xref: /openbmc/linux/fs/ocfs2/alloc.c (revision 9ac8d3fb)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 
32 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
33 #include <cluster/masklog.h>
34 
35 #include "ocfs2.h"
36 
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "localalloc.h"
44 #include "suballoc.h"
45 #include "sysfile.h"
46 #include "file.h"
47 #include "super.h"
48 #include "uptodate.h"
49 
50 #include "buffer_head_io.h"
51 
52 
53 /*
54  * Operations for a specific extent tree type.
55  *
56  * To implement an on-disk btree (extent tree) type in ocfs2, add
57  * an ocfs2_extent_tree_operations structure and the matching
58  * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
59  * for the allocation portion of the extent tree.
60  */
61 struct ocfs2_extent_tree_operations {
62 	/*
63 	 * last_eb_blk is the block number of the right most leaf extent
64 	 * block.  Most on-disk structures containing an extent tree store
65 	 * this value for fast access.  The ->eo_set_last_eb_blk() and
66 	 * ->eo_get_last_eb_blk() operations access this value.  They are
67 	 *  both required.
68 	 */
69 	void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
70 				   u64 blkno);
71 	u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
72 
73 	/*
74 	 * The on-disk structure usually keeps track of how many total
75 	 * clusters are stored in this extent tree.  This function updates
76 	 * that value.  new_clusters is the delta, and must be
77 	 * added to the total.  Required.
78 	 */
79 	void (*eo_update_clusters)(struct inode *inode,
80 				   struct ocfs2_extent_tree *et,
81 				   u32 new_clusters);
82 
83 	/*
84 	 * If ->eo_insert_check() exists, it is called before rec is
85 	 * inserted into the extent tree.  It is optional.
86 	 */
87 	int (*eo_insert_check)(struct inode *inode,
88 			       struct ocfs2_extent_tree *et,
89 			       struct ocfs2_extent_rec *rec);
90 	int (*eo_sanity_check)(struct inode *inode, struct ocfs2_extent_tree *et);
91 
92 	/*
93 	 * --------------------------------------------------------------
94 	 * The remaining are internal to ocfs2_extent_tree and don't have
95 	 * accessor functions
96 	 */
97 
98 	/*
99 	 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
100 	 * It is required.
101 	 */
102 	void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
103 
104 	/*
105 	 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
106 	 * it exists.  If it does not, et->et_max_leaf_clusters is set
107 	 * to 0 (unlimited).  Optional.
108 	 */
109 	void (*eo_fill_max_leaf_clusters)(struct inode *inode,
110 					  struct ocfs2_extent_tree *et);
111 };
112 
113 
114 /*
115  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
116  * in the methods.
117  */
118 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
119 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
120 					 u64 blkno);
121 static void ocfs2_dinode_update_clusters(struct inode *inode,
122 					 struct ocfs2_extent_tree *et,
123 					 u32 clusters);
124 static int ocfs2_dinode_insert_check(struct inode *inode,
125 				     struct ocfs2_extent_tree *et,
126 				     struct ocfs2_extent_rec *rec);
127 static int ocfs2_dinode_sanity_check(struct inode *inode,
128 				     struct ocfs2_extent_tree *et);
129 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
130 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
131 	.eo_set_last_eb_blk	= ocfs2_dinode_set_last_eb_blk,
132 	.eo_get_last_eb_blk	= ocfs2_dinode_get_last_eb_blk,
133 	.eo_update_clusters	= ocfs2_dinode_update_clusters,
134 	.eo_insert_check	= ocfs2_dinode_insert_check,
135 	.eo_sanity_check	= ocfs2_dinode_sanity_check,
136 	.eo_fill_root_el	= ocfs2_dinode_fill_root_el,
137 };
138 
139 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
140 					 u64 blkno)
141 {
142 	struct ocfs2_dinode *di = et->et_object;
143 
144 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
145 	di->i_last_eb_blk = cpu_to_le64(blkno);
146 }
147 
148 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
149 {
150 	struct ocfs2_dinode *di = et->et_object;
151 
152 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
153 	return le64_to_cpu(di->i_last_eb_blk);
154 }
155 
156 static void ocfs2_dinode_update_clusters(struct inode *inode,
157 					 struct ocfs2_extent_tree *et,
158 					 u32 clusters)
159 {
160 	struct ocfs2_dinode *di = et->et_object;
161 
162 	le32_add_cpu(&di->i_clusters, clusters);
163 	spin_lock(&OCFS2_I(inode)->ip_lock);
164 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
165 	spin_unlock(&OCFS2_I(inode)->ip_lock);
166 }
167 
168 static int ocfs2_dinode_insert_check(struct inode *inode,
169 				     struct ocfs2_extent_tree *et,
170 				     struct ocfs2_extent_rec *rec)
171 {
172 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
173 
174 	BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
175 	mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
176 			(OCFS2_I(inode)->ip_clusters != rec->e_cpos),
177 			"Device %s, asking for sparse allocation: inode %llu, "
178 			"cpos %u, clusters %u\n",
179 			osb->dev_str,
180 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
181 			rec->e_cpos,
182 			OCFS2_I(inode)->ip_clusters);
183 
184 	return 0;
185 }
186 
187 static int ocfs2_dinode_sanity_check(struct inode *inode,
188 				     struct ocfs2_extent_tree *et)
189 {
190 	int ret = 0;
191 	struct ocfs2_dinode *di;
192 
193 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
194 
195 	di = et->et_object;
196 	if (!OCFS2_IS_VALID_DINODE(di)) {
197 		ret = -EIO;
198 		ocfs2_error(inode->i_sb,
199 			"Inode %llu has invalid path root",
200 			(unsigned long long)OCFS2_I(inode)->ip_blkno);
201 	}
202 
203 	return ret;
204 }
205 
206 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
207 {
208 	struct ocfs2_dinode *di = et->et_object;
209 
210 	et->et_root_el = &di->id2.i_list;
211 }
212 
213 
214 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
215 {
216 	struct ocfs2_xattr_value_root *xv = et->et_object;
217 
218 	et->et_root_el = &xv->xr_list;
219 }
220 
221 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
222 					      u64 blkno)
223 {
224 	struct ocfs2_xattr_value_root *xv =
225 		(struct ocfs2_xattr_value_root *)et->et_object;
226 
227 	xv->xr_last_eb_blk = cpu_to_le64(blkno);
228 }
229 
230 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
231 {
232 	struct ocfs2_xattr_value_root *xv =
233 		(struct ocfs2_xattr_value_root *) et->et_object;
234 
235 	return le64_to_cpu(xv->xr_last_eb_blk);
236 }
237 
238 static void ocfs2_xattr_value_update_clusters(struct inode *inode,
239 					      struct ocfs2_extent_tree *et,
240 					      u32 clusters)
241 {
242 	struct ocfs2_xattr_value_root *xv =
243 		(struct ocfs2_xattr_value_root *)et->et_object;
244 
245 	le32_add_cpu(&xv->xr_clusters, clusters);
246 }
247 
248 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
249 	.eo_set_last_eb_blk	= ocfs2_xattr_value_set_last_eb_blk,
250 	.eo_get_last_eb_blk	= ocfs2_xattr_value_get_last_eb_blk,
251 	.eo_update_clusters	= ocfs2_xattr_value_update_clusters,
252 	.eo_fill_root_el	= ocfs2_xattr_value_fill_root_el,
253 };
254 
255 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
256 {
257 	struct ocfs2_xattr_block *xb = et->et_object;
258 
259 	et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
260 }
261 
262 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct inode *inode,
263 						    struct ocfs2_extent_tree *et)
264 {
265 	et->et_max_leaf_clusters =
266 		ocfs2_clusters_for_bytes(inode->i_sb,
267 					 OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
268 }
269 
270 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
271 					     u64 blkno)
272 {
273 	struct ocfs2_xattr_block *xb = et->et_object;
274 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
275 
276 	xt->xt_last_eb_blk = cpu_to_le64(blkno);
277 }
278 
279 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
280 {
281 	struct ocfs2_xattr_block *xb = et->et_object;
282 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
283 
284 	return le64_to_cpu(xt->xt_last_eb_blk);
285 }
286 
287 static void ocfs2_xattr_tree_update_clusters(struct inode *inode,
288 					     struct ocfs2_extent_tree *et,
289 					     u32 clusters)
290 {
291 	struct ocfs2_xattr_block *xb = et->et_object;
292 
293 	le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
294 }
295 
296 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
297 	.eo_set_last_eb_blk	= ocfs2_xattr_tree_set_last_eb_blk,
298 	.eo_get_last_eb_blk	= ocfs2_xattr_tree_get_last_eb_blk,
299 	.eo_update_clusters	= ocfs2_xattr_tree_update_clusters,
300 	.eo_fill_root_el	= ocfs2_xattr_tree_fill_root_el,
301 	.eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
302 };
303 
304 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
305 				     struct inode *inode,
306 				     struct buffer_head *bh,
307 				     void *obj,
308 				     struct ocfs2_extent_tree_operations *ops)
309 {
310 	et->et_ops = ops;
311 	et->et_root_bh = bh;
312 	if (!obj)
313 		obj = (void *)bh->b_data;
314 	et->et_object = obj;
315 
316 	et->et_ops->eo_fill_root_el(et);
317 	if (!et->et_ops->eo_fill_max_leaf_clusters)
318 		et->et_max_leaf_clusters = 0;
319 	else
320 		et->et_ops->eo_fill_max_leaf_clusters(inode, et);
321 }
322 
323 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
324 				   struct inode *inode,
325 				   struct buffer_head *bh)
326 {
327 	__ocfs2_init_extent_tree(et, inode, bh, NULL, &ocfs2_dinode_et_ops);
328 }
329 
330 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
331 				       struct inode *inode,
332 				       struct buffer_head *bh)
333 {
334 	__ocfs2_init_extent_tree(et, inode, bh, NULL,
335 				 &ocfs2_xattr_tree_et_ops);
336 }
337 
338 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
339 					struct inode *inode,
340 					struct buffer_head *bh,
341 					struct ocfs2_xattr_value_root *xv)
342 {
343 	__ocfs2_init_extent_tree(et, inode, bh, xv,
344 				 &ocfs2_xattr_value_et_ops);
345 }
346 
347 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
348 					    u64 new_last_eb_blk)
349 {
350 	et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
351 }
352 
353 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
354 {
355 	return et->et_ops->eo_get_last_eb_blk(et);
356 }
357 
358 static inline void ocfs2_et_update_clusters(struct inode *inode,
359 					    struct ocfs2_extent_tree *et,
360 					    u32 clusters)
361 {
362 	et->et_ops->eo_update_clusters(inode, et, clusters);
363 }
364 
365 static inline int ocfs2_et_insert_check(struct inode *inode,
366 					struct ocfs2_extent_tree *et,
367 					struct ocfs2_extent_rec *rec)
368 {
369 	int ret = 0;
370 
371 	if (et->et_ops->eo_insert_check)
372 		ret = et->et_ops->eo_insert_check(inode, et, rec);
373 	return ret;
374 }
375 
376 static inline int ocfs2_et_sanity_check(struct inode *inode,
377 					struct ocfs2_extent_tree *et)
378 {
379 	int ret = 0;
380 
381 	if (et->et_ops->eo_sanity_check)
382 		ret = et->et_ops->eo_sanity_check(inode, et);
383 	return ret;
384 }
385 
386 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
387 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
388 					 struct ocfs2_extent_block *eb);
389 
390 /*
391  * Structures which describe a path through a btree, and functions to
392  * manipulate them.
393  *
394  * The idea here is to be as generic as possible with the tree
395  * manipulation code.
396  */
397 struct ocfs2_path_item {
398 	struct buffer_head		*bh;
399 	struct ocfs2_extent_list	*el;
400 };
401 
402 #define OCFS2_MAX_PATH_DEPTH	5
403 
404 struct ocfs2_path {
405 	int			p_tree_depth;
406 	struct ocfs2_path_item	p_node[OCFS2_MAX_PATH_DEPTH];
407 };
408 
409 #define path_root_bh(_path) ((_path)->p_node[0].bh)
410 #define path_root_el(_path) ((_path)->p_node[0].el)
411 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
412 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
413 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
414 
415 /*
416  * Reset the actual path elements so that we can re-use the structure
417  * to build another path. Generally, this involves freeing the buffer
418  * heads.
419  */
420 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
421 {
422 	int i, start = 0, depth = 0;
423 	struct ocfs2_path_item *node;
424 
425 	if (keep_root)
426 		start = 1;
427 
428 	for(i = start; i < path_num_items(path); i++) {
429 		node = &path->p_node[i];
430 
431 		brelse(node->bh);
432 		node->bh = NULL;
433 		node->el = NULL;
434 	}
435 
436 	/*
437 	 * Tree depth may change during truncate, or insert. If we're
438 	 * keeping the root extent list, then make sure that our path
439 	 * structure reflects the proper depth.
440 	 */
441 	if (keep_root)
442 		depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
443 
444 	path->p_tree_depth = depth;
445 }
446 
447 static void ocfs2_free_path(struct ocfs2_path *path)
448 {
449 	if (path) {
450 		ocfs2_reinit_path(path, 0);
451 		kfree(path);
452 	}
453 }
454 
455 /*
456  * All the elements of src into dest. After this call, src could be freed
457  * without affecting dest.
458  *
459  * Both paths should have the same root. Any non-root elements of dest
460  * will be freed.
461  */
462 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
463 {
464 	int i;
465 
466 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
467 	BUG_ON(path_root_el(dest) != path_root_el(src));
468 
469 	ocfs2_reinit_path(dest, 1);
470 
471 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
472 		dest->p_node[i].bh = src->p_node[i].bh;
473 		dest->p_node[i].el = src->p_node[i].el;
474 
475 		if (dest->p_node[i].bh)
476 			get_bh(dest->p_node[i].bh);
477 	}
478 }
479 
480 /*
481  * Make the *dest path the same as src and re-initialize src path to
482  * have a root only.
483  */
484 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
485 {
486 	int i;
487 
488 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
489 
490 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
491 		brelse(dest->p_node[i].bh);
492 
493 		dest->p_node[i].bh = src->p_node[i].bh;
494 		dest->p_node[i].el = src->p_node[i].el;
495 
496 		src->p_node[i].bh = NULL;
497 		src->p_node[i].el = NULL;
498 	}
499 }
500 
501 /*
502  * Insert an extent block at given index.
503  *
504  * This will not take an additional reference on eb_bh.
505  */
506 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
507 					struct buffer_head *eb_bh)
508 {
509 	struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
510 
511 	/*
512 	 * Right now, no root bh is an extent block, so this helps
513 	 * catch code errors with dinode trees. The assertion can be
514 	 * safely removed if we ever need to insert extent block
515 	 * structures at the root.
516 	 */
517 	BUG_ON(index == 0);
518 
519 	path->p_node[index].bh = eb_bh;
520 	path->p_node[index].el = &eb->h_list;
521 }
522 
523 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
524 					 struct ocfs2_extent_list *root_el)
525 {
526 	struct ocfs2_path *path;
527 
528 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
529 
530 	path = kzalloc(sizeof(*path), GFP_NOFS);
531 	if (path) {
532 		path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
533 		get_bh(root_bh);
534 		path_root_bh(path) = root_bh;
535 		path_root_el(path) = root_el;
536 	}
537 
538 	return path;
539 }
540 
541 /*
542  * Convenience function to journal all components in a path.
543  */
544 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
545 				     struct ocfs2_path *path)
546 {
547 	int i, ret = 0;
548 
549 	if (!path)
550 		goto out;
551 
552 	for(i = 0; i < path_num_items(path); i++) {
553 		ret = ocfs2_journal_access(handle, inode, path->p_node[i].bh,
554 					   OCFS2_JOURNAL_ACCESS_WRITE);
555 		if (ret < 0) {
556 			mlog_errno(ret);
557 			goto out;
558 		}
559 	}
560 
561 out:
562 	return ret;
563 }
564 
565 /*
566  * Return the index of the extent record which contains cluster #v_cluster.
567  * -1 is returned if it was not found.
568  *
569  * Should work fine on interior and exterior nodes.
570  */
571 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
572 {
573 	int ret = -1;
574 	int i;
575 	struct ocfs2_extent_rec *rec;
576 	u32 rec_end, rec_start, clusters;
577 
578 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
579 		rec = &el->l_recs[i];
580 
581 		rec_start = le32_to_cpu(rec->e_cpos);
582 		clusters = ocfs2_rec_clusters(el, rec);
583 
584 		rec_end = rec_start + clusters;
585 
586 		if (v_cluster >= rec_start && v_cluster < rec_end) {
587 			ret = i;
588 			break;
589 		}
590 	}
591 
592 	return ret;
593 }
594 
595 enum ocfs2_contig_type {
596 	CONTIG_NONE = 0,
597 	CONTIG_LEFT,
598 	CONTIG_RIGHT,
599 	CONTIG_LEFTRIGHT,
600 };
601 
602 
603 /*
604  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
605  * ocfs2_extent_contig only work properly against leaf nodes!
606  */
607 static int ocfs2_block_extent_contig(struct super_block *sb,
608 				     struct ocfs2_extent_rec *ext,
609 				     u64 blkno)
610 {
611 	u64 blk_end = le64_to_cpu(ext->e_blkno);
612 
613 	blk_end += ocfs2_clusters_to_blocks(sb,
614 				    le16_to_cpu(ext->e_leaf_clusters));
615 
616 	return blkno == blk_end;
617 }
618 
619 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
620 				  struct ocfs2_extent_rec *right)
621 {
622 	u32 left_range;
623 
624 	left_range = le32_to_cpu(left->e_cpos) +
625 		le16_to_cpu(left->e_leaf_clusters);
626 
627 	return (left_range == le32_to_cpu(right->e_cpos));
628 }
629 
630 static enum ocfs2_contig_type
631 	ocfs2_extent_contig(struct inode *inode,
632 			    struct ocfs2_extent_rec *ext,
633 			    struct ocfs2_extent_rec *insert_rec)
634 {
635 	u64 blkno = le64_to_cpu(insert_rec->e_blkno);
636 
637 	/*
638 	 * Refuse to coalesce extent records with different flag
639 	 * fields - we don't want to mix unwritten extents with user
640 	 * data.
641 	 */
642 	if (ext->e_flags != insert_rec->e_flags)
643 		return CONTIG_NONE;
644 
645 	if (ocfs2_extents_adjacent(ext, insert_rec) &&
646 	    ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
647 			return CONTIG_RIGHT;
648 
649 	blkno = le64_to_cpu(ext->e_blkno);
650 	if (ocfs2_extents_adjacent(insert_rec, ext) &&
651 	    ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
652 		return CONTIG_LEFT;
653 
654 	return CONTIG_NONE;
655 }
656 
657 /*
658  * NOTE: We can have pretty much any combination of contiguousness and
659  * appending.
660  *
661  * The usefulness of APPEND_TAIL is more in that it lets us know that
662  * we'll have to update the path to that leaf.
663  */
664 enum ocfs2_append_type {
665 	APPEND_NONE = 0,
666 	APPEND_TAIL,
667 };
668 
669 enum ocfs2_split_type {
670 	SPLIT_NONE = 0,
671 	SPLIT_LEFT,
672 	SPLIT_RIGHT,
673 };
674 
675 struct ocfs2_insert_type {
676 	enum ocfs2_split_type	ins_split;
677 	enum ocfs2_append_type	ins_appending;
678 	enum ocfs2_contig_type	ins_contig;
679 	int			ins_contig_index;
680 	int			ins_tree_depth;
681 };
682 
683 struct ocfs2_merge_ctxt {
684 	enum ocfs2_contig_type	c_contig_type;
685 	int			c_has_empty_extent;
686 	int			c_split_covers_rec;
687 };
688 
689 /*
690  * How many free extents have we got before we need more meta data?
691  */
692 int ocfs2_num_free_extents(struct ocfs2_super *osb,
693 			   struct inode *inode,
694 			   struct ocfs2_extent_tree *et)
695 {
696 	int retval;
697 	struct ocfs2_extent_list *el = NULL;
698 	struct ocfs2_extent_block *eb;
699 	struct buffer_head *eb_bh = NULL;
700 	u64 last_eb_blk = 0;
701 
702 	mlog_entry_void();
703 
704 	el = et->et_root_el;
705 	last_eb_blk = ocfs2_et_get_last_eb_blk(et);
706 
707 	if (last_eb_blk) {
708 		retval = ocfs2_read_block(inode, last_eb_blk,
709 					  &eb_bh);
710 		if (retval < 0) {
711 			mlog_errno(retval);
712 			goto bail;
713 		}
714 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
715 		el = &eb->h_list;
716 	}
717 
718 	BUG_ON(el->l_tree_depth != 0);
719 
720 	retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
721 bail:
722 	brelse(eb_bh);
723 
724 	mlog_exit(retval);
725 	return retval;
726 }
727 
728 /* expects array to already be allocated
729  *
730  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
731  * l_count for you
732  */
733 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
734 				     handle_t *handle,
735 				     struct inode *inode,
736 				     int wanted,
737 				     struct ocfs2_alloc_context *meta_ac,
738 				     struct buffer_head *bhs[])
739 {
740 	int count, status, i;
741 	u16 suballoc_bit_start;
742 	u32 num_got;
743 	u64 first_blkno;
744 	struct ocfs2_extent_block *eb;
745 
746 	mlog_entry_void();
747 
748 	count = 0;
749 	while (count < wanted) {
750 		status = ocfs2_claim_metadata(osb,
751 					      handle,
752 					      meta_ac,
753 					      wanted - count,
754 					      &suballoc_bit_start,
755 					      &num_got,
756 					      &first_blkno);
757 		if (status < 0) {
758 			mlog_errno(status);
759 			goto bail;
760 		}
761 
762 		for(i = count;  i < (num_got + count); i++) {
763 			bhs[i] = sb_getblk(osb->sb, first_blkno);
764 			if (bhs[i] == NULL) {
765 				status = -EIO;
766 				mlog_errno(status);
767 				goto bail;
768 			}
769 			ocfs2_set_new_buffer_uptodate(inode, bhs[i]);
770 
771 			status = ocfs2_journal_access(handle, inode, bhs[i],
772 						      OCFS2_JOURNAL_ACCESS_CREATE);
773 			if (status < 0) {
774 				mlog_errno(status);
775 				goto bail;
776 			}
777 
778 			memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
779 			eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
780 			/* Ok, setup the minimal stuff here. */
781 			strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
782 			eb->h_blkno = cpu_to_le64(first_blkno);
783 			eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
784 			eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
785 			eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
786 			eb->h_list.l_count =
787 				cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
788 
789 			suballoc_bit_start++;
790 			first_blkno++;
791 
792 			/* We'll also be dirtied by the caller, so
793 			 * this isn't absolutely necessary. */
794 			status = ocfs2_journal_dirty(handle, bhs[i]);
795 			if (status < 0) {
796 				mlog_errno(status);
797 				goto bail;
798 			}
799 		}
800 
801 		count += num_got;
802 	}
803 
804 	status = 0;
805 bail:
806 	if (status < 0) {
807 		for(i = 0; i < wanted; i++) {
808 			brelse(bhs[i]);
809 			bhs[i] = NULL;
810 		}
811 	}
812 	mlog_exit(status);
813 	return status;
814 }
815 
816 /*
817  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
818  *
819  * Returns the sum of the rightmost extent rec logical offset and
820  * cluster count.
821  *
822  * ocfs2_add_branch() uses this to determine what logical cluster
823  * value should be populated into the leftmost new branch records.
824  *
825  * ocfs2_shift_tree_depth() uses this to determine the # clusters
826  * value for the new topmost tree record.
827  */
828 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
829 {
830 	int i;
831 
832 	i = le16_to_cpu(el->l_next_free_rec) - 1;
833 
834 	return le32_to_cpu(el->l_recs[i].e_cpos) +
835 		ocfs2_rec_clusters(el, &el->l_recs[i]);
836 }
837 
838 /*
839  * Add an entire tree branch to our inode. eb_bh is the extent block
840  * to start at, if we don't want to start the branch at the dinode
841  * structure.
842  *
843  * last_eb_bh is required as we have to update it's next_leaf pointer
844  * for the new last extent block.
845  *
846  * the new branch will be 'empty' in the sense that every block will
847  * contain a single record with cluster count == 0.
848  */
849 static int ocfs2_add_branch(struct ocfs2_super *osb,
850 			    handle_t *handle,
851 			    struct inode *inode,
852 			    struct ocfs2_extent_tree *et,
853 			    struct buffer_head *eb_bh,
854 			    struct buffer_head **last_eb_bh,
855 			    struct ocfs2_alloc_context *meta_ac)
856 {
857 	int status, new_blocks, i;
858 	u64 next_blkno, new_last_eb_blk;
859 	struct buffer_head *bh;
860 	struct buffer_head **new_eb_bhs = NULL;
861 	struct ocfs2_extent_block *eb;
862 	struct ocfs2_extent_list  *eb_el;
863 	struct ocfs2_extent_list  *el;
864 	u32 new_cpos;
865 
866 	mlog_entry_void();
867 
868 	BUG_ON(!last_eb_bh || !*last_eb_bh);
869 
870 	if (eb_bh) {
871 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
872 		el = &eb->h_list;
873 	} else
874 		el = et->et_root_el;
875 
876 	/* we never add a branch to a leaf. */
877 	BUG_ON(!el->l_tree_depth);
878 
879 	new_blocks = le16_to_cpu(el->l_tree_depth);
880 
881 	/* allocate the number of new eb blocks we need */
882 	new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
883 			     GFP_KERNEL);
884 	if (!new_eb_bhs) {
885 		status = -ENOMEM;
886 		mlog_errno(status);
887 		goto bail;
888 	}
889 
890 	status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
891 					   meta_ac, new_eb_bhs);
892 	if (status < 0) {
893 		mlog_errno(status);
894 		goto bail;
895 	}
896 
897 	eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
898 	new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
899 
900 	/* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
901 	 * linked with the rest of the tree.
902 	 * conversly, new_eb_bhs[0] is the new bottommost leaf.
903 	 *
904 	 * when we leave the loop, new_last_eb_blk will point to the
905 	 * newest leaf, and next_blkno will point to the topmost extent
906 	 * block. */
907 	next_blkno = new_last_eb_blk = 0;
908 	for(i = 0; i < new_blocks; i++) {
909 		bh = new_eb_bhs[i];
910 		eb = (struct ocfs2_extent_block *) bh->b_data;
911 		if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
912 			OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
913 			status = -EIO;
914 			goto bail;
915 		}
916 		eb_el = &eb->h_list;
917 
918 		status = ocfs2_journal_access(handle, inode, bh,
919 					      OCFS2_JOURNAL_ACCESS_CREATE);
920 		if (status < 0) {
921 			mlog_errno(status);
922 			goto bail;
923 		}
924 
925 		eb->h_next_leaf_blk = 0;
926 		eb_el->l_tree_depth = cpu_to_le16(i);
927 		eb_el->l_next_free_rec = cpu_to_le16(1);
928 		/*
929 		 * This actually counts as an empty extent as
930 		 * c_clusters == 0
931 		 */
932 		eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
933 		eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
934 		/*
935 		 * eb_el isn't always an interior node, but even leaf
936 		 * nodes want a zero'd flags and reserved field so
937 		 * this gets the whole 32 bits regardless of use.
938 		 */
939 		eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
940 		if (!eb_el->l_tree_depth)
941 			new_last_eb_blk = le64_to_cpu(eb->h_blkno);
942 
943 		status = ocfs2_journal_dirty(handle, bh);
944 		if (status < 0) {
945 			mlog_errno(status);
946 			goto bail;
947 		}
948 
949 		next_blkno = le64_to_cpu(eb->h_blkno);
950 	}
951 
952 	/* This is a bit hairy. We want to update up to three blocks
953 	 * here without leaving any of them in an inconsistent state
954 	 * in case of error. We don't have to worry about
955 	 * journal_dirty erroring as it won't unless we've aborted the
956 	 * handle (in which case we would never be here) so reserving
957 	 * the write with journal_access is all we need to do. */
958 	status = ocfs2_journal_access(handle, inode, *last_eb_bh,
959 				      OCFS2_JOURNAL_ACCESS_WRITE);
960 	if (status < 0) {
961 		mlog_errno(status);
962 		goto bail;
963 	}
964 	status = ocfs2_journal_access(handle, inode, et->et_root_bh,
965 				      OCFS2_JOURNAL_ACCESS_WRITE);
966 	if (status < 0) {
967 		mlog_errno(status);
968 		goto bail;
969 	}
970 	if (eb_bh) {
971 		status = ocfs2_journal_access(handle, inode, eb_bh,
972 					      OCFS2_JOURNAL_ACCESS_WRITE);
973 		if (status < 0) {
974 			mlog_errno(status);
975 			goto bail;
976 		}
977 	}
978 
979 	/* Link the new branch into the rest of the tree (el will
980 	 * either be on the root_bh, or the extent block passed in. */
981 	i = le16_to_cpu(el->l_next_free_rec);
982 	el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
983 	el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
984 	el->l_recs[i].e_int_clusters = 0;
985 	le16_add_cpu(&el->l_next_free_rec, 1);
986 
987 	/* fe needs a new last extent block pointer, as does the
988 	 * next_leaf on the previously last-extent-block. */
989 	ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
990 
991 	eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
992 	eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
993 
994 	status = ocfs2_journal_dirty(handle, *last_eb_bh);
995 	if (status < 0)
996 		mlog_errno(status);
997 	status = ocfs2_journal_dirty(handle, et->et_root_bh);
998 	if (status < 0)
999 		mlog_errno(status);
1000 	if (eb_bh) {
1001 		status = ocfs2_journal_dirty(handle, eb_bh);
1002 		if (status < 0)
1003 			mlog_errno(status);
1004 	}
1005 
1006 	/*
1007 	 * Some callers want to track the rightmost leaf so pass it
1008 	 * back here.
1009 	 */
1010 	brelse(*last_eb_bh);
1011 	get_bh(new_eb_bhs[0]);
1012 	*last_eb_bh = new_eb_bhs[0];
1013 
1014 	status = 0;
1015 bail:
1016 	if (new_eb_bhs) {
1017 		for (i = 0; i < new_blocks; i++)
1018 			brelse(new_eb_bhs[i]);
1019 		kfree(new_eb_bhs);
1020 	}
1021 
1022 	mlog_exit(status);
1023 	return status;
1024 }
1025 
1026 /*
1027  * adds another level to the allocation tree.
1028  * returns back the new extent block so you can add a branch to it
1029  * after this call.
1030  */
1031 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
1032 				  handle_t *handle,
1033 				  struct inode *inode,
1034 				  struct ocfs2_extent_tree *et,
1035 				  struct ocfs2_alloc_context *meta_ac,
1036 				  struct buffer_head **ret_new_eb_bh)
1037 {
1038 	int status, i;
1039 	u32 new_clusters;
1040 	struct buffer_head *new_eb_bh = NULL;
1041 	struct ocfs2_extent_block *eb;
1042 	struct ocfs2_extent_list  *root_el;
1043 	struct ocfs2_extent_list  *eb_el;
1044 
1045 	mlog_entry_void();
1046 
1047 	status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
1048 					   &new_eb_bh);
1049 	if (status < 0) {
1050 		mlog_errno(status);
1051 		goto bail;
1052 	}
1053 
1054 	eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1055 	if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
1056 		OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1057 		status = -EIO;
1058 		goto bail;
1059 	}
1060 
1061 	eb_el = &eb->h_list;
1062 	root_el = et->et_root_el;
1063 
1064 	status = ocfs2_journal_access(handle, inode, new_eb_bh,
1065 				      OCFS2_JOURNAL_ACCESS_CREATE);
1066 	if (status < 0) {
1067 		mlog_errno(status);
1068 		goto bail;
1069 	}
1070 
1071 	/* copy the root extent list data into the new extent block */
1072 	eb_el->l_tree_depth = root_el->l_tree_depth;
1073 	eb_el->l_next_free_rec = root_el->l_next_free_rec;
1074 	for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1075 		eb_el->l_recs[i] = root_el->l_recs[i];
1076 
1077 	status = ocfs2_journal_dirty(handle, new_eb_bh);
1078 	if (status < 0) {
1079 		mlog_errno(status);
1080 		goto bail;
1081 	}
1082 
1083 	status = ocfs2_journal_access(handle, inode, et->et_root_bh,
1084 				      OCFS2_JOURNAL_ACCESS_WRITE);
1085 	if (status < 0) {
1086 		mlog_errno(status);
1087 		goto bail;
1088 	}
1089 
1090 	new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1091 
1092 	/* update root_bh now */
1093 	le16_add_cpu(&root_el->l_tree_depth, 1);
1094 	root_el->l_recs[0].e_cpos = 0;
1095 	root_el->l_recs[0].e_blkno = eb->h_blkno;
1096 	root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1097 	for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1098 		memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1099 	root_el->l_next_free_rec = cpu_to_le16(1);
1100 
1101 	/* If this is our 1st tree depth shift, then last_eb_blk
1102 	 * becomes the allocated extent block */
1103 	if (root_el->l_tree_depth == cpu_to_le16(1))
1104 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1105 
1106 	status = ocfs2_journal_dirty(handle, et->et_root_bh);
1107 	if (status < 0) {
1108 		mlog_errno(status);
1109 		goto bail;
1110 	}
1111 
1112 	*ret_new_eb_bh = new_eb_bh;
1113 	new_eb_bh = NULL;
1114 	status = 0;
1115 bail:
1116 	brelse(new_eb_bh);
1117 
1118 	mlog_exit(status);
1119 	return status;
1120 }
1121 
1122 /*
1123  * Should only be called when there is no space left in any of the
1124  * leaf nodes. What we want to do is find the lowest tree depth
1125  * non-leaf extent block with room for new records. There are three
1126  * valid results of this search:
1127  *
1128  * 1) a lowest extent block is found, then we pass it back in
1129  *    *lowest_eb_bh and return '0'
1130  *
1131  * 2) the search fails to find anything, but the root_el has room. We
1132  *    pass NULL back in *lowest_eb_bh, but still return '0'
1133  *
1134  * 3) the search fails to find anything AND the root_el is full, in
1135  *    which case we return > 0
1136  *
1137  * return status < 0 indicates an error.
1138  */
1139 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
1140 				    struct inode *inode,
1141 				    struct ocfs2_extent_tree *et,
1142 				    struct buffer_head **target_bh)
1143 {
1144 	int status = 0, i;
1145 	u64 blkno;
1146 	struct ocfs2_extent_block *eb;
1147 	struct ocfs2_extent_list  *el;
1148 	struct buffer_head *bh = NULL;
1149 	struct buffer_head *lowest_bh = NULL;
1150 
1151 	mlog_entry_void();
1152 
1153 	*target_bh = NULL;
1154 
1155 	el = et->et_root_el;
1156 
1157 	while(le16_to_cpu(el->l_tree_depth) > 1) {
1158 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1159 			ocfs2_error(inode->i_sb, "Dinode %llu has empty "
1160 				    "extent list (next_free_rec == 0)",
1161 				    (unsigned long long)OCFS2_I(inode)->ip_blkno);
1162 			status = -EIO;
1163 			goto bail;
1164 		}
1165 		i = le16_to_cpu(el->l_next_free_rec) - 1;
1166 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1167 		if (!blkno) {
1168 			ocfs2_error(inode->i_sb, "Dinode %llu has extent "
1169 				    "list where extent # %d has no physical "
1170 				    "block start",
1171 				    (unsigned long long)OCFS2_I(inode)->ip_blkno, i);
1172 			status = -EIO;
1173 			goto bail;
1174 		}
1175 
1176 		brelse(bh);
1177 		bh = NULL;
1178 
1179 		status = ocfs2_read_block(inode, blkno, &bh);
1180 		if (status < 0) {
1181 			mlog_errno(status);
1182 			goto bail;
1183 		}
1184 
1185 		eb = (struct ocfs2_extent_block *) bh->b_data;
1186 		if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
1187 			OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1188 			status = -EIO;
1189 			goto bail;
1190 		}
1191 		el = &eb->h_list;
1192 
1193 		if (le16_to_cpu(el->l_next_free_rec) <
1194 		    le16_to_cpu(el->l_count)) {
1195 			brelse(lowest_bh);
1196 			lowest_bh = bh;
1197 			get_bh(lowest_bh);
1198 		}
1199 	}
1200 
1201 	/* If we didn't find one and the fe doesn't have any room,
1202 	 * then return '1' */
1203 	el = et->et_root_el;
1204 	if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1205 		status = 1;
1206 
1207 	*target_bh = lowest_bh;
1208 bail:
1209 	brelse(bh);
1210 
1211 	mlog_exit(status);
1212 	return status;
1213 }
1214 
1215 /*
1216  * Grow a b-tree so that it has more records.
1217  *
1218  * We might shift the tree depth in which case existing paths should
1219  * be considered invalid.
1220  *
1221  * Tree depth after the grow is returned via *final_depth.
1222  *
1223  * *last_eb_bh will be updated by ocfs2_add_branch().
1224  */
1225 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
1226 			   struct ocfs2_extent_tree *et, int *final_depth,
1227 			   struct buffer_head **last_eb_bh,
1228 			   struct ocfs2_alloc_context *meta_ac)
1229 {
1230 	int ret, shift;
1231 	struct ocfs2_extent_list *el = et->et_root_el;
1232 	int depth = le16_to_cpu(el->l_tree_depth);
1233 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1234 	struct buffer_head *bh = NULL;
1235 
1236 	BUG_ON(meta_ac == NULL);
1237 
1238 	shift = ocfs2_find_branch_target(osb, inode, et, &bh);
1239 	if (shift < 0) {
1240 		ret = shift;
1241 		mlog_errno(ret);
1242 		goto out;
1243 	}
1244 
1245 	/* We traveled all the way to the bottom of the allocation tree
1246 	 * and didn't find room for any more extents - we need to add
1247 	 * another tree level */
1248 	if (shift) {
1249 		BUG_ON(bh);
1250 		mlog(0, "need to shift tree depth (current = %d)\n", depth);
1251 
1252 		/* ocfs2_shift_tree_depth will return us a buffer with
1253 		 * the new extent block (so we can pass that to
1254 		 * ocfs2_add_branch). */
1255 		ret = ocfs2_shift_tree_depth(osb, handle, inode, et,
1256 					     meta_ac, &bh);
1257 		if (ret < 0) {
1258 			mlog_errno(ret);
1259 			goto out;
1260 		}
1261 		depth++;
1262 		if (depth == 1) {
1263 			/*
1264 			 * Special case: we have room now if we shifted from
1265 			 * tree_depth 0, so no more work needs to be done.
1266 			 *
1267 			 * We won't be calling add_branch, so pass
1268 			 * back *last_eb_bh as the new leaf. At depth
1269 			 * zero, it should always be null so there's
1270 			 * no reason to brelse.
1271 			 */
1272 			BUG_ON(*last_eb_bh);
1273 			get_bh(bh);
1274 			*last_eb_bh = bh;
1275 			goto out;
1276 		}
1277 	}
1278 
1279 	/* call ocfs2_add_branch to add the final part of the tree with
1280 	 * the new data. */
1281 	mlog(0, "add branch. bh = %p\n", bh);
1282 	ret = ocfs2_add_branch(osb, handle, inode, et, bh, last_eb_bh,
1283 			       meta_ac);
1284 	if (ret < 0) {
1285 		mlog_errno(ret);
1286 		goto out;
1287 	}
1288 
1289 out:
1290 	if (final_depth)
1291 		*final_depth = depth;
1292 	brelse(bh);
1293 	return ret;
1294 }
1295 
1296 /*
1297  * This function will discard the rightmost extent record.
1298  */
1299 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1300 {
1301 	int next_free = le16_to_cpu(el->l_next_free_rec);
1302 	int count = le16_to_cpu(el->l_count);
1303 	unsigned int num_bytes;
1304 
1305 	BUG_ON(!next_free);
1306 	/* This will cause us to go off the end of our extent list. */
1307 	BUG_ON(next_free >= count);
1308 
1309 	num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1310 
1311 	memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1312 }
1313 
1314 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1315 			      struct ocfs2_extent_rec *insert_rec)
1316 {
1317 	int i, insert_index, next_free, has_empty, num_bytes;
1318 	u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1319 	struct ocfs2_extent_rec *rec;
1320 
1321 	next_free = le16_to_cpu(el->l_next_free_rec);
1322 	has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1323 
1324 	BUG_ON(!next_free);
1325 
1326 	/* The tree code before us didn't allow enough room in the leaf. */
1327 	BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1328 
1329 	/*
1330 	 * The easiest way to approach this is to just remove the
1331 	 * empty extent and temporarily decrement next_free.
1332 	 */
1333 	if (has_empty) {
1334 		/*
1335 		 * If next_free was 1 (only an empty extent), this
1336 		 * loop won't execute, which is fine. We still want
1337 		 * the decrement above to happen.
1338 		 */
1339 		for(i = 0; i < (next_free - 1); i++)
1340 			el->l_recs[i] = el->l_recs[i+1];
1341 
1342 		next_free--;
1343 	}
1344 
1345 	/*
1346 	 * Figure out what the new record index should be.
1347 	 */
1348 	for(i = 0; i < next_free; i++) {
1349 		rec = &el->l_recs[i];
1350 
1351 		if (insert_cpos < le32_to_cpu(rec->e_cpos))
1352 			break;
1353 	}
1354 	insert_index = i;
1355 
1356 	mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1357 	     insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1358 
1359 	BUG_ON(insert_index < 0);
1360 	BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1361 	BUG_ON(insert_index > next_free);
1362 
1363 	/*
1364 	 * No need to memmove if we're just adding to the tail.
1365 	 */
1366 	if (insert_index != next_free) {
1367 		BUG_ON(next_free >= le16_to_cpu(el->l_count));
1368 
1369 		num_bytes = next_free - insert_index;
1370 		num_bytes *= sizeof(struct ocfs2_extent_rec);
1371 		memmove(&el->l_recs[insert_index + 1],
1372 			&el->l_recs[insert_index],
1373 			num_bytes);
1374 	}
1375 
1376 	/*
1377 	 * Either we had an empty extent, and need to re-increment or
1378 	 * there was no empty extent on a non full rightmost leaf node,
1379 	 * in which case we still need to increment.
1380 	 */
1381 	next_free++;
1382 	el->l_next_free_rec = cpu_to_le16(next_free);
1383 	/*
1384 	 * Make sure none of the math above just messed up our tree.
1385 	 */
1386 	BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1387 
1388 	el->l_recs[insert_index] = *insert_rec;
1389 
1390 }
1391 
1392 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1393 {
1394 	int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1395 
1396 	BUG_ON(num_recs == 0);
1397 
1398 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1399 		num_recs--;
1400 		size = num_recs * sizeof(struct ocfs2_extent_rec);
1401 		memmove(&el->l_recs[0], &el->l_recs[1], size);
1402 		memset(&el->l_recs[num_recs], 0,
1403 		       sizeof(struct ocfs2_extent_rec));
1404 		el->l_next_free_rec = cpu_to_le16(num_recs);
1405 	}
1406 }
1407 
1408 /*
1409  * Create an empty extent record .
1410  *
1411  * l_next_free_rec may be updated.
1412  *
1413  * If an empty extent already exists do nothing.
1414  */
1415 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1416 {
1417 	int next_free = le16_to_cpu(el->l_next_free_rec);
1418 
1419 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1420 
1421 	if (next_free == 0)
1422 		goto set_and_inc;
1423 
1424 	if (ocfs2_is_empty_extent(&el->l_recs[0]))
1425 		return;
1426 
1427 	mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1428 			"Asked to create an empty extent in a full list:\n"
1429 			"count = %u, tree depth = %u",
1430 			le16_to_cpu(el->l_count),
1431 			le16_to_cpu(el->l_tree_depth));
1432 
1433 	ocfs2_shift_records_right(el);
1434 
1435 set_and_inc:
1436 	le16_add_cpu(&el->l_next_free_rec, 1);
1437 	memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1438 }
1439 
1440 /*
1441  * For a rotation which involves two leaf nodes, the "root node" is
1442  * the lowest level tree node which contains a path to both leafs. This
1443  * resulting set of information can be used to form a complete "subtree"
1444  *
1445  * This function is passed two full paths from the dinode down to a
1446  * pair of adjacent leaves. It's task is to figure out which path
1447  * index contains the subtree root - this can be the root index itself
1448  * in a worst-case rotation.
1449  *
1450  * The array index of the subtree root is passed back.
1451  */
1452 static int ocfs2_find_subtree_root(struct inode *inode,
1453 				   struct ocfs2_path *left,
1454 				   struct ocfs2_path *right)
1455 {
1456 	int i = 0;
1457 
1458 	/*
1459 	 * Check that the caller passed in two paths from the same tree.
1460 	 */
1461 	BUG_ON(path_root_bh(left) != path_root_bh(right));
1462 
1463 	do {
1464 		i++;
1465 
1466 		/*
1467 		 * The caller didn't pass two adjacent paths.
1468 		 */
1469 		mlog_bug_on_msg(i > left->p_tree_depth,
1470 				"Inode %lu, left depth %u, right depth %u\n"
1471 				"left leaf blk %llu, right leaf blk %llu\n",
1472 				inode->i_ino, left->p_tree_depth,
1473 				right->p_tree_depth,
1474 				(unsigned long long)path_leaf_bh(left)->b_blocknr,
1475 				(unsigned long long)path_leaf_bh(right)->b_blocknr);
1476 	} while (left->p_node[i].bh->b_blocknr ==
1477 		 right->p_node[i].bh->b_blocknr);
1478 
1479 	return i - 1;
1480 }
1481 
1482 typedef void (path_insert_t)(void *, struct buffer_head *);
1483 
1484 /*
1485  * Traverse a btree path in search of cpos, starting at root_el.
1486  *
1487  * This code can be called with a cpos larger than the tree, in which
1488  * case it will return the rightmost path.
1489  */
1490 static int __ocfs2_find_path(struct inode *inode,
1491 			     struct ocfs2_extent_list *root_el, u32 cpos,
1492 			     path_insert_t *func, void *data)
1493 {
1494 	int i, ret = 0;
1495 	u32 range;
1496 	u64 blkno;
1497 	struct buffer_head *bh = NULL;
1498 	struct ocfs2_extent_block *eb;
1499 	struct ocfs2_extent_list *el;
1500 	struct ocfs2_extent_rec *rec;
1501 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1502 
1503 	el = root_el;
1504 	while (el->l_tree_depth) {
1505 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1506 			ocfs2_error(inode->i_sb,
1507 				    "Inode %llu has empty extent list at "
1508 				    "depth %u\n",
1509 				    (unsigned long long)oi->ip_blkno,
1510 				    le16_to_cpu(el->l_tree_depth));
1511 			ret = -EROFS;
1512 			goto out;
1513 
1514 		}
1515 
1516 		for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1517 			rec = &el->l_recs[i];
1518 
1519 			/*
1520 			 * In the case that cpos is off the allocation
1521 			 * tree, this should just wind up returning the
1522 			 * rightmost record.
1523 			 */
1524 			range = le32_to_cpu(rec->e_cpos) +
1525 				ocfs2_rec_clusters(el, rec);
1526 			if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1527 			    break;
1528 		}
1529 
1530 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1531 		if (blkno == 0) {
1532 			ocfs2_error(inode->i_sb,
1533 				    "Inode %llu has bad blkno in extent list "
1534 				    "at depth %u (index %d)\n",
1535 				    (unsigned long long)oi->ip_blkno,
1536 				    le16_to_cpu(el->l_tree_depth), i);
1537 			ret = -EROFS;
1538 			goto out;
1539 		}
1540 
1541 		brelse(bh);
1542 		bh = NULL;
1543 		ret = ocfs2_read_block(inode, blkno, &bh);
1544 		if (ret) {
1545 			mlog_errno(ret);
1546 			goto out;
1547 		}
1548 
1549 		eb = (struct ocfs2_extent_block *) bh->b_data;
1550 		el = &eb->h_list;
1551 		if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
1552 			OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1553 			ret = -EIO;
1554 			goto out;
1555 		}
1556 
1557 		if (le16_to_cpu(el->l_next_free_rec) >
1558 		    le16_to_cpu(el->l_count)) {
1559 			ocfs2_error(inode->i_sb,
1560 				    "Inode %llu has bad count in extent list "
1561 				    "at block %llu (next free=%u, count=%u)\n",
1562 				    (unsigned long long)oi->ip_blkno,
1563 				    (unsigned long long)bh->b_blocknr,
1564 				    le16_to_cpu(el->l_next_free_rec),
1565 				    le16_to_cpu(el->l_count));
1566 			ret = -EROFS;
1567 			goto out;
1568 		}
1569 
1570 		if (func)
1571 			func(data, bh);
1572 	}
1573 
1574 out:
1575 	/*
1576 	 * Catch any trailing bh that the loop didn't handle.
1577 	 */
1578 	brelse(bh);
1579 
1580 	return ret;
1581 }
1582 
1583 /*
1584  * Given an initialized path (that is, it has a valid root extent
1585  * list), this function will traverse the btree in search of the path
1586  * which would contain cpos.
1587  *
1588  * The path traveled is recorded in the path structure.
1589  *
1590  * Note that this will not do any comparisons on leaf node extent
1591  * records, so it will work fine in the case that we just added a tree
1592  * branch.
1593  */
1594 struct find_path_data {
1595 	int index;
1596 	struct ocfs2_path *path;
1597 };
1598 static void find_path_ins(void *data, struct buffer_head *bh)
1599 {
1600 	struct find_path_data *fp = data;
1601 
1602 	get_bh(bh);
1603 	ocfs2_path_insert_eb(fp->path, fp->index, bh);
1604 	fp->index++;
1605 }
1606 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
1607 			   u32 cpos)
1608 {
1609 	struct find_path_data data;
1610 
1611 	data.index = 1;
1612 	data.path = path;
1613 	return __ocfs2_find_path(inode, path_root_el(path), cpos,
1614 				 find_path_ins, &data);
1615 }
1616 
1617 static void find_leaf_ins(void *data, struct buffer_head *bh)
1618 {
1619 	struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1620 	struct ocfs2_extent_list *el = &eb->h_list;
1621 	struct buffer_head **ret = data;
1622 
1623 	/* We want to retain only the leaf block. */
1624 	if (le16_to_cpu(el->l_tree_depth) == 0) {
1625 		get_bh(bh);
1626 		*ret = bh;
1627 	}
1628 }
1629 /*
1630  * Find the leaf block in the tree which would contain cpos. No
1631  * checking of the actual leaf is done.
1632  *
1633  * Some paths want to call this instead of allocating a path structure
1634  * and calling ocfs2_find_path().
1635  *
1636  * This function doesn't handle non btree extent lists.
1637  */
1638 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
1639 		    u32 cpos, struct buffer_head **leaf_bh)
1640 {
1641 	int ret;
1642 	struct buffer_head *bh = NULL;
1643 
1644 	ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
1645 	if (ret) {
1646 		mlog_errno(ret);
1647 		goto out;
1648 	}
1649 
1650 	*leaf_bh = bh;
1651 out:
1652 	return ret;
1653 }
1654 
1655 /*
1656  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1657  *
1658  * Basically, we've moved stuff around at the bottom of the tree and
1659  * we need to fix up the extent records above the changes to reflect
1660  * the new changes.
1661  *
1662  * left_rec: the record on the left.
1663  * left_child_el: is the child list pointed to by left_rec
1664  * right_rec: the record to the right of left_rec
1665  * right_child_el: is the child list pointed to by right_rec
1666  *
1667  * By definition, this only works on interior nodes.
1668  */
1669 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1670 				  struct ocfs2_extent_list *left_child_el,
1671 				  struct ocfs2_extent_rec *right_rec,
1672 				  struct ocfs2_extent_list *right_child_el)
1673 {
1674 	u32 left_clusters, right_end;
1675 
1676 	/*
1677 	 * Interior nodes never have holes. Their cpos is the cpos of
1678 	 * the leftmost record in their child list. Their cluster
1679 	 * count covers the full theoretical range of their child list
1680 	 * - the range between their cpos and the cpos of the record
1681 	 * immediately to their right.
1682 	 */
1683 	left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1684 	if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) {
1685 		BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1686 		left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1687 	}
1688 	left_clusters -= le32_to_cpu(left_rec->e_cpos);
1689 	left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1690 
1691 	/*
1692 	 * Calculate the rightmost cluster count boundary before
1693 	 * moving cpos - we will need to adjust clusters after
1694 	 * updating e_cpos to keep the same highest cluster count.
1695 	 */
1696 	right_end = le32_to_cpu(right_rec->e_cpos);
1697 	right_end += le32_to_cpu(right_rec->e_int_clusters);
1698 
1699 	right_rec->e_cpos = left_rec->e_cpos;
1700 	le32_add_cpu(&right_rec->e_cpos, left_clusters);
1701 
1702 	right_end -= le32_to_cpu(right_rec->e_cpos);
1703 	right_rec->e_int_clusters = cpu_to_le32(right_end);
1704 }
1705 
1706 /*
1707  * Adjust the adjacent root node records involved in a
1708  * rotation. left_el_blkno is passed in as a key so that we can easily
1709  * find it's index in the root list.
1710  */
1711 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1712 				      struct ocfs2_extent_list *left_el,
1713 				      struct ocfs2_extent_list *right_el,
1714 				      u64 left_el_blkno)
1715 {
1716 	int i;
1717 
1718 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1719 	       le16_to_cpu(left_el->l_tree_depth));
1720 
1721 	for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1722 		if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1723 			break;
1724 	}
1725 
1726 	/*
1727 	 * The path walking code should have never returned a root and
1728 	 * two paths which are not adjacent.
1729 	 */
1730 	BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1731 
1732 	ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1733 				      &root_el->l_recs[i + 1], right_el);
1734 }
1735 
1736 /*
1737  * We've changed a leaf block (in right_path) and need to reflect that
1738  * change back up the subtree.
1739  *
1740  * This happens in multiple places:
1741  *   - When we've moved an extent record from the left path leaf to the right
1742  *     path leaf to make room for an empty extent in the left path leaf.
1743  *   - When our insert into the right path leaf is at the leftmost edge
1744  *     and requires an update of the path immediately to it's left. This
1745  *     can occur at the end of some types of rotation and appending inserts.
1746  *   - When we've adjusted the last extent record in the left path leaf and the
1747  *     1st extent record in the right path leaf during cross extent block merge.
1748  */
1749 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1750 				       struct ocfs2_path *left_path,
1751 				       struct ocfs2_path *right_path,
1752 				       int subtree_index)
1753 {
1754 	int ret, i, idx;
1755 	struct ocfs2_extent_list *el, *left_el, *right_el;
1756 	struct ocfs2_extent_rec *left_rec, *right_rec;
1757 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1758 
1759 	/*
1760 	 * Update the counts and position values within all the
1761 	 * interior nodes to reflect the leaf rotation we just did.
1762 	 *
1763 	 * The root node is handled below the loop.
1764 	 *
1765 	 * We begin the loop with right_el and left_el pointing to the
1766 	 * leaf lists and work our way up.
1767 	 *
1768 	 * NOTE: within this loop, left_el and right_el always refer
1769 	 * to the *child* lists.
1770 	 */
1771 	left_el = path_leaf_el(left_path);
1772 	right_el = path_leaf_el(right_path);
1773 	for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
1774 		mlog(0, "Adjust records at index %u\n", i);
1775 
1776 		/*
1777 		 * One nice property of knowing that all of these
1778 		 * nodes are below the root is that we only deal with
1779 		 * the leftmost right node record and the rightmost
1780 		 * left node record.
1781 		 */
1782 		el = left_path->p_node[i].el;
1783 		idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
1784 		left_rec = &el->l_recs[idx];
1785 
1786 		el = right_path->p_node[i].el;
1787 		right_rec = &el->l_recs[0];
1788 
1789 		ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
1790 					      right_el);
1791 
1792 		ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
1793 		if (ret)
1794 			mlog_errno(ret);
1795 
1796 		ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
1797 		if (ret)
1798 			mlog_errno(ret);
1799 
1800 		/*
1801 		 * Setup our list pointers now so that the current
1802 		 * parents become children in the next iteration.
1803 		 */
1804 		left_el = left_path->p_node[i].el;
1805 		right_el = right_path->p_node[i].el;
1806 	}
1807 
1808 	/*
1809 	 * At the root node, adjust the two adjacent records which
1810 	 * begin our path to the leaves.
1811 	 */
1812 
1813 	el = left_path->p_node[subtree_index].el;
1814 	left_el = left_path->p_node[subtree_index + 1].el;
1815 	right_el = right_path->p_node[subtree_index + 1].el;
1816 
1817 	ocfs2_adjust_root_records(el, left_el, right_el,
1818 				  left_path->p_node[subtree_index + 1].bh->b_blocknr);
1819 
1820 	root_bh = left_path->p_node[subtree_index].bh;
1821 
1822 	ret = ocfs2_journal_dirty(handle, root_bh);
1823 	if (ret)
1824 		mlog_errno(ret);
1825 }
1826 
1827 static int ocfs2_rotate_subtree_right(struct inode *inode,
1828 				      handle_t *handle,
1829 				      struct ocfs2_path *left_path,
1830 				      struct ocfs2_path *right_path,
1831 				      int subtree_index)
1832 {
1833 	int ret, i;
1834 	struct buffer_head *right_leaf_bh;
1835 	struct buffer_head *left_leaf_bh = NULL;
1836 	struct buffer_head *root_bh;
1837 	struct ocfs2_extent_list *right_el, *left_el;
1838 	struct ocfs2_extent_rec move_rec;
1839 
1840 	left_leaf_bh = path_leaf_bh(left_path);
1841 	left_el = path_leaf_el(left_path);
1842 
1843 	if (left_el->l_next_free_rec != left_el->l_count) {
1844 		ocfs2_error(inode->i_sb,
1845 			    "Inode %llu has non-full interior leaf node %llu"
1846 			    "(next free = %u)",
1847 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1848 			    (unsigned long long)left_leaf_bh->b_blocknr,
1849 			    le16_to_cpu(left_el->l_next_free_rec));
1850 		return -EROFS;
1851 	}
1852 
1853 	/*
1854 	 * This extent block may already have an empty record, so we
1855 	 * return early if so.
1856 	 */
1857 	if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
1858 		return 0;
1859 
1860 	root_bh = left_path->p_node[subtree_index].bh;
1861 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
1862 
1863 	ret = ocfs2_journal_access(handle, inode, root_bh,
1864 				   OCFS2_JOURNAL_ACCESS_WRITE);
1865 	if (ret) {
1866 		mlog_errno(ret);
1867 		goto out;
1868 	}
1869 
1870 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
1871 		ret = ocfs2_journal_access(handle, inode,
1872 					   right_path->p_node[i].bh,
1873 					   OCFS2_JOURNAL_ACCESS_WRITE);
1874 		if (ret) {
1875 			mlog_errno(ret);
1876 			goto out;
1877 		}
1878 
1879 		ret = ocfs2_journal_access(handle, inode,
1880 					   left_path->p_node[i].bh,
1881 					   OCFS2_JOURNAL_ACCESS_WRITE);
1882 		if (ret) {
1883 			mlog_errno(ret);
1884 			goto out;
1885 		}
1886 	}
1887 
1888 	right_leaf_bh = path_leaf_bh(right_path);
1889 	right_el = path_leaf_el(right_path);
1890 
1891 	/* This is a code error, not a disk corruption. */
1892 	mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
1893 			"because rightmost leaf block %llu is empty\n",
1894 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1895 			(unsigned long long)right_leaf_bh->b_blocknr);
1896 
1897 	ocfs2_create_empty_extent(right_el);
1898 
1899 	ret = ocfs2_journal_dirty(handle, right_leaf_bh);
1900 	if (ret) {
1901 		mlog_errno(ret);
1902 		goto out;
1903 	}
1904 
1905 	/* Do the copy now. */
1906 	i = le16_to_cpu(left_el->l_next_free_rec) - 1;
1907 	move_rec = left_el->l_recs[i];
1908 	right_el->l_recs[0] = move_rec;
1909 
1910 	/*
1911 	 * Clear out the record we just copied and shift everything
1912 	 * over, leaving an empty extent in the left leaf.
1913 	 *
1914 	 * We temporarily subtract from next_free_rec so that the
1915 	 * shift will lose the tail record (which is now defunct).
1916 	 */
1917 	le16_add_cpu(&left_el->l_next_free_rec, -1);
1918 	ocfs2_shift_records_right(left_el);
1919 	memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1920 	le16_add_cpu(&left_el->l_next_free_rec, 1);
1921 
1922 	ret = ocfs2_journal_dirty(handle, left_leaf_bh);
1923 	if (ret) {
1924 		mlog_errno(ret);
1925 		goto out;
1926 	}
1927 
1928 	ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
1929 				subtree_index);
1930 
1931 out:
1932 	return ret;
1933 }
1934 
1935 /*
1936  * Given a full path, determine what cpos value would return us a path
1937  * containing the leaf immediately to the left of the current one.
1938  *
1939  * Will return zero if the path passed in is already the leftmost path.
1940  */
1941 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
1942 					 struct ocfs2_path *path, u32 *cpos)
1943 {
1944 	int i, j, ret = 0;
1945 	u64 blkno;
1946 	struct ocfs2_extent_list *el;
1947 
1948 	BUG_ON(path->p_tree_depth == 0);
1949 
1950 	*cpos = 0;
1951 
1952 	blkno = path_leaf_bh(path)->b_blocknr;
1953 
1954 	/* Start at the tree node just above the leaf and work our way up. */
1955 	i = path->p_tree_depth - 1;
1956 	while (i >= 0) {
1957 		el = path->p_node[i].el;
1958 
1959 		/*
1960 		 * Find the extent record just before the one in our
1961 		 * path.
1962 		 */
1963 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
1964 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
1965 				if (j == 0) {
1966 					if (i == 0) {
1967 						/*
1968 						 * We've determined that the
1969 						 * path specified is already
1970 						 * the leftmost one - return a
1971 						 * cpos of zero.
1972 						 */
1973 						goto out;
1974 					}
1975 					/*
1976 					 * The leftmost record points to our
1977 					 * leaf - we need to travel up the
1978 					 * tree one level.
1979 					 */
1980 					goto next_node;
1981 				}
1982 
1983 				*cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
1984 				*cpos = *cpos + ocfs2_rec_clusters(el,
1985 							   &el->l_recs[j - 1]);
1986 				*cpos = *cpos - 1;
1987 				goto out;
1988 			}
1989 		}
1990 
1991 		/*
1992 		 * If we got here, we never found a valid node where
1993 		 * the tree indicated one should be.
1994 		 */
1995 		ocfs2_error(sb,
1996 			    "Invalid extent tree at extent block %llu\n",
1997 			    (unsigned long long)blkno);
1998 		ret = -EROFS;
1999 		goto out;
2000 
2001 next_node:
2002 		blkno = path->p_node[i].bh->b_blocknr;
2003 		i--;
2004 	}
2005 
2006 out:
2007 	return ret;
2008 }
2009 
2010 /*
2011  * Extend the transaction by enough credits to complete the rotation,
2012  * and still leave at least the original number of credits allocated
2013  * to this transaction.
2014  */
2015 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2016 					   int op_credits,
2017 					   struct ocfs2_path *path)
2018 {
2019 	int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2020 
2021 	if (handle->h_buffer_credits < credits)
2022 		return ocfs2_extend_trans(handle, credits);
2023 
2024 	return 0;
2025 }
2026 
2027 /*
2028  * Trap the case where we're inserting into the theoretical range past
2029  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2030  * whose cpos is less than ours into the right leaf.
2031  *
2032  * It's only necessary to look at the rightmost record of the left
2033  * leaf because the logic that calls us should ensure that the
2034  * theoretical ranges in the path components above the leaves are
2035  * correct.
2036  */
2037 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2038 						 u32 insert_cpos)
2039 {
2040 	struct ocfs2_extent_list *left_el;
2041 	struct ocfs2_extent_rec *rec;
2042 	int next_free;
2043 
2044 	left_el = path_leaf_el(left_path);
2045 	next_free = le16_to_cpu(left_el->l_next_free_rec);
2046 	rec = &left_el->l_recs[next_free - 1];
2047 
2048 	if (insert_cpos > le32_to_cpu(rec->e_cpos))
2049 		return 1;
2050 	return 0;
2051 }
2052 
2053 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2054 {
2055 	int next_free = le16_to_cpu(el->l_next_free_rec);
2056 	unsigned int range;
2057 	struct ocfs2_extent_rec *rec;
2058 
2059 	if (next_free == 0)
2060 		return 0;
2061 
2062 	rec = &el->l_recs[0];
2063 	if (ocfs2_is_empty_extent(rec)) {
2064 		/* Empty list. */
2065 		if (next_free == 1)
2066 			return 0;
2067 		rec = &el->l_recs[1];
2068 	}
2069 
2070 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2071 	if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2072 		return 1;
2073 	return 0;
2074 }
2075 
2076 /*
2077  * Rotate all the records in a btree right one record, starting at insert_cpos.
2078  *
2079  * The path to the rightmost leaf should be passed in.
2080  *
2081  * The array is assumed to be large enough to hold an entire path (tree depth).
2082  *
2083  * Upon succesful return from this function:
2084  *
2085  * - The 'right_path' array will contain a path to the leaf block
2086  *   whose range contains e_cpos.
2087  * - That leaf block will have a single empty extent in list index 0.
2088  * - In the case that the rotation requires a post-insert update,
2089  *   *ret_left_path will contain a valid path which can be passed to
2090  *   ocfs2_insert_path().
2091  */
2092 static int ocfs2_rotate_tree_right(struct inode *inode,
2093 				   handle_t *handle,
2094 				   enum ocfs2_split_type split,
2095 				   u32 insert_cpos,
2096 				   struct ocfs2_path *right_path,
2097 				   struct ocfs2_path **ret_left_path)
2098 {
2099 	int ret, start, orig_credits = handle->h_buffer_credits;
2100 	u32 cpos;
2101 	struct ocfs2_path *left_path = NULL;
2102 
2103 	*ret_left_path = NULL;
2104 
2105 	left_path = ocfs2_new_path(path_root_bh(right_path),
2106 				   path_root_el(right_path));
2107 	if (!left_path) {
2108 		ret = -ENOMEM;
2109 		mlog_errno(ret);
2110 		goto out;
2111 	}
2112 
2113 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
2114 	if (ret) {
2115 		mlog_errno(ret);
2116 		goto out;
2117 	}
2118 
2119 	mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
2120 
2121 	/*
2122 	 * What we want to do here is:
2123 	 *
2124 	 * 1) Start with the rightmost path.
2125 	 *
2126 	 * 2) Determine a path to the leaf block directly to the left
2127 	 *    of that leaf.
2128 	 *
2129 	 * 3) Determine the 'subtree root' - the lowest level tree node
2130 	 *    which contains a path to both leaves.
2131 	 *
2132 	 * 4) Rotate the subtree.
2133 	 *
2134 	 * 5) Find the next subtree by considering the left path to be
2135 	 *    the new right path.
2136 	 *
2137 	 * The check at the top of this while loop also accepts
2138 	 * insert_cpos == cpos because cpos is only a _theoretical_
2139 	 * value to get us the left path - insert_cpos might very well
2140 	 * be filling that hole.
2141 	 *
2142 	 * Stop at a cpos of '0' because we either started at the
2143 	 * leftmost branch (i.e., a tree with one branch and a
2144 	 * rotation inside of it), or we've gone as far as we can in
2145 	 * rotating subtrees.
2146 	 */
2147 	while (cpos && insert_cpos <= cpos) {
2148 		mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2149 		     insert_cpos, cpos);
2150 
2151 		ret = ocfs2_find_path(inode, left_path, cpos);
2152 		if (ret) {
2153 			mlog_errno(ret);
2154 			goto out;
2155 		}
2156 
2157 		mlog_bug_on_msg(path_leaf_bh(left_path) ==
2158 				path_leaf_bh(right_path),
2159 				"Inode %lu: error during insert of %u "
2160 				"(left path cpos %u) results in two identical "
2161 				"paths ending at %llu\n",
2162 				inode->i_ino, insert_cpos, cpos,
2163 				(unsigned long long)
2164 				path_leaf_bh(left_path)->b_blocknr);
2165 
2166 		if (split == SPLIT_NONE &&
2167 		    ocfs2_rotate_requires_path_adjustment(left_path,
2168 							  insert_cpos)) {
2169 
2170 			/*
2171 			 * We've rotated the tree as much as we
2172 			 * should. The rest is up to
2173 			 * ocfs2_insert_path() to complete, after the
2174 			 * record insertion. We indicate this
2175 			 * situation by returning the left path.
2176 			 *
2177 			 * The reason we don't adjust the records here
2178 			 * before the record insert is that an error
2179 			 * later might break the rule where a parent
2180 			 * record e_cpos will reflect the actual
2181 			 * e_cpos of the 1st nonempty record of the
2182 			 * child list.
2183 			 */
2184 			*ret_left_path = left_path;
2185 			goto out_ret_path;
2186 		}
2187 
2188 		start = ocfs2_find_subtree_root(inode, left_path, right_path);
2189 
2190 		mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2191 		     start,
2192 		     (unsigned long long) right_path->p_node[start].bh->b_blocknr,
2193 		     right_path->p_tree_depth);
2194 
2195 		ret = ocfs2_extend_rotate_transaction(handle, start,
2196 						      orig_credits, right_path);
2197 		if (ret) {
2198 			mlog_errno(ret);
2199 			goto out;
2200 		}
2201 
2202 		ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
2203 						 right_path, start);
2204 		if (ret) {
2205 			mlog_errno(ret);
2206 			goto out;
2207 		}
2208 
2209 		if (split != SPLIT_NONE &&
2210 		    ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2211 						insert_cpos)) {
2212 			/*
2213 			 * A rotate moves the rightmost left leaf
2214 			 * record over to the leftmost right leaf
2215 			 * slot. If we're doing an extent split
2216 			 * instead of a real insert, then we have to
2217 			 * check that the extent to be split wasn't
2218 			 * just moved over. If it was, then we can
2219 			 * exit here, passing left_path back -
2220 			 * ocfs2_split_extent() is smart enough to
2221 			 * search both leaves.
2222 			 */
2223 			*ret_left_path = left_path;
2224 			goto out_ret_path;
2225 		}
2226 
2227 		/*
2228 		 * There is no need to re-read the next right path
2229 		 * as we know that it'll be our current left
2230 		 * path. Optimize by copying values instead.
2231 		 */
2232 		ocfs2_mv_path(right_path, left_path);
2233 
2234 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
2235 						    &cpos);
2236 		if (ret) {
2237 			mlog_errno(ret);
2238 			goto out;
2239 		}
2240 	}
2241 
2242 out:
2243 	ocfs2_free_path(left_path);
2244 
2245 out_ret_path:
2246 	return ret;
2247 }
2248 
2249 static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
2250 				      struct ocfs2_path *path)
2251 {
2252 	int i, idx;
2253 	struct ocfs2_extent_rec *rec;
2254 	struct ocfs2_extent_list *el;
2255 	struct ocfs2_extent_block *eb;
2256 	u32 range;
2257 
2258 	/* Path should always be rightmost. */
2259 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2260 	BUG_ON(eb->h_next_leaf_blk != 0ULL);
2261 
2262 	el = &eb->h_list;
2263 	BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2264 	idx = le16_to_cpu(el->l_next_free_rec) - 1;
2265 	rec = &el->l_recs[idx];
2266 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2267 
2268 	for (i = 0; i < path->p_tree_depth; i++) {
2269 		el = path->p_node[i].el;
2270 		idx = le16_to_cpu(el->l_next_free_rec) - 1;
2271 		rec = &el->l_recs[idx];
2272 
2273 		rec->e_int_clusters = cpu_to_le32(range);
2274 		le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2275 
2276 		ocfs2_journal_dirty(handle, path->p_node[i].bh);
2277 	}
2278 }
2279 
2280 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
2281 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
2282 			      struct ocfs2_path *path, int unlink_start)
2283 {
2284 	int ret, i;
2285 	struct ocfs2_extent_block *eb;
2286 	struct ocfs2_extent_list *el;
2287 	struct buffer_head *bh;
2288 
2289 	for(i = unlink_start; i < path_num_items(path); i++) {
2290 		bh = path->p_node[i].bh;
2291 
2292 		eb = (struct ocfs2_extent_block *)bh->b_data;
2293 		/*
2294 		 * Not all nodes might have had their final count
2295 		 * decremented by the caller - handle this here.
2296 		 */
2297 		el = &eb->h_list;
2298 		if (le16_to_cpu(el->l_next_free_rec) > 1) {
2299 			mlog(ML_ERROR,
2300 			     "Inode %llu, attempted to remove extent block "
2301 			     "%llu with %u records\n",
2302 			     (unsigned long long)OCFS2_I(inode)->ip_blkno,
2303 			     (unsigned long long)le64_to_cpu(eb->h_blkno),
2304 			     le16_to_cpu(el->l_next_free_rec));
2305 
2306 			ocfs2_journal_dirty(handle, bh);
2307 			ocfs2_remove_from_cache(inode, bh);
2308 			continue;
2309 		}
2310 
2311 		el->l_next_free_rec = 0;
2312 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2313 
2314 		ocfs2_journal_dirty(handle, bh);
2315 
2316 		ret = ocfs2_cache_extent_block_free(dealloc, eb);
2317 		if (ret)
2318 			mlog_errno(ret);
2319 
2320 		ocfs2_remove_from_cache(inode, bh);
2321 	}
2322 }
2323 
2324 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
2325 				 struct ocfs2_path *left_path,
2326 				 struct ocfs2_path *right_path,
2327 				 int subtree_index,
2328 				 struct ocfs2_cached_dealloc_ctxt *dealloc)
2329 {
2330 	int i;
2331 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2332 	struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2333 	struct ocfs2_extent_list *el;
2334 	struct ocfs2_extent_block *eb;
2335 
2336 	el = path_leaf_el(left_path);
2337 
2338 	eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2339 
2340 	for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2341 		if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2342 			break;
2343 
2344 	BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2345 
2346 	memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2347 	le16_add_cpu(&root_el->l_next_free_rec, -1);
2348 
2349 	eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2350 	eb->h_next_leaf_blk = 0;
2351 
2352 	ocfs2_journal_dirty(handle, root_bh);
2353 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2354 
2355 	ocfs2_unlink_path(inode, handle, dealloc, right_path,
2356 			  subtree_index + 1);
2357 }
2358 
2359 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
2360 				     struct ocfs2_path *left_path,
2361 				     struct ocfs2_path *right_path,
2362 				     int subtree_index,
2363 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
2364 				     int *deleted,
2365 				     struct ocfs2_extent_tree *et)
2366 {
2367 	int ret, i, del_right_subtree = 0, right_has_empty = 0;
2368 	struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2369 	struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2370 	struct ocfs2_extent_block *eb;
2371 
2372 	*deleted = 0;
2373 
2374 	right_leaf_el = path_leaf_el(right_path);
2375 	left_leaf_el = path_leaf_el(left_path);
2376 	root_bh = left_path->p_node[subtree_index].bh;
2377 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2378 
2379 	if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2380 		return 0;
2381 
2382 	eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2383 	if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2384 		/*
2385 		 * It's legal for us to proceed if the right leaf is
2386 		 * the rightmost one and it has an empty extent. There
2387 		 * are two cases to handle - whether the leaf will be
2388 		 * empty after removal or not. If the leaf isn't empty
2389 		 * then just remove the empty extent up front. The
2390 		 * next block will handle empty leaves by flagging
2391 		 * them for unlink.
2392 		 *
2393 		 * Non rightmost leaves will throw -EAGAIN and the
2394 		 * caller can manually move the subtree and retry.
2395 		 */
2396 
2397 		if (eb->h_next_leaf_blk != 0ULL)
2398 			return -EAGAIN;
2399 
2400 		if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2401 			ret = ocfs2_journal_access(handle, inode,
2402 						   path_leaf_bh(right_path),
2403 						   OCFS2_JOURNAL_ACCESS_WRITE);
2404 			if (ret) {
2405 				mlog_errno(ret);
2406 				goto out;
2407 			}
2408 
2409 			ocfs2_remove_empty_extent(right_leaf_el);
2410 		} else
2411 			right_has_empty = 1;
2412 	}
2413 
2414 	if (eb->h_next_leaf_blk == 0ULL &&
2415 	    le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2416 		/*
2417 		 * We have to update i_last_eb_blk during the meta
2418 		 * data delete.
2419 		 */
2420 		ret = ocfs2_journal_access(handle, inode, et_root_bh,
2421 					   OCFS2_JOURNAL_ACCESS_WRITE);
2422 		if (ret) {
2423 			mlog_errno(ret);
2424 			goto out;
2425 		}
2426 
2427 		del_right_subtree = 1;
2428 	}
2429 
2430 	/*
2431 	 * Getting here with an empty extent in the right path implies
2432 	 * that it's the rightmost path and will be deleted.
2433 	 */
2434 	BUG_ON(right_has_empty && !del_right_subtree);
2435 
2436 	ret = ocfs2_journal_access(handle, inode, root_bh,
2437 				   OCFS2_JOURNAL_ACCESS_WRITE);
2438 	if (ret) {
2439 		mlog_errno(ret);
2440 		goto out;
2441 	}
2442 
2443 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2444 		ret = ocfs2_journal_access(handle, inode,
2445 					   right_path->p_node[i].bh,
2446 					   OCFS2_JOURNAL_ACCESS_WRITE);
2447 		if (ret) {
2448 			mlog_errno(ret);
2449 			goto out;
2450 		}
2451 
2452 		ret = ocfs2_journal_access(handle, inode,
2453 					   left_path->p_node[i].bh,
2454 					   OCFS2_JOURNAL_ACCESS_WRITE);
2455 		if (ret) {
2456 			mlog_errno(ret);
2457 			goto out;
2458 		}
2459 	}
2460 
2461 	if (!right_has_empty) {
2462 		/*
2463 		 * Only do this if we're moving a real
2464 		 * record. Otherwise, the action is delayed until
2465 		 * after removal of the right path in which case we
2466 		 * can do a simple shift to remove the empty extent.
2467 		 */
2468 		ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2469 		memset(&right_leaf_el->l_recs[0], 0,
2470 		       sizeof(struct ocfs2_extent_rec));
2471 	}
2472 	if (eb->h_next_leaf_blk == 0ULL) {
2473 		/*
2474 		 * Move recs over to get rid of empty extent, decrease
2475 		 * next_free. This is allowed to remove the last
2476 		 * extent in our leaf (setting l_next_free_rec to
2477 		 * zero) - the delete code below won't care.
2478 		 */
2479 		ocfs2_remove_empty_extent(right_leaf_el);
2480 	}
2481 
2482 	ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2483 	if (ret)
2484 		mlog_errno(ret);
2485 	ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2486 	if (ret)
2487 		mlog_errno(ret);
2488 
2489 	if (del_right_subtree) {
2490 		ocfs2_unlink_subtree(inode, handle, left_path, right_path,
2491 				     subtree_index, dealloc);
2492 		ocfs2_update_edge_lengths(inode, handle, left_path);
2493 
2494 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2495 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2496 
2497 		/*
2498 		 * Removal of the extent in the left leaf was skipped
2499 		 * above so we could delete the right path
2500 		 * 1st.
2501 		 */
2502 		if (right_has_empty)
2503 			ocfs2_remove_empty_extent(left_leaf_el);
2504 
2505 		ret = ocfs2_journal_dirty(handle, et_root_bh);
2506 		if (ret)
2507 			mlog_errno(ret);
2508 
2509 		*deleted = 1;
2510 	} else
2511 		ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2512 					   subtree_index);
2513 
2514 out:
2515 	return ret;
2516 }
2517 
2518 /*
2519  * Given a full path, determine what cpos value would return us a path
2520  * containing the leaf immediately to the right of the current one.
2521  *
2522  * Will return zero if the path passed in is already the rightmost path.
2523  *
2524  * This looks similar, but is subtly different to
2525  * ocfs2_find_cpos_for_left_leaf().
2526  */
2527 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2528 					  struct ocfs2_path *path, u32 *cpos)
2529 {
2530 	int i, j, ret = 0;
2531 	u64 blkno;
2532 	struct ocfs2_extent_list *el;
2533 
2534 	*cpos = 0;
2535 
2536 	if (path->p_tree_depth == 0)
2537 		return 0;
2538 
2539 	blkno = path_leaf_bh(path)->b_blocknr;
2540 
2541 	/* Start at the tree node just above the leaf and work our way up. */
2542 	i = path->p_tree_depth - 1;
2543 	while (i >= 0) {
2544 		int next_free;
2545 
2546 		el = path->p_node[i].el;
2547 
2548 		/*
2549 		 * Find the extent record just after the one in our
2550 		 * path.
2551 		 */
2552 		next_free = le16_to_cpu(el->l_next_free_rec);
2553 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2554 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2555 				if (j == (next_free - 1)) {
2556 					if (i == 0) {
2557 						/*
2558 						 * We've determined that the
2559 						 * path specified is already
2560 						 * the rightmost one - return a
2561 						 * cpos of zero.
2562 						 */
2563 						goto out;
2564 					}
2565 					/*
2566 					 * The rightmost record points to our
2567 					 * leaf - we need to travel up the
2568 					 * tree one level.
2569 					 */
2570 					goto next_node;
2571 				}
2572 
2573 				*cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2574 				goto out;
2575 			}
2576 		}
2577 
2578 		/*
2579 		 * If we got here, we never found a valid node where
2580 		 * the tree indicated one should be.
2581 		 */
2582 		ocfs2_error(sb,
2583 			    "Invalid extent tree at extent block %llu\n",
2584 			    (unsigned long long)blkno);
2585 		ret = -EROFS;
2586 		goto out;
2587 
2588 next_node:
2589 		blkno = path->p_node[i].bh->b_blocknr;
2590 		i--;
2591 	}
2592 
2593 out:
2594 	return ret;
2595 }
2596 
2597 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2598 					    handle_t *handle,
2599 					    struct buffer_head *bh,
2600 					    struct ocfs2_extent_list *el)
2601 {
2602 	int ret;
2603 
2604 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2605 		return 0;
2606 
2607 	ret = ocfs2_journal_access(handle, inode, bh,
2608 				   OCFS2_JOURNAL_ACCESS_WRITE);
2609 	if (ret) {
2610 		mlog_errno(ret);
2611 		goto out;
2612 	}
2613 
2614 	ocfs2_remove_empty_extent(el);
2615 
2616 	ret = ocfs2_journal_dirty(handle, bh);
2617 	if (ret)
2618 		mlog_errno(ret);
2619 
2620 out:
2621 	return ret;
2622 }
2623 
2624 static int __ocfs2_rotate_tree_left(struct inode *inode,
2625 				    handle_t *handle, int orig_credits,
2626 				    struct ocfs2_path *path,
2627 				    struct ocfs2_cached_dealloc_ctxt *dealloc,
2628 				    struct ocfs2_path **empty_extent_path,
2629 				    struct ocfs2_extent_tree *et)
2630 {
2631 	int ret, subtree_root, deleted;
2632 	u32 right_cpos;
2633 	struct ocfs2_path *left_path = NULL;
2634 	struct ocfs2_path *right_path = NULL;
2635 
2636 	BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2637 
2638 	*empty_extent_path = NULL;
2639 
2640 	ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2641 					     &right_cpos);
2642 	if (ret) {
2643 		mlog_errno(ret);
2644 		goto out;
2645 	}
2646 
2647 	left_path = ocfs2_new_path(path_root_bh(path),
2648 				   path_root_el(path));
2649 	if (!left_path) {
2650 		ret = -ENOMEM;
2651 		mlog_errno(ret);
2652 		goto out;
2653 	}
2654 
2655 	ocfs2_cp_path(left_path, path);
2656 
2657 	right_path = ocfs2_new_path(path_root_bh(path),
2658 				    path_root_el(path));
2659 	if (!right_path) {
2660 		ret = -ENOMEM;
2661 		mlog_errno(ret);
2662 		goto out;
2663 	}
2664 
2665 	while (right_cpos) {
2666 		ret = ocfs2_find_path(inode, right_path, right_cpos);
2667 		if (ret) {
2668 			mlog_errno(ret);
2669 			goto out;
2670 		}
2671 
2672 		subtree_root = ocfs2_find_subtree_root(inode, left_path,
2673 						       right_path);
2674 
2675 		mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2676 		     subtree_root,
2677 		     (unsigned long long)
2678 		     right_path->p_node[subtree_root].bh->b_blocknr,
2679 		     right_path->p_tree_depth);
2680 
2681 		ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2682 						      orig_credits, left_path);
2683 		if (ret) {
2684 			mlog_errno(ret);
2685 			goto out;
2686 		}
2687 
2688 		/*
2689 		 * Caller might still want to make changes to the
2690 		 * tree root, so re-add it to the journal here.
2691 		 */
2692 		ret = ocfs2_journal_access(handle, inode,
2693 					   path_root_bh(left_path),
2694 					   OCFS2_JOURNAL_ACCESS_WRITE);
2695 		if (ret) {
2696 			mlog_errno(ret);
2697 			goto out;
2698 		}
2699 
2700 		ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
2701 						right_path, subtree_root,
2702 						dealloc, &deleted, et);
2703 		if (ret == -EAGAIN) {
2704 			/*
2705 			 * The rotation has to temporarily stop due to
2706 			 * the right subtree having an empty
2707 			 * extent. Pass it back to the caller for a
2708 			 * fixup.
2709 			 */
2710 			*empty_extent_path = right_path;
2711 			right_path = NULL;
2712 			goto out;
2713 		}
2714 		if (ret) {
2715 			mlog_errno(ret);
2716 			goto out;
2717 		}
2718 
2719 		/*
2720 		 * The subtree rotate might have removed records on
2721 		 * the rightmost edge. If so, then rotation is
2722 		 * complete.
2723 		 */
2724 		if (deleted)
2725 			break;
2726 
2727 		ocfs2_mv_path(left_path, right_path);
2728 
2729 		ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2730 						     &right_cpos);
2731 		if (ret) {
2732 			mlog_errno(ret);
2733 			goto out;
2734 		}
2735 	}
2736 
2737 out:
2738 	ocfs2_free_path(right_path);
2739 	ocfs2_free_path(left_path);
2740 
2741 	return ret;
2742 }
2743 
2744 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
2745 				struct ocfs2_path *path,
2746 				struct ocfs2_cached_dealloc_ctxt *dealloc,
2747 				struct ocfs2_extent_tree *et)
2748 {
2749 	int ret, subtree_index;
2750 	u32 cpos;
2751 	struct ocfs2_path *left_path = NULL;
2752 	struct ocfs2_extent_block *eb;
2753 	struct ocfs2_extent_list *el;
2754 
2755 
2756 	ret = ocfs2_et_sanity_check(inode, et);
2757 	if (ret)
2758 		goto out;
2759 	/*
2760 	 * There's two ways we handle this depending on
2761 	 * whether path is the only existing one.
2762 	 */
2763 	ret = ocfs2_extend_rotate_transaction(handle, 0,
2764 					      handle->h_buffer_credits,
2765 					      path);
2766 	if (ret) {
2767 		mlog_errno(ret);
2768 		goto out;
2769 	}
2770 
2771 	ret = ocfs2_journal_access_path(inode, handle, path);
2772 	if (ret) {
2773 		mlog_errno(ret);
2774 		goto out;
2775 	}
2776 
2777 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
2778 	if (ret) {
2779 		mlog_errno(ret);
2780 		goto out;
2781 	}
2782 
2783 	if (cpos) {
2784 		/*
2785 		 * We have a path to the left of this one - it needs
2786 		 * an update too.
2787 		 */
2788 		left_path = ocfs2_new_path(path_root_bh(path),
2789 					   path_root_el(path));
2790 		if (!left_path) {
2791 			ret = -ENOMEM;
2792 			mlog_errno(ret);
2793 			goto out;
2794 		}
2795 
2796 		ret = ocfs2_find_path(inode, left_path, cpos);
2797 		if (ret) {
2798 			mlog_errno(ret);
2799 			goto out;
2800 		}
2801 
2802 		ret = ocfs2_journal_access_path(inode, handle, left_path);
2803 		if (ret) {
2804 			mlog_errno(ret);
2805 			goto out;
2806 		}
2807 
2808 		subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
2809 
2810 		ocfs2_unlink_subtree(inode, handle, left_path, path,
2811 				     subtree_index, dealloc);
2812 		ocfs2_update_edge_lengths(inode, handle, left_path);
2813 
2814 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2815 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2816 	} else {
2817 		/*
2818 		 * 'path' is also the leftmost path which
2819 		 * means it must be the only one. This gets
2820 		 * handled differently because we want to
2821 		 * revert the inode back to having extents
2822 		 * in-line.
2823 		 */
2824 		ocfs2_unlink_path(inode, handle, dealloc, path, 1);
2825 
2826 		el = et->et_root_el;
2827 		el->l_tree_depth = 0;
2828 		el->l_next_free_rec = 0;
2829 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2830 
2831 		ocfs2_et_set_last_eb_blk(et, 0);
2832 	}
2833 
2834 	ocfs2_journal_dirty(handle, path_root_bh(path));
2835 
2836 out:
2837 	ocfs2_free_path(left_path);
2838 	return ret;
2839 }
2840 
2841 /*
2842  * Left rotation of btree records.
2843  *
2844  * In many ways, this is (unsurprisingly) the opposite of right
2845  * rotation. We start at some non-rightmost path containing an empty
2846  * extent in the leaf block. The code works its way to the rightmost
2847  * path by rotating records to the left in every subtree.
2848  *
2849  * This is used by any code which reduces the number of extent records
2850  * in a leaf. After removal, an empty record should be placed in the
2851  * leftmost list position.
2852  *
2853  * This won't handle a length update of the rightmost path records if
2854  * the rightmost tree leaf record is removed so the caller is
2855  * responsible for detecting and correcting that.
2856  */
2857 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
2858 				  struct ocfs2_path *path,
2859 				  struct ocfs2_cached_dealloc_ctxt *dealloc,
2860 				  struct ocfs2_extent_tree *et)
2861 {
2862 	int ret, orig_credits = handle->h_buffer_credits;
2863 	struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
2864 	struct ocfs2_extent_block *eb;
2865 	struct ocfs2_extent_list *el;
2866 
2867 	el = path_leaf_el(path);
2868 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2869 		return 0;
2870 
2871 	if (path->p_tree_depth == 0) {
2872 rightmost_no_delete:
2873 		/*
2874 		 * Inline extents. This is trivially handled, so do
2875 		 * it up front.
2876 		 */
2877 		ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
2878 						       path_leaf_bh(path),
2879 						       path_leaf_el(path));
2880 		if (ret)
2881 			mlog_errno(ret);
2882 		goto out;
2883 	}
2884 
2885 	/*
2886 	 * Handle rightmost branch now. There's several cases:
2887 	 *  1) simple rotation leaving records in there. That's trivial.
2888 	 *  2) rotation requiring a branch delete - there's no more
2889 	 *     records left. Two cases of this:
2890 	 *     a) There are branches to the left.
2891 	 *     b) This is also the leftmost (the only) branch.
2892 	 *
2893 	 *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
2894 	 *  2a) we need the left branch so that we can update it with the unlink
2895 	 *  2b) we need to bring the inode back to inline extents.
2896 	 */
2897 
2898 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2899 	el = &eb->h_list;
2900 	if (eb->h_next_leaf_blk == 0) {
2901 		/*
2902 		 * This gets a bit tricky if we're going to delete the
2903 		 * rightmost path. Get the other cases out of the way
2904 		 * 1st.
2905 		 */
2906 		if (le16_to_cpu(el->l_next_free_rec) > 1)
2907 			goto rightmost_no_delete;
2908 
2909 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
2910 			ret = -EIO;
2911 			ocfs2_error(inode->i_sb,
2912 				    "Inode %llu has empty extent block at %llu",
2913 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
2914 				    (unsigned long long)le64_to_cpu(eb->h_blkno));
2915 			goto out;
2916 		}
2917 
2918 		/*
2919 		 * XXX: The caller can not trust "path" any more after
2920 		 * this as it will have been deleted. What do we do?
2921 		 *
2922 		 * In theory the rotate-for-merge code will never get
2923 		 * here because it'll always ask for a rotate in a
2924 		 * nonempty list.
2925 		 */
2926 
2927 		ret = ocfs2_remove_rightmost_path(inode, handle, path,
2928 						  dealloc, et);
2929 		if (ret)
2930 			mlog_errno(ret);
2931 		goto out;
2932 	}
2933 
2934 	/*
2935 	 * Now we can loop, remembering the path we get from -EAGAIN
2936 	 * and restarting from there.
2937 	 */
2938 try_rotate:
2939 	ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
2940 				       dealloc, &restart_path, et);
2941 	if (ret && ret != -EAGAIN) {
2942 		mlog_errno(ret);
2943 		goto out;
2944 	}
2945 
2946 	while (ret == -EAGAIN) {
2947 		tmp_path = restart_path;
2948 		restart_path = NULL;
2949 
2950 		ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
2951 					       tmp_path, dealloc,
2952 					       &restart_path, et);
2953 		if (ret && ret != -EAGAIN) {
2954 			mlog_errno(ret);
2955 			goto out;
2956 		}
2957 
2958 		ocfs2_free_path(tmp_path);
2959 		tmp_path = NULL;
2960 
2961 		if (ret == 0)
2962 			goto try_rotate;
2963 	}
2964 
2965 out:
2966 	ocfs2_free_path(tmp_path);
2967 	ocfs2_free_path(restart_path);
2968 	return ret;
2969 }
2970 
2971 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
2972 				int index)
2973 {
2974 	struct ocfs2_extent_rec *rec = &el->l_recs[index];
2975 	unsigned int size;
2976 
2977 	if (rec->e_leaf_clusters == 0) {
2978 		/*
2979 		 * We consumed all of the merged-from record. An empty
2980 		 * extent cannot exist anywhere but the 1st array
2981 		 * position, so move things over if the merged-from
2982 		 * record doesn't occupy that position.
2983 		 *
2984 		 * This creates a new empty extent so the caller
2985 		 * should be smart enough to have removed any existing
2986 		 * ones.
2987 		 */
2988 		if (index > 0) {
2989 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
2990 			size = index * sizeof(struct ocfs2_extent_rec);
2991 			memmove(&el->l_recs[1], &el->l_recs[0], size);
2992 		}
2993 
2994 		/*
2995 		 * Always memset - the caller doesn't check whether it
2996 		 * created an empty extent, so there could be junk in
2997 		 * the other fields.
2998 		 */
2999 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3000 	}
3001 }
3002 
3003 static int ocfs2_get_right_path(struct inode *inode,
3004 				struct ocfs2_path *left_path,
3005 				struct ocfs2_path **ret_right_path)
3006 {
3007 	int ret;
3008 	u32 right_cpos;
3009 	struct ocfs2_path *right_path = NULL;
3010 	struct ocfs2_extent_list *left_el;
3011 
3012 	*ret_right_path = NULL;
3013 
3014 	/* This function shouldn't be called for non-trees. */
3015 	BUG_ON(left_path->p_tree_depth == 0);
3016 
3017 	left_el = path_leaf_el(left_path);
3018 	BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3019 
3020 	ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
3021 					     &right_cpos);
3022 	if (ret) {
3023 		mlog_errno(ret);
3024 		goto out;
3025 	}
3026 
3027 	/* This function shouldn't be called for the rightmost leaf. */
3028 	BUG_ON(right_cpos == 0);
3029 
3030 	right_path = ocfs2_new_path(path_root_bh(left_path),
3031 				    path_root_el(left_path));
3032 	if (!right_path) {
3033 		ret = -ENOMEM;
3034 		mlog_errno(ret);
3035 		goto out;
3036 	}
3037 
3038 	ret = ocfs2_find_path(inode, right_path, right_cpos);
3039 	if (ret) {
3040 		mlog_errno(ret);
3041 		goto out;
3042 	}
3043 
3044 	*ret_right_path = right_path;
3045 out:
3046 	if (ret)
3047 		ocfs2_free_path(right_path);
3048 	return ret;
3049 }
3050 
3051 /*
3052  * Remove split_rec clusters from the record at index and merge them
3053  * onto the beginning of the record "next" to it.
3054  * For index < l_count - 1, the next means the extent rec at index + 1.
3055  * For index == l_count - 1, the "next" means the 1st extent rec of the
3056  * next extent block.
3057  */
3058 static int ocfs2_merge_rec_right(struct inode *inode,
3059 				 struct ocfs2_path *left_path,
3060 				 handle_t *handle,
3061 				 struct ocfs2_extent_rec *split_rec,
3062 				 int index)
3063 {
3064 	int ret, next_free, i;
3065 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3066 	struct ocfs2_extent_rec *left_rec;
3067 	struct ocfs2_extent_rec *right_rec;
3068 	struct ocfs2_extent_list *right_el;
3069 	struct ocfs2_path *right_path = NULL;
3070 	int subtree_index = 0;
3071 	struct ocfs2_extent_list *el = path_leaf_el(left_path);
3072 	struct buffer_head *bh = path_leaf_bh(left_path);
3073 	struct buffer_head *root_bh = NULL;
3074 
3075 	BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3076 	left_rec = &el->l_recs[index];
3077 
3078 	if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3079 	    le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3080 		/* we meet with a cross extent block merge. */
3081 		ret = ocfs2_get_right_path(inode, left_path, &right_path);
3082 		if (ret) {
3083 			mlog_errno(ret);
3084 			goto out;
3085 		}
3086 
3087 		right_el = path_leaf_el(right_path);
3088 		next_free = le16_to_cpu(right_el->l_next_free_rec);
3089 		BUG_ON(next_free <= 0);
3090 		right_rec = &right_el->l_recs[0];
3091 		if (ocfs2_is_empty_extent(right_rec)) {
3092 			BUG_ON(next_free <= 1);
3093 			right_rec = &right_el->l_recs[1];
3094 		}
3095 
3096 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3097 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3098 		       le32_to_cpu(right_rec->e_cpos));
3099 
3100 		subtree_index = ocfs2_find_subtree_root(inode,
3101 							left_path, right_path);
3102 
3103 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3104 						      handle->h_buffer_credits,
3105 						      right_path);
3106 		if (ret) {
3107 			mlog_errno(ret);
3108 			goto out;
3109 		}
3110 
3111 		root_bh = left_path->p_node[subtree_index].bh;
3112 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3113 
3114 		ret = ocfs2_journal_access(handle, inode, root_bh,
3115 					   OCFS2_JOURNAL_ACCESS_WRITE);
3116 		if (ret) {
3117 			mlog_errno(ret);
3118 			goto out;
3119 		}
3120 
3121 		for (i = subtree_index + 1;
3122 		     i < path_num_items(right_path); i++) {
3123 			ret = ocfs2_journal_access(handle, inode,
3124 						   right_path->p_node[i].bh,
3125 						   OCFS2_JOURNAL_ACCESS_WRITE);
3126 			if (ret) {
3127 				mlog_errno(ret);
3128 				goto out;
3129 			}
3130 
3131 			ret = ocfs2_journal_access(handle, inode,
3132 						   left_path->p_node[i].bh,
3133 						   OCFS2_JOURNAL_ACCESS_WRITE);
3134 			if (ret) {
3135 				mlog_errno(ret);
3136 				goto out;
3137 			}
3138 		}
3139 
3140 	} else {
3141 		BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3142 		right_rec = &el->l_recs[index + 1];
3143 	}
3144 
3145 	ret = ocfs2_journal_access(handle, inode, bh,
3146 				   OCFS2_JOURNAL_ACCESS_WRITE);
3147 	if (ret) {
3148 		mlog_errno(ret);
3149 		goto out;
3150 	}
3151 
3152 	le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3153 
3154 	le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3155 	le64_add_cpu(&right_rec->e_blkno,
3156 		     -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3157 	le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3158 
3159 	ocfs2_cleanup_merge(el, index);
3160 
3161 	ret = ocfs2_journal_dirty(handle, bh);
3162 	if (ret)
3163 		mlog_errno(ret);
3164 
3165 	if (right_path) {
3166 		ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3167 		if (ret)
3168 			mlog_errno(ret);
3169 
3170 		ocfs2_complete_edge_insert(inode, handle, left_path,
3171 					   right_path, subtree_index);
3172 	}
3173 out:
3174 	if (right_path)
3175 		ocfs2_free_path(right_path);
3176 	return ret;
3177 }
3178 
3179 static int ocfs2_get_left_path(struct inode *inode,
3180 			       struct ocfs2_path *right_path,
3181 			       struct ocfs2_path **ret_left_path)
3182 {
3183 	int ret;
3184 	u32 left_cpos;
3185 	struct ocfs2_path *left_path = NULL;
3186 
3187 	*ret_left_path = NULL;
3188 
3189 	/* This function shouldn't be called for non-trees. */
3190 	BUG_ON(right_path->p_tree_depth == 0);
3191 
3192 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
3193 					    right_path, &left_cpos);
3194 	if (ret) {
3195 		mlog_errno(ret);
3196 		goto out;
3197 	}
3198 
3199 	/* This function shouldn't be called for the leftmost leaf. */
3200 	BUG_ON(left_cpos == 0);
3201 
3202 	left_path = ocfs2_new_path(path_root_bh(right_path),
3203 				   path_root_el(right_path));
3204 	if (!left_path) {
3205 		ret = -ENOMEM;
3206 		mlog_errno(ret);
3207 		goto out;
3208 	}
3209 
3210 	ret = ocfs2_find_path(inode, left_path, left_cpos);
3211 	if (ret) {
3212 		mlog_errno(ret);
3213 		goto out;
3214 	}
3215 
3216 	*ret_left_path = left_path;
3217 out:
3218 	if (ret)
3219 		ocfs2_free_path(left_path);
3220 	return ret;
3221 }
3222 
3223 /*
3224  * Remove split_rec clusters from the record at index and merge them
3225  * onto the tail of the record "before" it.
3226  * For index > 0, the "before" means the extent rec at index - 1.
3227  *
3228  * For index == 0, the "before" means the last record of the previous
3229  * extent block. And there is also a situation that we may need to
3230  * remove the rightmost leaf extent block in the right_path and change
3231  * the right path to indicate the new rightmost path.
3232  */
3233 static int ocfs2_merge_rec_left(struct inode *inode,
3234 				struct ocfs2_path *right_path,
3235 				handle_t *handle,
3236 				struct ocfs2_extent_rec *split_rec,
3237 				struct ocfs2_cached_dealloc_ctxt *dealloc,
3238 				struct ocfs2_extent_tree *et,
3239 				int index)
3240 {
3241 	int ret, i, subtree_index = 0, has_empty_extent = 0;
3242 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3243 	struct ocfs2_extent_rec *left_rec;
3244 	struct ocfs2_extent_rec *right_rec;
3245 	struct ocfs2_extent_list *el = path_leaf_el(right_path);
3246 	struct buffer_head *bh = path_leaf_bh(right_path);
3247 	struct buffer_head *root_bh = NULL;
3248 	struct ocfs2_path *left_path = NULL;
3249 	struct ocfs2_extent_list *left_el;
3250 
3251 	BUG_ON(index < 0);
3252 
3253 	right_rec = &el->l_recs[index];
3254 	if (index == 0) {
3255 		/* we meet with a cross extent block merge. */
3256 		ret = ocfs2_get_left_path(inode, right_path, &left_path);
3257 		if (ret) {
3258 			mlog_errno(ret);
3259 			goto out;
3260 		}
3261 
3262 		left_el = path_leaf_el(left_path);
3263 		BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3264 		       le16_to_cpu(left_el->l_count));
3265 
3266 		left_rec = &left_el->l_recs[
3267 				le16_to_cpu(left_el->l_next_free_rec) - 1];
3268 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3269 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3270 		       le32_to_cpu(split_rec->e_cpos));
3271 
3272 		subtree_index = ocfs2_find_subtree_root(inode,
3273 							left_path, right_path);
3274 
3275 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3276 						      handle->h_buffer_credits,
3277 						      left_path);
3278 		if (ret) {
3279 			mlog_errno(ret);
3280 			goto out;
3281 		}
3282 
3283 		root_bh = left_path->p_node[subtree_index].bh;
3284 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3285 
3286 		ret = ocfs2_journal_access(handle, inode, root_bh,
3287 					   OCFS2_JOURNAL_ACCESS_WRITE);
3288 		if (ret) {
3289 			mlog_errno(ret);
3290 			goto out;
3291 		}
3292 
3293 		for (i = subtree_index + 1;
3294 		     i < path_num_items(right_path); i++) {
3295 			ret = ocfs2_journal_access(handle, inode,
3296 						   right_path->p_node[i].bh,
3297 						   OCFS2_JOURNAL_ACCESS_WRITE);
3298 			if (ret) {
3299 				mlog_errno(ret);
3300 				goto out;
3301 			}
3302 
3303 			ret = ocfs2_journal_access(handle, inode,
3304 						   left_path->p_node[i].bh,
3305 						   OCFS2_JOURNAL_ACCESS_WRITE);
3306 			if (ret) {
3307 				mlog_errno(ret);
3308 				goto out;
3309 			}
3310 		}
3311 	} else {
3312 		left_rec = &el->l_recs[index - 1];
3313 		if (ocfs2_is_empty_extent(&el->l_recs[0]))
3314 			has_empty_extent = 1;
3315 	}
3316 
3317 	ret = ocfs2_journal_access(handle, inode, bh,
3318 				   OCFS2_JOURNAL_ACCESS_WRITE);
3319 	if (ret) {
3320 		mlog_errno(ret);
3321 		goto out;
3322 	}
3323 
3324 	if (has_empty_extent && index == 1) {
3325 		/*
3326 		 * The easy case - we can just plop the record right in.
3327 		 */
3328 		*left_rec = *split_rec;
3329 
3330 		has_empty_extent = 0;
3331 	} else
3332 		le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3333 
3334 	le32_add_cpu(&right_rec->e_cpos, split_clusters);
3335 	le64_add_cpu(&right_rec->e_blkno,
3336 		     ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3337 	le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3338 
3339 	ocfs2_cleanup_merge(el, index);
3340 
3341 	ret = ocfs2_journal_dirty(handle, bh);
3342 	if (ret)
3343 		mlog_errno(ret);
3344 
3345 	if (left_path) {
3346 		ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3347 		if (ret)
3348 			mlog_errno(ret);
3349 
3350 		/*
3351 		 * In the situation that the right_rec is empty and the extent
3352 		 * block is empty also,  ocfs2_complete_edge_insert can't handle
3353 		 * it and we need to delete the right extent block.
3354 		 */
3355 		if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3356 		    le16_to_cpu(el->l_next_free_rec) == 1) {
3357 
3358 			ret = ocfs2_remove_rightmost_path(inode, handle,
3359 							  right_path,
3360 							  dealloc, et);
3361 			if (ret) {
3362 				mlog_errno(ret);
3363 				goto out;
3364 			}
3365 
3366 			/* Now the rightmost extent block has been deleted.
3367 			 * So we use the new rightmost path.
3368 			 */
3369 			ocfs2_mv_path(right_path, left_path);
3370 			left_path = NULL;
3371 		} else
3372 			ocfs2_complete_edge_insert(inode, handle, left_path,
3373 						   right_path, subtree_index);
3374 	}
3375 out:
3376 	if (left_path)
3377 		ocfs2_free_path(left_path);
3378 	return ret;
3379 }
3380 
3381 static int ocfs2_try_to_merge_extent(struct inode *inode,
3382 				     handle_t *handle,
3383 				     struct ocfs2_path *path,
3384 				     int split_index,
3385 				     struct ocfs2_extent_rec *split_rec,
3386 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
3387 				     struct ocfs2_merge_ctxt *ctxt,
3388 				     struct ocfs2_extent_tree *et)
3389 
3390 {
3391 	int ret = 0;
3392 	struct ocfs2_extent_list *el = path_leaf_el(path);
3393 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3394 
3395 	BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3396 
3397 	if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3398 		/*
3399 		 * The merge code will need to create an empty
3400 		 * extent to take the place of the newly
3401 		 * emptied slot. Remove any pre-existing empty
3402 		 * extents - having more than one in a leaf is
3403 		 * illegal.
3404 		 */
3405 		ret = ocfs2_rotate_tree_left(inode, handle, path,
3406 					     dealloc, et);
3407 		if (ret) {
3408 			mlog_errno(ret);
3409 			goto out;
3410 		}
3411 		split_index--;
3412 		rec = &el->l_recs[split_index];
3413 	}
3414 
3415 	if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3416 		/*
3417 		 * Left-right contig implies this.
3418 		 */
3419 		BUG_ON(!ctxt->c_split_covers_rec);
3420 
3421 		/*
3422 		 * Since the leftright insert always covers the entire
3423 		 * extent, this call will delete the insert record
3424 		 * entirely, resulting in an empty extent record added to
3425 		 * the extent block.
3426 		 *
3427 		 * Since the adding of an empty extent shifts
3428 		 * everything back to the right, there's no need to
3429 		 * update split_index here.
3430 		 *
3431 		 * When the split_index is zero, we need to merge it to the
3432 		 * prevoius extent block. It is more efficient and easier
3433 		 * if we do merge_right first and merge_left later.
3434 		 */
3435 		ret = ocfs2_merge_rec_right(inode, path,
3436 					    handle, split_rec,
3437 					    split_index);
3438 		if (ret) {
3439 			mlog_errno(ret);
3440 			goto out;
3441 		}
3442 
3443 		/*
3444 		 * We can only get this from logic error above.
3445 		 */
3446 		BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3447 
3448 		/* The merge left us with an empty extent, remove it. */
3449 		ret = ocfs2_rotate_tree_left(inode, handle, path,
3450 					     dealloc, et);
3451 		if (ret) {
3452 			mlog_errno(ret);
3453 			goto out;
3454 		}
3455 
3456 		rec = &el->l_recs[split_index];
3457 
3458 		/*
3459 		 * Note that we don't pass split_rec here on purpose -
3460 		 * we've merged it into the rec already.
3461 		 */
3462 		ret = ocfs2_merge_rec_left(inode, path,
3463 					   handle, rec,
3464 					   dealloc, et,
3465 					   split_index);
3466 
3467 		if (ret) {
3468 			mlog_errno(ret);
3469 			goto out;
3470 		}
3471 
3472 		ret = ocfs2_rotate_tree_left(inode, handle, path,
3473 					     dealloc, et);
3474 		/*
3475 		 * Error from this last rotate is not critical, so
3476 		 * print but don't bubble it up.
3477 		 */
3478 		if (ret)
3479 			mlog_errno(ret);
3480 		ret = 0;
3481 	} else {
3482 		/*
3483 		 * Merge a record to the left or right.
3484 		 *
3485 		 * 'contig_type' is relative to the existing record,
3486 		 * so for example, if we're "right contig", it's to
3487 		 * the record on the left (hence the left merge).
3488 		 */
3489 		if (ctxt->c_contig_type == CONTIG_RIGHT) {
3490 			ret = ocfs2_merge_rec_left(inode,
3491 						   path,
3492 						   handle, split_rec,
3493 						   dealloc, et,
3494 						   split_index);
3495 			if (ret) {
3496 				mlog_errno(ret);
3497 				goto out;
3498 			}
3499 		} else {
3500 			ret = ocfs2_merge_rec_right(inode,
3501 						    path,
3502 						    handle, split_rec,
3503 						    split_index);
3504 			if (ret) {
3505 				mlog_errno(ret);
3506 				goto out;
3507 			}
3508 		}
3509 
3510 		if (ctxt->c_split_covers_rec) {
3511 			/*
3512 			 * The merge may have left an empty extent in
3513 			 * our leaf. Try to rotate it away.
3514 			 */
3515 			ret = ocfs2_rotate_tree_left(inode, handle, path,
3516 						     dealloc, et);
3517 			if (ret)
3518 				mlog_errno(ret);
3519 			ret = 0;
3520 		}
3521 	}
3522 
3523 out:
3524 	return ret;
3525 }
3526 
3527 static void ocfs2_subtract_from_rec(struct super_block *sb,
3528 				    enum ocfs2_split_type split,
3529 				    struct ocfs2_extent_rec *rec,
3530 				    struct ocfs2_extent_rec *split_rec)
3531 {
3532 	u64 len_blocks;
3533 
3534 	len_blocks = ocfs2_clusters_to_blocks(sb,
3535 				le16_to_cpu(split_rec->e_leaf_clusters));
3536 
3537 	if (split == SPLIT_LEFT) {
3538 		/*
3539 		 * Region is on the left edge of the existing
3540 		 * record.
3541 		 */
3542 		le32_add_cpu(&rec->e_cpos,
3543 			     le16_to_cpu(split_rec->e_leaf_clusters));
3544 		le64_add_cpu(&rec->e_blkno, len_blocks);
3545 		le16_add_cpu(&rec->e_leaf_clusters,
3546 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3547 	} else {
3548 		/*
3549 		 * Region is on the right edge of the existing
3550 		 * record.
3551 		 */
3552 		le16_add_cpu(&rec->e_leaf_clusters,
3553 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3554 	}
3555 }
3556 
3557 /*
3558  * Do the final bits of extent record insertion at the target leaf
3559  * list. If this leaf is part of an allocation tree, it is assumed
3560  * that the tree above has been prepared.
3561  */
3562 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
3563 				 struct ocfs2_extent_list *el,
3564 				 struct ocfs2_insert_type *insert,
3565 				 struct inode *inode)
3566 {
3567 	int i = insert->ins_contig_index;
3568 	unsigned int range;
3569 	struct ocfs2_extent_rec *rec;
3570 
3571 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3572 
3573 	if (insert->ins_split != SPLIT_NONE) {
3574 		i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3575 		BUG_ON(i == -1);
3576 		rec = &el->l_recs[i];
3577 		ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3578 					insert_rec);
3579 		goto rotate;
3580 	}
3581 
3582 	/*
3583 	 * Contiguous insert - either left or right.
3584 	 */
3585 	if (insert->ins_contig != CONTIG_NONE) {
3586 		rec = &el->l_recs[i];
3587 		if (insert->ins_contig == CONTIG_LEFT) {
3588 			rec->e_blkno = insert_rec->e_blkno;
3589 			rec->e_cpos = insert_rec->e_cpos;
3590 		}
3591 		le16_add_cpu(&rec->e_leaf_clusters,
3592 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3593 		return;
3594 	}
3595 
3596 	/*
3597 	 * Handle insert into an empty leaf.
3598 	 */
3599 	if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3600 	    ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3601 	     ocfs2_is_empty_extent(&el->l_recs[0]))) {
3602 		el->l_recs[0] = *insert_rec;
3603 		el->l_next_free_rec = cpu_to_le16(1);
3604 		return;
3605 	}
3606 
3607 	/*
3608 	 * Appending insert.
3609 	 */
3610 	if (insert->ins_appending == APPEND_TAIL) {
3611 		i = le16_to_cpu(el->l_next_free_rec) - 1;
3612 		rec = &el->l_recs[i];
3613 		range = le32_to_cpu(rec->e_cpos)
3614 			+ le16_to_cpu(rec->e_leaf_clusters);
3615 		BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3616 
3617 		mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3618 				le16_to_cpu(el->l_count),
3619 				"inode %lu, depth %u, count %u, next free %u, "
3620 				"rec.cpos %u, rec.clusters %u, "
3621 				"insert.cpos %u, insert.clusters %u\n",
3622 				inode->i_ino,
3623 				le16_to_cpu(el->l_tree_depth),
3624 				le16_to_cpu(el->l_count),
3625 				le16_to_cpu(el->l_next_free_rec),
3626 				le32_to_cpu(el->l_recs[i].e_cpos),
3627 				le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3628 				le32_to_cpu(insert_rec->e_cpos),
3629 				le16_to_cpu(insert_rec->e_leaf_clusters));
3630 		i++;
3631 		el->l_recs[i] = *insert_rec;
3632 		le16_add_cpu(&el->l_next_free_rec, 1);
3633 		return;
3634 	}
3635 
3636 rotate:
3637 	/*
3638 	 * Ok, we have to rotate.
3639 	 *
3640 	 * At this point, it is safe to assume that inserting into an
3641 	 * empty leaf and appending to a leaf have both been handled
3642 	 * above.
3643 	 *
3644 	 * This leaf needs to have space, either by the empty 1st
3645 	 * extent record, or by virtue of an l_next_rec < l_count.
3646 	 */
3647 	ocfs2_rotate_leaf(el, insert_rec);
3648 }
3649 
3650 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3651 					   handle_t *handle,
3652 					   struct ocfs2_path *path,
3653 					   struct ocfs2_extent_rec *insert_rec)
3654 {
3655 	int ret, i, next_free;
3656 	struct buffer_head *bh;
3657 	struct ocfs2_extent_list *el;
3658 	struct ocfs2_extent_rec *rec;
3659 
3660 	/*
3661 	 * Update everything except the leaf block.
3662 	 */
3663 	for (i = 0; i < path->p_tree_depth; i++) {
3664 		bh = path->p_node[i].bh;
3665 		el = path->p_node[i].el;
3666 
3667 		next_free = le16_to_cpu(el->l_next_free_rec);
3668 		if (next_free == 0) {
3669 			ocfs2_error(inode->i_sb,
3670 				    "Dinode %llu has a bad extent list",
3671 				    (unsigned long long)OCFS2_I(inode)->ip_blkno);
3672 			ret = -EIO;
3673 			return;
3674 		}
3675 
3676 		rec = &el->l_recs[next_free - 1];
3677 
3678 		rec->e_int_clusters = insert_rec->e_cpos;
3679 		le32_add_cpu(&rec->e_int_clusters,
3680 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3681 		le32_add_cpu(&rec->e_int_clusters,
3682 			     -le32_to_cpu(rec->e_cpos));
3683 
3684 		ret = ocfs2_journal_dirty(handle, bh);
3685 		if (ret)
3686 			mlog_errno(ret);
3687 
3688 	}
3689 }
3690 
3691 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3692 				    struct ocfs2_extent_rec *insert_rec,
3693 				    struct ocfs2_path *right_path,
3694 				    struct ocfs2_path **ret_left_path)
3695 {
3696 	int ret, next_free;
3697 	struct ocfs2_extent_list *el;
3698 	struct ocfs2_path *left_path = NULL;
3699 
3700 	*ret_left_path = NULL;
3701 
3702 	/*
3703 	 * This shouldn't happen for non-trees. The extent rec cluster
3704 	 * count manipulation below only works for interior nodes.
3705 	 */
3706 	BUG_ON(right_path->p_tree_depth == 0);
3707 
3708 	/*
3709 	 * If our appending insert is at the leftmost edge of a leaf,
3710 	 * then we might need to update the rightmost records of the
3711 	 * neighboring path.
3712 	 */
3713 	el = path_leaf_el(right_path);
3714 	next_free = le16_to_cpu(el->l_next_free_rec);
3715 	if (next_free == 0 ||
3716 	    (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3717 		u32 left_cpos;
3718 
3719 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3720 						    &left_cpos);
3721 		if (ret) {
3722 			mlog_errno(ret);
3723 			goto out;
3724 		}
3725 
3726 		mlog(0, "Append may need a left path update. cpos: %u, "
3727 		     "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3728 		     left_cpos);
3729 
3730 		/*
3731 		 * No need to worry if the append is already in the
3732 		 * leftmost leaf.
3733 		 */
3734 		if (left_cpos) {
3735 			left_path = ocfs2_new_path(path_root_bh(right_path),
3736 						   path_root_el(right_path));
3737 			if (!left_path) {
3738 				ret = -ENOMEM;
3739 				mlog_errno(ret);
3740 				goto out;
3741 			}
3742 
3743 			ret = ocfs2_find_path(inode, left_path, left_cpos);
3744 			if (ret) {
3745 				mlog_errno(ret);
3746 				goto out;
3747 			}
3748 
3749 			/*
3750 			 * ocfs2_insert_path() will pass the left_path to the
3751 			 * journal for us.
3752 			 */
3753 		}
3754 	}
3755 
3756 	ret = ocfs2_journal_access_path(inode, handle, right_path);
3757 	if (ret) {
3758 		mlog_errno(ret);
3759 		goto out;
3760 	}
3761 
3762 	ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
3763 
3764 	*ret_left_path = left_path;
3765 	ret = 0;
3766 out:
3767 	if (ret != 0)
3768 		ocfs2_free_path(left_path);
3769 
3770 	return ret;
3771 }
3772 
3773 static void ocfs2_split_record(struct inode *inode,
3774 			       struct ocfs2_path *left_path,
3775 			       struct ocfs2_path *right_path,
3776 			       struct ocfs2_extent_rec *split_rec,
3777 			       enum ocfs2_split_type split)
3778 {
3779 	int index;
3780 	u32 cpos = le32_to_cpu(split_rec->e_cpos);
3781 	struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
3782 	struct ocfs2_extent_rec *rec, *tmprec;
3783 
3784 	right_el = path_leaf_el(right_path);;
3785 	if (left_path)
3786 		left_el = path_leaf_el(left_path);
3787 
3788 	el = right_el;
3789 	insert_el = right_el;
3790 	index = ocfs2_search_extent_list(el, cpos);
3791 	if (index != -1) {
3792 		if (index == 0 && left_path) {
3793 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3794 
3795 			/*
3796 			 * This typically means that the record
3797 			 * started in the left path but moved to the
3798 			 * right as a result of rotation. We either
3799 			 * move the existing record to the left, or we
3800 			 * do the later insert there.
3801 			 *
3802 			 * In this case, the left path should always
3803 			 * exist as the rotate code will have passed
3804 			 * it back for a post-insert update.
3805 			 */
3806 
3807 			if (split == SPLIT_LEFT) {
3808 				/*
3809 				 * It's a left split. Since we know
3810 				 * that the rotate code gave us an
3811 				 * empty extent in the left path, we
3812 				 * can just do the insert there.
3813 				 */
3814 				insert_el = left_el;
3815 			} else {
3816 				/*
3817 				 * Right split - we have to move the
3818 				 * existing record over to the left
3819 				 * leaf. The insert will be into the
3820 				 * newly created empty extent in the
3821 				 * right leaf.
3822 				 */
3823 				tmprec = &right_el->l_recs[index];
3824 				ocfs2_rotate_leaf(left_el, tmprec);
3825 				el = left_el;
3826 
3827 				memset(tmprec, 0, sizeof(*tmprec));
3828 				index = ocfs2_search_extent_list(left_el, cpos);
3829 				BUG_ON(index == -1);
3830 			}
3831 		}
3832 	} else {
3833 		BUG_ON(!left_path);
3834 		BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
3835 		/*
3836 		 * Left path is easy - we can just allow the insert to
3837 		 * happen.
3838 		 */
3839 		el = left_el;
3840 		insert_el = left_el;
3841 		index = ocfs2_search_extent_list(el, cpos);
3842 		BUG_ON(index == -1);
3843 	}
3844 
3845 	rec = &el->l_recs[index];
3846 	ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
3847 	ocfs2_rotate_leaf(insert_el, split_rec);
3848 }
3849 
3850 /*
3851  * This function only does inserts on an allocation b-tree. For tree
3852  * depth = 0, ocfs2_insert_at_leaf() is called directly.
3853  *
3854  * right_path is the path we want to do the actual insert
3855  * in. left_path should only be passed in if we need to update that
3856  * portion of the tree after an edge insert.
3857  */
3858 static int ocfs2_insert_path(struct inode *inode,
3859 			     handle_t *handle,
3860 			     struct ocfs2_path *left_path,
3861 			     struct ocfs2_path *right_path,
3862 			     struct ocfs2_extent_rec *insert_rec,
3863 			     struct ocfs2_insert_type *insert)
3864 {
3865 	int ret, subtree_index;
3866 	struct buffer_head *leaf_bh = path_leaf_bh(right_path);
3867 
3868 	if (left_path) {
3869 		int credits = handle->h_buffer_credits;
3870 
3871 		/*
3872 		 * There's a chance that left_path got passed back to
3873 		 * us without being accounted for in the
3874 		 * journal. Extend our transaction here to be sure we
3875 		 * can change those blocks.
3876 		 */
3877 		credits += left_path->p_tree_depth;
3878 
3879 		ret = ocfs2_extend_trans(handle, credits);
3880 		if (ret < 0) {
3881 			mlog_errno(ret);
3882 			goto out;
3883 		}
3884 
3885 		ret = ocfs2_journal_access_path(inode, handle, left_path);
3886 		if (ret < 0) {
3887 			mlog_errno(ret);
3888 			goto out;
3889 		}
3890 	}
3891 
3892 	/*
3893 	 * Pass both paths to the journal. The majority of inserts
3894 	 * will be touching all components anyway.
3895 	 */
3896 	ret = ocfs2_journal_access_path(inode, handle, right_path);
3897 	if (ret < 0) {
3898 		mlog_errno(ret);
3899 		goto out;
3900 	}
3901 
3902 	if (insert->ins_split != SPLIT_NONE) {
3903 		/*
3904 		 * We could call ocfs2_insert_at_leaf() for some types
3905 		 * of splits, but it's easier to just let one separate
3906 		 * function sort it all out.
3907 		 */
3908 		ocfs2_split_record(inode, left_path, right_path,
3909 				   insert_rec, insert->ins_split);
3910 
3911 		/*
3912 		 * Split might have modified either leaf and we don't
3913 		 * have a guarantee that the later edge insert will
3914 		 * dirty this for us.
3915 		 */
3916 		if (left_path)
3917 			ret = ocfs2_journal_dirty(handle,
3918 						  path_leaf_bh(left_path));
3919 			if (ret)
3920 				mlog_errno(ret);
3921 	} else
3922 		ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
3923 				     insert, inode);
3924 
3925 	ret = ocfs2_journal_dirty(handle, leaf_bh);
3926 	if (ret)
3927 		mlog_errno(ret);
3928 
3929 	if (left_path) {
3930 		/*
3931 		 * The rotate code has indicated that we need to fix
3932 		 * up portions of the tree after the insert.
3933 		 *
3934 		 * XXX: Should we extend the transaction here?
3935 		 */
3936 		subtree_index = ocfs2_find_subtree_root(inode, left_path,
3937 							right_path);
3938 		ocfs2_complete_edge_insert(inode, handle, left_path,
3939 					   right_path, subtree_index);
3940 	}
3941 
3942 	ret = 0;
3943 out:
3944 	return ret;
3945 }
3946 
3947 static int ocfs2_do_insert_extent(struct inode *inode,
3948 				  handle_t *handle,
3949 				  struct ocfs2_extent_tree *et,
3950 				  struct ocfs2_extent_rec *insert_rec,
3951 				  struct ocfs2_insert_type *type)
3952 {
3953 	int ret, rotate = 0;
3954 	u32 cpos;
3955 	struct ocfs2_path *right_path = NULL;
3956 	struct ocfs2_path *left_path = NULL;
3957 	struct ocfs2_extent_list *el;
3958 
3959 	el = et->et_root_el;
3960 
3961 	ret = ocfs2_journal_access(handle, inode, et->et_root_bh,
3962 				   OCFS2_JOURNAL_ACCESS_WRITE);
3963 	if (ret) {
3964 		mlog_errno(ret);
3965 		goto out;
3966 	}
3967 
3968 	if (le16_to_cpu(el->l_tree_depth) == 0) {
3969 		ocfs2_insert_at_leaf(insert_rec, el, type, inode);
3970 		goto out_update_clusters;
3971 	}
3972 
3973 	right_path = ocfs2_new_path(et->et_root_bh, et->et_root_el);
3974 	if (!right_path) {
3975 		ret = -ENOMEM;
3976 		mlog_errno(ret);
3977 		goto out;
3978 	}
3979 
3980 	/*
3981 	 * Determine the path to start with. Rotations need the
3982 	 * rightmost path, everything else can go directly to the
3983 	 * target leaf.
3984 	 */
3985 	cpos = le32_to_cpu(insert_rec->e_cpos);
3986 	if (type->ins_appending == APPEND_NONE &&
3987 	    type->ins_contig == CONTIG_NONE) {
3988 		rotate = 1;
3989 		cpos = UINT_MAX;
3990 	}
3991 
3992 	ret = ocfs2_find_path(inode, right_path, cpos);
3993 	if (ret) {
3994 		mlog_errno(ret);
3995 		goto out;
3996 	}
3997 
3998 	/*
3999 	 * Rotations and appends need special treatment - they modify
4000 	 * parts of the tree's above them.
4001 	 *
4002 	 * Both might pass back a path immediate to the left of the
4003 	 * one being inserted to. This will be cause
4004 	 * ocfs2_insert_path() to modify the rightmost records of
4005 	 * left_path to account for an edge insert.
4006 	 *
4007 	 * XXX: When modifying this code, keep in mind that an insert
4008 	 * can wind up skipping both of these two special cases...
4009 	 */
4010 	if (rotate) {
4011 		ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
4012 					      le32_to_cpu(insert_rec->e_cpos),
4013 					      right_path, &left_path);
4014 		if (ret) {
4015 			mlog_errno(ret);
4016 			goto out;
4017 		}
4018 
4019 		/*
4020 		 * ocfs2_rotate_tree_right() might have extended the
4021 		 * transaction without re-journaling our tree root.
4022 		 */
4023 		ret = ocfs2_journal_access(handle, inode, et->et_root_bh,
4024 					   OCFS2_JOURNAL_ACCESS_WRITE);
4025 		if (ret) {
4026 			mlog_errno(ret);
4027 			goto out;
4028 		}
4029 	} else if (type->ins_appending == APPEND_TAIL
4030 		   && type->ins_contig != CONTIG_LEFT) {
4031 		ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
4032 					       right_path, &left_path);
4033 		if (ret) {
4034 			mlog_errno(ret);
4035 			goto out;
4036 		}
4037 	}
4038 
4039 	ret = ocfs2_insert_path(inode, handle, left_path, right_path,
4040 				insert_rec, type);
4041 	if (ret) {
4042 		mlog_errno(ret);
4043 		goto out;
4044 	}
4045 
4046 out_update_clusters:
4047 	if (type->ins_split == SPLIT_NONE)
4048 		ocfs2_et_update_clusters(inode, et,
4049 					 le16_to_cpu(insert_rec->e_leaf_clusters));
4050 
4051 	ret = ocfs2_journal_dirty(handle, et->et_root_bh);
4052 	if (ret)
4053 		mlog_errno(ret);
4054 
4055 out:
4056 	ocfs2_free_path(left_path);
4057 	ocfs2_free_path(right_path);
4058 
4059 	return ret;
4060 }
4061 
4062 static enum ocfs2_contig_type
4063 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path,
4064 			       struct ocfs2_extent_list *el, int index,
4065 			       struct ocfs2_extent_rec *split_rec)
4066 {
4067 	int status;
4068 	enum ocfs2_contig_type ret = CONTIG_NONE;
4069 	u32 left_cpos, right_cpos;
4070 	struct ocfs2_extent_rec *rec = NULL;
4071 	struct ocfs2_extent_list *new_el;
4072 	struct ocfs2_path *left_path = NULL, *right_path = NULL;
4073 	struct buffer_head *bh;
4074 	struct ocfs2_extent_block *eb;
4075 
4076 	if (index > 0) {
4077 		rec = &el->l_recs[index - 1];
4078 	} else if (path->p_tree_depth > 0) {
4079 		status = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
4080 						       path, &left_cpos);
4081 		if (status)
4082 			goto out;
4083 
4084 		if (left_cpos != 0) {
4085 			left_path = ocfs2_new_path(path_root_bh(path),
4086 						   path_root_el(path));
4087 			if (!left_path)
4088 				goto out;
4089 
4090 			status = ocfs2_find_path(inode, left_path, left_cpos);
4091 			if (status)
4092 				goto out;
4093 
4094 			new_el = path_leaf_el(left_path);
4095 
4096 			if (le16_to_cpu(new_el->l_next_free_rec) !=
4097 			    le16_to_cpu(new_el->l_count)) {
4098 				bh = path_leaf_bh(left_path);
4099 				eb = (struct ocfs2_extent_block *)bh->b_data;
4100 				OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb,
4101 								 eb);
4102 				goto out;
4103 			}
4104 			rec = &new_el->l_recs[
4105 				le16_to_cpu(new_el->l_next_free_rec) - 1];
4106 		}
4107 	}
4108 
4109 	/*
4110 	 * We're careful to check for an empty extent record here -
4111 	 * the merge code will know what to do if it sees one.
4112 	 */
4113 	if (rec) {
4114 		if (index == 1 && ocfs2_is_empty_extent(rec)) {
4115 			if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4116 				ret = CONTIG_RIGHT;
4117 		} else {
4118 			ret = ocfs2_extent_contig(inode, rec, split_rec);
4119 		}
4120 	}
4121 
4122 	rec = NULL;
4123 	if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4124 		rec = &el->l_recs[index + 1];
4125 	else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4126 		 path->p_tree_depth > 0) {
4127 		status = ocfs2_find_cpos_for_right_leaf(inode->i_sb,
4128 							path, &right_cpos);
4129 		if (status)
4130 			goto out;
4131 
4132 		if (right_cpos == 0)
4133 			goto out;
4134 
4135 		right_path = ocfs2_new_path(path_root_bh(path),
4136 					    path_root_el(path));
4137 		if (!right_path)
4138 			goto out;
4139 
4140 		status = ocfs2_find_path(inode, right_path, right_cpos);
4141 		if (status)
4142 			goto out;
4143 
4144 		new_el = path_leaf_el(right_path);
4145 		rec = &new_el->l_recs[0];
4146 		if (ocfs2_is_empty_extent(rec)) {
4147 			if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4148 				bh = path_leaf_bh(right_path);
4149 				eb = (struct ocfs2_extent_block *)bh->b_data;
4150 				OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb,
4151 								 eb);
4152 				goto out;
4153 			}
4154 			rec = &new_el->l_recs[1];
4155 		}
4156 	}
4157 
4158 	if (rec) {
4159 		enum ocfs2_contig_type contig_type;
4160 
4161 		contig_type = ocfs2_extent_contig(inode, rec, split_rec);
4162 
4163 		if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4164 			ret = CONTIG_LEFTRIGHT;
4165 		else if (ret == CONTIG_NONE)
4166 			ret = contig_type;
4167 	}
4168 
4169 out:
4170 	if (left_path)
4171 		ocfs2_free_path(left_path);
4172 	if (right_path)
4173 		ocfs2_free_path(right_path);
4174 
4175 	return ret;
4176 }
4177 
4178 static void ocfs2_figure_contig_type(struct inode *inode,
4179 				     struct ocfs2_insert_type *insert,
4180 				     struct ocfs2_extent_list *el,
4181 				     struct ocfs2_extent_rec *insert_rec,
4182 				     struct ocfs2_extent_tree *et)
4183 {
4184 	int i;
4185 	enum ocfs2_contig_type contig_type = CONTIG_NONE;
4186 
4187 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4188 
4189 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4190 		contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
4191 						  insert_rec);
4192 		if (contig_type != CONTIG_NONE) {
4193 			insert->ins_contig_index = i;
4194 			break;
4195 		}
4196 	}
4197 	insert->ins_contig = contig_type;
4198 
4199 	if (insert->ins_contig != CONTIG_NONE) {
4200 		struct ocfs2_extent_rec *rec =
4201 				&el->l_recs[insert->ins_contig_index];
4202 		unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4203 				   le16_to_cpu(insert_rec->e_leaf_clusters);
4204 
4205 		/*
4206 		 * Caller might want us to limit the size of extents, don't
4207 		 * calculate contiguousness if we might exceed that limit.
4208 		 */
4209 		if (et->et_max_leaf_clusters &&
4210 		    (len > et->et_max_leaf_clusters))
4211 			insert->ins_contig = CONTIG_NONE;
4212 	}
4213 }
4214 
4215 /*
4216  * This should only be called against the righmost leaf extent list.
4217  *
4218  * ocfs2_figure_appending_type() will figure out whether we'll have to
4219  * insert at the tail of the rightmost leaf.
4220  *
4221  * This should also work against the root extent list for tree's with 0
4222  * depth. If we consider the root extent list to be the rightmost leaf node
4223  * then the logic here makes sense.
4224  */
4225 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4226 					struct ocfs2_extent_list *el,
4227 					struct ocfs2_extent_rec *insert_rec)
4228 {
4229 	int i;
4230 	u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4231 	struct ocfs2_extent_rec *rec;
4232 
4233 	insert->ins_appending = APPEND_NONE;
4234 
4235 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4236 
4237 	if (!el->l_next_free_rec)
4238 		goto set_tail_append;
4239 
4240 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4241 		/* Were all records empty? */
4242 		if (le16_to_cpu(el->l_next_free_rec) == 1)
4243 			goto set_tail_append;
4244 	}
4245 
4246 	i = le16_to_cpu(el->l_next_free_rec) - 1;
4247 	rec = &el->l_recs[i];
4248 
4249 	if (cpos >=
4250 	    (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4251 		goto set_tail_append;
4252 
4253 	return;
4254 
4255 set_tail_append:
4256 	insert->ins_appending = APPEND_TAIL;
4257 }
4258 
4259 /*
4260  * Helper function called at the begining of an insert.
4261  *
4262  * This computes a few things that are commonly used in the process of
4263  * inserting into the btree:
4264  *   - Whether the new extent is contiguous with an existing one.
4265  *   - The current tree depth.
4266  *   - Whether the insert is an appending one.
4267  *   - The total # of free records in the tree.
4268  *
4269  * All of the information is stored on the ocfs2_insert_type
4270  * structure.
4271  */
4272 static int ocfs2_figure_insert_type(struct inode *inode,
4273 				    struct ocfs2_extent_tree *et,
4274 				    struct buffer_head **last_eb_bh,
4275 				    struct ocfs2_extent_rec *insert_rec,
4276 				    int *free_records,
4277 				    struct ocfs2_insert_type *insert)
4278 {
4279 	int ret;
4280 	struct ocfs2_extent_block *eb;
4281 	struct ocfs2_extent_list *el;
4282 	struct ocfs2_path *path = NULL;
4283 	struct buffer_head *bh = NULL;
4284 
4285 	insert->ins_split = SPLIT_NONE;
4286 
4287 	el = et->et_root_el;
4288 	insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4289 
4290 	if (el->l_tree_depth) {
4291 		/*
4292 		 * If we have tree depth, we read in the
4293 		 * rightmost extent block ahead of time as
4294 		 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4295 		 * may want it later.
4296 		 */
4297 		ret = ocfs2_read_block(inode, ocfs2_et_get_last_eb_blk(et), &bh);
4298 		if (ret) {
4299 			mlog_exit(ret);
4300 			goto out;
4301 		}
4302 		eb = (struct ocfs2_extent_block *) bh->b_data;
4303 		el = &eb->h_list;
4304 	}
4305 
4306 	/*
4307 	 * Unless we have a contiguous insert, we'll need to know if
4308 	 * there is room left in our allocation tree for another
4309 	 * extent record.
4310 	 *
4311 	 * XXX: This test is simplistic, we can search for empty
4312 	 * extent records too.
4313 	 */
4314 	*free_records = le16_to_cpu(el->l_count) -
4315 		le16_to_cpu(el->l_next_free_rec);
4316 
4317 	if (!insert->ins_tree_depth) {
4318 		ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4319 		ocfs2_figure_appending_type(insert, el, insert_rec);
4320 		return 0;
4321 	}
4322 
4323 	path = ocfs2_new_path(et->et_root_bh, et->et_root_el);
4324 	if (!path) {
4325 		ret = -ENOMEM;
4326 		mlog_errno(ret);
4327 		goto out;
4328 	}
4329 
4330 	/*
4331 	 * In the case that we're inserting past what the tree
4332 	 * currently accounts for, ocfs2_find_path() will return for
4333 	 * us the rightmost tree path. This is accounted for below in
4334 	 * the appending code.
4335 	 */
4336 	ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
4337 	if (ret) {
4338 		mlog_errno(ret);
4339 		goto out;
4340 	}
4341 
4342 	el = path_leaf_el(path);
4343 
4344 	/*
4345 	 * Now that we have the path, there's two things we want to determine:
4346 	 * 1) Contiguousness (also set contig_index if this is so)
4347 	 *
4348 	 * 2) Are we doing an append? We can trivially break this up
4349          *     into two types of appends: simple record append, or a
4350          *     rotate inside the tail leaf.
4351 	 */
4352 	ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4353 
4354 	/*
4355 	 * The insert code isn't quite ready to deal with all cases of
4356 	 * left contiguousness. Specifically, if it's an insert into
4357 	 * the 1st record in a leaf, it will require the adjustment of
4358 	 * cluster count on the last record of the path directly to it's
4359 	 * left. For now, just catch that case and fool the layers
4360 	 * above us. This works just fine for tree_depth == 0, which
4361 	 * is why we allow that above.
4362 	 */
4363 	if (insert->ins_contig == CONTIG_LEFT &&
4364 	    insert->ins_contig_index == 0)
4365 		insert->ins_contig = CONTIG_NONE;
4366 
4367 	/*
4368 	 * Ok, so we can simply compare against last_eb to figure out
4369 	 * whether the path doesn't exist. This will only happen in
4370 	 * the case that we're doing a tail append, so maybe we can
4371 	 * take advantage of that information somehow.
4372 	 */
4373 	if (ocfs2_et_get_last_eb_blk(et) ==
4374 	    path_leaf_bh(path)->b_blocknr) {
4375 		/*
4376 		 * Ok, ocfs2_find_path() returned us the rightmost
4377 		 * tree path. This might be an appending insert. There are
4378 		 * two cases:
4379 		 *    1) We're doing a true append at the tail:
4380 		 *	-This might even be off the end of the leaf
4381 		 *    2) We're "appending" by rotating in the tail
4382 		 */
4383 		ocfs2_figure_appending_type(insert, el, insert_rec);
4384 	}
4385 
4386 out:
4387 	ocfs2_free_path(path);
4388 
4389 	if (ret == 0)
4390 		*last_eb_bh = bh;
4391 	else
4392 		brelse(bh);
4393 	return ret;
4394 }
4395 
4396 /*
4397  * Insert an extent into an inode btree.
4398  *
4399  * The caller needs to update fe->i_clusters
4400  */
4401 int ocfs2_insert_extent(struct ocfs2_super *osb,
4402 			handle_t *handle,
4403 			struct inode *inode,
4404 			struct ocfs2_extent_tree *et,
4405 			u32 cpos,
4406 			u64 start_blk,
4407 			u32 new_clusters,
4408 			u8 flags,
4409 			struct ocfs2_alloc_context *meta_ac)
4410 {
4411 	int status;
4412 	int uninitialized_var(free_records);
4413 	struct buffer_head *last_eb_bh = NULL;
4414 	struct ocfs2_insert_type insert = {0, };
4415 	struct ocfs2_extent_rec rec;
4416 
4417 	mlog(0, "add %u clusters at position %u to inode %llu\n",
4418 	     new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4419 
4420 	memset(&rec, 0, sizeof(rec));
4421 	rec.e_cpos = cpu_to_le32(cpos);
4422 	rec.e_blkno = cpu_to_le64(start_blk);
4423 	rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4424 	rec.e_flags = flags;
4425 	status = ocfs2_et_insert_check(inode, et, &rec);
4426 	if (status) {
4427 		mlog_errno(status);
4428 		goto bail;
4429 	}
4430 
4431 	status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec,
4432 					  &free_records, &insert);
4433 	if (status < 0) {
4434 		mlog_errno(status);
4435 		goto bail;
4436 	}
4437 
4438 	mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4439 	     "Insert.contig_index: %d, Insert.free_records: %d, "
4440 	     "Insert.tree_depth: %d\n",
4441 	     insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4442 	     free_records, insert.ins_tree_depth);
4443 
4444 	if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4445 		status = ocfs2_grow_tree(inode, handle, et,
4446 					 &insert.ins_tree_depth, &last_eb_bh,
4447 					 meta_ac);
4448 		if (status) {
4449 			mlog_errno(status);
4450 			goto bail;
4451 		}
4452 	}
4453 
4454 	/* Finally, we can add clusters. This might rotate the tree for us. */
4455 	status = ocfs2_do_insert_extent(inode, handle, et, &rec, &insert);
4456 	if (status < 0)
4457 		mlog_errno(status);
4458 	else if (et->et_ops == &ocfs2_dinode_et_ops)
4459 		ocfs2_extent_map_insert_rec(inode, &rec);
4460 
4461 bail:
4462 	brelse(last_eb_bh);
4463 
4464 	mlog_exit(status);
4465 	return status;
4466 }
4467 
4468 /*
4469  * Allcate and add clusters into the extent b-tree.
4470  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4471  * The extent b-tree's root is specified by et, and
4472  * it is not limited to the file storage. Any extent tree can use this
4473  * function if it implements the proper ocfs2_extent_tree.
4474  */
4475 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb,
4476 				struct inode *inode,
4477 				u32 *logical_offset,
4478 				u32 clusters_to_add,
4479 				int mark_unwritten,
4480 				struct ocfs2_extent_tree *et,
4481 				handle_t *handle,
4482 				struct ocfs2_alloc_context *data_ac,
4483 				struct ocfs2_alloc_context *meta_ac,
4484 				enum ocfs2_alloc_restarted *reason_ret)
4485 {
4486 	int status = 0;
4487 	int free_extents;
4488 	enum ocfs2_alloc_restarted reason = RESTART_NONE;
4489 	u32 bit_off, num_bits;
4490 	u64 block;
4491 	u8 flags = 0;
4492 
4493 	BUG_ON(!clusters_to_add);
4494 
4495 	if (mark_unwritten)
4496 		flags = OCFS2_EXT_UNWRITTEN;
4497 
4498 	free_extents = ocfs2_num_free_extents(osb, inode, et);
4499 	if (free_extents < 0) {
4500 		status = free_extents;
4501 		mlog_errno(status);
4502 		goto leave;
4503 	}
4504 
4505 	/* there are two cases which could cause us to EAGAIN in the
4506 	 * we-need-more-metadata case:
4507 	 * 1) we haven't reserved *any*
4508 	 * 2) we are so fragmented, we've needed to add metadata too
4509 	 *    many times. */
4510 	if (!free_extents && !meta_ac) {
4511 		mlog(0, "we haven't reserved any metadata!\n");
4512 		status = -EAGAIN;
4513 		reason = RESTART_META;
4514 		goto leave;
4515 	} else if ((!free_extents)
4516 		   && (ocfs2_alloc_context_bits_left(meta_ac)
4517 		       < ocfs2_extend_meta_needed(et->et_root_el))) {
4518 		mlog(0, "filesystem is really fragmented...\n");
4519 		status = -EAGAIN;
4520 		reason = RESTART_META;
4521 		goto leave;
4522 	}
4523 
4524 	status = __ocfs2_claim_clusters(osb, handle, data_ac, 1,
4525 					clusters_to_add, &bit_off, &num_bits);
4526 	if (status < 0) {
4527 		if (status != -ENOSPC)
4528 			mlog_errno(status);
4529 		goto leave;
4530 	}
4531 
4532 	BUG_ON(num_bits > clusters_to_add);
4533 
4534 	/* reserve our write early -- insert_extent may update the inode */
4535 	status = ocfs2_journal_access(handle, inode, et->et_root_bh,
4536 				      OCFS2_JOURNAL_ACCESS_WRITE);
4537 	if (status < 0) {
4538 		mlog_errno(status);
4539 		goto leave;
4540 	}
4541 
4542 	block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4543 	mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
4544 	     num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4545 	status = ocfs2_insert_extent(osb, handle, inode, et,
4546 				     *logical_offset, block,
4547 				     num_bits, flags, meta_ac);
4548 	if (status < 0) {
4549 		mlog_errno(status);
4550 		goto leave;
4551 	}
4552 
4553 	status = ocfs2_journal_dirty(handle, et->et_root_bh);
4554 	if (status < 0) {
4555 		mlog_errno(status);
4556 		goto leave;
4557 	}
4558 
4559 	clusters_to_add -= num_bits;
4560 	*logical_offset += num_bits;
4561 
4562 	if (clusters_to_add) {
4563 		mlog(0, "need to alloc once more, wanted = %u\n",
4564 		     clusters_to_add);
4565 		status = -EAGAIN;
4566 		reason = RESTART_TRANS;
4567 	}
4568 
4569 leave:
4570 	mlog_exit(status);
4571 	if (reason_ret)
4572 		*reason_ret = reason;
4573 	return status;
4574 }
4575 
4576 static void ocfs2_make_right_split_rec(struct super_block *sb,
4577 				       struct ocfs2_extent_rec *split_rec,
4578 				       u32 cpos,
4579 				       struct ocfs2_extent_rec *rec)
4580 {
4581 	u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4582 	u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4583 
4584 	memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4585 
4586 	split_rec->e_cpos = cpu_to_le32(cpos);
4587 	split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4588 
4589 	split_rec->e_blkno = rec->e_blkno;
4590 	le64_add_cpu(&split_rec->e_blkno,
4591 		     ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4592 
4593 	split_rec->e_flags = rec->e_flags;
4594 }
4595 
4596 static int ocfs2_split_and_insert(struct inode *inode,
4597 				  handle_t *handle,
4598 				  struct ocfs2_path *path,
4599 				  struct ocfs2_extent_tree *et,
4600 				  struct buffer_head **last_eb_bh,
4601 				  int split_index,
4602 				  struct ocfs2_extent_rec *orig_split_rec,
4603 				  struct ocfs2_alloc_context *meta_ac)
4604 {
4605 	int ret = 0, depth;
4606 	unsigned int insert_range, rec_range, do_leftright = 0;
4607 	struct ocfs2_extent_rec tmprec;
4608 	struct ocfs2_extent_list *rightmost_el;
4609 	struct ocfs2_extent_rec rec;
4610 	struct ocfs2_extent_rec split_rec = *orig_split_rec;
4611 	struct ocfs2_insert_type insert;
4612 	struct ocfs2_extent_block *eb;
4613 
4614 leftright:
4615 	/*
4616 	 * Store a copy of the record on the stack - it might move
4617 	 * around as the tree is manipulated below.
4618 	 */
4619 	rec = path_leaf_el(path)->l_recs[split_index];
4620 
4621 	rightmost_el = et->et_root_el;
4622 
4623 	depth = le16_to_cpu(rightmost_el->l_tree_depth);
4624 	if (depth) {
4625 		BUG_ON(!(*last_eb_bh));
4626 		eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4627 		rightmost_el = &eb->h_list;
4628 	}
4629 
4630 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4631 	    le16_to_cpu(rightmost_el->l_count)) {
4632 		ret = ocfs2_grow_tree(inode, handle, et,
4633 				      &depth, last_eb_bh, meta_ac);
4634 		if (ret) {
4635 			mlog_errno(ret);
4636 			goto out;
4637 		}
4638 	}
4639 
4640 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4641 	insert.ins_appending = APPEND_NONE;
4642 	insert.ins_contig = CONTIG_NONE;
4643 	insert.ins_tree_depth = depth;
4644 
4645 	insert_range = le32_to_cpu(split_rec.e_cpos) +
4646 		le16_to_cpu(split_rec.e_leaf_clusters);
4647 	rec_range = le32_to_cpu(rec.e_cpos) +
4648 		le16_to_cpu(rec.e_leaf_clusters);
4649 
4650 	if (split_rec.e_cpos == rec.e_cpos) {
4651 		insert.ins_split = SPLIT_LEFT;
4652 	} else if (insert_range == rec_range) {
4653 		insert.ins_split = SPLIT_RIGHT;
4654 	} else {
4655 		/*
4656 		 * Left/right split. We fake this as a right split
4657 		 * first and then make a second pass as a left split.
4658 		 */
4659 		insert.ins_split = SPLIT_RIGHT;
4660 
4661 		ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
4662 					   &rec);
4663 
4664 		split_rec = tmprec;
4665 
4666 		BUG_ON(do_leftright);
4667 		do_leftright = 1;
4668 	}
4669 
4670 	ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
4671 	if (ret) {
4672 		mlog_errno(ret);
4673 		goto out;
4674 	}
4675 
4676 	if (do_leftright == 1) {
4677 		u32 cpos;
4678 		struct ocfs2_extent_list *el;
4679 
4680 		do_leftright++;
4681 		split_rec = *orig_split_rec;
4682 
4683 		ocfs2_reinit_path(path, 1);
4684 
4685 		cpos = le32_to_cpu(split_rec.e_cpos);
4686 		ret = ocfs2_find_path(inode, path, cpos);
4687 		if (ret) {
4688 			mlog_errno(ret);
4689 			goto out;
4690 		}
4691 
4692 		el = path_leaf_el(path);
4693 		split_index = ocfs2_search_extent_list(el, cpos);
4694 		goto leftright;
4695 	}
4696 out:
4697 
4698 	return ret;
4699 }
4700 
4701 /*
4702  * Mark part or all of the extent record at split_index in the leaf
4703  * pointed to by path as written. This removes the unwritten
4704  * extent flag.
4705  *
4706  * Care is taken to handle contiguousness so as to not grow the tree.
4707  *
4708  * meta_ac is not strictly necessary - we only truly need it if growth
4709  * of the tree is required. All other cases will degrade into a less
4710  * optimal tree layout.
4711  *
4712  * last_eb_bh should be the rightmost leaf block for any extent
4713  * btree. Since a split may grow the tree or a merge might shrink it,
4714  * the caller cannot trust the contents of that buffer after this call.
4715  *
4716  * This code is optimized for readability - several passes might be
4717  * made over certain portions of the tree. All of those blocks will
4718  * have been brought into cache (and pinned via the journal), so the
4719  * extra overhead is not expressed in terms of disk reads.
4720  */
4721 static int __ocfs2_mark_extent_written(struct inode *inode,
4722 				       struct ocfs2_extent_tree *et,
4723 				       handle_t *handle,
4724 				       struct ocfs2_path *path,
4725 				       int split_index,
4726 				       struct ocfs2_extent_rec *split_rec,
4727 				       struct ocfs2_alloc_context *meta_ac,
4728 				       struct ocfs2_cached_dealloc_ctxt *dealloc)
4729 {
4730 	int ret = 0;
4731 	struct ocfs2_extent_list *el = path_leaf_el(path);
4732 	struct buffer_head *last_eb_bh = NULL;
4733 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
4734 	struct ocfs2_merge_ctxt ctxt;
4735 	struct ocfs2_extent_list *rightmost_el;
4736 
4737 	if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
4738 		ret = -EIO;
4739 		mlog_errno(ret);
4740 		goto out;
4741 	}
4742 
4743 	if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
4744 	    ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
4745 	     (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
4746 		ret = -EIO;
4747 		mlog_errno(ret);
4748 		goto out;
4749 	}
4750 
4751 	ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el,
4752 							    split_index,
4753 							    split_rec);
4754 
4755 	/*
4756 	 * The core merge / split code wants to know how much room is
4757 	 * left in this inodes allocation tree, so we pass the
4758 	 * rightmost extent list.
4759 	 */
4760 	if (path->p_tree_depth) {
4761 		struct ocfs2_extent_block *eb;
4762 
4763 		ret = ocfs2_read_block(inode, ocfs2_et_get_last_eb_blk(et),
4764 				       &last_eb_bh);
4765 		if (ret) {
4766 			mlog_exit(ret);
4767 			goto out;
4768 		}
4769 
4770 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4771 		if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
4772 			OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
4773 			ret = -EROFS;
4774 			goto out;
4775 		}
4776 
4777 		rightmost_el = &eb->h_list;
4778 	} else
4779 		rightmost_el = path_root_el(path);
4780 
4781 	if (rec->e_cpos == split_rec->e_cpos &&
4782 	    rec->e_leaf_clusters == split_rec->e_leaf_clusters)
4783 		ctxt.c_split_covers_rec = 1;
4784 	else
4785 		ctxt.c_split_covers_rec = 0;
4786 
4787 	ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
4788 
4789 	mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
4790 	     split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
4791 	     ctxt.c_split_covers_rec);
4792 
4793 	if (ctxt.c_contig_type == CONTIG_NONE) {
4794 		if (ctxt.c_split_covers_rec)
4795 			el->l_recs[split_index] = *split_rec;
4796 		else
4797 			ret = ocfs2_split_and_insert(inode, handle, path, et,
4798 						     &last_eb_bh, split_index,
4799 						     split_rec, meta_ac);
4800 		if (ret)
4801 			mlog_errno(ret);
4802 	} else {
4803 		ret = ocfs2_try_to_merge_extent(inode, handle, path,
4804 						split_index, split_rec,
4805 						dealloc, &ctxt, et);
4806 		if (ret)
4807 			mlog_errno(ret);
4808 	}
4809 
4810 out:
4811 	brelse(last_eb_bh);
4812 	return ret;
4813 }
4814 
4815 /*
4816  * Mark the already-existing extent at cpos as written for len clusters.
4817  *
4818  * If the existing extent is larger than the request, initiate a
4819  * split. An attempt will be made at merging with adjacent extents.
4820  *
4821  * The caller is responsible for passing down meta_ac if we'll need it.
4822  */
4823 int ocfs2_mark_extent_written(struct inode *inode,
4824 			      struct ocfs2_extent_tree *et,
4825 			      handle_t *handle, u32 cpos, u32 len, u32 phys,
4826 			      struct ocfs2_alloc_context *meta_ac,
4827 			      struct ocfs2_cached_dealloc_ctxt *dealloc)
4828 {
4829 	int ret, index;
4830 	u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
4831 	struct ocfs2_extent_rec split_rec;
4832 	struct ocfs2_path *left_path = NULL;
4833 	struct ocfs2_extent_list *el;
4834 
4835 	mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
4836 	     inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
4837 
4838 	if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
4839 		ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
4840 			    "that are being written to, but the feature bit "
4841 			    "is not set in the super block.",
4842 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
4843 		ret = -EROFS;
4844 		goto out;
4845 	}
4846 
4847 	/*
4848 	 * XXX: This should be fixed up so that we just re-insert the
4849 	 * next extent records.
4850 	 *
4851 	 * XXX: This is a hack on the extent tree, maybe it should be
4852 	 * an op?
4853 	 */
4854 	if (et->et_ops == &ocfs2_dinode_et_ops)
4855 		ocfs2_extent_map_trunc(inode, 0);
4856 
4857 	left_path = ocfs2_new_path(et->et_root_bh, et->et_root_el);
4858 	if (!left_path) {
4859 		ret = -ENOMEM;
4860 		mlog_errno(ret);
4861 		goto out;
4862 	}
4863 
4864 	ret = ocfs2_find_path(inode, left_path, cpos);
4865 	if (ret) {
4866 		mlog_errno(ret);
4867 		goto out;
4868 	}
4869 	el = path_leaf_el(left_path);
4870 
4871 	index = ocfs2_search_extent_list(el, cpos);
4872 	if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4873 		ocfs2_error(inode->i_sb,
4874 			    "Inode %llu has an extent at cpos %u which can no "
4875 			    "longer be found.\n",
4876 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4877 		ret = -EROFS;
4878 		goto out;
4879 	}
4880 
4881 	memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
4882 	split_rec.e_cpos = cpu_to_le32(cpos);
4883 	split_rec.e_leaf_clusters = cpu_to_le16(len);
4884 	split_rec.e_blkno = cpu_to_le64(start_blkno);
4885 	split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
4886 	split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
4887 
4888 	ret = __ocfs2_mark_extent_written(inode, et, handle, left_path,
4889 					  index, &split_rec, meta_ac,
4890 					  dealloc);
4891 	if (ret)
4892 		mlog_errno(ret);
4893 
4894 out:
4895 	ocfs2_free_path(left_path);
4896 	return ret;
4897 }
4898 
4899 static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et,
4900 			    handle_t *handle, struct ocfs2_path *path,
4901 			    int index, u32 new_range,
4902 			    struct ocfs2_alloc_context *meta_ac)
4903 {
4904 	int ret, depth, credits = handle->h_buffer_credits;
4905 	struct buffer_head *last_eb_bh = NULL;
4906 	struct ocfs2_extent_block *eb;
4907 	struct ocfs2_extent_list *rightmost_el, *el;
4908 	struct ocfs2_extent_rec split_rec;
4909 	struct ocfs2_extent_rec *rec;
4910 	struct ocfs2_insert_type insert;
4911 
4912 	/*
4913 	 * Setup the record to split before we grow the tree.
4914 	 */
4915 	el = path_leaf_el(path);
4916 	rec = &el->l_recs[index];
4917 	ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
4918 
4919 	depth = path->p_tree_depth;
4920 	if (depth > 0) {
4921 		ret = ocfs2_read_block(inode, ocfs2_et_get_last_eb_blk(et),
4922 				       &last_eb_bh);
4923 		if (ret < 0) {
4924 			mlog_errno(ret);
4925 			goto out;
4926 		}
4927 
4928 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4929 		rightmost_el = &eb->h_list;
4930 	} else
4931 		rightmost_el = path_leaf_el(path);
4932 
4933 	credits += path->p_tree_depth +
4934 		   ocfs2_extend_meta_needed(et->et_root_el);
4935 	ret = ocfs2_extend_trans(handle, credits);
4936 	if (ret) {
4937 		mlog_errno(ret);
4938 		goto out;
4939 	}
4940 
4941 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4942 	    le16_to_cpu(rightmost_el->l_count)) {
4943 		ret = ocfs2_grow_tree(inode, handle, et, &depth, &last_eb_bh,
4944 				      meta_ac);
4945 		if (ret) {
4946 			mlog_errno(ret);
4947 			goto out;
4948 		}
4949 	}
4950 
4951 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4952 	insert.ins_appending = APPEND_NONE;
4953 	insert.ins_contig = CONTIG_NONE;
4954 	insert.ins_split = SPLIT_RIGHT;
4955 	insert.ins_tree_depth = depth;
4956 
4957 	ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
4958 	if (ret)
4959 		mlog_errno(ret);
4960 
4961 out:
4962 	brelse(last_eb_bh);
4963 	return ret;
4964 }
4965 
4966 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
4967 			      struct ocfs2_path *path, int index,
4968 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
4969 			      u32 cpos, u32 len,
4970 			      struct ocfs2_extent_tree *et)
4971 {
4972 	int ret;
4973 	u32 left_cpos, rec_range, trunc_range;
4974 	int wants_rotate = 0, is_rightmost_tree_rec = 0;
4975 	struct super_block *sb = inode->i_sb;
4976 	struct ocfs2_path *left_path = NULL;
4977 	struct ocfs2_extent_list *el = path_leaf_el(path);
4978 	struct ocfs2_extent_rec *rec;
4979 	struct ocfs2_extent_block *eb;
4980 
4981 	if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
4982 		ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
4983 		if (ret) {
4984 			mlog_errno(ret);
4985 			goto out;
4986 		}
4987 
4988 		index--;
4989 	}
4990 
4991 	if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
4992 	    path->p_tree_depth) {
4993 		/*
4994 		 * Check whether this is the rightmost tree record. If
4995 		 * we remove all of this record or part of its right
4996 		 * edge then an update of the record lengths above it
4997 		 * will be required.
4998 		 */
4999 		eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5000 		if (eb->h_next_leaf_blk == 0)
5001 			is_rightmost_tree_rec = 1;
5002 	}
5003 
5004 	rec = &el->l_recs[index];
5005 	if (index == 0 && path->p_tree_depth &&
5006 	    le32_to_cpu(rec->e_cpos) == cpos) {
5007 		/*
5008 		 * Changing the leftmost offset (via partial or whole
5009 		 * record truncate) of an interior (or rightmost) path
5010 		 * means we have to update the subtree that is formed
5011 		 * by this leaf and the one to it's left.
5012 		 *
5013 		 * There are two cases we can skip:
5014 		 *   1) Path is the leftmost one in our inode tree.
5015 		 *   2) The leaf is rightmost and will be empty after
5016 		 *      we remove the extent record - the rotate code
5017 		 *      knows how to update the newly formed edge.
5018 		 */
5019 
5020 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
5021 						    &left_cpos);
5022 		if (ret) {
5023 			mlog_errno(ret);
5024 			goto out;
5025 		}
5026 
5027 		if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5028 			left_path = ocfs2_new_path(path_root_bh(path),
5029 						   path_root_el(path));
5030 			if (!left_path) {
5031 				ret = -ENOMEM;
5032 				mlog_errno(ret);
5033 				goto out;
5034 			}
5035 
5036 			ret = ocfs2_find_path(inode, left_path, left_cpos);
5037 			if (ret) {
5038 				mlog_errno(ret);
5039 				goto out;
5040 			}
5041 		}
5042 	}
5043 
5044 	ret = ocfs2_extend_rotate_transaction(handle, 0,
5045 					      handle->h_buffer_credits,
5046 					      path);
5047 	if (ret) {
5048 		mlog_errno(ret);
5049 		goto out;
5050 	}
5051 
5052 	ret = ocfs2_journal_access_path(inode, handle, path);
5053 	if (ret) {
5054 		mlog_errno(ret);
5055 		goto out;
5056 	}
5057 
5058 	ret = ocfs2_journal_access_path(inode, handle, left_path);
5059 	if (ret) {
5060 		mlog_errno(ret);
5061 		goto out;
5062 	}
5063 
5064 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5065 	trunc_range = cpos + len;
5066 
5067 	if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5068 		int next_free;
5069 
5070 		memset(rec, 0, sizeof(*rec));
5071 		ocfs2_cleanup_merge(el, index);
5072 		wants_rotate = 1;
5073 
5074 		next_free = le16_to_cpu(el->l_next_free_rec);
5075 		if (is_rightmost_tree_rec && next_free > 1) {
5076 			/*
5077 			 * We skip the edge update if this path will
5078 			 * be deleted by the rotate code.
5079 			 */
5080 			rec = &el->l_recs[next_free - 1];
5081 			ocfs2_adjust_rightmost_records(inode, handle, path,
5082 						       rec);
5083 		}
5084 	} else if (le32_to_cpu(rec->e_cpos) == cpos) {
5085 		/* Remove leftmost portion of the record. */
5086 		le32_add_cpu(&rec->e_cpos, len);
5087 		le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5088 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5089 	} else if (rec_range == trunc_range) {
5090 		/* Remove rightmost portion of the record */
5091 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5092 		if (is_rightmost_tree_rec)
5093 			ocfs2_adjust_rightmost_records(inode, handle, path, rec);
5094 	} else {
5095 		/* Caller should have trapped this. */
5096 		mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
5097 		     "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
5098 		     le32_to_cpu(rec->e_cpos),
5099 		     le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5100 		BUG();
5101 	}
5102 
5103 	if (left_path) {
5104 		int subtree_index;
5105 
5106 		subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
5107 		ocfs2_complete_edge_insert(inode, handle, left_path, path,
5108 					   subtree_index);
5109 	}
5110 
5111 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
5112 
5113 	ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5114 	if (ret) {
5115 		mlog_errno(ret);
5116 		goto out;
5117 	}
5118 
5119 out:
5120 	ocfs2_free_path(left_path);
5121 	return ret;
5122 }
5123 
5124 int ocfs2_remove_extent(struct inode *inode,
5125 			struct ocfs2_extent_tree *et,
5126 			u32 cpos, u32 len, handle_t *handle,
5127 			struct ocfs2_alloc_context *meta_ac,
5128 			struct ocfs2_cached_dealloc_ctxt *dealloc)
5129 {
5130 	int ret, index;
5131 	u32 rec_range, trunc_range;
5132 	struct ocfs2_extent_rec *rec;
5133 	struct ocfs2_extent_list *el;
5134 	struct ocfs2_path *path = NULL;
5135 
5136 	ocfs2_extent_map_trunc(inode, 0);
5137 
5138 	path = ocfs2_new_path(et->et_root_bh, et->et_root_el);
5139 	if (!path) {
5140 		ret = -ENOMEM;
5141 		mlog_errno(ret);
5142 		goto out;
5143 	}
5144 
5145 	ret = ocfs2_find_path(inode, path, cpos);
5146 	if (ret) {
5147 		mlog_errno(ret);
5148 		goto out;
5149 	}
5150 
5151 	el = path_leaf_el(path);
5152 	index = ocfs2_search_extent_list(el, cpos);
5153 	if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5154 		ocfs2_error(inode->i_sb,
5155 			    "Inode %llu has an extent at cpos %u which can no "
5156 			    "longer be found.\n",
5157 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5158 		ret = -EROFS;
5159 		goto out;
5160 	}
5161 
5162 	/*
5163 	 * We have 3 cases of extent removal:
5164 	 *   1) Range covers the entire extent rec
5165 	 *   2) Range begins or ends on one edge of the extent rec
5166 	 *   3) Range is in the middle of the extent rec (no shared edges)
5167 	 *
5168 	 * For case 1 we remove the extent rec and left rotate to
5169 	 * fill the hole.
5170 	 *
5171 	 * For case 2 we just shrink the existing extent rec, with a
5172 	 * tree update if the shrinking edge is also the edge of an
5173 	 * extent block.
5174 	 *
5175 	 * For case 3 we do a right split to turn the extent rec into
5176 	 * something case 2 can handle.
5177 	 */
5178 	rec = &el->l_recs[index];
5179 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5180 	trunc_range = cpos + len;
5181 
5182 	BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5183 
5184 	mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
5185 	     "(cpos %u, len %u)\n",
5186 	     (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
5187 	     le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
5188 
5189 	if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5190 		ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5191 					 cpos, len, et);
5192 		if (ret) {
5193 			mlog_errno(ret);
5194 			goto out;
5195 		}
5196 	} else {
5197 		ret = ocfs2_split_tree(inode, et, handle, path, index,
5198 				       trunc_range, meta_ac);
5199 		if (ret) {
5200 			mlog_errno(ret);
5201 			goto out;
5202 		}
5203 
5204 		/*
5205 		 * The split could have manipulated the tree enough to
5206 		 * move the record location, so we have to look for it again.
5207 		 */
5208 		ocfs2_reinit_path(path, 1);
5209 
5210 		ret = ocfs2_find_path(inode, path, cpos);
5211 		if (ret) {
5212 			mlog_errno(ret);
5213 			goto out;
5214 		}
5215 
5216 		el = path_leaf_el(path);
5217 		index = ocfs2_search_extent_list(el, cpos);
5218 		if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5219 			ocfs2_error(inode->i_sb,
5220 				    "Inode %llu: split at cpos %u lost record.",
5221 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
5222 				    cpos);
5223 			ret = -EROFS;
5224 			goto out;
5225 		}
5226 
5227 		/*
5228 		 * Double check our values here. If anything is fishy,
5229 		 * it's easier to catch it at the top level.
5230 		 */
5231 		rec = &el->l_recs[index];
5232 		rec_range = le32_to_cpu(rec->e_cpos) +
5233 			ocfs2_rec_clusters(el, rec);
5234 		if (rec_range != trunc_range) {
5235 			ocfs2_error(inode->i_sb,
5236 				    "Inode %llu: error after split at cpos %u"
5237 				    "trunc len %u, existing record is (%u,%u)",
5238 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
5239 				    cpos, len, le32_to_cpu(rec->e_cpos),
5240 				    ocfs2_rec_clusters(el, rec));
5241 			ret = -EROFS;
5242 			goto out;
5243 		}
5244 
5245 		ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5246 					 cpos, len, et);
5247 		if (ret) {
5248 			mlog_errno(ret);
5249 			goto out;
5250 		}
5251 	}
5252 
5253 out:
5254 	ocfs2_free_path(path);
5255 	return ret;
5256 }
5257 
5258 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5259 {
5260 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5261 	struct ocfs2_dinode *di;
5262 	struct ocfs2_truncate_log *tl;
5263 
5264 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5265 	tl = &di->id2.i_dealloc;
5266 
5267 	mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5268 			"slot %d, invalid truncate log parameters: used = "
5269 			"%u, count = %u\n", osb->slot_num,
5270 			le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5271 	return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5272 }
5273 
5274 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5275 					   unsigned int new_start)
5276 {
5277 	unsigned int tail_index;
5278 	unsigned int current_tail;
5279 
5280 	/* No records, nothing to coalesce */
5281 	if (!le16_to_cpu(tl->tl_used))
5282 		return 0;
5283 
5284 	tail_index = le16_to_cpu(tl->tl_used) - 1;
5285 	current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5286 	current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5287 
5288 	return current_tail == new_start;
5289 }
5290 
5291 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5292 			      handle_t *handle,
5293 			      u64 start_blk,
5294 			      unsigned int num_clusters)
5295 {
5296 	int status, index;
5297 	unsigned int start_cluster, tl_count;
5298 	struct inode *tl_inode = osb->osb_tl_inode;
5299 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5300 	struct ocfs2_dinode *di;
5301 	struct ocfs2_truncate_log *tl;
5302 
5303 	mlog_entry("start_blk = %llu, num_clusters = %u\n",
5304 		   (unsigned long long)start_blk, num_clusters);
5305 
5306 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5307 
5308 	start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5309 
5310 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5311 	tl = &di->id2.i_dealloc;
5312 	if (!OCFS2_IS_VALID_DINODE(di)) {
5313 		OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
5314 		status = -EIO;
5315 		goto bail;
5316 	}
5317 
5318 	tl_count = le16_to_cpu(tl->tl_count);
5319 	mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5320 			tl_count == 0,
5321 			"Truncate record count on #%llu invalid "
5322 			"wanted %u, actual %u\n",
5323 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5324 			ocfs2_truncate_recs_per_inode(osb->sb),
5325 			le16_to_cpu(tl->tl_count));
5326 
5327 	/* Caller should have known to flush before calling us. */
5328 	index = le16_to_cpu(tl->tl_used);
5329 	if (index >= tl_count) {
5330 		status = -ENOSPC;
5331 		mlog_errno(status);
5332 		goto bail;
5333 	}
5334 
5335 	status = ocfs2_journal_access(handle, tl_inode, tl_bh,
5336 				      OCFS2_JOURNAL_ACCESS_WRITE);
5337 	if (status < 0) {
5338 		mlog_errno(status);
5339 		goto bail;
5340 	}
5341 
5342 	mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5343 	     "%llu (index = %d)\n", num_clusters, start_cluster,
5344 	     (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
5345 
5346 	if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5347 		/*
5348 		 * Move index back to the record we are coalescing with.
5349 		 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5350 		 */
5351 		index--;
5352 
5353 		num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5354 		mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5355 		     index, le32_to_cpu(tl->tl_recs[index].t_start),
5356 		     num_clusters);
5357 	} else {
5358 		tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5359 		tl->tl_used = cpu_to_le16(index + 1);
5360 	}
5361 	tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5362 
5363 	status = ocfs2_journal_dirty(handle, tl_bh);
5364 	if (status < 0) {
5365 		mlog_errno(status);
5366 		goto bail;
5367 	}
5368 
5369 bail:
5370 	mlog_exit(status);
5371 	return status;
5372 }
5373 
5374 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5375 					 handle_t *handle,
5376 					 struct inode *data_alloc_inode,
5377 					 struct buffer_head *data_alloc_bh)
5378 {
5379 	int status = 0;
5380 	int i;
5381 	unsigned int num_clusters;
5382 	u64 start_blk;
5383 	struct ocfs2_truncate_rec rec;
5384 	struct ocfs2_dinode *di;
5385 	struct ocfs2_truncate_log *tl;
5386 	struct inode *tl_inode = osb->osb_tl_inode;
5387 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5388 
5389 	mlog_entry_void();
5390 
5391 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5392 	tl = &di->id2.i_dealloc;
5393 	i = le16_to_cpu(tl->tl_used) - 1;
5394 	while (i >= 0) {
5395 		/* Caller has given us at least enough credits to
5396 		 * update the truncate log dinode */
5397 		status = ocfs2_journal_access(handle, tl_inode, tl_bh,
5398 					      OCFS2_JOURNAL_ACCESS_WRITE);
5399 		if (status < 0) {
5400 			mlog_errno(status);
5401 			goto bail;
5402 		}
5403 
5404 		tl->tl_used = cpu_to_le16(i);
5405 
5406 		status = ocfs2_journal_dirty(handle, tl_bh);
5407 		if (status < 0) {
5408 			mlog_errno(status);
5409 			goto bail;
5410 		}
5411 
5412 		/* TODO: Perhaps we can calculate the bulk of the
5413 		 * credits up front rather than extending like
5414 		 * this. */
5415 		status = ocfs2_extend_trans(handle,
5416 					    OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5417 		if (status < 0) {
5418 			mlog_errno(status);
5419 			goto bail;
5420 		}
5421 
5422 		rec = tl->tl_recs[i];
5423 		start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5424 						    le32_to_cpu(rec.t_start));
5425 		num_clusters = le32_to_cpu(rec.t_clusters);
5426 
5427 		/* if start_blk is not set, we ignore the record as
5428 		 * invalid. */
5429 		if (start_blk) {
5430 			mlog(0, "free record %d, start = %u, clusters = %u\n",
5431 			     i, le32_to_cpu(rec.t_start), num_clusters);
5432 
5433 			status = ocfs2_free_clusters(handle, data_alloc_inode,
5434 						     data_alloc_bh, start_blk,
5435 						     num_clusters);
5436 			if (status < 0) {
5437 				mlog_errno(status);
5438 				goto bail;
5439 			}
5440 		}
5441 		i--;
5442 	}
5443 
5444 bail:
5445 	mlog_exit(status);
5446 	return status;
5447 }
5448 
5449 /* Expects you to already be holding tl_inode->i_mutex */
5450 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5451 {
5452 	int status;
5453 	unsigned int num_to_flush;
5454 	handle_t *handle;
5455 	struct inode *tl_inode = osb->osb_tl_inode;
5456 	struct inode *data_alloc_inode = NULL;
5457 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5458 	struct buffer_head *data_alloc_bh = NULL;
5459 	struct ocfs2_dinode *di;
5460 	struct ocfs2_truncate_log *tl;
5461 
5462 	mlog_entry_void();
5463 
5464 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5465 
5466 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5467 	tl = &di->id2.i_dealloc;
5468 	if (!OCFS2_IS_VALID_DINODE(di)) {
5469 		OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
5470 		status = -EIO;
5471 		goto out;
5472 	}
5473 
5474 	num_to_flush = le16_to_cpu(tl->tl_used);
5475 	mlog(0, "Flush %u records from truncate log #%llu\n",
5476 	     num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5477 	if (!num_to_flush) {
5478 		status = 0;
5479 		goto out;
5480 	}
5481 
5482 	data_alloc_inode = ocfs2_get_system_file_inode(osb,
5483 						       GLOBAL_BITMAP_SYSTEM_INODE,
5484 						       OCFS2_INVALID_SLOT);
5485 	if (!data_alloc_inode) {
5486 		status = -EINVAL;
5487 		mlog(ML_ERROR, "Could not get bitmap inode!\n");
5488 		goto out;
5489 	}
5490 
5491 	mutex_lock(&data_alloc_inode->i_mutex);
5492 
5493 	status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5494 	if (status < 0) {
5495 		mlog_errno(status);
5496 		goto out_mutex;
5497 	}
5498 
5499 	handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5500 	if (IS_ERR(handle)) {
5501 		status = PTR_ERR(handle);
5502 		mlog_errno(status);
5503 		goto out_unlock;
5504 	}
5505 
5506 	status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5507 					       data_alloc_bh);
5508 	if (status < 0)
5509 		mlog_errno(status);
5510 
5511 	ocfs2_commit_trans(osb, handle);
5512 
5513 out_unlock:
5514 	brelse(data_alloc_bh);
5515 	ocfs2_inode_unlock(data_alloc_inode, 1);
5516 
5517 out_mutex:
5518 	mutex_unlock(&data_alloc_inode->i_mutex);
5519 	iput(data_alloc_inode);
5520 
5521 out:
5522 	mlog_exit(status);
5523 	return status;
5524 }
5525 
5526 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5527 {
5528 	int status;
5529 	struct inode *tl_inode = osb->osb_tl_inode;
5530 
5531 	mutex_lock(&tl_inode->i_mutex);
5532 	status = __ocfs2_flush_truncate_log(osb);
5533 	mutex_unlock(&tl_inode->i_mutex);
5534 
5535 	return status;
5536 }
5537 
5538 static void ocfs2_truncate_log_worker(struct work_struct *work)
5539 {
5540 	int status;
5541 	struct ocfs2_super *osb =
5542 		container_of(work, struct ocfs2_super,
5543 			     osb_truncate_log_wq.work);
5544 
5545 	mlog_entry_void();
5546 
5547 	status = ocfs2_flush_truncate_log(osb);
5548 	if (status < 0)
5549 		mlog_errno(status);
5550 	else
5551 		ocfs2_init_inode_steal_slot(osb);
5552 
5553 	mlog_exit(status);
5554 }
5555 
5556 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5557 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
5558 				       int cancel)
5559 {
5560 	if (osb->osb_tl_inode) {
5561 		/* We want to push off log flushes while truncates are
5562 		 * still running. */
5563 		if (cancel)
5564 			cancel_delayed_work(&osb->osb_truncate_log_wq);
5565 
5566 		queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
5567 				   OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
5568 	}
5569 }
5570 
5571 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
5572 				       int slot_num,
5573 				       struct inode **tl_inode,
5574 				       struct buffer_head **tl_bh)
5575 {
5576 	int status;
5577 	struct inode *inode = NULL;
5578 	struct buffer_head *bh = NULL;
5579 
5580 	inode = ocfs2_get_system_file_inode(osb,
5581 					   TRUNCATE_LOG_SYSTEM_INODE,
5582 					   slot_num);
5583 	if (!inode) {
5584 		status = -EINVAL;
5585 		mlog(ML_ERROR, "Could not get load truncate log inode!\n");
5586 		goto bail;
5587 	}
5588 
5589 	status = ocfs2_read_block(inode, OCFS2_I(inode)->ip_blkno, &bh);
5590 	if (status < 0) {
5591 		iput(inode);
5592 		mlog_errno(status);
5593 		goto bail;
5594 	}
5595 
5596 	*tl_inode = inode;
5597 	*tl_bh    = bh;
5598 bail:
5599 	mlog_exit(status);
5600 	return status;
5601 }
5602 
5603 /* called during the 1st stage of node recovery. we stamp a clean
5604  * truncate log and pass back a copy for processing later. if the
5605  * truncate log does not require processing, a *tl_copy is set to
5606  * NULL. */
5607 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
5608 				      int slot_num,
5609 				      struct ocfs2_dinode **tl_copy)
5610 {
5611 	int status;
5612 	struct inode *tl_inode = NULL;
5613 	struct buffer_head *tl_bh = NULL;
5614 	struct ocfs2_dinode *di;
5615 	struct ocfs2_truncate_log *tl;
5616 
5617 	*tl_copy = NULL;
5618 
5619 	mlog(0, "recover truncate log from slot %d\n", slot_num);
5620 
5621 	status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
5622 	if (status < 0) {
5623 		mlog_errno(status);
5624 		goto bail;
5625 	}
5626 
5627 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5628 	tl = &di->id2.i_dealloc;
5629 	if (!OCFS2_IS_VALID_DINODE(di)) {
5630 		OCFS2_RO_ON_INVALID_DINODE(tl_inode->i_sb, di);
5631 		status = -EIO;
5632 		goto bail;
5633 	}
5634 
5635 	if (le16_to_cpu(tl->tl_used)) {
5636 		mlog(0, "We'll have %u logs to recover\n",
5637 		     le16_to_cpu(tl->tl_used));
5638 
5639 		*tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
5640 		if (!(*tl_copy)) {
5641 			status = -ENOMEM;
5642 			mlog_errno(status);
5643 			goto bail;
5644 		}
5645 
5646 		/* Assuming the write-out below goes well, this copy
5647 		 * will be passed back to recovery for processing. */
5648 		memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
5649 
5650 		/* All we need to do to clear the truncate log is set
5651 		 * tl_used. */
5652 		tl->tl_used = 0;
5653 
5654 		status = ocfs2_write_block(osb, tl_bh, tl_inode);
5655 		if (status < 0) {
5656 			mlog_errno(status);
5657 			goto bail;
5658 		}
5659 	}
5660 
5661 bail:
5662 	if (tl_inode)
5663 		iput(tl_inode);
5664 	brelse(tl_bh);
5665 
5666 	if (status < 0 && (*tl_copy)) {
5667 		kfree(*tl_copy);
5668 		*tl_copy = NULL;
5669 	}
5670 
5671 	mlog_exit(status);
5672 	return status;
5673 }
5674 
5675 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
5676 					 struct ocfs2_dinode *tl_copy)
5677 {
5678 	int status = 0;
5679 	int i;
5680 	unsigned int clusters, num_recs, start_cluster;
5681 	u64 start_blk;
5682 	handle_t *handle;
5683 	struct inode *tl_inode = osb->osb_tl_inode;
5684 	struct ocfs2_truncate_log *tl;
5685 
5686 	mlog_entry_void();
5687 
5688 	if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
5689 		mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
5690 		return -EINVAL;
5691 	}
5692 
5693 	tl = &tl_copy->id2.i_dealloc;
5694 	num_recs = le16_to_cpu(tl->tl_used);
5695 	mlog(0, "cleanup %u records from %llu\n", num_recs,
5696 	     (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
5697 
5698 	mutex_lock(&tl_inode->i_mutex);
5699 	for(i = 0; i < num_recs; i++) {
5700 		if (ocfs2_truncate_log_needs_flush(osb)) {
5701 			status = __ocfs2_flush_truncate_log(osb);
5702 			if (status < 0) {
5703 				mlog_errno(status);
5704 				goto bail_up;
5705 			}
5706 		}
5707 
5708 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5709 		if (IS_ERR(handle)) {
5710 			status = PTR_ERR(handle);
5711 			mlog_errno(status);
5712 			goto bail_up;
5713 		}
5714 
5715 		clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
5716 		start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
5717 		start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
5718 
5719 		status = ocfs2_truncate_log_append(osb, handle,
5720 						   start_blk, clusters);
5721 		ocfs2_commit_trans(osb, handle);
5722 		if (status < 0) {
5723 			mlog_errno(status);
5724 			goto bail_up;
5725 		}
5726 	}
5727 
5728 bail_up:
5729 	mutex_unlock(&tl_inode->i_mutex);
5730 
5731 	mlog_exit(status);
5732 	return status;
5733 }
5734 
5735 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
5736 {
5737 	int status;
5738 	struct inode *tl_inode = osb->osb_tl_inode;
5739 
5740 	mlog_entry_void();
5741 
5742 	if (tl_inode) {
5743 		cancel_delayed_work(&osb->osb_truncate_log_wq);
5744 		flush_workqueue(ocfs2_wq);
5745 
5746 		status = ocfs2_flush_truncate_log(osb);
5747 		if (status < 0)
5748 			mlog_errno(status);
5749 
5750 		brelse(osb->osb_tl_bh);
5751 		iput(osb->osb_tl_inode);
5752 	}
5753 
5754 	mlog_exit_void();
5755 }
5756 
5757 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
5758 {
5759 	int status;
5760 	struct inode *tl_inode = NULL;
5761 	struct buffer_head *tl_bh = NULL;
5762 
5763 	mlog_entry_void();
5764 
5765 	status = ocfs2_get_truncate_log_info(osb,
5766 					     osb->slot_num,
5767 					     &tl_inode,
5768 					     &tl_bh);
5769 	if (status < 0)
5770 		mlog_errno(status);
5771 
5772 	/* ocfs2_truncate_log_shutdown keys on the existence of
5773 	 * osb->osb_tl_inode so we don't set any of the osb variables
5774 	 * until we're sure all is well. */
5775 	INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
5776 			  ocfs2_truncate_log_worker);
5777 	osb->osb_tl_bh    = tl_bh;
5778 	osb->osb_tl_inode = tl_inode;
5779 
5780 	mlog_exit(status);
5781 	return status;
5782 }
5783 
5784 /*
5785  * Delayed de-allocation of suballocator blocks.
5786  *
5787  * Some sets of block de-allocations might involve multiple suballocator inodes.
5788  *
5789  * The locking for this can get extremely complicated, especially when
5790  * the suballocator inodes to delete from aren't known until deep
5791  * within an unrelated codepath.
5792  *
5793  * ocfs2_extent_block structures are a good example of this - an inode
5794  * btree could have been grown by any number of nodes each allocating
5795  * out of their own suballoc inode.
5796  *
5797  * These structures allow the delay of block de-allocation until a
5798  * later time, when locking of multiple cluster inodes won't cause
5799  * deadlock.
5800  */
5801 
5802 /*
5803  * Describes a single block free from a suballocator
5804  */
5805 struct ocfs2_cached_block_free {
5806 	struct ocfs2_cached_block_free		*free_next;
5807 	u64					free_blk;
5808 	unsigned int				free_bit;
5809 };
5810 
5811 struct ocfs2_per_slot_free_list {
5812 	struct ocfs2_per_slot_free_list		*f_next_suballocator;
5813 	int					f_inode_type;
5814 	int					f_slot;
5815 	struct ocfs2_cached_block_free		*f_first;
5816 };
5817 
5818 static int ocfs2_free_cached_items(struct ocfs2_super *osb,
5819 				   int sysfile_type,
5820 				   int slot,
5821 				   struct ocfs2_cached_block_free *head)
5822 {
5823 	int ret;
5824 	u64 bg_blkno;
5825 	handle_t *handle;
5826 	struct inode *inode;
5827 	struct buffer_head *di_bh = NULL;
5828 	struct ocfs2_cached_block_free *tmp;
5829 
5830 	inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
5831 	if (!inode) {
5832 		ret = -EINVAL;
5833 		mlog_errno(ret);
5834 		goto out;
5835 	}
5836 
5837 	mutex_lock(&inode->i_mutex);
5838 
5839 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
5840 	if (ret) {
5841 		mlog_errno(ret);
5842 		goto out_mutex;
5843 	}
5844 
5845 	handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
5846 	if (IS_ERR(handle)) {
5847 		ret = PTR_ERR(handle);
5848 		mlog_errno(ret);
5849 		goto out_unlock;
5850 	}
5851 
5852 	while (head) {
5853 		bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
5854 						      head->free_bit);
5855 		mlog(0, "Free bit: (bit %u, blkno %llu)\n",
5856 		     head->free_bit, (unsigned long long)head->free_blk);
5857 
5858 		ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
5859 					       head->free_bit, bg_blkno, 1);
5860 		if (ret) {
5861 			mlog_errno(ret);
5862 			goto out_journal;
5863 		}
5864 
5865 		ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
5866 		if (ret) {
5867 			mlog_errno(ret);
5868 			goto out_journal;
5869 		}
5870 
5871 		tmp = head;
5872 		head = head->free_next;
5873 		kfree(tmp);
5874 	}
5875 
5876 out_journal:
5877 	ocfs2_commit_trans(osb, handle);
5878 
5879 out_unlock:
5880 	ocfs2_inode_unlock(inode, 1);
5881 	brelse(di_bh);
5882 out_mutex:
5883 	mutex_unlock(&inode->i_mutex);
5884 	iput(inode);
5885 out:
5886 	while(head) {
5887 		/* Premature exit may have left some dangling items. */
5888 		tmp = head;
5889 		head = head->free_next;
5890 		kfree(tmp);
5891 	}
5892 
5893 	return ret;
5894 }
5895 
5896 int ocfs2_run_deallocs(struct ocfs2_super *osb,
5897 		       struct ocfs2_cached_dealloc_ctxt *ctxt)
5898 {
5899 	int ret = 0, ret2;
5900 	struct ocfs2_per_slot_free_list *fl;
5901 
5902 	if (!ctxt)
5903 		return 0;
5904 
5905 	while (ctxt->c_first_suballocator) {
5906 		fl = ctxt->c_first_suballocator;
5907 
5908 		if (fl->f_first) {
5909 			mlog(0, "Free items: (type %u, slot %d)\n",
5910 			     fl->f_inode_type, fl->f_slot);
5911 			ret2 = ocfs2_free_cached_items(osb, fl->f_inode_type,
5912 						       fl->f_slot, fl->f_first);
5913 			if (ret2)
5914 				mlog_errno(ret2);
5915 			if (!ret)
5916 				ret = ret2;
5917 		}
5918 
5919 		ctxt->c_first_suballocator = fl->f_next_suballocator;
5920 		kfree(fl);
5921 	}
5922 
5923 	return ret;
5924 }
5925 
5926 static struct ocfs2_per_slot_free_list *
5927 ocfs2_find_per_slot_free_list(int type,
5928 			      int slot,
5929 			      struct ocfs2_cached_dealloc_ctxt *ctxt)
5930 {
5931 	struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
5932 
5933 	while (fl) {
5934 		if (fl->f_inode_type == type && fl->f_slot == slot)
5935 			return fl;
5936 
5937 		fl = fl->f_next_suballocator;
5938 	}
5939 
5940 	fl = kmalloc(sizeof(*fl), GFP_NOFS);
5941 	if (fl) {
5942 		fl->f_inode_type = type;
5943 		fl->f_slot = slot;
5944 		fl->f_first = NULL;
5945 		fl->f_next_suballocator = ctxt->c_first_suballocator;
5946 
5947 		ctxt->c_first_suballocator = fl;
5948 	}
5949 	return fl;
5950 }
5951 
5952 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
5953 				     int type, int slot, u64 blkno,
5954 				     unsigned int bit)
5955 {
5956 	int ret;
5957 	struct ocfs2_per_slot_free_list *fl;
5958 	struct ocfs2_cached_block_free *item;
5959 
5960 	fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
5961 	if (fl == NULL) {
5962 		ret = -ENOMEM;
5963 		mlog_errno(ret);
5964 		goto out;
5965 	}
5966 
5967 	item = kmalloc(sizeof(*item), GFP_NOFS);
5968 	if (item == NULL) {
5969 		ret = -ENOMEM;
5970 		mlog_errno(ret);
5971 		goto out;
5972 	}
5973 
5974 	mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
5975 	     type, slot, bit, (unsigned long long)blkno);
5976 
5977 	item->free_blk = blkno;
5978 	item->free_bit = bit;
5979 	item->free_next = fl->f_first;
5980 
5981 	fl->f_first = item;
5982 
5983 	ret = 0;
5984 out:
5985 	return ret;
5986 }
5987 
5988 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
5989 					 struct ocfs2_extent_block *eb)
5990 {
5991 	return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
5992 					 le16_to_cpu(eb->h_suballoc_slot),
5993 					 le64_to_cpu(eb->h_blkno),
5994 					 le16_to_cpu(eb->h_suballoc_bit));
5995 }
5996 
5997 /* This function will figure out whether the currently last extent
5998  * block will be deleted, and if it will, what the new last extent
5999  * block will be so we can update his h_next_leaf_blk field, as well
6000  * as the dinodes i_last_eb_blk */
6001 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
6002 				       unsigned int clusters_to_del,
6003 				       struct ocfs2_path *path,
6004 				       struct buffer_head **new_last_eb)
6005 {
6006 	int next_free, ret = 0;
6007 	u32 cpos;
6008 	struct ocfs2_extent_rec *rec;
6009 	struct ocfs2_extent_block *eb;
6010 	struct ocfs2_extent_list *el;
6011 	struct buffer_head *bh = NULL;
6012 
6013 	*new_last_eb = NULL;
6014 
6015 	/* we have no tree, so of course, no last_eb. */
6016 	if (!path->p_tree_depth)
6017 		goto out;
6018 
6019 	/* trunc to zero special case - this makes tree_depth = 0
6020 	 * regardless of what it is.  */
6021 	if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
6022 		goto out;
6023 
6024 	el = path_leaf_el(path);
6025 	BUG_ON(!el->l_next_free_rec);
6026 
6027 	/*
6028 	 * Make sure that this extent list will actually be empty
6029 	 * after we clear away the data. We can shortcut out if
6030 	 * there's more than one non-empty extent in the
6031 	 * list. Otherwise, a check of the remaining extent is
6032 	 * necessary.
6033 	 */
6034 	next_free = le16_to_cpu(el->l_next_free_rec);
6035 	rec = NULL;
6036 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6037 		if (next_free > 2)
6038 			goto out;
6039 
6040 		/* We may have a valid extent in index 1, check it. */
6041 		if (next_free == 2)
6042 			rec = &el->l_recs[1];
6043 
6044 		/*
6045 		 * Fall through - no more nonempty extents, so we want
6046 		 * to delete this leaf.
6047 		 */
6048 	} else {
6049 		if (next_free > 1)
6050 			goto out;
6051 
6052 		rec = &el->l_recs[0];
6053 	}
6054 
6055 	if (rec) {
6056 		/*
6057 		 * Check it we'll only be trimming off the end of this
6058 		 * cluster.
6059 		 */
6060 		if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
6061 			goto out;
6062 	}
6063 
6064 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
6065 	if (ret) {
6066 		mlog_errno(ret);
6067 		goto out;
6068 	}
6069 
6070 	ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
6071 	if (ret) {
6072 		mlog_errno(ret);
6073 		goto out;
6074 	}
6075 
6076 	eb = (struct ocfs2_extent_block *) bh->b_data;
6077 	el = &eb->h_list;
6078 	if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
6079 		OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
6080 		ret = -EROFS;
6081 		goto out;
6082 	}
6083 
6084 	*new_last_eb = bh;
6085 	get_bh(*new_last_eb);
6086 	mlog(0, "returning block %llu, (cpos: %u)\n",
6087 	     (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
6088 out:
6089 	brelse(bh);
6090 
6091 	return ret;
6092 }
6093 
6094 /*
6095  * Trim some clusters off the rightmost edge of a tree. Only called
6096  * during truncate.
6097  *
6098  * The caller needs to:
6099  *   - start journaling of each path component.
6100  *   - compute and fully set up any new last ext block
6101  */
6102 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
6103 			   handle_t *handle, struct ocfs2_truncate_context *tc,
6104 			   u32 clusters_to_del, u64 *delete_start)
6105 {
6106 	int ret, i, index = path->p_tree_depth;
6107 	u32 new_edge = 0;
6108 	u64 deleted_eb = 0;
6109 	struct buffer_head *bh;
6110 	struct ocfs2_extent_list *el;
6111 	struct ocfs2_extent_rec *rec;
6112 
6113 	*delete_start = 0;
6114 
6115 	while (index >= 0) {
6116 		bh = path->p_node[index].bh;
6117 		el = path->p_node[index].el;
6118 
6119 		mlog(0, "traveling tree (index = %d, block = %llu)\n",
6120 		     index,  (unsigned long long)bh->b_blocknr);
6121 
6122 		BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
6123 
6124 		if (index !=
6125 		    (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
6126 			ocfs2_error(inode->i_sb,
6127 				    "Inode %lu has invalid ext. block %llu",
6128 				    inode->i_ino,
6129 				    (unsigned long long)bh->b_blocknr);
6130 			ret = -EROFS;
6131 			goto out;
6132 		}
6133 
6134 find_tail_record:
6135 		i = le16_to_cpu(el->l_next_free_rec) - 1;
6136 		rec = &el->l_recs[i];
6137 
6138 		mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
6139 		     "next = %u\n", i, le32_to_cpu(rec->e_cpos),
6140 		     ocfs2_rec_clusters(el, rec),
6141 		     (unsigned long long)le64_to_cpu(rec->e_blkno),
6142 		     le16_to_cpu(el->l_next_free_rec));
6143 
6144 		BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
6145 
6146 		if (le16_to_cpu(el->l_tree_depth) == 0) {
6147 			/*
6148 			 * If the leaf block contains a single empty
6149 			 * extent and no records, we can just remove
6150 			 * the block.
6151 			 */
6152 			if (i == 0 && ocfs2_is_empty_extent(rec)) {
6153 				memset(rec, 0,
6154 				       sizeof(struct ocfs2_extent_rec));
6155 				el->l_next_free_rec = cpu_to_le16(0);
6156 
6157 				goto delete;
6158 			}
6159 
6160 			/*
6161 			 * Remove any empty extents by shifting things
6162 			 * left. That should make life much easier on
6163 			 * the code below. This condition is rare
6164 			 * enough that we shouldn't see a performance
6165 			 * hit.
6166 			 */
6167 			if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6168 				le16_add_cpu(&el->l_next_free_rec, -1);
6169 
6170 				for(i = 0;
6171 				    i < le16_to_cpu(el->l_next_free_rec); i++)
6172 					el->l_recs[i] = el->l_recs[i + 1];
6173 
6174 				memset(&el->l_recs[i], 0,
6175 				       sizeof(struct ocfs2_extent_rec));
6176 
6177 				/*
6178 				 * We've modified our extent list. The
6179 				 * simplest way to handle this change
6180 				 * is to being the search from the
6181 				 * start again.
6182 				 */
6183 				goto find_tail_record;
6184 			}
6185 
6186 			le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
6187 
6188 			/*
6189 			 * We'll use "new_edge" on our way back up the
6190 			 * tree to know what our rightmost cpos is.
6191 			 */
6192 			new_edge = le16_to_cpu(rec->e_leaf_clusters);
6193 			new_edge += le32_to_cpu(rec->e_cpos);
6194 
6195 			/*
6196 			 * The caller will use this to delete data blocks.
6197 			 */
6198 			*delete_start = le64_to_cpu(rec->e_blkno)
6199 				+ ocfs2_clusters_to_blocks(inode->i_sb,
6200 					le16_to_cpu(rec->e_leaf_clusters));
6201 
6202 			/*
6203 			 * If it's now empty, remove this record.
6204 			 */
6205 			if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
6206 				memset(rec, 0,
6207 				       sizeof(struct ocfs2_extent_rec));
6208 				le16_add_cpu(&el->l_next_free_rec, -1);
6209 			}
6210 		} else {
6211 			if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
6212 				memset(rec, 0,
6213 				       sizeof(struct ocfs2_extent_rec));
6214 				le16_add_cpu(&el->l_next_free_rec, -1);
6215 
6216 				goto delete;
6217 			}
6218 
6219 			/* Can this actually happen? */
6220 			if (le16_to_cpu(el->l_next_free_rec) == 0)
6221 				goto delete;
6222 
6223 			/*
6224 			 * We never actually deleted any clusters
6225 			 * because our leaf was empty. There's no
6226 			 * reason to adjust the rightmost edge then.
6227 			 */
6228 			if (new_edge == 0)
6229 				goto delete;
6230 
6231 			rec->e_int_clusters = cpu_to_le32(new_edge);
6232 			le32_add_cpu(&rec->e_int_clusters,
6233 				     -le32_to_cpu(rec->e_cpos));
6234 
6235 			 /*
6236 			  * A deleted child record should have been
6237 			  * caught above.
6238 			  */
6239 			 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
6240 		}
6241 
6242 delete:
6243 		ret = ocfs2_journal_dirty(handle, bh);
6244 		if (ret) {
6245 			mlog_errno(ret);
6246 			goto out;
6247 		}
6248 
6249 		mlog(0, "extent list container %llu, after: record %d: "
6250 		     "(%u, %u, %llu), next = %u.\n",
6251 		     (unsigned long long)bh->b_blocknr, i,
6252 		     le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
6253 		     (unsigned long long)le64_to_cpu(rec->e_blkno),
6254 		     le16_to_cpu(el->l_next_free_rec));
6255 
6256 		/*
6257 		 * We must be careful to only attempt delete of an
6258 		 * extent block (and not the root inode block).
6259 		 */
6260 		if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
6261 			struct ocfs2_extent_block *eb =
6262 				(struct ocfs2_extent_block *)bh->b_data;
6263 
6264 			/*
6265 			 * Save this for use when processing the
6266 			 * parent block.
6267 			 */
6268 			deleted_eb = le64_to_cpu(eb->h_blkno);
6269 
6270 			mlog(0, "deleting this extent block.\n");
6271 
6272 			ocfs2_remove_from_cache(inode, bh);
6273 
6274 			BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
6275 			BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
6276 			BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
6277 
6278 			ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
6279 			/* An error here is not fatal. */
6280 			if (ret < 0)
6281 				mlog_errno(ret);
6282 		} else {
6283 			deleted_eb = 0;
6284 		}
6285 
6286 		index--;
6287 	}
6288 
6289 	ret = 0;
6290 out:
6291 	return ret;
6292 }
6293 
6294 static int ocfs2_do_truncate(struct ocfs2_super *osb,
6295 			     unsigned int clusters_to_del,
6296 			     struct inode *inode,
6297 			     struct buffer_head *fe_bh,
6298 			     handle_t *handle,
6299 			     struct ocfs2_truncate_context *tc,
6300 			     struct ocfs2_path *path)
6301 {
6302 	int status;
6303 	struct ocfs2_dinode *fe;
6304 	struct ocfs2_extent_block *last_eb = NULL;
6305 	struct ocfs2_extent_list *el;
6306 	struct buffer_head *last_eb_bh = NULL;
6307 	u64 delete_blk = 0;
6308 
6309 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
6310 
6311 	status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
6312 					     path, &last_eb_bh);
6313 	if (status < 0) {
6314 		mlog_errno(status);
6315 		goto bail;
6316 	}
6317 
6318 	/*
6319 	 * Each component will be touched, so we might as well journal
6320 	 * here to avoid having to handle errors later.
6321 	 */
6322 	status = ocfs2_journal_access_path(inode, handle, path);
6323 	if (status < 0) {
6324 		mlog_errno(status);
6325 		goto bail;
6326 	}
6327 
6328 	if (last_eb_bh) {
6329 		status = ocfs2_journal_access(handle, inode, last_eb_bh,
6330 					      OCFS2_JOURNAL_ACCESS_WRITE);
6331 		if (status < 0) {
6332 			mlog_errno(status);
6333 			goto bail;
6334 		}
6335 
6336 		last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6337 	}
6338 
6339 	el = &(fe->id2.i_list);
6340 
6341 	/*
6342 	 * Lower levels depend on this never happening, but it's best
6343 	 * to check it up here before changing the tree.
6344 	 */
6345 	if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
6346 		ocfs2_error(inode->i_sb,
6347 			    "Inode %lu has an empty extent record, depth %u\n",
6348 			    inode->i_ino, le16_to_cpu(el->l_tree_depth));
6349 		status = -EROFS;
6350 		goto bail;
6351 	}
6352 
6353 	spin_lock(&OCFS2_I(inode)->ip_lock);
6354 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
6355 				      clusters_to_del;
6356 	spin_unlock(&OCFS2_I(inode)->ip_lock);
6357 	le32_add_cpu(&fe->i_clusters, -clusters_to_del);
6358 	inode->i_blocks = ocfs2_inode_sector_count(inode);
6359 
6360 	status = ocfs2_trim_tree(inode, path, handle, tc,
6361 				 clusters_to_del, &delete_blk);
6362 	if (status) {
6363 		mlog_errno(status);
6364 		goto bail;
6365 	}
6366 
6367 	if (le32_to_cpu(fe->i_clusters) == 0) {
6368 		/* trunc to zero is a special case. */
6369 		el->l_tree_depth = 0;
6370 		fe->i_last_eb_blk = 0;
6371 	} else if (last_eb)
6372 		fe->i_last_eb_blk = last_eb->h_blkno;
6373 
6374 	status = ocfs2_journal_dirty(handle, fe_bh);
6375 	if (status < 0) {
6376 		mlog_errno(status);
6377 		goto bail;
6378 	}
6379 
6380 	if (last_eb) {
6381 		/* If there will be a new last extent block, then by
6382 		 * definition, there cannot be any leaves to the right of
6383 		 * him. */
6384 		last_eb->h_next_leaf_blk = 0;
6385 		status = ocfs2_journal_dirty(handle, last_eb_bh);
6386 		if (status < 0) {
6387 			mlog_errno(status);
6388 			goto bail;
6389 		}
6390 	}
6391 
6392 	if (delete_blk) {
6393 		status = ocfs2_truncate_log_append(osb, handle, delete_blk,
6394 						   clusters_to_del);
6395 		if (status < 0) {
6396 			mlog_errno(status);
6397 			goto bail;
6398 		}
6399 	}
6400 	status = 0;
6401 bail:
6402 
6403 	mlog_exit(status);
6404 	return status;
6405 }
6406 
6407 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6408 {
6409 	set_buffer_uptodate(bh);
6410 	mark_buffer_dirty(bh);
6411 	return 0;
6412 }
6413 
6414 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6415 				     unsigned int from, unsigned int to,
6416 				     struct page *page, int zero, u64 *phys)
6417 {
6418 	int ret, partial = 0;
6419 
6420 	ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6421 	if (ret)
6422 		mlog_errno(ret);
6423 
6424 	if (zero)
6425 		zero_user_segment(page, from, to);
6426 
6427 	/*
6428 	 * Need to set the buffers we zero'd into uptodate
6429 	 * here if they aren't - ocfs2_map_page_blocks()
6430 	 * might've skipped some
6431 	 */
6432 	ret = walk_page_buffers(handle, page_buffers(page),
6433 				from, to, &partial,
6434 				ocfs2_zero_func);
6435 	if (ret < 0)
6436 		mlog_errno(ret);
6437 	else if (ocfs2_should_order_data(inode)) {
6438 		ret = ocfs2_jbd2_file_inode(handle, inode);
6439 #ifdef CONFIG_OCFS2_COMPAT_JBD
6440 		ret = walk_page_buffers(handle, page_buffers(page),
6441 					from, to, &partial,
6442 					ocfs2_journal_dirty_data);
6443 #endif
6444 		if (ret < 0)
6445 			mlog_errno(ret);
6446 	}
6447 
6448 	if (!partial)
6449 		SetPageUptodate(page);
6450 
6451 	flush_dcache_page(page);
6452 }
6453 
6454 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6455 				     loff_t end, struct page **pages,
6456 				     int numpages, u64 phys, handle_t *handle)
6457 {
6458 	int i;
6459 	struct page *page;
6460 	unsigned int from, to = PAGE_CACHE_SIZE;
6461 	struct super_block *sb = inode->i_sb;
6462 
6463 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6464 
6465 	if (numpages == 0)
6466 		goto out;
6467 
6468 	to = PAGE_CACHE_SIZE;
6469 	for(i = 0; i < numpages; i++) {
6470 		page = pages[i];
6471 
6472 		from = start & (PAGE_CACHE_SIZE - 1);
6473 		if ((end >> PAGE_CACHE_SHIFT) == page->index)
6474 			to = end & (PAGE_CACHE_SIZE - 1);
6475 
6476 		BUG_ON(from > PAGE_CACHE_SIZE);
6477 		BUG_ON(to > PAGE_CACHE_SIZE);
6478 
6479 		ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6480 					 &phys);
6481 
6482 		start = (page->index + 1) << PAGE_CACHE_SHIFT;
6483 	}
6484 out:
6485 	if (pages)
6486 		ocfs2_unlock_and_free_pages(pages, numpages);
6487 }
6488 
6489 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6490 				struct page **pages, int *num)
6491 {
6492 	int numpages, ret = 0;
6493 	struct super_block *sb = inode->i_sb;
6494 	struct address_space *mapping = inode->i_mapping;
6495 	unsigned long index;
6496 	loff_t last_page_bytes;
6497 
6498 	BUG_ON(start > end);
6499 
6500 	BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6501 	       (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6502 
6503 	numpages = 0;
6504 	last_page_bytes = PAGE_ALIGN(end);
6505 	index = start >> PAGE_CACHE_SHIFT;
6506 	do {
6507 		pages[numpages] = grab_cache_page(mapping, index);
6508 		if (!pages[numpages]) {
6509 			ret = -ENOMEM;
6510 			mlog_errno(ret);
6511 			goto out;
6512 		}
6513 
6514 		numpages++;
6515 		index++;
6516 	} while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6517 
6518 out:
6519 	if (ret != 0) {
6520 		if (pages)
6521 			ocfs2_unlock_and_free_pages(pages, numpages);
6522 		numpages = 0;
6523 	}
6524 
6525 	*num = numpages;
6526 
6527 	return ret;
6528 }
6529 
6530 /*
6531  * Zero the area past i_size but still within an allocated
6532  * cluster. This avoids exposing nonzero data on subsequent file
6533  * extends.
6534  *
6535  * We need to call this before i_size is updated on the inode because
6536  * otherwise block_write_full_page() will skip writeout of pages past
6537  * i_size. The new_i_size parameter is passed for this reason.
6538  */
6539 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6540 				  u64 range_start, u64 range_end)
6541 {
6542 	int ret = 0, numpages;
6543 	struct page **pages = NULL;
6544 	u64 phys;
6545 	unsigned int ext_flags;
6546 	struct super_block *sb = inode->i_sb;
6547 
6548 	/*
6549 	 * File systems which don't support sparse files zero on every
6550 	 * extend.
6551 	 */
6552 	if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6553 		return 0;
6554 
6555 	pages = kcalloc(ocfs2_pages_per_cluster(sb),
6556 			sizeof(struct page *), GFP_NOFS);
6557 	if (pages == NULL) {
6558 		ret = -ENOMEM;
6559 		mlog_errno(ret);
6560 		goto out;
6561 	}
6562 
6563 	if (range_start == range_end)
6564 		goto out;
6565 
6566 	ret = ocfs2_extent_map_get_blocks(inode,
6567 					  range_start >> sb->s_blocksize_bits,
6568 					  &phys, NULL, &ext_flags);
6569 	if (ret) {
6570 		mlog_errno(ret);
6571 		goto out;
6572 	}
6573 
6574 	/*
6575 	 * Tail is a hole, or is marked unwritten. In either case, we
6576 	 * can count on read and write to return/push zero's.
6577 	 */
6578 	if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6579 		goto out;
6580 
6581 	ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6582 				   &numpages);
6583 	if (ret) {
6584 		mlog_errno(ret);
6585 		goto out;
6586 	}
6587 
6588 	ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6589 				 numpages, phys, handle);
6590 
6591 	/*
6592 	 * Initiate writeout of the pages we zero'd here. We don't
6593 	 * wait on them - the truncate_inode_pages() call later will
6594 	 * do that for us.
6595 	 */
6596 	ret = do_sync_mapping_range(inode->i_mapping, range_start,
6597 				    range_end - 1, SYNC_FILE_RANGE_WRITE);
6598 	if (ret)
6599 		mlog_errno(ret);
6600 
6601 out:
6602 	if (pages)
6603 		kfree(pages);
6604 
6605 	return ret;
6606 }
6607 
6608 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
6609 					     struct ocfs2_dinode *di)
6610 {
6611 	unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
6612 	unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
6613 
6614 	if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
6615 		memset(&di->id2, 0, blocksize -
6616 				    offsetof(struct ocfs2_dinode, id2) -
6617 				    xattrsize);
6618 	else
6619 		memset(&di->id2, 0, blocksize -
6620 				    offsetof(struct ocfs2_dinode, id2));
6621 }
6622 
6623 void ocfs2_dinode_new_extent_list(struct inode *inode,
6624 				  struct ocfs2_dinode *di)
6625 {
6626 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
6627 	di->id2.i_list.l_tree_depth = 0;
6628 	di->id2.i_list.l_next_free_rec = 0;
6629 	di->id2.i_list.l_count = cpu_to_le16(
6630 		ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
6631 }
6632 
6633 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
6634 {
6635 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
6636 	struct ocfs2_inline_data *idata = &di->id2.i_data;
6637 
6638 	spin_lock(&oi->ip_lock);
6639 	oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
6640 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6641 	spin_unlock(&oi->ip_lock);
6642 
6643 	/*
6644 	 * We clear the entire i_data structure here so that all
6645 	 * fields can be properly initialized.
6646 	 */
6647 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
6648 
6649 	idata->id_count = cpu_to_le16(
6650 			ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
6651 }
6652 
6653 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
6654 					 struct buffer_head *di_bh)
6655 {
6656 	int ret, i, has_data, num_pages = 0;
6657 	handle_t *handle;
6658 	u64 uninitialized_var(block);
6659 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
6660 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6661 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6662 	struct ocfs2_alloc_context *data_ac = NULL;
6663 	struct page **pages = NULL;
6664 	loff_t end = osb->s_clustersize;
6665 	struct ocfs2_extent_tree et;
6666 
6667 	has_data = i_size_read(inode) ? 1 : 0;
6668 
6669 	if (has_data) {
6670 		pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
6671 				sizeof(struct page *), GFP_NOFS);
6672 		if (pages == NULL) {
6673 			ret = -ENOMEM;
6674 			mlog_errno(ret);
6675 			goto out;
6676 		}
6677 
6678 		ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
6679 		if (ret) {
6680 			mlog_errno(ret);
6681 			goto out;
6682 		}
6683 	}
6684 
6685 	handle = ocfs2_start_trans(osb, OCFS2_INLINE_TO_EXTENTS_CREDITS);
6686 	if (IS_ERR(handle)) {
6687 		ret = PTR_ERR(handle);
6688 		mlog_errno(ret);
6689 		goto out_unlock;
6690 	}
6691 
6692 	ret = ocfs2_journal_access(handle, inode, di_bh,
6693 				   OCFS2_JOURNAL_ACCESS_WRITE);
6694 	if (ret) {
6695 		mlog_errno(ret);
6696 		goto out_commit;
6697 	}
6698 
6699 	if (has_data) {
6700 		u32 bit_off, num;
6701 		unsigned int page_end;
6702 		u64 phys;
6703 
6704 		ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
6705 					   &num);
6706 		if (ret) {
6707 			mlog_errno(ret);
6708 			goto out_commit;
6709 		}
6710 
6711 		/*
6712 		 * Save two copies, one for insert, and one that can
6713 		 * be changed by ocfs2_map_and_dirty_page() below.
6714 		 */
6715 		block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
6716 
6717 		/*
6718 		 * Non sparse file systems zero on extend, so no need
6719 		 * to do that now.
6720 		 */
6721 		if (!ocfs2_sparse_alloc(osb) &&
6722 		    PAGE_CACHE_SIZE < osb->s_clustersize)
6723 			end = PAGE_CACHE_SIZE;
6724 
6725 		ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
6726 		if (ret) {
6727 			mlog_errno(ret);
6728 			goto out_commit;
6729 		}
6730 
6731 		/*
6732 		 * This should populate the 1st page for us and mark
6733 		 * it up to date.
6734 		 */
6735 		ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
6736 		if (ret) {
6737 			mlog_errno(ret);
6738 			goto out_commit;
6739 		}
6740 
6741 		page_end = PAGE_CACHE_SIZE;
6742 		if (PAGE_CACHE_SIZE > osb->s_clustersize)
6743 			page_end = osb->s_clustersize;
6744 
6745 		for (i = 0; i < num_pages; i++)
6746 			ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
6747 						 pages[i], i > 0, &phys);
6748 	}
6749 
6750 	spin_lock(&oi->ip_lock);
6751 	oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
6752 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6753 	spin_unlock(&oi->ip_lock);
6754 
6755 	ocfs2_dinode_new_extent_list(inode, di);
6756 
6757 	ocfs2_journal_dirty(handle, di_bh);
6758 
6759 	if (has_data) {
6760 		/*
6761 		 * An error at this point should be extremely rare. If
6762 		 * this proves to be false, we could always re-build
6763 		 * the in-inode data from our pages.
6764 		 */
6765 		ocfs2_init_dinode_extent_tree(&et, inode, di_bh);
6766 		ret = ocfs2_insert_extent(osb, handle, inode, &et,
6767 					  0, block, 1, 0, NULL);
6768 		if (ret) {
6769 			mlog_errno(ret);
6770 			goto out_commit;
6771 		}
6772 
6773 		inode->i_blocks = ocfs2_inode_sector_count(inode);
6774 	}
6775 
6776 out_commit:
6777 	ocfs2_commit_trans(osb, handle);
6778 
6779 out_unlock:
6780 	if (data_ac)
6781 		ocfs2_free_alloc_context(data_ac);
6782 
6783 out:
6784 	if (pages) {
6785 		ocfs2_unlock_and_free_pages(pages, num_pages);
6786 		kfree(pages);
6787 	}
6788 
6789 	return ret;
6790 }
6791 
6792 /*
6793  * It is expected, that by the time you call this function,
6794  * inode->i_size and fe->i_size have been adjusted.
6795  *
6796  * WARNING: This will kfree the truncate context
6797  */
6798 int ocfs2_commit_truncate(struct ocfs2_super *osb,
6799 			  struct inode *inode,
6800 			  struct buffer_head *fe_bh,
6801 			  struct ocfs2_truncate_context *tc)
6802 {
6803 	int status, i, credits, tl_sem = 0;
6804 	u32 clusters_to_del, new_highest_cpos, range;
6805 	struct ocfs2_extent_list *el;
6806 	handle_t *handle = NULL;
6807 	struct inode *tl_inode = osb->osb_tl_inode;
6808 	struct ocfs2_path *path = NULL;
6809 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data;
6810 
6811 	mlog_entry_void();
6812 
6813 	new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
6814 						     i_size_read(inode));
6815 
6816 	path = ocfs2_new_path(fe_bh, &di->id2.i_list);
6817 	if (!path) {
6818 		status = -ENOMEM;
6819 		mlog_errno(status);
6820 		goto bail;
6821 	}
6822 
6823 	ocfs2_extent_map_trunc(inode, new_highest_cpos);
6824 
6825 start:
6826 	/*
6827 	 * Check that we still have allocation to delete.
6828 	 */
6829 	if (OCFS2_I(inode)->ip_clusters == 0) {
6830 		status = 0;
6831 		goto bail;
6832 	}
6833 
6834 	/*
6835 	 * Truncate always works against the rightmost tree branch.
6836 	 */
6837 	status = ocfs2_find_path(inode, path, UINT_MAX);
6838 	if (status) {
6839 		mlog_errno(status);
6840 		goto bail;
6841 	}
6842 
6843 	mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
6844 	     OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
6845 
6846 	/*
6847 	 * By now, el will point to the extent list on the bottom most
6848 	 * portion of this tree. Only the tail record is considered in
6849 	 * each pass.
6850 	 *
6851 	 * We handle the following cases, in order:
6852 	 * - empty extent: delete the remaining branch
6853 	 * - remove the entire record
6854 	 * - remove a partial record
6855 	 * - no record needs to be removed (truncate has completed)
6856 	 */
6857 	el = path_leaf_el(path);
6858 	if (le16_to_cpu(el->l_next_free_rec) == 0) {
6859 		ocfs2_error(inode->i_sb,
6860 			    "Inode %llu has empty extent block at %llu\n",
6861 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
6862 			    (unsigned long long)path_leaf_bh(path)->b_blocknr);
6863 		status = -EROFS;
6864 		goto bail;
6865 	}
6866 
6867 	i = le16_to_cpu(el->l_next_free_rec) - 1;
6868 	range = le32_to_cpu(el->l_recs[i].e_cpos) +
6869 		ocfs2_rec_clusters(el, &el->l_recs[i]);
6870 	if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
6871 		clusters_to_del = 0;
6872 	} else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
6873 		clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
6874 	} else if (range > new_highest_cpos) {
6875 		clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
6876 				   le32_to_cpu(el->l_recs[i].e_cpos)) -
6877 				  new_highest_cpos;
6878 	} else {
6879 		status = 0;
6880 		goto bail;
6881 	}
6882 
6883 	mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
6884 	     clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
6885 
6886 	mutex_lock(&tl_inode->i_mutex);
6887 	tl_sem = 1;
6888 	/* ocfs2_truncate_log_needs_flush guarantees us at least one
6889 	 * record is free for use. If there isn't any, we flush to get
6890 	 * an empty truncate log.  */
6891 	if (ocfs2_truncate_log_needs_flush(osb)) {
6892 		status = __ocfs2_flush_truncate_log(osb);
6893 		if (status < 0) {
6894 			mlog_errno(status);
6895 			goto bail;
6896 		}
6897 	}
6898 
6899 	credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
6900 						(struct ocfs2_dinode *)fe_bh->b_data,
6901 						el);
6902 	handle = ocfs2_start_trans(osb, credits);
6903 	if (IS_ERR(handle)) {
6904 		status = PTR_ERR(handle);
6905 		handle = NULL;
6906 		mlog_errno(status);
6907 		goto bail;
6908 	}
6909 
6910 	status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
6911 				   tc, path);
6912 	if (status < 0) {
6913 		mlog_errno(status);
6914 		goto bail;
6915 	}
6916 
6917 	mutex_unlock(&tl_inode->i_mutex);
6918 	tl_sem = 0;
6919 
6920 	ocfs2_commit_trans(osb, handle);
6921 	handle = NULL;
6922 
6923 	ocfs2_reinit_path(path, 1);
6924 
6925 	/*
6926 	 * The check above will catch the case where we've truncated
6927 	 * away all allocation.
6928 	 */
6929 	goto start;
6930 
6931 bail:
6932 
6933 	ocfs2_schedule_truncate_log_flush(osb, 1);
6934 
6935 	if (tl_sem)
6936 		mutex_unlock(&tl_inode->i_mutex);
6937 
6938 	if (handle)
6939 		ocfs2_commit_trans(osb, handle);
6940 
6941 	ocfs2_run_deallocs(osb, &tc->tc_dealloc);
6942 
6943 	ocfs2_free_path(path);
6944 
6945 	/* This will drop the ext_alloc cluster lock for us */
6946 	ocfs2_free_truncate_context(tc);
6947 
6948 	mlog_exit(status);
6949 	return status;
6950 }
6951 
6952 /*
6953  * Expects the inode to already be locked.
6954  */
6955 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
6956 			   struct inode *inode,
6957 			   struct buffer_head *fe_bh,
6958 			   struct ocfs2_truncate_context **tc)
6959 {
6960 	int status;
6961 	unsigned int new_i_clusters;
6962 	struct ocfs2_dinode *fe;
6963 	struct ocfs2_extent_block *eb;
6964 	struct buffer_head *last_eb_bh = NULL;
6965 
6966 	mlog_entry_void();
6967 
6968 	*tc = NULL;
6969 
6970 	new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
6971 						  i_size_read(inode));
6972 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
6973 
6974 	mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
6975 	     "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
6976 	     (unsigned long long)le64_to_cpu(fe->i_size));
6977 
6978 	*tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
6979 	if (!(*tc)) {
6980 		status = -ENOMEM;
6981 		mlog_errno(status);
6982 		goto bail;
6983 	}
6984 	ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
6985 
6986 	if (fe->id2.i_list.l_tree_depth) {
6987 		status = ocfs2_read_block(inode, le64_to_cpu(fe->i_last_eb_blk),
6988 					  &last_eb_bh);
6989 		if (status < 0) {
6990 			mlog_errno(status);
6991 			goto bail;
6992 		}
6993 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6994 		if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
6995 			OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
6996 
6997 			brelse(last_eb_bh);
6998 			status = -EIO;
6999 			goto bail;
7000 		}
7001 	}
7002 
7003 	(*tc)->tc_last_eb_bh = last_eb_bh;
7004 
7005 	status = 0;
7006 bail:
7007 	if (status < 0) {
7008 		if (*tc)
7009 			ocfs2_free_truncate_context(*tc);
7010 		*tc = NULL;
7011 	}
7012 	mlog_exit_void();
7013 	return status;
7014 }
7015 
7016 /*
7017  * 'start' is inclusive, 'end' is not.
7018  */
7019 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7020 			  unsigned int start, unsigned int end, int trunc)
7021 {
7022 	int ret;
7023 	unsigned int numbytes;
7024 	handle_t *handle;
7025 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7026 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7027 	struct ocfs2_inline_data *idata = &di->id2.i_data;
7028 
7029 	if (end > i_size_read(inode))
7030 		end = i_size_read(inode);
7031 
7032 	BUG_ON(start >= end);
7033 
7034 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7035 	    !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7036 	    !ocfs2_supports_inline_data(osb)) {
7037 		ocfs2_error(inode->i_sb,
7038 			    "Inline data flags for inode %llu don't agree! "
7039 			    "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7040 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7041 			    le16_to_cpu(di->i_dyn_features),
7042 			    OCFS2_I(inode)->ip_dyn_features,
7043 			    osb->s_feature_incompat);
7044 		ret = -EROFS;
7045 		goto out;
7046 	}
7047 
7048 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7049 	if (IS_ERR(handle)) {
7050 		ret = PTR_ERR(handle);
7051 		mlog_errno(ret);
7052 		goto out;
7053 	}
7054 
7055 	ret = ocfs2_journal_access(handle, inode, di_bh,
7056 				   OCFS2_JOURNAL_ACCESS_WRITE);
7057 	if (ret) {
7058 		mlog_errno(ret);
7059 		goto out_commit;
7060 	}
7061 
7062 	numbytes = end - start;
7063 	memset(idata->id_data + start, 0, numbytes);
7064 
7065 	/*
7066 	 * No need to worry about the data page here - it's been
7067 	 * truncated already and inline data doesn't need it for
7068 	 * pushing zero's to disk, so we'll let readpage pick it up
7069 	 * later.
7070 	 */
7071 	if (trunc) {
7072 		i_size_write(inode, start);
7073 		di->i_size = cpu_to_le64(start);
7074 	}
7075 
7076 	inode->i_blocks = ocfs2_inode_sector_count(inode);
7077 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7078 
7079 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7080 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7081 
7082 	ocfs2_journal_dirty(handle, di_bh);
7083 
7084 out_commit:
7085 	ocfs2_commit_trans(osb, handle);
7086 
7087 out:
7088 	return ret;
7089 }
7090 
7091 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
7092 {
7093 	/*
7094 	 * The caller is responsible for completing deallocation
7095 	 * before freeing the context.
7096 	 */
7097 	if (tc->tc_dealloc.c_first_suballocator != NULL)
7098 		mlog(ML_NOTICE,
7099 		     "Truncate completion has non-empty dealloc context\n");
7100 
7101 	brelse(tc->tc_last_eb_bh);
7102 
7103 	kfree(tc);
7104 }
7105