xref: /openbmc/linux/fs/ocfs2/alloc.c (revision 732a675a)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 
32 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
33 #include <cluster/masklog.h>
34 
35 #include "ocfs2.h"
36 
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "localalloc.h"
44 #include "suballoc.h"
45 #include "sysfile.h"
46 #include "file.h"
47 #include "super.h"
48 #include "uptodate.h"
49 
50 #include "buffer_head_io.h"
51 
52 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
53 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
54 					 struct ocfs2_extent_block *eb);
55 
56 /*
57  * Structures which describe a path through a btree, and functions to
58  * manipulate them.
59  *
60  * The idea here is to be as generic as possible with the tree
61  * manipulation code.
62  */
63 struct ocfs2_path_item {
64 	struct buffer_head		*bh;
65 	struct ocfs2_extent_list	*el;
66 };
67 
68 #define OCFS2_MAX_PATH_DEPTH	5
69 
70 struct ocfs2_path {
71 	int			p_tree_depth;
72 	struct ocfs2_path_item	p_node[OCFS2_MAX_PATH_DEPTH];
73 };
74 
75 #define path_root_bh(_path) ((_path)->p_node[0].bh)
76 #define path_root_el(_path) ((_path)->p_node[0].el)
77 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
78 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
79 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
80 
81 /*
82  * Reset the actual path elements so that we can re-use the structure
83  * to build another path. Generally, this involves freeing the buffer
84  * heads.
85  */
86 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
87 {
88 	int i, start = 0, depth = 0;
89 	struct ocfs2_path_item *node;
90 
91 	if (keep_root)
92 		start = 1;
93 
94 	for(i = start; i < path_num_items(path); i++) {
95 		node = &path->p_node[i];
96 
97 		brelse(node->bh);
98 		node->bh = NULL;
99 		node->el = NULL;
100 	}
101 
102 	/*
103 	 * Tree depth may change during truncate, or insert. If we're
104 	 * keeping the root extent list, then make sure that our path
105 	 * structure reflects the proper depth.
106 	 */
107 	if (keep_root)
108 		depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
109 
110 	path->p_tree_depth = depth;
111 }
112 
113 static void ocfs2_free_path(struct ocfs2_path *path)
114 {
115 	if (path) {
116 		ocfs2_reinit_path(path, 0);
117 		kfree(path);
118 	}
119 }
120 
121 /*
122  * All the elements of src into dest. After this call, src could be freed
123  * without affecting dest.
124  *
125  * Both paths should have the same root. Any non-root elements of dest
126  * will be freed.
127  */
128 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
129 {
130 	int i;
131 
132 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
133 	BUG_ON(path_root_el(dest) != path_root_el(src));
134 
135 	ocfs2_reinit_path(dest, 1);
136 
137 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
138 		dest->p_node[i].bh = src->p_node[i].bh;
139 		dest->p_node[i].el = src->p_node[i].el;
140 
141 		if (dest->p_node[i].bh)
142 			get_bh(dest->p_node[i].bh);
143 	}
144 }
145 
146 /*
147  * Make the *dest path the same as src and re-initialize src path to
148  * have a root only.
149  */
150 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
151 {
152 	int i;
153 
154 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
155 
156 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
157 		brelse(dest->p_node[i].bh);
158 
159 		dest->p_node[i].bh = src->p_node[i].bh;
160 		dest->p_node[i].el = src->p_node[i].el;
161 
162 		src->p_node[i].bh = NULL;
163 		src->p_node[i].el = NULL;
164 	}
165 }
166 
167 /*
168  * Insert an extent block at given index.
169  *
170  * This will not take an additional reference on eb_bh.
171  */
172 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
173 					struct buffer_head *eb_bh)
174 {
175 	struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
176 
177 	/*
178 	 * Right now, no root bh is an extent block, so this helps
179 	 * catch code errors with dinode trees. The assertion can be
180 	 * safely removed if we ever need to insert extent block
181 	 * structures at the root.
182 	 */
183 	BUG_ON(index == 0);
184 
185 	path->p_node[index].bh = eb_bh;
186 	path->p_node[index].el = &eb->h_list;
187 }
188 
189 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
190 					 struct ocfs2_extent_list *root_el)
191 {
192 	struct ocfs2_path *path;
193 
194 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
195 
196 	path = kzalloc(sizeof(*path), GFP_NOFS);
197 	if (path) {
198 		path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
199 		get_bh(root_bh);
200 		path_root_bh(path) = root_bh;
201 		path_root_el(path) = root_el;
202 	}
203 
204 	return path;
205 }
206 
207 /*
208  * Allocate and initialize a new path based on a disk inode tree.
209  */
210 static struct ocfs2_path *ocfs2_new_inode_path(struct buffer_head *di_bh)
211 {
212 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
213 	struct ocfs2_extent_list *el = &di->id2.i_list;
214 
215 	return ocfs2_new_path(di_bh, el);
216 }
217 
218 /*
219  * Convenience function to journal all components in a path.
220  */
221 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
222 				     struct ocfs2_path *path)
223 {
224 	int i, ret = 0;
225 
226 	if (!path)
227 		goto out;
228 
229 	for(i = 0; i < path_num_items(path); i++) {
230 		ret = ocfs2_journal_access(handle, inode, path->p_node[i].bh,
231 					   OCFS2_JOURNAL_ACCESS_WRITE);
232 		if (ret < 0) {
233 			mlog_errno(ret);
234 			goto out;
235 		}
236 	}
237 
238 out:
239 	return ret;
240 }
241 
242 /*
243  * Return the index of the extent record which contains cluster #v_cluster.
244  * -1 is returned if it was not found.
245  *
246  * Should work fine on interior and exterior nodes.
247  */
248 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
249 {
250 	int ret = -1;
251 	int i;
252 	struct ocfs2_extent_rec *rec;
253 	u32 rec_end, rec_start, clusters;
254 
255 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
256 		rec = &el->l_recs[i];
257 
258 		rec_start = le32_to_cpu(rec->e_cpos);
259 		clusters = ocfs2_rec_clusters(el, rec);
260 
261 		rec_end = rec_start + clusters;
262 
263 		if (v_cluster >= rec_start && v_cluster < rec_end) {
264 			ret = i;
265 			break;
266 		}
267 	}
268 
269 	return ret;
270 }
271 
272 enum ocfs2_contig_type {
273 	CONTIG_NONE = 0,
274 	CONTIG_LEFT,
275 	CONTIG_RIGHT,
276 	CONTIG_LEFTRIGHT,
277 };
278 
279 
280 /*
281  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
282  * ocfs2_extent_contig only work properly against leaf nodes!
283  */
284 static int ocfs2_block_extent_contig(struct super_block *sb,
285 				     struct ocfs2_extent_rec *ext,
286 				     u64 blkno)
287 {
288 	u64 blk_end = le64_to_cpu(ext->e_blkno);
289 
290 	blk_end += ocfs2_clusters_to_blocks(sb,
291 				    le16_to_cpu(ext->e_leaf_clusters));
292 
293 	return blkno == blk_end;
294 }
295 
296 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
297 				  struct ocfs2_extent_rec *right)
298 {
299 	u32 left_range;
300 
301 	left_range = le32_to_cpu(left->e_cpos) +
302 		le16_to_cpu(left->e_leaf_clusters);
303 
304 	return (left_range == le32_to_cpu(right->e_cpos));
305 }
306 
307 static enum ocfs2_contig_type
308 	ocfs2_extent_contig(struct inode *inode,
309 			    struct ocfs2_extent_rec *ext,
310 			    struct ocfs2_extent_rec *insert_rec)
311 {
312 	u64 blkno = le64_to_cpu(insert_rec->e_blkno);
313 
314 	/*
315 	 * Refuse to coalesce extent records with different flag
316 	 * fields - we don't want to mix unwritten extents with user
317 	 * data.
318 	 */
319 	if (ext->e_flags != insert_rec->e_flags)
320 		return CONTIG_NONE;
321 
322 	if (ocfs2_extents_adjacent(ext, insert_rec) &&
323 	    ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
324 			return CONTIG_RIGHT;
325 
326 	blkno = le64_to_cpu(ext->e_blkno);
327 	if (ocfs2_extents_adjacent(insert_rec, ext) &&
328 	    ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
329 		return CONTIG_LEFT;
330 
331 	return CONTIG_NONE;
332 }
333 
334 /*
335  * NOTE: We can have pretty much any combination of contiguousness and
336  * appending.
337  *
338  * The usefulness of APPEND_TAIL is more in that it lets us know that
339  * we'll have to update the path to that leaf.
340  */
341 enum ocfs2_append_type {
342 	APPEND_NONE = 0,
343 	APPEND_TAIL,
344 };
345 
346 enum ocfs2_split_type {
347 	SPLIT_NONE = 0,
348 	SPLIT_LEFT,
349 	SPLIT_RIGHT,
350 };
351 
352 struct ocfs2_insert_type {
353 	enum ocfs2_split_type	ins_split;
354 	enum ocfs2_append_type	ins_appending;
355 	enum ocfs2_contig_type	ins_contig;
356 	int			ins_contig_index;
357 	int			ins_tree_depth;
358 };
359 
360 struct ocfs2_merge_ctxt {
361 	enum ocfs2_contig_type	c_contig_type;
362 	int			c_has_empty_extent;
363 	int			c_split_covers_rec;
364 };
365 
366 /*
367  * How many free extents have we got before we need more meta data?
368  */
369 int ocfs2_num_free_extents(struct ocfs2_super *osb,
370 			   struct inode *inode,
371 			   struct ocfs2_dinode *fe)
372 {
373 	int retval;
374 	struct ocfs2_extent_list *el;
375 	struct ocfs2_extent_block *eb;
376 	struct buffer_head *eb_bh = NULL;
377 
378 	mlog_entry_void();
379 
380 	if (!OCFS2_IS_VALID_DINODE(fe)) {
381 		OCFS2_RO_ON_INVALID_DINODE(inode->i_sb, fe);
382 		retval = -EIO;
383 		goto bail;
384 	}
385 
386 	if (fe->i_last_eb_blk) {
387 		retval = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
388 					  &eb_bh, OCFS2_BH_CACHED, inode);
389 		if (retval < 0) {
390 			mlog_errno(retval);
391 			goto bail;
392 		}
393 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
394 		el = &eb->h_list;
395 	} else
396 		el = &fe->id2.i_list;
397 
398 	BUG_ON(el->l_tree_depth != 0);
399 
400 	retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
401 bail:
402 	if (eb_bh)
403 		brelse(eb_bh);
404 
405 	mlog_exit(retval);
406 	return retval;
407 }
408 
409 /* expects array to already be allocated
410  *
411  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
412  * l_count for you
413  */
414 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
415 				     handle_t *handle,
416 				     struct inode *inode,
417 				     int wanted,
418 				     struct ocfs2_alloc_context *meta_ac,
419 				     struct buffer_head *bhs[])
420 {
421 	int count, status, i;
422 	u16 suballoc_bit_start;
423 	u32 num_got;
424 	u64 first_blkno;
425 	struct ocfs2_extent_block *eb;
426 
427 	mlog_entry_void();
428 
429 	count = 0;
430 	while (count < wanted) {
431 		status = ocfs2_claim_metadata(osb,
432 					      handle,
433 					      meta_ac,
434 					      wanted - count,
435 					      &suballoc_bit_start,
436 					      &num_got,
437 					      &first_blkno);
438 		if (status < 0) {
439 			mlog_errno(status);
440 			goto bail;
441 		}
442 
443 		for(i = count;  i < (num_got + count); i++) {
444 			bhs[i] = sb_getblk(osb->sb, first_blkno);
445 			if (bhs[i] == NULL) {
446 				status = -EIO;
447 				mlog_errno(status);
448 				goto bail;
449 			}
450 			ocfs2_set_new_buffer_uptodate(inode, bhs[i]);
451 
452 			status = ocfs2_journal_access(handle, inode, bhs[i],
453 						      OCFS2_JOURNAL_ACCESS_CREATE);
454 			if (status < 0) {
455 				mlog_errno(status);
456 				goto bail;
457 			}
458 
459 			memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
460 			eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
461 			/* Ok, setup the minimal stuff here. */
462 			strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
463 			eb->h_blkno = cpu_to_le64(first_blkno);
464 			eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
465 			eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
466 			eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
467 			eb->h_list.l_count =
468 				cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
469 
470 			suballoc_bit_start++;
471 			first_blkno++;
472 
473 			/* We'll also be dirtied by the caller, so
474 			 * this isn't absolutely necessary. */
475 			status = ocfs2_journal_dirty(handle, bhs[i]);
476 			if (status < 0) {
477 				mlog_errno(status);
478 				goto bail;
479 			}
480 		}
481 
482 		count += num_got;
483 	}
484 
485 	status = 0;
486 bail:
487 	if (status < 0) {
488 		for(i = 0; i < wanted; i++) {
489 			if (bhs[i])
490 				brelse(bhs[i]);
491 			bhs[i] = NULL;
492 		}
493 	}
494 	mlog_exit(status);
495 	return status;
496 }
497 
498 /*
499  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
500  *
501  * Returns the sum of the rightmost extent rec logical offset and
502  * cluster count.
503  *
504  * ocfs2_add_branch() uses this to determine what logical cluster
505  * value should be populated into the leftmost new branch records.
506  *
507  * ocfs2_shift_tree_depth() uses this to determine the # clusters
508  * value for the new topmost tree record.
509  */
510 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
511 {
512 	int i;
513 
514 	i = le16_to_cpu(el->l_next_free_rec) - 1;
515 
516 	return le32_to_cpu(el->l_recs[i].e_cpos) +
517 		ocfs2_rec_clusters(el, &el->l_recs[i]);
518 }
519 
520 /*
521  * Add an entire tree branch to our inode. eb_bh is the extent block
522  * to start at, if we don't want to start the branch at the dinode
523  * structure.
524  *
525  * last_eb_bh is required as we have to update it's next_leaf pointer
526  * for the new last extent block.
527  *
528  * the new branch will be 'empty' in the sense that every block will
529  * contain a single record with cluster count == 0.
530  */
531 static int ocfs2_add_branch(struct ocfs2_super *osb,
532 			    handle_t *handle,
533 			    struct inode *inode,
534 			    struct buffer_head *fe_bh,
535 			    struct buffer_head *eb_bh,
536 			    struct buffer_head **last_eb_bh,
537 			    struct ocfs2_alloc_context *meta_ac)
538 {
539 	int status, new_blocks, i;
540 	u64 next_blkno, new_last_eb_blk;
541 	struct buffer_head *bh;
542 	struct buffer_head **new_eb_bhs = NULL;
543 	struct ocfs2_dinode *fe;
544 	struct ocfs2_extent_block *eb;
545 	struct ocfs2_extent_list  *eb_el;
546 	struct ocfs2_extent_list  *el;
547 	u32 new_cpos;
548 
549 	mlog_entry_void();
550 
551 	BUG_ON(!last_eb_bh || !*last_eb_bh);
552 
553 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
554 
555 	if (eb_bh) {
556 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
557 		el = &eb->h_list;
558 	} else
559 		el = &fe->id2.i_list;
560 
561 	/* we never add a branch to a leaf. */
562 	BUG_ON(!el->l_tree_depth);
563 
564 	new_blocks = le16_to_cpu(el->l_tree_depth);
565 
566 	/* allocate the number of new eb blocks we need */
567 	new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
568 			     GFP_KERNEL);
569 	if (!new_eb_bhs) {
570 		status = -ENOMEM;
571 		mlog_errno(status);
572 		goto bail;
573 	}
574 
575 	status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
576 					   meta_ac, new_eb_bhs);
577 	if (status < 0) {
578 		mlog_errno(status);
579 		goto bail;
580 	}
581 
582 	eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
583 	new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
584 
585 	/* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
586 	 * linked with the rest of the tree.
587 	 * conversly, new_eb_bhs[0] is the new bottommost leaf.
588 	 *
589 	 * when we leave the loop, new_last_eb_blk will point to the
590 	 * newest leaf, and next_blkno will point to the topmost extent
591 	 * block. */
592 	next_blkno = new_last_eb_blk = 0;
593 	for(i = 0; i < new_blocks; i++) {
594 		bh = new_eb_bhs[i];
595 		eb = (struct ocfs2_extent_block *) bh->b_data;
596 		if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
597 			OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
598 			status = -EIO;
599 			goto bail;
600 		}
601 		eb_el = &eb->h_list;
602 
603 		status = ocfs2_journal_access(handle, inode, bh,
604 					      OCFS2_JOURNAL_ACCESS_CREATE);
605 		if (status < 0) {
606 			mlog_errno(status);
607 			goto bail;
608 		}
609 
610 		eb->h_next_leaf_blk = 0;
611 		eb_el->l_tree_depth = cpu_to_le16(i);
612 		eb_el->l_next_free_rec = cpu_to_le16(1);
613 		/*
614 		 * This actually counts as an empty extent as
615 		 * c_clusters == 0
616 		 */
617 		eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
618 		eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
619 		/*
620 		 * eb_el isn't always an interior node, but even leaf
621 		 * nodes want a zero'd flags and reserved field so
622 		 * this gets the whole 32 bits regardless of use.
623 		 */
624 		eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
625 		if (!eb_el->l_tree_depth)
626 			new_last_eb_blk = le64_to_cpu(eb->h_blkno);
627 
628 		status = ocfs2_journal_dirty(handle, bh);
629 		if (status < 0) {
630 			mlog_errno(status);
631 			goto bail;
632 		}
633 
634 		next_blkno = le64_to_cpu(eb->h_blkno);
635 	}
636 
637 	/* This is a bit hairy. We want to update up to three blocks
638 	 * here without leaving any of them in an inconsistent state
639 	 * in case of error. We don't have to worry about
640 	 * journal_dirty erroring as it won't unless we've aborted the
641 	 * handle (in which case we would never be here) so reserving
642 	 * the write with journal_access is all we need to do. */
643 	status = ocfs2_journal_access(handle, inode, *last_eb_bh,
644 				      OCFS2_JOURNAL_ACCESS_WRITE);
645 	if (status < 0) {
646 		mlog_errno(status);
647 		goto bail;
648 	}
649 	status = ocfs2_journal_access(handle, inode, fe_bh,
650 				      OCFS2_JOURNAL_ACCESS_WRITE);
651 	if (status < 0) {
652 		mlog_errno(status);
653 		goto bail;
654 	}
655 	if (eb_bh) {
656 		status = ocfs2_journal_access(handle, inode, eb_bh,
657 					      OCFS2_JOURNAL_ACCESS_WRITE);
658 		if (status < 0) {
659 			mlog_errno(status);
660 			goto bail;
661 		}
662 	}
663 
664 	/* Link the new branch into the rest of the tree (el will
665 	 * either be on the fe, or the extent block passed in. */
666 	i = le16_to_cpu(el->l_next_free_rec);
667 	el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
668 	el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
669 	el->l_recs[i].e_int_clusters = 0;
670 	le16_add_cpu(&el->l_next_free_rec, 1);
671 
672 	/* fe needs a new last extent block pointer, as does the
673 	 * next_leaf on the previously last-extent-block. */
674 	fe->i_last_eb_blk = cpu_to_le64(new_last_eb_blk);
675 
676 	eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
677 	eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
678 
679 	status = ocfs2_journal_dirty(handle, *last_eb_bh);
680 	if (status < 0)
681 		mlog_errno(status);
682 	status = ocfs2_journal_dirty(handle, fe_bh);
683 	if (status < 0)
684 		mlog_errno(status);
685 	if (eb_bh) {
686 		status = ocfs2_journal_dirty(handle, eb_bh);
687 		if (status < 0)
688 			mlog_errno(status);
689 	}
690 
691 	/*
692 	 * Some callers want to track the rightmost leaf so pass it
693 	 * back here.
694 	 */
695 	brelse(*last_eb_bh);
696 	get_bh(new_eb_bhs[0]);
697 	*last_eb_bh = new_eb_bhs[0];
698 
699 	status = 0;
700 bail:
701 	if (new_eb_bhs) {
702 		for (i = 0; i < new_blocks; i++)
703 			if (new_eb_bhs[i])
704 				brelse(new_eb_bhs[i]);
705 		kfree(new_eb_bhs);
706 	}
707 
708 	mlog_exit(status);
709 	return status;
710 }
711 
712 /*
713  * adds another level to the allocation tree.
714  * returns back the new extent block so you can add a branch to it
715  * after this call.
716  */
717 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
718 				  handle_t *handle,
719 				  struct inode *inode,
720 				  struct buffer_head *fe_bh,
721 				  struct ocfs2_alloc_context *meta_ac,
722 				  struct buffer_head **ret_new_eb_bh)
723 {
724 	int status, i;
725 	u32 new_clusters;
726 	struct buffer_head *new_eb_bh = NULL;
727 	struct ocfs2_dinode *fe;
728 	struct ocfs2_extent_block *eb;
729 	struct ocfs2_extent_list  *fe_el;
730 	struct ocfs2_extent_list  *eb_el;
731 
732 	mlog_entry_void();
733 
734 	status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
735 					   &new_eb_bh);
736 	if (status < 0) {
737 		mlog_errno(status);
738 		goto bail;
739 	}
740 
741 	eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
742 	if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
743 		OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
744 		status = -EIO;
745 		goto bail;
746 	}
747 
748 	eb_el = &eb->h_list;
749 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
750 	fe_el = &fe->id2.i_list;
751 
752 	status = ocfs2_journal_access(handle, inode, new_eb_bh,
753 				      OCFS2_JOURNAL_ACCESS_CREATE);
754 	if (status < 0) {
755 		mlog_errno(status);
756 		goto bail;
757 	}
758 
759 	/* copy the fe data into the new extent block */
760 	eb_el->l_tree_depth = fe_el->l_tree_depth;
761 	eb_el->l_next_free_rec = fe_el->l_next_free_rec;
762 	for(i = 0; i < le16_to_cpu(fe_el->l_next_free_rec); i++)
763 		eb_el->l_recs[i] = fe_el->l_recs[i];
764 
765 	status = ocfs2_journal_dirty(handle, new_eb_bh);
766 	if (status < 0) {
767 		mlog_errno(status);
768 		goto bail;
769 	}
770 
771 	status = ocfs2_journal_access(handle, inode, fe_bh,
772 				      OCFS2_JOURNAL_ACCESS_WRITE);
773 	if (status < 0) {
774 		mlog_errno(status);
775 		goto bail;
776 	}
777 
778 	new_clusters = ocfs2_sum_rightmost_rec(eb_el);
779 
780 	/* update fe now */
781 	le16_add_cpu(&fe_el->l_tree_depth, 1);
782 	fe_el->l_recs[0].e_cpos = 0;
783 	fe_el->l_recs[0].e_blkno = eb->h_blkno;
784 	fe_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
785 	for(i = 1; i < le16_to_cpu(fe_el->l_next_free_rec); i++)
786 		memset(&fe_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
787 	fe_el->l_next_free_rec = cpu_to_le16(1);
788 
789 	/* If this is our 1st tree depth shift, then last_eb_blk
790 	 * becomes the allocated extent block */
791 	if (fe_el->l_tree_depth == cpu_to_le16(1))
792 		fe->i_last_eb_blk = eb->h_blkno;
793 
794 	status = ocfs2_journal_dirty(handle, fe_bh);
795 	if (status < 0) {
796 		mlog_errno(status);
797 		goto bail;
798 	}
799 
800 	*ret_new_eb_bh = new_eb_bh;
801 	new_eb_bh = NULL;
802 	status = 0;
803 bail:
804 	if (new_eb_bh)
805 		brelse(new_eb_bh);
806 
807 	mlog_exit(status);
808 	return status;
809 }
810 
811 /*
812  * Should only be called when there is no space left in any of the
813  * leaf nodes. What we want to do is find the lowest tree depth
814  * non-leaf extent block with room for new records. There are three
815  * valid results of this search:
816  *
817  * 1) a lowest extent block is found, then we pass it back in
818  *    *lowest_eb_bh and return '0'
819  *
820  * 2) the search fails to find anything, but the dinode has room. We
821  *    pass NULL back in *lowest_eb_bh, but still return '0'
822  *
823  * 3) the search fails to find anything AND the dinode is full, in
824  *    which case we return > 0
825  *
826  * return status < 0 indicates an error.
827  */
828 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
829 				    struct inode *inode,
830 				    struct buffer_head *fe_bh,
831 				    struct buffer_head **target_bh)
832 {
833 	int status = 0, i;
834 	u64 blkno;
835 	struct ocfs2_dinode *fe;
836 	struct ocfs2_extent_block *eb;
837 	struct ocfs2_extent_list  *el;
838 	struct buffer_head *bh = NULL;
839 	struct buffer_head *lowest_bh = NULL;
840 
841 	mlog_entry_void();
842 
843 	*target_bh = NULL;
844 
845 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
846 	el = &fe->id2.i_list;
847 
848 	while(le16_to_cpu(el->l_tree_depth) > 1) {
849 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
850 			ocfs2_error(inode->i_sb, "Dinode %llu has empty "
851 				    "extent list (next_free_rec == 0)",
852 				    (unsigned long long)OCFS2_I(inode)->ip_blkno);
853 			status = -EIO;
854 			goto bail;
855 		}
856 		i = le16_to_cpu(el->l_next_free_rec) - 1;
857 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
858 		if (!blkno) {
859 			ocfs2_error(inode->i_sb, "Dinode %llu has extent "
860 				    "list where extent # %d has no physical "
861 				    "block start",
862 				    (unsigned long long)OCFS2_I(inode)->ip_blkno, i);
863 			status = -EIO;
864 			goto bail;
865 		}
866 
867 		if (bh) {
868 			brelse(bh);
869 			bh = NULL;
870 		}
871 
872 		status = ocfs2_read_block(osb, blkno, &bh, OCFS2_BH_CACHED,
873 					  inode);
874 		if (status < 0) {
875 			mlog_errno(status);
876 			goto bail;
877 		}
878 
879 		eb = (struct ocfs2_extent_block *) bh->b_data;
880 		if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
881 			OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
882 			status = -EIO;
883 			goto bail;
884 		}
885 		el = &eb->h_list;
886 
887 		if (le16_to_cpu(el->l_next_free_rec) <
888 		    le16_to_cpu(el->l_count)) {
889 			if (lowest_bh)
890 				brelse(lowest_bh);
891 			lowest_bh = bh;
892 			get_bh(lowest_bh);
893 		}
894 	}
895 
896 	/* If we didn't find one and the fe doesn't have any room,
897 	 * then return '1' */
898 	if (!lowest_bh
899 	    && (fe->id2.i_list.l_next_free_rec == fe->id2.i_list.l_count))
900 		status = 1;
901 
902 	*target_bh = lowest_bh;
903 bail:
904 	if (bh)
905 		brelse(bh);
906 
907 	mlog_exit(status);
908 	return status;
909 }
910 
911 /*
912  * Grow a b-tree so that it has more records.
913  *
914  * We might shift the tree depth in which case existing paths should
915  * be considered invalid.
916  *
917  * Tree depth after the grow is returned via *final_depth.
918  *
919  * *last_eb_bh will be updated by ocfs2_add_branch().
920  */
921 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
922 			   struct buffer_head *di_bh, int *final_depth,
923 			   struct buffer_head **last_eb_bh,
924 			   struct ocfs2_alloc_context *meta_ac)
925 {
926 	int ret, shift;
927 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
928 	int depth = le16_to_cpu(di->id2.i_list.l_tree_depth);
929 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
930 	struct buffer_head *bh = NULL;
931 
932 	BUG_ON(meta_ac == NULL);
933 
934 	shift = ocfs2_find_branch_target(osb, inode, di_bh, &bh);
935 	if (shift < 0) {
936 		ret = shift;
937 		mlog_errno(ret);
938 		goto out;
939 	}
940 
941 	/* We traveled all the way to the bottom of the allocation tree
942 	 * and didn't find room for any more extents - we need to add
943 	 * another tree level */
944 	if (shift) {
945 		BUG_ON(bh);
946 		mlog(0, "need to shift tree depth (current = %d)\n", depth);
947 
948 		/* ocfs2_shift_tree_depth will return us a buffer with
949 		 * the new extent block (so we can pass that to
950 		 * ocfs2_add_branch). */
951 		ret = ocfs2_shift_tree_depth(osb, handle, inode, di_bh,
952 					     meta_ac, &bh);
953 		if (ret < 0) {
954 			mlog_errno(ret);
955 			goto out;
956 		}
957 		depth++;
958 		if (depth == 1) {
959 			/*
960 			 * Special case: we have room now if we shifted from
961 			 * tree_depth 0, so no more work needs to be done.
962 			 *
963 			 * We won't be calling add_branch, so pass
964 			 * back *last_eb_bh as the new leaf. At depth
965 			 * zero, it should always be null so there's
966 			 * no reason to brelse.
967 			 */
968 			BUG_ON(*last_eb_bh);
969 			get_bh(bh);
970 			*last_eb_bh = bh;
971 			goto out;
972 		}
973 	}
974 
975 	/* call ocfs2_add_branch to add the final part of the tree with
976 	 * the new data. */
977 	mlog(0, "add branch. bh = %p\n", bh);
978 	ret = ocfs2_add_branch(osb, handle, inode, di_bh, bh, last_eb_bh,
979 			       meta_ac);
980 	if (ret < 0) {
981 		mlog_errno(ret);
982 		goto out;
983 	}
984 
985 out:
986 	if (final_depth)
987 		*final_depth = depth;
988 	brelse(bh);
989 	return ret;
990 }
991 
992 /*
993  * This is only valid for leaf nodes, which are the only ones that can
994  * have empty extents anyway.
995  */
996 static inline int ocfs2_is_empty_extent(struct ocfs2_extent_rec *rec)
997 {
998 	return !rec->e_leaf_clusters;
999 }
1000 
1001 /*
1002  * This function will discard the rightmost extent record.
1003  */
1004 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1005 {
1006 	int next_free = le16_to_cpu(el->l_next_free_rec);
1007 	int count = le16_to_cpu(el->l_count);
1008 	unsigned int num_bytes;
1009 
1010 	BUG_ON(!next_free);
1011 	/* This will cause us to go off the end of our extent list. */
1012 	BUG_ON(next_free >= count);
1013 
1014 	num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1015 
1016 	memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1017 }
1018 
1019 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1020 			      struct ocfs2_extent_rec *insert_rec)
1021 {
1022 	int i, insert_index, next_free, has_empty, num_bytes;
1023 	u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1024 	struct ocfs2_extent_rec *rec;
1025 
1026 	next_free = le16_to_cpu(el->l_next_free_rec);
1027 	has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1028 
1029 	BUG_ON(!next_free);
1030 
1031 	/* The tree code before us didn't allow enough room in the leaf. */
1032 	BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1033 
1034 	/*
1035 	 * The easiest way to approach this is to just remove the
1036 	 * empty extent and temporarily decrement next_free.
1037 	 */
1038 	if (has_empty) {
1039 		/*
1040 		 * If next_free was 1 (only an empty extent), this
1041 		 * loop won't execute, which is fine. We still want
1042 		 * the decrement above to happen.
1043 		 */
1044 		for(i = 0; i < (next_free - 1); i++)
1045 			el->l_recs[i] = el->l_recs[i+1];
1046 
1047 		next_free--;
1048 	}
1049 
1050 	/*
1051 	 * Figure out what the new record index should be.
1052 	 */
1053 	for(i = 0; i < next_free; i++) {
1054 		rec = &el->l_recs[i];
1055 
1056 		if (insert_cpos < le32_to_cpu(rec->e_cpos))
1057 			break;
1058 	}
1059 	insert_index = i;
1060 
1061 	mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1062 	     insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1063 
1064 	BUG_ON(insert_index < 0);
1065 	BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1066 	BUG_ON(insert_index > next_free);
1067 
1068 	/*
1069 	 * No need to memmove if we're just adding to the tail.
1070 	 */
1071 	if (insert_index != next_free) {
1072 		BUG_ON(next_free >= le16_to_cpu(el->l_count));
1073 
1074 		num_bytes = next_free - insert_index;
1075 		num_bytes *= sizeof(struct ocfs2_extent_rec);
1076 		memmove(&el->l_recs[insert_index + 1],
1077 			&el->l_recs[insert_index],
1078 			num_bytes);
1079 	}
1080 
1081 	/*
1082 	 * Either we had an empty extent, and need to re-increment or
1083 	 * there was no empty extent on a non full rightmost leaf node,
1084 	 * in which case we still need to increment.
1085 	 */
1086 	next_free++;
1087 	el->l_next_free_rec = cpu_to_le16(next_free);
1088 	/*
1089 	 * Make sure none of the math above just messed up our tree.
1090 	 */
1091 	BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1092 
1093 	el->l_recs[insert_index] = *insert_rec;
1094 
1095 }
1096 
1097 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1098 {
1099 	int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1100 
1101 	BUG_ON(num_recs == 0);
1102 
1103 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1104 		num_recs--;
1105 		size = num_recs * sizeof(struct ocfs2_extent_rec);
1106 		memmove(&el->l_recs[0], &el->l_recs[1], size);
1107 		memset(&el->l_recs[num_recs], 0,
1108 		       sizeof(struct ocfs2_extent_rec));
1109 		el->l_next_free_rec = cpu_to_le16(num_recs);
1110 	}
1111 }
1112 
1113 /*
1114  * Create an empty extent record .
1115  *
1116  * l_next_free_rec may be updated.
1117  *
1118  * If an empty extent already exists do nothing.
1119  */
1120 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1121 {
1122 	int next_free = le16_to_cpu(el->l_next_free_rec);
1123 
1124 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1125 
1126 	if (next_free == 0)
1127 		goto set_and_inc;
1128 
1129 	if (ocfs2_is_empty_extent(&el->l_recs[0]))
1130 		return;
1131 
1132 	mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1133 			"Asked to create an empty extent in a full list:\n"
1134 			"count = %u, tree depth = %u",
1135 			le16_to_cpu(el->l_count),
1136 			le16_to_cpu(el->l_tree_depth));
1137 
1138 	ocfs2_shift_records_right(el);
1139 
1140 set_and_inc:
1141 	le16_add_cpu(&el->l_next_free_rec, 1);
1142 	memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1143 }
1144 
1145 /*
1146  * For a rotation which involves two leaf nodes, the "root node" is
1147  * the lowest level tree node which contains a path to both leafs. This
1148  * resulting set of information can be used to form a complete "subtree"
1149  *
1150  * This function is passed two full paths from the dinode down to a
1151  * pair of adjacent leaves. It's task is to figure out which path
1152  * index contains the subtree root - this can be the root index itself
1153  * in a worst-case rotation.
1154  *
1155  * The array index of the subtree root is passed back.
1156  */
1157 static int ocfs2_find_subtree_root(struct inode *inode,
1158 				   struct ocfs2_path *left,
1159 				   struct ocfs2_path *right)
1160 {
1161 	int i = 0;
1162 
1163 	/*
1164 	 * Check that the caller passed in two paths from the same tree.
1165 	 */
1166 	BUG_ON(path_root_bh(left) != path_root_bh(right));
1167 
1168 	do {
1169 		i++;
1170 
1171 		/*
1172 		 * The caller didn't pass two adjacent paths.
1173 		 */
1174 		mlog_bug_on_msg(i > left->p_tree_depth,
1175 				"Inode %lu, left depth %u, right depth %u\n"
1176 				"left leaf blk %llu, right leaf blk %llu\n",
1177 				inode->i_ino, left->p_tree_depth,
1178 				right->p_tree_depth,
1179 				(unsigned long long)path_leaf_bh(left)->b_blocknr,
1180 				(unsigned long long)path_leaf_bh(right)->b_blocknr);
1181 	} while (left->p_node[i].bh->b_blocknr ==
1182 		 right->p_node[i].bh->b_blocknr);
1183 
1184 	return i - 1;
1185 }
1186 
1187 typedef void (path_insert_t)(void *, struct buffer_head *);
1188 
1189 /*
1190  * Traverse a btree path in search of cpos, starting at root_el.
1191  *
1192  * This code can be called with a cpos larger than the tree, in which
1193  * case it will return the rightmost path.
1194  */
1195 static int __ocfs2_find_path(struct inode *inode,
1196 			     struct ocfs2_extent_list *root_el, u32 cpos,
1197 			     path_insert_t *func, void *data)
1198 {
1199 	int i, ret = 0;
1200 	u32 range;
1201 	u64 blkno;
1202 	struct buffer_head *bh = NULL;
1203 	struct ocfs2_extent_block *eb;
1204 	struct ocfs2_extent_list *el;
1205 	struct ocfs2_extent_rec *rec;
1206 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1207 
1208 	el = root_el;
1209 	while (el->l_tree_depth) {
1210 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1211 			ocfs2_error(inode->i_sb,
1212 				    "Inode %llu has empty extent list at "
1213 				    "depth %u\n",
1214 				    (unsigned long long)oi->ip_blkno,
1215 				    le16_to_cpu(el->l_tree_depth));
1216 			ret = -EROFS;
1217 			goto out;
1218 
1219 		}
1220 
1221 		for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1222 			rec = &el->l_recs[i];
1223 
1224 			/*
1225 			 * In the case that cpos is off the allocation
1226 			 * tree, this should just wind up returning the
1227 			 * rightmost record.
1228 			 */
1229 			range = le32_to_cpu(rec->e_cpos) +
1230 				ocfs2_rec_clusters(el, rec);
1231 			if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1232 			    break;
1233 		}
1234 
1235 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1236 		if (blkno == 0) {
1237 			ocfs2_error(inode->i_sb,
1238 				    "Inode %llu has bad blkno in extent list "
1239 				    "at depth %u (index %d)\n",
1240 				    (unsigned long long)oi->ip_blkno,
1241 				    le16_to_cpu(el->l_tree_depth), i);
1242 			ret = -EROFS;
1243 			goto out;
1244 		}
1245 
1246 		brelse(bh);
1247 		bh = NULL;
1248 		ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), blkno,
1249 				       &bh, OCFS2_BH_CACHED, inode);
1250 		if (ret) {
1251 			mlog_errno(ret);
1252 			goto out;
1253 		}
1254 
1255 		eb = (struct ocfs2_extent_block *) bh->b_data;
1256 		el = &eb->h_list;
1257 		if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
1258 			OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1259 			ret = -EIO;
1260 			goto out;
1261 		}
1262 
1263 		if (le16_to_cpu(el->l_next_free_rec) >
1264 		    le16_to_cpu(el->l_count)) {
1265 			ocfs2_error(inode->i_sb,
1266 				    "Inode %llu has bad count in extent list "
1267 				    "at block %llu (next free=%u, count=%u)\n",
1268 				    (unsigned long long)oi->ip_blkno,
1269 				    (unsigned long long)bh->b_blocknr,
1270 				    le16_to_cpu(el->l_next_free_rec),
1271 				    le16_to_cpu(el->l_count));
1272 			ret = -EROFS;
1273 			goto out;
1274 		}
1275 
1276 		if (func)
1277 			func(data, bh);
1278 	}
1279 
1280 out:
1281 	/*
1282 	 * Catch any trailing bh that the loop didn't handle.
1283 	 */
1284 	brelse(bh);
1285 
1286 	return ret;
1287 }
1288 
1289 /*
1290  * Given an initialized path (that is, it has a valid root extent
1291  * list), this function will traverse the btree in search of the path
1292  * which would contain cpos.
1293  *
1294  * The path traveled is recorded in the path structure.
1295  *
1296  * Note that this will not do any comparisons on leaf node extent
1297  * records, so it will work fine in the case that we just added a tree
1298  * branch.
1299  */
1300 struct find_path_data {
1301 	int index;
1302 	struct ocfs2_path *path;
1303 };
1304 static void find_path_ins(void *data, struct buffer_head *bh)
1305 {
1306 	struct find_path_data *fp = data;
1307 
1308 	get_bh(bh);
1309 	ocfs2_path_insert_eb(fp->path, fp->index, bh);
1310 	fp->index++;
1311 }
1312 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
1313 			   u32 cpos)
1314 {
1315 	struct find_path_data data;
1316 
1317 	data.index = 1;
1318 	data.path = path;
1319 	return __ocfs2_find_path(inode, path_root_el(path), cpos,
1320 				 find_path_ins, &data);
1321 }
1322 
1323 static void find_leaf_ins(void *data, struct buffer_head *bh)
1324 {
1325 	struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1326 	struct ocfs2_extent_list *el = &eb->h_list;
1327 	struct buffer_head **ret = data;
1328 
1329 	/* We want to retain only the leaf block. */
1330 	if (le16_to_cpu(el->l_tree_depth) == 0) {
1331 		get_bh(bh);
1332 		*ret = bh;
1333 	}
1334 }
1335 /*
1336  * Find the leaf block in the tree which would contain cpos. No
1337  * checking of the actual leaf is done.
1338  *
1339  * Some paths want to call this instead of allocating a path structure
1340  * and calling ocfs2_find_path().
1341  *
1342  * This function doesn't handle non btree extent lists.
1343  */
1344 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
1345 		    u32 cpos, struct buffer_head **leaf_bh)
1346 {
1347 	int ret;
1348 	struct buffer_head *bh = NULL;
1349 
1350 	ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
1351 	if (ret) {
1352 		mlog_errno(ret);
1353 		goto out;
1354 	}
1355 
1356 	*leaf_bh = bh;
1357 out:
1358 	return ret;
1359 }
1360 
1361 /*
1362  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1363  *
1364  * Basically, we've moved stuff around at the bottom of the tree and
1365  * we need to fix up the extent records above the changes to reflect
1366  * the new changes.
1367  *
1368  * left_rec: the record on the left.
1369  * left_child_el: is the child list pointed to by left_rec
1370  * right_rec: the record to the right of left_rec
1371  * right_child_el: is the child list pointed to by right_rec
1372  *
1373  * By definition, this only works on interior nodes.
1374  */
1375 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1376 				  struct ocfs2_extent_list *left_child_el,
1377 				  struct ocfs2_extent_rec *right_rec,
1378 				  struct ocfs2_extent_list *right_child_el)
1379 {
1380 	u32 left_clusters, right_end;
1381 
1382 	/*
1383 	 * Interior nodes never have holes. Their cpos is the cpos of
1384 	 * the leftmost record in their child list. Their cluster
1385 	 * count covers the full theoretical range of their child list
1386 	 * - the range between their cpos and the cpos of the record
1387 	 * immediately to their right.
1388 	 */
1389 	left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1390 	if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) {
1391 		BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1392 		left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1393 	}
1394 	left_clusters -= le32_to_cpu(left_rec->e_cpos);
1395 	left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1396 
1397 	/*
1398 	 * Calculate the rightmost cluster count boundary before
1399 	 * moving cpos - we will need to adjust clusters after
1400 	 * updating e_cpos to keep the same highest cluster count.
1401 	 */
1402 	right_end = le32_to_cpu(right_rec->e_cpos);
1403 	right_end += le32_to_cpu(right_rec->e_int_clusters);
1404 
1405 	right_rec->e_cpos = left_rec->e_cpos;
1406 	le32_add_cpu(&right_rec->e_cpos, left_clusters);
1407 
1408 	right_end -= le32_to_cpu(right_rec->e_cpos);
1409 	right_rec->e_int_clusters = cpu_to_le32(right_end);
1410 }
1411 
1412 /*
1413  * Adjust the adjacent root node records involved in a
1414  * rotation. left_el_blkno is passed in as a key so that we can easily
1415  * find it's index in the root list.
1416  */
1417 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1418 				      struct ocfs2_extent_list *left_el,
1419 				      struct ocfs2_extent_list *right_el,
1420 				      u64 left_el_blkno)
1421 {
1422 	int i;
1423 
1424 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1425 	       le16_to_cpu(left_el->l_tree_depth));
1426 
1427 	for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1428 		if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1429 			break;
1430 	}
1431 
1432 	/*
1433 	 * The path walking code should have never returned a root and
1434 	 * two paths which are not adjacent.
1435 	 */
1436 	BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1437 
1438 	ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1439 				      &root_el->l_recs[i + 1], right_el);
1440 }
1441 
1442 /*
1443  * We've changed a leaf block (in right_path) and need to reflect that
1444  * change back up the subtree.
1445  *
1446  * This happens in multiple places:
1447  *   - When we've moved an extent record from the left path leaf to the right
1448  *     path leaf to make room for an empty extent in the left path leaf.
1449  *   - When our insert into the right path leaf is at the leftmost edge
1450  *     and requires an update of the path immediately to it's left. This
1451  *     can occur at the end of some types of rotation and appending inserts.
1452  *   - When we've adjusted the last extent record in the left path leaf and the
1453  *     1st extent record in the right path leaf during cross extent block merge.
1454  */
1455 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1456 				       struct ocfs2_path *left_path,
1457 				       struct ocfs2_path *right_path,
1458 				       int subtree_index)
1459 {
1460 	int ret, i, idx;
1461 	struct ocfs2_extent_list *el, *left_el, *right_el;
1462 	struct ocfs2_extent_rec *left_rec, *right_rec;
1463 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1464 
1465 	/*
1466 	 * Update the counts and position values within all the
1467 	 * interior nodes to reflect the leaf rotation we just did.
1468 	 *
1469 	 * The root node is handled below the loop.
1470 	 *
1471 	 * We begin the loop with right_el and left_el pointing to the
1472 	 * leaf lists and work our way up.
1473 	 *
1474 	 * NOTE: within this loop, left_el and right_el always refer
1475 	 * to the *child* lists.
1476 	 */
1477 	left_el = path_leaf_el(left_path);
1478 	right_el = path_leaf_el(right_path);
1479 	for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
1480 		mlog(0, "Adjust records at index %u\n", i);
1481 
1482 		/*
1483 		 * One nice property of knowing that all of these
1484 		 * nodes are below the root is that we only deal with
1485 		 * the leftmost right node record and the rightmost
1486 		 * left node record.
1487 		 */
1488 		el = left_path->p_node[i].el;
1489 		idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
1490 		left_rec = &el->l_recs[idx];
1491 
1492 		el = right_path->p_node[i].el;
1493 		right_rec = &el->l_recs[0];
1494 
1495 		ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
1496 					      right_el);
1497 
1498 		ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
1499 		if (ret)
1500 			mlog_errno(ret);
1501 
1502 		ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
1503 		if (ret)
1504 			mlog_errno(ret);
1505 
1506 		/*
1507 		 * Setup our list pointers now so that the current
1508 		 * parents become children in the next iteration.
1509 		 */
1510 		left_el = left_path->p_node[i].el;
1511 		right_el = right_path->p_node[i].el;
1512 	}
1513 
1514 	/*
1515 	 * At the root node, adjust the two adjacent records which
1516 	 * begin our path to the leaves.
1517 	 */
1518 
1519 	el = left_path->p_node[subtree_index].el;
1520 	left_el = left_path->p_node[subtree_index + 1].el;
1521 	right_el = right_path->p_node[subtree_index + 1].el;
1522 
1523 	ocfs2_adjust_root_records(el, left_el, right_el,
1524 				  left_path->p_node[subtree_index + 1].bh->b_blocknr);
1525 
1526 	root_bh = left_path->p_node[subtree_index].bh;
1527 
1528 	ret = ocfs2_journal_dirty(handle, root_bh);
1529 	if (ret)
1530 		mlog_errno(ret);
1531 }
1532 
1533 static int ocfs2_rotate_subtree_right(struct inode *inode,
1534 				      handle_t *handle,
1535 				      struct ocfs2_path *left_path,
1536 				      struct ocfs2_path *right_path,
1537 				      int subtree_index)
1538 {
1539 	int ret, i;
1540 	struct buffer_head *right_leaf_bh;
1541 	struct buffer_head *left_leaf_bh = NULL;
1542 	struct buffer_head *root_bh;
1543 	struct ocfs2_extent_list *right_el, *left_el;
1544 	struct ocfs2_extent_rec move_rec;
1545 
1546 	left_leaf_bh = path_leaf_bh(left_path);
1547 	left_el = path_leaf_el(left_path);
1548 
1549 	if (left_el->l_next_free_rec != left_el->l_count) {
1550 		ocfs2_error(inode->i_sb,
1551 			    "Inode %llu has non-full interior leaf node %llu"
1552 			    "(next free = %u)",
1553 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1554 			    (unsigned long long)left_leaf_bh->b_blocknr,
1555 			    le16_to_cpu(left_el->l_next_free_rec));
1556 		return -EROFS;
1557 	}
1558 
1559 	/*
1560 	 * This extent block may already have an empty record, so we
1561 	 * return early if so.
1562 	 */
1563 	if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
1564 		return 0;
1565 
1566 	root_bh = left_path->p_node[subtree_index].bh;
1567 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
1568 
1569 	ret = ocfs2_journal_access(handle, inode, root_bh,
1570 				   OCFS2_JOURNAL_ACCESS_WRITE);
1571 	if (ret) {
1572 		mlog_errno(ret);
1573 		goto out;
1574 	}
1575 
1576 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
1577 		ret = ocfs2_journal_access(handle, inode,
1578 					   right_path->p_node[i].bh,
1579 					   OCFS2_JOURNAL_ACCESS_WRITE);
1580 		if (ret) {
1581 			mlog_errno(ret);
1582 			goto out;
1583 		}
1584 
1585 		ret = ocfs2_journal_access(handle, inode,
1586 					   left_path->p_node[i].bh,
1587 					   OCFS2_JOURNAL_ACCESS_WRITE);
1588 		if (ret) {
1589 			mlog_errno(ret);
1590 			goto out;
1591 		}
1592 	}
1593 
1594 	right_leaf_bh = path_leaf_bh(right_path);
1595 	right_el = path_leaf_el(right_path);
1596 
1597 	/* This is a code error, not a disk corruption. */
1598 	mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
1599 			"because rightmost leaf block %llu is empty\n",
1600 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1601 			(unsigned long long)right_leaf_bh->b_blocknr);
1602 
1603 	ocfs2_create_empty_extent(right_el);
1604 
1605 	ret = ocfs2_journal_dirty(handle, right_leaf_bh);
1606 	if (ret) {
1607 		mlog_errno(ret);
1608 		goto out;
1609 	}
1610 
1611 	/* Do the copy now. */
1612 	i = le16_to_cpu(left_el->l_next_free_rec) - 1;
1613 	move_rec = left_el->l_recs[i];
1614 	right_el->l_recs[0] = move_rec;
1615 
1616 	/*
1617 	 * Clear out the record we just copied and shift everything
1618 	 * over, leaving an empty extent in the left leaf.
1619 	 *
1620 	 * We temporarily subtract from next_free_rec so that the
1621 	 * shift will lose the tail record (which is now defunct).
1622 	 */
1623 	le16_add_cpu(&left_el->l_next_free_rec, -1);
1624 	ocfs2_shift_records_right(left_el);
1625 	memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1626 	le16_add_cpu(&left_el->l_next_free_rec, 1);
1627 
1628 	ret = ocfs2_journal_dirty(handle, left_leaf_bh);
1629 	if (ret) {
1630 		mlog_errno(ret);
1631 		goto out;
1632 	}
1633 
1634 	ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
1635 				subtree_index);
1636 
1637 out:
1638 	return ret;
1639 }
1640 
1641 /*
1642  * Given a full path, determine what cpos value would return us a path
1643  * containing the leaf immediately to the left of the current one.
1644  *
1645  * Will return zero if the path passed in is already the leftmost path.
1646  */
1647 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
1648 					 struct ocfs2_path *path, u32 *cpos)
1649 {
1650 	int i, j, ret = 0;
1651 	u64 blkno;
1652 	struct ocfs2_extent_list *el;
1653 
1654 	BUG_ON(path->p_tree_depth == 0);
1655 
1656 	*cpos = 0;
1657 
1658 	blkno = path_leaf_bh(path)->b_blocknr;
1659 
1660 	/* Start at the tree node just above the leaf and work our way up. */
1661 	i = path->p_tree_depth - 1;
1662 	while (i >= 0) {
1663 		el = path->p_node[i].el;
1664 
1665 		/*
1666 		 * Find the extent record just before the one in our
1667 		 * path.
1668 		 */
1669 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
1670 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
1671 				if (j == 0) {
1672 					if (i == 0) {
1673 						/*
1674 						 * We've determined that the
1675 						 * path specified is already
1676 						 * the leftmost one - return a
1677 						 * cpos of zero.
1678 						 */
1679 						goto out;
1680 					}
1681 					/*
1682 					 * The leftmost record points to our
1683 					 * leaf - we need to travel up the
1684 					 * tree one level.
1685 					 */
1686 					goto next_node;
1687 				}
1688 
1689 				*cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
1690 				*cpos = *cpos + ocfs2_rec_clusters(el,
1691 							   &el->l_recs[j - 1]);
1692 				*cpos = *cpos - 1;
1693 				goto out;
1694 			}
1695 		}
1696 
1697 		/*
1698 		 * If we got here, we never found a valid node where
1699 		 * the tree indicated one should be.
1700 		 */
1701 		ocfs2_error(sb,
1702 			    "Invalid extent tree at extent block %llu\n",
1703 			    (unsigned long long)blkno);
1704 		ret = -EROFS;
1705 		goto out;
1706 
1707 next_node:
1708 		blkno = path->p_node[i].bh->b_blocknr;
1709 		i--;
1710 	}
1711 
1712 out:
1713 	return ret;
1714 }
1715 
1716 /*
1717  * Extend the transaction by enough credits to complete the rotation,
1718  * and still leave at least the original number of credits allocated
1719  * to this transaction.
1720  */
1721 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
1722 					   int op_credits,
1723 					   struct ocfs2_path *path)
1724 {
1725 	int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
1726 
1727 	if (handle->h_buffer_credits < credits)
1728 		return ocfs2_extend_trans(handle, credits);
1729 
1730 	return 0;
1731 }
1732 
1733 /*
1734  * Trap the case where we're inserting into the theoretical range past
1735  * the _actual_ left leaf range. Otherwise, we'll rotate a record
1736  * whose cpos is less than ours into the right leaf.
1737  *
1738  * It's only necessary to look at the rightmost record of the left
1739  * leaf because the logic that calls us should ensure that the
1740  * theoretical ranges in the path components above the leaves are
1741  * correct.
1742  */
1743 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
1744 						 u32 insert_cpos)
1745 {
1746 	struct ocfs2_extent_list *left_el;
1747 	struct ocfs2_extent_rec *rec;
1748 	int next_free;
1749 
1750 	left_el = path_leaf_el(left_path);
1751 	next_free = le16_to_cpu(left_el->l_next_free_rec);
1752 	rec = &left_el->l_recs[next_free - 1];
1753 
1754 	if (insert_cpos > le32_to_cpu(rec->e_cpos))
1755 		return 1;
1756 	return 0;
1757 }
1758 
1759 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
1760 {
1761 	int next_free = le16_to_cpu(el->l_next_free_rec);
1762 	unsigned int range;
1763 	struct ocfs2_extent_rec *rec;
1764 
1765 	if (next_free == 0)
1766 		return 0;
1767 
1768 	rec = &el->l_recs[0];
1769 	if (ocfs2_is_empty_extent(rec)) {
1770 		/* Empty list. */
1771 		if (next_free == 1)
1772 			return 0;
1773 		rec = &el->l_recs[1];
1774 	}
1775 
1776 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1777 	if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1778 		return 1;
1779 	return 0;
1780 }
1781 
1782 /*
1783  * Rotate all the records in a btree right one record, starting at insert_cpos.
1784  *
1785  * The path to the rightmost leaf should be passed in.
1786  *
1787  * The array is assumed to be large enough to hold an entire path (tree depth).
1788  *
1789  * Upon succesful return from this function:
1790  *
1791  * - The 'right_path' array will contain a path to the leaf block
1792  *   whose range contains e_cpos.
1793  * - That leaf block will have a single empty extent in list index 0.
1794  * - In the case that the rotation requires a post-insert update,
1795  *   *ret_left_path will contain a valid path which can be passed to
1796  *   ocfs2_insert_path().
1797  */
1798 static int ocfs2_rotate_tree_right(struct inode *inode,
1799 				   handle_t *handle,
1800 				   enum ocfs2_split_type split,
1801 				   u32 insert_cpos,
1802 				   struct ocfs2_path *right_path,
1803 				   struct ocfs2_path **ret_left_path)
1804 {
1805 	int ret, start, orig_credits = handle->h_buffer_credits;
1806 	u32 cpos;
1807 	struct ocfs2_path *left_path = NULL;
1808 
1809 	*ret_left_path = NULL;
1810 
1811 	left_path = ocfs2_new_path(path_root_bh(right_path),
1812 				   path_root_el(right_path));
1813 	if (!left_path) {
1814 		ret = -ENOMEM;
1815 		mlog_errno(ret);
1816 		goto out;
1817 	}
1818 
1819 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
1820 	if (ret) {
1821 		mlog_errno(ret);
1822 		goto out;
1823 	}
1824 
1825 	mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
1826 
1827 	/*
1828 	 * What we want to do here is:
1829 	 *
1830 	 * 1) Start with the rightmost path.
1831 	 *
1832 	 * 2) Determine a path to the leaf block directly to the left
1833 	 *    of that leaf.
1834 	 *
1835 	 * 3) Determine the 'subtree root' - the lowest level tree node
1836 	 *    which contains a path to both leaves.
1837 	 *
1838 	 * 4) Rotate the subtree.
1839 	 *
1840 	 * 5) Find the next subtree by considering the left path to be
1841 	 *    the new right path.
1842 	 *
1843 	 * The check at the top of this while loop also accepts
1844 	 * insert_cpos == cpos because cpos is only a _theoretical_
1845 	 * value to get us the left path - insert_cpos might very well
1846 	 * be filling that hole.
1847 	 *
1848 	 * Stop at a cpos of '0' because we either started at the
1849 	 * leftmost branch (i.e., a tree with one branch and a
1850 	 * rotation inside of it), or we've gone as far as we can in
1851 	 * rotating subtrees.
1852 	 */
1853 	while (cpos && insert_cpos <= cpos) {
1854 		mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
1855 		     insert_cpos, cpos);
1856 
1857 		ret = ocfs2_find_path(inode, left_path, cpos);
1858 		if (ret) {
1859 			mlog_errno(ret);
1860 			goto out;
1861 		}
1862 
1863 		mlog_bug_on_msg(path_leaf_bh(left_path) ==
1864 				path_leaf_bh(right_path),
1865 				"Inode %lu: error during insert of %u "
1866 				"(left path cpos %u) results in two identical "
1867 				"paths ending at %llu\n",
1868 				inode->i_ino, insert_cpos, cpos,
1869 				(unsigned long long)
1870 				path_leaf_bh(left_path)->b_blocknr);
1871 
1872 		if (split == SPLIT_NONE &&
1873 		    ocfs2_rotate_requires_path_adjustment(left_path,
1874 							  insert_cpos)) {
1875 
1876 			/*
1877 			 * We've rotated the tree as much as we
1878 			 * should. The rest is up to
1879 			 * ocfs2_insert_path() to complete, after the
1880 			 * record insertion. We indicate this
1881 			 * situation by returning the left path.
1882 			 *
1883 			 * The reason we don't adjust the records here
1884 			 * before the record insert is that an error
1885 			 * later might break the rule where a parent
1886 			 * record e_cpos will reflect the actual
1887 			 * e_cpos of the 1st nonempty record of the
1888 			 * child list.
1889 			 */
1890 			*ret_left_path = left_path;
1891 			goto out_ret_path;
1892 		}
1893 
1894 		start = ocfs2_find_subtree_root(inode, left_path, right_path);
1895 
1896 		mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
1897 		     start,
1898 		     (unsigned long long) right_path->p_node[start].bh->b_blocknr,
1899 		     right_path->p_tree_depth);
1900 
1901 		ret = ocfs2_extend_rotate_transaction(handle, start,
1902 						      orig_credits, right_path);
1903 		if (ret) {
1904 			mlog_errno(ret);
1905 			goto out;
1906 		}
1907 
1908 		ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
1909 						 right_path, start);
1910 		if (ret) {
1911 			mlog_errno(ret);
1912 			goto out;
1913 		}
1914 
1915 		if (split != SPLIT_NONE &&
1916 		    ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
1917 						insert_cpos)) {
1918 			/*
1919 			 * A rotate moves the rightmost left leaf
1920 			 * record over to the leftmost right leaf
1921 			 * slot. If we're doing an extent split
1922 			 * instead of a real insert, then we have to
1923 			 * check that the extent to be split wasn't
1924 			 * just moved over. If it was, then we can
1925 			 * exit here, passing left_path back -
1926 			 * ocfs2_split_extent() is smart enough to
1927 			 * search both leaves.
1928 			 */
1929 			*ret_left_path = left_path;
1930 			goto out_ret_path;
1931 		}
1932 
1933 		/*
1934 		 * There is no need to re-read the next right path
1935 		 * as we know that it'll be our current left
1936 		 * path. Optimize by copying values instead.
1937 		 */
1938 		ocfs2_mv_path(right_path, left_path);
1939 
1940 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
1941 						    &cpos);
1942 		if (ret) {
1943 			mlog_errno(ret);
1944 			goto out;
1945 		}
1946 	}
1947 
1948 out:
1949 	ocfs2_free_path(left_path);
1950 
1951 out_ret_path:
1952 	return ret;
1953 }
1954 
1955 static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
1956 				      struct ocfs2_path *path)
1957 {
1958 	int i, idx;
1959 	struct ocfs2_extent_rec *rec;
1960 	struct ocfs2_extent_list *el;
1961 	struct ocfs2_extent_block *eb;
1962 	u32 range;
1963 
1964 	/* Path should always be rightmost. */
1965 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
1966 	BUG_ON(eb->h_next_leaf_blk != 0ULL);
1967 
1968 	el = &eb->h_list;
1969 	BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
1970 	idx = le16_to_cpu(el->l_next_free_rec) - 1;
1971 	rec = &el->l_recs[idx];
1972 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1973 
1974 	for (i = 0; i < path->p_tree_depth; i++) {
1975 		el = path->p_node[i].el;
1976 		idx = le16_to_cpu(el->l_next_free_rec) - 1;
1977 		rec = &el->l_recs[idx];
1978 
1979 		rec->e_int_clusters = cpu_to_le32(range);
1980 		le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
1981 
1982 		ocfs2_journal_dirty(handle, path->p_node[i].bh);
1983 	}
1984 }
1985 
1986 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
1987 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
1988 			      struct ocfs2_path *path, int unlink_start)
1989 {
1990 	int ret, i;
1991 	struct ocfs2_extent_block *eb;
1992 	struct ocfs2_extent_list *el;
1993 	struct buffer_head *bh;
1994 
1995 	for(i = unlink_start; i < path_num_items(path); i++) {
1996 		bh = path->p_node[i].bh;
1997 
1998 		eb = (struct ocfs2_extent_block *)bh->b_data;
1999 		/*
2000 		 * Not all nodes might have had their final count
2001 		 * decremented by the caller - handle this here.
2002 		 */
2003 		el = &eb->h_list;
2004 		if (le16_to_cpu(el->l_next_free_rec) > 1) {
2005 			mlog(ML_ERROR,
2006 			     "Inode %llu, attempted to remove extent block "
2007 			     "%llu with %u records\n",
2008 			     (unsigned long long)OCFS2_I(inode)->ip_blkno,
2009 			     (unsigned long long)le64_to_cpu(eb->h_blkno),
2010 			     le16_to_cpu(el->l_next_free_rec));
2011 
2012 			ocfs2_journal_dirty(handle, bh);
2013 			ocfs2_remove_from_cache(inode, bh);
2014 			continue;
2015 		}
2016 
2017 		el->l_next_free_rec = 0;
2018 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2019 
2020 		ocfs2_journal_dirty(handle, bh);
2021 
2022 		ret = ocfs2_cache_extent_block_free(dealloc, eb);
2023 		if (ret)
2024 			mlog_errno(ret);
2025 
2026 		ocfs2_remove_from_cache(inode, bh);
2027 	}
2028 }
2029 
2030 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
2031 				 struct ocfs2_path *left_path,
2032 				 struct ocfs2_path *right_path,
2033 				 int subtree_index,
2034 				 struct ocfs2_cached_dealloc_ctxt *dealloc)
2035 {
2036 	int i;
2037 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2038 	struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2039 	struct ocfs2_extent_list *el;
2040 	struct ocfs2_extent_block *eb;
2041 
2042 	el = path_leaf_el(left_path);
2043 
2044 	eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2045 
2046 	for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2047 		if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2048 			break;
2049 
2050 	BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2051 
2052 	memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2053 	le16_add_cpu(&root_el->l_next_free_rec, -1);
2054 
2055 	eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2056 	eb->h_next_leaf_blk = 0;
2057 
2058 	ocfs2_journal_dirty(handle, root_bh);
2059 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2060 
2061 	ocfs2_unlink_path(inode, handle, dealloc, right_path,
2062 			  subtree_index + 1);
2063 }
2064 
2065 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
2066 				     struct ocfs2_path *left_path,
2067 				     struct ocfs2_path *right_path,
2068 				     int subtree_index,
2069 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
2070 				     int *deleted)
2071 {
2072 	int ret, i, del_right_subtree = 0, right_has_empty = 0;
2073 	struct buffer_head *root_bh, *di_bh = path_root_bh(right_path);
2074 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
2075 	struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2076 	struct ocfs2_extent_block *eb;
2077 
2078 	*deleted = 0;
2079 
2080 	right_leaf_el = path_leaf_el(right_path);
2081 	left_leaf_el = path_leaf_el(left_path);
2082 	root_bh = left_path->p_node[subtree_index].bh;
2083 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2084 
2085 	if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2086 		return 0;
2087 
2088 	eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2089 	if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2090 		/*
2091 		 * It's legal for us to proceed if the right leaf is
2092 		 * the rightmost one and it has an empty extent. There
2093 		 * are two cases to handle - whether the leaf will be
2094 		 * empty after removal or not. If the leaf isn't empty
2095 		 * then just remove the empty extent up front. The
2096 		 * next block will handle empty leaves by flagging
2097 		 * them for unlink.
2098 		 *
2099 		 * Non rightmost leaves will throw -EAGAIN and the
2100 		 * caller can manually move the subtree and retry.
2101 		 */
2102 
2103 		if (eb->h_next_leaf_blk != 0ULL)
2104 			return -EAGAIN;
2105 
2106 		if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2107 			ret = ocfs2_journal_access(handle, inode,
2108 						   path_leaf_bh(right_path),
2109 						   OCFS2_JOURNAL_ACCESS_WRITE);
2110 			if (ret) {
2111 				mlog_errno(ret);
2112 				goto out;
2113 			}
2114 
2115 			ocfs2_remove_empty_extent(right_leaf_el);
2116 		} else
2117 			right_has_empty = 1;
2118 	}
2119 
2120 	if (eb->h_next_leaf_blk == 0ULL &&
2121 	    le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2122 		/*
2123 		 * We have to update i_last_eb_blk during the meta
2124 		 * data delete.
2125 		 */
2126 		ret = ocfs2_journal_access(handle, inode, di_bh,
2127 					   OCFS2_JOURNAL_ACCESS_WRITE);
2128 		if (ret) {
2129 			mlog_errno(ret);
2130 			goto out;
2131 		}
2132 
2133 		del_right_subtree = 1;
2134 	}
2135 
2136 	/*
2137 	 * Getting here with an empty extent in the right path implies
2138 	 * that it's the rightmost path and will be deleted.
2139 	 */
2140 	BUG_ON(right_has_empty && !del_right_subtree);
2141 
2142 	ret = ocfs2_journal_access(handle, inode, root_bh,
2143 				   OCFS2_JOURNAL_ACCESS_WRITE);
2144 	if (ret) {
2145 		mlog_errno(ret);
2146 		goto out;
2147 	}
2148 
2149 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2150 		ret = ocfs2_journal_access(handle, inode,
2151 					   right_path->p_node[i].bh,
2152 					   OCFS2_JOURNAL_ACCESS_WRITE);
2153 		if (ret) {
2154 			mlog_errno(ret);
2155 			goto out;
2156 		}
2157 
2158 		ret = ocfs2_journal_access(handle, inode,
2159 					   left_path->p_node[i].bh,
2160 					   OCFS2_JOURNAL_ACCESS_WRITE);
2161 		if (ret) {
2162 			mlog_errno(ret);
2163 			goto out;
2164 		}
2165 	}
2166 
2167 	if (!right_has_empty) {
2168 		/*
2169 		 * Only do this if we're moving a real
2170 		 * record. Otherwise, the action is delayed until
2171 		 * after removal of the right path in which case we
2172 		 * can do a simple shift to remove the empty extent.
2173 		 */
2174 		ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2175 		memset(&right_leaf_el->l_recs[0], 0,
2176 		       sizeof(struct ocfs2_extent_rec));
2177 	}
2178 	if (eb->h_next_leaf_blk == 0ULL) {
2179 		/*
2180 		 * Move recs over to get rid of empty extent, decrease
2181 		 * next_free. This is allowed to remove the last
2182 		 * extent in our leaf (setting l_next_free_rec to
2183 		 * zero) - the delete code below won't care.
2184 		 */
2185 		ocfs2_remove_empty_extent(right_leaf_el);
2186 	}
2187 
2188 	ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2189 	if (ret)
2190 		mlog_errno(ret);
2191 	ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2192 	if (ret)
2193 		mlog_errno(ret);
2194 
2195 	if (del_right_subtree) {
2196 		ocfs2_unlink_subtree(inode, handle, left_path, right_path,
2197 				     subtree_index, dealloc);
2198 		ocfs2_update_edge_lengths(inode, handle, left_path);
2199 
2200 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2201 		di->i_last_eb_blk = eb->h_blkno;
2202 
2203 		/*
2204 		 * Removal of the extent in the left leaf was skipped
2205 		 * above so we could delete the right path
2206 		 * 1st.
2207 		 */
2208 		if (right_has_empty)
2209 			ocfs2_remove_empty_extent(left_leaf_el);
2210 
2211 		ret = ocfs2_journal_dirty(handle, di_bh);
2212 		if (ret)
2213 			mlog_errno(ret);
2214 
2215 		*deleted = 1;
2216 	} else
2217 		ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2218 					   subtree_index);
2219 
2220 out:
2221 	return ret;
2222 }
2223 
2224 /*
2225  * Given a full path, determine what cpos value would return us a path
2226  * containing the leaf immediately to the right of the current one.
2227  *
2228  * Will return zero if the path passed in is already the rightmost path.
2229  *
2230  * This looks similar, but is subtly different to
2231  * ocfs2_find_cpos_for_left_leaf().
2232  */
2233 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2234 					  struct ocfs2_path *path, u32 *cpos)
2235 {
2236 	int i, j, ret = 0;
2237 	u64 blkno;
2238 	struct ocfs2_extent_list *el;
2239 
2240 	*cpos = 0;
2241 
2242 	if (path->p_tree_depth == 0)
2243 		return 0;
2244 
2245 	blkno = path_leaf_bh(path)->b_blocknr;
2246 
2247 	/* Start at the tree node just above the leaf and work our way up. */
2248 	i = path->p_tree_depth - 1;
2249 	while (i >= 0) {
2250 		int next_free;
2251 
2252 		el = path->p_node[i].el;
2253 
2254 		/*
2255 		 * Find the extent record just after the one in our
2256 		 * path.
2257 		 */
2258 		next_free = le16_to_cpu(el->l_next_free_rec);
2259 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2260 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2261 				if (j == (next_free - 1)) {
2262 					if (i == 0) {
2263 						/*
2264 						 * We've determined that the
2265 						 * path specified is already
2266 						 * the rightmost one - return a
2267 						 * cpos of zero.
2268 						 */
2269 						goto out;
2270 					}
2271 					/*
2272 					 * The rightmost record points to our
2273 					 * leaf - we need to travel up the
2274 					 * tree one level.
2275 					 */
2276 					goto next_node;
2277 				}
2278 
2279 				*cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2280 				goto out;
2281 			}
2282 		}
2283 
2284 		/*
2285 		 * If we got here, we never found a valid node where
2286 		 * the tree indicated one should be.
2287 		 */
2288 		ocfs2_error(sb,
2289 			    "Invalid extent tree at extent block %llu\n",
2290 			    (unsigned long long)blkno);
2291 		ret = -EROFS;
2292 		goto out;
2293 
2294 next_node:
2295 		blkno = path->p_node[i].bh->b_blocknr;
2296 		i--;
2297 	}
2298 
2299 out:
2300 	return ret;
2301 }
2302 
2303 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2304 					    handle_t *handle,
2305 					    struct buffer_head *bh,
2306 					    struct ocfs2_extent_list *el)
2307 {
2308 	int ret;
2309 
2310 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2311 		return 0;
2312 
2313 	ret = ocfs2_journal_access(handle, inode, bh,
2314 				   OCFS2_JOURNAL_ACCESS_WRITE);
2315 	if (ret) {
2316 		mlog_errno(ret);
2317 		goto out;
2318 	}
2319 
2320 	ocfs2_remove_empty_extent(el);
2321 
2322 	ret = ocfs2_journal_dirty(handle, bh);
2323 	if (ret)
2324 		mlog_errno(ret);
2325 
2326 out:
2327 	return ret;
2328 }
2329 
2330 static int __ocfs2_rotate_tree_left(struct inode *inode,
2331 				    handle_t *handle, int orig_credits,
2332 				    struct ocfs2_path *path,
2333 				    struct ocfs2_cached_dealloc_ctxt *dealloc,
2334 				    struct ocfs2_path **empty_extent_path)
2335 {
2336 	int ret, subtree_root, deleted;
2337 	u32 right_cpos;
2338 	struct ocfs2_path *left_path = NULL;
2339 	struct ocfs2_path *right_path = NULL;
2340 
2341 	BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2342 
2343 	*empty_extent_path = NULL;
2344 
2345 	ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2346 					     &right_cpos);
2347 	if (ret) {
2348 		mlog_errno(ret);
2349 		goto out;
2350 	}
2351 
2352 	left_path = ocfs2_new_path(path_root_bh(path),
2353 				   path_root_el(path));
2354 	if (!left_path) {
2355 		ret = -ENOMEM;
2356 		mlog_errno(ret);
2357 		goto out;
2358 	}
2359 
2360 	ocfs2_cp_path(left_path, path);
2361 
2362 	right_path = ocfs2_new_path(path_root_bh(path),
2363 				    path_root_el(path));
2364 	if (!right_path) {
2365 		ret = -ENOMEM;
2366 		mlog_errno(ret);
2367 		goto out;
2368 	}
2369 
2370 	while (right_cpos) {
2371 		ret = ocfs2_find_path(inode, right_path, right_cpos);
2372 		if (ret) {
2373 			mlog_errno(ret);
2374 			goto out;
2375 		}
2376 
2377 		subtree_root = ocfs2_find_subtree_root(inode, left_path,
2378 						       right_path);
2379 
2380 		mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2381 		     subtree_root,
2382 		     (unsigned long long)
2383 		     right_path->p_node[subtree_root].bh->b_blocknr,
2384 		     right_path->p_tree_depth);
2385 
2386 		ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2387 						      orig_credits, left_path);
2388 		if (ret) {
2389 			mlog_errno(ret);
2390 			goto out;
2391 		}
2392 
2393 		/*
2394 		 * Caller might still want to make changes to the
2395 		 * tree root, so re-add it to the journal here.
2396 		 */
2397 		ret = ocfs2_journal_access(handle, inode,
2398 					   path_root_bh(left_path),
2399 					   OCFS2_JOURNAL_ACCESS_WRITE);
2400 		if (ret) {
2401 			mlog_errno(ret);
2402 			goto out;
2403 		}
2404 
2405 		ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
2406 						right_path, subtree_root,
2407 						dealloc, &deleted);
2408 		if (ret == -EAGAIN) {
2409 			/*
2410 			 * The rotation has to temporarily stop due to
2411 			 * the right subtree having an empty
2412 			 * extent. Pass it back to the caller for a
2413 			 * fixup.
2414 			 */
2415 			*empty_extent_path = right_path;
2416 			right_path = NULL;
2417 			goto out;
2418 		}
2419 		if (ret) {
2420 			mlog_errno(ret);
2421 			goto out;
2422 		}
2423 
2424 		/*
2425 		 * The subtree rotate might have removed records on
2426 		 * the rightmost edge. If so, then rotation is
2427 		 * complete.
2428 		 */
2429 		if (deleted)
2430 			break;
2431 
2432 		ocfs2_mv_path(left_path, right_path);
2433 
2434 		ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2435 						     &right_cpos);
2436 		if (ret) {
2437 			mlog_errno(ret);
2438 			goto out;
2439 		}
2440 	}
2441 
2442 out:
2443 	ocfs2_free_path(right_path);
2444 	ocfs2_free_path(left_path);
2445 
2446 	return ret;
2447 }
2448 
2449 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
2450 				       struct ocfs2_path *path,
2451 				       struct ocfs2_cached_dealloc_ctxt *dealloc)
2452 {
2453 	int ret, subtree_index;
2454 	u32 cpos;
2455 	struct ocfs2_path *left_path = NULL;
2456 	struct ocfs2_dinode *di;
2457 	struct ocfs2_extent_block *eb;
2458 	struct ocfs2_extent_list *el;
2459 
2460 	/*
2461 	 * XXX: This code assumes that the root is an inode, which is
2462 	 * true for now but may change as tree code gets generic.
2463 	 */
2464 	di = (struct ocfs2_dinode *)path_root_bh(path)->b_data;
2465 	if (!OCFS2_IS_VALID_DINODE(di)) {
2466 		ret = -EIO;
2467 		ocfs2_error(inode->i_sb,
2468 			    "Inode %llu has invalid path root",
2469 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
2470 		goto out;
2471 	}
2472 
2473 	/*
2474 	 * There's two ways we handle this depending on
2475 	 * whether path is the only existing one.
2476 	 */
2477 	ret = ocfs2_extend_rotate_transaction(handle, 0,
2478 					      handle->h_buffer_credits,
2479 					      path);
2480 	if (ret) {
2481 		mlog_errno(ret);
2482 		goto out;
2483 	}
2484 
2485 	ret = ocfs2_journal_access_path(inode, handle, path);
2486 	if (ret) {
2487 		mlog_errno(ret);
2488 		goto out;
2489 	}
2490 
2491 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
2492 	if (ret) {
2493 		mlog_errno(ret);
2494 		goto out;
2495 	}
2496 
2497 	if (cpos) {
2498 		/*
2499 		 * We have a path to the left of this one - it needs
2500 		 * an update too.
2501 		 */
2502 		left_path = ocfs2_new_path(path_root_bh(path),
2503 					   path_root_el(path));
2504 		if (!left_path) {
2505 			ret = -ENOMEM;
2506 			mlog_errno(ret);
2507 			goto out;
2508 		}
2509 
2510 		ret = ocfs2_find_path(inode, left_path, cpos);
2511 		if (ret) {
2512 			mlog_errno(ret);
2513 			goto out;
2514 		}
2515 
2516 		ret = ocfs2_journal_access_path(inode, handle, left_path);
2517 		if (ret) {
2518 			mlog_errno(ret);
2519 			goto out;
2520 		}
2521 
2522 		subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
2523 
2524 		ocfs2_unlink_subtree(inode, handle, left_path, path,
2525 				     subtree_index, dealloc);
2526 		ocfs2_update_edge_lengths(inode, handle, left_path);
2527 
2528 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2529 		di->i_last_eb_blk = eb->h_blkno;
2530 	} else {
2531 		/*
2532 		 * 'path' is also the leftmost path which
2533 		 * means it must be the only one. This gets
2534 		 * handled differently because we want to
2535 		 * revert the inode back to having extents
2536 		 * in-line.
2537 		 */
2538 		ocfs2_unlink_path(inode, handle, dealloc, path, 1);
2539 
2540 		el = &di->id2.i_list;
2541 		el->l_tree_depth = 0;
2542 		el->l_next_free_rec = 0;
2543 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2544 
2545 		di->i_last_eb_blk = 0;
2546 	}
2547 
2548 	ocfs2_journal_dirty(handle, path_root_bh(path));
2549 
2550 out:
2551 	ocfs2_free_path(left_path);
2552 	return ret;
2553 }
2554 
2555 /*
2556  * Left rotation of btree records.
2557  *
2558  * In many ways, this is (unsurprisingly) the opposite of right
2559  * rotation. We start at some non-rightmost path containing an empty
2560  * extent in the leaf block. The code works its way to the rightmost
2561  * path by rotating records to the left in every subtree.
2562  *
2563  * This is used by any code which reduces the number of extent records
2564  * in a leaf. After removal, an empty record should be placed in the
2565  * leftmost list position.
2566  *
2567  * This won't handle a length update of the rightmost path records if
2568  * the rightmost tree leaf record is removed so the caller is
2569  * responsible for detecting and correcting that.
2570  */
2571 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
2572 				  struct ocfs2_path *path,
2573 				  struct ocfs2_cached_dealloc_ctxt *dealloc)
2574 {
2575 	int ret, orig_credits = handle->h_buffer_credits;
2576 	struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
2577 	struct ocfs2_extent_block *eb;
2578 	struct ocfs2_extent_list *el;
2579 
2580 	el = path_leaf_el(path);
2581 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2582 		return 0;
2583 
2584 	if (path->p_tree_depth == 0) {
2585 rightmost_no_delete:
2586 		/*
2587 		 * In-inode extents. This is trivially handled, so do
2588 		 * it up front.
2589 		 */
2590 		ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
2591 						       path_leaf_bh(path),
2592 						       path_leaf_el(path));
2593 		if (ret)
2594 			mlog_errno(ret);
2595 		goto out;
2596 	}
2597 
2598 	/*
2599 	 * Handle rightmost branch now. There's several cases:
2600 	 *  1) simple rotation leaving records in there. That's trivial.
2601 	 *  2) rotation requiring a branch delete - there's no more
2602 	 *     records left. Two cases of this:
2603 	 *     a) There are branches to the left.
2604 	 *     b) This is also the leftmost (the only) branch.
2605 	 *
2606 	 *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
2607 	 *  2a) we need the left branch so that we can update it with the unlink
2608 	 *  2b) we need to bring the inode back to inline extents.
2609 	 */
2610 
2611 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2612 	el = &eb->h_list;
2613 	if (eb->h_next_leaf_blk == 0) {
2614 		/*
2615 		 * This gets a bit tricky if we're going to delete the
2616 		 * rightmost path. Get the other cases out of the way
2617 		 * 1st.
2618 		 */
2619 		if (le16_to_cpu(el->l_next_free_rec) > 1)
2620 			goto rightmost_no_delete;
2621 
2622 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
2623 			ret = -EIO;
2624 			ocfs2_error(inode->i_sb,
2625 				    "Inode %llu has empty extent block at %llu",
2626 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
2627 				    (unsigned long long)le64_to_cpu(eb->h_blkno));
2628 			goto out;
2629 		}
2630 
2631 		/*
2632 		 * XXX: The caller can not trust "path" any more after
2633 		 * this as it will have been deleted. What do we do?
2634 		 *
2635 		 * In theory the rotate-for-merge code will never get
2636 		 * here because it'll always ask for a rotate in a
2637 		 * nonempty list.
2638 		 */
2639 
2640 		ret = ocfs2_remove_rightmost_path(inode, handle, path,
2641 						  dealloc);
2642 		if (ret)
2643 			mlog_errno(ret);
2644 		goto out;
2645 	}
2646 
2647 	/*
2648 	 * Now we can loop, remembering the path we get from -EAGAIN
2649 	 * and restarting from there.
2650 	 */
2651 try_rotate:
2652 	ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
2653 				       dealloc, &restart_path);
2654 	if (ret && ret != -EAGAIN) {
2655 		mlog_errno(ret);
2656 		goto out;
2657 	}
2658 
2659 	while (ret == -EAGAIN) {
2660 		tmp_path = restart_path;
2661 		restart_path = NULL;
2662 
2663 		ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
2664 					       tmp_path, dealloc,
2665 					       &restart_path);
2666 		if (ret && ret != -EAGAIN) {
2667 			mlog_errno(ret);
2668 			goto out;
2669 		}
2670 
2671 		ocfs2_free_path(tmp_path);
2672 		tmp_path = NULL;
2673 
2674 		if (ret == 0)
2675 			goto try_rotate;
2676 	}
2677 
2678 out:
2679 	ocfs2_free_path(tmp_path);
2680 	ocfs2_free_path(restart_path);
2681 	return ret;
2682 }
2683 
2684 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
2685 				int index)
2686 {
2687 	struct ocfs2_extent_rec *rec = &el->l_recs[index];
2688 	unsigned int size;
2689 
2690 	if (rec->e_leaf_clusters == 0) {
2691 		/*
2692 		 * We consumed all of the merged-from record. An empty
2693 		 * extent cannot exist anywhere but the 1st array
2694 		 * position, so move things over if the merged-from
2695 		 * record doesn't occupy that position.
2696 		 *
2697 		 * This creates a new empty extent so the caller
2698 		 * should be smart enough to have removed any existing
2699 		 * ones.
2700 		 */
2701 		if (index > 0) {
2702 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
2703 			size = index * sizeof(struct ocfs2_extent_rec);
2704 			memmove(&el->l_recs[1], &el->l_recs[0], size);
2705 		}
2706 
2707 		/*
2708 		 * Always memset - the caller doesn't check whether it
2709 		 * created an empty extent, so there could be junk in
2710 		 * the other fields.
2711 		 */
2712 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2713 	}
2714 }
2715 
2716 static int ocfs2_get_right_path(struct inode *inode,
2717 				struct ocfs2_path *left_path,
2718 				struct ocfs2_path **ret_right_path)
2719 {
2720 	int ret;
2721 	u32 right_cpos;
2722 	struct ocfs2_path *right_path = NULL;
2723 	struct ocfs2_extent_list *left_el;
2724 
2725 	*ret_right_path = NULL;
2726 
2727 	/* This function shouldn't be called for non-trees. */
2728 	BUG_ON(left_path->p_tree_depth == 0);
2729 
2730 	left_el = path_leaf_el(left_path);
2731 	BUG_ON(left_el->l_next_free_rec != left_el->l_count);
2732 
2733 	ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2734 					     &right_cpos);
2735 	if (ret) {
2736 		mlog_errno(ret);
2737 		goto out;
2738 	}
2739 
2740 	/* This function shouldn't be called for the rightmost leaf. */
2741 	BUG_ON(right_cpos == 0);
2742 
2743 	right_path = ocfs2_new_path(path_root_bh(left_path),
2744 				    path_root_el(left_path));
2745 	if (!right_path) {
2746 		ret = -ENOMEM;
2747 		mlog_errno(ret);
2748 		goto out;
2749 	}
2750 
2751 	ret = ocfs2_find_path(inode, right_path, right_cpos);
2752 	if (ret) {
2753 		mlog_errno(ret);
2754 		goto out;
2755 	}
2756 
2757 	*ret_right_path = right_path;
2758 out:
2759 	if (ret)
2760 		ocfs2_free_path(right_path);
2761 	return ret;
2762 }
2763 
2764 /*
2765  * Remove split_rec clusters from the record at index and merge them
2766  * onto the beginning of the record "next" to it.
2767  * For index < l_count - 1, the next means the extent rec at index + 1.
2768  * For index == l_count - 1, the "next" means the 1st extent rec of the
2769  * next extent block.
2770  */
2771 static int ocfs2_merge_rec_right(struct inode *inode,
2772 				 struct ocfs2_path *left_path,
2773 				 handle_t *handle,
2774 				 struct ocfs2_extent_rec *split_rec,
2775 				 int index)
2776 {
2777 	int ret, next_free, i;
2778 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
2779 	struct ocfs2_extent_rec *left_rec;
2780 	struct ocfs2_extent_rec *right_rec;
2781 	struct ocfs2_extent_list *right_el;
2782 	struct ocfs2_path *right_path = NULL;
2783 	int subtree_index = 0;
2784 	struct ocfs2_extent_list *el = path_leaf_el(left_path);
2785 	struct buffer_head *bh = path_leaf_bh(left_path);
2786 	struct buffer_head *root_bh = NULL;
2787 
2788 	BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
2789 	left_rec = &el->l_recs[index];
2790 
2791 	if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
2792 	    le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
2793 		/* we meet with a cross extent block merge. */
2794 		ret = ocfs2_get_right_path(inode, left_path, &right_path);
2795 		if (ret) {
2796 			mlog_errno(ret);
2797 			goto out;
2798 		}
2799 
2800 		right_el = path_leaf_el(right_path);
2801 		next_free = le16_to_cpu(right_el->l_next_free_rec);
2802 		BUG_ON(next_free <= 0);
2803 		right_rec = &right_el->l_recs[0];
2804 		if (ocfs2_is_empty_extent(right_rec)) {
2805 			BUG_ON(next_free <= 1);
2806 			right_rec = &right_el->l_recs[1];
2807 		}
2808 
2809 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
2810 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
2811 		       le32_to_cpu(right_rec->e_cpos));
2812 
2813 		subtree_index = ocfs2_find_subtree_root(inode,
2814 							left_path, right_path);
2815 
2816 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
2817 						      handle->h_buffer_credits,
2818 						      right_path);
2819 		if (ret) {
2820 			mlog_errno(ret);
2821 			goto out;
2822 		}
2823 
2824 		root_bh = left_path->p_node[subtree_index].bh;
2825 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2826 
2827 		ret = ocfs2_journal_access(handle, inode, root_bh,
2828 					   OCFS2_JOURNAL_ACCESS_WRITE);
2829 		if (ret) {
2830 			mlog_errno(ret);
2831 			goto out;
2832 		}
2833 
2834 		for (i = subtree_index + 1;
2835 		     i < path_num_items(right_path); i++) {
2836 			ret = ocfs2_journal_access(handle, inode,
2837 						   right_path->p_node[i].bh,
2838 						   OCFS2_JOURNAL_ACCESS_WRITE);
2839 			if (ret) {
2840 				mlog_errno(ret);
2841 				goto out;
2842 			}
2843 
2844 			ret = ocfs2_journal_access(handle, inode,
2845 						   left_path->p_node[i].bh,
2846 						   OCFS2_JOURNAL_ACCESS_WRITE);
2847 			if (ret) {
2848 				mlog_errno(ret);
2849 				goto out;
2850 			}
2851 		}
2852 
2853 	} else {
2854 		BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
2855 		right_rec = &el->l_recs[index + 1];
2856 	}
2857 
2858 	ret = ocfs2_journal_access(handle, inode, bh,
2859 				   OCFS2_JOURNAL_ACCESS_WRITE);
2860 	if (ret) {
2861 		mlog_errno(ret);
2862 		goto out;
2863 	}
2864 
2865 	le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
2866 
2867 	le32_add_cpu(&right_rec->e_cpos, -split_clusters);
2868 	le64_add_cpu(&right_rec->e_blkno,
2869 		     -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
2870 	le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
2871 
2872 	ocfs2_cleanup_merge(el, index);
2873 
2874 	ret = ocfs2_journal_dirty(handle, bh);
2875 	if (ret)
2876 		mlog_errno(ret);
2877 
2878 	if (right_path) {
2879 		ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2880 		if (ret)
2881 			mlog_errno(ret);
2882 
2883 		ocfs2_complete_edge_insert(inode, handle, left_path,
2884 					   right_path, subtree_index);
2885 	}
2886 out:
2887 	if (right_path)
2888 		ocfs2_free_path(right_path);
2889 	return ret;
2890 }
2891 
2892 static int ocfs2_get_left_path(struct inode *inode,
2893 			       struct ocfs2_path *right_path,
2894 			       struct ocfs2_path **ret_left_path)
2895 {
2896 	int ret;
2897 	u32 left_cpos;
2898 	struct ocfs2_path *left_path = NULL;
2899 
2900 	*ret_left_path = NULL;
2901 
2902 	/* This function shouldn't be called for non-trees. */
2903 	BUG_ON(right_path->p_tree_depth == 0);
2904 
2905 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
2906 					    right_path, &left_cpos);
2907 	if (ret) {
2908 		mlog_errno(ret);
2909 		goto out;
2910 	}
2911 
2912 	/* This function shouldn't be called for the leftmost leaf. */
2913 	BUG_ON(left_cpos == 0);
2914 
2915 	left_path = ocfs2_new_path(path_root_bh(right_path),
2916 				   path_root_el(right_path));
2917 	if (!left_path) {
2918 		ret = -ENOMEM;
2919 		mlog_errno(ret);
2920 		goto out;
2921 	}
2922 
2923 	ret = ocfs2_find_path(inode, left_path, left_cpos);
2924 	if (ret) {
2925 		mlog_errno(ret);
2926 		goto out;
2927 	}
2928 
2929 	*ret_left_path = left_path;
2930 out:
2931 	if (ret)
2932 		ocfs2_free_path(left_path);
2933 	return ret;
2934 }
2935 
2936 /*
2937  * Remove split_rec clusters from the record at index and merge them
2938  * onto the tail of the record "before" it.
2939  * For index > 0, the "before" means the extent rec at index - 1.
2940  *
2941  * For index == 0, the "before" means the last record of the previous
2942  * extent block. And there is also a situation that we may need to
2943  * remove the rightmost leaf extent block in the right_path and change
2944  * the right path to indicate the new rightmost path.
2945  */
2946 static int ocfs2_merge_rec_left(struct inode *inode,
2947 				struct ocfs2_path *right_path,
2948 				handle_t *handle,
2949 				struct ocfs2_extent_rec *split_rec,
2950 				struct ocfs2_cached_dealloc_ctxt *dealloc,
2951 				int index)
2952 {
2953 	int ret, i, subtree_index = 0, has_empty_extent = 0;
2954 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
2955 	struct ocfs2_extent_rec *left_rec;
2956 	struct ocfs2_extent_rec *right_rec;
2957 	struct ocfs2_extent_list *el = path_leaf_el(right_path);
2958 	struct buffer_head *bh = path_leaf_bh(right_path);
2959 	struct buffer_head *root_bh = NULL;
2960 	struct ocfs2_path *left_path = NULL;
2961 	struct ocfs2_extent_list *left_el;
2962 
2963 	BUG_ON(index < 0);
2964 
2965 	right_rec = &el->l_recs[index];
2966 	if (index == 0) {
2967 		/* we meet with a cross extent block merge. */
2968 		ret = ocfs2_get_left_path(inode, right_path, &left_path);
2969 		if (ret) {
2970 			mlog_errno(ret);
2971 			goto out;
2972 		}
2973 
2974 		left_el = path_leaf_el(left_path);
2975 		BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
2976 		       le16_to_cpu(left_el->l_count));
2977 
2978 		left_rec = &left_el->l_recs[
2979 				le16_to_cpu(left_el->l_next_free_rec) - 1];
2980 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
2981 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
2982 		       le32_to_cpu(split_rec->e_cpos));
2983 
2984 		subtree_index = ocfs2_find_subtree_root(inode,
2985 							left_path, right_path);
2986 
2987 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
2988 						      handle->h_buffer_credits,
2989 						      left_path);
2990 		if (ret) {
2991 			mlog_errno(ret);
2992 			goto out;
2993 		}
2994 
2995 		root_bh = left_path->p_node[subtree_index].bh;
2996 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2997 
2998 		ret = ocfs2_journal_access(handle, inode, root_bh,
2999 					   OCFS2_JOURNAL_ACCESS_WRITE);
3000 		if (ret) {
3001 			mlog_errno(ret);
3002 			goto out;
3003 		}
3004 
3005 		for (i = subtree_index + 1;
3006 		     i < path_num_items(right_path); i++) {
3007 			ret = ocfs2_journal_access(handle, inode,
3008 						   right_path->p_node[i].bh,
3009 						   OCFS2_JOURNAL_ACCESS_WRITE);
3010 			if (ret) {
3011 				mlog_errno(ret);
3012 				goto out;
3013 			}
3014 
3015 			ret = ocfs2_journal_access(handle, inode,
3016 						   left_path->p_node[i].bh,
3017 						   OCFS2_JOURNAL_ACCESS_WRITE);
3018 			if (ret) {
3019 				mlog_errno(ret);
3020 				goto out;
3021 			}
3022 		}
3023 	} else {
3024 		left_rec = &el->l_recs[index - 1];
3025 		if (ocfs2_is_empty_extent(&el->l_recs[0]))
3026 			has_empty_extent = 1;
3027 	}
3028 
3029 	ret = ocfs2_journal_access(handle, inode, bh,
3030 				   OCFS2_JOURNAL_ACCESS_WRITE);
3031 	if (ret) {
3032 		mlog_errno(ret);
3033 		goto out;
3034 	}
3035 
3036 	if (has_empty_extent && index == 1) {
3037 		/*
3038 		 * The easy case - we can just plop the record right in.
3039 		 */
3040 		*left_rec = *split_rec;
3041 
3042 		has_empty_extent = 0;
3043 	} else
3044 		le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3045 
3046 	le32_add_cpu(&right_rec->e_cpos, split_clusters);
3047 	le64_add_cpu(&right_rec->e_blkno,
3048 		     ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3049 	le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3050 
3051 	ocfs2_cleanup_merge(el, index);
3052 
3053 	ret = ocfs2_journal_dirty(handle, bh);
3054 	if (ret)
3055 		mlog_errno(ret);
3056 
3057 	if (left_path) {
3058 		ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3059 		if (ret)
3060 			mlog_errno(ret);
3061 
3062 		/*
3063 		 * In the situation that the right_rec is empty and the extent
3064 		 * block is empty also,  ocfs2_complete_edge_insert can't handle
3065 		 * it and we need to delete the right extent block.
3066 		 */
3067 		if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3068 		    le16_to_cpu(el->l_next_free_rec) == 1) {
3069 
3070 			ret = ocfs2_remove_rightmost_path(inode, handle,
3071 							  right_path, dealloc);
3072 			if (ret) {
3073 				mlog_errno(ret);
3074 				goto out;
3075 			}
3076 
3077 			/* Now the rightmost extent block has been deleted.
3078 			 * So we use the new rightmost path.
3079 			 */
3080 			ocfs2_mv_path(right_path, left_path);
3081 			left_path = NULL;
3082 		} else
3083 			ocfs2_complete_edge_insert(inode, handle, left_path,
3084 						   right_path, subtree_index);
3085 	}
3086 out:
3087 	if (left_path)
3088 		ocfs2_free_path(left_path);
3089 	return ret;
3090 }
3091 
3092 static int ocfs2_try_to_merge_extent(struct inode *inode,
3093 				     handle_t *handle,
3094 				     struct ocfs2_path *path,
3095 				     int split_index,
3096 				     struct ocfs2_extent_rec *split_rec,
3097 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
3098 				     struct ocfs2_merge_ctxt *ctxt)
3099 
3100 {
3101 	int ret = 0;
3102 	struct ocfs2_extent_list *el = path_leaf_el(path);
3103 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3104 
3105 	BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3106 
3107 	if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3108 		/*
3109 		 * The merge code will need to create an empty
3110 		 * extent to take the place of the newly
3111 		 * emptied slot. Remove any pre-existing empty
3112 		 * extents - having more than one in a leaf is
3113 		 * illegal.
3114 		 */
3115 		ret = ocfs2_rotate_tree_left(inode, handle, path,
3116 					     dealloc);
3117 		if (ret) {
3118 			mlog_errno(ret);
3119 			goto out;
3120 		}
3121 		split_index--;
3122 		rec = &el->l_recs[split_index];
3123 	}
3124 
3125 	if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3126 		/*
3127 		 * Left-right contig implies this.
3128 		 */
3129 		BUG_ON(!ctxt->c_split_covers_rec);
3130 
3131 		/*
3132 		 * Since the leftright insert always covers the entire
3133 		 * extent, this call will delete the insert record
3134 		 * entirely, resulting in an empty extent record added to
3135 		 * the extent block.
3136 		 *
3137 		 * Since the adding of an empty extent shifts
3138 		 * everything back to the right, there's no need to
3139 		 * update split_index here.
3140 		 *
3141 		 * When the split_index is zero, we need to merge it to the
3142 		 * prevoius extent block. It is more efficient and easier
3143 		 * if we do merge_right first and merge_left later.
3144 		 */
3145 		ret = ocfs2_merge_rec_right(inode, path,
3146 					    handle, split_rec,
3147 					    split_index);
3148 		if (ret) {
3149 			mlog_errno(ret);
3150 			goto out;
3151 		}
3152 
3153 		/*
3154 		 * We can only get this from logic error above.
3155 		 */
3156 		BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3157 
3158 		/* The merge left us with an empty extent, remove it. */
3159 		ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc);
3160 		if (ret) {
3161 			mlog_errno(ret);
3162 			goto out;
3163 		}
3164 
3165 		rec = &el->l_recs[split_index];
3166 
3167 		/*
3168 		 * Note that we don't pass split_rec here on purpose -
3169 		 * we've merged it into the rec already.
3170 		 */
3171 		ret = ocfs2_merge_rec_left(inode, path,
3172 					   handle, rec,
3173 					   dealloc,
3174 					   split_index);
3175 
3176 		if (ret) {
3177 			mlog_errno(ret);
3178 			goto out;
3179 		}
3180 
3181 		ret = ocfs2_rotate_tree_left(inode, handle, path,
3182 					     dealloc);
3183 		/*
3184 		 * Error from this last rotate is not critical, so
3185 		 * print but don't bubble it up.
3186 		 */
3187 		if (ret)
3188 			mlog_errno(ret);
3189 		ret = 0;
3190 	} else {
3191 		/*
3192 		 * Merge a record to the left or right.
3193 		 *
3194 		 * 'contig_type' is relative to the existing record,
3195 		 * so for example, if we're "right contig", it's to
3196 		 * the record on the left (hence the left merge).
3197 		 */
3198 		if (ctxt->c_contig_type == CONTIG_RIGHT) {
3199 			ret = ocfs2_merge_rec_left(inode,
3200 						   path,
3201 						   handle, split_rec,
3202 						   dealloc,
3203 						   split_index);
3204 			if (ret) {
3205 				mlog_errno(ret);
3206 				goto out;
3207 			}
3208 		} else {
3209 			ret = ocfs2_merge_rec_right(inode,
3210 						    path,
3211 						    handle, split_rec,
3212 						    split_index);
3213 			if (ret) {
3214 				mlog_errno(ret);
3215 				goto out;
3216 			}
3217 		}
3218 
3219 		if (ctxt->c_split_covers_rec) {
3220 			/*
3221 			 * The merge may have left an empty extent in
3222 			 * our leaf. Try to rotate it away.
3223 			 */
3224 			ret = ocfs2_rotate_tree_left(inode, handle, path,
3225 						     dealloc);
3226 			if (ret)
3227 				mlog_errno(ret);
3228 			ret = 0;
3229 		}
3230 	}
3231 
3232 out:
3233 	return ret;
3234 }
3235 
3236 static void ocfs2_subtract_from_rec(struct super_block *sb,
3237 				    enum ocfs2_split_type split,
3238 				    struct ocfs2_extent_rec *rec,
3239 				    struct ocfs2_extent_rec *split_rec)
3240 {
3241 	u64 len_blocks;
3242 
3243 	len_blocks = ocfs2_clusters_to_blocks(sb,
3244 				le16_to_cpu(split_rec->e_leaf_clusters));
3245 
3246 	if (split == SPLIT_LEFT) {
3247 		/*
3248 		 * Region is on the left edge of the existing
3249 		 * record.
3250 		 */
3251 		le32_add_cpu(&rec->e_cpos,
3252 			     le16_to_cpu(split_rec->e_leaf_clusters));
3253 		le64_add_cpu(&rec->e_blkno, len_blocks);
3254 		le16_add_cpu(&rec->e_leaf_clusters,
3255 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3256 	} else {
3257 		/*
3258 		 * Region is on the right edge of the existing
3259 		 * record.
3260 		 */
3261 		le16_add_cpu(&rec->e_leaf_clusters,
3262 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3263 	}
3264 }
3265 
3266 /*
3267  * Do the final bits of extent record insertion at the target leaf
3268  * list. If this leaf is part of an allocation tree, it is assumed
3269  * that the tree above has been prepared.
3270  */
3271 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
3272 				 struct ocfs2_extent_list *el,
3273 				 struct ocfs2_insert_type *insert,
3274 				 struct inode *inode)
3275 {
3276 	int i = insert->ins_contig_index;
3277 	unsigned int range;
3278 	struct ocfs2_extent_rec *rec;
3279 
3280 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3281 
3282 	if (insert->ins_split != SPLIT_NONE) {
3283 		i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3284 		BUG_ON(i == -1);
3285 		rec = &el->l_recs[i];
3286 		ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3287 					insert_rec);
3288 		goto rotate;
3289 	}
3290 
3291 	/*
3292 	 * Contiguous insert - either left or right.
3293 	 */
3294 	if (insert->ins_contig != CONTIG_NONE) {
3295 		rec = &el->l_recs[i];
3296 		if (insert->ins_contig == CONTIG_LEFT) {
3297 			rec->e_blkno = insert_rec->e_blkno;
3298 			rec->e_cpos = insert_rec->e_cpos;
3299 		}
3300 		le16_add_cpu(&rec->e_leaf_clusters,
3301 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3302 		return;
3303 	}
3304 
3305 	/*
3306 	 * Handle insert into an empty leaf.
3307 	 */
3308 	if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3309 	    ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3310 	     ocfs2_is_empty_extent(&el->l_recs[0]))) {
3311 		el->l_recs[0] = *insert_rec;
3312 		el->l_next_free_rec = cpu_to_le16(1);
3313 		return;
3314 	}
3315 
3316 	/*
3317 	 * Appending insert.
3318 	 */
3319 	if (insert->ins_appending == APPEND_TAIL) {
3320 		i = le16_to_cpu(el->l_next_free_rec) - 1;
3321 		rec = &el->l_recs[i];
3322 		range = le32_to_cpu(rec->e_cpos)
3323 			+ le16_to_cpu(rec->e_leaf_clusters);
3324 		BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3325 
3326 		mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3327 				le16_to_cpu(el->l_count),
3328 				"inode %lu, depth %u, count %u, next free %u, "
3329 				"rec.cpos %u, rec.clusters %u, "
3330 				"insert.cpos %u, insert.clusters %u\n",
3331 				inode->i_ino,
3332 				le16_to_cpu(el->l_tree_depth),
3333 				le16_to_cpu(el->l_count),
3334 				le16_to_cpu(el->l_next_free_rec),
3335 				le32_to_cpu(el->l_recs[i].e_cpos),
3336 				le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3337 				le32_to_cpu(insert_rec->e_cpos),
3338 				le16_to_cpu(insert_rec->e_leaf_clusters));
3339 		i++;
3340 		el->l_recs[i] = *insert_rec;
3341 		le16_add_cpu(&el->l_next_free_rec, 1);
3342 		return;
3343 	}
3344 
3345 rotate:
3346 	/*
3347 	 * Ok, we have to rotate.
3348 	 *
3349 	 * At this point, it is safe to assume that inserting into an
3350 	 * empty leaf and appending to a leaf have both been handled
3351 	 * above.
3352 	 *
3353 	 * This leaf needs to have space, either by the empty 1st
3354 	 * extent record, or by virtue of an l_next_rec < l_count.
3355 	 */
3356 	ocfs2_rotate_leaf(el, insert_rec);
3357 }
3358 
3359 static inline void ocfs2_update_dinode_clusters(struct inode *inode,
3360 						struct ocfs2_dinode *di,
3361 						u32 clusters)
3362 {
3363 	le32_add_cpu(&di->i_clusters, clusters);
3364 	spin_lock(&OCFS2_I(inode)->ip_lock);
3365 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
3366 	spin_unlock(&OCFS2_I(inode)->ip_lock);
3367 }
3368 
3369 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3370 					   handle_t *handle,
3371 					   struct ocfs2_path *path,
3372 					   struct ocfs2_extent_rec *insert_rec)
3373 {
3374 	int ret, i, next_free;
3375 	struct buffer_head *bh;
3376 	struct ocfs2_extent_list *el;
3377 	struct ocfs2_extent_rec *rec;
3378 
3379 	/*
3380 	 * Update everything except the leaf block.
3381 	 */
3382 	for (i = 0; i < path->p_tree_depth; i++) {
3383 		bh = path->p_node[i].bh;
3384 		el = path->p_node[i].el;
3385 
3386 		next_free = le16_to_cpu(el->l_next_free_rec);
3387 		if (next_free == 0) {
3388 			ocfs2_error(inode->i_sb,
3389 				    "Dinode %llu has a bad extent list",
3390 				    (unsigned long long)OCFS2_I(inode)->ip_blkno);
3391 			ret = -EIO;
3392 			return;
3393 		}
3394 
3395 		rec = &el->l_recs[next_free - 1];
3396 
3397 		rec->e_int_clusters = insert_rec->e_cpos;
3398 		le32_add_cpu(&rec->e_int_clusters,
3399 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3400 		le32_add_cpu(&rec->e_int_clusters,
3401 			     -le32_to_cpu(rec->e_cpos));
3402 
3403 		ret = ocfs2_journal_dirty(handle, bh);
3404 		if (ret)
3405 			mlog_errno(ret);
3406 
3407 	}
3408 }
3409 
3410 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3411 				    struct ocfs2_extent_rec *insert_rec,
3412 				    struct ocfs2_path *right_path,
3413 				    struct ocfs2_path **ret_left_path)
3414 {
3415 	int ret, next_free;
3416 	struct ocfs2_extent_list *el;
3417 	struct ocfs2_path *left_path = NULL;
3418 
3419 	*ret_left_path = NULL;
3420 
3421 	/*
3422 	 * This shouldn't happen for non-trees. The extent rec cluster
3423 	 * count manipulation below only works for interior nodes.
3424 	 */
3425 	BUG_ON(right_path->p_tree_depth == 0);
3426 
3427 	/*
3428 	 * If our appending insert is at the leftmost edge of a leaf,
3429 	 * then we might need to update the rightmost records of the
3430 	 * neighboring path.
3431 	 */
3432 	el = path_leaf_el(right_path);
3433 	next_free = le16_to_cpu(el->l_next_free_rec);
3434 	if (next_free == 0 ||
3435 	    (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3436 		u32 left_cpos;
3437 
3438 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3439 						    &left_cpos);
3440 		if (ret) {
3441 			mlog_errno(ret);
3442 			goto out;
3443 		}
3444 
3445 		mlog(0, "Append may need a left path update. cpos: %u, "
3446 		     "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3447 		     left_cpos);
3448 
3449 		/*
3450 		 * No need to worry if the append is already in the
3451 		 * leftmost leaf.
3452 		 */
3453 		if (left_cpos) {
3454 			left_path = ocfs2_new_path(path_root_bh(right_path),
3455 						   path_root_el(right_path));
3456 			if (!left_path) {
3457 				ret = -ENOMEM;
3458 				mlog_errno(ret);
3459 				goto out;
3460 			}
3461 
3462 			ret = ocfs2_find_path(inode, left_path, left_cpos);
3463 			if (ret) {
3464 				mlog_errno(ret);
3465 				goto out;
3466 			}
3467 
3468 			/*
3469 			 * ocfs2_insert_path() will pass the left_path to the
3470 			 * journal for us.
3471 			 */
3472 		}
3473 	}
3474 
3475 	ret = ocfs2_journal_access_path(inode, handle, right_path);
3476 	if (ret) {
3477 		mlog_errno(ret);
3478 		goto out;
3479 	}
3480 
3481 	ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
3482 
3483 	*ret_left_path = left_path;
3484 	ret = 0;
3485 out:
3486 	if (ret != 0)
3487 		ocfs2_free_path(left_path);
3488 
3489 	return ret;
3490 }
3491 
3492 static void ocfs2_split_record(struct inode *inode,
3493 			       struct ocfs2_path *left_path,
3494 			       struct ocfs2_path *right_path,
3495 			       struct ocfs2_extent_rec *split_rec,
3496 			       enum ocfs2_split_type split)
3497 {
3498 	int index;
3499 	u32 cpos = le32_to_cpu(split_rec->e_cpos);
3500 	struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
3501 	struct ocfs2_extent_rec *rec, *tmprec;
3502 
3503 	right_el = path_leaf_el(right_path);;
3504 	if (left_path)
3505 		left_el = path_leaf_el(left_path);
3506 
3507 	el = right_el;
3508 	insert_el = right_el;
3509 	index = ocfs2_search_extent_list(el, cpos);
3510 	if (index != -1) {
3511 		if (index == 0 && left_path) {
3512 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3513 
3514 			/*
3515 			 * This typically means that the record
3516 			 * started in the left path but moved to the
3517 			 * right as a result of rotation. We either
3518 			 * move the existing record to the left, or we
3519 			 * do the later insert there.
3520 			 *
3521 			 * In this case, the left path should always
3522 			 * exist as the rotate code will have passed
3523 			 * it back for a post-insert update.
3524 			 */
3525 
3526 			if (split == SPLIT_LEFT) {
3527 				/*
3528 				 * It's a left split. Since we know
3529 				 * that the rotate code gave us an
3530 				 * empty extent in the left path, we
3531 				 * can just do the insert there.
3532 				 */
3533 				insert_el = left_el;
3534 			} else {
3535 				/*
3536 				 * Right split - we have to move the
3537 				 * existing record over to the left
3538 				 * leaf. The insert will be into the
3539 				 * newly created empty extent in the
3540 				 * right leaf.
3541 				 */
3542 				tmprec = &right_el->l_recs[index];
3543 				ocfs2_rotate_leaf(left_el, tmprec);
3544 				el = left_el;
3545 
3546 				memset(tmprec, 0, sizeof(*tmprec));
3547 				index = ocfs2_search_extent_list(left_el, cpos);
3548 				BUG_ON(index == -1);
3549 			}
3550 		}
3551 	} else {
3552 		BUG_ON(!left_path);
3553 		BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
3554 		/*
3555 		 * Left path is easy - we can just allow the insert to
3556 		 * happen.
3557 		 */
3558 		el = left_el;
3559 		insert_el = left_el;
3560 		index = ocfs2_search_extent_list(el, cpos);
3561 		BUG_ON(index == -1);
3562 	}
3563 
3564 	rec = &el->l_recs[index];
3565 	ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
3566 	ocfs2_rotate_leaf(insert_el, split_rec);
3567 }
3568 
3569 /*
3570  * This function only does inserts on an allocation b-tree. For dinode
3571  * lists, ocfs2_insert_at_leaf() is called directly.
3572  *
3573  * right_path is the path we want to do the actual insert
3574  * in. left_path should only be passed in if we need to update that
3575  * portion of the tree after an edge insert.
3576  */
3577 static int ocfs2_insert_path(struct inode *inode,
3578 			     handle_t *handle,
3579 			     struct ocfs2_path *left_path,
3580 			     struct ocfs2_path *right_path,
3581 			     struct ocfs2_extent_rec *insert_rec,
3582 			     struct ocfs2_insert_type *insert)
3583 {
3584 	int ret, subtree_index;
3585 	struct buffer_head *leaf_bh = path_leaf_bh(right_path);
3586 
3587 	if (left_path) {
3588 		int credits = handle->h_buffer_credits;
3589 
3590 		/*
3591 		 * There's a chance that left_path got passed back to
3592 		 * us without being accounted for in the
3593 		 * journal. Extend our transaction here to be sure we
3594 		 * can change those blocks.
3595 		 */
3596 		credits += left_path->p_tree_depth;
3597 
3598 		ret = ocfs2_extend_trans(handle, credits);
3599 		if (ret < 0) {
3600 			mlog_errno(ret);
3601 			goto out;
3602 		}
3603 
3604 		ret = ocfs2_journal_access_path(inode, handle, left_path);
3605 		if (ret < 0) {
3606 			mlog_errno(ret);
3607 			goto out;
3608 		}
3609 	}
3610 
3611 	/*
3612 	 * Pass both paths to the journal. The majority of inserts
3613 	 * will be touching all components anyway.
3614 	 */
3615 	ret = ocfs2_journal_access_path(inode, handle, right_path);
3616 	if (ret < 0) {
3617 		mlog_errno(ret);
3618 		goto out;
3619 	}
3620 
3621 	if (insert->ins_split != SPLIT_NONE) {
3622 		/*
3623 		 * We could call ocfs2_insert_at_leaf() for some types
3624 		 * of splits, but it's easier to just let one separate
3625 		 * function sort it all out.
3626 		 */
3627 		ocfs2_split_record(inode, left_path, right_path,
3628 				   insert_rec, insert->ins_split);
3629 
3630 		/*
3631 		 * Split might have modified either leaf and we don't
3632 		 * have a guarantee that the later edge insert will
3633 		 * dirty this for us.
3634 		 */
3635 		if (left_path)
3636 			ret = ocfs2_journal_dirty(handle,
3637 						  path_leaf_bh(left_path));
3638 			if (ret)
3639 				mlog_errno(ret);
3640 	} else
3641 		ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
3642 				     insert, inode);
3643 
3644 	ret = ocfs2_journal_dirty(handle, leaf_bh);
3645 	if (ret)
3646 		mlog_errno(ret);
3647 
3648 	if (left_path) {
3649 		/*
3650 		 * The rotate code has indicated that we need to fix
3651 		 * up portions of the tree after the insert.
3652 		 *
3653 		 * XXX: Should we extend the transaction here?
3654 		 */
3655 		subtree_index = ocfs2_find_subtree_root(inode, left_path,
3656 							right_path);
3657 		ocfs2_complete_edge_insert(inode, handle, left_path,
3658 					   right_path, subtree_index);
3659 	}
3660 
3661 	ret = 0;
3662 out:
3663 	return ret;
3664 }
3665 
3666 static int ocfs2_do_insert_extent(struct inode *inode,
3667 				  handle_t *handle,
3668 				  struct buffer_head *di_bh,
3669 				  struct ocfs2_extent_rec *insert_rec,
3670 				  struct ocfs2_insert_type *type)
3671 {
3672 	int ret, rotate = 0;
3673 	u32 cpos;
3674 	struct ocfs2_path *right_path = NULL;
3675 	struct ocfs2_path *left_path = NULL;
3676 	struct ocfs2_dinode *di;
3677 	struct ocfs2_extent_list *el;
3678 
3679 	di = (struct ocfs2_dinode *) di_bh->b_data;
3680 	el = &di->id2.i_list;
3681 
3682 	ret = ocfs2_journal_access(handle, inode, di_bh,
3683 				   OCFS2_JOURNAL_ACCESS_WRITE);
3684 	if (ret) {
3685 		mlog_errno(ret);
3686 		goto out;
3687 	}
3688 
3689 	if (le16_to_cpu(el->l_tree_depth) == 0) {
3690 		ocfs2_insert_at_leaf(insert_rec, el, type, inode);
3691 		goto out_update_clusters;
3692 	}
3693 
3694 	right_path = ocfs2_new_inode_path(di_bh);
3695 	if (!right_path) {
3696 		ret = -ENOMEM;
3697 		mlog_errno(ret);
3698 		goto out;
3699 	}
3700 
3701 	/*
3702 	 * Determine the path to start with. Rotations need the
3703 	 * rightmost path, everything else can go directly to the
3704 	 * target leaf.
3705 	 */
3706 	cpos = le32_to_cpu(insert_rec->e_cpos);
3707 	if (type->ins_appending == APPEND_NONE &&
3708 	    type->ins_contig == CONTIG_NONE) {
3709 		rotate = 1;
3710 		cpos = UINT_MAX;
3711 	}
3712 
3713 	ret = ocfs2_find_path(inode, right_path, cpos);
3714 	if (ret) {
3715 		mlog_errno(ret);
3716 		goto out;
3717 	}
3718 
3719 	/*
3720 	 * Rotations and appends need special treatment - they modify
3721 	 * parts of the tree's above them.
3722 	 *
3723 	 * Both might pass back a path immediate to the left of the
3724 	 * one being inserted to. This will be cause
3725 	 * ocfs2_insert_path() to modify the rightmost records of
3726 	 * left_path to account for an edge insert.
3727 	 *
3728 	 * XXX: When modifying this code, keep in mind that an insert
3729 	 * can wind up skipping both of these two special cases...
3730 	 */
3731 	if (rotate) {
3732 		ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
3733 					      le32_to_cpu(insert_rec->e_cpos),
3734 					      right_path, &left_path);
3735 		if (ret) {
3736 			mlog_errno(ret);
3737 			goto out;
3738 		}
3739 
3740 		/*
3741 		 * ocfs2_rotate_tree_right() might have extended the
3742 		 * transaction without re-journaling our tree root.
3743 		 */
3744 		ret = ocfs2_journal_access(handle, inode, di_bh,
3745 					   OCFS2_JOURNAL_ACCESS_WRITE);
3746 		if (ret) {
3747 			mlog_errno(ret);
3748 			goto out;
3749 		}
3750 	} else if (type->ins_appending == APPEND_TAIL
3751 		   && type->ins_contig != CONTIG_LEFT) {
3752 		ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
3753 					       right_path, &left_path);
3754 		if (ret) {
3755 			mlog_errno(ret);
3756 			goto out;
3757 		}
3758 	}
3759 
3760 	ret = ocfs2_insert_path(inode, handle, left_path, right_path,
3761 				insert_rec, type);
3762 	if (ret) {
3763 		mlog_errno(ret);
3764 		goto out;
3765 	}
3766 
3767 out_update_clusters:
3768 	if (type->ins_split == SPLIT_NONE)
3769 		ocfs2_update_dinode_clusters(inode, di,
3770 					     le16_to_cpu(insert_rec->e_leaf_clusters));
3771 
3772 	ret = ocfs2_journal_dirty(handle, di_bh);
3773 	if (ret)
3774 		mlog_errno(ret);
3775 
3776 out:
3777 	ocfs2_free_path(left_path);
3778 	ocfs2_free_path(right_path);
3779 
3780 	return ret;
3781 }
3782 
3783 static enum ocfs2_contig_type
3784 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path,
3785 			       struct ocfs2_extent_list *el, int index,
3786 			       struct ocfs2_extent_rec *split_rec)
3787 {
3788 	int status;
3789 	enum ocfs2_contig_type ret = CONTIG_NONE;
3790 	u32 left_cpos, right_cpos;
3791 	struct ocfs2_extent_rec *rec = NULL;
3792 	struct ocfs2_extent_list *new_el;
3793 	struct ocfs2_path *left_path = NULL, *right_path = NULL;
3794 	struct buffer_head *bh;
3795 	struct ocfs2_extent_block *eb;
3796 
3797 	if (index > 0) {
3798 		rec = &el->l_recs[index - 1];
3799 	} else if (path->p_tree_depth > 0) {
3800 		status = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
3801 						       path, &left_cpos);
3802 		if (status)
3803 			goto out;
3804 
3805 		if (left_cpos != 0) {
3806 			left_path = ocfs2_new_path(path_root_bh(path),
3807 						   path_root_el(path));
3808 			if (!left_path)
3809 				goto out;
3810 
3811 			status = ocfs2_find_path(inode, left_path, left_cpos);
3812 			if (status)
3813 				goto out;
3814 
3815 			new_el = path_leaf_el(left_path);
3816 
3817 			if (le16_to_cpu(new_el->l_next_free_rec) !=
3818 			    le16_to_cpu(new_el->l_count)) {
3819 				bh = path_leaf_bh(left_path);
3820 				eb = (struct ocfs2_extent_block *)bh->b_data;
3821 				OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb,
3822 								 eb);
3823 				goto out;
3824 			}
3825 			rec = &new_el->l_recs[
3826 				le16_to_cpu(new_el->l_next_free_rec) - 1];
3827 		}
3828 	}
3829 
3830 	/*
3831 	 * We're careful to check for an empty extent record here -
3832 	 * the merge code will know what to do if it sees one.
3833 	 */
3834 	if (rec) {
3835 		if (index == 1 && ocfs2_is_empty_extent(rec)) {
3836 			if (split_rec->e_cpos == el->l_recs[index].e_cpos)
3837 				ret = CONTIG_RIGHT;
3838 		} else {
3839 			ret = ocfs2_extent_contig(inode, rec, split_rec);
3840 		}
3841 	}
3842 
3843 	rec = NULL;
3844 	if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
3845 		rec = &el->l_recs[index + 1];
3846 	else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
3847 		 path->p_tree_depth > 0) {
3848 		status = ocfs2_find_cpos_for_right_leaf(inode->i_sb,
3849 							path, &right_cpos);
3850 		if (status)
3851 			goto out;
3852 
3853 		if (right_cpos == 0)
3854 			goto out;
3855 
3856 		right_path = ocfs2_new_path(path_root_bh(path),
3857 					    path_root_el(path));
3858 		if (!right_path)
3859 			goto out;
3860 
3861 		status = ocfs2_find_path(inode, right_path, right_cpos);
3862 		if (status)
3863 			goto out;
3864 
3865 		new_el = path_leaf_el(right_path);
3866 		rec = &new_el->l_recs[0];
3867 		if (ocfs2_is_empty_extent(rec)) {
3868 			if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
3869 				bh = path_leaf_bh(right_path);
3870 				eb = (struct ocfs2_extent_block *)bh->b_data;
3871 				OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb,
3872 								 eb);
3873 				goto out;
3874 			}
3875 			rec = &new_el->l_recs[1];
3876 		}
3877 	}
3878 
3879 	if (rec) {
3880 		enum ocfs2_contig_type contig_type;
3881 
3882 		contig_type = ocfs2_extent_contig(inode, rec, split_rec);
3883 
3884 		if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
3885 			ret = CONTIG_LEFTRIGHT;
3886 		else if (ret == CONTIG_NONE)
3887 			ret = contig_type;
3888 	}
3889 
3890 out:
3891 	if (left_path)
3892 		ocfs2_free_path(left_path);
3893 	if (right_path)
3894 		ocfs2_free_path(right_path);
3895 
3896 	return ret;
3897 }
3898 
3899 static void ocfs2_figure_contig_type(struct inode *inode,
3900 				     struct ocfs2_insert_type *insert,
3901 				     struct ocfs2_extent_list *el,
3902 				     struct ocfs2_extent_rec *insert_rec)
3903 {
3904 	int i;
3905 	enum ocfs2_contig_type contig_type = CONTIG_NONE;
3906 
3907 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3908 
3909 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
3910 		contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
3911 						  insert_rec);
3912 		if (contig_type != CONTIG_NONE) {
3913 			insert->ins_contig_index = i;
3914 			break;
3915 		}
3916 	}
3917 	insert->ins_contig = contig_type;
3918 }
3919 
3920 /*
3921  * This should only be called against the righmost leaf extent list.
3922  *
3923  * ocfs2_figure_appending_type() will figure out whether we'll have to
3924  * insert at the tail of the rightmost leaf.
3925  *
3926  * This should also work against the dinode list for tree's with 0
3927  * depth. If we consider the dinode list to be the rightmost leaf node
3928  * then the logic here makes sense.
3929  */
3930 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
3931 					struct ocfs2_extent_list *el,
3932 					struct ocfs2_extent_rec *insert_rec)
3933 {
3934 	int i;
3935 	u32 cpos = le32_to_cpu(insert_rec->e_cpos);
3936 	struct ocfs2_extent_rec *rec;
3937 
3938 	insert->ins_appending = APPEND_NONE;
3939 
3940 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3941 
3942 	if (!el->l_next_free_rec)
3943 		goto set_tail_append;
3944 
3945 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
3946 		/* Were all records empty? */
3947 		if (le16_to_cpu(el->l_next_free_rec) == 1)
3948 			goto set_tail_append;
3949 	}
3950 
3951 	i = le16_to_cpu(el->l_next_free_rec) - 1;
3952 	rec = &el->l_recs[i];
3953 
3954 	if (cpos >=
3955 	    (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
3956 		goto set_tail_append;
3957 
3958 	return;
3959 
3960 set_tail_append:
3961 	insert->ins_appending = APPEND_TAIL;
3962 }
3963 
3964 /*
3965  * Helper function called at the begining of an insert.
3966  *
3967  * This computes a few things that are commonly used in the process of
3968  * inserting into the btree:
3969  *   - Whether the new extent is contiguous with an existing one.
3970  *   - The current tree depth.
3971  *   - Whether the insert is an appending one.
3972  *   - The total # of free records in the tree.
3973  *
3974  * All of the information is stored on the ocfs2_insert_type
3975  * structure.
3976  */
3977 static int ocfs2_figure_insert_type(struct inode *inode,
3978 				    struct buffer_head *di_bh,
3979 				    struct buffer_head **last_eb_bh,
3980 				    struct ocfs2_extent_rec *insert_rec,
3981 				    int *free_records,
3982 				    struct ocfs2_insert_type *insert)
3983 {
3984 	int ret;
3985 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
3986 	struct ocfs2_extent_block *eb;
3987 	struct ocfs2_extent_list *el;
3988 	struct ocfs2_path *path = NULL;
3989 	struct buffer_head *bh = NULL;
3990 
3991 	insert->ins_split = SPLIT_NONE;
3992 
3993 	el = &di->id2.i_list;
3994 	insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
3995 
3996 	if (el->l_tree_depth) {
3997 		/*
3998 		 * If we have tree depth, we read in the
3999 		 * rightmost extent block ahead of time as
4000 		 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4001 		 * may want it later.
4002 		 */
4003 		ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
4004 				       le64_to_cpu(di->i_last_eb_blk), &bh,
4005 				       OCFS2_BH_CACHED, inode);
4006 		if (ret) {
4007 			mlog_exit(ret);
4008 			goto out;
4009 		}
4010 		eb = (struct ocfs2_extent_block *) bh->b_data;
4011 		el = &eb->h_list;
4012 	}
4013 
4014 	/*
4015 	 * Unless we have a contiguous insert, we'll need to know if
4016 	 * there is room left in our allocation tree for another
4017 	 * extent record.
4018 	 *
4019 	 * XXX: This test is simplistic, we can search for empty
4020 	 * extent records too.
4021 	 */
4022 	*free_records = le16_to_cpu(el->l_count) -
4023 		le16_to_cpu(el->l_next_free_rec);
4024 
4025 	if (!insert->ins_tree_depth) {
4026 		ocfs2_figure_contig_type(inode, insert, el, insert_rec);
4027 		ocfs2_figure_appending_type(insert, el, insert_rec);
4028 		return 0;
4029 	}
4030 
4031 	path = ocfs2_new_inode_path(di_bh);
4032 	if (!path) {
4033 		ret = -ENOMEM;
4034 		mlog_errno(ret);
4035 		goto out;
4036 	}
4037 
4038 	/*
4039 	 * In the case that we're inserting past what the tree
4040 	 * currently accounts for, ocfs2_find_path() will return for
4041 	 * us the rightmost tree path. This is accounted for below in
4042 	 * the appending code.
4043 	 */
4044 	ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
4045 	if (ret) {
4046 		mlog_errno(ret);
4047 		goto out;
4048 	}
4049 
4050 	el = path_leaf_el(path);
4051 
4052 	/*
4053 	 * Now that we have the path, there's two things we want to determine:
4054 	 * 1) Contiguousness (also set contig_index if this is so)
4055 	 *
4056 	 * 2) Are we doing an append? We can trivially break this up
4057          *     into two types of appends: simple record append, or a
4058          *     rotate inside the tail leaf.
4059 	 */
4060 	ocfs2_figure_contig_type(inode, insert, el, insert_rec);
4061 
4062 	/*
4063 	 * The insert code isn't quite ready to deal with all cases of
4064 	 * left contiguousness. Specifically, if it's an insert into
4065 	 * the 1st record in a leaf, it will require the adjustment of
4066 	 * cluster count on the last record of the path directly to it's
4067 	 * left. For now, just catch that case and fool the layers
4068 	 * above us. This works just fine for tree_depth == 0, which
4069 	 * is why we allow that above.
4070 	 */
4071 	if (insert->ins_contig == CONTIG_LEFT &&
4072 	    insert->ins_contig_index == 0)
4073 		insert->ins_contig = CONTIG_NONE;
4074 
4075 	/*
4076 	 * Ok, so we can simply compare against last_eb to figure out
4077 	 * whether the path doesn't exist. This will only happen in
4078 	 * the case that we're doing a tail append, so maybe we can
4079 	 * take advantage of that information somehow.
4080 	 */
4081 	if (le64_to_cpu(di->i_last_eb_blk) == path_leaf_bh(path)->b_blocknr) {
4082 		/*
4083 		 * Ok, ocfs2_find_path() returned us the rightmost
4084 		 * tree path. This might be an appending insert. There are
4085 		 * two cases:
4086 		 *    1) We're doing a true append at the tail:
4087 		 *	-This might even be off the end of the leaf
4088 		 *    2) We're "appending" by rotating in the tail
4089 		 */
4090 		ocfs2_figure_appending_type(insert, el, insert_rec);
4091 	}
4092 
4093 out:
4094 	ocfs2_free_path(path);
4095 
4096 	if (ret == 0)
4097 		*last_eb_bh = bh;
4098 	else
4099 		brelse(bh);
4100 	return ret;
4101 }
4102 
4103 /*
4104  * Insert an extent into an inode btree.
4105  *
4106  * The caller needs to update fe->i_clusters
4107  */
4108 int ocfs2_insert_extent(struct ocfs2_super *osb,
4109 			handle_t *handle,
4110 			struct inode *inode,
4111 			struct buffer_head *fe_bh,
4112 			u32 cpos,
4113 			u64 start_blk,
4114 			u32 new_clusters,
4115 			u8 flags,
4116 			struct ocfs2_alloc_context *meta_ac)
4117 {
4118 	int status;
4119 	int uninitialized_var(free_records);
4120 	struct buffer_head *last_eb_bh = NULL;
4121 	struct ocfs2_insert_type insert = {0, };
4122 	struct ocfs2_extent_rec rec;
4123 
4124 	BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
4125 
4126 	mlog(0, "add %u clusters at position %u to inode %llu\n",
4127 	     new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4128 
4129 	mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
4130 			(OCFS2_I(inode)->ip_clusters != cpos),
4131 			"Device %s, asking for sparse allocation: inode %llu, "
4132 			"cpos %u, clusters %u\n",
4133 			osb->dev_str,
4134 			(unsigned long long)OCFS2_I(inode)->ip_blkno, cpos,
4135 			OCFS2_I(inode)->ip_clusters);
4136 
4137 	memset(&rec, 0, sizeof(rec));
4138 	rec.e_cpos = cpu_to_le32(cpos);
4139 	rec.e_blkno = cpu_to_le64(start_blk);
4140 	rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4141 	rec.e_flags = flags;
4142 
4143 	status = ocfs2_figure_insert_type(inode, fe_bh, &last_eb_bh, &rec,
4144 					  &free_records, &insert);
4145 	if (status < 0) {
4146 		mlog_errno(status);
4147 		goto bail;
4148 	}
4149 
4150 	mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4151 	     "Insert.contig_index: %d, Insert.free_records: %d, "
4152 	     "Insert.tree_depth: %d\n",
4153 	     insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4154 	     free_records, insert.ins_tree_depth);
4155 
4156 	if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4157 		status = ocfs2_grow_tree(inode, handle, fe_bh,
4158 					 &insert.ins_tree_depth, &last_eb_bh,
4159 					 meta_ac);
4160 		if (status) {
4161 			mlog_errno(status);
4162 			goto bail;
4163 		}
4164 	}
4165 
4166 	/* Finally, we can add clusters. This might rotate the tree for us. */
4167 	status = ocfs2_do_insert_extent(inode, handle, fe_bh, &rec, &insert);
4168 	if (status < 0)
4169 		mlog_errno(status);
4170 	else
4171 		ocfs2_extent_map_insert_rec(inode, &rec);
4172 
4173 bail:
4174 	if (last_eb_bh)
4175 		brelse(last_eb_bh);
4176 
4177 	mlog_exit(status);
4178 	return status;
4179 }
4180 
4181 static void ocfs2_make_right_split_rec(struct super_block *sb,
4182 				       struct ocfs2_extent_rec *split_rec,
4183 				       u32 cpos,
4184 				       struct ocfs2_extent_rec *rec)
4185 {
4186 	u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4187 	u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4188 
4189 	memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4190 
4191 	split_rec->e_cpos = cpu_to_le32(cpos);
4192 	split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4193 
4194 	split_rec->e_blkno = rec->e_blkno;
4195 	le64_add_cpu(&split_rec->e_blkno,
4196 		     ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4197 
4198 	split_rec->e_flags = rec->e_flags;
4199 }
4200 
4201 static int ocfs2_split_and_insert(struct inode *inode,
4202 				  handle_t *handle,
4203 				  struct ocfs2_path *path,
4204 				  struct buffer_head *di_bh,
4205 				  struct buffer_head **last_eb_bh,
4206 				  int split_index,
4207 				  struct ocfs2_extent_rec *orig_split_rec,
4208 				  struct ocfs2_alloc_context *meta_ac)
4209 {
4210 	int ret = 0, depth;
4211 	unsigned int insert_range, rec_range, do_leftright = 0;
4212 	struct ocfs2_extent_rec tmprec;
4213 	struct ocfs2_extent_list *rightmost_el;
4214 	struct ocfs2_extent_rec rec;
4215 	struct ocfs2_extent_rec split_rec = *orig_split_rec;
4216 	struct ocfs2_insert_type insert;
4217 	struct ocfs2_extent_block *eb;
4218 	struct ocfs2_dinode *di;
4219 
4220 leftright:
4221 	/*
4222 	 * Store a copy of the record on the stack - it might move
4223 	 * around as the tree is manipulated below.
4224 	 */
4225 	rec = path_leaf_el(path)->l_recs[split_index];
4226 
4227 	di = (struct ocfs2_dinode *)di_bh->b_data;
4228 	rightmost_el = &di->id2.i_list;
4229 
4230 	depth = le16_to_cpu(rightmost_el->l_tree_depth);
4231 	if (depth) {
4232 		BUG_ON(!(*last_eb_bh));
4233 		eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4234 		rightmost_el = &eb->h_list;
4235 	}
4236 
4237 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4238 	    le16_to_cpu(rightmost_el->l_count)) {
4239 		ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, last_eb_bh,
4240 				      meta_ac);
4241 		if (ret) {
4242 			mlog_errno(ret);
4243 			goto out;
4244 		}
4245 	}
4246 
4247 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4248 	insert.ins_appending = APPEND_NONE;
4249 	insert.ins_contig = CONTIG_NONE;
4250 	insert.ins_tree_depth = depth;
4251 
4252 	insert_range = le32_to_cpu(split_rec.e_cpos) +
4253 		le16_to_cpu(split_rec.e_leaf_clusters);
4254 	rec_range = le32_to_cpu(rec.e_cpos) +
4255 		le16_to_cpu(rec.e_leaf_clusters);
4256 
4257 	if (split_rec.e_cpos == rec.e_cpos) {
4258 		insert.ins_split = SPLIT_LEFT;
4259 	} else if (insert_range == rec_range) {
4260 		insert.ins_split = SPLIT_RIGHT;
4261 	} else {
4262 		/*
4263 		 * Left/right split. We fake this as a right split
4264 		 * first and then make a second pass as a left split.
4265 		 */
4266 		insert.ins_split = SPLIT_RIGHT;
4267 
4268 		ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
4269 					   &rec);
4270 
4271 		split_rec = tmprec;
4272 
4273 		BUG_ON(do_leftright);
4274 		do_leftright = 1;
4275 	}
4276 
4277 	ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec,
4278 				     &insert);
4279 	if (ret) {
4280 		mlog_errno(ret);
4281 		goto out;
4282 	}
4283 
4284 	if (do_leftright == 1) {
4285 		u32 cpos;
4286 		struct ocfs2_extent_list *el;
4287 
4288 		do_leftright++;
4289 		split_rec = *orig_split_rec;
4290 
4291 		ocfs2_reinit_path(path, 1);
4292 
4293 		cpos = le32_to_cpu(split_rec.e_cpos);
4294 		ret = ocfs2_find_path(inode, path, cpos);
4295 		if (ret) {
4296 			mlog_errno(ret);
4297 			goto out;
4298 		}
4299 
4300 		el = path_leaf_el(path);
4301 		split_index = ocfs2_search_extent_list(el, cpos);
4302 		goto leftright;
4303 	}
4304 out:
4305 
4306 	return ret;
4307 }
4308 
4309 /*
4310  * Mark part or all of the extent record at split_index in the leaf
4311  * pointed to by path as written. This removes the unwritten
4312  * extent flag.
4313  *
4314  * Care is taken to handle contiguousness so as to not grow the tree.
4315  *
4316  * meta_ac is not strictly necessary - we only truly need it if growth
4317  * of the tree is required. All other cases will degrade into a less
4318  * optimal tree layout.
4319  *
4320  * last_eb_bh should be the rightmost leaf block for any inode with a
4321  * btree. Since a split may grow the tree or a merge might shrink it, the caller cannot trust the contents of that buffer after this call.
4322  *
4323  * This code is optimized for readability - several passes might be
4324  * made over certain portions of the tree. All of those blocks will
4325  * have been brought into cache (and pinned via the journal), so the
4326  * extra overhead is not expressed in terms of disk reads.
4327  */
4328 static int __ocfs2_mark_extent_written(struct inode *inode,
4329 				       struct buffer_head *di_bh,
4330 				       handle_t *handle,
4331 				       struct ocfs2_path *path,
4332 				       int split_index,
4333 				       struct ocfs2_extent_rec *split_rec,
4334 				       struct ocfs2_alloc_context *meta_ac,
4335 				       struct ocfs2_cached_dealloc_ctxt *dealloc)
4336 {
4337 	int ret = 0;
4338 	struct ocfs2_extent_list *el = path_leaf_el(path);
4339 	struct buffer_head *last_eb_bh = NULL;
4340 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
4341 	struct ocfs2_merge_ctxt ctxt;
4342 	struct ocfs2_extent_list *rightmost_el;
4343 
4344 	if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
4345 		ret = -EIO;
4346 		mlog_errno(ret);
4347 		goto out;
4348 	}
4349 
4350 	if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
4351 	    ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
4352 	     (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
4353 		ret = -EIO;
4354 		mlog_errno(ret);
4355 		goto out;
4356 	}
4357 
4358 	ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el,
4359 							    split_index,
4360 							    split_rec);
4361 
4362 	/*
4363 	 * The core merge / split code wants to know how much room is
4364 	 * left in this inodes allocation tree, so we pass the
4365 	 * rightmost extent list.
4366 	 */
4367 	if (path->p_tree_depth) {
4368 		struct ocfs2_extent_block *eb;
4369 		struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
4370 
4371 		ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
4372 				       le64_to_cpu(di->i_last_eb_blk),
4373 				       &last_eb_bh, OCFS2_BH_CACHED, inode);
4374 		if (ret) {
4375 			mlog_exit(ret);
4376 			goto out;
4377 		}
4378 
4379 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4380 		if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
4381 			OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
4382 			ret = -EROFS;
4383 			goto out;
4384 		}
4385 
4386 		rightmost_el = &eb->h_list;
4387 	} else
4388 		rightmost_el = path_root_el(path);
4389 
4390 	if (rec->e_cpos == split_rec->e_cpos &&
4391 	    rec->e_leaf_clusters == split_rec->e_leaf_clusters)
4392 		ctxt.c_split_covers_rec = 1;
4393 	else
4394 		ctxt.c_split_covers_rec = 0;
4395 
4396 	ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
4397 
4398 	mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
4399 	     split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
4400 	     ctxt.c_split_covers_rec);
4401 
4402 	if (ctxt.c_contig_type == CONTIG_NONE) {
4403 		if (ctxt.c_split_covers_rec)
4404 			el->l_recs[split_index] = *split_rec;
4405 		else
4406 			ret = ocfs2_split_and_insert(inode, handle, path, di_bh,
4407 						     &last_eb_bh, split_index,
4408 						     split_rec, meta_ac);
4409 		if (ret)
4410 			mlog_errno(ret);
4411 	} else {
4412 		ret = ocfs2_try_to_merge_extent(inode, handle, path,
4413 						split_index, split_rec,
4414 						dealloc, &ctxt);
4415 		if (ret)
4416 			mlog_errno(ret);
4417 	}
4418 
4419 out:
4420 	brelse(last_eb_bh);
4421 	return ret;
4422 }
4423 
4424 /*
4425  * Mark the already-existing extent at cpos as written for len clusters.
4426  *
4427  * If the existing extent is larger than the request, initiate a
4428  * split. An attempt will be made at merging with adjacent extents.
4429  *
4430  * The caller is responsible for passing down meta_ac if we'll need it.
4431  */
4432 int ocfs2_mark_extent_written(struct inode *inode, struct buffer_head *di_bh,
4433 			      handle_t *handle, u32 cpos, u32 len, u32 phys,
4434 			      struct ocfs2_alloc_context *meta_ac,
4435 			      struct ocfs2_cached_dealloc_ctxt *dealloc)
4436 {
4437 	int ret, index;
4438 	u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
4439 	struct ocfs2_extent_rec split_rec;
4440 	struct ocfs2_path *left_path = NULL;
4441 	struct ocfs2_extent_list *el;
4442 
4443 	mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
4444 	     inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
4445 
4446 	if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
4447 		ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
4448 			    "that are being written to, but the feature bit "
4449 			    "is not set in the super block.",
4450 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
4451 		ret = -EROFS;
4452 		goto out;
4453 	}
4454 
4455 	/*
4456 	 * XXX: This should be fixed up so that we just re-insert the
4457 	 * next extent records.
4458 	 */
4459 	ocfs2_extent_map_trunc(inode, 0);
4460 
4461 	left_path = ocfs2_new_inode_path(di_bh);
4462 	if (!left_path) {
4463 		ret = -ENOMEM;
4464 		mlog_errno(ret);
4465 		goto out;
4466 	}
4467 
4468 	ret = ocfs2_find_path(inode, left_path, cpos);
4469 	if (ret) {
4470 		mlog_errno(ret);
4471 		goto out;
4472 	}
4473 	el = path_leaf_el(left_path);
4474 
4475 	index = ocfs2_search_extent_list(el, cpos);
4476 	if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4477 		ocfs2_error(inode->i_sb,
4478 			    "Inode %llu has an extent at cpos %u which can no "
4479 			    "longer be found.\n",
4480 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4481 		ret = -EROFS;
4482 		goto out;
4483 	}
4484 
4485 	memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
4486 	split_rec.e_cpos = cpu_to_le32(cpos);
4487 	split_rec.e_leaf_clusters = cpu_to_le16(len);
4488 	split_rec.e_blkno = cpu_to_le64(start_blkno);
4489 	split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
4490 	split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
4491 
4492 	ret = __ocfs2_mark_extent_written(inode, di_bh, handle, left_path,
4493 					  index, &split_rec, meta_ac, dealloc);
4494 	if (ret)
4495 		mlog_errno(ret);
4496 
4497 out:
4498 	ocfs2_free_path(left_path);
4499 	return ret;
4500 }
4501 
4502 static int ocfs2_split_tree(struct inode *inode, struct buffer_head *di_bh,
4503 			    handle_t *handle, struct ocfs2_path *path,
4504 			    int index, u32 new_range,
4505 			    struct ocfs2_alloc_context *meta_ac)
4506 {
4507 	int ret, depth, credits = handle->h_buffer_credits;
4508 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
4509 	struct buffer_head *last_eb_bh = NULL;
4510 	struct ocfs2_extent_block *eb;
4511 	struct ocfs2_extent_list *rightmost_el, *el;
4512 	struct ocfs2_extent_rec split_rec;
4513 	struct ocfs2_extent_rec *rec;
4514 	struct ocfs2_insert_type insert;
4515 
4516 	/*
4517 	 * Setup the record to split before we grow the tree.
4518 	 */
4519 	el = path_leaf_el(path);
4520 	rec = &el->l_recs[index];
4521 	ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
4522 
4523 	depth = path->p_tree_depth;
4524 	if (depth > 0) {
4525 		ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
4526 				       le64_to_cpu(di->i_last_eb_blk),
4527 				       &last_eb_bh, OCFS2_BH_CACHED, inode);
4528 		if (ret < 0) {
4529 			mlog_errno(ret);
4530 			goto out;
4531 		}
4532 
4533 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4534 		rightmost_el = &eb->h_list;
4535 	} else
4536 		rightmost_el = path_leaf_el(path);
4537 
4538 	credits += path->p_tree_depth + ocfs2_extend_meta_needed(di);
4539 	ret = ocfs2_extend_trans(handle, credits);
4540 	if (ret) {
4541 		mlog_errno(ret);
4542 		goto out;
4543 	}
4544 
4545 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4546 	    le16_to_cpu(rightmost_el->l_count)) {
4547 		ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, &last_eb_bh,
4548 				      meta_ac);
4549 		if (ret) {
4550 			mlog_errno(ret);
4551 			goto out;
4552 		}
4553 	}
4554 
4555 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4556 	insert.ins_appending = APPEND_NONE;
4557 	insert.ins_contig = CONTIG_NONE;
4558 	insert.ins_split = SPLIT_RIGHT;
4559 	insert.ins_tree_depth = depth;
4560 
4561 	ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec, &insert);
4562 	if (ret)
4563 		mlog_errno(ret);
4564 
4565 out:
4566 	brelse(last_eb_bh);
4567 	return ret;
4568 }
4569 
4570 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
4571 			      struct ocfs2_path *path, int index,
4572 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
4573 			      u32 cpos, u32 len)
4574 {
4575 	int ret;
4576 	u32 left_cpos, rec_range, trunc_range;
4577 	int wants_rotate = 0, is_rightmost_tree_rec = 0;
4578 	struct super_block *sb = inode->i_sb;
4579 	struct ocfs2_path *left_path = NULL;
4580 	struct ocfs2_extent_list *el = path_leaf_el(path);
4581 	struct ocfs2_extent_rec *rec;
4582 	struct ocfs2_extent_block *eb;
4583 
4584 	if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
4585 		ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc);
4586 		if (ret) {
4587 			mlog_errno(ret);
4588 			goto out;
4589 		}
4590 
4591 		index--;
4592 	}
4593 
4594 	if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
4595 	    path->p_tree_depth) {
4596 		/*
4597 		 * Check whether this is the rightmost tree record. If
4598 		 * we remove all of this record or part of its right
4599 		 * edge then an update of the record lengths above it
4600 		 * will be required.
4601 		 */
4602 		eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
4603 		if (eb->h_next_leaf_blk == 0)
4604 			is_rightmost_tree_rec = 1;
4605 	}
4606 
4607 	rec = &el->l_recs[index];
4608 	if (index == 0 && path->p_tree_depth &&
4609 	    le32_to_cpu(rec->e_cpos) == cpos) {
4610 		/*
4611 		 * Changing the leftmost offset (via partial or whole
4612 		 * record truncate) of an interior (or rightmost) path
4613 		 * means we have to update the subtree that is formed
4614 		 * by this leaf and the one to it's left.
4615 		 *
4616 		 * There are two cases we can skip:
4617 		 *   1) Path is the leftmost one in our inode tree.
4618 		 *   2) The leaf is rightmost and will be empty after
4619 		 *      we remove the extent record - the rotate code
4620 		 *      knows how to update the newly formed edge.
4621 		 */
4622 
4623 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
4624 						    &left_cpos);
4625 		if (ret) {
4626 			mlog_errno(ret);
4627 			goto out;
4628 		}
4629 
4630 		if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
4631 			left_path = ocfs2_new_path(path_root_bh(path),
4632 						   path_root_el(path));
4633 			if (!left_path) {
4634 				ret = -ENOMEM;
4635 				mlog_errno(ret);
4636 				goto out;
4637 			}
4638 
4639 			ret = ocfs2_find_path(inode, left_path, left_cpos);
4640 			if (ret) {
4641 				mlog_errno(ret);
4642 				goto out;
4643 			}
4644 		}
4645 	}
4646 
4647 	ret = ocfs2_extend_rotate_transaction(handle, 0,
4648 					      handle->h_buffer_credits,
4649 					      path);
4650 	if (ret) {
4651 		mlog_errno(ret);
4652 		goto out;
4653 	}
4654 
4655 	ret = ocfs2_journal_access_path(inode, handle, path);
4656 	if (ret) {
4657 		mlog_errno(ret);
4658 		goto out;
4659 	}
4660 
4661 	ret = ocfs2_journal_access_path(inode, handle, left_path);
4662 	if (ret) {
4663 		mlog_errno(ret);
4664 		goto out;
4665 	}
4666 
4667 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
4668 	trunc_range = cpos + len;
4669 
4670 	if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
4671 		int next_free;
4672 
4673 		memset(rec, 0, sizeof(*rec));
4674 		ocfs2_cleanup_merge(el, index);
4675 		wants_rotate = 1;
4676 
4677 		next_free = le16_to_cpu(el->l_next_free_rec);
4678 		if (is_rightmost_tree_rec && next_free > 1) {
4679 			/*
4680 			 * We skip the edge update if this path will
4681 			 * be deleted by the rotate code.
4682 			 */
4683 			rec = &el->l_recs[next_free - 1];
4684 			ocfs2_adjust_rightmost_records(inode, handle, path,
4685 						       rec);
4686 		}
4687 	} else if (le32_to_cpu(rec->e_cpos) == cpos) {
4688 		/* Remove leftmost portion of the record. */
4689 		le32_add_cpu(&rec->e_cpos, len);
4690 		le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
4691 		le16_add_cpu(&rec->e_leaf_clusters, -len);
4692 	} else if (rec_range == trunc_range) {
4693 		/* Remove rightmost portion of the record */
4694 		le16_add_cpu(&rec->e_leaf_clusters, -len);
4695 		if (is_rightmost_tree_rec)
4696 			ocfs2_adjust_rightmost_records(inode, handle, path, rec);
4697 	} else {
4698 		/* Caller should have trapped this. */
4699 		mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
4700 		     "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
4701 		     le32_to_cpu(rec->e_cpos),
4702 		     le16_to_cpu(rec->e_leaf_clusters), cpos, len);
4703 		BUG();
4704 	}
4705 
4706 	if (left_path) {
4707 		int subtree_index;
4708 
4709 		subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
4710 		ocfs2_complete_edge_insert(inode, handle, left_path, path,
4711 					   subtree_index);
4712 	}
4713 
4714 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
4715 
4716 	ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc);
4717 	if (ret) {
4718 		mlog_errno(ret);
4719 		goto out;
4720 	}
4721 
4722 out:
4723 	ocfs2_free_path(left_path);
4724 	return ret;
4725 }
4726 
4727 int ocfs2_remove_extent(struct inode *inode, struct buffer_head *di_bh,
4728 			u32 cpos, u32 len, handle_t *handle,
4729 			struct ocfs2_alloc_context *meta_ac,
4730 			struct ocfs2_cached_dealloc_ctxt *dealloc)
4731 {
4732 	int ret, index;
4733 	u32 rec_range, trunc_range;
4734 	struct ocfs2_extent_rec *rec;
4735 	struct ocfs2_extent_list *el;
4736 	struct ocfs2_path *path;
4737 
4738 	ocfs2_extent_map_trunc(inode, 0);
4739 
4740 	path = ocfs2_new_inode_path(di_bh);
4741 	if (!path) {
4742 		ret = -ENOMEM;
4743 		mlog_errno(ret);
4744 		goto out;
4745 	}
4746 
4747 	ret = ocfs2_find_path(inode, path, cpos);
4748 	if (ret) {
4749 		mlog_errno(ret);
4750 		goto out;
4751 	}
4752 
4753 	el = path_leaf_el(path);
4754 	index = ocfs2_search_extent_list(el, cpos);
4755 	if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4756 		ocfs2_error(inode->i_sb,
4757 			    "Inode %llu has an extent at cpos %u which can no "
4758 			    "longer be found.\n",
4759 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4760 		ret = -EROFS;
4761 		goto out;
4762 	}
4763 
4764 	/*
4765 	 * We have 3 cases of extent removal:
4766 	 *   1) Range covers the entire extent rec
4767 	 *   2) Range begins or ends on one edge of the extent rec
4768 	 *   3) Range is in the middle of the extent rec (no shared edges)
4769 	 *
4770 	 * For case 1 we remove the extent rec and left rotate to
4771 	 * fill the hole.
4772 	 *
4773 	 * For case 2 we just shrink the existing extent rec, with a
4774 	 * tree update if the shrinking edge is also the edge of an
4775 	 * extent block.
4776 	 *
4777 	 * For case 3 we do a right split to turn the extent rec into
4778 	 * something case 2 can handle.
4779 	 */
4780 	rec = &el->l_recs[index];
4781 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
4782 	trunc_range = cpos + len;
4783 
4784 	BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
4785 
4786 	mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
4787 	     "(cpos %u, len %u)\n",
4788 	     (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
4789 	     le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
4790 
4791 	if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
4792 		ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
4793 					 cpos, len);
4794 		if (ret) {
4795 			mlog_errno(ret);
4796 			goto out;
4797 		}
4798 	} else {
4799 		ret = ocfs2_split_tree(inode, di_bh, handle, path, index,
4800 				       trunc_range, meta_ac);
4801 		if (ret) {
4802 			mlog_errno(ret);
4803 			goto out;
4804 		}
4805 
4806 		/*
4807 		 * The split could have manipulated the tree enough to
4808 		 * move the record location, so we have to look for it again.
4809 		 */
4810 		ocfs2_reinit_path(path, 1);
4811 
4812 		ret = ocfs2_find_path(inode, path, cpos);
4813 		if (ret) {
4814 			mlog_errno(ret);
4815 			goto out;
4816 		}
4817 
4818 		el = path_leaf_el(path);
4819 		index = ocfs2_search_extent_list(el, cpos);
4820 		if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4821 			ocfs2_error(inode->i_sb,
4822 				    "Inode %llu: split at cpos %u lost record.",
4823 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
4824 				    cpos);
4825 			ret = -EROFS;
4826 			goto out;
4827 		}
4828 
4829 		/*
4830 		 * Double check our values here. If anything is fishy,
4831 		 * it's easier to catch it at the top level.
4832 		 */
4833 		rec = &el->l_recs[index];
4834 		rec_range = le32_to_cpu(rec->e_cpos) +
4835 			ocfs2_rec_clusters(el, rec);
4836 		if (rec_range != trunc_range) {
4837 			ocfs2_error(inode->i_sb,
4838 				    "Inode %llu: error after split at cpos %u"
4839 				    "trunc len %u, existing record is (%u,%u)",
4840 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
4841 				    cpos, len, le32_to_cpu(rec->e_cpos),
4842 				    ocfs2_rec_clusters(el, rec));
4843 			ret = -EROFS;
4844 			goto out;
4845 		}
4846 
4847 		ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
4848 					 cpos, len);
4849 		if (ret) {
4850 			mlog_errno(ret);
4851 			goto out;
4852 		}
4853 	}
4854 
4855 out:
4856 	ocfs2_free_path(path);
4857 	return ret;
4858 }
4859 
4860 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
4861 {
4862 	struct buffer_head *tl_bh = osb->osb_tl_bh;
4863 	struct ocfs2_dinode *di;
4864 	struct ocfs2_truncate_log *tl;
4865 
4866 	di = (struct ocfs2_dinode *) tl_bh->b_data;
4867 	tl = &di->id2.i_dealloc;
4868 
4869 	mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
4870 			"slot %d, invalid truncate log parameters: used = "
4871 			"%u, count = %u\n", osb->slot_num,
4872 			le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
4873 	return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
4874 }
4875 
4876 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
4877 					   unsigned int new_start)
4878 {
4879 	unsigned int tail_index;
4880 	unsigned int current_tail;
4881 
4882 	/* No records, nothing to coalesce */
4883 	if (!le16_to_cpu(tl->tl_used))
4884 		return 0;
4885 
4886 	tail_index = le16_to_cpu(tl->tl_used) - 1;
4887 	current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
4888 	current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
4889 
4890 	return current_tail == new_start;
4891 }
4892 
4893 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
4894 			      handle_t *handle,
4895 			      u64 start_blk,
4896 			      unsigned int num_clusters)
4897 {
4898 	int status, index;
4899 	unsigned int start_cluster, tl_count;
4900 	struct inode *tl_inode = osb->osb_tl_inode;
4901 	struct buffer_head *tl_bh = osb->osb_tl_bh;
4902 	struct ocfs2_dinode *di;
4903 	struct ocfs2_truncate_log *tl;
4904 
4905 	mlog_entry("start_blk = %llu, num_clusters = %u\n",
4906 		   (unsigned long long)start_blk, num_clusters);
4907 
4908 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
4909 
4910 	start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
4911 
4912 	di = (struct ocfs2_dinode *) tl_bh->b_data;
4913 	tl = &di->id2.i_dealloc;
4914 	if (!OCFS2_IS_VALID_DINODE(di)) {
4915 		OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
4916 		status = -EIO;
4917 		goto bail;
4918 	}
4919 
4920 	tl_count = le16_to_cpu(tl->tl_count);
4921 	mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
4922 			tl_count == 0,
4923 			"Truncate record count on #%llu invalid "
4924 			"wanted %u, actual %u\n",
4925 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
4926 			ocfs2_truncate_recs_per_inode(osb->sb),
4927 			le16_to_cpu(tl->tl_count));
4928 
4929 	/* Caller should have known to flush before calling us. */
4930 	index = le16_to_cpu(tl->tl_used);
4931 	if (index >= tl_count) {
4932 		status = -ENOSPC;
4933 		mlog_errno(status);
4934 		goto bail;
4935 	}
4936 
4937 	status = ocfs2_journal_access(handle, tl_inode, tl_bh,
4938 				      OCFS2_JOURNAL_ACCESS_WRITE);
4939 	if (status < 0) {
4940 		mlog_errno(status);
4941 		goto bail;
4942 	}
4943 
4944 	mlog(0, "Log truncate of %u clusters starting at cluster %u to "
4945 	     "%llu (index = %d)\n", num_clusters, start_cluster,
4946 	     (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
4947 
4948 	if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
4949 		/*
4950 		 * Move index back to the record we are coalescing with.
4951 		 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
4952 		 */
4953 		index--;
4954 
4955 		num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
4956 		mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
4957 		     index, le32_to_cpu(tl->tl_recs[index].t_start),
4958 		     num_clusters);
4959 	} else {
4960 		tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
4961 		tl->tl_used = cpu_to_le16(index + 1);
4962 	}
4963 	tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
4964 
4965 	status = ocfs2_journal_dirty(handle, tl_bh);
4966 	if (status < 0) {
4967 		mlog_errno(status);
4968 		goto bail;
4969 	}
4970 
4971 bail:
4972 	mlog_exit(status);
4973 	return status;
4974 }
4975 
4976 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
4977 					 handle_t *handle,
4978 					 struct inode *data_alloc_inode,
4979 					 struct buffer_head *data_alloc_bh)
4980 {
4981 	int status = 0;
4982 	int i;
4983 	unsigned int num_clusters;
4984 	u64 start_blk;
4985 	struct ocfs2_truncate_rec rec;
4986 	struct ocfs2_dinode *di;
4987 	struct ocfs2_truncate_log *tl;
4988 	struct inode *tl_inode = osb->osb_tl_inode;
4989 	struct buffer_head *tl_bh = osb->osb_tl_bh;
4990 
4991 	mlog_entry_void();
4992 
4993 	di = (struct ocfs2_dinode *) tl_bh->b_data;
4994 	tl = &di->id2.i_dealloc;
4995 	i = le16_to_cpu(tl->tl_used) - 1;
4996 	while (i >= 0) {
4997 		/* Caller has given us at least enough credits to
4998 		 * update the truncate log dinode */
4999 		status = ocfs2_journal_access(handle, tl_inode, tl_bh,
5000 					      OCFS2_JOURNAL_ACCESS_WRITE);
5001 		if (status < 0) {
5002 			mlog_errno(status);
5003 			goto bail;
5004 		}
5005 
5006 		tl->tl_used = cpu_to_le16(i);
5007 
5008 		status = ocfs2_journal_dirty(handle, tl_bh);
5009 		if (status < 0) {
5010 			mlog_errno(status);
5011 			goto bail;
5012 		}
5013 
5014 		/* TODO: Perhaps we can calculate the bulk of the
5015 		 * credits up front rather than extending like
5016 		 * this. */
5017 		status = ocfs2_extend_trans(handle,
5018 					    OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5019 		if (status < 0) {
5020 			mlog_errno(status);
5021 			goto bail;
5022 		}
5023 
5024 		rec = tl->tl_recs[i];
5025 		start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5026 						    le32_to_cpu(rec.t_start));
5027 		num_clusters = le32_to_cpu(rec.t_clusters);
5028 
5029 		/* if start_blk is not set, we ignore the record as
5030 		 * invalid. */
5031 		if (start_blk) {
5032 			mlog(0, "free record %d, start = %u, clusters = %u\n",
5033 			     i, le32_to_cpu(rec.t_start), num_clusters);
5034 
5035 			status = ocfs2_free_clusters(handle, data_alloc_inode,
5036 						     data_alloc_bh, start_blk,
5037 						     num_clusters);
5038 			if (status < 0) {
5039 				mlog_errno(status);
5040 				goto bail;
5041 			}
5042 		}
5043 		i--;
5044 	}
5045 
5046 bail:
5047 	mlog_exit(status);
5048 	return status;
5049 }
5050 
5051 /* Expects you to already be holding tl_inode->i_mutex */
5052 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5053 {
5054 	int status;
5055 	unsigned int num_to_flush;
5056 	handle_t *handle;
5057 	struct inode *tl_inode = osb->osb_tl_inode;
5058 	struct inode *data_alloc_inode = NULL;
5059 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5060 	struct buffer_head *data_alloc_bh = NULL;
5061 	struct ocfs2_dinode *di;
5062 	struct ocfs2_truncate_log *tl;
5063 
5064 	mlog_entry_void();
5065 
5066 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5067 
5068 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5069 	tl = &di->id2.i_dealloc;
5070 	if (!OCFS2_IS_VALID_DINODE(di)) {
5071 		OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
5072 		status = -EIO;
5073 		goto out;
5074 	}
5075 
5076 	num_to_flush = le16_to_cpu(tl->tl_used);
5077 	mlog(0, "Flush %u records from truncate log #%llu\n",
5078 	     num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5079 	if (!num_to_flush) {
5080 		status = 0;
5081 		goto out;
5082 	}
5083 
5084 	data_alloc_inode = ocfs2_get_system_file_inode(osb,
5085 						       GLOBAL_BITMAP_SYSTEM_INODE,
5086 						       OCFS2_INVALID_SLOT);
5087 	if (!data_alloc_inode) {
5088 		status = -EINVAL;
5089 		mlog(ML_ERROR, "Could not get bitmap inode!\n");
5090 		goto out;
5091 	}
5092 
5093 	mutex_lock(&data_alloc_inode->i_mutex);
5094 
5095 	status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5096 	if (status < 0) {
5097 		mlog_errno(status);
5098 		goto out_mutex;
5099 	}
5100 
5101 	handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5102 	if (IS_ERR(handle)) {
5103 		status = PTR_ERR(handle);
5104 		mlog_errno(status);
5105 		goto out_unlock;
5106 	}
5107 
5108 	status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5109 					       data_alloc_bh);
5110 	if (status < 0)
5111 		mlog_errno(status);
5112 
5113 	ocfs2_commit_trans(osb, handle);
5114 
5115 out_unlock:
5116 	brelse(data_alloc_bh);
5117 	ocfs2_inode_unlock(data_alloc_inode, 1);
5118 
5119 out_mutex:
5120 	mutex_unlock(&data_alloc_inode->i_mutex);
5121 	iput(data_alloc_inode);
5122 
5123 out:
5124 	mlog_exit(status);
5125 	return status;
5126 }
5127 
5128 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5129 {
5130 	int status;
5131 	struct inode *tl_inode = osb->osb_tl_inode;
5132 
5133 	mutex_lock(&tl_inode->i_mutex);
5134 	status = __ocfs2_flush_truncate_log(osb);
5135 	mutex_unlock(&tl_inode->i_mutex);
5136 
5137 	return status;
5138 }
5139 
5140 static void ocfs2_truncate_log_worker(struct work_struct *work)
5141 {
5142 	int status;
5143 	struct ocfs2_super *osb =
5144 		container_of(work, struct ocfs2_super,
5145 			     osb_truncate_log_wq.work);
5146 
5147 	mlog_entry_void();
5148 
5149 	status = ocfs2_flush_truncate_log(osb);
5150 	if (status < 0)
5151 		mlog_errno(status);
5152 	else
5153 		ocfs2_init_inode_steal_slot(osb);
5154 
5155 	mlog_exit(status);
5156 }
5157 
5158 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5159 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
5160 				       int cancel)
5161 {
5162 	if (osb->osb_tl_inode) {
5163 		/* We want to push off log flushes while truncates are
5164 		 * still running. */
5165 		if (cancel)
5166 			cancel_delayed_work(&osb->osb_truncate_log_wq);
5167 
5168 		queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
5169 				   OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
5170 	}
5171 }
5172 
5173 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
5174 				       int slot_num,
5175 				       struct inode **tl_inode,
5176 				       struct buffer_head **tl_bh)
5177 {
5178 	int status;
5179 	struct inode *inode = NULL;
5180 	struct buffer_head *bh = NULL;
5181 
5182 	inode = ocfs2_get_system_file_inode(osb,
5183 					   TRUNCATE_LOG_SYSTEM_INODE,
5184 					   slot_num);
5185 	if (!inode) {
5186 		status = -EINVAL;
5187 		mlog(ML_ERROR, "Could not get load truncate log inode!\n");
5188 		goto bail;
5189 	}
5190 
5191 	status = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &bh,
5192 				  OCFS2_BH_CACHED, inode);
5193 	if (status < 0) {
5194 		iput(inode);
5195 		mlog_errno(status);
5196 		goto bail;
5197 	}
5198 
5199 	*tl_inode = inode;
5200 	*tl_bh    = bh;
5201 bail:
5202 	mlog_exit(status);
5203 	return status;
5204 }
5205 
5206 /* called during the 1st stage of node recovery. we stamp a clean
5207  * truncate log and pass back a copy for processing later. if the
5208  * truncate log does not require processing, a *tl_copy is set to
5209  * NULL. */
5210 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
5211 				      int slot_num,
5212 				      struct ocfs2_dinode **tl_copy)
5213 {
5214 	int status;
5215 	struct inode *tl_inode = NULL;
5216 	struct buffer_head *tl_bh = NULL;
5217 	struct ocfs2_dinode *di;
5218 	struct ocfs2_truncate_log *tl;
5219 
5220 	*tl_copy = NULL;
5221 
5222 	mlog(0, "recover truncate log from slot %d\n", slot_num);
5223 
5224 	status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
5225 	if (status < 0) {
5226 		mlog_errno(status);
5227 		goto bail;
5228 	}
5229 
5230 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5231 	tl = &di->id2.i_dealloc;
5232 	if (!OCFS2_IS_VALID_DINODE(di)) {
5233 		OCFS2_RO_ON_INVALID_DINODE(tl_inode->i_sb, di);
5234 		status = -EIO;
5235 		goto bail;
5236 	}
5237 
5238 	if (le16_to_cpu(tl->tl_used)) {
5239 		mlog(0, "We'll have %u logs to recover\n",
5240 		     le16_to_cpu(tl->tl_used));
5241 
5242 		*tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
5243 		if (!(*tl_copy)) {
5244 			status = -ENOMEM;
5245 			mlog_errno(status);
5246 			goto bail;
5247 		}
5248 
5249 		/* Assuming the write-out below goes well, this copy
5250 		 * will be passed back to recovery for processing. */
5251 		memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
5252 
5253 		/* All we need to do to clear the truncate log is set
5254 		 * tl_used. */
5255 		tl->tl_used = 0;
5256 
5257 		status = ocfs2_write_block(osb, tl_bh, tl_inode);
5258 		if (status < 0) {
5259 			mlog_errno(status);
5260 			goto bail;
5261 		}
5262 	}
5263 
5264 bail:
5265 	if (tl_inode)
5266 		iput(tl_inode);
5267 	if (tl_bh)
5268 		brelse(tl_bh);
5269 
5270 	if (status < 0 && (*tl_copy)) {
5271 		kfree(*tl_copy);
5272 		*tl_copy = NULL;
5273 	}
5274 
5275 	mlog_exit(status);
5276 	return status;
5277 }
5278 
5279 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
5280 					 struct ocfs2_dinode *tl_copy)
5281 {
5282 	int status = 0;
5283 	int i;
5284 	unsigned int clusters, num_recs, start_cluster;
5285 	u64 start_blk;
5286 	handle_t *handle;
5287 	struct inode *tl_inode = osb->osb_tl_inode;
5288 	struct ocfs2_truncate_log *tl;
5289 
5290 	mlog_entry_void();
5291 
5292 	if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
5293 		mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
5294 		return -EINVAL;
5295 	}
5296 
5297 	tl = &tl_copy->id2.i_dealloc;
5298 	num_recs = le16_to_cpu(tl->tl_used);
5299 	mlog(0, "cleanup %u records from %llu\n", num_recs,
5300 	     (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
5301 
5302 	mutex_lock(&tl_inode->i_mutex);
5303 	for(i = 0; i < num_recs; i++) {
5304 		if (ocfs2_truncate_log_needs_flush(osb)) {
5305 			status = __ocfs2_flush_truncate_log(osb);
5306 			if (status < 0) {
5307 				mlog_errno(status);
5308 				goto bail_up;
5309 			}
5310 		}
5311 
5312 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5313 		if (IS_ERR(handle)) {
5314 			status = PTR_ERR(handle);
5315 			mlog_errno(status);
5316 			goto bail_up;
5317 		}
5318 
5319 		clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
5320 		start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
5321 		start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
5322 
5323 		status = ocfs2_truncate_log_append(osb, handle,
5324 						   start_blk, clusters);
5325 		ocfs2_commit_trans(osb, handle);
5326 		if (status < 0) {
5327 			mlog_errno(status);
5328 			goto bail_up;
5329 		}
5330 	}
5331 
5332 bail_up:
5333 	mutex_unlock(&tl_inode->i_mutex);
5334 
5335 	mlog_exit(status);
5336 	return status;
5337 }
5338 
5339 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
5340 {
5341 	int status;
5342 	struct inode *tl_inode = osb->osb_tl_inode;
5343 
5344 	mlog_entry_void();
5345 
5346 	if (tl_inode) {
5347 		cancel_delayed_work(&osb->osb_truncate_log_wq);
5348 		flush_workqueue(ocfs2_wq);
5349 
5350 		status = ocfs2_flush_truncate_log(osb);
5351 		if (status < 0)
5352 			mlog_errno(status);
5353 
5354 		brelse(osb->osb_tl_bh);
5355 		iput(osb->osb_tl_inode);
5356 	}
5357 
5358 	mlog_exit_void();
5359 }
5360 
5361 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
5362 {
5363 	int status;
5364 	struct inode *tl_inode = NULL;
5365 	struct buffer_head *tl_bh = NULL;
5366 
5367 	mlog_entry_void();
5368 
5369 	status = ocfs2_get_truncate_log_info(osb,
5370 					     osb->slot_num,
5371 					     &tl_inode,
5372 					     &tl_bh);
5373 	if (status < 0)
5374 		mlog_errno(status);
5375 
5376 	/* ocfs2_truncate_log_shutdown keys on the existence of
5377 	 * osb->osb_tl_inode so we don't set any of the osb variables
5378 	 * until we're sure all is well. */
5379 	INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
5380 			  ocfs2_truncate_log_worker);
5381 	osb->osb_tl_bh    = tl_bh;
5382 	osb->osb_tl_inode = tl_inode;
5383 
5384 	mlog_exit(status);
5385 	return status;
5386 }
5387 
5388 /*
5389  * Delayed de-allocation of suballocator blocks.
5390  *
5391  * Some sets of block de-allocations might involve multiple suballocator inodes.
5392  *
5393  * The locking for this can get extremely complicated, especially when
5394  * the suballocator inodes to delete from aren't known until deep
5395  * within an unrelated codepath.
5396  *
5397  * ocfs2_extent_block structures are a good example of this - an inode
5398  * btree could have been grown by any number of nodes each allocating
5399  * out of their own suballoc inode.
5400  *
5401  * These structures allow the delay of block de-allocation until a
5402  * later time, when locking of multiple cluster inodes won't cause
5403  * deadlock.
5404  */
5405 
5406 /*
5407  * Describes a single block free from a suballocator
5408  */
5409 struct ocfs2_cached_block_free {
5410 	struct ocfs2_cached_block_free		*free_next;
5411 	u64					free_blk;
5412 	unsigned int				free_bit;
5413 };
5414 
5415 struct ocfs2_per_slot_free_list {
5416 	struct ocfs2_per_slot_free_list		*f_next_suballocator;
5417 	int					f_inode_type;
5418 	int					f_slot;
5419 	struct ocfs2_cached_block_free		*f_first;
5420 };
5421 
5422 static int ocfs2_free_cached_items(struct ocfs2_super *osb,
5423 				   int sysfile_type,
5424 				   int slot,
5425 				   struct ocfs2_cached_block_free *head)
5426 {
5427 	int ret;
5428 	u64 bg_blkno;
5429 	handle_t *handle;
5430 	struct inode *inode;
5431 	struct buffer_head *di_bh = NULL;
5432 	struct ocfs2_cached_block_free *tmp;
5433 
5434 	inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
5435 	if (!inode) {
5436 		ret = -EINVAL;
5437 		mlog_errno(ret);
5438 		goto out;
5439 	}
5440 
5441 	mutex_lock(&inode->i_mutex);
5442 
5443 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
5444 	if (ret) {
5445 		mlog_errno(ret);
5446 		goto out_mutex;
5447 	}
5448 
5449 	handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
5450 	if (IS_ERR(handle)) {
5451 		ret = PTR_ERR(handle);
5452 		mlog_errno(ret);
5453 		goto out_unlock;
5454 	}
5455 
5456 	while (head) {
5457 		bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
5458 						      head->free_bit);
5459 		mlog(0, "Free bit: (bit %u, blkno %llu)\n",
5460 		     head->free_bit, (unsigned long long)head->free_blk);
5461 
5462 		ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
5463 					       head->free_bit, bg_blkno, 1);
5464 		if (ret) {
5465 			mlog_errno(ret);
5466 			goto out_journal;
5467 		}
5468 
5469 		ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
5470 		if (ret) {
5471 			mlog_errno(ret);
5472 			goto out_journal;
5473 		}
5474 
5475 		tmp = head;
5476 		head = head->free_next;
5477 		kfree(tmp);
5478 	}
5479 
5480 out_journal:
5481 	ocfs2_commit_trans(osb, handle);
5482 
5483 out_unlock:
5484 	ocfs2_inode_unlock(inode, 1);
5485 	brelse(di_bh);
5486 out_mutex:
5487 	mutex_unlock(&inode->i_mutex);
5488 	iput(inode);
5489 out:
5490 	while(head) {
5491 		/* Premature exit may have left some dangling items. */
5492 		tmp = head;
5493 		head = head->free_next;
5494 		kfree(tmp);
5495 	}
5496 
5497 	return ret;
5498 }
5499 
5500 int ocfs2_run_deallocs(struct ocfs2_super *osb,
5501 		       struct ocfs2_cached_dealloc_ctxt *ctxt)
5502 {
5503 	int ret = 0, ret2;
5504 	struct ocfs2_per_slot_free_list *fl;
5505 
5506 	if (!ctxt)
5507 		return 0;
5508 
5509 	while (ctxt->c_first_suballocator) {
5510 		fl = ctxt->c_first_suballocator;
5511 
5512 		if (fl->f_first) {
5513 			mlog(0, "Free items: (type %u, slot %d)\n",
5514 			     fl->f_inode_type, fl->f_slot);
5515 			ret2 = ocfs2_free_cached_items(osb, fl->f_inode_type,
5516 						       fl->f_slot, fl->f_first);
5517 			if (ret2)
5518 				mlog_errno(ret2);
5519 			if (!ret)
5520 				ret = ret2;
5521 		}
5522 
5523 		ctxt->c_first_suballocator = fl->f_next_suballocator;
5524 		kfree(fl);
5525 	}
5526 
5527 	return ret;
5528 }
5529 
5530 static struct ocfs2_per_slot_free_list *
5531 ocfs2_find_per_slot_free_list(int type,
5532 			      int slot,
5533 			      struct ocfs2_cached_dealloc_ctxt *ctxt)
5534 {
5535 	struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
5536 
5537 	while (fl) {
5538 		if (fl->f_inode_type == type && fl->f_slot == slot)
5539 			return fl;
5540 
5541 		fl = fl->f_next_suballocator;
5542 	}
5543 
5544 	fl = kmalloc(sizeof(*fl), GFP_NOFS);
5545 	if (fl) {
5546 		fl->f_inode_type = type;
5547 		fl->f_slot = slot;
5548 		fl->f_first = NULL;
5549 		fl->f_next_suballocator = ctxt->c_first_suballocator;
5550 
5551 		ctxt->c_first_suballocator = fl;
5552 	}
5553 	return fl;
5554 }
5555 
5556 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
5557 				     int type, int slot, u64 blkno,
5558 				     unsigned int bit)
5559 {
5560 	int ret;
5561 	struct ocfs2_per_slot_free_list *fl;
5562 	struct ocfs2_cached_block_free *item;
5563 
5564 	fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
5565 	if (fl == NULL) {
5566 		ret = -ENOMEM;
5567 		mlog_errno(ret);
5568 		goto out;
5569 	}
5570 
5571 	item = kmalloc(sizeof(*item), GFP_NOFS);
5572 	if (item == NULL) {
5573 		ret = -ENOMEM;
5574 		mlog_errno(ret);
5575 		goto out;
5576 	}
5577 
5578 	mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
5579 	     type, slot, bit, (unsigned long long)blkno);
5580 
5581 	item->free_blk = blkno;
5582 	item->free_bit = bit;
5583 	item->free_next = fl->f_first;
5584 
5585 	fl->f_first = item;
5586 
5587 	ret = 0;
5588 out:
5589 	return ret;
5590 }
5591 
5592 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
5593 					 struct ocfs2_extent_block *eb)
5594 {
5595 	return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
5596 					 le16_to_cpu(eb->h_suballoc_slot),
5597 					 le64_to_cpu(eb->h_blkno),
5598 					 le16_to_cpu(eb->h_suballoc_bit));
5599 }
5600 
5601 /* This function will figure out whether the currently last extent
5602  * block will be deleted, and if it will, what the new last extent
5603  * block will be so we can update his h_next_leaf_blk field, as well
5604  * as the dinodes i_last_eb_blk */
5605 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
5606 				       unsigned int clusters_to_del,
5607 				       struct ocfs2_path *path,
5608 				       struct buffer_head **new_last_eb)
5609 {
5610 	int next_free, ret = 0;
5611 	u32 cpos;
5612 	struct ocfs2_extent_rec *rec;
5613 	struct ocfs2_extent_block *eb;
5614 	struct ocfs2_extent_list *el;
5615 	struct buffer_head *bh = NULL;
5616 
5617 	*new_last_eb = NULL;
5618 
5619 	/* we have no tree, so of course, no last_eb. */
5620 	if (!path->p_tree_depth)
5621 		goto out;
5622 
5623 	/* trunc to zero special case - this makes tree_depth = 0
5624 	 * regardless of what it is.  */
5625 	if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
5626 		goto out;
5627 
5628 	el = path_leaf_el(path);
5629 	BUG_ON(!el->l_next_free_rec);
5630 
5631 	/*
5632 	 * Make sure that this extent list will actually be empty
5633 	 * after we clear away the data. We can shortcut out if
5634 	 * there's more than one non-empty extent in the
5635 	 * list. Otherwise, a check of the remaining extent is
5636 	 * necessary.
5637 	 */
5638 	next_free = le16_to_cpu(el->l_next_free_rec);
5639 	rec = NULL;
5640 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
5641 		if (next_free > 2)
5642 			goto out;
5643 
5644 		/* We may have a valid extent in index 1, check it. */
5645 		if (next_free == 2)
5646 			rec = &el->l_recs[1];
5647 
5648 		/*
5649 		 * Fall through - no more nonempty extents, so we want
5650 		 * to delete this leaf.
5651 		 */
5652 	} else {
5653 		if (next_free > 1)
5654 			goto out;
5655 
5656 		rec = &el->l_recs[0];
5657 	}
5658 
5659 	if (rec) {
5660 		/*
5661 		 * Check it we'll only be trimming off the end of this
5662 		 * cluster.
5663 		 */
5664 		if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
5665 			goto out;
5666 	}
5667 
5668 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
5669 	if (ret) {
5670 		mlog_errno(ret);
5671 		goto out;
5672 	}
5673 
5674 	ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
5675 	if (ret) {
5676 		mlog_errno(ret);
5677 		goto out;
5678 	}
5679 
5680 	eb = (struct ocfs2_extent_block *) bh->b_data;
5681 	el = &eb->h_list;
5682 	if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
5683 		OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
5684 		ret = -EROFS;
5685 		goto out;
5686 	}
5687 
5688 	*new_last_eb = bh;
5689 	get_bh(*new_last_eb);
5690 	mlog(0, "returning block %llu, (cpos: %u)\n",
5691 	     (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
5692 out:
5693 	brelse(bh);
5694 
5695 	return ret;
5696 }
5697 
5698 /*
5699  * Trim some clusters off the rightmost edge of a tree. Only called
5700  * during truncate.
5701  *
5702  * The caller needs to:
5703  *   - start journaling of each path component.
5704  *   - compute and fully set up any new last ext block
5705  */
5706 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
5707 			   handle_t *handle, struct ocfs2_truncate_context *tc,
5708 			   u32 clusters_to_del, u64 *delete_start)
5709 {
5710 	int ret, i, index = path->p_tree_depth;
5711 	u32 new_edge = 0;
5712 	u64 deleted_eb = 0;
5713 	struct buffer_head *bh;
5714 	struct ocfs2_extent_list *el;
5715 	struct ocfs2_extent_rec *rec;
5716 
5717 	*delete_start = 0;
5718 
5719 	while (index >= 0) {
5720 		bh = path->p_node[index].bh;
5721 		el = path->p_node[index].el;
5722 
5723 		mlog(0, "traveling tree (index = %d, block = %llu)\n",
5724 		     index,  (unsigned long long)bh->b_blocknr);
5725 
5726 		BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
5727 
5728 		if (index !=
5729 		    (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
5730 			ocfs2_error(inode->i_sb,
5731 				    "Inode %lu has invalid ext. block %llu",
5732 				    inode->i_ino,
5733 				    (unsigned long long)bh->b_blocknr);
5734 			ret = -EROFS;
5735 			goto out;
5736 		}
5737 
5738 find_tail_record:
5739 		i = le16_to_cpu(el->l_next_free_rec) - 1;
5740 		rec = &el->l_recs[i];
5741 
5742 		mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
5743 		     "next = %u\n", i, le32_to_cpu(rec->e_cpos),
5744 		     ocfs2_rec_clusters(el, rec),
5745 		     (unsigned long long)le64_to_cpu(rec->e_blkno),
5746 		     le16_to_cpu(el->l_next_free_rec));
5747 
5748 		BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
5749 
5750 		if (le16_to_cpu(el->l_tree_depth) == 0) {
5751 			/*
5752 			 * If the leaf block contains a single empty
5753 			 * extent and no records, we can just remove
5754 			 * the block.
5755 			 */
5756 			if (i == 0 && ocfs2_is_empty_extent(rec)) {
5757 				memset(rec, 0,
5758 				       sizeof(struct ocfs2_extent_rec));
5759 				el->l_next_free_rec = cpu_to_le16(0);
5760 
5761 				goto delete;
5762 			}
5763 
5764 			/*
5765 			 * Remove any empty extents by shifting things
5766 			 * left. That should make life much easier on
5767 			 * the code below. This condition is rare
5768 			 * enough that we shouldn't see a performance
5769 			 * hit.
5770 			 */
5771 			if (ocfs2_is_empty_extent(&el->l_recs[0])) {
5772 				le16_add_cpu(&el->l_next_free_rec, -1);
5773 
5774 				for(i = 0;
5775 				    i < le16_to_cpu(el->l_next_free_rec); i++)
5776 					el->l_recs[i] = el->l_recs[i + 1];
5777 
5778 				memset(&el->l_recs[i], 0,
5779 				       sizeof(struct ocfs2_extent_rec));
5780 
5781 				/*
5782 				 * We've modified our extent list. The
5783 				 * simplest way to handle this change
5784 				 * is to being the search from the
5785 				 * start again.
5786 				 */
5787 				goto find_tail_record;
5788 			}
5789 
5790 			le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
5791 
5792 			/*
5793 			 * We'll use "new_edge" on our way back up the
5794 			 * tree to know what our rightmost cpos is.
5795 			 */
5796 			new_edge = le16_to_cpu(rec->e_leaf_clusters);
5797 			new_edge += le32_to_cpu(rec->e_cpos);
5798 
5799 			/*
5800 			 * The caller will use this to delete data blocks.
5801 			 */
5802 			*delete_start = le64_to_cpu(rec->e_blkno)
5803 				+ ocfs2_clusters_to_blocks(inode->i_sb,
5804 					le16_to_cpu(rec->e_leaf_clusters));
5805 
5806 			/*
5807 			 * If it's now empty, remove this record.
5808 			 */
5809 			if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
5810 				memset(rec, 0,
5811 				       sizeof(struct ocfs2_extent_rec));
5812 				le16_add_cpu(&el->l_next_free_rec, -1);
5813 			}
5814 		} else {
5815 			if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
5816 				memset(rec, 0,
5817 				       sizeof(struct ocfs2_extent_rec));
5818 				le16_add_cpu(&el->l_next_free_rec, -1);
5819 
5820 				goto delete;
5821 			}
5822 
5823 			/* Can this actually happen? */
5824 			if (le16_to_cpu(el->l_next_free_rec) == 0)
5825 				goto delete;
5826 
5827 			/*
5828 			 * We never actually deleted any clusters
5829 			 * because our leaf was empty. There's no
5830 			 * reason to adjust the rightmost edge then.
5831 			 */
5832 			if (new_edge == 0)
5833 				goto delete;
5834 
5835 			rec->e_int_clusters = cpu_to_le32(new_edge);
5836 			le32_add_cpu(&rec->e_int_clusters,
5837 				     -le32_to_cpu(rec->e_cpos));
5838 
5839 			 /*
5840 			  * A deleted child record should have been
5841 			  * caught above.
5842 			  */
5843 			 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
5844 		}
5845 
5846 delete:
5847 		ret = ocfs2_journal_dirty(handle, bh);
5848 		if (ret) {
5849 			mlog_errno(ret);
5850 			goto out;
5851 		}
5852 
5853 		mlog(0, "extent list container %llu, after: record %d: "
5854 		     "(%u, %u, %llu), next = %u.\n",
5855 		     (unsigned long long)bh->b_blocknr, i,
5856 		     le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
5857 		     (unsigned long long)le64_to_cpu(rec->e_blkno),
5858 		     le16_to_cpu(el->l_next_free_rec));
5859 
5860 		/*
5861 		 * We must be careful to only attempt delete of an
5862 		 * extent block (and not the root inode block).
5863 		 */
5864 		if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
5865 			struct ocfs2_extent_block *eb =
5866 				(struct ocfs2_extent_block *)bh->b_data;
5867 
5868 			/*
5869 			 * Save this for use when processing the
5870 			 * parent block.
5871 			 */
5872 			deleted_eb = le64_to_cpu(eb->h_blkno);
5873 
5874 			mlog(0, "deleting this extent block.\n");
5875 
5876 			ocfs2_remove_from_cache(inode, bh);
5877 
5878 			BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
5879 			BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
5880 			BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
5881 
5882 			ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
5883 			/* An error here is not fatal. */
5884 			if (ret < 0)
5885 				mlog_errno(ret);
5886 		} else {
5887 			deleted_eb = 0;
5888 		}
5889 
5890 		index--;
5891 	}
5892 
5893 	ret = 0;
5894 out:
5895 	return ret;
5896 }
5897 
5898 static int ocfs2_do_truncate(struct ocfs2_super *osb,
5899 			     unsigned int clusters_to_del,
5900 			     struct inode *inode,
5901 			     struct buffer_head *fe_bh,
5902 			     handle_t *handle,
5903 			     struct ocfs2_truncate_context *tc,
5904 			     struct ocfs2_path *path)
5905 {
5906 	int status;
5907 	struct ocfs2_dinode *fe;
5908 	struct ocfs2_extent_block *last_eb = NULL;
5909 	struct ocfs2_extent_list *el;
5910 	struct buffer_head *last_eb_bh = NULL;
5911 	u64 delete_blk = 0;
5912 
5913 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
5914 
5915 	status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
5916 					     path, &last_eb_bh);
5917 	if (status < 0) {
5918 		mlog_errno(status);
5919 		goto bail;
5920 	}
5921 
5922 	/*
5923 	 * Each component will be touched, so we might as well journal
5924 	 * here to avoid having to handle errors later.
5925 	 */
5926 	status = ocfs2_journal_access_path(inode, handle, path);
5927 	if (status < 0) {
5928 		mlog_errno(status);
5929 		goto bail;
5930 	}
5931 
5932 	if (last_eb_bh) {
5933 		status = ocfs2_journal_access(handle, inode, last_eb_bh,
5934 					      OCFS2_JOURNAL_ACCESS_WRITE);
5935 		if (status < 0) {
5936 			mlog_errno(status);
5937 			goto bail;
5938 		}
5939 
5940 		last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5941 	}
5942 
5943 	el = &(fe->id2.i_list);
5944 
5945 	/*
5946 	 * Lower levels depend on this never happening, but it's best
5947 	 * to check it up here before changing the tree.
5948 	 */
5949 	if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
5950 		ocfs2_error(inode->i_sb,
5951 			    "Inode %lu has an empty extent record, depth %u\n",
5952 			    inode->i_ino, le16_to_cpu(el->l_tree_depth));
5953 		status = -EROFS;
5954 		goto bail;
5955 	}
5956 
5957 	spin_lock(&OCFS2_I(inode)->ip_lock);
5958 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
5959 				      clusters_to_del;
5960 	spin_unlock(&OCFS2_I(inode)->ip_lock);
5961 	le32_add_cpu(&fe->i_clusters, -clusters_to_del);
5962 	inode->i_blocks = ocfs2_inode_sector_count(inode);
5963 
5964 	status = ocfs2_trim_tree(inode, path, handle, tc,
5965 				 clusters_to_del, &delete_blk);
5966 	if (status) {
5967 		mlog_errno(status);
5968 		goto bail;
5969 	}
5970 
5971 	if (le32_to_cpu(fe->i_clusters) == 0) {
5972 		/* trunc to zero is a special case. */
5973 		el->l_tree_depth = 0;
5974 		fe->i_last_eb_blk = 0;
5975 	} else if (last_eb)
5976 		fe->i_last_eb_blk = last_eb->h_blkno;
5977 
5978 	status = ocfs2_journal_dirty(handle, fe_bh);
5979 	if (status < 0) {
5980 		mlog_errno(status);
5981 		goto bail;
5982 	}
5983 
5984 	if (last_eb) {
5985 		/* If there will be a new last extent block, then by
5986 		 * definition, there cannot be any leaves to the right of
5987 		 * him. */
5988 		last_eb->h_next_leaf_blk = 0;
5989 		status = ocfs2_journal_dirty(handle, last_eb_bh);
5990 		if (status < 0) {
5991 			mlog_errno(status);
5992 			goto bail;
5993 		}
5994 	}
5995 
5996 	if (delete_blk) {
5997 		status = ocfs2_truncate_log_append(osb, handle, delete_blk,
5998 						   clusters_to_del);
5999 		if (status < 0) {
6000 			mlog_errno(status);
6001 			goto bail;
6002 		}
6003 	}
6004 	status = 0;
6005 bail:
6006 
6007 	mlog_exit(status);
6008 	return status;
6009 }
6010 
6011 static int ocfs2_writeback_zero_func(handle_t *handle, struct buffer_head *bh)
6012 {
6013 	set_buffer_uptodate(bh);
6014 	mark_buffer_dirty(bh);
6015 	return 0;
6016 }
6017 
6018 static int ocfs2_ordered_zero_func(handle_t *handle, struct buffer_head *bh)
6019 {
6020 	set_buffer_uptodate(bh);
6021 	mark_buffer_dirty(bh);
6022 	return ocfs2_journal_dirty_data(handle, bh);
6023 }
6024 
6025 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6026 				     unsigned int from, unsigned int to,
6027 				     struct page *page, int zero, u64 *phys)
6028 {
6029 	int ret, partial = 0;
6030 
6031 	ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6032 	if (ret)
6033 		mlog_errno(ret);
6034 
6035 	if (zero)
6036 		zero_user_segment(page, from, to);
6037 
6038 	/*
6039 	 * Need to set the buffers we zero'd into uptodate
6040 	 * here if they aren't - ocfs2_map_page_blocks()
6041 	 * might've skipped some
6042 	 */
6043 	if (ocfs2_should_order_data(inode)) {
6044 		ret = walk_page_buffers(handle,
6045 					page_buffers(page),
6046 					from, to, &partial,
6047 					ocfs2_ordered_zero_func);
6048 		if (ret < 0)
6049 			mlog_errno(ret);
6050 	} else {
6051 		ret = walk_page_buffers(handle, page_buffers(page),
6052 					from, to, &partial,
6053 					ocfs2_writeback_zero_func);
6054 		if (ret < 0)
6055 			mlog_errno(ret);
6056 	}
6057 
6058 	if (!partial)
6059 		SetPageUptodate(page);
6060 
6061 	flush_dcache_page(page);
6062 }
6063 
6064 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6065 				     loff_t end, struct page **pages,
6066 				     int numpages, u64 phys, handle_t *handle)
6067 {
6068 	int i;
6069 	struct page *page;
6070 	unsigned int from, to = PAGE_CACHE_SIZE;
6071 	struct super_block *sb = inode->i_sb;
6072 
6073 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6074 
6075 	if (numpages == 0)
6076 		goto out;
6077 
6078 	to = PAGE_CACHE_SIZE;
6079 	for(i = 0; i < numpages; i++) {
6080 		page = pages[i];
6081 
6082 		from = start & (PAGE_CACHE_SIZE - 1);
6083 		if ((end >> PAGE_CACHE_SHIFT) == page->index)
6084 			to = end & (PAGE_CACHE_SIZE - 1);
6085 
6086 		BUG_ON(from > PAGE_CACHE_SIZE);
6087 		BUG_ON(to > PAGE_CACHE_SIZE);
6088 
6089 		ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6090 					 &phys);
6091 
6092 		start = (page->index + 1) << PAGE_CACHE_SHIFT;
6093 	}
6094 out:
6095 	if (pages)
6096 		ocfs2_unlock_and_free_pages(pages, numpages);
6097 }
6098 
6099 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6100 				struct page **pages, int *num)
6101 {
6102 	int numpages, ret = 0;
6103 	struct super_block *sb = inode->i_sb;
6104 	struct address_space *mapping = inode->i_mapping;
6105 	unsigned long index;
6106 	loff_t last_page_bytes;
6107 
6108 	BUG_ON(start > end);
6109 
6110 	BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6111 	       (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6112 
6113 	numpages = 0;
6114 	last_page_bytes = PAGE_ALIGN(end);
6115 	index = start >> PAGE_CACHE_SHIFT;
6116 	do {
6117 		pages[numpages] = grab_cache_page(mapping, index);
6118 		if (!pages[numpages]) {
6119 			ret = -ENOMEM;
6120 			mlog_errno(ret);
6121 			goto out;
6122 		}
6123 
6124 		numpages++;
6125 		index++;
6126 	} while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6127 
6128 out:
6129 	if (ret != 0) {
6130 		if (pages)
6131 			ocfs2_unlock_and_free_pages(pages, numpages);
6132 		numpages = 0;
6133 	}
6134 
6135 	*num = numpages;
6136 
6137 	return ret;
6138 }
6139 
6140 /*
6141  * Zero the area past i_size but still within an allocated
6142  * cluster. This avoids exposing nonzero data on subsequent file
6143  * extends.
6144  *
6145  * We need to call this before i_size is updated on the inode because
6146  * otherwise block_write_full_page() will skip writeout of pages past
6147  * i_size. The new_i_size parameter is passed for this reason.
6148  */
6149 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6150 				  u64 range_start, u64 range_end)
6151 {
6152 	int ret = 0, numpages;
6153 	struct page **pages = NULL;
6154 	u64 phys;
6155 	unsigned int ext_flags;
6156 	struct super_block *sb = inode->i_sb;
6157 
6158 	/*
6159 	 * File systems which don't support sparse files zero on every
6160 	 * extend.
6161 	 */
6162 	if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6163 		return 0;
6164 
6165 	pages = kcalloc(ocfs2_pages_per_cluster(sb),
6166 			sizeof(struct page *), GFP_NOFS);
6167 	if (pages == NULL) {
6168 		ret = -ENOMEM;
6169 		mlog_errno(ret);
6170 		goto out;
6171 	}
6172 
6173 	if (range_start == range_end)
6174 		goto out;
6175 
6176 	ret = ocfs2_extent_map_get_blocks(inode,
6177 					  range_start >> sb->s_blocksize_bits,
6178 					  &phys, NULL, &ext_flags);
6179 	if (ret) {
6180 		mlog_errno(ret);
6181 		goto out;
6182 	}
6183 
6184 	/*
6185 	 * Tail is a hole, or is marked unwritten. In either case, we
6186 	 * can count on read and write to return/push zero's.
6187 	 */
6188 	if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6189 		goto out;
6190 
6191 	ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6192 				   &numpages);
6193 	if (ret) {
6194 		mlog_errno(ret);
6195 		goto out;
6196 	}
6197 
6198 	ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6199 				 numpages, phys, handle);
6200 
6201 	/*
6202 	 * Initiate writeout of the pages we zero'd here. We don't
6203 	 * wait on them - the truncate_inode_pages() call later will
6204 	 * do that for us.
6205 	 */
6206 	ret = do_sync_mapping_range(inode->i_mapping, range_start,
6207 				    range_end - 1, SYNC_FILE_RANGE_WRITE);
6208 	if (ret)
6209 		mlog_errno(ret);
6210 
6211 out:
6212 	if (pages)
6213 		kfree(pages);
6214 
6215 	return ret;
6216 }
6217 
6218 static void ocfs2_zero_dinode_id2(struct inode *inode, struct ocfs2_dinode *di)
6219 {
6220 	unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
6221 
6222 	memset(&di->id2, 0, blocksize - offsetof(struct ocfs2_dinode, id2));
6223 }
6224 
6225 void ocfs2_dinode_new_extent_list(struct inode *inode,
6226 				  struct ocfs2_dinode *di)
6227 {
6228 	ocfs2_zero_dinode_id2(inode, di);
6229 	di->id2.i_list.l_tree_depth = 0;
6230 	di->id2.i_list.l_next_free_rec = 0;
6231 	di->id2.i_list.l_count = cpu_to_le16(ocfs2_extent_recs_per_inode(inode->i_sb));
6232 }
6233 
6234 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
6235 {
6236 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
6237 	struct ocfs2_inline_data *idata = &di->id2.i_data;
6238 
6239 	spin_lock(&oi->ip_lock);
6240 	oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
6241 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6242 	spin_unlock(&oi->ip_lock);
6243 
6244 	/*
6245 	 * We clear the entire i_data structure here so that all
6246 	 * fields can be properly initialized.
6247 	 */
6248 	ocfs2_zero_dinode_id2(inode, di);
6249 
6250 	idata->id_count = cpu_to_le16(ocfs2_max_inline_data(inode->i_sb));
6251 }
6252 
6253 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
6254 					 struct buffer_head *di_bh)
6255 {
6256 	int ret, i, has_data, num_pages = 0;
6257 	handle_t *handle;
6258 	u64 uninitialized_var(block);
6259 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
6260 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6261 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6262 	struct ocfs2_alloc_context *data_ac = NULL;
6263 	struct page **pages = NULL;
6264 	loff_t end = osb->s_clustersize;
6265 
6266 	has_data = i_size_read(inode) ? 1 : 0;
6267 
6268 	if (has_data) {
6269 		pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
6270 				sizeof(struct page *), GFP_NOFS);
6271 		if (pages == NULL) {
6272 			ret = -ENOMEM;
6273 			mlog_errno(ret);
6274 			goto out;
6275 		}
6276 
6277 		ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
6278 		if (ret) {
6279 			mlog_errno(ret);
6280 			goto out;
6281 		}
6282 	}
6283 
6284 	handle = ocfs2_start_trans(osb, OCFS2_INLINE_TO_EXTENTS_CREDITS);
6285 	if (IS_ERR(handle)) {
6286 		ret = PTR_ERR(handle);
6287 		mlog_errno(ret);
6288 		goto out_unlock;
6289 	}
6290 
6291 	ret = ocfs2_journal_access(handle, inode, di_bh,
6292 				   OCFS2_JOURNAL_ACCESS_WRITE);
6293 	if (ret) {
6294 		mlog_errno(ret);
6295 		goto out_commit;
6296 	}
6297 
6298 	if (has_data) {
6299 		u32 bit_off, num;
6300 		unsigned int page_end;
6301 		u64 phys;
6302 
6303 		ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
6304 					   &num);
6305 		if (ret) {
6306 			mlog_errno(ret);
6307 			goto out_commit;
6308 		}
6309 
6310 		/*
6311 		 * Save two copies, one for insert, and one that can
6312 		 * be changed by ocfs2_map_and_dirty_page() below.
6313 		 */
6314 		block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
6315 
6316 		/*
6317 		 * Non sparse file systems zero on extend, so no need
6318 		 * to do that now.
6319 		 */
6320 		if (!ocfs2_sparse_alloc(osb) &&
6321 		    PAGE_CACHE_SIZE < osb->s_clustersize)
6322 			end = PAGE_CACHE_SIZE;
6323 
6324 		ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
6325 		if (ret) {
6326 			mlog_errno(ret);
6327 			goto out_commit;
6328 		}
6329 
6330 		/*
6331 		 * This should populate the 1st page for us and mark
6332 		 * it up to date.
6333 		 */
6334 		ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
6335 		if (ret) {
6336 			mlog_errno(ret);
6337 			goto out_commit;
6338 		}
6339 
6340 		page_end = PAGE_CACHE_SIZE;
6341 		if (PAGE_CACHE_SIZE > osb->s_clustersize)
6342 			page_end = osb->s_clustersize;
6343 
6344 		for (i = 0; i < num_pages; i++)
6345 			ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
6346 						 pages[i], i > 0, &phys);
6347 	}
6348 
6349 	spin_lock(&oi->ip_lock);
6350 	oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
6351 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6352 	spin_unlock(&oi->ip_lock);
6353 
6354 	ocfs2_dinode_new_extent_list(inode, di);
6355 
6356 	ocfs2_journal_dirty(handle, di_bh);
6357 
6358 	if (has_data) {
6359 		/*
6360 		 * An error at this point should be extremely rare. If
6361 		 * this proves to be false, we could always re-build
6362 		 * the in-inode data from our pages.
6363 		 */
6364 		ret = ocfs2_insert_extent(osb, handle, inode, di_bh,
6365 					  0, block, 1, 0, NULL);
6366 		if (ret) {
6367 			mlog_errno(ret);
6368 			goto out_commit;
6369 		}
6370 
6371 		inode->i_blocks = ocfs2_inode_sector_count(inode);
6372 	}
6373 
6374 out_commit:
6375 	ocfs2_commit_trans(osb, handle);
6376 
6377 out_unlock:
6378 	if (data_ac)
6379 		ocfs2_free_alloc_context(data_ac);
6380 
6381 out:
6382 	if (pages) {
6383 		ocfs2_unlock_and_free_pages(pages, num_pages);
6384 		kfree(pages);
6385 	}
6386 
6387 	return ret;
6388 }
6389 
6390 /*
6391  * It is expected, that by the time you call this function,
6392  * inode->i_size and fe->i_size have been adjusted.
6393  *
6394  * WARNING: This will kfree the truncate context
6395  */
6396 int ocfs2_commit_truncate(struct ocfs2_super *osb,
6397 			  struct inode *inode,
6398 			  struct buffer_head *fe_bh,
6399 			  struct ocfs2_truncate_context *tc)
6400 {
6401 	int status, i, credits, tl_sem = 0;
6402 	u32 clusters_to_del, new_highest_cpos, range;
6403 	struct ocfs2_extent_list *el;
6404 	handle_t *handle = NULL;
6405 	struct inode *tl_inode = osb->osb_tl_inode;
6406 	struct ocfs2_path *path = NULL;
6407 
6408 	mlog_entry_void();
6409 
6410 	new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
6411 						     i_size_read(inode));
6412 
6413 	path = ocfs2_new_inode_path(fe_bh);
6414 	if (!path) {
6415 		status = -ENOMEM;
6416 		mlog_errno(status);
6417 		goto bail;
6418 	}
6419 
6420 	ocfs2_extent_map_trunc(inode, new_highest_cpos);
6421 
6422 start:
6423 	/*
6424 	 * Check that we still have allocation to delete.
6425 	 */
6426 	if (OCFS2_I(inode)->ip_clusters == 0) {
6427 		status = 0;
6428 		goto bail;
6429 	}
6430 
6431 	/*
6432 	 * Truncate always works against the rightmost tree branch.
6433 	 */
6434 	status = ocfs2_find_path(inode, path, UINT_MAX);
6435 	if (status) {
6436 		mlog_errno(status);
6437 		goto bail;
6438 	}
6439 
6440 	mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
6441 	     OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
6442 
6443 	/*
6444 	 * By now, el will point to the extent list on the bottom most
6445 	 * portion of this tree. Only the tail record is considered in
6446 	 * each pass.
6447 	 *
6448 	 * We handle the following cases, in order:
6449 	 * - empty extent: delete the remaining branch
6450 	 * - remove the entire record
6451 	 * - remove a partial record
6452 	 * - no record needs to be removed (truncate has completed)
6453 	 */
6454 	el = path_leaf_el(path);
6455 	if (le16_to_cpu(el->l_next_free_rec) == 0) {
6456 		ocfs2_error(inode->i_sb,
6457 			    "Inode %llu has empty extent block at %llu\n",
6458 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
6459 			    (unsigned long long)path_leaf_bh(path)->b_blocknr);
6460 		status = -EROFS;
6461 		goto bail;
6462 	}
6463 
6464 	i = le16_to_cpu(el->l_next_free_rec) - 1;
6465 	range = le32_to_cpu(el->l_recs[i].e_cpos) +
6466 		ocfs2_rec_clusters(el, &el->l_recs[i]);
6467 	if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
6468 		clusters_to_del = 0;
6469 	} else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
6470 		clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
6471 	} else if (range > new_highest_cpos) {
6472 		clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
6473 				   le32_to_cpu(el->l_recs[i].e_cpos)) -
6474 				  new_highest_cpos;
6475 	} else {
6476 		status = 0;
6477 		goto bail;
6478 	}
6479 
6480 	mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
6481 	     clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
6482 
6483 	mutex_lock(&tl_inode->i_mutex);
6484 	tl_sem = 1;
6485 	/* ocfs2_truncate_log_needs_flush guarantees us at least one
6486 	 * record is free for use. If there isn't any, we flush to get
6487 	 * an empty truncate log.  */
6488 	if (ocfs2_truncate_log_needs_flush(osb)) {
6489 		status = __ocfs2_flush_truncate_log(osb);
6490 		if (status < 0) {
6491 			mlog_errno(status);
6492 			goto bail;
6493 		}
6494 	}
6495 
6496 	credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
6497 						(struct ocfs2_dinode *)fe_bh->b_data,
6498 						el);
6499 	handle = ocfs2_start_trans(osb, credits);
6500 	if (IS_ERR(handle)) {
6501 		status = PTR_ERR(handle);
6502 		handle = NULL;
6503 		mlog_errno(status);
6504 		goto bail;
6505 	}
6506 
6507 	status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
6508 				   tc, path);
6509 	if (status < 0) {
6510 		mlog_errno(status);
6511 		goto bail;
6512 	}
6513 
6514 	mutex_unlock(&tl_inode->i_mutex);
6515 	tl_sem = 0;
6516 
6517 	ocfs2_commit_trans(osb, handle);
6518 	handle = NULL;
6519 
6520 	ocfs2_reinit_path(path, 1);
6521 
6522 	/*
6523 	 * The check above will catch the case where we've truncated
6524 	 * away all allocation.
6525 	 */
6526 	goto start;
6527 
6528 bail:
6529 
6530 	ocfs2_schedule_truncate_log_flush(osb, 1);
6531 
6532 	if (tl_sem)
6533 		mutex_unlock(&tl_inode->i_mutex);
6534 
6535 	if (handle)
6536 		ocfs2_commit_trans(osb, handle);
6537 
6538 	ocfs2_run_deallocs(osb, &tc->tc_dealloc);
6539 
6540 	ocfs2_free_path(path);
6541 
6542 	/* This will drop the ext_alloc cluster lock for us */
6543 	ocfs2_free_truncate_context(tc);
6544 
6545 	mlog_exit(status);
6546 	return status;
6547 }
6548 
6549 /*
6550  * Expects the inode to already be locked.
6551  */
6552 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
6553 			   struct inode *inode,
6554 			   struct buffer_head *fe_bh,
6555 			   struct ocfs2_truncate_context **tc)
6556 {
6557 	int status;
6558 	unsigned int new_i_clusters;
6559 	struct ocfs2_dinode *fe;
6560 	struct ocfs2_extent_block *eb;
6561 	struct buffer_head *last_eb_bh = NULL;
6562 
6563 	mlog_entry_void();
6564 
6565 	*tc = NULL;
6566 
6567 	new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
6568 						  i_size_read(inode));
6569 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
6570 
6571 	mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
6572 	     "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
6573 	     (unsigned long long)le64_to_cpu(fe->i_size));
6574 
6575 	*tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
6576 	if (!(*tc)) {
6577 		status = -ENOMEM;
6578 		mlog_errno(status);
6579 		goto bail;
6580 	}
6581 	ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
6582 
6583 	if (fe->id2.i_list.l_tree_depth) {
6584 		status = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
6585 					  &last_eb_bh, OCFS2_BH_CACHED, inode);
6586 		if (status < 0) {
6587 			mlog_errno(status);
6588 			goto bail;
6589 		}
6590 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6591 		if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
6592 			OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
6593 
6594 			brelse(last_eb_bh);
6595 			status = -EIO;
6596 			goto bail;
6597 		}
6598 	}
6599 
6600 	(*tc)->tc_last_eb_bh = last_eb_bh;
6601 
6602 	status = 0;
6603 bail:
6604 	if (status < 0) {
6605 		if (*tc)
6606 			ocfs2_free_truncate_context(*tc);
6607 		*tc = NULL;
6608 	}
6609 	mlog_exit_void();
6610 	return status;
6611 }
6612 
6613 /*
6614  * 'start' is inclusive, 'end' is not.
6615  */
6616 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
6617 			  unsigned int start, unsigned int end, int trunc)
6618 {
6619 	int ret;
6620 	unsigned int numbytes;
6621 	handle_t *handle;
6622 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6623 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6624 	struct ocfs2_inline_data *idata = &di->id2.i_data;
6625 
6626 	if (end > i_size_read(inode))
6627 		end = i_size_read(inode);
6628 
6629 	BUG_ON(start >= end);
6630 
6631 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
6632 	    !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
6633 	    !ocfs2_supports_inline_data(osb)) {
6634 		ocfs2_error(inode->i_sb,
6635 			    "Inline data flags for inode %llu don't agree! "
6636 			    "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
6637 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
6638 			    le16_to_cpu(di->i_dyn_features),
6639 			    OCFS2_I(inode)->ip_dyn_features,
6640 			    osb->s_feature_incompat);
6641 		ret = -EROFS;
6642 		goto out;
6643 	}
6644 
6645 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
6646 	if (IS_ERR(handle)) {
6647 		ret = PTR_ERR(handle);
6648 		mlog_errno(ret);
6649 		goto out;
6650 	}
6651 
6652 	ret = ocfs2_journal_access(handle, inode, di_bh,
6653 				   OCFS2_JOURNAL_ACCESS_WRITE);
6654 	if (ret) {
6655 		mlog_errno(ret);
6656 		goto out_commit;
6657 	}
6658 
6659 	numbytes = end - start;
6660 	memset(idata->id_data + start, 0, numbytes);
6661 
6662 	/*
6663 	 * No need to worry about the data page here - it's been
6664 	 * truncated already and inline data doesn't need it for
6665 	 * pushing zero's to disk, so we'll let readpage pick it up
6666 	 * later.
6667 	 */
6668 	if (trunc) {
6669 		i_size_write(inode, start);
6670 		di->i_size = cpu_to_le64(start);
6671 	}
6672 
6673 	inode->i_blocks = ocfs2_inode_sector_count(inode);
6674 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
6675 
6676 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
6677 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
6678 
6679 	ocfs2_journal_dirty(handle, di_bh);
6680 
6681 out_commit:
6682 	ocfs2_commit_trans(osb, handle);
6683 
6684 out:
6685 	return ret;
6686 }
6687 
6688 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
6689 {
6690 	/*
6691 	 * The caller is responsible for completing deallocation
6692 	 * before freeing the context.
6693 	 */
6694 	if (tc->tc_dealloc.c_first_suballocator != NULL)
6695 		mlog(ML_NOTICE,
6696 		     "Truncate completion has non-empty dealloc context\n");
6697 
6698 	if (tc->tc_last_eb_bh)
6699 		brelse(tc->tc_last_eb_bh);
6700 
6701 	kfree(tc);
6702 }
6703