1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * alloc.c 5 * 6 * Extent allocs and frees 7 * 8 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/swap.h> 31 #include <linux/quotaops.h> 32 #include <linux/blkdev.h> 33 #include <linux/sched/signal.h> 34 35 #include <cluster/masklog.h> 36 37 #include "ocfs2.h" 38 39 #include "alloc.h" 40 #include "aops.h" 41 #include "blockcheck.h" 42 #include "dlmglue.h" 43 #include "extent_map.h" 44 #include "inode.h" 45 #include "journal.h" 46 #include "localalloc.h" 47 #include "suballoc.h" 48 #include "sysfile.h" 49 #include "file.h" 50 #include "super.h" 51 #include "uptodate.h" 52 #include "xattr.h" 53 #include "refcounttree.h" 54 #include "ocfs2_trace.h" 55 56 #include "buffer_head_io.h" 57 58 enum ocfs2_contig_type { 59 CONTIG_NONE = 0, 60 CONTIG_LEFT, 61 CONTIG_RIGHT, 62 CONTIG_LEFTRIGHT, 63 }; 64 65 static enum ocfs2_contig_type 66 ocfs2_extent_rec_contig(struct super_block *sb, 67 struct ocfs2_extent_rec *ext, 68 struct ocfs2_extent_rec *insert_rec); 69 /* 70 * Operations for a specific extent tree type. 71 * 72 * To implement an on-disk btree (extent tree) type in ocfs2, add 73 * an ocfs2_extent_tree_operations structure and the matching 74 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it 75 * for the allocation portion of the extent tree. 76 */ 77 struct ocfs2_extent_tree_operations { 78 /* 79 * last_eb_blk is the block number of the right most leaf extent 80 * block. Most on-disk structures containing an extent tree store 81 * this value for fast access. The ->eo_set_last_eb_blk() and 82 * ->eo_get_last_eb_blk() operations access this value. They are 83 * both required. 84 */ 85 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et, 86 u64 blkno); 87 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et); 88 89 /* 90 * The on-disk structure usually keeps track of how many total 91 * clusters are stored in this extent tree. This function updates 92 * that value. new_clusters is the delta, and must be 93 * added to the total. Required. 94 */ 95 void (*eo_update_clusters)(struct ocfs2_extent_tree *et, 96 u32 new_clusters); 97 98 /* 99 * If this extent tree is supported by an extent map, insert 100 * a record into the map. 101 */ 102 void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et, 103 struct ocfs2_extent_rec *rec); 104 105 /* 106 * If this extent tree is supported by an extent map, truncate the 107 * map to clusters, 108 */ 109 void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et, 110 u32 clusters); 111 112 /* 113 * If ->eo_insert_check() exists, it is called before rec is 114 * inserted into the extent tree. It is optional. 115 */ 116 int (*eo_insert_check)(struct ocfs2_extent_tree *et, 117 struct ocfs2_extent_rec *rec); 118 int (*eo_sanity_check)(struct ocfs2_extent_tree *et); 119 120 /* 121 * -------------------------------------------------------------- 122 * The remaining are internal to ocfs2_extent_tree and don't have 123 * accessor functions 124 */ 125 126 /* 127 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el. 128 * It is required. 129 */ 130 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et); 131 132 /* 133 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if 134 * it exists. If it does not, et->et_max_leaf_clusters is set 135 * to 0 (unlimited). Optional. 136 */ 137 void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et); 138 139 /* 140 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec 141 * are contiguous or not. Optional. Don't need to set it if use 142 * ocfs2_extent_rec as the tree leaf. 143 */ 144 enum ocfs2_contig_type 145 (*eo_extent_contig)(struct ocfs2_extent_tree *et, 146 struct ocfs2_extent_rec *ext, 147 struct ocfs2_extent_rec *insert_rec); 148 }; 149 150 151 /* 152 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check 153 * in the methods. 154 */ 155 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et); 156 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 157 u64 blkno); 158 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, 159 u32 clusters); 160 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et, 161 struct ocfs2_extent_rec *rec); 162 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et, 163 u32 clusters); 164 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, 165 struct ocfs2_extent_rec *rec); 166 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et); 167 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et); 168 169 static int ocfs2_reuse_blk_from_dealloc(handle_t *handle, 170 struct ocfs2_extent_tree *et, 171 struct buffer_head **new_eb_bh, 172 int blk_wanted, int *blk_given); 173 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree *et); 174 175 static const struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = { 176 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk, 177 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk, 178 .eo_update_clusters = ocfs2_dinode_update_clusters, 179 .eo_extent_map_insert = ocfs2_dinode_extent_map_insert, 180 .eo_extent_map_truncate = ocfs2_dinode_extent_map_truncate, 181 .eo_insert_check = ocfs2_dinode_insert_check, 182 .eo_sanity_check = ocfs2_dinode_sanity_check, 183 .eo_fill_root_el = ocfs2_dinode_fill_root_el, 184 }; 185 186 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 187 u64 blkno) 188 { 189 struct ocfs2_dinode *di = et->et_object; 190 191 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 192 di->i_last_eb_blk = cpu_to_le64(blkno); 193 } 194 195 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et) 196 { 197 struct ocfs2_dinode *di = et->et_object; 198 199 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 200 return le64_to_cpu(di->i_last_eb_blk); 201 } 202 203 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, 204 u32 clusters) 205 { 206 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); 207 struct ocfs2_dinode *di = et->et_object; 208 209 le32_add_cpu(&di->i_clusters, clusters); 210 spin_lock(&oi->ip_lock); 211 oi->ip_clusters = le32_to_cpu(di->i_clusters); 212 spin_unlock(&oi->ip_lock); 213 } 214 215 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et, 216 struct ocfs2_extent_rec *rec) 217 { 218 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode; 219 220 ocfs2_extent_map_insert_rec(inode, rec); 221 } 222 223 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et, 224 u32 clusters) 225 { 226 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode; 227 228 ocfs2_extent_map_trunc(inode, clusters); 229 } 230 231 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, 232 struct ocfs2_extent_rec *rec) 233 { 234 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); 235 struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb); 236 237 BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL); 238 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) && 239 (oi->ip_clusters != le32_to_cpu(rec->e_cpos)), 240 "Device %s, asking for sparse allocation: inode %llu, " 241 "cpos %u, clusters %u\n", 242 osb->dev_str, 243 (unsigned long long)oi->ip_blkno, 244 rec->e_cpos, oi->ip_clusters); 245 246 return 0; 247 } 248 249 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et) 250 { 251 struct ocfs2_dinode *di = et->et_object; 252 253 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 254 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 255 256 return 0; 257 } 258 259 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et) 260 { 261 struct ocfs2_dinode *di = et->et_object; 262 263 et->et_root_el = &di->id2.i_list; 264 } 265 266 267 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et) 268 { 269 struct ocfs2_xattr_value_buf *vb = et->et_object; 270 271 et->et_root_el = &vb->vb_xv->xr_list; 272 } 273 274 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et, 275 u64 blkno) 276 { 277 struct ocfs2_xattr_value_buf *vb = et->et_object; 278 279 vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno); 280 } 281 282 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et) 283 { 284 struct ocfs2_xattr_value_buf *vb = et->et_object; 285 286 return le64_to_cpu(vb->vb_xv->xr_last_eb_blk); 287 } 288 289 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et, 290 u32 clusters) 291 { 292 struct ocfs2_xattr_value_buf *vb = et->et_object; 293 294 le32_add_cpu(&vb->vb_xv->xr_clusters, clusters); 295 } 296 297 static const struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = { 298 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk, 299 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk, 300 .eo_update_clusters = ocfs2_xattr_value_update_clusters, 301 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el, 302 }; 303 304 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et) 305 { 306 struct ocfs2_xattr_block *xb = et->et_object; 307 308 et->et_root_el = &xb->xb_attrs.xb_root.xt_list; 309 } 310 311 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et) 312 { 313 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 314 et->et_max_leaf_clusters = 315 ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE); 316 } 317 318 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 319 u64 blkno) 320 { 321 struct ocfs2_xattr_block *xb = et->et_object; 322 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 323 324 xt->xt_last_eb_blk = cpu_to_le64(blkno); 325 } 326 327 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 328 { 329 struct ocfs2_xattr_block *xb = et->et_object; 330 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 331 332 return le64_to_cpu(xt->xt_last_eb_blk); 333 } 334 335 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et, 336 u32 clusters) 337 { 338 struct ocfs2_xattr_block *xb = et->et_object; 339 340 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters); 341 } 342 343 static const struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = { 344 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk, 345 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk, 346 .eo_update_clusters = ocfs2_xattr_tree_update_clusters, 347 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el, 348 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters, 349 }; 350 351 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et, 352 u64 blkno) 353 { 354 struct ocfs2_dx_root_block *dx_root = et->et_object; 355 356 dx_root->dr_last_eb_blk = cpu_to_le64(blkno); 357 } 358 359 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et) 360 { 361 struct ocfs2_dx_root_block *dx_root = et->et_object; 362 363 return le64_to_cpu(dx_root->dr_last_eb_blk); 364 } 365 366 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et, 367 u32 clusters) 368 { 369 struct ocfs2_dx_root_block *dx_root = et->et_object; 370 371 le32_add_cpu(&dx_root->dr_clusters, clusters); 372 } 373 374 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et) 375 { 376 struct ocfs2_dx_root_block *dx_root = et->et_object; 377 378 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root)); 379 380 return 0; 381 } 382 383 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et) 384 { 385 struct ocfs2_dx_root_block *dx_root = et->et_object; 386 387 et->et_root_el = &dx_root->dr_list; 388 } 389 390 static const struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = { 391 .eo_set_last_eb_blk = ocfs2_dx_root_set_last_eb_blk, 392 .eo_get_last_eb_blk = ocfs2_dx_root_get_last_eb_blk, 393 .eo_update_clusters = ocfs2_dx_root_update_clusters, 394 .eo_sanity_check = ocfs2_dx_root_sanity_check, 395 .eo_fill_root_el = ocfs2_dx_root_fill_root_el, 396 }; 397 398 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et) 399 { 400 struct ocfs2_refcount_block *rb = et->et_object; 401 402 et->et_root_el = &rb->rf_list; 403 } 404 405 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 406 u64 blkno) 407 { 408 struct ocfs2_refcount_block *rb = et->et_object; 409 410 rb->rf_last_eb_blk = cpu_to_le64(blkno); 411 } 412 413 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 414 { 415 struct ocfs2_refcount_block *rb = et->et_object; 416 417 return le64_to_cpu(rb->rf_last_eb_blk); 418 } 419 420 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et, 421 u32 clusters) 422 { 423 struct ocfs2_refcount_block *rb = et->et_object; 424 425 le32_add_cpu(&rb->rf_clusters, clusters); 426 } 427 428 static enum ocfs2_contig_type 429 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et, 430 struct ocfs2_extent_rec *ext, 431 struct ocfs2_extent_rec *insert_rec) 432 { 433 return CONTIG_NONE; 434 } 435 436 static const struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = { 437 .eo_set_last_eb_blk = ocfs2_refcount_tree_set_last_eb_blk, 438 .eo_get_last_eb_blk = ocfs2_refcount_tree_get_last_eb_blk, 439 .eo_update_clusters = ocfs2_refcount_tree_update_clusters, 440 .eo_fill_root_el = ocfs2_refcount_tree_fill_root_el, 441 .eo_extent_contig = ocfs2_refcount_tree_extent_contig, 442 }; 443 444 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et, 445 struct ocfs2_caching_info *ci, 446 struct buffer_head *bh, 447 ocfs2_journal_access_func access, 448 void *obj, 449 const struct ocfs2_extent_tree_operations *ops) 450 { 451 et->et_ops = ops; 452 et->et_root_bh = bh; 453 et->et_ci = ci; 454 et->et_root_journal_access = access; 455 if (!obj) 456 obj = (void *)bh->b_data; 457 et->et_object = obj; 458 et->et_dealloc = NULL; 459 460 et->et_ops->eo_fill_root_el(et); 461 if (!et->et_ops->eo_fill_max_leaf_clusters) 462 et->et_max_leaf_clusters = 0; 463 else 464 et->et_ops->eo_fill_max_leaf_clusters(et); 465 } 466 467 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et, 468 struct ocfs2_caching_info *ci, 469 struct buffer_head *bh) 470 { 471 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di, 472 NULL, &ocfs2_dinode_et_ops); 473 } 474 475 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et, 476 struct ocfs2_caching_info *ci, 477 struct buffer_head *bh) 478 { 479 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb, 480 NULL, &ocfs2_xattr_tree_et_ops); 481 } 482 483 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et, 484 struct ocfs2_caching_info *ci, 485 struct ocfs2_xattr_value_buf *vb) 486 { 487 __ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb, 488 &ocfs2_xattr_value_et_ops); 489 } 490 491 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et, 492 struct ocfs2_caching_info *ci, 493 struct buffer_head *bh) 494 { 495 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr, 496 NULL, &ocfs2_dx_root_et_ops); 497 } 498 499 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et, 500 struct ocfs2_caching_info *ci, 501 struct buffer_head *bh) 502 { 503 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb, 504 NULL, &ocfs2_refcount_tree_et_ops); 505 } 506 507 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et, 508 u64 new_last_eb_blk) 509 { 510 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk); 511 } 512 513 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et) 514 { 515 return et->et_ops->eo_get_last_eb_blk(et); 516 } 517 518 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et, 519 u32 clusters) 520 { 521 et->et_ops->eo_update_clusters(et, clusters); 522 } 523 524 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et, 525 struct ocfs2_extent_rec *rec) 526 { 527 if (et->et_ops->eo_extent_map_insert) 528 et->et_ops->eo_extent_map_insert(et, rec); 529 } 530 531 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et, 532 u32 clusters) 533 { 534 if (et->et_ops->eo_extent_map_truncate) 535 et->et_ops->eo_extent_map_truncate(et, clusters); 536 } 537 538 static inline int ocfs2_et_root_journal_access(handle_t *handle, 539 struct ocfs2_extent_tree *et, 540 int type) 541 { 542 return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh, 543 type); 544 } 545 546 static inline enum ocfs2_contig_type 547 ocfs2_et_extent_contig(struct ocfs2_extent_tree *et, 548 struct ocfs2_extent_rec *rec, 549 struct ocfs2_extent_rec *insert_rec) 550 { 551 if (et->et_ops->eo_extent_contig) 552 return et->et_ops->eo_extent_contig(et, rec, insert_rec); 553 554 return ocfs2_extent_rec_contig( 555 ocfs2_metadata_cache_get_super(et->et_ci), 556 rec, insert_rec); 557 } 558 559 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et, 560 struct ocfs2_extent_rec *rec) 561 { 562 int ret = 0; 563 564 if (et->et_ops->eo_insert_check) 565 ret = et->et_ops->eo_insert_check(et, rec); 566 return ret; 567 } 568 569 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et) 570 { 571 int ret = 0; 572 573 if (et->et_ops->eo_sanity_check) 574 ret = et->et_ops->eo_sanity_check(et); 575 return ret; 576 } 577 578 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 579 struct ocfs2_extent_block *eb); 580 static void ocfs2_adjust_rightmost_records(handle_t *handle, 581 struct ocfs2_extent_tree *et, 582 struct ocfs2_path *path, 583 struct ocfs2_extent_rec *insert_rec); 584 /* 585 * Reset the actual path elements so that we can re-use the structure 586 * to build another path. Generally, this involves freeing the buffer 587 * heads. 588 */ 589 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root) 590 { 591 int i, start = 0, depth = 0; 592 struct ocfs2_path_item *node; 593 594 if (keep_root) 595 start = 1; 596 597 for(i = start; i < path_num_items(path); i++) { 598 node = &path->p_node[i]; 599 600 brelse(node->bh); 601 node->bh = NULL; 602 node->el = NULL; 603 } 604 605 /* 606 * Tree depth may change during truncate, or insert. If we're 607 * keeping the root extent list, then make sure that our path 608 * structure reflects the proper depth. 609 */ 610 if (keep_root) 611 depth = le16_to_cpu(path_root_el(path)->l_tree_depth); 612 else 613 path_root_access(path) = NULL; 614 615 path->p_tree_depth = depth; 616 } 617 618 void ocfs2_free_path(struct ocfs2_path *path) 619 { 620 if (path) { 621 ocfs2_reinit_path(path, 0); 622 kfree(path); 623 } 624 } 625 626 /* 627 * All the elements of src into dest. After this call, src could be freed 628 * without affecting dest. 629 * 630 * Both paths should have the same root. Any non-root elements of dest 631 * will be freed. 632 */ 633 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src) 634 { 635 int i; 636 637 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 638 BUG_ON(path_root_el(dest) != path_root_el(src)); 639 BUG_ON(path_root_access(dest) != path_root_access(src)); 640 641 ocfs2_reinit_path(dest, 1); 642 643 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 644 dest->p_node[i].bh = src->p_node[i].bh; 645 dest->p_node[i].el = src->p_node[i].el; 646 647 if (dest->p_node[i].bh) 648 get_bh(dest->p_node[i].bh); 649 } 650 } 651 652 /* 653 * Make the *dest path the same as src and re-initialize src path to 654 * have a root only. 655 */ 656 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src) 657 { 658 int i; 659 660 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 661 BUG_ON(path_root_access(dest) != path_root_access(src)); 662 663 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 664 brelse(dest->p_node[i].bh); 665 666 dest->p_node[i].bh = src->p_node[i].bh; 667 dest->p_node[i].el = src->p_node[i].el; 668 669 src->p_node[i].bh = NULL; 670 src->p_node[i].el = NULL; 671 } 672 } 673 674 /* 675 * Insert an extent block at given index. 676 * 677 * This will not take an additional reference on eb_bh. 678 */ 679 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index, 680 struct buffer_head *eb_bh) 681 { 682 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data; 683 684 /* 685 * Right now, no root bh is an extent block, so this helps 686 * catch code errors with dinode trees. The assertion can be 687 * safely removed if we ever need to insert extent block 688 * structures at the root. 689 */ 690 BUG_ON(index == 0); 691 692 path->p_node[index].bh = eb_bh; 693 path->p_node[index].el = &eb->h_list; 694 } 695 696 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh, 697 struct ocfs2_extent_list *root_el, 698 ocfs2_journal_access_func access) 699 { 700 struct ocfs2_path *path; 701 702 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH); 703 704 path = kzalloc(sizeof(*path), GFP_NOFS); 705 if (path) { 706 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth); 707 get_bh(root_bh); 708 path_root_bh(path) = root_bh; 709 path_root_el(path) = root_el; 710 path_root_access(path) = access; 711 } 712 713 return path; 714 } 715 716 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path) 717 { 718 return ocfs2_new_path(path_root_bh(path), path_root_el(path), 719 path_root_access(path)); 720 } 721 722 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et) 723 { 724 return ocfs2_new_path(et->et_root_bh, et->et_root_el, 725 et->et_root_journal_access); 726 } 727 728 /* 729 * Journal the buffer at depth idx. All idx>0 are extent_blocks, 730 * otherwise it's the root_access function. 731 * 732 * I don't like the way this function's name looks next to 733 * ocfs2_journal_access_path(), but I don't have a better one. 734 */ 735 int ocfs2_path_bh_journal_access(handle_t *handle, 736 struct ocfs2_caching_info *ci, 737 struct ocfs2_path *path, 738 int idx) 739 { 740 ocfs2_journal_access_func access = path_root_access(path); 741 742 if (!access) 743 access = ocfs2_journal_access; 744 745 if (idx) 746 access = ocfs2_journal_access_eb; 747 748 return access(handle, ci, path->p_node[idx].bh, 749 OCFS2_JOURNAL_ACCESS_WRITE); 750 } 751 752 /* 753 * Convenience function to journal all components in a path. 754 */ 755 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci, 756 handle_t *handle, 757 struct ocfs2_path *path) 758 { 759 int i, ret = 0; 760 761 if (!path) 762 goto out; 763 764 for(i = 0; i < path_num_items(path); i++) { 765 ret = ocfs2_path_bh_journal_access(handle, ci, path, i); 766 if (ret < 0) { 767 mlog_errno(ret); 768 goto out; 769 } 770 } 771 772 out: 773 return ret; 774 } 775 776 /* 777 * Return the index of the extent record which contains cluster #v_cluster. 778 * -1 is returned if it was not found. 779 * 780 * Should work fine on interior and exterior nodes. 781 */ 782 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster) 783 { 784 int ret = -1; 785 int i; 786 struct ocfs2_extent_rec *rec; 787 u32 rec_end, rec_start, clusters; 788 789 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 790 rec = &el->l_recs[i]; 791 792 rec_start = le32_to_cpu(rec->e_cpos); 793 clusters = ocfs2_rec_clusters(el, rec); 794 795 rec_end = rec_start + clusters; 796 797 if (v_cluster >= rec_start && v_cluster < rec_end) { 798 ret = i; 799 break; 800 } 801 } 802 803 return ret; 804 } 805 806 /* 807 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and 808 * ocfs2_extent_rec_contig only work properly against leaf nodes! 809 */ 810 static int ocfs2_block_extent_contig(struct super_block *sb, 811 struct ocfs2_extent_rec *ext, 812 u64 blkno) 813 { 814 u64 blk_end = le64_to_cpu(ext->e_blkno); 815 816 blk_end += ocfs2_clusters_to_blocks(sb, 817 le16_to_cpu(ext->e_leaf_clusters)); 818 819 return blkno == blk_end; 820 } 821 822 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left, 823 struct ocfs2_extent_rec *right) 824 { 825 u32 left_range; 826 827 left_range = le32_to_cpu(left->e_cpos) + 828 le16_to_cpu(left->e_leaf_clusters); 829 830 return (left_range == le32_to_cpu(right->e_cpos)); 831 } 832 833 static enum ocfs2_contig_type 834 ocfs2_extent_rec_contig(struct super_block *sb, 835 struct ocfs2_extent_rec *ext, 836 struct ocfs2_extent_rec *insert_rec) 837 { 838 u64 blkno = le64_to_cpu(insert_rec->e_blkno); 839 840 /* 841 * Refuse to coalesce extent records with different flag 842 * fields - we don't want to mix unwritten extents with user 843 * data. 844 */ 845 if (ext->e_flags != insert_rec->e_flags) 846 return CONTIG_NONE; 847 848 if (ocfs2_extents_adjacent(ext, insert_rec) && 849 ocfs2_block_extent_contig(sb, ext, blkno)) 850 return CONTIG_RIGHT; 851 852 blkno = le64_to_cpu(ext->e_blkno); 853 if (ocfs2_extents_adjacent(insert_rec, ext) && 854 ocfs2_block_extent_contig(sb, insert_rec, blkno)) 855 return CONTIG_LEFT; 856 857 return CONTIG_NONE; 858 } 859 860 /* 861 * NOTE: We can have pretty much any combination of contiguousness and 862 * appending. 863 * 864 * The usefulness of APPEND_TAIL is more in that it lets us know that 865 * we'll have to update the path to that leaf. 866 */ 867 enum ocfs2_append_type { 868 APPEND_NONE = 0, 869 APPEND_TAIL, 870 }; 871 872 enum ocfs2_split_type { 873 SPLIT_NONE = 0, 874 SPLIT_LEFT, 875 SPLIT_RIGHT, 876 }; 877 878 struct ocfs2_insert_type { 879 enum ocfs2_split_type ins_split; 880 enum ocfs2_append_type ins_appending; 881 enum ocfs2_contig_type ins_contig; 882 int ins_contig_index; 883 int ins_tree_depth; 884 }; 885 886 struct ocfs2_merge_ctxt { 887 enum ocfs2_contig_type c_contig_type; 888 int c_has_empty_extent; 889 int c_split_covers_rec; 890 }; 891 892 static int ocfs2_validate_extent_block(struct super_block *sb, 893 struct buffer_head *bh) 894 { 895 int rc; 896 struct ocfs2_extent_block *eb = 897 (struct ocfs2_extent_block *)bh->b_data; 898 899 trace_ocfs2_validate_extent_block((unsigned long long)bh->b_blocknr); 900 901 BUG_ON(!buffer_uptodate(bh)); 902 903 /* 904 * If the ecc fails, we return the error but otherwise 905 * leave the filesystem running. We know any error is 906 * local to this block. 907 */ 908 rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check); 909 if (rc) { 910 mlog(ML_ERROR, "Checksum failed for extent block %llu\n", 911 (unsigned long long)bh->b_blocknr); 912 return rc; 913 } 914 915 /* 916 * Errors after here are fatal. 917 */ 918 919 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 920 rc = ocfs2_error(sb, 921 "Extent block #%llu has bad signature %.*s\n", 922 (unsigned long long)bh->b_blocknr, 7, 923 eb->h_signature); 924 goto bail; 925 } 926 927 if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) { 928 rc = ocfs2_error(sb, 929 "Extent block #%llu has an invalid h_blkno of %llu\n", 930 (unsigned long long)bh->b_blocknr, 931 (unsigned long long)le64_to_cpu(eb->h_blkno)); 932 goto bail; 933 } 934 935 if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) 936 rc = ocfs2_error(sb, 937 "Extent block #%llu has an invalid h_fs_generation of #%u\n", 938 (unsigned long long)bh->b_blocknr, 939 le32_to_cpu(eb->h_fs_generation)); 940 bail: 941 return rc; 942 } 943 944 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno, 945 struct buffer_head **bh) 946 { 947 int rc; 948 struct buffer_head *tmp = *bh; 949 950 rc = ocfs2_read_block(ci, eb_blkno, &tmp, 951 ocfs2_validate_extent_block); 952 953 /* If ocfs2_read_block() got us a new bh, pass it up. */ 954 if (!rc && !*bh) 955 *bh = tmp; 956 957 return rc; 958 } 959 960 961 /* 962 * How many free extents have we got before we need more meta data? 963 */ 964 int ocfs2_num_free_extents(struct ocfs2_extent_tree *et) 965 { 966 int retval; 967 struct ocfs2_extent_list *el = NULL; 968 struct ocfs2_extent_block *eb; 969 struct buffer_head *eb_bh = NULL; 970 u64 last_eb_blk = 0; 971 972 el = et->et_root_el; 973 last_eb_blk = ocfs2_et_get_last_eb_blk(et); 974 975 if (last_eb_blk) { 976 retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk, 977 &eb_bh); 978 if (retval < 0) { 979 mlog_errno(retval); 980 goto bail; 981 } 982 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 983 el = &eb->h_list; 984 } 985 986 BUG_ON(el->l_tree_depth != 0); 987 988 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec); 989 bail: 990 brelse(eb_bh); 991 992 trace_ocfs2_num_free_extents(retval); 993 return retval; 994 } 995 996 /* expects array to already be allocated 997 * 998 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and 999 * l_count for you 1000 */ 1001 static int ocfs2_create_new_meta_bhs(handle_t *handle, 1002 struct ocfs2_extent_tree *et, 1003 int wanted, 1004 struct ocfs2_alloc_context *meta_ac, 1005 struct buffer_head *bhs[]) 1006 { 1007 int count, status, i; 1008 u16 suballoc_bit_start; 1009 u32 num_got; 1010 u64 suballoc_loc, first_blkno; 1011 struct ocfs2_super *osb = 1012 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 1013 struct ocfs2_extent_block *eb; 1014 1015 count = 0; 1016 while (count < wanted) { 1017 status = ocfs2_claim_metadata(handle, 1018 meta_ac, 1019 wanted - count, 1020 &suballoc_loc, 1021 &suballoc_bit_start, 1022 &num_got, 1023 &first_blkno); 1024 if (status < 0) { 1025 mlog_errno(status); 1026 goto bail; 1027 } 1028 1029 for(i = count; i < (num_got + count); i++) { 1030 bhs[i] = sb_getblk(osb->sb, first_blkno); 1031 if (bhs[i] == NULL) { 1032 status = -ENOMEM; 1033 mlog_errno(status); 1034 goto bail; 1035 } 1036 ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]); 1037 1038 status = ocfs2_journal_access_eb(handle, et->et_ci, 1039 bhs[i], 1040 OCFS2_JOURNAL_ACCESS_CREATE); 1041 if (status < 0) { 1042 mlog_errno(status); 1043 goto bail; 1044 } 1045 1046 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize); 1047 eb = (struct ocfs2_extent_block *) bhs[i]->b_data; 1048 /* Ok, setup the minimal stuff here. */ 1049 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); 1050 eb->h_blkno = cpu_to_le64(first_blkno); 1051 eb->h_fs_generation = cpu_to_le32(osb->fs_generation); 1052 eb->h_suballoc_slot = 1053 cpu_to_le16(meta_ac->ac_alloc_slot); 1054 eb->h_suballoc_loc = cpu_to_le64(suballoc_loc); 1055 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start); 1056 eb->h_list.l_count = 1057 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); 1058 1059 suballoc_bit_start++; 1060 first_blkno++; 1061 1062 /* We'll also be dirtied by the caller, so 1063 * this isn't absolutely necessary. */ 1064 ocfs2_journal_dirty(handle, bhs[i]); 1065 } 1066 1067 count += num_got; 1068 } 1069 1070 status = 0; 1071 bail: 1072 if (status < 0) { 1073 for(i = 0; i < wanted; i++) { 1074 brelse(bhs[i]); 1075 bhs[i] = NULL; 1076 } 1077 mlog_errno(status); 1078 } 1079 return status; 1080 } 1081 1082 /* 1083 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth(). 1084 * 1085 * Returns the sum of the rightmost extent rec logical offset and 1086 * cluster count. 1087 * 1088 * ocfs2_add_branch() uses this to determine what logical cluster 1089 * value should be populated into the leftmost new branch records. 1090 * 1091 * ocfs2_shift_tree_depth() uses this to determine the # clusters 1092 * value for the new topmost tree record. 1093 */ 1094 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el) 1095 { 1096 int i; 1097 1098 i = le16_to_cpu(el->l_next_free_rec) - 1; 1099 1100 return le32_to_cpu(el->l_recs[i].e_cpos) + 1101 ocfs2_rec_clusters(el, &el->l_recs[i]); 1102 } 1103 1104 /* 1105 * Change range of the branches in the right most path according to the leaf 1106 * extent block's rightmost record. 1107 */ 1108 static int ocfs2_adjust_rightmost_branch(handle_t *handle, 1109 struct ocfs2_extent_tree *et) 1110 { 1111 int status; 1112 struct ocfs2_path *path = NULL; 1113 struct ocfs2_extent_list *el; 1114 struct ocfs2_extent_rec *rec; 1115 1116 path = ocfs2_new_path_from_et(et); 1117 if (!path) { 1118 status = -ENOMEM; 1119 return status; 1120 } 1121 1122 status = ocfs2_find_path(et->et_ci, path, UINT_MAX); 1123 if (status < 0) { 1124 mlog_errno(status); 1125 goto out; 1126 } 1127 1128 status = ocfs2_extend_trans(handle, path_num_items(path)); 1129 if (status < 0) { 1130 mlog_errno(status); 1131 goto out; 1132 } 1133 1134 status = ocfs2_journal_access_path(et->et_ci, handle, path); 1135 if (status < 0) { 1136 mlog_errno(status); 1137 goto out; 1138 } 1139 1140 el = path_leaf_el(path); 1141 rec = &el->l_recs[le16_to_cpu(el->l_next_free_rec) - 1]; 1142 1143 ocfs2_adjust_rightmost_records(handle, et, path, rec); 1144 1145 out: 1146 ocfs2_free_path(path); 1147 return status; 1148 } 1149 1150 /* 1151 * Add an entire tree branch to our inode. eb_bh is the extent block 1152 * to start at, if we don't want to start the branch at the root 1153 * structure. 1154 * 1155 * last_eb_bh is required as we have to update it's next_leaf pointer 1156 * for the new last extent block. 1157 * 1158 * the new branch will be 'empty' in the sense that every block will 1159 * contain a single record with cluster count == 0. 1160 */ 1161 static int ocfs2_add_branch(handle_t *handle, 1162 struct ocfs2_extent_tree *et, 1163 struct buffer_head *eb_bh, 1164 struct buffer_head **last_eb_bh, 1165 struct ocfs2_alloc_context *meta_ac) 1166 { 1167 int status, new_blocks, i, block_given = 0; 1168 u64 next_blkno, new_last_eb_blk; 1169 struct buffer_head *bh; 1170 struct buffer_head **new_eb_bhs = NULL; 1171 struct ocfs2_extent_block *eb; 1172 struct ocfs2_extent_list *eb_el; 1173 struct ocfs2_extent_list *el; 1174 u32 new_cpos, root_end; 1175 1176 BUG_ON(!last_eb_bh || !*last_eb_bh); 1177 1178 if (eb_bh) { 1179 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 1180 el = &eb->h_list; 1181 } else 1182 el = et->et_root_el; 1183 1184 /* we never add a branch to a leaf. */ 1185 BUG_ON(!el->l_tree_depth); 1186 1187 new_blocks = le16_to_cpu(el->l_tree_depth); 1188 1189 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data; 1190 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list); 1191 root_end = ocfs2_sum_rightmost_rec(et->et_root_el); 1192 1193 /* 1194 * If there is a gap before the root end and the real end 1195 * of the righmost leaf block, we need to remove the gap 1196 * between new_cpos and root_end first so that the tree 1197 * is consistent after we add a new branch(it will start 1198 * from new_cpos). 1199 */ 1200 if (root_end > new_cpos) { 1201 trace_ocfs2_adjust_rightmost_branch( 1202 (unsigned long long) 1203 ocfs2_metadata_cache_owner(et->et_ci), 1204 root_end, new_cpos); 1205 1206 status = ocfs2_adjust_rightmost_branch(handle, et); 1207 if (status) { 1208 mlog_errno(status); 1209 goto bail; 1210 } 1211 } 1212 1213 /* allocate the number of new eb blocks we need */ 1214 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *), 1215 GFP_KERNEL); 1216 if (!new_eb_bhs) { 1217 status = -ENOMEM; 1218 mlog_errno(status); 1219 goto bail; 1220 } 1221 1222 /* Firstyly, try to reuse dealloc since we have already estimated how 1223 * many extent blocks we may use. 1224 */ 1225 if (!ocfs2_is_dealloc_empty(et)) { 1226 status = ocfs2_reuse_blk_from_dealloc(handle, et, 1227 new_eb_bhs, new_blocks, 1228 &block_given); 1229 if (status < 0) { 1230 mlog_errno(status); 1231 goto bail; 1232 } 1233 } 1234 1235 BUG_ON(block_given > new_blocks); 1236 1237 if (block_given < new_blocks) { 1238 BUG_ON(!meta_ac); 1239 status = ocfs2_create_new_meta_bhs(handle, et, 1240 new_blocks - block_given, 1241 meta_ac, 1242 &new_eb_bhs[block_given]); 1243 if (status < 0) { 1244 mlog_errno(status); 1245 goto bail; 1246 } 1247 } 1248 1249 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be 1250 * linked with the rest of the tree. 1251 * conversly, new_eb_bhs[0] is the new bottommost leaf. 1252 * 1253 * when we leave the loop, new_last_eb_blk will point to the 1254 * newest leaf, and next_blkno will point to the topmost extent 1255 * block. */ 1256 next_blkno = new_last_eb_blk = 0; 1257 for(i = 0; i < new_blocks; i++) { 1258 bh = new_eb_bhs[i]; 1259 eb = (struct ocfs2_extent_block *) bh->b_data; 1260 /* ocfs2_create_new_meta_bhs() should create it right! */ 1261 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1262 eb_el = &eb->h_list; 1263 1264 status = ocfs2_journal_access_eb(handle, et->et_ci, bh, 1265 OCFS2_JOURNAL_ACCESS_CREATE); 1266 if (status < 0) { 1267 mlog_errno(status); 1268 goto bail; 1269 } 1270 1271 eb->h_next_leaf_blk = 0; 1272 eb_el->l_tree_depth = cpu_to_le16(i); 1273 eb_el->l_next_free_rec = cpu_to_le16(1); 1274 /* 1275 * This actually counts as an empty extent as 1276 * c_clusters == 0 1277 */ 1278 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos); 1279 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno); 1280 /* 1281 * eb_el isn't always an interior node, but even leaf 1282 * nodes want a zero'd flags and reserved field so 1283 * this gets the whole 32 bits regardless of use. 1284 */ 1285 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0); 1286 if (!eb_el->l_tree_depth) 1287 new_last_eb_blk = le64_to_cpu(eb->h_blkno); 1288 1289 ocfs2_journal_dirty(handle, bh); 1290 next_blkno = le64_to_cpu(eb->h_blkno); 1291 } 1292 1293 /* This is a bit hairy. We want to update up to three blocks 1294 * here without leaving any of them in an inconsistent state 1295 * in case of error. We don't have to worry about 1296 * journal_dirty erroring as it won't unless we've aborted the 1297 * handle (in which case we would never be here) so reserving 1298 * the write with journal_access is all we need to do. */ 1299 status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh, 1300 OCFS2_JOURNAL_ACCESS_WRITE); 1301 if (status < 0) { 1302 mlog_errno(status); 1303 goto bail; 1304 } 1305 status = ocfs2_et_root_journal_access(handle, et, 1306 OCFS2_JOURNAL_ACCESS_WRITE); 1307 if (status < 0) { 1308 mlog_errno(status); 1309 goto bail; 1310 } 1311 if (eb_bh) { 1312 status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh, 1313 OCFS2_JOURNAL_ACCESS_WRITE); 1314 if (status < 0) { 1315 mlog_errno(status); 1316 goto bail; 1317 } 1318 } 1319 1320 /* Link the new branch into the rest of the tree (el will 1321 * either be on the root_bh, or the extent block passed in. */ 1322 i = le16_to_cpu(el->l_next_free_rec); 1323 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno); 1324 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos); 1325 el->l_recs[i].e_int_clusters = 0; 1326 le16_add_cpu(&el->l_next_free_rec, 1); 1327 1328 /* fe needs a new last extent block pointer, as does the 1329 * next_leaf on the previously last-extent-block. */ 1330 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk); 1331 1332 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 1333 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk); 1334 1335 ocfs2_journal_dirty(handle, *last_eb_bh); 1336 ocfs2_journal_dirty(handle, et->et_root_bh); 1337 if (eb_bh) 1338 ocfs2_journal_dirty(handle, eb_bh); 1339 1340 /* 1341 * Some callers want to track the rightmost leaf so pass it 1342 * back here. 1343 */ 1344 brelse(*last_eb_bh); 1345 get_bh(new_eb_bhs[0]); 1346 *last_eb_bh = new_eb_bhs[0]; 1347 1348 status = 0; 1349 bail: 1350 if (new_eb_bhs) { 1351 for (i = 0; i < new_blocks; i++) 1352 brelse(new_eb_bhs[i]); 1353 kfree(new_eb_bhs); 1354 } 1355 1356 return status; 1357 } 1358 1359 /* 1360 * adds another level to the allocation tree. 1361 * returns back the new extent block so you can add a branch to it 1362 * after this call. 1363 */ 1364 static int ocfs2_shift_tree_depth(handle_t *handle, 1365 struct ocfs2_extent_tree *et, 1366 struct ocfs2_alloc_context *meta_ac, 1367 struct buffer_head **ret_new_eb_bh) 1368 { 1369 int status, i, block_given = 0; 1370 u32 new_clusters; 1371 struct buffer_head *new_eb_bh = NULL; 1372 struct ocfs2_extent_block *eb; 1373 struct ocfs2_extent_list *root_el; 1374 struct ocfs2_extent_list *eb_el; 1375 1376 if (!ocfs2_is_dealloc_empty(et)) { 1377 status = ocfs2_reuse_blk_from_dealloc(handle, et, 1378 &new_eb_bh, 1, 1379 &block_given); 1380 } else if (meta_ac) { 1381 status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac, 1382 &new_eb_bh); 1383 1384 } else { 1385 BUG(); 1386 } 1387 1388 if (status < 0) { 1389 mlog_errno(status); 1390 goto bail; 1391 } 1392 1393 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data; 1394 /* ocfs2_create_new_meta_bhs() should create it right! */ 1395 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1396 1397 eb_el = &eb->h_list; 1398 root_el = et->et_root_el; 1399 1400 status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh, 1401 OCFS2_JOURNAL_ACCESS_CREATE); 1402 if (status < 0) { 1403 mlog_errno(status); 1404 goto bail; 1405 } 1406 1407 /* copy the root extent list data into the new extent block */ 1408 eb_el->l_tree_depth = root_el->l_tree_depth; 1409 eb_el->l_next_free_rec = root_el->l_next_free_rec; 1410 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1411 eb_el->l_recs[i] = root_el->l_recs[i]; 1412 1413 ocfs2_journal_dirty(handle, new_eb_bh); 1414 1415 status = ocfs2_et_root_journal_access(handle, et, 1416 OCFS2_JOURNAL_ACCESS_WRITE); 1417 if (status < 0) { 1418 mlog_errno(status); 1419 goto bail; 1420 } 1421 1422 new_clusters = ocfs2_sum_rightmost_rec(eb_el); 1423 1424 /* update root_bh now */ 1425 le16_add_cpu(&root_el->l_tree_depth, 1); 1426 root_el->l_recs[0].e_cpos = 0; 1427 root_el->l_recs[0].e_blkno = eb->h_blkno; 1428 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters); 1429 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1430 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 1431 root_el->l_next_free_rec = cpu_to_le16(1); 1432 1433 /* If this is our 1st tree depth shift, then last_eb_blk 1434 * becomes the allocated extent block */ 1435 if (root_el->l_tree_depth == cpu_to_le16(1)) 1436 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 1437 1438 ocfs2_journal_dirty(handle, et->et_root_bh); 1439 1440 *ret_new_eb_bh = new_eb_bh; 1441 new_eb_bh = NULL; 1442 status = 0; 1443 bail: 1444 brelse(new_eb_bh); 1445 1446 return status; 1447 } 1448 1449 /* 1450 * Should only be called when there is no space left in any of the 1451 * leaf nodes. What we want to do is find the lowest tree depth 1452 * non-leaf extent block with room for new records. There are three 1453 * valid results of this search: 1454 * 1455 * 1) a lowest extent block is found, then we pass it back in 1456 * *lowest_eb_bh and return '0' 1457 * 1458 * 2) the search fails to find anything, but the root_el has room. We 1459 * pass NULL back in *lowest_eb_bh, but still return '0' 1460 * 1461 * 3) the search fails to find anything AND the root_el is full, in 1462 * which case we return > 0 1463 * 1464 * return status < 0 indicates an error. 1465 */ 1466 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et, 1467 struct buffer_head **target_bh) 1468 { 1469 int status = 0, i; 1470 u64 blkno; 1471 struct ocfs2_extent_block *eb; 1472 struct ocfs2_extent_list *el; 1473 struct buffer_head *bh = NULL; 1474 struct buffer_head *lowest_bh = NULL; 1475 1476 *target_bh = NULL; 1477 1478 el = et->et_root_el; 1479 1480 while(le16_to_cpu(el->l_tree_depth) > 1) { 1481 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1482 status = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 1483 "Owner %llu has empty extent list (next_free_rec == 0)\n", 1484 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 1485 goto bail; 1486 } 1487 i = le16_to_cpu(el->l_next_free_rec) - 1; 1488 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1489 if (!blkno) { 1490 status = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 1491 "Owner %llu has extent list where extent # %d has no physical block start\n", 1492 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i); 1493 goto bail; 1494 } 1495 1496 brelse(bh); 1497 bh = NULL; 1498 1499 status = ocfs2_read_extent_block(et->et_ci, blkno, &bh); 1500 if (status < 0) { 1501 mlog_errno(status); 1502 goto bail; 1503 } 1504 1505 eb = (struct ocfs2_extent_block *) bh->b_data; 1506 el = &eb->h_list; 1507 1508 if (le16_to_cpu(el->l_next_free_rec) < 1509 le16_to_cpu(el->l_count)) { 1510 brelse(lowest_bh); 1511 lowest_bh = bh; 1512 get_bh(lowest_bh); 1513 } 1514 } 1515 1516 /* If we didn't find one and the fe doesn't have any room, 1517 * then return '1' */ 1518 el = et->et_root_el; 1519 if (!lowest_bh && (el->l_next_free_rec == el->l_count)) 1520 status = 1; 1521 1522 *target_bh = lowest_bh; 1523 bail: 1524 brelse(bh); 1525 1526 return status; 1527 } 1528 1529 /* 1530 * Grow a b-tree so that it has more records. 1531 * 1532 * We might shift the tree depth in which case existing paths should 1533 * be considered invalid. 1534 * 1535 * Tree depth after the grow is returned via *final_depth. 1536 * 1537 * *last_eb_bh will be updated by ocfs2_add_branch(). 1538 */ 1539 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et, 1540 int *final_depth, struct buffer_head **last_eb_bh, 1541 struct ocfs2_alloc_context *meta_ac) 1542 { 1543 int ret, shift; 1544 struct ocfs2_extent_list *el = et->et_root_el; 1545 int depth = le16_to_cpu(el->l_tree_depth); 1546 struct buffer_head *bh = NULL; 1547 1548 BUG_ON(meta_ac == NULL && ocfs2_is_dealloc_empty(et)); 1549 1550 shift = ocfs2_find_branch_target(et, &bh); 1551 if (shift < 0) { 1552 ret = shift; 1553 mlog_errno(ret); 1554 goto out; 1555 } 1556 1557 /* We traveled all the way to the bottom of the allocation tree 1558 * and didn't find room for any more extents - we need to add 1559 * another tree level */ 1560 if (shift) { 1561 BUG_ON(bh); 1562 trace_ocfs2_grow_tree( 1563 (unsigned long long) 1564 ocfs2_metadata_cache_owner(et->et_ci), 1565 depth); 1566 1567 /* ocfs2_shift_tree_depth will return us a buffer with 1568 * the new extent block (so we can pass that to 1569 * ocfs2_add_branch). */ 1570 ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh); 1571 if (ret < 0) { 1572 mlog_errno(ret); 1573 goto out; 1574 } 1575 depth++; 1576 if (depth == 1) { 1577 /* 1578 * Special case: we have room now if we shifted from 1579 * tree_depth 0, so no more work needs to be done. 1580 * 1581 * We won't be calling add_branch, so pass 1582 * back *last_eb_bh as the new leaf. At depth 1583 * zero, it should always be null so there's 1584 * no reason to brelse. 1585 */ 1586 BUG_ON(*last_eb_bh); 1587 get_bh(bh); 1588 *last_eb_bh = bh; 1589 goto out; 1590 } 1591 } 1592 1593 /* call ocfs2_add_branch to add the final part of the tree with 1594 * the new data. */ 1595 ret = ocfs2_add_branch(handle, et, bh, last_eb_bh, 1596 meta_ac); 1597 if (ret < 0) 1598 mlog_errno(ret); 1599 1600 out: 1601 if (final_depth) 1602 *final_depth = depth; 1603 brelse(bh); 1604 return ret; 1605 } 1606 1607 /* 1608 * This function will discard the rightmost extent record. 1609 */ 1610 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el) 1611 { 1612 int next_free = le16_to_cpu(el->l_next_free_rec); 1613 int count = le16_to_cpu(el->l_count); 1614 unsigned int num_bytes; 1615 1616 BUG_ON(!next_free); 1617 /* This will cause us to go off the end of our extent list. */ 1618 BUG_ON(next_free >= count); 1619 1620 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free; 1621 1622 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes); 1623 } 1624 1625 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el, 1626 struct ocfs2_extent_rec *insert_rec) 1627 { 1628 int i, insert_index, next_free, has_empty, num_bytes; 1629 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos); 1630 struct ocfs2_extent_rec *rec; 1631 1632 next_free = le16_to_cpu(el->l_next_free_rec); 1633 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]); 1634 1635 BUG_ON(!next_free); 1636 1637 /* The tree code before us didn't allow enough room in the leaf. */ 1638 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty); 1639 1640 /* 1641 * The easiest way to approach this is to just remove the 1642 * empty extent and temporarily decrement next_free. 1643 */ 1644 if (has_empty) { 1645 /* 1646 * If next_free was 1 (only an empty extent), this 1647 * loop won't execute, which is fine. We still want 1648 * the decrement above to happen. 1649 */ 1650 for(i = 0; i < (next_free - 1); i++) 1651 el->l_recs[i] = el->l_recs[i+1]; 1652 1653 next_free--; 1654 } 1655 1656 /* 1657 * Figure out what the new record index should be. 1658 */ 1659 for(i = 0; i < next_free; i++) { 1660 rec = &el->l_recs[i]; 1661 1662 if (insert_cpos < le32_to_cpu(rec->e_cpos)) 1663 break; 1664 } 1665 insert_index = i; 1666 1667 trace_ocfs2_rotate_leaf(insert_cpos, insert_index, 1668 has_empty, next_free, 1669 le16_to_cpu(el->l_count)); 1670 1671 BUG_ON(insert_index < 0); 1672 BUG_ON(insert_index >= le16_to_cpu(el->l_count)); 1673 BUG_ON(insert_index > next_free); 1674 1675 /* 1676 * No need to memmove if we're just adding to the tail. 1677 */ 1678 if (insert_index != next_free) { 1679 BUG_ON(next_free >= le16_to_cpu(el->l_count)); 1680 1681 num_bytes = next_free - insert_index; 1682 num_bytes *= sizeof(struct ocfs2_extent_rec); 1683 memmove(&el->l_recs[insert_index + 1], 1684 &el->l_recs[insert_index], 1685 num_bytes); 1686 } 1687 1688 /* 1689 * Either we had an empty extent, and need to re-increment or 1690 * there was no empty extent on a non full rightmost leaf node, 1691 * in which case we still need to increment. 1692 */ 1693 next_free++; 1694 el->l_next_free_rec = cpu_to_le16(next_free); 1695 /* 1696 * Make sure none of the math above just messed up our tree. 1697 */ 1698 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count)); 1699 1700 el->l_recs[insert_index] = *insert_rec; 1701 1702 } 1703 1704 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el) 1705 { 1706 int size, num_recs = le16_to_cpu(el->l_next_free_rec); 1707 1708 BUG_ON(num_recs == 0); 1709 1710 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 1711 num_recs--; 1712 size = num_recs * sizeof(struct ocfs2_extent_rec); 1713 memmove(&el->l_recs[0], &el->l_recs[1], size); 1714 memset(&el->l_recs[num_recs], 0, 1715 sizeof(struct ocfs2_extent_rec)); 1716 el->l_next_free_rec = cpu_to_le16(num_recs); 1717 } 1718 } 1719 1720 /* 1721 * Create an empty extent record . 1722 * 1723 * l_next_free_rec may be updated. 1724 * 1725 * If an empty extent already exists do nothing. 1726 */ 1727 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el) 1728 { 1729 int next_free = le16_to_cpu(el->l_next_free_rec); 1730 1731 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 1732 1733 if (next_free == 0) 1734 goto set_and_inc; 1735 1736 if (ocfs2_is_empty_extent(&el->l_recs[0])) 1737 return; 1738 1739 mlog_bug_on_msg(el->l_count == el->l_next_free_rec, 1740 "Asked to create an empty extent in a full list:\n" 1741 "count = %u, tree depth = %u", 1742 le16_to_cpu(el->l_count), 1743 le16_to_cpu(el->l_tree_depth)); 1744 1745 ocfs2_shift_records_right(el); 1746 1747 set_and_inc: 1748 le16_add_cpu(&el->l_next_free_rec, 1); 1749 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 1750 } 1751 1752 /* 1753 * For a rotation which involves two leaf nodes, the "root node" is 1754 * the lowest level tree node which contains a path to both leafs. This 1755 * resulting set of information can be used to form a complete "subtree" 1756 * 1757 * This function is passed two full paths from the dinode down to a 1758 * pair of adjacent leaves. It's task is to figure out which path 1759 * index contains the subtree root - this can be the root index itself 1760 * in a worst-case rotation. 1761 * 1762 * The array index of the subtree root is passed back. 1763 */ 1764 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et, 1765 struct ocfs2_path *left, 1766 struct ocfs2_path *right) 1767 { 1768 int i = 0; 1769 1770 /* 1771 * Check that the caller passed in two paths from the same tree. 1772 */ 1773 BUG_ON(path_root_bh(left) != path_root_bh(right)); 1774 1775 do { 1776 i++; 1777 1778 /* 1779 * The caller didn't pass two adjacent paths. 1780 */ 1781 mlog_bug_on_msg(i > left->p_tree_depth, 1782 "Owner %llu, left depth %u, right depth %u\n" 1783 "left leaf blk %llu, right leaf blk %llu\n", 1784 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 1785 left->p_tree_depth, right->p_tree_depth, 1786 (unsigned long long)path_leaf_bh(left)->b_blocknr, 1787 (unsigned long long)path_leaf_bh(right)->b_blocknr); 1788 } while (left->p_node[i].bh->b_blocknr == 1789 right->p_node[i].bh->b_blocknr); 1790 1791 return i - 1; 1792 } 1793 1794 typedef void (path_insert_t)(void *, struct buffer_head *); 1795 1796 /* 1797 * Traverse a btree path in search of cpos, starting at root_el. 1798 * 1799 * This code can be called with a cpos larger than the tree, in which 1800 * case it will return the rightmost path. 1801 */ 1802 static int __ocfs2_find_path(struct ocfs2_caching_info *ci, 1803 struct ocfs2_extent_list *root_el, u32 cpos, 1804 path_insert_t *func, void *data) 1805 { 1806 int i, ret = 0; 1807 u32 range; 1808 u64 blkno; 1809 struct buffer_head *bh = NULL; 1810 struct ocfs2_extent_block *eb; 1811 struct ocfs2_extent_list *el; 1812 struct ocfs2_extent_rec *rec; 1813 1814 el = root_el; 1815 while (el->l_tree_depth) { 1816 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1817 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1818 "Owner %llu has empty extent list at depth %u\n", 1819 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1820 le16_to_cpu(el->l_tree_depth)); 1821 ret = -EROFS; 1822 goto out; 1823 1824 } 1825 1826 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) { 1827 rec = &el->l_recs[i]; 1828 1829 /* 1830 * In the case that cpos is off the allocation 1831 * tree, this should just wind up returning the 1832 * rightmost record. 1833 */ 1834 range = le32_to_cpu(rec->e_cpos) + 1835 ocfs2_rec_clusters(el, rec); 1836 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 1837 break; 1838 } 1839 1840 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1841 if (blkno == 0) { 1842 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1843 "Owner %llu has bad blkno in extent list at depth %u (index %d)\n", 1844 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1845 le16_to_cpu(el->l_tree_depth), i); 1846 ret = -EROFS; 1847 goto out; 1848 } 1849 1850 brelse(bh); 1851 bh = NULL; 1852 ret = ocfs2_read_extent_block(ci, blkno, &bh); 1853 if (ret) { 1854 mlog_errno(ret); 1855 goto out; 1856 } 1857 1858 eb = (struct ocfs2_extent_block *) bh->b_data; 1859 el = &eb->h_list; 1860 1861 if (le16_to_cpu(el->l_next_free_rec) > 1862 le16_to_cpu(el->l_count)) { 1863 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1864 "Owner %llu has bad count in extent list at block %llu (next free=%u, count=%u)\n", 1865 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1866 (unsigned long long)bh->b_blocknr, 1867 le16_to_cpu(el->l_next_free_rec), 1868 le16_to_cpu(el->l_count)); 1869 ret = -EROFS; 1870 goto out; 1871 } 1872 1873 if (func) 1874 func(data, bh); 1875 } 1876 1877 out: 1878 /* 1879 * Catch any trailing bh that the loop didn't handle. 1880 */ 1881 brelse(bh); 1882 1883 return ret; 1884 } 1885 1886 /* 1887 * Given an initialized path (that is, it has a valid root extent 1888 * list), this function will traverse the btree in search of the path 1889 * which would contain cpos. 1890 * 1891 * The path traveled is recorded in the path structure. 1892 * 1893 * Note that this will not do any comparisons on leaf node extent 1894 * records, so it will work fine in the case that we just added a tree 1895 * branch. 1896 */ 1897 struct find_path_data { 1898 int index; 1899 struct ocfs2_path *path; 1900 }; 1901 static void find_path_ins(void *data, struct buffer_head *bh) 1902 { 1903 struct find_path_data *fp = data; 1904 1905 get_bh(bh); 1906 ocfs2_path_insert_eb(fp->path, fp->index, bh); 1907 fp->index++; 1908 } 1909 int ocfs2_find_path(struct ocfs2_caching_info *ci, 1910 struct ocfs2_path *path, u32 cpos) 1911 { 1912 struct find_path_data data; 1913 1914 data.index = 1; 1915 data.path = path; 1916 return __ocfs2_find_path(ci, path_root_el(path), cpos, 1917 find_path_ins, &data); 1918 } 1919 1920 static void find_leaf_ins(void *data, struct buffer_head *bh) 1921 { 1922 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data; 1923 struct ocfs2_extent_list *el = &eb->h_list; 1924 struct buffer_head **ret = data; 1925 1926 /* We want to retain only the leaf block. */ 1927 if (le16_to_cpu(el->l_tree_depth) == 0) { 1928 get_bh(bh); 1929 *ret = bh; 1930 } 1931 } 1932 /* 1933 * Find the leaf block in the tree which would contain cpos. No 1934 * checking of the actual leaf is done. 1935 * 1936 * Some paths want to call this instead of allocating a path structure 1937 * and calling ocfs2_find_path(). 1938 * 1939 * This function doesn't handle non btree extent lists. 1940 */ 1941 int ocfs2_find_leaf(struct ocfs2_caching_info *ci, 1942 struct ocfs2_extent_list *root_el, u32 cpos, 1943 struct buffer_head **leaf_bh) 1944 { 1945 int ret; 1946 struct buffer_head *bh = NULL; 1947 1948 ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh); 1949 if (ret) { 1950 mlog_errno(ret); 1951 goto out; 1952 } 1953 1954 *leaf_bh = bh; 1955 out: 1956 return ret; 1957 } 1958 1959 /* 1960 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation. 1961 * 1962 * Basically, we've moved stuff around at the bottom of the tree and 1963 * we need to fix up the extent records above the changes to reflect 1964 * the new changes. 1965 * 1966 * left_rec: the record on the left. 1967 * right_rec: the record to the right of left_rec 1968 * right_child_el: is the child list pointed to by right_rec 1969 * 1970 * By definition, this only works on interior nodes. 1971 */ 1972 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec, 1973 struct ocfs2_extent_rec *right_rec, 1974 struct ocfs2_extent_list *right_child_el) 1975 { 1976 u32 left_clusters, right_end; 1977 1978 /* 1979 * Interior nodes never have holes. Their cpos is the cpos of 1980 * the leftmost record in their child list. Their cluster 1981 * count covers the full theoretical range of their child list 1982 * - the range between their cpos and the cpos of the record 1983 * immediately to their right. 1984 */ 1985 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos); 1986 if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) { 1987 BUG_ON(right_child_el->l_tree_depth); 1988 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1); 1989 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos); 1990 } 1991 left_clusters -= le32_to_cpu(left_rec->e_cpos); 1992 left_rec->e_int_clusters = cpu_to_le32(left_clusters); 1993 1994 /* 1995 * Calculate the rightmost cluster count boundary before 1996 * moving cpos - we will need to adjust clusters after 1997 * updating e_cpos to keep the same highest cluster count. 1998 */ 1999 right_end = le32_to_cpu(right_rec->e_cpos); 2000 right_end += le32_to_cpu(right_rec->e_int_clusters); 2001 2002 right_rec->e_cpos = left_rec->e_cpos; 2003 le32_add_cpu(&right_rec->e_cpos, left_clusters); 2004 2005 right_end -= le32_to_cpu(right_rec->e_cpos); 2006 right_rec->e_int_clusters = cpu_to_le32(right_end); 2007 } 2008 2009 /* 2010 * Adjust the adjacent root node records involved in a 2011 * rotation. left_el_blkno is passed in as a key so that we can easily 2012 * find it's index in the root list. 2013 */ 2014 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el, 2015 struct ocfs2_extent_list *left_el, 2016 struct ocfs2_extent_list *right_el, 2017 u64 left_el_blkno) 2018 { 2019 int i; 2020 2021 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <= 2022 le16_to_cpu(left_el->l_tree_depth)); 2023 2024 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) { 2025 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno) 2026 break; 2027 } 2028 2029 /* 2030 * The path walking code should have never returned a root and 2031 * two paths which are not adjacent. 2032 */ 2033 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1)); 2034 2035 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], 2036 &root_el->l_recs[i + 1], right_el); 2037 } 2038 2039 /* 2040 * We've changed a leaf block (in right_path) and need to reflect that 2041 * change back up the subtree. 2042 * 2043 * This happens in multiple places: 2044 * - When we've moved an extent record from the left path leaf to the right 2045 * path leaf to make room for an empty extent in the left path leaf. 2046 * - When our insert into the right path leaf is at the leftmost edge 2047 * and requires an update of the path immediately to it's left. This 2048 * can occur at the end of some types of rotation and appending inserts. 2049 * - When we've adjusted the last extent record in the left path leaf and the 2050 * 1st extent record in the right path leaf during cross extent block merge. 2051 */ 2052 static void ocfs2_complete_edge_insert(handle_t *handle, 2053 struct ocfs2_path *left_path, 2054 struct ocfs2_path *right_path, 2055 int subtree_index) 2056 { 2057 int i, idx; 2058 struct ocfs2_extent_list *el, *left_el, *right_el; 2059 struct ocfs2_extent_rec *left_rec, *right_rec; 2060 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2061 2062 /* 2063 * Update the counts and position values within all the 2064 * interior nodes to reflect the leaf rotation we just did. 2065 * 2066 * The root node is handled below the loop. 2067 * 2068 * We begin the loop with right_el and left_el pointing to the 2069 * leaf lists and work our way up. 2070 * 2071 * NOTE: within this loop, left_el and right_el always refer 2072 * to the *child* lists. 2073 */ 2074 left_el = path_leaf_el(left_path); 2075 right_el = path_leaf_el(right_path); 2076 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) { 2077 trace_ocfs2_complete_edge_insert(i); 2078 2079 /* 2080 * One nice property of knowing that all of these 2081 * nodes are below the root is that we only deal with 2082 * the leftmost right node record and the rightmost 2083 * left node record. 2084 */ 2085 el = left_path->p_node[i].el; 2086 idx = le16_to_cpu(left_el->l_next_free_rec) - 1; 2087 left_rec = &el->l_recs[idx]; 2088 2089 el = right_path->p_node[i].el; 2090 right_rec = &el->l_recs[0]; 2091 2092 ocfs2_adjust_adjacent_records(left_rec, right_rec, right_el); 2093 2094 ocfs2_journal_dirty(handle, left_path->p_node[i].bh); 2095 ocfs2_journal_dirty(handle, right_path->p_node[i].bh); 2096 2097 /* 2098 * Setup our list pointers now so that the current 2099 * parents become children in the next iteration. 2100 */ 2101 left_el = left_path->p_node[i].el; 2102 right_el = right_path->p_node[i].el; 2103 } 2104 2105 /* 2106 * At the root node, adjust the two adjacent records which 2107 * begin our path to the leaves. 2108 */ 2109 2110 el = left_path->p_node[subtree_index].el; 2111 left_el = left_path->p_node[subtree_index + 1].el; 2112 right_el = right_path->p_node[subtree_index + 1].el; 2113 2114 ocfs2_adjust_root_records(el, left_el, right_el, 2115 left_path->p_node[subtree_index + 1].bh->b_blocknr); 2116 2117 root_bh = left_path->p_node[subtree_index].bh; 2118 2119 ocfs2_journal_dirty(handle, root_bh); 2120 } 2121 2122 static int ocfs2_rotate_subtree_right(handle_t *handle, 2123 struct ocfs2_extent_tree *et, 2124 struct ocfs2_path *left_path, 2125 struct ocfs2_path *right_path, 2126 int subtree_index) 2127 { 2128 int ret, i; 2129 struct buffer_head *right_leaf_bh; 2130 struct buffer_head *left_leaf_bh = NULL; 2131 struct buffer_head *root_bh; 2132 struct ocfs2_extent_list *right_el, *left_el; 2133 struct ocfs2_extent_rec move_rec; 2134 2135 left_leaf_bh = path_leaf_bh(left_path); 2136 left_el = path_leaf_el(left_path); 2137 2138 if (left_el->l_next_free_rec != left_el->l_count) { 2139 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 2140 "Inode %llu has non-full interior leaf node %llu (next free = %u)\n", 2141 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2142 (unsigned long long)left_leaf_bh->b_blocknr, 2143 le16_to_cpu(left_el->l_next_free_rec)); 2144 return -EROFS; 2145 } 2146 2147 /* 2148 * This extent block may already have an empty record, so we 2149 * return early if so. 2150 */ 2151 if (ocfs2_is_empty_extent(&left_el->l_recs[0])) 2152 return 0; 2153 2154 root_bh = left_path->p_node[subtree_index].bh; 2155 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2156 2157 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 2158 subtree_index); 2159 if (ret) { 2160 mlog_errno(ret); 2161 goto out; 2162 } 2163 2164 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2165 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2166 right_path, i); 2167 if (ret) { 2168 mlog_errno(ret); 2169 goto out; 2170 } 2171 2172 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2173 left_path, i); 2174 if (ret) { 2175 mlog_errno(ret); 2176 goto out; 2177 } 2178 } 2179 2180 right_leaf_bh = path_leaf_bh(right_path); 2181 right_el = path_leaf_el(right_path); 2182 2183 /* This is a code error, not a disk corruption. */ 2184 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails " 2185 "because rightmost leaf block %llu is empty\n", 2186 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2187 (unsigned long long)right_leaf_bh->b_blocknr); 2188 2189 ocfs2_create_empty_extent(right_el); 2190 2191 ocfs2_journal_dirty(handle, right_leaf_bh); 2192 2193 /* Do the copy now. */ 2194 i = le16_to_cpu(left_el->l_next_free_rec) - 1; 2195 move_rec = left_el->l_recs[i]; 2196 right_el->l_recs[0] = move_rec; 2197 2198 /* 2199 * Clear out the record we just copied and shift everything 2200 * over, leaving an empty extent in the left leaf. 2201 * 2202 * We temporarily subtract from next_free_rec so that the 2203 * shift will lose the tail record (which is now defunct). 2204 */ 2205 le16_add_cpu(&left_el->l_next_free_rec, -1); 2206 ocfs2_shift_records_right(left_el); 2207 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2208 le16_add_cpu(&left_el->l_next_free_rec, 1); 2209 2210 ocfs2_journal_dirty(handle, left_leaf_bh); 2211 2212 ocfs2_complete_edge_insert(handle, left_path, right_path, 2213 subtree_index); 2214 2215 out: 2216 return ret; 2217 } 2218 2219 /* 2220 * Given a full path, determine what cpos value would return us a path 2221 * containing the leaf immediately to the left of the current one. 2222 * 2223 * Will return zero if the path passed in is already the leftmost path. 2224 */ 2225 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb, 2226 struct ocfs2_path *path, u32 *cpos) 2227 { 2228 int i, j, ret = 0; 2229 u64 blkno; 2230 struct ocfs2_extent_list *el; 2231 2232 BUG_ON(path->p_tree_depth == 0); 2233 2234 *cpos = 0; 2235 2236 blkno = path_leaf_bh(path)->b_blocknr; 2237 2238 /* Start at the tree node just above the leaf and work our way up. */ 2239 i = path->p_tree_depth - 1; 2240 while (i >= 0) { 2241 el = path->p_node[i].el; 2242 2243 /* 2244 * Find the extent record just before the one in our 2245 * path. 2246 */ 2247 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2248 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2249 if (j == 0) { 2250 if (i == 0) { 2251 /* 2252 * We've determined that the 2253 * path specified is already 2254 * the leftmost one - return a 2255 * cpos of zero. 2256 */ 2257 goto out; 2258 } 2259 /* 2260 * The leftmost record points to our 2261 * leaf - we need to travel up the 2262 * tree one level. 2263 */ 2264 goto next_node; 2265 } 2266 2267 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos); 2268 *cpos = *cpos + ocfs2_rec_clusters(el, 2269 &el->l_recs[j - 1]); 2270 *cpos = *cpos - 1; 2271 goto out; 2272 } 2273 } 2274 2275 /* 2276 * If we got here, we never found a valid node where 2277 * the tree indicated one should be. 2278 */ 2279 ocfs2_error(sb, "Invalid extent tree at extent block %llu\n", 2280 (unsigned long long)blkno); 2281 ret = -EROFS; 2282 goto out; 2283 2284 next_node: 2285 blkno = path->p_node[i].bh->b_blocknr; 2286 i--; 2287 } 2288 2289 out: 2290 return ret; 2291 } 2292 2293 /* 2294 * Extend the transaction by enough credits to complete the rotation, 2295 * and still leave at least the original number of credits allocated 2296 * to this transaction. 2297 */ 2298 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth, 2299 int op_credits, 2300 struct ocfs2_path *path) 2301 { 2302 int ret = 0; 2303 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits; 2304 2305 if (handle->h_buffer_credits < credits) 2306 ret = ocfs2_extend_trans(handle, 2307 credits - handle->h_buffer_credits); 2308 2309 return ret; 2310 } 2311 2312 /* 2313 * Trap the case where we're inserting into the theoretical range past 2314 * the _actual_ left leaf range. Otherwise, we'll rotate a record 2315 * whose cpos is less than ours into the right leaf. 2316 * 2317 * It's only necessary to look at the rightmost record of the left 2318 * leaf because the logic that calls us should ensure that the 2319 * theoretical ranges in the path components above the leaves are 2320 * correct. 2321 */ 2322 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path, 2323 u32 insert_cpos) 2324 { 2325 struct ocfs2_extent_list *left_el; 2326 struct ocfs2_extent_rec *rec; 2327 int next_free; 2328 2329 left_el = path_leaf_el(left_path); 2330 next_free = le16_to_cpu(left_el->l_next_free_rec); 2331 rec = &left_el->l_recs[next_free - 1]; 2332 2333 if (insert_cpos > le32_to_cpu(rec->e_cpos)) 2334 return 1; 2335 return 0; 2336 } 2337 2338 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos) 2339 { 2340 int next_free = le16_to_cpu(el->l_next_free_rec); 2341 unsigned int range; 2342 struct ocfs2_extent_rec *rec; 2343 2344 if (next_free == 0) 2345 return 0; 2346 2347 rec = &el->l_recs[0]; 2348 if (ocfs2_is_empty_extent(rec)) { 2349 /* Empty list. */ 2350 if (next_free == 1) 2351 return 0; 2352 rec = &el->l_recs[1]; 2353 } 2354 2355 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2356 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 2357 return 1; 2358 return 0; 2359 } 2360 2361 /* 2362 * Rotate all the records in a btree right one record, starting at insert_cpos. 2363 * 2364 * The path to the rightmost leaf should be passed in. 2365 * 2366 * The array is assumed to be large enough to hold an entire path (tree depth). 2367 * 2368 * Upon successful return from this function: 2369 * 2370 * - The 'right_path' array will contain a path to the leaf block 2371 * whose range contains e_cpos. 2372 * - That leaf block will have a single empty extent in list index 0. 2373 * - In the case that the rotation requires a post-insert update, 2374 * *ret_left_path will contain a valid path which can be passed to 2375 * ocfs2_insert_path(). 2376 */ 2377 static int ocfs2_rotate_tree_right(handle_t *handle, 2378 struct ocfs2_extent_tree *et, 2379 enum ocfs2_split_type split, 2380 u32 insert_cpos, 2381 struct ocfs2_path *right_path, 2382 struct ocfs2_path **ret_left_path) 2383 { 2384 int ret, start, orig_credits = handle->h_buffer_credits; 2385 u32 cpos; 2386 struct ocfs2_path *left_path = NULL; 2387 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 2388 2389 *ret_left_path = NULL; 2390 2391 left_path = ocfs2_new_path_from_path(right_path); 2392 if (!left_path) { 2393 ret = -ENOMEM; 2394 mlog_errno(ret); 2395 goto out; 2396 } 2397 2398 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); 2399 if (ret) { 2400 mlog_errno(ret); 2401 goto out; 2402 } 2403 2404 trace_ocfs2_rotate_tree_right( 2405 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2406 insert_cpos, cpos); 2407 2408 /* 2409 * What we want to do here is: 2410 * 2411 * 1) Start with the rightmost path. 2412 * 2413 * 2) Determine a path to the leaf block directly to the left 2414 * of that leaf. 2415 * 2416 * 3) Determine the 'subtree root' - the lowest level tree node 2417 * which contains a path to both leaves. 2418 * 2419 * 4) Rotate the subtree. 2420 * 2421 * 5) Find the next subtree by considering the left path to be 2422 * the new right path. 2423 * 2424 * The check at the top of this while loop also accepts 2425 * insert_cpos == cpos because cpos is only a _theoretical_ 2426 * value to get us the left path - insert_cpos might very well 2427 * be filling that hole. 2428 * 2429 * Stop at a cpos of '0' because we either started at the 2430 * leftmost branch (i.e., a tree with one branch and a 2431 * rotation inside of it), or we've gone as far as we can in 2432 * rotating subtrees. 2433 */ 2434 while (cpos && insert_cpos <= cpos) { 2435 trace_ocfs2_rotate_tree_right( 2436 (unsigned long long) 2437 ocfs2_metadata_cache_owner(et->et_ci), 2438 insert_cpos, cpos); 2439 2440 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 2441 if (ret) { 2442 mlog_errno(ret); 2443 goto out; 2444 } 2445 2446 mlog_bug_on_msg(path_leaf_bh(left_path) == 2447 path_leaf_bh(right_path), 2448 "Owner %llu: error during insert of %u " 2449 "(left path cpos %u) results in two identical " 2450 "paths ending at %llu\n", 2451 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2452 insert_cpos, cpos, 2453 (unsigned long long) 2454 path_leaf_bh(left_path)->b_blocknr); 2455 2456 if (split == SPLIT_NONE && 2457 ocfs2_rotate_requires_path_adjustment(left_path, 2458 insert_cpos)) { 2459 2460 /* 2461 * We've rotated the tree as much as we 2462 * should. The rest is up to 2463 * ocfs2_insert_path() to complete, after the 2464 * record insertion. We indicate this 2465 * situation by returning the left path. 2466 * 2467 * The reason we don't adjust the records here 2468 * before the record insert is that an error 2469 * later might break the rule where a parent 2470 * record e_cpos will reflect the actual 2471 * e_cpos of the 1st nonempty record of the 2472 * child list. 2473 */ 2474 *ret_left_path = left_path; 2475 goto out_ret_path; 2476 } 2477 2478 start = ocfs2_find_subtree_root(et, left_path, right_path); 2479 2480 trace_ocfs2_rotate_subtree(start, 2481 (unsigned long long) 2482 right_path->p_node[start].bh->b_blocknr, 2483 right_path->p_tree_depth); 2484 2485 ret = ocfs2_extend_rotate_transaction(handle, start, 2486 orig_credits, right_path); 2487 if (ret) { 2488 mlog_errno(ret); 2489 goto out; 2490 } 2491 2492 ret = ocfs2_rotate_subtree_right(handle, et, left_path, 2493 right_path, start); 2494 if (ret) { 2495 mlog_errno(ret); 2496 goto out; 2497 } 2498 2499 if (split != SPLIT_NONE && 2500 ocfs2_leftmost_rec_contains(path_leaf_el(right_path), 2501 insert_cpos)) { 2502 /* 2503 * A rotate moves the rightmost left leaf 2504 * record over to the leftmost right leaf 2505 * slot. If we're doing an extent split 2506 * instead of a real insert, then we have to 2507 * check that the extent to be split wasn't 2508 * just moved over. If it was, then we can 2509 * exit here, passing left_path back - 2510 * ocfs2_split_extent() is smart enough to 2511 * search both leaves. 2512 */ 2513 *ret_left_path = left_path; 2514 goto out_ret_path; 2515 } 2516 2517 /* 2518 * There is no need to re-read the next right path 2519 * as we know that it'll be our current left 2520 * path. Optimize by copying values instead. 2521 */ 2522 ocfs2_mv_path(right_path, left_path); 2523 2524 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); 2525 if (ret) { 2526 mlog_errno(ret); 2527 goto out; 2528 } 2529 } 2530 2531 out: 2532 ocfs2_free_path(left_path); 2533 2534 out_ret_path: 2535 return ret; 2536 } 2537 2538 static int ocfs2_update_edge_lengths(handle_t *handle, 2539 struct ocfs2_extent_tree *et, 2540 struct ocfs2_path *path) 2541 { 2542 int i, idx, ret; 2543 struct ocfs2_extent_rec *rec; 2544 struct ocfs2_extent_list *el; 2545 struct ocfs2_extent_block *eb; 2546 u32 range; 2547 2548 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 2549 if (ret) { 2550 mlog_errno(ret); 2551 goto out; 2552 } 2553 2554 /* Path should always be rightmost. */ 2555 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 2556 BUG_ON(eb->h_next_leaf_blk != 0ULL); 2557 2558 el = &eb->h_list; 2559 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 2560 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2561 rec = &el->l_recs[idx]; 2562 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2563 2564 for (i = 0; i < path->p_tree_depth; i++) { 2565 el = path->p_node[i].el; 2566 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2567 rec = &el->l_recs[idx]; 2568 2569 rec->e_int_clusters = cpu_to_le32(range); 2570 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos)); 2571 2572 ocfs2_journal_dirty(handle, path->p_node[i].bh); 2573 } 2574 out: 2575 return ret; 2576 } 2577 2578 static void ocfs2_unlink_path(handle_t *handle, 2579 struct ocfs2_extent_tree *et, 2580 struct ocfs2_cached_dealloc_ctxt *dealloc, 2581 struct ocfs2_path *path, int unlink_start) 2582 { 2583 int ret, i; 2584 struct ocfs2_extent_block *eb; 2585 struct ocfs2_extent_list *el; 2586 struct buffer_head *bh; 2587 2588 for(i = unlink_start; i < path_num_items(path); i++) { 2589 bh = path->p_node[i].bh; 2590 2591 eb = (struct ocfs2_extent_block *)bh->b_data; 2592 /* 2593 * Not all nodes might have had their final count 2594 * decremented by the caller - handle this here. 2595 */ 2596 el = &eb->h_list; 2597 if (le16_to_cpu(el->l_next_free_rec) > 1) { 2598 mlog(ML_ERROR, 2599 "Inode %llu, attempted to remove extent block " 2600 "%llu with %u records\n", 2601 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2602 (unsigned long long)le64_to_cpu(eb->h_blkno), 2603 le16_to_cpu(el->l_next_free_rec)); 2604 2605 ocfs2_journal_dirty(handle, bh); 2606 ocfs2_remove_from_cache(et->et_ci, bh); 2607 continue; 2608 } 2609 2610 el->l_next_free_rec = 0; 2611 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2612 2613 ocfs2_journal_dirty(handle, bh); 2614 2615 ret = ocfs2_cache_extent_block_free(dealloc, eb); 2616 if (ret) 2617 mlog_errno(ret); 2618 2619 ocfs2_remove_from_cache(et->et_ci, bh); 2620 } 2621 } 2622 2623 static void ocfs2_unlink_subtree(handle_t *handle, 2624 struct ocfs2_extent_tree *et, 2625 struct ocfs2_path *left_path, 2626 struct ocfs2_path *right_path, 2627 int subtree_index, 2628 struct ocfs2_cached_dealloc_ctxt *dealloc) 2629 { 2630 int i; 2631 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2632 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el; 2633 struct ocfs2_extent_block *eb; 2634 2635 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data; 2636 2637 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 2638 if (root_el->l_recs[i].e_blkno == eb->h_blkno) 2639 break; 2640 2641 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec)); 2642 2643 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 2644 le16_add_cpu(&root_el->l_next_free_rec, -1); 2645 2646 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2647 eb->h_next_leaf_blk = 0; 2648 2649 ocfs2_journal_dirty(handle, root_bh); 2650 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2651 2652 ocfs2_unlink_path(handle, et, dealloc, right_path, 2653 subtree_index + 1); 2654 } 2655 2656 static int ocfs2_rotate_subtree_left(handle_t *handle, 2657 struct ocfs2_extent_tree *et, 2658 struct ocfs2_path *left_path, 2659 struct ocfs2_path *right_path, 2660 int subtree_index, 2661 struct ocfs2_cached_dealloc_ctxt *dealloc, 2662 int *deleted) 2663 { 2664 int ret, i, del_right_subtree = 0, right_has_empty = 0; 2665 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path); 2666 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el; 2667 struct ocfs2_extent_block *eb; 2668 2669 *deleted = 0; 2670 2671 right_leaf_el = path_leaf_el(right_path); 2672 left_leaf_el = path_leaf_el(left_path); 2673 root_bh = left_path->p_node[subtree_index].bh; 2674 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2675 2676 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0])) 2677 return 0; 2678 2679 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data; 2680 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) { 2681 /* 2682 * It's legal for us to proceed if the right leaf is 2683 * the rightmost one and it has an empty extent. There 2684 * are two cases to handle - whether the leaf will be 2685 * empty after removal or not. If the leaf isn't empty 2686 * then just remove the empty extent up front. The 2687 * next block will handle empty leaves by flagging 2688 * them for unlink. 2689 * 2690 * Non rightmost leaves will throw -EAGAIN and the 2691 * caller can manually move the subtree and retry. 2692 */ 2693 2694 if (eb->h_next_leaf_blk != 0ULL) 2695 return -EAGAIN; 2696 2697 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) { 2698 ret = ocfs2_journal_access_eb(handle, et->et_ci, 2699 path_leaf_bh(right_path), 2700 OCFS2_JOURNAL_ACCESS_WRITE); 2701 if (ret) { 2702 mlog_errno(ret); 2703 goto out; 2704 } 2705 2706 ocfs2_remove_empty_extent(right_leaf_el); 2707 } else 2708 right_has_empty = 1; 2709 } 2710 2711 if (eb->h_next_leaf_blk == 0ULL && 2712 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) { 2713 /* 2714 * We have to update i_last_eb_blk during the meta 2715 * data delete. 2716 */ 2717 ret = ocfs2_et_root_journal_access(handle, et, 2718 OCFS2_JOURNAL_ACCESS_WRITE); 2719 if (ret) { 2720 mlog_errno(ret); 2721 goto out; 2722 } 2723 2724 del_right_subtree = 1; 2725 } 2726 2727 /* 2728 * Getting here with an empty extent in the right path implies 2729 * that it's the rightmost path and will be deleted. 2730 */ 2731 BUG_ON(right_has_empty && !del_right_subtree); 2732 2733 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 2734 subtree_index); 2735 if (ret) { 2736 mlog_errno(ret); 2737 goto out; 2738 } 2739 2740 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2741 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2742 right_path, i); 2743 if (ret) { 2744 mlog_errno(ret); 2745 goto out; 2746 } 2747 2748 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2749 left_path, i); 2750 if (ret) { 2751 mlog_errno(ret); 2752 goto out; 2753 } 2754 } 2755 2756 if (!right_has_empty) { 2757 /* 2758 * Only do this if we're moving a real 2759 * record. Otherwise, the action is delayed until 2760 * after removal of the right path in which case we 2761 * can do a simple shift to remove the empty extent. 2762 */ 2763 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]); 2764 memset(&right_leaf_el->l_recs[0], 0, 2765 sizeof(struct ocfs2_extent_rec)); 2766 } 2767 if (eb->h_next_leaf_blk == 0ULL) { 2768 /* 2769 * Move recs over to get rid of empty extent, decrease 2770 * next_free. This is allowed to remove the last 2771 * extent in our leaf (setting l_next_free_rec to 2772 * zero) - the delete code below won't care. 2773 */ 2774 ocfs2_remove_empty_extent(right_leaf_el); 2775 } 2776 2777 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2778 ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 2779 2780 if (del_right_subtree) { 2781 ocfs2_unlink_subtree(handle, et, left_path, right_path, 2782 subtree_index, dealloc); 2783 ret = ocfs2_update_edge_lengths(handle, et, left_path); 2784 if (ret) { 2785 mlog_errno(ret); 2786 goto out; 2787 } 2788 2789 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2790 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 2791 2792 /* 2793 * Removal of the extent in the left leaf was skipped 2794 * above so we could delete the right path 2795 * 1st. 2796 */ 2797 if (right_has_empty) 2798 ocfs2_remove_empty_extent(left_leaf_el); 2799 2800 ocfs2_journal_dirty(handle, et_root_bh); 2801 2802 *deleted = 1; 2803 } else 2804 ocfs2_complete_edge_insert(handle, left_path, right_path, 2805 subtree_index); 2806 2807 out: 2808 return ret; 2809 } 2810 2811 /* 2812 * Given a full path, determine what cpos value would return us a path 2813 * containing the leaf immediately to the right of the current one. 2814 * 2815 * Will return zero if the path passed in is already the rightmost path. 2816 * 2817 * This looks similar, but is subtly different to 2818 * ocfs2_find_cpos_for_left_leaf(). 2819 */ 2820 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb, 2821 struct ocfs2_path *path, u32 *cpos) 2822 { 2823 int i, j, ret = 0; 2824 u64 blkno; 2825 struct ocfs2_extent_list *el; 2826 2827 *cpos = 0; 2828 2829 if (path->p_tree_depth == 0) 2830 return 0; 2831 2832 blkno = path_leaf_bh(path)->b_blocknr; 2833 2834 /* Start at the tree node just above the leaf and work our way up. */ 2835 i = path->p_tree_depth - 1; 2836 while (i >= 0) { 2837 int next_free; 2838 2839 el = path->p_node[i].el; 2840 2841 /* 2842 * Find the extent record just after the one in our 2843 * path. 2844 */ 2845 next_free = le16_to_cpu(el->l_next_free_rec); 2846 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2847 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2848 if (j == (next_free - 1)) { 2849 if (i == 0) { 2850 /* 2851 * We've determined that the 2852 * path specified is already 2853 * the rightmost one - return a 2854 * cpos of zero. 2855 */ 2856 goto out; 2857 } 2858 /* 2859 * The rightmost record points to our 2860 * leaf - we need to travel up the 2861 * tree one level. 2862 */ 2863 goto next_node; 2864 } 2865 2866 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos); 2867 goto out; 2868 } 2869 } 2870 2871 /* 2872 * If we got here, we never found a valid node where 2873 * the tree indicated one should be. 2874 */ 2875 ocfs2_error(sb, "Invalid extent tree at extent block %llu\n", 2876 (unsigned long long)blkno); 2877 ret = -EROFS; 2878 goto out; 2879 2880 next_node: 2881 blkno = path->p_node[i].bh->b_blocknr; 2882 i--; 2883 } 2884 2885 out: 2886 return ret; 2887 } 2888 2889 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle, 2890 struct ocfs2_extent_tree *et, 2891 struct ocfs2_path *path) 2892 { 2893 int ret; 2894 struct buffer_head *bh = path_leaf_bh(path); 2895 struct ocfs2_extent_list *el = path_leaf_el(path); 2896 2897 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 2898 return 0; 2899 2900 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path, 2901 path_num_items(path) - 1); 2902 if (ret) { 2903 mlog_errno(ret); 2904 goto out; 2905 } 2906 2907 ocfs2_remove_empty_extent(el); 2908 ocfs2_journal_dirty(handle, bh); 2909 2910 out: 2911 return ret; 2912 } 2913 2914 static int __ocfs2_rotate_tree_left(handle_t *handle, 2915 struct ocfs2_extent_tree *et, 2916 int orig_credits, 2917 struct ocfs2_path *path, 2918 struct ocfs2_cached_dealloc_ctxt *dealloc, 2919 struct ocfs2_path **empty_extent_path) 2920 { 2921 int ret, subtree_root, deleted; 2922 u32 right_cpos; 2923 struct ocfs2_path *left_path = NULL; 2924 struct ocfs2_path *right_path = NULL; 2925 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 2926 2927 if (!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0]))) 2928 return 0; 2929 2930 *empty_extent_path = NULL; 2931 2932 ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos); 2933 if (ret) { 2934 mlog_errno(ret); 2935 goto out; 2936 } 2937 2938 left_path = ocfs2_new_path_from_path(path); 2939 if (!left_path) { 2940 ret = -ENOMEM; 2941 mlog_errno(ret); 2942 goto out; 2943 } 2944 2945 ocfs2_cp_path(left_path, path); 2946 2947 right_path = ocfs2_new_path_from_path(path); 2948 if (!right_path) { 2949 ret = -ENOMEM; 2950 mlog_errno(ret); 2951 goto out; 2952 } 2953 2954 while (right_cpos) { 2955 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); 2956 if (ret) { 2957 mlog_errno(ret); 2958 goto out; 2959 } 2960 2961 subtree_root = ocfs2_find_subtree_root(et, left_path, 2962 right_path); 2963 2964 trace_ocfs2_rotate_subtree(subtree_root, 2965 (unsigned long long) 2966 right_path->p_node[subtree_root].bh->b_blocknr, 2967 right_path->p_tree_depth); 2968 2969 ret = ocfs2_extend_rotate_transaction(handle, 0, 2970 orig_credits, left_path); 2971 if (ret) { 2972 mlog_errno(ret); 2973 goto out; 2974 } 2975 2976 /* 2977 * Caller might still want to make changes to the 2978 * tree root, so re-add it to the journal here. 2979 */ 2980 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2981 left_path, 0); 2982 if (ret) { 2983 mlog_errno(ret); 2984 goto out; 2985 } 2986 2987 ret = ocfs2_rotate_subtree_left(handle, et, left_path, 2988 right_path, subtree_root, 2989 dealloc, &deleted); 2990 if (ret == -EAGAIN) { 2991 /* 2992 * The rotation has to temporarily stop due to 2993 * the right subtree having an empty 2994 * extent. Pass it back to the caller for a 2995 * fixup. 2996 */ 2997 *empty_extent_path = right_path; 2998 right_path = NULL; 2999 goto out; 3000 } 3001 if (ret) { 3002 mlog_errno(ret); 3003 goto out; 3004 } 3005 3006 /* 3007 * The subtree rotate might have removed records on 3008 * the rightmost edge. If so, then rotation is 3009 * complete. 3010 */ 3011 if (deleted) 3012 break; 3013 3014 ocfs2_mv_path(left_path, right_path); 3015 3016 ret = ocfs2_find_cpos_for_right_leaf(sb, left_path, 3017 &right_cpos); 3018 if (ret) { 3019 mlog_errno(ret); 3020 goto out; 3021 } 3022 } 3023 3024 out: 3025 ocfs2_free_path(right_path); 3026 ocfs2_free_path(left_path); 3027 3028 return ret; 3029 } 3030 3031 static int ocfs2_remove_rightmost_path(handle_t *handle, 3032 struct ocfs2_extent_tree *et, 3033 struct ocfs2_path *path, 3034 struct ocfs2_cached_dealloc_ctxt *dealloc) 3035 { 3036 int ret, subtree_index; 3037 u32 cpos; 3038 struct ocfs2_path *left_path = NULL; 3039 struct ocfs2_extent_block *eb; 3040 struct ocfs2_extent_list *el; 3041 3042 ret = ocfs2_et_sanity_check(et); 3043 if (ret) 3044 goto out; 3045 3046 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 3047 if (ret) { 3048 mlog_errno(ret); 3049 goto out; 3050 } 3051 3052 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3053 path, &cpos); 3054 if (ret) { 3055 mlog_errno(ret); 3056 goto out; 3057 } 3058 3059 if (cpos) { 3060 /* 3061 * We have a path to the left of this one - it needs 3062 * an update too. 3063 */ 3064 left_path = ocfs2_new_path_from_path(path); 3065 if (!left_path) { 3066 ret = -ENOMEM; 3067 mlog_errno(ret); 3068 goto out; 3069 } 3070 3071 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 3072 if (ret) { 3073 mlog_errno(ret); 3074 goto out; 3075 } 3076 3077 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 3078 if (ret) { 3079 mlog_errno(ret); 3080 goto out; 3081 } 3082 3083 subtree_index = ocfs2_find_subtree_root(et, left_path, path); 3084 3085 ocfs2_unlink_subtree(handle, et, left_path, path, 3086 subtree_index, dealloc); 3087 ret = ocfs2_update_edge_lengths(handle, et, left_path); 3088 if (ret) { 3089 mlog_errno(ret); 3090 goto out; 3091 } 3092 3093 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 3094 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 3095 } else { 3096 /* 3097 * 'path' is also the leftmost path which 3098 * means it must be the only one. This gets 3099 * handled differently because we want to 3100 * revert the root back to having extents 3101 * in-line. 3102 */ 3103 ocfs2_unlink_path(handle, et, dealloc, path, 1); 3104 3105 el = et->et_root_el; 3106 el->l_tree_depth = 0; 3107 el->l_next_free_rec = 0; 3108 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3109 3110 ocfs2_et_set_last_eb_blk(et, 0); 3111 } 3112 3113 ocfs2_journal_dirty(handle, path_root_bh(path)); 3114 3115 out: 3116 ocfs2_free_path(left_path); 3117 return ret; 3118 } 3119 3120 static int ocfs2_remove_rightmost_empty_extent(struct ocfs2_super *osb, 3121 struct ocfs2_extent_tree *et, 3122 struct ocfs2_path *path, 3123 struct ocfs2_cached_dealloc_ctxt *dealloc) 3124 { 3125 handle_t *handle; 3126 int ret; 3127 int credits = path->p_tree_depth * 2 + 1; 3128 3129 handle = ocfs2_start_trans(osb, credits); 3130 if (IS_ERR(handle)) { 3131 ret = PTR_ERR(handle); 3132 mlog_errno(ret); 3133 return ret; 3134 } 3135 3136 ret = ocfs2_remove_rightmost_path(handle, et, path, dealloc); 3137 if (ret) 3138 mlog_errno(ret); 3139 3140 ocfs2_commit_trans(osb, handle); 3141 return ret; 3142 } 3143 3144 /* 3145 * Left rotation of btree records. 3146 * 3147 * In many ways, this is (unsurprisingly) the opposite of right 3148 * rotation. We start at some non-rightmost path containing an empty 3149 * extent in the leaf block. The code works its way to the rightmost 3150 * path by rotating records to the left in every subtree. 3151 * 3152 * This is used by any code which reduces the number of extent records 3153 * in a leaf. After removal, an empty record should be placed in the 3154 * leftmost list position. 3155 * 3156 * This won't handle a length update of the rightmost path records if 3157 * the rightmost tree leaf record is removed so the caller is 3158 * responsible for detecting and correcting that. 3159 */ 3160 static int ocfs2_rotate_tree_left(handle_t *handle, 3161 struct ocfs2_extent_tree *et, 3162 struct ocfs2_path *path, 3163 struct ocfs2_cached_dealloc_ctxt *dealloc) 3164 { 3165 int ret, orig_credits = handle->h_buffer_credits; 3166 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL; 3167 struct ocfs2_extent_block *eb; 3168 struct ocfs2_extent_list *el; 3169 3170 el = path_leaf_el(path); 3171 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 3172 return 0; 3173 3174 if (path->p_tree_depth == 0) { 3175 rightmost_no_delete: 3176 /* 3177 * Inline extents. This is trivially handled, so do 3178 * it up front. 3179 */ 3180 ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path); 3181 if (ret) 3182 mlog_errno(ret); 3183 goto out; 3184 } 3185 3186 /* 3187 * Handle rightmost branch now. There's several cases: 3188 * 1) simple rotation leaving records in there. That's trivial. 3189 * 2) rotation requiring a branch delete - there's no more 3190 * records left. Two cases of this: 3191 * a) There are branches to the left. 3192 * b) This is also the leftmost (the only) branch. 3193 * 3194 * 1) is handled via ocfs2_rotate_rightmost_leaf_left() 3195 * 2a) we need the left branch so that we can update it with the unlink 3196 * 2b) we need to bring the root back to inline extents. 3197 */ 3198 3199 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 3200 el = &eb->h_list; 3201 if (eb->h_next_leaf_blk == 0) { 3202 /* 3203 * This gets a bit tricky if we're going to delete the 3204 * rightmost path. Get the other cases out of the way 3205 * 1st. 3206 */ 3207 if (le16_to_cpu(el->l_next_free_rec) > 1) 3208 goto rightmost_no_delete; 3209 3210 if (le16_to_cpu(el->l_next_free_rec) == 0) { 3211 ret = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 3212 "Owner %llu has empty extent block at %llu\n", 3213 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 3214 (unsigned long long)le64_to_cpu(eb->h_blkno)); 3215 goto out; 3216 } 3217 3218 /* 3219 * XXX: The caller can not trust "path" any more after 3220 * this as it will have been deleted. What do we do? 3221 * 3222 * In theory the rotate-for-merge code will never get 3223 * here because it'll always ask for a rotate in a 3224 * nonempty list. 3225 */ 3226 3227 ret = ocfs2_remove_rightmost_path(handle, et, path, 3228 dealloc); 3229 if (ret) 3230 mlog_errno(ret); 3231 goto out; 3232 } 3233 3234 /* 3235 * Now we can loop, remembering the path we get from -EAGAIN 3236 * and restarting from there. 3237 */ 3238 try_rotate: 3239 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path, 3240 dealloc, &restart_path); 3241 if (ret && ret != -EAGAIN) { 3242 mlog_errno(ret); 3243 goto out; 3244 } 3245 3246 while (ret == -EAGAIN) { 3247 tmp_path = restart_path; 3248 restart_path = NULL; 3249 3250 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, 3251 tmp_path, dealloc, 3252 &restart_path); 3253 if (ret && ret != -EAGAIN) { 3254 mlog_errno(ret); 3255 goto out; 3256 } 3257 3258 ocfs2_free_path(tmp_path); 3259 tmp_path = NULL; 3260 3261 if (ret == 0) 3262 goto try_rotate; 3263 } 3264 3265 out: 3266 ocfs2_free_path(tmp_path); 3267 ocfs2_free_path(restart_path); 3268 return ret; 3269 } 3270 3271 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el, 3272 int index) 3273 { 3274 struct ocfs2_extent_rec *rec = &el->l_recs[index]; 3275 unsigned int size; 3276 3277 if (rec->e_leaf_clusters == 0) { 3278 /* 3279 * We consumed all of the merged-from record. An empty 3280 * extent cannot exist anywhere but the 1st array 3281 * position, so move things over if the merged-from 3282 * record doesn't occupy that position. 3283 * 3284 * This creates a new empty extent so the caller 3285 * should be smart enough to have removed any existing 3286 * ones. 3287 */ 3288 if (index > 0) { 3289 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 3290 size = index * sizeof(struct ocfs2_extent_rec); 3291 memmove(&el->l_recs[1], &el->l_recs[0], size); 3292 } 3293 3294 /* 3295 * Always memset - the caller doesn't check whether it 3296 * created an empty extent, so there could be junk in 3297 * the other fields. 3298 */ 3299 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3300 } 3301 } 3302 3303 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et, 3304 struct ocfs2_path *left_path, 3305 struct ocfs2_path **ret_right_path) 3306 { 3307 int ret; 3308 u32 right_cpos; 3309 struct ocfs2_path *right_path = NULL; 3310 struct ocfs2_extent_list *left_el; 3311 3312 *ret_right_path = NULL; 3313 3314 /* This function shouldn't be called for non-trees. */ 3315 BUG_ON(left_path->p_tree_depth == 0); 3316 3317 left_el = path_leaf_el(left_path); 3318 BUG_ON(left_el->l_next_free_rec != left_el->l_count); 3319 3320 ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3321 left_path, &right_cpos); 3322 if (ret) { 3323 mlog_errno(ret); 3324 goto out; 3325 } 3326 3327 /* This function shouldn't be called for the rightmost leaf. */ 3328 BUG_ON(right_cpos == 0); 3329 3330 right_path = ocfs2_new_path_from_path(left_path); 3331 if (!right_path) { 3332 ret = -ENOMEM; 3333 mlog_errno(ret); 3334 goto out; 3335 } 3336 3337 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); 3338 if (ret) { 3339 mlog_errno(ret); 3340 goto out; 3341 } 3342 3343 *ret_right_path = right_path; 3344 out: 3345 if (ret) 3346 ocfs2_free_path(right_path); 3347 return ret; 3348 } 3349 3350 /* 3351 * Remove split_rec clusters from the record at index and merge them 3352 * onto the beginning of the record "next" to it. 3353 * For index < l_count - 1, the next means the extent rec at index + 1. 3354 * For index == l_count - 1, the "next" means the 1st extent rec of the 3355 * next extent block. 3356 */ 3357 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path, 3358 handle_t *handle, 3359 struct ocfs2_extent_tree *et, 3360 struct ocfs2_extent_rec *split_rec, 3361 int index) 3362 { 3363 int ret, next_free, i; 3364 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3365 struct ocfs2_extent_rec *left_rec; 3366 struct ocfs2_extent_rec *right_rec; 3367 struct ocfs2_extent_list *right_el; 3368 struct ocfs2_path *right_path = NULL; 3369 int subtree_index = 0; 3370 struct ocfs2_extent_list *el = path_leaf_el(left_path); 3371 struct buffer_head *bh = path_leaf_bh(left_path); 3372 struct buffer_head *root_bh = NULL; 3373 3374 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec)); 3375 left_rec = &el->l_recs[index]; 3376 3377 if (index == le16_to_cpu(el->l_next_free_rec) - 1 && 3378 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) { 3379 /* we meet with a cross extent block merge. */ 3380 ret = ocfs2_get_right_path(et, left_path, &right_path); 3381 if (ret) { 3382 mlog_errno(ret); 3383 return ret; 3384 } 3385 3386 right_el = path_leaf_el(right_path); 3387 next_free = le16_to_cpu(right_el->l_next_free_rec); 3388 BUG_ON(next_free <= 0); 3389 right_rec = &right_el->l_recs[0]; 3390 if (ocfs2_is_empty_extent(right_rec)) { 3391 BUG_ON(next_free <= 1); 3392 right_rec = &right_el->l_recs[1]; 3393 } 3394 3395 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3396 le16_to_cpu(left_rec->e_leaf_clusters) != 3397 le32_to_cpu(right_rec->e_cpos)); 3398 3399 subtree_index = ocfs2_find_subtree_root(et, left_path, 3400 right_path); 3401 3402 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3403 handle->h_buffer_credits, 3404 right_path); 3405 if (ret) { 3406 mlog_errno(ret); 3407 goto out; 3408 } 3409 3410 root_bh = left_path->p_node[subtree_index].bh; 3411 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3412 3413 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3414 subtree_index); 3415 if (ret) { 3416 mlog_errno(ret); 3417 goto out; 3418 } 3419 3420 for (i = subtree_index + 1; 3421 i < path_num_items(right_path); i++) { 3422 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3423 right_path, i); 3424 if (ret) { 3425 mlog_errno(ret); 3426 goto out; 3427 } 3428 3429 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3430 left_path, i); 3431 if (ret) { 3432 mlog_errno(ret); 3433 goto out; 3434 } 3435 } 3436 3437 } else { 3438 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1); 3439 right_rec = &el->l_recs[index + 1]; 3440 } 3441 3442 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path, 3443 path_num_items(left_path) - 1); 3444 if (ret) { 3445 mlog_errno(ret); 3446 goto out; 3447 } 3448 3449 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters); 3450 3451 le32_add_cpu(&right_rec->e_cpos, -split_clusters); 3452 le64_add_cpu(&right_rec->e_blkno, 3453 -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), 3454 split_clusters)); 3455 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters); 3456 3457 ocfs2_cleanup_merge(el, index); 3458 3459 ocfs2_journal_dirty(handle, bh); 3460 if (right_path) { 3461 ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 3462 ocfs2_complete_edge_insert(handle, left_path, right_path, 3463 subtree_index); 3464 } 3465 out: 3466 ocfs2_free_path(right_path); 3467 return ret; 3468 } 3469 3470 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et, 3471 struct ocfs2_path *right_path, 3472 struct ocfs2_path **ret_left_path) 3473 { 3474 int ret; 3475 u32 left_cpos; 3476 struct ocfs2_path *left_path = NULL; 3477 3478 *ret_left_path = NULL; 3479 3480 /* This function shouldn't be called for non-trees. */ 3481 BUG_ON(right_path->p_tree_depth == 0); 3482 3483 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3484 right_path, &left_cpos); 3485 if (ret) { 3486 mlog_errno(ret); 3487 goto out; 3488 } 3489 3490 /* This function shouldn't be called for the leftmost leaf. */ 3491 BUG_ON(left_cpos == 0); 3492 3493 left_path = ocfs2_new_path_from_path(right_path); 3494 if (!left_path) { 3495 ret = -ENOMEM; 3496 mlog_errno(ret); 3497 goto out; 3498 } 3499 3500 ret = ocfs2_find_path(et->et_ci, left_path, left_cpos); 3501 if (ret) { 3502 mlog_errno(ret); 3503 goto out; 3504 } 3505 3506 *ret_left_path = left_path; 3507 out: 3508 if (ret) 3509 ocfs2_free_path(left_path); 3510 return ret; 3511 } 3512 3513 /* 3514 * Remove split_rec clusters from the record at index and merge them 3515 * onto the tail of the record "before" it. 3516 * For index > 0, the "before" means the extent rec at index - 1. 3517 * 3518 * For index == 0, the "before" means the last record of the previous 3519 * extent block. And there is also a situation that we may need to 3520 * remove the rightmost leaf extent block in the right_path and change 3521 * the right path to indicate the new rightmost path. 3522 */ 3523 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path, 3524 handle_t *handle, 3525 struct ocfs2_extent_tree *et, 3526 struct ocfs2_extent_rec *split_rec, 3527 struct ocfs2_cached_dealloc_ctxt *dealloc, 3528 int index) 3529 { 3530 int ret, i, subtree_index = 0, has_empty_extent = 0; 3531 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3532 struct ocfs2_extent_rec *left_rec; 3533 struct ocfs2_extent_rec *right_rec; 3534 struct ocfs2_extent_list *el = path_leaf_el(right_path); 3535 struct buffer_head *bh = path_leaf_bh(right_path); 3536 struct buffer_head *root_bh = NULL; 3537 struct ocfs2_path *left_path = NULL; 3538 struct ocfs2_extent_list *left_el; 3539 3540 BUG_ON(index < 0); 3541 3542 right_rec = &el->l_recs[index]; 3543 if (index == 0) { 3544 /* we meet with a cross extent block merge. */ 3545 ret = ocfs2_get_left_path(et, right_path, &left_path); 3546 if (ret) { 3547 mlog_errno(ret); 3548 return ret; 3549 } 3550 3551 left_el = path_leaf_el(left_path); 3552 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) != 3553 le16_to_cpu(left_el->l_count)); 3554 3555 left_rec = &left_el->l_recs[ 3556 le16_to_cpu(left_el->l_next_free_rec) - 1]; 3557 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3558 le16_to_cpu(left_rec->e_leaf_clusters) != 3559 le32_to_cpu(split_rec->e_cpos)); 3560 3561 subtree_index = ocfs2_find_subtree_root(et, left_path, 3562 right_path); 3563 3564 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3565 handle->h_buffer_credits, 3566 left_path); 3567 if (ret) { 3568 mlog_errno(ret); 3569 goto out; 3570 } 3571 3572 root_bh = left_path->p_node[subtree_index].bh; 3573 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3574 3575 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3576 subtree_index); 3577 if (ret) { 3578 mlog_errno(ret); 3579 goto out; 3580 } 3581 3582 for (i = subtree_index + 1; 3583 i < path_num_items(right_path); i++) { 3584 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3585 right_path, i); 3586 if (ret) { 3587 mlog_errno(ret); 3588 goto out; 3589 } 3590 3591 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3592 left_path, i); 3593 if (ret) { 3594 mlog_errno(ret); 3595 goto out; 3596 } 3597 } 3598 } else { 3599 left_rec = &el->l_recs[index - 1]; 3600 if (ocfs2_is_empty_extent(&el->l_recs[0])) 3601 has_empty_extent = 1; 3602 } 3603 3604 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3605 path_num_items(right_path) - 1); 3606 if (ret) { 3607 mlog_errno(ret); 3608 goto out; 3609 } 3610 3611 if (has_empty_extent && index == 1) { 3612 /* 3613 * The easy case - we can just plop the record right in. 3614 */ 3615 *left_rec = *split_rec; 3616 } else 3617 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters); 3618 3619 le32_add_cpu(&right_rec->e_cpos, split_clusters); 3620 le64_add_cpu(&right_rec->e_blkno, 3621 ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), 3622 split_clusters)); 3623 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters); 3624 3625 ocfs2_cleanup_merge(el, index); 3626 3627 ocfs2_journal_dirty(handle, bh); 3628 if (left_path) { 3629 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 3630 3631 /* 3632 * In the situation that the right_rec is empty and the extent 3633 * block is empty also, ocfs2_complete_edge_insert can't handle 3634 * it and we need to delete the right extent block. 3635 */ 3636 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 && 3637 le16_to_cpu(el->l_next_free_rec) == 1) { 3638 /* extend credit for ocfs2_remove_rightmost_path */ 3639 ret = ocfs2_extend_rotate_transaction(handle, 0, 3640 handle->h_buffer_credits, 3641 right_path); 3642 if (ret) { 3643 mlog_errno(ret); 3644 goto out; 3645 } 3646 3647 ret = ocfs2_remove_rightmost_path(handle, et, 3648 right_path, 3649 dealloc); 3650 if (ret) { 3651 mlog_errno(ret); 3652 goto out; 3653 } 3654 3655 /* Now the rightmost extent block has been deleted. 3656 * So we use the new rightmost path. 3657 */ 3658 ocfs2_mv_path(right_path, left_path); 3659 left_path = NULL; 3660 } else 3661 ocfs2_complete_edge_insert(handle, left_path, 3662 right_path, subtree_index); 3663 } 3664 out: 3665 ocfs2_free_path(left_path); 3666 return ret; 3667 } 3668 3669 static int ocfs2_try_to_merge_extent(handle_t *handle, 3670 struct ocfs2_extent_tree *et, 3671 struct ocfs2_path *path, 3672 int split_index, 3673 struct ocfs2_extent_rec *split_rec, 3674 struct ocfs2_cached_dealloc_ctxt *dealloc, 3675 struct ocfs2_merge_ctxt *ctxt) 3676 { 3677 int ret = 0; 3678 struct ocfs2_extent_list *el = path_leaf_el(path); 3679 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 3680 3681 BUG_ON(ctxt->c_contig_type == CONTIG_NONE); 3682 3683 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) { 3684 /* extend credit for ocfs2_remove_rightmost_path */ 3685 ret = ocfs2_extend_rotate_transaction(handle, 0, 3686 handle->h_buffer_credits, 3687 path); 3688 if (ret) { 3689 mlog_errno(ret); 3690 goto out; 3691 } 3692 /* 3693 * The merge code will need to create an empty 3694 * extent to take the place of the newly 3695 * emptied slot. Remove any pre-existing empty 3696 * extents - having more than one in a leaf is 3697 * illegal. 3698 */ 3699 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3700 if (ret) { 3701 mlog_errno(ret); 3702 goto out; 3703 } 3704 split_index--; 3705 rec = &el->l_recs[split_index]; 3706 } 3707 3708 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) { 3709 /* 3710 * Left-right contig implies this. 3711 */ 3712 BUG_ON(!ctxt->c_split_covers_rec); 3713 3714 /* 3715 * Since the leftright insert always covers the entire 3716 * extent, this call will delete the insert record 3717 * entirely, resulting in an empty extent record added to 3718 * the extent block. 3719 * 3720 * Since the adding of an empty extent shifts 3721 * everything back to the right, there's no need to 3722 * update split_index here. 3723 * 3724 * When the split_index is zero, we need to merge it to the 3725 * prevoius extent block. It is more efficient and easier 3726 * if we do merge_right first and merge_left later. 3727 */ 3728 ret = ocfs2_merge_rec_right(path, handle, et, split_rec, 3729 split_index); 3730 if (ret) { 3731 mlog_errno(ret); 3732 goto out; 3733 } 3734 3735 /* 3736 * We can only get this from logic error above. 3737 */ 3738 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0])); 3739 3740 /* extend credit for ocfs2_remove_rightmost_path */ 3741 ret = ocfs2_extend_rotate_transaction(handle, 0, 3742 handle->h_buffer_credits, 3743 path); 3744 if (ret) { 3745 mlog_errno(ret); 3746 goto out; 3747 } 3748 3749 /* The merge left us with an empty extent, remove it. */ 3750 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3751 if (ret) { 3752 mlog_errno(ret); 3753 goto out; 3754 } 3755 3756 rec = &el->l_recs[split_index]; 3757 3758 /* 3759 * Note that we don't pass split_rec here on purpose - 3760 * we've merged it into the rec already. 3761 */ 3762 ret = ocfs2_merge_rec_left(path, handle, et, rec, 3763 dealloc, split_index); 3764 3765 if (ret) { 3766 mlog_errno(ret); 3767 goto out; 3768 } 3769 3770 /* extend credit for ocfs2_remove_rightmost_path */ 3771 ret = ocfs2_extend_rotate_transaction(handle, 0, 3772 handle->h_buffer_credits, 3773 path); 3774 if (ret) { 3775 mlog_errno(ret); 3776 goto out; 3777 } 3778 3779 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3780 /* 3781 * Error from this last rotate is not critical, so 3782 * print but don't bubble it up. 3783 */ 3784 if (ret) 3785 mlog_errno(ret); 3786 ret = 0; 3787 } else { 3788 /* 3789 * Merge a record to the left or right. 3790 * 3791 * 'contig_type' is relative to the existing record, 3792 * so for example, if we're "right contig", it's to 3793 * the record on the left (hence the left merge). 3794 */ 3795 if (ctxt->c_contig_type == CONTIG_RIGHT) { 3796 ret = ocfs2_merge_rec_left(path, handle, et, 3797 split_rec, dealloc, 3798 split_index); 3799 if (ret) { 3800 mlog_errno(ret); 3801 goto out; 3802 } 3803 } else { 3804 ret = ocfs2_merge_rec_right(path, handle, 3805 et, split_rec, 3806 split_index); 3807 if (ret) { 3808 mlog_errno(ret); 3809 goto out; 3810 } 3811 } 3812 3813 if (ctxt->c_split_covers_rec) { 3814 /* extend credit for ocfs2_remove_rightmost_path */ 3815 ret = ocfs2_extend_rotate_transaction(handle, 0, 3816 handle->h_buffer_credits, 3817 path); 3818 if (ret) { 3819 mlog_errno(ret); 3820 ret = 0; 3821 goto out; 3822 } 3823 3824 /* 3825 * The merge may have left an empty extent in 3826 * our leaf. Try to rotate it away. 3827 */ 3828 ret = ocfs2_rotate_tree_left(handle, et, path, 3829 dealloc); 3830 if (ret) 3831 mlog_errno(ret); 3832 ret = 0; 3833 } 3834 } 3835 3836 out: 3837 return ret; 3838 } 3839 3840 static void ocfs2_subtract_from_rec(struct super_block *sb, 3841 enum ocfs2_split_type split, 3842 struct ocfs2_extent_rec *rec, 3843 struct ocfs2_extent_rec *split_rec) 3844 { 3845 u64 len_blocks; 3846 3847 len_blocks = ocfs2_clusters_to_blocks(sb, 3848 le16_to_cpu(split_rec->e_leaf_clusters)); 3849 3850 if (split == SPLIT_LEFT) { 3851 /* 3852 * Region is on the left edge of the existing 3853 * record. 3854 */ 3855 le32_add_cpu(&rec->e_cpos, 3856 le16_to_cpu(split_rec->e_leaf_clusters)); 3857 le64_add_cpu(&rec->e_blkno, len_blocks); 3858 le16_add_cpu(&rec->e_leaf_clusters, 3859 -le16_to_cpu(split_rec->e_leaf_clusters)); 3860 } else { 3861 /* 3862 * Region is on the right edge of the existing 3863 * record. 3864 */ 3865 le16_add_cpu(&rec->e_leaf_clusters, 3866 -le16_to_cpu(split_rec->e_leaf_clusters)); 3867 } 3868 } 3869 3870 /* 3871 * Do the final bits of extent record insertion at the target leaf 3872 * list. If this leaf is part of an allocation tree, it is assumed 3873 * that the tree above has been prepared. 3874 */ 3875 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et, 3876 struct ocfs2_extent_rec *insert_rec, 3877 struct ocfs2_extent_list *el, 3878 struct ocfs2_insert_type *insert) 3879 { 3880 int i = insert->ins_contig_index; 3881 unsigned int range; 3882 struct ocfs2_extent_rec *rec; 3883 3884 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 3885 3886 if (insert->ins_split != SPLIT_NONE) { 3887 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos)); 3888 BUG_ON(i == -1); 3889 rec = &el->l_recs[i]; 3890 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci), 3891 insert->ins_split, rec, 3892 insert_rec); 3893 goto rotate; 3894 } 3895 3896 /* 3897 * Contiguous insert - either left or right. 3898 */ 3899 if (insert->ins_contig != CONTIG_NONE) { 3900 rec = &el->l_recs[i]; 3901 if (insert->ins_contig == CONTIG_LEFT) { 3902 rec->e_blkno = insert_rec->e_blkno; 3903 rec->e_cpos = insert_rec->e_cpos; 3904 } 3905 le16_add_cpu(&rec->e_leaf_clusters, 3906 le16_to_cpu(insert_rec->e_leaf_clusters)); 3907 return; 3908 } 3909 3910 /* 3911 * Handle insert into an empty leaf. 3912 */ 3913 if (le16_to_cpu(el->l_next_free_rec) == 0 || 3914 ((le16_to_cpu(el->l_next_free_rec) == 1) && 3915 ocfs2_is_empty_extent(&el->l_recs[0]))) { 3916 el->l_recs[0] = *insert_rec; 3917 el->l_next_free_rec = cpu_to_le16(1); 3918 return; 3919 } 3920 3921 /* 3922 * Appending insert. 3923 */ 3924 if (insert->ins_appending == APPEND_TAIL) { 3925 i = le16_to_cpu(el->l_next_free_rec) - 1; 3926 rec = &el->l_recs[i]; 3927 range = le32_to_cpu(rec->e_cpos) 3928 + le16_to_cpu(rec->e_leaf_clusters); 3929 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range); 3930 3931 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >= 3932 le16_to_cpu(el->l_count), 3933 "owner %llu, depth %u, count %u, next free %u, " 3934 "rec.cpos %u, rec.clusters %u, " 3935 "insert.cpos %u, insert.clusters %u\n", 3936 ocfs2_metadata_cache_owner(et->et_ci), 3937 le16_to_cpu(el->l_tree_depth), 3938 le16_to_cpu(el->l_count), 3939 le16_to_cpu(el->l_next_free_rec), 3940 le32_to_cpu(el->l_recs[i].e_cpos), 3941 le16_to_cpu(el->l_recs[i].e_leaf_clusters), 3942 le32_to_cpu(insert_rec->e_cpos), 3943 le16_to_cpu(insert_rec->e_leaf_clusters)); 3944 i++; 3945 el->l_recs[i] = *insert_rec; 3946 le16_add_cpu(&el->l_next_free_rec, 1); 3947 return; 3948 } 3949 3950 rotate: 3951 /* 3952 * Ok, we have to rotate. 3953 * 3954 * At this point, it is safe to assume that inserting into an 3955 * empty leaf and appending to a leaf have both been handled 3956 * above. 3957 * 3958 * This leaf needs to have space, either by the empty 1st 3959 * extent record, or by virtue of an l_next_rec < l_count. 3960 */ 3961 ocfs2_rotate_leaf(el, insert_rec); 3962 } 3963 3964 static void ocfs2_adjust_rightmost_records(handle_t *handle, 3965 struct ocfs2_extent_tree *et, 3966 struct ocfs2_path *path, 3967 struct ocfs2_extent_rec *insert_rec) 3968 { 3969 int i, next_free; 3970 struct buffer_head *bh; 3971 struct ocfs2_extent_list *el; 3972 struct ocfs2_extent_rec *rec; 3973 3974 /* 3975 * Update everything except the leaf block. 3976 */ 3977 for (i = 0; i < path->p_tree_depth; i++) { 3978 bh = path->p_node[i].bh; 3979 el = path->p_node[i].el; 3980 3981 next_free = le16_to_cpu(el->l_next_free_rec); 3982 if (next_free == 0) { 3983 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 3984 "Owner %llu has a bad extent list\n", 3985 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 3986 return; 3987 } 3988 3989 rec = &el->l_recs[next_free - 1]; 3990 3991 rec->e_int_clusters = insert_rec->e_cpos; 3992 le32_add_cpu(&rec->e_int_clusters, 3993 le16_to_cpu(insert_rec->e_leaf_clusters)); 3994 le32_add_cpu(&rec->e_int_clusters, 3995 -le32_to_cpu(rec->e_cpos)); 3996 3997 ocfs2_journal_dirty(handle, bh); 3998 } 3999 } 4000 4001 static int ocfs2_append_rec_to_path(handle_t *handle, 4002 struct ocfs2_extent_tree *et, 4003 struct ocfs2_extent_rec *insert_rec, 4004 struct ocfs2_path *right_path, 4005 struct ocfs2_path **ret_left_path) 4006 { 4007 int ret, next_free; 4008 struct ocfs2_extent_list *el; 4009 struct ocfs2_path *left_path = NULL; 4010 4011 *ret_left_path = NULL; 4012 4013 /* 4014 * This shouldn't happen for non-trees. The extent rec cluster 4015 * count manipulation below only works for interior nodes. 4016 */ 4017 BUG_ON(right_path->p_tree_depth == 0); 4018 4019 /* 4020 * If our appending insert is at the leftmost edge of a leaf, 4021 * then we might need to update the rightmost records of the 4022 * neighboring path. 4023 */ 4024 el = path_leaf_el(right_path); 4025 next_free = le16_to_cpu(el->l_next_free_rec); 4026 if (next_free == 0 || 4027 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) { 4028 u32 left_cpos; 4029 4030 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 4031 right_path, &left_cpos); 4032 if (ret) { 4033 mlog_errno(ret); 4034 goto out; 4035 } 4036 4037 trace_ocfs2_append_rec_to_path( 4038 (unsigned long long) 4039 ocfs2_metadata_cache_owner(et->et_ci), 4040 le32_to_cpu(insert_rec->e_cpos), 4041 left_cpos); 4042 4043 /* 4044 * No need to worry if the append is already in the 4045 * leftmost leaf. 4046 */ 4047 if (left_cpos) { 4048 left_path = ocfs2_new_path_from_path(right_path); 4049 if (!left_path) { 4050 ret = -ENOMEM; 4051 mlog_errno(ret); 4052 goto out; 4053 } 4054 4055 ret = ocfs2_find_path(et->et_ci, left_path, 4056 left_cpos); 4057 if (ret) { 4058 mlog_errno(ret); 4059 goto out; 4060 } 4061 4062 /* 4063 * ocfs2_insert_path() will pass the left_path to the 4064 * journal for us. 4065 */ 4066 } 4067 } 4068 4069 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path); 4070 if (ret) { 4071 mlog_errno(ret); 4072 goto out; 4073 } 4074 4075 ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec); 4076 4077 *ret_left_path = left_path; 4078 ret = 0; 4079 out: 4080 if (ret != 0) 4081 ocfs2_free_path(left_path); 4082 4083 return ret; 4084 } 4085 4086 static void ocfs2_split_record(struct ocfs2_extent_tree *et, 4087 struct ocfs2_path *left_path, 4088 struct ocfs2_path *right_path, 4089 struct ocfs2_extent_rec *split_rec, 4090 enum ocfs2_split_type split) 4091 { 4092 int index; 4093 u32 cpos = le32_to_cpu(split_rec->e_cpos); 4094 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el; 4095 struct ocfs2_extent_rec *rec, *tmprec; 4096 4097 right_el = path_leaf_el(right_path); 4098 if (left_path) 4099 left_el = path_leaf_el(left_path); 4100 4101 el = right_el; 4102 insert_el = right_el; 4103 index = ocfs2_search_extent_list(el, cpos); 4104 if (index != -1) { 4105 if (index == 0 && left_path) { 4106 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 4107 4108 /* 4109 * This typically means that the record 4110 * started in the left path but moved to the 4111 * right as a result of rotation. We either 4112 * move the existing record to the left, or we 4113 * do the later insert there. 4114 * 4115 * In this case, the left path should always 4116 * exist as the rotate code will have passed 4117 * it back for a post-insert update. 4118 */ 4119 4120 if (split == SPLIT_LEFT) { 4121 /* 4122 * It's a left split. Since we know 4123 * that the rotate code gave us an 4124 * empty extent in the left path, we 4125 * can just do the insert there. 4126 */ 4127 insert_el = left_el; 4128 } else { 4129 /* 4130 * Right split - we have to move the 4131 * existing record over to the left 4132 * leaf. The insert will be into the 4133 * newly created empty extent in the 4134 * right leaf. 4135 */ 4136 tmprec = &right_el->l_recs[index]; 4137 ocfs2_rotate_leaf(left_el, tmprec); 4138 el = left_el; 4139 4140 memset(tmprec, 0, sizeof(*tmprec)); 4141 index = ocfs2_search_extent_list(left_el, cpos); 4142 BUG_ON(index == -1); 4143 } 4144 } 4145 } else { 4146 BUG_ON(!left_path); 4147 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0])); 4148 /* 4149 * Left path is easy - we can just allow the insert to 4150 * happen. 4151 */ 4152 el = left_el; 4153 insert_el = left_el; 4154 index = ocfs2_search_extent_list(el, cpos); 4155 BUG_ON(index == -1); 4156 } 4157 4158 rec = &el->l_recs[index]; 4159 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci), 4160 split, rec, split_rec); 4161 ocfs2_rotate_leaf(insert_el, split_rec); 4162 } 4163 4164 /* 4165 * This function only does inserts on an allocation b-tree. For tree 4166 * depth = 0, ocfs2_insert_at_leaf() is called directly. 4167 * 4168 * right_path is the path we want to do the actual insert 4169 * in. left_path should only be passed in if we need to update that 4170 * portion of the tree after an edge insert. 4171 */ 4172 static int ocfs2_insert_path(handle_t *handle, 4173 struct ocfs2_extent_tree *et, 4174 struct ocfs2_path *left_path, 4175 struct ocfs2_path *right_path, 4176 struct ocfs2_extent_rec *insert_rec, 4177 struct ocfs2_insert_type *insert) 4178 { 4179 int ret, subtree_index; 4180 struct buffer_head *leaf_bh = path_leaf_bh(right_path); 4181 4182 if (left_path) { 4183 /* 4184 * There's a chance that left_path got passed back to 4185 * us without being accounted for in the 4186 * journal. Extend our transaction here to be sure we 4187 * can change those blocks. 4188 */ 4189 ret = ocfs2_extend_trans(handle, left_path->p_tree_depth); 4190 if (ret < 0) { 4191 mlog_errno(ret); 4192 goto out; 4193 } 4194 4195 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 4196 if (ret < 0) { 4197 mlog_errno(ret); 4198 goto out; 4199 } 4200 } 4201 4202 /* 4203 * Pass both paths to the journal. The majority of inserts 4204 * will be touching all components anyway. 4205 */ 4206 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path); 4207 if (ret < 0) { 4208 mlog_errno(ret); 4209 goto out; 4210 } 4211 4212 if (insert->ins_split != SPLIT_NONE) { 4213 /* 4214 * We could call ocfs2_insert_at_leaf() for some types 4215 * of splits, but it's easier to just let one separate 4216 * function sort it all out. 4217 */ 4218 ocfs2_split_record(et, left_path, right_path, 4219 insert_rec, insert->ins_split); 4220 4221 /* 4222 * Split might have modified either leaf and we don't 4223 * have a guarantee that the later edge insert will 4224 * dirty this for us. 4225 */ 4226 if (left_path) 4227 ocfs2_journal_dirty(handle, 4228 path_leaf_bh(left_path)); 4229 } else 4230 ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path), 4231 insert); 4232 4233 ocfs2_journal_dirty(handle, leaf_bh); 4234 4235 if (left_path) { 4236 /* 4237 * The rotate code has indicated that we need to fix 4238 * up portions of the tree after the insert. 4239 * 4240 * XXX: Should we extend the transaction here? 4241 */ 4242 subtree_index = ocfs2_find_subtree_root(et, left_path, 4243 right_path); 4244 ocfs2_complete_edge_insert(handle, left_path, right_path, 4245 subtree_index); 4246 } 4247 4248 ret = 0; 4249 out: 4250 return ret; 4251 } 4252 4253 static int ocfs2_do_insert_extent(handle_t *handle, 4254 struct ocfs2_extent_tree *et, 4255 struct ocfs2_extent_rec *insert_rec, 4256 struct ocfs2_insert_type *type) 4257 { 4258 int ret, rotate = 0; 4259 u32 cpos; 4260 struct ocfs2_path *right_path = NULL; 4261 struct ocfs2_path *left_path = NULL; 4262 struct ocfs2_extent_list *el; 4263 4264 el = et->et_root_el; 4265 4266 ret = ocfs2_et_root_journal_access(handle, et, 4267 OCFS2_JOURNAL_ACCESS_WRITE); 4268 if (ret) { 4269 mlog_errno(ret); 4270 goto out; 4271 } 4272 4273 if (le16_to_cpu(el->l_tree_depth) == 0) { 4274 ocfs2_insert_at_leaf(et, insert_rec, el, type); 4275 goto out_update_clusters; 4276 } 4277 4278 right_path = ocfs2_new_path_from_et(et); 4279 if (!right_path) { 4280 ret = -ENOMEM; 4281 mlog_errno(ret); 4282 goto out; 4283 } 4284 4285 /* 4286 * Determine the path to start with. Rotations need the 4287 * rightmost path, everything else can go directly to the 4288 * target leaf. 4289 */ 4290 cpos = le32_to_cpu(insert_rec->e_cpos); 4291 if (type->ins_appending == APPEND_NONE && 4292 type->ins_contig == CONTIG_NONE) { 4293 rotate = 1; 4294 cpos = UINT_MAX; 4295 } 4296 4297 ret = ocfs2_find_path(et->et_ci, right_path, cpos); 4298 if (ret) { 4299 mlog_errno(ret); 4300 goto out; 4301 } 4302 4303 /* 4304 * Rotations and appends need special treatment - they modify 4305 * parts of the tree's above them. 4306 * 4307 * Both might pass back a path immediate to the left of the 4308 * one being inserted to. This will be cause 4309 * ocfs2_insert_path() to modify the rightmost records of 4310 * left_path to account for an edge insert. 4311 * 4312 * XXX: When modifying this code, keep in mind that an insert 4313 * can wind up skipping both of these two special cases... 4314 */ 4315 if (rotate) { 4316 ret = ocfs2_rotate_tree_right(handle, et, type->ins_split, 4317 le32_to_cpu(insert_rec->e_cpos), 4318 right_path, &left_path); 4319 if (ret) { 4320 mlog_errno(ret); 4321 goto out; 4322 } 4323 4324 /* 4325 * ocfs2_rotate_tree_right() might have extended the 4326 * transaction without re-journaling our tree root. 4327 */ 4328 ret = ocfs2_et_root_journal_access(handle, et, 4329 OCFS2_JOURNAL_ACCESS_WRITE); 4330 if (ret) { 4331 mlog_errno(ret); 4332 goto out; 4333 } 4334 } else if (type->ins_appending == APPEND_TAIL 4335 && type->ins_contig != CONTIG_LEFT) { 4336 ret = ocfs2_append_rec_to_path(handle, et, insert_rec, 4337 right_path, &left_path); 4338 if (ret) { 4339 mlog_errno(ret); 4340 goto out; 4341 } 4342 } 4343 4344 ret = ocfs2_insert_path(handle, et, left_path, right_path, 4345 insert_rec, type); 4346 if (ret) { 4347 mlog_errno(ret); 4348 goto out; 4349 } 4350 4351 out_update_clusters: 4352 if (type->ins_split == SPLIT_NONE) 4353 ocfs2_et_update_clusters(et, 4354 le16_to_cpu(insert_rec->e_leaf_clusters)); 4355 4356 ocfs2_journal_dirty(handle, et->et_root_bh); 4357 4358 out: 4359 ocfs2_free_path(left_path); 4360 ocfs2_free_path(right_path); 4361 4362 return ret; 4363 } 4364 4365 static int ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et, 4366 struct ocfs2_path *path, 4367 struct ocfs2_extent_list *el, int index, 4368 struct ocfs2_extent_rec *split_rec, 4369 struct ocfs2_merge_ctxt *ctxt) 4370 { 4371 int status = 0; 4372 enum ocfs2_contig_type ret = CONTIG_NONE; 4373 u32 left_cpos, right_cpos; 4374 struct ocfs2_extent_rec *rec = NULL; 4375 struct ocfs2_extent_list *new_el; 4376 struct ocfs2_path *left_path = NULL, *right_path = NULL; 4377 struct buffer_head *bh; 4378 struct ocfs2_extent_block *eb; 4379 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 4380 4381 if (index > 0) { 4382 rec = &el->l_recs[index - 1]; 4383 } else if (path->p_tree_depth > 0) { 4384 status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos); 4385 if (status) 4386 goto exit; 4387 4388 if (left_cpos != 0) { 4389 left_path = ocfs2_new_path_from_path(path); 4390 if (!left_path) { 4391 status = -ENOMEM; 4392 mlog_errno(status); 4393 goto exit; 4394 } 4395 4396 status = ocfs2_find_path(et->et_ci, left_path, 4397 left_cpos); 4398 if (status) 4399 goto free_left_path; 4400 4401 new_el = path_leaf_el(left_path); 4402 4403 if (le16_to_cpu(new_el->l_next_free_rec) != 4404 le16_to_cpu(new_el->l_count)) { 4405 bh = path_leaf_bh(left_path); 4406 eb = (struct ocfs2_extent_block *)bh->b_data; 4407 status = ocfs2_error(sb, 4408 "Extent block #%llu has an invalid l_next_free_rec of %d. It should have matched the l_count of %d\n", 4409 (unsigned long long)le64_to_cpu(eb->h_blkno), 4410 le16_to_cpu(new_el->l_next_free_rec), 4411 le16_to_cpu(new_el->l_count)); 4412 goto free_left_path; 4413 } 4414 rec = &new_el->l_recs[ 4415 le16_to_cpu(new_el->l_next_free_rec) - 1]; 4416 } 4417 } 4418 4419 /* 4420 * We're careful to check for an empty extent record here - 4421 * the merge code will know what to do if it sees one. 4422 */ 4423 if (rec) { 4424 if (index == 1 && ocfs2_is_empty_extent(rec)) { 4425 if (split_rec->e_cpos == el->l_recs[index].e_cpos) 4426 ret = CONTIG_RIGHT; 4427 } else { 4428 ret = ocfs2_et_extent_contig(et, rec, split_rec); 4429 } 4430 } 4431 4432 rec = NULL; 4433 if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) 4434 rec = &el->l_recs[index + 1]; 4435 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) && 4436 path->p_tree_depth > 0) { 4437 status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos); 4438 if (status) 4439 goto free_left_path; 4440 4441 if (right_cpos == 0) 4442 goto free_left_path; 4443 4444 right_path = ocfs2_new_path_from_path(path); 4445 if (!right_path) { 4446 status = -ENOMEM; 4447 mlog_errno(status); 4448 goto free_left_path; 4449 } 4450 4451 status = ocfs2_find_path(et->et_ci, right_path, right_cpos); 4452 if (status) 4453 goto free_right_path; 4454 4455 new_el = path_leaf_el(right_path); 4456 rec = &new_el->l_recs[0]; 4457 if (ocfs2_is_empty_extent(rec)) { 4458 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) { 4459 bh = path_leaf_bh(right_path); 4460 eb = (struct ocfs2_extent_block *)bh->b_data; 4461 status = ocfs2_error(sb, 4462 "Extent block #%llu has an invalid l_next_free_rec of %d\n", 4463 (unsigned long long)le64_to_cpu(eb->h_blkno), 4464 le16_to_cpu(new_el->l_next_free_rec)); 4465 goto free_right_path; 4466 } 4467 rec = &new_el->l_recs[1]; 4468 } 4469 } 4470 4471 if (rec) { 4472 enum ocfs2_contig_type contig_type; 4473 4474 contig_type = ocfs2_et_extent_contig(et, rec, split_rec); 4475 4476 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT) 4477 ret = CONTIG_LEFTRIGHT; 4478 else if (ret == CONTIG_NONE) 4479 ret = contig_type; 4480 } 4481 4482 free_right_path: 4483 ocfs2_free_path(right_path); 4484 free_left_path: 4485 ocfs2_free_path(left_path); 4486 exit: 4487 if (status == 0) 4488 ctxt->c_contig_type = ret; 4489 4490 return status; 4491 } 4492 4493 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et, 4494 struct ocfs2_insert_type *insert, 4495 struct ocfs2_extent_list *el, 4496 struct ocfs2_extent_rec *insert_rec) 4497 { 4498 int i; 4499 enum ocfs2_contig_type contig_type = CONTIG_NONE; 4500 4501 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4502 4503 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 4504 contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i], 4505 insert_rec); 4506 if (contig_type != CONTIG_NONE) { 4507 insert->ins_contig_index = i; 4508 break; 4509 } 4510 } 4511 insert->ins_contig = contig_type; 4512 4513 if (insert->ins_contig != CONTIG_NONE) { 4514 struct ocfs2_extent_rec *rec = 4515 &el->l_recs[insert->ins_contig_index]; 4516 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) + 4517 le16_to_cpu(insert_rec->e_leaf_clusters); 4518 4519 /* 4520 * Caller might want us to limit the size of extents, don't 4521 * calculate contiguousness if we might exceed that limit. 4522 */ 4523 if (et->et_max_leaf_clusters && 4524 (len > et->et_max_leaf_clusters)) 4525 insert->ins_contig = CONTIG_NONE; 4526 } 4527 } 4528 4529 /* 4530 * This should only be called against the righmost leaf extent list. 4531 * 4532 * ocfs2_figure_appending_type() will figure out whether we'll have to 4533 * insert at the tail of the rightmost leaf. 4534 * 4535 * This should also work against the root extent list for tree's with 0 4536 * depth. If we consider the root extent list to be the rightmost leaf node 4537 * then the logic here makes sense. 4538 */ 4539 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert, 4540 struct ocfs2_extent_list *el, 4541 struct ocfs2_extent_rec *insert_rec) 4542 { 4543 int i; 4544 u32 cpos = le32_to_cpu(insert_rec->e_cpos); 4545 struct ocfs2_extent_rec *rec; 4546 4547 insert->ins_appending = APPEND_NONE; 4548 4549 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4550 4551 if (!el->l_next_free_rec) 4552 goto set_tail_append; 4553 4554 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 4555 /* Were all records empty? */ 4556 if (le16_to_cpu(el->l_next_free_rec) == 1) 4557 goto set_tail_append; 4558 } 4559 4560 i = le16_to_cpu(el->l_next_free_rec) - 1; 4561 rec = &el->l_recs[i]; 4562 4563 if (cpos >= 4564 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters))) 4565 goto set_tail_append; 4566 4567 return; 4568 4569 set_tail_append: 4570 insert->ins_appending = APPEND_TAIL; 4571 } 4572 4573 /* 4574 * Helper function called at the beginning of an insert. 4575 * 4576 * This computes a few things that are commonly used in the process of 4577 * inserting into the btree: 4578 * - Whether the new extent is contiguous with an existing one. 4579 * - The current tree depth. 4580 * - Whether the insert is an appending one. 4581 * - The total # of free records in the tree. 4582 * 4583 * All of the information is stored on the ocfs2_insert_type 4584 * structure. 4585 */ 4586 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et, 4587 struct buffer_head **last_eb_bh, 4588 struct ocfs2_extent_rec *insert_rec, 4589 int *free_records, 4590 struct ocfs2_insert_type *insert) 4591 { 4592 int ret; 4593 struct ocfs2_extent_block *eb; 4594 struct ocfs2_extent_list *el; 4595 struct ocfs2_path *path = NULL; 4596 struct buffer_head *bh = NULL; 4597 4598 insert->ins_split = SPLIT_NONE; 4599 4600 el = et->et_root_el; 4601 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth); 4602 4603 if (el->l_tree_depth) { 4604 /* 4605 * If we have tree depth, we read in the 4606 * rightmost extent block ahead of time as 4607 * ocfs2_figure_insert_type() and ocfs2_add_branch() 4608 * may want it later. 4609 */ 4610 ret = ocfs2_read_extent_block(et->et_ci, 4611 ocfs2_et_get_last_eb_blk(et), 4612 &bh); 4613 if (ret) { 4614 mlog_errno(ret); 4615 goto out; 4616 } 4617 eb = (struct ocfs2_extent_block *) bh->b_data; 4618 el = &eb->h_list; 4619 } 4620 4621 /* 4622 * Unless we have a contiguous insert, we'll need to know if 4623 * there is room left in our allocation tree for another 4624 * extent record. 4625 * 4626 * XXX: This test is simplistic, we can search for empty 4627 * extent records too. 4628 */ 4629 *free_records = le16_to_cpu(el->l_count) - 4630 le16_to_cpu(el->l_next_free_rec); 4631 4632 if (!insert->ins_tree_depth) { 4633 ocfs2_figure_contig_type(et, insert, el, insert_rec); 4634 ocfs2_figure_appending_type(insert, el, insert_rec); 4635 return 0; 4636 } 4637 4638 path = ocfs2_new_path_from_et(et); 4639 if (!path) { 4640 ret = -ENOMEM; 4641 mlog_errno(ret); 4642 goto out; 4643 } 4644 4645 /* 4646 * In the case that we're inserting past what the tree 4647 * currently accounts for, ocfs2_find_path() will return for 4648 * us the rightmost tree path. This is accounted for below in 4649 * the appending code. 4650 */ 4651 ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos)); 4652 if (ret) { 4653 mlog_errno(ret); 4654 goto out; 4655 } 4656 4657 el = path_leaf_el(path); 4658 4659 /* 4660 * Now that we have the path, there's two things we want to determine: 4661 * 1) Contiguousness (also set contig_index if this is so) 4662 * 4663 * 2) Are we doing an append? We can trivially break this up 4664 * into two types of appends: simple record append, or a 4665 * rotate inside the tail leaf. 4666 */ 4667 ocfs2_figure_contig_type(et, insert, el, insert_rec); 4668 4669 /* 4670 * The insert code isn't quite ready to deal with all cases of 4671 * left contiguousness. Specifically, if it's an insert into 4672 * the 1st record in a leaf, it will require the adjustment of 4673 * cluster count on the last record of the path directly to it's 4674 * left. For now, just catch that case and fool the layers 4675 * above us. This works just fine for tree_depth == 0, which 4676 * is why we allow that above. 4677 */ 4678 if (insert->ins_contig == CONTIG_LEFT && 4679 insert->ins_contig_index == 0) 4680 insert->ins_contig = CONTIG_NONE; 4681 4682 /* 4683 * Ok, so we can simply compare against last_eb to figure out 4684 * whether the path doesn't exist. This will only happen in 4685 * the case that we're doing a tail append, so maybe we can 4686 * take advantage of that information somehow. 4687 */ 4688 if (ocfs2_et_get_last_eb_blk(et) == 4689 path_leaf_bh(path)->b_blocknr) { 4690 /* 4691 * Ok, ocfs2_find_path() returned us the rightmost 4692 * tree path. This might be an appending insert. There are 4693 * two cases: 4694 * 1) We're doing a true append at the tail: 4695 * -This might even be off the end of the leaf 4696 * 2) We're "appending" by rotating in the tail 4697 */ 4698 ocfs2_figure_appending_type(insert, el, insert_rec); 4699 } 4700 4701 out: 4702 ocfs2_free_path(path); 4703 4704 if (ret == 0) 4705 *last_eb_bh = bh; 4706 else 4707 brelse(bh); 4708 return ret; 4709 } 4710 4711 /* 4712 * Insert an extent into a btree. 4713 * 4714 * The caller needs to update the owning btree's cluster count. 4715 */ 4716 int ocfs2_insert_extent(handle_t *handle, 4717 struct ocfs2_extent_tree *et, 4718 u32 cpos, 4719 u64 start_blk, 4720 u32 new_clusters, 4721 u8 flags, 4722 struct ocfs2_alloc_context *meta_ac) 4723 { 4724 int status; 4725 int uninitialized_var(free_records); 4726 struct buffer_head *last_eb_bh = NULL; 4727 struct ocfs2_insert_type insert = {0, }; 4728 struct ocfs2_extent_rec rec; 4729 4730 trace_ocfs2_insert_extent_start( 4731 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 4732 cpos, new_clusters); 4733 4734 memset(&rec, 0, sizeof(rec)); 4735 rec.e_cpos = cpu_to_le32(cpos); 4736 rec.e_blkno = cpu_to_le64(start_blk); 4737 rec.e_leaf_clusters = cpu_to_le16(new_clusters); 4738 rec.e_flags = flags; 4739 status = ocfs2_et_insert_check(et, &rec); 4740 if (status) { 4741 mlog_errno(status); 4742 goto bail; 4743 } 4744 4745 status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec, 4746 &free_records, &insert); 4747 if (status < 0) { 4748 mlog_errno(status); 4749 goto bail; 4750 } 4751 4752 trace_ocfs2_insert_extent(insert.ins_appending, insert.ins_contig, 4753 insert.ins_contig_index, free_records, 4754 insert.ins_tree_depth); 4755 4756 if (insert.ins_contig == CONTIG_NONE && free_records == 0) { 4757 status = ocfs2_grow_tree(handle, et, 4758 &insert.ins_tree_depth, &last_eb_bh, 4759 meta_ac); 4760 if (status) { 4761 mlog_errno(status); 4762 goto bail; 4763 } 4764 } 4765 4766 /* Finally, we can add clusters. This might rotate the tree for us. */ 4767 status = ocfs2_do_insert_extent(handle, et, &rec, &insert); 4768 if (status < 0) 4769 mlog_errno(status); 4770 else 4771 ocfs2_et_extent_map_insert(et, &rec); 4772 4773 bail: 4774 brelse(last_eb_bh); 4775 4776 return status; 4777 } 4778 4779 /* 4780 * Allcate and add clusters into the extent b-tree. 4781 * The new clusters(clusters_to_add) will be inserted at logical_offset. 4782 * The extent b-tree's root is specified by et, and 4783 * it is not limited to the file storage. Any extent tree can use this 4784 * function if it implements the proper ocfs2_extent_tree. 4785 */ 4786 int ocfs2_add_clusters_in_btree(handle_t *handle, 4787 struct ocfs2_extent_tree *et, 4788 u32 *logical_offset, 4789 u32 clusters_to_add, 4790 int mark_unwritten, 4791 struct ocfs2_alloc_context *data_ac, 4792 struct ocfs2_alloc_context *meta_ac, 4793 enum ocfs2_alloc_restarted *reason_ret) 4794 { 4795 int status = 0, err = 0; 4796 int need_free = 0; 4797 int free_extents; 4798 enum ocfs2_alloc_restarted reason = RESTART_NONE; 4799 u32 bit_off, num_bits; 4800 u64 block; 4801 u8 flags = 0; 4802 struct ocfs2_super *osb = 4803 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 4804 4805 BUG_ON(!clusters_to_add); 4806 4807 if (mark_unwritten) 4808 flags = OCFS2_EXT_UNWRITTEN; 4809 4810 free_extents = ocfs2_num_free_extents(et); 4811 if (free_extents < 0) { 4812 status = free_extents; 4813 mlog_errno(status); 4814 goto leave; 4815 } 4816 4817 /* there are two cases which could cause us to EAGAIN in the 4818 * we-need-more-metadata case: 4819 * 1) we haven't reserved *any* 4820 * 2) we are so fragmented, we've needed to add metadata too 4821 * many times. */ 4822 if (!free_extents && !meta_ac) { 4823 err = -1; 4824 status = -EAGAIN; 4825 reason = RESTART_META; 4826 goto leave; 4827 } else if ((!free_extents) 4828 && (ocfs2_alloc_context_bits_left(meta_ac) 4829 < ocfs2_extend_meta_needed(et->et_root_el))) { 4830 err = -2; 4831 status = -EAGAIN; 4832 reason = RESTART_META; 4833 goto leave; 4834 } 4835 4836 status = __ocfs2_claim_clusters(handle, data_ac, 1, 4837 clusters_to_add, &bit_off, &num_bits); 4838 if (status < 0) { 4839 if (status != -ENOSPC) 4840 mlog_errno(status); 4841 goto leave; 4842 } 4843 4844 BUG_ON(num_bits > clusters_to_add); 4845 4846 /* reserve our write early -- insert_extent may update the tree root */ 4847 status = ocfs2_et_root_journal_access(handle, et, 4848 OCFS2_JOURNAL_ACCESS_WRITE); 4849 if (status < 0) { 4850 mlog_errno(status); 4851 need_free = 1; 4852 goto bail; 4853 } 4854 4855 block = ocfs2_clusters_to_blocks(osb->sb, bit_off); 4856 trace_ocfs2_add_clusters_in_btree( 4857 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 4858 bit_off, num_bits); 4859 status = ocfs2_insert_extent(handle, et, *logical_offset, block, 4860 num_bits, flags, meta_ac); 4861 if (status < 0) { 4862 mlog_errno(status); 4863 need_free = 1; 4864 goto bail; 4865 } 4866 4867 ocfs2_journal_dirty(handle, et->et_root_bh); 4868 4869 clusters_to_add -= num_bits; 4870 *logical_offset += num_bits; 4871 4872 if (clusters_to_add) { 4873 err = clusters_to_add; 4874 status = -EAGAIN; 4875 reason = RESTART_TRANS; 4876 } 4877 4878 bail: 4879 if (need_free) { 4880 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL) 4881 ocfs2_free_local_alloc_bits(osb, handle, data_ac, 4882 bit_off, num_bits); 4883 else 4884 ocfs2_free_clusters(handle, 4885 data_ac->ac_inode, 4886 data_ac->ac_bh, 4887 ocfs2_clusters_to_blocks(osb->sb, bit_off), 4888 num_bits); 4889 } 4890 4891 leave: 4892 if (reason_ret) 4893 *reason_ret = reason; 4894 trace_ocfs2_add_clusters_in_btree_ret(status, reason, err); 4895 return status; 4896 } 4897 4898 static void ocfs2_make_right_split_rec(struct super_block *sb, 4899 struct ocfs2_extent_rec *split_rec, 4900 u32 cpos, 4901 struct ocfs2_extent_rec *rec) 4902 { 4903 u32 rec_cpos = le32_to_cpu(rec->e_cpos); 4904 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters); 4905 4906 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec)); 4907 4908 split_rec->e_cpos = cpu_to_le32(cpos); 4909 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos); 4910 4911 split_rec->e_blkno = rec->e_blkno; 4912 le64_add_cpu(&split_rec->e_blkno, 4913 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos)); 4914 4915 split_rec->e_flags = rec->e_flags; 4916 } 4917 4918 static int ocfs2_split_and_insert(handle_t *handle, 4919 struct ocfs2_extent_tree *et, 4920 struct ocfs2_path *path, 4921 struct buffer_head **last_eb_bh, 4922 int split_index, 4923 struct ocfs2_extent_rec *orig_split_rec, 4924 struct ocfs2_alloc_context *meta_ac) 4925 { 4926 int ret = 0, depth; 4927 unsigned int insert_range, rec_range, do_leftright = 0; 4928 struct ocfs2_extent_rec tmprec; 4929 struct ocfs2_extent_list *rightmost_el; 4930 struct ocfs2_extent_rec rec; 4931 struct ocfs2_extent_rec split_rec = *orig_split_rec; 4932 struct ocfs2_insert_type insert; 4933 struct ocfs2_extent_block *eb; 4934 4935 leftright: 4936 /* 4937 * Store a copy of the record on the stack - it might move 4938 * around as the tree is manipulated below. 4939 */ 4940 rec = path_leaf_el(path)->l_recs[split_index]; 4941 4942 rightmost_el = et->et_root_el; 4943 4944 depth = le16_to_cpu(rightmost_el->l_tree_depth); 4945 if (depth) { 4946 BUG_ON(!(*last_eb_bh)); 4947 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 4948 rightmost_el = &eb->h_list; 4949 } 4950 4951 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 4952 le16_to_cpu(rightmost_el->l_count)) { 4953 ret = ocfs2_grow_tree(handle, et, 4954 &depth, last_eb_bh, meta_ac); 4955 if (ret) { 4956 mlog_errno(ret); 4957 goto out; 4958 } 4959 } 4960 4961 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 4962 insert.ins_appending = APPEND_NONE; 4963 insert.ins_contig = CONTIG_NONE; 4964 insert.ins_tree_depth = depth; 4965 4966 insert_range = le32_to_cpu(split_rec.e_cpos) + 4967 le16_to_cpu(split_rec.e_leaf_clusters); 4968 rec_range = le32_to_cpu(rec.e_cpos) + 4969 le16_to_cpu(rec.e_leaf_clusters); 4970 4971 if (split_rec.e_cpos == rec.e_cpos) { 4972 insert.ins_split = SPLIT_LEFT; 4973 } else if (insert_range == rec_range) { 4974 insert.ins_split = SPLIT_RIGHT; 4975 } else { 4976 /* 4977 * Left/right split. We fake this as a right split 4978 * first and then make a second pass as a left split. 4979 */ 4980 insert.ins_split = SPLIT_RIGHT; 4981 4982 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci), 4983 &tmprec, insert_range, &rec); 4984 4985 split_rec = tmprec; 4986 4987 BUG_ON(do_leftright); 4988 do_leftright = 1; 4989 } 4990 4991 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert); 4992 if (ret) { 4993 mlog_errno(ret); 4994 goto out; 4995 } 4996 4997 if (do_leftright == 1) { 4998 u32 cpos; 4999 struct ocfs2_extent_list *el; 5000 5001 do_leftright++; 5002 split_rec = *orig_split_rec; 5003 5004 ocfs2_reinit_path(path, 1); 5005 5006 cpos = le32_to_cpu(split_rec.e_cpos); 5007 ret = ocfs2_find_path(et->et_ci, path, cpos); 5008 if (ret) { 5009 mlog_errno(ret); 5010 goto out; 5011 } 5012 5013 el = path_leaf_el(path); 5014 split_index = ocfs2_search_extent_list(el, cpos); 5015 if (split_index == -1) { 5016 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5017 "Owner %llu has an extent at cpos %u which can no longer be found\n", 5018 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5019 cpos); 5020 ret = -EROFS; 5021 goto out; 5022 } 5023 goto leftright; 5024 } 5025 out: 5026 5027 return ret; 5028 } 5029 5030 static int ocfs2_replace_extent_rec(handle_t *handle, 5031 struct ocfs2_extent_tree *et, 5032 struct ocfs2_path *path, 5033 struct ocfs2_extent_list *el, 5034 int split_index, 5035 struct ocfs2_extent_rec *split_rec) 5036 { 5037 int ret; 5038 5039 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path, 5040 path_num_items(path) - 1); 5041 if (ret) { 5042 mlog_errno(ret); 5043 goto out; 5044 } 5045 5046 el->l_recs[split_index] = *split_rec; 5047 5048 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 5049 out: 5050 return ret; 5051 } 5052 5053 /* 5054 * Split part or all of the extent record at split_index in the leaf 5055 * pointed to by path. Merge with the contiguous extent record if needed. 5056 * 5057 * Care is taken to handle contiguousness so as to not grow the tree. 5058 * 5059 * meta_ac is not strictly necessary - we only truly need it if growth 5060 * of the tree is required. All other cases will degrade into a less 5061 * optimal tree layout. 5062 * 5063 * last_eb_bh should be the rightmost leaf block for any extent 5064 * btree. Since a split may grow the tree or a merge might shrink it, 5065 * the caller cannot trust the contents of that buffer after this call. 5066 * 5067 * This code is optimized for readability - several passes might be 5068 * made over certain portions of the tree. All of those blocks will 5069 * have been brought into cache (and pinned via the journal), so the 5070 * extra overhead is not expressed in terms of disk reads. 5071 */ 5072 int ocfs2_split_extent(handle_t *handle, 5073 struct ocfs2_extent_tree *et, 5074 struct ocfs2_path *path, 5075 int split_index, 5076 struct ocfs2_extent_rec *split_rec, 5077 struct ocfs2_alloc_context *meta_ac, 5078 struct ocfs2_cached_dealloc_ctxt *dealloc) 5079 { 5080 int ret = 0; 5081 struct ocfs2_extent_list *el = path_leaf_el(path); 5082 struct buffer_head *last_eb_bh = NULL; 5083 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 5084 struct ocfs2_merge_ctxt ctxt; 5085 5086 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) || 5087 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) < 5088 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) { 5089 ret = -EIO; 5090 mlog_errno(ret); 5091 goto out; 5092 } 5093 5094 ret = ocfs2_figure_merge_contig_type(et, path, el, 5095 split_index, 5096 split_rec, 5097 &ctxt); 5098 if (ret) { 5099 mlog_errno(ret); 5100 goto out; 5101 } 5102 5103 /* 5104 * The core merge / split code wants to know how much room is 5105 * left in this allocation tree, so we pass the 5106 * rightmost extent list. 5107 */ 5108 if (path->p_tree_depth) { 5109 struct ocfs2_extent_block *eb; 5110 5111 ret = ocfs2_read_extent_block(et->et_ci, 5112 ocfs2_et_get_last_eb_blk(et), 5113 &last_eb_bh); 5114 if (ret) { 5115 mlog_errno(ret); 5116 goto out; 5117 } 5118 5119 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5120 } 5121 5122 if (rec->e_cpos == split_rec->e_cpos && 5123 rec->e_leaf_clusters == split_rec->e_leaf_clusters) 5124 ctxt.c_split_covers_rec = 1; 5125 else 5126 ctxt.c_split_covers_rec = 0; 5127 5128 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]); 5129 5130 trace_ocfs2_split_extent(split_index, ctxt.c_contig_type, 5131 ctxt.c_has_empty_extent, 5132 ctxt.c_split_covers_rec); 5133 5134 if (ctxt.c_contig_type == CONTIG_NONE) { 5135 if (ctxt.c_split_covers_rec) 5136 ret = ocfs2_replace_extent_rec(handle, et, path, el, 5137 split_index, split_rec); 5138 else 5139 ret = ocfs2_split_and_insert(handle, et, path, 5140 &last_eb_bh, split_index, 5141 split_rec, meta_ac); 5142 if (ret) 5143 mlog_errno(ret); 5144 } else { 5145 ret = ocfs2_try_to_merge_extent(handle, et, path, 5146 split_index, split_rec, 5147 dealloc, &ctxt); 5148 if (ret) 5149 mlog_errno(ret); 5150 } 5151 5152 out: 5153 brelse(last_eb_bh); 5154 return ret; 5155 } 5156 5157 /* 5158 * Change the flags of the already-existing extent at cpos for len clusters. 5159 * 5160 * new_flags: the flags we want to set. 5161 * clear_flags: the flags we want to clear. 5162 * phys: the new physical offset we want this new extent starts from. 5163 * 5164 * If the existing extent is larger than the request, initiate a 5165 * split. An attempt will be made at merging with adjacent extents. 5166 * 5167 * The caller is responsible for passing down meta_ac if we'll need it. 5168 */ 5169 int ocfs2_change_extent_flag(handle_t *handle, 5170 struct ocfs2_extent_tree *et, 5171 u32 cpos, u32 len, u32 phys, 5172 struct ocfs2_alloc_context *meta_ac, 5173 struct ocfs2_cached_dealloc_ctxt *dealloc, 5174 int new_flags, int clear_flags) 5175 { 5176 int ret, index; 5177 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 5178 u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys); 5179 struct ocfs2_extent_rec split_rec; 5180 struct ocfs2_path *left_path = NULL; 5181 struct ocfs2_extent_list *el; 5182 struct ocfs2_extent_rec *rec; 5183 5184 left_path = ocfs2_new_path_from_et(et); 5185 if (!left_path) { 5186 ret = -ENOMEM; 5187 mlog_errno(ret); 5188 goto out; 5189 } 5190 5191 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 5192 if (ret) { 5193 mlog_errno(ret); 5194 goto out; 5195 } 5196 el = path_leaf_el(left_path); 5197 5198 index = ocfs2_search_extent_list(el, cpos); 5199 if (index == -1) { 5200 ocfs2_error(sb, 5201 "Owner %llu has an extent at cpos %u which can no longer be found\n", 5202 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5203 cpos); 5204 ret = -EROFS; 5205 goto out; 5206 } 5207 5208 ret = -EIO; 5209 rec = &el->l_recs[index]; 5210 if (new_flags && (rec->e_flags & new_flags)) { 5211 mlog(ML_ERROR, "Owner %llu tried to set %d flags on an " 5212 "extent that already had them\n", 5213 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5214 new_flags); 5215 goto out; 5216 } 5217 5218 if (clear_flags && !(rec->e_flags & clear_flags)) { 5219 mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an " 5220 "extent that didn't have them\n", 5221 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5222 clear_flags); 5223 goto out; 5224 } 5225 5226 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec)); 5227 split_rec.e_cpos = cpu_to_le32(cpos); 5228 split_rec.e_leaf_clusters = cpu_to_le16(len); 5229 split_rec.e_blkno = cpu_to_le64(start_blkno); 5230 split_rec.e_flags = rec->e_flags; 5231 if (new_flags) 5232 split_rec.e_flags |= new_flags; 5233 if (clear_flags) 5234 split_rec.e_flags &= ~clear_flags; 5235 5236 ret = ocfs2_split_extent(handle, et, left_path, 5237 index, &split_rec, meta_ac, 5238 dealloc); 5239 if (ret) 5240 mlog_errno(ret); 5241 5242 out: 5243 ocfs2_free_path(left_path); 5244 return ret; 5245 5246 } 5247 5248 /* 5249 * Mark the already-existing extent at cpos as written for len clusters. 5250 * This removes the unwritten extent flag. 5251 * 5252 * If the existing extent is larger than the request, initiate a 5253 * split. An attempt will be made at merging with adjacent extents. 5254 * 5255 * The caller is responsible for passing down meta_ac if we'll need it. 5256 */ 5257 int ocfs2_mark_extent_written(struct inode *inode, 5258 struct ocfs2_extent_tree *et, 5259 handle_t *handle, u32 cpos, u32 len, u32 phys, 5260 struct ocfs2_alloc_context *meta_ac, 5261 struct ocfs2_cached_dealloc_ctxt *dealloc) 5262 { 5263 int ret; 5264 5265 trace_ocfs2_mark_extent_written( 5266 (unsigned long long)OCFS2_I(inode)->ip_blkno, 5267 cpos, len, phys); 5268 5269 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) { 5270 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents that are being written to, but the feature bit is not set in the super block\n", 5271 (unsigned long long)OCFS2_I(inode)->ip_blkno); 5272 ret = -EROFS; 5273 goto out; 5274 } 5275 5276 /* 5277 * XXX: This should be fixed up so that we just re-insert the 5278 * next extent records. 5279 */ 5280 ocfs2_et_extent_map_truncate(et, 0); 5281 5282 ret = ocfs2_change_extent_flag(handle, et, cpos, 5283 len, phys, meta_ac, dealloc, 5284 0, OCFS2_EXT_UNWRITTEN); 5285 if (ret) 5286 mlog_errno(ret); 5287 5288 out: 5289 return ret; 5290 } 5291 5292 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et, 5293 struct ocfs2_path *path, 5294 int index, u32 new_range, 5295 struct ocfs2_alloc_context *meta_ac) 5296 { 5297 int ret, depth, credits; 5298 struct buffer_head *last_eb_bh = NULL; 5299 struct ocfs2_extent_block *eb; 5300 struct ocfs2_extent_list *rightmost_el, *el; 5301 struct ocfs2_extent_rec split_rec; 5302 struct ocfs2_extent_rec *rec; 5303 struct ocfs2_insert_type insert; 5304 5305 /* 5306 * Setup the record to split before we grow the tree. 5307 */ 5308 el = path_leaf_el(path); 5309 rec = &el->l_recs[index]; 5310 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci), 5311 &split_rec, new_range, rec); 5312 5313 depth = path->p_tree_depth; 5314 if (depth > 0) { 5315 ret = ocfs2_read_extent_block(et->et_ci, 5316 ocfs2_et_get_last_eb_blk(et), 5317 &last_eb_bh); 5318 if (ret < 0) { 5319 mlog_errno(ret); 5320 goto out; 5321 } 5322 5323 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5324 rightmost_el = &eb->h_list; 5325 } else 5326 rightmost_el = path_leaf_el(path); 5327 5328 credits = path->p_tree_depth + 5329 ocfs2_extend_meta_needed(et->et_root_el); 5330 ret = ocfs2_extend_trans(handle, credits); 5331 if (ret) { 5332 mlog_errno(ret); 5333 goto out; 5334 } 5335 5336 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 5337 le16_to_cpu(rightmost_el->l_count)) { 5338 ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh, 5339 meta_ac); 5340 if (ret) { 5341 mlog_errno(ret); 5342 goto out; 5343 } 5344 } 5345 5346 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 5347 insert.ins_appending = APPEND_NONE; 5348 insert.ins_contig = CONTIG_NONE; 5349 insert.ins_split = SPLIT_RIGHT; 5350 insert.ins_tree_depth = depth; 5351 5352 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert); 5353 if (ret) 5354 mlog_errno(ret); 5355 5356 out: 5357 brelse(last_eb_bh); 5358 return ret; 5359 } 5360 5361 static int ocfs2_truncate_rec(handle_t *handle, 5362 struct ocfs2_extent_tree *et, 5363 struct ocfs2_path *path, int index, 5364 struct ocfs2_cached_dealloc_ctxt *dealloc, 5365 u32 cpos, u32 len) 5366 { 5367 int ret; 5368 u32 left_cpos, rec_range, trunc_range; 5369 int is_rightmost_tree_rec = 0; 5370 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 5371 struct ocfs2_path *left_path = NULL; 5372 struct ocfs2_extent_list *el = path_leaf_el(path); 5373 struct ocfs2_extent_rec *rec; 5374 struct ocfs2_extent_block *eb; 5375 5376 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) { 5377 /* extend credit for ocfs2_remove_rightmost_path */ 5378 ret = ocfs2_extend_rotate_transaction(handle, 0, 5379 handle->h_buffer_credits, 5380 path); 5381 if (ret) { 5382 mlog_errno(ret); 5383 goto out; 5384 } 5385 5386 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 5387 if (ret) { 5388 mlog_errno(ret); 5389 goto out; 5390 } 5391 5392 index--; 5393 } 5394 5395 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) && 5396 path->p_tree_depth) { 5397 /* 5398 * Check whether this is the rightmost tree record. If 5399 * we remove all of this record or part of its right 5400 * edge then an update of the record lengths above it 5401 * will be required. 5402 */ 5403 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 5404 if (eb->h_next_leaf_blk == 0) 5405 is_rightmost_tree_rec = 1; 5406 } 5407 5408 rec = &el->l_recs[index]; 5409 if (index == 0 && path->p_tree_depth && 5410 le32_to_cpu(rec->e_cpos) == cpos) { 5411 /* 5412 * Changing the leftmost offset (via partial or whole 5413 * record truncate) of an interior (or rightmost) path 5414 * means we have to update the subtree that is formed 5415 * by this leaf and the one to it's left. 5416 * 5417 * There are two cases we can skip: 5418 * 1) Path is the leftmost one in our btree. 5419 * 2) The leaf is rightmost and will be empty after 5420 * we remove the extent record - the rotate code 5421 * knows how to update the newly formed edge. 5422 */ 5423 5424 ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos); 5425 if (ret) { 5426 mlog_errno(ret); 5427 goto out; 5428 } 5429 5430 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) { 5431 left_path = ocfs2_new_path_from_path(path); 5432 if (!left_path) { 5433 ret = -ENOMEM; 5434 mlog_errno(ret); 5435 goto out; 5436 } 5437 5438 ret = ocfs2_find_path(et->et_ci, left_path, 5439 left_cpos); 5440 if (ret) { 5441 mlog_errno(ret); 5442 goto out; 5443 } 5444 } 5445 } 5446 5447 ret = ocfs2_extend_rotate_transaction(handle, 0, 5448 handle->h_buffer_credits, 5449 path); 5450 if (ret) { 5451 mlog_errno(ret); 5452 goto out; 5453 } 5454 5455 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 5456 if (ret) { 5457 mlog_errno(ret); 5458 goto out; 5459 } 5460 5461 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 5462 if (ret) { 5463 mlog_errno(ret); 5464 goto out; 5465 } 5466 5467 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5468 trunc_range = cpos + len; 5469 5470 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) { 5471 int next_free; 5472 5473 memset(rec, 0, sizeof(*rec)); 5474 ocfs2_cleanup_merge(el, index); 5475 5476 next_free = le16_to_cpu(el->l_next_free_rec); 5477 if (is_rightmost_tree_rec && next_free > 1) { 5478 /* 5479 * We skip the edge update if this path will 5480 * be deleted by the rotate code. 5481 */ 5482 rec = &el->l_recs[next_free - 1]; 5483 ocfs2_adjust_rightmost_records(handle, et, path, 5484 rec); 5485 } 5486 } else if (le32_to_cpu(rec->e_cpos) == cpos) { 5487 /* Remove leftmost portion of the record. */ 5488 le32_add_cpu(&rec->e_cpos, len); 5489 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len)); 5490 le16_add_cpu(&rec->e_leaf_clusters, -len); 5491 } else if (rec_range == trunc_range) { 5492 /* Remove rightmost portion of the record */ 5493 le16_add_cpu(&rec->e_leaf_clusters, -len); 5494 if (is_rightmost_tree_rec) 5495 ocfs2_adjust_rightmost_records(handle, et, path, rec); 5496 } else { 5497 /* Caller should have trapped this. */ 5498 mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) " 5499 "(%u, %u)\n", 5500 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5501 le32_to_cpu(rec->e_cpos), 5502 le16_to_cpu(rec->e_leaf_clusters), cpos, len); 5503 BUG(); 5504 } 5505 5506 if (left_path) { 5507 int subtree_index; 5508 5509 subtree_index = ocfs2_find_subtree_root(et, left_path, path); 5510 ocfs2_complete_edge_insert(handle, left_path, path, 5511 subtree_index); 5512 } 5513 5514 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 5515 5516 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 5517 if (ret) 5518 mlog_errno(ret); 5519 5520 out: 5521 ocfs2_free_path(left_path); 5522 return ret; 5523 } 5524 5525 int ocfs2_remove_extent(handle_t *handle, 5526 struct ocfs2_extent_tree *et, 5527 u32 cpos, u32 len, 5528 struct ocfs2_alloc_context *meta_ac, 5529 struct ocfs2_cached_dealloc_ctxt *dealloc) 5530 { 5531 int ret, index; 5532 u32 rec_range, trunc_range; 5533 struct ocfs2_extent_rec *rec; 5534 struct ocfs2_extent_list *el; 5535 struct ocfs2_path *path = NULL; 5536 5537 /* 5538 * XXX: Why are we truncating to 0 instead of wherever this 5539 * affects us? 5540 */ 5541 ocfs2_et_extent_map_truncate(et, 0); 5542 5543 path = ocfs2_new_path_from_et(et); 5544 if (!path) { 5545 ret = -ENOMEM; 5546 mlog_errno(ret); 5547 goto out; 5548 } 5549 5550 ret = ocfs2_find_path(et->et_ci, path, cpos); 5551 if (ret) { 5552 mlog_errno(ret); 5553 goto out; 5554 } 5555 5556 el = path_leaf_el(path); 5557 index = ocfs2_search_extent_list(el, cpos); 5558 if (index == -1) { 5559 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5560 "Owner %llu has an extent at cpos %u which can no longer be found\n", 5561 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5562 cpos); 5563 ret = -EROFS; 5564 goto out; 5565 } 5566 5567 /* 5568 * We have 3 cases of extent removal: 5569 * 1) Range covers the entire extent rec 5570 * 2) Range begins or ends on one edge of the extent rec 5571 * 3) Range is in the middle of the extent rec (no shared edges) 5572 * 5573 * For case 1 we remove the extent rec and left rotate to 5574 * fill the hole. 5575 * 5576 * For case 2 we just shrink the existing extent rec, with a 5577 * tree update if the shrinking edge is also the edge of an 5578 * extent block. 5579 * 5580 * For case 3 we do a right split to turn the extent rec into 5581 * something case 2 can handle. 5582 */ 5583 rec = &el->l_recs[index]; 5584 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5585 trunc_range = cpos + len; 5586 5587 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range); 5588 5589 trace_ocfs2_remove_extent( 5590 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5591 cpos, len, index, le32_to_cpu(rec->e_cpos), 5592 ocfs2_rec_clusters(el, rec)); 5593 5594 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) { 5595 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc, 5596 cpos, len); 5597 if (ret) { 5598 mlog_errno(ret); 5599 goto out; 5600 } 5601 } else { 5602 ret = ocfs2_split_tree(handle, et, path, index, 5603 trunc_range, meta_ac); 5604 if (ret) { 5605 mlog_errno(ret); 5606 goto out; 5607 } 5608 5609 /* 5610 * The split could have manipulated the tree enough to 5611 * move the record location, so we have to look for it again. 5612 */ 5613 ocfs2_reinit_path(path, 1); 5614 5615 ret = ocfs2_find_path(et->et_ci, path, cpos); 5616 if (ret) { 5617 mlog_errno(ret); 5618 goto out; 5619 } 5620 5621 el = path_leaf_el(path); 5622 index = ocfs2_search_extent_list(el, cpos); 5623 if (index == -1) { 5624 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5625 "Owner %llu: split at cpos %u lost record\n", 5626 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5627 cpos); 5628 ret = -EROFS; 5629 goto out; 5630 } 5631 5632 /* 5633 * Double check our values here. If anything is fishy, 5634 * it's easier to catch it at the top level. 5635 */ 5636 rec = &el->l_recs[index]; 5637 rec_range = le32_to_cpu(rec->e_cpos) + 5638 ocfs2_rec_clusters(el, rec); 5639 if (rec_range != trunc_range) { 5640 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5641 "Owner %llu: error after split at cpos %u trunc len %u, existing record is (%u,%u)\n", 5642 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5643 cpos, len, le32_to_cpu(rec->e_cpos), 5644 ocfs2_rec_clusters(el, rec)); 5645 ret = -EROFS; 5646 goto out; 5647 } 5648 5649 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc, 5650 cpos, len); 5651 if (ret) 5652 mlog_errno(ret); 5653 } 5654 5655 out: 5656 ocfs2_free_path(path); 5657 return ret; 5658 } 5659 5660 /* 5661 * ocfs2_reserve_blocks_for_rec_trunc() would look basically the 5662 * same as ocfs2_lock_alloctors(), except for it accepts a blocks 5663 * number to reserve some extra blocks, and it only handles meta 5664 * data allocations. 5665 * 5666 * Currently, only ocfs2_remove_btree_range() uses it for truncating 5667 * and punching holes. 5668 */ 5669 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode, 5670 struct ocfs2_extent_tree *et, 5671 u32 extents_to_split, 5672 struct ocfs2_alloc_context **ac, 5673 int extra_blocks) 5674 { 5675 int ret = 0, num_free_extents; 5676 unsigned int max_recs_needed = 2 * extents_to_split; 5677 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5678 5679 *ac = NULL; 5680 5681 num_free_extents = ocfs2_num_free_extents(et); 5682 if (num_free_extents < 0) { 5683 ret = num_free_extents; 5684 mlog_errno(ret); 5685 goto out; 5686 } 5687 5688 if (!num_free_extents || 5689 (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed)) 5690 extra_blocks += ocfs2_extend_meta_needed(et->et_root_el); 5691 5692 if (extra_blocks) { 5693 ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac); 5694 if (ret < 0) { 5695 if (ret != -ENOSPC) 5696 mlog_errno(ret); 5697 } 5698 } 5699 5700 out: 5701 if (ret) { 5702 if (*ac) { 5703 ocfs2_free_alloc_context(*ac); 5704 *ac = NULL; 5705 } 5706 } 5707 5708 return ret; 5709 } 5710 5711 int ocfs2_remove_btree_range(struct inode *inode, 5712 struct ocfs2_extent_tree *et, 5713 u32 cpos, u32 phys_cpos, u32 len, int flags, 5714 struct ocfs2_cached_dealloc_ctxt *dealloc, 5715 u64 refcount_loc, bool refcount_tree_locked) 5716 { 5717 int ret, credits = 0, extra_blocks = 0; 5718 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos); 5719 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5720 struct inode *tl_inode = osb->osb_tl_inode; 5721 handle_t *handle; 5722 struct ocfs2_alloc_context *meta_ac = NULL; 5723 struct ocfs2_refcount_tree *ref_tree = NULL; 5724 5725 if ((flags & OCFS2_EXT_REFCOUNTED) && len) { 5726 BUG_ON(!ocfs2_is_refcount_inode(inode)); 5727 5728 if (!refcount_tree_locked) { 5729 ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1, 5730 &ref_tree, NULL); 5731 if (ret) { 5732 mlog_errno(ret); 5733 goto bail; 5734 } 5735 } 5736 5737 ret = ocfs2_prepare_refcount_change_for_del(inode, 5738 refcount_loc, 5739 phys_blkno, 5740 len, 5741 &credits, 5742 &extra_blocks); 5743 if (ret < 0) { 5744 mlog_errno(ret); 5745 goto bail; 5746 } 5747 } 5748 5749 ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac, 5750 extra_blocks); 5751 if (ret) { 5752 mlog_errno(ret); 5753 goto bail; 5754 } 5755 5756 inode_lock(tl_inode); 5757 5758 if (ocfs2_truncate_log_needs_flush(osb)) { 5759 ret = __ocfs2_flush_truncate_log(osb); 5760 if (ret < 0) { 5761 mlog_errno(ret); 5762 goto out; 5763 } 5764 } 5765 5766 handle = ocfs2_start_trans(osb, 5767 ocfs2_remove_extent_credits(osb->sb) + credits); 5768 if (IS_ERR(handle)) { 5769 ret = PTR_ERR(handle); 5770 mlog_errno(ret); 5771 goto out; 5772 } 5773 5774 ret = ocfs2_et_root_journal_access(handle, et, 5775 OCFS2_JOURNAL_ACCESS_WRITE); 5776 if (ret) { 5777 mlog_errno(ret); 5778 goto out_commit; 5779 } 5780 5781 dquot_free_space_nodirty(inode, 5782 ocfs2_clusters_to_bytes(inode->i_sb, len)); 5783 5784 ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc); 5785 if (ret) { 5786 mlog_errno(ret); 5787 goto out_commit; 5788 } 5789 5790 ocfs2_et_update_clusters(et, -len); 5791 ocfs2_update_inode_fsync_trans(handle, inode, 1); 5792 5793 ocfs2_journal_dirty(handle, et->et_root_bh); 5794 5795 if (phys_blkno) { 5796 if (flags & OCFS2_EXT_REFCOUNTED) 5797 ret = ocfs2_decrease_refcount(inode, handle, 5798 ocfs2_blocks_to_clusters(osb->sb, 5799 phys_blkno), 5800 len, meta_ac, 5801 dealloc, 1); 5802 else 5803 ret = ocfs2_truncate_log_append(osb, handle, 5804 phys_blkno, len); 5805 if (ret) 5806 mlog_errno(ret); 5807 5808 } 5809 5810 out_commit: 5811 ocfs2_commit_trans(osb, handle); 5812 out: 5813 inode_unlock(tl_inode); 5814 bail: 5815 if (meta_ac) 5816 ocfs2_free_alloc_context(meta_ac); 5817 5818 if (ref_tree) 5819 ocfs2_unlock_refcount_tree(osb, ref_tree, 1); 5820 5821 return ret; 5822 } 5823 5824 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb) 5825 { 5826 struct buffer_head *tl_bh = osb->osb_tl_bh; 5827 struct ocfs2_dinode *di; 5828 struct ocfs2_truncate_log *tl; 5829 5830 di = (struct ocfs2_dinode *) tl_bh->b_data; 5831 tl = &di->id2.i_dealloc; 5832 5833 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count), 5834 "slot %d, invalid truncate log parameters: used = " 5835 "%u, count = %u\n", osb->slot_num, 5836 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count)); 5837 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count); 5838 } 5839 5840 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl, 5841 unsigned int new_start) 5842 { 5843 unsigned int tail_index; 5844 unsigned int current_tail; 5845 5846 /* No records, nothing to coalesce */ 5847 if (!le16_to_cpu(tl->tl_used)) 5848 return 0; 5849 5850 tail_index = le16_to_cpu(tl->tl_used) - 1; 5851 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start); 5852 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters); 5853 5854 return current_tail == new_start; 5855 } 5856 5857 int ocfs2_truncate_log_append(struct ocfs2_super *osb, 5858 handle_t *handle, 5859 u64 start_blk, 5860 unsigned int num_clusters) 5861 { 5862 int status, index; 5863 unsigned int start_cluster, tl_count; 5864 struct inode *tl_inode = osb->osb_tl_inode; 5865 struct buffer_head *tl_bh = osb->osb_tl_bh; 5866 struct ocfs2_dinode *di; 5867 struct ocfs2_truncate_log *tl; 5868 5869 BUG_ON(inode_trylock(tl_inode)); 5870 5871 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk); 5872 5873 di = (struct ocfs2_dinode *) tl_bh->b_data; 5874 5875 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 5876 * by the underlying call to ocfs2_read_inode_block(), so any 5877 * corruption is a code bug */ 5878 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5879 5880 tl = &di->id2.i_dealloc; 5881 tl_count = le16_to_cpu(tl->tl_count); 5882 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) || 5883 tl_count == 0, 5884 "Truncate record count on #%llu invalid " 5885 "wanted %u, actual %u\n", 5886 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5887 ocfs2_truncate_recs_per_inode(osb->sb), 5888 le16_to_cpu(tl->tl_count)); 5889 5890 /* Caller should have known to flush before calling us. */ 5891 index = le16_to_cpu(tl->tl_used); 5892 if (index >= tl_count) { 5893 status = -ENOSPC; 5894 mlog_errno(status); 5895 goto bail; 5896 } 5897 5898 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, 5899 OCFS2_JOURNAL_ACCESS_WRITE); 5900 if (status < 0) { 5901 mlog_errno(status); 5902 goto bail; 5903 } 5904 5905 trace_ocfs2_truncate_log_append( 5906 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index, 5907 start_cluster, num_clusters); 5908 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) { 5909 /* 5910 * Move index back to the record we are coalescing with. 5911 * ocfs2_truncate_log_can_coalesce() guarantees nonzero 5912 */ 5913 index--; 5914 5915 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters); 5916 trace_ocfs2_truncate_log_append( 5917 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5918 index, le32_to_cpu(tl->tl_recs[index].t_start), 5919 num_clusters); 5920 } else { 5921 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster); 5922 tl->tl_used = cpu_to_le16(index + 1); 5923 } 5924 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters); 5925 5926 ocfs2_journal_dirty(handle, tl_bh); 5927 5928 osb->truncated_clusters += num_clusters; 5929 bail: 5930 return status; 5931 } 5932 5933 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb, 5934 struct inode *data_alloc_inode, 5935 struct buffer_head *data_alloc_bh) 5936 { 5937 int status = 0; 5938 int i; 5939 unsigned int num_clusters; 5940 u64 start_blk; 5941 struct ocfs2_truncate_rec rec; 5942 struct ocfs2_dinode *di; 5943 struct ocfs2_truncate_log *tl; 5944 struct inode *tl_inode = osb->osb_tl_inode; 5945 struct buffer_head *tl_bh = osb->osb_tl_bh; 5946 handle_t *handle; 5947 5948 di = (struct ocfs2_dinode *) tl_bh->b_data; 5949 tl = &di->id2.i_dealloc; 5950 i = le16_to_cpu(tl->tl_used) - 1; 5951 while (i >= 0) { 5952 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC); 5953 if (IS_ERR(handle)) { 5954 status = PTR_ERR(handle); 5955 mlog_errno(status); 5956 goto bail; 5957 } 5958 5959 /* Caller has given us at least enough credits to 5960 * update the truncate log dinode */ 5961 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, 5962 OCFS2_JOURNAL_ACCESS_WRITE); 5963 if (status < 0) { 5964 mlog_errno(status); 5965 goto bail; 5966 } 5967 5968 tl->tl_used = cpu_to_le16(i); 5969 5970 ocfs2_journal_dirty(handle, tl_bh); 5971 5972 rec = tl->tl_recs[i]; 5973 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb, 5974 le32_to_cpu(rec.t_start)); 5975 num_clusters = le32_to_cpu(rec.t_clusters); 5976 5977 /* if start_blk is not set, we ignore the record as 5978 * invalid. */ 5979 if (start_blk) { 5980 trace_ocfs2_replay_truncate_records( 5981 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5982 i, le32_to_cpu(rec.t_start), num_clusters); 5983 5984 status = ocfs2_free_clusters(handle, data_alloc_inode, 5985 data_alloc_bh, start_blk, 5986 num_clusters); 5987 if (status < 0) { 5988 mlog_errno(status); 5989 goto bail; 5990 } 5991 } 5992 5993 ocfs2_commit_trans(osb, handle); 5994 i--; 5995 } 5996 5997 osb->truncated_clusters = 0; 5998 5999 bail: 6000 return status; 6001 } 6002 6003 /* Expects you to already be holding tl_inode->i_mutex */ 6004 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb) 6005 { 6006 int status; 6007 unsigned int num_to_flush; 6008 struct inode *tl_inode = osb->osb_tl_inode; 6009 struct inode *data_alloc_inode = NULL; 6010 struct buffer_head *tl_bh = osb->osb_tl_bh; 6011 struct buffer_head *data_alloc_bh = NULL; 6012 struct ocfs2_dinode *di; 6013 struct ocfs2_truncate_log *tl; 6014 6015 BUG_ON(inode_trylock(tl_inode)); 6016 6017 di = (struct ocfs2_dinode *) tl_bh->b_data; 6018 6019 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 6020 * by the underlying call to ocfs2_read_inode_block(), so any 6021 * corruption is a code bug */ 6022 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 6023 6024 tl = &di->id2.i_dealloc; 6025 num_to_flush = le16_to_cpu(tl->tl_used); 6026 trace_ocfs2_flush_truncate_log( 6027 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 6028 num_to_flush); 6029 if (!num_to_flush) { 6030 status = 0; 6031 goto out; 6032 } 6033 6034 data_alloc_inode = ocfs2_get_system_file_inode(osb, 6035 GLOBAL_BITMAP_SYSTEM_INODE, 6036 OCFS2_INVALID_SLOT); 6037 if (!data_alloc_inode) { 6038 status = -EINVAL; 6039 mlog(ML_ERROR, "Could not get bitmap inode!\n"); 6040 goto out; 6041 } 6042 6043 inode_lock(data_alloc_inode); 6044 6045 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1); 6046 if (status < 0) { 6047 mlog_errno(status); 6048 goto out_mutex; 6049 } 6050 6051 status = ocfs2_replay_truncate_records(osb, data_alloc_inode, 6052 data_alloc_bh); 6053 if (status < 0) 6054 mlog_errno(status); 6055 6056 brelse(data_alloc_bh); 6057 ocfs2_inode_unlock(data_alloc_inode, 1); 6058 6059 out_mutex: 6060 inode_unlock(data_alloc_inode); 6061 iput(data_alloc_inode); 6062 6063 out: 6064 return status; 6065 } 6066 6067 int ocfs2_flush_truncate_log(struct ocfs2_super *osb) 6068 { 6069 int status; 6070 struct inode *tl_inode = osb->osb_tl_inode; 6071 6072 inode_lock(tl_inode); 6073 status = __ocfs2_flush_truncate_log(osb); 6074 inode_unlock(tl_inode); 6075 6076 return status; 6077 } 6078 6079 static void ocfs2_truncate_log_worker(struct work_struct *work) 6080 { 6081 int status; 6082 struct ocfs2_super *osb = 6083 container_of(work, struct ocfs2_super, 6084 osb_truncate_log_wq.work); 6085 6086 status = ocfs2_flush_truncate_log(osb); 6087 if (status < 0) 6088 mlog_errno(status); 6089 else 6090 ocfs2_init_steal_slots(osb); 6091 } 6092 6093 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ) 6094 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb, 6095 int cancel) 6096 { 6097 if (osb->osb_tl_inode && 6098 atomic_read(&osb->osb_tl_disable) == 0) { 6099 /* We want to push off log flushes while truncates are 6100 * still running. */ 6101 if (cancel) 6102 cancel_delayed_work(&osb->osb_truncate_log_wq); 6103 6104 queue_delayed_work(osb->ocfs2_wq, &osb->osb_truncate_log_wq, 6105 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL); 6106 } 6107 } 6108 6109 /* 6110 * Try to flush truncate logs if we can free enough clusters from it. 6111 * As for return value, "< 0" means error, "0" no space and "1" means 6112 * we have freed enough spaces and let the caller try to allocate again. 6113 */ 6114 int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb, 6115 unsigned int needed) 6116 { 6117 tid_t target; 6118 int ret = 0; 6119 unsigned int truncated_clusters; 6120 6121 inode_lock(osb->osb_tl_inode); 6122 truncated_clusters = osb->truncated_clusters; 6123 inode_unlock(osb->osb_tl_inode); 6124 6125 /* 6126 * Check whether we can succeed in allocating if we free 6127 * the truncate log. 6128 */ 6129 if (truncated_clusters < needed) 6130 goto out; 6131 6132 ret = ocfs2_flush_truncate_log(osb); 6133 if (ret) { 6134 mlog_errno(ret); 6135 goto out; 6136 } 6137 6138 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) { 6139 jbd2_log_wait_commit(osb->journal->j_journal, target); 6140 ret = 1; 6141 } 6142 out: 6143 return ret; 6144 } 6145 6146 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb, 6147 int slot_num, 6148 struct inode **tl_inode, 6149 struct buffer_head **tl_bh) 6150 { 6151 int status; 6152 struct inode *inode = NULL; 6153 struct buffer_head *bh = NULL; 6154 6155 inode = ocfs2_get_system_file_inode(osb, 6156 TRUNCATE_LOG_SYSTEM_INODE, 6157 slot_num); 6158 if (!inode) { 6159 status = -EINVAL; 6160 mlog(ML_ERROR, "Could not get load truncate log inode!\n"); 6161 goto bail; 6162 } 6163 6164 status = ocfs2_read_inode_block(inode, &bh); 6165 if (status < 0) { 6166 iput(inode); 6167 mlog_errno(status); 6168 goto bail; 6169 } 6170 6171 *tl_inode = inode; 6172 *tl_bh = bh; 6173 bail: 6174 return status; 6175 } 6176 6177 /* called during the 1st stage of node recovery. we stamp a clean 6178 * truncate log and pass back a copy for processing later. if the 6179 * truncate log does not require processing, a *tl_copy is set to 6180 * NULL. */ 6181 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb, 6182 int slot_num, 6183 struct ocfs2_dinode **tl_copy) 6184 { 6185 int status; 6186 struct inode *tl_inode = NULL; 6187 struct buffer_head *tl_bh = NULL; 6188 struct ocfs2_dinode *di; 6189 struct ocfs2_truncate_log *tl; 6190 6191 *tl_copy = NULL; 6192 6193 trace_ocfs2_begin_truncate_log_recovery(slot_num); 6194 6195 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh); 6196 if (status < 0) { 6197 mlog_errno(status); 6198 goto bail; 6199 } 6200 6201 di = (struct ocfs2_dinode *) tl_bh->b_data; 6202 6203 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's 6204 * validated by the underlying call to ocfs2_read_inode_block(), 6205 * so any corruption is a code bug */ 6206 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 6207 6208 tl = &di->id2.i_dealloc; 6209 if (le16_to_cpu(tl->tl_used)) { 6210 trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl->tl_used)); 6211 6212 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL); 6213 if (!(*tl_copy)) { 6214 status = -ENOMEM; 6215 mlog_errno(status); 6216 goto bail; 6217 } 6218 6219 /* Assuming the write-out below goes well, this copy 6220 * will be passed back to recovery for processing. */ 6221 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size); 6222 6223 /* All we need to do to clear the truncate log is set 6224 * tl_used. */ 6225 tl->tl_used = 0; 6226 6227 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check); 6228 status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode)); 6229 if (status < 0) { 6230 mlog_errno(status); 6231 goto bail; 6232 } 6233 } 6234 6235 bail: 6236 iput(tl_inode); 6237 brelse(tl_bh); 6238 6239 if (status < 0) { 6240 kfree(*tl_copy); 6241 *tl_copy = NULL; 6242 mlog_errno(status); 6243 } 6244 6245 return status; 6246 } 6247 6248 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb, 6249 struct ocfs2_dinode *tl_copy) 6250 { 6251 int status = 0; 6252 int i; 6253 unsigned int clusters, num_recs, start_cluster; 6254 u64 start_blk; 6255 handle_t *handle; 6256 struct inode *tl_inode = osb->osb_tl_inode; 6257 struct ocfs2_truncate_log *tl; 6258 6259 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) { 6260 mlog(ML_ERROR, "Asked to recover my own truncate log!\n"); 6261 return -EINVAL; 6262 } 6263 6264 tl = &tl_copy->id2.i_dealloc; 6265 num_recs = le16_to_cpu(tl->tl_used); 6266 trace_ocfs2_complete_truncate_log_recovery( 6267 (unsigned long long)le64_to_cpu(tl_copy->i_blkno), 6268 num_recs); 6269 6270 inode_lock(tl_inode); 6271 for(i = 0; i < num_recs; i++) { 6272 if (ocfs2_truncate_log_needs_flush(osb)) { 6273 status = __ocfs2_flush_truncate_log(osb); 6274 if (status < 0) { 6275 mlog_errno(status); 6276 goto bail_up; 6277 } 6278 } 6279 6280 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6281 if (IS_ERR(handle)) { 6282 status = PTR_ERR(handle); 6283 mlog_errno(status); 6284 goto bail_up; 6285 } 6286 6287 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters); 6288 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start); 6289 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster); 6290 6291 status = ocfs2_truncate_log_append(osb, handle, 6292 start_blk, clusters); 6293 ocfs2_commit_trans(osb, handle); 6294 if (status < 0) { 6295 mlog_errno(status); 6296 goto bail_up; 6297 } 6298 } 6299 6300 bail_up: 6301 inode_unlock(tl_inode); 6302 6303 return status; 6304 } 6305 6306 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb) 6307 { 6308 int status; 6309 struct inode *tl_inode = osb->osb_tl_inode; 6310 6311 atomic_set(&osb->osb_tl_disable, 1); 6312 6313 if (tl_inode) { 6314 cancel_delayed_work(&osb->osb_truncate_log_wq); 6315 flush_workqueue(osb->ocfs2_wq); 6316 6317 status = ocfs2_flush_truncate_log(osb); 6318 if (status < 0) 6319 mlog_errno(status); 6320 6321 brelse(osb->osb_tl_bh); 6322 iput(osb->osb_tl_inode); 6323 } 6324 } 6325 6326 int ocfs2_truncate_log_init(struct ocfs2_super *osb) 6327 { 6328 int status; 6329 struct inode *tl_inode = NULL; 6330 struct buffer_head *tl_bh = NULL; 6331 6332 status = ocfs2_get_truncate_log_info(osb, 6333 osb->slot_num, 6334 &tl_inode, 6335 &tl_bh); 6336 if (status < 0) 6337 mlog_errno(status); 6338 6339 /* ocfs2_truncate_log_shutdown keys on the existence of 6340 * osb->osb_tl_inode so we don't set any of the osb variables 6341 * until we're sure all is well. */ 6342 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq, 6343 ocfs2_truncate_log_worker); 6344 atomic_set(&osb->osb_tl_disable, 0); 6345 osb->osb_tl_bh = tl_bh; 6346 osb->osb_tl_inode = tl_inode; 6347 6348 return status; 6349 } 6350 6351 /* 6352 * Delayed de-allocation of suballocator blocks. 6353 * 6354 * Some sets of block de-allocations might involve multiple suballocator inodes. 6355 * 6356 * The locking for this can get extremely complicated, especially when 6357 * the suballocator inodes to delete from aren't known until deep 6358 * within an unrelated codepath. 6359 * 6360 * ocfs2_extent_block structures are a good example of this - an inode 6361 * btree could have been grown by any number of nodes each allocating 6362 * out of their own suballoc inode. 6363 * 6364 * These structures allow the delay of block de-allocation until a 6365 * later time, when locking of multiple cluster inodes won't cause 6366 * deadlock. 6367 */ 6368 6369 /* 6370 * Describe a single bit freed from a suballocator. For the block 6371 * suballocators, it represents one block. For the global cluster 6372 * allocator, it represents some clusters and free_bit indicates 6373 * clusters number. 6374 */ 6375 struct ocfs2_cached_block_free { 6376 struct ocfs2_cached_block_free *free_next; 6377 u64 free_bg; 6378 u64 free_blk; 6379 unsigned int free_bit; 6380 }; 6381 6382 struct ocfs2_per_slot_free_list { 6383 struct ocfs2_per_slot_free_list *f_next_suballocator; 6384 int f_inode_type; 6385 int f_slot; 6386 struct ocfs2_cached_block_free *f_first; 6387 }; 6388 6389 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb, 6390 int sysfile_type, 6391 int slot, 6392 struct ocfs2_cached_block_free *head) 6393 { 6394 int ret; 6395 u64 bg_blkno; 6396 handle_t *handle; 6397 struct inode *inode; 6398 struct buffer_head *di_bh = NULL; 6399 struct ocfs2_cached_block_free *tmp; 6400 6401 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot); 6402 if (!inode) { 6403 ret = -EINVAL; 6404 mlog_errno(ret); 6405 goto out; 6406 } 6407 6408 inode_lock(inode); 6409 6410 ret = ocfs2_inode_lock(inode, &di_bh, 1); 6411 if (ret) { 6412 mlog_errno(ret); 6413 goto out_mutex; 6414 } 6415 6416 while (head) { 6417 if (head->free_bg) 6418 bg_blkno = head->free_bg; 6419 else 6420 bg_blkno = ocfs2_which_suballoc_group(head->free_blk, 6421 head->free_bit); 6422 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE); 6423 if (IS_ERR(handle)) { 6424 ret = PTR_ERR(handle); 6425 mlog_errno(ret); 6426 goto out_unlock; 6427 } 6428 6429 trace_ocfs2_free_cached_blocks( 6430 (unsigned long long)head->free_blk, head->free_bit); 6431 6432 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh, 6433 head->free_bit, bg_blkno, 1); 6434 if (ret) 6435 mlog_errno(ret); 6436 6437 ocfs2_commit_trans(osb, handle); 6438 6439 tmp = head; 6440 head = head->free_next; 6441 kfree(tmp); 6442 } 6443 6444 out_unlock: 6445 ocfs2_inode_unlock(inode, 1); 6446 brelse(di_bh); 6447 out_mutex: 6448 inode_unlock(inode); 6449 iput(inode); 6450 out: 6451 while(head) { 6452 /* Premature exit may have left some dangling items. */ 6453 tmp = head; 6454 head = head->free_next; 6455 kfree(tmp); 6456 } 6457 6458 return ret; 6459 } 6460 6461 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6462 u64 blkno, unsigned int bit) 6463 { 6464 int ret = 0; 6465 struct ocfs2_cached_block_free *item; 6466 6467 item = kzalloc(sizeof(*item), GFP_NOFS); 6468 if (item == NULL) { 6469 ret = -ENOMEM; 6470 mlog_errno(ret); 6471 return ret; 6472 } 6473 6474 trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno, bit); 6475 6476 item->free_blk = blkno; 6477 item->free_bit = bit; 6478 item->free_next = ctxt->c_global_allocator; 6479 6480 ctxt->c_global_allocator = item; 6481 return ret; 6482 } 6483 6484 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb, 6485 struct ocfs2_cached_block_free *head) 6486 { 6487 struct ocfs2_cached_block_free *tmp; 6488 struct inode *tl_inode = osb->osb_tl_inode; 6489 handle_t *handle; 6490 int ret = 0; 6491 6492 inode_lock(tl_inode); 6493 6494 while (head) { 6495 if (ocfs2_truncate_log_needs_flush(osb)) { 6496 ret = __ocfs2_flush_truncate_log(osb); 6497 if (ret < 0) { 6498 mlog_errno(ret); 6499 break; 6500 } 6501 } 6502 6503 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6504 if (IS_ERR(handle)) { 6505 ret = PTR_ERR(handle); 6506 mlog_errno(ret); 6507 break; 6508 } 6509 6510 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk, 6511 head->free_bit); 6512 6513 ocfs2_commit_trans(osb, handle); 6514 tmp = head; 6515 head = head->free_next; 6516 kfree(tmp); 6517 6518 if (ret < 0) { 6519 mlog_errno(ret); 6520 break; 6521 } 6522 } 6523 6524 inode_unlock(tl_inode); 6525 6526 while (head) { 6527 /* Premature exit may have left some dangling items. */ 6528 tmp = head; 6529 head = head->free_next; 6530 kfree(tmp); 6531 } 6532 6533 return ret; 6534 } 6535 6536 int ocfs2_run_deallocs(struct ocfs2_super *osb, 6537 struct ocfs2_cached_dealloc_ctxt *ctxt) 6538 { 6539 int ret = 0, ret2; 6540 struct ocfs2_per_slot_free_list *fl; 6541 6542 if (!ctxt) 6543 return 0; 6544 6545 while (ctxt->c_first_suballocator) { 6546 fl = ctxt->c_first_suballocator; 6547 6548 if (fl->f_first) { 6549 trace_ocfs2_run_deallocs(fl->f_inode_type, 6550 fl->f_slot); 6551 ret2 = ocfs2_free_cached_blocks(osb, 6552 fl->f_inode_type, 6553 fl->f_slot, 6554 fl->f_first); 6555 if (ret2) 6556 mlog_errno(ret2); 6557 if (!ret) 6558 ret = ret2; 6559 } 6560 6561 ctxt->c_first_suballocator = fl->f_next_suballocator; 6562 kfree(fl); 6563 } 6564 6565 if (ctxt->c_global_allocator) { 6566 ret2 = ocfs2_free_cached_clusters(osb, 6567 ctxt->c_global_allocator); 6568 if (ret2) 6569 mlog_errno(ret2); 6570 if (!ret) 6571 ret = ret2; 6572 6573 ctxt->c_global_allocator = NULL; 6574 } 6575 6576 return ret; 6577 } 6578 6579 static struct ocfs2_per_slot_free_list * 6580 ocfs2_find_per_slot_free_list(int type, 6581 int slot, 6582 struct ocfs2_cached_dealloc_ctxt *ctxt) 6583 { 6584 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; 6585 6586 while (fl) { 6587 if (fl->f_inode_type == type && fl->f_slot == slot) 6588 return fl; 6589 6590 fl = fl->f_next_suballocator; 6591 } 6592 6593 fl = kmalloc(sizeof(*fl), GFP_NOFS); 6594 if (fl) { 6595 fl->f_inode_type = type; 6596 fl->f_slot = slot; 6597 fl->f_first = NULL; 6598 fl->f_next_suballocator = ctxt->c_first_suballocator; 6599 6600 ctxt->c_first_suballocator = fl; 6601 } 6602 return fl; 6603 } 6604 6605 static struct ocfs2_per_slot_free_list * 6606 ocfs2_find_preferred_free_list(int type, 6607 int preferred_slot, 6608 int *real_slot, 6609 struct ocfs2_cached_dealloc_ctxt *ctxt) 6610 { 6611 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; 6612 6613 while (fl) { 6614 if (fl->f_inode_type == type && fl->f_slot == preferred_slot) { 6615 *real_slot = fl->f_slot; 6616 return fl; 6617 } 6618 6619 fl = fl->f_next_suballocator; 6620 } 6621 6622 /* If we can't find any free list matching preferred slot, just use 6623 * the first one. 6624 */ 6625 fl = ctxt->c_first_suballocator; 6626 *real_slot = fl->f_slot; 6627 6628 return fl; 6629 } 6630 6631 /* Return Value 1 indicates empty */ 6632 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree *et) 6633 { 6634 struct ocfs2_per_slot_free_list *fl = NULL; 6635 6636 if (!et->et_dealloc) 6637 return 1; 6638 6639 fl = et->et_dealloc->c_first_suballocator; 6640 if (!fl) 6641 return 1; 6642 6643 if (!fl->f_first) 6644 return 1; 6645 6646 return 0; 6647 } 6648 6649 /* If extent was deleted from tree due to extent rotation and merging, and 6650 * no metadata is reserved ahead of time. Try to reuse some extents 6651 * just deleted. This is only used to reuse extent blocks. 6652 * It is supposed to find enough extent blocks in dealloc if our estimation 6653 * on metadata is accurate. 6654 */ 6655 static int ocfs2_reuse_blk_from_dealloc(handle_t *handle, 6656 struct ocfs2_extent_tree *et, 6657 struct buffer_head **new_eb_bh, 6658 int blk_wanted, int *blk_given) 6659 { 6660 int i, status = 0, real_slot; 6661 struct ocfs2_cached_dealloc_ctxt *dealloc; 6662 struct ocfs2_per_slot_free_list *fl; 6663 struct ocfs2_cached_block_free *bf; 6664 struct ocfs2_extent_block *eb; 6665 struct ocfs2_super *osb = 6666 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 6667 6668 *blk_given = 0; 6669 6670 /* If extent tree doesn't have a dealloc, this is not faulty. Just 6671 * tell upper caller dealloc can't provide any block and it should 6672 * ask for alloc to claim more space. 6673 */ 6674 dealloc = et->et_dealloc; 6675 if (!dealloc) 6676 goto bail; 6677 6678 for (i = 0; i < blk_wanted; i++) { 6679 /* Prefer to use local slot */ 6680 fl = ocfs2_find_preferred_free_list(EXTENT_ALLOC_SYSTEM_INODE, 6681 osb->slot_num, &real_slot, 6682 dealloc); 6683 /* If no more block can be reused, we should claim more 6684 * from alloc. Just return here normally. 6685 */ 6686 if (!fl) { 6687 status = 0; 6688 break; 6689 } 6690 6691 bf = fl->f_first; 6692 fl->f_first = bf->free_next; 6693 6694 new_eb_bh[i] = sb_getblk(osb->sb, bf->free_blk); 6695 if (new_eb_bh[i] == NULL) { 6696 status = -ENOMEM; 6697 mlog_errno(status); 6698 goto bail; 6699 } 6700 6701 mlog(0, "Reusing block(%llu) from " 6702 "dealloc(local slot:%d, real slot:%d)\n", 6703 bf->free_blk, osb->slot_num, real_slot); 6704 6705 ocfs2_set_new_buffer_uptodate(et->et_ci, new_eb_bh[i]); 6706 6707 status = ocfs2_journal_access_eb(handle, et->et_ci, 6708 new_eb_bh[i], 6709 OCFS2_JOURNAL_ACCESS_CREATE); 6710 if (status < 0) { 6711 mlog_errno(status); 6712 goto bail; 6713 } 6714 6715 memset(new_eb_bh[i]->b_data, 0, osb->sb->s_blocksize); 6716 eb = (struct ocfs2_extent_block *) new_eb_bh[i]->b_data; 6717 6718 /* We can't guarantee that buffer head is still cached, so 6719 * polutlate the extent block again. 6720 */ 6721 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); 6722 eb->h_blkno = cpu_to_le64(bf->free_blk); 6723 eb->h_fs_generation = cpu_to_le32(osb->fs_generation); 6724 eb->h_suballoc_slot = cpu_to_le16(real_slot); 6725 eb->h_suballoc_loc = cpu_to_le64(bf->free_bg); 6726 eb->h_suballoc_bit = cpu_to_le16(bf->free_bit); 6727 eb->h_list.l_count = 6728 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); 6729 6730 /* We'll also be dirtied by the caller, so 6731 * this isn't absolutely necessary. 6732 */ 6733 ocfs2_journal_dirty(handle, new_eb_bh[i]); 6734 6735 if (!fl->f_first) { 6736 dealloc->c_first_suballocator = fl->f_next_suballocator; 6737 kfree(fl); 6738 } 6739 kfree(bf); 6740 } 6741 6742 *blk_given = i; 6743 6744 bail: 6745 if (unlikely(status < 0)) { 6746 for (i = 0; i < blk_wanted; i++) 6747 brelse(new_eb_bh[i]); 6748 } 6749 6750 return status; 6751 } 6752 6753 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6754 int type, int slot, u64 suballoc, 6755 u64 blkno, unsigned int bit) 6756 { 6757 int ret; 6758 struct ocfs2_per_slot_free_list *fl; 6759 struct ocfs2_cached_block_free *item; 6760 6761 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt); 6762 if (fl == NULL) { 6763 ret = -ENOMEM; 6764 mlog_errno(ret); 6765 goto out; 6766 } 6767 6768 item = kzalloc(sizeof(*item), GFP_NOFS); 6769 if (item == NULL) { 6770 ret = -ENOMEM; 6771 mlog_errno(ret); 6772 goto out; 6773 } 6774 6775 trace_ocfs2_cache_block_dealloc(type, slot, 6776 (unsigned long long)suballoc, 6777 (unsigned long long)blkno, bit); 6778 6779 item->free_bg = suballoc; 6780 item->free_blk = blkno; 6781 item->free_bit = bit; 6782 item->free_next = fl->f_first; 6783 6784 fl->f_first = item; 6785 6786 ret = 0; 6787 out: 6788 return ret; 6789 } 6790 6791 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 6792 struct ocfs2_extent_block *eb) 6793 { 6794 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE, 6795 le16_to_cpu(eb->h_suballoc_slot), 6796 le64_to_cpu(eb->h_suballoc_loc), 6797 le64_to_cpu(eb->h_blkno), 6798 le16_to_cpu(eb->h_suballoc_bit)); 6799 } 6800 6801 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh) 6802 { 6803 set_buffer_uptodate(bh); 6804 mark_buffer_dirty(bh); 6805 return 0; 6806 } 6807 6808 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle, 6809 unsigned int from, unsigned int to, 6810 struct page *page, int zero, u64 *phys) 6811 { 6812 int ret, partial = 0; 6813 6814 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0); 6815 if (ret) 6816 mlog_errno(ret); 6817 6818 if (zero) 6819 zero_user_segment(page, from, to); 6820 6821 /* 6822 * Need to set the buffers we zero'd into uptodate 6823 * here if they aren't - ocfs2_map_page_blocks() 6824 * might've skipped some 6825 */ 6826 ret = walk_page_buffers(handle, page_buffers(page), 6827 from, to, &partial, 6828 ocfs2_zero_func); 6829 if (ret < 0) 6830 mlog_errno(ret); 6831 else if (ocfs2_should_order_data(inode)) { 6832 ret = ocfs2_jbd2_file_inode(handle, inode); 6833 if (ret < 0) 6834 mlog_errno(ret); 6835 } 6836 6837 if (!partial) 6838 SetPageUptodate(page); 6839 6840 flush_dcache_page(page); 6841 } 6842 6843 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start, 6844 loff_t end, struct page **pages, 6845 int numpages, u64 phys, handle_t *handle) 6846 { 6847 int i; 6848 struct page *page; 6849 unsigned int from, to = PAGE_SIZE; 6850 struct super_block *sb = inode->i_sb; 6851 6852 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb))); 6853 6854 if (numpages == 0) 6855 goto out; 6856 6857 to = PAGE_SIZE; 6858 for(i = 0; i < numpages; i++) { 6859 page = pages[i]; 6860 6861 from = start & (PAGE_SIZE - 1); 6862 if ((end >> PAGE_SHIFT) == page->index) 6863 to = end & (PAGE_SIZE - 1); 6864 6865 BUG_ON(from > PAGE_SIZE); 6866 BUG_ON(to > PAGE_SIZE); 6867 6868 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1, 6869 &phys); 6870 6871 start = (page->index + 1) << PAGE_SHIFT; 6872 } 6873 out: 6874 if (pages) 6875 ocfs2_unlock_and_free_pages(pages, numpages); 6876 } 6877 6878 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end, 6879 struct page **pages, int *num) 6880 { 6881 int numpages, ret = 0; 6882 struct address_space *mapping = inode->i_mapping; 6883 unsigned long index; 6884 loff_t last_page_bytes; 6885 6886 BUG_ON(start > end); 6887 6888 numpages = 0; 6889 last_page_bytes = PAGE_ALIGN(end); 6890 index = start >> PAGE_SHIFT; 6891 do { 6892 pages[numpages] = find_or_create_page(mapping, index, GFP_NOFS); 6893 if (!pages[numpages]) { 6894 ret = -ENOMEM; 6895 mlog_errno(ret); 6896 goto out; 6897 } 6898 6899 numpages++; 6900 index++; 6901 } while (index < (last_page_bytes >> PAGE_SHIFT)); 6902 6903 out: 6904 if (ret != 0) { 6905 if (pages) 6906 ocfs2_unlock_and_free_pages(pages, numpages); 6907 numpages = 0; 6908 } 6909 6910 *num = numpages; 6911 6912 return ret; 6913 } 6914 6915 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end, 6916 struct page **pages, int *num) 6917 { 6918 struct super_block *sb = inode->i_sb; 6919 6920 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits != 6921 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits); 6922 6923 return ocfs2_grab_pages(inode, start, end, pages, num); 6924 } 6925 6926 /* 6927 * Zero the area past i_size but still within an allocated 6928 * cluster. This avoids exposing nonzero data on subsequent file 6929 * extends. 6930 * 6931 * We need to call this before i_size is updated on the inode because 6932 * otherwise block_write_full_page() will skip writeout of pages past 6933 * i_size. The new_i_size parameter is passed for this reason. 6934 */ 6935 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle, 6936 u64 range_start, u64 range_end) 6937 { 6938 int ret = 0, numpages; 6939 struct page **pages = NULL; 6940 u64 phys; 6941 unsigned int ext_flags; 6942 struct super_block *sb = inode->i_sb; 6943 6944 /* 6945 * File systems which don't support sparse files zero on every 6946 * extend. 6947 */ 6948 if (!ocfs2_sparse_alloc(OCFS2_SB(sb))) 6949 return 0; 6950 6951 pages = kcalloc(ocfs2_pages_per_cluster(sb), 6952 sizeof(struct page *), GFP_NOFS); 6953 if (pages == NULL) { 6954 ret = -ENOMEM; 6955 mlog_errno(ret); 6956 goto out; 6957 } 6958 6959 if (range_start == range_end) 6960 goto out; 6961 6962 ret = ocfs2_extent_map_get_blocks(inode, 6963 range_start >> sb->s_blocksize_bits, 6964 &phys, NULL, &ext_flags); 6965 if (ret) { 6966 mlog_errno(ret); 6967 goto out; 6968 } 6969 6970 /* 6971 * Tail is a hole, or is marked unwritten. In either case, we 6972 * can count on read and write to return/push zero's. 6973 */ 6974 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN) 6975 goto out; 6976 6977 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages, 6978 &numpages); 6979 if (ret) { 6980 mlog_errno(ret); 6981 goto out; 6982 } 6983 6984 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages, 6985 numpages, phys, handle); 6986 6987 /* 6988 * Initiate writeout of the pages we zero'd here. We don't 6989 * wait on them - the truncate_inode_pages() call later will 6990 * do that for us. 6991 */ 6992 ret = filemap_fdatawrite_range(inode->i_mapping, range_start, 6993 range_end - 1); 6994 if (ret) 6995 mlog_errno(ret); 6996 6997 out: 6998 kfree(pages); 6999 7000 return ret; 7001 } 7002 7003 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode, 7004 struct ocfs2_dinode *di) 7005 { 7006 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits; 7007 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size); 7008 7009 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL) 7010 memset(&di->id2, 0, blocksize - 7011 offsetof(struct ocfs2_dinode, id2) - 7012 xattrsize); 7013 else 7014 memset(&di->id2, 0, blocksize - 7015 offsetof(struct ocfs2_dinode, id2)); 7016 } 7017 7018 void ocfs2_dinode_new_extent_list(struct inode *inode, 7019 struct ocfs2_dinode *di) 7020 { 7021 ocfs2_zero_dinode_id2_with_xattr(inode, di); 7022 di->id2.i_list.l_tree_depth = 0; 7023 di->id2.i_list.l_next_free_rec = 0; 7024 di->id2.i_list.l_count = cpu_to_le16( 7025 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di)); 7026 } 7027 7028 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di) 7029 { 7030 struct ocfs2_inode_info *oi = OCFS2_I(inode); 7031 struct ocfs2_inline_data *idata = &di->id2.i_data; 7032 7033 spin_lock(&oi->ip_lock); 7034 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL; 7035 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 7036 spin_unlock(&oi->ip_lock); 7037 7038 /* 7039 * We clear the entire i_data structure here so that all 7040 * fields can be properly initialized. 7041 */ 7042 ocfs2_zero_dinode_id2_with_xattr(inode, di); 7043 7044 idata->id_count = cpu_to_le16( 7045 ocfs2_max_inline_data_with_xattr(inode->i_sb, di)); 7046 } 7047 7048 int ocfs2_convert_inline_data_to_extents(struct inode *inode, 7049 struct buffer_head *di_bh) 7050 { 7051 int ret, i, has_data, num_pages = 0; 7052 int need_free = 0; 7053 u32 bit_off, num; 7054 handle_t *handle; 7055 u64 uninitialized_var(block); 7056 struct ocfs2_inode_info *oi = OCFS2_I(inode); 7057 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 7058 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7059 struct ocfs2_alloc_context *data_ac = NULL; 7060 struct page **pages = NULL; 7061 loff_t end = osb->s_clustersize; 7062 struct ocfs2_extent_tree et; 7063 int did_quota = 0; 7064 7065 has_data = i_size_read(inode) ? 1 : 0; 7066 7067 if (has_data) { 7068 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb), 7069 sizeof(struct page *), GFP_NOFS); 7070 if (pages == NULL) { 7071 ret = -ENOMEM; 7072 mlog_errno(ret); 7073 return ret; 7074 } 7075 7076 ret = ocfs2_reserve_clusters(osb, 1, &data_ac); 7077 if (ret) { 7078 mlog_errno(ret); 7079 goto free_pages; 7080 } 7081 } 7082 7083 handle = ocfs2_start_trans(osb, 7084 ocfs2_inline_to_extents_credits(osb->sb)); 7085 if (IS_ERR(handle)) { 7086 ret = PTR_ERR(handle); 7087 mlog_errno(ret); 7088 goto out; 7089 } 7090 7091 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 7092 OCFS2_JOURNAL_ACCESS_WRITE); 7093 if (ret) { 7094 mlog_errno(ret); 7095 goto out_commit; 7096 } 7097 7098 if (has_data) { 7099 unsigned int page_end; 7100 u64 phys; 7101 7102 ret = dquot_alloc_space_nodirty(inode, 7103 ocfs2_clusters_to_bytes(osb->sb, 1)); 7104 if (ret) 7105 goto out_commit; 7106 did_quota = 1; 7107 7108 data_ac->ac_resv = &oi->ip_la_data_resv; 7109 7110 ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off, 7111 &num); 7112 if (ret) { 7113 mlog_errno(ret); 7114 goto out_commit; 7115 } 7116 7117 /* 7118 * Save two copies, one for insert, and one that can 7119 * be changed by ocfs2_map_and_dirty_page() below. 7120 */ 7121 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off); 7122 7123 /* 7124 * Non sparse file systems zero on extend, so no need 7125 * to do that now. 7126 */ 7127 if (!ocfs2_sparse_alloc(osb) && 7128 PAGE_SIZE < osb->s_clustersize) 7129 end = PAGE_SIZE; 7130 7131 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages); 7132 if (ret) { 7133 mlog_errno(ret); 7134 need_free = 1; 7135 goto out_commit; 7136 } 7137 7138 /* 7139 * This should populate the 1st page for us and mark 7140 * it up to date. 7141 */ 7142 ret = ocfs2_read_inline_data(inode, pages[0], di_bh); 7143 if (ret) { 7144 mlog_errno(ret); 7145 need_free = 1; 7146 goto out_unlock; 7147 } 7148 7149 page_end = PAGE_SIZE; 7150 if (PAGE_SIZE > osb->s_clustersize) 7151 page_end = osb->s_clustersize; 7152 7153 for (i = 0; i < num_pages; i++) 7154 ocfs2_map_and_dirty_page(inode, handle, 0, page_end, 7155 pages[i], i > 0, &phys); 7156 } 7157 7158 spin_lock(&oi->ip_lock); 7159 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL; 7160 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 7161 spin_unlock(&oi->ip_lock); 7162 7163 ocfs2_update_inode_fsync_trans(handle, inode, 1); 7164 ocfs2_dinode_new_extent_list(inode, di); 7165 7166 ocfs2_journal_dirty(handle, di_bh); 7167 7168 if (has_data) { 7169 /* 7170 * An error at this point should be extremely rare. If 7171 * this proves to be false, we could always re-build 7172 * the in-inode data from our pages. 7173 */ 7174 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 7175 ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL); 7176 if (ret) { 7177 mlog_errno(ret); 7178 need_free = 1; 7179 goto out_unlock; 7180 } 7181 7182 inode->i_blocks = ocfs2_inode_sector_count(inode); 7183 } 7184 7185 out_unlock: 7186 if (pages) 7187 ocfs2_unlock_and_free_pages(pages, num_pages); 7188 7189 out_commit: 7190 if (ret < 0 && did_quota) 7191 dquot_free_space_nodirty(inode, 7192 ocfs2_clusters_to_bytes(osb->sb, 1)); 7193 7194 if (need_free) { 7195 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL) 7196 ocfs2_free_local_alloc_bits(osb, handle, data_ac, 7197 bit_off, num); 7198 else 7199 ocfs2_free_clusters(handle, 7200 data_ac->ac_inode, 7201 data_ac->ac_bh, 7202 ocfs2_clusters_to_blocks(osb->sb, bit_off), 7203 num); 7204 } 7205 7206 ocfs2_commit_trans(osb, handle); 7207 7208 out: 7209 if (data_ac) 7210 ocfs2_free_alloc_context(data_ac); 7211 free_pages: 7212 kfree(pages); 7213 return ret; 7214 } 7215 7216 /* 7217 * It is expected, that by the time you call this function, 7218 * inode->i_size and fe->i_size have been adjusted. 7219 * 7220 * WARNING: This will kfree the truncate context 7221 */ 7222 int ocfs2_commit_truncate(struct ocfs2_super *osb, 7223 struct inode *inode, 7224 struct buffer_head *di_bh) 7225 { 7226 int status = 0, i, flags = 0; 7227 u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff; 7228 u64 blkno = 0; 7229 struct ocfs2_extent_list *el; 7230 struct ocfs2_extent_rec *rec; 7231 struct ocfs2_path *path = NULL; 7232 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7233 struct ocfs2_extent_list *root_el = &(di->id2.i_list); 7234 u64 refcount_loc = le64_to_cpu(di->i_refcount_loc); 7235 struct ocfs2_extent_tree et; 7236 struct ocfs2_cached_dealloc_ctxt dealloc; 7237 struct ocfs2_refcount_tree *ref_tree = NULL; 7238 7239 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 7240 ocfs2_init_dealloc_ctxt(&dealloc); 7241 7242 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb, 7243 i_size_read(inode)); 7244 7245 path = ocfs2_new_path(di_bh, &di->id2.i_list, 7246 ocfs2_journal_access_di); 7247 if (!path) { 7248 status = -ENOMEM; 7249 mlog_errno(status); 7250 goto bail; 7251 } 7252 7253 ocfs2_extent_map_trunc(inode, new_highest_cpos); 7254 7255 start: 7256 /* 7257 * Check that we still have allocation to delete. 7258 */ 7259 if (OCFS2_I(inode)->ip_clusters == 0) { 7260 status = 0; 7261 goto bail; 7262 } 7263 7264 /* 7265 * Truncate always works against the rightmost tree branch. 7266 */ 7267 status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX); 7268 if (status) { 7269 mlog_errno(status); 7270 goto bail; 7271 } 7272 7273 trace_ocfs2_commit_truncate( 7274 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7275 new_highest_cpos, 7276 OCFS2_I(inode)->ip_clusters, 7277 path->p_tree_depth); 7278 7279 /* 7280 * By now, el will point to the extent list on the bottom most 7281 * portion of this tree. Only the tail record is considered in 7282 * each pass. 7283 * 7284 * We handle the following cases, in order: 7285 * - empty extent: delete the remaining branch 7286 * - remove the entire record 7287 * - remove a partial record 7288 * - no record needs to be removed (truncate has completed) 7289 */ 7290 el = path_leaf_el(path); 7291 if (le16_to_cpu(el->l_next_free_rec) == 0) { 7292 ocfs2_error(inode->i_sb, 7293 "Inode %llu has empty extent block at %llu\n", 7294 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7295 (unsigned long long)path_leaf_bh(path)->b_blocknr); 7296 status = -EROFS; 7297 goto bail; 7298 } 7299 7300 i = le16_to_cpu(el->l_next_free_rec) - 1; 7301 rec = &el->l_recs[i]; 7302 flags = rec->e_flags; 7303 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 7304 7305 if (i == 0 && ocfs2_is_empty_extent(rec)) { 7306 /* 7307 * Lower levels depend on this never happening, but it's best 7308 * to check it up here before changing the tree. 7309 */ 7310 if (root_el->l_tree_depth && rec->e_int_clusters == 0) { 7311 mlog(ML_ERROR, "Inode %lu has an empty " 7312 "extent record, depth %u\n", inode->i_ino, 7313 le16_to_cpu(root_el->l_tree_depth)); 7314 status = ocfs2_remove_rightmost_empty_extent(osb, 7315 &et, path, &dealloc); 7316 if (status) { 7317 mlog_errno(status); 7318 goto bail; 7319 } 7320 7321 ocfs2_reinit_path(path, 1); 7322 goto start; 7323 } else { 7324 trunc_cpos = le32_to_cpu(rec->e_cpos); 7325 trunc_len = 0; 7326 blkno = 0; 7327 } 7328 } else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) { 7329 /* 7330 * Truncate entire record. 7331 */ 7332 trunc_cpos = le32_to_cpu(rec->e_cpos); 7333 trunc_len = ocfs2_rec_clusters(el, rec); 7334 blkno = le64_to_cpu(rec->e_blkno); 7335 } else if (range > new_highest_cpos) { 7336 /* 7337 * Partial truncate. it also should be 7338 * the last truncate we're doing. 7339 */ 7340 trunc_cpos = new_highest_cpos; 7341 trunc_len = range - new_highest_cpos; 7342 coff = new_highest_cpos - le32_to_cpu(rec->e_cpos); 7343 blkno = le64_to_cpu(rec->e_blkno) + 7344 ocfs2_clusters_to_blocks(inode->i_sb, coff); 7345 } else { 7346 /* 7347 * Truncate completed, leave happily. 7348 */ 7349 status = 0; 7350 goto bail; 7351 } 7352 7353 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 7354 7355 if ((flags & OCFS2_EXT_REFCOUNTED) && trunc_len && !ref_tree) { 7356 status = ocfs2_lock_refcount_tree(osb, refcount_loc, 1, 7357 &ref_tree, NULL); 7358 if (status) { 7359 mlog_errno(status); 7360 goto bail; 7361 } 7362 } 7363 7364 status = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 7365 phys_cpos, trunc_len, flags, &dealloc, 7366 refcount_loc, true); 7367 if (status < 0) { 7368 mlog_errno(status); 7369 goto bail; 7370 } 7371 7372 ocfs2_reinit_path(path, 1); 7373 7374 /* 7375 * The check above will catch the case where we've truncated 7376 * away all allocation. 7377 */ 7378 goto start; 7379 7380 bail: 7381 if (ref_tree) 7382 ocfs2_unlock_refcount_tree(osb, ref_tree, 1); 7383 7384 ocfs2_schedule_truncate_log_flush(osb, 1); 7385 7386 ocfs2_run_deallocs(osb, &dealloc); 7387 7388 ocfs2_free_path(path); 7389 7390 return status; 7391 } 7392 7393 /* 7394 * 'start' is inclusive, 'end' is not. 7395 */ 7396 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh, 7397 unsigned int start, unsigned int end, int trunc) 7398 { 7399 int ret; 7400 unsigned int numbytes; 7401 handle_t *handle; 7402 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 7403 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7404 struct ocfs2_inline_data *idata = &di->id2.i_data; 7405 7406 if (end > i_size_read(inode)) 7407 end = i_size_read(inode); 7408 7409 BUG_ON(start > end); 7410 7411 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) || 7412 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) || 7413 !ocfs2_supports_inline_data(osb)) { 7414 ocfs2_error(inode->i_sb, 7415 "Inline data flags for inode %llu don't agree! Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n", 7416 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7417 le16_to_cpu(di->i_dyn_features), 7418 OCFS2_I(inode)->ip_dyn_features, 7419 osb->s_feature_incompat); 7420 ret = -EROFS; 7421 goto out; 7422 } 7423 7424 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 7425 if (IS_ERR(handle)) { 7426 ret = PTR_ERR(handle); 7427 mlog_errno(ret); 7428 goto out; 7429 } 7430 7431 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 7432 OCFS2_JOURNAL_ACCESS_WRITE); 7433 if (ret) { 7434 mlog_errno(ret); 7435 goto out_commit; 7436 } 7437 7438 numbytes = end - start; 7439 memset(idata->id_data + start, 0, numbytes); 7440 7441 /* 7442 * No need to worry about the data page here - it's been 7443 * truncated already and inline data doesn't need it for 7444 * pushing zero's to disk, so we'll let readpage pick it up 7445 * later. 7446 */ 7447 if (trunc) { 7448 i_size_write(inode, start); 7449 di->i_size = cpu_to_le64(start); 7450 } 7451 7452 inode->i_blocks = ocfs2_inode_sector_count(inode); 7453 inode->i_ctime = inode->i_mtime = current_time(inode); 7454 7455 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 7456 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 7457 7458 ocfs2_update_inode_fsync_trans(handle, inode, 1); 7459 ocfs2_journal_dirty(handle, di_bh); 7460 7461 out_commit: 7462 ocfs2_commit_trans(osb, handle); 7463 7464 out: 7465 return ret; 7466 } 7467 7468 static int ocfs2_trim_extent(struct super_block *sb, 7469 struct ocfs2_group_desc *gd, 7470 u64 group, u32 start, u32 count) 7471 { 7472 u64 discard, bcount; 7473 struct ocfs2_super *osb = OCFS2_SB(sb); 7474 7475 bcount = ocfs2_clusters_to_blocks(sb, count); 7476 discard = ocfs2_clusters_to_blocks(sb, start); 7477 7478 /* 7479 * For the first cluster group, the gd->bg_blkno is not at the start 7480 * of the group, but at an offset from the start. If we add it while 7481 * calculating discard for first group, we will wrongly start fstrim a 7482 * few blocks after the desried start block and the range can cross 7483 * over into the next cluster group. So, add it only if this is not 7484 * the first cluster group. 7485 */ 7486 if (group != osb->first_cluster_group_blkno) 7487 discard += le64_to_cpu(gd->bg_blkno); 7488 7489 trace_ocfs2_trim_extent(sb, (unsigned long long)discard, bcount); 7490 7491 return sb_issue_discard(sb, discard, bcount, GFP_NOFS, 0); 7492 } 7493 7494 static int ocfs2_trim_group(struct super_block *sb, 7495 struct ocfs2_group_desc *gd, u64 group, 7496 u32 start, u32 max, u32 minbits) 7497 { 7498 int ret = 0, count = 0, next; 7499 void *bitmap = gd->bg_bitmap; 7500 7501 if (le16_to_cpu(gd->bg_free_bits_count) < minbits) 7502 return 0; 7503 7504 trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd->bg_blkno), 7505 start, max, minbits); 7506 7507 while (start < max) { 7508 start = ocfs2_find_next_zero_bit(bitmap, max, start); 7509 if (start >= max) 7510 break; 7511 next = ocfs2_find_next_bit(bitmap, max, start); 7512 7513 if ((next - start) >= minbits) { 7514 ret = ocfs2_trim_extent(sb, gd, group, 7515 start, next - start); 7516 if (ret < 0) { 7517 mlog_errno(ret); 7518 break; 7519 } 7520 count += next - start; 7521 } 7522 start = next + 1; 7523 7524 if (fatal_signal_pending(current)) { 7525 count = -ERESTARTSYS; 7526 break; 7527 } 7528 7529 if ((le16_to_cpu(gd->bg_free_bits_count) - count) < minbits) 7530 break; 7531 } 7532 7533 if (ret < 0) 7534 count = ret; 7535 7536 return count; 7537 } 7538 7539 int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range) 7540 { 7541 struct ocfs2_super *osb = OCFS2_SB(sb); 7542 u64 start, len, trimmed, first_group, last_group, group; 7543 int ret, cnt; 7544 u32 first_bit, last_bit, minlen; 7545 struct buffer_head *main_bm_bh = NULL; 7546 struct inode *main_bm_inode = NULL; 7547 struct buffer_head *gd_bh = NULL; 7548 struct ocfs2_dinode *main_bm; 7549 struct ocfs2_group_desc *gd = NULL; 7550 struct ocfs2_trim_fs_info info, *pinfo = NULL; 7551 7552 start = range->start >> osb->s_clustersize_bits; 7553 len = range->len >> osb->s_clustersize_bits; 7554 minlen = range->minlen >> osb->s_clustersize_bits; 7555 7556 if (minlen >= osb->bitmap_cpg || range->len < sb->s_blocksize) 7557 return -EINVAL; 7558 7559 main_bm_inode = ocfs2_get_system_file_inode(osb, 7560 GLOBAL_BITMAP_SYSTEM_INODE, 7561 OCFS2_INVALID_SLOT); 7562 if (!main_bm_inode) { 7563 ret = -EIO; 7564 mlog_errno(ret); 7565 goto out; 7566 } 7567 7568 inode_lock(main_bm_inode); 7569 7570 ret = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 0); 7571 if (ret < 0) { 7572 mlog_errno(ret); 7573 goto out_mutex; 7574 } 7575 main_bm = (struct ocfs2_dinode *)main_bm_bh->b_data; 7576 7577 if (start >= le32_to_cpu(main_bm->i_clusters)) { 7578 ret = -EINVAL; 7579 goto out_unlock; 7580 } 7581 7582 len = range->len >> osb->s_clustersize_bits; 7583 if (start + len > le32_to_cpu(main_bm->i_clusters)) 7584 len = le32_to_cpu(main_bm->i_clusters) - start; 7585 7586 trace_ocfs2_trim_fs(start, len, minlen); 7587 7588 ocfs2_trim_fs_lock_res_init(osb); 7589 ret = ocfs2_trim_fs_lock(osb, NULL, 1); 7590 if (ret < 0) { 7591 if (ret != -EAGAIN) { 7592 mlog_errno(ret); 7593 ocfs2_trim_fs_lock_res_uninit(osb); 7594 goto out_unlock; 7595 } 7596 7597 mlog(ML_NOTICE, "Wait for trim on device (%s) to " 7598 "finish, which is running from another node.\n", 7599 osb->dev_str); 7600 ret = ocfs2_trim_fs_lock(osb, &info, 0); 7601 if (ret < 0) { 7602 mlog_errno(ret); 7603 ocfs2_trim_fs_lock_res_uninit(osb); 7604 goto out_unlock; 7605 } 7606 7607 if (info.tf_valid && info.tf_success && 7608 info.tf_start == start && info.tf_len == len && 7609 info.tf_minlen == minlen) { 7610 /* Avoid sending duplicated trim to a shared device */ 7611 mlog(ML_NOTICE, "The same trim on device (%s) was " 7612 "just done from node (%u), return.\n", 7613 osb->dev_str, info.tf_nodenum); 7614 range->len = info.tf_trimlen; 7615 goto out_trimunlock; 7616 } 7617 } 7618 7619 info.tf_nodenum = osb->node_num; 7620 info.tf_start = start; 7621 info.tf_len = len; 7622 info.tf_minlen = minlen; 7623 7624 /* Determine first and last group to examine based on start and len */ 7625 first_group = ocfs2_which_cluster_group(main_bm_inode, start); 7626 if (first_group == osb->first_cluster_group_blkno) 7627 first_bit = start; 7628 else 7629 first_bit = start - ocfs2_blocks_to_clusters(sb, first_group); 7630 last_group = ocfs2_which_cluster_group(main_bm_inode, start + len - 1); 7631 last_bit = osb->bitmap_cpg; 7632 7633 trimmed = 0; 7634 for (group = first_group; group <= last_group;) { 7635 if (first_bit + len >= osb->bitmap_cpg) 7636 last_bit = osb->bitmap_cpg; 7637 else 7638 last_bit = first_bit + len; 7639 7640 ret = ocfs2_read_group_descriptor(main_bm_inode, 7641 main_bm, group, 7642 &gd_bh); 7643 if (ret < 0) { 7644 mlog_errno(ret); 7645 break; 7646 } 7647 7648 gd = (struct ocfs2_group_desc *)gd_bh->b_data; 7649 cnt = ocfs2_trim_group(sb, gd, group, 7650 first_bit, last_bit, minlen); 7651 brelse(gd_bh); 7652 gd_bh = NULL; 7653 if (cnt < 0) { 7654 ret = cnt; 7655 mlog_errno(ret); 7656 break; 7657 } 7658 7659 trimmed += cnt; 7660 len -= osb->bitmap_cpg - first_bit; 7661 first_bit = 0; 7662 if (group == osb->first_cluster_group_blkno) 7663 group = ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg); 7664 else 7665 group += ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg); 7666 } 7667 range->len = trimmed * sb->s_blocksize; 7668 7669 info.tf_trimlen = range->len; 7670 info.tf_success = (ret ? 0 : 1); 7671 pinfo = &info; 7672 out_trimunlock: 7673 ocfs2_trim_fs_unlock(osb, pinfo); 7674 ocfs2_trim_fs_lock_res_uninit(osb); 7675 out_unlock: 7676 ocfs2_inode_unlock(main_bm_inode, 0); 7677 brelse(main_bm_bh); 7678 out_mutex: 7679 inode_unlock(main_bm_inode); 7680 iput(main_bm_inode); 7681 out: 7682 return ret; 7683 } 7684