1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * alloc.c 5 * 6 * Extent allocs and frees 7 * 8 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/swap.h> 31 #include <linux/quotaops.h> 32 #include <linux/blkdev.h> 33 34 #include <cluster/masklog.h> 35 36 #include "ocfs2.h" 37 38 #include "alloc.h" 39 #include "aops.h" 40 #include "blockcheck.h" 41 #include "dlmglue.h" 42 #include "extent_map.h" 43 #include "inode.h" 44 #include "journal.h" 45 #include "localalloc.h" 46 #include "suballoc.h" 47 #include "sysfile.h" 48 #include "file.h" 49 #include "super.h" 50 #include "uptodate.h" 51 #include "xattr.h" 52 #include "refcounttree.h" 53 #include "ocfs2_trace.h" 54 55 #include "buffer_head_io.h" 56 57 enum ocfs2_contig_type { 58 CONTIG_NONE = 0, 59 CONTIG_LEFT, 60 CONTIG_RIGHT, 61 CONTIG_LEFTRIGHT, 62 }; 63 64 static enum ocfs2_contig_type 65 ocfs2_extent_rec_contig(struct super_block *sb, 66 struct ocfs2_extent_rec *ext, 67 struct ocfs2_extent_rec *insert_rec); 68 /* 69 * Operations for a specific extent tree type. 70 * 71 * To implement an on-disk btree (extent tree) type in ocfs2, add 72 * an ocfs2_extent_tree_operations structure and the matching 73 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it 74 * for the allocation portion of the extent tree. 75 */ 76 struct ocfs2_extent_tree_operations { 77 /* 78 * last_eb_blk is the block number of the right most leaf extent 79 * block. Most on-disk structures containing an extent tree store 80 * this value for fast access. The ->eo_set_last_eb_blk() and 81 * ->eo_get_last_eb_blk() operations access this value. They are 82 * both required. 83 */ 84 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et, 85 u64 blkno); 86 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et); 87 88 /* 89 * The on-disk structure usually keeps track of how many total 90 * clusters are stored in this extent tree. This function updates 91 * that value. new_clusters is the delta, and must be 92 * added to the total. Required. 93 */ 94 void (*eo_update_clusters)(struct ocfs2_extent_tree *et, 95 u32 new_clusters); 96 97 /* 98 * If this extent tree is supported by an extent map, insert 99 * a record into the map. 100 */ 101 void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et, 102 struct ocfs2_extent_rec *rec); 103 104 /* 105 * If this extent tree is supported by an extent map, truncate the 106 * map to clusters, 107 */ 108 void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et, 109 u32 clusters); 110 111 /* 112 * If ->eo_insert_check() exists, it is called before rec is 113 * inserted into the extent tree. It is optional. 114 */ 115 int (*eo_insert_check)(struct ocfs2_extent_tree *et, 116 struct ocfs2_extent_rec *rec); 117 int (*eo_sanity_check)(struct ocfs2_extent_tree *et); 118 119 /* 120 * -------------------------------------------------------------- 121 * The remaining are internal to ocfs2_extent_tree and don't have 122 * accessor functions 123 */ 124 125 /* 126 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el. 127 * It is required. 128 */ 129 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et); 130 131 /* 132 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if 133 * it exists. If it does not, et->et_max_leaf_clusters is set 134 * to 0 (unlimited). Optional. 135 */ 136 void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et); 137 138 /* 139 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec 140 * are contiguous or not. Optional. Don't need to set it if use 141 * ocfs2_extent_rec as the tree leaf. 142 */ 143 enum ocfs2_contig_type 144 (*eo_extent_contig)(struct ocfs2_extent_tree *et, 145 struct ocfs2_extent_rec *ext, 146 struct ocfs2_extent_rec *insert_rec); 147 }; 148 149 150 /* 151 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check 152 * in the methods. 153 */ 154 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et); 155 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 156 u64 blkno); 157 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, 158 u32 clusters); 159 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et, 160 struct ocfs2_extent_rec *rec); 161 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et, 162 u32 clusters); 163 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, 164 struct ocfs2_extent_rec *rec); 165 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et); 166 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et); 167 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = { 168 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk, 169 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk, 170 .eo_update_clusters = ocfs2_dinode_update_clusters, 171 .eo_extent_map_insert = ocfs2_dinode_extent_map_insert, 172 .eo_extent_map_truncate = ocfs2_dinode_extent_map_truncate, 173 .eo_insert_check = ocfs2_dinode_insert_check, 174 .eo_sanity_check = ocfs2_dinode_sanity_check, 175 .eo_fill_root_el = ocfs2_dinode_fill_root_el, 176 }; 177 178 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 179 u64 blkno) 180 { 181 struct ocfs2_dinode *di = et->et_object; 182 183 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 184 di->i_last_eb_blk = cpu_to_le64(blkno); 185 } 186 187 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et) 188 { 189 struct ocfs2_dinode *di = et->et_object; 190 191 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 192 return le64_to_cpu(di->i_last_eb_blk); 193 } 194 195 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, 196 u32 clusters) 197 { 198 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); 199 struct ocfs2_dinode *di = et->et_object; 200 201 le32_add_cpu(&di->i_clusters, clusters); 202 spin_lock(&oi->ip_lock); 203 oi->ip_clusters = le32_to_cpu(di->i_clusters); 204 spin_unlock(&oi->ip_lock); 205 } 206 207 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et, 208 struct ocfs2_extent_rec *rec) 209 { 210 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode; 211 212 ocfs2_extent_map_insert_rec(inode, rec); 213 } 214 215 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et, 216 u32 clusters) 217 { 218 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode; 219 220 ocfs2_extent_map_trunc(inode, clusters); 221 } 222 223 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, 224 struct ocfs2_extent_rec *rec) 225 { 226 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); 227 struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb); 228 229 BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL); 230 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) && 231 (oi->ip_clusters != le32_to_cpu(rec->e_cpos)), 232 "Device %s, asking for sparse allocation: inode %llu, " 233 "cpos %u, clusters %u\n", 234 osb->dev_str, 235 (unsigned long long)oi->ip_blkno, 236 rec->e_cpos, oi->ip_clusters); 237 238 return 0; 239 } 240 241 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et) 242 { 243 struct ocfs2_dinode *di = et->et_object; 244 245 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 246 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 247 248 return 0; 249 } 250 251 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et) 252 { 253 struct ocfs2_dinode *di = et->et_object; 254 255 et->et_root_el = &di->id2.i_list; 256 } 257 258 259 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et) 260 { 261 struct ocfs2_xattr_value_buf *vb = et->et_object; 262 263 et->et_root_el = &vb->vb_xv->xr_list; 264 } 265 266 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et, 267 u64 blkno) 268 { 269 struct ocfs2_xattr_value_buf *vb = et->et_object; 270 271 vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno); 272 } 273 274 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et) 275 { 276 struct ocfs2_xattr_value_buf *vb = et->et_object; 277 278 return le64_to_cpu(vb->vb_xv->xr_last_eb_blk); 279 } 280 281 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et, 282 u32 clusters) 283 { 284 struct ocfs2_xattr_value_buf *vb = et->et_object; 285 286 le32_add_cpu(&vb->vb_xv->xr_clusters, clusters); 287 } 288 289 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = { 290 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk, 291 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk, 292 .eo_update_clusters = ocfs2_xattr_value_update_clusters, 293 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el, 294 }; 295 296 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et) 297 { 298 struct ocfs2_xattr_block *xb = et->et_object; 299 300 et->et_root_el = &xb->xb_attrs.xb_root.xt_list; 301 } 302 303 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et) 304 { 305 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 306 et->et_max_leaf_clusters = 307 ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE); 308 } 309 310 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 311 u64 blkno) 312 { 313 struct ocfs2_xattr_block *xb = et->et_object; 314 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 315 316 xt->xt_last_eb_blk = cpu_to_le64(blkno); 317 } 318 319 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 320 { 321 struct ocfs2_xattr_block *xb = et->et_object; 322 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 323 324 return le64_to_cpu(xt->xt_last_eb_blk); 325 } 326 327 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et, 328 u32 clusters) 329 { 330 struct ocfs2_xattr_block *xb = et->et_object; 331 332 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters); 333 } 334 335 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = { 336 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk, 337 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk, 338 .eo_update_clusters = ocfs2_xattr_tree_update_clusters, 339 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el, 340 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters, 341 }; 342 343 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et, 344 u64 blkno) 345 { 346 struct ocfs2_dx_root_block *dx_root = et->et_object; 347 348 dx_root->dr_last_eb_blk = cpu_to_le64(blkno); 349 } 350 351 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et) 352 { 353 struct ocfs2_dx_root_block *dx_root = et->et_object; 354 355 return le64_to_cpu(dx_root->dr_last_eb_blk); 356 } 357 358 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et, 359 u32 clusters) 360 { 361 struct ocfs2_dx_root_block *dx_root = et->et_object; 362 363 le32_add_cpu(&dx_root->dr_clusters, clusters); 364 } 365 366 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et) 367 { 368 struct ocfs2_dx_root_block *dx_root = et->et_object; 369 370 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root)); 371 372 return 0; 373 } 374 375 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et) 376 { 377 struct ocfs2_dx_root_block *dx_root = et->et_object; 378 379 et->et_root_el = &dx_root->dr_list; 380 } 381 382 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = { 383 .eo_set_last_eb_blk = ocfs2_dx_root_set_last_eb_blk, 384 .eo_get_last_eb_blk = ocfs2_dx_root_get_last_eb_blk, 385 .eo_update_clusters = ocfs2_dx_root_update_clusters, 386 .eo_sanity_check = ocfs2_dx_root_sanity_check, 387 .eo_fill_root_el = ocfs2_dx_root_fill_root_el, 388 }; 389 390 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et) 391 { 392 struct ocfs2_refcount_block *rb = et->et_object; 393 394 et->et_root_el = &rb->rf_list; 395 } 396 397 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 398 u64 blkno) 399 { 400 struct ocfs2_refcount_block *rb = et->et_object; 401 402 rb->rf_last_eb_blk = cpu_to_le64(blkno); 403 } 404 405 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 406 { 407 struct ocfs2_refcount_block *rb = et->et_object; 408 409 return le64_to_cpu(rb->rf_last_eb_blk); 410 } 411 412 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et, 413 u32 clusters) 414 { 415 struct ocfs2_refcount_block *rb = et->et_object; 416 417 le32_add_cpu(&rb->rf_clusters, clusters); 418 } 419 420 static enum ocfs2_contig_type 421 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et, 422 struct ocfs2_extent_rec *ext, 423 struct ocfs2_extent_rec *insert_rec) 424 { 425 return CONTIG_NONE; 426 } 427 428 static struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = { 429 .eo_set_last_eb_blk = ocfs2_refcount_tree_set_last_eb_blk, 430 .eo_get_last_eb_blk = ocfs2_refcount_tree_get_last_eb_blk, 431 .eo_update_clusters = ocfs2_refcount_tree_update_clusters, 432 .eo_fill_root_el = ocfs2_refcount_tree_fill_root_el, 433 .eo_extent_contig = ocfs2_refcount_tree_extent_contig, 434 }; 435 436 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et, 437 struct ocfs2_caching_info *ci, 438 struct buffer_head *bh, 439 ocfs2_journal_access_func access, 440 void *obj, 441 struct ocfs2_extent_tree_operations *ops) 442 { 443 et->et_ops = ops; 444 et->et_root_bh = bh; 445 et->et_ci = ci; 446 et->et_root_journal_access = access; 447 if (!obj) 448 obj = (void *)bh->b_data; 449 et->et_object = obj; 450 451 et->et_ops->eo_fill_root_el(et); 452 if (!et->et_ops->eo_fill_max_leaf_clusters) 453 et->et_max_leaf_clusters = 0; 454 else 455 et->et_ops->eo_fill_max_leaf_clusters(et); 456 } 457 458 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et, 459 struct ocfs2_caching_info *ci, 460 struct buffer_head *bh) 461 { 462 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di, 463 NULL, &ocfs2_dinode_et_ops); 464 } 465 466 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et, 467 struct ocfs2_caching_info *ci, 468 struct buffer_head *bh) 469 { 470 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb, 471 NULL, &ocfs2_xattr_tree_et_ops); 472 } 473 474 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et, 475 struct ocfs2_caching_info *ci, 476 struct ocfs2_xattr_value_buf *vb) 477 { 478 __ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb, 479 &ocfs2_xattr_value_et_ops); 480 } 481 482 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et, 483 struct ocfs2_caching_info *ci, 484 struct buffer_head *bh) 485 { 486 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr, 487 NULL, &ocfs2_dx_root_et_ops); 488 } 489 490 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et, 491 struct ocfs2_caching_info *ci, 492 struct buffer_head *bh) 493 { 494 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb, 495 NULL, &ocfs2_refcount_tree_et_ops); 496 } 497 498 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et, 499 u64 new_last_eb_blk) 500 { 501 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk); 502 } 503 504 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et) 505 { 506 return et->et_ops->eo_get_last_eb_blk(et); 507 } 508 509 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et, 510 u32 clusters) 511 { 512 et->et_ops->eo_update_clusters(et, clusters); 513 } 514 515 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et, 516 struct ocfs2_extent_rec *rec) 517 { 518 if (et->et_ops->eo_extent_map_insert) 519 et->et_ops->eo_extent_map_insert(et, rec); 520 } 521 522 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et, 523 u32 clusters) 524 { 525 if (et->et_ops->eo_extent_map_truncate) 526 et->et_ops->eo_extent_map_truncate(et, clusters); 527 } 528 529 static inline int ocfs2_et_root_journal_access(handle_t *handle, 530 struct ocfs2_extent_tree *et, 531 int type) 532 { 533 return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh, 534 type); 535 } 536 537 static inline enum ocfs2_contig_type 538 ocfs2_et_extent_contig(struct ocfs2_extent_tree *et, 539 struct ocfs2_extent_rec *rec, 540 struct ocfs2_extent_rec *insert_rec) 541 { 542 if (et->et_ops->eo_extent_contig) 543 return et->et_ops->eo_extent_contig(et, rec, insert_rec); 544 545 return ocfs2_extent_rec_contig( 546 ocfs2_metadata_cache_get_super(et->et_ci), 547 rec, insert_rec); 548 } 549 550 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et, 551 struct ocfs2_extent_rec *rec) 552 { 553 int ret = 0; 554 555 if (et->et_ops->eo_insert_check) 556 ret = et->et_ops->eo_insert_check(et, rec); 557 return ret; 558 } 559 560 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et) 561 { 562 int ret = 0; 563 564 if (et->et_ops->eo_sanity_check) 565 ret = et->et_ops->eo_sanity_check(et); 566 return ret; 567 } 568 569 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 570 struct ocfs2_extent_block *eb); 571 static void ocfs2_adjust_rightmost_records(handle_t *handle, 572 struct ocfs2_extent_tree *et, 573 struct ocfs2_path *path, 574 struct ocfs2_extent_rec *insert_rec); 575 /* 576 * Reset the actual path elements so that we can re-use the structure 577 * to build another path. Generally, this involves freeing the buffer 578 * heads. 579 */ 580 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root) 581 { 582 int i, start = 0, depth = 0; 583 struct ocfs2_path_item *node; 584 585 if (keep_root) 586 start = 1; 587 588 for(i = start; i < path_num_items(path); i++) { 589 node = &path->p_node[i]; 590 591 brelse(node->bh); 592 node->bh = NULL; 593 node->el = NULL; 594 } 595 596 /* 597 * Tree depth may change during truncate, or insert. If we're 598 * keeping the root extent list, then make sure that our path 599 * structure reflects the proper depth. 600 */ 601 if (keep_root) 602 depth = le16_to_cpu(path_root_el(path)->l_tree_depth); 603 else 604 path_root_access(path) = NULL; 605 606 path->p_tree_depth = depth; 607 } 608 609 void ocfs2_free_path(struct ocfs2_path *path) 610 { 611 if (path) { 612 ocfs2_reinit_path(path, 0); 613 kfree(path); 614 } 615 } 616 617 /* 618 * All the elements of src into dest. After this call, src could be freed 619 * without affecting dest. 620 * 621 * Both paths should have the same root. Any non-root elements of dest 622 * will be freed. 623 */ 624 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src) 625 { 626 int i; 627 628 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 629 BUG_ON(path_root_el(dest) != path_root_el(src)); 630 BUG_ON(path_root_access(dest) != path_root_access(src)); 631 632 ocfs2_reinit_path(dest, 1); 633 634 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 635 dest->p_node[i].bh = src->p_node[i].bh; 636 dest->p_node[i].el = src->p_node[i].el; 637 638 if (dest->p_node[i].bh) 639 get_bh(dest->p_node[i].bh); 640 } 641 } 642 643 /* 644 * Make the *dest path the same as src and re-initialize src path to 645 * have a root only. 646 */ 647 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src) 648 { 649 int i; 650 651 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 652 BUG_ON(path_root_access(dest) != path_root_access(src)); 653 654 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 655 brelse(dest->p_node[i].bh); 656 657 dest->p_node[i].bh = src->p_node[i].bh; 658 dest->p_node[i].el = src->p_node[i].el; 659 660 src->p_node[i].bh = NULL; 661 src->p_node[i].el = NULL; 662 } 663 } 664 665 /* 666 * Insert an extent block at given index. 667 * 668 * This will not take an additional reference on eb_bh. 669 */ 670 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index, 671 struct buffer_head *eb_bh) 672 { 673 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data; 674 675 /* 676 * Right now, no root bh is an extent block, so this helps 677 * catch code errors with dinode trees. The assertion can be 678 * safely removed if we ever need to insert extent block 679 * structures at the root. 680 */ 681 BUG_ON(index == 0); 682 683 path->p_node[index].bh = eb_bh; 684 path->p_node[index].el = &eb->h_list; 685 } 686 687 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh, 688 struct ocfs2_extent_list *root_el, 689 ocfs2_journal_access_func access) 690 { 691 struct ocfs2_path *path; 692 693 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH); 694 695 path = kzalloc(sizeof(*path), GFP_NOFS); 696 if (path) { 697 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth); 698 get_bh(root_bh); 699 path_root_bh(path) = root_bh; 700 path_root_el(path) = root_el; 701 path_root_access(path) = access; 702 } 703 704 return path; 705 } 706 707 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path) 708 { 709 return ocfs2_new_path(path_root_bh(path), path_root_el(path), 710 path_root_access(path)); 711 } 712 713 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et) 714 { 715 return ocfs2_new_path(et->et_root_bh, et->et_root_el, 716 et->et_root_journal_access); 717 } 718 719 /* 720 * Journal the buffer at depth idx. All idx>0 are extent_blocks, 721 * otherwise it's the root_access function. 722 * 723 * I don't like the way this function's name looks next to 724 * ocfs2_journal_access_path(), but I don't have a better one. 725 */ 726 int ocfs2_path_bh_journal_access(handle_t *handle, 727 struct ocfs2_caching_info *ci, 728 struct ocfs2_path *path, 729 int idx) 730 { 731 ocfs2_journal_access_func access = path_root_access(path); 732 733 if (!access) 734 access = ocfs2_journal_access; 735 736 if (idx) 737 access = ocfs2_journal_access_eb; 738 739 return access(handle, ci, path->p_node[idx].bh, 740 OCFS2_JOURNAL_ACCESS_WRITE); 741 } 742 743 /* 744 * Convenience function to journal all components in a path. 745 */ 746 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci, 747 handle_t *handle, 748 struct ocfs2_path *path) 749 { 750 int i, ret = 0; 751 752 if (!path) 753 goto out; 754 755 for(i = 0; i < path_num_items(path); i++) { 756 ret = ocfs2_path_bh_journal_access(handle, ci, path, i); 757 if (ret < 0) { 758 mlog_errno(ret); 759 goto out; 760 } 761 } 762 763 out: 764 return ret; 765 } 766 767 /* 768 * Return the index of the extent record which contains cluster #v_cluster. 769 * -1 is returned if it was not found. 770 * 771 * Should work fine on interior and exterior nodes. 772 */ 773 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster) 774 { 775 int ret = -1; 776 int i; 777 struct ocfs2_extent_rec *rec; 778 u32 rec_end, rec_start, clusters; 779 780 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 781 rec = &el->l_recs[i]; 782 783 rec_start = le32_to_cpu(rec->e_cpos); 784 clusters = ocfs2_rec_clusters(el, rec); 785 786 rec_end = rec_start + clusters; 787 788 if (v_cluster >= rec_start && v_cluster < rec_end) { 789 ret = i; 790 break; 791 } 792 } 793 794 return ret; 795 } 796 797 /* 798 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and 799 * ocfs2_extent_rec_contig only work properly against leaf nodes! 800 */ 801 static int ocfs2_block_extent_contig(struct super_block *sb, 802 struct ocfs2_extent_rec *ext, 803 u64 blkno) 804 { 805 u64 blk_end = le64_to_cpu(ext->e_blkno); 806 807 blk_end += ocfs2_clusters_to_blocks(sb, 808 le16_to_cpu(ext->e_leaf_clusters)); 809 810 return blkno == blk_end; 811 } 812 813 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left, 814 struct ocfs2_extent_rec *right) 815 { 816 u32 left_range; 817 818 left_range = le32_to_cpu(left->e_cpos) + 819 le16_to_cpu(left->e_leaf_clusters); 820 821 return (left_range == le32_to_cpu(right->e_cpos)); 822 } 823 824 static enum ocfs2_contig_type 825 ocfs2_extent_rec_contig(struct super_block *sb, 826 struct ocfs2_extent_rec *ext, 827 struct ocfs2_extent_rec *insert_rec) 828 { 829 u64 blkno = le64_to_cpu(insert_rec->e_blkno); 830 831 /* 832 * Refuse to coalesce extent records with different flag 833 * fields - we don't want to mix unwritten extents with user 834 * data. 835 */ 836 if (ext->e_flags != insert_rec->e_flags) 837 return CONTIG_NONE; 838 839 if (ocfs2_extents_adjacent(ext, insert_rec) && 840 ocfs2_block_extent_contig(sb, ext, blkno)) 841 return CONTIG_RIGHT; 842 843 blkno = le64_to_cpu(ext->e_blkno); 844 if (ocfs2_extents_adjacent(insert_rec, ext) && 845 ocfs2_block_extent_contig(sb, insert_rec, blkno)) 846 return CONTIG_LEFT; 847 848 return CONTIG_NONE; 849 } 850 851 /* 852 * NOTE: We can have pretty much any combination of contiguousness and 853 * appending. 854 * 855 * The usefulness of APPEND_TAIL is more in that it lets us know that 856 * we'll have to update the path to that leaf. 857 */ 858 enum ocfs2_append_type { 859 APPEND_NONE = 0, 860 APPEND_TAIL, 861 }; 862 863 enum ocfs2_split_type { 864 SPLIT_NONE = 0, 865 SPLIT_LEFT, 866 SPLIT_RIGHT, 867 }; 868 869 struct ocfs2_insert_type { 870 enum ocfs2_split_type ins_split; 871 enum ocfs2_append_type ins_appending; 872 enum ocfs2_contig_type ins_contig; 873 int ins_contig_index; 874 int ins_tree_depth; 875 }; 876 877 struct ocfs2_merge_ctxt { 878 enum ocfs2_contig_type c_contig_type; 879 int c_has_empty_extent; 880 int c_split_covers_rec; 881 }; 882 883 static int ocfs2_validate_extent_block(struct super_block *sb, 884 struct buffer_head *bh) 885 { 886 int rc; 887 struct ocfs2_extent_block *eb = 888 (struct ocfs2_extent_block *)bh->b_data; 889 890 trace_ocfs2_validate_extent_block((unsigned long long)bh->b_blocknr); 891 892 BUG_ON(!buffer_uptodate(bh)); 893 894 /* 895 * If the ecc fails, we return the error but otherwise 896 * leave the filesystem running. We know any error is 897 * local to this block. 898 */ 899 rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check); 900 if (rc) { 901 mlog(ML_ERROR, "Checksum failed for extent block %llu\n", 902 (unsigned long long)bh->b_blocknr); 903 return rc; 904 } 905 906 /* 907 * Errors after here are fatal. 908 */ 909 910 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 911 ocfs2_error(sb, 912 "Extent block #%llu has bad signature %.*s", 913 (unsigned long long)bh->b_blocknr, 7, 914 eb->h_signature); 915 return -EINVAL; 916 } 917 918 if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) { 919 ocfs2_error(sb, 920 "Extent block #%llu has an invalid h_blkno " 921 "of %llu", 922 (unsigned long long)bh->b_blocknr, 923 (unsigned long long)le64_to_cpu(eb->h_blkno)); 924 return -EINVAL; 925 } 926 927 if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) { 928 ocfs2_error(sb, 929 "Extent block #%llu has an invalid " 930 "h_fs_generation of #%u", 931 (unsigned long long)bh->b_blocknr, 932 le32_to_cpu(eb->h_fs_generation)); 933 return -EINVAL; 934 } 935 936 return 0; 937 } 938 939 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno, 940 struct buffer_head **bh) 941 { 942 int rc; 943 struct buffer_head *tmp = *bh; 944 945 rc = ocfs2_read_block(ci, eb_blkno, &tmp, 946 ocfs2_validate_extent_block); 947 948 /* If ocfs2_read_block() got us a new bh, pass it up. */ 949 if (!rc && !*bh) 950 *bh = tmp; 951 952 return rc; 953 } 954 955 956 /* 957 * How many free extents have we got before we need more meta data? 958 */ 959 int ocfs2_num_free_extents(struct ocfs2_super *osb, 960 struct ocfs2_extent_tree *et) 961 { 962 int retval; 963 struct ocfs2_extent_list *el = NULL; 964 struct ocfs2_extent_block *eb; 965 struct buffer_head *eb_bh = NULL; 966 u64 last_eb_blk = 0; 967 968 el = et->et_root_el; 969 last_eb_blk = ocfs2_et_get_last_eb_blk(et); 970 971 if (last_eb_blk) { 972 retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk, 973 &eb_bh); 974 if (retval < 0) { 975 mlog_errno(retval); 976 goto bail; 977 } 978 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 979 el = &eb->h_list; 980 } 981 982 BUG_ON(el->l_tree_depth != 0); 983 984 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec); 985 bail: 986 brelse(eb_bh); 987 988 trace_ocfs2_num_free_extents(retval); 989 return retval; 990 } 991 992 /* expects array to already be allocated 993 * 994 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and 995 * l_count for you 996 */ 997 static int ocfs2_create_new_meta_bhs(handle_t *handle, 998 struct ocfs2_extent_tree *et, 999 int wanted, 1000 struct ocfs2_alloc_context *meta_ac, 1001 struct buffer_head *bhs[]) 1002 { 1003 int count, status, i; 1004 u16 suballoc_bit_start; 1005 u32 num_got; 1006 u64 suballoc_loc, first_blkno; 1007 struct ocfs2_super *osb = 1008 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 1009 struct ocfs2_extent_block *eb; 1010 1011 count = 0; 1012 while (count < wanted) { 1013 status = ocfs2_claim_metadata(handle, 1014 meta_ac, 1015 wanted - count, 1016 &suballoc_loc, 1017 &suballoc_bit_start, 1018 &num_got, 1019 &first_blkno); 1020 if (status < 0) { 1021 mlog_errno(status); 1022 goto bail; 1023 } 1024 1025 for(i = count; i < (num_got + count); i++) { 1026 bhs[i] = sb_getblk(osb->sb, first_blkno); 1027 if (bhs[i] == NULL) { 1028 status = -ENOMEM; 1029 mlog_errno(status); 1030 goto bail; 1031 } 1032 ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]); 1033 1034 status = ocfs2_journal_access_eb(handle, et->et_ci, 1035 bhs[i], 1036 OCFS2_JOURNAL_ACCESS_CREATE); 1037 if (status < 0) { 1038 mlog_errno(status); 1039 goto bail; 1040 } 1041 1042 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize); 1043 eb = (struct ocfs2_extent_block *) bhs[i]->b_data; 1044 /* Ok, setup the minimal stuff here. */ 1045 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); 1046 eb->h_blkno = cpu_to_le64(first_blkno); 1047 eb->h_fs_generation = cpu_to_le32(osb->fs_generation); 1048 eb->h_suballoc_slot = 1049 cpu_to_le16(meta_ac->ac_alloc_slot); 1050 eb->h_suballoc_loc = cpu_to_le64(suballoc_loc); 1051 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start); 1052 eb->h_list.l_count = 1053 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); 1054 1055 suballoc_bit_start++; 1056 first_blkno++; 1057 1058 /* We'll also be dirtied by the caller, so 1059 * this isn't absolutely necessary. */ 1060 ocfs2_journal_dirty(handle, bhs[i]); 1061 } 1062 1063 count += num_got; 1064 } 1065 1066 status = 0; 1067 bail: 1068 if (status < 0) { 1069 for(i = 0; i < wanted; i++) { 1070 brelse(bhs[i]); 1071 bhs[i] = NULL; 1072 } 1073 mlog_errno(status); 1074 } 1075 return status; 1076 } 1077 1078 /* 1079 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth(). 1080 * 1081 * Returns the sum of the rightmost extent rec logical offset and 1082 * cluster count. 1083 * 1084 * ocfs2_add_branch() uses this to determine what logical cluster 1085 * value should be populated into the leftmost new branch records. 1086 * 1087 * ocfs2_shift_tree_depth() uses this to determine the # clusters 1088 * value for the new topmost tree record. 1089 */ 1090 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el) 1091 { 1092 int i; 1093 1094 i = le16_to_cpu(el->l_next_free_rec) - 1; 1095 1096 return le32_to_cpu(el->l_recs[i].e_cpos) + 1097 ocfs2_rec_clusters(el, &el->l_recs[i]); 1098 } 1099 1100 /* 1101 * Change range of the branches in the right most path according to the leaf 1102 * extent block's rightmost record. 1103 */ 1104 static int ocfs2_adjust_rightmost_branch(handle_t *handle, 1105 struct ocfs2_extent_tree *et) 1106 { 1107 int status; 1108 struct ocfs2_path *path = NULL; 1109 struct ocfs2_extent_list *el; 1110 struct ocfs2_extent_rec *rec; 1111 1112 path = ocfs2_new_path_from_et(et); 1113 if (!path) { 1114 status = -ENOMEM; 1115 return status; 1116 } 1117 1118 status = ocfs2_find_path(et->et_ci, path, UINT_MAX); 1119 if (status < 0) { 1120 mlog_errno(status); 1121 goto out; 1122 } 1123 1124 status = ocfs2_extend_trans(handle, path_num_items(path)); 1125 if (status < 0) { 1126 mlog_errno(status); 1127 goto out; 1128 } 1129 1130 status = ocfs2_journal_access_path(et->et_ci, handle, path); 1131 if (status < 0) { 1132 mlog_errno(status); 1133 goto out; 1134 } 1135 1136 el = path_leaf_el(path); 1137 rec = &el->l_recs[le16_to_cpu(el->l_next_free_rec) - 1]; 1138 1139 ocfs2_adjust_rightmost_records(handle, et, path, rec); 1140 1141 out: 1142 ocfs2_free_path(path); 1143 return status; 1144 } 1145 1146 /* 1147 * Add an entire tree branch to our inode. eb_bh is the extent block 1148 * to start at, if we don't want to start the branch at the root 1149 * structure. 1150 * 1151 * last_eb_bh is required as we have to update it's next_leaf pointer 1152 * for the new last extent block. 1153 * 1154 * the new branch will be 'empty' in the sense that every block will 1155 * contain a single record with cluster count == 0. 1156 */ 1157 static int ocfs2_add_branch(handle_t *handle, 1158 struct ocfs2_extent_tree *et, 1159 struct buffer_head *eb_bh, 1160 struct buffer_head **last_eb_bh, 1161 struct ocfs2_alloc_context *meta_ac) 1162 { 1163 int status, new_blocks, i; 1164 u64 next_blkno, new_last_eb_blk; 1165 struct buffer_head *bh; 1166 struct buffer_head **new_eb_bhs = NULL; 1167 struct ocfs2_extent_block *eb; 1168 struct ocfs2_extent_list *eb_el; 1169 struct ocfs2_extent_list *el; 1170 u32 new_cpos, root_end; 1171 1172 BUG_ON(!last_eb_bh || !*last_eb_bh); 1173 1174 if (eb_bh) { 1175 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 1176 el = &eb->h_list; 1177 } else 1178 el = et->et_root_el; 1179 1180 /* we never add a branch to a leaf. */ 1181 BUG_ON(!el->l_tree_depth); 1182 1183 new_blocks = le16_to_cpu(el->l_tree_depth); 1184 1185 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data; 1186 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list); 1187 root_end = ocfs2_sum_rightmost_rec(et->et_root_el); 1188 1189 /* 1190 * If there is a gap before the root end and the real end 1191 * of the righmost leaf block, we need to remove the gap 1192 * between new_cpos and root_end first so that the tree 1193 * is consistent after we add a new branch(it will start 1194 * from new_cpos). 1195 */ 1196 if (root_end > new_cpos) { 1197 trace_ocfs2_adjust_rightmost_branch( 1198 (unsigned long long) 1199 ocfs2_metadata_cache_owner(et->et_ci), 1200 root_end, new_cpos); 1201 1202 status = ocfs2_adjust_rightmost_branch(handle, et); 1203 if (status) { 1204 mlog_errno(status); 1205 goto bail; 1206 } 1207 } 1208 1209 /* allocate the number of new eb blocks we need */ 1210 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *), 1211 GFP_KERNEL); 1212 if (!new_eb_bhs) { 1213 status = -ENOMEM; 1214 mlog_errno(status); 1215 goto bail; 1216 } 1217 1218 status = ocfs2_create_new_meta_bhs(handle, et, new_blocks, 1219 meta_ac, new_eb_bhs); 1220 if (status < 0) { 1221 mlog_errno(status); 1222 goto bail; 1223 } 1224 1225 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be 1226 * linked with the rest of the tree. 1227 * conversly, new_eb_bhs[0] is the new bottommost leaf. 1228 * 1229 * when we leave the loop, new_last_eb_blk will point to the 1230 * newest leaf, and next_blkno will point to the topmost extent 1231 * block. */ 1232 next_blkno = new_last_eb_blk = 0; 1233 for(i = 0; i < new_blocks; i++) { 1234 bh = new_eb_bhs[i]; 1235 eb = (struct ocfs2_extent_block *) bh->b_data; 1236 /* ocfs2_create_new_meta_bhs() should create it right! */ 1237 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1238 eb_el = &eb->h_list; 1239 1240 status = ocfs2_journal_access_eb(handle, et->et_ci, bh, 1241 OCFS2_JOURNAL_ACCESS_CREATE); 1242 if (status < 0) { 1243 mlog_errno(status); 1244 goto bail; 1245 } 1246 1247 eb->h_next_leaf_blk = 0; 1248 eb_el->l_tree_depth = cpu_to_le16(i); 1249 eb_el->l_next_free_rec = cpu_to_le16(1); 1250 /* 1251 * This actually counts as an empty extent as 1252 * c_clusters == 0 1253 */ 1254 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos); 1255 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno); 1256 /* 1257 * eb_el isn't always an interior node, but even leaf 1258 * nodes want a zero'd flags and reserved field so 1259 * this gets the whole 32 bits regardless of use. 1260 */ 1261 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0); 1262 if (!eb_el->l_tree_depth) 1263 new_last_eb_blk = le64_to_cpu(eb->h_blkno); 1264 1265 ocfs2_journal_dirty(handle, bh); 1266 next_blkno = le64_to_cpu(eb->h_blkno); 1267 } 1268 1269 /* This is a bit hairy. We want to update up to three blocks 1270 * here without leaving any of them in an inconsistent state 1271 * in case of error. We don't have to worry about 1272 * journal_dirty erroring as it won't unless we've aborted the 1273 * handle (in which case we would never be here) so reserving 1274 * the write with journal_access is all we need to do. */ 1275 status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh, 1276 OCFS2_JOURNAL_ACCESS_WRITE); 1277 if (status < 0) { 1278 mlog_errno(status); 1279 goto bail; 1280 } 1281 status = ocfs2_et_root_journal_access(handle, et, 1282 OCFS2_JOURNAL_ACCESS_WRITE); 1283 if (status < 0) { 1284 mlog_errno(status); 1285 goto bail; 1286 } 1287 if (eb_bh) { 1288 status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh, 1289 OCFS2_JOURNAL_ACCESS_WRITE); 1290 if (status < 0) { 1291 mlog_errno(status); 1292 goto bail; 1293 } 1294 } 1295 1296 /* Link the new branch into the rest of the tree (el will 1297 * either be on the root_bh, or the extent block passed in. */ 1298 i = le16_to_cpu(el->l_next_free_rec); 1299 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno); 1300 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos); 1301 el->l_recs[i].e_int_clusters = 0; 1302 le16_add_cpu(&el->l_next_free_rec, 1); 1303 1304 /* fe needs a new last extent block pointer, as does the 1305 * next_leaf on the previously last-extent-block. */ 1306 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk); 1307 1308 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 1309 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk); 1310 1311 ocfs2_journal_dirty(handle, *last_eb_bh); 1312 ocfs2_journal_dirty(handle, et->et_root_bh); 1313 if (eb_bh) 1314 ocfs2_journal_dirty(handle, eb_bh); 1315 1316 /* 1317 * Some callers want to track the rightmost leaf so pass it 1318 * back here. 1319 */ 1320 brelse(*last_eb_bh); 1321 get_bh(new_eb_bhs[0]); 1322 *last_eb_bh = new_eb_bhs[0]; 1323 1324 status = 0; 1325 bail: 1326 if (new_eb_bhs) { 1327 for (i = 0; i < new_blocks; i++) 1328 brelse(new_eb_bhs[i]); 1329 kfree(new_eb_bhs); 1330 } 1331 1332 return status; 1333 } 1334 1335 /* 1336 * adds another level to the allocation tree. 1337 * returns back the new extent block so you can add a branch to it 1338 * after this call. 1339 */ 1340 static int ocfs2_shift_tree_depth(handle_t *handle, 1341 struct ocfs2_extent_tree *et, 1342 struct ocfs2_alloc_context *meta_ac, 1343 struct buffer_head **ret_new_eb_bh) 1344 { 1345 int status, i; 1346 u32 new_clusters; 1347 struct buffer_head *new_eb_bh = NULL; 1348 struct ocfs2_extent_block *eb; 1349 struct ocfs2_extent_list *root_el; 1350 struct ocfs2_extent_list *eb_el; 1351 1352 status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac, 1353 &new_eb_bh); 1354 if (status < 0) { 1355 mlog_errno(status); 1356 goto bail; 1357 } 1358 1359 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data; 1360 /* ocfs2_create_new_meta_bhs() should create it right! */ 1361 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1362 1363 eb_el = &eb->h_list; 1364 root_el = et->et_root_el; 1365 1366 status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh, 1367 OCFS2_JOURNAL_ACCESS_CREATE); 1368 if (status < 0) { 1369 mlog_errno(status); 1370 goto bail; 1371 } 1372 1373 /* copy the root extent list data into the new extent block */ 1374 eb_el->l_tree_depth = root_el->l_tree_depth; 1375 eb_el->l_next_free_rec = root_el->l_next_free_rec; 1376 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1377 eb_el->l_recs[i] = root_el->l_recs[i]; 1378 1379 ocfs2_journal_dirty(handle, new_eb_bh); 1380 1381 status = ocfs2_et_root_journal_access(handle, et, 1382 OCFS2_JOURNAL_ACCESS_WRITE); 1383 if (status < 0) { 1384 mlog_errno(status); 1385 goto bail; 1386 } 1387 1388 new_clusters = ocfs2_sum_rightmost_rec(eb_el); 1389 1390 /* update root_bh now */ 1391 le16_add_cpu(&root_el->l_tree_depth, 1); 1392 root_el->l_recs[0].e_cpos = 0; 1393 root_el->l_recs[0].e_blkno = eb->h_blkno; 1394 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters); 1395 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1396 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 1397 root_el->l_next_free_rec = cpu_to_le16(1); 1398 1399 /* If this is our 1st tree depth shift, then last_eb_blk 1400 * becomes the allocated extent block */ 1401 if (root_el->l_tree_depth == cpu_to_le16(1)) 1402 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 1403 1404 ocfs2_journal_dirty(handle, et->et_root_bh); 1405 1406 *ret_new_eb_bh = new_eb_bh; 1407 new_eb_bh = NULL; 1408 status = 0; 1409 bail: 1410 brelse(new_eb_bh); 1411 1412 return status; 1413 } 1414 1415 /* 1416 * Should only be called when there is no space left in any of the 1417 * leaf nodes. What we want to do is find the lowest tree depth 1418 * non-leaf extent block with room for new records. There are three 1419 * valid results of this search: 1420 * 1421 * 1) a lowest extent block is found, then we pass it back in 1422 * *lowest_eb_bh and return '0' 1423 * 1424 * 2) the search fails to find anything, but the root_el has room. We 1425 * pass NULL back in *lowest_eb_bh, but still return '0' 1426 * 1427 * 3) the search fails to find anything AND the root_el is full, in 1428 * which case we return > 0 1429 * 1430 * return status < 0 indicates an error. 1431 */ 1432 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et, 1433 struct buffer_head **target_bh) 1434 { 1435 int status = 0, i; 1436 u64 blkno; 1437 struct ocfs2_extent_block *eb; 1438 struct ocfs2_extent_list *el; 1439 struct buffer_head *bh = NULL; 1440 struct buffer_head *lowest_bh = NULL; 1441 1442 *target_bh = NULL; 1443 1444 el = et->et_root_el; 1445 1446 while(le16_to_cpu(el->l_tree_depth) > 1) { 1447 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1448 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 1449 "Owner %llu has empty " 1450 "extent list (next_free_rec == 0)", 1451 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 1452 status = -EIO; 1453 goto bail; 1454 } 1455 i = le16_to_cpu(el->l_next_free_rec) - 1; 1456 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1457 if (!blkno) { 1458 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 1459 "Owner %llu has extent " 1460 "list where extent # %d has no physical " 1461 "block start", 1462 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i); 1463 status = -EIO; 1464 goto bail; 1465 } 1466 1467 brelse(bh); 1468 bh = NULL; 1469 1470 status = ocfs2_read_extent_block(et->et_ci, blkno, &bh); 1471 if (status < 0) { 1472 mlog_errno(status); 1473 goto bail; 1474 } 1475 1476 eb = (struct ocfs2_extent_block *) bh->b_data; 1477 el = &eb->h_list; 1478 1479 if (le16_to_cpu(el->l_next_free_rec) < 1480 le16_to_cpu(el->l_count)) { 1481 brelse(lowest_bh); 1482 lowest_bh = bh; 1483 get_bh(lowest_bh); 1484 } 1485 } 1486 1487 /* If we didn't find one and the fe doesn't have any room, 1488 * then return '1' */ 1489 el = et->et_root_el; 1490 if (!lowest_bh && (el->l_next_free_rec == el->l_count)) 1491 status = 1; 1492 1493 *target_bh = lowest_bh; 1494 bail: 1495 brelse(bh); 1496 1497 return status; 1498 } 1499 1500 /* 1501 * Grow a b-tree so that it has more records. 1502 * 1503 * We might shift the tree depth in which case existing paths should 1504 * be considered invalid. 1505 * 1506 * Tree depth after the grow is returned via *final_depth. 1507 * 1508 * *last_eb_bh will be updated by ocfs2_add_branch(). 1509 */ 1510 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et, 1511 int *final_depth, struct buffer_head **last_eb_bh, 1512 struct ocfs2_alloc_context *meta_ac) 1513 { 1514 int ret, shift; 1515 struct ocfs2_extent_list *el = et->et_root_el; 1516 int depth = le16_to_cpu(el->l_tree_depth); 1517 struct buffer_head *bh = NULL; 1518 1519 BUG_ON(meta_ac == NULL); 1520 1521 shift = ocfs2_find_branch_target(et, &bh); 1522 if (shift < 0) { 1523 ret = shift; 1524 mlog_errno(ret); 1525 goto out; 1526 } 1527 1528 /* We traveled all the way to the bottom of the allocation tree 1529 * and didn't find room for any more extents - we need to add 1530 * another tree level */ 1531 if (shift) { 1532 BUG_ON(bh); 1533 trace_ocfs2_grow_tree( 1534 (unsigned long long) 1535 ocfs2_metadata_cache_owner(et->et_ci), 1536 depth); 1537 1538 /* ocfs2_shift_tree_depth will return us a buffer with 1539 * the new extent block (so we can pass that to 1540 * ocfs2_add_branch). */ 1541 ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh); 1542 if (ret < 0) { 1543 mlog_errno(ret); 1544 goto out; 1545 } 1546 depth++; 1547 if (depth == 1) { 1548 /* 1549 * Special case: we have room now if we shifted from 1550 * tree_depth 0, so no more work needs to be done. 1551 * 1552 * We won't be calling add_branch, so pass 1553 * back *last_eb_bh as the new leaf. At depth 1554 * zero, it should always be null so there's 1555 * no reason to brelse. 1556 */ 1557 BUG_ON(*last_eb_bh); 1558 get_bh(bh); 1559 *last_eb_bh = bh; 1560 goto out; 1561 } 1562 } 1563 1564 /* call ocfs2_add_branch to add the final part of the tree with 1565 * the new data. */ 1566 ret = ocfs2_add_branch(handle, et, bh, last_eb_bh, 1567 meta_ac); 1568 if (ret < 0) { 1569 mlog_errno(ret); 1570 goto out; 1571 } 1572 1573 out: 1574 if (final_depth) 1575 *final_depth = depth; 1576 brelse(bh); 1577 return ret; 1578 } 1579 1580 /* 1581 * This function will discard the rightmost extent record. 1582 */ 1583 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el) 1584 { 1585 int next_free = le16_to_cpu(el->l_next_free_rec); 1586 int count = le16_to_cpu(el->l_count); 1587 unsigned int num_bytes; 1588 1589 BUG_ON(!next_free); 1590 /* This will cause us to go off the end of our extent list. */ 1591 BUG_ON(next_free >= count); 1592 1593 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free; 1594 1595 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes); 1596 } 1597 1598 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el, 1599 struct ocfs2_extent_rec *insert_rec) 1600 { 1601 int i, insert_index, next_free, has_empty, num_bytes; 1602 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos); 1603 struct ocfs2_extent_rec *rec; 1604 1605 next_free = le16_to_cpu(el->l_next_free_rec); 1606 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]); 1607 1608 BUG_ON(!next_free); 1609 1610 /* The tree code before us didn't allow enough room in the leaf. */ 1611 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty); 1612 1613 /* 1614 * The easiest way to approach this is to just remove the 1615 * empty extent and temporarily decrement next_free. 1616 */ 1617 if (has_empty) { 1618 /* 1619 * If next_free was 1 (only an empty extent), this 1620 * loop won't execute, which is fine. We still want 1621 * the decrement above to happen. 1622 */ 1623 for(i = 0; i < (next_free - 1); i++) 1624 el->l_recs[i] = el->l_recs[i+1]; 1625 1626 next_free--; 1627 } 1628 1629 /* 1630 * Figure out what the new record index should be. 1631 */ 1632 for(i = 0; i < next_free; i++) { 1633 rec = &el->l_recs[i]; 1634 1635 if (insert_cpos < le32_to_cpu(rec->e_cpos)) 1636 break; 1637 } 1638 insert_index = i; 1639 1640 trace_ocfs2_rotate_leaf(insert_cpos, insert_index, 1641 has_empty, next_free, 1642 le16_to_cpu(el->l_count)); 1643 1644 BUG_ON(insert_index < 0); 1645 BUG_ON(insert_index >= le16_to_cpu(el->l_count)); 1646 BUG_ON(insert_index > next_free); 1647 1648 /* 1649 * No need to memmove if we're just adding to the tail. 1650 */ 1651 if (insert_index != next_free) { 1652 BUG_ON(next_free >= le16_to_cpu(el->l_count)); 1653 1654 num_bytes = next_free - insert_index; 1655 num_bytes *= sizeof(struct ocfs2_extent_rec); 1656 memmove(&el->l_recs[insert_index + 1], 1657 &el->l_recs[insert_index], 1658 num_bytes); 1659 } 1660 1661 /* 1662 * Either we had an empty extent, and need to re-increment or 1663 * there was no empty extent on a non full rightmost leaf node, 1664 * in which case we still need to increment. 1665 */ 1666 next_free++; 1667 el->l_next_free_rec = cpu_to_le16(next_free); 1668 /* 1669 * Make sure none of the math above just messed up our tree. 1670 */ 1671 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count)); 1672 1673 el->l_recs[insert_index] = *insert_rec; 1674 1675 } 1676 1677 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el) 1678 { 1679 int size, num_recs = le16_to_cpu(el->l_next_free_rec); 1680 1681 BUG_ON(num_recs == 0); 1682 1683 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 1684 num_recs--; 1685 size = num_recs * sizeof(struct ocfs2_extent_rec); 1686 memmove(&el->l_recs[0], &el->l_recs[1], size); 1687 memset(&el->l_recs[num_recs], 0, 1688 sizeof(struct ocfs2_extent_rec)); 1689 el->l_next_free_rec = cpu_to_le16(num_recs); 1690 } 1691 } 1692 1693 /* 1694 * Create an empty extent record . 1695 * 1696 * l_next_free_rec may be updated. 1697 * 1698 * If an empty extent already exists do nothing. 1699 */ 1700 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el) 1701 { 1702 int next_free = le16_to_cpu(el->l_next_free_rec); 1703 1704 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 1705 1706 if (next_free == 0) 1707 goto set_and_inc; 1708 1709 if (ocfs2_is_empty_extent(&el->l_recs[0])) 1710 return; 1711 1712 mlog_bug_on_msg(el->l_count == el->l_next_free_rec, 1713 "Asked to create an empty extent in a full list:\n" 1714 "count = %u, tree depth = %u", 1715 le16_to_cpu(el->l_count), 1716 le16_to_cpu(el->l_tree_depth)); 1717 1718 ocfs2_shift_records_right(el); 1719 1720 set_and_inc: 1721 le16_add_cpu(&el->l_next_free_rec, 1); 1722 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 1723 } 1724 1725 /* 1726 * For a rotation which involves two leaf nodes, the "root node" is 1727 * the lowest level tree node which contains a path to both leafs. This 1728 * resulting set of information can be used to form a complete "subtree" 1729 * 1730 * This function is passed two full paths from the dinode down to a 1731 * pair of adjacent leaves. It's task is to figure out which path 1732 * index contains the subtree root - this can be the root index itself 1733 * in a worst-case rotation. 1734 * 1735 * The array index of the subtree root is passed back. 1736 */ 1737 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et, 1738 struct ocfs2_path *left, 1739 struct ocfs2_path *right) 1740 { 1741 int i = 0; 1742 1743 /* 1744 * Check that the caller passed in two paths from the same tree. 1745 */ 1746 BUG_ON(path_root_bh(left) != path_root_bh(right)); 1747 1748 do { 1749 i++; 1750 1751 /* 1752 * The caller didn't pass two adjacent paths. 1753 */ 1754 mlog_bug_on_msg(i > left->p_tree_depth, 1755 "Owner %llu, left depth %u, right depth %u\n" 1756 "left leaf blk %llu, right leaf blk %llu\n", 1757 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 1758 left->p_tree_depth, right->p_tree_depth, 1759 (unsigned long long)path_leaf_bh(left)->b_blocknr, 1760 (unsigned long long)path_leaf_bh(right)->b_blocknr); 1761 } while (left->p_node[i].bh->b_blocknr == 1762 right->p_node[i].bh->b_blocknr); 1763 1764 return i - 1; 1765 } 1766 1767 typedef void (path_insert_t)(void *, struct buffer_head *); 1768 1769 /* 1770 * Traverse a btree path in search of cpos, starting at root_el. 1771 * 1772 * This code can be called with a cpos larger than the tree, in which 1773 * case it will return the rightmost path. 1774 */ 1775 static int __ocfs2_find_path(struct ocfs2_caching_info *ci, 1776 struct ocfs2_extent_list *root_el, u32 cpos, 1777 path_insert_t *func, void *data) 1778 { 1779 int i, ret = 0; 1780 u32 range; 1781 u64 blkno; 1782 struct buffer_head *bh = NULL; 1783 struct ocfs2_extent_block *eb; 1784 struct ocfs2_extent_list *el; 1785 struct ocfs2_extent_rec *rec; 1786 1787 el = root_el; 1788 while (el->l_tree_depth) { 1789 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1790 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1791 "Owner %llu has empty extent list at " 1792 "depth %u\n", 1793 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1794 le16_to_cpu(el->l_tree_depth)); 1795 ret = -EROFS; 1796 goto out; 1797 1798 } 1799 1800 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) { 1801 rec = &el->l_recs[i]; 1802 1803 /* 1804 * In the case that cpos is off the allocation 1805 * tree, this should just wind up returning the 1806 * rightmost record. 1807 */ 1808 range = le32_to_cpu(rec->e_cpos) + 1809 ocfs2_rec_clusters(el, rec); 1810 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 1811 break; 1812 } 1813 1814 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1815 if (blkno == 0) { 1816 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1817 "Owner %llu has bad blkno in extent list " 1818 "at depth %u (index %d)\n", 1819 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1820 le16_to_cpu(el->l_tree_depth), i); 1821 ret = -EROFS; 1822 goto out; 1823 } 1824 1825 brelse(bh); 1826 bh = NULL; 1827 ret = ocfs2_read_extent_block(ci, blkno, &bh); 1828 if (ret) { 1829 mlog_errno(ret); 1830 goto out; 1831 } 1832 1833 eb = (struct ocfs2_extent_block *) bh->b_data; 1834 el = &eb->h_list; 1835 1836 if (le16_to_cpu(el->l_next_free_rec) > 1837 le16_to_cpu(el->l_count)) { 1838 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1839 "Owner %llu has bad count in extent list " 1840 "at block %llu (next free=%u, count=%u)\n", 1841 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1842 (unsigned long long)bh->b_blocknr, 1843 le16_to_cpu(el->l_next_free_rec), 1844 le16_to_cpu(el->l_count)); 1845 ret = -EROFS; 1846 goto out; 1847 } 1848 1849 if (func) 1850 func(data, bh); 1851 } 1852 1853 out: 1854 /* 1855 * Catch any trailing bh that the loop didn't handle. 1856 */ 1857 brelse(bh); 1858 1859 return ret; 1860 } 1861 1862 /* 1863 * Given an initialized path (that is, it has a valid root extent 1864 * list), this function will traverse the btree in search of the path 1865 * which would contain cpos. 1866 * 1867 * The path traveled is recorded in the path structure. 1868 * 1869 * Note that this will not do any comparisons on leaf node extent 1870 * records, so it will work fine in the case that we just added a tree 1871 * branch. 1872 */ 1873 struct find_path_data { 1874 int index; 1875 struct ocfs2_path *path; 1876 }; 1877 static void find_path_ins(void *data, struct buffer_head *bh) 1878 { 1879 struct find_path_data *fp = data; 1880 1881 get_bh(bh); 1882 ocfs2_path_insert_eb(fp->path, fp->index, bh); 1883 fp->index++; 1884 } 1885 int ocfs2_find_path(struct ocfs2_caching_info *ci, 1886 struct ocfs2_path *path, u32 cpos) 1887 { 1888 struct find_path_data data; 1889 1890 data.index = 1; 1891 data.path = path; 1892 return __ocfs2_find_path(ci, path_root_el(path), cpos, 1893 find_path_ins, &data); 1894 } 1895 1896 static void find_leaf_ins(void *data, struct buffer_head *bh) 1897 { 1898 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data; 1899 struct ocfs2_extent_list *el = &eb->h_list; 1900 struct buffer_head **ret = data; 1901 1902 /* We want to retain only the leaf block. */ 1903 if (le16_to_cpu(el->l_tree_depth) == 0) { 1904 get_bh(bh); 1905 *ret = bh; 1906 } 1907 } 1908 /* 1909 * Find the leaf block in the tree which would contain cpos. No 1910 * checking of the actual leaf is done. 1911 * 1912 * Some paths want to call this instead of allocating a path structure 1913 * and calling ocfs2_find_path(). 1914 * 1915 * This function doesn't handle non btree extent lists. 1916 */ 1917 int ocfs2_find_leaf(struct ocfs2_caching_info *ci, 1918 struct ocfs2_extent_list *root_el, u32 cpos, 1919 struct buffer_head **leaf_bh) 1920 { 1921 int ret; 1922 struct buffer_head *bh = NULL; 1923 1924 ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh); 1925 if (ret) { 1926 mlog_errno(ret); 1927 goto out; 1928 } 1929 1930 *leaf_bh = bh; 1931 out: 1932 return ret; 1933 } 1934 1935 /* 1936 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation. 1937 * 1938 * Basically, we've moved stuff around at the bottom of the tree and 1939 * we need to fix up the extent records above the changes to reflect 1940 * the new changes. 1941 * 1942 * left_rec: the record on the left. 1943 * left_child_el: is the child list pointed to by left_rec 1944 * right_rec: the record to the right of left_rec 1945 * right_child_el: is the child list pointed to by right_rec 1946 * 1947 * By definition, this only works on interior nodes. 1948 */ 1949 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec, 1950 struct ocfs2_extent_list *left_child_el, 1951 struct ocfs2_extent_rec *right_rec, 1952 struct ocfs2_extent_list *right_child_el) 1953 { 1954 u32 left_clusters, right_end; 1955 1956 /* 1957 * Interior nodes never have holes. Their cpos is the cpos of 1958 * the leftmost record in their child list. Their cluster 1959 * count covers the full theoretical range of their child list 1960 * - the range between their cpos and the cpos of the record 1961 * immediately to their right. 1962 */ 1963 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos); 1964 if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) { 1965 BUG_ON(right_child_el->l_tree_depth); 1966 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1); 1967 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos); 1968 } 1969 left_clusters -= le32_to_cpu(left_rec->e_cpos); 1970 left_rec->e_int_clusters = cpu_to_le32(left_clusters); 1971 1972 /* 1973 * Calculate the rightmost cluster count boundary before 1974 * moving cpos - we will need to adjust clusters after 1975 * updating e_cpos to keep the same highest cluster count. 1976 */ 1977 right_end = le32_to_cpu(right_rec->e_cpos); 1978 right_end += le32_to_cpu(right_rec->e_int_clusters); 1979 1980 right_rec->e_cpos = left_rec->e_cpos; 1981 le32_add_cpu(&right_rec->e_cpos, left_clusters); 1982 1983 right_end -= le32_to_cpu(right_rec->e_cpos); 1984 right_rec->e_int_clusters = cpu_to_le32(right_end); 1985 } 1986 1987 /* 1988 * Adjust the adjacent root node records involved in a 1989 * rotation. left_el_blkno is passed in as a key so that we can easily 1990 * find it's index in the root list. 1991 */ 1992 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el, 1993 struct ocfs2_extent_list *left_el, 1994 struct ocfs2_extent_list *right_el, 1995 u64 left_el_blkno) 1996 { 1997 int i; 1998 1999 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <= 2000 le16_to_cpu(left_el->l_tree_depth)); 2001 2002 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) { 2003 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno) 2004 break; 2005 } 2006 2007 /* 2008 * The path walking code should have never returned a root and 2009 * two paths which are not adjacent. 2010 */ 2011 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1)); 2012 2013 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el, 2014 &root_el->l_recs[i + 1], right_el); 2015 } 2016 2017 /* 2018 * We've changed a leaf block (in right_path) and need to reflect that 2019 * change back up the subtree. 2020 * 2021 * This happens in multiple places: 2022 * - When we've moved an extent record from the left path leaf to the right 2023 * path leaf to make room for an empty extent in the left path leaf. 2024 * - When our insert into the right path leaf is at the leftmost edge 2025 * and requires an update of the path immediately to it's left. This 2026 * can occur at the end of some types of rotation and appending inserts. 2027 * - When we've adjusted the last extent record in the left path leaf and the 2028 * 1st extent record in the right path leaf during cross extent block merge. 2029 */ 2030 static void ocfs2_complete_edge_insert(handle_t *handle, 2031 struct ocfs2_path *left_path, 2032 struct ocfs2_path *right_path, 2033 int subtree_index) 2034 { 2035 int i, idx; 2036 struct ocfs2_extent_list *el, *left_el, *right_el; 2037 struct ocfs2_extent_rec *left_rec, *right_rec; 2038 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2039 2040 /* 2041 * Update the counts and position values within all the 2042 * interior nodes to reflect the leaf rotation we just did. 2043 * 2044 * The root node is handled below the loop. 2045 * 2046 * We begin the loop with right_el and left_el pointing to the 2047 * leaf lists and work our way up. 2048 * 2049 * NOTE: within this loop, left_el and right_el always refer 2050 * to the *child* lists. 2051 */ 2052 left_el = path_leaf_el(left_path); 2053 right_el = path_leaf_el(right_path); 2054 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) { 2055 trace_ocfs2_complete_edge_insert(i); 2056 2057 /* 2058 * One nice property of knowing that all of these 2059 * nodes are below the root is that we only deal with 2060 * the leftmost right node record and the rightmost 2061 * left node record. 2062 */ 2063 el = left_path->p_node[i].el; 2064 idx = le16_to_cpu(left_el->l_next_free_rec) - 1; 2065 left_rec = &el->l_recs[idx]; 2066 2067 el = right_path->p_node[i].el; 2068 right_rec = &el->l_recs[0]; 2069 2070 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec, 2071 right_el); 2072 2073 ocfs2_journal_dirty(handle, left_path->p_node[i].bh); 2074 ocfs2_journal_dirty(handle, right_path->p_node[i].bh); 2075 2076 /* 2077 * Setup our list pointers now so that the current 2078 * parents become children in the next iteration. 2079 */ 2080 left_el = left_path->p_node[i].el; 2081 right_el = right_path->p_node[i].el; 2082 } 2083 2084 /* 2085 * At the root node, adjust the two adjacent records which 2086 * begin our path to the leaves. 2087 */ 2088 2089 el = left_path->p_node[subtree_index].el; 2090 left_el = left_path->p_node[subtree_index + 1].el; 2091 right_el = right_path->p_node[subtree_index + 1].el; 2092 2093 ocfs2_adjust_root_records(el, left_el, right_el, 2094 left_path->p_node[subtree_index + 1].bh->b_blocknr); 2095 2096 root_bh = left_path->p_node[subtree_index].bh; 2097 2098 ocfs2_journal_dirty(handle, root_bh); 2099 } 2100 2101 static int ocfs2_rotate_subtree_right(handle_t *handle, 2102 struct ocfs2_extent_tree *et, 2103 struct ocfs2_path *left_path, 2104 struct ocfs2_path *right_path, 2105 int subtree_index) 2106 { 2107 int ret, i; 2108 struct buffer_head *right_leaf_bh; 2109 struct buffer_head *left_leaf_bh = NULL; 2110 struct buffer_head *root_bh; 2111 struct ocfs2_extent_list *right_el, *left_el; 2112 struct ocfs2_extent_rec move_rec; 2113 2114 left_leaf_bh = path_leaf_bh(left_path); 2115 left_el = path_leaf_el(left_path); 2116 2117 if (left_el->l_next_free_rec != left_el->l_count) { 2118 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 2119 "Inode %llu has non-full interior leaf node %llu" 2120 "(next free = %u)", 2121 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2122 (unsigned long long)left_leaf_bh->b_blocknr, 2123 le16_to_cpu(left_el->l_next_free_rec)); 2124 return -EROFS; 2125 } 2126 2127 /* 2128 * This extent block may already have an empty record, so we 2129 * return early if so. 2130 */ 2131 if (ocfs2_is_empty_extent(&left_el->l_recs[0])) 2132 return 0; 2133 2134 root_bh = left_path->p_node[subtree_index].bh; 2135 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2136 2137 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 2138 subtree_index); 2139 if (ret) { 2140 mlog_errno(ret); 2141 goto out; 2142 } 2143 2144 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2145 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2146 right_path, i); 2147 if (ret) { 2148 mlog_errno(ret); 2149 goto out; 2150 } 2151 2152 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2153 left_path, i); 2154 if (ret) { 2155 mlog_errno(ret); 2156 goto out; 2157 } 2158 } 2159 2160 right_leaf_bh = path_leaf_bh(right_path); 2161 right_el = path_leaf_el(right_path); 2162 2163 /* This is a code error, not a disk corruption. */ 2164 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails " 2165 "because rightmost leaf block %llu is empty\n", 2166 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2167 (unsigned long long)right_leaf_bh->b_blocknr); 2168 2169 ocfs2_create_empty_extent(right_el); 2170 2171 ocfs2_journal_dirty(handle, right_leaf_bh); 2172 2173 /* Do the copy now. */ 2174 i = le16_to_cpu(left_el->l_next_free_rec) - 1; 2175 move_rec = left_el->l_recs[i]; 2176 right_el->l_recs[0] = move_rec; 2177 2178 /* 2179 * Clear out the record we just copied and shift everything 2180 * over, leaving an empty extent in the left leaf. 2181 * 2182 * We temporarily subtract from next_free_rec so that the 2183 * shift will lose the tail record (which is now defunct). 2184 */ 2185 le16_add_cpu(&left_el->l_next_free_rec, -1); 2186 ocfs2_shift_records_right(left_el); 2187 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2188 le16_add_cpu(&left_el->l_next_free_rec, 1); 2189 2190 ocfs2_journal_dirty(handle, left_leaf_bh); 2191 2192 ocfs2_complete_edge_insert(handle, left_path, right_path, 2193 subtree_index); 2194 2195 out: 2196 return ret; 2197 } 2198 2199 /* 2200 * Given a full path, determine what cpos value would return us a path 2201 * containing the leaf immediately to the left of the current one. 2202 * 2203 * Will return zero if the path passed in is already the leftmost path. 2204 */ 2205 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb, 2206 struct ocfs2_path *path, u32 *cpos) 2207 { 2208 int i, j, ret = 0; 2209 u64 blkno; 2210 struct ocfs2_extent_list *el; 2211 2212 BUG_ON(path->p_tree_depth == 0); 2213 2214 *cpos = 0; 2215 2216 blkno = path_leaf_bh(path)->b_blocknr; 2217 2218 /* Start at the tree node just above the leaf and work our way up. */ 2219 i = path->p_tree_depth - 1; 2220 while (i >= 0) { 2221 el = path->p_node[i].el; 2222 2223 /* 2224 * Find the extent record just before the one in our 2225 * path. 2226 */ 2227 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2228 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2229 if (j == 0) { 2230 if (i == 0) { 2231 /* 2232 * We've determined that the 2233 * path specified is already 2234 * the leftmost one - return a 2235 * cpos of zero. 2236 */ 2237 goto out; 2238 } 2239 /* 2240 * The leftmost record points to our 2241 * leaf - we need to travel up the 2242 * tree one level. 2243 */ 2244 goto next_node; 2245 } 2246 2247 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos); 2248 *cpos = *cpos + ocfs2_rec_clusters(el, 2249 &el->l_recs[j - 1]); 2250 *cpos = *cpos - 1; 2251 goto out; 2252 } 2253 } 2254 2255 /* 2256 * If we got here, we never found a valid node where 2257 * the tree indicated one should be. 2258 */ 2259 ocfs2_error(sb, 2260 "Invalid extent tree at extent block %llu\n", 2261 (unsigned long long)blkno); 2262 ret = -EROFS; 2263 goto out; 2264 2265 next_node: 2266 blkno = path->p_node[i].bh->b_blocknr; 2267 i--; 2268 } 2269 2270 out: 2271 return ret; 2272 } 2273 2274 /* 2275 * Extend the transaction by enough credits to complete the rotation, 2276 * and still leave at least the original number of credits allocated 2277 * to this transaction. 2278 */ 2279 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth, 2280 int op_credits, 2281 struct ocfs2_path *path) 2282 { 2283 int ret = 0; 2284 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits; 2285 2286 if (handle->h_buffer_credits < credits) 2287 ret = ocfs2_extend_trans(handle, 2288 credits - handle->h_buffer_credits); 2289 2290 return ret; 2291 } 2292 2293 /* 2294 * Trap the case where we're inserting into the theoretical range past 2295 * the _actual_ left leaf range. Otherwise, we'll rotate a record 2296 * whose cpos is less than ours into the right leaf. 2297 * 2298 * It's only necessary to look at the rightmost record of the left 2299 * leaf because the logic that calls us should ensure that the 2300 * theoretical ranges in the path components above the leaves are 2301 * correct. 2302 */ 2303 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path, 2304 u32 insert_cpos) 2305 { 2306 struct ocfs2_extent_list *left_el; 2307 struct ocfs2_extent_rec *rec; 2308 int next_free; 2309 2310 left_el = path_leaf_el(left_path); 2311 next_free = le16_to_cpu(left_el->l_next_free_rec); 2312 rec = &left_el->l_recs[next_free - 1]; 2313 2314 if (insert_cpos > le32_to_cpu(rec->e_cpos)) 2315 return 1; 2316 return 0; 2317 } 2318 2319 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos) 2320 { 2321 int next_free = le16_to_cpu(el->l_next_free_rec); 2322 unsigned int range; 2323 struct ocfs2_extent_rec *rec; 2324 2325 if (next_free == 0) 2326 return 0; 2327 2328 rec = &el->l_recs[0]; 2329 if (ocfs2_is_empty_extent(rec)) { 2330 /* Empty list. */ 2331 if (next_free == 1) 2332 return 0; 2333 rec = &el->l_recs[1]; 2334 } 2335 2336 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2337 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 2338 return 1; 2339 return 0; 2340 } 2341 2342 /* 2343 * Rotate all the records in a btree right one record, starting at insert_cpos. 2344 * 2345 * The path to the rightmost leaf should be passed in. 2346 * 2347 * The array is assumed to be large enough to hold an entire path (tree depth). 2348 * 2349 * Upon successful return from this function: 2350 * 2351 * - The 'right_path' array will contain a path to the leaf block 2352 * whose range contains e_cpos. 2353 * - That leaf block will have a single empty extent in list index 0. 2354 * - In the case that the rotation requires a post-insert update, 2355 * *ret_left_path will contain a valid path which can be passed to 2356 * ocfs2_insert_path(). 2357 */ 2358 static int ocfs2_rotate_tree_right(handle_t *handle, 2359 struct ocfs2_extent_tree *et, 2360 enum ocfs2_split_type split, 2361 u32 insert_cpos, 2362 struct ocfs2_path *right_path, 2363 struct ocfs2_path **ret_left_path) 2364 { 2365 int ret, start, orig_credits = handle->h_buffer_credits; 2366 u32 cpos; 2367 struct ocfs2_path *left_path = NULL; 2368 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 2369 2370 *ret_left_path = NULL; 2371 2372 left_path = ocfs2_new_path_from_path(right_path); 2373 if (!left_path) { 2374 ret = -ENOMEM; 2375 mlog_errno(ret); 2376 goto out; 2377 } 2378 2379 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); 2380 if (ret) { 2381 mlog_errno(ret); 2382 goto out; 2383 } 2384 2385 trace_ocfs2_rotate_tree_right( 2386 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2387 insert_cpos, cpos); 2388 2389 /* 2390 * What we want to do here is: 2391 * 2392 * 1) Start with the rightmost path. 2393 * 2394 * 2) Determine a path to the leaf block directly to the left 2395 * of that leaf. 2396 * 2397 * 3) Determine the 'subtree root' - the lowest level tree node 2398 * which contains a path to both leaves. 2399 * 2400 * 4) Rotate the subtree. 2401 * 2402 * 5) Find the next subtree by considering the left path to be 2403 * the new right path. 2404 * 2405 * The check at the top of this while loop also accepts 2406 * insert_cpos == cpos because cpos is only a _theoretical_ 2407 * value to get us the left path - insert_cpos might very well 2408 * be filling that hole. 2409 * 2410 * Stop at a cpos of '0' because we either started at the 2411 * leftmost branch (i.e., a tree with one branch and a 2412 * rotation inside of it), or we've gone as far as we can in 2413 * rotating subtrees. 2414 */ 2415 while (cpos && insert_cpos <= cpos) { 2416 trace_ocfs2_rotate_tree_right( 2417 (unsigned long long) 2418 ocfs2_metadata_cache_owner(et->et_ci), 2419 insert_cpos, cpos); 2420 2421 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 2422 if (ret) { 2423 mlog_errno(ret); 2424 goto out; 2425 } 2426 2427 mlog_bug_on_msg(path_leaf_bh(left_path) == 2428 path_leaf_bh(right_path), 2429 "Owner %llu: error during insert of %u " 2430 "(left path cpos %u) results in two identical " 2431 "paths ending at %llu\n", 2432 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2433 insert_cpos, cpos, 2434 (unsigned long long) 2435 path_leaf_bh(left_path)->b_blocknr); 2436 2437 if (split == SPLIT_NONE && 2438 ocfs2_rotate_requires_path_adjustment(left_path, 2439 insert_cpos)) { 2440 2441 /* 2442 * We've rotated the tree as much as we 2443 * should. The rest is up to 2444 * ocfs2_insert_path() to complete, after the 2445 * record insertion. We indicate this 2446 * situation by returning the left path. 2447 * 2448 * The reason we don't adjust the records here 2449 * before the record insert is that an error 2450 * later might break the rule where a parent 2451 * record e_cpos will reflect the actual 2452 * e_cpos of the 1st nonempty record of the 2453 * child list. 2454 */ 2455 *ret_left_path = left_path; 2456 goto out_ret_path; 2457 } 2458 2459 start = ocfs2_find_subtree_root(et, left_path, right_path); 2460 2461 trace_ocfs2_rotate_subtree(start, 2462 (unsigned long long) 2463 right_path->p_node[start].bh->b_blocknr, 2464 right_path->p_tree_depth); 2465 2466 ret = ocfs2_extend_rotate_transaction(handle, start, 2467 orig_credits, right_path); 2468 if (ret) { 2469 mlog_errno(ret); 2470 goto out; 2471 } 2472 2473 ret = ocfs2_rotate_subtree_right(handle, et, left_path, 2474 right_path, start); 2475 if (ret) { 2476 mlog_errno(ret); 2477 goto out; 2478 } 2479 2480 if (split != SPLIT_NONE && 2481 ocfs2_leftmost_rec_contains(path_leaf_el(right_path), 2482 insert_cpos)) { 2483 /* 2484 * A rotate moves the rightmost left leaf 2485 * record over to the leftmost right leaf 2486 * slot. If we're doing an extent split 2487 * instead of a real insert, then we have to 2488 * check that the extent to be split wasn't 2489 * just moved over. If it was, then we can 2490 * exit here, passing left_path back - 2491 * ocfs2_split_extent() is smart enough to 2492 * search both leaves. 2493 */ 2494 *ret_left_path = left_path; 2495 goto out_ret_path; 2496 } 2497 2498 /* 2499 * There is no need to re-read the next right path 2500 * as we know that it'll be our current left 2501 * path. Optimize by copying values instead. 2502 */ 2503 ocfs2_mv_path(right_path, left_path); 2504 2505 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); 2506 if (ret) { 2507 mlog_errno(ret); 2508 goto out; 2509 } 2510 } 2511 2512 out: 2513 ocfs2_free_path(left_path); 2514 2515 out_ret_path: 2516 return ret; 2517 } 2518 2519 static int ocfs2_update_edge_lengths(handle_t *handle, 2520 struct ocfs2_extent_tree *et, 2521 int subtree_index, struct ocfs2_path *path) 2522 { 2523 int i, idx, ret; 2524 struct ocfs2_extent_rec *rec; 2525 struct ocfs2_extent_list *el; 2526 struct ocfs2_extent_block *eb; 2527 u32 range; 2528 2529 /* 2530 * In normal tree rotation process, we will never touch the 2531 * tree branch above subtree_index and ocfs2_extend_rotate_transaction 2532 * doesn't reserve the credits for them either. 2533 * 2534 * But we do have a special case here which will update the rightmost 2535 * records for all the bh in the path. 2536 * So we have to allocate extra credits and access them. 2537 */ 2538 ret = ocfs2_extend_trans(handle, subtree_index); 2539 if (ret) { 2540 mlog_errno(ret); 2541 goto out; 2542 } 2543 2544 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 2545 if (ret) { 2546 mlog_errno(ret); 2547 goto out; 2548 } 2549 2550 /* Path should always be rightmost. */ 2551 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 2552 BUG_ON(eb->h_next_leaf_blk != 0ULL); 2553 2554 el = &eb->h_list; 2555 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 2556 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2557 rec = &el->l_recs[idx]; 2558 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2559 2560 for (i = 0; i < path->p_tree_depth; i++) { 2561 el = path->p_node[i].el; 2562 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2563 rec = &el->l_recs[idx]; 2564 2565 rec->e_int_clusters = cpu_to_le32(range); 2566 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos)); 2567 2568 ocfs2_journal_dirty(handle, path->p_node[i].bh); 2569 } 2570 out: 2571 return ret; 2572 } 2573 2574 static void ocfs2_unlink_path(handle_t *handle, 2575 struct ocfs2_extent_tree *et, 2576 struct ocfs2_cached_dealloc_ctxt *dealloc, 2577 struct ocfs2_path *path, int unlink_start) 2578 { 2579 int ret, i; 2580 struct ocfs2_extent_block *eb; 2581 struct ocfs2_extent_list *el; 2582 struct buffer_head *bh; 2583 2584 for(i = unlink_start; i < path_num_items(path); i++) { 2585 bh = path->p_node[i].bh; 2586 2587 eb = (struct ocfs2_extent_block *)bh->b_data; 2588 /* 2589 * Not all nodes might have had their final count 2590 * decremented by the caller - handle this here. 2591 */ 2592 el = &eb->h_list; 2593 if (le16_to_cpu(el->l_next_free_rec) > 1) { 2594 mlog(ML_ERROR, 2595 "Inode %llu, attempted to remove extent block " 2596 "%llu with %u records\n", 2597 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2598 (unsigned long long)le64_to_cpu(eb->h_blkno), 2599 le16_to_cpu(el->l_next_free_rec)); 2600 2601 ocfs2_journal_dirty(handle, bh); 2602 ocfs2_remove_from_cache(et->et_ci, bh); 2603 continue; 2604 } 2605 2606 el->l_next_free_rec = 0; 2607 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2608 2609 ocfs2_journal_dirty(handle, bh); 2610 2611 ret = ocfs2_cache_extent_block_free(dealloc, eb); 2612 if (ret) 2613 mlog_errno(ret); 2614 2615 ocfs2_remove_from_cache(et->et_ci, bh); 2616 } 2617 } 2618 2619 static void ocfs2_unlink_subtree(handle_t *handle, 2620 struct ocfs2_extent_tree *et, 2621 struct ocfs2_path *left_path, 2622 struct ocfs2_path *right_path, 2623 int subtree_index, 2624 struct ocfs2_cached_dealloc_ctxt *dealloc) 2625 { 2626 int i; 2627 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2628 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el; 2629 struct ocfs2_extent_list *el; 2630 struct ocfs2_extent_block *eb; 2631 2632 el = path_leaf_el(left_path); 2633 2634 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data; 2635 2636 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 2637 if (root_el->l_recs[i].e_blkno == eb->h_blkno) 2638 break; 2639 2640 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec)); 2641 2642 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 2643 le16_add_cpu(&root_el->l_next_free_rec, -1); 2644 2645 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2646 eb->h_next_leaf_blk = 0; 2647 2648 ocfs2_journal_dirty(handle, root_bh); 2649 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2650 2651 ocfs2_unlink_path(handle, et, dealloc, right_path, 2652 subtree_index + 1); 2653 } 2654 2655 static int ocfs2_rotate_subtree_left(handle_t *handle, 2656 struct ocfs2_extent_tree *et, 2657 struct ocfs2_path *left_path, 2658 struct ocfs2_path *right_path, 2659 int subtree_index, 2660 struct ocfs2_cached_dealloc_ctxt *dealloc, 2661 int *deleted) 2662 { 2663 int ret, i, del_right_subtree = 0, right_has_empty = 0; 2664 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path); 2665 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el; 2666 struct ocfs2_extent_block *eb; 2667 2668 *deleted = 0; 2669 2670 right_leaf_el = path_leaf_el(right_path); 2671 left_leaf_el = path_leaf_el(left_path); 2672 root_bh = left_path->p_node[subtree_index].bh; 2673 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2674 2675 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0])) 2676 return 0; 2677 2678 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data; 2679 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) { 2680 /* 2681 * It's legal for us to proceed if the right leaf is 2682 * the rightmost one and it has an empty extent. There 2683 * are two cases to handle - whether the leaf will be 2684 * empty after removal or not. If the leaf isn't empty 2685 * then just remove the empty extent up front. The 2686 * next block will handle empty leaves by flagging 2687 * them for unlink. 2688 * 2689 * Non rightmost leaves will throw -EAGAIN and the 2690 * caller can manually move the subtree and retry. 2691 */ 2692 2693 if (eb->h_next_leaf_blk != 0ULL) 2694 return -EAGAIN; 2695 2696 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) { 2697 ret = ocfs2_journal_access_eb(handle, et->et_ci, 2698 path_leaf_bh(right_path), 2699 OCFS2_JOURNAL_ACCESS_WRITE); 2700 if (ret) { 2701 mlog_errno(ret); 2702 goto out; 2703 } 2704 2705 ocfs2_remove_empty_extent(right_leaf_el); 2706 } else 2707 right_has_empty = 1; 2708 } 2709 2710 if (eb->h_next_leaf_blk == 0ULL && 2711 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) { 2712 /* 2713 * We have to update i_last_eb_blk during the meta 2714 * data delete. 2715 */ 2716 ret = ocfs2_et_root_journal_access(handle, et, 2717 OCFS2_JOURNAL_ACCESS_WRITE); 2718 if (ret) { 2719 mlog_errno(ret); 2720 goto out; 2721 } 2722 2723 del_right_subtree = 1; 2724 } 2725 2726 /* 2727 * Getting here with an empty extent in the right path implies 2728 * that it's the rightmost path and will be deleted. 2729 */ 2730 BUG_ON(right_has_empty && !del_right_subtree); 2731 2732 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 2733 subtree_index); 2734 if (ret) { 2735 mlog_errno(ret); 2736 goto out; 2737 } 2738 2739 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2740 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2741 right_path, i); 2742 if (ret) { 2743 mlog_errno(ret); 2744 goto out; 2745 } 2746 2747 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2748 left_path, i); 2749 if (ret) { 2750 mlog_errno(ret); 2751 goto out; 2752 } 2753 } 2754 2755 if (!right_has_empty) { 2756 /* 2757 * Only do this if we're moving a real 2758 * record. Otherwise, the action is delayed until 2759 * after removal of the right path in which case we 2760 * can do a simple shift to remove the empty extent. 2761 */ 2762 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]); 2763 memset(&right_leaf_el->l_recs[0], 0, 2764 sizeof(struct ocfs2_extent_rec)); 2765 } 2766 if (eb->h_next_leaf_blk == 0ULL) { 2767 /* 2768 * Move recs over to get rid of empty extent, decrease 2769 * next_free. This is allowed to remove the last 2770 * extent in our leaf (setting l_next_free_rec to 2771 * zero) - the delete code below won't care. 2772 */ 2773 ocfs2_remove_empty_extent(right_leaf_el); 2774 } 2775 2776 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2777 ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 2778 2779 if (del_right_subtree) { 2780 ocfs2_unlink_subtree(handle, et, left_path, right_path, 2781 subtree_index, dealloc); 2782 ret = ocfs2_update_edge_lengths(handle, et, subtree_index, 2783 left_path); 2784 if (ret) { 2785 mlog_errno(ret); 2786 goto out; 2787 } 2788 2789 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2790 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 2791 2792 /* 2793 * Removal of the extent in the left leaf was skipped 2794 * above so we could delete the right path 2795 * 1st. 2796 */ 2797 if (right_has_empty) 2798 ocfs2_remove_empty_extent(left_leaf_el); 2799 2800 ocfs2_journal_dirty(handle, et_root_bh); 2801 2802 *deleted = 1; 2803 } else 2804 ocfs2_complete_edge_insert(handle, left_path, right_path, 2805 subtree_index); 2806 2807 out: 2808 return ret; 2809 } 2810 2811 /* 2812 * Given a full path, determine what cpos value would return us a path 2813 * containing the leaf immediately to the right of the current one. 2814 * 2815 * Will return zero if the path passed in is already the rightmost path. 2816 * 2817 * This looks similar, but is subtly different to 2818 * ocfs2_find_cpos_for_left_leaf(). 2819 */ 2820 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb, 2821 struct ocfs2_path *path, u32 *cpos) 2822 { 2823 int i, j, ret = 0; 2824 u64 blkno; 2825 struct ocfs2_extent_list *el; 2826 2827 *cpos = 0; 2828 2829 if (path->p_tree_depth == 0) 2830 return 0; 2831 2832 blkno = path_leaf_bh(path)->b_blocknr; 2833 2834 /* Start at the tree node just above the leaf and work our way up. */ 2835 i = path->p_tree_depth - 1; 2836 while (i >= 0) { 2837 int next_free; 2838 2839 el = path->p_node[i].el; 2840 2841 /* 2842 * Find the extent record just after the one in our 2843 * path. 2844 */ 2845 next_free = le16_to_cpu(el->l_next_free_rec); 2846 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2847 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2848 if (j == (next_free - 1)) { 2849 if (i == 0) { 2850 /* 2851 * We've determined that the 2852 * path specified is already 2853 * the rightmost one - return a 2854 * cpos of zero. 2855 */ 2856 goto out; 2857 } 2858 /* 2859 * The rightmost record points to our 2860 * leaf - we need to travel up the 2861 * tree one level. 2862 */ 2863 goto next_node; 2864 } 2865 2866 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos); 2867 goto out; 2868 } 2869 } 2870 2871 /* 2872 * If we got here, we never found a valid node where 2873 * the tree indicated one should be. 2874 */ 2875 ocfs2_error(sb, 2876 "Invalid extent tree at extent block %llu\n", 2877 (unsigned long long)blkno); 2878 ret = -EROFS; 2879 goto out; 2880 2881 next_node: 2882 blkno = path->p_node[i].bh->b_blocknr; 2883 i--; 2884 } 2885 2886 out: 2887 return ret; 2888 } 2889 2890 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle, 2891 struct ocfs2_extent_tree *et, 2892 struct ocfs2_path *path) 2893 { 2894 int ret; 2895 struct buffer_head *bh = path_leaf_bh(path); 2896 struct ocfs2_extent_list *el = path_leaf_el(path); 2897 2898 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 2899 return 0; 2900 2901 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path, 2902 path_num_items(path) - 1); 2903 if (ret) { 2904 mlog_errno(ret); 2905 goto out; 2906 } 2907 2908 ocfs2_remove_empty_extent(el); 2909 ocfs2_journal_dirty(handle, bh); 2910 2911 out: 2912 return ret; 2913 } 2914 2915 static int __ocfs2_rotate_tree_left(handle_t *handle, 2916 struct ocfs2_extent_tree *et, 2917 int orig_credits, 2918 struct ocfs2_path *path, 2919 struct ocfs2_cached_dealloc_ctxt *dealloc, 2920 struct ocfs2_path **empty_extent_path) 2921 { 2922 int ret, subtree_root, deleted; 2923 u32 right_cpos; 2924 struct ocfs2_path *left_path = NULL; 2925 struct ocfs2_path *right_path = NULL; 2926 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 2927 2928 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0]))); 2929 2930 *empty_extent_path = NULL; 2931 2932 ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos); 2933 if (ret) { 2934 mlog_errno(ret); 2935 goto out; 2936 } 2937 2938 left_path = ocfs2_new_path_from_path(path); 2939 if (!left_path) { 2940 ret = -ENOMEM; 2941 mlog_errno(ret); 2942 goto out; 2943 } 2944 2945 ocfs2_cp_path(left_path, path); 2946 2947 right_path = ocfs2_new_path_from_path(path); 2948 if (!right_path) { 2949 ret = -ENOMEM; 2950 mlog_errno(ret); 2951 goto out; 2952 } 2953 2954 while (right_cpos) { 2955 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); 2956 if (ret) { 2957 mlog_errno(ret); 2958 goto out; 2959 } 2960 2961 subtree_root = ocfs2_find_subtree_root(et, left_path, 2962 right_path); 2963 2964 trace_ocfs2_rotate_subtree(subtree_root, 2965 (unsigned long long) 2966 right_path->p_node[subtree_root].bh->b_blocknr, 2967 right_path->p_tree_depth); 2968 2969 ret = ocfs2_extend_rotate_transaction(handle, subtree_root, 2970 orig_credits, left_path); 2971 if (ret) { 2972 mlog_errno(ret); 2973 goto out; 2974 } 2975 2976 /* 2977 * Caller might still want to make changes to the 2978 * tree root, so re-add it to the journal here. 2979 */ 2980 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2981 left_path, 0); 2982 if (ret) { 2983 mlog_errno(ret); 2984 goto out; 2985 } 2986 2987 ret = ocfs2_rotate_subtree_left(handle, et, left_path, 2988 right_path, subtree_root, 2989 dealloc, &deleted); 2990 if (ret == -EAGAIN) { 2991 /* 2992 * The rotation has to temporarily stop due to 2993 * the right subtree having an empty 2994 * extent. Pass it back to the caller for a 2995 * fixup. 2996 */ 2997 *empty_extent_path = right_path; 2998 right_path = NULL; 2999 goto out; 3000 } 3001 if (ret) { 3002 mlog_errno(ret); 3003 goto out; 3004 } 3005 3006 /* 3007 * The subtree rotate might have removed records on 3008 * the rightmost edge. If so, then rotation is 3009 * complete. 3010 */ 3011 if (deleted) 3012 break; 3013 3014 ocfs2_mv_path(left_path, right_path); 3015 3016 ret = ocfs2_find_cpos_for_right_leaf(sb, left_path, 3017 &right_cpos); 3018 if (ret) { 3019 mlog_errno(ret); 3020 goto out; 3021 } 3022 } 3023 3024 out: 3025 ocfs2_free_path(right_path); 3026 ocfs2_free_path(left_path); 3027 3028 return ret; 3029 } 3030 3031 static int ocfs2_remove_rightmost_path(handle_t *handle, 3032 struct ocfs2_extent_tree *et, 3033 struct ocfs2_path *path, 3034 struct ocfs2_cached_dealloc_ctxt *dealloc) 3035 { 3036 int ret, subtree_index; 3037 u32 cpos; 3038 struct ocfs2_path *left_path = NULL; 3039 struct ocfs2_extent_block *eb; 3040 struct ocfs2_extent_list *el; 3041 3042 3043 ret = ocfs2_et_sanity_check(et); 3044 if (ret) 3045 goto out; 3046 /* 3047 * There's two ways we handle this depending on 3048 * whether path is the only existing one. 3049 */ 3050 ret = ocfs2_extend_rotate_transaction(handle, 0, 3051 handle->h_buffer_credits, 3052 path); 3053 if (ret) { 3054 mlog_errno(ret); 3055 goto out; 3056 } 3057 3058 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 3059 if (ret) { 3060 mlog_errno(ret); 3061 goto out; 3062 } 3063 3064 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3065 path, &cpos); 3066 if (ret) { 3067 mlog_errno(ret); 3068 goto out; 3069 } 3070 3071 if (cpos) { 3072 /* 3073 * We have a path to the left of this one - it needs 3074 * an update too. 3075 */ 3076 left_path = ocfs2_new_path_from_path(path); 3077 if (!left_path) { 3078 ret = -ENOMEM; 3079 mlog_errno(ret); 3080 goto out; 3081 } 3082 3083 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 3084 if (ret) { 3085 mlog_errno(ret); 3086 goto out; 3087 } 3088 3089 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 3090 if (ret) { 3091 mlog_errno(ret); 3092 goto out; 3093 } 3094 3095 subtree_index = ocfs2_find_subtree_root(et, left_path, path); 3096 3097 ocfs2_unlink_subtree(handle, et, left_path, path, 3098 subtree_index, dealloc); 3099 ret = ocfs2_update_edge_lengths(handle, et, subtree_index, 3100 left_path); 3101 if (ret) { 3102 mlog_errno(ret); 3103 goto out; 3104 } 3105 3106 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 3107 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 3108 } else { 3109 /* 3110 * 'path' is also the leftmost path which 3111 * means it must be the only one. This gets 3112 * handled differently because we want to 3113 * revert the root back to having extents 3114 * in-line. 3115 */ 3116 ocfs2_unlink_path(handle, et, dealloc, path, 1); 3117 3118 el = et->et_root_el; 3119 el->l_tree_depth = 0; 3120 el->l_next_free_rec = 0; 3121 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3122 3123 ocfs2_et_set_last_eb_blk(et, 0); 3124 } 3125 3126 ocfs2_journal_dirty(handle, path_root_bh(path)); 3127 3128 out: 3129 ocfs2_free_path(left_path); 3130 return ret; 3131 } 3132 3133 /* 3134 * Left rotation of btree records. 3135 * 3136 * In many ways, this is (unsurprisingly) the opposite of right 3137 * rotation. We start at some non-rightmost path containing an empty 3138 * extent in the leaf block. The code works its way to the rightmost 3139 * path by rotating records to the left in every subtree. 3140 * 3141 * This is used by any code which reduces the number of extent records 3142 * in a leaf. After removal, an empty record should be placed in the 3143 * leftmost list position. 3144 * 3145 * This won't handle a length update of the rightmost path records if 3146 * the rightmost tree leaf record is removed so the caller is 3147 * responsible for detecting and correcting that. 3148 */ 3149 static int ocfs2_rotate_tree_left(handle_t *handle, 3150 struct ocfs2_extent_tree *et, 3151 struct ocfs2_path *path, 3152 struct ocfs2_cached_dealloc_ctxt *dealloc) 3153 { 3154 int ret, orig_credits = handle->h_buffer_credits; 3155 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL; 3156 struct ocfs2_extent_block *eb; 3157 struct ocfs2_extent_list *el; 3158 3159 el = path_leaf_el(path); 3160 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 3161 return 0; 3162 3163 if (path->p_tree_depth == 0) { 3164 rightmost_no_delete: 3165 /* 3166 * Inline extents. This is trivially handled, so do 3167 * it up front. 3168 */ 3169 ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path); 3170 if (ret) 3171 mlog_errno(ret); 3172 goto out; 3173 } 3174 3175 /* 3176 * Handle rightmost branch now. There's several cases: 3177 * 1) simple rotation leaving records in there. That's trivial. 3178 * 2) rotation requiring a branch delete - there's no more 3179 * records left. Two cases of this: 3180 * a) There are branches to the left. 3181 * b) This is also the leftmost (the only) branch. 3182 * 3183 * 1) is handled via ocfs2_rotate_rightmost_leaf_left() 3184 * 2a) we need the left branch so that we can update it with the unlink 3185 * 2b) we need to bring the root back to inline extents. 3186 */ 3187 3188 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 3189 el = &eb->h_list; 3190 if (eb->h_next_leaf_blk == 0) { 3191 /* 3192 * This gets a bit tricky if we're going to delete the 3193 * rightmost path. Get the other cases out of the way 3194 * 1st. 3195 */ 3196 if (le16_to_cpu(el->l_next_free_rec) > 1) 3197 goto rightmost_no_delete; 3198 3199 if (le16_to_cpu(el->l_next_free_rec) == 0) { 3200 ret = -EIO; 3201 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 3202 "Owner %llu has empty extent block at %llu", 3203 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 3204 (unsigned long long)le64_to_cpu(eb->h_blkno)); 3205 goto out; 3206 } 3207 3208 /* 3209 * XXX: The caller can not trust "path" any more after 3210 * this as it will have been deleted. What do we do? 3211 * 3212 * In theory the rotate-for-merge code will never get 3213 * here because it'll always ask for a rotate in a 3214 * nonempty list. 3215 */ 3216 3217 ret = ocfs2_remove_rightmost_path(handle, et, path, 3218 dealloc); 3219 if (ret) 3220 mlog_errno(ret); 3221 goto out; 3222 } 3223 3224 /* 3225 * Now we can loop, remembering the path we get from -EAGAIN 3226 * and restarting from there. 3227 */ 3228 try_rotate: 3229 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path, 3230 dealloc, &restart_path); 3231 if (ret && ret != -EAGAIN) { 3232 mlog_errno(ret); 3233 goto out; 3234 } 3235 3236 while (ret == -EAGAIN) { 3237 tmp_path = restart_path; 3238 restart_path = NULL; 3239 3240 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, 3241 tmp_path, dealloc, 3242 &restart_path); 3243 if (ret && ret != -EAGAIN) { 3244 mlog_errno(ret); 3245 goto out; 3246 } 3247 3248 ocfs2_free_path(tmp_path); 3249 tmp_path = NULL; 3250 3251 if (ret == 0) 3252 goto try_rotate; 3253 } 3254 3255 out: 3256 ocfs2_free_path(tmp_path); 3257 ocfs2_free_path(restart_path); 3258 return ret; 3259 } 3260 3261 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el, 3262 int index) 3263 { 3264 struct ocfs2_extent_rec *rec = &el->l_recs[index]; 3265 unsigned int size; 3266 3267 if (rec->e_leaf_clusters == 0) { 3268 /* 3269 * We consumed all of the merged-from record. An empty 3270 * extent cannot exist anywhere but the 1st array 3271 * position, so move things over if the merged-from 3272 * record doesn't occupy that position. 3273 * 3274 * This creates a new empty extent so the caller 3275 * should be smart enough to have removed any existing 3276 * ones. 3277 */ 3278 if (index > 0) { 3279 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 3280 size = index * sizeof(struct ocfs2_extent_rec); 3281 memmove(&el->l_recs[1], &el->l_recs[0], size); 3282 } 3283 3284 /* 3285 * Always memset - the caller doesn't check whether it 3286 * created an empty extent, so there could be junk in 3287 * the other fields. 3288 */ 3289 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3290 } 3291 } 3292 3293 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et, 3294 struct ocfs2_path *left_path, 3295 struct ocfs2_path **ret_right_path) 3296 { 3297 int ret; 3298 u32 right_cpos; 3299 struct ocfs2_path *right_path = NULL; 3300 struct ocfs2_extent_list *left_el; 3301 3302 *ret_right_path = NULL; 3303 3304 /* This function shouldn't be called for non-trees. */ 3305 BUG_ON(left_path->p_tree_depth == 0); 3306 3307 left_el = path_leaf_el(left_path); 3308 BUG_ON(left_el->l_next_free_rec != left_el->l_count); 3309 3310 ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3311 left_path, &right_cpos); 3312 if (ret) { 3313 mlog_errno(ret); 3314 goto out; 3315 } 3316 3317 /* This function shouldn't be called for the rightmost leaf. */ 3318 BUG_ON(right_cpos == 0); 3319 3320 right_path = ocfs2_new_path_from_path(left_path); 3321 if (!right_path) { 3322 ret = -ENOMEM; 3323 mlog_errno(ret); 3324 goto out; 3325 } 3326 3327 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); 3328 if (ret) { 3329 mlog_errno(ret); 3330 goto out; 3331 } 3332 3333 *ret_right_path = right_path; 3334 out: 3335 if (ret) 3336 ocfs2_free_path(right_path); 3337 return ret; 3338 } 3339 3340 /* 3341 * Remove split_rec clusters from the record at index and merge them 3342 * onto the beginning of the record "next" to it. 3343 * For index < l_count - 1, the next means the extent rec at index + 1. 3344 * For index == l_count - 1, the "next" means the 1st extent rec of the 3345 * next extent block. 3346 */ 3347 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path, 3348 handle_t *handle, 3349 struct ocfs2_extent_tree *et, 3350 struct ocfs2_extent_rec *split_rec, 3351 int index) 3352 { 3353 int ret, next_free, i; 3354 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3355 struct ocfs2_extent_rec *left_rec; 3356 struct ocfs2_extent_rec *right_rec; 3357 struct ocfs2_extent_list *right_el; 3358 struct ocfs2_path *right_path = NULL; 3359 int subtree_index = 0; 3360 struct ocfs2_extent_list *el = path_leaf_el(left_path); 3361 struct buffer_head *bh = path_leaf_bh(left_path); 3362 struct buffer_head *root_bh = NULL; 3363 3364 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec)); 3365 left_rec = &el->l_recs[index]; 3366 3367 if (index == le16_to_cpu(el->l_next_free_rec) - 1 && 3368 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) { 3369 /* we meet with a cross extent block merge. */ 3370 ret = ocfs2_get_right_path(et, left_path, &right_path); 3371 if (ret) { 3372 mlog_errno(ret); 3373 return ret; 3374 } 3375 3376 right_el = path_leaf_el(right_path); 3377 next_free = le16_to_cpu(right_el->l_next_free_rec); 3378 BUG_ON(next_free <= 0); 3379 right_rec = &right_el->l_recs[0]; 3380 if (ocfs2_is_empty_extent(right_rec)) { 3381 BUG_ON(next_free <= 1); 3382 right_rec = &right_el->l_recs[1]; 3383 } 3384 3385 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3386 le16_to_cpu(left_rec->e_leaf_clusters) != 3387 le32_to_cpu(right_rec->e_cpos)); 3388 3389 subtree_index = ocfs2_find_subtree_root(et, left_path, 3390 right_path); 3391 3392 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3393 handle->h_buffer_credits, 3394 right_path); 3395 if (ret) { 3396 mlog_errno(ret); 3397 goto out; 3398 } 3399 3400 root_bh = left_path->p_node[subtree_index].bh; 3401 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3402 3403 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3404 subtree_index); 3405 if (ret) { 3406 mlog_errno(ret); 3407 goto out; 3408 } 3409 3410 for (i = subtree_index + 1; 3411 i < path_num_items(right_path); i++) { 3412 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3413 right_path, i); 3414 if (ret) { 3415 mlog_errno(ret); 3416 goto out; 3417 } 3418 3419 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3420 left_path, i); 3421 if (ret) { 3422 mlog_errno(ret); 3423 goto out; 3424 } 3425 } 3426 3427 } else { 3428 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1); 3429 right_rec = &el->l_recs[index + 1]; 3430 } 3431 3432 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path, 3433 path_num_items(left_path) - 1); 3434 if (ret) { 3435 mlog_errno(ret); 3436 goto out; 3437 } 3438 3439 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters); 3440 3441 le32_add_cpu(&right_rec->e_cpos, -split_clusters); 3442 le64_add_cpu(&right_rec->e_blkno, 3443 -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), 3444 split_clusters)); 3445 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters); 3446 3447 ocfs2_cleanup_merge(el, index); 3448 3449 ocfs2_journal_dirty(handle, bh); 3450 if (right_path) { 3451 ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 3452 ocfs2_complete_edge_insert(handle, left_path, right_path, 3453 subtree_index); 3454 } 3455 out: 3456 ocfs2_free_path(right_path); 3457 return ret; 3458 } 3459 3460 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et, 3461 struct ocfs2_path *right_path, 3462 struct ocfs2_path **ret_left_path) 3463 { 3464 int ret; 3465 u32 left_cpos; 3466 struct ocfs2_path *left_path = NULL; 3467 3468 *ret_left_path = NULL; 3469 3470 /* This function shouldn't be called for non-trees. */ 3471 BUG_ON(right_path->p_tree_depth == 0); 3472 3473 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3474 right_path, &left_cpos); 3475 if (ret) { 3476 mlog_errno(ret); 3477 goto out; 3478 } 3479 3480 /* This function shouldn't be called for the leftmost leaf. */ 3481 BUG_ON(left_cpos == 0); 3482 3483 left_path = ocfs2_new_path_from_path(right_path); 3484 if (!left_path) { 3485 ret = -ENOMEM; 3486 mlog_errno(ret); 3487 goto out; 3488 } 3489 3490 ret = ocfs2_find_path(et->et_ci, left_path, left_cpos); 3491 if (ret) { 3492 mlog_errno(ret); 3493 goto out; 3494 } 3495 3496 *ret_left_path = left_path; 3497 out: 3498 if (ret) 3499 ocfs2_free_path(left_path); 3500 return ret; 3501 } 3502 3503 /* 3504 * Remove split_rec clusters from the record at index and merge them 3505 * onto the tail of the record "before" it. 3506 * For index > 0, the "before" means the extent rec at index - 1. 3507 * 3508 * For index == 0, the "before" means the last record of the previous 3509 * extent block. And there is also a situation that we may need to 3510 * remove the rightmost leaf extent block in the right_path and change 3511 * the right path to indicate the new rightmost path. 3512 */ 3513 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path, 3514 handle_t *handle, 3515 struct ocfs2_extent_tree *et, 3516 struct ocfs2_extent_rec *split_rec, 3517 struct ocfs2_cached_dealloc_ctxt *dealloc, 3518 int index) 3519 { 3520 int ret, i, subtree_index = 0, has_empty_extent = 0; 3521 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3522 struct ocfs2_extent_rec *left_rec; 3523 struct ocfs2_extent_rec *right_rec; 3524 struct ocfs2_extent_list *el = path_leaf_el(right_path); 3525 struct buffer_head *bh = path_leaf_bh(right_path); 3526 struct buffer_head *root_bh = NULL; 3527 struct ocfs2_path *left_path = NULL; 3528 struct ocfs2_extent_list *left_el; 3529 3530 BUG_ON(index < 0); 3531 3532 right_rec = &el->l_recs[index]; 3533 if (index == 0) { 3534 /* we meet with a cross extent block merge. */ 3535 ret = ocfs2_get_left_path(et, right_path, &left_path); 3536 if (ret) { 3537 mlog_errno(ret); 3538 return ret; 3539 } 3540 3541 left_el = path_leaf_el(left_path); 3542 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) != 3543 le16_to_cpu(left_el->l_count)); 3544 3545 left_rec = &left_el->l_recs[ 3546 le16_to_cpu(left_el->l_next_free_rec) - 1]; 3547 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3548 le16_to_cpu(left_rec->e_leaf_clusters) != 3549 le32_to_cpu(split_rec->e_cpos)); 3550 3551 subtree_index = ocfs2_find_subtree_root(et, left_path, 3552 right_path); 3553 3554 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3555 handle->h_buffer_credits, 3556 left_path); 3557 if (ret) { 3558 mlog_errno(ret); 3559 goto out; 3560 } 3561 3562 root_bh = left_path->p_node[subtree_index].bh; 3563 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3564 3565 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3566 subtree_index); 3567 if (ret) { 3568 mlog_errno(ret); 3569 goto out; 3570 } 3571 3572 for (i = subtree_index + 1; 3573 i < path_num_items(right_path); i++) { 3574 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3575 right_path, i); 3576 if (ret) { 3577 mlog_errno(ret); 3578 goto out; 3579 } 3580 3581 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3582 left_path, i); 3583 if (ret) { 3584 mlog_errno(ret); 3585 goto out; 3586 } 3587 } 3588 } else { 3589 left_rec = &el->l_recs[index - 1]; 3590 if (ocfs2_is_empty_extent(&el->l_recs[0])) 3591 has_empty_extent = 1; 3592 } 3593 3594 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3595 path_num_items(right_path) - 1); 3596 if (ret) { 3597 mlog_errno(ret); 3598 goto out; 3599 } 3600 3601 if (has_empty_extent && index == 1) { 3602 /* 3603 * The easy case - we can just plop the record right in. 3604 */ 3605 *left_rec = *split_rec; 3606 3607 has_empty_extent = 0; 3608 } else 3609 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters); 3610 3611 le32_add_cpu(&right_rec->e_cpos, split_clusters); 3612 le64_add_cpu(&right_rec->e_blkno, 3613 ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), 3614 split_clusters)); 3615 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters); 3616 3617 ocfs2_cleanup_merge(el, index); 3618 3619 ocfs2_journal_dirty(handle, bh); 3620 if (left_path) { 3621 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 3622 3623 /* 3624 * In the situation that the right_rec is empty and the extent 3625 * block is empty also, ocfs2_complete_edge_insert can't handle 3626 * it and we need to delete the right extent block. 3627 */ 3628 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 && 3629 le16_to_cpu(el->l_next_free_rec) == 1) { 3630 3631 ret = ocfs2_remove_rightmost_path(handle, et, 3632 right_path, 3633 dealloc); 3634 if (ret) { 3635 mlog_errno(ret); 3636 goto out; 3637 } 3638 3639 /* Now the rightmost extent block has been deleted. 3640 * So we use the new rightmost path. 3641 */ 3642 ocfs2_mv_path(right_path, left_path); 3643 left_path = NULL; 3644 } else 3645 ocfs2_complete_edge_insert(handle, left_path, 3646 right_path, subtree_index); 3647 } 3648 out: 3649 ocfs2_free_path(left_path); 3650 return ret; 3651 } 3652 3653 static int ocfs2_try_to_merge_extent(handle_t *handle, 3654 struct ocfs2_extent_tree *et, 3655 struct ocfs2_path *path, 3656 int split_index, 3657 struct ocfs2_extent_rec *split_rec, 3658 struct ocfs2_cached_dealloc_ctxt *dealloc, 3659 struct ocfs2_merge_ctxt *ctxt) 3660 { 3661 int ret = 0; 3662 struct ocfs2_extent_list *el = path_leaf_el(path); 3663 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 3664 3665 BUG_ON(ctxt->c_contig_type == CONTIG_NONE); 3666 3667 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) { 3668 /* 3669 * The merge code will need to create an empty 3670 * extent to take the place of the newly 3671 * emptied slot. Remove any pre-existing empty 3672 * extents - having more than one in a leaf is 3673 * illegal. 3674 */ 3675 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3676 if (ret) { 3677 mlog_errno(ret); 3678 goto out; 3679 } 3680 split_index--; 3681 rec = &el->l_recs[split_index]; 3682 } 3683 3684 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) { 3685 /* 3686 * Left-right contig implies this. 3687 */ 3688 BUG_ON(!ctxt->c_split_covers_rec); 3689 3690 /* 3691 * Since the leftright insert always covers the entire 3692 * extent, this call will delete the insert record 3693 * entirely, resulting in an empty extent record added to 3694 * the extent block. 3695 * 3696 * Since the adding of an empty extent shifts 3697 * everything back to the right, there's no need to 3698 * update split_index here. 3699 * 3700 * When the split_index is zero, we need to merge it to the 3701 * prevoius extent block. It is more efficient and easier 3702 * if we do merge_right first and merge_left later. 3703 */ 3704 ret = ocfs2_merge_rec_right(path, handle, et, split_rec, 3705 split_index); 3706 if (ret) { 3707 mlog_errno(ret); 3708 goto out; 3709 } 3710 3711 /* 3712 * We can only get this from logic error above. 3713 */ 3714 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0])); 3715 3716 /* The merge left us with an empty extent, remove it. */ 3717 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3718 if (ret) { 3719 mlog_errno(ret); 3720 goto out; 3721 } 3722 3723 rec = &el->l_recs[split_index]; 3724 3725 /* 3726 * Note that we don't pass split_rec here on purpose - 3727 * we've merged it into the rec already. 3728 */ 3729 ret = ocfs2_merge_rec_left(path, handle, et, rec, 3730 dealloc, split_index); 3731 3732 if (ret) { 3733 mlog_errno(ret); 3734 goto out; 3735 } 3736 3737 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3738 /* 3739 * Error from this last rotate is not critical, so 3740 * print but don't bubble it up. 3741 */ 3742 if (ret) 3743 mlog_errno(ret); 3744 ret = 0; 3745 } else { 3746 /* 3747 * Merge a record to the left or right. 3748 * 3749 * 'contig_type' is relative to the existing record, 3750 * so for example, if we're "right contig", it's to 3751 * the record on the left (hence the left merge). 3752 */ 3753 if (ctxt->c_contig_type == CONTIG_RIGHT) { 3754 ret = ocfs2_merge_rec_left(path, handle, et, 3755 split_rec, dealloc, 3756 split_index); 3757 if (ret) { 3758 mlog_errno(ret); 3759 goto out; 3760 } 3761 } else { 3762 ret = ocfs2_merge_rec_right(path, handle, 3763 et, split_rec, 3764 split_index); 3765 if (ret) { 3766 mlog_errno(ret); 3767 goto out; 3768 } 3769 } 3770 3771 if (ctxt->c_split_covers_rec) { 3772 /* 3773 * The merge may have left an empty extent in 3774 * our leaf. Try to rotate it away. 3775 */ 3776 ret = ocfs2_rotate_tree_left(handle, et, path, 3777 dealloc); 3778 if (ret) 3779 mlog_errno(ret); 3780 ret = 0; 3781 } 3782 } 3783 3784 out: 3785 return ret; 3786 } 3787 3788 static void ocfs2_subtract_from_rec(struct super_block *sb, 3789 enum ocfs2_split_type split, 3790 struct ocfs2_extent_rec *rec, 3791 struct ocfs2_extent_rec *split_rec) 3792 { 3793 u64 len_blocks; 3794 3795 len_blocks = ocfs2_clusters_to_blocks(sb, 3796 le16_to_cpu(split_rec->e_leaf_clusters)); 3797 3798 if (split == SPLIT_LEFT) { 3799 /* 3800 * Region is on the left edge of the existing 3801 * record. 3802 */ 3803 le32_add_cpu(&rec->e_cpos, 3804 le16_to_cpu(split_rec->e_leaf_clusters)); 3805 le64_add_cpu(&rec->e_blkno, len_blocks); 3806 le16_add_cpu(&rec->e_leaf_clusters, 3807 -le16_to_cpu(split_rec->e_leaf_clusters)); 3808 } else { 3809 /* 3810 * Region is on the right edge of the existing 3811 * record. 3812 */ 3813 le16_add_cpu(&rec->e_leaf_clusters, 3814 -le16_to_cpu(split_rec->e_leaf_clusters)); 3815 } 3816 } 3817 3818 /* 3819 * Do the final bits of extent record insertion at the target leaf 3820 * list. If this leaf is part of an allocation tree, it is assumed 3821 * that the tree above has been prepared. 3822 */ 3823 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et, 3824 struct ocfs2_extent_rec *insert_rec, 3825 struct ocfs2_extent_list *el, 3826 struct ocfs2_insert_type *insert) 3827 { 3828 int i = insert->ins_contig_index; 3829 unsigned int range; 3830 struct ocfs2_extent_rec *rec; 3831 3832 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 3833 3834 if (insert->ins_split != SPLIT_NONE) { 3835 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos)); 3836 BUG_ON(i == -1); 3837 rec = &el->l_recs[i]; 3838 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci), 3839 insert->ins_split, rec, 3840 insert_rec); 3841 goto rotate; 3842 } 3843 3844 /* 3845 * Contiguous insert - either left or right. 3846 */ 3847 if (insert->ins_contig != CONTIG_NONE) { 3848 rec = &el->l_recs[i]; 3849 if (insert->ins_contig == CONTIG_LEFT) { 3850 rec->e_blkno = insert_rec->e_blkno; 3851 rec->e_cpos = insert_rec->e_cpos; 3852 } 3853 le16_add_cpu(&rec->e_leaf_clusters, 3854 le16_to_cpu(insert_rec->e_leaf_clusters)); 3855 return; 3856 } 3857 3858 /* 3859 * Handle insert into an empty leaf. 3860 */ 3861 if (le16_to_cpu(el->l_next_free_rec) == 0 || 3862 ((le16_to_cpu(el->l_next_free_rec) == 1) && 3863 ocfs2_is_empty_extent(&el->l_recs[0]))) { 3864 el->l_recs[0] = *insert_rec; 3865 el->l_next_free_rec = cpu_to_le16(1); 3866 return; 3867 } 3868 3869 /* 3870 * Appending insert. 3871 */ 3872 if (insert->ins_appending == APPEND_TAIL) { 3873 i = le16_to_cpu(el->l_next_free_rec) - 1; 3874 rec = &el->l_recs[i]; 3875 range = le32_to_cpu(rec->e_cpos) 3876 + le16_to_cpu(rec->e_leaf_clusters); 3877 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range); 3878 3879 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >= 3880 le16_to_cpu(el->l_count), 3881 "owner %llu, depth %u, count %u, next free %u, " 3882 "rec.cpos %u, rec.clusters %u, " 3883 "insert.cpos %u, insert.clusters %u\n", 3884 ocfs2_metadata_cache_owner(et->et_ci), 3885 le16_to_cpu(el->l_tree_depth), 3886 le16_to_cpu(el->l_count), 3887 le16_to_cpu(el->l_next_free_rec), 3888 le32_to_cpu(el->l_recs[i].e_cpos), 3889 le16_to_cpu(el->l_recs[i].e_leaf_clusters), 3890 le32_to_cpu(insert_rec->e_cpos), 3891 le16_to_cpu(insert_rec->e_leaf_clusters)); 3892 i++; 3893 el->l_recs[i] = *insert_rec; 3894 le16_add_cpu(&el->l_next_free_rec, 1); 3895 return; 3896 } 3897 3898 rotate: 3899 /* 3900 * Ok, we have to rotate. 3901 * 3902 * At this point, it is safe to assume that inserting into an 3903 * empty leaf and appending to a leaf have both been handled 3904 * above. 3905 * 3906 * This leaf needs to have space, either by the empty 1st 3907 * extent record, or by virtue of an l_next_rec < l_count. 3908 */ 3909 ocfs2_rotate_leaf(el, insert_rec); 3910 } 3911 3912 static void ocfs2_adjust_rightmost_records(handle_t *handle, 3913 struct ocfs2_extent_tree *et, 3914 struct ocfs2_path *path, 3915 struct ocfs2_extent_rec *insert_rec) 3916 { 3917 int ret, i, next_free; 3918 struct buffer_head *bh; 3919 struct ocfs2_extent_list *el; 3920 struct ocfs2_extent_rec *rec; 3921 3922 /* 3923 * Update everything except the leaf block. 3924 */ 3925 for (i = 0; i < path->p_tree_depth; i++) { 3926 bh = path->p_node[i].bh; 3927 el = path->p_node[i].el; 3928 3929 next_free = le16_to_cpu(el->l_next_free_rec); 3930 if (next_free == 0) { 3931 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 3932 "Owner %llu has a bad extent list", 3933 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 3934 ret = -EIO; 3935 return; 3936 } 3937 3938 rec = &el->l_recs[next_free - 1]; 3939 3940 rec->e_int_clusters = insert_rec->e_cpos; 3941 le32_add_cpu(&rec->e_int_clusters, 3942 le16_to_cpu(insert_rec->e_leaf_clusters)); 3943 le32_add_cpu(&rec->e_int_clusters, 3944 -le32_to_cpu(rec->e_cpos)); 3945 3946 ocfs2_journal_dirty(handle, bh); 3947 } 3948 } 3949 3950 static int ocfs2_append_rec_to_path(handle_t *handle, 3951 struct ocfs2_extent_tree *et, 3952 struct ocfs2_extent_rec *insert_rec, 3953 struct ocfs2_path *right_path, 3954 struct ocfs2_path **ret_left_path) 3955 { 3956 int ret, next_free; 3957 struct ocfs2_extent_list *el; 3958 struct ocfs2_path *left_path = NULL; 3959 3960 *ret_left_path = NULL; 3961 3962 /* 3963 * This shouldn't happen for non-trees. The extent rec cluster 3964 * count manipulation below only works for interior nodes. 3965 */ 3966 BUG_ON(right_path->p_tree_depth == 0); 3967 3968 /* 3969 * If our appending insert is at the leftmost edge of a leaf, 3970 * then we might need to update the rightmost records of the 3971 * neighboring path. 3972 */ 3973 el = path_leaf_el(right_path); 3974 next_free = le16_to_cpu(el->l_next_free_rec); 3975 if (next_free == 0 || 3976 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) { 3977 u32 left_cpos; 3978 3979 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3980 right_path, &left_cpos); 3981 if (ret) { 3982 mlog_errno(ret); 3983 goto out; 3984 } 3985 3986 trace_ocfs2_append_rec_to_path( 3987 (unsigned long long) 3988 ocfs2_metadata_cache_owner(et->et_ci), 3989 le32_to_cpu(insert_rec->e_cpos), 3990 left_cpos); 3991 3992 /* 3993 * No need to worry if the append is already in the 3994 * leftmost leaf. 3995 */ 3996 if (left_cpos) { 3997 left_path = ocfs2_new_path_from_path(right_path); 3998 if (!left_path) { 3999 ret = -ENOMEM; 4000 mlog_errno(ret); 4001 goto out; 4002 } 4003 4004 ret = ocfs2_find_path(et->et_ci, left_path, 4005 left_cpos); 4006 if (ret) { 4007 mlog_errno(ret); 4008 goto out; 4009 } 4010 4011 /* 4012 * ocfs2_insert_path() will pass the left_path to the 4013 * journal for us. 4014 */ 4015 } 4016 } 4017 4018 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path); 4019 if (ret) { 4020 mlog_errno(ret); 4021 goto out; 4022 } 4023 4024 ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec); 4025 4026 *ret_left_path = left_path; 4027 ret = 0; 4028 out: 4029 if (ret != 0) 4030 ocfs2_free_path(left_path); 4031 4032 return ret; 4033 } 4034 4035 static void ocfs2_split_record(struct ocfs2_extent_tree *et, 4036 struct ocfs2_path *left_path, 4037 struct ocfs2_path *right_path, 4038 struct ocfs2_extent_rec *split_rec, 4039 enum ocfs2_split_type split) 4040 { 4041 int index; 4042 u32 cpos = le32_to_cpu(split_rec->e_cpos); 4043 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el; 4044 struct ocfs2_extent_rec *rec, *tmprec; 4045 4046 right_el = path_leaf_el(right_path); 4047 if (left_path) 4048 left_el = path_leaf_el(left_path); 4049 4050 el = right_el; 4051 insert_el = right_el; 4052 index = ocfs2_search_extent_list(el, cpos); 4053 if (index != -1) { 4054 if (index == 0 && left_path) { 4055 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 4056 4057 /* 4058 * This typically means that the record 4059 * started in the left path but moved to the 4060 * right as a result of rotation. We either 4061 * move the existing record to the left, or we 4062 * do the later insert there. 4063 * 4064 * In this case, the left path should always 4065 * exist as the rotate code will have passed 4066 * it back for a post-insert update. 4067 */ 4068 4069 if (split == SPLIT_LEFT) { 4070 /* 4071 * It's a left split. Since we know 4072 * that the rotate code gave us an 4073 * empty extent in the left path, we 4074 * can just do the insert there. 4075 */ 4076 insert_el = left_el; 4077 } else { 4078 /* 4079 * Right split - we have to move the 4080 * existing record over to the left 4081 * leaf. The insert will be into the 4082 * newly created empty extent in the 4083 * right leaf. 4084 */ 4085 tmprec = &right_el->l_recs[index]; 4086 ocfs2_rotate_leaf(left_el, tmprec); 4087 el = left_el; 4088 4089 memset(tmprec, 0, sizeof(*tmprec)); 4090 index = ocfs2_search_extent_list(left_el, cpos); 4091 BUG_ON(index == -1); 4092 } 4093 } 4094 } else { 4095 BUG_ON(!left_path); 4096 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0])); 4097 /* 4098 * Left path is easy - we can just allow the insert to 4099 * happen. 4100 */ 4101 el = left_el; 4102 insert_el = left_el; 4103 index = ocfs2_search_extent_list(el, cpos); 4104 BUG_ON(index == -1); 4105 } 4106 4107 rec = &el->l_recs[index]; 4108 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci), 4109 split, rec, split_rec); 4110 ocfs2_rotate_leaf(insert_el, split_rec); 4111 } 4112 4113 /* 4114 * This function only does inserts on an allocation b-tree. For tree 4115 * depth = 0, ocfs2_insert_at_leaf() is called directly. 4116 * 4117 * right_path is the path we want to do the actual insert 4118 * in. left_path should only be passed in if we need to update that 4119 * portion of the tree after an edge insert. 4120 */ 4121 static int ocfs2_insert_path(handle_t *handle, 4122 struct ocfs2_extent_tree *et, 4123 struct ocfs2_path *left_path, 4124 struct ocfs2_path *right_path, 4125 struct ocfs2_extent_rec *insert_rec, 4126 struct ocfs2_insert_type *insert) 4127 { 4128 int ret, subtree_index; 4129 struct buffer_head *leaf_bh = path_leaf_bh(right_path); 4130 4131 if (left_path) { 4132 /* 4133 * There's a chance that left_path got passed back to 4134 * us without being accounted for in the 4135 * journal. Extend our transaction here to be sure we 4136 * can change those blocks. 4137 */ 4138 ret = ocfs2_extend_trans(handle, left_path->p_tree_depth); 4139 if (ret < 0) { 4140 mlog_errno(ret); 4141 goto out; 4142 } 4143 4144 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 4145 if (ret < 0) { 4146 mlog_errno(ret); 4147 goto out; 4148 } 4149 } 4150 4151 /* 4152 * Pass both paths to the journal. The majority of inserts 4153 * will be touching all components anyway. 4154 */ 4155 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path); 4156 if (ret < 0) { 4157 mlog_errno(ret); 4158 goto out; 4159 } 4160 4161 if (insert->ins_split != SPLIT_NONE) { 4162 /* 4163 * We could call ocfs2_insert_at_leaf() for some types 4164 * of splits, but it's easier to just let one separate 4165 * function sort it all out. 4166 */ 4167 ocfs2_split_record(et, left_path, right_path, 4168 insert_rec, insert->ins_split); 4169 4170 /* 4171 * Split might have modified either leaf and we don't 4172 * have a guarantee that the later edge insert will 4173 * dirty this for us. 4174 */ 4175 if (left_path) 4176 ocfs2_journal_dirty(handle, 4177 path_leaf_bh(left_path)); 4178 } else 4179 ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path), 4180 insert); 4181 4182 ocfs2_journal_dirty(handle, leaf_bh); 4183 4184 if (left_path) { 4185 /* 4186 * The rotate code has indicated that we need to fix 4187 * up portions of the tree after the insert. 4188 * 4189 * XXX: Should we extend the transaction here? 4190 */ 4191 subtree_index = ocfs2_find_subtree_root(et, left_path, 4192 right_path); 4193 ocfs2_complete_edge_insert(handle, left_path, right_path, 4194 subtree_index); 4195 } 4196 4197 ret = 0; 4198 out: 4199 return ret; 4200 } 4201 4202 static int ocfs2_do_insert_extent(handle_t *handle, 4203 struct ocfs2_extent_tree *et, 4204 struct ocfs2_extent_rec *insert_rec, 4205 struct ocfs2_insert_type *type) 4206 { 4207 int ret, rotate = 0; 4208 u32 cpos; 4209 struct ocfs2_path *right_path = NULL; 4210 struct ocfs2_path *left_path = NULL; 4211 struct ocfs2_extent_list *el; 4212 4213 el = et->et_root_el; 4214 4215 ret = ocfs2_et_root_journal_access(handle, et, 4216 OCFS2_JOURNAL_ACCESS_WRITE); 4217 if (ret) { 4218 mlog_errno(ret); 4219 goto out; 4220 } 4221 4222 if (le16_to_cpu(el->l_tree_depth) == 0) { 4223 ocfs2_insert_at_leaf(et, insert_rec, el, type); 4224 goto out_update_clusters; 4225 } 4226 4227 right_path = ocfs2_new_path_from_et(et); 4228 if (!right_path) { 4229 ret = -ENOMEM; 4230 mlog_errno(ret); 4231 goto out; 4232 } 4233 4234 /* 4235 * Determine the path to start with. Rotations need the 4236 * rightmost path, everything else can go directly to the 4237 * target leaf. 4238 */ 4239 cpos = le32_to_cpu(insert_rec->e_cpos); 4240 if (type->ins_appending == APPEND_NONE && 4241 type->ins_contig == CONTIG_NONE) { 4242 rotate = 1; 4243 cpos = UINT_MAX; 4244 } 4245 4246 ret = ocfs2_find_path(et->et_ci, right_path, cpos); 4247 if (ret) { 4248 mlog_errno(ret); 4249 goto out; 4250 } 4251 4252 /* 4253 * Rotations and appends need special treatment - they modify 4254 * parts of the tree's above them. 4255 * 4256 * Both might pass back a path immediate to the left of the 4257 * one being inserted to. This will be cause 4258 * ocfs2_insert_path() to modify the rightmost records of 4259 * left_path to account for an edge insert. 4260 * 4261 * XXX: When modifying this code, keep in mind that an insert 4262 * can wind up skipping both of these two special cases... 4263 */ 4264 if (rotate) { 4265 ret = ocfs2_rotate_tree_right(handle, et, type->ins_split, 4266 le32_to_cpu(insert_rec->e_cpos), 4267 right_path, &left_path); 4268 if (ret) { 4269 mlog_errno(ret); 4270 goto out; 4271 } 4272 4273 /* 4274 * ocfs2_rotate_tree_right() might have extended the 4275 * transaction without re-journaling our tree root. 4276 */ 4277 ret = ocfs2_et_root_journal_access(handle, et, 4278 OCFS2_JOURNAL_ACCESS_WRITE); 4279 if (ret) { 4280 mlog_errno(ret); 4281 goto out; 4282 } 4283 } else if (type->ins_appending == APPEND_TAIL 4284 && type->ins_contig != CONTIG_LEFT) { 4285 ret = ocfs2_append_rec_to_path(handle, et, insert_rec, 4286 right_path, &left_path); 4287 if (ret) { 4288 mlog_errno(ret); 4289 goto out; 4290 } 4291 } 4292 4293 ret = ocfs2_insert_path(handle, et, left_path, right_path, 4294 insert_rec, type); 4295 if (ret) { 4296 mlog_errno(ret); 4297 goto out; 4298 } 4299 4300 out_update_clusters: 4301 if (type->ins_split == SPLIT_NONE) 4302 ocfs2_et_update_clusters(et, 4303 le16_to_cpu(insert_rec->e_leaf_clusters)); 4304 4305 ocfs2_journal_dirty(handle, et->et_root_bh); 4306 4307 out: 4308 ocfs2_free_path(left_path); 4309 ocfs2_free_path(right_path); 4310 4311 return ret; 4312 } 4313 4314 static enum ocfs2_contig_type 4315 ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et, 4316 struct ocfs2_path *path, 4317 struct ocfs2_extent_list *el, int index, 4318 struct ocfs2_extent_rec *split_rec) 4319 { 4320 int status; 4321 enum ocfs2_contig_type ret = CONTIG_NONE; 4322 u32 left_cpos, right_cpos; 4323 struct ocfs2_extent_rec *rec = NULL; 4324 struct ocfs2_extent_list *new_el; 4325 struct ocfs2_path *left_path = NULL, *right_path = NULL; 4326 struct buffer_head *bh; 4327 struct ocfs2_extent_block *eb; 4328 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 4329 4330 if (index > 0) { 4331 rec = &el->l_recs[index - 1]; 4332 } else if (path->p_tree_depth > 0) { 4333 status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos); 4334 if (status) 4335 goto exit; 4336 4337 if (left_cpos != 0) { 4338 left_path = ocfs2_new_path_from_path(path); 4339 if (!left_path) 4340 goto exit; 4341 4342 status = ocfs2_find_path(et->et_ci, left_path, 4343 left_cpos); 4344 if (status) 4345 goto free_left_path; 4346 4347 new_el = path_leaf_el(left_path); 4348 4349 if (le16_to_cpu(new_el->l_next_free_rec) != 4350 le16_to_cpu(new_el->l_count)) { 4351 bh = path_leaf_bh(left_path); 4352 eb = (struct ocfs2_extent_block *)bh->b_data; 4353 ocfs2_error(sb, 4354 "Extent block #%llu has an " 4355 "invalid l_next_free_rec of " 4356 "%d. It should have " 4357 "matched the l_count of %d", 4358 (unsigned long long)le64_to_cpu(eb->h_blkno), 4359 le16_to_cpu(new_el->l_next_free_rec), 4360 le16_to_cpu(new_el->l_count)); 4361 status = -EINVAL; 4362 goto free_left_path; 4363 } 4364 rec = &new_el->l_recs[ 4365 le16_to_cpu(new_el->l_next_free_rec) - 1]; 4366 } 4367 } 4368 4369 /* 4370 * We're careful to check for an empty extent record here - 4371 * the merge code will know what to do if it sees one. 4372 */ 4373 if (rec) { 4374 if (index == 1 && ocfs2_is_empty_extent(rec)) { 4375 if (split_rec->e_cpos == el->l_recs[index].e_cpos) 4376 ret = CONTIG_RIGHT; 4377 } else { 4378 ret = ocfs2_et_extent_contig(et, rec, split_rec); 4379 } 4380 } 4381 4382 rec = NULL; 4383 if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) 4384 rec = &el->l_recs[index + 1]; 4385 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) && 4386 path->p_tree_depth > 0) { 4387 status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos); 4388 if (status) 4389 goto free_left_path; 4390 4391 if (right_cpos == 0) 4392 goto free_left_path; 4393 4394 right_path = ocfs2_new_path_from_path(path); 4395 if (!right_path) 4396 goto free_left_path; 4397 4398 status = ocfs2_find_path(et->et_ci, right_path, right_cpos); 4399 if (status) 4400 goto free_right_path; 4401 4402 new_el = path_leaf_el(right_path); 4403 rec = &new_el->l_recs[0]; 4404 if (ocfs2_is_empty_extent(rec)) { 4405 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) { 4406 bh = path_leaf_bh(right_path); 4407 eb = (struct ocfs2_extent_block *)bh->b_data; 4408 ocfs2_error(sb, 4409 "Extent block #%llu has an " 4410 "invalid l_next_free_rec of %d", 4411 (unsigned long long)le64_to_cpu(eb->h_blkno), 4412 le16_to_cpu(new_el->l_next_free_rec)); 4413 status = -EINVAL; 4414 goto free_right_path; 4415 } 4416 rec = &new_el->l_recs[1]; 4417 } 4418 } 4419 4420 if (rec) { 4421 enum ocfs2_contig_type contig_type; 4422 4423 contig_type = ocfs2_et_extent_contig(et, rec, split_rec); 4424 4425 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT) 4426 ret = CONTIG_LEFTRIGHT; 4427 else if (ret == CONTIG_NONE) 4428 ret = contig_type; 4429 } 4430 4431 free_right_path: 4432 ocfs2_free_path(right_path); 4433 free_left_path: 4434 ocfs2_free_path(left_path); 4435 exit: 4436 return ret; 4437 } 4438 4439 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et, 4440 struct ocfs2_insert_type *insert, 4441 struct ocfs2_extent_list *el, 4442 struct ocfs2_extent_rec *insert_rec) 4443 { 4444 int i; 4445 enum ocfs2_contig_type contig_type = CONTIG_NONE; 4446 4447 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4448 4449 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 4450 contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i], 4451 insert_rec); 4452 if (contig_type != CONTIG_NONE) { 4453 insert->ins_contig_index = i; 4454 break; 4455 } 4456 } 4457 insert->ins_contig = contig_type; 4458 4459 if (insert->ins_contig != CONTIG_NONE) { 4460 struct ocfs2_extent_rec *rec = 4461 &el->l_recs[insert->ins_contig_index]; 4462 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) + 4463 le16_to_cpu(insert_rec->e_leaf_clusters); 4464 4465 /* 4466 * Caller might want us to limit the size of extents, don't 4467 * calculate contiguousness if we might exceed that limit. 4468 */ 4469 if (et->et_max_leaf_clusters && 4470 (len > et->et_max_leaf_clusters)) 4471 insert->ins_contig = CONTIG_NONE; 4472 } 4473 } 4474 4475 /* 4476 * This should only be called against the righmost leaf extent list. 4477 * 4478 * ocfs2_figure_appending_type() will figure out whether we'll have to 4479 * insert at the tail of the rightmost leaf. 4480 * 4481 * This should also work against the root extent list for tree's with 0 4482 * depth. If we consider the root extent list to be the rightmost leaf node 4483 * then the logic here makes sense. 4484 */ 4485 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert, 4486 struct ocfs2_extent_list *el, 4487 struct ocfs2_extent_rec *insert_rec) 4488 { 4489 int i; 4490 u32 cpos = le32_to_cpu(insert_rec->e_cpos); 4491 struct ocfs2_extent_rec *rec; 4492 4493 insert->ins_appending = APPEND_NONE; 4494 4495 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4496 4497 if (!el->l_next_free_rec) 4498 goto set_tail_append; 4499 4500 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 4501 /* Were all records empty? */ 4502 if (le16_to_cpu(el->l_next_free_rec) == 1) 4503 goto set_tail_append; 4504 } 4505 4506 i = le16_to_cpu(el->l_next_free_rec) - 1; 4507 rec = &el->l_recs[i]; 4508 4509 if (cpos >= 4510 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters))) 4511 goto set_tail_append; 4512 4513 return; 4514 4515 set_tail_append: 4516 insert->ins_appending = APPEND_TAIL; 4517 } 4518 4519 /* 4520 * Helper function called at the beginning of an insert. 4521 * 4522 * This computes a few things that are commonly used in the process of 4523 * inserting into the btree: 4524 * - Whether the new extent is contiguous with an existing one. 4525 * - The current tree depth. 4526 * - Whether the insert is an appending one. 4527 * - The total # of free records in the tree. 4528 * 4529 * All of the information is stored on the ocfs2_insert_type 4530 * structure. 4531 */ 4532 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et, 4533 struct buffer_head **last_eb_bh, 4534 struct ocfs2_extent_rec *insert_rec, 4535 int *free_records, 4536 struct ocfs2_insert_type *insert) 4537 { 4538 int ret; 4539 struct ocfs2_extent_block *eb; 4540 struct ocfs2_extent_list *el; 4541 struct ocfs2_path *path = NULL; 4542 struct buffer_head *bh = NULL; 4543 4544 insert->ins_split = SPLIT_NONE; 4545 4546 el = et->et_root_el; 4547 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth); 4548 4549 if (el->l_tree_depth) { 4550 /* 4551 * If we have tree depth, we read in the 4552 * rightmost extent block ahead of time as 4553 * ocfs2_figure_insert_type() and ocfs2_add_branch() 4554 * may want it later. 4555 */ 4556 ret = ocfs2_read_extent_block(et->et_ci, 4557 ocfs2_et_get_last_eb_blk(et), 4558 &bh); 4559 if (ret) { 4560 mlog_errno(ret); 4561 goto out; 4562 } 4563 eb = (struct ocfs2_extent_block *) bh->b_data; 4564 el = &eb->h_list; 4565 } 4566 4567 /* 4568 * Unless we have a contiguous insert, we'll need to know if 4569 * there is room left in our allocation tree for another 4570 * extent record. 4571 * 4572 * XXX: This test is simplistic, we can search for empty 4573 * extent records too. 4574 */ 4575 *free_records = le16_to_cpu(el->l_count) - 4576 le16_to_cpu(el->l_next_free_rec); 4577 4578 if (!insert->ins_tree_depth) { 4579 ocfs2_figure_contig_type(et, insert, el, insert_rec); 4580 ocfs2_figure_appending_type(insert, el, insert_rec); 4581 return 0; 4582 } 4583 4584 path = ocfs2_new_path_from_et(et); 4585 if (!path) { 4586 ret = -ENOMEM; 4587 mlog_errno(ret); 4588 goto out; 4589 } 4590 4591 /* 4592 * In the case that we're inserting past what the tree 4593 * currently accounts for, ocfs2_find_path() will return for 4594 * us the rightmost tree path. This is accounted for below in 4595 * the appending code. 4596 */ 4597 ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos)); 4598 if (ret) { 4599 mlog_errno(ret); 4600 goto out; 4601 } 4602 4603 el = path_leaf_el(path); 4604 4605 /* 4606 * Now that we have the path, there's two things we want to determine: 4607 * 1) Contiguousness (also set contig_index if this is so) 4608 * 4609 * 2) Are we doing an append? We can trivially break this up 4610 * into two types of appends: simple record append, or a 4611 * rotate inside the tail leaf. 4612 */ 4613 ocfs2_figure_contig_type(et, insert, el, insert_rec); 4614 4615 /* 4616 * The insert code isn't quite ready to deal with all cases of 4617 * left contiguousness. Specifically, if it's an insert into 4618 * the 1st record in a leaf, it will require the adjustment of 4619 * cluster count on the last record of the path directly to it's 4620 * left. For now, just catch that case and fool the layers 4621 * above us. This works just fine for tree_depth == 0, which 4622 * is why we allow that above. 4623 */ 4624 if (insert->ins_contig == CONTIG_LEFT && 4625 insert->ins_contig_index == 0) 4626 insert->ins_contig = CONTIG_NONE; 4627 4628 /* 4629 * Ok, so we can simply compare against last_eb to figure out 4630 * whether the path doesn't exist. This will only happen in 4631 * the case that we're doing a tail append, so maybe we can 4632 * take advantage of that information somehow. 4633 */ 4634 if (ocfs2_et_get_last_eb_blk(et) == 4635 path_leaf_bh(path)->b_blocknr) { 4636 /* 4637 * Ok, ocfs2_find_path() returned us the rightmost 4638 * tree path. This might be an appending insert. There are 4639 * two cases: 4640 * 1) We're doing a true append at the tail: 4641 * -This might even be off the end of the leaf 4642 * 2) We're "appending" by rotating in the tail 4643 */ 4644 ocfs2_figure_appending_type(insert, el, insert_rec); 4645 } 4646 4647 out: 4648 ocfs2_free_path(path); 4649 4650 if (ret == 0) 4651 *last_eb_bh = bh; 4652 else 4653 brelse(bh); 4654 return ret; 4655 } 4656 4657 /* 4658 * Insert an extent into a btree. 4659 * 4660 * The caller needs to update the owning btree's cluster count. 4661 */ 4662 int ocfs2_insert_extent(handle_t *handle, 4663 struct ocfs2_extent_tree *et, 4664 u32 cpos, 4665 u64 start_blk, 4666 u32 new_clusters, 4667 u8 flags, 4668 struct ocfs2_alloc_context *meta_ac) 4669 { 4670 int status; 4671 int uninitialized_var(free_records); 4672 struct buffer_head *last_eb_bh = NULL; 4673 struct ocfs2_insert_type insert = {0, }; 4674 struct ocfs2_extent_rec rec; 4675 4676 trace_ocfs2_insert_extent_start( 4677 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 4678 cpos, new_clusters); 4679 4680 memset(&rec, 0, sizeof(rec)); 4681 rec.e_cpos = cpu_to_le32(cpos); 4682 rec.e_blkno = cpu_to_le64(start_blk); 4683 rec.e_leaf_clusters = cpu_to_le16(new_clusters); 4684 rec.e_flags = flags; 4685 status = ocfs2_et_insert_check(et, &rec); 4686 if (status) { 4687 mlog_errno(status); 4688 goto bail; 4689 } 4690 4691 status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec, 4692 &free_records, &insert); 4693 if (status < 0) { 4694 mlog_errno(status); 4695 goto bail; 4696 } 4697 4698 trace_ocfs2_insert_extent(insert.ins_appending, insert.ins_contig, 4699 insert.ins_contig_index, free_records, 4700 insert.ins_tree_depth); 4701 4702 if (insert.ins_contig == CONTIG_NONE && free_records == 0) { 4703 status = ocfs2_grow_tree(handle, et, 4704 &insert.ins_tree_depth, &last_eb_bh, 4705 meta_ac); 4706 if (status) { 4707 mlog_errno(status); 4708 goto bail; 4709 } 4710 } 4711 4712 /* Finally, we can add clusters. This might rotate the tree for us. */ 4713 status = ocfs2_do_insert_extent(handle, et, &rec, &insert); 4714 if (status < 0) 4715 mlog_errno(status); 4716 else 4717 ocfs2_et_extent_map_insert(et, &rec); 4718 4719 bail: 4720 brelse(last_eb_bh); 4721 4722 return status; 4723 } 4724 4725 /* 4726 * Allcate and add clusters into the extent b-tree. 4727 * The new clusters(clusters_to_add) will be inserted at logical_offset. 4728 * The extent b-tree's root is specified by et, and 4729 * it is not limited to the file storage. Any extent tree can use this 4730 * function if it implements the proper ocfs2_extent_tree. 4731 */ 4732 int ocfs2_add_clusters_in_btree(handle_t *handle, 4733 struct ocfs2_extent_tree *et, 4734 u32 *logical_offset, 4735 u32 clusters_to_add, 4736 int mark_unwritten, 4737 struct ocfs2_alloc_context *data_ac, 4738 struct ocfs2_alloc_context *meta_ac, 4739 enum ocfs2_alloc_restarted *reason_ret) 4740 { 4741 int status = 0, err = 0; 4742 int need_free = 0; 4743 int free_extents; 4744 enum ocfs2_alloc_restarted reason = RESTART_NONE; 4745 u32 bit_off, num_bits; 4746 u64 block; 4747 u8 flags = 0; 4748 struct ocfs2_super *osb = 4749 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 4750 4751 BUG_ON(!clusters_to_add); 4752 4753 if (mark_unwritten) 4754 flags = OCFS2_EXT_UNWRITTEN; 4755 4756 free_extents = ocfs2_num_free_extents(osb, et); 4757 if (free_extents < 0) { 4758 status = free_extents; 4759 mlog_errno(status); 4760 goto leave; 4761 } 4762 4763 /* there are two cases which could cause us to EAGAIN in the 4764 * we-need-more-metadata case: 4765 * 1) we haven't reserved *any* 4766 * 2) we are so fragmented, we've needed to add metadata too 4767 * many times. */ 4768 if (!free_extents && !meta_ac) { 4769 err = -1; 4770 status = -EAGAIN; 4771 reason = RESTART_META; 4772 goto leave; 4773 } else if ((!free_extents) 4774 && (ocfs2_alloc_context_bits_left(meta_ac) 4775 < ocfs2_extend_meta_needed(et->et_root_el))) { 4776 err = -2; 4777 status = -EAGAIN; 4778 reason = RESTART_META; 4779 goto leave; 4780 } 4781 4782 status = __ocfs2_claim_clusters(handle, data_ac, 1, 4783 clusters_to_add, &bit_off, &num_bits); 4784 if (status < 0) { 4785 if (status != -ENOSPC) 4786 mlog_errno(status); 4787 goto leave; 4788 } 4789 4790 BUG_ON(num_bits > clusters_to_add); 4791 4792 /* reserve our write early -- insert_extent may update the tree root */ 4793 status = ocfs2_et_root_journal_access(handle, et, 4794 OCFS2_JOURNAL_ACCESS_WRITE); 4795 if (status < 0) { 4796 mlog_errno(status); 4797 need_free = 1; 4798 goto bail; 4799 } 4800 4801 block = ocfs2_clusters_to_blocks(osb->sb, bit_off); 4802 trace_ocfs2_add_clusters_in_btree( 4803 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 4804 bit_off, num_bits); 4805 status = ocfs2_insert_extent(handle, et, *logical_offset, block, 4806 num_bits, flags, meta_ac); 4807 if (status < 0) { 4808 mlog_errno(status); 4809 need_free = 1; 4810 goto bail; 4811 } 4812 4813 ocfs2_journal_dirty(handle, et->et_root_bh); 4814 4815 clusters_to_add -= num_bits; 4816 *logical_offset += num_bits; 4817 4818 if (clusters_to_add) { 4819 err = clusters_to_add; 4820 status = -EAGAIN; 4821 reason = RESTART_TRANS; 4822 } 4823 4824 bail: 4825 if (need_free) { 4826 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL) 4827 ocfs2_free_local_alloc_bits(osb, handle, data_ac, 4828 bit_off, num_bits); 4829 else 4830 ocfs2_free_clusters(handle, 4831 data_ac->ac_inode, 4832 data_ac->ac_bh, 4833 ocfs2_clusters_to_blocks(osb->sb, bit_off), 4834 num_bits); 4835 } 4836 4837 leave: 4838 if (reason_ret) 4839 *reason_ret = reason; 4840 trace_ocfs2_add_clusters_in_btree_ret(status, reason, err); 4841 return status; 4842 } 4843 4844 static void ocfs2_make_right_split_rec(struct super_block *sb, 4845 struct ocfs2_extent_rec *split_rec, 4846 u32 cpos, 4847 struct ocfs2_extent_rec *rec) 4848 { 4849 u32 rec_cpos = le32_to_cpu(rec->e_cpos); 4850 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters); 4851 4852 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec)); 4853 4854 split_rec->e_cpos = cpu_to_le32(cpos); 4855 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos); 4856 4857 split_rec->e_blkno = rec->e_blkno; 4858 le64_add_cpu(&split_rec->e_blkno, 4859 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos)); 4860 4861 split_rec->e_flags = rec->e_flags; 4862 } 4863 4864 static int ocfs2_split_and_insert(handle_t *handle, 4865 struct ocfs2_extent_tree *et, 4866 struct ocfs2_path *path, 4867 struct buffer_head **last_eb_bh, 4868 int split_index, 4869 struct ocfs2_extent_rec *orig_split_rec, 4870 struct ocfs2_alloc_context *meta_ac) 4871 { 4872 int ret = 0, depth; 4873 unsigned int insert_range, rec_range, do_leftright = 0; 4874 struct ocfs2_extent_rec tmprec; 4875 struct ocfs2_extent_list *rightmost_el; 4876 struct ocfs2_extent_rec rec; 4877 struct ocfs2_extent_rec split_rec = *orig_split_rec; 4878 struct ocfs2_insert_type insert; 4879 struct ocfs2_extent_block *eb; 4880 4881 leftright: 4882 /* 4883 * Store a copy of the record on the stack - it might move 4884 * around as the tree is manipulated below. 4885 */ 4886 rec = path_leaf_el(path)->l_recs[split_index]; 4887 4888 rightmost_el = et->et_root_el; 4889 4890 depth = le16_to_cpu(rightmost_el->l_tree_depth); 4891 if (depth) { 4892 BUG_ON(!(*last_eb_bh)); 4893 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 4894 rightmost_el = &eb->h_list; 4895 } 4896 4897 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 4898 le16_to_cpu(rightmost_el->l_count)) { 4899 ret = ocfs2_grow_tree(handle, et, 4900 &depth, last_eb_bh, meta_ac); 4901 if (ret) { 4902 mlog_errno(ret); 4903 goto out; 4904 } 4905 } 4906 4907 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 4908 insert.ins_appending = APPEND_NONE; 4909 insert.ins_contig = CONTIG_NONE; 4910 insert.ins_tree_depth = depth; 4911 4912 insert_range = le32_to_cpu(split_rec.e_cpos) + 4913 le16_to_cpu(split_rec.e_leaf_clusters); 4914 rec_range = le32_to_cpu(rec.e_cpos) + 4915 le16_to_cpu(rec.e_leaf_clusters); 4916 4917 if (split_rec.e_cpos == rec.e_cpos) { 4918 insert.ins_split = SPLIT_LEFT; 4919 } else if (insert_range == rec_range) { 4920 insert.ins_split = SPLIT_RIGHT; 4921 } else { 4922 /* 4923 * Left/right split. We fake this as a right split 4924 * first and then make a second pass as a left split. 4925 */ 4926 insert.ins_split = SPLIT_RIGHT; 4927 4928 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci), 4929 &tmprec, insert_range, &rec); 4930 4931 split_rec = tmprec; 4932 4933 BUG_ON(do_leftright); 4934 do_leftright = 1; 4935 } 4936 4937 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert); 4938 if (ret) { 4939 mlog_errno(ret); 4940 goto out; 4941 } 4942 4943 if (do_leftright == 1) { 4944 u32 cpos; 4945 struct ocfs2_extent_list *el; 4946 4947 do_leftright++; 4948 split_rec = *orig_split_rec; 4949 4950 ocfs2_reinit_path(path, 1); 4951 4952 cpos = le32_to_cpu(split_rec.e_cpos); 4953 ret = ocfs2_find_path(et->et_ci, path, cpos); 4954 if (ret) { 4955 mlog_errno(ret); 4956 goto out; 4957 } 4958 4959 el = path_leaf_el(path); 4960 split_index = ocfs2_search_extent_list(el, cpos); 4961 if (split_index == -1) { 4962 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 4963 "Owner %llu has an extent at cpos %u " 4964 "which can no longer be found.\n", 4965 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 4966 cpos); 4967 ret = -EROFS; 4968 goto out; 4969 } 4970 goto leftright; 4971 } 4972 out: 4973 4974 return ret; 4975 } 4976 4977 static int ocfs2_replace_extent_rec(handle_t *handle, 4978 struct ocfs2_extent_tree *et, 4979 struct ocfs2_path *path, 4980 struct ocfs2_extent_list *el, 4981 int split_index, 4982 struct ocfs2_extent_rec *split_rec) 4983 { 4984 int ret; 4985 4986 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path, 4987 path_num_items(path) - 1); 4988 if (ret) { 4989 mlog_errno(ret); 4990 goto out; 4991 } 4992 4993 el->l_recs[split_index] = *split_rec; 4994 4995 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 4996 out: 4997 return ret; 4998 } 4999 5000 /* 5001 * Split part or all of the extent record at split_index in the leaf 5002 * pointed to by path. Merge with the contiguous extent record if needed. 5003 * 5004 * Care is taken to handle contiguousness so as to not grow the tree. 5005 * 5006 * meta_ac is not strictly necessary - we only truly need it if growth 5007 * of the tree is required. All other cases will degrade into a less 5008 * optimal tree layout. 5009 * 5010 * last_eb_bh should be the rightmost leaf block for any extent 5011 * btree. Since a split may grow the tree or a merge might shrink it, 5012 * the caller cannot trust the contents of that buffer after this call. 5013 * 5014 * This code is optimized for readability - several passes might be 5015 * made over certain portions of the tree. All of those blocks will 5016 * have been brought into cache (and pinned via the journal), so the 5017 * extra overhead is not expressed in terms of disk reads. 5018 */ 5019 int ocfs2_split_extent(handle_t *handle, 5020 struct ocfs2_extent_tree *et, 5021 struct ocfs2_path *path, 5022 int split_index, 5023 struct ocfs2_extent_rec *split_rec, 5024 struct ocfs2_alloc_context *meta_ac, 5025 struct ocfs2_cached_dealloc_ctxt *dealloc) 5026 { 5027 int ret = 0; 5028 struct ocfs2_extent_list *el = path_leaf_el(path); 5029 struct buffer_head *last_eb_bh = NULL; 5030 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 5031 struct ocfs2_merge_ctxt ctxt; 5032 struct ocfs2_extent_list *rightmost_el; 5033 5034 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) || 5035 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) < 5036 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) { 5037 ret = -EIO; 5038 mlog_errno(ret); 5039 goto out; 5040 } 5041 5042 ctxt.c_contig_type = ocfs2_figure_merge_contig_type(et, path, el, 5043 split_index, 5044 split_rec); 5045 5046 /* 5047 * The core merge / split code wants to know how much room is 5048 * left in this allocation tree, so we pass the 5049 * rightmost extent list. 5050 */ 5051 if (path->p_tree_depth) { 5052 struct ocfs2_extent_block *eb; 5053 5054 ret = ocfs2_read_extent_block(et->et_ci, 5055 ocfs2_et_get_last_eb_blk(et), 5056 &last_eb_bh); 5057 if (ret) { 5058 mlog_errno(ret); 5059 goto out; 5060 } 5061 5062 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5063 rightmost_el = &eb->h_list; 5064 } else 5065 rightmost_el = path_root_el(path); 5066 5067 if (rec->e_cpos == split_rec->e_cpos && 5068 rec->e_leaf_clusters == split_rec->e_leaf_clusters) 5069 ctxt.c_split_covers_rec = 1; 5070 else 5071 ctxt.c_split_covers_rec = 0; 5072 5073 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]); 5074 5075 trace_ocfs2_split_extent(split_index, ctxt.c_contig_type, 5076 ctxt.c_has_empty_extent, 5077 ctxt.c_split_covers_rec); 5078 5079 if (ctxt.c_contig_type == CONTIG_NONE) { 5080 if (ctxt.c_split_covers_rec) 5081 ret = ocfs2_replace_extent_rec(handle, et, path, el, 5082 split_index, split_rec); 5083 else 5084 ret = ocfs2_split_and_insert(handle, et, path, 5085 &last_eb_bh, split_index, 5086 split_rec, meta_ac); 5087 if (ret) 5088 mlog_errno(ret); 5089 } else { 5090 ret = ocfs2_try_to_merge_extent(handle, et, path, 5091 split_index, split_rec, 5092 dealloc, &ctxt); 5093 if (ret) 5094 mlog_errno(ret); 5095 } 5096 5097 out: 5098 brelse(last_eb_bh); 5099 return ret; 5100 } 5101 5102 /* 5103 * Change the flags of the already-existing extent at cpos for len clusters. 5104 * 5105 * new_flags: the flags we want to set. 5106 * clear_flags: the flags we want to clear. 5107 * phys: the new physical offset we want this new extent starts from. 5108 * 5109 * If the existing extent is larger than the request, initiate a 5110 * split. An attempt will be made at merging with adjacent extents. 5111 * 5112 * The caller is responsible for passing down meta_ac if we'll need it. 5113 */ 5114 int ocfs2_change_extent_flag(handle_t *handle, 5115 struct ocfs2_extent_tree *et, 5116 u32 cpos, u32 len, u32 phys, 5117 struct ocfs2_alloc_context *meta_ac, 5118 struct ocfs2_cached_dealloc_ctxt *dealloc, 5119 int new_flags, int clear_flags) 5120 { 5121 int ret, index; 5122 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 5123 u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys); 5124 struct ocfs2_extent_rec split_rec; 5125 struct ocfs2_path *left_path = NULL; 5126 struct ocfs2_extent_list *el; 5127 struct ocfs2_extent_rec *rec; 5128 5129 left_path = ocfs2_new_path_from_et(et); 5130 if (!left_path) { 5131 ret = -ENOMEM; 5132 mlog_errno(ret); 5133 goto out; 5134 } 5135 5136 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 5137 if (ret) { 5138 mlog_errno(ret); 5139 goto out; 5140 } 5141 el = path_leaf_el(left_path); 5142 5143 index = ocfs2_search_extent_list(el, cpos); 5144 if (index == -1) { 5145 ocfs2_error(sb, 5146 "Owner %llu has an extent at cpos %u which can no " 5147 "longer be found.\n", 5148 (unsigned long long) 5149 ocfs2_metadata_cache_owner(et->et_ci), cpos); 5150 ret = -EROFS; 5151 goto out; 5152 } 5153 5154 ret = -EIO; 5155 rec = &el->l_recs[index]; 5156 if (new_flags && (rec->e_flags & new_flags)) { 5157 mlog(ML_ERROR, "Owner %llu tried to set %d flags on an " 5158 "extent that already had them", 5159 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5160 new_flags); 5161 goto out; 5162 } 5163 5164 if (clear_flags && !(rec->e_flags & clear_flags)) { 5165 mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an " 5166 "extent that didn't have them", 5167 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5168 clear_flags); 5169 goto out; 5170 } 5171 5172 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec)); 5173 split_rec.e_cpos = cpu_to_le32(cpos); 5174 split_rec.e_leaf_clusters = cpu_to_le16(len); 5175 split_rec.e_blkno = cpu_to_le64(start_blkno); 5176 split_rec.e_flags = rec->e_flags; 5177 if (new_flags) 5178 split_rec.e_flags |= new_flags; 5179 if (clear_flags) 5180 split_rec.e_flags &= ~clear_flags; 5181 5182 ret = ocfs2_split_extent(handle, et, left_path, 5183 index, &split_rec, meta_ac, 5184 dealloc); 5185 if (ret) 5186 mlog_errno(ret); 5187 5188 out: 5189 ocfs2_free_path(left_path); 5190 return ret; 5191 5192 } 5193 5194 /* 5195 * Mark the already-existing extent at cpos as written for len clusters. 5196 * This removes the unwritten extent flag. 5197 * 5198 * If the existing extent is larger than the request, initiate a 5199 * split. An attempt will be made at merging with adjacent extents. 5200 * 5201 * The caller is responsible for passing down meta_ac if we'll need it. 5202 */ 5203 int ocfs2_mark_extent_written(struct inode *inode, 5204 struct ocfs2_extent_tree *et, 5205 handle_t *handle, u32 cpos, u32 len, u32 phys, 5206 struct ocfs2_alloc_context *meta_ac, 5207 struct ocfs2_cached_dealloc_ctxt *dealloc) 5208 { 5209 int ret; 5210 5211 trace_ocfs2_mark_extent_written( 5212 (unsigned long long)OCFS2_I(inode)->ip_blkno, 5213 cpos, len, phys); 5214 5215 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) { 5216 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents " 5217 "that are being written to, but the feature bit " 5218 "is not set in the super block.", 5219 (unsigned long long)OCFS2_I(inode)->ip_blkno); 5220 ret = -EROFS; 5221 goto out; 5222 } 5223 5224 /* 5225 * XXX: This should be fixed up so that we just re-insert the 5226 * next extent records. 5227 */ 5228 ocfs2_et_extent_map_truncate(et, 0); 5229 5230 ret = ocfs2_change_extent_flag(handle, et, cpos, 5231 len, phys, meta_ac, dealloc, 5232 0, OCFS2_EXT_UNWRITTEN); 5233 if (ret) 5234 mlog_errno(ret); 5235 5236 out: 5237 return ret; 5238 } 5239 5240 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et, 5241 struct ocfs2_path *path, 5242 int index, u32 new_range, 5243 struct ocfs2_alloc_context *meta_ac) 5244 { 5245 int ret, depth, credits; 5246 struct buffer_head *last_eb_bh = NULL; 5247 struct ocfs2_extent_block *eb; 5248 struct ocfs2_extent_list *rightmost_el, *el; 5249 struct ocfs2_extent_rec split_rec; 5250 struct ocfs2_extent_rec *rec; 5251 struct ocfs2_insert_type insert; 5252 5253 /* 5254 * Setup the record to split before we grow the tree. 5255 */ 5256 el = path_leaf_el(path); 5257 rec = &el->l_recs[index]; 5258 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci), 5259 &split_rec, new_range, rec); 5260 5261 depth = path->p_tree_depth; 5262 if (depth > 0) { 5263 ret = ocfs2_read_extent_block(et->et_ci, 5264 ocfs2_et_get_last_eb_blk(et), 5265 &last_eb_bh); 5266 if (ret < 0) { 5267 mlog_errno(ret); 5268 goto out; 5269 } 5270 5271 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5272 rightmost_el = &eb->h_list; 5273 } else 5274 rightmost_el = path_leaf_el(path); 5275 5276 credits = path->p_tree_depth + 5277 ocfs2_extend_meta_needed(et->et_root_el); 5278 ret = ocfs2_extend_trans(handle, credits); 5279 if (ret) { 5280 mlog_errno(ret); 5281 goto out; 5282 } 5283 5284 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 5285 le16_to_cpu(rightmost_el->l_count)) { 5286 ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh, 5287 meta_ac); 5288 if (ret) { 5289 mlog_errno(ret); 5290 goto out; 5291 } 5292 } 5293 5294 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 5295 insert.ins_appending = APPEND_NONE; 5296 insert.ins_contig = CONTIG_NONE; 5297 insert.ins_split = SPLIT_RIGHT; 5298 insert.ins_tree_depth = depth; 5299 5300 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert); 5301 if (ret) 5302 mlog_errno(ret); 5303 5304 out: 5305 brelse(last_eb_bh); 5306 return ret; 5307 } 5308 5309 static int ocfs2_truncate_rec(handle_t *handle, 5310 struct ocfs2_extent_tree *et, 5311 struct ocfs2_path *path, int index, 5312 struct ocfs2_cached_dealloc_ctxt *dealloc, 5313 u32 cpos, u32 len) 5314 { 5315 int ret; 5316 u32 left_cpos, rec_range, trunc_range; 5317 int wants_rotate = 0, is_rightmost_tree_rec = 0; 5318 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 5319 struct ocfs2_path *left_path = NULL; 5320 struct ocfs2_extent_list *el = path_leaf_el(path); 5321 struct ocfs2_extent_rec *rec; 5322 struct ocfs2_extent_block *eb; 5323 5324 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) { 5325 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 5326 if (ret) { 5327 mlog_errno(ret); 5328 goto out; 5329 } 5330 5331 index--; 5332 } 5333 5334 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) && 5335 path->p_tree_depth) { 5336 /* 5337 * Check whether this is the rightmost tree record. If 5338 * we remove all of this record or part of its right 5339 * edge then an update of the record lengths above it 5340 * will be required. 5341 */ 5342 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 5343 if (eb->h_next_leaf_blk == 0) 5344 is_rightmost_tree_rec = 1; 5345 } 5346 5347 rec = &el->l_recs[index]; 5348 if (index == 0 && path->p_tree_depth && 5349 le32_to_cpu(rec->e_cpos) == cpos) { 5350 /* 5351 * Changing the leftmost offset (via partial or whole 5352 * record truncate) of an interior (or rightmost) path 5353 * means we have to update the subtree that is formed 5354 * by this leaf and the one to it's left. 5355 * 5356 * There are two cases we can skip: 5357 * 1) Path is the leftmost one in our btree. 5358 * 2) The leaf is rightmost and will be empty after 5359 * we remove the extent record - the rotate code 5360 * knows how to update the newly formed edge. 5361 */ 5362 5363 ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos); 5364 if (ret) { 5365 mlog_errno(ret); 5366 goto out; 5367 } 5368 5369 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) { 5370 left_path = ocfs2_new_path_from_path(path); 5371 if (!left_path) { 5372 ret = -ENOMEM; 5373 mlog_errno(ret); 5374 goto out; 5375 } 5376 5377 ret = ocfs2_find_path(et->et_ci, left_path, 5378 left_cpos); 5379 if (ret) { 5380 mlog_errno(ret); 5381 goto out; 5382 } 5383 } 5384 } 5385 5386 ret = ocfs2_extend_rotate_transaction(handle, 0, 5387 handle->h_buffer_credits, 5388 path); 5389 if (ret) { 5390 mlog_errno(ret); 5391 goto out; 5392 } 5393 5394 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 5395 if (ret) { 5396 mlog_errno(ret); 5397 goto out; 5398 } 5399 5400 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 5401 if (ret) { 5402 mlog_errno(ret); 5403 goto out; 5404 } 5405 5406 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5407 trunc_range = cpos + len; 5408 5409 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) { 5410 int next_free; 5411 5412 memset(rec, 0, sizeof(*rec)); 5413 ocfs2_cleanup_merge(el, index); 5414 wants_rotate = 1; 5415 5416 next_free = le16_to_cpu(el->l_next_free_rec); 5417 if (is_rightmost_tree_rec && next_free > 1) { 5418 /* 5419 * We skip the edge update if this path will 5420 * be deleted by the rotate code. 5421 */ 5422 rec = &el->l_recs[next_free - 1]; 5423 ocfs2_adjust_rightmost_records(handle, et, path, 5424 rec); 5425 } 5426 } else if (le32_to_cpu(rec->e_cpos) == cpos) { 5427 /* Remove leftmost portion of the record. */ 5428 le32_add_cpu(&rec->e_cpos, len); 5429 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len)); 5430 le16_add_cpu(&rec->e_leaf_clusters, -len); 5431 } else if (rec_range == trunc_range) { 5432 /* Remove rightmost portion of the record */ 5433 le16_add_cpu(&rec->e_leaf_clusters, -len); 5434 if (is_rightmost_tree_rec) 5435 ocfs2_adjust_rightmost_records(handle, et, path, rec); 5436 } else { 5437 /* Caller should have trapped this. */ 5438 mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) " 5439 "(%u, %u)\n", 5440 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5441 le32_to_cpu(rec->e_cpos), 5442 le16_to_cpu(rec->e_leaf_clusters), cpos, len); 5443 BUG(); 5444 } 5445 5446 if (left_path) { 5447 int subtree_index; 5448 5449 subtree_index = ocfs2_find_subtree_root(et, left_path, path); 5450 ocfs2_complete_edge_insert(handle, left_path, path, 5451 subtree_index); 5452 } 5453 5454 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 5455 5456 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 5457 if (ret) { 5458 mlog_errno(ret); 5459 goto out; 5460 } 5461 5462 out: 5463 ocfs2_free_path(left_path); 5464 return ret; 5465 } 5466 5467 int ocfs2_remove_extent(handle_t *handle, 5468 struct ocfs2_extent_tree *et, 5469 u32 cpos, u32 len, 5470 struct ocfs2_alloc_context *meta_ac, 5471 struct ocfs2_cached_dealloc_ctxt *dealloc) 5472 { 5473 int ret, index; 5474 u32 rec_range, trunc_range; 5475 struct ocfs2_extent_rec *rec; 5476 struct ocfs2_extent_list *el; 5477 struct ocfs2_path *path = NULL; 5478 5479 /* 5480 * XXX: Why are we truncating to 0 instead of wherever this 5481 * affects us? 5482 */ 5483 ocfs2_et_extent_map_truncate(et, 0); 5484 5485 path = ocfs2_new_path_from_et(et); 5486 if (!path) { 5487 ret = -ENOMEM; 5488 mlog_errno(ret); 5489 goto out; 5490 } 5491 5492 ret = ocfs2_find_path(et->et_ci, path, cpos); 5493 if (ret) { 5494 mlog_errno(ret); 5495 goto out; 5496 } 5497 5498 el = path_leaf_el(path); 5499 index = ocfs2_search_extent_list(el, cpos); 5500 if (index == -1) { 5501 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5502 "Owner %llu has an extent at cpos %u which can no " 5503 "longer be found.\n", 5504 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5505 cpos); 5506 ret = -EROFS; 5507 goto out; 5508 } 5509 5510 /* 5511 * We have 3 cases of extent removal: 5512 * 1) Range covers the entire extent rec 5513 * 2) Range begins or ends on one edge of the extent rec 5514 * 3) Range is in the middle of the extent rec (no shared edges) 5515 * 5516 * For case 1 we remove the extent rec and left rotate to 5517 * fill the hole. 5518 * 5519 * For case 2 we just shrink the existing extent rec, with a 5520 * tree update if the shrinking edge is also the edge of an 5521 * extent block. 5522 * 5523 * For case 3 we do a right split to turn the extent rec into 5524 * something case 2 can handle. 5525 */ 5526 rec = &el->l_recs[index]; 5527 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5528 trunc_range = cpos + len; 5529 5530 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range); 5531 5532 trace_ocfs2_remove_extent( 5533 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5534 cpos, len, index, le32_to_cpu(rec->e_cpos), 5535 ocfs2_rec_clusters(el, rec)); 5536 5537 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) { 5538 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc, 5539 cpos, len); 5540 if (ret) { 5541 mlog_errno(ret); 5542 goto out; 5543 } 5544 } else { 5545 ret = ocfs2_split_tree(handle, et, path, index, 5546 trunc_range, meta_ac); 5547 if (ret) { 5548 mlog_errno(ret); 5549 goto out; 5550 } 5551 5552 /* 5553 * The split could have manipulated the tree enough to 5554 * move the record location, so we have to look for it again. 5555 */ 5556 ocfs2_reinit_path(path, 1); 5557 5558 ret = ocfs2_find_path(et->et_ci, path, cpos); 5559 if (ret) { 5560 mlog_errno(ret); 5561 goto out; 5562 } 5563 5564 el = path_leaf_el(path); 5565 index = ocfs2_search_extent_list(el, cpos); 5566 if (index == -1) { 5567 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5568 "Owner %llu: split at cpos %u lost record.", 5569 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5570 cpos); 5571 ret = -EROFS; 5572 goto out; 5573 } 5574 5575 /* 5576 * Double check our values here. If anything is fishy, 5577 * it's easier to catch it at the top level. 5578 */ 5579 rec = &el->l_recs[index]; 5580 rec_range = le32_to_cpu(rec->e_cpos) + 5581 ocfs2_rec_clusters(el, rec); 5582 if (rec_range != trunc_range) { 5583 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5584 "Owner %llu: error after split at cpos %u" 5585 "trunc len %u, existing record is (%u,%u)", 5586 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5587 cpos, len, le32_to_cpu(rec->e_cpos), 5588 ocfs2_rec_clusters(el, rec)); 5589 ret = -EROFS; 5590 goto out; 5591 } 5592 5593 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc, 5594 cpos, len); 5595 if (ret) { 5596 mlog_errno(ret); 5597 goto out; 5598 } 5599 } 5600 5601 out: 5602 ocfs2_free_path(path); 5603 return ret; 5604 } 5605 5606 /* 5607 * ocfs2_reserve_blocks_for_rec_trunc() would look basically the 5608 * same as ocfs2_lock_alloctors(), except for it accepts a blocks 5609 * number to reserve some extra blocks, and it only handles meta 5610 * data allocations. 5611 * 5612 * Currently, only ocfs2_remove_btree_range() uses it for truncating 5613 * and punching holes. 5614 */ 5615 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode, 5616 struct ocfs2_extent_tree *et, 5617 u32 extents_to_split, 5618 struct ocfs2_alloc_context **ac, 5619 int extra_blocks) 5620 { 5621 int ret = 0, num_free_extents; 5622 unsigned int max_recs_needed = 2 * extents_to_split; 5623 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5624 5625 *ac = NULL; 5626 5627 num_free_extents = ocfs2_num_free_extents(osb, et); 5628 if (num_free_extents < 0) { 5629 ret = num_free_extents; 5630 mlog_errno(ret); 5631 goto out; 5632 } 5633 5634 if (!num_free_extents || 5635 (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed)) 5636 extra_blocks += ocfs2_extend_meta_needed(et->et_root_el); 5637 5638 if (extra_blocks) { 5639 ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac); 5640 if (ret < 0) { 5641 if (ret != -ENOSPC) 5642 mlog_errno(ret); 5643 goto out; 5644 } 5645 } 5646 5647 out: 5648 if (ret) { 5649 if (*ac) { 5650 ocfs2_free_alloc_context(*ac); 5651 *ac = NULL; 5652 } 5653 } 5654 5655 return ret; 5656 } 5657 5658 int ocfs2_remove_btree_range(struct inode *inode, 5659 struct ocfs2_extent_tree *et, 5660 u32 cpos, u32 phys_cpos, u32 len, int flags, 5661 struct ocfs2_cached_dealloc_ctxt *dealloc, 5662 u64 refcount_loc, bool refcount_tree_locked) 5663 { 5664 int ret, credits = 0, extra_blocks = 0; 5665 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos); 5666 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5667 struct inode *tl_inode = osb->osb_tl_inode; 5668 handle_t *handle; 5669 struct ocfs2_alloc_context *meta_ac = NULL; 5670 struct ocfs2_refcount_tree *ref_tree = NULL; 5671 5672 if ((flags & OCFS2_EXT_REFCOUNTED) && len) { 5673 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & 5674 OCFS2_HAS_REFCOUNT_FL)); 5675 5676 if (!refcount_tree_locked) { 5677 ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1, 5678 &ref_tree, NULL); 5679 if (ret) { 5680 mlog_errno(ret); 5681 goto bail; 5682 } 5683 } 5684 5685 ret = ocfs2_prepare_refcount_change_for_del(inode, 5686 refcount_loc, 5687 phys_blkno, 5688 len, 5689 &credits, 5690 &extra_blocks); 5691 if (ret < 0) { 5692 mlog_errno(ret); 5693 goto bail; 5694 } 5695 } 5696 5697 ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac, 5698 extra_blocks); 5699 if (ret) { 5700 mlog_errno(ret); 5701 goto bail; 5702 } 5703 5704 mutex_lock(&tl_inode->i_mutex); 5705 5706 if (ocfs2_truncate_log_needs_flush(osb)) { 5707 ret = __ocfs2_flush_truncate_log(osb); 5708 if (ret < 0) { 5709 mlog_errno(ret); 5710 goto out; 5711 } 5712 } 5713 5714 handle = ocfs2_start_trans(osb, 5715 ocfs2_remove_extent_credits(osb->sb) + credits); 5716 if (IS_ERR(handle)) { 5717 ret = PTR_ERR(handle); 5718 mlog_errno(ret); 5719 goto out; 5720 } 5721 5722 ret = ocfs2_et_root_journal_access(handle, et, 5723 OCFS2_JOURNAL_ACCESS_WRITE); 5724 if (ret) { 5725 mlog_errno(ret); 5726 goto out_commit; 5727 } 5728 5729 dquot_free_space_nodirty(inode, 5730 ocfs2_clusters_to_bytes(inode->i_sb, len)); 5731 5732 ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc); 5733 if (ret) { 5734 mlog_errno(ret); 5735 goto out_commit; 5736 } 5737 5738 ocfs2_et_update_clusters(et, -len); 5739 ocfs2_update_inode_fsync_trans(handle, inode, 1); 5740 5741 ocfs2_journal_dirty(handle, et->et_root_bh); 5742 5743 if (phys_blkno) { 5744 if (flags & OCFS2_EXT_REFCOUNTED) 5745 ret = ocfs2_decrease_refcount(inode, handle, 5746 ocfs2_blocks_to_clusters(osb->sb, 5747 phys_blkno), 5748 len, meta_ac, 5749 dealloc, 1); 5750 else 5751 ret = ocfs2_truncate_log_append(osb, handle, 5752 phys_blkno, len); 5753 if (ret) 5754 mlog_errno(ret); 5755 5756 } 5757 5758 out_commit: 5759 ocfs2_commit_trans(osb, handle); 5760 out: 5761 mutex_unlock(&tl_inode->i_mutex); 5762 bail: 5763 if (meta_ac) 5764 ocfs2_free_alloc_context(meta_ac); 5765 5766 if (ref_tree) 5767 ocfs2_unlock_refcount_tree(osb, ref_tree, 1); 5768 5769 return ret; 5770 } 5771 5772 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb) 5773 { 5774 struct buffer_head *tl_bh = osb->osb_tl_bh; 5775 struct ocfs2_dinode *di; 5776 struct ocfs2_truncate_log *tl; 5777 5778 di = (struct ocfs2_dinode *) tl_bh->b_data; 5779 tl = &di->id2.i_dealloc; 5780 5781 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count), 5782 "slot %d, invalid truncate log parameters: used = " 5783 "%u, count = %u\n", osb->slot_num, 5784 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count)); 5785 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count); 5786 } 5787 5788 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl, 5789 unsigned int new_start) 5790 { 5791 unsigned int tail_index; 5792 unsigned int current_tail; 5793 5794 /* No records, nothing to coalesce */ 5795 if (!le16_to_cpu(tl->tl_used)) 5796 return 0; 5797 5798 tail_index = le16_to_cpu(tl->tl_used) - 1; 5799 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start); 5800 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters); 5801 5802 return current_tail == new_start; 5803 } 5804 5805 int ocfs2_truncate_log_append(struct ocfs2_super *osb, 5806 handle_t *handle, 5807 u64 start_blk, 5808 unsigned int num_clusters) 5809 { 5810 int status, index; 5811 unsigned int start_cluster, tl_count; 5812 struct inode *tl_inode = osb->osb_tl_inode; 5813 struct buffer_head *tl_bh = osb->osb_tl_bh; 5814 struct ocfs2_dinode *di; 5815 struct ocfs2_truncate_log *tl; 5816 5817 BUG_ON(mutex_trylock(&tl_inode->i_mutex)); 5818 5819 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk); 5820 5821 di = (struct ocfs2_dinode *) tl_bh->b_data; 5822 5823 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 5824 * by the underlying call to ocfs2_read_inode_block(), so any 5825 * corruption is a code bug */ 5826 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5827 5828 tl = &di->id2.i_dealloc; 5829 tl_count = le16_to_cpu(tl->tl_count); 5830 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) || 5831 tl_count == 0, 5832 "Truncate record count on #%llu invalid " 5833 "wanted %u, actual %u\n", 5834 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5835 ocfs2_truncate_recs_per_inode(osb->sb), 5836 le16_to_cpu(tl->tl_count)); 5837 5838 /* Caller should have known to flush before calling us. */ 5839 index = le16_to_cpu(tl->tl_used); 5840 if (index >= tl_count) { 5841 status = -ENOSPC; 5842 mlog_errno(status); 5843 goto bail; 5844 } 5845 5846 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, 5847 OCFS2_JOURNAL_ACCESS_WRITE); 5848 if (status < 0) { 5849 mlog_errno(status); 5850 goto bail; 5851 } 5852 5853 trace_ocfs2_truncate_log_append( 5854 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index, 5855 start_cluster, num_clusters); 5856 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) { 5857 /* 5858 * Move index back to the record we are coalescing with. 5859 * ocfs2_truncate_log_can_coalesce() guarantees nonzero 5860 */ 5861 index--; 5862 5863 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters); 5864 trace_ocfs2_truncate_log_append( 5865 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5866 index, le32_to_cpu(tl->tl_recs[index].t_start), 5867 num_clusters); 5868 } else { 5869 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster); 5870 tl->tl_used = cpu_to_le16(index + 1); 5871 } 5872 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters); 5873 5874 ocfs2_journal_dirty(handle, tl_bh); 5875 5876 osb->truncated_clusters += num_clusters; 5877 bail: 5878 return status; 5879 } 5880 5881 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb, 5882 handle_t *handle, 5883 struct inode *data_alloc_inode, 5884 struct buffer_head *data_alloc_bh) 5885 { 5886 int status = 0; 5887 int i; 5888 unsigned int num_clusters; 5889 u64 start_blk; 5890 struct ocfs2_truncate_rec rec; 5891 struct ocfs2_dinode *di; 5892 struct ocfs2_truncate_log *tl; 5893 struct inode *tl_inode = osb->osb_tl_inode; 5894 struct buffer_head *tl_bh = osb->osb_tl_bh; 5895 5896 di = (struct ocfs2_dinode *) tl_bh->b_data; 5897 tl = &di->id2.i_dealloc; 5898 i = le16_to_cpu(tl->tl_used) - 1; 5899 while (i >= 0) { 5900 /* Caller has given us at least enough credits to 5901 * update the truncate log dinode */ 5902 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, 5903 OCFS2_JOURNAL_ACCESS_WRITE); 5904 if (status < 0) { 5905 mlog_errno(status); 5906 goto bail; 5907 } 5908 5909 tl->tl_used = cpu_to_le16(i); 5910 5911 ocfs2_journal_dirty(handle, tl_bh); 5912 5913 /* TODO: Perhaps we can calculate the bulk of the 5914 * credits up front rather than extending like 5915 * this. */ 5916 status = ocfs2_extend_trans(handle, 5917 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC); 5918 if (status < 0) { 5919 mlog_errno(status); 5920 goto bail; 5921 } 5922 5923 rec = tl->tl_recs[i]; 5924 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb, 5925 le32_to_cpu(rec.t_start)); 5926 num_clusters = le32_to_cpu(rec.t_clusters); 5927 5928 /* if start_blk is not set, we ignore the record as 5929 * invalid. */ 5930 if (start_blk) { 5931 trace_ocfs2_replay_truncate_records( 5932 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5933 i, le32_to_cpu(rec.t_start), num_clusters); 5934 5935 status = ocfs2_free_clusters(handle, data_alloc_inode, 5936 data_alloc_bh, start_blk, 5937 num_clusters); 5938 if (status < 0) { 5939 mlog_errno(status); 5940 goto bail; 5941 } 5942 } 5943 i--; 5944 } 5945 5946 osb->truncated_clusters = 0; 5947 5948 bail: 5949 return status; 5950 } 5951 5952 /* Expects you to already be holding tl_inode->i_mutex */ 5953 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb) 5954 { 5955 int status; 5956 unsigned int num_to_flush; 5957 handle_t *handle; 5958 struct inode *tl_inode = osb->osb_tl_inode; 5959 struct inode *data_alloc_inode = NULL; 5960 struct buffer_head *tl_bh = osb->osb_tl_bh; 5961 struct buffer_head *data_alloc_bh = NULL; 5962 struct ocfs2_dinode *di; 5963 struct ocfs2_truncate_log *tl; 5964 5965 BUG_ON(mutex_trylock(&tl_inode->i_mutex)); 5966 5967 di = (struct ocfs2_dinode *) tl_bh->b_data; 5968 5969 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 5970 * by the underlying call to ocfs2_read_inode_block(), so any 5971 * corruption is a code bug */ 5972 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5973 5974 tl = &di->id2.i_dealloc; 5975 num_to_flush = le16_to_cpu(tl->tl_used); 5976 trace_ocfs2_flush_truncate_log( 5977 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5978 num_to_flush); 5979 if (!num_to_flush) { 5980 status = 0; 5981 goto out; 5982 } 5983 5984 data_alloc_inode = ocfs2_get_system_file_inode(osb, 5985 GLOBAL_BITMAP_SYSTEM_INODE, 5986 OCFS2_INVALID_SLOT); 5987 if (!data_alloc_inode) { 5988 status = -EINVAL; 5989 mlog(ML_ERROR, "Could not get bitmap inode!\n"); 5990 goto out; 5991 } 5992 5993 mutex_lock(&data_alloc_inode->i_mutex); 5994 5995 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1); 5996 if (status < 0) { 5997 mlog_errno(status); 5998 goto out_mutex; 5999 } 6000 6001 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6002 if (IS_ERR(handle)) { 6003 status = PTR_ERR(handle); 6004 mlog_errno(status); 6005 goto out_unlock; 6006 } 6007 6008 status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode, 6009 data_alloc_bh); 6010 if (status < 0) 6011 mlog_errno(status); 6012 6013 ocfs2_commit_trans(osb, handle); 6014 6015 out_unlock: 6016 brelse(data_alloc_bh); 6017 ocfs2_inode_unlock(data_alloc_inode, 1); 6018 6019 out_mutex: 6020 mutex_unlock(&data_alloc_inode->i_mutex); 6021 iput(data_alloc_inode); 6022 6023 out: 6024 return status; 6025 } 6026 6027 int ocfs2_flush_truncate_log(struct ocfs2_super *osb) 6028 { 6029 int status; 6030 struct inode *tl_inode = osb->osb_tl_inode; 6031 6032 mutex_lock(&tl_inode->i_mutex); 6033 status = __ocfs2_flush_truncate_log(osb); 6034 mutex_unlock(&tl_inode->i_mutex); 6035 6036 return status; 6037 } 6038 6039 static void ocfs2_truncate_log_worker(struct work_struct *work) 6040 { 6041 int status; 6042 struct ocfs2_super *osb = 6043 container_of(work, struct ocfs2_super, 6044 osb_truncate_log_wq.work); 6045 6046 status = ocfs2_flush_truncate_log(osb); 6047 if (status < 0) 6048 mlog_errno(status); 6049 else 6050 ocfs2_init_steal_slots(osb); 6051 } 6052 6053 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ) 6054 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb, 6055 int cancel) 6056 { 6057 if (osb->osb_tl_inode && 6058 atomic_read(&osb->osb_tl_disable) == 0) { 6059 /* We want to push off log flushes while truncates are 6060 * still running. */ 6061 if (cancel) 6062 cancel_delayed_work(&osb->osb_truncate_log_wq); 6063 6064 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq, 6065 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL); 6066 } 6067 } 6068 6069 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb, 6070 int slot_num, 6071 struct inode **tl_inode, 6072 struct buffer_head **tl_bh) 6073 { 6074 int status; 6075 struct inode *inode = NULL; 6076 struct buffer_head *bh = NULL; 6077 6078 inode = ocfs2_get_system_file_inode(osb, 6079 TRUNCATE_LOG_SYSTEM_INODE, 6080 slot_num); 6081 if (!inode) { 6082 status = -EINVAL; 6083 mlog(ML_ERROR, "Could not get load truncate log inode!\n"); 6084 goto bail; 6085 } 6086 6087 status = ocfs2_read_inode_block(inode, &bh); 6088 if (status < 0) { 6089 iput(inode); 6090 mlog_errno(status); 6091 goto bail; 6092 } 6093 6094 *tl_inode = inode; 6095 *tl_bh = bh; 6096 bail: 6097 return status; 6098 } 6099 6100 /* called during the 1st stage of node recovery. we stamp a clean 6101 * truncate log and pass back a copy for processing later. if the 6102 * truncate log does not require processing, a *tl_copy is set to 6103 * NULL. */ 6104 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb, 6105 int slot_num, 6106 struct ocfs2_dinode **tl_copy) 6107 { 6108 int status; 6109 struct inode *tl_inode = NULL; 6110 struct buffer_head *tl_bh = NULL; 6111 struct ocfs2_dinode *di; 6112 struct ocfs2_truncate_log *tl; 6113 6114 *tl_copy = NULL; 6115 6116 trace_ocfs2_begin_truncate_log_recovery(slot_num); 6117 6118 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh); 6119 if (status < 0) { 6120 mlog_errno(status); 6121 goto bail; 6122 } 6123 6124 di = (struct ocfs2_dinode *) tl_bh->b_data; 6125 6126 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's 6127 * validated by the underlying call to ocfs2_read_inode_block(), 6128 * so any corruption is a code bug */ 6129 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 6130 6131 tl = &di->id2.i_dealloc; 6132 if (le16_to_cpu(tl->tl_used)) { 6133 trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl->tl_used)); 6134 6135 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL); 6136 if (!(*tl_copy)) { 6137 status = -ENOMEM; 6138 mlog_errno(status); 6139 goto bail; 6140 } 6141 6142 /* Assuming the write-out below goes well, this copy 6143 * will be passed back to recovery for processing. */ 6144 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size); 6145 6146 /* All we need to do to clear the truncate log is set 6147 * tl_used. */ 6148 tl->tl_used = 0; 6149 6150 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check); 6151 status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode)); 6152 if (status < 0) { 6153 mlog_errno(status); 6154 goto bail; 6155 } 6156 } 6157 6158 bail: 6159 if (tl_inode) 6160 iput(tl_inode); 6161 brelse(tl_bh); 6162 6163 if (status < 0 && (*tl_copy)) { 6164 kfree(*tl_copy); 6165 *tl_copy = NULL; 6166 mlog_errno(status); 6167 } 6168 6169 return status; 6170 } 6171 6172 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb, 6173 struct ocfs2_dinode *tl_copy) 6174 { 6175 int status = 0; 6176 int i; 6177 unsigned int clusters, num_recs, start_cluster; 6178 u64 start_blk; 6179 handle_t *handle; 6180 struct inode *tl_inode = osb->osb_tl_inode; 6181 struct ocfs2_truncate_log *tl; 6182 6183 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) { 6184 mlog(ML_ERROR, "Asked to recover my own truncate log!\n"); 6185 return -EINVAL; 6186 } 6187 6188 tl = &tl_copy->id2.i_dealloc; 6189 num_recs = le16_to_cpu(tl->tl_used); 6190 trace_ocfs2_complete_truncate_log_recovery( 6191 (unsigned long long)le64_to_cpu(tl_copy->i_blkno), 6192 num_recs); 6193 6194 mutex_lock(&tl_inode->i_mutex); 6195 for(i = 0; i < num_recs; i++) { 6196 if (ocfs2_truncate_log_needs_flush(osb)) { 6197 status = __ocfs2_flush_truncate_log(osb); 6198 if (status < 0) { 6199 mlog_errno(status); 6200 goto bail_up; 6201 } 6202 } 6203 6204 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6205 if (IS_ERR(handle)) { 6206 status = PTR_ERR(handle); 6207 mlog_errno(status); 6208 goto bail_up; 6209 } 6210 6211 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters); 6212 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start); 6213 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster); 6214 6215 status = ocfs2_truncate_log_append(osb, handle, 6216 start_blk, clusters); 6217 ocfs2_commit_trans(osb, handle); 6218 if (status < 0) { 6219 mlog_errno(status); 6220 goto bail_up; 6221 } 6222 } 6223 6224 bail_up: 6225 mutex_unlock(&tl_inode->i_mutex); 6226 6227 return status; 6228 } 6229 6230 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb) 6231 { 6232 int status; 6233 struct inode *tl_inode = osb->osb_tl_inode; 6234 6235 atomic_set(&osb->osb_tl_disable, 1); 6236 6237 if (tl_inode) { 6238 cancel_delayed_work(&osb->osb_truncate_log_wq); 6239 flush_workqueue(ocfs2_wq); 6240 6241 status = ocfs2_flush_truncate_log(osb); 6242 if (status < 0) 6243 mlog_errno(status); 6244 6245 brelse(osb->osb_tl_bh); 6246 iput(osb->osb_tl_inode); 6247 } 6248 } 6249 6250 int ocfs2_truncate_log_init(struct ocfs2_super *osb) 6251 { 6252 int status; 6253 struct inode *tl_inode = NULL; 6254 struct buffer_head *tl_bh = NULL; 6255 6256 status = ocfs2_get_truncate_log_info(osb, 6257 osb->slot_num, 6258 &tl_inode, 6259 &tl_bh); 6260 if (status < 0) 6261 mlog_errno(status); 6262 6263 /* ocfs2_truncate_log_shutdown keys on the existence of 6264 * osb->osb_tl_inode so we don't set any of the osb variables 6265 * until we're sure all is well. */ 6266 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq, 6267 ocfs2_truncate_log_worker); 6268 atomic_set(&osb->osb_tl_disable, 0); 6269 osb->osb_tl_bh = tl_bh; 6270 osb->osb_tl_inode = tl_inode; 6271 6272 return status; 6273 } 6274 6275 /* 6276 * Delayed de-allocation of suballocator blocks. 6277 * 6278 * Some sets of block de-allocations might involve multiple suballocator inodes. 6279 * 6280 * The locking for this can get extremely complicated, especially when 6281 * the suballocator inodes to delete from aren't known until deep 6282 * within an unrelated codepath. 6283 * 6284 * ocfs2_extent_block structures are a good example of this - an inode 6285 * btree could have been grown by any number of nodes each allocating 6286 * out of their own suballoc inode. 6287 * 6288 * These structures allow the delay of block de-allocation until a 6289 * later time, when locking of multiple cluster inodes won't cause 6290 * deadlock. 6291 */ 6292 6293 /* 6294 * Describe a single bit freed from a suballocator. For the block 6295 * suballocators, it represents one block. For the global cluster 6296 * allocator, it represents some clusters and free_bit indicates 6297 * clusters number. 6298 */ 6299 struct ocfs2_cached_block_free { 6300 struct ocfs2_cached_block_free *free_next; 6301 u64 free_bg; 6302 u64 free_blk; 6303 unsigned int free_bit; 6304 }; 6305 6306 struct ocfs2_per_slot_free_list { 6307 struct ocfs2_per_slot_free_list *f_next_suballocator; 6308 int f_inode_type; 6309 int f_slot; 6310 struct ocfs2_cached_block_free *f_first; 6311 }; 6312 6313 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb, 6314 int sysfile_type, 6315 int slot, 6316 struct ocfs2_cached_block_free *head) 6317 { 6318 int ret; 6319 u64 bg_blkno; 6320 handle_t *handle; 6321 struct inode *inode; 6322 struct buffer_head *di_bh = NULL; 6323 struct ocfs2_cached_block_free *tmp; 6324 6325 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot); 6326 if (!inode) { 6327 ret = -EINVAL; 6328 mlog_errno(ret); 6329 goto out; 6330 } 6331 6332 mutex_lock(&inode->i_mutex); 6333 6334 ret = ocfs2_inode_lock(inode, &di_bh, 1); 6335 if (ret) { 6336 mlog_errno(ret); 6337 goto out_mutex; 6338 } 6339 6340 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE); 6341 if (IS_ERR(handle)) { 6342 ret = PTR_ERR(handle); 6343 mlog_errno(ret); 6344 goto out_unlock; 6345 } 6346 6347 while (head) { 6348 if (head->free_bg) 6349 bg_blkno = head->free_bg; 6350 else 6351 bg_blkno = ocfs2_which_suballoc_group(head->free_blk, 6352 head->free_bit); 6353 trace_ocfs2_free_cached_blocks( 6354 (unsigned long long)head->free_blk, head->free_bit); 6355 6356 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh, 6357 head->free_bit, bg_blkno, 1); 6358 if (ret) { 6359 mlog_errno(ret); 6360 goto out_journal; 6361 } 6362 6363 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE); 6364 if (ret) { 6365 mlog_errno(ret); 6366 goto out_journal; 6367 } 6368 6369 tmp = head; 6370 head = head->free_next; 6371 kfree(tmp); 6372 } 6373 6374 out_journal: 6375 ocfs2_commit_trans(osb, handle); 6376 6377 out_unlock: 6378 ocfs2_inode_unlock(inode, 1); 6379 brelse(di_bh); 6380 out_mutex: 6381 mutex_unlock(&inode->i_mutex); 6382 iput(inode); 6383 out: 6384 while(head) { 6385 /* Premature exit may have left some dangling items. */ 6386 tmp = head; 6387 head = head->free_next; 6388 kfree(tmp); 6389 } 6390 6391 return ret; 6392 } 6393 6394 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6395 u64 blkno, unsigned int bit) 6396 { 6397 int ret = 0; 6398 struct ocfs2_cached_block_free *item; 6399 6400 item = kzalloc(sizeof(*item), GFP_NOFS); 6401 if (item == NULL) { 6402 ret = -ENOMEM; 6403 mlog_errno(ret); 6404 return ret; 6405 } 6406 6407 trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno, bit); 6408 6409 item->free_blk = blkno; 6410 item->free_bit = bit; 6411 item->free_next = ctxt->c_global_allocator; 6412 6413 ctxt->c_global_allocator = item; 6414 return ret; 6415 } 6416 6417 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb, 6418 struct ocfs2_cached_block_free *head) 6419 { 6420 struct ocfs2_cached_block_free *tmp; 6421 struct inode *tl_inode = osb->osb_tl_inode; 6422 handle_t *handle; 6423 int ret = 0; 6424 6425 mutex_lock(&tl_inode->i_mutex); 6426 6427 while (head) { 6428 if (ocfs2_truncate_log_needs_flush(osb)) { 6429 ret = __ocfs2_flush_truncate_log(osb); 6430 if (ret < 0) { 6431 mlog_errno(ret); 6432 break; 6433 } 6434 } 6435 6436 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6437 if (IS_ERR(handle)) { 6438 ret = PTR_ERR(handle); 6439 mlog_errno(ret); 6440 break; 6441 } 6442 6443 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk, 6444 head->free_bit); 6445 6446 ocfs2_commit_trans(osb, handle); 6447 tmp = head; 6448 head = head->free_next; 6449 kfree(tmp); 6450 6451 if (ret < 0) { 6452 mlog_errno(ret); 6453 break; 6454 } 6455 } 6456 6457 mutex_unlock(&tl_inode->i_mutex); 6458 6459 while (head) { 6460 /* Premature exit may have left some dangling items. */ 6461 tmp = head; 6462 head = head->free_next; 6463 kfree(tmp); 6464 } 6465 6466 return ret; 6467 } 6468 6469 int ocfs2_run_deallocs(struct ocfs2_super *osb, 6470 struct ocfs2_cached_dealloc_ctxt *ctxt) 6471 { 6472 int ret = 0, ret2; 6473 struct ocfs2_per_slot_free_list *fl; 6474 6475 if (!ctxt) 6476 return 0; 6477 6478 while (ctxt->c_first_suballocator) { 6479 fl = ctxt->c_first_suballocator; 6480 6481 if (fl->f_first) { 6482 trace_ocfs2_run_deallocs(fl->f_inode_type, 6483 fl->f_slot); 6484 ret2 = ocfs2_free_cached_blocks(osb, 6485 fl->f_inode_type, 6486 fl->f_slot, 6487 fl->f_first); 6488 if (ret2) 6489 mlog_errno(ret2); 6490 if (!ret) 6491 ret = ret2; 6492 } 6493 6494 ctxt->c_first_suballocator = fl->f_next_suballocator; 6495 kfree(fl); 6496 } 6497 6498 if (ctxt->c_global_allocator) { 6499 ret2 = ocfs2_free_cached_clusters(osb, 6500 ctxt->c_global_allocator); 6501 if (ret2) 6502 mlog_errno(ret2); 6503 if (!ret) 6504 ret = ret2; 6505 6506 ctxt->c_global_allocator = NULL; 6507 } 6508 6509 return ret; 6510 } 6511 6512 static struct ocfs2_per_slot_free_list * 6513 ocfs2_find_per_slot_free_list(int type, 6514 int slot, 6515 struct ocfs2_cached_dealloc_ctxt *ctxt) 6516 { 6517 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; 6518 6519 while (fl) { 6520 if (fl->f_inode_type == type && fl->f_slot == slot) 6521 return fl; 6522 6523 fl = fl->f_next_suballocator; 6524 } 6525 6526 fl = kmalloc(sizeof(*fl), GFP_NOFS); 6527 if (fl) { 6528 fl->f_inode_type = type; 6529 fl->f_slot = slot; 6530 fl->f_first = NULL; 6531 fl->f_next_suballocator = ctxt->c_first_suballocator; 6532 6533 ctxt->c_first_suballocator = fl; 6534 } 6535 return fl; 6536 } 6537 6538 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6539 int type, int slot, u64 suballoc, 6540 u64 blkno, unsigned int bit) 6541 { 6542 int ret; 6543 struct ocfs2_per_slot_free_list *fl; 6544 struct ocfs2_cached_block_free *item; 6545 6546 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt); 6547 if (fl == NULL) { 6548 ret = -ENOMEM; 6549 mlog_errno(ret); 6550 goto out; 6551 } 6552 6553 item = kzalloc(sizeof(*item), GFP_NOFS); 6554 if (item == NULL) { 6555 ret = -ENOMEM; 6556 mlog_errno(ret); 6557 goto out; 6558 } 6559 6560 trace_ocfs2_cache_block_dealloc(type, slot, 6561 (unsigned long long)suballoc, 6562 (unsigned long long)blkno, bit); 6563 6564 item->free_bg = suballoc; 6565 item->free_blk = blkno; 6566 item->free_bit = bit; 6567 item->free_next = fl->f_first; 6568 6569 fl->f_first = item; 6570 6571 ret = 0; 6572 out: 6573 return ret; 6574 } 6575 6576 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 6577 struct ocfs2_extent_block *eb) 6578 { 6579 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE, 6580 le16_to_cpu(eb->h_suballoc_slot), 6581 le64_to_cpu(eb->h_suballoc_loc), 6582 le64_to_cpu(eb->h_blkno), 6583 le16_to_cpu(eb->h_suballoc_bit)); 6584 } 6585 6586 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh) 6587 { 6588 set_buffer_uptodate(bh); 6589 mark_buffer_dirty(bh); 6590 return 0; 6591 } 6592 6593 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle, 6594 unsigned int from, unsigned int to, 6595 struct page *page, int zero, u64 *phys) 6596 { 6597 int ret, partial = 0; 6598 6599 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0); 6600 if (ret) 6601 mlog_errno(ret); 6602 6603 if (zero) 6604 zero_user_segment(page, from, to); 6605 6606 /* 6607 * Need to set the buffers we zero'd into uptodate 6608 * here if they aren't - ocfs2_map_page_blocks() 6609 * might've skipped some 6610 */ 6611 ret = walk_page_buffers(handle, page_buffers(page), 6612 from, to, &partial, 6613 ocfs2_zero_func); 6614 if (ret < 0) 6615 mlog_errno(ret); 6616 else if (ocfs2_should_order_data(inode)) { 6617 ret = ocfs2_jbd2_file_inode(handle, inode); 6618 if (ret < 0) 6619 mlog_errno(ret); 6620 } 6621 6622 if (!partial) 6623 SetPageUptodate(page); 6624 6625 flush_dcache_page(page); 6626 } 6627 6628 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start, 6629 loff_t end, struct page **pages, 6630 int numpages, u64 phys, handle_t *handle) 6631 { 6632 int i; 6633 struct page *page; 6634 unsigned int from, to = PAGE_CACHE_SIZE; 6635 struct super_block *sb = inode->i_sb; 6636 6637 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb))); 6638 6639 if (numpages == 0) 6640 goto out; 6641 6642 to = PAGE_CACHE_SIZE; 6643 for(i = 0; i < numpages; i++) { 6644 page = pages[i]; 6645 6646 from = start & (PAGE_CACHE_SIZE - 1); 6647 if ((end >> PAGE_CACHE_SHIFT) == page->index) 6648 to = end & (PAGE_CACHE_SIZE - 1); 6649 6650 BUG_ON(from > PAGE_CACHE_SIZE); 6651 BUG_ON(to > PAGE_CACHE_SIZE); 6652 6653 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1, 6654 &phys); 6655 6656 start = (page->index + 1) << PAGE_CACHE_SHIFT; 6657 } 6658 out: 6659 if (pages) 6660 ocfs2_unlock_and_free_pages(pages, numpages); 6661 } 6662 6663 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end, 6664 struct page **pages, int *num) 6665 { 6666 int numpages, ret = 0; 6667 struct address_space *mapping = inode->i_mapping; 6668 unsigned long index; 6669 loff_t last_page_bytes; 6670 6671 BUG_ON(start > end); 6672 6673 numpages = 0; 6674 last_page_bytes = PAGE_ALIGN(end); 6675 index = start >> PAGE_CACHE_SHIFT; 6676 do { 6677 pages[numpages] = find_or_create_page(mapping, index, GFP_NOFS); 6678 if (!pages[numpages]) { 6679 ret = -ENOMEM; 6680 mlog_errno(ret); 6681 goto out; 6682 } 6683 6684 numpages++; 6685 index++; 6686 } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT)); 6687 6688 out: 6689 if (ret != 0) { 6690 if (pages) 6691 ocfs2_unlock_and_free_pages(pages, numpages); 6692 numpages = 0; 6693 } 6694 6695 *num = numpages; 6696 6697 return ret; 6698 } 6699 6700 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end, 6701 struct page **pages, int *num) 6702 { 6703 struct super_block *sb = inode->i_sb; 6704 6705 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits != 6706 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits); 6707 6708 return ocfs2_grab_pages(inode, start, end, pages, num); 6709 } 6710 6711 /* 6712 * Zero the area past i_size but still within an allocated 6713 * cluster. This avoids exposing nonzero data on subsequent file 6714 * extends. 6715 * 6716 * We need to call this before i_size is updated on the inode because 6717 * otherwise block_write_full_page() will skip writeout of pages past 6718 * i_size. The new_i_size parameter is passed for this reason. 6719 */ 6720 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle, 6721 u64 range_start, u64 range_end) 6722 { 6723 int ret = 0, numpages; 6724 struct page **pages = NULL; 6725 u64 phys; 6726 unsigned int ext_flags; 6727 struct super_block *sb = inode->i_sb; 6728 6729 /* 6730 * File systems which don't support sparse files zero on every 6731 * extend. 6732 */ 6733 if (!ocfs2_sparse_alloc(OCFS2_SB(sb))) 6734 return 0; 6735 6736 pages = kcalloc(ocfs2_pages_per_cluster(sb), 6737 sizeof(struct page *), GFP_NOFS); 6738 if (pages == NULL) { 6739 ret = -ENOMEM; 6740 mlog_errno(ret); 6741 goto out; 6742 } 6743 6744 if (range_start == range_end) 6745 goto out; 6746 6747 ret = ocfs2_extent_map_get_blocks(inode, 6748 range_start >> sb->s_blocksize_bits, 6749 &phys, NULL, &ext_flags); 6750 if (ret) { 6751 mlog_errno(ret); 6752 goto out; 6753 } 6754 6755 /* 6756 * Tail is a hole, or is marked unwritten. In either case, we 6757 * can count on read and write to return/push zero's. 6758 */ 6759 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN) 6760 goto out; 6761 6762 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages, 6763 &numpages); 6764 if (ret) { 6765 mlog_errno(ret); 6766 goto out; 6767 } 6768 6769 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages, 6770 numpages, phys, handle); 6771 6772 /* 6773 * Initiate writeout of the pages we zero'd here. We don't 6774 * wait on them - the truncate_inode_pages() call later will 6775 * do that for us. 6776 */ 6777 ret = filemap_fdatawrite_range(inode->i_mapping, range_start, 6778 range_end - 1); 6779 if (ret) 6780 mlog_errno(ret); 6781 6782 out: 6783 kfree(pages); 6784 6785 return ret; 6786 } 6787 6788 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode, 6789 struct ocfs2_dinode *di) 6790 { 6791 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits; 6792 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size); 6793 6794 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL) 6795 memset(&di->id2, 0, blocksize - 6796 offsetof(struct ocfs2_dinode, id2) - 6797 xattrsize); 6798 else 6799 memset(&di->id2, 0, blocksize - 6800 offsetof(struct ocfs2_dinode, id2)); 6801 } 6802 6803 void ocfs2_dinode_new_extent_list(struct inode *inode, 6804 struct ocfs2_dinode *di) 6805 { 6806 ocfs2_zero_dinode_id2_with_xattr(inode, di); 6807 di->id2.i_list.l_tree_depth = 0; 6808 di->id2.i_list.l_next_free_rec = 0; 6809 di->id2.i_list.l_count = cpu_to_le16( 6810 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di)); 6811 } 6812 6813 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di) 6814 { 6815 struct ocfs2_inode_info *oi = OCFS2_I(inode); 6816 struct ocfs2_inline_data *idata = &di->id2.i_data; 6817 6818 spin_lock(&oi->ip_lock); 6819 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL; 6820 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 6821 spin_unlock(&oi->ip_lock); 6822 6823 /* 6824 * We clear the entire i_data structure here so that all 6825 * fields can be properly initialized. 6826 */ 6827 ocfs2_zero_dinode_id2_with_xattr(inode, di); 6828 6829 idata->id_count = cpu_to_le16( 6830 ocfs2_max_inline_data_with_xattr(inode->i_sb, di)); 6831 } 6832 6833 int ocfs2_convert_inline_data_to_extents(struct inode *inode, 6834 struct buffer_head *di_bh) 6835 { 6836 int ret, i, has_data, num_pages = 0; 6837 int need_free = 0; 6838 u32 bit_off, num; 6839 handle_t *handle; 6840 u64 uninitialized_var(block); 6841 struct ocfs2_inode_info *oi = OCFS2_I(inode); 6842 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 6843 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 6844 struct ocfs2_alloc_context *data_ac = NULL; 6845 struct page **pages = NULL; 6846 loff_t end = osb->s_clustersize; 6847 struct ocfs2_extent_tree et; 6848 int did_quota = 0; 6849 6850 has_data = i_size_read(inode) ? 1 : 0; 6851 6852 if (has_data) { 6853 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb), 6854 sizeof(struct page *), GFP_NOFS); 6855 if (pages == NULL) { 6856 ret = -ENOMEM; 6857 mlog_errno(ret); 6858 return ret; 6859 } 6860 6861 ret = ocfs2_reserve_clusters(osb, 1, &data_ac); 6862 if (ret) { 6863 mlog_errno(ret); 6864 goto free_pages; 6865 } 6866 } 6867 6868 handle = ocfs2_start_trans(osb, 6869 ocfs2_inline_to_extents_credits(osb->sb)); 6870 if (IS_ERR(handle)) { 6871 ret = PTR_ERR(handle); 6872 mlog_errno(ret); 6873 goto out; 6874 } 6875 6876 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 6877 OCFS2_JOURNAL_ACCESS_WRITE); 6878 if (ret) { 6879 mlog_errno(ret); 6880 goto out_commit; 6881 } 6882 6883 if (has_data) { 6884 unsigned int page_end; 6885 u64 phys; 6886 6887 ret = dquot_alloc_space_nodirty(inode, 6888 ocfs2_clusters_to_bytes(osb->sb, 1)); 6889 if (ret) 6890 goto out_commit; 6891 did_quota = 1; 6892 6893 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 6894 6895 ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off, 6896 &num); 6897 if (ret) { 6898 mlog_errno(ret); 6899 goto out_commit; 6900 } 6901 6902 /* 6903 * Save two copies, one for insert, and one that can 6904 * be changed by ocfs2_map_and_dirty_page() below. 6905 */ 6906 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off); 6907 6908 /* 6909 * Non sparse file systems zero on extend, so no need 6910 * to do that now. 6911 */ 6912 if (!ocfs2_sparse_alloc(osb) && 6913 PAGE_CACHE_SIZE < osb->s_clustersize) 6914 end = PAGE_CACHE_SIZE; 6915 6916 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages); 6917 if (ret) { 6918 mlog_errno(ret); 6919 need_free = 1; 6920 goto out_commit; 6921 } 6922 6923 /* 6924 * This should populate the 1st page for us and mark 6925 * it up to date. 6926 */ 6927 ret = ocfs2_read_inline_data(inode, pages[0], di_bh); 6928 if (ret) { 6929 mlog_errno(ret); 6930 need_free = 1; 6931 goto out_unlock; 6932 } 6933 6934 page_end = PAGE_CACHE_SIZE; 6935 if (PAGE_CACHE_SIZE > osb->s_clustersize) 6936 page_end = osb->s_clustersize; 6937 6938 for (i = 0; i < num_pages; i++) 6939 ocfs2_map_and_dirty_page(inode, handle, 0, page_end, 6940 pages[i], i > 0, &phys); 6941 } 6942 6943 spin_lock(&oi->ip_lock); 6944 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL; 6945 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 6946 spin_unlock(&oi->ip_lock); 6947 6948 ocfs2_update_inode_fsync_trans(handle, inode, 1); 6949 ocfs2_dinode_new_extent_list(inode, di); 6950 6951 ocfs2_journal_dirty(handle, di_bh); 6952 6953 if (has_data) { 6954 /* 6955 * An error at this point should be extremely rare. If 6956 * this proves to be false, we could always re-build 6957 * the in-inode data from our pages. 6958 */ 6959 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 6960 ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL); 6961 if (ret) { 6962 mlog_errno(ret); 6963 need_free = 1; 6964 goto out_unlock; 6965 } 6966 6967 inode->i_blocks = ocfs2_inode_sector_count(inode); 6968 } 6969 6970 out_unlock: 6971 if (pages) 6972 ocfs2_unlock_and_free_pages(pages, num_pages); 6973 6974 out_commit: 6975 if (ret < 0 && did_quota) 6976 dquot_free_space_nodirty(inode, 6977 ocfs2_clusters_to_bytes(osb->sb, 1)); 6978 6979 if (need_free) { 6980 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL) 6981 ocfs2_free_local_alloc_bits(osb, handle, data_ac, 6982 bit_off, num); 6983 else 6984 ocfs2_free_clusters(handle, 6985 data_ac->ac_inode, 6986 data_ac->ac_bh, 6987 ocfs2_clusters_to_blocks(osb->sb, bit_off), 6988 num); 6989 } 6990 6991 ocfs2_commit_trans(osb, handle); 6992 6993 out: 6994 if (data_ac) 6995 ocfs2_free_alloc_context(data_ac); 6996 free_pages: 6997 kfree(pages); 6998 return ret; 6999 } 7000 7001 /* 7002 * It is expected, that by the time you call this function, 7003 * inode->i_size and fe->i_size have been adjusted. 7004 * 7005 * WARNING: This will kfree the truncate context 7006 */ 7007 int ocfs2_commit_truncate(struct ocfs2_super *osb, 7008 struct inode *inode, 7009 struct buffer_head *di_bh) 7010 { 7011 int status = 0, i, flags = 0; 7012 u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff; 7013 u64 blkno = 0; 7014 struct ocfs2_extent_list *el; 7015 struct ocfs2_extent_rec *rec; 7016 struct ocfs2_path *path = NULL; 7017 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7018 struct ocfs2_extent_list *root_el = &(di->id2.i_list); 7019 u64 refcount_loc = le64_to_cpu(di->i_refcount_loc); 7020 struct ocfs2_extent_tree et; 7021 struct ocfs2_cached_dealloc_ctxt dealloc; 7022 struct ocfs2_refcount_tree *ref_tree = NULL; 7023 7024 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 7025 ocfs2_init_dealloc_ctxt(&dealloc); 7026 7027 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb, 7028 i_size_read(inode)); 7029 7030 path = ocfs2_new_path(di_bh, &di->id2.i_list, 7031 ocfs2_journal_access_di); 7032 if (!path) { 7033 status = -ENOMEM; 7034 mlog_errno(status); 7035 goto bail; 7036 } 7037 7038 ocfs2_extent_map_trunc(inode, new_highest_cpos); 7039 7040 start: 7041 /* 7042 * Check that we still have allocation to delete. 7043 */ 7044 if (OCFS2_I(inode)->ip_clusters == 0) { 7045 status = 0; 7046 goto bail; 7047 } 7048 7049 /* 7050 * Truncate always works against the rightmost tree branch. 7051 */ 7052 status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX); 7053 if (status) { 7054 mlog_errno(status); 7055 goto bail; 7056 } 7057 7058 trace_ocfs2_commit_truncate( 7059 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7060 new_highest_cpos, 7061 OCFS2_I(inode)->ip_clusters, 7062 path->p_tree_depth); 7063 7064 /* 7065 * By now, el will point to the extent list on the bottom most 7066 * portion of this tree. Only the tail record is considered in 7067 * each pass. 7068 * 7069 * We handle the following cases, in order: 7070 * - empty extent: delete the remaining branch 7071 * - remove the entire record 7072 * - remove a partial record 7073 * - no record needs to be removed (truncate has completed) 7074 */ 7075 el = path_leaf_el(path); 7076 if (le16_to_cpu(el->l_next_free_rec) == 0) { 7077 ocfs2_error(inode->i_sb, 7078 "Inode %llu has empty extent block at %llu\n", 7079 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7080 (unsigned long long)path_leaf_bh(path)->b_blocknr); 7081 status = -EROFS; 7082 goto bail; 7083 } 7084 7085 i = le16_to_cpu(el->l_next_free_rec) - 1; 7086 rec = &el->l_recs[i]; 7087 flags = rec->e_flags; 7088 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 7089 7090 if (i == 0 && ocfs2_is_empty_extent(rec)) { 7091 /* 7092 * Lower levels depend on this never happening, but it's best 7093 * to check it up here before changing the tree. 7094 */ 7095 if (root_el->l_tree_depth && rec->e_int_clusters == 0) { 7096 ocfs2_error(inode->i_sb, "Inode %lu has an empty " 7097 "extent record, depth %u\n", inode->i_ino, 7098 le16_to_cpu(root_el->l_tree_depth)); 7099 status = -EROFS; 7100 goto bail; 7101 } 7102 trunc_cpos = le32_to_cpu(rec->e_cpos); 7103 trunc_len = 0; 7104 blkno = 0; 7105 } else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) { 7106 /* 7107 * Truncate entire record. 7108 */ 7109 trunc_cpos = le32_to_cpu(rec->e_cpos); 7110 trunc_len = ocfs2_rec_clusters(el, rec); 7111 blkno = le64_to_cpu(rec->e_blkno); 7112 } else if (range > new_highest_cpos) { 7113 /* 7114 * Partial truncate. it also should be 7115 * the last truncate we're doing. 7116 */ 7117 trunc_cpos = new_highest_cpos; 7118 trunc_len = range - new_highest_cpos; 7119 coff = new_highest_cpos - le32_to_cpu(rec->e_cpos); 7120 blkno = le64_to_cpu(rec->e_blkno) + 7121 ocfs2_clusters_to_blocks(inode->i_sb, coff); 7122 } else { 7123 /* 7124 * Truncate completed, leave happily. 7125 */ 7126 status = 0; 7127 goto bail; 7128 } 7129 7130 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 7131 7132 if ((flags & OCFS2_EXT_REFCOUNTED) && trunc_len && !ref_tree) { 7133 status = ocfs2_lock_refcount_tree(osb, refcount_loc, 1, 7134 &ref_tree, NULL); 7135 if (status) { 7136 mlog_errno(status); 7137 goto bail; 7138 } 7139 } 7140 7141 status = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 7142 phys_cpos, trunc_len, flags, &dealloc, 7143 refcount_loc, true); 7144 if (status < 0) { 7145 mlog_errno(status); 7146 goto bail; 7147 } 7148 7149 ocfs2_reinit_path(path, 1); 7150 7151 /* 7152 * The check above will catch the case where we've truncated 7153 * away all allocation. 7154 */ 7155 goto start; 7156 7157 bail: 7158 if (ref_tree) 7159 ocfs2_unlock_refcount_tree(osb, ref_tree, 1); 7160 7161 ocfs2_schedule_truncate_log_flush(osb, 1); 7162 7163 ocfs2_run_deallocs(osb, &dealloc); 7164 7165 ocfs2_free_path(path); 7166 7167 return status; 7168 } 7169 7170 /* 7171 * 'start' is inclusive, 'end' is not. 7172 */ 7173 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh, 7174 unsigned int start, unsigned int end, int trunc) 7175 { 7176 int ret; 7177 unsigned int numbytes; 7178 handle_t *handle; 7179 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 7180 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7181 struct ocfs2_inline_data *idata = &di->id2.i_data; 7182 7183 if (end > i_size_read(inode)) 7184 end = i_size_read(inode); 7185 7186 BUG_ON(start > end); 7187 7188 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) || 7189 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) || 7190 !ocfs2_supports_inline_data(osb)) { 7191 ocfs2_error(inode->i_sb, 7192 "Inline data flags for inode %llu don't agree! " 7193 "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n", 7194 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7195 le16_to_cpu(di->i_dyn_features), 7196 OCFS2_I(inode)->ip_dyn_features, 7197 osb->s_feature_incompat); 7198 ret = -EROFS; 7199 goto out; 7200 } 7201 7202 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 7203 if (IS_ERR(handle)) { 7204 ret = PTR_ERR(handle); 7205 mlog_errno(ret); 7206 goto out; 7207 } 7208 7209 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 7210 OCFS2_JOURNAL_ACCESS_WRITE); 7211 if (ret) { 7212 mlog_errno(ret); 7213 goto out_commit; 7214 } 7215 7216 numbytes = end - start; 7217 memset(idata->id_data + start, 0, numbytes); 7218 7219 /* 7220 * No need to worry about the data page here - it's been 7221 * truncated already and inline data doesn't need it for 7222 * pushing zero's to disk, so we'll let readpage pick it up 7223 * later. 7224 */ 7225 if (trunc) { 7226 i_size_write(inode, start); 7227 di->i_size = cpu_to_le64(start); 7228 } 7229 7230 inode->i_blocks = ocfs2_inode_sector_count(inode); 7231 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 7232 7233 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 7234 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 7235 7236 ocfs2_update_inode_fsync_trans(handle, inode, 1); 7237 ocfs2_journal_dirty(handle, di_bh); 7238 7239 out_commit: 7240 ocfs2_commit_trans(osb, handle); 7241 7242 out: 7243 return ret; 7244 } 7245 7246 static int ocfs2_trim_extent(struct super_block *sb, 7247 struct ocfs2_group_desc *gd, 7248 u32 start, u32 count) 7249 { 7250 u64 discard, bcount; 7251 7252 bcount = ocfs2_clusters_to_blocks(sb, count); 7253 discard = le64_to_cpu(gd->bg_blkno) + 7254 ocfs2_clusters_to_blocks(sb, start); 7255 7256 trace_ocfs2_trim_extent(sb, (unsigned long long)discard, bcount); 7257 7258 return sb_issue_discard(sb, discard, bcount, GFP_NOFS, 0); 7259 } 7260 7261 static int ocfs2_trim_group(struct super_block *sb, 7262 struct ocfs2_group_desc *gd, 7263 u32 start, u32 max, u32 minbits) 7264 { 7265 int ret = 0, count = 0, next; 7266 void *bitmap = gd->bg_bitmap; 7267 7268 if (le16_to_cpu(gd->bg_free_bits_count) < minbits) 7269 return 0; 7270 7271 trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd->bg_blkno), 7272 start, max, minbits); 7273 7274 while (start < max) { 7275 start = ocfs2_find_next_zero_bit(bitmap, max, start); 7276 if (start >= max) 7277 break; 7278 next = ocfs2_find_next_bit(bitmap, max, start); 7279 7280 if ((next - start) >= minbits) { 7281 ret = ocfs2_trim_extent(sb, gd, 7282 start, next - start); 7283 if (ret < 0) { 7284 mlog_errno(ret); 7285 break; 7286 } 7287 count += next - start; 7288 } 7289 start = next + 1; 7290 7291 if (fatal_signal_pending(current)) { 7292 count = -ERESTARTSYS; 7293 break; 7294 } 7295 7296 if ((le16_to_cpu(gd->bg_free_bits_count) - count) < minbits) 7297 break; 7298 } 7299 7300 if (ret < 0) 7301 count = ret; 7302 7303 return count; 7304 } 7305 7306 int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range) 7307 { 7308 struct ocfs2_super *osb = OCFS2_SB(sb); 7309 u64 start, len, trimmed, first_group, last_group, group; 7310 int ret, cnt; 7311 u32 first_bit, last_bit, minlen; 7312 struct buffer_head *main_bm_bh = NULL; 7313 struct inode *main_bm_inode = NULL; 7314 struct buffer_head *gd_bh = NULL; 7315 struct ocfs2_dinode *main_bm; 7316 struct ocfs2_group_desc *gd = NULL; 7317 7318 start = range->start >> osb->s_clustersize_bits; 7319 len = range->len >> osb->s_clustersize_bits; 7320 minlen = range->minlen >> osb->s_clustersize_bits; 7321 7322 if (minlen >= osb->bitmap_cpg || range->len < sb->s_blocksize) 7323 return -EINVAL; 7324 7325 main_bm_inode = ocfs2_get_system_file_inode(osb, 7326 GLOBAL_BITMAP_SYSTEM_INODE, 7327 OCFS2_INVALID_SLOT); 7328 if (!main_bm_inode) { 7329 ret = -EIO; 7330 mlog_errno(ret); 7331 goto out; 7332 } 7333 7334 mutex_lock(&main_bm_inode->i_mutex); 7335 7336 ret = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 0); 7337 if (ret < 0) { 7338 mlog_errno(ret); 7339 goto out_mutex; 7340 } 7341 main_bm = (struct ocfs2_dinode *)main_bm_bh->b_data; 7342 7343 if (start >= le32_to_cpu(main_bm->i_clusters)) { 7344 ret = -EINVAL; 7345 goto out_unlock; 7346 } 7347 7348 len = range->len >> osb->s_clustersize_bits; 7349 if (start + len > le32_to_cpu(main_bm->i_clusters)) 7350 len = le32_to_cpu(main_bm->i_clusters) - start; 7351 7352 trace_ocfs2_trim_fs(start, len, minlen); 7353 7354 /* Determine first and last group to examine based on start and len */ 7355 first_group = ocfs2_which_cluster_group(main_bm_inode, start); 7356 if (first_group == osb->first_cluster_group_blkno) 7357 first_bit = start; 7358 else 7359 first_bit = start - ocfs2_blocks_to_clusters(sb, first_group); 7360 last_group = ocfs2_which_cluster_group(main_bm_inode, start + len - 1); 7361 last_bit = osb->bitmap_cpg; 7362 7363 trimmed = 0; 7364 for (group = first_group; group <= last_group;) { 7365 if (first_bit + len >= osb->bitmap_cpg) 7366 last_bit = osb->bitmap_cpg; 7367 else 7368 last_bit = first_bit + len; 7369 7370 ret = ocfs2_read_group_descriptor(main_bm_inode, 7371 main_bm, group, 7372 &gd_bh); 7373 if (ret < 0) { 7374 mlog_errno(ret); 7375 break; 7376 } 7377 7378 gd = (struct ocfs2_group_desc *)gd_bh->b_data; 7379 cnt = ocfs2_trim_group(sb, gd, first_bit, last_bit, minlen); 7380 brelse(gd_bh); 7381 gd_bh = NULL; 7382 if (cnt < 0) { 7383 ret = cnt; 7384 mlog_errno(ret); 7385 break; 7386 } 7387 7388 trimmed += cnt; 7389 len -= osb->bitmap_cpg - first_bit; 7390 first_bit = 0; 7391 if (group == osb->first_cluster_group_blkno) 7392 group = ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg); 7393 else 7394 group += ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg); 7395 } 7396 range->len = trimmed * sb->s_blocksize; 7397 out_unlock: 7398 ocfs2_inode_unlock(main_bm_inode, 0); 7399 brelse(main_bm_bh); 7400 out_mutex: 7401 mutex_unlock(&main_bm_inode->i_mutex); 7402 iput(main_bm_inode); 7403 out: 7404 return ret; 7405 } 7406