xref: /openbmc/linux/fs/ocfs2/alloc.c (revision c0e297dc)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32 #include <linux/blkdev.h>
33 
34 #include <cluster/masklog.h>
35 
36 #include "ocfs2.h"
37 
38 #include "alloc.h"
39 #include "aops.h"
40 #include "blockcheck.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "localalloc.h"
46 #include "suballoc.h"
47 #include "sysfile.h"
48 #include "file.h"
49 #include "super.h"
50 #include "uptodate.h"
51 #include "xattr.h"
52 #include "refcounttree.h"
53 #include "ocfs2_trace.h"
54 
55 #include "buffer_head_io.h"
56 
57 enum ocfs2_contig_type {
58 	CONTIG_NONE = 0,
59 	CONTIG_LEFT,
60 	CONTIG_RIGHT,
61 	CONTIG_LEFTRIGHT,
62 };
63 
64 static enum ocfs2_contig_type
65 	ocfs2_extent_rec_contig(struct super_block *sb,
66 				struct ocfs2_extent_rec *ext,
67 				struct ocfs2_extent_rec *insert_rec);
68 /*
69  * Operations for a specific extent tree type.
70  *
71  * To implement an on-disk btree (extent tree) type in ocfs2, add
72  * an ocfs2_extent_tree_operations structure and the matching
73  * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
74  * for the allocation portion of the extent tree.
75  */
76 struct ocfs2_extent_tree_operations {
77 	/*
78 	 * last_eb_blk is the block number of the right most leaf extent
79 	 * block.  Most on-disk structures containing an extent tree store
80 	 * this value for fast access.  The ->eo_set_last_eb_blk() and
81 	 * ->eo_get_last_eb_blk() operations access this value.  They are
82 	 *  both required.
83 	 */
84 	void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
85 				   u64 blkno);
86 	u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
87 
88 	/*
89 	 * The on-disk structure usually keeps track of how many total
90 	 * clusters are stored in this extent tree.  This function updates
91 	 * that value.  new_clusters is the delta, and must be
92 	 * added to the total.  Required.
93 	 */
94 	void (*eo_update_clusters)(struct ocfs2_extent_tree *et,
95 				   u32 new_clusters);
96 
97 	/*
98 	 * If this extent tree is supported by an extent map, insert
99 	 * a record into the map.
100 	 */
101 	void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et,
102 				     struct ocfs2_extent_rec *rec);
103 
104 	/*
105 	 * If this extent tree is supported by an extent map, truncate the
106 	 * map to clusters,
107 	 */
108 	void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et,
109 				       u32 clusters);
110 
111 	/*
112 	 * If ->eo_insert_check() exists, it is called before rec is
113 	 * inserted into the extent tree.  It is optional.
114 	 */
115 	int (*eo_insert_check)(struct ocfs2_extent_tree *et,
116 			       struct ocfs2_extent_rec *rec);
117 	int (*eo_sanity_check)(struct ocfs2_extent_tree *et);
118 
119 	/*
120 	 * --------------------------------------------------------------
121 	 * The remaining are internal to ocfs2_extent_tree and don't have
122 	 * accessor functions
123 	 */
124 
125 	/*
126 	 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
127 	 * It is required.
128 	 */
129 	void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
130 
131 	/*
132 	 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
133 	 * it exists.  If it does not, et->et_max_leaf_clusters is set
134 	 * to 0 (unlimited).  Optional.
135 	 */
136 	void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et);
137 
138 	/*
139 	 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec
140 	 * are contiguous or not. Optional. Don't need to set it if use
141 	 * ocfs2_extent_rec as the tree leaf.
142 	 */
143 	enum ocfs2_contig_type
144 		(*eo_extent_contig)(struct ocfs2_extent_tree *et,
145 				    struct ocfs2_extent_rec *ext,
146 				    struct ocfs2_extent_rec *insert_rec);
147 };
148 
149 
150 /*
151  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
152  * in the methods.
153  */
154 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
155 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
156 					 u64 blkno);
157 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
158 					 u32 clusters);
159 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
160 					   struct ocfs2_extent_rec *rec);
161 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
162 					     u32 clusters);
163 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
164 				     struct ocfs2_extent_rec *rec);
165 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et);
166 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
167 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
168 	.eo_set_last_eb_blk	= ocfs2_dinode_set_last_eb_blk,
169 	.eo_get_last_eb_blk	= ocfs2_dinode_get_last_eb_blk,
170 	.eo_update_clusters	= ocfs2_dinode_update_clusters,
171 	.eo_extent_map_insert	= ocfs2_dinode_extent_map_insert,
172 	.eo_extent_map_truncate	= ocfs2_dinode_extent_map_truncate,
173 	.eo_insert_check	= ocfs2_dinode_insert_check,
174 	.eo_sanity_check	= ocfs2_dinode_sanity_check,
175 	.eo_fill_root_el	= ocfs2_dinode_fill_root_el,
176 };
177 
178 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
179 					 u64 blkno)
180 {
181 	struct ocfs2_dinode *di = et->et_object;
182 
183 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
184 	di->i_last_eb_blk = cpu_to_le64(blkno);
185 }
186 
187 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
188 {
189 	struct ocfs2_dinode *di = et->et_object;
190 
191 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
192 	return le64_to_cpu(di->i_last_eb_blk);
193 }
194 
195 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
196 					 u32 clusters)
197 {
198 	struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
199 	struct ocfs2_dinode *di = et->et_object;
200 
201 	le32_add_cpu(&di->i_clusters, clusters);
202 	spin_lock(&oi->ip_lock);
203 	oi->ip_clusters = le32_to_cpu(di->i_clusters);
204 	spin_unlock(&oi->ip_lock);
205 }
206 
207 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
208 					   struct ocfs2_extent_rec *rec)
209 {
210 	struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
211 
212 	ocfs2_extent_map_insert_rec(inode, rec);
213 }
214 
215 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
216 					     u32 clusters)
217 {
218 	struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
219 
220 	ocfs2_extent_map_trunc(inode, clusters);
221 }
222 
223 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
224 				     struct ocfs2_extent_rec *rec)
225 {
226 	struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
227 	struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb);
228 
229 	BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL);
230 	mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
231 			(oi->ip_clusters != le32_to_cpu(rec->e_cpos)),
232 			"Device %s, asking for sparse allocation: inode %llu, "
233 			"cpos %u, clusters %u\n",
234 			osb->dev_str,
235 			(unsigned long long)oi->ip_blkno,
236 			rec->e_cpos, oi->ip_clusters);
237 
238 	return 0;
239 }
240 
241 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et)
242 {
243 	struct ocfs2_dinode *di = et->et_object;
244 
245 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
246 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
247 
248 	return 0;
249 }
250 
251 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
252 {
253 	struct ocfs2_dinode *di = et->et_object;
254 
255 	et->et_root_el = &di->id2.i_list;
256 }
257 
258 
259 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
260 {
261 	struct ocfs2_xattr_value_buf *vb = et->et_object;
262 
263 	et->et_root_el = &vb->vb_xv->xr_list;
264 }
265 
266 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
267 					      u64 blkno)
268 {
269 	struct ocfs2_xattr_value_buf *vb = et->et_object;
270 
271 	vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
272 }
273 
274 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
275 {
276 	struct ocfs2_xattr_value_buf *vb = et->et_object;
277 
278 	return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
279 }
280 
281 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et,
282 					      u32 clusters)
283 {
284 	struct ocfs2_xattr_value_buf *vb = et->et_object;
285 
286 	le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
287 }
288 
289 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
290 	.eo_set_last_eb_blk	= ocfs2_xattr_value_set_last_eb_blk,
291 	.eo_get_last_eb_blk	= ocfs2_xattr_value_get_last_eb_blk,
292 	.eo_update_clusters	= ocfs2_xattr_value_update_clusters,
293 	.eo_fill_root_el	= ocfs2_xattr_value_fill_root_el,
294 };
295 
296 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
297 {
298 	struct ocfs2_xattr_block *xb = et->et_object;
299 
300 	et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
301 }
302 
303 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et)
304 {
305 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
306 	et->et_max_leaf_clusters =
307 		ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
308 }
309 
310 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
311 					     u64 blkno)
312 {
313 	struct ocfs2_xattr_block *xb = et->et_object;
314 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
315 
316 	xt->xt_last_eb_blk = cpu_to_le64(blkno);
317 }
318 
319 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
320 {
321 	struct ocfs2_xattr_block *xb = et->et_object;
322 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
323 
324 	return le64_to_cpu(xt->xt_last_eb_blk);
325 }
326 
327 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et,
328 					     u32 clusters)
329 {
330 	struct ocfs2_xattr_block *xb = et->et_object;
331 
332 	le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
333 }
334 
335 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
336 	.eo_set_last_eb_blk	= ocfs2_xattr_tree_set_last_eb_blk,
337 	.eo_get_last_eb_blk	= ocfs2_xattr_tree_get_last_eb_blk,
338 	.eo_update_clusters	= ocfs2_xattr_tree_update_clusters,
339 	.eo_fill_root_el	= ocfs2_xattr_tree_fill_root_el,
340 	.eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
341 };
342 
343 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
344 					  u64 blkno)
345 {
346 	struct ocfs2_dx_root_block *dx_root = et->et_object;
347 
348 	dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
349 }
350 
351 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
352 {
353 	struct ocfs2_dx_root_block *dx_root = et->et_object;
354 
355 	return le64_to_cpu(dx_root->dr_last_eb_blk);
356 }
357 
358 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et,
359 					  u32 clusters)
360 {
361 	struct ocfs2_dx_root_block *dx_root = et->et_object;
362 
363 	le32_add_cpu(&dx_root->dr_clusters, clusters);
364 }
365 
366 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et)
367 {
368 	struct ocfs2_dx_root_block *dx_root = et->et_object;
369 
370 	BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
371 
372 	return 0;
373 }
374 
375 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
376 {
377 	struct ocfs2_dx_root_block *dx_root = et->et_object;
378 
379 	et->et_root_el = &dx_root->dr_list;
380 }
381 
382 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
383 	.eo_set_last_eb_blk	= ocfs2_dx_root_set_last_eb_blk,
384 	.eo_get_last_eb_blk	= ocfs2_dx_root_get_last_eb_blk,
385 	.eo_update_clusters	= ocfs2_dx_root_update_clusters,
386 	.eo_sanity_check	= ocfs2_dx_root_sanity_check,
387 	.eo_fill_root_el	= ocfs2_dx_root_fill_root_el,
388 };
389 
390 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et)
391 {
392 	struct ocfs2_refcount_block *rb = et->et_object;
393 
394 	et->et_root_el = &rb->rf_list;
395 }
396 
397 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
398 						u64 blkno)
399 {
400 	struct ocfs2_refcount_block *rb = et->et_object;
401 
402 	rb->rf_last_eb_blk = cpu_to_le64(blkno);
403 }
404 
405 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
406 {
407 	struct ocfs2_refcount_block *rb = et->et_object;
408 
409 	return le64_to_cpu(rb->rf_last_eb_blk);
410 }
411 
412 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et,
413 						u32 clusters)
414 {
415 	struct ocfs2_refcount_block *rb = et->et_object;
416 
417 	le32_add_cpu(&rb->rf_clusters, clusters);
418 }
419 
420 static enum ocfs2_contig_type
421 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et,
422 				  struct ocfs2_extent_rec *ext,
423 				  struct ocfs2_extent_rec *insert_rec)
424 {
425 	return CONTIG_NONE;
426 }
427 
428 static struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = {
429 	.eo_set_last_eb_blk	= ocfs2_refcount_tree_set_last_eb_blk,
430 	.eo_get_last_eb_blk	= ocfs2_refcount_tree_get_last_eb_blk,
431 	.eo_update_clusters	= ocfs2_refcount_tree_update_clusters,
432 	.eo_fill_root_el	= ocfs2_refcount_tree_fill_root_el,
433 	.eo_extent_contig	= ocfs2_refcount_tree_extent_contig,
434 };
435 
436 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
437 				     struct ocfs2_caching_info *ci,
438 				     struct buffer_head *bh,
439 				     ocfs2_journal_access_func access,
440 				     void *obj,
441 				     struct ocfs2_extent_tree_operations *ops)
442 {
443 	et->et_ops = ops;
444 	et->et_root_bh = bh;
445 	et->et_ci = ci;
446 	et->et_root_journal_access = access;
447 	if (!obj)
448 		obj = (void *)bh->b_data;
449 	et->et_object = obj;
450 
451 	et->et_ops->eo_fill_root_el(et);
452 	if (!et->et_ops->eo_fill_max_leaf_clusters)
453 		et->et_max_leaf_clusters = 0;
454 	else
455 		et->et_ops->eo_fill_max_leaf_clusters(et);
456 }
457 
458 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
459 				   struct ocfs2_caching_info *ci,
460 				   struct buffer_head *bh)
461 {
462 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di,
463 				 NULL, &ocfs2_dinode_et_ops);
464 }
465 
466 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
467 				       struct ocfs2_caching_info *ci,
468 				       struct buffer_head *bh)
469 {
470 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb,
471 				 NULL, &ocfs2_xattr_tree_et_ops);
472 }
473 
474 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
475 					struct ocfs2_caching_info *ci,
476 					struct ocfs2_xattr_value_buf *vb)
477 {
478 	__ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb,
479 				 &ocfs2_xattr_value_et_ops);
480 }
481 
482 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
483 				    struct ocfs2_caching_info *ci,
484 				    struct buffer_head *bh)
485 {
486 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr,
487 				 NULL, &ocfs2_dx_root_et_ops);
488 }
489 
490 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et,
491 				     struct ocfs2_caching_info *ci,
492 				     struct buffer_head *bh)
493 {
494 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb,
495 				 NULL, &ocfs2_refcount_tree_et_ops);
496 }
497 
498 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
499 					    u64 new_last_eb_blk)
500 {
501 	et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
502 }
503 
504 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
505 {
506 	return et->et_ops->eo_get_last_eb_blk(et);
507 }
508 
509 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et,
510 					    u32 clusters)
511 {
512 	et->et_ops->eo_update_clusters(et, clusters);
513 }
514 
515 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et,
516 					      struct ocfs2_extent_rec *rec)
517 {
518 	if (et->et_ops->eo_extent_map_insert)
519 		et->et_ops->eo_extent_map_insert(et, rec);
520 }
521 
522 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et,
523 						u32 clusters)
524 {
525 	if (et->et_ops->eo_extent_map_truncate)
526 		et->et_ops->eo_extent_map_truncate(et, clusters);
527 }
528 
529 static inline int ocfs2_et_root_journal_access(handle_t *handle,
530 					       struct ocfs2_extent_tree *et,
531 					       int type)
532 {
533 	return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh,
534 					  type);
535 }
536 
537 static inline enum ocfs2_contig_type
538 	ocfs2_et_extent_contig(struct ocfs2_extent_tree *et,
539 			       struct ocfs2_extent_rec *rec,
540 			       struct ocfs2_extent_rec *insert_rec)
541 {
542 	if (et->et_ops->eo_extent_contig)
543 		return et->et_ops->eo_extent_contig(et, rec, insert_rec);
544 
545 	return ocfs2_extent_rec_contig(
546 				ocfs2_metadata_cache_get_super(et->et_ci),
547 				rec, insert_rec);
548 }
549 
550 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et,
551 					struct ocfs2_extent_rec *rec)
552 {
553 	int ret = 0;
554 
555 	if (et->et_ops->eo_insert_check)
556 		ret = et->et_ops->eo_insert_check(et, rec);
557 	return ret;
558 }
559 
560 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et)
561 {
562 	int ret = 0;
563 
564 	if (et->et_ops->eo_sanity_check)
565 		ret = et->et_ops->eo_sanity_check(et);
566 	return ret;
567 }
568 
569 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
570 					 struct ocfs2_extent_block *eb);
571 static void ocfs2_adjust_rightmost_records(handle_t *handle,
572 					   struct ocfs2_extent_tree *et,
573 					   struct ocfs2_path *path,
574 					   struct ocfs2_extent_rec *insert_rec);
575 /*
576  * Reset the actual path elements so that we can re-use the structure
577  * to build another path. Generally, this involves freeing the buffer
578  * heads.
579  */
580 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
581 {
582 	int i, start = 0, depth = 0;
583 	struct ocfs2_path_item *node;
584 
585 	if (keep_root)
586 		start = 1;
587 
588 	for(i = start; i < path_num_items(path); i++) {
589 		node = &path->p_node[i];
590 
591 		brelse(node->bh);
592 		node->bh = NULL;
593 		node->el = NULL;
594 	}
595 
596 	/*
597 	 * Tree depth may change during truncate, or insert. If we're
598 	 * keeping the root extent list, then make sure that our path
599 	 * structure reflects the proper depth.
600 	 */
601 	if (keep_root)
602 		depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
603 	else
604 		path_root_access(path) = NULL;
605 
606 	path->p_tree_depth = depth;
607 }
608 
609 void ocfs2_free_path(struct ocfs2_path *path)
610 {
611 	if (path) {
612 		ocfs2_reinit_path(path, 0);
613 		kfree(path);
614 	}
615 }
616 
617 /*
618  * All the elements of src into dest. After this call, src could be freed
619  * without affecting dest.
620  *
621  * Both paths should have the same root. Any non-root elements of dest
622  * will be freed.
623  */
624 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
625 {
626 	int i;
627 
628 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
629 	BUG_ON(path_root_el(dest) != path_root_el(src));
630 	BUG_ON(path_root_access(dest) != path_root_access(src));
631 
632 	ocfs2_reinit_path(dest, 1);
633 
634 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
635 		dest->p_node[i].bh = src->p_node[i].bh;
636 		dest->p_node[i].el = src->p_node[i].el;
637 
638 		if (dest->p_node[i].bh)
639 			get_bh(dest->p_node[i].bh);
640 	}
641 }
642 
643 /*
644  * Make the *dest path the same as src and re-initialize src path to
645  * have a root only.
646  */
647 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
648 {
649 	int i;
650 
651 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
652 	BUG_ON(path_root_access(dest) != path_root_access(src));
653 
654 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
655 		brelse(dest->p_node[i].bh);
656 
657 		dest->p_node[i].bh = src->p_node[i].bh;
658 		dest->p_node[i].el = src->p_node[i].el;
659 
660 		src->p_node[i].bh = NULL;
661 		src->p_node[i].el = NULL;
662 	}
663 }
664 
665 /*
666  * Insert an extent block at given index.
667  *
668  * This will not take an additional reference on eb_bh.
669  */
670 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
671 					struct buffer_head *eb_bh)
672 {
673 	struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
674 
675 	/*
676 	 * Right now, no root bh is an extent block, so this helps
677 	 * catch code errors with dinode trees. The assertion can be
678 	 * safely removed if we ever need to insert extent block
679 	 * structures at the root.
680 	 */
681 	BUG_ON(index == 0);
682 
683 	path->p_node[index].bh = eb_bh;
684 	path->p_node[index].el = &eb->h_list;
685 }
686 
687 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
688 					 struct ocfs2_extent_list *root_el,
689 					 ocfs2_journal_access_func access)
690 {
691 	struct ocfs2_path *path;
692 
693 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
694 
695 	path = kzalloc(sizeof(*path), GFP_NOFS);
696 	if (path) {
697 		path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
698 		get_bh(root_bh);
699 		path_root_bh(path) = root_bh;
700 		path_root_el(path) = root_el;
701 		path_root_access(path) = access;
702 	}
703 
704 	return path;
705 }
706 
707 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
708 {
709 	return ocfs2_new_path(path_root_bh(path), path_root_el(path),
710 			      path_root_access(path));
711 }
712 
713 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
714 {
715 	return ocfs2_new_path(et->et_root_bh, et->et_root_el,
716 			      et->et_root_journal_access);
717 }
718 
719 /*
720  * Journal the buffer at depth idx.  All idx>0 are extent_blocks,
721  * otherwise it's the root_access function.
722  *
723  * I don't like the way this function's name looks next to
724  * ocfs2_journal_access_path(), but I don't have a better one.
725  */
726 int ocfs2_path_bh_journal_access(handle_t *handle,
727 				 struct ocfs2_caching_info *ci,
728 				 struct ocfs2_path *path,
729 				 int idx)
730 {
731 	ocfs2_journal_access_func access = path_root_access(path);
732 
733 	if (!access)
734 		access = ocfs2_journal_access;
735 
736 	if (idx)
737 		access = ocfs2_journal_access_eb;
738 
739 	return access(handle, ci, path->p_node[idx].bh,
740 		      OCFS2_JOURNAL_ACCESS_WRITE);
741 }
742 
743 /*
744  * Convenience function to journal all components in a path.
745  */
746 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci,
747 			      handle_t *handle,
748 			      struct ocfs2_path *path)
749 {
750 	int i, ret = 0;
751 
752 	if (!path)
753 		goto out;
754 
755 	for(i = 0; i < path_num_items(path); i++) {
756 		ret = ocfs2_path_bh_journal_access(handle, ci, path, i);
757 		if (ret < 0) {
758 			mlog_errno(ret);
759 			goto out;
760 		}
761 	}
762 
763 out:
764 	return ret;
765 }
766 
767 /*
768  * Return the index of the extent record which contains cluster #v_cluster.
769  * -1 is returned if it was not found.
770  *
771  * Should work fine on interior and exterior nodes.
772  */
773 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
774 {
775 	int ret = -1;
776 	int i;
777 	struct ocfs2_extent_rec *rec;
778 	u32 rec_end, rec_start, clusters;
779 
780 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
781 		rec = &el->l_recs[i];
782 
783 		rec_start = le32_to_cpu(rec->e_cpos);
784 		clusters = ocfs2_rec_clusters(el, rec);
785 
786 		rec_end = rec_start + clusters;
787 
788 		if (v_cluster >= rec_start && v_cluster < rec_end) {
789 			ret = i;
790 			break;
791 		}
792 	}
793 
794 	return ret;
795 }
796 
797 /*
798  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
799  * ocfs2_extent_rec_contig only work properly against leaf nodes!
800  */
801 static int ocfs2_block_extent_contig(struct super_block *sb,
802 				     struct ocfs2_extent_rec *ext,
803 				     u64 blkno)
804 {
805 	u64 blk_end = le64_to_cpu(ext->e_blkno);
806 
807 	blk_end += ocfs2_clusters_to_blocks(sb,
808 				    le16_to_cpu(ext->e_leaf_clusters));
809 
810 	return blkno == blk_end;
811 }
812 
813 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
814 				  struct ocfs2_extent_rec *right)
815 {
816 	u32 left_range;
817 
818 	left_range = le32_to_cpu(left->e_cpos) +
819 		le16_to_cpu(left->e_leaf_clusters);
820 
821 	return (left_range == le32_to_cpu(right->e_cpos));
822 }
823 
824 static enum ocfs2_contig_type
825 	ocfs2_extent_rec_contig(struct super_block *sb,
826 				struct ocfs2_extent_rec *ext,
827 				struct ocfs2_extent_rec *insert_rec)
828 {
829 	u64 blkno = le64_to_cpu(insert_rec->e_blkno);
830 
831 	/*
832 	 * Refuse to coalesce extent records with different flag
833 	 * fields - we don't want to mix unwritten extents with user
834 	 * data.
835 	 */
836 	if (ext->e_flags != insert_rec->e_flags)
837 		return CONTIG_NONE;
838 
839 	if (ocfs2_extents_adjacent(ext, insert_rec) &&
840 	    ocfs2_block_extent_contig(sb, ext, blkno))
841 			return CONTIG_RIGHT;
842 
843 	blkno = le64_to_cpu(ext->e_blkno);
844 	if (ocfs2_extents_adjacent(insert_rec, ext) &&
845 	    ocfs2_block_extent_contig(sb, insert_rec, blkno))
846 		return CONTIG_LEFT;
847 
848 	return CONTIG_NONE;
849 }
850 
851 /*
852  * NOTE: We can have pretty much any combination of contiguousness and
853  * appending.
854  *
855  * The usefulness of APPEND_TAIL is more in that it lets us know that
856  * we'll have to update the path to that leaf.
857  */
858 enum ocfs2_append_type {
859 	APPEND_NONE = 0,
860 	APPEND_TAIL,
861 };
862 
863 enum ocfs2_split_type {
864 	SPLIT_NONE = 0,
865 	SPLIT_LEFT,
866 	SPLIT_RIGHT,
867 };
868 
869 struct ocfs2_insert_type {
870 	enum ocfs2_split_type	ins_split;
871 	enum ocfs2_append_type	ins_appending;
872 	enum ocfs2_contig_type	ins_contig;
873 	int			ins_contig_index;
874 	int			ins_tree_depth;
875 };
876 
877 struct ocfs2_merge_ctxt {
878 	enum ocfs2_contig_type	c_contig_type;
879 	int			c_has_empty_extent;
880 	int			c_split_covers_rec;
881 };
882 
883 static int ocfs2_validate_extent_block(struct super_block *sb,
884 				       struct buffer_head *bh)
885 {
886 	int rc;
887 	struct ocfs2_extent_block *eb =
888 		(struct ocfs2_extent_block *)bh->b_data;
889 
890 	trace_ocfs2_validate_extent_block((unsigned long long)bh->b_blocknr);
891 
892 	BUG_ON(!buffer_uptodate(bh));
893 
894 	/*
895 	 * If the ecc fails, we return the error but otherwise
896 	 * leave the filesystem running.  We know any error is
897 	 * local to this block.
898 	 */
899 	rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
900 	if (rc) {
901 		mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
902 		     (unsigned long long)bh->b_blocknr);
903 		return rc;
904 	}
905 
906 	/*
907 	 * Errors after here are fatal.
908 	 */
909 
910 	if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
911 		ocfs2_error(sb,
912 			    "Extent block #%llu has bad signature %.*s",
913 			    (unsigned long long)bh->b_blocknr, 7,
914 			    eb->h_signature);
915 		return -EINVAL;
916 	}
917 
918 	if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
919 		ocfs2_error(sb,
920 			    "Extent block #%llu has an invalid h_blkno "
921 			    "of %llu",
922 			    (unsigned long long)bh->b_blocknr,
923 			    (unsigned long long)le64_to_cpu(eb->h_blkno));
924 		return -EINVAL;
925 	}
926 
927 	if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
928 		ocfs2_error(sb,
929 			    "Extent block #%llu has an invalid "
930 			    "h_fs_generation of #%u",
931 			    (unsigned long long)bh->b_blocknr,
932 			    le32_to_cpu(eb->h_fs_generation));
933 		return -EINVAL;
934 	}
935 
936 	return 0;
937 }
938 
939 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno,
940 			    struct buffer_head **bh)
941 {
942 	int rc;
943 	struct buffer_head *tmp = *bh;
944 
945 	rc = ocfs2_read_block(ci, eb_blkno, &tmp,
946 			      ocfs2_validate_extent_block);
947 
948 	/* If ocfs2_read_block() got us a new bh, pass it up. */
949 	if (!rc && !*bh)
950 		*bh = tmp;
951 
952 	return rc;
953 }
954 
955 
956 /*
957  * How many free extents have we got before we need more meta data?
958  */
959 int ocfs2_num_free_extents(struct ocfs2_super *osb,
960 			   struct ocfs2_extent_tree *et)
961 {
962 	int retval;
963 	struct ocfs2_extent_list *el = NULL;
964 	struct ocfs2_extent_block *eb;
965 	struct buffer_head *eb_bh = NULL;
966 	u64 last_eb_blk = 0;
967 
968 	el = et->et_root_el;
969 	last_eb_blk = ocfs2_et_get_last_eb_blk(et);
970 
971 	if (last_eb_blk) {
972 		retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk,
973 						 &eb_bh);
974 		if (retval < 0) {
975 			mlog_errno(retval);
976 			goto bail;
977 		}
978 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
979 		el = &eb->h_list;
980 	}
981 
982 	BUG_ON(el->l_tree_depth != 0);
983 
984 	retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
985 bail:
986 	brelse(eb_bh);
987 
988 	trace_ocfs2_num_free_extents(retval);
989 	return retval;
990 }
991 
992 /* expects array to already be allocated
993  *
994  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
995  * l_count for you
996  */
997 static int ocfs2_create_new_meta_bhs(handle_t *handle,
998 				     struct ocfs2_extent_tree *et,
999 				     int wanted,
1000 				     struct ocfs2_alloc_context *meta_ac,
1001 				     struct buffer_head *bhs[])
1002 {
1003 	int count, status, i;
1004 	u16 suballoc_bit_start;
1005 	u32 num_got;
1006 	u64 suballoc_loc, first_blkno;
1007 	struct ocfs2_super *osb =
1008 		OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
1009 	struct ocfs2_extent_block *eb;
1010 
1011 	count = 0;
1012 	while (count < wanted) {
1013 		status = ocfs2_claim_metadata(handle,
1014 					      meta_ac,
1015 					      wanted - count,
1016 					      &suballoc_loc,
1017 					      &suballoc_bit_start,
1018 					      &num_got,
1019 					      &first_blkno);
1020 		if (status < 0) {
1021 			mlog_errno(status);
1022 			goto bail;
1023 		}
1024 
1025 		for(i = count;  i < (num_got + count); i++) {
1026 			bhs[i] = sb_getblk(osb->sb, first_blkno);
1027 			if (bhs[i] == NULL) {
1028 				status = -ENOMEM;
1029 				mlog_errno(status);
1030 				goto bail;
1031 			}
1032 			ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]);
1033 
1034 			status = ocfs2_journal_access_eb(handle, et->et_ci,
1035 							 bhs[i],
1036 							 OCFS2_JOURNAL_ACCESS_CREATE);
1037 			if (status < 0) {
1038 				mlog_errno(status);
1039 				goto bail;
1040 			}
1041 
1042 			memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
1043 			eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
1044 			/* Ok, setup the minimal stuff here. */
1045 			strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
1046 			eb->h_blkno = cpu_to_le64(first_blkno);
1047 			eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
1048 			eb->h_suballoc_slot =
1049 				cpu_to_le16(meta_ac->ac_alloc_slot);
1050 			eb->h_suballoc_loc = cpu_to_le64(suballoc_loc);
1051 			eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
1052 			eb->h_list.l_count =
1053 				cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
1054 
1055 			suballoc_bit_start++;
1056 			first_blkno++;
1057 
1058 			/* We'll also be dirtied by the caller, so
1059 			 * this isn't absolutely necessary. */
1060 			ocfs2_journal_dirty(handle, bhs[i]);
1061 		}
1062 
1063 		count += num_got;
1064 	}
1065 
1066 	status = 0;
1067 bail:
1068 	if (status < 0) {
1069 		for(i = 0; i < wanted; i++) {
1070 			brelse(bhs[i]);
1071 			bhs[i] = NULL;
1072 		}
1073 		mlog_errno(status);
1074 	}
1075 	return status;
1076 }
1077 
1078 /*
1079  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1080  *
1081  * Returns the sum of the rightmost extent rec logical offset and
1082  * cluster count.
1083  *
1084  * ocfs2_add_branch() uses this to determine what logical cluster
1085  * value should be populated into the leftmost new branch records.
1086  *
1087  * ocfs2_shift_tree_depth() uses this to determine the # clusters
1088  * value for the new topmost tree record.
1089  */
1090 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
1091 {
1092 	int i;
1093 
1094 	i = le16_to_cpu(el->l_next_free_rec) - 1;
1095 
1096 	return le32_to_cpu(el->l_recs[i].e_cpos) +
1097 		ocfs2_rec_clusters(el, &el->l_recs[i]);
1098 }
1099 
1100 /*
1101  * Change range of the branches in the right most path according to the leaf
1102  * extent block's rightmost record.
1103  */
1104 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1105 					 struct ocfs2_extent_tree *et)
1106 {
1107 	int status;
1108 	struct ocfs2_path *path = NULL;
1109 	struct ocfs2_extent_list *el;
1110 	struct ocfs2_extent_rec *rec;
1111 
1112 	path = ocfs2_new_path_from_et(et);
1113 	if (!path) {
1114 		status = -ENOMEM;
1115 		return status;
1116 	}
1117 
1118 	status = ocfs2_find_path(et->et_ci, path, UINT_MAX);
1119 	if (status < 0) {
1120 		mlog_errno(status);
1121 		goto out;
1122 	}
1123 
1124 	status = ocfs2_extend_trans(handle, path_num_items(path));
1125 	if (status < 0) {
1126 		mlog_errno(status);
1127 		goto out;
1128 	}
1129 
1130 	status = ocfs2_journal_access_path(et->et_ci, handle, path);
1131 	if (status < 0) {
1132 		mlog_errno(status);
1133 		goto out;
1134 	}
1135 
1136 	el = path_leaf_el(path);
1137 	rec = &el->l_recs[le16_to_cpu(el->l_next_free_rec) - 1];
1138 
1139 	ocfs2_adjust_rightmost_records(handle, et, path, rec);
1140 
1141 out:
1142 	ocfs2_free_path(path);
1143 	return status;
1144 }
1145 
1146 /*
1147  * Add an entire tree branch to our inode. eb_bh is the extent block
1148  * to start at, if we don't want to start the branch at the root
1149  * structure.
1150  *
1151  * last_eb_bh is required as we have to update it's next_leaf pointer
1152  * for the new last extent block.
1153  *
1154  * the new branch will be 'empty' in the sense that every block will
1155  * contain a single record with cluster count == 0.
1156  */
1157 static int ocfs2_add_branch(handle_t *handle,
1158 			    struct ocfs2_extent_tree *et,
1159 			    struct buffer_head *eb_bh,
1160 			    struct buffer_head **last_eb_bh,
1161 			    struct ocfs2_alloc_context *meta_ac)
1162 {
1163 	int status, new_blocks, i;
1164 	u64 next_blkno, new_last_eb_blk;
1165 	struct buffer_head *bh;
1166 	struct buffer_head **new_eb_bhs = NULL;
1167 	struct ocfs2_extent_block *eb;
1168 	struct ocfs2_extent_list  *eb_el;
1169 	struct ocfs2_extent_list  *el;
1170 	u32 new_cpos, root_end;
1171 
1172 	BUG_ON(!last_eb_bh || !*last_eb_bh);
1173 
1174 	if (eb_bh) {
1175 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1176 		el = &eb->h_list;
1177 	} else
1178 		el = et->et_root_el;
1179 
1180 	/* we never add a branch to a leaf. */
1181 	BUG_ON(!el->l_tree_depth);
1182 
1183 	new_blocks = le16_to_cpu(el->l_tree_depth);
1184 
1185 	eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1186 	new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1187 	root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1188 
1189 	/*
1190 	 * If there is a gap before the root end and the real end
1191 	 * of the righmost leaf block, we need to remove the gap
1192 	 * between new_cpos and root_end first so that the tree
1193 	 * is consistent after we add a new branch(it will start
1194 	 * from new_cpos).
1195 	 */
1196 	if (root_end > new_cpos) {
1197 		trace_ocfs2_adjust_rightmost_branch(
1198 			(unsigned long long)
1199 			ocfs2_metadata_cache_owner(et->et_ci),
1200 			root_end, new_cpos);
1201 
1202 		status = ocfs2_adjust_rightmost_branch(handle, et);
1203 		if (status) {
1204 			mlog_errno(status);
1205 			goto bail;
1206 		}
1207 	}
1208 
1209 	/* allocate the number of new eb blocks we need */
1210 	new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1211 			     GFP_KERNEL);
1212 	if (!new_eb_bhs) {
1213 		status = -ENOMEM;
1214 		mlog_errno(status);
1215 		goto bail;
1216 	}
1217 
1218 	status = ocfs2_create_new_meta_bhs(handle, et, new_blocks,
1219 					   meta_ac, new_eb_bhs);
1220 	if (status < 0) {
1221 		mlog_errno(status);
1222 		goto bail;
1223 	}
1224 
1225 	/* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1226 	 * linked with the rest of the tree.
1227 	 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1228 	 *
1229 	 * when we leave the loop, new_last_eb_blk will point to the
1230 	 * newest leaf, and next_blkno will point to the topmost extent
1231 	 * block. */
1232 	next_blkno = new_last_eb_blk = 0;
1233 	for(i = 0; i < new_blocks; i++) {
1234 		bh = new_eb_bhs[i];
1235 		eb = (struct ocfs2_extent_block *) bh->b_data;
1236 		/* ocfs2_create_new_meta_bhs() should create it right! */
1237 		BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1238 		eb_el = &eb->h_list;
1239 
1240 		status = ocfs2_journal_access_eb(handle, et->et_ci, bh,
1241 						 OCFS2_JOURNAL_ACCESS_CREATE);
1242 		if (status < 0) {
1243 			mlog_errno(status);
1244 			goto bail;
1245 		}
1246 
1247 		eb->h_next_leaf_blk = 0;
1248 		eb_el->l_tree_depth = cpu_to_le16(i);
1249 		eb_el->l_next_free_rec = cpu_to_le16(1);
1250 		/*
1251 		 * This actually counts as an empty extent as
1252 		 * c_clusters == 0
1253 		 */
1254 		eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1255 		eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1256 		/*
1257 		 * eb_el isn't always an interior node, but even leaf
1258 		 * nodes want a zero'd flags and reserved field so
1259 		 * this gets the whole 32 bits regardless of use.
1260 		 */
1261 		eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1262 		if (!eb_el->l_tree_depth)
1263 			new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1264 
1265 		ocfs2_journal_dirty(handle, bh);
1266 		next_blkno = le64_to_cpu(eb->h_blkno);
1267 	}
1268 
1269 	/* This is a bit hairy. We want to update up to three blocks
1270 	 * here without leaving any of them in an inconsistent state
1271 	 * in case of error. We don't have to worry about
1272 	 * journal_dirty erroring as it won't unless we've aborted the
1273 	 * handle (in which case we would never be here) so reserving
1274 	 * the write with journal_access is all we need to do. */
1275 	status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh,
1276 					 OCFS2_JOURNAL_ACCESS_WRITE);
1277 	if (status < 0) {
1278 		mlog_errno(status);
1279 		goto bail;
1280 	}
1281 	status = ocfs2_et_root_journal_access(handle, et,
1282 					      OCFS2_JOURNAL_ACCESS_WRITE);
1283 	if (status < 0) {
1284 		mlog_errno(status);
1285 		goto bail;
1286 	}
1287 	if (eb_bh) {
1288 		status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh,
1289 						 OCFS2_JOURNAL_ACCESS_WRITE);
1290 		if (status < 0) {
1291 			mlog_errno(status);
1292 			goto bail;
1293 		}
1294 	}
1295 
1296 	/* Link the new branch into the rest of the tree (el will
1297 	 * either be on the root_bh, or the extent block passed in. */
1298 	i = le16_to_cpu(el->l_next_free_rec);
1299 	el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1300 	el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1301 	el->l_recs[i].e_int_clusters = 0;
1302 	le16_add_cpu(&el->l_next_free_rec, 1);
1303 
1304 	/* fe needs a new last extent block pointer, as does the
1305 	 * next_leaf on the previously last-extent-block. */
1306 	ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1307 
1308 	eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1309 	eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1310 
1311 	ocfs2_journal_dirty(handle, *last_eb_bh);
1312 	ocfs2_journal_dirty(handle, et->et_root_bh);
1313 	if (eb_bh)
1314 		ocfs2_journal_dirty(handle, eb_bh);
1315 
1316 	/*
1317 	 * Some callers want to track the rightmost leaf so pass it
1318 	 * back here.
1319 	 */
1320 	brelse(*last_eb_bh);
1321 	get_bh(new_eb_bhs[0]);
1322 	*last_eb_bh = new_eb_bhs[0];
1323 
1324 	status = 0;
1325 bail:
1326 	if (new_eb_bhs) {
1327 		for (i = 0; i < new_blocks; i++)
1328 			brelse(new_eb_bhs[i]);
1329 		kfree(new_eb_bhs);
1330 	}
1331 
1332 	return status;
1333 }
1334 
1335 /*
1336  * adds another level to the allocation tree.
1337  * returns back the new extent block so you can add a branch to it
1338  * after this call.
1339  */
1340 static int ocfs2_shift_tree_depth(handle_t *handle,
1341 				  struct ocfs2_extent_tree *et,
1342 				  struct ocfs2_alloc_context *meta_ac,
1343 				  struct buffer_head **ret_new_eb_bh)
1344 {
1345 	int status, i;
1346 	u32 new_clusters;
1347 	struct buffer_head *new_eb_bh = NULL;
1348 	struct ocfs2_extent_block *eb;
1349 	struct ocfs2_extent_list  *root_el;
1350 	struct ocfs2_extent_list  *eb_el;
1351 
1352 	status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac,
1353 					   &new_eb_bh);
1354 	if (status < 0) {
1355 		mlog_errno(status);
1356 		goto bail;
1357 	}
1358 
1359 	eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1360 	/* ocfs2_create_new_meta_bhs() should create it right! */
1361 	BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1362 
1363 	eb_el = &eb->h_list;
1364 	root_el = et->et_root_el;
1365 
1366 	status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh,
1367 					 OCFS2_JOURNAL_ACCESS_CREATE);
1368 	if (status < 0) {
1369 		mlog_errno(status);
1370 		goto bail;
1371 	}
1372 
1373 	/* copy the root extent list data into the new extent block */
1374 	eb_el->l_tree_depth = root_el->l_tree_depth;
1375 	eb_el->l_next_free_rec = root_el->l_next_free_rec;
1376 	for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1377 		eb_el->l_recs[i] = root_el->l_recs[i];
1378 
1379 	ocfs2_journal_dirty(handle, new_eb_bh);
1380 
1381 	status = ocfs2_et_root_journal_access(handle, et,
1382 					      OCFS2_JOURNAL_ACCESS_WRITE);
1383 	if (status < 0) {
1384 		mlog_errno(status);
1385 		goto bail;
1386 	}
1387 
1388 	new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1389 
1390 	/* update root_bh now */
1391 	le16_add_cpu(&root_el->l_tree_depth, 1);
1392 	root_el->l_recs[0].e_cpos = 0;
1393 	root_el->l_recs[0].e_blkno = eb->h_blkno;
1394 	root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1395 	for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1396 		memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1397 	root_el->l_next_free_rec = cpu_to_le16(1);
1398 
1399 	/* If this is our 1st tree depth shift, then last_eb_blk
1400 	 * becomes the allocated extent block */
1401 	if (root_el->l_tree_depth == cpu_to_le16(1))
1402 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1403 
1404 	ocfs2_journal_dirty(handle, et->et_root_bh);
1405 
1406 	*ret_new_eb_bh = new_eb_bh;
1407 	new_eb_bh = NULL;
1408 	status = 0;
1409 bail:
1410 	brelse(new_eb_bh);
1411 
1412 	return status;
1413 }
1414 
1415 /*
1416  * Should only be called when there is no space left in any of the
1417  * leaf nodes. What we want to do is find the lowest tree depth
1418  * non-leaf extent block with room for new records. There are three
1419  * valid results of this search:
1420  *
1421  * 1) a lowest extent block is found, then we pass it back in
1422  *    *lowest_eb_bh and return '0'
1423  *
1424  * 2) the search fails to find anything, but the root_el has room. We
1425  *    pass NULL back in *lowest_eb_bh, but still return '0'
1426  *
1427  * 3) the search fails to find anything AND the root_el is full, in
1428  *    which case we return > 0
1429  *
1430  * return status < 0 indicates an error.
1431  */
1432 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et,
1433 				    struct buffer_head **target_bh)
1434 {
1435 	int status = 0, i;
1436 	u64 blkno;
1437 	struct ocfs2_extent_block *eb;
1438 	struct ocfs2_extent_list  *el;
1439 	struct buffer_head *bh = NULL;
1440 	struct buffer_head *lowest_bh = NULL;
1441 
1442 	*target_bh = NULL;
1443 
1444 	el = et->et_root_el;
1445 
1446 	while(le16_to_cpu(el->l_tree_depth) > 1) {
1447 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1448 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1449 				    "Owner %llu has empty "
1450 				    "extent list (next_free_rec == 0)",
1451 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
1452 			status = -EIO;
1453 			goto bail;
1454 		}
1455 		i = le16_to_cpu(el->l_next_free_rec) - 1;
1456 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1457 		if (!blkno) {
1458 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1459 				    "Owner %llu has extent "
1460 				    "list where extent # %d has no physical "
1461 				    "block start",
1462 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i);
1463 			status = -EIO;
1464 			goto bail;
1465 		}
1466 
1467 		brelse(bh);
1468 		bh = NULL;
1469 
1470 		status = ocfs2_read_extent_block(et->et_ci, blkno, &bh);
1471 		if (status < 0) {
1472 			mlog_errno(status);
1473 			goto bail;
1474 		}
1475 
1476 		eb = (struct ocfs2_extent_block *) bh->b_data;
1477 		el = &eb->h_list;
1478 
1479 		if (le16_to_cpu(el->l_next_free_rec) <
1480 		    le16_to_cpu(el->l_count)) {
1481 			brelse(lowest_bh);
1482 			lowest_bh = bh;
1483 			get_bh(lowest_bh);
1484 		}
1485 	}
1486 
1487 	/* If we didn't find one and the fe doesn't have any room,
1488 	 * then return '1' */
1489 	el = et->et_root_el;
1490 	if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1491 		status = 1;
1492 
1493 	*target_bh = lowest_bh;
1494 bail:
1495 	brelse(bh);
1496 
1497 	return status;
1498 }
1499 
1500 /*
1501  * Grow a b-tree so that it has more records.
1502  *
1503  * We might shift the tree depth in which case existing paths should
1504  * be considered invalid.
1505  *
1506  * Tree depth after the grow is returned via *final_depth.
1507  *
1508  * *last_eb_bh will be updated by ocfs2_add_branch().
1509  */
1510 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et,
1511 			   int *final_depth, struct buffer_head **last_eb_bh,
1512 			   struct ocfs2_alloc_context *meta_ac)
1513 {
1514 	int ret, shift;
1515 	struct ocfs2_extent_list *el = et->et_root_el;
1516 	int depth = le16_to_cpu(el->l_tree_depth);
1517 	struct buffer_head *bh = NULL;
1518 
1519 	BUG_ON(meta_ac == NULL);
1520 
1521 	shift = ocfs2_find_branch_target(et, &bh);
1522 	if (shift < 0) {
1523 		ret = shift;
1524 		mlog_errno(ret);
1525 		goto out;
1526 	}
1527 
1528 	/* We traveled all the way to the bottom of the allocation tree
1529 	 * and didn't find room for any more extents - we need to add
1530 	 * another tree level */
1531 	if (shift) {
1532 		BUG_ON(bh);
1533 		trace_ocfs2_grow_tree(
1534 			(unsigned long long)
1535 			ocfs2_metadata_cache_owner(et->et_ci),
1536 			depth);
1537 
1538 		/* ocfs2_shift_tree_depth will return us a buffer with
1539 		 * the new extent block (so we can pass that to
1540 		 * ocfs2_add_branch). */
1541 		ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh);
1542 		if (ret < 0) {
1543 			mlog_errno(ret);
1544 			goto out;
1545 		}
1546 		depth++;
1547 		if (depth == 1) {
1548 			/*
1549 			 * Special case: we have room now if we shifted from
1550 			 * tree_depth 0, so no more work needs to be done.
1551 			 *
1552 			 * We won't be calling add_branch, so pass
1553 			 * back *last_eb_bh as the new leaf. At depth
1554 			 * zero, it should always be null so there's
1555 			 * no reason to brelse.
1556 			 */
1557 			BUG_ON(*last_eb_bh);
1558 			get_bh(bh);
1559 			*last_eb_bh = bh;
1560 			goto out;
1561 		}
1562 	}
1563 
1564 	/* call ocfs2_add_branch to add the final part of the tree with
1565 	 * the new data. */
1566 	ret = ocfs2_add_branch(handle, et, bh, last_eb_bh,
1567 			       meta_ac);
1568 	if (ret < 0) {
1569 		mlog_errno(ret);
1570 		goto out;
1571 	}
1572 
1573 out:
1574 	if (final_depth)
1575 		*final_depth = depth;
1576 	brelse(bh);
1577 	return ret;
1578 }
1579 
1580 /*
1581  * This function will discard the rightmost extent record.
1582  */
1583 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1584 {
1585 	int next_free = le16_to_cpu(el->l_next_free_rec);
1586 	int count = le16_to_cpu(el->l_count);
1587 	unsigned int num_bytes;
1588 
1589 	BUG_ON(!next_free);
1590 	/* This will cause us to go off the end of our extent list. */
1591 	BUG_ON(next_free >= count);
1592 
1593 	num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1594 
1595 	memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1596 }
1597 
1598 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1599 			      struct ocfs2_extent_rec *insert_rec)
1600 {
1601 	int i, insert_index, next_free, has_empty, num_bytes;
1602 	u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1603 	struct ocfs2_extent_rec *rec;
1604 
1605 	next_free = le16_to_cpu(el->l_next_free_rec);
1606 	has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1607 
1608 	BUG_ON(!next_free);
1609 
1610 	/* The tree code before us didn't allow enough room in the leaf. */
1611 	BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1612 
1613 	/*
1614 	 * The easiest way to approach this is to just remove the
1615 	 * empty extent and temporarily decrement next_free.
1616 	 */
1617 	if (has_empty) {
1618 		/*
1619 		 * If next_free was 1 (only an empty extent), this
1620 		 * loop won't execute, which is fine. We still want
1621 		 * the decrement above to happen.
1622 		 */
1623 		for(i = 0; i < (next_free - 1); i++)
1624 			el->l_recs[i] = el->l_recs[i+1];
1625 
1626 		next_free--;
1627 	}
1628 
1629 	/*
1630 	 * Figure out what the new record index should be.
1631 	 */
1632 	for(i = 0; i < next_free; i++) {
1633 		rec = &el->l_recs[i];
1634 
1635 		if (insert_cpos < le32_to_cpu(rec->e_cpos))
1636 			break;
1637 	}
1638 	insert_index = i;
1639 
1640 	trace_ocfs2_rotate_leaf(insert_cpos, insert_index,
1641 				has_empty, next_free,
1642 				le16_to_cpu(el->l_count));
1643 
1644 	BUG_ON(insert_index < 0);
1645 	BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1646 	BUG_ON(insert_index > next_free);
1647 
1648 	/*
1649 	 * No need to memmove if we're just adding to the tail.
1650 	 */
1651 	if (insert_index != next_free) {
1652 		BUG_ON(next_free >= le16_to_cpu(el->l_count));
1653 
1654 		num_bytes = next_free - insert_index;
1655 		num_bytes *= sizeof(struct ocfs2_extent_rec);
1656 		memmove(&el->l_recs[insert_index + 1],
1657 			&el->l_recs[insert_index],
1658 			num_bytes);
1659 	}
1660 
1661 	/*
1662 	 * Either we had an empty extent, and need to re-increment or
1663 	 * there was no empty extent on a non full rightmost leaf node,
1664 	 * in which case we still need to increment.
1665 	 */
1666 	next_free++;
1667 	el->l_next_free_rec = cpu_to_le16(next_free);
1668 	/*
1669 	 * Make sure none of the math above just messed up our tree.
1670 	 */
1671 	BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1672 
1673 	el->l_recs[insert_index] = *insert_rec;
1674 
1675 }
1676 
1677 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1678 {
1679 	int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1680 
1681 	BUG_ON(num_recs == 0);
1682 
1683 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1684 		num_recs--;
1685 		size = num_recs * sizeof(struct ocfs2_extent_rec);
1686 		memmove(&el->l_recs[0], &el->l_recs[1], size);
1687 		memset(&el->l_recs[num_recs], 0,
1688 		       sizeof(struct ocfs2_extent_rec));
1689 		el->l_next_free_rec = cpu_to_le16(num_recs);
1690 	}
1691 }
1692 
1693 /*
1694  * Create an empty extent record .
1695  *
1696  * l_next_free_rec may be updated.
1697  *
1698  * If an empty extent already exists do nothing.
1699  */
1700 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1701 {
1702 	int next_free = le16_to_cpu(el->l_next_free_rec);
1703 
1704 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1705 
1706 	if (next_free == 0)
1707 		goto set_and_inc;
1708 
1709 	if (ocfs2_is_empty_extent(&el->l_recs[0]))
1710 		return;
1711 
1712 	mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1713 			"Asked to create an empty extent in a full list:\n"
1714 			"count = %u, tree depth = %u",
1715 			le16_to_cpu(el->l_count),
1716 			le16_to_cpu(el->l_tree_depth));
1717 
1718 	ocfs2_shift_records_right(el);
1719 
1720 set_and_inc:
1721 	le16_add_cpu(&el->l_next_free_rec, 1);
1722 	memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1723 }
1724 
1725 /*
1726  * For a rotation which involves two leaf nodes, the "root node" is
1727  * the lowest level tree node which contains a path to both leafs. This
1728  * resulting set of information can be used to form a complete "subtree"
1729  *
1730  * This function is passed two full paths from the dinode down to a
1731  * pair of adjacent leaves. It's task is to figure out which path
1732  * index contains the subtree root - this can be the root index itself
1733  * in a worst-case rotation.
1734  *
1735  * The array index of the subtree root is passed back.
1736  */
1737 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et,
1738 			    struct ocfs2_path *left,
1739 			    struct ocfs2_path *right)
1740 {
1741 	int i = 0;
1742 
1743 	/*
1744 	 * Check that the caller passed in two paths from the same tree.
1745 	 */
1746 	BUG_ON(path_root_bh(left) != path_root_bh(right));
1747 
1748 	do {
1749 		i++;
1750 
1751 		/*
1752 		 * The caller didn't pass two adjacent paths.
1753 		 */
1754 		mlog_bug_on_msg(i > left->p_tree_depth,
1755 				"Owner %llu, left depth %u, right depth %u\n"
1756 				"left leaf blk %llu, right leaf blk %llu\n",
1757 				(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
1758 				left->p_tree_depth, right->p_tree_depth,
1759 				(unsigned long long)path_leaf_bh(left)->b_blocknr,
1760 				(unsigned long long)path_leaf_bh(right)->b_blocknr);
1761 	} while (left->p_node[i].bh->b_blocknr ==
1762 		 right->p_node[i].bh->b_blocknr);
1763 
1764 	return i - 1;
1765 }
1766 
1767 typedef void (path_insert_t)(void *, struct buffer_head *);
1768 
1769 /*
1770  * Traverse a btree path in search of cpos, starting at root_el.
1771  *
1772  * This code can be called with a cpos larger than the tree, in which
1773  * case it will return the rightmost path.
1774  */
1775 static int __ocfs2_find_path(struct ocfs2_caching_info *ci,
1776 			     struct ocfs2_extent_list *root_el, u32 cpos,
1777 			     path_insert_t *func, void *data)
1778 {
1779 	int i, ret = 0;
1780 	u32 range;
1781 	u64 blkno;
1782 	struct buffer_head *bh = NULL;
1783 	struct ocfs2_extent_block *eb;
1784 	struct ocfs2_extent_list *el;
1785 	struct ocfs2_extent_rec *rec;
1786 
1787 	el = root_el;
1788 	while (el->l_tree_depth) {
1789 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1790 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1791 				    "Owner %llu has empty extent list at "
1792 				    "depth %u\n",
1793 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1794 				    le16_to_cpu(el->l_tree_depth));
1795 			ret = -EROFS;
1796 			goto out;
1797 
1798 		}
1799 
1800 		for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1801 			rec = &el->l_recs[i];
1802 
1803 			/*
1804 			 * In the case that cpos is off the allocation
1805 			 * tree, this should just wind up returning the
1806 			 * rightmost record.
1807 			 */
1808 			range = le32_to_cpu(rec->e_cpos) +
1809 				ocfs2_rec_clusters(el, rec);
1810 			if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1811 			    break;
1812 		}
1813 
1814 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1815 		if (blkno == 0) {
1816 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1817 				    "Owner %llu has bad blkno in extent list "
1818 				    "at depth %u (index %d)\n",
1819 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1820 				    le16_to_cpu(el->l_tree_depth), i);
1821 			ret = -EROFS;
1822 			goto out;
1823 		}
1824 
1825 		brelse(bh);
1826 		bh = NULL;
1827 		ret = ocfs2_read_extent_block(ci, blkno, &bh);
1828 		if (ret) {
1829 			mlog_errno(ret);
1830 			goto out;
1831 		}
1832 
1833 		eb = (struct ocfs2_extent_block *) bh->b_data;
1834 		el = &eb->h_list;
1835 
1836 		if (le16_to_cpu(el->l_next_free_rec) >
1837 		    le16_to_cpu(el->l_count)) {
1838 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1839 				    "Owner %llu has bad count in extent list "
1840 				    "at block %llu (next free=%u, count=%u)\n",
1841 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1842 				    (unsigned long long)bh->b_blocknr,
1843 				    le16_to_cpu(el->l_next_free_rec),
1844 				    le16_to_cpu(el->l_count));
1845 			ret = -EROFS;
1846 			goto out;
1847 		}
1848 
1849 		if (func)
1850 			func(data, bh);
1851 	}
1852 
1853 out:
1854 	/*
1855 	 * Catch any trailing bh that the loop didn't handle.
1856 	 */
1857 	brelse(bh);
1858 
1859 	return ret;
1860 }
1861 
1862 /*
1863  * Given an initialized path (that is, it has a valid root extent
1864  * list), this function will traverse the btree in search of the path
1865  * which would contain cpos.
1866  *
1867  * The path traveled is recorded in the path structure.
1868  *
1869  * Note that this will not do any comparisons on leaf node extent
1870  * records, so it will work fine in the case that we just added a tree
1871  * branch.
1872  */
1873 struct find_path_data {
1874 	int index;
1875 	struct ocfs2_path *path;
1876 };
1877 static void find_path_ins(void *data, struct buffer_head *bh)
1878 {
1879 	struct find_path_data *fp = data;
1880 
1881 	get_bh(bh);
1882 	ocfs2_path_insert_eb(fp->path, fp->index, bh);
1883 	fp->index++;
1884 }
1885 int ocfs2_find_path(struct ocfs2_caching_info *ci,
1886 		    struct ocfs2_path *path, u32 cpos)
1887 {
1888 	struct find_path_data data;
1889 
1890 	data.index = 1;
1891 	data.path = path;
1892 	return __ocfs2_find_path(ci, path_root_el(path), cpos,
1893 				 find_path_ins, &data);
1894 }
1895 
1896 static void find_leaf_ins(void *data, struct buffer_head *bh)
1897 {
1898 	struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1899 	struct ocfs2_extent_list *el = &eb->h_list;
1900 	struct buffer_head **ret = data;
1901 
1902 	/* We want to retain only the leaf block. */
1903 	if (le16_to_cpu(el->l_tree_depth) == 0) {
1904 		get_bh(bh);
1905 		*ret = bh;
1906 	}
1907 }
1908 /*
1909  * Find the leaf block in the tree which would contain cpos. No
1910  * checking of the actual leaf is done.
1911  *
1912  * Some paths want to call this instead of allocating a path structure
1913  * and calling ocfs2_find_path().
1914  *
1915  * This function doesn't handle non btree extent lists.
1916  */
1917 int ocfs2_find_leaf(struct ocfs2_caching_info *ci,
1918 		    struct ocfs2_extent_list *root_el, u32 cpos,
1919 		    struct buffer_head **leaf_bh)
1920 {
1921 	int ret;
1922 	struct buffer_head *bh = NULL;
1923 
1924 	ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh);
1925 	if (ret) {
1926 		mlog_errno(ret);
1927 		goto out;
1928 	}
1929 
1930 	*leaf_bh = bh;
1931 out:
1932 	return ret;
1933 }
1934 
1935 /*
1936  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1937  *
1938  * Basically, we've moved stuff around at the bottom of the tree and
1939  * we need to fix up the extent records above the changes to reflect
1940  * the new changes.
1941  *
1942  * left_rec: the record on the left.
1943  * left_child_el: is the child list pointed to by left_rec
1944  * right_rec: the record to the right of left_rec
1945  * right_child_el: is the child list pointed to by right_rec
1946  *
1947  * By definition, this only works on interior nodes.
1948  */
1949 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1950 				  struct ocfs2_extent_list *left_child_el,
1951 				  struct ocfs2_extent_rec *right_rec,
1952 				  struct ocfs2_extent_list *right_child_el)
1953 {
1954 	u32 left_clusters, right_end;
1955 
1956 	/*
1957 	 * Interior nodes never have holes. Their cpos is the cpos of
1958 	 * the leftmost record in their child list. Their cluster
1959 	 * count covers the full theoretical range of their child list
1960 	 * - the range between their cpos and the cpos of the record
1961 	 * immediately to their right.
1962 	 */
1963 	left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1964 	if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1965 		BUG_ON(right_child_el->l_tree_depth);
1966 		BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1967 		left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1968 	}
1969 	left_clusters -= le32_to_cpu(left_rec->e_cpos);
1970 	left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1971 
1972 	/*
1973 	 * Calculate the rightmost cluster count boundary before
1974 	 * moving cpos - we will need to adjust clusters after
1975 	 * updating e_cpos to keep the same highest cluster count.
1976 	 */
1977 	right_end = le32_to_cpu(right_rec->e_cpos);
1978 	right_end += le32_to_cpu(right_rec->e_int_clusters);
1979 
1980 	right_rec->e_cpos = left_rec->e_cpos;
1981 	le32_add_cpu(&right_rec->e_cpos, left_clusters);
1982 
1983 	right_end -= le32_to_cpu(right_rec->e_cpos);
1984 	right_rec->e_int_clusters = cpu_to_le32(right_end);
1985 }
1986 
1987 /*
1988  * Adjust the adjacent root node records involved in a
1989  * rotation. left_el_blkno is passed in as a key so that we can easily
1990  * find it's index in the root list.
1991  */
1992 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1993 				      struct ocfs2_extent_list *left_el,
1994 				      struct ocfs2_extent_list *right_el,
1995 				      u64 left_el_blkno)
1996 {
1997 	int i;
1998 
1999 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
2000 	       le16_to_cpu(left_el->l_tree_depth));
2001 
2002 	for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
2003 		if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
2004 			break;
2005 	}
2006 
2007 	/*
2008 	 * The path walking code should have never returned a root and
2009 	 * two paths which are not adjacent.
2010 	 */
2011 	BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
2012 
2013 	ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
2014 				      &root_el->l_recs[i + 1], right_el);
2015 }
2016 
2017 /*
2018  * We've changed a leaf block (in right_path) and need to reflect that
2019  * change back up the subtree.
2020  *
2021  * This happens in multiple places:
2022  *   - When we've moved an extent record from the left path leaf to the right
2023  *     path leaf to make room for an empty extent in the left path leaf.
2024  *   - When our insert into the right path leaf is at the leftmost edge
2025  *     and requires an update of the path immediately to it's left. This
2026  *     can occur at the end of some types of rotation and appending inserts.
2027  *   - When we've adjusted the last extent record in the left path leaf and the
2028  *     1st extent record in the right path leaf during cross extent block merge.
2029  */
2030 static void ocfs2_complete_edge_insert(handle_t *handle,
2031 				       struct ocfs2_path *left_path,
2032 				       struct ocfs2_path *right_path,
2033 				       int subtree_index)
2034 {
2035 	int i, idx;
2036 	struct ocfs2_extent_list *el, *left_el, *right_el;
2037 	struct ocfs2_extent_rec *left_rec, *right_rec;
2038 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2039 
2040 	/*
2041 	 * Update the counts and position values within all the
2042 	 * interior nodes to reflect the leaf rotation we just did.
2043 	 *
2044 	 * The root node is handled below the loop.
2045 	 *
2046 	 * We begin the loop with right_el and left_el pointing to the
2047 	 * leaf lists and work our way up.
2048 	 *
2049 	 * NOTE: within this loop, left_el and right_el always refer
2050 	 * to the *child* lists.
2051 	 */
2052 	left_el = path_leaf_el(left_path);
2053 	right_el = path_leaf_el(right_path);
2054 	for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
2055 		trace_ocfs2_complete_edge_insert(i);
2056 
2057 		/*
2058 		 * One nice property of knowing that all of these
2059 		 * nodes are below the root is that we only deal with
2060 		 * the leftmost right node record and the rightmost
2061 		 * left node record.
2062 		 */
2063 		el = left_path->p_node[i].el;
2064 		idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2065 		left_rec = &el->l_recs[idx];
2066 
2067 		el = right_path->p_node[i].el;
2068 		right_rec = &el->l_recs[0];
2069 
2070 		ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
2071 					      right_el);
2072 
2073 		ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2074 		ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2075 
2076 		/*
2077 		 * Setup our list pointers now so that the current
2078 		 * parents become children in the next iteration.
2079 		 */
2080 		left_el = left_path->p_node[i].el;
2081 		right_el = right_path->p_node[i].el;
2082 	}
2083 
2084 	/*
2085 	 * At the root node, adjust the two adjacent records which
2086 	 * begin our path to the leaves.
2087 	 */
2088 
2089 	el = left_path->p_node[subtree_index].el;
2090 	left_el = left_path->p_node[subtree_index + 1].el;
2091 	right_el = right_path->p_node[subtree_index + 1].el;
2092 
2093 	ocfs2_adjust_root_records(el, left_el, right_el,
2094 				  left_path->p_node[subtree_index + 1].bh->b_blocknr);
2095 
2096 	root_bh = left_path->p_node[subtree_index].bh;
2097 
2098 	ocfs2_journal_dirty(handle, root_bh);
2099 }
2100 
2101 static int ocfs2_rotate_subtree_right(handle_t *handle,
2102 				      struct ocfs2_extent_tree *et,
2103 				      struct ocfs2_path *left_path,
2104 				      struct ocfs2_path *right_path,
2105 				      int subtree_index)
2106 {
2107 	int ret, i;
2108 	struct buffer_head *right_leaf_bh;
2109 	struct buffer_head *left_leaf_bh = NULL;
2110 	struct buffer_head *root_bh;
2111 	struct ocfs2_extent_list *right_el, *left_el;
2112 	struct ocfs2_extent_rec move_rec;
2113 
2114 	left_leaf_bh = path_leaf_bh(left_path);
2115 	left_el = path_leaf_el(left_path);
2116 
2117 	if (left_el->l_next_free_rec != left_el->l_count) {
2118 		ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
2119 			    "Inode %llu has non-full interior leaf node %llu"
2120 			    "(next free = %u)",
2121 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2122 			    (unsigned long long)left_leaf_bh->b_blocknr,
2123 			    le16_to_cpu(left_el->l_next_free_rec));
2124 		return -EROFS;
2125 	}
2126 
2127 	/*
2128 	 * This extent block may already have an empty record, so we
2129 	 * return early if so.
2130 	 */
2131 	if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2132 		return 0;
2133 
2134 	root_bh = left_path->p_node[subtree_index].bh;
2135 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2136 
2137 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2138 					   subtree_index);
2139 	if (ret) {
2140 		mlog_errno(ret);
2141 		goto out;
2142 	}
2143 
2144 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2145 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2146 						   right_path, i);
2147 		if (ret) {
2148 			mlog_errno(ret);
2149 			goto out;
2150 		}
2151 
2152 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2153 						   left_path, i);
2154 		if (ret) {
2155 			mlog_errno(ret);
2156 			goto out;
2157 		}
2158 	}
2159 
2160 	right_leaf_bh = path_leaf_bh(right_path);
2161 	right_el = path_leaf_el(right_path);
2162 
2163 	/* This is a code error, not a disk corruption. */
2164 	mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2165 			"because rightmost leaf block %llu is empty\n",
2166 			(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2167 			(unsigned long long)right_leaf_bh->b_blocknr);
2168 
2169 	ocfs2_create_empty_extent(right_el);
2170 
2171 	ocfs2_journal_dirty(handle, right_leaf_bh);
2172 
2173 	/* Do the copy now. */
2174 	i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2175 	move_rec = left_el->l_recs[i];
2176 	right_el->l_recs[0] = move_rec;
2177 
2178 	/*
2179 	 * Clear out the record we just copied and shift everything
2180 	 * over, leaving an empty extent in the left leaf.
2181 	 *
2182 	 * We temporarily subtract from next_free_rec so that the
2183 	 * shift will lose the tail record (which is now defunct).
2184 	 */
2185 	le16_add_cpu(&left_el->l_next_free_rec, -1);
2186 	ocfs2_shift_records_right(left_el);
2187 	memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2188 	le16_add_cpu(&left_el->l_next_free_rec, 1);
2189 
2190 	ocfs2_journal_dirty(handle, left_leaf_bh);
2191 
2192 	ocfs2_complete_edge_insert(handle, left_path, right_path,
2193 				   subtree_index);
2194 
2195 out:
2196 	return ret;
2197 }
2198 
2199 /*
2200  * Given a full path, determine what cpos value would return us a path
2201  * containing the leaf immediately to the left of the current one.
2202  *
2203  * Will return zero if the path passed in is already the leftmost path.
2204  */
2205 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2206 				  struct ocfs2_path *path, u32 *cpos)
2207 {
2208 	int i, j, ret = 0;
2209 	u64 blkno;
2210 	struct ocfs2_extent_list *el;
2211 
2212 	BUG_ON(path->p_tree_depth == 0);
2213 
2214 	*cpos = 0;
2215 
2216 	blkno = path_leaf_bh(path)->b_blocknr;
2217 
2218 	/* Start at the tree node just above the leaf and work our way up. */
2219 	i = path->p_tree_depth - 1;
2220 	while (i >= 0) {
2221 		el = path->p_node[i].el;
2222 
2223 		/*
2224 		 * Find the extent record just before the one in our
2225 		 * path.
2226 		 */
2227 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2228 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2229 				if (j == 0) {
2230 					if (i == 0) {
2231 						/*
2232 						 * We've determined that the
2233 						 * path specified is already
2234 						 * the leftmost one - return a
2235 						 * cpos of zero.
2236 						 */
2237 						goto out;
2238 					}
2239 					/*
2240 					 * The leftmost record points to our
2241 					 * leaf - we need to travel up the
2242 					 * tree one level.
2243 					 */
2244 					goto next_node;
2245 				}
2246 
2247 				*cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2248 				*cpos = *cpos + ocfs2_rec_clusters(el,
2249 							   &el->l_recs[j - 1]);
2250 				*cpos = *cpos - 1;
2251 				goto out;
2252 			}
2253 		}
2254 
2255 		/*
2256 		 * If we got here, we never found a valid node where
2257 		 * the tree indicated one should be.
2258 		 */
2259 		ocfs2_error(sb,
2260 			    "Invalid extent tree at extent block %llu\n",
2261 			    (unsigned long long)blkno);
2262 		ret = -EROFS;
2263 		goto out;
2264 
2265 next_node:
2266 		blkno = path->p_node[i].bh->b_blocknr;
2267 		i--;
2268 	}
2269 
2270 out:
2271 	return ret;
2272 }
2273 
2274 /*
2275  * Extend the transaction by enough credits to complete the rotation,
2276  * and still leave at least the original number of credits allocated
2277  * to this transaction.
2278  */
2279 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2280 					   int op_credits,
2281 					   struct ocfs2_path *path)
2282 {
2283 	int ret = 0;
2284 	int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2285 
2286 	if (handle->h_buffer_credits < credits)
2287 		ret = ocfs2_extend_trans(handle,
2288 					 credits - handle->h_buffer_credits);
2289 
2290 	return ret;
2291 }
2292 
2293 /*
2294  * Trap the case where we're inserting into the theoretical range past
2295  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2296  * whose cpos is less than ours into the right leaf.
2297  *
2298  * It's only necessary to look at the rightmost record of the left
2299  * leaf because the logic that calls us should ensure that the
2300  * theoretical ranges in the path components above the leaves are
2301  * correct.
2302  */
2303 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2304 						 u32 insert_cpos)
2305 {
2306 	struct ocfs2_extent_list *left_el;
2307 	struct ocfs2_extent_rec *rec;
2308 	int next_free;
2309 
2310 	left_el = path_leaf_el(left_path);
2311 	next_free = le16_to_cpu(left_el->l_next_free_rec);
2312 	rec = &left_el->l_recs[next_free - 1];
2313 
2314 	if (insert_cpos > le32_to_cpu(rec->e_cpos))
2315 		return 1;
2316 	return 0;
2317 }
2318 
2319 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2320 {
2321 	int next_free = le16_to_cpu(el->l_next_free_rec);
2322 	unsigned int range;
2323 	struct ocfs2_extent_rec *rec;
2324 
2325 	if (next_free == 0)
2326 		return 0;
2327 
2328 	rec = &el->l_recs[0];
2329 	if (ocfs2_is_empty_extent(rec)) {
2330 		/* Empty list. */
2331 		if (next_free == 1)
2332 			return 0;
2333 		rec = &el->l_recs[1];
2334 	}
2335 
2336 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2337 	if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2338 		return 1;
2339 	return 0;
2340 }
2341 
2342 /*
2343  * Rotate all the records in a btree right one record, starting at insert_cpos.
2344  *
2345  * The path to the rightmost leaf should be passed in.
2346  *
2347  * The array is assumed to be large enough to hold an entire path (tree depth).
2348  *
2349  * Upon successful return from this function:
2350  *
2351  * - The 'right_path' array will contain a path to the leaf block
2352  *   whose range contains e_cpos.
2353  * - That leaf block will have a single empty extent in list index 0.
2354  * - In the case that the rotation requires a post-insert update,
2355  *   *ret_left_path will contain a valid path which can be passed to
2356  *   ocfs2_insert_path().
2357  */
2358 static int ocfs2_rotate_tree_right(handle_t *handle,
2359 				   struct ocfs2_extent_tree *et,
2360 				   enum ocfs2_split_type split,
2361 				   u32 insert_cpos,
2362 				   struct ocfs2_path *right_path,
2363 				   struct ocfs2_path **ret_left_path)
2364 {
2365 	int ret, start, orig_credits = handle->h_buffer_credits;
2366 	u32 cpos;
2367 	struct ocfs2_path *left_path = NULL;
2368 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2369 
2370 	*ret_left_path = NULL;
2371 
2372 	left_path = ocfs2_new_path_from_path(right_path);
2373 	if (!left_path) {
2374 		ret = -ENOMEM;
2375 		mlog_errno(ret);
2376 		goto out;
2377 	}
2378 
2379 	ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2380 	if (ret) {
2381 		mlog_errno(ret);
2382 		goto out;
2383 	}
2384 
2385 	trace_ocfs2_rotate_tree_right(
2386 		(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2387 		insert_cpos, cpos);
2388 
2389 	/*
2390 	 * What we want to do here is:
2391 	 *
2392 	 * 1) Start with the rightmost path.
2393 	 *
2394 	 * 2) Determine a path to the leaf block directly to the left
2395 	 *    of that leaf.
2396 	 *
2397 	 * 3) Determine the 'subtree root' - the lowest level tree node
2398 	 *    which contains a path to both leaves.
2399 	 *
2400 	 * 4) Rotate the subtree.
2401 	 *
2402 	 * 5) Find the next subtree by considering the left path to be
2403 	 *    the new right path.
2404 	 *
2405 	 * The check at the top of this while loop also accepts
2406 	 * insert_cpos == cpos because cpos is only a _theoretical_
2407 	 * value to get us the left path - insert_cpos might very well
2408 	 * be filling that hole.
2409 	 *
2410 	 * Stop at a cpos of '0' because we either started at the
2411 	 * leftmost branch (i.e., a tree with one branch and a
2412 	 * rotation inside of it), or we've gone as far as we can in
2413 	 * rotating subtrees.
2414 	 */
2415 	while (cpos && insert_cpos <= cpos) {
2416 		trace_ocfs2_rotate_tree_right(
2417 			(unsigned long long)
2418 			ocfs2_metadata_cache_owner(et->et_ci),
2419 			insert_cpos, cpos);
2420 
2421 		ret = ocfs2_find_path(et->et_ci, left_path, cpos);
2422 		if (ret) {
2423 			mlog_errno(ret);
2424 			goto out;
2425 		}
2426 
2427 		mlog_bug_on_msg(path_leaf_bh(left_path) ==
2428 				path_leaf_bh(right_path),
2429 				"Owner %llu: error during insert of %u "
2430 				"(left path cpos %u) results in two identical "
2431 				"paths ending at %llu\n",
2432 				(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2433 				insert_cpos, cpos,
2434 				(unsigned long long)
2435 				path_leaf_bh(left_path)->b_blocknr);
2436 
2437 		if (split == SPLIT_NONE &&
2438 		    ocfs2_rotate_requires_path_adjustment(left_path,
2439 							  insert_cpos)) {
2440 
2441 			/*
2442 			 * We've rotated the tree as much as we
2443 			 * should. The rest is up to
2444 			 * ocfs2_insert_path() to complete, after the
2445 			 * record insertion. We indicate this
2446 			 * situation by returning the left path.
2447 			 *
2448 			 * The reason we don't adjust the records here
2449 			 * before the record insert is that an error
2450 			 * later might break the rule where a parent
2451 			 * record e_cpos will reflect the actual
2452 			 * e_cpos of the 1st nonempty record of the
2453 			 * child list.
2454 			 */
2455 			*ret_left_path = left_path;
2456 			goto out_ret_path;
2457 		}
2458 
2459 		start = ocfs2_find_subtree_root(et, left_path, right_path);
2460 
2461 		trace_ocfs2_rotate_subtree(start,
2462 			(unsigned long long)
2463 			right_path->p_node[start].bh->b_blocknr,
2464 			right_path->p_tree_depth);
2465 
2466 		ret = ocfs2_extend_rotate_transaction(handle, start,
2467 						      orig_credits, right_path);
2468 		if (ret) {
2469 			mlog_errno(ret);
2470 			goto out;
2471 		}
2472 
2473 		ret = ocfs2_rotate_subtree_right(handle, et, left_path,
2474 						 right_path, start);
2475 		if (ret) {
2476 			mlog_errno(ret);
2477 			goto out;
2478 		}
2479 
2480 		if (split != SPLIT_NONE &&
2481 		    ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2482 						insert_cpos)) {
2483 			/*
2484 			 * A rotate moves the rightmost left leaf
2485 			 * record over to the leftmost right leaf
2486 			 * slot. If we're doing an extent split
2487 			 * instead of a real insert, then we have to
2488 			 * check that the extent to be split wasn't
2489 			 * just moved over. If it was, then we can
2490 			 * exit here, passing left_path back -
2491 			 * ocfs2_split_extent() is smart enough to
2492 			 * search both leaves.
2493 			 */
2494 			*ret_left_path = left_path;
2495 			goto out_ret_path;
2496 		}
2497 
2498 		/*
2499 		 * There is no need to re-read the next right path
2500 		 * as we know that it'll be our current left
2501 		 * path. Optimize by copying values instead.
2502 		 */
2503 		ocfs2_mv_path(right_path, left_path);
2504 
2505 		ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2506 		if (ret) {
2507 			mlog_errno(ret);
2508 			goto out;
2509 		}
2510 	}
2511 
2512 out:
2513 	ocfs2_free_path(left_path);
2514 
2515 out_ret_path:
2516 	return ret;
2517 }
2518 
2519 static int ocfs2_update_edge_lengths(handle_t *handle,
2520 				     struct ocfs2_extent_tree *et,
2521 				     int subtree_index, struct ocfs2_path *path)
2522 {
2523 	int i, idx, ret;
2524 	struct ocfs2_extent_rec *rec;
2525 	struct ocfs2_extent_list *el;
2526 	struct ocfs2_extent_block *eb;
2527 	u32 range;
2528 
2529 	/*
2530 	 * In normal tree rotation process, we will never touch the
2531 	 * tree branch above subtree_index and ocfs2_extend_rotate_transaction
2532 	 * doesn't reserve the credits for them either.
2533 	 *
2534 	 * But we do have a special case here which will update the rightmost
2535 	 * records for all the bh in the path.
2536 	 * So we have to allocate extra credits and access them.
2537 	 */
2538 	ret = ocfs2_extend_trans(handle, subtree_index);
2539 	if (ret) {
2540 		mlog_errno(ret);
2541 		goto out;
2542 	}
2543 
2544 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
2545 	if (ret) {
2546 		mlog_errno(ret);
2547 		goto out;
2548 	}
2549 
2550 	/* Path should always be rightmost. */
2551 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2552 	BUG_ON(eb->h_next_leaf_blk != 0ULL);
2553 
2554 	el = &eb->h_list;
2555 	BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2556 	idx = le16_to_cpu(el->l_next_free_rec) - 1;
2557 	rec = &el->l_recs[idx];
2558 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2559 
2560 	for (i = 0; i < path->p_tree_depth; i++) {
2561 		el = path->p_node[i].el;
2562 		idx = le16_to_cpu(el->l_next_free_rec) - 1;
2563 		rec = &el->l_recs[idx];
2564 
2565 		rec->e_int_clusters = cpu_to_le32(range);
2566 		le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2567 
2568 		ocfs2_journal_dirty(handle, path->p_node[i].bh);
2569 	}
2570 out:
2571 	return ret;
2572 }
2573 
2574 static void ocfs2_unlink_path(handle_t *handle,
2575 			      struct ocfs2_extent_tree *et,
2576 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
2577 			      struct ocfs2_path *path, int unlink_start)
2578 {
2579 	int ret, i;
2580 	struct ocfs2_extent_block *eb;
2581 	struct ocfs2_extent_list *el;
2582 	struct buffer_head *bh;
2583 
2584 	for(i = unlink_start; i < path_num_items(path); i++) {
2585 		bh = path->p_node[i].bh;
2586 
2587 		eb = (struct ocfs2_extent_block *)bh->b_data;
2588 		/*
2589 		 * Not all nodes might have had their final count
2590 		 * decremented by the caller - handle this here.
2591 		 */
2592 		el = &eb->h_list;
2593 		if (le16_to_cpu(el->l_next_free_rec) > 1) {
2594 			mlog(ML_ERROR,
2595 			     "Inode %llu, attempted to remove extent block "
2596 			     "%llu with %u records\n",
2597 			     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2598 			     (unsigned long long)le64_to_cpu(eb->h_blkno),
2599 			     le16_to_cpu(el->l_next_free_rec));
2600 
2601 			ocfs2_journal_dirty(handle, bh);
2602 			ocfs2_remove_from_cache(et->et_ci, bh);
2603 			continue;
2604 		}
2605 
2606 		el->l_next_free_rec = 0;
2607 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2608 
2609 		ocfs2_journal_dirty(handle, bh);
2610 
2611 		ret = ocfs2_cache_extent_block_free(dealloc, eb);
2612 		if (ret)
2613 			mlog_errno(ret);
2614 
2615 		ocfs2_remove_from_cache(et->et_ci, bh);
2616 	}
2617 }
2618 
2619 static void ocfs2_unlink_subtree(handle_t *handle,
2620 				 struct ocfs2_extent_tree *et,
2621 				 struct ocfs2_path *left_path,
2622 				 struct ocfs2_path *right_path,
2623 				 int subtree_index,
2624 				 struct ocfs2_cached_dealloc_ctxt *dealloc)
2625 {
2626 	int i;
2627 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2628 	struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2629 	struct ocfs2_extent_list *el;
2630 	struct ocfs2_extent_block *eb;
2631 
2632 	el = path_leaf_el(left_path);
2633 
2634 	eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2635 
2636 	for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2637 		if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2638 			break;
2639 
2640 	BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2641 
2642 	memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2643 	le16_add_cpu(&root_el->l_next_free_rec, -1);
2644 
2645 	eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2646 	eb->h_next_leaf_blk = 0;
2647 
2648 	ocfs2_journal_dirty(handle, root_bh);
2649 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2650 
2651 	ocfs2_unlink_path(handle, et, dealloc, right_path,
2652 			  subtree_index + 1);
2653 }
2654 
2655 static int ocfs2_rotate_subtree_left(handle_t *handle,
2656 				     struct ocfs2_extent_tree *et,
2657 				     struct ocfs2_path *left_path,
2658 				     struct ocfs2_path *right_path,
2659 				     int subtree_index,
2660 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
2661 				     int *deleted)
2662 {
2663 	int ret, i, del_right_subtree = 0, right_has_empty = 0;
2664 	struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2665 	struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2666 	struct ocfs2_extent_block *eb;
2667 
2668 	*deleted = 0;
2669 
2670 	right_leaf_el = path_leaf_el(right_path);
2671 	left_leaf_el = path_leaf_el(left_path);
2672 	root_bh = left_path->p_node[subtree_index].bh;
2673 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2674 
2675 	if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2676 		return 0;
2677 
2678 	eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2679 	if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2680 		/*
2681 		 * It's legal for us to proceed if the right leaf is
2682 		 * the rightmost one and it has an empty extent. There
2683 		 * are two cases to handle - whether the leaf will be
2684 		 * empty after removal or not. If the leaf isn't empty
2685 		 * then just remove the empty extent up front. The
2686 		 * next block will handle empty leaves by flagging
2687 		 * them for unlink.
2688 		 *
2689 		 * Non rightmost leaves will throw -EAGAIN and the
2690 		 * caller can manually move the subtree and retry.
2691 		 */
2692 
2693 		if (eb->h_next_leaf_blk != 0ULL)
2694 			return -EAGAIN;
2695 
2696 		if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2697 			ret = ocfs2_journal_access_eb(handle, et->et_ci,
2698 						      path_leaf_bh(right_path),
2699 						      OCFS2_JOURNAL_ACCESS_WRITE);
2700 			if (ret) {
2701 				mlog_errno(ret);
2702 				goto out;
2703 			}
2704 
2705 			ocfs2_remove_empty_extent(right_leaf_el);
2706 		} else
2707 			right_has_empty = 1;
2708 	}
2709 
2710 	if (eb->h_next_leaf_blk == 0ULL &&
2711 	    le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2712 		/*
2713 		 * We have to update i_last_eb_blk during the meta
2714 		 * data delete.
2715 		 */
2716 		ret = ocfs2_et_root_journal_access(handle, et,
2717 						   OCFS2_JOURNAL_ACCESS_WRITE);
2718 		if (ret) {
2719 			mlog_errno(ret);
2720 			goto out;
2721 		}
2722 
2723 		del_right_subtree = 1;
2724 	}
2725 
2726 	/*
2727 	 * Getting here with an empty extent in the right path implies
2728 	 * that it's the rightmost path and will be deleted.
2729 	 */
2730 	BUG_ON(right_has_empty && !del_right_subtree);
2731 
2732 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2733 					   subtree_index);
2734 	if (ret) {
2735 		mlog_errno(ret);
2736 		goto out;
2737 	}
2738 
2739 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2740 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2741 						   right_path, i);
2742 		if (ret) {
2743 			mlog_errno(ret);
2744 			goto out;
2745 		}
2746 
2747 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2748 						   left_path, i);
2749 		if (ret) {
2750 			mlog_errno(ret);
2751 			goto out;
2752 		}
2753 	}
2754 
2755 	if (!right_has_empty) {
2756 		/*
2757 		 * Only do this if we're moving a real
2758 		 * record. Otherwise, the action is delayed until
2759 		 * after removal of the right path in which case we
2760 		 * can do a simple shift to remove the empty extent.
2761 		 */
2762 		ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2763 		memset(&right_leaf_el->l_recs[0], 0,
2764 		       sizeof(struct ocfs2_extent_rec));
2765 	}
2766 	if (eb->h_next_leaf_blk == 0ULL) {
2767 		/*
2768 		 * Move recs over to get rid of empty extent, decrease
2769 		 * next_free. This is allowed to remove the last
2770 		 * extent in our leaf (setting l_next_free_rec to
2771 		 * zero) - the delete code below won't care.
2772 		 */
2773 		ocfs2_remove_empty_extent(right_leaf_el);
2774 	}
2775 
2776 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2777 	ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2778 
2779 	if (del_right_subtree) {
2780 		ocfs2_unlink_subtree(handle, et, left_path, right_path,
2781 				     subtree_index, dealloc);
2782 		ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
2783 						left_path);
2784 		if (ret) {
2785 			mlog_errno(ret);
2786 			goto out;
2787 		}
2788 
2789 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2790 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2791 
2792 		/*
2793 		 * Removal of the extent in the left leaf was skipped
2794 		 * above so we could delete the right path
2795 		 * 1st.
2796 		 */
2797 		if (right_has_empty)
2798 			ocfs2_remove_empty_extent(left_leaf_el);
2799 
2800 		ocfs2_journal_dirty(handle, et_root_bh);
2801 
2802 		*deleted = 1;
2803 	} else
2804 		ocfs2_complete_edge_insert(handle, left_path, right_path,
2805 					   subtree_index);
2806 
2807 out:
2808 	return ret;
2809 }
2810 
2811 /*
2812  * Given a full path, determine what cpos value would return us a path
2813  * containing the leaf immediately to the right of the current one.
2814  *
2815  * Will return zero if the path passed in is already the rightmost path.
2816  *
2817  * This looks similar, but is subtly different to
2818  * ocfs2_find_cpos_for_left_leaf().
2819  */
2820 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2821 				   struct ocfs2_path *path, u32 *cpos)
2822 {
2823 	int i, j, ret = 0;
2824 	u64 blkno;
2825 	struct ocfs2_extent_list *el;
2826 
2827 	*cpos = 0;
2828 
2829 	if (path->p_tree_depth == 0)
2830 		return 0;
2831 
2832 	blkno = path_leaf_bh(path)->b_blocknr;
2833 
2834 	/* Start at the tree node just above the leaf and work our way up. */
2835 	i = path->p_tree_depth - 1;
2836 	while (i >= 0) {
2837 		int next_free;
2838 
2839 		el = path->p_node[i].el;
2840 
2841 		/*
2842 		 * Find the extent record just after the one in our
2843 		 * path.
2844 		 */
2845 		next_free = le16_to_cpu(el->l_next_free_rec);
2846 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2847 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2848 				if (j == (next_free - 1)) {
2849 					if (i == 0) {
2850 						/*
2851 						 * We've determined that the
2852 						 * path specified is already
2853 						 * the rightmost one - return a
2854 						 * cpos of zero.
2855 						 */
2856 						goto out;
2857 					}
2858 					/*
2859 					 * The rightmost record points to our
2860 					 * leaf - we need to travel up the
2861 					 * tree one level.
2862 					 */
2863 					goto next_node;
2864 				}
2865 
2866 				*cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2867 				goto out;
2868 			}
2869 		}
2870 
2871 		/*
2872 		 * If we got here, we never found a valid node where
2873 		 * the tree indicated one should be.
2874 		 */
2875 		ocfs2_error(sb,
2876 			    "Invalid extent tree at extent block %llu\n",
2877 			    (unsigned long long)blkno);
2878 		ret = -EROFS;
2879 		goto out;
2880 
2881 next_node:
2882 		blkno = path->p_node[i].bh->b_blocknr;
2883 		i--;
2884 	}
2885 
2886 out:
2887 	return ret;
2888 }
2889 
2890 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle,
2891 					    struct ocfs2_extent_tree *et,
2892 					    struct ocfs2_path *path)
2893 {
2894 	int ret;
2895 	struct buffer_head *bh = path_leaf_bh(path);
2896 	struct ocfs2_extent_list *el = path_leaf_el(path);
2897 
2898 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2899 		return 0;
2900 
2901 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
2902 					   path_num_items(path) - 1);
2903 	if (ret) {
2904 		mlog_errno(ret);
2905 		goto out;
2906 	}
2907 
2908 	ocfs2_remove_empty_extent(el);
2909 	ocfs2_journal_dirty(handle, bh);
2910 
2911 out:
2912 	return ret;
2913 }
2914 
2915 static int __ocfs2_rotate_tree_left(handle_t *handle,
2916 				    struct ocfs2_extent_tree *et,
2917 				    int orig_credits,
2918 				    struct ocfs2_path *path,
2919 				    struct ocfs2_cached_dealloc_ctxt *dealloc,
2920 				    struct ocfs2_path **empty_extent_path)
2921 {
2922 	int ret, subtree_root, deleted;
2923 	u32 right_cpos;
2924 	struct ocfs2_path *left_path = NULL;
2925 	struct ocfs2_path *right_path = NULL;
2926 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2927 
2928 	if (!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])))
2929 		return 0;
2930 
2931 	*empty_extent_path = NULL;
2932 
2933 	ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
2934 	if (ret) {
2935 		mlog_errno(ret);
2936 		goto out;
2937 	}
2938 
2939 	left_path = ocfs2_new_path_from_path(path);
2940 	if (!left_path) {
2941 		ret = -ENOMEM;
2942 		mlog_errno(ret);
2943 		goto out;
2944 	}
2945 
2946 	ocfs2_cp_path(left_path, path);
2947 
2948 	right_path = ocfs2_new_path_from_path(path);
2949 	if (!right_path) {
2950 		ret = -ENOMEM;
2951 		mlog_errno(ret);
2952 		goto out;
2953 	}
2954 
2955 	while (right_cpos) {
2956 		ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
2957 		if (ret) {
2958 			mlog_errno(ret);
2959 			goto out;
2960 		}
2961 
2962 		subtree_root = ocfs2_find_subtree_root(et, left_path,
2963 						       right_path);
2964 
2965 		trace_ocfs2_rotate_subtree(subtree_root,
2966 		     (unsigned long long)
2967 		     right_path->p_node[subtree_root].bh->b_blocknr,
2968 		     right_path->p_tree_depth);
2969 
2970 		ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2971 						      orig_credits, left_path);
2972 		if (ret) {
2973 			mlog_errno(ret);
2974 			goto out;
2975 		}
2976 
2977 		/*
2978 		 * Caller might still want to make changes to the
2979 		 * tree root, so re-add it to the journal here.
2980 		 */
2981 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2982 						   left_path, 0);
2983 		if (ret) {
2984 			mlog_errno(ret);
2985 			goto out;
2986 		}
2987 
2988 		ret = ocfs2_rotate_subtree_left(handle, et, left_path,
2989 						right_path, subtree_root,
2990 						dealloc, &deleted);
2991 		if (ret == -EAGAIN) {
2992 			/*
2993 			 * The rotation has to temporarily stop due to
2994 			 * the right subtree having an empty
2995 			 * extent. Pass it back to the caller for a
2996 			 * fixup.
2997 			 */
2998 			*empty_extent_path = right_path;
2999 			right_path = NULL;
3000 			goto out;
3001 		}
3002 		if (ret) {
3003 			mlog_errno(ret);
3004 			goto out;
3005 		}
3006 
3007 		/*
3008 		 * The subtree rotate might have removed records on
3009 		 * the rightmost edge. If so, then rotation is
3010 		 * complete.
3011 		 */
3012 		if (deleted)
3013 			break;
3014 
3015 		ocfs2_mv_path(left_path, right_path);
3016 
3017 		ret = ocfs2_find_cpos_for_right_leaf(sb, left_path,
3018 						     &right_cpos);
3019 		if (ret) {
3020 			mlog_errno(ret);
3021 			goto out;
3022 		}
3023 	}
3024 
3025 out:
3026 	ocfs2_free_path(right_path);
3027 	ocfs2_free_path(left_path);
3028 
3029 	return ret;
3030 }
3031 
3032 static int ocfs2_remove_rightmost_path(handle_t *handle,
3033 				struct ocfs2_extent_tree *et,
3034 				struct ocfs2_path *path,
3035 				struct ocfs2_cached_dealloc_ctxt *dealloc)
3036 {
3037 	int ret, subtree_index;
3038 	u32 cpos;
3039 	struct ocfs2_path *left_path = NULL;
3040 	struct ocfs2_extent_block *eb;
3041 	struct ocfs2_extent_list *el;
3042 
3043 
3044 	ret = ocfs2_et_sanity_check(et);
3045 	if (ret)
3046 		goto out;
3047 	/*
3048 	 * There's two ways we handle this depending on
3049 	 * whether path is the only existing one.
3050 	 */
3051 	ret = ocfs2_extend_rotate_transaction(handle, 0,
3052 					      handle->h_buffer_credits,
3053 					      path);
3054 	if (ret) {
3055 		mlog_errno(ret);
3056 		goto out;
3057 	}
3058 
3059 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
3060 	if (ret) {
3061 		mlog_errno(ret);
3062 		goto out;
3063 	}
3064 
3065 	ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3066 					    path, &cpos);
3067 	if (ret) {
3068 		mlog_errno(ret);
3069 		goto out;
3070 	}
3071 
3072 	if (cpos) {
3073 		/*
3074 		 * We have a path to the left of this one - it needs
3075 		 * an update too.
3076 		 */
3077 		left_path = ocfs2_new_path_from_path(path);
3078 		if (!left_path) {
3079 			ret = -ENOMEM;
3080 			mlog_errno(ret);
3081 			goto out;
3082 		}
3083 
3084 		ret = ocfs2_find_path(et->et_ci, left_path, cpos);
3085 		if (ret) {
3086 			mlog_errno(ret);
3087 			goto out;
3088 		}
3089 
3090 		ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
3091 		if (ret) {
3092 			mlog_errno(ret);
3093 			goto out;
3094 		}
3095 
3096 		subtree_index = ocfs2_find_subtree_root(et, left_path, path);
3097 
3098 		ocfs2_unlink_subtree(handle, et, left_path, path,
3099 				     subtree_index, dealloc);
3100 		ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
3101 						left_path);
3102 		if (ret) {
3103 			mlog_errno(ret);
3104 			goto out;
3105 		}
3106 
3107 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3108 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3109 	} else {
3110 		/*
3111 		 * 'path' is also the leftmost path which
3112 		 * means it must be the only one. This gets
3113 		 * handled differently because we want to
3114 		 * revert the root back to having extents
3115 		 * in-line.
3116 		 */
3117 		ocfs2_unlink_path(handle, et, dealloc, path, 1);
3118 
3119 		el = et->et_root_el;
3120 		el->l_tree_depth = 0;
3121 		el->l_next_free_rec = 0;
3122 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3123 
3124 		ocfs2_et_set_last_eb_blk(et, 0);
3125 	}
3126 
3127 	ocfs2_journal_dirty(handle, path_root_bh(path));
3128 
3129 out:
3130 	ocfs2_free_path(left_path);
3131 	return ret;
3132 }
3133 
3134 /*
3135  * Left rotation of btree records.
3136  *
3137  * In many ways, this is (unsurprisingly) the opposite of right
3138  * rotation. We start at some non-rightmost path containing an empty
3139  * extent in the leaf block. The code works its way to the rightmost
3140  * path by rotating records to the left in every subtree.
3141  *
3142  * This is used by any code which reduces the number of extent records
3143  * in a leaf. After removal, an empty record should be placed in the
3144  * leftmost list position.
3145  *
3146  * This won't handle a length update of the rightmost path records if
3147  * the rightmost tree leaf record is removed so the caller is
3148  * responsible for detecting and correcting that.
3149  */
3150 static int ocfs2_rotate_tree_left(handle_t *handle,
3151 				  struct ocfs2_extent_tree *et,
3152 				  struct ocfs2_path *path,
3153 				  struct ocfs2_cached_dealloc_ctxt *dealloc)
3154 {
3155 	int ret, orig_credits = handle->h_buffer_credits;
3156 	struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3157 	struct ocfs2_extent_block *eb;
3158 	struct ocfs2_extent_list *el;
3159 
3160 	el = path_leaf_el(path);
3161 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3162 		return 0;
3163 
3164 	if (path->p_tree_depth == 0) {
3165 rightmost_no_delete:
3166 		/*
3167 		 * Inline extents. This is trivially handled, so do
3168 		 * it up front.
3169 		 */
3170 		ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path);
3171 		if (ret)
3172 			mlog_errno(ret);
3173 		goto out;
3174 	}
3175 
3176 	/*
3177 	 * Handle rightmost branch now. There's several cases:
3178 	 *  1) simple rotation leaving records in there. That's trivial.
3179 	 *  2) rotation requiring a branch delete - there's no more
3180 	 *     records left. Two cases of this:
3181 	 *     a) There are branches to the left.
3182 	 *     b) This is also the leftmost (the only) branch.
3183 	 *
3184 	 *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
3185 	 *  2a) we need the left branch so that we can update it with the unlink
3186 	 *  2b) we need to bring the root back to inline extents.
3187 	 */
3188 
3189 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3190 	el = &eb->h_list;
3191 	if (eb->h_next_leaf_blk == 0) {
3192 		/*
3193 		 * This gets a bit tricky if we're going to delete the
3194 		 * rightmost path. Get the other cases out of the way
3195 		 * 1st.
3196 		 */
3197 		if (le16_to_cpu(el->l_next_free_rec) > 1)
3198 			goto rightmost_no_delete;
3199 
3200 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
3201 			ret = -EIO;
3202 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3203 				    "Owner %llu has empty extent block at %llu",
3204 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
3205 				    (unsigned long long)le64_to_cpu(eb->h_blkno));
3206 			goto out;
3207 		}
3208 
3209 		/*
3210 		 * XXX: The caller can not trust "path" any more after
3211 		 * this as it will have been deleted. What do we do?
3212 		 *
3213 		 * In theory the rotate-for-merge code will never get
3214 		 * here because it'll always ask for a rotate in a
3215 		 * nonempty list.
3216 		 */
3217 
3218 		ret = ocfs2_remove_rightmost_path(handle, et, path,
3219 						  dealloc);
3220 		if (ret)
3221 			mlog_errno(ret);
3222 		goto out;
3223 	}
3224 
3225 	/*
3226 	 * Now we can loop, remembering the path we get from -EAGAIN
3227 	 * and restarting from there.
3228 	 */
3229 try_rotate:
3230 	ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path,
3231 				       dealloc, &restart_path);
3232 	if (ret && ret != -EAGAIN) {
3233 		mlog_errno(ret);
3234 		goto out;
3235 	}
3236 
3237 	while (ret == -EAGAIN) {
3238 		tmp_path = restart_path;
3239 		restart_path = NULL;
3240 
3241 		ret = __ocfs2_rotate_tree_left(handle, et, orig_credits,
3242 					       tmp_path, dealloc,
3243 					       &restart_path);
3244 		if (ret && ret != -EAGAIN) {
3245 			mlog_errno(ret);
3246 			goto out;
3247 		}
3248 
3249 		ocfs2_free_path(tmp_path);
3250 		tmp_path = NULL;
3251 
3252 		if (ret == 0)
3253 			goto try_rotate;
3254 	}
3255 
3256 out:
3257 	ocfs2_free_path(tmp_path);
3258 	ocfs2_free_path(restart_path);
3259 	return ret;
3260 }
3261 
3262 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3263 				int index)
3264 {
3265 	struct ocfs2_extent_rec *rec = &el->l_recs[index];
3266 	unsigned int size;
3267 
3268 	if (rec->e_leaf_clusters == 0) {
3269 		/*
3270 		 * We consumed all of the merged-from record. An empty
3271 		 * extent cannot exist anywhere but the 1st array
3272 		 * position, so move things over if the merged-from
3273 		 * record doesn't occupy that position.
3274 		 *
3275 		 * This creates a new empty extent so the caller
3276 		 * should be smart enough to have removed any existing
3277 		 * ones.
3278 		 */
3279 		if (index > 0) {
3280 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3281 			size = index * sizeof(struct ocfs2_extent_rec);
3282 			memmove(&el->l_recs[1], &el->l_recs[0], size);
3283 		}
3284 
3285 		/*
3286 		 * Always memset - the caller doesn't check whether it
3287 		 * created an empty extent, so there could be junk in
3288 		 * the other fields.
3289 		 */
3290 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3291 	}
3292 }
3293 
3294 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et,
3295 				struct ocfs2_path *left_path,
3296 				struct ocfs2_path **ret_right_path)
3297 {
3298 	int ret;
3299 	u32 right_cpos;
3300 	struct ocfs2_path *right_path = NULL;
3301 	struct ocfs2_extent_list *left_el;
3302 
3303 	*ret_right_path = NULL;
3304 
3305 	/* This function shouldn't be called for non-trees. */
3306 	BUG_ON(left_path->p_tree_depth == 0);
3307 
3308 	left_el = path_leaf_el(left_path);
3309 	BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3310 
3311 	ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3312 					     left_path, &right_cpos);
3313 	if (ret) {
3314 		mlog_errno(ret);
3315 		goto out;
3316 	}
3317 
3318 	/* This function shouldn't be called for the rightmost leaf. */
3319 	BUG_ON(right_cpos == 0);
3320 
3321 	right_path = ocfs2_new_path_from_path(left_path);
3322 	if (!right_path) {
3323 		ret = -ENOMEM;
3324 		mlog_errno(ret);
3325 		goto out;
3326 	}
3327 
3328 	ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
3329 	if (ret) {
3330 		mlog_errno(ret);
3331 		goto out;
3332 	}
3333 
3334 	*ret_right_path = right_path;
3335 out:
3336 	if (ret)
3337 		ocfs2_free_path(right_path);
3338 	return ret;
3339 }
3340 
3341 /*
3342  * Remove split_rec clusters from the record at index and merge them
3343  * onto the beginning of the record "next" to it.
3344  * For index < l_count - 1, the next means the extent rec at index + 1.
3345  * For index == l_count - 1, the "next" means the 1st extent rec of the
3346  * next extent block.
3347  */
3348 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path,
3349 				 handle_t *handle,
3350 				 struct ocfs2_extent_tree *et,
3351 				 struct ocfs2_extent_rec *split_rec,
3352 				 int index)
3353 {
3354 	int ret, next_free, i;
3355 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3356 	struct ocfs2_extent_rec *left_rec;
3357 	struct ocfs2_extent_rec *right_rec;
3358 	struct ocfs2_extent_list *right_el;
3359 	struct ocfs2_path *right_path = NULL;
3360 	int subtree_index = 0;
3361 	struct ocfs2_extent_list *el = path_leaf_el(left_path);
3362 	struct buffer_head *bh = path_leaf_bh(left_path);
3363 	struct buffer_head *root_bh = NULL;
3364 
3365 	BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3366 	left_rec = &el->l_recs[index];
3367 
3368 	if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3369 	    le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3370 		/* we meet with a cross extent block merge. */
3371 		ret = ocfs2_get_right_path(et, left_path, &right_path);
3372 		if (ret) {
3373 			mlog_errno(ret);
3374 			return ret;
3375 		}
3376 
3377 		right_el = path_leaf_el(right_path);
3378 		next_free = le16_to_cpu(right_el->l_next_free_rec);
3379 		BUG_ON(next_free <= 0);
3380 		right_rec = &right_el->l_recs[0];
3381 		if (ocfs2_is_empty_extent(right_rec)) {
3382 			BUG_ON(next_free <= 1);
3383 			right_rec = &right_el->l_recs[1];
3384 		}
3385 
3386 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3387 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3388 		       le32_to_cpu(right_rec->e_cpos));
3389 
3390 		subtree_index = ocfs2_find_subtree_root(et, left_path,
3391 							right_path);
3392 
3393 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3394 						      handle->h_buffer_credits,
3395 						      right_path);
3396 		if (ret) {
3397 			mlog_errno(ret);
3398 			goto out;
3399 		}
3400 
3401 		root_bh = left_path->p_node[subtree_index].bh;
3402 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3403 
3404 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3405 						   subtree_index);
3406 		if (ret) {
3407 			mlog_errno(ret);
3408 			goto out;
3409 		}
3410 
3411 		for (i = subtree_index + 1;
3412 		     i < path_num_items(right_path); i++) {
3413 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3414 							   right_path, i);
3415 			if (ret) {
3416 				mlog_errno(ret);
3417 				goto out;
3418 			}
3419 
3420 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3421 							   left_path, i);
3422 			if (ret) {
3423 				mlog_errno(ret);
3424 				goto out;
3425 			}
3426 		}
3427 
3428 	} else {
3429 		BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3430 		right_rec = &el->l_recs[index + 1];
3431 	}
3432 
3433 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path,
3434 					   path_num_items(left_path) - 1);
3435 	if (ret) {
3436 		mlog_errno(ret);
3437 		goto out;
3438 	}
3439 
3440 	le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3441 
3442 	le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3443 	le64_add_cpu(&right_rec->e_blkno,
3444 		     -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3445 					       split_clusters));
3446 	le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3447 
3448 	ocfs2_cleanup_merge(el, index);
3449 
3450 	ocfs2_journal_dirty(handle, bh);
3451 	if (right_path) {
3452 		ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3453 		ocfs2_complete_edge_insert(handle, left_path, right_path,
3454 					   subtree_index);
3455 	}
3456 out:
3457 	ocfs2_free_path(right_path);
3458 	return ret;
3459 }
3460 
3461 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et,
3462 			       struct ocfs2_path *right_path,
3463 			       struct ocfs2_path **ret_left_path)
3464 {
3465 	int ret;
3466 	u32 left_cpos;
3467 	struct ocfs2_path *left_path = NULL;
3468 
3469 	*ret_left_path = NULL;
3470 
3471 	/* This function shouldn't be called for non-trees. */
3472 	BUG_ON(right_path->p_tree_depth == 0);
3473 
3474 	ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3475 					    right_path, &left_cpos);
3476 	if (ret) {
3477 		mlog_errno(ret);
3478 		goto out;
3479 	}
3480 
3481 	/* This function shouldn't be called for the leftmost leaf. */
3482 	BUG_ON(left_cpos == 0);
3483 
3484 	left_path = ocfs2_new_path_from_path(right_path);
3485 	if (!left_path) {
3486 		ret = -ENOMEM;
3487 		mlog_errno(ret);
3488 		goto out;
3489 	}
3490 
3491 	ret = ocfs2_find_path(et->et_ci, left_path, left_cpos);
3492 	if (ret) {
3493 		mlog_errno(ret);
3494 		goto out;
3495 	}
3496 
3497 	*ret_left_path = left_path;
3498 out:
3499 	if (ret)
3500 		ocfs2_free_path(left_path);
3501 	return ret;
3502 }
3503 
3504 /*
3505  * Remove split_rec clusters from the record at index and merge them
3506  * onto the tail of the record "before" it.
3507  * For index > 0, the "before" means the extent rec at index - 1.
3508  *
3509  * For index == 0, the "before" means the last record of the previous
3510  * extent block. And there is also a situation that we may need to
3511  * remove the rightmost leaf extent block in the right_path and change
3512  * the right path to indicate the new rightmost path.
3513  */
3514 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path,
3515 				handle_t *handle,
3516 				struct ocfs2_extent_tree *et,
3517 				struct ocfs2_extent_rec *split_rec,
3518 				struct ocfs2_cached_dealloc_ctxt *dealloc,
3519 				int index)
3520 {
3521 	int ret, i, subtree_index = 0, has_empty_extent = 0;
3522 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3523 	struct ocfs2_extent_rec *left_rec;
3524 	struct ocfs2_extent_rec *right_rec;
3525 	struct ocfs2_extent_list *el = path_leaf_el(right_path);
3526 	struct buffer_head *bh = path_leaf_bh(right_path);
3527 	struct buffer_head *root_bh = NULL;
3528 	struct ocfs2_path *left_path = NULL;
3529 	struct ocfs2_extent_list *left_el;
3530 
3531 	BUG_ON(index < 0);
3532 
3533 	right_rec = &el->l_recs[index];
3534 	if (index == 0) {
3535 		/* we meet with a cross extent block merge. */
3536 		ret = ocfs2_get_left_path(et, right_path, &left_path);
3537 		if (ret) {
3538 			mlog_errno(ret);
3539 			return ret;
3540 		}
3541 
3542 		left_el = path_leaf_el(left_path);
3543 		BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3544 		       le16_to_cpu(left_el->l_count));
3545 
3546 		left_rec = &left_el->l_recs[
3547 				le16_to_cpu(left_el->l_next_free_rec) - 1];
3548 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3549 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3550 		       le32_to_cpu(split_rec->e_cpos));
3551 
3552 		subtree_index = ocfs2_find_subtree_root(et, left_path,
3553 							right_path);
3554 
3555 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3556 						      handle->h_buffer_credits,
3557 						      left_path);
3558 		if (ret) {
3559 			mlog_errno(ret);
3560 			goto out;
3561 		}
3562 
3563 		root_bh = left_path->p_node[subtree_index].bh;
3564 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3565 
3566 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3567 						   subtree_index);
3568 		if (ret) {
3569 			mlog_errno(ret);
3570 			goto out;
3571 		}
3572 
3573 		for (i = subtree_index + 1;
3574 		     i < path_num_items(right_path); i++) {
3575 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3576 							   right_path, i);
3577 			if (ret) {
3578 				mlog_errno(ret);
3579 				goto out;
3580 			}
3581 
3582 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3583 							   left_path, i);
3584 			if (ret) {
3585 				mlog_errno(ret);
3586 				goto out;
3587 			}
3588 		}
3589 	} else {
3590 		left_rec = &el->l_recs[index - 1];
3591 		if (ocfs2_is_empty_extent(&el->l_recs[0]))
3592 			has_empty_extent = 1;
3593 	}
3594 
3595 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3596 					   path_num_items(right_path) - 1);
3597 	if (ret) {
3598 		mlog_errno(ret);
3599 		goto out;
3600 	}
3601 
3602 	if (has_empty_extent && index == 1) {
3603 		/*
3604 		 * The easy case - we can just plop the record right in.
3605 		 */
3606 		*left_rec = *split_rec;
3607 
3608 		has_empty_extent = 0;
3609 	} else
3610 		le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3611 
3612 	le32_add_cpu(&right_rec->e_cpos, split_clusters);
3613 	le64_add_cpu(&right_rec->e_blkno,
3614 		     ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3615 					      split_clusters));
3616 	le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3617 
3618 	ocfs2_cleanup_merge(el, index);
3619 
3620 	ocfs2_journal_dirty(handle, bh);
3621 	if (left_path) {
3622 		ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3623 
3624 		/*
3625 		 * In the situation that the right_rec is empty and the extent
3626 		 * block is empty also,  ocfs2_complete_edge_insert can't handle
3627 		 * it and we need to delete the right extent block.
3628 		 */
3629 		if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3630 		    le16_to_cpu(el->l_next_free_rec) == 1) {
3631 
3632 			ret = ocfs2_remove_rightmost_path(handle, et,
3633 							  right_path,
3634 							  dealloc);
3635 			if (ret) {
3636 				mlog_errno(ret);
3637 				goto out;
3638 			}
3639 
3640 			/* Now the rightmost extent block has been deleted.
3641 			 * So we use the new rightmost path.
3642 			 */
3643 			ocfs2_mv_path(right_path, left_path);
3644 			left_path = NULL;
3645 		} else
3646 			ocfs2_complete_edge_insert(handle, left_path,
3647 						   right_path, subtree_index);
3648 	}
3649 out:
3650 	ocfs2_free_path(left_path);
3651 	return ret;
3652 }
3653 
3654 static int ocfs2_try_to_merge_extent(handle_t *handle,
3655 				     struct ocfs2_extent_tree *et,
3656 				     struct ocfs2_path *path,
3657 				     int split_index,
3658 				     struct ocfs2_extent_rec *split_rec,
3659 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
3660 				     struct ocfs2_merge_ctxt *ctxt)
3661 {
3662 	int ret = 0;
3663 	struct ocfs2_extent_list *el = path_leaf_el(path);
3664 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3665 
3666 	BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3667 
3668 	if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3669 		/*
3670 		 * The merge code will need to create an empty
3671 		 * extent to take the place of the newly
3672 		 * emptied slot. Remove any pre-existing empty
3673 		 * extents - having more than one in a leaf is
3674 		 * illegal.
3675 		 */
3676 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3677 		if (ret) {
3678 			mlog_errno(ret);
3679 			goto out;
3680 		}
3681 		split_index--;
3682 		rec = &el->l_recs[split_index];
3683 	}
3684 
3685 	if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3686 		/*
3687 		 * Left-right contig implies this.
3688 		 */
3689 		BUG_ON(!ctxt->c_split_covers_rec);
3690 
3691 		/*
3692 		 * Since the leftright insert always covers the entire
3693 		 * extent, this call will delete the insert record
3694 		 * entirely, resulting in an empty extent record added to
3695 		 * the extent block.
3696 		 *
3697 		 * Since the adding of an empty extent shifts
3698 		 * everything back to the right, there's no need to
3699 		 * update split_index here.
3700 		 *
3701 		 * When the split_index is zero, we need to merge it to the
3702 		 * prevoius extent block. It is more efficient and easier
3703 		 * if we do merge_right first and merge_left later.
3704 		 */
3705 		ret = ocfs2_merge_rec_right(path, handle, et, split_rec,
3706 					    split_index);
3707 		if (ret) {
3708 			mlog_errno(ret);
3709 			goto out;
3710 		}
3711 
3712 		/*
3713 		 * We can only get this from logic error above.
3714 		 */
3715 		BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3716 
3717 		/* The merge left us with an empty extent, remove it. */
3718 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3719 		if (ret) {
3720 			mlog_errno(ret);
3721 			goto out;
3722 		}
3723 
3724 		rec = &el->l_recs[split_index];
3725 
3726 		/*
3727 		 * Note that we don't pass split_rec here on purpose -
3728 		 * we've merged it into the rec already.
3729 		 */
3730 		ret = ocfs2_merge_rec_left(path, handle, et, rec,
3731 					   dealloc, split_index);
3732 
3733 		if (ret) {
3734 			mlog_errno(ret);
3735 			goto out;
3736 		}
3737 
3738 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3739 		/*
3740 		 * Error from this last rotate is not critical, so
3741 		 * print but don't bubble it up.
3742 		 */
3743 		if (ret)
3744 			mlog_errno(ret);
3745 		ret = 0;
3746 	} else {
3747 		/*
3748 		 * Merge a record to the left or right.
3749 		 *
3750 		 * 'contig_type' is relative to the existing record,
3751 		 * so for example, if we're "right contig", it's to
3752 		 * the record on the left (hence the left merge).
3753 		 */
3754 		if (ctxt->c_contig_type == CONTIG_RIGHT) {
3755 			ret = ocfs2_merge_rec_left(path, handle, et,
3756 						   split_rec, dealloc,
3757 						   split_index);
3758 			if (ret) {
3759 				mlog_errno(ret);
3760 				goto out;
3761 			}
3762 		} else {
3763 			ret = ocfs2_merge_rec_right(path, handle,
3764 						    et, split_rec,
3765 						    split_index);
3766 			if (ret) {
3767 				mlog_errno(ret);
3768 				goto out;
3769 			}
3770 		}
3771 
3772 		if (ctxt->c_split_covers_rec) {
3773 			/*
3774 			 * The merge may have left an empty extent in
3775 			 * our leaf. Try to rotate it away.
3776 			 */
3777 			ret = ocfs2_rotate_tree_left(handle, et, path,
3778 						     dealloc);
3779 			if (ret)
3780 				mlog_errno(ret);
3781 			ret = 0;
3782 		}
3783 	}
3784 
3785 out:
3786 	return ret;
3787 }
3788 
3789 static void ocfs2_subtract_from_rec(struct super_block *sb,
3790 				    enum ocfs2_split_type split,
3791 				    struct ocfs2_extent_rec *rec,
3792 				    struct ocfs2_extent_rec *split_rec)
3793 {
3794 	u64 len_blocks;
3795 
3796 	len_blocks = ocfs2_clusters_to_blocks(sb,
3797 				le16_to_cpu(split_rec->e_leaf_clusters));
3798 
3799 	if (split == SPLIT_LEFT) {
3800 		/*
3801 		 * Region is on the left edge of the existing
3802 		 * record.
3803 		 */
3804 		le32_add_cpu(&rec->e_cpos,
3805 			     le16_to_cpu(split_rec->e_leaf_clusters));
3806 		le64_add_cpu(&rec->e_blkno, len_blocks);
3807 		le16_add_cpu(&rec->e_leaf_clusters,
3808 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3809 	} else {
3810 		/*
3811 		 * Region is on the right edge of the existing
3812 		 * record.
3813 		 */
3814 		le16_add_cpu(&rec->e_leaf_clusters,
3815 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3816 	}
3817 }
3818 
3819 /*
3820  * Do the final bits of extent record insertion at the target leaf
3821  * list. If this leaf is part of an allocation tree, it is assumed
3822  * that the tree above has been prepared.
3823  */
3824 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et,
3825 				 struct ocfs2_extent_rec *insert_rec,
3826 				 struct ocfs2_extent_list *el,
3827 				 struct ocfs2_insert_type *insert)
3828 {
3829 	int i = insert->ins_contig_index;
3830 	unsigned int range;
3831 	struct ocfs2_extent_rec *rec;
3832 
3833 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3834 
3835 	if (insert->ins_split != SPLIT_NONE) {
3836 		i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3837 		BUG_ON(i == -1);
3838 		rec = &el->l_recs[i];
3839 		ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
3840 					insert->ins_split, rec,
3841 					insert_rec);
3842 		goto rotate;
3843 	}
3844 
3845 	/*
3846 	 * Contiguous insert - either left or right.
3847 	 */
3848 	if (insert->ins_contig != CONTIG_NONE) {
3849 		rec = &el->l_recs[i];
3850 		if (insert->ins_contig == CONTIG_LEFT) {
3851 			rec->e_blkno = insert_rec->e_blkno;
3852 			rec->e_cpos = insert_rec->e_cpos;
3853 		}
3854 		le16_add_cpu(&rec->e_leaf_clusters,
3855 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3856 		return;
3857 	}
3858 
3859 	/*
3860 	 * Handle insert into an empty leaf.
3861 	 */
3862 	if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3863 	    ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3864 	     ocfs2_is_empty_extent(&el->l_recs[0]))) {
3865 		el->l_recs[0] = *insert_rec;
3866 		el->l_next_free_rec = cpu_to_le16(1);
3867 		return;
3868 	}
3869 
3870 	/*
3871 	 * Appending insert.
3872 	 */
3873 	if (insert->ins_appending == APPEND_TAIL) {
3874 		i = le16_to_cpu(el->l_next_free_rec) - 1;
3875 		rec = &el->l_recs[i];
3876 		range = le32_to_cpu(rec->e_cpos)
3877 			+ le16_to_cpu(rec->e_leaf_clusters);
3878 		BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3879 
3880 		mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3881 				le16_to_cpu(el->l_count),
3882 				"owner %llu, depth %u, count %u, next free %u, "
3883 				"rec.cpos %u, rec.clusters %u, "
3884 				"insert.cpos %u, insert.clusters %u\n",
3885 				ocfs2_metadata_cache_owner(et->et_ci),
3886 				le16_to_cpu(el->l_tree_depth),
3887 				le16_to_cpu(el->l_count),
3888 				le16_to_cpu(el->l_next_free_rec),
3889 				le32_to_cpu(el->l_recs[i].e_cpos),
3890 				le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3891 				le32_to_cpu(insert_rec->e_cpos),
3892 				le16_to_cpu(insert_rec->e_leaf_clusters));
3893 		i++;
3894 		el->l_recs[i] = *insert_rec;
3895 		le16_add_cpu(&el->l_next_free_rec, 1);
3896 		return;
3897 	}
3898 
3899 rotate:
3900 	/*
3901 	 * Ok, we have to rotate.
3902 	 *
3903 	 * At this point, it is safe to assume that inserting into an
3904 	 * empty leaf and appending to a leaf have both been handled
3905 	 * above.
3906 	 *
3907 	 * This leaf needs to have space, either by the empty 1st
3908 	 * extent record, or by virtue of an l_next_rec < l_count.
3909 	 */
3910 	ocfs2_rotate_leaf(el, insert_rec);
3911 }
3912 
3913 static void ocfs2_adjust_rightmost_records(handle_t *handle,
3914 					   struct ocfs2_extent_tree *et,
3915 					   struct ocfs2_path *path,
3916 					   struct ocfs2_extent_rec *insert_rec)
3917 {
3918 	int ret, i, next_free;
3919 	struct buffer_head *bh;
3920 	struct ocfs2_extent_list *el;
3921 	struct ocfs2_extent_rec *rec;
3922 
3923 	/*
3924 	 * Update everything except the leaf block.
3925 	 */
3926 	for (i = 0; i < path->p_tree_depth; i++) {
3927 		bh = path->p_node[i].bh;
3928 		el = path->p_node[i].el;
3929 
3930 		next_free = le16_to_cpu(el->l_next_free_rec);
3931 		if (next_free == 0) {
3932 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3933 				    "Owner %llu has a bad extent list",
3934 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
3935 			ret = -EIO;
3936 			return;
3937 		}
3938 
3939 		rec = &el->l_recs[next_free - 1];
3940 
3941 		rec->e_int_clusters = insert_rec->e_cpos;
3942 		le32_add_cpu(&rec->e_int_clusters,
3943 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3944 		le32_add_cpu(&rec->e_int_clusters,
3945 			     -le32_to_cpu(rec->e_cpos));
3946 
3947 		ocfs2_journal_dirty(handle, bh);
3948 	}
3949 }
3950 
3951 static int ocfs2_append_rec_to_path(handle_t *handle,
3952 				    struct ocfs2_extent_tree *et,
3953 				    struct ocfs2_extent_rec *insert_rec,
3954 				    struct ocfs2_path *right_path,
3955 				    struct ocfs2_path **ret_left_path)
3956 {
3957 	int ret, next_free;
3958 	struct ocfs2_extent_list *el;
3959 	struct ocfs2_path *left_path = NULL;
3960 
3961 	*ret_left_path = NULL;
3962 
3963 	/*
3964 	 * This shouldn't happen for non-trees. The extent rec cluster
3965 	 * count manipulation below only works for interior nodes.
3966 	 */
3967 	BUG_ON(right_path->p_tree_depth == 0);
3968 
3969 	/*
3970 	 * If our appending insert is at the leftmost edge of a leaf,
3971 	 * then we might need to update the rightmost records of the
3972 	 * neighboring path.
3973 	 */
3974 	el = path_leaf_el(right_path);
3975 	next_free = le16_to_cpu(el->l_next_free_rec);
3976 	if (next_free == 0 ||
3977 	    (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3978 		u32 left_cpos;
3979 
3980 		ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3981 						    right_path, &left_cpos);
3982 		if (ret) {
3983 			mlog_errno(ret);
3984 			goto out;
3985 		}
3986 
3987 		trace_ocfs2_append_rec_to_path(
3988 			(unsigned long long)
3989 			ocfs2_metadata_cache_owner(et->et_ci),
3990 			le32_to_cpu(insert_rec->e_cpos),
3991 			left_cpos);
3992 
3993 		/*
3994 		 * No need to worry if the append is already in the
3995 		 * leftmost leaf.
3996 		 */
3997 		if (left_cpos) {
3998 			left_path = ocfs2_new_path_from_path(right_path);
3999 			if (!left_path) {
4000 				ret = -ENOMEM;
4001 				mlog_errno(ret);
4002 				goto out;
4003 			}
4004 
4005 			ret = ocfs2_find_path(et->et_ci, left_path,
4006 					      left_cpos);
4007 			if (ret) {
4008 				mlog_errno(ret);
4009 				goto out;
4010 			}
4011 
4012 			/*
4013 			 * ocfs2_insert_path() will pass the left_path to the
4014 			 * journal for us.
4015 			 */
4016 		}
4017 	}
4018 
4019 	ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4020 	if (ret) {
4021 		mlog_errno(ret);
4022 		goto out;
4023 	}
4024 
4025 	ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec);
4026 
4027 	*ret_left_path = left_path;
4028 	ret = 0;
4029 out:
4030 	if (ret != 0)
4031 		ocfs2_free_path(left_path);
4032 
4033 	return ret;
4034 }
4035 
4036 static void ocfs2_split_record(struct ocfs2_extent_tree *et,
4037 			       struct ocfs2_path *left_path,
4038 			       struct ocfs2_path *right_path,
4039 			       struct ocfs2_extent_rec *split_rec,
4040 			       enum ocfs2_split_type split)
4041 {
4042 	int index;
4043 	u32 cpos = le32_to_cpu(split_rec->e_cpos);
4044 	struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4045 	struct ocfs2_extent_rec *rec, *tmprec;
4046 
4047 	right_el = path_leaf_el(right_path);
4048 	if (left_path)
4049 		left_el = path_leaf_el(left_path);
4050 
4051 	el = right_el;
4052 	insert_el = right_el;
4053 	index = ocfs2_search_extent_list(el, cpos);
4054 	if (index != -1) {
4055 		if (index == 0 && left_path) {
4056 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4057 
4058 			/*
4059 			 * This typically means that the record
4060 			 * started in the left path but moved to the
4061 			 * right as a result of rotation. We either
4062 			 * move the existing record to the left, or we
4063 			 * do the later insert there.
4064 			 *
4065 			 * In this case, the left path should always
4066 			 * exist as the rotate code will have passed
4067 			 * it back for a post-insert update.
4068 			 */
4069 
4070 			if (split == SPLIT_LEFT) {
4071 				/*
4072 				 * It's a left split. Since we know
4073 				 * that the rotate code gave us an
4074 				 * empty extent in the left path, we
4075 				 * can just do the insert there.
4076 				 */
4077 				insert_el = left_el;
4078 			} else {
4079 				/*
4080 				 * Right split - we have to move the
4081 				 * existing record over to the left
4082 				 * leaf. The insert will be into the
4083 				 * newly created empty extent in the
4084 				 * right leaf.
4085 				 */
4086 				tmprec = &right_el->l_recs[index];
4087 				ocfs2_rotate_leaf(left_el, tmprec);
4088 				el = left_el;
4089 
4090 				memset(tmprec, 0, sizeof(*tmprec));
4091 				index = ocfs2_search_extent_list(left_el, cpos);
4092 				BUG_ON(index == -1);
4093 			}
4094 		}
4095 	} else {
4096 		BUG_ON(!left_path);
4097 		BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4098 		/*
4099 		 * Left path is easy - we can just allow the insert to
4100 		 * happen.
4101 		 */
4102 		el = left_el;
4103 		insert_el = left_el;
4104 		index = ocfs2_search_extent_list(el, cpos);
4105 		BUG_ON(index == -1);
4106 	}
4107 
4108 	rec = &el->l_recs[index];
4109 	ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4110 				split, rec, split_rec);
4111 	ocfs2_rotate_leaf(insert_el, split_rec);
4112 }
4113 
4114 /*
4115  * This function only does inserts on an allocation b-tree. For tree
4116  * depth = 0, ocfs2_insert_at_leaf() is called directly.
4117  *
4118  * right_path is the path we want to do the actual insert
4119  * in. left_path should only be passed in if we need to update that
4120  * portion of the tree after an edge insert.
4121  */
4122 static int ocfs2_insert_path(handle_t *handle,
4123 			     struct ocfs2_extent_tree *et,
4124 			     struct ocfs2_path *left_path,
4125 			     struct ocfs2_path *right_path,
4126 			     struct ocfs2_extent_rec *insert_rec,
4127 			     struct ocfs2_insert_type *insert)
4128 {
4129 	int ret, subtree_index;
4130 	struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4131 
4132 	if (left_path) {
4133 		/*
4134 		 * There's a chance that left_path got passed back to
4135 		 * us without being accounted for in the
4136 		 * journal. Extend our transaction here to be sure we
4137 		 * can change those blocks.
4138 		 */
4139 		ret = ocfs2_extend_trans(handle, left_path->p_tree_depth);
4140 		if (ret < 0) {
4141 			mlog_errno(ret);
4142 			goto out;
4143 		}
4144 
4145 		ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
4146 		if (ret < 0) {
4147 			mlog_errno(ret);
4148 			goto out;
4149 		}
4150 	}
4151 
4152 	/*
4153 	 * Pass both paths to the journal. The majority of inserts
4154 	 * will be touching all components anyway.
4155 	 */
4156 	ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4157 	if (ret < 0) {
4158 		mlog_errno(ret);
4159 		goto out;
4160 	}
4161 
4162 	if (insert->ins_split != SPLIT_NONE) {
4163 		/*
4164 		 * We could call ocfs2_insert_at_leaf() for some types
4165 		 * of splits, but it's easier to just let one separate
4166 		 * function sort it all out.
4167 		 */
4168 		ocfs2_split_record(et, left_path, right_path,
4169 				   insert_rec, insert->ins_split);
4170 
4171 		/*
4172 		 * Split might have modified either leaf and we don't
4173 		 * have a guarantee that the later edge insert will
4174 		 * dirty this for us.
4175 		 */
4176 		if (left_path)
4177 			ocfs2_journal_dirty(handle,
4178 					    path_leaf_bh(left_path));
4179 	} else
4180 		ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path),
4181 				     insert);
4182 
4183 	ocfs2_journal_dirty(handle, leaf_bh);
4184 
4185 	if (left_path) {
4186 		/*
4187 		 * The rotate code has indicated that we need to fix
4188 		 * up portions of the tree after the insert.
4189 		 *
4190 		 * XXX: Should we extend the transaction here?
4191 		 */
4192 		subtree_index = ocfs2_find_subtree_root(et, left_path,
4193 							right_path);
4194 		ocfs2_complete_edge_insert(handle, left_path, right_path,
4195 					   subtree_index);
4196 	}
4197 
4198 	ret = 0;
4199 out:
4200 	return ret;
4201 }
4202 
4203 static int ocfs2_do_insert_extent(handle_t *handle,
4204 				  struct ocfs2_extent_tree *et,
4205 				  struct ocfs2_extent_rec *insert_rec,
4206 				  struct ocfs2_insert_type *type)
4207 {
4208 	int ret, rotate = 0;
4209 	u32 cpos;
4210 	struct ocfs2_path *right_path = NULL;
4211 	struct ocfs2_path *left_path = NULL;
4212 	struct ocfs2_extent_list *el;
4213 
4214 	el = et->et_root_el;
4215 
4216 	ret = ocfs2_et_root_journal_access(handle, et,
4217 					   OCFS2_JOURNAL_ACCESS_WRITE);
4218 	if (ret) {
4219 		mlog_errno(ret);
4220 		goto out;
4221 	}
4222 
4223 	if (le16_to_cpu(el->l_tree_depth) == 0) {
4224 		ocfs2_insert_at_leaf(et, insert_rec, el, type);
4225 		goto out_update_clusters;
4226 	}
4227 
4228 	right_path = ocfs2_new_path_from_et(et);
4229 	if (!right_path) {
4230 		ret = -ENOMEM;
4231 		mlog_errno(ret);
4232 		goto out;
4233 	}
4234 
4235 	/*
4236 	 * Determine the path to start with. Rotations need the
4237 	 * rightmost path, everything else can go directly to the
4238 	 * target leaf.
4239 	 */
4240 	cpos = le32_to_cpu(insert_rec->e_cpos);
4241 	if (type->ins_appending == APPEND_NONE &&
4242 	    type->ins_contig == CONTIG_NONE) {
4243 		rotate = 1;
4244 		cpos = UINT_MAX;
4245 	}
4246 
4247 	ret = ocfs2_find_path(et->et_ci, right_path, cpos);
4248 	if (ret) {
4249 		mlog_errno(ret);
4250 		goto out;
4251 	}
4252 
4253 	/*
4254 	 * Rotations and appends need special treatment - they modify
4255 	 * parts of the tree's above them.
4256 	 *
4257 	 * Both might pass back a path immediate to the left of the
4258 	 * one being inserted to. This will be cause
4259 	 * ocfs2_insert_path() to modify the rightmost records of
4260 	 * left_path to account for an edge insert.
4261 	 *
4262 	 * XXX: When modifying this code, keep in mind that an insert
4263 	 * can wind up skipping both of these two special cases...
4264 	 */
4265 	if (rotate) {
4266 		ret = ocfs2_rotate_tree_right(handle, et, type->ins_split,
4267 					      le32_to_cpu(insert_rec->e_cpos),
4268 					      right_path, &left_path);
4269 		if (ret) {
4270 			mlog_errno(ret);
4271 			goto out;
4272 		}
4273 
4274 		/*
4275 		 * ocfs2_rotate_tree_right() might have extended the
4276 		 * transaction without re-journaling our tree root.
4277 		 */
4278 		ret = ocfs2_et_root_journal_access(handle, et,
4279 						   OCFS2_JOURNAL_ACCESS_WRITE);
4280 		if (ret) {
4281 			mlog_errno(ret);
4282 			goto out;
4283 		}
4284 	} else if (type->ins_appending == APPEND_TAIL
4285 		   && type->ins_contig != CONTIG_LEFT) {
4286 		ret = ocfs2_append_rec_to_path(handle, et, insert_rec,
4287 					       right_path, &left_path);
4288 		if (ret) {
4289 			mlog_errno(ret);
4290 			goto out;
4291 		}
4292 	}
4293 
4294 	ret = ocfs2_insert_path(handle, et, left_path, right_path,
4295 				insert_rec, type);
4296 	if (ret) {
4297 		mlog_errno(ret);
4298 		goto out;
4299 	}
4300 
4301 out_update_clusters:
4302 	if (type->ins_split == SPLIT_NONE)
4303 		ocfs2_et_update_clusters(et,
4304 					 le16_to_cpu(insert_rec->e_leaf_clusters));
4305 
4306 	ocfs2_journal_dirty(handle, et->et_root_bh);
4307 
4308 out:
4309 	ocfs2_free_path(left_path);
4310 	ocfs2_free_path(right_path);
4311 
4312 	return ret;
4313 }
4314 
4315 static int ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et,
4316 			       struct ocfs2_path *path,
4317 			       struct ocfs2_extent_list *el, int index,
4318 			       struct ocfs2_extent_rec *split_rec,
4319 			       struct ocfs2_merge_ctxt *ctxt)
4320 {
4321 	int status = 0;
4322 	enum ocfs2_contig_type ret = CONTIG_NONE;
4323 	u32 left_cpos, right_cpos;
4324 	struct ocfs2_extent_rec *rec = NULL;
4325 	struct ocfs2_extent_list *new_el;
4326 	struct ocfs2_path *left_path = NULL, *right_path = NULL;
4327 	struct buffer_head *bh;
4328 	struct ocfs2_extent_block *eb;
4329 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
4330 
4331 	if (index > 0) {
4332 		rec = &el->l_recs[index - 1];
4333 	} else if (path->p_tree_depth > 0) {
4334 		status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
4335 		if (status)
4336 			goto exit;
4337 
4338 		if (left_cpos != 0) {
4339 			left_path = ocfs2_new_path_from_path(path);
4340 			if (!left_path) {
4341 				status = -ENOMEM;
4342 				mlog_errno(status);
4343 				goto exit;
4344 			}
4345 
4346 			status = ocfs2_find_path(et->et_ci, left_path,
4347 						 left_cpos);
4348 			if (status)
4349 				goto free_left_path;
4350 
4351 			new_el = path_leaf_el(left_path);
4352 
4353 			if (le16_to_cpu(new_el->l_next_free_rec) !=
4354 			    le16_to_cpu(new_el->l_count)) {
4355 				bh = path_leaf_bh(left_path);
4356 				eb = (struct ocfs2_extent_block *)bh->b_data;
4357 				ocfs2_error(sb,
4358 					    "Extent block #%llu has an "
4359 					    "invalid l_next_free_rec of "
4360 					    "%d.  It should have "
4361 					    "matched the l_count of %d",
4362 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4363 					    le16_to_cpu(new_el->l_next_free_rec),
4364 					    le16_to_cpu(new_el->l_count));
4365 				status = -EINVAL;
4366 				goto free_left_path;
4367 			}
4368 			rec = &new_el->l_recs[
4369 				le16_to_cpu(new_el->l_next_free_rec) - 1];
4370 		}
4371 	}
4372 
4373 	/*
4374 	 * We're careful to check for an empty extent record here -
4375 	 * the merge code will know what to do if it sees one.
4376 	 */
4377 	if (rec) {
4378 		if (index == 1 && ocfs2_is_empty_extent(rec)) {
4379 			if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4380 				ret = CONTIG_RIGHT;
4381 		} else {
4382 			ret = ocfs2_et_extent_contig(et, rec, split_rec);
4383 		}
4384 	}
4385 
4386 	rec = NULL;
4387 	if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4388 		rec = &el->l_recs[index + 1];
4389 	else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4390 		 path->p_tree_depth > 0) {
4391 		status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
4392 		if (status)
4393 			goto free_left_path;
4394 
4395 		if (right_cpos == 0)
4396 			goto free_left_path;
4397 
4398 		right_path = ocfs2_new_path_from_path(path);
4399 		if (!right_path) {
4400 			status = -ENOMEM;
4401 			mlog_errno(status);
4402 			goto free_left_path;
4403 		}
4404 
4405 		status = ocfs2_find_path(et->et_ci, right_path, right_cpos);
4406 		if (status)
4407 			goto free_right_path;
4408 
4409 		new_el = path_leaf_el(right_path);
4410 		rec = &new_el->l_recs[0];
4411 		if (ocfs2_is_empty_extent(rec)) {
4412 			if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4413 				bh = path_leaf_bh(right_path);
4414 				eb = (struct ocfs2_extent_block *)bh->b_data;
4415 				ocfs2_error(sb,
4416 					    "Extent block #%llu has an "
4417 					    "invalid l_next_free_rec of %d",
4418 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4419 					    le16_to_cpu(new_el->l_next_free_rec));
4420 				status = -EINVAL;
4421 				goto free_right_path;
4422 			}
4423 			rec = &new_el->l_recs[1];
4424 		}
4425 	}
4426 
4427 	if (rec) {
4428 		enum ocfs2_contig_type contig_type;
4429 
4430 		contig_type = ocfs2_et_extent_contig(et, rec, split_rec);
4431 
4432 		if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4433 			ret = CONTIG_LEFTRIGHT;
4434 		else if (ret == CONTIG_NONE)
4435 			ret = contig_type;
4436 	}
4437 
4438 free_right_path:
4439 	ocfs2_free_path(right_path);
4440 free_left_path:
4441 	ocfs2_free_path(left_path);
4442 exit:
4443 	if (status == 0)
4444 		ctxt->c_contig_type = ret;
4445 
4446 	return status;
4447 }
4448 
4449 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et,
4450 				     struct ocfs2_insert_type *insert,
4451 				     struct ocfs2_extent_list *el,
4452 				     struct ocfs2_extent_rec *insert_rec)
4453 {
4454 	int i;
4455 	enum ocfs2_contig_type contig_type = CONTIG_NONE;
4456 
4457 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4458 
4459 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4460 		contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i],
4461 						     insert_rec);
4462 		if (contig_type != CONTIG_NONE) {
4463 			insert->ins_contig_index = i;
4464 			break;
4465 		}
4466 	}
4467 	insert->ins_contig = contig_type;
4468 
4469 	if (insert->ins_contig != CONTIG_NONE) {
4470 		struct ocfs2_extent_rec *rec =
4471 				&el->l_recs[insert->ins_contig_index];
4472 		unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4473 				   le16_to_cpu(insert_rec->e_leaf_clusters);
4474 
4475 		/*
4476 		 * Caller might want us to limit the size of extents, don't
4477 		 * calculate contiguousness if we might exceed that limit.
4478 		 */
4479 		if (et->et_max_leaf_clusters &&
4480 		    (len > et->et_max_leaf_clusters))
4481 			insert->ins_contig = CONTIG_NONE;
4482 	}
4483 }
4484 
4485 /*
4486  * This should only be called against the righmost leaf extent list.
4487  *
4488  * ocfs2_figure_appending_type() will figure out whether we'll have to
4489  * insert at the tail of the rightmost leaf.
4490  *
4491  * This should also work against the root extent list for tree's with 0
4492  * depth. If we consider the root extent list to be the rightmost leaf node
4493  * then the logic here makes sense.
4494  */
4495 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4496 					struct ocfs2_extent_list *el,
4497 					struct ocfs2_extent_rec *insert_rec)
4498 {
4499 	int i;
4500 	u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4501 	struct ocfs2_extent_rec *rec;
4502 
4503 	insert->ins_appending = APPEND_NONE;
4504 
4505 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4506 
4507 	if (!el->l_next_free_rec)
4508 		goto set_tail_append;
4509 
4510 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4511 		/* Were all records empty? */
4512 		if (le16_to_cpu(el->l_next_free_rec) == 1)
4513 			goto set_tail_append;
4514 	}
4515 
4516 	i = le16_to_cpu(el->l_next_free_rec) - 1;
4517 	rec = &el->l_recs[i];
4518 
4519 	if (cpos >=
4520 	    (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4521 		goto set_tail_append;
4522 
4523 	return;
4524 
4525 set_tail_append:
4526 	insert->ins_appending = APPEND_TAIL;
4527 }
4528 
4529 /*
4530  * Helper function called at the beginning of an insert.
4531  *
4532  * This computes a few things that are commonly used in the process of
4533  * inserting into the btree:
4534  *   - Whether the new extent is contiguous with an existing one.
4535  *   - The current tree depth.
4536  *   - Whether the insert is an appending one.
4537  *   - The total # of free records in the tree.
4538  *
4539  * All of the information is stored on the ocfs2_insert_type
4540  * structure.
4541  */
4542 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et,
4543 				    struct buffer_head **last_eb_bh,
4544 				    struct ocfs2_extent_rec *insert_rec,
4545 				    int *free_records,
4546 				    struct ocfs2_insert_type *insert)
4547 {
4548 	int ret;
4549 	struct ocfs2_extent_block *eb;
4550 	struct ocfs2_extent_list *el;
4551 	struct ocfs2_path *path = NULL;
4552 	struct buffer_head *bh = NULL;
4553 
4554 	insert->ins_split = SPLIT_NONE;
4555 
4556 	el = et->et_root_el;
4557 	insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4558 
4559 	if (el->l_tree_depth) {
4560 		/*
4561 		 * If we have tree depth, we read in the
4562 		 * rightmost extent block ahead of time as
4563 		 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4564 		 * may want it later.
4565 		 */
4566 		ret = ocfs2_read_extent_block(et->et_ci,
4567 					      ocfs2_et_get_last_eb_blk(et),
4568 					      &bh);
4569 		if (ret) {
4570 			mlog_errno(ret);
4571 			goto out;
4572 		}
4573 		eb = (struct ocfs2_extent_block *) bh->b_data;
4574 		el = &eb->h_list;
4575 	}
4576 
4577 	/*
4578 	 * Unless we have a contiguous insert, we'll need to know if
4579 	 * there is room left in our allocation tree for another
4580 	 * extent record.
4581 	 *
4582 	 * XXX: This test is simplistic, we can search for empty
4583 	 * extent records too.
4584 	 */
4585 	*free_records = le16_to_cpu(el->l_count) -
4586 		le16_to_cpu(el->l_next_free_rec);
4587 
4588 	if (!insert->ins_tree_depth) {
4589 		ocfs2_figure_contig_type(et, insert, el, insert_rec);
4590 		ocfs2_figure_appending_type(insert, el, insert_rec);
4591 		return 0;
4592 	}
4593 
4594 	path = ocfs2_new_path_from_et(et);
4595 	if (!path) {
4596 		ret = -ENOMEM;
4597 		mlog_errno(ret);
4598 		goto out;
4599 	}
4600 
4601 	/*
4602 	 * In the case that we're inserting past what the tree
4603 	 * currently accounts for, ocfs2_find_path() will return for
4604 	 * us the rightmost tree path. This is accounted for below in
4605 	 * the appending code.
4606 	 */
4607 	ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos));
4608 	if (ret) {
4609 		mlog_errno(ret);
4610 		goto out;
4611 	}
4612 
4613 	el = path_leaf_el(path);
4614 
4615 	/*
4616 	 * Now that we have the path, there's two things we want to determine:
4617 	 * 1) Contiguousness (also set contig_index if this is so)
4618 	 *
4619 	 * 2) Are we doing an append? We can trivially break this up
4620          *     into two types of appends: simple record append, or a
4621          *     rotate inside the tail leaf.
4622 	 */
4623 	ocfs2_figure_contig_type(et, insert, el, insert_rec);
4624 
4625 	/*
4626 	 * The insert code isn't quite ready to deal with all cases of
4627 	 * left contiguousness. Specifically, if it's an insert into
4628 	 * the 1st record in a leaf, it will require the adjustment of
4629 	 * cluster count on the last record of the path directly to it's
4630 	 * left. For now, just catch that case and fool the layers
4631 	 * above us. This works just fine for tree_depth == 0, which
4632 	 * is why we allow that above.
4633 	 */
4634 	if (insert->ins_contig == CONTIG_LEFT &&
4635 	    insert->ins_contig_index == 0)
4636 		insert->ins_contig = CONTIG_NONE;
4637 
4638 	/*
4639 	 * Ok, so we can simply compare against last_eb to figure out
4640 	 * whether the path doesn't exist. This will only happen in
4641 	 * the case that we're doing a tail append, so maybe we can
4642 	 * take advantage of that information somehow.
4643 	 */
4644 	if (ocfs2_et_get_last_eb_blk(et) ==
4645 	    path_leaf_bh(path)->b_blocknr) {
4646 		/*
4647 		 * Ok, ocfs2_find_path() returned us the rightmost
4648 		 * tree path. This might be an appending insert. There are
4649 		 * two cases:
4650 		 *    1) We're doing a true append at the tail:
4651 		 *	-This might even be off the end of the leaf
4652 		 *    2) We're "appending" by rotating in the tail
4653 		 */
4654 		ocfs2_figure_appending_type(insert, el, insert_rec);
4655 	}
4656 
4657 out:
4658 	ocfs2_free_path(path);
4659 
4660 	if (ret == 0)
4661 		*last_eb_bh = bh;
4662 	else
4663 		brelse(bh);
4664 	return ret;
4665 }
4666 
4667 /*
4668  * Insert an extent into a btree.
4669  *
4670  * The caller needs to update the owning btree's cluster count.
4671  */
4672 int ocfs2_insert_extent(handle_t *handle,
4673 			struct ocfs2_extent_tree *et,
4674 			u32 cpos,
4675 			u64 start_blk,
4676 			u32 new_clusters,
4677 			u8 flags,
4678 			struct ocfs2_alloc_context *meta_ac)
4679 {
4680 	int status;
4681 	int uninitialized_var(free_records);
4682 	struct buffer_head *last_eb_bh = NULL;
4683 	struct ocfs2_insert_type insert = {0, };
4684 	struct ocfs2_extent_rec rec;
4685 
4686 	trace_ocfs2_insert_extent_start(
4687 		(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4688 		cpos, new_clusters);
4689 
4690 	memset(&rec, 0, sizeof(rec));
4691 	rec.e_cpos = cpu_to_le32(cpos);
4692 	rec.e_blkno = cpu_to_le64(start_blk);
4693 	rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4694 	rec.e_flags = flags;
4695 	status = ocfs2_et_insert_check(et, &rec);
4696 	if (status) {
4697 		mlog_errno(status);
4698 		goto bail;
4699 	}
4700 
4701 	status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec,
4702 					  &free_records, &insert);
4703 	if (status < 0) {
4704 		mlog_errno(status);
4705 		goto bail;
4706 	}
4707 
4708 	trace_ocfs2_insert_extent(insert.ins_appending, insert.ins_contig,
4709 				  insert.ins_contig_index, free_records,
4710 				  insert.ins_tree_depth);
4711 
4712 	if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4713 		status = ocfs2_grow_tree(handle, et,
4714 					 &insert.ins_tree_depth, &last_eb_bh,
4715 					 meta_ac);
4716 		if (status) {
4717 			mlog_errno(status);
4718 			goto bail;
4719 		}
4720 	}
4721 
4722 	/* Finally, we can add clusters. This might rotate the tree for us. */
4723 	status = ocfs2_do_insert_extent(handle, et, &rec, &insert);
4724 	if (status < 0)
4725 		mlog_errno(status);
4726 	else
4727 		ocfs2_et_extent_map_insert(et, &rec);
4728 
4729 bail:
4730 	brelse(last_eb_bh);
4731 
4732 	return status;
4733 }
4734 
4735 /*
4736  * Allcate and add clusters into the extent b-tree.
4737  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4738  * The extent b-tree's root is specified by et, and
4739  * it is not limited to the file storage. Any extent tree can use this
4740  * function if it implements the proper ocfs2_extent_tree.
4741  */
4742 int ocfs2_add_clusters_in_btree(handle_t *handle,
4743 				struct ocfs2_extent_tree *et,
4744 				u32 *logical_offset,
4745 				u32 clusters_to_add,
4746 				int mark_unwritten,
4747 				struct ocfs2_alloc_context *data_ac,
4748 				struct ocfs2_alloc_context *meta_ac,
4749 				enum ocfs2_alloc_restarted *reason_ret)
4750 {
4751 	int status = 0, err = 0;
4752 	int need_free = 0;
4753 	int free_extents;
4754 	enum ocfs2_alloc_restarted reason = RESTART_NONE;
4755 	u32 bit_off, num_bits;
4756 	u64 block;
4757 	u8 flags = 0;
4758 	struct ocfs2_super *osb =
4759 		OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
4760 
4761 	BUG_ON(!clusters_to_add);
4762 
4763 	if (mark_unwritten)
4764 		flags = OCFS2_EXT_UNWRITTEN;
4765 
4766 	free_extents = ocfs2_num_free_extents(osb, et);
4767 	if (free_extents < 0) {
4768 		status = free_extents;
4769 		mlog_errno(status);
4770 		goto leave;
4771 	}
4772 
4773 	/* there are two cases which could cause us to EAGAIN in the
4774 	 * we-need-more-metadata case:
4775 	 * 1) we haven't reserved *any*
4776 	 * 2) we are so fragmented, we've needed to add metadata too
4777 	 *    many times. */
4778 	if (!free_extents && !meta_ac) {
4779 		err = -1;
4780 		status = -EAGAIN;
4781 		reason = RESTART_META;
4782 		goto leave;
4783 	} else if ((!free_extents)
4784 		   && (ocfs2_alloc_context_bits_left(meta_ac)
4785 		       < ocfs2_extend_meta_needed(et->et_root_el))) {
4786 		err = -2;
4787 		status = -EAGAIN;
4788 		reason = RESTART_META;
4789 		goto leave;
4790 	}
4791 
4792 	status = __ocfs2_claim_clusters(handle, data_ac, 1,
4793 					clusters_to_add, &bit_off, &num_bits);
4794 	if (status < 0) {
4795 		if (status != -ENOSPC)
4796 			mlog_errno(status);
4797 		goto leave;
4798 	}
4799 
4800 	BUG_ON(num_bits > clusters_to_add);
4801 
4802 	/* reserve our write early -- insert_extent may update the tree root */
4803 	status = ocfs2_et_root_journal_access(handle, et,
4804 					      OCFS2_JOURNAL_ACCESS_WRITE);
4805 	if (status < 0) {
4806 		mlog_errno(status);
4807 		need_free = 1;
4808 		goto bail;
4809 	}
4810 
4811 	block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4812 	trace_ocfs2_add_clusters_in_btree(
4813 	     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4814 	     bit_off, num_bits);
4815 	status = ocfs2_insert_extent(handle, et, *logical_offset, block,
4816 				     num_bits, flags, meta_ac);
4817 	if (status < 0) {
4818 		mlog_errno(status);
4819 		need_free = 1;
4820 		goto bail;
4821 	}
4822 
4823 	ocfs2_journal_dirty(handle, et->et_root_bh);
4824 
4825 	clusters_to_add -= num_bits;
4826 	*logical_offset += num_bits;
4827 
4828 	if (clusters_to_add) {
4829 		err = clusters_to_add;
4830 		status = -EAGAIN;
4831 		reason = RESTART_TRANS;
4832 	}
4833 
4834 bail:
4835 	if (need_free) {
4836 		if (data_ac->ac_which == OCFS2_AC_USE_LOCAL)
4837 			ocfs2_free_local_alloc_bits(osb, handle, data_ac,
4838 					bit_off, num_bits);
4839 		else
4840 			ocfs2_free_clusters(handle,
4841 					data_ac->ac_inode,
4842 					data_ac->ac_bh,
4843 					ocfs2_clusters_to_blocks(osb->sb, bit_off),
4844 					num_bits);
4845 	}
4846 
4847 leave:
4848 	if (reason_ret)
4849 		*reason_ret = reason;
4850 	trace_ocfs2_add_clusters_in_btree_ret(status, reason, err);
4851 	return status;
4852 }
4853 
4854 static void ocfs2_make_right_split_rec(struct super_block *sb,
4855 				       struct ocfs2_extent_rec *split_rec,
4856 				       u32 cpos,
4857 				       struct ocfs2_extent_rec *rec)
4858 {
4859 	u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4860 	u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4861 
4862 	memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4863 
4864 	split_rec->e_cpos = cpu_to_le32(cpos);
4865 	split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4866 
4867 	split_rec->e_blkno = rec->e_blkno;
4868 	le64_add_cpu(&split_rec->e_blkno,
4869 		     ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4870 
4871 	split_rec->e_flags = rec->e_flags;
4872 }
4873 
4874 static int ocfs2_split_and_insert(handle_t *handle,
4875 				  struct ocfs2_extent_tree *et,
4876 				  struct ocfs2_path *path,
4877 				  struct buffer_head **last_eb_bh,
4878 				  int split_index,
4879 				  struct ocfs2_extent_rec *orig_split_rec,
4880 				  struct ocfs2_alloc_context *meta_ac)
4881 {
4882 	int ret = 0, depth;
4883 	unsigned int insert_range, rec_range, do_leftright = 0;
4884 	struct ocfs2_extent_rec tmprec;
4885 	struct ocfs2_extent_list *rightmost_el;
4886 	struct ocfs2_extent_rec rec;
4887 	struct ocfs2_extent_rec split_rec = *orig_split_rec;
4888 	struct ocfs2_insert_type insert;
4889 	struct ocfs2_extent_block *eb;
4890 
4891 leftright:
4892 	/*
4893 	 * Store a copy of the record on the stack - it might move
4894 	 * around as the tree is manipulated below.
4895 	 */
4896 	rec = path_leaf_el(path)->l_recs[split_index];
4897 
4898 	rightmost_el = et->et_root_el;
4899 
4900 	depth = le16_to_cpu(rightmost_el->l_tree_depth);
4901 	if (depth) {
4902 		BUG_ON(!(*last_eb_bh));
4903 		eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4904 		rightmost_el = &eb->h_list;
4905 	}
4906 
4907 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4908 	    le16_to_cpu(rightmost_el->l_count)) {
4909 		ret = ocfs2_grow_tree(handle, et,
4910 				      &depth, last_eb_bh, meta_ac);
4911 		if (ret) {
4912 			mlog_errno(ret);
4913 			goto out;
4914 		}
4915 	}
4916 
4917 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4918 	insert.ins_appending = APPEND_NONE;
4919 	insert.ins_contig = CONTIG_NONE;
4920 	insert.ins_tree_depth = depth;
4921 
4922 	insert_range = le32_to_cpu(split_rec.e_cpos) +
4923 		le16_to_cpu(split_rec.e_leaf_clusters);
4924 	rec_range = le32_to_cpu(rec.e_cpos) +
4925 		le16_to_cpu(rec.e_leaf_clusters);
4926 
4927 	if (split_rec.e_cpos == rec.e_cpos) {
4928 		insert.ins_split = SPLIT_LEFT;
4929 	} else if (insert_range == rec_range) {
4930 		insert.ins_split = SPLIT_RIGHT;
4931 	} else {
4932 		/*
4933 		 * Left/right split. We fake this as a right split
4934 		 * first and then make a second pass as a left split.
4935 		 */
4936 		insert.ins_split = SPLIT_RIGHT;
4937 
4938 		ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4939 					   &tmprec, insert_range, &rec);
4940 
4941 		split_rec = tmprec;
4942 
4943 		BUG_ON(do_leftright);
4944 		do_leftright = 1;
4945 	}
4946 
4947 	ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
4948 	if (ret) {
4949 		mlog_errno(ret);
4950 		goto out;
4951 	}
4952 
4953 	if (do_leftright == 1) {
4954 		u32 cpos;
4955 		struct ocfs2_extent_list *el;
4956 
4957 		do_leftright++;
4958 		split_rec = *orig_split_rec;
4959 
4960 		ocfs2_reinit_path(path, 1);
4961 
4962 		cpos = le32_to_cpu(split_rec.e_cpos);
4963 		ret = ocfs2_find_path(et->et_ci, path, cpos);
4964 		if (ret) {
4965 			mlog_errno(ret);
4966 			goto out;
4967 		}
4968 
4969 		el = path_leaf_el(path);
4970 		split_index = ocfs2_search_extent_list(el, cpos);
4971 		if (split_index == -1) {
4972 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
4973 					"Owner %llu has an extent at cpos %u "
4974 					"which can no longer be found.\n",
4975 					(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4976 					cpos);
4977 			ret = -EROFS;
4978 			goto out;
4979 		}
4980 		goto leftright;
4981 	}
4982 out:
4983 
4984 	return ret;
4985 }
4986 
4987 static int ocfs2_replace_extent_rec(handle_t *handle,
4988 				    struct ocfs2_extent_tree *et,
4989 				    struct ocfs2_path *path,
4990 				    struct ocfs2_extent_list *el,
4991 				    int split_index,
4992 				    struct ocfs2_extent_rec *split_rec)
4993 {
4994 	int ret;
4995 
4996 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
4997 					   path_num_items(path) - 1);
4998 	if (ret) {
4999 		mlog_errno(ret);
5000 		goto out;
5001 	}
5002 
5003 	el->l_recs[split_index] = *split_rec;
5004 
5005 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
5006 out:
5007 	return ret;
5008 }
5009 
5010 /*
5011  * Split part or all of the extent record at split_index in the leaf
5012  * pointed to by path. Merge with the contiguous extent record if needed.
5013  *
5014  * Care is taken to handle contiguousness so as to not grow the tree.
5015  *
5016  * meta_ac is not strictly necessary - we only truly need it if growth
5017  * of the tree is required. All other cases will degrade into a less
5018  * optimal tree layout.
5019  *
5020  * last_eb_bh should be the rightmost leaf block for any extent
5021  * btree. Since a split may grow the tree or a merge might shrink it,
5022  * the caller cannot trust the contents of that buffer after this call.
5023  *
5024  * This code is optimized for readability - several passes might be
5025  * made over certain portions of the tree. All of those blocks will
5026  * have been brought into cache (and pinned via the journal), so the
5027  * extra overhead is not expressed in terms of disk reads.
5028  */
5029 int ocfs2_split_extent(handle_t *handle,
5030 		       struct ocfs2_extent_tree *et,
5031 		       struct ocfs2_path *path,
5032 		       int split_index,
5033 		       struct ocfs2_extent_rec *split_rec,
5034 		       struct ocfs2_alloc_context *meta_ac,
5035 		       struct ocfs2_cached_dealloc_ctxt *dealloc)
5036 {
5037 	int ret = 0;
5038 	struct ocfs2_extent_list *el = path_leaf_el(path);
5039 	struct buffer_head *last_eb_bh = NULL;
5040 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5041 	struct ocfs2_merge_ctxt ctxt;
5042 	struct ocfs2_extent_list *rightmost_el;
5043 
5044 	if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5045 	    ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5046 	     (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5047 		ret = -EIO;
5048 		mlog_errno(ret);
5049 		goto out;
5050 	}
5051 
5052 	ret = ocfs2_figure_merge_contig_type(et, path, el,
5053 					     split_index,
5054 					     split_rec,
5055 					     &ctxt);
5056 	if (ret) {
5057 		mlog_errno(ret);
5058 		goto out;
5059 	}
5060 
5061 	/*
5062 	 * The core merge / split code wants to know how much room is
5063 	 * left in this allocation tree, so we pass the
5064 	 * rightmost extent list.
5065 	 */
5066 	if (path->p_tree_depth) {
5067 		struct ocfs2_extent_block *eb;
5068 
5069 		ret = ocfs2_read_extent_block(et->et_ci,
5070 					      ocfs2_et_get_last_eb_blk(et),
5071 					      &last_eb_bh);
5072 		if (ret) {
5073 			mlog_errno(ret);
5074 			goto out;
5075 		}
5076 
5077 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5078 		rightmost_el = &eb->h_list;
5079 	} else
5080 		rightmost_el = path_root_el(path);
5081 
5082 	if (rec->e_cpos == split_rec->e_cpos &&
5083 	    rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5084 		ctxt.c_split_covers_rec = 1;
5085 	else
5086 		ctxt.c_split_covers_rec = 0;
5087 
5088 	ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5089 
5090 	trace_ocfs2_split_extent(split_index, ctxt.c_contig_type,
5091 				 ctxt.c_has_empty_extent,
5092 				 ctxt.c_split_covers_rec);
5093 
5094 	if (ctxt.c_contig_type == CONTIG_NONE) {
5095 		if (ctxt.c_split_covers_rec)
5096 			ret = ocfs2_replace_extent_rec(handle, et, path, el,
5097 						       split_index, split_rec);
5098 		else
5099 			ret = ocfs2_split_and_insert(handle, et, path,
5100 						     &last_eb_bh, split_index,
5101 						     split_rec, meta_ac);
5102 		if (ret)
5103 			mlog_errno(ret);
5104 	} else {
5105 		ret = ocfs2_try_to_merge_extent(handle, et, path,
5106 						split_index, split_rec,
5107 						dealloc, &ctxt);
5108 		if (ret)
5109 			mlog_errno(ret);
5110 	}
5111 
5112 out:
5113 	brelse(last_eb_bh);
5114 	return ret;
5115 }
5116 
5117 /*
5118  * Change the flags of the already-existing extent at cpos for len clusters.
5119  *
5120  * new_flags: the flags we want to set.
5121  * clear_flags: the flags we want to clear.
5122  * phys: the new physical offset we want this new extent starts from.
5123  *
5124  * If the existing extent is larger than the request, initiate a
5125  * split. An attempt will be made at merging with adjacent extents.
5126  *
5127  * The caller is responsible for passing down meta_ac if we'll need it.
5128  */
5129 int ocfs2_change_extent_flag(handle_t *handle,
5130 			     struct ocfs2_extent_tree *et,
5131 			     u32 cpos, u32 len, u32 phys,
5132 			     struct ocfs2_alloc_context *meta_ac,
5133 			     struct ocfs2_cached_dealloc_ctxt *dealloc,
5134 			     int new_flags, int clear_flags)
5135 {
5136 	int ret, index;
5137 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5138 	u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys);
5139 	struct ocfs2_extent_rec split_rec;
5140 	struct ocfs2_path *left_path = NULL;
5141 	struct ocfs2_extent_list *el;
5142 	struct ocfs2_extent_rec *rec;
5143 
5144 	left_path = ocfs2_new_path_from_et(et);
5145 	if (!left_path) {
5146 		ret = -ENOMEM;
5147 		mlog_errno(ret);
5148 		goto out;
5149 	}
5150 
5151 	ret = ocfs2_find_path(et->et_ci, left_path, cpos);
5152 	if (ret) {
5153 		mlog_errno(ret);
5154 		goto out;
5155 	}
5156 	el = path_leaf_el(left_path);
5157 
5158 	index = ocfs2_search_extent_list(el, cpos);
5159 	if (index == -1) {
5160 		ocfs2_error(sb,
5161 			    "Owner %llu has an extent at cpos %u which can no "
5162 			    "longer be found.\n",
5163 			     (unsigned long long)
5164 			     ocfs2_metadata_cache_owner(et->et_ci), cpos);
5165 		ret = -EROFS;
5166 		goto out;
5167 	}
5168 
5169 	ret = -EIO;
5170 	rec = &el->l_recs[index];
5171 	if (new_flags && (rec->e_flags & new_flags)) {
5172 		mlog(ML_ERROR, "Owner %llu tried to set %d flags on an "
5173 		     "extent that already had them",
5174 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5175 		     new_flags);
5176 		goto out;
5177 	}
5178 
5179 	if (clear_flags && !(rec->e_flags & clear_flags)) {
5180 		mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an "
5181 		     "extent that didn't have them",
5182 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5183 		     clear_flags);
5184 		goto out;
5185 	}
5186 
5187 	memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5188 	split_rec.e_cpos = cpu_to_le32(cpos);
5189 	split_rec.e_leaf_clusters = cpu_to_le16(len);
5190 	split_rec.e_blkno = cpu_to_le64(start_blkno);
5191 	split_rec.e_flags = rec->e_flags;
5192 	if (new_flags)
5193 		split_rec.e_flags |= new_flags;
5194 	if (clear_flags)
5195 		split_rec.e_flags &= ~clear_flags;
5196 
5197 	ret = ocfs2_split_extent(handle, et, left_path,
5198 				 index, &split_rec, meta_ac,
5199 				 dealloc);
5200 	if (ret)
5201 		mlog_errno(ret);
5202 
5203 out:
5204 	ocfs2_free_path(left_path);
5205 	return ret;
5206 
5207 }
5208 
5209 /*
5210  * Mark the already-existing extent at cpos as written for len clusters.
5211  * This removes the unwritten extent flag.
5212  *
5213  * If the existing extent is larger than the request, initiate a
5214  * split. An attempt will be made at merging with adjacent extents.
5215  *
5216  * The caller is responsible for passing down meta_ac if we'll need it.
5217  */
5218 int ocfs2_mark_extent_written(struct inode *inode,
5219 			      struct ocfs2_extent_tree *et,
5220 			      handle_t *handle, u32 cpos, u32 len, u32 phys,
5221 			      struct ocfs2_alloc_context *meta_ac,
5222 			      struct ocfs2_cached_dealloc_ctxt *dealloc)
5223 {
5224 	int ret;
5225 
5226 	trace_ocfs2_mark_extent_written(
5227 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
5228 		cpos, len, phys);
5229 
5230 	if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5231 		ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
5232 			    "that are being written to, but the feature bit "
5233 			    "is not set in the super block.",
5234 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
5235 		ret = -EROFS;
5236 		goto out;
5237 	}
5238 
5239 	/*
5240 	 * XXX: This should be fixed up so that we just re-insert the
5241 	 * next extent records.
5242 	 */
5243 	ocfs2_et_extent_map_truncate(et, 0);
5244 
5245 	ret = ocfs2_change_extent_flag(handle, et, cpos,
5246 				       len, phys, meta_ac, dealloc,
5247 				       0, OCFS2_EXT_UNWRITTEN);
5248 	if (ret)
5249 		mlog_errno(ret);
5250 
5251 out:
5252 	return ret;
5253 }
5254 
5255 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et,
5256 			    struct ocfs2_path *path,
5257 			    int index, u32 new_range,
5258 			    struct ocfs2_alloc_context *meta_ac)
5259 {
5260 	int ret, depth, credits;
5261 	struct buffer_head *last_eb_bh = NULL;
5262 	struct ocfs2_extent_block *eb;
5263 	struct ocfs2_extent_list *rightmost_el, *el;
5264 	struct ocfs2_extent_rec split_rec;
5265 	struct ocfs2_extent_rec *rec;
5266 	struct ocfs2_insert_type insert;
5267 
5268 	/*
5269 	 * Setup the record to split before we grow the tree.
5270 	 */
5271 	el = path_leaf_el(path);
5272 	rec = &el->l_recs[index];
5273 	ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
5274 				   &split_rec, new_range, rec);
5275 
5276 	depth = path->p_tree_depth;
5277 	if (depth > 0) {
5278 		ret = ocfs2_read_extent_block(et->et_ci,
5279 					      ocfs2_et_get_last_eb_blk(et),
5280 					      &last_eb_bh);
5281 		if (ret < 0) {
5282 			mlog_errno(ret);
5283 			goto out;
5284 		}
5285 
5286 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5287 		rightmost_el = &eb->h_list;
5288 	} else
5289 		rightmost_el = path_leaf_el(path);
5290 
5291 	credits = path->p_tree_depth +
5292 		  ocfs2_extend_meta_needed(et->et_root_el);
5293 	ret = ocfs2_extend_trans(handle, credits);
5294 	if (ret) {
5295 		mlog_errno(ret);
5296 		goto out;
5297 	}
5298 
5299 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5300 	    le16_to_cpu(rightmost_el->l_count)) {
5301 		ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh,
5302 				      meta_ac);
5303 		if (ret) {
5304 			mlog_errno(ret);
5305 			goto out;
5306 		}
5307 	}
5308 
5309 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5310 	insert.ins_appending = APPEND_NONE;
5311 	insert.ins_contig = CONTIG_NONE;
5312 	insert.ins_split = SPLIT_RIGHT;
5313 	insert.ins_tree_depth = depth;
5314 
5315 	ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
5316 	if (ret)
5317 		mlog_errno(ret);
5318 
5319 out:
5320 	brelse(last_eb_bh);
5321 	return ret;
5322 }
5323 
5324 static int ocfs2_truncate_rec(handle_t *handle,
5325 			      struct ocfs2_extent_tree *et,
5326 			      struct ocfs2_path *path, int index,
5327 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
5328 			      u32 cpos, u32 len)
5329 {
5330 	int ret;
5331 	u32 left_cpos, rec_range, trunc_range;
5332 	int wants_rotate = 0, is_rightmost_tree_rec = 0;
5333 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5334 	struct ocfs2_path *left_path = NULL;
5335 	struct ocfs2_extent_list *el = path_leaf_el(path);
5336 	struct ocfs2_extent_rec *rec;
5337 	struct ocfs2_extent_block *eb;
5338 
5339 	if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5340 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5341 		if (ret) {
5342 			mlog_errno(ret);
5343 			goto out;
5344 		}
5345 
5346 		index--;
5347 	}
5348 
5349 	if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5350 	    path->p_tree_depth) {
5351 		/*
5352 		 * Check whether this is the rightmost tree record. If
5353 		 * we remove all of this record or part of its right
5354 		 * edge then an update of the record lengths above it
5355 		 * will be required.
5356 		 */
5357 		eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5358 		if (eb->h_next_leaf_blk == 0)
5359 			is_rightmost_tree_rec = 1;
5360 	}
5361 
5362 	rec = &el->l_recs[index];
5363 	if (index == 0 && path->p_tree_depth &&
5364 	    le32_to_cpu(rec->e_cpos) == cpos) {
5365 		/*
5366 		 * Changing the leftmost offset (via partial or whole
5367 		 * record truncate) of an interior (or rightmost) path
5368 		 * means we have to update the subtree that is formed
5369 		 * by this leaf and the one to it's left.
5370 		 *
5371 		 * There are two cases we can skip:
5372 		 *   1) Path is the leftmost one in our btree.
5373 		 *   2) The leaf is rightmost and will be empty after
5374 		 *      we remove the extent record - the rotate code
5375 		 *      knows how to update the newly formed edge.
5376 		 */
5377 
5378 		ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
5379 		if (ret) {
5380 			mlog_errno(ret);
5381 			goto out;
5382 		}
5383 
5384 		if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5385 			left_path = ocfs2_new_path_from_path(path);
5386 			if (!left_path) {
5387 				ret = -ENOMEM;
5388 				mlog_errno(ret);
5389 				goto out;
5390 			}
5391 
5392 			ret = ocfs2_find_path(et->et_ci, left_path,
5393 					      left_cpos);
5394 			if (ret) {
5395 				mlog_errno(ret);
5396 				goto out;
5397 			}
5398 		}
5399 	}
5400 
5401 	ret = ocfs2_extend_rotate_transaction(handle, 0,
5402 					      handle->h_buffer_credits,
5403 					      path);
5404 	if (ret) {
5405 		mlog_errno(ret);
5406 		goto out;
5407 	}
5408 
5409 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
5410 	if (ret) {
5411 		mlog_errno(ret);
5412 		goto out;
5413 	}
5414 
5415 	ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
5416 	if (ret) {
5417 		mlog_errno(ret);
5418 		goto out;
5419 	}
5420 
5421 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5422 	trunc_range = cpos + len;
5423 
5424 	if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5425 		int next_free;
5426 
5427 		memset(rec, 0, sizeof(*rec));
5428 		ocfs2_cleanup_merge(el, index);
5429 		wants_rotate = 1;
5430 
5431 		next_free = le16_to_cpu(el->l_next_free_rec);
5432 		if (is_rightmost_tree_rec && next_free > 1) {
5433 			/*
5434 			 * We skip the edge update if this path will
5435 			 * be deleted by the rotate code.
5436 			 */
5437 			rec = &el->l_recs[next_free - 1];
5438 			ocfs2_adjust_rightmost_records(handle, et, path,
5439 						       rec);
5440 		}
5441 	} else if (le32_to_cpu(rec->e_cpos) == cpos) {
5442 		/* Remove leftmost portion of the record. */
5443 		le32_add_cpu(&rec->e_cpos, len);
5444 		le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5445 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5446 	} else if (rec_range == trunc_range) {
5447 		/* Remove rightmost portion of the record */
5448 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5449 		if (is_rightmost_tree_rec)
5450 			ocfs2_adjust_rightmost_records(handle, et, path, rec);
5451 	} else {
5452 		/* Caller should have trapped this. */
5453 		mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) "
5454 		     "(%u, %u)\n",
5455 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5456 		     le32_to_cpu(rec->e_cpos),
5457 		     le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5458 		BUG();
5459 	}
5460 
5461 	if (left_path) {
5462 		int subtree_index;
5463 
5464 		subtree_index = ocfs2_find_subtree_root(et, left_path, path);
5465 		ocfs2_complete_edge_insert(handle, left_path, path,
5466 					   subtree_index);
5467 	}
5468 
5469 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
5470 
5471 	ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5472 	if (ret) {
5473 		mlog_errno(ret);
5474 		goto out;
5475 	}
5476 
5477 out:
5478 	ocfs2_free_path(left_path);
5479 	return ret;
5480 }
5481 
5482 int ocfs2_remove_extent(handle_t *handle,
5483 			struct ocfs2_extent_tree *et,
5484 			u32 cpos, u32 len,
5485 			struct ocfs2_alloc_context *meta_ac,
5486 			struct ocfs2_cached_dealloc_ctxt *dealloc)
5487 {
5488 	int ret, index;
5489 	u32 rec_range, trunc_range;
5490 	struct ocfs2_extent_rec *rec;
5491 	struct ocfs2_extent_list *el;
5492 	struct ocfs2_path *path = NULL;
5493 
5494 	/*
5495 	 * XXX: Why are we truncating to 0 instead of wherever this
5496 	 * affects us?
5497 	 */
5498 	ocfs2_et_extent_map_truncate(et, 0);
5499 
5500 	path = ocfs2_new_path_from_et(et);
5501 	if (!path) {
5502 		ret = -ENOMEM;
5503 		mlog_errno(ret);
5504 		goto out;
5505 	}
5506 
5507 	ret = ocfs2_find_path(et->et_ci, path, cpos);
5508 	if (ret) {
5509 		mlog_errno(ret);
5510 		goto out;
5511 	}
5512 
5513 	el = path_leaf_el(path);
5514 	index = ocfs2_search_extent_list(el, cpos);
5515 	if (index == -1) {
5516 		ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5517 			    "Owner %llu has an extent at cpos %u which can no "
5518 			    "longer be found.\n",
5519 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5520 			    cpos);
5521 		ret = -EROFS;
5522 		goto out;
5523 	}
5524 
5525 	/*
5526 	 * We have 3 cases of extent removal:
5527 	 *   1) Range covers the entire extent rec
5528 	 *   2) Range begins or ends on one edge of the extent rec
5529 	 *   3) Range is in the middle of the extent rec (no shared edges)
5530 	 *
5531 	 * For case 1 we remove the extent rec and left rotate to
5532 	 * fill the hole.
5533 	 *
5534 	 * For case 2 we just shrink the existing extent rec, with a
5535 	 * tree update if the shrinking edge is also the edge of an
5536 	 * extent block.
5537 	 *
5538 	 * For case 3 we do a right split to turn the extent rec into
5539 	 * something case 2 can handle.
5540 	 */
5541 	rec = &el->l_recs[index];
5542 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5543 	trunc_range = cpos + len;
5544 
5545 	BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5546 
5547 	trace_ocfs2_remove_extent(
5548 		(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5549 		cpos, len, index, le32_to_cpu(rec->e_cpos),
5550 		ocfs2_rec_clusters(el, rec));
5551 
5552 	if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5553 		ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5554 					 cpos, len);
5555 		if (ret) {
5556 			mlog_errno(ret);
5557 			goto out;
5558 		}
5559 	} else {
5560 		ret = ocfs2_split_tree(handle, et, path, index,
5561 				       trunc_range, meta_ac);
5562 		if (ret) {
5563 			mlog_errno(ret);
5564 			goto out;
5565 		}
5566 
5567 		/*
5568 		 * The split could have manipulated the tree enough to
5569 		 * move the record location, so we have to look for it again.
5570 		 */
5571 		ocfs2_reinit_path(path, 1);
5572 
5573 		ret = ocfs2_find_path(et->et_ci, path, cpos);
5574 		if (ret) {
5575 			mlog_errno(ret);
5576 			goto out;
5577 		}
5578 
5579 		el = path_leaf_el(path);
5580 		index = ocfs2_search_extent_list(el, cpos);
5581 		if (index == -1) {
5582 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5583 				    "Owner %llu: split at cpos %u lost record.",
5584 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5585 				    cpos);
5586 			ret = -EROFS;
5587 			goto out;
5588 		}
5589 
5590 		/*
5591 		 * Double check our values here. If anything is fishy,
5592 		 * it's easier to catch it at the top level.
5593 		 */
5594 		rec = &el->l_recs[index];
5595 		rec_range = le32_to_cpu(rec->e_cpos) +
5596 			ocfs2_rec_clusters(el, rec);
5597 		if (rec_range != trunc_range) {
5598 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5599 				    "Owner %llu: error after split at cpos %u"
5600 				    "trunc len %u, existing record is (%u,%u)",
5601 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5602 				    cpos, len, le32_to_cpu(rec->e_cpos),
5603 				    ocfs2_rec_clusters(el, rec));
5604 			ret = -EROFS;
5605 			goto out;
5606 		}
5607 
5608 		ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5609 					 cpos, len);
5610 		if (ret) {
5611 			mlog_errno(ret);
5612 			goto out;
5613 		}
5614 	}
5615 
5616 out:
5617 	ocfs2_free_path(path);
5618 	return ret;
5619 }
5620 
5621 /*
5622  * ocfs2_reserve_blocks_for_rec_trunc() would look basically the
5623  * same as ocfs2_lock_alloctors(), except for it accepts a blocks
5624  * number to reserve some extra blocks, and it only handles meta
5625  * data allocations.
5626  *
5627  * Currently, only ocfs2_remove_btree_range() uses it for truncating
5628  * and punching holes.
5629  */
5630 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode,
5631 					      struct ocfs2_extent_tree *et,
5632 					      u32 extents_to_split,
5633 					      struct ocfs2_alloc_context **ac,
5634 					      int extra_blocks)
5635 {
5636 	int ret = 0, num_free_extents;
5637 	unsigned int max_recs_needed = 2 * extents_to_split;
5638 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5639 
5640 	*ac = NULL;
5641 
5642 	num_free_extents = ocfs2_num_free_extents(osb, et);
5643 	if (num_free_extents < 0) {
5644 		ret = num_free_extents;
5645 		mlog_errno(ret);
5646 		goto out;
5647 	}
5648 
5649 	if (!num_free_extents ||
5650 	    (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed))
5651 		extra_blocks += ocfs2_extend_meta_needed(et->et_root_el);
5652 
5653 	if (extra_blocks) {
5654 		ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac);
5655 		if (ret < 0) {
5656 			if (ret != -ENOSPC)
5657 				mlog_errno(ret);
5658 			goto out;
5659 		}
5660 	}
5661 
5662 out:
5663 	if (ret) {
5664 		if (*ac) {
5665 			ocfs2_free_alloc_context(*ac);
5666 			*ac = NULL;
5667 		}
5668 	}
5669 
5670 	return ret;
5671 }
5672 
5673 int ocfs2_remove_btree_range(struct inode *inode,
5674 			     struct ocfs2_extent_tree *et,
5675 			     u32 cpos, u32 phys_cpos, u32 len, int flags,
5676 			     struct ocfs2_cached_dealloc_ctxt *dealloc,
5677 			     u64 refcount_loc, bool refcount_tree_locked)
5678 {
5679 	int ret, credits = 0, extra_blocks = 0;
5680 	u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5681 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5682 	struct inode *tl_inode = osb->osb_tl_inode;
5683 	handle_t *handle;
5684 	struct ocfs2_alloc_context *meta_ac = NULL;
5685 	struct ocfs2_refcount_tree *ref_tree = NULL;
5686 
5687 	if ((flags & OCFS2_EXT_REFCOUNTED) && len) {
5688 		BUG_ON(!(OCFS2_I(inode)->ip_dyn_features &
5689 			 OCFS2_HAS_REFCOUNT_FL));
5690 
5691 		if (!refcount_tree_locked) {
5692 			ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
5693 						       &ref_tree, NULL);
5694 			if (ret) {
5695 				mlog_errno(ret);
5696 				goto bail;
5697 			}
5698 		}
5699 
5700 		ret = ocfs2_prepare_refcount_change_for_del(inode,
5701 							    refcount_loc,
5702 							    phys_blkno,
5703 							    len,
5704 							    &credits,
5705 							    &extra_blocks);
5706 		if (ret < 0) {
5707 			mlog_errno(ret);
5708 			goto bail;
5709 		}
5710 	}
5711 
5712 	ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac,
5713 						 extra_blocks);
5714 	if (ret) {
5715 		mlog_errno(ret);
5716 		goto bail;
5717 	}
5718 
5719 	mutex_lock(&tl_inode->i_mutex);
5720 
5721 	if (ocfs2_truncate_log_needs_flush(osb)) {
5722 		ret = __ocfs2_flush_truncate_log(osb);
5723 		if (ret < 0) {
5724 			mlog_errno(ret);
5725 			goto out;
5726 		}
5727 	}
5728 
5729 	handle = ocfs2_start_trans(osb,
5730 			ocfs2_remove_extent_credits(osb->sb) + credits);
5731 	if (IS_ERR(handle)) {
5732 		ret = PTR_ERR(handle);
5733 		mlog_errno(ret);
5734 		goto out;
5735 	}
5736 
5737 	ret = ocfs2_et_root_journal_access(handle, et,
5738 					   OCFS2_JOURNAL_ACCESS_WRITE);
5739 	if (ret) {
5740 		mlog_errno(ret);
5741 		goto out_commit;
5742 	}
5743 
5744 	dquot_free_space_nodirty(inode,
5745 				  ocfs2_clusters_to_bytes(inode->i_sb, len));
5746 
5747 	ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc);
5748 	if (ret) {
5749 		mlog_errno(ret);
5750 		goto out_commit;
5751 	}
5752 
5753 	ocfs2_et_update_clusters(et, -len);
5754 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
5755 
5756 	ocfs2_journal_dirty(handle, et->et_root_bh);
5757 
5758 	if (phys_blkno) {
5759 		if (flags & OCFS2_EXT_REFCOUNTED)
5760 			ret = ocfs2_decrease_refcount(inode, handle,
5761 					ocfs2_blocks_to_clusters(osb->sb,
5762 								 phys_blkno),
5763 					len, meta_ac,
5764 					dealloc, 1);
5765 		else
5766 			ret = ocfs2_truncate_log_append(osb, handle,
5767 							phys_blkno, len);
5768 		if (ret)
5769 			mlog_errno(ret);
5770 
5771 	}
5772 
5773 out_commit:
5774 	ocfs2_commit_trans(osb, handle);
5775 out:
5776 	mutex_unlock(&tl_inode->i_mutex);
5777 bail:
5778 	if (meta_ac)
5779 		ocfs2_free_alloc_context(meta_ac);
5780 
5781 	if (ref_tree)
5782 		ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
5783 
5784 	return ret;
5785 }
5786 
5787 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5788 {
5789 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5790 	struct ocfs2_dinode *di;
5791 	struct ocfs2_truncate_log *tl;
5792 
5793 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5794 	tl = &di->id2.i_dealloc;
5795 
5796 	mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5797 			"slot %d, invalid truncate log parameters: used = "
5798 			"%u, count = %u\n", osb->slot_num,
5799 			le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5800 	return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5801 }
5802 
5803 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5804 					   unsigned int new_start)
5805 {
5806 	unsigned int tail_index;
5807 	unsigned int current_tail;
5808 
5809 	/* No records, nothing to coalesce */
5810 	if (!le16_to_cpu(tl->tl_used))
5811 		return 0;
5812 
5813 	tail_index = le16_to_cpu(tl->tl_used) - 1;
5814 	current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5815 	current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5816 
5817 	return current_tail == new_start;
5818 }
5819 
5820 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5821 			      handle_t *handle,
5822 			      u64 start_blk,
5823 			      unsigned int num_clusters)
5824 {
5825 	int status, index;
5826 	unsigned int start_cluster, tl_count;
5827 	struct inode *tl_inode = osb->osb_tl_inode;
5828 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5829 	struct ocfs2_dinode *di;
5830 	struct ocfs2_truncate_log *tl;
5831 
5832 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5833 
5834 	start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5835 
5836 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5837 
5838 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5839 	 * by the underlying call to ocfs2_read_inode_block(), so any
5840 	 * corruption is a code bug */
5841 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5842 
5843 	tl = &di->id2.i_dealloc;
5844 	tl_count = le16_to_cpu(tl->tl_count);
5845 	mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5846 			tl_count == 0,
5847 			"Truncate record count on #%llu invalid "
5848 			"wanted %u, actual %u\n",
5849 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5850 			ocfs2_truncate_recs_per_inode(osb->sb),
5851 			le16_to_cpu(tl->tl_count));
5852 
5853 	/* Caller should have known to flush before calling us. */
5854 	index = le16_to_cpu(tl->tl_used);
5855 	if (index >= tl_count) {
5856 		status = -ENOSPC;
5857 		mlog_errno(status);
5858 		goto bail;
5859 	}
5860 
5861 	status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5862 					 OCFS2_JOURNAL_ACCESS_WRITE);
5863 	if (status < 0) {
5864 		mlog_errno(status);
5865 		goto bail;
5866 	}
5867 
5868 	trace_ocfs2_truncate_log_append(
5869 		(unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index,
5870 		start_cluster, num_clusters);
5871 	if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5872 		/*
5873 		 * Move index back to the record we are coalescing with.
5874 		 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5875 		 */
5876 		index--;
5877 
5878 		num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5879 		trace_ocfs2_truncate_log_append(
5880 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5881 			index, le32_to_cpu(tl->tl_recs[index].t_start),
5882 			num_clusters);
5883 	} else {
5884 		tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5885 		tl->tl_used = cpu_to_le16(index + 1);
5886 	}
5887 	tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5888 
5889 	ocfs2_journal_dirty(handle, tl_bh);
5890 
5891 	osb->truncated_clusters += num_clusters;
5892 bail:
5893 	return status;
5894 }
5895 
5896 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5897 					 handle_t *handle,
5898 					 struct inode *data_alloc_inode,
5899 					 struct buffer_head *data_alloc_bh)
5900 {
5901 	int status = 0;
5902 	int i;
5903 	unsigned int num_clusters;
5904 	u64 start_blk;
5905 	struct ocfs2_truncate_rec rec;
5906 	struct ocfs2_dinode *di;
5907 	struct ocfs2_truncate_log *tl;
5908 	struct inode *tl_inode = osb->osb_tl_inode;
5909 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5910 
5911 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5912 	tl = &di->id2.i_dealloc;
5913 	i = le16_to_cpu(tl->tl_used) - 1;
5914 	while (i >= 0) {
5915 		/* Caller has given us at least enough credits to
5916 		 * update the truncate log dinode */
5917 		status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5918 						 OCFS2_JOURNAL_ACCESS_WRITE);
5919 		if (status < 0) {
5920 			mlog_errno(status);
5921 			goto bail;
5922 		}
5923 
5924 		tl->tl_used = cpu_to_le16(i);
5925 
5926 		ocfs2_journal_dirty(handle, tl_bh);
5927 
5928 		/* TODO: Perhaps we can calculate the bulk of the
5929 		 * credits up front rather than extending like
5930 		 * this. */
5931 		status = ocfs2_extend_trans(handle,
5932 					    OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5933 		if (status < 0) {
5934 			mlog_errno(status);
5935 			goto bail;
5936 		}
5937 
5938 		rec = tl->tl_recs[i];
5939 		start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5940 						    le32_to_cpu(rec.t_start));
5941 		num_clusters = le32_to_cpu(rec.t_clusters);
5942 
5943 		/* if start_blk is not set, we ignore the record as
5944 		 * invalid. */
5945 		if (start_blk) {
5946 			trace_ocfs2_replay_truncate_records(
5947 				(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5948 				i, le32_to_cpu(rec.t_start), num_clusters);
5949 
5950 			status = ocfs2_free_clusters(handle, data_alloc_inode,
5951 						     data_alloc_bh, start_blk,
5952 						     num_clusters);
5953 			if (status < 0) {
5954 				mlog_errno(status);
5955 				goto bail;
5956 			}
5957 		}
5958 		i--;
5959 	}
5960 
5961 	osb->truncated_clusters = 0;
5962 
5963 bail:
5964 	return status;
5965 }
5966 
5967 /* Expects you to already be holding tl_inode->i_mutex */
5968 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5969 {
5970 	int status;
5971 	unsigned int num_to_flush;
5972 	handle_t *handle;
5973 	struct inode *tl_inode = osb->osb_tl_inode;
5974 	struct inode *data_alloc_inode = NULL;
5975 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5976 	struct buffer_head *data_alloc_bh = NULL;
5977 	struct ocfs2_dinode *di;
5978 	struct ocfs2_truncate_log *tl;
5979 
5980 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5981 
5982 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5983 
5984 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5985 	 * by the underlying call to ocfs2_read_inode_block(), so any
5986 	 * corruption is a code bug */
5987 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5988 
5989 	tl = &di->id2.i_dealloc;
5990 	num_to_flush = le16_to_cpu(tl->tl_used);
5991 	trace_ocfs2_flush_truncate_log(
5992 		(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5993 		num_to_flush);
5994 	if (!num_to_flush) {
5995 		status = 0;
5996 		goto out;
5997 	}
5998 
5999 	data_alloc_inode = ocfs2_get_system_file_inode(osb,
6000 						       GLOBAL_BITMAP_SYSTEM_INODE,
6001 						       OCFS2_INVALID_SLOT);
6002 	if (!data_alloc_inode) {
6003 		status = -EINVAL;
6004 		mlog(ML_ERROR, "Could not get bitmap inode!\n");
6005 		goto out;
6006 	}
6007 
6008 	mutex_lock(&data_alloc_inode->i_mutex);
6009 
6010 	status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
6011 	if (status < 0) {
6012 		mlog_errno(status);
6013 		goto out_mutex;
6014 	}
6015 
6016 	handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6017 	if (IS_ERR(handle)) {
6018 		status = PTR_ERR(handle);
6019 		mlog_errno(status);
6020 		goto out_unlock;
6021 	}
6022 
6023 	status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
6024 					       data_alloc_bh);
6025 	if (status < 0)
6026 		mlog_errno(status);
6027 
6028 	ocfs2_commit_trans(osb, handle);
6029 
6030 out_unlock:
6031 	brelse(data_alloc_bh);
6032 	ocfs2_inode_unlock(data_alloc_inode, 1);
6033 
6034 out_mutex:
6035 	mutex_unlock(&data_alloc_inode->i_mutex);
6036 	iput(data_alloc_inode);
6037 
6038 out:
6039 	return status;
6040 }
6041 
6042 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
6043 {
6044 	int status;
6045 	struct inode *tl_inode = osb->osb_tl_inode;
6046 
6047 	mutex_lock(&tl_inode->i_mutex);
6048 	status = __ocfs2_flush_truncate_log(osb);
6049 	mutex_unlock(&tl_inode->i_mutex);
6050 
6051 	return status;
6052 }
6053 
6054 static void ocfs2_truncate_log_worker(struct work_struct *work)
6055 {
6056 	int status;
6057 	struct ocfs2_super *osb =
6058 		container_of(work, struct ocfs2_super,
6059 			     osb_truncate_log_wq.work);
6060 
6061 	status = ocfs2_flush_truncate_log(osb);
6062 	if (status < 0)
6063 		mlog_errno(status);
6064 	else
6065 		ocfs2_init_steal_slots(osb);
6066 }
6067 
6068 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
6069 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
6070 				       int cancel)
6071 {
6072 	if (osb->osb_tl_inode &&
6073 			atomic_read(&osb->osb_tl_disable) == 0) {
6074 		/* We want to push off log flushes while truncates are
6075 		 * still running. */
6076 		if (cancel)
6077 			cancel_delayed_work(&osb->osb_truncate_log_wq);
6078 
6079 		queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
6080 				   OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
6081 	}
6082 }
6083 
6084 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
6085 				       int slot_num,
6086 				       struct inode **tl_inode,
6087 				       struct buffer_head **tl_bh)
6088 {
6089 	int status;
6090 	struct inode *inode = NULL;
6091 	struct buffer_head *bh = NULL;
6092 
6093 	inode = ocfs2_get_system_file_inode(osb,
6094 					   TRUNCATE_LOG_SYSTEM_INODE,
6095 					   slot_num);
6096 	if (!inode) {
6097 		status = -EINVAL;
6098 		mlog(ML_ERROR, "Could not get load truncate log inode!\n");
6099 		goto bail;
6100 	}
6101 
6102 	status = ocfs2_read_inode_block(inode, &bh);
6103 	if (status < 0) {
6104 		iput(inode);
6105 		mlog_errno(status);
6106 		goto bail;
6107 	}
6108 
6109 	*tl_inode = inode;
6110 	*tl_bh    = bh;
6111 bail:
6112 	return status;
6113 }
6114 
6115 /* called during the 1st stage of node recovery. we stamp a clean
6116  * truncate log and pass back a copy for processing later. if the
6117  * truncate log does not require processing, a *tl_copy is set to
6118  * NULL. */
6119 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
6120 				      int slot_num,
6121 				      struct ocfs2_dinode **tl_copy)
6122 {
6123 	int status;
6124 	struct inode *tl_inode = NULL;
6125 	struct buffer_head *tl_bh = NULL;
6126 	struct ocfs2_dinode *di;
6127 	struct ocfs2_truncate_log *tl;
6128 
6129 	*tl_copy = NULL;
6130 
6131 	trace_ocfs2_begin_truncate_log_recovery(slot_num);
6132 
6133 	status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
6134 	if (status < 0) {
6135 		mlog_errno(status);
6136 		goto bail;
6137 	}
6138 
6139 	di = (struct ocfs2_dinode *) tl_bh->b_data;
6140 
6141 	/* tl_bh is loaded from ocfs2_get_truncate_log_info().  It's
6142 	 * validated by the underlying call to ocfs2_read_inode_block(),
6143 	 * so any corruption is a code bug */
6144 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
6145 
6146 	tl = &di->id2.i_dealloc;
6147 	if (le16_to_cpu(tl->tl_used)) {
6148 		trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl->tl_used));
6149 
6150 		*tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
6151 		if (!(*tl_copy)) {
6152 			status = -ENOMEM;
6153 			mlog_errno(status);
6154 			goto bail;
6155 		}
6156 
6157 		/* Assuming the write-out below goes well, this copy
6158 		 * will be passed back to recovery for processing. */
6159 		memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
6160 
6161 		/* All we need to do to clear the truncate log is set
6162 		 * tl_used. */
6163 		tl->tl_used = 0;
6164 
6165 		ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6166 		status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
6167 		if (status < 0) {
6168 			mlog_errno(status);
6169 			goto bail;
6170 		}
6171 	}
6172 
6173 bail:
6174 	if (tl_inode)
6175 		iput(tl_inode);
6176 	brelse(tl_bh);
6177 
6178 	if (status < 0 && (*tl_copy)) {
6179 		kfree(*tl_copy);
6180 		*tl_copy = NULL;
6181 		mlog_errno(status);
6182 	}
6183 
6184 	return status;
6185 }
6186 
6187 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6188 					 struct ocfs2_dinode *tl_copy)
6189 {
6190 	int status = 0;
6191 	int i;
6192 	unsigned int clusters, num_recs, start_cluster;
6193 	u64 start_blk;
6194 	handle_t *handle;
6195 	struct inode *tl_inode = osb->osb_tl_inode;
6196 	struct ocfs2_truncate_log *tl;
6197 
6198 	if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6199 		mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6200 		return -EINVAL;
6201 	}
6202 
6203 	tl = &tl_copy->id2.i_dealloc;
6204 	num_recs = le16_to_cpu(tl->tl_used);
6205 	trace_ocfs2_complete_truncate_log_recovery(
6206 		(unsigned long long)le64_to_cpu(tl_copy->i_blkno),
6207 		num_recs);
6208 
6209 	mutex_lock(&tl_inode->i_mutex);
6210 	for(i = 0; i < num_recs; i++) {
6211 		if (ocfs2_truncate_log_needs_flush(osb)) {
6212 			status = __ocfs2_flush_truncate_log(osb);
6213 			if (status < 0) {
6214 				mlog_errno(status);
6215 				goto bail_up;
6216 			}
6217 		}
6218 
6219 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6220 		if (IS_ERR(handle)) {
6221 			status = PTR_ERR(handle);
6222 			mlog_errno(status);
6223 			goto bail_up;
6224 		}
6225 
6226 		clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6227 		start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6228 		start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6229 
6230 		status = ocfs2_truncate_log_append(osb, handle,
6231 						   start_blk, clusters);
6232 		ocfs2_commit_trans(osb, handle);
6233 		if (status < 0) {
6234 			mlog_errno(status);
6235 			goto bail_up;
6236 		}
6237 	}
6238 
6239 bail_up:
6240 	mutex_unlock(&tl_inode->i_mutex);
6241 
6242 	return status;
6243 }
6244 
6245 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6246 {
6247 	int status;
6248 	struct inode *tl_inode = osb->osb_tl_inode;
6249 
6250 	atomic_set(&osb->osb_tl_disable, 1);
6251 
6252 	if (tl_inode) {
6253 		cancel_delayed_work(&osb->osb_truncate_log_wq);
6254 		flush_workqueue(ocfs2_wq);
6255 
6256 		status = ocfs2_flush_truncate_log(osb);
6257 		if (status < 0)
6258 			mlog_errno(status);
6259 
6260 		brelse(osb->osb_tl_bh);
6261 		iput(osb->osb_tl_inode);
6262 	}
6263 }
6264 
6265 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6266 {
6267 	int status;
6268 	struct inode *tl_inode = NULL;
6269 	struct buffer_head *tl_bh = NULL;
6270 
6271 	status = ocfs2_get_truncate_log_info(osb,
6272 					     osb->slot_num,
6273 					     &tl_inode,
6274 					     &tl_bh);
6275 	if (status < 0)
6276 		mlog_errno(status);
6277 
6278 	/* ocfs2_truncate_log_shutdown keys on the existence of
6279 	 * osb->osb_tl_inode so we don't set any of the osb variables
6280 	 * until we're sure all is well. */
6281 	INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6282 			  ocfs2_truncate_log_worker);
6283 	atomic_set(&osb->osb_tl_disable, 0);
6284 	osb->osb_tl_bh    = tl_bh;
6285 	osb->osb_tl_inode = tl_inode;
6286 
6287 	return status;
6288 }
6289 
6290 /*
6291  * Delayed de-allocation of suballocator blocks.
6292  *
6293  * Some sets of block de-allocations might involve multiple suballocator inodes.
6294  *
6295  * The locking for this can get extremely complicated, especially when
6296  * the suballocator inodes to delete from aren't known until deep
6297  * within an unrelated codepath.
6298  *
6299  * ocfs2_extent_block structures are a good example of this - an inode
6300  * btree could have been grown by any number of nodes each allocating
6301  * out of their own suballoc inode.
6302  *
6303  * These structures allow the delay of block de-allocation until a
6304  * later time, when locking of multiple cluster inodes won't cause
6305  * deadlock.
6306  */
6307 
6308 /*
6309  * Describe a single bit freed from a suballocator.  For the block
6310  * suballocators, it represents one block.  For the global cluster
6311  * allocator, it represents some clusters and free_bit indicates
6312  * clusters number.
6313  */
6314 struct ocfs2_cached_block_free {
6315 	struct ocfs2_cached_block_free		*free_next;
6316 	u64					free_bg;
6317 	u64					free_blk;
6318 	unsigned int				free_bit;
6319 };
6320 
6321 struct ocfs2_per_slot_free_list {
6322 	struct ocfs2_per_slot_free_list		*f_next_suballocator;
6323 	int					f_inode_type;
6324 	int					f_slot;
6325 	struct ocfs2_cached_block_free		*f_first;
6326 };
6327 
6328 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6329 				    int sysfile_type,
6330 				    int slot,
6331 				    struct ocfs2_cached_block_free *head)
6332 {
6333 	int ret;
6334 	u64 bg_blkno;
6335 	handle_t *handle;
6336 	struct inode *inode;
6337 	struct buffer_head *di_bh = NULL;
6338 	struct ocfs2_cached_block_free *tmp;
6339 
6340 	inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6341 	if (!inode) {
6342 		ret = -EINVAL;
6343 		mlog_errno(ret);
6344 		goto out;
6345 	}
6346 
6347 	mutex_lock(&inode->i_mutex);
6348 
6349 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
6350 	if (ret) {
6351 		mlog_errno(ret);
6352 		goto out_mutex;
6353 	}
6354 
6355 	handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6356 	if (IS_ERR(handle)) {
6357 		ret = PTR_ERR(handle);
6358 		mlog_errno(ret);
6359 		goto out_unlock;
6360 	}
6361 
6362 	while (head) {
6363 		if (head->free_bg)
6364 			bg_blkno = head->free_bg;
6365 		else
6366 			bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6367 							      head->free_bit);
6368 		trace_ocfs2_free_cached_blocks(
6369 		     (unsigned long long)head->free_blk, head->free_bit);
6370 
6371 		ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6372 					       head->free_bit, bg_blkno, 1);
6373 		if (ret) {
6374 			mlog_errno(ret);
6375 			goto out_journal;
6376 		}
6377 
6378 		ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
6379 		if (ret) {
6380 			mlog_errno(ret);
6381 			goto out_journal;
6382 		}
6383 
6384 		tmp = head;
6385 		head = head->free_next;
6386 		kfree(tmp);
6387 	}
6388 
6389 out_journal:
6390 	ocfs2_commit_trans(osb, handle);
6391 
6392 out_unlock:
6393 	ocfs2_inode_unlock(inode, 1);
6394 	brelse(di_bh);
6395 out_mutex:
6396 	mutex_unlock(&inode->i_mutex);
6397 	iput(inode);
6398 out:
6399 	while(head) {
6400 		/* Premature exit may have left some dangling items. */
6401 		tmp = head;
6402 		head = head->free_next;
6403 		kfree(tmp);
6404 	}
6405 
6406 	return ret;
6407 }
6408 
6409 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6410 				u64 blkno, unsigned int bit)
6411 {
6412 	int ret = 0;
6413 	struct ocfs2_cached_block_free *item;
6414 
6415 	item = kzalloc(sizeof(*item), GFP_NOFS);
6416 	if (item == NULL) {
6417 		ret = -ENOMEM;
6418 		mlog_errno(ret);
6419 		return ret;
6420 	}
6421 
6422 	trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno, bit);
6423 
6424 	item->free_blk = blkno;
6425 	item->free_bit = bit;
6426 	item->free_next = ctxt->c_global_allocator;
6427 
6428 	ctxt->c_global_allocator = item;
6429 	return ret;
6430 }
6431 
6432 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6433 				      struct ocfs2_cached_block_free *head)
6434 {
6435 	struct ocfs2_cached_block_free *tmp;
6436 	struct inode *tl_inode = osb->osb_tl_inode;
6437 	handle_t *handle;
6438 	int ret = 0;
6439 
6440 	mutex_lock(&tl_inode->i_mutex);
6441 
6442 	while (head) {
6443 		if (ocfs2_truncate_log_needs_flush(osb)) {
6444 			ret = __ocfs2_flush_truncate_log(osb);
6445 			if (ret < 0) {
6446 				mlog_errno(ret);
6447 				break;
6448 			}
6449 		}
6450 
6451 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6452 		if (IS_ERR(handle)) {
6453 			ret = PTR_ERR(handle);
6454 			mlog_errno(ret);
6455 			break;
6456 		}
6457 
6458 		ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6459 						head->free_bit);
6460 
6461 		ocfs2_commit_trans(osb, handle);
6462 		tmp = head;
6463 		head = head->free_next;
6464 		kfree(tmp);
6465 
6466 		if (ret < 0) {
6467 			mlog_errno(ret);
6468 			break;
6469 		}
6470 	}
6471 
6472 	mutex_unlock(&tl_inode->i_mutex);
6473 
6474 	while (head) {
6475 		/* Premature exit may have left some dangling items. */
6476 		tmp = head;
6477 		head = head->free_next;
6478 		kfree(tmp);
6479 	}
6480 
6481 	return ret;
6482 }
6483 
6484 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6485 		       struct ocfs2_cached_dealloc_ctxt *ctxt)
6486 {
6487 	int ret = 0, ret2;
6488 	struct ocfs2_per_slot_free_list *fl;
6489 
6490 	if (!ctxt)
6491 		return 0;
6492 
6493 	while (ctxt->c_first_suballocator) {
6494 		fl = ctxt->c_first_suballocator;
6495 
6496 		if (fl->f_first) {
6497 			trace_ocfs2_run_deallocs(fl->f_inode_type,
6498 						 fl->f_slot);
6499 			ret2 = ocfs2_free_cached_blocks(osb,
6500 							fl->f_inode_type,
6501 							fl->f_slot,
6502 							fl->f_first);
6503 			if (ret2)
6504 				mlog_errno(ret2);
6505 			if (!ret)
6506 				ret = ret2;
6507 		}
6508 
6509 		ctxt->c_first_suballocator = fl->f_next_suballocator;
6510 		kfree(fl);
6511 	}
6512 
6513 	if (ctxt->c_global_allocator) {
6514 		ret2 = ocfs2_free_cached_clusters(osb,
6515 						  ctxt->c_global_allocator);
6516 		if (ret2)
6517 			mlog_errno(ret2);
6518 		if (!ret)
6519 			ret = ret2;
6520 
6521 		ctxt->c_global_allocator = NULL;
6522 	}
6523 
6524 	return ret;
6525 }
6526 
6527 static struct ocfs2_per_slot_free_list *
6528 ocfs2_find_per_slot_free_list(int type,
6529 			      int slot,
6530 			      struct ocfs2_cached_dealloc_ctxt *ctxt)
6531 {
6532 	struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6533 
6534 	while (fl) {
6535 		if (fl->f_inode_type == type && fl->f_slot == slot)
6536 			return fl;
6537 
6538 		fl = fl->f_next_suballocator;
6539 	}
6540 
6541 	fl = kmalloc(sizeof(*fl), GFP_NOFS);
6542 	if (fl) {
6543 		fl->f_inode_type = type;
6544 		fl->f_slot = slot;
6545 		fl->f_first = NULL;
6546 		fl->f_next_suballocator = ctxt->c_first_suballocator;
6547 
6548 		ctxt->c_first_suballocator = fl;
6549 	}
6550 	return fl;
6551 }
6552 
6553 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6554 			      int type, int slot, u64 suballoc,
6555 			      u64 blkno, unsigned int bit)
6556 {
6557 	int ret;
6558 	struct ocfs2_per_slot_free_list *fl;
6559 	struct ocfs2_cached_block_free *item;
6560 
6561 	fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6562 	if (fl == NULL) {
6563 		ret = -ENOMEM;
6564 		mlog_errno(ret);
6565 		goto out;
6566 	}
6567 
6568 	item = kzalloc(sizeof(*item), GFP_NOFS);
6569 	if (item == NULL) {
6570 		ret = -ENOMEM;
6571 		mlog_errno(ret);
6572 		goto out;
6573 	}
6574 
6575 	trace_ocfs2_cache_block_dealloc(type, slot,
6576 					(unsigned long long)suballoc,
6577 					(unsigned long long)blkno, bit);
6578 
6579 	item->free_bg = suballoc;
6580 	item->free_blk = blkno;
6581 	item->free_bit = bit;
6582 	item->free_next = fl->f_first;
6583 
6584 	fl->f_first = item;
6585 
6586 	ret = 0;
6587 out:
6588 	return ret;
6589 }
6590 
6591 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6592 					 struct ocfs2_extent_block *eb)
6593 {
6594 	return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6595 					 le16_to_cpu(eb->h_suballoc_slot),
6596 					 le64_to_cpu(eb->h_suballoc_loc),
6597 					 le64_to_cpu(eb->h_blkno),
6598 					 le16_to_cpu(eb->h_suballoc_bit));
6599 }
6600 
6601 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6602 {
6603 	set_buffer_uptodate(bh);
6604 	mark_buffer_dirty(bh);
6605 	return 0;
6606 }
6607 
6608 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6609 			      unsigned int from, unsigned int to,
6610 			      struct page *page, int zero, u64 *phys)
6611 {
6612 	int ret, partial = 0;
6613 
6614 	ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6615 	if (ret)
6616 		mlog_errno(ret);
6617 
6618 	if (zero)
6619 		zero_user_segment(page, from, to);
6620 
6621 	/*
6622 	 * Need to set the buffers we zero'd into uptodate
6623 	 * here if they aren't - ocfs2_map_page_blocks()
6624 	 * might've skipped some
6625 	 */
6626 	ret = walk_page_buffers(handle, page_buffers(page),
6627 				from, to, &partial,
6628 				ocfs2_zero_func);
6629 	if (ret < 0)
6630 		mlog_errno(ret);
6631 	else if (ocfs2_should_order_data(inode)) {
6632 		ret = ocfs2_jbd2_file_inode(handle, inode);
6633 		if (ret < 0)
6634 			mlog_errno(ret);
6635 	}
6636 
6637 	if (!partial)
6638 		SetPageUptodate(page);
6639 
6640 	flush_dcache_page(page);
6641 }
6642 
6643 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6644 				     loff_t end, struct page **pages,
6645 				     int numpages, u64 phys, handle_t *handle)
6646 {
6647 	int i;
6648 	struct page *page;
6649 	unsigned int from, to = PAGE_CACHE_SIZE;
6650 	struct super_block *sb = inode->i_sb;
6651 
6652 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6653 
6654 	if (numpages == 0)
6655 		goto out;
6656 
6657 	to = PAGE_CACHE_SIZE;
6658 	for(i = 0; i < numpages; i++) {
6659 		page = pages[i];
6660 
6661 		from = start & (PAGE_CACHE_SIZE - 1);
6662 		if ((end >> PAGE_CACHE_SHIFT) == page->index)
6663 			to = end & (PAGE_CACHE_SIZE - 1);
6664 
6665 		BUG_ON(from > PAGE_CACHE_SIZE);
6666 		BUG_ON(to > PAGE_CACHE_SIZE);
6667 
6668 		ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6669 					 &phys);
6670 
6671 		start = (page->index + 1) << PAGE_CACHE_SHIFT;
6672 	}
6673 out:
6674 	if (pages)
6675 		ocfs2_unlock_and_free_pages(pages, numpages);
6676 }
6677 
6678 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end,
6679 		     struct page **pages, int *num)
6680 {
6681 	int numpages, ret = 0;
6682 	struct address_space *mapping = inode->i_mapping;
6683 	unsigned long index;
6684 	loff_t last_page_bytes;
6685 
6686 	BUG_ON(start > end);
6687 
6688 	numpages = 0;
6689 	last_page_bytes = PAGE_ALIGN(end);
6690 	index = start >> PAGE_CACHE_SHIFT;
6691 	do {
6692 		pages[numpages] = find_or_create_page(mapping, index, GFP_NOFS);
6693 		if (!pages[numpages]) {
6694 			ret = -ENOMEM;
6695 			mlog_errno(ret);
6696 			goto out;
6697 		}
6698 
6699 		numpages++;
6700 		index++;
6701 	} while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6702 
6703 out:
6704 	if (ret != 0) {
6705 		if (pages)
6706 			ocfs2_unlock_and_free_pages(pages, numpages);
6707 		numpages = 0;
6708 	}
6709 
6710 	*num = numpages;
6711 
6712 	return ret;
6713 }
6714 
6715 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6716 				struct page **pages, int *num)
6717 {
6718 	struct super_block *sb = inode->i_sb;
6719 
6720 	BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6721 	       (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6722 
6723 	return ocfs2_grab_pages(inode, start, end, pages, num);
6724 }
6725 
6726 /*
6727  * Zero the area past i_size but still within an allocated
6728  * cluster. This avoids exposing nonzero data on subsequent file
6729  * extends.
6730  *
6731  * We need to call this before i_size is updated on the inode because
6732  * otherwise block_write_full_page() will skip writeout of pages past
6733  * i_size. The new_i_size parameter is passed for this reason.
6734  */
6735 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6736 				  u64 range_start, u64 range_end)
6737 {
6738 	int ret = 0, numpages;
6739 	struct page **pages = NULL;
6740 	u64 phys;
6741 	unsigned int ext_flags;
6742 	struct super_block *sb = inode->i_sb;
6743 
6744 	/*
6745 	 * File systems which don't support sparse files zero on every
6746 	 * extend.
6747 	 */
6748 	if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6749 		return 0;
6750 
6751 	pages = kcalloc(ocfs2_pages_per_cluster(sb),
6752 			sizeof(struct page *), GFP_NOFS);
6753 	if (pages == NULL) {
6754 		ret = -ENOMEM;
6755 		mlog_errno(ret);
6756 		goto out;
6757 	}
6758 
6759 	if (range_start == range_end)
6760 		goto out;
6761 
6762 	ret = ocfs2_extent_map_get_blocks(inode,
6763 					  range_start >> sb->s_blocksize_bits,
6764 					  &phys, NULL, &ext_flags);
6765 	if (ret) {
6766 		mlog_errno(ret);
6767 		goto out;
6768 	}
6769 
6770 	/*
6771 	 * Tail is a hole, or is marked unwritten. In either case, we
6772 	 * can count on read and write to return/push zero's.
6773 	 */
6774 	if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6775 		goto out;
6776 
6777 	ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6778 				   &numpages);
6779 	if (ret) {
6780 		mlog_errno(ret);
6781 		goto out;
6782 	}
6783 
6784 	ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6785 				 numpages, phys, handle);
6786 
6787 	/*
6788 	 * Initiate writeout of the pages we zero'd here. We don't
6789 	 * wait on them - the truncate_inode_pages() call later will
6790 	 * do that for us.
6791 	 */
6792 	ret = filemap_fdatawrite_range(inode->i_mapping, range_start,
6793 				       range_end - 1);
6794 	if (ret)
6795 		mlog_errno(ret);
6796 
6797 out:
6798 	kfree(pages);
6799 
6800 	return ret;
6801 }
6802 
6803 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
6804 					     struct ocfs2_dinode *di)
6805 {
6806 	unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
6807 	unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
6808 
6809 	if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
6810 		memset(&di->id2, 0, blocksize -
6811 				    offsetof(struct ocfs2_dinode, id2) -
6812 				    xattrsize);
6813 	else
6814 		memset(&di->id2, 0, blocksize -
6815 				    offsetof(struct ocfs2_dinode, id2));
6816 }
6817 
6818 void ocfs2_dinode_new_extent_list(struct inode *inode,
6819 				  struct ocfs2_dinode *di)
6820 {
6821 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
6822 	di->id2.i_list.l_tree_depth = 0;
6823 	di->id2.i_list.l_next_free_rec = 0;
6824 	di->id2.i_list.l_count = cpu_to_le16(
6825 		ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
6826 }
6827 
6828 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
6829 {
6830 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
6831 	struct ocfs2_inline_data *idata = &di->id2.i_data;
6832 
6833 	spin_lock(&oi->ip_lock);
6834 	oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
6835 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6836 	spin_unlock(&oi->ip_lock);
6837 
6838 	/*
6839 	 * We clear the entire i_data structure here so that all
6840 	 * fields can be properly initialized.
6841 	 */
6842 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
6843 
6844 	idata->id_count = cpu_to_le16(
6845 			ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
6846 }
6847 
6848 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
6849 					 struct buffer_head *di_bh)
6850 {
6851 	int ret, i, has_data, num_pages = 0;
6852 	int need_free = 0;
6853 	u32 bit_off, num;
6854 	handle_t *handle;
6855 	u64 uninitialized_var(block);
6856 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
6857 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6858 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6859 	struct ocfs2_alloc_context *data_ac = NULL;
6860 	struct page **pages = NULL;
6861 	loff_t end = osb->s_clustersize;
6862 	struct ocfs2_extent_tree et;
6863 	int did_quota = 0;
6864 
6865 	has_data = i_size_read(inode) ? 1 : 0;
6866 
6867 	if (has_data) {
6868 		pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
6869 				sizeof(struct page *), GFP_NOFS);
6870 		if (pages == NULL) {
6871 			ret = -ENOMEM;
6872 			mlog_errno(ret);
6873 			return ret;
6874 		}
6875 
6876 		ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
6877 		if (ret) {
6878 			mlog_errno(ret);
6879 			goto free_pages;
6880 		}
6881 	}
6882 
6883 	handle = ocfs2_start_trans(osb,
6884 				   ocfs2_inline_to_extents_credits(osb->sb));
6885 	if (IS_ERR(handle)) {
6886 		ret = PTR_ERR(handle);
6887 		mlog_errno(ret);
6888 		goto out;
6889 	}
6890 
6891 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
6892 				      OCFS2_JOURNAL_ACCESS_WRITE);
6893 	if (ret) {
6894 		mlog_errno(ret);
6895 		goto out_commit;
6896 	}
6897 
6898 	if (has_data) {
6899 		unsigned int page_end;
6900 		u64 phys;
6901 
6902 		ret = dquot_alloc_space_nodirty(inode,
6903 				       ocfs2_clusters_to_bytes(osb->sb, 1));
6904 		if (ret)
6905 			goto out_commit;
6906 		did_quota = 1;
6907 
6908 		data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
6909 
6910 		ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off,
6911 					   &num);
6912 		if (ret) {
6913 			mlog_errno(ret);
6914 			goto out_commit;
6915 		}
6916 
6917 		/*
6918 		 * Save two copies, one for insert, and one that can
6919 		 * be changed by ocfs2_map_and_dirty_page() below.
6920 		 */
6921 		block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
6922 
6923 		/*
6924 		 * Non sparse file systems zero on extend, so no need
6925 		 * to do that now.
6926 		 */
6927 		if (!ocfs2_sparse_alloc(osb) &&
6928 		    PAGE_CACHE_SIZE < osb->s_clustersize)
6929 			end = PAGE_CACHE_SIZE;
6930 
6931 		ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
6932 		if (ret) {
6933 			mlog_errno(ret);
6934 			need_free = 1;
6935 			goto out_commit;
6936 		}
6937 
6938 		/*
6939 		 * This should populate the 1st page for us and mark
6940 		 * it up to date.
6941 		 */
6942 		ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
6943 		if (ret) {
6944 			mlog_errno(ret);
6945 			need_free = 1;
6946 			goto out_unlock;
6947 		}
6948 
6949 		page_end = PAGE_CACHE_SIZE;
6950 		if (PAGE_CACHE_SIZE > osb->s_clustersize)
6951 			page_end = osb->s_clustersize;
6952 
6953 		for (i = 0; i < num_pages; i++)
6954 			ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
6955 						 pages[i], i > 0, &phys);
6956 	}
6957 
6958 	spin_lock(&oi->ip_lock);
6959 	oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
6960 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6961 	spin_unlock(&oi->ip_lock);
6962 
6963 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
6964 	ocfs2_dinode_new_extent_list(inode, di);
6965 
6966 	ocfs2_journal_dirty(handle, di_bh);
6967 
6968 	if (has_data) {
6969 		/*
6970 		 * An error at this point should be extremely rare. If
6971 		 * this proves to be false, we could always re-build
6972 		 * the in-inode data from our pages.
6973 		 */
6974 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
6975 		ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL);
6976 		if (ret) {
6977 			mlog_errno(ret);
6978 			need_free = 1;
6979 			goto out_unlock;
6980 		}
6981 
6982 		inode->i_blocks = ocfs2_inode_sector_count(inode);
6983 	}
6984 
6985 out_unlock:
6986 	if (pages)
6987 		ocfs2_unlock_and_free_pages(pages, num_pages);
6988 
6989 out_commit:
6990 	if (ret < 0 && did_quota)
6991 		dquot_free_space_nodirty(inode,
6992 					  ocfs2_clusters_to_bytes(osb->sb, 1));
6993 
6994 	if (need_free) {
6995 		if (data_ac->ac_which == OCFS2_AC_USE_LOCAL)
6996 			ocfs2_free_local_alloc_bits(osb, handle, data_ac,
6997 					bit_off, num);
6998 		else
6999 			ocfs2_free_clusters(handle,
7000 					data_ac->ac_inode,
7001 					data_ac->ac_bh,
7002 					ocfs2_clusters_to_blocks(osb->sb, bit_off),
7003 					num);
7004 	}
7005 
7006 	ocfs2_commit_trans(osb, handle);
7007 
7008 out:
7009 	if (data_ac)
7010 		ocfs2_free_alloc_context(data_ac);
7011 free_pages:
7012 	kfree(pages);
7013 	return ret;
7014 }
7015 
7016 /*
7017  * It is expected, that by the time you call this function,
7018  * inode->i_size and fe->i_size have been adjusted.
7019  *
7020  * WARNING: This will kfree the truncate context
7021  */
7022 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7023 			  struct inode *inode,
7024 			  struct buffer_head *di_bh)
7025 {
7026 	int status = 0, i, flags = 0;
7027 	u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff;
7028 	u64 blkno = 0;
7029 	struct ocfs2_extent_list *el;
7030 	struct ocfs2_extent_rec *rec;
7031 	struct ocfs2_path *path = NULL;
7032 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7033 	struct ocfs2_extent_list *root_el = &(di->id2.i_list);
7034 	u64 refcount_loc = le64_to_cpu(di->i_refcount_loc);
7035 	struct ocfs2_extent_tree et;
7036 	struct ocfs2_cached_dealloc_ctxt dealloc;
7037 	struct ocfs2_refcount_tree *ref_tree = NULL;
7038 
7039 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
7040 	ocfs2_init_dealloc_ctxt(&dealloc);
7041 
7042 	new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7043 						     i_size_read(inode));
7044 
7045 	path = ocfs2_new_path(di_bh, &di->id2.i_list,
7046 			      ocfs2_journal_access_di);
7047 	if (!path) {
7048 		status = -ENOMEM;
7049 		mlog_errno(status);
7050 		goto bail;
7051 	}
7052 
7053 	ocfs2_extent_map_trunc(inode, new_highest_cpos);
7054 
7055 start:
7056 	/*
7057 	 * Check that we still have allocation to delete.
7058 	 */
7059 	if (OCFS2_I(inode)->ip_clusters == 0) {
7060 		status = 0;
7061 		goto bail;
7062 	}
7063 
7064 	/*
7065 	 * Truncate always works against the rightmost tree branch.
7066 	 */
7067 	status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX);
7068 	if (status) {
7069 		mlog_errno(status);
7070 		goto bail;
7071 	}
7072 
7073 	trace_ocfs2_commit_truncate(
7074 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
7075 		new_highest_cpos,
7076 		OCFS2_I(inode)->ip_clusters,
7077 		path->p_tree_depth);
7078 
7079 	/*
7080 	 * By now, el will point to the extent list on the bottom most
7081 	 * portion of this tree. Only the tail record is considered in
7082 	 * each pass.
7083 	 *
7084 	 * We handle the following cases, in order:
7085 	 * - empty extent: delete the remaining branch
7086 	 * - remove the entire record
7087 	 * - remove a partial record
7088 	 * - no record needs to be removed (truncate has completed)
7089 	 */
7090 	el = path_leaf_el(path);
7091 	if (le16_to_cpu(el->l_next_free_rec) == 0) {
7092 		ocfs2_error(inode->i_sb,
7093 			    "Inode %llu has empty extent block at %llu\n",
7094 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7095 			    (unsigned long long)path_leaf_bh(path)->b_blocknr);
7096 		status = -EROFS;
7097 		goto bail;
7098 	}
7099 
7100 	i = le16_to_cpu(el->l_next_free_rec) - 1;
7101 	rec = &el->l_recs[i];
7102 	flags = rec->e_flags;
7103 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
7104 
7105 	if (i == 0 && ocfs2_is_empty_extent(rec)) {
7106 		/*
7107 		 * Lower levels depend on this never happening, but it's best
7108 		 * to check it up here before changing the tree.
7109 		*/
7110 		if (root_el->l_tree_depth && rec->e_int_clusters == 0) {
7111 			ocfs2_error(inode->i_sb, "Inode %lu has an empty "
7112 				    "extent record, depth %u\n", inode->i_ino,
7113 				    le16_to_cpu(root_el->l_tree_depth));
7114 			status = -EROFS;
7115 			goto bail;
7116 		}
7117 		trunc_cpos = le32_to_cpu(rec->e_cpos);
7118 		trunc_len = 0;
7119 		blkno = 0;
7120 	} else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) {
7121 		/*
7122 		 * Truncate entire record.
7123 		 */
7124 		trunc_cpos = le32_to_cpu(rec->e_cpos);
7125 		trunc_len = ocfs2_rec_clusters(el, rec);
7126 		blkno = le64_to_cpu(rec->e_blkno);
7127 	} else if (range > new_highest_cpos) {
7128 		/*
7129 		 * Partial truncate. it also should be
7130 		 * the last truncate we're doing.
7131 		 */
7132 		trunc_cpos = new_highest_cpos;
7133 		trunc_len = range - new_highest_cpos;
7134 		coff = new_highest_cpos - le32_to_cpu(rec->e_cpos);
7135 		blkno = le64_to_cpu(rec->e_blkno) +
7136 				ocfs2_clusters_to_blocks(inode->i_sb, coff);
7137 	} else {
7138 		/*
7139 		 * Truncate completed, leave happily.
7140 		 */
7141 		status = 0;
7142 		goto bail;
7143 	}
7144 
7145 	phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
7146 
7147 	if ((flags & OCFS2_EXT_REFCOUNTED) && trunc_len && !ref_tree) {
7148 		status = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
7149 				&ref_tree, NULL);
7150 		if (status) {
7151 			mlog_errno(status);
7152 			goto bail;
7153 		}
7154 	}
7155 
7156 	status = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
7157 					  phys_cpos, trunc_len, flags, &dealloc,
7158 					  refcount_loc, true);
7159 	if (status < 0) {
7160 		mlog_errno(status);
7161 		goto bail;
7162 	}
7163 
7164 	ocfs2_reinit_path(path, 1);
7165 
7166 	/*
7167 	 * The check above will catch the case where we've truncated
7168 	 * away all allocation.
7169 	 */
7170 	goto start;
7171 
7172 bail:
7173 	if (ref_tree)
7174 		ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
7175 
7176 	ocfs2_schedule_truncate_log_flush(osb, 1);
7177 
7178 	ocfs2_run_deallocs(osb, &dealloc);
7179 
7180 	ocfs2_free_path(path);
7181 
7182 	return status;
7183 }
7184 
7185 /*
7186  * 'start' is inclusive, 'end' is not.
7187  */
7188 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7189 			  unsigned int start, unsigned int end, int trunc)
7190 {
7191 	int ret;
7192 	unsigned int numbytes;
7193 	handle_t *handle;
7194 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7195 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7196 	struct ocfs2_inline_data *idata = &di->id2.i_data;
7197 
7198 	if (end > i_size_read(inode))
7199 		end = i_size_read(inode);
7200 
7201 	BUG_ON(start > end);
7202 
7203 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7204 	    !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7205 	    !ocfs2_supports_inline_data(osb)) {
7206 		ocfs2_error(inode->i_sb,
7207 			    "Inline data flags for inode %llu don't agree! "
7208 			    "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7209 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7210 			    le16_to_cpu(di->i_dyn_features),
7211 			    OCFS2_I(inode)->ip_dyn_features,
7212 			    osb->s_feature_incompat);
7213 		ret = -EROFS;
7214 		goto out;
7215 	}
7216 
7217 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7218 	if (IS_ERR(handle)) {
7219 		ret = PTR_ERR(handle);
7220 		mlog_errno(ret);
7221 		goto out;
7222 	}
7223 
7224 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7225 				      OCFS2_JOURNAL_ACCESS_WRITE);
7226 	if (ret) {
7227 		mlog_errno(ret);
7228 		goto out_commit;
7229 	}
7230 
7231 	numbytes = end - start;
7232 	memset(idata->id_data + start, 0, numbytes);
7233 
7234 	/*
7235 	 * No need to worry about the data page here - it's been
7236 	 * truncated already and inline data doesn't need it for
7237 	 * pushing zero's to disk, so we'll let readpage pick it up
7238 	 * later.
7239 	 */
7240 	if (trunc) {
7241 		i_size_write(inode, start);
7242 		di->i_size = cpu_to_le64(start);
7243 	}
7244 
7245 	inode->i_blocks = ocfs2_inode_sector_count(inode);
7246 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7247 
7248 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7249 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7250 
7251 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
7252 	ocfs2_journal_dirty(handle, di_bh);
7253 
7254 out_commit:
7255 	ocfs2_commit_trans(osb, handle);
7256 
7257 out:
7258 	return ret;
7259 }
7260 
7261 static int ocfs2_trim_extent(struct super_block *sb,
7262 			     struct ocfs2_group_desc *gd,
7263 			     u32 start, u32 count)
7264 {
7265 	u64 discard, bcount;
7266 
7267 	bcount = ocfs2_clusters_to_blocks(sb, count);
7268 	discard = le64_to_cpu(gd->bg_blkno) +
7269 			ocfs2_clusters_to_blocks(sb, start);
7270 
7271 	trace_ocfs2_trim_extent(sb, (unsigned long long)discard, bcount);
7272 
7273 	return sb_issue_discard(sb, discard, bcount, GFP_NOFS, 0);
7274 }
7275 
7276 static int ocfs2_trim_group(struct super_block *sb,
7277 			    struct ocfs2_group_desc *gd,
7278 			    u32 start, u32 max, u32 minbits)
7279 {
7280 	int ret = 0, count = 0, next;
7281 	void *bitmap = gd->bg_bitmap;
7282 
7283 	if (le16_to_cpu(gd->bg_free_bits_count) < minbits)
7284 		return 0;
7285 
7286 	trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd->bg_blkno),
7287 			       start, max, minbits);
7288 
7289 	while (start < max) {
7290 		start = ocfs2_find_next_zero_bit(bitmap, max, start);
7291 		if (start >= max)
7292 			break;
7293 		next = ocfs2_find_next_bit(bitmap, max, start);
7294 
7295 		if ((next - start) >= minbits) {
7296 			ret = ocfs2_trim_extent(sb, gd,
7297 						start, next - start);
7298 			if (ret < 0) {
7299 				mlog_errno(ret);
7300 				break;
7301 			}
7302 			count += next - start;
7303 		}
7304 		start = next + 1;
7305 
7306 		if (fatal_signal_pending(current)) {
7307 			count = -ERESTARTSYS;
7308 			break;
7309 		}
7310 
7311 		if ((le16_to_cpu(gd->bg_free_bits_count) - count) < minbits)
7312 			break;
7313 	}
7314 
7315 	if (ret < 0)
7316 		count = ret;
7317 
7318 	return count;
7319 }
7320 
7321 int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range)
7322 {
7323 	struct ocfs2_super *osb = OCFS2_SB(sb);
7324 	u64 start, len, trimmed, first_group, last_group, group;
7325 	int ret, cnt;
7326 	u32 first_bit, last_bit, minlen;
7327 	struct buffer_head *main_bm_bh = NULL;
7328 	struct inode *main_bm_inode = NULL;
7329 	struct buffer_head *gd_bh = NULL;
7330 	struct ocfs2_dinode *main_bm;
7331 	struct ocfs2_group_desc *gd = NULL;
7332 
7333 	start = range->start >> osb->s_clustersize_bits;
7334 	len = range->len >> osb->s_clustersize_bits;
7335 	minlen = range->minlen >> osb->s_clustersize_bits;
7336 
7337 	if (minlen >= osb->bitmap_cpg || range->len < sb->s_blocksize)
7338 		return -EINVAL;
7339 
7340 	main_bm_inode = ocfs2_get_system_file_inode(osb,
7341 						    GLOBAL_BITMAP_SYSTEM_INODE,
7342 						    OCFS2_INVALID_SLOT);
7343 	if (!main_bm_inode) {
7344 		ret = -EIO;
7345 		mlog_errno(ret);
7346 		goto out;
7347 	}
7348 
7349 	mutex_lock(&main_bm_inode->i_mutex);
7350 
7351 	ret = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 0);
7352 	if (ret < 0) {
7353 		mlog_errno(ret);
7354 		goto out_mutex;
7355 	}
7356 	main_bm = (struct ocfs2_dinode *)main_bm_bh->b_data;
7357 
7358 	if (start >= le32_to_cpu(main_bm->i_clusters)) {
7359 		ret = -EINVAL;
7360 		goto out_unlock;
7361 	}
7362 
7363 	len = range->len >> osb->s_clustersize_bits;
7364 	if (start + len > le32_to_cpu(main_bm->i_clusters))
7365 		len = le32_to_cpu(main_bm->i_clusters) - start;
7366 
7367 	trace_ocfs2_trim_fs(start, len, minlen);
7368 
7369 	/* Determine first and last group to examine based on start and len */
7370 	first_group = ocfs2_which_cluster_group(main_bm_inode, start);
7371 	if (first_group == osb->first_cluster_group_blkno)
7372 		first_bit = start;
7373 	else
7374 		first_bit = start - ocfs2_blocks_to_clusters(sb, first_group);
7375 	last_group = ocfs2_which_cluster_group(main_bm_inode, start + len - 1);
7376 	last_bit = osb->bitmap_cpg;
7377 
7378 	trimmed = 0;
7379 	for (group = first_group; group <= last_group;) {
7380 		if (first_bit + len >= osb->bitmap_cpg)
7381 			last_bit = osb->bitmap_cpg;
7382 		else
7383 			last_bit = first_bit + len;
7384 
7385 		ret = ocfs2_read_group_descriptor(main_bm_inode,
7386 						  main_bm, group,
7387 						  &gd_bh);
7388 		if (ret < 0) {
7389 			mlog_errno(ret);
7390 			break;
7391 		}
7392 
7393 		gd = (struct ocfs2_group_desc *)gd_bh->b_data;
7394 		cnt = ocfs2_trim_group(sb, gd, first_bit, last_bit, minlen);
7395 		brelse(gd_bh);
7396 		gd_bh = NULL;
7397 		if (cnt < 0) {
7398 			ret = cnt;
7399 			mlog_errno(ret);
7400 			break;
7401 		}
7402 
7403 		trimmed += cnt;
7404 		len -= osb->bitmap_cpg - first_bit;
7405 		first_bit = 0;
7406 		if (group == osb->first_cluster_group_blkno)
7407 			group = ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7408 		else
7409 			group += ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7410 	}
7411 	range->len = trimmed * sb->s_blocksize;
7412 out_unlock:
7413 	ocfs2_inode_unlock(main_bm_inode, 0);
7414 	brelse(main_bm_bh);
7415 out_mutex:
7416 	mutex_unlock(&main_bm_inode->i_mutex);
7417 	iput(main_bm_inode);
7418 out:
7419 	return ret;
7420 }
7421