1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * alloc.c 5 * 6 * Extent allocs and frees 7 * 8 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/swap.h> 31 32 #define MLOG_MASK_PREFIX ML_DISK_ALLOC 33 #include <cluster/masklog.h> 34 35 #include "ocfs2.h" 36 37 #include "alloc.h" 38 #include "aops.h" 39 #include "dlmglue.h" 40 #include "extent_map.h" 41 #include "inode.h" 42 #include "journal.h" 43 #include "localalloc.h" 44 #include "suballoc.h" 45 #include "sysfile.h" 46 #include "file.h" 47 #include "super.h" 48 #include "uptodate.h" 49 50 #include "buffer_head_io.h" 51 52 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc); 53 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 54 struct ocfs2_extent_block *eb); 55 56 /* 57 * Structures which describe a path through a btree, and functions to 58 * manipulate them. 59 * 60 * The idea here is to be as generic as possible with the tree 61 * manipulation code. 62 */ 63 struct ocfs2_path_item { 64 struct buffer_head *bh; 65 struct ocfs2_extent_list *el; 66 }; 67 68 #define OCFS2_MAX_PATH_DEPTH 5 69 70 struct ocfs2_path { 71 int p_tree_depth; 72 struct ocfs2_path_item p_node[OCFS2_MAX_PATH_DEPTH]; 73 }; 74 75 #define path_root_bh(_path) ((_path)->p_node[0].bh) 76 #define path_root_el(_path) ((_path)->p_node[0].el) 77 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh) 78 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el) 79 #define path_num_items(_path) ((_path)->p_tree_depth + 1) 80 81 /* 82 * Reset the actual path elements so that we can re-use the structure 83 * to build another path. Generally, this involves freeing the buffer 84 * heads. 85 */ 86 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root) 87 { 88 int i, start = 0, depth = 0; 89 struct ocfs2_path_item *node; 90 91 if (keep_root) 92 start = 1; 93 94 for(i = start; i < path_num_items(path); i++) { 95 node = &path->p_node[i]; 96 97 brelse(node->bh); 98 node->bh = NULL; 99 node->el = NULL; 100 } 101 102 /* 103 * Tree depth may change during truncate, or insert. If we're 104 * keeping the root extent list, then make sure that our path 105 * structure reflects the proper depth. 106 */ 107 if (keep_root) 108 depth = le16_to_cpu(path_root_el(path)->l_tree_depth); 109 110 path->p_tree_depth = depth; 111 } 112 113 static void ocfs2_free_path(struct ocfs2_path *path) 114 { 115 if (path) { 116 ocfs2_reinit_path(path, 0); 117 kfree(path); 118 } 119 } 120 121 /* 122 * All the elements of src into dest. After this call, src could be freed 123 * without affecting dest. 124 * 125 * Both paths should have the same root. Any non-root elements of dest 126 * will be freed. 127 */ 128 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src) 129 { 130 int i; 131 132 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 133 BUG_ON(path_root_el(dest) != path_root_el(src)); 134 135 ocfs2_reinit_path(dest, 1); 136 137 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 138 dest->p_node[i].bh = src->p_node[i].bh; 139 dest->p_node[i].el = src->p_node[i].el; 140 141 if (dest->p_node[i].bh) 142 get_bh(dest->p_node[i].bh); 143 } 144 } 145 146 /* 147 * Make the *dest path the same as src and re-initialize src path to 148 * have a root only. 149 */ 150 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src) 151 { 152 int i; 153 154 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 155 156 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 157 brelse(dest->p_node[i].bh); 158 159 dest->p_node[i].bh = src->p_node[i].bh; 160 dest->p_node[i].el = src->p_node[i].el; 161 162 src->p_node[i].bh = NULL; 163 src->p_node[i].el = NULL; 164 } 165 } 166 167 /* 168 * Insert an extent block at given index. 169 * 170 * This will not take an additional reference on eb_bh. 171 */ 172 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index, 173 struct buffer_head *eb_bh) 174 { 175 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data; 176 177 /* 178 * Right now, no root bh is an extent block, so this helps 179 * catch code errors with dinode trees. The assertion can be 180 * safely removed if we ever need to insert extent block 181 * structures at the root. 182 */ 183 BUG_ON(index == 0); 184 185 path->p_node[index].bh = eb_bh; 186 path->p_node[index].el = &eb->h_list; 187 } 188 189 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh, 190 struct ocfs2_extent_list *root_el) 191 { 192 struct ocfs2_path *path; 193 194 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH); 195 196 path = kzalloc(sizeof(*path), GFP_NOFS); 197 if (path) { 198 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth); 199 get_bh(root_bh); 200 path_root_bh(path) = root_bh; 201 path_root_el(path) = root_el; 202 } 203 204 return path; 205 } 206 207 /* 208 * Allocate and initialize a new path based on a disk inode tree. 209 */ 210 static struct ocfs2_path *ocfs2_new_inode_path(struct buffer_head *di_bh) 211 { 212 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 213 struct ocfs2_extent_list *el = &di->id2.i_list; 214 215 return ocfs2_new_path(di_bh, el); 216 } 217 218 /* 219 * Convenience function to journal all components in a path. 220 */ 221 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle, 222 struct ocfs2_path *path) 223 { 224 int i, ret = 0; 225 226 if (!path) 227 goto out; 228 229 for(i = 0; i < path_num_items(path); i++) { 230 ret = ocfs2_journal_access(handle, inode, path->p_node[i].bh, 231 OCFS2_JOURNAL_ACCESS_WRITE); 232 if (ret < 0) { 233 mlog_errno(ret); 234 goto out; 235 } 236 } 237 238 out: 239 return ret; 240 } 241 242 /* 243 * Return the index of the extent record which contains cluster #v_cluster. 244 * -1 is returned if it was not found. 245 * 246 * Should work fine on interior and exterior nodes. 247 */ 248 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster) 249 { 250 int ret = -1; 251 int i; 252 struct ocfs2_extent_rec *rec; 253 u32 rec_end, rec_start, clusters; 254 255 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 256 rec = &el->l_recs[i]; 257 258 rec_start = le32_to_cpu(rec->e_cpos); 259 clusters = ocfs2_rec_clusters(el, rec); 260 261 rec_end = rec_start + clusters; 262 263 if (v_cluster >= rec_start && v_cluster < rec_end) { 264 ret = i; 265 break; 266 } 267 } 268 269 return ret; 270 } 271 272 enum ocfs2_contig_type { 273 CONTIG_NONE = 0, 274 CONTIG_LEFT, 275 CONTIG_RIGHT, 276 CONTIG_LEFTRIGHT, 277 }; 278 279 280 /* 281 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and 282 * ocfs2_extent_contig only work properly against leaf nodes! 283 */ 284 static int ocfs2_block_extent_contig(struct super_block *sb, 285 struct ocfs2_extent_rec *ext, 286 u64 blkno) 287 { 288 u64 blk_end = le64_to_cpu(ext->e_blkno); 289 290 blk_end += ocfs2_clusters_to_blocks(sb, 291 le16_to_cpu(ext->e_leaf_clusters)); 292 293 return blkno == blk_end; 294 } 295 296 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left, 297 struct ocfs2_extent_rec *right) 298 { 299 u32 left_range; 300 301 left_range = le32_to_cpu(left->e_cpos) + 302 le16_to_cpu(left->e_leaf_clusters); 303 304 return (left_range == le32_to_cpu(right->e_cpos)); 305 } 306 307 static enum ocfs2_contig_type 308 ocfs2_extent_contig(struct inode *inode, 309 struct ocfs2_extent_rec *ext, 310 struct ocfs2_extent_rec *insert_rec) 311 { 312 u64 blkno = le64_to_cpu(insert_rec->e_blkno); 313 314 /* 315 * Refuse to coalesce extent records with different flag 316 * fields - we don't want to mix unwritten extents with user 317 * data. 318 */ 319 if (ext->e_flags != insert_rec->e_flags) 320 return CONTIG_NONE; 321 322 if (ocfs2_extents_adjacent(ext, insert_rec) && 323 ocfs2_block_extent_contig(inode->i_sb, ext, blkno)) 324 return CONTIG_RIGHT; 325 326 blkno = le64_to_cpu(ext->e_blkno); 327 if (ocfs2_extents_adjacent(insert_rec, ext) && 328 ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno)) 329 return CONTIG_LEFT; 330 331 return CONTIG_NONE; 332 } 333 334 /* 335 * NOTE: We can have pretty much any combination of contiguousness and 336 * appending. 337 * 338 * The usefulness of APPEND_TAIL is more in that it lets us know that 339 * we'll have to update the path to that leaf. 340 */ 341 enum ocfs2_append_type { 342 APPEND_NONE = 0, 343 APPEND_TAIL, 344 }; 345 346 enum ocfs2_split_type { 347 SPLIT_NONE = 0, 348 SPLIT_LEFT, 349 SPLIT_RIGHT, 350 }; 351 352 struct ocfs2_insert_type { 353 enum ocfs2_split_type ins_split; 354 enum ocfs2_append_type ins_appending; 355 enum ocfs2_contig_type ins_contig; 356 int ins_contig_index; 357 int ins_free_records; 358 int ins_tree_depth; 359 }; 360 361 struct ocfs2_merge_ctxt { 362 enum ocfs2_contig_type c_contig_type; 363 int c_has_empty_extent; 364 int c_split_covers_rec; 365 int c_used_tail_recs; 366 }; 367 368 /* 369 * How many free extents have we got before we need more meta data? 370 */ 371 int ocfs2_num_free_extents(struct ocfs2_super *osb, 372 struct inode *inode, 373 struct ocfs2_dinode *fe) 374 { 375 int retval; 376 struct ocfs2_extent_list *el; 377 struct ocfs2_extent_block *eb; 378 struct buffer_head *eb_bh = NULL; 379 380 mlog_entry_void(); 381 382 if (!OCFS2_IS_VALID_DINODE(fe)) { 383 OCFS2_RO_ON_INVALID_DINODE(inode->i_sb, fe); 384 retval = -EIO; 385 goto bail; 386 } 387 388 if (fe->i_last_eb_blk) { 389 retval = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk), 390 &eb_bh, OCFS2_BH_CACHED, inode); 391 if (retval < 0) { 392 mlog_errno(retval); 393 goto bail; 394 } 395 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 396 el = &eb->h_list; 397 } else 398 el = &fe->id2.i_list; 399 400 BUG_ON(el->l_tree_depth != 0); 401 402 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec); 403 bail: 404 if (eb_bh) 405 brelse(eb_bh); 406 407 mlog_exit(retval); 408 return retval; 409 } 410 411 /* expects array to already be allocated 412 * 413 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and 414 * l_count for you 415 */ 416 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb, 417 handle_t *handle, 418 struct inode *inode, 419 int wanted, 420 struct ocfs2_alloc_context *meta_ac, 421 struct buffer_head *bhs[]) 422 { 423 int count, status, i; 424 u16 suballoc_bit_start; 425 u32 num_got; 426 u64 first_blkno; 427 struct ocfs2_extent_block *eb; 428 429 mlog_entry_void(); 430 431 count = 0; 432 while (count < wanted) { 433 status = ocfs2_claim_metadata(osb, 434 handle, 435 meta_ac, 436 wanted - count, 437 &suballoc_bit_start, 438 &num_got, 439 &first_blkno); 440 if (status < 0) { 441 mlog_errno(status); 442 goto bail; 443 } 444 445 for(i = count; i < (num_got + count); i++) { 446 bhs[i] = sb_getblk(osb->sb, first_blkno); 447 if (bhs[i] == NULL) { 448 status = -EIO; 449 mlog_errno(status); 450 goto bail; 451 } 452 ocfs2_set_new_buffer_uptodate(inode, bhs[i]); 453 454 status = ocfs2_journal_access(handle, inode, bhs[i], 455 OCFS2_JOURNAL_ACCESS_CREATE); 456 if (status < 0) { 457 mlog_errno(status); 458 goto bail; 459 } 460 461 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize); 462 eb = (struct ocfs2_extent_block *) bhs[i]->b_data; 463 /* Ok, setup the minimal stuff here. */ 464 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); 465 eb->h_blkno = cpu_to_le64(first_blkno); 466 eb->h_fs_generation = cpu_to_le32(osb->fs_generation); 467 eb->h_suballoc_slot = cpu_to_le16(osb->slot_num); 468 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start); 469 eb->h_list.l_count = 470 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); 471 472 suballoc_bit_start++; 473 first_blkno++; 474 475 /* We'll also be dirtied by the caller, so 476 * this isn't absolutely necessary. */ 477 status = ocfs2_journal_dirty(handle, bhs[i]); 478 if (status < 0) { 479 mlog_errno(status); 480 goto bail; 481 } 482 } 483 484 count += num_got; 485 } 486 487 status = 0; 488 bail: 489 if (status < 0) { 490 for(i = 0; i < wanted; i++) { 491 if (bhs[i]) 492 brelse(bhs[i]); 493 bhs[i] = NULL; 494 } 495 } 496 mlog_exit(status); 497 return status; 498 } 499 500 /* 501 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth(). 502 * 503 * Returns the sum of the rightmost extent rec logical offset and 504 * cluster count. 505 * 506 * ocfs2_add_branch() uses this to determine what logical cluster 507 * value should be populated into the leftmost new branch records. 508 * 509 * ocfs2_shift_tree_depth() uses this to determine the # clusters 510 * value for the new topmost tree record. 511 */ 512 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el) 513 { 514 int i; 515 516 i = le16_to_cpu(el->l_next_free_rec) - 1; 517 518 return le32_to_cpu(el->l_recs[i].e_cpos) + 519 ocfs2_rec_clusters(el, &el->l_recs[i]); 520 } 521 522 /* 523 * Add an entire tree branch to our inode. eb_bh is the extent block 524 * to start at, if we don't want to start the branch at the dinode 525 * structure. 526 * 527 * last_eb_bh is required as we have to update it's next_leaf pointer 528 * for the new last extent block. 529 * 530 * the new branch will be 'empty' in the sense that every block will 531 * contain a single record with cluster count == 0. 532 */ 533 static int ocfs2_add_branch(struct ocfs2_super *osb, 534 handle_t *handle, 535 struct inode *inode, 536 struct buffer_head *fe_bh, 537 struct buffer_head *eb_bh, 538 struct buffer_head **last_eb_bh, 539 struct ocfs2_alloc_context *meta_ac) 540 { 541 int status, new_blocks, i; 542 u64 next_blkno, new_last_eb_blk; 543 struct buffer_head *bh; 544 struct buffer_head **new_eb_bhs = NULL; 545 struct ocfs2_dinode *fe; 546 struct ocfs2_extent_block *eb; 547 struct ocfs2_extent_list *eb_el; 548 struct ocfs2_extent_list *el; 549 u32 new_cpos; 550 551 mlog_entry_void(); 552 553 BUG_ON(!last_eb_bh || !*last_eb_bh); 554 555 fe = (struct ocfs2_dinode *) fe_bh->b_data; 556 557 if (eb_bh) { 558 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 559 el = &eb->h_list; 560 } else 561 el = &fe->id2.i_list; 562 563 /* we never add a branch to a leaf. */ 564 BUG_ON(!el->l_tree_depth); 565 566 new_blocks = le16_to_cpu(el->l_tree_depth); 567 568 /* allocate the number of new eb blocks we need */ 569 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *), 570 GFP_KERNEL); 571 if (!new_eb_bhs) { 572 status = -ENOMEM; 573 mlog_errno(status); 574 goto bail; 575 } 576 577 status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks, 578 meta_ac, new_eb_bhs); 579 if (status < 0) { 580 mlog_errno(status); 581 goto bail; 582 } 583 584 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data; 585 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list); 586 587 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be 588 * linked with the rest of the tree. 589 * conversly, new_eb_bhs[0] is the new bottommost leaf. 590 * 591 * when we leave the loop, new_last_eb_blk will point to the 592 * newest leaf, and next_blkno will point to the topmost extent 593 * block. */ 594 next_blkno = new_last_eb_blk = 0; 595 for(i = 0; i < new_blocks; i++) { 596 bh = new_eb_bhs[i]; 597 eb = (struct ocfs2_extent_block *) bh->b_data; 598 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 599 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); 600 status = -EIO; 601 goto bail; 602 } 603 eb_el = &eb->h_list; 604 605 status = ocfs2_journal_access(handle, inode, bh, 606 OCFS2_JOURNAL_ACCESS_CREATE); 607 if (status < 0) { 608 mlog_errno(status); 609 goto bail; 610 } 611 612 eb->h_next_leaf_blk = 0; 613 eb_el->l_tree_depth = cpu_to_le16(i); 614 eb_el->l_next_free_rec = cpu_to_le16(1); 615 /* 616 * This actually counts as an empty extent as 617 * c_clusters == 0 618 */ 619 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos); 620 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno); 621 /* 622 * eb_el isn't always an interior node, but even leaf 623 * nodes want a zero'd flags and reserved field so 624 * this gets the whole 32 bits regardless of use. 625 */ 626 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0); 627 if (!eb_el->l_tree_depth) 628 new_last_eb_blk = le64_to_cpu(eb->h_blkno); 629 630 status = ocfs2_journal_dirty(handle, bh); 631 if (status < 0) { 632 mlog_errno(status); 633 goto bail; 634 } 635 636 next_blkno = le64_to_cpu(eb->h_blkno); 637 } 638 639 /* This is a bit hairy. We want to update up to three blocks 640 * here without leaving any of them in an inconsistent state 641 * in case of error. We don't have to worry about 642 * journal_dirty erroring as it won't unless we've aborted the 643 * handle (in which case we would never be here) so reserving 644 * the write with journal_access is all we need to do. */ 645 status = ocfs2_journal_access(handle, inode, *last_eb_bh, 646 OCFS2_JOURNAL_ACCESS_WRITE); 647 if (status < 0) { 648 mlog_errno(status); 649 goto bail; 650 } 651 status = ocfs2_journal_access(handle, inode, fe_bh, 652 OCFS2_JOURNAL_ACCESS_WRITE); 653 if (status < 0) { 654 mlog_errno(status); 655 goto bail; 656 } 657 if (eb_bh) { 658 status = ocfs2_journal_access(handle, inode, eb_bh, 659 OCFS2_JOURNAL_ACCESS_WRITE); 660 if (status < 0) { 661 mlog_errno(status); 662 goto bail; 663 } 664 } 665 666 /* Link the new branch into the rest of the tree (el will 667 * either be on the fe, or the extent block passed in. */ 668 i = le16_to_cpu(el->l_next_free_rec); 669 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno); 670 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos); 671 el->l_recs[i].e_int_clusters = 0; 672 le16_add_cpu(&el->l_next_free_rec, 1); 673 674 /* fe needs a new last extent block pointer, as does the 675 * next_leaf on the previously last-extent-block. */ 676 fe->i_last_eb_blk = cpu_to_le64(new_last_eb_blk); 677 678 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 679 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk); 680 681 status = ocfs2_journal_dirty(handle, *last_eb_bh); 682 if (status < 0) 683 mlog_errno(status); 684 status = ocfs2_journal_dirty(handle, fe_bh); 685 if (status < 0) 686 mlog_errno(status); 687 if (eb_bh) { 688 status = ocfs2_journal_dirty(handle, eb_bh); 689 if (status < 0) 690 mlog_errno(status); 691 } 692 693 /* 694 * Some callers want to track the rightmost leaf so pass it 695 * back here. 696 */ 697 brelse(*last_eb_bh); 698 get_bh(new_eb_bhs[0]); 699 *last_eb_bh = new_eb_bhs[0]; 700 701 status = 0; 702 bail: 703 if (new_eb_bhs) { 704 for (i = 0; i < new_blocks; i++) 705 if (new_eb_bhs[i]) 706 brelse(new_eb_bhs[i]); 707 kfree(new_eb_bhs); 708 } 709 710 mlog_exit(status); 711 return status; 712 } 713 714 /* 715 * adds another level to the allocation tree. 716 * returns back the new extent block so you can add a branch to it 717 * after this call. 718 */ 719 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb, 720 handle_t *handle, 721 struct inode *inode, 722 struct buffer_head *fe_bh, 723 struct ocfs2_alloc_context *meta_ac, 724 struct buffer_head **ret_new_eb_bh) 725 { 726 int status, i; 727 u32 new_clusters; 728 struct buffer_head *new_eb_bh = NULL; 729 struct ocfs2_dinode *fe; 730 struct ocfs2_extent_block *eb; 731 struct ocfs2_extent_list *fe_el; 732 struct ocfs2_extent_list *eb_el; 733 734 mlog_entry_void(); 735 736 status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac, 737 &new_eb_bh); 738 if (status < 0) { 739 mlog_errno(status); 740 goto bail; 741 } 742 743 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data; 744 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 745 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); 746 status = -EIO; 747 goto bail; 748 } 749 750 eb_el = &eb->h_list; 751 fe = (struct ocfs2_dinode *) fe_bh->b_data; 752 fe_el = &fe->id2.i_list; 753 754 status = ocfs2_journal_access(handle, inode, new_eb_bh, 755 OCFS2_JOURNAL_ACCESS_CREATE); 756 if (status < 0) { 757 mlog_errno(status); 758 goto bail; 759 } 760 761 /* copy the fe data into the new extent block */ 762 eb_el->l_tree_depth = fe_el->l_tree_depth; 763 eb_el->l_next_free_rec = fe_el->l_next_free_rec; 764 for(i = 0; i < le16_to_cpu(fe_el->l_next_free_rec); i++) 765 eb_el->l_recs[i] = fe_el->l_recs[i]; 766 767 status = ocfs2_journal_dirty(handle, new_eb_bh); 768 if (status < 0) { 769 mlog_errno(status); 770 goto bail; 771 } 772 773 status = ocfs2_journal_access(handle, inode, fe_bh, 774 OCFS2_JOURNAL_ACCESS_WRITE); 775 if (status < 0) { 776 mlog_errno(status); 777 goto bail; 778 } 779 780 new_clusters = ocfs2_sum_rightmost_rec(eb_el); 781 782 /* update fe now */ 783 le16_add_cpu(&fe_el->l_tree_depth, 1); 784 fe_el->l_recs[0].e_cpos = 0; 785 fe_el->l_recs[0].e_blkno = eb->h_blkno; 786 fe_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters); 787 for(i = 1; i < le16_to_cpu(fe_el->l_next_free_rec); i++) 788 memset(&fe_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 789 fe_el->l_next_free_rec = cpu_to_le16(1); 790 791 /* If this is our 1st tree depth shift, then last_eb_blk 792 * becomes the allocated extent block */ 793 if (fe_el->l_tree_depth == cpu_to_le16(1)) 794 fe->i_last_eb_blk = eb->h_blkno; 795 796 status = ocfs2_journal_dirty(handle, fe_bh); 797 if (status < 0) { 798 mlog_errno(status); 799 goto bail; 800 } 801 802 *ret_new_eb_bh = new_eb_bh; 803 new_eb_bh = NULL; 804 status = 0; 805 bail: 806 if (new_eb_bh) 807 brelse(new_eb_bh); 808 809 mlog_exit(status); 810 return status; 811 } 812 813 /* 814 * Should only be called when there is no space left in any of the 815 * leaf nodes. What we want to do is find the lowest tree depth 816 * non-leaf extent block with room for new records. There are three 817 * valid results of this search: 818 * 819 * 1) a lowest extent block is found, then we pass it back in 820 * *lowest_eb_bh and return '0' 821 * 822 * 2) the search fails to find anything, but the dinode has room. We 823 * pass NULL back in *lowest_eb_bh, but still return '0' 824 * 825 * 3) the search fails to find anything AND the dinode is full, in 826 * which case we return > 0 827 * 828 * return status < 0 indicates an error. 829 */ 830 static int ocfs2_find_branch_target(struct ocfs2_super *osb, 831 struct inode *inode, 832 struct buffer_head *fe_bh, 833 struct buffer_head **target_bh) 834 { 835 int status = 0, i; 836 u64 blkno; 837 struct ocfs2_dinode *fe; 838 struct ocfs2_extent_block *eb; 839 struct ocfs2_extent_list *el; 840 struct buffer_head *bh = NULL; 841 struct buffer_head *lowest_bh = NULL; 842 843 mlog_entry_void(); 844 845 *target_bh = NULL; 846 847 fe = (struct ocfs2_dinode *) fe_bh->b_data; 848 el = &fe->id2.i_list; 849 850 while(le16_to_cpu(el->l_tree_depth) > 1) { 851 if (le16_to_cpu(el->l_next_free_rec) == 0) { 852 ocfs2_error(inode->i_sb, "Dinode %llu has empty " 853 "extent list (next_free_rec == 0)", 854 (unsigned long long)OCFS2_I(inode)->ip_blkno); 855 status = -EIO; 856 goto bail; 857 } 858 i = le16_to_cpu(el->l_next_free_rec) - 1; 859 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 860 if (!blkno) { 861 ocfs2_error(inode->i_sb, "Dinode %llu has extent " 862 "list where extent # %d has no physical " 863 "block start", 864 (unsigned long long)OCFS2_I(inode)->ip_blkno, i); 865 status = -EIO; 866 goto bail; 867 } 868 869 if (bh) { 870 brelse(bh); 871 bh = NULL; 872 } 873 874 status = ocfs2_read_block(osb, blkno, &bh, OCFS2_BH_CACHED, 875 inode); 876 if (status < 0) { 877 mlog_errno(status); 878 goto bail; 879 } 880 881 eb = (struct ocfs2_extent_block *) bh->b_data; 882 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 883 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); 884 status = -EIO; 885 goto bail; 886 } 887 el = &eb->h_list; 888 889 if (le16_to_cpu(el->l_next_free_rec) < 890 le16_to_cpu(el->l_count)) { 891 if (lowest_bh) 892 brelse(lowest_bh); 893 lowest_bh = bh; 894 get_bh(lowest_bh); 895 } 896 } 897 898 /* If we didn't find one and the fe doesn't have any room, 899 * then return '1' */ 900 if (!lowest_bh 901 && (fe->id2.i_list.l_next_free_rec == fe->id2.i_list.l_count)) 902 status = 1; 903 904 *target_bh = lowest_bh; 905 bail: 906 if (bh) 907 brelse(bh); 908 909 mlog_exit(status); 910 return status; 911 } 912 913 /* 914 * Grow a b-tree so that it has more records. 915 * 916 * We might shift the tree depth in which case existing paths should 917 * be considered invalid. 918 * 919 * Tree depth after the grow is returned via *final_depth. 920 * 921 * *last_eb_bh will be updated by ocfs2_add_branch(). 922 */ 923 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle, 924 struct buffer_head *di_bh, int *final_depth, 925 struct buffer_head **last_eb_bh, 926 struct ocfs2_alloc_context *meta_ac) 927 { 928 int ret, shift; 929 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 930 int depth = le16_to_cpu(di->id2.i_list.l_tree_depth); 931 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 932 struct buffer_head *bh = NULL; 933 934 BUG_ON(meta_ac == NULL); 935 936 shift = ocfs2_find_branch_target(osb, inode, di_bh, &bh); 937 if (shift < 0) { 938 ret = shift; 939 mlog_errno(ret); 940 goto out; 941 } 942 943 /* We traveled all the way to the bottom of the allocation tree 944 * and didn't find room for any more extents - we need to add 945 * another tree level */ 946 if (shift) { 947 BUG_ON(bh); 948 mlog(0, "need to shift tree depth (current = %d)\n", depth); 949 950 /* ocfs2_shift_tree_depth will return us a buffer with 951 * the new extent block (so we can pass that to 952 * ocfs2_add_branch). */ 953 ret = ocfs2_shift_tree_depth(osb, handle, inode, di_bh, 954 meta_ac, &bh); 955 if (ret < 0) { 956 mlog_errno(ret); 957 goto out; 958 } 959 depth++; 960 if (depth == 1) { 961 /* 962 * Special case: we have room now if we shifted from 963 * tree_depth 0, so no more work needs to be done. 964 * 965 * We won't be calling add_branch, so pass 966 * back *last_eb_bh as the new leaf. At depth 967 * zero, it should always be null so there's 968 * no reason to brelse. 969 */ 970 BUG_ON(*last_eb_bh); 971 get_bh(bh); 972 *last_eb_bh = bh; 973 goto out; 974 } 975 } 976 977 /* call ocfs2_add_branch to add the final part of the tree with 978 * the new data. */ 979 mlog(0, "add branch. bh = %p\n", bh); 980 ret = ocfs2_add_branch(osb, handle, inode, di_bh, bh, last_eb_bh, 981 meta_ac); 982 if (ret < 0) { 983 mlog_errno(ret); 984 goto out; 985 } 986 987 out: 988 if (final_depth) 989 *final_depth = depth; 990 brelse(bh); 991 return ret; 992 } 993 994 /* 995 * This is only valid for leaf nodes, which are the only ones that can 996 * have empty extents anyway. 997 */ 998 static inline int ocfs2_is_empty_extent(struct ocfs2_extent_rec *rec) 999 { 1000 return !rec->e_leaf_clusters; 1001 } 1002 1003 /* 1004 * This function will discard the rightmost extent record. 1005 */ 1006 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el) 1007 { 1008 int next_free = le16_to_cpu(el->l_next_free_rec); 1009 int count = le16_to_cpu(el->l_count); 1010 unsigned int num_bytes; 1011 1012 BUG_ON(!next_free); 1013 /* This will cause us to go off the end of our extent list. */ 1014 BUG_ON(next_free >= count); 1015 1016 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free; 1017 1018 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes); 1019 } 1020 1021 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el, 1022 struct ocfs2_extent_rec *insert_rec) 1023 { 1024 int i, insert_index, next_free, has_empty, num_bytes; 1025 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos); 1026 struct ocfs2_extent_rec *rec; 1027 1028 next_free = le16_to_cpu(el->l_next_free_rec); 1029 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]); 1030 1031 BUG_ON(!next_free); 1032 1033 /* The tree code before us didn't allow enough room in the leaf. */ 1034 if (el->l_next_free_rec == el->l_count && !has_empty) 1035 BUG(); 1036 1037 /* 1038 * The easiest way to approach this is to just remove the 1039 * empty extent and temporarily decrement next_free. 1040 */ 1041 if (has_empty) { 1042 /* 1043 * If next_free was 1 (only an empty extent), this 1044 * loop won't execute, which is fine. We still want 1045 * the decrement above to happen. 1046 */ 1047 for(i = 0; i < (next_free - 1); i++) 1048 el->l_recs[i] = el->l_recs[i+1]; 1049 1050 next_free--; 1051 } 1052 1053 /* 1054 * Figure out what the new record index should be. 1055 */ 1056 for(i = 0; i < next_free; i++) { 1057 rec = &el->l_recs[i]; 1058 1059 if (insert_cpos < le32_to_cpu(rec->e_cpos)) 1060 break; 1061 } 1062 insert_index = i; 1063 1064 mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n", 1065 insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count)); 1066 1067 BUG_ON(insert_index < 0); 1068 BUG_ON(insert_index >= le16_to_cpu(el->l_count)); 1069 BUG_ON(insert_index > next_free); 1070 1071 /* 1072 * No need to memmove if we're just adding to the tail. 1073 */ 1074 if (insert_index != next_free) { 1075 BUG_ON(next_free >= le16_to_cpu(el->l_count)); 1076 1077 num_bytes = next_free - insert_index; 1078 num_bytes *= sizeof(struct ocfs2_extent_rec); 1079 memmove(&el->l_recs[insert_index + 1], 1080 &el->l_recs[insert_index], 1081 num_bytes); 1082 } 1083 1084 /* 1085 * Either we had an empty extent, and need to re-increment or 1086 * there was no empty extent on a non full rightmost leaf node, 1087 * in which case we still need to increment. 1088 */ 1089 next_free++; 1090 el->l_next_free_rec = cpu_to_le16(next_free); 1091 /* 1092 * Make sure none of the math above just messed up our tree. 1093 */ 1094 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count)); 1095 1096 el->l_recs[insert_index] = *insert_rec; 1097 1098 } 1099 1100 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el) 1101 { 1102 int size, num_recs = le16_to_cpu(el->l_next_free_rec); 1103 1104 BUG_ON(num_recs == 0); 1105 1106 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 1107 num_recs--; 1108 size = num_recs * sizeof(struct ocfs2_extent_rec); 1109 memmove(&el->l_recs[0], &el->l_recs[1], size); 1110 memset(&el->l_recs[num_recs], 0, 1111 sizeof(struct ocfs2_extent_rec)); 1112 el->l_next_free_rec = cpu_to_le16(num_recs); 1113 } 1114 } 1115 1116 /* 1117 * Create an empty extent record . 1118 * 1119 * l_next_free_rec may be updated. 1120 * 1121 * If an empty extent already exists do nothing. 1122 */ 1123 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el) 1124 { 1125 int next_free = le16_to_cpu(el->l_next_free_rec); 1126 1127 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 1128 1129 if (next_free == 0) 1130 goto set_and_inc; 1131 1132 if (ocfs2_is_empty_extent(&el->l_recs[0])) 1133 return; 1134 1135 mlog_bug_on_msg(el->l_count == el->l_next_free_rec, 1136 "Asked to create an empty extent in a full list:\n" 1137 "count = %u, tree depth = %u", 1138 le16_to_cpu(el->l_count), 1139 le16_to_cpu(el->l_tree_depth)); 1140 1141 ocfs2_shift_records_right(el); 1142 1143 set_and_inc: 1144 le16_add_cpu(&el->l_next_free_rec, 1); 1145 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 1146 } 1147 1148 /* 1149 * For a rotation which involves two leaf nodes, the "root node" is 1150 * the lowest level tree node which contains a path to both leafs. This 1151 * resulting set of information can be used to form a complete "subtree" 1152 * 1153 * This function is passed two full paths from the dinode down to a 1154 * pair of adjacent leaves. It's task is to figure out which path 1155 * index contains the subtree root - this can be the root index itself 1156 * in a worst-case rotation. 1157 * 1158 * The array index of the subtree root is passed back. 1159 */ 1160 static int ocfs2_find_subtree_root(struct inode *inode, 1161 struct ocfs2_path *left, 1162 struct ocfs2_path *right) 1163 { 1164 int i = 0; 1165 1166 /* 1167 * Check that the caller passed in two paths from the same tree. 1168 */ 1169 BUG_ON(path_root_bh(left) != path_root_bh(right)); 1170 1171 do { 1172 i++; 1173 1174 /* 1175 * The caller didn't pass two adjacent paths. 1176 */ 1177 mlog_bug_on_msg(i > left->p_tree_depth, 1178 "Inode %lu, left depth %u, right depth %u\n" 1179 "left leaf blk %llu, right leaf blk %llu\n", 1180 inode->i_ino, left->p_tree_depth, 1181 right->p_tree_depth, 1182 (unsigned long long)path_leaf_bh(left)->b_blocknr, 1183 (unsigned long long)path_leaf_bh(right)->b_blocknr); 1184 } while (left->p_node[i].bh->b_blocknr == 1185 right->p_node[i].bh->b_blocknr); 1186 1187 return i - 1; 1188 } 1189 1190 typedef void (path_insert_t)(void *, struct buffer_head *); 1191 1192 /* 1193 * Traverse a btree path in search of cpos, starting at root_el. 1194 * 1195 * This code can be called with a cpos larger than the tree, in which 1196 * case it will return the rightmost path. 1197 */ 1198 static int __ocfs2_find_path(struct inode *inode, 1199 struct ocfs2_extent_list *root_el, u32 cpos, 1200 path_insert_t *func, void *data) 1201 { 1202 int i, ret = 0; 1203 u32 range; 1204 u64 blkno; 1205 struct buffer_head *bh = NULL; 1206 struct ocfs2_extent_block *eb; 1207 struct ocfs2_extent_list *el; 1208 struct ocfs2_extent_rec *rec; 1209 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1210 1211 el = root_el; 1212 while (el->l_tree_depth) { 1213 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1214 ocfs2_error(inode->i_sb, 1215 "Inode %llu has empty extent list at " 1216 "depth %u\n", 1217 (unsigned long long)oi->ip_blkno, 1218 le16_to_cpu(el->l_tree_depth)); 1219 ret = -EROFS; 1220 goto out; 1221 1222 } 1223 1224 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) { 1225 rec = &el->l_recs[i]; 1226 1227 /* 1228 * In the case that cpos is off the allocation 1229 * tree, this should just wind up returning the 1230 * rightmost record. 1231 */ 1232 range = le32_to_cpu(rec->e_cpos) + 1233 ocfs2_rec_clusters(el, rec); 1234 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 1235 break; 1236 } 1237 1238 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1239 if (blkno == 0) { 1240 ocfs2_error(inode->i_sb, 1241 "Inode %llu has bad blkno in extent list " 1242 "at depth %u (index %d)\n", 1243 (unsigned long long)oi->ip_blkno, 1244 le16_to_cpu(el->l_tree_depth), i); 1245 ret = -EROFS; 1246 goto out; 1247 } 1248 1249 brelse(bh); 1250 bh = NULL; 1251 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), blkno, 1252 &bh, OCFS2_BH_CACHED, inode); 1253 if (ret) { 1254 mlog_errno(ret); 1255 goto out; 1256 } 1257 1258 eb = (struct ocfs2_extent_block *) bh->b_data; 1259 el = &eb->h_list; 1260 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 1261 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); 1262 ret = -EIO; 1263 goto out; 1264 } 1265 1266 if (le16_to_cpu(el->l_next_free_rec) > 1267 le16_to_cpu(el->l_count)) { 1268 ocfs2_error(inode->i_sb, 1269 "Inode %llu has bad count in extent list " 1270 "at block %llu (next free=%u, count=%u)\n", 1271 (unsigned long long)oi->ip_blkno, 1272 (unsigned long long)bh->b_blocknr, 1273 le16_to_cpu(el->l_next_free_rec), 1274 le16_to_cpu(el->l_count)); 1275 ret = -EROFS; 1276 goto out; 1277 } 1278 1279 if (func) 1280 func(data, bh); 1281 } 1282 1283 out: 1284 /* 1285 * Catch any trailing bh that the loop didn't handle. 1286 */ 1287 brelse(bh); 1288 1289 return ret; 1290 } 1291 1292 /* 1293 * Given an initialized path (that is, it has a valid root extent 1294 * list), this function will traverse the btree in search of the path 1295 * which would contain cpos. 1296 * 1297 * The path traveled is recorded in the path structure. 1298 * 1299 * Note that this will not do any comparisons on leaf node extent 1300 * records, so it will work fine in the case that we just added a tree 1301 * branch. 1302 */ 1303 struct find_path_data { 1304 int index; 1305 struct ocfs2_path *path; 1306 }; 1307 static void find_path_ins(void *data, struct buffer_head *bh) 1308 { 1309 struct find_path_data *fp = data; 1310 1311 get_bh(bh); 1312 ocfs2_path_insert_eb(fp->path, fp->index, bh); 1313 fp->index++; 1314 } 1315 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path, 1316 u32 cpos) 1317 { 1318 struct find_path_data data; 1319 1320 data.index = 1; 1321 data.path = path; 1322 return __ocfs2_find_path(inode, path_root_el(path), cpos, 1323 find_path_ins, &data); 1324 } 1325 1326 static void find_leaf_ins(void *data, struct buffer_head *bh) 1327 { 1328 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data; 1329 struct ocfs2_extent_list *el = &eb->h_list; 1330 struct buffer_head **ret = data; 1331 1332 /* We want to retain only the leaf block. */ 1333 if (le16_to_cpu(el->l_tree_depth) == 0) { 1334 get_bh(bh); 1335 *ret = bh; 1336 } 1337 } 1338 /* 1339 * Find the leaf block in the tree which would contain cpos. No 1340 * checking of the actual leaf is done. 1341 * 1342 * Some paths want to call this instead of allocating a path structure 1343 * and calling ocfs2_find_path(). 1344 * 1345 * This function doesn't handle non btree extent lists. 1346 */ 1347 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el, 1348 u32 cpos, struct buffer_head **leaf_bh) 1349 { 1350 int ret; 1351 struct buffer_head *bh = NULL; 1352 1353 ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh); 1354 if (ret) { 1355 mlog_errno(ret); 1356 goto out; 1357 } 1358 1359 *leaf_bh = bh; 1360 out: 1361 return ret; 1362 } 1363 1364 /* 1365 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation. 1366 * 1367 * Basically, we've moved stuff around at the bottom of the tree and 1368 * we need to fix up the extent records above the changes to reflect 1369 * the new changes. 1370 * 1371 * left_rec: the record on the left. 1372 * left_child_el: is the child list pointed to by left_rec 1373 * right_rec: the record to the right of left_rec 1374 * right_child_el: is the child list pointed to by right_rec 1375 * 1376 * By definition, this only works on interior nodes. 1377 */ 1378 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec, 1379 struct ocfs2_extent_list *left_child_el, 1380 struct ocfs2_extent_rec *right_rec, 1381 struct ocfs2_extent_list *right_child_el) 1382 { 1383 u32 left_clusters, right_end; 1384 1385 /* 1386 * Interior nodes never have holes. Their cpos is the cpos of 1387 * the leftmost record in their child list. Their cluster 1388 * count covers the full theoretical range of their child list 1389 * - the range between their cpos and the cpos of the record 1390 * immediately to their right. 1391 */ 1392 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos); 1393 if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) { 1394 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1); 1395 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos); 1396 } 1397 left_clusters -= le32_to_cpu(left_rec->e_cpos); 1398 left_rec->e_int_clusters = cpu_to_le32(left_clusters); 1399 1400 /* 1401 * Calculate the rightmost cluster count boundary before 1402 * moving cpos - we will need to adjust clusters after 1403 * updating e_cpos to keep the same highest cluster count. 1404 */ 1405 right_end = le32_to_cpu(right_rec->e_cpos); 1406 right_end += le32_to_cpu(right_rec->e_int_clusters); 1407 1408 right_rec->e_cpos = left_rec->e_cpos; 1409 le32_add_cpu(&right_rec->e_cpos, left_clusters); 1410 1411 right_end -= le32_to_cpu(right_rec->e_cpos); 1412 right_rec->e_int_clusters = cpu_to_le32(right_end); 1413 } 1414 1415 /* 1416 * Adjust the adjacent root node records involved in a 1417 * rotation. left_el_blkno is passed in as a key so that we can easily 1418 * find it's index in the root list. 1419 */ 1420 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el, 1421 struct ocfs2_extent_list *left_el, 1422 struct ocfs2_extent_list *right_el, 1423 u64 left_el_blkno) 1424 { 1425 int i; 1426 1427 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <= 1428 le16_to_cpu(left_el->l_tree_depth)); 1429 1430 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) { 1431 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno) 1432 break; 1433 } 1434 1435 /* 1436 * The path walking code should have never returned a root and 1437 * two paths which are not adjacent. 1438 */ 1439 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1)); 1440 1441 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el, 1442 &root_el->l_recs[i + 1], right_el); 1443 } 1444 1445 /* 1446 * We've changed a leaf block (in right_path) and need to reflect that 1447 * change back up the subtree. 1448 * 1449 * This happens in multiple places: 1450 * - When we've moved an extent record from the left path leaf to the right 1451 * path leaf to make room for an empty extent in the left path leaf. 1452 * - When our insert into the right path leaf is at the leftmost edge 1453 * and requires an update of the path immediately to it's left. This 1454 * can occur at the end of some types of rotation and appending inserts. 1455 */ 1456 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle, 1457 struct ocfs2_path *left_path, 1458 struct ocfs2_path *right_path, 1459 int subtree_index) 1460 { 1461 int ret, i, idx; 1462 struct ocfs2_extent_list *el, *left_el, *right_el; 1463 struct ocfs2_extent_rec *left_rec, *right_rec; 1464 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 1465 1466 /* 1467 * Update the counts and position values within all the 1468 * interior nodes to reflect the leaf rotation we just did. 1469 * 1470 * The root node is handled below the loop. 1471 * 1472 * We begin the loop with right_el and left_el pointing to the 1473 * leaf lists and work our way up. 1474 * 1475 * NOTE: within this loop, left_el and right_el always refer 1476 * to the *child* lists. 1477 */ 1478 left_el = path_leaf_el(left_path); 1479 right_el = path_leaf_el(right_path); 1480 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) { 1481 mlog(0, "Adjust records at index %u\n", i); 1482 1483 /* 1484 * One nice property of knowing that all of these 1485 * nodes are below the root is that we only deal with 1486 * the leftmost right node record and the rightmost 1487 * left node record. 1488 */ 1489 el = left_path->p_node[i].el; 1490 idx = le16_to_cpu(left_el->l_next_free_rec) - 1; 1491 left_rec = &el->l_recs[idx]; 1492 1493 el = right_path->p_node[i].el; 1494 right_rec = &el->l_recs[0]; 1495 1496 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec, 1497 right_el); 1498 1499 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh); 1500 if (ret) 1501 mlog_errno(ret); 1502 1503 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh); 1504 if (ret) 1505 mlog_errno(ret); 1506 1507 /* 1508 * Setup our list pointers now so that the current 1509 * parents become children in the next iteration. 1510 */ 1511 left_el = left_path->p_node[i].el; 1512 right_el = right_path->p_node[i].el; 1513 } 1514 1515 /* 1516 * At the root node, adjust the two adjacent records which 1517 * begin our path to the leaves. 1518 */ 1519 1520 el = left_path->p_node[subtree_index].el; 1521 left_el = left_path->p_node[subtree_index + 1].el; 1522 right_el = right_path->p_node[subtree_index + 1].el; 1523 1524 ocfs2_adjust_root_records(el, left_el, right_el, 1525 left_path->p_node[subtree_index + 1].bh->b_blocknr); 1526 1527 root_bh = left_path->p_node[subtree_index].bh; 1528 1529 ret = ocfs2_journal_dirty(handle, root_bh); 1530 if (ret) 1531 mlog_errno(ret); 1532 } 1533 1534 static int ocfs2_rotate_subtree_right(struct inode *inode, 1535 handle_t *handle, 1536 struct ocfs2_path *left_path, 1537 struct ocfs2_path *right_path, 1538 int subtree_index) 1539 { 1540 int ret, i; 1541 struct buffer_head *right_leaf_bh; 1542 struct buffer_head *left_leaf_bh = NULL; 1543 struct buffer_head *root_bh; 1544 struct ocfs2_extent_list *right_el, *left_el; 1545 struct ocfs2_extent_rec move_rec; 1546 1547 left_leaf_bh = path_leaf_bh(left_path); 1548 left_el = path_leaf_el(left_path); 1549 1550 if (left_el->l_next_free_rec != left_el->l_count) { 1551 ocfs2_error(inode->i_sb, 1552 "Inode %llu has non-full interior leaf node %llu" 1553 "(next free = %u)", 1554 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1555 (unsigned long long)left_leaf_bh->b_blocknr, 1556 le16_to_cpu(left_el->l_next_free_rec)); 1557 return -EROFS; 1558 } 1559 1560 /* 1561 * This extent block may already have an empty record, so we 1562 * return early if so. 1563 */ 1564 if (ocfs2_is_empty_extent(&left_el->l_recs[0])) 1565 return 0; 1566 1567 root_bh = left_path->p_node[subtree_index].bh; 1568 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 1569 1570 ret = ocfs2_journal_access(handle, inode, root_bh, 1571 OCFS2_JOURNAL_ACCESS_WRITE); 1572 if (ret) { 1573 mlog_errno(ret); 1574 goto out; 1575 } 1576 1577 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 1578 ret = ocfs2_journal_access(handle, inode, 1579 right_path->p_node[i].bh, 1580 OCFS2_JOURNAL_ACCESS_WRITE); 1581 if (ret) { 1582 mlog_errno(ret); 1583 goto out; 1584 } 1585 1586 ret = ocfs2_journal_access(handle, inode, 1587 left_path->p_node[i].bh, 1588 OCFS2_JOURNAL_ACCESS_WRITE); 1589 if (ret) { 1590 mlog_errno(ret); 1591 goto out; 1592 } 1593 } 1594 1595 right_leaf_bh = path_leaf_bh(right_path); 1596 right_el = path_leaf_el(right_path); 1597 1598 /* This is a code error, not a disk corruption. */ 1599 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails " 1600 "because rightmost leaf block %llu is empty\n", 1601 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1602 (unsigned long long)right_leaf_bh->b_blocknr); 1603 1604 ocfs2_create_empty_extent(right_el); 1605 1606 ret = ocfs2_journal_dirty(handle, right_leaf_bh); 1607 if (ret) { 1608 mlog_errno(ret); 1609 goto out; 1610 } 1611 1612 /* Do the copy now. */ 1613 i = le16_to_cpu(left_el->l_next_free_rec) - 1; 1614 move_rec = left_el->l_recs[i]; 1615 right_el->l_recs[0] = move_rec; 1616 1617 /* 1618 * Clear out the record we just copied and shift everything 1619 * over, leaving an empty extent in the left leaf. 1620 * 1621 * We temporarily subtract from next_free_rec so that the 1622 * shift will lose the tail record (which is now defunct). 1623 */ 1624 le16_add_cpu(&left_el->l_next_free_rec, -1); 1625 ocfs2_shift_records_right(left_el); 1626 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 1627 le16_add_cpu(&left_el->l_next_free_rec, 1); 1628 1629 ret = ocfs2_journal_dirty(handle, left_leaf_bh); 1630 if (ret) { 1631 mlog_errno(ret); 1632 goto out; 1633 } 1634 1635 ocfs2_complete_edge_insert(inode, handle, left_path, right_path, 1636 subtree_index); 1637 1638 out: 1639 return ret; 1640 } 1641 1642 /* 1643 * Given a full path, determine what cpos value would return us a path 1644 * containing the leaf immediately to the left of the current one. 1645 * 1646 * Will return zero if the path passed in is already the leftmost path. 1647 */ 1648 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb, 1649 struct ocfs2_path *path, u32 *cpos) 1650 { 1651 int i, j, ret = 0; 1652 u64 blkno; 1653 struct ocfs2_extent_list *el; 1654 1655 BUG_ON(path->p_tree_depth == 0); 1656 1657 *cpos = 0; 1658 1659 blkno = path_leaf_bh(path)->b_blocknr; 1660 1661 /* Start at the tree node just above the leaf and work our way up. */ 1662 i = path->p_tree_depth - 1; 1663 while (i >= 0) { 1664 el = path->p_node[i].el; 1665 1666 /* 1667 * Find the extent record just before the one in our 1668 * path. 1669 */ 1670 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 1671 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 1672 if (j == 0) { 1673 if (i == 0) { 1674 /* 1675 * We've determined that the 1676 * path specified is already 1677 * the leftmost one - return a 1678 * cpos of zero. 1679 */ 1680 goto out; 1681 } 1682 /* 1683 * The leftmost record points to our 1684 * leaf - we need to travel up the 1685 * tree one level. 1686 */ 1687 goto next_node; 1688 } 1689 1690 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos); 1691 *cpos = *cpos + ocfs2_rec_clusters(el, 1692 &el->l_recs[j - 1]); 1693 *cpos = *cpos - 1; 1694 goto out; 1695 } 1696 } 1697 1698 /* 1699 * If we got here, we never found a valid node where 1700 * the tree indicated one should be. 1701 */ 1702 ocfs2_error(sb, 1703 "Invalid extent tree at extent block %llu\n", 1704 (unsigned long long)blkno); 1705 ret = -EROFS; 1706 goto out; 1707 1708 next_node: 1709 blkno = path->p_node[i].bh->b_blocknr; 1710 i--; 1711 } 1712 1713 out: 1714 return ret; 1715 } 1716 1717 /* 1718 * Extend the transaction by enough credits to complete the rotation, 1719 * and still leave at least the original number of credits allocated 1720 * to this transaction. 1721 */ 1722 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth, 1723 int op_credits, 1724 struct ocfs2_path *path) 1725 { 1726 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits; 1727 1728 if (handle->h_buffer_credits < credits) 1729 return ocfs2_extend_trans(handle, credits); 1730 1731 return 0; 1732 } 1733 1734 /* 1735 * Trap the case where we're inserting into the theoretical range past 1736 * the _actual_ left leaf range. Otherwise, we'll rotate a record 1737 * whose cpos is less than ours into the right leaf. 1738 * 1739 * It's only necessary to look at the rightmost record of the left 1740 * leaf because the logic that calls us should ensure that the 1741 * theoretical ranges in the path components above the leaves are 1742 * correct. 1743 */ 1744 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path, 1745 u32 insert_cpos) 1746 { 1747 struct ocfs2_extent_list *left_el; 1748 struct ocfs2_extent_rec *rec; 1749 int next_free; 1750 1751 left_el = path_leaf_el(left_path); 1752 next_free = le16_to_cpu(left_el->l_next_free_rec); 1753 rec = &left_el->l_recs[next_free - 1]; 1754 1755 if (insert_cpos > le32_to_cpu(rec->e_cpos)) 1756 return 1; 1757 return 0; 1758 } 1759 1760 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos) 1761 { 1762 int next_free = le16_to_cpu(el->l_next_free_rec); 1763 unsigned int range; 1764 struct ocfs2_extent_rec *rec; 1765 1766 if (next_free == 0) 1767 return 0; 1768 1769 rec = &el->l_recs[0]; 1770 if (ocfs2_is_empty_extent(rec)) { 1771 /* Empty list. */ 1772 if (next_free == 1) 1773 return 0; 1774 rec = &el->l_recs[1]; 1775 } 1776 1777 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 1778 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 1779 return 1; 1780 return 0; 1781 } 1782 1783 /* 1784 * Rotate all the records in a btree right one record, starting at insert_cpos. 1785 * 1786 * The path to the rightmost leaf should be passed in. 1787 * 1788 * The array is assumed to be large enough to hold an entire path (tree depth). 1789 * 1790 * Upon succesful return from this function: 1791 * 1792 * - The 'right_path' array will contain a path to the leaf block 1793 * whose range contains e_cpos. 1794 * - That leaf block will have a single empty extent in list index 0. 1795 * - In the case that the rotation requires a post-insert update, 1796 * *ret_left_path will contain a valid path which can be passed to 1797 * ocfs2_insert_path(). 1798 */ 1799 static int ocfs2_rotate_tree_right(struct inode *inode, 1800 handle_t *handle, 1801 enum ocfs2_split_type split, 1802 u32 insert_cpos, 1803 struct ocfs2_path *right_path, 1804 struct ocfs2_path **ret_left_path) 1805 { 1806 int ret, start, orig_credits = handle->h_buffer_credits; 1807 u32 cpos; 1808 struct ocfs2_path *left_path = NULL; 1809 1810 *ret_left_path = NULL; 1811 1812 left_path = ocfs2_new_path(path_root_bh(right_path), 1813 path_root_el(right_path)); 1814 if (!left_path) { 1815 ret = -ENOMEM; 1816 mlog_errno(ret); 1817 goto out; 1818 } 1819 1820 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos); 1821 if (ret) { 1822 mlog_errno(ret); 1823 goto out; 1824 } 1825 1826 mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos); 1827 1828 /* 1829 * What we want to do here is: 1830 * 1831 * 1) Start with the rightmost path. 1832 * 1833 * 2) Determine a path to the leaf block directly to the left 1834 * of that leaf. 1835 * 1836 * 3) Determine the 'subtree root' - the lowest level tree node 1837 * which contains a path to both leaves. 1838 * 1839 * 4) Rotate the subtree. 1840 * 1841 * 5) Find the next subtree by considering the left path to be 1842 * the new right path. 1843 * 1844 * The check at the top of this while loop also accepts 1845 * insert_cpos == cpos because cpos is only a _theoretical_ 1846 * value to get us the left path - insert_cpos might very well 1847 * be filling that hole. 1848 * 1849 * Stop at a cpos of '0' because we either started at the 1850 * leftmost branch (i.e., a tree with one branch and a 1851 * rotation inside of it), or we've gone as far as we can in 1852 * rotating subtrees. 1853 */ 1854 while (cpos && insert_cpos <= cpos) { 1855 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n", 1856 insert_cpos, cpos); 1857 1858 ret = ocfs2_find_path(inode, left_path, cpos); 1859 if (ret) { 1860 mlog_errno(ret); 1861 goto out; 1862 } 1863 1864 mlog_bug_on_msg(path_leaf_bh(left_path) == 1865 path_leaf_bh(right_path), 1866 "Inode %lu: error during insert of %u " 1867 "(left path cpos %u) results in two identical " 1868 "paths ending at %llu\n", 1869 inode->i_ino, insert_cpos, cpos, 1870 (unsigned long long) 1871 path_leaf_bh(left_path)->b_blocknr); 1872 1873 if (split == SPLIT_NONE && 1874 ocfs2_rotate_requires_path_adjustment(left_path, 1875 insert_cpos)) { 1876 1877 /* 1878 * We've rotated the tree as much as we 1879 * should. The rest is up to 1880 * ocfs2_insert_path() to complete, after the 1881 * record insertion. We indicate this 1882 * situation by returning the left path. 1883 * 1884 * The reason we don't adjust the records here 1885 * before the record insert is that an error 1886 * later might break the rule where a parent 1887 * record e_cpos will reflect the actual 1888 * e_cpos of the 1st nonempty record of the 1889 * child list. 1890 */ 1891 *ret_left_path = left_path; 1892 goto out_ret_path; 1893 } 1894 1895 start = ocfs2_find_subtree_root(inode, left_path, right_path); 1896 1897 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n", 1898 start, 1899 (unsigned long long) right_path->p_node[start].bh->b_blocknr, 1900 right_path->p_tree_depth); 1901 1902 ret = ocfs2_extend_rotate_transaction(handle, start, 1903 orig_credits, right_path); 1904 if (ret) { 1905 mlog_errno(ret); 1906 goto out; 1907 } 1908 1909 ret = ocfs2_rotate_subtree_right(inode, handle, left_path, 1910 right_path, start); 1911 if (ret) { 1912 mlog_errno(ret); 1913 goto out; 1914 } 1915 1916 if (split != SPLIT_NONE && 1917 ocfs2_leftmost_rec_contains(path_leaf_el(right_path), 1918 insert_cpos)) { 1919 /* 1920 * A rotate moves the rightmost left leaf 1921 * record over to the leftmost right leaf 1922 * slot. If we're doing an extent split 1923 * instead of a real insert, then we have to 1924 * check that the extent to be split wasn't 1925 * just moved over. If it was, then we can 1926 * exit here, passing left_path back - 1927 * ocfs2_split_extent() is smart enough to 1928 * search both leaves. 1929 */ 1930 *ret_left_path = left_path; 1931 goto out_ret_path; 1932 } 1933 1934 /* 1935 * There is no need to re-read the next right path 1936 * as we know that it'll be our current left 1937 * path. Optimize by copying values instead. 1938 */ 1939 ocfs2_mv_path(right_path, left_path); 1940 1941 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, 1942 &cpos); 1943 if (ret) { 1944 mlog_errno(ret); 1945 goto out; 1946 } 1947 } 1948 1949 out: 1950 ocfs2_free_path(left_path); 1951 1952 out_ret_path: 1953 return ret; 1954 } 1955 1956 static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle, 1957 struct ocfs2_path *path) 1958 { 1959 int i, idx; 1960 struct ocfs2_extent_rec *rec; 1961 struct ocfs2_extent_list *el; 1962 struct ocfs2_extent_block *eb; 1963 u32 range; 1964 1965 /* Path should always be rightmost. */ 1966 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 1967 BUG_ON(eb->h_next_leaf_blk != 0ULL); 1968 1969 el = &eb->h_list; 1970 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 1971 idx = le16_to_cpu(el->l_next_free_rec) - 1; 1972 rec = &el->l_recs[idx]; 1973 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 1974 1975 for (i = 0; i < path->p_tree_depth; i++) { 1976 el = path->p_node[i].el; 1977 idx = le16_to_cpu(el->l_next_free_rec) - 1; 1978 rec = &el->l_recs[idx]; 1979 1980 rec->e_int_clusters = cpu_to_le32(range); 1981 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos)); 1982 1983 ocfs2_journal_dirty(handle, path->p_node[i].bh); 1984 } 1985 } 1986 1987 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle, 1988 struct ocfs2_cached_dealloc_ctxt *dealloc, 1989 struct ocfs2_path *path, int unlink_start) 1990 { 1991 int ret, i; 1992 struct ocfs2_extent_block *eb; 1993 struct ocfs2_extent_list *el; 1994 struct buffer_head *bh; 1995 1996 for(i = unlink_start; i < path_num_items(path); i++) { 1997 bh = path->p_node[i].bh; 1998 1999 eb = (struct ocfs2_extent_block *)bh->b_data; 2000 /* 2001 * Not all nodes might have had their final count 2002 * decremented by the caller - handle this here. 2003 */ 2004 el = &eb->h_list; 2005 if (le16_to_cpu(el->l_next_free_rec) > 1) { 2006 mlog(ML_ERROR, 2007 "Inode %llu, attempted to remove extent block " 2008 "%llu with %u records\n", 2009 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2010 (unsigned long long)le64_to_cpu(eb->h_blkno), 2011 le16_to_cpu(el->l_next_free_rec)); 2012 2013 ocfs2_journal_dirty(handle, bh); 2014 ocfs2_remove_from_cache(inode, bh); 2015 continue; 2016 } 2017 2018 el->l_next_free_rec = 0; 2019 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2020 2021 ocfs2_journal_dirty(handle, bh); 2022 2023 ret = ocfs2_cache_extent_block_free(dealloc, eb); 2024 if (ret) 2025 mlog_errno(ret); 2026 2027 ocfs2_remove_from_cache(inode, bh); 2028 } 2029 } 2030 2031 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle, 2032 struct ocfs2_path *left_path, 2033 struct ocfs2_path *right_path, 2034 int subtree_index, 2035 struct ocfs2_cached_dealloc_ctxt *dealloc) 2036 { 2037 int i; 2038 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2039 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el; 2040 struct ocfs2_extent_list *el; 2041 struct ocfs2_extent_block *eb; 2042 2043 el = path_leaf_el(left_path); 2044 2045 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data; 2046 2047 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 2048 if (root_el->l_recs[i].e_blkno == eb->h_blkno) 2049 break; 2050 2051 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec)); 2052 2053 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 2054 le16_add_cpu(&root_el->l_next_free_rec, -1); 2055 2056 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2057 eb->h_next_leaf_blk = 0; 2058 2059 ocfs2_journal_dirty(handle, root_bh); 2060 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2061 2062 ocfs2_unlink_path(inode, handle, dealloc, right_path, 2063 subtree_index + 1); 2064 } 2065 2066 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle, 2067 struct ocfs2_path *left_path, 2068 struct ocfs2_path *right_path, 2069 int subtree_index, 2070 struct ocfs2_cached_dealloc_ctxt *dealloc, 2071 int *deleted) 2072 { 2073 int ret, i, del_right_subtree = 0, right_has_empty = 0; 2074 struct buffer_head *root_bh, *di_bh = path_root_bh(right_path); 2075 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 2076 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el; 2077 struct ocfs2_extent_block *eb; 2078 2079 *deleted = 0; 2080 2081 right_leaf_el = path_leaf_el(right_path); 2082 left_leaf_el = path_leaf_el(left_path); 2083 root_bh = left_path->p_node[subtree_index].bh; 2084 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2085 2086 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0])) 2087 return 0; 2088 2089 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data; 2090 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) { 2091 /* 2092 * It's legal for us to proceed if the right leaf is 2093 * the rightmost one and it has an empty extent. There 2094 * are two cases to handle - whether the leaf will be 2095 * empty after removal or not. If the leaf isn't empty 2096 * then just remove the empty extent up front. The 2097 * next block will handle empty leaves by flagging 2098 * them for unlink. 2099 * 2100 * Non rightmost leaves will throw -EAGAIN and the 2101 * caller can manually move the subtree and retry. 2102 */ 2103 2104 if (eb->h_next_leaf_blk != 0ULL) 2105 return -EAGAIN; 2106 2107 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) { 2108 ret = ocfs2_journal_access(handle, inode, 2109 path_leaf_bh(right_path), 2110 OCFS2_JOURNAL_ACCESS_WRITE); 2111 if (ret) { 2112 mlog_errno(ret); 2113 goto out; 2114 } 2115 2116 ocfs2_remove_empty_extent(right_leaf_el); 2117 } else 2118 right_has_empty = 1; 2119 } 2120 2121 if (eb->h_next_leaf_blk == 0ULL && 2122 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) { 2123 /* 2124 * We have to update i_last_eb_blk during the meta 2125 * data delete. 2126 */ 2127 ret = ocfs2_journal_access(handle, inode, di_bh, 2128 OCFS2_JOURNAL_ACCESS_WRITE); 2129 if (ret) { 2130 mlog_errno(ret); 2131 goto out; 2132 } 2133 2134 del_right_subtree = 1; 2135 } 2136 2137 /* 2138 * Getting here with an empty extent in the right path implies 2139 * that it's the rightmost path and will be deleted. 2140 */ 2141 BUG_ON(right_has_empty && !del_right_subtree); 2142 2143 ret = ocfs2_journal_access(handle, inode, root_bh, 2144 OCFS2_JOURNAL_ACCESS_WRITE); 2145 if (ret) { 2146 mlog_errno(ret); 2147 goto out; 2148 } 2149 2150 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2151 ret = ocfs2_journal_access(handle, inode, 2152 right_path->p_node[i].bh, 2153 OCFS2_JOURNAL_ACCESS_WRITE); 2154 if (ret) { 2155 mlog_errno(ret); 2156 goto out; 2157 } 2158 2159 ret = ocfs2_journal_access(handle, inode, 2160 left_path->p_node[i].bh, 2161 OCFS2_JOURNAL_ACCESS_WRITE); 2162 if (ret) { 2163 mlog_errno(ret); 2164 goto out; 2165 } 2166 } 2167 2168 if (!right_has_empty) { 2169 /* 2170 * Only do this if we're moving a real 2171 * record. Otherwise, the action is delayed until 2172 * after removal of the right path in which case we 2173 * can do a simple shift to remove the empty extent. 2174 */ 2175 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]); 2176 memset(&right_leaf_el->l_recs[0], 0, 2177 sizeof(struct ocfs2_extent_rec)); 2178 } 2179 if (eb->h_next_leaf_blk == 0ULL) { 2180 /* 2181 * Move recs over to get rid of empty extent, decrease 2182 * next_free. This is allowed to remove the last 2183 * extent in our leaf (setting l_next_free_rec to 2184 * zero) - the delete code below won't care. 2185 */ 2186 ocfs2_remove_empty_extent(right_leaf_el); 2187 } 2188 2189 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2190 if (ret) 2191 mlog_errno(ret); 2192 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 2193 if (ret) 2194 mlog_errno(ret); 2195 2196 if (del_right_subtree) { 2197 ocfs2_unlink_subtree(inode, handle, left_path, right_path, 2198 subtree_index, dealloc); 2199 ocfs2_update_edge_lengths(inode, handle, left_path); 2200 2201 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2202 di->i_last_eb_blk = eb->h_blkno; 2203 2204 /* 2205 * Removal of the extent in the left leaf was skipped 2206 * above so we could delete the right path 2207 * 1st. 2208 */ 2209 if (right_has_empty) 2210 ocfs2_remove_empty_extent(left_leaf_el); 2211 2212 ret = ocfs2_journal_dirty(handle, di_bh); 2213 if (ret) 2214 mlog_errno(ret); 2215 2216 *deleted = 1; 2217 } else 2218 ocfs2_complete_edge_insert(inode, handle, left_path, right_path, 2219 subtree_index); 2220 2221 out: 2222 return ret; 2223 } 2224 2225 /* 2226 * Given a full path, determine what cpos value would return us a path 2227 * containing the leaf immediately to the right of the current one. 2228 * 2229 * Will return zero if the path passed in is already the rightmost path. 2230 * 2231 * This looks similar, but is subtly different to 2232 * ocfs2_find_cpos_for_left_leaf(). 2233 */ 2234 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb, 2235 struct ocfs2_path *path, u32 *cpos) 2236 { 2237 int i, j, ret = 0; 2238 u64 blkno; 2239 struct ocfs2_extent_list *el; 2240 2241 *cpos = 0; 2242 2243 if (path->p_tree_depth == 0) 2244 return 0; 2245 2246 blkno = path_leaf_bh(path)->b_blocknr; 2247 2248 /* Start at the tree node just above the leaf and work our way up. */ 2249 i = path->p_tree_depth - 1; 2250 while (i >= 0) { 2251 int next_free; 2252 2253 el = path->p_node[i].el; 2254 2255 /* 2256 * Find the extent record just after the one in our 2257 * path. 2258 */ 2259 next_free = le16_to_cpu(el->l_next_free_rec); 2260 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2261 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2262 if (j == (next_free - 1)) { 2263 if (i == 0) { 2264 /* 2265 * We've determined that the 2266 * path specified is already 2267 * the rightmost one - return a 2268 * cpos of zero. 2269 */ 2270 goto out; 2271 } 2272 /* 2273 * The rightmost record points to our 2274 * leaf - we need to travel up the 2275 * tree one level. 2276 */ 2277 goto next_node; 2278 } 2279 2280 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos); 2281 goto out; 2282 } 2283 } 2284 2285 /* 2286 * If we got here, we never found a valid node where 2287 * the tree indicated one should be. 2288 */ 2289 ocfs2_error(sb, 2290 "Invalid extent tree at extent block %llu\n", 2291 (unsigned long long)blkno); 2292 ret = -EROFS; 2293 goto out; 2294 2295 next_node: 2296 blkno = path->p_node[i].bh->b_blocknr; 2297 i--; 2298 } 2299 2300 out: 2301 return ret; 2302 } 2303 2304 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode, 2305 handle_t *handle, 2306 struct buffer_head *bh, 2307 struct ocfs2_extent_list *el) 2308 { 2309 int ret; 2310 2311 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 2312 return 0; 2313 2314 ret = ocfs2_journal_access(handle, inode, bh, 2315 OCFS2_JOURNAL_ACCESS_WRITE); 2316 if (ret) { 2317 mlog_errno(ret); 2318 goto out; 2319 } 2320 2321 ocfs2_remove_empty_extent(el); 2322 2323 ret = ocfs2_journal_dirty(handle, bh); 2324 if (ret) 2325 mlog_errno(ret); 2326 2327 out: 2328 return ret; 2329 } 2330 2331 static int __ocfs2_rotate_tree_left(struct inode *inode, 2332 handle_t *handle, int orig_credits, 2333 struct ocfs2_path *path, 2334 struct ocfs2_cached_dealloc_ctxt *dealloc, 2335 struct ocfs2_path **empty_extent_path) 2336 { 2337 int ret, subtree_root, deleted; 2338 u32 right_cpos; 2339 struct ocfs2_path *left_path = NULL; 2340 struct ocfs2_path *right_path = NULL; 2341 2342 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0]))); 2343 2344 *empty_extent_path = NULL; 2345 2346 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path, 2347 &right_cpos); 2348 if (ret) { 2349 mlog_errno(ret); 2350 goto out; 2351 } 2352 2353 left_path = ocfs2_new_path(path_root_bh(path), 2354 path_root_el(path)); 2355 if (!left_path) { 2356 ret = -ENOMEM; 2357 mlog_errno(ret); 2358 goto out; 2359 } 2360 2361 ocfs2_cp_path(left_path, path); 2362 2363 right_path = ocfs2_new_path(path_root_bh(path), 2364 path_root_el(path)); 2365 if (!right_path) { 2366 ret = -ENOMEM; 2367 mlog_errno(ret); 2368 goto out; 2369 } 2370 2371 while (right_cpos) { 2372 ret = ocfs2_find_path(inode, right_path, right_cpos); 2373 if (ret) { 2374 mlog_errno(ret); 2375 goto out; 2376 } 2377 2378 subtree_root = ocfs2_find_subtree_root(inode, left_path, 2379 right_path); 2380 2381 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n", 2382 subtree_root, 2383 (unsigned long long) 2384 right_path->p_node[subtree_root].bh->b_blocknr, 2385 right_path->p_tree_depth); 2386 2387 ret = ocfs2_extend_rotate_transaction(handle, subtree_root, 2388 orig_credits, left_path); 2389 if (ret) { 2390 mlog_errno(ret); 2391 goto out; 2392 } 2393 2394 ret = ocfs2_rotate_subtree_left(inode, handle, left_path, 2395 right_path, subtree_root, 2396 dealloc, &deleted); 2397 if (ret == -EAGAIN) { 2398 /* 2399 * The rotation has to temporarily stop due to 2400 * the right subtree having an empty 2401 * extent. Pass it back to the caller for a 2402 * fixup. 2403 */ 2404 *empty_extent_path = right_path; 2405 right_path = NULL; 2406 goto out; 2407 } 2408 if (ret) { 2409 mlog_errno(ret); 2410 goto out; 2411 } 2412 2413 /* 2414 * The subtree rotate might have removed records on 2415 * the rightmost edge. If so, then rotation is 2416 * complete. 2417 */ 2418 if (deleted) 2419 break; 2420 2421 ocfs2_mv_path(left_path, right_path); 2422 2423 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path, 2424 &right_cpos); 2425 if (ret) { 2426 mlog_errno(ret); 2427 goto out; 2428 } 2429 } 2430 2431 out: 2432 ocfs2_free_path(right_path); 2433 ocfs2_free_path(left_path); 2434 2435 return ret; 2436 } 2437 2438 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle, 2439 struct ocfs2_path *path, 2440 struct ocfs2_cached_dealloc_ctxt *dealloc) 2441 { 2442 int ret, subtree_index; 2443 u32 cpos; 2444 struct ocfs2_path *left_path = NULL; 2445 struct ocfs2_dinode *di; 2446 struct ocfs2_extent_block *eb; 2447 struct ocfs2_extent_list *el; 2448 2449 /* 2450 * XXX: This code assumes that the root is an inode, which is 2451 * true for now but may change as tree code gets generic. 2452 */ 2453 di = (struct ocfs2_dinode *)path_root_bh(path)->b_data; 2454 if (!OCFS2_IS_VALID_DINODE(di)) { 2455 ret = -EIO; 2456 ocfs2_error(inode->i_sb, 2457 "Inode %llu has invalid path root", 2458 (unsigned long long)OCFS2_I(inode)->ip_blkno); 2459 goto out; 2460 } 2461 2462 /* 2463 * There's two ways we handle this depending on 2464 * whether path is the only existing one. 2465 */ 2466 ret = ocfs2_extend_rotate_transaction(handle, 0, 2467 handle->h_buffer_credits, 2468 path); 2469 if (ret) { 2470 mlog_errno(ret); 2471 goto out; 2472 } 2473 2474 ret = ocfs2_journal_access_path(inode, handle, path); 2475 if (ret) { 2476 mlog_errno(ret); 2477 goto out; 2478 } 2479 2480 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos); 2481 if (ret) { 2482 mlog_errno(ret); 2483 goto out; 2484 } 2485 2486 if (cpos) { 2487 /* 2488 * We have a path to the left of this one - it needs 2489 * an update too. 2490 */ 2491 left_path = ocfs2_new_path(path_root_bh(path), 2492 path_root_el(path)); 2493 if (!left_path) { 2494 ret = -ENOMEM; 2495 mlog_errno(ret); 2496 goto out; 2497 } 2498 2499 ret = ocfs2_find_path(inode, left_path, cpos); 2500 if (ret) { 2501 mlog_errno(ret); 2502 goto out; 2503 } 2504 2505 ret = ocfs2_journal_access_path(inode, handle, left_path); 2506 if (ret) { 2507 mlog_errno(ret); 2508 goto out; 2509 } 2510 2511 subtree_index = ocfs2_find_subtree_root(inode, left_path, path); 2512 2513 ocfs2_unlink_subtree(inode, handle, left_path, path, 2514 subtree_index, dealloc); 2515 ocfs2_update_edge_lengths(inode, handle, left_path); 2516 2517 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2518 di->i_last_eb_blk = eb->h_blkno; 2519 } else { 2520 /* 2521 * 'path' is also the leftmost path which 2522 * means it must be the only one. This gets 2523 * handled differently because we want to 2524 * revert the inode back to having extents 2525 * in-line. 2526 */ 2527 ocfs2_unlink_path(inode, handle, dealloc, path, 1); 2528 2529 el = &di->id2.i_list; 2530 el->l_tree_depth = 0; 2531 el->l_next_free_rec = 0; 2532 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2533 2534 di->i_last_eb_blk = 0; 2535 } 2536 2537 ocfs2_journal_dirty(handle, path_root_bh(path)); 2538 2539 out: 2540 ocfs2_free_path(left_path); 2541 return ret; 2542 } 2543 2544 /* 2545 * Left rotation of btree records. 2546 * 2547 * In many ways, this is (unsurprisingly) the opposite of right 2548 * rotation. We start at some non-rightmost path containing an empty 2549 * extent in the leaf block. The code works its way to the rightmost 2550 * path by rotating records to the left in every subtree. 2551 * 2552 * This is used by any code which reduces the number of extent records 2553 * in a leaf. After removal, an empty record should be placed in the 2554 * leftmost list position. 2555 * 2556 * This won't handle a length update of the rightmost path records if 2557 * the rightmost tree leaf record is removed so the caller is 2558 * responsible for detecting and correcting that. 2559 */ 2560 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle, 2561 struct ocfs2_path *path, 2562 struct ocfs2_cached_dealloc_ctxt *dealloc) 2563 { 2564 int ret, orig_credits = handle->h_buffer_credits; 2565 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL; 2566 struct ocfs2_extent_block *eb; 2567 struct ocfs2_extent_list *el; 2568 2569 el = path_leaf_el(path); 2570 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 2571 return 0; 2572 2573 if (path->p_tree_depth == 0) { 2574 rightmost_no_delete: 2575 /* 2576 * In-inode extents. This is trivially handled, so do 2577 * it up front. 2578 */ 2579 ret = ocfs2_rotate_rightmost_leaf_left(inode, handle, 2580 path_leaf_bh(path), 2581 path_leaf_el(path)); 2582 if (ret) 2583 mlog_errno(ret); 2584 goto out; 2585 } 2586 2587 /* 2588 * Handle rightmost branch now. There's several cases: 2589 * 1) simple rotation leaving records in there. That's trivial. 2590 * 2) rotation requiring a branch delete - there's no more 2591 * records left. Two cases of this: 2592 * a) There are branches to the left. 2593 * b) This is also the leftmost (the only) branch. 2594 * 2595 * 1) is handled via ocfs2_rotate_rightmost_leaf_left() 2596 * 2a) we need the left branch so that we can update it with the unlink 2597 * 2b) we need to bring the inode back to inline extents. 2598 */ 2599 2600 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 2601 el = &eb->h_list; 2602 if (eb->h_next_leaf_blk == 0) { 2603 /* 2604 * This gets a bit tricky if we're going to delete the 2605 * rightmost path. Get the other cases out of the way 2606 * 1st. 2607 */ 2608 if (le16_to_cpu(el->l_next_free_rec) > 1) 2609 goto rightmost_no_delete; 2610 2611 if (le16_to_cpu(el->l_next_free_rec) == 0) { 2612 ret = -EIO; 2613 ocfs2_error(inode->i_sb, 2614 "Inode %llu has empty extent block at %llu", 2615 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2616 (unsigned long long)le64_to_cpu(eb->h_blkno)); 2617 goto out; 2618 } 2619 2620 /* 2621 * XXX: The caller can not trust "path" any more after 2622 * this as it will have been deleted. What do we do? 2623 * 2624 * In theory the rotate-for-merge code will never get 2625 * here because it'll always ask for a rotate in a 2626 * nonempty list. 2627 */ 2628 2629 ret = ocfs2_remove_rightmost_path(inode, handle, path, 2630 dealloc); 2631 if (ret) 2632 mlog_errno(ret); 2633 goto out; 2634 } 2635 2636 /* 2637 * Now we can loop, remembering the path we get from -EAGAIN 2638 * and restarting from there. 2639 */ 2640 try_rotate: 2641 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path, 2642 dealloc, &restart_path); 2643 if (ret && ret != -EAGAIN) { 2644 mlog_errno(ret); 2645 goto out; 2646 } 2647 2648 while (ret == -EAGAIN) { 2649 tmp_path = restart_path; 2650 restart_path = NULL; 2651 2652 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, 2653 tmp_path, dealloc, 2654 &restart_path); 2655 if (ret && ret != -EAGAIN) { 2656 mlog_errno(ret); 2657 goto out; 2658 } 2659 2660 ocfs2_free_path(tmp_path); 2661 tmp_path = NULL; 2662 2663 if (ret == 0) 2664 goto try_rotate; 2665 } 2666 2667 out: 2668 ocfs2_free_path(tmp_path); 2669 ocfs2_free_path(restart_path); 2670 return ret; 2671 } 2672 2673 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el, 2674 int index) 2675 { 2676 struct ocfs2_extent_rec *rec = &el->l_recs[index]; 2677 unsigned int size; 2678 2679 if (rec->e_leaf_clusters == 0) { 2680 /* 2681 * We consumed all of the merged-from record. An empty 2682 * extent cannot exist anywhere but the 1st array 2683 * position, so move things over if the merged-from 2684 * record doesn't occupy that position. 2685 * 2686 * This creates a new empty extent so the caller 2687 * should be smart enough to have removed any existing 2688 * ones. 2689 */ 2690 if (index > 0) { 2691 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 2692 size = index * sizeof(struct ocfs2_extent_rec); 2693 memmove(&el->l_recs[1], &el->l_recs[0], size); 2694 } 2695 2696 /* 2697 * Always memset - the caller doesn't check whether it 2698 * created an empty extent, so there could be junk in 2699 * the other fields. 2700 */ 2701 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2702 } 2703 } 2704 2705 /* 2706 * Remove split_rec clusters from the record at index and merge them 2707 * onto the beginning of the record at index + 1. 2708 */ 2709 static int ocfs2_merge_rec_right(struct inode *inode, struct buffer_head *bh, 2710 handle_t *handle, 2711 struct ocfs2_extent_rec *split_rec, 2712 struct ocfs2_extent_list *el, int index) 2713 { 2714 int ret; 2715 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 2716 struct ocfs2_extent_rec *left_rec; 2717 struct ocfs2_extent_rec *right_rec; 2718 2719 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec)); 2720 2721 left_rec = &el->l_recs[index]; 2722 right_rec = &el->l_recs[index + 1]; 2723 2724 ret = ocfs2_journal_access(handle, inode, bh, 2725 OCFS2_JOURNAL_ACCESS_WRITE); 2726 if (ret) { 2727 mlog_errno(ret); 2728 goto out; 2729 } 2730 2731 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters); 2732 2733 le32_add_cpu(&right_rec->e_cpos, -split_clusters); 2734 le64_add_cpu(&right_rec->e_blkno, 2735 -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters)); 2736 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters); 2737 2738 ocfs2_cleanup_merge(el, index); 2739 2740 ret = ocfs2_journal_dirty(handle, bh); 2741 if (ret) 2742 mlog_errno(ret); 2743 2744 out: 2745 return ret; 2746 } 2747 2748 /* 2749 * Remove split_rec clusters from the record at index and merge them 2750 * onto the tail of the record at index - 1. 2751 */ 2752 static int ocfs2_merge_rec_left(struct inode *inode, struct buffer_head *bh, 2753 handle_t *handle, 2754 struct ocfs2_extent_rec *split_rec, 2755 struct ocfs2_extent_list *el, int index) 2756 { 2757 int ret, has_empty_extent = 0; 2758 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 2759 struct ocfs2_extent_rec *left_rec; 2760 struct ocfs2_extent_rec *right_rec; 2761 2762 BUG_ON(index <= 0); 2763 2764 left_rec = &el->l_recs[index - 1]; 2765 right_rec = &el->l_recs[index]; 2766 if (ocfs2_is_empty_extent(&el->l_recs[0])) 2767 has_empty_extent = 1; 2768 2769 ret = ocfs2_journal_access(handle, inode, bh, 2770 OCFS2_JOURNAL_ACCESS_WRITE); 2771 if (ret) { 2772 mlog_errno(ret); 2773 goto out; 2774 } 2775 2776 if (has_empty_extent && index == 1) { 2777 /* 2778 * The easy case - we can just plop the record right in. 2779 */ 2780 *left_rec = *split_rec; 2781 2782 has_empty_extent = 0; 2783 } else { 2784 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters); 2785 } 2786 2787 le32_add_cpu(&right_rec->e_cpos, split_clusters); 2788 le64_add_cpu(&right_rec->e_blkno, 2789 ocfs2_clusters_to_blocks(inode->i_sb, split_clusters)); 2790 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters); 2791 2792 ocfs2_cleanup_merge(el, index); 2793 2794 ret = ocfs2_journal_dirty(handle, bh); 2795 if (ret) 2796 mlog_errno(ret); 2797 2798 out: 2799 return ret; 2800 } 2801 2802 static int ocfs2_try_to_merge_extent(struct inode *inode, 2803 handle_t *handle, 2804 struct ocfs2_path *left_path, 2805 int split_index, 2806 struct ocfs2_extent_rec *split_rec, 2807 struct ocfs2_cached_dealloc_ctxt *dealloc, 2808 struct ocfs2_merge_ctxt *ctxt) 2809 2810 { 2811 int ret = 0, delete_tail_recs = 0; 2812 struct ocfs2_extent_list *el = path_leaf_el(left_path); 2813 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 2814 2815 BUG_ON(ctxt->c_contig_type == CONTIG_NONE); 2816 2817 if (ctxt->c_split_covers_rec) { 2818 delete_tail_recs++; 2819 2820 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT || 2821 ctxt->c_has_empty_extent) 2822 delete_tail_recs++; 2823 2824 if (ctxt->c_has_empty_extent) { 2825 /* 2826 * The merge code will need to create an empty 2827 * extent to take the place of the newly 2828 * emptied slot. Remove any pre-existing empty 2829 * extents - having more than one in a leaf is 2830 * illegal. 2831 */ 2832 ret = ocfs2_rotate_tree_left(inode, handle, left_path, 2833 dealloc); 2834 if (ret) { 2835 mlog_errno(ret); 2836 goto out; 2837 } 2838 split_index--; 2839 rec = &el->l_recs[split_index]; 2840 } 2841 } 2842 2843 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) { 2844 /* 2845 * Left-right contig implies this. 2846 */ 2847 BUG_ON(!ctxt->c_split_covers_rec); 2848 BUG_ON(split_index == 0); 2849 2850 /* 2851 * Since the leftright insert always covers the entire 2852 * extent, this call will delete the insert record 2853 * entirely, resulting in an empty extent record added to 2854 * the extent block. 2855 * 2856 * Since the adding of an empty extent shifts 2857 * everything back to the right, there's no need to 2858 * update split_index here. 2859 */ 2860 ret = ocfs2_merge_rec_left(inode, path_leaf_bh(left_path), 2861 handle, split_rec, el, split_index); 2862 if (ret) { 2863 mlog_errno(ret); 2864 goto out; 2865 } 2866 2867 /* 2868 * We can only get this from logic error above. 2869 */ 2870 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0])); 2871 2872 /* 2873 * The left merge left us with an empty extent, remove 2874 * it. 2875 */ 2876 ret = ocfs2_rotate_tree_left(inode, handle, left_path, dealloc); 2877 if (ret) { 2878 mlog_errno(ret); 2879 goto out; 2880 } 2881 split_index--; 2882 rec = &el->l_recs[split_index]; 2883 2884 /* 2885 * Note that we don't pass split_rec here on purpose - 2886 * we've merged it into the left side. 2887 */ 2888 ret = ocfs2_merge_rec_right(inode, path_leaf_bh(left_path), 2889 handle, rec, el, split_index); 2890 if (ret) { 2891 mlog_errno(ret); 2892 goto out; 2893 } 2894 2895 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0])); 2896 2897 ret = ocfs2_rotate_tree_left(inode, handle, left_path, 2898 dealloc); 2899 /* 2900 * Error from this last rotate is not critical, so 2901 * print but don't bubble it up. 2902 */ 2903 if (ret) 2904 mlog_errno(ret); 2905 ret = 0; 2906 } else { 2907 /* 2908 * Merge a record to the left or right. 2909 * 2910 * 'contig_type' is relative to the existing record, 2911 * so for example, if we're "right contig", it's to 2912 * the record on the left (hence the left merge). 2913 */ 2914 if (ctxt->c_contig_type == CONTIG_RIGHT) { 2915 ret = ocfs2_merge_rec_left(inode, 2916 path_leaf_bh(left_path), 2917 handle, split_rec, el, 2918 split_index); 2919 if (ret) { 2920 mlog_errno(ret); 2921 goto out; 2922 } 2923 } else { 2924 ret = ocfs2_merge_rec_right(inode, 2925 path_leaf_bh(left_path), 2926 handle, split_rec, el, 2927 split_index); 2928 if (ret) { 2929 mlog_errno(ret); 2930 goto out; 2931 } 2932 } 2933 2934 if (ctxt->c_split_covers_rec) { 2935 /* 2936 * The merge may have left an empty extent in 2937 * our leaf. Try to rotate it away. 2938 */ 2939 ret = ocfs2_rotate_tree_left(inode, handle, left_path, 2940 dealloc); 2941 if (ret) 2942 mlog_errno(ret); 2943 ret = 0; 2944 } 2945 } 2946 2947 out: 2948 return ret; 2949 } 2950 2951 static void ocfs2_subtract_from_rec(struct super_block *sb, 2952 enum ocfs2_split_type split, 2953 struct ocfs2_extent_rec *rec, 2954 struct ocfs2_extent_rec *split_rec) 2955 { 2956 u64 len_blocks; 2957 2958 len_blocks = ocfs2_clusters_to_blocks(sb, 2959 le16_to_cpu(split_rec->e_leaf_clusters)); 2960 2961 if (split == SPLIT_LEFT) { 2962 /* 2963 * Region is on the left edge of the existing 2964 * record. 2965 */ 2966 le32_add_cpu(&rec->e_cpos, 2967 le16_to_cpu(split_rec->e_leaf_clusters)); 2968 le64_add_cpu(&rec->e_blkno, len_blocks); 2969 le16_add_cpu(&rec->e_leaf_clusters, 2970 -le16_to_cpu(split_rec->e_leaf_clusters)); 2971 } else { 2972 /* 2973 * Region is on the right edge of the existing 2974 * record. 2975 */ 2976 le16_add_cpu(&rec->e_leaf_clusters, 2977 -le16_to_cpu(split_rec->e_leaf_clusters)); 2978 } 2979 } 2980 2981 /* 2982 * Do the final bits of extent record insertion at the target leaf 2983 * list. If this leaf is part of an allocation tree, it is assumed 2984 * that the tree above has been prepared. 2985 */ 2986 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec, 2987 struct ocfs2_extent_list *el, 2988 struct ocfs2_insert_type *insert, 2989 struct inode *inode) 2990 { 2991 int i = insert->ins_contig_index; 2992 unsigned int range; 2993 struct ocfs2_extent_rec *rec; 2994 2995 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 2996 2997 if (insert->ins_split != SPLIT_NONE) { 2998 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos)); 2999 BUG_ON(i == -1); 3000 rec = &el->l_recs[i]; 3001 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec, 3002 insert_rec); 3003 goto rotate; 3004 } 3005 3006 /* 3007 * Contiguous insert - either left or right. 3008 */ 3009 if (insert->ins_contig != CONTIG_NONE) { 3010 rec = &el->l_recs[i]; 3011 if (insert->ins_contig == CONTIG_LEFT) { 3012 rec->e_blkno = insert_rec->e_blkno; 3013 rec->e_cpos = insert_rec->e_cpos; 3014 } 3015 le16_add_cpu(&rec->e_leaf_clusters, 3016 le16_to_cpu(insert_rec->e_leaf_clusters)); 3017 return; 3018 } 3019 3020 /* 3021 * Handle insert into an empty leaf. 3022 */ 3023 if (le16_to_cpu(el->l_next_free_rec) == 0 || 3024 ((le16_to_cpu(el->l_next_free_rec) == 1) && 3025 ocfs2_is_empty_extent(&el->l_recs[0]))) { 3026 el->l_recs[0] = *insert_rec; 3027 el->l_next_free_rec = cpu_to_le16(1); 3028 return; 3029 } 3030 3031 /* 3032 * Appending insert. 3033 */ 3034 if (insert->ins_appending == APPEND_TAIL) { 3035 i = le16_to_cpu(el->l_next_free_rec) - 1; 3036 rec = &el->l_recs[i]; 3037 range = le32_to_cpu(rec->e_cpos) 3038 + le16_to_cpu(rec->e_leaf_clusters); 3039 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range); 3040 3041 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >= 3042 le16_to_cpu(el->l_count), 3043 "inode %lu, depth %u, count %u, next free %u, " 3044 "rec.cpos %u, rec.clusters %u, " 3045 "insert.cpos %u, insert.clusters %u\n", 3046 inode->i_ino, 3047 le16_to_cpu(el->l_tree_depth), 3048 le16_to_cpu(el->l_count), 3049 le16_to_cpu(el->l_next_free_rec), 3050 le32_to_cpu(el->l_recs[i].e_cpos), 3051 le16_to_cpu(el->l_recs[i].e_leaf_clusters), 3052 le32_to_cpu(insert_rec->e_cpos), 3053 le16_to_cpu(insert_rec->e_leaf_clusters)); 3054 i++; 3055 el->l_recs[i] = *insert_rec; 3056 le16_add_cpu(&el->l_next_free_rec, 1); 3057 return; 3058 } 3059 3060 rotate: 3061 /* 3062 * Ok, we have to rotate. 3063 * 3064 * At this point, it is safe to assume that inserting into an 3065 * empty leaf and appending to a leaf have both been handled 3066 * above. 3067 * 3068 * This leaf needs to have space, either by the empty 1st 3069 * extent record, or by virtue of an l_next_rec < l_count. 3070 */ 3071 ocfs2_rotate_leaf(el, insert_rec); 3072 } 3073 3074 static inline void ocfs2_update_dinode_clusters(struct inode *inode, 3075 struct ocfs2_dinode *di, 3076 u32 clusters) 3077 { 3078 le32_add_cpu(&di->i_clusters, clusters); 3079 spin_lock(&OCFS2_I(inode)->ip_lock); 3080 OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters); 3081 spin_unlock(&OCFS2_I(inode)->ip_lock); 3082 } 3083 3084 static void ocfs2_adjust_rightmost_records(struct inode *inode, 3085 handle_t *handle, 3086 struct ocfs2_path *path, 3087 struct ocfs2_extent_rec *insert_rec) 3088 { 3089 int ret, i, next_free; 3090 struct buffer_head *bh; 3091 struct ocfs2_extent_list *el; 3092 struct ocfs2_extent_rec *rec; 3093 3094 /* 3095 * Update everything except the leaf block. 3096 */ 3097 for (i = 0; i < path->p_tree_depth; i++) { 3098 bh = path->p_node[i].bh; 3099 el = path->p_node[i].el; 3100 3101 next_free = le16_to_cpu(el->l_next_free_rec); 3102 if (next_free == 0) { 3103 ocfs2_error(inode->i_sb, 3104 "Dinode %llu has a bad extent list", 3105 (unsigned long long)OCFS2_I(inode)->ip_blkno); 3106 ret = -EIO; 3107 return; 3108 } 3109 3110 rec = &el->l_recs[next_free - 1]; 3111 3112 rec->e_int_clusters = insert_rec->e_cpos; 3113 le32_add_cpu(&rec->e_int_clusters, 3114 le16_to_cpu(insert_rec->e_leaf_clusters)); 3115 le32_add_cpu(&rec->e_int_clusters, 3116 -le32_to_cpu(rec->e_cpos)); 3117 3118 ret = ocfs2_journal_dirty(handle, bh); 3119 if (ret) 3120 mlog_errno(ret); 3121 3122 } 3123 } 3124 3125 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle, 3126 struct ocfs2_extent_rec *insert_rec, 3127 struct ocfs2_path *right_path, 3128 struct ocfs2_path **ret_left_path) 3129 { 3130 int ret, next_free; 3131 struct ocfs2_extent_list *el; 3132 struct ocfs2_path *left_path = NULL; 3133 3134 *ret_left_path = NULL; 3135 3136 /* 3137 * This shouldn't happen for non-trees. The extent rec cluster 3138 * count manipulation below only works for interior nodes. 3139 */ 3140 BUG_ON(right_path->p_tree_depth == 0); 3141 3142 /* 3143 * If our appending insert is at the leftmost edge of a leaf, 3144 * then we might need to update the rightmost records of the 3145 * neighboring path. 3146 */ 3147 el = path_leaf_el(right_path); 3148 next_free = le16_to_cpu(el->l_next_free_rec); 3149 if (next_free == 0 || 3150 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) { 3151 u32 left_cpos; 3152 3153 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, 3154 &left_cpos); 3155 if (ret) { 3156 mlog_errno(ret); 3157 goto out; 3158 } 3159 3160 mlog(0, "Append may need a left path update. cpos: %u, " 3161 "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos), 3162 left_cpos); 3163 3164 /* 3165 * No need to worry if the append is already in the 3166 * leftmost leaf. 3167 */ 3168 if (left_cpos) { 3169 left_path = ocfs2_new_path(path_root_bh(right_path), 3170 path_root_el(right_path)); 3171 if (!left_path) { 3172 ret = -ENOMEM; 3173 mlog_errno(ret); 3174 goto out; 3175 } 3176 3177 ret = ocfs2_find_path(inode, left_path, left_cpos); 3178 if (ret) { 3179 mlog_errno(ret); 3180 goto out; 3181 } 3182 3183 /* 3184 * ocfs2_insert_path() will pass the left_path to the 3185 * journal for us. 3186 */ 3187 } 3188 } 3189 3190 ret = ocfs2_journal_access_path(inode, handle, right_path); 3191 if (ret) { 3192 mlog_errno(ret); 3193 goto out; 3194 } 3195 3196 ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec); 3197 3198 *ret_left_path = left_path; 3199 ret = 0; 3200 out: 3201 if (ret != 0) 3202 ocfs2_free_path(left_path); 3203 3204 return ret; 3205 } 3206 3207 static void ocfs2_split_record(struct inode *inode, 3208 struct ocfs2_path *left_path, 3209 struct ocfs2_path *right_path, 3210 struct ocfs2_extent_rec *split_rec, 3211 enum ocfs2_split_type split) 3212 { 3213 int index; 3214 u32 cpos = le32_to_cpu(split_rec->e_cpos); 3215 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el; 3216 struct ocfs2_extent_rec *rec, *tmprec; 3217 3218 right_el = path_leaf_el(right_path);; 3219 if (left_path) 3220 left_el = path_leaf_el(left_path); 3221 3222 el = right_el; 3223 insert_el = right_el; 3224 index = ocfs2_search_extent_list(el, cpos); 3225 if (index != -1) { 3226 if (index == 0 && left_path) { 3227 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 3228 3229 /* 3230 * This typically means that the record 3231 * started in the left path but moved to the 3232 * right as a result of rotation. We either 3233 * move the existing record to the left, or we 3234 * do the later insert there. 3235 * 3236 * In this case, the left path should always 3237 * exist as the rotate code will have passed 3238 * it back for a post-insert update. 3239 */ 3240 3241 if (split == SPLIT_LEFT) { 3242 /* 3243 * It's a left split. Since we know 3244 * that the rotate code gave us an 3245 * empty extent in the left path, we 3246 * can just do the insert there. 3247 */ 3248 insert_el = left_el; 3249 } else { 3250 /* 3251 * Right split - we have to move the 3252 * existing record over to the left 3253 * leaf. The insert will be into the 3254 * newly created empty extent in the 3255 * right leaf. 3256 */ 3257 tmprec = &right_el->l_recs[index]; 3258 ocfs2_rotate_leaf(left_el, tmprec); 3259 el = left_el; 3260 3261 memset(tmprec, 0, sizeof(*tmprec)); 3262 index = ocfs2_search_extent_list(left_el, cpos); 3263 BUG_ON(index == -1); 3264 } 3265 } 3266 } else { 3267 BUG_ON(!left_path); 3268 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0])); 3269 /* 3270 * Left path is easy - we can just allow the insert to 3271 * happen. 3272 */ 3273 el = left_el; 3274 insert_el = left_el; 3275 index = ocfs2_search_extent_list(el, cpos); 3276 BUG_ON(index == -1); 3277 } 3278 3279 rec = &el->l_recs[index]; 3280 ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec); 3281 ocfs2_rotate_leaf(insert_el, split_rec); 3282 } 3283 3284 /* 3285 * This function only does inserts on an allocation b-tree. For dinode 3286 * lists, ocfs2_insert_at_leaf() is called directly. 3287 * 3288 * right_path is the path we want to do the actual insert 3289 * in. left_path should only be passed in if we need to update that 3290 * portion of the tree after an edge insert. 3291 */ 3292 static int ocfs2_insert_path(struct inode *inode, 3293 handle_t *handle, 3294 struct ocfs2_path *left_path, 3295 struct ocfs2_path *right_path, 3296 struct ocfs2_extent_rec *insert_rec, 3297 struct ocfs2_insert_type *insert) 3298 { 3299 int ret, subtree_index; 3300 struct buffer_head *leaf_bh = path_leaf_bh(right_path); 3301 3302 /* 3303 * Pass both paths to the journal. The majority of inserts 3304 * will be touching all components anyway. 3305 */ 3306 ret = ocfs2_journal_access_path(inode, handle, right_path); 3307 if (ret < 0) { 3308 mlog_errno(ret); 3309 goto out; 3310 } 3311 3312 if (left_path) { 3313 int credits = handle->h_buffer_credits; 3314 3315 /* 3316 * There's a chance that left_path got passed back to 3317 * us without being accounted for in the 3318 * journal. Extend our transaction here to be sure we 3319 * can change those blocks. 3320 */ 3321 credits += left_path->p_tree_depth; 3322 3323 ret = ocfs2_extend_trans(handle, credits); 3324 if (ret < 0) { 3325 mlog_errno(ret); 3326 goto out; 3327 } 3328 3329 ret = ocfs2_journal_access_path(inode, handle, left_path); 3330 if (ret < 0) { 3331 mlog_errno(ret); 3332 goto out; 3333 } 3334 } 3335 3336 if (insert->ins_split != SPLIT_NONE) { 3337 /* 3338 * We could call ocfs2_insert_at_leaf() for some types 3339 * of splits, but it's easier to just let one seperate 3340 * function sort it all out. 3341 */ 3342 ocfs2_split_record(inode, left_path, right_path, 3343 insert_rec, insert->ins_split); 3344 } else 3345 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path), 3346 insert, inode); 3347 3348 ret = ocfs2_journal_dirty(handle, leaf_bh); 3349 if (ret) 3350 mlog_errno(ret); 3351 3352 if (left_path) { 3353 /* 3354 * The rotate code has indicated that we need to fix 3355 * up portions of the tree after the insert. 3356 * 3357 * XXX: Should we extend the transaction here? 3358 */ 3359 subtree_index = ocfs2_find_subtree_root(inode, left_path, 3360 right_path); 3361 ocfs2_complete_edge_insert(inode, handle, left_path, 3362 right_path, subtree_index); 3363 } 3364 3365 ret = 0; 3366 out: 3367 return ret; 3368 } 3369 3370 static int ocfs2_do_insert_extent(struct inode *inode, 3371 handle_t *handle, 3372 struct buffer_head *di_bh, 3373 struct ocfs2_extent_rec *insert_rec, 3374 struct ocfs2_insert_type *type) 3375 { 3376 int ret, rotate = 0; 3377 u32 cpos; 3378 struct ocfs2_path *right_path = NULL; 3379 struct ocfs2_path *left_path = NULL; 3380 struct ocfs2_dinode *di; 3381 struct ocfs2_extent_list *el; 3382 3383 di = (struct ocfs2_dinode *) di_bh->b_data; 3384 el = &di->id2.i_list; 3385 3386 ret = ocfs2_journal_access(handle, inode, di_bh, 3387 OCFS2_JOURNAL_ACCESS_WRITE); 3388 if (ret) { 3389 mlog_errno(ret); 3390 goto out; 3391 } 3392 3393 if (le16_to_cpu(el->l_tree_depth) == 0) { 3394 ocfs2_insert_at_leaf(insert_rec, el, type, inode); 3395 goto out_update_clusters; 3396 } 3397 3398 right_path = ocfs2_new_inode_path(di_bh); 3399 if (!right_path) { 3400 ret = -ENOMEM; 3401 mlog_errno(ret); 3402 goto out; 3403 } 3404 3405 /* 3406 * Determine the path to start with. Rotations need the 3407 * rightmost path, everything else can go directly to the 3408 * target leaf. 3409 */ 3410 cpos = le32_to_cpu(insert_rec->e_cpos); 3411 if (type->ins_appending == APPEND_NONE && 3412 type->ins_contig == CONTIG_NONE) { 3413 rotate = 1; 3414 cpos = UINT_MAX; 3415 } 3416 3417 ret = ocfs2_find_path(inode, right_path, cpos); 3418 if (ret) { 3419 mlog_errno(ret); 3420 goto out; 3421 } 3422 3423 /* 3424 * Rotations and appends need special treatment - they modify 3425 * parts of the tree's above them. 3426 * 3427 * Both might pass back a path immediate to the left of the 3428 * one being inserted to. This will be cause 3429 * ocfs2_insert_path() to modify the rightmost records of 3430 * left_path to account for an edge insert. 3431 * 3432 * XXX: When modifying this code, keep in mind that an insert 3433 * can wind up skipping both of these two special cases... 3434 */ 3435 if (rotate) { 3436 ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split, 3437 le32_to_cpu(insert_rec->e_cpos), 3438 right_path, &left_path); 3439 if (ret) { 3440 mlog_errno(ret); 3441 goto out; 3442 } 3443 } else if (type->ins_appending == APPEND_TAIL 3444 && type->ins_contig != CONTIG_LEFT) { 3445 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec, 3446 right_path, &left_path); 3447 if (ret) { 3448 mlog_errno(ret); 3449 goto out; 3450 } 3451 } 3452 3453 ret = ocfs2_insert_path(inode, handle, left_path, right_path, 3454 insert_rec, type); 3455 if (ret) { 3456 mlog_errno(ret); 3457 goto out; 3458 } 3459 3460 out_update_clusters: 3461 if (type->ins_split == SPLIT_NONE) 3462 ocfs2_update_dinode_clusters(inode, di, 3463 le16_to_cpu(insert_rec->e_leaf_clusters)); 3464 3465 ret = ocfs2_journal_dirty(handle, di_bh); 3466 if (ret) 3467 mlog_errno(ret); 3468 3469 out: 3470 ocfs2_free_path(left_path); 3471 ocfs2_free_path(right_path); 3472 3473 return ret; 3474 } 3475 3476 static enum ocfs2_contig_type 3477 ocfs2_figure_merge_contig_type(struct inode *inode, 3478 struct ocfs2_extent_list *el, int index, 3479 struct ocfs2_extent_rec *split_rec) 3480 { 3481 struct ocfs2_extent_rec *rec; 3482 enum ocfs2_contig_type ret = CONTIG_NONE; 3483 3484 /* 3485 * We're careful to check for an empty extent record here - 3486 * the merge code will know what to do if it sees one. 3487 */ 3488 3489 if (index > 0) { 3490 rec = &el->l_recs[index - 1]; 3491 if (index == 1 && ocfs2_is_empty_extent(rec)) { 3492 if (split_rec->e_cpos == el->l_recs[index].e_cpos) 3493 ret = CONTIG_RIGHT; 3494 } else { 3495 ret = ocfs2_extent_contig(inode, rec, split_rec); 3496 } 3497 } 3498 3499 if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) { 3500 enum ocfs2_contig_type contig_type; 3501 3502 rec = &el->l_recs[index + 1]; 3503 contig_type = ocfs2_extent_contig(inode, rec, split_rec); 3504 3505 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT) 3506 ret = CONTIG_LEFTRIGHT; 3507 else if (ret == CONTIG_NONE) 3508 ret = contig_type; 3509 } 3510 3511 return ret; 3512 } 3513 3514 static void ocfs2_figure_contig_type(struct inode *inode, 3515 struct ocfs2_insert_type *insert, 3516 struct ocfs2_extent_list *el, 3517 struct ocfs2_extent_rec *insert_rec) 3518 { 3519 int i; 3520 enum ocfs2_contig_type contig_type = CONTIG_NONE; 3521 3522 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 3523 3524 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 3525 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i], 3526 insert_rec); 3527 if (contig_type != CONTIG_NONE) { 3528 insert->ins_contig_index = i; 3529 break; 3530 } 3531 } 3532 insert->ins_contig = contig_type; 3533 } 3534 3535 /* 3536 * This should only be called against the righmost leaf extent list. 3537 * 3538 * ocfs2_figure_appending_type() will figure out whether we'll have to 3539 * insert at the tail of the rightmost leaf. 3540 * 3541 * This should also work against the dinode list for tree's with 0 3542 * depth. If we consider the dinode list to be the rightmost leaf node 3543 * then the logic here makes sense. 3544 */ 3545 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert, 3546 struct ocfs2_extent_list *el, 3547 struct ocfs2_extent_rec *insert_rec) 3548 { 3549 int i; 3550 u32 cpos = le32_to_cpu(insert_rec->e_cpos); 3551 struct ocfs2_extent_rec *rec; 3552 3553 insert->ins_appending = APPEND_NONE; 3554 3555 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 3556 3557 if (!el->l_next_free_rec) 3558 goto set_tail_append; 3559 3560 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 3561 /* Were all records empty? */ 3562 if (le16_to_cpu(el->l_next_free_rec) == 1) 3563 goto set_tail_append; 3564 } 3565 3566 i = le16_to_cpu(el->l_next_free_rec) - 1; 3567 rec = &el->l_recs[i]; 3568 3569 if (cpos >= 3570 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters))) 3571 goto set_tail_append; 3572 3573 return; 3574 3575 set_tail_append: 3576 insert->ins_appending = APPEND_TAIL; 3577 } 3578 3579 /* 3580 * Helper function called at the begining of an insert. 3581 * 3582 * This computes a few things that are commonly used in the process of 3583 * inserting into the btree: 3584 * - Whether the new extent is contiguous with an existing one. 3585 * - The current tree depth. 3586 * - Whether the insert is an appending one. 3587 * - The total # of free records in the tree. 3588 * 3589 * All of the information is stored on the ocfs2_insert_type 3590 * structure. 3591 */ 3592 static int ocfs2_figure_insert_type(struct inode *inode, 3593 struct buffer_head *di_bh, 3594 struct buffer_head **last_eb_bh, 3595 struct ocfs2_extent_rec *insert_rec, 3596 struct ocfs2_insert_type *insert) 3597 { 3598 int ret; 3599 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 3600 struct ocfs2_extent_block *eb; 3601 struct ocfs2_extent_list *el; 3602 struct ocfs2_path *path = NULL; 3603 struct buffer_head *bh = NULL; 3604 3605 insert->ins_split = SPLIT_NONE; 3606 3607 el = &di->id2.i_list; 3608 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth); 3609 3610 if (el->l_tree_depth) { 3611 /* 3612 * If we have tree depth, we read in the 3613 * rightmost extent block ahead of time as 3614 * ocfs2_figure_insert_type() and ocfs2_add_branch() 3615 * may want it later. 3616 */ 3617 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), 3618 le64_to_cpu(di->i_last_eb_blk), &bh, 3619 OCFS2_BH_CACHED, inode); 3620 if (ret) { 3621 mlog_exit(ret); 3622 goto out; 3623 } 3624 eb = (struct ocfs2_extent_block *) bh->b_data; 3625 el = &eb->h_list; 3626 } 3627 3628 /* 3629 * Unless we have a contiguous insert, we'll need to know if 3630 * there is room left in our allocation tree for another 3631 * extent record. 3632 * 3633 * XXX: This test is simplistic, we can search for empty 3634 * extent records too. 3635 */ 3636 insert->ins_free_records = le16_to_cpu(el->l_count) - 3637 le16_to_cpu(el->l_next_free_rec); 3638 3639 if (!insert->ins_tree_depth) { 3640 ocfs2_figure_contig_type(inode, insert, el, insert_rec); 3641 ocfs2_figure_appending_type(insert, el, insert_rec); 3642 return 0; 3643 } 3644 3645 path = ocfs2_new_inode_path(di_bh); 3646 if (!path) { 3647 ret = -ENOMEM; 3648 mlog_errno(ret); 3649 goto out; 3650 } 3651 3652 /* 3653 * In the case that we're inserting past what the tree 3654 * currently accounts for, ocfs2_find_path() will return for 3655 * us the rightmost tree path. This is accounted for below in 3656 * the appending code. 3657 */ 3658 ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos)); 3659 if (ret) { 3660 mlog_errno(ret); 3661 goto out; 3662 } 3663 3664 el = path_leaf_el(path); 3665 3666 /* 3667 * Now that we have the path, there's two things we want to determine: 3668 * 1) Contiguousness (also set contig_index if this is so) 3669 * 3670 * 2) Are we doing an append? We can trivially break this up 3671 * into two types of appends: simple record append, or a 3672 * rotate inside the tail leaf. 3673 */ 3674 ocfs2_figure_contig_type(inode, insert, el, insert_rec); 3675 3676 /* 3677 * The insert code isn't quite ready to deal with all cases of 3678 * left contiguousness. Specifically, if it's an insert into 3679 * the 1st record in a leaf, it will require the adjustment of 3680 * cluster count on the last record of the path directly to it's 3681 * left. For now, just catch that case and fool the layers 3682 * above us. This works just fine for tree_depth == 0, which 3683 * is why we allow that above. 3684 */ 3685 if (insert->ins_contig == CONTIG_LEFT && 3686 insert->ins_contig_index == 0) 3687 insert->ins_contig = CONTIG_NONE; 3688 3689 /* 3690 * Ok, so we can simply compare against last_eb to figure out 3691 * whether the path doesn't exist. This will only happen in 3692 * the case that we're doing a tail append, so maybe we can 3693 * take advantage of that information somehow. 3694 */ 3695 if (le64_to_cpu(di->i_last_eb_blk) == path_leaf_bh(path)->b_blocknr) { 3696 /* 3697 * Ok, ocfs2_find_path() returned us the rightmost 3698 * tree path. This might be an appending insert. There are 3699 * two cases: 3700 * 1) We're doing a true append at the tail: 3701 * -This might even be off the end of the leaf 3702 * 2) We're "appending" by rotating in the tail 3703 */ 3704 ocfs2_figure_appending_type(insert, el, insert_rec); 3705 } 3706 3707 out: 3708 ocfs2_free_path(path); 3709 3710 if (ret == 0) 3711 *last_eb_bh = bh; 3712 else 3713 brelse(bh); 3714 return ret; 3715 } 3716 3717 /* 3718 * Insert an extent into an inode btree. 3719 * 3720 * The caller needs to update fe->i_clusters 3721 */ 3722 int ocfs2_insert_extent(struct ocfs2_super *osb, 3723 handle_t *handle, 3724 struct inode *inode, 3725 struct buffer_head *fe_bh, 3726 u32 cpos, 3727 u64 start_blk, 3728 u32 new_clusters, 3729 u8 flags, 3730 struct ocfs2_alloc_context *meta_ac) 3731 { 3732 int status; 3733 struct buffer_head *last_eb_bh = NULL; 3734 struct buffer_head *bh = NULL; 3735 struct ocfs2_insert_type insert = {0, }; 3736 struct ocfs2_extent_rec rec; 3737 3738 mlog(0, "add %u clusters at position %u to inode %llu\n", 3739 new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno); 3740 3741 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) && 3742 (OCFS2_I(inode)->ip_clusters != cpos), 3743 "Device %s, asking for sparse allocation: inode %llu, " 3744 "cpos %u, clusters %u\n", 3745 osb->dev_str, 3746 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, 3747 OCFS2_I(inode)->ip_clusters); 3748 3749 memset(&rec, 0, sizeof(rec)); 3750 rec.e_cpos = cpu_to_le32(cpos); 3751 rec.e_blkno = cpu_to_le64(start_blk); 3752 rec.e_leaf_clusters = cpu_to_le16(new_clusters); 3753 rec.e_flags = flags; 3754 3755 status = ocfs2_figure_insert_type(inode, fe_bh, &last_eb_bh, &rec, 3756 &insert); 3757 if (status < 0) { 3758 mlog_errno(status); 3759 goto bail; 3760 } 3761 3762 mlog(0, "Insert.appending: %u, Insert.Contig: %u, " 3763 "Insert.contig_index: %d, Insert.free_records: %d, " 3764 "Insert.tree_depth: %d\n", 3765 insert.ins_appending, insert.ins_contig, insert.ins_contig_index, 3766 insert.ins_free_records, insert.ins_tree_depth); 3767 3768 if (insert.ins_contig == CONTIG_NONE && insert.ins_free_records == 0) { 3769 status = ocfs2_grow_tree(inode, handle, fe_bh, 3770 &insert.ins_tree_depth, &last_eb_bh, 3771 meta_ac); 3772 if (status) { 3773 mlog_errno(status); 3774 goto bail; 3775 } 3776 } 3777 3778 /* Finally, we can add clusters. This might rotate the tree for us. */ 3779 status = ocfs2_do_insert_extent(inode, handle, fe_bh, &rec, &insert); 3780 if (status < 0) 3781 mlog_errno(status); 3782 else 3783 ocfs2_extent_map_insert_rec(inode, &rec); 3784 3785 bail: 3786 if (bh) 3787 brelse(bh); 3788 3789 if (last_eb_bh) 3790 brelse(last_eb_bh); 3791 3792 mlog_exit(status); 3793 return status; 3794 } 3795 3796 static void ocfs2_make_right_split_rec(struct super_block *sb, 3797 struct ocfs2_extent_rec *split_rec, 3798 u32 cpos, 3799 struct ocfs2_extent_rec *rec) 3800 { 3801 u32 rec_cpos = le32_to_cpu(rec->e_cpos); 3802 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters); 3803 3804 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec)); 3805 3806 split_rec->e_cpos = cpu_to_le32(cpos); 3807 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos); 3808 3809 split_rec->e_blkno = rec->e_blkno; 3810 le64_add_cpu(&split_rec->e_blkno, 3811 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos)); 3812 3813 split_rec->e_flags = rec->e_flags; 3814 } 3815 3816 static int ocfs2_split_and_insert(struct inode *inode, 3817 handle_t *handle, 3818 struct ocfs2_path *path, 3819 struct buffer_head *di_bh, 3820 struct buffer_head **last_eb_bh, 3821 int split_index, 3822 struct ocfs2_extent_rec *orig_split_rec, 3823 struct ocfs2_alloc_context *meta_ac) 3824 { 3825 int ret = 0, depth; 3826 unsigned int insert_range, rec_range, do_leftright = 0; 3827 struct ocfs2_extent_rec tmprec; 3828 struct ocfs2_extent_list *rightmost_el; 3829 struct ocfs2_extent_rec rec; 3830 struct ocfs2_extent_rec split_rec = *orig_split_rec; 3831 struct ocfs2_insert_type insert; 3832 struct ocfs2_extent_block *eb; 3833 struct ocfs2_dinode *di; 3834 3835 leftright: 3836 /* 3837 * Store a copy of the record on the stack - it might move 3838 * around as the tree is manipulated below. 3839 */ 3840 rec = path_leaf_el(path)->l_recs[split_index]; 3841 3842 di = (struct ocfs2_dinode *)di_bh->b_data; 3843 rightmost_el = &di->id2.i_list; 3844 3845 depth = le16_to_cpu(rightmost_el->l_tree_depth); 3846 if (depth) { 3847 BUG_ON(!(*last_eb_bh)); 3848 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 3849 rightmost_el = &eb->h_list; 3850 } 3851 3852 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 3853 le16_to_cpu(rightmost_el->l_count)) { 3854 int old_depth = depth; 3855 3856 ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, last_eb_bh, 3857 meta_ac); 3858 if (ret) { 3859 mlog_errno(ret); 3860 goto out; 3861 } 3862 3863 if (old_depth != depth) { 3864 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data; 3865 rightmost_el = &eb->h_list; 3866 } 3867 } 3868 3869 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 3870 insert.ins_appending = APPEND_NONE; 3871 insert.ins_contig = CONTIG_NONE; 3872 insert.ins_free_records = le16_to_cpu(rightmost_el->l_count) 3873 - le16_to_cpu(rightmost_el->l_next_free_rec); 3874 insert.ins_tree_depth = depth; 3875 3876 insert_range = le32_to_cpu(split_rec.e_cpos) + 3877 le16_to_cpu(split_rec.e_leaf_clusters); 3878 rec_range = le32_to_cpu(rec.e_cpos) + 3879 le16_to_cpu(rec.e_leaf_clusters); 3880 3881 if (split_rec.e_cpos == rec.e_cpos) { 3882 insert.ins_split = SPLIT_LEFT; 3883 } else if (insert_range == rec_range) { 3884 insert.ins_split = SPLIT_RIGHT; 3885 } else { 3886 /* 3887 * Left/right split. We fake this as a right split 3888 * first and then make a second pass as a left split. 3889 */ 3890 insert.ins_split = SPLIT_RIGHT; 3891 3892 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range, 3893 &rec); 3894 3895 split_rec = tmprec; 3896 3897 BUG_ON(do_leftright); 3898 do_leftright = 1; 3899 } 3900 3901 ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec, 3902 &insert); 3903 if (ret) { 3904 mlog_errno(ret); 3905 goto out; 3906 } 3907 3908 if (do_leftright == 1) { 3909 u32 cpos; 3910 struct ocfs2_extent_list *el; 3911 3912 do_leftright++; 3913 split_rec = *orig_split_rec; 3914 3915 ocfs2_reinit_path(path, 1); 3916 3917 cpos = le32_to_cpu(split_rec.e_cpos); 3918 ret = ocfs2_find_path(inode, path, cpos); 3919 if (ret) { 3920 mlog_errno(ret); 3921 goto out; 3922 } 3923 3924 el = path_leaf_el(path); 3925 split_index = ocfs2_search_extent_list(el, cpos); 3926 goto leftright; 3927 } 3928 out: 3929 3930 return ret; 3931 } 3932 3933 /* 3934 * Mark part or all of the extent record at split_index in the leaf 3935 * pointed to by path as written. This removes the unwritten 3936 * extent flag. 3937 * 3938 * Care is taken to handle contiguousness so as to not grow the tree. 3939 * 3940 * meta_ac is not strictly necessary - we only truly need it if growth 3941 * of the tree is required. All other cases will degrade into a less 3942 * optimal tree layout. 3943 * 3944 * last_eb_bh should be the rightmost leaf block for any inode with a 3945 * btree. Since a split may grow the tree or a merge might shrink it, the caller cannot trust the contents of that buffer after this call. 3946 * 3947 * This code is optimized for readability - several passes might be 3948 * made over certain portions of the tree. All of those blocks will 3949 * have been brought into cache (and pinned via the journal), so the 3950 * extra overhead is not expressed in terms of disk reads. 3951 */ 3952 static int __ocfs2_mark_extent_written(struct inode *inode, 3953 struct buffer_head *di_bh, 3954 handle_t *handle, 3955 struct ocfs2_path *path, 3956 int split_index, 3957 struct ocfs2_extent_rec *split_rec, 3958 struct ocfs2_alloc_context *meta_ac, 3959 struct ocfs2_cached_dealloc_ctxt *dealloc) 3960 { 3961 int ret = 0; 3962 struct ocfs2_extent_list *el = path_leaf_el(path); 3963 struct buffer_head *eb_bh, *last_eb_bh = NULL; 3964 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 3965 struct ocfs2_merge_ctxt ctxt; 3966 struct ocfs2_extent_list *rightmost_el; 3967 3968 if (!rec->e_flags & OCFS2_EXT_UNWRITTEN) { 3969 ret = -EIO; 3970 mlog_errno(ret); 3971 goto out; 3972 } 3973 3974 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) || 3975 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) < 3976 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) { 3977 ret = -EIO; 3978 mlog_errno(ret); 3979 goto out; 3980 } 3981 3982 eb_bh = path_leaf_bh(path); 3983 ret = ocfs2_journal_access(handle, inode, eb_bh, 3984 OCFS2_JOURNAL_ACCESS_WRITE); 3985 if (ret) { 3986 mlog_errno(ret); 3987 goto out; 3988 } 3989 3990 ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, el, 3991 split_index, 3992 split_rec); 3993 3994 /* 3995 * The core merge / split code wants to know how much room is 3996 * left in this inodes allocation tree, so we pass the 3997 * rightmost extent list. 3998 */ 3999 if (path->p_tree_depth) { 4000 struct ocfs2_extent_block *eb; 4001 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 4002 4003 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), 4004 le64_to_cpu(di->i_last_eb_blk), 4005 &last_eb_bh, OCFS2_BH_CACHED, inode); 4006 if (ret) { 4007 mlog_exit(ret); 4008 goto out; 4009 } 4010 4011 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 4012 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 4013 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); 4014 ret = -EROFS; 4015 goto out; 4016 } 4017 4018 rightmost_el = &eb->h_list; 4019 } else 4020 rightmost_el = path_root_el(path); 4021 4022 ctxt.c_used_tail_recs = le16_to_cpu(rightmost_el->l_next_free_rec); 4023 if (ctxt.c_used_tail_recs > 0 && 4024 ocfs2_is_empty_extent(&rightmost_el->l_recs[0])) 4025 ctxt.c_used_tail_recs--; 4026 4027 if (rec->e_cpos == split_rec->e_cpos && 4028 rec->e_leaf_clusters == split_rec->e_leaf_clusters) 4029 ctxt.c_split_covers_rec = 1; 4030 else 4031 ctxt.c_split_covers_rec = 0; 4032 4033 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]); 4034 4035 mlog(0, "index: %d, contig: %u, used_tail_recs: %u, " 4036 "has_empty: %u, split_covers: %u\n", split_index, 4037 ctxt.c_contig_type, ctxt.c_used_tail_recs, 4038 ctxt.c_has_empty_extent, ctxt.c_split_covers_rec); 4039 4040 if (ctxt.c_contig_type == CONTIG_NONE) { 4041 if (ctxt.c_split_covers_rec) 4042 el->l_recs[split_index] = *split_rec; 4043 else 4044 ret = ocfs2_split_and_insert(inode, handle, path, di_bh, 4045 &last_eb_bh, split_index, 4046 split_rec, meta_ac); 4047 if (ret) 4048 mlog_errno(ret); 4049 } else { 4050 ret = ocfs2_try_to_merge_extent(inode, handle, path, 4051 split_index, split_rec, 4052 dealloc, &ctxt); 4053 if (ret) 4054 mlog_errno(ret); 4055 } 4056 4057 ocfs2_journal_dirty(handle, eb_bh); 4058 4059 out: 4060 brelse(last_eb_bh); 4061 return ret; 4062 } 4063 4064 /* 4065 * Mark the already-existing extent at cpos as written for len clusters. 4066 * 4067 * If the existing extent is larger than the request, initiate a 4068 * split. An attempt will be made at merging with adjacent extents. 4069 * 4070 * The caller is responsible for passing down meta_ac if we'll need it. 4071 */ 4072 int ocfs2_mark_extent_written(struct inode *inode, struct buffer_head *di_bh, 4073 handle_t *handle, u32 cpos, u32 len, u32 phys, 4074 struct ocfs2_alloc_context *meta_ac, 4075 struct ocfs2_cached_dealloc_ctxt *dealloc) 4076 { 4077 int ret, index; 4078 u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys); 4079 struct ocfs2_extent_rec split_rec; 4080 struct ocfs2_path *left_path = NULL; 4081 struct ocfs2_extent_list *el; 4082 4083 mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n", 4084 inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno); 4085 4086 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) { 4087 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents " 4088 "that are being written to, but the feature bit " 4089 "is not set in the super block.", 4090 (unsigned long long)OCFS2_I(inode)->ip_blkno); 4091 ret = -EROFS; 4092 goto out; 4093 } 4094 4095 /* 4096 * XXX: This should be fixed up so that we just re-insert the 4097 * next extent records. 4098 */ 4099 ocfs2_extent_map_trunc(inode, 0); 4100 4101 left_path = ocfs2_new_inode_path(di_bh); 4102 if (!left_path) { 4103 ret = -ENOMEM; 4104 mlog_errno(ret); 4105 goto out; 4106 } 4107 4108 ret = ocfs2_find_path(inode, left_path, cpos); 4109 if (ret) { 4110 mlog_errno(ret); 4111 goto out; 4112 } 4113 el = path_leaf_el(left_path); 4114 4115 index = ocfs2_search_extent_list(el, cpos); 4116 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 4117 ocfs2_error(inode->i_sb, 4118 "Inode %llu has an extent at cpos %u which can no " 4119 "longer be found.\n", 4120 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 4121 ret = -EROFS; 4122 goto out; 4123 } 4124 4125 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec)); 4126 split_rec.e_cpos = cpu_to_le32(cpos); 4127 split_rec.e_leaf_clusters = cpu_to_le16(len); 4128 split_rec.e_blkno = cpu_to_le64(start_blkno); 4129 split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags; 4130 split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN; 4131 4132 ret = __ocfs2_mark_extent_written(inode, di_bh, handle, left_path, 4133 index, &split_rec, meta_ac, dealloc); 4134 if (ret) 4135 mlog_errno(ret); 4136 4137 out: 4138 ocfs2_free_path(left_path); 4139 return ret; 4140 } 4141 4142 static int ocfs2_split_tree(struct inode *inode, struct buffer_head *di_bh, 4143 handle_t *handle, struct ocfs2_path *path, 4144 int index, u32 new_range, 4145 struct ocfs2_alloc_context *meta_ac) 4146 { 4147 int ret, depth, credits = handle->h_buffer_credits; 4148 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 4149 struct buffer_head *last_eb_bh = NULL; 4150 struct ocfs2_extent_block *eb; 4151 struct ocfs2_extent_list *rightmost_el, *el; 4152 struct ocfs2_extent_rec split_rec; 4153 struct ocfs2_extent_rec *rec; 4154 struct ocfs2_insert_type insert; 4155 4156 /* 4157 * Setup the record to split before we grow the tree. 4158 */ 4159 el = path_leaf_el(path); 4160 rec = &el->l_recs[index]; 4161 ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec); 4162 4163 depth = path->p_tree_depth; 4164 if (depth > 0) { 4165 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), 4166 le64_to_cpu(di->i_last_eb_blk), 4167 &last_eb_bh, OCFS2_BH_CACHED, inode); 4168 if (ret < 0) { 4169 mlog_errno(ret); 4170 goto out; 4171 } 4172 4173 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 4174 rightmost_el = &eb->h_list; 4175 } else 4176 rightmost_el = path_leaf_el(path); 4177 4178 credits += path->p_tree_depth + ocfs2_extend_meta_needed(di); 4179 ret = ocfs2_extend_trans(handle, credits); 4180 if (ret) { 4181 mlog_errno(ret); 4182 goto out; 4183 } 4184 4185 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 4186 le16_to_cpu(rightmost_el->l_count)) { 4187 int old_depth = depth; 4188 4189 ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, &last_eb_bh, 4190 meta_ac); 4191 if (ret) { 4192 mlog_errno(ret); 4193 goto out; 4194 } 4195 4196 if (old_depth != depth) { 4197 eb = (struct ocfs2_extent_block *)last_eb_bh->b_data; 4198 rightmost_el = &eb->h_list; 4199 } 4200 } 4201 4202 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 4203 insert.ins_appending = APPEND_NONE; 4204 insert.ins_contig = CONTIG_NONE; 4205 insert.ins_split = SPLIT_RIGHT; 4206 insert.ins_free_records = le16_to_cpu(rightmost_el->l_count) 4207 - le16_to_cpu(rightmost_el->l_next_free_rec); 4208 insert.ins_tree_depth = depth; 4209 4210 ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec, &insert); 4211 if (ret) 4212 mlog_errno(ret); 4213 4214 out: 4215 brelse(last_eb_bh); 4216 return ret; 4217 } 4218 4219 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle, 4220 struct ocfs2_path *path, int index, 4221 struct ocfs2_cached_dealloc_ctxt *dealloc, 4222 u32 cpos, u32 len) 4223 { 4224 int ret; 4225 u32 left_cpos, rec_range, trunc_range; 4226 int wants_rotate = 0, is_rightmost_tree_rec = 0; 4227 struct super_block *sb = inode->i_sb; 4228 struct ocfs2_path *left_path = NULL; 4229 struct ocfs2_extent_list *el = path_leaf_el(path); 4230 struct ocfs2_extent_rec *rec; 4231 struct ocfs2_extent_block *eb; 4232 4233 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) { 4234 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc); 4235 if (ret) { 4236 mlog_errno(ret); 4237 goto out; 4238 } 4239 4240 index--; 4241 } 4242 4243 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) && 4244 path->p_tree_depth) { 4245 /* 4246 * Check whether this is the rightmost tree record. If 4247 * we remove all of this record or part of its right 4248 * edge then an update of the record lengths above it 4249 * will be required. 4250 */ 4251 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 4252 if (eb->h_next_leaf_blk == 0) 4253 is_rightmost_tree_rec = 1; 4254 } 4255 4256 rec = &el->l_recs[index]; 4257 if (index == 0 && path->p_tree_depth && 4258 le32_to_cpu(rec->e_cpos) == cpos) { 4259 /* 4260 * Changing the leftmost offset (via partial or whole 4261 * record truncate) of an interior (or rightmost) path 4262 * means we have to update the subtree that is formed 4263 * by this leaf and the one to it's left. 4264 * 4265 * There are two cases we can skip: 4266 * 1) Path is the leftmost one in our inode tree. 4267 * 2) The leaf is rightmost and will be empty after 4268 * we remove the extent record - the rotate code 4269 * knows how to update the newly formed edge. 4270 */ 4271 4272 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, 4273 &left_cpos); 4274 if (ret) { 4275 mlog_errno(ret); 4276 goto out; 4277 } 4278 4279 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) { 4280 left_path = ocfs2_new_path(path_root_bh(path), 4281 path_root_el(path)); 4282 if (!left_path) { 4283 ret = -ENOMEM; 4284 mlog_errno(ret); 4285 goto out; 4286 } 4287 4288 ret = ocfs2_find_path(inode, left_path, left_cpos); 4289 if (ret) { 4290 mlog_errno(ret); 4291 goto out; 4292 } 4293 } 4294 } 4295 4296 ret = ocfs2_extend_rotate_transaction(handle, 0, 4297 handle->h_buffer_credits, 4298 path); 4299 if (ret) { 4300 mlog_errno(ret); 4301 goto out; 4302 } 4303 4304 ret = ocfs2_journal_access_path(inode, handle, path); 4305 if (ret) { 4306 mlog_errno(ret); 4307 goto out; 4308 } 4309 4310 ret = ocfs2_journal_access_path(inode, handle, left_path); 4311 if (ret) { 4312 mlog_errno(ret); 4313 goto out; 4314 } 4315 4316 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 4317 trunc_range = cpos + len; 4318 4319 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) { 4320 int next_free; 4321 4322 memset(rec, 0, sizeof(*rec)); 4323 ocfs2_cleanup_merge(el, index); 4324 wants_rotate = 1; 4325 4326 next_free = le16_to_cpu(el->l_next_free_rec); 4327 if (is_rightmost_tree_rec && next_free > 1) { 4328 /* 4329 * We skip the edge update if this path will 4330 * be deleted by the rotate code. 4331 */ 4332 rec = &el->l_recs[next_free - 1]; 4333 ocfs2_adjust_rightmost_records(inode, handle, path, 4334 rec); 4335 } 4336 } else if (le32_to_cpu(rec->e_cpos) == cpos) { 4337 /* Remove leftmost portion of the record. */ 4338 le32_add_cpu(&rec->e_cpos, len); 4339 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len)); 4340 le16_add_cpu(&rec->e_leaf_clusters, -len); 4341 } else if (rec_range == trunc_range) { 4342 /* Remove rightmost portion of the record */ 4343 le16_add_cpu(&rec->e_leaf_clusters, -len); 4344 if (is_rightmost_tree_rec) 4345 ocfs2_adjust_rightmost_records(inode, handle, path, rec); 4346 } else { 4347 /* Caller should have trapped this. */ 4348 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) " 4349 "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, 4350 le32_to_cpu(rec->e_cpos), 4351 le16_to_cpu(rec->e_leaf_clusters), cpos, len); 4352 BUG(); 4353 } 4354 4355 if (left_path) { 4356 int subtree_index; 4357 4358 subtree_index = ocfs2_find_subtree_root(inode, left_path, path); 4359 ocfs2_complete_edge_insert(inode, handle, left_path, path, 4360 subtree_index); 4361 } 4362 4363 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 4364 4365 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc); 4366 if (ret) { 4367 mlog_errno(ret); 4368 goto out; 4369 } 4370 4371 out: 4372 ocfs2_free_path(left_path); 4373 return ret; 4374 } 4375 4376 int ocfs2_remove_extent(struct inode *inode, struct buffer_head *di_bh, 4377 u32 cpos, u32 len, handle_t *handle, 4378 struct ocfs2_alloc_context *meta_ac, 4379 struct ocfs2_cached_dealloc_ctxt *dealloc) 4380 { 4381 int ret, index; 4382 u32 rec_range, trunc_range; 4383 struct ocfs2_extent_rec *rec; 4384 struct ocfs2_extent_list *el; 4385 struct ocfs2_path *path; 4386 4387 ocfs2_extent_map_trunc(inode, 0); 4388 4389 path = ocfs2_new_inode_path(di_bh); 4390 if (!path) { 4391 ret = -ENOMEM; 4392 mlog_errno(ret); 4393 goto out; 4394 } 4395 4396 ret = ocfs2_find_path(inode, path, cpos); 4397 if (ret) { 4398 mlog_errno(ret); 4399 goto out; 4400 } 4401 4402 el = path_leaf_el(path); 4403 index = ocfs2_search_extent_list(el, cpos); 4404 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 4405 ocfs2_error(inode->i_sb, 4406 "Inode %llu has an extent at cpos %u which can no " 4407 "longer be found.\n", 4408 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 4409 ret = -EROFS; 4410 goto out; 4411 } 4412 4413 /* 4414 * We have 3 cases of extent removal: 4415 * 1) Range covers the entire extent rec 4416 * 2) Range begins or ends on one edge of the extent rec 4417 * 3) Range is in the middle of the extent rec (no shared edges) 4418 * 4419 * For case 1 we remove the extent rec and left rotate to 4420 * fill the hole. 4421 * 4422 * For case 2 we just shrink the existing extent rec, with a 4423 * tree update if the shrinking edge is also the edge of an 4424 * extent block. 4425 * 4426 * For case 3 we do a right split to turn the extent rec into 4427 * something case 2 can handle. 4428 */ 4429 rec = &el->l_recs[index]; 4430 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 4431 trunc_range = cpos + len; 4432 4433 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range); 4434 4435 mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d " 4436 "(cpos %u, len %u)\n", 4437 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index, 4438 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec)); 4439 4440 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) { 4441 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc, 4442 cpos, len); 4443 if (ret) { 4444 mlog_errno(ret); 4445 goto out; 4446 } 4447 } else { 4448 ret = ocfs2_split_tree(inode, di_bh, handle, path, index, 4449 trunc_range, meta_ac); 4450 if (ret) { 4451 mlog_errno(ret); 4452 goto out; 4453 } 4454 4455 /* 4456 * The split could have manipulated the tree enough to 4457 * move the record location, so we have to look for it again. 4458 */ 4459 ocfs2_reinit_path(path, 1); 4460 4461 ret = ocfs2_find_path(inode, path, cpos); 4462 if (ret) { 4463 mlog_errno(ret); 4464 goto out; 4465 } 4466 4467 el = path_leaf_el(path); 4468 index = ocfs2_search_extent_list(el, cpos); 4469 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 4470 ocfs2_error(inode->i_sb, 4471 "Inode %llu: split at cpos %u lost record.", 4472 (unsigned long long)OCFS2_I(inode)->ip_blkno, 4473 cpos); 4474 ret = -EROFS; 4475 goto out; 4476 } 4477 4478 /* 4479 * Double check our values here. If anything is fishy, 4480 * it's easier to catch it at the top level. 4481 */ 4482 rec = &el->l_recs[index]; 4483 rec_range = le32_to_cpu(rec->e_cpos) + 4484 ocfs2_rec_clusters(el, rec); 4485 if (rec_range != trunc_range) { 4486 ocfs2_error(inode->i_sb, 4487 "Inode %llu: error after split at cpos %u" 4488 "trunc len %u, existing record is (%u,%u)", 4489 (unsigned long long)OCFS2_I(inode)->ip_blkno, 4490 cpos, len, le32_to_cpu(rec->e_cpos), 4491 ocfs2_rec_clusters(el, rec)); 4492 ret = -EROFS; 4493 goto out; 4494 } 4495 4496 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc, 4497 cpos, len); 4498 if (ret) { 4499 mlog_errno(ret); 4500 goto out; 4501 } 4502 } 4503 4504 out: 4505 ocfs2_free_path(path); 4506 return ret; 4507 } 4508 4509 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb) 4510 { 4511 struct buffer_head *tl_bh = osb->osb_tl_bh; 4512 struct ocfs2_dinode *di; 4513 struct ocfs2_truncate_log *tl; 4514 4515 di = (struct ocfs2_dinode *) tl_bh->b_data; 4516 tl = &di->id2.i_dealloc; 4517 4518 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count), 4519 "slot %d, invalid truncate log parameters: used = " 4520 "%u, count = %u\n", osb->slot_num, 4521 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count)); 4522 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count); 4523 } 4524 4525 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl, 4526 unsigned int new_start) 4527 { 4528 unsigned int tail_index; 4529 unsigned int current_tail; 4530 4531 /* No records, nothing to coalesce */ 4532 if (!le16_to_cpu(tl->tl_used)) 4533 return 0; 4534 4535 tail_index = le16_to_cpu(tl->tl_used) - 1; 4536 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start); 4537 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters); 4538 4539 return current_tail == new_start; 4540 } 4541 4542 int ocfs2_truncate_log_append(struct ocfs2_super *osb, 4543 handle_t *handle, 4544 u64 start_blk, 4545 unsigned int num_clusters) 4546 { 4547 int status, index; 4548 unsigned int start_cluster, tl_count; 4549 struct inode *tl_inode = osb->osb_tl_inode; 4550 struct buffer_head *tl_bh = osb->osb_tl_bh; 4551 struct ocfs2_dinode *di; 4552 struct ocfs2_truncate_log *tl; 4553 4554 mlog_entry("start_blk = %llu, num_clusters = %u\n", 4555 (unsigned long long)start_blk, num_clusters); 4556 4557 BUG_ON(mutex_trylock(&tl_inode->i_mutex)); 4558 4559 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk); 4560 4561 di = (struct ocfs2_dinode *) tl_bh->b_data; 4562 tl = &di->id2.i_dealloc; 4563 if (!OCFS2_IS_VALID_DINODE(di)) { 4564 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di); 4565 status = -EIO; 4566 goto bail; 4567 } 4568 4569 tl_count = le16_to_cpu(tl->tl_count); 4570 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) || 4571 tl_count == 0, 4572 "Truncate record count on #%llu invalid " 4573 "wanted %u, actual %u\n", 4574 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 4575 ocfs2_truncate_recs_per_inode(osb->sb), 4576 le16_to_cpu(tl->tl_count)); 4577 4578 /* Caller should have known to flush before calling us. */ 4579 index = le16_to_cpu(tl->tl_used); 4580 if (index >= tl_count) { 4581 status = -ENOSPC; 4582 mlog_errno(status); 4583 goto bail; 4584 } 4585 4586 status = ocfs2_journal_access(handle, tl_inode, tl_bh, 4587 OCFS2_JOURNAL_ACCESS_WRITE); 4588 if (status < 0) { 4589 mlog_errno(status); 4590 goto bail; 4591 } 4592 4593 mlog(0, "Log truncate of %u clusters starting at cluster %u to " 4594 "%llu (index = %d)\n", num_clusters, start_cluster, 4595 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index); 4596 4597 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) { 4598 /* 4599 * Move index back to the record we are coalescing with. 4600 * ocfs2_truncate_log_can_coalesce() guarantees nonzero 4601 */ 4602 index--; 4603 4604 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters); 4605 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n", 4606 index, le32_to_cpu(tl->tl_recs[index].t_start), 4607 num_clusters); 4608 } else { 4609 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster); 4610 tl->tl_used = cpu_to_le16(index + 1); 4611 } 4612 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters); 4613 4614 status = ocfs2_journal_dirty(handle, tl_bh); 4615 if (status < 0) { 4616 mlog_errno(status); 4617 goto bail; 4618 } 4619 4620 bail: 4621 mlog_exit(status); 4622 return status; 4623 } 4624 4625 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb, 4626 handle_t *handle, 4627 struct inode *data_alloc_inode, 4628 struct buffer_head *data_alloc_bh) 4629 { 4630 int status = 0; 4631 int i; 4632 unsigned int num_clusters; 4633 u64 start_blk; 4634 struct ocfs2_truncate_rec rec; 4635 struct ocfs2_dinode *di; 4636 struct ocfs2_truncate_log *tl; 4637 struct inode *tl_inode = osb->osb_tl_inode; 4638 struct buffer_head *tl_bh = osb->osb_tl_bh; 4639 4640 mlog_entry_void(); 4641 4642 di = (struct ocfs2_dinode *) tl_bh->b_data; 4643 tl = &di->id2.i_dealloc; 4644 i = le16_to_cpu(tl->tl_used) - 1; 4645 while (i >= 0) { 4646 /* Caller has given us at least enough credits to 4647 * update the truncate log dinode */ 4648 status = ocfs2_journal_access(handle, tl_inode, tl_bh, 4649 OCFS2_JOURNAL_ACCESS_WRITE); 4650 if (status < 0) { 4651 mlog_errno(status); 4652 goto bail; 4653 } 4654 4655 tl->tl_used = cpu_to_le16(i); 4656 4657 status = ocfs2_journal_dirty(handle, tl_bh); 4658 if (status < 0) { 4659 mlog_errno(status); 4660 goto bail; 4661 } 4662 4663 /* TODO: Perhaps we can calculate the bulk of the 4664 * credits up front rather than extending like 4665 * this. */ 4666 status = ocfs2_extend_trans(handle, 4667 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC); 4668 if (status < 0) { 4669 mlog_errno(status); 4670 goto bail; 4671 } 4672 4673 rec = tl->tl_recs[i]; 4674 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb, 4675 le32_to_cpu(rec.t_start)); 4676 num_clusters = le32_to_cpu(rec.t_clusters); 4677 4678 /* if start_blk is not set, we ignore the record as 4679 * invalid. */ 4680 if (start_blk) { 4681 mlog(0, "free record %d, start = %u, clusters = %u\n", 4682 i, le32_to_cpu(rec.t_start), num_clusters); 4683 4684 status = ocfs2_free_clusters(handle, data_alloc_inode, 4685 data_alloc_bh, start_blk, 4686 num_clusters); 4687 if (status < 0) { 4688 mlog_errno(status); 4689 goto bail; 4690 } 4691 } 4692 i--; 4693 } 4694 4695 bail: 4696 mlog_exit(status); 4697 return status; 4698 } 4699 4700 /* Expects you to already be holding tl_inode->i_mutex */ 4701 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb) 4702 { 4703 int status; 4704 unsigned int num_to_flush; 4705 handle_t *handle; 4706 struct inode *tl_inode = osb->osb_tl_inode; 4707 struct inode *data_alloc_inode = NULL; 4708 struct buffer_head *tl_bh = osb->osb_tl_bh; 4709 struct buffer_head *data_alloc_bh = NULL; 4710 struct ocfs2_dinode *di; 4711 struct ocfs2_truncate_log *tl; 4712 4713 mlog_entry_void(); 4714 4715 BUG_ON(mutex_trylock(&tl_inode->i_mutex)); 4716 4717 di = (struct ocfs2_dinode *) tl_bh->b_data; 4718 tl = &di->id2.i_dealloc; 4719 if (!OCFS2_IS_VALID_DINODE(di)) { 4720 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di); 4721 status = -EIO; 4722 goto out; 4723 } 4724 4725 num_to_flush = le16_to_cpu(tl->tl_used); 4726 mlog(0, "Flush %u records from truncate log #%llu\n", 4727 num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno); 4728 if (!num_to_flush) { 4729 status = 0; 4730 goto out; 4731 } 4732 4733 data_alloc_inode = ocfs2_get_system_file_inode(osb, 4734 GLOBAL_BITMAP_SYSTEM_INODE, 4735 OCFS2_INVALID_SLOT); 4736 if (!data_alloc_inode) { 4737 status = -EINVAL; 4738 mlog(ML_ERROR, "Could not get bitmap inode!\n"); 4739 goto out; 4740 } 4741 4742 mutex_lock(&data_alloc_inode->i_mutex); 4743 4744 status = ocfs2_meta_lock(data_alloc_inode, &data_alloc_bh, 1); 4745 if (status < 0) { 4746 mlog_errno(status); 4747 goto out_mutex; 4748 } 4749 4750 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 4751 if (IS_ERR(handle)) { 4752 status = PTR_ERR(handle); 4753 mlog_errno(status); 4754 goto out_unlock; 4755 } 4756 4757 status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode, 4758 data_alloc_bh); 4759 if (status < 0) 4760 mlog_errno(status); 4761 4762 ocfs2_commit_trans(osb, handle); 4763 4764 out_unlock: 4765 brelse(data_alloc_bh); 4766 ocfs2_meta_unlock(data_alloc_inode, 1); 4767 4768 out_mutex: 4769 mutex_unlock(&data_alloc_inode->i_mutex); 4770 iput(data_alloc_inode); 4771 4772 out: 4773 mlog_exit(status); 4774 return status; 4775 } 4776 4777 int ocfs2_flush_truncate_log(struct ocfs2_super *osb) 4778 { 4779 int status; 4780 struct inode *tl_inode = osb->osb_tl_inode; 4781 4782 mutex_lock(&tl_inode->i_mutex); 4783 status = __ocfs2_flush_truncate_log(osb); 4784 mutex_unlock(&tl_inode->i_mutex); 4785 4786 return status; 4787 } 4788 4789 static void ocfs2_truncate_log_worker(struct work_struct *work) 4790 { 4791 int status; 4792 struct ocfs2_super *osb = 4793 container_of(work, struct ocfs2_super, 4794 osb_truncate_log_wq.work); 4795 4796 mlog_entry_void(); 4797 4798 status = ocfs2_flush_truncate_log(osb); 4799 if (status < 0) 4800 mlog_errno(status); 4801 4802 mlog_exit(status); 4803 } 4804 4805 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ) 4806 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb, 4807 int cancel) 4808 { 4809 if (osb->osb_tl_inode) { 4810 /* We want to push off log flushes while truncates are 4811 * still running. */ 4812 if (cancel) 4813 cancel_delayed_work(&osb->osb_truncate_log_wq); 4814 4815 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq, 4816 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL); 4817 } 4818 } 4819 4820 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb, 4821 int slot_num, 4822 struct inode **tl_inode, 4823 struct buffer_head **tl_bh) 4824 { 4825 int status; 4826 struct inode *inode = NULL; 4827 struct buffer_head *bh = NULL; 4828 4829 inode = ocfs2_get_system_file_inode(osb, 4830 TRUNCATE_LOG_SYSTEM_INODE, 4831 slot_num); 4832 if (!inode) { 4833 status = -EINVAL; 4834 mlog(ML_ERROR, "Could not get load truncate log inode!\n"); 4835 goto bail; 4836 } 4837 4838 status = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &bh, 4839 OCFS2_BH_CACHED, inode); 4840 if (status < 0) { 4841 iput(inode); 4842 mlog_errno(status); 4843 goto bail; 4844 } 4845 4846 *tl_inode = inode; 4847 *tl_bh = bh; 4848 bail: 4849 mlog_exit(status); 4850 return status; 4851 } 4852 4853 /* called during the 1st stage of node recovery. we stamp a clean 4854 * truncate log and pass back a copy for processing later. if the 4855 * truncate log does not require processing, a *tl_copy is set to 4856 * NULL. */ 4857 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb, 4858 int slot_num, 4859 struct ocfs2_dinode **tl_copy) 4860 { 4861 int status; 4862 struct inode *tl_inode = NULL; 4863 struct buffer_head *tl_bh = NULL; 4864 struct ocfs2_dinode *di; 4865 struct ocfs2_truncate_log *tl; 4866 4867 *tl_copy = NULL; 4868 4869 mlog(0, "recover truncate log from slot %d\n", slot_num); 4870 4871 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh); 4872 if (status < 0) { 4873 mlog_errno(status); 4874 goto bail; 4875 } 4876 4877 di = (struct ocfs2_dinode *) tl_bh->b_data; 4878 tl = &di->id2.i_dealloc; 4879 if (!OCFS2_IS_VALID_DINODE(di)) { 4880 OCFS2_RO_ON_INVALID_DINODE(tl_inode->i_sb, di); 4881 status = -EIO; 4882 goto bail; 4883 } 4884 4885 if (le16_to_cpu(tl->tl_used)) { 4886 mlog(0, "We'll have %u logs to recover\n", 4887 le16_to_cpu(tl->tl_used)); 4888 4889 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL); 4890 if (!(*tl_copy)) { 4891 status = -ENOMEM; 4892 mlog_errno(status); 4893 goto bail; 4894 } 4895 4896 /* Assuming the write-out below goes well, this copy 4897 * will be passed back to recovery for processing. */ 4898 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size); 4899 4900 /* All we need to do to clear the truncate log is set 4901 * tl_used. */ 4902 tl->tl_used = 0; 4903 4904 status = ocfs2_write_block(osb, tl_bh, tl_inode); 4905 if (status < 0) { 4906 mlog_errno(status); 4907 goto bail; 4908 } 4909 } 4910 4911 bail: 4912 if (tl_inode) 4913 iput(tl_inode); 4914 if (tl_bh) 4915 brelse(tl_bh); 4916 4917 if (status < 0 && (*tl_copy)) { 4918 kfree(*tl_copy); 4919 *tl_copy = NULL; 4920 } 4921 4922 mlog_exit(status); 4923 return status; 4924 } 4925 4926 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb, 4927 struct ocfs2_dinode *tl_copy) 4928 { 4929 int status = 0; 4930 int i; 4931 unsigned int clusters, num_recs, start_cluster; 4932 u64 start_blk; 4933 handle_t *handle; 4934 struct inode *tl_inode = osb->osb_tl_inode; 4935 struct ocfs2_truncate_log *tl; 4936 4937 mlog_entry_void(); 4938 4939 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) { 4940 mlog(ML_ERROR, "Asked to recover my own truncate log!\n"); 4941 return -EINVAL; 4942 } 4943 4944 tl = &tl_copy->id2.i_dealloc; 4945 num_recs = le16_to_cpu(tl->tl_used); 4946 mlog(0, "cleanup %u records from %llu\n", num_recs, 4947 (unsigned long long)le64_to_cpu(tl_copy->i_blkno)); 4948 4949 mutex_lock(&tl_inode->i_mutex); 4950 for(i = 0; i < num_recs; i++) { 4951 if (ocfs2_truncate_log_needs_flush(osb)) { 4952 status = __ocfs2_flush_truncate_log(osb); 4953 if (status < 0) { 4954 mlog_errno(status); 4955 goto bail_up; 4956 } 4957 } 4958 4959 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 4960 if (IS_ERR(handle)) { 4961 status = PTR_ERR(handle); 4962 mlog_errno(status); 4963 goto bail_up; 4964 } 4965 4966 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters); 4967 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start); 4968 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster); 4969 4970 status = ocfs2_truncate_log_append(osb, handle, 4971 start_blk, clusters); 4972 ocfs2_commit_trans(osb, handle); 4973 if (status < 0) { 4974 mlog_errno(status); 4975 goto bail_up; 4976 } 4977 } 4978 4979 bail_up: 4980 mutex_unlock(&tl_inode->i_mutex); 4981 4982 mlog_exit(status); 4983 return status; 4984 } 4985 4986 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb) 4987 { 4988 int status; 4989 struct inode *tl_inode = osb->osb_tl_inode; 4990 4991 mlog_entry_void(); 4992 4993 if (tl_inode) { 4994 cancel_delayed_work(&osb->osb_truncate_log_wq); 4995 flush_workqueue(ocfs2_wq); 4996 4997 status = ocfs2_flush_truncate_log(osb); 4998 if (status < 0) 4999 mlog_errno(status); 5000 5001 brelse(osb->osb_tl_bh); 5002 iput(osb->osb_tl_inode); 5003 } 5004 5005 mlog_exit_void(); 5006 } 5007 5008 int ocfs2_truncate_log_init(struct ocfs2_super *osb) 5009 { 5010 int status; 5011 struct inode *tl_inode = NULL; 5012 struct buffer_head *tl_bh = NULL; 5013 5014 mlog_entry_void(); 5015 5016 status = ocfs2_get_truncate_log_info(osb, 5017 osb->slot_num, 5018 &tl_inode, 5019 &tl_bh); 5020 if (status < 0) 5021 mlog_errno(status); 5022 5023 /* ocfs2_truncate_log_shutdown keys on the existence of 5024 * osb->osb_tl_inode so we don't set any of the osb variables 5025 * until we're sure all is well. */ 5026 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq, 5027 ocfs2_truncate_log_worker); 5028 osb->osb_tl_bh = tl_bh; 5029 osb->osb_tl_inode = tl_inode; 5030 5031 mlog_exit(status); 5032 return status; 5033 } 5034 5035 /* 5036 * Delayed de-allocation of suballocator blocks. 5037 * 5038 * Some sets of block de-allocations might involve multiple suballocator inodes. 5039 * 5040 * The locking for this can get extremely complicated, especially when 5041 * the suballocator inodes to delete from aren't known until deep 5042 * within an unrelated codepath. 5043 * 5044 * ocfs2_extent_block structures are a good example of this - an inode 5045 * btree could have been grown by any number of nodes each allocating 5046 * out of their own suballoc inode. 5047 * 5048 * These structures allow the delay of block de-allocation until a 5049 * later time, when locking of multiple cluster inodes won't cause 5050 * deadlock. 5051 */ 5052 5053 /* 5054 * Describes a single block free from a suballocator 5055 */ 5056 struct ocfs2_cached_block_free { 5057 struct ocfs2_cached_block_free *free_next; 5058 u64 free_blk; 5059 unsigned int free_bit; 5060 }; 5061 5062 struct ocfs2_per_slot_free_list { 5063 struct ocfs2_per_slot_free_list *f_next_suballocator; 5064 int f_inode_type; 5065 int f_slot; 5066 struct ocfs2_cached_block_free *f_first; 5067 }; 5068 5069 static int ocfs2_free_cached_items(struct ocfs2_super *osb, 5070 int sysfile_type, 5071 int slot, 5072 struct ocfs2_cached_block_free *head) 5073 { 5074 int ret; 5075 u64 bg_blkno; 5076 handle_t *handle; 5077 struct inode *inode; 5078 struct buffer_head *di_bh = NULL; 5079 struct ocfs2_cached_block_free *tmp; 5080 5081 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot); 5082 if (!inode) { 5083 ret = -EINVAL; 5084 mlog_errno(ret); 5085 goto out; 5086 } 5087 5088 mutex_lock(&inode->i_mutex); 5089 5090 ret = ocfs2_meta_lock(inode, &di_bh, 1); 5091 if (ret) { 5092 mlog_errno(ret); 5093 goto out_mutex; 5094 } 5095 5096 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE); 5097 if (IS_ERR(handle)) { 5098 ret = PTR_ERR(handle); 5099 mlog_errno(ret); 5100 goto out_unlock; 5101 } 5102 5103 while (head) { 5104 bg_blkno = ocfs2_which_suballoc_group(head->free_blk, 5105 head->free_bit); 5106 mlog(0, "Free bit: (bit %u, blkno %llu)\n", 5107 head->free_bit, (unsigned long long)head->free_blk); 5108 5109 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh, 5110 head->free_bit, bg_blkno, 1); 5111 if (ret) { 5112 mlog_errno(ret); 5113 goto out_journal; 5114 } 5115 5116 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE); 5117 if (ret) { 5118 mlog_errno(ret); 5119 goto out_journal; 5120 } 5121 5122 tmp = head; 5123 head = head->free_next; 5124 kfree(tmp); 5125 } 5126 5127 out_journal: 5128 ocfs2_commit_trans(osb, handle); 5129 5130 out_unlock: 5131 ocfs2_meta_unlock(inode, 1); 5132 brelse(di_bh); 5133 out_mutex: 5134 mutex_unlock(&inode->i_mutex); 5135 iput(inode); 5136 out: 5137 while(head) { 5138 /* Premature exit may have left some dangling items. */ 5139 tmp = head; 5140 head = head->free_next; 5141 kfree(tmp); 5142 } 5143 5144 return ret; 5145 } 5146 5147 int ocfs2_run_deallocs(struct ocfs2_super *osb, 5148 struct ocfs2_cached_dealloc_ctxt *ctxt) 5149 { 5150 int ret = 0, ret2; 5151 struct ocfs2_per_slot_free_list *fl; 5152 5153 if (!ctxt) 5154 return 0; 5155 5156 while (ctxt->c_first_suballocator) { 5157 fl = ctxt->c_first_suballocator; 5158 5159 if (fl->f_first) { 5160 mlog(0, "Free items: (type %u, slot %d)\n", 5161 fl->f_inode_type, fl->f_slot); 5162 ret2 = ocfs2_free_cached_items(osb, fl->f_inode_type, 5163 fl->f_slot, fl->f_first); 5164 if (ret2) 5165 mlog_errno(ret2); 5166 if (!ret) 5167 ret = ret2; 5168 } 5169 5170 ctxt->c_first_suballocator = fl->f_next_suballocator; 5171 kfree(fl); 5172 } 5173 5174 return ret; 5175 } 5176 5177 static struct ocfs2_per_slot_free_list * 5178 ocfs2_find_per_slot_free_list(int type, 5179 int slot, 5180 struct ocfs2_cached_dealloc_ctxt *ctxt) 5181 { 5182 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; 5183 5184 while (fl) { 5185 if (fl->f_inode_type == type && fl->f_slot == slot) 5186 return fl; 5187 5188 fl = fl->f_next_suballocator; 5189 } 5190 5191 fl = kmalloc(sizeof(*fl), GFP_NOFS); 5192 if (fl) { 5193 fl->f_inode_type = type; 5194 fl->f_slot = slot; 5195 fl->f_first = NULL; 5196 fl->f_next_suballocator = ctxt->c_first_suballocator; 5197 5198 ctxt->c_first_suballocator = fl; 5199 } 5200 return fl; 5201 } 5202 5203 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 5204 int type, int slot, u64 blkno, 5205 unsigned int bit) 5206 { 5207 int ret; 5208 struct ocfs2_per_slot_free_list *fl; 5209 struct ocfs2_cached_block_free *item; 5210 5211 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt); 5212 if (fl == NULL) { 5213 ret = -ENOMEM; 5214 mlog_errno(ret); 5215 goto out; 5216 } 5217 5218 item = kmalloc(sizeof(*item), GFP_NOFS); 5219 if (item == NULL) { 5220 ret = -ENOMEM; 5221 mlog_errno(ret); 5222 goto out; 5223 } 5224 5225 mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n", 5226 type, slot, bit, (unsigned long long)blkno); 5227 5228 item->free_blk = blkno; 5229 item->free_bit = bit; 5230 item->free_next = fl->f_first; 5231 5232 fl->f_first = item; 5233 5234 ret = 0; 5235 out: 5236 return ret; 5237 } 5238 5239 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 5240 struct ocfs2_extent_block *eb) 5241 { 5242 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE, 5243 le16_to_cpu(eb->h_suballoc_slot), 5244 le64_to_cpu(eb->h_blkno), 5245 le16_to_cpu(eb->h_suballoc_bit)); 5246 } 5247 5248 /* This function will figure out whether the currently last extent 5249 * block will be deleted, and if it will, what the new last extent 5250 * block will be so we can update his h_next_leaf_blk field, as well 5251 * as the dinodes i_last_eb_blk */ 5252 static int ocfs2_find_new_last_ext_blk(struct inode *inode, 5253 unsigned int clusters_to_del, 5254 struct ocfs2_path *path, 5255 struct buffer_head **new_last_eb) 5256 { 5257 int next_free, ret = 0; 5258 u32 cpos; 5259 struct ocfs2_extent_rec *rec; 5260 struct ocfs2_extent_block *eb; 5261 struct ocfs2_extent_list *el; 5262 struct buffer_head *bh = NULL; 5263 5264 *new_last_eb = NULL; 5265 5266 /* we have no tree, so of course, no last_eb. */ 5267 if (!path->p_tree_depth) 5268 goto out; 5269 5270 /* trunc to zero special case - this makes tree_depth = 0 5271 * regardless of what it is. */ 5272 if (OCFS2_I(inode)->ip_clusters == clusters_to_del) 5273 goto out; 5274 5275 el = path_leaf_el(path); 5276 BUG_ON(!el->l_next_free_rec); 5277 5278 /* 5279 * Make sure that this extent list will actually be empty 5280 * after we clear away the data. We can shortcut out if 5281 * there's more than one non-empty extent in the 5282 * list. Otherwise, a check of the remaining extent is 5283 * necessary. 5284 */ 5285 next_free = le16_to_cpu(el->l_next_free_rec); 5286 rec = NULL; 5287 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 5288 if (next_free > 2) 5289 goto out; 5290 5291 /* We may have a valid extent in index 1, check it. */ 5292 if (next_free == 2) 5293 rec = &el->l_recs[1]; 5294 5295 /* 5296 * Fall through - no more nonempty extents, so we want 5297 * to delete this leaf. 5298 */ 5299 } else { 5300 if (next_free > 1) 5301 goto out; 5302 5303 rec = &el->l_recs[0]; 5304 } 5305 5306 if (rec) { 5307 /* 5308 * Check it we'll only be trimming off the end of this 5309 * cluster. 5310 */ 5311 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del) 5312 goto out; 5313 } 5314 5315 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos); 5316 if (ret) { 5317 mlog_errno(ret); 5318 goto out; 5319 } 5320 5321 ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh); 5322 if (ret) { 5323 mlog_errno(ret); 5324 goto out; 5325 } 5326 5327 eb = (struct ocfs2_extent_block *) bh->b_data; 5328 el = &eb->h_list; 5329 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 5330 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); 5331 ret = -EROFS; 5332 goto out; 5333 } 5334 5335 *new_last_eb = bh; 5336 get_bh(*new_last_eb); 5337 mlog(0, "returning block %llu, (cpos: %u)\n", 5338 (unsigned long long)le64_to_cpu(eb->h_blkno), cpos); 5339 out: 5340 brelse(bh); 5341 5342 return ret; 5343 } 5344 5345 /* 5346 * Trim some clusters off the rightmost edge of a tree. Only called 5347 * during truncate. 5348 * 5349 * The caller needs to: 5350 * - start journaling of each path component. 5351 * - compute and fully set up any new last ext block 5352 */ 5353 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path, 5354 handle_t *handle, struct ocfs2_truncate_context *tc, 5355 u32 clusters_to_del, u64 *delete_start) 5356 { 5357 int ret, i, index = path->p_tree_depth; 5358 u32 new_edge = 0; 5359 u64 deleted_eb = 0; 5360 struct buffer_head *bh; 5361 struct ocfs2_extent_list *el; 5362 struct ocfs2_extent_rec *rec; 5363 5364 *delete_start = 0; 5365 5366 while (index >= 0) { 5367 bh = path->p_node[index].bh; 5368 el = path->p_node[index].el; 5369 5370 mlog(0, "traveling tree (index = %d, block = %llu)\n", 5371 index, (unsigned long long)bh->b_blocknr); 5372 5373 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 5374 5375 if (index != 5376 (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) { 5377 ocfs2_error(inode->i_sb, 5378 "Inode %lu has invalid ext. block %llu", 5379 inode->i_ino, 5380 (unsigned long long)bh->b_blocknr); 5381 ret = -EROFS; 5382 goto out; 5383 } 5384 5385 find_tail_record: 5386 i = le16_to_cpu(el->l_next_free_rec) - 1; 5387 rec = &el->l_recs[i]; 5388 5389 mlog(0, "Extent list before: record %d: (%u, %u, %llu), " 5390 "next = %u\n", i, le32_to_cpu(rec->e_cpos), 5391 ocfs2_rec_clusters(el, rec), 5392 (unsigned long long)le64_to_cpu(rec->e_blkno), 5393 le16_to_cpu(el->l_next_free_rec)); 5394 5395 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del); 5396 5397 if (le16_to_cpu(el->l_tree_depth) == 0) { 5398 /* 5399 * If the leaf block contains a single empty 5400 * extent and no records, we can just remove 5401 * the block. 5402 */ 5403 if (i == 0 && ocfs2_is_empty_extent(rec)) { 5404 memset(rec, 0, 5405 sizeof(struct ocfs2_extent_rec)); 5406 el->l_next_free_rec = cpu_to_le16(0); 5407 5408 goto delete; 5409 } 5410 5411 /* 5412 * Remove any empty extents by shifting things 5413 * left. That should make life much easier on 5414 * the code below. This condition is rare 5415 * enough that we shouldn't see a performance 5416 * hit. 5417 */ 5418 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 5419 le16_add_cpu(&el->l_next_free_rec, -1); 5420 5421 for(i = 0; 5422 i < le16_to_cpu(el->l_next_free_rec); i++) 5423 el->l_recs[i] = el->l_recs[i + 1]; 5424 5425 memset(&el->l_recs[i], 0, 5426 sizeof(struct ocfs2_extent_rec)); 5427 5428 /* 5429 * We've modified our extent list. The 5430 * simplest way to handle this change 5431 * is to being the search from the 5432 * start again. 5433 */ 5434 goto find_tail_record; 5435 } 5436 5437 le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del); 5438 5439 /* 5440 * We'll use "new_edge" on our way back up the 5441 * tree to know what our rightmost cpos is. 5442 */ 5443 new_edge = le16_to_cpu(rec->e_leaf_clusters); 5444 new_edge += le32_to_cpu(rec->e_cpos); 5445 5446 /* 5447 * The caller will use this to delete data blocks. 5448 */ 5449 *delete_start = le64_to_cpu(rec->e_blkno) 5450 + ocfs2_clusters_to_blocks(inode->i_sb, 5451 le16_to_cpu(rec->e_leaf_clusters)); 5452 5453 /* 5454 * If it's now empty, remove this record. 5455 */ 5456 if (le16_to_cpu(rec->e_leaf_clusters) == 0) { 5457 memset(rec, 0, 5458 sizeof(struct ocfs2_extent_rec)); 5459 le16_add_cpu(&el->l_next_free_rec, -1); 5460 } 5461 } else { 5462 if (le64_to_cpu(rec->e_blkno) == deleted_eb) { 5463 memset(rec, 0, 5464 sizeof(struct ocfs2_extent_rec)); 5465 le16_add_cpu(&el->l_next_free_rec, -1); 5466 5467 goto delete; 5468 } 5469 5470 /* Can this actually happen? */ 5471 if (le16_to_cpu(el->l_next_free_rec) == 0) 5472 goto delete; 5473 5474 /* 5475 * We never actually deleted any clusters 5476 * because our leaf was empty. There's no 5477 * reason to adjust the rightmost edge then. 5478 */ 5479 if (new_edge == 0) 5480 goto delete; 5481 5482 rec->e_int_clusters = cpu_to_le32(new_edge); 5483 le32_add_cpu(&rec->e_int_clusters, 5484 -le32_to_cpu(rec->e_cpos)); 5485 5486 /* 5487 * A deleted child record should have been 5488 * caught above. 5489 */ 5490 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0); 5491 } 5492 5493 delete: 5494 ret = ocfs2_journal_dirty(handle, bh); 5495 if (ret) { 5496 mlog_errno(ret); 5497 goto out; 5498 } 5499 5500 mlog(0, "extent list container %llu, after: record %d: " 5501 "(%u, %u, %llu), next = %u.\n", 5502 (unsigned long long)bh->b_blocknr, i, 5503 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec), 5504 (unsigned long long)le64_to_cpu(rec->e_blkno), 5505 le16_to_cpu(el->l_next_free_rec)); 5506 5507 /* 5508 * We must be careful to only attempt delete of an 5509 * extent block (and not the root inode block). 5510 */ 5511 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) { 5512 struct ocfs2_extent_block *eb = 5513 (struct ocfs2_extent_block *)bh->b_data; 5514 5515 /* 5516 * Save this for use when processing the 5517 * parent block. 5518 */ 5519 deleted_eb = le64_to_cpu(eb->h_blkno); 5520 5521 mlog(0, "deleting this extent block.\n"); 5522 5523 ocfs2_remove_from_cache(inode, bh); 5524 5525 BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0])); 5526 BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos)); 5527 BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno)); 5528 5529 ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb); 5530 /* An error here is not fatal. */ 5531 if (ret < 0) 5532 mlog_errno(ret); 5533 } else { 5534 deleted_eb = 0; 5535 } 5536 5537 index--; 5538 } 5539 5540 ret = 0; 5541 out: 5542 return ret; 5543 } 5544 5545 static int ocfs2_do_truncate(struct ocfs2_super *osb, 5546 unsigned int clusters_to_del, 5547 struct inode *inode, 5548 struct buffer_head *fe_bh, 5549 handle_t *handle, 5550 struct ocfs2_truncate_context *tc, 5551 struct ocfs2_path *path) 5552 { 5553 int status; 5554 struct ocfs2_dinode *fe; 5555 struct ocfs2_extent_block *last_eb = NULL; 5556 struct ocfs2_extent_list *el; 5557 struct buffer_head *last_eb_bh = NULL; 5558 u64 delete_blk = 0; 5559 5560 fe = (struct ocfs2_dinode *) fe_bh->b_data; 5561 5562 status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del, 5563 path, &last_eb_bh); 5564 if (status < 0) { 5565 mlog_errno(status); 5566 goto bail; 5567 } 5568 5569 /* 5570 * Each component will be touched, so we might as well journal 5571 * here to avoid having to handle errors later. 5572 */ 5573 status = ocfs2_journal_access_path(inode, handle, path); 5574 if (status < 0) { 5575 mlog_errno(status); 5576 goto bail; 5577 } 5578 5579 if (last_eb_bh) { 5580 status = ocfs2_journal_access(handle, inode, last_eb_bh, 5581 OCFS2_JOURNAL_ACCESS_WRITE); 5582 if (status < 0) { 5583 mlog_errno(status); 5584 goto bail; 5585 } 5586 5587 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5588 } 5589 5590 el = &(fe->id2.i_list); 5591 5592 /* 5593 * Lower levels depend on this never happening, but it's best 5594 * to check it up here before changing the tree. 5595 */ 5596 if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) { 5597 ocfs2_error(inode->i_sb, 5598 "Inode %lu has an empty extent record, depth %u\n", 5599 inode->i_ino, le16_to_cpu(el->l_tree_depth)); 5600 status = -EROFS; 5601 goto bail; 5602 } 5603 5604 spin_lock(&OCFS2_I(inode)->ip_lock); 5605 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) - 5606 clusters_to_del; 5607 spin_unlock(&OCFS2_I(inode)->ip_lock); 5608 le32_add_cpu(&fe->i_clusters, -clusters_to_del); 5609 5610 status = ocfs2_trim_tree(inode, path, handle, tc, 5611 clusters_to_del, &delete_blk); 5612 if (status) { 5613 mlog_errno(status); 5614 goto bail; 5615 } 5616 5617 if (le32_to_cpu(fe->i_clusters) == 0) { 5618 /* trunc to zero is a special case. */ 5619 el->l_tree_depth = 0; 5620 fe->i_last_eb_blk = 0; 5621 } else if (last_eb) 5622 fe->i_last_eb_blk = last_eb->h_blkno; 5623 5624 status = ocfs2_journal_dirty(handle, fe_bh); 5625 if (status < 0) { 5626 mlog_errno(status); 5627 goto bail; 5628 } 5629 5630 if (last_eb) { 5631 /* If there will be a new last extent block, then by 5632 * definition, there cannot be any leaves to the right of 5633 * him. */ 5634 last_eb->h_next_leaf_blk = 0; 5635 status = ocfs2_journal_dirty(handle, last_eb_bh); 5636 if (status < 0) { 5637 mlog_errno(status); 5638 goto bail; 5639 } 5640 } 5641 5642 if (delete_blk) { 5643 status = ocfs2_truncate_log_append(osb, handle, delete_blk, 5644 clusters_to_del); 5645 if (status < 0) { 5646 mlog_errno(status); 5647 goto bail; 5648 } 5649 } 5650 status = 0; 5651 bail: 5652 5653 mlog_exit(status); 5654 return status; 5655 } 5656 5657 static int ocfs2_writeback_zero_func(handle_t *handle, struct buffer_head *bh) 5658 { 5659 set_buffer_uptodate(bh); 5660 mark_buffer_dirty(bh); 5661 return 0; 5662 } 5663 5664 static int ocfs2_ordered_zero_func(handle_t *handle, struct buffer_head *bh) 5665 { 5666 set_buffer_uptodate(bh); 5667 mark_buffer_dirty(bh); 5668 return ocfs2_journal_dirty_data(handle, bh); 5669 } 5670 5671 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start, 5672 loff_t end, struct page **pages, 5673 int numpages, u64 phys, handle_t *handle) 5674 { 5675 int i, ret, partial = 0; 5676 void *kaddr; 5677 struct page *page; 5678 unsigned int from, to = PAGE_CACHE_SIZE; 5679 struct super_block *sb = inode->i_sb; 5680 5681 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb))); 5682 5683 if (numpages == 0) 5684 goto out; 5685 5686 to = PAGE_CACHE_SIZE; 5687 for(i = 0; i < numpages; i++) { 5688 page = pages[i]; 5689 5690 from = start & (PAGE_CACHE_SIZE - 1); 5691 if ((end >> PAGE_CACHE_SHIFT) == page->index) 5692 to = end & (PAGE_CACHE_SIZE - 1); 5693 5694 BUG_ON(from > PAGE_CACHE_SIZE); 5695 BUG_ON(to > PAGE_CACHE_SIZE); 5696 5697 ret = ocfs2_map_page_blocks(page, &phys, inode, from, to, 0); 5698 if (ret) 5699 mlog_errno(ret); 5700 5701 kaddr = kmap_atomic(page, KM_USER0); 5702 memset(kaddr + from, 0, to - from); 5703 kunmap_atomic(kaddr, KM_USER0); 5704 5705 /* 5706 * Need to set the buffers we zero'd into uptodate 5707 * here if they aren't - ocfs2_map_page_blocks() 5708 * might've skipped some 5709 */ 5710 if (ocfs2_should_order_data(inode)) { 5711 ret = walk_page_buffers(handle, 5712 page_buffers(page), 5713 from, to, &partial, 5714 ocfs2_ordered_zero_func); 5715 if (ret < 0) 5716 mlog_errno(ret); 5717 } else { 5718 ret = walk_page_buffers(handle, page_buffers(page), 5719 from, to, &partial, 5720 ocfs2_writeback_zero_func); 5721 if (ret < 0) 5722 mlog_errno(ret); 5723 } 5724 5725 if (!partial) 5726 SetPageUptodate(page); 5727 5728 flush_dcache_page(page); 5729 5730 start = (page->index + 1) << PAGE_CACHE_SHIFT; 5731 } 5732 out: 5733 if (pages) { 5734 for (i = 0; i < numpages; i++) { 5735 page = pages[i]; 5736 unlock_page(page); 5737 mark_page_accessed(page); 5738 page_cache_release(page); 5739 } 5740 } 5741 } 5742 5743 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end, 5744 struct page **pages, int *num, u64 *phys) 5745 { 5746 int i, numpages = 0, ret = 0; 5747 unsigned int ext_flags; 5748 struct super_block *sb = inode->i_sb; 5749 struct address_space *mapping = inode->i_mapping; 5750 unsigned long index; 5751 loff_t last_page_bytes; 5752 5753 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb))); 5754 BUG_ON(start > end); 5755 5756 if (start == end) 5757 goto out; 5758 5759 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits != 5760 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits); 5761 5762 ret = ocfs2_extent_map_get_blocks(inode, start >> sb->s_blocksize_bits, 5763 phys, NULL, &ext_flags); 5764 if (ret) { 5765 mlog_errno(ret); 5766 goto out; 5767 } 5768 5769 /* Tail is a hole. */ 5770 if (*phys == 0) 5771 goto out; 5772 5773 /* Tail is marked as unwritten, we can count on write to zero 5774 * in that case. */ 5775 if (ext_flags & OCFS2_EXT_UNWRITTEN) 5776 goto out; 5777 5778 last_page_bytes = PAGE_ALIGN(end); 5779 index = start >> PAGE_CACHE_SHIFT; 5780 do { 5781 pages[numpages] = grab_cache_page(mapping, index); 5782 if (!pages[numpages]) { 5783 ret = -ENOMEM; 5784 mlog_errno(ret); 5785 goto out; 5786 } 5787 5788 numpages++; 5789 index++; 5790 } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT)); 5791 5792 out: 5793 if (ret != 0) { 5794 if (pages) { 5795 for (i = 0; i < numpages; i++) { 5796 if (pages[i]) { 5797 unlock_page(pages[i]); 5798 page_cache_release(pages[i]); 5799 } 5800 } 5801 } 5802 numpages = 0; 5803 } 5804 5805 *num = numpages; 5806 5807 return ret; 5808 } 5809 5810 /* 5811 * Zero the area past i_size but still within an allocated 5812 * cluster. This avoids exposing nonzero data on subsequent file 5813 * extends. 5814 * 5815 * We need to call this before i_size is updated on the inode because 5816 * otherwise block_write_full_page() will skip writeout of pages past 5817 * i_size. The new_i_size parameter is passed for this reason. 5818 */ 5819 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle, 5820 u64 range_start, u64 range_end) 5821 { 5822 int ret, numpages; 5823 struct page **pages = NULL; 5824 u64 phys; 5825 5826 /* 5827 * File systems which don't support sparse files zero on every 5828 * extend. 5829 */ 5830 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 5831 return 0; 5832 5833 pages = kcalloc(ocfs2_pages_per_cluster(inode->i_sb), 5834 sizeof(struct page *), GFP_NOFS); 5835 if (pages == NULL) { 5836 ret = -ENOMEM; 5837 mlog_errno(ret); 5838 goto out; 5839 } 5840 5841 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages, 5842 &numpages, &phys); 5843 if (ret) { 5844 mlog_errno(ret); 5845 goto out; 5846 } 5847 5848 if (numpages == 0) 5849 goto out; 5850 5851 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages, 5852 numpages, phys, handle); 5853 5854 /* 5855 * Initiate writeout of the pages we zero'd here. We don't 5856 * wait on them - the truncate_inode_pages() call later will 5857 * do that for us. 5858 */ 5859 ret = do_sync_mapping_range(inode->i_mapping, range_start, 5860 range_end - 1, SYNC_FILE_RANGE_WRITE); 5861 if (ret) 5862 mlog_errno(ret); 5863 5864 out: 5865 if (pages) 5866 kfree(pages); 5867 5868 return ret; 5869 } 5870 5871 /* 5872 * It is expected, that by the time you call this function, 5873 * inode->i_size and fe->i_size have been adjusted. 5874 * 5875 * WARNING: This will kfree the truncate context 5876 */ 5877 int ocfs2_commit_truncate(struct ocfs2_super *osb, 5878 struct inode *inode, 5879 struct buffer_head *fe_bh, 5880 struct ocfs2_truncate_context *tc) 5881 { 5882 int status, i, credits, tl_sem = 0; 5883 u32 clusters_to_del, new_highest_cpos, range; 5884 struct ocfs2_extent_list *el; 5885 handle_t *handle = NULL; 5886 struct inode *tl_inode = osb->osb_tl_inode; 5887 struct ocfs2_path *path = NULL; 5888 5889 mlog_entry_void(); 5890 5891 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb, 5892 i_size_read(inode)); 5893 5894 path = ocfs2_new_inode_path(fe_bh); 5895 if (!path) { 5896 status = -ENOMEM; 5897 mlog_errno(status); 5898 goto bail; 5899 } 5900 5901 ocfs2_extent_map_trunc(inode, new_highest_cpos); 5902 5903 start: 5904 /* 5905 * Check that we still have allocation to delete. 5906 */ 5907 if (OCFS2_I(inode)->ip_clusters == 0) { 5908 status = 0; 5909 goto bail; 5910 } 5911 5912 /* 5913 * Truncate always works against the rightmost tree branch. 5914 */ 5915 status = ocfs2_find_path(inode, path, UINT_MAX); 5916 if (status) { 5917 mlog_errno(status); 5918 goto bail; 5919 } 5920 5921 mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n", 5922 OCFS2_I(inode)->ip_clusters, path->p_tree_depth); 5923 5924 /* 5925 * By now, el will point to the extent list on the bottom most 5926 * portion of this tree. Only the tail record is considered in 5927 * each pass. 5928 * 5929 * We handle the following cases, in order: 5930 * - empty extent: delete the remaining branch 5931 * - remove the entire record 5932 * - remove a partial record 5933 * - no record needs to be removed (truncate has completed) 5934 */ 5935 el = path_leaf_el(path); 5936 if (le16_to_cpu(el->l_next_free_rec) == 0) { 5937 ocfs2_error(inode->i_sb, 5938 "Inode %llu has empty extent block at %llu\n", 5939 (unsigned long long)OCFS2_I(inode)->ip_blkno, 5940 (unsigned long long)path_leaf_bh(path)->b_blocknr); 5941 status = -EROFS; 5942 goto bail; 5943 } 5944 5945 i = le16_to_cpu(el->l_next_free_rec) - 1; 5946 range = le32_to_cpu(el->l_recs[i].e_cpos) + 5947 ocfs2_rec_clusters(el, &el->l_recs[i]); 5948 if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) { 5949 clusters_to_del = 0; 5950 } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) { 5951 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]); 5952 } else if (range > new_highest_cpos) { 5953 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) + 5954 le32_to_cpu(el->l_recs[i].e_cpos)) - 5955 new_highest_cpos; 5956 } else { 5957 status = 0; 5958 goto bail; 5959 } 5960 5961 mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n", 5962 clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr); 5963 5964 BUG_ON(clusters_to_del == 0); 5965 5966 mutex_lock(&tl_inode->i_mutex); 5967 tl_sem = 1; 5968 /* ocfs2_truncate_log_needs_flush guarantees us at least one 5969 * record is free for use. If there isn't any, we flush to get 5970 * an empty truncate log. */ 5971 if (ocfs2_truncate_log_needs_flush(osb)) { 5972 status = __ocfs2_flush_truncate_log(osb); 5973 if (status < 0) { 5974 mlog_errno(status); 5975 goto bail; 5976 } 5977 } 5978 5979 credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del, 5980 (struct ocfs2_dinode *)fe_bh->b_data, 5981 el); 5982 handle = ocfs2_start_trans(osb, credits); 5983 if (IS_ERR(handle)) { 5984 status = PTR_ERR(handle); 5985 handle = NULL; 5986 mlog_errno(status); 5987 goto bail; 5988 } 5989 5990 status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle, 5991 tc, path); 5992 if (status < 0) { 5993 mlog_errno(status); 5994 goto bail; 5995 } 5996 5997 mutex_unlock(&tl_inode->i_mutex); 5998 tl_sem = 0; 5999 6000 ocfs2_commit_trans(osb, handle); 6001 handle = NULL; 6002 6003 ocfs2_reinit_path(path, 1); 6004 6005 /* 6006 * The check above will catch the case where we've truncated 6007 * away all allocation. 6008 */ 6009 goto start; 6010 6011 bail: 6012 6013 ocfs2_schedule_truncate_log_flush(osb, 1); 6014 6015 if (tl_sem) 6016 mutex_unlock(&tl_inode->i_mutex); 6017 6018 if (handle) 6019 ocfs2_commit_trans(osb, handle); 6020 6021 ocfs2_run_deallocs(osb, &tc->tc_dealloc); 6022 6023 ocfs2_free_path(path); 6024 6025 /* This will drop the ext_alloc cluster lock for us */ 6026 ocfs2_free_truncate_context(tc); 6027 6028 mlog_exit(status); 6029 return status; 6030 } 6031 6032 /* 6033 * Expects the inode to already be locked. 6034 */ 6035 int ocfs2_prepare_truncate(struct ocfs2_super *osb, 6036 struct inode *inode, 6037 struct buffer_head *fe_bh, 6038 struct ocfs2_truncate_context **tc) 6039 { 6040 int status; 6041 unsigned int new_i_clusters; 6042 struct ocfs2_dinode *fe; 6043 struct ocfs2_extent_block *eb; 6044 struct buffer_head *last_eb_bh = NULL; 6045 6046 mlog_entry_void(); 6047 6048 *tc = NULL; 6049 6050 new_i_clusters = ocfs2_clusters_for_bytes(osb->sb, 6051 i_size_read(inode)); 6052 fe = (struct ocfs2_dinode *) fe_bh->b_data; 6053 6054 mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size =" 6055 "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters, 6056 (unsigned long long)le64_to_cpu(fe->i_size)); 6057 6058 *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL); 6059 if (!(*tc)) { 6060 status = -ENOMEM; 6061 mlog_errno(status); 6062 goto bail; 6063 } 6064 ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc); 6065 6066 if (fe->id2.i_list.l_tree_depth) { 6067 status = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk), 6068 &last_eb_bh, OCFS2_BH_CACHED, inode); 6069 if (status < 0) { 6070 mlog_errno(status); 6071 goto bail; 6072 } 6073 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 6074 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 6075 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); 6076 6077 brelse(last_eb_bh); 6078 status = -EIO; 6079 goto bail; 6080 } 6081 } 6082 6083 (*tc)->tc_last_eb_bh = last_eb_bh; 6084 6085 status = 0; 6086 bail: 6087 if (status < 0) { 6088 if (*tc) 6089 ocfs2_free_truncate_context(*tc); 6090 *tc = NULL; 6091 } 6092 mlog_exit_void(); 6093 return status; 6094 } 6095 6096 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc) 6097 { 6098 /* 6099 * The caller is responsible for completing deallocation 6100 * before freeing the context. 6101 */ 6102 if (tc->tc_dealloc.c_first_suballocator != NULL) 6103 mlog(ML_NOTICE, 6104 "Truncate completion has non-empty dealloc context\n"); 6105 6106 if (tc->tc_last_eb_bh) 6107 brelse(tc->tc_last_eb_bh); 6108 6109 kfree(tc); 6110 } 6111