xref: /openbmc/linux/fs/ocfs2/alloc.c (revision 8b235f2f)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32 #include <linux/blkdev.h>
33 
34 #include <cluster/masklog.h>
35 
36 #include "ocfs2.h"
37 
38 #include "alloc.h"
39 #include "aops.h"
40 #include "blockcheck.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "localalloc.h"
46 #include "suballoc.h"
47 #include "sysfile.h"
48 #include "file.h"
49 #include "super.h"
50 #include "uptodate.h"
51 #include "xattr.h"
52 #include "refcounttree.h"
53 #include "ocfs2_trace.h"
54 
55 #include "buffer_head_io.h"
56 
57 enum ocfs2_contig_type {
58 	CONTIG_NONE = 0,
59 	CONTIG_LEFT,
60 	CONTIG_RIGHT,
61 	CONTIG_LEFTRIGHT,
62 };
63 
64 static enum ocfs2_contig_type
65 	ocfs2_extent_rec_contig(struct super_block *sb,
66 				struct ocfs2_extent_rec *ext,
67 				struct ocfs2_extent_rec *insert_rec);
68 /*
69  * Operations for a specific extent tree type.
70  *
71  * To implement an on-disk btree (extent tree) type in ocfs2, add
72  * an ocfs2_extent_tree_operations structure and the matching
73  * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
74  * for the allocation portion of the extent tree.
75  */
76 struct ocfs2_extent_tree_operations {
77 	/*
78 	 * last_eb_blk is the block number of the right most leaf extent
79 	 * block.  Most on-disk structures containing an extent tree store
80 	 * this value for fast access.  The ->eo_set_last_eb_blk() and
81 	 * ->eo_get_last_eb_blk() operations access this value.  They are
82 	 *  both required.
83 	 */
84 	void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
85 				   u64 blkno);
86 	u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
87 
88 	/*
89 	 * The on-disk structure usually keeps track of how many total
90 	 * clusters are stored in this extent tree.  This function updates
91 	 * that value.  new_clusters is the delta, and must be
92 	 * added to the total.  Required.
93 	 */
94 	void (*eo_update_clusters)(struct ocfs2_extent_tree *et,
95 				   u32 new_clusters);
96 
97 	/*
98 	 * If this extent tree is supported by an extent map, insert
99 	 * a record into the map.
100 	 */
101 	void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et,
102 				     struct ocfs2_extent_rec *rec);
103 
104 	/*
105 	 * If this extent tree is supported by an extent map, truncate the
106 	 * map to clusters,
107 	 */
108 	void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et,
109 				       u32 clusters);
110 
111 	/*
112 	 * If ->eo_insert_check() exists, it is called before rec is
113 	 * inserted into the extent tree.  It is optional.
114 	 */
115 	int (*eo_insert_check)(struct ocfs2_extent_tree *et,
116 			       struct ocfs2_extent_rec *rec);
117 	int (*eo_sanity_check)(struct ocfs2_extent_tree *et);
118 
119 	/*
120 	 * --------------------------------------------------------------
121 	 * The remaining are internal to ocfs2_extent_tree and don't have
122 	 * accessor functions
123 	 */
124 
125 	/*
126 	 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
127 	 * It is required.
128 	 */
129 	void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
130 
131 	/*
132 	 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
133 	 * it exists.  If it does not, et->et_max_leaf_clusters is set
134 	 * to 0 (unlimited).  Optional.
135 	 */
136 	void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et);
137 
138 	/*
139 	 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec
140 	 * are contiguous or not. Optional. Don't need to set it if use
141 	 * ocfs2_extent_rec as the tree leaf.
142 	 */
143 	enum ocfs2_contig_type
144 		(*eo_extent_contig)(struct ocfs2_extent_tree *et,
145 				    struct ocfs2_extent_rec *ext,
146 				    struct ocfs2_extent_rec *insert_rec);
147 };
148 
149 
150 /*
151  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
152  * in the methods.
153  */
154 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
155 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
156 					 u64 blkno);
157 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
158 					 u32 clusters);
159 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
160 					   struct ocfs2_extent_rec *rec);
161 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
162 					     u32 clusters);
163 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
164 				     struct ocfs2_extent_rec *rec);
165 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et);
166 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
167 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
168 	.eo_set_last_eb_blk	= ocfs2_dinode_set_last_eb_blk,
169 	.eo_get_last_eb_blk	= ocfs2_dinode_get_last_eb_blk,
170 	.eo_update_clusters	= ocfs2_dinode_update_clusters,
171 	.eo_extent_map_insert	= ocfs2_dinode_extent_map_insert,
172 	.eo_extent_map_truncate	= ocfs2_dinode_extent_map_truncate,
173 	.eo_insert_check	= ocfs2_dinode_insert_check,
174 	.eo_sanity_check	= ocfs2_dinode_sanity_check,
175 	.eo_fill_root_el	= ocfs2_dinode_fill_root_el,
176 };
177 
178 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
179 					 u64 blkno)
180 {
181 	struct ocfs2_dinode *di = et->et_object;
182 
183 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
184 	di->i_last_eb_blk = cpu_to_le64(blkno);
185 }
186 
187 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
188 {
189 	struct ocfs2_dinode *di = et->et_object;
190 
191 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
192 	return le64_to_cpu(di->i_last_eb_blk);
193 }
194 
195 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
196 					 u32 clusters)
197 {
198 	struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
199 	struct ocfs2_dinode *di = et->et_object;
200 
201 	le32_add_cpu(&di->i_clusters, clusters);
202 	spin_lock(&oi->ip_lock);
203 	oi->ip_clusters = le32_to_cpu(di->i_clusters);
204 	spin_unlock(&oi->ip_lock);
205 }
206 
207 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
208 					   struct ocfs2_extent_rec *rec)
209 {
210 	struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
211 
212 	ocfs2_extent_map_insert_rec(inode, rec);
213 }
214 
215 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
216 					     u32 clusters)
217 {
218 	struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
219 
220 	ocfs2_extent_map_trunc(inode, clusters);
221 }
222 
223 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
224 				     struct ocfs2_extent_rec *rec)
225 {
226 	struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
227 	struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb);
228 
229 	BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL);
230 	mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
231 			(oi->ip_clusters != le32_to_cpu(rec->e_cpos)),
232 			"Device %s, asking for sparse allocation: inode %llu, "
233 			"cpos %u, clusters %u\n",
234 			osb->dev_str,
235 			(unsigned long long)oi->ip_blkno,
236 			rec->e_cpos, oi->ip_clusters);
237 
238 	return 0;
239 }
240 
241 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et)
242 {
243 	struct ocfs2_dinode *di = et->et_object;
244 
245 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
246 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
247 
248 	return 0;
249 }
250 
251 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
252 {
253 	struct ocfs2_dinode *di = et->et_object;
254 
255 	et->et_root_el = &di->id2.i_list;
256 }
257 
258 
259 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
260 {
261 	struct ocfs2_xattr_value_buf *vb = et->et_object;
262 
263 	et->et_root_el = &vb->vb_xv->xr_list;
264 }
265 
266 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
267 					      u64 blkno)
268 {
269 	struct ocfs2_xattr_value_buf *vb = et->et_object;
270 
271 	vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
272 }
273 
274 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
275 {
276 	struct ocfs2_xattr_value_buf *vb = et->et_object;
277 
278 	return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
279 }
280 
281 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et,
282 					      u32 clusters)
283 {
284 	struct ocfs2_xattr_value_buf *vb = et->et_object;
285 
286 	le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
287 }
288 
289 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
290 	.eo_set_last_eb_blk	= ocfs2_xattr_value_set_last_eb_blk,
291 	.eo_get_last_eb_blk	= ocfs2_xattr_value_get_last_eb_blk,
292 	.eo_update_clusters	= ocfs2_xattr_value_update_clusters,
293 	.eo_fill_root_el	= ocfs2_xattr_value_fill_root_el,
294 };
295 
296 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
297 {
298 	struct ocfs2_xattr_block *xb = et->et_object;
299 
300 	et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
301 }
302 
303 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et)
304 {
305 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
306 	et->et_max_leaf_clusters =
307 		ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
308 }
309 
310 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
311 					     u64 blkno)
312 {
313 	struct ocfs2_xattr_block *xb = et->et_object;
314 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
315 
316 	xt->xt_last_eb_blk = cpu_to_le64(blkno);
317 }
318 
319 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
320 {
321 	struct ocfs2_xattr_block *xb = et->et_object;
322 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
323 
324 	return le64_to_cpu(xt->xt_last_eb_blk);
325 }
326 
327 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et,
328 					     u32 clusters)
329 {
330 	struct ocfs2_xattr_block *xb = et->et_object;
331 
332 	le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
333 }
334 
335 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
336 	.eo_set_last_eb_blk	= ocfs2_xattr_tree_set_last_eb_blk,
337 	.eo_get_last_eb_blk	= ocfs2_xattr_tree_get_last_eb_blk,
338 	.eo_update_clusters	= ocfs2_xattr_tree_update_clusters,
339 	.eo_fill_root_el	= ocfs2_xattr_tree_fill_root_el,
340 	.eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
341 };
342 
343 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
344 					  u64 blkno)
345 {
346 	struct ocfs2_dx_root_block *dx_root = et->et_object;
347 
348 	dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
349 }
350 
351 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
352 {
353 	struct ocfs2_dx_root_block *dx_root = et->et_object;
354 
355 	return le64_to_cpu(dx_root->dr_last_eb_blk);
356 }
357 
358 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et,
359 					  u32 clusters)
360 {
361 	struct ocfs2_dx_root_block *dx_root = et->et_object;
362 
363 	le32_add_cpu(&dx_root->dr_clusters, clusters);
364 }
365 
366 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et)
367 {
368 	struct ocfs2_dx_root_block *dx_root = et->et_object;
369 
370 	BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
371 
372 	return 0;
373 }
374 
375 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
376 {
377 	struct ocfs2_dx_root_block *dx_root = et->et_object;
378 
379 	et->et_root_el = &dx_root->dr_list;
380 }
381 
382 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
383 	.eo_set_last_eb_blk	= ocfs2_dx_root_set_last_eb_blk,
384 	.eo_get_last_eb_blk	= ocfs2_dx_root_get_last_eb_blk,
385 	.eo_update_clusters	= ocfs2_dx_root_update_clusters,
386 	.eo_sanity_check	= ocfs2_dx_root_sanity_check,
387 	.eo_fill_root_el	= ocfs2_dx_root_fill_root_el,
388 };
389 
390 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et)
391 {
392 	struct ocfs2_refcount_block *rb = et->et_object;
393 
394 	et->et_root_el = &rb->rf_list;
395 }
396 
397 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
398 						u64 blkno)
399 {
400 	struct ocfs2_refcount_block *rb = et->et_object;
401 
402 	rb->rf_last_eb_blk = cpu_to_le64(blkno);
403 }
404 
405 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
406 {
407 	struct ocfs2_refcount_block *rb = et->et_object;
408 
409 	return le64_to_cpu(rb->rf_last_eb_blk);
410 }
411 
412 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et,
413 						u32 clusters)
414 {
415 	struct ocfs2_refcount_block *rb = et->et_object;
416 
417 	le32_add_cpu(&rb->rf_clusters, clusters);
418 }
419 
420 static enum ocfs2_contig_type
421 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et,
422 				  struct ocfs2_extent_rec *ext,
423 				  struct ocfs2_extent_rec *insert_rec)
424 {
425 	return CONTIG_NONE;
426 }
427 
428 static struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = {
429 	.eo_set_last_eb_blk	= ocfs2_refcount_tree_set_last_eb_blk,
430 	.eo_get_last_eb_blk	= ocfs2_refcount_tree_get_last_eb_blk,
431 	.eo_update_clusters	= ocfs2_refcount_tree_update_clusters,
432 	.eo_fill_root_el	= ocfs2_refcount_tree_fill_root_el,
433 	.eo_extent_contig	= ocfs2_refcount_tree_extent_contig,
434 };
435 
436 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
437 				     struct ocfs2_caching_info *ci,
438 				     struct buffer_head *bh,
439 				     ocfs2_journal_access_func access,
440 				     void *obj,
441 				     struct ocfs2_extent_tree_operations *ops)
442 {
443 	et->et_ops = ops;
444 	et->et_root_bh = bh;
445 	et->et_ci = ci;
446 	et->et_root_journal_access = access;
447 	if (!obj)
448 		obj = (void *)bh->b_data;
449 	et->et_object = obj;
450 
451 	et->et_ops->eo_fill_root_el(et);
452 	if (!et->et_ops->eo_fill_max_leaf_clusters)
453 		et->et_max_leaf_clusters = 0;
454 	else
455 		et->et_ops->eo_fill_max_leaf_clusters(et);
456 }
457 
458 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
459 				   struct ocfs2_caching_info *ci,
460 				   struct buffer_head *bh)
461 {
462 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di,
463 				 NULL, &ocfs2_dinode_et_ops);
464 }
465 
466 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
467 				       struct ocfs2_caching_info *ci,
468 				       struct buffer_head *bh)
469 {
470 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb,
471 				 NULL, &ocfs2_xattr_tree_et_ops);
472 }
473 
474 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
475 					struct ocfs2_caching_info *ci,
476 					struct ocfs2_xattr_value_buf *vb)
477 {
478 	__ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb,
479 				 &ocfs2_xattr_value_et_ops);
480 }
481 
482 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
483 				    struct ocfs2_caching_info *ci,
484 				    struct buffer_head *bh)
485 {
486 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr,
487 				 NULL, &ocfs2_dx_root_et_ops);
488 }
489 
490 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et,
491 				     struct ocfs2_caching_info *ci,
492 				     struct buffer_head *bh)
493 {
494 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb,
495 				 NULL, &ocfs2_refcount_tree_et_ops);
496 }
497 
498 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
499 					    u64 new_last_eb_blk)
500 {
501 	et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
502 }
503 
504 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
505 {
506 	return et->et_ops->eo_get_last_eb_blk(et);
507 }
508 
509 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et,
510 					    u32 clusters)
511 {
512 	et->et_ops->eo_update_clusters(et, clusters);
513 }
514 
515 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et,
516 					      struct ocfs2_extent_rec *rec)
517 {
518 	if (et->et_ops->eo_extent_map_insert)
519 		et->et_ops->eo_extent_map_insert(et, rec);
520 }
521 
522 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et,
523 						u32 clusters)
524 {
525 	if (et->et_ops->eo_extent_map_truncate)
526 		et->et_ops->eo_extent_map_truncate(et, clusters);
527 }
528 
529 static inline int ocfs2_et_root_journal_access(handle_t *handle,
530 					       struct ocfs2_extent_tree *et,
531 					       int type)
532 {
533 	return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh,
534 					  type);
535 }
536 
537 static inline enum ocfs2_contig_type
538 	ocfs2_et_extent_contig(struct ocfs2_extent_tree *et,
539 			       struct ocfs2_extent_rec *rec,
540 			       struct ocfs2_extent_rec *insert_rec)
541 {
542 	if (et->et_ops->eo_extent_contig)
543 		return et->et_ops->eo_extent_contig(et, rec, insert_rec);
544 
545 	return ocfs2_extent_rec_contig(
546 				ocfs2_metadata_cache_get_super(et->et_ci),
547 				rec, insert_rec);
548 }
549 
550 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et,
551 					struct ocfs2_extent_rec *rec)
552 {
553 	int ret = 0;
554 
555 	if (et->et_ops->eo_insert_check)
556 		ret = et->et_ops->eo_insert_check(et, rec);
557 	return ret;
558 }
559 
560 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et)
561 {
562 	int ret = 0;
563 
564 	if (et->et_ops->eo_sanity_check)
565 		ret = et->et_ops->eo_sanity_check(et);
566 	return ret;
567 }
568 
569 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
570 					 struct ocfs2_extent_block *eb);
571 static void ocfs2_adjust_rightmost_records(handle_t *handle,
572 					   struct ocfs2_extent_tree *et,
573 					   struct ocfs2_path *path,
574 					   struct ocfs2_extent_rec *insert_rec);
575 /*
576  * Reset the actual path elements so that we can re-use the structure
577  * to build another path. Generally, this involves freeing the buffer
578  * heads.
579  */
580 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
581 {
582 	int i, start = 0, depth = 0;
583 	struct ocfs2_path_item *node;
584 
585 	if (keep_root)
586 		start = 1;
587 
588 	for(i = start; i < path_num_items(path); i++) {
589 		node = &path->p_node[i];
590 
591 		brelse(node->bh);
592 		node->bh = NULL;
593 		node->el = NULL;
594 	}
595 
596 	/*
597 	 * Tree depth may change during truncate, or insert. If we're
598 	 * keeping the root extent list, then make sure that our path
599 	 * structure reflects the proper depth.
600 	 */
601 	if (keep_root)
602 		depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
603 	else
604 		path_root_access(path) = NULL;
605 
606 	path->p_tree_depth = depth;
607 }
608 
609 void ocfs2_free_path(struct ocfs2_path *path)
610 {
611 	if (path) {
612 		ocfs2_reinit_path(path, 0);
613 		kfree(path);
614 	}
615 }
616 
617 /*
618  * All the elements of src into dest. After this call, src could be freed
619  * without affecting dest.
620  *
621  * Both paths should have the same root. Any non-root elements of dest
622  * will be freed.
623  */
624 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
625 {
626 	int i;
627 
628 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
629 	BUG_ON(path_root_el(dest) != path_root_el(src));
630 	BUG_ON(path_root_access(dest) != path_root_access(src));
631 
632 	ocfs2_reinit_path(dest, 1);
633 
634 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
635 		dest->p_node[i].bh = src->p_node[i].bh;
636 		dest->p_node[i].el = src->p_node[i].el;
637 
638 		if (dest->p_node[i].bh)
639 			get_bh(dest->p_node[i].bh);
640 	}
641 }
642 
643 /*
644  * Make the *dest path the same as src and re-initialize src path to
645  * have a root only.
646  */
647 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
648 {
649 	int i;
650 
651 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
652 	BUG_ON(path_root_access(dest) != path_root_access(src));
653 
654 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
655 		brelse(dest->p_node[i].bh);
656 
657 		dest->p_node[i].bh = src->p_node[i].bh;
658 		dest->p_node[i].el = src->p_node[i].el;
659 
660 		src->p_node[i].bh = NULL;
661 		src->p_node[i].el = NULL;
662 	}
663 }
664 
665 /*
666  * Insert an extent block at given index.
667  *
668  * This will not take an additional reference on eb_bh.
669  */
670 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
671 					struct buffer_head *eb_bh)
672 {
673 	struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
674 
675 	/*
676 	 * Right now, no root bh is an extent block, so this helps
677 	 * catch code errors with dinode trees. The assertion can be
678 	 * safely removed if we ever need to insert extent block
679 	 * structures at the root.
680 	 */
681 	BUG_ON(index == 0);
682 
683 	path->p_node[index].bh = eb_bh;
684 	path->p_node[index].el = &eb->h_list;
685 }
686 
687 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
688 					 struct ocfs2_extent_list *root_el,
689 					 ocfs2_journal_access_func access)
690 {
691 	struct ocfs2_path *path;
692 
693 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
694 
695 	path = kzalloc(sizeof(*path), GFP_NOFS);
696 	if (path) {
697 		path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
698 		get_bh(root_bh);
699 		path_root_bh(path) = root_bh;
700 		path_root_el(path) = root_el;
701 		path_root_access(path) = access;
702 	}
703 
704 	return path;
705 }
706 
707 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
708 {
709 	return ocfs2_new_path(path_root_bh(path), path_root_el(path),
710 			      path_root_access(path));
711 }
712 
713 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
714 {
715 	return ocfs2_new_path(et->et_root_bh, et->et_root_el,
716 			      et->et_root_journal_access);
717 }
718 
719 /*
720  * Journal the buffer at depth idx.  All idx>0 are extent_blocks,
721  * otherwise it's the root_access function.
722  *
723  * I don't like the way this function's name looks next to
724  * ocfs2_journal_access_path(), but I don't have a better one.
725  */
726 int ocfs2_path_bh_journal_access(handle_t *handle,
727 				 struct ocfs2_caching_info *ci,
728 				 struct ocfs2_path *path,
729 				 int idx)
730 {
731 	ocfs2_journal_access_func access = path_root_access(path);
732 
733 	if (!access)
734 		access = ocfs2_journal_access;
735 
736 	if (idx)
737 		access = ocfs2_journal_access_eb;
738 
739 	return access(handle, ci, path->p_node[idx].bh,
740 		      OCFS2_JOURNAL_ACCESS_WRITE);
741 }
742 
743 /*
744  * Convenience function to journal all components in a path.
745  */
746 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci,
747 			      handle_t *handle,
748 			      struct ocfs2_path *path)
749 {
750 	int i, ret = 0;
751 
752 	if (!path)
753 		goto out;
754 
755 	for(i = 0; i < path_num_items(path); i++) {
756 		ret = ocfs2_path_bh_journal_access(handle, ci, path, i);
757 		if (ret < 0) {
758 			mlog_errno(ret);
759 			goto out;
760 		}
761 	}
762 
763 out:
764 	return ret;
765 }
766 
767 /*
768  * Return the index of the extent record which contains cluster #v_cluster.
769  * -1 is returned if it was not found.
770  *
771  * Should work fine on interior and exterior nodes.
772  */
773 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
774 {
775 	int ret = -1;
776 	int i;
777 	struct ocfs2_extent_rec *rec;
778 	u32 rec_end, rec_start, clusters;
779 
780 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
781 		rec = &el->l_recs[i];
782 
783 		rec_start = le32_to_cpu(rec->e_cpos);
784 		clusters = ocfs2_rec_clusters(el, rec);
785 
786 		rec_end = rec_start + clusters;
787 
788 		if (v_cluster >= rec_start && v_cluster < rec_end) {
789 			ret = i;
790 			break;
791 		}
792 	}
793 
794 	return ret;
795 }
796 
797 /*
798  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
799  * ocfs2_extent_rec_contig only work properly against leaf nodes!
800  */
801 static int ocfs2_block_extent_contig(struct super_block *sb,
802 				     struct ocfs2_extent_rec *ext,
803 				     u64 blkno)
804 {
805 	u64 blk_end = le64_to_cpu(ext->e_blkno);
806 
807 	blk_end += ocfs2_clusters_to_blocks(sb,
808 				    le16_to_cpu(ext->e_leaf_clusters));
809 
810 	return blkno == blk_end;
811 }
812 
813 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
814 				  struct ocfs2_extent_rec *right)
815 {
816 	u32 left_range;
817 
818 	left_range = le32_to_cpu(left->e_cpos) +
819 		le16_to_cpu(left->e_leaf_clusters);
820 
821 	return (left_range == le32_to_cpu(right->e_cpos));
822 }
823 
824 static enum ocfs2_contig_type
825 	ocfs2_extent_rec_contig(struct super_block *sb,
826 				struct ocfs2_extent_rec *ext,
827 				struct ocfs2_extent_rec *insert_rec)
828 {
829 	u64 blkno = le64_to_cpu(insert_rec->e_blkno);
830 
831 	/*
832 	 * Refuse to coalesce extent records with different flag
833 	 * fields - we don't want to mix unwritten extents with user
834 	 * data.
835 	 */
836 	if (ext->e_flags != insert_rec->e_flags)
837 		return CONTIG_NONE;
838 
839 	if (ocfs2_extents_adjacent(ext, insert_rec) &&
840 	    ocfs2_block_extent_contig(sb, ext, blkno))
841 			return CONTIG_RIGHT;
842 
843 	blkno = le64_to_cpu(ext->e_blkno);
844 	if (ocfs2_extents_adjacent(insert_rec, ext) &&
845 	    ocfs2_block_extent_contig(sb, insert_rec, blkno))
846 		return CONTIG_LEFT;
847 
848 	return CONTIG_NONE;
849 }
850 
851 /*
852  * NOTE: We can have pretty much any combination of contiguousness and
853  * appending.
854  *
855  * The usefulness of APPEND_TAIL is more in that it lets us know that
856  * we'll have to update the path to that leaf.
857  */
858 enum ocfs2_append_type {
859 	APPEND_NONE = 0,
860 	APPEND_TAIL,
861 };
862 
863 enum ocfs2_split_type {
864 	SPLIT_NONE = 0,
865 	SPLIT_LEFT,
866 	SPLIT_RIGHT,
867 };
868 
869 struct ocfs2_insert_type {
870 	enum ocfs2_split_type	ins_split;
871 	enum ocfs2_append_type	ins_appending;
872 	enum ocfs2_contig_type	ins_contig;
873 	int			ins_contig_index;
874 	int			ins_tree_depth;
875 };
876 
877 struct ocfs2_merge_ctxt {
878 	enum ocfs2_contig_type	c_contig_type;
879 	int			c_has_empty_extent;
880 	int			c_split_covers_rec;
881 };
882 
883 static int ocfs2_validate_extent_block(struct super_block *sb,
884 				       struct buffer_head *bh)
885 {
886 	int rc;
887 	struct ocfs2_extent_block *eb =
888 		(struct ocfs2_extent_block *)bh->b_data;
889 
890 	trace_ocfs2_validate_extent_block((unsigned long long)bh->b_blocknr);
891 
892 	BUG_ON(!buffer_uptodate(bh));
893 
894 	/*
895 	 * If the ecc fails, we return the error but otherwise
896 	 * leave the filesystem running.  We know any error is
897 	 * local to this block.
898 	 */
899 	rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
900 	if (rc) {
901 		mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
902 		     (unsigned long long)bh->b_blocknr);
903 		return rc;
904 	}
905 
906 	/*
907 	 * Errors after here are fatal.
908 	 */
909 
910 	if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
911 		rc = ocfs2_error(sb,
912 				 "Extent block #%llu has bad signature %.*s\n",
913 				 (unsigned long long)bh->b_blocknr, 7,
914 				 eb->h_signature);
915 		goto bail;
916 	}
917 
918 	if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
919 		rc = ocfs2_error(sb,
920 				 "Extent block #%llu has an invalid h_blkno of %llu\n",
921 				 (unsigned long long)bh->b_blocknr,
922 				 (unsigned long long)le64_to_cpu(eb->h_blkno));
923 		goto bail;
924 	}
925 
926 	if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
927 		rc = ocfs2_error(sb,
928 				 "Extent block #%llu has an invalid h_fs_generation of #%u\n",
929 				 (unsigned long long)bh->b_blocknr,
930 				 le32_to_cpu(eb->h_fs_generation));
931 		goto bail;
932 	}
933 bail:
934 	return rc;
935 }
936 
937 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno,
938 			    struct buffer_head **bh)
939 {
940 	int rc;
941 	struct buffer_head *tmp = *bh;
942 
943 	rc = ocfs2_read_block(ci, eb_blkno, &tmp,
944 			      ocfs2_validate_extent_block);
945 
946 	/* If ocfs2_read_block() got us a new bh, pass it up. */
947 	if (!rc && !*bh)
948 		*bh = tmp;
949 
950 	return rc;
951 }
952 
953 
954 /*
955  * How many free extents have we got before we need more meta data?
956  */
957 int ocfs2_num_free_extents(struct ocfs2_super *osb,
958 			   struct ocfs2_extent_tree *et)
959 {
960 	int retval;
961 	struct ocfs2_extent_list *el = NULL;
962 	struct ocfs2_extent_block *eb;
963 	struct buffer_head *eb_bh = NULL;
964 	u64 last_eb_blk = 0;
965 
966 	el = et->et_root_el;
967 	last_eb_blk = ocfs2_et_get_last_eb_blk(et);
968 
969 	if (last_eb_blk) {
970 		retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk,
971 						 &eb_bh);
972 		if (retval < 0) {
973 			mlog_errno(retval);
974 			goto bail;
975 		}
976 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
977 		el = &eb->h_list;
978 	}
979 
980 	BUG_ON(el->l_tree_depth != 0);
981 
982 	retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
983 bail:
984 	brelse(eb_bh);
985 
986 	trace_ocfs2_num_free_extents(retval);
987 	return retval;
988 }
989 
990 /* expects array to already be allocated
991  *
992  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
993  * l_count for you
994  */
995 static int ocfs2_create_new_meta_bhs(handle_t *handle,
996 				     struct ocfs2_extent_tree *et,
997 				     int wanted,
998 				     struct ocfs2_alloc_context *meta_ac,
999 				     struct buffer_head *bhs[])
1000 {
1001 	int count, status, i;
1002 	u16 suballoc_bit_start;
1003 	u32 num_got;
1004 	u64 suballoc_loc, first_blkno;
1005 	struct ocfs2_super *osb =
1006 		OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
1007 	struct ocfs2_extent_block *eb;
1008 
1009 	count = 0;
1010 	while (count < wanted) {
1011 		status = ocfs2_claim_metadata(handle,
1012 					      meta_ac,
1013 					      wanted - count,
1014 					      &suballoc_loc,
1015 					      &suballoc_bit_start,
1016 					      &num_got,
1017 					      &first_blkno);
1018 		if (status < 0) {
1019 			mlog_errno(status);
1020 			goto bail;
1021 		}
1022 
1023 		for(i = count;  i < (num_got + count); i++) {
1024 			bhs[i] = sb_getblk(osb->sb, first_blkno);
1025 			if (bhs[i] == NULL) {
1026 				status = -ENOMEM;
1027 				mlog_errno(status);
1028 				goto bail;
1029 			}
1030 			ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]);
1031 
1032 			status = ocfs2_journal_access_eb(handle, et->et_ci,
1033 							 bhs[i],
1034 							 OCFS2_JOURNAL_ACCESS_CREATE);
1035 			if (status < 0) {
1036 				mlog_errno(status);
1037 				goto bail;
1038 			}
1039 
1040 			memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
1041 			eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
1042 			/* Ok, setup the minimal stuff here. */
1043 			strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
1044 			eb->h_blkno = cpu_to_le64(first_blkno);
1045 			eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
1046 			eb->h_suballoc_slot =
1047 				cpu_to_le16(meta_ac->ac_alloc_slot);
1048 			eb->h_suballoc_loc = cpu_to_le64(suballoc_loc);
1049 			eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
1050 			eb->h_list.l_count =
1051 				cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
1052 
1053 			suballoc_bit_start++;
1054 			first_blkno++;
1055 
1056 			/* We'll also be dirtied by the caller, so
1057 			 * this isn't absolutely necessary. */
1058 			ocfs2_journal_dirty(handle, bhs[i]);
1059 		}
1060 
1061 		count += num_got;
1062 	}
1063 
1064 	status = 0;
1065 bail:
1066 	if (status < 0) {
1067 		for(i = 0; i < wanted; i++) {
1068 			brelse(bhs[i]);
1069 			bhs[i] = NULL;
1070 		}
1071 		mlog_errno(status);
1072 	}
1073 	return status;
1074 }
1075 
1076 /*
1077  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1078  *
1079  * Returns the sum of the rightmost extent rec logical offset and
1080  * cluster count.
1081  *
1082  * ocfs2_add_branch() uses this to determine what logical cluster
1083  * value should be populated into the leftmost new branch records.
1084  *
1085  * ocfs2_shift_tree_depth() uses this to determine the # clusters
1086  * value for the new topmost tree record.
1087  */
1088 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
1089 {
1090 	int i;
1091 
1092 	i = le16_to_cpu(el->l_next_free_rec) - 1;
1093 
1094 	return le32_to_cpu(el->l_recs[i].e_cpos) +
1095 		ocfs2_rec_clusters(el, &el->l_recs[i]);
1096 }
1097 
1098 /*
1099  * Change range of the branches in the right most path according to the leaf
1100  * extent block's rightmost record.
1101  */
1102 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1103 					 struct ocfs2_extent_tree *et)
1104 {
1105 	int status;
1106 	struct ocfs2_path *path = NULL;
1107 	struct ocfs2_extent_list *el;
1108 	struct ocfs2_extent_rec *rec;
1109 
1110 	path = ocfs2_new_path_from_et(et);
1111 	if (!path) {
1112 		status = -ENOMEM;
1113 		return status;
1114 	}
1115 
1116 	status = ocfs2_find_path(et->et_ci, path, UINT_MAX);
1117 	if (status < 0) {
1118 		mlog_errno(status);
1119 		goto out;
1120 	}
1121 
1122 	status = ocfs2_extend_trans(handle, path_num_items(path));
1123 	if (status < 0) {
1124 		mlog_errno(status);
1125 		goto out;
1126 	}
1127 
1128 	status = ocfs2_journal_access_path(et->et_ci, handle, path);
1129 	if (status < 0) {
1130 		mlog_errno(status);
1131 		goto out;
1132 	}
1133 
1134 	el = path_leaf_el(path);
1135 	rec = &el->l_recs[le16_to_cpu(el->l_next_free_rec) - 1];
1136 
1137 	ocfs2_adjust_rightmost_records(handle, et, path, rec);
1138 
1139 out:
1140 	ocfs2_free_path(path);
1141 	return status;
1142 }
1143 
1144 /*
1145  * Add an entire tree branch to our inode. eb_bh is the extent block
1146  * to start at, if we don't want to start the branch at the root
1147  * structure.
1148  *
1149  * last_eb_bh is required as we have to update it's next_leaf pointer
1150  * for the new last extent block.
1151  *
1152  * the new branch will be 'empty' in the sense that every block will
1153  * contain a single record with cluster count == 0.
1154  */
1155 static int ocfs2_add_branch(handle_t *handle,
1156 			    struct ocfs2_extent_tree *et,
1157 			    struct buffer_head *eb_bh,
1158 			    struct buffer_head **last_eb_bh,
1159 			    struct ocfs2_alloc_context *meta_ac)
1160 {
1161 	int status, new_blocks, i;
1162 	u64 next_blkno, new_last_eb_blk;
1163 	struct buffer_head *bh;
1164 	struct buffer_head **new_eb_bhs = NULL;
1165 	struct ocfs2_extent_block *eb;
1166 	struct ocfs2_extent_list  *eb_el;
1167 	struct ocfs2_extent_list  *el;
1168 	u32 new_cpos, root_end;
1169 
1170 	BUG_ON(!last_eb_bh || !*last_eb_bh);
1171 
1172 	if (eb_bh) {
1173 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1174 		el = &eb->h_list;
1175 	} else
1176 		el = et->et_root_el;
1177 
1178 	/* we never add a branch to a leaf. */
1179 	BUG_ON(!el->l_tree_depth);
1180 
1181 	new_blocks = le16_to_cpu(el->l_tree_depth);
1182 
1183 	eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1184 	new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1185 	root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1186 
1187 	/*
1188 	 * If there is a gap before the root end and the real end
1189 	 * of the righmost leaf block, we need to remove the gap
1190 	 * between new_cpos and root_end first so that the tree
1191 	 * is consistent after we add a new branch(it will start
1192 	 * from new_cpos).
1193 	 */
1194 	if (root_end > new_cpos) {
1195 		trace_ocfs2_adjust_rightmost_branch(
1196 			(unsigned long long)
1197 			ocfs2_metadata_cache_owner(et->et_ci),
1198 			root_end, new_cpos);
1199 
1200 		status = ocfs2_adjust_rightmost_branch(handle, et);
1201 		if (status) {
1202 			mlog_errno(status);
1203 			goto bail;
1204 		}
1205 	}
1206 
1207 	/* allocate the number of new eb blocks we need */
1208 	new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1209 			     GFP_KERNEL);
1210 	if (!new_eb_bhs) {
1211 		status = -ENOMEM;
1212 		mlog_errno(status);
1213 		goto bail;
1214 	}
1215 
1216 	status = ocfs2_create_new_meta_bhs(handle, et, new_blocks,
1217 					   meta_ac, new_eb_bhs);
1218 	if (status < 0) {
1219 		mlog_errno(status);
1220 		goto bail;
1221 	}
1222 
1223 	/* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1224 	 * linked with the rest of the tree.
1225 	 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1226 	 *
1227 	 * when we leave the loop, new_last_eb_blk will point to the
1228 	 * newest leaf, and next_blkno will point to the topmost extent
1229 	 * block. */
1230 	next_blkno = new_last_eb_blk = 0;
1231 	for(i = 0; i < new_blocks; i++) {
1232 		bh = new_eb_bhs[i];
1233 		eb = (struct ocfs2_extent_block *) bh->b_data;
1234 		/* ocfs2_create_new_meta_bhs() should create it right! */
1235 		BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1236 		eb_el = &eb->h_list;
1237 
1238 		status = ocfs2_journal_access_eb(handle, et->et_ci, bh,
1239 						 OCFS2_JOURNAL_ACCESS_CREATE);
1240 		if (status < 0) {
1241 			mlog_errno(status);
1242 			goto bail;
1243 		}
1244 
1245 		eb->h_next_leaf_blk = 0;
1246 		eb_el->l_tree_depth = cpu_to_le16(i);
1247 		eb_el->l_next_free_rec = cpu_to_le16(1);
1248 		/*
1249 		 * This actually counts as an empty extent as
1250 		 * c_clusters == 0
1251 		 */
1252 		eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1253 		eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1254 		/*
1255 		 * eb_el isn't always an interior node, but even leaf
1256 		 * nodes want a zero'd flags and reserved field so
1257 		 * this gets the whole 32 bits regardless of use.
1258 		 */
1259 		eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1260 		if (!eb_el->l_tree_depth)
1261 			new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1262 
1263 		ocfs2_journal_dirty(handle, bh);
1264 		next_blkno = le64_to_cpu(eb->h_blkno);
1265 	}
1266 
1267 	/* This is a bit hairy. We want to update up to three blocks
1268 	 * here without leaving any of them in an inconsistent state
1269 	 * in case of error. We don't have to worry about
1270 	 * journal_dirty erroring as it won't unless we've aborted the
1271 	 * handle (in which case we would never be here) so reserving
1272 	 * the write with journal_access is all we need to do. */
1273 	status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh,
1274 					 OCFS2_JOURNAL_ACCESS_WRITE);
1275 	if (status < 0) {
1276 		mlog_errno(status);
1277 		goto bail;
1278 	}
1279 	status = ocfs2_et_root_journal_access(handle, et,
1280 					      OCFS2_JOURNAL_ACCESS_WRITE);
1281 	if (status < 0) {
1282 		mlog_errno(status);
1283 		goto bail;
1284 	}
1285 	if (eb_bh) {
1286 		status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh,
1287 						 OCFS2_JOURNAL_ACCESS_WRITE);
1288 		if (status < 0) {
1289 			mlog_errno(status);
1290 			goto bail;
1291 		}
1292 	}
1293 
1294 	/* Link the new branch into the rest of the tree (el will
1295 	 * either be on the root_bh, or the extent block passed in. */
1296 	i = le16_to_cpu(el->l_next_free_rec);
1297 	el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1298 	el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1299 	el->l_recs[i].e_int_clusters = 0;
1300 	le16_add_cpu(&el->l_next_free_rec, 1);
1301 
1302 	/* fe needs a new last extent block pointer, as does the
1303 	 * next_leaf on the previously last-extent-block. */
1304 	ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1305 
1306 	eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1307 	eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1308 
1309 	ocfs2_journal_dirty(handle, *last_eb_bh);
1310 	ocfs2_journal_dirty(handle, et->et_root_bh);
1311 	if (eb_bh)
1312 		ocfs2_journal_dirty(handle, eb_bh);
1313 
1314 	/*
1315 	 * Some callers want to track the rightmost leaf so pass it
1316 	 * back here.
1317 	 */
1318 	brelse(*last_eb_bh);
1319 	get_bh(new_eb_bhs[0]);
1320 	*last_eb_bh = new_eb_bhs[0];
1321 
1322 	status = 0;
1323 bail:
1324 	if (new_eb_bhs) {
1325 		for (i = 0; i < new_blocks; i++)
1326 			brelse(new_eb_bhs[i]);
1327 		kfree(new_eb_bhs);
1328 	}
1329 
1330 	return status;
1331 }
1332 
1333 /*
1334  * adds another level to the allocation tree.
1335  * returns back the new extent block so you can add a branch to it
1336  * after this call.
1337  */
1338 static int ocfs2_shift_tree_depth(handle_t *handle,
1339 				  struct ocfs2_extent_tree *et,
1340 				  struct ocfs2_alloc_context *meta_ac,
1341 				  struct buffer_head **ret_new_eb_bh)
1342 {
1343 	int status, i;
1344 	u32 new_clusters;
1345 	struct buffer_head *new_eb_bh = NULL;
1346 	struct ocfs2_extent_block *eb;
1347 	struct ocfs2_extent_list  *root_el;
1348 	struct ocfs2_extent_list  *eb_el;
1349 
1350 	status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac,
1351 					   &new_eb_bh);
1352 	if (status < 0) {
1353 		mlog_errno(status);
1354 		goto bail;
1355 	}
1356 
1357 	eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1358 	/* ocfs2_create_new_meta_bhs() should create it right! */
1359 	BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1360 
1361 	eb_el = &eb->h_list;
1362 	root_el = et->et_root_el;
1363 
1364 	status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh,
1365 					 OCFS2_JOURNAL_ACCESS_CREATE);
1366 	if (status < 0) {
1367 		mlog_errno(status);
1368 		goto bail;
1369 	}
1370 
1371 	/* copy the root extent list data into the new extent block */
1372 	eb_el->l_tree_depth = root_el->l_tree_depth;
1373 	eb_el->l_next_free_rec = root_el->l_next_free_rec;
1374 	for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1375 		eb_el->l_recs[i] = root_el->l_recs[i];
1376 
1377 	ocfs2_journal_dirty(handle, new_eb_bh);
1378 
1379 	status = ocfs2_et_root_journal_access(handle, et,
1380 					      OCFS2_JOURNAL_ACCESS_WRITE);
1381 	if (status < 0) {
1382 		mlog_errno(status);
1383 		goto bail;
1384 	}
1385 
1386 	new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1387 
1388 	/* update root_bh now */
1389 	le16_add_cpu(&root_el->l_tree_depth, 1);
1390 	root_el->l_recs[0].e_cpos = 0;
1391 	root_el->l_recs[0].e_blkno = eb->h_blkno;
1392 	root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1393 	for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1394 		memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1395 	root_el->l_next_free_rec = cpu_to_le16(1);
1396 
1397 	/* If this is our 1st tree depth shift, then last_eb_blk
1398 	 * becomes the allocated extent block */
1399 	if (root_el->l_tree_depth == cpu_to_le16(1))
1400 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1401 
1402 	ocfs2_journal_dirty(handle, et->et_root_bh);
1403 
1404 	*ret_new_eb_bh = new_eb_bh;
1405 	new_eb_bh = NULL;
1406 	status = 0;
1407 bail:
1408 	brelse(new_eb_bh);
1409 
1410 	return status;
1411 }
1412 
1413 /*
1414  * Should only be called when there is no space left in any of the
1415  * leaf nodes. What we want to do is find the lowest tree depth
1416  * non-leaf extent block with room for new records. There are three
1417  * valid results of this search:
1418  *
1419  * 1) a lowest extent block is found, then we pass it back in
1420  *    *lowest_eb_bh and return '0'
1421  *
1422  * 2) the search fails to find anything, but the root_el has room. We
1423  *    pass NULL back in *lowest_eb_bh, but still return '0'
1424  *
1425  * 3) the search fails to find anything AND the root_el is full, in
1426  *    which case we return > 0
1427  *
1428  * return status < 0 indicates an error.
1429  */
1430 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et,
1431 				    struct buffer_head **target_bh)
1432 {
1433 	int status = 0, i;
1434 	u64 blkno;
1435 	struct ocfs2_extent_block *eb;
1436 	struct ocfs2_extent_list  *el;
1437 	struct buffer_head *bh = NULL;
1438 	struct buffer_head *lowest_bh = NULL;
1439 
1440 	*target_bh = NULL;
1441 
1442 	el = et->et_root_el;
1443 
1444 	while(le16_to_cpu(el->l_tree_depth) > 1) {
1445 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1446 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1447 				    "Owner %llu has empty extent list (next_free_rec == 0)\n",
1448 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
1449 			status = -EIO;
1450 			goto bail;
1451 		}
1452 		i = le16_to_cpu(el->l_next_free_rec) - 1;
1453 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1454 		if (!blkno) {
1455 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1456 				    "Owner %llu has extent list where extent # %d has no physical block start\n",
1457 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i);
1458 			status = -EIO;
1459 			goto bail;
1460 		}
1461 
1462 		brelse(bh);
1463 		bh = NULL;
1464 
1465 		status = ocfs2_read_extent_block(et->et_ci, blkno, &bh);
1466 		if (status < 0) {
1467 			mlog_errno(status);
1468 			goto bail;
1469 		}
1470 
1471 		eb = (struct ocfs2_extent_block *) bh->b_data;
1472 		el = &eb->h_list;
1473 
1474 		if (le16_to_cpu(el->l_next_free_rec) <
1475 		    le16_to_cpu(el->l_count)) {
1476 			brelse(lowest_bh);
1477 			lowest_bh = bh;
1478 			get_bh(lowest_bh);
1479 		}
1480 	}
1481 
1482 	/* If we didn't find one and the fe doesn't have any room,
1483 	 * then return '1' */
1484 	el = et->et_root_el;
1485 	if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1486 		status = 1;
1487 
1488 	*target_bh = lowest_bh;
1489 bail:
1490 	brelse(bh);
1491 
1492 	return status;
1493 }
1494 
1495 /*
1496  * Grow a b-tree so that it has more records.
1497  *
1498  * We might shift the tree depth in which case existing paths should
1499  * be considered invalid.
1500  *
1501  * Tree depth after the grow is returned via *final_depth.
1502  *
1503  * *last_eb_bh will be updated by ocfs2_add_branch().
1504  */
1505 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et,
1506 			   int *final_depth, struct buffer_head **last_eb_bh,
1507 			   struct ocfs2_alloc_context *meta_ac)
1508 {
1509 	int ret, shift;
1510 	struct ocfs2_extent_list *el = et->et_root_el;
1511 	int depth = le16_to_cpu(el->l_tree_depth);
1512 	struct buffer_head *bh = NULL;
1513 
1514 	BUG_ON(meta_ac == NULL);
1515 
1516 	shift = ocfs2_find_branch_target(et, &bh);
1517 	if (shift < 0) {
1518 		ret = shift;
1519 		mlog_errno(ret);
1520 		goto out;
1521 	}
1522 
1523 	/* We traveled all the way to the bottom of the allocation tree
1524 	 * and didn't find room for any more extents - we need to add
1525 	 * another tree level */
1526 	if (shift) {
1527 		BUG_ON(bh);
1528 		trace_ocfs2_grow_tree(
1529 			(unsigned long long)
1530 			ocfs2_metadata_cache_owner(et->et_ci),
1531 			depth);
1532 
1533 		/* ocfs2_shift_tree_depth will return us a buffer with
1534 		 * the new extent block (so we can pass that to
1535 		 * ocfs2_add_branch). */
1536 		ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh);
1537 		if (ret < 0) {
1538 			mlog_errno(ret);
1539 			goto out;
1540 		}
1541 		depth++;
1542 		if (depth == 1) {
1543 			/*
1544 			 * Special case: we have room now if we shifted from
1545 			 * tree_depth 0, so no more work needs to be done.
1546 			 *
1547 			 * We won't be calling add_branch, so pass
1548 			 * back *last_eb_bh as the new leaf. At depth
1549 			 * zero, it should always be null so there's
1550 			 * no reason to brelse.
1551 			 */
1552 			BUG_ON(*last_eb_bh);
1553 			get_bh(bh);
1554 			*last_eb_bh = bh;
1555 			goto out;
1556 		}
1557 	}
1558 
1559 	/* call ocfs2_add_branch to add the final part of the tree with
1560 	 * the new data. */
1561 	ret = ocfs2_add_branch(handle, et, bh, last_eb_bh,
1562 			       meta_ac);
1563 	if (ret < 0) {
1564 		mlog_errno(ret);
1565 		goto out;
1566 	}
1567 
1568 out:
1569 	if (final_depth)
1570 		*final_depth = depth;
1571 	brelse(bh);
1572 	return ret;
1573 }
1574 
1575 /*
1576  * This function will discard the rightmost extent record.
1577  */
1578 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1579 {
1580 	int next_free = le16_to_cpu(el->l_next_free_rec);
1581 	int count = le16_to_cpu(el->l_count);
1582 	unsigned int num_bytes;
1583 
1584 	BUG_ON(!next_free);
1585 	/* This will cause us to go off the end of our extent list. */
1586 	BUG_ON(next_free >= count);
1587 
1588 	num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1589 
1590 	memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1591 }
1592 
1593 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1594 			      struct ocfs2_extent_rec *insert_rec)
1595 {
1596 	int i, insert_index, next_free, has_empty, num_bytes;
1597 	u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1598 	struct ocfs2_extent_rec *rec;
1599 
1600 	next_free = le16_to_cpu(el->l_next_free_rec);
1601 	has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1602 
1603 	BUG_ON(!next_free);
1604 
1605 	/* The tree code before us didn't allow enough room in the leaf. */
1606 	BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1607 
1608 	/*
1609 	 * The easiest way to approach this is to just remove the
1610 	 * empty extent and temporarily decrement next_free.
1611 	 */
1612 	if (has_empty) {
1613 		/*
1614 		 * If next_free was 1 (only an empty extent), this
1615 		 * loop won't execute, which is fine. We still want
1616 		 * the decrement above to happen.
1617 		 */
1618 		for(i = 0; i < (next_free - 1); i++)
1619 			el->l_recs[i] = el->l_recs[i+1];
1620 
1621 		next_free--;
1622 	}
1623 
1624 	/*
1625 	 * Figure out what the new record index should be.
1626 	 */
1627 	for(i = 0; i < next_free; i++) {
1628 		rec = &el->l_recs[i];
1629 
1630 		if (insert_cpos < le32_to_cpu(rec->e_cpos))
1631 			break;
1632 	}
1633 	insert_index = i;
1634 
1635 	trace_ocfs2_rotate_leaf(insert_cpos, insert_index,
1636 				has_empty, next_free,
1637 				le16_to_cpu(el->l_count));
1638 
1639 	BUG_ON(insert_index < 0);
1640 	BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1641 	BUG_ON(insert_index > next_free);
1642 
1643 	/*
1644 	 * No need to memmove if we're just adding to the tail.
1645 	 */
1646 	if (insert_index != next_free) {
1647 		BUG_ON(next_free >= le16_to_cpu(el->l_count));
1648 
1649 		num_bytes = next_free - insert_index;
1650 		num_bytes *= sizeof(struct ocfs2_extent_rec);
1651 		memmove(&el->l_recs[insert_index + 1],
1652 			&el->l_recs[insert_index],
1653 			num_bytes);
1654 	}
1655 
1656 	/*
1657 	 * Either we had an empty extent, and need to re-increment or
1658 	 * there was no empty extent on a non full rightmost leaf node,
1659 	 * in which case we still need to increment.
1660 	 */
1661 	next_free++;
1662 	el->l_next_free_rec = cpu_to_le16(next_free);
1663 	/*
1664 	 * Make sure none of the math above just messed up our tree.
1665 	 */
1666 	BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1667 
1668 	el->l_recs[insert_index] = *insert_rec;
1669 
1670 }
1671 
1672 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1673 {
1674 	int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1675 
1676 	BUG_ON(num_recs == 0);
1677 
1678 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1679 		num_recs--;
1680 		size = num_recs * sizeof(struct ocfs2_extent_rec);
1681 		memmove(&el->l_recs[0], &el->l_recs[1], size);
1682 		memset(&el->l_recs[num_recs], 0,
1683 		       sizeof(struct ocfs2_extent_rec));
1684 		el->l_next_free_rec = cpu_to_le16(num_recs);
1685 	}
1686 }
1687 
1688 /*
1689  * Create an empty extent record .
1690  *
1691  * l_next_free_rec may be updated.
1692  *
1693  * If an empty extent already exists do nothing.
1694  */
1695 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1696 {
1697 	int next_free = le16_to_cpu(el->l_next_free_rec);
1698 
1699 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1700 
1701 	if (next_free == 0)
1702 		goto set_and_inc;
1703 
1704 	if (ocfs2_is_empty_extent(&el->l_recs[0]))
1705 		return;
1706 
1707 	mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1708 			"Asked to create an empty extent in a full list:\n"
1709 			"count = %u, tree depth = %u",
1710 			le16_to_cpu(el->l_count),
1711 			le16_to_cpu(el->l_tree_depth));
1712 
1713 	ocfs2_shift_records_right(el);
1714 
1715 set_and_inc:
1716 	le16_add_cpu(&el->l_next_free_rec, 1);
1717 	memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1718 }
1719 
1720 /*
1721  * For a rotation which involves two leaf nodes, the "root node" is
1722  * the lowest level tree node which contains a path to both leafs. This
1723  * resulting set of information can be used to form a complete "subtree"
1724  *
1725  * This function is passed two full paths from the dinode down to a
1726  * pair of adjacent leaves. It's task is to figure out which path
1727  * index contains the subtree root - this can be the root index itself
1728  * in a worst-case rotation.
1729  *
1730  * The array index of the subtree root is passed back.
1731  */
1732 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et,
1733 			    struct ocfs2_path *left,
1734 			    struct ocfs2_path *right)
1735 {
1736 	int i = 0;
1737 
1738 	/*
1739 	 * Check that the caller passed in two paths from the same tree.
1740 	 */
1741 	BUG_ON(path_root_bh(left) != path_root_bh(right));
1742 
1743 	do {
1744 		i++;
1745 
1746 		/*
1747 		 * The caller didn't pass two adjacent paths.
1748 		 */
1749 		mlog_bug_on_msg(i > left->p_tree_depth,
1750 				"Owner %llu, left depth %u, right depth %u\n"
1751 				"left leaf blk %llu, right leaf blk %llu\n",
1752 				(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
1753 				left->p_tree_depth, right->p_tree_depth,
1754 				(unsigned long long)path_leaf_bh(left)->b_blocknr,
1755 				(unsigned long long)path_leaf_bh(right)->b_blocknr);
1756 	} while (left->p_node[i].bh->b_blocknr ==
1757 		 right->p_node[i].bh->b_blocknr);
1758 
1759 	return i - 1;
1760 }
1761 
1762 typedef void (path_insert_t)(void *, struct buffer_head *);
1763 
1764 /*
1765  * Traverse a btree path in search of cpos, starting at root_el.
1766  *
1767  * This code can be called with a cpos larger than the tree, in which
1768  * case it will return the rightmost path.
1769  */
1770 static int __ocfs2_find_path(struct ocfs2_caching_info *ci,
1771 			     struct ocfs2_extent_list *root_el, u32 cpos,
1772 			     path_insert_t *func, void *data)
1773 {
1774 	int i, ret = 0;
1775 	u32 range;
1776 	u64 blkno;
1777 	struct buffer_head *bh = NULL;
1778 	struct ocfs2_extent_block *eb;
1779 	struct ocfs2_extent_list *el;
1780 	struct ocfs2_extent_rec *rec;
1781 
1782 	el = root_el;
1783 	while (el->l_tree_depth) {
1784 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1785 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1786 				    "Owner %llu has empty extent list at depth %u\n",
1787 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1788 				    le16_to_cpu(el->l_tree_depth));
1789 			ret = -EROFS;
1790 			goto out;
1791 
1792 		}
1793 
1794 		for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1795 			rec = &el->l_recs[i];
1796 
1797 			/*
1798 			 * In the case that cpos is off the allocation
1799 			 * tree, this should just wind up returning the
1800 			 * rightmost record.
1801 			 */
1802 			range = le32_to_cpu(rec->e_cpos) +
1803 				ocfs2_rec_clusters(el, rec);
1804 			if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1805 			    break;
1806 		}
1807 
1808 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1809 		if (blkno == 0) {
1810 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1811 				    "Owner %llu has bad blkno in extent list at depth %u (index %d)\n",
1812 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1813 				    le16_to_cpu(el->l_tree_depth), i);
1814 			ret = -EROFS;
1815 			goto out;
1816 		}
1817 
1818 		brelse(bh);
1819 		bh = NULL;
1820 		ret = ocfs2_read_extent_block(ci, blkno, &bh);
1821 		if (ret) {
1822 			mlog_errno(ret);
1823 			goto out;
1824 		}
1825 
1826 		eb = (struct ocfs2_extent_block *) bh->b_data;
1827 		el = &eb->h_list;
1828 
1829 		if (le16_to_cpu(el->l_next_free_rec) >
1830 		    le16_to_cpu(el->l_count)) {
1831 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1832 				    "Owner %llu has bad count in extent list at block %llu (next free=%u, count=%u)\n",
1833 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1834 				    (unsigned long long)bh->b_blocknr,
1835 				    le16_to_cpu(el->l_next_free_rec),
1836 				    le16_to_cpu(el->l_count));
1837 			ret = -EROFS;
1838 			goto out;
1839 		}
1840 
1841 		if (func)
1842 			func(data, bh);
1843 	}
1844 
1845 out:
1846 	/*
1847 	 * Catch any trailing bh that the loop didn't handle.
1848 	 */
1849 	brelse(bh);
1850 
1851 	return ret;
1852 }
1853 
1854 /*
1855  * Given an initialized path (that is, it has a valid root extent
1856  * list), this function will traverse the btree in search of the path
1857  * which would contain cpos.
1858  *
1859  * The path traveled is recorded in the path structure.
1860  *
1861  * Note that this will not do any comparisons on leaf node extent
1862  * records, so it will work fine in the case that we just added a tree
1863  * branch.
1864  */
1865 struct find_path_data {
1866 	int index;
1867 	struct ocfs2_path *path;
1868 };
1869 static void find_path_ins(void *data, struct buffer_head *bh)
1870 {
1871 	struct find_path_data *fp = data;
1872 
1873 	get_bh(bh);
1874 	ocfs2_path_insert_eb(fp->path, fp->index, bh);
1875 	fp->index++;
1876 }
1877 int ocfs2_find_path(struct ocfs2_caching_info *ci,
1878 		    struct ocfs2_path *path, u32 cpos)
1879 {
1880 	struct find_path_data data;
1881 
1882 	data.index = 1;
1883 	data.path = path;
1884 	return __ocfs2_find_path(ci, path_root_el(path), cpos,
1885 				 find_path_ins, &data);
1886 }
1887 
1888 static void find_leaf_ins(void *data, struct buffer_head *bh)
1889 {
1890 	struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1891 	struct ocfs2_extent_list *el = &eb->h_list;
1892 	struct buffer_head **ret = data;
1893 
1894 	/* We want to retain only the leaf block. */
1895 	if (le16_to_cpu(el->l_tree_depth) == 0) {
1896 		get_bh(bh);
1897 		*ret = bh;
1898 	}
1899 }
1900 /*
1901  * Find the leaf block in the tree which would contain cpos. No
1902  * checking of the actual leaf is done.
1903  *
1904  * Some paths want to call this instead of allocating a path structure
1905  * and calling ocfs2_find_path().
1906  *
1907  * This function doesn't handle non btree extent lists.
1908  */
1909 int ocfs2_find_leaf(struct ocfs2_caching_info *ci,
1910 		    struct ocfs2_extent_list *root_el, u32 cpos,
1911 		    struct buffer_head **leaf_bh)
1912 {
1913 	int ret;
1914 	struct buffer_head *bh = NULL;
1915 
1916 	ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh);
1917 	if (ret) {
1918 		mlog_errno(ret);
1919 		goto out;
1920 	}
1921 
1922 	*leaf_bh = bh;
1923 out:
1924 	return ret;
1925 }
1926 
1927 /*
1928  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1929  *
1930  * Basically, we've moved stuff around at the bottom of the tree and
1931  * we need to fix up the extent records above the changes to reflect
1932  * the new changes.
1933  *
1934  * left_rec: the record on the left.
1935  * left_child_el: is the child list pointed to by left_rec
1936  * right_rec: the record to the right of left_rec
1937  * right_child_el: is the child list pointed to by right_rec
1938  *
1939  * By definition, this only works on interior nodes.
1940  */
1941 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1942 				  struct ocfs2_extent_list *left_child_el,
1943 				  struct ocfs2_extent_rec *right_rec,
1944 				  struct ocfs2_extent_list *right_child_el)
1945 {
1946 	u32 left_clusters, right_end;
1947 
1948 	/*
1949 	 * Interior nodes never have holes. Their cpos is the cpos of
1950 	 * the leftmost record in their child list. Their cluster
1951 	 * count covers the full theoretical range of their child list
1952 	 * - the range between their cpos and the cpos of the record
1953 	 * immediately to their right.
1954 	 */
1955 	left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1956 	if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1957 		BUG_ON(right_child_el->l_tree_depth);
1958 		BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1959 		left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1960 	}
1961 	left_clusters -= le32_to_cpu(left_rec->e_cpos);
1962 	left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1963 
1964 	/*
1965 	 * Calculate the rightmost cluster count boundary before
1966 	 * moving cpos - we will need to adjust clusters after
1967 	 * updating e_cpos to keep the same highest cluster count.
1968 	 */
1969 	right_end = le32_to_cpu(right_rec->e_cpos);
1970 	right_end += le32_to_cpu(right_rec->e_int_clusters);
1971 
1972 	right_rec->e_cpos = left_rec->e_cpos;
1973 	le32_add_cpu(&right_rec->e_cpos, left_clusters);
1974 
1975 	right_end -= le32_to_cpu(right_rec->e_cpos);
1976 	right_rec->e_int_clusters = cpu_to_le32(right_end);
1977 }
1978 
1979 /*
1980  * Adjust the adjacent root node records involved in a
1981  * rotation. left_el_blkno is passed in as a key so that we can easily
1982  * find it's index in the root list.
1983  */
1984 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1985 				      struct ocfs2_extent_list *left_el,
1986 				      struct ocfs2_extent_list *right_el,
1987 				      u64 left_el_blkno)
1988 {
1989 	int i;
1990 
1991 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1992 	       le16_to_cpu(left_el->l_tree_depth));
1993 
1994 	for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1995 		if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1996 			break;
1997 	}
1998 
1999 	/*
2000 	 * The path walking code should have never returned a root and
2001 	 * two paths which are not adjacent.
2002 	 */
2003 	BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
2004 
2005 	ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
2006 				      &root_el->l_recs[i + 1], right_el);
2007 }
2008 
2009 /*
2010  * We've changed a leaf block (in right_path) and need to reflect that
2011  * change back up the subtree.
2012  *
2013  * This happens in multiple places:
2014  *   - When we've moved an extent record from the left path leaf to the right
2015  *     path leaf to make room for an empty extent in the left path leaf.
2016  *   - When our insert into the right path leaf is at the leftmost edge
2017  *     and requires an update of the path immediately to it's left. This
2018  *     can occur at the end of some types of rotation and appending inserts.
2019  *   - When we've adjusted the last extent record in the left path leaf and the
2020  *     1st extent record in the right path leaf during cross extent block merge.
2021  */
2022 static void ocfs2_complete_edge_insert(handle_t *handle,
2023 				       struct ocfs2_path *left_path,
2024 				       struct ocfs2_path *right_path,
2025 				       int subtree_index)
2026 {
2027 	int i, idx;
2028 	struct ocfs2_extent_list *el, *left_el, *right_el;
2029 	struct ocfs2_extent_rec *left_rec, *right_rec;
2030 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2031 
2032 	/*
2033 	 * Update the counts and position values within all the
2034 	 * interior nodes to reflect the leaf rotation we just did.
2035 	 *
2036 	 * The root node is handled below the loop.
2037 	 *
2038 	 * We begin the loop with right_el and left_el pointing to the
2039 	 * leaf lists and work our way up.
2040 	 *
2041 	 * NOTE: within this loop, left_el and right_el always refer
2042 	 * to the *child* lists.
2043 	 */
2044 	left_el = path_leaf_el(left_path);
2045 	right_el = path_leaf_el(right_path);
2046 	for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
2047 		trace_ocfs2_complete_edge_insert(i);
2048 
2049 		/*
2050 		 * One nice property of knowing that all of these
2051 		 * nodes are below the root is that we only deal with
2052 		 * the leftmost right node record and the rightmost
2053 		 * left node record.
2054 		 */
2055 		el = left_path->p_node[i].el;
2056 		idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2057 		left_rec = &el->l_recs[idx];
2058 
2059 		el = right_path->p_node[i].el;
2060 		right_rec = &el->l_recs[0];
2061 
2062 		ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
2063 					      right_el);
2064 
2065 		ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2066 		ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2067 
2068 		/*
2069 		 * Setup our list pointers now so that the current
2070 		 * parents become children in the next iteration.
2071 		 */
2072 		left_el = left_path->p_node[i].el;
2073 		right_el = right_path->p_node[i].el;
2074 	}
2075 
2076 	/*
2077 	 * At the root node, adjust the two adjacent records which
2078 	 * begin our path to the leaves.
2079 	 */
2080 
2081 	el = left_path->p_node[subtree_index].el;
2082 	left_el = left_path->p_node[subtree_index + 1].el;
2083 	right_el = right_path->p_node[subtree_index + 1].el;
2084 
2085 	ocfs2_adjust_root_records(el, left_el, right_el,
2086 				  left_path->p_node[subtree_index + 1].bh->b_blocknr);
2087 
2088 	root_bh = left_path->p_node[subtree_index].bh;
2089 
2090 	ocfs2_journal_dirty(handle, root_bh);
2091 }
2092 
2093 static int ocfs2_rotate_subtree_right(handle_t *handle,
2094 				      struct ocfs2_extent_tree *et,
2095 				      struct ocfs2_path *left_path,
2096 				      struct ocfs2_path *right_path,
2097 				      int subtree_index)
2098 {
2099 	int ret, i;
2100 	struct buffer_head *right_leaf_bh;
2101 	struct buffer_head *left_leaf_bh = NULL;
2102 	struct buffer_head *root_bh;
2103 	struct ocfs2_extent_list *right_el, *left_el;
2104 	struct ocfs2_extent_rec move_rec;
2105 
2106 	left_leaf_bh = path_leaf_bh(left_path);
2107 	left_el = path_leaf_el(left_path);
2108 
2109 	if (left_el->l_next_free_rec != left_el->l_count) {
2110 		ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
2111 			    "Inode %llu has non-full interior leaf node %llu (next free = %u)\n",
2112 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2113 			    (unsigned long long)left_leaf_bh->b_blocknr,
2114 			    le16_to_cpu(left_el->l_next_free_rec));
2115 		return -EROFS;
2116 	}
2117 
2118 	/*
2119 	 * This extent block may already have an empty record, so we
2120 	 * return early if so.
2121 	 */
2122 	if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2123 		return 0;
2124 
2125 	root_bh = left_path->p_node[subtree_index].bh;
2126 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2127 
2128 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2129 					   subtree_index);
2130 	if (ret) {
2131 		mlog_errno(ret);
2132 		goto out;
2133 	}
2134 
2135 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2136 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2137 						   right_path, i);
2138 		if (ret) {
2139 			mlog_errno(ret);
2140 			goto out;
2141 		}
2142 
2143 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2144 						   left_path, i);
2145 		if (ret) {
2146 			mlog_errno(ret);
2147 			goto out;
2148 		}
2149 	}
2150 
2151 	right_leaf_bh = path_leaf_bh(right_path);
2152 	right_el = path_leaf_el(right_path);
2153 
2154 	/* This is a code error, not a disk corruption. */
2155 	mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2156 			"because rightmost leaf block %llu is empty\n",
2157 			(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2158 			(unsigned long long)right_leaf_bh->b_blocknr);
2159 
2160 	ocfs2_create_empty_extent(right_el);
2161 
2162 	ocfs2_journal_dirty(handle, right_leaf_bh);
2163 
2164 	/* Do the copy now. */
2165 	i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2166 	move_rec = left_el->l_recs[i];
2167 	right_el->l_recs[0] = move_rec;
2168 
2169 	/*
2170 	 * Clear out the record we just copied and shift everything
2171 	 * over, leaving an empty extent in the left leaf.
2172 	 *
2173 	 * We temporarily subtract from next_free_rec so that the
2174 	 * shift will lose the tail record (which is now defunct).
2175 	 */
2176 	le16_add_cpu(&left_el->l_next_free_rec, -1);
2177 	ocfs2_shift_records_right(left_el);
2178 	memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2179 	le16_add_cpu(&left_el->l_next_free_rec, 1);
2180 
2181 	ocfs2_journal_dirty(handle, left_leaf_bh);
2182 
2183 	ocfs2_complete_edge_insert(handle, left_path, right_path,
2184 				   subtree_index);
2185 
2186 out:
2187 	return ret;
2188 }
2189 
2190 /*
2191  * Given a full path, determine what cpos value would return us a path
2192  * containing the leaf immediately to the left of the current one.
2193  *
2194  * Will return zero if the path passed in is already the leftmost path.
2195  */
2196 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2197 				  struct ocfs2_path *path, u32 *cpos)
2198 {
2199 	int i, j, ret = 0;
2200 	u64 blkno;
2201 	struct ocfs2_extent_list *el;
2202 
2203 	BUG_ON(path->p_tree_depth == 0);
2204 
2205 	*cpos = 0;
2206 
2207 	blkno = path_leaf_bh(path)->b_blocknr;
2208 
2209 	/* Start at the tree node just above the leaf and work our way up. */
2210 	i = path->p_tree_depth - 1;
2211 	while (i >= 0) {
2212 		el = path->p_node[i].el;
2213 
2214 		/*
2215 		 * Find the extent record just before the one in our
2216 		 * path.
2217 		 */
2218 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2219 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2220 				if (j == 0) {
2221 					if (i == 0) {
2222 						/*
2223 						 * We've determined that the
2224 						 * path specified is already
2225 						 * the leftmost one - return a
2226 						 * cpos of zero.
2227 						 */
2228 						goto out;
2229 					}
2230 					/*
2231 					 * The leftmost record points to our
2232 					 * leaf - we need to travel up the
2233 					 * tree one level.
2234 					 */
2235 					goto next_node;
2236 				}
2237 
2238 				*cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2239 				*cpos = *cpos + ocfs2_rec_clusters(el,
2240 							   &el->l_recs[j - 1]);
2241 				*cpos = *cpos - 1;
2242 				goto out;
2243 			}
2244 		}
2245 
2246 		/*
2247 		 * If we got here, we never found a valid node where
2248 		 * the tree indicated one should be.
2249 		 */
2250 		ocfs2_error(sb, "Invalid extent tree at extent block %llu\n",
2251 			    (unsigned long long)blkno);
2252 		ret = -EROFS;
2253 		goto out;
2254 
2255 next_node:
2256 		blkno = path->p_node[i].bh->b_blocknr;
2257 		i--;
2258 	}
2259 
2260 out:
2261 	return ret;
2262 }
2263 
2264 /*
2265  * Extend the transaction by enough credits to complete the rotation,
2266  * and still leave at least the original number of credits allocated
2267  * to this transaction.
2268  */
2269 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2270 					   int op_credits,
2271 					   struct ocfs2_path *path)
2272 {
2273 	int ret = 0;
2274 	int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2275 
2276 	if (handle->h_buffer_credits < credits)
2277 		ret = ocfs2_extend_trans(handle,
2278 					 credits - handle->h_buffer_credits);
2279 
2280 	return ret;
2281 }
2282 
2283 /*
2284  * Trap the case where we're inserting into the theoretical range past
2285  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2286  * whose cpos is less than ours into the right leaf.
2287  *
2288  * It's only necessary to look at the rightmost record of the left
2289  * leaf because the logic that calls us should ensure that the
2290  * theoretical ranges in the path components above the leaves are
2291  * correct.
2292  */
2293 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2294 						 u32 insert_cpos)
2295 {
2296 	struct ocfs2_extent_list *left_el;
2297 	struct ocfs2_extent_rec *rec;
2298 	int next_free;
2299 
2300 	left_el = path_leaf_el(left_path);
2301 	next_free = le16_to_cpu(left_el->l_next_free_rec);
2302 	rec = &left_el->l_recs[next_free - 1];
2303 
2304 	if (insert_cpos > le32_to_cpu(rec->e_cpos))
2305 		return 1;
2306 	return 0;
2307 }
2308 
2309 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2310 {
2311 	int next_free = le16_to_cpu(el->l_next_free_rec);
2312 	unsigned int range;
2313 	struct ocfs2_extent_rec *rec;
2314 
2315 	if (next_free == 0)
2316 		return 0;
2317 
2318 	rec = &el->l_recs[0];
2319 	if (ocfs2_is_empty_extent(rec)) {
2320 		/* Empty list. */
2321 		if (next_free == 1)
2322 			return 0;
2323 		rec = &el->l_recs[1];
2324 	}
2325 
2326 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2327 	if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2328 		return 1;
2329 	return 0;
2330 }
2331 
2332 /*
2333  * Rotate all the records in a btree right one record, starting at insert_cpos.
2334  *
2335  * The path to the rightmost leaf should be passed in.
2336  *
2337  * The array is assumed to be large enough to hold an entire path (tree depth).
2338  *
2339  * Upon successful return from this function:
2340  *
2341  * - The 'right_path' array will contain a path to the leaf block
2342  *   whose range contains e_cpos.
2343  * - That leaf block will have a single empty extent in list index 0.
2344  * - In the case that the rotation requires a post-insert update,
2345  *   *ret_left_path will contain a valid path which can be passed to
2346  *   ocfs2_insert_path().
2347  */
2348 static int ocfs2_rotate_tree_right(handle_t *handle,
2349 				   struct ocfs2_extent_tree *et,
2350 				   enum ocfs2_split_type split,
2351 				   u32 insert_cpos,
2352 				   struct ocfs2_path *right_path,
2353 				   struct ocfs2_path **ret_left_path)
2354 {
2355 	int ret, start, orig_credits = handle->h_buffer_credits;
2356 	u32 cpos;
2357 	struct ocfs2_path *left_path = NULL;
2358 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2359 
2360 	*ret_left_path = NULL;
2361 
2362 	left_path = ocfs2_new_path_from_path(right_path);
2363 	if (!left_path) {
2364 		ret = -ENOMEM;
2365 		mlog_errno(ret);
2366 		goto out;
2367 	}
2368 
2369 	ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2370 	if (ret) {
2371 		mlog_errno(ret);
2372 		goto out;
2373 	}
2374 
2375 	trace_ocfs2_rotate_tree_right(
2376 		(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2377 		insert_cpos, cpos);
2378 
2379 	/*
2380 	 * What we want to do here is:
2381 	 *
2382 	 * 1) Start with the rightmost path.
2383 	 *
2384 	 * 2) Determine a path to the leaf block directly to the left
2385 	 *    of that leaf.
2386 	 *
2387 	 * 3) Determine the 'subtree root' - the lowest level tree node
2388 	 *    which contains a path to both leaves.
2389 	 *
2390 	 * 4) Rotate the subtree.
2391 	 *
2392 	 * 5) Find the next subtree by considering the left path to be
2393 	 *    the new right path.
2394 	 *
2395 	 * The check at the top of this while loop also accepts
2396 	 * insert_cpos == cpos because cpos is only a _theoretical_
2397 	 * value to get us the left path - insert_cpos might very well
2398 	 * be filling that hole.
2399 	 *
2400 	 * Stop at a cpos of '0' because we either started at the
2401 	 * leftmost branch (i.e., a tree with one branch and a
2402 	 * rotation inside of it), or we've gone as far as we can in
2403 	 * rotating subtrees.
2404 	 */
2405 	while (cpos && insert_cpos <= cpos) {
2406 		trace_ocfs2_rotate_tree_right(
2407 			(unsigned long long)
2408 			ocfs2_metadata_cache_owner(et->et_ci),
2409 			insert_cpos, cpos);
2410 
2411 		ret = ocfs2_find_path(et->et_ci, left_path, cpos);
2412 		if (ret) {
2413 			mlog_errno(ret);
2414 			goto out;
2415 		}
2416 
2417 		mlog_bug_on_msg(path_leaf_bh(left_path) ==
2418 				path_leaf_bh(right_path),
2419 				"Owner %llu: error during insert of %u "
2420 				"(left path cpos %u) results in two identical "
2421 				"paths ending at %llu\n",
2422 				(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2423 				insert_cpos, cpos,
2424 				(unsigned long long)
2425 				path_leaf_bh(left_path)->b_blocknr);
2426 
2427 		if (split == SPLIT_NONE &&
2428 		    ocfs2_rotate_requires_path_adjustment(left_path,
2429 							  insert_cpos)) {
2430 
2431 			/*
2432 			 * We've rotated the tree as much as we
2433 			 * should. The rest is up to
2434 			 * ocfs2_insert_path() to complete, after the
2435 			 * record insertion. We indicate this
2436 			 * situation by returning the left path.
2437 			 *
2438 			 * The reason we don't adjust the records here
2439 			 * before the record insert is that an error
2440 			 * later might break the rule where a parent
2441 			 * record e_cpos will reflect the actual
2442 			 * e_cpos of the 1st nonempty record of the
2443 			 * child list.
2444 			 */
2445 			*ret_left_path = left_path;
2446 			goto out_ret_path;
2447 		}
2448 
2449 		start = ocfs2_find_subtree_root(et, left_path, right_path);
2450 
2451 		trace_ocfs2_rotate_subtree(start,
2452 			(unsigned long long)
2453 			right_path->p_node[start].bh->b_blocknr,
2454 			right_path->p_tree_depth);
2455 
2456 		ret = ocfs2_extend_rotate_transaction(handle, start,
2457 						      orig_credits, right_path);
2458 		if (ret) {
2459 			mlog_errno(ret);
2460 			goto out;
2461 		}
2462 
2463 		ret = ocfs2_rotate_subtree_right(handle, et, left_path,
2464 						 right_path, start);
2465 		if (ret) {
2466 			mlog_errno(ret);
2467 			goto out;
2468 		}
2469 
2470 		if (split != SPLIT_NONE &&
2471 		    ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2472 						insert_cpos)) {
2473 			/*
2474 			 * A rotate moves the rightmost left leaf
2475 			 * record over to the leftmost right leaf
2476 			 * slot. If we're doing an extent split
2477 			 * instead of a real insert, then we have to
2478 			 * check that the extent to be split wasn't
2479 			 * just moved over. If it was, then we can
2480 			 * exit here, passing left_path back -
2481 			 * ocfs2_split_extent() is smart enough to
2482 			 * search both leaves.
2483 			 */
2484 			*ret_left_path = left_path;
2485 			goto out_ret_path;
2486 		}
2487 
2488 		/*
2489 		 * There is no need to re-read the next right path
2490 		 * as we know that it'll be our current left
2491 		 * path. Optimize by copying values instead.
2492 		 */
2493 		ocfs2_mv_path(right_path, left_path);
2494 
2495 		ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2496 		if (ret) {
2497 			mlog_errno(ret);
2498 			goto out;
2499 		}
2500 	}
2501 
2502 out:
2503 	ocfs2_free_path(left_path);
2504 
2505 out_ret_path:
2506 	return ret;
2507 }
2508 
2509 static int ocfs2_update_edge_lengths(handle_t *handle,
2510 				     struct ocfs2_extent_tree *et,
2511 				     int subtree_index, struct ocfs2_path *path)
2512 {
2513 	int i, idx, ret;
2514 	struct ocfs2_extent_rec *rec;
2515 	struct ocfs2_extent_list *el;
2516 	struct ocfs2_extent_block *eb;
2517 	u32 range;
2518 
2519 	/*
2520 	 * In normal tree rotation process, we will never touch the
2521 	 * tree branch above subtree_index and ocfs2_extend_rotate_transaction
2522 	 * doesn't reserve the credits for them either.
2523 	 *
2524 	 * But we do have a special case here which will update the rightmost
2525 	 * records for all the bh in the path.
2526 	 * So we have to allocate extra credits and access them.
2527 	 */
2528 	ret = ocfs2_extend_trans(handle, subtree_index);
2529 	if (ret) {
2530 		mlog_errno(ret);
2531 		goto out;
2532 	}
2533 
2534 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
2535 	if (ret) {
2536 		mlog_errno(ret);
2537 		goto out;
2538 	}
2539 
2540 	/* Path should always be rightmost. */
2541 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2542 	BUG_ON(eb->h_next_leaf_blk != 0ULL);
2543 
2544 	el = &eb->h_list;
2545 	BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2546 	idx = le16_to_cpu(el->l_next_free_rec) - 1;
2547 	rec = &el->l_recs[idx];
2548 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2549 
2550 	for (i = 0; i < path->p_tree_depth; i++) {
2551 		el = path->p_node[i].el;
2552 		idx = le16_to_cpu(el->l_next_free_rec) - 1;
2553 		rec = &el->l_recs[idx];
2554 
2555 		rec->e_int_clusters = cpu_to_le32(range);
2556 		le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2557 
2558 		ocfs2_journal_dirty(handle, path->p_node[i].bh);
2559 	}
2560 out:
2561 	return ret;
2562 }
2563 
2564 static void ocfs2_unlink_path(handle_t *handle,
2565 			      struct ocfs2_extent_tree *et,
2566 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
2567 			      struct ocfs2_path *path, int unlink_start)
2568 {
2569 	int ret, i;
2570 	struct ocfs2_extent_block *eb;
2571 	struct ocfs2_extent_list *el;
2572 	struct buffer_head *bh;
2573 
2574 	for(i = unlink_start; i < path_num_items(path); i++) {
2575 		bh = path->p_node[i].bh;
2576 
2577 		eb = (struct ocfs2_extent_block *)bh->b_data;
2578 		/*
2579 		 * Not all nodes might have had their final count
2580 		 * decremented by the caller - handle this here.
2581 		 */
2582 		el = &eb->h_list;
2583 		if (le16_to_cpu(el->l_next_free_rec) > 1) {
2584 			mlog(ML_ERROR,
2585 			     "Inode %llu, attempted to remove extent block "
2586 			     "%llu with %u records\n",
2587 			     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2588 			     (unsigned long long)le64_to_cpu(eb->h_blkno),
2589 			     le16_to_cpu(el->l_next_free_rec));
2590 
2591 			ocfs2_journal_dirty(handle, bh);
2592 			ocfs2_remove_from_cache(et->et_ci, bh);
2593 			continue;
2594 		}
2595 
2596 		el->l_next_free_rec = 0;
2597 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2598 
2599 		ocfs2_journal_dirty(handle, bh);
2600 
2601 		ret = ocfs2_cache_extent_block_free(dealloc, eb);
2602 		if (ret)
2603 			mlog_errno(ret);
2604 
2605 		ocfs2_remove_from_cache(et->et_ci, bh);
2606 	}
2607 }
2608 
2609 static void ocfs2_unlink_subtree(handle_t *handle,
2610 				 struct ocfs2_extent_tree *et,
2611 				 struct ocfs2_path *left_path,
2612 				 struct ocfs2_path *right_path,
2613 				 int subtree_index,
2614 				 struct ocfs2_cached_dealloc_ctxt *dealloc)
2615 {
2616 	int i;
2617 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2618 	struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2619 	struct ocfs2_extent_list *el;
2620 	struct ocfs2_extent_block *eb;
2621 
2622 	el = path_leaf_el(left_path);
2623 
2624 	eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2625 
2626 	for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2627 		if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2628 			break;
2629 
2630 	BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2631 
2632 	memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2633 	le16_add_cpu(&root_el->l_next_free_rec, -1);
2634 
2635 	eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2636 	eb->h_next_leaf_blk = 0;
2637 
2638 	ocfs2_journal_dirty(handle, root_bh);
2639 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2640 
2641 	ocfs2_unlink_path(handle, et, dealloc, right_path,
2642 			  subtree_index + 1);
2643 }
2644 
2645 static int ocfs2_rotate_subtree_left(handle_t *handle,
2646 				     struct ocfs2_extent_tree *et,
2647 				     struct ocfs2_path *left_path,
2648 				     struct ocfs2_path *right_path,
2649 				     int subtree_index,
2650 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
2651 				     int *deleted)
2652 {
2653 	int ret, i, del_right_subtree = 0, right_has_empty = 0;
2654 	struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2655 	struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2656 	struct ocfs2_extent_block *eb;
2657 
2658 	*deleted = 0;
2659 
2660 	right_leaf_el = path_leaf_el(right_path);
2661 	left_leaf_el = path_leaf_el(left_path);
2662 	root_bh = left_path->p_node[subtree_index].bh;
2663 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2664 
2665 	if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2666 		return 0;
2667 
2668 	eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2669 	if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2670 		/*
2671 		 * It's legal for us to proceed if the right leaf is
2672 		 * the rightmost one and it has an empty extent. There
2673 		 * are two cases to handle - whether the leaf will be
2674 		 * empty after removal or not. If the leaf isn't empty
2675 		 * then just remove the empty extent up front. The
2676 		 * next block will handle empty leaves by flagging
2677 		 * them for unlink.
2678 		 *
2679 		 * Non rightmost leaves will throw -EAGAIN and the
2680 		 * caller can manually move the subtree and retry.
2681 		 */
2682 
2683 		if (eb->h_next_leaf_blk != 0ULL)
2684 			return -EAGAIN;
2685 
2686 		if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2687 			ret = ocfs2_journal_access_eb(handle, et->et_ci,
2688 						      path_leaf_bh(right_path),
2689 						      OCFS2_JOURNAL_ACCESS_WRITE);
2690 			if (ret) {
2691 				mlog_errno(ret);
2692 				goto out;
2693 			}
2694 
2695 			ocfs2_remove_empty_extent(right_leaf_el);
2696 		} else
2697 			right_has_empty = 1;
2698 	}
2699 
2700 	if (eb->h_next_leaf_blk == 0ULL &&
2701 	    le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2702 		/*
2703 		 * We have to update i_last_eb_blk during the meta
2704 		 * data delete.
2705 		 */
2706 		ret = ocfs2_et_root_journal_access(handle, et,
2707 						   OCFS2_JOURNAL_ACCESS_WRITE);
2708 		if (ret) {
2709 			mlog_errno(ret);
2710 			goto out;
2711 		}
2712 
2713 		del_right_subtree = 1;
2714 	}
2715 
2716 	/*
2717 	 * Getting here with an empty extent in the right path implies
2718 	 * that it's the rightmost path and will be deleted.
2719 	 */
2720 	BUG_ON(right_has_empty && !del_right_subtree);
2721 
2722 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2723 					   subtree_index);
2724 	if (ret) {
2725 		mlog_errno(ret);
2726 		goto out;
2727 	}
2728 
2729 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2730 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2731 						   right_path, i);
2732 		if (ret) {
2733 			mlog_errno(ret);
2734 			goto out;
2735 		}
2736 
2737 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2738 						   left_path, i);
2739 		if (ret) {
2740 			mlog_errno(ret);
2741 			goto out;
2742 		}
2743 	}
2744 
2745 	if (!right_has_empty) {
2746 		/*
2747 		 * Only do this if we're moving a real
2748 		 * record. Otherwise, the action is delayed until
2749 		 * after removal of the right path in which case we
2750 		 * can do a simple shift to remove the empty extent.
2751 		 */
2752 		ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2753 		memset(&right_leaf_el->l_recs[0], 0,
2754 		       sizeof(struct ocfs2_extent_rec));
2755 	}
2756 	if (eb->h_next_leaf_blk == 0ULL) {
2757 		/*
2758 		 * Move recs over to get rid of empty extent, decrease
2759 		 * next_free. This is allowed to remove the last
2760 		 * extent in our leaf (setting l_next_free_rec to
2761 		 * zero) - the delete code below won't care.
2762 		 */
2763 		ocfs2_remove_empty_extent(right_leaf_el);
2764 	}
2765 
2766 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2767 	ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2768 
2769 	if (del_right_subtree) {
2770 		ocfs2_unlink_subtree(handle, et, left_path, right_path,
2771 				     subtree_index, dealloc);
2772 		ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
2773 						left_path);
2774 		if (ret) {
2775 			mlog_errno(ret);
2776 			goto out;
2777 		}
2778 
2779 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2780 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2781 
2782 		/*
2783 		 * Removal of the extent in the left leaf was skipped
2784 		 * above so we could delete the right path
2785 		 * 1st.
2786 		 */
2787 		if (right_has_empty)
2788 			ocfs2_remove_empty_extent(left_leaf_el);
2789 
2790 		ocfs2_journal_dirty(handle, et_root_bh);
2791 
2792 		*deleted = 1;
2793 	} else
2794 		ocfs2_complete_edge_insert(handle, left_path, right_path,
2795 					   subtree_index);
2796 
2797 out:
2798 	return ret;
2799 }
2800 
2801 /*
2802  * Given a full path, determine what cpos value would return us a path
2803  * containing the leaf immediately to the right of the current one.
2804  *
2805  * Will return zero if the path passed in is already the rightmost path.
2806  *
2807  * This looks similar, but is subtly different to
2808  * ocfs2_find_cpos_for_left_leaf().
2809  */
2810 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2811 				   struct ocfs2_path *path, u32 *cpos)
2812 {
2813 	int i, j, ret = 0;
2814 	u64 blkno;
2815 	struct ocfs2_extent_list *el;
2816 
2817 	*cpos = 0;
2818 
2819 	if (path->p_tree_depth == 0)
2820 		return 0;
2821 
2822 	blkno = path_leaf_bh(path)->b_blocknr;
2823 
2824 	/* Start at the tree node just above the leaf and work our way up. */
2825 	i = path->p_tree_depth - 1;
2826 	while (i >= 0) {
2827 		int next_free;
2828 
2829 		el = path->p_node[i].el;
2830 
2831 		/*
2832 		 * Find the extent record just after the one in our
2833 		 * path.
2834 		 */
2835 		next_free = le16_to_cpu(el->l_next_free_rec);
2836 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2837 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2838 				if (j == (next_free - 1)) {
2839 					if (i == 0) {
2840 						/*
2841 						 * We've determined that the
2842 						 * path specified is already
2843 						 * the rightmost one - return a
2844 						 * cpos of zero.
2845 						 */
2846 						goto out;
2847 					}
2848 					/*
2849 					 * The rightmost record points to our
2850 					 * leaf - we need to travel up the
2851 					 * tree one level.
2852 					 */
2853 					goto next_node;
2854 				}
2855 
2856 				*cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2857 				goto out;
2858 			}
2859 		}
2860 
2861 		/*
2862 		 * If we got here, we never found a valid node where
2863 		 * the tree indicated one should be.
2864 		 */
2865 		ocfs2_error(sb, "Invalid extent tree at extent block %llu\n",
2866 			    (unsigned long long)blkno);
2867 		ret = -EROFS;
2868 		goto out;
2869 
2870 next_node:
2871 		blkno = path->p_node[i].bh->b_blocknr;
2872 		i--;
2873 	}
2874 
2875 out:
2876 	return ret;
2877 }
2878 
2879 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle,
2880 					    struct ocfs2_extent_tree *et,
2881 					    struct ocfs2_path *path)
2882 {
2883 	int ret;
2884 	struct buffer_head *bh = path_leaf_bh(path);
2885 	struct ocfs2_extent_list *el = path_leaf_el(path);
2886 
2887 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2888 		return 0;
2889 
2890 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
2891 					   path_num_items(path) - 1);
2892 	if (ret) {
2893 		mlog_errno(ret);
2894 		goto out;
2895 	}
2896 
2897 	ocfs2_remove_empty_extent(el);
2898 	ocfs2_journal_dirty(handle, bh);
2899 
2900 out:
2901 	return ret;
2902 }
2903 
2904 static int __ocfs2_rotate_tree_left(handle_t *handle,
2905 				    struct ocfs2_extent_tree *et,
2906 				    int orig_credits,
2907 				    struct ocfs2_path *path,
2908 				    struct ocfs2_cached_dealloc_ctxt *dealloc,
2909 				    struct ocfs2_path **empty_extent_path)
2910 {
2911 	int ret, subtree_root, deleted;
2912 	u32 right_cpos;
2913 	struct ocfs2_path *left_path = NULL;
2914 	struct ocfs2_path *right_path = NULL;
2915 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2916 
2917 	if (!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])))
2918 		return 0;
2919 
2920 	*empty_extent_path = NULL;
2921 
2922 	ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
2923 	if (ret) {
2924 		mlog_errno(ret);
2925 		goto out;
2926 	}
2927 
2928 	left_path = ocfs2_new_path_from_path(path);
2929 	if (!left_path) {
2930 		ret = -ENOMEM;
2931 		mlog_errno(ret);
2932 		goto out;
2933 	}
2934 
2935 	ocfs2_cp_path(left_path, path);
2936 
2937 	right_path = ocfs2_new_path_from_path(path);
2938 	if (!right_path) {
2939 		ret = -ENOMEM;
2940 		mlog_errno(ret);
2941 		goto out;
2942 	}
2943 
2944 	while (right_cpos) {
2945 		ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
2946 		if (ret) {
2947 			mlog_errno(ret);
2948 			goto out;
2949 		}
2950 
2951 		subtree_root = ocfs2_find_subtree_root(et, left_path,
2952 						       right_path);
2953 
2954 		trace_ocfs2_rotate_subtree(subtree_root,
2955 		     (unsigned long long)
2956 		     right_path->p_node[subtree_root].bh->b_blocknr,
2957 		     right_path->p_tree_depth);
2958 
2959 		ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2960 						      orig_credits, left_path);
2961 		if (ret) {
2962 			mlog_errno(ret);
2963 			goto out;
2964 		}
2965 
2966 		/*
2967 		 * Caller might still want to make changes to the
2968 		 * tree root, so re-add it to the journal here.
2969 		 */
2970 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2971 						   left_path, 0);
2972 		if (ret) {
2973 			mlog_errno(ret);
2974 			goto out;
2975 		}
2976 
2977 		ret = ocfs2_rotate_subtree_left(handle, et, left_path,
2978 						right_path, subtree_root,
2979 						dealloc, &deleted);
2980 		if (ret == -EAGAIN) {
2981 			/*
2982 			 * The rotation has to temporarily stop due to
2983 			 * the right subtree having an empty
2984 			 * extent. Pass it back to the caller for a
2985 			 * fixup.
2986 			 */
2987 			*empty_extent_path = right_path;
2988 			right_path = NULL;
2989 			goto out;
2990 		}
2991 		if (ret) {
2992 			mlog_errno(ret);
2993 			goto out;
2994 		}
2995 
2996 		/*
2997 		 * The subtree rotate might have removed records on
2998 		 * the rightmost edge. If so, then rotation is
2999 		 * complete.
3000 		 */
3001 		if (deleted)
3002 			break;
3003 
3004 		ocfs2_mv_path(left_path, right_path);
3005 
3006 		ret = ocfs2_find_cpos_for_right_leaf(sb, left_path,
3007 						     &right_cpos);
3008 		if (ret) {
3009 			mlog_errno(ret);
3010 			goto out;
3011 		}
3012 	}
3013 
3014 out:
3015 	ocfs2_free_path(right_path);
3016 	ocfs2_free_path(left_path);
3017 
3018 	return ret;
3019 }
3020 
3021 static int ocfs2_remove_rightmost_path(handle_t *handle,
3022 				struct ocfs2_extent_tree *et,
3023 				struct ocfs2_path *path,
3024 				struct ocfs2_cached_dealloc_ctxt *dealloc)
3025 {
3026 	int ret, subtree_index;
3027 	u32 cpos;
3028 	struct ocfs2_path *left_path = NULL;
3029 	struct ocfs2_extent_block *eb;
3030 	struct ocfs2_extent_list *el;
3031 
3032 
3033 	ret = ocfs2_et_sanity_check(et);
3034 	if (ret)
3035 		goto out;
3036 	/*
3037 	 * There's two ways we handle this depending on
3038 	 * whether path is the only existing one.
3039 	 */
3040 	ret = ocfs2_extend_rotate_transaction(handle, 0,
3041 					      handle->h_buffer_credits,
3042 					      path);
3043 	if (ret) {
3044 		mlog_errno(ret);
3045 		goto out;
3046 	}
3047 
3048 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
3049 	if (ret) {
3050 		mlog_errno(ret);
3051 		goto out;
3052 	}
3053 
3054 	ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3055 					    path, &cpos);
3056 	if (ret) {
3057 		mlog_errno(ret);
3058 		goto out;
3059 	}
3060 
3061 	if (cpos) {
3062 		/*
3063 		 * We have a path to the left of this one - it needs
3064 		 * an update too.
3065 		 */
3066 		left_path = ocfs2_new_path_from_path(path);
3067 		if (!left_path) {
3068 			ret = -ENOMEM;
3069 			mlog_errno(ret);
3070 			goto out;
3071 		}
3072 
3073 		ret = ocfs2_find_path(et->et_ci, left_path, cpos);
3074 		if (ret) {
3075 			mlog_errno(ret);
3076 			goto out;
3077 		}
3078 
3079 		ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
3080 		if (ret) {
3081 			mlog_errno(ret);
3082 			goto out;
3083 		}
3084 
3085 		subtree_index = ocfs2_find_subtree_root(et, left_path, path);
3086 
3087 		ocfs2_unlink_subtree(handle, et, left_path, path,
3088 				     subtree_index, dealloc);
3089 		ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
3090 						left_path);
3091 		if (ret) {
3092 			mlog_errno(ret);
3093 			goto out;
3094 		}
3095 
3096 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3097 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3098 	} else {
3099 		/*
3100 		 * 'path' is also the leftmost path which
3101 		 * means it must be the only one. This gets
3102 		 * handled differently because we want to
3103 		 * revert the root back to having extents
3104 		 * in-line.
3105 		 */
3106 		ocfs2_unlink_path(handle, et, dealloc, path, 1);
3107 
3108 		el = et->et_root_el;
3109 		el->l_tree_depth = 0;
3110 		el->l_next_free_rec = 0;
3111 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3112 
3113 		ocfs2_et_set_last_eb_blk(et, 0);
3114 	}
3115 
3116 	ocfs2_journal_dirty(handle, path_root_bh(path));
3117 
3118 out:
3119 	ocfs2_free_path(left_path);
3120 	return ret;
3121 }
3122 
3123 static int ocfs2_remove_rightmost_empty_extent(struct ocfs2_super *osb,
3124 				struct ocfs2_extent_tree *et,
3125 				struct ocfs2_path *path,
3126 				struct ocfs2_cached_dealloc_ctxt *dealloc)
3127 {
3128 	handle_t *handle;
3129 	int ret;
3130 	int credits = path->p_tree_depth * 2 + 1;
3131 
3132 	handle = ocfs2_start_trans(osb, credits);
3133 	if (IS_ERR(handle)) {
3134 		ret = PTR_ERR(handle);
3135 		mlog_errno(ret);
3136 		return ret;
3137 	}
3138 
3139 	ret = ocfs2_remove_rightmost_path(handle, et, path, dealloc);
3140 	if (ret)
3141 		mlog_errno(ret);
3142 
3143 	ocfs2_commit_trans(osb, handle);
3144 	return ret;
3145 }
3146 
3147 /*
3148  * Left rotation of btree records.
3149  *
3150  * In many ways, this is (unsurprisingly) the opposite of right
3151  * rotation. We start at some non-rightmost path containing an empty
3152  * extent in the leaf block. The code works its way to the rightmost
3153  * path by rotating records to the left in every subtree.
3154  *
3155  * This is used by any code which reduces the number of extent records
3156  * in a leaf. After removal, an empty record should be placed in the
3157  * leftmost list position.
3158  *
3159  * This won't handle a length update of the rightmost path records if
3160  * the rightmost tree leaf record is removed so the caller is
3161  * responsible for detecting and correcting that.
3162  */
3163 static int ocfs2_rotate_tree_left(handle_t *handle,
3164 				  struct ocfs2_extent_tree *et,
3165 				  struct ocfs2_path *path,
3166 				  struct ocfs2_cached_dealloc_ctxt *dealloc)
3167 {
3168 	int ret, orig_credits = handle->h_buffer_credits;
3169 	struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3170 	struct ocfs2_extent_block *eb;
3171 	struct ocfs2_extent_list *el;
3172 
3173 	el = path_leaf_el(path);
3174 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3175 		return 0;
3176 
3177 	if (path->p_tree_depth == 0) {
3178 rightmost_no_delete:
3179 		/*
3180 		 * Inline extents. This is trivially handled, so do
3181 		 * it up front.
3182 		 */
3183 		ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path);
3184 		if (ret)
3185 			mlog_errno(ret);
3186 		goto out;
3187 	}
3188 
3189 	/*
3190 	 * Handle rightmost branch now. There's several cases:
3191 	 *  1) simple rotation leaving records in there. That's trivial.
3192 	 *  2) rotation requiring a branch delete - there's no more
3193 	 *     records left. Two cases of this:
3194 	 *     a) There are branches to the left.
3195 	 *     b) This is also the leftmost (the only) branch.
3196 	 *
3197 	 *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
3198 	 *  2a) we need the left branch so that we can update it with the unlink
3199 	 *  2b) we need to bring the root back to inline extents.
3200 	 */
3201 
3202 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3203 	el = &eb->h_list;
3204 	if (eb->h_next_leaf_blk == 0) {
3205 		/*
3206 		 * This gets a bit tricky if we're going to delete the
3207 		 * rightmost path. Get the other cases out of the way
3208 		 * 1st.
3209 		 */
3210 		if (le16_to_cpu(el->l_next_free_rec) > 1)
3211 			goto rightmost_no_delete;
3212 
3213 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
3214 			ret = -EIO;
3215 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3216 				    "Owner %llu has empty extent block at %llu\n",
3217 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
3218 				    (unsigned long long)le64_to_cpu(eb->h_blkno));
3219 			goto out;
3220 		}
3221 
3222 		/*
3223 		 * XXX: The caller can not trust "path" any more after
3224 		 * this as it will have been deleted. What do we do?
3225 		 *
3226 		 * In theory the rotate-for-merge code will never get
3227 		 * here because it'll always ask for a rotate in a
3228 		 * nonempty list.
3229 		 */
3230 
3231 		ret = ocfs2_remove_rightmost_path(handle, et, path,
3232 						  dealloc);
3233 		if (ret)
3234 			mlog_errno(ret);
3235 		goto out;
3236 	}
3237 
3238 	/*
3239 	 * Now we can loop, remembering the path we get from -EAGAIN
3240 	 * and restarting from there.
3241 	 */
3242 try_rotate:
3243 	ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path,
3244 				       dealloc, &restart_path);
3245 	if (ret && ret != -EAGAIN) {
3246 		mlog_errno(ret);
3247 		goto out;
3248 	}
3249 
3250 	while (ret == -EAGAIN) {
3251 		tmp_path = restart_path;
3252 		restart_path = NULL;
3253 
3254 		ret = __ocfs2_rotate_tree_left(handle, et, orig_credits,
3255 					       tmp_path, dealloc,
3256 					       &restart_path);
3257 		if (ret && ret != -EAGAIN) {
3258 			mlog_errno(ret);
3259 			goto out;
3260 		}
3261 
3262 		ocfs2_free_path(tmp_path);
3263 		tmp_path = NULL;
3264 
3265 		if (ret == 0)
3266 			goto try_rotate;
3267 	}
3268 
3269 out:
3270 	ocfs2_free_path(tmp_path);
3271 	ocfs2_free_path(restart_path);
3272 	return ret;
3273 }
3274 
3275 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3276 				int index)
3277 {
3278 	struct ocfs2_extent_rec *rec = &el->l_recs[index];
3279 	unsigned int size;
3280 
3281 	if (rec->e_leaf_clusters == 0) {
3282 		/*
3283 		 * We consumed all of the merged-from record. An empty
3284 		 * extent cannot exist anywhere but the 1st array
3285 		 * position, so move things over if the merged-from
3286 		 * record doesn't occupy that position.
3287 		 *
3288 		 * This creates a new empty extent so the caller
3289 		 * should be smart enough to have removed any existing
3290 		 * ones.
3291 		 */
3292 		if (index > 0) {
3293 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3294 			size = index * sizeof(struct ocfs2_extent_rec);
3295 			memmove(&el->l_recs[1], &el->l_recs[0], size);
3296 		}
3297 
3298 		/*
3299 		 * Always memset - the caller doesn't check whether it
3300 		 * created an empty extent, so there could be junk in
3301 		 * the other fields.
3302 		 */
3303 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3304 	}
3305 }
3306 
3307 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et,
3308 				struct ocfs2_path *left_path,
3309 				struct ocfs2_path **ret_right_path)
3310 {
3311 	int ret;
3312 	u32 right_cpos;
3313 	struct ocfs2_path *right_path = NULL;
3314 	struct ocfs2_extent_list *left_el;
3315 
3316 	*ret_right_path = NULL;
3317 
3318 	/* This function shouldn't be called for non-trees. */
3319 	BUG_ON(left_path->p_tree_depth == 0);
3320 
3321 	left_el = path_leaf_el(left_path);
3322 	BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3323 
3324 	ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3325 					     left_path, &right_cpos);
3326 	if (ret) {
3327 		mlog_errno(ret);
3328 		goto out;
3329 	}
3330 
3331 	/* This function shouldn't be called for the rightmost leaf. */
3332 	BUG_ON(right_cpos == 0);
3333 
3334 	right_path = ocfs2_new_path_from_path(left_path);
3335 	if (!right_path) {
3336 		ret = -ENOMEM;
3337 		mlog_errno(ret);
3338 		goto out;
3339 	}
3340 
3341 	ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
3342 	if (ret) {
3343 		mlog_errno(ret);
3344 		goto out;
3345 	}
3346 
3347 	*ret_right_path = right_path;
3348 out:
3349 	if (ret)
3350 		ocfs2_free_path(right_path);
3351 	return ret;
3352 }
3353 
3354 /*
3355  * Remove split_rec clusters from the record at index and merge them
3356  * onto the beginning of the record "next" to it.
3357  * For index < l_count - 1, the next means the extent rec at index + 1.
3358  * For index == l_count - 1, the "next" means the 1st extent rec of the
3359  * next extent block.
3360  */
3361 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path,
3362 				 handle_t *handle,
3363 				 struct ocfs2_extent_tree *et,
3364 				 struct ocfs2_extent_rec *split_rec,
3365 				 int index)
3366 {
3367 	int ret, next_free, i;
3368 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3369 	struct ocfs2_extent_rec *left_rec;
3370 	struct ocfs2_extent_rec *right_rec;
3371 	struct ocfs2_extent_list *right_el;
3372 	struct ocfs2_path *right_path = NULL;
3373 	int subtree_index = 0;
3374 	struct ocfs2_extent_list *el = path_leaf_el(left_path);
3375 	struct buffer_head *bh = path_leaf_bh(left_path);
3376 	struct buffer_head *root_bh = NULL;
3377 
3378 	BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3379 	left_rec = &el->l_recs[index];
3380 
3381 	if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3382 	    le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3383 		/* we meet with a cross extent block merge. */
3384 		ret = ocfs2_get_right_path(et, left_path, &right_path);
3385 		if (ret) {
3386 			mlog_errno(ret);
3387 			return ret;
3388 		}
3389 
3390 		right_el = path_leaf_el(right_path);
3391 		next_free = le16_to_cpu(right_el->l_next_free_rec);
3392 		BUG_ON(next_free <= 0);
3393 		right_rec = &right_el->l_recs[0];
3394 		if (ocfs2_is_empty_extent(right_rec)) {
3395 			BUG_ON(next_free <= 1);
3396 			right_rec = &right_el->l_recs[1];
3397 		}
3398 
3399 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3400 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3401 		       le32_to_cpu(right_rec->e_cpos));
3402 
3403 		subtree_index = ocfs2_find_subtree_root(et, left_path,
3404 							right_path);
3405 
3406 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3407 						      handle->h_buffer_credits,
3408 						      right_path);
3409 		if (ret) {
3410 			mlog_errno(ret);
3411 			goto out;
3412 		}
3413 
3414 		root_bh = left_path->p_node[subtree_index].bh;
3415 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3416 
3417 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3418 						   subtree_index);
3419 		if (ret) {
3420 			mlog_errno(ret);
3421 			goto out;
3422 		}
3423 
3424 		for (i = subtree_index + 1;
3425 		     i < path_num_items(right_path); i++) {
3426 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3427 							   right_path, i);
3428 			if (ret) {
3429 				mlog_errno(ret);
3430 				goto out;
3431 			}
3432 
3433 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3434 							   left_path, i);
3435 			if (ret) {
3436 				mlog_errno(ret);
3437 				goto out;
3438 			}
3439 		}
3440 
3441 	} else {
3442 		BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3443 		right_rec = &el->l_recs[index + 1];
3444 	}
3445 
3446 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path,
3447 					   path_num_items(left_path) - 1);
3448 	if (ret) {
3449 		mlog_errno(ret);
3450 		goto out;
3451 	}
3452 
3453 	le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3454 
3455 	le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3456 	le64_add_cpu(&right_rec->e_blkno,
3457 		     -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3458 					       split_clusters));
3459 	le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3460 
3461 	ocfs2_cleanup_merge(el, index);
3462 
3463 	ocfs2_journal_dirty(handle, bh);
3464 	if (right_path) {
3465 		ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3466 		ocfs2_complete_edge_insert(handle, left_path, right_path,
3467 					   subtree_index);
3468 	}
3469 out:
3470 	ocfs2_free_path(right_path);
3471 	return ret;
3472 }
3473 
3474 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et,
3475 			       struct ocfs2_path *right_path,
3476 			       struct ocfs2_path **ret_left_path)
3477 {
3478 	int ret;
3479 	u32 left_cpos;
3480 	struct ocfs2_path *left_path = NULL;
3481 
3482 	*ret_left_path = NULL;
3483 
3484 	/* This function shouldn't be called for non-trees. */
3485 	BUG_ON(right_path->p_tree_depth == 0);
3486 
3487 	ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3488 					    right_path, &left_cpos);
3489 	if (ret) {
3490 		mlog_errno(ret);
3491 		goto out;
3492 	}
3493 
3494 	/* This function shouldn't be called for the leftmost leaf. */
3495 	BUG_ON(left_cpos == 0);
3496 
3497 	left_path = ocfs2_new_path_from_path(right_path);
3498 	if (!left_path) {
3499 		ret = -ENOMEM;
3500 		mlog_errno(ret);
3501 		goto out;
3502 	}
3503 
3504 	ret = ocfs2_find_path(et->et_ci, left_path, left_cpos);
3505 	if (ret) {
3506 		mlog_errno(ret);
3507 		goto out;
3508 	}
3509 
3510 	*ret_left_path = left_path;
3511 out:
3512 	if (ret)
3513 		ocfs2_free_path(left_path);
3514 	return ret;
3515 }
3516 
3517 /*
3518  * Remove split_rec clusters from the record at index and merge them
3519  * onto the tail of the record "before" it.
3520  * For index > 0, the "before" means the extent rec at index - 1.
3521  *
3522  * For index == 0, the "before" means the last record of the previous
3523  * extent block. And there is also a situation that we may need to
3524  * remove the rightmost leaf extent block in the right_path and change
3525  * the right path to indicate the new rightmost path.
3526  */
3527 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path,
3528 				handle_t *handle,
3529 				struct ocfs2_extent_tree *et,
3530 				struct ocfs2_extent_rec *split_rec,
3531 				struct ocfs2_cached_dealloc_ctxt *dealloc,
3532 				int index)
3533 {
3534 	int ret, i, subtree_index = 0, has_empty_extent = 0;
3535 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3536 	struct ocfs2_extent_rec *left_rec;
3537 	struct ocfs2_extent_rec *right_rec;
3538 	struct ocfs2_extent_list *el = path_leaf_el(right_path);
3539 	struct buffer_head *bh = path_leaf_bh(right_path);
3540 	struct buffer_head *root_bh = NULL;
3541 	struct ocfs2_path *left_path = NULL;
3542 	struct ocfs2_extent_list *left_el;
3543 
3544 	BUG_ON(index < 0);
3545 
3546 	right_rec = &el->l_recs[index];
3547 	if (index == 0) {
3548 		/* we meet with a cross extent block merge. */
3549 		ret = ocfs2_get_left_path(et, right_path, &left_path);
3550 		if (ret) {
3551 			mlog_errno(ret);
3552 			return ret;
3553 		}
3554 
3555 		left_el = path_leaf_el(left_path);
3556 		BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3557 		       le16_to_cpu(left_el->l_count));
3558 
3559 		left_rec = &left_el->l_recs[
3560 				le16_to_cpu(left_el->l_next_free_rec) - 1];
3561 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3562 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3563 		       le32_to_cpu(split_rec->e_cpos));
3564 
3565 		subtree_index = ocfs2_find_subtree_root(et, left_path,
3566 							right_path);
3567 
3568 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3569 						      handle->h_buffer_credits,
3570 						      left_path);
3571 		if (ret) {
3572 			mlog_errno(ret);
3573 			goto out;
3574 		}
3575 
3576 		root_bh = left_path->p_node[subtree_index].bh;
3577 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3578 
3579 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3580 						   subtree_index);
3581 		if (ret) {
3582 			mlog_errno(ret);
3583 			goto out;
3584 		}
3585 
3586 		for (i = subtree_index + 1;
3587 		     i < path_num_items(right_path); i++) {
3588 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3589 							   right_path, i);
3590 			if (ret) {
3591 				mlog_errno(ret);
3592 				goto out;
3593 			}
3594 
3595 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3596 							   left_path, i);
3597 			if (ret) {
3598 				mlog_errno(ret);
3599 				goto out;
3600 			}
3601 		}
3602 	} else {
3603 		left_rec = &el->l_recs[index - 1];
3604 		if (ocfs2_is_empty_extent(&el->l_recs[0]))
3605 			has_empty_extent = 1;
3606 	}
3607 
3608 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3609 					   path_num_items(right_path) - 1);
3610 	if (ret) {
3611 		mlog_errno(ret);
3612 		goto out;
3613 	}
3614 
3615 	if (has_empty_extent && index == 1) {
3616 		/*
3617 		 * The easy case - we can just plop the record right in.
3618 		 */
3619 		*left_rec = *split_rec;
3620 
3621 		has_empty_extent = 0;
3622 	} else
3623 		le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3624 
3625 	le32_add_cpu(&right_rec->e_cpos, split_clusters);
3626 	le64_add_cpu(&right_rec->e_blkno,
3627 		     ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3628 					      split_clusters));
3629 	le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3630 
3631 	ocfs2_cleanup_merge(el, index);
3632 
3633 	ocfs2_journal_dirty(handle, bh);
3634 	if (left_path) {
3635 		ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3636 
3637 		/*
3638 		 * In the situation that the right_rec is empty and the extent
3639 		 * block is empty also,  ocfs2_complete_edge_insert can't handle
3640 		 * it and we need to delete the right extent block.
3641 		 */
3642 		if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3643 		    le16_to_cpu(el->l_next_free_rec) == 1) {
3644 
3645 			ret = ocfs2_remove_rightmost_path(handle, et,
3646 							  right_path,
3647 							  dealloc);
3648 			if (ret) {
3649 				mlog_errno(ret);
3650 				goto out;
3651 			}
3652 
3653 			/* Now the rightmost extent block has been deleted.
3654 			 * So we use the new rightmost path.
3655 			 */
3656 			ocfs2_mv_path(right_path, left_path);
3657 			left_path = NULL;
3658 		} else
3659 			ocfs2_complete_edge_insert(handle, left_path,
3660 						   right_path, subtree_index);
3661 	}
3662 out:
3663 	ocfs2_free_path(left_path);
3664 	return ret;
3665 }
3666 
3667 static int ocfs2_try_to_merge_extent(handle_t *handle,
3668 				     struct ocfs2_extent_tree *et,
3669 				     struct ocfs2_path *path,
3670 				     int split_index,
3671 				     struct ocfs2_extent_rec *split_rec,
3672 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
3673 				     struct ocfs2_merge_ctxt *ctxt)
3674 {
3675 	int ret = 0;
3676 	struct ocfs2_extent_list *el = path_leaf_el(path);
3677 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3678 
3679 	BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3680 
3681 	if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3682 		/*
3683 		 * The merge code will need to create an empty
3684 		 * extent to take the place of the newly
3685 		 * emptied slot. Remove any pre-existing empty
3686 		 * extents - having more than one in a leaf is
3687 		 * illegal.
3688 		 */
3689 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3690 		if (ret) {
3691 			mlog_errno(ret);
3692 			goto out;
3693 		}
3694 		split_index--;
3695 		rec = &el->l_recs[split_index];
3696 	}
3697 
3698 	if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3699 		/*
3700 		 * Left-right contig implies this.
3701 		 */
3702 		BUG_ON(!ctxt->c_split_covers_rec);
3703 
3704 		/*
3705 		 * Since the leftright insert always covers the entire
3706 		 * extent, this call will delete the insert record
3707 		 * entirely, resulting in an empty extent record added to
3708 		 * the extent block.
3709 		 *
3710 		 * Since the adding of an empty extent shifts
3711 		 * everything back to the right, there's no need to
3712 		 * update split_index here.
3713 		 *
3714 		 * When the split_index is zero, we need to merge it to the
3715 		 * prevoius extent block. It is more efficient and easier
3716 		 * if we do merge_right first and merge_left later.
3717 		 */
3718 		ret = ocfs2_merge_rec_right(path, handle, et, split_rec,
3719 					    split_index);
3720 		if (ret) {
3721 			mlog_errno(ret);
3722 			goto out;
3723 		}
3724 
3725 		/*
3726 		 * We can only get this from logic error above.
3727 		 */
3728 		BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3729 
3730 		/* The merge left us with an empty extent, remove it. */
3731 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3732 		if (ret) {
3733 			mlog_errno(ret);
3734 			goto out;
3735 		}
3736 
3737 		rec = &el->l_recs[split_index];
3738 
3739 		/*
3740 		 * Note that we don't pass split_rec here on purpose -
3741 		 * we've merged it into the rec already.
3742 		 */
3743 		ret = ocfs2_merge_rec_left(path, handle, et, rec,
3744 					   dealloc, split_index);
3745 
3746 		if (ret) {
3747 			mlog_errno(ret);
3748 			goto out;
3749 		}
3750 
3751 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3752 		/*
3753 		 * Error from this last rotate is not critical, so
3754 		 * print but don't bubble it up.
3755 		 */
3756 		if (ret)
3757 			mlog_errno(ret);
3758 		ret = 0;
3759 	} else {
3760 		/*
3761 		 * Merge a record to the left or right.
3762 		 *
3763 		 * 'contig_type' is relative to the existing record,
3764 		 * so for example, if we're "right contig", it's to
3765 		 * the record on the left (hence the left merge).
3766 		 */
3767 		if (ctxt->c_contig_type == CONTIG_RIGHT) {
3768 			ret = ocfs2_merge_rec_left(path, handle, et,
3769 						   split_rec, dealloc,
3770 						   split_index);
3771 			if (ret) {
3772 				mlog_errno(ret);
3773 				goto out;
3774 			}
3775 		} else {
3776 			ret = ocfs2_merge_rec_right(path, handle,
3777 						    et, split_rec,
3778 						    split_index);
3779 			if (ret) {
3780 				mlog_errno(ret);
3781 				goto out;
3782 			}
3783 		}
3784 
3785 		if (ctxt->c_split_covers_rec) {
3786 			/*
3787 			 * The merge may have left an empty extent in
3788 			 * our leaf. Try to rotate it away.
3789 			 */
3790 			ret = ocfs2_rotate_tree_left(handle, et, path,
3791 						     dealloc);
3792 			if (ret)
3793 				mlog_errno(ret);
3794 			ret = 0;
3795 		}
3796 	}
3797 
3798 out:
3799 	return ret;
3800 }
3801 
3802 static void ocfs2_subtract_from_rec(struct super_block *sb,
3803 				    enum ocfs2_split_type split,
3804 				    struct ocfs2_extent_rec *rec,
3805 				    struct ocfs2_extent_rec *split_rec)
3806 {
3807 	u64 len_blocks;
3808 
3809 	len_blocks = ocfs2_clusters_to_blocks(sb,
3810 				le16_to_cpu(split_rec->e_leaf_clusters));
3811 
3812 	if (split == SPLIT_LEFT) {
3813 		/*
3814 		 * Region is on the left edge of the existing
3815 		 * record.
3816 		 */
3817 		le32_add_cpu(&rec->e_cpos,
3818 			     le16_to_cpu(split_rec->e_leaf_clusters));
3819 		le64_add_cpu(&rec->e_blkno, len_blocks);
3820 		le16_add_cpu(&rec->e_leaf_clusters,
3821 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3822 	} else {
3823 		/*
3824 		 * Region is on the right edge of the existing
3825 		 * record.
3826 		 */
3827 		le16_add_cpu(&rec->e_leaf_clusters,
3828 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3829 	}
3830 }
3831 
3832 /*
3833  * Do the final bits of extent record insertion at the target leaf
3834  * list. If this leaf is part of an allocation tree, it is assumed
3835  * that the tree above has been prepared.
3836  */
3837 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et,
3838 				 struct ocfs2_extent_rec *insert_rec,
3839 				 struct ocfs2_extent_list *el,
3840 				 struct ocfs2_insert_type *insert)
3841 {
3842 	int i = insert->ins_contig_index;
3843 	unsigned int range;
3844 	struct ocfs2_extent_rec *rec;
3845 
3846 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3847 
3848 	if (insert->ins_split != SPLIT_NONE) {
3849 		i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3850 		BUG_ON(i == -1);
3851 		rec = &el->l_recs[i];
3852 		ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
3853 					insert->ins_split, rec,
3854 					insert_rec);
3855 		goto rotate;
3856 	}
3857 
3858 	/*
3859 	 * Contiguous insert - either left or right.
3860 	 */
3861 	if (insert->ins_contig != CONTIG_NONE) {
3862 		rec = &el->l_recs[i];
3863 		if (insert->ins_contig == CONTIG_LEFT) {
3864 			rec->e_blkno = insert_rec->e_blkno;
3865 			rec->e_cpos = insert_rec->e_cpos;
3866 		}
3867 		le16_add_cpu(&rec->e_leaf_clusters,
3868 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3869 		return;
3870 	}
3871 
3872 	/*
3873 	 * Handle insert into an empty leaf.
3874 	 */
3875 	if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3876 	    ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3877 	     ocfs2_is_empty_extent(&el->l_recs[0]))) {
3878 		el->l_recs[0] = *insert_rec;
3879 		el->l_next_free_rec = cpu_to_le16(1);
3880 		return;
3881 	}
3882 
3883 	/*
3884 	 * Appending insert.
3885 	 */
3886 	if (insert->ins_appending == APPEND_TAIL) {
3887 		i = le16_to_cpu(el->l_next_free_rec) - 1;
3888 		rec = &el->l_recs[i];
3889 		range = le32_to_cpu(rec->e_cpos)
3890 			+ le16_to_cpu(rec->e_leaf_clusters);
3891 		BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3892 
3893 		mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3894 				le16_to_cpu(el->l_count),
3895 				"owner %llu, depth %u, count %u, next free %u, "
3896 				"rec.cpos %u, rec.clusters %u, "
3897 				"insert.cpos %u, insert.clusters %u\n",
3898 				ocfs2_metadata_cache_owner(et->et_ci),
3899 				le16_to_cpu(el->l_tree_depth),
3900 				le16_to_cpu(el->l_count),
3901 				le16_to_cpu(el->l_next_free_rec),
3902 				le32_to_cpu(el->l_recs[i].e_cpos),
3903 				le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3904 				le32_to_cpu(insert_rec->e_cpos),
3905 				le16_to_cpu(insert_rec->e_leaf_clusters));
3906 		i++;
3907 		el->l_recs[i] = *insert_rec;
3908 		le16_add_cpu(&el->l_next_free_rec, 1);
3909 		return;
3910 	}
3911 
3912 rotate:
3913 	/*
3914 	 * Ok, we have to rotate.
3915 	 *
3916 	 * At this point, it is safe to assume that inserting into an
3917 	 * empty leaf and appending to a leaf have both been handled
3918 	 * above.
3919 	 *
3920 	 * This leaf needs to have space, either by the empty 1st
3921 	 * extent record, or by virtue of an l_next_rec < l_count.
3922 	 */
3923 	ocfs2_rotate_leaf(el, insert_rec);
3924 }
3925 
3926 static void ocfs2_adjust_rightmost_records(handle_t *handle,
3927 					   struct ocfs2_extent_tree *et,
3928 					   struct ocfs2_path *path,
3929 					   struct ocfs2_extent_rec *insert_rec)
3930 {
3931 	int ret, i, next_free;
3932 	struct buffer_head *bh;
3933 	struct ocfs2_extent_list *el;
3934 	struct ocfs2_extent_rec *rec;
3935 
3936 	/*
3937 	 * Update everything except the leaf block.
3938 	 */
3939 	for (i = 0; i < path->p_tree_depth; i++) {
3940 		bh = path->p_node[i].bh;
3941 		el = path->p_node[i].el;
3942 
3943 		next_free = le16_to_cpu(el->l_next_free_rec);
3944 		if (next_free == 0) {
3945 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3946 				    "Owner %llu has a bad extent list\n",
3947 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
3948 			ret = -EIO;
3949 			return;
3950 		}
3951 
3952 		rec = &el->l_recs[next_free - 1];
3953 
3954 		rec->e_int_clusters = insert_rec->e_cpos;
3955 		le32_add_cpu(&rec->e_int_clusters,
3956 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3957 		le32_add_cpu(&rec->e_int_clusters,
3958 			     -le32_to_cpu(rec->e_cpos));
3959 
3960 		ocfs2_journal_dirty(handle, bh);
3961 	}
3962 }
3963 
3964 static int ocfs2_append_rec_to_path(handle_t *handle,
3965 				    struct ocfs2_extent_tree *et,
3966 				    struct ocfs2_extent_rec *insert_rec,
3967 				    struct ocfs2_path *right_path,
3968 				    struct ocfs2_path **ret_left_path)
3969 {
3970 	int ret, next_free;
3971 	struct ocfs2_extent_list *el;
3972 	struct ocfs2_path *left_path = NULL;
3973 
3974 	*ret_left_path = NULL;
3975 
3976 	/*
3977 	 * This shouldn't happen for non-trees. The extent rec cluster
3978 	 * count manipulation below only works for interior nodes.
3979 	 */
3980 	BUG_ON(right_path->p_tree_depth == 0);
3981 
3982 	/*
3983 	 * If our appending insert is at the leftmost edge of a leaf,
3984 	 * then we might need to update the rightmost records of the
3985 	 * neighboring path.
3986 	 */
3987 	el = path_leaf_el(right_path);
3988 	next_free = le16_to_cpu(el->l_next_free_rec);
3989 	if (next_free == 0 ||
3990 	    (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3991 		u32 left_cpos;
3992 
3993 		ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3994 						    right_path, &left_cpos);
3995 		if (ret) {
3996 			mlog_errno(ret);
3997 			goto out;
3998 		}
3999 
4000 		trace_ocfs2_append_rec_to_path(
4001 			(unsigned long long)
4002 			ocfs2_metadata_cache_owner(et->et_ci),
4003 			le32_to_cpu(insert_rec->e_cpos),
4004 			left_cpos);
4005 
4006 		/*
4007 		 * No need to worry if the append is already in the
4008 		 * leftmost leaf.
4009 		 */
4010 		if (left_cpos) {
4011 			left_path = ocfs2_new_path_from_path(right_path);
4012 			if (!left_path) {
4013 				ret = -ENOMEM;
4014 				mlog_errno(ret);
4015 				goto out;
4016 			}
4017 
4018 			ret = ocfs2_find_path(et->et_ci, left_path,
4019 					      left_cpos);
4020 			if (ret) {
4021 				mlog_errno(ret);
4022 				goto out;
4023 			}
4024 
4025 			/*
4026 			 * ocfs2_insert_path() will pass the left_path to the
4027 			 * journal for us.
4028 			 */
4029 		}
4030 	}
4031 
4032 	ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4033 	if (ret) {
4034 		mlog_errno(ret);
4035 		goto out;
4036 	}
4037 
4038 	ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec);
4039 
4040 	*ret_left_path = left_path;
4041 	ret = 0;
4042 out:
4043 	if (ret != 0)
4044 		ocfs2_free_path(left_path);
4045 
4046 	return ret;
4047 }
4048 
4049 static void ocfs2_split_record(struct ocfs2_extent_tree *et,
4050 			       struct ocfs2_path *left_path,
4051 			       struct ocfs2_path *right_path,
4052 			       struct ocfs2_extent_rec *split_rec,
4053 			       enum ocfs2_split_type split)
4054 {
4055 	int index;
4056 	u32 cpos = le32_to_cpu(split_rec->e_cpos);
4057 	struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4058 	struct ocfs2_extent_rec *rec, *tmprec;
4059 
4060 	right_el = path_leaf_el(right_path);
4061 	if (left_path)
4062 		left_el = path_leaf_el(left_path);
4063 
4064 	el = right_el;
4065 	insert_el = right_el;
4066 	index = ocfs2_search_extent_list(el, cpos);
4067 	if (index != -1) {
4068 		if (index == 0 && left_path) {
4069 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4070 
4071 			/*
4072 			 * This typically means that the record
4073 			 * started in the left path but moved to the
4074 			 * right as a result of rotation. We either
4075 			 * move the existing record to the left, or we
4076 			 * do the later insert there.
4077 			 *
4078 			 * In this case, the left path should always
4079 			 * exist as the rotate code will have passed
4080 			 * it back for a post-insert update.
4081 			 */
4082 
4083 			if (split == SPLIT_LEFT) {
4084 				/*
4085 				 * It's a left split. Since we know
4086 				 * that the rotate code gave us an
4087 				 * empty extent in the left path, we
4088 				 * can just do the insert there.
4089 				 */
4090 				insert_el = left_el;
4091 			} else {
4092 				/*
4093 				 * Right split - we have to move the
4094 				 * existing record over to the left
4095 				 * leaf. The insert will be into the
4096 				 * newly created empty extent in the
4097 				 * right leaf.
4098 				 */
4099 				tmprec = &right_el->l_recs[index];
4100 				ocfs2_rotate_leaf(left_el, tmprec);
4101 				el = left_el;
4102 
4103 				memset(tmprec, 0, sizeof(*tmprec));
4104 				index = ocfs2_search_extent_list(left_el, cpos);
4105 				BUG_ON(index == -1);
4106 			}
4107 		}
4108 	} else {
4109 		BUG_ON(!left_path);
4110 		BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4111 		/*
4112 		 * Left path is easy - we can just allow the insert to
4113 		 * happen.
4114 		 */
4115 		el = left_el;
4116 		insert_el = left_el;
4117 		index = ocfs2_search_extent_list(el, cpos);
4118 		BUG_ON(index == -1);
4119 	}
4120 
4121 	rec = &el->l_recs[index];
4122 	ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4123 				split, rec, split_rec);
4124 	ocfs2_rotate_leaf(insert_el, split_rec);
4125 }
4126 
4127 /*
4128  * This function only does inserts on an allocation b-tree. For tree
4129  * depth = 0, ocfs2_insert_at_leaf() is called directly.
4130  *
4131  * right_path is the path we want to do the actual insert
4132  * in. left_path should only be passed in if we need to update that
4133  * portion of the tree after an edge insert.
4134  */
4135 static int ocfs2_insert_path(handle_t *handle,
4136 			     struct ocfs2_extent_tree *et,
4137 			     struct ocfs2_path *left_path,
4138 			     struct ocfs2_path *right_path,
4139 			     struct ocfs2_extent_rec *insert_rec,
4140 			     struct ocfs2_insert_type *insert)
4141 {
4142 	int ret, subtree_index;
4143 	struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4144 
4145 	if (left_path) {
4146 		/*
4147 		 * There's a chance that left_path got passed back to
4148 		 * us without being accounted for in the
4149 		 * journal. Extend our transaction here to be sure we
4150 		 * can change those blocks.
4151 		 */
4152 		ret = ocfs2_extend_trans(handle, left_path->p_tree_depth);
4153 		if (ret < 0) {
4154 			mlog_errno(ret);
4155 			goto out;
4156 		}
4157 
4158 		ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
4159 		if (ret < 0) {
4160 			mlog_errno(ret);
4161 			goto out;
4162 		}
4163 	}
4164 
4165 	/*
4166 	 * Pass both paths to the journal. The majority of inserts
4167 	 * will be touching all components anyway.
4168 	 */
4169 	ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4170 	if (ret < 0) {
4171 		mlog_errno(ret);
4172 		goto out;
4173 	}
4174 
4175 	if (insert->ins_split != SPLIT_NONE) {
4176 		/*
4177 		 * We could call ocfs2_insert_at_leaf() for some types
4178 		 * of splits, but it's easier to just let one separate
4179 		 * function sort it all out.
4180 		 */
4181 		ocfs2_split_record(et, left_path, right_path,
4182 				   insert_rec, insert->ins_split);
4183 
4184 		/*
4185 		 * Split might have modified either leaf and we don't
4186 		 * have a guarantee that the later edge insert will
4187 		 * dirty this for us.
4188 		 */
4189 		if (left_path)
4190 			ocfs2_journal_dirty(handle,
4191 					    path_leaf_bh(left_path));
4192 	} else
4193 		ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path),
4194 				     insert);
4195 
4196 	ocfs2_journal_dirty(handle, leaf_bh);
4197 
4198 	if (left_path) {
4199 		/*
4200 		 * The rotate code has indicated that we need to fix
4201 		 * up portions of the tree after the insert.
4202 		 *
4203 		 * XXX: Should we extend the transaction here?
4204 		 */
4205 		subtree_index = ocfs2_find_subtree_root(et, left_path,
4206 							right_path);
4207 		ocfs2_complete_edge_insert(handle, left_path, right_path,
4208 					   subtree_index);
4209 	}
4210 
4211 	ret = 0;
4212 out:
4213 	return ret;
4214 }
4215 
4216 static int ocfs2_do_insert_extent(handle_t *handle,
4217 				  struct ocfs2_extent_tree *et,
4218 				  struct ocfs2_extent_rec *insert_rec,
4219 				  struct ocfs2_insert_type *type)
4220 {
4221 	int ret, rotate = 0;
4222 	u32 cpos;
4223 	struct ocfs2_path *right_path = NULL;
4224 	struct ocfs2_path *left_path = NULL;
4225 	struct ocfs2_extent_list *el;
4226 
4227 	el = et->et_root_el;
4228 
4229 	ret = ocfs2_et_root_journal_access(handle, et,
4230 					   OCFS2_JOURNAL_ACCESS_WRITE);
4231 	if (ret) {
4232 		mlog_errno(ret);
4233 		goto out;
4234 	}
4235 
4236 	if (le16_to_cpu(el->l_tree_depth) == 0) {
4237 		ocfs2_insert_at_leaf(et, insert_rec, el, type);
4238 		goto out_update_clusters;
4239 	}
4240 
4241 	right_path = ocfs2_new_path_from_et(et);
4242 	if (!right_path) {
4243 		ret = -ENOMEM;
4244 		mlog_errno(ret);
4245 		goto out;
4246 	}
4247 
4248 	/*
4249 	 * Determine the path to start with. Rotations need the
4250 	 * rightmost path, everything else can go directly to the
4251 	 * target leaf.
4252 	 */
4253 	cpos = le32_to_cpu(insert_rec->e_cpos);
4254 	if (type->ins_appending == APPEND_NONE &&
4255 	    type->ins_contig == CONTIG_NONE) {
4256 		rotate = 1;
4257 		cpos = UINT_MAX;
4258 	}
4259 
4260 	ret = ocfs2_find_path(et->et_ci, right_path, cpos);
4261 	if (ret) {
4262 		mlog_errno(ret);
4263 		goto out;
4264 	}
4265 
4266 	/*
4267 	 * Rotations and appends need special treatment - they modify
4268 	 * parts of the tree's above them.
4269 	 *
4270 	 * Both might pass back a path immediate to the left of the
4271 	 * one being inserted to. This will be cause
4272 	 * ocfs2_insert_path() to modify the rightmost records of
4273 	 * left_path to account for an edge insert.
4274 	 *
4275 	 * XXX: When modifying this code, keep in mind that an insert
4276 	 * can wind up skipping both of these two special cases...
4277 	 */
4278 	if (rotate) {
4279 		ret = ocfs2_rotate_tree_right(handle, et, type->ins_split,
4280 					      le32_to_cpu(insert_rec->e_cpos),
4281 					      right_path, &left_path);
4282 		if (ret) {
4283 			mlog_errno(ret);
4284 			goto out;
4285 		}
4286 
4287 		/*
4288 		 * ocfs2_rotate_tree_right() might have extended the
4289 		 * transaction without re-journaling our tree root.
4290 		 */
4291 		ret = ocfs2_et_root_journal_access(handle, et,
4292 						   OCFS2_JOURNAL_ACCESS_WRITE);
4293 		if (ret) {
4294 			mlog_errno(ret);
4295 			goto out;
4296 		}
4297 	} else if (type->ins_appending == APPEND_TAIL
4298 		   && type->ins_contig != CONTIG_LEFT) {
4299 		ret = ocfs2_append_rec_to_path(handle, et, insert_rec,
4300 					       right_path, &left_path);
4301 		if (ret) {
4302 			mlog_errno(ret);
4303 			goto out;
4304 		}
4305 	}
4306 
4307 	ret = ocfs2_insert_path(handle, et, left_path, right_path,
4308 				insert_rec, type);
4309 	if (ret) {
4310 		mlog_errno(ret);
4311 		goto out;
4312 	}
4313 
4314 out_update_clusters:
4315 	if (type->ins_split == SPLIT_NONE)
4316 		ocfs2_et_update_clusters(et,
4317 					 le16_to_cpu(insert_rec->e_leaf_clusters));
4318 
4319 	ocfs2_journal_dirty(handle, et->et_root_bh);
4320 
4321 out:
4322 	ocfs2_free_path(left_path);
4323 	ocfs2_free_path(right_path);
4324 
4325 	return ret;
4326 }
4327 
4328 static int ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et,
4329 			       struct ocfs2_path *path,
4330 			       struct ocfs2_extent_list *el, int index,
4331 			       struct ocfs2_extent_rec *split_rec,
4332 			       struct ocfs2_merge_ctxt *ctxt)
4333 {
4334 	int status = 0;
4335 	enum ocfs2_contig_type ret = CONTIG_NONE;
4336 	u32 left_cpos, right_cpos;
4337 	struct ocfs2_extent_rec *rec = NULL;
4338 	struct ocfs2_extent_list *new_el;
4339 	struct ocfs2_path *left_path = NULL, *right_path = NULL;
4340 	struct buffer_head *bh;
4341 	struct ocfs2_extent_block *eb;
4342 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
4343 
4344 	if (index > 0) {
4345 		rec = &el->l_recs[index - 1];
4346 	} else if (path->p_tree_depth > 0) {
4347 		status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
4348 		if (status)
4349 			goto exit;
4350 
4351 		if (left_cpos != 0) {
4352 			left_path = ocfs2_new_path_from_path(path);
4353 			if (!left_path) {
4354 				status = -ENOMEM;
4355 				mlog_errno(status);
4356 				goto exit;
4357 			}
4358 
4359 			status = ocfs2_find_path(et->et_ci, left_path,
4360 						 left_cpos);
4361 			if (status)
4362 				goto free_left_path;
4363 
4364 			new_el = path_leaf_el(left_path);
4365 
4366 			if (le16_to_cpu(new_el->l_next_free_rec) !=
4367 			    le16_to_cpu(new_el->l_count)) {
4368 				bh = path_leaf_bh(left_path);
4369 				eb = (struct ocfs2_extent_block *)bh->b_data;
4370 				ocfs2_error(sb,
4371 					    "Extent block #%llu has an invalid l_next_free_rec of %d.  It should have matched the l_count of %d\n",
4372 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4373 					    le16_to_cpu(new_el->l_next_free_rec),
4374 					    le16_to_cpu(new_el->l_count));
4375 				status = -EINVAL;
4376 				goto free_left_path;
4377 			}
4378 			rec = &new_el->l_recs[
4379 				le16_to_cpu(new_el->l_next_free_rec) - 1];
4380 		}
4381 	}
4382 
4383 	/*
4384 	 * We're careful to check for an empty extent record here -
4385 	 * the merge code will know what to do if it sees one.
4386 	 */
4387 	if (rec) {
4388 		if (index == 1 && ocfs2_is_empty_extent(rec)) {
4389 			if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4390 				ret = CONTIG_RIGHT;
4391 		} else {
4392 			ret = ocfs2_et_extent_contig(et, rec, split_rec);
4393 		}
4394 	}
4395 
4396 	rec = NULL;
4397 	if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4398 		rec = &el->l_recs[index + 1];
4399 	else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4400 		 path->p_tree_depth > 0) {
4401 		status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
4402 		if (status)
4403 			goto free_left_path;
4404 
4405 		if (right_cpos == 0)
4406 			goto free_left_path;
4407 
4408 		right_path = ocfs2_new_path_from_path(path);
4409 		if (!right_path) {
4410 			status = -ENOMEM;
4411 			mlog_errno(status);
4412 			goto free_left_path;
4413 		}
4414 
4415 		status = ocfs2_find_path(et->et_ci, right_path, right_cpos);
4416 		if (status)
4417 			goto free_right_path;
4418 
4419 		new_el = path_leaf_el(right_path);
4420 		rec = &new_el->l_recs[0];
4421 		if (ocfs2_is_empty_extent(rec)) {
4422 			if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4423 				bh = path_leaf_bh(right_path);
4424 				eb = (struct ocfs2_extent_block *)bh->b_data;
4425 				ocfs2_error(sb,
4426 					    "Extent block #%llu has an invalid l_next_free_rec of %d\n",
4427 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4428 					    le16_to_cpu(new_el->l_next_free_rec));
4429 				status = -EINVAL;
4430 				goto free_right_path;
4431 			}
4432 			rec = &new_el->l_recs[1];
4433 		}
4434 	}
4435 
4436 	if (rec) {
4437 		enum ocfs2_contig_type contig_type;
4438 
4439 		contig_type = ocfs2_et_extent_contig(et, rec, split_rec);
4440 
4441 		if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4442 			ret = CONTIG_LEFTRIGHT;
4443 		else if (ret == CONTIG_NONE)
4444 			ret = contig_type;
4445 	}
4446 
4447 free_right_path:
4448 	ocfs2_free_path(right_path);
4449 free_left_path:
4450 	ocfs2_free_path(left_path);
4451 exit:
4452 	if (status == 0)
4453 		ctxt->c_contig_type = ret;
4454 
4455 	return status;
4456 }
4457 
4458 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et,
4459 				     struct ocfs2_insert_type *insert,
4460 				     struct ocfs2_extent_list *el,
4461 				     struct ocfs2_extent_rec *insert_rec)
4462 {
4463 	int i;
4464 	enum ocfs2_contig_type contig_type = CONTIG_NONE;
4465 
4466 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4467 
4468 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4469 		contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i],
4470 						     insert_rec);
4471 		if (contig_type != CONTIG_NONE) {
4472 			insert->ins_contig_index = i;
4473 			break;
4474 		}
4475 	}
4476 	insert->ins_contig = contig_type;
4477 
4478 	if (insert->ins_contig != CONTIG_NONE) {
4479 		struct ocfs2_extent_rec *rec =
4480 				&el->l_recs[insert->ins_contig_index];
4481 		unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4482 				   le16_to_cpu(insert_rec->e_leaf_clusters);
4483 
4484 		/*
4485 		 * Caller might want us to limit the size of extents, don't
4486 		 * calculate contiguousness if we might exceed that limit.
4487 		 */
4488 		if (et->et_max_leaf_clusters &&
4489 		    (len > et->et_max_leaf_clusters))
4490 			insert->ins_contig = CONTIG_NONE;
4491 	}
4492 }
4493 
4494 /*
4495  * This should only be called against the righmost leaf extent list.
4496  *
4497  * ocfs2_figure_appending_type() will figure out whether we'll have to
4498  * insert at the tail of the rightmost leaf.
4499  *
4500  * This should also work against the root extent list for tree's with 0
4501  * depth. If we consider the root extent list to be the rightmost leaf node
4502  * then the logic here makes sense.
4503  */
4504 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4505 					struct ocfs2_extent_list *el,
4506 					struct ocfs2_extent_rec *insert_rec)
4507 {
4508 	int i;
4509 	u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4510 	struct ocfs2_extent_rec *rec;
4511 
4512 	insert->ins_appending = APPEND_NONE;
4513 
4514 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4515 
4516 	if (!el->l_next_free_rec)
4517 		goto set_tail_append;
4518 
4519 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4520 		/* Were all records empty? */
4521 		if (le16_to_cpu(el->l_next_free_rec) == 1)
4522 			goto set_tail_append;
4523 	}
4524 
4525 	i = le16_to_cpu(el->l_next_free_rec) - 1;
4526 	rec = &el->l_recs[i];
4527 
4528 	if (cpos >=
4529 	    (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4530 		goto set_tail_append;
4531 
4532 	return;
4533 
4534 set_tail_append:
4535 	insert->ins_appending = APPEND_TAIL;
4536 }
4537 
4538 /*
4539  * Helper function called at the beginning of an insert.
4540  *
4541  * This computes a few things that are commonly used in the process of
4542  * inserting into the btree:
4543  *   - Whether the new extent is contiguous with an existing one.
4544  *   - The current tree depth.
4545  *   - Whether the insert is an appending one.
4546  *   - The total # of free records in the tree.
4547  *
4548  * All of the information is stored on the ocfs2_insert_type
4549  * structure.
4550  */
4551 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et,
4552 				    struct buffer_head **last_eb_bh,
4553 				    struct ocfs2_extent_rec *insert_rec,
4554 				    int *free_records,
4555 				    struct ocfs2_insert_type *insert)
4556 {
4557 	int ret;
4558 	struct ocfs2_extent_block *eb;
4559 	struct ocfs2_extent_list *el;
4560 	struct ocfs2_path *path = NULL;
4561 	struct buffer_head *bh = NULL;
4562 
4563 	insert->ins_split = SPLIT_NONE;
4564 
4565 	el = et->et_root_el;
4566 	insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4567 
4568 	if (el->l_tree_depth) {
4569 		/*
4570 		 * If we have tree depth, we read in the
4571 		 * rightmost extent block ahead of time as
4572 		 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4573 		 * may want it later.
4574 		 */
4575 		ret = ocfs2_read_extent_block(et->et_ci,
4576 					      ocfs2_et_get_last_eb_blk(et),
4577 					      &bh);
4578 		if (ret) {
4579 			mlog_errno(ret);
4580 			goto out;
4581 		}
4582 		eb = (struct ocfs2_extent_block *) bh->b_data;
4583 		el = &eb->h_list;
4584 	}
4585 
4586 	/*
4587 	 * Unless we have a contiguous insert, we'll need to know if
4588 	 * there is room left in our allocation tree for another
4589 	 * extent record.
4590 	 *
4591 	 * XXX: This test is simplistic, we can search for empty
4592 	 * extent records too.
4593 	 */
4594 	*free_records = le16_to_cpu(el->l_count) -
4595 		le16_to_cpu(el->l_next_free_rec);
4596 
4597 	if (!insert->ins_tree_depth) {
4598 		ocfs2_figure_contig_type(et, insert, el, insert_rec);
4599 		ocfs2_figure_appending_type(insert, el, insert_rec);
4600 		return 0;
4601 	}
4602 
4603 	path = ocfs2_new_path_from_et(et);
4604 	if (!path) {
4605 		ret = -ENOMEM;
4606 		mlog_errno(ret);
4607 		goto out;
4608 	}
4609 
4610 	/*
4611 	 * In the case that we're inserting past what the tree
4612 	 * currently accounts for, ocfs2_find_path() will return for
4613 	 * us the rightmost tree path. This is accounted for below in
4614 	 * the appending code.
4615 	 */
4616 	ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos));
4617 	if (ret) {
4618 		mlog_errno(ret);
4619 		goto out;
4620 	}
4621 
4622 	el = path_leaf_el(path);
4623 
4624 	/*
4625 	 * Now that we have the path, there's two things we want to determine:
4626 	 * 1) Contiguousness (also set contig_index if this is so)
4627 	 *
4628 	 * 2) Are we doing an append? We can trivially break this up
4629          *     into two types of appends: simple record append, or a
4630          *     rotate inside the tail leaf.
4631 	 */
4632 	ocfs2_figure_contig_type(et, insert, el, insert_rec);
4633 
4634 	/*
4635 	 * The insert code isn't quite ready to deal with all cases of
4636 	 * left contiguousness. Specifically, if it's an insert into
4637 	 * the 1st record in a leaf, it will require the adjustment of
4638 	 * cluster count on the last record of the path directly to it's
4639 	 * left. For now, just catch that case and fool the layers
4640 	 * above us. This works just fine for tree_depth == 0, which
4641 	 * is why we allow that above.
4642 	 */
4643 	if (insert->ins_contig == CONTIG_LEFT &&
4644 	    insert->ins_contig_index == 0)
4645 		insert->ins_contig = CONTIG_NONE;
4646 
4647 	/*
4648 	 * Ok, so we can simply compare against last_eb to figure out
4649 	 * whether the path doesn't exist. This will only happen in
4650 	 * the case that we're doing a tail append, so maybe we can
4651 	 * take advantage of that information somehow.
4652 	 */
4653 	if (ocfs2_et_get_last_eb_blk(et) ==
4654 	    path_leaf_bh(path)->b_blocknr) {
4655 		/*
4656 		 * Ok, ocfs2_find_path() returned us the rightmost
4657 		 * tree path. This might be an appending insert. There are
4658 		 * two cases:
4659 		 *    1) We're doing a true append at the tail:
4660 		 *	-This might even be off the end of the leaf
4661 		 *    2) We're "appending" by rotating in the tail
4662 		 */
4663 		ocfs2_figure_appending_type(insert, el, insert_rec);
4664 	}
4665 
4666 out:
4667 	ocfs2_free_path(path);
4668 
4669 	if (ret == 0)
4670 		*last_eb_bh = bh;
4671 	else
4672 		brelse(bh);
4673 	return ret;
4674 }
4675 
4676 /*
4677  * Insert an extent into a btree.
4678  *
4679  * The caller needs to update the owning btree's cluster count.
4680  */
4681 int ocfs2_insert_extent(handle_t *handle,
4682 			struct ocfs2_extent_tree *et,
4683 			u32 cpos,
4684 			u64 start_blk,
4685 			u32 new_clusters,
4686 			u8 flags,
4687 			struct ocfs2_alloc_context *meta_ac)
4688 {
4689 	int status;
4690 	int uninitialized_var(free_records);
4691 	struct buffer_head *last_eb_bh = NULL;
4692 	struct ocfs2_insert_type insert = {0, };
4693 	struct ocfs2_extent_rec rec;
4694 
4695 	trace_ocfs2_insert_extent_start(
4696 		(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4697 		cpos, new_clusters);
4698 
4699 	memset(&rec, 0, sizeof(rec));
4700 	rec.e_cpos = cpu_to_le32(cpos);
4701 	rec.e_blkno = cpu_to_le64(start_blk);
4702 	rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4703 	rec.e_flags = flags;
4704 	status = ocfs2_et_insert_check(et, &rec);
4705 	if (status) {
4706 		mlog_errno(status);
4707 		goto bail;
4708 	}
4709 
4710 	status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec,
4711 					  &free_records, &insert);
4712 	if (status < 0) {
4713 		mlog_errno(status);
4714 		goto bail;
4715 	}
4716 
4717 	trace_ocfs2_insert_extent(insert.ins_appending, insert.ins_contig,
4718 				  insert.ins_contig_index, free_records,
4719 				  insert.ins_tree_depth);
4720 
4721 	if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4722 		status = ocfs2_grow_tree(handle, et,
4723 					 &insert.ins_tree_depth, &last_eb_bh,
4724 					 meta_ac);
4725 		if (status) {
4726 			mlog_errno(status);
4727 			goto bail;
4728 		}
4729 	}
4730 
4731 	/* Finally, we can add clusters. This might rotate the tree for us. */
4732 	status = ocfs2_do_insert_extent(handle, et, &rec, &insert);
4733 	if (status < 0)
4734 		mlog_errno(status);
4735 	else
4736 		ocfs2_et_extent_map_insert(et, &rec);
4737 
4738 bail:
4739 	brelse(last_eb_bh);
4740 
4741 	return status;
4742 }
4743 
4744 /*
4745  * Allcate and add clusters into the extent b-tree.
4746  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4747  * The extent b-tree's root is specified by et, and
4748  * it is not limited to the file storage. Any extent tree can use this
4749  * function if it implements the proper ocfs2_extent_tree.
4750  */
4751 int ocfs2_add_clusters_in_btree(handle_t *handle,
4752 				struct ocfs2_extent_tree *et,
4753 				u32 *logical_offset,
4754 				u32 clusters_to_add,
4755 				int mark_unwritten,
4756 				struct ocfs2_alloc_context *data_ac,
4757 				struct ocfs2_alloc_context *meta_ac,
4758 				enum ocfs2_alloc_restarted *reason_ret)
4759 {
4760 	int status = 0, err = 0;
4761 	int need_free = 0;
4762 	int free_extents;
4763 	enum ocfs2_alloc_restarted reason = RESTART_NONE;
4764 	u32 bit_off, num_bits;
4765 	u64 block;
4766 	u8 flags = 0;
4767 	struct ocfs2_super *osb =
4768 		OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
4769 
4770 	BUG_ON(!clusters_to_add);
4771 
4772 	if (mark_unwritten)
4773 		flags = OCFS2_EXT_UNWRITTEN;
4774 
4775 	free_extents = ocfs2_num_free_extents(osb, et);
4776 	if (free_extents < 0) {
4777 		status = free_extents;
4778 		mlog_errno(status);
4779 		goto leave;
4780 	}
4781 
4782 	/* there are two cases which could cause us to EAGAIN in the
4783 	 * we-need-more-metadata case:
4784 	 * 1) we haven't reserved *any*
4785 	 * 2) we are so fragmented, we've needed to add metadata too
4786 	 *    many times. */
4787 	if (!free_extents && !meta_ac) {
4788 		err = -1;
4789 		status = -EAGAIN;
4790 		reason = RESTART_META;
4791 		goto leave;
4792 	} else if ((!free_extents)
4793 		   && (ocfs2_alloc_context_bits_left(meta_ac)
4794 		       < ocfs2_extend_meta_needed(et->et_root_el))) {
4795 		err = -2;
4796 		status = -EAGAIN;
4797 		reason = RESTART_META;
4798 		goto leave;
4799 	}
4800 
4801 	status = __ocfs2_claim_clusters(handle, data_ac, 1,
4802 					clusters_to_add, &bit_off, &num_bits);
4803 	if (status < 0) {
4804 		if (status != -ENOSPC)
4805 			mlog_errno(status);
4806 		goto leave;
4807 	}
4808 
4809 	BUG_ON(num_bits > clusters_to_add);
4810 
4811 	/* reserve our write early -- insert_extent may update the tree root */
4812 	status = ocfs2_et_root_journal_access(handle, et,
4813 					      OCFS2_JOURNAL_ACCESS_WRITE);
4814 	if (status < 0) {
4815 		mlog_errno(status);
4816 		need_free = 1;
4817 		goto bail;
4818 	}
4819 
4820 	block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4821 	trace_ocfs2_add_clusters_in_btree(
4822 	     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4823 	     bit_off, num_bits);
4824 	status = ocfs2_insert_extent(handle, et, *logical_offset, block,
4825 				     num_bits, flags, meta_ac);
4826 	if (status < 0) {
4827 		mlog_errno(status);
4828 		need_free = 1;
4829 		goto bail;
4830 	}
4831 
4832 	ocfs2_journal_dirty(handle, et->et_root_bh);
4833 
4834 	clusters_to_add -= num_bits;
4835 	*logical_offset += num_bits;
4836 
4837 	if (clusters_to_add) {
4838 		err = clusters_to_add;
4839 		status = -EAGAIN;
4840 		reason = RESTART_TRANS;
4841 	}
4842 
4843 bail:
4844 	if (need_free) {
4845 		if (data_ac->ac_which == OCFS2_AC_USE_LOCAL)
4846 			ocfs2_free_local_alloc_bits(osb, handle, data_ac,
4847 					bit_off, num_bits);
4848 		else
4849 			ocfs2_free_clusters(handle,
4850 					data_ac->ac_inode,
4851 					data_ac->ac_bh,
4852 					ocfs2_clusters_to_blocks(osb->sb, bit_off),
4853 					num_bits);
4854 	}
4855 
4856 leave:
4857 	if (reason_ret)
4858 		*reason_ret = reason;
4859 	trace_ocfs2_add_clusters_in_btree_ret(status, reason, err);
4860 	return status;
4861 }
4862 
4863 static void ocfs2_make_right_split_rec(struct super_block *sb,
4864 				       struct ocfs2_extent_rec *split_rec,
4865 				       u32 cpos,
4866 				       struct ocfs2_extent_rec *rec)
4867 {
4868 	u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4869 	u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4870 
4871 	memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4872 
4873 	split_rec->e_cpos = cpu_to_le32(cpos);
4874 	split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4875 
4876 	split_rec->e_blkno = rec->e_blkno;
4877 	le64_add_cpu(&split_rec->e_blkno,
4878 		     ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4879 
4880 	split_rec->e_flags = rec->e_flags;
4881 }
4882 
4883 static int ocfs2_split_and_insert(handle_t *handle,
4884 				  struct ocfs2_extent_tree *et,
4885 				  struct ocfs2_path *path,
4886 				  struct buffer_head **last_eb_bh,
4887 				  int split_index,
4888 				  struct ocfs2_extent_rec *orig_split_rec,
4889 				  struct ocfs2_alloc_context *meta_ac)
4890 {
4891 	int ret = 0, depth;
4892 	unsigned int insert_range, rec_range, do_leftright = 0;
4893 	struct ocfs2_extent_rec tmprec;
4894 	struct ocfs2_extent_list *rightmost_el;
4895 	struct ocfs2_extent_rec rec;
4896 	struct ocfs2_extent_rec split_rec = *orig_split_rec;
4897 	struct ocfs2_insert_type insert;
4898 	struct ocfs2_extent_block *eb;
4899 
4900 leftright:
4901 	/*
4902 	 * Store a copy of the record on the stack - it might move
4903 	 * around as the tree is manipulated below.
4904 	 */
4905 	rec = path_leaf_el(path)->l_recs[split_index];
4906 
4907 	rightmost_el = et->et_root_el;
4908 
4909 	depth = le16_to_cpu(rightmost_el->l_tree_depth);
4910 	if (depth) {
4911 		BUG_ON(!(*last_eb_bh));
4912 		eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4913 		rightmost_el = &eb->h_list;
4914 	}
4915 
4916 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4917 	    le16_to_cpu(rightmost_el->l_count)) {
4918 		ret = ocfs2_grow_tree(handle, et,
4919 				      &depth, last_eb_bh, meta_ac);
4920 		if (ret) {
4921 			mlog_errno(ret);
4922 			goto out;
4923 		}
4924 	}
4925 
4926 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4927 	insert.ins_appending = APPEND_NONE;
4928 	insert.ins_contig = CONTIG_NONE;
4929 	insert.ins_tree_depth = depth;
4930 
4931 	insert_range = le32_to_cpu(split_rec.e_cpos) +
4932 		le16_to_cpu(split_rec.e_leaf_clusters);
4933 	rec_range = le32_to_cpu(rec.e_cpos) +
4934 		le16_to_cpu(rec.e_leaf_clusters);
4935 
4936 	if (split_rec.e_cpos == rec.e_cpos) {
4937 		insert.ins_split = SPLIT_LEFT;
4938 	} else if (insert_range == rec_range) {
4939 		insert.ins_split = SPLIT_RIGHT;
4940 	} else {
4941 		/*
4942 		 * Left/right split. We fake this as a right split
4943 		 * first and then make a second pass as a left split.
4944 		 */
4945 		insert.ins_split = SPLIT_RIGHT;
4946 
4947 		ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4948 					   &tmprec, insert_range, &rec);
4949 
4950 		split_rec = tmprec;
4951 
4952 		BUG_ON(do_leftright);
4953 		do_leftright = 1;
4954 	}
4955 
4956 	ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
4957 	if (ret) {
4958 		mlog_errno(ret);
4959 		goto out;
4960 	}
4961 
4962 	if (do_leftright == 1) {
4963 		u32 cpos;
4964 		struct ocfs2_extent_list *el;
4965 
4966 		do_leftright++;
4967 		split_rec = *orig_split_rec;
4968 
4969 		ocfs2_reinit_path(path, 1);
4970 
4971 		cpos = le32_to_cpu(split_rec.e_cpos);
4972 		ret = ocfs2_find_path(et->et_ci, path, cpos);
4973 		if (ret) {
4974 			mlog_errno(ret);
4975 			goto out;
4976 		}
4977 
4978 		el = path_leaf_el(path);
4979 		split_index = ocfs2_search_extent_list(el, cpos);
4980 		if (split_index == -1) {
4981 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
4982 				    "Owner %llu has an extent at cpos %u which can no longer be found\n",
4983 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4984 				    cpos);
4985 			ret = -EROFS;
4986 			goto out;
4987 		}
4988 		goto leftright;
4989 	}
4990 out:
4991 
4992 	return ret;
4993 }
4994 
4995 static int ocfs2_replace_extent_rec(handle_t *handle,
4996 				    struct ocfs2_extent_tree *et,
4997 				    struct ocfs2_path *path,
4998 				    struct ocfs2_extent_list *el,
4999 				    int split_index,
5000 				    struct ocfs2_extent_rec *split_rec)
5001 {
5002 	int ret;
5003 
5004 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
5005 					   path_num_items(path) - 1);
5006 	if (ret) {
5007 		mlog_errno(ret);
5008 		goto out;
5009 	}
5010 
5011 	el->l_recs[split_index] = *split_rec;
5012 
5013 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
5014 out:
5015 	return ret;
5016 }
5017 
5018 /*
5019  * Split part or all of the extent record at split_index in the leaf
5020  * pointed to by path. Merge with the contiguous extent record if needed.
5021  *
5022  * Care is taken to handle contiguousness so as to not grow the tree.
5023  *
5024  * meta_ac is not strictly necessary - we only truly need it if growth
5025  * of the tree is required. All other cases will degrade into a less
5026  * optimal tree layout.
5027  *
5028  * last_eb_bh should be the rightmost leaf block for any extent
5029  * btree. Since a split may grow the tree or a merge might shrink it,
5030  * the caller cannot trust the contents of that buffer after this call.
5031  *
5032  * This code is optimized for readability - several passes might be
5033  * made over certain portions of the tree. All of those blocks will
5034  * have been brought into cache (and pinned via the journal), so the
5035  * extra overhead is not expressed in terms of disk reads.
5036  */
5037 int ocfs2_split_extent(handle_t *handle,
5038 		       struct ocfs2_extent_tree *et,
5039 		       struct ocfs2_path *path,
5040 		       int split_index,
5041 		       struct ocfs2_extent_rec *split_rec,
5042 		       struct ocfs2_alloc_context *meta_ac,
5043 		       struct ocfs2_cached_dealloc_ctxt *dealloc)
5044 {
5045 	int ret = 0;
5046 	struct ocfs2_extent_list *el = path_leaf_el(path);
5047 	struct buffer_head *last_eb_bh = NULL;
5048 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5049 	struct ocfs2_merge_ctxt ctxt;
5050 	struct ocfs2_extent_list *rightmost_el;
5051 
5052 	if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5053 	    ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5054 	     (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5055 		ret = -EIO;
5056 		mlog_errno(ret);
5057 		goto out;
5058 	}
5059 
5060 	ret = ocfs2_figure_merge_contig_type(et, path, el,
5061 					     split_index,
5062 					     split_rec,
5063 					     &ctxt);
5064 	if (ret) {
5065 		mlog_errno(ret);
5066 		goto out;
5067 	}
5068 
5069 	/*
5070 	 * The core merge / split code wants to know how much room is
5071 	 * left in this allocation tree, so we pass the
5072 	 * rightmost extent list.
5073 	 */
5074 	if (path->p_tree_depth) {
5075 		struct ocfs2_extent_block *eb;
5076 
5077 		ret = ocfs2_read_extent_block(et->et_ci,
5078 					      ocfs2_et_get_last_eb_blk(et),
5079 					      &last_eb_bh);
5080 		if (ret) {
5081 			mlog_errno(ret);
5082 			goto out;
5083 		}
5084 
5085 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5086 		rightmost_el = &eb->h_list;
5087 	} else
5088 		rightmost_el = path_root_el(path);
5089 
5090 	if (rec->e_cpos == split_rec->e_cpos &&
5091 	    rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5092 		ctxt.c_split_covers_rec = 1;
5093 	else
5094 		ctxt.c_split_covers_rec = 0;
5095 
5096 	ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5097 
5098 	trace_ocfs2_split_extent(split_index, ctxt.c_contig_type,
5099 				 ctxt.c_has_empty_extent,
5100 				 ctxt.c_split_covers_rec);
5101 
5102 	if (ctxt.c_contig_type == CONTIG_NONE) {
5103 		if (ctxt.c_split_covers_rec)
5104 			ret = ocfs2_replace_extent_rec(handle, et, path, el,
5105 						       split_index, split_rec);
5106 		else
5107 			ret = ocfs2_split_and_insert(handle, et, path,
5108 						     &last_eb_bh, split_index,
5109 						     split_rec, meta_ac);
5110 		if (ret)
5111 			mlog_errno(ret);
5112 	} else {
5113 		ret = ocfs2_try_to_merge_extent(handle, et, path,
5114 						split_index, split_rec,
5115 						dealloc, &ctxt);
5116 		if (ret)
5117 			mlog_errno(ret);
5118 	}
5119 
5120 out:
5121 	brelse(last_eb_bh);
5122 	return ret;
5123 }
5124 
5125 /*
5126  * Change the flags of the already-existing extent at cpos for len clusters.
5127  *
5128  * new_flags: the flags we want to set.
5129  * clear_flags: the flags we want to clear.
5130  * phys: the new physical offset we want this new extent starts from.
5131  *
5132  * If the existing extent is larger than the request, initiate a
5133  * split. An attempt will be made at merging with adjacent extents.
5134  *
5135  * The caller is responsible for passing down meta_ac if we'll need it.
5136  */
5137 int ocfs2_change_extent_flag(handle_t *handle,
5138 			     struct ocfs2_extent_tree *et,
5139 			     u32 cpos, u32 len, u32 phys,
5140 			     struct ocfs2_alloc_context *meta_ac,
5141 			     struct ocfs2_cached_dealloc_ctxt *dealloc,
5142 			     int new_flags, int clear_flags)
5143 {
5144 	int ret, index;
5145 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5146 	u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys);
5147 	struct ocfs2_extent_rec split_rec;
5148 	struct ocfs2_path *left_path = NULL;
5149 	struct ocfs2_extent_list *el;
5150 	struct ocfs2_extent_rec *rec;
5151 
5152 	left_path = ocfs2_new_path_from_et(et);
5153 	if (!left_path) {
5154 		ret = -ENOMEM;
5155 		mlog_errno(ret);
5156 		goto out;
5157 	}
5158 
5159 	ret = ocfs2_find_path(et->et_ci, left_path, cpos);
5160 	if (ret) {
5161 		mlog_errno(ret);
5162 		goto out;
5163 	}
5164 	el = path_leaf_el(left_path);
5165 
5166 	index = ocfs2_search_extent_list(el, cpos);
5167 	if (index == -1) {
5168 		ocfs2_error(sb,
5169 			    "Owner %llu has an extent at cpos %u which can no longer be found\n",
5170 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5171 			    cpos);
5172 		ret = -EROFS;
5173 		goto out;
5174 	}
5175 
5176 	ret = -EIO;
5177 	rec = &el->l_recs[index];
5178 	if (new_flags && (rec->e_flags & new_flags)) {
5179 		mlog(ML_ERROR, "Owner %llu tried to set %d flags on an "
5180 		     "extent that already had them",
5181 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5182 		     new_flags);
5183 		goto out;
5184 	}
5185 
5186 	if (clear_flags && !(rec->e_flags & clear_flags)) {
5187 		mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an "
5188 		     "extent that didn't have them",
5189 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5190 		     clear_flags);
5191 		goto out;
5192 	}
5193 
5194 	memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5195 	split_rec.e_cpos = cpu_to_le32(cpos);
5196 	split_rec.e_leaf_clusters = cpu_to_le16(len);
5197 	split_rec.e_blkno = cpu_to_le64(start_blkno);
5198 	split_rec.e_flags = rec->e_flags;
5199 	if (new_flags)
5200 		split_rec.e_flags |= new_flags;
5201 	if (clear_flags)
5202 		split_rec.e_flags &= ~clear_flags;
5203 
5204 	ret = ocfs2_split_extent(handle, et, left_path,
5205 				 index, &split_rec, meta_ac,
5206 				 dealloc);
5207 	if (ret)
5208 		mlog_errno(ret);
5209 
5210 out:
5211 	ocfs2_free_path(left_path);
5212 	return ret;
5213 
5214 }
5215 
5216 /*
5217  * Mark the already-existing extent at cpos as written for len clusters.
5218  * This removes the unwritten extent flag.
5219  *
5220  * If the existing extent is larger than the request, initiate a
5221  * split. An attempt will be made at merging with adjacent extents.
5222  *
5223  * The caller is responsible for passing down meta_ac if we'll need it.
5224  */
5225 int ocfs2_mark_extent_written(struct inode *inode,
5226 			      struct ocfs2_extent_tree *et,
5227 			      handle_t *handle, u32 cpos, u32 len, u32 phys,
5228 			      struct ocfs2_alloc_context *meta_ac,
5229 			      struct ocfs2_cached_dealloc_ctxt *dealloc)
5230 {
5231 	int ret;
5232 
5233 	trace_ocfs2_mark_extent_written(
5234 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
5235 		cpos, len, phys);
5236 
5237 	if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5238 		ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents that are being written to, but the feature bit is not set in the super block\n",
5239 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
5240 		ret = -EROFS;
5241 		goto out;
5242 	}
5243 
5244 	/*
5245 	 * XXX: This should be fixed up so that we just re-insert the
5246 	 * next extent records.
5247 	 */
5248 	ocfs2_et_extent_map_truncate(et, 0);
5249 
5250 	ret = ocfs2_change_extent_flag(handle, et, cpos,
5251 				       len, phys, meta_ac, dealloc,
5252 				       0, OCFS2_EXT_UNWRITTEN);
5253 	if (ret)
5254 		mlog_errno(ret);
5255 
5256 out:
5257 	return ret;
5258 }
5259 
5260 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et,
5261 			    struct ocfs2_path *path,
5262 			    int index, u32 new_range,
5263 			    struct ocfs2_alloc_context *meta_ac)
5264 {
5265 	int ret, depth, credits;
5266 	struct buffer_head *last_eb_bh = NULL;
5267 	struct ocfs2_extent_block *eb;
5268 	struct ocfs2_extent_list *rightmost_el, *el;
5269 	struct ocfs2_extent_rec split_rec;
5270 	struct ocfs2_extent_rec *rec;
5271 	struct ocfs2_insert_type insert;
5272 
5273 	/*
5274 	 * Setup the record to split before we grow the tree.
5275 	 */
5276 	el = path_leaf_el(path);
5277 	rec = &el->l_recs[index];
5278 	ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
5279 				   &split_rec, new_range, rec);
5280 
5281 	depth = path->p_tree_depth;
5282 	if (depth > 0) {
5283 		ret = ocfs2_read_extent_block(et->et_ci,
5284 					      ocfs2_et_get_last_eb_blk(et),
5285 					      &last_eb_bh);
5286 		if (ret < 0) {
5287 			mlog_errno(ret);
5288 			goto out;
5289 		}
5290 
5291 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5292 		rightmost_el = &eb->h_list;
5293 	} else
5294 		rightmost_el = path_leaf_el(path);
5295 
5296 	credits = path->p_tree_depth +
5297 		  ocfs2_extend_meta_needed(et->et_root_el);
5298 	ret = ocfs2_extend_trans(handle, credits);
5299 	if (ret) {
5300 		mlog_errno(ret);
5301 		goto out;
5302 	}
5303 
5304 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5305 	    le16_to_cpu(rightmost_el->l_count)) {
5306 		ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh,
5307 				      meta_ac);
5308 		if (ret) {
5309 			mlog_errno(ret);
5310 			goto out;
5311 		}
5312 	}
5313 
5314 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5315 	insert.ins_appending = APPEND_NONE;
5316 	insert.ins_contig = CONTIG_NONE;
5317 	insert.ins_split = SPLIT_RIGHT;
5318 	insert.ins_tree_depth = depth;
5319 
5320 	ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
5321 	if (ret)
5322 		mlog_errno(ret);
5323 
5324 out:
5325 	brelse(last_eb_bh);
5326 	return ret;
5327 }
5328 
5329 static int ocfs2_truncate_rec(handle_t *handle,
5330 			      struct ocfs2_extent_tree *et,
5331 			      struct ocfs2_path *path, int index,
5332 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
5333 			      u32 cpos, u32 len)
5334 {
5335 	int ret;
5336 	u32 left_cpos, rec_range, trunc_range;
5337 	int wants_rotate = 0, is_rightmost_tree_rec = 0;
5338 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5339 	struct ocfs2_path *left_path = NULL;
5340 	struct ocfs2_extent_list *el = path_leaf_el(path);
5341 	struct ocfs2_extent_rec *rec;
5342 	struct ocfs2_extent_block *eb;
5343 
5344 	if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5345 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5346 		if (ret) {
5347 			mlog_errno(ret);
5348 			goto out;
5349 		}
5350 
5351 		index--;
5352 	}
5353 
5354 	if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5355 	    path->p_tree_depth) {
5356 		/*
5357 		 * Check whether this is the rightmost tree record. If
5358 		 * we remove all of this record or part of its right
5359 		 * edge then an update of the record lengths above it
5360 		 * will be required.
5361 		 */
5362 		eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5363 		if (eb->h_next_leaf_blk == 0)
5364 			is_rightmost_tree_rec = 1;
5365 	}
5366 
5367 	rec = &el->l_recs[index];
5368 	if (index == 0 && path->p_tree_depth &&
5369 	    le32_to_cpu(rec->e_cpos) == cpos) {
5370 		/*
5371 		 * Changing the leftmost offset (via partial or whole
5372 		 * record truncate) of an interior (or rightmost) path
5373 		 * means we have to update the subtree that is formed
5374 		 * by this leaf and the one to it's left.
5375 		 *
5376 		 * There are two cases we can skip:
5377 		 *   1) Path is the leftmost one in our btree.
5378 		 *   2) The leaf is rightmost and will be empty after
5379 		 *      we remove the extent record - the rotate code
5380 		 *      knows how to update the newly formed edge.
5381 		 */
5382 
5383 		ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
5384 		if (ret) {
5385 			mlog_errno(ret);
5386 			goto out;
5387 		}
5388 
5389 		if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5390 			left_path = ocfs2_new_path_from_path(path);
5391 			if (!left_path) {
5392 				ret = -ENOMEM;
5393 				mlog_errno(ret);
5394 				goto out;
5395 			}
5396 
5397 			ret = ocfs2_find_path(et->et_ci, left_path,
5398 					      left_cpos);
5399 			if (ret) {
5400 				mlog_errno(ret);
5401 				goto out;
5402 			}
5403 		}
5404 	}
5405 
5406 	ret = ocfs2_extend_rotate_transaction(handle, 0,
5407 					      handle->h_buffer_credits,
5408 					      path);
5409 	if (ret) {
5410 		mlog_errno(ret);
5411 		goto out;
5412 	}
5413 
5414 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
5415 	if (ret) {
5416 		mlog_errno(ret);
5417 		goto out;
5418 	}
5419 
5420 	ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
5421 	if (ret) {
5422 		mlog_errno(ret);
5423 		goto out;
5424 	}
5425 
5426 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5427 	trunc_range = cpos + len;
5428 
5429 	if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5430 		int next_free;
5431 
5432 		memset(rec, 0, sizeof(*rec));
5433 		ocfs2_cleanup_merge(el, index);
5434 		wants_rotate = 1;
5435 
5436 		next_free = le16_to_cpu(el->l_next_free_rec);
5437 		if (is_rightmost_tree_rec && next_free > 1) {
5438 			/*
5439 			 * We skip the edge update if this path will
5440 			 * be deleted by the rotate code.
5441 			 */
5442 			rec = &el->l_recs[next_free - 1];
5443 			ocfs2_adjust_rightmost_records(handle, et, path,
5444 						       rec);
5445 		}
5446 	} else if (le32_to_cpu(rec->e_cpos) == cpos) {
5447 		/* Remove leftmost portion of the record. */
5448 		le32_add_cpu(&rec->e_cpos, len);
5449 		le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5450 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5451 	} else if (rec_range == trunc_range) {
5452 		/* Remove rightmost portion of the record */
5453 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5454 		if (is_rightmost_tree_rec)
5455 			ocfs2_adjust_rightmost_records(handle, et, path, rec);
5456 	} else {
5457 		/* Caller should have trapped this. */
5458 		mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) "
5459 		     "(%u, %u)\n",
5460 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5461 		     le32_to_cpu(rec->e_cpos),
5462 		     le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5463 		BUG();
5464 	}
5465 
5466 	if (left_path) {
5467 		int subtree_index;
5468 
5469 		subtree_index = ocfs2_find_subtree_root(et, left_path, path);
5470 		ocfs2_complete_edge_insert(handle, left_path, path,
5471 					   subtree_index);
5472 	}
5473 
5474 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
5475 
5476 	ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5477 	if (ret) {
5478 		mlog_errno(ret);
5479 		goto out;
5480 	}
5481 
5482 out:
5483 	ocfs2_free_path(left_path);
5484 	return ret;
5485 }
5486 
5487 int ocfs2_remove_extent(handle_t *handle,
5488 			struct ocfs2_extent_tree *et,
5489 			u32 cpos, u32 len,
5490 			struct ocfs2_alloc_context *meta_ac,
5491 			struct ocfs2_cached_dealloc_ctxt *dealloc)
5492 {
5493 	int ret, index;
5494 	u32 rec_range, trunc_range;
5495 	struct ocfs2_extent_rec *rec;
5496 	struct ocfs2_extent_list *el;
5497 	struct ocfs2_path *path = NULL;
5498 
5499 	/*
5500 	 * XXX: Why are we truncating to 0 instead of wherever this
5501 	 * affects us?
5502 	 */
5503 	ocfs2_et_extent_map_truncate(et, 0);
5504 
5505 	path = ocfs2_new_path_from_et(et);
5506 	if (!path) {
5507 		ret = -ENOMEM;
5508 		mlog_errno(ret);
5509 		goto out;
5510 	}
5511 
5512 	ret = ocfs2_find_path(et->et_ci, path, cpos);
5513 	if (ret) {
5514 		mlog_errno(ret);
5515 		goto out;
5516 	}
5517 
5518 	el = path_leaf_el(path);
5519 	index = ocfs2_search_extent_list(el, cpos);
5520 	if (index == -1) {
5521 		ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5522 			    "Owner %llu has an extent at cpos %u which can no longer be found\n",
5523 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5524 			    cpos);
5525 		ret = -EROFS;
5526 		goto out;
5527 	}
5528 
5529 	/*
5530 	 * We have 3 cases of extent removal:
5531 	 *   1) Range covers the entire extent rec
5532 	 *   2) Range begins or ends on one edge of the extent rec
5533 	 *   3) Range is in the middle of the extent rec (no shared edges)
5534 	 *
5535 	 * For case 1 we remove the extent rec and left rotate to
5536 	 * fill the hole.
5537 	 *
5538 	 * For case 2 we just shrink the existing extent rec, with a
5539 	 * tree update if the shrinking edge is also the edge of an
5540 	 * extent block.
5541 	 *
5542 	 * For case 3 we do a right split to turn the extent rec into
5543 	 * something case 2 can handle.
5544 	 */
5545 	rec = &el->l_recs[index];
5546 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5547 	trunc_range = cpos + len;
5548 
5549 	BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5550 
5551 	trace_ocfs2_remove_extent(
5552 		(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5553 		cpos, len, index, le32_to_cpu(rec->e_cpos),
5554 		ocfs2_rec_clusters(el, rec));
5555 
5556 	if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5557 		ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5558 					 cpos, len);
5559 		if (ret) {
5560 			mlog_errno(ret);
5561 			goto out;
5562 		}
5563 	} else {
5564 		ret = ocfs2_split_tree(handle, et, path, index,
5565 				       trunc_range, meta_ac);
5566 		if (ret) {
5567 			mlog_errno(ret);
5568 			goto out;
5569 		}
5570 
5571 		/*
5572 		 * The split could have manipulated the tree enough to
5573 		 * move the record location, so we have to look for it again.
5574 		 */
5575 		ocfs2_reinit_path(path, 1);
5576 
5577 		ret = ocfs2_find_path(et->et_ci, path, cpos);
5578 		if (ret) {
5579 			mlog_errno(ret);
5580 			goto out;
5581 		}
5582 
5583 		el = path_leaf_el(path);
5584 		index = ocfs2_search_extent_list(el, cpos);
5585 		if (index == -1) {
5586 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5587 				    "Owner %llu: split at cpos %u lost record\n",
5588 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5589 				    cpos);
5590 			ret = -EROFS;
5591 			goto out;
5592 		}
5593 
5594 		/*
5595 		 * Double check our values here. If anything is fishy,
5596 		 * it's easier to catch it at the top level.
5597 		 */
5598 		rec = &el->l_recs[index];
5599 		rec_range = le32_to_cpu(rec->e_cpos) +
5600 			ocfs2_rec_clusters(el, rec);
5601 		if (rec_range != trunc_range) {
5602 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5603 				    "Owner %llu: error after split at cpos %u trunc len %u, existing record is (%u,%u)\n",
5604 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5605 				    cpos, len, le32_to_cpu(rec->e_cpos),
5606 				    ocfs2_rec_clusters(el, rec));
5607 			ret = -EROFS;
5608 			goto out;
5609 		}
5610 
5611 		ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5612 					 cpos, len);
5613 		if (ret) {
5614 			mlog_errno(ret);
5615 			goto out;
5616 		}
5617 	}
5618 
5619 out:
5620 	ocfs2_free_path(path);
5621 	return ret;
5622 }
5623 
5624 /*
5625  * ocfs2_reserve_blocks_for_rec_trunc() would look basically the
5626  * same as ocfs2_lock_alloctors(), except for it accepts a blocks
5627  * number to reserve some extra blocks, and it only handles meta
5628  * data allocations.
5629  *
5630  * Currently, only ocfs2_remove_btree_range() uses it for truncating
5631  * and punching holes.
5632  */
5633 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode,
5634 					      struct ocfs2_extent_tree *et,
5635 					      u32 extents_to_split,
5636 					      struct ocfs2_alloc_context **ac,
5637 					      int extra_blocks)
5638 {
5639 	int ret = 0, num_free_extents;
5640 	unsigned int max_recs_needed = 2 * extents_to_split;
5641 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5642 
5643 	*ac = NULL;
5644 
5645 	num_free_extents = ocfs2_num_free_extents(osb, et);
5646 	if (num_free_extents < 0) {
5647 		ret = num_free_extents;
5648 		mlog_errno(ret);
5649 		goto out;
5650 	}
5651 
5652 	if (!num_free_extents ||
5653 	    (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed))
5654 		extra_blocks += ocfs2_extend_meta_needed(et->et_root_el);
5655 
5656 	if (extra_blocks) {
5657 		ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac);
5658 		if (ret < 0) {
5659 			if (ret != -ENOSPC)
5660 				mlog_errno(ret);
5661 			goto out;
5662 		}
5663 	}
5664 
5665 out:
5666 	if (ret) {
5667 		if (*ac) {
5668 			ocfs2_free_alloc_context(*ac);
5669 			*ac = NULL;
5670 		}
5671 	}
5672 
5673 	return ret;
5674 }
5675 
5676 int ocfs2_remove_btree_range(struct inode *inode,
5677 			     struct ocfs2_extent_tree *et,
5678 			     u32 cpos, u32 phys_cpos, u32 len, int flags,
5679 			     struct ocfs2_cached_dealloc_ctxt *dealloc,
5680 			     u64 refcount_loc, bool refcount_tree_locked)
5681 {
5682 	int ret, credits = 0, extra_blocks = 0;
5683 	u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5684 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5685 	struct inode *tl_inode = osb->osb_tl_inode;
5686 	handle_t *handle;
5687 	struct ocfs2_alloc_context *meta_ac = NULL;
5688 	struct ocfs2_refcount_tree *ref_tree = NULL;
5689 
5690 	if ((flags & OCFS2_EXT_REFCOUNTED) && len) {
5691 		BUG_ON(!(OCFS2_I(inode)->ip_dyn_features &
5692 			 OCFS2_HAS_REFCOUNT_FL));
5693 
5694 		if (!refcount_tree_locked) {
5695 			ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
5696 						       &ref_tree, NULL);
5697 			if (ret) {
5698 				mlog_errno(ret);
5699 				goto bail;
5700 			}
5701 		}
5702 
5703 		ret = ocfs2_prepare_refcount_change_for_del(inode,
5704 							    refcount_loc,
5705 							    phys_blkno,
5706 							    len,
5707 							    &credits,
5708 							    &extra_blocks);
5709 		if (ret < 0) {
5710 			mlog_errno(ret);
5711 			goto bail;
5712 		}
5713 	}
5714 
5715 	ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac,
5716 						 extra_blocks);
5717 	if (ret) {
5718 		mlog_errno(ret);
5719 		goto bail;
5720 	}
5721 
5722 	mutex_lock(&tl_inode->i_mutex);
5723 
5724 	if (ocfs2_truncate_log_needs_flush(osb)) {
5725 		ret = __ocfs2_flush_truncate_log(osb);
5726 		if (ret < 0) {
5727 			mlog_errno(ret);
5728 			goto out;
5729 		}
5730 	}
5731 
5732 	handle = ocfs2_start_trans(osb,
5733 			ocfs2_remove_extent_credits(osb->sb) + credits);
5734 	if (IS_ERR(handle)) {
5735 		ret = PTR_ERR(handle);
5736 		mlog_errno(ret);
5737 		goto out;
5738 	}
5739 
5740 	ret = ocfs2_et_root_journal_access(handle, et,
5741 					   OCFS2_JOURNAL_ACCESS_WRITE);
5742 	if (ret) {
5743 		mlog_errno(ret);
5744 		goto out_commit;
5745 	}
5746 
5747 	dquot_free_space_nodirty(inode,
5748 				  ocfs2_clusters_to_bytes(inode->i_sb, len));
5749 
5750 	ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc);
5751 	if (ret) {
5752 		mlog_errno(ret);
5753 		goto out_commit;
5754 	}
5755 
5756 	ocfs2_et_update_clusters(et, -len);
5757 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
5758 
5759 	ocfs2_journal_dirty(handle, et->et_root_bh);
5760 
5761 	if (phys_blkno) {
5762 		if (flags & OCFS2_EXT_REFCOUNTED)
5763 			ret = ocfs2_decrease_refcount(inode, handle,
5764 					ocfs2_blocks_to_clusters(osb->sb,
5765 								 phys_blkno),
5766 					len, meta_ac,
5767 					dealloc, 1);
5768 		else
5769 			ret = ocfs2_truncate_log_append(osb, handle,
5770 							phys_blkno, len);
5771 		if (ret)
5772 			mlog_errno(ret);
5773 
5774 	}
5775 
5776 out_commit:
5777 	ocfs2_commit_trans(osb, handle);
5778 out:
5779 	mutex_unlock(&tl_inode->i_mutex);
5780 bail:
5781 	if (meta_ac)
5782 		ocfs2_free_alloc_context(meta_ac);
5783 
5784 	if (ref_tree)
5785 		ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
5786 
5787 	return ret;
5788 }
5789 
5790 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5791 {
5792 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5793 	struct ocfs2_dinode *di;
5794 	struct ocfs2_truncate_log *tl;
5795 
5796 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5797 	tl = &di->id2.i_dealloc;
5798 
5799 	mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5800 			"slot %d, invalid truncate log parameters: used = "
5801 			"%u, count = %u\n", osb->slot_num,
5802 			le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5803 	return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5804 }
5805 
5806 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5807 					   unsigned int new_start)
5808 {
5809 	unsigned int tail_index;
5810 	unsigned int current_tail;
5811 
5812 	/* No records, nothing to coalesce */
5813 	if (!le16_to_cpu(tl->tl_used))
5814 		return 0;
5815 
5816 	tail_index = le16_to_cpu(tl->tl_used) - 1;
5817 	current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5818 	current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5819 
5820 	return current_tail == new_start;
5821 }
5822 
5823 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5824 			      handle_t *handle,
5825 			      u64 start_blk,
5826 			      unsigned int num_clusters)
5827 {
5828 	int status, index;
5829 	unsigned int start_cluster, tl_count;
5830 	struct inode *tl_inode = osb->osb_tl_inode;
5831 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5832 	struct ocfs2_dinode *di;
5833 	struct ocfs2_truncate_log *tl;
5834 
5835 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5836 
5837 	start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5838 
5839 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5840 
5841 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5842 	 * by the underlying call to ocfs2_read_inode_block(), so any
5843 	 * corruption is a code bug */
5844 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5845 
5846 	tl = &di->id2.i_dealloc;
5847 	tl_count = le16_to_cpu(tl->tl_count);
5848 	mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5849 			tl_count == 0,
5850 			"Truncate record count on #%llu invalid "
5851 			"wanted %u, actual %u\n",
5852 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5853 			ocfs2_truncate_recs_per_inode(osb->sb),
5854 			le16_to_cpu(tl->tl_count));
5855 
5856 	/* Caller should have known to flush before calling us. */
5857 	index = le16_to_cpu(tl->tl_used);
5858 	if (index >= tl_count) {
5859 		status = -ENOSPC;
5860 		mlog_errno(status);
5861 		goto bail;
5862 	}
5863 
5864 	status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5865 					 OCFS2_JOURNAL_ACCESS_WRITE);
5866 	if (status < 0) {
5867 		mlog_errno(status);
5868 		goto bail;
5869 	}
5870 
5871 	trace_ocfs2_truncate_log_append(
5872 		(unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index,
5873 		start_cluster, num_clusters);
5874 	if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5875 		/*
5876 		 * Move index back to the record we are coalescing with.
5877 		 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5878 		 */
5879 		index--;
5880 
5881 		num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5882 		trace_ocfs2_truncate_log_append(
5883 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5884 			index, le32_to_cpu(tl->tl_recs[index].t_start),
5885 			num_clusters);
5886 	} else {
5887 		tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5888 		tl->tl_used = cpu_to_le16(index + 1);
5889 	}
5890 	tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5891 
5892 	ocfs2_journal_dirty(handle, tl_bh);
5893 
5894 	osb->truncated_clusters += num_clusters;
5895 bail:
5896 	return status;
5897 }
5898 
5899 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5900 					 handle_t *handle,
5901 					 struct inode *data_alloc_inode,
5902 					 struct buffer_head *data_alloc_bh)
5903 {
5904 	int status = 0;
5905 	int i;
5906 	unsigned int num_clusters;
5907 	u64 start_blk;
5908 	struct ocfs2_truncate_rec rec;
5909 	struct ocfs2_dinode *di;
5910 	struct ocfs2_truncate_log *tl;
5911 	struct inode *tl_inode = osb->osb_tl_inode;
5912 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5913 
5914 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5915 	tl = &di->id2.i_dealloc;
5916 	i = le16_to_cpu(tl->tl_used) - 1;
5917 	while (i >= 0) {
5918 		/* Caller has given us at least enough credits to
5919 		 * update the truncate log dinode */
5920 		status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5921 						 OCFS2_JOURNAL_ACCESS_WRITE);
5922 		if (status < 0) {
5923 			mlog_errno(status);
5924 			goto bail;
5925 		}
5926 
5927 		tl->tl_used = cpu_to_le16(i);
5928 
5929 		ocfs2_journal_dirty(handle, tl_bh);
5930 
5931 		/* TODO: Perhaps we can calculate the bulk of the
5932 		 * credits up front rather than extending like
5933 		 * this. */
5934 		status = ocfs2_extend_trans(handle,
5935 					    OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5936 		if (status < 0) {
5937 			mlog_errno(status);
5938 			goto bail;
5939 		}
5940 
5941 		rec = tl->tl_recs[i];
5942 		start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5943 						    le32_to_cpu(rec.t_start));
5944 		num_clusters = le32_to_cpu(rec.t_clusters);
5945 
5946 		/* if start_blk is not set, we ignore the record as
5947 		 * invalid. */
5948 		if (start_blk) {
5949 			trace_ocfs2_replay_truncate_records(
5950 				(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5951 				i, le32_to_cpu(rec.t_start), num_clusters);
5952 
5953 			status = ocfs2_free_clusters(handle, data_alloc_inode,
5954 						     data_alloc_bh, start_blk,
5955 						     num_clusters);
5956 			if (status < 0) {
5957 				mlog_errno(status);
5958 				goto bail;
5959 			}
5960 		}
5961 		i--;
5962 	}
5963 
5964 	osb->truncated_clusters = 0;
5965 
5966 bail:
5967 	return status;
5968 }
5969 
5970 /* Expects you to already be holding tl_inode->i_mutex */
5971 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5972 {
5973 	int status;
5974 	unsigned int num_to_flush;
5975 	handle_t *handle;
5976 	struct inode *tl_inode = osb->osb_tl_inode;
5977 	struct inode *data_alloc_inode = NULL;
5978 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5979 	struct buffer_head *data_alloc_bh = NULL;
5980 	struct ocfs2_dinode *di;
5981 	struct ocfs2_truncate_log *tl;
5982 
5983 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5984 
5985 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5986 
5987 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5988 	 * by the underlying call to ocfs2_read_inode_block(), so any
5989 	 * corruption is a code bug */
5990 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5991 
5992 	tl = &di->id2.i_dealloc;
5993 	num_to_flush = le16_to_cpu(tl->tl_used);
5994 	trace_ocfs2_flush_truncate_log(
5995 		(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5996 		num_to_flush);
5997 	if (!num_to_flush) {
5998 		status = 0;
5999 		goto out;
6000 	}
6001 
6002 	data_alloc_inode = ocfs2_get_system_file_inode(osb,
6003 						       GLOBAL_BITMAP_SYSTEM_INODE,
6004 						       OCFS2_INVALID_SLOT);
6005 	if (!data_alloc_inode) {
6006 		status = -EINVAL;
6007 		mlog(ML_ERROR, "Could not get bitmap inode!\n");
6008 		goto out;
6009 	}
6010 
6011 	mutex_lock(&data_alloc_inode->i_mutex);
6012 
6013 	status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
6014 	if (status < 0) {
6015 		mlog_errno(status);
6016 		goto out_mutex;
6017 	}
6018 
6019 	handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6020 	if (IS_ERR(handle)) {
6021 		status = PTR_ERR(handle);
6022 		mlog_errno(status);
6023 		goto out_unlock;
6024 	}
6025 
6026 	status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
6027 					       data_alloc_bh);
6028 	if (status < 0)
6029 		mlog_errno(status);
6030 
6031 	ocfs2_commit_trans(osb, handle);
6032 
6033 out_unlock:
6034 	brelse(data_alloc_bh);
6035 	ocfs2_inode_unlock(data_alloc_inode, 1);
6036 
6037 out_mutex:
6038 	mutex_unlock(&data_alloc_inode->i_mutex);
6039 	iput(data_alloc_inode);
6040 
6041 out:
6042 	return status;
6043 }
6044 
6045 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
6046 {
6047 	int status;
6048 	struct inode *tl_inode = osb->osb_tl_inode;
6049 
6050 	mutex_lock(&tl_inode->i_mutex);
6051 	status = __ocfs2_flush_truncate_log(osb);
6052 	mutex_unlock(&tl_inode->i_mutex);
6053 
6054 	return status;
6055 }
6056 
6057 static void ocfs2_truncate_log_worker(struct work_struct *work)
6058 {
6059 	int status;
6060 	struct ocfs2_super *osb =
6061 		container_of(work, struct ocfs2_super,
6062 			     osb_truncate_log_wq.work);
6063 
6064 	status = ocfs2_flush_truncate_log(osb);
6065 	if (status < 0)
6066 		mlog_errno(status);
6067 	else
6068 		ocfs2_init_steal_slots(osb);
6069 }
6070 
6071 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
6072 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
6073 				       int cancel)
6074 {
6075 	if (osb->osb_tl_inode &&
6076 			atomic_read(&osb->osb_tl_disable) == 0) {
6077 		/* We want to push off log flushes while truncates are
6078 		 * still running. */
6079 		if (cancel)
6080 			cancel_delayed_work(&osb->osb_truncate_log_wq);
6081 
6082 		queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
6083 				   OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
6084 	}
6085 }
6086 
6087 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
6088 				       int slot_num,
6089 				       struct inode **tl_inode,
6090 				       struct buffer_head **tl_bh)
6091 {
6092 	int status;
6093 	struct inode *inode = NULL;
6094 	struct buffer_head *bh = NULL;
6095 
6096 	inode = ocfs2_get_system_file_inode(osb,
6097 					   TRUNCATE_LOG_SYSTEM_INODE,
6098 					   slot_num);
6099 	if (!inode) {
6100 		status = -EINVAL;
6101 		mlog(ML_ERROR, "Could not get load truncate log inode!\n");
6102 		goto bail;
6103 	}
6104 
6105 	status = ocfs2_read_inode_block(inode, &bh);
6106 	if (status < 0) {
6107 		iput(inode);
6108 		mlog_errno(status);
6109 		goto bail;
6110 	}
6111 
6112 	*tl_inode = inode;
6113 	*tl_bh    = bh;
6114 bail:
6115 	return status;
6116 }
6117 
6118 /* called during the 1st stage of node recovery. we stamp a clean
6119  * truncate log and pass back a copy for processing later. if the
6120  * truncate log does not require processing, a *tl_copy is set to
6121  * NULL. */
6122 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
6123 				      int slot_num,
6124 				      struct ocfs2_dinode **tl_copy)
6125 {
6126 	int status;
6127 	struct inode *tl_inode = NULL;
6128 	struct buffer_head *tl_bh = NULL;
6129 	struct ocfs2_dinode *di;
6130 	struct ocfs2_truncate_log *tl;
6131 
6132 	*tl_copy = NULL;
6133 
6134 	trace_ocfs2_begin_truncate_log_recovery(slot_num);
6135 
6136 	status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
6137 	if (status < 0) {
6138 		mlog_errno(status);
6139 		goto bail;
6140 	}
6141 
6142 	di = (struct ocfs2_dinode *) tl_bh->b_data;
6143 
6144 	/* tl_bh is loaded from ocfs2_get_truncate_log_info().  It's
6145 	 * validated by the underlying call to ocfs2_read_inode_block(),
6146 	 * so any corruption is a code bug */
6147 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
6148 
6149 	tl = &di->id2.i_dealloc;
6150 	if (le16_to_cpu(tl->tl_used)) {
6151 		trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl->tl_used));
6152 
6153 		*tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
6154 		if (!(*tl_copy)) {
6155 			status = -ENOMEM;
6156 			mlog_errno(status);
6157 			goto bail;
6158 		}
6159 
6160 		/* Assuming the write-out below goes well, this copy
6161 		 * will be passed back to recovery for processing. */
6162 		memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
6163 
6164 		/* All we need to do to clear the truncate log is set
6165 		 * tl_used. */
6166 		tl->tl_used = 0;
6167 
6168 		ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6169 		status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
6170 		if (status < 0) {
6171 			mlog_errno(status);
6172 			goto bail;
6173 		}
6174 	}
6175 
6176 bail:
6177 	if (tl_inode)
6178 		iput(tl_inode);
6179 	brelse(tl_bh);
6180 
6181 	if (status < 0) {
6182 		kfree(*tl_copy);
6183 		*tl_copy = NULL;
6184 		mlog_errno(status);
6185 	}
6186 
6187 	return status;
6188 }
6189 
6190 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6191 					 struct ocfs2_dinode *tl_copy)
6192 {
6193 	int status = 0;
6194 	int i;
6195 	unsigned int clusters, num_recs, start_cluster;
6196 	u64 start_blk;
6197 	handle_t *handle;
6198 	struct inode *tl_inode = osb->osb_tl_inode;
6199 	struct ocfs2_truncate_log *tl;
6200 
6201 	if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6202 		mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6203 		return -EINVAL;
6204 	}
6205 
6206 	tl = &tl_copy->id2.i_dealloc;
6207 	num_recs = le16_to_cpu(tl->tl_used);
6208 	trace_ocfs2_complete_truncate_log_recovery(
6209 		(unsigned long long)le64_to_cpu(tl_copy->i_blkno),
6210 		num_recs);
6211 
6212 	mutex_lock(&tl_inode->i_mutex);
6213 	for(i = 0; i < num_recs; i++) {
6214 		if (ocfs2_truncate_log_needs_flush(osb)) {
6215 			status = __ocfs2_flush_truncate_log(osb);
6216 			if (status < 0) {
6217 				mlog_errno(status);
6218 				goto bail_up;
6219 			}
6220 		}
6221 
6222 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6223 		if (IS_ERR(handle)) {
6224 			status = PTR_ERR(handle);
6225 			mlog_errno(status);
6226 			goto bail_up;
6227 		}
6228 
6229 		clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6230 		start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6231 		start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6232 
6233 		status = ocfs2_truncate_log_append(osb, handle,
6234 						   start_blk, clusters);
6235 		ocfs2_commit_trans(osb, handle);
6236 		if (status < 0) {
6237 			mlog_errno(status);
6238 			goto bail_up;
6239 		}
6240 	}
6241 
6242 bail_up:
6243 	mutex_unlock(&tl_inode->i_mutex);
6244 
6245 	return status;
6246 }
6247 
6248 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6249 {
6250 	int status;
6251 	struct inode *tl_inode = osb->osb_tl_inode;
6252 
6253 	atomic_set(&osb->osb_tl_disable, 1);
6254 
6255 	if (tl_inode) {
6256 		cancel_delayed_work(&osb->osb_truncate_log_wq);
6257 		flush_workqueue(ocfs2_wq);
6258 
6259 		status = ocfs2_flush_truncate_log(osb);
6260 		if (status < 0)
6261 			mlog_errno(status);
6262 
6263 		brelse(osb->osb_tl_bh);
6264 		iput(osb->osb_tl_inode);
6265 	}
6266 }
6267 
6268 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6269 {
6270 	int status;
6271 	struct inode *tl_inode = NULL;
6272 	struct buffer_head *tl_bh = NULL;
6273 
6274 	status = ocfs2_get_truncate_log_info(osb,
6275 					     osb->slot_num,
6276 					     &tl_inode,
6277 					     &tl_bh);
6278 	if (status < 0)
6279 		mlog_errno(status);
6280 
6281 	/* ocfs2_truncate_log_shutdown keys on the existence of
6282 	 * osb->osb_tl_inode so we don't set any of the osb variables
6283 	 * until we're sure all is well. */
6284 	INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6285 			  ocfs2_truncate_log_worker);
6286 	atomic_set(&osb->osb_tl_disable, 0);
6287 	osb->osb_tl_bh    = tl_bh;
6288 	osb->osb_tl_inode = tl_inode;
6289 
6290 	return status;
6291 }
6292 
6293 /*
6294  * Delayed de-allocation of suballocator blocks.
6295  *
6296  * Some sets of block de-allocations might involve multiple suballocator inodes.
6297  *
6298  * The locking for this can get extremely complicated, especially when
6299  * the suballocator inodes to delete from aren't known until deep
6300  * within an unrelated codepath.
6301  *
6302  * ocfs2_extent_block structures are a good example of this - an inode
6303  * btree could have been grown by any number of nodes each allocating
6304  * out of their own suballoc inode.
6305  *
6306  * These structures allow the delay of block de-allocation until a
6307  * later time, when locking of multiple cluster inodes won't cause
6308  * deadlock.
6309  */
6310 
6311 /*
6312  * Describe a single bit freed from a suballocator.  For the block
6313  * suballocators, it represents one block.  For the global cluster
6314  * allocator, it represents some clusters and free_bit indicates
6315  * clusters number.
6316  */
6317 struct ocfs2_cached_block_free {
6318 	struct ocfs2_cached_block_free		*free_next;
6319 	u64					free_bg;
6320 	u64					free_blk;
6321 	unsigned int				free_bit;
6322 };
6323 
6324 struct ocfs2_per_slot_free_list {
6325 	struct ocfs2_per_slot_free_list		*f_next_suballocator;
6326 	int					f_inode_type;
6327 	int					f_slot;
6328 	struct ocfs2_cached_block_free		*f_first;
6329 };
6330 
6331 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6332 				    int sysfile_type,
6333 				    int slot,
6334 				    struct ocfs2_cached_block_free *head)
6335 {
6336 	int ret;
6337 	u64 bg_blkno;
6338 	handle_t *handle;
6339 	struct inode *inode;
6340 	struct buffer_head *di_bh = NULL;
6341 	struct ocfs2_cached_block_free *tmp;
6342 
6343 	inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6344 	if (!inode) {
6345 		ret = -EINVAL;
6346 		mlog_errno(ret);
6347 		goto out;
6348 	}
6349 
6350 	mutex_lock(&inode->i_mutex);
6351 
6352 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
6353 	if (ret) {
6354 		mlog_errno(ret);
6355 		goto out_mutex;
6356 	}
6357 
6358 	handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6359 	if (IS_ERR(handle)) {
6360 		ret = PTR_ERR(handle);
6361 		mlog_errno(ret);
6362 		goto out_unlock;
6363 	}
6364 
6365 	while (head) {
6366 		if (head->free_bg)
6367 			bg_blkno = head->free_bg;
6368 		else
6369 			bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6370 							      head->free_bit);
6371 		trace_ocfs2_free_cached_blocks(
6372 		     (unsigned long long)head->free_blk, head->free_bit);
6373 
6374 		ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6375 					       head->free_bit, bg_blkno, 1);
6376 		if (ret) {
6377 			mlog_errno(ret);
6378 			goto out_journal;
6379 		}
6380 
6381 		ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
6382 		if (ret) {
6383 			mlog_errno(ret);
6384 			goto out_journal;
6385 		}
6386 
6387 		tmp = head;
6388 		head = head->free_next;
6389 		kfree(tmp);
6390 	}
6391 
6392 out_journal:
6393 	ocfs2_commit_trans(osb, handle);
6394 
6395 out_unlock:
6396 	ocfs2_inode_unlock(inode, 1);
6397 	brelse(di_bh);
6398 out_mutex:
6399 	mutex_unlock(&inode->i_mutex);
6400 	iput(inode);
6401 out:
6402 	while(head) {
6403 		/* Premature exit may have left some dangling items. */
6404 		tmp = head;
6405 		head = head->free_next;
6406 		kfree(tmp);
6407 	}
6408 
6409 	return ret;
6410 }
6411 
6412 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6413 				u64 blkno, unsigned int bit)
6414 {
6415 	int ret = 0;
6416 	struct ocfs2_cached_block_free *item;
6417 
6418 	item = kzalloc(sizeof(*item), GFP_NOFS);
6419 	if (item == NULL) {
6420 		ret = -ENOMEM;
6421 		mlog_errno(ret);
6422 		return ret;
6423 	}
6424 
6425 	trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno, bit);
6426 
6427 	item->free_blk = blkno;
6428 	item->free_bit = bit;
6429 	item->free_next = ctxt->c_global_allocator;
6430 
6431 	ctxt->c_global_allocator = item;
6432 	return ret;
6433 }
6434 
6435 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6436 				      struct ocfs2_cached_block_free *head)
6437 {
6438 	struct ocfs2_cached_block_free *tmp;
6439 	struct inode *tl_inode = osb->osb_tl_inode;
6440 	handle_t *handle;
6441 	int ret = 0;
6442 
6443 	mutex_lock(&tl_inode->i_mutex);
6444 
6445 	while (head) {
6446 		if (ocfs2_truncate_log_needs_flush(osb)) {
6447 			ret = __ocfs2_flush_truncate_log(osb);
6448 			if (ret < 0) {
6449 				mlog_errno(ret);
6450 				break;
6451 			}
6452 		}
6453 
6454 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6455 		if (IS_ERR(handle)) {
6456 			ret = PTR_ERR(handle);
6457 			mlog_errno(ret);
6458 			break;
6459 		}
6460 
6461 		ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6462 						head->free_bit);
6463 
6464 		ocfs2_commit_trans(osb, handle);
6465 		tmp = head;
6466 		head = head->free_next;
6467 		kfree(tmp);
6468 
6469 		if (ret < 0) {
6470 			mlog_errno(ret);
6471 			break;
6472 		}
6473 	}
6474 
6475 	mutex_unlock(&tl_inode->i_mutex);
6476 
6477 	while (head) {
6478 		/* Premature exit may have left some dangling items. */
6479 		tmp = head;
6480 		head = head->free_next;
6481 		kfree(tmp);
6482 	}
6483 
6484 	return ret;
6485 }
6486 
6487 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6488 		       struct ocfs2_cached_dealloc_ctxt *ctxt)
6489 {
6490 	int ret = 0, ret2;
6491 	struct ocfs2_per_slot_free_list *fl;
6492 
6493 	if (!ctxt)
6494 		return 0;
6495 
6496 	while (ctxt->c_first_suballocator) {
6497 		fl = ctxt->c_first_suballocator;
6498 
6499 		if (fl->f_first) {
6500 			trace_ocfs2_run_deallocs(fl->f_inode_type,
6501 						 fl->f_slot);
6502 			ret2 = ocfs2_free_cached_blocks(osb,
6503 							fl->f_inode_type,
6504 							fl->f_slot,
6505 							fl->f_first);
6506 			if (ret2)
6507 				mlog_errno(ret2);
6508 			if (!ret)
6509 				ret = ret2;
6510 		}
6511 
6512 		ctxt->c_first_suballocator = fl->f_next_suballocator;
6513 		kfree(fl);
6514 	}
6515 
6516 	if (ctxt->c_global_allocator) {
6517 		ret2 = ocfs2_free_cached_clusters(osb,
6518 						  ctxt->c_global_allocator);
6519 		if (ret2)
6520 			mlog_errno(ret2);
6521 		if (!ret)
6522 			ret = ret2;
6523 
6524 		ctxt->c_global_allocator = NULL;
6525 	}
6526 
6527 	return ret;
6528 }
6529 
6530 static struct ocfs2_per_slot_free_list *
6531 ocfs2_find_per_slot_free_list(int type,
6532 			      int slot,
6533 			      struct ocfs2_cached_dealloc_ctxt *ctxt)
6534 {
6535 	struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6536 
6537 	while (fl) {
6538 		if (fl->f_inode_type == type && fl->f_slot == slot)
6539 			return fl;
6540 
6541 		fl = fl->f_next_suballocator;
6542 	}
6543 
6544 	fl = kmalloc(sizeof(*fl), GFP_NOFS);
6545 	if (fl) {
6546 		fl->f_inode_type = type;
6547 		fl->f_slot = slot;
6548 		fl->f_first = NULL;
6549 		fl->f_next_suballocator = ctxt->c_first_suballocator;
6550 
6551 		ctxt->c_first_suballocator = fl;
6552 	}
6553 	return fl;
6554 }
6555 
6556 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6557 			      int type, int slot, u64 suballoc,
6558 			      u64 blkno, unsigned int bit)
6559 {
6560 	int ret;
6561 	struct ocfs2_per_slot_free_list *fl;
6562 	struct ocfs2_cached_block_free *item;
6563 
6564 	fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6565 	if (fl == NULL) {
6566 		ret = -ENOMEM;
6567 		mlog_errno(ret);
6568 		goto out;
6569 	}
6570 
6571 	item = kzalloc(sizeof(*item), GFP_NOFS);
6572 	if (item == NULL) {
6573 		ret = -ENOMEM;
6574 		mlog_errno(ret);
6575 		goto out;
6576 	}
6577 
6578 	trace_ocfs2_cache_block_dealloc(type, slot,
6579 					(unsigned long long)suballoc,
6580 					(unsigned long long)blkno, bit);
6581 
6582 	item->free_bg = suballoc;
6583 	item->free_blk = blkno;
6584 	item->free_bit = bit;
6585 	item->free_next = fl->f_first;
6586 
6587 	fl->f_first = item;
6588 
6589 	ret = 0;
6590 out:
6591 	return ret;
6592 }
6593 
6594 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6595 					 struct ocfs2_extent_block *eb)
6596 {
6597 	return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6598 					 le16_to_cpu(eb->h_suballoc_slot),
6599 					 le64_to_cpu(eb->h_suballoc_loc),
6600 					 le64_to_cpu(eb->h_blkno),
6601 					 le16_to_cpu(eb->h_suballoc_bit));
6602 }
6603 
6604 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6605 {
6606 	set_buffer_uptodate(bh);
6607 	mark_buffer_dirty(bh);
6608 	return 0;
6609 }
6610 
6611 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6612 			      unsigned int from, unsigned int to,
6613 			      struct page *page, int zero, u64 *phys)
6614 {
6615 	int ret, partial = 0;
6616 
6617 	ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6618 	if (ret)
6619 		mlog_errno(ret);
6620 
6621 	if (zero)
6622 		zero_user_segment(page, from, to);
6623 
6624 	/*
6625 	 * Need to set the buffers we zero'd into uptodate
6626 	 * here if they aren't - ocfs2_map_page_blocks()
6627 	 * might've skipped some
6628 	 */
6629 	ret = walk_page_buffers(handle, page_buffers(page),
6630 				from, to, &partial,
6631 				ocfs2_zero_func);
6632 	if (ret < 0)
6633 		mlog_errno(ret);
6634 	else if (ocfs2_should_order_data(inode)) {
6635 		ret = ocfs2_jbd2_file_inode(handle, inode);
6636 		if (ret < 0)
6637 			mlog_errno(ret);
6638 	}
6639 
6640 	if (!partial)
6641 		SetPageUptodate(page);
6642 
6643 	flush_dcache_page(page);
6644 }
6645 
6646 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6647 				     loff_t end, struct page **pages,
6648 				     int numpages, u64 phys, handle_t *handle)
6649 {
6650 	int i;
6651 	struct page *page;
6652 	unsigned int from, to = PAGE_CACHE_SIZE;
6653 	struct super_block *sb = inode->i_sb;
6654 
6655 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6656 
6657 	if (numpages == 0)
6658 		goto out;
6659 
6660 	to = PAGE_CACHE_SIZE;
6661 	for(i = 0; i < numpages; i++) {
6662 		page = pages[i];
6663 
6664 		from = start & (PAGE_CACHE_SIZE - 1);
6665 		if ((end >> PAGE_CACHE_SHIFT) == page->index)
6666 			to = end & (PAGE_CACHE_SIZE - 1);
6667 
6668 		BUG_ON(from > PAGE_CACHE_SIZE);
6669 		BUG_ON(to > PAGE_CACHE_SIZE);
6670 
6671 		ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6672 					 &phys);
6673 
6674 		start = (page->index + 1) << PAGE_CACHE_SHIFT;
6675 	}
6676 out:
6677 	if (pages)
6678 		ocfs2_unlock_and_free_pages(pages, numpages);
6679 }
6680 
6681 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end,
6682 		     struct page **pages, int *num)
6683 {
6684 	int numpages, ret = 0;
6685 	struct address_space *mapping = inode->i_mapping;
6686 	unsigned long index;
6687 	loff_t last_page_bytes;
6688 
6689 	BUG_ON(start > end);
6690 
6691 	numpages = 0;
6692 	last_page_bytes = PAGE_ALIGN(end);
6693 	index = start >> PAGE_CACHE_SHIFT;
6694 	do {
6695 		pages[numpages] = find_or_create_page(mapping, index, GFP_NOFS);
6696 		if (!pages[numpages]) {
6697 			ret = -ENOMEM;
6698 			mlog_errno(ret);
6699 			goto out;
6700 		}
6701 
6702 		numpages++;
6703 		index++;
6704 	} while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6705 
6706 out:
6707 	if (ret != 0) {
6708 		if (pages)
6709 			ocfs2_unlock_and_free_pages(pages, numpages);
6710 		numpages = 0;
6711 	}
6712 
6713 	*num = numpages;
6714 
6715 	return ret;
6716 }
6717 
6718 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6719 				struct page **pages, int *num)
6720 {
6721 	struct super_block *sb = inode->i_sb;
6722 
6723 	BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6724 	       (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6725 
6726 	return ocfs2_grab_pages(inode, start, end, pages, num);
6727 }
6728 
6729 /*
6730  * Zero the area past i_size but still within an allocated
6731  * cluster. This avoids exposing nonzero data on subsequent file
6732  * extends.
6733  *
6734  * We need to call this before i_size is updated on the inode because
6735  * otherwise block_write_full_page() will skip writeout of pages past
6736  * i_size. The new_i_size parameter is passed for this reason.
6737  */
6738 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6739 				  u64 range_start, u64 range_end)
6740 {
6741 	int ret = 0, numpages;
6742 	struct page **pages = NULL;
6743 	u64 phys;
6744 	unsigned int ext_flags;
6745 	struct super_block *sb = inode->i_sb;
6746 
6747 	/*
6748 	 * File systems which don't support sparse files zero on every
6749 	 * extend.
6750 	 */
6751 	if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6752 		return 0;
6753 
6754 	pages = kcalloc(ocfs2_pages_per_cluster(sb),
6755 			sizeof(struct page *), GFP_NOFS);
6756 	if (pages == NULL) {
6757 		ret = -ENOMEM;
6758 		mlog_errno(ret);
6759 		goto out;
6760 	}
6761 
6762 	if (range_start == range_end)
6763 		goto out;
6764 
6765 	ret = ocfs2_extent_map_get_blocks(inode,
6766 					  range_start >> sb->s_blocksize_bits,
6767 					  &phys, NULL, &ext_flags);
6768 	if (ret) {
6769 		mlog_errno(ret);
6770 		goto out;
6771 	}
6772 
6773 	/*
6774 	 * Tail is a hole, or is marked unwritten. In either case, we
6775 	 * can count on read and write to return/push zero's.
6776 	 */
6777 	if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6778 		goto out;
6779 
6780 	ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6781 				   &numpages);
6782 	if (ret) {
6783 		mlog_errno(ret);
6784 		goto out;
6785 	}
6786 
6787 	ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6788 				 numpages, phys, handle);
6789 
6790 	/*
6791 	 * Initiate writeout of the pages we zero'd here. We don't
6792 	 * wait on them - the truncate_inode_pages() call later will
6793 	 * do that for us.
6794 	 */
6795 	ret = filemap_fdatawrite_range(inode->i_mapping, range_start,
6796 				       range_end - 1);
6797 	if (ret)
6798 		mlog_errno(ret);
6799 
6800 out:
6801 	kfree(pages);
6802 
6803 	return ret;
6804 }
6805 
6806 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
6807 					     struct ocfs2_dinode *di)
6808 {
6809 	unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
6810 	unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
6811 
6812 	if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
6813 		memset(&di->id2, 0, blocksize -
6814 				    offsetof(struct ocfs2_dinode, id2) -
6815 				    xattrsize);
6816 	else
6817 		memset(&di->id2, 0, blocksize -
6818 				    offsetof(struct ocfs2_dinode, id2));
6819 }
6820 
6821 void ocfs2_dinode_new_extent_list(struct inode *inode,
6822 				  struct ocfs2_dinode *di)
6823 {
6824 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
6825 	di->id2.i_list.l_tree_depth = 0;
6826 	di->id2.i_list.l_next_free_rec = 0;
6827 	di->id2.i_list.l_count = cpu_to_le16(
6828 		ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
6829 }
6830 
6831 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
6832 {
6833 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
6834 	struct ocfs2_inline_data *idata = &di->id2.i_data;
6835 
6836 	spin_lock(&oi->ip_lock);
6837 	oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
6838 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6839 	spin_unlock(&oi->ip_lock);
6840 
6841 	/*
6842 	 * We clear the entire i_data structure here so that all
6843 	 * fields can be properly initialized.
6844 	 */
6845 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
6846 
6847 	idata->id_count = cpu_to_le16(
6848 			ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
6849 }
6850 
6851 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
6852 					 struct buffer_head *di_bh)
6853 {
6854 	int ret, i, has_data, num_pages = 0;
6855 	int need_free = 0;
6856 	u32 bit_off, num;
6857 	handle_t *handle;
6858 	u64 uninitialized_var(block);
6859 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
6860 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6861 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6862 	struct ocfs2_alloc_context *data_ac = NULL;
6863 	struct page **pages = NULL;
6864 	loff_t end = osb->s_clustersize;
6865 	struct ocfs2_extent_tree et;
6866 	int did_quota = 0;
6867 
6868 	has_data = i_size_read(inode) ? 1 : 0;
6869 
6870 	if (has_data) {
6871 		pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
6872 				sizeof(struct page *), GFP_NOFS);
6873 		if (pages == NULL) {
6874 			ret = -ENOMEM;
6875 			mlog_errno(ret);
6876 			return ret;
6877 		}
6878 
6879 		ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
6880 		if (ret) {
6881 			mlog_errno(ret);
6882 			goto free_pages;
6883 		}
6884 	}
6885 
6886 	handle = ocfs2_start_trans(osb,
6887 				   ocfs2_inline_to_extents_credits(osb->sb));
6888 	if (IS_ERR(handle)) {
6889 		ret = PTR_ERR(handle);
6890 		mlog_errno(ret);
6891 		goto out;
6892 	}
6893 
6894 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
6895 				      OCFS2_JOURNAL_ACCESS_WRITE);
6896 	if (ret) {
6897 		mlog_errno(ret);
6898 		goto out_commit;
6899 	}
6900 
6901 	if (has_data) {
6902 		unsigned int page_end;
6903 		u64 phys;
6904 
6905 		ret = dquot_alloc_space_nodirty(inode,
6906 				       ocfs2_clusters_to_bytes(osb->sb, 1));
6907 		if (ret)
6908 			goto out_commit;
6909 		did_quota = 1;
6910 
6911 		data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
6912 
6913 		ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off,
6914 					   &num);
6915 		if (ret) {
6916 			mlog_errno(ret);
6917 			goto out_commit;
6918 		}
6919 
6920 		/*
6921 		 * Save two copies, one for insert, and one that can
6922 		 * be changed by ocfs2_map_and_dirty_page() below.
6923 		 */
6924 		block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
6925 
6926 		/*
6927 		 * Non sparse file systems zero on extend, so no need
6928 		 * to do that now.
6929 		 */
6930 		if (!ocfs2_sparse_alloc(osb) &&
6931 		    PAGE_CACHE_SIZE < osb->s_clustersize)
6932 			end = PAGE_CACHE_SIZE;
6933 
6934 		ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
6935 		if (ret) {
6936 			mlog_errno(ret);
6937 			need_free = 1;
6938 			goto out_commit;
6939 		}
6940 
6941 		/*
6942 		 * This should populate the 1st page for us and mark
6943 		 * it up to date.
6944 		 */
6945 		ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
6946 		if (ret) {
6947 			mlog_errno(ret);
6948 			need_free = 1;
6949 			goto out_unlock;
6950 		}
6951 
6952 		page_end = PAGE_CACHE_SIZE;
6953 		if (PAGE_CACHE_SIZE > osb->s_clustersize)
6954 			page_end = osb->s_clustersize;
6955 
6956 		for (i = 0; i < num_pages; i++)
6957 			ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
6958 						 pages[i], i > 0, &phys);
6959 	}
6960 
6961 	spin_lock(&oi->ip_lock);
6962 	oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
6963 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6964 	spin_unlock(&oi->ip_lock);
6965 
6966 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
6967 	ocfs2_dinode_new_extent_list(inode, di);
6968 
6969 	ocfs2_journal_dirty(handle, di_bh);
6970 
6971 	if (has_data) {
6972 		/*
6973 		 * An error at this point should be extremely rare. If
6974 		 * this proves to be false, we could always re-build
6975 		 * the in-inode data from our pages.
6976 		 */
6977 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
6978 		ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL);
6979 		if (ret) {
6980 			mlog_errno(ret);
6981 			need_free = 1;
6982 			goto out_unlock;
6983 		}
6984 
6985 		inode->i_blocks = ocfs2_inode_sector_count(inode);
6986 	}
6987 
6988 out_unlock:
6989 	if (pages)
6990 		ocfs2_unlock_and_free_pages(pages, num_pages);
6991 
6992 out_commit:
6993 	if (ret < 0 && did_quota)
6994 		dquot_free_space_nodirty(inode,
6995 					  ocfs2_clusters_to_bytes(osb->sb, 1));
6996 
6997 	if (need_free) {
6998 		if (data_ac->ac_which == OCFS2_AC_USE_LOCAL)
6999 			ocfs2_free_local_alloc_bits(osb, handle, data_ac,
7000 					bit_off, num);
7001 		else
7002 			ocfs2_free_clusters(handle,
7003 					data_ac->ac_inode,
7004 					data_ac->ac_bh,
7005 					ocfs2_clusters_to_blocks(osb->sb, bit_off),
7006 					num);
7007 	}
7008 
7009 	ocfs2_commit_trans(osb, handle);
7010 
7011 out:
7012 	if (data_ac)
7013 		ocfs2_free_alloc_context(data_ac);
7014 free_pages:
7015 	kfree(pages);
7016 	return ret;
7017 }
7018 
7019 /*
7020  * It is expected, that by the time you call this function,
7021  * inode->i_size and fe->i_size have been adjusted.
7022  *
7023  * WARNING: This will kfree the truncate context
7024  */
7025 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7026 			  struct inode *inode,
7027 			  struct buffer_head *di_bh)
7028 {
7029 	int status = 0, i, flags = 0;
7030 	u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff;
7031 	u64 blkno = 0;
7032 	struct ocfs2_extent_list *el;
7033 	struct ocfs2_extent_rec *rec;
7034 	struct ocfs2_path *path = NULL;
7035 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7036 	struct ocfs2_extent_list *root_el = &(di->id2.i_list);
7037 	u64 refcount_loc = le64_to_cpu(di->i_refcount_loc);
7038 	struct ocfs2_extent_tree et;
7039 	struct ocfs2_cached_dealloc_ctxt dealloc;
7040 	struct ocfs2_refcount_tree *ref_tree = NULL;
7041 
7042 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
7043 	ocfs2_init_dealloc_ctxt(&dealloc);
7044 
7045 	new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7046 						     i_size_read(inode));
7047 
7048 	path = ocfs2_new_path(di_bh, &di->id2.i_list,
7049 			      ocfs2_journal_access_di);
7050 	if (!path) {
7051 		status = -ENOMEM;
7052 		mlog_errno(status);
7053 		goto bail;
7054 	}
7055 
7056 	ocfs2_extent_map_trunc(inode, new_highest_cpos);
7057 
7058 start:
7059 	/*
7060 	 * Check that we still have allocation to delete.
7061 	 */
7062 	if (OCFS2_I(inode)->ip_clusters == 0) {
7063 		status = 0;
7064 		goto bail;
7065 	}
7066 
7067 	/*
7068 	 * Truncate always works against the rightmost tree branch.
7069 	 */
7070 	status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX);
7071 	if (status) {
7072 		mlog_errno(status);
7073 		goto bail;
7074 	}
7075 
7076 	trace_ocfs2_commit_truncate(
7077 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
7078 		new_highest_cpos,
7079 		OCFS2_I(inode)->ip_clusters,
7080 		path->p_tree_depth);
7081 
7082 	/*
7083 	 * By now, el will point to the extent list on the bottom most
7084 	 * portion of this tree. Only the tail record is considered in
7085 	 * each pass.
7086 	 *
7087 	 * We handle the following cases, in order:
7088 	 * - empty extent: delete the remaining branch
7089 	 * - remove the entire record
7090 	 * - remove a partial record
7091 	 * - no record needs to be removed (truncate has completed)
7092 	 */
7093 	el = path_leaf_el(path);
7094 	if (le16_to_cpu(el->l_next_free_rec) == 0) {
7095 		ocfs2_error(inode->i_sb,
7096 			    "Inode %llu has empty extent block at %llu\n",
7097 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7098 			    (unsigned long long)path_leaf_bh(path)->b_blocknr);
7099 		status = -EROFS;
7100 		goto bail;
7101 	}
7102 
7103 	i = le16_to_cpu(el->l_next_free_rec) - 1;
7104 	rec = &el->l_recs[i];
7105 	flags = rec->e_flags;
7106 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
7107 
7108 	if (i == 0 && ocfs2_is_empty_extent(rec)) {
7109 		/*
7110 		 * Lower levels depend on this never happening, but it's best
7111 		 * to check it up here before changing the tree.
7112 		*/
7113 		if (root_el->l_tree_depth && rec->e_int_clusters == 0) {
7114 			mlog(ML_ERROR, "Inode %lu has an empty "
7115 				    "extent record, depth %u\n", inode->i_ino,
7116 				    le16_to_cpu(root_el->l_tree_depth));
7117 			status = ocfs2_remove_rightmost_empty_extent(osb,
7118 					&et, path, &dealloc);
7119 			if (status) {
7120 				mlog_errno(status);
7121 				goto bail;
7122 			}
7123 
7124 			ocfs2_reinit_path(path, 1);
7125 			goto start;
7126 		} else {
7127 			trunc_cpos = le32_to_cpu(rec->e_cpos);
7128 			trunc_len = 0;
7129 			blkno = 0;
7130 		}
7131 	} else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) {
7132 		/*
7133 		 * Truncate entire record.
7134 		 */
7135 		trunc_cpos = le32_to_cpu(rec->e_cpos);
7136 		trunc_len = ocfs2_rec_clusters(el, rec);
7137 		blkno = le64_to_cpu(rec->e_blkno);
7138 	} else if (range > new_highest_cpos) {
7139 		/*
7140 		 * Partial truncate. it also should be
7141 		 * the last truncate we're doing.
7142 		 */
7143 		trunc_cpos = new_highest_cpos;
7144 		trunc_len = range - new_highest_cpos;
7145 		coff = new_highest_cpos - le32_to_cpu(rec->e_cpos);
7146 		blkno = le64_to_cpu(rec->e_blkno) +
7147 				ocfs2_clusters_to_blocks(inode->i_sb, coff);
7148 	} else {
7149 		/*
7150 		 * Truncate completed, leave happily.
7151 		 */
7152 		status = 0;
7153 		goto bail;
7154 	}
7155 
7156 	phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
7157 
7158 	if ((flags & OCFS2_EXT_REFCOUNTED) && trunc_len && !ref_tree) {
7159 		status = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
7160 				&ref_tree, NULL);
7161 		if (status) {
7162 			mlog_errno(status);
7163 			goto bail;
7164 		}
7165 	}
7166 
7167 	status = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
7168 					  phys_cpos, trunc_len, flags, &dealloc,
7169 					  refcount_loc, true);
7170 	if (status < 0) {
7171 		mlog_errno(status);
7172 		goto bail;
7173 	}
7174 
7175 	ocfs2_reinit_path(path, 1);
7176 
7177 	/*
7178 	 * The check above will catch the case where we've truncated
7179 	 * away all allocation.
7180 	 */
7181 	goto start;
7182 
7183 bail:
7184 	if (ref_tree)
7185 		ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
7186 
7187 	ocfs2_schedule_truncate_log_flush(osb, 1);
7188 
7189 	ocfs2_run_deallocs(osb, &dealloc);
7190 
7191 	ocfs2_free_path(path);
7192 
7193 	return status;
7194 }
7195 
7196 /*
7197  * 'start' is inclusive, 'end' is not.
7198  */
7199 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7200 			  unsigned int start, unsigned int end, int trunc)
7201 {
7202 	int ret;
7203 	unsigned int numbytes;
7204 	handle_t *handle;
7205 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7206 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7207 	struct ocfs2_inline_data *idata = &di->id2.i_data;
7208 
7209 	if (end > i_size_read(inode))
7210 		end = i_size_read(inode);
7211 
7212 	BUG_ON(start > end);
7213 
7214 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7215 	    !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7216 	    !ocfs2_supports_inline_data(osb)) {
7217 		ocfs2_error(inode->i_sb,
7218 			    "Inline data flags for inode %llu don't agree! Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7219 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7220 			    le16_to_cpu(di->i_dyn_features),
7221 			    OCFS2_I(inode)->ip_dyn_features,
7222 			    osb->s_feature_incompat);
7223 		ret = -EROFS;
7224 		goto out;
7225 	}
7226 
7227 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7228 	if (IS_ERR(handle)) {
7229 		ret = PTR_ERR(handle);
7230 		mlog_errno(ret);
7231 		goto out;
7232 	}
7233 
7234 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7235 				      OCFS2_JOURNAL_ACCESS_WRITE);
7236 	if (ret) {
7237 		mlog_errno(ret);
7238 		goto out_commit;
7239 	}
7240 
7241 	numbytes = end - start;
7242 	memset(idata->id_data + start, 0, numbytes);
7243 
7244 	/*
7245 	 * No need to worry about the data page here - it's been
7246 	 * truncated already and inline data doesn't need it for
7247 	 * pushing zero's to disk, so we'll let readpage pick it up
7248 	 * later.
7249 	 */
7250 	if (trunc) {
7251 		i_size_write(inode, start);
7252 		di->i_size = cpu_to_le64(start);
7253 	}
7254 
7255 	inode->i_blocks = ocfs2_inode_sector_count(inode);
7256 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7257 
7258 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7259 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7260 
7261 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
7262 	ocfs2_journal_dirty(handle, di_bh);
7263 
7264 out_commit:
7265 	ocfs2_commit_trans(osb, handle);
7266 
7267 out:
7268 	return ret;
7269 }
7270 
7271 static int ocfs2_trim_extent(struct super_block *sb,
7272 			     struct ocfs2_group_desc *gd,
7273 			     u32 start, u32 count)
7274 {
7275 	u64 discard, bcount;
7276 
7277 	bcount = ocfs2_clusters_to_blocks(sb, count);
7278 	discard = le64_to_cpu(gd->bg_blkno) +
7279 			ocfs2_clusters_to_blocks(sb, start);
7280 
7281 	trace_ocfs2_trim_extent(sb, (unsigned long long)discard, bcount);
7282 
7283 	return sb_issue_discard(sb, discard, bcount, GFP_NOFS, 0);
7284 }
7285 
7286 static int ocfs2_trim_group(struct super_block *sb,
7287 			    struct ocfs2_group_desc *gd,
7288 			    u32 start, u32 max, u32 minbits)
7289 {
7290 	int ret = 0, count = 0, next;
7291 	void *bitmap = gd->bg_bitmap;
7292 
7293 	if (le16_to_cpu(gd->bg_free_bits_count) < minbits)
7294 		return 0;
7295 
7296 	trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd->bg_blkno),
7297 			       start, max, minbits);
7298 
7299 	while (start < max) {
7300 		start = ocfs2_find_next_zero_bit(bitmap, max, start);
7301 		if (start >= max)
7302 			break;
7303 		next = ocfs2_find_next_bit(bitmap, max, start);
7304 
7305 		if ((next - start) >= minbits) {
7306 			ret = ocfs2_trim_extent(sb, gd,
7307 						start, next - start);
7308 			if (ret < 0) {
7309 				mlog_errno(ret);
7310 				break;
7311 			}
7312 			count += next - start;
7313 		}
7314 		start = next + 1;
7315 
7316 		if (fatal_signal_pending(current)) {
7317 			count = -ERESTARTSYS;
7318 			break;
7319 		}
7320 
7321 		if ((le16_to_cpu(gd->bg_free_bits_count) - count) < minbits)
7322 			break;
7323 	}
7324 
7325 	if (ret < 0)
7326 		count = ret;
7327 
7328 	return count;
7329 }
7330 
7331 int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range)
7332 {
7333 	struct ocfs2_super *osb = OCFS2_SB(sb);
7334 	u64 start, len, trimmed, first_group, last_group, group;
7335 	int ret, cnt;
7336 	u32 first_bit, last_bit, minlen;
7337 	struct buffer_head *main_bm_bh = NULL;
7338 	struct inode *main_bm_inode = NULL;
7339 	struct buffer_head *gd_bh = NULL;
7340 	struct ocfs2_dinode *main_bm;
7341 	struct ocfs2_group_desc *gd = NULL;
7342 
7343 	start = range->start >> osb->s_clustersize_bits;
7344 	len = range->len >> osb->s_clustersize_bits;
7345 	minlen = range->minlen >> osb->s_clustersize_bits;
7346 
7347 	if (minlen >= osb->bitmap_cpg || range->len < sb->s_blocksize)
7348 		return -EINVAL;
7349 
7350 	main_bm_inode = ocfs2_get_system_file_inode(osb,
7351 						    GLOBAL_BITMAP_SYSTEM_INODE,
7352 						    OCFS2_INVALID_SLOT);
7353 	if (!main_bm_inode) {
7354 		ret = -EIO;
7355 		mlog_errno(ret);
7356 		goto out;
7357 	}
7358 
7359 	mutex_lock(&main_bm_inode->i_mutex);
7360 
7361 	ret = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 0);
7362 	if (ret < 0) {
7363 		mlog_errno(ret);
7364 		goto out_mutex;
7365 	}
7366 	main_bm = (struct ocfs2_dinode *)main_bm_bh->b_data;
7367 
7368 	if (start >= le32_to_cpu(main_bm->i_clusters)) {
7369 		ret = -EINVAL;
7370 		goto out_unlock;
7371 	}
7372 
7373 	len = range->len >> osb->s_clustersize_bits;
7374 	if (start + len > le32_to_cpu(main_bm->i_clusters))
7375 		len = le32_to_cpu(main_bm->i_clusters) - start;
7376 
7377 	trace_ocfs2_trim_fs(start, len, minlen);
7378 
7379 	/* Determine first and last group to examine based on start and len */
7380 	first_group = ocfs2_which_cluster_group(main_bm_inode, start);
7381 	if (first_group == osb->first_cluster_group_blkno)
7382 		first_bit = start;
7383 	else
7384 		first_bit = start - ocfs2_blocks_to_clusters(sb, first_group);
7385 	last_group = ocfs2_which_cluster_group(main_bm_inode, start + len - 1);
7386 	last_bit = osb->bitmap_cpg;
7387 
7388 	trimmed = 0;
7389 	for (group = first_group; group <= last_group;) {
7390 		if (first_bit + len >= osb->bitmap_cpg)
7391 			last_bit = osb->bitmap_cpg;
7392 		else
7393 			last_bit = first_bit + len;
7394 
7395 		ret = ocfs2_read_group_descriptor(main_bm_inode,
7396 						  main_bm, group,
7397 						  &gd_bh);
7398 		if (ret < 0) {
7399 			mlog_errno(ret);
7400 			break;
7401 		}
7402 
7403 		gd = (struct ocfs2_group_desc *)gd_bh->b_data;
7404 		cnt = ocfs2_trim_group(sb, gd, first_bit, last_bit, minlen);
7405 		brelse(gd_bh);
7406 		gd_bh = NULL;
7407 		if (cnt < 0) {
7408 			ret = cnt;
7409 			mlog_errno(ret);
7410 			break;
7411 		}
7412 
7413 		trimmed += cnt;
7414 		len -= osb->bitmap_cpg - first_bit;
7415 		first_bit = 0;
7416 		if (group == osb->first_cluster_group_blkno)
7417 			group = ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7418 		else
7419 			group += ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7420 	}
7421 	range->len = trimmed * sb->s_blocksize;
7422 out_unlock:
7423 	ocfs2_inode_unlock(main_bm_inode, 0);
7424 	brelse(main_bm_bh);
7425 out_mutex:
7426 	mutex_unlock(&main_bm_inode->i_mutex);
7427 	iput(main_bm_inode);
7428 out:
7429 	return ret;
7430 }
7431