1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * alloc.c 5 * 6 * Extent allocs and frees 7 * 8 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/swap.h> 31 #include <linux/quotaops.h> 32 #include <linux/blkdev.h> 33 #include <linux/sched/signal.h> 34 35 #include <cluster/masklog.h> 36 37 #include "ocfs2.h" 38 39 #include "alloc.h" 40 #include "aops.h" 41 #include "blockcheck.h" 42 #include "dlmglue.h" 43 #include "extent_map.h" 44 #include "inode.h" 45 #include "journal.h" 46 #include "localalloc.h" 47 #include "suballoc.h" 48 #include "sysfile.h" 49 #include "file.h" 50 #include "super.h" 51 #include "uptodate.h" 52 #include "xattr.h" 53 #include "refcounttree.h" 54 #include "ocfs2_trace.h" 55 56 #include "buffer_head_io.h" 57 58 enum ocfs2_contig_type { 59 CONTIG_NONE = 0, 60 CONTIG_LEFT, 61 CONTIG_RIGHT, 62 CONTIG_LEFTRIGHT, 63 }; 64 65 static enum ocfs2_contig_type 66 ocfs2_extent_rec_contig(struct super_block *sb, 67 struct ocfs2_extent_rec *ext, 68 struct ocfs2_extent_rec *insert_rec); 69 /* 70 * Operations for a specific extent tree type. 71 * 72 * To implement an on-disk btree (extent tree) type in ocfs2, add 73 * an ocfs2_extent_tree_operations structure and the matching 74 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it 75 * for the allocation portion of the extent tree. 76 */ 77 struct ocfs2_extent_tree_operations { 78 /* 79 * last_eb_blk is the block number of the right most leaf extent 80 * block. Most on-disk structures containing an extent tree store 81 * this value for fast access. The ->eo_set_last_eb_blk() and 82 * ->eo_get_last_eb_blk() operations access this value. They are 83 * both required. 84 */ 85 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et, 86 u64 blkno); 87 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et); 88 89 /* 90 * The on-disk structure usually keeps track of how many total 91 * clusters are stored in this extent tree. This function updates 92 * that value. new_clusters is the delta, and must be 93 * added to the total. Required. 94 */ 95 void (*eo_update_clusters)(struct ocfs2_extent_tree *et, 96 u32 new_clusters); 97 98 /* 99 * If this extent tree is supported by an extent map, insert 100 * a record into the map. 101 */ 102 void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et, 103 struct ocfs2_extent_rec *rec); 104 105 /* 106 * If this extent tree is supported by an extent map, truncate the 107 * map to clusters, 108 */ 109 void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et, 110 u32 clusters); 111 112 /* 113 * If ->eo_insert_check() exists, it is called before rec is 114 * inserted into the extent tree. It is optional. 115 */ 116 int (*eo_insert_check)(struct ocfs2_extent_tree *et, 117 struct ocfs2_extent_rec *rec); 118 int (*eo_sanity_check)(struct ocfs2_extent_tree *et); 119 120 /* 121 * -------------------------------------------------------------- 122 * The remaining are internal to ocfs2_extent_tree and don't have 123 * accessor functions 124 */ 125 126 /* 127 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el. 128 * It is required. 129 */ 130 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et); 131 132 /* 133 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if 134 * it exists. If it does not, et->et_max_leaf_clusters is set 135 * to 0 (unlimited). Optional. 136 */ 137 void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et); 138 139 /* 140 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec 141 * are contiguous or not. Optional. Don't need to set it if use 142 * ocfs2_extent_rec as the tree leaf. 143 */ 144 enum ocfs2_contig_type 145 (*eo_extent_contig)(struct ocfs2_extent_tree *et, 146 struct ocfs2_extent_rec *ext, 147 struct ocfs2_extent_rec *insert_rec); 148 }; 149 150 151 /* 152 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check 153 * in the methods. 154 */ 155 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et); 156 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 157 u64 blkno); 158 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, 159 u32 clusters); 160 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et, 161 struct ocfs2_extent_rec *rec); 162 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et, 163 u32 clusters); 164 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, 165 struct ocfs2_extent_rec *rec); 166 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et); 167 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et); 168 static const struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = { 169 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk, 170 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk, 171 .eo_update_clusters = ocfs2_dinode_update_clusters, 172 .eo_extent_map_insert = ocfs2_dinode_extent_map_insert, 173 .eo_extent_map_truncate = ocfs2_dinode_extent_map_truncate, 174 .eo_insert_check = ocfs2_dinode_insert_check, 175 .eo_sanity_check = ocfs2_dinode_sanity_check, 176 .eo_fill_root_el = ocfs2_dinode_fill_root_el, 177 }; 178 179 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 180 u64 blkno) 181 { 182 struct ocfs2_dinode *di = et->et_object; 183 184 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 185 di->i_last_eb_blk = cpu_to_le64(blkno); 186 } 187 188 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et) 189 { 190 struct ocfs2_dinode *di = et->et_object; 191 192 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 193 return le64_to_cpu(di->i_last_eb_blk); 194 } 195 196 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, 197 u32 clusters) 198 { 199 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); 200 struct ocfs2_dinode *di = et->et_object; 201 202 le32_add_cpu(&di->i_clusters, clusters); 203 spin_lock(&oi->ip_lock); 204 oi->ip_clusters = le32_to_cpu(di->i_clusters); 205 spin_unlock(&oi->ip_lock); 206 } 207 208 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et, 209 struct ocfs2_extent_rec *rec) 210 { 211 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode; 212 213 ocfs2_extent_map_insert_rec(inode, rec); 214 } 215 216 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et, 217 u32 clusters) 218 { 219 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode; 220 221 ocfs2_extent_map_trunc(inode, clusters); 222 } 223 224 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, 225 struct ocfs2_extent_rec *rec) 226 { 227 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); 228 struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb); 229 230 BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL); 231 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) && 232 (oi->ip_clusters != le32_to_cpu(rec->e_cpos)), 233 "Device %s, asking for sparse allocation: inode %llu, " 234 "cpos %u, clusters %u\n", 235 osb->dev_str, 236 (unsigned long long)oi->ip_blkno, 237 rec->e_cpos, oi->ip_clusters); 238 239 return 0; 240 } 241 242 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et) 243 { 244 struct ocfs2_dinode *di = et->et_object; 245 246 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 247 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 248 249 return 0; 250 } 251 252 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et) 253 { 254 struct ocfs2_dinode *di = et->et_object; 255 256 et->et_root_el = &di->id2.i_list; 257 } 258 259 260 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et) 261 { 262 struct ocfs2_xattr_value_buf *vb = et->et_object; 263 264 et->et_root_el = &vb->vb_xv->xr_list; 265 } 266 267 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et, 268 u64 blkno) 269 { 270 struct ocfs2_xattr_value_buf *vb = et->et_object; 271 272 vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno); 273 } 274 275 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et) 276 { 277 struct ocfs2_xattr_value_buf *vb = et->et_object; 278 279 return le64_to_cpu(vb->vb_xv->xr_last_eb_blk); 280 } 281 282 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et, 283 u32 clusters) 284 { 285 struct ocfs2_xattr_value_buf *vb = et->et_object; 286 287 le32_add_cpu(&vb->vb_xv->xr_clusters, clusters); 288 } 289 290 static const struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = { 291 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk, 292 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk, 293 .eo_update_clusters = ocfs2_xattr_value_update_clusters, 294 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el, 295 }; 296 297 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et) 298 { 299 struct ocfs2_xattr_block *xb = et->et_object; 300 301 et->et_root_el = &xb->xb_attrs.xb_root.xt_list; 302 } 303 304 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et) 305 { 306 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 307 et->et_max_leaf_clusters = 308 ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE); 309 } 310 311 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 312 u64 blkno) 313 { 314 struct ocfs2_xattr_block *xb = et->et_object; 315 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 316 317 xt->xt_last_eb_blk = cpu_to_le64(blkno); 318 } 319 320 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 321 { 322 struct ocfs2_xattr_block *xb = et->et_object; 323 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 324 325 return le64_to_cpu(xt->xt_last_eb_blk); 326 } 327 328 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et, 329 u32 clusters) 330 { 331 struct ocfs2_xattr_block *xb = et->et_object; 332 333 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters); 334 } 335 336 static const struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = { 337 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk, 338 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk, 339 .eo_update_clusters = ocfs2_xattr_tree_update_clusters, 340 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el, 341 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters, 342 }; 343 344 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et, 345 u64 blkno) 346 { 347 struct ocfs2_dx_root_block *dx_root = et->et_object; 348 349 dx_root->dr_last_eb_blk = cpu_to_le64(blkno); 350 } 351 352 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et) 353 { 354 struct ocfs2_dx_root_block *dx_root = et->et_object; 355 356 return le64_to_cpu(dx_root->dr_last_eb_blk); 357 } 358 359 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et, 360 u32 clusters) 361 { 362 struct ocfs2_dx_root_block *dx_root = et->et_object; 363 364 le32_add_cpu(&dx_root->dr_clusters, clusters); 365 } 366 367 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et) 368 { 369 struct ocfs2_dx_root_block *dx_root = et->et_object; 370 371 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root)); 372 373 return 0; 374 } 375 376 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et) 377 { 378 struct ocfs2_dx_root_block *dx_root = et->et_object; 379 380 et->et_root_el = &dx_root->dr_list; 381 } 382 383 static const struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = { 384 .eo_set_last_eb_blk = ocfs2_dx_root_set_last_eb_blk, 385 .eo_get_last_eb_blk = ocfs2_dx_root_get_last_eb_blk, 386 .eo_update_clusters = ocfs2_dx_root_update_clusters, 387 .eo_sanity_check = ocfs2_dx_root_sanity_check, 388 .eo_fill_root_el = ocfs2_dx_root_fill_root_el, 389 }; 390 391 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et) 392 { 393 struct ocfs2_refcount_block *rb = et->et_object; 394 395 et->et_root_el = &rb->rf_list; 396 } 397 398 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 399 u64 blkno) 400 { 401 struct ocfs2_refcount_block *rb = et->et_object; 402 403 rb->rf_last_eb_blk = cpu_to_le64(blkno); 404 } 405 406 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 407 { 408 struct ocfs2_refcount_block *rb = et->et_object; 409 410 return le64_to_cpu(rb->rf_last_eb_blk); 411 } 412 413 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et, 414 u32 clusters) 415 { 416 struct ocfs2_refcount_block *rb = et->et_object; 417 418 le32_add_cpu(&rb->rf_clusters, clusters); 419 } 420 421 static enum ocfs2_contig_type 422 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et, 423 struct ocfs2_extent_rec *ext, 424 struct ocfs2_extent_rec *insert_rec) 425 { 426 return CONTIG_NONE; 427 } 428 429 static const struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = { 430 .eo_set_last_eb_blk = ocfs2_refcount_tree_set_last_eb_blk, 431 .eo_get_last_eb_blk = ocfs2_refcount_tree_get_last_eb_blk, 432 .eo_update_clusters = ocfs2_refcount_tree_update_clusters, 433 .eo_fill_root_el = ocfs2_refcount_tree_fill_root_el, 434 .eo_extent_contig = ocfs2_refcount_tree_extent_contig, 435 }; 436 437 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et, 438 struct ocfs2_caching_info *ci, 439 struct buffer_head *bh, 440 ocfs2_journal_access_func access, 441 void *obj, 442 const struct ocfs2_extent_tree_operations *ops) 443 { 444 et->et_ops = ops; 445 et->et_root_bh = bh; 446 et->et_ci = ci; 447 et->et_root_journal_access = access; 448 if (!obj) 449 obj = (void *)bh->b_data; 450 et->et_object = obj; 451 452 et->et_ops->eo_fill_root_el(et); 453 if (!et->et_ops->eo_fill_max_leaf_clusters) 454 et->et_max_leaf_clusters = 0; 455 else 456 et->et_ops->eo_fill_max_leaf_clusters(et); 457 } 458 459 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et, 460 struct ocfs2_caching_info *ci, 461 struct buffer_head *bh) 462 { 463 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di, 464 NULL, &ocfs2_dinode_et_ops); 465 } 466 467 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et, 468 struct ocfs2_caching_info *ci, 469 struct buffer_head *bh) 470 { 471 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb, 472 NULL, &ocfs2_xattr_tree_et_ops); 473 } 474 475 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et, 476 struct ocfs2_caching_info *ci, 477 struct ocfs2_xattr_value_buf *vb) 478 { 479 __ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb, 480 &ocfs2_xattr_value_et_ops); 481 } 482 483 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et, 484 struct ocfs2_caching_info *ci, 485 struct buffer_head *bh) 486 { 487 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr, 488 NULL, &ocfs2_dx_root_et_ops); 489 } 490 491 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et, 492 struct ocfs2_caching_info *ci, 493 struct buffer_head *bh) 494 { 495 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb, 496 NULL, &ocfs2_refcount_tree_et_ops); 497 } 498 499 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et, 500 u64 new_last_eb_blk) 501 { 502 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk); 503 } 504 505 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et) 506 { 507 return et->et_ops->eo_get_last_eb_blk(et); 508 } 509 510 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et, 511 u32 clusters) 512 { 513 et->et_ops->eo_update_clusters(et, clusters); 514 } 515 516 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et, 517 struct ocfs2_extent_rec *rec) 518 { 519 if (et->et_ops->eo_extent_map_insert) 520 et->et_ops->eo_extent_map_insert(et, rec); 521 } 522 523 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et, 524 u32 clusters) 525 { 526 if (et->et_ops->eo_extent_map_truncate) 527 et->et_ops->eo_extent_map_truncate(et, clusters); 528 } 529 530 static inline int ocfs2_et_root_journal_access(handle_t *handle, 531 struct ocfs2_extent_tree *et, 532 int type) 533 { 534 return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh, 535 type); 536 } 537 538 static inline enum ocfs2_contig_type 539 ocfs2_et_extent_contig(struct ocfs2_extent_tree *et, 540 struct ocfs2_extent_rec *rec, 541 struct ocfs2_extent_rec *insert_rec) 542 { 543 if (et->et_ops->eo_extent_contig) 544 return et->et_ops->eo_extent_contig(et, rec, insert_rec); 545 546 return ocfs2_extent_rec_contig( 547 ocfs2_metadata_cache_get_super(et->et_ci), 548 rec, insert_rec); 549 } 550 551 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et, 552 struct ocfs2_extent_rec *rec) 553 { 554 int ret = 0; 555 556 if (et->et_ops->eo_insert_check) 557 ret = et->et_ops->eo_insert_check(et, rec); 558 return ret; 559 } 560 561 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et) 562 { 563 int ret = 0; 564 565 if (et->et_ops->eo_sanity_check) 566 ret = et->et_ops->eo_sanity_check(et); 567 return ret; 568 } 569 570 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 571 struct ocfs2_extent_block *eb); 572 static void ocfs2_adjust_rightmost_records(handle_t *handle, 573 struct ocfs2_extent_tree *et, 574 struct ocfs2_path *path, 575 struct ocfs2_extent_rec *insert_rec); 576 /* 577 * Reset the actual path elements so that we can re-use the structure 578 * to build another path. Generally, this involves freeing the buffer 579 * heads. 580 */ 581 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root) 582 { 583 int i, start = 0, depth = 0; 584 struct ocfs2_path_item *node; 585 586 if (keep_root) 587 start = 1; 588 589 for(i = start; i < path_num_items(path); i++) { 590 node = &path->p_node[i]; 591 592 brelse(node->bh); 593 node->bh = NULL; 594 node->el = NULL; 595 } 596 597 /* 598 * Tree depth may change during truncate, or insert. If we're 599 * keeping the root extent list, then make sure that our path 600 * structure reflects the proper depth. 601 */ 602 if (keep_root) 603 depth = le16_to_cpu(path_root_el(path)->l_tree_depth); 604 else 605 path_root_access(path) = NULL; 606 607 path->p_tree_depth = depth; 608 } 609 610 void ocfs2_free_path(struct ocfs2_path *path) 611 { 612 if (path) { 613 ocfs2_reinit_path(path, 0); 614 kfree(path); 615 } 616 } 617 618 /* 619 * All the elements of src into dest. After this call, src could be freed 620 * without affecting dest. 621 * 622 * Both paths should have the same root. Any non-root elements of dest 623 * will be freed. 624 */ 625 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src) 626 { 627 int i; 628 629 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 630 BUG_ON(path_root_el(dest) != path_root_el(src)); 631 BUG_ON(path_root_access(dest) != path_root_access(src)); 632 633 ocfs2_reinit_path(dest, 1); 634 635 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 636 dest->p_node[i].bh = src->p_node[i].bh; 637 dest->p_node[i].el = src->p_node[i].el; 638 639 if (dest->p_node[i].bh) 640 get_bh(dest->p_node[i].bh); 641 } 642 } 643 644 /* 645 * Make the *dest path the same as src and re-initialize src path to 646 * have a root only. 647 */ 648 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src) 649 { 650 int i; 651 652 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 653 BUG_ON(path_root_access(dest) != path_root_access(src)); 654 655 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 656 brelse(dest->p_node[i].bh); 657 658 dest->p_node[i].bh = src->p_node[i].bh; 659 dest->p_node[i].el = src->p_node[i].el; 660 661 src->p_node[i].bh = NULL; 662 src->p_node[i].el = NULL; 663 } 664 } 665 666 /* 667 * Insert an extent block at given index. 668 * 669 * This will not take an additional reference on eb_bh. 670 */ 671 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index, 672 struct buffer_head *eb_bh) 673 { 674 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data; 675 676 /* 677 * Right now, no root bh is an extent block, so this helps 678 * catch code errors with dinode trees. The assertion can be 679 * safely removed if we ever need to insert extent block 680 * structures at the root. 681 */ 682 BUG_ON(index == 0); 683 684 path->p_node[index].bh = eb_bh; 685 path->p_node[index].el = &eb->h_list; 686 } 687 688 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh, 689 struct ocfs2_extent_list *root_el, 690 ocfs2_journal_access_func access) 691 { 692 struct ocfs2_path *path; 693 694 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH); 695 696 path = kzalloc(sizeof(*path), GFP_NOFS); 697 if (path) { 698 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth); 699 get_bh(root_bh); 700 path_root_bh(path) = root_bh; 701 path_root_el(path) = root_el; 702 path_root_access(path) = access; 703 } 704 705 return path; 706 } 707 708 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path) 709 { 710 return ocfs2_new_path(path_root_bh(path), path_root_el(path), 711 path_root_access(path)); 712 } 713 714 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et) 715 { 716 return ocfs2_new_path(et->et_root_bh, et->et_root_el, 717 et->et_root_journal_access); 718 } 719 720 /* 721 * Journal the buffer at depth idx. All idx>0 are extent_blocks, 722 * otherwise it's the root_access function. 723 * 724 * I don't like the way this function's name looks next to 725 * ocfs2_journal_access_path(), but I don't have a better one. 726 */ 727 int ocfs2_path_bh_journal_access(handle_t *handle, 728 struct ocfs2_caching_info *ci, 729 struct ocfs2_path *path, 730 int idx) 731 { 732 ocfs2_journal_access_func access = path_root_access(path); 733 734 if (!access) 735 access = ocfs2_journal_access; 736 737 if (idx) 738 access = ocfs2_journal_access_eb; 739 740 return access(handle, ci, path->p_node[idx].bh, 741 OCFS2_JOURNAL_ACCESS_WRITE); 742 } 743 744 /* 745 * Convenience function to journal all components in a path. 746 */ 747 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci, 748 handle_t *handle, 749 struct ocfs2_path *path) 750 { 751 int i, ret = 0; 752 753 if (!path) 754 goto out; 755 756 for(i = 0; i < path_num_items(path); i++) { 757 ret = ocfs2_path_bh_journal_access(handle, ci, path, i); 758 if (ret < 0) { 759 mlog_errno(ret); 760 goto out; 761 } 762 } 763 764 out: 765 return ret; 766 } 767 768 /* 769 * Return the index of the extent record which contains cluster #v_cluster. 770 * -1 is returned if it was not found. 771 * 772 * Should work fine on interior and exterior nodes. 773 */ 774 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster) 775 { 776 int ret = -1; 777 int i; 778 struct ocfs2_extent_rec *rec; 779 u32 rec_end, rec_start, clusters; 780 781 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 782 rec = &el->l_recs[i]; 783 784 rec_start = le32_to_cpu(rec->e_cpos); 785 clusters = ocfs2_rec_clusters(el, rec); 786 787 rec_end = rec_start + clusters; 788 789 if (v_cluster >= rec_start && v_cluster < rec_end) { 790 ret = i; 791 break; 792 } 793 } 794 795 return ret; 796 } 797 798 /* 799 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and 800 * ocfs2_extent_rec_contig only work properly against leaf nodes! 801 */ 802 static int ocfs2_block_extent_contig(struct super_block *sb, 803 struct ocfs2_extent_rec *ext, 804 u64 blkno) 805 { 806 u64 blk_end = le64_to_cpu(ext->e_blkno); 807 808 blk_end += ocfs2_clusters_to_blocks(sb, 809 le16_to_cpu(ext->e_leaf_clusters)); 810 811 return blkno == blk_end; 812 } 813 814 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left, 815 struct ocfs2_extent_rec *right) 816 { 817 u32 left_range; 818 819 left_range = le32_to_cpu(left->e_cpos) + 820 le16_to_cpu(left->e_leaf_clusters); 821 822 return (left_range == le32_to_cpu(right->e_cpos)); 823 } 824 825 static enum ocfs2_contig_type 826 ocfs2_extent_rec_contig(struct super_block *sb, 827 struct ocfs2_extent_rec *ext, 828 struct ocfs2_extent_rec *insert_rec) 829 { 830 u64 blkno = le64_to_cpu(insert_rec->e_blkno); 831 832 /* 833 * Refuse to coalesce extent records with different flag 834 * fields - we don't want to mix unwritten extents with user 835 * data. 836 */ 837 if (ext->e_flags != insert_rec->e_flags) 838 return CONTIG_NONE; 839 840 if (ocfs2_extents_adjacent(ext, insert_rec) && 841 ocfs2_block_extent_contig(sb, ext, blkno)) 842 return CONTIG_RIGHT; 843 844 blkno = le64_to_cpu(ext->e_blkno); 845 if (ocfs2_extents_adjacent(insert_rec, ext) && 846 ocfs2_block_extent_contig(sb, insert_rec, blkno)) 847 return CONTIG_LEFT; 848 849 return CONTIG_NONE; 850 } 851 852 /* 853 * NOTE: We can have pretty much any combination of contiguousness and 854 * appending. 855 * 856 * The usefulness of APPEND_TAIL is more in that it lets us know that 857 * we'll have to update the path to that leaf. 858 */ 859 enum ocfs2_append_type { 860 APPEND_NONE = 0, 861 APPEND_TAIL, 862 }; 863 864 enum ocfs2_split_type { 865 SPLIT_NONE = 0, 866 SPLIT_LEFT, 867 SPLIT_RIGHT, 868 }; 869 870 struct ocfs2_insert_type { 871 enum ocfs2_split_type ins_split; 872 enum ocfs2_append_type ins_appending; 873 enum ocfs2_contig_type ins_contig; 874 int ins_contig_index; 875 int ins_tree_depth; 876 }; 877 878 struct ocfs2_merge_ctxt { 879 enum ocfs2_contig_type c_contig_type; 880 int c_has_empty_extent; 881 int c_split_covers_rec; 882 }; 883 884 static int ocfs2_validate_extent_block(struct super_block *sb, 885 struct buffer_head *bh) 886 { 887 int rc; 888 struct ocfs2_extent_block *eb = 889 (struct ocfs2_extent_block *)bh->b_data; 890 891 trace_ocfs2_validate_extent_block((unsigned long long)bh->b_blocknr); 892 893 BUG_ON(!buffer_uptodate(bh)); 894 895 /* 896 * If the ecc fails, we return the error but otherwise 897 * leave the filesystem running. We know any error is 898 * local to this block. 899 */ 900 rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check); 901 if (rc) { 902 mlog(ML_ERROR, "Checksum failed for extent block %llu\n", 903 (unsigned long long)bh->b_blocknr); 904 return rc; 905 } 906 907 /* 908 * Errors after here are fatal. 909 */ 910 911 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 912 rc = ocfs2_error(sb, 913 "Extent block #%llu has bad signature %.*s\n", 914 (unsigned long long)bh->b_blocknr, 7, 915 eb->h_signature); 916 goto bail; 917 } 918 919 if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) { 920 rc = ocfs2_error(sb, 921 "Extent block #%llu has an invalid h_blkno of %llu\n", 922 (unsigned long long)bh->b_blocknr, 923 (unsigned long long)le64_to_cpu(eb->h_blkno)); 924 goto bail; 925 } 926 927 if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) { 928 rc = ocfs2_error(sb, 929 "Extent block #%llu has an invalid h_fs_generation of #%u\n", 930 (unsigned long long)bh->b_blocknr, 931 le32_to_cpu(eb->h_fs_generation)); 932 goto bail; 933 } 934 bail: 935 return rc; 936 } 937 938 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno, 939 struct buffer_head **bh) 940 { 941 int rc; 942 struct buffer_head *tmp = *bh; 943 944 rc = ocfs2_read_block(ci, eb_blkno, &tmp, 945 ocfs2_validate_extent_block); 946 947 /* If ocfs2_read_block() got us a new bh, pass it up. */ 948 if (!rc && !*bh) 949 *bh = tmp; 950 951 return rc; 952 } 953 954 955 /* 956 * How many free extents have we got before we need more meta data? 957 */ 958 int ocfs2_num_free_extents(struct ocfs2_super *osb, 959 struct ocfs2_extent_tree *et) 960 { 961 int retval; 962 struct ocfs2_extent_list *el = NULL; 963 struct ocfs2_extent_block *eb; 964 struct buffer_head *eb_bh = NULL; 965 u64 last_eb_blk = 0; 966 967 el = et->et_root_el; 968 last_eb_blk = ocfs2_et_get_last_eb_blk(et); 969 970 if (last_eb_blk) { 971 retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk, 972 &eb_bh); 973 if (retval < 0) { 974 mlog_errno(retval); 975 goto bail; 976 } 977 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 978 el = &eb->h_list; 979 } 980 981 BUG_ON(el->l_tree_depth != 0); 982 983 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec); 984 bail: 985 brelse(eb_bh); 986 987 trace_ocfs2_num_free_extents(retval); 988 return retval; 989 } 990 991 /* expects array to already be allocated 992 * 993 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and 994 * l_count for you 995 */ 996 static int ocfs2_create_new_meta_bhs(handle_t *handle, 997 struct ocfs2_extent_tree *et, 998 int wanted, 999 struct ocfs2_alloc_context *meta_ac, 1000 struct buffer_head *bhs[]) 1001 { 1002 int count, status, i; 1003 u16 suballoc_bit_start; 1004 u32 num_got; 1005 u64 suballoc_loc, first_blkno; 1006 struct ocfs2_super *osb = 1007 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 1008 struct ocfs2_extent_block *eb; 1009 1010 count = 0; 1011 while (count < wanted) { 1012 status = ocfs2_claim_metadata(handle, 1013 meta_ac, 1014 wanted - count, 1015 &suballoc_loc, 1016 &suballoc_bit_start, 1017 &num_got, 1018 &first_blkno); 1019 if (status < 0) { 1020 mlog_errno(status); 1021 goto bail; 1022 } 1023 1024 for(i = count; i < (num_got + count); i++) { 1025 bhs[i] = sb_getblk(osb->sb, first_blkno); 1026 if (bhs[i] == NULL) { 1027 status = -ENOMEM; 1028 mlog_errno(status); 1029 goto bail; 1030 } 1031 ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]); 1032 1033 status = ocfs2_journal_access_eb(handle, et->et_ci, 1034 bhs[i], 1035 OCFS2_JOURNAL_ACCESS_CREATE); 1036 if (status < 0) { 1037 mlog_errno(status); 1038 goto bail; 1039 } 1040 1041 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize); 1042 eb = (struct ocfs2_extent_block *) bhs[i]->b_data; 1043 /* Ok, setup the minimal stuff here. */ 1044 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); 1045 eb->h_blkno = cpu_to_le64(first_blkno); 1046 eb->h_fs_generation = cpu_to_le32(osb->fs_generation); 1047 eb->h_suballoc_slot = 1048 cpu_to_le16(meta_ac->ac_alloc_slot); 1049 eb->h_suballoc_loc = cpu_to_le64(suballoc_loc); 1050 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start); 1051 eb->h_list.l_count = 1052 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); 1053 1054 suballoc_bit_start++; 1055 first_blkno++; 1056 1057 /* We'll also be dirtied by the caller, so 1058 * this isn't absolutely necessary. */ 1059 ocfs2_journal_dirty(handle, bhs[i]); 1060 } 1061 1062 count += num_got; 1063 } 1064 1065 status = 0; 1066 bail: 1067 if (status < 0) { 1068 for(i = 0; i < wanted; i++) { 1069 brelse(bhs[i]); 1070 bhs[i] = NULL; 1071 } 1072 mlog_errno(status); 1073 } 1074 return status; 1075 } 1076 1077 /* 1078 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth(). 1079 * 1080 * Returns the sum of the rightmost extent rec logical offset and 1081 * cluster count. 1082 * 1083 * ocfs2_add_branch() uses this to determine what logical cluster 1084 * value should be populated into the leftmost new branch records. 1085 * 1086 * ocfs2_shift_tree_depth() uses this to determine the # clusters 1087 * value for the new topmost tree record. 1088 */ 1089 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el) 1090 { 1091 int i; 1092 1093 i = le16_to_cpu(el->l_next_free_rec) - 1; 1094 1095 return le32_to_cpu(el->l_recs[i].e_cpos) + 1096 ocfs2_rec_clusters(el, &el->l_recs[i]); 1097 } 1098 1099 /* 1100 * Change range of the branches in the right most path according to the leaf 1101 * extent block's rightmost record. 1102 */ 1103 static int ocfs2_adjust_rightmost_branch(handle_t *handle, 1104 struct ocfs2_extent_tree *et) 1105 { 1106 int status; 1107 struct ocfs2_path *path = NULL; 1108 struct ocfs2_extent_list *el; 1109 struct ocfs2_extent_rec *rec; 1110 1111 path = ocfs2_new_path_from_et(et); 1112 if (!path) { 1113 status = -ENOMEM; 1114 return status; 1115 } 1116 1117 status = ocfs2_find_path(et->et_ci, path, UINT_MAX); 1118 if (status < 0) { 1119 mlog_errno(status); 1120 goto out; 1121 } 1122 1123 status = ocfs2_extend_trans(handle, path_num_items(path)); 1124 if (status < 0) { 1125 mlog_errno(status); 1126 goto out; 1127 } 1128 1129 status = ocfs2_journal_access_path(et->et_ci, handle, path); 1130 if (status < 0) { 1131 mlog_errno(status); 1132 goto out; 1133 } 1134 1135 el = path_leaf_el(path); 1136 rec = &el->l_recs[le16_to_cpu(el->l_next_free_rec) - 1]; 1137 1138 ocfs2_adjust_rightmost_records(handle, et, path, rec); 1139 1140 out: 1141 ocfs2_free_path(path); 1142 return status; 1143 } 1144 1145 /* 1146 * Add an entire tree branch to our inode. eb_bh is the extent block 1147 * to start at, if we don't want to start the branch at the root 1148 * structure. 1149 * 1150 * last_eb_bh is required as we have to update it's next_leaf pointer 1151 * for the new last extent block. 1152 * 1153 * the new branch will be 'empty' in the sense that every block will 1154 * contain a single record with cluster count == 0. 1155 */ 1156 static int ocfs2_add_branch(handle_t *handle, 1157 struct ocfs2_extent_tree *et, 1158 struct buffer_head *eb_bh, 1159 struct buffer_head **last_eb_bh, 1160 struct ocfs2_alloc_context *meta_ac) 1161 { 1162 int status, new_blocks, i; 1163 u64 next_blkno, new_last_eb_blk; 1164 struct buffer_head *bh; 1165 struct buffer_head **new_eb_bhs = NULL; 1166 struct ocfs2_extent_block *eb; 1167 struct ocfs2_extent_list *eb_el; 1168 struct ocfs2_extent_list *el; 1169 u32 new_cpos, root_end; 1170 1171 BUG_ON(!last_eb_bh || !*last_eb_bh); 1172 1173 if (eb_bh) { 1174 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 1175 el = &eb->h_list; 1176 } else 1177 el = et->et_root_el; 1178 1179 /* we never add a branch to a leaf. */ 1180 BUG_ON(!el->l_tree_depth); 1181 1182 new_blocks = le16_to_cpu(el->l_tree_depth); 1183 1184 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data; 1185 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list); 1186 root_end = ocfs2_sum_rightmost_rec(et->et_root_el); 1187 1188 /* 1189 * If there is a gap before the root end and the real end 1190 * of the righmost leaf block, we need to remove the gap 1191 * between new_cpos and root_end first so that the tree 1192 * is consistent after we add a new branch(it will start 1193 * from new_cpos). 1194 */ 1195 if (root_end > new_cpos) { 1196 trace_ocfs2_adjust_rightmost_branch( 1197 (unsigned long long) 1198 ocfs2_metadata_cache_owner(et->et_ci), 1199 root_end, new_cpos); 1200 1201 status = ocfs2_adjust_rightmost_branch(handle, et); 1202 if (status) { 1203 mlog_errno(status); 1204 goto bail; 1205 } 1206 } 1207 1208 /* allocate the number of new eb blocks we need */ 1209 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *), 1210 GFP_KERNEL); 1211 if (!new_eb_bhs) { 1212 status = -ENOMEM; 1213 mlog_errno(status); 1214 goto bail; 1215 } 1216 1217 status = ocfs2_create_new_meta_bhs(handle, et, new_blocks, 1218 meta_ac, new_eb_bhs); 1219 if (status < 0) { 1220 mlog_errno(status); 1221 goto bail; 1222 } 1223 1224 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be 1225 * linked with the rest of the tree. 1226 * conversly, new_eb_bhs[0] is the new bottommost leaf. 1227 * 1228 * when we leave the loop, new_last_eb_blk will point to the 1229 * newest leaf, and next_blkno will point to the topmost extent 1230 * block. */ 1231 next_blkno = new_last_eb_blk = 0; 1232 for(i = 0; i < new_blocks; i++) { 1233 bh = new_eb_bhs[i]; 1234 eb = (struct ocfs2_extent_block *) bh->b_data; 1235 /* ocfs2_create_new_meta_bhs() should create it right! */ 1236 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1237 eb_el = &eb->h_list; 1238 1239 status = ocfs2_journal_access_eb(handle, et->et_ci, bh, 1240 OCFS2_JOURNAL_ACCESS_CREATE); 1241 if (status < 0) { 1242 mlog_errno(status); 1243 goto bail; 1244 } 1245 1246 eb->h_next_leaf_blk = 0; 1247 eb_el->l_tree_depth = cpu_to_le16(i); 1248 eb_el->l_next_free_rec = cpu_to_le16(1); 1249 /* 1250 * This actually counts as an empty extent as 1251 * c_clusters == 0 1252 */ 1253 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos); 1254 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno); 1255 /* 1256 * eb_el isn't always an interior node, but even leaf 1257 * nodes want a zero'd flags and reserved field so 1258 * this gets the whole 32 bits regardless of use. 1259 */ 1260 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0); 1261 if (!eb_el->l_tree_depth) 1262 new_last_eb_blk = le64_to_cpu(eb->h_blkno); 1263 1264 ocfs2_journal_dirty(handle, bh); 1265 next_blkno = le64_to_cpu(eb->h_blkno); 1266 } 1267 1268 /* This is a bit hairy. We want to update up to three blocks 1269 * here without leaving any of them in an inconsistent state 1270 * in case of error. We don't have to worry about 1271 * journal_dirty erroring as it won't unless we've aborted the 1272 * handle (in which case we would never be here) so reserving 1273 * the write with journal_access is all we need to do. */ 1274 status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh, 1275 OCFS2_JOURNAL_ACCESS_WRITE); 1276 if (status < 0) { 1277 mlog_errno(status); 1278 goto bail; 1279 } 1280 status = ocfs2_et_root_journal_access(handle, et, 1281 OCFS2_JOURNAL_ACCESS_WRITE); 1282 if (status < 0) { 1283 mlog_errno(status); 1284 goto bail; 1285 } 1286 if (eb_bh) { 1287 status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh, 1288 OCFS2_JOURNAL_ACCESS_WRITE); 1289 if (status < 0) { 1290 mlog_errno(status); 1291 goto bail; 1292 } 1293 } 1294 1295 /* Link the new branch into the rest of the tree (el will 1296 * either be on the root_bh, or the extent block passed in. */ 1297 i = le16_to_cpu(el->l_next_free_rec); 1298 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno); 1299 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos); 1300 el->l_recs[i].e_int_clusters = 0; 1301 le16_add_cpu(&el->l_next_free_rec, 1); 1302 1303 /* fe needs a new last extent block pointer, as does the 1304 * next_leaf on the previously last-extent-block. */ 1305 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk); 1306 1307 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 1308 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk); 1309 1310 ocfs2_journal_dirty(handle, *last_eb_bh); 1311 ocfs2_journal_dirty(handle, et->et_root_bh); 1312 if (eb_bh) 1313 ocfs2_journal_dirty(handle, eb_bh); 1314 1315 /* 1316 * Some callers want to track the rightmost leaf so pass it 1317 * back here. 1318 */ 1319 brelse(*last_eb_bh); 1320 get_bh(new_eb_bhs[0]); 1321 *last_eb_bh = new_eb_bhs[0]; 1322 1323 status = 0; 1324 bail: 1325 if (new_eb_bhs) { 1326 for (i = 0; i < new_blocks; i++) 1327 brelse(new_eb_bhs[i]); 1328 kfree(new_eb_bhs); 1329 } 1330 1331 return status; 1332 } 1333 1334 /* 1335 * adds another level to the allocation tree. 1336 * returns back the new extent block so you can add a branch to it 1337 * after this call. 1338 */ 1339 static int ocfs2_shift_tree_depth(handle_t *handle, 1340 struct ocfs2_extent_tree *et, 1341 struct ocfs2_alloc_context *meta_ac, 1342 struct buffer_head **ret_new_eb_bh) 1343 { 1344 int status, i; 1345 u32 new_clusters; 1346 struct buffer_head *new_eb_bh = NULL; 1347 struct ocfs2_extent_block *eb; 1348 struct ocfs2_extent_list *root_el; 1349 struct ocfs2_extent_list *eb_el; 1350 1351 status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac, 1352 &new_eb_bh); 1353 if (status < 0) { 1354 mlog_errno(status); 1355 goto bail; 1356 } 1357 1358 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data; 1359 /* ocfs2_create_new_meta_bhs() should create it right! */ 1360 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1361 1362 eb_el = &eb->h_list; 1363 root_el = et->et_root_el; 1364 1365 status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh, 1366 OCFS2_JOURNAL_ACCESS_CREATE); 1367 if (status < 0) { 1368 mlog_errno(status); 1369 goto bail; 1370 } 1371 1372 /* copy the root extent list data into the new extent block */ 1373 eb_el->l_tree_depth = root_el->l_tree_depth; 1374 eb_el->l_next_free_rec = root_el->l_next_free_rec; 1375 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1376 eb_el->l_recs[i] = root_el->l_recs[i]; 1377 1378 ocfs2_journal_dirty(handle, new_eb_bh); 1379 1380 status = ocfs2_et_root_journal_access(handle, et, 1381 OCFS2_JOURNAL_ACCESS_WRITE); 1382 if (status < 0) { 1383 mlog_errno(status); 1384 goto bail; 1385 } 1386 1387 new_clusters = ocfs2_sum_rightmost_rec(eb_el); 1388 1389 /* update root_bh now */ 1390 le16_add_cpu(&root_el->l_tree_depth, 1); 1391 root_el->l_recs[0].e_cpos = 0; 1392 root_el->l_recs[0].e_blkno = eb->h_blkno; 1393 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters); 1394 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1395 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 1396 root_el->l_next_free_rec = cpu_to_le16(1); 1397 1398 /* If this is our 1st tree depth shift, then last_eb_blk 1399 * becomes the allocated extent block */ 1400 if (root_el->l_tree_depth == cpu_to_le16(1)) 1401 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 1402 1403 ocfs2_journal_dirty(handle, et->et_root_bh); 1404 1405 *ret_new_eb_bh = new_eb_bh; 1406 new_eb_bh = NULL; 1407 status = 0; 1408 bail: 1409 brelse(new_eb_bh); 1410 1411 return status; 1412 } 1413 1414 /* 1415 * Should only be called when there is no space left in any of the 1416 * leaf nodes. What we want to do is find the lowest tree depth 1417 * non-leaf extent block with room for new records. There are three 1418 * valid results of this search: 1419 * 1420 * 1) a lowest extent block is found, then we pass it back in 1421 * *lowest_eb_bh and return '0' 1422 * 1423 * 2) the search fails to find anything, but the root_el has room. We 1424 * pass NULL back in *lowest_eb_bh, but still return '0' 1425 * 1426 * 3) the search fails to find anything AND the root_el is full, in 1427 * which case we return > 0 1428 * 1429 * return status < 0 indicates an error. 1430 */ 1431 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et, 1432 struct buffer_head **target_bh) 1433 { 1434 int status = 0, i; 1435 u64 blkno; 1436 struct ocfs2_extent_block *eb; 1437 struct ocfs2_extent_list *el; 1438 struct buffer_head *bh = NULL; 1439 struct buffer_head *lowest_bh = NULL; 1440 1441 *target_bh = NULL; 1442 1443 el = et->et_root_el; 1444 1445 while(le16_to_cpu(el->l_tree_depth) > 1) { 1446 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1447 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 1448 "Owner %llu has empty extent list (next_free_rec == 0)\n", 1449 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 1450 status = -EIO; 1451 goto bail; 1452 } 1453 i = le16_to_cpu(el->l_next_free_rec) - 1; 1454 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1455 if (!blkno) { 1456 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 1457 "Owner %llu has extent list where extent # %d has no physical block start\n", 1458 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i); 1459 status = -EIO; 1460 goto bail; 1461 } 1462 1463 brelse(bh); 1464 bh = NULL; 1465 1466 status = ocfs2_read_extent_block(et->et_ci, blkno, &bh); 1467 if (status < 0) { 1468 mlog_errno(status); 1469 goto bail; 1470 } 1471 1472 eb = (struct ocfs2_extent_block *) bh->b_data; 1473 el = &eb->h_list; 1474 1475 if (le16_to_cpu(el->l_next_free_rec) < 1476 le16_to_cpu(el->l_count)) { 1477 brelse(lowest_bh); 1478 lowest_bh = bh; 1479 get_bh(lowest_bh); 1480 } 1481 } 1482 1483 /* If we didn't find one and the fe doesn't have any room, 1484 * then return '1' */ 1485 el = et->et_root_el; 1486 if (!lowest_bh && (el->l_next_free_rec == el->l_count)) 1487 status = 1; 1488 1489 *target_bh = lowest_bh; 1490 bail: 1491 brelse(bh); 1492 1493 return status; 1494 } 1495 1496 /* 1497 * Grow a b-tree so that it has more records. 1498 * 1499 * We might shift the tree depth in which case existing paths should 1500 * be considered invalid. 1501 * 1502 * Tree depth after the grow is returned via *final_depth. 1503 * 1504 * *last_eb_bh will be updated by ocfs2_add_branch(). 1505 */ 1506 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et, 1507 int *final_depth, struct buffer_head **last_eb_bh, 1508 struct ocfs2_alloc_context *meta_ac) 1509 { 1510 int ret, shift; 1511 struct ocfs2_extent_list *el = et->et_root_el; 1512 int depth = le16_to_cpu(el->l_tree_depth); 1513 struct buffer_head *bh = NULL; 1514 1515 BUG_ON(meta_ac == NULL); 1516 1517 shift = ocfs2_find_branch_target(et, &bh); 1518 if (shift < 0) { 1519 ret = shift; 1520 mlog_errno(ret); 1521 goto out; 1522 } 1523 1524 /* We traveled all the way to the bottom of the allocation tree 1525 * and didn't find room for any more extents - we need to add 1526 * another tree level */ 1527 if (shift) { 1528 BUG_ON(bh); 1529 trace_ocfs2_grow_tree( 1530 (unsigned long long) 1531 ocfs2_metadata_cache_owner(et->et_ci), 1532 depth); 1533 1534 /* ocfs2_shift_tree_depth will return us a buffer with 1535 * the new extent block (so we can pass that to 1536 * ocfs2_add_branch). */ 1537 ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh); 1538 if (ret < 0) { 1539 mlog_errno(ret); 1540 goto out; 1541 } 1542 depth++; 1543 if (depth == 1) { 1544 /* 1545 * Special case: we have room now if we shifted from 1546 * tree_depth 0, so no more work needs to be done. 1547 * 1548 * We won't be calling add_branch, so pass 1549 * back *last_eb_bh as the new leaf. At depth 1550 * zero, it should always be null so there's 1551 * no reason to brelse. 1552 */ 1553 BUG_ON(*last_eb_bh); 1554 get_bh(bh); 1555 *last_eb_bh = bh; 1556 goto out; 1557 } 1558 } 1559 1560 /* call ocfs2_add_branch to add the final part of the tree with 1561 * the new data. */ 1562 ret = ocfs2_add_branch(handle, et, bh, last_eb_bh, 1563 meta_ac); 1564 if (ret < 0) { 1565 mlog_errno(ret); 1566 goto out; 1567 } 1568 1569 out: 1570 if (final_depth) 1571 *final_depth = depth; 1572 brelse(bh); 1573 return ret; 1574 } 1575 1576 /* 1577 * This function will discard the rightmost extent record. 1578 */ 1579 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el) 1580 { 1581 int next_free = le16_to_cpu(el->l_next_free_rec); 1582 int count = le16_to_cpu(el->l_count); 1583 unsigned int num_bytes; 1584 1585 BUG_ON(!next_free); 1586 /* This will cause us to go off the end of our extent list. */ 1587 BUG_ON(next_free >= count); 1588 1589 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free; 1590 1591 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes); 1592 } 1593 1594 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el, 1595 struct ocfs2_extent_rec *insert_rec) 1596 { 1597 int i, insert_index, next_free, has_empty, num_bytes; 1598 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos); 1599 struct ocfs2_extent_rec *rec; 1600 1601 next_free = le16_to_cpu(el->l_next_free_rec); 1602 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]); 1603 1604 BUG_ON(!next_free); 1605 1606 /* The tree code before us didn't allow enough room in the leaf. */ 1607 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty); 1608 1609 /* 1610 * The easiest way to approach this is to just remove the 1611 * empty extent and temporarily decrement next_free. 1612 */ 1613 if (has_empty) { 1614 /* 1615 * If next_free was 1 (only an empty extent), this 1616 * loop won't execute, which is fine. We still want 1617 * the decrement above to happen. 1618 */ 1619 for(i = 0; i < (next_free - 1); i++) 1620 el->l_recs[i] = el->l_recs[i+1]; 1621 1622 next_free--; 1623 } 1624 1625 /* 1626 * Figure out what the new record index should be. 1627 */ 1628 for(i = 0; i < next_free; i++) { 1629 rec = &el->l_recs[i]; 1630 1631 if (insert_cpos < le32_to_cpu(rec->e_cpos)) 1632 break; 1633 } 1634 insert_index = i; 1635 1636 trace_ocfs2_rotate_leaf(insert_cpos, insert_index, 1637 has_empty, next_free, 1638 le16_to_cpu(el->l_count)); 1639 1640 BUG_ON(insert_index < 0); 1641 BUG_ON(insert_index >= le16_to_cpu(el->l_count)); 1642 BUG_ON(insert_index > next_free); 1643 1644 /* 1645 * No need to memmove if we're just adding to the tail. 1646 */ 1647 if (insert_index != next_free) { 1648 BUG_ON(next_free >= le16_to_cpu(el->l_count)); 1649 1650 num_bytes = next_free - insert_index; 1651 num_bytes *= sizeof(struct ocfs2_extent_rec); 1652 memmove(&el->l_recs[insert_index + 1], 1653 &el->l_recs[insert_index], 1654 num_bytes); 1655 } 1656 1657 /* 1658 * Either we had an empty extent, and need to re-increment or 1659 * there was no empty extent on a non full rightmost leaf node, 1660 * in which case we still need to increment. 1661 */ 1662 next_free++; 1663 el->l_next_free_rec = cpu_to_le16(next_free); 1664 /* 1665 * Make sure none of the math above just messed up our tree. 1666 */ 1667 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count)); 1668 1669 el->l_recs[insert_index] = *insert_rec; 1670 1671 } 1672 1673 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el) 1674 { 1675 int size, num_recs = le16_to_cpu(el->l_next_free_rec); 1676 1677 BUG_ON(num_recs == 0); 1678 1679 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 1680 num_recs--; 1681 size = num_recs * sizeof(struct ocfs2_extent_rec); 1682 memmove(&el->l_recs[0], &el->l_recs[1], size); 1683 memset(&el->l_recs[num_recs], 0, 1684 sizeof(struct ocfs2_extent_rec)); 1685 el->l_next_free_rec = cpu_to_le16(num_recs); 1686 } 1687 } 1688 1689 /* 1690 * Create an empty extent record . 1691 * 1692 * l_next_free_rec may be updated. 1693 * 1694 * If an empty extent already exists do nothing. 1695 */ 1696 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el) 1697 { 1698 int next_free = le16_to_cpu(el->l_next_free_rec); 1699 1700 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 1701 1702 if (next_free == 0) 1703 goto set_and_inc; 1704 1705 if (ocfs2_is_empty_extent(&el->l_recs[0])) 1706 return; 1707 1708 mlog_bug_on_msg(el->l_count == el->l_next_free_rec, 1709 "Asked to create an empty extent in a full list:\n" 1710 "count = %u, tree depth = %u", 1711 le16_to_cpu(el->l_count), 1712 le16_to_cpu(el->l_tree_depth)); 1713 1714 ocfs2_shift_records_right(el); 1715 1716 set_and_inc: 1717 le16_add_cpu(&el->l_next_free_rec, 1); 1718 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 1719 } 1720 1721 /* 1722 * For a rotation which involves two leaf nodes, the "root node" is 1723 * the lowest level tree node which contains a path to both leafs. This 1724 * resulting set of information can be used to form a complete "subtree" 1725 * 1726 * This function is passed two full paths from the dinode down to a 1727 * pair of adjacent leaves. It's task is to figure out which path 1728 * index contains the subtree root - this can be the root index itself 1729 * in a worst-case rotation. 1730 * 1731 * The array index of the subtree root is passed back. 1732 */ 1733 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et, 1734 struct ocfs2_path *left, 1735 struct ocfs2_path *right) 1736 { 1737 int i = 0; 1738 1739 /* 1740 * Check that the caller passed in two paths from the same tree. 1741 */ 1742 BUG_ON(path_root_bh(left) != path_root_bh(right)); 1743 1744 do { 1745 i++; 1746 1747 /* 1748 * The caller didn't pass two adjacent paths. 1749 */ 1750 mlog_bug_on_msg(i > left->p_tree_depth, 1751 "Owner %llu, left depth %u, right depth %u\n" 1752 "left leaf blk %llu, right leaf blk %llu\n", 1753 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 1754 left->p_tree_depth, right->p_tree_depth, 1755 (unsigned long long)path_leaf_bh(left)->b_blocknr, 1756 (unsigned long long)path_leaf_bh(right)->b_blocknr); 1757 } while (left->p_node[i].bh->b_blocknr == 1758 right->p_node[i].bh->b_blocknr); 1759 1760 return i - 1; 1761 } 1762 1763 typedef void (path_insert_t)(void *, struct buffer_head *); 1764 1765 /* 1766 * Traverse a btree path in search of cpos, starting at root_el. 1767 * 1768 * This code can be called with a cpos larger than the tree, in which 1769 * case it will return the rightmost path. 1770 */ 1771 static int __ocfs2_find_path(struct ocfs2_caching_info *ci, 1772 struct ocfs2_extent_list *root_el, u32 cpos, 1773 path_insert_t *func, void *data) 1774 { 1775 int i, ret = 0; 1776 u32 range; 1777 u64 blkno; 1778 struct buffer_head *bh = NULL; 1779 struct ocfs2_extent_block *eb; 1780 struct ocfs2_extent_list *el; 1781 struct ocfs2_extent_rec *rec; 1782 1783 el = root_el; 1784 while (el->l_tree_depth) { 1785 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1786 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1787 "Owner %llu has empty extent list at depth %u\n", 1788 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1789 le16_to_cpu(el->l_tree_depth)); 1790 ret = -EROFS; 1791 goto out; 1792 1793 } 1794 1795 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) { 1796 rec = &el->l_recs[i]; 1797 1798 /* 1799 * In the case that cpos is off the allocation 1800 * tree, this should just wind up returning the 1801 * rightmost record. 1802 */ 1803 range = le32_to_cpu(rec->e_cpos) + 1804 ocfs2_rec_clusters(el, rec); 1805 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 1806 break; 1807 } 1808 1809 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1810 if (blkno == 0) { 1811 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1812 "Owner %llu has bad blkno in extent list at depth %u (index %d)\n", 1813 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1814 le16_to_cpu(el->l_tree_depth), i); 1815 ret = -EROFS; 1816 goto out; 1817 } 1818 1819 brelse(bh); 1820 bh = NULL; 1821 ret = ocfs2_read_extent_block(ci, blkno, &bh); 1822 if (ret) { 1823 mlog_errno(ret); 1824 goto out; 1825 } 1826 1827 eb = (struct ocfs2_extent_block *) bh->b_data; 1828 el = &eb->h_list; 1829 1830 if (le16_to_cpu(el->l_next_free_rec) > 1831 le16_to_cpu(el->l_count)) { 1832 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1833 "Owner %llu has bad count in extent list at block %llu (next free=%u, count=%u)\n", 1834 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1835 (unsigned long long)bh->b_blocknr, 1836 le16_to_cpu(el->l_next_free_rec), 1837 le16_to_cpu(el->l_count)); 1838 ret = -EROFS; 1839 goto out; 1840 } 1841 1842 if (func) 1843 func(data, bh); 1844 } 1845 1846 out: 1847 /* 1848 * Catch any trailing bh that the loop didn't handle. 1849 */ 1850 brelse(bh); 1851 1852 return ret; 1853 } 1854 1855 /* 1856 * Given an initialized path (that is, it has a valid root extent 1857 * list), this function will traverse the btree in search of the path 1858 * which would contain cpos. 1859 * 1860 * The path traveled is recorded in the path structure. 1861 * 1862 * Note that this will not do any comparisons on leaf node extent 1863 * records, so it will work fine in the case that we just added a tree 1864 * branch. 1865 */ 1866 struct find_path_data { 1867 int index; 1868 struct ocfs2_path *path; 1869 }; 1870 static void find_path_ins(void *data, struct buffer_head *bh) 1871 { 1872 struct find_path_data *fp = data; 1873 1874 get_bh(bh); 1875 ocfs2_path_insert_eb(fp->path, fp->index, bh); 1876 fp->index++; 1877 } 1878 int ocfs2_find_path(struct ocfs2_caching_info *ci, 1879 struct ocfs2_path *path, u32 cpos) 1880 { 1881 struct find_path_data data; 1882 1883 data.index = 1; 1884 data.path = path; 1885 return __ocfs2_find_path(ci, path_root_el(path), cpos, 1886 find_path_ins, &data); 1887 } 1888 1889 static void find_leaf_ins(void *data, struct buffer_head *bh) 1890 { 1891 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data; 1892 struct ocfs2_extent_list *el = &eb->h_list; 1893 struct buffer_head **ret = data; 1894 1895 /* We want to retain only the leaf block. */ 1896 if (le16_to_cpu(el->l_tree_depth) == 0) { 1897 get_bh(bh); 1898 *ret = bh; 1899 } 1900 } 1901 /* 1902 * Find the leaf block in the tree which would contain cpos. No 1903 * checking of the actual leaf is done. 1904 * 1905 * Some paths want to call this instead of allocating a path structure 1906 * and calling ocfs2_find_path(). 1907 * 1908 * This function doesn't handle non btree extent lists. 1909 */ 1910 int ocfs2_find_leaf(struct ocfs2_caching_info *ci, 1911 struct ocfs2_extent_list *root_el, u32 cpos, 1912 struct buffer_head **leaf_bh) 1913 { 1914 int ret; 1915 struct buffer_head *bh = NULL; 1916 1917 ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh); 1918 if (ret) { 1919 mlog_errno(ret); 1920 goto out; 1921 } 1922 1923 *leaf_bh = bh; 1924 out: 1925 return ret; 1926 } 1927 1928 /* 1929 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation. 1930 * 1931 * Basically, we've moved stuff around at the bottom of the tree and 1932 * we need to fix up the extent records above the changes to reflect 1933 * the new changes. 1934 * 1935 * left_rec: the record on the left. 1936 * left_child_el: is the child list pointed to by left_rec 1937 * right_rec: the record to the right of left_rec 1938 * right_child_el: is the child list pointed to by right_rec 1939 * 1940 * By definition, this only works on interior nodes. 1941 */ 1942 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec, 1943 struct ocfs2_extent_list *left_child_el, 1944 struct ocfs2_extent_rec *right_rec, 1945 struct ocfs2_extent_list *right_child_el) 1946 { 1947 u32 left_clusters, right_end; 1948 1949 /* 1950 * Interior nodes never have holes. Their cpos is the cpos of 1951 * the leftmost record in their child list. Their cluster 1952 * count covers the full theoretical range of their child list 1953 * - the range between their cpos and the cpos of the record 1954 * immediately to their right. 1955 */ 1956 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos); 1957 if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) { 1958 BUG_ON(right_child_el->l_tree_depth); 1959 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1); 1960 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos); 1961 } 1962 left_clusters -= le32_to_cpu(left_rec->e_cpos); 1963 left_rec->e_int_clusters = cpu_to_le32(left_clusters); 1964 1965 /* 1966 * Calculate the rightmost cluster count boundary before 1967 * moving cpos - we will need to adjust clusters after 1968 * updating e_cpos to keep the same highest cluster count. 1969 */ 1970 right_end = le32_to_cpu(right_rec->e_cpos); 1971 right_end += le32_to_cpu(right_rec->e_int_clusters); 1972 1973 right_rec->e_cpos = left_rec->e_cpos; 1974 le32_add_cpu(&right_rec->e_cpos, left_clusters); 1975 1976 right_end -= le32_to_cpu(right_rec->e_cpos); 1977 right_rec->e_int_clusters = cpu_to_le32(right_end); 1978 } 1979 1980 /* 1981 * Adjust the adjacent root node records involved in a 1982 * rotation. left_el_blkno is passed in as a key so that we can easily 1983 * find it's index in the root list. 1984 */ 1985 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el, 1986 struct ocfs2_extent_list *left_el, 1987 struct ocfs2_extent_list *right_el, 1988 u64 left_el_blkno) 1989 { 1990 int i; 1991 1992 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <= 1993 le16_to_cpu(left_el->l_tree_depth)); 1994 1995 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) { 1996 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno) 1997 break; 1998 } 1999 2000 /* 2001 * The path walking code should have never returned a root and 2002 * two paths which are not adjacent. 2003 */ 2004 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1)); 2005 2006 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el, 2007 &root_el->l_recs[i + 1], right_el); 2008 } 2009 2010 /* 2011 * We've changed a leaf block (in right_path) and need to reflect that 2012 * change back up the subtree. 2013 * 2014 * This happens in multiple places: 2015 * - When we've moved an extent record from the left path leaf to the right 2016 * path leaf to make room for an empty extent in the left path leaf. 2017 * - When our insert into the right path leaf is at the leftmost edge 2018 * and requires an update of the path immediately to it's left. This 2019 * can occur at the end of some types of rotation and appending inserts. 2020 * - When we've adjusted the last extent record in the left path leaf and the 2021 * 1st extent record in the right path leaf during cross extent block merge. 2022 */ 2023 static void ocfs2_complete_edge_insert(handle_t *handle, 2024 struct ocfs2_path *left_path, 2025 struct ocfs2_path *right_path, 2026 int subtree_index) 2027 { 2028 int i, idx; 2029 struct ocfs2_extent_list *el, *left_el, *right_el; 2030 struct ocfs2_extent_rec *left_rec, *right_rec; 2031 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2032 2033 /* 2034 * Update the counts and position values within all the 2035 * interior nodes to reflect the leaf rotation we just did. 2036 * 2037 * The root node is handled below the loop. 2038 * 2039 * We begin the loop with right_el and left_el pointing to the 2040 * leaf lists and work our way up. 2041 * 2042 * NOTE: within this loop, left_el and right_el always refer 2043 * to the *child* lists. 2044 */ 2045 left_el = path_leaf_el(left_path); 2046 right_el = path_leaf_el(right_path); 2047 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) { 2048 trace_ocfs2_complete_edge_insert(i); 2049 2050 /* 2051 * One nice property of knowing that all of these 2052 * nodes are below the root is that we only deal with 2053 * the leftmost right node record and the rightmost 2054 * left node record. 2055 */ 2056 el = left_path->p_node[i].el; 2057 idx = le16_to_cpu(left_el->l_next_free_rec) - 1; 2058 left_rec = &el->l_recs[idx]; 2059 2060 el = right_path->p_node[i].el; 2061 right_rec = &el->l_recs[0]; 2062 2063 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec, 2064 right_el); 2065 2066 ocfs2_journal_dirty(handle, left_path->p_node[i].bh); 2067 ocfs2_journal_dirty(handle, right_path->p_node[i].bh); 2068 2069 /* 2070 * Setup our list pointers now so that the current 2071 * parents become children in the next iteration. 2072 */ 2073 left_el = left_path->p_node[i].el; 2074 right_el = right_path->p_node[i].el; 2075 } 2076 2077 /* 2078 * At the root node, adjust the two adjacent records which 2079 * begin our path to the leaves. 2080 */ 2081 2082 el = left_path->p_node[subtree_index].el; 2083 left_el = left_path->p_node[subtree_index + 1].el; 2084 right_el = right_path->p_node[subtree_index + 1].el; 2085 2086 ocfs2_adjust_root_records(el, left_el, right_el, 2087 left_path->p_node[subtree_index + 1].bh->b_blocknr); 2088 2089 root_bh = left_path->p_node[subtree_index].bh; 2090 2091 ocfs2_journal_dirty(handle, root_bh); 2092 } 2093 2094 static int ocfs2_rotate_subtree_right(handle_t *handle, 2095 struct ocfs2_extent_tree *et, 2096 struct ocfs2_path *left_path, 2097 struct ocfs2_path *right_path, 2098 int subtree_index) 2099 { 2100 int ret, i; 2101 struct buffer_head *right_leaf_bh; 2102 struct buffer_head *left_leaf_bh = NULL; 2103 struct buffer_head *root_bh; 2104 struct ocfs2_extent_list *right_el, *left_el; 2105 struct ocfs2_extent_rec move_rec; 2106 2107 left_leaf_bh = path_leaf_bh(left_path); 2108 left_el = path_leaf_el(left_path); 2109 2110 if (left_el->l_next_free_rec != left_el->l_count) { 2111 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 2112 "Inode %llu has non-full interior leaf node %llu (next free = %u)\n", 2113 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2114 (unsigned long long)left_leaf_bh->b_blocknr, 2115 le16_to_cpu(left_el->l_next_free_rec)); 2116 return -EROFS; 2117 } 2118 2119 /* 2120 * This extent block may already have an empty record, so we 2121 * return early if so. 2122 */ 2123 if (ocfs2_is_empty_extent(&left_el->l_recs[0])) 2124 return 0; 2125 2126 root_bh = left_path->p_node[subtree_index].bh; 2127 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2128 2129 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 2130 subtree_index); 2131 if (ret) { 2132 mlog_errno(ret); 2133 goto out; 2134 } 2135 2136 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2137 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2138 right_path, i); 2139 if (ret) { 2140 mlog_errno(ret); 2141 goto out; 2142 } 2143 2144 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2145 left_path, i); 2146 if (ret) { 2147 mlog_errno(ret); 2148 goto out; 2149 } 2150 } 2151 2152 right_leaf_bh = path_leaf_bh(right_path); 2153 right_el = path_leaf_el(right_path); 2154 2155 /* This is a code error, not a disk corruption. */ 2156 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails " 2157 "because rightmost leaf block %llu is empty\n", 2158 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2159 (unsigned long long)right_leaf_bh->b_blocknr); 2160 2161 ocfs2_create_empty_extent(right_el); 2162 2163 ocfs2_journal_dirty(handle, right_leaf_bh); 2164 2165 /* Do the copy now. */ 2166 i = le16_to_cpu(left_el->l_next_free_rec) - 1; 2167 move_rec = left_el->l_recs[i]; 2168 right_el->l_recs[0] = move_rec; 2169 2170 /* 2171 * Clear out the record we just copied and shift everything 2172 * over, leaving an empty extent in the left leaf. 2173 * 2174 * We temporarily subtract from next_free_rec so that the 2175 * shift will lose the tail record (which is now defunct). 2176 */ 2177 le16_add_cpu(&left_el->l_next_free_rec, -1); 2178 ocfs2_shift_records_right(left_el); 2179 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2180 le16_add_cpu(&left_el->l_next_free_rec, 1); 2181 2182 ocfs2_journal_dirty(handle, left_leaf_bh); 2183 2184 ocfs2_complete_edge_insert(handle, left_path, right_path, 2185 subtree_index); 2186 2187 out: 2188 return ret; 2189 } 2190 2191 /* 2192 * Given a full path, determine what cpos value would return us a path 2193 * containing the leaf immediately to the left of the current one. 2194 * 2195 * Will return zero if the path passed in is already the leftmost path. 2196 */ 2197 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb, 2198 struct ocfs2_path *path, u32 *cpos) 2199 { 2200 int i, j, ret = 0; 2201 u64 blkno; 2202 struct ocfs2_extent_list *el; 2203 2204 BUG_ON(path->p_tree_depth == 0); 2205 2206 *cpos = 0; 2207 2208 blkno = path_leaf_bh(path)->b_blocknr; 2209 2210 /* Start at the tree node just above the leaf and work our way up. */ 2211 i = path->p_tree_depth - 1; 2212 while (i >= 0) { 2213 el = path->p_node[i].el; 2214 2215 /* 2216 * Find the extent record just before the one in our 2217 * path. 2218 */ 2219 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2220 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2221 if (j == 0) { 2222 if (i == 0) { 2223 /* 2224 * We've determined that the 2225 * path specified is already 2226 * the leftmost one - return a 2227 * cpos of zero. 2228 */ 2229 goto out; 2230 } 2231 /* 2232 * The leftmost record points to our 2233 * leaf - we need to travel up the 2234 * tree one level. 2235 */ 2236 goto next_node; 2237 } 2238 2239 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos); 2240 *cpos = *cpos + ocfs2_rec_clusters(el, 2241 &el->l_recs[j - 1]); 2242 *cpos = *cpos - 1; 2243 goto out; 2244 } 2245 } 2246 2247 /* 2248 * If we got here, we never found a valid node where 2249 * the tree indicated one should be. 2250 */ 2251 ocfs2_error(sb, "Invalid extent tree at extent block %llu\n", 2252 (unsigned long long)blkno); 2253 ret = -EROFS; 2254 goto out; 2255 2256 next_node: 2257 blkno = path->p_node[i].bh->b_blocknr; 2258 i--; 2259 } 2260 2261 out: 2262 return ret; 2263 } 2264 2265 /* 2266 * Extend the transaction by enough credits to complete the rotation, 2267 * and still leave at least the original number of credits allocated 2268 * to this transaction. 2269 */ 2270 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth, 2271 int op_credits, 2272 struct ocfs2_path *path) 2273 { 2274 int ret = 0; 2275 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits; 2276 2277 if (handle->h_buffer_credits < credits) 2278 ret = ocfs2_extend_trans(handle, 2279 credits - handle->h_buffer_credits); 2280 2281 return ret; 2282 } 2283 2284 /* 2285 * Trap the case where we're inserting into the theoretical range past 2286 * the _actual_ left leaf range. Otherwise, we'll rotate a record 2287 * whose cpos is less than ours into the right leaf. 2288 * 2289 * It's only necessary to look at the rightmost record of the left 2290 * leaf because the logic that calls us should ensure that the 2291 * theoretical ranges in the path components above the leaves are 2292 * correct. 2293 */ 2294 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path, 2295 u32 insert_cpos) 2296 { 2297 struct ocfs2_extent_list *left_el; 2298 struct ocfs2_extent_rec *rec; 2299 int next_free; 2300 2301 left_el = path_leaf_el(left_path); 2302 next_free = le16_to_cpu(left_el->l_next_free_rec); 2303 rec = &left_el->l_recs[next_free - 1]; 2304 2305 if (insert_cpos > le32_to_cpu(rec->e_cpos)) 2306 return 1; 2307 return 0; 2308 } 2309 2310 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos) 2311 { 2312 int next_free = le16_to_cpu(el->l_next_free_rec); 2313 unsigned int range; 2314 struct ocfs2_extent_rec *rec; 2315 2316 if (next_free == 0) 2317 return 0; 2318 2319 rec = &el->l_recs[0]; 2320 if (ocfs2_is_empty_extent(rec)) { 2321 /* Empty list. */ 2322 if (next_free == 1) 2323 return 0; 2324 rec = &el->l_recs[1]; 2325 } 2326 2327 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2328 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 2329 return 1; 2330 return 0; 2331 } 2332 2333 /* 2334 * Rotate all the records in a btree right one record, starting at insert_cpos. 2335 * 2336 * The path to the rightmost leaf should be passed in. 2337 * 2338 * The array is assumed to be large enough to hold an entire path (tree depth). 2339 * 2340 * Upon successful return from this function: 2341 * 2342 * - The 'right_path' array will contain a path to the leaf block 2343 * whose range contains e_cpos. 2344 * - That leaf block will have a single empty extent in list index 0. 2345 * - In the case that the rotation requires a post-insert update, 2346 * *ret_left_path will contain a valid path which can be passed to 2347 * ocfs2_insert_path(). 2348 */ 2349 static int ocfs2_rotate_tree_right(handle_t *handle, 2350 struct ocfs2_extent_tree *et, 2351 enum ocfs2_split_type split, 2352 u32 insert_cpos, 2353 struct ocfs2_path *right_path, 2354 struct ocfs2_path **ret_left_path) 2355 { 2356 int ret, start, orig_credits = handle->h_buffer_credits; 2357 u32 cpos; 2358 struct ocfs2_path *left_path = NULL; 2359 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 2360 2361 *ret_left_path = NULL; 2362 2363 left_path = ocfs2_new_path_from_path(right_path); 2364 if (!left_path) { 2365 ret = -ENOMEM; 2366 mlog_errno(ret); 2367 goto out; 2368 } 2369 2370 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); 2371 if (ret) { 2372 mlog_errno(ret); 2373 goto out; 2374 } 2375 2376 trace_ocfs2_rotate_tree_right( 2377 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2378 insert_cpos, cpos); 2379 2380 /* 2381 * What we want to do here is: 2382 * 2383 * 1) Start with the rightmost path. 2384 * 2385 * 2) Determine a path to the leaf block directly to the left 2386 * of that leaf. 2387 * 2388 * 3) Determine the 'subtree root' - the lowest level tree node 2389 * which contains a path to both leaves. 2390 * 2391 * 4) Rotate the subtree. 2392 * 2393 * 5) Find the next subtree by considering the left path to be 2394 * the new right path. 2395 * 2396 * The check at the top of this while loop also accepts 2397 * insert_cpos == cpos because cpos is only a _theoretical_ 2398 * value to get us the left path - insert_cpos might very well 2399 * be filling that hole. 2400 * 2401 * Stop at a cpos of '0' because we either started at the 2402 * leftmost branch (i.e., a tree with one branch and a 2403 * rotation inside of it), or we've gone as far as we can in 2404 * rotating subtrees. 2405 */ 2406 while (cpos && insert_cpos <= cpos) { 2407 trace_ocfs2_rotate_tree_right( 2408 (unsigned long long) 2409 ocfs2_metadata_cache_owner(et->et_ci), 2410 insert_cpos, cpos); 2411 2412 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 2413 if (ret) { 2414 mlog_errno(ret); 2415 goto out; 2416 } 2417 2418 mlog_bug_on_msg(path_leaf_bh(left_path) == 2419 path_leaf_bh(right_path), 2420 "Owner %llu: error during insert of %u " 2421 "(left path cpos %u) results in two identical " 2422 "paths ending at %llu\n", 2423 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2424 insert_cpos, cpos, 2425 (unsigned long long) 2426 path_leaf_bh(left_path)->b_blocknr); 2427 2428 if (split == SPLIT_NONE && 2429 ocfs2_rotate_requires_path_adjustment(left_path, 2430 insert_cpos)) { 2431 2432 /* 2433 * We've rotated the tree as much as we 2434 * should. The rest is up to 2435 * ocfs2_insert_path() to complete, after the 2436 * record insertion. We indicate this 2437 * situation by returning the left path. 2438 * 2439 * The reason we don't adjust the records here 2440 * before the record insert is that an error 2441 * later might break the rule where a parent 2442 * record e_cpos will reflect the actual 2443 * e_cpos of the 1st nonempty record of the 2444 * child list. 2445 */ 2446 *ret_left_path = left_path; 2447 goto out_ret_path; 2448 } 2449 2450 start = ocfs2_find_subtree_root(et, left_path, right_path); 2451 2452 trace_ocfs2_rotate_subtree(start, 2453 (unsigned long long) 2454 right_path->p_node[start].bh->b_blocknr, 2455 right_path->p_tree_depth); 2456 2457 ret = ocfs2_extend_rotate_transaction(handle, start, 2458 orig_credits, right_path); 2459 if (ret) { 2460 mlog_errno(ret); 2461 goto out; 2462 } 2463 2464 ret = ocfs2_rotate_subtree_right(handle, et, left_path, 2465 right_path, start); 2466 if (ret) { 2467 mlog_errno(ret); 2468 goto out; 2469 } 2470 2471 if (split != SPLIT_NONE && 2472 ocfs2_leftmost_rec_contains(path_leaf_el(right_path), 2473 insert_cpos)) { 2474 /* 2475 * A rotate moves the rightmost left leaf 2476 * record over to the leftmost right leaf 2477 * slot. If we're doing an extent split 2478 * instead of a real insert, then we have to 2479 * check that the extent to be split wasn't 2480 * just moved over. If it was, then we can 2481 * exit here, passing left_path back - 2482 * ocfs2_split_extent() is smart enough to 2483 * search both leaves. 2484 */ 2485 *ret_left_path = left_path; 2486 goto out_ret_path; 2487 } 2488 2489 /* 2490 * There is no need to re-read the next right path 2491 * as we know that it'll be our current left 2492 * path. Optimize by copying values instead. 2493 */ 2494 ocfs2_mv_path(right_path, left_path); 2495 2496 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); 2497 if (ret) { 2498 mlog_errno(ret); 2499 goto out; 2500 } 2501 } 2502 2503 out: 2504 ocfs2_free_path(left_path); 2505 2506 out_ret_path: 2507 return ret; 2508 } 2509 2510 static int ocfs2_update_edge_lengths(handle_t *handle, 2511 struct ocfs2_extent_tree *et, 2512 int subtree_index, struct ocfs2_path *path) 2513 { 2514 int i, idx, ret; 2515 struct ocfs2_extent_rec *rec; 2516 struct ocfs2_extent_list *el; 2517 struct ocfs2_extent_block *eb; 2518 u32 range; 2519 2520 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 2521 if (ret) { 2522 mlog_errno(ret); 2523 goto out; 2524 } 2525 2526 /* Path should always be rightmost. */ 2527 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 2528 BUG_ON(eb->h_next_leaf_blk != 0ULL); 2529 2530 el = &eb->h_list; 2531 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 2532 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2533 rec = &el->l_recs[idx]; 2534 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2535 2536 for (i = 0; i < path->p_tree_depth; i++) { 2537 el = path->p_node[i].el; 2538 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2539 rec = &el->l_recs[idx]; 2540 2541 rec->e_int_clusters = cpu_to_le32(range); 2542 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos)); 2543 2544 ocfs2_journal_dirty(handle, path->p_node[i].bh); 2545 } 2546 out: 2547 return ret; 2548 } 2549 2550 static void ocfs2_unlink_path(handle_t *handle, 2551 struct ocfs2_extent_tree *et, 2552 struct ocfs2_cached_dealloc_ctxt *dealloc, 2553 struct ocfs2_path *path, int unlink_start) 2554 { 2555 int ret, i; 2556 struct ocfs2_extent_block *eb; 2557 struct ocfs2_extent_list *el; 2558 struct buffer_head *bh; 2559 2560 for(i = unlink_start; i < path_num_items(path); i++) { 2561 bh = path->p_node[i].bh; 2562 2563 eb = (struct ocfs2_extent_block *)bh->b_data; 2564 /* 2565 * Not all nodes might have had their final count 2566 * decremented by the caller - handle this here. 2567 */ 2568 el = &eb->h_list; 2569 if (le16_to_cpu(el->l_next_free_rec) > 1) { 2570 mlog(ML_ERROR, 2571 "Inode %llu, attempted to remove extent block " 2572 "%llu with %u records\n", 2573 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2574 (unsigned long long)le64_to_cpu(eb->h_blkno), 2575 le16_to_cpu(el->l_next_free_rec)); 2576 2577 ocfs2_journal_dirty(handle, bh); 2578 ocfs2_remove_from_cache(et->et_ci, bh); 2579 continue; 2580 } 2581 2582 el->l_next_free_rec = 0; 2583 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2584 2585 ocfs2_journal_dirty(handle, bh); 2586 2587 ret = ocfs2_cache_extent_block_free(dealloc, eb); 2588 if (ret) 2589 mlog_errno(ret); 2590 2591 ocfs2_remove_from_cache(et->et_ci, bh); 2592 } 2593 } 2594 2595 static void ocfs2_unlink_subtree(handle_t *handle, 2596 struct ocfs2_extent_tree *et, 2597 struct ocfs2_path *left_path, 2598 struct ocfs2_path *right_path, 2599 int subtree_index, 2600 struct ocfs2_cached_dealloc_ctxt *dealloc) 2601 { 2602 int i; 2603 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2604 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el; 2605 struct ocfs2_extent_list *el; 2606 struct ocfs2_extent_block *eb; 2607 2608 el = path_leaf_el(left_path); 2609 2610 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data; 2611 2612 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 2613 if (root_el->l_recs[i].e_blkno == eb->h_blkno) 2614 break; 2615 2616 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec)); 2617 2618 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 2619 le16_add_cpu(&root_el->l_next_free_rec, -1); 2620 2621 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2622 eb->h_next_leaf_blk = 0; 2623 2624 ocfs2_journal_dirty(handle, root_bh); 2625 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2626 2627 ocfs2_unlink_path(handle, et, dealloc, right_path, 2628 subtree_index + 1); 2629 } 2630 2631 static int ocfs2_rotate_subtree_left(handle_t *handle, 2632 struct ocfs2_extent_tree *et, 2633 struct ocfs2_path *left_path, 2634 struct ocfs2_path *right_path, 2635 int subtree_index, 2636 struct ocfs2_cached_dealloc_ctxt *dealloc, 2637 int *deleted) 2638 { 2639 int ret, i, del_right_subtree = 0, right_has_empty = 0; 2640 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path); 2641 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el; 2642 struct ocfs2_extent_block *eb; 2643 2644 *deleted = 0; 2645 2646 right_leaf_el = path_leaf_el(right_path); 2647 left_leaf_el = path_leaf_el(left_path); 2648 root_bh = left_path->p_node[subtree_index].bh; 2649 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2650 2651 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0])) 2652 return 0; 2653 2654 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data; 2655 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) { 2656 /* 2657 * It's legal for us to proceed if the right leaf is 2658 * the rightmost one and it has an empty extent. There 2659 * are two cases to handle - whether the leaf will be 2660 * empty after removal or not. If the leaf isn't empty 2661 * then just remove the empty extent up front. The 2662 * next block will handle empty leaves by flagging 2663 * them for unlink. 2664 * 2665 * Non rightmost leaves will throw -EAGAIN and the 2666 * caller can manually move the subtree and retry. 2667 */ 2668 2669 if (eb->h_next_leaf_blk != 0ULL) 2670 return -EAGAIN; 2671 2672 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) { 2673 ret = ocfs2_journal_access_eb(handle, et->et_ci, 2674 path_leaf_bh(right_path), 2675 OCFS2_JOURNAL_ACCESS_WRITE); 2676 if (ret) { 2677 mlog_errno(ret); 2678 goto out; 2679 } 2680 2681 ocfs2_remove_empty_extent(right_leaf_el); 2682 } else 2683 right_has_empty = 1; 2684 } 2685 2686 if (eb->h_next_leaf_blk == 0ULL && 2687 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) { 2688 /* 2689 * We have to update i_last_eb_blk during the meta 2690 * data delete. 2691 */ 2692 ret = ocfs2_et_root_journal_access(handle, et, 2693 OCFS2_JOURNAL_ACCESS_WRITE); 2694 if (ret) { 2695 mlog_errno(ret); 2696 goto out; 2697 } 2698 2699 del_right_subtree = 1; 2700 } 2701 2702 /* 2703 * Getting here with an empty extent in the right path implies 2704 * that it's the rightmost path and will be deleted. 2705 */ 2706 BUG_ON(right_has_empty && !del_right_subtree); 2707 2708 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 2709 subtree_index); 2710 if (ret) { 2711 mlog_errno(ret); 2712 goto out; 2713 } 2714 2715 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2716 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2717 right_path, i); 2718 if (ret) { 2719 mlog_errno(ret); 2720 goto out; 2721 } 2722 2723 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2724 left_path, i); 2725 if (ret) { 2726 mlog_errno(ret); 2727 goto out; 2728 } 2729 } 2730 2731 if (!right_has_empty) { 2732 /* 2733 * Only do this if we're moving a real 2734 * record. Otherwise, the action is delayed until 2735 * after removal of the right path in which case we 2736 * can do a simple shift to remove the empty extent. 2737 */ 2738 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]); 2739 memset(&right_leaf_el->l_recs[0], 0, 2740 sizeof(struct ocfs2_extent_rec)); 2741 } 2742 if (eb->h_next_leaf_blk == 0ULL) { 2743 /* 2744 * Move recs over to get rid of empty extent, decrease 2745 * next_free. This is allowed to remove the last 2746 * extent in our leaf (setting l_next_free_rec to 2747 * zero) - the delete code below won't care. 2748 */ 2749 ocfs2_remove_empty_extent(right_leaf_el); 2750 } 2751 2752 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2753 ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 2754 2755 if (del_right_subtree) { 2756 ocfs2_unlink_subtree(handle, et, left_path, right_path, 2757 subtree_index, dealloc); 2758 ret = ocfs2_update_edge_lengths(handle, et, subtree_index, 2759 left_path); 2760 if (ret) { 2761 mlog_errno(ret); 2762 goto out; 2763 } 2764 2765 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2766 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 2767 2768 /* 2769 * Removal of the extent in the left leaf was skipped 2770 * above so we could delete the right path 2771 * 1st. 2772 */ 2773 if (right_has_empty) 2774 ocfs2_remove_empty_extent(left_leaf_el); 2775 2776 ocfs2_journal_dirty(handle, et_root_bh); 2777 2778 *deleted = 1; 2779 } else 2780 ocfs2_complete_edge_insert(handle, left_path, right_path, 2781 subtree_index); 2782 2783 out: 2784 return ret; 2785 } 2786 2787 /* 2788 * Given a full path, determine what cpos value would return us a path 2789 * containing the leaf immediately to the right of the current one. 2790 * 2791 * Will return zero if the path passed in is already the rightmost path. 2792 * 2793 * This looks similar, but is subtly different to 2794 * ocfs2_find_cpos_for_left_leaf(). 2795 */ 2796 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb, 2797 struct ocfs2_path *path, u32 *cpos) 2798 { 2799 int i, j, ret = 0; 2800 u64 blkno; 2801 struct ocfs2_extent_list *el; 2802 2803 *cpos = 0; 2804 2805 if (path->p_tree_depth == 0) 2806 return 0; 2807 2808 blkno = path_leaf_bh(path)->b_blocknr; 2809 2810 /* Start at the tree node just above the leaf and work our way up. */ 2811 i = path->p_tree_depth - 1; 2812 while (i >= 0) { 2813 int next_free; 2814 2815 el = path->p_node[i].el; 2816 2817 /* 2818 * Find the extent record just after the one in our 2819 * path. 2820 */ 2821 next_free = le16_to_cpu(el->l_next_free_rec); 2822 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2823 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2824 if (j == (next_free - 1)) { 2825 if (i == 0) { 2826 /* 2827 * We've determined that the 2828 * path specified is already 2829 * the rightmost one - return a 2830 * cpos of zero. 2831 */ 2832 goto out; 2833 } 2834 /* 2835 * The rightmost record points to our 2836 * leaf - we need to travel up the 2837 * tree one level. 2838 */ 2839 goto next_node; 2840 } 2841 2842 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos); 2843 goto out; 2844 } 2845 } 2846 2847 /* 2848 * If we got here, we never found a valid node where 2849 * the tree indicated one should be. 2850 */ 2851 ocfs2_error(sb, "Invalid extent tree at extent block %llu\n", 2852 (unsigned long long)blkno); 2853 ret = -EROFS; 2854 goto out; 2855 2856 next_node: 2857 blkno = path->p_node[i].bh->b_blocknr; 2858 i--; 2859 } 2860 2861 out: 2862 return ret; 2863 } 2864 2865 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle, 2866 struct ocfs2_extent_tree *et, 2867 struct ocfs2_path *path) 2868 { 2869 int ret; 2870 struct buffer_head *bh = path_leaf_bh(path); 2871 struct ocfs2_extent_list *el = path_leaf_el(path); 2872 2873 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 2874 return 0; 2875 2876 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path, 2877 path_num_items(path) - 1); 2878 if (ret) { 2879 mlog_errno(ret); 2880 goto out; 2881 } 2882 2883 ocfs2_remove_empty_extent(el); 2884 ocfs2_journal_dirty(handle, bh); 2885 2886 out: 2887 return ret; 2888 } 2889 2890 static int __ocfs2_rotate_tree_left(handle_t *handle, 2891 struct ocfs2_extent_tree *et, 2892 int orig_credits, 2893 struct ocfs2_path *path, 2894 struct ocfs2_cached_dealloc_ctxt *dealloc, 2895 struct ocfs2_path **empty_extent_path) 2896 { 2897 int ret, subtree_root, deleted; 2898 u32 right_cpos; 2899 struct ocfs2_path *left_path = NULL; 2900 struct ocfs2_path *right_path = NULL; 2901 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 2902 2903 if (!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0]))) 2904 return 0; 2905 2906 *empty_extent_path = NULL; 2907 2908 ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos); 2909 if (ret) { 2910 mlog_errno(ret); 2911 goto out; 2912 } 2913 2914 left_path = ocfs2_new_path_from_path(path); 2915 if (!left_path) { 2916 ret = -ENOMEM; 2917 mlog_errno(ret); 2918 goto out; 2919 } 2920 2921 ocfs2_cp_path(left_path, path); 2922 2923 right_path = ocfs2_new_path_from_path(path); 2924 if (!right_path) { 2925 ret = -ENOMEM; 2926 mlog_errno(ret); 2927 goto out; 2928 } 2929 2930 while (right_cpos) { 2931 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); 2932 if (ret) { 2933 mlog_errno(ret); 2934 goto out; 2935 } 2936 2937 subtree_root = ocfs2_find_subtree_root(et, left_path, 2938 right_path); 2939 2940 trace_ocfs2_rotate_subtree(subtree_root, 2941 (unsigned long long) 2942 right_path->p_node[subtree_root].bh->b_blocknr, 2943 right_path->p_tree_depth); 2944 2945 ret = ocfs2_extend_rotate_transaction(handle, 0, 2946 orig_credits, left_path); 2947 if (ret) { 2948 mlog_errno(ret); 2949 goto out; 2950 } 2951 2952 /* 2953 * Caller might still want to make changes to the 2954 * tree root, so re-add it to the journal here. 2955 */ 2956 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2957 left_path, 0); 2958 if (ret) { 2959 mlog_errno(ret); 2960 goto out; 2961 } 2962 2963 ret = ocfs2_rotate_subtree_left(handle, et, left_path, 2964 right_path, subtree_root, 2965 dealloc, &deleted); 2966 if (ret == -EAGAIN) { 2967 /* 2968 * The rotation has to temporarily stop due to 2969 * the right subtree having an empty 2970 * extent. Pass it back to the caller for a 2971 * fixup. 2972 */ 2973 *empty_extent_path = right_path; 2974 right_path = NULL; 2975 goto out; 2976 } 2977 if (ret) { 2978 mlog_errno(ret); 2979 goto out; 2980 } 2981 2982 /* 2983 * The subtree rotate might have removed records on 2984 * the rightmost edge. If so, then rotation is 2985 * complete. 2986 */ 2987 if (deleted) 2988 break; 2989 2990 ocfs2_mv_path(left_path, right_path); 2991 2992 ret = ocfs2_find_cpos_for_right_leaf(sb, left_path, 2993 &right_cpos); 2994 if (ret) { 2995 mlog_errno(ret); 2996 goto out; 2997 } 2998 } 2999 3000 out: 3001 ocfs2_free_path(right_path); 3002 ocfs2_free_path(left_path); 3003 3004 return ret; 3005 } 3006 3007 static int ocfs2_remove_rightmost_path(handle_t *handle, 3008 struct ocfs2_extent_tree *et, 3009 struct ocfs2_path *path, 3010 struct ocfs2_cached_dealloc_ctxt *dealloc) 3011 { 3012 int ret, subtree_index; 3013 u32 cpos; 3014 struct ocfs2_path *left_path = NULL; 3015 struct ocfs2_extent_block *eb; 3016 struct ocfs2_extent_list *el; 3017 3018 ret = ocfs2_et_sanity_check(et); 3019 if (ret) 3020 goto out; 3021 3022 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 3023 if (ret) { 3024 mlog_errno(ret); 3025 goto out; 3026 } 3027 3028 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3029 path, &cpos); 3030 if (ret) { 3031 mlog_errno(ret); 3032 goto out; 3033 } 3034 3035 if (cpos) { 3036 /* 3037 * We have a path to the left of this one - it needs 3038 * an update too. 3039 */ 3040 left_path = ocfs2_new_path_from_path(path); 3041 if (!left_path) { 3042 ret = -ENOMEM; 3043 mlog_errno(ret); 3044 goto out; 3045 } 3046 3047 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 3048 if (ret) { 3049 mlog_errno(ret); 3050 goto out; 3051 } 3052 3053 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 3054 if (ret) { 3055 mlog_errno(ret); 3056 goto out; 3057 } 3058 3059 subtree_index = ocfs2_find_subtree_root(et, left_path, path); 3060 3061 ocfs2_unlink_subtree(handle, et, left_path, path, 3062 subtree_index, dealloc); 3063 ret = ocfs2_update_edge_lengths(handle, et, subtree_index, 3064 left_path); 3065 if (ret) { 3066 mlog_errno(ret); 3067 goto out; 3068 } 3069 3070 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 3071 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 3072 } else { 3073 /* 3074 * 'path' is also the leftmost path which 3075 * means it must be the only one. This gets 3076 * handled differently because we want to 3077 * revert the root back to having extents 3078 * in-line. 3079 */ 3080 ocfs2_unlink_path(handle, et, dealloc, path, 1); 3081 3082 el = et->et_root_el; 3083 el->l_tree_depth = 0; 3084 el->l_next_free_rec = 0; 3085 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3086 3087 ocfs2_et_set_last_eb_blk(et, 0); 3088 } 3089 3090 ocfs2_journal_dirty(handle, path_root_bh(path)); 3091 3092 out: 3093 ocfs2_free_path(left_path); 3094 return ret; 3095 } 3096 3097 static int ocfs2_remove_rightmost_empty_extent(struct ocfs2_super *osb, 3098 struct ocfs2_extent_tree *et, 3099 struct ocfs2_path *path, 3100 struct ocfs2_cached_dealloc_ctxt *dealloc) 3101 { 3102 handle_t *handle; 3103 int ret; 3104 int credits = path->p_tree_depth * 2 + 1; 3105 3106 handle = ocfs2_start_trans(osb, credits); 3107 if (IS_ERR(handle)) { 3108 ret = PTR_ERR(handle); 3109 mlog_errno(ret); 3110 return ret; 3111 } 3112 3113 ret = ocfs2_remove_rightmost_path(handle, et, path, dealloc); 3114 if (ret) 3115 mlog_errno(ret); 3116 3117 ocfs2_commit_trans(osb, handle); 3118 return ret; 3119 } 3120 3121 /* 3122 * Left rotation of btree records. 3123 * 3124 * In many ways, this is (unsurprisingly) the opposite of right 3125 * rotation. We start at some non-rightmost path containing an empty 3126 * extent in the leaf block. The code works its way to the rightmost 3127 * path by rotating records to the left in every subtree. 3128 * 3129 * This is used by any code which reduces the number of extent records 3130 * in a leaf. After removal, an empty record should be placed in the 3131 * leftmost list position. 3132 * 3133 * This won't handle a length update of the rightmost path records if 3134 * the rightmost tree leaf record is removed so the caller is 3135 * responsible for detecting and correcting that. 3136 */ 3137 static int ocfs2_rotate_tree_left(handle_t *handle, 3138 struct ocfs2_extent_tree *et, 3139 struct ocfs2_path *path, 3140 struct ocfs2_cached_dealloc_ctxt *dealloc) 3141 { 3142 int ret, orig_credits = handle->h_buffer_credits; 3143 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL; 3144 struct ocfs2_extent_block *eb; 3145 struct ocfs2_extent_list *el; 3146 3147 el = path_leaf_el(path); 3148 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 3149 return 0; 3150 3151 if (path->p_tree_depth == 0) { 3152 rightmost_no_delete: 3153 /* 3154 * Inline extents. This is trivially handled, so do 3155 * it up front. 3156 */ 3157 ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path); 3158 if (ret) 3159 mlog_errno(ret); 3160 goto out; 3161 } 3162 3163 /* 3164 * Handle rightmost branch now. There's several cases: 3165 * 1) simple rotation leaving records in there. That's trivial. 3166 * 2) rotation requiring a branch delete - there's no more 3167 * records left. Two cases of this: 3168 * a) There are branches to the left. 3169 * b) This is also the leftmost (the only) branch. 3170 * 3171 * 1) is handled via ocfs2_rotate_rightmost_leaf_left() 3172 * 2a) we need the left branch so that we can update it with the unlink 3173 * 2b) we need to bring the root back to inline extents. 3174 */ 3175 3176 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 3177 el = &eb->h_list; 3178 if (eb->h_next_leaf_blk == 0) { 3179 /* 3180 * This gets a bit tricky if we're going to delete the 3181 * rightmost path. Get the other cases out of the way 3182 * 1st. 3183 */ 3184 if (le16_to_cpu(el->l_next_free_rec) > 1) 3185 goto rightmost_no_delete; 3186 3187 if (le16_to_cpu(el->l_next_free_rec) == 0) { 3188 ret = -EIO; 3189 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 3190 "Owner %llu has empty extent block at %llu\n", 3191 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 3192 (unsigned long long)le64_to_cpu(eb->h_blkno)); 3193 goto out; 3194 } 3195 3196 /* 3197 * XXX: The caller can not trust "path" any more after 3198 * this as it will have been deleted. What do we do? 3199 * 3200 * In theory the rotate-for-merge code will never get 3201 * here because it'll always ask for a rotate in a 3202 * nonempty list. 3203 */ 3204 3205 ret = ocfs2_remove_rightmost_path(handle, et, path, 3206 dealloc); 3207 if (ret) 3208 mlog_errno(ret); 3209 goto out; 3210 } 3211 3212 /* 3213 * Now we can loop, remembering the path we get from -EAGAIN 3214 * and restarting from there. 3215 */ 3216 try_rotate: 3217 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path, 3218 dealloc, &restart_path); 3219 if (ret && ret != -EAGAIN) { 3220 mlog_errno(ret); 3221 goto out; 3222 } 3223 3224 while (ret == -EAGAIN) { 3225 tmp_path = restart_path; 3226 restart_path = NULL; 3227 3228 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, 3229 tmp_path, dealloc, 3230 &restart_path); 3231 if (ret && ret != -EAGAIN) { 3232 mlog_errno(ret); 3233 goto out; 3234 } 3235 3236 ocfs2_free_path(tmp_path); 3237 tmp_path = NULL; 3238 3239 if (ret == 0) 3240 goto try_rotate; 3241 } 3242 3243 out: 3244 ocfs2_free_path(tmp_path); 3245 ocfs2_free_path(restart_path); 3246 return ret; 3247 } 3248 3249 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el, 3250 int index) 3251 { 3252 struct ocfs2_extent_rec *rec = &el->l_recs[index]; 3253 unsigned int size; 3254 3255 if (rec->e_leaf_clusters == 0) { 3256 /* 3257 * We consumed all of the merged-from record. An empty 3258 * extent cannot exist anywhere but the 1st array 3259 * position, so move things over if the merged-from 3260 * record doesn't occupy that position. 3261 * 3262 * This creates a new empty extent so the caller 3263 * should be smart enough to have removed any existing 3264 * ones. 3265 */ 3266 if (index > 0) { 3267 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 3268 size = index * sizeof(struct ocfs2_extent_rec); 3269 memmove(&el->l_recs[1], &el->l_recs[0], size); 3270 } 3271 3272 /* 3273 * Always memset - the caller doesn't check whether it 3274 * created an empty extent, so there could be junk in 3275 * the other fields. 3276 */ 3277 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3278 } 3279 } 3280 3281 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et, 3282 struct ocfs2_path *left_path, 3283 struct ocfs2_path **ret_right_path) 3284 { 3285 int ret; 3286 u32 right_cpos; 3287 struct ocfs2_path *right_path = NULL; 3288 struct ocfs2_extent_list *left_el; 3289 3290 *ret_right_path = NULL; 3291 3292 /* This function shouldn't be called for non-trees. */ 3293 BUG_ON(left_path->p_tree_depth == 0); 3294 3295 left_el = path_leaf_el(left_path); 3296 BUG_ON(left_el->l_next_free_rec != left_el->l_count); 3297 3298 ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3299 left_path, &right_cpos); 3300 if (ret) { 3301 mlog_errno(ret); 3302 goto out; 3303 } 3304 3305 /* This function shouldn't be called for the rightmost leaf. */ 3306 BUG_ON(right_cpos == 0); 3307 3308 right_path = ocfs2_new_path_from_path(left_path); 3309 if (!right_path) { 3310 ret = -ENOMEM; 3311 mlog_errno(ret); 3312 goto out; 3313 } 3314 3315 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); 3316 if (ret) { 3317 mlog_errno(ret); 3318 goto out; 3319 } 3320 3321 *ret_right_path = right_path; 3322 out: 3323 if (ret) 3324 ocfs2_free_path(right_path); 3325 return ret; 3326 } 3327 3328 /* 3329 * Remove split_rec clusters from the record at index and merge them 3330 * onto the beginning of the record "next" to it. 3331 * For index < l_count - 1, the next means the extent rec at index + 1. 3332 * For index == l_count - 1, the "next" means the 1st extent rec of the 3333 * next extent block. 3334 */ 3335 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path, 3336 handle_t *handle, 3337 struct ocfs2_extent_tree *et, 3338 struct ocfs2_extent_rec *split_rec, 3339 int index) 3340 { 3341 int ret, next_free, i; 3342 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3343 struct ocfs2_extent_rec *left_rec; 3344 struct ocfs2_extent_rec *right_rec; 3345 struct ocfs2_extent_list *right_el; 3346 struct ocfs2_path *right_path = NULL; 3347 int subtree_index = 0; 3348 struct ocfs2_extent_list *el = path_leaf_el(left_path); 3349 struct buffer_head *bh = path_leaf_bh(left_path); 3350 struct buffer_head *root_bh = NULL; 3351 3352 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec)); 3353 left_rec = &el->l_recs[index]; 3354 3355 if (index == le16_to_cpu(el->l_next_free_rec) - 1 && 3356 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) { 3357 /* we meet with a cross extent block merge. */ 3358 ret = ocfs2_get_right_path(et, left_path, &right_path); 3359 if (ret) { 3360 mlog_errno(ret); 3361 return ret; 3362 } 3363 3364 right_el = path_leaf_el(right_path); 3365 next_free = le16_to_cpu(right_el->l_next_free_rec); 3366 BUG_ON(next_free <= 0); 3367 right_rec = &right_el->l_recs[0]; 3368 if (ocfs2_is_empty_extent(right_rec)) { 3369 BUG_ON(next_free <= 1); 3370 right_rec = &right_el->l_recs[1]; 3371 } 3372 3373 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3374 le16_to_cpu(left_rec->e_leaf_clusters) != 3375 le32_to_cpu(right_rec->e_cpos)); 3376 3377 subtree_index = ocfs2_find_subtree_root(et, left_path, 3378 right_path); 3379 3380 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3381 handle->h_buffer_credits, 3382 right_path); 3383 if (ret) { 3384 mlog_errno(ret); 3385 goto out; 3386 } 3387 3388 root_bh = left_path->p_node[subtree_index].bh; 3389 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3390 3391 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3392 subtree_index); 3393 if (ret) { 3394 mlog_errno(ret); 3395 goto out; 3396 } 3397 3398 for (i = subtree_index + 1; 3399 i < path_num_items(right_path); i++) { 3400 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3401 right_path, i); 3402 if (ret) { 3403 mlog_errno(ret); 3404 goto out; 3405 } 3406 3407 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3408 left_path, i); 3409 if (ret) { 3410 mlog_errno(ret); 3411 goto out; 3412 } 3413 } 3414 3415 } else { 3416 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1); 3417 right_rec = &el->l_recs[index + 1]; 3418 } 3419 3420 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path, 3421 path_num_items(left_path) - 1); 3422 if (ret) { 3423 mlog_errno(ret); 3424 goto out; 3425 } 3426 3427 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters); 3428 3429 le32_add_cpu(&right_rec->e_cpos, -split_clusters); 3430 le64_add_cpu(&right_rec->e_blkno, 3431 -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), 3432 split_clusters)); 3433 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters); 3434 3435 ocfs2_cleanup_merge(el, index); 3436 3437 ocfs2_journal_dirty(handle, bh); 3438 if (right_path) { 3439 ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 3440 ocfs2_complete_edge_insert(handle, left_path, right_path, 3441 subtree_index); 3442 } 3443 out: 3444 ocfs2_free_path(right_path); 3445 return ret; 3446 } 3447 3448 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et, 3449 struct ocfs2_path *right_path, 3450 struct ocfs2_path **ret_left_path) 3451 { 3452 int ret; 3453 u32 left_cpos; 3454 struct ocfs2_path *left_path = NULL; 3455 3456 *ret_left_path = NULL; 3457 3458 /* This function shouldn't be called for non-trees. */ 3459 BUG_ON(right_path->p_tree_depth == 0); 3460 3461 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3462 right_path, &left_cpos); 3463 if (ret) { 3464 mlog_errno(ret); 3465 goto out; 3466 } 3467 3468 /* This function shouldn't be called for the leftmost leaf. */ 3469 BUG_ON(left_cpos == 0); 3470 3471 left_path = ocfs2_new_path_from_path(right_path); 3472 if (!left_path) { 3473 ret = -ENOMEM; 3474 mlog_errno(ret); 3475 goto out; 3476 } 3477 3478 ret = ocfs2_find_path(et->et_ci, left_path, left_cpos); 3479 if (ret) { 3480 mlog_errno(ret); 3481 goto out; 3482 } 3483 3484 *ret_left_path = left_path; 3485 out: 3486 if (ret) 3487 ocfs2_free_path(left_path); 3488 return ret; 3489 } 3490 3491 /* 3492 * Remove split_rec clusters from the record at index and merge them 3493 * onto the tail of the record "before" it. 3494 * For index > 0, the "before" means the extent rec at index - 1. 3495 * 3496 * For index == 0, the "before" means the last record of the previous 3497 * extent block. And there is also a situation that we may need to 3498 * remove the rightmost leaf extent block in the right_path and change 3499 * the right path to indicate the new rightmost path. 3500 */ 3501 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path, 3502 handle_t *handle, 3503 struct ocfs2_extent_tree *et, 3504 struct ocfs2_extent_rec *split_rec, 3505 struct ocfs2_cached_dealloc_ctxt *dealloc, 3506 int index) 3507 { 3508 int ret, i, subtree_index = 0, has_empty_extent = 0; 3509 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3510 struct ocfs2_extent_rec *left_rec; 3511 struct ocfs2_extent_rec *right_rec; 3512 struct ocfs2_extent_list *el = path_leaf_el(right_path); 3513 struct buffer_head *bh = path_leaf_bh(right_path); 3514 struct buffer_head *root_bh = NULL; 3515 struct ocfs2_path *left_path = NULL; 3516 struct ocfs2_extent_list *left_el; 3517 3518 BUG_ON(index < 0); 3519 3520 right_rec = &el->l_recs[index]; 3521 if (index == 0) { 3522 /* we meet with a cross extent block merge. */ 3523 ret = ocfs2_get_left_path(et, right_path, &left_path); 3524 if (ret) { 3525 mlog_errno(ret); 3526 return ret; 3527 } 3528 3529 left_el = path_leaf_el(left_path); 3530 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) != 3531 le16_to_cpu(left_el->l_count)); 3532 3533 left_rec = &left_el->l_recs[ 3534 le16_to_cpu(left_el->l_next_free_rec) - 1]; 3535 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3536 le16_to_cpu(left_rec->e_leaf_clusters) != 3537 le32_to_cpu(split_rec->e_cpos)); 3538 3539 subtree_index = ocfs2_find_subtree_root(et, left_path, 3540 right_path); 3541 3542 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3543 handle->h_buffer_credits, 3544 left_path); 3545 if (ret) { 3546 mlog_errno(ret); 3547 goto out; 3548 } 3549 3550 root_bh = left_path->p_node[subtree_index].bh; 3551 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3552 3553 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3554 subtree_index); 3555 if (ret) { 3556 mlog_errno(ret); 3557 goto out; 3558 } 3559 3560 for (i = subtree_index + 1; 3561 i < path_num_items(right_path); i++) { 3562 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3563 right_path, i); 3564 if (ret) { 3565 mlog_errno(ret); 3566 goto out; 3567 } 3568 3569 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3570 left_path, i); 3571 if (ret) { 3572 mlog_errno(ret); 3573 goto out; 3574 } 3575 } 3576 } else { 3577 left_rec = &el->l_recs[index - 1]; 3578 if (ocfs2_is_empty_extent(&el->l_recs[0])) 3579 has_empty_extent = 1; 3580 } 3581 3582 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3583 path_num_items(right_path) - 1); 3584 if (ret) { 3585 mlog_errno(ret); 3586 goto out; 3587 } 3588 3589 if (has_empty_extent && index == 1) { 3590 /* 3591 * The easy case - we can just plop the record right in. 3592 */ 3593 *left_rec = *split_rec; 3594 3595 has_empty_extent = 0; 3596 } else 3597 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters); 3598 3599 le32_add_cpu(&right_rec->e_cpos, split_clusters); 3600 le64_add_cpu(&right_rec->e_blkno, 3601 ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), 3602 split_clusters)); 3603 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters); 3604 3605 ocfs2_cleanup_merge(el, index); 3606 3607 ocfs2_journal_dirty(handle, bh); 3608 if (left_path) { 3609 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 3610 3611 /* 3612 * In the situation that the right_rec is empty and the extent 3613 * block is empty also, ocfs2_complete_edge_insert can't handle 3614 * it and we need to delete the right extent block. 3615 */ 3616 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 && 3617 le16_to_cpu(el->l_next_free_rec) == 1) { 3618 /* extend credit for ocfs2_remove_rightmost_path */ 3619 ret = ocfs2_extend_rotate_transaction(handle, 0, 3620 handle->h_buffer_credits, 3621 right_path); 3622 if (ret) { 3623 mlog_errno(ret); 3624 goto out; 3625 } 3626 3627 ret = ocfs2_remove_rightmost_path(handle, et, 3628 right_path, 3629 dealloc); 3630 if (ret) { 3631 mlog_errno(ret); 3632 goto out; 3633 } 3634 3635 /* Now the rightmost extent block has been deleted. 3636 * So we use the new rightmost path. 3637 */ 3638 ocfs2_mv_path(right_path, left_path); 3639 left_path = NULL; 3640 } else 3641 ocfs2_complete_edge_insert(handle, left_path, 3642 right_path, subtree_index); 3643 } 3644 out: 3645 ocfs2_free_path(left_path); 3646 return ret; 3647 } 3648 3649 static int ocfs2_try_to_merge_extent(handle_t *handle, 3650 struct ocfs2_extent_tree *et, 3651 struct ocfs2_path *path, 3652 int split_index, 3653 struct ocfs2_extent_rec *split_rec, 3654 struct ocfs2_cached_dealloc_ctxt *dealloc, 3655 struct ocfs2_merge_ctxt *ctxt) 3656 { 3657 int ret = 0; 3658 struct ocfs2_extent_list *el = path_leaf_el(path); 3659 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 3660 3661 BUG_ON(ctxt->c_contig_type == CONTIG_NONE); 3662 3663 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) { 3664 /* extend credit for ocfs2_remove_rightmost_path */ 3665 ret = ocfs2_extend_rotate_transaction(handle, 0, 3666 handle->h_buffer_credits, 3667 path); 3668 if (ret) { 3669 mlog_errno(ret); 3670 goto out; 3671 } 3672 /* 3673 * The merge code will need to create an empty 3674 * extent to take the place of the newly 3675 * emptied slot. Remove any pre-existing empty 3676 * extents - having more than one in a leaf is 3677 * illegal. 3678 */ 3679 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3680 if (ret) { 3681 mlog_errno(ret); 3682 goto out; 3683 } 3684 split_index--; 3685 rec = &el->l_recs[split_index]; 3686 } 3687 3688 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) { 3689 /* 3690 * Left-right contig implies this. 3691 */ 3692 BUG_ON(!ctxt->c_split_covers_rec); 3693 3694 /* 3695 * Since the leftright insert always covers the entire 3696 * extent, this call will delete the insert record 3697 * entirely, resulting in an empty extent record added to 3698 * the extent block. 3699 * 3700 * Since the adding of an empty extent shifts 3701 * everything back to the right, there's no need to 3702 * update split_index here. 3703 * 3704 * When the split_index is zero, we need to merge it to the 3705 * prevoius extent block. It is more efficient and easier 3706 * if we do merge_right first and merge_left later. 3707 */ 3708 ret = ocfs2_merge_rec_right(path, handle, et, split_rec, 3709 split_index); 3710 if (ret) { 3711 mlog_errno(ret); 3712 goto out; 3713 } 3714 3715 /* 3716 * We can only get this from logic error above. 3717 */ 3718 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0])); 3719 3720 /* extend credit for ocfs2_remove_rightmost_path */ 3721 ret = ocfs2_extend_rotate_transaction(handle, 0, 3722 handle->h_buffer_credits, 3723 path); 3724 if (ret) { 3725 mlog_errno(ret); 3726 goto out; 3727 } 3728 3729 /* The merge left us with an empty extent, remove it. */ 3730 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3731 if (ret) { 3732 mlog_errno(ret); 3733 goto out; 3734 } 3735 3736 rec = &el->l_recs[split_index]; 3737 3738 /* 3739 * Note that we don't pass split_rec here on purpose - 3740 * we've merged it into the rec already. 3741 */ 3742 ret = ocfs2_merge_rec_left(path, handle, et, rec, 3743 dealloc, split_index); 3744 3745 if (ret) { 3746 mlog_errno(ret); 3747 goto out; 3748 } 3749 3750 /* extend credit for ocfs2_remove_rightmost_path */ 3751 ret = ocfs2_extend_rotate_transaction(handle, 0, 3752 handle->h_buffer_credits, 3753 path); 3754 if (ret) { 3755 mlog_errno(ret); 3756 goto out; 3757 } 3758 3759 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3760 /* 3761 * Error from this last rotate is not critical, so 3762 * print but don't bubble it up. 3763 */ 3764 if (ret) 3765 mlog_errno(ret); 3766 ret = 0; 3767 } else { 3768 /* 3769 * Merge a record to the left or right. 3770 * 3771 * 'contig_type' is relative to the existing record, 3772 * so for example, if we're "right contig", it's to 3773 * the record on the left (hence the left merge). 3774 */ 3775 if (ctxt->c_contig_type == CONTIG_RIGHT) { 3776 ret = ocfs2_merge_rec_left(path, handle, et, 3777 split_rec, dealloc, 3778 split_index); 3779 if (ret) { 3780 mlog_errno(ret); 3781 goto out; 3782 } 3783 } else { 3784 ret = ocfs2_merge_rec_right(path, handle, 3785 et, split_rec, 3786 split_index); 3787 if (ret) { 3788 mlog_errno(ret); 3789 goto out; 3790 } 3791 } 3792 3793 if (ctxt->c_split_covers_rec) { 3794 /* extend credit for ocfs2_remove_rightmost_path */ 3795 ret = ocfs2_extend_rotate_transaction(handle, 0, 3796 handle->h_buffer_credits, 3797 path); 3798 if (ret) { 3799 mlog_errno(ret); 3800 ret = 0; 3801 goto out; 3802 } 3803 3804 /* 3805 * The merge may have left an empty extent in 3806 * our leaf. Try to rotate it away. 3807 */ 3808 ret = ocfs2_rotate_tree_left(handle, et, path, 3809 dealloc); 3810 if (ret) 3811 mlog_errno(ret); 3812 ret = 0; 3813 } 3814 } 3815 3816 out: 3817 return ret; 3818 } 3819 3820 static void ocfs2_subtract_from_rec(struct super_block *sb, 3821 enum ocfs2_split_type split, 3822 struct ocfs2_extent_rec *rec, 3823 struct ocfs2_extent_rec *split_rec) 3824 { 3825 u64 len_blocks; 3826 3827 len_blocks = ocfs2_clusters_to_blocks(sb, 3828 le16_to_cpu(split_rec->e_leaf_clusters)); 3829 3830 if (split == SPLIT_LEFT) { 3831 /* 3832 * Region is on the left edge of the existing 3833 * record. 3834 */ 3835 le32_add_cpu(&rec->e_cpos, 3836 le16_to_cpu(split_rec->e_leaf_clusters)); 3837 le64_add_cpu(&rec->e_blkno, len_blocks); 3838 le16_add_cpu(&rec->e_leaf_clusters, 3839 -le16_to_cpu(split_rec->e_leaf_clusters)); 3840 } else { 3841 /* 3842 * Region is on the right edge of the existing 3843 * record. 3844 */ 3845 le16_add_cpu(&rec->e_leaf_clusters, 3846 -le16_to_cpu(split_rec->e_leaf_clusters)); 3847 } 3848 } 3849 3850 /* 3851 * Do the final bits of extent record insertion at the target leaf 3852 * list. If this leaf is part of an allocation tree, it is assumed 3853 * that the tree above has been prepared. 3854 */ 3855 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et, 3856 struct ocfs2_extent_rec *insert_rec, 3857 struct ocfs2_extent_list *el, 3858 struct ocfs2_insert_type *insert) 3859 { 3860 int i = insert->ins_contig_index; 3861 unsigned int range; 3862 struct ocfs2_extent_rec *rec; 3863 3864 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 3865 3866 if (insert->ins_split != SPLIT_NONE) { 3867 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos)); 3868 BUG_ON(i == -1); 3869 rec = &el->l_recs[i]; 3870 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci), 3871 insert->ins_split, rec, 3872 insert_rec); 3873 goto rotate; 3874 } 3875 3876 /* 3877 * Contiguous insert - either left or right. 3878 */ 3879 if (insert->ins_contig != CONTIG_NONE) { 3880 rec = &el->l_recs[i]; 3881 if (insert->ins_contig == CONTIG_LEFT) { 3882 rec->e_blkno = insert_rec->e_blkno; 3883 rec->e_cpos = insert_rec->e_cpos; 3884 } 3885 le16_add_cpu(&rec->e_leaf_clusters, 3886 le16_to_cpu(insert_rec->e_leaf_clusters)); 3887 return; 3888 } 3889 3890 /* 3891 * Handle insert into an empty leaf. 3892 */ 3893 if (le16_to_cpu(el->l_next_free_rec) == 0 || 3894 ((le16_to_cpu(el->l_next_free_rec) == 1) && 3895 ocfs2_is_empty_extent(&el->l_recs[0]))) { 3896 el->l_recs[0] = *insert_rec; 3897 el->l_next_free_rec = cpu_to_le16(1); 3898 return; 3899 } 3900 3901 /* 3902 * Appending insert. 3903 */ 3904 if (insert->ins_appending == APPEND_TAIL) { 3905 i = le16_to_cpu(el->l_next_free_rec) - 1; 3906 rec = &el->l_recs[i]; 3907 range = le32_to_cpu(rec->e_cpos) 3908 + le16_to_cpu(rec->e_leaf_clusters); 3909 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range); 3910 3911 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >= 3912 le16_to_cpu(el->l_count), 3913 "owner %llu, depth %u, count %u, next free %u, " 3914 "rec.cpos %u, rec.clusters %u, " 3915 "insert.cpos %u, insert.clusters %u\n", 3916 ocfs2_metadata_cache_owner(et->et_ci), 3917 le16_to_cpu(el->l_tree_depth), 3918 le16_to_cpu(el->l_count), 3919 le16_to_cpu(el->l_next_free_rec), 3920 le32_to_cpu(el->l_recs[i].e_cpos), 3921 le16_to_cpu(el->l_recs[i].e_leaf_clusters), 3922 le32_to_cpu(insert_rec->e_cpos), 3923 le16_to_cpu(insert_rec->e_leaf_clusters)); 3924 i++; 3925 el->l_recs[i] = *insert_rec; 3926 le16_add_cpu(&el->l_next_free_rec, 1); 3927 return; 3928 } 3929 3930 rotate: 3931 /* 3932 * Ok, we have to rotate. 3933 * 3934 * At this point, it is safe to assume that inserting into an 3935 * empty leaf and appending to a leaf have both been handled 3936 * above. 3937 * 3938 * This leaf needs to have space, either by the empty 1st 3939 * extent record, or by virtue of an l_next_rec < l_count. 3940 */ 3941 ocfs2_rotate_leaf(el, insert_rec); 3942 } 3943 3944 static void ocfs2_adjust_rightmost_records(handle_t *handle, 3945 struct ocfs2_extent_tree *et, 3946 struct ocfs2_path *path, 3947 struct ocfs2_extent_rec *insert_rec) 3948 { 3949 int ret, i, next_free; 3950 struct buffer_head *bh; 3951 struct ocfs2_extent_list *el; 3952 struct ocfs2_extent_rec *rec; 3953 3954 /* 3955 * Update everything except the leaf block. 3956 */ 3957 for (i = 0; i < path->p_tree_depth; i++) { 3958 bh = path->p_node[i].bh; 3959 el = path->p_node[i].el; 3960 3961 next_free = le16_to_cpu(el->l_next_free_rec); 3962 if (next_free == 0) { 3963 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 3964 "Owner %llu has a bad extent list\n", 3965 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 3966 ret = -EIO; 3967 return; 3968 } 3969 3970 rec = &el->l_recs[next_free - 1]; 3971 3972 rec->e_int_clusters = insert_rec->e_cpos; 3973 le32_add_cpu(&rec->e_int_clusters, 3974 le16_to_cpu(insert_rec->e_leaf_clusters)); 3975 le32_add_cpu(&rec->e_int_clusters, 3976 -le32_to_cpu(rec->e_cpos)); 3977 3978 ocfs2_journal_dirty(handle, bh); 3979 } 3980 } 3981 3982 static int ocfs2_append_rec_to_path(handle_t *handle, 3983 struct ocfs2_extent_tree *et, 3984 struct ocfs2_extent_rec *insert_rec, 3985 struct ocfs2_path *right_path, 3986 struct ocfs2_path **ret_left_path) 3987 { 3988 int ret, next_free; 3989 struct ocfs2_extent_list *el; 3990 struct ocfs2_path *left_path = NULL; 3991 3992 *ret_left_path = NULL; 3993 3994 /* 3995 * This shouldn't happen for non-trees. The extent rec cluster 3996 * count manipulation below only works for interior nodes. 3997 */ 3998 BUG_ON(right_path->p_tree_depth == 0); 3999 4000 /* 4001 * If our appending insert is at the leftmost edge of a leaf, 4002 * then we might need to update the rightmost records of the 4003 * neighboring path. 4004 */ 4005 el = path_leaf_el(right_path); 4006 next_free = le16_to_cpu(el->l_next_free_rec); 4007 if (next_free == 0 || 4008 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) { 4009 u32 left_cpos; 4010 4011 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 4012 right_path, &left_cpos); 4013 if (ret) { 4014 mlog_errno(ret); 4015 goto out; 4016 } 4017 4018 trace_ocfs2_append_rec_to_path( 4019 (unsigned long long) 4020 ocfs2_metadata_cache_owner(et->et_ci), 4021 le32_to_cpu(insert_rec->e_cpos), 4022 left_cpos); 4023 4024 /* 4025 * No need to worry if the append is already in the 4026 * leftmost leaf. 4027 */ 4028 if (left_cpos) { 4029 left_path = ocfs2_new_path_from_path(right_path); 4030 if (!left_path) { 4031 ret = -ENOMEM; 4032 mlog_errno(ret); 4033 goto out; 4034 } 4035 4036 ret = ocfs2_find_path(et->et_ci, left_path, 4037 left_cpos); 4038 if (ret) { 4039 mlog_errno(ret); 4040 goto out; 4041 } 4042 4043 /* 4044 * ocfs2_insert_path() will pass the left_path to the 4045 * journal for us. 4046 */ 4047 } 4048 } 4049 4050 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path); 4051 if (ret) { 4052 mlog_errno(ret); 4053 goto out; 4054 } 4055 4056 ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec); 4057 4058 *ret_left_path = left_path; 4059 ret = 0; 4060 out: 4061 if (ret != 0) 4062 ocfs2_free_path(left_path); 4063 4064 return ret; 4065 } 4066 4067 static void ocfs2_split_record(struct ocfs2_extent_tree *et, 4068 struct ocfs2_path *left_path, 4069 struct ocfs2_path *right_path, 4070 struct ocfs2_extent_rec *split_rec, 4071 enum ocfs2_split_type split) 4072 { 4073 int index; 4074 u32 cpos = le32_to_cpu(split_rec->e_cpos); 4075 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el; 4076 struct ocfs2_extent_rec *rec, *tmprec; 4077 4078 right_el = path_leaf_el(right_path); 4079 if (left_path) 4080 left_el = path_leaf_el(left_path); 4081 4082 el = right_el; 4083 insert_el = right_el; 4084 index = ocfs2_search_extent_list(el, cpos); 4085 if (index != -1) { 4086 if (index == 0 && left_path) { 4087 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 4088 4089 /* 4090 * This typically means that the record 4091 * started in the left path but moved to the 4092 * right as a result of rotation. We either 4093 * move the existing record to the left, or we 4094 * do the later insert there. 4095 * 4096 * In this case, the left path should always 4097 * exist as the rotate code will have passed 4098 * it back for a post-insert update. 4099 */ 4100 4101 if (split == SPLIT_LEFT) { 4102 /* 4103 * It's a left split. Since we know 4104 * that the rotate code gave us an 4105 * empty extent in the left path, we 4106 * can just do the insert there. 4107 */ 4108 insert_el = left_el; 4109 } else { 4110 /* 4111 * Right split - we have to move the 4112 * existing record over to the left 4113 * leaf. The insert will be into the 4114 * newly created empty extent in the 4115 * right leaf. 4116 */ 4117 tmprec = &right_el->l_recs[index]; 4118 ocfs2_rotate_leaf(left_el, tmprec); 4119 el = left_el; 4120 4121 memset(tmprec, 0, sizeof(*tmprec)); 4122 index = ocfs2_search_extent_list(left_el, cpos); 4123 BUG_ON(index == -1); 4124 } 4125 } 4126 } else { 4127 BUG_ON(!left_path); 4128 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0])); 4129 /* 4130 * Left path is easy - we can just allow the insert to 4131 * happen. 4132 */ 4133 el = left_el; 4134 insert_el = left_el; 4135 index = ocfs2_search_extent_list(el, cpos); 4136 BUG_ON(index == -1); 4137 } 4138 4139 rec = &el->l_recs[index]; 4140 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci), 4141 split, rec, split_rec); 4142 ocfs2_rotate_leaf(insert_el, split_rec); 4143 } 4144 4145 /* 4146 * This function only does inserts on an allocation b-tree. For tree 4147 * depth = 0, ocfs2_insert_at_leaf() is called directly. 4148 * 4149 * right_path is the path we want to do the actual insert 4150 * in. left_path should only be passed in if we need to update that 4151 * portion of the tree after an edge insert. 4152 */ 4153 static int ocfs2_insert_path(handle_t *handle, 4154 struct ocfs2_extent_tree *et, 4155 struct ocfs2_path *left_path, 4156 struct ocfs2_path *right_path, 4157 struct ocfs2_extent_rec *insert_rec, 4158 struct ocfs2_insert_type *insert) 4159 { 4160 int ret, subtree_index; 4161 struct buffer_head *leaf_bh = path_leaf_bh(right_path); 4162 4163 if (left_path) { 4164 /* 4165 * There's a chance that left_path got passed back to 4166 * us without being accounted for in the 4167 * journal. Extend our transaction here to be sure we 4168 * can change those blocks. 4169 */ 4170 ret = ocfs2_extend_trans(handle, left_path->p_tree_depth); 4171 if (ret < 0) { 4172 mlog_errno(ret); 4173 goto out; 4174 } 4175 4176 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 4177 if (ret < 0) { 4178 mlog_errno(ret); 4179 goto out; 4180 } 4181 } 4182 4183 /* 4184 * Pass both paths to the journal. The majority of inserts 4185 * will be touching all components anyway. 4186 */ 4187 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path); 4188 if (ret < 0) { 4189 mlog_errno(ret); 4190 goto out; 4191 } 4192 4193 if (insert->ins_split != SPLIT_NONE) { 4194 /* 4195 * We could call ocfs2_insert_at_leaf() for some types 4196 * of splits, but it's easier to just let one separate 4197 * function sort it all out. 4198 */ 4199 ocfs2_split_record(et, left_path, right_path, 4200 insert_rec, insert->ins_split); 4201 4202 /* 4203 * Split might have modified either leaf and we don't 4204 * have a guarantee that the later edge insert will 4205 * dirty this for us. 4206 */ 4207 if (left_path) 4208 ocfs2_journal_dirty(handle, 4209 path_leaf_bh(left_path)); 4210 } else 4211 ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path), 4212 insert); 4213 4214 ocfs2_journal_dirty(handle, leaf_bh); 4215 4216 if (left_path) { 4217 /* 4218 * The rotate code has indicated that we need to fix 4219 * up portions of the tree after the insert. 4220 * 4221 * XXX: Should we extend the transaction here? 4222 */ 4223 subtree_index = ocfs2_find_subtree_root(et, left_path, 4224 right_path); 4225 ocfs2_complete_edge_insert(handle, left_path, right_path, 4226 subtree_index); 4227 } 4228 4229 ret = 0; 4230 out: 4231 return ret; 4232 } 4233 4234 static int ocfs2_do_insert_extent(handle_t *handle, 4235 struct ocfs2_extent_tree *et, 4236 struct ocfs2_extent_rec *insert_rec, 4237 struct ocfs2_insert_type *type) 4238 { 4239 int ret, rotate = 0; 4240 u32 cpos; 4241 struct ocfs2_path *right_path = NULL; 4242 struct ocfs2_path *left_path = NULL; 4243 struct ocfs2_extent_list *el; 4244 4245 el = et->et_root_el; 4246 4247 ret = ocfs2_et_root_journal_access(handle, et, 4248 OCFS2_JOURNAL_ACCESS_WRITE); 4249 if (ret) { 4250 mlog_errno(ret); 4251 goto out; 4252 } 4253 4254 if (le16_to_cpu(el->l_tree_depth) == 0) { 4255 ocfs2_insert_at_leaf(et, insert_rec, el, type); 4256 goto out_update_clusters; 4257 } 4258 4259 right_path = ocfs2_new_path_from_et(et); 4260 if (!right_path) { 4261 ret = -ENOMEM; 4262 mlog_errno(ret); 4263 goto out; 4264 } 4265 4266 /* 4267 * Determine the path to start with. Rotations need the 4268 * rightmost path, everything else can go directly to the 4269 * target leaf. 4270 */ 4271 cpos = le32_to_cpu(insert_rec->e_cpos); 4272 if (type->ins_appending == APPEND_NONE && 4273 type->ins_contig == CONTIG_NONE) { 4274 rotate = 1; 4275 cpos = UINT_MAX; 4276 } 4277 4278 ret = ocfs2_find_path(et->et_ci, right_path, cpos); 4279 if (ret) { 4280 mlog_errno(ret); 4281 goto out; 4282 } 4283 4284 /* 4285 * Rotations and appends need special treatment - they modify 4286 * parts of the tree's above them. 4287 * 4288 * Both might pass back a path immediate to the left of the 4289 * one being inserted to. This will be cause 4290 * ocfs2_insert_path() to modify the rightmost records of 4291 * left_path to account for an edge insert. 4292 * 4293 * XXX: When modifying this code, keep in mind that an insert 4294 * can wind up skipping both of these two special cases... 4295 */ 4296 if (rotate) { 4297 ret = ocfs2_rotate_tree_right(handle, et, type->ins_split, 4298 le32_to_cpu(insert_rec->e_cpos), 4299 right_path, &left_path); 4300 if (ret) { 4301 mlog_errno(ret); 4302 goto out; 4303 } 4304 4305 /* 4306 * ocfs2_rotate_tree_right() might have extended the 4307 * transaction without re-journaling our tree root. 4308 */ 4309 ret = ocfs2_et_root_journal_access(handle, et, 4310 OCFS2_JOURNAL_ACCESS_WRITE); 4311 if (ret) { 4312 mlog_errno(ret); 4313 goto out; 4314 } 4315 } else if (type->ins_appending == APPEND_TAIL 4316 && type->ins_contig != CONTIG_LEFT) { 4317 ret = ocfs2_append_rec_to_path(handle, et, insert_rec, 4318 right_path, &left_path); 4319 if (ret) { 4320 mlog_errno(ret); 4321 goto out; 4322 } 4323 } 4324 4325 ret = ocfs2_insert_path(handle, et, left_path, right_path, 4326 insert_rec, type); 4327 if (ret) { 4328 mlog_errno(ret); 4329 goto out; 4330 } 4331 4332 out_update_clusters: 4333 if (type->ins_split == SPLIT_NONE) 4334 ocfs2_et_update_clusters(et, 4335 le16_to_cpu(insert_rec->e_leaf_clusters)); 4336 4337 ocfs2_journal_dirty(handle, et->et_root_bh); 4338 4339 out: 4340 ocfs2_free_path(left_path); 4341 ocfs2_free_path(right_path); 4342 4343 return ret; 4344 } 4345 4346 static int ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et, 4347 struct ocfs2_path *path, 4348 struct ocfs2_extent_list *el, int index, 4349 struct ocfs2_extent_rec *split_rec, 4350 struct ocfs2_merge_ctxt *ctxt) 4351 { 4352 int status = 0; 4353 enum ocfs2_contig_type ret = CONTIG_NONE; 4354 u32 left_cpos, right_cpos; 4355 struct ocfs2_extent_rec *rec = NULL; 4356 struct ocfs2_extent_list *new_el; 4357 struct ocfs2_path *left_path = NULL, *right_path = NULL; 4358 struct buffer_head *bh; 4359 struct ocfs2_extent_block *eb; 4360 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 4361 4362 if (index > 0) { 4363 rec = &el->l_recs[index - 1]; 4364 } else if (path->p_tree_depth > 0) { 4365 status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos); 4366 if (status) 4367 goto exit; 4368 4369 if (left_cpos != 0) { 4370 left_path = ocfs2_new_path_from_path(path); 4371 if (!left_path) { 4372 status = -ENOMEM; 4373 mlog_errno(status); 4374 goto exit; 4375 } 4376 4377 status = ocfs2_find_path(et->et_ci, left_path, 4378 left_cpos); 4379 if (status) 4380 goto free_left_path; 4381 4382 new_el = path_leaf_el(left_path); 4383 4384 if (le16_to_cpu(new_el->l_next_free_rec) != 4385 le16_to_cpu(new_el->l_count)) { 4386 bh = path_leaf_bh(left_path); 4387 eb = (struct ocfs2_extent_block *)bh->b_data; 4388 ocfs2_error(sb, 4389 "Extent block #%llu has an invalid l_next_free_rec of %d. It should have matched the l_count of %d\n", 4390 (unsigned long long)le64_to_cpu(eb->h_blkno), 4391 le16_to_cpu(new_el->l_next_free_rec), 4392 le16_to_cpu(new_el->l_count)); 4393 status = -EINVAL; 4394 goto free_left_path; 4395 } 4396 rec = &new_el->l_recs[ 4397 le16_to_cpu(new_el->l_next_free_rec) - 1]; 4398 } 4399 } 4400 4401 /* 4402 * We're careful to check for an empty extent record here - 4403 * the merge code will know what to do if it sees one. 4404 */ 4405 if (rec) { 4406 if (index == 1 && ocfs2_is_empty_extent(rec)) { 4407 if (split_rec->e_cpos == el->l_recs[index].e_cpos) 4408 ret = CONTIG_RIGHT; 4409 } else { 4410 ret = ocfs2_et_extent_contig(et, rec, split_rec); 4411 } 4412 } 4413 4414 rec = NULL; 4415 if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) 4416 rec = &el->l_recs[index + 1]; 4417 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) && 4418 path->p_tree_depth > 0) { 4419 status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos); 4420 if (status) 4421 goto free_left_path; 4422 4423 if (right_cpos == 0) 4424 goto free_left_path; 4425 4426 right_path = ocfs2_new_path_from_path(path); 4427 if (!right_path) { 4428 status = -ENOMEM; 4429 mlog_errno(status); 4430 goto free_left_path; 4431 } 4432 4433 status = ocfs2_find_path(et->et_ci, right_path, right_cpos); 4434 if (status) 4435 goto free_right_path; 4436 4437 new_el = path_leaf_el(right_path); 4438 rec = &new_el->l_recs[0]; 4439 if (ocfs2_is_empty_extent(rec)) { 4440 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) { 4441 bh = path_leaf_bh(right_path); 4442 eb = (struct ocfs2_extent_block *)bh->b_data; 4443 ocfs2_error(sb, 4444 "Extent block #%llu has an invalid l_next_free_rec of %d\n", 4445 (unsigned long long)le64_to_cpu(eb->h_blkno), 4446 le16_to_cpu(new_el->l_next_free_rec)); 4447 status = -EINVAL; 4448 goto free_right_path; 4449 } 4450 rec = &new_el->l_recs[1]; 4451 } 4452 } 4453 4454 if (rec) { 4455 enum ocfs2_contig_type contig_type; 4456 4457 contig_type = ocfs2_et_extent_contig(et, rec, split_rec); 4458 4459 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT) 4460 ret = CONTIG_LEFTRIGHT; 4461 else if (ret == CONTIG_NONE) 4462 ret = contig_type; 4463 } 4464 4465 free_right_path: 4466 ocfs2_free_path(right_path); 4467 free_left_path: 4468 ocfs2_free_path(left_path); 4469 exit: 4470 if (status == 0) 4471 ctxt->c_contig_type = ret; 4472 4473 return status; 4474 } 4475 4476 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et, 4477 struct ocfs2_insert_type *insert, 4478 struct ocfs2_extent_list *el, 4479 struct ocfs2_extent_rec *insert_rec) 4480 { 4481 int i; 4482 enum ocfs2_contig_type contig_type = CONTIG_NONE; 4483 4484 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4485 4486 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 4487 contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i], 4488 insert_rec); 4489 if (contig_type != CONTIG_NONE) { 4490 insert->ins_contig_index = i; 4491 break; 4492 } 4493 } 4494 insert->ins_contig = contig_type; 4495 4496 if (insert->ins_contig != CONTIG_NONE) { 4497 struct ocfs2_extent_rec *rec = 4498 &el->l_recs[insert->ins_contig_index]; 4499 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) + 4500 le16_to_cpu(insert_rec->e_leaf_clusters); 4501 4502 /* 4503 * Caller might want us to limit the size of extents, don't 4504 * calculate contiguousness if we might exceed that limit. 4505 */ 4506 if (et->et_max_leaf_clusters && 4507 (len > et->et_max_leaf_clusters)) 4508 insert->ins_contig = CONTIG_NONE; 4509 } 4510 } 4511 4512 /* 4513 * This should only be called against the righmost leaf extent list. 4514 * 4515 * ocfs2_figure_appending_type() will figure out whether we'll have to 4516 * insert at the tail of the rightmost leaf. 4517 * 4518 * This should also work against the root extent list for tree's with 0 4519 * depth. If we consider the root extent list to be the rightmost leaf node 4520 * then the logic here makes sense. 4521 */ 4522 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert, 4523 struct ocfs2_extent_list *el, 4524 struct ocfs2_extent_rec *insert_rec) 4525 { 4526 int i; 4527 u32 cpos = le32_to_cpu(insert_rec->e_cpos); 4528 struct ocfs2_extent_rec *rec; 4529 4530 insert->ins_appending = APPEND_NONE; 4531 4532 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4533 4534 if (!el->l_next_free_rec) 4535 goto set_tail_append; 4536 4537 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 4538 /* Were all records empty? */ 4539 if (le16_to_cpu(el->l_next_free_rec) == 1) 4540 goto set_tail_append; 4541 } 4542 4543 i = le16_to_cpu(el->l_next_free_rec) - 1; 4544 rec = &el->l_recs[i]; 4545 4546 if (cpos >= 4547 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters))) 4548 goto set_tail_append; 4549 4550 return; 4551 4552 set_tail_append: 4553 insert->ins_appending = APPEND_TAIL; 4554 } 4555 4556 /* 4557 * Helper function called at the beginning of an insert. 4558 * 4559 * This computes a few things that are commonly used in the process of 4560 * inserting into the btree: 4561 * - Whether the new extent is contiguous with an existing one. 4562 * - The current tree depth. 4563 * - Whether the insert is an appending one. 4564 * - The total # of free records in the tree. 4565 * 4566 * All of the information is stored on the ocfs2_insert_type 4567 * structure. 4568 */ 4569 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et, 4570 struct buffer_head **last_eb_bh, 4571 struct ocfs2_extent_rec *insert_rec, 4572 int *free_records, 4573 struct ocfs2_insert_type *insert) 4574 { 4575 int ret; 4576 struct ocfs2_extent_block *eb; 4577 struct ocfs2_extent_list *el; 4578 struct ocfs2_path *path = NULL; 4579 struct buffer_head *bh = NULL; 4580 4581 insert->ins_split = SPLIT_NONE; 4582 4583 el = et->et_root_el; 4584 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth); 4585 4586 if (el->l_tree_depth) { 4587 /* 4588 * If we have tree depth, we read in the 4589 * rightmost extent block ahead of time as 4590 * ocfs2_figure_insert_type() and ocfs2_add_branch() 4591 * may want it later. 4592 */ 4593 ret = ocfs2_read_extent_block(et->et_ci, 4594 ocfs2_et_get_last_eb_blk(et), 4595 &bh); 4596 if (ret) { 4597 mlog_errno(ret); 4598 goto out; 4599 } 4600 eb = (struct ocfs2_extent_block *) bh->b_data; 4601 el = &eb->h_list; 4602 } 4603 4604 /* 4605 * Unless we have a contiguous insert, we'll need to know if 4606 * there is room left in our allocation tree for another 4607 * extent record. 4608 * 4609 * XXX: This test is simplistic, we can search for empty 4610 * extent records too. 4611 */ 4612 *free_records = le16_to_cpu(el->l_count) - 4613 le16_to_cpu(el->l_next_free_rec); 4614 4615 if (!insert->ins_tree_depth) { 4616 ocfs2_figure_contig_type(et, insert, el, insert_rec); 4617 ocfs2_figure_appending_type(insert, el, insert_rec); 4618 return 0; 4619 } 4620 4621 path = ocfs2_new_path_from_et(et); 4622 if (!path) { 4623 ret = -ENOMEM; 4624 mlog_errno(ret); 4625 goto out; 4626 } 4627 4628 /* 4629 * In the case that we're inserting past what the tree 4630 * currently accounts for, ocfs2_find_path() will return for 4631 * us the rightmost tree path. This is accounted for below in 4632 * the appending code. 4633 */ 4634 ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos)); 4635 if (ret) { 4636 mlog_errno(ret); 4637 goto out; 4638 } 4639 4640 el = path_leaf_el(path); 4641 4642 /* 4643 * Now that we have the path, there's two things we want to determine: 4644 * 1) Contiguousness (also set contig_index if this is so) 4645 * 4646 * 2) Are we doing an append? We can trivially break this up 4647 * into two types of appends: simple record append, or a 4648 * rotate inside the tail leaf. 4649 */ 4650 ocfs2_figure_contig_type(et, insert, el, insert_rec); 4651 4652 /* 4653 * The insert code isn't quite ready to deal with all cases of 4654 * left contiguousness. Specifically, if it's an insert into 4655 * the 1st record in a leaf, it will require the adjustment of 4656 * cluster count on the last record of the path directly to it's 4657 * left. For now, just catch that case and fool the layers 4658 * above us. This works just fine for tree_depth == 0, which 4659 * is why we allow that above. 4660 */ 4661 if (insert->ins_contig == CONTIG_LEFT && 4662 insert->ins_contig_index == 0) 4663 insert->ins_contig = CONTIG_NONE; 4664 4665 /* 4666 * Ok, so we can simply compare against last_eb to figure out 4667 * whether the path doesn't exist. This will only happen in 4668 * the case that we're doing a tail append, so maybe we can 4669 * take advantage of that information somehow. 4670 */ 4671 if (ocfs2_et_get_last_eb_blk(et) == 4672 path_leaf_bh(path)->b_blocknr) { 4673 /* 4674 * Ok, ocfs2_find_path() returned us the rightmost 4675 * tree path. This might be an appending insert. There are 4676 * two cases: 4677 * 1) We're doing a true append at the tail: 4678 * -This might even be off the end of the leaf 4679 * 2) We're "appending" by rotating in the tail 4680 */ 4681 ocfs2_figure_appending_type(insert, el, insert_rec); 4682 } 4683 4684 out: 4685 ocfs2_free_path(path); 4686 4687 if (ret == 0) 4688 *last_eb_bh = bh; 4689 else 4690 brelse(bh); 4691 return ret; 4692 } 4693 4694 /* 4695 * Insert an extent into a btree. 4696 * 4697 * The caller needs to update the owning btree's cluster count. 4698 */ 4699 int ocfs2_insert_extent(handle_t *handle, 4700 struct ocfs2_extent_tree *et, 4701 u32 cpos, 4702 u64 start_blk, 4703 u32 new_clusters, 4704 u8 flags, 4705 struct ocfs2_alloc_context *meta_ac) 4706 { 4707 int status; 4708 int uninitialized_var(free_records); 4709 struct buffer_head *last_eb_bh = NULL; 4710 struct ocfs2_insert_type insert = {0, }; 4711 struct ocfs2_extent_rec rec; 4712 4713 trace_ocfs2_insert_extent_start( 4714 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 4715 cpos, new_clusters); 4716 4717 memset(&rec, 0, sizeof(rec)); 4718 rec.e_cpos = cpu_to_le32(cpos); 4719 rec.e_blkno = cpu_to_le64(start_blk); 4720 rec.e_leaf_clusters = cpu_to_le16(new_clusters); 4721 rec.e_flags = flags; 4722 status = ocfs2_et_insert_check(et, &rec); 4723 if (status) { 4724 mlog_errno(status); 4725 goto bail; 4726 } 4727 4728 status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec, 4729 &free_records, &insert); 4730 if (status < 0) { 4731 mlog_errno(status); 4732 goto bail; 4733 } 4734 4735 trace_ocfs2_insert_extent(insert.ins_appending, insert.ins_contig, 4736 insert.ins_contig_index, free_records, 4737 insert.ins_tree_depth); 4738 4739 if (insert.ins_contig == CONTIG_NONE && free_records == 0) { 4740 status = ocfs2_grow_tree(handle, et, 4741 &insert.ins_tree_depth, &last_eb_bh, 4742 meta_ac); 4743 if (status) { 4744 mlog_errno(status); 4745 goto bail; 4746 } 4747 } 4748 4749 /* Finally, we can add clusters. This might rotate the tree for us. */ 4750 status = ocfs2_do_insert_extent(handle, et, &rec, &insert); 4751 if (status < 0) 4752 mlog_errno(status); 4753 else 4754 ocfs2_et_extent_map_insert(et, &rec); 4755 4756 bail: 4757 brelse(last_eb_bh); 4758 4759 return status; 4760 } 4761 4762 /* 4763 * Allcate and add clusters into the extent b-tree. 4764 * The new clusters(clusters_to_add) will be inserted at logical_offset. 4765 * The extent b-tree's root is specified by et, and 4766 * it is not limited to the file storage. Any extent tree can use this 4767 * function if it implements the proper ocfs2_extent_tree. 4768 */ 4769 int ocfs2_add_clusters_in_btree(handle_t *handle, 4770 struct ocfs2_extent_tree *et, 4771 u32 *logical_offset, 4772 u32 clusters_to_add, 4773 int mark_unwritten, 4774 struct ocfs2_alloc_context *data_ac, 4775 struct ocfs2_alloc_context *meta_ac, 4776 enum ocfs2_alloc_restarted *reason_ret) 4777 { 4778 int status = 0, err = 0; 4779 int need_free = 0; 4780 int free_extents; 4781 enum ocfs2_alloc_restarted reason = RESTART_NONE; 4782 u32 bit_off, num_bits; 4783 u64 block; 4784 u8 flags = 0; 4785 struct ocfs2_super *osb = 4786 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 4787 4788 BUG_ON(!clusters_to_add); 4789 4790 if (mark_unwritten) 4791 flags = OCFS2_EXT_UNWRITTEN; 4792 4793 free_extents = ocfs2_num_free_extents(osb, et); 4794 if (free_extents < 0) { 4795 status = free_extents; 4796 mlog_errno(status); 4797 goto leave; 4798 } 4799 4800 /* there are two cases which could cause us to EAGAIN in the 4801 * we-need-more-metadata case: 4802 * 1) we haven't reserved *any* 4803 * 2) we are so fragmented, we've needed to add metadata too 4804 * many times. */ 4805 if (!free_extents && !meta_ac) { 4806 err = -1; 4807 status = -EAGAIN; 4808 reason = RESTART_META; 4809 goto leave; 4810 } else if ((!free_extents) 4811 && (ocfs2_alloc_context_bits_left(meta_ac) 4812 < ocfs2_extend_meta_needed(et->et_root_el))) { 4813 err = -2; 4814 status = -EAGAIN; 4815 reason = RESTART_META; 4816 goto leave; 4817 } 4818 4819 status = __ocfs2_claim_clusters(handle, data_ac, 1, 4820 clusters_to_add, &bit_off, &num_bits); 4821 if (status < 0) { 4822 if (status != -ENOSPC) 4823 mlog_errno(status); 4824 goto leave; 4825 } 4826 4827 BUG_ON(num_bits > clusters_to_add); 4828 4829 /* reserve our write early -- insert_extent may update the tree root */ 4830 status = ocfs2_et_root_journal_access(handle, et, 4831 OCFS2_JOURNAL_ACCESS_WRITE); 4832 if (status < 0) { 4833 mlog_errno(status); 4834 need_free = 1; 4835 goto bail; 4836 } 4837 4838 block = ocfs2_clusters_to_blocks(osb->sb, bit_off); 4839 trace_ocfs2_add_clusters_in_btree( 4840 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 4841 bit_off, num_bits); 4842 status = ocfs2_insert_extent(handle, et, *logical_offset, block, 4843 num_bits, flags, meta_ac); 4844 if (status < 0) { 4845 mlog_errno(status); 4846 need_free = 1; 4847 goto bail; 4848 } 4849 4850 ocfs2_journal_dirty(handle, et->et_root_bh); 4851 4852 clusters_to_add -= num_bits; 4853 *logical_offset += num_bits; 4854 4855 if (clusters_to_add) { 4856 err = clusters_to_add; 4857 status = -EAGAIN; 4858 reason = RESTART_TRANS; 4859 } 4860 4861 bail: 4862 if (need_free) { 4863 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL) 4864 ocfs2_free_local_alloc_bits(osb, handle, data_ac, 4865 bit_off, num_bits); 4866 else 4867 ocfs2_free_clusters(handle, 4868 data_ac->ac_inode, 4869 data_ac->ac_bh, 4870 ocfs2_clusters_to_blocks(osb->sb, bit_off), 4871 num_bits); 4872 } 4873 4874 leave: 4875 if (reason_ret) 4876 *reason_ret = reason; 4877 trace_ocfs2_add_clusters_in_btree_ret(status, reason, err); 4878 return status; 4879 } 4880 4881 static void ocfs2_make_right_split_rec(struct super_block *sb, 4882 struct ocfs2_extent_rec *split_rec, 4883 u32 cpos, 4884 struct ocfs2_extent_rec *rec) 4885 { 4886 u32 rec_cpos = le32_to_cpu(rec->e_cpos); 4887 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters); 4888 4889 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec)); 4890 4891 split_rec->e_cpos = cpu_to_le32(cpos); 4892 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos); 4893 4894 split_rec->e_blkno = rec->e_blkno; 4895 le64_add_cpu(&split_rec->e_blkno, 4896 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos)); 4897 4898 split_rec->e_flags = rec->e_flags; 4899 } 4900 4901 static int ocfs2_split_and_insert(handle_t *handle, 4902 struct ocfs2_extent_tree *et, 4903 struct ocfs2_path *path, 4904 struct buffer_head **last_eb_bh, 4905 int split_index, 4906 struct ocfs2_extent_rec *orig_split_rec, 4907 struct ocfs2_alloc_context *meta_ac) 4908 { 4909 int ret = 0, depth; 4910 unsigned int insert_range, rec_range, do_leftright = 0; 4911 struct ocfs2_extent_rec tmprec; 4912 struct ocfs2_extent_list *rightmost_el; 4913 struct ocfs2_extent_rec rec; 4914 struct ocfs2_extent_rec split_rec = *orig_split_rec; 4915 struct ocfs2_insert_type insert; 4916 struct ocfs2_extent_block *eb; 4917 4918 leftright: 4919 /* 4920 * Store a copy of the record on the stack - it might move 4921 * around as the tree is manipulated below. 4922 */ 4923 rec = path_leaf_el(path)->l_recs[split_index]; 4924 4925 rightmost_el = et->et_root_el; 4926 4927 depth = le16_to_cpu(rightmost_el->l_tree_depth); 4928 if (depth) { 4929 BUG_ON(!(*last_eb_bh)); 4930 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 4931 rightmost_el = &eb->h_list; 4932 } 4933 4934 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 4935 le16_to_cpu(rightmost_el->l_count)) { 4936 ret = ocfs2_grow_tree(handle, et, 4937 &depth, last_eb_bh, meta_ac); 4938 if (ret) { 4939 mlog_errno(ret); 4940 goto out; 4941 } 4942 } 4943 4944 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 4945 insert.ins_appending = APPEND_NONE; 4946 insert.ins_contig = CONTIG_NONE; 4947 insert.ins_tree_depth = depth; 4948 4949 insert_range = le32_to_cpu(split_rec.e_cpos) + 4950 le16_to_cpu(split_rec.e_leaf_clusters); 4951 rec_range = le32_to_cpu(rec.e_cpos) + 4952 le16_to_cpu(rec.e_leaf_clusters); 4953 4954 if (split_rec.e_cpos == rec.e_cpos) { 4955 insert.ins_split = SPLIT_LEFT; 4956 } else if (insert_range == rec_range) { 4957 insert.ins_split = SPLIT_RIGHT; 4958 } else { 4959 /* 4960 * Left/right split. We fake this as a right split 4961 * first and then make a second pass as a left split. 4962 */ 4963 insert.ins_split = SPLIT_RIGHT; 4964 4965 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci), 4966 &tmprec, insert_range, &rec); 4967 4968 split_rec = tmprec; 4969 4970 BUG_ON(do_leftright); 4971 do_leftright = 1; 4972 } 4973 4974 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert); 4975 if (ret) { 4976 mlog_errno(ret); 4977 goto out; 4978 } 4979 4980 if (do_leftright == 1) { 4981 u32 cpos; 4982 struct ocfs2_extent_list *el; 4983 4984 do_leftright++; 4985 split_rec = *orig_split_rec; 4986 4987 ocfs2_reinit_path(path, 1); 4988 4989 cpos = le32_to_cpu(split_rec.e_cpos); 4990 ret = ocfs2_find_path(et->et_ci, path, cpos); 4991 if (ret) { 4992 mlog_errno(ret); 4993 goto out; 4994 } 4995 4996 el = path_leaf_el(path); 4997 split_index = ocfs2_search_extent_list(el, cpos); 4998 if (split_index == -1) { 4999 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5000 "Owner %llu has an extent at cpos %u which can no longer be found\n", 5001 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5002 cpos); 5003 ret = -EROFS; 5004 goto out; 5005 } 5006 goto leftright; 5007 } 5008 out: 5009 5010 return ret; 5011 } 5012 5013 static int ocfs2_replace_extent_rec(handle_t *handle, 5014 struct ocfs2_extent_tree *et, 5015 struct ocfs2_path *path, 5016 struct ocfs2_extent_list *el, 5017 int split_index, 5018 struct ocfs2_extent_rec *split_rec) 5019 { 5020 int ret; 5021 5022 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path, 5023 path_num_items(path) - 1); 5024 if (ret) { 5025 mlog_errno(ret); 5026 goto out; 5027 } 5028 5029 el->l_recs[split_index] = *split_rec; 5030 5031 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 5032 out: 5033 return ret; 5034 } 5035 5036 /* 5037 * Split part or all of the extent record at split_index in the leaf 5038 * pointed to by path. Merge with the contiguous extent record if needed. 5039 * 5040 * Care is taken to handle contiguousness so as to not grow the tree. 5041 * 5042 * meta_ac is not strictly necessary - we only truly need it if growth 5043 * of the tree is required. All other cases will degrade into a less 5044 * optimal tree layout. 5045 * 5046 * last_eb_bh should be the rightmost leaf block for any extent 5047 * btree. Since a split may grow the tree or a merge might shrink it, 5048 * the caller cannot trust the contents of that buffer after this call. 5049 * 5050 * This code is optimized for readability - several passes might be 5051 * made over certain portions of the tree. All of those blocks will 5052 * have been brought into cache (and pinned via the journal), so the 5053 * extra overhead is not expressed in terms of disk reads. 5054 */ 5055 int ocfs2_split_extent(handle_t *handle, 5056 struct ocfs2_extent_tree *et, 5057 struct ocfs2_path *path, 5058 int split_index, 5059 struct ocfs2_extent_rec *split_rec, 5060 struct ocfs2_alloc_context *meta_ac, 5061 struct ocfs2_cached_dealloc_ctxt *dealloc) 5062 { 5063 int ret = 0; 5064 struct ocfs2_extent_list *el = path_leaf_el(path); 5065 struct buffer_head *last_eb_bh = NULL; 5066 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 5067 struct ocfs2_merge_ctxt ctxt; 5068 struct ocfs2_extent_list *rightmost_el; 5069 5070 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) || 5071 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) < 5072 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) { 5073 ret = -EIO; 5074 mlog_errno(ret); 5075 goto out; 5076 } 5077 5078 ret = ocfs2_figure_merge_contig_type(et, path, el, 5079 split_index, 5080 split_rec, 5081 &ctxt); 5082 if (ret) { 5083 mlog_errno(ret); 5084 goto out; 5085 } 5086 5087 /* 5088 * The core merge / split code wants to know how much room is 5089 * left in this allocation tree, so we pass the 5090 * rightmost extent list. 5091 */ 5092 if (path->p_tree_depth) { 5093 struct ocfs2_extent_block *eb; 5094 5095 ret = ocfs2_read_extent_block(et->et_ci, 5096 ocfs2_et_get_last_eb_blk(et), 5097 &last_eb_bh); 5098 if (ret) { 5099 mlog_errno(ret); 5100 goto out; 5101 } 5102 5103 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5104 rightmost_el = &eb->h_list; 5105 } else 5106 rightmost_el = path_root_el(path); 5107 5108 if (rec->e_cpos == split_rec->e_cpos && 5109 rec->e_leaf_clusters == split_rec->e_leaf_clusters) 5110 ctxt.c_split_covers_rec = 1; 5111 else 5112 ctxt.c_split_covers_rec = 0; 5113 5114 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]); 5115 5116 trace_ocfs2_split_extent(split_index, ctxt.c_contig_type, 5117 ctxt.c_has_empty_extent, 5118 ctxt.c_split_covers_rec); 5119 5120 if (ctxt.c_contig_type == CONTIG_NONE) { 5121 if (ctxt.c_split_covers_rec) 5122 ret = ocfs2_replace_extent_rec(handle, et, path, el, 5123 split_index, split_rec); 5124 else 5125 ret = ocfs2_split_and_insert(handle, et, path, 5126 &last_eb_bh, split_index, 5127 split_rec, meta_ac); 5128 if (ret) 5129 mlog_errno(ret); 5130 } else { 5131 ret = ocfs2_try_to_merge_extent(handle, et, path, 5132 split_index, split_rec, 5133 dealloc, &ctxt); 5134 if (ret) 5135 mlog_errno(ret); 5136 } 5137 5138 out: 5139 brelse(last_eb_bh); 5140 return ret; 5141 } 5142 5143 /* 5144 * Change the flags of the already-existing extent at cpos for len clusters. 5145 * 5146 * new_flags: the flags we want to set. 5147 * clear_flags: the flags we want to clear. 5148 * phys: the new physical offset we want this new extent starts from. 5149 * 5150 * If the existing extent is larger than the request, initiate a 5151 * split. An attempt will be made at merging with adjacent extents. 5152 * 5153 * The caller is responsible for passing down meta_ac if we'll need it. 5154 */ 5155 int ocfs2_change_extent_flag(handle_t *handle, 5156 struct ocfs2_extent_tree *et, 5157 u32 cpos, u32 len, u32 phys, 5158 struct ocfs2_alloc_context *meta_ac, 5159 struct ocfs2_cached_dealloc_ctxt *dealloc, 5160 int new_flags, int clear_flags) 5161 { 5162 int ret, index; 5163 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 5164 u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys); 5165 struct ocfs2_extent_rec split_rec; 5166 struct ocfs2_path *left_path = NULL; 5167 struct ocfs2_extent_list *el; 5168 struct ocfs2_extent_rec *rec; 5169 5170 left_path = ocfs2_new_path_from_et(et); 5171 if (!left_path) { 5172 ret = -ENOMEM; 5173 mlog_errno(ret); 5174 goto out; 5175 } 5176 5177 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 5178 if (ret) { 5179 mlog_errno(ret); 5180 goto out; 5181 } 5182 el = path_leaf_el(left_path); 5183 5184 index = ocfs2_search_extent_list(el, cpos); 5185 if (index == -1) { 5186 ocfs2_error(sb, 5187 "Owner %llu has an extent at cpos %u which can no longer be found\n", 5188 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5189 cpos); 5190 ret = -EROFS; 5191 goto out; 5192 } 5193 5194 ret = -EIO; 5195 rec = &el->l_recs[index]; 5196 if (new_flags && (rec->e_flags & new_flags)) { 5197 mlog(ML_ERROR, "Owner %llu tried to set %d flags on an " 5198 "extent that already had them\n", 5199 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5200 new_flags); 5201 goto out; 5202 } 5203 5204 if (clear_flags && !(rec->e_flags & clear_flags)) { 5205 mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an " 5206 "extent that didn't have them\n", 5207 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5208 clear_flags); 5209 goto out; 5210 } 5211 5212 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec)); 5213 split_rec.e_cpos = cpu_to_le32(cpos); 5214 split_rec.e_leaf_clusters = cpu_to_le16(len); 5215 split_rec.e_blkno = cpu_to_le64(start_blkno); 5216 split_rec.e_flags = rec->e_flags; 5217 if (new_flags) 5218 split_rec.e_flags |= new_flags; 5219 if (clear_flags) 5220 split_rec.e_flags &= ~clear_flags; 5221 5222 ret = ocfs2_split_extent(handle, et, left_path, 5223 index, &split_rec, meta_ac, 5224 dealloc); 5225 if (ret) 5226 mlog_errno(ret); 5227 5228 out: 5229 ocfs2_free_path(left_path); 5230 return ret; 5231 5232 } 5233 5234 /* 5235 * Mark the already-existing extent at cpos as written for len clusters. 5236 * This removes the unwritten extent flag. 5237 * 5238 * If the existing extent is larger than the request, initiate a 5239 * split. An attempt will be made at merging with adjacent extents. 5240 * 5241 * The caller is responsible for passing down meta_ac if we'll need it. 5242 */ 5243 int ocfs2_mark_extent_written(struct inode *inode, 5244 struct ocfs2_extent_tree *et, 5245 handle_t *handle, u32 cpos, u32 len, u32 phys, 5246 struct ocfs2_alloc_context *meta_ac, 5247 struct ocfs2_cached_dealloc_ctxt *dealloc) 5248 { 5249 int ret; 5250 5251 trace_ocfs2_mark_extent_written( 5252 (unsigned long long)OCFS2_I(inode)->ip_blkno, 5253 cpos, len, phys); 5254 5255 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) { 5256 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents that are being written to, but the feature bit is not set in the super block\n", 5257 (unsigned long long)OCFS2_I(inode)->ip_blkno); 5258 ret = -EROFS; 5259 goto out; 5260 } 5261 5262 /* 5263 * XXX: This should be fixed up so that we just re-insert the 5264 * next extent records. 5265 */ 5266 ocfs2_et_extent_map_truncate(et, 0); 5267 5268 ret = ocfs2_change_extent_flag(handle, et, cpos, 5269 len, phys, meta_ac, dealloc, 5270 0, OCFS2_EXT_UNWRITTEN); 5271 if (ret) 5272 mlog_errno(ret); 5273 5274 out: 5275 return ret; 5276 } 5277 5278 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et, 5279 struct ocfs2_path *path, 5280 int index, u32 new_range, 5281 struct ocfs2_alloc_context *meta_ac) 5282 { 5283 int ret, depth, credits; 5284 struct buffer_head *last_eb_bh = NULL; 5285 struct ocfs2_extent_block *eb; 5286 struct ocfs2_extent_list *rightmost_el, *el; 5287 struct ocfs2_extent_rec split_rec; 5288 struct ocfs2_extent_rec *rec; 5289 struct ocfs2_insert_type insert; 5290 5291 /* 5292 * Setup the record to split before we grow the tree. 5293 */ 5294 el = path_leaf_el(path); 5295 rec = &el->l_recs[index]; 5296 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci), 5297 &split_rec, new_range, rec); 5298 5299 depth = path->p_tree_depth; 5300 if (depth > 0) { 5301 ret = ocfs2_read_extent_block(et->et_ci, 5302 ocfs2_et_get_last_eb_blk(et), 5303 &last_eb_bh); 5304 if (ret < 0) { 5305 mlog_errno(ret); 5306 goto out; 5307 } 5308 5309 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5310 rightmost_el = &eb->h_list; 5311 } else 5312 rightmost_el = path_leaf_el(path); 5313 5314 credits = path->p_tree_depth + 5315 ocfs2_extend_meta_needed(et->et_root_el); 5316 ret = ocfs2_extend_trans(handle, credits); 5317 if (ret) { 5318 mlog_errno(ret); 5319 goto out; 5320 } 5321 5322 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 5323 le16_to_cpu(rightmost_el->l_count)) { 5324 ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh, 5325 meta_ac); 5326 if (ret) { 5327 mlog_errno(ret); 5328 goto out; 5329 } 5330 } 5331 5332 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 5333 insert.ins_appending = APPEND_NONE; 5334 insert.ins_contig = CONTIG_NONE; 5335 insert.ins_split = SPLIT_RIGHT; 5336 insert.ins_tree_depth = depth; 5337 5338 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert); 5339 if (ret) 5340 mlog_errno(ret); 5341 5342 out: 5343 brelse(last_eb_bh); 5344 return ret; 5345 } 5346 5347 static int ocfs2_truncate_rec(handle_t *handle, 5348 struct ocfs2_extent_tree *et, 5349 struct ocfs2_path *path, int index, 5350 struct ocfs2_cached_dealloc_ctxt *dealloc, 5351 u32 cpos, u32 len) 5352 { 5353 int ret; 5354 u32 left_cpos, rec_range, trunc_range; 5355 int is_rightmost_tree_rec = 0; 5356 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 5357 struct ocfs2_path *left_path = NULL; 5358 struct ocfs2_extent_list *el = path_leaf_el(path); 5359 struct ocfs2_extent_rec *rec; 5360 struct ocfs2_extent_block *eb; 5361 5362 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) { 5363 /* extend credit for ocfs2_remove_rightmost_path */ 5364 ret = ocfs2_extend_rotate_transaction(handle, 0, 5365 handle->h_buffer_credits, 5366 path); 5367 if (ret) { 5368 mlog_errno(ret); 5369 goto out; 5370 } 5371 5372 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 5373 if (ret) { 5374 mlog_errno(ret); 5375 goto out; 5376 } 5377 5378 index--; 5379 } 5380 5381 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) && 5382 path->p_tree_depth) { 5383 /* 5384 * Check whether this is the rightmost tree record. If 5385 * we remove all of this record or part of its right 5386 * edge then an update of the record lengths above it 5387 * will be required. 5388 */ 5389 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 5390 if (eb->h_next_leaf_blk == 0) 5391 is_rightmost_tree_rec = 1; 5392 } 5393 5394 rec = &el->l_recs[index]; 5395 if (index == 0 && path->p_tree_depth && 5396 le32_to_cpu(rec->e_cpos) == cpos) { 5397 /* 5398 * Changing the leftmost offset (via partial or whole 5399 * record truncate) of an interior (or rightmost) path 5400 * means we have to update the subtree that is formed 5401 * by this leaf and the one to it's left. 5402 * 5403 * There are two cases we can skip: 5404 * 1) Path is the leftmost one in our btree. 5405 * 2) The leaf is rightmost and will be empty after 5406 * we remove the extent record - the rotate code 5407 * knows how to update the newly formed edge. 5408 */ 5409 5410 ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos); 5411 if (ret) { 5412 mlog_errno(ret); 5413 goto out; 5414 } 5415 5416 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) { 5417 left_path = ocfs2_new_path_from_path(path); 5418 if (!left_path) { 5419 ret = -ENOMEM; 5420 mlog_errno(ret); 5421 goto out; 5422 } 5423 5424 ret = ocfs2_find_path(et->et_ci, left_path, 5425 left_cpos); 5426 if (ret) { 5427 mlog_errno(ret); 5428 goto out; 5429 } 5430 } 5431 } 5432 5433 ret = ocfs2_extend_rotate_transaction(handle, 0, 5434 handle->h_buffer_credits, 5435 path); 5436 if (ret) { 5437 mlog_errno(ret); 5438 goto out; 5439 } 5440 5441 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 5442 if (ret) { 5443 mlog_errno(ret); 5444 goto out; 5445 } 5446 5447 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 5448 if (ret) { 5449 mlog_errno(ret); 5450 goto out; 5451 } 5452 5453 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5454 trunc_range = cpos + len; 5455 5456 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) { 5457 int next_free; 5458 5459 memset(rec, 0, sizeof(*rec)); 5460 ocfs2_cleanup_merge(el, index); 5461 5462 next_free = le16_to_cpu(el->l_next_free_rec); 5463 if (is_rightmost_tree_rec && next_free > 1) { 5464 /* 5465 * We skip the edge update if this path will 5466 * be deleted by the rotate code. 5467 */ 5468 rec = &el->l_recs[next_free - 1]; 5469 ocfs2_adjust_rightmost_records(handle, et, path, 5470 rec); 5471 } 5472 } else if (le32_to_cpu(rec->e_cpos) == cpos) { 5473 /* Remove leftmost portion of the record. */ 5474 le32_add_cpu(&rec->e_cpos, len); 5475 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len)); 5476 le16_add_cpu(&rec->e_leaf_clusters, -len); 5477 } else if (rec_range == trunc_range) { 5478 /* Remove rightmost portion of the record */ 5479 le16_add_cpu(&rec->e_leaf_clusters, -len); 5480 if (is_rightmost_tree_rec) 5481 ocfs2_adjust_rightmost_records(handle, et, path, rec); 5482 } else { 5483 /* Caller should have trapped this. */ 5484 mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) " 5485 "(%u, %u)\n", 5486 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5487 le32_to_cpu(rec->e_cpos), 5488 le16_to_cpu(rec->e_leaf_clusters), cpos, len); 5489 BUG(); 5490 } 5491 5492 if (left_path) { 5493 int subtree_index; 5494 5495 subtree_index = ocfs2_find_subtree_root(et, left_path, path); 5496 ocfs2_complete_edge_insert(handle, left_path, path, 5497 subtree_index); 5498 } 5499 5500 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 5501 5502 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 5503 if (ret) { 5504 mlog_errno(ret); 5505 goto out; 5506 } 5507 5508 out: 5509 ocfs2_free_path(left_path); 5510 return ret; 5511 } 5512 5513 int ocfs2_remove_extent(handle_t *handle, 5514 struct ocfs2_extent_tree *et, 5515 u32 cpos, u32 len, 5516 struct ocfs2_alloc_context *meta_ac, 5517 struct ocfs2_cached_dealloc_ctxt *dealloc) 5518 { 5519 int ret, index; 5520 u32 rec_range, trunc_range; 5521 struct ocfs2_extent_rec *rec; 5522 struct ocfs2_extent_list *el; 5523 struct ocfs2_path *path = NULL; 5524 5525 /* 5526 * XXX: Why are we truncating to 0 instead of wherever this 5527 * affects us? 5528 */ 5529 ocfs2_et_extent_map_truncate(et, 0); 5530 5531 path = ocfs2_new_path_from_et(et); 5532 if (!path) { 5533 ret = -ENOMEM; 5534 mlog_errno(ret); 5535 goto out; 5536 } 5537 5538 ret = ocfs2_find_path(et->et_ci, path, cpos); 5539 if (ret) { 5540 mlog_errno(ret); 5541 goto out; 5542 } 5543 5544 el = path_leaf_el(path); 5545 index = ocfs2_search_extent_list(el, cpos); 5546 if (index == -1) { 5547 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5548 "Owner %llu has an extent at cpos %u which can no longer be found\n", 5549 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5550 cpos); 5551 ret = -EROFS; 5552 goto out; 5553 } 5554 5555 /* 5556 * We have 3 cases of extent removal: 5557 * 1) Range covers the entire extent rec 5558 * 2) Range begins or ends on one edge of the extent rec 5559 * 3) Range is in the middle of the extent rec (no shared edges) 5560 * 5561 * For case 1 we remove the extent rec and left rotate to 5562 * fill the hole. 5563 * 5564 * For case 2 we just shrink the existing extent rec, with a 5565 * tree update if the shrinking edge is also the edge of an 5566 * extent block. 5567 * 5568 * For case 3 we do a right split to turn the extent rec into 5569 * something case 2 can handle. 5570 */ 5571 rec = &el->l_recs[index]; 5572 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5573 trunc_range = cpos + len; 5574 5575 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range); 5576 5577 trace_ocfs2_remove_extent( 5578 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5579 cpos, len, index, le32_to_cpu(rec->e_cpos), 5580 ocfs2_rec_clusters(el, rec)); 5581 5582 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) { 5583 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc, 5584 cpos, len); 5585 if (ret) { 5586 mlog_errno(ret); 5587 goto out; 5588 } 5589 } else { 5590 ret = ocfs2_split_tree(handle, et, path, index, 5591 trunc_range, meta_ac); 5592 if (ret) { 5593 mlog_errno(ret); 5594 goto out; 5595 } 5596 5597 /* 5598 * The split could have manipulated the tree enough to 5599 * move the record location, so we have to look for it again. 5600 */ 5601 ocfs2_reinit_path(path, 1); 5602 5603 ret = ocfs2_find_path(et->et_ci, path, cpos); 5604 if (ret) { 5605 mlog_errno(ret); 5606 goto out; 5607 } 5608 5609 el = path_leaf_el(path); 5610 index = ocfs2_search_extent_list(el, cpos); 5611 if (index == -1) { 5612 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5613 "Owner %llu: split at cpos %u lost record\n", 5614 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5615 cpos); 5616 ret = -EROFS; 5617 goto out; 5618 } 5619 5620 /* 5621 * Double check our values here. If anything is fishy, 5622 * it's easier to catch it at the top level. 5623 */ 5624 rec = &el->l_recs[index]; 5625 rec_range = le32_to_cpu(rec->e_cpos) + 5626 ocfs2_rec_clusters(el, rec); 5627 if (rec_range != trunc_range) { 5628 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5629 "Owner %llu: error after split at cpos %u trunc len %u, existing record is (%u,%u)\n", 5630 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5631 cpos, len, le32_to_cpu(rec->e_cpos), 5632 ocfs2_rec_clusters(el, rec)); 5633 ret = -EROFS; 5634 goto out; 5635 } 5636 5637 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc, 5638 cpos, len); 5639 if (ret) { 5640 mlog_errno(ret); 5641 goto out; 5642 } 5643 } 5644 5645 out: 5646 ocfs2_free_path(path); 5647 return ret; 5648 } 5649 5650 /* 5651 * ocfs2_reserve_blocks_for_rec_trunc() would look basically the 5652 * same as ocfs2_lock_alloctors(), except for it accepts a blocks 5653 * number to reserve some extra blocks, and it only handles meta 5654 * data allocations. 5655 * 5656 * Currently, only ocfs2_remove_btree_range() uses it for truncating 5657 * and punching holes. 5658 */ 5659 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode, 5660 struct ocfs2_extent_tree *et, 5661 u32 extents_to_split, 5662 struct ocfs2_alloc_context **ac, 5663 int extra_blocks) 5664 { 5665 int ret = 0, num_free_extents; 5666 unsigned int max_recs_needed = 2 * extents_to_split; 5667 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5668 5669 *ac = NULL; 5670 5671 num_free_extents = ocfs2_num_free_extents(osb, et); 5672 if (num_free_extents < 0) { 5673 ret = num_free_extents; 5674 mlog_errno(ret); 5675 goto out; 5676 } 5677 5678 if (!num_free_extents || 5679 (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed)) 5680 extra_blocks += ocfs2_extend_meta_needed(et->et_root_el); 5681 5682 if (extra_blocks) { 5683 ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac); 5684 if (ret < 0) { 5685 if (ret != -ENOSPC) 5686 mlog_errno(ret); 5687 goto out; 5688 } 5689 } 5690 5691 out: 5692 if (ret) { 5693 if (*ac) { 5694 ocfs2_free_alloc_context(*ac); 5695 *ac = NULL; 5696 } 5697 } 5698 5699 return ret; 5700 } 5701 5702 int ocfs2_remove_btree_range(struct inode *inode, 5703 struct ocfs2_extent_tree *et, 5704 u32 cpos, u32 phys_cpos, u32 len, int flags, 5705 struct ocfs2_cached_dealloc_ctxt *dealloc, 5706 u64 refcount_loc, bool refcount_tree_locked) 5707 { 5708 int ret, credits = 0, extra_blocks = 0; 5709 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos); 5710 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5711 struct inode *tl_inode = osb->osb_tl_inode; 5712 handle_t *handle; 5713 struct ocfs2_alloc_context *meta_ac = NULL; 5714 struct ocfs2_refcount_tree *ref_tree = NULL; 5715 5716 if ((flags & OCFS2_EXT_REFCOUNTED) && len) { 5717 BUG_ON(!ocfs2_is_refcount_inode(inode)); 5718 5719 if (!refcount_tree_locked) { 5720 ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1, 5721 &ref_tree, NULL); 5722 if (ret) { 5723 mlog_errno(ret); 5724 goto bail; 5725 } 5726 } 5727 5728 ret = ocfs2_prepare_refcount_change_for_del(inode, 5729 refcount_loc, 5730 phys_blkno, 5731 len, 5732 &credits, 5733 &extra_blocks); 5734 if (ret < 0) { 5735 mlog_errno(ret); 5736 goto bail; 5737 } 5738 } 5739 5740 ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac, 5741 extra_blocks); 5742 if (ret) { 5743 mlog_errno(ret); 5744 goto bail; 5745 } 5746 5747 inode_lock(tl_inode); 5748 5749 if (ocfs2_truncate_log_needs_flush(osb)) { 5750 ret = __ocfs2_flush_truncate_log(osb); 5751 if (ret < 0) { 5752 mlog_errno(ret); 5753 goto out; 5754 } 5755 } 5756 5757 handle = ocfs2_start_trans(osb, 5758 ocfs2_remove_extent_credits(osb->sb) + credits); 5759 if (IS_ERR(handle)) { 5760 ret = PTR_ERR(handle); 5761 mlog_errno(ret); 5762 goto out; 5763 } 5764 5765 ret = ocfs2_et_root_journal_access(handle, et, 5766 OCFS2_JOURNAL_ACCESS_WRITE); 5767 if (ret) { 5768 mlog_errno(ret); 5769 goto out_commit; 5770 } 5771 5772 dquot_free_space_nodirty(inode, 5773 ocfs2_clusters_to_bytes(inode->i_sb, len)); 5774 5775 ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc); 5776 if (ret) { 5777 mlog_errno(ret); 5778 goto out_commit; 5779 } 5780 5781 ocfs2_et_update_clusters(et, -len); 5782 ocfs2_update_inode_fsync_trans(handle, inode, 1); 5783 5784 ocfs2_journal_dirty(handle, et->et_root_bh); 5785 5786 if (phys_blkno) { 5787 if (flags & OCFS2_EXT_REFCOUNTED) 5788 ret = ocfs2_decrease_refcount(inode, handle, 5789 ocfs2_blocks_to_clusters(osb->sb, 5790 phys_blkno), 5791 len, meta_ac, 5792 dealloc, 1); 5793 else 5794 ret = ocfs2_truncate_log_append(osb, handle, 5795 phys_blkno, len); 5796 if (ret) 5797 mlog_errno(ret); 5798 5799 } 5800 5801 out_commit: 5802 ocfs2_commit_trans(osb, handle); 5803 out: 5804 inode_unlock(tl_inode); 5805 bail: 5806 if (meta_ac) 5807 ocfs2_free_alloc_context(meta_ac); 5808 5809 if (ref_tree) 5810 ocfs2_unlock_refcount_tree(osb, ref_tree, 1); 5811 5812 return ret; 5813 } 5814 5815 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb) 5816 { 5817 struct buffer_head *tl_bh = osb->osb_tl_bh; 5818 struct ocfs2_dinode *di; 5819 struct ocfs2_truncate_log *tl; 5820 5821 di = (struct ocfs2_dinode *) tl_bh->b_data; 5822 tl = &di->id2.i_dealloc; 5823 5824 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count), 5825 "slot %d, invalid truncate log parameters: used = " 5826 "%u, count = %u\n", osb->slot_num, 5827 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count)); 5828 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count); 5829 } 5830 5831 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl, 5832 unsigned int new_start) 5833 { 5834 unsigned int tail_index; 5835 unsigned int current_tail; 5836 5837 /* No records, nothing to coalesce */ 5838 if (!le16_to_cpu(tl->tl_used)) 5839 return 0; 5840 5841 tail_index = le16_to_cpu(tl->tl_used) - 1; 5842 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start); 5843 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters); 5844 5845 return current_tail == new_start; 5846 } 5847 5848 int ocfs2_truncate_log_append(struct ocfs2_super *osb, 5849 handle_t *handle, 5850 u64 start_blk, 5851 unsigned int num_clusters) 5852 { 5853 int status, index; 5854 unsigned int start_cluster, tl_count; 5855 struct inode *tl_inode = osb->osb_tl_inode; 5856 struct buffer_head *tl_bh = osb->osb_tl_bh; 5857 struct ocfs2_dinode *di; 5858 struct ocfs2_truncate_log *tl; 5859 5860 BUG_ON(inode_trylock(tl_inode)); 5861 5862 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk); 5863 5864 di = (struct ocfs2_dinode *) tl_bh->b_data; 5865 5866 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 5867 * by the underlying call to ocfs2_read_inode_block(), so any 5868 * corruption is a code bug */ 5869 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5870 5871 tl = &di->id2.i_dealloc; 5872 tl_count = le16_to_cpu(tl->tl_count); 5873 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) || 5874 tl_count == 0, 5875 "Truncate record count on #%llu invalid " 5876 "wanted %u, actual %u\n", 5877 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5878 ocfs2_truncate_recs_per_inode(osb->sb), 5879 le16_to_cpu(tl->tl_count)); 5880 5881 /* Caller should have known to flush before calling us. */ 5882 index = le16_to_cpu(tl->tl_used); 5883 if (index >= tl_count) { 5884 status = -ENOSPC; 5885 mlog_errno(status); 5886 goto bail; 5887 } 5888 5889 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, 5890 OCFS2_JOURNAL_ACCESS_WRITE); 5891 if (status < 0) { 5892 mlog_errno(status); 5893 goto bail; 5894 } 5895 5896 trace_ocfs2_truncate_log_append( 5897 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index, 5898 start_cluster, num_clusters); 5899 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) { 5900 /* 5901 * Move index back to the record we are coalescing with. 5902 * ocfs2_truncate_log_can_coalesce() guarantees nonzero 5903 */ 5904 index--; 5905 5906 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters); 5907 trace_ocfs2_truncate_log_append( 5908 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5909 index, le32_to_cpu(tl->tl_recs[index].t_start), 5910 num_clusters); 5911 } else { 5912 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster); 5913 tl->tl_used = cpu_to_le16(index + 1); 5914 } 5915 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters); 5916 5917 ocfs2_journal_dirty(handle, tl_bh); 5918 5919 osb->truncated_clusters += num_clusters; 5920 bail: 5921 return status; 5922 } 5923 5924 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb, 5925 struct inode *data_alloc_inode, 5926 struct buffer_head *data_alloc_bh) 5927 { 5928 int status = 0; 5929 int i; 5930 unsigned int num_clusters; 5931 u64 start_blk; 5932 struct ocfs2_truncate_rec rec; 5933 struct ocfs2_dinode *di; 5934 struct ocfs2_truncate_log *tl; 5935 struct inode *tl_inode = osb->osb_tl_inode; 5936 struct buffer_head *tl_bh = osb->osb_tl_bh; 5937 handle_t *handle; 5938 5939 di = (struct ocfs2_dinode *) tl_bh->b_data; 5940 tl = &di->id2.i_dealloc; 5941 i = le16_to_cpu(tl->tl_used) - 1; 5942 while (i >= 0) { 5943 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC); 5944 if (IS_ERR(handle)) { 5945 status = PTR_ERR(handle); 5946 mlog_errno(status); 5947 goto bail; 5948 } 5949 5950 /* Caller has given us at least enough credits to 5951 * update the truncate log dinode */ 5952 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, 5953 OCFS2_JOURNAL_ACCESS_WRITE); 5954 if (status < 0) { 5955 mlog_errno(status); 5956 goto bail; 5957 } 5958 5959 tl->tl_used = cpu_to_le16(i); 5960 5961 ocfs2_journal_dirty(handle, tl_bh); 5962 5963 rec = tl->tl_recs[i]; 5964 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb, 5965 le32_to_cpu(rec.t_start)); 5966 num_clusters = le32_to_cpu(rec.t_clusters); 5967 5968 /* if start_blk is not set, we ignore the record as 5969 * invalid. */ 5970 if (start_blk) { 5971 trace_ocfs2_replay_truncate_records( 5972 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5973 i, le32_to_cpu(rec.t_start), num_clusters); 5974 5975 status = ocfs2_free_clusters(handle, data_alloc_inode, 5976 data_alloc_bh, start_blk, 5977 num_clusters); 5978 if (status < 0) { 5979 mlog_errno(status); 5980 goto bail; 5981 } 5982 } 5983 5984 ocfs2_commit_trans(osb, handle); 5985 i--; 5986 } 5987 5988 osb->truncated_clusters = 0; 5989 5990 bail: 5991 return status; 5992 } 5993 5994 /* Expects you to already be holding tl_inode->i_mutex */ 5995 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb) 5996 { 5997 int status; 5998 unsigned int num_to_flush; 5999 struct inode *tl_inode = osb->osb_tl_inode; 6000 struct inode *data_alloc_inode = NULL; 6001 struct buffer_head *tl_bh = osb->osb_tl_bh; 6002 struct buffer_head *data_alloc_bh = NULL; 6003 struct ocfs2_dinode *di; 6004 struct ocfs2_truncate_log *tl; 6005 6006 BUG_ON(inode_trylock(tl_inode)); 6007 6008 di = (struct ocfs2_dinode *) tl_bh->b_data; 6009 6010 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 6011 * by the underlying call to ocfs2_read_inode_block(), so any 6012 * corruption is a code bug */ 6013 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 6014 6015 tl = &di->id2.i_dealloc; 6016 num_to_flush = le16_to_cpu(tl->tl_used); 6017 trace_ocfs2_flush_truncate_log( 6018 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 6019 num_to_flush); 6020 if (!num_to_flush) { 6021 status = 0; 6022 goto out; 6023 } 6024 6025 data_alloc_inode = ocfs2_get_system_file_inode(osb, 6026 GLOBAL_BITMAP_SYSTEM_INODE, 6027 OCFS2_INVALID_SLOT); 6028 if (!data_alloc_inode) { 6029 status = -EINVAL; 6030 mlog(ML_ERROR, "Could not get bitmap inode!\n"); 6031 goto out; 6032 } 6033 6034 inode_lock(data_alloc_inode); 6035 6036 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1); 6037 if (status < 0) { 6038 mlog_errno(status); 6039 goto out_mutex; 6040 } 6041 6042 status = ocfs2_replay_truncate_records(osb, data_alloc_inode, 6043 data_alloc_bh); 6044 if (status < 0) 6045 mlog_errno(status); 6046 6047 brelse(data_alloc_bh); 6048 ocfs2_inode_unlock(data_alloc_inode, 1); 6049 6050 out_mutex: 6051 inode_unlock(data_alloc_inode); 6052 iput(data_alloc_inode); 6053 6054 out: 6055 return status; 6056 } 6057 6058 int ocfs2_flush_truncate_log(struct ocfs2_super *osb) 6059 { 6060 int status; 6061 struct inode *tl_inode = osb->osb_tl_inode; 6062 6063 inode_lock(tl_inode); 6064 status = __ocfs2_flush_truncate_log(osb); 6065 inode_unlock(tl_inode); 6066 6067 return status; 6068 } 6069 6070 static void ocfs2_truncate_log_worker(struct work_struct *work) 6071 { 6072 int status; 6073 struct ocfs2_super *osb = 6074 container_of(work, struct ocfs2_super, 6075 osb_truncate_log_wq.work); 6076 6077 status = ocfs2_flush_truncate_log(osb); 6078 if (status < 0) 6079 mlog_errno(status); 6080 else 6081 ocfs2_init_steal_slots(osb); 6082 } 6083 6084 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ) 6085 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb, 6086 int cancel) 6087 { 6088 if (osb->osb_tl_inode && 6089 atomic_read(&osb->osb_tl_disable) == 0) { 6090 /* We want to push off log flushes while truncates are 6091 * still running. */ 6092 if (cancel) 6093 cancel_delayed_work(&osb->osb_truncate_log_wq); 6094 6095 queue_delayed_work(osb->ocfs2_wq, &osb->osb_truncate_log_wq, 6096 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL); 6097 } 6098 } 6099 6100 /* 6101 * Try to flush truncate logs if we can free enough clusters from it. 6102 * As for return value, "< 0" means error, "0" no space and "1" means 6103 * we have freed enough spaces and let the caller try to allocate again. 6104 */ 6105 int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb, 6106 unsigned int needed) 6107 { 6108 tid_t target; 6109 int ret = 0; 6110 unsigned int truncated_clusters; 6111 6112 inode_lock(osb->osb_tl_inode); 6113 truncated_clusters = osb->truncated_clusters; 6114 inode_unlock(osb->osb_tl_inode); 6115 6116 /* 6117 * Check whether we can succeed in allocating if we free 6118 * the truncate log. 6119 */ 6120 if (truncated_clusters < needed) 6121 goto out; 6122 6123 ret = ocfs2_flush_truncate_log(osb); 6124 if (ret) { 6125 mlog_errno(ret); 6126 goto out; 6127 } 6128 6129 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) { 6130 jbd2_log_wait_commit(osb->journal->j_journal, target); 6131 ret = 1; 6132 } 6133 out: 6134 return ret; 6135 } 6136 6137 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb, 6138 int slot_num, 6139 struct inode **tl_inode, 6140 struct buffer_head **tl_bh) 6141 { 6142 int status; 6143 struct inode *inode = NULL; 6144 struct buffer_head *bh = NULL; 6145 6146 inode = ocfs2_get_system_file_inode(osb, 6147 TRUNCATE_LOG_SYSTEM_INODE, 6148 slot_num); 6149 if (!inode) { 6150 status = -EINVAL; 6151 mlog(ML_ERROR, "Could not get load truncate log inode!\n"); 6152 goto bail; 6153 } 6154 6155 status = ocfs2_read_inode_block(inode, &bh); 6156 if (status < 0) { 6157 iput(inode); 6158 mlog_errno(status); 6159 goto bail; 6160 } 6161 6162 *tl_inode = inode; 6163 *tl_bh = bh; 6164 bail: 6165 return status; 6166 } 6167 6168 /* called during the 1st stage of node recovery. we stamp a clean 6169 * truncate log and pass back a copy for processing later. if the 6170 * truncate log does not require processing, a *tl_copy is set to 6171 * NULL. */ 6172 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb, 6173 int slot_num, 6174 struct ocfs2_dinode **tl_copy) 6175 { 6176 int status; 6177 struct inode *tl_inode = NULL; 6178 struct buffer_head *tl_bh = NULL; 6179 struct ocfs2_dinode *di; 6180 struct ocfs2_truncate_log *tl; 6181 6182 *tl_copy = NULL; 6183 6184 trace_ocfs2_begin_truncate_log_recovery(slot_num); 6185 6186 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh); 6187 if (status < 0) { 6188 mlog_errno(status); 6189 goto bail; 6190 } 6191 6192 di = (struct ocfs2_dinode *) tl_bh->b_data; 6193 6194 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's 6195 * validated by the underlying call to ocfs2_read_inode_block(), 6196 * so any corruption is a code bug */ 6197 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 6198 6199 tl = &di->id2.i_dealloc; 6200 if (le16_to_cpu(tl->tl_used)) { 6201 trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl->tl_used)); 6202 6203 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL); 6204 if (!(*tl_copy)) { 6205 status = -ENOMEM; 6206 mlog_errno(status); 6207 goto bail; 6208 } 6209 6210 /* Assuming the write-out below goes well, this copy 6211 * will be passed back to recovery for processing. */ 6212 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size); 6213 6214 /* All we need to do to clear the truncate log is set 6215 * tl_used. */ 6216 tl->tl_used = 0; 6217 6218 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check); 6219 status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode)); 6220 if (status < 0) { 6221 mlog_errno(status); 6222 goto bail; 6223 } 6224 } 6225 6226 bail: 6227 iput(tl_inode); 6228 brelse(tl_bh); 6229 6230 if (status < 0) { 6231 kfree(*tl_copy); 6232 *tl_copy = NULL; 6233 mlog_errno(status); 6234 } 6235 6236 return status; 6237 } 6238 6239 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb, 6240 struct ocfs2_dinode *tl_copy) 6241 { 6242 int status = 0; 6243 int i; 6244 unsigned int clusters, num_recs, start_cluster; 6245 u64 start_blk; 6246 handle_t *handle; 6247 struct inode *tl_inode = osb->osb_tl_inode; 6248 struct ocfs2_truncate_log *tl; 6249 6250 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) { 6251 mlog(ML_ERROR, "Asked to recover my own truncate log!\n"); 6252 return -EINVAL; 6253 } 6254 6255 tl = &tl_copy->id2.i_dealloc; 6256 num_recs = le16_to_cpu(tl->tl_used); 6257 trace_ocfs2_complete_truncate_log_recovery( 6258 (unsigned long long)le64_to_cpu(tl_copy->i_blkno), 6259 num_recs); 6260 6261 inode_lock(tl_inode); 6262 for(i = 0; i < num_recs; i++) { 6263 if (ocfs2_truncate_log_needs_flush(osb)) { 6264 status = __ocfs2_flush_truncate_log(osb); 6265 if (status < 0) { 6266 mlog_errno(status); 6267 goto bail_up; 6268 } 6269 } 6270 6271 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6272 if (IS_ERR(handle)) { 6273 status = PTR_ERR(handle); 6274 mlog_errno(status); 6275 goto bail_up; 6276 } 6277 6278 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters); 6279 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start); 6280 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster); 6281 6282 status = ocfs2_truncate_log_append(osb, handle, 6283 start_blk, clusters); 6284 ocfs2_commit_trans(osb, handle); 6285 if (status < 0) { 6286 mlog_errno(status); 6287 goto bail_up; 6288 } 6289 } 6290 6291 bail_up: 6292 inode_unlock(tl_inode); 6293 6294 return status; 6295 } 6296 6297 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb) 6298 { 6299 int status; 6300 struct inode *tl_inode = osb->osb_tl_inode; 6301 6302 atomic_set(&osb->osb_tl_disable, 1); 6303 6304 if (tl_inode) { 6305 cancel_delayed_work(&osb->osb_truncate_log_wq); 6306 flush_workqueue(osb->ocfs2_wq); 6307 6308 status = ocfs2_flush_truncate_log(osb); 6309 if (status < 0) 6310 mlog_errno(status); 6311 6312 brelse(osb->osb_tl_bh); 6313 iput(osb->osb_tl_inode); 6314 } 6315 } 6316 6317 int ocfs2_truncate_log_init(struct ocfs2_super *osb) 6318 { 6319 int status; 6320 struct inode *tl_inode = NULL; 6321 struct buffer_head *tl_bh = NULL; 6322 6323 status = ocfs2_get_truncate_log_info(osb, 6324 osb->slot_num, 6325 &tl_inode, 6326 &tl_bh); 6327 if (status < 0) 6328 mlog_errno(status); 6329 6330 /* ocfs2_truncate_log_shutdown keys on the existence of 6331 * osb->osb_tl_inode so we don't set any of the osb variables 6332 * until we're sure all is well. */ 6333 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq, 6334 ocfs2_truncate_log_worker); 6335 atomic_set(&osb->osb_tl_disable, 0); 6336 osb->osb_tl_bh = tl_bh; 6337 osb->osb_tl_inode = tl_inode; 6338 6339 return status; 6340 } 6341 6342 /* 6343 * Delayed de-allocation of suballocator blocks. 6344 * 6345 * Some sets of block de-allocations might involve multiple suballocator inodes. 6346 * 6347 * The locking for this can get extremely complicated, especially when 6348 * the suballocator inodes to delete from aren't known until deep 6349 * within an unrelated codepath. 6350 * 6351 * ocfs2_extent_block structures are a good example of this - an inode 6352 * btree could have been grown by any number of nodes each allocating 6353 * out of their own suballoc inode. 6354 * 6355 * These structures allow the delay of block de-allocation until a 6356 * later time, when locking of multiple cluster inodes won't cause 6357 * deadlock. 6358 */ 6359 6360 /* 6361 * Describe a single bit freed from a suballocator. For the block 6362 * suballocators, it represents one block. For the global cluster 6363 * allocator, it represents some clusters and free_bit indicates 6364 * clusters number. 6365 */ 6366 struct ocfs2_cached_block_free { 6367 struct ocfs2_cached_block_free *free_next; 6368 u64 free_bg; 6369 u64 free_blk; 6370 unsigned int free_bit; 6371 }; 6372 6373 struct ocfs2_per_slot_free_list { 6374 struct ocfs2_per_slot_free_list *f_next_suballocator; 6375 int f_inode_type; 6376 int f_slot; 6377 struct ocfs2_cached_block_free *f_first; 6378 }; 6379 6380 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb, 6381 int sysfile_type, 6382 int slot, 6383 struct ocfs2_cached_block_free *head) 6384 { 6385 int ret; 6386 u64 bg_blkno; 6387 handle_t *handle; 6388 struct inode *inode; 6389 struct buffer_head *di_bh = NULL; 6390 struct ocfs2_cached_block_free *tmp; 6391 6392 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot); 6393 if (!inode) { 6394 ret = -EINVAL; 6395 mlog_errno(ret); 6396 goto out; 6397 } 6398 6399 inode_lock(inode); 6400 6401 ret = ocfs2_inode_lock(inode, &di_bh, 1); 6402 if (ret) { 6403 mlog_errno(ret); 6404 goto out_mutex; 6405 } 6406 6407 while (head) { 6408 if (head->free_bg) 6409 bg_blkno = head->free_bg; 6410 else 6411 bg_blkno = ocfs2_which_suballoc_group(head->free_blk, 6412 head->free_bit); 6413 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE); 6414 if (IS_ERR(handle)) { 6415 ret = PTR_ERR(handle); 6416 mlog_errno(ret); 6417 goto out_unlock; 6418 } 6419 6420 trace_ocfs2_free_cached_blocks( 6421 (unsigned long long)head->free_blk, head->free_bit); 6422 6423 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh, 6424 head->free_bit, bg_blkno, 1); 6425 if (ret) 6426 mlog_errno(ret); 6427 6428 ocfs2_commit_trans(osb, handle); 6429 6430 tmp = head; 6431 head = head->free_next; 6432 kfree(tmp); 6433 } 6434 6435 out_unlock: 6436 ocfs2_inode_unlock(inode, 1); 6437 brelse(di_bh); 6438 out_mutex: 6439 inode_unlock(inode); 6440 iput(inode); 6441 out: 6442 while(head) { 6443 /* Premature exit may have left some dangling items. */ 6444 tmp = head; 6445 head = head->free_next; 6446 kfree(tmp); 6447 } 6448 6449 return ret; 6450 } 6451 6452 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6453 u64 blkno, unsigned int bit) 6454 { 6455 int ret = 0; 6456 struct ocfs2_cached_block_free *item; 6457 6458 item = kzalloc(sizeof(*item), GFP_NOFS); 6459 if (item == NULL) { 6460 ret = -ENOMEM; 6461 mlog_errno(ret); 6462 return ret; 6463 } 6464 6465 trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno, bit); 6466 6467 item->free_blk = blkno; 6468 item->free_bit = bit; 6469 item->free_next = ctxt->c_global_allocator; 6470 6471 ctxt->c_global_allocator = item; 6472 return ret; 6473 } 6474 6475 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb, 6476 struct ocfs2_cached_block_free *head) 6477 { 6478 struct ocfs2_cached_block_free *tmp; 6479 struct inode *tl_inode = osb->osb_tl_inode; 6480 handle_t *handle; 6481 int ret = 0; 6482 6483 inode_lock(tl_inode); 6484 6485 while (head) { 6486 if (ocfs2_truncate_log_needs_flush(osb)) { 6487 ret = __ocfs2_flush_truncate_log(osb); 6488 if (ret < 0) { 6489 mlog_errno(ret); 6490 break; 6491 } 6492 } 6493 6494 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6495 if (IS_ERR(handle)) { 6496 ret = PTR_ERR(handle); 6497 mlog_errno(ret); 6498 break; 6499 } 6500 6501 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk, 6502 head->free_bit); 6503 6504 ocfs2_commit_trans(osb, handle); 6505 tmp = head; 6506 head = head->free_next; 6507 kfree(tmp); 6508 6509 if (ret < 0) { 6510 mlog_errno(ret); 6511 break; 6512 } 6513 } 6514 6515 inode_unlock(tl_inode); 6516 6517 while (head) { 6518 /* Premature exit may have left some dangling items. */ 6519 tmp = head; 6520 head = head->free_next; 6521 kfree(tmp); 6522 } 6523 6524 return ret; 6525 } 6526 6527 int ocfs2_run_deallocs(struct ocfs2_super *osb, 6528 struct ocfs2_cached_dealloc_ctxt *ctxt) 6529 { 6530 int ret = 0, ret2; 6531 struct ocfs2_per_slot_free_list *fl; 6532 6533 if (!ctxt) 6534 return 0; 6535 6536 while (ctxt->c_first_suballocator) { 6537 fl = ctxt->c_first_suballocator; 6538 6539 if (fl->f_first) { 6540 trace_ocfs2_run_deallocs(fl->f_inode_type, 6541 fl->f_slot); 6542 ret2 = ocfs2_free_cached_blocks(osb, 6543 fl->f_inode_type, 6544 fl->f_slot, 6545 fl->f_first); 6546 if (ret2) 6547 mlog_errno(ret2); 6548 if (!ret) 6549 ret = ret2; 6550 } 6551 6552 ctxt->c_first_suballocator = fl->f_next_suballocator; 6553 kfree(fl); 6554 } 6555 6556 if (ctxt->c_global_allocator) { 6557 ret2 = ocfs2_free_cached_clusters(osb, 6558 ctxt->c_global_allocator); 6559 if (ret2) 6560 mlog_errno(ret2); 6561 if (!ret) 6562 ret = ret2; 6563 6564 ctxt->c_global_allocator = NULL; 6565 } 6566 6567 return ret; 6568 } 6569 6570 static struct ocfs2_per_slot_free_list * 6571 ocfs2_find_per_slot_free_list(int type, 6572 int slot, 6573 struct ocfs2_cached_dealloc_ctxt *ctxt) 6574 { 6575 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; 6576 6577 while (fl) { 6578 if (fl->f_inode_type == type && fl->f_slot == slot) 6579 return fl; 6580 6581 fl = fl->f_next_suballocator; 6582 } 6583 6584 fl = kmalloc(sizeof(*fl), GFP_NOFS); 6585 if (fl) { 6586 fl->f_inode_type = type; 6587 fl->f_slot = slot; 6588 fl->f_first = NULL; 6589 fl->f_next_suballocator = ctxt->c_first_suballocator; 6590 6591 ctxt->c_first_suballocator = fl; 6592 } 6593 return fl; 6594 } 6595 6596 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6597 int type, int slot, u64 suballoc, 6598 u64 blkno, unsigned int bit) 6599 { 6600 int ret; 6601 struct ocfs2_per_slot_free_list *fl; 6602 struct ocfs2_cached_block_free *item; 6603 6604 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt); 6605 if (fl == NULL) { 6606 ret = -ENOMEM; 6607 mlog_errno(ret); 6608 goto out; 6609 } 6610 6611 item = kzalloc(sizeof(*item), GFP_NOFS); 6612 if (item == NULL) { 6613 ret = -ENOMEM; 6614 mlog_errno(ret); 6615 goto out; 6616 } 6617 6618 trace_ocfs2_cache_block_dealloc(type, slot, 6619 (unsigned long long)suballoc, 6620 (unsigned long long)blkno, bit); 6621 6622 item->free_bg = suballoc; 6623 item->free_blk = blkno; 6624 item->free_bit = bit; 6625 item->free_next = fl->f_first; 6626 6627 fl->f_first = item; 6628 6629 ret = 0; 6630 out: 6631 return ret; 6632 } 6633 6634 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 6635 struct ocfs2_extent_block *eb) 6636 { 6637 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE, 6638 le16_to_cpu(eb->h_suballoc_slot), 6639 le64_to_cpu(eb->h_suballoc_loc), 6640 le64_to_cpu(eb->h_blkno), 6641 le16_to_cpu(eb->h_suballoc_bit)); 6642 } 6643 6644 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh) 6645 { 6646 set_buffer_uptodate(bh); 6647 mark_buffer_dirty(bh); 6648 return 0; 6649 } 6650 6651 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle, 6652 unsigned int from, unsigned int to, 6653 struct page *page, int zero, u64 *phys) 6654 { 6655 int ret, partial = 0; 6656 6657 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0); 6658 if (ret) 6659 mlog_errno(ret); 6660 6661 if (zero) 6662 zero_user_segment(page, from, to); 6663 6664 /* 6665 * Need to set the buffers we zero'd into uptodate 6666 * here if they aren't - ocfs2_map_page_blocks() 6667 * might've skipped some 6668 */ 6669 ret = walk_page_buffers(handle, page_buffers(page), 6670 from, to, &partial, 6671 ocfs2_zero_func); 6672 if (ret < 0) 6673 mlog_errno(ret); 6674 else if (ocfs2_should_order_data(inode)) { 6675 ret = ocfs2_jbd2_file_inode(handle, inode); 6676 if (ret < 0) 6677 mlog_errno(ret); 6678 } 6679 6680 if (!partial) 6681 SetPageUptodate(page); 6682 6683 flush_dcache_page(page); 6684 } 6685 6686 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start, 6687 loff_t end, struct page **pages, 6688 int numpages, u64 phys, handle_t *handle) 6689 { 6690 int i; 6691 struct page *page; 6692 unsigned int from, to = PAGE_SIZE; 6693 struct super_block *sb = inode->i_sb; 6694 6695 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb))); 6696 6697 if (numpages == 0) 6698 goto out; 6699 6700 to = PAGE_SIZE; 6701 for(i = 0; i < numpages; i++) { 6702 page = pages[i]; 6703 6704 from = start & (PAGE_SIZE - 1); 6705 if ((end >> PAGE_SHIFT) == page->index) 6706 to = end & (PAGE_SIZE - 1); 6707 6708 BUG_ON(from > PAGE_SIZE); 6709 BUG_ON(to > PAGE_SIZE); 6710 6711 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1, 6712 &phys); 6713 6714 start = (page->index + 1) << PAGE_SHIFT; 6715 } 6716 out: 6717 if (pages) 6718 ocfs2_unlock_and_free_pages(pages, numpages); 6719 } 6720 6721 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end, 6722 struct page **pages, int *num) 6723 { 6724 int numpages, ret = 0; 6725 struct address_space *mapping = inode->i_mapping; 6726 unsigned long index; 6727 loff_t last_page_bytes; 6728 6729 BUG_ON(start > end); 6730 6731 numpages = 0; 6732 last_page_bytes = PAGE_ALIGN(end); 6733 index = start >> PAGE_SHIFT; 6734 do { 6735 pages[numpages] = find_or_create_page(mapping, index, GFP_NOFS); 6736 if (!pages[numpages]) { 6737 ret = -ENOMEM; 6738 mlog_errno(ret); 6739 goto out; 6740 } 6741 6742 numpages++; 6743 index++; 6744 } while (index < (last_page_bytes >> PAGE_SHIFT)); 6745 6746 out: 6747 if (ret != 0) { 6748 if (pages) 6749 ocfs2_unlock_and_free_pages(pages, numpages); 6750 numpages = 0; 6751 } 6752 6753 *num = numpages; 6754 6755 return ret; 6756 } 6757 6758 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end, 6759 struct page **pages, int *num) 6760 { 6761 struct super_block *sb = inode->i_sb; 6762 6763 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits != 6764 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits); 6765 6766 return ocfs2_grab_pages(inode, start, end, pages, num); 6767 } 6768 6769 /* 6770 * Zero the area past i_size but still within an allocated 6771 * cluster. This avoids exposing nonzero data on subsequent file 6772 * extends. 6773 * 6774 * We need to call this before i_size is updated on the inode because 6775 * otherwise block_write_full_page() will skip writeout of pages past 6776 * i_size. The new_i_size parameter is passed for this reason. 6777 */ 6778 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle, 6779 u64 range_start, u64 range_end) 6780 { 6781 int ret = 0, numpages; 6782 struct page **pages = NULL; 6783 u64 phys; 6784 unsigned int ext_flags; 6785 struct super_block *sb = inode->i_sb; 6786 6787 /* 6788 * File systems which don't support sparse files zero on every 6789 * extend. 6790 */ 6791 if (!ocfs2_sparse_alloc(OCFS2_SB(sb))) 6792 return 0; 6793 6794 pages = kcalloc(ocfs2_pages_per_cluster(sb), 6795 sizeof(struct page *), GFP_NOFS); 6796 if (pages == NULL) { 6797 ret = -ENOMEM; 6798 mlog_errno(ret); 6799 goto out; 6800 } 6801 6802 if (range_start == range_end) 6803 goto out; 6804 6805 ret = ocfs2_extent_map_get_blocks(inode, 6806 range_start >> sb->s_blocksize_bits, 6807 &phys, NULL, &ext_flags); 6808 if (ret) { 6809 mlog_errno(ret); 6810 goto out; 6811 } 6812 6813 /* 6814 * Tail is a hole, or is marked unwritten. In either case, we 6815 * can count on read and write to return/push zero's. 6816 */ 6817 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN) 6818 goto out; 6819 6820 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages, 6821 &numpages); 6822 if (ret) { 6823 mlog_errno(ret); 6824 goto out; 6825 } 6826 6827 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages, 6828 numpages, phys, handle); 6829 6830 /* 6831 * Initiate writeout of the pages we zero'd here. We don't 6832 * wait on them - the truncate_inode_pages() call later will 6833 * do that for us. 6834 */ 6835 ret = filemap_fdatawrite_range(inode->i_mapping, range_start, 6836 range_end - 1); 6837 if (ret) 6838 mlog_errno(ret); 6839 6840 out: 6841 kfree(pages); 6842 6843 return ret; 6844 } 6845 6846 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode, 6847 struct ocfs2_dinode *di) 6848 { 6849 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits; 6850 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size); 6851 6852 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL) 6853 memset(&di->id2, 0, blocksize - 6854 offsetof(struct ocfs2_dinode, id2) - 6855 xattrsize); 6856 else 6857 memset(&di->id2, 0, blocksize - 6858 offsetof(struct ocfs2_dinode, id2)); 6859 } 6860 6861 void ocfs2_dinode_new_extent_list(struct inode *inode, 6862 struct ocfs2_dinode *di) 6863 { 6864 ocfs2_zero_dinode_id2_with_xattr(inode, di); 6865 di->id2.i_list.l_tree_depth = 0; 6866 di->id2.i_list.l_next_free_rec = 0; 6867 di->id2.i_list.l_count = cpu_to_le16( 6868 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di)); 6869 } 6870 6871 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di) 6872 { 6873 struct ocfs2_inode_info *oi = OCFS2_I(inode); 6874 struct ocfs2_inline_data *idata = &di->id2.i_data; 6875 6876 spin_lock(&oi->ip_lock); 6877 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL; 6878 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 6879 spin_unlock(&oi->ip_lock); 6880 6881 /* 6882 * We clear the entire i_data structure here so that all 6883 * fields can be properly initialized. 6884 */ 6885 ocfs2_zero_dinode_id2_with_xattr(inode, di); 6886 6887 idata->id_count = cpu_to_le16( 6888 ocfs2_max_inline_data_with_xattr(inode->i_sb, di)); 6889 } 6890 6891 int ocfs2_convert_inline_data_to_extents(struct inode *inode, 6892 struct buffer_head *di_bh) 6893 { 6894 int ret, i, has_data, num_pages = 0; 6895 int need_free = 0; 6896 u32 bit_off, num; 6897 handle_t *handle; 6898 u64 uninitialized_var(block); 6899 struct ocfs2_inode_info *oi = OCFS2_I(inode); 6900 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 6901 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 6902 struct ocfs2_alloc_context *data_ac = NULL; 6903 struct page **pages = NULL; 6904 loff_t end = osb->s_clustersize; 6905 struct ocfs2_extent_tree et; 6906 int did_quota = 0; 6907 6908 has_data = i_size_read(inode) ? 1 : 0; 6909 6910 if (has_data) { 6911 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb), 6912 sizeof(struct page *), GFP_NOFS); 6913 if (pages == NULL) { 6914 ret = -ENOMEM; 6915 mlog_errno(ret); 6916 return ret; 6917 } 6918 6919 ret = ocfs2_reserve_clusters(osb, 1, &data_ac); 6920 if (ret) { 6921 mlog_errno(ret); 6922 goto free_pages; 6923 } 6924 } 6925 6926 handle = ocfs2_start_trans(osb, 6927 ocfs2_inline_to_extents_credits(osb->sb)); 6928 if (IS_ERR(handle)) { 6929 ret = PTR_ERR(handle); 6930 mlog_errno(ret); 6931 goto out; 6932 } 6933 6934 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 6935 OCFS2_JOURNAL_ACCESS_WRITE); 6936 if (ret) { 6937 mlog_errno(ret); 6938 goto out_commit; 6939 } 6940 6941 if (has_data) { 6942 unsigned int page_end; 6943 u64 phys; 6944 6945 ret = dquot_alloc_space_nodirty(inode, 6946 ocfs2_clusters_to_bytes(osb->sb, 1)); 6947 if (ret) 6948 goto out_commit; 6949 did_quota = 1; 6950 6951 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 6952 6953 ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off, 6954 &num); 6955 if (ret) { 6956 mlog_errno(ret); 6957 goto out_commit; 6958 } 6959 6960 /* 6961 * Save two copies, one for insert, and one that can 6962 * be changed by ocfs2_map_and_dirty_page() below. 6963 */ 6964 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off); 6965 6966 /* 6967 * Non sparse file systems zero on extend, so no need 6968 * to do that now. 6969 */ 6970 if (!ocfs2_sparse_alloc(osb) && 6971 PAGE_SIZE < osb->s_clustersize) 6972 end = PAGE_SIZE; 6973 6974 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages); 6975 if (ret) { 6976 mlog_errno(ret); 6977 need_free = 1; 6978 goto out_commit; 6979 } 6980 6981 /* 6982 * This should populate the 1st page for us and mark 6983 * it up to date. 6984 */ 6985 ret = ocfs2_read_inline_data(inode, pages[0], di_bh); 6986 if (ret) { 6987 mlog_errno(ret); 6988 need_free = 1; 6989 goto out_unlock; 6990 } 6991 6992 page_end = PAGE_SIZE; 6993 if (PAGE_SIZE > osb->s_clustersize) 6994 page_end = osb->s_clustersize; 6995 6996 for (i = 0; i < num_pages; i++) 6997 ocfs2_map_and_dirty_page(inode, handle, 0, page_end, 6998 pages[i], i > 0, &phys); 6999 } 7000 7001 spin_lock(&oi->ip_lock); 7002 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL; 7003 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 7004 spin_unlock(&oi->ip_lock); 7005 7006 ocfs2_update_inode_fsync_trans(handle, inode, 1); 7007 ocfs2_dinode_new_extent_list(inode, di); 7008 7009 ocfs2_journal_dirty(handle, di_bh); 7010 7011 if (has_data) { 7012 /* 7013 * An error at this point should be extremely rare. If 7014 * this proves to be false, we could always re-build 7015 * the in-inode data from our pages. 7016 */ 7017 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 7018 ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL); 7019 if (ret) { 7020 mlog_errno(ret); 7021 need_free = 1; 7022 goto out_unlock; 7023 } 7024 7025 inode->i_blocks = ocfs2_inode_sector_count(inode); 7026 } 7027 7028 out_unlock: 7029 if (pages) 7030 ocfs2_unlock_and_free_pages(pages, num_pages); 7031 7032 out_commit: 7033 if (ret < 0 && did_quota) 7034 dquot_free_space_nodirty(inode, 7035 ocfs2_clusters_to_bytes(osb->sb, 1)); 7036 7037 if (need_free) { 7038 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL) 7039 ocfs2_free_local_alloc_bits(osb, handle, data_ac, 7040 bit_off, num); 7041 else 7042 ocfs2_free_clusters(handle, 7043 data_ac->ac_inode, 7044 data_ac->ac_bh, 7045 ocfs2_clusters_to_blocks(osb->sb, bit_off), 7046 num); 7047 } 7048 7049 ocfs2_commit_trans(osb, handle); 7050 7051 out: 7052 if (data_ac) 7053 ocfs2_free_alloc_context(data_ac); 7054 free_pages: 7055 kfree(pages); 7056 return ret; 7057 } 7058 7059 /* 7060 * It is expected, that by the time you call this function, 7061 * inode->i_size and fe->i_size have been adjusted. 7062 * 7063 * WARNING: This will kfree the truncate context 7064 */ 7065 int ocfs2_commit_truncate(struct ocfs2_super *osb, 7066 struct inode *inode, 7067 struct buffer_head *di_bh) 7068 { 7069 int status = 0, i, flags = 0; 7070 u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff; 7071 u64 blkno = 0; 7072 struct ocfs2_extent_list *el; 7073 struct ocfs2_extent_rec *rec; 7074 struct ocfs2_path *path = NULL; 7075 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7076 struct ocfs2_extent_list *root_el = &(di->id2.i_list); 7077 u64 refcount_loc = le64_to_cpu(di->i_refcount_loc); 7078 struct ocfs2_extent_tree et; 7079 struct ocfs2_cached_dealloc_ctxt dealloc; 7080 struct ocfs2_refcount_tree *ref_tree = NULL; 7081 7082 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 7083 ocfs2_init_dealloc_ctxt(&dealloc); 7084 7085 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb, 7086 i_size_read(inode)); 7087 7088 path = ocfs2_new_path(di_bh, &di->id2.i_list, 7089 ocfs2_journal_access_di); 7090 if (!path) { 7091 status = -ENOMEM; 7092 mlog_errno(status); 7093 goto bail; 7094 } 7095 7096 ocfs2_extent_map_trunc(inode, new_highest_cpos); 7097 7098 start: 7099 /* 7100 * Check that we still have allocation to delete. 7101 */ 7102 if (OCFS2_I(inode)->ip_clusters == 0) { 7103 status = 0; 7104 goto bail; 7105 } 7106 7107 /* 7108 * Truncate always works against the rightmost tree branch. 7109 */ 7110 status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX); 7111 if (status) { 7112 mlog_errno(status); 7113 goto bail; 7114 } 7115 7116 trace_ocfs2_commit_truncate( 7117 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7118 new_highest_cpos, 7119 OCFS2_I(inode)->ip_clusters, 7120 path->p_tree_depth); 7121 7122 /* 7123 * By now, el will point to the extent list on the bottom most 7124 * portion of this tree. Only the tail record is considered in 7125 * each pass. 7126 * 7127 * We handle the following cases, in order: 7128 * - empty extent: delete the remaining branch 7129 * - remove the entire record 7130 * - remove a partial record 7131 * - no record needs to be removed (truncate has completed) 7132 */ 7133 el = path_leaf_el(path); 7134 if (le16_to_cpu(el->l_next_free_rec) == 0) { 7135 ocfs2_error(inode->i_sb, 7136 "Inode %llu has empty extent block at %llu\n", 7137 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7138 (unsigned long long)path_leaf_bh(path)->b_blocknr); 7139 status = -EROFS; 7140 goto bail; 7141 } 7142 7143 i = le16_to_cpu(el->l_next_free_rec) - 1; 7144 rec = &el->l_recs[i]; 7145 flags = rec->e_flags; 7146 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 7147 7148 if (i == 0 && ocfs2_is_empty_extent(rec)) { 7149 /* 7150 * Lower levels depend on this never happening, but it's best 7151 * to check it up here before changing the tree. 7152 */ 7153 if (root_el->l_tree_depth && rec->e_int_clusters == 0) { 7154 mlog(ML_ERROR, "Inode %lu has an empty " 7155 "extent record, depth %u\n", inode->i_ino, 7156 le16_to_cpu(root_el->l_tree_depth)); 7157 status = ocfs2_remove_rightmost_empty_extent(osb, 7158 &et, path, &dealloc); 7159 if (status) { 7160 mlog_errno(status); 7161 goto bail; 7162 } 7163 7164 ocfs2_reinit_path(path, 1); 7165 goto start; 7166 } else { 7167 trunc_cpos = le32_to_cpu(rec->e_cpos); 7168 trunc_len = 0; 7169 blkno = 0; 7170 } 7171 } else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) { 7172 /* 7173 * Truncate entire record. 7174 */ 7175 trunc_cpos = le32_to_cpu(rec->e_cpos); 7176 trunc_len = ocfs2_rec_clusters(el, rec); 7177 blkno = le64_to_cpu(rec->e_blkno); 7178 } else if (range > new_highest_cpos) { 7179 /* 7180 * Partial truncate. it also should be 7181 * the last truncate we're doing. 7182 */ 7183 trunc_cpos = new_highest_cpos; 7184 trunc_len = range - new_highest_cpos; 7185 coff = new_highest_cpos - le32_to_cpu(rec->e_cpos); 7186 blkno = le64_to_cpu(rec->e_blkno) + 7187 ocfs2_clusters_to_blocks(inode->i_sb, coff); 7188 } else { 7189 /* 7190 * Truncate completed, leave happily. 7191 */ 7192 status = 0; 7193 goto bail; 7194 } 7195 7196 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 7197 7198 if ((flags & OCFS2_EXT_REFCOUNTED) && trunc_len && !ref_tree) { 7199 status = ocfs2_lock_refcount_tree(osb, refcount_loc, 1, 7200 &ref_tree, NULL); 7201 if (status) { 7202 mlog_errno(status); 7203 goto bail; 7204 } 7205 } 7206 7207 status = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 7208 phys_cpos, trunc_len, flags, &dealloc, 7209 refcount_loc, true); 7210 if (status < 0) { 7211 mlog_errno(status); 7212 goto bail; 7213 } 7214 7215 ocfs2_reinit_path(path, 1); 7216 7217 /* 7218 * The check above will catch the case where we've truncated 7219 * away all allocation. 7220 */ 7221 goto start; 7222 7223 bail: 7224 if (ref_tree) 7225 ocfs2_unlock_refcount_tree(osb, ref_tree, 1); 7226 7227 ocfs2_schedule_truncate_log_flush(osb, 1); 7228 7229 ocfs2_run_deallocs(osb, &dealloc); 7230 7231 ocfs2_free_path(path); 7232 7233 return status; 7234 } 7235 7236 /* 7237 * 'start' is inclusive, 'end' is not. 7238 */ 7239 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh, 7240 unsigned int start, unsigned int end, int trunc) 7241 { 7242 int ret; 7243 unsigned int numbytes; 7244 handle_t *handle; 7245 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 7246 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7247 struct ocfs2_inline_data *idata = &di->id2.i_data; 7248 7249 if (end > i_size_read(inode)) 7250 end = i_size_read(inode); 7251 7252 BUG_ON(start > end); 7253 7254 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) || 7255 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) || 7256 !ocfs2_supports_inline_data(osb)) { 7257 ocfs2_error(inode->i_sb, 7258 "Inline data flags for inode %llu don't agree! Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n", 7259 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7260 le16_to_cpu(di->i_dyn_features), 7261 OCFS2_I(inode)->ip_dyn_features, 7262 osb->s_feature_incompat); 7263 ret = -EROFS; 7264 goto out; 7265 } 7266 7267 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 7268 if (IS_ERR(handle)) { 7269 ret = PTR_ERR(handle); 7270 mlog_errno(ret); 7271 goto out; 7272 } 7273 7274 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 7275 OCFS2_JOURNAL_ACCESS_WRITE); 7276 if (ret) { 7277 mlog_errno(ret); 7278 goto out_commit; 7279 } 7280 7281 numbytes = end - start; 7282 memset(idata->id_data + start, 0, numbytes); 7283 7284 /* 7285 * No need to worry about the data page here - it's been 7286 * truncated already and inline data doesn't need it for 7287 * pushing zero's to disk, so we'll let readpage pick it up 7288 * later. 7289 */ 7290 if (trunc) { 7291 i_size_write(inode, start); 7292 di->i_size = cpu_to_le64(start); 7293 } 7294 7295 inode->i_blocks = ocfs2_inode_sector_count(inode); 7296 inode->i_ctime = inode->i_mtime = current_time(inode); 7297 7298 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 7299 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 7300 7301 ocfs2_update_inode_fsync_trans(handle, inode, 1); 7302 ocfs2_journal_dirty(handle, di_bh); 7303 7304 out_commit: 7305 ocfs2_commit_trans(osb, handle); 7306 7307 out: 7308 return ret; 7309 } 7310 7311 static int ocfs2_trim_extent(struct super_block *sb, 7312 struct ocfs2_group_desc *gd, 7313 u32 start, u32 count) 7314 { 7315 u64 discard, bcount; 7316 7317 bcount = ocfs2_clusters_to_blocks(sb, count); 7318 discard = le64_to_cpu(gd->bg_blkno) + 7319 ocfs2_clusters_to_blocks(sb, start); 7320 7321 trace_ocfs2_trim_extent(sb, (unsigned long long)discard, bcount); 7322 7323 return sb_issue_discard(sb, discard, bcount, GFP_NOFS, 0); 7324 } 7325 7326 static int ocfs2_trim_group(struct super_block *sb, 7327 struct ocfs2_group_desc *gd, 7328 u32 start, u32 max, u32 minbits) 7329 { 7330 int ret = 0, count = 0, next; 7331 void *bitmap = gd->bg_bitmap; 7332 7333 if (le16_to_cpu(gd->bg_free_bits_count) < minbits) 7334 return 0; 7335 7336 trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd->bg_blkno), 7337 start, max, minbits); 7338 7339 while (start < max) { 7340 start = ocfs2_find_next_zero_bit(bitmap, max, start); 7341 if (start >= max) 7342 break; 7343 next = ocfs2_find_next_bit(bitmap, max, start); 7344 7345 if ((next - start) >= minbits) { 7346 ret = ocfs2_trim_extent(sb, gd, 7347 start, next - start); 7348 if (ret < 0) { 7349 mlog_errno(ret); 7350 break; 7351 } 7352 count += next - start; 7353 } 7354 start = next + 1; 7355 7356 if (fatal_signal_pending(current)) { 7357 count = -ERESTARTSYS; 7358 break; 7359 } 7360 7361 if ((le16_to_cpu(gd->bg_free_bits_count) - count) < minbits) 7362 break; 7363 } 7364 7365 if (ret < 0) 7366 count = ret; 7367 7368 return count; 7369 } 7370 7371 int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range) 7372 { 7373 struct ocfs2_super *osb = OCFS2_SB(sb); 7374 u64 start, len, trimmed, first_group, last_group, group; 7375 int ret, cnt; 7376 u32 first_bit, last_bit, minlen; 7377 struct buffer_head *main_bm_bh = NULL; 7378 struct inode *main_bm_inode = NULL; 7379 struct buffer_head *gd_bh = NULL; 7380 struct ocfs2_dinode *main_bm; 7381 struct ocfs2_group_desc *gd = NULL; 7382 7383 start = range->start >> osb->s_clustersize_bits; 7384 len = range->len >> osb->s_clustersize_bits; 7385 minlen = range->minlen >> osb->s_clustersize_bits; 7386 7387 if (minlen >= osb->bitmap_cpg || range->len < sb->s_blocksize) 7388 return -EINVAL; 7389 7390 main_bm_inode = ocfs2_get_system_file_inode(osb, 7391 GLOBAL_BITMAP_SYSTEM_INODE, 7392 OCFS2_INVALID_SLOT); 7393 if (!main_bm_inode) { 7394 ret = -EIO; 7395 mlog_errno(ret); 7396 goto out; 7397 } 7398 7399 inode_lock(main_bm_inode); 7400 7401 ret = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 0); 7402 if (ret < 0) { 7403 mlog_errno(ret); 7404 goto out_mutex; 7405 } 7406 main_bm = (struct ocfs2_dinode *)main_bm_bh->b_data; 7407 7408 if (start >= le32_to_cpu(main_bm->i_clusters)) { 7409 ret = -EINVAL; 7410 goto out_unlock; 7411 } 7412 7413 len = range->len >> osb->s_clustersize_bits; 7414 if (start + len > le32_to_cpu(main_bm->i_clusters)) 7415 len = le32_to_cpu(main_bm->i_clusters) - start; 7416 7417 trace_ocfs2_trim_fs(start, len, minlen); 7418 7419 /* Determine first and last group to examine based on start and len */ 7420 first_group = ocfs2_which_cluster_group(main_bm_inode, start); 7421 if (first_group == osb->first_cluster_group_blkno) 7422 first_bit = start; 7423 else 7424 first_bit = start - ocfs2_blocks_to_clusters(sb, first_group); 7425 last_group = ocfs2_which_cluster_group(main_bm_inode, start + len - 1); 7426 last_bit = osb->bitmap_cpg; 7427 7428 trimmed = 0; 7429 for (group = first_group; group <= last_group;) { 7430 if (first_bit + len >= osb->bitmap_cpg) 7431 last_bit = osb->bitmap_cpg; 7432 else 7433 last_bit = first_bit + len; 7434 7435 ret = ocfs2_read_group_descriptor(main_bm_inode, 7436 main_bm, group, 7437 &gd_bh); 7438 if (ret < 0) { 7439 mlog_errno(ret); 7440 break; 7441 } 7442 7443 gd = (struct ocfs2_group_desc *)gd_bh->b_data; 7444 cnt = ocfs2_trim_group(sb, gd, first_bit, last_bit, minlen); 7445 brelse(gd_bh); 7446 gd_bh = NULL; 7447 if (cnt < 0) { 7448 ret = cnt; 7449 mlog_errno(ret); 7450 break; 7451 } 7452 7453 trimmed += cnt; 7454 len -= osb->bitmap_cpg - first_bit; 7455 first_bit = 0; 7456 if (group == osb->first_cluster_group_blkno) 7457 group = ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg); 7458 else 7459 group += ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg); 7460 } 7461 range->len = trimmed * sb->s_blocksize; 7462 out_unlock: 7463 ocfs2_inode_unlock(main_bm_inode, 0); 7464 brelse(main_bm_bh); 7465 out_mutex: 7466 inode_unlock(main_bm_inode); 7467 iput(main_bm_inode); 7468 out: 7469 return ret; 7470 } 7471