xref: /openbmc/linux/fs/ocfs2/alloc.c (revision c21b37f6)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 
32 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
33 #include <cluster/masklog.h>
34 
35 #include "ocfs2.h"
36 
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "localalloc.h"
44 #include "suballoc.h"
45 #include "sysfile.h"
46 #include "file.h"
47 #include "super.h"
48 #include "uptodate.h"
49 
50 #include "buffer_head_io.h"
51 
52 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
53 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
54 					 struct ocfs2_extent_block *eb);
55 
56 /*
57  * Structures which describe a path through a btree, and functions to
58  * manipulate them.
59  *
60  * The idea here is to be as generic as possible with the tree
61  * manipulation code.
62  */
63 struct ocfs2_path_item {
64 	struct buffer_head		*bh;
65 	struct ocfs2_extent_list	*el;
66 };
67 
68 #define OCFS2_MAX_PATH_DEPTH	5
69 
70 struct ocfs2_path {
71 	int			p_tree_depth;
72 	struct ocfs2_path_item	p_node[OCFS2_MAX_PATH_DEPTH];
73 };
74 
75 #define path_root_bh(_path) ((_path)->p_node[0].bh)
76 #define path_root_el(_path) ((_path)->p_node[0].el)
77 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
78 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
79 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
80 
81 /*
82  * Reset the actual path elements so that we can re-use the structure
83  * to build another path. Generally, this involves freeing the buffer
84  * heads.
85  */
86 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
87 {
88 	int i, start = 0, depth = 0;
89 	struct ocfs2_path_item *node;
90 
91 	if (keep_root)
92 		start = 1;
93 
94 	for(i = start; i < path_num_items(path); i++) {
95 		node = &path->p_node[i];
96 
97 		brelse(node->bh);
98 		node->bh = NULL;
99 		node->el = NULL;
100 	}
101 
102 	/*
103 	 * Tree depth may change during truncate, or insert. If we're
104 	 * keeping the root extent list, then make sure that our path
105 	 * structure reflects the proper depth.
106 	 */
107 	if (keep_root)
108 		depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
109 
110 	path->p_tree_depth = depth;
111 }
112 
113 static void ocfs2_free_path(struct ocfs2_path *path)
114 {
115 	if (path) {
116 		ocfs2_reinit_path(path, 0);
117 		kfree(path);
118 	}
119 }
120 
121 /*
122  * All the elements of src into dest. After this call, src could be freed
123  * without affecting dest.
124  *
125  * Both paths should have the same root. Any non-root elements of dest
126  * will be freed.
127  */
128 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
129 {
130 	int i;
131 
132 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
133 	BUG_ON(path_root_el(dest) != path_root_el(src));
134 
135 	ocfs2_reinit_path(dest, 1);
136 
137 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
138 		dest->p_node[i].bh = src->p_node[i].bh;
139 		dest->p_node[i].el = src->p_node[i].el;
140 
141 		if (dest->p_node[i].bh)
142 			get_bh(dest->p_node[i].bh);
143 	}
144 }
145 
146 /*
147  * Make the *dest path the same as src and re-initialize src path to
148  * have a root only.
149  */
150 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
151 {
152 	int i;
153 
154 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
155 
156 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
157 		brelse(dest->p_node[i].bh);
158 
159 		dest->p_node[i].bh = src->p_node[i].bh;
160 		dest->p_node[i].el = src->p_node[i].el;
161 
162 		src->p_node[i].bh = NULL;
163 		src->p_node[i].el = NULL;
164 	}
165 }
166 
167 /*
168  * Insert an extent block at given index.
169  *
170  * This will not take an additional reference on eb_bh.
171  */
172 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
173 					struct buffer_head *eb_bh)
174 {
175 	struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
176 
177 	/*
178 	 * Right now, no root bh is an extent block, so this helps
179 	 * catch code errors with dinode trees. The assertion can be
180 	 * safely removed if we ever need to insert extent block
181 	 * structures at the root.
182 	 */
183 	BUG_ON(index == 0);
184 
185 	path->p_node[index].bh = eb_bh;
186 	path->p_node[index].el = &eb->h_list;
187 }
188 
189 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
190 					 struct ocfs2_extent_list *root_el)
191 {
192 	struct ocfs2_path *path;
193 
194 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
195 
196 	path = kzalloc(sizeof(*path), GFP_NOFS);
197 	if (path) {
198 		path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
199 		get_bh(root_bh);
200 		path_root_bh(path) = root_bh;
201 		path_root_el(path) = root_el;
202 	}
203 
204 	return path;
205 }
206 
207 /*
208  * Allocate and initialize a new path based on a disk inode tree.
209  */
210 static struct ocfs2_path *ocfs2_new_inode_path(struct buffer_head *di_bh)
211 {
212 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
213 	struct ocfs2_extent_list *el = &di->id2.i_list;
214 
215 	return ocfs2_new_path(di_bh, el);
216 }
217 
218 /*
219  * Convenience function to journal all components in a path.
220  */
221 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
222 				     struct ocfs2_path *path)
223 {
224 	int i, ret = 0;
225 
226 	if (!path)
227 		goto out;
228 
229 	for(i = 0; i < path_num_items(path); i++) {
230 		ret = ocfs2_journal_access(handle, inode, path->p_node[i].bh,
231 					   OCFS2_JOURNAL_ACCESS_WRITE);
232 		if (ret < 0) {
233 			mlog_errno(ret);
234 			goto out;
235 		}
236 	}
237 
238 out:
239 	return ret;
240 }
241 
242 /*
243  * Return the index of the extent record which contains cluster #v_cluster.
244  * -1 is returned if it was not found.
245  *
246  * Should work fine on interior and exterior nodes.
247  */
248 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
249 {
250 	int ret = -1;
251 	int i;
252 	struct ocfs2_extent_rec *rec;
253 	u32 rec_end, rec_start, clusters;
254 
255 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
256 		rec = &el->l_recs[i];
257 
258 		rec_start = le32_to_cpu(rec->e_cpos);
259 		clusters = ocfs2_rec_clusters(el, rec);
260 
261 		rec_end = rec_start + clusters;
262 
263 		if (v_cluster >= rec_start && v_cluster < rec_end) {
264 			ret = i;
265 			break;
266 		}
267 	}
268 
269 	return ret;
270 }
271 
272 enum ocfs2_contig_type {
273 	CONTIG_NONE = 0,
274 	CONTIG_LEFT,
275 	CONTIG_RIGHT,
276 	CONTIG_LEFTRIGHT,
277 };
278 
279 
280 /*
281  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
282  * ocfs2_extent_contig only work properly against leaf nodes!
283  */
284 static int ocfs2_block_extent_contig(struct super_block *sb,
285 				     struct ocfs2_extent_rec *ext,
286 				     u64 blkno)
287 {
288 	u64 blk_end = le64_to_cpu(ext->e_blkno);
289 
290 	blk_end += ocfs2_clusters_to_blocks(sb,
291 				    le16_to_cpu(ext->e_leaf_clusters));
292 
293 	return blkno == blk_end;
294 }
295 
296 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
297 				  struct ocfs2_extent_rec *right)
298 {
299 	u32 left_range;
300 
301 	left_range = le32_to_cpu(left->e_cpos) +
302 		le16_to_cpu(left->e_leaf_clusters);
303 
304 	return (left_range == le32_to_cpu(right->e_cpos));
305 }
306 
307 static enum ocfs2_contig_type
308 	ocfs2_extent_contig(struct inode *inode,
309 			    struct ocfs2_extent_rec *ext,
310 			    struct ocfs2_extent_rec *insert_rec)
311 {
312 	u64 blkno = le64_to_cpu(insert_rec->e_blkno);
313 
314 	/*
315 	 * Refuse to coalesce extent records with different flag
316 	 * fields - we don't want to mix unwritten extents with user
317 	 * data.
318 	 */
319 	if (ext->e_flags != insert_rec->e_flags)
320 		return CONTIG_NONE;
321 
322 	if (ocfs2_extents_adjacent(ext, insert_rec) &&
323 	    ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
324 			return CONTIG_RIGHT;
325 
326 	blkno = le64_to_cpu(ext->e_blkno);
327 	if (ocfs2_extents_adjacent(insert_rec, ext) &&
328 	    ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
329 		return CONTIG_LEFT;
330 
331 	return CONTIG_NONE;
332 }
333 
334 /*
335  * NOTE: We can have pretty much any combination of contiguousness and
336  * appending.
337  *
338  * The usefulness of APPEND_TAIL is more in that it lets us know that
339  * we'll have to update the path to that leaf.
340  */
341 enum ocfs2_append_type {
342 	APPEND_NONE = 0,
343 	APPEND_TAIL,
344 };
345 
346 enum ocfs2_split_type {
347 	SPLIT_NONE = 0,
348 	SPLIT_LEFT,
349 	SPLIT_RIGHT,
350 };
351 
352 struct ocfs2_insert_type {
353 	enum ocfs2_split_type	ins_split;
354 	enum ocfs2_append_type	ins_appending;
355 	enum ocfs2_contig_type	ins_contig;
356 	int			ins_contig_index;
357 	int			ins_free_records;
358 	int			ins_tree_depth;
359 };
360 
361 struct ocfs2_merge_ctxt {
362 	enum ocfs2_contig_type	c_contig_type;
363 	int			c_has_empty_extent;
364 	int			c_split_covers_rec;
365 	int			c_used_tail_recs;
366 };
367 
368 /*
369  * How many free extents have we got before we need more meta data?
370  */
371 int ocfs2_num_free_extents(struct ocfs2_super *osb,
372 			   struct inode *inode,
373 			   struct ocfs2_dinode *fe)
374 {
375 	int retval;
376 	struct ocfs2_extent_list *el;
377 	struct ocfs2_extent_block *eb;
378 	struct buffer_head *eb_bh = NULL;
379 
380 	mlog_entry_void();
381 
382 	if (!OCFS2_IS_VALID_DINODE(fe)) {
383 		OCFS2_RO_ON_INVALID_DINODE(inode->i_sb, fe);
384 		retval = -EIO;
385 		goto bail;
386 	}
387 
388 	if (fe->i_last_eb_blk) {
389 		retval = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
390 					  &eb_bh, OCFS2_BH_CACHED, inode);
391 		if (retval < 0) {
392 			mlog_errno(retval);
393 			goto bail;
394 		}
395 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
396 		el = &eb->h_list;
397 	} else
398 		el = &fe->id2.i_list;
399 
400 	BUG_ON(el->l_tree_depth != 0);
401 
402 	retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
403 bail:
404 	if (eb_bh)
405 		brelse(eb_bh);
406 
407 	mlog_exit(retval);
408 	return retval;
409 }
410 
411 /* expects array to already be allocated
412  *
413  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
414  * l_count for you
415  */
416 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
417 				     handle_t *handle,
418 				     struct inode *inode,
419 				     int wanted,
420 				     struct ocfs2_alloc_context *meta_ac,
421 				     struct buffer_head *bhs[])
422 {
423 	int count, status, i;
424 	u16 suballoc_bit_start;
425 	u32 num_got;
426 	u64 first_blkno;
427 	struct ocfs2_extent_block *eb;
428 
429 	mlog_entry_void();
430 
431 	count = 0;
432 	while (count < wanted) {
433 		status = ocfs2_claim_metadata(osb,
434 					      handle,
435 					      meta_ac,
436 					      wanted - count,
437 					      &suballoc_bit_start,
438 					      &num_got,
439 					      &first_blkno);
440 		if (status < 0) {
441 			mlog_errno(status);
442 			goto bail;
443 		}
444 
445 		for(i = count;  i < (num_got + count); i++) {
446 			bhs[i] = sb_getblk(osb->sb, first_blkno);
447 			if (bhs[i] == NULL) {
448 				status = -EIO;
449 				mlog_errno(status);
450 				goto bail;
451 			}
452 			ocfs2_set_new_buffer_uptodate(inode, bhs[i]);
453 
454 			status = ocfs2_journal_access(handle, inode, bhs[i],
455 						      OCFS2_JOURNAL_ACCESS_CREATE);
456 			if (status < 0) {
457 				mlog_errno(status);
458 				goto bail;
459 			}
460 
461 			memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
462 			eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
463 			/* Ok, setup the minimal stuff here. */
464 			strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
465 			eb->h_blkno = cpu_to_le64(first_blkno);
466 			eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
467 			eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
468 			eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
469 			eb->h_list.l_count =
470 				cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
471 
472 			suballoc_bit_start++;
473 			first_blkno++;
474 
475 			/* We'll also be dirtied by the caller, so
476 			 * this isn't absolutely necessary. */
477 			status = ocfs2_journal_dirty(handle, bhs[i]);
478 			if (status < 0) {
479 				mlog_errno(status);
480 				goto bail;
481 			}
482 		}
483 
484 		count += num_got;
485 	}
486 
487 	status = 0;
488 bail:
489 	if (status < 0) {
490 		for(i = 0; i < wanted; i++) {
491 			if (bhs[i])
492 				brelse(bhs[i]);
493 			bhs[i] = NULL;
494 		}
495 	}
496 	mlog_exit(status);
497 	return status;
498 }
499 
500 /*
501  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
502  *
503  * Returns the sum of the rightmost extent rec logical offset and
504  * cluster count.
505  *
506  * ocfs2_add_branch() uses this to determine what logical cluster
507  * value should be populated into the leftmost new branch records.
508  *
509  * ocfs2_shift_tree_depth() uses this to determine the # clusters
510  * value for the new topmost tree record.
511  */
512 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
513 {
514 	int i;
515 
516 	i = le16_to_cpu(el->l_next_free_rec) - 1;
517 
518 	return le32_to_cpu(el->l_recs[i].e_cpos) +
519 		ocfs2_rec_clusters(el, &el->l_recs[i]);
520 }
521 
522 /*
523  * Add an entire tree branch to our inode. eb_bh is the extent block
524  * to start at, if we don't want to start the branch at the dinode
525  * structure.
526  *
527  * last_eb_bh is required as we have to update it's next_leaf pointer
528  * for the new last extent block.
529  *
530  * the new branch will be 'empty' in the sense that every block will
531  * contain a single record with cluster count == 0.
532  */
533 static int ocfs2_add_branch(struct ocfs2_super *osb,
534 			    handle_t *handle,
535 			    struct inode *inode,
536 			    struct buffer_head *fe_bh,
537 			    struct buffer_head *eb_bh,
538 			    struct buffer_head **last_eb_bh,
539 			    struct ocfs2_alloc_context *meta_ac)
540 {
541 	int status, new_blocks, i;
542 	u64 next_blkno, new_last_eb_blk;
543 	struct buffer_head *bh;
544 	struct buffer_head **new_eb_bhs = NULL;
545 	struct ocfs2_dinode *fe;
546 	struct ocfs2_extent_block *eb;
547 	struct ocfs2_extent_list  *eb_el;
548 	struct ocfs2_extent_list  *el;
549 	u32 new_cpos;
550 
551 	mlog_entry_void();
552 
553 	BUG_ON(!last_eb_bh || !*last_eb_bh);
554 
555 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
556 
557 	if (eb_bh) {
558 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
559 		el = &eb->h_list;
560 	} else
561 		el = &fe->id2.i_list;
562 
563 	/* we never add a branch to a leaf. */
564 	BUG_ON(!el->l_tree_depth);
565 
566 	new_blocks = le16_to_cpu(el->l_tree_depth);
567 
568 	/* allocate the number of new eb blocks we need */
569 	new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
570 			     GFP_KERNEL);
571 	if (!new_eb_bhs) {
572 		status = -ENOMEM;
573 		mlog_errno(status);
574 		goto bail;
575 	}
576 
577 	status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
578 					   meta_ac, new_eb_bhs);
579 	if (status < 0) {
580 		mlog_errno(status);
581 		goto bail;
582 	}
583 
584 	eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
585 	new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
586 
587 	/* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
588 	 * linked with the rest of the tree.
589 	 * conversly, new_eb_bhs[0] is the new bottommost leaf.
590 	 *
591 	 * when we leave the loop, new_last_eb_blk will point to the
592 	 * newest leaf, and next_blkno will point to the topmost extent
593 	 * block. */
594 	next_blkno = new_last_eb_blk = 0;
595 	for(i = 0; i < new_blocks; i++) {
596 		bh = new_eb_bhs[i];
597 		eb = (struct ocfs2_extent_block *) bh->b_data;
598 		if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
599 			OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
600 			status = -EIO;
601 			goto bail;
602 		}
603 		eb_el = &eb->h_list;
604 
605 		status = ocfs2_journal_access(handle, inode, bh,
606 					      OCFS2_JOURNAL_ACCESS_CREATE);
607 		if (status < 0) {
608 			mlog_errno(status);
609 			goto bail;
610 		}
611 
612 		eb->h_next_leaf_blk = 0;
613 		eb_el->l_tree_depth = cpu_to_le16(i);
614 		eb_el->l_next_free_rec = cpu_to_le16(1);
615 		/*
616 		 * This actually counts as an empty extent as
617 		 * c_clusters == 0
618 		 */
619 		eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
620 		eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
621 		/*
622 		 * eb_el isn't always an interior node, but even leaf
623 		 * nodes want a zero'd flags and reserved field so
624 		 * this gets the whole 32 bits regardless of use.
625 		 */
626 		eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
627 		if (!eb_el->l_tree_depth)
628 			new_last_eb_blk = le64_to_cpu(eb->h_blkno);
629 
630 		status = ocfs2_journal_dirty(handle, bh);
631 		if (status < 0) {
632 			mlog_errno(status);
633 			goto bail;
634 		}
635 
636 		next_blkno = le64_to_cpu(eb->h_blkno);
637 	}
638 
639 	/* This is a bit hairy. We want to update up to three blocks
640 	 * here without leaving any of them in an inconsistent state
641 	 * in case of error. We don't have to worry about
642 	 * journal_dirty erroring as it won't unless we've aborted the
643 	 * handle (in which case we would never be here) so reserving
644 	 * the write with journal_access is all we need to do. */
645 	status = ocfs2_journal_access(handle, inode, *last_eb_bh,
646 				      OCFS2_JOURNAL_ACCESS_WRITE);
647 	if (status < 0) {
648 		mlog_errno(status);
649 		goto bail;
650 	}
651 	status = ocfs2_journal_access(handle, inode, fe_bh,
652 				      OCFS2_JOURNAL_ACCESS_WRITE);
653 	if (status < 0) {
654 		mlog_errno(status);
655 		goto bail;
656 	}
657 	if (eb_bh) {
658 		status = ocfs2_journal_access(handle, inode, eb_bh,
659 					      OCFS2_JOURNAL_ACCESS_WRITE);
660 		if (status < 0) {
661 			mlog_errno(status);
662 			goto bail;
663 		}
664 	}
665 
666 	/* Link the new branch into the rest of the tree (el will
667 	 * either be on the fe, or the extent block passed in. */
668 	i = le16_to_cpu(el->l_next_free_rec);
669 	el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
670 	el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
671 	el->l_recs[i].e_int_clusters = 0;
672 	le16_add_cpu(&el->l_next_free_rec, 1);
673 
674 	/* fe needs a new last extent block pointer, as does the
675 	 * next_leaf on the previously last-extent-block. */
676 	fe->i_last_eb_blk = cpu_to_le64(new_last_eb_blk);
677 
678 	eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
679 	eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
680 
681 	status = ocfs2_journal_dirty(handle, *last_eb_bh);
682 	if (status < 0)
683 		mlog_errno(status);
684 	status = ocfs2_journal_dirty(handle, fe_bh);
685 	if (status < 0)
686 		mlog_errno(status);
687 	if (eb_bh) {
688 		status = ocfs2_journal_dirty(handle, eb_bh);
689 		if (status < 0)
690 			mlog_errno(status);
691 	}
692 
693 	/*
694 	 * Some callers want to track the rightmost leaf so pass it
695 	 * back here.
696 	 */
697 	brelse(*last_eb_bh);
698 	get_bh(new_eb_bhs[0]);
699 	*last_eb_bh = new_eb_bhs[0];
700 
701 	status = 0;
702 bail:
703 	if (new_eb_bhs) {
704 		for (i = 0; i < new_blocks; i++)
705 			if (new_eb_bhs[i])
706 				brelse(new_eb_bhs[i]);
707 		kfree(new_eb_bhs);
708 	}
709 
710 	mlog_exit(status);
711 	return status;
712 }
713 
714 /*
715  * adds another level to the allocation tree.
716  * returns back the new extent block so you can add a branch to it
717  * after this call.
718  */
719 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
720 				  handle_t *handle,
721 				  struct inode *inode,
722 				  struct buffer_head *fe_bh,
723 				  struct ocfs2_alloc_context *meta_ac,
724 				  struct buffer_head **ret_new_eb_bh)
725 {
726 	int status, i;
727 	u32 new_clusters;
728 	struct buffer_head *new_eb_bh = NULL;
729 	struct ocfs2_dinode *fe;
730 	struct ocfs2_extent_block *eb;
731 	struct ocfs2_extent_list  *fe_el;
732 	struct ocfs2_extent_list  *eb_el;
733 
734 	mlog_entry_void();
735 
736 	status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
737 					   &new_eb_bh);
738 	if (status < 0) {
739 		mlog_errno(status);
740 		goto bail;
741 	}
742 
743 	eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
744 	if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
745 		OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
746 		status = -EIO;
747 		goto bail;
748 	}
749 
750 	eb_el = &eb->h_list;
751 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
752 	fe_el = &fe->id2.i_list;
753 
754 	status = ocfs2_journal_access(handle, inode, new_eb_bh,
755 				      OCFS2_JOURNAL_ACCESS_CREATE);
756 	if (status < 0) {
757 		mlog_errno(status);
758 		goto bail;
759 	}
760 
761 	/* copy the fe data into the new extent block */
762 	eb_el->l_tree_depth = fe_el->l_tree_depth;
763 	eb_el->l_next_free_rec = fe_el->l_next_free_rec;
764 	for(i = 0; i < le16_to_cpu(fe_el->l_next_free_rec); i++)
765 		eb_el->l_recs[i] = fe_el->l_recs[i];
766 
767 	status = ocfs2_journal_dirty(handle, new_eb_bh);
768 	if (status < 0) {
769 		mlog_errno(status);
770 		goto bail;
771 	}
772 
773 	status = ocfs2_journal_access(handle, inode, fe_bh,
774 				      OCFS2_JOURNAL_ACCESS_WRITE);
775 	if (status < 0) {
776 		mlog_errno(status);
777 		goto bail;
778 	}
779 
780 	new_clusters = ocfs2_sum_rightmost_rec(eb_el);
781 
782 	/* update fe now */
783 	le16_add_cpu(&fe_el->l_tree_depth, 1);
784 	fe_el->l_recs[0].e_cpos = 0;
785 	fe_el->l_recs[0].e_blkno = eb->h_blkno;
786 	fe_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
787 	for(i = 1; i < le16_to_cpu(fe_el->l_next_free_rec); i++)
788 		memset(&fe_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
789 	fe_el->l_next_free_rec = cpu_to_le16(1);
790 
791 	/* If this is our 1st tree depth shift, then last_eb_blk
792 	 * becomes the allocated extent block */
793 	if (fe_el->l_tree_depth == cpu_to_le16(1))
794 		fe->i_last_eb_blk = eb->h_blkno;
795 
796 	status = ocfs2_journal_dirty(handle, fe_bh);
797 	if (status < 0) {
798 		mlog_errno(status);
799 		goto bail;
800 	}
801 
802 	*ret_new_eb_bh = new_eb_bh;
803 	new_eb_bh = NULL;
804 	status = 0;
805 bail:
806 	if (new_eb_bh)
807 		brelse(new_eb_bh);
808 
809 	mlog_exit(status);
810 	return status;
811 }
812 
813 /*
814  * Should only be called when there is no space left in any of the
815  * leaf nodes. What we want to do is find the lowest tree depth
816  * non-leaf extent block with room for new records. There are three
817  * valid results of this search:
818  *
819  * 1) a lowest extent block is found, then we pass it back in
820  *    *lowest_eb_bh and return '0'
821  *
822  * 2) the search fails to find anything, but the dinode has room. We
823  *    pass NULL back in *lowest_eb_bh, but still return '0'
824  *
825  * 3) the search fails to find anything AND the dinode is full, in
826  *    which case we return > 0
827  *
828  * return status < 0 indicates an error.
829  */
830 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
831 				    struct inode *inode,
832 				    struct buffer_head *fe_bh,
833 				    struct buffer_head **target_bh)
834 {
835 	int status = 0, i;
836 	u64 blkno;
837 	struct ocfs2_dinode *fe;
838 	struct ocfs2_extent_block *eb;
839 	struct ocfs2_extent_list  *el;
840 	struct buffer_head *bh = NULL;
841 	struct buffer_head *lowest_bh = NULL;
842 
843 	mlog_entry_void();
844 
845 	*target_bh = NULL;
846 
847 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
848 	el = &fe->id2.i_list;
849 
850 	while(le16_to_cpu(el->l_tree_depth) > 1) {
851 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
852 			ocfs2_error(inode->i_sb, "Dinode %llu has empty "
853 				    "extent list (next_free_rec == 0)",
854 				    (unsigned long long)OCFS2_I(inode)->ip_blkno);
855 			status = -EIO;
856 			goto bail;
857 		}
858 		i = le16_to_cpu(el->l_next_free_rec) - 1;
859 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
860 		if (!blkno) {
861 			ocfs2_error(inode->i_sb, "Dinode %llu has extent "
862 				    "list where extent # %d has no physical "
863 				    "block start",
864 				    (unsigned long long)OCFS2_I(inode)->ip_blkno, i);
865 			status = -EIO;
866 			goto bail;
867 		}
868 
869 		if (bh) {
870 			brelse(bh);
871 			bh = NULL;
872 		}
873 
874 		status = ocfs2_read_block(osb, blkno, &bh, OCFS2_BH_CACHED,
875 					  inode);
876 		if (status < 0) {
877 			mlog_errno(status);
878 			goto bail;
879 		}
880 
881 		eb = (struct ocfs2_extent_block *) bh->b_data;
882 		if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
883 			OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
884 			status = -EIO;
885 			goto bail;
886 		}
887 		el = &eb->h_list;
888 
889 		if (le16_to_cpu(el->l_next_free_rec) <
890 		    le16_to_cpu(el->l_count)) {
891 			if (lowest_bh)
892 				brelse(lowest_bh);
893 			lowest_bh = bh;
894 			get_bh(lowest_bh);
895 		}
896 	}
897 
898 	/* If we didn't find one and the fe doesn't have any room,
899 	 * then return '1' */
900 	if (!lowest_bh
901 	    && (fe->id2.i_list.l_next_free_rec == fe->id2.i_list.l_count))
902 		status = 1;
903 
904 	*target_bh = lowest_bh;
905 bail:
906 	if (bh)
907 		brelse(bh);
908 
909 	mlog_exit(status);
910 	return status;
911 }
912 
913 /*
914  * Grow a b-tree so that it has more records.
915  *
916  * We might shift the tree depth in which case existing paths should
917  * be considered invalid.
918  *
919  * Tree depth after the grow is returned via *final_depth.
920  *
921  * *last_eb_bh will be updated by ocfs2_add_branch().
922  */
923 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
924 			   struct buffer_head *di_bh, int *final_depth,
925 			   struct buffer_head **last_eb_bh,
926 			   struct ocfs2_alloc_context *meta_ac)
927 {
928 	int ret, shift;
929 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
930 	int depth = le16_to_cpu(di->id2.i_list.l_tree_depth);
931 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
932 	struct buffer_head *bh = NULL;
933 
934 	BUG_ON(meta_ac == NULL);
935 
936 	shift = ocfs2_find_branch_target(osb, inode, di_bh, &bh);
937 	if (shift < 0) {
938 		ret = shift;
939 		mlog_errno(ret);
940 		goto out;
941 	}
942 
943 	/* We traveled all the way to the bottom of the allocation tree
944 	 * and didn't find room for any more extents - we need to add
945 	 * another tree level */
946 	if (shift) {
947 		BUG_ON(bh);
948 		mlog(0, "need to shift tree depth (current = %d)\n", depth);
949 
950 		/* ocfs2_shift_tree_depth will return us a buffer with
951 		 * the new extent block (so we can pass that to
952 		 * ocfs2_add_branch). */
953 		ret = ocfs2_shift_tree_depth(osb, handle, inode, di_bh,
954 					     meta_ac, &bh);
955 		if (ret < 0) {
956 			mlog_errno(ret);
957 			goto out;
958 		}
959 		depth++;
960 		if (depth == 1) {
961 			/*
962 			 * Special case: we have room now if we shifted from
963 			 * tree_depth 0, so no more work needs to be done.
964 			 *
965 			 * We won't be calling add_branch, so pass
966 			 * back *last_eb_bh as the new leaf. At depth
967 			 * zero, it should always be null so there's
968 			 * no reason to brelse.
969 			 */
970 			BUG_ON(*last_eb_bh);
971 			get_bh(bh);
972 			*last_eb_bh = bh;
973 			goto out;
974 		}
975 	}
976 
977 	/* call ocfs2_add_branch to add the final part of the tree with
978 	 * the new data. */
979 	mlog(0, "add branch. bh = %p\n", bh);
980 	ret = ocfs2_add_branch(osb, handle, inode, di_bh, bh, last_eb_bh,
981 			       meta_ac);
982 	if (ret < 0) {
983 		mlog_errno(ret);
984 		goto out;
985 	}
986 
987 out:
988 	if (final_depth)
989 		*final_depth = depth;
990 	brelse(bh);
991 	return ret;
992 }
993 
994 /*
995  * This is only valid for leaf nodes, which are the only ones that can
996  * have empty extents anyway.
997  */
998 static inline int ocfs2_is_empty_extent(struct ocfs2_extent_rec *rec)
999 {
1000 	return !rec->e_leaf_clusters;
1001 }
1002 
1003 /*
1004  * This function will discard the rightmost extent record.
1005  */
1006 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1007 {
1008 	int next_free = le16_to_cpu(el->l_next_free_rec);
1009 	int count = le16_to_cpu(el->l_count);
1010 	unsigned int num_bytes;
1011 
1012 	BUG_ON(!next_free);
1013 	/* This will cause us to go off the end of our extent list. */
1014 	BUG_ON(next_free >= count);
1015 
1016 	num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1017 
1018 	memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1019 }
1020 
1021 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1022 			      struct ocfs2_extent_rec *insert_rec)
1023 {
1024 	int i, insert_index, next_free, has_empty, num_bytes;
1025 	u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1026 	struct ocfs2_extent_rec *rec;
1027 
1028 	next_free = le16_to_cpu(el->l_next_free_rec);
1029 	has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1030 
1031 	BUG_ON(!next_free);
1032 
1033 	/* The tree code before us didn't allow enough room in the leaf. */
1034 	if (el->l_next_free_rec == el->l_count && !has_empty)
1035 		BUG();
1036 
1037 	/*
1038 	 * The easiest way to approach this is to just remove the
1039 	 * empty extent and temporarily decrement next_free.
1040 	 */
1041 	if (has_empty) {
1042 		/*
1043 		 * If next_free was 1 (only an empty extent), this
1044 		 * loop won't execute, which is fine. We still want
1045 		 * the decrement above to happen.
1046 		 */
1047 		for(i = 0; i < (next_free - 1); i++)
1048 			el->l_recs[i] = el->l_recs[i+1];
1049 
1050 		next_free--;
1051 	}
1052 
1053 	/*
1054 	 * Figure out what the new record index should be.
1055 	 */
1056 	for(i = 0; i < next_free; i++) {
1057 		rec = &el->l_recs[i];
1058 
1059 		if (insert_cpos < le32_to_cpu(rec->e_cpos))
1060 			break;
1061 	}
1062 	insert_index = i;
1063 
1064 	mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1065 	     insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1066 
1067 	BUG_ON(insert_index < 0);
1068 	BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1069 	BUG_ON(insert_index > next_free);
1070 
1071 	/*
1072 	 * No need to memmove if we're just adding to the tail.
1073 	 */
1074 	if (insert_index != next_free) {
1075 		BUG_ON(next_free >= le16_to_cpu(el->l_count));
1076 
1077 		num_bytes = next_free - insert_index;
1078 		num_bytes *= sizeof(struct ocfs2_extent_rec);
1079 		memmove(&el->l_recs[insert_index + 1],
1080 			&el->l_recs[insert_index],
1081 			num_bytes);
1082 	}
1083 
1084 	/*
1085 	 * Either we had an empty extent, and need to re-increment or
1086 	 * there was no empty extent on a non full rightmost leaf node,
1087 	 * in which case we still need to increment.
1088 	 */
1089 	next_free++;
1090 	el->l_next_free_rec = cpu_to_le16(next_free);
1091 	/*
1092 	 * Make sure none of the math above just messed up our tree.
1093 	 */
1094 	BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1095 
1096 	el->l_recs[insert_index] = *insert_rec;
1097 
1098 }
1099 
1100 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1101 {
1102 	int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1103 
1104 	BUG_ON(num_recs == 0);
1105 
1106 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1107 		num_recs--;
1108 		size = num_recs * sizeof(struct ocfs2_extent_rec);
1109 		memmove(&el->l_recs[0], &el->l_recs[1], size);
1110 		memset(&el->l_recs[num_recs], 0,
1111 		       sizeof(struct ocfs2_extent_rec));
1112 		el->l_next_free_rec = cpu_to_le16(num_recs);
1113 	}
1114 }
1115 
1116 /*
1117  * Create an empty extent record .
1118  *
1119  * l_next_free_rec may be updated.
1120  *
1121  * If an empty extent already exists do nothing.
1122  */
1123 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1124 {
1125 	int next_free = le16_to_cpu(el->l_next_free_rec);
1126 
1127 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1128 
1129 	if (next_free == 0)
1130 		goto set_and_inc;
1131 
1132 	if (ocfs2_is_empty_extent(&el->l_recs[0]))
1133 		return;
1134 
1135 	mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1136 			"Asked to create an empty extent in a full list:\n"
1137 			"count = %u, tree depth = %u",
1138 			le16_to_cpu(el->l_count),
1139 			le16_to_cpu(el->l_tree_depth));
1140 
1141 	ocfs2_shift_records_right(el);
1142 
1143 set_and_inc:
1144 	le16_add_cpu(&el->l_next_free_rec, 1);
1145 	memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1146 }
1147 
1148 /*
1149  * For a rotation which involves two leaf nodes, the "root node" is
1150  * the lowest level tree node which contains a path to both leafs. This
1151  * resulting set of information can be used to form a complete "subtree"
1152  *
1153  * This function is passed two full paths from the dinode down to a
1154  * pair of adjacent leaves. It's task is to figure out which path
1155  * index contains the subtree root - this can be the root index itself
1156  * in a worst-case rotation.
1157  *
1158  * The array index of the subtree root is passed back.
1159  */
1160 static int ocfs2_find_subtree_root(struct inode *inode,
1161 				   struct ocfs2_path *left,
1162 				   struct ocfs2_path *right)
1163 {
1164 	int i = 0;
1165 
1166 	/*
1167 	 * Check that the caller passed in two paths from the same tree.
1168 	 */
1169 	BUG_ON(path_root_bh(left) != path_root_bh(right));
1170 
1171 	do {
1172 		i++;
1173 
1174 		/*
1175 		 * The caller didn't pass two adjacent paths.
1176 		 */
1177 		mlog_bug_on_msg(i > left->p_tree_depth,
1178 				"Inode %lu, left depth %u, right depth %u\n"
1179 				"left leaf blk %llu, right leaf blk %llu\n",
1180 				inode->i_ino, left->p_tree_depth,
1181 				right->p_tree_depth,
1182 				(unsigned long long)path_leaf_bh(left)->b_blocknr,
1183 				(unsigned long long)path_leaf_bh(right)->b_blocknr);
1184 	} while (left->p_node[i].bh->b_blocknr ==
1185 		 right->p_node[i].bh->b_blocknr);
1186 
1187 	return i - 1;
1188 }
1189 
1190 typedef void (path_insert_t)(void *, struct buffer_head *);
1191 
1192 /*
1193  * Traverse a btree path in search of cpos, starting at root_el.
1194  *
1195  * This code can be called with a cpos larger than the tree, in which
1196  * case it will return the rightmost path.
1197  */
1198 static int __ocfs2_find_path(struct inode *inode,
1199 			     struct ocfs2_extent_list *root_el, u32 cpos,
1200 			     path_insert_t *func, void *data)
1201 {
1202 	int i, ret = 0;
1203 	u32 range;
1204 	u64 blkno;
1205 	struct buffer_head *bh = NULL;
1206 	struct ocfs2_extent_block *eb;
1207 	struct ocfs2_extent_list *el;
1208 	struct ocfs2_extent_rec *rec;
1209 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1210 
1211 	el = root_el;
1212 	while (el->l_tree_depth) {
1213 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1214 			ocfs2_error(inode->i_sb,
1215 				    "Inode %llu has empty extent list at "
1216 				    "depth %u\n",
1217 				    (unsigned long long)oi->ip_blkno,
1218 				    le16_to_cpu(el->l_tree_depth));
1219 			ret = -EROFS;
1220 			goto out;
1221 
1222 		}
1223 
1224 		for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1225 			rec = &el->l_recs[i];
1226 
1227 			/*
1228 			 * In the case that cpos is off the allocation
1229 			 * tree, this should just wind up returning the
1230 			 * rightmost record.
1231 			 */
1232 			range = le32_to_cpu(rec->e_cpos) +
1233 				ocfs2_rec_clusters(el, rec);
1234 			if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1235 			    break;
1236 		}
1237 
1238 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1239 		if (blkno == 0) {
1240 			ocfs2_error(inode->i_sb,
1241 				    "Inode %llu has bad blkno in extent list "
1242 				    "at depth %u (index %d)\n",
1243 				    (unsigned long long)oi->ip_blkno,
1244 				    le16_to_cpu(el->l_tree_depth), i);
1245 			ret = -EROFS;
1246 			goto out;
1247 		}
1248 
1249 		brelse(bh);
1250 		bh = NULL;
1251 		ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), blkno,
1252 				       &bh, OCFS2_BH_CACHED, inode);
1253 		if (ret) {
1254 			mlog_errno(ret);
1255 			goto out;
1256 		}
1257 
1258 		eb = (struct ocfs2_extent_block *) bh->b_data;
1259 		el = &eb->h_list;
1260 		if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
1261 			OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1262 			ret = -EIO;
1263 			goto out;
1264 		}
1265 
1266 		if (le16_to_cpu(el->l_next_free_rec) >
1267 		    le16_to_cpu(el->l_count)) {
1268 			ocfs2_error(inode->i_sb,
1269 				    "Inode %llu has bad count in extent list "
1270 				    "at block %llu (next free=%u, count=%u)\n",
1271 				    (unsigned long long)oi->ip_blkno,
1272 				    (unsigned long long)bh->b_blocknr,
1273 				    le16_to_cpu(el->l_next_free_rec),
1274 				    le16_to_cpu(el->l_count));
1275 			ret = -EROFS;
1276 			goto out;
1277 		}
1278 
1279 		if (func)
1280 			func(data, bh);
1281 	}
1282 
1283 out:
1284 	/*
1285 	 * Catch any trailing bh that the loop didn't handle.
1286 	 */
1287 	brelse(bh);
1288 
1289 	return ret;
1290 }
1291 
1292 /*
1293  * Given an initialized path (that is, it has a valid root extent
1294  * list), this function will traverse the btree in search of the path
1295  * which would contain cpos.
1296  *
1297  * The path traveled is recorded in the path structure.
1298  *
1299  * Note that this will not do any comparisons on leaf node extent
1300  * records, so it will work fine in the case that we just added a tree
1301  * branch.
1302  */
1303 struct find_path_data {
1304 	int index;
1305 	struct ocfs2_path *path;
1306 };
1307 static void find_path_ins(void *data, struct buffer_head *bh)
1308 {
1309 	struct find_path_data *fp = data;
1310 
1311 	get_bh(bh);
1312 	ocfs2_path_insert_eb(fp->path, fp->index, bh);
1313 	fp->index++;
1314 }
1315 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
1316 			   u32 cpos)
1317 {
1318 	struct find_path_data data;
1319 
1320 	data.index = 1;
1321 	data.path = path;
1322 	return __ocfs2_find_path(inode, path_root_el(path), cpos,
1323 				 find_path_ins, &data);
1324 }
1325 
1326 static void find_leaf_ins(void *data, struct buffer_head *bh)
1327 {
1328 	struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1329 	struct ocfs2_extent_list *el = &eb->h_list;
1330 	struct buffer_head **ret = data;
1331 
1332 	/* We want to retain only the leaf block. */
1333 	if (le16_to_cpu(el->l_tree_depth) == 0) {
1334 		get_bh(bh);
1335 		*ret = bh;
1336 	}
1337 }
1338 /*
1339  * Find the leaf block in the tree which would contain cpos. No
1340  * checking of the actual leaf is done.
1341  *
1342  * Some paths want to call this instead of allocating a path structure
1343  * and calling ocfs2_find_path().
1344  *
1345  * This function doesn't handle non btree extent lists.
1346  */
1347 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
1348 		    u32 cpos, struct buffer_head **leaf_bh)
1349 {
1350 	int ret;
1351 	struct buffer_head *bh = NULL;
1352 
1353 	ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
1354 	if (ret) {
1355 		mlog_errno(ret);
1356 		goto out;
1357 	}
1358 
1359 	*leaf_bh = bh;
1360 out:
1361 	return ret;
1362 }
1363 
1364 /*
1365  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1366  *
1367  * Basically, we've moved stuff around at the bottom of the tree and
1368  * we need to fix up the extent records above the changes to reflect
1369  * the new changes.
1370  *
1371  * left_rec: the record on the left.
1372  * left_child_el: is the child list pointed to by left_rec
1373  * right_rec: the record to the right of left_rec
1374  * right_child_el: is the child list pointed to by right_rec
1375  *
1376  * By definition, this only works on interior nodes.
1377  */
1378 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1379 				  struct ocfs2_extent_list *left_child_el,
1380 				  struct ocfs2_extent_rec *right_rec,
1381 				  struct ocfs2_extent_list *right_child_el)
1382 {
1383 	u32 left_clusters, right_end;
1384 
1385 	/*
1386 	 * Interior nodes never have holes. Their cpos is the cpos of
1387 	 * the leftmost record in their child list. Their cluster
1388 	 * count covers the full theoretical range of their child list
1389 	 * - the range between their cpos and the cpos of the record
1390 	 * immediately to their right.
1391 	 */
1392 	left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1393 	if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) {
1394 		BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1395 		left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1396 	}
1397 	left_clusters -= le32_to_cpu(left_rec->e_cpos);
1398 	left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1399 
1400 	/*
1401 	 * Calculate the rightmost cluster count boundary before
1402 	 * moving cpos - we will need to adjust clusters after
1403 	 * updating e_cpos to keep the same highest cluster count.
1404 	 */
1405 	right_end = le32_to_cpu(right_rec->e_cpos);
1406 	right_end += le32_to_cpu(right_rec->e_int_clusters);
1407 
1408 	right_rec->e_cpos = left_rec->e_cpos;
1409 	le32_add_cpu(&right_rec->e_cpos, left_clusters);
1410 
1411 	right_end -= le32_to_cpu(right_rec->e_cpos);
1412 	right_rec->e_int_clusters = cpu_to_le32(right_end);
1413 }
1414 
1415 /*
1416  * Adjust the adjacent root node records involved in a
1417  * rotation. left_el_blkno is passed in as a key so that we can easily
1418  * find it's index in the root list.
1419  */
1420 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1421 				      struct ocfs2_extent_list *left_el,
1422 				      struct ocfs2_extent_list *right_el,
1423 				      u64 left_el_blkno)
1424 {
1425 	int i;
1426 
1427 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1428 	       le16_to_cpu(left_el->l_tree_depth));
1429 
1430 	for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1431 		if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1432 			break;
1433 	}
1434 
1435 	/*
1436 	 * The path walking code should have never returned a root and
1437 	 * two paths which are not adjacent.
1438 	 */
1439 	BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1440 
1441 	ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1442 				      &root_el->l_recs[i + 1], right_el);
1443 }
1444 
1445 /*
1446  * We've changed a leaf block (in right_path) and need to reflect that
1447  * change back up the subtree.
1448  *
1449  * This happens in multiple places:
1450  *   - When we've moved an extent record from the left path leaf to the right
1451  *     path leaf to make room for an empty extent in the left path leaf.
1452  *   - When our insert into the right path leaf is at the leftmost edge
1453  *     and requires an update of the path immediately to it's left. This
1454  *     can occur at the end of some types of rotation and appending inserts.
1455  */
1456 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1457 				       struct ocfs2_path *left_path,
1458 				       struct ocfs2_path *right_path,
1459 				       int subtree_index)
1460 {
1461 	int ret, i, idx;
1462 	struct ocfs2_extent_list *el, *left_el, *right_el;
1463 	struct ocfs2_extent_rec *left_rec, *right_rec;
1464 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1465 
1466 	/*
1467 	 * Update the counts and position values within all the
1468 	 * interior nodes to reflect the leaf rotation we just did.
1469 	 *
1470 	 * The root node is handled below the loop.
1471 	 *
1472 	 * We begin the loop with right_el and left_el pointing to the
1473 	 * leaf lists and work our way up.
1474 	 *
1475 	 * NOTE: within this loop, left_el and right_el always refer
1476 	 * to the *child* lists.
1477 	 */
1478 	left_el = path_leaf_el(left_path);
1479 	right_el = path_leaf_el(right_path);
1480 	for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
1481 		mlog(0, "Adjust records at index %u\n", i);
1482 
1483 		/*
1484 		 * One nice property of knowing that all of these
1485 		 * nodes are below the root is that we only deal with
1486 		 * the leftmost right node record and the rightmost
1487 		 * left node record.
1488 		 */
1489 		el = left_path->p_node[i].el;
1490 		idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
1491 		left_rec = &el->l_recs[idx];
1492 
1493 		el = right_path->p_node[i].el;
1494 		right_rec = &el->l_recs[0];
1495 
1496 		ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
1497 					      right_el);
1498 
1499 		ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
1500 		if (ret)
1501 			mlog_errno(ret);
1502 
1503 		ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
1504 		if (ret)
1505 			mlog_errno(ret);
1506 
1507 		/*
1508 		 * Setup our list pointers now so that the current
1509 		 * parents become children in the next iteration.
1510 		 */
1511 		left_el = left_path->p_node[i].el;
1512 		right_el = right_path->p_node[i].el;
1513 	}
1514 
1515 	/*
1516 	 * At the root node, adjust the two adjacent records which
1517 	 * begin our path to the leaves.
1518 	 */
1519 
1520 	el = left_path->p_node[subtree_index].el;
1521 	left_el = left_path->p_node[subtree_index + 1].el;
1522 	right_el = right_path->p_node[subtree_index + 1].el;
1523 
1524 	ocfs2_adjust_root_records(el, left_el, right_el,
1525 				  left_path->p_node[subtree_index + 1].bh->b_blocknr);
1526 
1527 	root_bh = left_path->p_node[subtree_index].bh;
1528 
1529 	ret = ocfs2_journal_dirty(handle, root_bh);
1530 	if (ret)
1531 		mlog_errno(ret);
1532 }
1533 
1534 static int ocfs2_rotate_subtree_right(struct inode *inode,
1535 				      handle_t *handle,
1536 				      struct ocfs2_path *left_path,
1537 				      struct ocfs2_path *right_path,
1538 				      int subtree_index)
1539 {
1540 	int ret, i;
1541 	struct buffer_head *right_leaf_bh;
1542 	struct buffer_head *left_leaf_bh = NULL;
1543 	struct buffer_head *root_bh;
1544 	struct ocfs2_extent_list *right_el, *left_el;
1545 	struct ocfs2_extent_rec move_rec;
1546 
1547 	left_leaf_bh = path_leaf_bh(left_path);
1548 	left_el = path_leaf_el(left_path);
1549 
1550 	if (left_el->l_next_free_rec != left_el->l_count) {
1551 		ocfs2_error(inode->i_sb,
1552 			    "Inode %llu has non-full interior leaf node %llu"
1553 			    "(next free = %u)",
1554 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1555 			    (unsigned long long)left_leaf_bh->b_blocknr,
1556 			    le16_to_cpu(left_el->l_next_free_rec));
1557 		return -EROFS;
1558 	}
1559 
1560 	/*
1561 	 * This extent block may already have an empty record, so we
1562 	 * return early if so.
1563 	 */
1564 	if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
1565 		return 0;
1566 
1567 	root_bh = left_path->p_node[subtree_index].bh;
1568 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
1569 
1570 	ret = ocfs2_journal_access(handle, inode, root_bh,
1571 				   OCFS2_JOURNAL_ACCESS_WRITE);
1572 	if (ret) {
1573 		mlog_errno(ret);
1574 		goto out;
1575 	}
1576 
1577 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
1578 		ret = ocfs2_journal_access(handle, inode,
1579 					   right_path->p_node[i].bh,
1580 					   OCFS2_JOURNAL_ACCESS_WRITE);
1581 		if (ret) {
1582 			mlog_errno(ret);
1583 			goto out;
1584 		}
1585 
1586 		ret = ocfs2_journal_access(handle, inode,
1587 					   left_path->p_node[i].bh,
1588 					   OCFS2_JOURNAL_ACCESS_WRITE);
1589 		if (ret) {
1590 			mlog_errno(ret);
1591 			goto out;
1592 		}
1593 	}
1594 
1595 	right_leaf_bh = path_leaf_bh(right_path);
1596 	right_el = path_leaf_el(right_path);
1597 
1598 	/* This is a code error, not a disk corruption. */
1599 	mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
1600 			"because rightmost leaf block %llu is empty\n",
1601 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1602 			(unsigned long long)right_leaf_bh->b_blocknr);
1603 
1604 	ocfs2_create_empty_extent(right_el);
1605 
1606 	ret = ocfs2_journal_dirty(handle, right_leaf_bh);
1607 	if (ret) {
1608 		mlog_errno(ret);
1609 		goto out;
1610 	}
1611 
1612 	/* Do the copy now. */
1613 	i = le16_to_cpu(left_el->l_next_free_rec) - 1;
1614 	move_rec = left_el->l_recs[i];
1615 	right_el->l_recs[0] = move_rec;
1616 
1617 	/*
1618 	 * Clear out the record we just copied and shift everything
1619 	 * over, leaving an empty extent in the left leaf.
1620 	 *
1621 	 * We temporarily subtract from next_free_rec so that the
1622 	 * shift will lose the tail record (which is now defunct).
1623 	 */
1624 	le16_add_cpu(&left_el->l_next_free_rec, -1);
1625 	ocfs2_shift_records_right(left_el);
1626 	memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1627 	le16_add_cpu(&left_el->l_next_free_rec, 1);
1628 
1629 	ret = ocfs2_journal_dirty(handle, left_leaf_bh);
1630 	if (ret) {
1631 		mlog_errno(ret);
1632 		goto out;
1633 	}
1634 
1635 	ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
1636 				subtree_index);
1637 
1638 out:
1639 	return ret;
1640 }
1641 
1642 /*
1643  * Given a full path, determine what cpos value would return us a path
1644  * containing the leaf immediately to the left of the current one.
1645  *
1646  * Will return zero if the path passed in is already the leftmost path.
1647  */
1648 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
1649 					 struct ocfs2_path *path, u32 *cpos)
1650 {
1651 	int i, j, ret = 0;
1652 	u64 blkno;
1653 	struct ocfs2_extent_list *el;
1654 
1655 	BUG_ON(path->p_tree_depth == 0);
1656 
1657 	*cpos = 0;
1658 
1659 	blkno = path_leaf_bh(path)->b_blocknr;
1660 
1661 	/* Start at the tree node just above the leaf and work our way up. */
1662 	i = path->p_tree_depth - 1;
1663 	while (i >= 0) {
1664 		el = path->p_node[i].el;
1665 
1666 		/*
1667 		 * Find the extent record just before the one in our
1668 		 * path.
1669 		 */
1670 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
1671 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
1672 				if (j == 0) {
1673 					if (i == 0) {
1674 						/*
1675 						 * We've determined that the
1676 						 * path specified is already
1677 						 * the leftmost one - return a
1678 						 * cpos of zero.
1679 						 */
1680 						goto out;
1681 					}
1682 					/*
1683 					 * The leftmost record points to our
1684 					 * leaf - we need to travel up the
1685 					 * tree one level.
1686 					 */
1687 					goto next_node;
1688 				}
1689 
1690 				*cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
1691 				*cpos = *cpos + ocfs2_rec_clusters(el,
1692 							   &el->l_recs[j - 1]);
1693 				*cpos = *cpos - 1;
1694 				goto out;
1695 			}
1696 		}
1697 
1698 		/*
1699 		 * If we got here, we never found a valid node where
1700 		 * the tree indicated one should be.
1701 		 */
1702 		ocfs2_error(sb,
1703 			    "Invalid extent tree at extent block %llu\n",
1704 			    (unsigned long long)blkno);
1705 		ret = -EROFS;
1706 		goto out;
1707 
1708 next_node:
1709 		blkno = path->p_node[i].bh->b_blocknr;
1710 		i--;
1711 	}
1712 
1713 out:
1714 	return ret;
1715 }
1716 
1717 /*
1718  * Extend the transaction by enough credits to complete the rotation,
1719  * and still leave at least the original number of credits allocated
1720  * to this transaction.
1721  */
1722 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
1723 					   int op_credits,
1724 					   struct ocfs2_path *path)
1725 {
1726 	int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
1727 
1728 	if (handle->h_buffer_credits < credits)
1729 		return ocfs2_extend_trans(handle, credits);
1730 
1731 	return 0;
1732 }
1733 
1734 /*
1735  * Trap the case where we're inserting into the theoretical range past
1736  * the _actual_ left leaf range. Otherwise, we'll rotate a record
1737  * whose cpos is less than ours into the right leaf.
1738  *
1739  * It's only necessary to look at the rightmost record of the left
1740  * leaf because the logic that calls us should ensure that the
1741  * theoretical ranges in the path components above the leaves are
1742  * correct.
1743  */
1744 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
1745 						 u32 insert_cpos)
1746 {
1747 	struct ocfs2_extent_list *left_el;
1748 	struct ocfs2_extent_rec *rec;
1749 	int next_free;
1750 
1751 	left_el = path_leaf_el(left_path);
1752 	next_free = le16_to_cpu(left_el->l_next_free_rec);
1753 	rec = &left_el->l_recs[next_free - 1];
1754 
1755 	if (insert_cpos > le32_to_cpu(rec->e_cpos))
1756 		return 1;
1757 	return 0;
1758 }
1759 
1760 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
1761 {
1762 	int next_free = le16_to_cpu(el->l_next_free_rec);
1763 	unsigned int range;
1764 	struct ocfs2_extent_rec *rec;
1765 
1766 	if (next_free == 0)
1767 		return 0;
1768 
1769 	rec = &el->l_recs[0];
1770 	if (ocfs2_is_empty_extent(rec)) {
1771 		/* Empty list. */
1772 		if (next_free == 1)
1773 			return 0;
1774 		rec = &el->l_recs[1];
1775 	}
1776 
1777 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1778 	if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1779 		return 1;
1780 	return 0;
1781 }
1782 
1783 /*
1784  * Rotate all the records in a btree right one record, starting at insert_cpos.
1785  *
1786  * The path to the rightmost leaf should be passed in.
1787  *
1788  * The array is assumed to be large enough to hold an entire path (tree depth).
1789  *
1790  * Upon succesful return from this function:
1791  *
1792  * - The 'right_path' array will contain a path to the leaf block
1793  *   whose range contains e_cpos.
1794  * - That leaf block will have a single empty extent in list index 0.
1795  * - In the case that the rotation requires a post-insert update,
1796  *   *ret_left_path will contain a valid path which can be passed to
1797  *   ocfs2_insert_path().
1798  */
1799 static int ocfs2_rotate_tree_right(struct inode *inode,
1800 				   handle_t *handle,
1801 				   enum ocfs2_split_type split,
1802 				   u32 insert_cpos,
1803 				   struct ocfs2_path *right_path,
1804 				   struct ocfs2_path **ret_left_path)
1805 {
1806 	int ret, start, orig_credits = handle->h_buffer_credits;
1807 	u32 cpos;
1808 	struct ocfs2_path *left_path = NULL;
1809 
1810 	*ret_left_path = NULL;
1811 
1812 	left_path = ocfs2_new_path(path_root_bh(right_path),
1813 				   path_root_el(right_path));
1814 	if (!left_path) {
1815 		ret = -ENOMEM;
1816 		mlog_errno(ret);
1817 		goto out;
1818 	}
1819 
1820 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
1821 	if (ret) {
1822 		mlog_errno(ret);
1823 		goto out;
1824 	}
1825 
1826 	mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
1827 
1828 	/*
1829 	 * What we want to do here is:
1830 	 *
1831 	 * 1) Start with the rightmost path.
1832 	 *
1833 	 * 2) Determine a path to the leaf block directly to the left
1834 	 *    of that leaf.
1835 	 *
1836 	 * 3) Determine the 'subtree root' - the lowest level tree node
1837 	 *    which contains a path to both leaves.
1838 	 *
1839 	 * 4) Rotate the subtree.
1840 	 *
1841 	 * 5) Find the next subtree by considering the left path to be
1842 	 *    the new right path.
1843 	 *
1844 	 * The check at the top of this while loop also accepts
1845 	 * insert_cpos == cpos because cpos is only a _theoretical_
1846 	 * value to get us the left path - insert_cpos might very well
1847 	 * be filling that hole.
1848 	 *
1849 	 * Stop at a cpos of '0' because we either started at the
1850 	 * leftmost branch (i.e., a tree with one branch and a
1851 	 * rotation inside of it), or we've gone as far as we can in
1852 	 * rotating subtrees.
1853 	 */
1854 	while (cpos && insert_cpos <= cpos) {
1855 		mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
1856 		     insert_cpos, cpos);
1857 
1858 		ret = ocfs2_find_path(inode, left_path, cpos);
1859 		if (ret) {
1860 			mlog_errno(ret);
1861 			goto out;
1862 		}
1863 
1864 		mlog_bug_on_msg(path_leaf_bh(left_path) ==
1865 				path_leaf_bh(right_path),
1866 				"Inode %lu: error during insert of %u "
1867 				"(left path cpos %u) results in two identical "
1868 				"paths ending at %llu\n",
1869 				inode->i_ino, insert_cpos, cpos,
1870 				(unsigned long long)
1871 				path_leaf_bh(left_path)->b_blocknr);
1872 
1873 		if (split == SPLIT_NONE &&
1874 		    ocfs2_rotate_requires_path_adjustment(left_path,
1875 							  insert_cpos)) {
1876 
1877 			/*
1878 			 * We've rotated the tree as much as we
1879 			 * should. The rest is up to
1880 			 * ocfs2_insert_path() to complete, after the
1881 			 * record insertion. We indicate this
1882 			 * situation by returning the left path.
1883 			 *
1884 			 * The reason we don't adjust the records here
1885 			 * before the record insert is that an error
1886 			 * later might break the rule where a parent
1887 			 * record e_cpos will reflect the actual
1888 			 * e_cpos of the 1st nonempty record of the
1889 			 * child list.
1890 			 */
1891 			*ret_left_path = left_path;
1892 			goto out_ret_path;
1893 		}
1894 
1895 		start = ocfs2_find_subtree_root(inode, left_path, right_path);
1896 
1897 		mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
1898 		     start,
1899 		     (unsigned long long) right_path->p_node[start].bh->b_blocknr,
1900 		     right_path->p_tree_depth);
1901 
1902 		ret = ocfs2_extend_rotate_transaction(handle, start,
1903 						      orig_credits, right_path);
1904 		if (ret) {
1905 			mlog_errno(ret);
1906 			goto out;
1907 		}
1908 
1909 		ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
1910 						 right_path, start);
1911 		if (ret) {
1912 			mlog_errno(ret);
1913 			goto out;
1914 		}
1915 
1916 		if (split != SPLIT_NONE &&
1917 		    ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
1918 						insert_cpos)) {
1919 			/*
1920 			 * A rotate moves the rightmost left leaf
1921 			 * record over to the leftmost right leaf
1922 			 * slot. If we're doing an extent split
1923 			 * instead of a real insert, then we have to
1924 			 * check that the extent to be split wasn't
1925 			 * just moved over. If it was, then we can
1926 			 * exit here, passing left_path back -
1927 			 * ocfs2_split_extent() is smart enough to
1928 			 * search both leaves.
1929 			 */
1930 			*ret_left_path = left_path;
1931 			goto out_ret_path;
1932 		}
1933 
1934 		/*
1935 		 * There is no need to re-read the next right path
1936 		 * as we know that it'll be our current left
1937 		 * path. Optimize by copying values instead.
1938 		 */
1939 		ocfs2_mv_path(right_path, left_path);
1940 
1941 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
1942 						    &cpos);
1943 		if (ret) {
1944 			mlog_errno(ret);
1945 			goto out;
1946 		}
1947 	}
1948 
1949 out:
1950 	ocfs2_free_path(left_path);
1951 
1952 out_ret_path:
1953 	return ret;
1954 }
1955 
1956 static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
1957 				      struct ocfs2_path *path)
1958 {
1959 	int i, idx;
1960 	struct ocfs2_extent_rec *rec;
1961 	struct ocfs2_extent_list *el;
1962 	struct ocfs2_extent_block *eb;
1963 	u32 range;
1964 
1965 	/* Path should always be rightmost. */
1966 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
1967 	BUG_ON(eb->h_next_leaf_blk != 0ULL);
1968 
1969 	el = &eb->h_list;
1970 	BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
1971 	idx = le16_to_cpu(el->l_next_free_rec) - 1;
1972 	rec = &el->l_recs[idx];
1973 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1974 
1975 	for (i = 0; i < path->p_tree_depth; i++) {
1976 		el = path->p_node[i].el;
1977 		idx = le16_to_cpu(el->l_next_free_rec) - 1;
1978 		rec = &el->l_recs[idx];
1979 
1980 		rec->e_int_clusters = cpu_to_le32(range);
1981 		le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
1982 
1983 		ocfs2_journal_dirty(handle, path->p_node[i].bh);
1984 	}
1985 }
1986 
1987 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
1988 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
1989 			      struct ocfs2_path *path, int unlink_start)
1990 {
1991 	int ret, i;
1992 	struct ocfs2_extent_block *eb;
1993 	struct ocfs2_extent_list *el;
1994 	struct buffer_head *bh;
1995 
1996 	for(i = unlink_start; i < path_num_items(path); i++) {
1997 		bh = path->p_node[i].bh;
1998 
1999 		eb = (struct ocfs2_extent_block *)bh->b_data;
2000 		/*
2001 		 * Not all nodes might have had their final count
2002 		 * decremented by the caller - handle this here.
2003 		 */
2004 		el = &eb->h_list;
2005 		if (le16_to_cpu(el->l_next_free_rec) > 1) {
2006 			mlog(ML_ERROR,
2007 			     "Inode %llu, attempted to remove extent block "
2008 			     "%llu with %u records\n",
2009 			     (unsigned long long)OCFS2_I(inode)->ip_blkno,
2010 			     (unsigned long long)le64_to_cpu(eb->h_blkno),
2011 			     le16_to_cpu(el->l_next_free_rec));
2012 
2013 			ocfs2_journal_dirty(handle, bh);
2014 			ocfs2_remove_from_cache(inode, bh);
2015 			continue;
2016 		}
2017 
2018 		el->l_next_free_rec = 0;
2019 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2020 
2021 		ocfs2_journal_dirty(handle, bh);
2022 
2023 		ret = ocfs2_cache_extent_block_free(dealloc, eb);
2024 		if (ret)
2025 			mlog_errno(ret);
2026 
2027 		ocfs2_remove_from_cache(inode, bh);
2028 	}
2029 }
2030 
2031 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
2032 				 struct ocfs2_path *left_path,
2033 				 struct ocfs2_path *right_path,
2034 				 int subtree_index,
2035 				 struct ocfs2_cached_dealloc_ctxt *dealloc)
2036 {
2037 	int i;
2038 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2039 	struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2040 	struct ocfs2_extent_list *el;
2041 	struct ocfs2_extent_block *eb;
2042 
2043 	el = path_leaf_el(left_path);
2044 
2045 	eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2046 
2047 	for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2048 		if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2049 			break;
2050 
2051 	BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2052 
2053 	memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2054 	le16_add_cpu(&root_el->l_next_free_rec, -1);
2055 
2056 	eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2057 	eb->h_next_leaf_blk = 0;
2058 
2059 	ocfs2_journal_dirty(handle, root_bh);
2060 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2061 
2062 	ocfs2_unlink_path(inode, handle, dealloc, right_path,
2063 			  subtree_index + 1);
2064 }
2065 
2066 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
2067 				     struct ocfs2_path *left_path,
2068 				     struct ocfs2_path *right_path,
2069 				     int subtree_index,
2070 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
2071 				     int *deleted)
2072 {
2073 	int ret, i, del_right_subtree = 0, right_has_empty = 0;
2074 	struct buffer_head *root_bh, *di_bh = path_root_bh(right_path);
2075 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
2076 	struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2077 	struct ocfs2_extent_block *eb;
2078 
2079 	*deleted = 0;
2080 
2081 	right_leaf_el = path_leaf_el(right_path);
2082 	left_leaf_el = path_leaf_el(left_path);
2083 	root_bh = left_path->p_node[subtree_index].bh;
2084 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2085 
2086 	if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2087 		return 0;
2088 
2089 	eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2090 	if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2091 		/*
2092 		 * It's legal for us to proceed if the right leaf is
2093 		 * the rightmost one and it has an empty extent. There
2094 		 * are two cases to handle - whether the leaf will be
2095 		 * empty after removal or not. If the leaf isn't empty
2096 		 * then just remove the empty extent up front. The
2097 		 * next block will handle empty leaves by flagging
2098 		 * them for unlink.
2099 		 *
2100 		 * Non rightmost leaves will throw -EAGAIN and the
2101 		 * caller can manually move the subtree and retry.
2102 		 */
2103 
2104 		if (eb->h_next_leaf_blk != 0ULL)
2105 			return -EAGAIN;
2106 
2107 		if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2108 			ret = ocfs2_journal_access(handle, inode,
2109 						   path_leaf_bh(right_path),
2110 						   OCFS2_JOURNAL_ACCESS_WRITE);
2111 			if (ret) {
2112 				mlog_errno(ret);
2113 				goto out;
2114 			}
2115 
2116 			ocfs2_remove_empty_extent(right_leaf_el);
2117 		} else
2118 			right_has_empty = 1;
2119 	}
2120 
2121 	if (eb->h_next_leaf_blk == 0ULL &&
2122 	    le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2123 		/*
2124 		 * We have to update i_last_eb_blk during the meta
2125 		 * data delete.
2126 		 */
2127 		ret = ocfs2_journal_access(handle, inode, di_bh,
2128 					   OCFS2_JOURNAL_ACCESS_WRITE);
2129 		if (ret) {
2130 			mlog_errno(ret);
2131 			goto out;
2132 		}
2133 
2134 		del_right_subtree = 1;
2135 	}
2136 
2137 	/*
2138 	 * Getting here with an empty extent in the right path implies
2139 	 * that it's the rightmost path and will be deleted.
2140 	 */
2141 	BUG_ON(right_has_empty && !del_right_subtree);
2142 
2143 	ret = ocfs2_journal_access(handle, inode, root_bh,
2144 				   OCFS2_JOURNAL_ACCESS_WRITE);
2145 	if (ret) {
2146 		mlog_errno(ret);
2147 		goto out;
2148 	}
2149 
2150 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2151 		ret = ocfs2_journal_access(handle, inode,
2152 					   right_path->p_node[i].bh,
2153 					   OCFS2_JOURNAL_ACCESS_WRITE);
2154 		if (ret) {
2155 			mlog_errno(ret);
2156 			goto out;
2157 		}
2158 
2159 		ret = ocfs2_journal_access(handle, inode,
2160 					   left_path->p_node[i].bh,
2161 					   OCFS2_JOURNAL_ACCESS_WRITE);
2162 		if (ret) {
2163 			mlog_errno(ret);
2164 			goto out;
2165 		}
2166 	}
2167 
2168 	if (!right_has_empty) {
2169 		/*
2170 		 * Only do this if we're moving a real
2171 		 * record. Otherwise, the action is delayed until
2172 		 * after removal of the right path in which case we
2173 		 * can do a simple shift to remove the empty extent.
2174 		 */
2175 		ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2176 		memset(&right_leaf_el->l_recs[0], 0,
2177 		       sizeof(struct ocfs2_extent_rec));
2178 	}
2179 	if (eb->h_next_leaf_blk == 0ULL) {
2180 		/*
2181 		 * Move recs over to get rid of empty extent, decrease
2182 		 * next_free. This is allowed to remove the last
2183 		 * extent in our leaf (setting l_next_free_rec to
2184 		 * zero) - the delete code below won't care.
2185 		 */
2186 		ocfs2_remove_empty_extent(right_leaf_el);
2187 	}
2188 
2189 	ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2190 	if (ret)
2191 		mlog_errno(ret);
2192 	ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2193 	if (ret)
2194 		mlog_errno(ret);
2195 
2196 	if (del_right_subtree) {
2197 		ocfs2_unlink_subtree(inode, handle, left_path, right_path,
2198 				     subtree_index, dealloc);
2199 		ocfs2_update_edge_lengths(inode, handle, left_path);
2200 
2201 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2202 		di->i_last_eb_blk = eb->h_blkno;
2203 
2204 		/*
2205 		 * Removal of the extent in the left leaf was skipped
2206 		 * above so we could delete the right path
2207 		 * 1st.
2208 		 */
2209 		if (right_has_empty)
2210 			ocfs2_remove_empty_extent(left_leaf_el);
2211 
2212 		ret = ocfs2_journal_dirty(handle, di_bh);
2213 		if (ret)
2214 			mlog_errno(ret);
2215 
2216 		*deleted = 1;
2217 	} else
2218 		ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2219 					   subtree_index);
2220 
2221 out:
2222 	return ret;
2223 }
2224 
2225 /*
2226  * Given a full path, determine what cpos value would return us a path
2227  * containing the leaf immediately to the right of the current one.
2228  *
2229  * Will return zero if the path passed in is already the rightmost path.
2230  *
2231  * This looks similar, but is subtly different to
2232  * ocfs2_find_cpos_for_left_leaf().
2233  */
2234 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2235 					  struct ocfs2_path *path, u32 *cpos)
2236 {
2237 	int i, j, ret = 0;
2238 	u64 blkno;
2239 	struct ocfs2_extent_list *el;
2240 
2241 	*cpos = 0;
2242 
2243 	if (path->p_tree_depth == 0)
2244 		return 0;
2245 
2246 	blkno = path_leaf_bh(path)->b_blocknr;
2247 
2248 	/* Start at the tree node just above the leaf and work our way up. */
2249 	i = path->p_tree_depth - 1;
2250 	while (i >= 0) {
2251 		int next_free;
2252 
2253 		el = path->p_node[i].el;
2254 
2255 		/*
2256 		 * Find the extent record just after the one in our
2257 		 * path.
2258 		 */
2259 		next_free = le16_to_cpu(el->l_next_free_rec);
2260 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2261 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2262 				if (j == (next_free - 1)) {
2263 					if (i == 0) {
2264 						/*
2265 						 * We've determined that the
2266 						 * path specified is already
2267 						 * the rightmost one - return a
2268 						 * cpos of zero.
2269 						 */
2270 						goto out;
2271 					}
2272 					/*
2273 					 * The rightmost record points to our
2274 					 * leaf - we need to travel up the
2275 					 * tree one level.
2276 					 */
2277 					goto next_node;
2278 				}
2279 
2280 				*cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2281 				goto out;
2282 			}
2283 		}
2284 
2285 		/*
2286 		 * If we got here, we never found a valid node where
2287 		 * the tree indicated one should be.
2288 		 */
2289 		ocfs2_error(sb,
2290 			    "Invalid extent tree at extent block %llu\n",
2291 			    (unsigned long long)blkno);
2292 		ret = -EROFS;
2293 		goto out;
2294 
2295 next_node:
2296 		blkno = path->p_node[i].bh->b_blocknr;
2297 		i--;
2298 	}
2299 
2300 out:
2301 	return ret;
2302 }
2303 
2304 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2305 					    handle_t *handle,
2306 					    struct buffer_head *bh,
2307 					    struct ocfs2_extent_list *el)
2308 {
2309 	int ret;
2310 
2311 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2312 		return 0;
2313 
2314 	ret = ocfs2_journal_access(handle, inode, bh,
2315 				   OCFS2_JOURNAL_ACCESS_WRITE);
2316 	if (ret) {
2317 		mlog_errno(ret);
2318 		goto out;
2319 	}
2320 
2321 	ocfs2_remove_empty_extent(el);
2322 
2323 	ret = ocfs2_journal_dirty(handle, bh);
2324 	if (ret)
2325 		mlog_errno(ret);
2326 
2327 out:
2328 	return ret;
2329 }
2330 
2331 static int __ocfs2_rotate_tree_left(struct inode *inode,
2332 				    handle_t *handle, int orig_credits,
2333 				    struct ocfs2_path *path,
2334 				    struct ocfs2_cached_dealloc_ctxt *dealloc,
2335 				    struct ocfs2_path **empty_extent_path)
2336 {
2337 	int ret, subtree_root, deleted;
2338 	u32 right_cpos;
2339 	struct ocfs2_path *left_path = NULL;
2340 	struct ocfs2_path *right_path = NULL;
2341 
2342 	BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2343 
2344 	*empty_extent_path = NULL;
2345 
2346 	ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2347 					     &right_cpos);
2348 	if (ret) {
2349 		mlog_errno(ret);
2350 		goto out;
2351 	}
2352 
2353 	left_path = ocfs2_new_path(path_root_bh(path),
2354 				   path_root_el(path));
2355 	if (!left_path) {
2356 		ret = -ENOMEM;
2357 		mlog_errno(ret);
2358 		goto out;
2359 	}
2360 
2361 	ocfs2_cp_path(left_path, path);
2362 
2363 	right_path = ocfs2_new_path(path_root_bh(path),
2364 				    path_root_el(path));
2365 	if (!right_path) {
2366 		ret = -ENOMEM;
2367 		mlog_errno(ret);
2368 		goto out;
2369 	}
2370 
2371 	while (right_cpos) {
2372 		ret = ocfs2_find_path(inode, right_path, right_cpos);
2373 		if (ret) {
2374 			mlog_errno(ret);
2375 			goto out;
2376 		}
2377 
2378 		subtree_root = ocfs2_find_subtree_root(inode, left_path,
2379 						       right_path);
2380 
2381 		mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2382 		     subtree_root,
2383 		     (unsigned long long)
2384 		     right_path->p_node[subtree_root].bh->b_blocknr,
2385 		     right_path->p_tree_depth);
2386 
2387 		ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2388 						      orig_credits, left_path);
2389 		if (ret) {
2390 			mlog_errno(ret);
2391 			goto out;
2392 		}
2393 
2394 		ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
2395 						right_path, subtree_root,
2396 						dealloc, &deleted);
2397 		if (ret == -EAGAIN) {
2398 			/*
2399 			 * The rotation has to temporarily stop due to
2400 			 * the right subtree having an empty
2401 			 * extent. Pass it back to the caller for a
2402 			 * fixup.
2403 			 */
2404 			*empty_extent_path = right_path;
2405 			right_path = NULL;
2406 			goto out;
2407 		}
2408 		if (ret) {
2409 			mlog_errno(ret);
2410 			goto out;
2411 		}
2412 
2413 		/*
2414 		 * The subtree rotate might have removed records on
2415 		 * the rightmost edge. If so, then rotation is
2416 		 * complete.
2417 		 */
2418 		if (deleted)
2419 			break;
2420 
2421 		ocfs2_mv_path(left_path, right_path);
2422 
2423 		ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2424 						     &right_cpos);
2425 		if (ret) {
2426 			mlog_errno(ret);
2427 			goto out;
2428 		}
2429 	}
2430 
2431 out:
2432 	ocfs2_free_path(right_path);
2433 	ocfs2_free_path(left_path);
2434 
2435 	return ret;
2436 }
2437 
2438 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
2439 				       struct ocfs2_path *path,
2440 				       struct ocfs2_cached_dealloc_ctxt *dealloc)
2441 {
2442 	int ret, subtree_index;
2443 	u32 cpos;
2444 	struct ocfs2_path *left_path = NULL;
2445 	struct ocfs2_dinode *di;
2446 	struct ocfs2_extent_block *eb;
2447 	struct ocfs2_extent_list *el;
2448 
2449 	/*
2450 	 * XXX: This code assumes that the root is an inode, which is
2451 	 * true for now but may change as tree code gets generic.
2452 	 */
2453 	di = (struct ocfs2_dinode *)path_root_bh(path)->b_data;
2454 	if (!OCFS2_IS_VALID_DINODE(di)) {
2455 		ret = -EIO;
2456 		ocfs2_error(inode->i_sb,
2457 			    "Inode %llu has invalid path root",
2458 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
2459 		goto out;
2460 	}
2461 
2462 	/*
2463 	 * There's two ways we handle this depending on
2464 	 * whether path is the only existing one.
2465 	 */
2466 	ret = ocfs2_extend_rotate_transaction(handle, 0,
2467 					      handle->h_buffer_credits,
2468 					      path);
2469 	if (ret) {
2470 		mlog_errno(ret);
2471 		goto out;
2472 	}
2473 
2474 	ret = ocfs2_journal_access_path(inode, handle, path);
2475 	if (ret) {
2476 		mlog_errno(ret);
2477 		goto out;
2478 	}
2479 
2480 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
2481 	if (ret) {
2482 		mlog_errno(ret);
2483 		goto out;
2484 	}
2485 
2486 	if (cpos) {
2487 		/*
2488 		 * We have a path to the left of this one - it needs
2489 		 * an update too.
2490 		 */
2491 		left_path = ocfs2_new_path(path_root_bh(path),
2492 					   path_root_el(path));
2493 		if (!left_path) {
2494 			ret = -ENOMEM;
2495 			mlog_errno(ret);
2496 			goto out;
2497 		}
2498 
2499 		ret = ocfs2_find_path(inode, left_path, cpos);
2500 		if (ret) {
2501 			mlog_errno(ret);
2502 			goto out;
2503 		}
2504 
2505 		ret = ocfs2_journal_access_path(inode, handle, left_path);
2506 		if (ret) {
2507 			mlog_errno(ret);
2508 			goto out;
2509 		}
2510 
2511 		subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
2512 
2513 		ocfs2_unlink_subtree(inode, handle, left_path, path,
2514 				     subtree_index, dealloc);
2515 		ocfs2_update_edge_lengths(inode, handle, left_path);
2516 
2517 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2518 		di->i_last_eb_blk = eb->h_blkno;
2519 	} else {
2520 		/*
2521 		 * 'path' is also the leftmost path which
2522 		 * means it must be the only one. This gets
2523 		 * handled differently because we want to
2524 		 * revert the inode back to having extents
2525 		 * in-line.
2526 		 */
2527 		ocfs2_unlink_path(inode, handle, dealloc, path, 1);
2528 
2529 		el = &di->id2.i_list;
2530 		el->l_tree_depth = 0;
2531 		el->l_next_free_rec = 0;
2532 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2533 
2534 		di->i_last_eb_blk = 0;
2535 	}
2536 
2537 	ocfs2_journal_dirty(handle, path_root_bh(path));
2538 
2539 out:
2540 	ocfs2_free_path(left_path);
2541 	return ret;
2542 }
2543 
2544 /*
2545  * Left rotation of btree records.
2546  *
2547  * In many ways, this is (unsurprisingly) the opposite of right
2548  * rotation. We start at some non-rightmost path containing an empty
2549  * extent in the leaf block. The code works its way to the rightmost
2550  * path by rotating records to the left in every subtree.
2551  *
2552  * This is used by any code which reduces the number of extent records
2553  * in a leaf. After removal, an empty record should be placed in the
2554  * leftmost list position.
2555  *
2556  * This won't handle a length update of the rightmost path records if
2557  * the rightmost tree leaf record is removed so the caller is
2558  * responsible for detecting and correcting that.
2559  */
2560 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
2561 				  struct ocfs2_path *path,
2562 				  struct ocfs2_cached_dealloc_ctxt *dealloc)
2563 {
2564 	int ret, orig_credits = handle->h_buffer_credits;
2565 	struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
2566 	struct ocfs2_extent_block *eb;
2567 	struct ocfs2_extent_list *el;
2568 
2569 	el = path_leaf_el(path);
2570 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2571 		return 0;
2572 
2573 	if (path->p_tree_depth == 0) {
2574 rightmost_no_delete:
2575 		/*
2576 		 * In-inode extents. This is trivially handled, so do
2577 		 * it up front.
2578 		 */
2579 		ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
2580 						       path_leaf_bh(path),
2581 						       path_leaf_el(path));
2582 		if (ret)
2583 			mlog_errno(ret);
2584 		goto out;
2585 	}
2586 
2587 	/*
2588 	 * Handle rightmost branch now. There's several cases:
2589 	 *  1) simple rotation leaving records in there. That's trivial.
2590 	 *  2) rotation requiring a branch delete - there's no more
2591 	 *     records left. Two cases of this:
2592 	 *     a) There are branches to the left.
2593 	 *     b) This is also the leftmost (the only) branch.
2594 	 *
2595 	 *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
2596 	 *  2a) we need the left branch so that we can update it with the unlink
2597 	 *  2b) we need to bring the inode back to inline extents.
2598 	 */
2599 
2600 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2601 	el = &eb->h_list;
2602 	if (eb->h_next_leaf_blk == 0) {
2603 		/*
2604 		 * This gets a bit tricky if we're going to delete the
2605 		 * rightmost path. Get the other cases out of the way
2606 		 * 1st.
2607 		 */
2608 		if (le16_to_cpu(el->l_next_free_rec) > 1)
2609 			goto rightmost_no_delete;
2610 
2611 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
2612 			ret = -EIO;
2613 			ocfs2_error(inode->i_sb,
2614 				    "Inode %llu has empty extent block at %llu",
2615 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
2616 				    (unsigned long long)le64_to_cpu(eb->h_blkno));
2617 			goto out;
2618 		}
2619 
2620 		/*
2621 		 * XXX: The caller can not trust "path" any more after
2622 		 * this as it will have been deleted. What do we do?
2623 		 *
2624 		 * In theory the rotate-for-merge code will never get
2625 		 * here because it'll always ask for a rotate in a
2626 		 * nonempty list.
2627 		 */
2628 
2629 		ret = ocfs2_remove_rightmost_path(inode, handle, path,
2630 						  dealloc);
2631 		if (ret)
2632 			mlog_errno(ret);
2633 		goto out;
2634 	}
2635 
2636 	/*
2637 	 * Now we can loop, remembering the path we get from -EAGAIN
2638 	 * and restarting from there.
2639 	 */
2640 try_rotate:
2641 	ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
2642 				       dealloc, &restart_path);
2643 	if (ret && ret != -EAGAIN) {
2644 		mlog_errno(ret);
2645 		goto out;
2646 	}
2647 
2648 	while (ret == -EAGAIN) {
2649 		tmp_path = restart_path;
2650 		restart_path = NULL;
2651 
2652 		ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
2653 					       tmp_path, dealloc,
2654 					       &restart_path);
2655 		if (ret && ret != -EAGAIN) {
2656 			mlog_errno(ret);
2657 			goto out;
2658 		}
2659 
2660 		ocfs2_free_path(tmp_path);
2661 		tmp_path = NULL;
2662 
2663 		if (ret == 0)
2664 			goto try_rotate;
2665 	}
2666 
2667 out:
2668 	ocfs2_free_path(tmp_path);
2669 	ocfs2_free_path(restart_path);
2670 	return ret;
2671 }
2672 
2673 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
2674 				int index)
2675 {
2676 	struct ocfs2_extent_rec *rec = &el->l_recs[index];
2677 	unsigned int size;
2678 
2679 	if (rec->e_leaf_clusters == 0) {
2680 		/*
2681 		 * We consumed all of the merged-from record. An empty
2682 		 * extent cannot exist anywhere but the 1st array
2683 		 * position, so move things over if the merged-from
2684 		 * record doesn't occupy that position.
2685 		 *
2686 		 * This creates a new empty extent so the caller
2687 		 * should be smart enough to have removed any existing
2688 		 * ones.
2689 		 */
2690 		if (index > 0) {
2691 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
2692 			size = index * sizeof(struct ocfs2_extent_rec);
2693 			memmove(&el->l_recs[1], &el->l_recs[0], size);
2694 		}
2695 
2696 		/*
2697 		 * Always memset - the caller doesn't check whether it
2698 		 * created an empty extent, so there could be junk in
2699 		 * the other fields.
2700 		 */
2701 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2702 	}
2703 }
2704 
2705 /*
2706  * Remove split_rec clusters from the record at index and merge them
2707  * onto the beginning of the record at index + 1.
2708  */
2709 static int ocfs2_merge_rec_right(struct inode *inode, struct buffer_head *bh,
2710 				handle_t *handle,
2711 				struct ocfs2_extent_rec *split_rec,
2712 				struct ocfs2_extent_list *el, int index)
2713 {
2714 	int ret;
2715 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
2716 	struct ocfs2_extent_rec *left_rec;
2717 	struct ocfs2_extent_rec *right_rec;
2718 
2719 	BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
2720 
2721 	left_rec = &el->l_recs[index];
2722 	right_rec = &el->l_recs[index + 1];
2723 
2724 	ret = ocfs2_journal_access(handle, inode, bh,
2725 				   OCFS2_JOURNAL_ACCESS_WRITE);
2726 	if (ret) {
2727 		mlog_errno(ret);
2728 		goto out;
2729 	}
2730 
2731 	le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
2732 
2733 	le32_add_cpu(&right_rec->e_cpos, -split_clusters);
2734 	le64_add_cpu(&right_rec->e_blkno,
2735 		     -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
2736 	le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
2737 
2738 	ocfs2_cleanup_merge(el, index);
2739 
2740 	ret = ocfs2_journal_dirty(handle, bh);
2741 	if (ret)
2742 		mlog_errno(ret);
2743 
2744 out:
2745 	return ret;
2746 }
2747 
2748 /*
2749  * Remove split_rec clusters from the record at index and merge them
2750  * onto the tail of the record at index - 1.
2751  */
2752 static int ocfs2_merge_rec_left(struct inode *inode, struct buffer_head *bh,
2753 				handle_t *handle,
2754 				struct ocfs2_extent_rec *split_rec,
2755 				struct ocfs2_extent_list *el, int index)
2756 {
2757 	int ret, has_empty_extent = 0;
2758 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
2759 	struct ocfs2_extent_rec *left_rec;
2760 	struct ocfs2_extent_rec *right_rec;
2761 
2762 	BUG_ON(index <= 0);
2763 
2764 	left_rec = &el->l_recs[index - 1];
2765 	right_rec = &el->l_recs[index];
2766 	if (ocfs2_is_empty_extent(&el->l_recs[0]))
2767 		has_empty_extent = 1;
2768 
2769 	ret = ocfs2_journal_access(handle, inode, bh,
2770 				   OCFS2_JOURNAL_ACCESS_WRITE);
2771 	if (ret) {
2772 		mlog_errno(ret);
2773 		goto out;
2774 	}
2775 
2776 	if (has_empty_extent && index == 1) {
2777 		/*
2778 		 * The easy case - we can just plop the record right in.
2779 		 */
2780 		*left_rec = *split_rec;
2781 
2782 		has_empty_extent = 0;
2783 	} else {
2784 		le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
2785 	}
2786 
2787 	le32_add_cpu(&right_rec->e_cpos, split_clusters);
2788 	le64_add_cpu(&right_rec->e_blkno,
2789 		     ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
2790 	le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
2791 
2792 	ocfs2_cleanup_merge(el, index);
2793 
2794 	ret = ocfs2_journal_dirty(handle, bh);
2795 	if (ret)
2796 		mlog_errno(ret);
2797 
2798 out:
2799 	return ret;
2800 }
2801 
2802 static int ocfs2_try_to_merge_extent(struct inode *inode,
2803 				     handle_t *handle,
2804 				     struct ocfs2_path *left_path,
2805 				     int split_index,
2806 				     struct ocfs2_extent_rec *split_rec,
2807 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
2808 				     struct ocfs2_merge_ctxt *ctxt)
2809 
2810 {
2811 	int ret = 0, delete_tail_recs = 0;
2812 	struct ocfs2_extent_list *el = path_leaf_el(left_path);
2813 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
2814 
2815 	BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
2816 
2817 	if (ctxt->c_split_covers_rec) {
2818 		delete_tail_recs++;
2819 
2820 		if (ctxt->c_contig_type == CONTIG_LEFTRIGHT ||
2821 		    ctxt->c_has_empty_extent)
2822 			delete_tail_recs++;
2823 
2824 		if (ctxt->c_has_empty_extent) {
2825 			/*
2826 			 * The merge code will need to create an empty
2827 			 * extent to take the place of the newly
2828 			 * emptied slot. Remove any pre-existing empty
2829 			 * extents - having more than one in a leaf is
2830 			 * illegal.
2831 			 */
2832 			ret = ocfs2_rotate_tree_left(inode, handle, left_path,
2833 						     dealloc);
2834 			if (ret) {
2835 				mlog_errno(ret);
2836 				goto out;
2837 			}
2838 			split_index--;
2839 			rec = &el->l_recs[split_index];
2840 		}
2841 	}
2842 
2843 	if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
2844 		/*
2845 		 * Left-right contig implies this.
2846 		 */
2847 		BUG_ON(!ctxt->c_split_covers_rec);
2848 		BUG_ON(split_index == 0);
2849 
2850 		/*
2851 		 * Since the leftright insert always covers the entire
2852 		 * extent, this call will delete the insert record
2853 		 * entirely, resulting in an empty extent record added to
2854 		 * the extent block.
2855 		 *
2856 		 * Since the adding of an empty extent shifts
2857 		 * everything back to the right, there's no need to
2858 		 * update split_index here.
2859 		 */
2860 		ret = ocfs2_merge_rec_left(inode, path_leaf_bh(left_path),
2861 					   handle, split_rec, el, split_index);
2862 		if (ret) {
2863 			mlog_errno(ret);
2864 			goto out;
2865 		}
2866 
2867 		/*
2868 		 * We can only get this from logic error above.
2869 		 */
2870 		BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
2871 
2872 		/*
2873 		 * The left merge left us with an empty extent, remove
2874 		 * it.
2875 		 */
2876 		ret = ocfs2_rotate_tree_left(inode, handle, left_path, dealloc);
2877 		if (ret) {
2878 			mlog_errno(ret);
2879 			goto out;
2880 		}
2881 		split_index--;
2882 		rec = &el->l_recs[split_index];
2883 
2884 		/*
2885 		 * Note that we don't pass split_rec here on purpose -
2886 		 * we've merged it into the left side.
2887 		 */
2888 		ret = ocfs2_merge_rec_right(inode, path_leaf_bh(left_path),
2889 					    handle, rec, el, split_index);
2890 		if (ret) {
2891 			mlog_errno(ret);
2892 			goto out;
2893 		}
2894 
2895 		BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
2896 
2897 		ret = ocfs2_rotate_tree_left(inode, handle, left_path,
2898 					     dealloc);
2899 		/*
2900 		 * Error from this last rotate is not critical, so
2901 		 * print but don't bubble it up.
2902 		 */
2903 		if (ret)
2904 			mlog_errno(ret);
2905 		ret = 0;
2906 	} else {
2907 		/*
2908 		 * Merge a record to the left or right.
2909 		 *
2910 		 * 'contig_type' is relative to the existing record,
2911 		 * so for example, if we're "right contig", it's to
2912 		 * the record on the left (hence the left merge).
2913 		 */
2914 		if (ctxt->c_contig_type == CONTIG_RIGHT) {
2915 			ret = ocfs2_merge_rec_left(inode,
2916 						   path_leaf_bh(left_path),
2917 						   handle, split_rec, el,
2918 						   split_index);
2919 			if (ret) {
2920 				mlog_errno(ret);
2921 				goto out;
2922 			}
2923 		} else {
2924 			ret = ocfs2_merge_rec_right(inode,
2925 						    path_leaf_bh(left_path),
2926 						    handle, split_rec, el,
2927 						    split_index);
2928 			if (ret) {
2929 				mlog_errno(ret);
2930 				goto out;
2931 			}
2932 		}
2933 
2934 		if (ctxt->c_split_covers_rec) {
2935 			/*
2936 			 * The merge may have left an empty extent in
2937 			 * our leaf. Try to rotate it away.
2938 			 */
2939 			ret = ocfs2_rotate_tree_left(inode, handle, left_path,
2940 						     dealloc);
2941 			if (ret)
2942 				mlog_errno(ret);
2943 			ret = 0;
2944 		}
2945 	}
2946 
2947 out:
2948 	return ret;
2949 }
2950 
2951 static void ocfs2_subtract_from_rec(struct super_block *sb,
2952 				    enum ocfs2_split_type split,
2953 				    struct ocfs2_extent_rec *rec,
2954 				    struct ocfs2_extent_rec *split_rec)
2955 {
2956 	u64 len_blocks;
2957 
2958 	len_blocks = ocfs2_clusters_to_blocks(sb,
2959 				le16_to_cpu(split_rec->e_leaf_clusters));
2960 
2961 	if (split == SPLIT_LEFT) {
2962 		/*
2963 		 * Region is on the left edge of the existing
2964 		 * record.
2965 		 */
2966 		le32_add_cpu(&rec->e_cpos,
2967 			     le16_to_cpu(split_rec->e_leaf_clusters));
2968 		le64_add_cpu(&rec->e_blkno, len_blocks);
2969 		le16_add_cpu(&rec->e_leaf_clusters,
2970 			     -le16_to_cpu(split_rec->e_leaf_clusters));
2971 	} else {
2972 		/*
2973 		 * Region is on the right edge of the existing
2974 		 * record.
2975 		 */
2976 		le16_add_cpu(&rec->e_leaf_clusters,
2977 			     -le16_to_cpu(split_rec->e_leaf_clusters));
2978 	}
2979 }
2980 
2981 /*
2982  * Do the final bits of extent record insertion at the target leaf
2983  * list. If this leaf is part of an allocation tree, it is assumed
2984  * that the tree above has been prepared.
2985  */
2986 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
2987 				 struct ocfs2_extent_list *el,
2988 				 struct ocfs2_insert_type *insert,
2989 				 struct inode *inode)
2990 {
2991 	int i = insert->ins_contig_index;
2992 	unsigned int range;
2993 	struct ocfs2_extent_rec *rec;
2994 
2995 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
2996 
2997 	if (insert->ins_split != SPLIT_NONE) {
2998 		i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
2999 		BUG_ON(i == -1);
3000 		rec = &el->l_recs[i];
3001 		ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3002 					insert_rec);
3003 		goto rotate;
3004 	}
3005 
3006 	/*
3007 	 * Contiguous insert - either left or right.
3008 	 */
3009 	if (insert->ins_contig != CONTIG_NONE) {
3010 		rec = &el->l_recs[i];
3011 		if (insert->ins_contig == CONTIG_LEFT) {
3012 			rec->e_blkno = insert_rec->e_blkno;
3013 			rec->e_cpos = insert_rec->e_cpos;
3014 		}
3015 		le16_add_cpu(&rec->e_leaf_clusters,
3016 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3017 		return;
3018 	}
3019 
3020 	/*
3021 	 * Handle insert into an empty leaf.
3022 	 */
3023 	if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3024 	    ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3025 	     ocfs2_is_empty_extent(&el->l_recs[0]))) {
3026 		el->l_recs[0] = *insert_rec;
3027 		el->l_next_free_rec = cpu_to_le16(1);
3028 		return;
3029 	}
3030 
3031 	/*
3032 	 * Appending insert.
3033 	 */
3034 	if (insert->ins_appending == APPEND_TAIL) {
3035 		i = le16_to_cpu(el->l_next_free_rec) - 1;
3036 		rec = &el->l_recs[i];
3037 		range = le32_to_cpu(rec->e_cpos)
3038 			+ le16_to_cpu(rec->e_leaf_clusters);
3039 		BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3040 
3041 		mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3042 				le16_to_cpu(el->l_count),
3043 				"inode %lu, depth %u, count %u, next free %u, "
3044 				"rec.cpos %u, rec.clusters %u, "
3045 				"insert.cpos %u, insert.clusters %u\n",
3046 				inode->i_ino,
3047 				le16_to_cpu(el->l_tree_depth),
3048 				le16_to_cpu(el->l_count),
3049 				le16_to_cpu(el->l_next_free_rec),
3050 				le32_to_cpu(el->l_recs[i].e_cpos),
3051 				le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3052 				le32_to_cpu(insert_rec->e_cpos),
3053 				le16_to_cpu(insert_rec->e_leaf_clusters));
3054 		i++;
3055 		el->l_recs[i] = *insert_rec;
3056 		le16_add_cpu(&el->l_next_free_rec, 1);
3057 		return;
3058 	}
3059 
3060 rotate:
3061 	/*
3062 	 * Ok, we have to rotate.
3063 	 *
3064 	 * At this point, it is safe to assume that inserting into an
3065 	 * empty leaf and appending to a leaf have both been handled
3066 	 * above.
3067 	 *
3068 	 * This leaf needs to have space, either by the empty 1st
3069 	 * extent record, or by virtue of an l_next_rec < l_count.
3070 	 */
3071 	ocfs2_rotate_leaf(el, insert_rec);
3072 }
3073 
3074 static inline void ocfs2_update_dinode_clusters(struct inode *inode,
3075 						struct ocfs2_dinode *di,
3076 						u32 clusters)
3077 {
3078 	le32_add_cpu(&di->i_clusters, clusters);
3079 	spin_lock(&OCFS2_I(inode)->ip_lock);
3080 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
3081 	spin_unlock(&OCFS2_I(inode)->ip_lock);
3082 }
3083 
3084 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3085 					   handle_t *handle,
3086 					   struct ocfs2_path *path,
3087 					   struct ocfs2_extent_rec *insert_rec)
3088 {
3089 	int ret, i, next_free;
3090 	struct buffer_head *bh;
3091 	struct ocfs2_extent_list *el;
3092 	struct ocfs2_extent_rec *rec;
3093 
3094 	/*
3095 	 * Update everything except the leaf block.
3096 	 */
3097 	for (i = 0; i < path->p_tree_depth; i++) {
3098 		bh = path->p_node[i].bh;
3099 		el = path->p_node[i].el;
3100 
3101 		next_free = le16_to_cpu(el->l_next_free_rec);
3102 		if (next_free == 0) {
3103 			ocfs2_error(inode->i_sb,
3104 				    "Dinode %llu has a bad extent list",
3105 				    (unsigned long long)OCFS2_I(inode)->ip_blkno);
3106 			ret = -EIO;
3107 			return;
3108 		}
3109 
3110 		rec = &el->l_recs[next_free - 1];
3111 
3112 		rec->e_int_clusters = insert_rec->e_cpos;
3113 		le32_add_cpu(&rec->e_int_clusters,
3114 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3115 		le32_add_cpu(&rec->e_int_clusters,
3116 			     -le32_to_cpu(rec->e_cpos));
3117 
3118 		ret = ocfs2_journal_dirty(handle, bh);
3119 		if (ret)
3120 			mlog_errno(ret);
3121 
3122 	}
3123 }
3124 
3125 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3126 				    struct ocfs2_extent_rec *insert_rec,
3127 				    struct ocfs2_path *right_path,
3128 				    struct ocfs2_path **ret_left_path)
3129 {
3130 	int ret, next_free;
3131 	struct ocfs2_extent_list *el;
3132 	struct ocfs2_path *left_path = NULL;
3133 
3134 	*ret_left_path = NULL;
3135 
3136 	/*
3137 	 * This shouldn't happen for non-trees. The extent rec cluster
3138 	 * count manipulation below only works for interior nodes.
3139 	 */
3140 	BUG_ON(right_path->p_tree_depth == 0);
3141 
3142 	/*
3143 	 * If our appending insert is at the leftmost edge of a leaf,
3144 	 * then we might need to update the rightmost records of the
3145 	 * neighboring path.
3146 	 */
3147 	el = path_leaf_el(right_path);
3148 	next_free = le16_to_cpu(el->l_next_free_rec);
3149 	if (next_free == 0 ||
3150 	    (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3151 		u32 left_cpos;
3152 
3153 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3154 						    &left_cpos);
3155 		if (ret) {
3156 			mlog_errno(ret);
3157 			goto out;
3158 		}
3159 
3160 		mlog(0, "Append may need a left path update. cpos: %u, "
3161 		     "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3162 		     left_cpos);
3163 
3164 		/*
3165 		 * No need to worry if the append is already in the
3166 		 * leftmost leaf.
3167 		 */
3168 		if (left_cpos) {
3169 			left_path = ocfs2_new_path(path_root_bh(right_path),
3170 						   path_root_el(right_path));
3171 			if (!left_path) {
3172 				ret = -ENOMEM;
3173 				mlog_errno(ret);
3174 				goto out;
3175 			}
3176 
3177 			ret = ocfs2_find_path(inode, left_path, left_cpos);
3178 			if (ret) {
3179 				mlog_errno(ret);
3180 				goto out;
3181 			}
3182 
3183 			/*
3184 			 * ocfs2_insert_path() will pass the left_path to the
3185 			 * journal for us.
3186 			 */
3187 		}
3188 	}
3189 
3190 	ret = ocfs2_journal_access_path(inode, handle, right_path);
3191 	if (ret) {
3192 		mlog_errno(ret);
3193 		goto out;
3194 	}
3195 
3196 	ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
3197 
3198 	*ret_left_path = left_path;
3199 	ret = 0;
3200 out:
3201 	if (ret != 0)
3202 		ocfs2_free_path(left_path);
3203 
3204 	return ret;
3205 }
3206 
3207 static void ocfs2_split_record(struct inode *inode,
3208 			       struct ocfs2_path *left_path,
3209 			       struct ocfs2_path *right_path,
3210 			       struct ocfs2_extent_rec *split_rec,
3211 			       enum ocfs2_split_type split)
3212 {
3213 	int index;
3214 	u32 cpos = le32_to_cpu(split_rec->e_cpos);
3215 	struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
3216 	struct ocfs2_extent_rec *rec, *tmprec;
3217 
3218 	right_el = path_leaf_el(right_path);;
3219 	if (left_path)
3220 		left_el = path_leaf_el(left_path);
3221 
3222 	el = right_el;
3223 	insert_el = right_el;
3224 	index = ocfs2_search_extent_list(el, cpos);
3225 	if (index != -1) {
3226 		if (index == 0 && left_path) {
3227 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3228 
3229 			/*
3230 			 * This typically means that the record
3231 			 * started in the left path but moved to the
3232 			 * right as a result of rotation. We either
3233 			 * move the existing record to the left, or we
3234 			 * do the later insert there.
3235 			 *
3236 			 * In this case, the left path should always
3237 			 * exist as the rotate code will have passed
3238 			 * it back for a post-insert update.
3239 			 */
3240 
3241 			if (split == SPLIT_LEFT) {
3242 				/*
3243 				 * It's a left split. Since we know
3244 				 * that the rotate code gave us an
3245 				 * empty extent in the left path, we
3246 				 * can just do the insert there.
3247 				 */
3248 				insert_el = left_el;
3249 			} else {
3250 				/*
3251 				 * Right split - we have to move the
3252 				 * existing record over to the left
3253 				 * leaf. The insert will be into the
3254 				 * newly created empty extent in the
3255 				 * right leaf.
3256 				 */
3257 				tmprec = &right_el->l_recs[index];
3258 				ocfs2_rotate_leaf(left_el, tmprec);
3259 				el = left_el;
3260 
3261 				memset(tmprec, 0, sizeof(*tmprec));
3262 				index = ocfs2_search_extent_list(left_el, cpos);
3263 				BUG_ON(index == -1);
3264 			}
3265 		}
3266 	} else {
3267 		BUG_ON(!left_path);
3268 		BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
3269 		/*
3270 		 * Left path is easy - we can just allow the insert to
3271 		 * happen.
3272 		 */
3273 		el = left_el;
3274 		insert_el = left_el;
3275 		index = ocfs2_search_extent_list(el, cpos);
3276 		BUG_ON(index == -1);
3277 	}
3278 
3279 	rec = &el->l_recs[index];
3280 	ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
3281 	ocfs2_rotate_leaf(insert_el, split_rec);
3282 }
3283 
3284 /*
3285  * This function only does inserts on an allocation b-tree. For dinode
3286  * lists, ocfs2_insert_at_leaf() is called directly.
3287  *
3288  * right_path is the path we want to do the actual insert
3289  * in. left_path should only be passed in if we need to update that
3290  * portion of the tree after an edge insert.
3291  */
3292 static int ocfs2_insert_path(struct inode *inode,
3293 			     handle_t *handle,
3294 			     struct ocfs2_path *left_path,
3295 			     struct ocfs2_path *right_path,
3296 			     struct ocfs2_extent_rec *insert_rec,
3297 			     struct ocfs2_insert_type *insert)
3298 {
3299 	int ret, subtree_index;
3300 	struct buffer_head *leaf_bh = path_leaf_bh(right_path);
3301 
3302 	/*
3303 	 * Pass both paths to the journal. The majority of inserts
3304 	 * will be touching all components anyway.
3305 	 */
3306 	ret = ocfs2_journal_access_path(inode, handle, right_path);
3307 	if (ret < 0) {
3308 		mlog_errno(ret);
3309 		goto out;
3310 	}
3311 
3312 	if (left_path) {
3313 		int credits = handle->h_buffer_credits;
3314 
3315 		/*
3316 		 * There's a chance that left_path got passed back to
3317 		 * us without being accounted for in the
3318 		 * journal. Extend our transaction here to be sure we
3319 		 * can change those blocks.
3320 		 */
3321 		credits += left_path->p_tree_depth;
3322 
3323 		ret = ocfs2_extend_trans(handle, credits);
3324 		if (ret < 0) {
3325 			mlog_errno(ret);
3326 			goto out;
3327 		}
3328 
3329 		ret = ocfs2_journal_access_path(inode, handle, left_path);
3330 		if (ret < 0) {
3331 			mlog_errno(ret);
3332 			goto out;
3333 		}
3334 	}
3335 
3336 	if (insert->ins_split != SPLIT_NONE) {
3337 		/*
3338 		 * We could call ocfs2_insert_at_leaf() for some types
3339 		 * of splits, but it's easier to just let one seperate
3340 		 * function sort it all out.
3341 		 */
3342 		ocfs2_split_record(inode, left_path, right_path,
3343 				   insert_rec, insert->ins_split);
3344 	} else
3345 		ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
3346 				     insert, inode);
3347 
3348 	ret = ocfs2_journal_dirty(handle, leaf_bh);
3349 	if (ret)
3350 		mlog_errno(ret);
3351 
3352 	if (left_path) {
3353 		/*
3354 		 * The rotate code has indicated that we need to fix
3355 		 * up portions of the tree after the insert.
3356 		 *
3357 		 * XXX: Should we extend the transaction here?
3358 		 */
3359 		subtree_index = ocfs2_find_subtree_root(inode, left_path,
3360 							right_path);
3361 		ocfs2_complete_edge_insert(inode, handle, left_path,
3362 					   right_path, subtree_index);
3363 	}
3364 
3365 	ret = 0;
3366 out:
3367 	return ret;
3368 }
3369 
3370 static int ocfs2_do_insert_extent(struct inode *inode,
3371 				  handle_t *handle,
3372 				  struct buffer_head *di_bh,
3373 				  struct ocfs2_extent_rec *insert_rec,
3374 				  struct ocfs2_insert_type *type)
3375 {
3376 	int ret, rotate = 0;
3377 	u32 cpos;
3378 	struct ocfs2_path *right_path = NULL;
3379 	struct ocfs2_path *left_path = NULL;
3380 	struct ocfs2_dinode *di;
3381 	struct ocfs2_extent_list *el;
3382 
3383 	di = (struct ocfs2_dinode *) di_bh->b_data;
3384 	el = &di->id2.i_list;
3385 
3386 	ret = ocfs2_journal_access(handle, inode, di_bh,
3387 				   OCFS2_JOURNAL_ACCESS_WRITE);
3388 	if (ret) {
3389 		mlog_errno(ret);
3390 		goto out;
3391 	}
3392 
3393 	if (le16_to_cpu(el->l_tree_depth) == 0) {
3394 		ocfs2_insert_at_leaf(insert_rec, el, type, inode);
3395 		goto out_update_clusters;
3396 	}
3397 
3398 	right_path = ocfs2_new_inode_path(di_bh);
3399 	if (!right_path) {
3400 		ret = -ENOMEM;
3401 		mlog_errno(ret);
3402 		goto out;
3403 	}
3404 
3405 	/*
3406 	 * Determine the path to start with. Rotations need the
3407 	 * rightmost path, everything else can go directly to the
3408 	 * target leaf.
3409 	 */
3410 	cpos = le32_to_cpu(insert_rec->e_cpos);
3411 	if (type->ins_appending == APPEND_NONE &&
3412 	    type->ins_contig == CONTIG_NONE) {
3413 		rotate = 1;
3414 		cpos = UINT_MAX;
3415 	}
3416 
3417 	ret = ocfs2_find_path(inode, right_path, cpos);
3418 	if (ret) {
3419 		mlog_errno(ret);
3420 		goto out;
3421 	}
3422 
3423 	/*
3424 	 * Rotations and appends need special treatment - they modify
3425 	 * parts of the tree's above them.
3426 	 *
3427 	 * Both might pass back a path immediate to the left of the
3428 	 * one being inserted to. This will be cause
3429 	 * ocfs2_insert_path() to modify the rightmost records of
3430 	 * left_path to account for an edge insert.
3431 	 *
3432 	 * XXX: When modifying this code, keep in mind that an insert
3433 	 * can wind up skipping both of these two special cases...
3434 	 */
3435 	if (rotate) {
3436 		ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
3437 					      le32_to_cpu(insert_rec->e_cpos),
3438 					      right_path, &left_path);
3439 		if (ret) {
3440 			mlog_errno(ret);
3441 			goto out;
3442 		}
3443 	} else if (type->ins_appending == APPEND_TAIL
3444 		   && type->ins_contig != CONTIG_LEFT) {
3445 		ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
3446 					       right_path, &left_path);
3447 		if (ret) {
3448 			mlog_errno(ret);
3449 			goto out;
3450 		}
3451 	}
3452 
3453 	ret = ocfs2_insert_path(inode, handle, left_path, right_path,
3454 				insert_rec, type);
3455 	if (ret) {
3456 		mlog_errno(ret);
3457 		goto out;
3458 	}
3459 
3460 out_update_clusters:
3461 	if (type->ins_split == SPLIT_NONE)
3462 		ocfs2_update_dinode_clusters(inode, di,
3463 					     le16_to_cpu(insert_rec->e_leaf_clusters));
3464 
3465 	ret = ocfs2_journal_dirty(handle, di_bh);
3466 	if (ret)
3467 		mlog_errno(ret);
3468 
3469 out:
3470 	ocfs2_free_path(left_path);
3471 	ocfs2_free_path(right_path);
3472 
3473 	return ret;
3474 }
3475 
3476 static enum ocfs2_contig_type
3477 ocfs2_figure_merge_contig_type(struct inode *inode,
3478 			       struct ocfs2_extent_list *el, int index,
3479 			       struct ocfs2_extent_rec *split_rec)
3480 {
3481 	struct ocfs2_extent_rec *rec;
3482 	enum ocfs2_contig_type ret = CONTIG_NONE;
3483 
3484 	/*
3485 	 * We're careful to check for an empty extent record here -
3486 	 * the merge code will know what to do if it sees one.
3487 	 */
3488 
3489 	if (index > 0) {
3490 		rec = &el->l_recs[index - 1];
3491 		if (index == 1 && ocfs2_is_empty_extent(rec)) {
3492 			if (split_rec->e_cpos == el->l_recs[index].e_cpos)
3493 				ret = CONTIG_RIGHT;
3494 		} else {
3495 			ret = ocfs2_extent_contig(inode, rec, split_rec);
3496 		}
3497 	}
3498 
3499 	if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) {
3500 		enum ocfs2_contig_type contig_type;
3501 
3502 		rec = &el->l_recs[index + 1];
3503 		contig_type = ocfs2_extent_contig(inode, rec, split_rec);
3504 
3505 		if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
3506 			ret = CONTIG_LEFTRIGHT;
3507 		else if (ret == CONTIG_NONE)
3508 			ret = contig_type;
3509 	}
3510 
3511 	return ret;
3512 }
3513 
3514 static void ocfs2_figure_contig_type(struct inode *inode,
3515 				     struct ocfs2_insert_type *insert,
3516 				     struct ocfs2_extent_list *el,
3517 				     struct ocfs2_extent_rec *insert_rec)
3518 {
3519 	int i;
3520 	enum ocfs2_contig_type contig_type = CONTIG_NONE;
3521 
3522 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3523 
3524 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
3525 		contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
3526 						  insert_rec);
3527 		if (contig_type != CONTIG_NONE) {
3528 			insert->ins_contig_index = i;
3529 			break;
3530 		}
3531 	}
3532 	insert->ins_contig = contig_type;
3533 }
3534 
3535 /*
3536  * This should only be called against the righmost leaf extent list.
3537  *
3538  * ocfs2_figure_appending_type() will figure out whether we'll have to
3539  * insert at the tail of the rightmost leaf.
3540  *
3541  * This should also work against the dinode list for tree's with 0
3542  * depth. If we consider the dinode list to be the rightmost leaf node
3543  * then the logic here makes sense.
3544  */
3545 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
3546 					struct ocfs2_extent_list *el,
3547 					struct ocfs2_extent_rec *insert_rec)
3548 {
3549 	int i;
3550 	u32 cpos = le32_to_cpu(insert_rec->e_cpos);
3551 	struct ocfs2_extent_rec *rec;
3552 
3553 	insert->ins_appending = APPEND_NONE;
3554 
3555 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3556 
3557 	if (!el->l_next_free_rec)
3558 		goto set_tail_append;
3559 
3560 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
3561 		/* Were all records empty? */
3562 		if (le16_to_cpu(el->l_next_free_rec) == 1)
3563 			goto set_tail_append;
3564 	}
3565 
3566 	i = le16_to_cpu(el->l_next_free_rec) - 1;
3567 	rec = &el->l_recs[i];
3568 
3569 	if (cpos >=
3570 	    (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
3571 		goto set_tail_append;
3572 
3573 	return;
3574 
3575 set_tail_append:
3576 	insert->ins_appending = APPEND_TAIL;
3577 }
3578 
3579 /*
3580  * Helper function called at the begining of an insert.
3581  *
3582  * This computes a few things that are commonly used in the process of
3583  * inserting into the btree:
3584  *   - Whether the new extent is contiguous with an existing one.
3585  *   - The current tree depth.
3586  *   - Whether the insert is an appending one.
3587  *   - The total # of free records in the tree.
3588  *
3589  * All of the information is stored on the ocfs2_insert_type
3590  * structure.
3591  */
3592 static int ocfs2_figure_insert_type(struct inode *inode,
3593 				    struct buffer_head *di_bh,
3594 				    struct buffer_head **last_eb_bh,
3595 				    struct ocfs2_extent_rec *insert_rec,
3596 				    struct ocfs2_insert_type *insert)
3597 {
3598 	int ret;
3599 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
3600 	struct ocfs2_extent_block *eb;
3601 	struct ocfs2_extent_list *el;
3602 	struct ocfs2_path *path = NULL;
3603 	struct buffer_head *bh = NULL;
3604 
3605 	insert->ins_split = SPLIT_NONE;
3606 
3607 	el = &di->id2.i_list;
3608 	insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
3609 
3610 	if (el->l_tree_depth) {
3611 		/*
3612 		 * If we have tree depth, we read in the
3613 		 * rightmost extent block ahead of time as
3614 		 * ocfs2_figure_insert_type() and ocfs2_add_branch()
3615 		 * may want it later.
3616 		 */
3617 		ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
3618 				       le64_to_cpu(di->i_last_eb_blk), &bh,
3619 				       OCFS2_BH_CACHED, inode);
3620 		if (ret) {
3621 			mlog_exit(ret);
3622 			goto out;
3623 		}
3624 		eb = (struct ocfs2_extent_block *) bh->b_data;
3625 		el = &eb->h_list;
3626 	}
3627 
3628 	/*
3629 	 * Unless we have a contiguous insert, we'll need to know if
3630 	 * there is room left in our allocation tree for another
3631 	 * extent record.
3632 	 *
3633 	 * XXX: This test is simplistic, we can search for empty
3634 	 * extent records too.
3635 	 */
3636 	insert->ins_free_records = le16_to_cpu(el->l_count) -
3637 		le16_to_cpu(el->l_next_free_rec);
3638 
3639 	if (!insert->ins_tree_depth) {
3640 		ocfs2_figure_contig_type(inode, insert, el, insert_rec);
3641 		ocfs2_figure_appending_type(insert, el, insert_rec);
3642 		return 0;
3643 	}
3644 
3645 	path = ocfs2_new_inode_path(di_bh);
3646 	if (!path) {
3647 		ret = -ENOMEM;
3648 		mlog_errno(ret);
3649 		goto out;
3650 	}
3651 
3652 	/*
3653 	 * In the case that we're inserting past what the tree
3654 	 * currently accounts for, ocfs2_find_path() will return for
3655 	 * us the rightmost tree path. This is accounted for below in
3656 	 * the appending code.
3657 	 */
3658 	ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
3659 	if (ret) {
3660 		mlog_errno(ret);
3661 		goto out;
3662 	}
3663 
3664 	el = path_leaf_el(path);
3665 
3666 	/*
3667 	 * Now that we have the path, there's two things we want to determine:
3668 	 * 1) Contiguousness (also set contig_index if this is so)
3669 	 *
3670 	 * 2) Are we doing an append? We can trivially break this up
3671          *     into two types of appends: simple record append, or a
3672          *     rotate inside the tail leaf.
3673 	 */
3674 	ocfs2_figure_contig_type(inode, insert, el, insert_rec);
3675 
3676 	/*
3677 	 * The insert code isn't quite ready to deal with all cases of
3678 	 * left contiguousness. Specifically, if it's an insert into
3679 	 * the 1st record in a leaf, it will require the adjustment of
3680 	 * cluster count on the last record of the path directly to it's
3681 	 * left. For now, just catch that case and fool the layers
3682 	 * above us. This works just fine for tree_depth == 0, which
3683 	 * is why we allow that above.
3684 	 */
3685 	if (insert->ins_contig == CONTIG_LEFT &&
3686 	    insert->ins_contig_index == 0)
3687 		insert->ins_contig = CONTIG_NONE;
3688 
3689 	/*
3690 	 * Ok, so we can simply compare against last_eb to figure out
3691 	 * whether the path doesn't exist. This will only happen in
3692 	 * the case that we're doing a tail append, so maybe we can
3693 	 * take advantage of that information somehow.
3694 	 */
3695 	if (le64_to_cpu(di->i_last_eb_blk) == path_leaf_bh(path)->b_blocknr) {
3696 		/*
3697 		 * Ok, ocfs2_find_path() returned us the rightmost
3698 		 * tree path. This might be an appending insert. There are
3699 		 * two cases:
3700 		 *    1) We're doing a true append at the tail:
3701 		 *	-This might even be off the end of the leaf
3702 		 *    2) We're "appending" by rotating in the tail
3703 		 */
3704 		ocfs2_figure_appending_type(insert, el, insert_rec);
3705 	}
3706 
3707 out:
3708 	ocfs2_free_path(path);
3709 
3710 	if (ret == 0)
3711 		*last_eb_bh = bh;
3712 	else
3713 		brelse(bh);
3714 	return ret;
3715 }
3716 
3717 /*
3718  * Insert an extent into an inode btree.
3719  *
3720  * The caller needs to update fe->i_clusters
3721  */
3722 int ocfs2_insert_extent(struct ocfs2_super *osb,
3723 			handle_t *handle,
3724 			struct inode *inode,
3725 			struct buffer_head *fe_bh,
3726 			u32 cpos,
3727 			u64 start_blk,
3728 			u32 new_clusters,
3729 			u8 flags,
3730 			struct ocfs2_alloc_context *meta_ac)
3731 {
3732 	int status;
3733 	struct buffer_head *last_eb_bh = NULL;
3734 	struct buffer_head *bh = NULL;
3735 	struct ocfs2_insert_type insert = {0, };
3736 	struct ocfs2_extent_rec rec;
3737 
3738 	mlog(0, "add %u clusters at position %u to inode %llu\n",
3739 	     new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
3740 
3741 	mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
3742 			(OCFS2_I(inode)->ip_clusters != cpos),
3743 			"Device %s, asking for sparse allocation: inode %llu, "
3744 			"cpos %u, clusters %u\n",
3745 			osb->dev_str,
3746 			(unsigned long long)OCFS2_I(inode)->ip_blkno, cpos,
3747 			OCFS2_I(inode)->ip_clusters);
3748 
3749 	memset(&rec, 0, sizeof(rec));
3750 	rec.e_cpos = cpu_to_le32(cpos);
3751 	rec.e_blkno = cpu_to_le64(start_blk);
3752 	rec.e_leaf_clusters = cpu_to_le16(new_clusters);
3753 	rec.e_flags = flags;
3754 
3755 	status = ocfs2_figure_insert_type(inode, fe_bh, &last_eb_bh, &rec,
3756 					  &insert);
3757 	if (status < 0) {
3758 		mlog_errno(status);
3759 		goto bail;
3760 	}
3761 
3762 	mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
3763 	     "Insert.contig_index: %d, Insert.free_records: %d, "
3764 	     "Insert.tree_depth: %d\n",
3765 	     insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
3766 	     insert.ins_free_records, insert.ins_tree_depth);
3767 
3768 	if (insert.ins_contig == CONTIG_NONE && insert.ins_free_records == 0) {
3769 		status = ocfs2_grow_tree(inode, handle, fe_bh,
3770 					 &insert.ins_tree_depth, &last_eb_bh,
3771 					 meta_ac);
3772 		if (status) {
3773 			mlog_errno(status);
3774 			goto bail;
3775 		}
3776 	}
3777 
3778 	/* Finally, we can add clusters. This might rotate the tree for us. */
3779 	status = ocfs2_do_insert_extent(inode, handle, fe_bh, &rec, &insert);
3780 	if (status < 0)
3781 		mlog_errno(status);
3782 	else
3783 		ocfs2_extent_map_insert_rec(inode, &rec);
3784 
3785 bail:
3786 	if (bh)
3787 		brelse(bh);
3788 
3789 	if (last_eb_bh)
3790 		brelse(last_eb_bh);
3791 
3792 	mlog_exit(status);
3793 	return status;
3794 }
3795 
3796 static void ocfs2_make_right_split_rec(struct super_block *sb,
3797 				       struct ocfs2_extent_rec *split_rec,
3798 				       u32 cpos,
3799 				       struct ocfs2_extent_rec *rec)
3800 {
3801 	u32 rec_cpos = le32_to_cpu(rec->e_cpos);
3802 	u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
3803 
3804 	memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
3805 
3806 	split_rec->e_cpos = cpu_to_le32(cpos);
3807 	split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
3808 
3809 	split_rec->e_blkno = rec->e_blkno;
3810 	le64_add_cpu(&split_rec->e_blkno,
3811 		     ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
3812 
3813 	split_rec->e_flags = rec->e_flags;
3814 }
3815 
3816 static int ocfs2_split_and_insert(struct inode *inode,
3817 				  handle_t *handle,
3818 				  struct ocfs2_path *path,
3819 				  struct buffer_head *di_bh,
3820 				  struct buffer_head **last_eb_bh,
3821 				  int split_index,
3822 				  struct ocfs2_extent_rec *orig_split_rec,
3823 				  struct ocfs2_alloc_context *meta_ac)
3824 {
3825 	int ret = 0, depth;
3826 	unsigned int insert_range, rec_range, do_leftright = 0;
3827 	struct ocfs2_extent_rec tmprec;
3828 	struct ocfs2_extent_list *rightmost_el;
3829 	struct ocfs2_extent_rec rec;
3830 	struct ocfs2_extent_rec split_rec = *orig_split_rec;
3831 	struct ocfs2_insert_type insert;
3832 	struct ocfs2_extent_block *eb;
3833 	struct ocfs2_dinode *di;
3834 
3835 leftright:
3836 	/*
3837 	 * Store a copy of the record on the stack - it might move
3838 	 * around as the tree is manipulated below.
3839 	 */
3840 	rec = path_leaf_el(path)->l_recs[split_index];
3841 
3842 	di = (struct ocfs2_dinode *)di_bh->b_data;
3843 	rightmost_el = &di->id2.i_list;
3844 
3845 	depth = le16_to_cpu(rightmost_el->l_tree_depth);
3846 	if (depth) {
3847 		BUG_ON(!(*last_eb_bh));
3848 		eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
3849 		rightmost_el = &eb->h_list;
3850 	}
3851 
3852 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
3853 	    le16_to_cpu(rightmost_el->l_count)) {
3854 		int old_depth = depth;
3855 
3856 		ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, last_eb_bh,
3857 				      meta_ac);
3858 		if (ret) {
3859 			mlog_errno(ret);
3860 			goto out;
3861 		}
3862 
3863 		if (old_depth != depth) {
3864 			eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
3865 			rightmost_el = &eb->h_list;
3866 		}
3867 	}
3868 
3869 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
3870 	insert.ins_appending = APPEND_NONE;
3871 	insert.ins_contig = CONTIG_NONE;
3872 	insert.ins_free_records = le16_to_cpu(rightmost_el->l_count)
3873 		- le16_to_cpu(rightmost_el->l_next_free_rec);
3874 	insert.ins_tree_depth = depth;
3875 
3876 	insert_range = le32_to_cpu(split_rec.e_cpos) +
3877 		le16_to_cpu(split_rec.e_leaf_clusters);
3878 	rec_range = le32_to_cpu(rec.e_cpos) +
3879 		le16_to_cpu(rec.e_leaf_clusters);
3880 
3881 	if (split_rec.e_cpos == rec.e_cpos) {
3882 		insert.ins_split = SPLIT_LEFT;
3883 	} else if (insert_range == rec_range) {
3884 		insert.ins_split = SPLIT_RIGHT;
3885 	} else {
3886 		/*
3887 		 * Left/right split. We fake this as a right split
3888 		 * first and then make a second pass as a left split.
3889 		 */
3890 		insert.ins_split = SPLIT_RIGHT;
3891 
3892 		ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
3893 					   &rec);
3894 
3895 		split_rec = tmprec;
3896 
3897 		BUG_ON(do_leftright);
3898 		do_leftright = 1;
3899 	}
3900 
3901 	ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec,
3902 				     &insert);
3903 	if (ret) {
3904 		mlog_errno(ret);
3905 		goto out;
3906 	}
3907 
3908 	if (do_leftright == 1) {
3909 		u32 cpos;
3910 		struct ocfs2_extent_list *el;
3911 
3912 		do_leftright++;
3913 		split_rec = *orig_split_rec;
3914 
3915 		ocfs2_reinit_path(path, 1);
3916 
3917 		cpos = le32_to_cpu(split_rec.e_cpos);
3918 		ret = ocfs2_find_path(inode, path, cpos);
3919 		if (ret) {
3920 			mlog_errno(ret);
3921 			goto out;
3922 		}
3923 
3924 		el = path_leaf_el(path);
3925 		split_index = ocfs2_search_extent_list(el, cpos);
3926 		goto leftright;
3927 	}
3928 out:
3929 
3930 	return ret;
3931 }
3932 
3933 /*
3934  * Mark part or all of the extent record at split_index in the leaf
3935  * pointed to by path as written. This removes the unwritten
3936  * extent flag.
3937  *
3938  * Care is taken to handle contiguousness so as to not grow the tree.
3939  *
3940  * meta_ac is not strictly necessary - we only truly need it if growth
3941  * of the tree is required. All other cases will degrade into a less
3942  * optimal tree layout.
3943  *
3944  * last_eb_bh should be the rightmost leaf block for any inode with a
3945  * btree. Since a split may grow the tree or a merge might shrink it, the caller cannot trust the contents of that buffer after this call.
3946  *
3947  * This code is optimized for readability - several passes might be
3948  * made over certain portions of the tree. All of those blocks will
3949  * have been brought into cache (and pinned via the journal), so the
3950  * extra overhead is not expressed in terms of disk reads.
3951  */
3952 static int __ocfs2_mark_extent_written(struct inode *inode,
3953 				       struct buffer_head *di_bh,
3954 				       handle_t *handle,
3955 				       struct ocfs2_path *path,
3956 				       int split_index,
3957 				       struct ocfs2_extent_rec *split_rec,
3958 				       struct ocfs2_alloc_context *meta_ac,
3959 				       struct ocfs2_cached_dealloc_ctxt *dealloc)
3960 {
3961 	int ret = 0;
3962 	struct ocfs2_extent_list *el = path_leaf_el(path);
3963 	struct buffer_head *eb_bh, *last_eb_bh = NULL;
3964 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3965 	struct ocfs2_merge_ctxt ctxt;
3966 	struct ocfs2_extent_list *rightmost_el;
3967 
3968 	if (!rec->e_flags & OCFS2_EXT_UNWRITTEN) {
3969 		ret = -EIO;
3970 		mlog_errno(ret);
3971 		goto out;
3972 	}
3973 
3974 	if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
3975 	    ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
3976 	     (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
3977 		ret = -EIO;
3978 		mlog_errno(ret);
3979 		goto out;
3980 	}
3981 
3982 	eb_bh = path_leaf_bh(path);
3983 	ret = ocfs2_journal_access(handle, inode, eb_bh,
3984 				   OCFS2_JOURNAL_ACCESS_WRITE);
3985 	if (ret) {
3986 		mlog_errno(ret);
3987 		goto out;
3988 	}
3989 
3990 	ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, el,
3991 							    split_index,
3992 							    split_rec);
3993 
3994 	/*
3995 	 * The core merge / split code wants to know how much room is
3996 	 * left in this inodes allocation tree, so we pass the
3997 	 * rightmost extent list.
3998 	 */
3999 	if (path->p_tree_depth) {
4000 		struct ocfs2_extent_block *eb;
4001 		struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
4002 
4003 		ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
4004 				       le64_to_cpu(di->i_last_eb_blk),
4005 				       &last_eb_bh, OCFS2_BH_CACHED, inode);
4006 		if (ret) {
4007 			mlog_exit(ret);
4008 			goto out;
4009 		}
4010 
4011 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4012 		if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
4013 			OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
4014 			ret = -EROFS;
4015 			goto out;
4016 		}
4017 
4018 		rightmost_el = &eb->h_list;
4019 	} else
4020 		rightmost_el = path_root_el(path);
4021 
4022 	ctxt.c_used_tail_recs = le16_to_cpu(rightmost_el->l_next_free_rec);
4023 	if (ctxt.c_used_tail_recs > 0 &&
4024 	    ocfs2_is_empty_extent(&rightmost_el->l_recs[0]))
4025 		ctxt.c_used_tail_recs--;
4026 
4027 	if (rec->e_cpos == split_rec->e_cpos &&
4028 	    rec->e_leaf_clusters == split_rec->e_leaf_clusters)
4029 		ctxt.c_split_covers_rec = 1;
4030 	else
4031 		ctxt.c_split_covers_rec = 0;
4032 
4033 	ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
4034 
4035 	mlog(0, "index: %d, contig: %u, used_tail_recs: %u, "
4036 	     "has_empty: %u, split_covers: %u\n", split_index,
4037 	     ctxt.c_contig_type, ctxt.c_used_tail_recs,
4038 	     ctxt.c_has_empty_extent, ctxt.c_split_covers_rec);
4039 
4040 	if (ctxt.c_contig_type == CONTIG_NONE) {
4041 		if (ctxt.c_split_covers_rec)
4042 			el->l_recs[split_index] = *split_rec;
4043 		else
4044 			ret = ocfs2_split_and_insert(inode, handle, path, di_bh,
4045 						     &last_eb_bh, split_index,
4046 						     split_rec, meta_ac);
4047 		if (ret)
4048 			mlog_errno(ret);
4049 	} else {
4050 		ret = ocfs2_try_to_merge_extent(inode, handle, path,
4051 						split_index, split_rec,
4052 						dealloc, &ctxt);
4053 		if (ret)
4054 			mlog_errno(ret);
4055 	}
4056 
4057 	ocfs2_journal_dirty(handle, eb_bh);
4058 
4059 out:
4060 	brelse(last_eb_bh);
4061 	return ret;
4062 }
4063 
4064 /*
4065  * Mark the already-existing extent at cpos as written for len clusters.
4066  *
4067  * If the existing extent is larger than the request, initiate a
4068  * split. An attempt will be made at merging with adjacent extents.
4069  *
4070  * The caller is responsible for passing down meta_ac if we'll need it.
4071  */
4072 int ocfs2_mark_extent_written(struct inode *inode, struct buffer_head *di_bh,
4073 			      handle_t *handle, u32 cpos, u32 len, u32 phys,
4074 			      struct ocfs2_alloc_context *meta_ac,
4075 			      struct ocfs2_cached_dealloc_ctxt *dealloc)
4076 {
4077 	int ret, index;
4078 	u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
4079 	struct ocfs2_extent_rec split_rec;
4080 	struct ocfs2_path *left_path = NULL;
4081 	struct ocfs2_extent_list *el;
4082 
4083 	mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
4084 	     inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
4085 
4086 	if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
4087 		ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
4088 			    "that are being written to, but the feature bit "
4089 			    "is not set in the super block.",
4090 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
4091 		ret = -EROFS;
4092 		goto out;
4093 	}
4094 
4095 	/*
4096 	 * XXX: This should be fixed up so that we just re-insert the
4097 	 * next extent records.
4098 	 */
4099 	ocfs2_extent_map_trunc(inode, 0);
4100 
4101 	left_path = ocfs2_new_inode_path(di_bh);
4102 	if (!left_path) {
4103 		ret = -ENOMEM;
4104 		mlog_errno(ret);
4105 		goto out;
4106 	}
4107 
4108 	ret = ocfs2_find_path(inode, left_path, cpos);
4109 	if (ret) {
4110 		mlog_errno(ret);
4111 		goto out;
4112 	}
4113 	el = path_leaf_el(left_path);
4114 
4115 	index = ocfs2_search_extent_list(el, cpos);
4116 	if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4117 		ocfs2_error(inode->i_sb,
4118 			    "Inode %llu has an extent at cpos %u which can no "
4119 			    "longer be found.\n",
4120 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4121 		ret = -EROFS;
4122 		goto out;
4123 	}
4124 
4125 	memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
4126 	split_rec.e_cpos = cpu_to_le32(cpos);
4127 	split_rec.e_leaf_clusters = cpu_to_le16(len);
4128 	split_rec.e_blkno = cpu_to_le64(start_blkno);
4129 	split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
4130 	split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
4131 
4132 	ret = __ocfs2_mark_extent_written(inode, di_bh, handle, left_path,
4133 					  index, &split_rec, meta_ac, dealloc);
4134 	if (ret)
4135 		mlog_errno(ret);
4136 
4137 out:
4138 	ocfs2_free_path(left_path);
4139 	return ret;
4140 }
4141 
4142 static int ocfs2_split_tree(struct inode *inode, struct buffer_head *di_bh,
4143 			    handle_t *handle, struct ocfs2_path *path,
4144 			    int index, u32 new_range,
4145 			    struct ocfs2_alloc_context *meta_ac)
4146 {
4147 	int ret, depth, credits = handle->h_buffer_credits;
4148 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
4149 	struct buffer_head *last_eb_bh = NULL;
4150 	struct ocfs2_extent_block *eb;
4151 	struct ocfs2_extent_list *rightmost_el, *el;
4152 	struct ocfs2_extent_rec split_rec;
4153 	struct ocfs2_extent_rec *rec;
4154 	struct ocfs2_insert_type insert;
4155 
4156 	/*
4157 	 * Setup the record to split before we grow the tree.
4158 	 */
4159 	el = path_leaf_el(path);
4160 	rec = &el->l_recs[index];
4161 	ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
4162 
4163 	depth = path->p_tree_depth;
4164 	if (depth > 0) {
4165 		ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
4166 				       le64_to_cpu(di->i_last_eb_blk),
4167 				       &last_eb_bh, OCFS2_BH_CACHED, inode);
4168 		if (ret < 0) {
4169 			mlog_errno(ret);
4170 			goto out;
4171 		}
4172 
4173 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4174 		rightmost_el = &eb->h_list;
4175 	} else
4176 		rightmost_el = path_leaf_el(path);
4177 
4178 	credits += path->p_tree_depth + ocfs2_extend_meta_needed(di);
4179 	ret = ocfs2_extend_trans(handle, credits);
4180 	if (ret) {
4181 		mlog_errno(ret);
4182 		goto out;
4183 	}
4184 
4185 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4186 	    le16_to_cpu(rightmost_el->l_count)) {
4187 		int old_depth = depth;
4188 
4189 		ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, &last_eb_bh,
4190 				      meta_ac);
4191 		if (ret) {
4192 			mlog_errno(ret);
4193 			goto out;
4194 		}
4195 
4196 		if (old_depth != depth) {
4197 			eb = (struct ocfs2_extent_block *)last_eb_bh->b_data;
4198 			rightmost_el = &eb->h_list;
4199 		}
4200 	}
4201 
4202 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4203 	insert.ins_appending = APPEND_NONE;
4204 	insert.ins_contig = CONTIG_NONE;
4205 	insert.ins_split = SPLIT_RIGHT;
4206 	insert.ins_free_records = le16_to_cpu(rightmost_el->l_count)
4207 		- le16_to_cpu(rightmost_el->l_next_free_rec);
4208 	insert.ins_tree_depth = depth;
4209 
4210 	ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec, &insert);
4211 	if (ret)
4212 		mlog_errno(ret);
4213 
4214 out:
4215 	brelse(last_eb_bh);
4216 	return ret;
4217 }
4218 
4219 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
4220 			      struct ocfs2_path *path, int index,
4221 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
4222 			      u32 cpos, u32 len)
4223 {
4224 	int ret;
4225 	u32 left_cpos, rec_range, trunc_range;
4226 	int wants_rotate = 0, is_rightmost_tree_rec = 0;
4227 	struct super_block *sb = inode->i_sb;
4228 	struct ocfs2_path *left_path = NULL;
4229 	struct ocfs2_extent_list *el = path_leaf_el(path);
4230 	struct ocfs2_extent_rec *rec;
4231 	struct ocfs2_extent_block *eb;
4232 
4233 	if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
4234 		ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc);
4235 		if (ret) {
4236 			mlog_errno(ret);
4237 			goto out;
4238 		}
4239 
4240 		index--;
4241 	}
4242 
4243 	if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
4244 	    path->p_tree_depth) {
4245 		/*
4246 		 * Check whether this is the rightmost tree record. If
4247 		 * we remove all of this record or part of its right
4248 		 * edge then an update of the record lengths above it
4249 		 * will be required.
4250 		 */
4251 		eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
4252 		if (eb->h_next_leaf_blk == 0)
4253 			is_rightmost_tree_rec = 1;
4254 	}
4255 
4256 	rec = &el->l_recs[index];
4257 	if (index == 0 && path->p_tree_depth &&
4258 	    le32_to_cpu(rec->e_cpos) == cpos) {
4259 		/*
4260 		 * Changing the leftmost offset (via partial or whole
4261 		 * record truncate) of an interior (or rightmost) path
4262 		 * means we have to update the subtree that is formed
4263 		 * by this leaf and the one to it's left.
4264 		 *
4265 		 * There are two cases we can skip:
4266 		 *   1) Path is the leftmost one in our inode tree.
4267 		 *   2) The leaf is rightmost and will be empty after
4268 		 *      we remove the extent record - the rotate code
4269 		 *      knows how to update the newly formed edge.
4270 		 */
4271 
4272 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
4273 						    &left_cpos);
4274 		if (ret) {
4275 			mlog_errno(ret);
4276 			goto out;
4277 		}
4278 
4279 		if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
4280 			left_path = ocfs2_new_path(path_root_bh(path),
4281 						   path_root_el(path));
4282 			if (!left_path) {
4283 				ret = -ENOMEM;
4284 				mlog_errno(ret);
4285 				goto out;
4286 			}
4287 
4288 			ret = ocfs2_find_path(inode, left_path, left_cpos);
4289 			if (ret) {
4290 				mlog_errno(ret);
4291 				goto out;
4292 			}
4293 		}
4294 	}
4295 
4296 	ret = ocfs2_extend_rotate_transaction(handle, 0,
4297 					      handle->h_buffer_credits,
4298 					      path);
4299 	if (ret) {
4300 		mlog_errno(ret);
4301 		goto out;
4302 	}
4303 
4304 	ret = ocfs2_journal_access_path(inode, handle, path);
4305 	if (ret) {
4306 		mlog_errno(ret);
4307 		goto out;
4308 	}
4309 
4310 	ret = ocfs2_journal_access_path(inode, handle, left_path);
4311 	if (ret) {
4312 		mlog_errno(ret);
4313 		goto out;
4314 	}
4315 
4316 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
4317 	trunc_range = cpos + len;
4318 
4319 	if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
4320 		int next_free;
4321 
4322 		memset(rec, 0, sizeof(*rec));
4323 		ocfs2_cleanup_merge(el, index);
4324 		wants_rotate = 1;
4325 
4326 		next_free = le16_to_cpu(el->l_next_free_rec);
4327 		if (is_rightmost_tree_rec && next_free > 1) {
4328 			/*
4329 			 * We skip the edge update if this path will
4330 			 * be deleted by the rotate code.
4331 			 */
4332 			rec = &el->l_recs[next_free - 1];
4333 			ocfs2_adjust_rightmost_records(inode, handle, path,
4334 						       rec);
4335 		}
4336 	} else if (le32_to_cpu(rec->e_cpos) == cpos) {
4337 		/* Remove leftmost portion of the record. */
4338 		le32_add_cpu(&rec->e_cpos, len);
4339 		le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
4340 		le16_add_cpu(&rec->e_leaf_clusters, -len);
4341 	} else if (rec_range == trunc_range) {
4342 		/* Remove rightmost portion of the record */
4343 		le16_add_cpu(&rec->e_leaf_clusters, -len);
4344 		if (is_rightmost_tree_rec)
4345 			ocfs2_adjust_rightmost_records(inode, handle, path, rec);
4346 	} else {
4347 		/* Caller should have trapped this. */
4348 		mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
4349 		     "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
4350 		     le32_to_cpu(rec->e_cpos),
4351 		     le16_to_cpu(rec->e_leaf_clusters), cpos, len);
4352 		BUG();
4353 	}
4354 
4355 	if (left_path) {
4356 		int subtree_index;
4357 
4358 		subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
4359 		ocfs2_complete_edge_insert(inode, handle, left_path, path,
4360 					   subtree_index);
4361 	}
4362 
4363 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
4364 
4365 	ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc);
4366 	if (ret) {
4367 		mlog_errno(ret);
4368 		goto out;
4369 	}
4370 
4371 out:
4372 	ocfs2_free_path(left_path);
4373 	return ret;
4374 }
4375 
4376 int ocfs2_remove_extent(struct inode *inode, struct buffer_head *di_bh,
4377 			u32 cpos, u32 len, handle_t *handle,
4378 			struct ocfs2_alloc_context *meta_ac,
4379 			struct ocfs2_cached_dealloc_ctxt *dealloc)
4380 {
4381 	int ret, index;
4382 	u32 rec_range, trunc_range;
4383 	struct ocfs2_extent_rec *rec;
4384 	struct ocfs2_extent_list *el;
4385 	struct ocfs2_path *path;
4386 
4387 	ocfs2_extent_map_trunc(inode, 0);
4388 
4389 	path = ocfs2_new_inode_path(di_bh);
4390 	if (!path) {
4391 		ret = -ENOMEM;
4392 		mlog_errno(ret);
4393 		goto out;
4394 	}
4395 
4396 	ret = ocfs2_find_path(inode, path, cpos);
4397 	if (ret) {
4398 		mlog_errno(ret);
4399 		goto out;
4400 	}
4401 
4402 	el = path_leaf_el(path);
4403 	index = ocfs2_search_extent_list(el, cpos);
4404 	if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4405 		ocfs2_error(inode->i_sb,
4406 			    "Inode %llu has an extent at cpos %u which can no "
4407 			    "longer be found.\n",
4408 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4409 		ret = -EROFS;
4410 		goto out;
4411 	}
4412 
4413 	/*
4414 	 * We have 3 cases of extent removal:
4415 	 *   1) Range covers the entire extent rec
4416 	 *   2) Range begins or ends on one edge of the extent rec
4417 	 *   3) Range is in the middle of the extent rec (no shared edges)
4418 	 *
4419 	 * For case 1 we remove the extent rec and left rotate to
4420 	 * fill the hole.
4421 	 *
4422 	 * For case 2 we just shrink the existing extent rec, with a
4423 	 * tree update if the shrinking edge is also the edge of an
4424 	 * extent block.
4425 	 *
4426 	 * For case 3 we do a right split to turn the extent rec into
4427 	 * something case 2 can handle.
4428 	 */
4429 	rec = &el->l_recs[index];
4430 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
4431 	trunc_range = cpos + len;
4432 
4433 	BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
4434 
4435 	mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
4436 	     "(cpos %u, len %u)\n",
4437 	     (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
4438 	     le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
4439 
4440 	if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
4441 		ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
4442 					 cpos, len);
4443 		if (ret) {
4444 			mlog_errno(ret);
4445 			goto out;
4446 		}
4447 	} else {
4448 		ret = ocfs2_split_tree(inode, di_bh, handle, path, index,
4449 				       trunc_range, meta_ac);
4450 		if (ret) {
4451 			mlog_errno(ret);
4452 			goto out;
4453 		}
4454 
4455 		/*
4456 		 * The split could have manipulated the tree enough to
4457 		 * move the record location, so we have to look for it again.
4458 		 */
4459 		ocfs2_reinit_path(path, 1);
4460 
4461 		ret = ocfs2_find_path(inode, path, cpos);
4462 		if (ret) {
4463 			mlog_errno(ret);
4464 			goto out;
4465 		}
4466 
4467 		el = path_leaf_el(path);
4468 		index = ocfs2_search_extent_list(el, cpos);
4469 		if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4470 			ocfs2_error(inode->i_sb,
4471 				    "Inode %llu: split at cpos %u lost record.",
4472 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
4473 				    cpos);
4474 			ret = -EROFS;
4475 			goto out;
4476 		}
4477 
4478 		/*
4479 		 * Double check our values here. If anything is fishy,
4480 		 * it's easier to catch it at the top level.
4481 		 */
4482 		rec = &el->l_recs[index];
4483 		rec_range = le32_to_cpu(rec->e_cpos) +
4484 			ocfs2_rec_clusters(el, rec);
4485 		if (rec_range != trunc_range) {
4486 			ocfs2_error(inode->i_sb,
4487 				    "Inode %llu: error after split at cpos %u"
4488 				    "trunc len %u, existing record is (%u,%u)",
4489 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
4490 				    cpos, len, le32_to_cpu(rec->e_cpos),
4491 				    ocfs2_rec_clusters(el, rec));
4492 			ret = -EROFS;
4493 			goto out;
4494 		}
4495 
4496 		ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
4497 					 cpos, len);
4498 		if (ret) {
4499 			mlog_errno(ret);
4500 			goto out;
4501 		}
4502 	}
4503 
4504 out:
4505 	ocfs2_free_path(path);
4506 	return ret;
4507 }
4508 
4509 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
4510 {
4511 	struct buffer_head *tl_bh = osb->osb_tl_bh;
4512 	struct ocfs2_dinode *di;
4513 	struct ocfs2_truncate_log *tl;
4514 
4515 	di = (struct ocfs2_dinode *) tl_bh->b_data;
4516 	tl = &di->id2.i_dealloc;
4517 
4518 	mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
4519 			"slot %d, invalid truncate log parameters: used = "
4520 			"%u, count = %u\n", osb->slot_num,
4521 			le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
4522 	return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
4523 }
4524 
4525 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
4526 					   unsigned int new_start)
4527 {
4528 	unsigned int tail_index;
4529 	unsigned int current_tail;
4530 
4531 	/* No records, nothing to coalesce */
4532 	if (!le16_to_cpu(tl->tl_used))
4533 		return 0;
4534 
4535 	tail_index = le16_to_cpu(tl->tl_used) - 1;
4536 	current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
4537 	current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
4538 
4539 	return current_tail == new_start;
4540 }
4541 
4542 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
4543 			      handle_t *handle,
4544 			      u64 start_blk,
4545 			      unsigned int num_clusters)
4546 {
4547 	int status, index;
4548 	unsigned int start_cluster, tl_count;
4549 	struct inode *tl_inode = osb->osb_tl_inode;
4550 	struct buffer_head *tl_bh = osb->osb_tl_bh;
4551 	struct ocfs2_dinode *di;
4552 	struct ocfs2_truncate_log *tl;
4553 
4554 	mlog_entry("start_blk = %llu, num_clusters = %u\n",
4555 		   (unsigned long long)start_blk, num_clusters);
4556 
4557 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
4558 
4559 	start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
4560 
4561 	di = (struct ocfs2_dinode *) tl_bh->b_data;
4562 	tl = &di->id2.i_dealloc;
4563 	if (!OCFS2_IS_VALID_DINODE(di)) {
4564 		OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
4565 		status = -EIO;
4566 		goto bail;
4567 	}
4568 
4569 	tl_count = le16_to_cpu(tl->tl_count);
4570 	mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
4571 			tl_count == 0,
4572 			"Truncate record count on #%llu invalid "
4573 			"wanted %u, actual %u\n",
4574 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
4575 			ocfs2_truncate_recs_per_inode(osb->sb),
4576 			le16_to_cpu(tl->tl_count));
4577 
4578 	/* Caller should have known to flush before calling us. */
4579 	index = le16_to_cpu(tl->tl_used);
4580 	if (index >= tl_count) {
4581 		status = -ENOSPC;
4582 		mlog_errno(status);
4583 		goto bail;
4584 	}
4585 
4586 	status = ocfs2_journal_access(handle, tl_inode, tl_bh,
4587 				      OCFS2_JOURNAL_ACCESS_WRITE);
4588 	if (status < 0) {
4589 		mlog_errno(status);
4590 		goto bail;
4591 	}
4592 
4593 	mlog(0, "Log truncate of %u clusters starting at cluster %u to "
4594 	     "%llu (index = %d)\n", num_clusters, start_cluster,
4595 	     (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
4596 
4597 	if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
4598 		/*
4599 		 * Move index back to the record we are coalescing with.
4600 		 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
4601 		 */
4602 		index--;
4603 
4604 		num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
4605 		mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
4606 		     index, le32_to_cpu(tl->tl_recs[index].t_start),
4607 		     num_clusters);
4608 	} else {
4609 		tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
4610 		tl->tl_used = cpu_to_le16(index + 1);
4611 	}
4612 	tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
4613 
4614 	status = ocfs2_journal_dirty(handle, tl_bh);
4615 	if (status < 0) {
4616 		mlog_errno(status);
4617 		goto bail;
4618 	}
4619 
4620 bail:
4621 	mlog_exit(status);
4622 	return status;
4623 }
4624 
4625 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
4626 					 handle_t *handle,
4627 					 struct inode *data_alloc_inode,
4628 					 struct buffer_head *data_alloc_bh)
4629 {
4630 	int status = 0;
4631 	int i;
4632 	unsigned int num_clusters;
4633 	u64 start_blk;
4634 	struct ocfs2_truncate_rec rec;
4635 	struct ocfs2_dinode *di;
4636 	struct ocfs2_truncate_log *tl;
4637 	struct inode *tl_inode = osb->osb_tl_inode;
4638 	struct buffer_head *tl_bh = osb->osb_tl_bh;
4639 
4640 	mlog_entry_void();
4641 
4642 	di = (struct ocfs2_dinode *) tl_bh->b_data;
4643 	tl = &di->id2.i_dealloc;
4644 	i = le16_to_cpu(tl->tl_used) - 1;
4645 	while (i >= 0) {
4646 		/* Caller has given us at least enough credits to
4647 		 * update the truncate log dinode */
4648 		status = ocfs2_journal_access(handle, tl_inode, tl_bh,
4649 					      OCFS2_JOURNAL_ACCESS_WRITE);
4650 		if (status < 0) {
4651 			mlog_errno(status);
4652 			goto bail;
4653 		}
4654 
4655 		tl->tl_used = cpu_to_le16(i);
4656 
4657 		status = ocfs2_journal_dirty(handle, tl_bh);
4658 		if (status < 0) {
4659 			mlog_errno(status);
4660 			goto bail;
4661 		}
4662 
4663 		/* TODO: Perhaps we can calculate the bulk of the
4664 		 * credits up front rather than extending like
4665 		 * this. */
4666 		status = ocfs2_extend_trans(handle,
4667 					    OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
4668 		if (status < 0) {
4669 			mlog_errno(status);
4670 			goto bail;
4671 		}
4672 
4673 		rec = tl->tl_recs[i];
4674 		start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
4675 						    le32_to_cpu(rec.t_start));
4676 		num_clusters = le32_to_cpu(rec.t_clusters);
4677 
4678 		/* if start_blk is not set, we ignore the record as
4679 		 * invalid. */
4680 		if (start_blk) {
4681 			mlog(0, "free record %d, start = %u, clusters = %u\n",
4682 			     i, le32_to_cpu(rec.t_start), num_clusters);
4683 
4684 			status = ocfs2_free_clusters(handle, data_alloc_inode,
4685 						     data_alloc_bh, start_blk,
4686 						     num_clusters);
4687 			if (status < 0) {
4688 				mlog_errno(status);
4689 				goto bail;
4690 			}
4691 		}
4692 		i--;
4693 	}
4694 
4695 bail:
4696 	mlog_exit(status);
4697 	return status;
4698 }
4699 
4700 /* Expects you to already be holding tl_inode->i_mutex */
4701 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
4702 {
4703 	int status;
4704 	unsigned int num_to_flush;
4705 	handle_t *handle;
4706 	struct inode *tl_inode = osb->osb_tl_inode;
4707 	struct inode *data_alloc_inode = NULL;
4708 	struct buffer_head *tl_bh = osb->osb_tl_bh;
4709 	struct buffer_head *data_alloc_bh = NULL;
4710 	struct ocfs2_dinode *di;
4711 	struct ocfs2_truncate_log *tl;
4712 
4713 	mlog_entry_void();
4714 
4715 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
4716 
4717 	di = (struct ocfs2_dinode *) tl_bh->b_data;
4718 	tl = &di->id2.i_dealloc;
4719 	if (!OCFS2_IS_VALID_DINODE(di)) {
4720 		OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
4721 		status = -EIO;
4722 		goto out;
4723 	}
4724 
4725 	num_to_flush = le16_to_cpu(tl->tl_used);
4726 	mlog(0, "Flush %u records from truncate log #%llu\n",
4727 	     num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
4728 	if (!num_to_flush) {
4729 		status = 0;
4730 		goto out;
4731 	}
4732 
4733 	data_alloc_inode = ocfs2_get_system_file_inode(osb,
4734 						       GLOBAL_BITMAP_SYSTEM_INODE,
4735 						       OCFS2_INVALID_SLOT);
4736 	if (!data_alloc_inode) {
4737 		status = -EINVAL;
4738 		mlog(ML_ERROR, "Could not get bitmap inode!\n");
4739 		goto out;
4740 	}
4741 
4742 	mutex_lock(&data_alloc_inode->i_mutex);
4743 
4744 	status = ocfs2_meta_lock(data_alloc_inode, &data_alloc_bh, 1);
4745 	if (status < 0) {
4746 		mlog_errno(status);
4747 		goto out_mutex;
4748 	}
4749 
4750 	handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
4751 	if (IS_ERR(handle)) {
4752 		status = PTR_ERR(handle);
4753 		mlog_errno(status);
4754 		goto out_unlock;
4755 	}
4756 
4757 	status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
4758 					       data_alloc_bh);
4759 	if (status < 0)
4760 		mlog_errno(status);
4761 
4762 	ocfs2_commit_trans(osb, handle);
4763 
4764 out_unlock:
4765 	brelse(data_alloc_bh);
4766 	ocfs2_meta_unlock(data_alloc_inode, 1);
4767 
4768 out_mutex:
4769 	mutex_unlock(&data_alloc_inode->i_mutex);
4770 	iput(data_alloc_inode);
4771 
4772 out:
4773 	mlog_exit(status);
4774 	return status;
4775 }
4776 
4777 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
4778 {
4779 	int status;
4780 	struct inode *tl_inode = osb->osb_tl_inode;
4781 
4782 	mutex_lock(&tl_inode->i_mutex);
4783 	status = __ocfs2_flush_truncate_log(osb);
4784 	mutex_unlock(&tl_inode->i_mutex);
4785 
4786 	return status;
4787 }
4788 
4789 static void ocfs2_truncate_log_worker(struct work_struct *work)
4790 {
4791 	int status;
4792 	struct ocfs2_super *osb =
4793 		container_of(work, struct ocfs2_super,
4794 			     osb_truncate_log_wq.work);
4795 
4796 	mlog_entry_void();
4797 
4798 	status = ocfs2_flush_truncate_log(osb);
4799 	if (status < 0)
4800 		mlog_errno(status);
4801 
4802 	mlog_exit(status);
4803 }
4804 
4805 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
4806 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
4807 				       int cancel)
4808 {
4809 	if (osb->osb_tl_inode) {
4810 		/* We want to push off log flushes while truncates are
4811 		 * still running. */
4812 		if (cancel)
4813 			cancel_delayed_work(&osb->osb_truncate_log_wq);
4814 
4815 		queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
4816 				   OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
4817 	}
4818 }
4819 
4820 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
4821 				       int slot_num,
4822 				       struct inode **tl_inode,
4823 				       struct buffer_head **tl_bh)
4824 {
4825 	int status;
4826 	struct inode *inode = NULL;
4827 	struct buffer_head *bh = NULL;
4828 
4829 	inode = ocfs2_get_system_file_inode(osb,
4830 					   TRUNCATE_LOG_SYSTEM_INODE,
4831 					   slot_num);
4832 	if (!inode) {
4833 		status = -EINVAL;
4834 		mlog(ML_ERROR, "Could not get load truncate log inode!\n");
4835 		goto bail;
4836 	}
4837 
4838 	status = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &bh,
4839 				  OCFS2_BH_CACHED, inode);
4840 	if (status < 0) {
4841 		iput(inode);
4842 		mlog_errno(status);
4843 		goto bail;
4844 	}
4845 
4846 	*tl_inode = inode;
4847 	*tl_bh    = bh;
4848 bail:
4849 	mlog_exit(status);
4850 	return status;
4851 }
4852 
4853 /* called during the 1st stage of node recovery. we stamp a clean
4854  * truncate log and pass back a copy for processing later. if the
4855  * truncate log does not require processing, a *tl_copy is set to
4856  * NULL. */
4857 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
4858 				      int slot_num,
4859 				      struct ocfs2_dinode **tl_copy)
4860 {
4861 	int status;
4862 	struct inode *tl_inode = NULL;
4863 	struct buffer_head *tl_bh = NULL;
4864 	struct ocfs2_dinode *di;
4865 	struct ocfs2_truncate_log *tl;
4866 
4867 	*tl_copy = NULL;
4868 
4869 	mlog(0, "recover truncate log from slot %d\n", slot_num);
4870 
4871 	status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
4872 	if (status < 0) {
4873 		mlog_errno(status);
4874 		goto bail;
4875 	}
4876 
4877 	di = (struct ocfs2_dinode *) tl_bh->b_data;
4878 	tl = &di->id2.i_dealloc;
4879 	if (!OCFS2_IS_VALID_DINODE(di)) {
4880 		OCFS2_RO_ON_INVALID_DINODE(tl_inode->i_sb, di);
4881 		status = -EIO;
4882 		goto bail;
4883 	}
4884 
4885 	if (le16_to_cpu(tl->tl_used)) {
4886 		mlog(0, "We'll have %u logs to recover\n",
4887 		     le16_to_cpu(tl->tl_used));
4888 
4889 		*tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
4890 		if (!(*tl_copy)) {
4891 			status = -ENOMEM;
4892 			mlog_errno(status);
4893 			goto bail;
4894 		}
4895 
4896 		/* Assuming the write-out below goes well, this copy
4897 		 * will be passed back to recovery for processing. */
4898 		memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
4899 
4900 		/* All we need to do to clear the truncate log is set
4901 		 * tl_used. */
4902 		tl->tl_used = 0;
4903 
4904 		status = ocfs2_write_block(osb, tl_bh, tl_inode);
4905 		if (status < 0) {
4906 			mlog_errno(status);
4907 			goto bail;
4908 		}
4909 	}
4910 
4911 bail:
4912 	if (tl_inode)
4913 		iput(tl_inode);
4914 	if (tl_bh)
4915 		brelse(tl_bh);
4916 
4917 	if (status < 0 && (*tl_copy)) {
4918 		kfree(*tl_copy);
4919 		*tl_copy = NULL;
4920 	}
4921 
4922 	mlog_exit(status);
4923 	return status;
4924 }
4925 
4926 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
4927 					 struct ocfs2_dinode *tl_copy)
4928 {
4929 	int status = 0;
4930 	int i;
4931 	unsigned int clusters, num_recs, start_cluster;
4932 	u64 start_blk;
4933 	handle_t *handle;
4934 	struct inode *tl_inode = osb->osb_tl_inode;
4935 	struct ocfs2_truncate_log *tl;
4936 
4937 	mlog_entry_void();
4938 
4939 	if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
4940 		mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
4941 		return -EINVAL;
4942 	}
4943 
4944 	tl = &tl_copy->id2.i_dealloc;
4945 	num_recs = le16_to_cpu(tl->tl_used);
4946 	mlog(0, "cleanup %u records from %llu\n", num_recs,
4947 	     (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
4948 
4949 	mutex_lock(&tl_inode->i_mutex);
4950 	for(i = 0; i < num_recs; i++) {
4951 		if (ocfs2_truncate_log_needs_flush(osb)) {
4952 			status = __ocfs2_flush_truncate_log(osb);
4953 			if (status < 0) {
4954 				mlog_errno(status);
4955 				goto bail_up;
4956 			}
4957 		}
4958 
4959 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
4960 		if (IS_ERR(handle)) {
4961 			status = PTR_ERR(handle);
4962 			mlog_errno(status);
4963 			goto bail_up;
4964 		}
4965 
4966 		clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
4967 		start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
4968 		start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
4969 
4970 		status = ocfs2_truncate_log_append(osb, handle,
4971 						   start_blk, clusters);
4972 		ocfs2_commit_trans(osb, handle);
4973 		if (status < 0) {
4974 			mlog_errno(status);
4975 			goto bail_up;
4976 		}
4977 	}
4978 
4979 bail_up:
4980 	mutex_unlock(&tl_inode->i_mutex);
4981 
4982 	mlog_exit(status);
4983 	return status;
4984 }
4985 
4986 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
4987 {
4988 	int status;
4989 	struct inode *tl_inode = osb->osb_tl_inode;
4990 
4991 	mlog_entry_void();
4992 
4993 	if (tl_inode) {
4994 		cancel_delayed_work(&osb->osb_truncate_log_wq);
4995 		flush_workqueue(ocfs2_wq);
4996 
4997 		status = ocfs2_flush_truncate_log(osb);
4998 		if (status < 0)
4999 			mlog_errno(status);
5000 
5001 		brelse(osb->osb_tl_bh);
5002 		iput(osb->osb_tl_inode);
5003 	}
5004 
5005 	mlog_exit_void();
5006 }
5007 
5008 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
5009 {
5010 	int status;
5011 	struct inode *tl_inode = NULL;
5012 	struct buffer_head *tl_bh = NULL;
5013 
5014 	mlog_entry_void();
5015 
5016 	status = ocfs2_get_truncate_log_info(osb,
5017 					     osb->slot_num,
5018 					     &tl_inode,
5019 					     &tl_bh);
5020 	if (status < 0)
5021 		mlog_errno(status);
5022 
5023 	/* ocfs2_truncate_log_shutdown keys on the existence of
5024 	 * osb->osb_tl_inode so we don't set any of the osb variables
5025 	 * until we're sure all is well. */
5026 	INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
5027 			  ocfs2_truncate_log_worker);
5028 	osb->osb_tl_bh    = tl_bh;
5029 	osb->osb_tl_inode = tl_inode;
5030 
5031 	mlog_exit(status);
5032 	return status;
5033 }
5034 
5035 /*
5036  * Delayed de-allocation of suballocator blocks.
5037  *
5038  * Some sets of block de-allocations might involve multiple suballocator inodes.
5039  *
5040  * The locking for this can get extremely complicated, especially when
5041  * the suballocator inodes to delete from aren't known until deep
5042  * within an unrelated codepath.
5043  *
5044  * ocfs2_extent_block structures are a good example of this - an inode
5045  * btree could have been grown by any number of nodes each allocating
5046  * out of their own suballoc inode.
5047  *
5048  * These structures allow the delay of block de-allocation until a
5049  * later time, when locking of multiple cluster inodes won't cause
5050  * deadlock.
5051  */
5052 
5053 /*
5054  * Describes a single block free from a suballocator
5055  */
5056 struct ocfs2_cached_block_free {
5057 	struct ocfs2_cached_block_free		*free_next;
5058 	u64					free_blk;
5059 	unsigned int				free_bit;
5060 };
5061 
5062 struct ocfs2_per_slot_free_list {
5063 	struct ocfs2_per_slot_free_list		*f_next_suballocator;
5064 	int					f_inode_type;
5065 	int					f_slot;
5066 	struct ocfs2_cached_block_free		*f_first;
5067 };
5068 
5069 static int ocfs2_free_cached_items(struct ocfs2_super *osb,
5070 				   int sysfile_type,
5071 				   int slot,
5072 				   struct ocfs2_cached_block_free *head)
5073 {
5074 	int ret;
5075 	u64 bg_blkno;
5076 	handle_t *handle;
5077 	struct inode *inode;
5078 	struct buffer_head *di_bh = NULL;
5079 	struct ocfs2_cached_block_free *tmp;
5080 
5081 	inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
5082 	if (!inode) {
5083 		ret = -EINVAL;
5084 		mlog_errno(ret);
5085 		goto out;
5086 	}
5087 
5088 	mutex_lock(&inode->i_mutex);
5089 
5090 	ret = ocfs2_meta_lock(inode, &di_bh, 1);
5091 	if (ret) {
5092 		mlog_errno(ret);
5093 		goto out_mutex;
5094 	}
5095 
5096 	handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
5097 	if (IS_ERR(handle)) {
5098 		ret = PTR_ERR(handle);
5099 		mlog_errno(ret);
5100 		goto out_unlock;
5101 	}
5102 
5103 	while (head) {
5104 		bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
5105 						      head->free_bit);
5106 		mlog(0, "Free bit: (bit %u, blkno %llu)\n",
5107 		     head->free_bit, (unsigned long long)head->free_blk);
5108 
5109 		ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
5110 					       head->free_bit, bg_blkno, 1);
5111 		if (ret) {
5112 			mlog_errno(ret);
5113 			goto out_journal;
5114 		}
5115 
5116 		ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
5117 		if (ret) {
5118 			mlog_errno(ret);
5119 			goto out_journal;
5120 		}
5121 
5122 		tmp = head;
5123 		head = head->free_next;
5124 		kfree(tmp);
5125 	}
5126 
5127 out_journal:
5128 	ocfs2_commit_trans(osb, handle);
5129 
5130 out_unlock:
5131 	ocfs2_meta_unlock(inode, 1);
5132 	brelse(di_bh);
5133 out_mutex:
5134 	mutex_unlock(&inode->i_mutex);
5135 	iput(inode);
5136 out:
5137 	while(head) {
5138 		/* Premature exit may have left some dangling items. */
5139 		tmp = head;
5140 		head = head->free_next;
5141 		kfree(tmp);
5142 	}
5143 
5144 	return ret;
5145 }
5146 
5147 int ocfs2_run_deallocs(struct ocfs2_super *osb,
5148 		       struct ocfs2_cached_dealloc_ctxt *ctxt)
5149 {
5150 	int ret = 0, ret2;
5151 	struct ocfs2_per_slot_free_list *fl;
5152 
5153 	if (!ctxt)
5154 		return 0;
5155 
5156 	while (ctxt->c_first_suballocator) {
5157 		fl = ctxt->c_first_suballocator;
5158 
5159 		if (fl->f_first) {
5160 			mlog(0, "Free items: (type %u, slot %d)\n",
5161 			     fl->f_inode_type, fl->f_slot);
5162 			ret2 = ocfs2_free_cached_items(osb, fl->f_inode_type,
5163 						       fl->f_slot, fl->f_first);
5164 			if (ret2)
5165 				mlog_errno(ret2);
5166 			if (!ret)
5167 				ret = ret2;
5168 		}
5169 
5170 		ctxt->c_first_suballocator = fl->f_next_suballocator;
5171 		kfree(fl);
5172 	}
5173 
5174 	return ret;
5175 }
5176 
5177 static struct ocfs2_per_slot_free_list *
5178 ocfs2_find_per_slot_free_list(int type,
5179 			      int slot,
5180 			      struct ocfs2_cached_dealloc_ctxt *ctxt)
5181 {
5182 	struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
5183 
5184 	while (fl) {
5185 		if (fl->f_inode_type == type && fl->f_slot == slot)
5186 			return fl;
5187 
5188 		fl = fl->f_next_suballocator;
5189 	}
5190 
5191 	fl = kmalloc(sizeof(*fl), GFP_NOFS);
5192 	if (fl) {
5193 		fl->f_inode_type = type;
5194 		fl->f_slot = slot;
5195 		fl->f_first = NULL;
5196 		fl->f_next_suballocator = ctxt->c_first_suballocator;
5197 
5198 		ctxt->c_first_suballocator = fl;
5199 	}
5200 	return fl;
5201 }
5202 
5203 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
5204 				     int type, int slot, u64 blkno,
5205 				     unsigned int bit)
5206 {
5207 	int ret;
5208 	struct ocfs2_per_slot_free_list *fl;
5209 	struct ocfs2_cached_block_free *item;
5210 
5211 	fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
5212 	if (fl == NULL) {
5213 		ret = -ENOMEM;
5214 		mlog_errno(ret);
5215 		goto out;
5216 	}
5217 
5218 	item = kmalloc(sizeof(*item), GFP_NOFS);
5219 	if (item == NULL) {
5220 		ret = -ENOMEM;
5221 		mlog_errno(ret);
5222 		goto out;
5223 	}
5224 
5225 	mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
5226 	     type, slot, bit, (unsigned long long)blkno);
5227 
5228 	item->free_blk = blkno;
5229 	item->free_bit = bit;
5230 	item->free_next = fl->f_first;
5231 
5232 	fl->f_first = item;
5233 
5234 	ret = 0;
5235 out:
5236 	return ret;
5237 }
5238 
5239 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
5240 					 struct ocfs2_extent_block *eb)
5241 {
5242 	return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
5243 					 le16_to_cpu(eb->h_suballoc_slot),
5244 					 le64_to_cpu(eb->h_blkno),
5245 					 le16_to_cpu(eb->h_suballoc_bit));
5246 }
5247 
5248 /* This function will figure out whether the currently last extent
5249  * block will be deleted, and if it will, what the new last extent
5250  * block will be so we can update his h_next_leaf_blk field, as well
5251  * as the dinodes i_last_eb_blk */
5252 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
5253 				       unsigned int clusters_to_del,
5254 				       struct ocfs2_path *path,
5255 				       struct buffer_head **new_last_eb)
5256 {
5257 	int next_free, ret = 0;
5258 	u32 cpos;
5259 	struct ocfs2_extent_rec *rec;
5260 	struct ocfs2_extent_block *eb;
5261 	struct ocfs2_extent_list *el;
5262 	struct buffer_head *bh = NULL;
5263 
5264 	*new_last_eb = NULL;
5265 
5266 	/* we have no tree, so of course, no last_eb. */
5267 	if (!path->p_tree_depth)
5268 		goto out;
5269 
5270 	/* trunc to zero special case - this makes tree_depth = 0
5271 	 * regardless of what it is.  */
5272 	if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
5273 		goto out;
5274 
5275 	el = path_leaf_el(path);
5276 	BUG_ON(!el->l_next_free_rec);
5277 
5278 	/*
5279 	 * Make sure that this extent list will actually be empty
5280 	 * after we clear away the data. We can shortcut out if
5281 	 * there's more than one non-empty extent in the
5282 	 * list. Otherwise, a check of the remaining extent is
5283 	 * necessary.
5284 	 */
5285 	next_free = le16_to_cpu(el->l_next_free_rec);
5286 	rec = NULL;
5287 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
5288 		if (next_free > 2)
5289 			goto out;
5290 
5291 		/* We may have a valid extent in index 1, check it. */
5292 		if (next_free == 2)
5293 			rec = &el->l_recs[1];
5294 
5295 		/*
5296 		 * Fall through - no more nonempty extents, so we want
5297 		 * to delete this leaf.
5298 		 */
5299 	} else {
5300 		if (next_free > 1)
5301 			goto out;
5302 
5303 		rec = &el->l_recs[0];
5304 	}
5305 
5306 	if (rec) {
5307 		/*
5308 		 * Check it we'll only be trimming off the end of this
5309 		 * cluster.
5310 		 */
5311 		if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
5312 			goto out;
5313 	}
5314 
5315 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
5316 	if (ret) {
5317 		mlog_errno(ret);
5318 		goto out;
5319 	}
5320 
5321 	ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
5322 	if (ret) {
5323 		mlog_errno(ret);
5324 		goto out;
5325 	}
5326 
5327 	eb = (struct ocfs2_extent_block *) bh->b_data;
5328 	el = &eb->h_list;
5329 	if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
5330 		OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
5331 		ret = -EROFS;
5332 		goto out;
5333 	}
5334 
5335 	*new_last_eb = bh;
5336 	get_bh(*new_last_eb);
5337 	mlog(0, "returning block %llu, (cpos: %u)\n",
5338 	     (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
5339 out:
5340 	brelse(bh);
5341 
5342 	return ret;
5343 }
5344 
5345 /*
5346  * Trim some clusters off the rightmost edge of a tree. Only called
5347  * during truncate.
5348  *
5349  * The caller needs to:
5350  *   - start journaling of each path component.
5351  *   - compute and fully set up any new last ext block
5352  */
5353 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
5354 			   handle_t *handle, struct ocfs2_truncate_context *tc,
5355 			   u32 clusters_to_del, u64 *delete_start)
5356 {
5357 	int ret, i, index = path->p_tree_depth;
5358 	u32 new_edge = 0;
5359 	u64 deleted_eb = 0;
5360 	struct buffer_head *bh;
5361 	struct ocfs2_extent_list *el;
5362 	struct ocfs2_extent_rec *rec;
5363 
5364 	*delete_start = 0;
5365 
5366 	while (index >= 0) {
5367 		bh = path->p_node[index].bh;
5368 		el = path->p_node[index].el;
5369 
5370 		mlog(0, "traveling tree (index = %d, block = %llu)\n",
5371 		     index,  (unsigned long long)bh->b_blocknr);
5372 
5373 		BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
5374 
5375 		if (index !=
5376 		    (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
5377 			ocfs2_error(inode->i_sb,
5378 				    "Inode %lu has invalid ext. block %llu",
5379 				    inode->i_ino,
5380 				    (unsigned long long)bh->b_blocknr);
5381 			ret = -EROFS;
5382 			goto out;
5383 		}
5384 
5385 find_tail_record:
5386 		i = le16_to_cpu(el->l_next_free_rec) - 1;
5387 		rec = &el->l_recs[i];
5388 
5389 		mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
5390 		     "next = %u\n", i, le32_to_cpu(rec->e_cpos),
5391 		     ocfs2_rec_clusters(el, rec),
5392 		     (unsigned long long)le64_to_cpu(rec->e_blkno),
5393 		     le16_to_cpu(el->l_next_free_rec));
5394 
5395 		BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
5396 
5397 		if (le16_to_cpu(el->l_tree_depth) == 0) {
5398 			/*
5399 			 * If the leaf block contains a single empty
5400 			 * extent and no records, we can just remove
5401 			 * the block.
5402 			 */
5403 			if (i == 0 && ocfs2_is_empty_extent(rec)) {
5404 				memset(rec, 0,
5405 				       sizeof(struct ocfs2_extent_rec));
5406 				el->l_next_free_rec = cpu_to_le16(0);
5407 
5408 				goto delete;
5409 			}
5410 
5411 			/*
5412 			 * Remove any empty extents by shifting things
5413 			 * left. That should make life much easier on
5414 			 * the code below. This condition is rare
5415 			 * enough that we shouldn't see a performance
5416 			 * hit.
5417 			 */
5418 			if (ocfs2_is_empty_extent(&el->l_recs[0])) {
5419 				le16_add_cpu(&el->l_next_free_rec, -1);
5420 
5421 				for(i = 0;
5422 				    i < le16_to_cpu(el->l_next_free_rec); i++)
5423 					el->l_recs[i] = el->l_recs[i + 1];
5424 
5425 				memset(&el->l_recs[i], 0,
5426 				       sizeof(struct ocfs2_extent_rec));
5427 
5428 				/*
5429 				 * We've modified our extent list. The
5430 				 * simplest way to handle this change
5431 				 * is to being the search from the
5432 				 * start again.
5433 				 */
5434 				goto find_tail_record;
5435 			}
5436 
5437 			le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
5438 
5439 			/*
5440 			 * We'll use "new_edge" on our way back up the
5441 			 * tree to know what our rightmost cpos is.
5442 			 */
5443 			new_edge = le16_to_cpu(rec->e_leaf_clusters);
5444 			new_edge += le32_to_cpu(rec->e_cpos);
5445 
5446 			/*
5447 			 * The caller will use this to delete data blocks.
5448 			 */
5449 			*delete_start = le64_to_cpu(rec->e_blkno)
5450 				+ ocfs2_clusters_to_blocks(inode->i_sb,
5451 					le16_to_cpu(rec->e_leaf_clusters));
5452 
5453 			/*
5454 			 * If it's now empty, remove this record.
5455 			 */
5456 			if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
5457 				memset(rec, 0,
5458 				       sizeof(struct ocfs2_extent_rec));
5459 				le16_add_cpu(&el->l_next_free_rec, -1);
5460 			}
5461 		} else {
5462 			if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
5463 				memset(rec, 0,
5464 				       sizeof(struct ocfs2_extent_rec));
5465 				le16_add_cpu(&el->l_next_free_rec, -1);
5466 
5467 				goto delete;
5468 			}
5469 
5470 			/* Can this actually happen? */
5471 			if (le16_to_cpu(el->l_next_free_rec) == 0)
5472 				goto delete;
5473 
5474 			/*
5475 			 * We never actually deleted any clusters
5476 			 * because our leaf was empty. There's no
5477 			 * reason to adjust the rightmost edge then.
5478 			 */
5479 			if (new_edge == 0)
5480 				goto delete;
5481 
5482 			rec->e_int_clusters = cpu_to_le32(new_edge);
5483 			le32_add_cpu(&rec->e_int_clusters,
5484 				     -le32_to_cpu(rec->e_cpos));
5485 
5486 			 /*
5487 			  * A deleted child record should have been
5488 			  * caught above.
5489 			  */
5490 			 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
5491 		}
5492 
5493 delete:
5494 		ret = ocfs2_journal_dirty(handle, bh);
5495 		if (ret) {
5496 			mlog_errno(ret);
5497 			goto out;
5498 		}
5499 
5500 		mlog(0, "extent list container %llu, after: record %d: "
5501 		     "(%u, %u, %llu), next = %u.\n",
5502 		     (unsigned long long)bh->b_blocknr, i,
5503 		     le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
5504 		     (unsigned long long)le64_to_cpu(rec->e_blkno),
5505 		     le16_to_cpu(el->l_next_free_rec));
5506 
5507 		/*
5508 		 * We must be careful to only attempt delete of an
5509 		 * extent block (and not the root inode block).
5510 		 */
5511 		if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
5512 			struct ocfs2_extent_block *eb =
5513 				(struct ocfs2_extent_block *)bh->b_data;
5514 
5515 			/*
5516 			 * Save this for use when processing the
5517 			 * parent block.
5518 			 */
5519 			deleted_eb = le64_to_cpu(eb->h_blkno);
5520 
5521 			mlog(0, "deleting this extent block.\n");
5522 
5523 			ocfs2_remove_from_cache(inode, bh);
5524 
5525 			BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
5526 			BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
5527 			BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
5528 
5529 			ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
5530 			/* An error here is not fatal. */
5531 			if (ret < 0)
5532 				mlog_errno(ret);
5533 		} else {
5534 			deleted_eb = 0;
5535 		}
5536 
5537 		index--;
5538 	}
5539 
5540 	ret = 0;
5541 out:
5542 	return ret;
5543 }
5544 
5545 static int ocfs2_do_truncate(struct ocfs2_super *osb,
5546 			     unsigned int clusters_to_del,
5547 			     struct inode *inode,
5548 			     struct buffer_head *fe_bh,
5549 			     handle_t *handle,
5550 			     struct ocfs2_truncate_context *tc,
5551 			     struct ocfs2_path *path)
5552 {
5553 	int status;
5554 	struct ocfs2_dinode *fe;
5555 	struct ocfs2_extent_block *last_eb = NULL;
5556 	struct ocfs2_extent_list *el;
5557 	struct buffer_head *last_eb_bh = NULL;
5558 	u64 delete_blk = 0;
5559 
5560 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
5561 
5562 	status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
5563 					     path, &last_eb_bh);
5564 	if (status < 0) {
5565 		mlog_errno(status);
5566 		goto bail;
5567 	}
5568 
5569 	/*
5570 	 * Each component will be touched, so we might as well journal
5571 	 * here to avoid having to handle errors later.
5572 	 */
5573 	status = ocfs2_journal_access_path(inode, handle, path);
5574 	if (status < 0) {
5575 		mlog_errno(status);
5576 		goto bail;
5577 	}
5578 
5579 	if (last_eb_bh) {
5580 		status = ocfs2_journal_access(handle, inode, last_eb_bh,
5581 					      OCFS2_JOURNAL_ACCESS_WRITE);
5582 		if (status < 0) {
5583 			mlog_errno(status);
5584 			goto bail;
5585 		}
5586 
5587 		last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5588 	}
5589 
5590 	el = &(fe->id2.i_list);
5591 
5592 	/*
5593 	 * Lower levels depend on this never happening, but it's best
5594 	 * to check it up here before changing the tree.
5595 	 */
5596 	if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
5597 		ocfs2_error(inode->i_sb,
5598 			    "Inode %lu has an empty extent record, depth %u\n",
5599 			    inode->i_ino, le16_to_cpu(el->l_tree_depth));
5600 		status = -EROFS;
5601 		goto bail;
5602 	}
5603 
5604 	spin_lock(&OCFS2_I(inode)->ip_lock);
5605 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
5606 				      clusters_to_del;
5607 	spin_unlock(&OCFS2_I(inode)->ip_lock);
5608 	le32_add_cpu(&fe->i_clusters, -clusters_to_del);
5609 
5610 	status = ocfs2_trim_tree(inode, path, handle, tc,
5611 				 clusters_to_del, &delete_blk);
5612 	if (status) {
5613 		mlog_errno(status);
5614 		goto bail;
5615 	}
5616 
5617 	if (le32_to_cpu(fe->i_clusters) == 0) {
5618 		/* trunc to zero is a special case. */
5619 		el->l_tree_depth = 0;
5620 		fe->i_last_eb_blk = 0;
5621 	} else if (last_eb)
5622 		fe->i_last_eb_blk = last_eb->h_blkno;
5623 
5624 	status = ocfs2_journal_dirty(handle, fe_bh);
5625 	if (status < 0) {
5626 		mlog_errno(status);
5627 		goto bail;
5628 	}
5629 
5630 	if (last_eb) {
5631 		/* If there will be a new last extent block, then by
5632 		 * definition, there cannot be any leaves to the right of
5633 		 * him. */
5634 		last_eb->h_next_leaf_blk = 0;
5635 		status = ocfs2_journal_dirty(handle, last_eb_bh);
5636 		if (status < 0) {
5637 			mlog_errno(status);
5638 			goto bail;
5639 		}
5640 	}
5641 
5642 	if (delete_blk) {
5643 		status = ocfs2_truncate_log_append(osb, handle, delete_blk,
5644 						   clusters_to_del);
5645 		if (status < 0) {
5646 			mlog_errno(status);
5647 			goto bail;
5648 		}
5649 	}
5650 	status = 0;
5651 bail:
5652 
5653 	mlog_exit(status);
5654 	return status;
5655 }
5656 
5657 static int ocfs2_writeback_zero_func(handle_t *handle, struct buffer_head *bh)
5658 {
5659 	set_buffer_uptodate(bh);
5660 	mark_buffer_dirty(bh);
5661 	return 0;
5662 }
5663 
5664 static int ocfs2_ordered_zero_func(handle_t *handle, struct buffer_head *bh)
5665 {
5666 	set_buffer_uptodate(bh);
5667 	mark_buffer_dirty(bh);
5668 	return ocfs2_journal_dirty_data(handle, bh);
5669 }
5670 
5671 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
5672 				     loff_t end, struct page **pages,
5673 				     int numpages, u64 phys, handle_t *handle)
5674 {
5675 	int i, ret, partial = 0;
5676 	void *kaddr;
5677 	struct page *page;
5678 	unsigned int from, to = PAGE_CACHE_SIZE;
5679 	struct super_block *sb = inode->i_sb;
5680 
5681 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
5682 
5683 	if (numpages == 0)
5684 		goto out;
5685 
5686 	to = PAGE_CACHE_SIZE;
5687 	for(i = 0; i < numpages; i++) {
5688 		page = pages[i];
5689 
5690 		from = start & (PAGE_CACHE_SIZE - 1);
5691 		if ((end >> PAGE_CACHE_SHIFT) == page->index)
5692 			to = end & (PAGE_CACHE_SIZE - 1);
5693 
5694 		BUG_ON(from > PAGE_CACHE_SIZE);
5695 		BUG_ON(to > PAGE_CACHE_SIZE);
5696 
5697 		ret = ocfs2_map_page_blocks(page, &phys, inode, from, to, 0);
5698 		if (ret)
5699 			mlog_errno(ret);
5700 
5701 		kaddr = kmap_atomic(page, KM_USER0);
5702 		memset(kaddr + from, 0, to - from);
5703 		kunmap_atomic(kaddr, KM_USER0);
5704 
5705 		/*
5706 		 * Need to set the buffers we zero'd into uptodate
5707 		 * here if they aren't - ocfs2_map_page_blocks()
5708 		 * might've skipped some
5709 		 */
5710 		if (ocfs2_should_order_data(inode)) {
5711 			ret = walk_page_buffers(handle,
5712 						page_buffers(page),
5713 						from, to, &partial,
5714 						ocfs2_ordered_zero_func);
5715 			if (ret < 0)
5716 				mlog_errno(ret);
5717 		} else {
5718 			ret = walk_page_buffers(handle, page_buffers(page),
5719 						from, to, &partial,
5720 						ocfs2_writeback_zero_func);
5721 			if (ret < 0)
5722 				mlog_errno(ret);
5723 		}
5724 
5725 		if (!partial)
5726 			SetPageUptodate(page);
5727 
5728 		flush_dcache_page(page);
5729 
5730 		start = (page->index + 1) << PAGE_CACHE_SHIFT;
5731 	}
5732 out:
5733 	if (pages) {
5734 		for (i = 0; i < numpages; i++) {
5735 			page = pages[i];
5736 			unlock_page(page);
5737 			mark_page_accessed(page);
5738 			page_cache_release(page);
5739 		}
5740 	}
5741 }
5742 
5743 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
5744 				struct page **pages, int *num, u64 *phys)
5745 {
5746 	int i, numpages = 0, ret = 0;
5747 	unsigned int ext_flags;
5748 	struct super_block *sb = inode->i_sb;
5749 	struct address_space *mapping = inode->i_mapping;
5750 	unsigned long index;
5751 	loff_t last_page_bytes;
5752 
5753 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
5754 	BUG_ON(start > end);
5755 
5756 	if (start == end)
5757 		goto out;
5758 
5759 	BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
5760 	       (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
5761 
5762 	ret = ocfs2_extent_map_get_blocks(inode, start >> sb->s_blocksize_bits,
5763 					  phys, NULL, &ext_flags);
5764 	if (ret) {
5765 		mlog_errno(ret);
5766 		goto out;
5767 	}
5768 
5769 	/* Tail is a hole. */
5770 	if (*phys == 0)
5771 		goto out;
5772 
5773 	/* Tail is marked as unwritten, we can count on write to zero
5774 	 * in that case. */
5775 	if (ext_flags & OCFS2_EXT_UNWRITTEN)
5776 		goto out;
5777 
5778 	last_page_bytes = PAGE_ALIGN(end);
5779 	index = start >> PAGE_CACHE_SHIFT;
5780 	do {
5781 		pages[numpages] = grab_cache_page(mapping, index);
5782 		if (!pages[numpages]) {
5783 			ret = -ENOMEM;
5784 			mlog_errno(ret);
5785 			goto out;
5786 		}
5787 
5788 		numpages++;
5789 		index++;
5790 	} while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
5791 
5792 out:
5793 	if (ret != 0) {
5794 		if (pages) {
5795 			for (i = 0; i < numpages; i++) {
5796 				if (pages[i]) {
5797 					unlock_page(pages[i]);
5798 					page_cache_release(pages[i]);
5799 				}
5800 			}
5801 		}
5802 		numpages = 0;
5803 	}
5804 
5805 	*num = numpages;
5806 
5807 	return ret;
5808 }
5809 
5810 /*
5811  * Zero the area past i_size but still within an allocated
5812  * cluster. This avoids exposing nonzero data on subsequent file
5813  * extends.
5814  *
5815  * We need to call this before i_size is updated on the inode because
5816  * otherwise block_write_full_page() will skip writeout of pages past
5817  * i_size. The new_i_size parameter is passed for this reason.
5818  */
5819 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
5820 				  u64 range_start, u64 range_end)
5821 {
5822 	int ret, numpages;
5823 	struct page **pages = NULL;
5824 	u64 phys;
5825 
5826 	/*
5827 	 * File systems which don't support sparse files zero on every
5828 	 * extend.
5829 	 */
5830 	if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
5831 		return 0;
5832 
5833 	pages = kcalloc(ocfs2_pages_per_cluster(inode->i_sb),
5834 			sizeof(struct page *), GFP_NOFS);
5835 	if (pages == NULL) {
5836 		ret = -ENOMEM;
5837 		mlog_errno(ret);
5838 		goto out;
5839 	}
5840 
5841 	ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
5842 				   &numpages, &phys);
5843 	if (ret) {
5844 		mlog_errno(ret);
5845 		goto out;
5846 	}
5847 
5848 	if (numpages == 0)
5849 		goto out;
5850 
5851 	ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
5852 				 numpages, phys, handle);
5853 
5854 	/*
5855 	 * Initiate writeout of the pages we zero'd here. We don't
5856 	 * wait on them - the truncate_inode_pages() call later will
5857 	 * do that for us.
5858 	 */
5859 	ret = do_sync_mapping_range(inode->i_mapping, range_start,
5860 				    range_end - 1, SYNC_FILE_RANGE_WRITE);
5861 	if (ret)
5862 		mlog_errno(ret);
5863 
5864 out:
5865 	if (pages)
5866 		kfree(pages);
5867 
5868 	return ret;
5869 }
5870 
5871 /*
5872  * It is expected, that by the time you call this function,
5873  * inode->i_size and fe->i_size have been adjusted.
5874  *
5875  * WARNING: This will kfree the truncate context
5876  */
5877 int ocfs2_commit_truncate(struct ocfs2_super *osb,
5878 			  struct inode *inode,
5879 			  struct buffer_head *fe_bh,
5880 			  struct ocfs2_truncate_context *tc)
5881 {
5882 	int status, i, credits, tl_sem = 0;
5883 	u32 clusters_to_del, new_highest_cpos, range;
5884 	struct ocfs2_extent_list *el;
5885 	handle_t *handle = NULL;
5886 	struct inode *tl_inode = osb->osb_tl_inode;
5887 	struct ocfs2_path *path = NULL;
5888 
5889 	mlog_entry_void();
5890 
5891 	new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
5892 						     i_size_read(inode));
5893 
5894 	path = ocfs2_new_inode_path(fe_bh);
5895 	if (!path) {
5896 		status = -ENOMEM;
5897 		mlog_errno(status);
5898 		goto bail;
5899 	}
5900 
5901 	ocfs2_extent_map_trunc(inode, new_highest_cpos);
5902 
5903 start:
5904 	/*
5905 	 * Check that we still have allocation to delete.
5906 	 */
5907 	if (OCFS2_I(inode)->ip_clusters == 0) {
5908 		status = 0;
5909 		goto bail;
5910 	}
5911 
5912 	/*
5913 	 * Truncate always works against the rightmost tree branch.
5914 	 */
5915 	status = ocfs2_find_path(inode, path, UINT_MAX);
5916 	if (status) {
5917 		mlog_errno(status);
5918 		goto bail;
5919 	}
5920 
5921 	mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
5922 	     OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
5923 
5924 	/*
5925 	 * By now, el will point to the extent list on the bottom most
5926 	 * portion of this tree. Only the tail record is considered in
5927 	 * each pass.
5928 	 *
5929 	 * We handle the following cases, in order:
5930 	 * - empty extent: delete the remaining branch
5931 	 * - remove the entire record
5932 	 * - remove a partial record
5933 	 * - no record needs to be removed (truncate has completed)
5934 	 */
5935 	el = path_leaf_el(path);
5936 	if (le16_to_cpu(el->l_next_free_rec) == 0) {
5937 		ocfs2_error(inode->i_sb,
5938 			    "Inode %llu has empty extent block at %llu\n",
5939 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
5940 			    (unsigned long long)path_leaf_bh(path)->b_blocknr);
5941 		status = -EROFS;
5942 		goto bail;
5943 	}
5944 
5945 	i = le16_to_cpu(el->l_next_free_rec) - 1;
5946 	range = le32_to_cpu(el->l_recs[i].e_cpos) +
5947 		ocfs2_rec_clusters(el, &el->l_recs[i]);
5948 	if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
5949 		clusters_to_del = 0;
5950 	} else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
5951 		clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
5952 	} else if (range > new_highest_cpos) {
5953 		clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
5954 				   le32_to_cpu(el->l_recs[i].e_cpos)) -
5955 				  new_highest_cpos;
5956 	} else {
5957 		status = 0;
5958 		goto bail;
5959 	}
5960 
5961 	mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
5962 	     clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
5963 
5964 	BUG_ON(clusters_to_del == 0);
5965 
5966 	mutex_lock(&tl_inode->i_mutex);
5967 	tl_sem = 1;
5968 	/* ocfs2_truncate_log_needs_flush guarantees us at least one
5969 	 * record is free for use. If there isn't any, we flush to get
5970 	 * an empty truncate log.  */
5971 	if (ocfs2_truncate_log_needs_flush(osb)) {
5972 		status = __ocfs2_flush_truncate_log(osb);
5973 		if (status < 0) {
5974 			mlog_errno(status);
5975 			goto bail;
5976 		}
5977 	}
5978 
5979 	credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
5980 						(struct ocfs2_dinode *)fe_bh->b_data,
5981 						el);
5982 	handle = ocfs2_start_trans(osb, credits);
5983 	if (IS_ERR(handle)) {
5984 		status = PTR_ERR(handle);
5985 		handle = NULL;
5986 		mlog_errno(status);
5987 		goto bail;
5988 	}
5989 
5990 	status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
5991 				   tc, path);
5992 	if (status < 0) {
5993 		mlog_errno(status);
5994 		goto bail;
5995 	}
5996 
5997 	mutex_unlock(&tl_inode->i_mutex);
5998 	tl_sem = 0;
5999 
6000 	ocfs2_commit_trans(osb, handle);
6001 	handle = NULL;
6002 
6003 	ocfs2_reinit_path(path, 1);
6004 
6005 	/*
6006 	 * The check above will catch the case where we've truncated
6007 	 * away all allocation.
6008 	 */
6009 	goto start;
6010 
6011 bail:
6012 
6013 	ocfs2_schedule_truncate_log_flush(osb, 1);
6014 
6015 	if (tl_sem)
6016 		mutex_unlock(&tl_inode->i_mutex);
6017 
6018 	if (handle)
6019 		ocfs2_commit_trans(osb, handle);
6020 
6021 	ocfs2_run_deallocs(osb, &tc->tc_dealloc);
6022 
6023 	ocfs2_free_path(path);
6024 
6025 	/* This will drop the ext_alloc cluster lock for us */
6026 	ocfs2_free_truncate_context(tc);
6027 
6028 	mlog_exit(status);
6029 	return status;
6030 }
6031 
6032 /*
6033  * Expects the inode to already be locked.
6034  */
6035 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
6036 			   struct inode *inode,
6037 			   struct buffer_head *fe_bh,
6038 			   struct ocfs2_truncate_context **tc)
6039 {
6040 	int status;
6041 	unsigned int new_i_clusters;
6042 	struct ocfs2_dinode *fe;
6043 	struct ocfs2_extent_block *eb;
6044 	struct buffer_head *last_eb_bh = NULL;
6045 
6046 	mlog_entry_void();
6047 
6048 	*tc = NULL;
6049 
6050 	new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
6051 						  i_size_read(inode));
6052 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
6053 
6054 	mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
6055 	     "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
6056 	     (unsigned long long)le64_to_cpu(fe->i_size));
6057 
6058 	*tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
6059 	if (!(*tc)) {
6060 		status = -ENOMEM;
6061 		mlog_errno(status);
6062 		goto bail;
6063 	}
6064 	ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
6065 
6066 	if (fe->id2.i_list.l_tree_depth) {
6067 		status = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
6068 					  &last_eb_bh, OCFS2_BH_CACHED, inode);
6069 		if (status < 0) {
6070 			mlog_errno(status);
6071 			goto bail;
6072 		}
6073 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6074 		if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
6075 			OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
6076 
6077 			brelse(last_eb_bh);
6078 			status = -EIO;
6079 			goto bail;
6080 		}
6081 	}
6082 
6083 	(*tc)->tc_last_eb_bh = last_eb_bh;
6084 
6085 	status = 0;
6086 bail:
6087 	if (status < 0) {
6088 		if (*tc)
6089 			ocfs2_free_truncate_context(*tc);
6090 		*tc = NULL;
6091 	}
6092 	mlog_exit_void();
6093 	return status;
6094 }
6095 
6096 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
6097 {
6098 	/*
6099 	 * The caller is responsible for completing deallocation
6100 	 * before freeing the context.
6101 	 */
6102 	if (tc->tc_dealloc.c_first_suballocator != NULL)
6103 		mlog(ML_NOTICE,
6104 		     "Truncate completion has non-empty dealloc context\n");
6105 
6106 	if (tc->tc_last_eb_bh)
6107 		brelse(tc->tc_last_eb_bh);
6108 
6109 	kfree(tc);
6110 }
6111