xref: /openbmc/linux/fs/ocfs2/alloc.c (revision a09d2831)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32 
33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
34 #include <cluster/masklog.h>
35 
36 #include "ocfs2.h"
37 
38 #include "alloc.h"
39 #include "aops.h"
40 #include "blockcheck.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "localalloc.h"
46 #include "suballoc.h"
47 #include "sysfile.h"
48 #include "file.h"
49 #include "super.h"
50 #include "uptodate.h"
51 #include "xattr.h"
52 #include "refcounttree.h"
53 
54 #include "buffer_head_io.h"
55 
56 enum ocfs2_contig_type {
57 	CONTIG_NONE = 0,
58 	CONTIG_LEFT,
59 	CONTIG_RIGHT,
60 	CONTIG_LEFTRIGHT,
61 };
62 
63 static enum ocfs2_contig_type
64 	ocfs2_extent_rec_contig(struct super_block *sb,
65 				struct ocfs2_extent_rec *ext,
66 				struct ocfs2_extent_rec *insert_rec);
67 /*
68  * Operations for a specific extent tree type.
69  *
70  * To implement an on-disk btree (extent tree) type in ocfs2, add
71  * an ocfs2_extent_tree_operations structure and the matching
72  * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
73  * for the allocation portion of the extent tree.
74  */
75 struct ocfs2_extent_tree_operations {
76 	/*
77 	 * last_eb_blk is the block number of the right most leaf extent
78 	 * block.  Most on-disk structures containing an extent tree store
79 	 * this value for fast access.  The ->eo_set_last_eb_blk() and
80 	 * ->eo_get_last_eb_blk() operations access this value.  They are
81 	 *  both required.
82 	 */
83 	void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
84 				   u64 blkno);
85 	u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
86 
87 	/*
88 	 * The on-disk structure usually keeps track of how many total
89 	 * clusters are stored in this extent tree.  This function updates
90 	 * that value.  new_clusters is the delta, and must be
91 	 * added to the total.  Required.
92 	 */
93 	void (*eo_update_clusters)(struct ocfs2_extent_tree *et,
94 				   u32 new_clusters);
95 
96 	/*
97 	 * If this extent tree is supported by an extent map, insert
98 	 * a record into the map.
99 	 */
100 	void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et,
101 				     struct ocfs2_extent_rec *rec);
102 
103 	/*
104 	 * If this extent tree is supported by an extent map, truncate the
105 	 * map to clusters,
106 	 */
107 	void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et,
108 				       u32 clusters);
109 
110 	/*
111 	 * If ->eo_insert_check() exists, it is called before rec is
112 	 * inserted into the extent tree.  It is optional.
113 	 */
114 	int (*eo_insert_check)(struct ocfs2_extent_tree *et,
115 			       struct ocfs2_extent_rec *rec);
116 	int (*eo_sanity_check)(struct ocfs2_extent_tree *et);
117 
118 	/*
119 	 * --------------------------------------------------------------
120 	 * The remaining are internal to ocfs2_extent_tree and don't have
121 	 * accessor functions
122 	 */
123 
124 	/*
125 	 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
126 	 * It is required.
127 	 */
128 	void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
129 
130 	/*
131 	 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
132 	 * it exists.  If it does not, et->et_max_leaf_clusters is set
133 	 * to 0 (unlimited).  Optional.
134 	 */
135 	void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et);
136 
137 	/*
138 	 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec
139 	 * are contiguous or not. Optional. Don't need to set it if use
140 	 * ocfs2_extent_rec as the tree leaf.
141 	 */
142 	enum ocfs2_contig_type
143 		(*eo_extent_contig)(struct ocfs2_extent_tree *et,
144 				    struct ocfs2_extent_rec *ext,
145 				    struct ocfs2_extent_rec *insert_rec);
146 };
147 
148 
149 /*
150  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
151  * in the methods.
152  */
153 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
154 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
155 					 u64 blkno);
156 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
157 					 u32 clusters);
158 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
159 					   struct ocfs2_extent_rec *rec);
160 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
161 					     u32 clusters);
162 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
163 				     struct ocfs2_extent_rec *rec);
164 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et);
165 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
166 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
167 	.eo_set_last_eb_blk	= ocfs2_dinode_set_last_eb_blk,
168 	.eo_get_last_eb_blk	= ocfs2_dinode_get_last_eb_blk,
169 	.eo_update_clusters	= ocfs2_dinode_update_clusters,
170 	.eo_extent_map_insert	= ocfs2_dinode_extent_map_insert,
171 	.eo_extent_map_truncate	= ocfs2_dinode_extent_map_truncate,
172 	.eo_insert_check	= ocfs2_dinode_insert_check,
173 	.eo_sanity_check	= ocfs2_dinode_sanity_check,
174 	.eo_fill_root_el	= ocfs2_dinode_fill_root_el,
175 };
176 
177 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
178 					 u64 blkno)
179 {
180 	struct ocfs2_dinode *di = et->et_object;
181 
182 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
183 	di->i_last_eb_blk = cpu_to_le64(blkno);
184 }
185 
186 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
187 {
188 	struct ocfs2_dinode *di = et->et_object;
189 
190 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
191 	return le64_to_cpu(di->i_last_eb_blk);
192 }
193 
194 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
195 					 u32 clusters)
196 {
197 	struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
198 	struct ocfs2_dinode *di = et->et_object;
199 
200 	le32_add_cpu(&di->i_clusters, clusters);
201 	spin_lock(&oi->ip_lock);
202 	oi->ip_clusters = le32_to_cpu(di->i_clusters);
203 	spin_unlock(&oi->ip_lock);
204 }
205 
206 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
207 					   struct ocfs2_extent_rec *rec)
208 {
209 	struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
210 
211 	ocfs2_extent_map_insert_rec(inode, rec);
212 }
213 
214 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
215 					     u32 clusters)
216 {
217 	struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
218 
219 	ocfs2_extent_map_trunc(inode, clusters);
220 }
221 
222 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
223 				     struct ocfs2_extent_rec *rec)
224 {
225 	struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
226 	struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb);
227 
228 	BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL);
229 	mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
230 			(oi->ip_clusters != le32_to_cpu(rec->e_cpos)),
231 			"Device %s, asking for sparse allocation: inode %llu, "
232 			"cpos %u, clusters %u\n",
233 			osb->dev_str,
234 			(unsigned long long)oi->ip_blkno,
235 			rec->e_cpos, oi->ip_clusters);
236 
237 	return 0;
238 }
239 
240 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et)
241 {
242 	struct ocfs2_dinode *di = et->et_object;
243 
244 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
245 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
246 
247 	return 0;
248 }
249 
250 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
251 {
252 	struct ocfs2_dinode *di = et->et_object;
253 
254 	et->et_root_el = &di->id2.i_list;
255 }
256 
257 
258 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
259 {
260 	struct ocfs2_xattr_value_buf *vb = et->et_object;
261 
262 	et->et_root_el = &vb->vb_xv->xr_list;
263 }
264 
265 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
266 					      u64 blkno)
267 {
268 	struct ocfs2_xattr_value_buf *vb = et->et_object;
269 
270 	vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
271 }
272 
273 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
274 {
275 	struct ocfs2_xattr_value_buf *vb = et->et_object;
276 
277 	return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
278 }
279 
280 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et,
281 					      u32 clusters)
282 {
283 	struct ocfs2_xattr_value_buf *vb = et->et_object;
284 
285 	le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
286 }
287 
288 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
289 	.eo_set_last_eb_blk	= ocfs2_xattr_value_set_last_eb_blk,
290 	.eo_get_last_eb_blk	= ocfs2_xattr_value_get_last_eb_blk,
291 	.eo_update_clusters	= ocfs2_xattr_value_update_clusters,
292 	.eo_fill_root_el	= ocfs2_xattr_value_fill_root_el,
293 };
294 
295 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
296 {
297 	struct ocfs2_xattr_block *xb = et->et_object;
298 
299 	et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
300 }
301 
302 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et)
303 {
304 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
305 	et->et_max_leaf_clusters =
306 		ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
307 }
308 
309 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
310 					     u64 blkno)
311 {
312 	struct ocfs2_xattr_block *xb = et->et_object;
313 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
314 
315 	xt->xt_last_eb_blk = cpu_to_le64(blkno);
316 }
317 
318 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
319 {
320 	struct ocfs2_xattr_block *xb = et->et_object;
321 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
322 
323 	return le64_to_cpu(xt->xt_last_eb_blk);
324 }
325 
326 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et,
327 					     u32 clusters)
328 {
329 	struct ocfs2_xattr_block *xb = et->et_object;
330 
331 	le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
332 }
333 
334 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
335 	.eo_set_last_eb_blk	= ocfs2_xattr_tree_set_last_eb_blk,
336 	.eo_get_last_eb_blk	= ocfs2_xattr_tree_get_last_eb_blk,
337 	.eo_update_clusters	= ocfs2_xattr_tree_update_clusters,
338 	.eo_fill_root_el	= ocfs2_xattr_tree_fill_root_el,
339 	.eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
340 };
341 
342 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
343 					  u64 blkno)
344 {
345 	struct ocfs2_dx_root_block *dx_root = et->et_object;
346 
347 	dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
348 }
349 
350 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
351 {
352 	struct ocfs2_dx_root_block *dx_root = et->et_object;
353 
354 	return le64_to_cpu(dx_root->dr_last_eb_blk);
355 }
356 
357 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et,
358 					  u32 clusters)
359 {
360 	struct ocfs2_dx_root_block *dx_root = et->et_object;
361 
362 	le32_add_cpu(&dx_root->dr_clusters, clusters);
363 }
364 
365 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et)
366 {
367 	struct ocfs2_dx_root_block *dx_root = et->et_object;
368 
369 	BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
370 
371 	return 0;
372 }
373 
374 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
375 {
376 	struct ocfs2_dx_root_block *dx_root = et->et_object;
377 
378 	et->et_root_el = &dx_root->dr_list;
379 }
380 
381 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
382 	.eo_set_last_eb_blk	= ocfs2_dx_root_set_last_eb_blk,
383 	.eo_get_last_eb_blk	= ocfs2_dx_root_get_last_eb_blk,
384 	.eo_update_clusters	= ocfs2_dx_root_update_clusters,
385 	.eo_sanity_check	= ocfs2_dx_root_sanity_check,
386 	.eo_fill_root_el	= ocfs2_dx_root_fill_root_el,
387 };
388 
389 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et)
390 {
391 	struct ocfs2_refcount_block *rb = et->et_object;
392 
393 	et->et_root_el = &rb->rf_list;
394 }
395 
396 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
397 						u64 blkno)
398 {
399 	struct ocfs2_refcount_block *rb = et->et_object;
400 
401 	rb->rf_last_eb_blk = cpu_to_le64(blkno);
402 }
403 
404 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
405 {
406 	struct ocfs2_refcount_block *rb = et->et_object;
407 
408 	return le64_to_cpu(rb->rf_last_eb_blk);
409 }
410 
411 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et,
412 						u32 clusters)
413 {
414 	struct ocfs2_refcount_block *rb = et->et_object;
415 
416 	le32_add_cpu(&rb->rf_clusters, clusters);
417 }
418 
419 static enum ocfs2_contig_type
420 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et,
421 				  struct ocfs2_extent_rec *ext,
422 				  struct ocfs2_extent_rec *insert_rec)
423 {
424 	return CONTIG_NONE;
425 }
426 
427 static struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = {
428 	.eo_set_last_eb_blk	= ocfs2_refcount_tree_set_last_eb_blk,
429 	.eo_get_last_eb_blk	= ocfs2_refcount_tree_get_last_eb_blk,
430 	.eo_update_clusters	= ocfs2_refcount_tree_update_clusters,
431 	.eo_fill_root_el	= ocfs2_refcount_tree_fill_root_el,
432 	.eo_extent_contig	= ocfs2_refcount_tree_extent_contig,
433 };
434 
435 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
436 				     struct ocfs2_caching_info *ci,
437 				     struct buffer_head *bh,
438 				     ocfs2_journal_access_func access,
439 				     void *obj,
440 				     struct ocfs2_extent_tree_operations *ops)
441 {
442 	et->et_ops = ops;
443 	et->et_root_bh = bh;
444 	et->et_ci = ci;
445 	et->et_root_journal_access = access;
446 	if (!obj)
447 		obj = (void *)bh->b_data;
448 	et->et_object = obj;
449 
450 	et->et_ops->eo_fill_root_el(et);
451 	if (!et->et_ops->eo_fill_max_leaf_clusters)
452 		et->et_max_leaf_clusters = 0;
453 	else
454 		et->et_ops->eo_fill_max_leaf_clusters(et);
455 }
456 
457 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
458 				   struct ocfs2_caching_info *ci,
459 				   struct buffer_head *bh)
460 {
461 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di,
462 				 NULL, &ocfs2_dinode_et_ops);
463 }
464 
465 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
466 				       struct ocfs2_caching_info *ci,
467 				       struct buffer_head *bh)
468 {
469 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb,
470 				 NULL, &ocfs2_xattr_tree_et_ops);
471 }
472 
473 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
474 					struct ocfs2_caching_info *ci,
475 					struct ocfs2_xattr_value_buf *vb)
476 {
477 	__ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb,
478 				 &ocfs2_xattr_value_et_ops);
479 }
480 
481 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
482 				    struct ocfs2_caching_info *ci,
483 				    struct buffer_head *bh)
484 {
485 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr,
486 				 NULL, &ocfs2_dx_root_et_ops);
487 }
488 
489 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et,
490 				     struct ocfs2_caching_info *ci,
491 				     struct buffer_head *bh)
492 {
493 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb,
494 				 NULL, &ocfs2_refcount_tree_et_ops);
495 }
496 
497 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
498 					    u64 new_last_eb_blk)
499 {
500 	et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
501 }
502 
503 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
504 {
505 	return et->et_ops->eo_get_last_eb_blk(et);
506 }
507 
508 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et,
509 					    u32 clusters)
510 {
511 	et->et_ops->eo_update_clusters(et, clusters);
512 }
513 
514 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et,
515 					      struct ocfs2_extent_rec *rec)
516 {
517 	if (et->et_ops->eo_extent_map_insert)
518 		et->et_ops->eo_extent_map_insert(et, rec);
519 }
520 
521 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et,
522 						u32 clusters)
523 {
524 	if (et->et_ops->eo_extent_map_truncate)
525 		et->et_ops->eo_extent_map_truncate(et, clusters);
526 }
527 
528 static inline int ocfs2_et_root_journal_access(handle_t *handle,
529 					       struct ocfs2_extent_tree *et,
530 					       int type)
531 {
532 	return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh,
533 					  type);
534 }
535 
536 static inline enum ocfs2_contig_type
537 	ocfs2_et_extent_contig(struct ocfs2_extent_tree *et,
538 			       struct ocfs2_extent_rec *rec,
539 			       struct ocfs2_extent_rec *insert_rec)
540 {
541 	if (et->et_ops->eo_extent_contig)
542 		return et->et_ops->eo_extent_contig(et, rec, insert_rec);
543 
544 	return ocfs2_extent_rec_contig(
545 				ocfs2_metadata_cache_get_super(et->et_ci),
546 				rec, insert_rec);
547 }
548 
549 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et,
550 					struct ocfs2_extent_rec *rec)
551 {
552 	int ret = 0;
553 
554 	if (et->et_ops->eo_insert_check)
555 		ret = et->et_ops->eo_insert_check(et, rec);
556 	return ret;
557 }
558 
559 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et)
560 {
561 	int ret = 0;
562 
563 	if (et->et_ops->eo_sanity_check)
564 		ret = et->et_ops->eo_sanity_check(et);
565 	return ret;
566 }
567 
568 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
569 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
570 					 struct ocfs2_extent_block *eb);
571 static void ocfs2_adjust_rightmost_records(handle_t *handle,
572 					   struct ocfs2_extent_tree *et,
573 					   struct ocfs2_path *path,
574 					   struct ocfs2_extent_rec *insert_rec);
575 /*
576  * Reset the actual path elements so that we can re-use the structure
577  * to build another path. Generally, this involves freeing the buffer
578  * heads.
579  */
580 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
581 {
582 	int i, start = 0, depth = 0;
583 	struct ocfs2_path_item *node;
584 
585 	if (keep_root)
586 		start = 1;
587 
588 	for(i = start; i < path_num_items(path); i++) {
589 		node = &path->p_node[i];
590 
591 		brelse(node->bh);
592 		node->bh = NULL;
593 		node->el = NULL;
594 	}
595 
596 	/*
597 	 * Tree depth may change during truncate, or insert. If we're
598 	 * keeping the root extent list, then make sure that our path
599 	 * structure reflects the proper depth.
600 	 */
601 	if (keep_root)
602 		depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
603 	else
604 		path_root_access(path) = NULL;
605 
606 	path->p_tree_depth = depth;
607 }
608 
609 void ocfs2_free_path(struct ocfs2_path *path)
610 {
611 	if (path) {
612 		ocfs2_reinit_path(path, 0);
613 		kfree(path);
614 	}
615 }
616 
617 /*
618  * All the elements of src into dest. After this call, src could be freed
619  * without affecting dest.
620  *
621  * Both paths should have the same root. Any non-root elements of dest
622  * will be freed.
623  */
624 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
625 {
626 	int i;
627 
628 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
629 	BUG_ON(path_root_el(dest) != path_root_el(src));
630 	BUG_ON(path_root_access(dest) != path_root_access(src));
631 
632 	ocfs2_reinit_path(dest, 1);
633 
634 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
635 		dest->p_node[i].bh = src->p_node[i].bh;
636 		dest->p_node[i].el = src->p_node[i].el;
637 
638 		if (dest->p_node[i].bh)
639 			get_bh(dest->p_node[i].bh);
640 	}
641 }
642 
643 /*
644  * Make the *dest path the same as src and re-initialize src path to
645  * have a root only.
646  */
647 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
648 {
649 	int i;
650 
651 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
652 	BUG_ON(path_root_access(dest) != path_root_access(src));
653 
654 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
655 		brelse(dest->p_node[i].bh);
656 
657 		dest->p_node[i].bh = src->p_node[i].bh;
658 		dest->p_node[i].el = src->p_node[i].el;
659 
660 		src->p_node[i].bh = NULL;
661 		src->p_node[i].el = NULL;
662 	}
663 }
664 
665 /*
666  * Insert an extent block at given index.
667  *
668  * This will not take an additional reference on eb_bh.
669  */
670 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
671 					struct buffer_head *eb_bh)
672 {
673 	struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
674 
675 	/*
676 	 * Right now, no root bh is an extent block, so this helps
677 	 * catch code errors with dinode trees. The assertion can be
678 	 * safely removed if we ever need to insert extent block
679 	 * structures at the root.
680 	 */
681 	BUG_ON(index == 0);
682 
683 	path->p_node[index].bh = eb_bh;
684 	path->p_node[index].el = &eb->h_list;
685 }
686 
687 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
688 					 struct ocfs2_extent_list *root_el,
689 					 ocfs2_journal_access_func access)
690 {
691 	struct ocfs2_path *path;
692 
693 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
694 
695 	path = kzalloc(sizeof(*path), GFP_NOFS);
696 	if (path) {
697 		path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
698 		get_bh(root_bh);
699 		path_root_bh(path) = root_bh;
700 		path_root_el(path) = root_el;
701 		path_root_access(path) = access;
702 	}
703 
704 	return path;
705 }
706 
707 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
708 {
709 	return ocfs2_new_path(path_root_bh(path), path_root_el(path),
710 			      path_root_access(path));
711 }
712 
713 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
714 {
715 	return ocfs2_new_path(et->et_root_bh, et->et_root_el,
716 			      et->et_root_journal_access);
717 }
718 
719 /*
720  * Journal the buffer at depth idx.  All idx>0 are extent_blocks,
721  * otherwise it's the root_access function.
722  *
723  * I don't like the way this function's name looks next to
724  * ocfs2_journal_access_path(), but I don't have a better one.
725  */
726 int ocfs2_path_bh_journal_access(handle_t *handle,
727 				 struct ocfs2_caching_info *ci,
728 				 struct ocfs2_path *path,
729 				 int idx)
730 {
731 	ocfs2_journal_access_func access = path_root_access(path);
732 
733 	if (!access)
734 		access = ocfs2_journal_access;
735 
736 	if (idx)
737 		access = ocfs2_journal_access_eb;
738 
739 	return access(handle, ci, path->p_node[idx].bh,
740 		      OCFS2_JOURNAL_ACCESS_WRITE);
741 }
742 
743 /*
744  * Convenience function to journal all components in a path.
745  */
746 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci,
747 			      handle_t *handle,
748 			      struct ocfs2_path *path)
749 {
750 	int i, ret = 0;
751 
752 	if (!path)
753 		goto out;
754 
755 	for(i = 0; i < path_num_items(path); i++) {
756 		ret = ocfs2_path_bh_journal_access(handle, ci, path, i);
757 		if (ret < 0) {
758 			mlog_errno(ret);
759 			goto out;
760 		}
761 	}
762 
763 out:
764 	return ret;
765 }
766 
767 /*
768  * Return the index of the extent record which contains cluster #v_cluster.
769  * -1 is returned if it was not found.
770  *
771  * Should work fine on interior and exterior nodes.
772  */
773 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
774 {
775 	int ret = -1;
776 	int i;
777 	struct ocfs2_extent_rec *rec;
778 	u32 rec_end, rec_start, clusters;
779 
780 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
781 		rec = &el->l_recs[i];
782 
783 		rec_start = le32_to_cpu(rec->e_cpos);
784 		clusters = ocfs2_rec_clusters(el, rec);
785 
786 		rec_end = rec_start + clusters;
787 
788 		if (v_cluster >= rec_start && v_cluster < rec_end) {
789 			ret = i;
790 			break;
791 		}
792 	}
793 
794 	return ret;
795 }
796 
797 /*
798  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
799  * ocfs2_extent_rec_contig only work properly against leaf nodes!
800  */
801 static int ocfs2_block_extent_contig(struct super_block *sb,
802 				     struct ocfs2_extent_rec *ext,
803 				     u64 blkno)
804 {
805 	u64 blk_end = le64_to_cpu(ext->e_blkno);
806 
807 	blk_end += ocfs2_clusters_to_blocks(sb,
808 				    le16_to_cpu(ext->e_leaf_clusters));
809 
810 	return blkno == blk_end;
811 }
812 
813 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
814 				  struct ocfs2_extent_rec *right)
815 {
816 	u32 left_range;
817 
818 	left_range = le32_to_cpu(left->e_cpos) +
819 		le16_to_cpu(left->e_leaf_clusters);
820 
821 	return (left_range == le32_to_cpu(right->e_cpos));
822 }
823 
824 static enum ocfs2_contig_type
825 	ocfs2_extent_rec_contig(struct super_block *sb,
826 				struct ocfs2_extent_rec *ext,
827 				struct ocfs2_extent_rec *insert_rec)
828 {
829 	u64 blkno = le64_to_cpu(insert_rec->e_blkno);
830 
831 	/*
832 	 * Refuse to coalesce extent records with different flag
833 	 * fields - we don't want to mix unwritten extents with user
834 	 * data.
835 	 */
836 	if (ext->e_flags != insert_rec->e_flags)
837 		return CONTIG_NONE;
838 
839 	if (ocfs2_extents_adjacent(ext, insert_rec) &&
840 	    ocfs2_block_extent_contig(sb, ext, blkno))
841 			return CONTIG_RIGHT;
842 
843 	blkno = le64_to_cpu(ext->e_blkno);
844 	if (ocfs2_extents_adjacent(insert_rec, ext) &&
845 	    ocfs2_block_extent_contig(sb, insert_rec, blkno))
846 		return CONTIG_LEFT;
847 
848 	return CONTIG_NONE;
849 }
850 
851 /*
852  * NOTE: We can have pretty much any combination of contiguousness and
853  * appending.
854  *
855  * The usefulness of APPEND_TAIL is more in that it lets us know that
856  * we'll have to update the path to that leaf.
857  */
858 enum ocfs2_append_type {
859 	APPEND_NONE = 0,
860 	APPEND_TAIL,
861 };
862 
863 enum ocfs2_split_type {
864 	SPLIT_NONE = 0,
865 	SPLIT_LEFT,
866 	SPLIT_RIGHT,
867 };
868 
869 struct ocfs2_insert_type {
870 	enum ocfs2_split_type	ins_split;
871 	enum ocfs2_append_type	ins_appending;
872 	enum ocfs2_contig_type	ins_contig;
873 	int			ins_contig_index;
874 	int			ins_tree_depth;
875 };
876 
877 struct ocfs2_merge_ctxt {
878 	enum ocfs2_contig_type	c_contig_type;
879 	int			c_has_empty_extent;
880 	int			c_split_covers_rec;
881 };
882 
883 static int ocfs2_validate_extent_block(struct super_block *sb,
884 				       struct buffer_head *bh)
885 {
886 	int rc;
887 	struct ocfs2_extent_block *eb =
888 		(struct ocfs2_extent_block *)bh->b_data;
889 
890 	mlog(0, "Validating extent block %llu\n",
891 	     (unsigned long long)bh->b_blocknr);
892 
893 	BUG_ON(!buffer_uptodate(bh));
894 
895 	/*
896 	 * If the ecc fails, we return the error but otherwise
897 	 * leave the filesystem running.  We know any error is
898 	 * local to this block.
899 	 */
900 	rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
901 	if (rc) {
902 		mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
903 		     (unsigned long long)bh->b_blocknr);
904 		return rc;
905 	}
906 
907 	/*
908 	 * Errors after here are fatal.
909 	 */
910 
911 	if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
912 		ocfs2_error(sb,
913 			    "Extent block #%llu has bad signature %.*s",
914 			    (unsigned long long)bh->b_blocknr, 7,
915 			    eb->h_signature);
916 		return -EINVAL;
917 	}
918 
919 	if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
920 		ocfs2_error(sb,
921 			    "Extent block #%llu has an invalid h_blkno "
922 			    "of %llu",
923 			    (unsigned long long)bh->b_blocknr,
924 			    (unsigned long long)le64_to_cpu(eb->h_blkno));
925 		return -EINVAL;
926 	}
927 
928 	if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
929 		ocfs2_error(sb,
930 			    "Extent block #%llu has an invalid "
931 			    "h_fs_generation of #%u",
932 			    (unsigned long long)bh->b_blocknr,
933 			    le32_to_cpu(eb->h_fs_generation));
934 		return -EINVAL;
935 	}
936 
937 	return 0;
938 }
939 
940 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno,
941 			    struct buffer_head **bh)
942 {
943 	int rc;
944 	struct buffer_head *tmp = *bh;
945 
946 	rc = ocfs2_read_block(ci, eb_blkno, &tmp,
947 			      ocfs2_validate_extent_block);
948 
949 	/* If ocfs2_read_block() got us a new bh, pass it up. */
950 	if (!rc && !*bh)
951 		*bh = tmp;
952 
953 	return rc;
954 }
955 
956 
957 /*
958  * How many free extents have we got before we need more meta data?
959  */
960 int ocfs2_num_free_extents(struct ocfs2_super *osb,
961 			   struct ocfs2_extent_tree *et)
962 {
963 	int retval;
964 	struct ocfs2_extent_list *el = NULL;
965 	struct ocfs2_extent_block *eb;
966 	struct buffer_head *eb_bh = NULL;
967 	u64 last_eb_blk = 0;
968 
969 	mlog_entry_void();
970 
971 	el = et->et_root_el;
972 	last_eb_blk = ocfs2_et_get_last_eb_blk(et);
973 
974 	if (last_eb_blk) {
975 		retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk,
976 						 &eb_bh);
977 		if (retval < 0) {
978 			mlog_errno(retval);
979 			goto bail;
980 		}
981 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
982 		el = &eb->h_list;
983 	}
984 
985 	BUG_ON(el->l_tree_depth != 0);
986 
987 	retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
988 bail:
989 	brelse(eb_bh);
990 
991 	mlog_exit(retval);
992 	return retval;
993 }
994 
995 /* expects array to already be allocated
996  *
997  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
998  * l_count for you
999  */
1000 static int ocfs2_create_new_meta_bhs(handle_t *handle,
1001 				     struct ocfs2_extent_tree *et,
1002 				     int wanted,
1003 				     struct ocfs2_alloc_context *meta_ac,
1004 				     struct buffer_head *bhs[])
1005 {
1006 	int count, status, i;
1007 	u16 suballoc_bit_start;
1008 	u32 num_got;
1009 	u64 first_blkno;
1010 	struct ocfs2_super *osb =
1011 		OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
1012 	struct ocfs2_extent_block *eb;
1013 
1014 	mlog_entry_void();
1015 
1016 	count = 0;
1017 	while (count < wanted) {
1018 		status = ocfs2_claim_metadata(osb,
1019 					      handle,
1020 					      meta_ac,
1021 					      wanted - count,
1022 					      &suballoc_bit_start,
1023 					      &num_got,
1024 					      &first_blkno);
1025 		if (status < 0) {
1026 			mlog_errno(status);
1027 			goto bail;
1028 		}
1029 
1030 		for(i = count;  i < (num_got + count); i++) {
1031 			bhs[i] = sb_getblk(osb->sb, first_blkno);
1032 			if (bhs[i] == NULL) {
1033 				status = -EIO;
1034 				mlog_errno(status);
1035 				goto bail;
1036 			}
1037 			ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]);
1038 
1039 			status = ocfs2_journal_access_eb(handle, et->et_ci,
1040 							 bhs[i],
1041 							 OCFS2_JOURNAL_ACCESS_CREATE);
1042 			if (status < 0) {
1043 				mlog_errno(status);
1044 				goto bail;
1045 			}
1046 
1047 			memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
1048 			eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
1049 			/* Ok, setup the minimal stuff here. */
1050 			strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
1051 			eb->h_blkno = cpu_to_le64(first_blkno);
1052 			eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
1053 			eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
1054 			eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
1055 			eb->h_list.l_count =
1056 				cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
1057 
1058 			suballoc_bit_start++;
1059 			first_blkno++;
1060 
1061 			/* We'll also be dirtied by the caller, so
1062 			 * this isn't absolutely necessary. */
1063 			status = ocfs2_journal_dirty(handle, bhs[i]);
1064 			if (status < 0) {
1065 				mlog_errno(status);
1066 				goto bail;
1067 			}
1068 		}
1069 
1070 		count += num_got;
1071 	}
1072 
1073 	status = 0;
1074 bail:
1075 	if (status < 0) {
1076 		for(i = 0; i < wanted; i++) {
1077 			brelse(bhs[i]);
1078 			bhs[i] = NULL;
1079 		}
1080 	}
1081 	mlog_exit(status);
1082 	return status;
1083 }
1084 
1085 /*
1086  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1087  *
1088  * Returns the sum of the rightmost extent rec logical offset and
1089  * cluster count.
1090  *
1091  * ocfs2_add_branch() uses this to determine what logical cluster
1092  * value should be populated into the leftmost new branch records.
1093  *
1094  * ocfs2_shift_tree_depth() uses this to determine the # clusters
1095  * value for the new topmost tree record.
1096  */
1097 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
1098 {
1099 	int i;
1100 
1101 	i = le16_to_cpu(el->l_next_free_rec) - 1;
1102 
1103 	return le32_to_cpu(el->l_recs[i].e_cpos) +
1104 		ocfs2_rec_clusters(el, &el->l_recs[i]);
1105 }
1106 
1107 /*
1108  * Change range of the branches in the right most path according to the leaf
1109  * extent block's rightmost record.
1110  */
1111 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1112 					 struct ocfs2_extent_tree *et)
1113 {
1114 	int status;
1115 	struct ocfs2_path *path = NULL;
1116 	struct ocfs2_extent_list *el;
1117 	struct ocfs2_extent_rec *rec;
1118 
1119 	path = ocfs2_new_path_from_et(et);
1120 	if (!path) {
1121 		status = -ENOMEM;
1122 		return status;
1123 	}
1124 
1125 	status = ocfs2_find_path(et->et_ci, path, UINT_MAX);
1126 	if (status < 0) {
1127 		mlog_errno(status);
1128 		goto out;
1129 	}
1130 
1131 	status = ocfs2_extend_trans(handle, path_num_items(path) +
1132 				    handle->h_buffer_credits);
1133 	if (status < 0) {
1134 		mlog_errno(status);
1135 		goto out;
1136 	}
1137 
1138 	status = ocfs2_journal_access_path(et->et_ci, handle, path);
1139 	if (status < 0) {
1140 		mlog_errno(status);
1141 		goto out;
1142 	}
1143 
1144 	el = path_leaf_el(path);
1145 	rec = &el->l_recs[le32_to_cpu(el->l_next_free_rec) - 1];
1146 
1147 	ocfs2_adjust_rightmost_records(handle, et, path, rec);
1148 
1149 out:
1150 	ocfs2_free_path(path);
1151 	return status;
1152 }
1153 
1154 /*
1155  * Add an entire tree branch to our inode. eb_bh is the extent block
1156  * to start at, if we don't want to start the branch at the root
1157  * structure.
1158  *
1159  * last_eb_bh is required as we have to update it's next_leaf pointer
1160  * for the new last extent block.
1161  *
1162  * the new branch will be 'empty' in the sense that every block will
1163  * contain a single record with cluster count == 0.
1164  */
1165 static int ocfs2_add_branch(handle_t *handle,
1166 			    struct ocfs2_extent_tree *et,
1167 			    struct buffer_head *eb_bh,
1168 			    struct buffer_head **last_eb_bh,
1169 			    struct ocfs2_alloc_context *meta_ac)
1170 {
1171 	int status, new_blocks, i;
1172 	u64 next_blkno, new_last_eb_blk;
1173 	struct buffer_head *bh;
1174 	struct buffer_head **new_eb_bhs = NULL;
1175 	struct ocfs2_extent_block *eb;
1176 	struct ocfs2_extent_list  *eb_el;
1177 	struct ocfs2_extent_list  *el;
1178 	u32 new_cpos, root_end;
1179 
1180 	mlog_entry_void();
1181 
1182 	BUG_ON(!last_eb_bh || !*last_eb_bh);
1183 
1184 	if (eb_bh) {
1185 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1186 		el = &eb->h_list;
1187 	} else
1188 		el = et->et_root_el;
1189 
1190 	/* we never add a branch to a leaf. */
1191 	BUG_ON(!el->l_tree_depth);
1192 
1193 	new_blocks = le16_to_cpu(el->l_tree_depth);
1194 
1195 	eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1196 	new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1197 	root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1198 
1199 	/*
1200 	 * If there is a gap before the root end and the real end
1201 	 * of the righmost leaf block, we need to remove the gap
1202 	 * between new_cpos and root_end first so that the tree
1203 	 * is consistent after we add a new branch(it will start
1204 	 * from new_cpos).
1205 	 */
1206 	if (root_end > new_cpos) {
1207 		mlog(0, "adjust the cluster end from %u to %u\n",
1208 		     root_end, new_cpos);
1209 		status = ocfs2_adjust_rightmost_branch(handle, et);
1210 		if (status) {
1211 			mlog_errno(status);
1212 			goto bail;
1213 		}
1214 	}
1215 
1216 	/* allocate the number of new eb blocks we need */
1217 	new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1218 			     GFP_KERNEL);
1219 	if (!new_eb_bhs) {
1220 		status = -ENOMEM;
1221 		mlog_errno(status);
1222 		goto bail;
1223 	}
1224 
1225 	status = ocfs2_create_new_meta_bhs(handle, et, new_blocks,
1226 					   meta_ac, new_eb_bhs);
1227 	if (status < 0) {
1228 		mlog_errno(status);
1229 		goto bail;
1230 	}
1231 
1232 	/* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1233 	 * linked with the rest of the tree.
1234 	 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1235 	 *
1236 	 * when we leave the loop, new_last_eb_blk will point to the
1237 	 * newest leaf, and next_blkno will point to the topmost extent
1238 	 * block. */
1239 	next_blkno = new_last_eb_blk = 0;
1240 	for(i = 0; i < new_blocks; i++) {
1241 		bh = new_eb_bhs[i];
1242 		eb = (struct ocfs2_extent_block *) bh->b_data;
1243 		/* ocfs2_create_new_meta_bhs() should create it right! */
1244 		BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1245 		eb_el = &eb->h_list;
1246 
1247 		status = ocfs2_journal_access_eb(handle, et->et_ci, bh,
1248 						 OCFS2_JOURNAL_ACCESS_CREATE);
1249 		if (status < 0) {
1250 			mlog_errno(status);
1251 			goto bail;
1252 		}
1253 
1254 		eb->h_next_leaf_blk = 0;
1255 		eb_el->l_tree_depth = cpu_to_le16(i);
1256 		eb_el->l_next_free_rec = cpu_to_le16(1);
1257 		/*
1258 		 * This actually counts as an empty extent as
1259 		 * c_clusters == 0
1260 		 */
1261 		eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1262 		eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1263 		/*
1264 		 * eb_el isn't always an interior node, but even leaf
1265 		 * nodes want a zero'd flags and reserved field so
1266 		 * this gets the whole 32 bits regardless of use.
1267 		 */
1268 		eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1269 		if (!eb_el->l_tree_depth)
1270 			new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1271 
1272 		status = ocfs2_journal_dirty(handle, bh);
1273 		if (status < 0) {
1274 			mlog_errno(status);
1275 			goto bail;
1276 		}
1277 
1278 		next_blkno = le64_to_cpu(eb->h_blkno);
1279 	}
1280 
1281 	/* This is a bit hairy. We want to update up to three blocks
1282 	 * here without leaving any of them in an inconsistent state
1283 	 * in case of error. We don't have to worry about
1284 	 * journal_dirty erroring as it won't unless we've aborted the
1285 	 * handle (in which case we would never be here) so reserving
1286 	 * the write with journal_access is all we need to do. */
1287 	status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh,
1288 					 OCFS2_JOURNAL_ACCESS_WRITE);
1289 	if (status < 0) {
1290 		mlog_errno(status);
1291 		goto bail;
1292 	}
1293 	status = ocfs2_et_root_journal_access(handle, et,
1294 					      OCFS2_JOURNAL_ACCESS_WRITE);
1295 	if (status < 0) {
1296 		mlog_errno(status);
1297 		goto bail;
1298 	}
1299 	if (eb_bh) {
1300 		status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh,
1301 						 OCFS2_JOURNAL_ACCESS_WRITE);
1302 		if (status < 0) {
1303 			mlog_errno(status);
1304 			goto bail;
1305 		}
1306 	}
1307 
1308 	/* Link the new branch into the rest of the tree (el will
1309 	 * either be on the root_bh, or the extent block passed in. */
1310 	i = le16_to_cpu(el->l_next_free_rec);
1311 	el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1312 	el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1313 	el->l_recs[i].e_int_clusters = 0;
1314 	le16_add_cpu(&el->l_next_free_rec, 1);
1315 
1316 	/* fe needs a new last extent block pointer, as does the
1317 	 * next_leaf on the previously last-extent-block. */
1318 	ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1319 
1320 	eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1321 	eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1322 
1323 	status = ocfs2_journal_dirty(handle, *last_eb_bh);
1324 	if (status < 0)
1325 		mlog_errno(status);
1326 	status = ocfs2_journal_dirty(handle, et->et_root_bh);
1327 	if (status < 0)
1328 		mlog_errno(status);
1329 	if (eb_bh) {
1330 		status = ocfs2_journal_dirty(handle, eb_bh);
1331 		if (status < 0)
1332 			mlog_errno(status);
1333 	}
1334 
1335 	/*
1336 	 * Some callers want to track the rightmost leaf so pass it
1337 	 * back here.
1338 	 */
1339 	brelse(*last_eb_bh);
1340 	get_bh(new_eb_bhs[0]);
1341 	*last_eb_bh = new_eb_bhs[0];
1342 
1343 	status = 0;
1344 bail:
1345 	if (new_eb_bhs) {
1346 		for (i = 0; i < new_blocks; i++)
1347 			brelse(new_eb_bhs[i]);
1348 		kfree(new_eb_bhs);
1349 	}
1350 
1351 	mlog_exit(status);
1352 	return status;
1353 }
1354 
1355 /*
1356  * adds another level to the allocation tree.
1357  * returns back the new extent block so you can add a branch to it
1358  * after this call.
1359  */
1360 static int ocfs2_shift_tree_depth(handle_t *handle,
1361 				  struct ocfs2_extent_tree *et,
1362 				  struct ocfs2_alloc_context *meta_ac,
1363 				  struct buffer_head **ret_new_eb_bh)
1364 {
1365 	int status, i;
1366 	u32 new_clusters;
1367 	struct buffer_head *new_eb_bh = NULL;
1368 	struct ocfs2_extent_block *eb;
1369 	struct ocfs2_extent_list  *root_el;
1370 	struct ocfs2_extent_list  *eb_el;
1371 
1372 	mlog_entry_void();
1373 
1374 	status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac,
1375 					   &new_eb_bh);
1376 	if (status < 0) {
1377 		mlog_errno(status);
1378 		goto bail;
1379 	}
1380 
1381 	eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1382 	/* ocfs2_create_new_meta_bhs() should create it right! */
1383 	BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1384 
1385 	eb_el = &eb->h_list;
1386 	root_el = et->et_root_el;
1387 
1388 	status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh,
1389 					 OCFS2_JOURNAL_ACCESS_CREATE);
1390 	if (status < 0) {
1391 		mlog_errno(status);
1392 		goto bail;
1393 	}
1394 
1395 	/* copy the root extent list data into the new extent block */
1396 	eb_el->l_tree_depth = root_el->l_tree_depth;
1397 	eb_el->l_next_free_rec = root_el->l_next_free_rec;
1398 	for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1399 		eb_el->l_recs[i] = root_el->l_recs[i];
1400 
1401 	status = ocfs2_journal_dirty(handle, new_eb_bh);
1402 	if (status < 0) {
1403 		mlog_errno(status);
1404 		goto bail;
1405 	}
1406 
1407 	status = ocfs2_et_root_journal_access(handle, et,
1408 					      OCFS2_JOURNAL_ACCESS_WRITE);
1409 	if (status < 0) {
1410 		mlog_errno(status);
1411 		goto bail;
1412 	}
1413 
1414 	new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1415 
1416 	/* update root_bh now */
1417 	le16_add_cpu(&root_el->l_tree_depth, 1);
1418 	root_el->l_recs[0].e_cpos = 0;
1419 	root_el->l_recs[0].e_blkno = eb->h_blkno;
1420 	root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1421 	for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1422 		memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1423 	root_el->l_next_free_rec = cpu_to_le16(1);
1424 
1425 	/* If this is our 1st tree depth shift, then last_eb_blk
1426 	 * becomes the allocated extent block */
1427 	if (root_el->l_tree_depth == cpu_to_le16(1))
1428 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1429 
1430 	status = ocfs2_journal_dirty(handle, et->et_root_bh);
1431 	if (status < 0) {
1432 		mlog_errno(status);
1433 		goto bail;
1434 	}
1435 
1436 	*ret_new_eb_bh = new_eb_bh;
1437 	new_eb_bh = NULL;
1438 	status = 0;
1439 bail:
1440 	brelse(new_eb_bh);
1441 
1442 	mlog_exit(status);
1443 	return status;
1444 }
1445 
1446 /*
1447  * Should only be called when there is no space left in any of the
1448  * leaf nodes. What we want to do is find the lowest tree depth
1449  * non-leaf extent block with room for new records. There are three
1450  * valid results of this search:
1451  *
1452  * 1) a lowest extent block is found, then we pass it back in
1453  *    *lowest_eb_bh and return '0'
1454  *
1455  * 2) the search fails to find anything, but the root_el has room. We
1456  *    pass NULL back in *lowest_eb_bh, but still return '0'
1457  *
1458  * 3) the search fails to find anything AND the root_el is full, in
1459  *    which case we return > 0
1460  *
1461  * return status < 0 indicates an error.
1462  */
1463 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et,
1464 				    struct buffer_head **target_bh)
1465 {
1466 	int status = 0, i;
1467 	u64 blkno;
1468 	struct ocfs2_extent_block *eb;
1469 	struct ocfs2_extent_list  *el;
1470 	struct buffer_head *bh = NULL;
1471 	struct buffer_head *lowest_bh = NULL;
1472 
1473 	mlog_entry_void();
1474 
1475 	*target_bh = NULL;
1476 
1477 	el = et->et_root_el;
1478 
1479 	while(le16_to_cpu(el->l_tree_depth) > 1) {
1480 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1481 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1482 				    "Owner %llu has empty "
1483 				    "extent list (next_free_rec == 0)",
1484 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
1485 			status = -EIO;
1486 			goto bail;
1487 		}
1488 		i = le16_to_cpu(el->l_next_free_rec) - 1;
1489 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1490 		if (!blkno) {
1491 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1492 				    "Owner %llu has extent "
1493 				    "list where extent # %d has no physical "
1494 				    "block start",
1495 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i);
1496 			status = -EIO;
1497 			goto bail;
1498 		}
1499 
1500 		brelse(bh);
1501 		bh = NULL;
1502 
1503 		status = ocfs2_read_extent_block(et->et_ci, blkno, &bh);
1504 		if (status < 0) {
1505 			mlog_errno(status);
1506 			goto bail;
1507 		}
1508 
1509 		eb = (struct ocfs2_extent_block *) bh->b_data;
1510 		el = &eb->h_list;
1511 
1512 		if (le16_to_cpu(el->l_next_free_rec) <
1513 		    le16_to_cpu(el->l_count)) {
1514 			brelse(lowest_bh);
1515 			lowest_bh = bh;
1516 			get_bh(lowest_bh);
1517 		}
1518 	}
1519 
1520 	/* If we didn't find one and the fe doesn't have any room,
1521 	 * then return '1' */
1522 	el = et->et_root_el;
1523 	if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1524 		status = 1;
1525 
1526 	*target_bh = lowest_bh;
1527 bail:
1528 	brelse(bh);
1529 
1530 	mlog_exit(status);
1531 	return status;
1532 }
1533 
1534 /*
1535  * Grow a b-tree so that it has more records.
1536  *
1537  * We might shift the tree depth in which case existing paths should
1538  * be considered invalid.
1539  *
1540  * Tree depth after the grow is returned via *final_depth.
1541  *
1542  * *last_eb_bh will be updated by ocfs2_add_branch().
1543  */
1544 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et,
1545 			   int *final_depth, struct buffer_head **last_eb_bh,
1546 			   struct ocfs2_alloc_context *meta_ac)
1547 {
1548 	int ret, shift;
1549 	struct ocfs2_extent_list *el = et->et_root_el;
1550 	int depth = le16_to_cpu(el->l_tree_depth);
1551 	struct buffer_head *bh = NULL;
1552 
1553 	BUG_ON(meta_ac == NULL);
1554 
1555 	shift = ocfs2_find_branch_target(et, &bh);
1556 	if (shift < 0) {
1557 		ret = shift;
1558 		mlog_errno(ret);
1559 		goto out;
1560 	}
1561 
1562 	/* We traveled all the way to the bottom of the allocation tree
1563 	 * and didn't find room for any more extents - we need to add
1564 	 * another tree level */
1565 	if (shift) {
1566 		BUG_ON(bh);
1567 		mlog(0, "need to shift tree depth (current = %d)\n", depth);
1568 
1569 		/* ocfs2_shift_tree_depth will return us a buffer with
1570 		 * the new extent block (so we can pass that to
1571 		 * ocfs2_add_branch). */
1572 		ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh);
1573 		if (ret < 0) {
1574 			mlog_errno(ret);
1575 			goto out;
1576 		}
1577 		depth++;
1578 		if (depth == 1) {
1579 			/*
1580 			 * Special case: we have room now if we shifted from
1581 			 * tree_depth 0, so no more work needs to be done.
1582 			 *
1583 			 * We won't be calling add_branch, so pass
1584 			 * back *last_eb_bh as the new leaf. At depth
1585 			 * zero, it should always be null so there's
1586 			 * no reason to brelse.
1587 			 */
1588 			BUG_ON(*last_eb_bh);
1589 			get_bh(bh);
1590 			*last_eb_bh = bh;
1591 			goto out;
1592 		}
1593 	}
1594 
1595 	/* call ocfs2_add_branch to add the final part of the tree with
1596 	 * the new data. */
1597 	mlog(0, "add branch. bh = %p\n", bh);
1598 	ret = ocfs2_add_branch(handle, et, bh, last_eb_bh,
1599 			       meta_ac);
1600 	if (ret < 0) {
1601 		mlog_errno(ret);
1602 		goto out;
1603 	}
1604 
1605 out:
1606 	if (final_depth)
1607 		*final_depth = depth;
1608 	brelse(bh);
1609 	return ret;
1610 }
1611 
1612 /*
1613  * This function will discard the rightmost extent record.
1614  */
1615 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1616 {
1617 	int next_free = le16_to_cpu(el->l_next_free_rec);
1618 	int count = le16_to_cpu(el->l_count);
1619 	unsigned int num_bytes;
1620 
1621 	BUG_ON(!next_free);
1622 	/* This will cause us to go off the end of our extent list. */
1623 	BUG_ON(next_free >= count);
1624 
1625 	num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1626 
1627 	memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1628 }
1629 
1630 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1631 			      struct ocfs2_extent_rec *insert_rec)
1632 {
1633 	int i, insert_index, next_free, has_empty, num_bytes;
1634 	u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1635 	struct ocfs2_extent_rec *rec;
1636 
1637 	next_free = le16_to_cpu(el->l_next_free_rec);
1638 	has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1639 
1640 	BUG_ON(!next_free);
1641 
1642 	/* The tree code before us didn't allow enough room in the leaf. */
1643 	BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1644 
1645 	/*
1646 	 * The easiest way to approach this is to just remove the
1647 	 * empty extent and temporarily decrement next_free.
1648 	 */
1649 	if (has_empty) {
1650 		/*
1651 		 * If next_free was 1 (only an empty extent), this
1652 		 * loop won't execute, which is fine. We still want
1653 		 * the decrement above to happen.
1654 		 */
1655 		for(i = 0; i < (next_free - 1); i++)
1656 			el->l_recs[i] = el->l_recs[i+1];
1657 
1658 		next_free--;
1659 	}
1660 
1661 	/*
1662 	 * Figure out what the new record index should be.
1663 	 */
1664 	for(i = 0; i < next_free; i++) {
1665 		rec = &el->l_recs[i];
1666 
1667 		if (insert_cpos < le32_to_cpu(rec->e_cpos))
1668 			break;
1669 	}
1670 	insert_index = i;
1671 
1672 	mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1673 	     insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1674 
1675 	BUG_ON(insert_index < 0);
1676 	BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1677 	BUG_ON(insert_index > next_free);
1678 
1679 	/*
1680 	 * No need to memmove if we're just adding to the tail.
1681 	 */
1682 	if (insert_index != next_free) {
1683 		BUG_ON(next_free >= le16_to_cpu(el->l_count));
1684 
1685 		num_bytes = next_free - insert_index;
1686 		num_bytes *= sizeof(struct ocfs2_extent_rec);
1687 		memmove(&el->l_recs[insert_index + 1],
1688 			&el->l_recs[insert_index],
1689 			num_bytes);
1690 	}
1691 
1692 	/*
1693 	 * Either we had an empty extent, and need to re-increment or
1694 	 * there was no empty extent on a non full rightmost leaf node,
1695 	 * in which case we still need to increment.
1696 	 */
1697 	next_free++;
1698 	el->l_next_free_rec = cpu_to_le16(next_free);
1699 	/*
1700 	 * Make sure none of the math above just messed up our tree.
1701 	 */
1702 	BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1703 
1704 	el->l_recs[insert_index] = *insert_rec;
1705 
1706 }
1707 
1708 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1709 {
1710 	int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1711 
1712 	BUG_ON(num_recs == 0);
1713 
1714 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1715 		num_recs--;
1716 		size = num_recs * sizeof(struct ocfs2_extent_rec);
1717 		memmove(&el->l_recs[0], &el->l_recs[1], size);
1718 		memset(&el->l_recs[num_recs], 0,
1719 		       sizeof(struct ocfs2_extent_rec));
1720 		el->l_next_free_rec = cpu_to_le16(num_recs);
1721 	}
1722 }
1723 
1724 /*
1725  * Create an empty extent record .
1726  *
1727  * l_next_free_rec may be updated.
1728  *
1729  * If an empty extent already exists do nothing.
1730  */
1731 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1732 {
1733 	int next_free = le16_to_cpu(el->l_next_free_rec);
1734 
1735 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1736 
1737 	if (next_free == 0)
1738 		goto set_and_inc;
1739 
1740 	if (ocfs2_is_empty_extent(&el->l_recs[0]))
1741 		return;
1742 
1743 	mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1744 			"Asked to create an empty extent in a full list:\n"
1745 			"count = %u, tree depth = %u",
1746 			le16_to_cpu(el->l_count),
1747 			le16_to_cpu(el->l_tree_depth));
1748 
1749 	ocfs2_shift_records_right(el);
1750 
1751 set_and_inc:
1752 	le16_add_cpu(&el->l_next_free_rec, 1);
1753 	memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1754 }
1755 
1756 /*
1757  * For a rotation which involves two leaf nodes, the "root node" is
1758  * the lowest level tree node which contains a path to both leafs. This
1759  * resulting set of information can be used to form a complete "subtree"
1760  *
1761  * This function is passed two full paths from the dinode down to a
1762  * pair of adjacent leaves. It's task is to figure out which path
1763  * index contains the subtree root - this can be the root index itself
1764  * in a worst-case rotation.
1765  *
1766  * The array index of the subtree root is passed back.
1767  */
1768 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et,
1769 			    struct ocfs2_path *left,
1770 			    struct ocfs2_path *right)
1771 {
1772 	int i = 0;
1773 
1774 	/*
1775 	 * Check that the caller passed in two paths from the same tree.
1776 	 */
1777 	BUG_ON(path_root_bh(left) != path_root_bh(right));
1778 
1779 	do {
1780 		i++;
1781 
1782 		/*
1783 		 * The caller didn't pass two adjacent paths.
1784 		 */
1785 		mlog_bug_on_msg(i > left->p_tree_depth,
1786 				"Owner %llu, left depth %u, right depth %u\n"
1787 				"left leaf blk %llu, right leaf blk %llu\n",
1788 				(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
1789 				left->p_tree_depth, right->p_tree_depth,
1790 				(unsigned long long)path_leaf_bh(left)->b_blocknr,
1791 				(unsigned long long)path_leaf_bh(right)->b_blocknr);
1792 	} while (left->p_node[i].bh->b_blocknr ==
1793 		 right->p_node[i].bh->b_blocknr);
1794 
1795 	return i - 1;
1796 }
1797 
1798 typedef void (path_insert_t)(void *, struct buffer_head *);
1799 
1800 /*
1801  * Traverse a btree path in search of cpos, starting at root_el.
1802  *
1803  * This code can be called with a cpos larger than the tree, in which
1804  * case it will return the rightmost path.
1805  */
1806 static int __ocfs2_find_path(struct ocfs2_caching_info *ci,
1807 			     struct ocfs2_extent_list *root_el, u32 cpos,
1808 			     path_insert_t *func, void *data)
1809 {
1810 	int i, ret = 0;
1811 	u32 range;
1812 	u64 blkno;
1813 	struct buffer_head *bh = NULL;
1814 	struct ocfs2_extent_block *eb;
1815 	struct ocfs2_extent_list *el;
1816 	struct ocfs2_extent_rec *rec;
1817 
1818 	el = root_el;
1819 	while (el->l_tree_depth) {
1820 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1821 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1822 				    "Owner %llu has empty extent list at "
1823 				    "depth %u\n",
1824 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1825 				    le16_to_cpu(el->l_tree_depth));
1826 			ret = -EROFS;
1827 			goto out;
1828 
1829 		}
1830 
1831 		for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1832 			rec = &el->l_recs[i];
1833 
1834 			/*
1835 			 * In the case that cpos is off the allocation
1836 			 * tree, this should just wind up returning the
1837 			 * rightmost record.
1838 			 */
1839 			range = le32_to_cpu(rec->e_cpos) +
1840 				ocfs2_rec_clusters(el, rec);
1841 			if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1842 			    break;
1843 		}
1844 
1845 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1846 		if (blkno == 0) {
1847 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1848 				    "Owner %llu has bad blkno in extent list "
1849 				    "at depth %u (index %d)\n",
1850 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1851 				    le16_to_cpu(el->l_tree_depth), i);
1852 			ret = -EROFS;
1853 			goto out;
1854 		}
1855 
1856 		brelse(bh);
1857 		bh = NULL;
1858 		ret = ocfs2_read_extent_block(ci, blkno, &bh);
1859 		if (ret) {
1860 			mlog_errno(ret);
1861 			goto out;
1862 		}
1863 
1864 		eb = (struct ocfs2_extent_block *) bh->b_data;
1865 		el = &eb->h_list;
1866 
1867 		if (le16_to_cpu(el->l_next_free_rec) >
1868 		    le16_to_cpu(el->l_count)) {
1869 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1870 				    "Owner %llu has bad count in extent list "
1871 				    "at block %llu (next free=%u, count=%u)\n",
1872 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1873 				    (unsigned long long)bh->b_blocknr,
1874 				    le16_to_cpu(el->l_next_free_rec),
1875 				    le16_to_cpu(el->l_count));
1876 			ret = -EROFS;
1877 			goto out;
1878 		}
1879 
1880 		if (func)
1881 			func(data, bh);
1882 	}
1883 
1884 out:
1885 	/*
1886 	 * Catch any trailing bh that the loop didn't handle.
1887 	 */
1888 	brelse(bh);
1889 
1890 	return ret;
1891 }
1892 
1893 /*
1894  * Given an initialized path (that is, it has a valid root extent
1895  * list), this function will traverse the btree in search of the path
1896  * which would contain cpos.
1897  *
1898  * The path traveled is recorded in the path structure.
1899  *
1900  * Note that this will not do any comparisons on leaf node extent
1901  * records, so it will work fine in the case that we just added a tree
1902  * branch.
1903  */
1904 struct find_path_data {
1905 	int index;
1906 	struct ocfs2_path *path;
1907 };
1908 static void find_path_ins(void *data, struct buffer_head *bh)
1909 {
1910 	struct find_path_data *fp = data;
1911 
1912 	get_bh(bh);
1913 	ocfs2_path_insert_eb(fp->path, fp->index, bh);
1914 	fp->index++;
1915 }
1916 int ocfs2_find_path(struct ocfs2_caching_info *ci,
1917 		    struct ocfs2_path *path, u32 cpos)
1918 {
1919 	struct find_path_data data;
1920 
1921 	data.index = 1;
1922 	data.path = path;
1923 	return __ocfs2_find_path(ci, path_root_el(path), cpos,
1924 				 find_path_ins, &data);
1925 }
1926 
1927 static void find_leaf_ins(void *data, struct buffer_head *bh)
1928 {
1929 	struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1930 	struct ocfs2_extent_list *el = &eb->h_list;
1931 	struct buffer_head **ret = data;
1932 
1933 	/* We want to retain only the leaf block. */
1934 	if (le16_to_cpu(el->l_tree_depth) == 0) {
1935 		get_bh(bh);
1936 		*ret = bh;
1937 	}
1938 }
1939 /*
1940  * Find the leaf block in the tree which would contain cpos. No
1941  * checking of the actual leaf is done.
1942  *
1943  * Some paths want to call this instead of allocating a path structure
1944  * and calling ocfs2_find_path().
1945  *
1946  * This function doesn't handle non btree extent lists.
1947  */
1948 int ocfs2_find_leaf(struct ocfs2_caching_info *ci,
1949 		    struct ocfs2_extent_list *root_el, u32 cpos,
1950 		    struct buffer_head **leaf_bh)
1951 {
1952 	int ret;
1953 	struct buffer_head *bh = NULL;
1954 
1955 	ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh);
1956 	if (ret) {
1957 		mlog_errno(ret);
1958 		goto out;
1959 	}
1960 
1961 	*leaf_bh = bh;
1962 out:
1963 	return ret;
1964 }
1965 
1966 /*
1967  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1968  *
1969  * Basically, we've moved stuff around at the bottom of the tree and
1970  * we need to fix up the extent records above the changes to reflect
1971  * the new changes.
1972  *
1973  * left_rec: the record on the left.
1974  * left_child_el: is the child list pointed to by left_rec
1975  * right_rec: the record to the right of left_rec
1976  * right_child_el: is the child list pointed to by right_rec
1977  *
1978  * By definition, this only works on interior nodes.
1979  */
1980 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1981 				  struct ocfs2_extent_list *left_child_el,
1982 				  struct ocfs2_extent_rec *right_rec,
1983 				  struct ocfs2_extent_list *right_child_el)
1984 {
1985 	u32 left_clusters, right_end;
1986 
1987 	/*
1988 	 * Interior nodes never have holes. Their cpos is the cpos of
1989 	 * the leftmost record in their child list. Their cluster
1990 	 * count covers the full theoretical range of their child list
1991 	 * - the range between their cpos and the cpos of the record
1992 	 * immediately to their right.
1993 	 */
1994 	left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1995 	if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1996 		BUG_ON(right_child_el->l_tree_depth);
1997 		BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1998 		left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1999 	}
2000 	left_clusters -= le32_to_cpu(left_rec->e_cpos);
2001 	left_rec->e_int_clusters = cpu_to_le32(left_clusters);
2002 
2003 	/*
2004 	 * Calculate the rightmost cluster count boundary before
2005 	 * moving cpos - we will need to adjust clusters after
2006 	 * updating e_cpos to keep the same highest cluster count.
2007 	 */
2008 	right_end = le32_to_cpu(right_rec->e_cpos);
2009 	right_end += le32_to_cpu(right_rec->e_int_clusters);
2010 
2011 	right_rec->e_cpos = left_rec->e_cpos;
2012 	le32_add_cpu(&right_rec->e_cpos, left_clusters);
2013 
2014 	right_end -= le32_to_cpu(right_rec->e_cpos);
2015 	right_rec->e_int_clusters = cpu_to_le32(right_end);
2016 }
2017 
2018 /*
2019  * Adjust the adjacent root node records involved in a
2020  * rotation. left_el_blkno is passed in as a key so that we can easily
2021  * find it's index in the root list.
2022  */
2023 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
2024 				      struct ocfs2_extent_list *left_el,
2025 				      struct ocfs2_extent_list *right_el,
2026 				      u64 left_el_blkno)
2027 {
2028 	int i;
2029 
2030 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
2031 	       le16_to_cpu(left_el->l_tree_depth));
2032 
2033 	for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
2034 		if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
2035 			break;
2036 	}
2037 
2038 	/*
2039 	 * The path walking code should have never returned a root and
2040 	 * two paths which are not adjacent.
2041 	 */
2042 	BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
2043 
2044 	ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
2045 				      &root_el->l_recs[i + 1], right_el);
2046 }
2047 
2048 /*
2049  * We've changed a leaf block (in right_path) and need to reflect that
2050  * change back up the subtree.
2051  *
2052  * This happens in multiple places:
2053  *   - When we've moved an extent record from the left path leaf to the right
2054  *     path leaf to make room for an empty extent in the left path leaf.
2055  *   - When our insert into the right path leaf is at the leftmost edge
2056  *     and requires an update of the path immediately to it's left. This
2057  *     can occur at the end of some types of rotation and appending inserts.
2058  *   - When we've adjusted the last extent record in the left path leaf and the
2059  *     1st extent record in the right path leaf during cross extent block merge.
2060  */
2061 static void ocfs2_complete_edge_insert(handle_t *handle,
2062 				       struct ocfs2_path *left_path,
2063 				       struct ocfs2_path *right_path,
2064 				       int subtree_index)
2065 {
2066 	int ret, i, idx;
2067 	struct ocfs2_extent_list *el, *left_el, *right_el;
2068 	struct ocfs2_extent_rec *left_rec, *right_rec;
2069 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2070 
2071 	/*
2072 	 * Update the counts and position values within all the
2073 	 * interior nodes to reflect the leaf rotation we just did.
2074 	 *
2075 	 * The root node is handled below the loop.
2076 	 *
2077 	 * We begin the loop with right_el and left_el pointing to the
2078 	 * leaf lists and work our way up.
2079 	 *
2080 	 * NOTE: within this loop, left_el and right_el always refer
2081 	 * to the *child* lists.
2082 	 */
2083 	left_el = path_leaf_el(left_path);
2084 	right_el = path_leaf_el(right_path);
2085 	for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
2086 		mlog(0, "Adjust records at index %u\n", i);
2087 
2088 		/*
2089 		 * One nice property of knowing that all of these
2090 		 * nodes are below the root is that we only deal with
2091 		 * the leftmost right node record and the rightmost
2092 		 * left node record.
2093 		 */
2094 		el = left_path->p_node[i].el;
2095 		idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2096 		left_rec = &el->l_recs[idx];
2097 
2098 		el = right_path->p_node[i].el;
2099 		right_rec = &el->l_recs[0];
2100 
2101 		ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
2102 					      right_el);
2103 
2104 		ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2105 		if (ret)
2106 			mlog_errno(ret);
2107 
2108 		ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2109 		if (ret)
2110 			mlog_errno(ret);
2111 
2112 		/*
2113 		 * Setup our list pointers now so that the current
2114 		 * parents become children in the next iteration.
2115 		 */
2116 		left_el = left_path->p_node[i].el;
2117 		right_el = right_path->p_node[i].el;
2118 	}
2119 
2120 	/*
2121 	 * At the root node, adjust the two adjacent records which
2122 	 * begin our path to the leaves.
2123 	 */
2124 
2125 	el = left_path->p_node[subtree_index].el;
2126 	left_el = left_path->p_node[subtree_index + 1].el;
2127 	right_el = right_path->p_node[subtree_index + 1].el;
2128 
2129 	ocfs2_adjust_root_records(el, left_el, right_el,
2130 				  left_path->p_node[subtree_index + 1].bh->b_blocknr);
2131 
2132 	root_bh = left_path->p_node[subtree_index].bh;
2133 
2134 	ret = ocfs2_journal_dirty(handle, root_bh);
2135 	if (ret)
2136 		mlog_errno(ret);
2137 }
2138 
2139 static int ocfs2_rotate_subtree_right(handle_t *handle,
2140 				      struct ocfs2_extent_tree *et,
2141 				      struct ocfs2_path *left_path,
2142 				      struct ocfs2_path *right_path,
2143 				      int subtree_index)
2144 {
2145 	int ret, i;
2146 	struct buffer_head *right_leaf_bh;
2147 	struct buffer_head *left_leaf_bh = NULL;
2148 	struct buffer_head *root_bh;
2149 	struct ocfs2_extent_list *right_el, *left_el;
2150 	struct ocfs2_extent_rec move_rec;
2151 
2152 	left_leaf_bh = path_leaf_bh(left_path);
2153 	left_el = path_leaf_el(left_path);
2154 
2155 	if (left_el->l_next_free_rec != left_el->l_count) {
2156 		ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
2157 			    "Inode %llu has non-full interior leaf node %llu"
2158 			    "(next free = %u)",
2159 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2160 			    (unsigned long long)left_leaf_bh->b_blocknr,
2161 			    le16_to_cpu(left_el->l_next_free_rec));
2162 		return -EROFS;
2163 	}
2164 
2165 	/*
2166 	 * This extent block may already have an empty record, so we
2167 	 * return early if so.
2168 	 */
2169 	if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2170 		return 0;
2171 
2172 	root_bh = left_path->p_node[subtree_index].bh;
2173 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2174 
2175 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2176 					   subtree_index);
2177 	if (ret) {
2178 		mlog_errno(ret);
2179 		goto out;
2180 	}
2181 
2182 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2183 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2184 						   right_path, i);
2185 		if (ret) {
2186 			mlog_errno(ret);
2187 			goto out;
2188 		}
2189 
2190 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2191 						   left_path, i);
2192 		if (ret) {
2193 			mlog_errno(ret);
2194 			goto out;
2195 		}
2196 	}
2197 
2198 	right_leaf_bh = path_leaf_bh(right_path);
2199 	right_el = path_leaf_el(right_path);
2200 
2201 	/* This is a code error, not a disk corruption. */
2202 	mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2203 			"because rightmost leaf block %llu is empty\n",
2204 			(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2205 			(unsigned long long)right_leaf_bh->b_blocknr);
2206 
2207 	ocfs2_create_empty_extent(right_el);
2208 
2209 	ret = ocfs2_journal_dirty(handle, right_leaf_bh);
2210 	if (ret) {
2211 		mlog_errno(ret);
2212 		goto out;
2213 	}
2214 
2215 	/* Do the copy now. */
2216 	i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2217 	move_rec = left_el->l_recs[i];
2218 	right_el->l_recs[0] = move_rec;
2219 
2220 	/*
2221 	 * Clear out the record we just copied and shift everything
2222 	 * over, leaving an empty extent in the left leaf.
2223 	 *
2224 	 * We temporarily subtract from next_free_rec so that the
2225 	 * shift will lose the tail record (which is now defunct).
2226 	 */
2227 	le16_add_cpu(&left_el->l_next_free_rec, -1);
2228 	ocfs2_shift_records_right(left_el);
2229 	memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2230 	le16_add_cpu(&left_el->l_next_free_rec, 1);
2231 
2232 	ret = ocfs2_journal_dirty(handle, left_leaf_bh);
2233 	if (ret) {
2234 		mlog_errno(ret);
2235 		goto out;
2236 	}
2237 
2238 	ocfs2_complete_edge_insert(handle, left_path, right_path,
2239 				   subtree_index);
2240 
2241 out:
2242 	return ret;
2243 }
2244 
2245 /*
2246  * Given a full path, determine what cpos value would return us a path
2247  * containing the leaf immediately to the left of the current one.
2248  *
2249  * Will return zero if the path passed in is already the leftmost path.
2250  */
2251 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2252 					 struct ocfs2_path *path, u32 *cpos)
2253 {
2254 	int i, j, ret = 0;
2255 	u64 blkno;
2256 	struct ocfs2_extent_list *el;
2257 
2258 	BUG_ON(path->p_tree_depth == 0);
2259 
2260 	*cpos = 0;
2261 
2262 	blkno = path_leaf_bh(path)->b_blocknr;
2263 
2264 	/* Start at the tree node just above the leaf and work our way up. */
2265 	i = path->p_tree_depth - 1;
2266 	while (i >= 0) {
2267 		el = path->p_node[i].el;
2268 
2269 		/*
2270 		 * Find the extent record just before the one in our
2271 		 * path.
2272 		 */
2273 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2274 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2275 				if (j == 0) {
2276 					if (i == 0) {
2277 						/*
2278 						 * We've determined that the
2279 						 * path specified is already
2280 						 * the leftmost one - return a
2281 						 * cpos of zero.
2282 						 */
2283 						goto out;
2284 					}
2285 					/*
2286 					 * The leftmost record points to our
2287 					 * leaf - we need to travel up the
2288 					 * tree one level.
2289 					 */
2290 					goto next_node;
2291 				}
2292 
2293 				*cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2294 				*cpos = *cpos + ocfs2_rec_clusters(el,
2295 							   &el->l_recs[j - 1]);
2296 				*cpos = *cpos - 1;
2297 				goto out;
2298 			}
2299 		}
2300 
2301 		/*
2302 		 * If we got here, we never found a valid node where
2303 		 * the tree indicated one should be.
2304 		 */
2305 		ocfs2_error(sb,
2306 			    "Invalid extent tree at extent block %llu\n",
2307 			    (unsigned long long)blkno);
2308 		ret = -EROFS;
2309 		goto out;
2310 
2311 next_node:
2312 		blkno = path->p_node[i].bh->b_blocknr;
2313 		i--;
2314 	}
2315 
2316 out:
2317 	return ret;
2318 }
2319 
2320 /*
2321  * Extend the transaction by enough credits to complete the rotation,
2322  * and still leave at least the original number of credits allocated
2323  * to this transaction.
2324  */
2325 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2326 					   int op_credits,
2327 					   struct ocfs2_path *path)
2328 {
2329 	int ret;
2330 	int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2331 
2332 	if (handle->h_buffer_credits < credits) {
2333 		ret = ocfs2_extend_trans(handle,
2334 					 credits - handle->h_buffer_credits);
2335 		if (ret)
2336 			return ret;
2337 
2338 		if (unlikely(handle->h_buffer_credits < credits))
2339 			return ocfs2_extend_trans(handle, credits);
2340 	}
2341 
2342 	return 0;
2343 }
2344 
2345 /*
2346  * Trap the case where we're inserting into the theoretical range past
2347  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2348  * whose cpos is less than ours into the right leaf.
2349  *
2350  * It's only necessary to look at the rightmost record of the left
2351  * leaf because the logic that calls us should ensure that the
2352  * theoretical ranges in the path components above the leaves are
2353  * correct.
2354  */
2355 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2356 						 u32 insert_cpos)
2357 {
2358 	struct ocfs2_extent_list *left_el;
2359 	struct ocfs2_extent_rec *rec;
2360 	int next_free;
2361 
2362 	left_el = path_leaf_el(left_path);
2363 	next_free = le16_to_cpu(left_el->l_next_free_rec);
2364 	rec = &left_el->l_recs[next_free - 1];
2365 
2366 	if (insert_cpos > le32_to_cpu(rec->e_cpos))
2367 		return 1;
2368 	return 0;
2369 }
2370 
2371 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2372 {
2373 	int next_free = le16_to_cpu(el->l_next_free_rec);
2374 	unsigned int range;
2375 	struct ocfs2_extent_rec *rec;
2376 
2377 	if (next_free == 0)
2378 		return 0;
2379 
2380 	rec = &el->l_recs[0];
2381 	if (ocfs2_is_empty_extent(rec)) {
2382 		/* Empty list. */
2383 		if (next_free == 1)
2384 			return 0;
2385 		rec = &el->l_recs[1];
2386 	}
2387 
2388 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2389 	if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2390 		return 1;
2391 	return 0;
2392 }
2393 
2394 /*
2395  * Rotate all the records in a btree right one record, starting at insert_cpos.
2396  *
2397  * The path to the rightmost leaf should be passed in.
2398  *
2399  * The array is assumed to be large enough to hold an entire path (tree depth).
2400  *
2401  * Upon successful return from this function:
2402  *
2403  * - The 'right_path' array will contain a path to the leaf block
2404  *   whose range contains e_cpos.
2405  * - That leaf block will have a single empty extent in list index 0.
2406  * - In the case that the rotation requires a post-insert update,
2407  *   *ret_left_path will contain a valid path which can be passed to
2408  *   ocfs2_insert_path().
2409  */
2410 static int ocfs2_rotate_tree_right(handle_t *handle,
2411 				   struct ocfs2_extent_tree *et,
2412 				   enum ocfs2_split_type split,
2413 				   u32 insert_cpos,
2414 				   struct ocfs2_path *right_path,
2415 				   struct ocfs2_path **ret_left_path)
2416 {
2417 	int ret, start, orig_credits = handle->h_buffer_credits;
2418 	u32 cpos;
2419 	struct ocfs2_path *left_path = NULL;
2420 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2421 
2422 	*ret_left_path = NULL;
2423 
2424 	left_path = ocfs2_new_path_from_path(right_path);
2425 	if (!left_path) {
2426 		ret = -ENOMEM;
2427 		mlog_errno(ret);
2428 		goto out;
2429 	}
2430 
2431 	ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2432 	if (ret) {
2433 		mlog_errno(ret);
2434 		goto out;
2435 	}
2436 
2437 	mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
2438 
2439 	/*
2440 	 * What we want to do here is:
2441 	 *
2442 	 * 1) Start with the rightmost path.
2443 	 *
2444 	 * 2) Determine a path to the leaf block directly to the left
2445 	 *    of that leaf.
2446 	 *
2447 	 * 3) Determine the 'subtree root' - the lowest level tree node
2448 	 *    which contains a path to both leaves.
2449 	 *
2450 	 * 4) Rotate the subtree.
2451 	 *
2452 	 * 5) Find the next subtree by considering the left path to be
2453 	 *    the new right path.
2454 	 *
2455 	 * The check at the top of this while loop also accepts
2456 	 * insert_cpos == cpos because cpos is only a _theoretical_
2457 	 * value to get us the left path - insert_cpos might very well
2458 	 * be filling that hole.
2459 	 *
2460 	 * Stop at a cpos of '0' because we either started at the
2461 	 * leftmost branch (i.e., a tree with one branch and a
2462 	 * rotation inside of it), or we've gone as far as we can in
2463 	 * rotating subtrees.
2464 	 */
2465 	while (cpos && insert_cpos <= cpos) {
2466 		mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2467 		     insert_cpos, cpos);
2468 
2469 		ret = ocfs2_find_path(et->et_ci, left_path, cpos);
2470 		if (ret) {
2471 			mlog_errno(ret);
2472 			goto out;
2473 		}
2474 
2475 		mlog_bug_on_msg(path_leaf_bh(left_path) ==
2476 				path_leaf_bh(right_path),
2477 				"Owner %llu: error during insert of %u "
2478 				"(left path cpos %u) results in two identical "
2479 				"paths ending at %llu\n",
2480 				(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2481 				insert_cpos, cpos,
2482 				(unsigned long long)
2483 				path_leaf_bh(left_path)->b_blocknr);
2484 
2485 		if (split == SPLIT_NONE &&
2486 		    ocfs2_rotate_requires_path_adjustment(left_path,
2487 							  insert_cpos)) {
2488 
2489 			/*
2490 			 * We've rotated the tree as much as we
2491 			 * should. The rest is up to
2492 			 * ocfs2_insert_path() to complete, after the
2493 			 * record insertion. We indicate this
2494 			 * situation by returning the left path.
2495 			 *
2496 			 * The reason we don't adjust the records here
2497 			 * before the record insert is that an error
2498 			 * later might break the rule where a parent
2499 			 * record e_cpos will reflect the actual
2500 			 * e_cpos of the 1st nonempty record of the
2501 			 * child list.
2502 			 */
2503 			*ret_left_path = left_path;
2504 			goto out_ret_path;
2505 		}
2506 
2507 		start = ocfs2_find_subtree_root(et, left_path, right_path);
2508 
2509 		mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2510 		     start,
2511 		     (unsigned long long) right_path->p_node[start].bh->b_blocknr,
2512 		     right_path->p_tree_depth);
2513 
2514 		ret = ocfs2_extend_rotate_transaction(handle, start,
2515 						      orig_credits, right_path);
2516 		if (ret) {
2517 			mlog_errno(ret);
2518 			goto out;
2519 		}
2520 
2521 		ret = ocfs2_rotate_subtree_right(handle, et, left_path,
2522 						 right_path, start);
2523 		if (ret) {
2524 			mlog_errno(ret);
2525 			goto out;
2526 		}
2527 
2528 		if (split != SPLIT_NONE &&
2529 		    ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2530 						insert_cpos)) {
2531 			/*
2532 			 * A rotate moves the rightmost left leaf
2533 			 * record over to the leftmost right leaf
2534 			 * slot. If we're doing an extent split
2535 			 * instead of a real insert, then we have to
2536 			 * check that the extent to be split wasn't
2537 			 * just moved over. If it was, then we can
2538 			 * exit here, passing left_path back -
2539 			 * ocfs2_split_extent() is smart enough to
2540 			 * search both leaves.
2541 			 */
2542 			*ret_left_path = left_path;
2543 			goto out_ret_path;
2544 		}
2545 
2546 		/*
2547 		 * There is no need to re-read the next right path
2548 		 * as we know that it'll be our current left
2549 		 * path. Optimize by copying values instead.
2550 		 */
2551 		ocfs2_mv_path(right_path, left_path);
2552 
2553 		ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2554 		if (ret) {
2555 			mlog_errno(ret);
2556 			goto out;
2557 		}
2558 	}
2559 
2560 out:
2561 	ocfs2_free_path(left_path);
2562 
2563 out_ret_path:
2564 	return ret;
2565 }
2566 
2567 static int ocfs2_update_edge_lengths(handle_t *handle,
2568 				     struct ocfs2_extent_tree *et,
2569 				     int subtree_index, struct ocfs2_path *path)
2570 {
2571 	int i, idx, ret;
2572 	struct ocfs2_extent_rec *rec;
2573 	struct ocfs2_extent_list *el;
2574 	struct ocfs2_extent_block *eb;
2575 	u32 range;
2576 
2577 	/*
2578 	 * In normal tree rotation process, we will never touch the
2579 	 * tree branch above subtree_index and ocfs2_extend_rotate_transaction
2580 	 * doesn't reserve the credits for them either.
2581 	 *
2582 	 * But we do have a special case here which will update the rightmost
2583 	 * records for all the bh in the path.
2584 	 * So we have to allocate extra credits and access them.
2585 	 */
2586 	ret = ocfs2_extend_trans(handle,
2587 				 handle->h_buffer_credits + subtree_index);
2588 	if (ret) {
2589 		mlog_errno(ret);
2590 		goto out;
2591 	}
2592 
2593 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
2594 	if (ret) {
2595 		mlog_errno(ret);
2596 		goto out;
2597 	}
2598 
2599 	/* Path should always be rightmost. */
2600 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2601 	BUG_ON(eb->h_next_leaf_blk != 0ULL);
2602 
2603 	el = &eb->h_list;
2604 	BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2605 	idx = le16_to_cpu(el->l_next_free_rec) - 1;
2606 	rec = &el->l_recs[idx];
2607 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2608 
2609 	for (i = 0; i < path->p_tree_depth; i++) {
2610 		el = path->p_node[i].el;
2611 		idx = le16_to_cpu(el->l_next_free_rec) - 1;
2612 		rec = &el->l_recs[idx];
2613 
2614 		rec->e_int_clusters = cpu_to_le32(range);
2615 		le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2616 
2617 		ocfs2_journal_dirty(handle, path->p_node[i].bh);
2618 	}
2619 out:
2620 	return ret;
2621 }
2622 
2623 static void ocfs2_unlink_path(handle_t *handle,
2624 			      struct ocfs2_extent_tree *et,
2625 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
2626 			      struct ocfs2_path *path, int unlink_start)
2627 {
2628 	int ret, i;
2629 	struct ocfs2_extent_block *eb;
2630 	struct ocfs2_extent_list *el;
2631 	struct buffer_head *bh;
2632 
2633 	for(i = unlink_start; i < path_num_items(path); i++) {
2634 		bh = path->p_node[i].bh;
2635 
2636 		eb = (struct ocfs2_extent_block *)bh->b_data;
2637 		/*
2638 		 * Not all nodes might have had their final count
2639 		 * decremented by the caller - handle this here.
2640 		 */
2641 		el = &eb->h_list;
2642 		if (le16_to_cpu(el->l_next_free_rec) > 1) {
2643 			mlog(ML_ERROR,
2644 			     "Inode %llu, attempted to remove extent block "
2645 			     "%llu with %u records\n",
2646 			     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2647 			     (unsigned long long)le64_to_cpu(eb->h_blkno),
2648 			     le16_to_cpu(el->l_next_free_rec));
2649 
2650 			ocfs2_journal_dirty(handle, bh);
2651 			ocfs2_remove_from_cache(et->et_ci, bh);
2652 			continue;
2653 		}
2654 
2655 		el->l_next_free_rec = 0;
2656 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2657 
2658 		ocfs2_journal_dirty(handle, bh);
2659 
2660 		ret = ocfs2_cache_extent_block_free(dealloc, eb);
2661 		if (ret)
2662 			mlog_errno(ret);
2663 
2664 		ocfs2_remove_from_cache(et->et_ci, bh);
2665 	}
2666 }
2667 
2668 static void ocfs2_unlink_subtree(handle_t *handle,
2669 				 struct ocfs2_extent_tree *et,
2670 				 struct ocfs2_path *left_path,
2671 				 struct ocfs2_path *right_path,
2672 				 int subtree_index,
2673 				 struct ocfs2_cached_dealloc_ctxt *dealloc)
2674 {
2675 	int i;
2676 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2677 	struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2678 	struct ocfs2_extent_list *el;
2679 	struct ocfs2_extent_block *eb;
2680 
2681 	el = path_leaf_el(left_path);
2682 
2683 	eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2684 
2685 	for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2686 		if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2687 			break;
2688 
2689 	BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2690 
2691 	memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2692 	le16_add_cpu(&root_el->l_next_free_rec, -1);
2693 
2694 	eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2695 	eb->h_next_leaf_blk = 0;
2696 
2697 	ocfs2_journal_dirty(handle, root_bh);
2698 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2699 
2700 	ocfs2_unlink_path(handle, et, dealloc, right_path,
2701 			  subtree_index + 1);
2702 }
2703 
2704 static int ocfs2_rotate_subtree_left(handle_t *handle,
2705 				     struct ocfs2_extent_tree *et,
2706 				     struct ocfs2_path *left_path,
2707 				     struct ocfs2_path *right_path,
2708 				     int subtree_index,
2709 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
2710 				     int *deleted)
2711 {
2712 	int ret, i, del_right_subtree = 0, right_has_empty = 0;
2713 	struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2714 	struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2715 	struct ocfs2_extent_block *eb;
2716 
2717 	*deleted = 0;
2718 
2719 	right_leaf_el = path_leaf_el(right_path);
2720 	left_leaf_el = path_leaf_el(left_path);
2721 	root_bh = left_path->p_node[subtree_index].bh;
2722 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2723 
2724 	if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2725 		return 0;
2726 
2727 	eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2728 	if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2729 		/*
2730 		 * It's legal for us to proceed if the right leaf is
2731 		 * the rightmost one and it has an empty extent. There
2732 		 * are two cases to handle - whether the leaf will be
2733 		 * empty after removal or not. If the leaf isn't empty
2734 		 * then just remove the empty extent up front. The
2735 		 * next block will handle empty leaves by flagging
2736 		 * them for unlink.
2737 		 *
2738 		 * Non rightmost leaves will throw -EAGAIN and the
2739 		 * caller can manually move the subtree and retry.
2740 		 */
2741 
2742 		if (eb->h_next_leaf_blk != 0ULL)
2743 			return -EAGAIN;
2744 
2745 		if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2746 			ret = ocfs2_journal_access_eb(handle, et->et_ci,
2747 						      path_leaf_bh(right_path),
2748 						      OCFS2_JOURNAL_ACCESS_WRITE);
2749 			if (ret) {
2750 				mlog_errno(ret);
2751 				goto out;
2752 			}
2753 
2754 			ocfs2_remove_empty_extent(right_leaf_el);
2755 		} else
2756 			right_has_empty = 1;
2757 	}
2758 
2759 	if (eb->h_next_leaf_blk == 0ULL &&
2760 	    le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2761 		/*
2762 		 * We have to update i_last_eb_blk during the meta
2763 		 * data delete.
2764 		 */
2765 		ret = ocfs2_et_root_journal_access(handle, et,
2766 						   OCFS2_JOURNAL_ACCESS_WRITE);
2767 		if (ret) {
2768 			mlog_errno(ret);
2769 			goto out;
2770 		}
2771 
2772 		del_right_subtree = 1;
2773 	}
2774 
2775 	/*
2776 	 * Getting here with an empty extent in the right path implies
2777 	 * that it's the rightmost path and will be deleted.
2778 	 */
2779 	BUG_ON(right_has_empty && !del_right_subtree);
2780 
2781 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2782 					   subtree_index);
2783 	if (ret) {
2784 		mlog_errno(ret);
2785 		goto out;
2786 	}
2787 
2788 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2789 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2790 						   right_path, i);
2791 		if (ret) {
2792 			mlog_errno(ret);
2793 			goto out;
2794 		}
2795 
2796 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2797 						   left_path, i);
2798 		if (ret) {
2799 			mlog_errno(ret);
2800 			goto out;
2801 		}
2802 	}
2803 
2804 	if (!right_has_empty) {
2805 		/*
2806 		 * Only do this if we're moving a real
2807 		 * record. Otherwise, the action is delayed until
2808 		 * after removal of the right path in which case we
2809 		 * can do a simple shift to remove the empty extent.
2810 		 */
2811 		ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2812 		memset(&right_leaf_el->l_recs[0], 0,
2813 		       sizeof(struct ocfs2_extent_rec));
2814 	}
2815 	if (eb->h_next_leaf_blk == 0ULL) {
2816 		/*
2817 		 * Move recs over to get rid of empty extent, decrease
2818 		 * next_free. This is allowed to remove the last
2819 		 * extent in our leaf (setting l_next_free_rec to
2820 		 * zero) - the delete code below won't care.
2821 		 */
2822 		ocfs2_remove_empty_extent(right_leaf_el);
2823 	}
2824 
2825 	ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2826 	if (ret)
2827 		mlog_errno(ret);
2828 	ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2829 	if (ret)
2830 		mlog_errno(ret);
2831 
2832 	if (del_right_subtree) {
2833 		ocfs2_unlink_subtree(handle, et, left_path, right_path,
2834 				     subtree_index, dealloc);
2835 		ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
2836 						left_path);
2837 		if (ret) {
2838 			mlog_errno(ret);
2839 			goto out;
2840 		}
2841 
2842 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2843 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2844 
2845 		/*
2846 		 * Removal of the extent in the left leaf was skipped
2847 		 * above so we could delete the right path
2848 		 * 1st.
2849 		 */
2850 		if (right_has_empty)
2851 			ocfs2_remove_empty_extent(left_leaf_el);
2852 
2853 		ret = ocfs2_journal_dirty(handle, et_root_bh);
2854 		if (ret)
2855 			mlog_errno(ret);
2856 
2857 		*deleted = 1;
2858 	} else
2859 		ocfs2_complete_edge_insert(handle, left_path, right_path,
2860 					   subtree_index);
2861 
2862 out:
2863 	return ret;
2864 }
2865 
2866 /*
2867  * Given a full path, determine what cpos value would return us a path
2868  * containing the leaf immediately to the right of the current one.
2869  *
2870  * Will return zero if the path passed in is already the rightmost path.
2871  *
2872  * This looks similar, but is subtly different to
2873  * ocfs2_find_cpos_for_left_leaf().
2874  */
2875 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2876 				   struct ocfs2_path *path, u32 *cpos)
2877 {
2878 	int i, j, ret = 0;
2879 	u64 blkno;
2880 	struct ocfs2_extent_list *el;
2881 
2882 	*cpos = 0;
2883 
2884 	if (path->p_tree_depth == 0)
2885 		return 0;
2886 
2887 	blkno = path_leaf_bh(path)->b_blocknr;
2888 
2889 	/* Start at the tree node just above the leaf and work our way up. */
2890 	i = path->p_tree_depth - 1;
2891 	while (i >= 0) {
2892 		int next_free;
2893 
2894 		el = path->p_node[i].el;
2895 
2896 		/*
2897 		 * Find the extent record just after the one in our
2898 		 * path.
2899 		 */
2900 		next_free = le16_to_cpu(el->l_next_free_rec);
2901 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2902 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2903 				if (j == (next_free - 1)) {
2904 					if (i == 0) {
2905 						/*
2906 						 * We've determined that the
2907 						 * path specified is already
2908 						 * the rightmost one - return a
2909 						 * cpos of zero.
2910 						 */
2911 						goto out;
2912 					}
2913 					/*
2914 					 * The rightmost record points to our
2915 					 * leaf - we need to travel up the
2916 					 * tree one level.
2917 					 */
2918 					goto next_node;
2919 				}
2920 
2921 				*cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2922 				goto out;
2923 			}
2924 		}
2925 
2926 		/*
2927 		 * If we got here, we never found a valid node where
2928 		 * the tree indicated one should be.
2929 		 */
2930 		ocfs2_error(sb,
2931 			    "Invalid extent tree at extent block %llu\n",
2932 			    (unsigned long long)blkno);
2933 		ret = -EROFS;
2934 		goto out;
2935 
2936 next_node:
2937 		blkno = path->p_node[i].bh->b_blocknr;
2938 		i--;
2939 	}
2940 
2941 out:
2942 	return ret;
2943 }
2944 
2945 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle,
2946 					    struct ocfs2_extent_tree *et,
2947 					    struct ocfs2_path *path)
2948 {
2949 	int ret;
2950 	struct buffer_head *bh = path_leaf_bh(path);
2951 	struct ocfs2_extent_list *el = path_leaf_el(path);
2952 
2953 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2954 		return 0;
2955 
2956 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
2957 					   path_num_items(path) - 1);
2958 	if (ret) {
2959 		mlog_errno(ret);
2960 		goto out;
2961 	}
2962 
2963 	ocfs2_remove_empty_extent(el);
2964 
2965 	ret = ocfs2_journal_dirty(handle, bh);
2966 	if (ret)
2967 		mlog_errno(ret);
2968 
2969 out:
2970 	return ret;
2971 }
2972 
2973 static int __ocfs2_rotate_tree_left(handle_t *handle,
2974 				    struct ocfs2_extent_tree *et,
2975 				    int orig_credits,
2976 				    struct ocfs2_path *path,
2977 				    struct ocfs2_cached_dealloc_ctxt *dealloc,
2978 				    struct ocfs2_path **empty_extent_path)
2979 {
2980 	int ret, subtree_root, deleted;
2981 	u32 right_cpos;
2982 	struct ocfs2_path *left_path = NULL;
2983 	struct ocfs2_path *right_path = NULL;
2984 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2985 
2986 	BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2987 
2988 	*empty_extent_path = NULL;
2989 
2990 	ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
2991 	if (ret) {
2992 		mlog_errno(ret);
2993 		goto out;
2994 	}
2995 
2996 	left_path = ocfs2_new_path_from_path(path);
2997 	if (!left_path) {
2998 		ret = -ENOMEM;
2999 		mlog_errno(ret);
3000 		goto out;
3001 	}
3002 
3003 	ocfs2_cp_path(left_path, path);
3004 
3005 	right_path = ocfs2_new_path_from_path(path);
3006 	if (!right_path) {
3007 		ret = -ENOMEM;
3008 		mlog_errno(ret);
3009 		goto out;
3010 	}
3011 
3012 	while (right_cpos) {
3013 		ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
3014 		if (ret) {
3015 			mlog_errno(ret);
3016 			goto out;
3017 		}
3018 
3019 		subtree_root = ocfs2_find_subtree_root(et, left_path,
3020 						       right_path);
3021 
3022 		mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
3023 		     subtree_root,
3024 		     (unsigned long long)
3025 		     right_path->p_node[subtree_root].bh->b_blocknr,
3026 		     right_path->p_tree_depth);
3027 
3028 		ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
3029 						      orig_credits, left_path);
3030 		if (ret) {
3031 			mlog_errno(ret);
3032 			goto out;
3033 		}
3034 
3035 		/*
3036 		 * Caller might still want to make changes to the
3037 		 * tree root, so re-add it to the journal here.
3038 		 */
3039 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3040 						   left_path, 0);
3041 		if (ret) {
3042 			mlog_errno(ret);
3043 			goto out;
3044 		}
3045 
3046 		ret = ocfs2_rotate_subtree_left(handle, et, left_path,
3047 						right_path, subtree_root,
3048 						dealloc, &deleted);
3049 		if (ret == -EAGAIN) {
3050 			/*
3051 			 * The rotation has to temporarily stop due to
3052 			 * the right subtree having an empty
3053 			 * extent. Pass it back to the caller for a
3054 			 * fixup.
3055 			 */
3056 			*empty_extent_path = right_path;
3057 			right_path = NULL;
3058 			goto out;
3059 		}
3060 		if (ret) {
3061 			mlog_errno(ret);
3062 			goto out;
3063 		}
3064 
3065 		/*
3066 		 * The subtree rotate might have removed records on
3067 		 * the rightmost edge. If so, then rotation is
3068 		 * complete.
3069 		 */
3070 		if (deleted)
3071 			break;
3072 
3073 		ocfs2_mv_path(left_path, right_path);
3074 
3075 		ret = ocfs2_find_cpos_for_right_leaf(sb, left_path,
3076 						     &right_cpos);
3077 		if (ret) {
3078 			mlog_errno(ret);
3079 			goto out;
3080 		}
3081 	}
3082 
3083 out:
3084 	ocfs2_free_path(right_path);
3085 	ocfs2_free_path(left_path);
3086 
3087 	return ret;
3088 }
3089 
3090 static int ocfs2_remove_rightmost_path(handle_t *handle,
3091 				struct ocfs2_extent_tree *et,
3092 				struct ocfs2_path *path,
3093 				struct ocfs2_cached_dealloc_ctxt *dealloc)
3094 {
3095 	int ret, subtree_index;
3096 	u32 cpos;
3097 	struct ocfs2_path *left_path = NULL;
3098 	struct ocfs2_extent_block *eb;
3099 	struct ocfs2_extent_list *el;
3100 
3101 
3102 	ret = ocfs2_et_sanity_check(et);
3103 	if (ret)
3104 		goto out;
3105 	/*
3106 	 * There's two ways we handle this depending on
3107 	 * whether path is the only existing one.
3108 	 */
3109 	ret = ocfs2_extend_rotate_transaction(handle, 0,
3110 					      handle->h_buffer_credits,
3111 					      path);
3112 	if (ret) {
3113 		mlog_errno(ret);
3114 		goto out;
3115 	}
3116 
3117 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
3118 	if (ret) {
3119 		mlog_errno(ret);
3120 		goto out;
3121 	}
3122 
3123 	ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3124 					    path, &cpos);
3125 	if (ret) {
3126 		mlog_errno(ret);
3127 		goto out;
3128 	}
3129 
3130 	if (cpos) {
3131 		/*
3132 		 * We have a path to the left of this one - it needs
3133 		 * an update too.
3134 		 */
3135 		left_path = ocfs2_new_path_from_path(path);
3136 		if (!left_path) {
3137 			ret = -ENOMEM;
3138 			mlog_errno(ret);
3139 			goto out;
3140 		}
3141 
3142 		ret = ocfs2_find_path(et->et_ci, left_path, cpos);
3143 		if (ret) {
3144 			mlog_errno(ret);
3145 			goto out;
3146 		}
3147 
3148 		ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
3149 		if (ret) {
3150 			mlog_errno(ret);
3151 			goto out;
3152 		}
3153 
3154 		subtree_index = ocfs2_find_subtree_root(et, left_path, path);
3155 
3156 		ocfs2_unlink_subtree(handle, et, left_path, path,
3157 				     subtree_index, dealloc);
3158 		ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
3159 						left_path);
3160 		if (ret) {
3161 			mlog_errno(ret);
3162 			goto out;
3163 		}
3164 
3165 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3166 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3167 	} else {
3168 		/*
3169 		 * 'path' is also the leftmost path which
3170 		 * means it must be the only one. This gets
3171 		 * handled differently because we want to
3172 		 * revert the root back to having extents
3173 		 * in-line.
3174 		 */
3175 		ocfs2_unlink_path(handle, et, dealloc, path, 1);
3176 
3177 		el = et->et_root_el;
3178 		el->l_tree_depth = 0;
3179 		el->l_next_free_rec = 0;
3180 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3181 
3182 		ocfs2_et_set_last_eb_blk(et, 0);
3183 	}
3184 
3185 	ocfs2_journal_dirty(handle, path_root_bh(path));
3186 
3187 out:
3188 	ocfs2_free_path(left_path);
3189 	return ret;
3190 }
3191 
3192 /*
3193  * Left rotation of btree records.
3194  *
3195  * In many ways, this is (unsurprisingly) the opposite of right
3196  * rotation. We start at some non-rightmost path containing an empty
3197  * extent in the leaf block. The code works its way to the rightmost
3198  * path by rotating records to the left in every subtree.
3199  *
3200  * This is used by any code which reduces the number of extent records
3201  * in a leaf. After removal, an empty record should be placed in the
3202  * leftmost list position.
3203  *
3204  * This won't handle a length update of the rightmost path records if
3205  * the rightmost tree leaf record is removed so the caller is
3206  * responsible for detecting and correcting that.
3207  */
3208 static int ocfs2_rotate_tree_left(handle_t *handle,
3209 				  struct ocfs2_extent_tree *et,
3210 				  struct ocfs2_path *path,
3211 				  struct ocfs2_cached_dealloc_ctxt *dealloc)
3212 {
3213 	int ret, orig_credits = handle->h_buffer_credits;
3214 	struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3215 	struct ocfs2_extent_block *eb;
3216 	struct ocfs2_extent_list *el;
3217 
3218 	el = path_leaf_el(path);
3219 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3220 		return 0;
3221 
3222 	if (path->p_tree_depth == 0) {
3223 rightmost_no_delete:
3224 		/*
3225 		 * Inline extents. This is trivially handled, so do
3226 		 * it up front.
3227 		 */
3228 		ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path);
3229 		if (ret)
3230 			mlog_errno(ret);
3231 		goto out;
3232 	}
3233 
3234 	/*
3235 	 * Handle rightmost branch now. There's several cases:
3236 	 *  1) simple rotation leaving records in there. That's trivial.
3237 	 *  2) rotation requiring a branch delete - there's no more
3238 	 *     records left. Two cases of this:
3239 	 *     a) There are branches to the left.
3240 	 *     b) This is also the leftmost (the only) branch.
3241 	 *
3242 	 *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
3243 	 *  2a) we need the left branch so that we can update it with the unlink
3244 	 *  2b) we need to bring the root back to inline extents.
3245 	 */
3246 
3247 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3248 	el = &eb->h_list;
3249 	if (eb->h_next_leaf_blk == 0) {
3250 		/*
3251 		 * This gets a bit tricky if we're going to delete the
3252 		 * rightmost path. Get the other cases out of the way
3253 		 * 1st.
3254 		 */
3255 		if (le16_to_cpu(el->l_next_free_rec) > 1)
3256 			goto rightmost_no_delete;
3257 
3258 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
3259 			ret = -EIO;
3260 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3261 				    "Owner %llu has empty extent block at %llu",
3262 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
3263 				    (unsigned long long)le64_to_cpu(eb->h_blkno));
3264 			goto out;
3265 		}
3266 
3267 		/*
3268 		 * XXX: The caller can not trust "path" any more after
3269 		 * this as it will have been deleted. What do we do?
3270 		 *
3271 		 * In theory the rotate-for-merge code will never get
3272 		 * here because it'll always ask for a rotate in a
3273 		 * nonempty list.
3274 		 */
3275 
3276 		ret = ocfs2_remove_rightmost_path(handle, et, path,
3277 						  dealloc);
3278 		if (ret)
3279 			mlog_errno(ret);
3280 		goto out;
3281 	}
3282 
3283 	/*
3284 	 * Now we can loop, remembering the path we get from -EAGAIN
3285 	 * and restarting from there.
3286 	 */
3287 try_rotate:
3288 	ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path,
3289 				       dealloc, &restart_path);
3290 	if (ret && ret != -EAGAIN) {
3291 		mlog_errno(ret);
3292 		goto out;
3293 	}
3294 
3295 	while (ret == -EAGAIN) {
3296 		tmp_path = restart_path;
3297 		restart_path = NULL;
3298 
3299 		ret = __ocfs2_rotate_tree_left(handle, et, orig_credits,
3300 					       tmp_path, dealloc,
3301 					       &restart_path);
3302 		if (ret && ret != -EAGAIN) {
3303 			mlog_errno(ret);
3304 			goto out;
3305 		}
3306 
3307 		ocfs2_free_path(tmp_path);
3308 		tmp_path = NULL;
3309 
3310 		if (ret == 0)
3311 			goto try_rotate;
3312 	}
3313 
3314 out:
3315 	ocfs2_free_path(tmp_path);
3316 	ocfs2_free_path(restart_path);
3317 	return ret;
3318 }
3319 
3320 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3321 				int index)
3322 {
3323 	struct ocfs2_extent_rec *rec = &el->l_recs[index];
3324 	unsigned int size;
3325 
3326 	if (rec->e_leaf_clusters == 0) {
3327 		/*
3328 		 * We consumed all of the merged-from record. An empty
3329 		 * extent cannot exist anywhere but the 1st array
3330 		 * position, so move things over if the merged-from
3331 		 * record doesn't occupy that position.
3332 		 *
3333 		 * This creates a new empty extent so the caller
3334 		 * should be smart enough to have removed any existing
3335 		 * ones.
3336 		 */
3337 		if (index > 0) {
3338 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3339 			size = index * sizeof(struct ocfs2_extent_rec);
3340 			memmove(&el->l_recs[1], &el->l_recs[0], size);
3341 		}
3342 
3343 		/*
3344 		 * Always memset - the caller doesn't check whether it
3345 		 * created an empty extent, so there could be junk in
3346 		 * the other fields.
3347 		 */
3348 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3349 	}
3350 }
3351 
3352 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et,
3353 				struct ocfs2_path *left_path,
3354 				struct ocfs2_path **ret_right_path)
3355 {
3356 	int ret;
3357 	u32 right_cpos;
3358 	struct ocfs2_path *right_path = NULL;
3359 	struct ocfs2_extent_list *left_el;
3360 
3361 	*ret_right_path = NULL;
3362 
3363 	/* This function shouldn't be called for non-trees. */
3364 	BUG_ON(left_path->p_tree_depth == 0);
3365 
3366 	left_el = path_leaf_el(left_path);
3367 	BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3368 
3369 	ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3370 					     left_path, &right_cpos);
3371 	if (ret) {
3372 		mlog_errno(ret);
3373 		goto out;
3374 	}
3375 
3376 	/* This function shouldn't be called for the rightmost leaf. */
3377 	BUG_ON(right_cpos == 0);
3378 
3379 	right_path = ocfs2_new_path_from_path(left_path);
3380 	if (!right_path) {
3381 		ret = -ENOMEM;
3382 		mlog_errno(ret);
3383 		goto out;
3384 	}
3385 
3386 	ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
3387 	if (ret) {
3388 		mlog_errno(ret);
3389 		goto out;
3390 	}
3391 
3392 	*ret_right_path = right_path;
3393 out:
3394 	if (ret)
3395 		ocfs2_free_path(right_path);
3396 	return ret;
3397 }
3398 
3399 /*
3400  * Remove split_rec clusters from the record at index and merge them
3401  * onto the beginning of the record "next" to it.
3402  * For index < l_count - 1, the next means the extent rec at index + 1.
3403  * For index == l_count - 1, the "next" means the 1st extent rec of the
3404  * next extent block.
3405  */
3406 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path,
3407 				 handle_t *handle,
3408 				 struct ocfs2_extent_tree *et,
3409 				 struct ocfs2_extent_rec *split_rec,
3410 				 int index)
3411 {
3412 	int ret, next_free, i;
3413 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3414 	struct ocfs2_extent_rec *left_rec;
3415 	struct ocfs2_extent_rec *right_rec;
3416 	struct ocfs2_extent_list *right_el;
3417 	struct ocfs2_path *right_path = NULL;
3418 	int subtree_index = 0;
3419 	struct ocfs2_extent_list *el = path_leaf_el(left_path);
3420 	struct buffer_head *bh = path_leaf_bh(left_path);
3421 	struct buffer_head *root_bh = NULL;
3422 
3423 	BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3424 	left_rec = &el->l_recs[index];
3425 
3426 	if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3427 	    le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3428 		/* we meet with a cross extent block merge. */
3429 		ret = ocfs2_get_right_path(et, left_path, &right_path);
3430 		if (ret) {
3431 			mlog_errno(ret);
3432 			goto out;
3433 		}
3434 
3435 		right_el = path_leaf_el(right_path);
3436 		next_free = le16_to_cpu(right_el->l_next_free_rec);
3437 		BUG_ON(next_free <= 0);
3438 		right_rec = &right_el->l_recs[0];
3439 		if (ocfs2_is_empty_extent(right_rec)) {
3440 			BUG_ON(next_free <= 1);
3441 			right_rec = &right_el->l_recs[1];
3442 		}
3443 
3444 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3445 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3446 		       le32_to_cpu(right_rec->e_cpos));
3447 
3448 		subtree_index = ocfs2_find_subtree_root(et, left_path,
3449 							right_path);
3450 
3451 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3452 						      handle->h_buffer_credits,
3453 						      right_path);
3454 		if (ret) {
3455 			mlog_errno(ret);
3456 			goto out;
3457 		}
3458 
3459 		root_bh = left_path->p_node[subtree_index].bh;
3460 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3461 
3462 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3463 						   subtree_index);
3464 		if (ret) {
3465 			mlog_errno(ret);
3466 			goto out;
3467 		}
3468 
3469 		for (i = subtree_index + 1;
3470 		     i < path_num_items(right_path); i++) {
3471 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3472 							   right_path, i);
3473 			if (ret) {
3474 				mlog_errno(ret);
3475 				goto out;
3476 			}
3477 
3478 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3479 							   left_path, i);
3480 			if (ret) {
3481 				mlog_errno(ret);
3482 				goto out;
3483 			}
3484 		}
3485 
3486 	} else {
3487 		BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3488 		right_rec = &el->l_recs[index + 1];
3489 	}
3490 
3491 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path,
3492 					   path_num_items(left_path) - 1);
3493 	if (ret) {
3494 		mlog_errno(ret);
3495 		goto out;
3496 	}
3497 
3498 	le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3499 
3500 	le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3501 	le64_add_cpu(&right_rec->e_blkno,
3502 		     -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3503 					       split_clusters));
3504 	le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3505 
3506 	ocfs2_cleanup_merge(el, index);
3507 
3508 	ret = ocfs2_journal_dirty(handle, bh);
3509 	if (ret)
3510 		mlog_errno(ret);
3511 
3512 	if (right_path) {
3513 		ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3514 		if (ret)
3515 			mlog_errno(ret);
3516 
3517 		ocfs2_complete_edge_insert(handle, left_path, right_path,
3518 					   subtree_index);
3519 	}
3520 out:
3521 	if (right_path)
3522 		ocfs2_free_path(right_path);
3523 	return ret;
3524 }
3525 
3526 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et,
3527 			       struct ocfs2_path *right_path,
3528 			       struct ocfs2_path **ret_left_path)
3529 {
3530 	int ret;
3531 	u32 left_cpos;
3532 	struct ocfs2_path *left_path = NULL;
3533 
3534 	*ret_left_path = NULL;
3535 
3536 	/* This function shouldn't be called for non-trees. */
3537 	BUG_ON(right_path->p_tree_depth == 0);
3538 
3539 	ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3540 					    right_path, &left_cpos);
3541 	if (ret) {
3542 		mlog_errno(ret);
3543 		goto out;
3544 	}
3545 
3546 	/* This function shouldn't be called for the leftmost leaf. */
3547 	BUG_ON(left_cpos == 0);
3548 
3549 	left_path = ocfs2_new_path_from_path(right_path);
3550 	if (!left_path) {
3551 		ret = -ENOMEM;
3552 		mlog_errno(ret);
3553 		goto out;
3554 	}
3555 
3556 	ret = ocfs2_find_path(et->et_ci, left_path, left_cpos);
3557 	if (ret) {
3558 		mlog_errno(ret);
3559 		goto out;
3560 	}
3561 
3562 	*ret_left_path = left_path;
3563 out:
3564 	if (ret)
3565 		ocfs2_free_path(left_path);
3566 	return ret;
3567 }
3568 
3569 /*
3570  * Remove split_rec clusters from the record at index and merge them
3571  * onto the tail of the record "before" it.
3572  * For index > 0, the "before" means the extent rec at index - 1.
3573  *
3574  * For index == 0, the "before" means the last record of the previous
3575  * extent block. And there is also a situation that we may need to
3576  * remove the rightmost leaf extent block in the right_path and change
3577  * the right path to indicate the new rightmost path.
3578  */
3579 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path,
3580 				handle_t *handle,
3581 				struct ocfs2_extent_tree *et,
3582 				struct ocfs2_extent_rec *split_rec,
3583 				struct ocfs2_cached_dealloc_ctxt *dealloc,
3584 				int index)
3585 {
3586 	int ret, i, subtree_index = 0, has_empty_extent = 0;
3587 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3588 	struct ocfs2_extent_rec *left_rec;
3589 	struct ocfs2_extent_rec *right_rec;
3590 	struct ocfs2_extent_list *el = path_leaf_el(right_path);
3591 	struct buffer_head *bh = path_leaf_bh(right_path);
3592 	struct buffer_head *root_bh = NULL;
3593 	struct ocfs2_path *left_path = NULL;
3594 	struct ocfs2_extent_list *left_el;
3595 
3596 	BUG_ON(index < 0);
3597 
3598 	right_rec = &el->l_recs[index];
3599 	if (index == 0) {
3600 		/* we meet with a cross extent block merge. */
3601 		ret = ocfs2_get_left_path(et, right_path, &left_path);
3602 		if (ret) {
3603 			mlog_errno(ret);
3604 			goto out;
3605 		}
3606 
3607 		left_el = path_leaf_el(left_path);
3608 		BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3609 		       le16_to_cpu(left_el->l_count));
3610 
3611 		left_rec = &left_el->l_recs[
3612 				le16_to_cpu(left_el->l_next_free_rec) - 1];
3613 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3614 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3615 		       le32_to_cpu(split_rec->e_cpos));
3616 
3617 		subtree_index = ocfs2_find_subtree_root(et, left_path,
3618 							right_path);
3619 
3620 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3621 						      handle->h_buffer_credits,
3622 						      left_path);
3623 		if (ret) {
3624 			mlog_errno(ret);
3625 			goto out;
3626 		}
3627 
3628 		root_bh = left_path->p_node[subtree_index].bh;
3629 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3630 
3631 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3632 						   subtree_index);
3633 		if (ret) {
3634 			mlog_errno(ret);
3635 			goto out;
3636 		}
3637 
3638 		for (i = subtree_index + 1;
3639 		     i < path_num_items(right_path); i++) {
3640 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3641 							   right_path, i);
3642 			if (ret) {
3643 				mlog_errno(ret);
3644 				goto out;
3645 			}
3646 
3647 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3648 							   left_path, i);
3649 			if (ret) {
3650 				mlog_errno(ret);
3651 				goto out;
3652 			}
3653 		}
3654 	} else {
3655 		left_rec = &el->l_recs[index - 1];
3656 		if (ocfs2_is_empty_extent(&el->l_recs[0]))
3657 			has_empty_extent = 1;
3658 	}
3659 
3660 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3661 					   path_num_items(right_path) - 1);
3662 	if (ret) {
3663 		mlog_errno(ret);
3664 		goto out;
3665 	}
3666 
3667 	if (has_empty_extent && index == 1) {
3668 		/*
3669 		 * The easy case - we can just plop the record right in.
3670 		 */
3671 		*left_rec = *split_rec;
3672 
3673 		has_empty_extent = 0;
3674 	} else
3675 		le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3676 
3677 	le32_add_cpu(&right_rec->e_cpos, split_clusters);
3678 	le64_add_cpu(&right_rec->e_blkno,
3679 		     ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3680 					      split_clusters));
3681 	le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3682 
3683 	ocfs2_cleanup_merge(el, index);
3684 
3685 	ret = ocfs2_journal_dirty(handle, bh);
3686 	if (ret)
3687 		mlog_errno(ret);
3688 
3689 	if (left_path) {
3690 		ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3691 		if (ret)
3692 			mlog_errno(ret);
3693 
3694 		/*
3695 		 * In the situation that the right_rec is empty and the extent
3696 		 * block is empty also,  ocfs2_complete_edge_insert can't handle
3697 		 * it and we need to delete the right extent block.
3698 		 */
3699 		if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3700 		    le16_to_cpu(el->l_next_free_rec) == 1) {
3701 
3702 			ret = ocfs2_remove_rightmost_path(handle, et,
3703 							  right_path,
3704 							  dealloc);
3705 			if (ret) {
3706 				mlog_errno(ret);
3707 				goto out;
3708 			}
3709 
3710 			/* Now the rightmost extent block has been deleted.
3711 			 * So we use the new rightmost path.
3712 			 */
3713 			ocfs2_mv_path(right_path, left_path);
3714 			left_path = NULL;
3715 		} else
3716 			ocfs2_complete_edge_insert(handle, left_path,
3717 						   right_path, subtree_index);
3718 	}
3719 out:
3720 	if (left_path)
3721 		ocfs2_free_path(left_path);
3722 	return ret;
3723 }
3724 
3725 static int ocfs2_try_to_merge_extent(handle_t *handle,
3726 				     struct ocfs2_extent_tree *et,
3727 				     struct ocfs2_path *path,
3728 				     int split_index,
3729 				     struct ocfs2_extent_rec *split_rec,
3730 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
3731 				     struct ocfs2_merge_ctxt *ctxt)
3732 {
3733 	int ret = 0;
3734 	struct ocfs2_extent_list *el = path_leaf_el(path);
3735 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3736 
3737 	BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3738 
3739 	if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3740 		/*
3741 		 * The merge code will need to create an empty
3742 		 * extent to take the place of the newly
3743 		 * emptied slot. Remove any pre-existing empty
3744 		 * extents - having more than one in a leaf is
3745 		 * illegal.
3746 		 */
3747 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3748 		if (ret) {
3749 			mlog_errno(ret);
3750 			goto out;
3751 		}
3752 		split_index--;
3753 		rec = &el->l_recs[split_index];
3754 	}
3755 
3756 	if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3757 		/*
3758 		 * Left-right contig implies this.
3759 		 */
3760 		BUG_ON(!ctxt->c_split_covers_rec);
3761 
3762 		/*
3763 		 * Since the leftright insert always covers the entire
3764 		 * extent, this call will delete the insert record
3765 		 * entirely, resulting in an empty extent record added to
3766 		 * the extent block.
3767 		 *
3768 		 * Since the adding of an empty extent shifts
3769 		 * everything back to the right, there's no need to
3770 		 * update split_index here.
3771 		 *
3772 		 * When the split_index is zero, we need to merge it to the
3773 		 * prevoius extent block. It is more efficient and easier
3774 		 * if we do merge_right first and merge_left later.
3775 		 */
3776 		ret = ocfs2_merge_rec_right(path, handle, et, split_rec,
3777 					    split_index);
3778 		if (ret) {
3779 			mlog_errno(ret);
3780 			goto out;
3781 		}
3782 
3783 		/*
3784 		 * We can only get this from logic error above.
3785 		 */
3786 		BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3787 
3788 		/* The merge left us with an empty extent, remove it. */
3789 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3790 		if (ret) {
3791 			mlog_errno(ret);
3792 			goto out;
3793 		}
3794 
3795 		rec = &el->l_recs[split_index];
3796 
3797 		/*
3798 		 * Note that we don't pass split_rec here on purpose -
3799 		 * we've merged it into the rec already.
3800 		 */
3801 		ret = ocfs2_merge_rec_left(path, handle, et, rec,
3802 					   dealloc, split_index);
3803 
3804 		if (ret) {
3805 			mlog_errno(ret);
3806 			goto out;
3807 		}
3808 
3809 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3810 		/*
3811 		 * Error from this last rotate is not critical, so
3812 		 * print but don't bubble it up.
3813 		 */
3814 		if (ret)
3815 			mlog_errno(ret);
3816 		ret = 0;
3817 	} else {
3818 		/*
3819 		 * Merge a record to the left or right.
3820 		 *
3821 		 * 'contig_type' is relative to the existing record,
3822 		 * so for example, if we're "right contig", it's to
3823 		 * the record on the left (hence the left merge).
3824 		 */
3825 		if (ctxt->c_contig_type == CONTIG_RIGHT) {
3826 			ret = ocfs2_merge_rec_left(path, handle, et,
3827 						   split_rec, dealloc,
3828 						   split_index);
3829 			if (ret) {
3830 				mlog_errno(ret);
3831 				goto out;
3832 			}
3833 		} else {
3834 			ret = ocfs2_merge_rec_right(path, handle,
3835 						    et, split_rec,
3836 						    split_index);
3837 			if (ret) {
3838 				mlog_errno(ret);
3839 				goto out;
3840 			}
3841 		}
3842 
3843 		if (ctxt->c_split_covers_rec) {
3844 			/*
3845 			 * The merge may have left an empty extent in
3846 			 * our leaf. Try to rotate it away.
3847 			 */
3848 			ret = ocfs2_rotate_tree_left(handle, et, path,
3849 						     dealloc);
3850 			if (ret)
3851 				mlog_errno(ret);
3852 			ret = 0;
3853 		}
3854 	}
3855 
3856 out:
3857 	return ret;
3858 }
3859 
3860 static void ocfs2_subtract_from_rec(struct super_block *sb,
3861 				    enum ocfs2_split_type split,
3862 				    struct ocfs2_extent_rec *rec,
3863 				    struct ocfs2_extent_rec *split_rec)
3864 {
3865 	u64 len_blocks;
3866 
3867 	len_blocks = ocfs2_clusters_to_blocks(sb,
3868 				le16_to_cpu(split_rec->e_leaf_clusters));
3869 
3870 	if (split == SPLIT_LEFT) {
3871 		/*
3872 		 * Region is on the left edge of the existing
3873 		 * record.
3874 		 */
3875 		le32_add_cpu(&rec->e_cpos,
3876 			     le16_to_cpu(split_rec->e_leaf_clusters));
3877 		le64_add_cpu(&rec->e_blkno, len_blocks);
3878 		le16_add_cpu(&rec->e_leaf_clusters,
3879 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3880 	} else {
3881 		/*
3882 		 * Region is on the right edge of the existing
3883 		 * record.
3884 		 */
3885 		le16_add_cpu(&rec->e_leaf_clusters,
3886 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3887 	}
3888 }
3889 
3890 /*
3891  * Do the final bits of extent record insertion at the target leaf
3892  * list. If this leaf is part of an allocation tree, it is assumed
3893  * that the tree above has been prepared.
3894  */
3895 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et,
3896 				 struct ocfs2_extent_rec *insert_rec,
3897 				 struct ocfs2_extent_list *el,
3898 				 struct ocfs2_insert_type *insert)
3899 {
3900 	int i = insert->ins_contig_index;
3901 	unsigned int range;
3902 	struct ocfs2_extent_rec *rec;
3903 
3904 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3905 
3906 	if (insert->ins_split != SPLIT_NONE) {
3907 		i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3908 		BUG_ON(i == -1);
3909 		rec = &el->l_recs[i];
3910 		ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
3911 					insert->ins_split, rec,
3912 					insert_rec);
3913 		goto rotate;
3914 	}
3915 
3916 	/*
3917 	 * Contiguous insert - either left or right.
3918 	 */
3919 	if (insert->ins_contig != CONTIG_NONE) {
3920 		rec = &el->l_recs[i];
3921 		if (insert->ins_contig == CONTIG_LEFT) {
3922 			rec->e_blkno = insert_rec->e_blkno;
3923 			rec->e_cpos = insert_rec->e_cpos;
3924 		}
3925 		le16_add_cpu(&rec->e_leaf_clusters,
3926 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3927 		return;
3928 	}
3929 
3930 	/*
3931 	 * Handle insert into an empty leaf.
3932 	 */
3933 	if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3934 	    ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3935 	     ocfs2_is_empty_extent(&el->l_recs[0]))) {
3936 		el->l_recs[0] = *insert_rec;
3937 		el->l_next_free_rec = cpu_to_le16(1);
3938 		return;
3939 	}
3940 
3941 	/*
3942 	 * Appending insert.
3943 	 */
3944 	if (insert->ins_appending == APPEND_TAIL) {
3945 		i = le16_to_cpu(el->l_next_free_rec) - 1;
3946 		rec = &el->l_recs[i];
3947 		range = le32_to_cpu(rec->e_cpos)
3948 			+ le16_to_cpu(rec->e_leaf_clusters);
3949 		BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3950 
3951 		mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3952 				le16_to_cpu(el->l_count),
3953 				"owner %llu, depth %u, count %u, next free %u, "
3954 				"rec.cpos %u, rec.clusters %u, "
3955 				"insert.cpos %u, insert.clusters %u\n",
3956 				ocfs2_metadata_cache_owner(et->et_ci),
3957 				le16_to_cpu(el->l_tree_depth),
3958 				le16_to_cpu(el->l_count),
3959 				le16_to_cpu(el->l_next_free_rec),
3960 				le32_to_cpu(el->l_recs[i].e_cpos),
3961 				le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3962 				le32_to_cpu(insert_rec->e_cpos),
3963 				le16_to_cpu(insert_rec->e_leaf_clusters));
3964 		i++;
3965 		el->l_recs[i] = *insert_rec;
3966 		le16_add_cpu(&el->l_next_free_rec, 1);
3967 		return;
3968 	}
3969 
3970 rotate:
3971 	/*
3972 	 * Ok, we have to rotate.
3973 	 *
3974 	 * At this point, it is safe to assume that inserting into an
3975 	 * empty leaf and appending to a leaf have both been handled
3976 	 * above.
3977 	 *
3978 	 * This leaf needs to have space, either by the empty 1st
3979 	 * extent record, or by virtue of an l_next_rec < l_count.
3980 	 */
3981 	ocfs2_rotate_leaf(el, insert_rec);
3982 }
3983 
3984 static void ocfs2_adjust_rightmost_records(handle_t *handle,
3985 					   struct ocfs2_extent_tree *et,
3986 					   struct ocfs2_path *path,
3987 					   struct ocfs2_extent_rec *insert_rec)
3988 {
3989 	int ret, i, next_free;
3990 	struct buffer_head *bh;
3991 	struct ocfs2_extent_list *el;
3992 	struct ocfs2_extent_rec *rec;
3993 
3994 	/*
3995 	 * Update everything except the leaf block.
3996 	 */
3997 	for (i = 0; i < path->p_tree_depth; i++) {
3998 		bh = path->p_node[i].bh;
3999 		el = path->p_node[i].el;
4000 
4001 		next_free = le16_to_cpu(el->l_next_free_rec);
4002 		if (next_free == 0) {
4003 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
4004 				    "Owner %llu has a bad extent list",
4005 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
4006 			ret = -EIO;
4007 			return;
4008 		}
4009 
4010 		rec = &el->l_recs[next_free - 1];
4011 
4012 		rec->e_int_clusters = insert_rec->e_cpos;
4013 		le32_add_cpu(&rec->e_int_clusters,
4014 			     le16_to_cpu(insert_rec->e_leaf_clusters));
4015 		le32_add_cpu(&rec->e_int_clusters,
4016 			     -le32_to_cpu(rec->e_cpos));
4017 
4018 		ret = ocfs2_journal_dirty(handle, bh);
4019 		if (ret)
4020 			mlog_errno(ret);
4021 
4022 	}
4023 }
4024 
4025 static int ocfs2_append_rec_to_path(handle_t *handle,
4026 				    struct ocfs2_extent_tree *et,
4027 				    struct ocfs2_extent_rec *insert_rec,
4028 				    struct ocfs2_path *right_path,
4029 				    struct ocfs2_path **ret_left_path)
4030 {
4031 	int ret, next_free;
4032 	struct ocfs2_extent_list *el;
4033 	struct ocfs2_path *left_path = NULL;
4034 
4035 	*ret_left_path = NULL;
4036 
4037 	/*
4038 	 * This shouldn't happen for non-trees. The extent rec cluster
4039 	 * count manipulation below only works for interior nodes.
4040 	 */
4041 	BUG_ON(right_path->p_tree_depth == 0);
4042 
4043 	/*
4044 	 * If our appending insert is at the leftmost edge of a leaf,
4045 	 * then we might need to update the rightmost records of the
4046 	 * neighboring path.
4047 	 */
4048 	el = path_leaf_el(right_path);
4049 	next_free = le16_to_cpu(el->l_next_free_rec);
4050 	if (next_free == 0 ||
4051 	    (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
4052 		u32 left_cpos;
4053 
4054 		ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
4055 						    right_path, &left_cpos);
4056 		if (ret) {
4057 			mlog_errno(ret);
4058 			goto out;
4059 		}
4060 
4061 		mlog(0, "Append may need a left path update. cpos: %u, "
4062 		     "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
4063 		     left_cpos);
4064 
4065 		/*
4066 		 * No need to worry if the append is already in the
4067 		 * leftmost leaf.
4068 		 */
4069 		if (left_cpos) {
4070 			left_path = ocfs2_new_path_from_path(right_path);
4071 			if (!left_path) {
4072 				ret = -ENOMEM;
4073 				mlog_errno(ret);
4074 				goto out;
4075 			}
4076 
4077 			ret = ocfs2_find_path(et->et_ci, left_path,
4078 					      left_cpos);
4079 			if (ret) {
4080 				mlog_errno(ret);
4081 				goto out;
4082 			}
4083 
4084 			/*
4085 			 * ocfs2_insert_path() will pass the left_path to the
4086 			 * journal for us.
4087 			 */
4088 		}
4089 	}
4090 
4091 	ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4092 	if (ret) {
4093 		mlog_errno(ret);
4094 		goto out;
4095 	}
4096 
4097 	ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec);
4098 
4099 	*ret_left_path = left_path;
4100 	ret = 0;
4101 out:
4102 	if (ret != 0)
4103 		ocfs2_free_path(left_path);
4104 
4105 	return ret;
4106 }
4107 
4108 static void ocfs2_split_record(struct ocfs2_extent_tree *et,
4109 			       struct ocfs2_path *left_path,
4110 			       struct ocfs2_path *right_path,
4111 			       struct ocfs2_extent_rec *split_rec,
4112 			       enum ocfs2_split_type split)
4113 {
4114 	int index;
4115 	u32 cpos = le32_to_cpu(split_rec->e_cpos);
4116 	struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4117 	struct ocfs2_extent_rec *rec, *tmprec;
4118 
4119 	right_el = path_leaf_el(right_path);
4120 	if (left_path)
4121 		left_el = path_leaf_el(left_path);
4122 
4123 	el = right_el;
4124 	insert_el = right_el;
4125 	index = ocfs2_search_extent_list(el, cpos);
4126 	if (index != -1) {
4127 		if (index == 0 && left_path) {
4128 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4129 
4130 			/*
4131 			 * This typically means that the record
4132 			 * started in the left path but moved to the
4133 			 * right as a result of rotation. We either
4134 			 * move the existing record to the left, or we
4135 			 * do the later insert there.
4136 			 *
4137 			 * In this case, the left path should always
4138 			 * exist as the rotate code will have passed
4139 			 * it back for a post-insert update.
4140 			 */
4141 
4142 			if (split == SPLIT_LEFT) {
4143 				/*
4144 				 * It's a left split. Since we know
4145 				 * that the rotate code gave us an
4146 				 * empty extent in the left path, we
4147 				 * can just do the insert there.
4148 				 */
4149 				insert_el = left_el;
4150 			} else {
4151 				/*
4152 				 * Right split - we have to move the
4153 				 * existing record over to the left
4154 				 * leaf. The insert will be into the
4155 				 * newly created empty extent in the
4156 				 * right leaf.
4157 				 */
4158 				tmprec = &right_el->l_recs[index];
4159 				ocfs2_rotate_leaf(left_el, tmprec);
4160 				el = left_el;
4161 
4162 				memset(tmprec, 0, sizeof(*tmprec));
4163 				index = ocfs2_search_extent_list(left_el, cpos);
4164 				BUG_ON(index == -1);
4165 			}
4166 		}
4167 	} else {
4168 		BUG_ON(!left_path);
4169 		BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4170 		/*
4171 		 * Left path is easy - we can just allow the insert to
4172 		 * happen.
4173 		 */
4174 		el = left_el;
4175 		insert_el = left_el;
4176 		index = ocfs2_search_extent_list(el, cpos);
4177 		BUG_ON(index == -1);
4178 	}
4179 
4180 	rec = &el->l_recs[index];
4181 	ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4182 				split, rec, split_rec);
4183 	ocfs2_rotate_leaf(insert_el, split_rec);
4184 }
4185 
4186 /*
4187  * This function only does inserts on an allocation b-tree. For tree
4188  * depth = 0, ocfs2_insert_at_leaf() is called directly.
4189  *
4190  * right_path is the path we want to do the actual insert
4191  * in. left_path should only be passed in if we need to update that
4192  * portion of the tree after an edge insert.
4193  */
4194 static int ocfs2_insert_path(handle_t *handle,
4195 			     struct ocfs2_extent_tree *et,
4196 			     struct ocfs2_path *left_path,
4197 			     struct ocfs2_path *right_path,
4198 			     struct ocfs2_extent_rec *insert_rec,
4199 			     struct ocfs2_insert_type *insert)
4200 {
4201 	int ret, subtree_index;
4202 	struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4203 
4204 	if (left_path) {
4205 		int credits = handle->h_buffer_credits;
4206 
4207 		/*
4208 		 * There's a chance that left_path got passed back to
4209 		 * us without being accounted for in the
4210 		 * journal. Extend our transaction here to be sure we
4211 		 * can change those blocks.
4212 		 */
4213 		credits += left_path->p_tree_depth;
4214 
4215 		ret = ocfs2_extend_trans(handle, credits);
4216 		if (ret < 0) {
4217 			mlog_errno(ret);
4218 			goto out;
4219 		}
4220 
4221 		ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
4222 		if (ret < 0) {
4223 			mlog_errno(ret);
4224 			goto out;
4225 		}
4226 	}
4227 
4228 	/*
4229 	 * Pass both paths to the journal. The majority of inserts
4230 	 * will be touching all components anyway.
4231 	 */
4232 	ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4233 	if (ret < 0) {
4234 		mlog_errno(ret);
4235 		goto out;
4236 	}
4237 
4238 	if (insert->ins_split != SPLIT_NONE) {
4239 		/*
4240 		 * We could call ocfs2_insert_at_leaf() for some types
4241 		 * of splits, but it's easier to just let one separate
4242 		 * function sort it all out.
4243 		 */
4244 		ocfs2_split_record(et, left_path, right_path,
4245 				   insert_rec, insert->ins_split);
4246 
4247 		/*
4248 		 * Split might have modified either leaf and we don't
4249 		 * have a guarantee that the later edge insert will
4250 		 * dirty this for us.
4251 		 */
4252 		if (left_path)
4253 			ret = ocfs2_journal_dirty(handle,
4254 						  path_leaf_bh(left_path));
4255 			if (ret)
4256 				mlog_errno(ret);
4257 	} else
4258 		ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path),
4259 				     insert);
4260 
4261 	ret = ocfs2_journal_dirty(handle, leaf_bh);
4262 	if (ret)
4263 		mlog_errno(ret);
4264 
4265 	if (left_path) {
4266 		/*
4267 		 * The rotate code has indicated that we need to fix
4268 		 * up portions of the tree after the insert.
4269 		 *
4270 		 * XXX: Should we extend the transaction here?
4271 		 */
4272 		subtree_index = ocfs2_find_subtree_root(et, left_path,
4273 							right_path);
4274 		ocfs2_complete_edge_insert(handle, left_path, right_path,
4275 					   subtree_index);
4276 	}
4277 
4278 	ret = 0;
4279 out:
4280 	return ret;
4281 }
4282 
4283 static int ocfs2_do_insert_extent(handle_t *handle,
4284 				  struct ocfs2_extent_tree *et,
4285 				  struct ocfs2_extent_rec *insert_rec,
4286 				  struct ocfs2_insert_type *type)
4287 {
4288 	int ret, rotate = 0;
4289 	u32 cpos;
4290 	struct ocfs2_path *right_path = NULL;
4291 	struct ocfs2_path *left_path = NULL;
4292 	struct ocfs2_extent_list *el;
4293 
4294 	el = et->et_root_el;
4295 
4296 	ret = ocfs2_et_root_journal_access(handle, et,
4297 					   OCFS2_JOURNAL_ACCESS_WRITE);
4298 	if (ret) {
4299 		mlog_errno(ret);
4300 		goto out;
4301 	}
4302 
4303 	if (le16_to_cpu(el->l_tree_depth) == 0) {
4304 		ocfs2_insert_at_leaf(et, insert_rec, el, type);
4305 		goto out_update_clusters;
4306 	}
4307 
4308 	right_path = ocfs2_new_path_from_et(et);
4309 	if (!right_path) {
4310 		ret = -ENOMEM;
4311 		mlog_errno(ret);
4312 		goto out;
4313 	}
4314 
4315 	/*
4316 	 * Determine the path to start with. Rotations need the
4317 	 * rightmost path, everything else can go directly to the
4318 	 * target leaf.
4319 	 */
4320 	cpos = le32_to_cpu(insert_rec->e_cpos);
4321 	if (type->ins_appending == APPEND_NONE &&
4322 	    type->ins_contig == CONTIG_NONE) {
4323 		rotate = 1;
4324 		cpos = UINT_MAX;
4325 	}
4326 
4327 	ret = ocfs2_find_path(et->et_ci, right_path, cpos);
4328 	if (ret) {
4329 		mlog_errno(ret);
4330 		goto out;
4331 	}
4332 
4333 	/*
4334 	 * Rotations and appends need special treatment - they modify
4335 	 * parts of the tree's above them.
4336 	 *
4337 	 * Both might pass back a path immediate to the left of the
4338 	 * one being inserted to. This will be cause
4339 	 * ocfs2_insert_path() to modify the rightmost records of
4340 	 * left_path to account for an edge insert.
4341 	 *
4342 	 * XXX: When modifying this code, keep in mind that an insert
4343 	 * can wind up skipping both of these two special cases...
4344 	 */
4345 	if (rotate) {
4346 		ret = ocfs2_rotate_tree_right(handle, et, type->ins_split,
4347 					      le32_to_cpu(insert_rec->e_cpos),
4348 					      right_path, &left_path);
4349 		if (ret) {
4350 			mlog_errno(ret);
4351 			goto out;
4352 		}
4353 
4354 		/*
4355 		 * ocfs2_rotate_tree_right() might have extended the
4356 		 * transaction without re-journaling our tree root.
4357 		 */
4358 		ret = ocfs2_et_root_journal_access(handle, et,
4359 						   OCFS2_JOURNAL_ACCESS_WRITE);
4360 		if (ret) {
4361 			mlog_errno(ret);
4362 			goto out;
4363 		}
4364 	} else if (type->ins_appending == APPEND_TAIL
4365 		   && type->ins_contig != CONTIG_LEFT) {
4366 		ret = ocfs2_append_rec_to_path(handle, et, insert_rec,
4367 					       right_path, &left_path);
4368 		if (ret) {
4369 			mlog_errno(ret);
4370 			goto out;
4371 		}
4372 	}
4373 
4374 	ret = ocfs2_insert_path(handle, et, left_path, right_path,
4375 				insert_rec, type);
4376 	if (ret) {
4377 		mlog_errno(ret);
4378 		goto out;
4379 	}
4380 
4381 out_update_clusters:
4382 	if (type->ins_split == SPLIT_NONE)
4383 		ocfs2_et_update_clusters(et,
4384 					 le16_to_cpu(insert_rec->e_leaf_clusters));
4385 
4386 	ret = ocfs2_journal_dirty(handle, et->et_root_bh);
4387 	if (ret)
4388 		mlog_errno(ret);
4389 
4390 out:
4391 	ocfs2_free_path(left_path);
4392 	ocfs2_free_path(right_path);
4393 
4394 	return ret;
4395 }
4396 
4397 static enum ocfs2_contig_type
4398 ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et,
4399 			       struct ocfs2_path *path,
4400 			       struct ocfs2_extent_list *el, int index,
4401 			       struct ocfs2_extent_rec *split_rec)
4402 {
4403 	int status;
4404 	enum ocfs2_contig_type ret = CONTIG_NONE;
4405 	u32 left_cpos, right_cpos;
4406 	struct ocfs2_extent_rec *rec = NULL;
4407 	struct ocfs2_extent_list *new_el;
4408 	struct ocfs2_path *left_path = NULL, *right_path = NULL;
4409 	struct buffer_head *bh;
4410 	struct ocfs2_extent_block *eb;
4411 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
4412 
4413 	if (index > 0) {
4414 		rec = &el->l_recs[index - 1];
4415 	} else if (path->p_tree_depth > 0) {
4416 		status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
4417 		if (status)
4418 			goto out;
4419 
4420 		if (left_cpos != 0) {
4421 			left_path = ocfs2_new_path_from_path(path);
4422 			if (!left_path)
4423 				goto out;
4424 
4425 			status = ocfs2_find_path(et->et_ci, left_path,
4426 						 left_cpos);
4427 			if (status)
4428 				goto out;
4429 
4430 			new_el = path_leaf_el(left_path);
4431 
4432 			if (le16_to_cpu(new_el->l_next_free_rec) !=
4433 			    le16_to_cpu(new_el->l_count)) {
4434 				bh = path_leaf_bh(left_path);
4435 				eb = (struct ocfs2_extent_block *)bh->b_data;
4436 				ocfs2_error(sb,
4437 					    "Extent block #%llu has an "
4438 					    "invalid l_next_free_rec of "
4439 					    "%d.  It should have "
4440 					    "matched the l_count of %d",
4441 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4442 					    le16_to_cpu(new_el->l_next_free_rec),
4443 					    le16_to_cpu(new_el->l_count));
4444 				status = -EINVAL;
4445 				goto out;
4446 			}
4447 			rec = &new_el->l_recs[
4448 				le16_to_cpu(new_el->l_next_free_rec) - 1];
4449 		}
4450 	}
4451 
4452 	/*
4453 	 * We're careful to check for an empty extent record here -
4454 	 * the merge code will know what to do if it sees one.
4455 	 */
4456 	if (rec) {
4457 		if (index == 1 && ocfs2_is_empty_extent(rec)) {
4458 			if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4459 				ret = CONTIG_RIGHT;
4460 		} else {
4461 			ret = ocfs2_et_extent_contig(et, rec, split_rec);
4462 		}
4463 	}
4464 
4465 	rec = NULL;
4466 	if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4467 		rec = &el->l_recs[index + 1];
4468 	else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4469 		 path->p_tree_depth > 0) {
4470 		status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
4471 		if (status)
4472 			goto out;
4473 
4474 		if (right_cpos == 0)
4475 			goto out;
4476 
4477 		right_path = ocfs2_new_path_from_path(path);
4478 		if (!right_path)
4479 			goto out;
4480 
4481 		status = ocfs2_find_path(et->et_ci, right_path, right_cpos);
4482 		if (status)
4483 			goto out;
4484 
4485 		new_el = path_leaf_el(right_path);
4486 		rec = &new_el->l_recs[0];
4487 		if (ocfs2_is_empty_extent(rec)) {
4488 			if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4489 				bh = path_leaf_bh(right_path);
4490 				eb = (struct ocfs2_extent_block *)bh->b_data;
4491 				ocfs2_error(sb,
4492 					    "Extent block #%llu has an "
4493 					    "invalid l_next_free_rec of %d",
4494 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4495 					    le16_to_cpu(new_el->l_next_free_rec));
4496 				status = -EINVAL;
4497 				goto out;
4498 			}
4499 			rec = &new_el->l_recs[1];
4500 		}
4501 	}
4502 
4503 	if (rec) {
4504 		enum ocfs2_contig_type contig_type;
4505 
4506 		contig_type = ocfs2_et_extent_contig(et, rec, split_rec);
4507 
4508 		if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4509 			ret = CONTIG_LEFTRIGHT;
4510 		else if (ret == CONTIG_NONE)
4511 			ret = contig_type;
4512 	}
4513 
4514 out:
4515 	if (left_path)
4516 		ocfs2_free_path(left_path);
4517 	if (right_path)
4518 		ocfs2_free_path(right_path);
4519 
4520 	return ret;
4521 }
4522 
4523 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et,
4524 				     struct ocfs2_insert_type *insert,
4525 				     struct ocfs2_extent_list *el,
4526 				     struct ocfs2_extent_rec *insert_rec)
4527 {
4528 	int i;
4529 	enum ocfs2_contig_type contig_type = CONTIG_NONE;
4530 
4531 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4532 
4533 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4534 		contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i],
4535 						     insert_rec);
4536 		if (contig_type != CONTIG_NONE) {
4537 			insert->ins_contig_index = i;
4538 			break;
4539 		}
4540 	}
4541 	insert->ins_contig = contig_type;
4542 
4543 	if (insert->ins_contig != CONTIG_NONE) {
4544 		struct ocfs2_extent_rec *rec =
4545 				&el->l_recs[insert->ins_contig_index];
4546 		unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4547 				   le16_to_cpu(insert_rec->e_leaf_clusters);
4548 
4549 		/*
4550 		 * Caller might want us to limit the size of extents, don't
4551 		 * calculate contiguousness if we might exceed that limit.
4552 		 */
4553 		if (et->et_max_leaf_clusters &&
4554 		    (len > et->et_max_leaf_clusters))
4555 			insert->ins_contig = CONTIG_NONE;
4556 	}
4557 }
4558 
4559 /*
4560  * This should only be called against the righmost leaf extent list.
4561  *
4562  * ocfs2_figure_appending_type() will figure out whether we'll have to
4563  * insert at the tail of the rightmost leaf.
4564  *
4565  * This should also work against the root extent list for tree's with 0
4566  * depth. If we consider the root extent list to be the rightmost leaf node
4567  * then the logic here makes sense.
4568  */
4569 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4570 					struct ocfs2_extent_list *el,
4571 					struct ocfs2_extent_rec *insert_rec)
4572 {
4573 	int i;
4574 	u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4575 	struct ocfs2_extent_rec *rec;
4576 
4577 	insert->ins_appending = APPEND_NONE;
4578 
4579 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4580 
4581 	if (!el->l_next_free_rec)
4582 		goto set_tail_append;
4583 
4584 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4585 		/* Were all records empty? */
4586 		if (le16_to_cpu(el->l_next_free_rec) == 1)
4587 			goto set_tail_append;
4588 	}
4589 
4590 	i = le16_to_cpu(el->l_next_free_rec) - 1;
4591 	rec = &el->l_recs[i];
4592 
4593 	if (cpos >=
4594 	    (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4595 		goto set_tail_append;
4596 
4597 	return;
4598 
4599 set_tail_append:
4600 	insert->ins_appending = APPEND_TAIL;
4601 }
4602 
4603 /*
4604  * Helper function called at the begining of an insert.
4605  *
4606  * This computes a few things that are commonly used in the process of
4607  * inserting into the btree:
4608  *   - Whether the new extent is contiguous with an existing one.
4609  *   - The current tree depth.
4610  *   - Whether the insert is an appending one.
4611  *   - The total # of free records in the tree.
4612  *
4613  * All of the information is stored on the ocfs2_insert_type
4614  * structure.
4615  */
4616 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et,
4617 				    struct buffer_head **last_eb_bh,
4618 				    struct ocfs2_extent_rec *insert_rec,
4619 				    int *free_records,
4620 				    struct ocfs2_insert_type *insert)
4621 {
4622 	int ret;
4623 	struct ocfs2_extent_block *eb;
4624 	struct ocfs2_extent_list *el;
4625 	struct ocfs2_path *path = NULL;
4626 	struct buffer_head *bh = NULL;
4627 
4628 	insert->ins_split = SPLIT_NONE;
4629 
4630 	el = et->et_root_el;
4631 	insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4632 
4633 	if (el->l_tree_depth) {
4634 		/*
4635 		 * If we have tree depth, we read in the
4636 		 * rightmost extent block ahead of time as
4637 		 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4638 		 * may want it later.
4639 		 */
4640 		ret = ocfs2_read_extent_block(et->et_ci,
4641 					      ocfs2_et_get_last_eb_blk(et),
4642 					      &bh);
4643 		if (ret) {
4644 			mlog_exit(ret);
4645 			goto out;
4646 		}
4647 		eb = (struct ocfs2_extent_block *) bh->b_data;
4648 		el = &eb->h_list;
4649 	}
4650 
4651 	/*
4652 	 * Unless we have a contiguous insert, we'll need to know if
4653 	 * there is room left in our allocation tree for another
4654 	 * extent record.
4655 	 *
4656 	 * XXX: This test is simplistic, we can search for empty
4657 	 * extent records too.
4658 	 */
4659 	*free_records = le16_to_cpu(el->l_count) -
4660 		le16_to_cpu(el->l_next_free_rec);
4661 
4662 	if (!insert->ins_tree_depth) {
4663 		ocfs2_figure_contig_type(et, insert, el, insert_rec);
4664 		ocfs2_figure_appending_type(insert, el, insert_rec);
4665 		return 0;
4666 	}
4667 
4668 	path = ocfs2_new_path_from_et(et);
4669 	if (!path) {
4670 		ret = -ENOMEM;
4671 		mlog_errno(ret);
4672 		goto out;
4673 	}
4674 
4675 	/*
4676 	 * In the case that we're inserting past what the tree
4677 	 * currently accounts for, ocfs2_find_path() will return for
4678 	 * us the rightmost tree path. This is accounted for below in
4679 	 * the appending code.
4680 	 */
4681 	ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos));
4682 	if (ret) {
4683 		mlog_errno(ret);
4684 		goto out;
4685 	}
4686 
4687 	el = path_leaf_el(path);
4688 
4689 	/*
4690 	 * Now that we have the path, there's two things we want to determine:
4691 	 * 1) Contiguousness (also set contig_index if this is so)
4692 	 *
4693 	 * 2) Are we doing an append? We can trivially break this up
4694          *     into two types of appends: simple record append, or a
4695          *     rotate inside the tail leaf.
4696 	 */
4697 	ocfs2_figure_contig_type(et, insert, el, insert_rec);
4698 
4699 	/*
4700 	 * The insert code isn't quite ready to deal with all cases of
4701 	 * left contiguousness. Specifically, if it's an insert into
4702 	 * the 1st record in a leaf, it will require the adjustment of
4703 	 * cluster count on the last record of the path directly to it's
4704 	 * left. For now, just catch that case and fool the layers
4705 	 * above us. This works just fine for tree_depth == 0, which
4706 	 * is why we allow that above.
4707 	 */
4708 	if (insert->ins_contig == CONTIG_LEFT &&
4709 	    insert->ins_contig_index == 0)
4710 		insert->ins_contig = CONTIG_NONE;
4711 
4712 	/*
4713 	 * Ok, so we can simply compare against last_eb to figure out
4714 	 * whether the path doesn't exist. This will only happen in
4715 	 * the case that we're doing a tail append, so maybe we can
4716 	 * take advantage of that information somehow.
4717 	 */
4718 	if (ocfs2_et_get_last_eb_blk(et) ==
4719 	    path_leaf_bh(path)->b_blocknr) {
4720 		/*
4721 		 * Ok, ocfs2_find_path() returned us the rightmost
4722 		 * tree path. This might be an appending insert. There are
4723 		 * two cases:
4724 		 *    1) We're doing a true append at the tail:
4725 		 *	-This might even be off the end of the leaf
4726 		 *    2) We're "appending" by rotating in the tail
4727 		 */
4728 		ocfs2_figure_appending_type(insert, el, insert_rec);
4729 	}
4730 
4731 out:
4732 	ocfs2_free_path(path);
4733 
4734 	if (ret == 0)
4735 		*last_eb_bh = bh;
4736 	else
4737 		brelse(bh);
4738 	return ret;
4739 }
4740 
4741 /*
4742  * Insert an extent into a btree.
4743  *
4744  * The caller needs to update the owning btree's cluster count.
4745  */
4746 int ocfs2_insert_extent(handle_t *handle,
4747 			struct ocfs2_extent_tree *et,
4748 			u32 cpos,
4749 			u64 start_blk,
4750 			u32 new_clusters,
4751 			u8 flags,
4752 			struct ocfs2_alloc_context *meta_ac)
4753 {
4754 	int status;
4755 	int uninitialized_var(free_records);
4756 	struct buffer_head *last_eb_bh = NULL;
4757 	struct ocfs2_insert_type insert = {0, };
4758 	struct ocfs2_extent_rec rec;
4759 
4760 	mlog(0, "add %u clusters at position %u to owner %llu\n",
4761 	     new_clusters, cpos,
4762 	     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
4763 
4764 	memset(&rec, 0, sizeof(rec));
4765 	rec.e_cpos = cpu_to_le32(cpos);
4766 	rec.e_blkno = cpu_to_le64(start_blk);
4767 	rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4768 	rec.e_flags = flags;
4769 	status = ocfs2_et_insert_check(et, &rec);
4770 	if (status) {
4771 		mlog_errno(status);
4772 		goto bail;
4773 	}
4774 
4775 	status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec,
4776 					  &free_records, &insert);
4777 	if (status < 0) {
4778 		mlog_errno(status);
4779 		goto bail;
4780 	}
4781 
4782 	mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4783 	     "Insert.contig_index: %d, Insert.free_records: %d, "
4784 	     "Insert.tree_depth: %d\n",
4785 	     insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4786 	     free_records, insert.ins_tree_depth);
4787 
4788 	if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4789 		status = ocfs2_grow_tree(handle, et,
4790 					 &insert.ins_tree_depth, &last_eb_bh,
4791 					 meta_ac);
4792 		if (status) {
4793 			mlog_errno(status);
4794 			goto bail;
4795 		}
4796 	}
4797 
4798 	/* Finally, we can add clusters. This might rotate the tree for us. */
4799 	status = ocfs2_do_insert_extent(handle, et, &rec, &insert);
4800 	if (status < 0)
4801 		mlog_errno(status);
4802 	else
4803 		ocfs2_et_extent_map_insert(et, &rec);
4804 
4805 bail:
4806 	brelse(last_eb_bh);
4807 
4808 	mlog_exit(status);
4809 	return status;
4810 }
4811 
4812 /*
4813  * Allcate and add clusters into the extent b-tree.
4814  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4815  * The extent b-tree's root is specified by et, and
4816  * it is not limited to the file storage. Any extent tree can use this
4817  * function if it implements the proper ocfs2_extent_tree.
4818  */
4819 int ocfs2_add_clusters_in_btree(handle_t *handle,
4820 				struct ocfs2_extent_tree *et,
4821 				u32 *logical_offset,
4822 				u32 clusters_to_add,
4823 				int mark_unwritten,
4824 				struct ocfs2_alloc_context *data_ac,
4825 				struct ocfs2_alloc_context *meta_ac,
4826 				enum ocfs2_alloc_restarted *reason_ret)
4827 {
4828 	int status = 0;
4829 	int free_extents;
4830 	enum ocfs2_alloc_restarted reason = RESTART_NONE;
4831 	u32 bit_off, num_bits;
4832 	u64 block;
4833 	u8 flags = 0;
4834 	struct ocfs2_super *osb =
4835 		OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
4836 
4837 	BUG_ON(!clusters_to_add);
4838 
4839 	if (mark_unwritten)
4840 		flags = OCFS2_EXT_UNWRITTEN;
4841 
4842 	free_extents = ocfs2_num_free_extents(osb, et);
4843 	if (free_extents < 0) {
4844 		status = free_extents;
4845 		mlog_errno(status);
4846 		goto leave;
4847 	}
4848 
4849 	/* there are two cases which could cause us to EAGAIN in the
4850 	 * we-need-more-metadata case:
4851 	 * 1) we haven't reserved *any*
4852 	 * 2) we are so fragmented, we've needed to add metadata too
4853 	 *    many times. */
4854 	if (!free_extents && !meta_ac) {
4855 		mlog(0, "we haven't reserved any metadata!\n");
4856 		status = -EAGAIN;
4857 		reason = RESTART_META;
4858 		goto leave;
4859 	} else if ((!free_extents)
4860 		   && (ocfs2_alloc_context_bits_left(meta_ac)
4861 		       < ocfs2_extend_meta_needed(et->et_root_el))) {
4862 		mlog(0, "filesystem is really fragmented...\n");
4863 		status = -EAGAIN;
4864 		reason = RESTART_META;
4865 		goto leave;
4866 	}
4867 
4868 	status = __ocfs2_claim_clusters(osb, handle, data_ac, 1,
4869 					clusters_to_add, &bit_off, &num_bits);
4870 	if (status < 0) {
4871 		if (status != -ENOSPC)
4872 			mlog_errno(status);
4873 		goto leave;
4874 	}
4875 
4876 	BUG_ON(num_bits > clusters_to_add);
4877 
4878 	/* reserve our write early -- insert_extent may update the tree root */
4879 	status = ocfs2_et_root_journal_access(handle, et,
4880 					      OCFS2_JOURNAL_ACCESS_WRITE);
4881 	if (status < 0) {
4882 		mlog_errno(status);
4883 		goto leave;
4884 	}
4885 
4886 	block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4887 	mlog(0, "Allocating %u clusters at block %u for owner %llu\n",
4888 	     num_bits, bit_off,
4889 	     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
4890 	status = ocfs2_insert_extent(handle, et, *logical_offset, block,
4891 				     num_bits, flags, meta_ac);
4892 	if (status < 0) {
4893 		mlog_errno(status);
4894 		goto leave;
4895 	}
4896 
4897 	status = ocfs2_journal_dirty(handle, et->et_root_bh);
4898 	if (status < 0) {
4899 		mlog_errno(status);
4900 		goto leave;
4901 	}
4902 
4903 	clusters_to_add -= num_bits;
4904 	*logical_offset += num_bits;
4905 
4906 	if (clusters_to_add) {
4907 		mlog(0, "need to alloc once more, wanted = %u\n",
4908 		     clusters_to_add);
4909 		status = -EAGAIN;
4910 		reason = RESTART_TRANS;
4911 	}
4912 
4913 leave:
4914 	mlog_exit(status);
4915 	if (reason_ret)
4916 		*reason_ret = reason;
4917 	return status;
4918 }
4919 
4920 static void ocfs2_make_right_split_rec(struct super_block *sb,
4921 				       struct ocfs2_extent_rec *split_rec,
4922 				       u32 cpos,
4923 				       struct ocfs2_extent_rec *rec)
4924 {
4925 	u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4926 	u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4927 
4928 	memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4929 
4930 	split_rec->e_cpos = cpu_to_le32(cpos);
4931 	split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4932 
4933 	split_rec->e_blkno = rec->e_blkno;
4934 	le64_add_cpu(&split_rec->e_blkno,
4935 		     ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4936 
4937 	split_rec->e_flags = rec->e_flags;
4938 }
4939 
4940 static int ocfs2_split_and_insert(handle_t *handle,
4941 				  struct ocfs2_extent_tree *et,
4942 				  struct ocfs2_path *path,
4943 				  struct buffer_head **last_eb_bh,
4944 				  int split_index,
4945 				  struct ocfs2_extent_rec *orig_split_rec,
4946 				  struct ocfs2_alloc_context *meta_ac)
4947 {
4948 	int ret = 0, depth;
4949 	unsigned int insert_range, rec_range, do_leftright = 0;
4950 	struct ocfs2_extent_rec tmprec;
4951 	struct ocfs2_extent_list *rightmost_el;
4952 	struct ocfs2_extent_rec rec;
4953 	struct ocfs2_extent_rec split_rec = *orig_split_rec;
4954 	struct ocfs2_insert_type insert;
4955 	struct ocfs2_extent_block *eb;
4956 
4957 leftright:
4958 	/*
4959 	 * Store a copy of the record on the stack - it might move
4960 	 * around as the tree is manipulated below.
4961 	 */
4962 	rec = path_leaf_el(path)->l_recs[split_index];
4963 
4964 	rightmost_el = et->et_root_el;
4965 
4966 	depth = le16_to_cpu(rightmost_el->l_tree_depth);
4967 	if (depth) {
4968 		BUG_ON(!(*last_eb_bh));
4969 		eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4970 		rightmost_el = &eb->h_list;
4971 	}
4972 
4973 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4974 	    le16_to_cpu(rightmost_el->l_count)) {
4975 		ret = ocfs2_grow_tree(handle, et,
4976 				      &depth, last_eb_bh, meta_ac);
4977 		if (ret) {
4978 			mlog_errno(ret);
4979 			goto out;
4980 		}
4981 	}
4982 
4983 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4984 	insert.ins_appending = APPEND_NONE;
4985 	insert.ins_contig = CONTIG_NONE;
4986 	insert.ins_tree_depth = depth;
4987 
4988 	insert_range = le32_to_cpu(split_rec.e_cpos) +
4989 		le16_to_cpu(split_rec.e_leaf_clusters);
4990 	rec_range = le32_to_cpu(rec.e_cpos) +
4991 		le16_to_cpu(rec.e_leaf_clusters);
4992 
4993 	if (split_rec.e_cpos == rec.e_cpos) {
4994 		insert.ins_split = SPLIT_LEFT;
4995 	} else if (insert_range == rec_range) {
4996 		insert.ins_split = SPLIT_RIGHT;
4997 	} else {
4998 		/*
4999 		 * Left/right split. We fake this as a right split
5000 		 * first and then make a second pass as a left split.
5001 		 */
5002 		insert.ins_split = SPLIT_RIGHT;
5003 
5004 		ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
5005 					   &tmprec, insert_range, &rec);
5006 
5007 		split_rec = tmprec;
5008 
5009 		BUG_ON(do_leftright);
5010 		do_leftright = 1;
5011 	}
5012 
5013 	ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
5014 	if (ret) {
5015 		mlog_errno(ret);
5016 		goto out;
5017 	}
5018 
5019 	if (do_leftright == 1) {
5020 		u32 cpos;
5021 		struct ocfs2_extent_list *el;
5022 
5023 		do_leftright++;
5024 		split_rec = *orig_split_rec;
5025 
5026 		ocfs2_reinit_path(path, 1);
5027 
5028 		cpos = le32_to_cpu(split_rec.e_cpos);
5029 		ret = ocfs2_find_path(et->et_ci, path, cpos);
5030 		if (ret) {
5031 			mlog_errno(ret);
5032 			goto out;
5033 		}
5034 
5035 		el = path_leaf_el(path);
5036 		split_index = ocfs2_search_extent_list(el, cpos);
5037 		goto leftright;
5038 	}
5039 out:
5040 
5041 	return ret;
5042 }
5043 
5044 static int ocfs2_replace_extent_rec(handle_t *handle,
5045 				    struct ocfs2_extent_tree *et,
5046 				    struct ocfs2_path *path,
5047 				    struct ocfs2_extent_list *el,
5048 				    int split_index,
5049 				    struct ocfs2_extent_rec *split_rec)
5050 {
5051 	int ret;
5052 
5053 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
5054 					   path_num_items(path) - 1);
5055 	if (ret) {
5056 		mlog_errno(ret);
5057 		goto out;
5058 	}
5059 
5060 	el->l_recs[split_index] = *split_rec;
5061 
5062 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
5063 out:
5064 	return ret;
5065 }
5066 
5067 /*
5068  * Split part or all of the extent record at split_index in the leaf
5069  * pointed to by path. Merge with the contiguous extent record if needed.
5070  *
5071  * Care is taken to handle contiguousness so as to not grow the tree.
5072  *
5073  * meta_ac is not strictly necessary - we only truly need it if growth
5074  * of the tree is required. All other cases will degrade into a less
5075  * optimal tree layout.
5076  *
5077  * last_eb_bh should be the rightmost leaf block for any extent
5078  * btree. Since a split may grow the tree or a merge might shrink it,
5079  * the caller cannot trust the contents of that buffer after this call.
5080  *
5081  * This code is optimized for readability - several passes might be
5082  * made over certain portions of the tree. All of those blocks will
5083  * have been brought into cache (and pinned via the journal), so the
5084  * extra overhead is not expressed in terms of disk reads.
5085  */
5086 int ocfs2_split_extent(handle_t *handle,
5087 		       struct ocfs2_extent_tree *et,
5088 		       struct ocfs2_path *path,
5089 		       int split_index,
5090 		       struct ocfs2_extent_rec *split_rec,
5091 		       struct ocfs2_alloc_context *meta_ac,
5092 		       struct ocfs2_cached_dealloc_ctxt *dealloc)
5093 {
5094 	int ret = 0;
5095 	struct ocfs2_extent_list *el = path_leaf_el(path);
5096 	struct buffer_head *last_eb_bh = NULL;
5097 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5098 	struct ocfs2_merge_ctxt ctxt;
5099 	struct ocfs2_extent_list *rightmost_el;
5100 
5101 	if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5102 	    ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5103 	     (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5104 		ret = -EIO;
5105 		mlog_errno(ret);
5106 		goto out;
5107 	}
5108 
5109 	ctxt.c_contig_type = ocfs2_figure_merge_contig_type(et, path, el,
5110 							    split_index,
5111 							    split_rec);
5112 
5113 	/*
5114 	 * The core merge / split code wants to know how much room is
5115 	 * left in this allocation tree, so we pass the
5116 	 * rightmost extent list.
5117 	 */
5118 	if (path->p_tree_depth) {
5119 		struct ocfs2_extent_block *eb;
5120 
5121 		ret = ocfs2_read_extent_block(et->et_ci,
5122 					      ocfs2_et_get_last_eb_blk(et),
5123 					      &last_eb_bh);
5124 		if (ret) {
5125 			mlog_exit(ret);
5126 			goto out;
5127 		}
5128 
5129 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5130 		rightmost_el = &eb->h_list;
5131 	} else
5132 		rightmost_el = path_root_el(path);
5133 
5134 	if (rec->e_cpos == split_rec->e_cpos &&
5135 	    rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5136 		ctxt.c_split_covers_rec = 1;
5137 	else
5138 		ctxt.c_split_covers_rec = 0;
5139 
5140 	ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5141 
5142 	mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
5143 	     split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
5144 	     ctxt.c_split_covers_rec);
5145 
5146 	if (ctxt.c_contig_type == CONTIG_NONE) {
5147 		if (ctxt.c_split_covers_rec)
5148 			ret = ocfs2_replace_extent_rec(handle, et, path, el,
5149 						       split_index, split_rec);
5150 		else
5151 			ret = ocfs2_split_and_insert(handle, et, path,
5152 						     &last_eb_bh, split_index,
5153 						     split_rec, meta_ac);
5154 		if (ret)
5155 			mlog_errno(ret);
5156 	} else {
5157 		ret = ocfs2_try_to_merge_extent(handle, et, path,
5158 						split_index, split_rec,
5159 						dealloc, &ctxt);
5160 		if (ret)
5161 			mlog_errno(ret);
5162 	}
5163 
5164 out:
5165 	brelse(last_eb_bh);
5166 	return ret;
5167 }
5168 
5169 /*
5170  * Change the flags of the already-existing extent at cpos for len clusters.
5171  *
5172  * new_flags: the flags we want to set.
5173  * clear_flags: the flags we want to clear.
5174  * phys: the new physical offset we want this new extent starts from.
5175  *
5176  * If the existing extent is larger than the request, initiate a
5177  * split. An attempt will be made at merging with adjacent extents.
5178  *
5179  * The caller is responsible for passing down meta_ac if we'll need it.
5180  */
5181 int ocfs2_change_extent_flag(handle_t *handle,
5182 			     struct ocfs2_extent_tree *et,
5183 			     u32 cpos, u32 len, u32 phys,
5184 			     struct ocfs2_alloc_context *meta_ac,
5185 			     struct ocfs2_cached_dealloc_ctxt *dealloc,
5186 			     int new_flags, int clear_flags)
5187 {
5188 	int ret, index;
5189 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5190 	u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys);
5191 	struct ocfs2_extent_rec split_rec;
5192 	struct ocfs2_path *left_path = NULL;
5193 	struct ocfs2_extent_list *el;
5194 	struct ocfs2_extent_rec *rec;
5195 
5196 	left_path = ocfs2_new_path_from_et(et);
5197 	if (!left_path) {
5198 		ret = -ENOMEM;
5199 		mlog_errno(ret);
5200 		goto out;
5201 	}
5202 
5203 	ret = ocfs2_find_path(et->et_ci, left_path, cpos);
5204 	if (ret) {
5205 		mlog_errno(ret);
5206 		goto out;
5207 	}
5208 	el = path_leaf_el(left_path);
5209 
5210 	index = ocfs2_search_extent_list(el, cpos);
5211 	if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5212 		ocfs2_error(sb,
5213 			    "Owner %llu has an extent at cpos %u which can no "
5214 			    "longer be found.\n",
5215 			     (unsigned long long)
5216 			     ocfs2_metadata_cache_owner(et->et_ci), cpos);
5217 		ret = -EROFS;
5218 		goto out;
5219 	}
5220 
5221 	ret = -EIO;
5222 	rec = &el->l_recs[index];
5223 	if (new_flags && (rec->e_flags & new_flags)) {
5224 		mlog(ML_ERROR, "Owner %llu tried to set %d flags on an "
5225 		     "extent that already had them",
5226 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5227 		     new_flags);
5228 		goto out;
5229 	}
5230 
5231 	if (clear_flags && !(rec->e_flags & clear_flags)) {
5232 		mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an "
5233 		     "extent that didn't have them",
5234 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5235 		     clear_flags);
5236 		goto out;
5237 	}
5238 
5239 	memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5240 	split_rec.e_cpos = cpu_to_le32(cpos);
5241 	split_rec.e_leaf_clusters = cpu_to_le16(len);
5242 	split_rec.e_blkno = cpu_to_le64(start_blkno);
5243 	split_rec.e_flags = rec->e_flags;
5244 	if (new_flags)
5245 		split_rec.e_flags |= new_flags;
5246 	if (clear_flags)
5247 		split_rec.e_flags &= ~clear_flags;
5248 
5249 	ret = ocfs2_split_extent(handle, et, left_path,
5250 				 index, &split_rec, meta_ac,
5251 				 dealloc);
5252 	if (ret)
5253 		mlog_errno(ret);
5254 
5255 out:
5256 	ocfs2_free_path(left_path);
5257 	return ret;
5258 
5259 }
5260 
5261 /*
5262  * Mark the already-existing extent at cpos as written for len clusters.
5263  * This removes the unwritten extent flag.
5264  *
5265  * If the existing extent is larger than the request, initiate a
5266  * split. An attempt will be made at merging with adjacent extents.
5267  *
5268  * The caller is responsible for passing down meta_ac if we'll need it.
5269  */
5270 int ocfs2_mark_extent_written(struct inode *inode,
5271 			      struct ocfs2_extent_tree *et,
5272 			      handle_t *handle, u32 cpos, u32 len, u32 phys,
5273 			      struct ocfs2_alloc_context *meta_ac,
5274 			      struct ocfs2_cached_dealloc_ctxt *dealloc)
5275 {
5276 	int ret;
5277 
5278 	mlog(0, "Inode %lu cpos %u, len %u, phys clusters %u\n",
5279 	     inode->i_ino, cpos, len, phys);
5280 
5281 	if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5282 		ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
5283 			    "that are being written to, but the feature bit "
5284 			    "is not set in the super block.",
5285 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
5286 		ret = -EROFS;
5287 		goto out;
5288 	}
5289 
5290 	/*
5291 	 * XXX: This should be fixed up so that we just re-insert the
5292 	 * next extent records.
5293 	 */
5294 	ocfs2_et_extent_map_truncate(et, 0);
5295 
5296 	ret = ocfs2_change_extent_flag(handle, et, cpos,
5297 				       len, phys, meta_ac, dealloc,
5298 				       0, OCFS2_EXT_UNWRITTEN);
5299 	if (ret)
5300 		mlog_errno(ret);
5301 
5302 out:
5303 	return ret;
5304 }
5305 
5306 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et,
5307 			    struct ocfs2_path *path,
5308 			    int index, u32 new_range,
5309 			    struct ocfs2_alloc_context *meta_ac)
5310 {
5311 	int ret, depth, credits = handle->h_buffer_credits;
5312 	struct buffer_head *last_eb_bh = NULL;
5313 	struct ocfs2_extent_block *eb;
5314 	struct ocfs2_extent_list *rightmost_el, *el;
5315 	struct ocfs2_extent_rec split_rec;
5316 	struct ocfs2_extent_rec *rec;
5317 	struct ocfs2_insert_type insert;
5318 
5319 	/*
5320 	 * Setup the record to split before we grow the tree.
5321 	 */
5322 	el = path_leaf_el(path);
5323 	rec = &el->l_recs[index];
5324 	ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
5325 				   &split_rec, new_range, rec);
5326 
5327 	depth = path->p_tree_depth;
5328 	if (depth > 0) {
5329 		ret = ocfs2_read_extent_block(et->et_ci,
5330 					      ocfs2_et_get_last_eb_blk(et),
5331 					      &last_eb_bh);
5332 		if (ret < 0) {
5333 			mlog_errno(ret);
5334 			goto out;
5335 		}
5336 
5337 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5338 		rightmost_el = &eb->h_list;
5339 	} else
5340 		rightmost_el = path_leaf_el(path);
5341 
5342 	credits += path->p_tree_depth +
5343 		   ocfs2_extend_meta_needed(et->et_root_el);
5344 	ret = ocfs2_extend_trans(handle, credits);
5345 	if (ret) {
5346 		mlog_errno(ret);
5347 		goto out;
5348 	}
5349 
5350 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5351 	    le16_to_cpu(rightmost_el->l_count)) {
5352 		ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh,
5353 				      meta_ac);
5354 		if (ret) {
5355 			mlog_errno(ret);
5356 			goto out;
5357 		}
5358 	}
5359 
5360 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5361 	insert.ins_appending = APPEND_NONE;
5362 	insert.ins_contig = CONTIG_NONE;
5363 	insert.ins_split = SPLIT_RIGHT;
5364 	insert.ins_tree_depth = depth;
5365 
5366 	ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
5367 	if (ret)
5368 		mlog_errno(ret);
5369 
5370 out:
5371 	brelse(last_eb_bh);
5372 	return ret;
5373 }
5374 
5375 static int ocfs2_truncate_rec(handle_t *handle,
5376 			      struct ocfs2_extent_tree *et,
5377 			      struct ocfs2_path *path, int index,
5378 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
5379 			      u32 cpos, u32 len)
5380 {
5381 	int ret;
5382 	u32 left_cpos, rec_range, trunc_range;
5383 	int wants_rotate = 0, is_rightmost_tree_rec = 0;
5384 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5385 	struct ocfs2_path *left_path = NULL;
5386 	struct ocfs2_extent_list *el = path_leaf_el(path);
5387 	struct ocfs2_extent_rec *rec;
5388 	struct ocfs2_extent_block *eb;
5389 
5390 	if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5391 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5392 		if (ret) {
5393 			mlog_errno(ret);
5394 			goto out;
5395 		}
5396 
5397 		index--;
5398 	}
5399 
5400 	if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5401 	    path->p_tree_depth) {
5402 		/*
5403 		 * Check whether this is the rightmost tree record. If
5404 		 * we remove all of this record or part of its right
5405 		 * edge then an update of the record lengths above it
5406 		 * will be required.
5407 		 */
5408 		eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5409 		if (eb->h_next_leaf_blk == 0)
5410 			is_rightmost_tree_rec = 1;
5411 	}
5412 
5413 	rec = &el->l_recs[index];
5414 	if (index == 0 && path->p_tree_depth &&
5415 	    le32_to_cpu(rec->e_cpos) == cpos) {
5416 		/*
5417 		 * Changing the leftmost offset (via partial or whole
5418 		 * record truncate) of an interior (or rightmost) path
5419 		 * means we have to update the subtree that is formed
5420 		 * by this leaf and the one to it's left.
5421 		 *
5422 		 * There are two cases we can skip:
5423 		 *   1) Path is the leftmost one in our btree.
5424 		 *   2) The leaf is rightmost and will be empty after
5425 		 *      we remove the extent record - the rotate code
5426 		 *      knows how to update the newly formed edge.
5427 		 */
5428 
5429 		ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
5430 		if (ret) {
5431 			mlog_errno(ret);
5432 			goto out;
5433 		}
5434 
5435 		if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5436 			left_path = ocfs2_new_path_from_path(path);
5437 			if (!left_path) {
5438 				ret = -ENOMEM;
5439 				mlog_errno(ret);
5440 				goto out;
5441 			}
5442 
5443 			ret = ocfs2_find_path(et->et_ci, left_path,
5444 					      left_cpos);
5445 			if (ret) {
5446 				mlog_errno(ret);
5447 				goto out;
5448 			}
5449 		}
5450 	}
5451 
5452 	ret = ocfs2_extend_rotate_transaction(handle, 0,
5453 					      handle->h_buffer_credits,
5454 					      path);
5455 	if (ret) {
5456 		mlog_errno(ret);
5457 		goto out;
5458 	}
5459 
5460 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
5461 	if (ret) {
5462 		mlog_errno(ret);
5463 		goto out;
5464 	}
5465 
5466 	ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
5467 	if (ret) {
5468 		mlog_errno(ret);
5469 		goto out;
5470 	}
5471 
5472 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5473 	trunc_range = cpos + len;
5474 
5475 	if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5476 		int next_free;
5477 
5478 		memset(rec, 0, sizeof(*rec));
5479 		ocfs2_cleanup_merge(el, index);
5480 		wants_rotate = 1;
5481 
5482 		next_free = le16_to_cpu(el->l_next_free_rec);
5483 		if (is_rightmost_tree_rec && next_free > 1) {
5484 			/*
5485 			 * We skip the edge update if this path will
5486 			 * be deleted by the rotate code.
5487 			 */
5488 			rec = &el->l_recs[next_free - 1];
5489 			ocfs2_adjust_rightmost_records(handle, et, path,
5490 						       rec);
5491 		}
5492 	} else if (le32_to_cpu(rec->e_cpos) == cpos) {
5493 		/* Remove leftmost portion of the record. */
5494 		le32_add_cpu(&rec->e_cpos, len);
5495 		le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5496 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5497 	} else if (rec_range == trunc_range) {
5498 		/* Remove rightmost portion of the record */
5499 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5500 		if (is_rightmost_tree_rec)
5501 			ocfs2_adjust_rightmost_records(handle, et, path, rec);
5502 	} else {
5503 		/* Caller should have trapped this. */
5504 		mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) "
5505 		     "(%u, %u)\n",
5506 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5507 		     le32_to_cpu(rec->e_cpos),
5508 		     le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5509 		BUG();
5510 	}
5511 
5512 	if (left_path) {
5513 		int subtree_index;
5514 
5515 		subtree_index = ocfs2_find_subtree_root(et, left_path, path);
5516 		ocfs2_complete_edge_insert(handle, left_path, path,
5517 					   subtree_index);
5518 	}
5519 
5520 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
5521 
5522 	ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5523 	if (ret) {
5524 		mlog_errno(ret);
5525 		goto out;
5526 	}
5527 
5528 out:
5529 	ocfs2_free_path(left_path);
5530 	return ret;
5531 }
5532 
5533 int ocfs2_remove_extent(handle_t *handle,
5534 			struct ocfs2_extent_tree *et,
5535 			u32 cpos, u32 len,
5536 			struct ocfs2_alloc_context *meta_ac,
5537 			struct ocfs2_cached_dealloc_ctxt *dealloc)
5538 {
5539 	int ret, index;
5540 	u32 rec_range, trunc_range;
5541 	struct ocfs2_extent_rec *rec;
5542 	struct ocfs2_extent_list *el;
5543 	struct ocfs2_path *path = NULL;
5544 
5545 	/*
5546 	 * XXX: Why are we truncating to 0 instead of wherever this
5547 	 * affects us?
5548 	 */
5549 	ocfs2_et_extent_map_truncate(et, 0);
5550 
5551 	path = ocfs2_new_path_from_et(et);
5552 	if (!path) {
5553 		ret = -ENOMEM;
5554 		mlog_errno(ret);
5555 		goto out;
5556 	}
5557 
5558 	ret = ocfs2_find_path(et->et_ci, path, cpos);
5559 	if (ret) {
5560 		mlog_errno(ret);
5561 		goto out;
5562 	}
5563 
5564 	el = path_leaf_el(path);
5565 	index = ocfs2_search_extent_list(el, cpos);
5566 	if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5567 		ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5568 			    "Owner %llu has an extent at cpos %u which can no "
5569 			    "longer be found.\n",
5570 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5571 			    cpos);
5572 		ret = -EROFS;
5573 		goto out;
5574 	}
5575 
5576 	/*
5577 	 * We have 3 cases of extent removal:
5578 	 *   1) Range covers the entire extent rec
5579 	 *   2) Range begins or ends on one edge of the extent rec
5580 	 *   3) Range is in the middle of the extent rec (no shared edges)
5581 	 *
5582 	 * For case 1 we remove the extent rec and left rotate to
5583 	 * fill the hole.
5584 	 *
5585 	 * For case 2 we just shrink the existing extent rec, with a
5586 	 * tree update if the shrinking edge is also the edge of an
5587 	 * extent block.
5588 	 *
5589 	 * For case 3 we do a right split to turn the extent rec into
5590 	 * something case 2 can handle.
5591 	 */
5592 	rec = &el->l_recs[index];
5593 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5594 	trunc_range = cpos + len;
5595 
5596 	BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5597 
5598 	mlog(0, "Owner %llu, remove (cpos %u, len %u). Existing index %d "
5599 	     "(cpos %u, len %u)\n",
5600 	     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5601 	     cpos, len, index,
5602 	     le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
5603 
5604 	if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5605 		ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5606 					 cpos, len);
5607 		if (ret) {
5608 			mlog_errno(ret);
5609 			goto out;
5610 		}
5611 	} else {
5612 		ret = ocfs2_split_tree(handle, et, path, index,
5613 				       trunc_range, meta_ac);
5614 		if (ret) {
5615 			mlog_errno(ret);
5616 			goto out;
5617 		}
5618 
5619 		/*
5620 		 * The split could have manipulated the tree enough to
5621 		 * move the record location, so we have to look for it again.
5622 		 */
5623 		ocfs2_reinit_path(path, 1);
5624 
5625 		ret = ocfs2_find_path(et->et_ci, path, cpos);
5626 		if (ret) {
5627 			mlog_errno(ret);
5628 			goto out;
5629 		}
5630 
5631 		el = path_leaf_el(path);
5632 		index = ocfs2_search_extent_list(el, cpos);
5633 		if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5634 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5635 				    "Owner %llu: split at cpos %u lost record.",
5636 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5637 				    cpos);
5638 			ret = -EROFS;
5639 			goto out;
5640 		}
5641 
5642 		/*
5643 		 * Double check our values here. If anything is fishy,
5644 		 * it's easier to catch it at the top level.
5645 		 */
5646 		rec = &el->l_recs[index];
5647 		rec_range = le32_to_cpu(rec->e_cpos) +
5648 			ocfs2_rec_clusters(el, rec);
5649 		if (rec_range != trunc_range) {
5650 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5651 				    "Owner %llu: error after split at cpos %u"
5652 				    "trunc len %u, existing record is (%u,%u)",
5653 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5654 				    cpos, len, le32_to_cpu(rec->e_cpos),
5655 				    ocfs2_rec_clusters(el, rec));
5656 			ret = -EROFS;
5657 			goto out;
5658 		}
5659 
5660 		ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5661 					 cpos, len);
5662 		if (ret) {
5663 			mlog_errno(ret);
5664 			goto out;
5665 		}
5666 	}
5667 
5668 out:
5669 	ocfs2_free_path(path);
5670 	return ret;
5671 }
5672 
5673 int ocfs2_remove_btree_range(struct inode *inode,
5674 			     struct ocfs2_extent_tree *et,
5675 			     u32 cpos, u32 phys_cpos, u32 len,
5676 			     struct ocfs2_cached_dealloc_ctxt *dealloc)
5677 {
5678 	int ret;
5679 	u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5680 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5681 	struct inode *tl_inode = osb->osb_tl_inode;
5682 	handle_t *handle;
5683 	struct ocfs2_alloc_context *meta_ac = NULL;
5684 
5685 	ret = ocfs2_lock_allocators(inode, et, 0, 1, NULL, &meta_ac);
5686 	if (ret) {
5687 		mlog_errno(ret);
5688 		return ret;
5689 	}
5690 
5691 	mutex_lock(&tl_inode->i_mutex);
5692 
5693 	if (ocfs2_truncate_log_needs_flush(osb)) {
5694 		ret = __ocfs2_flush_truncate_log(osb);
5695 		if (ret < 0) {
5696 			mlog_errno(ret);
5697 			goto out;
5698 		}
5699 	}
5700 
5701 	handle = ocfs2_start_trans(osb, ocfs2_remove_extent_credits(osb->sb));
5702 	if (IS_ERR(handle)) {
5703 		ret = PTR_ERR(handle);
5704 		mlog_errno(ret);
5705 		goto out;
5706 	}
5707 
5708 	ret = ocfs2_et_root_journal_access(handle, et,
5709 					   OCFS2_JOURNAL_ACCESS_WRITE);
5710 	if (ret) {
5711 		mlog_errno(ret);
5712 		goto out;
5713 	}
5714 
5715 	vfs_dq_free_space_nodirty(inode,
5716 				  ocfs2_clusters_to_bytes(inode->i_sb, len));
5717 
5718 	ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc);
5719 	if (ret) {
5720 		mlog_errno(ret);
5721 		goto out_commit;
5722 	}
5723 
5724 	ocfs2_et_update_clusters(et, -len);
5725 
5726 	ret = ocfs2_journal_dirty(handle, et->et_root_bh);
5727 	if (ret) {
5728 		mlog_errno(ret);
5729 		goto out_commit;
5730 	}
5731 
5732 	ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len);
5733 	if (ret)
5734 		mlog_errno(ret);
5735 
5736 out_commit:
5737 	ocfs2_commit_trans(osb, handle);
5738 out:
5739 	mutex_unlock(&tl_inode->i_mutex);
5740 
5741 	if (meta_ac)
5742 		ocfs2_free_alloc_context(meta_ac);
5743 
5744 	return ret;
5745 }
5746 
5747 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5748 {
5749 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5750 	struct ocfs2_dinode *di;
5751 	struct ocfs2_truncate_log *tl;
5752 
5753 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5754 	tl = &di->id2.i_dealloc;
5755 
5756 	mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5757 			"slot %d, invalid truncate log parameters: used = "
5758 			"%u, count = %u\n", osb->slot_num,
5759 			le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5760 	return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5761 }
5762 
5763 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5764 					   unsigned int new_start)
5765 {
5766 	unsigned int tail_index;
5767 	unsigned int current_tail;
5768 
5769 	/* No records, nothing to coalesce */
5770 	if (!le16_to_cpu(tl->tl_used))
5771 		return 0;
5772 
5773 	tail_index = le16_to_cpu(tl->tl_used) - 1;
5774 	current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5775 	current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5776 
5777 	return current_tail == new_start;
5778 }
5779 
5780 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5781 			      handle_t *handle,
5782 			      u64 start_blk,
5783 			      unsigned int num_clusters)
5784 {
5785 	int status, index;
5786 	unsigned int start_cluster, tl_count;
5787 	struct inode *tl_inode = osb->osb_tl_inode;
5788 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5789 	struct ocfs2_dinode *di;
5790 	struct ocfs2_truncate_log *tl;
5791 
5792 	mlog_entry("start_blk = %llu, num_clusters = %u\n",
5793 		   (unsigned long long)start_blk, num_clusters);
5794 
5795 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5796 
5797 	start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5798 
5799 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5800 
5801 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5802 	 * by the underlying call to ocfs2_read_inode_block(), so any
5803 	 * corruption is a code bug */
5804 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5805 
5806 	tl = &di->id2.i_dealloc;
5807 	tl_count = le16_to_cpu(tl->tl_count);
5808 	mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5809 			tl_count == 0,
5810 			"Truncate record count on #%llu invalid "
5811 			"wanted %u, actual %u\n",
5812 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5813 			ocfs2_truncate_recs_per_inode(osb->sb),
5814 			le16_to_cpu(tl->tl_count));
5815 
5816 	/* Caller should have known to flush before calling us. */
5817 	index = le16_to_cpu(tl->tl_used);
5818 	if (index >= tl_count) {
5819 		status = -ENOSPC;
5820 		mlog_errno(status);
5821 		goto bail;
5822 	}
5823 
5824 	status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5825 					 OCFS2_JOURNAL_ACCESS_WRITE);
5826 	if (status < 0) {
5827 		mlog_errno(status);
5828 		goto bail;
5829 	}
5830 
5831 	mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5832 	     "%llu (index = %d)\n", num_clusters, start_cluster,
5833 	     (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
5834 
5835 	if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5836 		/*
5837 		 * Move index back to the record we are coalescing with.
5838 		 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5839 		 */
5840 		index--;
5841 
5842 		num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5843 		mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5844 		     index, le32_to_cpu(tl->tl_recs[index].t_start),
5845 		     num_clusters);
5846 	} else {
5847 		tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5848 		tl->tl_used = cpu_to_le16(index + 1);
5849 	}
5850 	tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5851 
5852 	status = ocfs2_journal_dirty(handle, tl_bh);
5853 	if (status < 0) {
5854 		mlog_errno(status);
5855 		goto bail;
5856 	}
5857 
5858 bail:
5859 	mlog_exit(status);
5860 	return status;
5861 }
5862 
5863 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5864 					 handle_t *handle,
5865 					 struct inode *data_alloc_inode,
5866 					 struct buffer_head *data_alloc_bh)
5867 {
5868 	int status = 0;
5869 	int i;
5870 	unsigned int num_clusters;
5871 	u64 start_blk;
5872 	struct ocfs2_truncate_rec rec;
5873 	struct ocfs2_dinode *di;
5874 	struct ocfs2_truncate_log *tl;
5875 	struct inode *tl_inode = osb->osb_tl_inode;
5876 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5877 
5878 	mlog_entry_void();
5879 
5880 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5881 	tl = &di->id2.i_dealloc;
5882 	i = le16_to_cpu(tl->tl_used) - 1;
5883 	while (i >= 0) {
5884 		/* Caller has given us at least enough credits to
5885 		 * update the truncate log dinode */
5886 		status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5887 						 OCFS2_JOURNAL_ACCESS_WRITE);
5888 		if (status < 0) {
5889 			mlog_errno(status);
5890 			goto bail;
5891 		}
5892 
5893 		tl->tl_used = cpu_to_le16(i);
5894 
5895 		status = ocfs2_journal_dirty(handle, tl_bh);
5896 		if (status < 0) {
5897 			mlog_errno(status);
5898 			goto bail;
5899 		}
5900 
5901 		/* TODO: Perhaps we can calculate the bulk of the
5902 		 * credits up front rather than extending like
5903 		 * this. */
5904 		status = ocfs2_extend_trans(handle,
5905 					    OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5906 		if (status < 0) {
5907 			mlog_errno(status);
5908 			goto bail;
5909 		}
5910 
5911 		rec = tl->tl_recs[i];
5912 		start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5913 						    le32_to_cpu(rec.t_start));
5914 		num_clusters = le32_to_cpu(rec.t_clusters);
5915 
5916 		/* if start_blk is not set, we ignore the record as
5917 		 * invalid. */
5918 		if (start_blk) {
5919 			mlog(0, "free record %d, start = %u, clusters = %u\n",
5920 			     i, le32_to_cpu(rec.t_start), num_clusters);
5921 
5922 			status = ocfs2_free_clusters(handle, data_alloc_inode,
5923 						     data_alloc_bh, start_blk,
5924 						     num_clusters);
5925 			if (status < 0) {
5926 				mlog_errno(status);
5927 				goto bail;
5928 			}
5929 		}
5930 		i--;
5931 	}
5932 
5933 bail:
5934 	mlog_exit(status);
5935 	return status;
5936 }
5937 
5938 /* Expects you to already be holding tl_inode->i_mutex */
5939 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5940 {
5941 	int status;
5942 	unsigned int num_to_flush;
5943 	handle_t *handle;
5944 	struct inode *tl_inode = osb->osb_tl_inode;
5945 	struct inode *data_alloc_inode = NULL;
5946 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5947 	struct buffer_head *data_alloc_bh = NULL;
5948 	struct ocfs2_dinode *di;
5949 	struct ocfs2_truncate_log *tl;
5950 
5951 	mlog_entry_void();
5952 
5953 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5954 
5955 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5956 
5957 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5958 	 * by the underlying call to ocfs2_read_inode_block(), so any
5959 	 * corruption is a code bug */
5960 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5961 
5962 	tl = &di->id2.i_dealloc;
5963 	num_to_flush = le16_to_cpu(tl->tl_used);
5964 	mlog(0, "Flush %u records from truncate log #%llu\n",
5965 	     num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5966 	if (!num_to_flush) {
5967 		status = 0;
5968 		goto out;
5969 	}
5970 
5971 	data_alloc_inode = ocfs2_get_system_file_inode(osb,
5972 						       GLOBAL_BITMAP_SYSTEM_INODE,
5973 						       OCFS2_INVALID_SLOT);
5974 	if (!data_alloc_inode) {
5975 		status = -EINVAL;
5976 		mlog(ML_ERROR, "Could not get bitmap inode!\n");
5977 		goto out;
5978 	}
5979 
5980 	mutex_lock(&data_alloc_inode->i_mutex);
5981 
5982 	status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5983 	if (status < 0) {
5984 		mlog_errno(status);
5985 		goto out_mutex;
5986 	}
5987 
5988 	handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5989 	if (IS_ERR(handle)) {
5990 		status = PTR_ERR(handle);
5991 		mlog_errno(status);
5992 		goto out_unlock;
5993 	}
5994 
5995 	status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5996 					       data_alloc_bh);
5997 	if (status < 0)
5998 		mlog_errno(status);
5999 
6000 	ocfs2_commit_trans(osb, handle);
6001 
6002 out_unlock:
6003 	brelse(data_alloc_bh);
6004 	ocfs2_inode_unlock(data_alloc_inode, 1);
6005 
6006 out_mutex:
6007 	mutex_unlock(&data_alloc_inode->i_mutex);
6008 	iput(data_alloc_inode);
6009 
6010 out:
6011 	mlog_exit(status);
6012 	return status;
6013 }
6014 
6015 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
6016 {
6017 	int status;
6018 	struct inode *tl_inode = osb->osb_tl_inode;
6019 
6020 	mutex_lock(&tl_inode->i_mutex);
6021 	status = __ocfs2_flush_truncate_log(osb);
6022 	mutex_unlock(&tl_inode->i_mutex);
6023 
6024 	return status;
6025 }
6026 
6027 static void ocfs2_truncate_log_worker(struct work_struct *work)
6028 {
6029 	int status;
6030 	struct ocfs2_super *osb =
6031 		container_of(work, struct ocfs2_super,
6032 			     osb_truncate_log_wq.work);
6033 
6034 	mlog_entry_void();
6035 
6036 	status = ocfs2_flush_truncate_log(osb);
6037 	if (status < 0)
6038 		mlog_errno(status);
6039 	else
6040 		ocfs2_init_inode_steal_slot(osb);
6041 
6042 	mlog_exit(status);
6043 }
6044 
6045 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
6046 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
6047 				       int cancel)
6048 {
6049 	if (osb->osb_tl_inode) {
6050 		/* We want to push off log flushes while truncates are
6051 		 * still running. */
6052 		if (cancel)
6053 			cancel_delayed_work(&osb->osb_truncate_log_wq);
6054 
6055 		queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
6056 				   OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
6057 	}
6058 }
6059 
6060 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
6061 				       int slot_num,
6062 				       struct inode **tl_inode,
6063 				       struct buffer_head **tl_bh)
6064 {
6065 	int status;
6066 	struct inode *inode = NULL;
6067 	struct buffer_head *bh = NULL;
6068 
6069 	inode = ocfs2_get_system_file_inode(osb,
6070 					   TRUNCATE_LOG_SYSTEM_INODE,
6071 					   slot_num);
6072 	if (!inode) {
6073 		status = -EINVAL;
6074 		mlog(ML_ERROR, "Could not get load truncate log inode!\n");
6075 		goto bail;
6076 	}
6077 
6078 	status = ocfs2_read_inode_block(inode, &bh);
6079 	if (status < 0) {
6080 		iput(inode);
6081 		mlog_errno(status);
6082 		goto bail;
6083 	}
6084 
6085 	*tl_inode = inode;
6086 	*tl_bh    = bh;
6087 bail:
6088 	mlog_exit(status);
6089 	return status;
6090 }
6091 
6092 /* called during the 1st stage of node recovery. we stamp a clean
6093  * truncate log and pass back a copy for processing later. if the
6094  * truncate log does not require processing, a *tl_copy is set to
6095  * NULL. */
6096 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
6097 				      int slot_num,
6098 				      struct ocfs2_dinode **tl_copy)
6099 {
6100 	int status;
6101 	struct inode *tl_inode = NULL;
6102 	struct buffer_head *tl_bh = NULL;
6103 	struct ocfs2_dinode *di;
6104 	struct ocfs2_truncate_log *tl;
6105 
6106 	*tl_copy = NULL;
6107 
6108 	mlog(0, "recover truncate log from slot %d\n", slot_num);
6109 
6110 	status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
6111 	if (status < 0) {
6112 		mlog_errno(status);
6113 		goto bail;
6114 	}
6115 
6116 	di = (struct ocfs2_dinode *) tl_bh->b_data;
6117 
6118 	/* tl_bh is loaded from ocfs2_get_truncate_log_info().  It's
6119 	 * validated by the underlying call to ocfs2_read_inode_block(),
6120 	 * so any corruption is a code bug */
6121 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
6122 
6123 	tl = &di->id2.i_dealloc;
6124 	if (le16_to_cpu(tl->tl_used)) {
6125 		mlog(0, "We'll have %u logs to recover\n",
6126 		     le16_to_cpu(tl->tl_used));
6127 
6128 		*tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
6129 		if (!(*tl_copy)) {
6130 			status = -ENOMEM;
6131 			mlog_errno(status);
6132 			goto bail;
6133 		}
6134 
6135 		/* Assuming the write-out below goes well, this copy
6136 		 * will be passed back to recovery for processing. */
6137 		memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
6138 
6139 		/* All we need to do to clear the truncate log is set
6140 		 * tl_used. */
6141 		tl->tl_used = 0;
6142 
6143 		ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6144 		status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
6145 		if (status < 0) {
6146 			mlog_errno(status);
6147 			goto bail;
6148 		}
6149 	}
6150 
6151 bail:
6152 	if (tl_inode)
6153 		iput(tl_inode);
6154 	brelse(tl_bh);
6155 
6156 	if (status < 0 && (*tl_copy)) {
6157 		kfree(*tl_copy);
6158 		*tl_copy = NULL;
6159 	}
6160 
6161 	mlog_exit(status);
6162 	return status;
6163 }
6164 
6165 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6166 					 struct ocfs2_dinode *tl_copy)
6167 {
6168 	int status = 0;
6169 	int i;
6170 	unsigned int clusters, num_recs, start_cluster;
6171 	u64 start_blk;
6172 	handle_t *handle;
6173 	struct inode *tl_inode = osb->osb_tl_inode;
6174 	struct ocfs2_truncate_log *tl;
6175 
6176 	mlog_entry_void();
6177 
6178 	if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6179 		mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6180 		return -EINVAL;
6181 	}
6182 
6183 	tl = &tl_copy->id2.i_dealloc;
6184 	num_recs = le16_to_cpu(tl->tl_used);
6185 	mlog(0, "cleanup %u records from %llu\n", num_recs,
6186 	     (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
6187 
6188 	mutex_lock(&tl_inode->i_mutex);
6189 	for(i = 0; i < num_recs; i++) {
6190 		if (ocfs2_truncate_log_needs_flush(osb)) {
6191 			status = __ocfs2_flush_truncate_log(osb);
6192 			if (status < 0) {
6193 				mlog_errno(status);
6194 				goto bail_up;
6195 			}
6196 		}
6197 
6198 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6199 		if (IS_ERR(handle)) {
6200 			status = PTR_ERR(handle);
6201 			mlog_errno(status);
6202 			goto bail_up;
6203 		}
6204 
6205 		clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6206 		start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6207 		start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6208 
6209 		status = ocfs2_truncate_log_append(osb, handle,
6210 						   start_blk, clusters);
6211 		ocfs2_commit_trans(osb, handle);
6212 		if (status < 0) {
6213 			mlog_errno(status);
6214 			goto bail_up;
6215 		}
6216 	}
6217 
6218 bail_up:
6219 	mutex_unlock(&tl_inode->i_mutex);
6220 
6221 	mlog_exit(status);
6222 	return status;
6223 }
6224 
6225 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6226 {
6227 	int status;
6228 	struct inode *tl_inode = osb->osb_tl_inode;
6229 
6230 	mlog_entry_void();
6231 
6232 	if (tl_inode) {
6233 		cancel_delayed_work(&osb->osb_truncate_log_wq);
6234 		flush_workqueue(ocfs2_wq);
6235 
6236 		status = ocfs2_flush_truncate_log(osb);
6237 		if (status < 0)
6238 			mlog_errno(status);
6239 
6240 		brelse(osb->osb_tl_bh);
6241 		iput(osb->osb_tl_inode);
6242 	}
6243 
6244 	mlog_exit_void();
6245 }
6246 
6247 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6248 {
6249 	int status;
6250 	struct inode *tl_inode = NULL;
6251 	struct buffer_head *tl_bh = NULL;
6252 
6253 	mlog_entry_void();
6254 
6255 	status = ocfs2_get_truncate_log_info(osb,
6256 					     osb->slot_num,
6257 					     &tl_inode,
6258 					     &tl_bh);
6259 	if (status < 0)
6260 		mlog_errno(status);
6261 
6262 	/* ocfs2_truncate_log_shutdown keys on the existence of
6263 	 * osb->osb_tl_inode so we don't set any of the osb variables
6264 	 * until we're sure all is well. */
6265 	INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6266 			  ocfs2_truncate_log_worker);
6267 	osb->osb_tl_bh    = tl_bh;
6268 	osb->osb_tl_inode = tl_inode;
6269 
6270 	mlog_exit(status);
6271 	return status;
6272 }
6273 
6274 /*
6275  * Delayed de-allocation of suballocator blocks.
6276  *
6277  * Some sets of block de-allocations might involve multiple suballocator inodes.
6278  *
6279  * The locking for this can get extremely complicated, especially when
6280  * the suballocator inodes to delete from aren't known until deep
6281  * within an unrelated codepath.
6282  *
6283  * ocfs2_extent_block structures are a good example of this - an inode
6284  * btree could have been grown by any number of nodes each allocating
6285  * out of their own suballoc inode.
6286  *
6287  * These structures allow the delay of block de-allocation until a
6288  * later time, when locking of multiple cluster inodes won't cause
6289  * deadlock.
6290  */
6291 
6292 /*
6293  * Describe a single bit freed from a suballocator.  For the block
6294  * suballocators, it represents one block.  For the global cluster
6295  * allocator, it represents some clusters and free_bit indicates
6296  * clusters number.
6297  */
6298 struct ocfs2_cached_block_free {
6299 	struct ocfs2_cached_block_free		*free_next;
6300 	u64					free_blk;
6301 	unsigned int				free_bit;
6302 };
6303 
6304 struct ocfs2_per_slot_free_list {
6305 	struct ocfs2_per_slot_free_list		*f_next_suballocator;
6306 	int					f_inode_type;
6307 	int					f_slot;
6308 	struct ocfs2_cached_block_free		*f_first;
6309 };
6310 
6311 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6312 				    int sysfile_type,
6313 				    int slot,
6314 				    struct ocfs2_cached_block_free *head)
6315 {
6316 	int ret;
6317 	u64 bg_blkno;
6318 	handle_t *handle;
6319 	struct inode *inode;
6320 	struct buffer_head *di_bh = NULL;
6321 	struct ocfs2_cached_block_free *tmp;
6322 
6323 	inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6324 	if (!inode) {
6325 		ret = -EINVAL;
6326 		mlog_errno(ret);
6327 		goto out;
6328 	}
6329 
6330 	mutex_lock(&inode->i_mutex);
6331 
6332 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
6333 	if (ret) {
6334 		mlog_errno(ret);
6335 		goto out_mutex;
6336 	}
6337 
6338 	handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6339 	if (IS_ERR(handle)) {
6340 		ret = PTR_ERR(handle);
6341 		mlog_errno(ret);
6342 		goto out_unlock;
6343 	}
6344 
6345 	while (head) {
6346 		bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6347 						      head->free_bit);
6348 		mlog(0, "Free bit: (bit %u, blkno %llu)\n",
6349 		     head->free_bit, (unsigned long long)head->free_blk);
6350 
6351 		ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6352 					       head->free_bit, bg_blkno, 1);
6353 		if (ret) {
6354 			mlog_errno(ret);
6355 			goto out_journal;
6356 		}
6357 
6358 		ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
6359 		if (ret) {
6360 			mlog_errno(ret);
6361 			goto out_journal;
6362 		}
6363 
6364 		tmp = head;
6365 		head = head->free_next;
6366 		kfree(tmp);
6367 	}
6368 
6369 out_journal:
6370 	ocfs2_commit_trans(osb, handle);
6371 
6372 out_unlock:
6373 	ocfs2_inode_unlock(inode, 1);
6374 	brelse(di_bh);
6375 out_mutex:
6376 	mutex_unlock(&inode->i_mutex);
6377 	iput(inode);
6378 out:
6379 	while(head) {
6380 		/* Premature exit may have left some dangling items. */
6381 		tmp = head;
6382 		head = head->free_next;
6383 		kfree(tmp);
6384 	}
6385 
6386 	return ret;
6387 }
6388 
6389 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6390 				u64 blkno, unsigned int bit)
6391 {
6392 	int ret = 0;
6393 	struct ocfs2_cached_block_free *item;
6394 
6395 	item = kmalloc(sizeof(*item), GFP_NOFS);
6396 	if (item == NULL) {
6397 		ret = -ENOMEM;
6398 		mlog_errno(ret);
6399 		return ret;
6400 	}
6401 
6402 	mlog(0, "Insert clusters: (bit %u, blk %llu)\n",
6403 	     bit, (unsigned long long)blkno);
6404 
6405 	item->free_blk = blkno;
6406 	item->free_bit = bit;
6407 	item->free_next = ctxt->c_global_allocator;
6408 
6409 	ctxt->c_global_allocator = item;
6410 	return ret;
6411 }
6412 
6413 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6414 				      struct ocfs2_cached_block_free *head)
6415 {
6416 	struct ocfs2_cached_block_free *tmp;
6417 	struct inode *tl_inode = osb->osb_tl_inode;
6418 	handle_t *handle;
6419 	int ret = 0;
6420 
6421 	mutex_lock(&tl_inode->i_mutex);
6422 
6423 	while (head) {
6424 		if (ocfs2_truncate_log_needs_flush(osb)) {
6425 			ret = __ocfs2_flush_truncate_log(osb);
6426 			if (ret < 0) {
6427 				mlog_errno(ret);
6428 				break;
6429 			}
6430 		}
6431 
6432 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6433 		if (IS_ERR(handle)) {
6434 			ret = PTR_ERR(handle);
6435 			mlog_errno(ret);
6436 			break;
6437 		}
6438 
6439 		ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6440 						head->free_bit);
6441 
6442 		ocfs2_commit_trans(osb, handle);
6443 		tmp = head;
6444 		head = head->free_next;
6445 		kfree(tmp);
6446 
6447 		if (ret < 0) {
6448 			mlog_errno(ret);
6449 			break;
6450 		}
6451 	}
6452 
6453 	mutex_unlock(&tl_inode->i_mutex);
6454 
6455 	while (head) {
6456 		/* Premature exit may have left some dangling items. */
6457 		tmp = head;
6458 		head = head->free_next;
6459 		kfree(tmp);
6460 	}
6461 
6462 	return ret;
6463 }
6464 
6465 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6466 		       struct ocfs2_cached_dealloc_ctxt *ctxt)
6467 {
6468 	int ret = 0, ret2;
6469 	struct ocfs2_per_slot_free_list *fl;
6470 
6471 	if (!ctxt)
6472 		return 0;
6473 
6474 	while (ctxt->c_first_suballocator) {
6475 		fl = ctxt->c_first_suballocator;
6476 
6477 		if (fl->f_first) {
6478 			mlog(0, "Free items: (type %u, slot %d)\n",
6479 			     fl->f_inode_type, fl->f_slot);
6480 			ret2 = ocfs2_free_cached_blocks(osb,
6481 							fl->f_inode_type,
6482 							fl->f_slot,
6483 							fl->f_first);
6484 			if (ret2)
6485 				mlog_errno(ret2);
6486 			if (!ret)
6487 				ret = ret2;
6488 		}
6489 
6490 		ctxt->c_first_suballocator = fl->f_next_suballocator;
6491 		kfree(fl);
6492 	}
6493 
6494 	if (ctxt->c_global_allocator) {
6495 		ret2 = ocfs2_free_cached_clusters(osb,
6496 						  ctxt->c_global_allocator);
6497 		if (ret2)
6498 			mlog_errno(ret2);
6499 		if (!ret)
6500 			ret = ret2;
6501 
6502 		ctxt->c_global_allocator = NULL;
6503 	}
6504 
6505 	return ret;
6506 }
6507 
6508 static struct ocfs2_per_slot_free_list *
6509 ocfs2_find_per_slot_free_list(int type,
6510 			      int slot,
6511 			      struct ocfs2_cached_dealloc_ctxt *ctxt)
6512 {
6513 	struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6514 
6515 	while (fl) {
6516 		if (fl->f_inode_type == type && fl->f_slot == slot)
6517 			return fl;
6518 
6519 		fl = fl->f_next_suballocator;
6520 	}
6521 
6522 	fl = kmalloc(sizeof(*fl), GFP_NOFS);
6523 	if (fl) {
6524 		fl->f_inode_type = type;
6525 		fl->f_slot = slot;
6526 		fl->f_first = NULL;
6527 		fl->f_next_suballocator = ctxt->c_first_suballocator;
6528 
6529 		ctxt->c_first_suballocator = fl;
6530 	}
6531 	return fl;
6532 }
6533 
6534 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6535 			      int type, int slot, u64 blkno,
6536 			      unsigned int bit)
6537 {
6538 	int ret;
6539 	struct ocfs2_per_slot_free_list *fl;
6540 	struct ocfs2_cached_block_free *item;
6541 
6542 	fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6543 	if (fl == NULL) {
6544 		ret = -ENOMEM;
6545 		mlog_errno(ret);
6546 		goto out;
6547 	}
6548 
6549 	item = kmalloc(sizeof(*item), GFP_NOFS);
6550 	if (item == NULL) {
6551 		ret = -ENOMEM;
6552 		mlog_errno(ret);
6553 		goto out;
6554 	}
6555 
6556 	mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
6557 	     type, slot, bit, (unsigned long long)blkno);
6558 
6559 	item->free_blk = blkno;
6560 	item->free_bit = bit;
6561 	item->free_next = fl->f_first;
6562 
6563 	fl->f_first = item;
6564 
6565 	ret = 0;
6566 out:
6567 	return ret;
6568 }
6569 
6570 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6571 					 struct ocfs2_extent_block *eb)
6572 {
6573 	return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6574 					 le16_to_cpu(eb->h_suballoc_slot),
6575 					 le64_to_cpu(eb->h_blkno),
6576 					 le16_to_cpu(eb->h_suballoc_bit));
6577 }
6578 
6579 /* This function will figure out whether the currently last extent
6580  * block will be deleted, and if it will, what the new last extent
6581  * block will be so we can update his h_next_leaf_blk field, as well
6582  * as the dinodes i_last_eb_blk */
6583 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
6584 				       unsigned int clusters_to_del,
6585 				       struct ocfs2_path *path,
6586 				       struct buffer_head **new_last_eb)
6587 {
6588 	int next_free, ret = 0;
6589 	u32 cpos;
6590 	struct ocfs2_extent_rec *rec;
6591 	struct ocfs2_extent_block *eb;
6592 	struct ocfs2_extent_list *el;
6593 	struct buffer_head *bh = NULL;
6594 
6595 	*new_last_eb = NULL;
6596 
6597 	/* we have no tree, so of course, no last_eb. */
6598 	if (!path->p_tree_depth)
6599 		goto out;
6600 
6601 	/* trunc to zero special case - this makes tree_depth = 0
6602 	 * regardless of what it is.  */
6603 	if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
6604 		goto out;
6605 
6606 	el = path_leaf_el(path);
6607 	BUG_ON(!el->l_next_free_rec);
6608 
6609 	/*
6610 	 * Make sure that this extent list will actually be empty
6611 	 * after we clear away the data. We can shortcut out if
6612 	 * there's more than one non-empty extent in the
6613 	 * list. Otherwise, a check of the remaining extent is
6614 	 * necessary.
6615 	 */
6616 	next_free = le16_to_cpu(el->l_next_free_rec);
6617 	rec = NULL;
6618 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6619 		if (next_free > 2)
6620 			goto out;
6621 
6622 		/* We may have a valid extent in index 1, check it. */
6623 		if (next_free == 2)
6624 			rec = &el->l_recs[1];
6625 
6626 		/*
6627 		 * Fall through - no more nonempty extents, so we want
6628 		 * to delete this leaf.
6629 		 */
6630 	} else {
6631 		if (next_free > 1)
6632 			goto out;
6633 
6634 		rec = &el->l_recs[0];
6635 	}
6636 
6637 	if (rec) {
6638 		/*
6639 		 * Check it we'll only be trimming off the end of this
6640 		 * cluster.
6641 		 */
6642 		if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
6643 			goto out;
6644 	}
6645 
6646 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
6647 	if (ret) {
6648 		mlog_errno(ret);
6649 		goto out;
6650 	}
6651 
6652 	ret = ocfs2_find_leaf(INODE_CACHE(inode), path_root_el(path), cpos, &bh);
6653 	if (ret) {
6654 		mlog_errno(ret);
6655 		goto out;
6656 	}
6657 
6658 	eb = (struct ocfs2_extent_block *) bh->b_data;
6659 	el = &eb->h_list;
6660 
6661 	/* ocfs2_find_leaf() gets the eb from ocfs2_read_extent_block().
6662 	 * Any corruption is a code bug. */
6663 	BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
6664 
6665 	*new_last_eb = bh;
6666 	get_bh(*new_last_eb);
6667 	mlog(0, "returning block %llu, (cpos: %u)\n",
6668 	     (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
6669 out:
6670 	brelse(bh);
6671 
6672 	return ret;
6673 }
6674 
6675 /*
6676  * Trim some clusters off the rightmost edge of a tree. Only called
6677  * during truncate.
6678  *
6679  * The caller needs to:
6680  *   - start journaling of each path component.
6681  *   - compute and fully set up any new last ext block
6682  */
6683 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
6684 			   handle_t *handle, struct ocfs2_truncate_context *tc,
6685 			   u32 clusters_to_del, u64 *delete_start, u8 *flags)
6686 {
6687 	int ret, i, index = path->p_tree_depth;
6688 	u32 new_edge = 0;
6689 	u64 deleted_eb = 0;
6690 	struct buffer_head *bh;
6691 	struct ocfs2_extent_list *el;
6692 	struct ocfs2_extent_rec *rec;
6693 
6694 	*delete_start = 0;
6695 	*flags = 0;
6696 
6697 	while (index >= 0) {
6698 		bh = path->p_node[index].bh;
6699 		el = path->p_node[index].el;
6700 
6701 		mlog(0, "traveling tree (index = %d, block = %llu)\n",
6702 		     index,  (unsigned long long)bh->b_blocknr);
6703 
6704 		BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
6705 
6706 		if (index !=
6707 		    (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
6708 			ocfs2_error(inode->i_sb,
6709 				    "Inode %lu has invalid ext. block %llu",
6710 				    inode->i_ino,
6711 				    (unsigned long long)bh->b_blocknr);
6712 			ret = -EROFS;
6713 			goto out;
6714 		}
6715 
6716 find_tail_record:
6717 		i = le16_to_cpu(el->l_next_free_rec) - 1;
6718 		rec = &el->l_recs[i];
6719 
6720 		mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
6721 		     "next = %u\n", i, le32_to_cpu(rec->e_cpos),
6722 		     ocfs2_rec_clusters(el, rec),
6723 		     (unsigned long long)le64_to_cpu(rec->e_blkno),
6724 		     le16_to_cpu(el->l_next_free_rec));
6725 
6726 		BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
6727 
6728 		if (le16_to_cpu(el->l_tree_depth) == 0) {
6729 			/*
6730 			 * If the leaf block contains a single empty
6731 			 * extent and no records, we can just remove
6732 			 * the block.
6733 			 */
6734 			if (i == 0 && ocfs2_is_empty_extent(rec)) {
6735 				memset(rec, 0,
6736 				       sizeof(struct ocfs2_extent_rec));
6737 				el->l_next_free_rec = cpu_to_le16(0);
6738 
6739 				goto delete;
6740 			}
6741 
6742 			/*
6743 			 * Remove any empty extents by shifting things
6744 			 * left. That should make life much easier on
6745 			 * the code below. This condition is rare
6746 			 * enough that we shouldn't see a performance
6747 			 * hit.
6748 			 */
6749 			if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6750 				le16_add_cpu(&el->l_next_free_rec, -1);
6751 
6752 				for(i = 0;
6753 				    i < le16_to_cpu(el->l_next_free_rec); i++)
6754 					el->l_recs[i] = el->l_recs[i + 1];
6755 
6756 				memset(&el->l_recs[i], 0,
6757 				       sizeof(struct ocfs2_extent_rec));
6758 
6759 				/*
6760 				 * We've modified our extent list. The
6761 				 * simplest way to handle this change
6762 				 * is to being the search from the
6763 				 * start again.
6764 				 */
6765 				goto find_tail_record;
6766 			}
6767 
6768 			le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
6769 
6770 			/*
6771 			 * We'll use "new_edge" on our way back up the
6772 			 * tree to know what our rightmost cpos is.
6773 			 */
6774 			new_edge = le16_to_cpu(rec->e_leaf_clusters);
6775 			new_edge += le32_to_cpu(rec->e_cpos);
6776 
6777 			/*
6778 			 * The caller will use this to delete data blocks.
6779 			 */
6780 			*delete_start = le64_to_cpu(rec->e_blkno)
6781 				+ ocfs2_clusters_to_blocks(inode->i_sb,
6782 					le16_to_cpu(rec->e_leaf_clusters));
6783 			*flags = rec->e_flags;
6784 
6785 			/*
6786 			 * If it's now empty, remove this record.
6787 			 */
6788 			if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
6789 				memset(rec, 0,
6790 				       sizeof(struct ocfs2_extent_rec));
6791 				le16_add_cpu(&el->l_next_free_rec, -1);
6792 			}
6793 		} else {
6794 			if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
6795 				memset(rec, 0,
6796 				       sizeof(struct ocfs2_extent_rec));
6797 				le16_add_cpu(&el->l_next_free_rec, -1);
6798 
6799 				goto delete;
6800 			}
6801 
6802 			/* Can this actually happen? */
6803 			if (le16_to_cpu(el->l_next_free_rec) == 0)
6804 				goto delete;
6805 
6806 			/*
6807 			 * We never actually deleted any clusters
6808 			 * because our leaf was empty. There's no
6809 			 * reason to adjust the rightmost edge then.
6810 			 */
6811 			if (new_edge == 0)
6812 				goto delete;
6813 
6814 			rec->e_int_clusters = cpu_to_le32(new_edge);
6815 			le32_add_cpu(&rec->e_int_clusters,
6816 				     -le32_to_cpu(rec->e_cpos));
6817 
6818 			 /*
6819 			  * A deleted child record should have been
6820 			  * caught above.
6821 			  */
6822 			 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
6823 		}
6824 
6825 delete:
6826 		ret = ocfs2_journal_dirty(handle, bh);
6827 		if (ret) {
6828 			mlog_errno(ret);
6829 			goto out;
6830 		}
6831 
6832 		mlog(0, "extent list container %llu, after: record %d: "
6833 		     "(%u, %u, %llu), next = %u.\n",
6834 		     (unsigned long long)bh->b_blocknr, i,
6835 		     le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
6836 		     (unsigned long long)le64_to_cpu(rec->e_blkno),
6837 		     le16_to_cpu(el->l_next_free_rec));
6838 
6839 		/*
6840 		 * We must be careful to only attempt delete of an
6841 		 * extent block (and not the root inode block).
6842 		 */
6843 		if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
6844 			struct ocfs2_extent_block *eb =
6845 				(struct ocfs2_extent_block *)bh->b_data;
6846 
6847 			/*
6848 			 * Save this for use when processing the
6849 			 * parent block.
6850 			 */
6851 			deleted_eb = le64_to_cpu(eb->h_blkno);
6852 
6853 			mlog(0, "deleting this extent block.\n");
6854 
6855 			ocfs2_remove_from_cache(INODE_CACHE(inode), bh);
6856 
6857 			BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
6858 			BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
6859 			BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
6860 
6861 			ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
6862 			/* An error here is not fatal. */
6863 			if (ret < 0)
6864 				mlog_errno(ret);
6865 		} else {
6866 			deleted_eb = 0;
6867 		}
6868 
6869 		index--;
6870 	}
6871 
6872 	ret = 0;
6873 out:
6874 	return ret;
6875 }
6876 
6877 static int ocfs2_do_truncate(struct ocfs2_super *osb,
6878 			     unsigned int clusters_to_del,
6879 			     struct inode *inode,
6880 			     struct buffer_head *fe_bh,
6881 			     handle_t *handle,
6882 			     struct ocfs2_truncate_context *tc,
6883 			     struct ocfs2_path *path,
6884 			     struct ocfs2_alloc_context *meta_ac)
6885 {
6886 	int status;
6887 	struct ocfs2_dinode *fe;
6888 	struct ocfs2_extent_block *last_eb = NULL;
6889 	struct ocfs2_extent_list *el;
6890 	struct buffer_head *last_eb_bh = NULL;
6891 	u64 delete_blk = 0;
6892 	u8 rec_flags;
6893 
6894 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
6895 
6896 	status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
6897 					     path, &last_eb_bh);
6898 	if (status < 0) {
6899 		mlog_errno(status);
6900 		goto bail;
6901 	}
6902 
6903 	/*
6904 	 * Each component will be touched, so we might as well journal
6905 	 * here to avoid having to handle errors later.
6906 	 */
6907 	status = ocfs2_journal_access_path(INODE_CACHE(inode), handle, path);
6908 	if (status < 0) {
6909 		mlog_errno(status);
6910 		goto bail;
6911 	}
6912 
6913 	if (last_eb_bh) {
6914 		status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), last_eb_bh,
6915 						 OCFS2_JOURNAL_ACCESS_WRITE);
6916 		if (status < 0) {
6917 			mlog_errno(status);
6918 			goto bail;
6919 		}
6920 
6921 		last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6922 	}
6923 
6924 	el = &(fe->id2.i_list);
6925 
6926 	/*
6927 	 * Lower levels depend on this never happening, but it's best
6928 	 * to check it up here before changing the tree.
6929 	 */
6930 	if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
6931 		ocfs2_error(inode->i_sb,
6932 			    "Inode %lu has an empty extent record, depth %u\n",
6933 			    inode->i_ino, le16_to_cpu(el->l_tree_depth));
6934 		status = -EROFS;
6935 		goto bail;
6936 	}
6937 
6938 	vfs_dq_free_space_nodirty(inode,
6939 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_del));
6940 	spin_lock(&OCFS2_I(inode)->ip_lock);
6941 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
6942 				      clusters_to_del;
6943 	spin_unlock(&OCFS2_I(inode)->ip_lock);
6944 	le32_add_cpu(&fe->i_clusters, -clusters_to_del);
6945 	inode->i_blocks = ocfs2_inode_sector_count(inode);
6946 
6947 	status = ocfs2_trim_tree(inode, path, handle, tc,
6948 				 clusters_to_del, &delete_blk, &rec_flags);
6949 	if (status) {
6950 		mlog_errno(status);
6951 		goto bail;
6952 	}
6953 
6954 	if (le32_to_cpu(fe->i_clusters) == 0) {
6955 		/* trunc to zero is a special case. */
6956 		el->l_tree_depth = 0;
6957 		fe->i_last_eb_blk = 0;
6958 	} else if (last_eb)
6959 		fe->i_last_eb_blk = last_eb->h_blkno;
6960 
6961 	status = ocfs2_journal_dirty(handle, fe_bh);
6962 	if (status < 0) {
6963 		mlog_errno(status);
6964 		goto bail;
6965 	}
6966 
6967 	if (last_eb) {
6968 		/* If there will be a new last extent block, then by
6969 		 * definition, there cannot be any leaves to the right of
6970 		 * him. */
6971 		last_eb->h_next_leaf_blk = 0;
6972 		status = ocfs2_journal_dirty(handle, last_eb_bh);
6973 		if (status < 0) {
6974 			mlog_errno(status);
6975 			goto bail;
6976 		}
6977 	}
6978 
6979 	if (delete_blk) {
6980 		if (rec_flags & OCFS2_EXT_REFCOUNTED)
6981 			status = ocfs2_decrease_refcount(inode, handle,
6982 					ocfs2_blocks_to_clusters(osb->sb,
6983 								 delete_blk),
6984 					clusters_to_del, meta_ac,
6985 					&tc->tc_dealloc, 1);
6986 		else
6987 			status = ocfs2_truncate_log_append(osb, handle,
6988 							   delete_blk,
6989 							   clusters_to_del);
6990 		if (status < 0) {
6991 			mlog_errno(status);
6992 			goto bail;
6993 		}
6994 	}
6995 	status = 0;
6996 bail:
6997 	brelse(last_eb_bh);
6998 	mlog_exit(status);
6999 	return status;
7000 }
7001 
7002 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
7003 {
7004 	set_buffer_uptodate(bh);
7005 	mark_buffer_dirty(bh);
7006 	return 0;
7007 }
7008 
7009 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
7010 			      unsigned int from, unsigned int to,
7011 			      struct page *page, int zero, u64 *phys)
7012 {
7013 	int ret, partial = 0;
7014 
7015 	ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
7016 	if (ret)
7017 		mlog_errno(ret);
7018 
7019 	if (zero)
7020 		zero_user_segment(page, from, to);
7021 
7022 	/*
7023 	 * Need to set the buffers we zero'd into uptodate
7024 	 * here if they aren't - ocfs2_map_page_blocks()
7025 	 * might've skipped some
7026 	 */
7027 	ret = walk_page_buffers(handle, page_buffers(page),
7028 				from, to, &partial,
7029 				ocfs2_zero_func);
7030 	if (ret < 0)
7031 		mlog_errno(ret);
7032 	else if (ocfs2_should_order_data(inode)) {
7033 		ret = ocfs2_jbd2_file_inode(handle, inode);
7034 		if (ret < 0)
7035 			mlog_errno(ret);
7036 	}
7037 
7038 	if (!partial)
7039 		SetPageUptodate(page);
7040 
7041 	flush_dcache_page(page);
7042 }
7043 
7044 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
7045 				     loff_t end, struct page **pages,
7046 				     int numpages, u64 phys, handle_t *handle)
7047 {
7048 	int i;
7049 	struct page *page;
7050 	unsigned int from, to = PAGE_CACHE_SIZE;
7051 	struct super_block *sb = inode->i_sb;
7052 
7053 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
7054 
7055 	if (numpages == 0)
7056 		goto out;
7057 
7058 	to = PAGE_CACHE_SIZE;
7059 	for(i = 0; i < numpages; i++) {
7060 		page = pages[i];
7061 
7062 		from = start & (PAGE_CACHE_SIZE - 1);
7063 		if ((end >> PAGE_CACHE_SHIFT) == page->index)
7064 			to = end & (PAGE_CACHE_SIZE - 1);
7065 
7066 		BUG_ON(from > PAGE_CACHE_SIZE);
7067 		BUG_ON(to > PAGE_CACHE_SIZE);
7068 
7069 		ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
7070 					 &phys);
7071 
7072 		start = (page->index + 1) << PAGE_CACHE_SHIFT;
7073 	}
7074 out:
7075 	if (pages)
7076 		ocfs2_unlock_and_free_pages(pages, numpages);
7077 }
7078 
7079 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end,
7080 		     struct page **pages, int *num)
7081 {
7082 	int numpages, ret = 0;
7083 	struct address_space *mapping = inode->i_mapping;
7084 	unsigned long index;
7085 	loff_t last_page_bytes;
7086 
7087 	BUG_ON(start > end);
7088 
7089 	numpages = 0;
7090 	last_page_bytes = PAGE_ALIGN(end);
7091 	index = start >> PAGE_CACHE_SHIFT;
7092 	do {
7093 		pages[numpages] = grab_cache_page(mapping, index);
7094 		if (!pages[numpages]) {
7095 			ret = -ENOMEM;
7096 			mlog_errno(ret);
7097 			goto out;
7098 		}
7099 
7100 		numpages++;
7101 		index++;
7102 	} while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
7103 
7104 out:
7105 	if (ret != 0) {
7106 		if (pages)
7107 			ocfs2_unlock_and_free_pages(pages, numpages);
7108 		numpages = 0;
7109 	}
7110 
7111 	*num = numpages;
7112 
7113 	return ret;
7114 }
7115 
7116 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
7117 				struct page **pages, int *num)
7118 {
7119 	struct super_block *sb = inode->i_sb;
7120 
7121 	BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
7122 	       (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
7123 
7124 	return ocfs2_grab_pages(inode, start, end, pages, num);
7125 }
7126 
7127 /*
7128  * Zero the area past i_size but still within an allocated
7129  * cluster. This avoids exposing nonzero data on subsequent file
7130  * extends.
7131  *
7132  * We need to call this before i_size is updated on the inode because
7133  * otherwise block_write_full_page() will skip writeout of pages past
7134  * i_size. The new_i_size parameter is passed for this reason.
7135  */
7136 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
7137 				  u64 range_start, u64 range_end)
7138 {
7139 	int ret = 0, numpages;
7140 	struct page **pages = NULL;
7141 	u64 phys;
7142 	unsigned int ext_flags;
7143 	struct super_block *sb = inode->i_sb;
7144 
7145 	/*
7146 	 * File systems which don't support sparse files zero on every
7147 	 * extend.
7148 	 */
7149 	if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
7150 		return 0;
7151 
7152 	pages = kcalloc(ocfs2_pages_per_cluster(sb),
7153 			sizeof(struct page *), GFP_NOFS);
7154 	if (pages == NULL) {
7155 		ret = -ENOMEM;
7156 		mlog_errno(ret);
7157 		goto out;
7158 	}
7159 
7160 	if (range_start == range_end)
7161 		goto out;
7162 
7163 	ret = ocfs2_extent_map_get_blocks(inode,
7164 					  range_start >> sb->s_blocksize_bits,
7165 					  &phys, NULL, &ext_flags);
7166 	if (ret) {
7167 		mlog_errno(ret);
7168 		goto out;
7169 	}
7170 
7171 	/*
7172 	 * Tail is a hole, or is marked unwritten. In either case, we
7173 	 * can count on read and write to return/push zero's.
7174 	 */
7175 	if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
7176 		goto out;
7177 
7178 	ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
7179 				   &numpages);
7180 	if (ret) {
7181 		mlog_errno(ret);
7182 		goto out;
7183 	}
7184 
7185 	ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
7186 				 numpages, phys, handle);
7187 
7188 	/*
7189 	 * Initiate writeout of the pages we zero'd here. We don't
7190 	 * wait on them - the truncate_inode_pages() call later will
7191 	 * do that for us.
7192 	 */
7193 	ret = filemap_fdatawrite_range(inode->i_mapping, range_start,
7194 				       range_end - 1);
7195 	if (ret)
7196 		mlog_errno(ret);
7197 
7198 out:
7199 	if (pages)
7200 		kfree(pages);
7201 
7202 	return ret;
7203 }
7204 
7205 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
7206 					     struct ocfs2_dinode *di)
7207 {
7208 	unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
7209 	unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
7210 
7211 	if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
7212 		memset(&di->id2, 0, blocksize -
7213 				    offsetof(struct ocfs2_dinode, id2) -
7214 				    xattrsize);
7215 	else
7216 		memset(&di->id2, 0, blocksize -
7217 				    offsetof(struct ocfs2_dinode, id2));
7218 }
7219 
7220 void ocfs2_dinode_new_extent_list(struct inode *inode,
7221 				  struct ocfs2_dinode *di)
7222 {
7223 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
7224 	di->id2.i_list.l_tree_depth = 0;
7225 	di->id2.i_list.l_next_free_rec = 0;
7226 	di->id2.i_list.l_count = cpu_to_le16(
7227 		ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
7228 }
7229 
7230 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
7231 {
7232 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
7233 	struct ocfs2_inline_data *idata = &di->id2.i_data;
7234 
7235 	spin_lock(&oi->ip_lock);
7236 	oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
7237 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7238 	spin_unlock(&oi->ip_lock);
7239 
7240 	/*
7241 	 * We clear the entire i_data structure here so that all
7242 	 * fields can be properly initialized.
7243 	 */
7244 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
7245 
7246 	idata->id_count = cpu_to_le16(
7247 			ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
7248 }
7249 
7250 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
7251 					 struct buffer_head *di_bh)
7252 {
7253 	int ret, i, has_data, num_pages = 0;
7254 	handle_t *handle;
7255 	u64 uninitialized_var(block);
7256 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
7257 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7258 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7259 	struct ocfs2_alloc_context *data_ac = NULL;
7260 	struct page **pages = NULL;
7261 	loff_t end = osb->s_clustersize;
7262 	struct ocfs2_extent_tree et;
7263 	int did_quota = 0;
7264 
7265 	has_data = i_size_read(inode) ? 1 : 0;
7266 
7267 	if (has_data) {
7268 		pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
7269 				sizeof(struct page *), GFP_NOFS);
7270 		if (pages == NULL) {
7271 			ret = -ENOMEM;
7272 			mlog_errno(ret);
7273 			goto out;
7274 		}
7275 
7276 		ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
7277 		if (ret) {
7278 			mlog_errno(ret);
7279 			goto out;
7280 		}
7281 	}
7282 
7283 	handle = ocfs2_start_trans(osb,
7284 				   ocfs2_inline_to_extents_credits(osb->sb));
7285 	if (IS_ERR(handle)) {
7286 		ret = PTR_ERR(handle);
7287 		mlog_errno(ret);
7288 		goto out_unlock;
7289 	}
7290 
7291 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7292 				      OCFS2_JOURNAL_ACCESS_WRITE);
7293 	if (ret) {
7294 		mlog_errno(ret);
7295 		goto out_commit;
7296 	}
7297 
7298 	if (has_data) {
7299 		u32 bit_off, num;
7300 		unsigned int page_end;
7301 		u64 phys;
7302 
7303 		if (vfs_dq_alloc_space_nodirty(inode,
7304 				       ocfs2_clusters_to_bytes(osb->sb, 1))) {
7305 			ret = -EDQUOT;
7306 			goto out_commit;
7307 		}
7308 		did_quota = 1;
7309 
7310 		ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
7311 					   &num);
7312 		if (ret) {
7313 			mlog_errno(ret);
7314 			goto out_commit;
7315 		}
7316 
7317 		/*
7318 		 * Save two copies, one for insert, and one that can
7319 		 * be changed by ocfs2_map_and_dirty_page() below.
7320 		 */
7321 		block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
7322 
7323 		/*
7324 		 * Non sparse file systems zero on extend, so no need
7325 		 * to do that now.
7326 		 */
7327 		if (!ocfs2_sparse_alloc(osb) &&
7328 		    PAGE_CACHE_SIZE < osb->s_clustersize)
7329 			end = PAGE_CACHE_SIZE;
7330 
7331 		ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
7332 		if (ret) {
7333 			mlog_errno(ret);
7334 			goto out_commit;
7335 		}
7336 
7337 		/*
7338 		 * This should populate the 1st page for us and mark
7339 		 * it up to date.
7340 		 */
7341 		ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
7342 		if (ret) {
7343 			mlog_errno(ret);
7344 			goto out_commit;
7345 		}
7346 
7347 		page_end = PAGE_CACHE_SIZE;
7348 		if (PAGE_CACHE_SIZE > osb->s_clustersize)
7349 			page_end = osb->s_clustersize;
7350 
7351 		for (i = 0; i < num_pages; i++)
7352 			ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
7353 						 pages[i], i > 0, &phys);
7354 	}
7355 
7356 	spin_lock(&oi->ip_lock);
7357 	oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
7358 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7359 	spin_unlock(&oi->ip_lock);
7360 
7361 	ocfs2_dinode_new_extent_list(inode, di);
7362 
7363 	ocfs2_journal_dirty(handle, di_bh);
7364 
7365 	if (has_data) {
7366 		/*
7367 		 * An error at this point should be extremely rare. If
7368 		 * this proves to be false, we could always re-build
7369 		 * the in-inode data from our pages.
7370 		 */
7371 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
7372 		ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL);
7373 		if (ret) {
7374 			mlog_errno(ret);
7375 			goto out_commit;
7376 		}
7377 
7378 		inode->i_blocks = ocfs2_inode_sector_count(inode);
7379 	}
7380 
7381 out_commit:
7382 	if (ret < 0 && did_quota)
7383 		vfs_dq_free_space_nodirty(inode,
7384 					  ocfs2_clusters_to_bytes(osb->sb, 1));
7385 
7386 	ocfs2_commit_trans(osb, handle);
7387 
7388 out_unlock:
7389 	if (data_ac)
7390 		ocfs2_free_alloc_context(data_ac);
7391 
7392 out:
7393 	if (pages) {
7394 		ocfs2_unlock_and_free_pages(pages, num_pages);
7395 		kfree(pages);
7396 	}
7397 
7398 	return ret;
7399 }
7400 
7401 /*
7402  * It is expected, that by the time you call this function,
7403  * inode->i_size and fe->i_size have been adjusted.
7404  *
7405  * WARNING: This will kfree the truncate context
7406  */
7407 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7408 			  struct inode *inode,
7409 			  struct buffer_head *fe_bh,
7410 			  struct ocfs2_truncate_context *tc)
7411 {
7412 	int status, i, credits, tl_sem = 0;
7413 	u32 clusters_to_del, new_highest_cpos, range;
7414 	u64 blkno = 0;
7415 	struct ocfs2_extent_list *el;
7416 	handle_t *handle = NULL;
7417 	struct inode *tl_inode = osb->osb_tl_inode;
7418 	struct ocfs2_path *path = NULL;
7419 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data;
7420 	struct ocfs2_alloc_context *meta_ac = NULL;
7421 	struct ocfs2_refcount_tree *ref_tree = NULL;
7422 
7423 	mlog_entry_void();
7424 
7425 	new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7426 						     i_size_read(inode));
7427 
7428 	path = ocfs2_new_path(fe_bh, &di->id2.i_list,
7429 			      ocfs2_journal_access_di);
7430 	if (!path) {
7431 		status = -ENOMEM;
7432 		mlog_errno(status);
7433 		goto bail;
7434 	}
7435 
7436 	ocfs2_extent_map_trunc(inode, new_highest_cpos);
7437 
7438 start:
7439 	/*
7440 	 * Check that we still have allocation to delete.
7441 	 */
7442 	if (OCFS2_I(inode)->ip_clusters == 0) {
7443 		status = 0;
7444 		goto bail;
7445 	}
7446 
7447 	credits = 0;
7448 
7449 	/*
7450 	 * Truncate always works against the rightmost tree branch.
7451 	 */
7452 	status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX);
7453 	if (status) {
7454 		mlog_errno(status);
7455 		goto bail;
7456 	}
7457 
7458 	mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
7459 	     OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
7460 
7461 	/*
7462 	 * By now, el will point to the extent list on the bottom most
7463 	 * portion of this tree. Only the tail record is considered in
7464 	 * each pass.
7465 	 *
7466 	 * We handle the following cases, in order:
7467 	 * - empty extent: delete the remaining branch
7468 	 * - remove the entire record
7469 	 * - remove a partial record
7470 	 * - no record needs to be removed (truncate has completed)
7471 	 */
7472 	el = path_leaf_el(path);
7473 	if (le16_to_cpu(el->l_next_free_rec) == 0) {
7474 		ocfs2_error(inode->i_sb,
7475 			    "Inode %llu has empty extent block at %llu\n",
7476 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7477 			    (unsigned long long)path_leaf_bh(path)->b_blocknr);
7478 		status = -EROFS;
7479 		goto bail;
7480 	}
7481 
7482 	i = le16_to_cpu(el->l_next_free_rec) - 1;
7483 	range = le32_to_cpu(el->l_recs[i].e_cpos) +
7484 		ocfs2_rec_clusters(el, &el->l_recs[i]);
7485 	if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
7486 		clusters_to_del = 0;
7487 	} else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
7488 		clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
7489 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
7490 	} else if (range > new_highest_cpos) {
7491 		clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
7492 				   le32_to_cpu(el->l_recs[i].e_cpos)) -
7493 				  new_highest_cpos;
7494 		blkno = le64_to_cpu(el->l_recs[i].e_blkno) +
7495 			ocfs2_clusters_to_blocks(inode->i_sb,
7496 				ocfs2_rec_clusters(el, &el->l_recs[i]) -
7497 				clusters_to_del);
7498 	} else {
7499 		status = 0;
7500 		goto bail;
7501 	}
7502 
7503 	mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
7504 	     clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
7505 
7506 	if (el->l_recs[i].e_flags & OCFS2_EXT_REFCOUNTED && clusters_to_del) {
7507 		BUG_ON(!(OCFS2_I(inode)->ip_dyn_features &
7508 			 OCFS2_HAS_REFCOUNT_FL));
7509 
7510 		status = ocfs2_lock_refcount_tree(osb,
7511 						le64_to_cpu(di->i_refcount_loc),
7512 						1, &ref_tree, NULL);
7513 		if (status) {
7514 			mlog_errno(status);
7515 			goto bail;
7516 		}
7517 
7518 		status = ocfs2_prepare_refcount_change_for_del(inode, fe_bh,
7519 							       blkno,
7520 							       clusters_to_del,
7521 							       &credits,
7522 							       &meta_ac);
7523 		if (status < 0) {
7524 			mlog_errno(status);
7525 			goto bail;
7526 		}
7527 	}
7528 
7529 	mutex_lock(&tl_inode->i_mutex);
7530 	tl_sem = 1;
7531 	/* ocfs2_truncate_log_needs_flush guarantees us at least one
7532 	 * record is free for use. If there isn't any, we flush to get
7533 	 * an empty truncate log.  */
7534 	if (ocfs2_truncate_log_needs_flush(osb)) {
7535 		status = __ocfs2_flush_truncate_log(osb);
7536 		if (status < 0) {
7537 			mlog_errno(status);
7538 			goto bail;
7539 		}
7540 	}
7541 
7542 	credits += ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
7543 						(struct ocfs2_dinode *)fe_bh->b_data,
7544 						el);
7545 	handle = ocfs2_start_trans(osb, credits);
7546 	if (IS_ERR(handle)) {
7547 		status = PTR_ERR(handle);
7548 		handle = NULL;
7549 		mlog_errno(status);
7550 		goto bail;
7551 	}
7552 
7553 	status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
7554 				   tc, path, meta_ac);
7555 	if (status < 0) {
7556 		mlog_errno(status);
7557 		goto bail;
7558 	}
7559 
7560 	mutex_unlock(&tl_inode->i_mutex);
7561 	tl_sem = 0;
7562 
7563 	ocfs2_commit_trans(osb, handle);
7564 	handle = NULL;
7565 
7566 	ocfs2_reinit_path(path, 1);
7567 
7568 	if (meta_ac) {
7569 		ocfs2_free_alloc_context(meta_ac);
7570 		meta_ac = NULL;
7571 	}
7572 
7573 	if (ref_tree) {
7574 		ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
7575 		ref_tree = NULL;
7576 	}
7577 
7578 	/*
7579 	 * The check above will catch the case where we've truncated
7580 	 * away all allocation.
7581 	 */
7582 	goto start;
7583 
7584 bail:
7585 
7586 	ocfs2_schedule_truncate_log_flush(osb, 1);
7587 
7588 	if (tl_sem)
7589 		mutex_unlock(&tl_inode->i_mutex);
7590 
7591 	if (handle)
7592 		ocfs2_commit_trans(osb, handle);
7593 
7594 	if (meta_ac)
7595 		ocfs2_free_alloc_context(meta_ac);
7596 
7597 	if (ref_tree)
7598 		ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
7599 
7600 	ocfs2_run_deallocs(osb, &tc->tc_dealloc);
7601 
7602 	ocfs2_free_path(path);
7603 
7604 	/* This will drop the ext_alloc cluster lock for us */
7605 	ocfs2_free_truncate_context(tc);
7606 
7607 	mlog_exit(status);
7608 	return status;
7609 }
7610 
7611 /*
7612  * Expects the inode to already be locked.
7613  */
7614 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
7615 			   struct inode *inode,
7616 			   struct buffer_head *fe_bh,
7617 			   struct ocfs2_truncate_context **tc)
7618 {
7619 	int status;
7620 	unsigned int new_i_clusters;
7621 	struct ocfs2_dinode *fe;
7622 	struct ocfs2_extent_block *eb;
7623 	struct buffer_head *last_eb_bh = NULL;
7624 
7625 	mlog_entry_void();
7626 
7627 	*tc = NULL;
7628 
7629 	new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
7630 						  i_size_read(inode));
7631 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
7632 
7633 	mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
7634 	     "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
7635 	     (unsigned long long)le64_to_cpu(fe->i_size));
7636 
7637 	*tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
7638 	if (!(*tc)) {
7639 		status = -ENOMEM;
7640 		mlog_errno(status);
7641 		goto bail;
7642 	}
7643 	ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
7644 
7645 	if (fe->id2.i_list.l_tree_depth) {
7646 		status = ocfs2_read_extent_block(INODE_CACHE(inode),
7647 						 le64_to_cpu(fe->i_last_eb_blk),
7648 						 &last_eb_bh);
7649 		if (status < 0) {
7650 			mlog_errno(status);
7651 			goto bail;
7652 		}
7653 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
7654 	}
7655 
7656 	(*tc)->tc_last_eb_bh = last_eb_bh;
7657 
7658 	status = 0;
7659 bail:
7660 	if (status < 0) {
7661 		if (*tc)
7662 			ocfs2_free_truncate_context(*tc);
7663 		*tc = NULL;
7664 	}
7665 	mlog_exit_void();
7666 	return status;
7667 }
7668 
7669 /*
7670  * 'start' is inclusive, 'end' is not.
7671  */
7672 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7673 			  unsigned int start, unsigned int end, int trunc)
7674 {
7675 	int ret;
7676 	unsigned int numbytes;
7677 	handle_t *handle;
7678 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7679 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7680 	struct ocfs2_inline_data *idata = &di->id2.i_data;
7681 
7682 	if (end > i_size_read(inode))
7683 		end = i_size_read(inode);
7684 
7685 	BUG_ON(start >= end);
7686 
7687 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7688 	    !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7689 	    !ocfs2_supports_inline_data(osb)) {
7690 		ocfs2_error(inode->i_sb,
7691 			    "Inline data flags for inode %llu don't agree! "
7692 			    "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7693 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7694 			    le16_to_cpu(di->i_dyn_features),
7695 			    OCFS2_I(inode)->ip_dyn_features,
7696 			    osb->s_feature_incompat);
7697 		ret = -EROFS;
7698 		goto out;
7699 	}
7700 
7701 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7702 	if (IS_ERR(handle)) {
7703 		ret = PTR_ERR(handle);
7704 		mlog_errno(ret);
7705 		goto out;
7706 	}
7707 
7708 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7709 				      OCFS2_JOURNAL_ACCESS_WRITE);
7710 	if (ret) {
7711 		mlog_errno(ret);
7712 		goto out_commit;
7713 	}
7714 
7715 	numbytes = end - start;
7716 	memset(idata->id_data + start, 0, numbytes);
7717 
7718 	/*
7719 	 * No need to worry about the data page here - it's been
7720 	 * truncated already and inline data doesn't need it for
7721 	 * pushing zero's to disk, so we'll let readpage pick it up
7722 	 * later.
7723 	 */
7724 	if (trunc) {
7725 		i_size_write(inode, start);
7726 		di->i_size = cpu_to_le64(start);
7727 	}
7728 
7729 	inode->i_blocks = ocfs2_inode_sector_count(inode);
7730 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7731 
7732 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7733 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7734 
7735 	ocfs2_journal_dirty(handle, di_bh);
7736 
7737 out_commit:
7738 	ocfs2_commit_trans(osb, handle);
7739 
7740 out:
7741 	return ret;
7742 }
7743 
7744 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
7745 {
7746 	/*
7747 	 * The caller is responsible for completing deallocation
7748 	 * before freeing the context.
7749 	 */
7750 	if (tc->tc_dealloc.c_first_suballocator != NULL)
7751 		mlog(ML_NOTICE,
7752 		     "Truncate completion has non-empty dealloc context\n");
7753 
7754 	brelse(tc->tc_last_eb_bh);
7755 
7756 	kfree(tc);
7757 }
7758