1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * alloc.c 5 * 6 * Extent allocs and frees 7 * 8 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/swap.h> 31 #include <linux/quotaops.h> 32 #include <linux/blkdev.h> 33 34 #include <cluster/masklog.h> 35 36 #include "ocfs2.h" 37 38 #include "alloc.h" 39 #include "aops.h" 40 #include "blockcheck.h" 41 #include "dlmglue.h" 42 #include "extent_map.h" 43 #include "inode.h" 44 #include "journal.h" 45 #include "localalloc.h" 46 #include "suballoc.h" 47 #include "sysfile.h" 48 #include "file.h" 49 #include "super.h" 50 #include "uptodate.h" 51 #include "xattr.h" 52 #include "refcounttree.h" 53 #include "ocfs2_trace.h" 54 55 #include "buffer_head_io.h" 56 57 enum ocfs2_contig_type { 58 CONTIG_NONE = 0, 59 CONTIG_LEFT, 60 CONTIG_RIGHT, 61 CONTIG_LEFTRIGHT, 62 }; 63 64 static enum ocfs2_contig_type 65 ocfs2_extent_rec_contig(struct super_block *sb, 66 struct ocfs2_extent_rec *ext, 67 struct ocfs2_extent_rec *insert_rec); 68 /* 69 * Operations for a specific extent tree type. 70 * 71 * To implement an on-disk btree (extent tree) type in ocfs2, add 72 * an ocfs2_extent_tree_operations structure and the matching 73 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it 74 * for the allocation portion of the extent tree. 75 */ 76 struct ocfs2_extent_tree_operations { 77 /* 78 * last_eb_blk is the block number of the right most leaf extent 79 * block. Most on-disk structures containing an extent tree store 80 * this value for fast access. The ->eo_set_last_eb_blk() and 81 * ->eo_get_last_eb_blk() operations access this value. They are 82 * both required. 83 */ 84 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et, 85 u64 blkno); 86 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et); 87 88 /* 89 * The on-disk structure usually keeps track of how many total 90 * clusters are stored in this extent tree. This function updates 91 * that value. new_clusters is the delta, and must be 92 * added to the total. Required. 93 */ 94 void (*eo_update_clusters)(struct ocfs2_extent_tree *et, 95 u32 new_clusters); 96 97 /* 98 * If this extent tree is supported by an extent map, insert 99 * a record into the map. 100 */ 101 void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et, 102 struct ocfs2_extent_rec *rec); 103 104 /* 105 * If this extent tree is supported by an extent map, truncate the 106 * map to clusters, 107 */ 108 void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et, 109 u32 clusters); 110 111 /* 112 * If ->eo_insert_check() exists, it is called before rec is 113 * inserted into the extent tree. It is optional. 114 */ 115 int (*eo_insert_check)(struct ocfs2_extent_tree *et, 116 struct ocfs2_extent_rec *rec); 117 int (*eo_sanity_check)(struct ocfs2_extent_tree *et); 118 119 /* 120 * -------------------------------------------------------------- 121 * The remaining are internal to ocfs2_extent_tree and don't have 122 * accessor functions 123 */ 124 125 /* 126 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el. 127 * It is required. 128 */ 129 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et); 130 131 /* 132 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if 133 * it exists. If it does not, et->et_max_leaf_clusters is set 134 * to 0 (unlimited). Optional. 135 */ 136 void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et); 137 138 /* 139 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec 140 * are contiguous or not. Optional. Don't need to set it if use 141 * ocfs2_extent_rec as the tree leaf. 142 */ 143 enum ocfs2_contig_type 144 (*eo_extent_contig)(struct ocfs2_extent_tree *et, 145 struct ocfs2_extent_rec *ext, 146 struct ocfs2_extent_rec *insert_rec); 147 }; 148 149 150 /* 151 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check 152 * in the methods. 153 */ 154 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et); 155 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 156 u64 blkno); 157 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, 158 u32 clusters); 159 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et, 160 struct ocfs2_extent_rec *rec); 161 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et, 162 u32 clusters); 163 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, 164 struct ocfs2_extent_rec *rec); 165 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et); 166 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et); 167 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = { 168 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk, 169 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk, 170 .eo_update_clusters = ocfs2_dinode_update_clusters, 171 .eo_extent_map_insert = ocfs2_dinode_extent_map_insert, 172 .eo_extent_map_truncate = ocfs2_dinode_extent_map_truncate, 173 .eo_insert_check = ocfs2_dinode_insert_check, 174 .eo_sanity_check = ocfs2_dinode_sanity_check, 175 .eo_fill_root_el = ocfs2_dinode_fill_root_el, 176 }; 177 178 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 179 u64 blkno) 180 { 181 struct ocfs2_dinode *di = et->et_object; 182 183 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 184 di->i_last_eb_blk = cpu_to_le64(blkno); 185 } 186 187 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et) 188 { 189 struct ocfs2_dinode *di = et->et_object; 190 191 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 192 return le64_to_cpu(di->i_last_eb_blk); 193 } 194 195 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, 196 u32 clusters) 197 { 198 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); 199 struct ocfs2_dinode *di = et->et_object; 200 201 le32_add_cpu(&di->i_clusters, clusters); 202 spin_lock(&oi->ip_lock); 203 oi->ip_clusters = le32_to_cpu(di->i_clusters); 204 spin_unlock(&oi->ip_lock); 205 } 206 207 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et, 208 struct ocfs2_extent_rec *rec) 209 { 210 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode; 211 212 ocfs2_extent_map_insert_rec(inode, rec); 213 } 214 215 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et, 216 u32 clusters) 217 { 218 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode; 219 220 ocfs2_extent_map_trunc(inode, clusters); 221 } 222 223 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, 224 struct ocfs2_extent_rec *rec) 225 { 226 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); 227 struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb); 228 229 BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL); 230 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) && 231 (oi->ip_clusters != le32_to_cpu(rec->e_cpos)), 232 "Device %s, asking for sparse allocation: inode %llu, " 233 "cpos %u, clusters %u\n", 234 osb->dev_str, 235 (unsigned long long)oi->ip_blkno, 236 rec->e_cpos, oi->ip_clusters); 237 238 return 0; 239 } 240 241 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et) 242 { 243 struct ocfs2_dinode *di = et->et_object; 244 245 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 246 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 247 248 return 0; 249 } 250 251 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et) 252 { 253 struct ocfs2_dinode *di = et->et_object; 254 255 et->et_root_el = &di->id2.i_list; 256 } 257 258 259 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et) 260 { 261 struct ocfs2_xattr_value_buf *vb = et->et_object; 262 263 et->et_root_el = &vb->vb_xv->xr_list; 264 } 265 266 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et, 267 u64 blkno) 268 { 269 struct ocfs2_xattr_value_buf *vb = et->et_object; 270 271 vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno); 272 } 273 274 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et) 275 { 276 struct ocfs2_xattr_value_buf *vb = et->et_object; 277 278 return le64_to_cpu(vb->vb_xv->xr_last_eb_blk); 279 } 280 281 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et, 282 u32 clusters) 283 { 284 struct ocfs2_xattr_value_buf *vb = et->et_object; 285 286 le32_add_cpu(&vb->vb_xv->xr_clusters, clusters); 287 } 288 289 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = { 290 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk, 291 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk, 292 .eo_update_clusters = ocfs2_xattr_value_update_clusters, 293 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el, 294 }; 295 296 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et) 297 { 298 struct ocfs2_xattr_block *xb = et->et_object; 299 300 et->et_root_el = &xb->xb_attrs.xb_root.xt_list; 301 } 302 303 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et) 304 { 305 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 306 et->et_max_leaf_clusters = 307 ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE); 308 } 309 310 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 311 u64 blkno) 312 { 313 struct ocfs2_xattr_block *xb = et->et_object; 314 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 315 316 xt->xt_last_eb_blk = cpu_to_le64(blkno); 317 } 318 319 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 320 { 321 struct ocfs2_xattr_block *xb = et->et_object; 322 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 323 324 return le64_to_cpu(xt->xt_last_eb_blk); 325 } 326 327 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et, 328 u32 clusters) 329 { 330 struct ocfs2_xattr_block *xb = et->et_object; 331 332 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters); 333 } 334 335 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = { 336 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk, 337 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk, 338 .eo_update_clusters = ocfs2_xattr_tree_update_clusters, 339 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el, 340 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters, 341 }; 342 343 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et, 344 u64 blkno) 345 { 346 struct ocfs2_dx_root_block *dx_root = et->et_object; 347 348 dx_root->dr_last_eb_blk = cpu_to_le64(blkno); 349 } 350 351 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et) 352 { 353 struct ocfs2_dx_root_block *dx_root = et->et_object; 354 355 return le64_to_cpu(dx_root->dr_last_eb_blk); 356 } 357 358 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et, 359 u32 clusters) 360 { 361 struct ocfs2_dx_root_block *dx_root = et->et_object; 362 363 le32_add_cpu(&dx_root->dr_clusters, clusters); 364 } 365 366 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et) 367 { 368 struct ocfs2_dx_root_block *dx_root = et->et_object; 369 370 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root)); 371 372 return 0; 373 } 374 375 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et) 376 { 377 struct ocfs2_dx_root_block *dx_root = et->et_object; 378 379 et->et_root_el = &dx_root->dr_list; 380 } 381 382 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = { 383 .eo_set_last_eb_blk = ocfs2_dx_root_set_last_eb_blk, 384 .eo_get_last_eb_blk = ocfs2_dx_root_get_last_eb_blk, 385 .eo_update_clusters = ocfs2_dx_root_update_clusters, 386 .eo_sanity_check = ocfs2_dx_root_sanity_check, 387 .eo_fill_root_el = ocfs2_dx_root_fill_root_el, 388 }; 389 390 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et) 391 { 392 struct ocfs2_refcount_block *rb = et->et_object; 393 394 et->et_root_el = &rb->rf_list; 395 } 396 397 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 398 u64 blkno) 399 { 400 struct ocfs2_refcount_block *rb = et->et_object; 401 402 rb->rf_last_eb_blk = cpu_to_le64(blkno); 403 } 404 405 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 406 { 407 struct ocfs2_refcount_block *rb = et->et_object; 408 409 return le64_to_cpu(rb->rf_last_eb_blk); 410 } 411 412 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et, 413 u32 clusters) 414 { 415 struct ocfs2_refcount_block *rb = et->et_object; 416 417 le32_add_cpu(&rb->rf_clusters, clusters); 418 } 419 420 static enum ocfs2_contig_type 421 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et, 422 struct ocfs2_extent_rec *ext, 423 struct ocfs2_extent_rec *insert_rec) 424 { 425 return CONTIG_NONE; 426 } 427 428 static struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = { 429 .eo_set_last_eb_blk = ocfs2_refcount_tree_set_last_eb_blk, 430 .eo_get_last_eb_blk = ocfs2_refcount_tree_get_last_eb_blk, 431 .eo_update_clusters = ocfs2_refcount_tree_update_clusters, 432 .eo_fill_root_el = ocfs2_refcount_tree_fill_root_el, 433 .eo_extent_contig = ocfs2_refcount_tree_extent_contig, 434 }; 435 436 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et, 437 struct ocfs2_caching_info *ci, 438 struct buffer_head *bh, 439 ocfs2_journal_access_func access, 440 void *obj, 441 struct ocfs2_extent_tree_operations *ops) 442 { 443 et->et_ops = ops; 444 et->et_root_bh = bh; 445 et->et_ci = ci; 446 et->et_root_journal_access = access; 447 if (!obj) 448 obj = (void *)bh->b_data; 449 et->et_object = obj; 450 451 et->et_ops->eo_fill_root_el(et); 452 if (!et->et_ops->eo_fill_max_leaf_clusters) 453 et->et_max_leaf_clusters = 0; 454 else 455 et->et_ops->eo_fill_max_leaf_clusters(et); 456 } 457 458 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et, 459 struct ocfs2_caching_info *ci, 460 struct buffer_head *bh) 461 { 462 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di, 463 NULL, &ocfs2_dinode_et_ops); 464 } 465 466 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et, 467 struct ocfs2_caching_info *ci, 468 struct buffer_head *bh) 469 { 470 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb, 471 NULL, &ocfs2_xattr_tree_et_ops); 472 } 473 474 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et, 475 struct ocfs2_caching_info *ci, 476 struct ocfs2_xattr_value_buf *vb) 477 { 478 __ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb, 479 &ocfs2_xattr_value_et_ops); 480 } 481 482 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et, 483 struct ocfs2_caching_info *ci, 484 struct buffer_head *bh) 485 { 486 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr, 487 NULL, &ocfs2_dx_root_et_ops); 488 } 489 490 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et, 491 struct ocfs2_caching_info *ci, 492 struct buffer_head *bh) 493 { 494 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb, 495 NULL, &ocfs2_refcount_tree_et_ops); 496 } 497 498 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et, 499 u64 new_last_eb_blk) 500 { 501 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk); 502 } 503 504 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et) 505 { 506 return et->et_ops->eo_get_last_eb_blk(et); 507 } 508 509 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et, 510 u32 clusters) 511 { 512 et->et_ops->eo_update_clusters(et, clusters); 513 } 514 515 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et, 516 struct ocfs2_extent_rec *rec) 517 { 518 if (et->et_ops->eo_extent_map_insert) 519 et->et_ops->eo_extent_map_insert(et, rec); 520 } 521 522 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et, 523 u32 clusters) 524 { 525 if (et->et_ops->eo_extent_map_truncate) 526 et->et_ops->eo_extent_map_truncate(et, clusters); 527 } 528 529 static inline int ocfs2_et_root_journal_access(handle_t *handle, 530 struct ocfs2_extent_tree *et, 531 int type) 532 { 533 return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh, 534 type); 535 } 536 537 static inline enum ocfs2_contig_type 538 ocfs2_et_extent_contig(struct ocfs2_extent_tree *et, 539 struct ocfs2_extent_rec *rec, 540 struct ocfs2_extent_rec *insert_rec) 541 { 542 if (et->et_ops->eo_extent_contig) 543 return et->et_ops->eo_extent_contig(et, rec, insert_rec); 544 545 return ocfs2_extent_rec_contig( 546 ocfs2_metadata_cache_get_super(et->et_ci), 547 rec, insert_rec); 548 } 549 550 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et, 551 struct ocfs2_extent_rec *rec) 552 { 553 int ret = 0; 554 555 if (et->et_ops->eo_insert_check) 556 ret = et->et_ops->eo_insert_check(et, rec); 557 return ret; 558 } 559 560 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et) 561 { 562 int ret = 0; 563 564 if (et->et_ops->eo_sanity_check) 565 ret = et->et_ops->eo_sanity_check(et); 566 return ret; 567 } 568 569 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 570 struct ocfs2_extent_block *eb); 571 static void ocfs2_adjust_rightmost_records(handle_t *handle, 572 struct ocfs2_extent_tree *et, 573 struct ocfs2_path *path, 574 struct ocfs2_extent_rec *insert_rec); 575 /* 576 * Reset the actual path elements so that we can re-use the structure 577 * to build another path. Generally, this involves freeing the buffer 578 * heads. 579 */ 580 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root) 581 { 582 int i, start = 0, depth = 0; 583 struct ocfs2_path_item *node; 584 585 if (keep_root) 586 start = 1; 587 588 for(i = start; i < path_num_items(path); i++) { 589 node = &path->p_node[i]; 590 591 brelse(node->bh); 592 node->bh = NULL; 593 node->el = NULL; 594 } 595 596 /* 597 * Tree depth may change during truncate, or insert. If we're 598 * keeping the root extent list, then make sure that our path 599 * structure reflects the proper depth. 600 */ 601 if (keep_root) 602 depth = le16_to_cpu(path_root_el(path)->l_tree_depth); 603 else 604 path_root_access(path) = NULL; 605 606 path->p_tree_depth = depth; 607 } 608 609 void ocfs2_free_path(struct ocfs2_path *path) 610 { 611 if (path) { 612 ocfs2_reinit_path(path, 0); 613 kfree(path); 614 } 615 } 616 617 /* 618 * All the elements of src into dest. After this call, src could be freed 619 * without affecting dest. 620 * 621 * Both paths should have the same root. Any non-root elements of dest 622 * will be freed. 623 */ 624 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src) 625 { 626 int i; 627 628 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 629 BUG_ON(path_root_el(dest) != path_root_el(src)); 630 BUG_ON(path_root_access(dest) != path_root_access(src)); 631 632 ocfs2_reinit_path(dest, 1); 633 634 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 635 dest->p_node[i].bh = src->p_node[i].bh; 636 dest->p_node[i].el = src->p_node[i].el; 637 638 if (dest->p_node[i].bh) 639 get_bh(dest->p_node[i].bh); 640 } 641 } 642 643 /* 644 * Make the *dest path the same as src and re-initialize src path to 645 * have a root only. 646 */ 647 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src) 648 { 649 int i; 650 651 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 652 BUG_ON(path_root_access(dest) != path_root_access(src)); 653 654 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 655 brelse(dest->p_node[i].bh); 656 657 dest->p_node[i].bh = src->p_node[i].bh; 658 dest->p_node[i].el = src->p_node[i].el; 659 660 src->p_node[i].bh = NULL; 661 src->p_node[i].el = NULL; 662 } 663 } 664 665 /* 666 * Insert an extent block at given index. 667 * 668 * This will not take an additional reference on eb_bh. 669 */ 670 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index, 671 struct buffer_head *eb_bh) 672 { 673 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data; 674 675 /* 676 * Right now, no root bh is an extent block, so this helps 677 * catch code errors with dinode trees. The assertion can be 678 * safely removed if we ever need to insert extent block 679 * structures at the root. 680 */ 681 BUG_ON(index == 0); 682 683 path->p_node[index].bh = eb_bh; 684 path->p_node[index].el = &eb->h_list; 685 } 686 687 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh, 688 struct ocfs2_extent_list *root_el, 689 ocfs2_journal_access_func access) 690 { 691 struct ocfs2_path *path; 692 693 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH); 694 695 path = kzalloc(sizeof(*path), GFP_NOFS); 696 if (path) { 697 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth); 698 get_bh(root_bh); 699 path_root_bh(path) = root_bh; 700 path_root_el(path) = root_el; 701 path_root_access(path) = access; 702 } 703 704 return path; 705 } 706 707 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path) 708 { 709 return ocfs2_new_path(path_root_bh(path), path_root_el(path), 710 path_root_access(path)); 711 } 712 713 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et) 714 { 715 return ocfs2_new_path(et->et_root_bh, et->et_root_el, 716 et->et_root_journal_access); 717 } 718 719 /* 720 * Journal the buffer at depth idx. All idx>0 are extent_blocks, 721 * otherwise it's the root_access function. 722 * 723 * I don't like the way this function's name looks next to 724 * ocfs2_journal_access_path(), but I don't have a better one. 725 */ 726 int ocfs2_path_bh_journal_access(handle_t *handle, 727 struct ocfs2_caching_info *ci, 728 struct ocfs2_path *path, 729 int idx) 730 { 731 ocfs2_journal_access_func access = path_root_access(path); 732 733 if (!access) 734 access = ocfs2_journal_access; 735 736 if (idx) 737 access = ocfs2_journal_access_eb; 738 739 return access(handle, ci, path->p_node[idx].bh, 740 OCFS2_JOURNAL_ACCESS_WRITE); 741 } 742 743 /* 744 * Convenience function to journal all components in a path. 745 */ 746 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci, 747 handle_t *handle, 748 struct ocfs2_path *path) 749 { 750 int i, ret = 0; 751 752 if (!path) 753 goto out; 754 755 for(i = 0; i < path_num_items(path); i++) { 756 ret = ocfs2_path_bh_journal_access(handle, ci, path, i); 757 if (ret < 0) { 758 mlog_errno(ret); 759 goto out; 760 } 761 } 762 763 out: 764 return ret; 765 } 766 767 /* 768 * Return the index of the extent record which contains cluster #v_cluster. 769 * -1 is returned if it was not found. 770 * 771 * Should work fine on interior and exterior nodes. 772 */ 773 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster) 774 { 775 int ret = -1; 776 int i; 777 struct ocfs2_extent_rec *rec; 778 u32 rec_end, rec_start, clusters; 779 780 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 781 rec = &el->l_recs[i]; 782 783 rec_start = le32_to_cpu(rec->e_cpos); 784 clusters = ocfs2_rec_clusters(el, rec); 785 786 rec_end = rec_start + clusters; 787 788 if (v_cluster >= rec_start && v_cluster < rec_end) { 789 ret = i; 790 break; 791 } 792 } 793 794 return ret; 795 } 796 797 /* 798 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and 799 * ocfs2_extent_rec_contig only work properly against leaf nodes! 800 */ 801 static int ocfs2_block_extent_contig(struct super_block *sb, 802 struct ocfs2_extent_rec *ext, 803 u64 blkno) 804 { 805 u64 blk_end = le64_to_cpu(ext->e_blkno); 806 807 blk_end += ocfs2_clusters_to_blocks(sb, 808 le16_to_cpu(ext->e_leaf_clusters)); 809 810 return blkno == blk_end; 811 } 812 813 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left, 814 struct ocfs2_extent_rec *right) 815 { 816 u32 left_range; 817 818 left_range = le32_to_cpu(left->e_cpos) + 819 le16_to_cpu(left->e_leaf_clusters); 820 821 return (left_range == le32_to_cpu(right->e_cpos)); 822 } 823 824 static enum ocfs2_contig_type 825 ocfs2_extent_rec_contig(struct super_block *sb, 826 struct ocfs2_extent_rec *ext, 827 struct ocfs2_extent_rec *insert_rec) 828 { 829 u64 blkno = le64_to_cpu(insert_rec->e_blkno); 830 831 /* 832 * Refuse to coalesce extent records with different flag 833 * fields - we don't want to mix unwritten extents with user 834 * data. 835 */ 836 if (ext->e_flags != insert_rec->e_flags) 837 return CONTIG_NONE; 838 839 if (ocfs2_extents_adjacent(ext, insert_rec) && 840 ocfs2_block_extent_contig(sb, ext, blkno)) 841 return CONTIG_RIGHT; 842 843 blkno = le64_to_cpu(ext->e_blkno); 844 if (ocfs2_extents_adjacent(insert_rec, ext) && 845 ocfs2_block_extent_contig(sb, insert_rec, blkno)) 846 return CONTIG_LEFT; 847 848 return CONTIG_NONE; 849 } 850 851 /* 852 * NOTE: We can have pretty much any combination of contiguousness and 853 * appending. 854 * 855 * The usefulness of APPEND_TAIL is more in that it lets us know that 856 * we'll have to update the path to that leaf. 857 */ 858 enum ocfs2_append_type { 859 APPEND_NONE = 0, 860 APPEND_TAIL, 861 }; 862 863 enum ocfs2_split_type { 864 SPLIT_NONE = 0, 865 SPLIT_LEFT, 866 SPLIT_RIGHT, 867 }; 868 869 struct ocfs2_insert_type { 870 enum ocfs2_split_type ins_split; 871 enum ocfs2_append_type ins_appending; 872 enum ocfs2_contig_type ins_contig; 873 int ins_contig_index; 874 int ins_tree_depth; 875 }; 876 877 struct ocfs2_merge_ctxt { 878 enum ocfs2_contig_type c_contig_type; 879 int c_has_empty_extent; 880 int c_split_covers_rec; 881 }; 882 883 static int ocfs2_validate_extent_block(struct super_block *sb, 884 struct buffer_head *bh) 885 { 886 int rc; 887 struct ocfs2_extent_block *eb = 888 (struct ocfs2_extent_block *)bh->b_data; 889 890 trace_ocfs2_validate_extent_block((unsigned long long)bh->b_blocknr); 891 892 BUG_ON(!buffer_uptodate(bh)); 893 894 /* 895 * If the ecc fails, we return the error but otherwise 896 * leave the filesystem running. We know any error is 897 * local to this block. 898 */ 899 rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check); 900 if (rc) { 901 mlog(ML_ERROR, "Checksum failed for extent block %llu\n", 902 (unsigned long long)bh->b_blocknr); 903 return rc; 904 } 905 906 /* 907 * Errors after here are fatal. 908 */ 909 910 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 911 rc = ocfs2_error(sb, 912 "Extent block #%llu has bad signature %.*s\n", 913 (unsigned long long)bh->b_blocknr, 7, 914 eb->h_signature); 915 goto bail; 916 } 917 918 if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) { 919 rc = ocfs2_error(sb, 920 "Extent block #%llu has an invalid h_blkno of %llu\n", 921 (unsigned long long)bh->b_blocknr, 922 (unsigned long long)le64_to_cpu(eb->h_blkno)); 923 goto bail; 924 } 925 926 if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) { 927 rc = ocfs2_error(sb, 928 "Extent block #%llu has an invalid h_fs_generation of #%u\n", 929 (unsigned long long)bh->b_blocknr, 930 le32_to_cpu(eb->h_fs_generation)); 931 goto bail; 932 } 933 bail: 934 return rc; 935 } 936 937 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno, 938 struct buffer_head **bh) 939 { 940 int rc; 941 struct buffer_head *tmp = *bh; 942 943 rc = ocfs2_read_block(ci, eb_blkno, &tmp, 944 ocfs2_validate_extent_block); 945 946 /* If ocfs2_read_block() got us a new bh, pass it up. */ 947 if (!rc && !*bh) 948 *bh = tmp; 949 950 return rc; 951 } 952 953 954 /* 955 * How many free extents have we got before we need more meta data? 956 */ 957 int ocfs2_num_free_extents(struct ocfs2_super *osb, 958 struct ocfs2_extent_tree *et) 959 { 960 int retval; 961 struct ocfs2_extent_list *el = NULL; 962 struct ocfs2_extent_block *eb; 963 struct buffer_head *eb_bh = NULL; 964 u64 last_eb_blk = 0; 965 966 el = et->et_root_el; 967 last_eb_blk = ocfs2_et_get_last_eb_blk(et); 968 969 if (last_eb_blk) { 970 retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk, 971 &eb_bh); 972 if (retval < 0) { 973 mlog_errno(retval); 974 goto bail; 975 } 976 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 977 el = &eb->h_list; 978 } 979 980 BUG_ON(el->l_tree_depth != 0); 981 982 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec); 983 bail: 984 brelse(eb_bh); 985 986 trace_ocfs2_num_free_extents(retval); 987 return retval; 988 } 989 990 /* expects array to already be allocated 991 * 992 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and 993 * l_count for you 994 */ 995 static int ocfs2_create_new_meta_bhs(handle_t *handle, 996 struct ocfs2_extent_tree *et, 997 int wanted, 998 struct ocfs2_alloc_context *meta_ac, 999 struct buffer_head *bhs[]) 1000 { 1001 int count, status, i; 1002 u16 suballoc_bit_start; 1003 u32 num_got; 1004 u64 suballoc_loc, first_blkno; 1005 struct ocfs2_super *osb = 1006 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 1007 struct ocfs2_extent_block *eb; 1008 1009 count = 0; 1010 while (count < wanted) { 1011 status = ocfs2_claim_metadata(handle, 1012 meta_ac, 1013 wanted - count, 1014 &suballoc_loc, 1015 &suballoc_bit_start, 1016 &num_got, 1017 &first_blkno); 1018 if (status < 0) { 1019 mlog_errno(status); 1020 goto bail; 1021 } 1022 1023 for(i = count; i < (num_got + count); i++) { 1024 bhs[i] = sb_getblk(osb->sb, first_blkno); 1025 if (bhs[i] == NULL) { 1026 status = -ENOMEM; 1027 mlog_errno(status); 1028 goto bail; 1029 } 1030 ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]); 1031 1032 status = ocfs2_journal_access_eb(handle, et->et_ci, 1033 bhs[i], 1034 OCFS2_JOURNAL_ACCESS_CREATE); 1035 if (status < 0) { 1036 mlog_errno(status); 1037 goto bail; 1038 } 1039 1040 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize); 1041 eb = (struct ocfs2_extent_block *) bhs[i]->b_data; 1042 /* Ok, setup the minimal stuff here. */ 1043 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); 1044 eb->h_blkno = cpu_to_le64(first_blkno); 1045 eb->h_fs_generation = cpu_to_le32(osb->fs_generation); 1046 eb->h_suballoc_slot = 1047 cpu_to_le16(meta_ac->ac_alloc_slot); 1048 eb->h_suballoc_loc = cpu_to_le64(suballoc_loc); 1049 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start); 1050 eb->h_list.l_count = 1051 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); 1052 1053 suballoc_bit_start++; 1054 first_blkno++; 1055 1056 /* We'll also be dirtied by the caller, so 1057 * this isn't absolutely necessary. */ 1058 ocfs2_journal_dirty(handle, bhs[i]); 1059 } 1060 1061 count += num_got; 1062 } 1063 1064 status = 0; 1065 bail: 1066 if (status < 0) { 1067 for(i = 0; i < wanted; i++) { 1068 brelse(bhs[i]); 1069 bhs[i] = NULL; 1070 } 1071 mlog_errno(status); 1072 } 1073 return status; 1074 } 1075 1076 /* 1077 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth(). 1078 * 1079 * Returns the sum of the rightmost extent rec logical offset and 1080 * cluster count. 1081 * 1082 * ocfs2_add_branch() uses this to determine what logical cluster 1083 * value should be populated into the leftmost new branch records. 1084 * 1085 * ocfs2_shift_tree_depth() uses this to determine the # clusters 1086 * value for the new topmost tree record. 1087 */ 1088 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el) 1089 { 1090 int i; 1091 1092 i = le16_to_cpu(el->l_next_free_rec) - 1; 1093 1094 return le32_to_cpu(el->l_recs[i].e_cpos) + 1095 ocfs2_rec_clusters(el, &el->l_recs[i]); 1096 } 1097 1098 /* 1099 * Change range of the branches in the right most path according to the leaf 1100 * extent block's rightmost record. 1101 */ 1102 static int ocfs2_adjust_rightmost_branch(handle_t *handle, 1103 struct ocfs2_extent_tree *et) 1104 { 1105 int status; 1106 struct ocfs2_path *path = NULL; 1107 struct ocfs2_extent_list *el; 1108 struct ocfs2_extent_rec *rec; 1109 1110 path = ocfs2_new_path_from_et(et); 1111 if (!path) { 1112 status = -ENOMEM; 1113 return status; 1114 } 1115 1116 status = ocfs2_find_path(et->et_ci, path, UINT_MAX); 1117 if (status < 0) { 1118 mlog_errno(status); 1119 goto out; 1120 } 1121 1122 status = ocfs2_extend_trans(handle, path_num_items(path)); 1123 if (status < 0) { 1124 mlog_errno(status); 1125 goto out; 1126 } 1127 1128 status = ocfs2_journal_access_path(et->et_ci, handle, path); 1129 if (status < 0) { 1130 mlog_errno(status); 1131 goto out; 1132 } 1133 1134 el = path_leaf_el(path); 1135 rec = &el->l_recs[le16_to_cpu(el->l_next_free_rec) - 1]; 1136 1137 ocfs2_adjust_rightmost_records(handle, et, path, rec); 1138 1139 out: 1140 ocfs2_free_path(path); 1141 return status; 1142 } 1143 1144 /* 1145 * Add an entire tree branch to our inode. eb_bh is the extent block 1146 * to start at, if we don't want to start the branch at the root 1147 * structure. 1148 * 1149 * last_eb_bh is required as we have to update it's next_leaf pointer 1150 * for the new last extent block. 1151 * 1152 * the new branch will be 'empty' in the sense that every block will 1153 * contain a single record with cluster count == 0. 1154 */ 1155 static int ocfs2_add_branch(handle_t *handle, 1156 struct ocfs2_extent_tree *et, 1157 struct buffer_head *eb_bh, 1158 struct buffer_head **last_eb_bh, 1159 struct ocfs2_alloc_context *meta_ac) 1160 { 1161 int status, new_blocks, i; 1162 u64 next_blkno, new_last_eb_blk; 1163 struct buffer_head *bh; 1164 struct buffer_head **new_eb_bhs = NULL; 1165 struct ocfs2_extent_block *eb; 1166 struct ocfs2_extent_list *eb_el; 1167 struct ocfs2_extent_list *el; 1168 u32 new_cpos, root_end; 1169 1170 BUG_ON(!last_eb_bh || !*last_eb_bh); 1171 1172 if (eb_bh) { 1173 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 1174 el = &eb->h_list; 1175 } else 1176 el = et->et_root_el; 1177 1178 /* we never add a branch to a leaf. */ 1179 BUG_ON(!el->l_tree_depth); 1180 1181 new_blocks = le16_to_cpu(el->l_tree_depth); 1182 1183 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data; 1184 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list); 1185 root_end = ocfs2_sum_rightmost_rec(et->et_root_el); 1186 1187 /* 1188 * If there is a gap before the root end and the real end 1189 * of the righmost leaf block, we need to remove the gap 1190 * between new_cpos and root_end first so that the tree 1191 * is consistent after we add a new branch(it will start 1192 * from new_cpos). 1193 */ 1194 if (root_end > new_cpos) { 1195 trace_ocfs2_adjust_rightmost_branch( 1196 (unsigned long long) 1197 ocfs2_metadata_cache_owner(et->et_ci), 1198 root_end, new_cpos); 1199 1200 status = ocfs2_adjust_rightmost_branch(handle, et); 1201 if (status) { 1202 mlog_errno(status); 1203 goto bail; 1204 } 1205 } 1206 1207 /* allocate the number of new eb blocks we need */ 1208 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *), 1209 GFP_KERNEL); 1210 if (!new_eb_bhs) { 1211 status = -ENOMEM; 1212 mlog_errno(status); 1213 goto bail; 1214 } 1215 1216 status = ocfs2_create_new_meta_bhs(handle, et, new_blocks, 1217 meta_ac, new_eb_bhs); 1218 if (status < 0) { 1219 mlog_errno(status); 1220 goto bail; 1221 } 1222 1223 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be 1224 * linked with the rest of the tree. 1225 * conversly, new_eb_bhs[0] is the new bottommost leaf. 1226 * 1227 * when we leave the loop, new_last_eb_blk will point to the 1228 * newest leaf, and next_blkno will point to the topmost extent 1229 * block. */ 1230 next_blkno = new_last_eb_blk = 0; 1231 for(i = 0; i < new_blocks; i++) { 1232 bh = new_eb_bhs[i]; 1233 eb = (struct ocfs2_extent_block *) bh->b_data; 1234 /* ocfs2_create_new_meta_bhs() should create it right! */ 1235 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1236 eb_el = &eb->h_list; 1237 1238 status = ocfs2_journal_access_eb(handle, et->et_ci, bh, 1239 OCFS2_JOURNAL_ACCESS_CREATE); 1240 if (status < 0) { 1241 mlog_errno(status); 1242 goto bail; 1243 } 1244 1245 eb->h_next_leaf_blk = 0; 1246 eb_el->l_tree_depth = cpu_to_le16(i); 1247 eb_el->l_next_free_rec = cpu_to_le16(1); 1248 /* 1249 * This actually counts as an empty extent as 1250 * c_clusters == 0 1251 */ 1252 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos); 1253 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno); 1254 /* 1255 * eb_el isn't always an interior node, but even leaf 1256 * nodes want a zero'd flags and reserved field so 1257 * this gets the whole 32 bits regardless of use. 1258 */ 1259 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0); 1260 if (!eb_el->l_tree_depth) 1261 new_last_eb_blk = le64_to_cpu(eb->h_blkno); 1262 1263 ocfs2_journal_dirty(handle, bh); 1264 next_blkno = le64_to_cpu(eb->h_blkno); 1265 } 1266 1267 /* This is a bit hairy. We want to update up to three blocks 1268 * here without leaving any of them in an inconsistent state 1269 * in case of error. We don't have to worry about 1270 * journal_dirty erroring as it won't unless we've aborted the 1271 * handle (in which case we would never be here) so reserving 1272 * the write with journal_access is all we need to do. */ 1273 status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh, 1274 OCFS2_JOURNAL_ACCESS_WRITE); 1275 if (status < 0) { 1276 mlog_errno(status); 1277 goto bail; 1278 } 1279 status = ocfs2_et_root_journal_access(handle, et, 1280 OCFS2_JOURNAL_ACCESS_WRITE); 1281 if (status < 0) { 1282 mlog_errno(status); 1283 goto bail; 1284 } 1285 if (eb_bh) { 1286 status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh, 1287 OCFS2_JOURNAL_ACCESS_WRITE); 1288 if (status < 0) { 1289 mlog_errno(status); 1290 goto bail; 1291 } 1292 } 1293 1294 /* Link the new branch into the rest of the tree (el will 1295 * either be on the root_bh, or the extent block passed in. */ 1296 i = le16_to_cpu(el->l_next_free_rec); 1297 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno); 1298 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos); 1299 el->l_recs[i].e_int_clusters = 0; 1300 le16_add_cpu(&el->l_next_free_rec, 1); 1301 1302 /* fe needs a new last extent block pointer, as does the 1303 * next_leaf on the previously last-extent-block. */ 1304 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk); 1305 1306 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 1307 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk); 1308 1309 ocfs2_journal_dirty(handle, *last_eb_bh); 1310 ocfs2_journal_dirty(handle, et->et_root_bh); 1311 if (eb_bh) 1312 ocfs2_journal_dirty(handle, eb_bh); 1313 1314 /* 1315 * Some callers want to track the rightmost leaf so pass it 1316 * back here. 1317 */ 1318 brelse(*last_eb_bh); 1319 get_bh(new_eb_bhs[0]); 1320 *last_eb_bh = new_eb_bhs[0]; 1321 1322 status = 0; 1323 bail: 1324 if (new_eb_bhs) { 1325 for (i = 0; i < new_blocks; i++) 1326 brelse(new_eb_bhs[i]); 1327 kfree(new_eb_bhs); 1328 } 1329 1330 return status; 1331 } 1332 1333 /* 1334 * adds another level to the allocation tree. 1335 * returns back the new extent block so you can add a branch to it 1336 * after this call. 1337 */ 1338 static int ocfs2_shift_tree_depth(handle_t *handle, 1339 struct ocfs2_extent_tree *et, 1340 struct ocfs2_alloc_context *meta_ac, 1341 struct buffer_head **ret_new_eb_bh) 1342 { 1343 int status, i; 1344 u32 new_clusters; 1345 struct buffer_head *new_eb_bh = NULL; 1346 struct ocfs2_extent_block *eb; 1347 struct ocfs2_extent_list *root_el; 1348 struct ocfs2_extent_list *eb_el; 1349 1350 status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac, 1351 &new_eb_bh); 1352 if (status < 0) { 1353 mlog_errno(status); 1354 goto bail; 1355 } 1356 1357 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data; 1358 /* ocfs2_create_new_meta_bhs() should create it right! */ 1359 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1360 1361 eb_el = &eb->h_list; 1362 root_el = et->et_root_el; 1363 1364 status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh, 1365 OCFS2_JOURNAL_ACCESS_CREATE); 1366 if (status < 0) { 1367 mlog_errno(status); 1368 goto bail; 1369 } 1370 1371 /* copy the root extent list data into the new extent block */ 1372 eb_el->l_tree_depth = root_el->l_tree_depth; 1373 eb_el->l_next_free_rec = root_el->l_next_free_rec; 1374 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1375 eb_el->l_recs[i] = root_el->l_recs[i]; 1376 1377 ocfs2_journal_dirty(handle, new_eb_bh); 1378 1379 status = ocfs2_et_root_journal_access(handle, et, 1380 OCFS2_JOURNAL_ACCESS_WRITE); 1381 if (status < 0) { 1382 mlog_errno(status); 1383 goto bail; 1384 } 1385 1386 new_clusters = ocfs2_sum_rightmost_rec(eb_el); 1387 1388 /* update root_bh now */ 1389 le16_add_cpu(&root_el->l_tree_depth, 1); 1390 root_el->l_recs[0].e_cpos = 0; 1391 root_el->l_recs[0].e_blkno = eb->h_blkno; 1392 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters); 1393 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1394 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 1395 root_el->l_next_free_rec = cpu_to_le16(1); 1396 1397 /* If this is our 1st tree depth shift, then last_eb_blk 1398 * becomes the allocated extent block */ 1399 if (root_el->l_tree_depth == cpu_to_le16(1)) 1400 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 1401 1402 ocfs2_journal_dirty(handle, et->et_root_bh); 1403 1404 *ret_new_eb_bh = new_eb_bh; 1405 new_eb_bh = NULL; 1406 status = 0; 1407 bail: 1408 brelse(new_eb_bh); 1409 1410 return status; 1411 } 1412 1413 /* 1414 * Should only be called when there is no space left in any of the 1415 * leaf nodes. What we want to do is find the lowest tree depth 1416 * non-leaf extent block with room for new records. There are three 1417 * valid results of this search: 1418 * 1419 * 1) a lowest extent block is found, then we pass it back in 1420 * *lowest_eb_bh and return '0' 1421 * 1422 * 2) the search fails to find anything, but the root_el has room. We 1423 * pass NULL back in *lowest_eb_bh, but still return '0' 1424 * 1425 * 3) the search fails to find anything AND the root_el is full, in 1426 * which case we return > 0 1427 * 1428 * return status < 0 indicates an error. 1429 */ 1430 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et, 1431 struct buffer_head **target_bh) 1432 { 1433 int status = 0, i; 1434 u64 blkno; 1435 struct ocfs2_extent_block *eb; 1436 struct ocfs2_extent_list *el; 1437 struct buffer_head *bh = NULL; 1438 struct buffer_head *lowest_bh = NULL; 1439 1440 *target_bh = NULL; 1441 1442 el = et->et_root_el; 1443 1444 while(le16_to_cpu(el->l_tree_depth) > 1) { 1445 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1446 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 1447 "Owner %llu has empty extent list (next_free_rec == 0)\n", 1448 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 1449 status = -EIO; 1450 goto bail; 1451 } 1452 i = le16_to_cpu(el->l_next_free_rec) - 1; 1453 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1454 if (!blkno) { 1455 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 1456 "Owner %llu has extent list where extent # %d has no physical block start\n", 1457 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i); 1458 status = -EIO; 1459 goto bail; 1460 } 1461 1462 brelse(bh); 1463 bh = NULL; 1464 1465 status = ocfs2_read_extent_block(et->et_ci, blkno, &bh); 1466 if (status < 0) { 1467 mlog_errno(status); 1468 goto bail; 1469 } 1470 1471 eb = (struct ocfs2_extent_block *) bh->b_data; 1472 el = &eb->h_list; 1473 1474 if (le16_to_cpu(el->l_next_free_rec) < 1475 le16_to_cpu(el->l_count)) { 1476 brelse(lowest_bh); 1477 lowest_bh = bh; 1478 get_bh(lowest_bh); 1479 } 1480 } 1481 1482 /* If we didn't find one and the fe doesn't have any room, 1483 * then return '1' */ 1484 el = et->et_root_el; 1485 if (!lowest_bh && (el->l_next_free_rec == el->l_count)) 1486 status = 1; 1487 1488 *target_bh = lowest_bh; 1489 bail: 1490 brelse(bh); 1491 1492 return status; 1493 } 1494 1495 /* 1496 * Grow a b-tree so that it has more records. 1497 * 1498 * We might shift the tree depth in which case existing paths should 1499 * be considered invalid. 1500 * 1501 * Tree depth after the grow is returned via *final_depth. 1502 * 1503 * *last_eb_bh will be updated by ocfs2_add_branch(). 1504 */ 1505 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et, 1506 int *final_depth, struct buffer_head **last_eb_bh, 1507 struct ocfs2_alloc_context *meta_ac) 1508 { 1509 int ret, shift; 1510 struct ocfs2_extent_list *el = et->et_root_el; 1511 int depth = le16_to_cpu(el->l_tree_depth); 1512 struct buffer_head *bh = NULL; 1513 1514 BUG_ON(meta_ac == NULL); 1515 1516 shift = ocfs2_find_branch_target(et, &bh); 1517 if (shift < 0) { 1518 ret = shift; 1519 mlog_errno(ret); 1520 goto out; 1521 } 1522 1523 /* We traveled all the way to the bottom of the allocation tree 1524 * and didn't find room for any more extents - we need to add 1525 * another tree level */ 1526 if (shift) { 1527 BUG_ON(bh); 1528 trace_ocfs2_grow_tree( 1529 (unsigned long long) 1530 ocfs2_metadata_cache_owner(et->et_ci), 1531 depth); 1532 1533 /* ocfs2_shift_tree_depth will return us a buffer with 1534 * the new extent block (so we can pass that to 1535 * ocfs2_add_branch). */ 1536 ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh); 1537 if (ret < 0) { 1538 mlog_errno(ret); 1539 goto out; 1540 } 1541 depth++; 1542 if (depth == 1) { 1543 /* 1544 * Special case: we have room now if we shifted from 1545 * tree_depth 0, so no more work needs to be done. 1546 * 1547 * We won't be calling add_branch, so pass 1548 * back *last_eb_bh as the new leaf. At depth 1549 * zero, it should always be null so there's 1550 * no reason to brelse. 1551 */ 1552 BUG_ON(*last_eb_bh); 1553 get_bh(bh); 1554 *last_eb_bh = bh; 1555 goto out; 1556 } 1557 } 1558 1559 /* call ocfs2_add_branch to add the final part of the tree with 1560 * the new data. */ 1561 ret = ocfs2_add_branch(handle, et, bh, last_eb_bh, 1562 meta_ac); 1563 if (ret < 0) { 1564 mlog_errno(ret); 1565 goto out; 1566 } 1567 1568 out: 1569 if (final_depth) 1570 *final_depth = depth; 1571 brelse(bh); 1572 return ret; 1573 } 1574 1575 /* 1576 * This function will discard the rightmost extent record. 1577 */ 1578 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el) 1579 { 1580 int next_free = le16_to_cpu(el->l_next_free_rec); 1581 int count = le16_to_cpu(el->l_count); 1582 unsigned int num_bytes; 1583 1584 BUG_ON(!next_free); 1585 /* This will cause us to go off the end of our extent list. */ 1586 BUG_ON(next_free >= count); 1587 1588 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free; 1589 1590 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes); 1591 } 1592 1593 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el, 1594 struct ocfs2_extent_rec *insert_rec) 1595 { 1596 int i, insert_index, next_free, has_empty, num_bytes; 1597 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos); 1598 struct ocfs2_extent_rec *rec; 1599 1600 next_free = le16_to_cpu(el->l_next_free_rec); 1601 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]); 1602 1603 BUG_ON(!next_free); 1604 1605 /* The tree code before us didn't allow enough room in the leaf. */ 1606 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty); 1607 1608 /* 1609 * The easiest way to approach this is to just remove the 1610 * empty extent and temporarily decrement next_free. 1611 */ 1612 if (has_empty) { 1613 /* 1614 * If next_free was 1 (only an empty extent), this 1615 * loop won't execute, which is fine. We still want 1616 * the decrement above to happen. 1617 */ 1618 for(i = 0; i < (next_free - 1); i++) 1619 el->l_recs[i] = el->l_recs[i+1]; 1620 1621 next_free--; 1622 } 1623 1624 /* 1625 * Figure out what the new record index should be. 1626 */ 1627 for(i = 0; i < next_free; i++) { 1628 rec = &el->l_recs[i]; 1629 1630 if (insert_cpos < le32_to_cpu(rec->e_cpos)) 1631 break; 1632 } 1633 insert_index = i; 1634 1635 trace_ocfs2_rotate_leaf(insert_cpos, insert_index, 1636 has_empty, next_free, 1637 le16_to_cpu(el->l_count)); 1638 1639 BUG_ON(insert_index < 0); 1640 BUG_ON(insert_index >= le16_to_cpu(el->l_count)); 1641 BUG_ON(insert_index > next_free); 1642 1643 /* 1644 * No need to memmove if we're just adding to the tail. 1645 */ 1646 if (insert_index != next_free) { 1647 BUG_ON(next_free >= le16_to_cpu(el->l_count)); 1648 1649 num_bytes = next_free - insert_index; 1650 num_bytes *= sizeof(struct ocfs2_extent_rec); 1651 memmove(&el->l_recs[insert_index + 1], 1652 &el->l_recs[insert_index], 1653 num_bytes); 1654 } 1655 1656 /* 1657 * Either we had an empty extent, and need to re-increment or 1658 * there was no empty extent on a non full rightmost leaf node, 1659 * in which case we still need to increment. 1660 */ 1661 next_free++; 1662 el->l_next_free_rec = cpu_to_le16(next_free); 1663 /* 1664 * Make sure none of the math above just messed up our tree. 1665 */ 1666 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count)); 1667 1668 el->l_recs[insert_index] = *insert_rec; 1669 1670 } 1671 1672 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el) 1673 { 1674 int size, num_recs = le16_to_cpu(el->l_next_free_rec); 1675 1676 BUG_ON(num_recs == 0); 1677 1678 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 1679 num_recs--; 1680 size = num_recs * sizeof(struct ocfs2_extent_rec); 1681 memmove(&el->l_recs[0], &el->l_recs[1], size); 1682 memset(&el->l_recs[num_recs], 0, 1683 sizeof(struct ocfs2_extent_rec)); 1684 el->l_next_free_rec = cpu_to_le16(num_recs); 1685 } 1686 } 1687 1688 /* 1689 * Create an empty extent record . 1690 * 1691 * l_next_free_rec may be updated. 1692 * 1693 * If an empty extent already exists do nothing. 1694 */ 1695 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el) 1696 { 1697 int next_free = le16_to_cpu(el->l_next_free_rec); 1698 1699 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 1700 1701 if (next_free == 0) 1702 goto set_and_inc; 1703 1704 if (ocfs2_is_empty_extent(&el->l_recs[0])) 1705 return; 1706 1707 mlog_bug_on_msg(el->l_count == el->l_next_free_rec, 1708 "Asked to create an empty extent in a full list:\n" 1709 "count = %u, tree depth = %u", 1710 le16_to_cpu(el->l_count), 1711 le16_to_cpu(el->l_tree_depth)); 1712 1713 ocfs2_shift_records_right(el); 1714 1715 set_and_inc: 1716 le16_add_cpu(&el->l_next_free_rec, 1); 1717 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 1718 } 1719 1720 /* 1721 * For a rotation which involves two leaf nodes, the "root node" is 1722 * the lowest level tree node which contains a path to both leafs. This 1723 * resulting set of information can be used to form a complete "subtree" 1724 * 1725 * This function is passed two full paths from the dinode down to a 1726 * pair of adjacent leaves. It's task is to figure out which path 1727 * index contains the subtree root - this can be the root index itself 1728 * in a worst-case rotation. 1729 * 1730 * The array index of the subtree root is passed back. 1731 */ 1732 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et, 1733 struct ocfs2_path *left, 1734 struct ocfs2_path *right) 1735 { 1736 int i = 0; 1737 1738 /* 1739 * Check that the caller passed in two paths from the same tree. 1740 */ 1741 BUG_ON(path_root_bh(left) != path_root_bh(right)); 1742 1743 do { 1744 i++; 1745 1746 /* 1747 * The caller didn't pass two adjacent paths. 1748 */ 1749 mlog_bug_on_msg(i > left->p_tree_depth, 1750 "Owner %llu, left depth %u, right depth %u\n" 1751 "left leaf blk %llu, right leaf blk %llu\n", 1752 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 1753 left->p_tree_depth, right->p_tree_depth, 1754 (unsigned long long)path_leaf_bh(left)->b_blocknr, 1755 (unsigned long long)path_leaf_bh(right)->b_blocknr); 1756 } while (left->p_node[i].bh->b_blocknr == 1757 right->p_node[i].bh->b_blocknr); 1758 1759 return i - 1; 1760 } 1761 1762 typedef void (path_insert_t)(void *, struct buffer_head *); 1763 1764 /* 1765 * Traverse a btree path in search of cpos, starting at root_el. 1766 * 1767 * This code can be called with a cpos larger than the tree, in which 1768 * case it will return the rightmost path. 1769 */ 1770 static int __ocfs2_find_path(struct ocfs2_caching_info *ci, 1771 struct ocfs2_extent_list *root_el, u32 cpos, 1772 path_insert_t *func, void *data) 1773 { 1774 int i, ret = 0; 1775 u32 range; 1776 u64 blkno; 1777 struct buffer_head *bh = NULL; 1778 struct ocfs2_extent_block *eb; 1779 struct ocfs2_extent_list *el; 1780 struct ocfs2_extent_rec *rec; 1781 1782 el = root_el; 1783 while (el->l_tree_depth) { 1784 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1785 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1786 "Owner %llu has empty extent list at depth %u\n", 1787 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1788 le16_to_cpu(el->l_tree_depth)); 1789 ret = -EROFS; 1790 goto out; 1791 1792 } 1793 1794 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) { 1795 rec = &el->l_recs[i]; 1796 1797 /* 1798 * In the case that cpos is off the allocation 1799 * tree, this should just wind up returning the 1800 * rightmost record. 1801 */ 1802 range = le32_to_cpu(rec->e_cpos) + 1803 ocfs2_rec_clusters(el, rec); 1804 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 1805 break; 1806 } 1807 1808 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1809 if (blkno == 0) { 1810 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1811 "Owner %llu has bad blkno in extent list at depth %u (index %d)\n", 1812 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1813 le16_to_cpu(el->l_tree_depth), i); 1814 ret = -EROFS; 1815 goto out; 1816 } 1817 1818 brelse(bh); 1819 bh = NULL; 1820 ret = ocfs2_read_extent_block(ci, blkno, &bh); 1821 if (ret) { 1822 mlog_errno(ret); 1823 goto out; 1824 } 1825 1826 eb = (struct ocfs2_extent_block *) bh->b_data; 1827 el = &eb->h_list; 1828 1829 if (le16_to_cpu(el->l_next_free_rec) > 1830 le16_to_cpu(el->l_count)) { 1831 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1832 "Owner %llu has bad count in extent list at block %llu (next free=%u, count=%u)\n", 1833 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1834 (unsigned long long)bh->b_blocknr, 1835 le16_to_cpu(el->l_next_free_rec), 1836 le16_to_cpu(el->l_count)); 1837 ret = -EROFS; 1838 goto out; 1839 } 1840 1841 if (func) 1842 func(data, bh); 1843 } 1844 1845 out: 1846 /* 1847 * Catch any trailing bh that the loop didn't handle. 1848 */ 1849 brelse(bh); 1850 1851 return ret; 1852 } 1853 1854 /* 1855 * Given an initialized path (that is, it has a valid root extent 1856 * list), this function will traverse the btree in search of the path 1857 * which would contain cpos. 1858 * 1859 * The path traveled is recorded in the path structure. 1860 * 1861 * Note that this will not do any comparisons on leaf node extent 1862 * records, so it will work fine in the case that we just added a tree 1863 * branch. 1864 */ 1865 struct find_path_data { 1866 int index; 1867 struct ocfs2_path *path; 1868 }; 1869 static void find_path_ins(void *data, struct buffer_head *bh) 1870 { 1871 struct find_path_data *fp = data; 1872 1873 get_bh(bh); 1874 ocfs2_path_insert_eb(fp->path, fp->index, bh); 1875 fp->index++; 1876 } 1877 int ocfs2_find_path(struct ocfs2_caching_info *ci, 1878 struct ocfs2_path *path, u32 cpos) 1879 { 1880 struct find_path_data data; 1881 1882 data.index = 1; 1883 data.path = path; 1884 return __ocfs2_find_path(ci, path_root_el(path), cpos, 1885 find_path_ins, &data); 1886 } 1887 1888 static void find_leaf_ins(void *data, struct buffer_head *bh) 1889 { 1890 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data; 1891 struct ocfs2_extent_list *el = &eb->h_list; 1892 struct buffer_head **ret = data; 1893 1894 /* We want to retain only the leaf block. */ 1895 if (le16_to_cpu(el->l_tree_depth) == 0) { 1896 get_bh(bh); 1897 *ret = bh; 1898 } 1899 } 1900 /* 1901 * Find the leaf block in the tree which would contain cpos. No 1902 * checking of the actual leaf is done. 1903 * 1904 * Some paths want to call this instead of allocating a path structure 1905 * and calling ocfs2_find_path(). 1906 * 1907 * This function doesn't handle non btree extent lists. 1908 */ 1909 int ocfs2_find_leaf(struct ocfs2_caching_info *ci, 1910 struct ocfs2_extent_list *root_el, u32 cpos, 1911 struct buffer_head **leaf_bh) 1912 { 1913 int ret; 1914 struct buffer_head *bh = NULL; 1915 1916 ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh); 1917 if (ret) { 1918 mlog_errno(ret); 1919 goto out; 1920 } 1921 1922 *leaf_bh = bh; 1923 out: 1924 return ret; 1925 } 1926 1927 /* 1928 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation. 1929 * 1930 * Basically, we've moved stuff around at the bottom of the tree and 1931 * we need to fix up the extent records above the changes to reflect 1932 * the new changes. 1933 * 1934 * left_rec: the record on the left. 1935 * left_child_el: is the child list pointed to by left_rec 1936 * right_rec: the record to the right of left_rec 1937 * right_child_el: is the child list pointed to by right_rec 1938 * 1939 * By definition, this only works on interior nodes. 1940 */ 1941 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec, 1942 struct ocfs2_extent_list *left_child_el, 1943 struct ocfs2_extent_rec *right_rec, 1944 struct ocfs2_extent_list *right_child_el) 1945 { 1946 u32 left_clusters, right_end; 1947 1948 /* 1949 * Interior nodes never have holes. Their cpos is the cpos of 1950 * the leftmost record in their child list. Their cluster 1951 * count covers the full theoretical range of their child list 1952 * - the range between their cpos and the cpos of the record 1953 * immediately to their right. 1954 */ 1955 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos); 1956 if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) { 1957 BUG_ON(right_child_el->l_tree_depth); 1958 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1); 1959 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos); 1960 } 1961 left_clusters -= le32_to_cpu(left_rec->e_cpos); 1962 left_rec->e_int_clusters = cpu_to_le32(left_clusters); 1963 1964 /* 1965 * Calculate the rightmost cluster count boundary before 1966 * moving cpos - we will need to adjust clusters after 1967 * updating e_cpos to keep the same highest cluster count. 1968 */ 1969 right_end = le32_to_cpu(right_rec->e_cpos); 1970 right_end += le32_to_cpu(right_rec->e_int_clusters); 1971 1972 right_rec->e_cpos = left_rec->e_cpos; 1973 le32_add_cpu(&right_rec->e_cpos, left_clusters); 1974 1975 right_end -= le32_to_cpu(right_rec->e_cpos); 1976 right_rec->e_int_clusters = cpu_to_le32(right_end); 1977 } 1978 1979 /* 1980 * Adjust the adjacent root node records involved in a 1981 * rotation. left_el_blkno is passed in as a key so that we can easily 1982 * find it's index in the root list. 1983 */ 1984 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el, 1985 struct ocfs2_extent_list *left_el, 1986 struct ocfs2_extent_list *right_el, 1987 u64 left_el_blkno) 1988 { 1989 int i; 1990 1991 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <= 1992 le16_to_cpu(left_el->l_tree_depth)); 1993 1994 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) { 1995 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno) 1996 break; 1997 } 1998 1999 /* 2000 * The path walking code should have never returned a root and 2001 * two paths which are not adjacent. 2002 */ 2003 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1)); 2004 2005 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el, 2006 &root_el->l_recs[i + 1], right_el); 2007 } 2008 2009 /* 2010 * We've changed a leaf block (in right_path) and need to reflect that 2011 * change back up the subtree. 2012 * 2013 * This happens in multiple places: 2014 * - When we've moved an extent record from the left path leaf to the right 2015 * path leaf to make room for an empty extent in the left path leaf. 2016 * - When our insert into the right path leaf is at the leftmost edge 2017 * and requires an update of the path immediately to it's left. This 2018 * can occur at the end of some types of rotation and appending inserts. 2019 * - When we've adjusted the last extent record in the left path leaf and the 2020 * 1st extent record in the right path leaf during cross extent block merge. 2021 */ 2022 static void ocfs2_complete_edge_insert(handle_t *handle, 2023 struct ocfs2_path *left_path, 2024 struct ocfs2_path *right_path, 2025 int subtree_index) 2026 { 2027 int i, idx; 2028 struct ocfs2_extent_list *el, *left_el, *right_el; 2029 struct ocfs2_extent_rec *left_rec, *right_rec; 2030 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2031 2032 /* 2033 * Update the counts and position values within all the 2034 * interior nodes to reflect the leaf rotation we just did. 2035 * 2036 * The root node is handled below the loop. 2037 * 2038 * We begin the loop with right_el and left_el pointing to the 2039 * leaf lists and work our way up. 2040 * 2041 * NOTE: within this loop, left_el and right_el always refer 2042 * to the *child* lists. 2043 */ 2044 left_el = path_leaf_el(left_path); 2045 right_el = path_leaf_el(right_path); 2046 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) { 2047 trace_ocfs2_complete_edge_insert(i); 2048 2049 /* 2050 * One nice property of knowing that all of these 2051 * nodes are below the root is that we only deal with 2052 * the leftmost right node record and the rightmost 2053 * left node record. 2054 */ 2055 el = left_path->p_node[i].el; 2056 idx = le16_to_cpu(left_el->l_next_free_rec) - 1; 2057 left_rec = &el->l_recs[idx]; 2058 2059 el = right_path->p_node[i].el; 2060 right_rec = &el->l_recs[0]; 2061 2062 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec, 2063 right_el); 2064 2065 ocfs2_journal_dirty(handle, left_path->p_node[i].bh); 2066 ocfs2_journal_dirty(handle, right_path->p_node[i].bh); 2067 2068 /* 2069 * Setup our list pointers now so that the current 2070 * parents become children in the next iteration. 2071 */ 2072 left_el = left_path->p_node[i].el; 2073 right_el = right_path->p_node[i].el; 2074 } 2075 2076 /* 2077 * At the root node, adjust the two adjacent records which 2078 * begin our path to the leaves. 2079 */ 2080 2081 el = left_path->p_node[subtree_index].el; 2082 left_el = left_path->p_node[subtree_index + 1].el; 2083 right_el = right_path->p_node[subtree_index + 1].el; 2084 2085 ocfs2_adjust_root_records(el, left_el, right_el, 2086 left_path->p_node[subtree_index + 1].bh->b_blocknr); 2087 2088 root_bh = left_path->p_node[subtree_index].bh; 2089 2090 ocfs2_journal_dirty(handle, root_bh); 2091 } 2092 2093 static int ocfs2_rotate_subtree_right(handle_t *handle, 2094 struct ocfs2_extent_tree *et, 2095 struct ocfs2_path *left_path, 2096 struct ocfs2_path *right_path, 2097 int subtree_index) 2098 { 2099 int ret, i; 2100 struct buffer_head *right_leaf_bh; 2101 struct buffer_head *left_leaf_bh = NULL; 2102 struct buffer_head *root_bh; 2103 struct ocfs2_extent_list *right_el, *left_el; 2104 struct ocfs2_extent_rec move_rec; 2105 2106 left_leaf_bh = path_leaf_bh(left_path); 2107 left_el = path_leaf_el(left_path); 2108 2109 if (left_el->l_next_free_rec != left_el->l_count) { 2110 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 2111 "Inode %llu has non-full interior leaf node %llu (next free = %u)\n", 2112 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2113 (unsigned long long)left_leaf_bh->b_blocknr, 2114 le16_to_cpu(left_el->l_next_free_rec)); 2115 return -EROFS; 2116 } 2117 2118 /* 2119 * This extent block may already have an empty record, so we 2120 * return early if so. 2121 */ 2122 if (ocfs2_is_empty_extent(&left_el->l_recs[0])) 2123 return 0; 2124 2125 root_bh = left_path->p_node[subtree_index].bh; 2126 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2127 2128 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 2129 subtree_index); 2130 if (ret) { 2131 mlog_errno(ret); 2132 goto out; 2133 } 2134 2135 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2136 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2137 right_path, i); 2138 if (ret) { 2139 mlog_errno(ret); 2140 goto out; 2141 } 2142 2143 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2144 left_path, i); 2145 if (ret) { 2146 mlog_errno(ret); 2147 goto out; 2148 } 2149 } 2150 2151 right_leaf_bh = path_leaf_bh(right_path); 2152 right_el = path_leaf_el(right_path); 2153 2154 /* This is a code error, not a disk corruption. */ 2155 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails " 2156 "because rightmost leaf block %llu is empty\n", 2157 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2158 (unsigned long long)right_leaf_bh->b_blocknr); 2159 2160 ocfs2_create_empty_extent(right_el); 2161 2162 ocfs2_journal_dirty(handle, right_leaf_bh); 2163 2164 /* Do the copy now. */ 2165 i = le16_to_cpu(left_el->l_next_free_rec) - 1; 2166 move_rec = left_el->l_recs[i]; 2167 right_el->l_recs[0] = move_rec; 2168 2169 /* 2170 * Clear out the record we just copied and shift everything 2171 * over, leaving an empty extent in the left leaf. 2172 * 2173 * We temporarily subtract from next_free_rec so that the 2174 * shift will lose the tail record (which is now defunct). 2175 */ 2176 le16_add_cpu(&left_el->l_next_free_rec, -1); 2177 ocfs2_shift_records_right(left_el); 2178 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2179 le16_add_cpu(&left_el->l_next_free_rec, 1); 2180 2181 ocfs2_journal_dirty(handle, left_leaf_bh); 2182 2183 ocfs2_complete_edge_insert(handle, left_path, right_path, 2184 subtree_index); 2185 2186 out: 2187 return ret; 2188 } 2189 2190 /* 2191 * Given a full path, determine what cpos value would return us a path 2192 * containing the leaf immediately to the left of the current one. 2193 * 2194 * Will return zero if the path passed in is already the leftmost path. 2195 */ 2196 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb, 2197 struct ocfs2_path *path, u32 *cpos) 2198 { 2199 int i, j, ret = 0; 2200 u64 blkno; 2201 struct ocfs2_extent_list *el; 2202 2203 BUG_ON(path->p_tree_depth == 0); 2204 2205 *cpos = 0; 2206 2207 blkno = path_leaf_bh(path)->b_blocknr; 2208 2209 /* Start at the tree node just above the leaf and work our way up. */ 2210 i = path->p_tree_depth - 1; 2211 while (i >= 0) { 2212 el = path->p_node[i].el; 2213 2214 /* 2215 * Find the extent record just before the one in our 2216 * path. 2217 */ 2218 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2219 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2220 if (j == 0) { 2221 if (i == 0) { 2222 /* 2223 * We've determined that the 2224 * path specified is already 2225 * the leftmost one - return a 2226 * cpos of zero. 2227 */ 2228 goto out; 2229 } 2230 /* 2231 * The leftmost record points to our 2232 * leaf - we need to travel up the 2233 * tree one level. 2234 */ 2235 goto next_node; 2236 } 2237 2238 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos); 2239 *cpos = *cpos + ocfs2_rec_clusters(el, 2240 &el->l_recs[j - 1]); 2241 *cpos = *cpos - 1; 2242 goto out; 2243 } 2244 } 2245 2246 /* 2247 * If we got here, we never found a valid node where 2248 * the tree indicated one should be. 2249 */ 2250 ocfs2_error(sb, "Invalid extent tree at extent block %llu\n", 2251 (unsigned long long)blkno); 2252 ret = -EROFS; 2253 goto out; 2254 2255 next_node: 2256 blkno = path->p_node[i].bh->b_blocknr; 2257 i--; 2258 } 2259 2260 out: 2261 return ret; 2262 } 2263 2264 /* 2265 * Extend the transaction by enough credits to complete the rotation, 2266 * and still leave at least the original number of credits allocated 2267 * to this transaction. 2268 */ 2269 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth, 2270 int op_credits, 2271 struct ocfs2_path *path) 2272 { 2273 int ret = 0; 2274 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits; 2275 2276 if (handle->h_buffer_credits < credits) 2277 ret = ocfs2_extend_trans(handle, 2278 credits - handle->h_buffer_credits); 2279 2280 return ret; 2281 } 2282 2283 /* 2284 * Trap the case where we're inserting into the theoretical range past 2285 * the _actual_ left leaf range. Otherwise, we'll rotate a record 2286 * whose cpos is less than ours into the right leaf. 2287 * 2288 * It's only necessary to look at the rightmost record of the left 2289 * leaf because the logic that calls us should ensure that the 2290 * theoretical ranges in the path components above the leaves are 2291 * correct. 2292 */ 2293 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path, 2294 u32 insert_cpos) 2295 { 2296 struct ocfs2_extent_list *left_el; 2297 struct ocfs2_extent_rec *rec; 2298 int next_free; 2299 2300 left_el = path_leaf_el(left_path); 2301 next_free = le16_to_cpu(left_el->l_next_free_rec); 2302 rec = &left_el->l_recs[next_free - 1]; 2303 2304 if (insert_cpos > le32_to_cpu(rec->e_cpos)) 2305 return 1; 2306 return 0; 2307 } 2308 2309 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos) 2310 { 2311 int next_free = le16_to_cpu(el->l_next_free_rec); 2312 unsigned int range; 2313 struct ocfs2_extent_rec *rec; 2314 2315 if (next_free == 0) 2316 return 0; 2317 2318 rec = &el->l_recs[0]; 2319 if (ocfs2_is_empty_extent(rec)) { 2320 /* Empty list. */ 2321 if (next_free == 1) 2322 return 0; 2323 rec = &el->l_recs[1]; 2324 } 2325 2326 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2327 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 2328 return 1; 2329 return 0; 2330 } 2331 2332 /* 2333 * Rotate all the records in a btree right one record, starting at insert_cpos. 2334 * 2335 * The path to the rightmost leaf should be passed in. 2336 * 2337 * The array is assumed to be large enough to hold an entire path (tree depth). 2338 * 2339 * Upon successful return from this function: 2340 * 2341 * - The 'right_path' array will contain a path to the leaf block 2342 * whose range contains e_cpos. 2343 * - That leaf block will have a single empty extent in list index 0. 2344 * - In the case that the rotation requires a post-insert update, 2345 * *ret_left_path will contain a valid path which can be passed to 2346 * ocfs2_insert_path(). 2347 */ 2348 static int ocfs2_rotate_tree_right(handle_t *handle, 2349 struct ocfs2_extent_tree *et, 2350 enum ocfs2_split_type split, 2351 u32 insert_cpos, 2352 struct ocfs2_path *right_path, 2353 struct ocfs2_path **ret_left_path) 2354 { 2355 int ret, start, orig_credits = handle->h_buffer_credits; 2356 u32 cpos; 2357 struct ocfs2_path *left_path = NULL; 2358 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 2359 2360 *ret_left_path = NULL; 2361 2362 left_path = ocfs2_new_path_from_path(right_path); 2363 if (!left_path) { 2364 ret = -ENOMEM; 2365 mlog_errno(ret); 2366 goto out; 2367 } 2368 2369 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); 2370 if (ret) { 2371 mlog_errno(ret); 2372 goto out; 2373 } 2374 2375 trace_ocfs2_rotate_tree_right( 2376 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2377 insert_cpos, cpos); 2378 2379 /* 2380 * What we want to do here is: 2381 * 2382 * 1) Start with the rightmost path. 2383 * 2384 * 2) Determine a path to the leaf block directly to the left 2385 * of that leaf. 2386 * 2387 * 3) Determine the 'subtree root' - the lowest level tree node 2388 * which contains a path to both leaves. 2389 * 2390 * 4) Rotate the subtree. 2391 * 2392 * 5) Find the next subtree by considering the left path to be 2393 * the new right path. 2394 * 2395 * The check at the top of this while loop also accepts 2396 * insert_cpos == cpos because cpos is only a _theoretical_ 2397 * value to get us the left path - insert_cpos might very well 2398 * be filling that hole. 2399 * 2400 * Stop at a cpos of '0' because we either started at the 2401 * leftmost branch (i.e., a tree with one branch and a 2402 * rotation inside of it), or we've gone as far as we can in 2403 * rotating subtrees. 2404 */ 2405 while (cpos && insert_cpos <= cpos) { 2406 trace_ocfs2_rotate_tree_right( 2407 (unsigned long long) 2408 ocfs2_metadata_cache_owner(et->et_ci), 2409 insert_cpos, cpos); 2410 2411 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 2412 if (ret) { 2413 mlog_errno(ret); 2414 goto out; 2415 } 2416 2417 mlog_bug_on_msg(path_leaf_bh(left_path) == 2418 path_leaf_bh(right_path), 2419 "Owner %llu: error during insert of %u " 2420 "(left path cpos %u) results in two identical " 2421 "paths ending at %llu\n", 2422 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2423 insert_cpos, cpos, 2424 (unsigned long long) 2425 path_leaf_bh(left_path)->b_blocknr); 2426 2427 if (split == SPLIT_NONE && 2428 ocfs2_rotate_requires_path_adjustment(left_path, 2429 insert_cpos)) { 2430 2431 /* 2432 * We've rotated the tree as much as we 2433 * should. The rest is up to 2434 * ocfs2_insert_path() to complete, after the 2435 * record insertion. We indicate this 2436 * situation by returning the left path. 2437 * 2438 * The reason we don't adjust the records here 2439 * before the record insert is that an error 2440 * later might break the rule where a parent 2441 * record e_cpos will reflect the actual 2442 * e_cpos of the 1st nonempty record of the 2443 * child list. 2444 */ 2445 *ret_left_path = left_path; 2446 goto out_ret_path; 2447 } 2448 2449 start = ocfs2_find_subtree_root(et, left_path, right_path); 2450 2451 trace_ocfs2_rotate_subtree(start, 2452 (unsigned long long) 2453 right_path->p_node[start].bh->b_blocknr, 2454 right_path->p_tree_depth); 2455 2456 ret = ocfs2_extend_rotate_transaction(handle, start, 2457 orig_credits, right_path); 2458 if (ret) { 2459 mlog_errno(ret); 2460 goto out; 2461 } 2462 2463 ret = ocfs2_rotate_subtree_right(handle, et, left_path, 2464 right_path, start); 2465 if (ret) { 2466 mlog_errno(ret); 2467 goto out; 2468 } 2469 2470 if (split != SPLIT_NONE && 2471 ocfs2_leftmost_rec_contains(path_leaf_el(right_path), 2472 insert_cpos)) { 2473 /* 2474 * A rotate moves the rightmost left leaf 2475 * record over to the leftmost right leaf 2476 * slot. If we're doing an extent split 2477 * instead of a real insert, then we have to 2478 * check that the extent to be split wasn't 2479 * just moved over. If it was, then we can 2480 * exit here, passing left_path back - 2481 * ocfs2_split_extent() is smart enough to 2482 * search both leaves. 2483 */ 2484 *ret_left_path = left_path; 2485 goto out_ret_path; 2486 } 2487 2488 /* 2489 * There is no need to re-read the next right path 2490 * as we know that it'll be our current left 2491 * path. Optimize by copying values instead. 2492 */ 2493 ocfs2_mv_path(right_path, left_path); 2494 2495 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); 2496 if (ret) { 2497 mlog_errno(ret); 2498 goto out; 2499 } 2500 } 2501 2502 out: 2503 ocfs2_free_path(left_path); 2504 2505 out_ret_path: 2506 return ret; 2507 } 2508 2509 static int ocfs2_update_edge_lengths(handle_t *handle, 2510 struct ocfs2_extent_tree *et, 2511 int subtree_index, struct ocfs2_path *path) 2512 { 2513 int i, idx, ret; 2514 struct ocfs2_extent_rec *rec; 2515 struct ocfs2_extent_list *el; 2516 struct ocfs2_extent_block *eb; 2517 u32 range; 2518 2519 /* 2520 * In normal tree rotation process, we will never touch the 2521 * tree branch above subtree_index and ocfs2_extend_rotate_transaction 2522 * doesn't reserve the credits for them either. 2523 * 2524 * But we do have a special case here which will update the rightmost 2525 * records for all the bh in the path. 2526 * So we have to allocate extra credits and access them. 2527 */ 2528 ret = ocfs2_extend_trans(handle, subtree_index); 2529 if (ret) { 2530 mlog_errno(ret); 2531 goto out; 2532 } 2533 2534 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 2535 if (ret) { 2536 mlog_errno(ret); 2537 goto out; 2538 } 2539 2540 /* Path should always be rightmost. */ 2541 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 2542 BUG_ON(eb->h_next_leaf_blk != 0ULL); 2543 2544 el = &eb->h_list; 2545 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 2546 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2547 rec = &el->l_recs[idx]; 2548 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2549 2550 for (i = 0; i < path->p_tree_depth; i++) { 2551 el = path->p_node[i].el; 2552 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2553 rec = &el->l_recs[idx]; 2554 2555 rec->e_int_clusters = cpu_to_le32(range); 2556 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos)); 2557 2558 ocfs2_journal_dirty(handle, path->p_node[i].bh); 2559 } 2560 out: 2561 return ret; 2562 } 2563 2564 static void ocfs2_unlink_path(handle_t *handle, 2565 struct ocfs2_extent_tree *et, 2566 struct ocfs2_cached_dealloc_ctxt *dealloc, 2567 struct ocfs2_path *path, int unlink_start) 2568 { 2569 int ret, i; 2570 struct ocfs2_extent_block *eb; 2571 struct ocfs2_extent_list *el; 2572 struct buffer_head *bh; 2573 2574 for(i = unlink_start; i < path_num_items(path); i++) { 2575 bh = path->p_node[i].bh; 2576 2577 eb = (struct ocfs2_extent_block *)bh->b_data; 2578 /* 2579 * Not all nodes might have had their final count 2580 * decremented by the caller - handle this here. 2581 */ 2582 el = &eb->h_list; 2583 if (le16_to_cpu(el->l_next_free_rec) > 1) { 2584 mlog(ML_ERROR, 2585 "Inode %llu, attempted to remove extent block " 2586 "%llu with %u records\n", 2587 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2588 (unsigned long long)le64_to_cpu(eb->h_blkno), 2589 le16_to_cpu(el->l_next_free_rec)); 2590 2591 ocfs2_journal_dirty(handle, bh); 2592 ocfs2_remove_from_cache(et->et_ci, bh); 2593 continue; 2594 } 2595 2596 el->l_next_free_rec = 0; 2597 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2598 2599 ocfs2_journal_dirty(handle, bh); 2600 2601 ret = ocfs2_cache_extent_block_free(dealloc, eb); 2602 if (ret) 2603 mlog_errno(ret); 2604 2605 ocfs2_remove_from_cache(et->et_ci, bh); 2606 } 2607 } 2608 2609 static void ocfs2_unlink_subtree(handle_t *handle, 2610 struct ocfs2_extent_tree *et, 2611 struct ocfs2_path *left_path, 2612 struct ocfs2_path *right_path, 2613 int subtree_index, 2614 struct ocfs2_cached_dealloc_ctxt *dealloc) 2615 { 2616 int i; 2617 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2618 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el; 2619 struct ocfs2_extent_list *el; 2620 struct ocfs2_extent_block *eb; 2621 2622 el = path_leaf_el(left_path); 2623 2624 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data; 2625 2626 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 2627 if (root_el->l_recs[i].e_blkno == eb->h_blkno) 2628 break; 2629 2630 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec)); 2631 2632 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 2633 le16_add_cpu(&root_el->l_next_free_rec, -1); 2634 2635 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2636 eb->h_next_leaf_blk = 0; 2637 2638 ocfs2_journal_dirty(handle, root_bh); 2639 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2640 2641 ocfs2_unlink_path(handle, et, dealloc, right_path, 2642 subtree_index + 1); 2643 } 2644 2645 static int ocfs2_rotate_subtree_left(handle_t *handle, 2646 struct ocfs2_extent_tree *et, 2647 struct ocfs2_path *left_path, 2648 struct ocfs2_path *right_path, 2649 int subtree_index, 2650 struct ocfs2_cached_dealloc_ctxt *dealloc, 2651 int *deleted) 2652 { 2653 int ret, i, del_right_subtree = 0, right_has_empty = 0; 2654 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path); 2655 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el; 2656 struct ocfs2_extent_block *eb; 2657 2658 *deleted = 0; 2659 2660 right_leaf_el = path_leaf_el(right_path); 2661 left_leaf_el = path_leaf_el(left_path); 2662 root_bh = left_path->p_node[subtree_index].bh; 2663 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2664 2665 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0])) 2666 return 0; 2667 2668 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data; 2669 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) { 2670 /* 2671 * It's legal for us to proceed if the right leaf is 2672 * the rightmost one and it has an empty extent. There 2673 * are two cases to handle - whether the leaf will be 2674 * empty after removal or not. If the leaf isn't empty 2675 * then just remove the empty extent up front. The 2676 * next block will handle empty leaves by flagging 2677 * them for unlink. 2678 * 2679 * Non rightmost leaves will throw -EAGAIN and the 2680 * caller can manually move the subtree and retry. 2681 */ 2682 2683 if (eb->h_next_leaf_blk != 0ULL) 2684 return -EAGAIN; 2685 2686 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) { 2687 ret = ocfs2_journal_access_eb(handle, et->et_ci, 2688 path_leaf_bh(right_path), 2689 OCFS2_JOURNAL_ACCESS_WRITE); 2690 if (ret) { 2691 mlog_errno(ret); 2692 goto out; 2693 } 2694 2695 ocfs2_remove_empty_extent(right_leaf_el); 2696 } else 2697 right_has_empty = 1; 2698 } 2699 2700 if (eb->h_next_leaf_blk == 0ULL && 2701 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) { 2702 /* 2703 * We have to update i_last_eb_blk during the meta 2704 * data delete. 2705 */ 2706 ret = ocfs2_et_root_journal_access(handle, et, 2707 OCFS2_JOURNAL_ACCESS_WRITE); 2708 if (ret) { 2709 mlog_errno(ret); 2710 goto out; 2711 } 2712 2713 del_right_subtree = 1; 2714 } 2715 2716 /* 2717 * Getting here with an empty extent in the right path implies 2718 * that it's the rightmost path and will be deleted. 2719 */ 2720 BUG_ON(right_has_empty && !del_right_subtree); 2721 2722 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 2723 subtree_index); 2724 if (ret) { 2725 mlog_errno(ret); 2726 goto out; 2727 } 2728 2729 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2730 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2731 right_path, i); 2732 if (ret) { 2733 mlog_errno(ret); 2734 goto out; 2735 } 2736 2737 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2738 left_path, i); 2739 if (ret) { 2740 mlog_errno(ret); 2741 goto out; 2742 } 2743 } 2744 2745 if (!right_has_empty) { 2746 /* 2747 * Only do this if we're moving a real 2748 * record. Otherwise, the action is delayed until 2749 * after removal of the right path in which case we 2750 * can do a simple shift to remove the empty extent. 2751 */ 2752 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]); 2753 memset(&right_leaf_el->l_recs[0], 0, 2754 sizeof(struct ocfs2_extent_rec)); 2755 } 2756 if (eb->h_next_leaf_blk == 0ULL) { 2757 /* 2758 * Move recs over to get rid of empty extent, decrease 2759 * next_free. This is allowed to remove the last 2760 * extent in our leaf (setting l_next_free_rec to 2761 * zero) - the delete code below won't care. 2762 */ 2763 ocfs2_remove_empty_extent(right_leaf_el); 2764 } 2765 2766 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2767 ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 2768 2769 if (del_right_subtree) { 2770 ocfs2_unlink_subtree(handle, et, left_path, right_path, 2771 subtree_index, dealloc); 2772 ret = ocfs2_update_edge_lengths(handle, et, subtree_index, 2773 left_path); 2774 if (ret) { 2775 mlog_errno(ret); 2776 goto out; 2777 } 2778 2779 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2780 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 2781 2782 /* 2783 * Removal of the extent in the left leaf was skipped 2784 * above so we could delete the right path 2785 * 1st. 2786 */ 2787 if (right_has_empty) 2788 ocfs2_remove_empty_extent(left_leaf_el); 2789 2790 ocfs2_journal_dirty(handle, et_root_bh); 2791 2792 *deleted = 1; 2793 } else 2794 ocfs2_complete_edge_insert(handle, left_path, right_path, 2795 subtree_index); 2796 2797 out: 2798 return ret; 2799 } 2800 2801 /* 2802 * Given a full path, determine what cpos value would return us a path 2803 * containing the leaf immediately to the right of the current one. 2804 * 2805 * Will return zero if the path passed in is already the rightmost path. 2806 * 2807 * This looks similar, but is subtly different to 2808 * ocfs2_find_cpos_for_left_leaf(). 2809 */ 2810 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb, 2811 struct ocfs2_path *path, u32 *cpos) 2812 { 2813 int i, j, ret = 0; 2814 u64 blkno; 2815 struct ocfs2_extent_list *el; 2816 2817 *cpos = 0; 2818 2819 if (path->p_tree_depth == 0) 2820 return 0; 2821 2822 blkno = path_leaf_bh(path)->b_blocknr; 2823 2824 /* Start at the tree node just above the leaf and work our way up. */ 2825 i = path->p_tree_depth - 1; 2826 while (i >= 0) { 2827 int next_free; 2828 2829 el = path->p_node[i].el; 2830 2831 /* 2832 * Find the extent record just after the one in our 2833 * path. 2834 */ 2835 next_free = le16_to_cpu(el->l_next_free_rec); 2836 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2837 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2838 if (j == (next_free - 1)) { 2839 if (i == 0) { 2840 /* 2841 * We've determined that the 2842 * path specified is already 2843 * the rightmost one - return a 2844 * cpos of zero. 2845 */ 2846 goto out; 2847 } 2848 /* 2849 * The rightmost record points to our 2850 * leaf - we need to travel up the 2851 * tree one level. 2852 */ 2853 goto next_node; 2854 } 2855 2856 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos); 2857 goto out; 2858 } 2859 } 2860 2861 /* 2862 * If we got here, we never found a valid node where 2863 * the tree indicated one should be. 2864 */ 2865 ocfs2_error(sb, "Invalid extent tree at extent block %llu\n", 2866 (unsigned long long)blkno); 2867 ret = -EROFS; 2868 goto out; 2869 2870 next_node: 2871 blkno = path->p_node[i].bh->b_blocknr; 2872 i--; 2873 } 2874 2875 out: 2876 return ret; 2877 } 2878 2879 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle, 2880 struct ocfs2_extent_tree *et, 2881 struct ocfs2_path *path) 2882 { 2883 int ret; 2884 struct buffer_head *bh = path_leaf_bh(path); 2885 struct ocfs2_extent_list *el = path_leaf_el(path); 2886 2887 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 2888 return 0; 2889 2890 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path, 2891 path_num_items(path) - 1); 2892 if (ret) { 2893 mlog_errno(ret); 2894 goto out; 2895 } 2896 2897 ocfs2_remove_empty_extent(el); 2898 ocfs2_journal_dirty(handle, bh); 2899 2900 out: 2901 return ret; 2902 } 2903 2904 static int __ocfs2_rotate_tree_left(handle_t *handle, 2905 struct ocfs2_extent_tree *et, 2906 int orig_credits, 2907 struct ocfs2_path *path, 2908 struct ocfs2_cached_dealloc_ctxt *dealloc, 2909 struct ocfs2_path **empty_extent_path) 2910 { 2911 int ret, subtree_root, deleted; 2912 u32 right_cpos; 2913 struct ocfs2_path *left_path = NULL; 2914 struct ocfs2_path *right_path = NULL; 2915 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 2916 2917 if (!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0]))) 2918 return 0; 2919 2920 *empty_extent_path = NULL; 2921 2922 ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos); 2923 if (ret) { 2924 mlog_errno(ret); 2925 goto out; 2926 } 2927 2928 left_path = ocfs2_new_path_from_path(path); 2929 if (!left_path) { 2930 ret = -ENOMEM; 2931 mlog_errno(ret); 2932 goto out; 2933 } 2934 2935 ocfs2_cp_path(left_path, path); 2936 2937 right_path = ocfs2_new_path_from_path(path); 2938 if (!right_path) { 2939 ret = -ENOMEM; 2940 mlog_errno(ret); 2941 goto out; 2942 } 2943 2944 while (right_cpos) { 2945 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); 2946 if (ret) { 2947 mlog_errno(ret); 2948 goto out; 2949 } 2950 2951 subtree_root = ocfs2_find_subtree_root(et, left_path, 2952 right_path); 2953 2954 trace_ocfs2_rotate_subtree(subtree_root, 2955 (unsigned long long) 2956 right_path->p_node[subtree_root].bh->b_blocknr, 2957 right_path->p_tree_depth); 2958 2959 ret = ocfs2_extend_rotate_transaction(handle, subtree_root, 2960 orig_credits, left_path); 2961 if (ret) { 2962 mlog_errno(ret); 2963 goto out; 2964 } 2965 2966 /* 2967 * Caller might still want to make changes to the 2968 * tree root, so re-add it to the journal here. 2969 */ 2970 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2971 left_path, 0); 2972 if (ret) { 2973 mlog_errno(ret); 2974 goto out; 2975 } 2976 2977 ret = ocfs2_rotate_subtree_left(handle, et, left_path, 2978 right_path, subtree_root, 2979 dealloc, &deleted); 2980 if (ret == -EAGAIN) { 2981 /* 2982 * The rotation has to temporarily stop due to 2983 * the right subtree having an empty 2984 * extent. Pass it back to the caller for a 2985 * fixup. 2986 */ 2987 *empty_extent_path = right_path; 2988 right_path = NULL; 2989 goto out; 2990 } 2991 if (ret) { 2992 mlog_errno(ret); 2993 goto out; 2994 } 2995 2996 /* 2997 * The subtree rotate might have removed records on 2998 * the rightmost edge. If so, then rotation is 2999 * complete. 3000 */ 3001 if (deleted) 3002 break; 3003 3004 ocfs2_mv_path(left_path, right_path); 3005 3006 ret = ocfs2_find_cpos_for_right_leaf(sb, left_path, 3007 &right_cpos); 3008 if (ret) { 3009 mlog_errno(ret); 3010 goto out; 3011 } 3012 } 3013 3014 out: 3015 ocfs2_free_path(right_path); 3016 ocfs2_free_path(left_path); 3017 3018 return ret; 3019 } 3020 3021 static int ocfs2_remove_rightmost_path(handle_t *handle, 3022 struct ocfs2_extent_tree *et, 3023 struct ocfs2_path *path, 3024 struct ocfs2_cached_dealloc_ctxt *dealloc) 3025 { 3026 int ret, subtree_index; 3027 u32 cpos; 3028 struct ocfs2_path *left_path = NULL; 3029 struct ocfs2_extent_block *eb; 3030 struct ocfs2_extent_list *el; 3031 3032 3033 ret = ocfs2_et_sanity_check(et); 3034 if (ret) 3035 goto out; 3036 /* 3037 * There's two ways we handle this depending on 3038 * whether path is the only existing one. 3039 */ 3040 ret = ocfs2_extend_rotate_transaction(handle, 0, 3041 handle->h_buffer_credits, 3042 path); 3043 if (ret) { 3044 mlog_errno(ret); 3045 goto out; 3046 } 3047 3048 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 3049 if (ret) { 3050 mlog_errno(ret); 3051 goto out; 3052 } 3053 3054 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3055 path, &cpos); 3056 if (ret) { 3057 mlog_errno(ret); 3058 goto out; 3059 } 3060 3061 if (cpos) { 3062 /* 3063 * We have a path to the left of this one - it needs 3064 * an update too. 3065 */ 3066 left_path = ocfs2_new_path_from_path(path); 3067 if (!left_path) { 3068 ret = -ENOMEM; 3069 mlog_errno(ret); 3070 goto out; 3071 } 3072 3073 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 3074 if (ret) { 3075 mlog_errno(ret); 3076 goto out; 3077 } 3078 3079 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 3080 if (ret) { 3081 mlog_errno(ret); 3082 goto out; 3083 } 3084 3085 subtree_index = ocfs2_find_subtree_root(et, left_path, path); 3086 3087 ocfs2_unlink_subtree(handle, et, left_path, path, 3088 subtree_index, dealloc); 3089 ret = ocfs2_update_edge_lengths(handle, et, subtree_index, 3090 left_path); 3091 if (ret) { 3092 mlog_errno(ret); 3093 goto out; 3094 } 3095 3096 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 3097 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 3098 } else { 3099 /* 3100 * 'path' is also the leftmost path which 3101 * means it must be the only one. This gets 3102 * handled differently because we want to 3103 * revert the root back to having extents 3104 * in-line. 3105 */ 3106 ocfs2_unlink_path(handle, et, dealloc, path, 1); 3107 3108 el = et->et_root_el; 3109 el->l_tree_depth = 0; 3110 el->l_next_free_rec = 0; 3111 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3112 3113 ocfs2_et_set_last_eb_blk(et, 0); 3114 } 3115 3116 ocfs2_journal_dirty(handle, path_root_bh(path)); 3117 3118 out: 3119 ocfs2_free_path(left_path); 3120 return ret; 3121 } 3122 3123 static int ocfs2_remove_rightmost_empty_extent(struct ocfs2_super *osb, 3124 struct ocfs2_extent_tree *et, 3125 struct ocfs2_path *path, 3126 struct ocfs2_cached_dealloc_ctxt *dealloc) 3127 { 3128 handle_t *handle; 3129 int ret; 3130 int credits = path->p_tree_depth * 2 + 1; 3131 3132 handle = ocfs2_start_trans(osb, credits); 3133 if (IS_ERR(handle)) { 3134 ret = PTR_ERR(handle); 3135 mlog_errno(ret); 3136 return ret; 3137 } 3138 3139 ret = ocfs2_remove_rightmost_path(handle, et, path, dealloc); 3140 if (ret) 3141 mlog_errno(ret); 3142 3143 ocfs2_commit_trans(osb, handle); 3144 return ret; 3145 } 3146 3147 /* 3148 * Left rotation of btree records. 3149 * 3150 * In many ways, this is (unsurprisingly) the opposite of right 3151 * rotation. We start at some non-rightmost path containing an empty 3152 * extent in the leaf block. The code works its way to the rightmost 3153 * path by rotating records to the left in every subtree. 3154 * 3155 * This is used by any code which reduces the number of extent records 3156 * in a leaf. After removal, an empty record should be placed in the 3157 * leftmost list position. 3158 * 3159 * This won't handle a length update of the rightmost path records if 3160 * the rightmost tree leaf record is removed so the caller is 3161 * responsible for detecting and correcting that. 3162 */ 3163 static int ocfs2_rotate_tree_left(handle_t *handle, 3164 struct ocfs2_extent_tree *et, 3165 struct ocfs2_path *path, 3166 struct ocfs2_cached_dealloc_ctxt *dealloc) 3167 { 3168 int ret, orig_credits = handle->h_buffer_credits; 3169 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL; 3170 struct ocfs2_extent_block *eb; 3171 struct ocfs2_extent_list *el; 3172 3173 el = path_leaf_el(path); 3174 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 3175 return 0; 3176 3177 if (path->p_tree_depth == 0) { 3178 rightmost_no_delete: 3179 /* 3180 * Inline extents. This is trivially handled, so do 3181 * it up front. 3182 */ 3183 ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path); 3184 if (ret) 3185 mlog_errno(ret); 3186 goto out; 3187 } 3188 3189 /* 3190 * Handle rightmost branch now. There's several cases: 3191 * 1) simple rotation leaving records in there. That's trivial. 3192 * 2) rotation requiring a branch delete - there's no more 3193 * records left. Two cases of this: 3194 * a) There are branches to the left. 3195 * b) This is also the leftmost (the only) branch. 3196 * 3197 * 1) is handled via ocfs2_rotate_rightmost_leaf_left() 3198 * 2a) we need the left branch so that we can update it with the unlink 3199 * 2b) we need to bring the root back to inline extents. 3200 */ 3201 3202 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 3203 el = &eb->h_list; 3204 if (eb->h_next_leaf_blk == 0) { 3205 /* 3206 * This gets a bit tricky if we're going to delete the 3207 * rightmost path. Get the other cases out of the way 3208 * 1st. 3209 */ 3210 if (le16_to_cpu(el->l_next_free_rec) > 1) 3211 goto rightmost_no_delete; 3212 3213 if (le16_to_cpu(el->l_next_free_rec) == 0) { 3214 ret = -EIO; 3215 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 3216 "Owner %llu has empty extent block at %llu\n", 3217 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 3218 (unsigned long long)le64_to_cpu(eb->h_blkno)); 3219 goto out; 3220 } 3221 3222 /* 3223 * XXX: The caller can not trust "path" any more after 3224 * this as it will have been deleted. What do we do? 3225 * 3226 * In theory the rotate-for-merge code will never get 3227 * here because it'll always ask for a rotate in a 3228 * nonempty list. 3229 */ 3230 3231 ret = ocfs2_remove_rightmost_path(handle, et, path, 3232 dealloc); 3233 if (ret) 3234 mlog_errno(ret); 3235 goto out; 3236 } 3237 3238 /* 3239 * Now we can loop, remembering the path we get from -EAGAIN 3240 * and restarting from there. 3241 */ 3242 try_rotate: 3243 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path, 3244 dealloc, &restart_path); 3245 if (ret && ret != -EAGAIN) { 3246 mlog_errno(ret); 3247 goto out; 3248 } 3249 3250 while (ret == -EAGAIN) { 3251 tmp_path = restart_path; 3252 restart_path = NULL; 3253 3254 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, 3255 tmp_path, dealloc, 3256 &restart_path); 3257 if (ret && ret != -EAGAIN) { 3258 mlog_errno(ret); 3259 goto out; 3260 } 3261 3262 ocfs2_free_path(tmp_path); 3263 tmp_path = NULL; 3264 3265 if (ret == 0) 3266 goto try_rotate; 3267 } 3268 3269 out: 3270 ocfs2_free_path(tmp_path); 3271 ocfs2_free_path(restart_path); 3272 return ret; 3273 } 3274 3275 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el, 3276 int index) 3277 { 3278 struct ocfs2_extent_rec *rec = &el->l_recs[index]; 3279 unsigned int size; 3280 3281 if (rec->e_leaf_clusters == 0) { 3282 /* 3283 * We consumed all of the merged-from record. An empty 3284 * extent cannot exist anywhere but the 1st array 3285 * position, so move things over if the merged-from 3286 * record doesn't occupy that position. 3287 * 3288 * This creates a new empty extent so the caller 3289 * should be smart enough to have removed any existing 3290 * ones. 3291 */ 3292 if (index > 0) { 3293 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 3294 size = index * sizeof(struct ocfs2_extent_rec); 3295 memmove(&el->l_recs[1], &el->l_recs[0], size); 3296 } 3297 3298 /* 3299 * Always memset - the caller doesn't check whether it 3300 * created an empty extent, so there could be junk in 3301 * the other fields. 3302 */ 3303 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3304 } 3305 } 3306 3307 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et, 3308 struct ocfs2_path *left_path, 3309 struct ocfs2_path **ret_right_path) 3310 { 3311 int ret; 3312 u32 right_cpos; 3313 struct ocfs2_path *right_path = NULL; 3314 struct ocfs2_extent_list *left_el; 3315 3316 *ret_right_path = NULL; 3317 3318 /* This function shouldn't be called for non-trees. */ 3319 BUG_ON(left_path->p_tree_depth == 0); 3320 3321 left_el = path_leaf_el(left_path); 3322 BUG_ON(left_el->l_next_free_rec != left_el->l_count); 3323 3324 ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3325 left_path, &right_cpos); 3326 if (ret) { 3327 mlog_errno(ret); 3328 goto out; 3329 } 3330 3331 /* This function shouldn't be called for the rightmost leaf. */ 3332 BUG_ON(right_cpos == 0); 3333 3334 right_path = ocfs2_new_path_from_path(left_path); 3335 if (!right_path) { 3336 ret = -ENOMEM; 3337 mlog_errno(ret); 3338 goto out; 3339 } 3340 3341 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); 3342 if (ret) { 3343 mlog_errno(ret); 3344 goto out; 3345 } 3346 3347 *ret_right_path = right_path; 3348 out: 3349 if (ret) 3350 ocfs2_free_path(right_path); 3351 return ret; 3352 } 3353 3354 /* 3355 * Remove split_rec clusters from the record at index and merge them 3356 * onto the beginning of the record "next" to it. 3357 * For index < l_count - 1, the next means the extent rec at index + 1. 3358 * For index == l_count - 1, the "next" means the 1st extent rec of the 3359 * next extent block. 3360 */ 3361 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path, 3362 handle_t *handle, 3363 struct ocfs2_extent_tree *et, 3364 struct ocfs2_extent_rec *split_rec, 3365 int index) 3366 { 3367 int ret, next_free, i; 3368 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3369 struct ocfs2_extent_rec *left_rec; 3370 struct ocfs2_extent_rec *right_rec; 3371 struct ocfs2_extent_list *right_el; 3372 struct ocfs2_path *right_path = NULL; 3373 int subtree_index = 0; 3374 struct ocfs2_extent_list *el = path_leaf_el(left_path); 3375 struct buffer_head *bh = path_leaf_bh(left_path); 3376 struct buffer_head *root_bh = NULL; 3377 3378 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec)); 3379 left_rec = &el->l_recs[index]; 3380 3381 if (index == le16_to_cpu(el->l_next_free_rec) - 1 && 3382 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) { 3383 /* we meet with a cross extent block merge. */ 3384 ret = ocfs2_get_right_path(et, left_path, &right_path); 3385 if (ret) { 3386 mlog_errno(ret); 3387 return ret; 3388 } 3389 3390 right_el = path_leaf_el(right_path); 3391 next_free = le16_to_cpu(right_el->l_next_free_rec); 3392 BUG_ON(next_free <= 0); 3393 right_rec = &right_el->l_recs[0]; 3394 if (ocfs2_is_empty_extent(right_rec)) { 3395 BUG_ON(next_free <= 1); 3396 right_rec = &right_el->l_recs[1]; 3397 } 3398 3399 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3400 le16_to_cpu(left_rec->e_leaf_clusters) != 3401 le32_to_cpu(right_rec->e_cpos)); 3402 3403 subtree_index = ocfs2_find_subtree_root(et, left_path, 3404 right_path); 3405 3406 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3407 handle->h_buffer_credits, 3408 right_path); 3409 if (ret) { 3410 mlog_errno(ret); 3411 goto out; 3412 } 3413 3414 root_bh = left_path->p_node[subtree_index].bh; 3415 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3416 3417 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3418 subtree_index); 3419 if (ret) { 3420 mlog_errno(ret); 3421 goto out; 3422 } 3423 3424 for (i = subtree_index + 1; 3425 i < path_num_items(right_path); i++) { 3426 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3427 right_path, i); 3428 if (ret) { 3429 mlog_errno(ret); 3430 goto out; 3431 } 3432 3433 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3434 left_path, i); 3435 if (ret) { 3436 mlog_errno(ret); 3437 goto out; 3438 } 3439 } 3440 3441 } else { 3442 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1); 3443 right_rec = &el->l_recs[index + 1]; 3444 } 3445 3446 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path, 3447 path_num_items(left_path) - 1); 3448 if (ret) { 3449 mlog_errno(ret); 3450 goto out; 3451 } 3452 3453 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters); 3454 3455 le32_add_cpu(&right_rec->e_cpos, -split_clusters); 3456 le64_add_cpu(&right_rec->e_blkno, 3457 -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), 3458 split_clusters)); 3459 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters); 3460 3461 ocfs2_cleanup_merge(el, index); 3462 3463 ocfs2_journal_dirty(handle, bh); 3464 if (right_path) { 3465 ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 3466 ocfs2_complete_edge_insert(handle, left_path, right_path, 3467 subtree_index); 3468 } 3469 out: 3470 ocfs2_free_path(right_path); 3471 return ret; 3472 } 3473 3474 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et, 3475 struct ocfs2_path *right_path, 3476 struct ocfs2_path **ret_left_path) 3477 { 3478 int ret; 3479 u32 left_cpos; 3480 struct ocfs2_path *left_path = NULL; 3481 3482 *ret_left_path = NULL; 3483 3484 /* This function shouldn't be called for non-trees. */ 3485 BUG_ON(right_path->p_tree_depth == 0); 3486 3487 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3488 right_path, &left_cpos); 3489 if (ret) { 3490 mlog_errno(ret); 3491 goto out; 3492 } 3493 3494 /* This function shouldn't be called for the leftmost leaf. */ 3495 BUG_ON(left_cpos == 0); 3496 3497 left_path = ocfs2_new_path_from_path(right_path); 3498 if (!left_path) { 3499 ret = -ENOMEM; 3500 mlog_errno(ret); 3501 goto out; 3502 } 3503 3504 ret = ocfs2_find_path(et->et_ci, left_path, left_cpos); 3505 if (ret) { 3506 mlog_errno(ret); 3507 goto out; 3508 } 3509 3510 *ret_left_path = left_path; 3511 out: 3512 if (ret) 3513 ocfs2_free_path(left_path); 3514 return ret; 3515 } 3516 3517 /* 3518 * Remove split_rec clusters from the record at index and merge them 3519 * onto the tail of the record "before" it. 3520 * For index > 0, the "before" means the extent rec at index - 1. 3521 * 3522 * For index == 0, the "before" means the last record of the previous 3523 * extent block. And there is also a situation that we may need to 3524 * remove the rightmost leaf extent block in the right_path and change 3525 * the right path to indicate the new rightmost path. 3526 */ 3527 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path, 3528 handle_t *handle, 3529 struct ocfs2_extent_tree *et, 3530 struct ocfs2_extent_rec *split_rec, 3531 struct ocfs2_cached_dealloc_ctxt *dealloc, 3532 int index) 3533 { 3534 int ret, i, subtree_index = 0, has_empty_extent = 0; 3535 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3536 struct ocfs2_extent_rec *left_rec; 3537 struct ocfs2_extent_rec *right_rec; 3538 struct ocfs2_extent_list *el = path_leaf_el(right_path); 3539 struct buffer_head *bh = path_leaf_bh(right_path); 3540 struct buffer_head *root_bh = NULL; 3541 struct ocfs2_path *left_path = NULL; 3542 struct ocfs2_extent_list *left_el; 3543 3544 BUG_ON(index < 0); 3545 3546 right_rec = &el->l_recs[index]; 3547 if (index == 0) { 3548 /* we meet with a cross extent block merge. */ 3549 ret = ocfs2_get_left_path(et, right_path, &left_path); 3550 if (ret) { 3551 mlog_errno(ret); 3552 return ret; 3553 } 3554 3555 left_el = path_leaf_el(left_path); 3556 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) != 3557 le16_to_cpu(left_el->l_count)); 3558 3559 left_rec = &left_el->l_recs[ 3560 le16_to_cpu(left_el->l_next_free_rec) - 1]; 3561 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3562 le16_to_cpu(left_rec->e_leaf_clusters) != 3563 le32_to_cpu(split_rec->e_cpos)); 3564 3565 subtree_index = ocfs2_find_subtree_root(et, left_path, 3566 right_path); 3567 3568 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3569 handle->h_buffer_credits, 3570 left_path); 3571 if (ret) { 3572 mlog_errno(ret); 3573 goto out; 3574 } 3575 3576 root_bh = left_path->p_node[subtree_index].bh; 3577 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3578 3579 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3580 subtree_index); 3581 if (ret) { 3582 mlog_errno(ret); 3583 goto out; 3584 } 3585 3586 for (i = subtree_index + 1; 3587 i < path_num_items(right_path); i++) { 3588 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3589 right_path, i); 3590 if (ret) { 3591 mlog_errno(ret); 3592 goto out; 3593 } 3594 3595 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3596 left_path, i); 3597 if (ret) { 3598 mlog_errno(ret); 3599 goto out; 3600 } 3601 } 3602 } else { 3603 left_rec = &el->l_recs[index - 1]; 3604 if (ocfs2_is_empty_extent(&el->l_recs[0])) 3605 has_empty_extent = 1; 3606 } 3607 3608 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3609 path_num_items(right_path) - 1); 3610 if (ret) { 3611 mlog_errno(ret); 3612 goto out; 3613 } 3614 3615 if (has_empty_extent && index == 1) { 3616 /* 3617 * The easy case - we can just plop the record right in. 3618 */ 3619 *left_rec = *split_rec; 3620 3621 has_empty_extent = 0; 3622 } else 3623 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters); 3624 3625 le32_add_cpu(&right_rec->e_cpos, split_clusters); 3626 le64_add_cpu(&right_rec->e_blkno, 3627 ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), 3628 split_clusters)); 3629 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters); 3630 3631 ocfs2_cleanup_merge(el, index); 3632 3633 ocfs2_journal_dirty(handle, bh); 3634 if (left_path) { 3635 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 3636 3637 /* 3638 * In the situation that the right_rec is empty and the extent 3639 * block is empty also, ocfs2_complete_edge_insert can't handle 3640 * it and we need to delete the right extent block. 3641 */ 3642 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 && 3643 le16_to_cpu(el->l_next_free_rec) == 1) { 3644 3645 ret = ocfs2_remove_rightmost_path(handle, et, 3646 right_path, 3647 dealloc); 3648 if (ret) { 3649 mlog_errno(ret); 3650 goto out; 3651 } 3652 3653 /* Now the rightmost extent block has been deleted. 3654 * So we use the new rightmost path. 3655 */ 3656 ocfs2_mv_path(right_path, left_path); 3657 left_path = NULL; 3658 } else 3659 ocfs2_complete_edge_insert(handle, left_path, 3660 right_path, subtree_index); 3661 } 3662 out: 3663 ocfs2_free_path(left_path); 3664 return ret; 3665 } 3666 3667 static int ocfs2_try_to_merge_extent(handle_t *handle, 3668 struct ocfs2_extent_tree *et, 3669 struct ocfs2_path *path, 3670 int split_index, 3671 struct ocfs2_extent_rec *split_rec, 3672 struct ocfs2_cached_dealloc_ctxt *dealloc, 3673 struct ocfs2_merge_ctxt *ctxt) 3674 { 3675 int ret = 0; 3676 struct ocfs2_extent_list *el = path_leaf_el(path); 3677 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 3678 3679 BUG_ON(ctxt->c_contig_type == CONTIG_NONE); 3680 3681 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) { 3682 /* 3683 * The merge code will need to create an empty 3684 * extent to take the place of the newly 3685 * emptied slot. Remove any pre-existing empty 3686 * extents - having more than one in a leaf is 3687 * illegal. 3688 */ 3689 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3690 if (ret) { 3691 mlog_errno(ret); 3692 goto out; 3693 } 3694 split_index--; 3695 rec = &el->l_recs[split_index]; 3696 } 3697 3698 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) { 3699 /* 3700 * Left-right contig implies this. 3701 */ 3702 BUG_ON(!ctxt->c_split_covers_rec); 3703 3704 /* 3705 * Since the leftright insert always covers the entire 3706 * extent, this call will delete the insert record 3707 * entirely, resulting in an empty extent record added to 3708 * the extent block. 3709 * 3710 * Since the adding of an empty extent shifts 3711 * everything back to the right, there's no need to 3712 * update split_index here. 3713 * 3714 * When the split_index is zero, we need to merge it to the 3715 * prevoius extent block. It is more efficient and easier 3716 * if we do merge_right first and merge_left later. 3717 */ 3718 ret = ocfs2_merge_rec_right(path, handle, et, split_rec, 3719 split_index); 3720 if (ret) { 3721 mlog_errno(ret); 3722 goto out; 3723 } 3724 3725 /* 3726 * We can only get this from logic error above. 3727 */ 3728 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0])); 3729 3730 /* The merge left us with an empty extent, remove it. */ 3731 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3732 if (ret) { 3733 mlog_errno(ret); 3734 goto out; 3735 } 3736 3737 rec = &el->l_recs[split_index]; 3738 3739 /* 3740 * Note that we don't pass split_rec here on purpose - 3741 * we've merged it into the rec already. 3742 */ 3743 ret = ocfs2_merge_rec_left(path, handle, et, rec, 3744 dealloc, split_index); 3745 3746 if (ret) { 3747 mlog_errno(ret); 3748 goto out; 3749 } 3750 3751 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3752 /* 3753 * Error from this last rotate is not critical, so 3754 * print but don't bubble it up. 3755 */ 3756 if (ret) 3757 mlog_errno(ret); 3758 ret = 0; 3759 } else { 3760 /* 3761 * Merge a record to the left or right. 3762 * 3763 * 'contig_type' is relative to the existing record, 3764 * so for example, if we're "right contig", it's to 3765 * the record on the left (hence the left merge). 3766 */ 3767 if (ctxt->c_contig_type == CONTIG_RIGHT) { 3768 ret = ocfs2_merge_rec_left(path, handle, et, 3769 split_rec, dealloc, 3770 split_index); 3771 if (ret) { 3772 mlog_errno(ret); 3773 goto out; 3774 } 3775 } else { 3776 ret = ocfs2_merge_rec_right(path, handle, 3777 et, split_rec, 3778 split_index); 3779 if (ret) { 3780 mlog_errno(ret); 3781 goto out; 3782 } 3783 } 3784 3785 if (ctxt->c_split_covers_rec) { 3786 /* 3787 * The merge may have left an empty extent in 3788 * our leaf. Try to rotate it away. 3789 */ 3790 ret = ocfs2_rotate_tree_left(handle, et, path, 3791 dealloc); 3792 if (ret) 3793 mlog_errno(ret); 3794 ret = 0; 3795 } 3796 } 3797 3798 out: 3799 return ret; 3800 } 3801 3802 static void ocfs2_subtract_from_rec(struct super_block *sb, 3803 enum ocfs2_split_type split, 3804 struct ocfs2_extent_rec *rec, 3805 struct ocfs2_extent_rec *split_rec) 3806 { 3807 u64 len_blocks; 3808 3809 len_blocks = ocfs2_clusters_to_blocks(sb, 3810 le16_to_cpu(split_rec->e_leaf_clusters)); 3811 3812 if (split == SPLIT_LEFT) { 3813 /* 3814 * Region is on the left edge of the existing 3815 * record. 3816 */ 3817 le32_add_cpu(&rec->e_cpos, 3818 le16_to_cpu(split_rec->e_leaf_clusters)); 3819 le64_add_cpu(&rec->e_blkno, len_blocks); 3820 le16_add_cpu(&rec->e_leaf_clusters, 3821 -le16_to_cpu(split_rec->e_leaf_clusters)); 3822 } else { 3823 /* 3824 * Region is on the right edge of the existing 3825 * record. 3826 */ 3827 le16_add_cpu(&rec->e_leaf_clusters, 3828 -le16_to_cpu(split_rec->e_leaf_clusters)); 3829 } 3830 } 3831 3832 /* 3833 * Do the final bits of extent record insertion at the target leaf 3834 * list. If this leaf is part of an allocation tree, it is assumed 3835 * that the tree above has been prepared. 3836 */ 3837 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et, 3838 struct ocfs2_extent_rec *insert_rec, 3839 struct ocfs2_extent_list *el, 3840 struct ocfs2_insert_type *insert) 3841 { 3842 int i = insert->ins_contig_index; 3843 unsigned int range; 3844 struct ocfs2_extent_rec *rec; 3845 3846 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 3847 3848 if (insert->ins_split != SPLIT_NONE) { 3849 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos)); 3850 BUG_ON(i == -1); 3851 rec = &el->l_recs[i]; 3852 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci), 3853 insert->ins_split, rec, 3854 insert_rec); 3855 goto rotate; 3856 } 3857 3858 /* 3859 * Contiguous insert - either left or right. 3860 */ 3861 if (insert->ins_contig != CONTIG_NONE) { 3862 rec = &el->l_recs[i]; 3863 if (insert->ins_contig == CONTIG_LEFT) { 3864 rec->e_blkno = insert_rec->e_blkno; 3865 rec->e_cpos = insert_rec->e_cpos; 3866 } 3867 le16_add_cpu(&rec->e_leaf_clusters, 3868 le16_to_cpu(insert_rec->e_leaf_clusters)); 3869 return; 3870 } 3871 3872 /* 3873 * Handle insert into an empty leaf. 3874 */ 3875 if (le16_to_cpu(el->l_next_free_rec) == 0 || 3876 ((le16_to_cpu(el->l_next_free_rec) == 1) && 3877 ocfs2_is_empty_extent(&el->l_recs[0]))) { 3878 el->l_recs[0] = *insert_rec; 3879 el->l_next_free_rec = cpu_to_le16(1); 3880 return; 3881 } 3882 3883 /* 3884 * Appending insert. 3885 */ 3886 if (insert->ins_appending == APPEND_TAIL) { 3887 i = le16_to_cpu(el->l_next_free_rec) - 1; 3888 rec = &el->l_recs[i]; 3889 range = le32_to_cpu(rec->e_cpos) 3890 + le16_to_cpu(rec->e_leaf_clusters); 3891 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range); 3892 3893 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >= 3894 le16_to_cpu(el->l_count), 3895 "owner %llu, depth %u, count %u, next free %u, " 3896 "rec.cpos %u, rec.clusters %u, " 3897 "insert.cpos %u, insert.clusters %u\n", 3898 ocfs2_metadata_cache_owner(et->et_ci), 3899 le16_to_cpu(el->l_tree_depth), 3900 le16_to_cpu(el->l_count), 3901 le16_to_cpu(el->l_next_free_rec), 3902 le32_to_cpu(el->l_recs[i].e_cpos), 3903 le16_to_cpu(el->l_recs[i].e_leaf_clusters), 3904 le32_to_cpu(insert_rec->e_cpos), 3905 le16_to_cpu(insert_rec->e_leaf_clusters)); 3906 i++; 3907 el->l_recs[i] = *insert_rec; 3908 le16_add_cpu(&el->l_next_free_rec, 1); 3909 return; 3910 } 3911 3912 rotate: 3913 /* 3914 * Ok, we have to rotate. 3915 * 3916 * At this point, it is safe to assume that inserting into an 3917 * empty leaf and appending to a leaf have both been handled 3918 * above. 3919 * 3920 * This leaf needs to have space, either by the empty 1st 3921 * extent record, or by virtue of an l_next_rec < l_count. 3922 */ 3923 ocfs2_rotate_leaf(el, insert_rec); 3924 } 3925 3926 static void ocfs2_adjust_rightmost_records(handle_t *handle, 3927 struct ocfs2_extent_tree *et, 3928 struct ocfs2_path *path, 3929 struct ocfs2_extent_rec *insert_rec) 3930 { 3931 int ret, i, next_free; 3932 struct buffer_head *bh; 3933 struct ocfs2_extent_list *el; 3934 struct ocfs2_extent_rec *rec; 3935 3936 /* 3937 * Update everything except the leaf block. 3938 */ 3939 for (i = 0; i < path->p_tree_depth; i++) { 3940 bh = path->p_node[i].bh; 3941 el = path->p_node[i].el; 3942 3943 next_free = le16_to_cpu(el->l_next_free_rec); 3944 if (next_free == 0) { 3945 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 3946 "Owner %llu has a bad extent list\n", 3947 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 3948 ret = -EIO; 3949 return; 3950 } 3951 3952 rec = &el->l_recs[next_free - 1]; 3953 3954 rec->e_int_clusters = insert_rec->e_cpos; 3955 le32_add_cpu(&rec->e_int_clusters, 3956 le16_to_cpu(insert_rec->e_leaf_clusters)); 3957 le32_add_cpu(&rec->e_int_clusters, 3958 -le32_to_cpu(rec->e_cpos)); 3959 3960 ocfs2_journal_dirty(handle, bh); 3961 } 3962 } 3963 3964 static int ocfs2_append_rec_to_path(handle_t *handle, 3965 struct ocfs2_extent_tree *et, 3966 struct ocfs2_extent_rec *insert_rec, 3967 struct ocfs2_path *right_path, 3968 struct ocfs2_path **ret_left_path) 3969 { 3970 int ret, next_free; 3971 struct ocfs2_extent_list *el; 3972 struct ocfs2_path *left_path = NULL; 3973 3974 *ret_left_path = NULL; 3975 3976 /* 3977 * This shouldn't happen for non-trees. The extent rec cluster 3978 * count manipulation below only works for interior nodes. 3979 */ 3980 BUG_ON(right_path->p_tree_depth == 0); 3981 3982 /* 3983 * If our appending insert is at the leftmost edge of a leaf, 3984 * then we might need to update the rightmost records of the 3985 * neighboring path. 3986 */ 3987 el = path_leaf_el(right_path); 3988 next_free = le16_to_cpu(el->l_next_free_rec); 3989 if (next_free == 0 || 3990 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) { 3991 u32 left_cpos; 3992 3993 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3994 right_path, &left_cpos); 3995 if (ret) { 3996 mlog_errno(ret); 3997 goto out; 3998 } 3999 4000 trace_ocfs2_append_rec_to_path( 4001 (unsigned long long) 4002 ocfs2_metadata_cache_owner(et->et_ci), 4003 le32_to_cpu(insert_rec->e_cpos), 4004 left_cpos); 4005 4006 /* 4007 * No need to worry if the append is already in the 4008 * leftmost leaf. 4009 */ 4010 if (left_cpos) { 4011 left_path = ocfs2_new_path_from_path(right_path); 4012 if (!left_path) { 4013 ret = -ENOMEM; 4014 mlog_errno(ret); 4015 goto out; 4016 } 4017 4018 ret = ocfs2_find_path(et->et_ci, left_path, 4019 left_cpos); 4020 if (ret) { 4021 mlog_errno(ret); 4022 goto out; 4023 } 4024 4025 /* 4026 * ocfs2_insert_path() will pass the left_path to the 4027 * journal for us. 4028 */ 4029 } 4030 } 4031 4032 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path); 4033 if (ret) { 4034 mlog_errno(ret); 4035 goto out; 4036 } 4037 4038 ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec); 4039 4040 *ret_left_path = left_path; 4041 ret = 0; 4042 out: 4043 if (ret != 0) 4044 ocfs2_free_path(left_path); 4045 4046 return ret; 4047 } 4048 4049 static void ocfs2_split_record(struct ocfs2_extent_tree *et, 4050 struct ocfs2_path *left_path, 4051 struct ocfs2_path *right_path, 4052 struct ocfs2_extent_rec *split_rec, 4053 enum ocfs2_split_type split) 4054 { 4055 int index; 4056 u32 cpos = le32_to_cpu(split_rec->e_cpos); 4057 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el; 4058 struct ocfs2_extent_rec *rec, *tmprec; 4059 4060 right_el = path_leaf_el(right_path); 4061 if (left_path) 4062 left_el = path_leaf_el(left_path); 4063 4064 el = right_el; 4065 insert_el = right_el; 4066 index = ocfs2_search_extent_list(el, cpos); 4067 if (index != -1) { 4068 if (index == 0 && left_path) { 4069 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 4070 4071 /* 4072 * This typically means that the record 4073 * started in the left path but moved to the 4074 * right as a result of rotation. We either 4075 * move the existing record to the left, or we 4076 * do the later insert there. 4077 * 4078 * In this case, the left path should always 4079 * exist as the rotate code will have passed 4080 * it back for a post-insert update. 4081 */ 4082 4083 if (split == SPLIT_LEFT) { 4084 /* 4085 * It's a left split. Since we know 4086 * that the rotate code gave us an 4087 * empty extent in the left path, we 4088 * can just do the insert there. 4089 */ 4090 insert_el = left_el; 4091 } else { 4092 /* 4093 * Right split - we have to move the 4094 * existing record over to the left 4095 * leaf. The insert will be into the 4096 * newly created empty extent in the 4097 * right leaf. 4098 */ 4099 tmprec = &right_el->l_recs[index]; 4100 ocfs2_rotate_leaf(left_el, tmprec); 4101 el = left_el; 4102 4103 memset(tmprec, 0, sizeof(*tmprec)); 4104 index = ocfs2_search_extent_list(left_el, cpos); 4105 BUG_ON(index == -1); 4106 } 4107 } 4108 } else { 4109 BUG_ON(!left_path); 4110 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0])); 4111 /* 4112 * Left path is easy - we can just allow the insert to 4113 * happen. 4114 */ 4115 el = left_el; 4116 insert_el = left_el; 4117 index = ocfs2_search_extent_list(el, cpos); 4118 BUG_ON(index == -1); 4119 } 4120 4121 rec = &el->l_recs[index]; 4122 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci), 4123 split, rec, split_rec); 4124 ocfs2_rotate_leaf(insert_el, split_rec); 4125 } 4126 4127 /* 4128 * This function only does inserts on an allocation b-tree. For tree 4129 * depth = 0, ocfs2_insert_at_leaf() is called directly. 4130 * 4131 * right_path is the path we want to do the actual insert 4132 * in. left_path should only be passed in if we need to update that 4133 * portion of the tree after an edge insert. 4134 */ 4135 static int ocfs2_insert_path(handle_t *handle, 4136 struct ocfs2_extent_tree *et, 4137 struct ocfs2_path *left_path, 4138 struct ocfs2_path *right_path, 4139 struct ocfs2_extent_rec *insert_rec, 4140 struct ocfs2_insert_type *insert) 4141 { 4142 int ret, subtree_index; 4143 struct buffer_head *leaf_bh = path_leaf_bh(right_path); 4144 4145 if (left_path) { 4146 /* 4147 * There's a chance that left_path got passed back to 4148 * us without being accounted for in the 4149 * journal. Extend our transaction here to be sure we 4150 * can change those blocks. 4151 */ 4152 ret = ocfs2_extend_trans(handle, left_path->p_tree_depth); 4153 if (ret < 0) { 4154 mlog_errno(ret); 4155 goto out; 4156 } 4157 4158 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 4159 if (ret < 0) { 4160 mlog_errno(ret); 4161 goto out; 4162 } 4163 } 4164 4165 /* 4166 * Pass both paths to the journal. The majority of inserts 4167 * will be touching all components anyway. 4168 */ 4169 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path); 4170 if (ret < 0) { 4171 mlog_errno(ret); 4172 goto out; 4173 } 4174 4175 if (insert->ins_split != SPLIT_NONE) { 4176 /* 4177 * We could call ocfs2_insert_at_leaf() for some types 4178 * of splits, but it's easier to just let one separate 4179 * function sort it all out. 4180 */ 4181 ocfs2_split_record(et, left_path, right_path, 4182 insert_rec, insert->ins_split); 4183 4184 /* 4185 * Split might have modified either leaf and we don't 4186 * have a guarantee that the later edge insert will 4187 * dirty this for us. 4188 */ 4189 if (left_path) 4190 ocfs2_journal_dirty(handle, 4191 path_leaf_bh(left_path)); 4192 } else 4193 ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path), 4194 insert); 4195 4196 ocfs2_journal_dirty(handle, leaf_bh); 4197 4198 if (left_path) { 4199 /* 4200 * The rotate code has indicated that we need to fix 4201 * up portions of the tree after the insert. 4202 * 4203 * XXX: Should we extend the transaction here? 4204 */ 4205 subtree_index = ocfs2_find_subtree_root(et, left_path, 4206 right_path); 4207 ocfs2_complete_edge_insert(handle, left_path, right_path, 4208 subtree_index); 4209 } 4210 4211 ret = 0; 4212 out: 4213 return ret; 4214 } 4215 4216 static int ocfs2_do_insert_extent(handle_t *handle, 4217 struct ocfs2_extent_tree *et, 4218 struct ocfs2_extent_rec *insert_rec, 4219 struct ocfs2_insert_type *type) 4220 { 4221 int ret, rotate = 0; 4222 u32 cpos; 4223 struct ocfs2_path *right_path = NULL; 4224 struct ocfs2_path *left_path = NULL; 4225 struct ocfs2_extent_list *el; 4226 4227 el = et->et_root_el; 4228 4229 ret = ocfs2_et_root_journal_access(handle, et, 4230 OCFS2_JOURNAL_ACCESS_WRITE); 4231 if (ret) { 4232 mlog_errno(ret); 4233 goto out; 4234 } 4235 4236 if (le16_to_cpu(el->l_tree_depth) == 0) { 4237 ocfs2_insert_at_leaf(et, insert_rec, el, type); 4238 goto out_update_clusters; 4239 } 4240 4241 right_path = ocfs2_new_path_from_et(et); 4242 if (!right_path) { 4243 ret = -ENOMEM; 4244 mlog_errno(ret); 4245 goto out; 4246 } 4247 4248 /* 4249 * Determine the path to start with. Rotations need the 4250 * rightmost path, everything else can go directly to the 4251 * target leaf. 4252 */ 4253 cpos = le32_to_cpu(insert_rec->e_cpos); 4254 if (type->ins_appending == APPEND_NONE && 4255 type->ins_contig == CONTIG_NONE) { 4256 rotate = 1; 4257 cpos = UINT_MAX; 4258 } 4259 4260 ret = ocfs2_find_path(et->et_ci, right_path, cpos); 4261 if (ret) { 4262 mlog_errno(ret); 4263 goto out; 4264 } 4265 4266 /* 4267 * Rotations and appends need special treatment - they modify 4268 * parts of the tree's above them. 4269 * 4270 * Both might pass back a path immediate to the left of the 4271 * one being inserted to. This will be cause 4272 * ocfs2_insert_path() to modify the rightmost records of 4273 * left_path to account for an edge insert. 4274 * 4275 * XXX: When modifying this code, keep in mind that an insert 4276 * can wind up skipping both of these two special cases... 4277 */ 4278 if (rotate) { 4279 ret = ocfs2_rotate_tree_right(handle, et, type->ins_split, 4280 le32_to_cpu(insert_rec->e_cpos), 4281 right_path, &left_path); 4282 if (ret) { 4283 mlog_errno(ret); 4284 goto out; 4285 } 4286 4287 /* 4288 * ocfs2_rotate_tree_right() might have extended the 4289 * transaction without re-journaling our tree root. 4290 */ 4291 ret = ocfs2_et_root_journal_access(handle, et, 4292 OCFS2_JOURNAL_ACCESS_WRITE); 4293 if (ret) { 4294 mlog_errno(ret); 4295 goto out; 4296 } 4297 } else if (type->ins_appending == APPEND_TAIL 4298 && type->ins_contig != CONTIG_LEFT) { 4299 ret = ocfs2_append_rec_to_path(handle, et, insert_rec, 4300 right_path, &left_path); 4301 if (ret) { 4302 mlog_errno(ret); 4303 goto out; 4304 } 4305 } 4306 4307 ret = ocfs2_insert_path(handle, et, left_path, right_path, 4308 insert_rec, type); 4309 if (ret) { 4310 mlog_errno(ret); 4311 goto out; 4312 } 4313 4314 out_update_clusters: 4315 if (type->ins_split == SPLIT_NONE) 4316 ocfs2_et_update_clusters(et, 4317 le16_to_cpu(insert_rec->e_leaf_clusters)); 4318 4319 ocfs2_journal_dirty(handle, et->et_root_bh); 4320 4321 out: 4322 ocfs2_free_path(left_path); 4323 ocfs2_free_path(right_path); 4324 4325 return ret; 4326 } 4327 4328 static int ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et, 4329 struct ocfs2_path *path, 4330 struct ocfs2_extent_list *el, int index, 4331 struct ocfs2_extent_rec *split_rec, 4332 struct ocfs2_merge_ctxt *ctxt) 4333 { 4334 int status = 0; 4335 enum ocfs2_contig_type ret = CONTIG_NONE; 4336 u32 left_cpos, right_cpos; 4337 struct ocfs2_extent_rec *rec = NULL; 4338 struct ocfs2_extent_list *new_el; 4339 struct ocfs2_path *left_path = NULL, *right_path = NULL; 4340 struct buffer_head *bh; 4341 struct ocfs2_extent_block *eb; 4342 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 4343 4344 if (index > 0) { 4345 rec = &el->l_recs[index - 1]; 4346 } else if (path->p_tree_depth > 0) { 4347 status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos); 4348 if (status) 4349 goto exit; 4350 4351 if (left_cpos != 0) { 4352 left_path = ocfs2_new_path_from_path(path); 4353 if (!left_path) { 4354 status = -ENOMEM; 4355 mlog_errno(status); 4356 goto exit; 4357 } 4358 4359 status = ocfs2_find_path(et->et_ci, left_path, 4360 left_cpos); 4361 if (status) 4362 goto free_left_path; 4363 4364 new_el = path_leaf_el(left_path); 4365 4366 if (le16_to_cpu(new_el->l_next_free_rec) != 4367 le16_to_cpu(new_el->l_count)) { 4368 bh = path_leaf_bh(left_path); 4369 eb = (struct ocfs2_extent_block *)bh->b_data; 4370 ocfs2_error(sb, 4371 "Extent block #%llu has an invalid l_next_free_rec of %d. It should have matched the l_count of %d\n", 4372 (unsigned long long)le64_to_cpu(eb->h_blkno), 4373 le16_to_cpu(new_el->l_next_free_rec), 4374 le16_to_cpu(new_el->l_count)); 4375 status = -EINVAL; 4376 goto free_left_path; 4377 } 4378 rec = &new_el->l_recs[ 4379 le16_to_cpu(new_el->l_next_free_rec) - 1]; 4380 } 4381 } 4382 4383 /* 4384 * We're careful to check for an empty extent record here - 4385 * the merge code will know what to do if it sees one. 4386 */ 4387 if (rec) { 4388 if (index == 1 && ocfs2_is_empty_extent(rec)) { 4389 if (split_rec->e_cpos == el->l_recs[index].e_cpos) 4390 ret = CONTIG_RIGHT; 4391 } else { 4392 ret = ocfs2_et_extent_contig(et, rec, split_rec); 4393 } 4394 } 4395 4396 rec = NULL; 4397 if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) 4398 rec = &el->l_recs[index + 1]; 4399 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) && 4400 path->p_tree_depth > 0) { 4401 status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos); 4402 if (status) 4403 goto free_left_path; 4404 4405 if (right_cpos == 0) 4406 goto free_left_path; 4407 4408 right_path = ocfs2_new_path_from_path(path); 4409 if (!right_path) { 4410 status = -ENOMEM; 4411 mlog_errno(status); 4412 goto free_left_path; 4413 } 4414 4415 status = ocfs2_find_path(et->et_ci, right_path, right_cpos); 4416 if (status) 4417 goto free_right_path; 4418 4419 new_el = path_leaf_el(right_path); 4420 rec = &new_el->l_recs[0]; 4421 if (ocfs2_is_empty_extent(rec)) { 4422 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) { 4423 bh = path_leaf_bh(right_path); 4424 eb = (struct ocfs2_extent_block *)bh->b_data; 4425 ocfs2_error(sb, 4426 "Extent block #%llu has an invalid l_next_free_rec of %d\n", 4427 (unsigned long long)le64_to_cpu(eb->h_blkno), 4428 le16_to_cpu(new_el->l_next_free_rec)); 4429 status = -EINVAL; 4430 goto free_right_path; 4431 } 4432 rec = &new_el->l_recs[1]; 4433 } 4434 } 4435 4436 if (rec) { 4437 enum ocfs2_contig_type contig_type; 4438 4439 contig_type = ocfs2_et_extent_contig(et, rec, split_rec); 4440 4441 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT) 4442 ret = CONTIG_LEFTRIGHT; 4443 else if (ret == CONTIG_NONE) 4444 ret = contig_type; 4445 } 4446 4447 free_right_path: 4448 ocfs2_free_path(right_path); 4449 free_left_path: 4450 ocfs2_free_path(left_path); 4451 exit: 4452 if (status == 0) 4453 ctxt->c_contig_type = ret; 4454 4455 return status; 4456 } 4457 4458 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et, 4459 struct ocfs2_insert_type *insert, 4460 struct ocfs2_extent_list *el, 4461 struct ocfs2_extent_rec *insert_rec) 4462 { 4463 int i; 4464 enum ocfs2_contig_type contig_type = CONTIG_NONE; 4465 4466 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4467 4468 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 4469 contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i], 4470 insert_rec); 4471 if (contig_type != CONTIG_NONE) { 4472 insert->ins_contig_index = i; 4473 break; 4474 } 4475 } 4476 insert->ins_contig = contig_type; 4477 4478 if (insert->ins_contig != CONTIG_NONE) { 4479 struct ocfs2_extent_rec *rec = 4480 &el->l_recs[insert->ins_contig_index]; 4481 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) + 4482 le16_to_cpu(insert_rec->e_leaf_clusters); 4483 4484 /* 4485 * Caller might want us to limit the size of extents, don't 4486 * calculate contiguousness if we might exceed that limit. 4487 */ 4488 if (et->et_max_leaf_clusters && 4489 (len > et->et_max_leaf_clusters)) 4490 insert->ins_contig = CONTIG_NONE; 4491 } 4492 } 4493 4494 /* 4495 * This should only be called against the righmost leaf extent list. 4496 * 4497 * ocfs2_figure_appending_type() will figure out whether we'll have to 4498 * insert at the tail of the rightmost leaf. 4499 * 4500 * This should also work against the root extent list for tree's with 0 4501 * depth. If we consider the root extent list to be the rightmost leaf node 4502 * then the logic here makes sense. 4503 */ 4504 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert, 4505 struct ocfs2_extent_list *el, 4506 struct ocfs2_extent_rec *insert_rec) 4507 { 4508 int i; 4509 u32 cpos = le32_to_cpu(insert_rec->e_cpos); 4510 struct ocfs2_extent_rec *rec; 4511 4512 insert->ins_appending = APPEND_NONE; 4513 4514 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4515 4516 if (!el->l_next_free_rec) 4517 goto set_tail_append; 4518 4519 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 4520 /* Were all records empty? */ 4521 if (le16_to_cpu(el->l_next_free_rec) == 1) 4522 goto set_tail_append; 4523 } 4524 4525 i = le16_to_cpu(el->l_next_free_rec) - 1; 4526 rec = &el->l_recs[i]; 4527 4528 if (cpos >= 4529 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters))) 4530 goto set_tail_append; 4531 4532 return; 4533 4534 set_tail_append: 4535 insert->ins_appending = APPEND_TAIL; 4536 } 4537 4538 /* 4539 * Helper function called at the beginning of an insert. 4540 * 4541 * This computes a few things that are commonly used in the process of 4542 * inserting into the btree: 4543 * - Whether the new extent is contiguous with an existing one. 4544 * - The current tree depth. 4545 * - Whether the insert is an appending one. 4546 * - The total # of free records in the tree. 4547 * 4548 * All of the information is stored on the ocfs2_insert_type 4549 * structure. 4550 */ 4551 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et, 4552 struct buffer_head **last_eb_bh, 4553 struct ocfs2_extent_rec *insert_rec, 4554 int *free_records, 4555 struct ocfs2_insert_type *insert) 4556 { 4557 int ret; 4558 struct ocfs2_extent_block *eb; 4559 struct ocfs2_extent_list *el; 4560 struct ocfs2_path *path = NULL; 4561 struct buffer_head *bh = NULL; 4562 4563 insert->ins_split = SPLIT_NONE; 4564 4565 el = et->et_root_el; 4566 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth); 4567 4568 if (el->l_tree_depth) { 4569 /* 4570 * If we have tree depth, we read in the 4571 * rightmost extent block ahead of time as 4572 * ocfs2_figure_insert_type() and ocfs2_add_branch() 4573 * may want it later. 4574 */ 4575 ret = ocfs2_read_extent_block(et->et_ci, 4576 ocfs2_et_get_last_eb_blk(et), 4577 &bh); 4578 if (ret) { 4579 mlog_errno(ret); 4580 goto out; 4581 } 4582 eb = (struct ocfs2_extent_block *) bh->b_data; 4583 el = &eb->h_list; 4584 } 4585 4586 /* 4587 * Unless we have a contiguous insert, we'll need to know if 4588 * there is room left in our allocation tree for another 4589 * extent record. 4590 * 4591 * XXX: This test is simplistic, we can search for empty 4592 * extent records too. 4593 */ 4594 *free_records = le16_to_cpu(el->l_count) - 4595 le16_to_cpu(el->l_next_free_rec); 4596 4597 if (!insert->ins_tree_depth) { 4598 ocfs2_figure_contig_type(et, insert, el, insert_rec); 4599 ocfs2_figure_appending_type(insert, el, insert_rec); 4600 return 0; 4601 } 4602 4603 path = ocfs2_new_path_from_et(et); 4604 if (!path) { 4605 ret = -ENOMEM; 4606 mlog_errno(ret); 4607 goto out; 4608 } 4609 4610 /* 4611 * In the case that we're inserting past what the tree 4612 * currently accounts for, ocfs2_find_path() will return for 4613 * us the rightmost tree path. This is accounted for below in 4614 * the appending code. 4615 */ 4616 ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos)); 4617 if (ret) { 4618 mlog_errno(ret); 4619 goto out; 4620 } 4621 4622 el = path_leaf_el(path); 4623 4624 /* 4625 * Now that we have the path, there's two things we want to determine: 4626 * 1) Contiguousness (also set contig_index if this is so) 4627 * 4628 * 2) Are we doing an append? We can trivially break this up 4629 * into two types of appends: simple record append, or a 4630 * rotate inside the tail leaf. 4631 */ 4632 ocfs2_figure_contig_type(et, insert, el, insert_rec); 4633 4634 /* 4635 * The insert code isn't quite ready to deal with all cases of 4636 * left contiguousness. Specifically, if it's an insert into 4637 * the 1st record in a leaf, it will require the adjustment of 4638 * cluster count on the last record of the path directly to it's 4639 * left. For now, just catch that case and fool the layers 4640 * above us. This works just fine for tree_depth == 0, which 4641 * is why we allow that above. 4642 */ 4643 if (insert->ins_contig == CONTIG_LEFT && 4644 insert->ins_contig_index == 0) 4645 insert->ins_contig = CONTIG_NONE; 4646 4647 /* 4648 * Ok, so we can simply compare against last_eb to figure out 4649 * whether the path doesn't exist. This will only happen in 4650 * the case that we're doing a tail append, so maybe we can 4651 * take advantage of that information somehow. 4652 */ 4653 if (ocfs2_et_get_last_eb_blk(et) == 4654 path_leaf_bh(path)->b_blocknr) { 4655 /* 4656 * Ok, ocfs2_find_path() returned us the rightmost 4657 * tree path. This might be an appending insert. There are 4658 * two cases: 4659 * 1) We're doing a true append at the tail: 4660 * -This might even be off the end of the leaf 4661 * 2) We're "appending" by rotating in the tail 4662 */ 4663 ocfs2_figure_appending_type(insert, el, insert_rec); 4664 } 4665 4666 out: 4667 ocfs2_free_path(path); 4668 4669 if (ret == 0) 4670 *last_eb_bh = bh; 4671 else 4672 brelse(bh); 4673 return ret; 4674 } 4675 4676 /* 4677 * Insert an extent into a btree. 4678 * 4679 * The caller needs to update the owning btree's cluster count. 4680 */ 4681 int ocfs2_insert_extent(handle_t *handle, 4682 struct ocfs2_extent_tree *et, 4683 u32 cpos, 4684 u64 start_blk, 4685 u32 new_clusters, 4686 u8 flags, 4687 struct ocfs2_alloc_context *meta_ac) 4688 { 4689 int status; 4690 int uninitialized_var(free_records); 4691 struct buffer_head *last_eb_bh = NULL; 4692 struct ocfs2_insert_type insert = {0, }; 4693 struct ocfs2_extent_rec rec; 4694 4695 trace_ocfs2_insert_extent_start( 4696 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 4697 cpos, new_clusters); 4698 4699 memset(&rec, 0, sizeof(rec)); 4700 rec.e_cpos = cpu_to_le32(cpos); 4701 rec.e_blkno = cpu_to_le64(start_blk); 4702 rec.e_leaf_clusters = cpu_to_le16(new_clusters); 4703 rec.e_flags = flags; 4704 status = ocfs2_et_insert_check(et, &rec); 4705 if (status) { 4706 mlog_errno(status); 4707 goto bail; 4708 } 4709 4710 status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec, 4711 &free_records, &insert); 4712 if (status < 0) { 4713 mlog_errno(status); 4714 goto bail; 4715 } 4716 4717 trace_ocfs2_insert_extent(insert.ins_appending, insert.ins_contig, 4718 insert.ins_contig_index, free_records, 4719 insert.ins_tree_depth); 4720 4721 if (insert.ins_contig == CONTIG_NONE && free_records == 0) { 4722 status = ocfs2_grow_tree(handle, et, 4723 &insert.ins_tree_depth, &last_eb_bh, 4724 meta_ac); 4725 if (status) { 4726 mlog_errno(status); 4727 goto bail; 4728 } 4729 } 4730 4731 /* Finally, we can add clusters. This might rotate the tree for us. */ 4732 status = ocfs2_do_insert_extent(handle, et, &rec, &insert); 4733 if (status < 0) 4734 mlog_errno(status); 4735 else 4736 ocfs2_et_extent_map_insert(et, &rec); 4737 4738 bail: 4739 brelse(last_eb_bh); 4740 4741 return status; 4742 } 4743 4744 /* 4745 * Allcate and add clusters into the extent b-tree. 4746 * The new clusters(clusters_to_add) will be inserted at logical_offset. 4747 * The extent b-tree's root is specified by et, and 4748 * it is not limited to the file storage. Any extent tree can use this 4749 * function if it implements the proper ocfs2_extent_tree. 4750 */ 4751 int ocfs2_add_clusters_in_btree(handle_t *handle, 4752 struct ocfs2_extent_tree *et, 4753 u32 *logical_offset, 4754 u32 clusters_to_add, 4755 int mark_unwritten, 4756 struct ocfs2_alloc_context *data_ac, 4757 struct ocfs2_alloc_context *meta_ac, 4758 enum ocfs2_alloc_restarted *reason_ret) 4759 { 4760 int status = 0, err = 0; 4761 int need_free = 0; 4762 int free_extents; 4763 enum ocfs2_alloc_restarted reason = RESTART_NONE; 4764 u32 bit_off, num_bits; 4765 u64 block; 4766 u8 flags = 0; 4767 struct ocfs2_super *osb = 4768 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 4769 4770 BUG_ON(!clusters_to_add); 4771 4772 if (mark_unwritten) 4773 flags = OCFS2_EXT_UNWRITTEN; 4774 4775 free_extents = ocfs2_num_free_extents(osb, et); 4776 if (free_extents < 0) { 4777 status = free_extents; 4778 mlog_errno(status); 4779 goto leave; 4780 } 4781 4782 /* there are two cases which could cause us to EAGAIN in the 4783 * we-need-more-metadata case: 4784 * 1) we haven't reserved *any* 4785 * 2) we are so fragmented, we've needed to add metadata too 4786 * many times. */ 4787 if (!free_extents && !meta_ac) { 4788 err = -1; 4789 status = -EAGAIN; 4790 reason = RESTART_META; 4791 goto leave; 4792 } else if ((!free_extents) 4793 && (ocfs2_alloc_context_bits_left(meta_ac) 4794 < ocfs2_extend_meta_needed(et->et_root_el))) { 4795 err = -2; 4796 status = -EAGAIN; 4797 reason = RESTART_META; 4798 goto leave; 4799 } 4800 4801 status = __ocfs2_claim_clusters(handle, data_ac, 1, 4802 clusters_to_add, &bit_off, &num_bits); 4803 if (status < 0) { 4804 if (status != -ENOSPC) 4805 mlog_errno(status); 4806 goto leave; 4807 } 4808 4809 BUG_ON(num_bits > clusters_to_add); 4810 4811 /* reserve our write early -- insert_extent may update the tree root */ 4812 status = ocfs2_et_root_journal_access(handle, et, 4813 OCFS2_JOURNAL_ACCESS_WRITE); 4814 if (status < 0) { 4815 mlog_errno(status); 4816 need_free = 1; 4817 goto bail; 4818 } 4819 4820 block = ocfs2_clusters_to_blocks(osb->sb, bit_off); 4821 trace_ocfs2_add_clusters_in_btree( 4822 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 4823 bit_off, num_bits); 4824 status = ocfs2_insert_extent(handle, et, *logical_offset, block, 4825 num_bits, flags, meta_ac); 4826 if (status < 0) { 4827 mlog_errno(status); 4828 need_free = 1; 4829 goto bail; 4830 } 4831 4832 ocfs2_journal_dirty(handle, et->et_root_bh); 4833 4834 clusters_to_add -= num_bits; 4835 *logical_offset += num_bits; 4836 4837 if (clusters_to_add) { 4838 err = clusters_to_add; 4839 status = -EAGAIN; 4840 reason = RESTART_TRANS; 4841 } 4842 4843 bail: 4844 if (need_free) { 4845 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL) 4846 ocfs2_free_local_alloc_bits(osb, handle, data_ac, 4847 bit_off, num_bits); 4848 else 4849 ocfs2_free_clusters(handle, 4850 data_ac->ac_inode, 4851 data_ac->ac_bh, 4852 ocfs2_clusters_to_blocks(osb->sb, bit_off), 4853 num_bits); 4854 } 4855 4856 leave: 4857 if (reason_ret) 4858 *reason_ret = reason; 4859 trace_ocfs2_add_clusters_in_btree_ret(status, reason, err); 4860 return status; 4861 } 4862 4863 static void ocfs2_make_right_split_rec(struct super_block *sb, 4864 struct ocfs2_extent_rec *split_rec, 4865 u32 cpos, 4866 struct ocfs2_extent_rec *rec) 4867 { 4868 u32 rec_cpos = le32_to_cpu(rec->e_cpos); 4869 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters); 4870 4871 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec)); 4872 4873 split_rec->e_cpos = cpu_to_le32(cpos); 4874 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos); 4875 4876 split_rec->e_blkno = rec->e_blkno; 4877 le64_add_cpu(&split_rec->e_blkno, 4878 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos)); 4879 4880 split_rec->e_flags = rec->e_flags; 4881 } 4882 4883 static int ocfs2_split_and_insert(handle_t *handle, 4884 struct ocfs2_extent_tree *et, 4885 struct ocfs2_path *path, 4886 struct buffer_head **last_eb_bh, 4887 int split_index, 4888 struct ocfs2_extent_rec *orig_split_rec, 4889 struct ocfs2_alloc_context *meta_ac) 4890 { 4891 int ret = 0, depth; 4892 unsigned int insert_range, rec_range, do_leftright = 0; 4893 struct ocfs2_extent_rec tmprec; 4894 struct ocfs2_extent_list *rightmost_el; 4895 struct ocfs2_extent_rec rec; 4896 struct ocfs2_extent_rec split_rec = *orig_split_rec; 4897 struct ocfs2_insert_type insert; 4898 struct ocfs2_extent_block *eb; 4899 4900 leftright: 4901 /* 4902 * Store a copy of the record on the stack - it might move 4903 * around as the tree is manipulated below. 4904 */ 4905 rec = path_leaf_el(path)->l_recs[split_index]; 4906 4907 rightmost_el = et->et_root_el; 4908 4909 depth = le16_to_cpu(rightmost_el->l_tree_depth); 4910 if (depth) { 4911 BUG_ON(!(*last_eb_bh)); 4912 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 4913 rightmost_el = &eb->h_list; 4914 } 4915 4916 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 4917 le16_to_cpu(rightmost_el->l_count)) { 4918 ret = ocfs2_grow_tree(handle, et, 4919 &depth, last_eb_bh, meta_ac); 4920 if (ret) { 4921 mlog_errno(ret); 4922 goto out; 4923 } 4924 } 4925 4926 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 4927 insert.ins_appending = APPEND_NONE; 4928 insert.ins_contig = CONTIG_NONE; 4929 insert.ins_tree_depth = depth; 4930 4931 insert_range = le32_to_cpu(split_rec.e_cpos) + 4932 le16_to_cpu(split_rec.e_leaf_clusters); 4933 rec_range = le32_to_cpu(rec.e_cpos) + 4934 le16_to_cpu(rec.e_leaf_clusters); 4935 4936 if (split_rec.e_cpos == rec.e_cpos) { 4937 insert.ins_split = SPLIT_LEFT; 4938 } else if (insert_range == rec_range) { 4939 insert.ins_split = SPLIT_RIGHT; 4940 } else { 4941 /* 4942 * Left/right split. We fake this as a right split 4943 * first and then make a second pass as a left split. 4944 */ 4945 insert.ins_split = SPLIT_RIGHT; 4946 4947 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci), 4948 &tmprec, insert_range, &rec); 4949 4950 split_rec = tmprec; 4951 4952 BUG_ON(do_leftright); 4953 do_leftright = 1; 4954 } 4955 4956 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert); 4957 if (ret) { 4958 mlog_errno(ret); 4959 goto out; 4960 } 4961 4962 if (do_leftright == 1) { 4963 u32 cpos; 4964 struct ocfs2_extent_list *el; 4965 4966 do_leftright++; 4967 split_rec = *orig_split_rec; 4968 4969 ocfs2_reinit_path(path, 1); 4970 4971 cpos = le32_to_cpu(split_rec.e_cpos); 4972 ret = ocfs2_find_path(et->et_ci, path, cpos); 4973 if (ret) { 4974 mlog_errno(ret); 4975 goto out; 4976 } 4977 4978 el = path_leaf_el(path); 4979 split_index = ocfs2_search_extent_list(el, cpos); 4980 if (split_index == -1) { 4981 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 4982 "Owner %llu has an extent at cpos %u which can no longer be found\n", 4983 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 4984 cpos); 4985 ret = -EROFS; 4986 goto out; 4987 } 4988 goto leftright; 4989 } 4990 out: 4991 4992 return ret; 4993 } 4994 4995 static int ocfs2_replace_extent_rec(handle_t *handle, 4996 struct ocfs2_extent_tree *et, 4997 struct ocfs2_path *path, 4998 struct ocfs2_extent_list *el, 4999 int split_index, 5000 struct ocfs2_extent_rec *split_rec) 5001 { 5002 int ret; 5003 5004 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path, 5005 path_num_items(path) - 1); 5006 if (ret) { 5007 mlog_errno(ret); 5008 goto out; 5009 } 5010 5011 el->l_recs[split_index] = *split_rec; 5012 5013 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 5014 out: 5015 return ret; 5016 } 5017 5018 /* 5019 * Split part or all of the extent record at split_index in the leaf 5020 * pointed to by path. Merge with the contiguous extent record if needed. 5021 * 5022 * Care is taken to handle contiguousness so as to not grow the tree. 5023 * 5024 * meta_ac is not strictly necessary - we only truly need it if growth 5025 * of the tree is required. All other cases will degrade into a less 5026 * optimal tree layout. 5027 * 5028 * last_eb_bh should be the rightmost leaf block for any extent 5029 * btree. Since a split may grow the tree or a merge might shrink it, 5030 * the caller cannot trust the contents of that buffer after this call. 5031 * 5032 * This code is optimized for readability - several passes might be 5033 * made over certain portions of the tree. All of those blocks will 5034 * have been brought into cache (and pinned via the journal), so the 5035 * extra overhead is not expressed in terms of disk reads. 5036 */ 5037 int ocfs2_split_extent(handle_t *handle, 5038 struct ocfs2_extent_tree *et, 5039 struct ocfs2_path *path, 5040 int split_index, 5041 struct ocfs2_extent_rec *split_rec, 5042 struct ocfs2_alloc_context *meta_ac, 5043 struct ocfs2_cached_dealloc_ctxt *dealloc) 5044 { 5045 int ret = 0; 5046 struct ocfs2_extent_list *el = path_leaf_el(path); 5047 struct buffer_head *last_eb_bh = NULL; 5048 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 5049 struct ocfs2_merge_ctxt ctxt; 5050 struct ocfs2_extent_list *rightmost_el; 5051 5052 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) || 5053 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) < 5054 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) { 5055 ret = -EIO; 5056 mlog_errno(ret); 5057 goto out; 5058 } 5059 5060 ret = ocfs2_figure_merge_contig_type(et, path, el, 5061 split_index, 5062 split_rec, 5063 &ctxt); 5064 if (ret) { 5065 mlog_errno(ret); 5066 goto out; 5067 } 5068 5069 /* 5070 * The core merge / split code wants to know how much room is 5071 * left in this allocation tree, so we pass the 5072 * rightmost extent list. 5073 */ 5074 if (path->p_tree_depth) { 5075 struct ocfs2_extent_block *eb; 5076 5077 ret = ocfs2_read_extent_block(et->et_ci, 5078 ocfs2_et_get_last_eb_blk(et), 5079 &last_eb_bh); 5080 if (ret) { 5081 mlog_errno(ret); 5082 goto out; 5083 } 5084 5085 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5086 rightmost_el = &eb->h_list; 5087 } else 5088 rightmost_el = path_root_el(path); 5089 5090 if (rec->e_cpos == split_rec->e_cpos && 5091 rec->e_leaf_clusters == split_rec->e_leaf_clusters) 5092 ctxt.c_split_covers_rec = 1; 5093 else 5094 ctxt.c_split_covers_rec = 0; 5095 5096 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]); 5097 5098 trace_ocfs2_split_extent(split_index, ctxt.c_contig_type, 5099 ctxt.c_has_empty_extent, 5100 ctxt.c_split_covers_rec); 5101 5102 if (ctxt.c_contig_type == CONTIG_NONE) { 5103 if (ctxt.c_split_covers_rec) 5104 ret = ocfs2_replace_extent_rec(handle, et, path, el, 5105 split_index, split_rec); 5106 else 5107 ret = ocfs2_split_and_insert(handle, et, path, 5108 &last_eb_bh, split_index, 5109 split_rec, meta_ac); 5110 if (ret) 5111 mlog_errno(ret); 5112 } else { 5113 ret = ocfs2_try_to_merge_extent(handle, et, path, 5114 split_index, split_rec, 5115 dealloc, &ctxt); 5116 if (ret) 5117 mlog_errno(ret); 5118 } 5119 5120 out: 5121 brelse(last_eb_bh); 5122 return ret; 5123 } 5124 5125 /* 5126 * Change the flags of the already-existing extent at cpos for len clusters. 5127 * 5128 * new_flags: the flags we want to set. 5129 * clear_flags: the flags we want to clear. 5130 * phys: the new physical offset we want this new extent starts from. 5131 * 5132 * If the existing extent is larger than the request, initiate a 5133 * split. An attempt will be made at merging with adjacent extents. 5134 * 5135 * The caller is responsible for passing down meta_ac if we'll need it. 5136 */ 5137 int ocfs2_change_extent_flag(handle_t *handle, 5138 struct ocfs2_extent_tree *et, 5139 u32 cpos, u32 len, u32 phys, 5140 struct ocfs2_alloc_context *meta_ac, 5141 struct ocfs2_cached_dealloc_ctxt *dealloc, 5142 int new_flags, int clear_flags) 5143 { 5144 int ret, index; 5145 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 5146 u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys); 5147 struct ocfs2_extent_rec split_rec; 5148 struct ocfs2_path *left_path = NULL; 5149 struct ocfs2_extent_list *el; 5150 struct ocfs2_extent_rec *rec; 5151 5152 left_path = ocfs2_new_path_from_et(et); 5153 if (!left_path) { 5154 ret = -ENOMEM; 5155 mlog_errno(ret); 5156 goto out; 5157 } 5158 5159 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 5160 if (ret) { 5161 mlog_errno(ret); 5162 goto out; 5163 } 5164 el = path_leaf_el(left_path); 5165 5166 index = ocfs2_search_extent_list(el, cpos); 5167 if (index == -1) { 5168 ocfs2_error(sb, 5169 "Owner %llu has an extent at cpos %u which can no longer be found\n", 5170 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5171 cpos); 5172 ret = -EROFS; 5173 goto out; 5174 } 5175 5176 ret = -EIO; 5177 rec = &el->l_recs[index]; 5178 if (new_flags && (rec->e_flags & new_flags)) { 5179 mlog(ML_ERROR, "Owner %llu tried to set %d flags on an " 5180 "extent that already had them", 5181 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5182 new_flags); 5183 goto out; 5184 } 5185 5186 if (clear_flags && !(rec->e_flags & clear_flags)) { 5187 mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an " 5188 "extent that didn't have them", 5189 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5190 clear_flags); 5191 goto out; 5192 } 5193 5194 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec)); 5195 split_rec.e_cpos = cpu_to_le32(cpos); 5196 split_rec.e_leaf_clusters = cpu_to_le16(len); 5197 split_rec.e_blkno = cpu_to_le64(start_blkno); 5198 split_rec.e_flags = rec->e_flags; 5199 if (new_flags) 5200 split_rec.e_flags |= new_flags; 5201 if (clear_flags) 5202 split_rec.e_flags &= ~clear_flags; 5203 5204 ret = ocfs2_split_extent(handle, et, left_path, 5205 index, &split_rec, meta_ac, 5206 dealloc); 5207 if (ret) 5208 mlog_errno(ret); 5209 5210 out: 5211 ocfs2_free_path(left_path); 5212 return ret; 5213 5214 } 5215 5216 /* 5217 * Mark the already-existing extent at cpos as written for len clusters. 5218 * This removes the unwritten extent flag. 5219 * 5220 * If the existing extent is larger than the request, initiate a 5221 * split. An attempt will be made at merging with adjacent extents. 5222 * 5223 * The caller is responsible for passing down meta_ac if we'll need it. 5224 */ 5225 int ocfs2_mark_extent_written(struct inode *inode, 5226 struct ocfs2_extent_tree *et, 5227 handle_t *handle, u32 cpos, u32 len, u32 phys, 5228 struct ocfs2_alloc_context *meta_ac, 5229 struct ocfs2_cached_dealloc_ctxt *dealloc) 5230 { 5231 int ret; 5232 5233 trace_ocfs2_mark_extent_written( 5234 (unsigned long long)OCFS2_I(inode)->ip_blkno, 5235 cpos, len, phys); 5236 5237 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) { 5238 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents that are being written to, but the feature bit is not set in the super block\n", 5239 (unsigned long long)OCFS2_I(inode)->ip_blkno); 5240 ret = -EROFS; 5241 goto out; 5242 } 5243 5244 /* 5245 * XXX: This should be fixed up so that we just re-insert the 5246 * next extent records. 5247 */ 5248 ocfs2_et_extent_map_truncate(et, 0); 5249 5250 ret = ocfs2_change_extent_flag(handle, et, cpos, 5251 len, phys, meta_ac, dealloc, 5252 0, OCFS2_EXT_UNWRITTEN); 5253 if (ret) 5254 mlog_errno(ret); 5255 5256 out: 5257 return ret; 5258 } 5259 5260 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et, 5261 struct ocfs2_path *path, 5262 int index, u32 new_range, 5263 struct ocfs2_alloc_context *meta_ac) 5264 { 5265 int ret, depth, credits; 5266 struct buffer_head *last_eb_bh = NULL; 5267 struct ocfs2_extent_block *eb; 5268 struct ocfs2_extent_list *rightmost_el, *el; 5269 struct ocfs2_extent_rec split_rec; 5270 struct ocfs2_extent_rec *rec; 5271 struct ocfs2_insert_type insert; 5272 5273 /* 5274 * Setup the record to split before we grow the tree. 5275 */ 5276 el = path_leaf_el(path); 5277 rec = &el->l_recs[index]; 5278 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci), 5279 &split_rec, new_range, rec); 5280 5281 depth = path->p_tree_depth; 5282 if (depth > 0) { 5283 ret = ocfs2_read_extent_block(et->et_ci, 5284 ocfs2_et_get_last_eb_blk(et), 5285 &last_eb_bh); 5286 if (ret < 0) { 5287 mlog_errno(ret); 5288 goto out; 5289 } 5290 5291 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5292 rightmost_el = &eb->h_list; 5293 } else 5294 rightmost_el = path_leaf_el(path); 5295 5296 credits = path->p_tree_depth + 5297 ocfs2_extend_meta_needed(et->et_root_el); 5298 ret = ocfs2_extend_trans(handle, credits); 5299 if (ret) { 5300 mlog_errno(ret); 5301 goto out; 5302 } 5303 5304 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 5305 le16_to_cpu(rightmost_el->l_count)) { 5306 ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh, 5307 meta_ac); 5308 if (ret) { 5309 mlog_errno(ret); 5310 goto out; 5311 } 5312 } 5313 5314 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 5315 insert.ins_appending = APPEND_NONE; 5316 insert.ins_contig = CONTIG_NONE; 5317 insert.ins_split = SPLIT_RIGHT; 5318 insert.ins_tree_depth = depth; 5319 5320 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert); 5321 if (ret) 5322 mlog_errno(ret); 5323 5324 out: 5325 brelse(last_eb_bh); 5326 return ret; 5327 } 5328 5329 static int ocfs2_truncate_rec(handle_t *handle, 5330 struct ocfs2_extent_tree *et, 5331 struct ocfs2_path *path, int index, 5332 struct ocfs2_cached_dealloc_ctxt *dealloc, 5333 u32 cpos, u32 len) 5334 { 5335 int ret; 5336 u32 left_cpos, rec_range, trunc_range; 5337 int wants_rotate = 0, is_rightmost_tree_rec = 0; 5338 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 5339 struct ocfs2_path *left_path = NULL; 5340 struct ocfs2_extent_list *el = path_leaf_el(path); 5341 struct ocfs2_extent_rec *rec; 5342 struct ocfs2_extent_block *eb; 5343 5344 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) { 5345 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 5346 if (ret) { 5347 mlog_errno(ret); 5348 goto out; 5349 } 5350 5351 index--; 5352 } 5353 5354 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) && 5355 path->p_tree_depth) { 5356 /* 5357 * Check whether this is the rightmost tree record. If 5358 * we remove all of this record or part of its right 5359 * edge then an update of the record lengths above it 5360 * will be required. 5361 */ 5362 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 5363 if (eb->h_next_leaf_blk == 0) 5364 is_rightmost_tree_rec = 1; 5365 } 5366 5367 rec = &el->l_recs[index]; 5368 if (index == 0 && path->p_tree_depth && 5369 le32_to_cpu(rec->e_cpos) == cpos) { 5370 /* 5371 * Changing the leftmost offset (via partial or whole 5372 * record truncate) of an interior (or rightmost) path 5373 * means we have to update the subtree that is formed 5374 * by this leaf and the one to it's left. 5375 * 5376 * There are two cases we can skip: 5377 * 1) Path is the leftmost one in our btree. 5378 * 2) The leaf is rightmost and will be empty after 5379 * we remove the extent record - the rotate code 5380 * knows how to update the newly formed edge. 5381 */ 5382 5383 ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos); 5384 if (ret) { 5385 mlog_errno(ret); 5386 goto out; 5387 } 5388 5389 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) { 5390 left_path = ocfs2_new_path_from_path(path); 5391 if (!left_path) { 5392 ret = -ENOMEM; 5393 mlog_errno(ret); 5394 goto out; 5395 } 5396 5397 ret = ocfs2_find_path(et->et_ci, left_path, 5398 left_cpos); 5399 if (ret) { 5400 mlog_errno(ret); 5401 goto out; 5402 } 5403 } 5404 } 5405 5406 ret = ocfs2_extend_rotate_transaction(handle, 0, 5407 handle->h_buffer_credits, 5408 path); 5409 if (ret) { 5410 mlog_errno(ret); 5411 goto out; 5412 } 5413 5414 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 5415 if (ret) { 5416 mlog_errno(ret); 5417 goto out; 5418 } 5419 5420 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 5421 if (ret) { 5422 mlog_errno(ret); 5423 goto out; 5424 } 5425 5426 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5427 trunc_range = cpos + len; 5428 5429 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) { 5430 int next_free; 5431 5432 memset(rec, 0, sizeof(*rec)); 5433 ocfs2_cleanup_merge(el, index); 5434 wants_rotate = 1; 5435 5436 next_free = le16_to_cpu(el->l_next_free_rec); 5437 if (is_rightmost_tree_rec && next_free > 1) { 5438 /* 5439 * We skip the edge update if this path will 5440 * be deleted by the rotate code. 5441 */ 5442 rec = &el->l_recs[next_free - 1]; 5443 ocfs2_adjust_rightmost_records(handle, et, path, 5444 rec); 5445 } 5446 } else if (le32_to_cpu(rec->e_cpos) == cpos) { 5447 /* Remove leftmost portion of the record. */ 5448 le32_add_cpu(&rec->e_cpos, len); 5449 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len)); 5450 le16_add_cpu(&rec->e_leaf_clusters, -len); 5451 } else if (rec_range == trunc_range) { 5452 /* Remove rightmost portion of the record */ 5453 le16_add_cpu(&rec->e_leaf_clusters, -len); 5454 if (is_rightmost_tree_rec) 5455 ocfs2_adjust_rightmost_records(handle, et, path, rec); 5456 } else { 5457 /* Caller should have trapped this. */ 5458 mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) " 5459 "(%u, %u)\n", 5460 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5461 le32_to_cpu(rec->e_cpos), 5462 le16_to_cpu(rec->e_leaf_clusters), cpos, len); 5463 BUG(); 5464 } 5465 5466 if (left_path) { 5467 int subtree_index; 5468 5469 subtree_index = ocfs2_find_subtree_root(et, left_path, path); 5470 ocfs2_complete_edge_insert(handle, left_path, path, 5471 subtree_index); 5472 } 5473 5474 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 5475 5476 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 5477 if (ret) { 5478 mlog_errno(ret); 5479 goto out; 5480 } 5481 5482 out: 5483 ocfs2_free_path(left_path); 5484 return ret; 5485 } 5486 5487 int ocfs2_remove_extent(handle_t *handle, 5488 struct ocfs2_extent_tree *et, 5489 u32 cpos, u32 len, 5490 struct ocfs2_alloc_context *meta_ac, 5491 struct ocfs2_cached_dealloc_ctxt *dealloc) 5492 { 5493 int ret, index; 5494 u32 rec_range, trunc_range; 5495 struct ocfs2_extent_rec *rec; 5496 struct ocfs2_extent_list *el; 5497 struct ocfs2_path *path = NULL; 5498 5499 /* 5500 * XXX: Why are we truncating to 0 instead of wherever this 5501 * affects us? 5502 */ 5503 ocfs2_et_extent_map_truncate(et, 0); 5504 5505 path = ocfs2_new_path_from_et(et); 5506 if (!path) { 5507 ret = -ENOMEM; 5508 mlog_errno(ret); 5509 goto out; 5510 } 5511 5512 ret = ocfs2_find_path(et->et_ci, path, cpos); 5513 if (ret) { 5514 mlog_errno(ret); 5515 goto out; 5516 } 5517 5518 el = path_leaf_el(path); 5519 index = ocfs2_search_extent_list(el, cpos); 5520 if (index == -1) { 5521 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5522 "Owner %llu has an extent at cpos %u which can no longer be found\n", 5523 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5524 cpos); 5525 ret = -EROFS; 5526 goto out; 5527 } 5528 5529 /* 5530 * We have 3 cases of extent removal: 5531 * 1) Range covers the entire extent rec 5532 * 2) Range begins or ends on one edge of the extent rec 5533 * 3) Range is in the middle of the extent rec (no shared edges) 5534 * 5535 * For case 1 we remove the extent rec and left rotate to 5536 * fill the hole. 5537 * 5538 * For case 2 we just shrink the existing extent rec, with a 5539 * tree update if the shrinking edge is also the edge of an 5540 * extent block. 5541 * 5542 * For case 3 we do a right split to turn the extent rec into 5543 * something case 2 can handle. 5544 */ 5545 rec = &el->l_recs[index]; 5546 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5547 trunc_range = cpos + len; 5548 5549 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range); 5550 5551 trace_ocfs2_remove_extent( 5552 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5553 cpos, len, index, le32_to_cpu(rec->e_cpos), 5554 ocfs2_rec_clusters(el, rec)); 5555 5556 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) { 5557 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc, 5558 cpos, len); 5559 if (ret) { 5560 mlog_errno(ret); 5561 goto out; 5562 } 5563 } else { 5564 ret = ocfs2_split_tree(handle, et, path, index, 5565 trunc_range, meta_ac); 5566 if (ret) { 5567 mlog_errno(ret); 5568 goto out; 5569 } 5570 5571 /* 5572 * The split could have manipulated the tree enough to 5573 * move the record location, so we have to look for it again. 5574 */ 5575 ocfs2_reinit_path(path, 1); 5576 5577 ret = ocfs2_find_path(et->et_ci, path, cpos); 5578 if (ret) { 5579 mlog_errno(ret); 5580 goto out; 5581 } 5582 5583 el = path_leaf_el(path); 5584 index = ocfs2_search_extent_list(el, cpos); 5585 if (index == -1) { 5586 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5587 "Owner %llu: split at cpos %u lost record\n", 5588 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5589 cpos); 5590 ret = -EROFS; 5591 goto out; 5592 } 5593 5594 /* 5595 * Double check our values here. If anything is fishy, 5596 * it's easier to catch it at the top level. 5597 */ 5598 rec = &el->l_recs[index]; 5599 rec_range = le32_to_cpu(rec->e_cpos) + 5600 ocfs2_rec_clusters(el, rec); 5601 if (rec_range != trunc_range) { 5602 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5603 "Owner %llu: error after split at cpos %u trunc len %u, existing record is (%u,%u)\n", 5604 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5605 cpos, len, le32_to_cpu(rec->e_cpos), 5606 ocfs2_rec_clusters(el, rec)); 5607 ret = -EROFS; 5608 goto out; 5609 } 5610 5611 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc, 5612 cpos, len); 5613 if (ret) { 5614 mlog_errno(ret); 5615 goto out; 5616 } 5617 } 5618 5619 out: 5620 ocfs2_free_path(path); 5621 return ret; 5622 } 5623 5624 /* 5625 * ocfs2_reserve_blocks_for_rec_trunc() would look basically the 5626 * same as ocfs2_lock_alloctors(), except for it accepts a blocks 5627 * number to reserve some extra blocks, and it only handles meta 5628 * data allocations. 5629 * 5630 * Currently, only ocfs2_remove_btree_range() uses it for truncating 5631 * and punching holes. 5632 */ 5633 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode, 5634 struct ocfs2_extent_tree *et, 5635 u32 extents_to_split, 5636 struct ocfs2_alloc_context **ac, 5637 int extra_blocks) 5638 { 5639 int ret = 0, num_free_extents; 5640 unsigned int max_recs_needed = 2 * extents_to_split; 5641 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5642 5643 *ac = NULL; 5644 5645 num_free_extents = ocfs2_num_free_extents(osb, et); 5646 if (num_free_extents < 0) { 5647 ret = num_free_extents; 5648 mlog_errno(ret); 5649 goto out; 5650 } 5651 5652 if (!num_free_extents || 5653 (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed)) 5654 extra_blocks += ocfs2_extend_meta_needed(et->et_root_el); 5655 5656 if (extra_blocks) { 5657 ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac); 5658 if (ret < 0) { 5659 if (ret != -ENOSPC) 5660 mlog_errno(ret); 5661 goto out; 5662 } 5663 } 5664 5665 out: 5666 if (ret) { 5667 if (*ac) { 5668 ocfs2_free_alloc_context(*ac); 5669 *ac = NULL; 5670 } 5671 } 5672 5673 return ret; 5674 } 5675 5676 int ocfs2_remove_btree_range(struct inode *inode, 5677 struct ocfs2_extent_tree *et, 5678 u32 cpos, u32 phys_cpos, u32 len, int flags, 5679 struct ocfs2_cached_dealloc_ctxt *dealloc, 5680 u64 refcount_loc, bool refcount_tree_locked) 5681 { 5682 int ret, credits = 0, extra_blocks = 0; 5683 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos); 5684 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5685 struct inode *tl_inode = osb->osb_tl_inode; 5686 handle_t *handle; 5687 struct ocfs2_alloc_context *meta_ac = NULL; 5688 struct ocfs2_refcount_tree *ref_tree = NULL; 5689 5690 if ((flags & OCFS2_EXT_REFCOUNTED) && len) { 5691 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & 5692 OCFS2_HAS_REFCOUNT_FL)); 5693 5694 if (!refcount_tree_locked) { 5695 ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1, 5696 &ref_tree, NULL); 5697 if (ret) { 5698 mlog_errno(ret); 5699 goto bail; 5700 } 5701 } 5702 5703 ret = ocfs2_prepare_refcount_change_for_del(inode, 5704 refcount_loc, 5705 phys_blkno, 5706 len, 5707 &credits, 5708 &extra_blocks); 5709 if (ret < 0) { 5710 mlog_errno(ret); 5711 goto bail; 5712 } 5713 } 5714 5715 ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac, 5716 extra_blocks); 5717 if (ret) { 5718 mlog_errno(ret); 5719 goto bail; 5720 } 5721 5722 mutex_lock(&tl_inode->i_mutex); 5723 5724 if (ocfs2_truncate_log_needs_flush(osb)) { 5725 ret = __ocfs2_flush_truncate_log(osb); 5726 if (ret < 0) { 5727 mlog_errno(ret); 5728 goto out; 5729 } 5730 } 5731 5732 handle = ocfs2_start_trans(osb, 5733 ocfs2_remove_extent_credits(osb->sb) + credits); 5734 if (IS_ERR(handle)) { 5735 ret = PTR_ERR(handle); 5736 mlog_errno(ret); 5737 goto out; 5738 } 5739 5740 ret = ocfs2_et_root_journal_access(handle, et, 5741 OCFS2_JOURNAL_ACCESS_WRITE); 5742 if (ret) { 5743 mlog_errno(ret); 5744 goto out_commit; 5745 } 5746 5747 dquot_free_space_nodirty(inode, 5748 ocfs2_clusters_to_bytes(inode->i_sb, len)); 5749 5750 ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc); 5751 if (ret) { 5752 mlog_errno(ret); 5753 goto out_commit; 5754 } 5755 5756 ocfs2_et_update_clusters(et, -len); 5757 ocfs2_update_inode_fsync_trans(handle, inode, 1); 5758 5759 ocfs2_journal_dirty(handle, et->et_root_bh); 5760 5761 if (phys_blkno) { 5762 if (flags & OCFS2_EXT_REFCOUNTED) 5763 ret = ocfs2_decrease_refcount(inode, handle, 5764 ocfs2_blocks_to_clusters(osb->sb, 5765 phys_blkno), 5766 len, meta_ac, 5767 dealloc, 1); 5768 else 5769 ret = ocfs2_truncate_log_append(osb, handle, 5770 phys_blkno, len); 5771 if (ret) 5772 mlog_errno(ret); 5773 5774 } 5775 5776 out_commit: 5777 ocfs2_commit_trans(osb, handle); 5778 out: 5779 mutex_unlock(&tl_inode->i_mutex); 5780 bail: 5781 if (meta_ac) 5782 ocfs2_free_alloc_context(meta_ac); 5783 5784 if (ref_tree) 5785 ocfs2_unlock_refcount_tree(osb, ref_tree, 1); 5786 5787 return ret; 5788 } 5789 5790 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb) 5791 { 5792 struct buffer_head *tl_bh = osb->osb_tl_bh; 5793 struct ocfs2_dinode *di; 5794 struct ocfs2_truncate_log *tl; 5795 5796 di = (struct ocfs2_dinode *) tl_bh->b_data; 5797 tl = &di->id2.i_dealloc; 5798 5799 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count), 5800 "slot %d, invalid truncate log parameters: used = " 5801 "%u, count = %u\n", osb->slot_num, 5802 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count)); 5803 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count); 5804 } 5805 5806 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl, 5807 unsigned int new_start) 5808 { 5809 unsigned int tail_index; 5810 unsigned int current_tail; 5811 5812 /* No records, nothing to coalesce */ 5813 if (!le16_to_cpu(tl->tl_used)) 5814 return 0; 5815 5816 tail_index = le16_to_cpu(tl->tl_used) - 1; 5817 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start); 5818 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters); 5819 5820 return current_tail == new_start; 5821 } 5822 5823 int ocfs2_truncate_log_append(struct ocfs2_super *osb, 5824 handle_t *handle, 5825 u64 start_blk, 5826 unsigned int num_clusters) 5827 { 5828 int status, index; 5829 unsigned int start_cluster, tl_count; 5830 struct inode *tl_inode = osb->osb_tl_inode; 5831 struct buffer_head *tl_bh = osb->osb_tl_bh; 5832 struct ocfs2_dinode *di; 5833 struct ocfs2_truncate_log *tl; 5834 5835 BUG_ON(mutex_trylock(&tl_inode->i_mutex)); 5836 5837 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk); 5838 5839 di = (struct ocfs2_dinode *) tl_bh->b_data; 5840 5841 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 5842 * by the underlying call to ocfs2_read_inode_block(), so any 5843 * corruption is a code bug */ 5844 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5845 5846 tl = &di->id2.i_dealloc; 5847 tl_count = le16_to_cpu(tl->tl_count); 5848 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) || 5849 tl_count == 0, 5850 "Truncate record count on #%llu invalid " 5851 "wanted %u, actual %u\n", 5852 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5853 ocfs2_truncate_recs_per_inode(osb->sb), 5854 le16_to_cpu(tl->tl_count)); 5855 5856 /* Caller should have known to flush before calling us. */ 5857 index = le16_to_cpu(tl->tl_used); 5858 if (index >= tl_count) { 5859 status = -ENOSPC; 5860 mlog_errno(status); 5861 goto bail; 5862 } 5863 5864 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, 5865 OCFS2_JOURNAL_ACCESS_WRITE); 5866 if (status < 0) { 5867 mlog_errno(status); 5868 goto bail; 5869 } 5870 5871 trace_ocfs2_truncate_log_append( 5872 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index, 5873 start_cluster, num_clusters); 5874 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) { 5875 /* 5876 * Move index back to the record we are coalescing with. 5877 * ocfs2_truncate_log_can_coalesce() guarantees nonzero 5878 */ 5879 index--; 5880 5881 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters); 5882 trace_ocfs2_truncate_log_append( 5883 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5884 index, le32_to_cpu(tl->tl_recs[index].t_start), 5885 num_clusters); 5886 } else { 5887 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster); 5888 tl->tl_used = cpu_to_le16(index + 1); 5889 } 5890 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters); 5891 5892 ocfs2_journal_dirty(handle, tl_bh); 5893 5894 osb->truncated_clusters += num_clusters; 5895 bail: 5896 return status; 5897 } 5898 5899 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb, 5900 handle_t *handle, 5901 struct inode *data_alloc_inode, 5902 struct buffer_head *data_alloc_bh) 5903 { 5904 int status = 0; 5905 int i; 5906 unsigned int num_clusters; 5907 u64 start_blk; 5908 struct ocfs2_truncate_rec rec; 5909 struct ocfs2_dinode *di; 5910 struct ocfs2_truncate_log *tl; 5911 struct inode *tl_inode = osb->osb_tl_inode; 5912 struct buffer_head *tl_bh = osb->osb_tl_bh; 5913 5914 di = (struct ocfs2_dinode *) tl_bh->b_data; 5915 tl = &di->id2.i_dealloc; 5916 i = le16_to_cpu(tl->tl_used) - 1; 5917 while (i >= 0) { 5918 /* Caller has given us at least enough credits to 5919 * update the truncate log dinode */ 5920 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, 5921 OCFS2_JOURNAL_ACCESS_WRITE); 5922 if (status < 0) { 5923 mlog_errno(status); 5924 goto bail; 5925 } 5926 5927 tl->tl_used = cpu_to_le16(i); 5928 5929 ocfs2_journal_dirty(handle, tl_bh); 5930 5931 /* TODO: Perhaps we can calculate the bulk of the 5932 * credits up front rather than extending like 5933 * this. */ 5934 status = ocfs2_extend_trans(handle, 5935 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC); 5936 if (status < 0) { 5937 mlog_errno(status); 5938 goto bail; 5939 } 5940 5941 rec = tl->tl_recs[i]; 5942 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb, 5943 le32_to_cpu(rec.t_start)); 5944 num_clusters = le32_to_cpu(rec.t_clusters); 5945 5946 /* if start_blk is not set, we ignore the record as 5947 * invalid. */ 5948 if (start_blk) { 5949 trace_ocfs2_replay_truncate_records( 5950 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5951 i, le32_to_cpu(rec.t_start), num_clusters); 5952 5953 status = ocfs2_free_clusters(handle, data_alloc_inode, 5954 data_alloc_bh, start_blk, 5955 num_clusters); 5956 if (status < 0) { 5957 mlog_errno(status); 5958 goto bail; 5959 } 5960 } 5961 i--; 5962 } 5963 5964 osb->truncated_clusters = 0; 5965 5966 bail: 5967 return status; 5968 } 5969 5970 /* Expects you to already be holding tl_inode->i_mutex */ 5971 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb) 5972 { 5973 int status; 5974 unsigned int num_to_flush; 5975 handle_t *handle; 5976 struct inode *tl_inode = osb->osb_tl_inode; 5977 struct inode *data_alloc_inode = NULL; 5978 struct buffer_head *tl_bh = osb->osb_tl_bh; 5979 struct buffer_head *data_alloc_bh = NULL; 5980 struct ocfs2_dinode *di; 5981 struct ocfs2_truncate_log *tl; 5982 5983 BUG_ON(mutex_trylock(&tl_inode->i_mutex)); 5984 5985 di = (struct ocfs2_dinode *) tl_bh->b_data; 5986 5987 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 5988 * by the underlying call to ocfs2_read_inode_block(), so any 5989 * corruption is a code bug */ 5990 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5991 5992 tl = &di->id2.i_dealloc; 5993 num_to_flush = le16_to_cpu(tl->tl_used); 5994 trace_ocfs2_flush_truncate_log( 5995 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5996 num_to_flush); 5997 if (!num_to_flush) { 5998 status = 0; 5999 goto out; 6000 } 6001 6002 data_alloc_inode = ocfs2_get_system_file_inode(osb, 6003 GLOBAL_BITMAP_SYSTEM_INODE, 6004 OCFS2_INVALID_SLOT); 6005 if (!data_alloc_inode) { 6006 status = -EINVAL; 6007 mlog(ML_ERROR, "Could not get bitmap inode!\n"); 6008 goto out; 6009 } 6010 6011 mutex_lock(&data_alloc_inode->i_mutex); 6012 6013 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1); 6014 if (status < 0) { 6015 mlog_errno(status); 6016 goto out_mutex; 6017 } 6018 6019 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6020 if (IS_ERR(handle)) { 6021 status = PTR_ERR(handle); 6022 mlog_errno(status); 6023 goto out_unlock; 6024 } 6025 6026 status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode, 6027 data_alloc_bh); 6028 if (status < 0) 6029 mlog_errno(status); 6030 6031 ocfs2_commit_trans(osb, handle); 6032 6033 out_unlock: 6034 brelse(data_alloc_bh); 6035 ocfs2_inode_unlock(data_alloc_inode, 1); 6036 6037 out_mutex: 6038 mutex_unlock(&data_alloc_inode->i_mutex); 6039 iput(data_alloc_inode); 6040 6041 out: 6042 return status; 6043 } 6044 6045 int ocfs2_flush_truncate_log(struct ocfs2_super *osb) 6046 { 6047 int status; 6048 struct inode *tl_inode = osb->osb_tl_inode; 6049 6050 mutex_lock(&tl_inode->i_mutex); 6051 status = __ocfs2_flush_truncate_log(osb); 6052 mutex_unlock(&tl_inode->i_mutex); 6053 6054 return status; 6055 } 6056 6057 static void ocfs2_truncate_log_worker(struct work_struct *work) 6058 { 6059 int status; 6060 struct ocfs2_super *osb = 6061 container_of(work, struct ocfs2_super, 6062 osb_truncate_log_wq.work); 6063 6064 status = ocfs2_flush_truncate_log(osb); 6065 if (status < 0) 6066 mlog_errno(status); 6067 else 6068 ocfs2_init_steal_slots(osb); 6069 } 6070 6071 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ) 6072 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb, 6073 int cancel) 6074 { 6075 if (osb->osb_tl_inode && 6076 atomic_read(&osb->osb_tl_disable) == 0) { 6077 /* We want to push off log flushes while truncates are 6078 * still running. */ 6079 if (cancel) 6080 cancel_delayed_work(&osb->osb_truncate_log_wq); 6081 6082 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq, 6083 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL); 6084 } 6085 } 6086 6087 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb, 6088 int slot_num, 6089 struct inode **tl_inode, 6090 struct buffer_head **tl_bh) 6091 { 6092 int status; 6093 struct inode *inode = NULL; 6094 struct buffer_head *bh = NULL; 6095 6096 inode = ocfs2_get_system_file_inode(osb, 6097 TRUNCATE_LOG_SYSTEM_INODE, 6098 slot_num); 6099 if (!inode) { 6100 status = -EINVAL; 6101 mlog(ML_ERROR, "Could not get load truncate log inode!\n"); 6102 goto bail; 6103 } 6104 6105 status = ocfs2_read_inode_block(inode, &bh); 6106 if (status < 0) { 6107 iput(inode); 6108 mlog_errno(status); 6109 goto bail; 6110 } 6111 6112 *tl_inode = inode; 6113 *tl_bh = bh; 6114 bail: 6115 return status; 6116 } 6117 6118 /* called during the 1st stage of node recovery. we stamp a clean 6119 * truncate log and pass back a copy for processing later. if the 6120 * truncate log does not require processing, a *tl_copy is set to 6121 * NULL. */ 6122 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb, 6123 int slot_num, 6124 struct ocfs2_dinode **tl_copy) 6125 { 6126 int status; 6127 struct inode *tl_inode = NULL; 6128 struct buffer_head *tl_bh = NULL; 6129 struct ocfs2_dinode *di; 6130 struct ocfs2_truncate_log *tl; 6131 6132 *tl_copy = NULL; 6133 6134 trace_ocfs2_begin_truncate_log_recovery(slot_num); 6135 6136 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh); 6137 if (status < 0) { 6138 mlog_errno(status); 6139 goto bail; 6140 } 6141 6142 di = (struct ocfs2_dinode *) tl_bh->b_data; 6143 6144 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's 6145 * validated by the underlying call to ocfs2_read_inode_block(), 6146 * so any corruption is a code bug */ 6147 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 6148 6149 tl = &di->id2.i_dealloc; 6150 if (le16_to_cpu(tl->tl_used)) { 6151 trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl->tl_used)); 6152 6153 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL); 6154 if (!(*tl_copy)) { 6155 status = -ENOMEM; 6156 mlog_errno(status); 6157 goto bail; 6158 } 6159 6160 /* Assuming the write-out below goes well, this copy 6161 * will be passed back to recovery for processing. */ 6162 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size); 6163 6164 /* All we need to do to clear the truncate log is set 6165 * tl_used. */ 6166 tl->tl_used = 0; 6167 6168 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check); 6169 status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode)); 6170 if (status < 0) { 6171 mlog_errno(status); 6172 goto bail; 6173 } 6174 } 6175 6176 bail: 6177 if (tl_inode) 6178 iput(tl_inode); 6179 brelse(tl_bh); 6180 6181 if (status < 0) { 6182 kfree(*tl_copy); 6183 *tl_copy = NULL; 6184 mlog_errno(status); 6185 } 6186 6187 return status; 6188 } 6189 6190 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb, 6191 struct ocfs2_dinode *tl_copy) 6192 { 6193 int status = 0; 6194 int i; 6195 unsigned int clusters, num_recs, start_cluster; 6196 u64 start_blk; 6197 handle_t *handle; 6198 struct inode *tl_inode = osb->osb_tl_inode; 6199 struct ocfs2_truncate_log *tl; 6200 6201 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) { 6202 mlog(ML_ERROR, "Asked to recover my own truncate log!\n"); 6203 return -EINVAL; 6204 } 6205 6206 tl = &tl_copy->id2.i_dealloc; 6207 num_recs = le16_to_cpu(tl->tl_used); 6208 trace_ocfs2_complete_truncate_log_recovery( 6209 (unsigned long long)le64_to_cpu(tl_copy->i_blkno), 6210 num_recs); 6211 6212 mutex_lock(&tl_inode->i_mutex); 6213 for(i = 0; i < num_recs; i++) { 6214 if (ocfs2_truncate_log_needs_flush(osb)) { 6215 status = __ocfs2_flush_truncate_log(osb); 6216 if (status < 0) { 6217 mlog_errno(status); 6218 goto bail_up; 6219 } 6220 } 6221 6222 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6223 if (IS_ERR(handle)) { 6224 status = PTR_ERR(handle); 6225 mlog_errno(status); 6226 goto bail_up; 6227 } 6228 6229 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters); 6230 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start); 6231 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster); 6232 6233 status = ocfs2_truncate_log_append(osb, handle, 6234 start_blk, clusters); 6235 ocfs2_commit_trans(osb, handle); 6236 if (status < 0) { 6237 mlog_errno(status); 6238 goto bail_up; 6239 } 6240 } 6241 6242 bail_up: 6243 mutex_unlock(&tl_inode->i_mutex); 6244 6245 return status; 6246 } 6247 6248 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb) 6249 { 6250 int status; 6251 struct inode *tl_inode = osb->osb_tl_inode; 6252 6253 atomic_set(&osb->osb_tl_disable, 1); 6254 6255 if (tl_inode) { 6256 cancel_delayed_work(&osb->osb_truncate_log_wq); 6257 flush_workqueue(ocfs2_wq); 6258 6259 status = ocfs2_flush_truncate_log(osb); 6260 if (status < 0) 6261 mlog_errno(status); 6262 6263 brelse(osb->osb_tl_bh); 6264 iput(osb->osb_tl_inode); 6265 } 6266 } 6267 6268 int ocfs2_truncate_log_init(struct ocfs2_super *osb) 6269 { 6270 int status; 6271 struct inode *tl_inode = NULL; 6272 struct buffer_head *tl_bh = NULL; 6273 6274 status = ocfs2_get_truncate_log_info(osb, 6275 osb->slot_num, 6276 &tl_inode, 6277 &tl_bh); 6278 if (status < 0) 6279 mlog_errno(status); 6280 6281 /* ocfs2_truncate_log_shutdown keys on the existence of 6282 * osb->osb_tl_inode so we don't set any of the osb variables 6283 * until we're sure all is well. */ 6284 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq, 6285 ocfs2_truncate_log_worker); 6286 atomic_set(&osb->osb_tl_disable, 0); 6287 osb->osb_tl_bh = tl_bh; 6288 osb->osb_tl_inode = tl_inode; 6289 6290 return status; 6291 } 6292 6293 /* 6294 * Delayed de-allocation of suballocator blocks. 6295 * 6296 * Some sets of block de-allocations might involve multiple suballocator inodes. 6297 * 6298 * The locking for this can get extremely complicated, especially when 6299 * the suballocator inodes to delete from aren't known until deep 6300 * within an unrelated codepath. 6301 * 6302 * ocfs2_extent_block structures are a good example of this - an inode 6303 * btree could have been grown by any number of nodes each allocating 6304 * out of their own suballoc inode. 6305 * 6306 * These structures allow the delay of block de-allocation until a 6307 * later time, when locking of multiple cluster inodes won't cause 6308 * deadlock. 6309 */ 6310 6311 /* 6312 * Describe a single bit freed from a suballocator. For the block 6313 * suballocators, it represents one block. For the global cluster 6314 * allocator, it represents some clusters and free_bit indicates 6315 * clusters number. 6316 */ 6317 struct ocfs2_cached_block_free { 6318 struct ocfs2_cached_block_free *free_next; 6319 u64 free_bg; 6320 u64 free_blk; 6321 unsigned int free_bit; 6322 }; 6323 6324 struct ocfs2_per_slot_free_list { 6325 struct ocfs2_per_slot_free_list *f_next_suballocator; 6326 int f_inode_type; 6327 int f_slot; 6328 struct ocfs2_cached_block_free *f_first; 6329 }; 6330 6331 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb, 6332 int sysfile_type, 6333 int slot, 6334 struct ocfs2_cached_block_free *head) 6335 { 6336 int ret; 6337 u64 bg_blkno; 6338 handle_t *handle; 6339 struct inode *inode; 6340 struct buffer_head *di_bh = NULL; 6341 struct ocfs2_cached_block_free *tmp; 6342 6343 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot); 6344 if (!inode) { 6345 ret = -EINVAL; 6346 mlog_errno(ret); 6347 goto out; 6348 } 6349 6350 mutex_lock(&inode->i_mutex); 6351 6352 ret = ocfs2_inode_lock(inode, &di_bh, 1); 6353 if (ret) { 6354 mlog_errno(ret); 6355 goto out_mutex; 6356 } 6357 6358 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE); 6359 if (IS_ERR(handle)) { 6360 ret = PTR_ERR(handle); 6361 mlog_errno(ret); 6362 goto out_unlock; 6363 } 6364 6365 while (head) { 6366 if (head->free_bg) 6367 bg_blkno = head->free_bg; 6368 else 6369 bg_blkno = ocfs2_which_suballoc_group(head->free_blk, 6370 head->free_bit); 6371 trace_ocfs2_free_cached_blocks( 6372 (unsigned long long)head->free_blk, head->free_bit); 6373 6374 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh, 6375 head->free_bit, bg_blkno, 1); 6376 if (ret) { 6377 mlog_errno(ret); 6378 goto out_journal; 6379 } 6380 6381 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE); 6382 if (ret) { 6383 mlog_errno(ret); 6384 goto out_journal; 6385 } 6386 6387 tmp = head; 6388 head = head->free_next; 6389 kfree(tmp); 6390 } 6391 6392 out_journal: 6393 ocfs2_commit_trans(osb, handle); 6394 6395 out_unlock: 6396 ocfs2_inode_unlock(inode, 1); 6397 brelse(di_bh); 6398 out_mutex: 6399 mutex_unlock(&inode->i_mutex); 6400 iput(inode); 6401 out: 6402 while(head) { 6403 /* Premature exit may have left some dangling items. */ 6404 tmp = head; 6405 head = head->free_next; 6406 kfree(tmp); 6407 } 6408 6409 return ret; 6410 } 6411 6412 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6413 u64 blkno, unsigned int bit) 6414 { 6415 int ret = 0; 6416 struct ocfs2_cached_block_free *item; 6417 6418 item = kzalloc(sizeof(*item), GFP_NOFS); 6419 if (item == NULL) { 6420 ret = -ENOMEM; 6421 mlog_errno(ret); 6422 return ret; 6423 } 6424 6425 trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno, bit); 6426 6427 item->free_blk = blkno; 6428 item->free_bit = bit; 6429 item->free_next = ctxt->c_global_allocator; 6430 6431 ctxt->c_global_allocator = item; 6432 return ret; 6433 } 6434 6435 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb, 6436 struct ocfs2_cached_block_free *head) 6437 { 6438 struct ocfs2_cached_block_free *tmp; 6439 struct inode *tl_inode = osb->osb_tl_inode; 6440 handle_t *handle; 6441 int ret = 0; 6442 6443 mutex_lock(&tl_inode->i_mutex); 6444 6445 while (head) { 6446 if (ocfs2_truncate_log_needs_flush(osb)) { 6447 ret = __ocfs2_flush_truncate_log(osb); 6448 if (ret < 0) { 6449 mlog_errno(ret); 6450 break; 6451 } 6452 } 6453 6454 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6455 if (IS_ERR(handle)) { 6456 ret = PTR_ERR(handle); 6457 mlog_errno(ret); 6458 break; 6459 } 6460 6461 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk, 6462 head->free_bit); 6463 6464 ocfs2_commit_trans(osb, handle); 6465 tmp = head; 6466 head = head->free_next; 6467 kfree(tmp); 6468 6469 if (ret < 0) { 6470 mlog_errno(ret); 6471 break; 6472 } 6473 } 6474 6475 mutex_unlock(&tl_inode->i_mutex); 6476 6477 while (head) { 6478 /* Premature exit may have left some dangling items. */ 6479 tmp = head; 6480 head = head->free_next; 6481 kfree(tmp); 6482 } 6483 6484 return ret; 6485 } 6486 6487 int ocfs2_run_deallocs(struct ocfs2_super *osb, 6488 struct ocfs2_cached_dealloc_ctxt *ctxt) 6489 { 6490 int ret = 0, ret2; 6491 struct ocfs2_per_slot_free_list *fl; 6492 6493 if (!ctxt) 6494 return 0; 6495 6496 while (ctxt->c_first_suballocator) { 6497 fl = ctxt->c_first_suballocator; 6498 6499 if (fl->f_first) { 6500 trace_ocfs2_run_deallocs(fl->f_inode_type, 6501 fl->f_slot); 6502 ret2 = ocfs2_free_cached_blocks(osb, 6503 fl->f_inode_type, 6504 fl->f_slot, 6505 fl->f_first); 6506 if (ret2) 6507 mlog_errno(ret2); 6508 if (!ret) 6509 ret = ret2; 6510 } 6511 6512 ctxt->c_first_suballocator = fl->f_next_suballocator; 6513 kfree(fl); 6514 } 6515 6516 if (ctxt->c_global_allocator) { 6517 ret2 = ocfs2_free_cached_clusters(osb, 6518 ctxt->c_global_allocator); 6519 if (ret2) 6520 mlog_errno(ret2); 6521 if (!ret) 6522 ret = ret2; 6523 6524 ctxt->c_global_allocator = NULL; 6525 } 6526 6527 return ret; 6528 } 6529 6530 static struct ocfs2_per_slot_free_list * 6531 ocfs2_find_per_slot_free_list(int type, 6532 int slot, 6533 struct ocfs2_cached_dealloc_ctxt *ctxt) 6534 { 6535 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; 6536 6537 while (fl) { 6538 if (fl->f_inode_type == type && fl->f_slot == slot) 6539 return fl; 6540 6541 fl = fl->f_next_suballocator; 6542 } 6543 6544 fl = kmalloc(sizeof(*fl), GFP_NOFS); 6545 if (fl) { 6546 fl->f_inode_type = type; 6547 fl->f_slot = slot; 6548 fl->f_first = NULL; 6549 fl->f_next_suballocator = ctxt->c_first_suballocator; 6550 6551 ctxt->c_first_suballocator = fl; 6552 } 6553 return fl; 6554 } 6555 6556 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6557 int type, int slot, u64 suballoc, 6558 u64 blkno, unsigned int bit) 6559 { 6560 int ret; 6561 struct ocfs2_per_slot_free_list *fl; 6562 struct ocfs2_cached_block_free *item; 6563 6564 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt); 6565 if (fl == NULL) { 6566 ret = -ENOMEM; 6567 mlog_errno(ret); 6568 goto out; 6569 } 6570 6571 item = kzalloc(sizeof(*item), GFP_NOFS); 6572 if (item == NULL) { 6573 ret = -ENOMEM; 6574 mlog_errno(ret); 6575 goto out; 6576 } 6577 6578 trace_ocfs2_cache_block_dealloc(type, slot, 6579 (unsigned long long)suballoc, 6580 (unsigned long long)blkno, bit); 6581 6582 item->free_bg = suballoc; 6583 item->free_blk = blkno; 6584 item->free_bit = bit; 6585 item->free_next = fl->f_first; 6586 6587 fl->f_first = item; 6588 6589 ret = 0; 6590 out: 6591 return ret; 6592 } 6593 6594 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 6595 struct ocfs2_extent_block *eb) 6596 { 6597 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE, 6598 le16_to_cpu(eb->h_suballoc_slot), 6599 le64_to_cpu(eb->h_suballoc_loc), 6600 le64_to_cpu(eb->h_blkno), 6601 le16_to_cpu(eb->h_suballoc_bit)); 6602 } 6603 6604 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh) 6605 { 6606 set_buffer_uptodate(bh); 6607 mark_buffer_dirty(bh); 6608 return 0; 6609 } 6610 6611 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle, 6612 unsigned int from, unsigned int to, 6613 struct page *page, int zero, u64 *phys) 6614 { 6615 int ret, partial = 0; 6616 6617 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0); 6618 if (ret) 6619 mlog_errno(ret); 6620 6621 if (zero) 6622 zero_user_segment(page, from, to); 6623 6624 /* 6625 * Need to set the buffers we zero'd into uptodate 6626 * here if they aren't - ocfs2_map_page_blocks() 6627 * might've skipped some 6628 */ 6629 ret = walk_page_buffers(handle, page_buffers(page), 6630 from, to, &partial, 6631 ocfs2_zero_func); 6632 if (ret < 0) 6633 mlog_errno(ret); 6634 else if (ocfs2_should_order_data(inode)) { 6635 ret = ocfs2_jbd2_file_inode(handle, inode); 6636 if (ret < 0) 6637 mlog_errno(ret); 6638 } 6639 6640 if (!partial) 6641 SetPageUptodate(page); 6642 6643 flush_dcache_page(page); 6644 } 6645 6646 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start, 6647 loff_t end, struct page **pages, 6648 int numpages, u64 phys, handle_t *handle) 6649 { 6650 int i; 6651 struct page *page; 6652 unsigned int from, to = PAGE_CACHE_SIZE; 6653 struct super_block *sb = inode->i_sb; 6654 6655 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb))); 6656 6657 if (numpages == 0) 6658 goto out; 6659 6660 to = PAGE_CACHE_SIZE; 6661 for(i = 0; i < numpages; i++) { 6662 page = pages[i]; 6663 6664 from = start & (PAGE_CACHE_SIZE - 1); 6665 if ((end >> PAGE_CACHE_SHIFT) == page->index) 6666 to = end & (PAGE_CACHE_SIZE - 1); 6667 6668 BUG_ON(from > PAGE_CACHE_SIZE); 6669 BUG_ON(to > PAGE_CACHE_SIZE); 6670 6671 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1, 6672 &phys); 6673 6674 start = (page->index + 1) << PAGE_CACHE_SHIFT; 6675 } 6676 out: 6677 if (pages) 6678 ocfs2_unlock_and_free_pages(pages, numpages); 6679 } 6680 6681 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end, 6682 struct page **pages, int *num) 6683 { 6684 int numpages, ret = 0; 6685 struct address_space *mapping = inode->i_mapping; 6686 unsigned long index; 6687 loff_t last_page_bytes; 6688 6689 BUG_ON(start > end); 6690 6691 numpages = 0; 6692 last_page_bytes = PAGE_ALIGN(end); 6693 index = start >> PAGE_CACHE_SHIFT; 6694 do { 6695 pages[numpages] = find_or_create_page(mapping, index, GFP_NOFS); 6696 if (!pages[numpages]) { 6697 ret = -ENOMEM; 6698 mlog_errno(ret); 6699 goto out; 6700 } 6701 6702 numpages++; 6703 index++; 6704 } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT)); 6705 6706 out: 6707 if (ret != 0) { 6708 if (pages) 6709 ocfs2_unlock_and_free_pages(pages, numpages); 6710 numpages = 0; 6711 } 6712 6713 *num = numpages; 6714 6715 return ret; 6716 } 6717 6718 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end, 6719 struct page **pages, int *num) 6720 { 6721 struct super_block *sb = inode->i_sb; 6722 6723 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits != 6724 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits); 6725 6726 return ocfs2_grab_pages(inode, start, end, pages, num); 6727 } 6728 6729 /* 6730 * Zero the area past i_size but still within an allocated 6731 * cluster. This avoids exposing nonzero data on subsequent file 6732 * extends. 6733 * 6734 * We need to call this before i_size is updated on the inode because 6735 * otherwise block_write_full_page() will skip writeout of pages past 6736 * i_size. The new_i_size parameter is passed for this reason. 6737 */ 6738 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle, 6739 u64 range_start, u64 range_end) 6740 { 6741 int ret = 0, numpages; 6742 struct page **pages = NULL; 6743 u64 phys; 6744 unsigned int ext_flags; 6745 struct super_block *sb = inode->i_sb; 6746 6747 /* 6748 * File systems which don't support sparse files zero on every 6749 * extend. 6750 */ 6751 if (!ocfs2_sparse_alloc(OCFS2_SB(sb))) 6752 return 0; 6753 6754 pages = kcalloc(ocfs2_pages_per_cluster(sb), 6755 sizeof(struct page *), GFP_NOFS); 6756 if (pages == NULL) { 6757 ret = -ENOMEM; 6758 mlog_errno(ret); 6759 goto out; 6760 } 6761 6762 if (range_start == range_end) 6763 goto out; 6764 6765 ret = ocfs2_extent_map_get_blocks(inode, 6766 range_start >> sb->s_blocksize_bits, 6767 &phys, NULL, &ext_flags); 6768 if (ret) { 6769 mlog_errno(ret); 6770 goto out; 6771 } 6772 6773 /* 6774 * Tail is a hole, or is marked unwritten. In either case, we 6775 * can count on read and write to return/push zero's. 6776 */ 6777 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN) 6778 goto out; 6779 6780 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages, 6781 &numpages); 6782 if (ret) { 6783 mlog_errno(ret); 6784 goto out; 6785 } 6786 6787 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages, 6788 numpages, phys, handle); 6789 6790 /* 6791 * Initiate writeout of the pages we zero'd here. We don't 6792 * wait on them - the truncate_inode_pages() call later will 6793 * do that for us. 6794 */ 6795 ret = filemap_fdatawrite_range(inode->i_mapping, range_start, 6796 range_end - 1); 6797 if (ret) 6798 mlog_errno(ret); 6799 6800 out: 6801 kfree(pages); 6802 6803 return ret; 6804 } 6805 6806 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode, 6807 struct ocfs2_dinode *di) 6808 { 6809 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits; 6810 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size); 6811 6812 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL) 6813 memset(&di->id2, 0, blocksize - 6814 offsetof(struct ocfs2_dinode, id2) - 6815 xattrsize); 6816 else 6817 memset(&di->id2, 0, blocksize - 6818 offsetof(struct ocfs2_dinode, id2)); 6819 } 6820 6821 void ocfs2_dinode_new_extent_list(struct inode *inode, 6822 struct ocfs2_dinode *di) 6823 { 6824 ocfs2_zero_dinode_id2_with_xattr(inode, di); 6825 di->id2.i_list.l_tree_depth = 0; 6826 di->id2.i_list.l_next_free_rec = 0; 6827 di->id2.i_list.l_count = cpu_to_le16( 6828 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di)); 6829 } 6830 6831 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di) 6832 { 6833 struct ocfs2_inode_info *oi = OCFS2_I(inode); 6834 struct ocfs2_inline_data *idata = &di->id2.i_data; 6835 6836 spin_lock(&oi->ip_lock); 6837 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL; 6838 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 6839 spin_unlock(&oi->ip_lock); 6840 6841 /* 6842 * We clear the entire i_data structure here so that all 6843 * fields can be properly initialized. 6844 */ 6845 ocfs2_zero_dinode_id2_with_xattr(inode, di); 6846 6847 idata->id_count = cpu_to_le16( 6848 ocfs2_max_inline_data_with_xattr(inode->i_sb, di)); 6849 } 6850 6851 int ocfs2_convert_inline_data_to_extents(struct inode *inode, 6852 struct buffer_head *di_bh) 6853 { 6854 int ret, i, has_data, num_pages = 0; 6855 int need_free = 0; 6856 u32 bit_off, num; 6857 handle_t *handle; 6858 u64 uninitialized_var(block); 6859 struct ocfs2_inode_info *oi = OCFS2_I(inode); 6860 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 6861 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 6862 struct ocfs2_alloc_context *data_ac = NULL; 6863 struct page **pages = NULL; 6864 loff_t end = osb->s_clustersize; 6865 struct ocfs2_extent_tree et; 6866 int did_quota = 0; 6867 6868 has_data = i_size_read(inode) ? 1 : 0; 6869 6870 if (has_data) { 6871 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb), 6872 sizeof(struct page *), GFP_NOFS); 6873 if (pages == NULL) { 6874 ret = -ENOMEM; 6875 mlog_errno(ret); 6876 return ret; 6877 } 6878 6879 ret = ocfs2_reserve_clusters(osb, 1, &data_ac); 6880 if (ret) { 6881 mlog_errno(ret); 6882 goto free_pages; 6883 } 6884 } 6885 6886 handle = ocfs2_start_trans(osb, 6887 ocfs2_inline_to_extents_credits(osb->sb)); 6888 if (IS_ERR(handle)) { 6889 ret = PTR_ERR(handle); 6890 mlog_errno(ret); 6891 goto out; 6892 } 6893 6894 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 6895 OCFS2_JOURNAL_ACCESS_WRITE); 6896 if (ret) { 6897 mlog_errno(ret); 6898 goto out_commit; 6899 } 6900 6901 if (has_data) { 6902 unsigned int page_end; 6903 u64 phys; 6904 6905 ret = dquot_alloc_space_nodirty(inode, 6906 ocfs2_clusters_to_bytes(osb->sb, 1)); 6907 if (ret) 6908 goto out_commit; 6909 did_quota = 1; 6910 6911 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 6912 6913 ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off, 6914 &num); 6915 if (ret) { 6916 mlog_errno(ret); 6917 goto out_commit; 6918 } 6919 6920 /* 6921 * Save two copies, one for insert, and one that can 6922 * be changed by ocfs2_map_and_dirty_page() below. 6923 */ 6924 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off); 6925 6926 /* 6927 * Non sparse file systems zero on extend, so no need 6928 * to do that now. 6929 */ 6930 if (!ocfs2_sparse_alloc(osb) && 6931 PAGE_CACHE_SIZE < osb->s_clustersize) 6932 end = PAGE_CACHE_SIZE; 6933 6934 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages); 6935 if (ret) { 6936 mlog_errno(ret); 6937 need_free = 1; 6938 goto out_commit; 6939 } 6940 6941 /* 6942 * This should populate the 1st page for us and mark 6943 * it up to date. 6944 */ 6945 ret = ocfs2_read_inline_data(inode, pages[0], di_bh); 6946 if (ret) { 6947 mlog_errno(ret); 6948 need_free = 1; 6949 goto out_unlock; 6950 } 6951 6952 page_end = PAGE_CACHE_SIZE; 6953 if (PAGE_CACHE_SIZE > osb->s_clustersize) 6954 page_end = osb->s_clustersize; 6955 6956 for (i = 0; i < num_pages; i++) 6957 ocfs2_map_and_dirty_page(inode, handle, 0, page_end, 6958 pages[i], i > 0, &phys); 6959 } 6960 6961 spin_lock(&oi->ip_lock); 6962 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL; 6963 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 6964 spin_unlock(&oi->ip_lock); 6965 6966 ocfs2_update_inode_fsync_trans(handle, inode, 1); 6967 ocfs2_dinode_new_extent_list(inode, di); 6968 6969 ocfs2_journal_dirty(handle, di_bh); 6970 6971 if (has_data) { 6972 /* 6973 * An error at this point should be extremely rare. If 6974 * this proves to be false, we could always re-build 6975 * the in-inode data from our pages. 6976 */ 6977 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 6978 ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL); 6979 if (ret) { 6980 mlog_errno(ret); 6981 need_free = 1; 6982 goto out_unlock; 6983 } 6984 6985 inode->i_blocks = ocfs2_inode_sector_count(inode); 6986 } 6987 6988 out_unlock: 6989 if (pages) 6990 ocfs2_unlock_and_free_pages(pages, num_pages); 6991 6992 out_commit: 6993 if (ret < 0 && did_quota) 6994 dquot_free_space_nodirty(inode, 6995 ocfs2_clusters_to_bytes(osb->sb, 1)); 6996 6997 if (need_free) { 6998 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL) 6999 ocfs2_free_local_alloc_bits(osb, handle, data_ac, 7000 bit_off, num); 7001 else 7002 ocfs2_free_clusters(handle, 7003 data_ac->ac_inode, 7004 data_ac->ac_bh, 7005 ocfs2_clusters_to_blocks(osb->sb, bit_off), 7006 num); 7007 } 7008 7009 ocfs2_commit_trans(osb, handle); 7010 7011 out: 7012 if (data_ac) 7013 ocfs2_free_alloc_context(data_ac); 7014 free_pages: 7015 kfree(pages); 7016 return ret; 7017 } 7018 7019 /* 7020 * It is expected, that by the time you call this function, 7021 * inode->i_size and fe->i_size have been adjusted. 7022 * 7023 * WARNING: This will kfree the truncate context 7024 */ 7025 int ocfs2_commit_truncate(struct ocfs2_super *osb, 7026 struct inode *inode, 7027 struct buffer_head *di_bh) 7028 { 7029 int status = 0, i, flags = 0; 7030 u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff; 7031 u64 blkno = 0; 7032 struct ocfs2_extent_list *el; 7033 struct ocfs2_extent_rec *rec; 7034 struct ocfs2_path *path = NULL; 7035 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7036 struct ocfs2_extent_list *root_el = &(di->id2.i_list); 7037 u64 refcount_loc = le64_to_cpu(di->i_refcount_loc); 7038 struct ocfs2_extent_tree et; 7039 struct ocfs2_cached_dealloc_ctxt dealloc; 7040 struct ocfs2_refcount_tree *ref_tree = NULL; 7041 7042 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 7043 ocfs2_init_dealloc_ctxt(&dealloc); 7044 7045 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb, 7046 i_size_read(inode)); 7047 7048 path = ocfs2_new_path(di_bh, &di->id2.i_list, 7049 ocfs2_journal_access_di); 7050 if (!path) { 7051 status = -ENOMEM; 7052 mlog_errno(status); 7053 goto bail; 7054 } 7055 7056 ocfs2_extent_map_trunc(inode, new_highest_cpos); 7057 7058 start: 7059 /* 7060 * Check that we still have allocation to delete. 7061 */ 7062 if (OCFS2_I(inode)->ip_clusters == 0) { 7063 status = 0; 7064 goto bail; 7065 } 7066 7067 /* 7068 * Truncate always works against the rightmost tree branch. 7069 */ 7070 status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX); 7071 if (status) { 7072 mlog_errno(status); 7073 goto bail; 7074 } 7075 7076 trace_ocfs2_commit_truncate( 7077 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7078 new_highest_cpos, 7079 OCFS2_I(inode)->ip_clusters, 7080 path->p_tree_depth); 7081 7082 /* 7083 * By now, el will point to the extent list on the bottom most 7084 * portion of this tree. Only the tail record is considered in 7085 * each pass. 7086 * 7087 * We handle the following cases, in order: 7088 * - empty extent: delete the remaining branch 7089 * - remove the entire record 7090 * - remove a partial record 7091 * - no record needs to be removed (truncate has completed) 7092 */ 7093 el = path_leaf_el(path); 7094 if (le16_to_cpu(el->l_next_free_rec) == 0) { 7095 ocfs2_error(inode->i_sb, 7096 "Inode %llu has empty extent block at %llu\n", 7097 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7098 (unsigned long long)path_leaf_bh(path)->b_blocknr); 7099 status = -EROFS; 7100 goto bail; 7101 } 7102 7103 i = le16_to_cpu(el->l_next_free_rec) - 1; 7104 rec = &el->l_recs[i]; 7105 flags = rec->e_flags; 7106 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 7107 7108 if (i == 0 && ocfs2_is_empty_extent(rec)) { 7109 /* 7110 * Lower levels depend on this never happening, but it's best 7111 * to check it up here before changing the tree. 7112 */ 7113 if (root_el->l_tree_depth && rec->e_int_clusters == 0) { 7114 mlog(ML_ERROR, "Inode %lu has an empty " 7115 "extent record, depth %u\n", inode->i_ino, 7116 le16_to_cpu(root_el->l_tree_depth)); 7117 status = ocfs2_remove_rightmost_empty_extent(osb, 7118 &et, path, &dealloc); 7119 if (status) { 7120 mlog_errno(status); 7121 goto bail; 7122 } 7123 7124 ocfs2_reinit_path(path, 1); 7125 goto start; 7126 } else { 7127 trunc_cpos = le32_to_cpu(rec->e_cpos); 7128 trunc_len = 0; 7129 blkno = 0; 7130 } 7131 } else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) { 7132 /* 7133 * Truncate entire record. 7134 */ 7135 trunc_cpos = le32_to_cpu(rec->e_cpos); 7136 trunc_len = ocfs2_rec_clusters(el, rec); 7137 blkno = le64_to_cpu(rec->e_blkno); 7138 } else if (range > new_highest_cpos) { 7139 /* 7140 * Partial truncate. it also should be 7141 * the last truncate we're doing. 7142 */ 7143 trunc_cpos = new_highest_cpos; 7144 trunc_len = range - new_highest_cpos; 7145 coff = new_highest_cpos - le32_to_cpu(rec->e_cpos); 7146 blkno = le64_to_cpu(rec->e_blkno) + 7147 ocfs2_clusters_to_blocks(inode->i_sb, coff); 7148 } else { 7149 /* 7150 * Truncate completed, leave happily. 7151 */ 7152 status = 0; 7153 goto bail; 7154 } 7155 7156 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 7157 7158 if ((flags & OCFS2_EXT_REFCOUNTED) && trunc_len && !ref_tree) { 7159 status = ocfs2_lock_refcount_tree(osb, refcount_loc, 1, 7160 &ref_tree, NULL); 7161 if (status) { 7162 mlog_errno(status); 7163 goto bail; 7164 } 7165 } 7166 7167 status = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 7168 phys_cpos, trunc_len, flags, &dealloc, 7169 refcount_loc, true); 7170 if (status < 0) { 7171 mlog_errno(status); 7172 goto bail; 7173 } 7174 7175 ocfs2_reinit_path(path, 1); 7176 7177 /* 7178 * The check above will catch the case where we've truncated 7179 * away all allocation. 7180 */ 7181 goto start; 7182 7183 bail: 7184 if (ref_tree) 7185 ocfs2_unlock_refcount_tree(osb, ref_tree, 1); 7186 7187 ocfs2_schedule_truncate_log_flush(osb, 1); 7188 7189 ocfs2_run_deallocs(osb, &dealloc); 7190 7191 ocfs2_free_path(path); 7192 7193 return status; 7194 } 7195 7196 /* 7197 * 'start' is inclusive, 'end' is not. 7198 */ 7199 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh, 7200 unsigned int start, unsigned int end, int trunc) 7201 { 7202 int ret; 7203 unsigned int numbytes; 7204 handle_t *handle; 7205 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 7206 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7207 struct ocfs2_inline_data *idata = &di->id2.i_data; 7208 7209 if (end > i_size_read(inode)) 7210 end = i_size_read(inode); 7211 7212 BUG_ON(start > end); 7213 7214 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) || 7215 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) || 7216 !ocfs2_supports_inline_data(osb)) { 7217 ocfs2_error(inode->i_sb, 7218 "Inline data flags for inode %llu don't agree! Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n", 7219 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7220 le16_to_cpu(di->i_dyn_features), 7221 OCFS2_I(inode)->ip_dyn_features, 7222 osb->s_feature_incompat); 7223 ret = -EROFS; 7224 goto out; 7225 } 7226 7227 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 7228 if (IS_ERR(handle)) { 7229 ret = PTR_ERR(handle); 7230 mlog_errno(ret); 7231 goto out; 7232 } 7233 7234 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 7235 OCFS2_JOURNAL_ACCESS_WRITE); 7236 if (ret) { 7237 mlog_errno(ret); 7238 goto out_commit; 7239 } 7240 7241 numbytes = end - start; 7242 memset(idata->id_data + start, 0, numbytes); 7243 7244 /* 7245 * No need to worry about the data page here - it's been 7246 * truncated already and inline data doesn't need it for 7247 * pushing zero's to disk, so we'll let readpage pick it up 7248 * later. 7249 */ 7250 if (trunc) { 7251 i_size_write(inode, start); 7252 di->i_size = cpu_to_le64(start); 7253 } 7254 7255 inode->i_blocks = ocfs2_inode_sector_count(inode); 7256 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 7257 7258 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 7259 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 7260 7261 ocfs2_update_inode_fsync_trans(handle, inode, 1); 7262 ocfs2_journal_dirty(handle, di_bh); 7263 7264 out_commit: 7265 ocfs2_commit_trans(osb, handle); 7266 7267 out: 7268 return ret; 7269 } 7270 7271 static int ocfs2_trim_extent(struct super_block *sb, 7272 struct ocfs2_group_desc *gd, 7273 u32 start, u32 count) 7274 { 7275 u64 discard, bcount; 7276 7277 bcount = ocfs2_clusters_to_blocks(sb, count); 7278 discard = le64_to_cpu(gd->bg_blkno) + 7279 ocfs2_clusters_to_blocks(sb, start); 7280 7281 trace_ocfs2_trim_extent(sb, (unsigned long long)discard, bcount); 7282 7283 return sb_issue_discard(sb, discard, bcount, GFP_NOFS, 0); 7284 } 7285 7286 static int ocfs2_trim_group(struct super_block *sb, 7287 struct ocfs2_group_desc *gd, 7288 u32 start, u32 max, u32 minbits) 7289 { 7290 int ret = 0, count = 0, next; 7291 void *bitmap = gd->bg_bitmap; 7292 7293 if (le16_to_cpu(gd->bg_free_bits_count) < minbits) 7294 return 0; 7295 7296 trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd->bg_blkno), 7297 start, max, minbits); 7298 7299 while (start < max) { 7300 start = ocfs2_find_next_zero_bit(bitmap, max, start); 7301 if (start >= max) 7302 break; 7303 next = ocfs2_find_next_bit(bitmap, max, start); 7304 7305 if ((next - start) >= minbits) { 7306 ret = ocfs2_trim_extent(sb, gd, 7307 start, next - start); 7308 if (ret < 0) { 7309 mlog_errno(ret); 7310 break; 7311 } 7312 count += next - start; 7313 } 7314 start = next + 1; 7315 7316 if (fatal_signal_pending(current)) { 7317 count = -ERESTARTSYS; 7318 break; 7319 } 7320 7321 if ((le16_to_cpu(gd->bg_free_bits_count) - count) < minbits) 7322 break; 7323 } 7324 7325 if (ret < 0) 7326 count = ret; 7327 7328 return count; 7329 } 7330 7331 int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range) 7332 { 7333 struct ocfs2_super *osb = OCFS2_SB(sb); 7334 u64 start, len, trimmed, first_group, last_group, group; 7335 int ret, cnt; 7336 u32 first_bit, last_bit, minlen; 7337 struct buffer_head *main_bm_bh = NULL; 7338 struct inode *main_bm_inode = NULL; 7339 struct buffer_head *gd_bh = NULL; 7340 struct ocfs2_dinode *main_bm; 7341 struct ocfs2_group_desc *gd = NULL; 7342 7343 start = range->start >> osb->s_clustersize_bits; 7344 len = range->len >> osb->s_clustersize_bits; 7345 minlen = range->minlen >> osb->s_clustersize_bits; 7346 7347 if (minlen >= osb->bitmap_cpg || range->len < sb->s_blocksize) 7348 return -EINVAL; 7349 7350 main_bm_inode = ocfs2_get_system_file_inode(osb, 7351 GLOBAL_BITMAP_SYSTEM_INODE, 7352 OCFS2_INVALID_SLOT); 7353 if (!main_bm_inode) { 7354 ret = -EIO; 7355 mlog_errno(ret); 7356 goto out; 7357 } 7358 7359 mutex_lock(&main_bm_inode->i_mutex); 7360 7361 ret = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 0); 7362 if (ret < 0) { 7363 mlog_errno(ret); 7364 goto out_mutex; 7365 } 7366 main_bm = (struct ocfs2_dinode *)main_bm_bh->b_data; 7367 7368 if (start >= le32_to_cpu(main_bm->i_clusters)) { 7369 ret = -EINVAL; 7370 goto out_unlock; 7371 } 7372 7373 len = range->len >> osb->s_clustersize_bits; 7374 if (start + len > le32_to_cpu(main_bm->i_clusters)) 7375 len = le32_to_cpu(main_bm->i_clusters) - start; 7376 7377 trace_ocfs2_trim_fs(start, len, minlen); 7378 7379 /* Determine first and last group to examine based on start and len */ 7380 first_group = ocfs2_which_cluster_group(main_bm_inode, start); 7381 if (first_group == osb->first_cluster_group_blkno) 7382 first_bit = start; 7383 else 7384 first_bit = start - ocfs2_blocks_to_clusters(sb, first_group); 7385 last_group = ocfs2_which_cluster_group(main_bm_inode, start + len - 1); 7386 last_bit = osb->bitmap_cpg; 7387 7388 trimmed = 0; 7389 for (group = first_group; group <= last_group;) { 7390 if (first_bit + len >= osb->bitmap_cpg) 7391 last_bit = osb->bitmap_cpg; 7392 else 7393 last_bit = first_bit + len; 7394 7395 ret = ocfs2_read_group_descriptor(main_bm_inode, 7396 main_bm, group, 7397 &gd_bh); 7398 if (ret < 0) { 7399 mlog_errno(ret); 7400 break; 7401 } 7402 7403 gd = (struct ocfs2_group_desc *)gd_bh->b_data; 7404 cnt = ocfs2_trim_group(sb, gd, first_bit, last_bit, minlen); 7405 brelse(gd_bh); 7406 gd_bh = NULL; 7407 if (cnt < 0) { 7408 ret = cnt; 7409 mlog_errno(ret); 7410 break; 7411 } 7412 7413 trimmed += cnt; 7414 len -= osb->bitmap_cpg - first_bit; 7415 first_bit = 0; 7416 if (group == osb->first_cluster_group_blkno) 7417 group = ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg); 7418 else 7419 group += ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg); 7420 } 7421 range->len = trimmed * sb->s_blocksize; 7422 out_unlock: 7423 ocfs2_inode_unlock(main_bm_inode, 0); 7424 brelse(main_bm_bh); 7425 out_mutex: 7426 mutex_unlock(&main_bm_inode->i_mutex); 7427 iput(main_bm_inode); 7428 out: 7429 return ret; 7430 } 7431