1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * alloc.c 5 * 6 * Extent allocs and frees 7 * 8 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/swap.h> 31 #include <linux/quotaops.h> 32 33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC 34 #include <cluster/masklog.h> 35 36 #include "ocfs2.h" 37 38 #include "alloc.h" 39 #include "aops.h" 40 #include "blockcheck.h" 41 #include "dlmglue.h" 42 #include "extent_map.h" 43 #include "inode.h" 44 #include "journal.h" 45 #include "localalloc.h" 46 #include "suballoc.h" 47 #include "sysfile.h" 48 #include "file.h" 49 #include "super.h" 50 #include "uptodate.h" 51 #include "xattr.h" 52 53 #include "buffer_head_io.h" 54 55 56 /* 57 * Operations for a specific extent tree type. 58 * 59 * To implement an on-disk btree (extent tree) type in ocfs2, add 60 * an ocfs2_extent_tree_operations structure and the matching 61 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it 62 * for the allocation portion of the extent tree. 63 */ 64 struct ocfs2_extent_tree_operations { 65 /* 66 * last_eb_blk is the block number of the right most leaf extent 67 * block. Most on-disk structures containing an extent tree store 68 * this value for fast access. The ->eo_set_last_eb_blk() and 69 * ->eo_get_last_eb_blk() operations access this value. They are 70 * both required. 71 */ 72 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et, 73 u64 blkno); 74 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et); 75 76 /* 77 * The on-disk structure usually keeps track of how many total 78 * clusters are stored in this extent tree. This function updates 79 * that value. new_clusters is the delta, and must be 80 * added to the total. Required. 81 */ 82 void (*eo_update_clusters)(struct inode *inode, 83 struct ocfs2_extent_tree *et, 84 u32 new_clusters); 85 86 /* 87 * If ->eo_insert_check() exists, it is called before rec is 88 * inserted into the extent tree. It is optional. 89 */ 90 int (*eo_insert_check)(struct inode *inode, 91 struct ocfs2_extent_tree *et, 92 struct ocfs2_extent_rec *rec); 93 int (*eo_sanity_check)(struct inode *inode, struct ocfs2_extent_tree *et); 94 95 /* 96 * -------------------------------------------------------------- 97 * The remaining are internal to ocfs2_extent_tree and don't have 98 * accessor functions 99 */ 100 101 /* 102 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el. 103 * It is required. 104 */ 105 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et); 106 107 /* 108 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if 109 * it exists. If it does not, et->et_max_leaf_clusters is set 110 * to 0 (unlimited). Optional. 111 */ 112 void (*eo_fill_max_leaf_clusters)(struct inode *inode, 113 struct ocfs2_extent_tree *et); 114 }; 115 116 117 /* 118 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check 119 * in the methods. 120 */ 121 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et); 122 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 123 u64 blkno); 124 static void ocfs2_dinode_update_clusters(struct inode *inode, 125 struct ocfs2_extent_tree *et, 126 u32 clusters); 127 static int ocfs2_dinode_insert_check(struct inode *inode, 128 struct ocfs2_extent_tree *et, 129 struct ocfs2_extent_rec *rec); 130 static int ocfs2_dinode_sanity_check(struct inode *inode, 131 struct ocfs2_extent_tree *et); 132 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et); 133 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = { 134 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk, 135 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk, 136 .eo_update_clusters = ocfs2_dinode_update_clusters, 137 .eo_insert_check = ocfs2_dinode_insert_check, 138 .eo_sanity_check = ocfs2_dinode_sanity_check, 139 .eo_fill_root_el = ocfs2_dinode_fill_root_el, 140 }; 141 142 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 143 u64 blkno) 144 { 145 struct ocfs2_dinode *di = et->et_object; 146 147 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 148 di->i_last_eb_blk = cpu_to_le64(blkno); 149 } 150 151 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et) 152 { 153 struct ocfs2_dinode *di = et->et_object; 154 155 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 156 return le64_to_cpu(di->i_last_eb_blk); 157 } 158 159 static void ocfs2_dinode_update_clusters(struct inode *inode, 160 struct ocfs2_extent_tree *et, 161 u32 clusters) 162 { 163 struct ocfs2_dinode *di = et->et_object; 164 165 le32_add_cpu(&di->i_clusters, clusters); 166 spin_lock(&OCFS2_I(inode)->ip_lock); 167 OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters); 168 spin_unlock(&OCFS2_I(inode)->ip_lock); 169 } 170 171 static int ocfs2_dinode_insert_check(struct inode *inode, 172 struct ocfs2_extent_tree *et, 173 struct ocfs2_extent_rec *rec) 174 { 175 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 176 177 BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL); 178 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) && 179 (OCFS2_I(inode)->ip_clusters != 180 le32_to_cpu(rec->e_cpos)), 181 "Device %s, asking for sparse allocation: inode %llu, " 182 "cpos %u, clusters %u\n", 183 osb->dev_str, 184 (unsigned long long)OCFS2_I(inode)->ip_blkno, 185 rec->e_cpos, 186 OCFS2_I(inode)->ip_clusters); 187 188 return 0; 189 } 190 191 static int ocfs2_dinode_sanity_check(struct inode *inode, 192 struct ocfs2_extent_tree *et) 193 { 194 struct ocfs2_dinode *di = et->et_object; 195 196 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 197 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 198 199 return 0; 200 } 201 202 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et) 203 { 204 struct ocfs2_dinode *di = et->et_object; 205 206 et->et_root_el = &di->id2.i_list; 207 } 208 209 210 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et) 211 { 212 struct ocfs2_xattr_value_buf *vb = et->et_object; 213 214 et->et_root_el = &vb->vb_xv->xr_list; 215 } 216 217 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et, 218 u64 blkno) 219 { 220 struct ocfs2_xattr_value_buf *vb = et->et_object; 221 222 vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno); 223 } 224 225 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et) 226 { 227 struct ocfs2_xattr_value_buf *vb = et->et_object; 228 229 return le64_to_cpu(vb->vb_xv->xr_last_eb_blk); 230 } 231 232 static void ocfs2_xattr_value_update_clusters(struct inode *inode, 233 struct ocfs2_extent_tree *et, 234 u32 clusters) 235 { 236 struct ocfs2_xattr_value_buf *vb = et->et_object; 237 238 le32_add_cpu(&vb->vb_xv->xr_clusters, clusters); 239 } 240 241 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = { 242 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk, 243 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk, 244 .eo_update_clusters = ocfs2_xattr_value_update_clusters, 245 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el, 246 }; 247 248 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et) 249 { 250 struct ocfs2_xattr_block *xb = et->et_object; 251 252 et->et_root_el = &xb->xb_attrs.xb_root.xt_list; 253 } 254 255 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct inode *inode, 256 struct ocfs2_extent_tree *et) 257 { 258 et->et_max_leaf_clusters = 259 ocfs2_clusters_for_bytes(inode->i_sb, 260 OCFS2_MAX_XATTR_TREE_LEAF_SIZE); 261 } 262 263 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 264 u64 blkno) 265 { 266 struct ocfs2_xattr_block *xb = et->et_object; 267 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 268 269 xt->xt_last_eb_blk = cpu_to_le64(blkno); 270 } 271 272 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 273 { 274 struct ocfs2_xattr_block *xb = et->et_object; 275 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 276 277 return le64_to_cpu(xt->xt_last_eb_blk); 278 } 279 280 static void ocfs2_xattr_tree_update_clusters(struct inode *inode, 281 struct ocfs2_extent_tree *et, 282 u32 clusters) 283 { 284 struct ocfs2_xattr_block *xb = et->et_object; 285 286 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters); 287 } 288 289 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = { 290 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk, 291 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk, 292 .eo_update_clusters = ocfs2_xattr_tree_update_clusters, 293 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el, 294 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters, 295 }; 296 297 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et, 298 struct inode *inode, 299 struct buffer_head *bh, 300 ocfs2_journal_access_func access, 301 void *obj, 302 struct ocfs2_extent_tree_operations *ops) 303 { 304 et->et_ops = ops; 305 et->et_root_bh = bh; 306 et->et_root_journal_access = access; 307 if (!obj) 308 obj = (void *)bh->b_data; 309 et->et_object = obj; 310 311 et->et_ops->eo_fill_root_el(et); 312 if (!et->et_ops->eo_fill_max_leaf_clusters) 313 et->et_max_leaf_clusters = 0; 314 else 315 et->et_ops->eo_fill_max_leaf_clusters(inode, et); 316 } 317 318 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et, 319 struct inode *inode, 320 struct buffer_head *bh) 321 { 322 __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_di, 323 NULL, &ocfs2_dinode_et_ops); 324 } 325 326 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et, 327 struct inode *inode, 328 struct buffer_head *bh) 329 { 330 __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_xb, 331 NULL, &ocfs2_xattr_tree_et_ops); 332 } 333 334 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et, 335 struct inode *inode, 336 struct ocfs2_xattr_value_buf *vb) 337 { 338 __ocfs2_init_extent_tree(et, inode, vb->vb_bh, vb->vb_access, vb, 339 &ocfs2_xattr_value_et_ops); 340 } 341 342 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et, 343 u64 new_last_eb_blk) 344 { 345 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk); 346 } 347 348 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et) 349 { 350 return et->et_ops->eo_get_last_eb_blk(et); 351 } 352 353 static inline void ocfs2_et_update_clusters(struct inode *inode, 354 struct ocfs2_extent_tree *et, 355 u32 clusters) 356 { 357 et->et_ops->eo_update_clusters(inode, et, clusters); 358 } 359 360 static inline int ocfs2_et_root_journal_access(handle_t *handle, 361 struct inode *inode, 362 struct ocfs2_extent_tree *et, 363 int type) 364 { 365 return et->et_root_journal_access(handle, inode, et->et_root_bh, 366 type); 367 } 368 369 static inline int ocfs2_et_insert_check(struct inode *inode, 370 struct ocfs2_extent_tree *et, 371 struct ocfs2_extent_rec *rec) 372 { 373 int ret = 0; 374 375 if (et->et_ops->eo_insert_check) 376 ret = et->et_ops->eo_insert_check(inode, et, rec); 377 return ret; 378 } 379 380 static inline int ocfs2_et_sanity_check(struct inode *inode, 381 struct ocfs2_extent_tree *et) 382 { 383 int ret = 0; 384 385 if (et->et_ops->eo_sanity_check) 386 ret = et->et_ops->eo_sanity_check(inode, et); 387 return ret; 388 } 389 390 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc); 391 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 392 struct ocfs2_extent_block *eb); 393 394 /* 395 * Structures which describe a path through a btree, and functions to 396 * manipulate them. 397 * 398 * The idea here is to be as generic as possible with the tree 399 * manipulation code. 400 */ 401 struct ocfs2_path_item { 402 struct buffer_head *bh; 403 struct ocfs2_extent_list *el; 404 }; 405 406 #define OCFS2_MAX_PATH_DEPTH 5 407 408 struct ocfs2_path { 409 int p_tree_depth; 410 ocfs2_journal_access_func p_root_access; 411 struct ocfs2_path_item p_node[OCFS2_MAX_PATH_DEPTH]; 412 }; 413 414 #define path_root_bh(_path) ((_path)->p_node[0].bh) 415 #define path_root_el(_path) ((_path)->p_node[0].el) 416 #define path_root_access(_path)((_path)->p_root_access) 417 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh) 418 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el) 419 #define path_num_items(_path) ((_path)->p_tree_depth + 1) 420 421 /* 422 * Reset the actual path elements so that we can re-use the structure 423 * to build another path. Generally, this involves freeing the buffer 424 * heads. 425 */ 426 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root) 427 { 428 int i, start = 0, depth = 0; 429 struct ocfs2_path_item *node; 430 431 if (keep_root) 432 start = 1; 433 434 for(i = start; i < path_num_items(path); i++) { 435 node = &path->p_node[i]; 436 437 brelse(node->bh); 438 node->bh = NULL; 439 node->el = NULL; 440 } 441 442 /* 443 * Tree depth may change during truncate, or insert. If we're 444 * keeping the root extent list, then make sure that our path 445 * structure reflects the proper depth. 446 */ 447 if (keep_root) 448 depth = le16_to_cpu(path_root_el(path)->l_tree_depth); 449 else 450 path_root_access(path) = NULL; 451 452 path->p_tree_depth = depth; 453 } 454 455 static void ocfs2_free_path(struct ocfs2_path *path) 456 { 457 if (path) { 458 ocfs2_reinit_path(path, 0); 459 kfree(path); 460 } 461 } 462 463 /* 464 * All the elements of src into dest. After this call, src could be freed 465 * without affecting dest. 466 * 467 * Both paths should have the same root. Any non-root elements of dest 468 * will be freed. 469 */ 470 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src) 471 { 472 int i; 473 474 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 475 BUG_ON(path_root_el(dest) != path_root_el(src)); 476 BUG_ON(path_root_access(dest) != path_root_access(src)); 477 478 ocfs2_reinit_path(dest, 1); 479 480 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 481 dest->p_node[i].bh = src->p_node[i].bh; 482 dest->p_node[i].el = src->p_node[i].el; 483 484 if (dest->p_node[i].bh) 485 get_bh(dest->p_node[i].bh); 486 } 487 } 488 489 /* 490 * Make the *dest path the same as src and re-initialize src path to 491 * have a root only. 492 */ 493 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src) 494 { 495 int i; 496 497 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 498 BUG_ON(path_root_access(dest) != path_root_access(src)); 499 500 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 501 brelse(dest->p_node[i].bh); 502 503 dest->p_node[i].bh = src->p_node[i].bh; 504 dest->p_node[i].el = src->p_node[i].el; 505 506 src->p_node[i].bh = NULL; 507 src->p_node[i].el = NULL; 508 } 509 } 510 511 /* 512 * Insert an extent block at given index. 513 * 514 * This will not take an additional reference on eb_bh. 515 */ 516 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index, 517 struct buffer_head *eb_bh) 518 { 519 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data; 520 521 /* 522 * Right now, no root bh is an extent block, so this helps 523 * catch code errors with dinode trees. The assertion can be 524 * safely removed if we ever need to insert extent block 525 * structures at the root. 526 */ 527 BUG_ON(index == 0); 528 529 path->p_node[index].bh = eb_bh; 530 path->p_node[index].el = &eb->h_list; 531 } 532 533 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh, 534 struct ocfs2_extent_list *root_el, 535 ocfs2_journal_access_func access) 536 { 537 struct ocfs2_path *path; 538 539 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH); 540 541 path = kzalloc(sizeof(*path), GFP_NOFS); 542 if (path) { 543 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth); 544 get_bh(root_bh); 545 path_root_bh(path) = root_bh; 546 path_root_el(path) = root_el; 547 path_root_access(path) = access; 548 } 549 550 return path; 551 } 552 553 static struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path) 554 { 555 return ocfs2_new_path(path_root_bh(path), path_root_el(path), 556 path_root_access(path)); 557 } 558 559 static struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et) 560 { 561 return ocfs2_new_path(et->et_root_bh, et->et_root_el, 562 et->et_root_journal_access); 563 } 564 565 /* 566 * Journal the buffer at depth idx. All idx>0 are extent_blocks, 567 * otherwise it's the root_access function. 568 * 569 * I don't like the way this function's name looks next to 570 * ocfs2_journal_access_path(), but I don't have a better one. 571 */ 572 static int ocfs2_path_bh_journal_access(handle_t *handle, 573 struct inode *inode, 574 struct ocfs2_path *path, 575 int idx) 576 { 577 ocfs2_journal_access_func access = path_root_access(path); 578 579 if (!access) 580 access = ocfs2_journal_access; 581 582 if (idx) 583 access = ocfs2_journal_access_eb; 584 585 return access(handle, inode, path->p_node[idx].bh, 586 OCFS2_JOURNAL_ACCESS_WRITE); 587 } 588 589 /* 590 * Convenience function to journal all components in a path. 591 */ 592 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle, 593 struct ocfs2_path *path) 594 { 595 int i, ret = 0; 596 597 if (!path) 598 goto out; 599 600 for(i = 0; i < path_num_items(path); i++) { 601 ret = ocfs2_path_bh_journal_access(handle, inode, path, i); 602 if (ret < 0) { 603 mlog_errno(ret); 604 goto out; 605 } 606 } 607 608 out: 609 return ret; 610 } 611 612 /* 613 * Return the index of the extent record which contains cluster #v_cluster. 614 * -1 is returned if it was not found. 615 * 616 * Should work fine on interior and exterior nodes. 617 */ 618 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster) 619 { 620 int ret = -1; 621 int i; 622 struct ocfs2_extent_rec *rec; 623 u32 rec_end, rec_start, clusters; 624 625 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 626 rec = &el->l_recs[i]; 627 628 rec_start = le32_to_cpu(rec->e_cpos); 629 clusters = ocfs2_rec_clusters(el, rec); 630 631 rec_end = rec_start + clusters; 632 633 if (v_cluster >= rec_start && v_cluster < rec_end) { 634 ret = i; 635 break; 636 } 637 } 638 639 return ret; 640 } 641 642 enum ocfs2_contig_type { 643 CONTIG_NONE = 0, 644 CONTIG_LEFT, 645 CONTIG_RIGHT, 646 CONTIG_LEFTRIGHT, 647 }; 648 649 650 /* 651 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and 652 * ocfs2_extent_contig only work properly against leaf nodes! 653 */ 654 static int ocfs2_block_extent_contig(struct super_block *sb, 655 struct ocfs2_extent_rec *ext, 656 u64 blkno) 657 { 658 u64 blk_end = le64_to_cpu(ext->e_blkno); 659 660 blk_end += ocfs2_clusters_to_blocks(sb, 661 le16_to_cpu(ext->e_leaf_clusters)); 662 663 return blkno == blk_end; 664 } 665 666 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left, 667 struct ocfs2_extent_rec *right) 668 { 669 u32 left_range; 670 671 left_range = le32_to_cpu(left->e_cpos) + 672 le16_to_cpu(left->e_leaf_clusters); 673 674 return (left_range == le32_to_cpu(right->e_cpos)); 675 } 676 677 static enum ocfs2_contig_type 678 ocfs2_extent_contig(struct inode *inode, 679 struct ocfs2_extent_rec *ext, 680 struct ocfs2_extent_rec *insert_rec) 681 { 682 u64 blkno = le64_to_cpu(insert_rec->e_blkno); 683 684 /* 685 * Refuse to coalesce extent records with different flag 686 * fields - we don't want to mix unwritten extents with user 687 * data. 688 */ 689 if (ext->e_flags != insert_rec->e_flags) 690 return CONTIG_NONE; 691 692 if (ocfs2_extents_adjacent(ext, insert_rec) && 693 ocfs2_block_extent_contig(inode->i_sb, ext, blkno)) 694 return CONTIG_RIGHT; 695 696 blkno = le64_to_cpu(ext->e_blkno); 697 if (ocfs2_extents_adjacent(insert_rec, ext) && 698 ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno)) 699 return CONTIG_LEFT; 700 701 return CONTIG_NONE; 702 } 703 704 /* 705 * NOTE: We can have pretty much any combination of contiguousness and 706 * appending. 707 * 708 * The usefulness of APPEND_TAIL is more in that it lets us know that 709 * we'll have to update the path to that leaf. 710 */ 711 enum ocfs2_append_type { 712 APPEND_NONE = 0, 713 APPEND_TAIL, 714 }; 715 716 enum ocfs2_split_type { 717 SPLIT_NONE = 0, 718 SPLIT_LEFT, 719 SPLIT_RIGHT, 720 }; 721 722 struct ocfs2_insert_type { 723 enum ocfs2_split_type ins_split; 724 enum ocfs2_append_type ins_appending; 725 enum ocfs2_contig_type ins_contig; 726 int ins_contig_index; 727 int ins_tree_depth; 728 }; 729 730 struct ocfs2_merge_ctxt { 731 enum ocfs2_contig_type c_contig_type; 732 int c_has_empty_extent; 733 int c_split_covers_rec; 734 }; 735 736 static int ocfs2_validate_extent_block(struct super_block *sb, 737 struct buffer_head *bh) 738 { 739 int rc; 740 struct ocfs2_extent_block *eb = 741 (struct ocfs2_extent_block *)bh->b_data; 742 743 mlog(0, "Validating extent block %llu\n", 744 (unsigned long long)bh->b_blocknr); 745 746 BUG_ON(!buffer_uptodate(bh)); 747 748 /* 749 * If the ecc fails, we return the error but otherwise 750 * leave the filesystem running. We know any error is 751 * local to this block. 752 */ 753 rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check); 754 if (rc) { 755 mlog(ML_ERROR, "Checksum failed for extent block %llu\n", 756 (unsigned long long)bh->b_blocknr); 757 return rc; 758 } 759 760 /* 761 * Errors after here are fatal. 762 */ 763 764 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 765 ocfs2_error(sb, 766 "Extent block #%llu has bad signature %.*s", 767 (unsigned long long)bh->b_blocknr, 7, 768 eb->h_signature); 769 return -EINVAL; 770 } 771 772 if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) { 773 ocfs2_error(sb, 774 "Extent block #%llu has an invalid h_blkno " 775 "of %llu", 776 (unsigned long long)bh->b_blocknr, 777 (unsigned long long)le64_to_cpu(eb->h_blkno)); 778 return -EINVAL; 779 } 780 781 if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) { 782 ocfs2_error(sb, 783 "Extent block #%llu has an invalid " 784 "h_fs_generation of #%u", 785 (unsigned long long)bh->b_blocknr, 786 le32_to_cpu(eb->h_fs_generation)); 787 return -EINVAL; 788 } 789 790 return 0; 791 } 792 793 int ocfs2_read_extent_block(struct inode *inode, u64 eb_blkno, 794 struct buffer_head **bh) 795 { 796 int rc; 797 struct buffer_head *tmp = *bh; 798 799 rc = ocfs2_read_block(inode, eb_blkno, &tmp, 800 ocfs2_validate_extent_block); 801 802 /* If ocfs2_read_block() got us a new bh, pass it up. */ 803 if (!rc && !*bh) 804 *bh = tmp; 805 806 return rc; 807 } 808 809 810 /* 811 * How many free extents have we got before we need more meta data? 812 */ 813 int ocfs2_num_free_extents(struct ocfs2_super *osb, 814 struct inode *inode, 815 struct ocfs2_extent_tree *et) 816 { 817 int retval; 818 struct ocfs2_extent_list *el = NULL; 819 struct ocfs2_extent_block *eb; 820 struct buffer_head *eb_bh = NULL; 821 u64 last_eb_blk = 0; 822 823 mlog_entry_void(); 824 825 el = et->et_root_el; 826 last_eb_blk = ocfs2_et_get_last_eb_blk(et); 827 828 if (last_eb_blk) { 829 retval = ocfs2_read_extent_block(inode, last_eb_blk, &eb_bh); 830 if (retval < 0) { 831 mlog_errno(retval); 832 goto bail; 833 } 834 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 835 el = &eb->h_list; 836 } 837 838 BUG_ON(el->l_tree_depth != 0); 839 840 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec); 841 bail: 842 brelse(eb_bh); 843 844 mlog_exit(retval); 845 return retval; 846 } 847 848 /* expects array to already be allocated 849 * 850 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and 851 * l_count for you 852 */ 853 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb, 854 handle_t *handle, 855 struct inode *inode, 856 int wanted, 857 struct ocfs2_alloc_context *meta_ac, 858 struct buffer_head *bhs[]) 859 { 860 int count, status, i; 861 u16 suballoc_bit_start; 862 u32 num_got; 863 u64 first_blkno; 864 struct ocfs2_extent_block *eb; 865 866 mlog_entry_void(); 867 868 count = 0; 869 while (count < wanted) { 870 status = ocfs2_claim_metadata(osb, 871 handle, 872 meta_ac, 873 wanted - count, 874 &suballoc_bit_start, 875 &num_got, 876 &first_blkno); 877 if (status < 0) { 878 mlog_errno(status); 879 goto bail; 880 } 881 882 for(i = count; i < (num_got + count); i++) { 883 bhs[i] = sb_getblk(osb->sb, first_blkno); 884 if (bhs[i] == NULL) { 885 status = -EIO; 886 mlog_errno(status); 887 goto bail; 888 } 889 ocfs2_set_new_buffer_uptodate(inode, bhs[i]); 890 891 status = ocfs2_journal_access_eb(handle, inode, bhs[i], 892 OCFS2_JOURNAL_ACCESS_CREATE); 893 if (status < 0) { 894 mlog_errno(status); 895 goto bail; 896 } 897 898 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize); 899 eb = (struct ocfs2_extent_block *) bhs[i]->b_data; 900 /* Ok, setup the minimal stuff here. */ 901 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); 902 eb->h_blkno = cpu_to_le64(first_blkno); 903 eb->h_fs_generation = cpu_to_le32(osb->fs_generation); 904 eb->h_suballoc_slot = cpu_to_le16(osb->slot_num); 905 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start); 906 eb->h_list.l_count = 907 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); 908 909 suballoc_bit_start++; 910 first_blkno++; 911 912 /* We'll also be dirtied by the caller, so 913 * this isn't absolutely necessary. */ 914 status = ocfs2_journal_dirty(handle, bhs[i]); 915 if (status < 0) { 916 mlog_errno(status); 917 goto bail; 918 } 919 } 920 921 count += num_got; 922 } 923 924 status = 0; 925 bail: 926 if (status < 0) { 927 for(i = 0; i < wanted; i++) { 928 brelse(bhs[i]); 929 bhs[i] = NULL; 930 } 931 } 932 mlog_exit(status); 933 return status; 934 } 935 936 /* 937 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth(). 938 * 939 * Returns the sum of the rightmost extent rec logical offset and 940 * cluster count. 941 * 942 * ocfs2_add_branch() uses this to determine what logical cluster 943 * value should be populated into the leftmost new branch records. 944 * 945 * ocfs2_shift_tree_depth() uses this to determine the # clusters 946 * value for the new topmost tree record. 947 */ 948 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el) 949 { 950 int i; 951 952 i = le16_to_cpu(el->l_next_free_rec) - 1; 953 954 return le32_to_cpu(el->l_recs[i].e_cpos) + 955 ocfs2_rec_clusters(el, &el->l_recs[i]); 956 } 957 958 /* 959 * Add an entire tree branch to our inode. eb_bh is the extent block 960 * to start at, if we don't want to start the branch at the dinode 961 * structure. 962 * 963 * last_eb_bh is required as we have to update it's next_leaf pointer 964 * for the new last extent block. 965 * 966 * the new branch will be 'empty' in the sense that every block will 967 * contain a single record with cluster count == 0. 968 */ 969 static int ocfs2_add_branch(struct ocfs2_super *osb, 970 handle_t *handle, 971 struct inode *inode, 972 struct ocfs2_extent_tree *et, 973 struct buffer_head *eb_bh, 974 struct buffer_head **last_eb_bh, 975 struct ocfs2_alloc_context *meta_ac) 976 { 977 int status, new_blocks, i; 978 u64 next_blkno, new_last_eb_blk; 979 struct buffer_head *bh; 980 struct buffer_head **new_eb_bhs = NULL; 981 struct ocfs2_extent_block *eb; 982 struct ocfs2_extent_list *eb_el; 983 struct ocfs2_extent_list *el; 984 u32 new_cpos; 985 986 mlog_entry_void(); 987 988 BUG_ON(!last_eb_bh || !*last_eb_bh); 989 990 if (eb_bh) { 991 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 992 el = &eb->h_list; 993 } else 994 el = et->et_root_el; 995 996 /* we never add a branch to a leaf. */ 997 BUG_ON(!el->l_tree_depth); 998 999 new_blocks = le16_to_cpu(el->l_tree_depth); 1000 1001 /* allocate the number of new eb blocks we need */ 1002 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *), 1003 GFP_KERNEL); 1004 if (!new_eb_bhs) { 1005 status = -ENOMEM; 1006 mlog_errno(status); 1007 goto bail; 1008 } 1009 1010 status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks, 1011 meta_ac, new_eb_bhs); 1012 if (status < 0) { 1013 mlog_errno(status); 1014 goto bail; 1015 } 1016 1017 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data; 1018 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list); 1019 1020 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be 1021 * linked with the rest of the tree. 1022 * conversly, new_eb_bhs[0] is the new bottommost leaf. 1023 * 1024 * when we leave the loop, new_last_eb_blk will point to the 1025 * newest leaf, and next_blkno will point to the topmost extent 1026 * block. */ 1027 next_blkno = new_last_eb_blk = 0; 1028 for(i = 0; i < new_blocks; i++) { 1029 bh = new_eb_bhs[i]; 1030 eb = (struct ocfs2_extent_block *) bh->b_data; 1031 /* ocfs2_create_new_meta_bhs() should create it right! */ 1032 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1033 eb_el = &eb->h_list; 1034 1035 status = ocfs2_journal_access_eb(handle, inode, bh, 1036 OCFS2_JOURNAL_ACCESS_CREATE); 1037 if (status < 0) { 1038 mlog_errno(status); 1039 goto bail; 1040 } 1041 1042 eb->h_next_leaf_blk = 0; 1043 eb_el->l_tree_depth = cpu_to_le16(i); 1044 eb_el->l_next_free_rec = cpu_to_le16(1); 1045 /* 1046 * This actually counts as an empty extent as 1047 * c_clusters == 0 1048 */ 1049 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos); 1050 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno); 1051 /* 1052 * eb_el isn't always an interior node, but even leaf 1053 * nodes want a zero'd flags and reserved field so 1054 * this gets the whole 32 bits regardless of use. 1055 */ 1056 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0); 1057 if (!eb_el->l_tree_depth) 1058 new_last_eb_blk = le64_to_cpu(eb->h_blkno); 1059 1060 status = ocfs2_journal_dirty(handle, bh); 1061 if (status < 0) { 1062 mlog_errno(status); 1063 goto bail; 1064 } 1065 1066 next_blkno = le64_to_cpu(eb->h_blkno); 1067 } 1068 1069 /* This is a bit hairy. We want to update up to three blocks 1070 * here without leaving any of them in an inconsistent state 1071 * in case of error. We don't have to worry about 1072 * journal_dirty erroring as it won't unless we've aborted the 1073 * handle (in which case we would never be here) so reserving 1074 * the write with journal_access is all we need to do. */ 1075 status = ocfs2_journal_access_eb(handle, inode, *last_eb_bh, 1076 OCFS2_JOURNAL_ACCESS_WRITE); 1077 if (status < 0) { 1078 mlog_errno(status); 1079 goto bail; 1080 } 1081 status = ocfs2_et_root_journal_access(handle, inode, et, 1082 OCFS2_JOURNAL_ACCESS_WRITE); 1083 if (status < 0) { 1084 mlog_errno(status); 1085 goto bail; 1086 } 1087 if (eb_bh) { 1088 status = ocfs2_journal_access_eb(handle, inode, eb_bh, 1089 OCFS2_JOURNAL_ACCESS_WRITE); 1090 if (status < 0) { 1091 mlog_errno(status); 1092 goto bail; 1093 } 1094 } 1095 1096 /* Link the new branch into the rest of the tree (el will 1097 * either be on the root_bh, or the extent block passed in. */ 1098 i = le16_to_cpu(el->l_next_free_rec); 1099 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno); 1100 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos); 1101 el->l_recs[i].e_int_clusters = 0; 1102 le16_add_cpu(&el->l_next_free_rec, 1); 1103 1104 /* fe needs a new last extent block pointer, as does the 1105 * next_leaf on the previously last-extent-block. */ 1106 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk); 1107 1108 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 1109 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk); 1110 1111 status = ocfs2_journal_dirty(handle, *last_eb_bh); 1112 if (status < 0) 1113 mlog_errno(status); 1114 status = ocfs2_journal_dirty(handle, et->et_root_bh); 1115 if (status < 0) 1116 mlog_errno(status); 1117 if (eb_bh) { 1118 status = ocfs2_journal_dirty(handle, eb_bh); 1119 if (status < 0) 1120 mlog_errno(status); 1121 } 1122 1123 /* 1124 * Some callers want to track the rightmost leaf so pass it 1125 * back here. 1126 */ 1127 brelse(*last_eb_bh); 1128 get_bh(new_eb_bhs[0]); 1129 *last_eb_bh = new_eb_bhs[0]; 1130 1131 status = 0; 1132 bail: 1133 if (new_eb_bhs) { 1134 for (i = 0; i < new_blocks; i++) 1135 brelse(new_eb_bhs[i]); 1136 kfree(new_eb_bhs); 1137 } 1138 1139 mlog_exit(status); 1140 return status; 1141 } 1142 1143 /* 1144 * adds another level to the allocation tree. 1145 * returns back the new extent block so you can add a branch to it 1146 * after this call. 1147 */ 1148 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb, 1149 handle_t *handle, 1150 struct inode *inode, 1151 struct ocfs2_extent_tree *et, 1152 struct ocfs2_alloc_context *meta_ac, 1153 struct buffer_head **ret_new_eb_bh) 1154 { 1155 int status, i; 1156 u32 new_clusters; 1157 struct buffer_head *new_eb_bh = NULL; 1158 struct ocfs2_extent_block *eb; 1159 struct ocfs2_extent_list *root_el; 1160 struct ocfs2_extent_list *eb_el; 1161 1162 mlog_entry_void(); 1163 1164 status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac, 1165 &new_eb_bh); 1166 if (status < 0) { 1167 mlog_errno(status); 1168 goto bail; 1169 } 1170 1171 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data; 1172 /* ocfs2_create_new_meta_bhs() should create it right! */ 1173 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1174 1175 eb_el = &eb->h_list; 1176 root_el = et->et_root_el; 1177 1178 status = ocfs2_journal_access_eb(handle, inode, new_eb_bh, 1179 OCFS2_JOURNAL_ACCESS_CREATE); 1180 if (status < 0) { 1181 mlog_errno(status); 1182 goto bail; 1183 } 1184 1185 /* copy the root extent list data into the new extent block */ 1186 eb_el->l_tree_depth = root_el->l_tree_depth; 1187 eb_el->l_next_free_rec = root_el->l_next_free_rec; 1188 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1189 eb_el->l_recs[i] = root_el->l_recs[i]; 1190 1191 status = ocfs2_journal_dirty(handle, new_eb_bh); 1192 if (status < 0) { 1193 mlog_errno(status); 1194 goto bail; 1195 } 1196 1197 status = ocfs2_et_root_journal_access(handle, inode, et, 1198 OCFS2_JOURNAL_ACCESS_WRITE); 1199 if (status < 0) { 1200 mlog_errno(status); 1201 goto bail; 1202 } 1203 1204 new_clusters = ocfs2_sum_rightmost_rec(eb_el); 1205 1206 /* update root_bh now */ 1207 le16_add_cpu(&root_el->l_tree_depth, 1); 1208 root_el->l_recs[0].e_cpos = 0; 1209 root_el->l_recs[0].e_blkno = eb->h_blkno; 1210 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters); 1211 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1212 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 1213 root_el->l_next_free_rec = cpu_to_le16(1); 1214 1215 /* If this is our 1st tree depth shift, then last_eb_blk 1216 * becomes the allocated extent block */ 1217 if (root_el->l_tree_depth == cpu_to_le16(1)) 1218 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 1219 1220 status = ocfs2_journal_dirty(handle, et->et_root_bh); 1221 if (status < 0) { 1222 mlog_errno(status); 1223 goto bail; 1224 } 1225 1226 *ret_new_eb_bh = new_eb_bh; 1227 new_eb_bh = NULL; 1228 status = 0; 1229 bail: 1230 brelse(new_eb_bh); 1231 1232 mlog_exit(status); 1233 return status; 1234 } 1235 1236 /* 1237 * Should only be called when there is no space left in any of the 1238 * leaf nodes. What we want to do is find the lowest tree depth 1239 * non-leaf extent block with room for new records. There are three 1240 * valid results of this search: 1241 * 1242 * 1) a lowest extent block is found, then we pass it back in 1243 * *lowest_eb_bh and return '0' 1244 * 1245 * 2) the search fails to find anything, but the root_el has room. We 1246 * pass NULL back in *lowest_eb_bh, but still return '0' 1247 * 1248 * 3) the search fails to find anything AND the root_el is full, in 1249 * which case we return > 0 1250 * 1251 * return status < 0 indicates an error. 1252 */ 1253 static int ocfs2_find_branch_target(struct ocfs2_super *osb, 1254 struct inode *inode, 1255 struct ocfs2_extent_tree *et, 1256 struct buffer_head **target_bh) 1257 { 1258 int status = 0, i; 1259 u64 blkno; 1260 struct ocfs2_extent_block *eb; 1261 struct ocfs2_extent_list *el; 1262 struct buffer_head *bh = NULL; 1263 struct buffer_head *lowest_bh = NULL; 1264 1265 mlog_entry_void(); 1266 1267 *target_bh = NULL; 1268 1269 el = et->et_root_el; 1270 1271 while(le16_to_cpu(el->l_tree_depth) > 1) { 1272 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1273 ocfs2_error(inode->i_sb, "Dinode %llu has empty " 1274 "extent list (next_free_rec == 0)", 1275 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1276 status = -EIO; 1277 goto bail; 1278 } 1279 i = le16_to_cpu(el->l_next_free_rec) - 1; 1280 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1281 if (!blkno) { 1282 ocfs2_error(inode->i_sb, "Dinode %llu has extent " 1283 "list where extent # %d has no physical " 1284 "block start", 1285 (unsigned long long)OCFS2_I(inode)->ip_blkno, i); 1286 status = -EIO; 1287 goto bail; 1288 } 1289 1290 brelse(bh); 1291 bh = NULL; 1292 1293 status = ocfs2_read_extent_block(inode, blkno, &bh); 1294 if (status < 0) { 1295 mlog_errno(status); 1296 goto bail; 1297 } 1298 1299 eb = (struct ocfs2_extent_block *) bh->b_data; 1300 el = &eb->h_list; 1301 1302 if (le16_to_cpu(el->l_next_free_rec) < 1303 le16_to_cpu(el->l_count)) { 1304 brelse(lowest_bh); 1305 lowest_bh = bh; 1306 get_bh(lowest_bh); 1307 } 1308 } 1309 1310 /* If we didn't find one and the fe doesn't have any room, 1311 * then return '1' */ 1312 el = et->et_root_el; 1313 if (!lowest_bh && (el->l_next_free_rec == el->l_count)) 1314 status = 1; 1315 1316 *target_bh = lowest_bh; 1317 bail: 1318 brelse(bh); 1319 1320 mlog_exit(status); 1321 return status; 1322 } 1323 1324 /* 1325 * Grow a b-tree so that it has more records. 1326 * 1327 * We might shift the tree depth in which case existing paths should 1328 * be considered invalid. 1329 * 1330 * Tree depth after the grow is returned via *final_depth. 1331 * 1332 * *last_eb_bh will be updated by ocfs2_add_branch(). 1333 */ 1334 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle, 1335 struct ocfs2_extent_tree *et, int *final_depth, 1336 struct buffer_head **last_eb_bh, 1337 struct ocfs2_alloc_context *meta_ac) 1338 { 1339 int ret, shift; 1340 struct ocfs2_extent_list *el = et->et_root_el; 1341 int depth = le16_to_cpu(el->l_tree_depth); 1342 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1343 struct buffer_head *bh = NULL; 1344 1345 BUG_ON(meta_ac == NULL); 1346 1347 shift = ocfs2_find_branch_target(osb, inode, et, &bh); 1348 if (shift < 0) { 1349 ret = shift; 1350 mlog_errno(ret); 1351 goto out; 1352 } 1353 1354 /* We traveled all the way to the bottom of the allocation tree 1355 * and didn't find room for any more extents - we need to add 1356 * another tree level */ 1357 if (shift) { 1358 BUG_ON(bh); 1359 mlog(0, "need to shift tree depth (current = %d)\n", depth); 1360 1361 /* ocfs2_shift_tree_depth will return us a buffer with 1362 * the new extent block (so we can pass that to 1363 * ocfs2_add_branch). */ 1364 ret = ocfs2_shift_tree_depth(osb, handle, inode, et, 1365 meta_ac, &bh); 1366 if (ret < 0) { 1367 mlog_errno(ret); 1368 goto out; 1369 } 1370 depth++; 1371 if (depth == 1) { 1372 /* 1373 * Special case: we have room now if we shifted from 1374 * tree_depth 0, so no more work needs to be done. 1375 * 1376 * We won't be calling add_branch, so pass 1377 * back *last_eb_bh as the new leaf. At depth 1378 * zero, it should always be null so there's 1379 * no reason to brelse. 1380 */ 1381 BUG_ON(*last_eb_bh); 1382 get_bh(bh); 1383 *last_eb_bh = bh; 1384 goto out; 1385 } 1386 } 1387 1388 /* call ocfs2_add_branch to add the final part of the tree with 1389 * the new data. */ 1390 mlog(0, "add branch. bh = %p\n", bh); 1391 ret = ocfs2_add_branch(osb, handle, inode, et, bh, last_eb_bh, 1392 meta_ac); 1393 if (ret < 0) { 1394 mlog_errno(ret); 1395 goto out; 1396 } 1397 1398 out: 1399 if (final_depth) 1400 *final_depth = depth; 1401 brelse(bh); 1402 return ret; 1403 } 1404 1405 /* 1406 * This function will discard the rightmost extent record. 1407 */ 1408 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el) 1409 { 1410 int next_free = le16_to_cpu(el->l_next_free_rec); 1411 int count = le16_to_cpu(el->l_count); 1412 unsigned int num_bytes; 1413 1414 BUG_ON(!next_free); 1415 /* This will cause us to go off the end of our extent list. */ 1416 BUG_ON(next_free >= count); 1417 1418 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free; 1419 1420 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes); 1421 } 1422 1423 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el, 1424 struct ocfs2_extent_rec *insert_rec) 1425 { 1426 int i, insert_index, next_free, has_empty, num_bytes; 1427 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos); 1428 struct ocfs2_extent_rec *rec; 1429 1430 next_free = le16_to_cpu(el->l_next_free_rec); 1431 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]); 1432 1433 BUG_ON(!next_free); 1434 1435 /* The tree code before us didn't allow enough room in the leaf. */ 1436 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty); 1437 1438 /* 1439 * The easiest way to approach this is to just remove the 1440 * empty extent and temporarily decrement next_free. 1441 */ 1442 if (has_empty) { 1443 /* 1444 * If next_free was 1 (only an empty extent), this 1445 * loop won't execute, which is fine. We still want 1446 * the decrement above to happen. 1447 */ 1448 for(i = 0; i < (next_free - 1); i++) 1449 el->l_recs[i] = el->l_recs[i+1]; 1450 1451 next_free--; 1452 } 1453 1454 /* 1455 * Figure out what the new record index should be. 1456 */ 1457 for(i = 0; i < next_free; i++) { 1458 rec = &el->l_recs[i]; 1459 1460 if (insert_cpos < le32_to_cpu(rec->e_cpos)) 1461 break; 1462 } 1463 insert_index = i; 1464 1465 mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n", 1466 insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count)); 1467 1468 BUG_ON(insert_index < 0); 1469 BUG_ON(insert_index >= le16_to_cpu(el->l_count)); 1470 BUG_ON(insert_index > next_free); 1471 1472 /* 1473 * No need to memmove if we're just adding to the tail. 1474 */ 1475 if (insert_index != next_free) { 1476 BUG_ON(next_free >= le16_to_cpu(el->l_count)); 1477 1478 num_bytes = next_free - insert_index; 1479 num_bytes *= sizeof(struct ocfs2_extent_rec); 1480 memmove(&el->l_recs[insert_index + 1], 1481 &el->l_recs[insert_index], 1482 num_bytes); 1483 } 1484 1485 /* 1486 * Either we had an empty extent, and need to re-increment or 1487 * there was no empty extent on a non full rightmost leaf node, 1488 * in which case we still need to increment. 1489 */ 1490 next_free++; 1491 el->l_next_free_rec = cpu_to_le16(next_free); 1492 /* 1493 * Make sure none of the math above just messed up our tree. 1494 */ 1495 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count)); 1496 1497 el->l_recs[insert_index] = *insert_rec; 1498 1499 } 1500 1501 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el) 1502 { 1503 int size, num_recs = le16_to_cpu(el->l_next_free_rec); 1504 1505 BUG_ON(num_recs == 0); 1506 1507 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 1508 num_recs--; 1509 size = num_recs * sizeof(struct ocfs2_extent_rec); 1510 memmove(&el->l_recs[0], &el->l_recs[1], size); 1511 memset(&el->l_recs[num_recs], 0, 1512 sizeof(struct ocfs2_extent_rec)); 1513 el->l_next_free_rec = cpu_to_le16(num_recs); 1514 } 1515 } 1516 1517 /* 1518 * Create an empty extent record . 1519 * 1520 * l_next_free_rec may be updated. 1521 * 1522 * If an empty extent already exists do nothing. 1523 */ 1524 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el) 1525 { 1526 int next_free = le16_to_cpu(el->l_next_free_rec); 1527 1528 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 1529 1530 if (next_free == 0) 1531 goto set_and_inc; 1532 1533 if (ocfs2_is_empty_extent(&el->l_recs[0])) 1534 return; 1535 1536 mlog_bug_on_msg(el->l_count == el->l_next_free_rec, 1537 "Asked to create an empty extent in a full list:\n" 1538 "count = %u, tree depth = %u", 1539 le16_to_cpu(el->l_count), 1540 le16_to_cpu(el->l_tree_depth)); 1541 1542 ocfs2_shift_records_right(el); 1543 1544 set_and_inc: 1545 le16_add_cpu(&el->l_next_free_rec, 1); 1546 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 1547 } 1548 1549 /* 1550 * For a rotation which involves two leaf nodes, the "root node" is 1551 * the lowest level tree node which contains a path to both leafs. This 1552 * resulting set of information can be used to form a complete "subtree" 1553 * 1554 * This function is passed two full paths from the dinode down to a 1555 * pair of adjacent leaves. It's task is to figure out which path 1556 * index contains the subtree root - this can be the root index itself 1557 * in a worst-case rotation. 1558 * 1559 * The array index of the subtree root is passed back. 1560 */ 1561 static int ocfs2_find_subtree_root(struct inode *inode, 1562 struct ocfs2_path *left, 1563 struct ocfs2_path *right) 1564 { 1565 int i = 0; 1566 1567 /* 1568 * Check that the caller passed in two paths from the same tree. 1569 */ 1570 BUG_ON(path_root_bh(left) != path_root_bh(right)); 1571 1572 do { 1573 i++; 1574 1575 /* 1576 * The caller didn't pass two adjacent paths. 1577 */ 1578 mlog_bug_on_msg(i > left->p_tree_depth, 1579 "Inode %lu, left depth %u, right depth %u\n" 1580 "left leaf blk %llu, right leaf blk %llu\n", 1581 inode->i_ino, left->p_tree_depth, 1582 right->p_tree_depth, 1583 (unsigned long long)path_leaf_bh(left)->b_blocknr, 1584 (unsigned long long)path_leaf_bh(right)->b_blocknr); 1585 } while (left->p_node[i].bh->b_blocknr == 1586 right->p_node[i].bh->b_blocknr); 1587 1588 return i - 1; 1589 } 1590 1591 typedef void (path_insert_t)(void *, struct buffer_head *); 1592 1593 /* 1594 * Traverse a btree path in search of cpos, starting at root_el. 1595 * 1596 * This code can be called with a cpos larger than the tree, in which 1597 * case it will return the rightmost path. 1598 */ 1599 static int __ocfs2_find_path(struct inode *inode, 1600 struct ocfs2_extent_list *root_el, u32 cpos, 1601 path_insert_t *func, void *data) 1602 { 1603 int i, ret = 0; 1604 u32 range; 1605 u64 blkno; 1606 struct buffer_head *bh = NULL; 1607 struct ocfs2_extent_block *eb; 1608 struct ocfs2_extent_list *el; 1609 struct ocfs2_extent_rec *rec; 1610 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1611 1612 el = root_el; 1613 while (el->l_tree_depth) { 1614 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1615 ocfs2_error(inode->i_sb, 1616 "Inode %llu has empty extent list at " 1617 "depth %u\n", 1618 (unsigned long long)oi->ip_blkno, 1619 le16_to_cpu(el->l_tree_depth)); 1620 ret = -EROFS; 1621 goto out; 1622 1623 } 1624 1625 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) { 1626 rec = &el->l_recs[i]; 1627 1628 /* 1629 * In the case that cpos is off the allocation 1630 * tree, this should just wind up returning the 1631 * rightmost record. 1632 */ 1633 range = le32_to_cpu(rec->e_cpos) + 1634 ocfs2_rec_clusters(el, rec); 1635 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 1636 break; 1637 } 1638 1639 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1640 if (blkno == 0) { 1641 ocfs2_error(inode->i_sb, 1642 "Inode %llu has bad blkno in extent list " 1643 "at depth %u (index %d)\n", 1644 (unsigned long long)oi->ip_blkno, 1645 le16_to_cpu(el->l_tree_depth), i); 1646 ret = -EROFS; 1647 goto out; 1648 } 1649 1650 brelse(bh); 1651 bh = NULL; 1652 ret = ocfs2_read_extent_block(inode, blkno, &bh); 1653 if (ret) { 1654 mlog_errno(ret); 1655 goto out; 1656 } 1657 1658 eb = (struct ocfs2_extent_block *) bh->b_data; 1659 el = &eb->h_list; 1660 1661 if (le16_to_cpu(el->l_next_free_rec) > 1662 le16_to_cpu(el->l_count)) { 1663 ocfs2_error(inode->i_sb, 1664 "Inode %llu has bad count in extent list " 1665 "at block %llu (next free=%u, count=%u)\n", 1666 (unsigned long long)oi->ip_blkno, 1667 (unsigned long long)bh->b_blocknr, 1668 le16_to_cpu(el->l_next_free_rec), 1669 le16_to_cpu(el->l_count)); 1670 ret = -EROFS; 1671 goto out; 1672 } 1673 1674 if (func) 1675 func(data, bh); 1676 } 1677 1678 out: 1679 /* 1680 * Catch any trailing bh that the loop didn't handle. 1681 */ 1682 brelse(bh); 1683 1684 return ret; 1685 } 1686 1687 /* 1688 * Given an initialized path (that is, it has a valid root extent 1689 * list), this function will traverse the btree in search of the path 1690 * which would contain cpos. 1691 * 1692 * The path traveled is recorded in the path structure. 1693 * 1694 * Note that this will not do any comparisons on leaf node extent 1695 * records, so it will work fine in the case that we just added a tree 1696 * branch. 1697 */ 1698 struct find_path_data { 1699 int index; 1700 struct ocfs2_path *path; 1701 }; 1702 static void find_path_ins(void *data, struct buffer_head *bh) 1703 { 1704 struct find_path_data *fp = data; 1705 1706 get_bh(bh); 1707 ocfs2_path_insert_eb(fp->path, fp->index, bh); 1708 fp->index++; 1709 } 1710 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path, 1711 u32 cpos) 1712 { 1713 struct find_path_data data; 1714 1715 data.index = 1; 1716 data.path = path; 1717 return __ocfs2_find_path(inode, path_root_el(path), cpos, 1718 find_path_ins, &data); 1719 } 1720 1721 static void find_leaf_ins(void *data, struct buffer_head *bh) 1722 { 1723 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data; 1724 struct ocfs2_extent_list *el = &eb->h_list; 1725 struct buffer_head **ret = data; 1726 1727 /* We want to retain only the leaf block. */ 1728 if (le16_to_cpu(el->l_tree_depth) == 0) { 1729 get_bh(bh); 1730 *ret = bh; 1731 } 1732 } 1733 /* 1734 * Find the leaf block in the tree which would contain cpos. No 1735 * checking of the actual leaf is done. 1736 * 1737 * Some paths want to call this instead of allocating a path structure 1738 * and calling ocfs2_find_path(). 1739 * 1740 * This function doesn't handle non btree extent lists. 1741 */ 1742 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el, 1743 u32 cpos, struct buffer_head **leaf_bh) 1744 { 1745 int ret; 1746 struct buffer_head *bh = NULL; 1747 1748 ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh); 1749 if (ret) { 1750 mlog_errno(ret); 1751 goto out; 1752 } 1753 1754 *leaf_bh = bh; 1755 out: 1756 return ret; 1757 } 1758 1759 /* 1760 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation. 1761 * 1762 * Basically, we've moved stuff around at the bottom of the tree and 1763 * we need to fix up the extent records above the changes to reflect 1764 * the new changes. 1765 * 1766 * left_rec: the record on the left. 1767 * left_child_el: is the child list pointed to by left_rec 1768 * right_rec: the record to the right of left_rec 1769 * right_child_el: is the child list pointed to by right_rec 1770 * 1771 * By definition, this only works on interior nodes. 1772 */ 1773 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec, 1774 struct ocfs2_extent_list *left_child_el, 1775 struct ocfs2_extent_rec *right_rec, 1776 struct ocfs2_extent_list *right_child_el) 1777 { 1778 u32 left_clusters, right_end; 1779 1780 /* 1781 * Interior nodes never have holes. Their cpos is the cpos of 1782 * the leftmost record in their child list. Their cluster 1783 * count covers the full theoretical range of their child list 1784 * - the range between their cpos and the cpos of the record 1785 * immediately to their right. 1786 */ 1787 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos); 1788 if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) { 1789 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1); 1790 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos); 1791 } 1792 left_clusters -= le32_to_cpu(left_rec->e_cpos); 1793 left_rec->e_int_clusters = cpu_to_le32(left_clusters); 1794 1795 /* 1796 * Calculate the rightmost cluster count boundary before 1797 * moving cpos - we will need to adjust clusters after 1798 * updating e_cpos to keep the same highest cluster count. 1799 */ 1800 right_end = le32_to_cpu(right_rec->e_cpos); 1801 right_end += le32_to_cpu(right_rec->e_int_clusters); 1802 1803 right_rec->e_cpos = left_rec->e_cpos; 1804 le32_add_cpu(&right_rec->e_cpos, left_clusters); 1805 1806 right_end -= le32_to_cpu(right_rec->e_cpos); 1807 right_rec->e_int_clusters = cpu_to_le32(right_end); 1808 } 1809 1810 /* 1811 * Adjust the adjacent root node records involved in a 1812 * rotation. left_el_blkno is passed in as a key so that we can easily 1813 * find it's index in the root list. 1814 */ 1815 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el, 1816 struct ocfs2_extent_list *left_el, 1817 struct ocfs2_extent_list *right_el, 1818 u64 left_el_blkno) 1819 { 1820 int i; 1821 1822 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <= 1823 le16_to_cpu(left_el->l_tree_depth)); 1824 1825 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) { 1826 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno) 1827 break; 1828 } 1829 1830 /* 1831 * The path walking code should have never returned a root and 1832 * two paths which are not adjacent. 1833 */ 1834 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1)); 1835 1836 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el, 1837 &root_el->l_recs[i + 1], right_el); 1838 } 1839 1840 /* 1841 * We've changed a leaf block (in right_path) and need to reflect that 1842 * change back up the subtree. 1843 * 1844 * This happens in multiple places: 1845 * - When we've moved an extent record from the left path leaf to the right 1846 * path leaf to make room for an empty extent in the left path leaf. 1847 * - When our insert into the right path leaf is at the leftmost edge 1848 * and requires an update of the path immediately to it's left. This 1849 * can occur at the end of some types of rotation and appending inserts. 1850 * - When we've adjusted the last extent record in the left path leaf and the 1851 * 1st extent record in the right path leaf during cross extent block merge. 1852 */ 1853 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle, 1854 struct ocfs2_path *left_path, 1855 struct ocfs2_path *right_path, 1856 int subtree_index) 1857 { 1858 int ret, i, idx; 1859 struct ocfs2_extent_list *el, *left_el, *right_el; 1860 struct ocfs2_extent_rec *left_rec, *right_rec; 1861 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 1862 1863 /* 1864 * Update the counts and position values within all the 1865 * interior nodes to reflect the leaf rotation we just did. 1866 * 1867 * The root node is handled below the loop. 1868 * 1869 * We begin the loop with right_el and left_el pointing to the 1870 * leaf lists and work our way up. 1871 * 1872 * NOTE: within this loop, left_el and right_el always refer 1873 * to the *child* lists. 1874 */ 1875 left_el = path_leaf_el(left_path); 1876 right_el = path_leaf_el(right_path); 1877 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) { 1878 mlog(0, "Adjust records at index %u\n", i); 1879 1880 /* 1881 * One nice property of knowing that all of these 1882 * nodes are below the root is that we only deal with 1883 * the leftmost right node record and the rightmost 1884 * left node record. 1885 */ 1886 el = left_path->p_node[i].el; 1887 idx = le16_to_cpu(left_el->l_next_free_rec) - 1; 1888 left_rec = &el->l_recs[idx]; 1889 1890 el = right_path->p_node[i].el; 1891 right_rec = &el->l_recs[0]; 1892 1893 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec, 1894 right_el); 1895 1896 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh); 1897 if (ret) 1898 mlog_errno(ret); 1899 1900 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh); 1901 if (ret) 1902 mlog_errno(ret); 1903 1904 /* 1905 * Setup our list pointers now so that the current 1906 * parents become children in the next iteration. 1907 */ 1908 left_el = left_path->p_node[i].el; 1909 right_el = right_path->p_node[i].el; 1910 } 1911 1912 /* 1913 * At the root node, adjust the two adjacent records which 1914 * begin our path to the leaves. 1915 */ 1916 1917 el = left_path->p_node[subtree_index].el; 1918 left_el = left_path->p_node[subtree_index + 1].el; 1919 right_el = right_path->p_node[subtree_index + 1].el; 1920 1921 ocfs2_adjust_root_records(el, left_el, right_el, 1922 left_path->p_node[subtree_index + 1].bh->b_blocknr); 1923 1924 root_bh = left_path->p_node[subtree_index].bh; 1925 1926 ret = ocfs2_journal_dirty(handle, root_bh); 1927 if (ret) 1928 mlog_errno(ret); 1929 } 1930 1931 static int ocfs2_rotate_subtree_right(struct inode *inode, 1932 handle_t *handle, 1933 struct ocfs2_path *left_path, 1934 struct ocfs2_path *right_path, 1935 int subtree_index) 1936 { 1937 int ret, i; 1938 struct buffer_head *right_leaf_bh; 1939 struct buffer_head *left_leaf_bh = NULL; 1940 struct buffer_head *root_bh; 1941 struct ocfs2_extent_list *right_el, *left_el; 1942 struct ocfs2_extent_rec move_rec; 1943 1944 left_leaf_bh = path_leaf_bh(left_path); 1945 left_el = path_leaf_el(left_path); 1946 1947 if (left_el->l_next_free_rec != left_el->l_count) { 1948 ocfs2_error(inode->i_sb, 1949 "Inode %llu has non-full interior leaf node %llu" 1950 "(next free = %u)", 1951 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1952 (unsigned long long)left_leaf_bh->b_blocknr, 1953 le16_to_cpu(left_el->l_next_free_rec)); 1954 return -EROFS; 1955 } 1956 1957 /* 1958 * This extent block may already have an empty record, so we 1959 * return early if so. 1960 */ 1961 if (ocfs2_is_empty_extent(&left_el->l_recs[0])) 1962 return 0; 1963 1964 root_bh = left_path->p_node[subtree_index].bh; 1965 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 1966 1967 ret = ocfs2_path_bh_journal_access(handle, inode, right_path, 1968 subtree_index); 1969 if (ret) { 1970 mlog_errno(ret); 1971 goto out; 1972 } 1973 1974 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 1975 ret = ocfs2_path_bh_journal_access(handle, inode, 1976 right_path, i); 1977 if (ret) { 1978 mlog_errno(ret); 1979 goto out; 1980 } 1981 1982 ret = ocfs2_path_bh_journal_access(handle, inode, 1983 left_path, i); 1984 if (ret) { 1985 mlog_errno(ret); 1986 goto out; 1987 } 1988 } 1989 1990 right_leaf_bh = path_leaf_bh(right_path); 1991 right_el = path_leaf_el(right_path); 1992 1993 /* This is a code error, not a disk corruption. */ 1994 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails " 1995 "because rightmost leaf block %llu is empty\n", 1996 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1997 (unsigned long long)right_leaf_bh->b_blocknr); 1998 1999 ocfs2_create_empty_extent(right_el); 2000 2001 ret = ocfs2_journal_dirty(handle, right_leaf_bh); 2002 if (ret) { 2003 mlog_errno(ret); 2004 goto out; 2005 } 2006 2007 /* Do the copy now. */ 2008 i = le16_to_cpu(left_el->l_next_free_rec) - 1; 2009 move_rec = left_el->l_recs[i]; 2010 right_el->l_recs[0] = move_rec; 2011 2012 /* 2013 * Clear out the record we just copied and shift everything 2014 * over, leaving an empty extent in the left leaf. 2015 * 2016 * We temporarily subtract from next_free_rec so that the 2017 * shift will lose the tail record (which is now defunct). 2018 */ 2019 le16_add_cpu(&left_el->l_next_free_rec, -1); 2020 ocfs2_shift_records_right(left_el); 2021 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2022 le16_add_cpu(&left_el->l_next_free_rec, 1); 2023 2024 ret = ocfs2_journal_dirty(handle, left_leaf_bh); 2025 if (ret) { 2026 mlog_errno(ret); 2027 goto out; 2028 } 2029 2030 ocfs2_complete_edge_insert(inode, handle, left_path, right_path, 2031 subtree_index); 2032 2033 out: 2034 return ret; 2035 } 2036 2037 /* 2038 * Given a full path, determine what cpos value would return us a path 2039 * containing the leaf immediately to the left of the current one. 2040 * 2041 * Will return zero if the path passed in is already the leftmost path. 2042 */ 2043 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb, 2044 struct ocfs2_path *path, u32 *cpos) 2045 { 2046 int i, j, ret = 0; 2047 u64 blkno; 2048 struct ocfs2_extent_list *el; 2049 2050 BUG_ON(path->p_tree_depth == 0); 2051 2052 *cpos = 0; 2053 2054 blkno = path_leaf_bh(path)->b_blocknr; 2055 2056 /* Start at the tree node just above the leaf and work our way up. */ 2057 i = path->p_tree_depth - 1; 2058 while (i >= 0) { 2059 el = path->p_node[i].el; 2060 2061 /* 2062 * Find the extent record just before the one in our 2063 * path. 2064 */ 2065 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2066 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2067 if (j == 0) { 2068 if (i == 0) { 2069 /* 2070 * We've determined that the 2071 * path specified is already 2072 * the leftmost one - return a 2073 * cpos of zero. 2074 */ 2075 goto out; 2076 } 2077 /* 2078 * The leftmost record points to our 2079 * leaf - we need to travel up the 2080 * tree one level. 2081 */ 2082 goto next_node; 2083 } 2084 2085 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos); 2086 *cpos = *cpos + ocfs2_rec_clusters(el, 2087 &el->l_recs[j - 1]); 2088 *cpos = *cpos - 1; 2089 goto out; 2090 } 2091 } 2092 2093 /* 2094 * If we got here, we never found a valid node where 2095 * the tree indicated one should be. 2096 */ 2097 ocfs2_error(sb, 2098 "Invalid extent tree at extent block %llu\n", 2099 (unsigned long long)blkno); 2100 ret = -EROFS; 2101 goto out; 2102 2103 next_node: 2104 blkno = path->p_node[i].bh->b_blocknr; 2105 i--; 2106 } 2107 2108 out: 2109 return ret; 2110 } 2111 2112 /* 2113 * Extend the transaction by enough credits to complete the rotation, 2114 * and still leave at least the original number of credits allocated 2115 * to this transaction. 2116 */ 2117 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth, 2118 int op_credits, 2119 struct ocfs2_path *path) 2120 { 2121 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits; 2122 2123 if (handle->h_buffer_credits < credits) 2124 return ocfs2_extend_trans(handle, credits); 2125 2126 return 0; 2127 } 2128 2129 /* 2130 * Trap the case where we're inserting into the theoretical range past 2131 * the _actual_ left leaf range. Otherwise, we'll rotate a record 2132 * whose cpos is less than ours into the right leaf. 2133 * 2134 * It's only necessary to look at the rightmost record of the left 2135 * leaf because the logic that calls us should ensure that the 2136 * theoretical ranges in the path components above the leaves are 2137 * correct. 2138 */ 2139 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path, 2140 u32 insert_cpos) 2141 { 2142 struct ocfs2_extent_list *left_el; 2143 struct ocfs2_extent_rec *rec; 2144 int next_free; 2145 2146 left_el = path_leaf_el(left_path); 2147 next_free = le16_to_cpu(left_el->l_next_free_rec); 2148 rec = &left_el->l_recs[next_free - 1]; 2149 2150 if (insert_cpos > le32_to_cpu(rec->e_cpos)) 2151 return 1; 2152 return 0; 2153 } 2154 2155 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos) 2156 { 2157 int next_free = le16_to_cpu(el->l_next_free_rec); 2158 unsigned int range; 2159 struct ocfs2_extent_rec *rec; 2160 2161 if (next_free == 0) 2162 return 0; 2163 2164 rec = &el->l_recs[0]; 2165 if (ocfs2_is_empty_extent(rec)) { 2166 /* Empty list. */ 2167 if (next_free == 1) 2168 return 0; 2169 rec = &el->l_recs[1]; 2170 } 2171 2172 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2173 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 2174 return 1; 2175 return 0; 2176 } 2177 2178 /* 2179 * Rotate all the records in a btree right one record, starting at insert_cpos. 2180 * 2181 * The path to the rightmost leaf should be passed in. 2182 * 2183 * The array is assumed to be large enough to hold an entire path (tree depth). 2184 * 2185 * Upon succesful return from this function: 2186 * 2187 * - The 'right_path' array will contain a path to the leaf block 2188 * whose range contains e_cpos. 2189 * - That leaf block will have a single empty extent in list index 0. 2190 * - In the case that the rotation requires a post-insert update, 2191 * *ret_left_path will contain a valid path which can be passed to 2192 * ocfs2_insert_path(). 2193 */ 2194 static int ocfs2_rotate_tree_right(struct inode *inode, 2195 handle_t *handle, 2196 enum ocfs2_split_type split, 2197 u32 insert_cpos, 2198 struct ocfs2_path *right_path, 2199 struct ocfs2_path **ret_left_path) 2200 { 2201 int ret, start, orig_credits = handle->h_buffer_credits; 2202 u32 cpos; 2203 struct ocfs2_path *left_path = NULL; 2204 2205 *ret_left_path = NULL; 2206 2207 left_path = ocfs2_new_path_from_path(right_path); 2208 if (!left_path) { 2209 ret = -ENOMEM; 2210 mlog_errno(ret); 2211 goto out; 2212 } 2213 2214 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos); 2215 if (ret) { 2216 mlog_errno(ret); 2217 goto out; 2218 } 2219 2220 mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos); 2221 2222 /* 2223 * What we want to do here is: 2224 * 2225 * 1) Start with the rightmost path. 2226 * 2227 * 2) Determine a path to the leaf block directly to the left 2228 * of that leaf. 2229 * 2230 * 3) Determine the 'subtree root' - the lowest level tree node 2231 * which contains a path to both leaves. 2232 * 2233 * 4) Rotate the subtree. 2234 * 2235 * 5) Find the next subtree by considering the left path to be 2236 * the new right path. 2237 * 2238 * The check at the top of this while loop also accepts 2239 * insert_cpos == cpos because cpos is only a _theoretical_ 2240 * value to get us the left path - insert_cpos might very well 2241 * be filling that hole. 2242 * 2243 * Stop at a cpos of '0' because we either started at the 2244 * leftmost branch (i.e., a tree with one branch and a 2245 * rotation inside of it), or we've gone as far as we can in 2246 * rotating subtrees. 2247 */ 2248 while (cpos && insert_cpos <= cpos) { 2249 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n", 2250 insert_cpos, cpos); 2251 2252 ret = ocfs2_find_path(inode, left_path, cpos); 2253 if (ret) { 2254 mlog_errno(ret); 2255 goto out; 2256 } 2257 2258 mlog_bug_on_msg(path_leaf_bh(left_path) == 2259 path_leaf_bh(right_path), 2260 "Inode %lu: error during insert of %u " 2261 "(left path cpos %u) results in two identical " 2262 "paths ending at %llu\n", 2263 inode->i_ino, insert_cpos, cpos, 2264 (unsigned long long) 2265 path_leaf_bh(left_path)->b_blocknr); 2266 2267 if (split == SPLIT_NONE && 2268 ocfs2_rotate_requires_path_adjustment(left_path, 2269 insert_cpos)) { 2270 2271 /* 2272 * We've rotated the tree as much as we 2273 * should. The rest is up to 2274 * ocfs2_insert_path() to complete, after the 2275 * record insertion. We indicate this 2276 * situation by returning the left path. 2277 * 2278 * The reason we don't adjust the records here 2279 * before the record insert is that an error 2280 * later might break the rule where a parent 2281 * record e_cpos will reflect the actual 2282 * e_cpos of the 1st nonempty record of the 2283 * child list. 2284 */ 2285 *ret_left_path = left_path; 2286 goto out_ret_path; 2287 } 2288 2289 start = ocfs2_find_subtree_root(inode, left_path, right_path); 2290 2291 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n", 2292 start, 2293 (unsigned long long) right_path->p_node[start].bh->b_blocknr, 2294 right_path->p_tree_depth); 2295 2296 ret = ocfs2_extend_rotate_transaction(handle, start, 2297 orig_credits, right_path); 2298 if (ret) { 2299 mlog_errno(ret); 2300 goto out; 2301 } 2302 2303 ret = ocfs2_rotate_subtree_right(inode, handle, left_path, 2304 right_path, start); 2305 if (ret) { 2306 mlog_errno(ret); 2307 goto out; 2308 } 2309 2310 if (split != SPLIT_NONE && 2311 ocfs2_leftmost_rec_contains(path_leaf_el(right_path), 2312 insert_cpos)) { 2313 /* 2314 * A rotate moves the rightmost left leaf 2315 * record over to the leftmost right leaf 2316 * slot. If we're doing an extent split 2317 * instead of a real insert, then we have to 2318 * check that the extent to be split wasn't 2319 * just moved over. If it was, then we can 2320 * exit here, passing left_path back - 2321 * ocfs2_split_extent() is smart enough to 2322 * search both leaves. 2323 */ 2324 *ret_left_path = left_path; 2325 goto out_ret_path; 2326 } 2327 2328 /* 2329 * There is no need to re-read the next right path 2330 * as we know that it'll be our current left 2331 * path. Optimize by copying values instead. 2332 */ 2333 ocfs2_mv_path(right_path, left_path); 2334 2335 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, 2336 &cpos); 2337 if (ret) { 2338 mlog_errno(ret); 2339 goto out; 2340 } 2341 } 2342 2343 out: 2344 ocfs2_free_path(left_path); 2345 2346 out_ret_path: 2347 return ret; 2348 } 2349 2350 static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle, 2351 struct ocfs2_path *path) 2352 { 2353 int i, idx; 2354 struct ocfs2_extent_rec *rec; 2355 struct ocfs2_extent_list *el; 2356 struct ocfs2_extent_block *eb; 2357 u32 range; 2358 2359 /* Path should always be rightmost. */ 2360 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 2361 BUG_ON(eb->h_next_leaf_blk != 0ULL); 2362 2363 el = &eb->h_list; 2364 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 2365 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2366 rec = &el->l_recs[idx]; 2367 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2368 2369 for (i = 0; i < path->p_tree_depth; i++) { 2370 el = path->p_node[i].el; 2371 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2372 rec = &el->l_recs[idx]; 2373 2374 rec->e_int_clusters = cpu_to_le32(range); 2375 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos)); 2376 2377 ocfs2_journal_dirty(handle, path->p_node[i].bh); 2378 } 2379 } 2380 2381 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle, 2382 struct ocfs2_cached_dealloc_ctxt *dealloc, 2383 struct ocfs2_path *path, int unlink_start) 2384 { 2385 int ret, i; 2386 struct ocfs2_extent_block *eb; 2387 struct ocfs2_extent_list *el; 2388 struct buffer_head *bh; 2389 2390 for(i = unlink_start; i < path_num_items(path); i++) { 2391 bh = path->p_node[i].bh; 2392 2393 eb = (struct ocfs2_extent_block *)bh->b_data; 2394 /* 2395 * Not all nodes might have had their final count 2396 * decremented by the caller - handle this here. 2397 */ 2398 el = &eb->h_list; 2399 if (le16_to_cpu(el->l_next_free_rec) > 1) { 2400 mlog(ML_ERROR, 2401 "Inode %llu, attempted to remove extent block " 2402 "%llu with %u records\n", 2403 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2404 (unsigned long long)le64_to_cpu(eb->h_blkno), 2405 le16_to_cpu(el->l_next_free_rec)); 2406 2407 ocfs2_journal_dirty(handle, bh); 2408 ocfs2_remove_from_cache(inode, bh); 2409 continue; 2410 } 2411 2412 el->l_next_free_rec = 0; 2413 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2414 2415 ocfs2_journal_dirty(handle, bh); 2416 2417 ret = ocfs2_cache_extent_block_free(dealloc, eb); 2418 if (ret) 2419 mlog_errno(ret); 2420 2421 ocfs2_remove_from_cache(inode, bh); 2422 } 2423 } 2424 2425 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle, 2426 struct ocfs2_path *left_path, 2427 struct ocfs2_path *right_path, 2428 int subtree_index, 2429 struct ocfs2_cached_dealloc_ctxt *dealloc) 2430 { 2431 int i; 2432 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2433 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el; 2434 struct ocfs2_extent_list *el; 2435 struct ocfs2_extent_block *eb; 2436 2437 el = path_leaf_el(left_path); 2438 2439 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data; 2440 2441 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 2442 if (root_el->l_recs[i].e_blkno == eb->h_blkno) 2443 break; 2444 2445 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec)); 2446 2447 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 2448 le16_add_cpu(&root_el->l_next_free_rec, -1); 2449 2450 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2451 eb->h_next_leaf_blk = 0; 2452 2453 ocfs2_journal_dirty(handle, root_bh); 2454 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2455 2456 ocfs2_unlink_path(inode, handle, dealloc, right_path, 2457 subtree_index + 1); 2458 } 2459 2460 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle, 2461 struct ocfs2_path *left_path, 2462 struct ocfs2_path *right_path, 2463 int subtree_index, 2464 struct ocfs2_cached_dealloc_ctxt *dealloc, 2465 int *deleted, 2466 struct ocfs2_extent_tree *et) 2467 { 2468 int ret, i, del_right_subtree = 0, right_has_empty = 0; 2469 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path); 2470 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el; 2471 struct ocfs2_extent_block *eb; 2472 2473 *deleted = 0; 2474 2475 right_leaf_el = path_leaf_el(right_path); 2476 left_leaf_el = path_leaf_el(left_path); 2477 root_bh = left_path->p_node[subtree_index].bh; 2478 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2479 2480 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0])) 2481 return 0; 2482 2483 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data; 2484 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) { 2485 /* 2486 * It's legal for us to proceed if the right leaf is 2487 * the rightmost one and it has an empty extent. There 2488 * are two cases to handle - whether the leaf will be 2489 * empty after removal or not. If the leaf isn't empty 2490 * then just remove the empty extent up front. The 2491 * next block will handle empty leaves by flagging 2492 * them for unlink. 2493 * 2494 * Non rightmost leaves will throw -EAGAIN and the 2495 * caller can manually move the subtree and retry. 2496 */ 2497 2498 if (eb->h_next_leaf_blk != 0ULL) 2499 return -EAGAIN; 2500 2501 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) { 2502 ret = ocfs2_journal_access_eb(handle, inode, 2503 path_leaf_bh(right_path), 2504 OCFS2_JOURNAL_ACCESS_WRITE); 2505 if (ret) { 2506 mlog_errno(ret); 2507 goto out; 2508 } 2509 2510 ocfs2_remove_empty_extent(right_leaf_el); 2511 } else 2512 right_has_empty = 1; 2513 } 2514 2515 if (eb->h_next_leaf_blk == 0ULL && 2516 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) { 2517 /* 2518 * We have to update i_last_eb_blk during the meta 2519 * data delete. 2520 */ 2521 ret = ocfs2_et_root_journal_access(handle, inode, et, 2522 OCFS2_JOURNAL_ACCESS_WRITE); 2523 if (ret) { 2524 mlog_errno(ret); 2525 goto out; 2526 } 2527 2528 del_right_subtree = 1; 2529 } 2530 2531 /* 2532 * Getting here with an empty extent in the right path implies 2533 * that it's the rightmost path and will be deleted. 2534 */ 2535 BUG_ON(right_has_empty && !del_right_subtree); 2536 2537 ret = ocfs2_path_bh_journal_access(handle, inode, right_path, 2538 subtree_index); 2539 if (ret) { 2540 mlog_errno(ret); 2541 goto out; 2542 } 2543 2544 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2545 ret = ocfs2_path_bh_journal_access(handle, inode, 2546 right_path, i); 2547 if (ret) { 2548 mlog_errno(ret); 2549 goto out; 2550 } 2551 2552 ret = ocfs2_path_bh_journal_access(handle, inode, 2553 left_path, i); 2554 if (ret) { 2555 mlog_errno(ret); 2556 goto out; 2557 } 2558 } 2559 2560 if (!right_has_empty) { 2561 /* 2562 * Only do this if we're moving a real 2563 * record. Otherwise, the action is delayed until 2564 * after removal of the right path in which case we 2565 * can do a simple shift to remove the empty extent. 2566 */ 2567 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]); 2568 memset(&right_leaf_el->l_recs[0], 0, 2569 sizeof(struct ocfs2_extent_rec)); 2570 } 2571 if (eb->h_next_leaf_blk == 0ULL) { 2572 /* 2573 * Move recs over to get rid of empty extent, decrease 2574 * next_free. This is allowed to remove the last 2575 * extent in our leaf (setting l_next_free_rec to 2576 * zero) - the delete code below won't care. 2577 */ 2578 ocfs2_remove_empty_extent(right_leaf_el); 2579 } 2580 2581 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2582 if (ret) 2583 mlog_errno(ret); 2584 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 2585 if (ret) 2586 mlog_errno(ret); 2587 2588 if (del_right_subtree) { 2589 ocfs2_unlink_subtree(inode, handle, left_path, right_path, 2590 subtree_index, dealloc); 2591 ocfs2_update_edge_lengths(inode, handle, left_path); 2592 2593 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2594 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 2595 2596 /* 2597 * Removal of the extent in the left leaf was skipped 2598 * above so we could delete the right path 2599 * 1st. 2600 */ 2601 if (right_has_empty) 2602 ocfs2_remove_empty_extent(left_leaf_el); 2603 2604 ret = ocfs2_journal_dirty(handle, et_root_bh); 2605 if (ret) 2606 mlog_errno(ret); 2607 2608 *deleted = 1; 2609 } else 2610 ocfs2_complete_edge_insert(inode, handle, left_path, right_path, 2611 subtree_index); 2612 2613 out: 2614 return ret; 2615 } 2616 2617 /* 2618 * Given a full path, determine what cpos value would return us a path 2619 * containing the leaf immediately to the right of the current one. 2620 * 2621 * Will return zero if the path passed in is already the rightmost path. 2622 * 2623 * This looks similar, but is subtly different to 2624 * ocfs2_find_cpos_for_left_leaf(). 2625 */ 2626 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb, 2627 struct ocfs2_path *path, u32 *cpos) 2628 { 2629 int i, j, ret = 0; 2630 u64 blkno; 2631 struct ocfs2_extent_list *el; 2632 2633 *cpos = 0; 2634 2635 if (path->p_tree_depth == 0) 2636 return 0; 2637 2638 blkno = path_leaf_bh(path)->b_blocknr; 2639 2640 /* Start at the tree node just above the leaf and work our way up. */ 2641 i = path->p_tree_depth - 1; 2642 while (i >= 0) { 2643 int next_free; 2644 2645 el = path->p_node[i].el; 2646 2647 /* 2648 * Find the extent record just after the one in our 2649 * path. 2650 */ 2651 next_free = le16_to_cpu(el->l_next_free_rec); 2652 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2653 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2654 if (j == (next_free - 1)) { 2655 if (i == 0) { 2656 /* 2657 * We've determined that the 2658 * path specified is already 2659 * the rightmost one - return a 2660 * cpos of zero. 2661 */ 2662 goto out; 2663 } 2664 /* 2665 * The rightmost record points to our 2666 * leaf - we need to travel up the 2667 * tree one level. 2668 */ 2669 goto next_node; 2670 } 2671 2672 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos); 2673 goto out; 2674 } 2675 } 2676 2677 /* 2678 * If we got here, we never found a valid node where 2679 * the tree indicated one should be. 2680 */ 2681 ocfs2_error(sb, 2682 "Invalid extent tree at extent block %llu\n", 2683 (unsigned long long)blkno); 2684 ret = -EROFS; 2685 goto out; 2686 2687 next_node: 2688 blkno = path->p_node[i].bh->b_blocknr; 2689 i--; 2690 } 2691 2692 out: 2693 return ret; 2694 } 2695 2696 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode, 2697 handle_t *handle, 2698 struct ocfs2_path *path) 2699 { 2700 int ret; 2701 struct buffer_head *bh = path_leaf_bh(path); 2702 struct ocfs2_extent_list *el = path_leaf_el(path); 2703 2704 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 2705 return 0; 2706 2707 ret = ocfs2_path_bh_journal_access(handle, inode, path, 2708 path_num_items(path) - 1); 2709 if (ret) { 2710 mlog_errno(ret); 2711 goto out; 2712 } 2713 2714 ocfs2_remove_empty_extent(el); 2715 2716 ret = ocfs2_journal_dirty(handle, bh); 2717 if (ret) 2718 mlog_errno(ret); 2719 2720 out: 2721 return ret; 2722 } 2723 2724 static int __ocfs2_rotate_tree_left(struct inode *inode, 2725 handle_t *handle, int orig_credits, 2726 struct ocfs2_path *path, 2727 struct ocfs2_cached_dealloc_ctxt *dealloc, 2728 struct ocfs2_path **empty_extent_path, 2729 struct ocfs2_extent_tree *et) 2730 { 2731 int ret, subtree_root, deleted; 2732 u32 right_cpos; 2733 struct ocfs2_path *left_path = NULL; 2734 struct ocfs2_path *right_path = NULL; 2735 2736 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0]))); 2737 2738 *empty_extent_path = NULL; 2739 2740 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path, 2741 &right_cpos); 2742 if (ret) { 2743 mlog_errno(ret); 2744 goto out; 2745 } 2746 2747 left_path = ocfs2_new_path_from_path(path); 2748 if (!left_path) { 2749 ret = -ENOMEM; 2750 mlog_errno(ret); 2751 goto out; 2752 } 2753 2754 ocfs2_cp_path(left_path, path); 2755 2756 right_path = ocfs2_new_path_from_path(path); 2757 if (!right_path) { 2758 ret = -ENOMEM; 2759 mlog_errno(ret); 2760 goto out; 2761 } 2762 2763 while (right_cpos) { 2764 ret = ocfs2_find_path(inode, right_path, right_cpos); 2765 if (ret) { 2766 mlog_errno(ret); 2767 goto out; 2768 } 2769 2770 subtree_root = ocfs2_find_subtree_root(inode, left_path, 2771 right_path); 2772 2773 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n", 2774 subtree_root, 2775 (unsigned long long) 2776 right_path->p_node[subtree_root].bh->b_blocknr, 2777 right_path->p_tree_depth); 2778 2779 ret = ocfs2_extend_rotate_transaction(handle, subtree_root, 2780 orig_credits, left_path); 2781 if (ret) { 2782 mlog_errno(ret); 2783 goto out; 2784 } 2785 2786 /* 2787 * Caller might still want to make changes to the 2788 * tree root, so re-add it to the journal here. 2789 */ 2790 ret = ocfs2_path_bh_journal_access(handle, inode, 2791 left_path, 0); 2792 if (ret) { 2793 mlog_errno(ret); 2794 goto out; 2795 } 2796 2797 ret = ocfs2_rotate_subtree_left(inode, handle, left_path, 2798 right_path, subtree_root, 2799 dealloc, &deleted, et); 2800 if (ret == -EAGAIN) { 2801 /* 2802 * The rotation has to temporarily stop due to 2803 * the right subtree having an empty 2804 * extent. Pass it back to the caller for a 2805 * fixup. 2806 */ 2807 *empty_extent_path = right_path; 2808 right_path = NULL; 2809 goto out; 2810 } 2811 if (ret) { 2812 mlog_errno(ret); 2813 goto out; 2814 } 2815 2816 /* 2817 * The subtree rotate might have removed records on 2818 * the rightmost edge. If so, then rotation is 2819 * complete. 2820 */ 2821 if (deleted) 2822 break; 2823 2824 ocfs2_mv_path(left_path, right_path); 2825 2826 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path, 2827 &right_cpos); 2828 if (ret) { 2829 mlog_errno(ret); 2830 goto out; 2831 } 2832 } 2833 2834 out: 2835 ocfs2_free_path(right_path); 2836 ocfs2_free_path(left_path); 2837 2838 return ret; 2839 } 2840 2841 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle, 2842 struct ocfs2_path *path, 2843 struct ocfs2_cached_dealloc_ctxt *dealloc, 2844 struct ocfs2_extent_tree *et) 2845 { 2846 int ret, subtree_index; 2847 u32 cpos; 2848 struct ocfs2_path *left_path = NULL; 2849 struct ocfs2_extent_block *eb; 2850 struct ocfs2_extent_list *el; 2851 2852 2853 ret = ocfs2_et_sanity_check(inode, et); 2854 if (ret) 2855 goto out; 2856 /* 2857 * There's two ways we handle this depending on 2858 * whether path is the only existing one. 2859 */ 2860 ret = ocfs2_extend_rotate_transaction(handle, 0, 2861 handle->h_buffer_credits, 2862 path); 2863 if (ret) { 2864 mlog_errno(ret); 2865 goto out; 2866 } 2867 2868 ret = ocfs2_journal_access_path(inode, handle, path); 2869 if (ret) { 2870 mlog_errno(ret); 2871 goto out; 2872 } 2873 2874 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos); 2875 if (ret) { 2876 mlog_errno(ret); 2877 goto out; 2878 } 2879 2880 if (cpos) { 2881 /* 2882 * We have a path to the left of this one - it needs 2883 * an update too. 2884 */ 2885 left_path = ocfs2_new_path_from_path(path); 2886 if (!left_path) { 2887 ret = -ENOMEM; 2888 mlog_errno(ret); 2889 goto out; 2890 } 2891 2892 ret = ocfs2_find_path(inode, left_path, cpos); 2893 if (ret) { 2894 mlog_errno(ret); 2895 goto out; 2896 } 2897 2898 ret = ocfs2_journal_access_path(inode, handle, left_path); 2899 if (ret) { 2900 mlog_errno(ret); 2901 goto out; 2902 } 2903 2904 subtree_index = ocfs2_find_subtree_root(inode, left_path, path); 2905 2906 ocfs2_unlink_subtree(inode, handle, left_path, path, 2907 subtree_index, dealloc); 2908 ocfs2_update_edge_lengths(inode, handle, left_path); 2909 2910 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2911 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 2912 } else { 2913 /* 2914 * 'path' is also the leftmost path which 2915 * means it must be the only one. This gets 2916 * handled differently because we want to 2917 * revert the inode back to having extents 2918 * in-line. 2919 */ 2920 ocfs2_unlink_path(inode, handle, dealloc, path, 1); 2921 2922 el = et->et_root_el; 2923 el->l_tree_depth = 0; 2924 el->l_next_free_rec = 0; 2925 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2926 2927 ocfs2_et_set_last_eb_blk(et, 0); 2928 } 2929 2930 ocfs2_journal_dirty(handle, path_root_bh(path)); 2931 2932 out: 2933 ocfs2_free_path(left_path); 2934 return ret; 2935 } 2936 2937 /* 2938 * Left rotation of btree records. 2939 * 2940 * In many ways, this is (unsurprisingly) the opposite of right 2941 * rotation. We start at some non-rightmost path containing an empty 2942 * extent in the leaf block. The code works its way to the rightmost 2943 * path by rotating records to the left in every subtree. 2944 * 2945 * This is used by any code which reduces the number of extent records 2946 * in a leaf. After removal, an empty record should be placed in the 2947 * leftmost list position. 2948 * 2949 * This won't handle a length update of the rightmost path records if 2950 * the rightmost tree leaf record is removed so the caller is 2951 * responsible for detecting and correcting that. 2952 */ 2953 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle, 2954 struct ocfs2_path *path, 2955 struct ocfs2_cached_dealloc_ctxt *dealloc, 2956 struct ocfs2_extent_tree *et) 2957 { 2958 int ret, orig_credits = handle->h_buffer_credits; 2959 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL; 2960 struct ocfs2_extent_block *eb; 2961 struct ocfs2_extent_list *el; 2962 2963 el = path_leaf_el(path); 2964 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 2965 return 0; 2966 2967 if (path->p_tree_depth == 0) { 2968 rightmost_no_delete: 2969 /* 2970 * Inline extents. This is trivially handled, so do 2971 * it up front. 2972 */ 2973 ret = ocfs2_rotate_rightmost_leaf_left(inode, handle, 2974 path); 2975 if (ret) 2976 mlog_errno(ret); 2977 goto out; 2978 } 2979 2980 /* 2981 * Handle rightmost branch now. There's several cases: 2982 * 1) simple rotation leaving records in there. That's trivial. 2983 * 2) rotation requiring a branch delete - there's no more 2984 * records left. Two cases of this: 2985 * a) There are branches to the left. 2986 * b) This is also the leftmost (the only) branch. 2987 * 2988 * 1) is handled via ocfs2_rotate_rightmost_leaf_left() 2989 * 2a) we need the left branch so that we can update it with the unlink 2990 * 2b) we need to bring the inode back to inline extents. 2991 */ 2992 2993 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 2994 el = &eb->h_list; 2995 if (eb->h_next_leaf_blk == 0) { 2996 /* 2997 * This gets a bit tricky if we're going to delete the 2998 * rightmost path. Get the other cases out of the way 2999 * 1st. 3000 */ 3001 if (le16_to_cpu(el->l_next_free_rec) > 1) 3002 goto rightmost_no_delete; 3003 3004 if (le16_to_cpu(el->l_next_free_rec) == 0) { 3005 ret = -EIO; 3006 ocfs2_error(inode->i_sb, 3007 "Inode %llu has empty extent block at %llu", 3008 (unsigned long long)OCFS2_I(inode)->ip_blkno, 3009 (unsigned long long)le64_to_cpu(eb->h_blkno)); 3010 goto out; 3011 } 3012 3013 /* 3014 * XXX: The caller can not trust "path" any more after 3015 * this as it will have been deleted. What do we do? 3016 * 3017 * In theory the rotate-for-merge code will never get 3018 * here because it'll always ask for a rotate in a 3019 * nonempty list. 3020 */ 3021 3022 ret = ocfs2_remove_rightmost_path(inode, handle, path, 3023 dealloc, et); 3024 if (ret) 3025 mlog_errno(ret); 3026 goto out; 3027 } 3028 3029 /* 3030 * Now we can loop, remembering the path we get from -EAGAIN 3031 * and restarting from there. 3032 */ 3033 try_rotate: 3034 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path, 3035 dealloc, &restart_path, et); 3036 if (ret && ret != -EAGAIN) { 3037 mlog_errno(ret); 3038 goto out; 3039 } 3040 3041 while (ret == -EAGAIN) { 3042 tmp_path = restart_path; 3043 restart_path = NULL; 3044 3045 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, 3046 tmp_path, dealloc, 3047 &restart_path, et); 3048 if (ret && ret != -EAGAIN) { 3049 mlog_errno(ret); 3050 goto out; 3051 } 3052 3053 ocfs2_free_path(tmp_path); 3054 tmp_path = NULL; 3055 3056 if (ret == 0) 3057 goto try_rotate; 3058 } 3059 3060 out: 3061 ocfs2_free_path(tmp_path); 3062 ocfs2_free_path(restart_path); 3063 return ret; 3064 } 3065 3066 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el, 3067 int index) 3068 { 3069 struct ocfs2_extent_rec *rec = &el->l_recs[index]; 3070 unsigned int size; 3071 3072 if (rec->e_leaf_clusters == 0) { 3073 /* 3074 * We consumed all of the merged-from record. An empty 3075 * extent cannot exist anywhere but the 1st array 3076 * position, so move things over if the merged-from 3077 * record doesn't occupy that position. 3078 * 3079 * This creates a new empty extent so the caller 3080 * should be smart enough to have removed any existing 3081 * ones. 3082 */ 3083 if (index > 0) { 3084 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 3085 size = index * sizeof(struct ocfs2_extent_rec); 3086 memmove(&el->l_recs[1], &el->l_recs[0], size); 3087 } 3088 3089 /* 3090 * Always memset - the caller doesn't check whether it 3091 * created an empty extent, so there could be junk in 3092 * the other fields. 3093 */ 3094 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3095 } 3096 } 3097 3098 static int ocfs2_get_right_path(struct inode *inode, 3099 struct ocfs2_path *left_path, 3100 struct ocfs2_path **ret_right_path) 3101 { 3102 int ret; 3103 u32 right_cpos; 3104 struct ocfs2_path *right_path = NULL; 3105 struct ocfs2_extent_list *left_el; 3106 3107 *ret_right_path = NULL; 3108 3109 /* This function shouldn't be called for non-trees. */ 3110 BUG_ON(left_path->p_tree_depth == 0); 3111 3112 left_el = path_leaf_el(left_path); 3113 BUG_ON(left_el->l_next_free_rec != left_el->l_count); 3114 3115 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path, 3116 &right_cpos); 3117 if (ret) { 3118 mlog_errno(ret); 3119 goto out; 3120 } 3121 3122 /* This function shouldn't be called for the rightmost leaf. */ 3123 BUG_ON(right_cpos == 0); 3124 3125 right_path = ocfs2_new_path_from_path(left_path); 3126 if (!right_path) { 3127 ret = -ENOMEM; 3128 mlog_errno(ret); 3129 goto out; 3130 } 3131 3132 ret = ocfs2_find_path(inode, right_path, right_cpos); 3133 if (ret) { 3134 mlog_errno(ret); 3135 goto out; 3136 } 3137 3138 *ret_right_path = right_path; 3139 out: 3140 if (ret) 3141 ocfs2_free_path(right_path); 3142 return ret; 3143 } 3144 3145 /* 3146 * Remove split_rec clusters from the record at index and merge them 3147 * onto the beginning of the record "next" to it. 3148 * For index < l_count - 1, the next means the extent rec at index + 1. 3149 * For index == l_count - 1, the "next" means the 1st extent rec of the 3150 * next extent block. 3151 */ 3152 static int ocfs2_merge_rec_right(struct inode *inode, 3153 struct ocfs2_path *left_path, 3154 handle_t *handle, 3155 struct ocfs2_extent_rec *split_rec, 3156 int index) 3157 { 3158 int ret, next_free, i; 3159 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3160 struct ocfs2_extent_rec *left_rec; 3161 struct ocfs2_extent_rec *right_rec; 3162 struct ocfs2_extent_list *right_el; 3163 struct ocfs2_path *right_path = NULL; 3164 int subtree_index = 0; 3165 struct ocfs2_extent_list *el = path_leaf_el(left_path); 3166 struct buffer_head *bh = path_leaf_bh(left_path); 3167 struct buffer_head *root_bh = NULL; 3168 3169 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec)); 3170 left_rec = &el->l_recs[index]; 3171 3172 if (index == le16_to_cpu(el->l_next_free_rec) - 1 && 3173 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) { 3174 /* we meet with a cross extent block merge. */ 3175 ret = ocfs2_get_right_path(inode, left_path, &right_path); 3176 if (ret) { 3177 mlog_errno(ret); 3178 goto out; 3179 } 3180 3181 right_el = path_leaf_el(right_path); 3182 next_free = le16_to_cpu(right_el->l_next_free_rec); 3183 BUG_ON(next_free <= 0); 3184 right_rec = &right_el->l_recs[0]; 3185 if (ocfs2_is_empty_extent(right_rec)) { 3186 BUG_ON(next_free <= 1); 3187 right_rec = &right_el->l_recs[1]; 3188 } 3189 3190 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3191 le16_to_cpu(left_rec->e_leaf_clusters) != 3192 le32_to_cpu(right_rec->e_cpos)); 3193 3194 subtree_index = ocfs2_find_subtree_root(inode, 3195 left_path, right_path); 3196 3197 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3198 handle->h_buffer_credits, 3199 right_path); 3200 if (ret) { 3201 mlog_errno(ret); 3202 goto out; 3203 } 3204 3205 root_bh = left_path->p_node[subtree_index].bh; 3206 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3207 3208 ret = ocfs2_path_bh_journal_access(handle, inode, right_path, 3209 subtree_index); 3210 if (ret) { 3211 mlog_errno(ret); 3212 goto out; 3213 } 3214 3215 for (i = subtree_index + 1; 3216 i < path_num_items(right_path); i++) { 3217 ret = ocfs2_path_bh_journal_access(handle, inode, 3218 right_path, i); 3219 if (ret) { 3220 mlog_errno(ret); 3221 goto out; 3222 } 3223 3224 ret = ocfs2_path_bh_journal_access(handle, inode, 3225 left_path, i); 3226 if (ret) { 3227 mlog_errno(ret); 3228 goto out; 3229 } 3230 } 3231 3232 } else { 3233 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1); 3234 right_rec = &el->l_recs[index + 1]; 3235 } 3236 3237 ret = ocfs2_path_bh_journal_access(handle, inode, left_path, 3238 path_num_items(left_path) - 1); 3239 if (ret) { 3240 mlog_errno(ret); 3241 goto out; 3242 } 3243 3244 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters); 3245 3246 le32_add_cpu(&right_rec->e_cpos, -split_clusters); 3247 le64_add_cpu(&right_rec->e_blkno, 3248 -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters)); 3249 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters); 3250 3251 ocfs2_cleanup_merge(el, index); 3252 3253 ret = ocfs2_journal_dirty(handle, bh); 3254 if (ret) 3255 mlog_errno(ret); 3256 3257 if (right_path) { 3258 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 3259 if (ret) 3260 mlog_errno(ret); 3261 3262 ocfs2_complete_edge_insert(inode, handle, left_path, 3263 right_path, subtree_index); 3264 } 3265 out: 3266 if (right_path) 3267 ocfs2_free_path(right_path); 3268 return ret; 3269 } 3270 3271 static int ocfs2_get_left_path(struct inode *inode, 3272 struct ocfs2_path *right_path, 3273 struct ocfs2_path **ret_left_path) 3274 { 3275 int ret; 3276 u32 left_cpos; 3277 struct ocfs2_path *left_path = NULL; 3278 3279 *ret_left_path = NULL; 3280 3281 /* This function shouldn't be called for non-trees. */ 3282 BUG_ON(right_path->p_tree_depth == 0); 3283 3284 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 3285 right_path, &left_cpos); 3286 if (ret) { 3287 mlog_errno(ret); 3288 goto out; 3289 } 3290 3291 /* This function shouldn't be called for the leftmost leaf. */ 3292 BUG_ON(left_cpos == 0); 3293 3294 left_path = ocfs2_new_path_from_path(right_path); 3295 if (!left_path) { 3296 ret = -ENOMEM; 3297 mlog_errno(ret); 3298 goto out; 3299 } 3300 3301 ret = ocfs2_find_path(inode, left_path, left_cpos); 3302 if (ret) { 3303 mlog_errno(ret); 3304 goto out; 3305 } 3306 3307 *ret_left_path = left_path; 3308 out: 3309 if (ret) 3310 ocfs2_free_path(left_path); 3311 return ret; 3312 } 3313 3314 /* 3315 * Remove split_rec clusters from the record at index and merge them 3316 * onto the tail of the record "before" it. 3317 * For index > 0, the "before" means the extent rec at index - 1. 3318 * 3319 * For index == 0, the "before" means the last record of the previous 3320 * extent block. And there is also a situation that we may need to 3321 * remove the rightmost leaf extent block in the right_path and change 3322 * the right path to indicate the new rightmost path. 3323 */ 3324 static int ocfs2_merge_rec_left(struct inode *inode, 3325 struct ocfs2_path *right_path, 3326 handle_t *handle, 3327 struct ocfs2_extent_rec *split_rec, 3328 struct ocfs2_cached_dealloc_ctxt *dealloc, 3329 struct ocfs2_extent_tree *et, 3330 int index) 3331 { 3332 int ret, i, subtree_index = 0, has_empty_extent = 0; 3333 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3334 struct ocfs2_extent_rec *left_rec; 3335 struct ocfs2_extent_rec *right_rec; 3336 struct ocfs2_extent_list *el = path_leaf_el(right_path); 3337 struct buffer_head *bh = path_leaf_bh(right_path); 3338 struct buffer_head *root_bh = NULL; 3339 struct ocfs2_path *left_path = NULL; 3340 struct ocfs2_extent_list *left_el; 3341 3342 BUG_ON(index < 0); 3343 3344 right_rec = &el->l_recs[index]; 3345 if (index == 0) { 3346 /* we meet with a cross extent block merge. */ 3347 ret = ocfs2_get_left_path(inode, right_path, &left_path); 3348 if (ret) { 3349 mlog_errno(ret); 3350 goto out; 3351 } 3352 3353 left_el = path_leaf_el(left_path); 3354 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) != 3355 le16_to_cpu(left_el->l_count)); 3356 3357 left_rec = &left_el->l_recs[ 3358 le16_to_cpu(left_el->l_next_free_rec) - 1]; 3359 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3360 le16_to_cpu(left_rec->e_leaf_clusters) != 3361 le32_to_cpu(split_rec->e_cpos)); 3362 3363 subtree_index = ocfs2_find_subtree_root(inode, 3364 left_path, right_path); 3365 3366 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3367 handle->h_buffer_credits, 3368 left_path); 3369 if (ret) { 3370 mlog_errno(ret); 3371 goto out; 3372 } 3373 3374 root_bh = left_path->p_node[subtree_index].bh; 3375 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3376 3377 ret = ocfs2_path_bh_journal_access(handle, inode, right_path, 3378 subtree_index); 3379 if (ret) { 3380 mlog_errno(ret); 3381 goto out; 3382 } 3383 3384 for (i = subtree_index + 1; 3385 i < path_num_items(right_path); i++) { 3386 ret = ocfs2_path_bh_journal_access(handle, inode, 3387 right_path, i); 3388 if (ret) { 3389 mlog_errno(ret); 3390 goto out; 3391 } 3392 3393 ret = ocfs2_path_bh_journal_access(handle, inode, 3394 left_path, i); 3395 if (ret) { 3396 mlog_errno(ret); 3397 goto out; 3398 } 3399 } 3400 } else { 3401 left_rec = &el->l_recs[index - 1]; 3402 if (ocfs2_is_empty_extent(&el->l_recs[0])) 3403 has_empty_extent = 1; 3404 } 3405 3406 ret = ocfs2_path_bh_journal_access(handle, inode, right_path, 3407 path_num_items(right_path) - 1); 3408 if (ret) { 3409 mlog_errno(ret); 3410 goto out; 3411 } 3412 3413 if (has_empty_extent && index == 1) { 3414 /* 3415 * The easy case - we can just plop the record right in. 3416 */ 3417 *left_rec = *split_rec; 3418 3419 has_empty_extent = 0; 3420 } else 3421 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters); 3422 3423 le32_add_cpu(&right_rec->e_cpos, split_clusters); 3424 le64_add_cpu(&right_rec->e_blkno, 3425 ocfs2_clusters_to_blocks(inode->i_sb, split_clusters)); 3426 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters); 3427 3428 ocfs2_cleanup_merge(el, index); 3429 3430 ret = ocfs2_journal_dirty(handle, bh); 3431 if (ret) 3432 mlog_errno(ret); 3433 3434 if (left_path) { 3435 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 3436 if (ret) 3437 mlog_errno(ret); 3438 3439 /* 3440 * In the situation that the right_rec is empty and the extent 3441 * block is empty also, ocfs2_complete_edge_insert can't handle 3442 * it and we need to delete the right extent block. 3443 */ 3444 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 && 3445 le16_to_cpu(el->l_next_free_rec) == 1) { 3446 3447 ret = ocfs2_remove_rightmost_path(inode, handle, 3448 right_path, 3449 dealloc, et); 3450 if (ret) { 3451 mlog_errno(ret); 3452 goto out; 3453 } 3454 3455 /* Now the rightmost extent block has been deleted. 3456 * So we use the new rightmost path. 3457 */ 3458 ocfs2_mv_path(right_path, left_path); 3459 left_path = NULL; 3460 } else 3461 ocfs2_complete_edge_insert(inode, handle, left_path, 3462 right_path, subtree_index); 3463 } 3464 out: 3465 if (left_path) 3466 ocfs2_free_path(left_path); 3467 return ret; 3468 } 3469 3470 static int ocfs2_try_to_merge_extent(struct inode *inode, 3471 handle_t *handle, 3472 struct ocfs2_path *path, 3473 int split_index, 3474 struct ocfs2_extent_rec *split_rec, 3475 struct ocfs2_cached_dealloc_ctxt *dealloc, 3476 struct ocfs2_merge_ctxt *ctxt, 3477 struct ocfs2_extent_tree *et) 3478 3479 { 3480 int ret = 0; 3481 struct ocfs2_extent_list *el = path_leaf_el(path); 3482 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 3483 3484 BUG_ON(ctxt->c_contig_type == CONTIG_NONE); 3485 3486 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) { 3487 /* 3488 * The merge code will need to create an empty 3489 * extent to take the place of the newly 3490 * emptied slot. Remove any pre-existing empty 3491 * extents - having more than one in a leaf is 3492 * illegal. 3493 */ 3494 ret = ocfs2_rotate_tree_left(inode, handle, path, 3495 dealloc, et); 3496 if (ret) { 3497 mlog_errno(ret); 3498 goto out; 3499 } 3500 split_index--; 3501 rec = &el->l_recs[split_index]; 3502 } 3503 3504 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) { 3505 /* 3506 * Left-right contig implies this. 3507 */ 3508 BUG_ON(!ctxt->c_split_covers_rec); 3509 3510 /* 3511 * Since the leftright insert always covers the entire 3512 * extent, this call will delete the insert record 3513 * entirely, resulting in an empty extent record added to 3514 * the extent block. 3515 * 3516 * Since the adding of an empty extent shifts 3517 * everything back to the right, there's no need to 3518 * update split_index here. 3519 * 3520 * When the split_index is zero, we need to merge it to the 3521 * prevoius extent block. It is more efficient and easier 3522 * if we do merge_right first and merge_left later. 3523 */ 3524 ret = ocfs2_merge_rec_right(inode, path, 3525 handle, split_rec, 3526 split_index); 3527 if (ret) { 3528 mlog_errno(ret); 3529 goto out; 3530 } 3531 3532 /* 3533 * We can only get this from logic error above. 3534 */ 3535 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0])); 3536 3537 /* The merge left us with an empty extent, remove it. */ 3538 ret = ocfs2_rotate_tree_left(inode, handle, path, 3539 dealloc, et); 3540 if (ret) { 3541 mlog_errno(ret); 3542 goto out; 3543 } 3544 3545 rec = &el->l_recs[split_index]; 3546 3547 /* 3548 * Note that we don't pass split_rec here on purpose - 3549 * we've merged it into the rec already. 3550 */ 3551 ret = ocfs2_merge_rec_left(inode, path, 3552 handle, rec, 3553 dealloc, et, 3554 split_index); 3555 3556 if (ret) { 3557 mlog_errno(ret); 3558 goto out; 3559 } 3560 3561 ret = ocfs2_rotate_tree_left(inode, handle, path, 3562 dealloc, et); 3563 /* 3564 * Error from this last rotate is not critical, so 3565 * print but don't bubble it up. 3566 */ 3567 if (ret) 3568 mlog_errno(ret); 3569 ret = 0; 3570 } else { 3571 /* 3572 * Merge a record to the left or right. 3573 * 3574 * 'contig_type' is relative to the existing record, 3575 * so for example, if we're "right contig", it's to 3576 * the record on the left (hence the left merge). 3577 */ 3578 if (ctxt->c_contig_type == CONTIG_RIGHT) { 3579 ret = ocfs2_merge_rec_left(inode, 3580 path, 3581 handle, split_rec, 3582 dealloc, et, 3583 split_index); 3584 if (ret) { 3585 mlog_errno(ret); 3586 goto out; 3587 } 3588 } else { 3589 ret = ocfs2_merge_rec_right(inode, 3590 path, 3591 handle, split_rec, 3592 split_index); 3593 if (ret) { 3594 mlog_errno(ret); 3595 goto out; 3596 } 3597 } 3598 3599 if (ctxt->c_split_covers_rec) { 3600 /* 3601 * The merge may have left an empty extent in 3602 * our leaf. Try to rotate it away. 3603 */ 3604 ret = ocfs2_rotate_tree_left(inode, handle, path, 3605 dealloc, et); 3606 if (ret) 3607 mlog_errno(ret); 3608 ret = 0; 3609 } 3610 } 3611 3612 out: 3613 return ret; 3614 } 3615 3616 static void ocfs2_subtract_from_rec(struct super_block *sb, 3617 enum ocfs2_split_type split, 3618 struct ocfs2_extent_rec *rec, 3619 struct ocfs2_extent_rec *split_rec) 3620 { 3621 u64 len_blocks; 3622 3623 len_blocks = ocfs2_clusters_to_blocks(sb, 3624 le16_to_cpu(split_rec->e_leaf_clusters)); 3625 3626 if (split == SPLIT_LEFT) { 3627 /* 3628 * Region is on the left edge of the existing 3629 * record. 3630 */ 3631 le32_add_cpu(&rec->e_cpos, 3632 le16_to_cpu(split_rec->e_leaf_clusters)); 3633 le64_add_cpu(&rec->e_blkno, len_blocks); 3634 le16_add_cpu(&rec->e_leaf_clusters, 3635 -le16_to_cpu(split_rec->e_leaf_clusters)); 3636 } else { 3637 /* 3638 * Region is on the right edge of the existing 3639 * record. 3640 */ 3641 le16_add_cpu(&rec->e_leaf_clusters, 3642 -le16_to_cpu(split_rec->e_leaf_clusters)); 3643 } 3644 } 3645 3646 /* 3647 * Do the final bits of extent record insertion at the target leaf 3648 * list. If this leaf is part of an allocation tree, it is assumed 3649 * that the tree above has been prepared. 3650 */ 3651 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec, 3652 struct ocfs2_extent_list *el, 3653 struct ocfs2_insert_type *insert, 3654 struct inode *inode) 3655 { 3656 int i = insert->ins_contig_index; 3657 unsigned int range; 3658 struct ocfs2_extent_rec *rec; 3659 3660 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 3661 3662 if (insert->ins_split != SPLIT_NONE) { 3663 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos)); 3664 BUG_ON(i == -1); 3665 rec = &el->l_recs[i]; 3666 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec, 3667 insert_rec); 3668 goto rotate; 3669 } 3670 3671 /* 3672 * Contiguous insert - either left or right. 3673 */ 3674 if (insert->ins_contig != CONTIG_NONE) { 3675 rec = &el->l_recs[i]; 3676 if (insert->ins_contig == CONTIG_LEFT) { 3677 rec->e_blkno = insert_rec->e_blkno; 3678 rec->e_cpos = insert_rec->e_cpos; 3679 } 3680 le16_add_cpu(&rec->e_leaf_clusters, 3681 le16_to_cpu(insert_rec->e_leaf_clusters)); 3682 return; 3683 } 3684 3685 /* 3686 * Handle insert into an empty leaf. 3687 */ 3688 if (le16_to_cpu(el->l_next_free_rec) == 0 || 3689 ((le16_to_cpu(el->l_next_free_rec) == 1) && 3690 ocfs2_is_empty_extent(&el->l_recs[0]))) { 3691 el->l_recs[0] = *insert_rec; 3692 el->l_next_free_rec = cpu_to_le16(1); 3693 return; 3694 } 3695 3696 /* 3697 * Appending insert. 3698 */ 3699 if (insert->ins_appending == APPEND_TAIL) { 3700 i = le16_to_cpu(el->l_next_free_rec) - 1; 3701 rec = &el->l_recs[i]; 3702 range = le32_to_cpu(rec->e_cpos) 3703 + le16_to_cpu(rec->e_leaf_clusters); 3704 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range); 3705 3706 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >= 3707 le16_to_cpu(el->l_count), 3708 "inode %lu, depth %u, count %u, next free %u, " 3709 "rec.cpos %u, rec.clusters %u, " 3710 "insert.cpos %u, insert.clusters %u\n", 3711 inode->i_ino, 3712 le16_to_cpu(el->l_tree_depth), 3713 le16_to_cpu(el->l_count), 3714 le16_to_cpu(el->l_next_free_rec), 3715 le32_to_cpu(el->l_recs[i].e_cpos), 3716 le16_to_cpu(el->l_recs[i].e_leaf_clusters), 3717 le32_to_cpu(insert_rec->e_cpos), 3718 le16_to_cpu(insert_rec->e_leaf_clusters)); 3719 i++; 3720 el->l_recs[i] = *insert_rec; 3721 le16_add_cpu(&el->l_next_free_rec, 1); 3722 return; 3723 } 3724 3725 rotate: 3726 /* 3727 * Ok, we have to rotate. 3728 * 3729 * At this point, it is safe to assume that inserting into an 3730 * empty leaf and appending to a leaf have both been handled 3731 * above. 3732 * 3733 * This leaf needs to have space, either by the empty 1st 3734 * extent record, or by virtue of an l_next_rec < l_count. 3735 */ 3736 ocfs2_rotate_leaf(el, insert_rec); 3737 } 3738 3739 static void ocfs2_adjust_rightmost_records(struct inode *inode, 3740 handle_t *handle, 3741 struct ocfs2_path *path, 3742 struct ocfs2_extent_rec *insert_rec) 3743 { 3744 int ret, i, next_free; 3745 struct buffer_head *bh; 3746 struct ocfs2_extent_list *el; 3747 struct ocfs2_extent_rec *rec; 3748 3749 /* 3750 * Update everything except the leaf block. 3751 */ 3752 for (i = 0; i < path->p_tree_depth; i++) { 3753 bh = path->p_node[i].bh; 3754 el = path->p_node[i].el; 3755 3756 next_free = le16_to_cpu(el->l_next_free_rec); 3757 if (next_free == 0) { 3758 ocfs2_error(inode->i_sb, 3759 "Dinode %llu has a bad extent list", 3760 (unsigned long long)OCFS2_I(inode)->ip_blkno); 3761 ret = -EIO; 3762 return; 3763 } 3764 3765 rec = &el->l_recs[next_free - 1]; 3766 3767 rec->e_int_clusters = insert_rec->e_cpos; 3768 le32_add_cpu(&rec->e_int_clusters, 3769 le16_to_cpu(insert_rec->e_leaf_clusters)); 3770 le32_add_cpu(&rec->e_int_clusters, 3771 -le32_to_cpu(rec->e_cpos)); 3772 3773 ret = ocfs2_journal_dirty(handle, bh); 3774 if (ret) 3775 mlog_errno(ret); 3776 3777 } 3778 } 3779 3780 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle, 3781 struct ocfs2_extent_rec *insert_rec, 3782 struct ocfs2_path *right_path, 3783 struct ocfs2_path **ret_left_path) 3784 { 3785 int ret, next_free; 3786 struct ocfs2_extent_list *el; 3787 struct ocfs2_path *left_path = NULL; 3788 3789 *ret_left_path = NULL; 3790 3791 /* 3792 * This shouldn't happen for non-trees. The extent rec cluster 3793 * count manipulation below only works for interior nodes. 3794 */ 3795 BUG_ON(right_path->p_tree_depth == 0); 3796 3797 /* 3798 * If our appending insert is at the leftmost edge of a leaf, 3799 * then we might need to update the rightmost records of the 3800 * neighboring path. 3801 */ 3802 el = path_leaf_el(right_path); 3803 next_free = le16_to_cpu(el->l_next_free_rec); 3804 if (next_free == 0 || 3805 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) { 3806 u32 left_cpos; 3807 3808 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, 3809 &left_cpos); 3810 if (ret) { 3811 mlog_errno(ret); 3812 goto out; 3813 } 3814 3815 mlog(0, "Append may need a left path update. cpos: %u, " 3816 "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos), 3817 left_cpos); 3818 3819 /* 3820 * No need to worry if the append is already in the 3821 * leftmost leaf. 3822 */ 3823 if (left_cpos) { 3824 left_path = ocfs2_new_path_from_path(right_path); 3825 if (!left_path) { 3826 ret = -ENOMEM; 3827 mlog_errno(ret); 3828 goto out; 3829 } 3830 3831 ret = ocfs2_find_path(inode, left_path, left_cpos); 3832 if (ret) { 3833 mlog_errno(ret); 3834 goto out; 3835 } 3836 3837 /* 3838 * ocfs2_insert_path() will pass the left_path to the 3839 * journal for us. 3840 */ 3841 } 3842 } 3843 3844 ret = ocfs2_journal_access_path(inode, handle, right_path); 3845 if (ret) { 3846 mlog_errno(ret); 3847 goto out; 3848 } 3849 3850 ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec); 3851 3852 *ret_left_path = left_path; 3853 ret = 0; 3854 out: 3855 if (ret != 0) 3856 ocfs2_free_path(left_path); 3857 3858 return ret; 3859 } 3860 3861 static void ocfs2_split_record(struct inode *inode, 3862 struct ocfs2_path *left_path, 3863 struct ocfs2_path *right_path, 3864 struct ocfs2_extent_rec *split_rec, 3865 enum ocfs2_split_type split) 3866 { 3867 int index; 3868 u32 cpos = le32_to_cpu(split_rec->e_cpos); 3869 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el; 3870 struct ocfs2_extent_rec *rec, *tmprec; 3871 3872 right_el = path_leaf_el(right_path); 3873 if (left_path) 3874 left_el = path_leaf_el(left_path); 3875 3876 el = right_el; 3877 insert_el = right_el; 3878 index = ocfs2_search_extent_list(el, cpos); 3879 if (index != -1) { 3880 if (index == 0 && left_path) { 3881 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 3882 3883 /* 3884 * This typically means that the record 3885 * started in the left path but moved to the 3886 * right as a result of rotation. We either 3887 * move the existing record to the left, or we 3888 * do the later insert there. 3889 * 3890 * In this case, the left path should always 3891 * exist as the rotate code will have passed 3892 * it back for a post-insert update. 3893 */ 3894 3895 if (split == SPLIT_LEFT) { 3896 /* 3897 * It's a left split. Since we know 3898 * that the rotate code gave us an 3899 * empty extent in the left path, we 3900 * can just do the insert there. 3901 */ 3902 insert_el = left_el; 3903 } else { 3904 /* 3905 * Right split - we have to move the 3906 * existing record over to the left 3907 * leaf. The insert will be into the 3908 * newly created empty extent in the 3909 * right leaf. 3910 */ 3911 tmprec = &right_el->l_recs[index]; 3912 ocfs2_rotate_leaf(left_el, tmprec); 3913 el = left_el; 3914 3915 memset(tmprec, 0, sizeof(*tmprec)); 3916 index = ocfs2_search_extent_list(left_el, cpos); 3917 BUG_ON(index == -1); 3918 } 3919 } 3920 } else { 3921 BUG_ON(!left_path); 3922 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0])); 3923 /* 3924 * Left path is easy - we can just allow the insert to 3925 * happen. 3926 */ 3927 el = left_el; 3928 insert_el = left_el; 3929 index = ocfs2_search_extent_list(el, cpos); 3930 BUG_ON(index == -1); 3931 } 3932 3933 rec = &el->l_recs[index]; 3934 ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec); 3935 ocfs2_rotate_leaf(insert_el, split_rec); 3936 } 3937 3938 /* 3939 * This function only does inserts on an allocation b-tree. For tree 3940 * depth = 0, ocfs2_insert_at_leaf() is called directly. 3941 * 3942 * right_path is the path we want to do the actual insert 3943 * in. left_path should only be passed in if we need to update that 3944 * portion of the tree after an edge insert. 3945 */ 3946 static int ocfs2_insert_path(struct inode *inode, 3947 handle_t *handle, 3948 struct ocfs2_path *left_path, 3949 struct ocfs2_path *right_path, 3950 struct ocfs2_extent_rec *insert_rec, 3951 struct ocfs2_insert_type *insert) 3952 { 3953 int ret, subtree_index; 3954 struct buffer_head *leaf_bh = path_leaf_bh(right_path); 3955 3956 if (left_path) { 3957 int credits = handle->h_buffer_credits; 3958 3959 /* 3960 * There's a chance that left_path got passed back to 3961 * us without being accounted for in the 3962 * journal. Extend our transaction here to be sure we 3963 * can change those blocks. 3964 */ 3965 credits += left_path->p_tree_depth; 3966 3967 ret = ocfs2_extend_trans(handle, credits); 3968 if (ret < 0) { 3969 mlog_errno(ret); 3970 goto out; 3971 } 3972 3973 ret = ocfs2_journal_access_path(inode, handle, left_path); 3974 if (ret < 0) { 3975 mlog_errno(ret); 3976 goto out; 3977 } 3978 } 3979 3980 /* 3981 * Pass both paths to the journal. The majority of inserts 3982 * will be touching all components anyway. 3983 */ 3984 ret = ocfs2_journal_access_path(inode, handle, right_path); 3985 if (ret < 0) { 3986 mlog_errno(ret); 3987 goto out; 3988 } 3989 3990 if (insert->ins_split != SPLIT_NONE) { 3991 /* 3992 * We could call ocfs2_insert_at_leaf() for some types 3993 * of splits, but it's easier to just let one separate 3994 * function sort it all out. 3995 */ 3996 ocfs2_split_record(inode, left_path, right_path, 3997 insert_rec, insert->ins_split); 3998 3999 /* 4000 * Split might have modified either leaf and we don't 4001 * have a guarantee that the later edge insert will 4002 * dirty this for us. 4003 */ 4004 if (left_path) 4005 ret = ocfs2_journal_dirty(handle, 4006 path_leaf_bh(left_path)); 4007 if (ret) 4008 mlog_errno(ret); 4009 } else 4010 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path), 4011 insert, inode); 4012 4013 ret = ocfs2_journal_dirty(handle, leaf_bh); 4014 if (ret) 4015 mlog_errno(ret); 4016 4017 if (left_path) { 4018 /* 4019 * The rotate code has indicated that we need to fix 4020 * up portions of the tree after the insert. 4021 * 4022 * XXX: Should we extend the transaction here? 4023 */ 4024 subtree_index = ocfs2_find_subtree_root(inode, left_path, 4025 right_path); 4026 ocfs2_complete_edge_insert(inode, handle, left_path, 4027 right_path, subtree_index); 4028 } 4029 4030 ret = 0; 4031 out: 4032 return ret; 4033 } 4034 4035 static int ocfs2_do_insert_extent(struct inode *inode, 4036 handle_t *handle, 4037 struct ocfs2_extent_tree *et, 4038 struct ocfs2_extent_rec *insert_rec, 4039 struct ocfs2_insert_type *type) 4040 { 4041 int ret, rotate = 0; 4042 u32 cpos; 4043 struct ocfs2_path *right_path = NULL; 4044 struct ocfs2_path *left_path = NULL; 4045 struct ocfs2_extent_list *el; 4046 4047 el = et->et_root_el; 4048 4049 ret = ocfs2_et_root_journal_access(handle, inode, et, 4050 OCFS2_JOURNAL_ACCESS_WRITE); 4051 if (ret) { 4052 mlog_errno(ret); 4053 goto out; 4054 } 4055 4056 if (le16_to_cpu(el->l_tree_depth) == 0) { 4057 ocfs2_insert_at_leaf(insert_rec, el, type, inode); 4058 goto out_update_clusters; 4059 } 4060 4061 right_path = ocfs2_new_path_from_et(et); 4062 if (!right_path) { 4063 ret = -ENOMEM; 4064 mlog_errno(ret); 4065 goto out; 4066 } 4067 4068 /* 4069 * Determine the path to start with. Rotations need the 4070 * rightmost path, everything else can go directly to the 4071 * target leaf. 4072 */ 4073 cpos = le32_to_cpu(insert_rec->e_cpos); 4074 if (type->ins_appending == APPEND_NONE && 4075 type->ins_contig == CONTIG_NONE) { 4076 rotate = 1; 4077 cpos = UINT_MAX; 4078 } 4079 4080 ret = ocfs2_find_path(inode, right_path, cpos); 4081 if (ret) { 4082 mlog_errno(ret); 4083 goto out; 4084 } 4085 4086 /* 4087 * Rotations and appends need special treatment - they modify 4088 * parts of the tree's above them. 4089 * 4090 * Both might pass back a path immediate to the left of the 4091 * one being inserted to. This will be cause 4092 * ocfs2_insert_path() to modify the rightmost records of 4093 * left_path to account for an edge insert. 4094 * 4095 * XXX: When modifying this code, keep in mind that an insert 4096 * can wind up skipping both of these two special cases... 4097 */ 4098 if (rotate) { 4099 ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split, 4100 le32_to_cpu(insert_rec->e_cpos), 4101 right_path, &left_path); 4102 if (ret) { 4103 mlog_errno(ret); 4104 goto out; 4105 } 4106 4107 /* 4108 * ocfs2_rotate_tree_right() might have extended the 4109 * transaction without re-journaling our tree root. 4110 */ 4111 ret = ocfs2_et_root_journal_access(handle, inode, et, 4112 OCFS2_JOURNAL_ACCESS_WRITE); 4113 if (ret) { 4114 mlog_errno(ret); 4115 goto out; 4116 } 4117 } else if (type->ins_appending == APPEND_TAIL 4118 && type->ins_contig != CONTIG_LEFT) { 4119 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec, 4120 right_path, &left_path); 4121 if (ret) { 4122 mlog_errno(ret); 4123 goto out; 4124 } 4125 } 4126 4127 ret = ocfs2_insert_path(inode, handle, left_path, right_path, 4128 insert_rec, type); 4129 if (ret) { 4130 mlog_errno(ret); 4131 goto out; 4132 } 4133 4134 out_update_clusters: 4135 if (type->ins_split == SPLIT_NONE) 4136 ocfs2_et_update_clusters(inode, et, 4137 le16_to_cpu(insert_rec->e_leaf_clusters)); 4138 4139 ret = ocfs2_journal_dirty(handle, et->et_root_bh); 4140 if (ret) 4141 mlog_errno(ret); 4142 4143 out: 4144 ocfs2_free_path(left_path); 4145 ocfs2_free_path(right_path); 4146 4147 return ret; 4148 } 4149 4150 static enum ocfs2_contig_type 4151 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path, 4152 struct ocfs2_extent_list *el, int index, 4153 struct ocfs2_extent_rec *split_rec) 4154 { 4155 int status; 4156 enum ocfs2_contig_type ret = CONTIG_NONE; 4157 u32 left_cpos, right_cpos; 4158 struct ocfs2_extent_rec *rec = NULL; 4159 struct ocfs2_extent_list *new_el; 4160 struct ocfs2_path *left_path = NULL, *right_path = NULL; 4161 struct buffer_head *bh; 4162 struct ocfs2_extent_block *eb; 4163 4164 if (index > 0) { 4165 rec = &el->l_recs[index - 1]; 4166 } else if (path->p_tree_depth > 0) { 4167 status = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 4168 path, &left_cpos); 4169 if (status) 4170 goto out; 4171 4172 if (left_cpos != 0) { 4173 left_path = ocfs2_new_path_from_path(path); 4174 if (!left_path) 4175 goto out; 4176 4177 status = ocfs2_find_path(inode, left_path, left_cpos); 4178 if (status) 4179 goto out; 4180 4181 new_el = path_leaf_el(left_path); 4182 4183 if (le16_to_cpu(new_el->l_next_free_rec) != 4184 le16_to_cpu(new_el->l_count)) { 4185 bh = path_leaf_bh(left_path); 4186 eb = (struct ocfs2_extent_block *)bh->b_data; 4187 ocfs2_error(inode->i_sb, 4188 "Extent block #%llu has an " 4189 "invalid l_next_free_rec of " 4190 "%d. It should have " 4191 "matched the l_count of %d", 4192 (unsigned long long)le64_to_cpu(eb->h_blkno), 4193 le16_to_cpu(new_el->l_next_free_rec), 4194 le16_to_cpu(new_el->l_count)); 4195 status = -EINVAL; 4196 goto out; 4197 } 4198 rec = &new_el->l_recs[ 4199 le16_to_cpu(new_el->l_next_free_rec) - 1]; 4200 } 4201 } 4202 4203 /* 4204 * We're careful to check for an empty extent record here - 4205 * the merge code will know what to do if it sees one. 4206 */ 4207 if (rec) { 4208 if (index == 1 && ocfs2_is_empty_extent(rec)) { 4209 if (split_rec->e_cpos == el->l_recs[index].e_cpos) 4210 ret = CONTIG_RIGHT; 4211 } else { 4212 ret = ocfs2_extent_contig(inode, rec, split_rec); 4213 } 4214 } 4215 4216 rec = NULL; 4217 if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) 4218 rec = &el->l_recs[index + 1]; 4219 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) && 4220 path->p_tree_depth > 0) { 4221 status = ocfs2_find_cpos_for_right_leaf(inode->i_sb, 4222 path, &right_cpos); 4223 if (status) 4224 goto out; 4225 4226 if (right_cpos == 0) 4227 goto out; 4228 4229 right_path = ocfs2_new_path_from_path(path); 4230 if (!right_path) 4231 goto out; 4232 4233 status = ocfs2_find_path(inode, right_path, right_cpos); 4234 if (status) 4235 goto out; 4236 4237 new_el = path_leaf_el(right_path); 4238 rec = &new_el->l_recs[0]; 4239 if (ocfs2_is_empty_extent(rec)) { 4240 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) { 4241 bh = path_leaf_bh(right_path); 4242 eb = (struct ocfs2_extent_block *)bh->b_data; 4243 ocfs2_error(inode->i_sb, 4244 "Extent block #%llu has an " 4245 "invalid l_next_free_rec of %d", 4246 (unsigned long long)le64_to_cpu(eb->h_blkno), 4247 le16_to_cpu(new_el->l_next_free_rec)); 4248 status = -EINVAL; 4249 goto out; 4250 } 4251 rec = &new_el->l_recs[1]; 4252 } 4253 } 4254 4255 if (rec) { 4256 enum ocfs2_contig_type contig_type; 4257 4258 contig_type = ocfs2_extent_contig(inode, rec, split_rec); 4259 4260 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT) 4261 ret = CONTIG_LEFTRIGHT; 4262 else if (ret == CONTIG_NONE) 4263 ret = contig_type; 4264 } 4265 4266 out: 4267 if (left_path) 4268 ocfs2_free_path(left_path); 4269 if (right_path) 4270 ocfs2_free_path(right_path); 4271 4272 return ret; 4273 } 4274 4275 static void ocfs2_figure_contig_type(struct inode *inode, 4276 struct ocfs2_insert_type *insert, 4277 struct ocfs2_extent_list *el, 4278 struct ocfs2_extent_rec *insert_rec, 4279 struct ocfs2_extent_tree *et) 4280 { 4281 int i; 4282 enum ocfs2_contig_type contig_type = CONTIG_NONE; 4283 4284 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4285 4286 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 4287 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i], 4288 insert_rec); 4289 if (contig_type != CONTIG_NONE) { 4290 insert->ins_contig_index = i; 4291 break; 4292 } 4293 } 4294 insert->ins_contig = contig_type; 4295 4296 if (insert->ins_contig != CONTIG_NONE) { 4297 struct ocfs2_extent_rec *rec = 4298 &el->l_recs[insert->ins_contig_index]; 4299 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) + 4300 le16_to_cpu(insert_rec->e_leaf_clusters); 4301 4302 /* 4303 * Caller might want us to limit the size of extents, don't 4304 * calculate contiguousness if we might exceed that limit. 4305 */ 4306 if (et->et_max_leaf_clusters && 4307 (len > et->et_max_leaf_clusters)) 4308 insert->ins_contig = CONTIG_NONE; 4309 } 4310 } 4311 4312 /* 4313 * This should only be called against the righmost leaf extent list. 4314 * 4315 * ocfs2_figure_appending_type() will figure out whether we'll have to 4316 * insert at the tail of the rightmost leaf. 4317 * 4318 * This should also work against the root extent list for tree's with 0 4319 * depth. If we consider the root extent list to be the rightmost leaf node 4320 * then the logic here makes sense. 4321 */ 4322 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert, 4323 struct ocfs2_extent_list *el, 4324 struct ocfs2_extent_rec *insert_rec) 4325 { 4326 int i; 4327 u32 cpos = le32_to_cpu(insert_rec->e_cpos); 4328 struct ocfs2_extent_rec *rec; 4329 4330 insert->ins_appending = APPEND_NONE; 4331 4332 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4333 4334 if (!el->l_next_free_rec) 4335 goto set_tail_append; 4336 4337 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 4338 /* Were all records empty? */ 4339 if (le16_to_cpu(el->l_next_free_rec) == 1) 4340 goto set_tail_append; 4341 } 4342 4343 i = le16_to_cpu(el->l_next_free_rec) - 1; 4344 rec = &el->l_recs[i]; 4345 4346 if (cpos >= 4347 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters))) 4348 goto set_tail_append; 4349 4350 return; 4351 4352 set_tail_append: 4353 insert->ins_appending = APPEND_TAIL; 4354 } 4355 4356 /* 4357 * Helper function called at the begining of an insert. 4358 * 4359 * This computes a few things that are commonly used in the process of 4360 * inserting into the btree: 4361 * - Whether the new extent is contiguous with an existing one. 4362 * - The current tree depth. 4363 * - Whether the insert is an appending one. 4364 * - The total # of free records in the tree. 4365 * 4366 * All of the information is stored on the ocfs2_insert_type 4367 * structure. 4368 */ 4369 static int ocfs2_figure_insert_type(struct inode *inode, 4370 struct ocfs2_extent_tree *et, 4371 struct buffer_head **last_eb_bh, 4372 struct ocfs2_extent_rec *insert_rec, 4373 int *free_records, 4374 struct ocfs2_insert_type *insert) 4375 { 4376 int ret; 4377 struct ocfs2_extent_block *eb; 4378 struct ocfs2_extent_list *el; 4379 struct ocfs2_path *path = NULL; 4380 struct buffer_head *bh = NULL; 4381 4382 insert->ins_split = SPLIT_NONE; 4383 4384 el = et->et_root_el; 4385 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth); 4386 4387 if (el->l_tree_depth) { 4388 /* 4389 * If we have tree depth, we read in the 4390 * rightmost extent block ahead of time as 4391 * ocfs2_figure_insert_type() and ocfs2_add_branch() 4392 * may want it later. 4393 */ 4394 ret = ocfs2_read_extent_block(inode, 4395 ocfs2_et_get_last_eb_blk(et), 4396 &bh); 4397 if (ret) { 4398 mlog_exit(ret); 4399 goto out; 4400 } 4401 eb = (struct ocfs2_extent_block *) bh->b_data; 4402 el = &eb->h_list; 4403 } 4404 4405 /* 4406 * Unless we have a contiguous insert, we'll need to know if 4407 * there is room left in our allocation tree for another 4408 * extent record. 4409 * 4410 * XXX: This test is simplistic, we can search for empty 4411 * extent records too. 4412 */ 4413 *free_records = le16_to_cpu(el->l_count) - 4414 le16_to_cpu(el->l_next_free_rec); 4415 4416 if (!insert->ins_tree_depth) { 4417 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et); 4418 ocfs2_figure_appending_type(insert, el, insert_rec); 4419 return 0; 4420 } 4421 4422 path = ocfs2_new_path_from_et(et); 4423 if (!path) { 4424 ret = -ENOMEM; 4425 mlog_errno(ret); 4426 goto out; 4427 } 4428 4429 /* 4430 * In the case that we're inserting past what the tree 4431 * currently accounts for, ocfs2_find_path() will return for 4432 * us the rightmost tree path. This is accounted for below in 4433 * the appending code. 4434 */ 4435 ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos)); 4436 if (ret) { 4437 mlog_errno(ret); 4438 goto out; 4439 } 4440 4441 el = path_leaf_el(path); 4442 4443 /* 4444 * Now that we have the path, there's two things we want to determine: 4445 * 1) Contiguousness (also set contig_index if this is so) 4446 * 4447 * 2) Are we doing an append? We can trivially break this up 4448 * into two types of appends: simple record append, or a 4449 * rotate inside the tail leaf. 4450 */ 4451 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et); 4452 4453 /* 4454 * The insert code isn't quite ready to deal with all cases of 4455 * left contiguousness. Specifically, if it's an insert into 4456 * the 1st record in a leaf, it will require the adjustment of 4457 * cluster count on the last record of the path directly to it's 4458 * left. For now, just catch that case and fool the layers 4459 * above us. This works just fine for tree_depth == 0, which 4460 * is why we allow that above. 4461 */ 4462 if (insert->ins_contig == CONTIG_LEFT && 4463 insert->ins_contig_index == 0) 4464 insert->ins_contig = CONTIG_NONE; 4465 4466 /* 4467 * Ok, so we can simply compare against last_eb to figure out 4468 * whether the path doesn't exist. This will only happen in 4469 * the case that we're doing a tail append, so maybe we can 4470 * take advantage of that information somehow. 4471 */ 4472 if (ocfs2_et_get_last_eb_blk(et) == 4473 path_leaf_bh(path)->b_blocknr) { 4474 /* 4475 * Ok, ocfs2_find_path() returned us the rightmost 4476 * tree path. This might be an appending insert. There are 4477 * two cases: 4478 * 1) We're doing a true append at the tail: 4479 * -This might even be off the end of the leaf 4480 * 2) We're "appending" by rotating in the tail 4481 */ 4482 ocfs2_figure_appending_type(insert, el, insert_rec); 4483 } 4484 4485 out: 4486 ocfs2_free_path(path); 4487 4488 if (ret == 0) 4489 *last_eb_bh = bh; 4490 else 4491 brelse(bh); 4492 return ret; 4493 } 4494 4495 /* 4496 * Insert an extent into an inode btree. 4497 * 4498 * The caller needs to update fe->i_clusters 4499 */ 4500 int ocfs2_insert_extent(struct ocfs2_super *osb, 4501 handle_t *handle, 4502 struct inode *inode, 4503 struct ocfs2_extent_tree *et, 4504 u32 cpos, 4505 u64 start_blk, 4506 u32 new_clusters, 4507 u8 flags, 4508 struct ocfs2_alloc_context *meta_ac) 4509 { 4510 int status; 4511 int uninitialized_var(free_records); 4512 struct buffer_head *last_eb_bh = NULL; 4513 struct ocfs2_insert_type insert = {0, }; 4514 struct ocfs2_extent_rec rec; 4515 4516 mlog(0, "add %u clusters at position %u to inode %llu\n", 4517 new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno); 4518 4519 memset(&rec, 0, sizeof(rec)); 4520 rec.e_cpos = cpu_to_le32(cpos); 4521 rec.e_blkno = cpu_to_le64(start_blk); 4522 rec.e_leaf_clusters = cpu_to_le16(new_clusters); 4523 rec.e_flags = flags; 4524 status = ocfs2_et_insert_check(inode, et, &rec); 4525 if (status) { 4526 mlog_errno(status); 4527 goto bail; 4528 } 4529 4530 status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec, 4531 &free_records, &insert); 4532 if (status < 0) { 4533 mlog_errno(status); 4534 goto bail; 4535 } 4536 4537 mlog(0, "Insert.appending: %u, Insert.Contig: %u, " 4538 "Insert.contig_index: %d, Insert.free_records: %d, " 4539 "Insert.tree_depth: %d\n", 4540 insert.ins_appending, insert.ins_contig, insert.ins_contig_index, 4541 free_records, insert.ins_tree_depth); 4542 4543 if (insert.ins_contig == CONTIG_NONE && free_records == 0) { 4544 status = ocfs2_grow_tree(inode, handle, et, 4545 &insert.ins_tree_depth, &last_eb_bh, 4546 meta_ac); 4547 if (status) { 4548 mlog_errno(status); 4549 goto bail; 4550 } 4551 } 4552 4553 /* Finally, we can add clusters. This might rotate the tree for us. */ 4554 status = ocfs2_do_insert_extent(inode, handle, et, &rec, &insert); 4555 if (status < 0) 4556 mlog_errno(status); 4557 else if (et->et_ops == &ocfs2_dinode_et_ops) 4558 ocfs2_extent_map_insert_rec(inode, &rec); 4559 4560 bail: 4561 brelse(last_eb_bh); 4562 4563 mlog_exit(status); 4564 return status; 4565 } 4566 4567 /* 4568 * Allcate and add clusters into the extent b-tree. 4569 * The new clusters(clusters_to_add) will be inserted at logical_offset. 4570 * The extent b-tree's root is specified by et, and 4571 * it is not limited to the file storage. Any extent tree can use this 4572 * function if it implements the proper ocfs2_extent_tree. 4573 */ 4574 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb, 4575 struct inode *inode, 4576 u32 *logical_offset, 4577 u32 clusters_to_add, 4578 int mark_unwritten, 4579 struct ocfs2_extent_tree *et, 4580 handle_t *handle, 4581 struct ocfs2_alloc_context *data_ac, 4582 struct ocfs2_alloc_context *meta_ac, 4583 enum ocfs2_alloc_restarted *reason_ret) 4584 { 4585 int status = 0; 4586 int free_extents; 4587 enum ocfs2_alloc_restarted reason = RESTART_NONE; 4588 u32 bit_off, num_bits; 4589 u64 block; 4590 u8 flags = 0; 4591 4592 BUG_ON(!clusters_to_add); 4593 4594 if (mark_unwritten) 4595 flags = OCFS2_EXT_UNWRITTEN; 4596 4597 free_extents = ocfs2_num_free_extents(osb, inode, et); 4598 if (free_extents < 0) { 4599 status = free_extents; 4600 mlog_errno(status); 4601 goto leave; 4602 } 4603 4604 /* there are two cases which could cause us to EAGAIN in the 4605 * we-need-more-metadata case: 4606 * 1) we haven't reserved *any* 4607 * 2) we are so fragmented, we've needed to add metadata too 4608 * many times. */ 4609 if (!free_extents && !meta_ac) { 4610 mlog(0, "we haven't reserved any metadata!\n"); 4611 status = -EAGAIN; 4612 reason = RESTART_META; 4613 goto leave; 4614 } else if ((!free_extents) 4615 && (ocfs2_alloc_context_bits_left(meta_ac) 4616 < ocfs2_extend_meta_needed(et->et_root_el))) { 4617 mlog(0, "filesystem is really fragmented...\n"); 4618 status = -EAGAIN; 4619 reason = RESTART_META; 4620 goto leave; 4621 } 4622 4623 status = __ocfs2_claim_clusters(osb, handle, data_ac, 1, 4624 clusters_to_add, &bit_off, &num_bits); 4625 if (status < 0) { 4626 if (status != -ENOSPC) 4627 mlog_errno(status); 4628 goto leave; 4629 } 4630 4631 BUG_ON(num_bits > clusters_to_add); 4632 4633 /* reserve our write early -- insert_extent may update the tree root */ 4634 status = ocfs2_et_root_journal_access(handle, inode, et, 4635 OCFS2_JOURNAL_ACCESS_WRITE); 4636 if (status < 0) { 4637 mlog_errno(status); 4638 goto leave; 4639 } 4640 4641 block = ocfs2_clusters_to_blocks(osb->sb, bit_off); 4642 mlog(0, "Allocating %u clusters at block %u for inode %llu\n", 4643 num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno); 4644 status = ocfs2_insert_extent(osb, handle, inode, et, 4645 *logical_offset, block, 4646 num_bits, flags, meta_ac); 4647 if (status < 0) { 4648 mlog_errno(status); 4649 goto leave; 4650 } 4651 4652 status = ocfs2_journal_dirty(handle, et->et_root_bh); 4653 if (status < 0) { 4654 mlog_errno(status); 4655 goto leave; 4656 } 4657 4658 clusters_to_add -= num_bits; 4659 *logical_offset += num_bits; 4660 4661 if (clusters_to_add) { 4662 mlog(0, "need to alloc once more, wanted = %u\n", 4663 clusters_to_add); 4664 status = -EAGAIN; 4665 reason = RESTART_TRANS; 4666 } 4667 4668 leave: 4669 mlog_exit(status); 4670 if (reason_ret) 4671 *reason_ret = reason; 4672 return status; 4673 } 4674 4675 static void ocfs2_make_right_split_rec(struct super_block *sb, 4676 struct ocfs2_extent_rec *split_rec, 4677 u32 cpos, 4678 struct ocfs2_extent_rec *rec) 4679 { 4680 u32 rec_cpos = le32_to_cpu(rec->e_cpos); 4681 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters); 4682 4683 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec)); 4684 4685 split_rec->e_cpos = cpu_to_le32(cpos); 4686 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos); 4687 4688 split_rec->e_blkno = rec->e_blkno; 4689 le64_add_cpu(&split_rec->e_blkno, 4690 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos)); 4691 4692 split_rec->e_flags = rec->e_flags; 4693 } 4694 4695 static int ocfs2_split_and_insert(struct inode *inode, 4696 handle_t *handle, 4697 struct ocfs2_path *path, 4698 struct ocfs2_extent_tree *et, 4699 struct buffer_head **last_eb_bh, 4700 int split_index, 4701 struct ocfs2_extent_rec *orig_split_rec, 4702 struct ocfs2_alloc_context *meta_ac) 4703 { 4704 int ret = 0, depth; 4705 unsigned int insert_range, rec_range, do_leftright = 0; 4706 struct ocfs2_extent_rec tmprec; 4707 struct ocfs2_extent_list *rightmost_el; 4708 struct ocfs2_extent_rec rec; 4709 struct ocfs2_extent_rec split_rec = *orig_split_rec; 4710 struct ocfs2_insert_type insert; 4711 struct ocfs2_extent_block *eb; 4712 4713 leftright: 4714 /* 4715 * Store a copy of the record on the stack - it might move 4716 * around as the tree is manipulated below. 4717 */ 4718 rec = path_leaf_el(path)->l_recs[split_index]; 4719 4720 rightmost_el = et->et_root_el; 4721 4722 depth = le16_to_cpu(rightmost_el->l_tree_depth); 4723 if (depth) { 4724 BUG_ON(!(*last_eb_bh)); 4725 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 4726 rightmost_el = &eb->h_list; 4727 } 4728 4729 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 4730 le16_to_cpu(rightmost_el->l_count)) { 4731 ret = ocfs2_grow_tree(inode, handle, et, 4732 &depth, last_eb_bh, meta_ac); 4733 if (ret) { 4734 mlog_errno(ret); 4735 goto out; 4736 } 4737 } 4738 4739 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 4740 insert.ins_appending = APPEND_NONE; 4741 insert.ins_contig = CONTIG_NONE; 4742 insert.ins_tree_depth = depth; 4743 4744 insert_range = le32_to_cpu(split_rec.e_cpos) + 4745 le16_to_cpu(split_rec.e_leaf_clusters); 4746 rec_range = le32_to_cpu(rec.e_cpos) + 4747 le16_to_cpu(rec.e_leaf_clusters); 4748 4749 if (split_rec.e_cpos == rec.e_cpos) { 4750 insert.ins_split = SPLIT_LEFT; 4751 } else if (insert_range == rec_range) { 4752 insert.ins_split = SPLIT_RIGHT; 4753 } else { 4754 /* 4755 * Left/right split. We fake this as a right split 4756 * first and then make a second pass as a left split. 4757 */ 4758 insert.ins_split = SPLIT_RIGHT; 4759 4760 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range, 4761 &rec); 4762 4763 split_rec = tmprec; 4764 4765 BUG_ON(do_leftright); 4766 do_leftright = 1; 4767 } 4768 4769 ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert); 4770 if (ret) { 4771 mlog_errno(ret); 4772 goto out; 4773 } 4774 4775 if (do_leftright == 1) { 4776 u32 cpos; 4777 struct ocfs2_extent_list *el; 4778 4779 do_leftright++; 4780 split_rec = *orig_split_rec; 4781 4782 ocfs2_reinit_path(path, 1); 4783 4784 cpos = le32_to_cpu(split_rec.e_cpos); 4785 ret = ocfs2_find_path(inode, path, cpos); 4786 if (ret) { 4787 mlog_errno(ret); 4788 goto out; 4789 } 4790 4791 el = path_leaf_el(path); 4792 split_index = ocfs2_search_extent_list(el, cpos); 4793 goto leftright; 4794 } 4795 out: 4796 4797 return ret; 4798 } 4799 4800 static int ocfs2_replace_extent_rec(struct inode *inode, 4801 handle_t *handle, 4802 struct ocfs2_path *path, 4803 struct ocfs2_extent_list *el, 4804 int split_index, 4805 struct ocfs2_extent_rec *split_rec) 4806 { 4807 int ret; 4808 4809 ret = ocfs2_path_bh_journal_access(handle, inode, path, 4810 path_num_items(path) - 1); 4811 if (ret) { 4812 mlog_errno(ret); 4813 goto out; 4814 } 4815 4816 el->l_recs[split_index] = *split_rec; 4817 4818 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 4819 out: 4820 return ret; 4821 } 4822 4823 /* 4824 * Mark part or all of the extent record at split_index in the leaf 4825 * pointed to by path as written. This removes the unwritten 4826 * extent flag. 4827 * 4828 * Care is taken to handle contiguousness so as to not grow the tree. 4829 * 4830 * meta_ac is not strictly necessary - we only truly need it if growth 4831 * of the tree is required. All other cases will degrade into a less 4832 * optimal tree layout. 4833 * 4834 * last_eb_bh should be the rightmost leaf block for any extent 4835 * btree. Since a split may grow the tree or a merge might shrink it, 4836 * the caller cannot trust the contents of that buffer after this call. 4837 * 4838 * This code is optimized for readability - several passes might be 4839 * made over certain portions of the tree. All of those blocks will 4840 * have been brought into cache (and pinned via the journal), so the 4841 * extra overhead is not expressed in terms of disk reads. 4842 */ 4843 static int __ocfs2_mark_extent_written(struct inode *inode, 4844 struct ocfs2_extent_tree *et, 4845 handle_t *handle, 4846 struct ocfs2_path *path, 4847 int split_index, 4848 struct ocfs2_extent_rec *split_rec, 4849 struct ocfs2_alloc_context *meta_ac, 4850 struct ocfs2_cached_dealloc_ctxt *dealloc) 4851 { 4852 int ret = 0; 4853 struct ocfs2_extent_list *el = path_leaf_el(path); 4854 struct buffer_head *last_eb_bh = NULL; 4855 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 4856 struct ocfs2_merge_ctxt ctxt; 4857 struct ocfs2_extent_list *rightmost_el; 4858 4859 if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) { 4860 ret = -EIO; 4861 mlog_errno(ret); 4862 goto out; 4863 } 4864 4865 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) || 4866 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) < 4867 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) { 4868 ret = -EIO; 4869 mlog_errno(ret); 4870 goto out; 4871 } 4872 4873 ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el, 4874 split_index, 4875 split_rec); 4876 4877 /* 4878 * The core merge / split code wants to know how much room is 4879 * left in this inodes allocation tree, so we pass the 4880 * rightmost extent list. 4881 */ 4882 if (path->p_tree_depth) { 4883 struct ocfs2_extent_block *eb; 4884 4885 ret = ocfs2_read_extent_block(inode, 4886 ocfs2_et_get_last_eb_blk(et), 4887 &last_eb_bh); 4888 if (ret) { 4889 mlog_exit(ret); 4890 goto out; 4891 } 4892 4893 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 4894 rightmost_el = &eb->h_list; 4895 } else 4896 rightmost_el = path_root_el(path); 4897 4898 if (rec->e_cpos == split_rec->e_cpos && 4899 rec->e_leaf_clusters == split_rec->e_leaf_clusters) 4900 ctxt.c_split_covers_rec = 1; 4901 else 4902 ctxt.c_split_covers_rec = 0; 4903 4904 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]); 4905 4906 mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n", 4907 split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent, 4908 ctxt.c_split_covers_rec); 4909 4910 if (ctxt.c_contig_type == CONTIG_NONE) { 4911 if (ctxt.c_split_covers_rec) 4912 ret = ocfs2_replace_extent_rec(inode, handle, 4913 path, el, 4914 split_index, split_rec); 4915 else 4916 ret = ocfs2_split_and_insert(inode, handle, path, et, 4917 &last_eb_bh, split_index, 4918 split_rec, meta_ac); 4919 if (ret) 4920 mlog_errno(ret); 4921 } else { 4922 ret = ocfs2_try_to_merge_extent(inode, handle, path, 4923 split_index, split_rec, 4924 dealloc, &ctxt, et); 4925 if (ret) 4926 mlog_errno(ret); 4927 } 4928 4929 out: 4930 brelse(last_eb_bh); 4931 return ret; 4932 } 4933 4934 /* 4935 * Mark the already-existing extent at cpos as written for len clusters. 4936 * 4937 * If the existing extent is larger than the request, initiate a 4938 * split. An attempt will be made at merging with adjacent extents. 4939 * 4940 * The caller is responsible for passing down meta_ac if we'll need it. 4941 */ 4942 int ocfs2_mark_extent_written(struct inode *inode, 4943 struct ocfs2_extent_tree *et, 4944 handle_t *handle, u32 cpos, u32 len, u32 phys, 4945 struct ocfs2_alloc_context *meta_ac, 4946 struct ocfs2_cached_dealloc_ctxt *dealloc) 4947 { 4948 int ret, index; 4949 u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys); 4950 struct ocfs2_extent_rec split_rec; 4951 struct ocfs2_path *left_path = NULL; 4952 struct ocfs2_extent_list *el; 4953 4954 mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n", 4955 inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno); 4956 4957 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) { 4958 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents " 4959 "that are being written to, but the feature bit " 4960 "is not set in the super block.", 4961 (unsigned long long)OCFS2_I(inode)->ip_blkno); 4962 ret = -EROFS; 4963 goto out; 4964 } 4965 4966 /* 4967 * XXX: This should be fixed up so that we just re-insert the 4968 * next extent records. 4969 * 4970 * XXX: This is a hack on the extent tree, maybe it should be 4971 * an op? 4972 */ 4973 if (et->et_ops == &ocfs2_dinode_et_ops) 4974 ocfs2_extent_map_trunc(inode, 0); 4975 4976 left_path = ocfs2_new_path_from_et(et); 4977 if (!left_path) { 4978 ret = -ENOMEM; 4979 mlog_errno(ret); 4980 goto out; 4981 } 4982 4983 ret = ocfs2_find_path(inode, left_path, cpos); 4984 if (ret) { 4985 mlog_errno(ret); 4986 goto out; 4987 } 4988 el = path_leaf_el(left_path); 4989 4990 index = ocfs2_search_extent_list(el, cpos); 4991 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 4992 ocfs2_error(inode->i_sb, 4993 "Inode %llu has an extent at cpos %u which can no " 4994 "longer be found.\n", 4995 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 4996 ret = -EROFS; 4997 goto out; 4998 } 4999 5000 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec)); 5001 split_rec.e_cpos = cpu_to_le32(cpos); 5002 split_rec.e_leaf_clusters = cpu_to_le16(len); 5003 split_rec.e_blkno = cpu_to_le64(start_blkno); 5004 split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags; 5005 split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN; 5006 5007 ret = __ocfs2_mark_extent_written(inode, et, handle, left_path, 5008 index, &split_rec, meta_ac, 5009 dealloc); 5010 if (ret) 5011 mlog_errno(ret); 5012 5013 out: 5014 ocfs2_free_path(left_path); 5015 return ret; 5016 } 5017 5018 static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et, 5019 handle_t *handle, struct ocfs2_path *path, 5020 int index, u32 new_range, 5021 struct ocfs2_alloc_context *meta_ac) 5022 { 5023 int ret, depth, credits = handle->h_buffer_credits; 5024 struct buffer_head *last_eb_bh = NULL; 5025 struct ocfs2_extent_block *eb; 5026 struct ocfs2_extent_list *rightmost_el, *el; 5027 struct ocfs2_extent_rec split_rec; 5028 struct ocfs2_extent_rec *rec; 5029 struct ocfs2_insert_type insert; 5030 5031 /* 5032 * Setup the record to split before we grow the tree. 5033 */ 5034 el = path_leaf_el(path); 5035 rec = &el->l_recs[index]; 5036 ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec); 5037 5038 depth = path->p_tree_depth; 5039 if (depth > 0) { 5040 ret = ocfs2_read_extent_block(inode, 5041 ocfs2_et_get_last_eb_blk(et), 5042 &last_eb_bh); 5043 if (ret < 0) { 5044 mlog_errno(ret); 5045 goto out; 5046 } 5047 5048 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5049 rightmost_el = &eb->h_list; 5050 } else 5051 rightmost_el = path_leaf_el(path); 5052 5053 credits += path->p_tree_depth + 5054 ocfs2_extend_meta_needed(et->et_root_el); 5055 ret = ocfs2_extend_trans(handle, credits); 5056 if (ret) { 5057 mlog_errno(ret); 5058 goto out; 5059 } 5060 5061 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 5062 le16_to_cpu(rightmost_el->l_count)) { 5063 ret = ocfs2_grow_tree(inode, handle, et, &depth, &last_eb_bh, 5064 meta_ac); 5065 if (ret) { 5066 mlog_errno(ret); 5067 goto out; 5068 } 5069 } 5070 5071 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 5072 insert.ins_appending = APPEND_NONE; 5073 insert.ins_contig = CONTIG_NONE; 5074 insert.ins_split = SPLIT_RIGHT; 5075 insert.ins_tree_depth = depth; 5076 5077 ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert); 5078 if (ret) 5079 mlog_errno(ret); 5080 5081 out: 5082 brelse(last_eb_bh); 5083 return ret; 5084 } 5085 5086 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle, 5087 struct ocfs2_path *path, int index, 5088 struct ocfs2_cached_dealloc_ctxt *dealloc, 5089 u32 cpos, u32 len, 5090 struct ocfs2_extent_tree *et) 5091 { 5092 int ret; 5093 u32 left_cpos, rec_range, trunc_range; 5094 int wants_rotate = 0, is_rightmost_tree_rec = 0; 5095 struct super_block *sb = inode->i_sb; 5096 struct ocfs2_path *left_path = NULL; 5097 struct ocfs2_extent_list *el = path_leaf_el(path); 5098 struct ocfs2_extent_rec *rec; 5099 struct ocfs2_extent_block *eb; 5100 5101 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) { 5102 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et); 5103 if (ret) { 5104 mlog_errno(ret); 5105 goto out; 5106 } 5107 5108 index--; 5109 } 5110 5111 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) && 5112 path->p_tree_depth) { 5113 /* 5114 * Check whether this is the rightmost tree record. If 5115 * we remove all of this record or part of its right 5116 * edge then an update of the record lengths above it 5117 * will be required. 5118 */ 5119 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 5120 if (eb->h_next_leaf_blk == 0) 5121 is_rightmost_tree_rec = 1; 5122 } 5123 5124 rec = &el->l_recs[index]; 5125 if (index == 0 && path->p_tree_depth && 5126 le32_to_cpu(rec->e_cpos) == cpos) { 5127 /* 5128 * Changing the leftmost offset (via partial or whole 5129 * record truncate) of an interior (or rightmost) path 5130 * means we have to update the subtree that is formed 5131 * by this leaf and the one to it's left. 5132 * 5133 * There are two cases we can skip: 5134 * 1) Path is the leftmost one in our inode tree. 5135 * 2) The leaf is rightmost and will be empty after 5136 * we remove the extent record - the rotate code 5137 * knows how to update the newly formed edge. 5138 */ 5139 5140 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, 5141 &left_cpos); 5142 if (ret) { 5143 mlog_errno(ret); 5144 goto out; 5145 } 5146 5147 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) { 5148 left_path = ocfs2_new_path_from_path(path); 5149 if (!left_path) { 5150 ret = -ENOMEM; 5151 mlog_errno(ret); 5152 goto out; 5153 } 5154 5155 ret = ocfs2_find_path(inode, left_path, left_cpos); 5156 if (ret) { 5157 mlog_errno(ret); 5158 goto out; 5159 } 5160 } 5161 } 5162 5163 ret = ocfs2_extend_rotate_transaction(handle, 0, 5164 handle->h_buffer_credits, 5165 path); 5166 if (ret) { 5167 mlog_errno(ret); 5168 goto out; 5169 } 5170 5171 ret = ocfs2_journal_access_path(inode, handle, path); 5172 if (ret) { 5173 mlog_errno(ret); 5174 goto out; 5175 } 5176 5177 ret = ocfs2_journal_access_path(inode, handle, left_path); 5178 if (ret) { 5179 mlog_errno(ret); 5180 goto out; 5181 } 5182 5183 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5184 trunc_range = cpos + len; 5185 5186 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) { 5187 int next_free; 5188 5189 memset(rec, 0, sizeof(*rec)); 5190 ocfs2_cleanup_merge(el, index); 5191 wants_rotate = 1; 5192 5193 next_free = le16_to_cpu(el->l_next_free_rec); 5194 if (is_rightmost_tree_rec && next_free > 1) { 5195 /* 5196 * We skip the edge update if this path will 5197 * be deleted by the rotate code. 5198 */ 5199 rec = &el->l_recs[next_free - 1]; 5200 ocfs2_adjust_rightmost_records(inode, handle, path, 5201 rec); 5202 } 5203 } else if (le32_to_cpu(rec->e_cpos) == cpos) { 5204 /* Remove leftmost portion of the record. */ 5205 le32_add_cpu(&rec->e_cpos, len); 5206 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len)); 5207 le16_add_cpu(&rec->e_leaf_clusters, -len); 5208 } else if (rec_range == trunc_range) { 5209 /* Remove rightmost portion of the record */ 5210 le16_add_cpu(&rec->e_leaf_clusters, -len); 5211 if (is_rightmost_tree_rec) 5212 ocfs2_adjust_rightmost_records(inode, handle, path, rec); 5213 } else { 5214 /* Caller should have trapped this. */ 5215 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) " 5216 "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, 5217 le32_to_cpu(rec->e_cpos), 5218 le16_to_cpu(rec->e_leaf_clusters), cpos, len); 5219 BUG(); 5220 } 5221 5222 if (left_path) { 5223 int subtree_index; 5224 5225 subtree_index = ocfs2_find_subtree_root(inode, left_path, path); 5226 ocfs2_complete_edge_insert(inode, handle, left_path, path, 5227 subtree_index); 5228 } 5229 5230 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 5231 5232 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et); 5233 if (ret) { 5234 mlog_errno(ret); 5235 goto out; 5236 } 5237 5238 out: 5239 ocfs2_free_path(left_path); 5240 return ret; 5241 } 5242 5243 int ocfs2_remove_extent(struct inode *inode, 5244 struct ocfs2_extent_tree *et, 5245 u32 cpos, u32 len, handle_t *handle, 5246 struct ocfs2_alloc_context *meta_ac, 5247 struct ocfs2_cached_dealloc_ctxt *dealloc) 5248 { 5249 int ret, index; 5250 u32 rec_range, trunc_range; 5251 struct ocfs2_extent_rec *rec; 5252 struct ocfs2_extent_list *el; 5253 struct ocfs2_path *path = NULL; 5254 5255 ocfs2_extent_map_trunc(inode, 0); 5256 5257 path = ocfs2_new_path_from_et(et); 5258 if (!path) { 5259 ret = -ENOMEM; 5260 mlog_errno(ret); 5261 goto out; 5262 } 5263 5264 ret = ocfs2_find_path(inode, path, cpos); 5265 if (ret) { 5266 mlog_errno(ret); 5267 goto out; 5268 } 5269 5270 el = path_leaf_el(path); 5271 index = ocfs2_search_extent_list(el, cpos); 5272 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 5273 ocfs2_error(inode->i_sb, 5274 "Inode %llu has an extent at cpos %u which can no " 5275 "longer be found.\n", 5276 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 5277 ret = -EROFS; 5278 goto out; 5279 } 5280 5281 /* 5282 * We have 3 cases of extent removal: 5283 * 1) Range covers the entire extent rec 5284 * 2) Range begins or ends on one edge of the extent rec 5285 * 3) Range is in the middle of the extent rec (no shared edges) 5286 * 5287 * For case 1 we remove the extent rec and left rotate to 5288 * fill the hole. 5289 * 5290 * For case 2 we just shrink the existing extent rec, with a 5291 * tree update if the shrinking edge is also the edge of an 5292 * extent block. 5293 * 5294 * For case 3 we do a right split to turn the extent rec into 5295 * something case 2 can handle. 5296 */ 5297 rec = &el->l_recs[index]; 5298 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5299 trunc_range = cpos + len; 5300 5301 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range); 5302 5303 mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d " 5304 "(cpos %u, len %u)\n", 5305 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index, 5306 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec)); 5307 5308 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) { 5309 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc, 5310 cpos, len, et); 5311 if (ret) { 5312 mlog_errno(ret); 5313 goto out; 5314 } 5315 } else { 5316 ret = ocfs2_split_tree(inode, et, handle, path, index, 5317 trunc_range, meta_ac); 5318 if (ret) { 5319 mlog_errno(ret); 5320 goto out; 5321 } 5322 5323 /* 5324 * The split could have manipulated the tree enough to 5325 * move the record location, so we have to look for it again. 5326 */ 5327 ocfs2_reinit_path(path, 1); 5328 5329 ret = ocfs2_find_path(inode, path, cpos); 5330 if (ret) { 5331 mlog_errno(ret); 5332 goto out; 5333 } 5334 5335 el = path_leaf_el(path); 5336 index = ocfs2_search_extent_list(el, cpos); 5337 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 5338 ocfs2_error(inode->i_sb, 5339 "Inode %llu: split at cpos %u lost record.", 5340 (unsigned long long)OCFS2_I(inode)->ip_blkno, 5341 cpos); 5342 ret = -EROFS; 5343 goto out; 5344 } 5345 5346 /* 5347 * Double check our values here. If anything is fishy, 5348 * it's easier to catch it at the top level. 5349 */ 5350 rec = &el->l_recs[index]; 5351 rec_range = le32_to_cpu(rec->e_cpos) + 5352 ocfs2_rec_clusters(el, rec); 5353 if (rec_range != trunc_range) { 5354 ocfs2_error(inode->i_sb, 5355 "Inode %llu: error after split at cpos %u" 5356 "trunc len %u, existing record is (%u,%u)", 5357 (unsigned long long)OCFS2_I(inode)->ip_blkno, 5358 cpos, len, le32_to_cpu(rec->e_cpos), 5359 ocfs2_rec_clusters(el, rec)); 5360 ret = -EROFS; 5361 goto out; 5362 } 5363 5364 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc, 5365 cpos, len, et); 5366 if (ret) { 5367 mlog_errno(ret); 5368 goto out; 5369 } 5370 } 5371 5372 out: 5373 ocfs2_free_path(path); 5374 return ret; 5375 } 5376 5377 int ocfs2_remove_btree_range(struct inode *inode, 5378 struct ocfs2_extent_tree *et, 5379 u32 cpos, u32 phys_cpos, u32 len, 5380 struct ocfs2_cached_dealloc_ctxt *dealloc) 5381 { 5382 int ret; 5383 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos); 5384 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5385 struct inode *tl_inode = osb->osb_tl_inode; 5386 handle_t *handle; 5387 struct ocfs2_alloc_context *meta_ac = NULL; 5388 5389 ret = ocfs2_lock_allocators(inode, et, 0, 1, NULL, &meta_ac); 5390 if (ret) { 5391 mlog_errno(ret); 5392 return ret; 5393 } 5394 5395 mutex_lock(&tl_inode->i_mutex); 5396 5397 if (ocfs2_truncate_log_needs_flush(osb)) { 5398 ret = __ocfs2_flush_truncate_log(osb); 5399 if (ret < 0) { 5400 mlog_errno(ret); 5401 goto out; 5402 } 5403 } 5404 5405 handle = ocfs2_start_trans(osb, ocfs2_remove_extent_credits(osb->sb)); 5406 if (IS_ERR(handle)) { 5407 ret = PTR_ERR(handle); 5408 mlog_errno(ret); 5409 goto out; 5410 } 5411 5412 ret = ocfs2_et_root_journal_access(handle, inode, et, 5413 OCFS2_JOURNAL_ACCESS_WRITE); 5414 if (ret) { 5415 mlog_errno(ret); 5416 goto out; 5417 } 5418 5419 vfs_dq_free_space_nodirty(inode, 5420 ocfs2_clusters_to_bytes(inode->i_sb, len)); 5421 5422 ret = ocfs2_remove_extent(inode, et, cpos, len, handle, meta_ac, 5423 dealloc); 5424 if (ret) { 5425 mlog_errno(ret); 5426 goto out_commit; 5427 } 5428 5429 ocfs2_et_update_clusters(inode, et, -len); 5430 5431 ret = ocfs2_journal_dirty(handle, et->et_root_bh); 5432 if (ret) { 5433 mlog_errno(ret); 5434 goto out_commit; 5435 } 5436 5437 ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len); 5438 if (ret) 5439 mlog_errno(ret); 5440 5441 out_commit: 5442 ocfs2_commit_trans(osb, handle); 5443 out: 5444 mutex_unlock(&tl_inode->i_mutex); 5445 5446 if (meta_ac) 5447 ocfs2_free_alloc_context(meta_ac); 5448 5449 return ret; 5450 } 5451 5452 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb) 5453 { 5454 struct buffer_head *tl_bh = osb->osb_tl_bh; 5455 struct ocfs2_dinode *di; 5456 struct ocfs2_truncate_log *tl; 5457 5458 di = (struct ocfs2_dinode *) tl_bh->b_data; 5459 tl = &di->id2.i_dealloc; 5460 5461 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count), 5462 "slot %d, invalid truncate log parameters: used = " 5463 "%u, count = %u\n", osb->slot_num, 5464 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count)); 5465 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count); 5466 } 5467 5468 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl, 5469 unsigned int new_start) 5470 { 5471 unsigned int tail_index; 5472 unsigned int current_tail; 5473 5474 /* No records, nothing to coalesce */ 5475 if (!le16_to_cpu(tl->tl_used)) 5476 return 0; 5477 5478 tail_index = le16_to_cpu(tl->tl_used) - 1; 5479 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start); 5480 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters); 5481 5482 return current_tail == new_start; 5483 } 5484 5485 int ocfs2_truncate_log_append(struct ocfs2_super *osb, 5486 handle_t *handle, 5487 u64 start_blk, 5488 unsigned int num_clusters) 5489 { 5490 int status, index; 5491 unsigned int start_cluster, tl_count; 5492 struct inode *tl_inode = osb->osb_tl_inode; 5493 struct buffer_head *tl_bh = osb->osb_tl_bh; 5494 struct ocfs2_dinode *di; 5495 struct ocfs2_truncate_log *tl; 5496 5497 mlog_entry("start_blk = %llu, num_clusters = %u\n", 5498 (unsigned long long)start_blk, num_clusters); 5499 5500 BUG_ON(mutex_trylock(&tl_inode->i_mutex)); 5501 5502 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk); 5503 5504 di = (struct ocfs2_dinode *) tl_bh->b_data; 5505 5506 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 5507 * by the underlying call to ocfs2_read_inode_block(), so any 5508 * corruption is a code bug */ 5509 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5510 5511 tl = &di->id2.i_dealloc; 5512 tl_count = le16_to_cpu(tl->tl_count); 5513 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) || 5514 tl_count == 0, 5515 "Truncate record count on #%llu invalid " 5516 "wanted %u, actual %u\n", 5517 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5518 ocfs2_truncate_recs_per_inode(osb->sb), 5519 le16_to_cpu(tl->tl_count)); 5520 5521 /* Caller should have known to flush before calling us. */ 5522 index = le16_to_cpu(tl->tl_used); 5523 if (index >= tl_count) { 5524 status = -ENOSPC; 5525 mlog_errno(status); 5526 goto bail; 5527 } 5528 5529 status = ocfs2_journal_access_di(handle, tl_inode, tl_bh, 5530 OCFS2_JOURNAL_ACCESS_WRITE); 5531 if (status < 0) { 5532 mlog_errno(status); 5533 goto bail; 5534 } 5535 5536 mlog(0, "Log truncate of %u clusters starting at cluster %u to " 5537 "%llu (index = %d)\n", num_clusters, start_cluster, 5538 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index); 5539 5540 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) { 5541 /* 5542 * Move index back to the record we are coalescing with. 5543 * ocfs2_truncate_log_can_coalesce() guarantees nonzero 5544 */ 5545 index--; 5546 5547 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters); 5548 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n", 5549 index, le32_to_cpu(tl->tl_recs[index].t_start), 5550 num_clusters); 5551 } else { 5552 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster); 5553 tl->tl_used = cpu_to_le16(index + 1); 5554 } 5555 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters); 5556 5557 status = ocfs2_journal_dirty(handle, tl_bh); 5558 if (status < 0) { 5559 mlog_errno(status); 5560 goto bail; 5561 } 5562 5563 bail: 5564 mlog_exit(status); 5565 return status; 5566 } 5567 5568 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb, 5569 handle_t *handle, 5570 struct inode *data_alloc_inode, 5571 struct buffer_head *data_alloc_bh) 5572 { 5573 int status = 0; 5574 int i; 5575 unsigned int num_clusters; 5576 u64 start_blk; 5577 struct ocfs2_truncate_rec rec; 5578 struct ocfs2_dinode *di; 5579 struct ocfs2_truncate_log *tl; 5580 struct inode *tl_inode = osb->osb_tl_inode; 5581 struct buffer_head *tl_bh = osb->osb_tl_bh; 5582 5583 mlog_entry_void(); 5584 5585 di = (struct ocfs2_dinode *) tl_bh->b_data; 5586 tl = &di->id2.i_dealloc; 5587 i = le16_to_cpu(tl->tl_used) - 1; 5588 while (i >= 0) { 5589 /* Caller has given us at least enough credits to 5590 * update the truncate log dinode */ 5591 status = ocfs2_journal_access_di(handle, tl_inode, tl_bh, 5592 OCFS2_JOURNAL_ACCESS_WRITE); 5593 if (status < 0) { 5594 mlog_errno(status); 5595 goto bail; 5596 } 5597 5598 tl->tl_used = cpu_to_le16(i); 5599 5600 status = ocfs2_journal_dirty(handle, tl_bh); 5601 if (status < 0) { 5602 mlog_errno(status); 5603 goto bail; 5604 } 5605 5606 /* TODO: Perhaps we can calculate the bulk of the 5607 * credits up front rather than extending like 5608 * this. */ 5609 status = ocfs2_extend_trans(handle, 5610 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC); 5611 if (status < 0) { 5612 mlog_errno(status); 5613 goto bail; 5614 } 5615 5616 rec = tl->tl_recs[i]; 5617 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb, 5618 le32_to_cpu(rec.t_start)); 5619 num_clusters = le32_to_cpu(rec.t_clusters); 5620 5621 /* if start_blk is not set, we ignore the record as 5622 * invalid. */ 5623 if (start_blk) { 5624 mlog(0, "free record %d, start = %u, clusters = %u\n", 5625 i, le32_to_cpu(rec.t_start), num_clusters); 5626 5627 status = ocfs2_free_clusters(handle, data_alloc_inode, 5628 data_alloc_bh, start_blk, 5629 num_clusters); 5630 if (status < 0) { 5631 mlog_errno(status); 5632 goto bail; 5633 } 5634 } 5635 i--; 5636 } 5637 5638 bail: 5639 mlog_exit(status); 5640 return status; 5641 } 5642 5643 /* Expects you to already be holding tl_inode->i_mutex */ 5644 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb) 5645 { 5646 int status; 5647 unsigned int num_to_flush; 5648 handle_t *handle; 5649 struct inode *tl_inode = osb->osb_tl_inode; 5650 struct inode *data_alloc_inode = NULL; 5651 struct buffer_head *tl_bh = osb->osb_tl_bh; 5652 struct buffer_head *data_alloc_bh = NULL; 5653 struct ocfs2_dinode *di; 5654 struct ocfs2_truncate_log *tl; 5655 5656 mlog_entry_void(); 5657 5658 BUG_ON(mutex_trylock(&tl_inode->i_mutex)); 5659 5660 di = (struct ocfs2_dinode *) tl_bh->b_data; 5661 5662 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 5663 * by the underlying call to ocfs2_read_inode_block(), so any 5664 * corruption is a code bug */ 5665 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5666 5667 tl = &di->id2.i_dealloc; 5668 num_to_flush = le16_to_cpu(tl->tl_used); 5669 mlog(0, "Flush %u records from truncate log #%llu\n", 5670 num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno); 5671 if (!num_to_flush) { 5672 status = 0; 5673 goto out; 5674 } 5675 5676 data_alloc_inode = ocfs2_get_system_file_inode(osb, 5677 GLOBAL_BITMAP_SYSTEM_INODE, 5678 OCFS2_INVALID_SLOT); 5679 if (!data_alloc_inode) { 5680 status = -EINVAL; 5681 mlog(ML_ERROR, "Could not get bitmap inode!\n"); 5682 goto out; 5683 } 5684 5685 mutex_lock(&data_alloc_inode->i_mutex); 5686 5687 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1); 5688 if (status < 0) { 5689 mlog_errno(status); 5690 goto out_mutex; 5691 } 5692 5693 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 5694 if (IS_ERR(handle)) { 5695 status = PTR_ERR(handle); 5696 mlog_errno(status); 5697 goto out_unlock; 5698 } 5699 5700 status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode, 5701 data_alloc_bh); 5702 if (status < 0) 5703 mlog_errno(status); 5704 5705 ocfs2_commit_trans(osb, handle); 5706 5707 out_unlock: 5708 brelse(data_alloc_bh); 5709 ocfs2_inode_unlock(data_alloc_inode, 1); 5710 5711 out_mutex: 5712 mutex_unlock(&data_alloc_inode->i_mutex); 5713 iput(data_alloc_inode); 5714 5715 out: 5716 mlog_exit(status); 5717 return status; 5718 } 5719 5720 int ocfs2_flush_truncate_log(struct ocfs2_super *osb) 5721 { 5722 int status; 5723 struct inode *tl_inode = osb->osb_tl_inode; 5724 5725 mutex_lock(&tl_inode->i_mutex); 5726 status = __ocfs2_flush_truncate_log(osb); 5727 mutex_unlock(&tl_inode->i_mutex); 5728 5729 return status; 5730 } 5731 5732 static void ocfs2_truncate_log_worker(struct work_struct *work) 5733 { 5734 int status; 5735 struct ocfs2_super *osb = 5736 container_of(work, struct ocfs2_super, 5737 osb_truncate_log_wq.work); 5738 5739 mlog_entry_void(); 5740 5741 status = ocfs2_flush_truncate_log(osb); 5742 if (status < 0) 5743 mlog_errno(status); 5744 else 5745 ocfs2_init_inode_steal_slot(osb); 5746 5747 mlog_exit(status); 5748 } 5749 5750 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ) 5751 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb, 5752 int cancel) 5753 { 5754 if (osb->osb_tl_inode) { 5755 /* We want to push off log flushes while truncates are 5756 * still running. */ 5757 if (cancel) 5758 cancel_delayed_work(&osb->osb_truncate_log_wq); 5759 5760 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq, 5761 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL); 5762 } 5763 } 5764 5765 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb, 5766 int slot_num, 5767 struct inode **tl_inode, 5768 struct buffer_head **tl_bh) 5769 { 5770 int status; 5771 struct inode *inode = NULL; 5772 struct buffer_head *bh = NULL; 5773 5774 inode = ocfs2_get_system_file_inode(osb, 5775 TRUNCATE_LOG_SYSTEM_INODE, 5776 slot_num); 5777 if (!inode) { 5778 status = -EINVAL; 5779 mlog(ML_ERROR, "Could not get load truncate log inode!\n"); 5780 goto bail; 5781 } 5782 5783 status = ocfs2_read_inode_block(inode, &bh); 5784 if (status < 0) { 5785 iput(inode); 5786 mlog_errno(status); 5787 goto bail; 5788 } 5789 5790 *tl_inode = inode; 5791 *tl_bh = bh; 5792 bail: 5793 mlog_exit(status); 5794 return status; 5795 } 5796 5797 /* called during the 1st stage of node recovery. we stamp a clean 5798 * truncate log and pass back a copy for processing later. if the 5799 * truncate log does not require processing, a *tl_copy is set to 5800 * NULL. */ 5801 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb, 5802 int slot_num, 5803 struct ocfs2_dinode **tl_copy) 5804 { 5805 int status; 5806 struct inode *tl_inode = NULL; 5807 struct buffer_head *tl_bh = NULL; 5808 struct ocfs2_dinode *di; 5809 struct ocfs2_truncate_log *tl; 5810 5811 *tl_copy = NULL; 5812 5813 mlog(0, "recover truncate log from slot %d\n", slot_num); 5814 5815 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh); 5816 if (status < 0) { 5817 mlog_errno(status); 5818 goto bail; 5819 } 5820 5821 di = (struct ocfs2_dinode *) tl_bh->b_data; 5822 5823 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's 5824 * validated by the underlying call to ocfs2_read_inode_block(), 5825 * so any corruption is a code bug */ 5826 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5827 5828 tl = &di->id2.i_dealloc; 5829 if (le16_to_cpu(tl->tl_used)) { 5830 mlog(0, "We'll have %u logs to recover\n", 5831 le16_to_cpu(tl->tl_used)); 5832 5833 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL); 5834 if (!(*tl_copy)) { 5835 status = -ENOMEM; 5836 mlog_errno(status); 5837 goto bail; 5838 } 5839 5840 /* Assuming the write-out below goes well, this copy 5841 * will be passed back to recovery for processing. */ 5842 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size); 5843 5844 /* All we need to do to clear the truncate log is set 5845 * tl_used. */ 5846 tl->tl_used = 0; 5847 5848 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check); 5849 status = ocfs2_write_block(osb, tl_bh, tl_inode); 5850 if (status < 0) { 5851 mlog_errno(status); 5852 goto bail; 5853 } 5854 } 5855 5856 bail: 5857 if (tl_inode) 5858 iput(tl_inode); 5859 brelse(tl_bh); 5860 5861 if (status < 0 && (*tl_copy)) { 5862 kfree(*tl_copy); 5863 *tl_copy = NULL; 5864 } 5865 5866 mlog_exit(status); 5867 return status; 5868 } 5869 5870 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb, 5871 struct ocfs2_dinode *tl_copy) 5872 { 5873 int status = 0; 5874 int i; 5875 unsigned int clusters, num_recs, start_cluster; 5876 u64 start_blk; 5877 handle_t *handle; 5878 struct inode *tl_inode = osb->osb_tl_inode; 5879 struct ocfs2_truncate_log *tl; 5880 5881 mlog_entry_void(); 5882 5883 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) { 5884 mlog(ML_ERROR, "Asked to recover my own truncate log!\n"); 5885 return -EINVAL; 5886 } 5887 5888 tl = &tl_copy->id2.i_dealloc; 5889 num_recs = le16_to_cpu(tl->tl_used); 5890 mlog(0, "cleanup %u records from %llu\n", num_recs, 5891 (unsigned long long)le64_to_cpu(tl_copy->i_blkno)); 5892 5893 mutex_lock(&tl_inode->i_mutex); 5894 for(i = 0; i < num_recs; i++) { 5895 if (ocfs2_truncate_log_needs_flush(osb)) { 5896 status = __ocfs2_flush_truncate_log(osb); 5897 if (status < 0) { 5898 mlog_errno(status); 5899 goto bail_up; 5900 } 5901 } 5902 5903 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 5904 if (IS_ERR(handle)) { 5905 status = PTR_ERR(handle); 5906 mlog_errno(status); 5907 goto bail_up; 5908 } 5909 5910 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters); 5911 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start); 5912 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster); 5913 5914 status = ocfs2_truncate_log_append(osb, handle, 5915 start_blk, clusters); 5916 ocfs2_commit_trans(osb, handle); 5917 if (status < 0) { 5918 mlog_errno(status); 5919 goto bail_up; 5920 } 5921 } 5922 5923 bail_up: 5924 mutex_unlock(&tl_inode->i_mutex); 5925 5926 mlog_exit(status); 5927 return status; 5928 } 5929 5930 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb) 5931 { 5932 int status; 5933 struct inode *tl_inode = osb->osb_tl_inode; 5934 5935 mlog_entry_void(); 5936 5937 if (tl_inode) { 5938 cancel_delayed_work(&osb->osb_truncate_log_wq); 5939 flush_workqueue(ocfs2_wq); 5940 5941 status = ocfs2_flush_truncate_log(osb); 5942 if (status < 0) 5943 mlog_errno(status); 5944 5945 brelse(osb->osb_tl_bh); 5946 iput(osb->osb_tl_inode); 5947 } 5948 5949 mlog_exit_void(); 5950 } 5951 5952 int ocfs2_truncate_log_init(struct ocfs2_super *osb) 5953 { 5954 int status; 5955 struct inode *tl_inode = NULL; 5956 struct buffer_head *tl_bh = NULL; 5957 5958 mlog_entry_void(); 5959 5960 status = ocfs2_get_truncate_log_info(osb, 5961 osb->slot_num, 5962 &tl_inode, 5963 &tl_bh); 5964 if (status < 0) 5965 mlog_errno(status); 5966 5967 /* ocfs2_truncate_log_shutdown keys on the existence of 5968 * osb->osb_tl_inode so we don't set any of the osb variables 5969 * until we're sure all is well. */ 5970 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq, 5971 ocfs2_truncate_log_worker); 5972 osb->osb_tl_bh = tl_bh; 5973 osb->osb_tl_inode = tl_inode; 5974 5975 mlog_exit(status); 5976 return status; 5977 } 5978 5979 /* 5980 * Delayed de-allocation of suballocator blocks. 5981 * 5982 * Some sets of block de-allocations might involve multiple suballocator inodes. 5983 * 5984 * The locking for this can get extremely complicated, especially when 5985 * the suballocator inodes to delete from aren't known until deep 5986 * within an unrelated codepath. 5987 * 5988 * ocfs2_extent_block structures are a good example of this - an inode 5989 * btree could have been grown by any number of nodes each allocating 5990 * out of their own suballoc inode. 5991 * 5992 * These structures allow the delay of block de-allocation until a 5993 * later time, when locking of multiple cluster inodes won't cause 5994 * deadlock. 5995 */ 5996 5997 /* 5998 * Describe a single bit freed from a suballocator. For the block 5999 * suballocators, it represents one block. For the global cluster 6000 * allocator, it represents some clusters and free_bit indicates 6001 * clusters number. 6002 */ 6003 struct ocfs2_cached_block_free { 6004 struct ocfs2_cached_block_free *free_next; 6005 u64 free_blk; 6006 unsigned int free_bit; 6007 }; 6008 6009 struct ocfs2_per_slot_free_list { 6010 struct ocfs2_per_slot_free_list *f_next_suballocator; 6011 int f_inode_type; 6012 int f_slot; 6013 struct ocfs2_cached_block_free *f_first; 6014 }; 6015 6016 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb, 6017 int sysfile_type, 6018 int slot, 6019 struct ocfs2_cached_block_free *head) 6020 { 6021 int ret; 6022 u64 bg_blkno; 6023 handle_t *handle; 6024 struct inode *inode; 6025 struct buffer_head *di_bh = NULL; 6026 struct ocfs2_cached_block_free *tmp; 6027 6028 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot); 6029 if (!inode) { 6030 ret = -EINVAL; 6031 mlog_errno(ret); 6032 goto out; 6033 } 6034 6035 mutex_lock(&inode->i_mutex); 6036 6037 ret = ocfs2_inode_lock(inode, &di_bh, 1); 6038 if (ret) { 6039 mlog_errno(ret); 6040 goto out_mutex; 6041 } 6042 6043 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE); 6044 if (IS_ERR(handle)) { 6045 ret = PTR_ERR(handle); 6046 mlog_errno(ret); 6047 goto out_unlock; 6048 } 6049 6050 while (head) { 6051 bg_blkno = ocfs2_which_suballoc_group(head->free_blk, 6052 head->free_bit); 6053 mlog(0, "Free bit: (bit %u, blkno %llu)\n", 6054 head->free_bit, (unsigned long long)head->free_blk); 6055 6056 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh, 6057 head->free_bit, bg_blkno, 1); 6058 if (ret) { 6059 mlog_errno(ret); 6060 goto out_journal; 6061 } 6062 6063 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE); 6064 if (ret) { 6065 mlog_errno(ret); 6066 goto out_journal; 6067 } 6068 6069 tmp = head; 6070 head = head->free_next; 6071 kfree(tmp); 6072 } 6073 6074 out_journal: 6075 ocfs2_commit_trans(osb, handle); 6076 6077 out_unlock: 6078 ocfs2_inode_unlock(inode, 1); 6079 brelse(di_bh); 6080 out_mutex: 6081 mutex_unlock(&inode->i_mutex); 6082 iput(inode); 6083 out: 6084 while(head) { 6085 /* Premature exit may have left some dangling items. */ 6086 tmp = head; 6087 head = head->free_next; 6088 kfree(tmp); 6089 } 6090 6091 return ret; 6092 } 6093 6094 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6095 u64 blkno, unsigned int bit) 6096 { 6097 int ret = 0; 6098 struct ocfs2_cached_block_free *item; 6099 6100 item = kmalloc(sizeof(*item), GFP_NOFS); 6101 if (item == NULL) { 6102 ret = -ENOMEM; 6103 mlog_errno(ret); 6104 return ret; 6105 } 6106 6107 mlog(0, "Insert clusters: (bit %u, blk %llu)\n", 6108 bit, (unsigned long long)blkno); 6109 6110 item->free_blk = blkno; 6111 item->free_bit = bit; 6112 item->free_next = ctxt->c_global_allocator; 6113 6114 ctxt->c_global_allocator = item; 6115 return ret; 6116 } 6117 6118 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb, 6119 struct ocfs2_cached_block_free *head) 6120 { 6121 struct ocfs2_cached_block_free *tmp; 6122 struct inode *tl_inode = osb->osb_tl_inode; 6123 handle_t *handle; 6124 int ret = 0; 6125 6126 mutex_lock(&tl_inode->i_mutex); 6127 6128 while (head) { 6129 if (ocfs2_truncate_log_needs_flush(osb)) { 6130 ret = __ocfs2_flush_truncate_log(osb); 6131 if (ret < 0) { 6132 mlog_errno(ret); 6133 break; 6134 } 6135 } 6136 6137 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6138 if (IS_ERR(handle)) { 6139 ret = PTR_ERR(handle); 6140 mlog_errno(ret); 6141 break; 6142 } 6143 6144 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk, 6145 head->free_bit); 6146 6147 ocfs2_commit_trans(osb, handle); 6148 tmp = head; 6149 head = head->free_next; 6150 kfree(tmp); 6151 6152 if (ret < 0) { 6153 mlog_errno(ret); 6154 break; 6155 } 6156 } 6157 6158 mutex_unlock(&tl_inode->i_mutex); 6159 6160 while (head) { 6161 /* Premature exit may have left some dangling items. */ 6162 tmp = head; 6163 head = head->free_next; 6164 kfree(tmp); 6165 } 6166 6167 return ret; 6168 } 6169 6170 int ocfs2_run_deallocs(struct ocfs2_super *osb, 6171 struct ocfs2_cached_dealloc_ctxt *ctxt) 6172 { 6173 int ret = 0, ret2; 6174 struct ocfs2_per_slot_free_list *fl; 6175 6176 if (!ctxt) 6177 return 0; 6178 6179 while (ctxt->c_first_suballocator) { 6180 fl = ctxt->c_first_suballocator; 6181 6182 if (fl->f_first) { 6183 mlog(0, "Free items: (type %u, slot %d)\n", 6184 fl->f_inode_type, fl->f_slot); 6185 ret2 = ocfs2_free_cached_blocks(osb, 6186 fl->f_inode_type, 6187 fl->f_slot, 6188 fl->f_first); 6189 if (ret2) 6190 mlog_errno(ret2); 6191 if (!ret) 6192 ret = ret2; 6193 } 6194 6195 ctxt->c_first_suballocator = fl->f_next_suballocator; 6196 kfree(fl); 6197 } 6198 6199 if (ctxt->c_global_allocator) { 6200 ret2 = ocfs2_free_cached_clusters(osb, 6201 ctxt->c_global_allocator); 6202 if (ret2) 6203 mlog_errno(ret2); 6204 if (!ret) 6205 ret = ret2; 6206 6207 ctxt->c_global_allocator = NULL; 6208 } 6209 6210 return ret; 6211 } 6212 6213 static struct ocfs2_per_slot_free_list * 6214 ocfs2_find_per_slot_free_list(int type, 6215 int slot, 6216 struct ocfs2_cached_dealloc_ctxt *ctxt) 6217 { 6218 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; 6219 6220 while (fl) { 6221 if (fl->f_inode_type == type && fl->f_slot == slot) 6222 return fl; 6223 6224 fl = fl->f_next_suballocator; 6225 } 6226 6227 fl = kmalloc(sizeof(*fl), GFP_NOFS); 6228 if (fl) { 6229 fl->f_inode_type = type; 6230 fl->f_slot = slot; 6231 fl->f_first = NULL; 6232 fl->f_next_suballocator = ctxt->c_first_suballocator; 6233 6234 ctxt->c_first_suballocator = fl; 6235 } 6236 return fl; 6237 } 6238 6239 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6240 int type, int slot, u64 blkno, 6241 unsigned int bit) 6242 { 6243 int ret; 6244 struct ocfs2_per_slot_free_list *fl; 6245 struct ocfs2_cached_block_free *item; 6246 6247 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt); 6248 if (fl == NULL) { 6249 ret = -ENOMEM; 6250 mlog_errno(ret); 6251 goto out; 6252 } 6253 6254 item = kmalloc(sizeof(*item), GFP_NOFS); 6255 if (item == NULL) { 6256 ret = -ENOMEM; 6257 mlog_errno(ret); 6258 goto out; 6259 } 6260 6261 mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n", 6262 type, slot, bit, (unsigned long long)blkno); 6263 6264 item->free_blk = blkno; 6265 item->free_bit = bit; 6266 item->free_next = fl->f_first; 6267 6268 fl->f_first = item; 6269 6270 ret = 0; 6271 out: 6272 return ret; 6273 } 6274 6275 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 6276 struct ocfs2_extent_block *eb) 6277 { 6278 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE, 6279 le16_to_cpu(eb->h_suballoc_slot), 6280 le64_to_cpu(eb->h_blkno), 6281 le16_to_cpu(eb->h_suballoc_bit)); 6282 } 6283 6284 /* This function will figure out whether the currently last extent 6285 * block will be deleted, and if it will, what the new last extent 6286 * block will be so we can update his h_next_leaf_blk field, as well 6287 * as the dinodes i_last_eb_blk */ 6288 static int ocfs2_find_new_last_ext_blk(struct inode *inode, 6289 unsigned int clusters_to_del, 6290 struct ocfs2_path *path, 6291 struct buffer_head **new_last_eb) 6292 { 6293 int next_free, ret = 0; 6294 u32 cpos; 6295 struct ocfs2_extent_rec *rec; 6296 struct ocfs2_extent_block *eb; 6297 struct ocfs2_extent_list *el; 6298 struct buffer_head *bh = NULL; 6299 6300 *new_last_eb = NULL; 6301 6302 /* we have no tree, so of course, no last_eb. */ 6303 if (!path->p_tree_depth) 6304 goto out; 6305 6306 /* trunc to zero special case - this makes tree_depth = 0 6307 * regardless of what it is. */ 6308 if (OCFS2_I(inode)->ip_clusters == clusters_to_del) 6309 goto out; 6310 6311 el = path_leaf_el(path); 6312 BUG_ON(!el->l_next_free_rec); 6313 6314 /* 6315 * Make sure that this extent list will actually be empty 6316 * after we clear away the data. We can shortcut out if 6317 * there's more than one non-empty extent in the 6318 * list. Otherwise, a check of the remaining extent is 6319 * necessary. 6320 */ 6321 next_free = le16_to_cpu(el->l_next_free_rec); 6322 rec = NULL; 6323 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 6324 if (next_free > 2) 6325 goto out; 6326 6327 /* We may have a valid extent in index 1, check it. */ 6328 if (next_free == 2) 6329 rec = &el->l_recs[1]; 6330 6331 /* 6332 * Fall through - no more nonempty extents, so we want 6333 * to delete this leaf. 6334 */ 6335 } else { 6336 if (next_free > 1) 6337 goto out; 6338 6339 rec = &el->l_recs[0]; 6340 } 6341 6342 if (rec) { 6343 /* 6344 * Check it we'll only be trimming off the end of this 6345 * cluster. 6346 */ 6347 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del) 6348 goto out; 6349 } 6350 6351 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos); 6352 if (ret) { 6353 mlog_errno(ret); 6354 goto out; 6355 } 6356 6357 ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh); 6358 if (ret) { 6359 mlog_errno(ret); 6360 goto out; 6361 } 6362 6363 eb = (struct ocfs2_extent_block *) bh->b_data; 6364 el = &eb->h_list; 6365 6366 /* ocfs2_find_leaf() gets the eb from ocfs2_read_extent_block(). 6367 * Any corruption is a code bug. */ 6368 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 6369 6370 *new_last_eb = bh; 6371 get_bh(*new_last_eb); 6372 mlog(0, "returning block %llu, (cpos: %u)\n", 6373 (unsigned long long)le64_to_cpu(eb->h_blkno), cpos); 6374 out: 6375 brelse(bh); 6376 6377 return ret; 6378 } 6379 6380 /* 6381 * Trim some clusters off the rightmost edge of a tree. Only called 6382 * during truncate. 6383 * 6384 * The caller needs to: 6385 * - start journaling of each path component. 6386 * - compute and fully set up any new last ext block 6387 */ 6388 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path, 6389 handle_t *handle, struct ocfs2_truncate_context *tc, 6390 u32 clusters_to_del, u64 *delete_start) 6391 { 6392 int ret, i, index = path->p_tree_depth; 6393 u32 new_edge = 0; 6394 u64 deleted_eb = 0; 6395 struct buffer_head *bh; 6396 struct ocfs2_extent_list *el; 6397 struct ocfs2_extent_rec *rec; 6398 6399 *delete_start = 0; 6400 6401 while (index >= 0) { 6402 bh = path->p_node[index].bh; 6403 el = path->p_node[index].el; 6404 6405 mlog(0, "traveling tree (index = %d, block = %llu)\n", 6406 index, (unsigned long long)bh->b_blocknr); 6407 6408 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 6409 6410 if (index != 6411 (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) { 6412 ocfs2_error(inode->i_sb, 6413 "Inode %lu has invalid ext. block %llu", 6414 inode->i_ino, 6415 (unsigned long long)bh->b_blocknr); 6416 ret = -EROFS; 6417 goto out; 6418 } 6419 6420 find_tail_record: 6421 i = le16_to_cpu(el->l_next_free_rec) - 1; 6422 rec = &el->l_recs[i]; 6423 6424 mlog(0, "Extent list before: record %d: (%u, %u, %llu), " 6425 "next = %u\n", i, le32_to_cpu(rec->e_cpos), 6426 ocfs2_rec_clusters(el, rec), 6427 (unsigned long long)le64_to_cpu(rec->e_blkno), 6428 le16_to_cpu(el->l_next_free_rec)); 6429 6430 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del); 6431 6432 if (le16_to_cpu(el->l_tree_depth) == 0) { 6433 /* 6434 * If the leaf block contains a single empty 6435 * extent and no records, we can just remove 6436 * the block. 6437 */ 6438 if (i == 0 && ocfs2_is_empty_extent(rec)) { 6439 memset(rec, 0, 6440 sizeof(struct ocfs2_extent_rec)); 6441 el->l_next_free_rec = cpu_to_le16(0); 6442 6443 goto delete; 6444 } 6445 6446 /* 6447 * Remove any empty extents by shifting things 6448 * left. That should make life much easier on 6449 * the code below. This condition is rare 6450 * enough that we shouldn't see a performance 6451 * hit. 6452 */ 6453 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 6454 le16_add_cpu(&el->l_next_free_rec, -1); 6455 6456 for(i = 0; 6457 i < le16_to_cpu(el->l_next_free_rec); i++) 6458 el->l_recs[i] = el->l_recs[i + 1]; 6459 6460 memset(&el->l_recs[i], 0, 6461 sizeof(struct ocfs2_extent_rec)); 6462 6463 /* 6464 * We've modified our extent list. The 6465 * simplest way to handle this change 6466 * is to being the search from the 6467 * start again. 6468 */ 6469 goto find_tail_record; 6470 } 6471 6472 le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del); 6473 6474 /* 6475 * We'll use "new_edge" on our way back up the 6476 * tree to know what our rightmost cpos is. 6477 */ 6478 new_edge = le16_to_cpu(rec->e_leaf_clusters); 6479 new_edge += le32_to_cpu(rec->e_cpos); 6480 6481 /* 6482 * The caller will use this to delete data blocks. 6483 */ 6484 *delete_start = le64_to_cpu(rec->e_blkno) 6485 + ocfs2_clusters_to_blocks(inode->i_sb, 6486 le16_to_cpu(rec->e_leaf_clusters)); 6487 6488 /* 6489 * If it's now empty, remove this record. 6490 */ 6491 if (le16_to_cpu(rec->e_leaf_clusters) == 0) { 6492 memset(rec, 0, 6493 sizeof(struct ocfs2_extent_rec)); 6494 le16_add_cpu(&el->l_next_free_rec, -1); 6495 } 6496 } else { 6497 if (le64_to_cpu(rec->e_blkno) == deleted_eb) { 6498 memset(rec, 0, 6499 sizeof(struct ocfs2_extent_rec)); 6500 le16_add_cpu(&el->l_next_free_rec, -1); 6501 6502 goto delete; 6503 } 6504 6505 /* Can this actually happen? */ 6506 if (le16_to_cpu(el->l_next_free_rec) == 0) 6507 goto delete; 6508 6509 /* 6510 * We never actually deleted any clusters 6511 * because our leaf was empty. There's no 6512 * reason to adjust the rightmost edge then. 6513 */ 6514 if (new_edge == 0) 6515 goto delete; 6516 6517 rec->e_int_clusters = cpu_to_le32(new_edge); 6518 le32_add_cpu(&rec->e_int_clusters, 6519 -le32_to_cpu(rec->e_cpos)); 6520 6521 /* 6522 * A deleted child record should have been 6523 * caught above. 6524 */ 6525 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0); 6526 } 6527 6528 delete: 6529 ret = ocfs2_journal_dirty(handle, bh); 6530 if (ret) { 6531 mlog_errno(ret); 6532 goto out; 6533 } 6534 6535 mlog(0, "extent list container %llu, after: record %d: " 6536 "(%u, %u, %llu), next = %u.\n", 6537 (unsigned long long)bh->b_blocknr, i, 6538 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec), 6539 (unsigned long long)le64_to_cpu(rec->e_blkno), 6540 le16_to_cpu(el->l_next_free_rec)); 6541 6542 /* 6543 * We must be careful to only attempt delete of an 6544 * extent block (and not the root inode block). 6545 */ 6546 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) { 6547 struct ocfs2_extent_block *eb = 6548 (struct ocfs2_extent_block *)bh->b_data; 6549 6550 /* 6551 * Save this for use when processing the 6552 * parent block. 6553 */ 6554 deleted_eb = le64_to_cpu(eb->h_blkno); 6555 6556 mlog(0, "deleting this extent block.\n"); 6557 6558 ocfs2_remove_from_cache(inode, bh); 6559 6560 BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0])); 6561 BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos)); 6562 BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno)); 6563 6564 ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb); 6565 /* An error here is not fatal. */ 6566 if (ret < 0) 6567 mlog_errno(ret); 6568 } else { 6569 deleted_eb = 0; 6570 } 6571 6572 index--; 6573 } 6574 6575 ret = 0; 6576 out: 6577 return ret; 6578 } 6579 6580 static int ocfs2_do_truncate(struct ocfs2_super *osb, 6581 unsigned int clusters_to_del, 6582 struct inode *inode, 6583 struct buffer_head *fe_bh, 6584 handle_t *handle, 6585 struct ocfs2_truncate_context *tc, 6586 struct ocfs2_path *path) 6587 { 6588 int status; 6589 struct ocfs2_dinode *fe; 6590 struct ocfs2_extent_block *last_eb = NULL; 6591 struct ocfs2_extent_list *el; 6592 struct buffer_head *last_eb_bh = NULL; 6593 u64 delete_blk = 0; 6594 6595 fe = (struct ocfs2_dinode *) fe_bh->b_data; 6596 6597 status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del, 6598 path, &last_eb_bh); 6599 if (status < 0) { 6600 mlog_errno(status); 6601 goto bail; 6602 } 6603 6604 /* 6605 * Each component will be touched, so we might as well journal 6606 * here to avoid having to handle errors later. 6607 */ 6608 status = ocfs2_journal_access_path(inode, handle, path); 6609 if (status < 0) { 6610 mlog_errno(status); 6611 goto bail; 6612 } 6613 6614 if (last_eb_bh) { 6615 status = ocfs2_journal_access_eb(handle, inode, last_eb_bh, 6616 OCFS2_JOURNAL_ACCESS_WRITE); 6617 if (status < 0) { 6618 mlog_errno(status); 6619 goto bail; 6620 } 6621 6622 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 6623 } 6624 6625 el = &(fe->id2.i_list); 6626 6627 /* 6628 * Lower levels depend on this never happening, but it's best 6629 * to check it up here before changing the tree. 6630 */ 6631 if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) { 6632 ocfs2_error(inode->i_sb, 6633 "Inode %lu has an empty extent record, depth %u\n", 6634 inode->i_ino, le16_to_cpu(el->l_tree_depth)); 6635 status = -EROFS; 6636 goto bail; 6637 } 6638 6639 vfs_dq_free_space_nodirty(inode, 6640 ocfs2_clusters_to_bytes(osb->sb, clusters_to_del)); 6641 spin_lock(&OCFS2_I(inode)->ip_lock); 6642 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) - 6643 clusters_to_del; 6644 spin_unlock(&OCFS2_I(inode)->ip_lock); 6645 le32_add_cpu(&fe->i_clusters, -clusters_to_del); 6646 inode->i_blocks = ocfs2_inode_sector_count(inode); 6647 6648 status = ocfs2_trim_tree(inode, path, handle, tc, 6649 clusters_to_del, &delete_blk); 6650 if (status) { 6651 mlog_errno(status); 6652 goto bail; 6653 } 6654 6655 if (le32_to_cpu(fe->i_clusters) == 0) { 6656 /* trunc to zero is a special case. */ 6657 el->l_tree_depth = 0; 6658 fe->i_last_eb_blk = 0; 6659 } else if (last_eb) 6660 fe->i_last_eb_blk = last_eb->h_blkno; 6661 6662 status = ocfs2_journal_dirty(handle, fe_bh); 6663 if (status < 0) { 6664 mlog_errno(status); 6665 goto bail; 6666 } 6667 6668 if (last_eb) { 6669 /* If there will be a new last extent block, then by 6670 * definition, there cannot be any leaves to the right of 6671 * him. */ 6672 last_eb->h_next_leaf_blk = 0; 6673 status = ocfs2_journal_dirty(handle, last_eb_bh); 6674 if (status < 0) { 6675 mlog_errno(status); 6676 goto bail; 6677 } 6678 } 6679 6680 if (delete_blk) { 6681 status = ocfs2_truncate_log_append(osb, handle, delete_blk, 6682 clusters_to_del); 6683 if (status < 0) { 6684 mlog_errno(status); 6685 goto bail; 6686 } 6687 } 6688 status = 0; 6689 bail: 6690 6691 mlog_exit(status); 6692 return status; 6693 } 6694 6695 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh) 6696 { 6697 set_buffer_uptodate(bh); 6698 mark_buffer_dirty(bh); 6699 return 0; 6700 } 6701 6702 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle, 6703 unsigned int from, unsigned int to, 6704 struct page *page, int zero, u64 *phys) 6705 { 6706 int ret, partial = 0; 6707 6708 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0); 6709 if (ret) 6710 mlog_errno(ret); 6711 6712 if (zero) 6713 zero_user_segment(page, from, to); 6714 6715 /* 6716 * Need to set the buffers we zero'd into uptodate 6717 * here if they aren't - ocfs2_map_page_blocks() 6718 * might've skipped some 6719 */ 6720 ret = walk_page_buffers(handle, page_buffers(page), 6721 from, to, &partial, 6722 ocfs2_zero_func); 6723 if (ret < 0) 6724 mlog_errno(ret); 6725 else if (ocfs2_should_order_data(inode)) { 6726 ret = ocfs2_jbd2_file_inode(handle, inode); 6727 if (ret < 0) 6728 mlog_errno(ret); 6729 } 6730 6731 if (!partial) 6732 SetPageUptodate(page); 6733 6734 flush_dcache_page(page); 6735 } 6736 6737 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start, 6738 loff_t end, struct page **pages, 6739 int numpages, u64 phys, handle_t *handle) 6740 { 6741 int i; 6742 struct page *page; 6743 unsigned int from, to = PAGE_CACHE_SIZE; 6744 struct super_block *sb = inode->i_sb; 6745 6746 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb))); 6747 6748 if (numpages == 0) 6749 goto out; 6750 6751 to = PAGE_CACHE_SIZE; 6752 for(i = 0; i < numpages; i++) { 6753 page = pages[i]; 6754 6755 from = start & (PAGE_CACHE_SIZE - 1); 6756 if ((end >> PAGE_CACHE_SHIFT) == page->index) 6757 to = end & (PAGE_CACHE_SIZE - 1); 6758 6759 BUG_ON(from > PAGE_CACHE_SIZE); 6760 BUG_ON(to > PAGE_CACHE_SIZE); 6761 6762 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1, 6763 &phys); 6764 6765 start = (page->index + 1) << PAGE_CACHE_SHIFT; 6766 } 6767 out: 6768 if (pages) 6769 ocfs2_unlock_and_free_pages(pages, numpages); 6770 } 6771 6772 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end, 6773 struct page **pages, int *num) 6774 { 6775 int numpages, ret = 0; 6776 struct super_block *sb = inode->i_sb; 6777 struct address_space *mapping = inode->i_mapping; 6778 unsigned long index; 6779 loff_t last_page_bytes; 6780 6781 BUG_ON(start > end); 6782 6783 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits != 6784 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits); 6785 6786 numpages = 0; 6787 last_page_bytes = PAGE_ALIGN(end); 6788 index = start >> PAGE_CACHE_SHIFT; 6789 do { 6790 pages[numpages] = grab_cache_page(mapping, index); 6791 if (!pages[numpages]) { 6792 ret = -ENOMEM; 6793 mlog_errno(ret); 6794 goto out; 6795 } 6796 6797 numpages++; 6798 index++; 6799 } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT)); 6800 6801 out: 6802 if (ret != 0) { 6803 if (pages) 6804 ocfs2_unlock_and_free_pages(pages, numpages); 6805 numpages = 0; 6806 } 6807 6808 *num = numpages; 6809 6810 return ret; 6811 } 6812 6813 /* 6814 * Zero the area past i_size but still within an allocated 6815 * cluster. This avoids exposing nonzero data on subsequent file 6816 * extends. 6817 * 6818 * We need to call this before i_size is updated on the inode because 6819 * otherwise block_write_full_page() will skip writeout of pages past 6820 * i_size. The new_i_size parameter is passed for this reason. 6821 */ 6822 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle, 6823 u64 range_start, u64 range_end) 6824 { 6825 int ret = 0, numpages; 6826 struct page **pages = NULL; 6827 u64 phys; 6828 unsigned int ext_flags; 6829 struct super_block *sb = inode->i_sb; 6830 6831 /* 6832 * File systems which don't support sparse files zero on every 6833 * extend. 6834 */ 6835 if (!ocfs2_sparse_alloc(OCFS2_SB(sb))) 6836 return 0; 6837 6838 pages = kcalloc(ocfs2_pages_per_cluster(sb), 6839 sizeof(struct page *), GFP_NOFS); 6840 if (pages == NULL) { 6841 ret = -ENOMEM; 6842 mlog_errno(ret); 6843 goto out; 6844 } 6845 6846 if (range_start == range_end) 6847 goto out; 6848 6849 ret = ocfs2_extent_map_get_blocks(inode, 6850 range_start >> sb->s_blocksize_bits, 6851 &phys, NULL, &ext_flags); 6852 if (ret) { 6853 mlog_errno(ret); 6854 goto out; 6855 } 6856 6857 /* 6858 * Tail is a hole, or is marked unwritten. In either case, we 6859 * can count on read and write to return/push zero's. 6860 */ 6861 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN) 6862 goto out; 6863 6864 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages, 6865 &numpages); 6866 if (ret) { 6867 mlog_errno(ret); 6868 goto out; 6869 } 6870 6871 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages, 6872 numpages, phys, handle); 6873 6874 /* 6875 * Initiate writeout of the pages we zero'd here. We don't 6876 * wait on them - the truncate_inode_pages() call later will 6877 * do that for us. 6878 */ 6879 ret = do_sync_mapping_range(inode->i_mapping, range_start, 6880 range_end - 1, SYNC_FILE_RANGE_WRITE); 6881 if (ret) 6882 mlog_errno(ret); 6883 6884 out: 6885 if (pages) 6886 kfree(pages); 6887 6888 return ret; 6889 } 6890 6891 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode, 6892 struct ocfs2_dinode *di) 6893 { 6894 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits; 6895 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size); 6896 6897 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL) 6898 memset(&di->id2, 0, blocksize - 6899 offsetof(struct ocfs2_dinode, id2) - 6900 xattrsize); 6901 else 6902 memset(&di->id2, 0, blocksize - 6903 offsetof(struct ocfs2_dinode, id2)); 6904 } 6905 6906 void ocfs2_dinode_new_extent_list(struct inode *inode, 6907 struct ocfs2_dinode *di) 6908 { 6909 ocfs2_zero_dinode_id2_with_xattr(inode, di); 6910 di->id2.i_list.l_tree_depth = 0; 6911 di->id2.i_list.l_next_free_rec = 0; 6912 di->id2.i_list.l_count = cpu_to_le16( 6913 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di)); 6914 } 6915 6916 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di) 6917 { 6918 struct ocfs2_inode_info *oi = OCFS2_I(inode); 6919 struct ocfs2_inline_data *idata = &di->id2.i_data; 6920 6921 spin_lock(&oi->ip_lock); 6922 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL; 6923 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 6924 spin_unlock(&oi->ip_lock); 6925 6926 /* 6927 * We clear the entire i_data structure here so that all 6928 * fields can be properly initialized. 6929 */ 6930 ocfs2_zero_dinode_id2_with_xattr(inode, di); 6931 6932 idata->id_count = cpu_to_le16( 6933 ocfs2_max_inline_data_with_xattr(inode->i_sb, di)); 6934 } 6935 6936 int ocfs2_convert_inline_data_to_extents(struct inode *inode, 6937 struct buffer_head *di_bh) 6938 { 6939 int ret, i, has_data, num_pages = 0; 6940 handle_t *handle; 6941 u64 uninitialized_var(block); 6942 struct ocfs2_inode_info *oi = OCFS2_I(inode); 6943 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 6944 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 6945 struct ocfs2_alloc_context *data_ac = NULL; 6946 struct page **pages = NULL; 6947 loff_t end = osb->s_clustersize; 6948 struct ocfs2_extent_tree et; 6949 int did_quota = 0; 6950 6951 has_data = i_size_read(inode) ? 1 : 0; 6952 6953 if (has_data) { 6954 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb), 6955 sizeof(struct page *), GFP_NOFS); 6956 if (pages == NULL) { 6957 ret = -ENOMEM; 6958 mlog_errno(ret); 6959 goto out; 6960 } 6961 6962 ret = ocfs2_reserve_clusters(osb, 1, &data_ac); 6963 if (ret) { 6964 mlog_errno(ret); 6965 goto out; 6966 } 6967 } 6968 6969 handle = ocfs2_start_trans(osb, 6970 ocfs2_inline_to_extents_credits(osb->sb)); 6971 if (IS_ERR(handle)) { 6972 ret = PTR_ERR(handle); 6973 mlog_errno(ret); 6974 goto out_unlock; 6975 } 6976 6977 ret = ocfs2_journal_access_di(handle, inode, di_bh, 6978 OCFS2_JOURNAL_ACCESS_WRITE); 6979 if (ret) { 6980 mlog_errno(ret); 6981 goto out_commit; 6982 } 6983 6984 if (has_data) { 6985 u32 bit_off, num; 6986 unsigned int page_end; 6987 u64 phys; 6988 6989 if (vfs_dq_alloc_space_nodirty(inode, 6990 ocfs2_clusters_to_bytes(osb->sb, 1))) { 6991 ret = -EDQUOT; 6992 goto out_commit; 6993 } 6994 did_quota = 1; 6995 6996 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off, 6997 &num); 6998 if (ret) { 6999 mlog_errno(ret); 7000 goto out_commit; 7001 } 7002 7003 /* 7004 * Save two copies, one for insert, and one that can 7005 * be changed by ocfs2_map_and_dirty_page() below. 7006 */ 7007 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off); 7008 7009 /* 7010 * Non sparse file systems zero on extend, so no need 7011 * to do that now. 7012 */ 7013 if (!ocfs2_sparse_alloc(osb) && 7014 PAGE_CACHE_SIZE < osb->s_clustersize) 7015 end = PAGE_CACHE_SIZE; 7016 7017 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages); 7018 if (ret) { 7019 mlog_errno(ret); 7020 goto out_commit; 7021 } 7022 7023 /* 7024 * This should populate the 1st page for us and mark 7025 * it up to date. 7026 */ 7027 ret = ocfs2_read_inline_data(inode, pages[0], di_bh); 7028 if (ret) { 7029 mlog_errno(ret); 7030 goto out_commit; 7031 } 7032 7033 page_end = PAGE_CACHE_SIZE; 7034 if (PAGE_CACHE_SIZE > osb->s_clustersize) 7035 page_end = osb->s_clustersize; 7036 7037 for (i = 0; i < num_pages; i++) 7038 ocfs2_map_and_dirty_page(inode, handle, 0, page_end, 7039 pages[i], i > 0, &phys); 7040 } 7041 7042 spin_lock(&oi->ip_lock); 7043 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL; 7044 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 7045 spin_unlock(&oi->ip_lock); 7046 7047 ocfs2_dinode_new_extent_list(inode, di); 7048 7049 ocfs2_journal_dirty(handle, di_bh); 7050 7051 if (has_data) { 7052 /* 7053 * An error at this point should be extremely rare. If 7054 * this proves to be false, we could always re-build 7055 * the in-inode data from our pages. 7056 */ 7057 ocfs2_init_dinode_extent_tree(&et, inode, di_bh); 7058 ret = ocfs2_insert_extent(osb, handle, inode, &et, 7059 0, block, 1, 0, NULL); 7060 if (ret) { 7061 mlog_errno(ret); 7062 goto out_commit; 7063 } 7064 7065 inode->i_blocks = ocfs2_inode_sector_count(inode); 7066 } 7067 7068 out_commit: 7069 if (ret < 0 && did_quota) 7070 vfs_dq_free_space_nodirty(inode, 7071 ocfs2_clusters_to_bytes(osb->sb, 1)); 7072 7073 ocfs2_commit_trans(osb, handle); 7074 7075 out_unlock: 7076 if (data_ac) 7077 ocfs2_free_alloc_context(data_ac); 7078 7079 out: 7080 if (pages) { 7081 ocfs2_unlock_and_free_pages(pages, num_pages); 7082 kfree(pages); 7083 } 7084 7085 return ret; 7086 } 7087 7088 /* 7089 * It is expected, that by the time you call this function, 7090 * inode->i_size and fe->i_size have been adjusted. 7091 * 7092 * WARNING: This will kfree the truncate context 7093 */ 7094 int ocfs2_commit_truncate(struct ocfs2_super *osb, 7095 struct inode *inode, 7096 struct buffer_head *fe_bh, 7097 struct ocfs2_truncate_context *tc) 7098 { 7099 int status, i, credits, tl_sem = 0; 7100 u32 clusters_to_del, new_highest_cpos, range; 7101 struct ocfs2_extent_list *el; 7102 handle_t *handle = NULL; 7103 struct inode *tl_inode = osb->osb_tl_inode; 7104 struct ocfs2_path *path = NULL; 7105 struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data; 7106 7107 mlog_entry_void(); 7108 7109 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb, 7110 i_size_read(inode)); 7111 7112 path = ocfs2_new_path(fe_bh, &di->id2.i_list, 7113 ocfs2_journal_access_di); 7114 if (!path) { 7115 status = -ENOMEM; 7116 mlog_errno(status); 7117 goto bail; 7118 } 7119 7120 ocfs2_extent_map_trunc(inode, new_highest_cpos); 7121 7122 start: 7123 /* 7124 * Check that we still have allocation to delete. 7125 */ 7126 if (OCFS2_I(inode)->ip_clusters == 0) { 7127 status = 0; 7128 goto bail; 7129 } 7130 7131 /* 7132 * Truncate always works against the rightmost tree branch. 7133 */ 7134 status = ocfs2_find_path(inode, path, UINT_MAX); 7135 if (status) { 7136 mlog_errno(status); 7137 goto bail; 7138 } 7139 7140 mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n", 7141 OCFS2_I(inode)->ip_clusters, path->p_tree_depth); 7142 7143 /* 7144 * By now, el will point to the extent list on the bottom most 7145 * portion of this tree. Only the tail record is considered in 7146 * each pass. 7147 * 7148 * We handle the following cases, in order: 7149 * - empty extent: delete the remaining branch 7150 * - remove the entire record 7151 * - remove a partial record 7152 * - no record needs to be removed (truncate has completed) 7153 */ 7154 el = path_leaf_el(path); 7155 if (le16_to_cpu(el->l_next_free_rec) == 0) { 7156 ocfs2_error(inode->i_sb, 7157 "Inode %llu has empty extent block at %llu\n", 7158 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7159 (unsigned long long)path_leaf_bh(path)->b_blocknr); 7160 status = -EROFS; 7161 goto bail; 7162 } 7163 7164 i = le16_to_cpu(el->l_next_free_rec) - 1; 7165 range = le32_to_cpu(el->l_recs[i].e_cpos) + 7166 ocfs2_rec_clusters(el, &el->l_recs[i]); 7167 if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) { 7168 clusters_to_del = 0; 7169 } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) { 7170 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]); 7171 } else if (range > new_highest_cpos) { 7172 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) + 7173 le32_to_cpu(el->l_recs[i].e_cpos)) - 7174 new_highest_cpos; 7175 } else { 7176 status = 0; 7177 goto bail; 7178 } 7179 7180 mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n", 7181 clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr); 7182 7183 mutex_lock(&tl_inode->i_mutex); 7184 tl_sem = 1; 7185 /* ocfs2_truncate_log_needs_flush guarantees us at least one 7186 * record is free for use. If there isn't any, we flush to get 7187 * an empty truncate log. */ 7188 if (ocfs2_truncate_log_needs_flush(osb)) { 7189 status = __ocfs2_flush_truncate_log(osb); 7190 if (status < 0) { 7191 mlog_errno(status); 7192 goto bail; 7193 } 7194 } 7195 7196 credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del, 7197 (struct ocfs2_dinode *)fe_bh->b_data, 7198 el); 7199 handle = ocfs2_start_trans(osb, credits); 7200 if (IS_ERR(handle)) { 7201 status = PTR_ERR(handle); 7202 handle = NULL; 7203 mlog_errno(status); 7204 goto bail; 7205 } 7206 7207 status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle, 7208 tc, path); 7209 if (status < 0) { 7210 mlog_errno(status); 7211 goto bail; 7212 } 7213 7214 mutex_unlock(&tl_inode->i_mutex); 7215 tl_sem = 0; 7216 7217 ocfs2_commit_trans(osb, handle); 7218 handle = NULL; 7219 7220 ocfs2_reinit_path(path, 1); 7221 7222 /* 7223 * The check above will catch the case where we've truncated 7224 * away all allocation. 7225 */ 7226 goto start; 7227 7228 bail: 7229 7230 ocfs2_schedule_truncate_log_flush(osb, 1); 7231 7232 if (tl_sem) 7233 mutex_unlock(&tl_inode->i_mutex); 7234 7235 if (handle) 7236 ocfs2_commit_trans(osb, handle); 7237 7238 ocfs2_run_deallocs(osb, &tc->tc_dealloc); 7239 7240 ocfs2_free_path(path); 7241 7242 /* This will drop the ext_alloc cluster lock for us */ 7243 ocfs2_free_truncate_context(tc); 7244 7245 mlog_exit(status); 7246 return status; 7247 } 7248 7249 /* 7250 * Expects the inode to already be locked. 7251 */ 7252 int ocfs2_prepare_truncate(struct ocfs2_super *osb, 7253 struct inode *inode, 7254 struct buffer_head *fe_bh, 7255 struct ocfs2_truncate_context **tc) 7256 { 7257 int status; 7258 unsigned int new_i_clusters; 7259 struct ocfs2_dinode *fe; 7260 struct ocfs2_extent_block *eb; 7261 struct buffer_head *last_eb_bh = NULL; 7262 7263 mlog_entry_void(); 7264 7265 *tc = NULL; 7266 7267 new_i_clusters = ocfs2_clusters_for_bytes(osb->sb, 7268 i_size_read(inode)); 7269 fe = (struct ocfs2_dinode *) fe_bh->b_data; 7270 7271 mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size =" 7272 "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters, 7273 (unsigned long long)le64_to_cpu(fe->i_size)); 7274 7275 *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL); 7276 if (!(*tc)) { 7277 status = -ENOMEM; 7278 mlog_errno(status); 7279 goto bail; 7280 } 7281 ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc); 7282 7283 if (fe->id2.i_list.l_tree_depth) { 7284 status = ocfs2_read_extent_block(inode, 7285 le64_to_cpu(fe->i_last_eb_blk), 7286 &last_eb_bh); 7287 if (status < 0) { 7288 mlog_errno(status); 7289 goto bail; 7290 } 7291 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 7292 } 7293 7294 (*tc)->tc_last_eb_bh = last_eb_bh; 7295 7296 status = 0; 7297 bail: 7298 if (status < 0) { 7299 if (*tc) 7300 ocfs2_free_truncate_context(*tc); 7301 *tc = NULL; 7302 } 7303 mlog_exit_void(); 7304 return status; 7305 } 7306 7307 /* 7308 * 'start' is inclusive, 'end' is not. 7309 */ 7310 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh, 7311 unsigned int start, unsigned int end, int trunc) 7312 { 7313 int ret; 7314 unsigned int numbytes; 7315 handle_t *handle; 7316 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 7317 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7318 struct ocfs2_inline_data *idata = &di->id2.i_data; 7319 7320 if (end > i_size_read(inode)) 7321 end = i_size_read(inode); 7322 7323 BUG_ON(start >= end); 7324 7325 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) || 7326 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) || 7327 !ocfs2_supports_inline_data(osb)) { 7328 ocfs2_error(inode->i_sb, 7329 "Inline data flags for inode %llu don't agree! " 7330 "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n", 7331 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7332 le16_to_cpu(di->i_dyn_features), 7333 OCFS2_I(inode)->ip_dyn_features, 7334 osb->s_feature_incompat); 7335 ret = -EROFS; 7336 goto out; 7337 } 7338 7339 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 7340 if (IS_ERR(handle)) { 7341 ret = PTR_ERR(handle); 7342 mlog_errno(ret); 7343 goto out; 7344 } 7345 7346 ret = ocfs2_journal_access_di(handle, inode, di_bh, 7347 OCFS2_JOURNAL_ACCESS_WRITE); 7348 if (ret) { 7349 mlog_errno(ret); 7350 goto out_commit; 7351 } 7352 7353 numbytes = end - start; 7354 memset(idata->id_data + start, 0, numbytes); 7355 7356 /* 7357 * No need to worry about the data page here - it's been 7358 * truncated already and inline data doesn't need it for 7359 * pushing zero's to disk, so we'll let readpage pick it up 7360 * later. 7361 */ 7362 if (trunc) { 7363 i_size_write(inode, start); 7364 di->i_size = cpu_to_le64(start); 7365 } 7366 7367 inode->i_blocks = ocfs2_inode_sector_count(inode); 7368 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 7369 7370 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 7371 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 7372 7373 ocfs2_journal_dirty(handle, di_bh); 7374 7375 out_commit: 7376 ocfs2_commit_trans(osb, handle); 7377 7378 out: 7379 return ret; 7380 } 7381 7382 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc) 7383 { 7384 /* 7385 * The caller is responsible for completing deallocation 7386 * before freeing the context. 7387 */ 7388 if (tc->tc_dealloc.c_first_suballocator != NULL) 7389 mlog(ML_NOTICE, 7390 "Truncate completion has non-empty dealloc context\n"); 7391 7392 brelse(tc->tc_last_eb_bh); 7393 7394 kfree(tc); 7395 } 7396