941 			ret = -ENOMEM;
6942 			mlog_errno(ret);
6943 			goto out;
6944 		}
6945 
6946 		numpages++;
6947 		index++;
6948 	} while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6949 
6950 out:
6951 	if (ret != 0) {
6952 		if (pages)
6953 			ocfs2_unlock_and_free_pages(pages, numpages);
6954 		numpages = 0;
6955 	}
6956 
6957 	*num = numpages;
6958 
6959 	return ret;
6960 }
6961 
6962 /*
6963  * Zero the area past i_size but still within an allocated
6964  * cluster. This avoids exposing nonzero data on subsequent file
6965  * extends.
6966  *
6967  * We need to call this before i_size is updated on the inode because
6968  * otherwise block_write_full_page() will skip writeout of pages past
6969  * i_size. The new_i_size parameter is passed for this reason.
6970  */
6971 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6972 				  u64 range_start, u64 range_end)
6973 {
6974 	int ret = 0, numpages;
6975 	struct page **pages = NULL;
6976 	u64 phys;
6977 	unsigned int ext_flags;
6978 	struct super_block *sb = inode->i_sb;
6979 
6980 	/*
6981 	 * File systems which don't support sparse files zero on every
6982 	 * extend.
6983 	 */
6984 	if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6985 		return 0;
6986 
6987 	pages = kcalloc(ocfs2_pages_per_cluster(sb),
6988 			sizeof(struct page *), GFP_NOFS);
6989 	if (pages == NULL) {
6990 		ret = -ENOMEM;
6991 		mlog_errno(ret);
6992 		goto out;
6993 	}
6994 
6995 	if (range_start == range_end)
6996 		goto out;
6997 
6998 	ret = ocfs2_extent_map_get_blocks(inode,
6999 					  range_start >> sb->s_blocksize_bits,
7000 					  &phys, NULL, &ext_flags);
7001 	if (ret) {
7002 		mlog_errno(ret);
7003 		goto out;
7004 	}
7005 
7006 	/*
7007 	 * Tail is a hole, or is marked unwritten. In either case, we
7008 	 * can count on read and write to return/push zero's.
7009 	 */
7010 	if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
7011 		goto out;
7012 
7013 	ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
7014 				   &numpages);
7015 	if (ret) {
7016 		mlog_errno(ret);
7017 		goto out;
7018 	}
7019 
7020 	ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
7021 				 numpages, phys, handle);
7022 
7023 	/*
7024 	 * Initiate writeout of the pages we zero'd here. We don't
7025 	 * wait on them - the truncate_inode_pages() call later will
7026 	 * do that for us.
7027 	 */
7028 	ret = do_sync_mapping_range(inode->i_mapping, range_start,
7029 				    range_end - 1, SYNC_FILE_RANGE_WRITE);
7030 	if (ret)
7031 		mlog_errno(ret);
7032 
7033 out:
7034 	if (pages)
7035 		kfree(pages);
7036 
7037 	return ret;
7038 }
7039 
7040 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
7041 					     struct ocfs2_dinode *di)
7042 {
7043 	unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
7044 	unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
7045 
7046 	if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
7047 		memset(&di->id2, 0, blocksize -
7048 				    offsetof(struct ocfs2_dinode, id2) -
7049 				    xattrsize);
7050 	else
7051 		memset(&di->id2, 0, blocksize -
7052 				    offsetof(struct ocfs2_dinode, id2));
7053 }
7054 
7055 void ocfs2_dinode_new_extent_list(struct inode *inode,
7056 				  struct ocfs2_dinode *di)
7057 {
7058 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
7059 	di->id2.i_list.l_tree_depth = 0;
7060 	di->id2.i_list.l_next_free_rec = 0;
7061 	di->id2.i_list.l_count = cpu_to_le16(
7062 		ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
7063 }
7064 
7065 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
7066 {
7067 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
7068 	struct ocfs2_inline_data *idata = &di->id2.i_data;
7069 
7070 	spin_lock(&oi->ip_lock);
7071 	oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
7072 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7073 	spin_unlock(&oi->ip_lock);
7074 
7075 	/*
7076 	 * We clear the entire i_data structure here so that all
7077 	 * fields can be properly initialized.
7078 	 */
7079 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
7080 
7081 	idata->id_count = cpu_to_le16(
7082 			ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
7083 }
7084 
7085 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
7086 					 struct buffer_head *di_bh)
7087 {
7088 	int ret, i, has_data, num_pages = 0;
7089 	handle_t *handle;
7090 	u64 uninitialized_var(block);
7091 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
7092 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7093 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7094 	struct ocfs2_alloc_context *data_ac = NULL;
7095 	struct page **pages = NULL;
7096 	loff_t end = osb->s_clustersize;
7097 	struct ocfs2_extent_tree et;
7098 	int did_quota = 0;
7099 
7100 	has_data = i_size_read(inode) ? 1 : 0;
7101 
7102 	if (has_data) {
7103 		pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
7104 				sizeof(struct page *), GFP_NOFS);
7105 		if (pages == NULL) {
7106 			ret = -ENOMEM;
7107 			mlog_errno(ret);
7108 			goto out;
7109 		}
7110 
7111 		ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
7112 		if (ret) {
7113 			mlog_errno(ret);
7114 			goto out;
7115 		}
7116 	}
7117 
7118 	handle = ocfs2_start_trans(osb,
7119 				   ocfs2_inline_to_extents_credits(osb->sb));
7120 	if (IS_ERR(handle)) {
7121 		ret = PTR_ERR(handle);
7122 		mlog_errno(ret);
7123 		goto out_unlock;
7124 	}
7125 
7126 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7127 				      OCFS2_JOURNAL_ACCESS_WRITE);
7128 	if (ret) {
7129 		mlog_errno(ret);
7130 		goto out_commit;
7131 	}
7132 
7133 	if (has_data) {
7134 		u32 bit_off, num;
7135 		unsigned int page_end;
7136 		u64 phys;
7137 
7138 		if (vfs_dq_alloc_space_nodirty(inode,
7139 				       ocfs2_clusters_to_bytes(osb->sb, 1))) {
7140 			ret = -EDQUOT;
7141 			goto out_commit;
7142 		}
7143 		did_quota = 1;
7144 
7145 		ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
7146 					   &num);
7147 		if (ret) {
7148 			mlog_errno(ret);
7149 			goto out_commit;
7150 		}
7151 
7152 		/*
7153 		 * Save two copies, one for insert, and one that can
7154 		 * be changed by ocfs2_map_and_dirty_page() below.
7155 		 */
7156 		block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
7157 
7158 		/*
7159 		 * Non sparse file systems zero on extend, so no need
7160 		 * to do that now.
7161 		 */
7162 		if (!ocfs2_sparse_alloc(osb) &&
7163 		    PAGE_CACHE_SIZE < osb->s_clustersize)
7164 			end = PAGE_CACHE_SIZE;
7165 
7166 		ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
7167 		if (ret) {
7168 			mlog_errno(ret);
7169 			goto out_commit;
7170 		}
7171 
7172 		/*
7173 		 * This should populate the 1st page for us and mark
7174 		 * it up to date.
7175 		 */
7176 		ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
7177 		if (ret) {
7178 			mlog_errno(ret);
7179 			goto out_commit;
7180 		}
7181 
7182 		page_end = PAGE_CACHE_SIZE;
7183 		if (PAGE_CACHE_SIZE > osb->s_clustersize)
7184 			page_end = osb->s_clustersize;
7185 
7186 		for (i = 0; i < num_pages; i++)
7187 			ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
7188 						 pages[i], i > 0, &phys);
7189 	}
7190 
7191 	spin_lock(&oi->ip_lock);
7192 	oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
7193 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7194 	spin_unlock(&oi->ip_lock);
7195 
7196 	ocfs2_dinode_new_extent_list(inode, di);
7197 
7198 	ocfs2_journal_dirty(handle, di_bh);
7199 
7200 	if (has_data) {
7201 		/*
7202 		 * An error at this point should be extremely rare. If
7203 		 * this proves to be false, we could always re-build
7204 		 * the in-inode data from our pages.
7205 		 */
7206 		ocfs2_init_dinode_extent_tree(&et, inode, di_bh);
7207 		ret = ocfs2_insert_extent(osb, handle, inode, &et,
7208 					  0, block, 1, 0, NULL);
7209 		if (ret) {
7210 			mlog_errno(ret);
7211 			goto out_commit;
7212 		}
7213 
7214 		inode->i_blocks = ocfs2_inode_sector_count(inode);
7215 	}
7216 
7217 out_commit:
7218 	if (ret < 0 && did_quota)
7219 		vfs_dq_free_space_nodirty(inode,
7220 					  ocfs2_clusters_to_bytes(osb->sb, 1));
7221 
7222 	ocfs2_commit_trans(osb, handle);
7223 
7224 out_unlock:
7225 	if (data_ac)
7226 		ocfs2_free_alloc_context(data_ac);
7227 
7228 out:
7229 	if (pages) {
7230 		ocfs2_unlock_and_free_pages(pages, num_pages);
7231 		kfree(pages);
7232 	}
7233 
7234 	return ret;
7235 }
7236 
7237 /*
7238  * It is expected, that by the time you call this function,
7239  * inode->i_size and fe->i_size have been adjusted.
7240  *
7241  * WARNING: This will kfree the truncate context
7242  */
7243 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7244 			  struct inode *inode,
7245 			  struct buffer_head *fe_bh,
7246 			  struct ocfs2_truncate_context *tc)
7247 {
7248 	int status, i, credits, tl_sem = 0;
7249 	u32 clusters_to_del, new_highest_cpos, range;
7250 	struct ocfs2_extent_list *el;
7251 	handle_t *handle = NULL;
7252 	struct inode *tl_inode = osb->osb_tl_inode;
7253 	struct ocfs2_path *path = NULL;
7254 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data;
7255 
7256 	mlog_entry_void();
7257 
7258 	new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7259 						     i_size_read(inode));
7260 
7261 	path = ocfs2_new_path(fe_bh, &di->id2.i_list,
7262 			      ocfs2_journal_access_di);
7263 	if (!path) {
7264 		status = -ENOMEM;
7265 		mlog_errno(status);
7266 		goto bail;
7267 	}
7268 
7269 	ocfs2_extent_map_trunc(inode, new_highest_cpos);
7270 
7271 start:
7272 	/*
7273 	 * Check that we still have allocation to delete.
7274 	 */
7275 	if (OCFS2_I(inode)->ip_clusters == 0) {
7276 		status = 0;
7277 		goto bail;
7278 	}
7279 
7280 	/*
7281 	 * Truncate always works against the rightmost tree branch.
7282 	 */
7283 	status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX);
7284 	if (status) {
7285 		mlog_errno(status);
7286 		goto bail;
7287 	}
7288 
7289 	mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
7290 	     OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
7291 
7292 	/*
7293 	 * By now, el will point to the extent list on the bottom most
7294 	 * portion of this tree. Only the tail record is considered in
7295 	 * each pass.
7296 	 *
7297 	 * We handle the following cases, in order:
7298 	 * - empty extent: delete the remaining branch
7299 	 * - remove the entire record
7300 	 * - remove a partial record
7301 	 * - no record needs to be removed (truncate has completed)
7302 	 */
7303 	el = path_leaf_el(path);
7304 	if (le16_to_cpu(el->l_next_free_rec) == 0) {
7305 		ocfs2_error(inode->i_sb,
7306 			    "Inode %llu has empty extent block at %llu\n",
7307 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7308 			    (unsigned long long)path_leaf_bh(path)->b_blocknr);
7309 		status = -EROFS;
7310 		goto bail;
7311 	}
7312 
7313 	i = le16_to_cpu(el->l_next_free_rec) - 1;
7314 	range = le32_to_cpu(el->l_recs[i].e_cpos) +
7315 		ocfs2_rec_clusters(el, &el->l_recs[i]);
7316 	if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
7317 		clusters_to_del = 0;
7318 	} else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
7319 		clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
7320 	} else if (range > new_highest_cpos) {
7321 		clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
7322 				   le32_to_cpu(el->l_recs[i].e_cpos)) -
7323 				  new_highest_cpos;
7324 	} else {
7325 		status = 0;
7326 		goto bail;
7327 	}
7328 
7329 	mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
7330 	     clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
7331 
7332 	mutex_lock(&tl_inode->i_mutex);
7333 	tl_sem = 1;
7334 	/* ocfs2_truncate_log_needs_flush guarantees us at least one
7335 	 * record is free for use. If there isn't any, we flush to get
7336 	 * an empty truncate log.  */
7337 	if (ocfs2_truncate_log_needs_flush(osb)) {
7338 		status = __ocfs2_flush_truncate_log(osb);
7339 		if (status < 0) {
7340 			mlog_errno(status);
7341 			goto bail;
7342 		}
7343 	}
7344 
7345 	credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
7346 						(struct ocfs2_dinode *)fe_bh->b_data,
7347 						el);
7348 	handle = ocfs2_start_trans(osb, credits);
7349 	if (IS_ERR(handle)) {
7350 		status = PTR_ERR(handle);
7351 		handle = NULL;
7352 		mlog_errno(status);
7353 		goto bail;
7354 	}
7355 
7356 	status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
7357 				   tc, path);
7358 	if (status < 0) {
7359 		mlog_errno(status);
7360 		goto bail;
7361 	}
7362 
7363 	mutex_unlock(&tl_inode->i_mutex);
7364 	tl_sem = 0;
7365 
7366 	ocfs2_commit_trans(osb, handle);
7367 	handle = NULL;
7368 
7369 	ocfs2_reinit_path(path, 1);
7370 
7371 	/*
7372 	 * The check above will catch the case where we've truncated
7373 	 * away all allocation.
7374 	 */
7375 	goto start;
7376 
7377 bail:
7378 
7379 	ocfs2_schedule_truncate_log_flush(osb, 1);
7380 
7381 	if (tl_sem)
7382 		mutex_unlock(&tl_inode->i_mutex);
7383 
7384 	if (handle)
7385 		ocfs2_commit_trans(osb, handle);
7386 
7387 	ocfs2_run_deallocs(osb, &tc->tc_dealloc);
7388 
7389 	ocfs2_free_path(path);
7390 
7391 	/* This will drop the ext_alloc cluster lock for us */
7392 	ocfs2_free_truncate_context(tc);
7393 
7394 	mlog_exit(status);
7395 	return status;
7396 }
7397 
7398 /*
7399  * Expects the inode to already be locked.
7400  */
7401 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
7402 			   struct inode *inode,
7403 			   struct buffer_head *fe_bh,
7404 			   struct ocfs2_truncate_context **tc)
7405 {
7406 	int status;
7407 	unsigned int new_i_clusters;
7408 	struct ocfs2_dinode *fe;
7409 	struct ocfs2_extent_block *eb;
7410 	struct buffer_head *last_eb_bh = NULL;
7411 
7412 	mlog_entry_void();
7413 
7414 	*tc = NULL;
7415 
7416 	new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
7417 						  i_size_read(inode));
7418 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
7419 
7420 	mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
7421 	     "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
7422 	     (unsigned long long)le64_to_cpu(fe->i_size));
7423 
7424 	*tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
7425 	if (!(*tc)) {
7426 		status = -ENOMEM;
7427 		mlog_errno(status);
7428 		goto bail;
7429 	}
7430 	ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
7431 
7432 	if (fe->id2.i_list.l_tree_depth) {
7433 		status = ocfs2_read_extent_block(INODE_CACHE(inode),
7434 						 le64_to_cpu(fe->i_last_eb_blk),
7435 						 &last_eb_bh);
7436 		if (status < 0) {
7437 			mlog_errno(status);
7438 			goto bail;
7439 		}
7440 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
7441 	}
7442 
7443 	(*tc)->tc_last_eb_bh = last_eb_bh;
7444 
7445 	status = 0;
7446 bail:
7447 	if (status < 0) {
7448 		if (*tc)
7449 			ocfs2_free_truncate_context(*tc);
7450 		*tc = NULL;
7451 	}
7452 	mlog_exit_void();
7453 	return status;
7454 }
7455 
7456 /*
7457  * 'start' is inclusive, 'end' is not.
7458  */
7459 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7460 			  unsigned int start, unsigned int end, int trunc)
7461 {
7462 	int ret;
7463 	unsigned int numbytes;
7464 	handle_t *handle;
7465 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7466 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7467 	struct ocfs2_inline_data *idata = &di->id2.i_data;
7468 
7469 	if (end > i_size_read(inode))
7470 		end = i_size_read(inode);
7471 
7472 	BUG_ON(start >= end);
7473 
7474 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7475 	    !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7476 	    !ocfs2_supports_inline_data(osb)) {
7477 		ocfs2_error(inode->i_sb,
7478 			    "Inline data flags for inode %llu don't agree! "
7479 			    "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7480 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7481 			    le16_to_cpu(di->i_dyn_features),
7482 			    OCFS2_I(inode)->ip_dyn_features,
7483 			    osb->s_feature_incompat);
7484 		ret = -EROFS;
7485 		goto out;
7486 	}
7487 
7488 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7489 	if (IS_ERR(handle)) {
7490 		ret = PTR_ERR(handle);
7491 		mlog_errno(ret);
7492 		goto out;
7493 	}
7494 
7495 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7496 				      OCFS2_JOURNAL_ACCESS_WRITE);
7497 	if (ret) {
7498 		mlog_errno(ret);
7499 		goto out_commit;
7500 	}
7501 
7502 	numbytes = end - start;
7503 	memset(idata->id_data + start, 0, numbytes);
7504 
7505 	/*
7506 	 * No need to worry about the data page here - it's been
7507 	 * truncated already and inline data doesn't need it for
7508 	 * pushing zero's to disk, so we'll let readpage pick it up
7509 	 * later.
7510 	 */
7511 	if (trunc) {
7512 		i_size_write(inode, start);
7513 		di->i_size = cpu_to_le64(start);
7514 	}
7515 
7516 	inode->i_blocks = ocfs2_inode_sector_count(inode);
7517 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7518 
7519 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7520 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7521 
7522 	ocfs2_journal_dirty(handle, di_bh);
7523 
7524 out_commit:
7525 	ocfs2_commit_trans(osb, handle);
7526 
7527 out:
7528 	return ret;
7529 }
7530 
7531 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
7532 {
7533 	/*
7534 	 * The caller is responsible for completing deallocation
7535 	 * before freeing the context.
7536 	 */
7537 	if (tc->tc_dealloc.c_first_suballocator != NULL)
7538 		mlog(ML_NOTICE,
7539 		     "Truncate completion has non-empty dealloc context\n");
7540 
7541 	brelse(tc->tc_last_eb_bh);
7542 
7543 	kfree(tc);
7544 }
7545