1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * alloc.c 5 * 6 * Extent allocs and frees 7 * 8 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/swap.h> 31 #include <linux/quotaops.h> 32 33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC 34 #include <cluster/masklog.h> 35 36 #include "ocfs2.h" 37 38 #include "alloc.h" 39 #include "aops.h" 40 #include "blockcheck.h" 41 #include "dlmglue.h" 42 #include "extent_map.h" 43 #include "inode.h" 44 #include "journal.h" 45 #include "localalloc.h" 46 #include "suballoc.h" 47 #include "sysfile.h" 48 #include "file.h" 49 #include "super.h" 50 #include "uptodate.h" 51 #include "xattr.h" 52 #include "refcounttree.h" 53 54 #include "buffer_head_io.h" 55 56 enum ocfs2_contig_type { 57 CONTIG_NONE = 0, 58 CONTIG_LEFT, 59 CONTIG_RIGHT, 60 CONTIG_LEFTRIGHT, 61 }; 62 63 static enum ocfs2_contig_type 64 ocfs2_extent_rec_contig(struct super_block *sb, 65 struct ocfs2_extent_rec *ext, 66 struct ocfs2_extent_rec *insert_rec); 67 /* 68 * Operations for a specific extent tree type. 69 * 70 * To implement an on-disk btree (extent tree) type in ocfs2, add 71 * an ocfs2_extent_tree_operations structure and the matching 72 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it 73 * for the allocation portion of the extent tree. 74 */ 75 struct ocfs2_extent_tree_operations { 76 /* 77 * last_eb_blk is the block number of the right most leaf extent 78 * block. Most on-disk structures containing an extent tree store 79 * this value for fast access. The ->eo_set_last_eb_blk() and 80 * ->eo_get_last_eb_blk() operations access this value. They are 81 * both required. 82 */ 83 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et, 84 u64 blkno); 85 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et); 86 87 /* 88 * The on-disk structure usually keeps track of how many total 89 * clusters are stored in this extent tree. This function updates 90 * that value. new_clusters is the delta, and must be 91 * added to the total. Required. 92 */ 93 void (*eo_update_clusters)(struct ocfs2_extent_tree *et, 94 u32 new_clusters); 95 96 /* 97 * If this extent tree is supported by an extent map, insert 98 * a record into the map. 99 */ 100 void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et, 101 struct ocfs2_extent_rec *rec); 102 103 /* 104 * If this extent tree is supported by an extent map, truncate the 105 * map to clusters, 106 */ 107 void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et, 108 u32 clusters); 109 110 /* 111 * If ->eo_insert_check() exists, it is called before rec is 112 * inserted into the extent tree. It is optional. 113 */ 114 int (*eo_insert_check)(struct ocfs2_extent_tree *et, 115 struct ocfs2_extent_rec *rec); 116 int (*eo_sanity_check)(struct ocfs2_extent_tree *et); 117 118 /* 119 * -------------------------------------------------------------- 120 * The remaining are internal to ocfs2_extent_tree and don't have 121 * accessor functions 122 */ 123 124 /* 125 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el. 126 * It is required. 127 */ 128 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et); 129 130 /* 131 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if 132 * it exists. If it does not, et->et_max_leaf_clusters is set 133 * to 0 (unlimited). Optional. 134 */ 135 void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et); 136 137 /* 138 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec 139 * are contiguous or not. Optional. Don't need to set it if use 140 * ocfs2_extent_rec as the tree leaf. 141 */ 142 enum ocfs2_contig_type 143 (*eo_extent_contig)(struct ocfs2_extent_tree *et, 144 struct ocfs2_extent_rec *ext, 145 struct ocfs2_extent_rec *insert_rec); 146 }; 147 148 149 /* 150 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check 151 * in the methods. 152 */ 153 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et); 154 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 155 u64 blkno); 156 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, 157 u32 clusters); 158 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et, 159 struct ocfs2_extent_rec *rec); 160 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et, 161 u32 clusters); 162 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, 163 struct ocfs2_extent_rec *rec); 164 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et); 165 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et); 166 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = { 167 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk, 168 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk, 169 .eo_update_clusters = ocfs2_dinode_update_clusters, 170 .eo_extent_map_insert = ocfs2_dinode_extent_map_insert, 171 .eo_extent_map_truncate = ocfs2_dinode_extent_map_truncate, 172 .eo_insert_check = ocfs2_dinode_insert_check, 173 .eo_sanity_check = ocfs2_dinode_sanity_check, 174 .eo_fill_root_el = ocfs2_dinode_fill_root_el, 175 }; 176 177 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 178 u64 blkno) 179 { 180 struct ocfs2_dinode *di = et->et_object; 181 182 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 183 di->i_last_eb_blk = cpu_to_le64(blkno); 184 } 185 186 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et) 187 { 188 struct ocfs2_dinode *di = et->et_object; 189 190 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 191 return le64_to_cpu(di->i_last_eb_blk); 192 } 193 194 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, 195 u32 clusters) 196 { 197 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); 198 struct ocfs2_dinode *di = et->et_object; 199 200 le32_add_cpu(&di->i_clusters, clusters); 201 spin_lock(&oi->ip_lock); 202 oi->ip_clusters = le32_to_cpu(di->i_clusters); 203 spin_unlock(&oi->ip_lock); 204 } 205 206 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et, 207 struct ocfs2_extent_rec *rec) 208 { 209 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode; 210 211 ocfs2_extent_map_insert_rec(inode, rec); 212 } 213 214 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et, 215 u32 clusters) 216 { 217 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode; 218 219 ocfs2_extent_map_trunc(inode, clusters); 220 } 221 222 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, 223 struct ocfs2_extent_rec *rec) 224 { 225 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); 226 struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb); 227 228 BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL); 229 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) && 230 (oi->ip_clusters != le32_to_cpu(rec->e_cpos)), 231 "Device %s, asking for sparse allocation: inode %llu, " 232 "cpos %u, clusters %u\n", 233 osb->dev_str, 234 (unsigned long long)oi->ip_blkno, 235 rec->e_cpos, oi->ip_clusters); 236 237 return 0; 238 } 239 240 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et) 241 { 242 struct ocfs2_dinode *di = et->et_object; 243 244 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 245 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 246 247 return 0; 248 } 249 250 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et) 251 { 252 struct ocfs2_dinode *di = et->et_object; 253 254 et->et_root_el = &di->id2.i_list; 255 } 256 257 258 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et) 259 { 260 struct ocfs2_xattr_value_buf *vb = et->et_object; 261 262 et->et_root_el = &vb->vb_xv->xr_list; 263 } 264 265 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et, 266 u64 blkno) 267 { 268 struct ocfs2_xattr_value_buf *vb = et->et_object; 269 270 vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno); 271 } 272 273 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et) 274 { 275 struct ocfs2_xattr_value_buf *vb = et->et_object; 276 277 return le64_to_cpu(vb->vb_xv->xr_last_eb_blk); 278 } 279 280 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et, 281 u32 clusters) 282 { 283 struct ocfs2_xattr_value_buf *vb = et->et_object; 284 285 le32_add_cpu(&vb->vb_xv->xr_clusters, clusters); 286 } 287 288 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = { 289 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk, 290 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk, 291 .eo_update_clusters = ocfs2_xattr_value_update_clusters, 292 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el, 293 }; 294 295 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et) 296 { 297 struct ocfs2_xattr_block *xb = et->et_object; 298 299 et->et_root_el = &xb->xb_attrs.xb_root.xt_list; 300 } 301 302 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et) 303 { 304 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 305 et->et_max_leaf_clusters = 306 ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE); 307 } 308 309 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 310 u64 blkno) 311 { 312 struct ocfs2_xattr_block *xb = et->et_object; 313 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 314 315 xt->xt_last_eb_blk = cpu_to_le64(blkno); 316 } 317 318 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 319 { 320 struct ocfs2_xattr_block *xb = et->et_object; 321 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 322 323 return le64_to_cpu(xt->xt_last_eb_blk); 324 } 325 326 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et, 327 u32 clusters) 328 { 329 struct ocfs2_xattr_block *xb = et->et_object; 330 331 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters); 332 } 333 334 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = { 335 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk, 336 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk, 337 .eo_update_clusters = ocfs2_xattr_tree_update_clusters, 338 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el, 339 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters, 340 }; 341 342 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et, 343 u64 blkno) 344 { 345 struct ocfs2_dx_root_block *dx_root = et->et_object; 346 347 dx_root->dr_last_eb_blk = cpu_to_le64(blkno); 348 } 349 350 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et) 351 { 352 struct ocfs2_dx_root_block *dx_root = et->et_object; 353 354 return le64_to_cpu(dx_root->dr_last_eb_blk); 355 } 356 357 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et, 358 u32 clusters) 359 { 360 struct ocfs2_dx_root_block *dx_root = et->et_object; 361 362 le32_add_cpu(&dx_root->dr_clusters, clusters); 363 } 364 365 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et) 366 { 367 struct ocfs2_dx_root_block *dx_root = et->et_object; 368 369 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root)); 370 371 return 0; 372 } 373 374 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et) 375 { 376 struct ocfs2_dx_root_block *dx_root = et->et_object; 377 378 et->et_root_el = &dx_root->dr_list; 379 } 380 381 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = { 382 .eo_set_last_eb_blk = ocfs2_dx_root_set_last_eb_blk, 383 .eo_get_last_eb_blk = ocfs2_dx_root_get_last_eb_blk, 384 .eo_update_clusters = ocfs2_dx_root_update_clusters, 385 .eo_sanity_check = ocfs2_dx_root_sanity_check, 386 .eo_fill_root_el = ocfs2_dx_root_fill_root_el, 387 }; 388 389 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et) 390 { 391 struct ocfs2_refcount_block *rb = et->et_object; 392 393 et->et_root_el = &rb->rf_list; 394 } 395 396 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 397 u64 blkno) 398 { 399 struct ocfs2_refcount_block *rb = et->et_object; 400 401 rb->rf_last_eb_blk = cpu_to_le64(blkno); 402 } 403 404 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 405 { 406 struct ocfs2_refcount_block *rb = et->et_object; 407 408 return le64_to_cpu(rb->rf_last_eb_blk); 409 } 410 411 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et, 412 u32 clusters) 413 { 414 struct ocfs2_refcount_block *rb = et->et_object; 415 416 le32_add_cpu(&rb->rf_clusters, clusters); 417 } 418 419 static enum ocfs2_contig_type 420 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et, 421 struct ocfs2_extent_rec *ext, 422 struct ocfs2_extent_rec *insert_rec) 423 { 424 return CONTIG_NONE; 425 } 426 427 static struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = { 428 .eo_set_last_eb_blk = ocfs2_refcount_tree_set_last_eb_blk, 429 .eo_get_last_eb_blk = ocfs2_refcount_tree_get_last_eb_blk, 430 .eo_update_clusters = ocfs2_refcount_tree_update_clusters, 431 .eo_fill_root_el = ocfs2_refcount_tree_fill_root_el, 432 .eo_extent_contig = ocfs2_refcount_tree_extent_contig, 433 }; 434 435 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et, 436 struct ocfs2_caching_info *ci, 437 struct buffer_head *bh, 438 ocfs2_journal_access_func access, 439 void *obj, 440 struct ocfs2_extent_tree_operations *ops) 441 { 442 et->et_ops = ops; 443 et->et_root_bh = bh; 444 et->et_ci = ci; 445 et->et_root_journal_access = access; 446 if (!obj) 447 obj = (void *)bh->b_data; 448 et->et_object = obj; 449 450 et->et_ops->eo_fill_root_el(et); 451 if (!et->et_ops->eo_fill_max_leaf_clusters) 452 et->et_max_leaf_clusters = 0; 453 else 454 et->et_ops->eo_fill_max_leaf_clusters(et); 455 } 456 457 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et, 458 struct ocfs2_caching_info *ci, 459 struct buffer_head *bh) 460 { 461 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di, 462 NULL, &ocfs2_dinode_et_ops); 463 } 464 465 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et, 466 struct ocfs2_caching_info *ci, 467 struct buffer_head *bh) 468 { 469 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb, 470 NULL, &ocfs2_xattr_tree_et_ops); 471 } 472 473 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et, 474 struct ocfs2_caching_info *ci, 475 struct ocfs2_xattr_value_buf *vb) 476 { 477 __ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb, 478 &ocfs2_xattr_value_et_ops); 479 } 480 481 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et, 482 struct ocfs2_caching_info *ci, 483 struct buffer_head *bh) 484 { 485 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr, 486 NULL, &ocfs2_dx_root_et_ops); 487 } 488 489 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et, 490 struct ocfs2_caching_info *ci, 491 struct buffer_head *bh) 492 { 493 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb, 494 NULL, &ocfs2_refcount_tree_et_ops); 495 } 496 497 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et, 498 u64 new_last_eb_blk) 499 { 500 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk); 501 } 502 503 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et) 504 { 505 return et->et_ops->eo_get_last_eb_blk(et); 506 } 507 508 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et, 509 u32 clusters) 510 { 511 et->et_ops->eo_update_clusters(et, clusters); 512 } 513 514 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et, 515 struct ocfs2_extent_rec *rec) 516 { 517 if (et->et_ops->eo_extent_map_insert) 518 et->et_ops->eo_extent_map_insert(et, rec); 519 } 520 521 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et, 522 u32 clusters) 523 { 524 if (et->et_ops->eo_extent_map_truncate) 525 et->et_ops->eo_extent_map_truncate(et, clusters); 526 } 527 528 static inline int ocfs2_et_root_journal_access(handle_t *handle, 529 struct ocfs2_extent_tree *et, 530 int type) 531 { 532 return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh, 533 type); 534 } 535 536 static inline enum ocfs2_contig_type 537 ocfs2_et_extent_contig(struct ocfs2_extent_tree *et, 538 struct ocfs2_extent_rec *rec, 539 struct ocfs2_extent_rec *insert_rec) 540 { 541 if (et->et_ops->eo_extent_contig) 542 return et->et_ops->eo_extent_contig(et, rec, insert_rec); 543 544 return ocfs2_extent_rec_contig( 545 ocfs2_metadata_cache_get_super(et->et_ci), 546 rec, insert_rec); 547 } 548 549 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et, 550 struct ocfs2_extent_rec *rec) 551 { 552 int ret = 0; 553 554 if (et->et_ops->eo_insert_check) 555 ret = et->et_ops->eo_insert_check(et, rec); 556 return ret; 557 } 558 559 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et) 560 { 561 int ret = 0; 562 563 if (et->et_ops->eo_sanity_check) 564 ret = et->et_ops->eo_sanity_check(et); 565 return ret; 566 } 567 568 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc); 569 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 570 struct ocfs2_extent_block *eb); 571 static void ocfs2_adjust_rightmost_records(handle_t *handle, 572 struct ocfs2_extent_tree *et, 573 struct ocfs2_path *path, 574 struct ocfs2_extent_rec *insert_rec); 575 /* 576 * Reset the actual path elements so that we can re-use the structure 577 * to build another path. Generally, this involves freeing the buffer 578 * heads. 579 */ 580 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root) 581 { 582 int i, start = 0, depth = 0; 583 struct ocfs2_path_item *node; 584 585 if (keep_root) 586 start = 1; 587 588 for(i = start; i < path_num_items(path); i++) { 589 node = &path->p_node[i]; 590 591 brelse(node->bh); 592 node->bh = NULL; 593 node->el = NULL; 594 } 595 596 /* 597 * Tree depth may change during truncate, or insert. If we're 598 * keeping the root extent list, then make sure that our path 599 * structure reflects the proper depth. 600 */ 601 if (keep_root) 602 depth = le16_to_cpu(path_root_el(path)->l_tree_depth); 603 else 604 path_root_access(path) = NULL; 605 606 path->p_tree_depth = depth; 607 } 608 609 void ocfs2_free_path(struct ocfs2_path *path) 610 { 611 if (path) { 612 ocfs2_reinit_path(path, 0); 613 kfree(path); 614 } 615 } 616 617 /* 618 * All the elements of src into dest. After this call, src could be freed 619 * without affecting dest. 620 * 621 * Both paths should have the same root. Any non-root elements of dest 622 * will be freed. 623 */ 624 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src) 625 { 626 int i; 627 628 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 629 BUG_ON(path_root_el(dest) != path_root_el(src)); 630 BUG_ON(path_root_access(dest) != path_root_access(src)); 631 632 ocfs2_reinit_path(dest, 1); 633 634 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 635 dest->p_node[i].bh = src->p_node[i].bh; 636 dest->p_node[i].el = src->p_node[i].el; 637 638 if (dest->p_node[i].bh) 639 get_bh(dest->p_node[i].bh); 640 } 641 } 642 643 /* 644 * Make the *dest path the same as src and re-initialize src path to 645 * have a root only. 646 */ 647 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src) 648 { 649 int i; 650 651 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 652 BUG_ON(path_root_access(dest) != path_root_access(src)); 653 654 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 655 brelse(dest->p_node[i].bh); 656 657 dest->p_node[i].bh = src->p_node[i].bh; 658 dest->p_node[i].el = src->p_node[i].el; 659 660 src->p_node[i].bh = NULL; 661 src->p_node[i].el = NULL; 662 } 663 } 664 665 /* 666 * Insert an extent block at given index. 667 * 668 * This will not take an additional reference on eb_bh. 669 */ 670 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index, 671 struct buffer_head *eb_bh) 672 { 673 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data; 674 675 /* 676 * Right now, no root bh is an extent block, so this helps 677 * catch code errors with dinode trees. The assertion can be 678 * safely removed if we ever need to insert extent block 679 * structures at the root. 680 */ 681 BUG_ON(index == 0); 682 683 path->p_node[index].bh = eb_bh; 684 path->p_node[index].el = &eb->h_list; 685 } 686 687 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh, 688 struct ocfs2_extent_list *root_el, 689 ocfs2_journal_access_func access) 690 { 691 struct ocfs2_path *path; 692 693 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH); 694 695 path = kzalloc(sizeof(*path), GFP_NOFS); 696 if (path) { 697 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth); 698 get_bh(root_bh); 699 path_root_bh(path) = root_bh; 700 path_root_el(path) = root_el; 701 path_root_access(path) = access; 702 } 703 704 return path; 705 } 706 707 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path) 708 { 709 return ocfs2_new_path(path_root_bh(path), path_root_el(path), 710 path_root_access(path)); 711 } 712 713 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et) 714 { 715 return ocfs2_new_path(et->et_root_bh, et->et_root_el, 716 et->et_root_journal_access); 717 } 718 719 /* 720 * Journal the buffer at depth idx. All idx>0 are extent_blocks, 721 * otherwise it's the root_access function. 722 * 723 * I don't like the way this function's name looks next to 724 * ocfs2_journal_access_path(), but I don't have a better one. 725 */ 726 int ocfs2_path_bh_journal_access(handle_t *handle, 727 struct ocfs2_caching_info *ci, 728 struct ocfs2_path *path, 729 int idx) 730 { 731 ocfs2_journal_access_func access = path_root_access(path); 732 733 if (!access) 734 access = ocfs2_journal_access; 735 736 if (idx) 737 access = ocfs2_journal_access_eb; 738 739 return access(handle, ci, path->p_node[idx].bh, 740 OCFS2_JOURNAL_ACCESS_WRITE); 741 } 742 743 /* 744 * Convenience function to journal all components in a path. 745 */ 746 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci, 747 handle_t *handle, 748 struct ocfs2_path *path) 749 { 750 int i, ret = 0; 751 752 if (!path) 753 goto out; 754 755 for(i = 0; i < path_num_items(path); i++) { 756 ret = ocfs2_path_bh_journal_access(handle, ci, path, i); 757 if (ret < 0) { 758 mlog_errno(ret); 759 goto out; 760 } 761 } 762 763 out: 764 return ret; 765 } 766 767 /* 768 * Return the index of the extent record which contains cluster #v_cluster. 769 * -1 is returned if it was not found. 770 * 771 * Should work fine on interior and exterior nodes. 772 */ 773 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster) 774 { 775 int ret = -1; 776 int i; 777 struct ocfs2_extent_rec *rec; 778 u32 rec_end, rec_start, clusters; 779 780 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 781 rec = &el->l_recs[i]; 782 783 rec_start = le32_to_cpu(rec->e_cpos); 784 clusters = ocfs2_rec_clusters(el, rec); 785 786 rec_end = rec_start + clusters; 787 788 if (v_cluster >= rec_start && v_cluster < rec_end) { 789 ret = i; 790 break; 791 } 792 } 793 794 return ret; 795 } 796 797 /* 798 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and 799 * ocfs2_extent_rec_contig only work properly against leaf nodes! 800 */ 801 static int ocfs2_block_extent_contig(struct super_block *sb, 802 struct ocfs2_extent_rec *ext, 803 u64 blkno) 804 { 805 u64 blk_end = le64_to_cpu(ext->e_blkno); 806 807 blk_end += ocfs2_clusters_to_blocks(sb, 808 le16_to_cpu(ext->e_leaf_clusters)); 809 810 return blkno == blk_end; 811 } 812 813 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left, 814 struct ocfs2_extent_rec *right) 815 { 816 u32 left_range; 817 818 left_range = le32_to_cpu(left->e_cpos) + 819 le16_to_cpu(left->e_leaf_clusters); 820 821 return (left_range == le32_to_cpu(right->e_cpos)); 822 } 823 824 static enum ocfs2_contig_type 825 ocfs2_extent_rec_contig(struct super_block *sb, 826 struct ocfs2_extent_rec *ext, 827 struct ocfs2_extent_rec *insert_rec) 828 { 829 u64 blkno = le64_to_cpu(insert_rec->e_blkno); 830 831 /* 832 * Refuse to coalesce extent records with different flag 833 * fields - we don't want to mix unwritten extents with user 834 * data. 835 */ 836 if (ext->e_flags != insert_rec->e_flags) 837 return CONTIG_NONE; 838 839 if (ocfs2_extents_adjacent(ext, insert_rec) && 840 ocfs2_block_extent_contig(sb, ext, blkno)) 841 return CONTIG_RIGHT; 842 843 blkno = le64_to_cpu(ext->e_blkno); 844 if (ocfs2_extents_adjacent(insert_rec, ext) && 845 ocfs2_block_extent_contig(sb, insert_rec, blkno)) 846 return CONTIG_LEFT; 847 848 return CONTIG_NONE; 849 } 850 851 /* 852 * NOTE: We can have pretty much any combination of contiguousness and 853 * appending. 854 * 855 * The usefulness of APPEND_TAIL is more in that it lets us know that 856 * we'll have to update the path to that leaf. 857 */ 858 enum ocfs2_append_type { 859 APPEND_NONE = 0, 860 APPEND_TAIL, 861 }; 862 863 enum ocfs2_split_type { 864 SPLIT_NONE = 0, 865 SPLIT_LEFT, 866 SPLIT_RIGHT, 867 }; 868 869 struct ocfs2_insert_type { 870 enum ocfs2_split_type ins_split; 871 enum ocfs2_append_type ins_appending; 872 enum ocfs2_contig_type ins_contig; 873 int ins_contig_index; 874 int ins_tree_depth; 875 }; 876 877 struct ocfs2_merge_ctxt { 878 enum ocfs2_contig_type c_contig_type; 879 int c_has_empty_extent; 880 int c_split_covers_rec; 881 }; 882 883 static int ocfs2_validate_extent_block(struct super_block *sb, 884 struct buffer_head *bh) 885 { 886 int rc; 887 struct ocfs2_extent_block *eb = 888 (struct ocfs2_extent_block *)bh->b_data; 889 890 mlog(0, "Validating extent block %llu\n", 891 (unsigned long long)bh->b_blocknr); 892 893 BUG_ON(!buffer_uptodate(bh)); 894 895 /* 896 * If the ecc fails, we return the error but otherwise 897 * leave the filesystem running. We know any error is 898 * local to this block. 899 */ 900 rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check); 901 if (rc) { 902 mlog(ML_ERROR, "Checksum failed for extent block %llu\n", 903 (unsigned long long)bh->b_blocknr); 904 return rc; 905 } 906 907 /* 908 * Errors after here are fatal. 909 */ 910 911 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 912 ocfs2_error(sb, 913 "Extent block #%llu has bad signature %.*s", 914 (unsigned long long)bh->b_blocknr, 7, 915 eb->h_signature); 916 return -EINVAL; 917 } 918 919 if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) { 920 ocfs2_error(sb, 921 "Extent block #%llu has an invalid h_blkno " 922 "of %llu", 923 (unsigned long long)bh->b_blocknr, 924 (unsigned long long)le64_to_cpu(eb->h_blkno)); 925 return -EINVAL; 926 } 927 928 if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) { 929 ocfs2_error(sb, 930 "Extent block #%llu has an invalid " 931 "h_fs_generation of #%u", 932 (unsigned long long)bh->b_blocknr, 933 le32_to_cpu(eb->h_fs_generation)); 934 return -EINVAL; 935 } 936 937 return 0; 938 } 939 940 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno, 941 struct buffer_head **bh) 942 { 943 int rc; 944 struct buffer_head *tmp = *bh; 945 946 rc = ocfs2_read_block(ci, eb_blkno, &tmp, 947 ocfs2_validate_extent_block); 948 949 /* If ocfs2_read_block() got us a new bh, pass it up. */ 950 if (!rc && !*bh) 951 *bh = tmp; 952 953 return rc; 954 } 955 956 957 /* 958 * How many free extents have we got before we need more meta data? 959 */ 960 int ocfs2_num_free_extents(struct ocfs2_super *osb, 961 struct ocfs2_extent_tree *et) 962 { 963 int retval; 964 struct ocfs2_extent_list *el = NULL; 965 struct ocfs2_extent_block *eb; 966 struct buffer_head *eb_bh = NULL; 967 u64 last_eb_blk = 0; 968 969 mlog_entry_void(); 970 971 el = et->et_root_el; 972 last_eb_blk = ocfs2_et_get_last_eb_blk(et); 973 974 if (last_eb_blk) { 975 retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk, 976 &eb_bh); 977 if (retval < 0) { 978 mlog_errno(retval); 979 goto bail; 980 } 981 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 982 el = &eb->h_list; 983 } 984 985 BUG_ON(el->l_tree_depth != 0); 986 987 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec); 988 bail: 989 brelse(eb_bh); 990 991 mlog_exit(retval); 992 return retval; 993 } 994 995 /* expects array to already be allocated 996 * 997 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and 998 * l_count for you 999 */ 1000 static int ocfs2_create_new_meta_bhs(handle_t *handle, 1001 struct ocfs2_extent_tree *et, 1002 int wanted, 1003 struct ocfs2_alloc_context *meta_ac, 1004 struct buffer_head *bhs[]) 1005 { 1006 int count, status, i; 1007 u16 suballoc_bit_start; 1008 u32 num_got; 1009 u64 first_blkno; 1010 struct ocfs2_super *osb = 1011 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 1012 struct ocfs2_extent_block *eb; 1013 1014 mlog_entry_void(); 1015 1016 count = 0; 1017 while (count < wanted) { 1018 status = ocfs2_claim_metadata(osb, 1019 handle, 1020 meta_ac, 1021 wanted - count, 1022 &suballoc_bit_start, 1023 &num_got, 1024 &first_blkno); 1025 if (status < 0) { 1026 mlog_errno(status); 1027 goto bail; 1028 } 1029 1030 for(i = count; i < (num_got + count); i++) { 1031 bhs[i] = sb_getblk(osb->sb, first_blkno); 1032 if (bhs[i] == NULL) { 1033 status = -EIO; 1034 mlog_errno(status); 1035 goto bail; 1036 } 1037 ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]); 1038 1039 status = ocfs2_journal_access_eb(handle, et->et_ci, 1040 bhs[i], 1041 OCFS2_JOURNAL_ACCESS_CREATE); 1042 if (status < 0) { 1043 mlog_errno(status); 1044 goto bail; 1045 } 1046 1047 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize); 1048 eb = (struct ocfs2_extent_block *) bhs[i]->b_data; 1049 /* Ok, setup the minimal stuff here. */ 1050 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); 1051 eb->h_blkno = cpu_to_le64(first_blkno); 1052 eb->h_fs_generation = cpu_to_le32(osb->fs_generation); 1053 eb->h_suballoc_slot = cpu_to_le16(osb->slot_num); 1054 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start); 1055 eb->h_list.l_count = 1056 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); 1057 1058 suballoc_bit_start++; 1059 first_blkno++; 1060 1061 /* We'll also be dirtied by the caller, so 1062 * this isn't absolutely necessary. */ 1063 status = ocfs2_journal_dirty(handle, bhs[i]); 1064 if (status < 0) { 1065 mlog_errno(status); 1066 goto bail; 1067 } 1068 } 1069 1070 count += num_got; 1071 } 1072 1073 status = 0; 1074 bail: 1075 if (status < 0) { 1076 for(i = 0; i < wanted; i++) { 1077 brelse(bhs[i]); 1078 bhs[i] = NULL; 1079 } 1080 } 1081 mlog_exit(status); 1082 return status; 1083 } 1084 1085 /* 1086 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth(). 1087 * 1088 * Returns the sum of the rightmost extent rec logical offset and 1089 * cluster count. 1090 * 1091 * ocfs2_add_branch() uses this to determine what logical cluster 1092 * value should be populated into the leftmost new branch records. 1093 * 1094 * ocfs2_shift_tree_depth() uses this to determine the # clusters 1095 * value for the new topmost tree record. 1096 */ 1097 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el) 1098 { 1099 int i; 1100 1101 i = le16_to_cpu(el->l_next_free_rec) - 1; 1102 1103 return le32_to_cpu(el->l_recs[i].e_cpos) + 1104 ocfs2_rec_clusters(el, &el->l_recs[i]); 1105 } 1106 1107 /* 1108 * Change range of the branches in the right most path according to the leaf 1109 * extent block's rightmost record. 1110 */ 1111 static int ocfs2_adjust_rightmost_branch(handle_t *handle, 1112 struct ocfs2_extent_tree *et) 1113 { 1114 int status; 1115 struct ocfs2_path *path = NULL; 1116 struct ocfs2_extent_list *el; 1117 struct ocfs2_extent_rec *rec; 1118 1119 path = ocfs2_new_path_from_et(et); 1120 if (!path) { 1121 status = -ENOMEM; 1122 return status; 1123 } 1124 1125 status = ocfs2_find_path(et->et_ci, path, UINT_MAX); 1126 if (status < 0) { 1127 mlog_errno(status); 1128 goto out; 1129 } 1130 1131 status = ocfs2_extend_trans(handle, path_num_items(path) + 1132 handle->h_buffer_credits); 1133 if (status < 0) { 1134 mlog_errno(status); 1135 goto out; 1136 } 1137 1138 status = ocfs2_journal_access_path(et->et_ci, handle, path); 1139 if (status < 0) { 1140 mlog_errno(status); 1141 goto out; 1142 } 1143 1144 el = path_leaf_el(path); 1145 rec = &el->l_recs[le32_to_cpu(el->l_next_free_rec) - 1]; 1146 1147 ocfs2_adjust_rightmost_records(handle, et, path, rec); 1148 1149 out: 1150 ocfs2_free_path(path); 1151 return status; 1152 } 1153 1154 /* 1155 * Add an entire tree branch to our inode. eb_bh is the extent block 1156 * to start at, if we don't want to start the branch at the root 1157 * structure. 1158 * 1159 * last_eb_bh is required as we have to update it's next_leaf pointer 1160 * for the new last extent block. 1161 * 1162 * the new branch will be 'empty' in the sense that every block will 1163 * contain a single record with cluster count == 0. 1164 */ 1165 static int ocfs2_add_branch(handle_t *handle, 1166 struct ocfs2_extent_tree *et, 1167 struct buffer_head *eb_bh, 1168 struct buffer_head **last_eb_bh, 1169 struct ocfs2_alloc_context *meta_ac) 1170 { 1171 int status, new_blocks, i; 1172 u64 next_blkno, new_last_eb_blk; 1173 struct buffer_head *bh; 1174 struct buffer_head **new_eb_bhs = NULL; 1175 struct ocfs2_extent_block *eb; 1176 struct ocfs2_extent_list *eb_el; 1177 struct ocfs2_extent_list *el; 1178 u32 new_cpos, root_end; 1179 1180 mlog_entry_void(); 1181 1182 BUG_ON(!last_eb_bh || !*last_eb_bh); 1183 1184 if (eb_bh) { 1185 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 1186 el = &eb->h_list; 1187 } else 1188 el = et->et_root_el; 1189 1190 /* we never add a branch to a leaf. */ 1191 BUG_ON(!el->l_tree_depth); 1192 1193 new_blocks = le16_to_cpu(el->l_tree_depth); 1194 1195 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data; 1196 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list); 1197 root_end = ocfs2_sum_rightmost_rec(et->et_root_el); 1198 1199 /* 1200 * If there is a gap before the root end and the real end 1201 * of the righmost leaf block, we need to remove the gap 1202 * between new_cpos and root_end first so that the tree 1203 * is consistent after we add a new branch(it will start 1204 * from new_cpos). 1205 */ 1206 if (root_end > new_cpos) { 1207 mlog(0, "adjust the cluster end from %u to %u\n", 1208 root_end, new_cpos); 1209 status = ocfs2_adjust_rightmost_branch(handle, et); 1210 if (status) { 1211 mlog_errno(status); 1212 goto bail; 1213 } 1214 } 1215 1216 /* allocate the number of new eb blocks we need */ 1217 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *), 1218 GFP_KERNEL); 1219 if (!new_eb_bhs) { 1220 status = -ENOMEM; 1221 mlog_errno(status); 1222 goto bail; 1223 } 1224 1225 status = ocfs2_create_new_meta_bhs(handle, et, new_blocks, 1226 meta_ac, new_eb_bhs); 1227 if (status < 0) { 1228 mlog_errno(status); 1229 goto bail; 1230 } 1231 1232 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be 1233 * linked with the rest of the tree. 1234 * conversly, new_eb_bhs[0] is the new bottommost leaf. 1235 * 1236 * when we leave the loop, new_last_eb_blk will point to the 1237 * newest leaf, and next_blkno will point to the topmost extent 1238 * block. */ 1239 next_blkno = new_last_eb_blk = 0; 1240 for(i = 0; i < new_blocks; i++) { 1241 bh = new_eb_bhs[i]; 1242 eb = (struct ocfs2_extent_block *) bh->b_data; 1243 /* ocfs2_create_new_meta_bhs() should create it right! */ 1244 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1245 eb_el = &eb->h_list; 1246 1247 status = ocfs2_journal_access_eb(handle, et->et_ci, bh, 1248 OCFS2_JOURNAL_ACCESS_CREATE); 1249 if (status < 0) { 1250 mlog_errno(status); 1251 goto bail; 1252 } 1253 1254 eb->h_next_leaf_blk = 0; 1255 eb_el->l_tree_depth = cpu_to_le16(i); 1256 eb_el->l_next_free_rec = cpu_to_le16(1); 1257 /* 1258 * This actually counts as an empty extent as 1259 * c_clusters == 0 1260 */ 1261 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos); 1262 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno); 1263 /* 1264 * eb_el isn't always an interior node, but even leaf 1265 * nodes want a zero'd flags and reserved field so 1266 * this gets the whole 32 bits regardless of use. 1267 */ 1268 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0); 1269 if (!eb_el->l_tree_depth) 1270 new_last_eb_blk = le64_to_cpu(eb->h_blkno); 1271 1272 status = ocfs2_journal_dirty(handle, bh); 1273 if (status < 0) { 1274 mlog_errno(status); 1275 goto bail; 1276 } 1277 1278 next_blkno = le64_to_cpu(eb->h_blkno); 1279 } 1280 1281 /* This is a bit hairy. We want to update up to three blocks 1282 * here without leaving any of them in an inconsistent state 1283 * in case of error. We don't have to worry about 1284 * journal_dirty erroring as it won't unless we've aborted the 1285 * handle (in which case we would never be here) so reserving 1286 * the write with journal_access is all we need to do. */ 1287 status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh, 1288 OCFS2_JOURNAL_ACCESS_WRITE); 1289 if (status < 0) { 1290 mlog_errno(status); 1291 goto bail; 1292 } 1293 status = ocfs2_et_root_journal_access(handle, et, 1294 OCFS2_JOURNAL_ACCESS_WRITE); 1295 if (status < 0) { 1296 mlog_errno(status); 1297 goto bail; 1298 } 1299 if (eb_bh) { 1300 status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh, 1301 OCFS2_JOURNAL_ACCESS_WRITE); 1302 if (status < 0) { 1303 mlog_errno(status); 1304 goto bail; 1305 } 1306 } 1307 1308 /* Link the new branch into the rest of the tree (el will 1309 * either be on the root_bh, or the extent block passed in. */ 1310 i = le16_to_cpu(el->l_next_free_rec); 1311 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno); 1312 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos); 1313 el->l_recs[i].e_int_clusters = 0; 1314 le16_add_cpu(&el->l_next_free_rec, 1); 1315 1316 /* fe needs a new last extent block pointer, as does the 1317 * next_leaf on the previously last-extent-block. */ 1318 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk); 1319 1320 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 1321 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk); 1322 1323 status = ocfs2_journal_dirty(handle, *last_eb_bh); 1324 if (status < 0) 1325 mlog_errno(status); 1326 status = ocfs2_journal_dirty(handle, et->et_root_bh); 1327 if (status < 0) 1328 mlog_errno(status); 1329 if (eb_bh) { 1330 status = ocfs2_journal_dirty(handle, eb_bh); 1331 if (status < 0) 1332 mlog_errno(status); 1333 } 1334 1335 /* 1336 * Some callers want to track the rightmost leaf so pass it 1337 * back here. 1338 */ 1339 brelse(*last_eb_bh); 1340 get_bh(new_eb_bhs[0]); 1341 *last_eb_bh = new_eb_bhs[0]; 1342 1343 status = 0; 1344 bail: 1345 if (new_eb_bhs) { 1346 for (i = 0; i < new_blocks; i++) 1347 brelse(new_eb_bhs[i]); 1348 kfree(new_eb_bhs); 1349 } 1350 1351 mlog_exit(status); 1352 return status; 1353 } 1354 1355 /* 1356 * adds another level to the allocation tree. 1357 * returns back the new extent block so you can add a branch to it 1358 * after this call. 1359 */ 1360 static int ocfs2_shift_tree_depth(handle_t *handle, 1361 struct ocfs2_extent_tree *et, 1362 struct ocfs2_alloc_context *meta_ac, 1363 struct buffer_head **ret_new_eb_bh) 1364 { 1365 int status, i; 1366 u32 new_clusters; 1367 struct buffer_head *new_eb_bh = NULL; 1368 struct ocfs2_extent_block *eb; 1369 struct ocfs2_extent_list *root_el; 1370 struct ocfs2_extent_list *eb_el; 1371 1372 mlog_entry_void(); 1373 1374 status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac, 1375 &new_eb_bh); 1376 if (status < 0) { 1377 mlog_errno(status); 1378 goto bail; 1379 } 1380 1381 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data; 1382 /* ocfs2_create_new_meta_bhs() should create it right! */ 1383 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1384 1385 eb_el = &eb->h_list; 1386 root_el = et->et_root_el; 1387 1388 status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh, 1389 OCFS2_JOURNAL_ACCESS_CREATE); 1390 if (status < 0) { 1391 mlog_errno(status); 1392 goto bail; 1393 } 1394 1395 /* copy the root extent list data into the new extent block */ 1396 eb_el->l_tree_depth = root_el->l_tree_depth; 1397 eb_el->l_next_free_rec = root_el->l_next_free_rec; 1398 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1399 eb_el->l_recs[i] = root_el->l_recs[i]; 1400 1401 status = ocfs2_journal_dirty(handle, new_eb_bh); 1402 if (status < 0) { 1403 mlog_errno(status); 1404 goto bail; 1405 } 1406 1407 status = ocfs2_et_root_journal_access(handle, et, 1408 OCFS2_JOURNAL_ACCESS_WRITE); 1409 if (status < 0) { 1410 mlog_errno(status); 1411 goto bail; 1412 } 1413 1414 new_clusters = ocfs2_sum_rightmost_rec(eb_el); 1415 1416 /* update root_bh now */ 1417 le16_add_cpu(&root_el->l_tree_depth, 1); 1418 root_el->l_recs[0].e_cpos = 0; 1419 root_el->l_recs[0].e_blkno = eb->h_blkno; 1420 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters); 1421 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1422 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 1423 root_el->l_next_free_rec = cpu_to_le16(1); 1424 1425 /* If this is our 1st tree depth shift, then last_eb_blk 1426 * becomes the allocated extent block */ 1427 if (root_el->l_tree_depth == cpu_to_le16(1)) 1428 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 1429 1430 status = ocfs2_journal_dirty(handle, et->et_root_bh); 1431 if (status < 0) { 1432 mlog_errno(status); 1433 goto bail; 1434 } 1435 1436 *ret_new_eb_bh = new_eb_bh; 1437 new_eb_bh = NULL; 1438 status = 0; 1439 bail: 1440 brelse(new_eb_bh); 1441 1442 mlog_exit(status); 1443 return status; 1444 } 1445 1446 /* 1447 * Should only be called when there is no space left in any of the 1448 * leaf nodes. What we want to do is find the lowest tree depth 1449 * non-leaf extent block with room for new records. There are three 1450 * valid results of this search: 1451 * 1452 * 1) a lowest extent block is found, then we pass it back in 1453 * *lowest_eb_bh and return '0' 1454 * 1455 * 2) the search fails to find anything, but the root_el has room. We 1456 * pass NULL back in *lowest_eb_bh, but still return '0' 1457 * 1458 * 3) the search fails to find anything AND the root_el is full, in 1459 * which case we return > 0 1460 * 1461 * return status < 0 indicates an error. 1462 */ 1463 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et, 1464 struct buffer_head **target_bh) 1465 { 1466 int status = 0, i; 1467 u64 blkno; 1468 struct ocfs2_extent_block *eb; 1469 struct ocfs2_extent_list *el; 1470 struct buffer_head *bh = NULL; 1471 struct buffer_head *lowest_bh = NULL; 1472 1473 mlog_entry_void(); 1474 1475 *target_bh = NULL; 1476 1477 el = et->et_root_el; 1478 1479 while(le16_to_cpu(el->l_tree_depth) > 1) { 1480 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1481 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 1482 "Owner %llu has empty " 1483 "extent list (next_free_rec == 0)", 1484 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 1485 status = -EIO; 1486 goto bail; 1487 } 1488 i = le16_to_cpu(el->l_next_free_rec) - 1; 1489 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1490 if (!blkno) { 1491 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 1492 "Owner %llu has extent " 1493 "list where extent # %d has no physical " 1494 "block start", 1495 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i); 1496 status = -EIO; 1497 goto bail; 1498 } 1499 1500 brelse(bh); 1501 bh = NULL; 1502 1503 status = ocfs2_read_extent_block(et->et_ci, blkno, &bh); 1504 if (status < 0) { 1505 mlog_errno(status); 1506 goto bail; 1507 } 1508 1509 eb = (struct ocfs2_extent_block *) bh->b_data; 1510 el = &eb->h_list; 1511 1512 if (le16_to_cpu(el->l_next_free_rec) < 1513 le16_to_cpu(el->l_count)) { 1514 brelse(lowest_bh); 1515 lowest_bh = bh; 1516 get_bh(lowest_bh); 1517 } 1518 } 1519 1520 /* If we didn't find one and the fe doesn't have any room, 1521 * then return '1' */ 1522 el = et->et_root_el; 1523 if (!lowest_bh && (el->l_next_free_rec == el->l_count)) 1524 status = 1; 1525 1526 *target_bh = lowest_bh; 1527 bail: 1528 brelse(bh); 1529 1530 mlog_exit(status); 1531 return status; 1532 } 1533 1534 /* 1535 * Grow a b-tree so that it has more records. 1536 * 1537 * We might shift the tree depth in which case existing paths should 1538 * be considered invalid. 1539 * 1540 * Tree depth after the grow is returned via *final_depth. 1541 * 1542 * *last_eb_bh will be updated by ocfs2_add_branch(). 1543 */ 1544 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et, 1545 int *final_depth, struct buffer_head **last_eb_bh, 1546 struct ocfs2_alloc_context *meta_ac) 1547 { 1548 int ret, shift; 1549 struct ocfs2_extent_list *el = et->et_root_el; 1550 int depth = le16_to_cpu(el->l_tree_depth); 1551 struct buffer_head *bh = NULL; 1552 1553 BUG_ON(meta_ac == NULL); 1554 1555 shift = ocfs2_find_branch_target(et, &bh); 1556 if (shift < 0) { 1557 ret = shift; 1558 mlog_errno(ret); 1559 goto out; 1560 } 1561 1562 /* We traveled all the way to the bottom of the allocation tree 1563 * and didn't find room for any more extents - we need to add 1564 * another tree level */ 1565 if (shift) { 1566 BUG_ON(bh); 1567 mlog(0, "need to shift tree depth (current = %d)\n", depth); 1568 1569 /* ocfs2_shift_tree_depth will return us a buffer with 1570 * the new extent block (so we can pass that to 1571 * ocfs2_add_branch). */ 1572 ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh); 1573 if (ret < 0) { 1574 mlog_errno(ret); 1575 goto out; 1576 } 1577 depth++; 1578 if (depth == 1) { 1579 /* 1580 * Special case: we have room now if we shifted from 1581 * tree_depth 0, so no more work needs to be done. 1582 * 1583 * We won't be calling add_branch, so pass 1584 * back *last_eb_bh as the new leaf. At depth 1585 * zero, it should always be null so there's 1586 * no reason to brelse. 1587 */ 1588 BUG_ON(*last_eb_bh); 1589 get_bh(bh); 1590 *last_eb_bh = bh; 1591 goto out; 1592 } 1593 } 1594 1595 /* call ocfs2_add_branch to add the final part of the tree with 1596 * the new data. */ 1597 mlog(0, "add branch. bh = %p\n", bh); 1598 ret = ocfs2_add_branch(handle, et, bh, last_eb_bh, 1599 meta_ac); 1600 if (ret < 0) { 1601 mlog_errno(ret); 1602 goto out; 1603 } 1604 1605 out: 1606 if (final_depth) 1607 *final_depth = depth; 1608 brelse(bh); 1609 return ret; 1610 } 1611 1612 /* 1613 * This function will discard the rightmost extent record. 1614 */ 1615 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el) 1616 { 1617 int next_free = le16_to_cpu(el->l_next_free_rec); 1618 int count = le16_to_cpu(el->l_count); 1619 unsigned int num_bytes; 1620 1621 BUG_ON(!next_free); 1622 /* This will cause us to go off the end of our extent list. */ 1623 BUG_ON(next_free >= count); 1624 1625 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free; 1626 1627 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes); 1628 } 1629 1630 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el, 1631 struct ocfs2_extent_rec *insert_rec) 1632 { 1633 int i, insert_index, next_free, has_empty, num_bytes; 1634 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos); 1635 struct ocfs2_extent_rec *rec; 1636 1637 next_free = le16_to_cpu(el->l_next_free_rec); 1638 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]); 1639 1640 BUG_ON(!next_free); 1641 1642 /* The tree code before us didn't allow enough room in the leaf. */ 1643 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty); 1644 1645 /* 1646 * The easiest way to approach this is to just remove the 1647 * empty extent and temporarily decrement next_free. 1648 */ 1649 if (has_empty) { 1650 /* 1651 * If next_free was 1 (only an empty extent), this 1652 * loop won't execute, which is fine. We still want 1653 * the decrement above to happen. 1654 */ 1655 for(i = 0; i < (next_free - 1); i++) 1656 el->l_recs[i] = el->l_recs[i+1]; 1657 1658 next_free--; 1659 } 1660 1661 /* 1662 * Figure out what the new record index should be. 1663 */ 1664 for(i = 0; i < next_free; i++) { 1665 rec = &el->l_recs[i]; 1666 1667 if (insert_cpos < le32_to_cpu(rec->e_cpos)) 1668 break; 1669 } 1670 insert_index = i; 1671 1672 mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n", 1673 insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count)); 1674 1675 BUG_ON(insert_index < 0); 1676 BUG_ON(insert_index >= le16_to_cpu(el->l_count)); 1677 BUG_ON(insert_index > next_free); 1678 1679 /* 1680 * No need to memmove if we're just adding to the tail. 1681 */ 1682 if (insert_index != next_free) { 1683 BUG_ON(next_free >= le16_to_cpu(el->l_count)); 1684 1685 num_bytes = next_free - insert_index; 1686 num_bytes *= sizeof(struct ocfs2_extent_rec); 1687 memmove(&el->l_recs[insert_index + 1], 1688 &el->l_recs[insert_index], 1689 num_bytes); 1690 } 1691 1692 /* 1693 * Either we had an empty extent, and need to re-increment or 1694 * there was no empty extent on a non full rightmost leaf node, 1695 * in which case we still need to increment. 1696 */ 1697 next_free++; 1698 el->l_next_free_rec = cpu_to_le16(next_free); 1699 /* 1700 * Make sure none of the math above just messed up our tree. 1701 */ 1702 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count)); 1703 1704 el->l_recs[insert_index] = *insert_rec; 1705 1706 } 1707 1708 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el) 1709 { 1710 int size, num_recs = le16_to_cpu(el->l_next_free_rec); 1711 1712 BUG_ON(num_recs == 0); 1713 1714 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 1715 num_recs--; 1716 size = num_recs * sizeof(struct ocfs2_extent_rec); 1717 memmove(&el->l_recs[0], &el->l_recs[1], size); 1718 memset(&el->l_recs[num_recs], 0, 1719 sizeof(struct ocfs2_extent_rec)); 1720 el->l_next_free_rec = cpu_to_le16(num_recs); 1721 } 1722 } 1723 1724 /* 1725 * Create an empty extent record . 1726 * 1727 * l_next_free_rec may be updated. 1728 * 1729 * If an empty extent already exists do nothing. 1730 */ 1731 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el) 1732 { 1733 int next_free = le16_to_cpu(el->l_next_free_rec); 1734 1735 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 1736 1737 if (next_free == 0) 1738 goto set_and_inc; 1739 1740 if (ocfs2_is_empty_extent(&el->l_recs[0])) 1741 return; 1742 1743 mlog_bug_on_msg(el->l_count == el->l_next_free_rec, 1744 "Asked to create an empty extent in a full list:\n" 1745 "count = %u, tree depth = %u", 1746 le16_to_cpu(el->l_count), 1747 le16_to_cpu(el->l_tree_depth)); 1748 1749 ocfs2_shift_records_right(el); 1750 1751 set_and_inc: 1752 le16_add_cpu(&el->l_next_free_rec, 1); 1753 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 1754 } 1755 1756 /* 1757 * For a rotation which involves two leaf nodes, the "root node" is 1758 * the lowest level tree node which contains a path to both leafs. This 1759 * resulting set of information can be used to form a complete "subtree" 1760 * 1761 * This function is passed two full paths from the dinode down to a 1762 * pair of adjacent leaves. It's task is to figure out which path 1763 * index contains the subtree root - this can be the root index itself 1764 * in a worst-case rotation. 1765 * 1766 * The array index of the subtree root is passed back. 1767 */ 1768 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et, 1769 struct ocfs2_path *left, 1770 struct ocfs2_path *right) 1771 { 1772 int i = 0; 1773 1774 /* 1775 * Check that the caller passed in two paths from the same tree. 1776 */ 1777 BUG_ON(path_root_bh(left) != path_root_bh(right)); 1778 1779 do { 1780 i++; 1781 1782 /* 1783 * The caller didn't pass two adjacent paths. 1784 */ 1785 mlog_bug_on_msg(i > left->p_tree_depth, 1786 "Owner %llu, left depth %u, right depth %u\n" 1787 "left leaf blk %llu, right leaf blk %llu\n", 1788 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 1789 left->p_tree_depth, right->p_tree_depth, 1790 (unsigned long long)path_leaf_bh(left)->b_blocknr, 1791 (unsigned long long)path_leaf_bh(right)->b_blocknr); 1792 } while (left->p_node[i].bh->b_blocknr == 1793 right->p_node[i].bh->b_blocknr); 1794 1795 return i - 1; 1796 } 1797 1798 typedef void (path_insert_t)(void *, struct buffer_head *); 1799 1800 /* 1801 * Traverse a btree path in search of cpos, starting at root_el. 1802 * 1803 * This code can be called with a cpos larger than the tree, in which 1804 * case it will return the rightmost path. 1805 */ 1806 static int __ocfs2_find_path(struct ocfs2_caching_info *ci, 1807 struct ocfs2_extent_list *root_el, u32 cpos, 1808 path_insert_t *func, void *data) 1809 { 1810 int i, ret = 0; 1811 u32 range; 1812 u64 blkno; 1813 struct buffer_head *bh = NULL; 1814 struct ocfs2_extent_block *eb; 1815 struct ocfs2_extent_list *el; 1816 struct ocfs2_extent_rec *rec; 1817 1818 el = root_el; 1819 while (el->l_tree_depth) { 1820 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1821 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1822 "Owner %llu has empty extent list at " 1823 "depth %u\n", 1824 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1825 le16_to_cpu(el->l_tree_depth)); 1826 ret = -EROFS; 1827 goto out; 1828 1829 } 1830 1831 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) { 1832 rec = &el->l_recs[i]; 1833 1834 /* 1835 * In the case that cpos is off the allocation 1836 * tree, this should just wind up returning the 1837 * rightmost record. 1838 */ 1839 range = le32_to_cpu(rec->e_cpos) + 1840 ocfs2_rec_clusters(el, rec); 1841 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 1842 break; 1843 } 1844 1845 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1846 if (blkno == 0) { 1847 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1848 "Owner %llu has bad blkno in extent list " 1849 "at depth %u (index %d)\n", 1850 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1851 le16_to_cpu(el->l_tree_depth), i); 1852 ret = -EROFS; 1853 goto out; 1854 } 1855 1856 brelse(bh); 1857 bh = NULL; 1858 ret = ocfs2_read_extent_block(ci, blkno, &bh); 1859 if (ret) { 1860 mlog_errno(ret); 1861 goto out; 1862 } 1863 1864 eb = (struct ocfs2_extent_block *) bh->b_data; 1865 el = &eb->h_list; 1866 1867 if (le16_to_cpu(el->l_next_free_rec) > 1868 le16_to_cpu(el->l_count)) { 1869 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1870 "Owner %llu has bad count in extent list " 1871 "at block %llu (next free=%u, count=%u)\n", 1872 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1873 (unsigned long long)bh->b_blocknr, 1874 le16_to_cpu(el->l_next_free_rec), 1875 le16_to_cpu(el->l_count)); 1876 ret = -EROFS; 1877 goto out; 1878 } 1879 1880 if (func) 1881 func(data, bh); 1882 } 1883 1884 out: 1885 /* 1886 * Catch any trailing bh that the loop didn't handle. 1887 */ 1888 brelse(bh); 1889 1890 return ret; 1891 } 1892 1893 /* 1894 * Given an initialized path (that is, it has a valid root extent 1895 * list), this function will traverse the btree in search of the path 1896 * which would contain cpos. 1897 * 1898 * The path traveled is recorded in the path structure. 1899 * 1900 * Note that this will not do any comparisons on leaf node extent 1901 * records, so it will work fine in the case that we just added a tree 1902 * branch. 1903 */ 1904 struct find_path_data { 1905 int index; 1906 struct ocfs2_path *path; 1907 }; 1908 static void find_path_ins(void *data, struct buffer_head *bh) 1909 { 1910 struct find_path_data *fp = data; 1911 1912 get_bh(bh); 1913 ocfs2_path_insert_eb(fp->path, fp->index, bh); 1914 fp->index++; 1915 } 1916 int ocfs2_find_path(struct ocfs2_caching_info *ci, 1917 struct ocfs2_path *path, u32 cpos) 1918 { 1919 struct find_path_data data; 1920 1921 data.index = 1; 1922 data.path = path; 1923 return __ocfs2_find_path(ci, path_root_el(path), cpos, 1924 find_path_ins, &data); 1925 } 1926 1927 static void find_leaf_ins(void *data, struct buffer_head *bh) 1928 { 1929 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data; 1930 struct ocfs2_extent_list *el = &eb->h_list; 1931 struct buffer_head **ret = data; 1932 1933 /* We want to retain only the leaf block. */ 1934 if (le16_to_cpu(el->l_tree_depth) == 0) { 1935 get_bh(bh); 1936 *ret = bh; 1937 } 1938 } 1939 /* 1940 * Find the leaf block in the tree which would contain cpos. No 1941 * checking of the actual leaf is done. 1942 * 1943 * Some paths want to call this instead of allocating a path structure 1944 * and calling ocfs2_find_path(). 1945 * 1946 * This function doesn't handle non btree extent lists. 1947 */ 1948 int ocfs2_find_leaf(struct ocfs2_caching_info *ci, 1949 struct ocfs2_extent_list *root_el, u32 cpos, 1950 struct buffer_head **leaf_bh) 1951 { 1952 int ret; 1953 struct buffer_head *bh = NULL; 1954 1955 ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh); 1956 if (ret) { 1957 mlog_errno(ret); 1958 goto out; 1959 } 1960 1961 *leaf_bh = bh; 1962 out: 1963 return ret; 1964 } 1965 1966 /* 1967 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation. 1968 * 1969 * Basically, we've moved stuff around at the bottom of the tree and 1970 * we need to fix up the extent records above the changes to reflect 1971 * the new changes. 1972 * 1973 * left_rec: the record on the left. 1974 * left_child_el: is the child list pointed to by left_rec 1975 * right_rec: the record to the right of left_rec 1976 * right_child_el: is the child list pointed to by right_rec 1977 * 1978 * By definition, this only works on interior nodes. 1979 */ 1980 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec, 1981 struct ocfs2_extent_list *left_child_el, 1982 struct ocfs2_extent_rec *right_rec, 1983 struct ocfs2_extent_list *right_child_el) 1984 { 1985 u32 left_clusters, right_end; 1986 1987 /* 1988 * Interior nodes never have holes. Their cpos is the cpos of 1989 * the leftmost record in their child list. Their cluster 1990 * count covers the full theoretical range of their child list 1991 * - the range between their cpos and the cpos of the record 1992 * immediately to their right. 1993 */ 1994 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos); 1995 if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) { 1996 BUG_ON(right_child_el->l_tree_depth); 1997 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1); 1998 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos); 1999 } 2000 left_clusters -= le32_to_cpu(left_rec->e_cpos); 2001 left_rec->e_int_clusters = cpu_to_le32(left_clusters); 2002 2003 /* 2004 * Calculate the rightmost cluster count boundary before 2005 * moving cpos - we will need to adjust clusters after 2006 * updating e_cpos to keep the same highest cluster count. 2007 */ 2008 right_end = le32_to_cpu(right_rec->e_cpos); 2009 right_end += le32_to_cpu(right_rec->e_int_clusters); 2010 2011 right_rec->e_cpos = left_rec->e_cpos; 2012 le32_add_cpu(&right_rec->e_cpos, left_clusters); 2013 2014 right_end -= le32_to_cpu(right_rec->e_cpos); 2015 right_rec->e_int_clusters = cpu_to_le32(right_end); 2016 } 2017 2018 /* 2019 * Adjust the adjacent root node records involved in a 2020 * rotation. left_el_blkno is passed in as a key so that we can easily 2021 * find it's index in the root list. 2022 */ 2023 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el, 2024 struct ocfs2_extent_list *left_el, 2025 struct ocfs2_extent_list *right_el, 2026 u64 left_el_blkno) 2027 { 2028 int i; 2029 2030 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <= 2031 le16_to_cpu(left_el->l_tree_depth)); 2032 2033 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) { 2034 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno) 2035 break; 2036 } 2037 2038 /* 2039 * The path walking code should have never returned a root and 2040 * two paths which are not adjacent. 2041 */ 2042 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1)); 2043 2044 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el, 2045 &root_el->l_recs[i + 1], right_el); 2046 } 2047 2048 /* 2049 * We've changed a leaf block (in right_path) and need to reflect that 2050 * change back up the subtree. 2051 * 2052 * This happens in multiple places: 2053 * - When we've moved an extent record from the left path leaf to the right 2054 * path leaf to make room for an empty extent in the left path leaf. 2055 * - When our insert into the right path leaf is at the leftmost edge 2056 * and requires an update of the path immediately to it's left. This 2057 * can occur at the end of some types of rotation and appending inserts. 2058 * - When we've adjusted the last extent record in the left path leaf and the 2059 * 1st extent record in the right path leaf during cross extent block merge. 2060 */ 2061 static void ocfs2_complete_edge_insert(handle_t *handle, 2062 struct ocfs2_path *left_path, 2063 struct ocfs2_path *right_path, 2064 int subtree_index) 2065 { 2066 int ret, i, idx; 2067 struct ocfs2_extent_list *el, *left_el, *right_el; 2068 struct ocfs2_extent_rec *left_rec, *right_rec; 2069 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2070 2071 /* 2072 * Update the counts and position values within all the 2073 * interior nodes to reflect the leaf rotation we just did. 2074 * 2075 * The root node is handled below the loop. 2076 * 2077 * We begin the loop with right_el and left_el pointing to the 2078 * leaf lists and work our way up. 2079 * 2080 * NOTE: within this loop, left_el and right_el always refer 2081 * to the *child* lists. 2082 */ 2083 left_el = path_leaf_el(left_path); 2084 right_el = path_leaf_el(right_path); 2085 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) { 2086 mlog(0, "Adjust records at index %u\n", i); 2087 2088 /* 2089 * One nice property of knowing that all of these 2090 * nodes are below the root is that we only deal with 2091 * the leftmost right node record and the rightmost 2092 * left node record. 2093 */ 2094 el = left_path->p_node[i].el; 2095 idx = le16_to_cpu(left_el->l_next_free_rec) - 1; 2096 left_rec = &el->l_recs[idx]; 2097 2098 el = right_path->p_node[i].el; 2099 right_rec = &el->l_recs[0]; 2100 2101 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec, 2102 right_el); 2103 2104 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh); 2105 if (ret) 2106 mlog_errno(ret); 2107 2108 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh); 2109 if (ret) 2110 mlog_errno(ret); 2111 2112 /* 2113 * Setup our list pointers now so that the current 2114 * parents become children in the next iteration. 2115 */ 2116 left_el = left_path->p_node[i].el; 2117 right_el = right_path->p_node[i].el; 2118 } 2119 2120 /* 2121 * At the root node, adjust the two adjacent records which 2122 * begin our path to the leaves. 2123 */ 2124 2125 el = left_path->p_node[subtree_index].el; 2126 left_el = left_path->p_node[subtree_index + 1].el; 2127 right_el = right_path->p_node[subtree_index + 1].el; 2128 2129 ocfs2_adjust_root_records(el, left_el, right_el, 2130 left_path->p_node[subtree_index + 1].bh->b_blocknr); 2131 2132 root_bh = left_path->p_node[subtree_index].bh; 2133 2134 ret = ocfs2_journal_dirty(handle, root_bh); 2135 if (ret) 2136 mlog_errno(ret); 2137 } 2138 2139 static int ocfs2_rotate_subtree_right(handle_t *handle, 2140 struct ocfs2_extent_tree *et, 2141 struct ocfs2_path *left_path, 2142 struct ocfs2_path *right_path, 2143 int subtree_index) 2144 { 2145 int ret, i; 2146 struct buffer_head *right_leaf_bh; 2147 struct buffer_head *left_leaf_bh = NULL; 2148 struct buffer_head *root_bh; 2149 struct ocfs2_extent_list *right_el, *left_el; 2150 struct ocfs2_extent_rec move_rec; 2151 2152 left_leaf_bh = path_leaf_bh(left_path); 2153 left_el = path_leaf_el(left_path); 2154 2155 if (left_el->l_next_free_rec != left_el->l_count) { 2156 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 2157 "Inode %llu has non-full interior leaf node %llu" 2158 "(next free = %u)", 2159 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2160 (unsigned long long)left_leaf_bh->b_blocknr, 2161 le16_to_cpu(left_el->l_next_free_rec)); 2162 return -EROFS; 2163 } 2164 2165 /* 2166 * This extent block may already have an empty record, so we 2167 * return early if so. 2168 */ 2169 if (ocfs2_is_empty_extent(&left_el->l_recs[0])) 2170 return 0; 2171 2172 root_bh = left_path->p_node[subtree_index].bh; 2173 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2174 2175 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 2176 subtree_index); 2177 if (ret) { 2178 mlog_errno(ret); 2179 goto out; 2180 } 2181 2182 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2183 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2184 right_path, i); 2185 if (ret) { 2186 mlog_errno(ret); 2187 goto out; 2188 } 2189 2190 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2191 left_path, i); 2192 if (ret) { 2193 mlog_errno(ret); 2194 goto out; 2195 } 2196 } 2197 2198 right_leaf_bh = path_leaf_bh(right_path); 2199 right_el = path_leaf_el(right_path); 2200 2201 /* This is a code error, not a disk corruption. */ 2202 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails " 2203 "because rightmost leaf block %llu is empty\n", 2204 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2205 (unsigned long long)right_leaf_bh->b_blocknr); 2206 2207 ocfs2_create_empty_extent(right_el); 2208 2209 ret = ocfs2_journal_dirty(handle, right_leaf_bh); 2210 if (ret) { 2211 mlog_errno(ret); 2212 goto out; 2213 } 2214 2215 /* Do the copy now. */ 2216 i = le16_to_cpu(left_el->l_next_free_rec) - 1; 2217 move_rec = left_el->l_recs[i]; 2218 right_el->l_recs[0] = move_rec; 2219 2220 /* 2221 * Clear out the record we just copied and shift everything 2222 * over, leaving an empty extent in the left leaf. 2223 * 2224 * We temporarily subtract from next_free_rec so that the 2225 * shift will lose the tail record (which is now defunct). 2226 */ 2227 le16_add_cpu(&left_el->l_next_free_rec, -1); 2228 ocfs2_shift_records_right(left_el); 2229 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2230 le16_add_cpu(&left_el->l_next_free_rec, 1); 2231 2232 ret = ocfs2_journal_dirty(handle, left_leaf_bh); 2233 if (ret) { 2234 mlog_errno(ret); 2235 goto out; 2236 } 2237 2238 ocfs2_complete_edge_insert(handle, left_path, right_path, 2239 subtree_index); 2240 2241 out: 2242 return ret; 2243 } 2244 2245 /* 2246 * Given a full path, determine what cpos value would return us a path 2247 * containing the leaf immediately to the left of the current one. 2248 * 2249 * Will return zero if the path passed in is already the leftmost path. 2250 */ 2251 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb, 2252 struct ocfs2_path *path, u32 *cpos) 2253 { 2254 int i, j, ret = 0; 2255 u64 blkno; 2256 struct ocfs2_extent_list *el; 2257 2258 BUG_ON(path->p_tree_depth == 0); 2259 2260 *cpos = 0; 2261 2262 blkno = path_leaf_bh(path)->b_blocknr; 2263 2264 /* Start at the tree node just above the leaf and work our way up. */ 2265 i = path->p_tree_depth - 1; 2266 while (i >= 0) { 2267 el = path->p_node[i].el; 2268 2269 /* 2270 * Find the extent record just before the one in our 2271 * path. 2272 */ 2273 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2274 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2275 if (j == 0) { 2276 if (i == 0) { 2277 /* 2278 * We've determined that the 2279 * path specified is already 2280 * the leftmost one - return a 2281 * cpos of zero. 2282 */ 2283 goto out; 2284 } 2285 /* 2286 * The leftmost record points to our 2287 * leaf - we need to travel up the 2288 * tree one level. 2289 */ 2290 goto next_node; 2291 } 2292 2293 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos); 2294 *cpos = *cpos + ocfs2_rec_clusters(el, 2295 &el->l_recs[j - 1]); 2296 *cpos = *cpos - 1; 2297 goto out; 2298 } 2299 } 2300 2301 /* 2302 * If we got here, we never found a valid node where 2303 * the tree indicated one should be. 2304 */ 2305 ocfs2_error(sb, 2306 "Invalid extent tree at extent block %llu\n", 2307 (unsigned long long)blkno); 2308 ret = -EROFS; 2309 goto out; 2310 2311 next_node: 2312 blkno = path->p_node[i].bh->b_blocknr; 2313 i--; 2314 } 2315 2316 out: 2317 return ret; 2318 } 2319 2320 /* 2321 * Extend the transaction by enough credits to complete the rotation, 2322 * and still leave at least the original number of credits allocated 2323 * to this transaction. 2324 */ 2325 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth, 2326 int op_credits, 2327 struct ocfs2_path *path) 2328 { 2329 int ret; 2330 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits; 2331 2332 if (handle->h_buffer_credits < credits) { 2333 ret = ocfs2_extend_trans(handle, 2334 credits - handle->h_buffer_credits); 2335 if (ret) 2336 return ret; 2337 2338 if (unlikely(handle->h_buffer_credits < credits)) 2339 return ocfs2_extend_trans(handle, credits); 2340 } 2341 2342 return 0; 2343 } 2344 2345 /* 2346 * Trap the case where we're inserting into the theoretical range past 2347 * the _actual_ left leaf range. Otherwise, we'll rotate a record 2348 * whose cpos is less than ours into the right leaf. 2349 * 2350 * It's only necessary to look at the rightmost record of the left 2351 * leaf because the logic that calls us should ensure that the 2352 * theoretical ranges in the path components above the leaves are 2353 * correct. 2354 */ 2355 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path, 2356 u32 insert_cpos) 2357 { 2358 struct ocfs2_extent_list *left_el; 2359 struct ocfs2_extent_rec *rec; 2360 int next_free; 2361 2362 left_el = path_leaf_el(left_path); 2363 next_free = le16_to_cpu(left_el->l_next_free_rec); 2364 rec = &left_el->l_recs[next_free - 1]; 2365 2366 if (insert_cpos > le32_to_cpu(rec->e_cpos)) 2367 return 1; 2368 return 0; 2369 } 2370 2371 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos) 2372 { 2373 int next_free = le16_to_cpu(el->l_next_free_rec); 2374 unsigned int range; 2375 struct ocfs2_extent_rec *rec; 2376 2377 if (next_free == 0) 2378 return 0; 2379 2380 rec = &el->l_recs[0]; 2381 if (ocfs2_is_empty_extent(rec)) { 2382 /* Empty list. */ 2383 if (next_free == 1) 2384 return 0; 2385 rec = &el->l_recs[1]; 2386 } 2387 2388 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2389 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 2390 return 1; 2391 return 0; 2392 } 2393 2394 /* 2395 * Rotate all the records in a btree right one record, starting at insert_cpos. 2396 * 2397 * The path to the rightmost leaf should be passed in. 2398 * 2399 * The array is assumed to be large enough to hold an entire path (tree depth). 2400 * 2401 * Upon successful return from this function: 2402 * 2403 * - The 'right_path' array will contain a path to the leaf block 2404 * whose range contains e_cpos. 2405 * - That leaf block will have a single empty extent in list index 0. 2406 * - In the case that the rotation requires a post-insert update, 2407 * *ret_left_path will contain a valid path which can be passed to 2408 * ocfs2_insert_path(). 2409 */ 2410 static int ocfs2_rotate_tree_right(handle_t *handle, 2411 struct ocfs2_extent_tree *et, 2412 enum ocfs2_split_type split, 2413 u32 insert_cpos, 2414 struct ocfs2_path *right_path, 2415 struct ocfs2_path **ret_left_path) 2416 { 2417 int ret, start, orig_credits = handle->h_buffer_credits; 2418 u32 cpos; 2419 struct ocfs2_path *left_path = NULL; 2420 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 2421 2422 *ret_left_path = NULL; 2423 2424 left_path = ocfs2_new_path_from_path(right_path); 2425 if (!left_path) { 2426 ret = -ENOMEM; 2427 mlog_errno(ret); 2428 goto out; 2429 } 2430 2431 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); 2432 if (ret) { 2433 mlog_errno(ret); 2434 goto out; 2435 } 2436 2437 mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos); 2438 2439 /* 2440 * What we want to do here is: 2441 * 2442 * 1) Start with the rightmost path. 2443 * 2444 * 2) Determine a path to the leaf block directly to the left 2445 * of that leaf. 2446 * 2447 * 3) Determine the 'subtree root' - the lowest level tree node 2448 * which contains a path to both leaves. 2449 * 2450 * 4) Rotate the subtree. 2451 * 2452 * 5) Find the next subtree by considering the left path to be 2453 * the new right path. 2454 * 2455 * The check at the top of this while loop also accepts 2456 * insert_cpos == cpos because cpos is only a _theoretical_ 2457 * value to get us the left path - insert_cpos might very well 2458 * be filling that hole. 2459 * 2460 * Stop at a cpos of '0' because we either started at the 2461 * leftmost branch (i.e., a tree with one branch and a 2462 * rotation inside of it), or we've gone as far as we can in 2463 * rotating subtrees. 2464 */ 2465 while (cpos && insert_cpos <= cpos) { 2466 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n", 2467 insert_cpos, cpos); 2468 2469 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 2470 if (ret) { 2471 mlog_errno(ret); 2472 goto out; 2473 } 2474 2475 mlog_bug_on_msg(path_leaf_bh(left_path) == 2476 path_leaf_bh(right_path), 2477 "Owner %llu: error during insert of %u " 2478 "(left path cpos %u) results in two identical " 2479 "paths ending at %llu\n", 2480 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2481 insert_cpos, cpos, 2482 (unsigned long long) 2483 path_leaf_bh(left_path)->b_blocknr); 2484 2485 if (split == SPLIT_NONE && 2486 ocfs2_rotate_requires_path_adjustment(left_path, 2487 insert_cpos)) { 2488 2489 /* 2490 * We've rotated the tree as much as we 2491 * should. The rest is up to 2492 * ocfs2_insert_path() to complete, after the 2493 * record insertion. We indicate this 2494 * situation by returning the left path. 2495 * 2496 * The reason we don't adjust the records here 2497 * before the record insert is that an error 2498 * later might break the rule where a parent 2499 * record e_cpos will reflect the actual 2500 * e_cpos of the 1st nonempty record of the 2501 * child list. 2502 */ 2503 *ret_left_path = left_path; 2504 goto out_ret_path; 2505 } 2506 2507 start = ocfs2_find_subtree_root(et, left_path, right_path); 2508 2509 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n", 2510 start, 2511 (unsigned long long) right_path->p_node[start].bh->b_blocknr, 2512 right_path->p_tree_depth); 2513 2514 ret = ocfs2_extend_rotate_transaction(handle, start, 2515 orig_credits, right_path); 2516 if (ret) { 2517 mlog_errno(ret); 2518 goto out; 2519 } 2520 2521 ret = ocfs2_rotate_subtree_right(handle, et, left_path, 2522 right_path, start); 2523 if (ret) { 2524 mlog_errno(ret); 2525 goto out; 2526 } 2527 2528 if (split != SPLIT_NONE && 2529 ocfs2_leftmost_rec_contains(path_leaf_el(right_path), 2530 insert_cpos)) { 2531 /* 2532 * A rotate moves the rightmost left leaf 2533 * record over to the leftmost right leaf 2534 * slot. If we're doing an extent split 2535 * instead of a real insert, then we have to 2536 * check that the extent to be split wasn't 2537 * just moved over. If it was, then we can 2538 * exit here, passing left_path back - 2539 * ocfs2_split_extent() is smart enough to 2540 * search both leaves. 2541 */ 2542 *ret_left_path = left_path; 2543 goto out_ret_path; 2544 } 2545 2546 /* 2547 * There is no need to re-read the next right path 2548 * as we know that it'll be our current left 2549 * path. Optimize by copying values instead. 2550 */ 2551 ocfs2_mv_path(right_path, left_path); 2552 2553 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); 2554 if (ret) { 2555 mlog_errno(ret); 2556 goto out; 2557 } 2558 } 2559 2560 out: 2561 ocfs2_free_path(left_path); 2562 2563 out_ret_path: 2564 return ret; 2565 } 2566 2567 static int ocfs2_update_edge_lengths(handle_t *handle, 2568 struct ocfs2_extent_tree *et, 2569 int subtree_index, struct ocfs2_path *path) 2570 { 2571 int i, idx, ret; 2572 struct ocfs2_extent_rec *rec; 2573 struct ocfs2_extent_list *el; 2574 struct ocfs2_extent_block *eb; 2575 u32 range; 2576 2577 /* 2578 * In normal tree rotation process, we will never touch the 2579 * tree branch above subtree_index and ocfs2_extend_rotate_transaction 2580 * doesn't reserve the credits for them either. 2581 * 2582 * But we do have a special case here which will update the rightmost 2583 * records for all the bh in the path. 2584 * So we have to allocate extra credits and access them. 2585 */ 2586 ret = ocfs2_extend_trans(handle, 2587 handle->h_buffer_credits + subtree_index); 2588 if (ret) { 2589 mlog_errno(ret); 2590 goto out; 2591 } 2592 2593 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 2594 if (ret) { 2595 mlog_errno(ret); 2596 goto out; 2597 } 2598 2599 /* Path should always be rightmost. */ 2600 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 2601 BUG_ON(eb->h_next_leaf_blk != 0ULL); 2602 2603 el = &eb->h_list; 2604 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 2605 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2606 rec = &el->l_recs[idx]; 2607 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2608 2609 for (i = 0; i < path->p_tree_depth; i++) { 2610 el = path->p_node[i].el; 2611 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2612 rec = &el->l_recs[idx]; 2613 2614 rec->e_int_clusters = cpu_to_le32(range); 2615 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos)); 2616 2617 ocfs2_journal_dirty(handle, path->p_node[i].bh); 2618 } 2619 out: 2620 return ret; 2621 } 2622 2623 static void ocfs2_unlink_path(handle_t *handle, 2624 struct ocfs2_extent_tree *et, 2625 struct ocfs2_cached_dealloc_ctxt *dealloc, 2626 struct ocfs2_path *path, int unlink_start) 2627 { 2628 int ret, i; 2629 struct ocfs2_extent_block *eb; 2630 struct ocfs2_extent_list *el; 2631 struct buffer_head *bh; 2632 2633 for(i = unlink_start; i < path_num_items(path); i++) { 2634 bh = path->p_node[i].bh; 2635 2636 eb = (struct ocfs2_extent_block *)bh->b_data; 2637 /* 2638 * Not all nodes might have had their final count 2639 * decremented by the caller - handle this here. 2640 */ 2641 el = &eb->h_list; 2642 if (le16_to_cpu(el->l_next_free_rec) > 1) { 2643 mlog(ML_ERROR, 2644 "Inode %llu, attempted to remove extent block " 2645 "%llu with %u records\n", 2646 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2647 (unsigned long long)le64_to_cpu(eb->h_blkno), 2648 le16_to_cpu(el->l_next_free_rec)); 2649 2650 ocfs2_journal_dirty(handle, bh); 2651 ocfs2_remove_from_cache(et->et_ci, bh); 2652 continue; 2653 } 2654 2655 el->l_next_free_rec = 0; 2656 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2657 2658 ocfs2_journal_dirty(handle, bh); 2659 2660 ret = ocfs2_cache_extent_block_free(dealloc, eb); 2661 if (ret) 2662 mlog_errno(ret); 2663 2664 ocfs2_remove_from_cache(et->et_ci, bh); 2665 } 2666 } 2667 2668 static void ocfs2_unlink_subtree(handle_t *handle, 2669 struct ocfs2_extent_tree *et, 2670 struct ocfs2_path *left_path, 2671 struct ocfs2_path *right_path, 2672 int subtree_index, 2673 struct ocfs2_cached_dealloc_ctxt *dealloc) 2674 { 2675 int i; 2676 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2677 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el; 2678 struct ocfs2_extent_list *el; 2679 struct ocfs2_extent_block *eb; 2680 2681 el = path_leaf_el(left_path); 2682 2683 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data; 2684 2685 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 2686 if (root_el->l_recs[i].e_blkno == eb->h_blkno) 2687 break; 2688 2689 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec)); 2690 2691 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 2692 le16_add_cpu(&root_el->l_next_free_rec, -1); 2693 2694 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2695 eb->h_next_leaf_blk = 0; 2696 2697 ocfs2_journal_dirty(handle, root_bh); 2698 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2699 2700 ocfs2_unlink_path(handle, et, dealloc, right_path, 2701 subtree_index + 1); 2702 } 2703 2704 static int ocfs2_rotate_subtree_left(handle_t *handle, 2705 struct ocfs2_extent_tree *et, 2706 struct ocfs2_path *left_path, 2707 struct ocfs2_path *right_path, 2708 int subtree_index, 2709 struct ocfs2_cached_dealloc_ctxt *dealloc, 2710 int *deleted) 2711 { 2712 int ret, i, del_right_subtree = 0, right_has_empty = 0; 2713 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path); 2714 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el; 2715 struct ocfs2_extent_block *eb; 2716 2717 *deleted = 0; 2718 2719 right_leaf_el = path_leaf_el(right_path); 2720 left_leaf_el = path_leaf_el(left_path); 2721 root_bh = left_path->p_node[subtree_index].bh; 2722 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2723 2724 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0])) 2725 return 0; 2726 2727 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data; 2728 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) { 2729 /* 2730 * It's legal for us to proceed if the right leaf is 2731 * the rightmost one and it has an empty extent. There 2732 * are two cases to handle - whether the leaf will be 2733 * empty after removal or not. If the leaf isn't empty 2734 * then just remove the empty extent up front. The 2735 * next block will handle empty leaves by flagging 2736 * them for unlink. 2737 * 2738 * Non rightmost leaves will throw -EAGAIN and the 2739 * caller can manually move the subtree and retry. 2740 */ 2741 2742 if (eb->h_next_leaf_blk != 0ULL) 2743 return -EAGAIN; 2744 2745 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) { 2746 ret = ocfs2_journal_access_eb(handle, et->et_ci, 2747 path_leaf_bh(right_path), 2748 OCFS2_JOURNAL_ACCESS_WRITE); 2749 if (ret) { 2750 mlog_errno(ret); 2751 goto out; 2752 } 2753 2754 ocfs2_remove_empty_extent(right_leaf_el); 2755 } else 2756 right_has_empty = 1; 2757 } 2758 2759 if (eb->h_next_leaf_blk == 0ULL && 2760 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) { 2761 /* 2762 * We have to update i_last_eb_blk during the meta 2763 * data delete. 2764 */ 2765 ret = ocfs2_et_root_journal_access(handle, et, 2766 OCFS2_JOURNAL_ACCESS_WRITE); 2767 if (ret) { 2768 mlog_errno(ret); 2769 goto out; 2770 } 2771 2772 del_right_subtree = 1; 2773 } 2774 2775 /* 2776 * Getting here with an empty extent in the right path implies 2777 * that it's the rightmost path and will be deleted. 2778 */ 2779 BUG_ON(right_has_empty && !del_right_subtree); 2780 2781 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 2782 subtree_index); 2783 if (ret) { 2784 mlog_errno(ret); 2785 goto out; 2786 } 2787 2788 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2789 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2790 right_path, i); 2791 if (ret) { 2792 mlog_errno(ret); 2793 goto out; 2794 } 2795 2796 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2797 left_path, i); 2798 if (ret) { 2799 mlog_errno(ret); 2800 goto out; 2801 } 2802 } 2803 2804 if (!right_has_empty) { 2805 /* 2806 * Only do this if we're moving a real 2807 * record. Otherwise, the action is delayed until 2808 * after removal of the right path in which case we 2809 * can do a simple shift to remove the empty extent. 2810 */ 2811 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]); 2812 memset(&right_leaf_el->l_recs[0], 0, 2813 sizeof(struct ocfs2_extent_rec)); 2814 } 2815 if (eb->h_next_leaf_blk == 0ULL) { 2816 /* 2817 * Move recs over to get rid of empty extent, decrease 2818 * next_free. This is allowed to remove the last 2819 * extent in our leaf (setting l_next_free_rec to 2820 * zero) - the delete code below won't care. 2821 */ 2822 ocfs2_remove_empty_extent(right_leaf_el); 2823 } 2824 2825 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2826 if (ret) 2827 mlog_errno(ret); 2828 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 2829 if (ret) 2830 mlog_errno(ret); 2831 2832 if (del_right_subtree) { 2833 ocfs2_unlink_subtree(handle, et, left_path, right_path, 2834 subtree_index, dealloc); 2835 ret = ocfs2_update_edge_lengths(handle, et, subtree_index, 2836 left_path); 2837 if (ret) { 2838 mlog_errno(ret); 2839 goto out; 2840 } 2841 2842 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2843 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 2844 2845 /* 2846 * Removal of the extent in the left leaf was skipped 2847 * above so we could delete the right path 2848 * 1st. 2849 */ 2850 if (right_has_empty) 2851 ocfs2_remove_empty_extent(left_leaf_el); 2852 2853 ret = ocfs2_journal_dirty(handle, et_root_bh); 2854 if (ret) 2855 mlog_errno(ret); 2856 2857 *deleted = 1; 2858 } else 2859 ocfs2_complete_edge_insert(handle, left_path, right_path, 2860 subtree_index); 2861 2862 out: 2863 return ret; 2864 } 2865 2866 /* 2867 * Given a full path, determine what cpos value would return us a path 2868 * containing the leaf immediately to the right of the current one. 2869 * 2870 * Will return zero if the path passed in is already the rightmost path. 2871 * 2872 * This looks similar, but is subtly different to 2873 * ocfs2_find_cpos_for_left_leaf(). 2874 */ 2875 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb, 2876 struct ocfs2_path *path, u32 *cpos) 2877 { 2878 int i, j, ret = 0; 2879 u64 blkno; 2880 struct ocfs2_extent_list *el; 2881 2882 *cpos = 0; 2883 2884 if (path->p_tree_depth == 0) 2885 return 0; 2886 2887 blkno = path_leaf_bh(path)->b_blocknr; 2888 2889 /* Start at the tree node just above the leaf and work our way up. */ 2890 i = path->p_tree_depth - 1; 2891 while (i >= 0) { 2892 int next_free; 2893 2894 el = path->p_node[i].el; 2895 2896 /* 2897 * Find the extent record just after the one in our 2898 * path. 2899 */ 2900 next_free = le16_to_cpu(el->l_next_free_rec); 2901 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2902 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2903 if (j == (next_free - 1)) { 2904 if (i == 0) { 2905 /* 2906 * We've determined that the 2907 * path specified is already 2908 * the rightmost one - return a 2909 * cpos of zero. 2910 */ 2911 goto out; 2912 } 2913 /* 2914 * The rightmost record points to our 2915 * leaf - we need to travel up the 2916 * tree one level. 2917 */ 2918 goto next_node; 2919 } 2920 2921 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos); 2922 goto out; 2923 } 2924 } 2925 2926 /* 2927 * If we got here, we never found a valid node where 2928 * the tree indicated one should be. 2929 */ 2930 ocfs2_error(sb, 2931 "Invalid extent tree at extent block %llu\n", 2932 (unsigned long long)blkno); 2933 ret = -EROFS; 2934 goto out; 2935 2936 next_node: 2937 blkno = path->p_node[i].bh->b_blocknr; 2938 i--; 2939 } 2940 2941 out: 2942 return ret; 2943 } 2944 2945 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle, 2946 struct ocfs2_extent_tree *et, 2947 struct ocfs2_path *path) 2948 { 2949 int ret; 2950 struct buffer_head *bh = path_leaf_bh(path); 2951 struct ocfs2_extent_list *el = path_leaf_el(path); 2952 2953 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 2954 return 0; 2955 2956 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path, 2957 path_num_items(path) - 1); 2958 if (ret) { 2959 mlog_errno(ret); 2960 goto out; 2961 } 2962 2963 ocfs2_remove_empty_extent(el); 2964 2965 ret = ocfs2_journal_dirty(handle, bh); 2966 if (ret) 2967 mlog_errno(ret); 2968 2969 out: 2970 return ret; 2971 } 2972 2973 static int __ocfs2_rotate_tree_left(handle_t *handle, 2974 struct ocfs2_extent_tree *et, 2975 int orig_credits, 2976 struct ocfs2_path *path, 2977 struct ocfs2_cached_dealloc_ctxt *dealloc, 2978 struct ocfs2_path **empty_extent_path) 2979 { 2980 int ret, subtree_root, deleted; 2981 u32 right_cpos; 2982 struct ocfs2_path *left_path = NULL; 2983 struct ocfs2_path *right_path = NULL; 2984 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 2985 2986 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0]))); 2987 2988 *empty_extent_path = NULL; 2989 2990 ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos); 2991 if (ret) { 2992 mlog_errno(ret); 2993 goto out; 2994 } 2995 2996 left_path = ocfs2_new_path_from_path(path); 2997 if (!left_path) { 2998 ret = -ENOMEM; 2999 mlog_errno(ret); 3000 goto out; 3001 } 3002 3003 ocfs2_cp_path(left_path, path); 3004 3005 right_path = ocfs2_new_path_from_path(path); 3006 if (!right_path) { 3007 ret = -ENOMEM; 3008 mlog_errno(ret); 3009 goto out; 3010 } 3011 3012 while (right_cpos) { 3013 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); 3014 if (ret) { 3015 mlog_errno(ret); 3016 goto out; 3017 } 3018 3019 subtree_root = ocfs2_find_subtree_root(et, left_path, 3020 right_path); 3021 3022 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n", 3023 subtree_root, 3024 (unsigned long long) 3025 right_path->p_node[subtree_root].bh->b_blocknr, 3026 right_path->p_tree_depth); 3027 3028 ret = ocfs2_extend_rotate_transaction(handle, subtree_root, 3029 orig_credits, left_path); 3030 if (ret) { 3031 mlog_errno(ret); 3032 goto out; 3033 } 3034 3035 /* 3036 * Caller might still want to make changes to the 3037 * tree root, so re-add it to the journal here. 3038 */ 3039 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3040 left_path, 0); 3041 if (ret) { 3042 mlog_errno(ret); 3043 goto out; 3044 } 3045 3046 ret = ocfs2_rotate_subtree_left(handle, et, left_path, 3047 right_path, subtree_root, 3048 dealloc, &deleted); 3049 if (ret == -EAGAIN) { 3050 /* 3051 * The rotation has to temporarily stop due to 3052 * the right subtree having an empty 3053 * extent. Pass it back to the caller for a 3054 * fixup. 3055 */ 3056 *empty_extent_path = right_path; 3057 right_path = NULL; 3058 goto out; 3059 } 3060 if (ret) { 3061 mlog_errno(ret); 3062 goto out; 3063 } 3064 3065 /* 3066 * The subtree rotate might have removed records on 3067 * the rightmost edge. If so, then rotation is 3068 * complete. 3069 */ 3070 if (deleted) 3071 break; 3072 3073 ocfs2_mv_path(left_path, right_path); 3074 3075 ret = ocfs2_find_cpos_for_right_leaf(sb, left_path, 3076 &right_cpos); 3077 if (ret) { 3078 mlog_errno(ret); 3079 goto out; 3080 } 3081 } 3082 3083 out: 3084 ocfs2_free_path(right_path); 3085 ocfs2_free_path(left_path); 3086 3087 return ret; 3088 } 3089 3090 static int ocfs2_remove_rightmost_path(handle_t *handle, 3091 struct ocfs2_extent_tree *et, 3092 struct ocfs2_path *path, 3093 struct ocfs2_cached_dealloc_ctxt *dealloc) 3094 { 3095 int ret, subtree_index; 3096 u32 cpos; 3097 struct ocfs2_path *left_path = NULL; 3098 struct ocfs2_extent_block *eb; 3099 struct ocfs2_extent_list *el; 3100 3101 3102 ret = ocfs2_et_sanity_check(et); 3103 if (ret) 3104 goto out; 3105 /* 3106 * There's two ways we handle this depending on 3107 * whether path is the only existing one. 3108 */ 3109 ret = ocfs2_extend_rotate_transaction(handle, 0, 3110 handle->h_buffer_credits, 3111 path); 3112 if (ret) { 3113 mlog_errno(ret); 3114 goto out; 3115 } 3116 3117 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 3118 if (ret) { 3119 mlog_errno(ret); 3120 goto out; 3121 } 3122 3123 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3124 path, &cpos); 3125 if (ret) { 3126 mlog_errno(ret); 3127 goto out; 3128 } 3129 3130 if (cpos) { 3131 /* 3132 * We have a path to the left of this one - it needs 3133 * an update too. 3134 */ 3135 left_path = ocfs2_new_path_from_path(path); 3136 if (!left_path) { 3137 ret = -ENOMEM; 3138 mlog_errno(ret); 3139 goto out; 3140 } 3141 3142 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 3143 if (ret) { 3144 mlog_errno(ret); 3145 goto out; 3146 } 3147 3148 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 3149 if (ret) { 3150 mlog_errno(ret); 3151 goto out; 3152 } 3153 3154 subtree_index = ocfs2_find_subtree_root(et, left_path, path); 3155 3156 ocfs2_unlink_subtree(handle, et, left_path, path, 3157 subtree_index, dealloc); 3158 ret = ocfs2_update_edge_lengths(handle, et, subtree_index, 3159 left_path); 3160 if (ret) { 3161 mlog_errno(ret); 3162 goto out; 3163 } 3164 3165 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 3166 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 3167 } else { 3168 /* 3169 * 'path' is also the leftmost path which 3170 * means it must be the only one. This gets 3171 * handled differently because we want to 3172 * revert the root back to having extents 3173 * in-line. 3174 */ 3175 ocfs2_unlink_path(handle, et, dealloc, path, 1); 3176 3177 el = et->et_root_el; 3178 el->l_tree_depth = 0; 3179 el->l_next_free_rec = 0; 3180 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3181 3182 ocfs2_et_set_last_eb_blk(et, 0); 3183 } 3184 3185 ocfs2_journal_dirty(handle, path_root_bh(path)); 3186 3187 out: 3188 ocfs2_free_path(left_path); 3189 return ret; 3190 } 3191 3192 /* 3193 * Left rotation of btree records. 3194 * 3195 * In many ways, this is (unsurprisingly) the opposite of right 3196 * rotation. We start at some non-rightmost path containing an empty 3197 * extent in the leaf block. The code works its way to the rightmost 3198 * path by rotating records to the left in every subtree. 3199 * 3200 * This is used by any code which reduces the number of extent records 3201 * in a leaf. After removal, an empty record should be placed in the 3202 * leftmost list position. 3203 * 3204 * This won't handle a length update of the rightmost path records if 3205 * the rightmost tree leaf record is removed so the caller is 3206 * responsible for detecting and correcting that. 3207 */ 3208 static int ocfs2_rotate_tree_left(handle_t *handle, 3209 struct ocfs2_extent_tree *et, 3210 struct ocfs2_path *path, 3211 struct ocfs2_cached_dealloc_ctxt *dealloc) 3212 { 3213 int ret, orig_credits = handle->h_buffer_credits; 3214 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL; 3215 struct ocfs2_extent_block *eb; 3216 struct ocfs2_extent_list *el; 3217 3218 el = path_leaf_el(path); 3219 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 3220 return 0; 3221 3222 if (path->p_tree_depth == 0) { 3223 rightmost_no_delete: 3224 /* 3225 * Inline extents. This is trivially handled, so do 3226 * it up front. 3227 */ 3228 ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path); 3229 if (ret) 3230 mlog_errno(ret); 3231 goto out; 3232 } 3233 3234 /* 3235 * Handle rightmost branch now. There's several cases: 3236 * 1) simple rotation leaving records in there. That's trivial. 3237 * 2) rotation requiring a branch delete - there's no more 3238 * records left. Two cases of this: 3239 * a) There are branches to the left. 3240 * b) This is also the leftmost (the only) branch. 3241 * 3242 * 1) is handled via ocfs2_rotate_rightmost_leaf_left() 3243 * 2a) we need the left branch so that we can update it with the unlink 3244 * 2b) we need to bring the root back to inline extents. 3245 */ 3246 3247 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 3248 el = &eb->h_list; 3249 if (eb->h_next_leaf_blk == 0) { 3250 /* 3251 * This gets a bit tricky if we're going to delete the 3252 * rightmost path. Get the other cases out of the way 3253 * 1st. 3254 */ 3255 if (le16_to_cpu(el->l_next_free_rec) > 1) 3256 goto rightmost_no_delete; 3257 3258 if (le16_to_cpu(el->l_next_free_rec) == 0) { 3259 ret = -EIO; 3260 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 3261 "Owner %llu has empty extent block at %llu", 3262 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 3263 (unsigned long long)le64_to_cpu(eb->h_blkno)); 3264 goto out; 3265 } 3266 3267 /* 3268 * XXX: The caller can not trust "path" any more after 3269 * this as it will have been deleted. What do we do? 3270 * 3271 * In theory the rotate-for-merge code will never get 3272 * here because it'll always ask for a rotate in a 3273 * nonempty list. 3274 */ 3275 3276 ret = ocfs2_remove_rightmost_path(handle, et, path, 3277 dealloc); 3278 if (ret) 3279 mlog_errno(ret); 3280 goto out; 3281 } 3282 3283 /* 3284 * Now we can loop, remembering the path we get from -EAGAIN 3285 * and restarting from there. 3286 */ 3287 try_rotate: 3288 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path, 3289 dealloc, &restart_path); 3290 if (ret && ret != -EAGAIN) { 3291 mlog_errno(ret); 3292 goto out; 3293 } 3294 3295 while (ret == -EAGAIN) { 3296 tmp_path = restart_path; 3297 restart_path = NULL; 3298 3299 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, 3300 tmp_path, dealloc, 3301 &restart_path); 3302 if (ret && ret != -EAGAIN) { 3303 mlog_errno(ret); 3304 goto out; 3305 } 3306 3307 ocfs2_free_path(tmp_path); 3308 tmp_path = NULL; 3309 3310 if (ret == 0) 3311 goto try_rotate; 3312 } 3313 3314 out: 3315 ocfs2_free_path(tmp_path); 3316 ocfs2_free_path(restart_path); 3317 return ret; 3318 } 3319 3320 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el, 3321 int index) 3322 { 3323 struct ocfs2_extent_rec *rec = &el->l_recs[index]; 3324 unsigned int size; 3325 3326 if (rec->e_leaf_clusters == 0) { 3327 /* 3328 * We consumed all of the merged-from record. An empty 3329 * extent cannot exist anywhere but the 1st array 3330 * position, so move things over if the merged-from 3331 * record doesn't occupy that position. 3332 * 3333 * This creates a new empty extent so the caller 3334 * should be smart enough to have removed any existing 3335 * ones. 3336 */ 3337 if (index > 0) { 3338 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 3339 size = index * sizeof(struct ocfs2_extent_rec); 3340 memmove(&el->l_recs[1], &el->l_recs[0], size); 3341 } 3342 3343 /* 3344 * Always memset - the caller doesn't check whether it 3345 * created an empty extent, so there could be junk in 3346 * the other fields. 3347 */ 3348 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3349 } 3350 } 3351 3352 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et, 3353 struct ocfs2_path *left_path, 3354 struct ocfs2_path **ret_right_path) 3355 { 3356 int ret; 3357 u32 right_cpos; 3358 struct ocfs2_path *right_path = NULL; 3359 struct ocfs2_extent_list *left_el; 3360 3361 *ret_right_path = NULL; 3362 3363 /* This function shouldn't be called for non-trees. */ 3364 BUG_ON(left_path->p_tree_depth == 0); 3365 3366 left_el = path_leaf_el(left_path); 3367 BUG_ON(left_el->l_next_free_rec != left_el->l_count); 3368 3369 ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3370 left_path, &right_cpos); 3371 if (ret) { 3372 mlog_errno(ret); 3373 goto out; 3374 } 3375 3376 /* This function shouldn't be called for the rightmost leaf. */ 3377 BUG_ON(right_cpos == 0); 3378 3379 right_path = ocfs2_new_path_from_path(left_path); 3380 if (!right_path) { 3381 ret = -ENOMEM; 3382 mlog_errno(ret); 3383 goto out; 3384 } 3385 3386 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); 3387 if (ret) { 3388 mlog_errno(ret); 3389 goto out; 3390 } 3391 3392 *ret_right_path = right_path; 3393 out: 3394 if (ret) 3395 ocfs2_free_path(right_path); 3396 return ret; 3397 } 3398 3399 /* 3400 * Remove split_rec clusters from the record at index and merge them 3401 * onto the beginning of the record "next" to it. 3402 * For index < l_count - 1, the next means the extent rec at index + 1. 3403 * For index == l_count - 1, the "next" means the 1st extent rec of the 3404 * next extent block. 3405 */ 3406 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path, 3407 handle_t *handle, 3408 struct ocfs2_extent_tree *et, 3409 struct ocfs2_extent_rec *split_rec, 3410 int index) 3411 { 3412 int ret, next_free, i; 3413 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3414 struct ocfs2_extent_rec *left_rec; 3415 struct ocfs2_extent_rec *right_rec; 3416 struct ocfs2_extent_list *right_el; 3417 struct ocfs2_path *right_path = NULL; 3418 int subtree_index = 0; 3419 struct ocfs2_extent_list *el = path_leaf_el(left_path); 3420 struct buffer_head *bh = path_leaf_bh(left_path); 3421 struct buffer_head *root_bh = NULL; 3422 3423 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec)); 3424 left_rec = &el->l_recs[index]; 3425 3426 if (index == le16_to_cpu(el->l_next_free_rec) - 1 && 3427 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) { 3428 /* we meet with a cross extent block merge. */ 3429 ret = ocfs2_get_right_path(et, left_path, &right_path); 3430 if (ret) { 3431 mlog_errno(ret); 3432 goto out; 3433 } 3434 3435 right_el = path_leaf_el(right_path); 3436 next_free = le16_to_cpu(right_el->l_next_free_rec); 3437 BUG_ON(next_free <= 0); 3438 right_rec = &right_el->l_recs[0]; 3439 if (ocfs2_is_empty_extent(right_rec)) { 3440 BUG_ON(next_free <= 1); 3441 right_rec = &right_el->l_recs[1]; 3442 } 3443 3444 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3445 le16_to_cpu(left_rec->e_leaf_clusters) != 3446 le32_to_cpu(right_rec->e_cpos)); 3447 3448 subtree_index = ocfs2_find_subtree_root(et, left_path, 3449 right_path); 3450 3451 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3452 handle->h_buffer_credits, 3453 right_path); 3454 if (ret) { 3455 mlog_errno(ret); 3456 goto out; 3457 } 3458 3459 root_bh = left_path->p_node[subtree_index].bh; 3460 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3461 3462 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3463 subtree_index); 3464 if (ret) { 3465 mlog_errno(ret); 3466 goto out; 3467 } 3468 3469 for (i = subtree_index + 1; 3470 i < path_num_items(right_path); i++) { 3471 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3472 right_path, i); 3473 if (ret) { 3474 mlog_errno(ret); 3475 goto out; 3476 } 3477 3478 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3479 left_path, i); 3480 if (ret) { 3481 mlog_errno(ret); 3482 goto out; 3483 } 3484 } 3485 3486 } else { 3487 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1); 3488 right_rec = &el->l_recs[index + 1]; 3489 } 3490 3491 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path, 3492 path_num_items(left_path) - 1); 3493 if (ret) { 3494 mlog_errno(ret); 3495 goto out; 3496 } 3497 3498 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters); 3499 3500 le32_add_cpu(&right_rec->e_cpos, -split_clusters); 3501 le64_add_cpu(&right_rec->e_blkno, 3502 -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), 3503 split_clusters)); 3504 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters); 3505 3506 ocfs2_cleanup_merge(el, index); 3507 3508 ret = ocfs2_journal_dirty(handle, bh); 3509 if (ret) 3510 mlog_errno(ret); 3511 3512 if (right_path) { 3513 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 3514 if (ret) 3515 mlog_errno(ret); 3516 3517 ocfs2_complete_edge_insert(handle, left_path, right_path, 3518 subtree_index); 3519 } 3520 out: 3521 if (right_path) 3522 ocfs2_free_path(right_path); 3523 return ret; 3524 } 3525 3526 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et, 3527 struct ocfs2_path *right_path, 3528 struct ocfs2_path **ret_left_path) 3529 { 3530 int ret; 3531 u32 left_cpos; 3532 struct ocfs2_path *left_path = NULL; 3533 3534 *ret_left_path = NULL; 3535 3536 /* This function shouldn't be called for non-trees. */ 3537 BUG_ON(right_path->p_tree_depth == 0); 3538 3539 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3540 right_path, &left_cpos); 3541 if (ret) { 3542 mlog_errno(ret); 3543 goto out; 3544 } 3545 3546 /* This function shouldn't be called for the leftmost leaf. */ 3547 BUG_ON(left_cpos == 0); 3548 3549 left_path = ocfs2_new_path_from_path(right_path); 3550 if (!left_path) { 3551 ret = -ENOMEM; 3552 mlog_errno(ret); 3553 goto out; 3554 } 3555 3556 ret = ocfs2_find_path(et->et_ci, left_path, left_cpos); 3557 if (ret) { 3558 mlog_errno(ret); 3559 goto out; 3560 } 3561 3562 *ret_left_path = left_path; 3563 out: 3564 if (ret) 3565 ocfs2_free_path(left_path); 3566 return ret; 3567 } 3568 3569 /* 3570 * Remove split_rec clusters from the record at index and merge them 3571 * onto the tail of the record "before" it. 3572 * For index > 0, the "before" means the extent rec at index - 1. 3573 * 3574 * For index == 0, the "before" means the last record of the previous 3575 * extent block. And there is also a situation that we may need to 3576 * remove the rightmost leaf extent block in the right_path and change 3577 * the right path to indicate the new rightmost path. 3578 */ 3579 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path, 3580 handle_t *handle, 3581 struct ocfs2_extent_tree *et, 3582 struct ocfs2_extent_rec *split_rec, 3583 struct ocfs2_cached_dealloc_ctxt *dealloc, 3584 int index) 3585 { 3586 int ret, i, subtree_index = 0, has_empty_extent = 0; 3587 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3588 struct ocfs2_extent_rec *left_rec; 3589 struct ocfs2_extent_rec *right_rec; 3590 struct ocfs2_extent_list *el = path_leaf_el(right_path); 3591 struct buffer_head *bh = path_leaf_bh(right_path); 3592 struct buffer_head *root_bh = NULL; 3593 struct ocfs2_path *left_path = NULL; 3594 struct ocfs2_extent_list *left_el; 3595 3596 BUG_ON(index < 0); 3597 3598 right_rec = &el->l_recs[index]; 3599 if (index == 0) { 3600 /* we meet with a cross extent block merge. */ 3601 ret = ocfs2_get_left_path(et, right_path, &left_path); 3602 if (ret) { 3603 mlog_errno(ret); 3604 goto out; 3605 } 3606 3607 left_el = path_leaf_el(left_path); 3608 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) != 3609 le16_to_cpu(left_el->l_count)); 3610 3611 left_rec = &left_el->l_recs[ 3612 le16_to_cpu(left_el->l_next_free_rec) - 1]; 3613 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3614 le16_to_cpu(left_rec->e_leaf_clusters) != 3615 le32_to_cpu(split_rec->e_cpos)); 3616 3617 subtree_index = ocfs2_find_subtree_root(et, left_path, 3618 right_path); 3619 3620 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3621 handle->h_buffer_credits, 3622 left_path); 3623 if (ret) { 3624 mlog_errno(ret); 3625 goto out; 3626 } 3627 3628 root_bh = left_path->p_node[subtree_index].bh; 3629 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3630 3631 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3632 subtree_index); 3633 if (ret) { 3634 mlog_errno(ret); 3635 goto out; 3636 } 3637 3638 for (i = subtree_index + 1; 3639 i < path_num_items(right_path); i++) { 3640 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3641 right_path, i); 3642 if (ret) { 3643 mlog_errno(ret); 3644 goto out; 3645 } 3646 3647 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3648 left_path, i); 3649 if (ret) { 3650 mlog_errno(ret); 3651 goto out; 3652 } 3653 } 3654 } else { 3655 left_rec = &el->l_recs[index - 1]; 3656 if (ocfs2_is_empty_extent(&el->l_recs[0])) 3657 has_empty_extent = 1; 3658 } 3659 3660 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3661 path_num_items(right_path) - 1); 3662 if (ret) { 3663 mlog_errno(ret); 3664 goto out; 3665 } 3666 3667 if (has_empty_extent && index == 1) { 3668 /* 3669 * The easy case - we can just plop the record right in. 3670 */ 3671 *left_rec = *split_rec; 3672 3673 has_empty_extent = 0; 3674 } else 3675 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters); 3676 3677 le32_add_cpu(&right_rec->e_cpos, split_clusters); 3678 le64_add_cpu(&right_rec->e_blkno, 3679 ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), 3680 split_clusters)); 3681 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters); 3682 3683 ocfs2_cleanup_merge(el, index); 3684 3685 ret = ocfs2_journal_dirty(handle, bh); 3686 if (ret) 3687 mlog_errno(ret); 3688 3689 if (left_path) { 3690 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 3691 if (ret) 3692 mlog_errno(ret); 3693 3694 /* 3695 * In the situation that the right_rec is empty and the extent 3696 * block is empty also, ocfs2_complete_edge_insert can't handle 3697 * it and we need to delete the right extent block. 3698 */ 3699 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 && 3700 le16_to_cpu(el->l_next_free_rec) == 1) { 3701 3702 ret = ocfs2_remove_rightmost_path(handle, et, 3703 right_path, 3704 dealloc); 3705 if (ret) { 3706 mlog_errno(ret); 3707 goto out; 3708 } 3709 3710 /* Now the rightmost extent block has been deleted. 3711 * So we use the new rightmost path. 3712 */ 3713 ocfs2_mv_path(right_path, left_path); 3714 left_path = NULL; 3715 } else 3716 ocfs2_complete_edge_insert(handle, left_path, 3717 right_path, subtree_index); 3718 } 3719 out: 3720 if (left_path) 3721 ocfs2_free_path(left_path); 3722 return ret; 3723 } 3724 3725 static int ocfs2_try_to_merge_extent(handle_t *handle, 3726 struct ocfs2_extent_tree *et, 3727 struct ocfs2_path *path, 3728 int split_index, 3729 struct ocfs2_extent_rec *split_rec, 3730 struct ocfs2_cached_dealloc_ctxt *dealloc, 3731 struct ocfs2_merge_ctxt *ctxt) 3732 { 3733 int ret = 0; 3734 struct ocfs2_extent_list *el = path_leaf_el(path); 3735 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 3736 3737 BUG_ON(ctxt->c_contig_type == CONTIG_NONE); 3738 3739 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) { 3740 /* 3741 * The merge code will need to create an empty 3742 * extent to take the place of the newly 3743 * emptied slot. Remove any pre-existing empty 3744 * extents - having more than one in a leaf is 3745 * illegal. 3746 */ 3747 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3748 if (ret) { 3749 mlog_errno(ret); 3750 goto out; 3751 } 3752 split_index--; 3753 rec = &el->l_recs[split_index]; 3754 } 3755 3756 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) { 3757 /* 3758 * Left-right contig implies this. 3759 */ 3760 BUG_ON(!ctxt->c_split_covers_rec); 3761 3762 /* 3763 * Since the leftright insert always covers the entire 3764 * extent, this call will delete the insert record 3765 * entirely, resulting in an empty extent record added to 3766 * the extent block. 3767 * 3768 * Since the adding of an empty extent shifts 3769 * everything back to the right, there's no need to 3770 * update split_index here. 3771 * 3772 * When the split_index is zero, we need to merge it to the 3773 * prevoius extent block. It is more efficient and easier 3774 * if we do merge_right first and merge_left later. 3775 */ 3776 ret = ocfs2_merge_rec_right(path, handle, et, split_rec, 3777 split_index); 3778 if (ret) { 3779 mlog_errno(ret); 3780 goto out; 3781 } 3782 3783 /* 3784 * We can only get this from logic error above. 3785 */ 3786 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0])); 3787 3788 /* The merge left us with an empty extent, remove it. */ 3789 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3790 if (ret) { 3791 mlog_errno(ret); 3792 goto out; 3793 } 3794 3795 rec = &el->l_recs[split_index]; 3796 3797 /* 3798 * Note that we don't pass split_rec here on purpose - 3799 * we've merged it into the rec already. 3800 */ 3801 ret = ocfs2_merge_rec_left(path, handle, et, rec, 3802 dealloc, split_index); 3803 3804 if (ret) { 3805 mlog_errno(ret); 3806 goto out; 3807 } 3808 3809 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3810 /* 3811 * Error from this last rotate is not critical, so 3812 * print but don't bubble it up. 3813 */ 3814 if (ret) 3815 mlog_errno(ret); 3816 ret = 0; 3817 } else { 3818 /* 3819 * Merge a record to the left or right. 3820 * 3821 * 'contig_type' is relative to the existing record, 3822 * so for example, if we're "right contig", it's to 3823 * the record on the left (hence the left merge). 3824 */ 3825 if (ctxt->c_contig_type == CONTIG_RIGHT) { 3826 ret = ocfs2_merge_rec_left(path, handle, et, 3827 split_rec, dealloc, 3828 split_index); 3829 if (ret) { 3830 mlog_errno(ret); 3831 goto out; 3832 } 3833 } else { 3834 ret = ocfs2_merge_rec_right(path, handle, 3835 et, split_rec, 3836 split_index); 3837 if (ret) { 3838 mlog_errno(ret); 3839 goto out; 3840 } 3841 } 3842 3843 if (ctxt->c_split_covers_rec) { 3844 /* 3845 * The merge may have left an empty extent in 3846 * our leaf. Try to rotate it away. 3847 */ 3848 ret = ocfs2_rotate_tree_left(handle, et, path, 3849 dealloc); 3850 if (ret) 3851 mlog_errno(ret); 3852 ret = 0; 3853 } 3854 } 3855 3856 out: 3857 return ret; 3858 } 3859 3860 static void ocfs2_subtract_from_rec(struct super_block *sb, 3861 enum ocfs2_split_type split, 3862 struct ocfs2_extent_rec *rec, 3863 struct ocfs2_extent_rec *split_rec) 3864 { 3865 u64 len_blocks; 3866 3867 len_blocks = ocfs2_clusters_to_blocks(sb, 3868 le16_to_cpu(split_rec->e_leaf_clusters)); 3869 3870 if (split == SPLIT_LEFT) { 3871 /* 3872 * Region is on the left edge of the existing 3873 * record. 3874 */ 3875 le32_add_cpu(&rec->e_cpos, 3876 le16_to_cpu(split_rec->e_leaf_clusters)); 3877 le64_add_cpu(&rec->e_blkno, len_blocks); 3878 le16_add_cpu(&rec->e_leaf_clusters, 3879 -le16_to_cpu(split_rec->e_leaf_clusters)); 3880 } else { 3881 /* 3882 * Region is on the right edge of the existing 3883 * record. 3884 */ 3885 le16_add_cpu(&rec->e_leaf_clusters, 3886 -le16_to_cpu(split_rec->e_leaf_clusters)); 3887 } 3888 } 3889 3890 /* 3891 * Do the final bits of extent record insertion at the target leaf 3892 * list. If this leaf is part of an allocation tree, it is assumed 3893 * that the tree above has been prepared. 3894 */ 3895 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et, 3896 struct ocfs2_extent_rec *insert_rec, 3897 struct ocfs2_extent_list *el, 3898 struct ocfs2_insert_type *insert) 3899 { 3900 int i = insert->ins_contig_index; 3901 unsigned int range; 3902 struct ocfs2_extent_rec *rec; 3903 3904 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 3905 3906 if (insert->ins_split != SPLIT_NONE) { 3907 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos)); 3908 BUG_ON(i == -1); 3909 rec = &el->l_recs[i]; 3910 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci), 3911 insert->ins_split, rec, 3912 insert_rec); 3913 goto rotate; 3914 } 3915 3916 /* 3917 * Contiguous insert - either left or right. 3918 */ 3919 if (insert->ins_contig != CONTIG_NONE) { 3920 rec = &el->l_recs[i]; 3921 if (insert->ins_contig == CONTIG_LEFT) { 3922 rec->e_blkno = insert_rec->e_blkno; 3923 rec->e_cpos = insert_rec->e_cpos; 3924 } 3925 le16_add_cpu(&rec->e_leaf_clusters, 3926 le16_to_cpu(insert_rec->e_leaf_clusters)); 3927 return; 3928 } 3929 3930 /* 3931 * Handle insert into an empty leaf. 3932 */ 3933 if (le16_to_cpu(el->l_next_free_rec) == 0 || 3934 ((le16_to_cpu(el->l_next_free_rec) == 1) && 3935 ocfs2_is_empty_extent(&el->l_recs[0]))) { 3936 el->l_recs[0] = *insert_rec; 3937 el->l_next_free_rec = cpu_to_le16(1); 3938 return; 3939 } 3940 3941 /* 3942 * Appending insert. 3943 */ 3944 if (insert->ins_appending == APPEND_TAIL) { 3945 i = le16_to_cpu(el->l_next_free_rec) - 1; 3946 rec = &el->l_recs[i]; 3947 range = le32_to_cpu(rec->e_cpos) 3948 + le16_to_cpu(rec->e_leaf_clusters); 3949 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range); 3950 3951 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >= 3952 le16_to_cpu(el->l_count), 3953 "owner %llu, depth %u, count %u, next free %u, " 3954 "rec.cpos %u, rec.clusters %u, " 3955 "insert.cpos %u, insert.clusters %u\n", 3956 ocfs2_metadata_cache_owner(et->et_ci), 3957 le16_to_cpu(el->l_tree_depth), 3958 le16_to_cpu(el->l_count), 3959 le16_to_cpu(el->l_next_free_rec), 3960 le32_to_cpu(el->l_recs[i].e_cpos), 3961 le16_to_cpu(el->l_recs[i].e_leaf_clusters), 3962 le32_to_cpu(insert_rec->e_cpos), 3963 le16_to_cpu(insert_rec->e_leaf_clusters)); 3964 i++; 3965 el->l_recs[i] = *insert_rec; 3966 le16_add_cpu(&el->l_next_free_rec, 1); 3967 return; 3968 } 3969 3970 rotate: 3971 /* 3972 * Ok, we have to rotate. 3973 * 3974 * At this point, it is safe to assume that inserting into an 3975 * empty leaf and appending to a leaf have both been handled 3976 * above. 3977 * 3978 * This leaf needs to have space, either by the empty 1st 3979 * extent record, or by virtue of an l_next_rec < l_count. 3980 */ 3981 ocfs2_rotate_leaf(el, insert_rec); 3982 } 3983 3984 static void ocfs2_adjust_rightmost_records(handle_t *handle, 3985 struct ocfs2_extent_tree *et, 3986 struct ocfs2_path *path, 3987 struct ocfs2_extent_rec *insert_rec) 3988 { 3989 int ret, i, next_free; 3990 struct buffer_head *bh; 3991 struct ocfs2_extent_list *el; 3992 struct ocfs2_extent_rec *rec; 3993 3994 /* 3995 * Update everything except the leaf block. 3996 */ 3997 for (i = 0; i < path->p_tree_depth; i++) { 3998 bh = path->p_node[i].bh; 3999 el = path->p_node[i].el; 4000 4001 next_free = le16_to_cpu(el->l_next_free_rec); 4002 if (next_free == 0) { 4003 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 4004 "Owner %llu has a bad extent list", 4005 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 4006 ret = -EIO; 4007 return; 4008 } 4009 4010 rec = &el->l_recs[next_free - 1]; 4011 4012 rec->e_int_clusters = insert_rec->e_cpos; 4013 le32_add_cpu(&rec->e_int_clusters, 4014 le16_to_cpu(insert_rec->e_leaf_clusters)); 4015 le32_add_cpu(&rec->e_int_clusters, 4016 -le32_to_cpu(rec->e_cpos)); 4017 4018 ret = ocfs2_journal_dirty(handle, bh); 4019 if (ret) 4020 mlog_errno(ret); 4021 4022 } 4023 } 4024 4025 static int ocfs2_append_rec_to_path(handle_t *handle, 4026 struct ocfs2_extent_tree *et, 4027 struct ocfs2_extent_rec *insert_rec, 4028 struct ocfs2_path *right_path, 4029 struct ocfs2_path **ret_left_path) 4030 { 4031 int ret, next_free; 4032 struct ocfs2_extent_list *el; 4033 struct ocfs2_path *left_path = NULL; 4034 4035 *ret_left_path = NULL; 4036 4037 /* 4038 * This shouldn't happen for non-trees. The extent rec cluster 4039 * count manipulation below only works for interior nodes. 4040 */ 4041 BUG_ON(right_path->p_tree_depth == 0); 4042 4043 /* 4044 * If our appending insert is at the leftmost edge of a leaf, 4045 * then we might need to update the rightmost records of the 4046 * neighboring path. 4047 */ 4048 el = path_leaf_el(right_path); 4049 next_free = le16_to_cpu(el->l_next_free_rec); 4050 if (next_free == 0 || 4051 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) { 4052 u32 left_cpos; 4053 4054 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 4055 right_path, &left_cpos); 4056 if (ret) { 4057 mlog_errno(ret); 4058 goto out; 4059 } 4060 4061 mlog(0, "Append may need a left path update. cpos: %u, " 4062 "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos), 4063 left_cpos); 4064 4065 /* 4066 * No need to worry if the append is already in the 4067 * leftmost leaf. 4068 */ 4069 if (left_cpos) { 4070 left_path = ocfs2_new_path_from_path(right_path); 4071 if (!left_path) { 4072 ret = -ENOMEM; 4073 mlog_errno(ret); 4074 goto out; 4075 } 4076 4077 ret = ocfs2_find_path(et->et_ci, left_path, 4078 left_cpos); 4079 if (ret) { 4080 mlog_errno(ret); 4081 goto out; 4082 } 4083 4084 /* 4085 * ocfs2_insert_path() will pass the left_path to the 4086 * journal for us. 4087 */ 4088 } 4089 } 4090 4091 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path); 4092 if (ret) { 4093 mlog_errno(ret); 4094 goto out; 4095 } 4096 4097 ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec); 4098 4099 *ret_left_path = left_path; 4100 ret = 0; 4101 out: 4102 if (ret != 0) 4103 ocfs2_free_path(left_path); 4104 4105 return ret; 4106 } 4107 4108 static void ocfs2_split_record(struct ocfs2_extent_tree *et, 4109 struct ocfs2_path *left_path, 4110 struct ocfs2_path *right_path, 4111 struct ocfs2_extent_rec *split_rec, 4112 enum ocfs2_split_type split) 4113 { 4114 int index; 4115 u32 cpos = le32_to_cpu(split_rec->e_cpos); 4116 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el; 4117 struct ocfs2_extent_rec *rec, *tmprec; 4118 4119 right_el = path_leaf_el(right_path); 4120 if (left_path) 4121 left_el = path_leaf_el(left_path); 4122 4123 el = right_el; 4124 insert_el = right_el; 4125 index = ocfs2_search_extent_list(el, cpos); 4126 if (index != -1) { 4127 if (index == 0 && left_path) { 4128 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 4129 4130 /* 4131 * This typically means that the record 4132 * started in the left path but moved to the 4133 * right as a result of rotation. We either 4134 * move the existing record to the left, or we 4135 * do the later insert there. 4136 * 4137 * In this case, the left path should always 4138 * exist as the rotate code will have passed 4139 * it back for a post-insert update. 4140 */ 4141 4142 if (split == SPLIT_LEFT) { 4143 /* 4144 * It's a left split. Since we know 4145 * that the rotate code gave us an 4146 * empty extent in the left path, we 4147 * can just do the insert there. 4148 */ 4149 insert_el = left_el; 4150 } else { 4151 /* 4152 * Right split - we have to move the 4153 * existing record over to the left 4154 * leaf. The insert will be into the 4155 * newly created empty extent in the 4156 * right leaf. 4157 */ 4158 tmprec = &right_el->l_recs[index]; 4159 ocfs2_rotate_leaf(left_el, tmprec); 4160 el = left_el; 4161 4162 memset(tmprec, 0, sizeof(*tmprec)); 4163 index = ocfs2_search_extent_list(left_el, cpos); 4164 BUG_ON(index == -1); 4165 } 4166 } 4167 } else { 4168 BUG_ON(!left_path); 4169 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0])); 4170 /* 4171 * Left path is easy - we can just allow the insert to 4172 * happen. 4173 */ 4174 el = left_el; 4175 insert_el = left_el; 4176 index = ocfs2_search_extent_list(el, cpos); 4177 BUG_ON(index == -1); 4178 } 4179 4180 rec = &el->l_recs[index]; 4181 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci), 4182 split, rec, split_rec); 4183 ocfs2_rotate_leaf(insert_el, split_rec); 4184 } 4185 4186 /* 4187 * This function only does inserts on an allocation b-tree. For tree 4188 * depth = 0, ocfs2_insert_at_leaf() is called directly. 4189 * 4190 * right_path is the path we want to do the actual insert 4191 * in. left_path should only be passed in if we need to update that 4192 * portion of the tree after an edge insert. 4193 */ 4194 static int ocfs2_insert_path(handle_t *handle, 4195 struct ocfs2_extent_tree *et, 4196 struct ocfs2_path *left_path, 4197 struct ocfs2_path *right_path, 4198 struct ocfs2_extent_rec *insert_rec, 4199 struct ocfs2_insert_type *insert) 4200 { 4201 int ret, subtree_index; 4202 struct buffer_head *leaf_bh = path_leaf_bh(right_path); 4203 4204 if (left_path) { 4205 int credits = handle->h_buffer_credits; 4206 4207 /* 4208 * There's a chance that left_path got passed back to 4209 * us without being accounted for in the 4210 * journal. Extend our transaction here to be sure we 4211 * can change those blocks. 4212 */ 4213 credits += left_path->p_tree_depth; 4214 4215 ret = ocfs2_extend_trans(handle, credits); 4216 if (ret < 0) { 4217 mlog_errno(ret); 4218 goto out; 4219 } 4220 4221 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 4222 if (ret < 0) { 4223 mlog_errno(ret); 4224 goto out; 4225 } 4226 } 4227 4228 /* 4229 * Pass both paths to the journal. The majority of inserts 4230 * will be touching all components anyway. 4231 */ 4232 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path); 4233 if (ret < 0) { 4234 mlog_errno(ret); 4235 goto out; 4236 } 4237 4238 if (insert->ins_split != SPLIT_NONE) { 4239 /* 4240 * We could call ocfs2_insert_at_leaf() for some types 4241 * of splits, but it's easier to just let one separate 4242 * function sort it all out. 4243 */ 4244 ocfs2_split_record(et, left_path, right_path, 4245 insert_rec, insert->ins_split); 4246 4247 /* 4248 * Split might have modified either leaf and we don't 4249 * have a guarantee that the later edge insert will 4250 * dirty this for us. 4251 */ 4252 if (left_path) 4253 ret = ocfs2_journal_dirty(handle, 4254 path_leaf_bh(left_path)); 4255 if (ret) 4256 mlog_errno(ret); 4257 } else 4258 ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path), 4259 insert); 4260 4261 ret = ocfs2_journal_dirty(handle, leaf_bh); 4262 if (ret) 4263 mlog_errno(ret); 4264 4265 if (left_path) { 4266 /* 4267 * The rotate code has indicated that we need to fix 4268 * up portions of the tree after the insert. 4269 * 4270 * XXX: Should we extend the transaction here? 4271 */ 4272 subtree_index = ocfs2_find_subtree_root(et, left_path, 4273 right_path); 4274 ocfs2_complete_edge_insert(handle, left_path, right_path, 4275 subtree_index); 4276 } 4277 4278 ret = 0; 4279 out: 4280 return ret; 4281 } 4282 4283 static int ocfs2_do_insert_extent(handle_t *handle, 4284 struct ocfs2_extent_tree *et, 4285 struct ocfs2_extent_rec *insert_rec, 4286 struct ocfs2_insert_type *type) 4287 { 4288 int ret, rotate = 0; 4289 u32 cpos; 4290 struct ocfs2_path *right_path = NULL; 4291 struct ocfs2_path *left_path = NULL; 4292 struct ocfs2_extent_list *el; 4293 4294 el = et->et_root_el; 4295 4296 ret = ocfs2_et_root_journal_access(handle, et, 4297 OCFS2_JOURNAL_ACCESS_WRITE); 4298 if (ret) { 4299 mlog_errno(ret); 4300 goto out; 4301 } 4302 4303 if (le16_to_cpu(el->l_tree_depth) == 0) { 4304 ocfs2_insert_at_leaf(et, insert_rec, el, type); 4305 goto out_update_clusters; 4306 } 4307 4308 right_path = ocfs2_new_path_from_et(et); 4309 if (!right_path) { 4310 ret = -ENOMEM; 4311 mlog_errno(ret); 4312 goto out; 4313 } 4314 4315 /* 4316 * Determine the path to start with. Rotations need the 4317 * rightmost path, everything else can go directly to the 4318 * target leaf. 4319 */ 4320 cpos = le32_to_cpu(insert_rec->e_cpos); 4321 if (type->ins_appending == APPEND_NONE && 4322 type->ins_contig == CONTIG_NONE) { 4323 rotate = 1; 4324 cpos = UINT_MAX; 4325 } 4326 4327 ret = ocfs2_find_path(et->et_ci, right_path, cpos); 4328 if (ret) { 4329 mlog_errno(ret); 4330 goto out; 4331 } 4332 4333 /* 4334 * Rotations and appends need special treatment - they modify 4335 * parts of the tree's above them. 4336 * 4337 * Both might pass back a path immediate to the left of the 4338 * one being inserted to. This will be cause 4339 * ocfs2_insert_path() to modify the rightmost records of 4340 * left_path to account for an edge insert. 4341 * 4342 * XXX: When modifying this code, keep in mind that an insert 4343 * can wind up skipping both of these two special cases... 4344 */ 4345 if (rotate) { 4346 ret = ocfs2_rotate_tree_right(handle, et, type->ins_split, 4347 le32_to_cpu(insert_rec->e_cpos), 4348 right_path, &left_path); 4349 if (ret) { 4350 mlog_errno(ret); 4351 goto out; 4352 } 4353 4354 /* 4355 * ocfs2_rotate_tree_right() might have extended the 4356 * transaction without re-journaling our tree root. 4357 */ 4358 ret = ocfs2_et_root_journal_access(handle, et, 4359 OCFS2_JOURNAL_ACCESS_WRITE); 4360 if (ret) { 4361 mlog_errno(ret); 4362 goto out; 4363 } 4364 } else if (type->ins_appending == APPEND_TAIL 4365 && type->ins_contig != CONTIG_LEFT) { 4366 ret = ocfs2_append_rec_to_path(handle, et, insert_rec, 4367 right_path, &left_path); 4368 if (ret) { 4369 mlog_errno(ret); 4370 goto out; 4371 } 4372 } 4373 4374 ret = ocfs2_insert_path(handle, et, left_path, right_path, 4375 insert_rec, type); 4376 if (ret) { 4377 mlog_errno(ret); 4378 goto out; 4379 } 4380 4381 out_update_clusters: 4382 if (type->ins_split == SPLIT_NONE) 4383 ocfs2_et_update_clusters(et, 4384 le16_to_cpu(insert_rec->e_leaf_clusters)); 4385 4386 ret = ocfs2_journal_dirty(handle, et->et_root_bh); 4387 if (ret) 4388 mlog_errno(ret); 4389 4390 out: 4391 ocfs2_free_path(left_path); 4392 ocfs2_free_path(right_path); 4393 4394 return ret; 4395 } 4396 4397 static enum ocfs2_contig_type 4398 ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et, 4399 struct ocfs2_path *path, 4400 struct ocfs2_extent_list *el, int index, 4401 struct ocfs2_extent_rec *split_rec) 4402 { 4403 int status; 4404 enum ocfs2_contig_type ret = CONTIG_NONE; 4405 u32 left_cpos, right_cpos; 4406 struct ocfs2_extent_rec *rec = NULL; 4407 struct ocfs2_extent_list *new_el; 4408 struct ocfs2_path *left_path = NULL, *right_path = NULL; 4409 struct buffer_head *bh; 4410 struct ocfs2_extent_block *eb; 4411 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 4412 4413 if (index > 0) { 4414 rec = &el->l_recs[index - 1]; 4415 } else if (path->p_tree_depth > 0) { 4416 status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos); 4417 if (status) 4418 goto out; 4419 4420 if (left_cpos != 0) { 4421 left_path = ocfs2_new_path_from_path(path); 4422 if (!left_path) 4423 goto out; 4424 4425 status = ocfs2_find_path(et->et_ci, left_path, 4426 left_cpos); 4427 if (status) 4428 goto out; 4429 4430 new_el = path_leaf_el(left_path); 4431 4432 if (le16_to_cpu(new_el->l_next_free_rec) != 4433 le16_to_cpu(new_el->l_count)) { 4434 bh = path_leaf_bh(left_path); 4435 eb = (struct ocfs2_extent_block *)bh->b_data; 4436 ocfs2_error(sb, 4437 "Extent block #%llu has an " 4438 "invalid l_next_free_rec of " 4439 "%d. It should have " 4440 "matched the l_count of %d", 4441 (unsigned long long)le64_to_cpu(eb->h_blkno), 4442 le16_to_cpu(new_el->l_next_free_rec), 4443 le16_to_cpu(new_el->l_count)); 4444 status = -EINVAL; 4445 goto out; 4446 } 4447 rec = &new_el->l_recs[ 4448 le16_to_cpu(new_el->l_next_free_rec) - 1]; 4449 } 4450 } 4451 4452 /* 4453 * We're careful to check for an empty extent record here - 4454 * the merge code will know what to do if it sees one. 4455 */ 4456 if (rec) { 4457 if (index == 1 && ocfs2_is_empty_extent(rec)) { 4458 if (split_rec->e_cpos == el->l_recs[index].e_cpos) 4459 ret = CONTIG_RIGHT; 4460 } else { 4461 ret = ocfs2_et_extent_contig(et, rec, split_rec); 4462 } 4463 } 4464 4465 rec = NULL; 4466 if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) 4467 rec = &el->l_recs[index + 1]; 4468 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) && 4469 path->p_tree_depth > 0) { 4470 status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos); 4471 if (status) 4472 goto out; 4473 4474 if (right_cpos == 0) 4475 goto out; 4476 4477 right_path = ocfs2_new_path_from_path(path); 4478 if (!right_path) 4479 goto out; 4480 4481 status = ocfs2_find_path(et->et_ci, right_path, right_cpos); 4482 if (status) 4483 goto out; 4484 4485 new_el = path_leaf_el(right_path); 4486 rec = &new_el->l_recs[0]; 4487 if (ocfs2_is_empty_extent(rec)) { 4488 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) { 4489 bh = path_leaf_bh(right_path); 4490 eb = (struct ocfs2_extent_block *)bh->b_data; 4491 ocfs2_error(sb, 4492 "Extent block #%llu has an " 4493 "invalid l_next_free_rec of %d", 4494 (unsigned long long)le64_to_cpu(eb->h_blkno), 4495 le16_to_cpu(new_el->l_next_free_rec)); 4496 status = -EINVAL; 4497 goto out; 4498 } 4499 rec = &new_el->l_recs[1]; 4500 } 4501 } 4502 4503 if (rec) { 4504 enum ocfs2_contig_type contig_type; 4505 4506 contig_type = ocfs2_et_extent_contig(et, rec, split_rec); 4507 4508 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT) 4509 ret = CONTIG_LEFTRIGHT; 4510 else if (ret == CONTIG_NONE) 4511 ret = contig_type; 4512 } 4513 4514 out: 4515 if (left_path) 4516 ocfs2_free_path(left_path); 4517 if (right_path) 4518 ocfs2_free_path(right_path); 4519 4520 return ret; 4521 } 4522 4523 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et, 4524 struct ocfs2_insert_type *insert, 4525 struct ocfs2_extent_list *el, 4526 struct ocfs2_extent_rec *insert_rec) 4527 { 4528 int i; 4529 enum ocfs2_contig_type contig_type = CONTIG_NONE; 4530 4531 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4532 4533 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 4534 contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i], 4535 insert_rec); 4536 if (contig_type != CONTIG_NONE) { 4537 insert->ins_contig_index = i; 4538 break; 4539 } 4540 } 4541 insert->ins_contig = contig_type; 4542 4543 if (insert->ins_contig != CONTIG_NONE) { 4544 struct ocfs2_extent_rec *rec = 4545 &el->l_recs[insert->ins_contig_index]; 4546 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) + 4547 le16_to_cpu(insert_rec->e_leaf_clusters); 4548 4549 /* 4550 * Caller might want us to limit the size of extents, don't 4551 * calculate contiguousness if we might exceed that limit. 4552 */ 4553 if (et->et_max_leaf_clusters && 4554 (len > et->et_max_leaf_clusters)) 4555 insert->ins_contig = CONTIG_NONE; 4556 } 4557 } 4558 4559 /* 4560 * This should only be called against the righmost leaf extent list. 4561 * 4562 * ocfs2_figure_appending_type() will figure out whether we'll have to 4563 * insert at the tail of the rightmost leaf. 4564 * 4565 * This should also work against the root extent list for tree's with 0 4566 * depth. If we consider the root extent list to be the rightmost leaf node 4567 * then the logic here makes sense. 4568 */ 4569 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert, 4570 struct ocfs2_extent_list *el, 4571 struct ocfs2_extent_rec *insert_rec) 4572 { 4573 int i; 4574 u32 cpos = le32_to_cpu(insert_rec->e_cpos); 4575 struct ocfs2_extent_rec *rec; 4576 4577 insert->ins_appending = APPEND_NONE; 4578 4579 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4580 4581 if (!el->l_next_free_rec) 4582 goto set_tail_append; 4583 4584 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 4585 /* Were all records empty? */ 4586 if (le16_to_cpu(el->l_next_free_rec) == 1) 4587 goto set_tail_append; 4588 } 4589 4590 i = le16_to_cpu(el->l_next_free_rec) - 1; 4591 rec = &el->l_recs[i]; 4592 4593 if (cpos >= 4594 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters))) 4595 goto set_tail_append; 4596 4597 return; 4598 4599 set_tail_append: 4600 insert->ins_appending = APPEND_TAIL; 4601 } 4602 4603 /* 4604 * Helper function called at the begining of an insert. 4605 * 4606 * This computes a few things that are commonly used in the process of 4607 * inserting into the btree: 4608 * - Whether the new extent is contiguous with an existing one. 4609 * - The current tree depth. 4610 * - Whether the insert is an appending one. 4611 * - The total # of free records in the tree. 4612 * 4613 * All of the information is stored on the ocfs2_insert_type 4614 * structure. 4615 */ 4616 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et, 4617 struct buffer_head **last_eb_bh, 4618 struct ocfs2_extent_rec *insert_rec, 4619 int *free_records, 4620 struct ocfs2_insert_type *insert) 4621 { 4622 int ret; 4623 struct ocfs2_extent_block *eb; 4624 struct ocfs2_extent_list *el; 4625 struct ocfs2_path *path = NULL; 4626 struct buffer_head *bh = NULL; 4627 4628 insert->ins_split = SPLIT_NONE; 4629 4630 el = et->et_root_el; 4631 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth); 4632 4633 if (el->l_tree_depth) { 4634 /* 4635 * If we have tree depth, we read in the 4636 * rightmost extent block ahead of time as 4637 * ocfs2_figure_insert_type() and ocfs2_add_branch() 4638 * may want it later. 4639 */ 4640 ret = ocfs2_read_extent_block(et->et_ci, 4641 ocfs2_et_get_last_eb_blk(et), 4642 &bh); 4643 if (ret) { 4644 mlog_exit(ret); 4645 goto out; 4646 } 4647 eb = (struct ocfs2_extent_block *) bh->b_data; 4648 el = &eb->h_list; 4649 } 4650 4651 /* 4652 * Unless we have a contiguous insert, we'll need to know if 4653 * there is room left in our allocation tree for another 4654 * extent record. 4655 * 4656 * XXX: This test is simplistic, we can search for empty 4657 * extent records too. 4658 */ 4659 *free_records = le16_to_cpu(el->l_count) - 4660 le16_to_cpu(el->l_next_free_rec); 4661 4662 if (!insert->ins_tree_depth) { 4663 ocfs2_figure_contig_type(et, insert, el, insert_rec); 4664 ocfs2_figure_appending_type(insert, el, insert_rec); 4665 return 0; 4666 } 4667 4668 path = ocfs2_new_path_from_et(et); 4669 if (!path) { 4670 ret = -ENOMEM; 4671 mlog_errno(ret); 4672 goto out; 4673 } 4674 4675 /* 4676 * In the case that we're inserting past what the tree 4677 * currently accounts for, ocfs2_find_path() will return for 4678 * us the rightmost tree path. This is accounted for below in 4679 * the appending code. 4680 */ 4681 ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos)); 4682 if (ret) { 4683 mlog_errno(ret); 4684 goto out; 4685 } 4686 4687 el = path_leaf_el(path); 4688 4689 /* 4690 * Now that we have the path, there's two things we want to determine: 4691 * 1) Contiguousness (also set contig_index if this is so) 4692 * 4693 * 2) Are we doing an append? We can trivially break this up 4694 * into two types of appends: simple record append, or a 4695 * rotate inside the tail leaf. 4696 */ 4697 ocfs2_figure_contig_type(et, insert, el, insert_rec); 4698 4699 /* 4700 * The insert code isn't quite ready to deal with all cases of 4701 * left contiguousness. Specifically, if it's an insert into 4702 * the 1st record in a leaf, it will require the adjustment of 4703 * cluster count on the last record of the path directly to it's 4704 * left. For now, just catch that case and fool the layers 4705 * above us. This works just fine for tree_depth == 0, which 4706 * is why we allow that above. 4707 */ 4708 if (insert->ins_contig == CONTIG_LEFT && 4709 insert->ins_contig_index == 0) 4710 insert->ins_contig = CONTIG_NONE; 4711 4712 /* 4713 * Ok, so we can simply compare against last_eb to figure out 4714 * whether the path doesn't exist. This will only happen in 4715 * the case that we're doing a tail append, so maybe we can 4716 * take advantage of that information somehow. 4717 */ 4718 if (ocfs2_et_get_last_eb_blk(et) == 4719 path_leaf_bh(path)->b_blocknr) { 4720 /* 4721 * Ok, ocfs2_find_path() returned us the rightmost 4722 * tree path. This might be an appending insert. There are 4723 * two cases: 4724 * 1) We're doing a true append at the tail: 4725 * -This might even be off the end of the leaf 4726 * 2) We're "appending" by rotating in the tail 4727 */ 4728 ocfs2_figure_appending_type(insert, el, insert_rec); 4729 } 4730 4731 out: 4732 ocfs2_free_path(path); 4733 4734 if (ret == 0) 4735 *last_eb_bh = bh; 4736 else 4737 brelse(bh); 4738 return ret; 4739 } 4740 4741 /* 4742 * Insert an extent into a btree. 4743 * 4744 * The caller needs to update the owning btree's cluster count. 4745 */ 4746 int ocfs2_insert_extent(handle_t *handle, 4747 struct ocfs2_extent_tree *et, 4748 u32 cpos, 4749 u64 start_blk, 4750 u32 new_clusters, 4751 u8 flags, 4752 struct ocfs2_alloc_context *meta_ac) 4753 { 4754 int status; 4755 int uninitialized_var(free_records); 4756 struct buffer_head *last_eb_bh = NULL; 4757 struct ocfs2_insert_type insert = {0, }; 4758 struct ocfs2_extent_rec rec; 4759 4760 mlog(0, "add %u clusters at position %u to owner %llu\n", 4761 new_clusters, cpos, 4762 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 4763 4764 memset(&rec, 0, sizeof(rec)); 4765 rec.e_cpos = cpu_to_le32(cpos); 4766 rec.e_blkno = cpu_to_le64(start_blk); 4767 rec.e_leaf_clusters = cpu_to_le16(new_clusters); 4768 rec.e_flags = flags; 4769 status = ocfs2_et_insert_check(et, &rec); 4770 if (status) { 4771 mlog_errno(status); 4772 goto bail; 4773 } 4774 4775 status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec, 4776 &free_records, &insert); 4777 if (status < 0) { 4778 mlog_errno(status); 4779 goto bail; 4780 } 4781 4782 mlog(0, "Insert.appending: %u, Insert.Contig: %u, " 4783 "Insert.contig_index: %d, Insert.free_records: %d, " 4784 "Insert.tree_depth: %d\n", 4785 insert.ins_appending, insert.ins_contig, insert.ins_contig_index, 4786 free_records, insert.ins_tree_depth); 4787 4788 if (insert.ins_contig == CONTIG_NONE && free_records == 0) { 4789 status = ocfs2_grow_tree(handle, et, 4790 &insert.ins_tree_depth, &last_eb_bh, 4791 meta_ac); 4792 if (status) { 4793 mlog_errno(status); 4794 goto bail; 4795 } 4796 } 4797 4798 /* Finally, we can add clusters. This might rotate the tree for us. */ 4799 status = ocfs2_do_insert_extent(handle, et, &rec, &insert); 4800 if (status < 0) 4801 mlog_errno(status); 4802 else 4803 ocfs2_et_extent_map_insert(et, &rec); 4804 4805 bail: 4806 brelse(last_eb_bh); 4807 4808 mlog_exit(status); 4809 return status; 4810 } 4811 4812 /* 4813 * Allcate and add clusters into the extent b-tree. 4814 * The new clusters(clusters_to_add) will be inserted at logical_offset. 4815 * The extent b-tree's root is specified by et, and 4816 * it is not limited to the file storage. Any extent tree can use this 4817 * function if it implements the proper ocfs2_extent_tree. 4818 */ 4819 int ocfs2_add_clusters_in_btree(handle_t *handle, 4820 struct ocfs2_extent_tree *et, 4821 u32 *logical_offset, 4822 u32 clusters_to_add, 4823 int mark_unwritten, 4824 struct ocfs2_alloc_context *data_ac, 4825 struct ocfs2_alloc_context *meta_ac, 4826 enum ocfs2_alloc_restarted *reason_ret) 4827 { 4828 int status = 0; 4829 int free_extents; 4830 enum ocfs2_alloc_restarted reason = RESTART_NONE; 4831 u32 bit_off, num_bits; 4832 u64 block; 4833 u8 flags = 0; 4834 struct ocfs2_super *osb = 4835 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 4836 4837 BUG_ON(!clusters_to_add); 4838 4839 if (mark_unwritten) 4840 flags = OCFS2_EXT_UNWRITTEN; 4841 4842 free_extents = ocfs2_num_free_extents(osb, et); 4843 if (free_extents < 0) { 4844 status = free_extents; 4845 mlog_errno(status); 4846 goto leave; 4847 } 4848 4849 /* there are two cases which could cause us to EAGAIN in the 4850 * we-need-more-metadata case: 4851 * 1) we haven't reserved *any* 4852 * 2) we are so fragmented, we've needed to add metadata too 4853 * many times. */ 4854 if (!free_extents && !meta_ac) { 4855 mlog(0, "we haven't reserved any metadata!\n"); 4856 status = -EAGAIN; 4857 reason = RESTART_META; 4858 goto leave; 4859 } else if ((!free_extents) 4860 && (ocfs2_alloc_context_bits_left(meta_ac) 4861 < ocfs2_extend_meta_needed(et->et_root_el))) { 4862 mlog(0, "filesystem is really fragmented...\n"); 4863 status = -EAGAIN; 4864 reason = RESTART_META; 4865 goto leave; 4866 } 4867 4868 status = __ocfs2_claim_clusters(osb, handle, data_ac, 1, 4869 clusters_to_add, &bit_off, &num_bits); 4870 if (status < 0) { 4871 if (status != -ENOSPC) 4872 mlog_errno(status); 4873 goto leave; 4874 } 4875 4876 BUG_ON(num_bits > clusters_to_add); 4877 4878 /* reserve our write early -- insert_extent may update the tree root */ 4879 status = ocfs2_et_root_journal_access(handle, et, 4880 OCFS2_JOURNAL_ACCESS_WRITE); 4881 if (status < 0) { 4882 mlog_errno(status); 4883 goto leave; 4884 } 4885 4886 block = ocfs2_clusters_to_blocks(osb->sb, bit_off); 4887 mlog(0, "Allocating %u clusters at block %u for owner %llu\n", 4888 num_bits, bit_off, 4889 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 4890 status = ocfs2_insert_extent(handle, et, *logical_offset, block, 4891 num_bits, flags, meta_ac); 4892 if (status < 0) { 4893 mlog_errno(status); 4894 goto leave; 4895 } 4896 4897 status = ocfs2_journal_dirty(handle, et->et_root_bh); 4898 if (status < 0) { 4899 mlog_errno(status); 4900 goto leave; 4901 } 4902 4903 clusters_to_add -= num_bits; 4904 *logical_offset += num_bits; 4905 4906 if (clusters_to_add) { 4907 mlog(0, "need to alloc once more, wanted = %u\n", 4908 clusters_to_add); 4909 status = -EAGAIN; 4910 reason = RESTART_TRANS; 4911 } 4912 4913 leave: 4914 mlog_exit(status); 4915 if (reason_ret) 4916 *reason_ret = reason; 4917 return status; 4918 } 4919 4920 static void ocfs2_make_right_split_rec(struct super_block *sb, 4921 struct ocfs2_extent_rec *split_rec, 4922 u32 cpos, 4923 struct ocfs2_extent_rec *rec) 4924 { 4925 u32 rec_cpos = le32_to_cpu(rec->e_cpos); 4926 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters); 4927 4928 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec)); 4929 4930 split_rec->e_cpos = cpu_to_le32(cpos); 4931 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos); 4932 4933 split_rec->e_blkno = rec->e_blkno; 4934 le64_add_cpu(&split_rec->e_blkno, 4935 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos)); 4936 4937 split_rec->e_flags = rec->e_flags; 4938 } 4939 4940 static int ocfs2_split_and_insert(handle_t *handle, 4941 struct ocfs2_extent_tree *et, 4942 struct ocfs2_path *path, 4943 struct buffer_head **last_eb_bh, 4944 int split_index, 4945 struct ocfs2_extent_rec *orig_split_rec, 4946 struct ocfs2_alloc_context *meta_ac) 4947 { 4948 int ret = 0, depth; 4949 unsigned int insert_range, rec_range, do_leftright = 0; 4950 struct ocfs2_extent_rec tmprec; 4951 struct ocfs2_extent_list *rightmost_el; 4952 struct ocfs2_extent_rec rec; 4953 struct ocfs2_extent_rec split_rec = *orig_split_rec; 4954 struct ocfs2_insert_type insert; 4955 struct ocfs2_extent_block *eb; 4956 4957 leftright: 4958 /* 4959 * Store a copy of the record on the stack - it might move 4960 * around as the tree is manipulated below. 4961 */ 4962 rec = path_leaf_el(path)->l_recs[split_index]; 4963 4964 rightmost_el = et->et_root_el; 4965 4966 depth = le16_to_cpu(rightmost_el->l_tree_depth); 4967 if (depth) { 4968 BUG_ON(!(*last_eb_bh)); 4969 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 4970 rightmost_el = &eb->h_list; 4971 } 4972 4973 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 4974 le16_to_cpu(rightmost_el->l_count)) { 4975 ret = ocfs2_grow_tree(handle, et, 4976 &depth, last_eb_bh, meta_ac); 4977 if (ret) { 4978 mlog_errno(ret); 4979 goto out; 4980 } 4981 } 4982 4983 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 4984 insert.ins_appending = APPEND_NONE; 4985 insert.ins_contig = CONTIG_NONE; 4986 insert.ins_tree_depth = depth; 4987 4988 insert_range = le32_to_cpu(split_rec.e_cpos) + 4989 le16_to_cpu(split_rec.e_leaf_clusters); 4990 rec_range = le32_to_cpu(rec.e_cpos) + 4991 le16_to_cpu(rec.e_leaf_clusters); 4992 4993 if (split_rec.e_cpos == rec.e_cpos) { 4994 insert.ins_split = SPLIT_LEFT; 4995 } else if (insert_range == rec_range) { 4996 insert.ins_split = SPLIT_RIGHT; 4997 } else { 4998 /* 4999 * Left/right split. We fake this as a right split 5000 * first and then make a second pass as a left split. 5001 */ 5002 insert.ins_split = SPLIT_RIGHT; 5003 5004 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci), 5005 &tmprec, insert_range, &rec); 5006 5007 split_rec = tmprec; 5008 5009 BUG_ON(do_leftright); 5010 do_leftright = 1; 5011 } 5012 5013 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert); 5014 if (ret) { 5015 mlog_errno(ret); 5016 goto out; 5017 } 5018 5019 if (do_leftright == 1) { 5020 u32 cpos; 5021 struct ocfs2_extent_list *el; 5022 5023 do_leftright++; 5024 split_rec = *orig_split_rec; 5025 5026 ocfs2_reinit_path(path, 1); 5027 5028 cpos = le32_to_cpu(split_rec.e_cpos); 5029 ret = ocfs2_find_path(et->et_ci, path, cpos); 5030 if (ret) { 5031 mlog_errno(ret); 5032 goto out; 5033 } 5034 5035 el = path_leaf_el(path); 5036 split_index = ocfs2_search_extent_list(el, cpos); 5037 goto leftright; 5038 } 5039 out: 5040 5041 return ret; 5042 } 5043 5044 static int ocfs2_replace_extent_rec(handle_t *handle, 5045 struct ocfs2_extent_tree *et, 5046 struct ocfs2_path *path, 5047 struct ocfs2_extent_list *el, 5048 int split_index, 5049 struct ocfs2_extent_rec *split_rec) 5050 { 5051 int ret; 5052 5053 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path, 5054 path_num_items(path) - 1); 5055 if (ret) { 5056 mlog_errno(ret); 5057 goto out; 5058 } 5059 5060 el->l_recs[split_index] = *split_rec; 5061 5062 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 5063 out: 5064 return ret; 5065 } 5066 5067 /* 5068 * Split part or all of the extent record at split_index in the leaf 5069 * pointed to by path. Merge with the contiguous extent record if needed. 5070 * 5071 * Care is taken to handle contiguousness so as to not grow the tree. 5072 * 5073 * meta_ac is not strictly necessary - we only truly need it if growth 5074 * of the tree is required. All other cases will degrade into a less 5075 * optimal tree layout. 5076 * 5077 * last_eb_bh should be the rightmost leaf block for any extent 5078 * btree. Since a split may grow the tree or a merge might shrink it, 5079 * the caller cannot trust the contents of that buffer after this call. 5080 * 5081 * This code is optimized for readability - several passes might be 5082 * made over certain portions of the tree. All of those blocks will 5083 * have been brought into cache (and pinned via the journal), so the 5084 * extra overhead is not expressed in terms of disk reads. 5085 */ 5086 int ocfs2_split_extent(handle_t *handle, 5087 struct ocfs2_extent_tree *et, 5088 struct ocfs2_path *path, 5089 int split_index, 5090 struct ocfs2_extent_rec *split_rec, 5091 struct ocfs2_alloc_context *meta_ac, 5092 struct ocfs2_cached_dealloc_ctxt *dealloc) 5093 { 5094 int ret = 0; 5095 struct ocfs2_extent_list *el = path_leaf_el(path); 5096 struct buffer_head *last_eb_bh = NULL; 5097 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 5098 struct ocfs2_merge_ctxt ctxt; 5099 struct ocfs2_extent_list *rightmost_el; 5100 5101 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) || 5102 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) < 5103 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) { 5104 ret = -EIO; 5105 mlog_errno(ret); 5106 goto out; 5107 } 5108 5109 ctxt.c_contig_type = ocfs2_figure_merge_contig_type(et, path, el, 5110 split_index, 5111 split_rec); 5112 5113 /* 5114 * The core merge / split code wants to know how much room is 5115 * left in this allocation tree, so we pass the 5116 * rightmost extent list. 5117 */ 5118 if (path->p_tree_depth) { 5119 struct ocfs2_extent_block *eb; 5120 5121 ret = ocfs2_read_extent_block(et->et_ci, 5122 ocfs2_et_get_last_eb_blk(et), 5123 &last_eb_bh); 5124 if (ret) { 5125 mlog_exit(ret); 5126 goto out; 5127 } 5128 5129 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5130 rightmost_el = &eb->h_list; 5131 } else 5132 rightmost_el = path_root_el(path); 5133 5134 if (rec->e_cpos == split_rec->e_cpos && 5135 rec->e_leaf_clusters == split_rec->e_leaf_clusters) 5136 ctxt.c_split_covers_rec = 1; 5137 else 5138 ctxt.c_split_covers_rec = 0; 5139 5140 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]); 5141 5142 mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n", 5143 split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent, 5144 ctxt.c_split_covers_rec); 5145 5146 if (ctxt.c_contig_type == CONTIG_NONE) { 5147 if (ctxt.c_split_covers_rec) 5148 ret = ocfs2_replace_extent_rec(handle, et, path, el, 5149 split_index, split_rec); 5150 else 5151 ret = ocfs2_split_and_insert(handle, et, path, 5152 &last_eb_bh, split_index, 5153 split_rec, meta_ac); 5154 if (ret) 5155 mlog_errno(ret); 5156 } else { 5157 ret = ocfs2_try_to_merge_extent(handle, et, path, 5158 split_index, split_rec, 5159 dealloc, &ctxt); 5160 if (ret) 5161 mlog_errno(ret); 5162 } 5163 5164 out: 5165 brelse(last_eb_bh); 5166 return ret; 5167 } 5168 5169 /* 5170 * Change the flags of the already-existing extent at cpos for len clusters. 5171 * 5172 * new_flags: the flags we want to set. 5173 * clear_flags: the flags we want to clear. 5174 * phys: the new physical offset we want this new extent starts from. 5175 * 5176 * If the existing extent is larger than the request, initiate a 5177 * split. An attempt will be made at merging with adjacent extents. 5178 * 5179 * The caller is responsible for passing down meta_ac if we'll need it. 5180 */ 5181 int ocfs2_change_extent_flag(handle_t *handle, 5182 struct ocfs2_extent_tree *et, 5183 u32 cpos, u32 len, u32 phys, 5184 struct ocfs2_alloc_context *meta_ac, 5185 struct ocfs2_cached_dealloc_ctxt *dealloc, 5186 int new_flags, int clear_flags) 5187 { 5188 int ret, index; 5189 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 5190 u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys); 5191 struct ocfs2_extent_rec split_rec; 5192 struct ocfs2_path *left_path = NULL; 5193 struct ocfs2_extent_list *el; 5194 struct ocfs2_extent_rec *rec; 5195 5196 left_path = ocfs2_new_path_from_et(et); 5197 if (!left_path) { 5198 ret = -ENOMEM; 5199 mlog_errno(ret); 5200 goto out; 5201 } 5202 5203 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 5204 if (ret) { 5205 mlog_errno(ret); 5206 goto out; 5207 } 5208 el = path_leaf_el(left_path); 5209 5210 index = ocfs2_search_extent_list(el, cpos); 5211 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 5212 ocfs2_error(sb, 5213 "Owner %llu has an extent at cpos %u which can no " 5214 "longer be found.\n", 5215 (unsigned long long) 5216 ocfs2_metadata_cache_owner(et->et_ci), cpos); 5217 ret = -EROFS; 5218 goto out; 5219 } 5220 5221 ret = -EIO; 5222 rec = &el->l_recs[index]; 5223 if (new_flags && (rec->e_flags & new_flags)) { 5224 mlog(ML_ERROR, "Owner %llu tried to set %d flags on an " 5225 "extent that already had them", 5226 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5227 new_flags); 5228 goto out; 5229 } 5230 5231 if (clear_flags && !(rec->e_flags & clear_flags)) { 5232 mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an " 5233 "extent that didn't have them", 5234 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5235 clear_flags); 5236 goto out; 5237 } 5238 5239 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec)); 5240 split_rec.e_cpos = cpu_to_le32(cpos); 5241 split_rec.e_leaf_clusters = cpu_to_le16(len); 5242 split_rec.e_blkno = cpu_to_le64(start_blkno); 5243 split_rec.e_flags = rec->e_flags; 5244 if (new_flags) 5245 split_rec.e_flags |= new_flags; 5246 if (clear_flags) 5247 split_rec.e_flags &= ~clear_flags; 5248 5249 ret = ocfs2_split_extent(handle, et, left_path, 5250 index, &split_rec, meta_ac, 5251 dealloc); 5252 if (ret) 5253 mlog_errno(ret); 5254 5255 out: 5256 ocfs2_free_path(left_path); 5257 return ret; 5258 5259 } 5260 5261 /* 5262 * Mark the already-existing extent at cpos as written for len clusters. 5263 * This removes the unwritten extent flag. 5264 * 5265 * If the existing extent is larger than the request, initiate a 5266 * split. An attempt will be made at merging with adjacent extents. 5267 * 5268 * The caller is responsible for passing down meta_ac if we'll need it. 5269 */ 5270 int ocfs2_mark_extent_written(struct inode *inode, 5271 struct ocfs2_extent_tree *et, 5272 handle_t *handle, u32 cpos, u32 len, u32 phys, 5273 struct ocfs2_alloc_context *meta_ac, 5274 struct ocfs2_cached_dealloc_ctxt *dealloc) 5275 { 5276 int ret; 5277 5278 mlog(0, "Inode %lu cpos %u, len %u, phys clusters %u\n", 5279 inode->i_ino, cpos, len, phys); 5280 5281 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) { 5282 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents " 5283 "that are being written to, but the feature bit " 5284 "is not set in the super block.", 5285 (unsigned long long)OCFS2_I(inode)->ip_blkno); 5286 ret = -EROFS; 5287 goto out; 5288 } 5289 5290 /* 5291 * XXX: This should be fixed up so that we just re-insert the 5292 * next extent records. 5293 */ 5294 ocfs2_et_extent_map_truncate(et, 0); 5295 5296 ret = ocfs2_change_extent_flag(handle, et, cpos, 5297 len, phys, meta_ac, dealloc, 5298 0, OCFS2_EXT_UNWRITTEN); 5299 if (ret) 5300 mlog_errno(ret); 5301 5302 out: 5303 return ret; 5304 } 5305 5306 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et, 5307 struct ocfs2_path *path, 5308 int index, u32 new_range, 5309 struct ocfs2_alloc_context *meta_ac) 5310 { 5311 int ret, depth, credits = handle->h_buffer_credits; 5312 struct buffer_head *last_eb_bh = NULL; 5313 struct ocfs2_extent_block *eb; 5314 struct ocfs2_extent_list *rightmost_el, *el; 5315 struct ocfs2_extent_rec split_rec; 5316 struct ocfs2_extent_rec *rec; 5317 struct ocfs2_insert_type insert; 5318 5319 /* 5320 * Setup the record to split before we grow the tree. 5321 */ 5322 el = path_leaf_el(path); 5323 rec = &el->l_recs[index]; 5324 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci), 5325 &split_rec, new_range, rec); 5326 5327 depth = path->p_tree_depth; 5328 if (depth > 0) { 5329 ret = ocfs2_read_extent_block(et->et_ci, 5330 ocfs2_et_get_last_eb_blk(et), 5331 &last_eb_bh); 5332 if (ret < 0) { 5333 mlog_errno(ret); 5334 goto out; 5335 } 5336 5337 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5338 rightmost_el = &eb->h_list; 5339 } else 5340 rightmost_el = path_leaf_el(path); 5341 5342 credits += path->p_tree_depth + 5343 ocfs2_extend_meta_needed(et->et_root_el); 5344 ret = ocfs2_extend_trans(handle, credits); 5345 if (ret) { 5346 mlog_errno(ret); 5347 goto out; 5348 } 5349 5350 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 5351 le16_to_cpu(rightmost_el->l_count)) { 5352 ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh, 5353 meta_ac); 5354 if (ret) { 5355 mlog_errno(ret); 5356 goto out; 5357 } 5358 } 5359 5360 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 5361 insert.ins_appending = APPEND_NONE; 5362 insert.ins_contig = CONTIG_NONE; 5363 insert.ins_split = SPLIT_RIGHT; 5364 insert.ins_tree_depth = depth; 5365 5366 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert); 5367 if (ret) 5368 mlog_errno(ret); 5369 5370 out: 5371 brelse(last_eb_bh); 5372 return ret; 5373 } 5374 5375 static int ocfs2_truncate_rec(handle_t *handle, 5376 struct ocfs2_extent_tree *et, 5377 struct ocfs2_path *path, int index, 5378 struct ocfs2_cached_dealloc_ctxt *dealloc, 5379 u32 cpos, u32 len) 5380 { 5381 int ret; 5382 u32 left_cpos, rec_range, trunc_range; 5383 int wants_rotate = 0, is_rightmost_tree_rec = 0; 5384 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 5385 struct ocfs2_path *left_path = NULL; 5386 struct ocfs2_extent_list *el = path_leaf_el(path); 5387 struct ocfs2_extent_rec *rec; 5388 struct ocfs2_extent_block *eb; 5389 5390 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) { 5391 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 5392 if (ret) { 5393 mlog_errno(ret); 5394 goto out; 5395 } 5396 5397 index--; 5398 } 5399 5400 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) && 5401 path->p_tree_depth) { 5402 /* 5403 * Check whether this is the rightmost tree record. If 5404 * we remove all of this record or part of its right 5405 * edge then an update of the record lengths above it 5406 * will be required. 5407 */ 5408 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 5409 if (eb->h_next_leaf_blk == 0) 5410 is_rightmost_tree_rec = 1; 5411 } 5412 5413 rec = &el->l_recs[index]; 5414 if (index == 0 && path->p_tree_depth && 5415 le32_to_cpu(rec->e_cpos) == cpos) { 5416 /* 5417 * Changing the leftmost offset (via partial or whole 5418 * record truncate) of an interior (or rightmost) path 5419 * means we have to update the subtree that is formed 5420 * by this leaf and the one to it's left. 5421 * 5422 * There are two cases we can skip: 5423 * 1) Path is the leftmost one in our btree. 5424 * 2) The leaf is rightmost and will be empty after 5425 * we remove the extent record - the rotate code 5426 * knows how to update the newly formed edge. 5427 */ 5428 5429 ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos); 5430 if (ret) { 5431 mlog_errno(ret); 5432 goto out; 5433 } 5434 5435 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) { 5436 left_path = ocfs2_new_path_from_path(path); 5437 if (!left_path) { 5438 ret = -ENOMEM; 5439 mlog_errno(ret); 5440 goto out; 5441 } 5442 5443 ret = ocfs2_find_path(et->et_ci, left_path, 5444 left_cpos); 5445 if (ret) { 5446 mlog_errno(ret); 5447 goto out; 5448 } 5449 } 5450 } 5451 5452 ret = ocfs2_extend_rotate_transaction(handle, 0, 5453 handle->h_buffer_credits, 5454 path); 5455 if (ret) { 5456 mlog_errno(ret); 5457 goto out; 5458 } 5459 5460 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 5461 if (ret) { 5462 mlog_errno(ret); 5463 goto out; 5464 } 5465 5466 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 5467 if (ret) { 5468 mlog_errno(ret); 5469 goto out; 5470 } 5471 5472 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5473 trunc_range = cpos + len; 5474 5475 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) { 5476 int next_free; 5477 5478 memset(rec, 0, sizeof(*rec)); 5479 ocfs2_cleanup_merge(el, index); 5480 wants_rotate = 1; 5481 5482 next_free = le16_to_cpu(el->l_next_free_rec); 5483 if (is_rightmost_tree_rec && next_free > 1) { 5484 /* 5485 * We skip the edge update if this path will 5486 * be deleted by the rotate code. 5487 */ 5488 rec = &el->l_recs[next_free - 1]; 5489 ocfs2_adjust_rightmost_records(handle, et, path, 5490 rec); 5491 } 5492 } else if (le32_to_cpu(rec->e_cpos) == cpos) { 5493 /* Remove leftmost portion of the record. */ 5494 le32_add_cpu(&rec->e_cpos, len); 5495 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len)); 5496 le16_add_cpu(&rec->e_leaf_clusters, -len); 5497 } else if (rec_range == trunc_range) { 5498 /* Remove rightmost portion of the record */ 5499 le16_add_cpu(&rec->e_leaf_clusters, -len); 5500 if (is_rightmost_tree_rec) 5501 ocfs2_adjust_rightmost_records(handle, et, path, rec); 5502 } else { 5503 /* Caller should have trapped this. */ 5504 mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) " 5505 "(%u, %u)\n", 5506 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5507 le32_to_cpu(rec->e_cpos), 5508 le16_to_cpu(rec->e_leaf_clusters), cpos, len); 5509 BUG(); 5510 } 5511 5512 if (left_path) { 5513 int subtree_index; 5514 5515 subtree_index = ocfs2_find_subtree_root(et, left_path, path); 5516 ocfs2_complete_edge_insert(handle, left_path, path, 5517 subtree_index); 5518 } 5519 5520 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 5521 5522 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 5523 if (ret) { 5524 mlog_errno(ret); 5525 goto out; 5526 } 5527 5528 out: 5529 ocfs2_free_path(left_path); 5530 return ret; 5531 } 5532 5533 int ocfs2_remove_extent(handle_t *handle, 5534 struct ocfs2_extent_tree *et, 5535 u32 cpos, u32 len, 5536 struct ocfs2_alloc_context *meta_ac, 5537 struct ocfs2_cached_dealloc_ctxt *dealloc) 5538 { 5539 int ret, index; 5540 u32 rec_range, trunc_range; 5541 struct ocfs2_extent_rec *rec; 5542 struct ocfs2_extent_list *el; 5543 struct ocfs2_path *path = NULL; 5544 5545 /* 5546 * XXX: Why are we truncating to 0 instead of wherever this 5547 * affects us? 5548 */ 5549 ocfs2_et_extent_map_truncate(et, 0); 5550 5551 path = ocfs2_new_path_from_et(et); 5552 if (!path) { 5553 ret = -ENOMEM; 5554 mlog_errno(ret); 5555 goto out; 5556 } 5557 5558 ret = ocfs2_find_path(et->et_ci, path, cpos); 5559 if (ret) { 5560 mlog_errno(ret); 5561 goto out; 5562 } 5563 5564 el = path_leaf_el(path); 5565 index = ocfs2_search_extent_list(el, cpos); 5566 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 5567 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5568 "Owner %llu has an extent at cpos %u which can no " 5569 "longer be found.\n", 5570 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5571 cpos); 5572 ret = -EROFS; 5573 goto out; 5574 } 5575 5576 /* 5577 * We have 3 cases of extent removal: 5578 * 1) Range covers the entire extent rec 5579 * 2) Range begins or ends on one edge of the extent rec 5580 * 3) Range is in the middle of the extent rec (no shared edges) 5581 * 5582 * For case 1 we remove the extent rec and left rotate to 5583 * fill the hole. 5584 * 5585 * For case 2 we just shrink the existing extent rec, with a 5586 * tree update if the shrinking edge is also the edge of an 5587 * extent block. 5588 * 5589 * For case 3 we do a right split to turn the extent rec into 5590 * something case 2 can handle. 5591 */ 5592 rec = &el->l_recs[index]; 5593 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5594 trunc_range = cpos + len; 5595 5596 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range); 5597 5598 mlog(0, "Owner %llu, remove (cpos %u, len %u). Existing index %d " 5599 "(cpos %u, len %u)\n", 5600 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5601 cpos, len, index, 5602 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec)); 5603 5604 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) { 5605 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc, 5606 cpos, len); 5607 if (ret) { 5608 mlog_errno(ret); 5609 goto out; 5610 } 5611 } else { 5612 ret = ocfs2_split_tree(handle, et, path, index, 5613 trunc_range, meta_ac); 5614 if (ret) { 5615 mlog_errno(ret); 5616 goto out; 5617 } 5618 5619 /* 5620 * The split could have manipulated the tree enough to 5621 * move the record location, so we have to look for it again. 5622 */ 5623 ocfs2_reinit_path(path, 1); 5624 5625 ret = ocfs2_find_path(et->et_ci, path, cpos); 5626 if (ret) { 5627 mlog_errno(ret); 5628 goto out; 5629 } 5630 5631 el = path_leaf_el(path); 5632 index = ocfs2_search_extent_list(el, cpos); 5633 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 5634 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5635 "Owner %llu: split at cpos %u lost record.", 5636 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5637 cpos); 5638 ret = -EROFS; 5639 goto out; 5640 } 5641 5642 /* 5643 * Double check our values here. If anything is fishy, 5644 * it's easier to catch it at the top level. 5645 */ 5646 rec = &el->l_recs[index]; 5647 rec_range = le32_to_cpu(rec->e_cpos) + 5648 ocfs2_rec_clusters(el, rec); 5649 if (rec_range != trunc_range) { 5650 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5651 "Owner %llu: error after split at cpos %u" 5652 "trunc len %u, existing record is (%u,%u)", 5653 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5654 cpos, len, le32_to_cpu(rec->e_cpos), 5655 ocfs2_rec_clusters(el, rec)); 5656 ret = -EROFS; 5657 goto out; 5658 } 5659 5660 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc, 5661 cpos, len); 5662 if (ret) { 5663 mlog_errno(ret); 5664 goto out; 5665 } 5666 } 5667 5668 out: 5669 ocfs2_free_path(path); 5670 return ret; 5671 } 5672 5673 int ocfs2_remove_btree_range(struct inode *inode, 5674 struct ocfs2_extent_tree *et, 5675 u32 cpos, u32 phys_cpos, u32 len, 5676 struct ocfs2_cached_dealloc_ctxt *dealloc) 5677 { 5678 int ret; 5679 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos); 5680 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5681 struct inode *tl_inode = osb->osb_tl_inode; 5682 handle_t *handle; 5683 struct ocfs2_alloc_context *meta_ac = NULL; 5684 5685 ret = ocfs2_lock_allocators(inode, et, 0, 1, NULL, &meta_ac); 5686 if (ret) { 5687 mlog_errno(ret); 5688 return ret; 5689 } 5690 5691 mutex_lock(&tl_inode->i_mutex); 5692 5693 if (ocfs2_truncate_log_needs_flush(osb)) { 5694 ret = __ocfs2_flush_truncate_log(osb); 5695 if (ret < 0) { 5696 mlog_errno(ret); 5697 goto out; 5698 } 5699 } 5700 5701 handle = ocfs2_start_trans(osb, ocfs2_remove_extent_credits(osb->sb)); 5702 if (IS_ERR(handle)) { 5703 ret = PTR_ERR(handle); 5704 mlog_errno(ret); 5705 goto out; 5706 } 5707 5708 ret = ocfs2_et_root_journal_access(handle, et, 5709 OCFS2_JOURNAL_ACCESS_WRITE); 5710 if (ret) { 5711 mlog_errno(ret); 5712 goto out; 5713 } 5714 5715 vfs_dq_free_space_nodirty(inode, 5716 ocfs2_clusters_to_bytes(inode->i_sb, len)); 5717 5718 ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc); 5719 if (ret) { 5720 mlog_errno(ret); 5721 goto out_commit; 5722 } 5723 5724 ocfs2_et_update_clusters(et, -len); 5725 5726 ret = ocfs2_journal_dirty(handle, et->et_root_bh); 5727 if (ret) { 5728 mlog_errno(ret); 5729 goto out_commit; 5730 } 5731 5732 ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len); 5733 if (ret) 5734 mlog_errno(ret); 5735 5736 out_commit: 5737 ocfs2_commit_trans(osb, handle); 5738 out: 5739 mutex_unlock(&tl_inode->i_mutex); 5740 5741 if (meta_ac) 5742 ocfs2_free_alloc_context(meta_ac); 5743 5744 return ret; 5745 } 5746 5747 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb) 5748 { 5749 struct buffer_head *tl_bh = osb->osb_tl_bh; 5750 struct ocfs2_dinode *di; 5751 struct ocfs2_truncate_log *tl; 5752 5753 di = (struct ocfs2_dinode *) tl_bh->b_data; 5754 tl = &di->id2.i_dealloc; 5755 5756 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count), 5757 "slot %d, invalid truncate log parameters: used = " 5758 "%u, count = %u\n", osb->slot_num, 5759 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count)); 5760 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count); 5761 } 5762 5763 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl, 5764 unsigned int new_start) 5765 { 5766 unsigned int tail_index; 5767 unsigned int current_tail; 5768 5769 /* No records, nothing to coalesce */ 5770 if (!le16_to_cpu(tl->tl_used)) 5771 return 0; 5772 5773 tail_index = le16_to_cpu(tl->tl_used) - 1; 5774 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start); 5775 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters); 5776 5777 return current_tail == new_start; 5778 } 5779 5780 int ocfs2_truncate_log_append(struct ocfs2_super *osb, 5781 handle_t *handle, 5782 u64 start_blk, 5783 unsigned int num_clusters) 5784 { 5785 int status, index; 5786 unsigned int start_cluster, tl_count; 5787 struct inode *tl_inode = osb->osb_tl_inode; 5788 struct buffer_head *tl_bh = osb->osb_tl_bh; 5789 struct ocfs2_dinode *di; 5790 struct ocfs2_truncate_log *tl; 5791 5792 mlog_entry("start_blk = %llu, num_clusters = %u\n", 5793 (unsigned long long)start_blk, num_clusters); 5794 5795 BUG_ON(mutex_trylock(&tl_inode->i_mutex)); 5796 5797 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk); 5798 5799 di = (struct ocfs2_dinode *) tl_bh->b_data; 5800 5801 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 5802 * by the underlying call to ocfs2_read_inode_block(), so any 5803 * corruption is a code bug */ 5804 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5805 5806 tl = &di->id2.i_dealloc; 5807 tl_count = le16_to_cpu(tl->tl_count); 5808 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) || 5809 tl_count == 0, 5810 "Truncate record count on #%llu invalid " 5811 "wanted %u, actual %u\n", 5812 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5813 ocfs2_truncate_recs_per_inode(osb->sb), 5814 le16_to_cpu(tl->tl_count)); 5815 5816 /* Caller should have known to flush before calling us. */ 5817 index = le16_to_cpu(tl->tl_used); 5818 if (index >= tl_count) { 5819 status = -ENOSPC; 5820 mlog_errno(status); 5821 goto bail; 5822 } 5823 5824 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, 5825 OCFS2_JOURNAL_ACCESS_WRITE); 5826 if (status < 0) { 5827 mlog_errno(status); 5828 goto bail; 5829 } 5830 5831 mlog(0, "Log truncate of %u clusters starting at cluster %u to " 5832 "%llu (index = %d)\n", num_clusters, start_cluster, 5833 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index); 5834 5835 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) { 5836 /* 5837 * Move index back to the record we are coalescing with. 5838 * ocfs2_truncate_log_can_coalesce() guarantees nonzero 5839 */ 5840 index--; 5841 5842 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters); 5843 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n", 5844 index, le32_to_cpu(tl->tl_recs[index].t_start), 5845 num_clusters); 5846 } else { 5847 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster); 5848 tl->tl_used = cpu_to_le16(index + 1); 5849 } 5850 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters); 5851 5852 status = ocfs2_journal_dirty(handle, tl_bh); 5853 if (status < 0) { 5854 mlog_errno(status); 5855 goto bail; 5856 } 5857 5858 bail: 5859 mlog_exit(status); 5860 return status; 5861 } 5862 5863 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb, 5864 handle_t *handle, 5865 struct inode *data_alloc_inode, 5866 struct buffer_head *data_alloc_bh) 5867 { 5868 int status = 0; 5869 int i; 5870 unsigned int num_clusters; 5871 u64 start_blk; 5872 struct ocfs2_truncate_rec rec; 5873 struct ocfs2_dinode *di; 5874 struct ocfs2_truncate_log *tl; 5875 struct inode *tl_inode = osb->osb_tl_inode; 5876 struct buffer_head *tl_bh = osb->osb_tl_bh; 5877 5878 mlog_entry_void(); 5879 5880 di = (struct ocfs2_dinode *) tl_bh->b_data; 5881 tl = &di->id2.i_dealloc; 5882 i = le16_to_cpu(tl->tl_used) - 1; 5883 while (i >= 0) { 5884 /* Caller has given us at least enough credits to 5885 * update the truncate log dinode */ 5886 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, 5887 OCFS2_JOURNAL_ACCESS_WRITE); 5888 if (status < 0) { 5889 mlog_errno(status); 5890 goto bail; 5891 } 5892 5893 tl->tl_used = cpu_to_le16(i); 5894 5895 status = ocfs2_journal_dirty(handle, tl_bh); 5896 if (status < 0) { 5897 mlog_errno(status); 5898 goto bail; 5899 } 5900 5901 /* TODO: Perhaps we can calculate the bulk of the 5902 * credits up front rather than extending like 5903 * this. */ 5904 status = ocfs2_extend_trans(handle, 5905 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC); 5906 if (status < 0) { 5907 mlog_errno(status); 5908 goto bail; 5909 } 5910 5911 rec = tl->tl_recs[i]; 5912 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb, 5913 le32_to_cpu(rec.t_start)); 5914 num_clusters = le32_to_cpu(rec.t_clusters); 5915 5916 /* if start_blk is not set, we ignore the record as 5917 * invalid. */ 5918 if (start_blk) { 5919 mlog(0, "free record %d, start = %u, clusters = %u\n", 5920 i, le32_to_cpu(rec.t_start), num_clusters); 5921 5922 status = ocfs2_free_clusters(handle, data_alloc_inode, 5923 data_alloc_bh, start_blk, 5924 num_clusters); 5925 if (status < 0) { 5926 mlog_errno(status); 5927 goto bail; 5928 } 5929 } 5930 i--; 5931 } 5932 5933 bail: 5934 mlog_exit(status); 5935 return status; 5936 } 5937 5938 /* Expects you to already be holding tl_inode->i_mutex */ 5939 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb) 5940 { 5941 int status; 5942 unsigned int num_to_flush; 5943 handle_t *handle; 5944 struct inode *tl_inode = osb->osb_tl_inode; 5945 struct inode *data_alloc_inode = NULL; 5946 struct buffer_head *tl_bh = osb->osb_tl_bh; 5947 struct buffer_head *data_alloc_bh = NULL; 5948 struct ocfs2_dinode *di; 5949 struct ocfs2_truncate_log *tl; 5950 5951 mlog_entry_void(); 5952 5953 BUG_ON(mutex_trylock(&tl_inode->i_mutex)); 5954 5955 di = (struct ocfs2_dinode *) tl_bh->b_data; 5956 5957 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 5958 * by the underlying call to ocfs2_read_inode_block(), so any 5959 * corruption is a code bug */ 5960 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5961 5962 tl = &di->id2.i_dealloc; 5963 num_to_flush = le16_to_cpu(tl->tl_used); 5964 mlog(0, "Flush %u records from truncate log #%llu\n", 5965 num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno); 5966 if (!num_to_flush) { 5967 status = 0; 5968 goto out; 5969 } 5970 5971 data_alloc_inode = ocfs2_get_system_file_inode(osb, 5972 GLOBAL_BITMAP_SYSTEM_INODE, 5973 OCFS2_INVALID_SLOT); 5974 if (!data_alloc_inode) { 5975 status = -EINVAL; 5976 mlog(ML_ERROR, "Could not get bitmap inode!\n"); 5977 goto out; 5978 } 5979 5980 mutex_lock(&data_alloc_inode->i_mutex); 5981 5982 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1); 5983 if (status < 0) { 5984 mlog_errno(status); 5985 goto out_mutex; 5986 } 5987 5988 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 5989 if (IS_ERR(handle)) { 5990 status = PTR_ERR(handle); 5991 mlog_errno(status); 5992 goto out_unlock; 5993 } 5994 5995 status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode, 5996 data_alloc_bh); 5997 if (status < 0) 5998 mlog_errno(status); 5999 6000 ocfs2_commit_trans(osb, handle); 6001 6002 out_unlock: 6003 brelse(data_alloc_bh); 6004 ocfs2_inode_unlock(data_alloc_inode, 1); 6005 6006 out_mutex: 6007 mutex_unlock(&data_alloc_inode->i_mutex); 6008 iput(data_alloc_inode); 6009 6010 out: 6011 mlog_exit(status); 6012 return status; 6013 } 6014 6015 int ocfs2_flush_truncate_log(struct ocfs2_super *osb) 6016 { 6017 int status; 6018 struct inode *tl_inode = osb->osb_tl_inode; 6019 6020 mutex_lock(&tl_inode->i_mutex); 6021 status = __ocfs2_flush_truncate_log(osb); 6022 mutex_unlock(&tl_inode->i_mutex); 6023 6024 return status; 6025 } 6026 6027 static void ocfs2_truncate_log_worker(struct work_struct *work) 6028 { 6029 int status; 6030 struct ocfs2_super *osb = 6031 container_of(work, struct ocfs2_super, 6032 osb_truncate_log_wq.work); 6033 6034 mlog_entry_void(); 6035 6036 status = ocfs2_flush_truncate_log(osb); 6037 if (status < 0) 6038 mlog_errno(status); 6039 else 6040 ocfs2_init_inode_steal_slot(osb); 6041 6042 mlog_exit(status); 6043 } 6044 6045 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ) 6046 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb, 6047 int cancel) 6048 { 6049 if (osb->osb_tl_inode) { 6050 /* We want to push off log flushes while truncates are 6051 * still running. */ 6052 if (cancel) 6053 cancel_delayed_work(&osb->osb_truncate_log_wq); 6054 6055 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq, 6056 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL); 6057 } 6058 } 6059 6060 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb, 6061 int slot_num, 6062 struct inode **tl_inode, 6063 struct buffer_head **tl_bh) 6064 { 6065 int status; 6066 struct inode *inode = NULL; 6067 struct buffer_head *bh = NULL; 6068 6069 inode = ocfs2_get_system_file_inode(osb, 6070 TRUNCATE_LOG_SYSTEM_INODE, 6071 slot_num); 6072 if (!inode) { 6073 status = -EINVAL; 6074 mlog(ML_ERROR, "Could not get load truncate log inode!\n"); 6075 goto bail; 6076 } 6077 6078 status = ocfs2_read_inode_block(inode, &bh); 6079 if (status < 0) { 6080 iput(inode); 6081 mlog_errno(status); 6082 goto bail; 6083 } 6084 6085 *tl_inode = inode; 6086 *tl_bh = bh; 6087 bail: 6088 mlog_exit(status); 6089 return status; 6090 } 6091 6092 /* called during the 1st stage of node recovery. we stamp a clean 6093 * truncate log and pass back a copy for processing later. if the 6094 * truncate log does not require processing, a *tl_copy is set to 6095 * NULL. */ 6096 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb, 6097 int slot_num, 6098 struct ocfs2_dinode **tl_copy) 6099 { 6100 int status; 6101 struct inode *tl_inode = NULL; 6102 struct buffer_head *tl_bh = NULL; 6103 struct ocfs2_dinode *di; 6104 struct ocfs2_truncate_log *tl; 6105 6106 *tl_copy = NULL; 6107 6108 mlog(0, "recover truncate log from slot %d\n", slot_num); 6109 6110 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh); 6111 if (status < 0) { 6112 mlog_errno(status); 6113 goto bail; 6114 } 6115 6116 di = (struct ocfs2_dinode *) tl_bh->b_data; 6117 6118 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's 6119 * validated by the underlying call to ocfs2_read_inode_block(), 6120 * so any corruption is a code bug */ 6121 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 6122 6123 tl = &di->id2.i_dealloc; 6124 if (le16_to_cpu(tl->tl_used)) { 6125 mlog(0, "We'll have %u logs to recover\n", 6126 le16_to_cpu(tl->tl_used)); 6127 6128 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL); 6129 if (!(*tl_copy)) { 6130 status = -ENOMEM; 6131 mlog_errno(status); 6132 goto bail; 6133 } 6134 6135 /* Assuming the write-out below goes well, this copy 6136 * will be passed back to recovery for processing. */ 6137 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size); 6138 6139 /* All we need to do to clear the truncate log is set 6140 * tl_used. */ 6141 tl->tl_used = 0; 6142 6143 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check); 6144 status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode)); 6145 if (status < 0) { 6146 mlog_errno(status); 6147 goto bail; 6148 } 6149 } 6150 6151 bail: 6152 if (tl_inode) 6153 iput(tl_inode); 6154 brelse(tl_bh); 6155 6156 if (status < 0 && (*tl_copy)) { 6157 kfree(*tl_copy); 6158 *tl_copy = NULL; 6159 } 6160 6161 mlog_exit(status); 6162 return status; 6163 } 6164 6165 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb, 6166 struct ocfs2_dinode *tl_copy) 6167 { 6168 int status = 0; 6169 int i; 6170 unsigned int clusters, num_recs, start_cluster; 6171 u64 start_blk; 6172 handle_t *handle; 6173 struct inode *tl_inode = osb->osb_tl_inode; 6174 struct ocfs2_truncate_log *tl; 6175 6176 mlog_entry_void(); 6177 6178 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) { 6179 mlog(ML_ERROR, "Asked to recover my own truncate log!\n"); 6180 return -EINVAL; 6181 } 6182 6183 tl = &tl_copy->id2.i_dealloc; 6184 num_recs = le16_to_cpu(tl->tl_used); 6185 mlog(0, "cleanup %u records from %llu\n", num_recs, 6186 (unsigned long long)le64_to_cpu(tl_copy->i_blkno)); 6187 6188 mutex_lock(&tl_inode->i_mutex); 6189 for(i = 0; i < num_recs; i++) { 6190 if (ocfs2_truncate_log_needs_flush(osb)) { 6191 status = __ocfs2_flush_truncate_log(osb); 6192 if (status < 0) { 6193 mlog_errno(status); 6194 goto bail_up; 6195 } 6196 } 6197 6198 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6199 if (IS_ERR(handle)) { 6200 status = PTR_ERR(handle); 6201 mlog_errno(status); 6202 goto bail_up; 6203 } 6204 6205 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters); 6206 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start); 6207 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster); 6208 6209 status = ocfs2_truncate_log_append(osb, handle, 6210 start_blk, clusters); 6211 ocfs2_commit_trans(osb, handle); 6212 if (status < 0) { 6213 mlog_errno(status); 6214 goto bail_up; 6215 } 6216 } 6217 6218 bail_up: 6219 mutex_unlock(&tl_inode->i_mutex); 6220 6221 mlog_exit(status); 6222 return status; 6223 } 6224 6225 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb) 6226 { 6227 int status; 6228 struct inode *tl_inode = osb->osb_tl_inode; 6229 6230 mlog_entry_void(); 6231 6232 if (tl_inode) { 6233 cancel_delayed_work(&osb->osb_truncate_log_wq); 6234 flush_workqueue(ocfs2_wq); 6235 6236 status = ocfs2_flush_truncate_log(osb); 6237 if (status < 0) 6238 mlog_errno(status); 6239 6240 brelse(osb->osb_tl_bh); 6241 iput(osb->osb_tl_inode); 6242 } 6243 6244 mlog_exit_void(); 6245 } 6246 6247 int ocfs2_truncate_log_init(struct ocfs2_super *osb) 6248 { 6249 int status; 6250 struct inode *tl_inode = NULL; 6251 struct buffer_head *tl_bh = NULL; 6252 6253 mlog_entry_void(); 6254 6255 status = ocfs2_get_truncate_log_info(osb, 6256 osb->slot_num, 6257 &tl_inode, 6258 &tl_bh); 6259 if (status < 0) 6260 mlog_errno(status); 6261 6262 /* ocfs2_truncate_log_shutdown keys on the existence of 6263 * osb->osb_tl_inode so we don't set any of the osb variables 6264 * until we're sure all is well. */ 6265 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq, 6266 ocfs2_truncate_log_worker); 6267 osb->osb_tl_bh = tl_bh; 6268 osb->osb_tl_inode = tl_inode; 6269 6270 mlog_exit(status); 6271 return status; 6272 } 6273 6274 /* 6275 * Delayed de-allocation of suballocator blocks. 6276 * 6277 * Some sets of block de-allocations might involve multiple suballocator inodes. 6278 * 6279 * The locking for this can get extremely complicated, especially when 6280 * the suballocator inodes to delete from aren't known until deep 6281 * within an unrelated codepath. 6282 * 6283 * ocfs2_extent_block structures are a good example of this - an inode 6284 * btree could have been grown by any number of nodes each allocating 6285 * out of their own suballoc inode. 6286 * 6287 * These structures allow the delay of block de-allocation until a 6288 * later time, when locking of multiple cluster inodes won't cause 6289 * deadlock. 6290 */ 6291 6292 /* 6293 * Describe a single bit freed from a suballocator. For the block 6294 * suballocators, it represents one block. For the global cluster 6295 * allocator, it represents some clusters and free_bit indicates 6296 * clusters number. 6297 */ 6298 struct ocfs2_cached_block_free { 6299 struct ocfs2_cached_block_free *free_next; 6300 u64 free_blk; 6301 unsigned int free_bit; 6302 }; 6303 6304 struct ocfs2_per_slot_free_list { 6305 struct ocfs2_per_slot_free_list *f_next_suballocator; 6306 int f_inode_type; 6307 int f_slot; 6308 struct ocfs2_cached_block_free *f_first; 6309 }; 6310 6311 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb, 6312 int sysfile_type, 6313 int slot, 6314 struct ocfs2_cached_block_free *head) 6315 { 6316 int ret; 6317 u64 bg_blkno; 6318 handle_t *handle; 6319 struct inode *inode; 6320 struct buffer_head *di_bh = NULL; 6321 struct ocfs2_cached_block_free *tmp; 6322 6323 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot); 6324 if (!inode) { 6325 ret = -EINVAL; 6326 mlog_errno(ret); 6327 goto out; 6328 } 6329 6330 mutex_lock(&inode->i_mutex); 6331 6332 ret = ocfs2_inode_lock(inode, &di_bh, 1); 6333 if (ret) { 6334 mlog_errno(ret); 6335 goto out_mutex; 6336 } 6337 6338 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE); 6339 if (IS_ERR(handle)) { 6340 ret = PTR_ERR(handle); 6341 mlog_errno(ret); 6342 goto out_unlock; 6343 } 6344 6345 while (head) { 6346 bg_blkno = ocfs2_which_suballoc_group(head->free_blk, 6347 head->free_bit); 6348 mlog(0, "Free bit: (bit %u, blkno %llu)\n", 6349 head->free_bit, (unsigned long long)head->free_blk); 6350 6351 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh, 6352 head->free_bit, bg_blkno, 1); 6353 if (ret) { 6354 mlog_errno(ret); 6355 goto out_journal; 6356 } 6357 6358 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE); 6359 if (ret) { 6360 mlog_errno(ret); 6361 goto out_journal; 6362 } 6363 6364 tmp = head; 6365 head = head->free_next; 6366 kfree(tmp); 6367 } 6368 6369 out_journal: 6370 ocfs2_commit_trans(osb, handle); 6371 6372 out_unlock: 6373 ocfs2_inode_unlock(inode, 1); 6374 brelse(di_bh); 6375 out_mutex: 6376 mutex_unlock(&inode->i_mutex); 6377 iput(inode); 6378 out: 6379 while(head) { 6380 /* Premature exit may have left some dangling items. */ 6381 tmp = head; 6382 head = head->free_next; 6383 kfree(tmp); 6384 } 6385 6386 return ret; 6387 } 6388 6389 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6390 u64 blkno, unsigned int bit) 6391 { 6392 int ret = 0; 6393 struct ocfs2_cached_block_free *item; 6394 6395 item = kmalloc(sizeof(*item), GFP_NOFS); 6396 if (item == NULL) { 6397 ret = -ENOMEM; 6398 mlog_errno(ret); 6399 return ret; 6400 } 6401 6402 mlog(0, "Insert clusters: (bit %u, blk %llu)\n", 6403 bit, (unsigned long long)blkno); 6404 6405 item->free_blk = blkno; 6406 item->free_bit = bit; 6407 item->free_next = ctxt->c_global_allocator; 6408 6409 ctxt->c_global_allocator = item; 6410 return ret; 6411 } 6412 6413 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb, 6414 struct ocfs2_cached_block_free *head) 6415 { 6416 struct ocfs2_cached_block_free *tmp; 6417 struct inode *tl_inode = osb->osb_tl_inode; 6418 handle_t *handle; 6419 int ret = 0; 6420 6421 mutex_lock(&tl_inode->i_mutex); 6422 6423 while (head) { 6424 if (ocfs2_truncate_log_needs_flush(osb)) { 6425 ret = __ocfs2_flush_truncate_log(osb); 6426 if (ret < 0) { 6427 mlog_errno(ret); 6428 break; 6429 } 6430 } 6431 6432 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6433 if (IS_ERR(handle)) { 6434 ret = PTR_ERR(handle); 6435 mlog_errno(ret); 6436 break; 6437 } 6438 6439 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk, 6440 head->free_bit); 6441 6442 ocfs2_commit_trans(osb, handle); 6443 tmp = head; 6444 head = head->free_next; 6445 kfree(tmp); 6446 6447 if (ret < 0) { 6448 mlog_errno(ret); 6449 break; 6450 } 6451 } 6452 6453 mutex_unlock(&tl_inode->i_mutex); 6454 6455 while (head) { 6456 /* Premature exit may have left some dangling items. */ 6457 tmp = head; 6458 head = head->free_next; 6459 kfree(tmp); 6460 } 6461 6462 return ret; 6463 } 6464 6465 int ocfs2_run_deallocs(struct ocfs2_super *osb, 6466 struct ocfs2_cached_dealloc_ctxt *ctxt) 6467 { 6468 int ret = 0, ret2; 6469 struct ocfs2_per_slot_free_list *fl; 6470 6471 if (!ctxt) 6472 return 0; 6473 6474 while (ctxt->c_first_suballocator) { 6475 fl = ctxt->c_first_suballocator; 6476 6477 if (fl->f_first) { 6478 mlog(0, "Free items: (type %u, slot %d)\n", 6479 fl->f_inode_type, fl->f_slot); 6480 ret2 = ocfs2_free_cached_blocks(osb, 6481 fl->f_inode_type, 6482 fl->f_slot, 6483 fl->f_first); 6484 if (ret2) 6485 mlog_errno(ret2); 6486 if (!ret) 6487 ret = ret2; 6488 } 6489 6490 ctxt->c_first_suballocator = fl->f_next_suballocator; 6491 kfree(fl); 6492 } 6493 6494 if (ctxt->c_global_allocator) { 6495 ret2 = ocfs2_free_cached_clusters(osb, 6496 ctxt->c_global_allocator); 6497 if (ret2) 6498 mlog_errno(ret2); 6499 if (!ret) 6500 ret = ret2; 6501 6502 ctxt->c_global_allocator = NULL; 6503 } 6504 6505 return ret; 6506 } 6507 6508 static struct ocfs2_per_slot_free_list * 6509 ocfs2_find_per_slot_free_list(int type, 6510 int slot, 6511 struct ocfs2_cached_dealloc_ctxt *ctxt) 6512 { 6513 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; 6514 6515 while (fl) { 6516 if (fl->f_inode_type == type && fl->f_slot == slot) 6517 return fl; 6518 6519 fl = fl->f_next_suballocator; 6520 } 6521 6522 fl = kmalloc(sizeof(*fl), GFP_NOFS); 6523 if (fl) { 6524 fl->f_inode_type = type; 6525 fl->f_slot = slot; 6526 fl->f_first = NULL; 6527 fl->f_next_suballocator = ctxt->c_first_suballocator; 6528 6529 ctxt->c_first_suballocator = fl; 6530 } 6531 return fl; 6532 } 6533 6534 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6535 int type, int slot, u64 blkno, 6536 unsigned int bit) 6537 { 6538 int ret; 6539 struct ocfs2_per_slot_free_list *fl; 6540 struct ocfs2_cached_block_free *item; 6541 6542 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt); 6543 if (fl == NULL) { 6544 ret = -ENOMEM; 6545 mlog_errno(ret); 6546 goto out; 6547 } 6548 6549 item = kmalloc(sizeof(*item), GFP_NOFS); 6550 if (item == NULL) { 6551 ret = -ENOMEM; 6552 mlog_errno(ret); 6553 goto out; 6554 } 6555 6556 mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n", 6557 type, slot, bit, (unsigned long long)blkno); 6558 6559 item->free_blk = blkno; 6560 item->free_bit = bit; 6561 item->free_next = fl->f_first; 6562 6563 fl->f_first = item; 6564 6565 ret = 0; 6566 out: 6567 return ret; 6568 } 6569 6570 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 6571 struct ocfs2_extent_block *eb) 6572 { 6573 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE, 6574 le16_to_cpu(eb->h_suballoc_slot), 6575 le64_to_cpu(eb->h_blkno), 6576 le16_to_cpu(eb->h_suballoc_bit)); 6577 } 6578 6579 /* This function will figure out whether the currently last extent 6580 * block will be deleted, and if it will, what the new last extent 6581 * block will be so we can update his h_next_leaf_blk field, as well 6582 * as the dinodes i_last_eb_blk */ 6583 static int ocfs2_find_new_last_ext_blk(struct inode *inode, 6584 unsigned int clusters_to_del, 6585 struct ocfs2_path *path, 6586 struct buffer_head **new_last_eb) 6587 { 6588 int next_free, ret = 0; 6589 u32 cpos; 6590 struct ocfs2_extent_rec *rec; 6591 struct ocfs2_extent_block *eb; 6592 struct ocfs2_extent_list *el; 6593 struct buffer_head *bh = NULL; 6594 6595 *new_last_eb = NULL; 6596 6597 /* we have no tree, so of course, no last_eb. */ 6598 if (!path->p_tree_depth) 6599 goto out; 6600 6601 /* trunc to zero special case - this makes tree_depth = 0 6602 * regardless of what it is. */ 6603 if (OCFS2_I(inode)->ip_clusters == clusters_to_del) 6604 goto out; 6605 6606 el = path_leaf_el(path); 6607 BUG_ON(!el->l_next_free_rec); 6608 6609 /* 6610 * Make sure that this extent list will actually be empty 6611 * after we clear away the data. We can shortcut out if 6612 * there's more than one non-empty extent in the 6613 * list. Otherwise, a check of the remaining extent is 6614 * necessary. 6615 */ 6616 next_free = le16_to_cpu(el->l_next_free_rec); 6617 rec = NULL; 6618 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 6619 if (next_free > 2) 6620 goto out; 6621 6622 /* We may have a valid extent in index 1, check it. */ 6623 if (next_free == 2) 6624 rec = &el->l_recs[1]; 6625 6626 /* 6627 * Fall through - no more nonempty extents, so we want 6628 * to delete this leaf. 6629 */ 6630 } else { 6631 if (next_free > 1) 6632 goto out; 6633 6634 rec = &el->l_recs[0]; 6635 } 6636 6637 if (rec) { 6638 /* 6639 * Check it we'll only be trimming off the end of this 6640 * cluster. 6641 */ 6642 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del) 6643 goto out; 6644 } 6645 6646 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos); 6647 if (ret) { 6648 mlog_errno(ret); 6649 goto out; 6650 } 6651 6652 ret = ocfs2_find_leaf(INODE_CACHE(inode), path_root_el(path), cpos, &bh); 6653 if (ret) { 6654 mlog_errno(ret); 6655 goto out; 6656 } 6657 6658 eb = (struct ocfs2_extent_block *) bh->b_data; 6659 el = &eb->h_list; 6660 6661 /* ocfs2_find_leaf() gets the eb from ocfs2_read_extent_block(). 6662 * Any corruption is a code bug. */ 6663 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 6664 6665 *new_last_eb = bh; 6666 get_bh(*new_last_eb); 6667 mlog(0, "returning block %llu, (cpos: %u)\n", 6668 (unsigned long long)le64_to_cpu(eb->h_blkno), cpos); 6669 out: 6670 brelse(bh); 6671 6672 return ret; 6673 } 6674 6675 /* 6676 * Trim some clusters off the rightmost edge of a tree. Only called 6677 * during truncate. 6678 * 6679 * The caller needs to: 6680 * - start journaling of each path component. 6681 * - compute and fully set up any new last ext block 6682 */ 6683 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path, 6684 handle_t *handle, struct ocfs2_truncate_context *tc, 6685 u32 clusters_to_del, u64 *delete_start, u8 *flags) 6686 { 6687 int ret, i, index = path->p_tree_depth; 6688 u32 new_edge = 0; 6689 u64 deleted_eb = 0; 6690 struct buffer_head *bh; 6691 struct ocfs2_extent_list *el; 6692 struct ocfs2_extent_rec *rec; 6693 6694 *delete_start = 0; 6695 *flags = 0; 6696 6697 while (index >= 0) { 6698 bh = path->p_node[index].bh; 6699 el = path->p_node[index].el; 6700 6701 mlog(0, "traveling tree (index = %d, block = %llu)\n", 6702 index, (unsigned long long)bh->b_blocknr); 6703 6704 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 6705 6706 if (index != 6707 (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) { 6708 ocfs2_error(inode->i_sb, 6709 "Inode %lu has invalid ext. block %llu", 6710 inode->i_ino, 6711 (unsigned long long)bh->b_blocknr); 6712 ret = -EROFS; 6713 goto out; 6714 } 6715 6716 find_tail_record: 6717 i = le16_to_cpu(el->l_next_free_rec) - 1; 6718 rec = &el->l_recs[i]; 6719 6720 mlog(0, "Extent list before: record %d: (%u, %u, %llu), " 6721 "next = %u\n", i, le32_to_cpu(rec->e_cpos), 6722 ocfs2_rec_clusters(el, rec), 6723 (unsigned long long)le64_to_cpu(rec->e_blkno), 6724 le16_to_cpu(el->l_next_free_rec)); 6725 6726 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del); 6727 6728 if (le16_to_cpu(el->l_tree_depth) == 0) { 6729 /* 6730 * If the leaf block contains a single empty 6731 * extent and no records, we can just remove 6732 * the block. 6733 */ 6734 if (i == 0 && ocfs2_is_empty_extent(rec)) { 6735 memset(rec, 0, 6736 sizeof(struct ocfs2_extent_rec)); 6737 el->l_next_free_rec = cpu_to_le16(0); 6738 6739 goto delete; 6740 } 6741 6742 /* 6743 * Remove any empty extents by shifting things 6744 * left. That should make life much easier on 6745 * the code below. This condition is rare 6746 * enough that we shouldn't see a performance 6747 * hit. 6748 */ 6749 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 6750 le16_add_cpu(&el->l_next_free_rec, -1); 6751 6752 for(i = 0; 6753 i < le16_to_cpu(el->l_next_free_rec); i++) 6754 el->l_recs[i] = el->l_recs[i + 1]; 6755 6756 memset(&el->l_recs[i], 0, 6757 sizeof(struct ocfs2_extent_rec)); 6758 6759 /* 6760 * We've modified our extent list. The 6761 * simplest way to handle this change 6762 * is to being the search from the 6763 * start again. 6764 */ 6765 goto find_tail_record; 6766 } 6767 6768 le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del); 6769 6770 /* 6771 * We'll use "new_edge" on our way back up the 6772 * tree to know what our rightmost cpos is. 6773 */ 6774 new_edge = le16_to_cpu(rec->e_leaf_clusters); 6775 new_edge += le32_to_cpu(rec->e_cpos); 6776 6777 /* 6778 * The caller will use this to delete data blocks. 6779 */ 6780 *delete_start = le64_to_cpu(rec->e_blkno) 6781 + ocfs2_clusters_to_blocks(inode->i_sb, 6782 le16_to_cpu(rec->e_leaf_clusters)); 6783 *flags = rec->e_flags; 6784 6785 /* 6786 * If it's now empty, remove this record. 6787 */ 6788 if (le16_to_cpu(rec->e_leaf_clusters) == 0) { 6789 memset(rec, 0, 6790 sizeof(struct ocfs2_extent_rec)); 6791 le16_add_cpu(&el->l_next_free_rec, -1); 6792 } 6793 } else { 6794 if (le64_to_cpu(rec->e_blkno) == deleted_eb) { 6795 memset(rec, 0, 6796 sizeof(struct ocfs2_extent_rec)); 6797 le16_add_cpu(&el->l_next_free_rec, -1); 6798 6799 goto delete; 6800 } 6801 6802 /* Can this actually happen? */ 6803 if (le16_to_cpu(el->l_next_free_rec) == 0) 6804 goto delete; 6805 6806 /* 6807 * We never actually deleted any clusters 6808 * because our leaf was empty. There's no 6809 * reason to adjust the rightmost edge then. 6810 */ 6811 if (new_edge == 0) 6812 goto delete; 6813 6814 rec->e_int_clusters = cpu_to_le32(new_edge); 6815 le32_add_cpu(&rec->e_int_clusters, 6816 -le32_to_cpu(rec->e_cpos)); 6817 6818 /* 6819 * A deleted child record should have been 6820 * caught above. 6821 */ 6822 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0); 6823 } 6824 6825 delete: 6826 ret = ocfs2_journal_dirty(handle, bh); 6827 if (ret) { 6828 mlog_errno(ret); 6829 goto out; 6830 } 6831 6832 mlog(0, "extent list container %llu, after: record %d: " 6833 "(%u, %u, %llu), next = %u.\n", 6834 (unsigned long long)bh->b_blocknr, i, 6835 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec), 6836 (unsigned long long)le64_to_cpu(rec->e_blkno), 6837 le16_to_cpu(el->l_next_free_rec)); 6838 6839 /* 6840 * We must be careful to only attempt delete of an 6841 * extent block (and not the root inode block). 6842 */ 6843 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) { 6844 struct ocfs2_extent_block *eb = 6845 (struct ocfs2_extent_block *)bh->b_data; 6846 6847 /* 6848 * Save this for use when processing the 6849 * parent block. 6850 */ 6851 deleted_eb = le64_to_cpu(eb->h_blkno); 6852 6853 mlog(0, "deleting this extent block.\n"); 6854 6855 ocfs2_remove_from_cache(INODE_CACHE(inode), bh); 6856 6857 BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0])); 6858 BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos)); 6859 BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno)); 6860 6861 ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb); 6862 /* An error here is not fatal. */ 6863 if (ret < 0) 6864 mlog_errno(ret); 6865 } else { 6866 deleted_eb = 0; 6867 } 6868 6869 index--; 6870 } 6871 6872 ret = 0; 6873 out: 6874 return ret; 6875 } 6876 6877 static int ocfs2_do_truncate(struct ocfs2_super *osb, 6878 unsigned int clusters_to_del, 6879 struct inode *inode, 6880 struct buffer_head *fe_bh, 6881 handle_t *handle, 6882 struct ocfs2_truncate_context *tc, 6883 struct ocfs2_path *path, 6884 struct ocfs2_alloc_context *meta_ac) 6885 { 6886 int status; 6887 struct ocfs2_dinode *fe; 6888 struct ocfs2_extent_block *last_eb = NULL; 6889 struct ocfs2_extent_list *el; 6890 struct buffer_head *last_eb_bh = NULL; 6891 u64 delete_blk = 0; 6892 u8 rec_flags; 6893 6894 fe = (struct ocfs2_dinode *) fe_bh->b_data; 6895 6896 status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del, 6897 path, &last_eb_bh); 6898 if (status < 0) { 6899 mlog_errno(status); 6900 goto bail; 6901 } 6902 6903 /* 6904 * Each component will be touched, so we might as well journal 6905 * here to avoid having to handle errors later. 6906 */ 6907 status = ocfs2_journal_access_path(INODE_CACHE(inode), handle, path); 6908 if (status < 0) { 6909 mlog_errno(status); 6910 goto bail; 6911 } 6912 6913 if (last_eb_bh) { 6914 status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), last_eb_bh, 6915 OCFS2_JOURNAL_ACCESS_WRITE); 6916 if (status < 0) { 6917 mlog_errno(status); 6918 goto bail; 6919 } 6920 6921 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 6922 } 6923 6924 el = &(fe->id2.i_list); 6925 6926 /* 6927 * Lower levels depend on this never happening, but it's best 6928 * to check it up here before changing the tree. 6929 */ 6930 if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) { 6931 ocfs2_error(inode->i_sb, 6932 "Inode %lu has an empty extent record, depth %u\n", 6933 inode->i_ino, le16_to_cpu(el->l_tree_depth)); 6934 status = -EROFS; 6935 goto bail; 6936 } 6937 6938 vfs_dq_free_space_nodirty(inode, 6939 ocfs2_clusters_to_bytes(osb->sb, clusters_to_del)); 6940 spin_lock(&OCFS2_I(inode)->ip_lock); 6941 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) - 6942 clusters_to_del; 6943 spin_unlock(&OCFS2_I(inode)->ip_lock); 6944 le32_add_cpu(&fe->i_clusters, -clusters_to_del); 6945 inode->i_blocks = ocfs2_inode_sector_count(inode); 6946 6947 status = ocfs2_trim_tree(inode, path, handle, tc, 6948 clusters_to_del, &delete_blk, &rec_flags); 6949 if (status) { 6950 mlog_errno(status); 6951 goto bail; 6952 } 6953 6954 if (le32_to_cpu(fe->i_clusters) == 0) { 6955 /* trunc to zero is a special case. */ 6956 el->l_tree_depth = 0; 6957 fe->i_last_eb_blk = 0; 6958 } else if (last_eb) 6959 fe->i_last_eb_blk = last_eb->h_blkno; 6960 6961 status = ocfs2_journal_dirty(handle, fe_bh); 6962 if (status < 0) { 6963 mlog_errno(status); 6964 goto bail; 6965 } 6966 6967 if (last_eb) { 6968 /* If there will be a new last extent block, then by 6969 * definition, there cannot be any leaves to the right of 6970 * him. */ 6971 last_eb->h_next_leaf_blk = 0; 6972 status = ocfs2_journal_dirty(handle, last_eb_bh); 6973 if (status < 0) { 6974 mlog_errno(status); 6975 goto bail; 6976 } 6977 } 6978 6979 if (delete_blk) { 6980 if (rec_flags & OCFS2_EXT_REFCOUNTED) 6981 status = ocfs2_decrease_refcount(inode, handle, 6982 ocfs2_blocks_to_clusters(osb->sb, 6983 delete_blk), 6984 clusters_to_del, meta_ac, 6985 &tc->tc_dealloc, 1); 6986 else 6987 status = ocfs2_truncate_log_append(osb, handle, 6988 delete_blk, 6989 clusters_to_del); 6990 if (status < 0) { 6991 mlog_errno(status); 6992 goto bail; 6993 } 6994 } 6995 status = 0; 6996 bail: 6997 brelse(last_eb_bh); 6998 mlog_exit(status); 6999 return status; 7000 } 7001 7002 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh) 7003 { 7004 set_buffer_uptodate(bh); 7005 mark_buffer_dirty(bh); 7006 return 0; 7007 } 7008 7009 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle, 7010 unsigned int from, unsigned int to, 7011 struct page *page, int zero, u64 *phys) 7012 { 7013 int ret, partial = 0; 7014 7015 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0); 7016 if (ret) 7017 mlog_errno(ret); 7018 7019 if (zero) 7020 zero_user_segment(page, from, to); 7021 7022 /* 7023 * Need to set the buffers we zero'd into uptodate 7024 * here if they aren't - ocfs2_map_page_blocks() 7025 * might've skipped some 7026 */ 7027 ret = walk_page_buffers(handle, page_buffers(page), 7028 from, to, &partial, 7029 ocfs2_zero_func); 7030 if (ret < 0) 7031 mlog_errno(ret); 7032 else if (ocfs2_should_order_data(inode)) { 7033 ret = ocfs2_jbd2_file_inode(handle, inode); 7034 if (ret < 0) 7035 mlog_errno(ret); 7036 } 7037 7038 if (!partial) 7039 SetPageUptodate(page); 7040 7041 flush_dcache_page(page); 7042 } 7043 7044 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start, 7045 loff_t end, struct page **pages, 7046 int numpages, u64 phys, handle_t *handle) 7047 { 7048 int i; 7049 struct page *page; 7050 unsigned int from, to = PAGE_CACHE_SIZE; 7051 struct super_block *sb = inode->i_sb; 7052 7053 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb))); 7054 7055 if (numpages == 0) 7056 goto out; 7057 7058 to = PAGE_CACHE_SIZE; 7059 for(i = 0; i < numpages; i++) { 7060 page = pages[i]; 7061 7062 from = start & (PAGE_CACHE_SIZE - 1); 7063 if ((end >> PAGE_CACHE_SHIFT) == page->index) 7064 to = end & (PAGE_CACHE_SIZE - 1); 7065 7066 BUG_ON(from > PAGE_CACHE_SIZE); 7067 BUG_ON(to > PAGE_CACHE_SIZE); 7068 7069 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1, 7070 &phys); 7071 7072 start = (page->index + 1) << PAGE_CACHE_SHIFT; 7073 } 7074 out: 7075 if (pages) 7076 ocfs2_unlock_and_free_pages(pages, numpages); 7077 } 7078 7079 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end, 7080 struct page **pages, int *num) 7081 { 7082 int numpages, ret = 0; 7083 struct address_space *mapping = inode->i_mapping; 7084 unsigned long index; 7085 loff_t last_page_bytes; 7086 7087 BUG_ON(start > end); 7088 7089 numpages = 0; 7090 last_page_bytes = PAGE_ALIGN(end); 7091 index = start >> PAGE_CACHE_SHIFT; 7092 do { 7093 pages[numpages] = grab_cache_page(mapping, index); 7094 if (!pages[numpages]) { 7095 ret = -ENOMEM; 7096 mlog_errno(ret); 7097 goto out; 7098 } 7099 7100 numpages++; 7101 index++; 7102 } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT)); 7103 7104 out: 7105 if (ret != 0) { 7106 if (pages) 7107 ocfs2_unlock_and_free_pages(pages, numpages); 7108 numpages = 0; 7109 } 7110 7111 *num = numpages; 7112 7113 return ret; 7114 } 7115 7116 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end, 7117 struct page **pages, int *num) 7118 { 7119 struct super_block *sb = inode->i_sb; 7120 7121 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits != 7122 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits); 7123 7124 return ocfs2_grab_pages(inode, start, end, pages, num); 7125 } 7126 7127 /* 7128 * Zero the area past i_size but still within an allocated 7129 * cluster. This avoids exposing nonzero data on subsequent file 7130 * extends. 7131 * 7132 * We need to call this before i_size is updated on the inode because 7133 * otherwise block_write_full_page() will skip writeout of pages past 7134 * i_size. The new_i_size parameter is passed for this reason. 7135 */ 7136 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle, 7137 u64 range_start, u64 range_end) 7138 { 7139 int ret = 0, numpages; 7140 struct page **pages = NULL; 7141 u64 phys; 7142 unsigned int ext_flags; 7143 struct super_block *sb = inode->i_sb; 7144 7145 /* 7146 * File systems which don't support sparse files zero on every 7147 * extend. 7148 */ 7149 if (!ocfs2_sparse_alloc(OCFS2_SB(sb))) 7150 return 0; 7151 7152 pages = kcalloc(ocfs2_pages_per_cluster(sb), 7153 sizeof(struct page *), GFP_NOFS); 7154 if (pages == NULL) { 7155 ret = -ENOMEM; 7156 mlog_errno(ret); 7157 goto out; 7158 } 7159 7160 if (range_start == range_end) 7161 goto out; 7162 7163 ret = ocfs2_extent_map_get_blocks(inode, 7164 range_start >> sb->s_blocksize_bits, 7165 &phys, NULL, &ext_flags); 7166 if (ret) { 7167 mlog_errno(ret); 7168 goto out; 7169 } 7170 7171 /* 7172 * Tail is a hole, or is marked unwritten. In either case, we 7173 * can count on read and write to return/push zero's. 7174 */ 7175 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN) 7176 goto out; 7177 7178 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages, 7179 &numpages); 7180 if (ret) { 7181 mlog_errno(ret); 7182 goto out; 7183 } 7184 7185 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages, 7186 numpages, phys, handle); 7187 7188 /* 7189 * Initiate writeout of the pages we zero'd here. We don't 7190 * wait on them - the truncate_inode_pages() call later will 7191 * do that for us. 7192 */ 7193 ret = filemap_fdatawrite_range(inode->i_mapping, range_start, 7194 range_end - 1); 7195 if (ret) 7196 mlog_errno(ret); 7197 7198 out: 7199 if (pages) 7200 kfree(pages); 7201 7202 return ret; 7203 } 7204 7205 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode, 7206 struct ocfs2_dinode *di) 7207 { 7208 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits; 7209 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size); 7210 7211 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL) 7212 memset(&di->id2, 0, blocksize - 7213 offsetof(struct ocfs2_dinode, id2) - 7214 xattrsize); 7215 else 7216 memset(&di->id2, 0, blocksize - 7217 offsetof(struct ocfs2_dinode, id2)); 7218 } 7219 7220 void ocfs2_dinode_new_extent_list(struct inode *inode, 7221 struct ocfs2_dinode *di) 7222 { 7223 ocfs2_zero_dinode_id2_with_xattr(inode, di); 7224 di->id2.i_list.l_tree_depth = 0; 7225 di->id2.i_list.l_next_free_rec = 0; 7226 di->id2.i_list.l_count = cpu_to_le16( 7227 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di)); 7228 } 7229 7230 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di) 7231 { 7232 struct ocfs2_inode_info *oi = OCFS2_I(inode); 7233 struct ocfs2_inline_data *idata = &di->id2.i_data; 7234 7235 spin_lock(&oi->ip_lock); 7236 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL; 7237 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 7238 spin_unlock(&oi->ip_lock); 7239 7240 /* 7241 * We clear the entire i_data structure here so that all 7242 * fields can be properly initialized. 7243 */ 7244 ocfs2_zero_dinode_id2_with_xattr(inode, di); 7245 7246 idata->id_count = cpu_to_le16( 7247 ocfs2_max_inline_data_with_xattr(inode->i_sb, di)); 7248 } 7249 7250 int ocfs2_convert_inline_data_to_extents(struct inode *inode, 7251 struct buffer_head *di_bh) 7252 { 7253 int ret, i, has_data, num_pages = 0; 7254 handle_t *handle; 7255 u64 uninitialized_var(block); 7256 struct ocfs2_inode_info *oi = OCFS2_I(inode); 7257 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 7258 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7259 struct ocfs2_alloc_context *data_ac = NULL; 7260 struct page **pages = NULL; 7261 loff_t end = osb->s_clustersize; 7262 struct ocfs2_extent_tree et; 7263 int did_quota = 0; 7264 7265 has_data = i_size_read(inode) ? 1 : 0; 7266 7267 if (has_data) { 7268 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb), 7269 sizeof(struct page *), GFP_NOFS); 7270 if (pages == NULL) { 7271 ret = -ENOMEM; 7272 mlog_errno(ret); 7273 goto out; 7274 } 7275 7276 ret = ocfs2_reserve_clusters(osb, 1, &data_ac); 7277 if (ret) { 7278 mlog_errno(ret); 7279 goto out; 7280 } 7281 } 7282 7283 handle = ocfs2_start_trans(osb, 7284 ocfs2_inline_to_extents_credits(osb->sb)); 7285 if (IS_ERR(handle)) { 7286 ret = PTR_ERR(handle); 7287 mlog_errno(ret); 7288 goto out_unlock; 7289 } 7290 7291 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 7292 OCFS2_JOURNAL_ACCESS_WRITE); 7293 if (ret) { 7294 mlog_errno(ret); 7295 goto out_commit; 7296 } 7297 7298 if (has_data) { 7299 u32 bit_off, num; 7300 unsigned int page_end; 7301 u64 phys; 7302 7303 if (vfs_dq_alloc_space_nodirty(inode, 7304 ocfs2_clusters_to_bytes(osb->sb, 1))) { 7305 ret = -EDQUOT; 7306 goto out_commit; 7307 } 7308 did_quota = 1; 7309 7310 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off, 7311 &num); 7312 if (ret) { 7313 mlog_errno(ret); 7314 goto out_commit; 7315 } 7316 7317 /* 7318 * Save two copies, one for insert, and one that can 7319 * be changed by ocfs2_map_and_dirty_page() below. 7320 */ 7321 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off); 7322 7323 /* 7324 * Non sparse file systems zero on extend, so no need 7325 * to do that now. 7326 */ 7327 if (!ocfs2_sparse_alloc(osb) && 7328 PAGE_CACHE_SIZE < osb->s_clustersize) 7329 end = PAGE_CACHE_SIZE; 7330 7331 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages); 7332 if (ret) { 7333 mlog_errno(ret); 7334 goto out_commit; 7335 } 7336 7337 /* 7338 * This should populate the 1st page for us and mark 7339 * it up to date. 7340 */ 7341 ret = ocfs2_read_inline_data(inode, pages[0], di_bh); 7342 if (ret) { 7343 mlog_errno(ret); 7344 goto out_commit; 7345 } 7346 7347 page_end = PAGE_CACHE_SIZE; 7348 if (PAGE_CACHE_SIZE > osb->s_clustersize) 7349 page_end = osb->s_clustersize; 7350 7351 for (i = 0; i < num_pages; i++) 7352 ocfs2_map_and_dirty_page(inode, handle, 0, page_end, 7353 pages[i], i > 0, &phys); 7354 } 7355 7356 spin_lock(&oi->ip_lock); 7357 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL; 7358 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 7359 spin_unlock(&oi->ip_lock); 7360 7361 ocfs2_dinode_new_extent_list(inode, di); 7362 7363 ocfs2_journal_dirty(handle, di_bh); 7364 7365 if (has_data) { 7366 /* 7367 * An error at this point should be extremely rare. If 7368 * this proves to be false, we could always re-build 7369 * the in-inode data from our pages. 7370 */ 7371 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 7372 ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL); 7373 if (ret) { 7374 mlog_errno(ret); 7375 goto out_commit; 7376 } 7377 7378 inode->i_blocks = ocfs2_inode_sector_count(inode); 7379 } 7380 7381 out_commit: 7382 if (ret < 0 && did_quota) 7383 vfs_dq_free_space_nodirty(inode, 7384 ocfs2_clusters_to_bytes(osb->sb, 1)); 7385 7386 ocfs2_commit_trans(osb, handle); 7387 7388 out_unlock: 7389 if (data_ac) 7390 ocfs2_free_alloc_context(data_ac); 7391 7392 out: 7393 if (pages) { 7394 ocfs2_unlock_and_free_pages(pages, num_pages); 7395 kfree(pages); 7396 } 7397 7398 return ret; 7399 } 7400 7401 /* 7402 * It is expected, that by the time you call this function, 7403 * inode->i_size and fe->i_size have been adjusted. 7404 * 7405 * WARNING: This will kfree the truncate context 7406 */ 7407 int ocfs2_commit_truncate(struct ocfs2_super *osb, 7408 struct inode *inode, 7409 struct buffer_head *fe_bh, 7410 struct ocfs2_truncate_context *tc) 7411 { 7412 int status, i, credits, tl_sem = 0; 7413 u32 clusters_to_del, new_highest_cpos, range; 7414 u64 blkno = 0; 7415 struct ocfs2_extent_list *el; 7416 handle_t *handle = NULL; 7417 struct inode *tl_inode = osb->osb_tl_inode; 7418 struct ocfs2_path *path = NULL; 7419 struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data; 7420 struct ocfs2_alloc_context *meta_ac = NULL; 7421 struct ocfs2_refcount_tree *ref_tree = NULL; 7422 7423 mlog_entry_void(); 7424 7425 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb, 7426 i_size_read(inode)); 7427 7428 path = ocfs2_new_path(fe_bh, &di->id2.i_list, 7429 ocfs2_journal_access_di); 7430 if (!path) { 7431 status = -ENOMEM; 7432 mlog_errno(status); 7433 goto bail; 7434 } 7435 7436 ocfs2_extent_map_trunc(inode, new_highest_cpos); 7437 7438 start: 7439 /* 7440 * Check that we still have allocation to delete. 7441 */ 7442 if (OCFS2_I(inode)->ip_clusters == 0) { 7443 status = 0; 7444 goto bail; 7445 } 7446 7447 credits = 0; 7448 7449 /* 7450 * Truncate always works against the rightmost tree branch. 7451 */ 7452 status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX); 7453 if (status) { 7454 mlog_errno(status); 7455 goto bail; 7456 } 7457 7458 mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n", 7459 OCFS2_I(inode)->ip_clusters, path->p_tree_depth); 7460 7461 /* 7462 * By now, el will point to the extent list on the bottom most 7463 * portion of this tree. Only the tail record is considered in 7464 * each pass. 7465 * 7466 * We handle the following cases, in order: 7467 * - empty extent: delete the remaining branch 7468 * - remove the entire record 7469 * - remove a partial record 7470 * - no record needs to be removed (truncate has completed) 7471 */ 7472 el = path_leaf_el(path); 7473 if (le16_to_cpu(el->l_next_free_rec) == 0) { 7474 ocfs2_error(inode->i_sb, 7475 "Inode %llu has empty extent block at %llu\n", 7476 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7477 (unsigned long long)path_leaf_bh(path)->b_blocknr); 7478 status = -EROFS; 7479 goto bail; 7480 } 7481 7482 i = le16_to_cpu(el->l_next_free_rec) - 1; 7483 range = le32_to_cpu(el->l_recs[i].e_cpos) + 7484 ocfs2_rec_clusters(el, &el->l_recs[i]); 7485 if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) { 7486 clusters_to_del = 0; 7487 } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) { 7488 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]); 7489 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 7490 } else if (range > new_highest_cpos) { 7491 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) + 7492 le32_to_cpu(el->l_recs[i].e_cpos)) - 7493 new_highest_cpos; 7494 blkno = le64_to_cpu(el->l_recs[i].e_blkno) + 7495 ocfs2_clusters_to_blocks(inode->i_sb, 7496 ocfs2_rec_clusters(el, &el->l_recs[i]) - 7497 clusters_to_del); 7498 } else { 7499 status = 0; 7500 goto bail; 7501 } 7502 7503 mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n", 7504 clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr); 7505 7506 if (el->l_recs[i].e_flags & OCFS2_EXT_REFCOUNTED && clusters_to_del) { 7507 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & 7508 OCFS2_HAS_REFCOUNT_FL)); 7509 7510 status = ocfs2_lock_refcount_tree(osb, 7511 le64_to_cpu(di->i_refcount_loc), 7512 1, &ref_tree, NULL); 7513 if (status) { 7514 mlog_errno(status); 7515 goto bail; 7516 } 7517 7518 status = ocfs2_prepare_refcount_change_for_del(inode, fe_bh, 7519 blkno, 7520 clusters_to_del, 7521 &credits, 7522 &meta_ac); 7523 if (status < 0) { 7524 mlog_errno(status); 7525 goto bail; 7526 } 7527 } 7528 7529 mutex_lock(&tl_inode->i_mutex); 7530 tl_sem = 1; 7531 /* ocfs2_truncate_log_needs_flush guarantees us at least one 7532 * record is free for use. If there isn't any, we flush to get 7533 * an empty truncate log. */ 7534 if (ocfs2_truncate_log_needs_flush(osb)) { 7535 status = __ocfs2_flush_truncate_log(osb); 7536 if (status < 0) { 7537 mlog_errno(status); 7538 goto bail; 7539 } 7540 } 7541 7542 credits += ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del, 7543 (struct ocfs2_dinode *)fe_bh->b_data, 7544 el); 7545 handle = ocfs2_start_trans(osb, credits); 7546 if (IS_ERR(handle)) { 7547 status = PTR_ERR(handle); 7548 handle = NULL; 7549 mlog_errno(status); 7550 goto bail; 7551 } 7552 7553 status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle, 7554 tc, path, meta_ac); 7555 if (status < 0) { 7556 mlog_errno(status); 7557 goto bail; 7558 } 7559 7560 mutex_unlock(&tl_inode->i_mutex); 7561 tl_sem = 0; 7562 7563 ocfs2_commit_trans(osb, handle); 7564 handle = NULL; 7565 7566 ocfs2_reinit_path(path, 1); 7567 7568 if (meta_ac) { 7569 ocfs2_free_alloc_context(meta_ac); 7570 meta_ac = NULL; 7571 } 7572 7573 if (ref_tree) { 7574 ocfs2_unlock_refcount_tree(osb, ref_tree, 1); 7575 ref_tree = NULL; 7576 } 7577 7578 /* 7579 * The check above will catch the case where we've truncated 7580 * away all allocation. 7581 */ 7582 goto start; 7583 7584 bail: 7585 7586 ocfs2_schedule_truncate_log_flush(osb, 1); 7587 7588 if (tl_sem) 7589 mutex_unlock(&tl_inode->i_mutex); 7590 7591 if (handle) 7592 ocfs2_commit_trans(osb, handle); 7593 7594 if (meta_ac) 7595 ocfs2_free_alloc_context(meta_ac); 7596 7597 if (ref_tree) 7598 ocfs2_unlock_refcount_tree(osb, ref_tree, 1); 7599 7600 ocfs2_run_deallocs(osb, &tc->tc_dealloc); 7601 7602 ocfs2_free_path(path); 7603 7604 /* This will drop the ext_alloc cluster lock for us */ 7605 ocfs2_free_truncate_context(tc); 7606 7607 mlog_exit(status); 7608 return status; 7609 } 7610 7611 /* 7612 * Expects the inode to already be locked. 7613 */ 7614 int ocfs2_prepare_truncate(struct ocfs2_super *osb, 7615 struct inode *inode, 7616 struct buffer_head *fe_bh, 7617 struct ocfs2_truncate_context **tc) 7618 { 7619 int status; 7620 unsigned int new_i_clusters; 7621 struct ocfs2_dinode *fe; 7622 struct ocfs2_extent_block *eb; 7623 struct buffer_head *last_eb_bh = NULL; 7624 7625 mlog_entry_void(); 7626 7627 *tc = NULL; 7628 7629 new_i_clusters = ocfs2_clusters_for_bytes(osb->sb, 7630 i_size_read(inode)); 7631 fe = (struct ocfs2_dinode *) fe_bh->b_data; 7632 7633 mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size =" 7634 "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters, 7635 (unsigned long long)le64_to_cpu(fe->i_size)); 7636 7637 *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL); 7638 if (!(*tc)) { 7639 status = -ENOMEM; 7640 mlog_errno(status); 7641 goto bail; 7642 } 7643 ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc); 7644 7645 if (fe->id2.i_list.l_tree_depth) { 7646 status = ocfs2_read_extent_block(INODE_CACHE(inode), 7647 le64_to_cpu(fe->i_last_eb_blk), 7648 &last_eb_bh); 7649 if (status < 0) { 7650 mlog_errno(status); 7651 goto bail; 7652 } 7653 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 7654 } 7655 7656 (*tc)->tc_last_eb_bh = last_eb_bh; 7657 7658 status = 0; 7659 bail: 7660 if (status < 0) { 7661 if (*tc) 7662 ocfs2_free_truncate_context(*tc); 7663 *tc = NULL; 7664 } 7665 mlog_exit_void(); 7666 return status; 7667 } 7668 7669 /* 7670 * 'start' is inclusive, 'end' is not. 7671 */ 7672 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh, 7673 unsigned int start, unsigned int end, int trunc) 7674 { 7675 int ret; 7676 unsigned int numbytes; 7677 handle_t *handle; 7678 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 7679 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7680 struct ocfs2_inline_data *idata = &di->id2.i_data; 7681 7682 if (end > i_size_read(inode)) 7683 end = i_size_read(inode); 7684 7685 BUG_ON(start >= end); 7686 7687 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) || 7688 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) || 7689 !ocfs2_supports_inline_data(osb)) { 7690 ocfs2_error(inode->i_sb, 7691 "Inline data flags for inode %llu don't agree! " 7692 "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n", 7693 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7694 le16_to_cpu(di->i_dyn_features), 7695 OCFS2_I(inode)->ip_dyn_features, 7696 osb->s_feature_incompat); 7697 ret = -EROFS; 7698 goto out; 7699 } 7700 7701 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 7702 if (IS_ERR(handle)) { 7703 ret = PTR_ERR(handle); 7704 mlog_errno(ret); 7705 goto out; 7706 } 7707 7708 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 7709 OCFS2_JOURNAL_ACCESS_WRITE); 7710 if (ret) { 7711 mlog_errno(ret); 7712 goto out_commit; 7713 } 7714 7715 numbytes = end - start; 7716 memset(idata->id_data + start, 0, numbytes); 7717 7718 /* 7719 * No need to worry about the data page here - it's been 7720 * truncated already and inline data doesn't need it for 7721 * pushing zero's to disk, so we'll let readpage pick it up 7722 * later. 7723 */ 7724 if (trunc) { 7725 i_size_write(inode, start); 7726 di->i_size = cpu_to_le64(start); 7727 } 7728 7729 inode->i_blocks = ocfs2_inode_sector_count(inode); 7730 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 7731 7732 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 7733 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 7734 7735 ocfs2_journal_dirty(handle, di_bh); 7736 7737 out_commit: 7738 ocfs2_commit_trans(osb, handle); 7739 7740 out: 7741 return ret; 7742 } 7743 7744 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc) 7745 { 7746 /* 7747 * The caller is responsible for completing deallocation 7748 * before freeing the context. 7749 */ 7750 if (tc->tc_dealloc.c_first_suballocator != NULL) 7751 mlog(ML_NOTICE, 7752 "Truncate completion has non-empty dealloc context\n"); 7753 7754 brelse(tc->tc_last_eb_bh); 7755 7756 kfree(tc); 7757 } 7758