1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * alloc.c 5 * 6 * Extent allocs and frees 7 * 8 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/swap.h> 31 #include <linux/quotaops.h> 32 33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC 34 #include <cluster/masklog.h> 35 36 #include "ocfs2.h" 37 38 #include "alloc.h" 39 #include "aops.h" 40 #include "blockcheck.h" 41 #include "dlmglue.h" 42 #include "extent_map.h" 43 #include "inode.h" 44 #include "journal.h" 45 #include "localalloc.h" 46 #include "suballoc.h" 47 #include "sysfile.h" 48 #include "file.h" 49 #include "super.h" 50 #include "uptodate.h" 51 #include "xattr.h" 52 53 #include "buffer_head_io.h" 54 55 56 /* 57 * Operations for a specific extent tree type. 58 * 59 * To implement an on-disk btree (extent tree) type in ocfs2, add 60 * an ocfs2_extent_tree_operations structure and the matching 61 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it 62 * for the allocation portion of the extent tree. 63 */ 64 struct ocfs2_extent_tree_operations { 65 /* 66 * last_eb_blk is the block number of the right most leaf extent 67 * block. Most on-disk structures containing an extent tree store 68 * this value for fast access. The ->eo_set_last_eb_blk() and 69 * ->eo_get_last_eb_blk() operations access this value. They are 70 * both required. 71 */ 72 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et, 73 u64 blkno); 74 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et); 75 76 /* 77 * The on-disk structure usually keeps track of how many total 78 * clusters are stored in this extent tree. This function updates 79 * that value. new_clusters is the delta, and must be 80 * added to the total. Required. 81 */ 82 void (*eo_update_clusters)(struct inode *inode, 83 struct ocfs2_extent_tree *et, 84 u32 new_clusters); 85 86 /* 87 * If ->eo_insert_check() exists, it is called before rec is 88 * inserted into the extent tree. It is optional. 89 */ 90 int (*eo_insert_check)(struct inode *inode, 91 struct ocfs2_extent_tree *et, 92 struct ocfs2_extent_rec *rec); 93 int (*eo_sanity_check)(struct inode *inode, struct ocfs2_extent_tree *et); 94 95 /* 96 * -------------------------------------------------------------- 97 * The remaining are internal to ocfs2_extent_tree and don't have 98 * accessor functions 99 */ 100 101 /* 102 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el. 103 * It is required. 104 */ 105 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et); 106 107 /* 108 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if 109 * it exists. If it does not, et->et_max_leaf_clusters is set 110 * to 0 (unlimited). Optional. 111 */ 112 void (*eo_fill_max_leaf_clusters)(struct inode *inode, 113 struct ocfs2_extent_tree *et); 114 }; 115 116 117 /* 118 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check 119 * in the methods. 120 */ 121 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et); 122 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 123 u64 blkno); 124 static void ocfs2_dinode_update_clusters(struct inode *inode, 125 struct ocfs2_extent_tree *et, 126 u32 clusters); 127 static int ocfs2_dinode_insert_check(struct inode *inode, 128 struct ocfs2_extent_tree *et, 129 struct ocfs2_extent_rec *rec); 130 static int ocfs2_dinode_sanity_check(struct inode *inode, 131 struct ocfs2_extent_tree *et); 132 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et); 133 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = { 134 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk, 135 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk, 136 .eo_update_clusters = ocfs2_dinode_update_clusters, 137 .eo_insert_check = ocfs2_dinode_insert_check, 138 .eo_sanity_check = ocfs2_dinode_sanity_check, 139 .eo_fill_root_el = ocfs2_dinode_fill_root_el, 140 }; 141 142 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 143 u64 blkno) 144 { 145 struct ocfs2_dinode *di = et->et_object; 146 147 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 148 di->i_last_eb_blk = cpu_to_le64(blkno); 149 } 150 151 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et) 152 { 153 struct ocfs2_dinode *di = et->et_object; 154 155 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 156 return le64_to_cpu(di->i_last_eb_blk); 157 } 158 159 static void ocfs2_dinode_update_clusters(struct inode *inode, 160 struct ocfs2_extent_tree *et, 161 u32 clusters) 162 { 163 struct ocfs2_dinode *di = et->et_object; 164 165 le32_add_cpu(&di->i_clusters, clusters); 166 spin_lock(&OCFS2_I(inode)->ip_lock); 167 OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters); 168 spin_unlock(&OCFS2_I(inode)->ip_lock); 169 } 170 171 static int ocfs2_dinode_insert_check(struct inode *inode, 172 struct ocfs2_extent_tree *et, 173 struct ocfs2_extent_rec *rec) 174 { 175 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 176 177 BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL); 178 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) && 179 (OCFS2_I(inode)->ip_clusters != 180 le32_to_cpu(rec->e_cpos)), 181 "Device %s, asking for sparse allocation: inode %llu, " 182 "cpos %u, clusters %u\n", 183 osb->dev_str, 184 (unsigned long long)OCFS2_I(inode)->ip_blkno, 185 rec->e_cpos, 186 OCFS2_I(inode)->ip_clusters); 187 188 return 0; 189 } 190 191 static int ocfs2_dinode_sanity_check(struct inode *inode, 192 struct ocfs2_extent_tree *et) 193 { 194 struct ocfs2_dinode *di = et->et_object; 195 196 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 197 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 198 199 return 0; 200 } 201 202 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et) 203 { 204 struct ocfs2_dinode *di = et->et_object; 205 206 et->et_root_el = &di->id2.i_list; 207 } 208 209 210 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et) 211 { 212 struct ocfs2_xattr_value_buf *vb = et->et_object; 213 214 et->et_root_el = &vb->vb_xv->xr_list; 215 } 216 217 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et, 218 u64 blkno) 219 { 220 struct ocfs2_xattr_value_buf *vb = et->et_object; 221 222 vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno); 223 } 224 225 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et) 226 { 227 struct ocfs2_xattr_value_buf *vb = et->et_object; 228 229 return le64_to_cpu(vb->vb_xv->xr_last_eb_blk); 230 } 231 232 static void ocfs2_xattr_value_update_clusters(struct inode *inode, 233 struct ocfs2_extent_tree *et, 234 u32 clusters) 235 { 236 struct ocfs2_xattr_value_buf *vb = et->et_object; 237 238 le32_add_cpu(&vb->vb_xv->xr_clusters, clusters); 239 } 240 241 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = { 242 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk, 243 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk, 244 .eo_update_clusters = ocfs2_xattr_value_update_clusters, 245 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el, 246 }; 247 248 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et) 249 { 250 struct ocfs2_xattr_block *xb = et->et_object; 251 252 et->et_root_el = &xb->xb_attrs.xb_root.xt_list; 253 } 254 255 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct inode *inode, 256 struct ocfs2_extent_tree *et) 257 { 258 et->et_max_leaf_clusters = 259 ocfs2_clusters_for_bytes(inode->i_sb, 260 OCFS2_MAX_XATTR_TREE_LEAF_SIZE); 261 } 262 263 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 264 u64 blkno) 265 { 266 struct ocfs2_xattr_block *xb = et->et_object; 267 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 268 269 xt->xt_last_eb_blk = cpu_to_le64(blkno); 270 } 271 272 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 273 { 274 struct ocfs2_xattr_block *xb = et->et_object; 275 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 276 277 return le64_to_cpu(xt->xt_last_eb_blk); 278 } 279 280 static void ocfs2_xattr_tree_update_clusters(struct inode *inode, 281 struct ocfs2_extent_tree *et, 282 u32 clusters) 283 { 284 struct ocfs2_xattr_block *xb = et->et_object; 285 286 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters); 287 } 288 289 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = { 290 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk, 291 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk, 292 .eo_update_clusters = ocfs2_xattr_tree_update_clusters, 293 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el, 294 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters, 295 }; 296 297 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et, 298 u64 blkno) 299 { 300 struct ocfs2_dx_root_block *dx_root = et->et_object; 301 302 dx_root->dr_last_eb_blk = cpu_to_le64(blkno); 303 } 304 305 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et) 306 { 307 struct ocfs2_dx_root_block *dx_root = et->et_object; 308 309 return le64_to_cpu(dx_root->dr_last_eb_blk); 310 } 311 312 static void ocfs2_dx_root_update_clusters(struct inode *inode, 313 struct ocfs2_extent_tree *et, 314 u32 clusters) 315 { 316 struct ocfs2_dx_root_block *dx_root = et->et_object; 317 318 le32_add_cpu(&dx_root->dr_clusters, clusters); 319 } 320 321 static int ocfs2_dx_root_sanity_check(struct inode *inode, 322 struct ocfs2_extent_tree *et) 323 { 324 struct ocfs2_dx_root_block *dx_root = et->et_object; 325 326 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root)); 327 328 return 0; 329 } 330 331 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et) 332 { 333 struct ocfs2_dx_root_block *dx_root = et->et_object; 334 335 et->et_root_el = &dx_root->dr_list; 336 } 337 338 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = { 339 .eo_set_last_eb_blk = ocfs2_dx_root_set_last_eb_blk, 340 .eo_get_last_eb_blk = ocfs2_dx_root_get_last_eb_blk, 341 .eo_update_clusters = ocfs2_dx_root_update_clusters, 342 .eo_sanity_check = ocfs2_dx_root_sanity_check, 343 .eo_fill_root_el = ocfs2_dx_root_fill_root_el, 344 }; 345 346 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et, 347 struct inode *inode, 348 struct buffer_head *bh, 349 ocfs2_journal_access_func access, 350 void *obj, 351 struct ocfs2_extent_tree_operations *ops) 352 { 353 et->et_ops = ops; 354 et->et_root_bh = bh; 355 et->et_root_journal_access = access; 356 if (!obj) 357 obj = (void *)bh->b_data; 358 et->et_object = obj; 359 360 et->et_ops->eo_fill_root_el(et); 361 if (!et->et_ops->eo_fill_max_leaf_clusters) 362 et->et_max_leaf_clusters = 0; 363 else 364 et->et_ops->eo_fill_max_leaf_clusters(inode, et); 365 } 366 367 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et, 368 struct inode *inode, 369 struct buffer_head *bh) 370 { 371 __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_di, 372 NULL, &ocfs2_dinode_et_ops); 373 } 374 375 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et, 376 struct inode *inode, 377 struct buffer_head *bh) 378 { 379 __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_xb, 380 NULL, &ocfs2_xattr_tree_et_ops); 381 } 382 383 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et, 384 struct inode *inode, 385 struct ocfs2_xattr_value_buf *vb) 386 { 387 __ocfs2_init_extent_tree(et, inode, vb->vb_bh, vb->vb_access, vb, 388 &ocfs2_xattr_value_et_ops); 389 } 390 391 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et, 392 struct inode *inode, 393 struct buffer_head *bh) 394 { 395 __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_dr, 396 NULL, &ocfs2_dx_root_et_ops); 397 } 398 399 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et, 400 u64 new_last_eb_blk) 401 { 402 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk); 403 } 404 405 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et) 406 { 407 return et->et_ops->eo_get_last_eb_blk(et); 408 } 409 410 static inline void ocfs2_et_update_clusters(struct inode *inode, 411 struct ocfs2_extent_tree *et, 412 u32 clusters) 413 { 414 et->et_ops->eo_update_clusters(inode, et, clusters); 415 } 416 417 static inline int ocfs2_et_root_journal_access(handle_t *handle, 418 struct inode *inode, 419 struct ocfs2_extent_tree *et, 420 int type) 421 { 422 return et->et_root_journal_access(handle, inode, et->et_root_bh, 423 type); 424 } 425 426 static inline int ocfs2_et_insert_check(struct inode *inode, 427 struct ocfs2_extent_tree *et, 428 struct ocfs2_extent_rec *rec) 429 { 430 int ret = 0; 431 432 if (et->et_ops->eo_insert_check) 433 ret = et->et_ops->eo_insert_check(inode, et, rec); 434 return ret; 435 } 436 437 static inline int ocfs2_et_sanity_check(struct inode *inode, 438 struct ocfs2_extent_tree *et) 439 { 440 int ret = 0; 441 442 if (et->et_ops->eo_sanity_check) 443 ret = et->et_ops->eo_sanity_check(inode, et); 444 return ret; 445 } 446 447 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc); 448 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 449 struct ocfs2_extent_block *eb); 450 451 /* 452 * Structures which describe a path through a btree, and functions to 453 * manipulate them. 454 * 455 * The idea here is to be as generic as possible with the tree 456 * manipulation code. 457 */ 458 struct ocfs2_path_item { 459 struct buffer_head *bh; 460 struct ocfs2_extent_list *el; 461 }; 462 463 #define OCFS2_MAX_PATH_DEPTH 5 464 465 struct ocfs2_path { 466 int p_tree_depth; 467 ocfs2_journal_access_func p_root_access; 468 struct ocfs2_path_item p_node[OCFS2_MAX_PATH_DEPTH]; 469 }; 470 471 #define path_root_bh(_path) ((_path)->p_node[0].bh) 472 #define path_root_el(_path) ((_path)->p_node[0].el) 473 #define path_root_access(_path)((_path)->p_root_access) 474 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh) 475 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el) 476 #define path_num_items(_path) ((_path)->p_tree_depth + 1) 477 478 /* 479 * Reset the actual path elements so that we can re-use the structure 480 * to build another path. Generally, this involves freeing the buffer 481 * heads. 482 */ 483 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root) 484 { 485 int i, start = 0, depth = 0; 486 struct ocfs2_path_item *node; 487 488 if (keep_root) 489 start = 1; 490 491 for(i = start; i < path_num_items(path); i++) { 492 node = &path->p_node[i]; 493 494 brelse(node->bh); 495 node->bh = NULL; 496 node->el = NULL; 497 } 498 499 /* 500 * Tree depth may change during truncate, or insert. If we're 501 * keeping the root extent list, then make sure that our path 502 * structure reflects the proper depth. 503 */ 504 if (keep_root) 505 depth = le16_to_cpu(path_root_el(path)->l_tree_depth); 506 else 507 path_root_access(path) = NULL; 508 509 path->p_tree_depth = depth; 510 } 511 512 static void ocfs2_free_path(struct ocfs2_path *path) 513 { 514 if (path) { 515 ocfs2_reinit_path(path, 0); 516 kfree(path); 517 } 518 } 519 520 /* 521 * All the elements of src into dest. After this call, src could be freed 522 * without affecting dest. 523 * 524 * Both paths should have the same root. Any non-root elements of dest 525 * will be freed. 526 */ 527 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src) 528 { 529 int i; 530 531 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 532 BUG_ON(path_root_el(dest) != path_root_el(src)); 533 BUG_ON(path_root_access(dest) != path_root_access(src)); 534 535 ocfs2_reinit_path(dest, 1); 536 537 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 538 dest->p_node[i].bh = src->p_node[i].bh; 539 dest->p_node[i].el = src->p_node[i].el; 540 541 if (dest->p_node[i].bh) 542 get_bh(dest->p_node[i].bh); 543 } 544 } 545 546 /* 547 * Make the *dest path the same as src and re-initialize src path to 548 * have a root only. 549 */ 550 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src) 551 { 552 int i; 553 554 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 555 BUG_ON(path_root_access(dest) != path_root_access(src)); 556 557 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 558 brelse(dest->p_node[i].bh); 559 560 dest->p_node[i].bh = src->p_node[i].bh; 561 dest->p_node[i].el = src->p_node[i].el; 562 563 src->p_node[i].bh = NULL; 564 src->p_node[i].el = NULL; 565 } 566 } 567 568 /* 569 * Insert an extent block at given index. 570 * 571 * This will not take an additional reference on eb_bh. 572 */ 573 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index, 574 struct buffer_head *eb_bh) 575 { 576 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data; 577 578 /* 579 * Right now, no root bh is an extent block, so this helps 580 * catch code errors with dinode trees. The assertion can be 581 * safely removed if we ever need to insert extent block 582 * structures at the root. 583 */ 584 BUG_ON(index == 0); 585 586 path->p_node[index].bh = eb_bh; 587 path->p_node[index].el = &eb->h_list; 588 } 589 590 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh, 591 struct ocfs2_extent_list *root_el, 592 ocfs2_journal_access_func access) 593 { 594 struct ocfs2_path *path; 595 596 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH); 597 598 path = kzalloc(sizeof(*path), GFP_NOFS); 599 if (path) { 600 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth); 601 get_bh(root_bh); 602 path_root_bh(path) = root_bh; 603 path_root_el(path) = root_el; 604 path_root_access(path) = access; 605 } 606 607 return path; 608 } 609 610 static struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path) 611 { 612 return ocfs2_new_path(path_root_bh(path), path_root_el(path), 613 path_root_access(path)); 614 } 615 616 static struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et) 617 { 618 return ocfs2_new_path(et->et_root_bh, et->et_root_el, 619 et->et_root_journal_access); 620 } 621 622 /* 623 * Journal the buffer at depth idx. All idx>0 are extent_blocks, 624 * otherwise it's the root_access function. 625 * 626 * I don't like the way this function's name looks next to 627 * ocfs2_journal_access_path(), but I don't have a better one. 628 */ 629 static int ocfs2_path_bh_journal_access(handle_t *handle, 630 struct inode *inode, 631 struct ocfs2_path *path, 632 int idx) 633 { 634 ocfs2_journal_access_func access = path_root_access(path); 635 636 if (!access) 637 access = ocfs2_journal_access; 638 639 if (idx) 640 access = ocfs2_journal_access_eb; 641 642 return access(handle, inode, path->p_node[idx].bh, 643 OCFS2_JOURNAL_ACCESS_WRITE); 644 } 645 646 /* 647 * Convenience function to journal all components in a path. 648 */ 649 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle, 650 struct ocfs2_path *path) 651 { 652 int i, ret = 0; 653 654 if (!path) 655 goto out; 656 657 for(i = 0; i < path_num_items(path); i++) { 658 ret = ocfs2_path_bh_journal_access(handle, inode, path, i); 659 if (ret < 0) { 660 mlog_errno(ret); 661 goto out; 662 } 663 } 664 665 out: 666 return ret; 667 } 668 669 /* 670 * Return the index of the extent record which contains cluster #v_cluster. 671 * -1 is returned if it was not found. 672 * 673 * Should work fine on interior and exterior nodes. 674 */ 675 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster) 676 { 677 int ret = -1; 678 int i; 679 struct ocfs2_extent_rec *rec; 680 u32 rec_end, rec_start, clusters; 681 682 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 683 rec = &el->l_recs[i]; 684 685 rec_start = le32_to_cpu(rec->e_cpos); 686 clusters = ocfs2_rec_clusters(el, rec); 687 688 rec_end = rec_start + clusters; 689 690 if (v_cluster >= rec_start && v_cluster < rec_end) { 691 ret = i; 692 break; 693 } 694 } 695 696 return ret; 697 } 698 699 enum ocfs2_contig_type { 700 CONTIG_NONE = 0, 701 CONTIG_LEFT, 702 CONTIG_RIGHT, 703 CONTIG_LEFTRIGHT, 704 }; 705 706 707 /* 708 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and 709 * ocfs2_extent_contig only work properly against leaf nodes! 710 */ 711 static int ocfs2_block_extent_contig(struct super_block *sb, 712 struct ocfs2_extent_rec *ext, 713 u64 blkno) 714 { 715 u64 blk_end = le64_to_cpu(ext->e_blkno); 716 717 blk_end += ocfs2_clusters_to_blocks(sb, 718 le16_to_cpu(ext->e_leaf_clusters)); 719 720 return blkno == blk_end; 721 } 722 723 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left, 724 struct ocfs2_extent_rec *right) 725 { 726 u32 left_range; 727 728 left_range = le32_to_cpu(left->e_cpos) + 729 le16_to_cpu(left->e_leaf_clusters); 730 731 return (left_range == le32_to_cpu(right->e_cpos)); 732 } 733 734 static enum ocfs2_contig_type 735 ocfs2_extent_contig(struct inode *inode, 736 struct ocfs2_extent_rec *ext, 737 struct ocfs2_extent_rec *insert_rec) 738 { 739 u64 blkno = le64_to_cpu(insert_rec->e_blkno); 740 741 /* 742 * Refuse to coalesce extent records with different flag 743 * fields - we don't want to mix unwritten extents with user 744 * data. 745 */ 746 if (ext->e_flags != insert_rec->e_flags) 747 return CONTIG_NONE; 748 749 if (ocfs2_extents_adjacent(ext, insert_rec) && 750 ocfs2_block_extent_contig(inode->i_sb, ext, blkno)) 751 return CONTIG_RIGHT; 752 753 blkno = le64_to_cpu(ext->e_blkno); 754 if (ocfs2_extents_adjacent(insert_rec, ext) && 755 ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno)) 756 return CONTIG_LEFT; 757 758 return CONTIG_NONE; 759 } 760 761 /* 762 * NOTE: We can have pretty much any combination of contiguousness and 763 * appending. 764 * 765 * The usefulness of APPEND_TAIL is more in that it lets us know that 766 * we'll have to update the path to that leaf. 767 */ 768 enum ocfs2_append_type { 769 APPEND_NONE = 0, 770 APPEND_TAIL, 771 }; 772 773 enum ocfs2_split_type { 774 SPLIT_NONE = 0, 775 SPLIT_LEFT, 776 SPLIT_RIGHT, 777 }; 778 779 struct ocfs2_insert_type { 780 enum ocfs2_split_type ins_split; 781 enum ocfs2_append_type ins_appending; 782 enum ocfs2_contig_type ins_contig; 783 int ins_contig_index; 784 int ins_tree_depth; 785 }; 786 787 struct ocfs2_merge_ctxt { 788 enum ocfs2_contig_type c_contig_type; 789 int c_has_empty_extent; 790 int c_split_covers_rec; 791 }; 792 793 static int ocfs2_validate_extent_block(struct super_block *sb, 794 struct buffer_head *bh) 795 { 796 int rc; 797 struct ocfs2_extent_block *eb = 798 (struct ocfs2_extent_block *)bh->b_data; 799 800 mlog(0, "Validating extent block %llu\n", 801 (unsigned long long)bh->b_blocknr); 802 803 BUG_ON(!buffer_uptodate(bh)); 804 805 /* 806 * If the ecc fails, we return the error but otherwise 807 * leave the filesystem running. We know any error is 808 * local to this block. 809 */ 810 rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check); 811 if (rc) { 812 mlog(ML_ERROR, "Checksum failed for extent block %llu\n", 813 (unsigned long long)bh->b_blocknr); 814 return rc; 815 } 816 817 /* 818 * Errors after here are fatal. 819 */ 820 821 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 822 ocfs2_error(sb, 823 "Extent block #%llu has bad signature %.*s", 824 (unsigned long long)bh->b_blocknr, 7, 825 eb->h_signature); 826 return -EINVAL; 827 } 828 829 if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) { 830 ocfs2_error(sb, 831 "Extent block #%llu has an invalid h_blkno " 832 "of %llu", 833 (unsigned long long)bh->b_blocknr, 834 (unsigned long long)le64_to_cpu(eb->h_blkno)); 835 return -EINVAL; 836 } 837 838 if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) { 839 ocfs2_error(sb, 840 "Extent block #%llu has an invalid " 841 "h_fs_generation of #%u", 842 (unsigned long long)bh->b_blocknr, 843 le32_to_cpu(eb->h_fs_generation)); 844 return -EINVAL; 845 } 846 847 return 0; 848 } 849 850 int ocfs2_read_extent_block(struct inode *inode, u64 eb_blkno, 851 struct buffer_head **bh) 852 { 853 int rc; 854 struct buffer_head *tmp = *bh; 855 856 rc = ocfs2_read_block(inode, eb_blkno, &tmp, 857 ocfs2_validate_extent_block); 858 859 /* If ocfs2_read_block() got us a new bh, pass it up. */ 860 if (!rc && !*bh) 861 *bh = tmp; 862 863 return rc; 864 } 865 866 867 /* 868 * How many free extents have we got before we need more meta data? 869 */ 870 int ocfs2_num_free_extents(struct ocfs2_super *osb, 871 struct inode *inode, 872 struct ocfs2_extent_tree *et) 873 { 874 int retval; 875 struct ocfs2_extent_list *el = NULL; 876 struct ocfs2_extent_block *eb; 877 struct buffer_head *eb_bh = NULL; 878 u64 last_eb_blk = 0; 879 880 mlog_entry_void(); 881 882 el = et->et_root_el; 883 last_eb_blk = ocfs2_et_get_last_eb_blk(et); 884 885 if (last_eb_blk) { 886 retval = ocfs2_read_extent_block(inode, last_eb_blk, &eb_bh); 887 if (retval < 0) { 888 mlog_errno(retval); 889 goto bail; 890 } 891 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 892 el = &eb->h_list; 893 } 894 895 BUG_ON(el->l_tree_depth != 0); 896 897 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec); 898 bail: 899 brelse(eb_bh); 900 901 mlog_exit(retval); 902 return retval; 903 } 904 905 /* expects array to already be allocated 906 * 907 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and 908 * l_count for you 909 */ 910 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb, 911 handle_t *handle, 912 struct inode *inode, 913 int wanted, 914 struct ocfs2_alloc_context *meta_ac, 915 struct buffer_head *bhs[]) 916 { 917 int count, status, i; 918 u16 suballoc_bit_start; 919 u32 num_got; 920 u64 first_blkno; 921 struct ocfs2_extent_block *eb; 922 923 mlog_entry_void(); 924 925 count = 0; 926 while (count < wanted) { 927 status = ocfs2_claim_metadata(osb, 928 handle, 929 meta_ac, 930 wanted - count, 931 &suballoc_bit_start, 932 &num_got, 933 &first_blkno); 934 if (status < 0) { 935 mlog_errno(status); 936 goto bail; 937 } 938 939 for(i = count; i < (num_got + count); i++) { 940 bhs[i] = sb_getblk(osb->sb, first_blkno); 941 if (bhs[i] == NULL) { 942 status = -EIO; 943 mlog_errno(status); 944 goto bail; 945 } 946 ocfs2_set_new_buffer_uptodate(inode, bhs[i]); 947 948 status = ocfs2_journal_access_eb(handle, inode, bhs[i], 949 OCFS2_JOURNAL_ACCESS_CREATE); 950 if (status < 0) { 951 mlog_errno(status); 952 goto bail; 953 } 954 955 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize); 956 eb = (struct ocfs2_extent_block *) bhs[i]->b_data; 957 /* Ok, setup the minimal stuff here. */ 958 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); 959 eb->h_blkno = cpu_to_le64(first_blkno); 960 eb->h_fs_generation = cpu_to_le32(osb->fs_generation); 961 eb->h_suballoc_slot = cpu_to_le16(osb->slot_num); 962 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start); 963 eb->h_list.l_count = 964 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); 965 966 suballoc_bit_start++; 967 first_blkno++; 968 969 /* We'll also be dirtied by the caller, so 970 * this isn't absolutely necessary. */ 971 status = ocfs2_journal_dirty(handle, bhs[i]); 972 if (status < 0) { 973 mlog_errno(status); 974 goto bail; 975 } 976 } 977 978 count += num_got; 979 } 980 981 status = 0; 982 bail: 983 if (status < 0) { 984 for(i = 0; i < wanted; i++) { 985 brelse(bhs[i]); 986 bhs[i] = NULL; 987 } 988 } 989 mlog_exit(status); 990 return status; 991 } 992 993 /* 994 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth(). 995 * 996 * Returns the sum of the rightmost extent rec logical offset and 997 * cluster count. 998 * 999 * ocfs2_add_branch() uses this to determine what logical cluster 1000 * value should be populated into the leftmost new branch records. 1001 * 1002 * ocfs2_shift_tree_depth() uses this to determine the # clusters 1003 * value for the new topmost tree record. 1004 */ 1005 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el) 1006 { 1007 int i; 1008 1009 i = le16_to_cpu(el->l_next_free_rec) - 1; 1010 1011 return le32_to_cpu(el->l_recs[i].e_cpos) + 1012 ocfs2_rec_clusters(el, &el->l_recs[i]); 1013 } 1014 1015 /* 1016 * Add an entire tree branch to our inode. eb_bh is the extent block 1017 * to start at, if we don't want to start the branch at the dinode 1018 * structure. 1019 * 1020 * last_eb_bh is required as we have to update it's next_leaf pointer 1021 * for the new last extent block. 1022 * 1023 * the new branch will be 'empty' in the sense that every block will 1024 * contain a single record with cluster count == 0. 1025 */ 1026 static int ocfs2_add_branch(struct ocfs2_super *osb, 1027 handle_t *handle, 1028 struct inode *inode, 1029 struct ocfs2_extent_tree *et, 1030 struct buffer_head *eb_bh, 1031 struct buffer_head **last_eb_bh, 1032 struct ocfs2_alloc_context *meta_ac) 1033 { 1034 int status, new_blocks, i; 1035 u64 next_blkno, new_last_eb_blk; 1036 struct buffer_head *bh; 1037 struct buffer_head **new_eb_bhs = NULL; 1038 struct ocfs2_extent_block *eb; 1039 struct ocfs2_extent_list *eb_el; 1040 struct ocfs2_extent_list *el; 1041 u32 new_cpos; 1042 1043 mlog_entry_void(); 1044 1045 BUG_ON(!last_eb_bh || !*last_eb_bh); 1046 1047 if (eb_bh) { 1048 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 1049 el = &eb->h_list; 1050 } else 1051 el = et->et_root_el; 1052 1053 /* we never add a branch to a leaf. */ 1054 BUG_ON(!el->l_tree_depth); 1055 1056 new_blocks = le16_to_cpu(el->l_tree_depth); 1057 1058 /* allocate the number of new eb blocks we need */ 1059 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *), 1060 GFP_KERNEL); 1061 if (!new_eb_bhs) { 1062 status = -ENOMEM; 1063 mlog_errno(status); 1064 goto bail; 1065 } 1066 1067 status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks, 1068 meta_ac, new_eb_bhs); 1069 if (status < 0) { 1070 mlog_errno(status); 1071 goto bail; 1072 } 1073 1074 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data; 1075 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list); 1076 1077 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be 1078 * linked with the rest of the tree. 1079 * conversly, new_eb_bhs[0] is the new bottommost leaf. 1080 * 1081 * when we leave the loop, new_last_eb_blk will point to the 1082 * newest leaf, and next_blkno will point to the topmost extent 1083 * block. */ 1084 next_blkno = new_last_eb_blk = 0; 1085 for(i = 0; i < new_blocks; i++) { 1086 bh = new_eb_bhs[i]; 1087 eb = (struct ocfs2_extent_block *) bh->b_data; 1088 /* ocfs2_create_new_meta_bhs() should create it right! */ 1089 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1090 eb_el = &eb->h_list; 1091 1092 status = ocfs2_journal_access_eb(handle, inode, bh, 1093 OCFS2_JOURNAL_ACCESS_CREATE); 1094 if (status < 0) { 1095 mlog_errno(status); 1096 goto bail; 1097 } 1098 1099 eb->h_next_leaf_blk = 0; 1100 eb_el->l_tree_depth = cpu_to_le16(i); 1101 eb_el->l_next_free_rec = cpu_to_le16(1); 1102 /* 1103 * This actually counts as an empty extent as 1104 * c_clusters == 0 1105 */ 1106 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos); 1107 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno); 1108 /* 1109 * eb_el isn't always an interior node, but even leaf 1110 * nodes want a zero'd flags and reserved field so 1111 * this gets the whole 32 bits regardless of use. 1112 */ 1113 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0); 1114 if (!eb_el->l_tree_depth) 1115 new_last_eb_blk = le64_to_cpu(eb->h_blkno); 1116 1117 status = ocfs2_journal_dirty(handle, bh); 1118 if (status < 0) { 1119 mlog_errno(status); 1120 goto bail; 1121 } 1122 1123 next_blkno = le64_to_cpu(eb->h_blkno); 1124 } 1125 1126 /* This is a bit hairy. We want to update up to three blocks 1127 * here without leaving any of them in an inconsistent state 1128 * in case of error. We don't have to worry about 1129 * journal_dirty erroring as it won't unless we've aborted the 1130 * handle (in which case we would never be here) so reserving 1131 * the write with journal_access is all we need to do. */ 1132 status = ocfs2_journal_access_eb(handle, inode, *last_eb_bh, 1133 OCFS2_JOURNAL_ACCESS_WRITE); 1134 if (status < 0) { 1135 mlog_errno(status); 1136 goto bail; 1137 } 1138 status = ocfs2_et_root_journal_access(handle, inode, et, 1139 OCFS2_JOURNAL_ACCESS_WRITE); 1140 if (status < 0) { 1141 mlog_errno(status); 1142 goto bail; 1143 } 1144 if (eb_bh) { 1145 status = ocfs2_journal_access_eb(handle, inode, eb_bh, 1146 OCFS2_JOURNAL_ACCESS_WRITE); 1147 if (status < 0) { 1148 mlog_errno(status); 1149 goto bail; 1150 } 1151 } 1152 1153 /* Link the new branch into the rest of the tree (el will 1154 * either be on the root_bh, or the extent block passed in. */ 1155 i = le16_to_cpu(el->l_next_free_rec); 1156 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno); 1157 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos); 1158 el->l_recs[i].e_int_clusters = 0; 1159 le16_add_cpu(&el->l_next_free_rec, 1); 1160 1161 /* fe needs a new last extent block pointer, as does the 1162 * next_leaf on the previously last-extent-block. */ 1163 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk); 1164 1165 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 1166 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk); 1167 1168 status = ocfs2_journal_dirty(handle, *last_eb_bh); 1169 if (status < 0) 1170 mlog_errno(status); 1171 status = ocfs2_journal_dirty(handle, et->et_root_bh); 1172 if (status < 0) 1173 mlog_errno(status); 1174 if (eb_bh) { 1175 status = ocfs2_journal_dirty(handle, eb_bh); 1176 if (status < 0) 1177 mlog_errno(status); 1178 } 1179 1180 /* 1181 * Some callers want to track the rightmost leaf so pass it 1182 * back here. 1183 */ 1184 brelse(*last_eb_bh); 1185 get_bh(new_eb_bhs[0]); 1186 *last_eb_bh = new_eb_bhs[0]; 1187 1188 status = 0; 1189 bail: 1190 if (new_eb_bhs) { 1191 for (i = 0; i < new_blocks; i++) 1192 brelse(new_eb_bhs[i]); 1193 kfree(new_eb_bhs); 1194 } 1195 1196 mlog_exit(status); 1197 return status; 1198 } 1199 1200 /* 1201 * adds another level to the allocation tree. 1202 * returns back the new extent block so you can add a branch to it 1203 * after this call. 1204 */ 1205 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb, 1206 handle_t *handle, 1207 struct inode *inode, 1208 struct ocfs2_extent_tree *et, 1209 struct ocfs2_alloc_context *meta_ac, 1210 struct buffer_head **ret_new_eb_bh) 1211 { 1212 int status, i; 1213 u32 new_clusters; 1214 struct buffer_head *new_eb_bh = NULL; 1215 struct ocfs2_extent_block *eb; 1216 struct ocfs2_extent_list *root_el; 1217 struct ocfs2_extent_list *eb_el; 1218 1219 mlog_entry_void(); 1220 1221 status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac, 1222 &new_eb_bh); 1223 if (status < 0) { 1224 mlog_errno(status); 1225 goto bail; 1226 } 1227 1228 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data; 1229 /* ocfs2_create_new_meta_bhs() should create it right! */ 1230 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1231 1232 eb_el = &eb->h_list; 1233 root_el = et->et_root_el; 1234 1235 status = ocfs2_journal_access_eb(handle, inode, new_eb_bh, 1236 OCFS2_JOURNAL_ACCESS_CREATE); 1237 if (status < 0) { 1238 mlog_errno(status); 1239 goto bail; 1240 } 1241 1242 /* copy the root extent list data into the new extent block */ 1243 eb_el->l_tree_depth = root_el->l_tree_depth; 1244 eb_el->l_next_free_rec = root_el->l_next_free_rec; 1245 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1246 eb_el->l_recs[i] = root_el->l_recs[i]; 1247 1248 status = ocfs2_journal_dirty(handle, new_eb_bh); 1249 if (status < 0) { 1250 mlog_errno(status); 1251 goto bail; 1252 } 1253 1254 status = ocfs2_et_root_journal_access(handle, inode, et, 1255 OCFS2_JOURNAL_ACCESS_WRITE); 1256 if (status < 0) { 1257 mlog_errno(status); 1258 goto bail; 1259 } 1260 1261 new_clusters = ocfs2_sum_rightmost_rec(eb_el); 1262 1263 /* update root_bh now */ 1264 le16_add_cpu(&root_el->l_tree_depth, 1); 1265 root_el->l_recs[0].e_cpos = 0; 1266 root_el->l_recs[0].e_blkno = eb->h_blkno; 1267 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters); 1268 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1269 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 1270 root_el->l_next_free_rec = cpu_to_le16(1); 1271 1272 /* If this is our 1st tree depth shift, then last_eb_blk 1273 * becomes the allocated extent block */ 1274 if (root_el->l_tree_depth == cpu_to_le16(1)) 1275 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 1276 1277 status = ocfs2_journal_dirty(handle, et->et_root_bh); 1278 if (status < 0) { 1279 mlog_errno(status); 1280 goto bail; 1281 } 1282 1283 *ret_new_eb_bh = new_eb_bh; 1284 new_eb_bh = NULL; 1285 status = 0; 1286 bail: 1287 brelse(new_eb_bh); 1288 1289 mlog_exit(status); 1290 return status; 1291 } 1292 1293 /* 1294 * Should only be called when there is no space left in any of the 1295 * leaf nodes. What we want to do is find the lowest tree depth 1296 * non-leaf extent block with room for new records. There are three 1297 * valid results of this search: 1298 * 1299 * 1) a lowest extent block is found, then we pass it back in 1300 * *lowest_eb_bh and return '0' 1301 * 1302 * 2) the search fails to find anything, but the root_el has room. We 1303 * pass NULL back in *lowest_eb_bh, but still return '0' 1304 * 1305 * 3) the search fails to find anything AND the root_el is full, in 1306 * which case we return > 0 1307 * 1308 * return status < 0 indicates an error. 1309 */ 1310 static int ocfs2_find_branch_target(struct ocfs2_super *osb, 1311 struct inode *inode, 1312 struct ocfs2_extent_tree *et, 1313 struct buffer_head **target_bh) 1314 { 1315 int status = 0, i; 1316 u64 blkno; 1317 struct ocfs2_extent_block *eb; 1318 struct ocfs2_extent_list *el; 1319 struct buffer_head *bh = NULL; 1320 struct buffer_head *lowest_bh = NULL; 1321 1322 mlog_entry_void(); 1323 1324 *target_bh = NULL; 1325 1326 el = et->et_root_el; 1327 1328 while(le16_to_cpu(el->l_tree_depth) > 1) { 1329 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1330 ocfs2_error(inode->i_sb, "Dinode %llu has empty " 1331 "extent list (next_free_rec == 0)", 1332 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1333 status = -EIO; 1334 goto bail; 1335 } 1336 i = le16_to_cpu(el->l_next_free_rec) - 1; 1337 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1338 if (!blkno) { 1339 ocfs2_error(inode->i_sb, "Dinode %llu has extent " 1340 "list where extent # %d has no physical " 1341 "block start", 1342 (unsigned long long)OCFS2_I(inode)->ip_blkno, i); 1343 status = -EIO; 1344 goto bail; 1345 } 1346 1347 brelse(bh); 1348 bh = NULL; 1349 1350 status = ocfs2_read_extent_block(inode, blkno, &bh); 1351 if (status < 0) { 1352 mlog_errno(status); 1353 goto bail; 1354 } 1355 1356 eb = (struct ocfs2_extent_block *) bh->b_data; 1357 el = &eb->h_list; 1358 1359 if (le16_to_cpu(el->l_next_free_rec) < 1360 le16_to_cpu(el->l_count)) { 1361 brelse(lowest_bh); 1362 lowest_bh = bh; 1363 get_bh(lowest_bh); 1364 } 1365 } 1366 1367 /* If we didn't find one and the fe doesn't have any room, 1368 * then return '1' */ 1369 el = et->et_root_el; 1370 if (!lowest_bh && (el->l_next_free_rec == el->l_count)) 1371 status = 1; 1372 1373 *target_bh = lowest_bh; 1374 bail: 1375 brelse(bh); 1376 1377 mlog_exit(status); 1378 return status; 1379 } 1380 1381 /* 1382 * Grow a b-tree so that it has more records. 1383 * 1384 * We might shift the tree depth in which case existing paths should 1385 * be considered invalid. 1386 * 1387 * Tree depth after the grow is returned via *final_depth. 1388 * 1389 * *last_eb_bh will be updated by ocfs2_add_branch(). 1390 */ 1391 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle, 1392 struct ocfs2_extent_tree *et, int *final_depth, 1393 struct buffer_head **last_eb_bh, 1394 struct ocfs2_alloc_context *meta_ac) 1395 { 1396 int ret, shift; 1397 struct ocfs2_extent_list *el = et->et_root_el; 1398 int depth = le16_to_cpu(el->l_tree_depth); 1399 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1400 struct buffer_head *bh = NULL; 1401 1402 BUG_ON(meta_ac == NULL); 1403 1404 shift = ocfs2_find_branch_target(osb, inode, et, &bh); 1405 if (shift < 0) { 1406 ret = shift; 1407 mlog_errno(ret); 1408 goto out; 1409 } 1410 1411 /* We traveled all the way to the bottom of the allocation tree 1412 * and didn't find room for any more extents - we need to add 1413 * another tree level */ 1414 if (shift) { 1415 BUG_ON(bh); 1416 mlog(0, "need to shift tree depth (current = %d)\n", depth); 1417 1418 /* ocfs2_shift_tree_depth will return us a buffer with 1419 * the new extent block (so we can pass that to 1420 * ocfs2_add_branch). */ 1421 ret = ocfs2_shift_tree_depth(osb, handle, inode, et, 1422 meta_ac, &bh); 1423 if (ret < 0) { 1424 mlog_errno(ret); 1425 goto out; 1426 } 1427 depth++; 1428 if (depth == 1) { 1429 /* 1430 * Special case: we have room now if we shifted from 1431 * tree_depth 0, so no more work needs to be done. 1432 * 1433 * We won't be calling add_branch, so pass 1434 * back *last_eb_bh as the new leaf. At depth 1435 * zero, it should always be null so there's 1436 * no reason to brelse. 1437 */ 1438 BUG_ON(*last_eb_bh); 1439 get_bh(bh); 1440 *last_eb_bh = bh; 1441 goto out; 1442 } 1443 } 1444 1445 /* call ocfs2_add_branch to add the final part of the tree with 1446 * the new data. */ 1447 mlog(0, "add branch. bh = %p\n", bh); 1448 ret = ocfs2_add_branch(osb, handle, inode, et, bh, last_eb_bh, 1449 meta_ac); 1450 if (ret < 0) { 1451 mlog_errno(ret); 1452 goto out; 1453 } 1454 1455 out: 1456 if (final_depth) 1457 *final_depth = depth; 1458 brelse(bh); 1459 return ret; 1460 } 1461 1462 /* 1463 * This function will discard the rightmost extent record. 1464 */ 1465 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el) 1466 { 1467 int next_free = le16_to_cpu(el->l_next_free_rec); 1468 int count = le16_to_cpu(el->l_count); 1469 unsigned int num_bytes; 1470 1471 BUG_ON(!next_free); 1472 /* This will cause us to go off the end of our extent list. */ 1473 BUG_ON(next_free >= count); 1474 1475 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free; 1476 1477 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes); 1478 } 1479 1480 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el, 1481 struct ocfs2_extent_rec *insert_rec) 1482 { 1483 int i, insert_index, next_free, has_empty, num_bytes; 1484 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos); 1485 struct ocfs2_extent_rec *rec; 1486 1487 next_free = le16_to_cpu(el->l_next_free_rec); 1488 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]); 1489 1490 BUG_ON(!next_free); 1491 1492 /* The tree code before us didn't allow enough room in the leaf. */ 1493 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty); 1494 1495 /* 1496 * The easiest way to approach this is to just remove the 1497 * empty extent and temporarily decrement next_free. 1498 */ 1499 if (has_empty) { 1500 /* 1501 * If next_free was 1 (only an empty extent), this 1502 * loop won't execute, which is fine. We still want 1503 * the decrement above to happen. 1504 */ 1505 for(i = 0; i < (next_free - 1); i++) 1506 el->l_recs[i] = el->l_recs[i+1]; 1507 1508 next_free--; 1509 } 1510 1511 /* 1512 * Figure out what the new record index should be. 1513 */ 1514 for(i = 0; i < next_free; i++) { 1515 rec = &el->l_recs[i]; 1516 1517 if (insert_cpos < le32_to_cpu(rec->e_cpos)) 1518 break; 1519 } 1520 insert_index = i; 1521 1522 mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n", 1523 insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count)); 1524 1525 BUG_ON(insert_index < 0); 1526 BUG_ON(insert_index >= le16_to_cpu(el->l_count)); 1527 BUG_ON(insert_index > next_free); 1528 1529 /* 1530 * No need to memmove if we're just adding to the tail. 1531 */ 1532 if (insert_index != next_free) { 1533 BUG_ON(next_free >= le16_to_cpu(el->l_count)); 1534 1535 num_bytes = next_free - insert_index; 1536 num_bytes *= sizeof(struct ocfs2_extent_rec); 1537 memmove(&el->l_recs[insert_index + 1], 1538 &el->l_recs[insert_index], 1539 num_bytes); 1540 } 1541 1542 /* 1543 * Either we had an empty extent, and need to re-increment or 1544 * there was no empty extent on a non full rightmost leaf node, 1545 * in which case we still need to increment. 1546 */ 1547 next_free++; 1548 el->l_next_free_rec = cpu_to_le16(next_free); 1549 /* 1550 * Make sure none of the math above just messed up our tree. 1551 */ 1552 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count)); 1553 1554 el->l_recs[insert_index] = *insert_rec; 1555 1556 } 1557 1558 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el) 1559 { 1560 int size, num_recs = le16_to_cpu(el->l_next_free_rec); 1561 1562 BUG_ON(num_recs == 0); 1563 1564 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 1565 num_recs--; 1566 size = num_recs * sizeof(struct ocfs2_extent_rec); 1567 memmove(&el->l_recs[0], &el->l_recs[1], size); 1568 memset(&el->l_recs[num_recs], 0, 1569 sizeof(struct ocfs2_extent_rec)); 1570 el->l_next_free_rec = cpu_to_le16(num_recs); 1571 } 1572 } 1573 1574 /* 1575 * Create an empty extent record . 1576 * 1577 * l_next_free_rec may be updated. 1578 * 1579 * If an empty extent already exists do nothing. 1580 */ 1581 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el) 1582 { 1583 int next_free = le16_to_cpu(el->l_next_free_rec); 1584 1585 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 1586 1587 if (next_free == 0) 1588 goto set_and_inc; 1589 1590 if (ocfs2_is_empty_extent(&el->l_recs[0])) 1591 return; 1592 1593 mlog_bug_on_msg(el->l_count == el->l_next_free_rec, 1594 "Asked to create an empty extent in a full list:\n" 1595 "count = %u, tree depth = %u", 1596 le16_to_cpu(el->l_count), 1597 le16_to_cpu(el->l_tree_depth)); 1598 1599 ocfs2_shift_records_right(el); 1600 1601 set_and_inc: 1602 le16_add_cpu(&el->l_next_free_rec, 1); 1603 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 1604 } 1605 1606 /* 1607 * For a rotation which involves two leaf nodes, the "root node" is 1608 * the lowest level tree node which contains a path to both leafs. This 1609 * resulting set of information can be used to form a complete "subtree" 1610 * 1611 * This function is passed two full paths from the dinode down to a 1612 * pair of adjacent leaves. It's task is to figure out which path 1613 * index contains the subtree root - this can be the root index itself 1614 * in a worst-case rotation. 1615 * 1616 * The array index of the subtree root is passed back. 1617 */ 1618 static int ocfs2_find_subtree_root(struct inode *inode, 1619 struct ocfs2_path *left, 1620 struct ocfs2_path *right) 1621 { 1622 int i = 0; 1623 1624 /* 1625 * Check that the caller passed in two paths from the same tree. 1626 */ 1627 BUG_ON(path_root_bh(left) != path_root_bh(right)); 1628 1629 do { 1630 i++; 1631 1632 /* 1633 * The caller didn't pass two adjacent paths. 1634 */ 1635 mlog_bug_on_msg(i > left->p_tree_depth, 1636 "Inode %lu, left depth %u, right depth %u\n" 1637 "left leaf blk %llu, right leaf blk %llu\n", 1638 inode->i_ino, left->p_tree_depth, 1639 right->p_tree_depth, 1640 (unsigned long long)path_leaf_bh(left)->b_blocknr, 1641 (unsigned long long)path_leaf_bh(right)->b_blocknr); 1642 } while (left->p_node[i].bh->b_blocknr == 1643 right->p_node[i].bh->b_blocknr); 1644 1645 return i - 1; 1646 } 1647 1648 typedef void (path_insert_t)(void *, struct buffer_head *); 1649 1650 /* 1651 * Traverse a btree path in search of cpos, starting at root_el. 1652 * 1653 * This code can be called with a cpos larger than the tree, in which 1654 * case it will return the rightmost path. 1655 */ 1656 static int __ocfs2_find_path(struct inode *inode, 1657 struct ocfs2_extent_list *root_el, u32 cpos, 1658 path_insert_t *func, void *data) 1659 { 1660 int i, ret = 0; 1661 u32 range; 1662 u64 blkno; 1663 struct buffer_head *bh = NULL; 1664 struct ocfs2_extent_block *eb; 1665 struct ocfs2_extent_list *el; 1666 struct ocfs2_extent_rec *rec; 1667 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1668 1669 el = root_el; 1670 while (el->l_tree_depth) { 1671 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1672 ocfs2_error(inode->i_sb, 1673 "Inode %llu has empty extent list at " 1674 "depth %u\n", 1675 (unsigned long long)oi->ip_blkno, 1676 le16_to_cpu(el->l_tree_depth)); 1677 ret = -EROFS; 1678 goto out; 1679 1680 } 1681 1682 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) { 1683 rec = &el->l_recs[i]; 1684 1685 /* 1686 * In the case that cpos is off the allocation 1687 * tree, this should just wind up returning the 1688 * rightmost record. 1689 */ 1690 range = le32_to_cpu(rec->e_cpos) + 1691 ocfs2_rec_clusters(el, rec); 1692 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 1693 break; 1694 } 1695 1696 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1697 if (blkno == 0) { 1698 ocfs2_error(inode->i_sb, 1699 "Inode %llu has bad blkno in extent list " 1700 "at depth %u (index %d)\n", 1701 (unsigned long long)oi->ip_blkno, 1702 le16_to_cpu(el->l_tree_depth), i); 1703 ret = -EROFS; 1704 goto out; 1705 } 1706 1707 brelse(bh); 1708 bh = NULL; 1709 ret = ocfs2_read_extent_block(inode, blkno, &bh); 1710 if (ret) { 1711 mlog_errno(ret); 1712 goto out; 1713 } 1714 1715 eb = (struct ocfs2_extent_block *) bh->b_data; 1716 el = &eb->h_list; 1717 1718 if (le16_to_cpu(el->l_next_free_rec) > 1719 le16_to_cpu(el->l_count)) { 1720 ocfs2_error(inode->i_sb, 1721 "Inode %llu has bad count in extent list " 1722 "at block %llu (next free=%u, count=%u)\n", 1723 (unsigned long long)oi->ip_blkno, 1724 (unsigned long long)bh->b_blocknr, 1725 le16_to_cpu(el->l_next_free_rec), 1726 le16_to_cpu(el->l_count)); 1727 ret = -EROFS; 1728 goto out; 1729 } 1730 1731 if (func) 1732 func(data, bh); 1733 } 1734 1735 out: 1736 /* 1737 * Catch any trailing bh that the loop didn't handle. 1738 */ 1739 brelse(bh); 1740 1741 return ret; 1742 } 1743 1744 /* 1745 * Given an initialized path (that is, it has a valid root extent 1746 * list), this function will traverse the btree in search of the path 1747 * which would contain cpos. 1748 * 1749 * The path traveled is recorded in the path structure. 1750 * 1751 * Note that this will not do any comparisons on leaf node extent 1752 * records, so it will work fine in the case that we just added a tree 1753 * branch. 1754 */ 1755 struct find_path_data { 1756 int index; 1757 struct ocfs2_path *path; 1758 }; 1759 static void find_path_ins(void *data, struct buffer_head *bh) 1760 { 1761 struct find_path_data *fp = data; 1762 1763 get_bh(bh); 1764 ocfs2_path_insert_eb(fp->path, fp->index, bh); 1765 fp->index++; 1766 } 1767 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path, 1768 u32 cpos) 1769 { 1770 struct find_path_data data; 1771 1772 data.index = 1; 1773 data.path = path; 1774 return __ocfs2_find_path(inode, path_root_el(path), cpos, 1775 find_path_ins, &data); 1776 } 1777 1778 static void find_leaf_ins(void *data, struct buffer_head *bh) 1779 { 1780 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data; 1781 struct ocfs2_extent_list *el = &eb->h_list; 1782 struct buffer_head **ret = data; 1783 1784 /* We want to retain only the leaf block. */ 1785 if (le16_to_cpu(el->l_tree_depth) == 0) { 1786 get_bh(bh); 1787 *ret = bh; 1788 } 1789 } 1790 /* 1791 * Find the leaf block in the tree which would contain cpos. No 1792 * checking of the actual leaf is done. 1793 * 1794 * Some paths want to call this instead of allocating a path structure 1795 * and calling ocfs2_find_path(). 1796 * 1797 * This function doesn't handle non btree extent lists. 1798 */ 1799 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el, 1800 u32 cpos, struct buffer_head **leaf_bh) 1801 { 1802 int ret; 1803 struct buffer_head *bh = NULL; 1804 1805 ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh); 1806 if (ret) { 1807 mlog_errno(ret); 1808 goto out; 1809 } 1810 1811 *leaf_bh = bh; 1812 out: 1813 return ret; 1814 } 1815 1816 /* 1817 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation. 1818 * 1819 * Basically, we've moved stuff around at the bottom of the tree and 1820 * we need to fix up the extent records above the changes to reflect 1821 * the new changes. 1822 * 1823 * left_rec: the record on the left. 1824 * left_child_el: is the child list pointed to by left_rec 1825 * right_rec: the record to the right of left_rec 1826 * right_child_el: is the child list pointed to by right_rec 1827 * 1828 * By definition, this only works on interior nodes. 1829 */ 1830 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec, 1831 struct ocfs2_extent_list *left_child_el, 1832 struct ocfs2_extent_rec *right_rec, 1833 struct ocfs2_extent_list *right_child_el) 1834 { 1835 u32 left_clusters, right_end; 1836 1837 /* 1838 * Interior nodes never have holes. Their cpos is the cpos of 1839 * the leftmost record in their child list. Their cluster 1840 * count covers the full theoretical range of their child list 1841 * - the range between their cpos and the cpos of the record 1842 * immediately to their right. 1843 */ 1844 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos); 1845 if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) { 1846 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1); 1847 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos); 1848 } 1849 left_clusters -= le32_to_cpu(left_rec->e_cpos); 1850 left_rec->e_int_clusters = cpu_to_le32(left_clusters); 1851 1852 /* 1853 * Calculate the rightmost cluster count boundary before 1854 * moving cpos - we will need to adjust clusters after 1855 * updating e_cpos to keep the same highest cluster count. 1856 */ 1857 right_end = le32_to_cpu(right_rec->e_cpos); 1858 right_end += le32_to_cpu(right_rec->e_int_clusters); 1859 1860 right_rec->e_cpos = left_rec->e_cpos; 1861 le32_add_cpu(&right_rec->e_cpos, left_clusters); 1862 1863 right_end -= le32_to_cpu(right_rec->e_cpos); 1864 right_rec->e_int_clusters = cpu_to_le32(right_end); 1865 } 1866 1867 /* 1868 * Adjust the adjacent root node records involved in a 1869 * rotation. left_el_blkno is passed in as a key so that we can easily 1870 * find it's index in the root list. 1871 */ 1872 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el, 1873 struct ocfs2_extent_list *left_el, 1874 struct ocfs2_extent_list *right_el, 1875 u64 left_el_blkno) 1876 { 1877 int i; 1878 1879 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <= 1880 le16_to_cpu(left_el->l_tree_depth)); 1881 1882 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) { 1883 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno) 1884 break; 1885 } 1886 1887 /* 1888 * The path walking code should have never returned a root and 1889 * two paths which are not adjacent. 1890 */ 1891 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1)); 1892 1893 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el, 1894 &root_el->l_recs[i + 1], right_el); 1895 } 1896 1897 /* 1898 * We've changed a leaf block (in right_path) and need to reflect that 1899 * change back up the subtree. 1900 * 1901 * This happens in multiple places: 1902 * - When we've moved an extent record from the left path leaf to the right 1903 * path leaf to make room for an empty extent in the left path leaf. 1904 * - When our insert into the right path leaf is at the leftmost edge 1905 * and requires an update of the path immediately to it's left. This 1906 * can occur at the end of some types of rotation and appending inserts. 1907 * - When we've adjusted the last extent record in the left path leaf and the 1908 * 1st extent record in the right path leaf during cross extent block merge. 1909 */ 1910 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle, 1911 struct ocfs2_path *left_path, 1912 struct ocfs2_path *right_path, 1913 int subtree_index) 1914 { 1915 int ret, i, idx; 1916 struct ocfs2_extent_list *el, *left_el, *right_el; 1917 struct ocfs2_extent_rec *left_rec, *right_rec; 1918 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 1919 1920 /* 1921 * Update the counts and position values within all the 1922 * interior nodes to reflect the leaf rotation we just did. 1923 * 1924 * The root node is handled below the loop. 1925 * 1926 * We begin the loop with right_el and left_el pointing to the 1927 * leaf lists and work our way up. 1928 * 1929 * NOTE: within this loop, left_el and right_el always refer 1930 * to the *child* lists. 1931 */ 1932 left_el = path_leaf_el(left_path); 1933 right_el = path_leaf_el(right_path); 1934 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) { 1935 mlog(0, "Adjust records at index %u\n", i); 1936 1937 /* 1938 * One nice property of knowing that all of these 1939 * nodes are below the root is that we only deal with 1940 * the leftmost right node record and the rightmost 1941 * left node record. 1942 */ 1943 el = left_path->p_node[i].el; 1944 idx = le16_to_cpu(left_el->l_next_free_rec) - 1; 1945 left_rec = &el->l_recs[idx]; 1946 1947 el = right_path->p_node[i].el; 1948 right_rec = &el->l_recs[0]; 1949 1950 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec, 1951 right_el); 1952 1953 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh); 1954 if (ret) 1955 mlog_errno(ret); 1956 1957 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh); 1958 if (ret) 1959 mlog_errno(ret); 1960 1961 /* 1962 * Setup our list pointers now so that the current 1963 * parents become children in the next iteration. 1964 */ 1965 left_el = left_path->p_node[i].el; 1966 right_el = right_path->p_node[i].el; 1967 } 1968 1969 /* 1970 * At the root node, adjust the two adjacent records which 1971 * begin our path to the leaves. 1972 */ 1973 1974 el = left_path->p_node[subtree_index].el; 1975 left_el = left_path->p_node[subtree_index + 1].el; 1976 right_el = right_path->p_node[subtree_index + 1].el; 1977 1978 ocfs2_adjust_root_records(el, left_el, right_el, 1979 left_path->p_node[subtree_index + 1].bh->b_blocknr); 1980 1981 root_bh = left_path->p_node[subtree_index].bh; 1982 1983 ret = ocfs2_journal_dirty(handle, root_bh); 1984 if (ret) 1985 mlog_errno(ret); 1986 } 1987 1988 static int ocfs2_rotate_subtree_right(struct inode *inode, 1989 handle_t *handle, 1990 struct ocfs2_path *left_path, 1991 struct ocfs2_path *right_path, 1992 int subtree_index) 1993 { 1994 int ret, i; 1995 struct buffer_head *right_leaf_bh; 1996 struct buffer_head *left_leaf_bh = NULL; 1997 struct buffer_head *root_bh; 1998 struct ocfs2_extent_list *right_el, *left_el; 1999 struct ocfs2_extent_rec move_rec; 2000 2001 left_leaf_bh = path_leaf_bh(left_path); 2002 left_el = path_leaf_el(left_path); 2003 2004 if (left_el->l_next_free_rec != left_el->l_count) { 2005 ocfs2_error(inode->i_sb, 2006 "Inode %llu has non-full interior leaf node %llu" 2007 "(next free = %u)", 2008 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2009 (unsigned long long)left_leaf_bh->b_blocknr, 2010 le16_to_cpu(left_el->l_next_free_rec)); 2011 return -EROFS; 2012 } 2013 2014 /* 2015 * This extent block may already have an empty record, so we 2016 * return early if so. 2017 */ 2018 if (ocfs2_is_empty_extent(&left_el->l_recs[0])) 2019 return 0; 2020 2021 root_bh = left_path->p_node[subtree_index].bh; 2022 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2023 2024 ret = ocfs2_path_bh_journal_access(handle, inode, right_path, 2025 subtree_index); 2026 if (ret) { 2027 mlog_errno(ret); 2028 goto out; 2029 } 2030 2031 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2032 ret = ocfs2_path_bh_journal_access(handle, inode, 2033 right_path, i); 2034 if (ret) { 2035 mlog_errno(ret); 2036 goto out; 2037 } 2038 2039 ret = ocfs2_path_bh_journal_access(handle, inode, 2040 left_path, i); 2041 if (ret) { 2042 mlog_errno(ret); 2043 goto out; 2044 } 2045 } 2046 2047 right_leaf_bh = path_leaf_bh(right_path); 2048 right_el = path_leaf_el(right_path); 2049 2050 /* This is a code error, not a disk corruption. */ 2051 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails " 2052 "because rightmost leaf block %llu is empty\n", 2053 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2054 (unsigned long long)right_leaf_bh->b_blocknr); 2055 2056 ocfs2_create_empty_extent(right_el); 2057 2058 ret = ocfs2_journal_dirty(handle, right_leaf_bh); 2059 if (ret) { 2060 mlog_errno(ret); 2061 goto out; 2062 } 2063 2064 /* Do the copy now. */ 2065 i = le16_to_cpu(left_el->l_next_free_rec) - 1; 2066 move_rec = left_el->l_recs[i]; 2067 right_el->l_recs[0] = move_rec; 2068 2069 /* 2070 * Clear out the record we just copied and shift everything 2071 * over, leaving an empty extent in the left leaf. 2072 * 2073 * We temporarily subtract from next_free_rec so that the 2074 * shift will lose the tail record (which is now defunct). 2075 */ 2076 le16_add_cpu(&left_el->l_next_free_rec, -1); 2077 ocfs2_shift_records_right(left_el); 2078 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2079 le16_add_cpu(&left_el->l_next_free_rec, 1); 2080 2081 ret = ocfs2_journal_dirty(handle, left_leaf_bh); 2082 if (ret) { 2083 mlog_errno(ret); 2084 goto out; 2085 } 2086 2087 ocfs2_complete_edge_insert(inode, handle, left_path, right_path, 2088 subtree_index); 2089 2090 out: 2091 return ret; 2092 } 2093 2094 /* 2095 * Given a full path, determine what cpos value would return us a path 2096 * containing the leaf immediately to the left of the current one. 2097 * 2098 * Will return zero if the path passed in is already the leftmost path. 2099 */ 2100 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb, 2101 struct ocfs2_path *path, u32 *cpos) 2102 { 2103 int i, j, ret = 0; 2104 u64 blkno; 2105 struct ocfs2_extent_list *el; 2106 2107 BUG_ON(path->p_tree_depth == 0); 2108 2109 *cpos = 0; 2110 2111 blkno = path_leaf_bh(path)->b_blocknr; 2112 2113 /* Start at the tree node just above the leaf and work our way up. */ 2114 i = path->p_tree_depth - 1; 2115 while (i >= 0) { 2116 el = path->p_node[i].el; 2117 2118 /* 2119 * Find the extent record just before the one in our 2120 * path. 2121 */ 2122 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2123 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2124 if (j == 0) { 2125 if (i == 0) { 2126 /* 2127 * We've determined that the 2128 * path specified is already 2129 * the leftmost one - return a 2130 * cpos of zero. 2131 */ 2132 goto out; 2133 } 2134 /* 2135 * The leftmost record points to our 2136 * leaf - we need to travel up the 2137 * tree one level. 2138 */ 2139 goto next_node; 2140 } 2141 2142 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos); 2143 *cpos = *cpos + ocfs2_rec_clusters(el, 2144 &el->l_recs[j - 1]); 2145 *cpos = *cpos - 1; 2146 goto out; 2147 } 2148 } 2149 2150 /* 2151 * If we got here, we never found a valid node where 2152 * the tree indicated one should be. 2153 */ 2154 ocfs2_error(sb, 2155 "Invalid extent tree at extent block %llu\n", 2156 (unsigned long long)blkno); 2157 ret = -EROFS; 2158 goto out; 2159 2160 next_node: 2161 blkno = path->p_node[i].bh->b_blocknr; 2162 i--; 2163 } 2164 2165 out: 2166 return ret; 2167 } 2168 2169 /* 2170 * Extend the transaction by enough credits to complete the rotation, 2171 * and still leave at least the original number of credits allocated 2172 * to this transaction. 2173 */ 2174 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth, 2175 int op_credits, 2176 struct ocfs2_path *path) 2177 { 2178 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits; 2179 2180 if (handle->h_buffer_credits < credits) 2181 return ocfs2_extend_trans(handle, credits); 2182 2183 return 0; 2184 } 2185 2186 /* 2187 * Trap the case where we're inserting into the theoretical range past 2188 * the _actual_ left leaf range. Otherwise, we'll rotate a record 2189 * whose cpos is less than ours into the right leaf. 2190 * 2191 * It's only necessary to look at the rightmost record of the left 2192 * leaf because the logic that calls us should ensure that the 2193 * theoretical ranges in the path components above the leaves are 2194 * correct. 2195 */ 2196 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path, 2197 u32 insert_cpos) 2198 { 2199 struct ocfs2_extent_list *left_el; 2200 struct ocfs2_extent_rec *rec; 2201 int next_free; 2202 2203 left_el = path_leaf_el(left_path); 2204 next_free = le16_to_cpu(left_el->l_next_free_rec); 2205 rec = &left_el->l_recs[next_free - 1]; 2206 2207 if (insert_cpos > le32_to_cpu(rec->e_cpos)) 2208 return 1; 2209 return 0; 2210 } 2211 2212 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos) 2213 { 2214 int next_free = le16_to_cpu(el->l_next_free_rec); 2215 unsigned int range; 2216 struct ocfs2_extent_rec *rec; 2217 2218 if (next_free == 0) 2219 return 0; 2220 2221 rec = &el->l_recs[0]; 2222 if (ocfs2_is_empty_extent(rec)) { 2223 /* Empty list. */ 2224 if (next_free == 1) 2225 return 0; 2226 rec = &el->l_recs[1]; 2227 } 2228 2229 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2230 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 2231 return 1; 2232 return 0; 2233 } 2234 2235 /* 2236 * Rotate all the records in a btree right one record, starting at insert_cpos. 2237 * 2238 * The path to the rightmost leaf should be passed in. 2239 * 2240 * The array is assumed to be large enough to hold an entire path (tree depth). 2241 * 2242 * Upon succesful return from this function: 2243 * 2244 * - The 'right_path' array will contain a path to the leaf block 2245 * whose range contains e_cpos. 2246 * - That leaf block will have a single empty extent in list index 0. 2247 * - In the case that the rotation requires a post-insert update, 2248 * *ret_left_path will contain a valid path which can be passed to 2249 * ocfs2_insert_path(). 2250 */ 2251 static int ocfs2_rotate_tree_right(struct inode *inode, 2252 handle_t *handle, 2253 enum ocfs2_split_type split, 2254 u32 insert_cpos, 2255 struct ocfs2_path *right_path, 2256 struct ocfs2_path **ret_left_path) 2257 { 2258 int ret, start, orig_credits = handle->h_buffer_credits; 2259 u32 cpos; 2260 struct ocfs2_path *left_path = NULL; 2261 2262 *ret_left_path = NULL; 2263 2264 left_path = ocfs2_new_path_from_path(right_path); 2265 if (!left_path) { 2266 ret = -ENOMEM; 2267 mlog_errno(ret); 2268 goto out; 2269 } 2270 2271 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos); 2272 if (ret) { 2273 mlog_errno(ret); 2274 goto out; 2275 } 2276 2277 mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos); 2278 2279 /* 2280 * What we want to do here is: 2281 * 2282 * 1) Start with the rightmost path. 2283 * 2284 * 2) Determine a path to the leaf block directly to the left 2285 * of that leaf. 2286 * 2287 * 3) Determine the 'subtree root' - the lowest level tree node 2288 * which contains a path to both leaves. 2289 * 2290 * 4) Rotate the subtree. 2291 * 2292 * 5) Find the next subtree by considering the left path to be 2293 * the new right path. 2294 * 2295 * The check at the top of this while loop also accepts 2296 * insert_cpos == cpos because cpos is only a _theoretical_ 2297 * value to get us the left path - insert_cpos might very well 2298 * be filling that hole. 2299 * 2300 * Stop at a cpos of '0' because we either started at the 2301 * leftmost branch (i.e., a tree with one branch and a 2302 * rotation inside of it), or we've gone as far as we can in 2303 * rotating subtrees. 2304 */ 2305 while (cpos && insert_cpos <= cpos) { 2306 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n", 2307 insert_cpos, cpos); 2308 2309 ret = ocfs2_find_path(inode, left_path, cpos); 2310 if (ret) { 2311 mlog_errno(ret); 2312 goto out; 2313 } 2314 2315 mlog_bug_on_msg(path_leaf_bh(left_path) == 2316 path_leaf_bh(right_path), 2317 "Inode %lu: error during insert of %u " 2318 "(left path cpos %u) results in two identical " 2319 "paths ending at %llu\n", 2320 inode->i_ino, insert_cpos, cpos, 2321 (unsigned long long) 2322 path_leaf_bh(left_path)->b_blocknr); 2323 2324 if (split == SPLIT_NONE && 2325 ocfs2_rotate_requires_path_adjustment(left_path, 2326 insert_cpos)) { 2327 2328 /* 2329 * We've rotated the tree as much as we 2330 * should. The rest is up to 2331 * ocfs2_insert_path() to complete, after the 2332 * record insertion. We indicate this 2333 * situation by returning the left path. 2334 * 2335 * The reason we don't adjust the records here 2336 * before the record insert is that an error 2337 * later might break the rule where a parent 2338 * record e_cpos will reflect the actual 2339 * e_cpos of the 1st nonempty record of the 2340 * child list. 2341 */ 2342 *ret_left_path = left_path; 2343 goto out_ret_path; 2344 } 2345 2346 start = ocfs2_find_subtree_root(inode, left_path, right_path); 2347 2348 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n", 2349 start, 2350 (unsigned long long) right_path->p_node[start].bh->b_blocknr, 2351 right_path->p_tree_depth); 2352 2353 ret = ocfs2_extend_rotate_transaction(handle, start, 2354 orig_credits, right_path); 2355 if (ret) { 2356 mlog_errno(ret); 2357 goto out; 2358 } 2359 2360 ret = ocfs2_rotate_subtree_right(inode, handle, left_path, 2361 right_path, start); 2362 if (ret) { 2363 mlog_errno(ret); 2364 goto out; 2365 } 2366 2367 if (split != SPLIT_NONE && 2368 ocfs2_leftmost_rec_contains(path_leaf_el(right_path), 2369 insert_cpos)) { 2370 /* 2371 * A rotate moves the rightmost left leaf 2372 * record over to the leftmost right leaf 2373 * slot. If we're doing an extent split 2374 * instead of a real insert, then we have to 2375 * check that the extent to be split wasn't 2376 * just moved over. If it was, then we can 2377 * exit here, passing left_path back - 2378 * ocfs2_split_extent() is smart enough to 2379 * search both leaves. 2380 */ 2381 *ret_left_path = left_path; 2382 goto out_ret_path; 2383 } 2384 2385 /* 2386 * There is no need to re-read the next right path 2387 * as we know that it'll be our current left 2388 * path. Optimize by copying values instead. 2389 */ 2390 ocfs2_mv_path(right_path, left_path); 2391 2392 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, 2393 &cpos); 2394 if (ret) { 2395 mlog_errno(ret); 2396 goto out; 2397 } 2398 } 2399 2400 out: 2401 ocfs2_free_path(left_path); 2402 2403 out_ret_path: 2404 return ret; 2405 } 2406 2407 static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle, 2408 struct ocfs2_path *path) 2409 { 2410 int i, idx; 2411 struct ocfs2_extent_rec *rec; 2412 struct ocfs2_extent_list *el; 2413 struct ocfs2_extent_block *eb; 2414 u32 range; 2415 2416 /* Path should always be rightmost. */ 2417 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 2418 BUG_ON(eb->h_next_leaf_blk != 0ULL); 2419 2420 el = &eb->h_list; 2421 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 2422 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2423 rec = &el->l_recs[idx]; 2424 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2425 2426 for (i = 0; i < path->p_tree_depth; i++) { 2427 el = path->p_node[i].el; 2428 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2429 rec = &el->l_recs[idx]; 2430 2431 rec->e_int_clusters = cpu_to_le32(range); 2432 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos)); 2433 2434 ocfs2_journal_dirty(handle, path->p_node[i].bh); 2435 } 2436 } 2437 2438 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle, 2439 struct ocfs2_cached_dealloc_ctxt *dealloc, 2440 struct ocfs2_path *path, int unlink_start) 2441 { 2442 int ret, i; 2443 struct ocfs2_extent_block *eb; 2444 struct ocfs2_extent_list *el; 2445 struct buffer_head *bh; 2446 2447 for(i = unlink_start; i < path_num_items(path); i++) { 2448 bh = path->p_node[i].bh; 2449 2450 eb = (struct ocfs2_extent_block *)bh->b_data; 2451 /* 2452 * Not all nodes might have had their final count 2453 * decremented by the caller - handle this here. 2454 */ 2455 el = &eb->h_list; 2456 if (le16_to_cpu(el->l_next_free_rec) > 1) { 2457 mlog(ML_ERROR, 2458 "Inode %llu, attempted to remove extent block " 2459 "%llu with %u records\n", 2460 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2461 (unsigned long long)le64_to_cpu(eb->h_blkno), 2462 le16_to_cpu(el->l_next_free_rec)); 2463 2464 ocfs2_journal_dirty(handle, bh); 2465 ocfs2_remove_from_cache(inode, bh); 2466 continue; 2467 } 2468 2469 el->l_next_free_rec = 0; 2470 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2471 2472 ocfs2_journal_dirty(handle, bh); 2473 2474 ret = ocfs2_cache_extent_block_free(dealloc, eb); 2475 if (ret) 2476 mlog_errno(ret); 2477 2478 ocfs2_remove_from_cache(inode, bh); 2479 } 2480 } 2481 2482 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle, 2483 struct ocfs2_path *left_path, 2484 struct ocfs2_path *right_path, 2485 int subtree_index, 2486 struct ocfs2_cached_dealloc_ctxt *dealloc) 2487 { 2488 int i; 2489 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2490 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el; 2491 struct ocfs2_extent_list *el; 2492 struct ocfs2_extent_block *eb; 2493 2494 el = path_leaf_el(left_path); 2495 2496 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data; 2497 2498 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 2499 if (root_el->l_recs[i].e_blkno == eb->h_blkno) 2500 break; 2501 2502 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec)); 2503 2504 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 2505 le16_add_cpu(&root_el->l_next_free_rec, -1); 2506 2507 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2508 eb->h_next_leaf_blk = 0; 2509 2510 ocfs2_journal_dirty(handle, root_bh); 2511 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2512 2513 ocfs2_unlink_path(inode, handle, dealloc, right_path, 2514 subtree_index + 1); 2515 } 2516 2517 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle, 2518 struct ocfs2_path *left_path, 2519 struct ocfs2_path *right_path, 2520 int subtree_index, 2521 struct ocfs2_cached_dealloc_ctxt *dealloc, 2522 int *deleted, 2523 struct ocfs2_extent_tree *et) 2524 { 2525 int ret, i, del_right_subtree = 0, right_has_empty = 0; 2526 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path); 2527 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el; 2528 struct ocfs2_extent_block *eb; 2529 2530 *deleted = 0; 2531 2532 right_leaf_el = path_leaf_el(right_path); 2533 left_leaf_el = path_leaf_el(left_path); 2534 root_bh = left_path->p_node[subtree_index].bh; 2535 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2536 2537 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0])) 2538 return 0; 2539 2540 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data; 2541 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) { 2542 /* 2543 * It's legal for us to proceed if the right leaf is 2544 * the rightmost one and it has an empty extent. There 2545 * are two cases to handle - whether the leaf will be 2546 * empty after removal or not. If the leaf isn't empty 2547 * then just remove the empty extent up front. The 2548 * next block will handle empty leaves by flagging 2549 * them for unlink. 2550 * 2551 * Non rightmost leaves will throw -EAGAIN and the 2552 * caller can manually move the subtree and retry. 2553 */ 2554 2555 if (eb->h_next_leaf_blk != 0ULL) 2556 return -EAGAIN; 2557 2558 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) { 2559 ret = ocfs2_journal_access_eb(handle, inode, 2560 path_leaf_bh(right_path), 2561 OCFS2_JOURNAL_ACCESS_WRITE); 2562 if (ret) { 2563 mlog_errno(ret); 2564 goto out; 2565 } 2566 2567 ocfs2_remove_empty_extent(right_leaf_el); 2568 } else 2569 right_has_empty = 1; 2570 } 2571 2572 if (eb->h_next_leaf_blk == 0ULL && 2573 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) { 2574 /* 2575 * We have to update i_last_eb_blk during the meta 2576 * data delete. 2577 */ 2578 ret = ocfs2_et_root_journal_access(handle, inode, et, 2579 OCFS2_JOURNAL_ACCESS_WRITE); 2580 if (ret) { 2581 mlog_errno(ret); 2582 goto out; 2583 } 2584 2585 del_right_subtree = 1; 2586 } 2587 2588 /* 2589 * Getting here with an empty extent in the right path implies 2590 * that it's the rightmost path and will be deleted. 2591 */ 2592 BUG_ON(right_has_empty && !del_right_subtree); 2593 2594 ret = ocfs2_path_bh_journal_access(handle, inode, right_path, 2595 subtree_index); 2596 if (ret) { 2597 mlog_errno(ret); 2598 goto out; 2599 } 2600 2601 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2602 ret = ocfs2_path_bh_journal_access(handle, inode, 2603 right_path, i); 2604 if (ret) { 2605 mlog_errno(ret); 2606 goto out; 2607 } 2608 2609 ret = ocfs2_path_bh_journal_access(handle, inode, 2610 left_path, i); 2611 if (ret) { 2612 mlog_errno(ret); 2613 goto out; 2614 } 2615 } 2616 2617 if (!right_has_empty) { 2618 /* 2619 * Only do this if we're moving a real 2620 * record. Otherwise, the action is delayed until 2621 * after removal of the right path in which case we 2622 * can do a simple shift to remove the empty extent. 2623 */ 2624 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]); 2625 memset(&right_leaf_el->l_recs[0], 0, 2626 sizeof(struct ocfs2_extent_rec)); 2627 } 2628 if (eb->h_next_leaf_blk == 0ULL) { 2629 /* 2630 * Move recs over to get rid of empty extent, decrease 2631 * next_free. This is allowed to remove the last 2632 * extent in our leaf (setting l_next_free_rec to 2633 * zero) - the delete code below won't care. 2634 */ 2635 ocfs2_remove_empty_extent(right_leaf_el); 2636 } 2637 2638 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2639 if (ret) 2640 mlog_errno(ret); 2641 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 2642 if (ret) 2643 mlog_errno(ret); 2644 2645 if (del_right_subtree) { 2646 ocfs2_unlink_subtree(inode, handle, left_path, right_path, 2647 subtree_index, dealloc); 2648 ocfs2_update_edge_lengths(inode, handle, left_path); 2649 2650 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2651 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 2652 2653 /* 2654 * Removal of the extent in the left leaf was skipped 2655 * above so we could delete the right path 2656 * 1st. 2657 */ 2658 if (right_has_empty) 2659 ocfs2_remove_empty_extent(left_leaf_el); 2660 2661 ret = ocfs2_journal_dirty(handle, et_root_bh); 2662 if (ret) 2663 mlog_errno(ret); 2664 2665 *deleted = 1; 2666 } else 2667 ocfs2_complete_edge_insert(inode, handle, left_path, right_path, 2668 subtree_index); 2669 2670 out: 2671 return ret; 2672 } 2673 2674 /* 2675 * Given a full path, determine what cpos value would return us a path 2676 * containing the leaf immediately to the right of the current one. 2677 * 2678 * Will return zero if the path passed in is already the rightmost path. 2679 * 2680 * This looks similar, but is subtly different to 2681 * ocfs2_find_cpos_for_left_leaf(). 2682 */ 2683 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb, 2684 struct ocfs2_path *path, u32 *cpos) 2685 { 2686 int i, j, ret = 0; 2687 u64 blkno; 2688 struct ocfs2_extent_list *el; 2689 2690 *cpos = 0; 2691 2692 if (path->p_tree_depth == 0) 2693 return 0; 2694 2695 blkno = path_leaf_bh(path)->b_blocknr; 2696 2697 /* Start at the tree node just above the leaf and work our way up. */ 2698 i = path->p_tree_depth - 1; 2699 while (i >= 0) { 2700 int next_free; 2701 2702 el = path->p_node[i].el; 2703 2704 /* 2705 * Find the extent record just after the one in our 2706 * path. 2707 */ 2708 next_free = le16_to_cpu(el->l_next_free_rec); 2709 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2710 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2711 if (j == (next_free - 1)) { 2712 if (i == 0) { 2713 /* 2714 * We've determined that the 2715 * path specified is already 2716 * the rightmost one - return a 2717 * cpos of zero. 2718 */ 2719 goto out; 2720 } 2721 /* 2722 * The rightmost record points to our 2723 * leaf - we need to travel up the 2724 * tree one level. 2725 */ 2726 goto next_node; 2727 } 2728 2729 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos); 2730 goto out; 2731 } 2732 } 2733 2734 /* 2735 * If we got here, we never found a valid node where 2736 * the tree indicated one should be. 2737 */ 2738 ocfs2_error(sb, 2739 "Invalid extent tree at extent block %llu\n", 2740 (unsigned long long)blkno); 2741 ret = -EROFS; 2742 goto out; 2743 2744 next_node: 2745 blkno = path->p_node[i].bh->b_blocknr; 2746 i--; 2747 } 2748 2749 out: 2750 return ret; 2751 } 2752 2753 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode, 2754 handle_t *handle, 2755 struct ocfs2_path *path) 2756 { 2757 int ret; 2758 struct buffer_head *bh = path_leaf_bh(path); 2759 struct ocfs2_extent_list *el = path_leaf_el(path); 2760 2761 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 2762 return 0; 2763 2764 ret = ocfs2_path_bh_journal_access(handle, inode, path, 2765 path_num_items(path) - 1); 2766 if (ret) { 2767 mlog_errno(ret); 2768 goto out; 2769 } 2770 2771 ocfs2_remove_empty_extent(el); 2772 2773 ret = ocfs2_journal_dirty(handle, bh); 2774 if (ret) 2775 mlog_errno(ret); 2776 2777 out: 2778 return ret; 2779 } 2780 2781 static int __ocfs2_rotate_tree_left(struct inode *inode, 2782 handle_t *handle, int orig_credits, 2783 struct ocfs2_path *path, 2784 struct ocfs2_cached_dealloc_ctxt *dealloc, 2785 struct ocfs2_path **empty_extent_path, 2786 struct ocfs2_extent_tree *et) 2787 { 2788 int ret, subtree_root, deleted; 2789 u32 right_cpos; 2790 struct ocfs2_path *left_path = NULL; 2791 struct ocfs2_path *right_path = NULL; 2792 2793 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0]))); 2794 2795 *empty_extent_path = NULL; 2796 2797 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path, 2798 &right_cpos); 2799 if (ret) { 2800 mlog_errno(ret); 2801 goto out; 2802 } 2803 2804 left_path = ocfs2_new_path_from_path(path); 2805 if (!left_path) { 2806 ret = -ENOMEM; 2807 mlog_errno(ret); 2808 goto out; 2809 } 2810 2811 ocfs2_cp_path(left_path, path); 2812 2813 right_path = ocfs2_new_path_from_path(path); 2814 if (!right_path) { 2815 ret = -ENOMEM; 2816 mlog_errno(ret); 2817 goto out; 2818 } 2819 2820 while (right_cpos) { 2821 ret = ocfs2_find_path(inode, right_path, right_cpos); 2822 if (ret) { 2823 mlog_errno(ret); 2824 goto out; 2825 } 2826 2827 subtree_root = ocfs2_find_subtree_root(inode, left_path, 2828 right_path); 2829 2830 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n", 2831 subtree_root, 2832 (unsigned long long) 2833 right_path->p_node[subtree_root].bh->b_blocknr, 2834 right_path->p_tree_depth); 2835 2836 ret = ocfs2_extend_rotate_transaction(handle, subtree_root, 2837 orig_credits, left_path); 2838 if (ret) { 2839 mlog_errno(ret); 2840 goto out; 2841 } 2842 2843 /* 2844 * Caller might still want to make changes to the 2845 * tree root, so re-add it to the journal here. 2846 */ 2847 ret = ocfs2_path_bh_journal_access(handle, inode, 2848 left_path, 0); 2849 if (ret) { 2850 mlog_errno(ret); 2851 goto out; 2852 } 2853 2854 ret = ocfs2_rotate_subtree_left(inode, handle, left_path, 2855 right_path, subtree_root, 2856 dealloc, &deleted, et); 2857 if (ret == -EAGAIN) { 2858 /* 2859 * The rotation has to temporarily stop due to 2860 * the right subtree having an empty 2861 * extent. Pass it back to the caller for a 2862 * fixup. 2863 */ 2864 *empty_extent_path = right_path; 2865 right_path = NULL; 2866 goto out; 2867 } 2868 if (ret) { 2869 mlog_errno(ret); 2870 goto out; 2871 } 2872 2873 /* 2874 * The subtree rotate might have removed records on 2875 * the rightmost edge. If so, then rotation is 2876 * complete. 2877 */ 2878 if (deleted) 2879 break; 2880 2881 ocfs2_mv_path(left_path, right_path); 2882 2883 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path, 2884 &right_cpos); 2885 if (ret) { 2886 mlog_errno(ret); 2887 goto out; 2888 } 2889 } 2890 2891 out: 2892 ocfs2_free_path(right_path); 2893 ocfs2_free_path(left_path); 2894 2895 return ret; 2896 } 2897 2898 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle, 2899 struct ocfs2_path *path, 2900 struct ocfs2_cached_dealloc_ctxt *dealloc, 2901 struct ocfs2_extent_tree *et) 2902 { 2903 int ret, subtree_index; 2904 u32 cpos; 2905 struct ocfs2_path *left_path = NULL; 2906 struct ocfs2_extent_block *eb; 2907 struct ocfs2_extent_list *el; 2908 2909 2910 ret = ocfs2_et_sanity_check(inode, et); 2911 if (ret) 2912 goto out; 2913 /* 2914 * There's two ways we handle this depending on 2915 * whether path is the only existing one. 2916 */ 2917 ret = ocfs2_extend_rotate_transaction(handle, 0, 2918 handle->h_buffer_credits, 2919 path); 2920 if (ret) { 2921 mlog_errno(ret); 2922 goto out; 2923 } 2924 2925 ret = ocfs2_journal_access_path(inode, handle, path); 2926 if (ret) { 2927 mlog_errno(ret); 2928 goto out; 2929 } 2930 2931 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos); 2932 if (ret) { 2933 mlog_errno(ret); 2934 goto out; 2935 } 2936 2937 if (cpos) { 2938 /* 2939 * We have a path to the left of this one - it needs 2940 * an update too. 2941 */ 2942 left_path = ocfs2_new_path_from_path(path); 2943 if (!left_path) { 2944 ret = -ENOMEM; 2945 mlog_errno(ret); 2946 goto out; 2947 } 2948 2949 ret = ocfs2_find_path(inode, left_path, cpos); 2950 if (ret) { 2951 mlog_errno(ret); 2952 goto out; 2953 } 2954 2955 ret = ocfs2_journal_access_path(inode, handle, left_path); 2956 if (ret) { 2957 mlog_errno(ret); 2958 goto out; 2959 } 2960 2961 subtree_index = ocfs2_find_subtree_root(inode, left_path, path); 2962 2963 ocfs2_unlink_subtree(inode, handle, left_path, path, 2964 subtree_index, dealloc); 2965 ocfs2_update_edge_lengths(inode, handle, left_path); 2966 2967 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2968 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 2969 } else { 2970 /* 2971 * 'path' is also the leftmost path which 2972 * means it must be the only one. This gets 2973 * handled differently because we want to 2974 * revert the inode back to having extents 2975 * in-line. 2976 */ 2977 ocfs2_unlink_path(inode, handle, dealloc, path, 1); 2978 2979 el = et->et_root_el; 2980 el->l_tree_depth = 0; 2981 el->l_next_free_rec = 0; 2982 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2983 2984 ocfs2_et_set_last_eb_blk(et, 0); 2985 } 2986 2987 ocfs2_journal_dirty(handle, path_root_bh(path)); 2988 2989 out: 2990 ocfs2_free_path(left_path); 2991 return ret; 2992 } 2993 2994 /* 2995 * Left rotation of btree records. 2996 * 2997 * In many ways, this is (unsurprisingly) the opposite of right 2998 * rotation. We start at some non-rightmost path containing an empty 2999 * extent in the leaf block. The code works its way to the rightmost 3000 * path by rotating records to the left in every subtree. 3001 * 3002 * This is used by any code which reduces the number of extent records 3003 * in a leaf. After removal, an empty record should be placed in the 3004 * leftmost list position. 3005 * 3006 * This won't handle a length update of the rightmost path records if 3007 * the rightmost tree leaf record is removed so the caller is 3008 * responsible for detecting and correcting that. 3009 */ 3010 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle, 3011 struct ocfs2_path *path, 3012 struct ocfs2_cached_dealloc_ctxt *dealloc, 3013 struct ocfs2_extent_tree *et) 3014 { 3015 int ret, orig_credits = handle->h_buffer_credits; 3016 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL; 3017 struct ocfs2_extent_block *eb; 3018 struct ocfs2_extent_list *el; 3019 3020 el = path_leaf_el(path); 3021 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 3022 return 0; 3023 3024 if (path->p_tree_depth == 0) { 3025 rightmost_no_delete: 3026 /* 3027 * Inline extents. This is trivially handled, so do 3028 * it up front. 3029 */ 3030 ret = ocfs2_rotate_rightmost_leaf_left(inode, handle, 3031 path); 3032 if (ret) 3033 mlog_errno(ret); 3034 goto out; 3035 } 3036 3037 /* 3038 * Handle rightmost branch now. There's several cases: 3039 * 1) simple rotation leaving records in there. That's trivial. 3040 * 2) rotation requiring a branch delete - there's no more 3041 * records left. Two cases of this: 3042 * a) There are branches to the left. 3043 * b) This is also the leftmost (the only) branch. 3044 * 3045 * 1) is handled via ocfs2_rotate_rightmost_leaf_left() 3046 * 2a) we need the left branch so that we can update it with the unlink 3047 * 2b) we need to bring the inode back to inline extents. 3048 */ 3049 3050 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 3051 el = &eb->h_list; 3052 if (eb->h_next_leaf_blk == 0) { 3053 /* 3054 * This gets a bit tricky if we're going to delete the 3055 * rightmost path. Get the other cases out of the way 3056 * 1st. 3057 */ 3058 if (le16_to_cpu(el->l_next_free_rec) > 1) 3059 goto rightmost_no_delete; 3060 3061 if (le16_to_cpu(el->l_next_free_rec) == 0) { 3062 ret = -EIO; 3063 ocfs2_error(inode->i_sb, 3064 "Inode %llu has empty extent block at %llu", 3065 (unsigned long long)OCFS2_I(inode)->ip_blkno, 3066 (unsigned long long)le64_to_cpu(eb->h_blkno)); 3067 goto out; 3068 } 3069 3070 /* 3071 * XXX: The caller can not trust "path" any more after 3072 * this as it will have been deleted. What do we do? 3073 * 3074 * In theory the rotate-for-merge code will never get 3075 * here because it'll always ask for a rotate in a 3076 * nonempty list. 3077 */ 3078 3079 ret = ocfs2_remove_rightmost_path(inode, handle, path, 3080 dealloc, et); 3081 if (ret) 3082 mlog_errno(ret); 3083 goto out; 3084 } 3085 3086 /* 3087 * Now we can loop, remembering the path we get from -EAGAIN 3088 * and restarting from there. 3089 */ 3090 try_rotate: 3091 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path, 3092 dealloc, &restart_path, et); 3093 if (ret && ret != -EAGAIN) { 3094 mlog_errno(ret); 3095 goto out; 3096 } 3097 3098 while (ret == -EAGAIN) { 3099 tmp_path = restart_path; 3100 restart_path = NULL; 3101 3102 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, 3103 tmp_path, dealloc, 3104 &restart_path, et); 3105 if (ret && ret != -EAGAIN) { 3106 mlog_errno(ret); 3107 goto out; 3108 } 3109 3110 ocfs2_free_path(tmp_path); 3111 tmp_path = NULL; 3112 3113 if (ret == 0) 3114 goto try_rotate; 3115 } 3116 3117 out: 3118 ocfs2_free_path(tmp_path); 3119 ocfs2_free_path(restart_path); 3120 return ret; 3121 } 3122 3123 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el, 3124 int index) 3125 { 3126 struct ocfs2_extent_rec *rec = &el->l_recs[index]; 3127 unsigned int size; 3128 3129 if (rec->e_leaf_clusters == 0) { 3130 /* 3131 * We consumed all of the merged-from record. An empty 3132 * extent cannot exist anywhere but the 1st array 3133 * position, so move things over if the merged-from 3134 * record doesn't occupy that position. 3135 * 3136 * This creates a new empty extent so the caller 3137 * should be smart enough to have removed any existing 3138 * ones. 3139 */ 3140 if (index > 0) { 3141 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 3142 size = index * sizeof(struct ocfs2_extent_rec); 3143 memmove(&el->l_recs[1], &el->l_recs[0], size); 3144 } 3145 3146 /* 3147 * Always memset - the caller doesn't check whether it 3148 * created an empty extent, so there could be junk in 3149 * the other fields. 3150 */ 3151 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3152 } 3153 } 3154 3155 static int ocfs2_get_right_path(struct inode *inode, 3156 struct ocfs2_path *left_path, 3157 struct ocfs2_path **ret_right_path) 3158 { 3159 int ret; 3160 u32 right_cpos; 3161 struct ocfs2_path *right_path = NULL; 3162 struct ocfs2_extent_list *left_el; 3163 3164 *ret_right_path = NULL; 3165 3166 /* This function shouldn't be called for non-trees. */ 3167 BUG_ON(left_path->p_tree_depth == 0); 3168 3169 left_el = path_leaf_el(left_path); 3170 BUG_ON(left_el->l_next_free_rec != left_el->l_count); 3171 3172 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path, 3173 &right_cpos); 3174 if (ret) { 3175 mlog_errno(ret); 3176 goto out; 3177 } 3178 3179 /* This function shouldn't be called for the rightmost leaf. */ 3180 BUG_ON(right_cpos == 0); 3181 3182 right_path = ocfs2_new_path_from_path(left_path); 3183 if (!right_path) { 3184 ret = -ENOMEM; 3185 mlog_errno(ret); 3186 goto out; 3187 } 3188 3189 ret = ocfs2_find_path(inode, right_path, right_cpos); 3190 if (ret) { 3191 mlog_errno(ret); 3192 goto out; 3193 } 3194 3195 *ret_right_path = right_path; 3196 out: 3197 if (ret) 3198 ocfs2_free_path(right_path); 3199 return ret; 3200 } 3201 3202 /* 3203 * Remove split_rec clusters from the record at index and merge them 3204 * onto the beginning of the record "next" to it. 3205 * For index < l_count - 1, the next means the extent rec at index + 1. 3206 * For index == l_count - 1, the "next" means the 1st extent rec of the 3207 * next extent block. 3208 */ 3209 static int ocfs2_merge_rec_right(struct inode *inode, 3210 struct ocfs2_path *left_path, 3211 handle_t *handle, 3212 struct ocfs2_extent_rec *split_rec, 3213 int index) 3214 { 3215 int ret, next_free, i; 3216 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3217 struct ocfs2_extent_rec *left_rec; 3218 struct ocfs2_extent_rec *right_rec; 3219 struct ocfs2_extent_list *right_el; 3220 struct ocfs2_path *right_path = NULL; 3221 int subtree_index = 0; 3222 struct ocfs2_extent_list *el = path_leaf_el(left_path); 3223 struct buffer_head *bh = path_leaf_bh(left_path); 3224 struct buffer_head *root_bh = NULL; 3225 3226 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec)); 3227 left_rec = &el->l_recs[index]; 3228 3229 if (index == le16_to_cpu(el->l_next_free_rec) - 1 && 3230 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) { 3231 /* we meet with a cross extent block merge. */ 3232 ret = ocfs2_get_right_path(inode, left_path, &right_path); 3233 if (ret) { 3234 mlog_errno(ret); 3235 goto out; 3236 } 3237 3238 right_el = path_leaf_el(right_path); 3239 next_free = le16_to_cpu(right_el->l_next_free_rec); 3240 BUG_ON(next_free <= 0); 3241 right_rec = &right_el->l_recs[0]; 3242 if (ocfs2_is_empty_extent(right_rec)) { 3243 BUG_ON(next_free <= 1); 3244 right_rec = &right_el->l_recs[1]; 3245 } 3246 3247 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3248 le16_to_cpu(left_rec->e_leaf_clusters) != 3249 le32_to_cpu(right_rec->e_cpos)); 3250 3251 subtree_index = ocfs2_find_subtree_root(inode, 3252 left_path, right_path); 3253 3254 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3255 handle->h_buffer_credits, 3256 right_path); 3257 if (ret) { 3258 mlog_errno(ret); 3259 goto out; 3260 } 3261 3262 root_bh = left_path->p_node[subtree_index].bh; 3263 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3264 3265 ret = ocfs2_path_bh_journal_access(handle, inode, right_path, 3266 subtree_index); 3267 if (ret) { 3268 mlog_errno(ret); 3269 goto out; 3270 } 3271 3272 for (i = subtree_index + 1; 3273 i < path_num_items(right_path); i++) { 3274 ret = ocfs2_path_bh_journal_access(handle, inode, 3275 right_path, i); 3276 if (ret) { 3277 mlog_errno(ret); 3278 goto out; 3279 } 3280 3281 ret = ocfs2_path_bh_journal_access(handle, inode, 3282 left_path, i); 3283 if (ret) { 3284 mlog_errno(ret); 3285 goto out; 3286 } 3287 } 3288 3289 } else { 3290 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1); 3291 right_rec = &el->l_recs[index + 1]; 3292 } 3293 3294 ret = ocfs2_path_bh_journal_access(handle, inode, left_path, 3295 path_num_items(left_path) - 1); 3296 if (ret) { 3297 mlog_errno(ret); 3298 goto out; 3299 } 3300 3301 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters); 3302 3303 le32_add_cpu(&right_rec->e_cpos, -split_clusters); 3304 le64_add_cpu(&right_rec->e_blkno, 3305 -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters)); 3306 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters); 3307 3308 ocfs2_cleanup_merge(el, index); 3309 3310 ret = ocfs2_journal_dirty(handle, bh); 3311 if (ret) 3312 mlog_errno(ret); 3313 3314 if (right_path) { 3315 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 3316 if (ret) 3317 mlog_errno(ret); 3318 3319 ocfs2_complete_edge_insert(inode, handle, left_path, 3320 right_path, subtree_index); 3321 } 3322 out: 3323 if (right_path) 3324 ocfs2_free_path(right_path); 3325 return ret; 3326 } 3327 3328 static int ocfs2_get_left_path(struct inode *inode, 3329 struct ocfs2_path *right_path, 3330 struct ocfs2_path **ret_left_path) 3331 { 3332 int ret; 3333 u32 left_cpos; 3334 struct ocfs2_path *left_path = NULL; 3335 3336 *ret_left_path = NULL; 3337 3338 /* This function shouldn't be called for non-trees. */ 3339 BUG_ON(right_path->p_tree_depth == 0); 3340 3341 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 3342 right_path, &left_cpos); 3343 if (ret) { 3344 mlog_errno(ret); 3345 goto out; 3346 } 3347 3348 /* This function shouldn't be called for the leftmost leaf. */ 3349 BUG_ON(left_cpos == 0); 3350 3351 left_path = ocfs2_new_path_from_path(right_path); 3352 if (!left_path) { 3353 ret = -ENOMEM; 3354 mlog_errno(ret); 3355 goto out; 3356 } 3357 3358 ret = ocfs2_find_path(inode, left_path, left_cpos); 3359 if (ret) { 3360 mlog_errno(ret); 3361 goto out; 3362 } 3363 3364 *ret_left_path = left_path; 3365 out: 3366 if (ret) 3367 ocfs2_free_path(left_path); 3368 return ret; 3369 } 3370 3371 /* 3372 * Remove split_rec clusters from the record at index and merge them 3373 * onto the tail of the record "before" it. 3374 * For index > 0, the "before" means the extent rec at index - 1. 3375 * 3376 * For index == 0, the "before" means the last record of the previous 3377 * extent block. And there is also a situation that we may need to 3378 * remove the rightmost leaf extent block in the right_path and change 3379 * the right path to indicate the new rightmost path. 3380 */ 3381 static int ocfs2_merge_rec_left(struct inode *inode, 3382 struct ocfs2_path *right_path, 3383 handle_t *handle, 3384 struct ocfs2_extent_rec *split_rec, 3385 struct ocfs2_cached_dealloc_ctxt *dealloc, 3386 struct ocfs2_extent_tree *et, 3387 int index) 3388 { 3389 int ret, i, subtree_index = 0, has_empty_extent = 0; 3390 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3391 struct ocfs2_extent_rec *left_rec; 3392 struct ocfs2_extent_rec *right_rec; 3393 struct ocfs2_extent_list *el = path_leaf_el(right_path); 3394 struct buffer_head *bh = path_leaf_bh(right_path); 3395 struct buffer_head *root_bh = NULL; 3396 struct ocfs2_path *left_path = NULL; 3397 struct ocfs2_extent_list *left_el; 3398 3399 BUG_ON(index < 0); 3400 3401 right_rec = &el->l_recs[index]; 3402 if (index == 0) { 3403 /* we meet with a cross extent block merge. */ 3404 ret = ocfs2_get_left_path(inode, right_path, &left_path); 3405 if (ret) { 3406 mlog_errno(ret); 3407 goto out; 3408 } 3409 3410 left_el = path_leaf_el(left_path); 3411 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) != 3412 le16_to_cpu(left_el->l_count)); 3413 3414 left_rec = &left_el->l_recs[ 3415 le16_to_cpu(left_el->l_next_free_rec) - 1]; 3416 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3417 le16_to_cpu(left_rec->e_leaf_clusters) != 3418 le32_to_cpu(split_rec->e_cpos)); 3419 3420 subtree_index = ocfs2_find_subtree_root(inode, 3421 left_path, right_path); 3422 3423 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3424 handle->h_buffer_credits, 3425 left_path); 3426 if (ret) { 3427 mlog_errno(ret); 3428 goto out; 3429 } 3430 3431 root_bh = left_path->p_node[subtree_index].bh; 3432 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3433 3434 ret = ocfs2_path_bh_journal_access(handle, inode, right_path, 3435 subtree_index); 3436 if (ret) { 3437 mlog_errno(ret); 3438 goto out; 3439 } 3440 3441 for (i = subtree_index + 1; 3442 i < path_num_items(right_path); i++) { 3443 ret = ocfs2_path_bh_journal_access(handle, inode, 3444 right_path, i); 3445 if (ret) { 3446 mlog_errno(ret); 3447 goto out; 3448 } 3449 3450 ret = ocfs2_path_bh_journal_access(handle, inode, 3451 left_path, i); 3452 if (ret) { 3453 mlog_errno(ret); 3454 goto out; 3455 } 3456 } 3457 } else { 3458 left_rec = &el->l_recs[index - 1]; 3459 if (ocfs2_is_empty_extent(&el->l_recs[0])) 3460 has_empty_extent = 1; 3461 } 3462 3463 ret = ocfs2_path_bh_journal_access(handle, inode, right_path, 3464 path_num_items(right_path) - 1); 3465 if (ret) { 3466 mlog_errno(ret); 3467 goto out; 3468 } 3469 3470 if (has_empty_extent && index == 1) { 3471 /* 3472 * The easy case - we can just plop the record right in. 3473 */ 3474 *left_rec = *split_rec; 3475 3476 has_empty_extent = 0; 3477 } else 3478 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters); 3479 3480 le32_add_cpu(&right_rec->e_cpos, split_clusters); 3481 le64_add_cpu(&right_rec->e_blkno, 3482 ocfs2_clusters_to_blocks(inode->i_sb, split_clusters)); 3483 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters); 3484 3485 ocfs2_cleanup_merge(el, index); 3486 3487 ret = ocfs2_journal_dirty(handle, bh); 3488 if (ret) 3489 mlog_errno(ret); 3490 3491 if (left_path) { 3492 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 3493 if (ret) 3494 mlog_errno(ret); 3495 3496 /* 3497 * In the situation that the right_rec is empty and the extent 3498 * block is empty also, ocfs2_complete_edge_insert can't handle 3499 * it and we need to delete the right extent block. 3500 */ 3501 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 && 3502 le16_to_cpu(el->l_next_free_rec) == 1) { 3503 3504 ret = ocfs2_remove_rightmost_path(inode, handle, 3505 right_path, 3506 dealloc, et); 3507 if (ret) { 3508 mlog_errno(ret); 3509 goto out; 3510 } 3511 3512 /* Now the rightmost extent block has been deleted. 3513 * So we use the new rightmost path. 3514 */ 3515 ocfs2_mv_path(right_path, left_path); 3516 left_path = NULL; 3517 } else 3518 ocfs2_complete_edge_insert(inode, handle, left_path, 3519 right_path, subtree_index); 3520 } 3521 out: 3522 if (left_path) 3523 ocfs2_free_path(left_path); 3524 return ret; 3525 } 3526 3527 static int ocfs2_try_to_merge_extent(struct inode *inode, 3528 handle_t *handle, 3529 struct ocfs2_path *path, 3530 int split_index, 3531 struct ocfs2_extent_rec *split_rec, 3532 struct ocfs2_cached_dealloc_ctxt *dealloc, 3533 struct ocfs2_merge_ctxt *ctxt, 3534 struct ocfs2_extent_tree *et) 3535 3536 { 3537 int ret = 0; 3538 struct ocfs2_extent_list *el = path_leaf_el(path); 3539 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 3540 3541 BUG_ON(ctxt->c_contig_type == CONTIG_NONE); 3542 3543 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) { 3544 /* 3545 * The merge code will need to create an empty 3546 * extent to take the place of the newly 3547 * emptied slot. Remove any pre-existing empty 3548 * extents - having more than one in a leaf is 3549 * illegal. 3550 */ 3551 ret = ocfs2_rotate_tree_left(inode, handle, path, 3552 dealloc, et); 3553 if (ret) { 3554 mlog_errno(ret); 3555 goto out; 3556 } 3557 split_index--; 3558 rec = &el->l_recs[split_index]; 3559 } 3560 3561 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) { 3562 /* 3563 * Left-right contig implies this. 3564 */ 3565 BUG_ON(!ctxt->c_split_covers_rec); 3566 3567 /* 3568 * Since the leftright insert always covers the entire 3569 * extent, this call will delete the insert record 3570 * entirely, resulting in an empty extent record added to 3571 * the extent block. 3572 * 3573 * Since the adding of an empty extent shifts 3574 * everything back to the right, there's no need to 3575 * update split_index here. 3576 * 3577 * When the split_index is zero, we need to merge it to the 3578 * prevoius extent block. It is more efficient and easier 3579 * if we do merge_right first and merge_left later. 3580 */ 3581 ret = ocfs2_merge_rec_right(inode, path, 3582 handle, split_rec, 3583 split_index); 3584 if (ret) { 3585 mlog_errno(ret); 3586 goto out; 3587 } 3588 3589 /* 3590 * We can only get this from logic error above. 3591 */ 3592 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0])); 3593 3594 /* The merge left us with an empty extent, remove it. */ 3595 ret = ocfs2_rotate_tree_left(inode, handle, path, 3596 dealloc, et); 3597 if (ret) { 3598 mlog_errno(ret); 3599 goto out; 3600 } 3601 3602 rec = &el->l_recs[split_index]; 3603 3604 /* 3605 * Note that we don't pass split_rec here on purpose - 3606 * we've merged it into the rec already. 3607 */ 3608 ret = ocfs2_merge_rec_left(inode, path, 3609 handle, rec, 3610 dealloc, et, 3611 split_index); 3612 3613 if (ret) { 3614 mlog_errno(ret); 3615 goto out; 3616 } 3617 3618 ret = ocfs2_rotate_tree_left(inode, handle, path, 3619 dealloc, et); 3620 /* 3621 * Error from this last rotate is not critical, so 3622 * print but don't bubble it up. 3623 */ 3624 if (ret) 3625 mlog_errno(ret); 3626 ret = 0; 3627 } else { 3628 /* 3629 * Merge a record to the left or right. 3630 * 3631 * 'contig_type' is relative to the existing record, 3632 * so for example, if we're "right contig", it's to 3633 * the record on the left (hence the left merge). 3634 */ 3635 if (ctxt->c_contig_type == CONTIG_RIGHT) { 3636 ret = ocfs2_merge_rec_left(inode, 3637 path, 3638 handle, split_rec, 3639 dealloc, et, 3640 split_index); 3641 if (ret) { 3642 mlog_errno(ret); 3643 goto out; 3644 } 3645 } else { 3646 ret = ocfs2_merge_rec_right(inode, 3647 path, 3648 handle, split_rec, 3649 split_index); 3650 if (ret) { 3651 mlog_errno(ret); 3652 goto out; 3653 } 3654 } 3655 3656 if (ctxt->c_split_covers_rec) { 3657 /* 3658 * The merge may have left an empty extent in 3659 * our leaf. Try to rotate it away. 3660 */ 3661 ret = ocfs2_rotate_tree_left(inode, handle, path, 3662 dealloc, et); 3663 if (ret) 3664 mlog_errno(ret); 3665 ret = 0; 3666 } 3667 } 3668 3669 out: 3670 return ret; 3671 } 3672 3673 static void ocfs2_subtract_from_rec(struct super_block *sb, 3674 enum ocfs2_split_type split, 3675 struct ocfs2_extent_rec *rec, 3676 struct ocfs2_extent_rec *split_rec) 3677 { 3678 u64 len_blocks; 3679 3680 len_blocks = ocfs2_clusters_to_blocks(sb, 3681 le16_to_cpu(split_rec->e_leaf_clusters)); 3682 3683 if (split == SPLIT_LEFT) { 3684 /* 3685 * Region is on the left edge of the existing 3686 * record. 3687 */ 3688 le32_add_cpu(&rec->e_cpos, 3689 le16_to_cpu(split_rec->e_leaf_clusters)); 3690 le64_add_cpu(&rec->e_blkno, len_blocks); 3691 le16_add_cpu(&rec->e_leaf_clusters, 3692 -le16_to_cpu(split_rec->e_leaf_clusters)); 3693 } else { 3694 /* 3695 * Region is on the right edge of the existing 3696 * record. 3697 */ 3698 le16_add_cpu(&rec->e_leaf_clusters, 3699 -le16_to_cpu(split_rec->e_leaf_clusters)); 3700 } 3701 } 3702 3703 /* 3704 * Do the final bits of extent record insertion at the target leaf 3705 * list. If this leaf is part of an allocation tree, it is assumed 3706 * that the tree above has been prepared. 3707 */ 3708 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec, 3709 struct ocfs2_extent_list *el, 3710 struct ocfs2_insert_type *insert, 3711 struct inode *inode) 3712 { 3713 int i = insert->ins_contig_index; 3714 unsigned int range; 3715 struct ocfs2_extent_rec *rec; 3716 3717 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 3718 3719 if (insert->ins_split != SPLIT_NONE) { 3720 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos)); 3721 BUG_ON(i == -1); 3722 rec = &el->l_recs[i]; 3723 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec, 3724 insert_rec); 3725 goto rotate; 3726 } 3727 3728 /* 3729 * Contiguous insert - either left or right. 3730 */ 3731 if (insert->ins_contig != CONTIG_NONE) { 3732 rec = &el->l_recs[i]; 3733 if (insert->ins_contig == CONTIG_LEFT) { 3734 rec->e_blkno = insert_rec->e_blkno; 3735 rec->e_cpos = insert_rec->e_cpos; 3736 } 3737 le16_add_cpu(&rec->e_leaf_clusters, 3738 le16_to_cpu(insert_rec->e_leaf_clusters)); 3739 return; 3740 } 3741 3742 /* 3743 * Handle insert into an empty leaf. 3744 */ 3745 if (le16_to_cpu(el->l_next_free_rec) == 0 || 3746 ((le16_to_cpu(el->l_next_free_rec) == 1) && 3747 ocfs2_is_empty_extent(&el->l_recs[0]))) { 3748 el->l_recs[0] = *insert_rec; 3749 el->l_next_free_rec = cpu_to_le16(1); 3750 return; 3751 } 3752 3753 /* 3754 * Appending insert. 3755 */ 3756 if (insert->ins_appending == APPEND_TAIL) { 3757 i = le16_to_cpu(el->l_next_free_rec) - 1; 3758 rec = &el->l_recs[i]; 3759 range = le32_to_cpu(rec->e_cpos) 3760 + le16_to_cpu(rec->e_leaf_clusters); 3761 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range); 3762 3763 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >= 3764 le16_to_cpu(el->l_count), 3765 "inode %lu, depth %u, count %u, next free %u, " 3766 "rec.cpos %u, rec.clusters %u, " 3767 "insert.cpos %u, insert.clusters %u\n", 3768 inode->i_ino, 3769 le16_to_cpu(el->l_tree_depth), 3770 le16_to_cpu(el->l_count), 3771 le16_to_cpu(el->l_next_free_rec), 3772 le32_to_cpu(el->l_recs[i].e_cpos), 3773 le16_to_cpu(el->l_recs[i].e_leaf_clusters), 3774 le32_to_cpu(insert_rec->e_cpos), 3775 le16_to_cpu(insert_rec->e_leaf_clusters)); 3776 i++; 3777 el->l_recs[i] = *insert_rec; 3778 le16_add_cpu(&el->l_next_free_rec, 1); 3779 return; 3780 } 3781 3782 rotate: 3783 /* 3784 * Ok, we have to rotate. 3785 * 3786 * At this point, it is safe to assume that inserting into an 3787 * empty leaf and appending to a leaf have both been handled 3788 * above. 3789 * 3790 * This leaf needs to have space, either by the empty 1st 3791 * extent record, or by virtue of an l_next_rec < l_count. 3792 */ 3793 ocfs2_rotate_leaf(el, insert_rec); 3794 } 3795 3796 static void ocfs2_adjust_rightmost_records(struct inode *inode, 3797 handle_t *handle, 3798 struct ocfs2_path *path, 3799 struct ocfs2_extent_rec *insert_rec) 3800 { 3801 int ret, i, next_free; 3802 struct buffer_head *bh; 3803 struct ocfs2_extent_list *el; 3804 struct ocfs2_extent_rec *rec; 3805 3806 /* 3807 * Update everything except the leaf block. 3808 */ 3809 for (i = 0; i < path->p_tree_depth; i++) { 3810 bh = path->p_node[i].bh; 3811 el = path->p_node[i].el; 3812 3813 next_free = le16_to_cpu(el->l_next_free_rec); 3814 if (next_free == 0) { 3815 ocfs2_error(inode->i_sb, 3816 "Dinode %llu has a bad extent list", 3817 (unsigned long long)OCFS2_I(inode)->ip_blkno); 3818 ret = -EIO; 3819 return; 3820 } 3821 3822 rec = &el->l_recs[next_free - 1]; 3823 3824 rec->e_int_clusters = insert_rec->e_cpos; 3825 le32_add_cpu(&rec->e_int_clusters, 3826 le16_to_cpu(insert_rec->e_leaf_clusters)); 3827 le32_add_cpu(&rec->e_int_clusters, 3828 -le32_to_cpu(rec->e_cpos)); 3829 3830 ret = ocfs2_journal_dirty(handle, bh); 3831 if (ret) 3832 mlog_errno(ret); 3833 3834 } 3835 } 3836 3837 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle, 3838 struct ocfs2_extent_rec *insert_rec, 3839 struct ocfs2_path *right_path, 3840 struct ocfs2_path **ret_left_path) 3841 { 3842 int ret, next_free; 3843 struct ocfs2_extent_list *el; 3844 struct ocfs2_path *left_path = NULL; 3845 3846 *ret_left_path = NULL; 3847 3848 /* 3849 * This shouldn't happen for non-trees. The extent rec cluster 3850 * count manipulation below only works for interior nodes. 3851 */ 3852 BUG_ON(right_path->p_tree_depth == 0); 3853 3854 /* 3855 * If our appending insert is at the leftmost edge of a leaf, 3856 * then we might need to update the rightmost records of the 3857 * neighboring path. 3858 */ 3859 el = path_leaf_el(right_path); 3860 next_free = le16_to_cpu(el->l_next_free_rec); 3861 if (next_free == 0 || 3862 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) { 3863 u32 left_cpos; 3864 3865 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, 3866 &left_cpos); 3867 if (ret) { 3868 mlog_errno(ret); 3869 goto out; 3870 } 3871 3872 mlog(0, "Append may need a left path update. cpos: %u, " 3873 "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos), 3874 left_cpos); 3875 3876 /* 3877 * No need to worry if the append is already in the 3878 * leftmost leaf. 3879 */ 3880 if (left_cpos) { 3881 left_path = ocfs2_new_path_from_path(right_path); 3882 if (!left_path) { 3883 ret = -ENOMEM; 3884 mlog_errno(ret); 3885 goto out; 3886 } 3887 3888 ret = ocfs2_find_path(inode, left_path, left_cpos); 3889 if (ret) { 3890 mlog_errno(ret); 3891 goto out; 3892 } 3893 3894 /* 3895 * ocfs2_insert_path() will pass the left_path to the 3896 * journal for us. 3897 */ 3898 } 3899 } 3900 3901 ret = ocfs2_journal_access_path(inode, handle, right_path); 3902 if (ret) { 3903 mlog_errno(ret); 3904 goto out; 3905 } 3906 3907 ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec); 3908 3909 *ret_left_path = left_path; 3910 ret = 0; 3911 out: 3912 if (ret != 0) 3913 ocfs2_free_path(left_path); 3914 3915 return ret; 3916 } 3917 3918 static void ocfs2_split_record(struct inode *inode, 3919 struct ocfs2_path *left_path, 3920 struct ocfs2_path *right_path, 3921 struct ocfs2_extent_rec *split_rec, 3922 enum ocfs2_split_type split) 3923 { 3924 int index; 3925 u32 cpos = le32_to_cpu(split_rec->e_cpos); 3926 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el; 3927 struct ocfs2_extent_rec *rec, *tmprec; 3928 3929 right_el = path_leaf_el(right_path); 3930 if (left_path) 3931 left_el = path_leaf_el(left_path); 3932 3933 el = right_el; 3934 insert_el = right_el; 3935 index = ocfs2_search_extent_list(el, cpos); 3936 if (index != -1) { 3937 if (index == 0 && left_path) { 3938 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 3939 3940 /* 3941 * This typically means that the record 3942 * started in the left path but moved to the 3943 * right as a result of rotation. We either 3944 * move the existing record to the left, or we 3945 * do the later insert there. 3946 * 3947 * In this case, the left path should always 3948 * exist as the rotate code will have passed 3949 * it back for a post-insert update. 3950 */ 3951 3952 if (split == SPLIT_LEFT) { 3953 /* 3954 * It's a left split. Since we know 3955 * that the rotate code gave us an 3956 * empty extent in the left path, we 3957 * can just do the insert there. 3958 */ 3959 insert_el = left_el; 3960 } else { 3961 /* 3962 * Right split - we have to move the 3963 * existing record over to the left 3964 * leaf. The insert will be into the 3965 * newly created empty extent in the 3966 * right leaf. 3967 */ 3968 tmprec = &right_el->l_recs[index]; 3969 ocfs2_rotate_leaf(left_el, tmprec); 3970 el = left_el; 3971 3972 memset(tmprec, 0, sizeof(*tmprec)); 3973 index = ocfs2_search_extent_list(left_el, cpos); 3974 BUG_ON(index == -1); 3975 } 3976 } 3977 } else { 3978 BUG_ON(!left_path); 3979 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0])); 3980 /* 3981 * Left path is easy - we can just allow the insert to 3982 * happen. 3983 */ 3984 el = left_el; 3985 insert_el = left_el; 3986 index = ocfs2_search_extent_list(el, cpos); 3987 BUG_ON(index == -1); 3988 } 3989 3990 rec = &el->l_recs[index]; 3991 ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec); 3992 ocfs2_rotate_leaf(insert_el, split_rec); 3993 } 3994 3995 /* 3996 * This function only does inserts on an allocation b-tree. For tree 3997 * depth = 0, ocfs2_insert_at_leaf() is called directly. 3998 * 3999 * right_path is the path we want to do the actual insert 4000 * in. left_path should only be passed in if we need to update that 4001 * portion of the tree after an edge insert. 4002 */ 4003 static int ocfs2_insert_path(struct inode *inode, 4004 handle_t *handle, 4005 struct ocfs2_path *left_path, 4006 struct ocfs2_path *right_path, 4007 struct ocfs2_extent_rec *insert_rec, 4008 struct ocfs2_insert_type *insert) 4009 { 4010 int ret, subtree_index; 4011 struct buffer_head *leaf_bh = path_leaf_bh(right_path); 4012 4013 if (left_path) { 4014 int credits = handle->h_buffer_credits; 4015 4016 /* 4017 * There's a chance that left_path got passed back to 4018 * us without being accounted for in the 4019 * journal. Extend our transaction here to be sure we 4020 * can change those blocks. 4021 */ 4022 credits += left_path->p_tree_depth; 4023 4024 ret = ocfs2_extend_trans(handle, credits); 4025 if (ret < 0) { 4026 mlog_errno(ret); 4027 goto out; 4028 } 4029 4030 ret = ocfs2_journal_access_path(inode, handle, left_path); 4031 if (ret < 0) { 4032 mlog_errno(ret); 4033 goto out; 4034 } 4035 } 4036 4037 /* 4038 * Pass both paths to the journal. The majority of inserts 4039 * will be touching all components anyway. 4040 */ 4041 ret = ocfs2_journal_access_path(inode, handle, right_path); 4042 if (ret < 0) { 4043 mlog_errno(ret); 4044 goto out; 4045 } 4046 4047 if (insert->ins_split != SPLIT_NONE) { 4048 /* 4049 * We could call ocfs2_insert_at_leaf() for some types 4050 * of splits, but it's easier to just let one separate 4051 * function sort it all out. 4052 */ 4053 ocfs2_split_record(inode, left_path, right_path, 4054 insert_rec, insert->ins_split); 4055 4056 /* 4057 * Split might have modified either leaf and we don't 4058 * have a guarantee that the later edge insert will 4059 * dirty this for us. 4060 */ 4061 if (left_path) 4062 ret = ocfs2_journal_dirty(handle, 4063 path_leaf_bh(left_path)); 4064 if (ret) 4065 mlog_errno(ret); 4066 } else 4067 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path), 4068 insert, inode); 4069 4070 ret = ocfs2_journal_dirty(handle, leaf_bh); 4071 if (ret) 4072 mlog_errno(ret); 4073 4074 if (left_path) { 4075 /* 4076 * The rotate code has indicated that we need to fix 4077 * up portions of the tree after the insert. 4078 * 4079 * XXX: Should we extend the transaction here? 4080 */ 4081 subtree_index = ocfs2_find_subtree_root(inode, left_path, 4082 right_path); 4083 ocfs2_complete_edge_insert(inode, handle, left_path, 4084 right_path, subtree_index); 4085 } 4086 4087 ret = 0; 4088 out: 4089 return ret; 4090 } 4091 4092 static int ocfs2_do_insert_extent(struct inode *inode, 4093 handle_t *handle, 4094 struct ocfs2_extent_tree *et, 4095 struct ocfs2_extent_rec *insert_rec, 4096 struct ocfs2_insert_type *type) 4097 { 4098 int ret, rotate = 0; 4099 u32 cpos; 4100 struct ocfs2_path *right_path = NULL; 4101 struct ocfs2_path *left_path = NULL; 4102 struct ocfs2_extent_list *el; 4103 4104 el = et->et_root_el; 4105 4106 ret = ocfs2_et_root_journal_access(handle, inode, et, 4107 OCFS2_JOURNAL_ACCESS_WRITE); 4108 if (ret) { 4109 mlog_errno(ret); 4110 goto out; 4111 } 4112 4113 if (le16_to_cpu(el->l_tree_depth) == 0) { 4114 ocfs2_insert_at_leaf(insert_rec, el, type, inode); 4115 goto out_update_clusters; 4116 } 4117 4118 right_path = ocfs2_new_path_from_et(et); 4119 if (!right_path) { 4120 ret = -ENOMEM; 4121 mlog_errno(ret); 4122 goto out; 4123 } 4124 4125 /* 4126 * Determine the path to start with. Rotations need the 4127 * rightmost path, everything else can go directly to the 4128 * target leaf. 4129 */ 4130 cpos = le32_to_cpu(insert_rec->e_cpos); 4131 if (type->ins_appending == APPEND_NONE && 4132 type->ins_contig == CONTIG_NONE) { 4133 rotate = 1; 4134 cpos = UINT_MAX; 4135 } 4136 4137 ret = ocfs2_find_path(inode, right_path, cpos); 4138 if (ret) { 4139 mlog_errno(ret); 4140 goto out; 4141 } 4142 4143 /* 4144 * Rotations and appends need special treatment - they modify 4145 * parts of the tree's above them. 4146 * 4147 * Both might pass back a path immediate to the left of the 4148 * one being inserted to. This will be cause 4149 * ocfs2_insert_path() to modify the rightmost records of 4150 * left_path to account for an edge insert. 4151 * 4152 * XXX: When modifying this code, keep in mind that an insert 4153 * can wind up skipping both of these two special cases... 4154 */ 4155 if (rotate) { 4156 ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split, 4157 le32_to_cpu(insert_rec->e_cpos), 4158 right_path, &left_path); 4159 if (ret) { 4160 mlog_errno(ret); 4161 goto out; 4162 } 4163 4164 /* 4165 * ocfs2_rotate_tree_right() might have extended the 4166 * transaction without re-journaling our tree root. 4167 */ 4168 ret = ocfs2_et_root_journal_access(handle, inode, et, 4169 OCFS2_JOURNAL_ACCESS_WRITE); 4170 if (ret) { 4171 mlog_errno(ret); 4172 goto out; 4173 } 4174 } else if (type->ins_appending == APPEND_TAIL 4175 && type->ins_contig != CONTIG_LEFT) { 4176 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec, 4177 right_path, &left_path); 4178 if (ret) { 4179 mlog_errno(ret); 4180 goto out; 4181 } 4182 } 4183 4184 ret = ocfs2_insert_path(inode, handle, left_path, right_path, 4185 insert_rec, type); 4186 if (ret) { 4187 mlog_errno(ret); 4188 goto out; 4189 } 4190 4191 out_update_clusters: 4192 if (type->ins_split == SPLIT_NONE) 4193 ocfs2_et_update_clusters(inode, et, 4194 le16_to_cpu(insert_rec->e_leaf_clusters)); 4195 4196 ret = ocfs2_journal_dirty(handle, et->et_root_bh); 4197 if (ret) 4198 mlog_errno(ret); 4199 4200 out: 4201 ocfs2_free_path(left_path); 4202 ocfs2_free_path(right_path); 4203 4204 return ret; 4205 } 4206 4207 static enum ocfs2_contig_type 4208 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path, 4209 struct ocfs2_extent_list *el, int index, 4210 struct ocfs2_extent_rec *split_rec) 4211 { 4212 int status; 4213 enum ocfs2_contig_type ret = CONTIG_NONE; 4214 u32 left_cpos, right_cpos; 4215 struct ocfs2_extent_rec *rec = NULL; 4216 struct ocfs2_extent_list *new_el; 4217 struct ocfs2_path *left_path = NULL, *right_path = NULL; 4218 struct buffer_head *bh; 4219 struct ocfs2_extent_block *eb; 4220 4221 if (index > 0) { 4222 rec = &el->l_recs[index - 1]; 4223 } else if (path->p_tree_depth > 0) { 4224 status = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 4225 path, &left_cpos); 4226 if (status) 4227 goto out; 4228 4229 if (left_cpos != 0) { 4230 left_path = ocfs2_new_path_from_path(path); 4231 if (!left_path) 4232 goto out; 4233 4234 status = ocfs2_find_path(inode, left_path, left_cpos); 4235 if (status) 4236 goto out; 4237 4238 new_el = path_leaf_el(left_path); 4239 4240 if (le16_to_cpu(new_el->l_next_free_rec) != 4241 le16_to_cpu(new_el->l_count)) { 4242 bh = path_leaf_bh(left_path); 4243 eb = (struct ocfs2_extent_block *)bh->b_data; 4244 ocfs2_error(inode->i_sb, 4245 "Extent block #%llu has an " 4246 "invalid l_next_free_rec of " 4247 "%d. It should have " 4248 "matched the l_count of %d", 4249 (unsigned long long)le64_to_cpu(eb->h_blkno), 4250 le16_to_cpu(new_el->l_next_free_rec), 4251 le16_to_cpu(new_el->l_count)); 4252 status = -EINVAL; 4253 goto out; 4254 } 4255 rec = &new_el->l_recs[ 4256 le16_to_cpu(new_el->l_next_free_rec) - 1]; 4257 } 4258 } 4259 4260 /* 4261 * We're careful to check for an empty extent record here - 4262 * the merge code will know what to do if it sees one. 4263 */ 4264 if (rec) { 4265 if (index == 1 && ocfs2_is_empty_extent(rec)) { 4266 if (split_rec->e_cpos == el->l_recs[index].e_cpos) 4267 ret = CONTIG_RIGHT; 4268 } else { 4269 ret = ocfs2_extent_contig(inode, rec, split_rec); 4270 } 4271 } 4272 4273 rec = NULL; 4274 if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) 4275 rec = &el->l_recs[index + 1]; 4276 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) && 4277 path->p_tree_depth > 0) { 4278 status = ocfs2_find_cpos_for_right_leaf(inode->i_sb, 4279 path, &right_cpos); 4280 if (status) 4281 goto out; 4282 4283 if (right_cpos == 0) 4284 goto out; 4285 4286 right_path = ocfs2_new_path_from_path(path); 4287 if (!right_path) 4288 goto out; 4289 4290 status = ocfs2_find_path(inode, right_path, right_cpos); 4291 if (status) 4292 goto out; 4293 4294 new_el = path_leaf_el(right_path); 4295 rec = &new_el->l_recs[0]; 4296 if (ocfs2_is_empty_extent(rec)) { 4297 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) { 4298 bh = path_leaf_bh(right_path); 4299 eb = (struct ocfs2_extent_block *)bh->b_data; 4300 ocfs2_error(inode->i_sb, 4301 "Extent block #%llu has an " 4302 "invalid l_next_free_rec of %d", 4303 (unsigned long long)le64_to_cpu(eb->h_blkno), 4304 le16_to_cpu(new_el->l_next_free_rec)); 4305 status = -EINVAL; 4306 goto out; 4307 } 4308 rec = &new_el->l_recs[1]; 4309 } 4310 } 4311 4312 if (rec) { 4313 enum ocfs2_contig_type contig_type; 4314 4315 contig_type = ocfs2_extent_contig(inode, rec, split_rec); 4316 4317 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT) 4318 ret = CONTIG_LEFTRIGHT; 4319 else if (ret == CONTIG_NONE) 4320 ret = contig_type; 4321 } 4322 4323 out: 4324 if (left_path) 4325 ocfs2_free_path(left_path); 4326 if (right_path) 4327 ocfs2_free_path(right_path); 4328 4329 return ret; 4330 } 4331 4332 static void ocfs2_figure_contig_type(struct inode *inode, 4333 struct ocfs2_insert_type *insert, 4334 struct ocfs2_extent_list *el, 4335 struct ocfs2_extent_rec *insert_rec, 4336 struct ocfs2_extent_tree *et) 4337 { 4338 int i; 4339 enum ocfs2_contig_type contig_type = CONTIG_NONE; 4340 4341 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4342 4343 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 4344 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i], 4345 insert_rec); 4346 if (contig_type != CONTIG_NONE) { 4347 insert->ins_contig_index = i; 4348 break; 4349 } 4350 } 4351 insert->ins_contig = contig_type; 4352 4353 if (insert->ins_contig != CONTIG_NONE) { 4354 struct ocfs2_extent_rec *rec = 4355 &el->l_recs[insert->ins_contig_index]; 4356 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) + 4357 le16_to_cpu(insert_rec->e_leaf_clusters); 4358 4359 /* 4360 * Caller might want us to limit the size of extents, don't 4361 * calculate contiguousness if we might exceed that limit. 4362 */ 4363 if (et->et_max_leaf_clusters && 4364 (len > et->et_max_leaf_clusters)) 4365 insert->ins_contig = CONTIG_NONE; 4366 } 4367 } 4368 4369 /* 4370 * This should only be called against the righmost leaf extent list. 4371 * 4372 * ocfs2_figure_appending_type() will figure out whether we'll have to 4373 * insert at the tail of the rightmost leaf. 4374 * 4375 * This should also work against the root extent list for tree's with 0 4376 * depth. If we consider the root extent list to be the rightmost leaf node 4377 * then the logic here makes sense. 4378 */ 4379 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert, 4380 struct ocfs2_extent_list *el, 4381 struct ocfs2_extent_rec *insert_rec) 4382 { 4383 int i; 4384 u32 cpos = le32_to_cpu(insert_rec->e_cpos); 4385 struct ocfs2_extent_rec *rec; 4386 4387 insert->ins_appending = APPEND_NONE; 4388 4389 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4390 4391 if (!el->l_next_free_rec) 4392 goto set_tail_append; 4393 4394 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 4395 /* Were all records empty? */ 4396 if (le16_to_cpu(el->l_next_free_rec) == 1) 4397 goto set_tail_append; 4398 } 4399 4400 i = le16_to_cpu(el->l_next_free_rec) - 1; 4401 rec = &el->l_recs[i]; 4402 4403 if (cpos >= 4404 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters))) 4405 goto set_tail_append; 4406 4407 return; 4408 4409 set_tail_append: 4410 insert->ins_appending = APPEND_TAIL; 4411 } 4412 4413 /* 4414 * Helper function called at the begining of an insert. 4415 * 4416 * This computes a few things that are commonly used in the process of 4417 * inserting into the btree: 4418 * - Whether the new extent is contiguous with an existing one. 4419 * - The current tree depth. 4420 * - Whether the insert is an appending one. 4421 * - The total # of free records in the tree. 4422 * 4423 * All of the information is stored on the ocfs2_insert_type 4424 * structure. 4425 */ 4426 static int ocfs2_figure_insert_type(struct inode *inode, 4427 struct ocfs2_extent_tree *et, 4428 struct buffer_head **last_eb_bh, 4429 struct ocfs2_extent_rec *insert_rec, 4430 int *free_records, 4431 struct ocfs2_insert_type *insert) 4432 { 4433 int ret; 4434 struct ocfs2_extent_block *eb; 4435 struct ocfs2_extent_list *el; 4436 struct ocfs2_path *path = NULL; 4437 struct buffer_head *bh = NULL; 4438 4439 insert->ins_split = SPLIT_NONE; 4440 4441 el = et->et_root_el; 4442 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth); 4443 4444 if (el->l_tree_depth) { 4445 /* 4446 * If we have tree depth, we read in the 4447 * rightmost extent block ahead of time as 4448 * ocfs2_figure_insert_type() and ocfs2_add_branch() 4449 * may want it later. 4450 */ 4451 ret = ocfs2_read_extent_block(inode, 4452 ocfs2_et_get_last_eb_blk(et), 4453 &bh); 4454 if (ret) { 4455 mlog_exit(ret); 4456 goto out; 4457 } 4458 eb = (struct ocfs2_extent_block *) bh->b_data; 4459 el = &eb->h_list; 4460 } 4461 4462 /* 4463 * Unless we have a contiguous insert, we'll need to know if 4464 * there is room left in our allocation tree for another 4465 * extent record. 4466 * 4467 * XXX: This test is simplistic, we can search for empty 4468 * extent records too. 4469 */ 4470 *free_records = le16_to_cpu(el->l_count) - 4471 le16_to_cpu(el->l_next_free_rec); 4472 4473 if (!insert->ins_tree_depth) { 4474 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et); 4475 ocfs2_figure_appending_type(insert, el, insert_rec); 4476 return 0; 4477 } 4478 4479 path = ocfs2_new_path_from_et(et); 4480 if (!path) { 4481 ret = -ENOMEM; 4482 mlog_errno(ret); 4483 goto out; 4484 } 4485 4486 /* 4487 * In the case that we're inserting past what the tree 4488 * currently accounts for, ocfs2_find_path() will return for 4489 * us the rightmost tree path. This is accounted for below in 4490 * the appending code. 4491 */ 4492 ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos)); 4493 if (ret) { 4494 mlog_errno(ret); 4495 goto out; 4496 } 4497 4498 el = path_leaf_el(path); 4499 4500 /* 4501 * Now that we have the path, there's two things we want to determine: 4502 * 1) Contiguousness (also set contig_index if this is so) 4503 * 4504 * 2) Are we doing an append? We can trivially break this up 4505 * into two types of appends: simple record append, or a 4506 * rotate inside the tail leaf. 4507 */ 4508 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et); 4509 4510 /* 4511 * The insert code isn't quite ready to deal with all cases of 4512 * left contiguousness. Specifically, if it's an insert into 4513 * the 1st record in a leaf, it will require the adjustment of 4514 * cluster count on the last record of the path directly to it's 4515 * left. For now, just catch that case and fool the layers 4516 * above us. This works just fine for tree_depth == 0, which 4517 * is why we allow that above. 4518 */ 4519 if (insert->ins_contig == CONTIG_LEFT && 4520 insert->ins_contig_index == 0) 4521 insert->ins_contig = CONTIG_NONE; 4522 4523 /* 4524 * Ok, so we can simply compare against last_eb to figure out 4525 * whether the path doesn't exist. This will only happen in 4526 * the case that we're doing a tail append, so maybe we can 4527 * take advantage of that information somehow. 4528 */ 4529 if (ocfs2_et_get_last_eb_blk(et) == 4530 path_leaf_bh(path)->b_blocknr) { 4531 /* 4532 * Ok, ocfs2_find_path() returned us the rightmost 4533 * tree path. This might be an appending insert. There are 4534 * two cases: 4535 * 1) We're doing a true append at the tail: 4536 * -This might even be off the end of the leaf 4537 * 2) We're "appending" by rotating in the tail 4538 */ 4539 ocfs2_figure_appending_type(insert, el, insert_rec); 4540 } 4541 4542 out: 4543 ocfs2_free_path(path); 4544 4545 if (ret == 0) 4546 *last_eb_bh = bh; 4547 else 4548 brelse(bh); 4549 return ret; 4550 } 4551 4552 /* 4553 * Insert an extent into an inode btree. 4554 * 4555 * The caller needs to update fe->i_clusters 4556 */ 4557 int ocfs2_insert_extent(struct ocfs2_super *osb, 4558 handle_t *handle, 4559 struct inode *inode, 4560 struct ocfs2_extent_tree *et, 4561 u32 cpos, 4562 u64 start_blk, 4563 u32 new_clusters, 4564 u8 flags, 4565 struct ocfs2_alloc_context *meta_ac) 4566 { 4567 int status; 4568 int uninitialized_var(free_records); 4569 struct buffer_head *last_eb_bh = NULL; 4570 struct ocfs2_insert_type insert = {0, }; 4571 struct ocfs2_extent_rec rec; 4572 4573 mlog(0, "add %u clusters at position %u to inode %llu\n", 4574 new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno); 4575 4576 memset(&rec, 0, sizeof(rec)); 4577 rec.e_cpos = cpu_to_le32(cpos); 4578 rec.e_blkno = cpu_to_le64(start_blk); 4579 rec.e_leaf_clusters = cpu_to_le16(new_clusters); 4580 rec.e_flags = flags; 4581 status = ocfs2_et_insert_check(inode, et, &rec); 4582 if (status) { 4583 mlog_errno(status); 4584 goto bail; 4585 } 4586 4587 status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec, 4588 &free_records, &insert); 4589 if (status < 0) { 4590 mlog_errno(status); 4591 goto bail; 4592 } 4593 4594 mlog(0, "Insert.appending: %u, Insert.Contig: %u, " 4595 "Insert.contig_index: %d, Insert.free_records: %d, " 4596 "Insert.tree_depth: %d\n", 4597 insert.ins_appending, insert.ins_contig, insert.ins_contig_index, 4598 free_records, insert.ins_tree_depth); 4599 4600 if (insert.ins_contig == CONTIG_NONE && free_records == 0) { 4601 status = ocfs2_grow_tree(inode, handle, et, 4602 &insert.ins_tree_depth, &last_eb_bh, 4603 meta_ac); 4604 if (status) { 4605 mlog_errno(status); 4606 goto bail; 4607 } 4608 } 4609 4610 /* Finally, we can add clusters. This might rotate the tree for us. */ 4611 status = ocfs2_do_insert_extent(inode, handle, et, &rec, &insert); 4612 if (status < 0) 4613 mlog_errno(status); 4614 else if (et->et_ops == &ocfs2_dinode_et_ops) 4615 ocfs2_extent_map_insert_rec(inode, &rec); 4616 4617 bail: 4618 brelse(last_eb_bh); 4619 4620 mlog_exit(status); 4621 return status; 4622 } 4623 4624 /* 4625 * Allcate and add clusters into the extent b-tree. 4626 * The new clusters(clusters_to_add) will be inserted at logical_offset. 4627 * The extent b-tree's root is specified by et, and 4628 * it is not limited to the file storage. Any extent tree can use this 4629 * function if it implements the proper ocfs2_extent_tree. 4630 */ 4631 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb, 4632 struct inode *inode, 4633 u32 *logical_offset, 4634 u32 clusters_to_add, 4635 int mark_unwritten, 4636 struct ocfs2_extent_tree *et, 4637 handle_t *handle, 4638 struct ocfs2_alloc_context *data_ac, 4639 struct ocfs2_alloc_context *meta_ac, 4640 enum ocfs2_alloc_restarted *reason_ret) 4641 { 4642 int status = 0; 4643 int free_extents; 4644 enum ocfs2_alloc_restarted reason = RESTART_NONE; 4645 u32 bit_off, num_bits; 4646 u64 block; 4647 u8 flags = 0; 4648 4649 BUG_ON(!clusters_to_add); 4650 4651 if (mark_unwritten) 4652 flags = OCFS2_EXT_UNWRITTEN; 4653 4654 free_extents = ocfs2_num_free_extents(osb, inode, et); 4655 if (free_extents < 0) { 4656 status = free_extents; 4657 mlog_errno(status); 4658 goto leave; 4659 } 4660 4661 /* there are two cases which could cause us to EAGAIN in the 4662 * we-need-more-metadata case: 4663 * 1) we haven't reserved *any* 4664 * 2) we are so fragmented, we've needed to add metadata too 4665 * many times. */ 4666 if (!free_extents && !meta_ac) { 4667 mlog(0, "we haven't reserved any metadata!\n"); 4668 status = -EAGAIN; 4669 reason = RESTART_META; 4670 goto leave; 4671 } else if ((!free_extents) 4672 && (ocfs2_alloc_context_bits_left(meta_ac) 4673 < ocfs2_extend_meta_needed(et->et_root_el))) { 4674 mlog(0, "filesystem is really fragmented...\n"); 4675 status = -EAGAIN; 4676 reason = RESTART_META; 4677 goto leave; 4678 } 4679 4680 status = __ocfs2_claim_clusters(osb, handle, data_ac, 1, 4681 clusters_to_add, &bit_off, &num_bits); 4682 if (status < 0) { 4683 if (status != -ENOSPC) 4684 mlog_errno(status); 4685 goto leave; 4686 } 4687 4688 BUG_ON(num_bits > clusters_to_add); 4689 4690 /* reserve our write early -- insert_extent may update the tree root */ 4691 status = ocfs2_et_root_journal_access(handle, inode, et, 4692 OCFS2_JOURNAL_ACCESS_WRITE); 4693 if (status < 0) { 4694 mlog_errno(status); 4695 goto leave; 4696 } 4697 4698 block = ocfs2_clusters_to_blocks(osb->sb, bit_off); 4699 mlog(0, "Allocating %u clusters at block %u for inode %llu\n", 4700 num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno); 4701 status = ocfs2_insert_extent(osb, handle, inode, et, 4702 *logical_offset, block, 4703 num_bits, flags, meta_ac); 4704 if (status < 0) { 4705 mlog_errno(status); 4706 goto leave; 4707 } 4708 4709 status = ocfs2_journal_dirty(handle, et->et_root_bh); 4710 if (status < 0) { 4711 mlog_errno(status); 4712 goto leave; 4713 } 4714 4715 clusters_to_add -= num_bits; 4716 *logical_offset += num_bits; 4717 4718 if (clusters_to_add) { 4719 mlog(0, "need to alloc once more, wanted = %u\n", 4720 clusters_to_add); 4721 status = -EAGAIN; 4722 reason = RESTART_TRANS; 4723 } 4724 4725 leave: 4726 mlog_exit(status); 4727 if (reason_ret) 4728 *reason_ret = reason; 4729 return status; 4730 } 4731 4732 static void ocfs2_make_right_split_rec(struct super_block *sb, 4733 struct ocfs2_extent_rec *split_rec, 4734 u32 cpos, 4735 struct ocfs2_extent_rec *rec) 4736 { 4737 u32 rec_cpos = le32_to_cpu(rec->e_cpos); 4738 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters); 4739 4740 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec)); 4741 4742 split_rec->e_cpos = cpu_to_le32(cpos); 4743 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos); 4744 4745 split_rec->e_blkno = rec->e_blkno; 4746 le64_add_cpu(&split_rec->e_blkno, 4747 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos)); 4748 4749 split_rec->e_flags = rec->e_flags; 4750 } 4751 4752 static int ocfs2_split_and_insert(struct inode *inode, 4753 handle_t *handle, 4754 struct ocfs2_path *path, 4755 struct ocfs2_extent_tree *et, 4756 struct buffer_head **last_eb_bh, 4757 int split_index, 4758 struct ocfs2_extent_rec *orig_split_rec, 4759 struct ocfs2_alloc_context *meta_ac) 4760 { 4761 int ret = 0, depth; 4762 unsigned int insert_range, rec_range, do_leftright = 0; 4763 struct ocfs2_extent_rec tmprec; 4764 struct ocfs2_extent_list *rightmost_el; 4765 struct ocfs2_extent_rec rec; 4766 struct ocfs2_extent_rec split_rec = *orig_split_rec; 4767 struct ocfs2_insert_type insert; 4768 struct ocfs2_extent_block *eb; 4769 4770 leftright: 4771 /* 4772 * Store a copy of the record on the stack - it might move 4773 * around as the tree is manipulated below. 4774 */ 4775 rec = path_leaf_el(path)->l_recs[split_index]; 4776 4777 rightmost_el = et->et_root_el; 4778 4779 depth = le16_to_cpu(rightmost_el->l_tree_depth); 4780 if (depth) { 4781 BUG_ON(!(*last_eb_bh)); 4782 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 4783 rightmost_el = &eb->h_list; 4784 } 4785 4786 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 4787 le16_to_cpu(rightmost_el->l_count)) { 4788 ret = ocfs2_grow_tree(inode, handle, et, 4789 &depth, last_eb_bh, meta_ac); 4790 if (ret) { 4791 mlog_errno(ret); 4792 goto out; 4793 } 4794 } 4795 4796 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 4797 insert.ins_appending = APPEND_NONE; 4798 insert.ins_contig = CONTIG_NONE; 4799 insert.ins_tree_depth = depth; 4800 4801 insert_range = le32_to_cpu(split_rec.e_cpos) + 4802 le16_to_cpu(split_rec.e_leaf_clusters); 4803 rec_range = le32_to_cpu(rec.e_cpos) + 4804 le16_to_cpu(rec.e_leaf_clusters); 4805 4806 if (split_rec.e_cpos == rec.e_cpos) { 4807 insert.ins_split = SPLIT_LEFT; 4808 } else if (insert_range == rec_range) { 4809 insert.ins_split = SPLIT_RIGHT; 4810 } else { 4811 /* 4812 * Left/right split. We fake this as a right split 4813 * first and then make a second pass as a left split. 4814 */ 4815 insert.ins_split = SPLIT_RIGHT; 4816 4817 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range, 4818 &rec); 4819 4820 split_rec = tmprec; 4821 4822 BUG_ON(do_leftright); 4823 do_leftright = 1; 4824 } 4825 4826 ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert); 4827 if (ret) { 4828 mlog_errno(ret); 4829 goto out; 4830 } 4831 4832 if (do_leftright == 1) { 4833 u32 cpos; 4834 struct ocfs2_extent_list *el; 4835 4836 do_leftright++; 4837 split_rec = *orig_split_rec; 4838 4839 ocfs2_reinit_path(path, 1); 4840 4841 cpos = le32_to_cpu(split_rec.e_cpos); 4842 ret = ocfs2_find_path(inode, path, cpos); 4843 if (ret) { 4844 mlog_errno(ret); 4845 goto out; 4846 } 4847 4848 el = path_leaf_el(path); 4849 split_index = ocfs2_search_extent_list(el, cpos); 4850 goto leftright; 4851 } 4852 out: 4853 4854 return ret; 4855 } 4856 4857 static int ocfs2_replace_extent_rec(struct inode *inode, 4858 handle_t *handle, 4859 struct ocfs2_path *path, 4860 struct ocfs2_extent_list *el, 4861 int split_index, 4862 struct ocfs2_extent_rec *split_rec) 4863 { 4864 int ret; 4865 4866 ret = ocfs2_path_bh_journal_access(handle, inode, path, 4867 path_num_items(path) - 1); 4868 if (ret) { 4869 mlog_errno(ret); 4870 goto out; 4871 } 4872 4873 el->l_recs[split_index] = *split_rec; 4874 4875 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 4876 out: 4877 return ret; 4878 } 4879 4880 /* 4881 * Mark part or all of the extent record at split_index in the leaf 4882 * pointed to by path as written. This removes the unwritten 4883 * extent flag. 4884 * 4885 * Care is taken to handle contiguousness so as to not grow the tree. 4886 * 4887 * meta_ac is not strictly necessary - we only truly need it if growth 4888 * of the tree is required. All other cases will degrade into a less 4889 * optimal tree layout. 4890 * 4891 * last_eb_bh should be the rightmost leaf block for any extent 4892 * btree. Since a split may grow the tree or a merge might shrink it, 4893 * the caller cannot trust the contents of that buffer after this call. 4894 * 4895 * This code is optimized for readability - several passes might be 4896 * made over certain portions of the tree. All of those blocks will 4897 * have been brought into cache (and pinned via the journal), so the 4898 * extra overhead is not expressed in terms of disk reads. 4899 */ 4900 static int __ocfs2_mark_extent_written(struct inode *inode, 4901 struct ocfs2_extent_tree *et, 4902 handle_t *handle, 4903 struct ocfs2_path *path, 4904 int split_index, 4905 struct ocfs2_extent_rec *split_rec, 4906 struct ocfs2_alloc_context *meta_ac, 4907 struct ocfs2_cached_dealloc_ctxt *dealloc) 4908 { 4909 int ret = 0; 4910 struct ocfs2_extent_list *el = path_leaf_el(path); 4911 struct buffer_head *last_eb_bh = NULL; 4912 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 4913 struct ocfs2_merge_ctxt ctxt; 4914 struct ocfs2_extent_list *rightmost_el; 4915 4916 if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) { 4917 ret = -EIO; 4918 mlog_errno(ret); 4919 goto out; 4920 } 4921 4922 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) || 4923 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) < 4924 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) { 4925 ret = -EIO; 4926 mlog_errno(ret); 4927 goto out; 4928 } 4929 4930 ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el, 4931 split_index, 4932 split_rec); 4933 4934 /* 4935 * The core merge / split code wants to know how much room is 4936 * left in this inodes allocation tree, so we pass the 4937 * rightmost extent list. 4938 */ 4939 if (path->p_tree_depth) { 4940 struct ocfs2_extent_block *eb; 4941 4942 ret = ocfs2_read_extent_block(inode, 4943 ocfs2_et_get_last_eb_blk(et), 4944 &last_eb_bh); 4945 if (ret) { 4946 mlog_exit(ret); 4947 goto out; 4948 } 4949 4950 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 4951 rightmost_el = &eb->h_list; 4952 } else 4953 rightmost_el = path_root_el(path); 4954 4955 if (rec->e_cpos == split_rec->e_cpos && 4956 rec->e_leaf_clusters == split_rec->e_leaf_clusters) 4957 ctxt.c_split_covers_rec = 1; 4958 else 4959 ctxt.c_split_covers_rec = 0; 4960 4961 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]); 4962 4963 mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n", 4964 split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent, 4965 ctxt.c_split_covers_rec); 4966 4967 if (ctxt.c_contig_type == CONTIG_NONE) { 4968 if (ctxt.c_split_covers_rec) 4969 ret = ocfs2_replace_extent_rec(inode, handle, 4970 path, el, 4971 split_index, split_rec); 4972 else 4973 ret = ocfs2_split_and_insert(inode, handle, path, et, 4974 &last_eb_bh, split_index, 4975 split_rec, meta_ac); 4976 if (ret) 4977 mlog_errno(ret); 4978 } else { 4979 ret = ocfs2_try_to_merge_extent(inode, handle, path, 4980 split_index, split_rec, 4981 dealloc, &ctxt, et); 4982 if (ret) 4983 mlog_errno(ret); 4984 } 4985 4986 out: 4987 brelse(last_eb_bh); 4988 return ret; 4989 } 4990 4991 /* 4992 * Mark the already-existing extent at cpos as written for len clusters. 4993 * 4994 * If the existing extent is larger than the request, initiate a 4995 * split. An attempt will be made at merging with adjacent extents. 4996 * 4997 * The caller is responsible for passing down meta_ac if we'll need it. 4998 */ 4999 int ocfs2_mark_extent_written(struct inode *inode, 5000 struct ocfs2_extent_tree *et, 5001 handle_t *handle, u32 cpos, u32 len, u32 phys, 5002 struct ocfs2_alloc_context *meta_ac, 5003 struct ocfs2_cached_dealloc_ctxt *dealloc) 5004 { 5005 int ret, index; 5006 u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys); 5007 struct ocfs2_extent_rec split_rec; 5008 struct ocfs2_path *left_path = NULL; 5009 struct ocfs2_extent_list *el; 5010 5011 mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n", 5012 inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno); 5013 5014 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) { 5015 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents " 5016 "that are being written to, but the feature bit " 5017 "is not set in the super block.", 5018 (unsigned long long)OCFS2_I(inode)->ip_blkno); 5019 ret = -EROFS; 5020 goto out; 5021 } 5022 5023 /* 5024 * XXX: This should be fixed up so that we just re-insert the 5025 * next extent records. 5026 * 5027 * XXX: This is a hack on the extent tree, maybe it should be 5028 * an op? 5029 */ 5030 if (et->et_ops == &ocfs2_dinode_et_ops) 5031 ocfs2_extent_map_trunc(inode, 0); 5032 5033 left_path = ocfs2_new_path_from_et(et); 5034 if (!left_path) { 5035 ret = -ENOMEM; 5036 mlog_errno(ret); 5037 goto out; 5038 } 5039 5040 ret = ocfs2_find_path(inode, left_path, cpos); 5041 if (ret) { 5042 mlog_errno(ret); 5043 goto out; 5044 } 5045 el = path_leaf_el(left_path); 5046 5047 index = ocfs2_search_extent_list(el, cpos); 5048 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 5049 ocfs2_error(inode->i_sb, 5050 "Inode %llu has an extent at cpos %u which can no " 5051 "longer be found.\n", 5052 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 5053 ret = -EROFS; 5054 goto out; 5055 } 5056 5057 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec)); 5058 split_rec.e_cpos = cpu_to_le32(cpos); 5059 split_rec.e_leaf_clusters = cpu_to_le16(len); 5060 split_rec.e_blkno = cpu_to_le64(start_blkno); 5061 split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags; 5062 split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN; 5063 5064 ret = __ocfs2_mark_extent_written(inode, et, handle, left_path, 5065 index, &split_rec, meta_ac, 5066 dealloc); 5067 if (ret) 5068 mlog_errno(ret); 5069 5070 out: 5071 ocfs2_free_path(left_path); 5072 return ret; 5073 } 5074 5075 static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et, 5076 handle_t *handle, struct ocfs2_path *path, 5077 int index, u32 new_range, 5078 struct ocfs2_alloc_context *meta_ac) 5079 { 5080 int ret, depth, credits = handle->h_buffer_credits; 5081 struct buffer_head *last_eb_bh = NULL; 5082 struct ocfs2_extent_block *eb; 5083 struct ocfs2_extent_list *rightmost_el, *el; 5084 struct ocfs2_extent_rec split_rec; 5085 struct ocfs2_extent_rec *rec; 5086 struct ocfs2_insert_type insert; 5087 5088 /* 5089 * Setup the record to split before we grow the tree. 5090 */ 5091 el = path_leaf_el(path); 5092 rec = &el->l_recs[index]; 5093 ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec); 5094 5095 depth = path->p_tree_depth; 5096 if (depth > 0) { 5097 ret = ocfs2_read_extent_block(inode, 5098 ocfs2_et_get_last_eb_blk(et), 5099 &last_eb_bh); 5100 if (ret < 0) { 5101 mlog_errno(ret); 5102 goto out; 5103 } 5104 5105 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5106 rightmost_el = &eb->h_list; 5107 } else 5108 rightmost_el = path_leaf_el(path); 5109 5110 credits += path->p_tree_depth + 5111 ocfs2_extend_meta_needed(et->et_root_el); 5112 ret = ocfs2_extend_trans(handle, credits); 5113 if (ret) { 5114 mlog_errno(ret); 5115 goto out; 5116 } 5117 5118 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 5119 le16_to_cpu(rightmost_el->l_count)) { 5120 ret = ocfs2_grow_tree(inode, handle, et, &depth, &last_eb_bh, 5121 meta_ac); 5122 if (ret) { 5123 mlog_errno(ret); 5124 goto out; 5125 } 5126 } 5127 5128 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 5129 insert.ins_appending = APPEND_NONE; 5130 insert.ins_contig = CONTIG_NONE; 5131 insert.ins_split = SPLIT_RIGHT; 5132 insert.ins_tree_depth = depth; 5133 5134 ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert); 5135 if (ret) 5136 mlog_errno(ret); 5137 5138 out: 5139 brelse(last_eb_bh); 5140 return ret; 5141 } 5142 5143 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle, 5144 struct ocfs2_path *path, int index, 5145 struct ocfs2_cached_dealloc_ctxt *dealloc, 5146 u32 cpos, u32 len, 5147 struct ocfs2_extent_tree *et) 5148 { 5149 int ret; 5150 u32 left_cpos, rec_range, trunc_range; 5151 int wants_rotate = 0, is_rightmost_tree_rec = 0; 5152 struct super_block *sb = inode->i_sb; 5153 struct ocfs2_path *left_path = NULL; 5154 struct ocfs2_extent_list *el = path_leaf_el(path); 5155 struct ocfs2_extent_rec *rec; 5156 struct ocfs2_extent_block *eb; 5157 5158 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) { 5159 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et); 5160 if (ret) { 5161 mlog_errno(ret); 5162 goto out; 5163 } 5164 5165 index--; 5166 } 5167 5168 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) && 5169 path->p_tree_depth) { 5170 /* 5171 * Check whether this is the rightmost tree record. If 5172 * we remove all of this record or part of its right 5173 * edge then an update of the record lengths above it 5174 * will be required. 5175 */ 5176 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 5177 if (eb->h_next_leaf_blk == 0) 5178 is_rightmost_tree_rec = 1; 5179 } 5180 5181 rec = &el->l_recs[index]; 5182 if (index == 0 && path->p_tree_depth && 5183 le32_to_cpu(rec->e_cpos) == cpos) { 5184 /* 5185 * Changing the leftmost offset (via partial or whole 5186 * record truncate) of an interior (or rightmost) path 5187 * means we have to update the subtree that is formed 5188 * by this leaf and the one to it's left. 5189 * 5190 * There are two cases we can skip: 5191 * 1) Path is the leftmost one in our inode tree. 5192 * 2) The leaf is rightmost and will be empty after 5193 * we remove the extent record - the rotate code 5194 * knows how to update the newly formed edge. 5195 */ 5196 5197 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, 5198 &left_cpos); 5199 if (ret) { 5200 mlog_errno(ret); 5201 goto out; 5202 } 5203 5204 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) { 5205 left_path = ocfs2_new_path_from_path(path); 5206 if (!left_path) { 5207 ret = -ENOMEM; 5208 mlog_errno(ret); 5209 goto out; 5210 } 5211 5212 ret = ocfs2_find_path(inode, left_path, left_cpos); 5213 if (ret) { 5214 mlog_errno(ret); 5215 goto out; 5216 } 5217 } 5218 } 5219 5220 ret = ocfs2_extend_rotate_transaction(handle, 0, 5221 handle->h_buffer_credits, 5222 path); 5223 if (ret) { 5224 mlog_errno(ret); 5225 goto out; 5226 } 5227 5228 ret = ocfs2_journal_access_path(inode, handle, path); 5229 if (ret) { 5230 mlog_errno(ret); 5231 goto out; 5232 } 5233 5234 ret = ocfs2_journal_access_path(inode, handle, left_path); 5235 if (ret) { 5236 mlog_errno(ret); 5237 goto out; 5238 } 5239 5240 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5241 trunc_range = cpos + len; 5242 5243 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) { 5244 int next_free; 5245 5246 memset(rec, 0, sizeof(*rec)); 5247 ocfs2_cleanup_merge(el, index); 5248 wants_rotate = 1; 5249 5250 next_free = le16_to_cpu(el->l_next_free_rec); 5251 if (is_rightmost_tree_rec && next_free > 1) { 5252 /* 5253 * We skip the edge update if this path will 5254 * be deleted by the rotate code. 5255 */ 5256 rec = &el->l_recs[next_free - 1]; 5257 ocfs2_adjust_rightmost_records(inode, handle, path, 5258 rec); 5259 } 5260 } else if (le32_to_cpu(rec->e_cpos) == cpos) { 5261 /* Remove leftmost portion of the record. */ 5262 le32_add_cpu(&rec->e_cpos, len); 5263 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len)); 5264 le16_add_cpu(&rec->e_leaf_clusters, -len); 5265 } else if (rec_range == trunc_range) { 5266 /* Remove rightmost portion of the record */ 5267 le16_add_cpu(&rec->e_leaf_clusters, -len); 5268 if (is_rightmost_tree_rec) 5269 ocfs2_adjust_rightmost_records(inode, handle, path, rec); 5270 } else { 5271 /* Caller should have trapped this. */ 5272 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) " 5273 "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, 5274 le32_to_cpu(rec->e_cpos), 5275 le16_to_cpu(rec->e_leaf_clusters), cpos, len); 5276 BUG(); 5277 } 5278 5279 if (left_path) { 5280 int subtree_index; 5281 5282 subtree_index = ocfs2_find_subtree_root(inode, left_path, path); 5283 ocfs2_complete_edge_insert(inode, handle, left_path, path, 5284 subtree_index); 5285 } 5286 5287 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 5288 5289 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et); 5290 if (ret) { 5291 mlog_errno(ret); 5292 goto out; 5293 } 5294 5295 out: 5296 ocfs2_free_path(left_path); 5297 return ret; 5298 } 5299 5300 int ocfs2_remove_extent(struct inode *inode, 5301 struct ocfs2_extent_tree *et, 5302 u32 cpos, u32 len, handle_t *handle, 5303 struct ocfs2_alloc_context *meta_ac, 5304 struct ocfs2_cached_dealloc_ctxt *dealloc) 5305 { 5306 int ret, index; 5307 u32 rec_range, trunc_range; 5308 struct ocfs2_extent_rec *rec; 5309 struct ocfs2_extent_list *el; 5310 struct ocfs2_path *path = NULL; 5311 5312 ocfs2_extent_map_trunc(inode, 0); 5313 5314 path = ocfs2_new_path_from_et(et); 5315 if (!path) { 5316 ret = -ENOMEM; 5317 mlog_errno(ret); 5318 goto out; 5319 } 5320 5321 ret = ocfs2_find_path(inode, path, cpos); 5322 if (ret) { 5323 mlog_errno(ret); 5324 goto out; 5325 } 5326 5327 el = path_leaf_el(path); 5328 index = ocfs2_search_extent_list(el, cpos); 5329 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 5330 ocfs2_error(inode->i_sb, 5331 "Inode %llu has an extent at cpos %u which can no " 5332 "longer be found.\n", 5333 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 5334 ret = -EROFS; 5335 goto out; 5336 } 5337 5338 /* 5339 * We have 3 cases of extent removal: 5340 * 1) Range covers the entire extent rec 5341 * 2) Range begins or ends on one edge of the extent rec 5342 * 3) Range is in the middle of the extent rec (no shared edges) 5343 * 5344 * For case 1 we remove the extent rec and left rotate to 5345 * fill the hole. 5346 * 5347 * For case 2 we just shrink the existing extent rec, with a 5348 * tree update if the shrinking edge is also the edge of an 5349 * extent block. 5350 * 5351 * For case 3 we do a right split to turn the extent rec into 5352 * something case 2 can handle. 5353 */ 5354 rec = &el->l_recs[index]; 5355 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5356 trunc_range = cpos + len; 5357 5358 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range); 5359 5360 mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d " 5361 "(cpos %u, len %u)\n", 5362 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index, 5363 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec)); 5364 5365 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) { 5366 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc, 5367 cpos, len, et); 5368 if (ret) { 5369 mlog_errno(ret); 5370 goto out; 5371 } 5372 } else { 5373 ret = ocfs2_split_tree(inode, et, handle, path, index, 5374 trunc_range, meta_ac); 5375 if (ret) { 5376 mlog_errno(ret); 5377 goto out; 5378 } 5379 5380 /* 5381 * The split could have manipulated the tree enough to 5382 * move the record location, so we have to look for it again. 5383 */ 5384 ocfs2_reinit_path(path, 1); 5385 5386 ret = ocfs2_find_path(inode, path, cpos); 5387 if (ret) { 5388 mlog_errno(ret); 5389 goto out; 5390 } 5391 5392 el = path_leaf_el(path); 5393 index = ocfs2_search_extent_list(el, cpos); 5394 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 5395 ocfs2_error(inode->i_sb, 5396 "Inode %llu: split at cpos %u lost record.", 5397 (unsigned long long)OCFS2_I(inode)->ip_blkno, 5398 cpos); 5399 ret = -EROFS; 5400 goto out; 5401 } 5402 5403 /* 5404 * Double check our values here. If anything is fishy, 5405 * it's easier to catch it at the top level. 5406 */ 5407 rec = &el->l_recs[index]; 5408 rec_range = le32_to_cpu(rec->e_cpos) + 5409 ocfs2_rec_clusters(el, rec); 5410 if (rec_range != trunc_range) { 5411 ocfs2_error(inode->i_sb, 5412 "Inode %llu: error after split at cpos %u" 5413 "trunc len %u, existing record is (%u,%u)", 5414 (unsigned long long)OCFS2_I(inode)->ip_blkno, 5415 cpos, len, le32_to_cpu(rec->e_cpos), 5416 ocfs2_rec_clusters(el, rec)); 5417 ret = -EROFS; 5418 goto out; 5419 } 5420 5421 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc, 5422 cpos, len, et); 5423 if (ret) { 5424 mlog_errno(ret); 5425 goto out; 5426 } 5427 } 5428 5429 out: 5430 ocfs2_free_path(path); 5431 return ret; 5432 } 5433 5434 int ocfs2_remove_btree_range(struct inode *inode, 5435 struct ocfs2_extent_tree *et, 5436 u32 cpos, u32 phys_cpos, u32 len, 5437 struct ocfs2_cached_dealloc_ctxt *dealloc) 5438 { 5439 int ret; 5440 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos); 5441 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5442 struct inode *tl_inode = osb->osb_tl_inode; 5443 handle_t *handle; 5444 struct ocfs2_alloc_context *meta_ac = NULL; 5445 5446 ret = ocfs2_lock_allocators(inode, et, 0, 1, NULL, &meta_ac); 5447 if (ret) { 5448 mlog_errno(ret); 5449 return ret; 5450 } 5451 5452 mutex_lock(&tl_inode->i_mutex); 5453 5454 if (ocfs2_truncate_log_needs_flush(osb)) { 5455 ret = __ocfs2_flush_truncate_log(osb); 5456 if (ret < 0) { 5457 mlog_errno(ret); 5458 goto out; 5459 } 5460 } 5461 5462 handle = ocfs2_start_trans(osb, ocfs2_remove_extent_credits(osb->sb)); 5463 if (IS_ERR(handle)) { 5464 ret = PTR_ERR(handle); 5465 mlog_errno(ret); 5466 goto out; 5467 } 5468 5469 ret = ocfs2_et_root_journal_access(handle, inode, et, 5470 OCFS2_JOURNAL_ACCESS_WRITE); 5471 if (ret) { 5472 mlog_errno(ret); 5473 goto out; 5474 } 5475 5476 vfs_dq_free_space_nodirty(inode, 5477 ocfs2_clusters_to_bytes(inode->i_sb, len)); 5478 5479 ret = ocfs2_remove_extent(inode, et, cpos, len, handle, meta_ac, 5480 dealloc); 5481 if (ret) { 5482 mlog_errno(ret); 5483 goto out_commit; 5484 } 5485 5486 ocfs2_et_update_clusters(inode, et, -len); 5487 5488 ret = ocfs2_journal_dirty(handle, et->et_root_bh); 5489 if (ret) { 5490 mlog_errno(ret); 5491 goto out_commit; 5492 } 5493 5494 ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len); 5495 if (ret) 5496 mlog_errno(ret); 5497 5498 out_commit: 5499 ocfs2_commit_trans(osb, handle); 5500 out: 5501 mutex_unlock(&tl_inode->i_mutex); 5502 5503 if (meta_ac) 5504 ocfs2_free_alloc_context(meta_ac); 5505 5506 return ret; 5507 } 5508 5509 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb) 5510 { 5511 struct buffer_head *tl_bh = osb->osb_tl_bh; 5512 struct ocfs2_dinode *di; 5513 struct ocfs2_truncate_log *tl; 5514 5515 di = (struct ocfs2_dinode *) tl_bh->b_data; 5516 tl = &di->id2.i_dealloc; 5517 5518 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count), 5519 "slot %d, invalid truncate log parameters: used = " 5520 "%u, count = %u\n", osb->slot_num, 5521 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count)); 5522 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count); 5523 } 5524 5525 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl, 5526 unsigned int new_start) 5527 { 5528 unsigned int tail_index; 5529 unsigned int current_tail; 5530 5531 /* No records, nothing to coalesce */ 5532 if (!le16_to_cpu(tl->tl_used)) 5533 return 0; 5534 5535 tail_index = le16_to_cpu(tl->tl_used) - 1; 5536 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start); 5537 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters); 5538 5539 return current_tail == new_start; 5540 } 5541 5542 int ocfs2_truncate_log_append(struct ocfs2_super *osb, 5543 handle_t *handle, 5544 u64 start_blk, 5545 unsigned int num_clusters) 5546 { 5547 int status, index; 5548 unsigned int start_cluster, tl_count; 5549 struct inode *tl_inode = osb->osb_tl_inode; 5550 struct buffer_head *tl_bh = osb->osb_tl_bh; 5551 struct ocfs2_dinode *di; 5552 struct ocfs2_truncate_log *tl; 5553 5554 mlog_entry("start_blk = %llu, num_clusters = %u\n", 5555 (unsigned long long)start_blk, num_clusters); 5556 5557 BUG_ON(mutex_trylock(&tl_inode->i_mutex)); 5558 5559 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk); 5560 5561 di = (struct ocfs2_dinode *) tl_bh->b_data; 5562 5563 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 5564 * by the underlying call to ocfs2_read_inode_block(), so any 5565 * corruption is a code bug */ 5566 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5567 5568 tl = &di->id2.i_dealloc; 5569 tl_count = le16_to_cpu(tl->tl_count); 5570 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) || 5571 tl_count == 0, 5572 "Truncate record count on #%llu invalid " 5573 "wanted %u, actual %u\n", 5574 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5575 ocfs2_truncate_recs_per_inode(osb->sb), 5576 le16_to_cpu(tl->tl_count)); 5577 5578 /* Caller should have known to flush before calling us. */ 5579 index = le16_to_cpu(tl->tl_used); 5580 if (index >= tl_count) { 5581 status = -ENOSPC; 5582 mlog_errno(status); 5583 goto bail; 5584 } 5585 5586 status = ocfs2_journal_access_di(handle, tl_inode, tl_bh, 5587 OCFS2_JOURNAL_ACCESS_WRITE); 5588 if (status < 0) { 5589 mlog_errno(status); 5590 goto bail; 5591 } 5592 5593 mlog(0, "Log truncate of %u clusters starting at cluster %u to " 5594 "%llu (index = %d)\n", num_clusters, start_cluster, 5595 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index); 5596 5597 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) { 5598 /* 5599 * Move index back to the record we are coalescing with. 5600 * ocfs2_truncate_log_can_coalesce() guarantees nonzero 5601 */ 5602 index--; 5603 5604 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters); 5605 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n", 5606 index, le32_to_cpu(tl->tl_recs[index].t_start), 5607 num_clusters); 5608 } else { 5609 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster); 5610 tl->tl_used = cpu_to_le16(index + 1); 5611 } 5612 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters); 5613 5614 status = ocfs2_journal_dirty(handle, tl_bh); 5615 if (status < 0) { 5616 mlog_errno(status); 5617 goto bail; 5618 } 5619 5620 bail: 5621 mlog_exit(status); 5622 return status; 5623 } 5624 5625 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb, 5626 handle_t *handle, 5627 struct inode *data_alloc_inode, 5628 struct buffer_head *data_alloc_bh) 5629 { 5630 int status = 0; 5631 int i; 5632 unsigned int num_clusters; 5633 u64 start_blk; 5634 struct ocfs2_truncate_rec rec; 5635 struct ocfs2_dinode *di; 5636 struct ocfs2_truncate_log *tl; 5637 struct inode *tl_inode = osb->osb_tl_inode; 5638 struct buffer_head *tl_bh = osb->osb_tl_bh; 5639 5640 mlog_entry_void(); 5641 5642 di = (struct ocfs2_dinode *) tl_bh->b_data; 5643 tl = &di->id2.i_dealloc; 5644 i = le16_to_cpu(tl->tl_used) - 1; 5645 while (i >= 0) { 5646 /* Caller has given us at least enough credits to 5647 * update the truncate log dinode */ 5648 status = ocfs2_journal_access_di(handle, tl_inode, tl_bh, 5649 OCFS2_JOURNAL_ACCESS_WRITE); 5650 if (status < 0) { 5651 mlog_errno(status); 5652 goto bail; 5653 } 5654 5655 tl->tl_used = cpu_to_le16(i); 5656 5657 status = ocfs2_journal_dirty(handle, tl_bh); 5658 if (status < 0) { 5659 mlog_errno(status); 5660 goto bail; 5661 } 5662 5663 /* TODO: Perhaps we can calculate the bulk of the 5664 * credits up front rather than extending like 5665 * this. */ 5666 status = ocfs2_extend_trans(handle, 5667 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC); 5668 if (status < 0) { 5669 mlog_errno(status); 5670 goto bail; 5671 } 5672 5673 rec = tl->tl_recs[i]; 5674 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb, 5675 le32_to_cpu(rec.t_start)); 5676 num_clusters = le32_to_cpu(rec.t_clusters); 5677 5678 /* if start_blk is not set, we ignore the record as 5679 * invalid. */ 5680 if (start_blk) { 5681 mlog(0, "free record %d, start = %u, clusters = %u\n", 5682 i, le32_to_cpu(rec.t_start), num_clusters); 5683 5684 status = ocfs2_free_clusters(handle, data_alloc_inode, 5685 data_alloc_bh, start_blk, 5686 num_clusters); 5687 if (status < 0) { 5688 mlog_errno(status); 5689 goto bail; 5690 } 5691 } 5692 i--; 5693 } 5694 5695 bail: 5696 mlog_exit(status); 5697 return status; 5698 } 5699 5700 /* Expects you to already be holding tl_inode->i_mutex */ 5701 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb) 5702 { 5703 int status; 5704 unsigned int num_to_flush; 5705 handle_t *handle; 5706 struct inode *tl_inode = osb->osb_tl_inode; 5707 struct inode *data_alloc_inode = NULL; 5708 struct buffer_head *tl_bh = osb->osb_tl_bh; 5709 struct buffer_head *data_alloc_bh = NULL; 5710 struct ocfs2_dinode *di; 5711 struct ocfs2_truncate_log *tl; 5712 5713 mlog_entry_void(); 5714 5715 BUG_ON(mutex_trylock(&tl_inode->i_mutex)); 5716 5717 di = (struct ocfs2_dinode *) tl_bh->b_data; 5718 5719 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 5720 * by the underlying call to ocfs2_read_inode_block(), so any 5721 * corruption is a code bug */ 5722 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5723 5724 tl = &di->id2.i_dealloc; 5725 num_to_flush = le16_to_cpu(tl->tl_used); 5726 mlog(0, "Flush %u records from truncate log #%llu\n", 5727 num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno); 5728 if (!num_to_flush) { 5729 status = 0; 5730 goto out; 5731 } 5732 5733 data_alloc_inode = ocfs2_get_system_file_inode(osb, 5734 GLOBAL_BITMAP_SYSTEM_INODE, 5735 OCFS2_INVALID_SLOT); 5736 if (!data_alloc_inode) { 5737 status = -EINVAL; 5738 mlog(ML_ERROR, "Could not get bitmap inode!\n"); 5739 goto out; 5740 } 5741 5742 mutex_lock(&data_alloc_inode->i_mutex); 5743 5744 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1); 5745 if (status < 0) { 5746 mlog_errno(status); 5747 goto out_mutex; 5748 } 5749 5750 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 5751 if (IS_ERR(handle)) { 5752 status = PTR_ERR(handle); 5753 mlog_errno(status); 5754 goto out_unlock; 5755 } 5756 5757 status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode, 5758 data_alloc_bh); 5759 if (status < 0) 5760 mlog_errno(status); 5761 5762 ocfs2_commit_trans(osb, handle); 5763 5764 out_unlock: 5765 brelse(data_alloc_bh); 5766 ocfs2_inode_unlock(data_alloc_inode, 1); 5767 5768 out_mutex: 5769 mutex_unlock(&data_alloc_inode->i_mutex); 5770 iput(data_alloc_inode); 5771 5772 out: 5773 mlog_exit(status); 5774 return status; 5775 } 5776 5777 int ocfs2_flush_truncate_log(struct ocfs2_super *osb) 5778 { 5779 int status; 5780 struct inode *tl_inode = osb->osb_tl_inode; 5781 5782 mutex_lock(&tl_inode->i_mutex); 5783 status = __ocfs2_flush_truncate_log(osb); 5784 mutex_unlock(&tl_inode->i_mutex); 5785 5786 return status; 5787 } 5788 5789 static void ocfs2_truncate_log_worker(struct work_struct *work) 5790 { 5791 int status; 5792 struct ocfs2_super *osb = 5793 container_of(work, struct ocfs2_super, 5794 osb_truncate_log_wq.work); 5795 5796 mlog_entry_void(); 5797 5798 status = ocfs2_flush_truncate_log(osb); 5799 if (status < 0) 5800 mlog_errno(status); 5801 else 5802 ocfs2_init_inode_steal_slot(osb); 5803 5804 mlog_exit(status); 5805 } 5806 5807 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ) 5808 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb, 5809 int cancel) 5810 { 5811 if (osb->osb_tl_inode) { 5812 /* We want to push off log flushes while truncates are 5813 * still running. */ 5814 if (cancel) 5815 cancel_delayed_work(&osb->osb_truncate_log_wq); 5816 5817 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq, 5818 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL); 5819 } 5820 } 5821 5822 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb, 5823 int slot_num, 5824 struct inode **tl_inode, 5825 struct buffer_head **tl_bh) 5826 { 5827 int status; 5828 struct inode *inode = NULL; 5829 struct buffer_head *bh = NULL; 5830 5831 inode = ocfs2_get_system_file_inode(osb, 5832 TRUNCATE_LOG_SYSTEM_INODE, 5833 slot_num); 5834 if (!inode) { 5835 status = -EINVAL; 5836 mlog(ML_ERROR, "Could not get load truncate log inode!\n"); 5837 goto bail; 5838 } 5839 5840 status = ocfs2_read_inode_block(inode, &bh); 5841 if (status < 0) { 5842 iput(inode); 5843 mlog_errno(status); 5844 goto bail; 5845 } 5846 5847 *tl_inode = inode; 5848 *tl_bh = bh; 5849 bail: 5850 mlog_exit(status); 5851 return status; 5852 } 5853 5854 /* called during the 1st stage of node recovery. we stamp a clean 5855 * truncate log and pass back a copy for processing later. if the 5856 * truncate log does not require processing, a *tl_copy is set to 5857 * NULL. */ 5858 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb, 5859 int slot_num, 5860 struct ocfs2_dinode **tl_copy) 5861 { 5862 int status; 5863 struct inode *tl_inode = NULL; 5864 struct buffer_head *tl_bh = NULL; 5865 struct ocfs2_dinode *di; 5866 struct ocfs2_truncate_log *tl; 5867 5868 *tl_copy = NULL; 5869 5870 mlog(0, "recover truncate log from slot %d\n", slot_num); 5871 5872 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh); 5873 if (status < 0) { 5874 mlog_errno(status); 5875 goto bail; 5876 } 5877 5878 di = (struct ocfs2_dinode *) tl_bh->b_data; 5879 5880 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's 5881 * validated by the underlying call to ocfs2_read_inode_block(), 5882 * so any corruption is a code bug */ 5883 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5884 5885 tl = &di->id2.i_dealloc; 5886 if (le16_to_cpu(tl->tl_used)) { 5887 mlog(0, "We'll have %u logs to recover\n", 5888 le16_to_cpu(tl->tl_used)); 5889 5890 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL); 5891 if (!(*tl_copy)) { 5892 status = -ENOMEM; 5893 mlog_errno(status); 5894 goto bail; 5895 } 5896 5897 /* Assuming the write-out below goes well, this copy 5898 * will be passed back to recovery for processing. */ 5899 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size); 5900 5901 /* All we need to do to clear the truncate log is set 5902 * tl_used. */ 5903 tl->tl_used = 0; 5904 5905 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check); 5906 status = ocfs2_write_block(osb, tl_bh, tl_inode); 5907 if (status < 0) { 5908 mlog_errno(status); 5909 goto bail; 5910 } 5911 } 5912 5913 bail: 5914 if (tl_inode) 5915 iput(tl_inode); 5916 brelse(tl_bh); 5917 5918 if (status < 0 && (*tl_copy)) { 5919 kfree(*tl_copy); 5920 *tl_copy = NULL; 5921 } 5922 5923 mlog_exit(status); 5924 return status; 5925 } 5926 5927 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb, 5928 struct ocfs2_dinode *tl_copy) 5929 { 5930 int status = 0; 5931 int i; 5932 unsigned int clusters, num_recs, start_cluster; 5933 u64 start_blk; 5934 handle_t *handle; 5935 struct inode *tl_inode = osb->osb_tl_inode; 5936 struct ocfs2_truncate_log *tl; 5937 5938 mlog_entry_void(); 5939 5940 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) { 5941 mlog(ML_ERROR, "Asked to recover my own truncate log!\n"); 5942 return -EINVAL; 5943 } 5944 5945 tl = &tl_copy->id2.i_dealloc; 5946 num_recs = le16_to_cpu(tl->tl_used); 5947 mlog(0, "cleanup %u records from %llu\n", num_recs, 5948 (unsigned long long)le64_to_cpu(tl_copy->i_blkno)); 5949 5950 mutex_lock(&tl_inode->i_mutex); 5951 for(i = 0; i < num_recs; i++) { 5952 if (ocfs2_truncate_log_needs_flush(osb)) { 5953 status = __ocfs2_flush_truncate_log(osb); 5954 if (status < 0) { 5955 mlog_errno(status); 5956 goto bail_up; 5957 } 5958 } 5959 5960 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 5961 if (IS_ERR(handle)) { 5962 status = PTR_ERR(handle); 5963 mlog_errno(status); 5964 goto bail_up; 5965 } 5966 5967 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters); 5968 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start); 5969 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster); 5970 5971 status = ocfs2_truncate_log_append(osb, handle, 5972 start_blk, clusters); 5973 ocfs2_commit_trans(osb, handle); 5974 if (status < 0) { 5975 mlog_errno(status); 5976 goto bail_up; 5977 } 5978 } 5979 5980 bail_up: 5981 mutex_unlock(&tl_inode->i_mutex); 5982 5983 mlog_exit(status); 5984 return status; 5985 } 5986 5987 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb) 5988 { 5989 int status; 5990 struct inode *tl_inode = osb->osb_tl_inode; 5991 5992 mlog_entry_void(); 5993 5994 if (tl_inode) { 5995 cancel_delayed_work(&osb->osb_truncate_log_wq); 5996 flush_workqueue(ocfs2_wq); 5997 5998 status = ocfs2_flush_truncate_log(osb); 5999 if (status < 0) 6000 mlog_errno(status); 6001 6002 brelse(osb->osb_tl_bh); 6003 iput(osb->osb_tl_inode); 6004 } 6005 6006 mlog_exit_void(); 6007 } 6008 6009 int ocfs2_truncate_log_init(struct ocfs2_super *osb) 6010 { 6011 int status; 6012 struct inode *tl_inode = NULL; 6013 struct buffer_head *tl_bh = NULL; 6014 6015 mlog_entry_void(); 6016 6017 status = ocfs2_get_truncate_log_info(osb, 6018 osb->slot_num, 6019 &tl_inode, 6020 &tl_bh); 6021 if (status < 0) 6022 mlog_errno(status); 6023 6024 /* ocfs2_truncate_log_shutdown keys on the existence of 6025 * osb->osb_tl_inode so we don't set any of the osb variables 6026 * until we're sure all is well. */ 6027 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq, 6028 ocfs2_truncate_log_worker); 6029 osb->osb_tl_bh = tl_bh; 6030 osb->osb_tl_inode = tl_inode; 6031 6032 mlog_exit(status); 6033 return status; 6034 } 6035 6036 /* 6037 * Delayed de-allocation of suballocator blocks. 6038 * 6039 * Some sets of block de-allocations might involve multiple suballocator inodes. 6040 * 6041 * The locking for this can get extremely complicated, especially when 6042 * the suballocator inodes to delete from aren't known until deep 6043 * within an unrelated codepath. 6044 * 6045 * ocfs2_extent_block structures are a good example of this - an inode 6046 * btree could have been grown by any number of nodes each allocating 6047 * out of their own suballoc inode. 6048 * 6049 * These structures allow the delay of block de-allocation until a 6050 * later time, when locking of multiple cluster inodes won't cause 6051 * deadlock. 6052 */ 6053 6054 /* 6055 * Describe a single bit freed from a suballocator. For the block 6056 * suballocators, it represents one block. For the global cluster 6057 * allocator, it represents some clusters and free_bit indicates 6058 * clusters number. 6059 */ 6060 struct ocfs2_cached_block_free { 6061 struct ocfs2_cached_block_free *free_next; 6062 u64 free_blk; 6063 unsigned int free_bit; 6064 }; 6065 6066 struct ocfs2_per_slot_free_list { 6067 struct ocfs2_per_slot_free_list *f_next_suballocator; 6068 int f_inode_type; 6069 int f_slot; 6070 struct ocfs2_cached_block_free *f_first; 6071 }; 6072 6073 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb, 6074 int sysfile_type, 6075 int slot, 6076 struct ocfs2_cached_block_free *head) 6077 { 6078 int ret; 6079 u64 bg_blkno; 6080 handle_t *handle; 6081 struct inode *inode; 6082 struct buffer_head *di_bh = NULL; 6083 struct ocfs2_cached_block_free *tmp; 6084 6085 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot); 6086 if (!inode) { 6087 ret = -EINVAL; 6088 mlog_errno(ret); 6089 goto out; 6090 } 6091 6092 mutex_lock(&inode->i_mutex); 6093 6094 ret = ocfs2_inode_lock(inode, &di_bh, 1); 6095 if (ret) { 6096 mlog_errno(ret); 6097 goto out_mutex; 6098 } 6099 6100 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE); 6101 if (IS_ERR(handle)) { 6102 ret = PTR_ERR(handle); 6103 mlog_errno(ret); 6104 goto out_unlock; 6105 } 6106 6107 while (head) { 6108 bg_blkno = ocfs2_which_suballoc_group(head->free_blk, 6109 head->free_bit); 6110 mlog(0, "Free bit: (bit %u, blkno %llu)\n", 6111 head->free_bit, (unsigned long long)head->free_blk); 6112 6113 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh, 6114 head->free_bit, bg_blkno, 1); 6115 if (ret) { 6116 mlog_errno(ret); 6117 goto out_journal; 6118 } 6119 6120 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE); 6121 if (ret) { 6122 mlog_errno(ret); 6123 goto out_journal; 6124 } 6125 6126 tmp = head; 6127 head = head->free_next; 6128 kfree(tmp); 6129 } 6130 6131 out_journal: 6132 ocfs2_commit_trans(osb, handle); 6133 6134 out_unlock: 6135 ocfs2_inode_unlock(inode, 1); 6136 brelse(di_bh); 6137 out_mutex: 6138 mutex_unlock(&inode->i_mutex); 6139 iput(inode); 6140 out: 6141 while(head) { 6142 /* Premature exit may have left some dangling items. */ 6143 tmp = head; 6144 head = head->free_next; 6145 kfree(tmp); 6146 } 6147 6148 return ret; 6149 } 6150 6151 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6152 u64 blkno, unsigned int bit) 6153 { 6154 int ret = 0; 6155 struct ocfs2_cached_block_free *item; 6156 6157 item = kmalloc(sizeof(*item), GFP_NOFS); 6158 if (item == NULL) { 6159 ret = -ENOMEM; 6160 mlog_errno(ret); 6161 return ret; 6162 } 6163 6164 mlog(0, "Insert clusters: (bit %u, blk %llu)\n", 6165 bit, (unsigned long long)blkno); 6166 6167 item->free_blk = blkno; 6168 item->free_bit = bit; 6169 item->free_next = ctxt->c_global_allocator; 6170 6171 ctxt->c_global_allocator = item; 6172 return ret; 6173 } 6174 6175 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb, 6176 struct ocfs2_cached_block_free *head) 6177 { 6178 struct ocfs2_cached_block_free *tmp; 6179 struct inode *tl_inode = osb->osb_tl_inode; 6180 handle_t *handle; 6181 int ret = 0; 6182 6183 mutex_lock(&tl_inode->i_mutex); 6184 6185 while (head) { 6186 if (ocfs2_truncate_log_needs_flush(osb)) { 6187 ret = __ocfs2_flush_truncate_log(osb); 6188 if (ret < 0) { 6189 mlog_errno(ret); 6190 break; 6191 } 6192 } 6193 6194 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6195 if (IS_ERR(handle)) { 6196 ret = PTR_ERR(handle); 6197 mlog_errno(ret); 6198 break; 6199 } 6200 6201 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk, 6202 head->free_bit); 6203 6204 ocfs2_commit_trans(osb, handle); 6205 tmp = head; 6206 head = head->free_next; 6207 kfree(tmp); 6208 6209 if (ret < 0) { 6210 mlog_errno(ret); 6211 break; 6212 } 6213 } 6214 6215 mutex_unlock(&tl_inode->i_mutex); 6216 6217 while (head) { 6218 /* Premature exit may have left some dangling items. */ 6219 tmp = head; 6220 head = head->free_next; 6221 kfree(tmp); 6222 } 6223 6224 return ret; 6225 } 6226 6227 int ocfs2_run_deallocs(struct ocfs2_super *osb, 6228 struct ocfs2_cached_dealloc_ctxt *ctxt) 6229 { 6230 int ret = 0, ret2; 6231 struct ocfs2_per_slot_free_list *fl; 6232 6233 if (!ctxt) 6234 return 0; 6235 6236 while (ctxt->c_first_suballocator) { 6237 fl = ctxt->c_first_suballocator; 6238 6239 if (fl->f_first) { 6240 mlog(0, "Free items: (type %u, slot %d)\n", 6241 fl->f_inode_type, fl->f_slot); 6242 ret2 = ocfs2_free_cached_blocks(osb, 6243 fl->f_inode_type, 6244 fl->f_slot, 6245 fl->f_first); 6246 if (ret2) 6247 mlog_errno(ret2); 6248 if (!ret) 6249 ret = ret2; 6250 } 6251 6252 ctxt->c_first_suballocator = fl->f_next_suballocator; 6253 kfree(fl); 6254 } 6255 6256 if (ctxt->c_global_allocator) { 6257 ret2 = ocfs2_free_cached_clusters(osb, 6258 ctxt->c_global_allocator); 6259 if (ret2) 6260 mlog_errno(ret2); 6261 if (!ret) 6262 ret = ret2; 6263 6264 ctxt->c_global_allocator = NULL; 6265 } 6266 6267 return ret; 6268 } 6269 6270 static struct ocfs2_per_slot_free_list * 6271 ocfs2_find_per_slot_free_list(int type, 6272 int slot, 6273 struct ocfs2_cached_dealloc_ctxt *ctxt) 6274 { 6275 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; 6276 6277 while (fl) { 6278 if (fl->f_inode_type == type && fl->f_slot == slot) 6279 return fl; 6280 6281 fl = fl->f_next_suballocator; 6282 } 6283 6284 fl = kmalloc(sizeof(*fl), GFP_NOFS); 6285 if (fl) { 6286 fl->f_inode_type = type; 6287 fl->f_slot = slot; 6288 fl->f_first = NULL; 6289 fl->f_next_suballocator = ctxt->c_first_suballocator; 6290 6291 ctxt->c_first_suballocator = fl; 6292 } 6293 return fl; 6294 } 6295 6296 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6297 int type, int slot, u64 blkno, 6298 unsigned int bit) 6299 { 6300 int ret; 6301 struct ocfs2_per_slot_free_list *fl; 6302 struct ocfs2_cached_block_free *item; 6303 6304 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt); 6305 if (fl == NULL) { 6306 ret = -ENOMEM; 6307 mlog_errno(ret); 6308 goto out; 6309 } 6310 6311 item = kmalloc(sizeof(*item), GFP_NOFS); 6312 if (item == NULL) { 6313 ret = -ENOMEM; 6314 mlog_errno(ret); 6315 goto out; 6316 } 6317 6318 mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n", 6319 type, slot, bit, (unsigned long long)blkno); 6320 6321 item->free_blk = blkno; 6322 item->free_bit = bit; 6323 item->free_next = fl->f_first; 6324 6325 fl->f_first = item; 6326 6327 ret = 0; 6328 out: 6329 return ret; 6330 } 6331 6332 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 6333 struct ocfs2_extent_block *eb) 6334 { 6335 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE, 6336 le16_to_cpu(eb->h_suballoc_slot), 6337 le64_to_cpu(eb->h_blkno), 6338 le16_to_cpu(eb->h_suballoc_bit)); 6339 } 6340 6341 /* This function will figure out whether the currently last extent 6342 * block will be deleted, and if it will, what the new last extent 6343 * block will be so we can update his h_next_leaf_blk field, as well 6344 * as the dinodes i_last_eb_blk */ 6345 static int ocfs2_find_new_last_ext_blk(struct inode *inode, 6346 unsigned int clusters_to_del, 6347 struct ocfs2_path *path, 6348 struct buffer_head **new_last_eb) 6349 { 6350 int next_free, ret = 0; 6351 u32 cpos; 6352 struct ocfs2_extent_rec *rec; 6353 struct ocfs2_extent_block *eb; 6354 struct ocfs2_extent_list *el; 6355 struct buffer_head *bh = NULL; 6356 6357 *new_last_eb = NULL; 6358 6359 /* we have no tree, so of course, no last_eb. */ 6360 if (!path->p_tree_depth) 6361 goto out; 6362 6363 /* trunc to zero special case - this makes tree_depth = 0 6364 * regardless of what it is. */ 6365 if (OCFS2_I(inode)->ip_clusters == clusters_to_del) 6366 goto out; 6367 6368 el = path_leaf_el(path); 6369 BUG_ON(!el->l_next_free_rec); 6370 6371 /* 6372 * Make sure that this extent list will actually be empty 6373 * after we clear away the data. We can shortcut out if 6374 * there's more than one non-empty extent in the 6375 * list. Otherwise, a check of the remaining extent is 6376 * necessary. 6377 */ 6378 next_free = le16_to_cpu(el->l_next_free_rec); 6379 rec = NULL; 6380 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 6381 if (next_free > 2) 6382 goto out; 6383 6384 /* We may have a valid extent in index 1, check it. */ 6385 if (next_free == 2) 6386 rec = &el->l_recs[1]; 6387 6388 /* 6389 * Fall through - no more nonempty extents, so we want 6390 * to delete this leaf. 6391 */ 6392 } else { 6393 if (next_free > 1) 6394 goto out; 6395 6396 rec = &el->l_recs[0]; 6397 } 6398 6399 if (rec) { 6400 /* 6401 * Check it we'll only be trimming off the end of this 6402 * cluster. 6403 */ 6404 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del) 6405 goto out; 6406 } 6407 6408 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos); 6409 if (ret) { 6410 mlog_errno(ret); 6411 goto out; 6412 } 6413 6414 ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh); 6415 if (ret) { 6416 mlog_errno(ret); 6417 goto out; 6418 } 6419 6420 eb = (struct ocfs2_extent_block *) bh->b_data; 6421 el = &eb->h_list; 6422 6423 /* ocfs2_find_leaf() gets the eb from ocfs2_read_extent_block(). 6424 * Any corruption is a code bug. */ 6425 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 6426 6427 *new_last_eb = bh; 6428 get_bh(*new_last_eb); 6429 mlog(0, "returning block %llu, (cpos: %u)\n", 6430 (unsigned long long)le64_to_cpu(eb->h_blkno), cpos); 6431 out: 6432 brelse(bh); 6433 6434 return ret; 6435 } 6436 6437 /* 6438 * Trim some clusters off the rightmost edge of a tree. Only called 6439 * during truncate. 6440 * 6441 * The caller needs to: 6442 * - start journaling of each path component. 6443 * - compute and fully set up any new last ext block 6444 */ 6445 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path, 6446 handle_t *handle, struct ocfs2_truncate_context *tc, 6447 u32 clusters_to_del, u64 *delete_start) 6448 { 6449 int ret, i, index = path->p_tree_depth; 6450 u32 new_edge = 0; 6451 u64 deleted_eb = 0; 6452 struct buffer_head *bh; 6453 struct ocfs2_extent_list *el; 6454 struct ocfs2_extent_rec *rec; 6455 6456 *delete_start = 0; 6457 6458 while (index >= 0) { 6459 bh = path->p_node[index].bh; 6460 el = path->p_node[index].el; 6461 6462 mlog(0, "traveling tree (index = %d, block = %llu)\n", 6463 index, (unsigned long long)bh->b_blocknr); 6464 6465 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 6466 6467 if (index != 6468 (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) { 6469 ocfs2_error(inode->i_sb, 6470 "Inode %lu has invalid ext. block %llu", 6471 inode->i_ino, 6472 (unsigned long long)bh->b_blocknr); 6473 ret = -EROFS; 6474 goto out; 6475 } 6476 6477 find_tail_record: 6478 i = le16_to_cpu(el->l_next_free_rec) - 1; 6479 rec = &el->l_recs[i]; 6480 6481 mlog(0, "Extent list before: record %d: (%u, %u, %llu), " 6482 "next = %u\n", i, le32_to_cpu(rec->e_cpos), 6483 ocfs2_rec_clusters(el, rec), 6484 (unsigned long long)le64_to_cpu(rec->e_blkno), 6485 le16_to_cpu(el->l_next_free_rec)); 6486 6487 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del); 6488 6489 if (le16_to_cpu(el->l_tree_depth) == 0) { 6490 /* 6491 * If the leaf block contains a single empty 6492 * extent and no records, we can just remove 6493 * the block. 6494 */ 6495 if (i == 0 && ocfs2_is_empty_extent(rec)) { 6496 memset(rec, 0, 6497 sizeof(struct ocfs2_extent_rec)); 6498 el->l_next_free_rec = cpu_to_le16(0); 6499 6500 goto delete; 6501 } 6502 6503 /* 6504 * Remove any empty extents by shifting things 6505 * left. That should make life much easier on 6506 * the code below. This condition is rare 6507 * enough that we shouldn't see a performance 6508 * hit. 6509 */ 6510 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 6511 le16_add_cpu(&el->l_next_free_rec, -1); 6512 6513 for(i = 0; 6514 i < le16_to_cpu(el->l_next_free_rec); i++) 6515 el->l_recs[i] = el->l_recs[i + 1]; 6516 6517 memset(&el->l_recs[i], 0, 6518 sizeof(struct ocfs2_extent_rec)); 6519 6520 /* 6521 * We've modified our extent list. The 6522 * simplest way to handle this change 6523 * is to being the search from the 6524 * start again. 6525 */ 6526 goto find_tail_record; 6527 } 6528 6529 le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del); 6530 6531 /* 6532 * We'll use "new_edge" on our way back up the 6533 * tree to know what our rightmost cpos is. 6534 */ 6535 new_edge = le16_to_cpu(rec->e_leaf_clusters); 6536 new_edge += le32_to_cpu(rec->e_cpos); 6537 6538 /* 6539 * The caller will use this to delete data blocks. 6540 */ 6541 *delete_start = le64_to_cpu(rec->e_blkno) 6542 + ocfs2_clusters_to_blocks(inode->i_sb, 6543 le16_to_cpu(rec->e_leaf_clusters)); 6544 6545 /* 6546 * If it's now empty, remove this record. 6547 */ 6548 if (le16_to_cpu(rec->e_leaf_clusters) == 0) { 6549 memset(rec, 0, 6550 sizeof(struct ocfs2_extent_rec)); 6551 le16_add_cpu(&el->l_next_free_rec, -1); 6552 } 6553 } else { 6554 if (le64_to_cpu(rec->e_blkno) == deleted_eb) { 6555 memset(rec, 0, 6556 sizeof(struct ocfs2_extent_rec)); 6557 le16_add_cpu(&el->l_next_free_rec, -1); 6558 6559 goto delete; 6560 } 6561 6562 /* Can this actually happen? */ 6563 if (le16_to_cpu(el->l_next_free_rec) == 0) 6564 goto delete; 6565 6566 /* 6567 * We never actually deleted any clusters 6568 * because our leaf was empty. There's no 6569 * reason to adjust the rightmost edge then. 6570 */ 6571 if (new_edge == 0) 6572 goto delete; 6573 6574 rec->e_int_clusters = cpu_to_le32(new_edge); 6575 le32_add_cpu(&rec->e_int_clusters, 6576 -le32_to_cpu(rec->e_cpos)); 6577 6578 /* 6579 * A deleted child record should have been 6580 * caught above. 6581 */ 6582 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0); 6583 } 6584 6585 delete: 6586 ret = ocfs2_journal_dirty(handle, bh); 6587 if (ret) { 6588 mlog_errno(ret); 6589 goto out; 6590 } 6591 6592 mlog(0, "extent list container %llu, after: record %d: " 6593 "(%u, %u, %llu), next = %u.\n", 6594 (unsigned long long)bh->b_blocknr, i, 6595 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec), 6596 (unsigned long long)le64_to_cpu(rec->e_blkno), 6597 le16_to_cpu(el->l_next_free_rec)); 6598 6599 /* 6600 * We must be careful to only attempt delete of an 6601 * extent block (and not the root inode block). 6602 */ 6603 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) { 6604 struct ocfs2_extent_block *eb = 6605 (struct ocfs2_extent_block *)bh->b_data; 6606 6607 /* 6608 * Save this for use when processing the 6609 * parent block. 6610 */ 6611 deleted_eb = le64_to_cpu(eb->h_blkno); 6612 6613 mlog(0, "deleting this extent block.\n"); 6614 6615 ocfs2_remove_from_cache(inode, bh); 6616 6617 BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0])); 6618 BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos)); 6619 BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno)); 6620 6621 ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb); 6622 /* An error here is not fatal. */ 6623 if (ret < 0) 6624 mlog_errno(ret); 6625 } else { 6626 deleted_eb = 0; 6627 } 6628 6629 index--; 6630 } 6631 6632 ret = 0; 6633 out: 6634 return ret; 6635 } 6636 6637 static int ocfs2_do_truncate(struct ocfs2_super *osb, 6638 unsigned int clusters_to_del, 6639 struct inode *inode, 6640 struct buffer_head *fe_bh, 6641 handle_t *handle, 6642 struct ocfs2_truncate_context *tc, 6643 struct ocfs2_path *path) 6644 { 6645 int status; 6646 struct ocfs2_dinode *fe; 6647 struct ocfs2_extent_block *last_eb = NULL; 6648 struct ocfs2_extent_list *el; 6649 struct buffer_head *last_eb_bh = NULL; 6650 u64 delete_blk = 0; 6651 6652 fe = (struct ocfs2_dinode *) fe_bh->b_data; 6653 6654 status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del, 6655 path, &last_eb_bh); 6656 if (status < 0) { 6657 mlog_errno(status); 6658 goto bail; 6659 } 6660 6661 /* 6662 * Each component will be touched, so we might as well journal 6663 * here to avoid having to handle errors later. 6664 */ 6665 status = ocfs2_journal_access_path(inode, handle, path); 6666 if (status < 0) { 6667 mlog_errno(status); 6668 goto bail; 6669 } 6670 6671 if (last_eb_bh) { 6672 status = ocfs2_journal_access_eb(handle, inode, last_eb_bh, 6673 OCFS2_JOURNAL_ACCESS_WRITE); 6674 if (status < 0) { 6675 mlog_errno(status); 6676 goto bail; 6677 } 6678 6679 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 6680 } 6681 6682 el = &(fe->id2.i_list); 6683 6684 /* 6685 * Lower levels depend on this never happening, but it's best 6686 * to check it up here before changing the tree. 6687 */ 6688 if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) { 6689 ocfs2_error(inode->i_sb, 6690 "Inode %lu has an empty extent record, depth %u\n", 6691 inode->i_ino, le16_to_cpu(el->l_tree_depth)); 6692 status = -EROFS; 6693 goto bail; 6694 } 6695 6696 vfs_dq_free_space_nodirty(inode, 6697 ocfs2_clusters_to_bytes(osb->sb, clusters_to_del)); 6698 spin_lock(&OCFS2_I(inode)->ip_lock); 6699 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) - 6700 clusters_to_del; 6701 spin_unlock(&OCFS2_I(inode)->ip_lock); 6702 le32_add_cpu(&fe->i_clusters, -clusters_to_del); 6703 inode->i_blocks = ocfs2_inode_sector_count(inode); 6704 6705 status = ocfs2_trim_tree(inode, path, handle, tc, 6706 clusters_to_del, &delete_blk); 6707 if (status) { 6708 mlog_errno(status); 6709 goto bail; 6710 } 6711 6712 if (le32_to_cpu(fe->i_clusters) == 0) { 6713 /* trunc to zero is a special case. */ 6714 el->l_tree_depth = 0; 6715 fe->i_last_eb_blk = 0; 6716 } else if (last_eb) 6717 fe->i_last_eb_blk = last_eb->h_blkno; 6718 6719 status = ocfs2_journal_dirty(handle, fe_bh); 6720 if (status < 0) { 6721 mlog_errno(status); 6722 goto bail; 6723 } 6724 6725 if (last_eb) { 6726 /* If there will be a new last extent block, then by 6727 * definition, there cannot be any leaves to the right of 6728 * him. */ 6729 last_eb->h_next_leaf_blk = 0; 6730 status = ocfs2_journal_dirty(handle, last_eb_bh); 6731 if (status < 0) { 6732 mlog_errno(status); 6733 goto bail; 6734 } 6735 } 6736 6737 if (delete_blk) { 6738 status = ocfs2_truncate_log_append(osb, handle, delete_blk, 6739 clusters_to_del); 6740 if (status < 0) { 6741 mlog_errno(status); 6742 goto bail; 6743 } 6744 } 6745 status = 0; 6746 bail: 6747 6748 mlog_exit(status); 6749 return status; 6750 } 6751 6752 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh) 6753 { 6754 set_buffer_uptodate(bh); 6755 mark_buffer_dirty(bh); 6756 return 0; 6757 } 6758 6759 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle, 6760 unsigned int from, unsigned int to, 6761 struct page *page, int zero, u64 *phys) 6762 { 6763 int ret, partial = 0; 6764 6765 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0); 6766 if (ret) 6767 mlog_errno(ret); 6768 6769 if (zero) 6770 zero_user_segment(page, from, to); 6771 6772 /* 6773 * Need to set the buffers we zero'd into uptodate 6774 * here if they aren't - ocfs2_map_page_blocks() 6775 * might've skipped some 6776 */ 6777 ret = walk_page_buffers(handle, page_buffers(page), 6778 from, to, &partial, 6779 ocfs2_zero_func); 6780 if (ret < 0) 6781 mlog_errno(ret); 6782 else if (ocfs2_should_order_data(inode)) { 6783 ret = ocfs2_jbd2_file_inode(handle, inode); 6784 if (ret < 0) 6785 mlog_errno(ret); 6786 } 6787 6788 if (!partial) 6789 SetPageUptodate(page); 6790 6791 flush_dcache_page(page); 6792 } 6793 6794 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start, 6795 loff_t end, struct page **pages, 6796 int numpages, u64 phys, handle_t *handle) 6797 { 6798 int i; 6799 struct page *page; 6800 unsigned int from, to = PAGE_CACHE_SIZE; 6801 struct super_block *sb = inode->i_sb; 6802 6803 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb))); 6804 6805 if (numpages == 0) 6806 goto out; 6807 6808 to = PAGE_CACHE_SIZE; 6809 for(i = 0; i < numpages; i++) { 6810 page = pages[i]; 6811 6812 from = start & (PAGE_CACHE_SIZE - 1); 6813 if ((end >> PAGE_CACHE_SHIFT) == page->index) 6814 to = end & (PAGE_CACHE_SIZE - 1); 6815 6816 BUG_ON(from > PAGE_CACHE_SIZE); 6817 BUG_ON(to > PAGE_CACHE_SIZE); 6818 6819 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1, 6820 &phys); 6821 6822 start = (page->index + 1) << PAGE_CACHE_SHIFT; 6823 } 6824 out: 6825 if (pages) 6826 ocfs2_unlock_and_free_pages(pages, numpages); 6827 } 6828 6829 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end, 6830 struct page **pages, int *num) 6831 { 6832 int numpages, ret = 0; 6833 struct super_block *sb = inode->i_sb; 6834 struct address_space *mapping = inode->i_mapping; 6835 unsigned long index; 6836 loff_t last_page_bytes; 6837 6838 BUG_ON(start > end); 6839 6840 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits != 6841 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits); 6842 6843 numpages = 0; 6844 last_page_bytes = PAGE_ALIGN(end); 6845 index = start >> PAGE_CACHE_SHIFT; 6846 do { 6847 pages[numpages] = grab_cache_page(mapping, index); 6848 if (!pages[numpages]) { 6849 ret = -ENOMEM; 6850 mlog_errno(ret); 6851 goto out; 6852 } 6853 6854 numpages++; 6855 index++; 6856 } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT)); 6857 6858 out: 6859 if (ret != 0) { 6860 if (pages) 6861 ocfs2_unlock_and_free_pages(pages, numpages); 6862 numpages = 0; 6863 } 6864 6865 *num = numpages; 6866 6867 return ret; 6868 } 6869 6870 /* 6871 * Zero the area past i_size but still within an allocated 6872 * cluster. This avoids exposing nonzero data on subsequent file 6873 * extends. 6874 * 6875 * We need to call this before i_size is updated on the inode because 6876 * otherwise block_write_full_page() will skip writeout of pages past 6877 * i_size. The new_i_size parameter is passed for this reason. 6878 */ 6879 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle, 6880 u64 range_start, u64 range_end) 6881 { 6882 int ret = 0, numpages; 6883 struct page **pages = NULL; 6884 u64 phys; 6885 unsigned int ext_flags; 6886 struct super_block *sb = inode->i_sb; 6887 6888 /* 6889 * File systems which don't support sparse files zero on every 6890 * extend. 6891 */ 6892 if (!ocfs2_sparse_alloc(OCFS2_SB(sb))) 6893 return 0; 6894 6895 pages = kcalloc(ocfs2_pages_per_cluster(sb), 6896 sizeof(struct page *), GFP_NOFS); 6897 if (pages == NULL) { 6898 ret = -ENOMEM; 6899 mlog_errno(ret); 6900 goto out; 6901 } 6902 6903 if (range_start == range_end) 6904 goto out; 6905 6906 ret = ocfs2_extent_map_get_blocks(inode, 6907 range_start >> sb->s_blocksize_bits, 6908 &phys, NULL, &ext_flags); 6909 if (ret) { 6910 mlog_errno(ret); 6911 goto out; 6912 } 6913 6914 /* 6915 * Tail is a hole, or is marked unwritten. In either case, we 6916 * can count on read and write to return/push zero's. 6917 */ 6918 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN) 6919 goto out; 6920 6921 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages, 6922 &numpages); 6923 if (ret) { 6924 mlog_errno(ret); 6925 goto out; 6926 } 6927 6928 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages, 6929 numpages, phys, handle); 6930 6931 /* 6932 * Initiate writeout of the pages we zero'd here. We don't 6933 * wait on them - the truncate_inode_pages() call later will 6934 * do that for us. 6935 */ 6936 ret = do_sync_mapping_range(inode->i_mapping, range_start, 6937 range_end - 1, SYNC_FILE_RANGE_WRITE); 6938 if (ret) 6939 mlog_errno(ret); 6940 6941 out: 6942 if (pages) 6943 kfree(pages); 6944 6945 return ret; 6946 } 6947 6948 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode, 6949 struct ocfs2_dinode *di) 6950 { 6951 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits; 6952 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size); 6953 6954 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL) 6955 memset(&di->id2, 0, blocksize - 6956 offsetof(struct ocfs2_dinode, id2) - 6957 xattrsize); 6958 else 6959 memset(&di->id2, 0, blocksize - 6960 offsetof(struct ocfs2_dinode, id2)); 6961 } 6962 6963 void ocfs2_dinode_new_extent_list(struct inode *inode, 6964 struct ocfs2_dinode *di) 6965 { 6966 ocfs2_zero_dinode_id2_with_xattr(inode, di); 6967 di->id2.i_list.l_tree_depth = 0; 6968 di->id2.i_list.l_next_free_rec = 0; 6969 di->id2.i_list.l_count = cpu_to_le16( 6970 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di)); 6971 } 6972 6973 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di) 6974 { 6975 struct ocfs2_inode_info *oi = OCFS2_I(inode); 6976 struct ocfs2_inline_data *idata = &di->id2.i_data; 6977 6978 spin_lock(&oi->ip_lock); 6979 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL; 6980 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 6981 spin_unlock(&oi->ip_lock); 6982 6983 /* 6984 * We clear the entire i_data structure here so that all 6985 * fields can be properly initialized. 6986 */ 6987 ocfs2_zero_dinode_id2_with_xattr(inode, di); 6988 6989 idata->id_count = cpu_to_le16( 6990 ocfs2_max_inline_data_with_xattr(inode->i_sb, di)); 6991 } 6992 6993 int ocfs2_convert_inline_data_to_extents(struct inode *inode, 6994 struct buffer_head *di_bh) 6995 { 6996 int ret, i, has_data, num_pages = 0; 6997 handle_t *handle; 6998 u64 uninitialized_var(block); 6999 struct ocfs2_inode_info *oi = OCFS2_I(inode); 7000 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 7001 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7002 struct ocfs2_alloc_context *data_ac = NULL; 7003 struct page **pages = NULL; 7004 loff_t end = osb->s_clustersize; 7005 struct ocfs2_extent_tree et; 7006 int did_quota = 0; 7007 7008 has_data = i_size_read(inode) ? 1 : 0; 7009 7010 if (has_data) { 7011 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb), 7012 sizeof(struct page *), GFP_NOFS); 7013 if (pages == NULL) { 7014 ret = -ENOMEM; 7015 mlog_errno(ret); 7016 goto out; 7017 } 7018 7019 ret = ocfs2_reserve_clusters(osb, 1, &data_ac); 7020 if (ret) { 7021 mlog_errno(ret); 7022 goto out; 7023 } 7024 } 7025 7026 handle = ocfs2_start_trans(osb, 7027 ocfs2_inline_to_extents_credits(osb->sb)); 7028 if (IS_ERR(handle)) { 7029 ret = PTR_ERR(handle); 7030 mlog_errno(ret); 7031 goto out_unlock; 7032 } 7033 7034 ret = ocfs2_journal_access_di(handle, inode, di_bh, 7035 OCFS2_JOURNAL_ACCESS_WRITE); 7036 if (ret) { 7037 mlog_errno(ret); 7038 goto out_commit; 7039 } 7040 7041 if (has_data) { 7042 u32 bit_off, num; 7043 unsigned int page_end; 7044 u64 phys; 7045 7046 if (vfs_dq_alloc_space_nodirty(inode, 7047 ocfs2_clusters_to_bytes(osb->sb, 1))) { 7048 ret = -EDQUOT; 7049 goto out_commit; 7050 } 7051 did_quota = 1; 7052 7053 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off, 7054 &num); 7055 if (ret) { 7056 mlog_errno(ret); 7057 goto out_commit; 7058 } 7059 7060 /* 7061 * Save two copies, one for insert, and one that can 7062 * be changed by ocfs2_map_and_dirty_page() below. 7063 */ 7064 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off); 7065 7066 /* 7067 * Non sparse file systems zero on extend, so no need 7068 * to do that now. 7069 */ 7070 if (!ocfs2_sparse_alloc(osb) && 7071 PAGE_CACHE_SIZE < osb->s_clustersize) 7072 end = PAGE_CACHE_SIZE; 7073 7074 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages); 7075 if (ret) { 7076 mlog_errno(ret); 7077 goto out_commit; 7078 } 7079 7080 /* 7081 * This should populate the 1st page for us and mark 7082 * it up to date. 7083 */ 7084 ret = ocfs2_read_inline_data(inode, pages[0], di_bh); 7085 if (ret) { 7086 mlog_errno(ret); 7087 goto out_commit; 7088 } 7089 7090 page_end = PAGE_CACHE_SIZE; 7091 if (PAGE_CACHE_SIZE > osb->s_clustersize) 7092 page_end = osb->s_clustersize; 7093 7094 for (i = 0; i < num_pages; i++) 7095 ocfs2_map_and_dirty_page(inode, handle, 0, page_end, 7096 pages[i], i > 0, &phys); 7097 } 7098 7099 spin_lock(&oi->ip_lock); 7100 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL; 7101 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 7102 spin_unlock(&oi->ip_lock); 7103 7104 ocfs2_dinode_new_extent_list(inode, di); 7105 7106 ocfs2_journal_dirty(handle, di_bh); 7107 7108 if (has_data) { 7109 /* 7110 * An error at this point should be extremely rare. If 7111 * this proves to be false, we could always re-build 7112 * the in-inode data from our pages. 7113 */ 7114 ocfs2_init_dinode_extent_tree(&et, inode, di_bh); 7115 ret = ocfs2_insert_extent(osb, handle, inode, &et, 7116 0, block, 1, 0, NULL); 7117 if (ret) { 7118 mlog_errno(ret); 7119 goto out_commit; 7120 } 7121 7122 inode->i_blocks = ocfs2_inode_sector_count(inode); 7123 } 7124 7125 out_commit: 7126 if (ret < 0 && did_quota) 7127 vfs_dq_free_space_nodirty(inode, 7128 ocfs2_clusters_to_bytes(osb->sb, 1)); 7129 7130 ocfs2_commit_trans(osb, handle); 7131 7132 out_unlock: 7133 if (data_ac) 7134 ocfs2_free_alloc_context(data_ac); 7135 7136 out: 7137 if (pages) { 7138 ocfs2_unlock_and_free_pages(pages, num_pages); 7139 kfree(pages); 7140 } 7141 7142 return ret; 7143 } 7144 7145 /* 7146 * It is expected, that by the time you call this function, 7147 * inode->i_size and fe->i_size have been adjusted. 7148 * 7149 * WARNING: This will kfree the truncate context 7150 */ 7151 int ocfs2_commit_truncate(struct ocfs2_super *osb, 7152 struct inode *inode, 7153 struct buffer_head *fe_bh, 7154 struct ocfs2_truncate_context *tc) 7155 { 7156 int status, i, credits, tl_sem = 0; 7157 u32 clusters_to_del, new_highest_cpos, range; 7158 struct ocfs2_extent_list *el; 7159 handle_t *handle = NULL; 7160 struct inode *tl_inode = osb->osb_tl_inode; 7161 struct ocfs2_path *path = NULL; 7162 struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data; 7163 7164 mlog_entry_void(); 7165 7166 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb, 7167 i_size_read(inode)); 7168 7169 path = ocfs2_new_path(fe_bh, &di->id2.i_list, 7170 ocfs2_journal_access_di); 7171 if (!path) { 7172 status = -ENOMEM; 7173 mlog_errno(status); 7174 goto bail; 7175 } 7176 7177 ocfs2_extent_map_trunc(inode, new_highest_cpos); 7178 7179 start: 7180 /* 7181 * Check that we still have allocation to delete. 7182 */ 7183 if (OCFS2_I(inode)->ip_clusters == 0) { 7184 status = 0; 7185 goto bail; 7186 } 7187 7188 /* 7189 * Truncate always works against the rightmost tree branch. 7190 */ 7191 status = ocfs2_find_path(inode, path, UINT_MAX); 7192 if (status) { 7193 mlog_errno(status); 7194 goto bail; 7195 } 7196 7197 mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n", 7198 OCFS2_I(inode)->ip_clusters, path->p_tree_depth); 7199 7200 /* 7201 * By now, el will point to the extent list on the bottom most 7202 * portion of this tree. Only the tail record is considered in 7203 * each pass. 7204 * 7205 * We handle the following cases, in order: 7206 * - empty extent: delete the remaining branch 7207 * - remove the entire record 7208 * - remove a partial record 7209 * - no record needs to be removed (truncate has completed) 7210 */ 7211 el = path_leaf_el(path); 7212 if (le16_to_cpu(el->l_next_free_rec) == 0) { 7213 ocfs2_error(inode->i_sb, 7214 "Inode %llu has empty extent block at %llu\n", 7215 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7216 (unsigned long long)path_leaf_bh(path)->b_blocknr); 7217 status = -EROFS; 7218 goto bail; 7219 } 7220 7221 i = le16_to_cpu(el->l_next_free_rec) - 1; 7222 range = le32_to_cpu(el->l_recs[i].e_cpos) + 7223 ocfs2_rec_clusters(el, &el->l_recs[i]); 7224 if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) { 7225 clusters_to_del = 0; 7226 } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) { 7227 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]); 7228 } else if (range > new_highest_cpos) { 7229 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) + 7230 le32_to_cpu(el->l_recs[i].e_cpos)) - 7231 new_highest_cpos; 7232 } else { 7233 status = 0; 7234 goto bail; 7235 } 7236 7237 mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n", 7238 clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr); 7239 7240 mutex_lock(&tl_inode->i_mutex); 7241 tl_sem = 1; 7242 /* ocfs2_truncate_log_needs_flush guarantees us at least one 7243 * record is free for use. If there isn't any, we flush to get 7244 * an empty truncate log. */ 7245 if (ocfs2_truncate_log_needs_flush(osb)) { 7246 status = __ocfs2_flush_truncate_log(osb); 7247 if (status < 0) { 7248 mlog_errno(status); 7249 goto bail; 7250 } 7251 } 7252 7253 credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del, 7254 (struct ocfs2_dinode *)fe_bh->b_data, 7255 el); 7256 handle = ocfs2_start_trans(osb, credits); 7257 if (IS_ERR(handle)) { 7258 status = PTR_ERR(handle); 7259 handle = NULL; 7260 mlog_errno(status); 7261 goto bail; 7262 } 7263 7264 status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle, 7265 tc, path); 7266 if (status < 0) { 7267 mlog_errno(status); 7268 goto bail; 7269 } 7270 7271 mutex_unlock(&tl_inode->i_mutex); 7272 tl_sem = 0; 7273 7274 ocfs2_commit_trans(osb, handle); 7275 handle = NULL; 7276 7277 ocfs2_reinit_path(path, 1); 7278 7279 /* 7280 * The check above will catch the case where we've truncated 7281 * away all allocation. 7282 */ 7283 goto start; 7284 7285 bail: 7286 7287 ocfs2_schedule_truncate_log_flush(osb, 1); 7288 7289 if (tl_sem) 7290 mutex_unlock(&tl_inode->i_mutex); 7291 7292 if (handle) 7293 ocfs2_commit_trans(osb, handle); 7294 7295 ocfs2_run_deallocs(osb, &tc->tc_dealloc); 7296 7297 ocfs2_free_path(path); 7298 7299 /* This will drop the ext_alloc cluster lock for us */ 7300 ocfs2_free_truncate_context(tc); 7301 7302 mlog_exit(status); 7303 return status; 7304 } 7305 7306 /* 7307 * Expects the inode to already be locked. 7308 */ 7309 int ocfs2_prepare_truncate(struct ocfs2_super *osb, 7310 struct inode *inode, 7311 struct buffer_head *fe_bh, 7312 struct ocfs2_truncate_context **tc) 7313 { 7314 int status; 7315 unsigned int new_i_clusters; 7316 struct ocfs2_dinode *fe; 7317 struct ocfs2_extent_block *eb; 7318 struct buffer_head *last_eb_bh = NULL; 7319 7320 mlog_entry_void(); 7321 7322 *tc = NULL; 7323 7324 new_i_clusters = ocfs2_clusters_for_bytes(osb->sb, 7325 i_size_read(inode)); 7326 fe = (struct ocfs2_dinode *) fe_bh->b_data; 7327 7328 mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size =" 7329 "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters, 7330 (unsigned long long)le64_to_cpu(fe->i_size)); 7331 7332 *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL); 7333 if (!(*tc)) { 7334 status = -ENOMEM; 7335 mlog_errno(status); 7336 goto bail; 7337 } 7338 ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc); 7339 7340 if (fe->id2.i_list.l_tree_depth) { 7341 status = ocfs2_read_extent_block(inode, 7342 le64_to_cpu(fe->i_last_eb_blk), 7343 &last_eb_bh); 7344 if (status < 0) { 7345 mlog_errno(status); 7346 goto bail; 7347 } 7348 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 7349 } 7350 7351 (*tc)->tc_last_eb_bh = last_eb_bh; 7352 7353 status = 0; 7354 bail: 7355 if (status < 0) { 7356 if (*tc) 7357 ocfs2_free_truncate_context(*tc); 7358 *tc = NULL; 7359 } 7360 mlog_exit_void(); 7361 return status; 7362 } 7363 7364 /* 7365 * 'start' is inclusive, 'end' is not. 7366 */ 7367 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh, 7368 unsigned int start, unsigned int end, int trunc) 7369 { 7370 int ret; 7371 unsigned int numbytes; 7372 handle_t *handle; 7373 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 7374 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7375 struct ocfs2_inline_data *idata = &di->id2.i_data; 7376 7377 if (end > i_size_read(inode)) 7378 end = i_size_read(inode); 7379 7380 BUG_ON(start >= end); 7381 7382 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) || 7383 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) || 7384 !ocfs2_supports_inline_data(osb)) { 7385 ocfs2_error(inode->i_sb, 7386 "Inline data flags for inode %llu don't agree! " 7387 "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n", 7388 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7389 le16_to_cpu(di->i_dyn_features), 7390 OCFS2_I(inode)->ip_dyn_features, 7391 osb->s_feature_incompat); 7392 ret = -EROFS; 7393 goto out; 7394 } 7395 7396 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 7397 if (IS_ERR(handle)) { 7398 ret = PTR_ERR(handle); 7399 mlog_errno(ret); 7400 goto out; 7401 } 7402 7403 ret = ocfs2_journal_access_di(handle, inode, di_bh, 7404 OCFS2_JOURNAL_ACCESS_WRITE); 7405 if (ret) { 7406 mlog_errno(ret); 7407 goto out_commit; 7408 } 7409 7410 numbytes = end - start; 7411 memset(idata->id_data + start, 0, numbytes); 7412 7413 /* 7414 * No need to worry about the data page here - it's been 7415 * truncated already and inline data doesn't need it for 7416 * pushing zero's to disk, so we'll let readpage pick it up 7417 * later. 7418 */ 7419 if (trunc) { 7420 i_size_write(inode, start); 7421 di->i_size = cpu_to_le64(start); 7422 } 7423 7424 inode->i_blocks = ocfs2_inode_sector_count(inode); 7425 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 7426 7427 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 7428 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 7429 7430 ocfs2_journal_dirty(handle, di_bh); 7431 7432 out_commit: 7433 ocfs2_commit_trans(osb, handle); 7434 7435 out: 7436 return ret; 7437 } 7438 7439 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc) 7440 { 7441 /* 7442 * The caller is responsible for completing deallocation 7443 * before freeing the context. 7444 */ 7445 if (tc->tc_dealloc.c_first_suballocator != NULL) 7446 mlog(ML_NOTICE, 7447 "Truncate completion has non-empty dealloc context\n"); 7448 7449 brelse(tc->tc_last_eb_bh); 7450 7451 kfree(tc); 7452 } 7453