1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * alloc.c 5 * 6 * Extent allocs and frees 7 * 8 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/swap.h> 31 32 #define MLOG_MASK_PREFIX ML_DISK_ALLOC 33 #include <cluster/masklog.h> 34 35 #include "ocfs2.h" 36 37 #include "alloc.h" 38 #include "aops.h" 39 #include "dlmglue.h" 40 #include "extent_map.h" 41 #include "inode.h" 42 #include "journal.h" 43 #include "localalloc.h" 44 #include "suballoc.h" 45 #include "sysfile.h" 46 #include "file.h" 47 #include "super.h" 48 #include "uptodate.h" 49 50 #include "buffer_head_io.h" 51 52 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc); 53 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 54 struct ocfs2_extent_block *eb); 55 56 /* 57 * Structures which describe a path through a btree, and functions to 58 * manipulate them. 59 * 60 * The idea here is to be as generic as possible with the tree 61 * manipulation code. 62 */ 63 struct ocfs2_path_item { 64 struct buffer_head *bh; 65 struct ocfs2_extent_list *el; 66 }; 67 68 #define OCFS2_MAX_PATH_DEPTH 5 69 70 struct ocfs2_path { 71 int p_tree_depth; 72 struct ocfs2_path_item p_node[OCFS2_MAX_PATH_DEPTH]; 73 }; 74 75 #define path_root_bh(_path) ((_path)->p_node[0].bh) 76 #define path_root_el(_path) ((_path)->p_node[0].el) 77 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh) 78 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el) 79 #define path_num_items(_path) ((_path)->p_tree_depth + 1) 80 81 /* 82 * Reset the actual path elements so that we can re-use the structure 83 * to build another path. Generally, this involves freeing the buffer 84 * heads. 85 */ 86 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root) 87 { 88 int i, start = 0, depth = 0; 89 struct ocfs2_path_item *node; 90 91 if (keep_root) 92 start = 1; 93 94 for(i = start; i < path_num_items(path); i++) { 95 node = &path->p_node[i]; 96 97 brelse(node->bh); 98 node->bh = NULL; 99 node->el = NULL; 100 } 101 102 /* 103 * Tree depth may change during truncate, or insert. If we're 104 * keeping the root extent list, then make sure that our path 105 * structure reflects the proper depth. 106 */ 107 if (keep_root) 108 depth = le16_to_cpu(path_root_el(path)->l_tree_depth); 109 110 path->p_tree_depth = depth; 111 } 112 113 static void ocfs2_free_path(struct ocfs2_path *path) 114 { 115 if (path) { 116 ocfs2_reinit_path(path, 0); 117 kfree(path); 118 } 119 } 120 121 /* 122 * All the elements of src into dest. After this call, src could be freed 123 * without affecting dest. 124 * 125 * Both paths should have the same root. Any non-root elements of dest 126 * will be freed. 127 */ 128 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src) 129 { 130 int i; 131 132 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 133 BUG_ON(path_root_el(dest) != path_root_el(src)); 134 135 ocfs2_reinit_path(dest, 1); 136 137 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 138 dest->p_node[i].bh = src->p_node[i].bh; 139 dest->p_node[i].el = src->p_node[i].el; 140 141 if (dest->p_node[i].bh) 142 get_bh(dest->p_node[i].bh); 143 } 144 } 145 146 /* 147 * Make the *dest path the same as src and re-initialize src path to 148 * have a root only. 149 */ 150 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src) 151 { 152 int i; 153 154 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 155 156 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 157 brelse(dest->p_node[i].bh); 158 159 dest->p_node[i].bh = src->p_node[i].bh; 160 dest->p_node[i].el = src->p_node[i].el; 161 162 src->p_node[i].bh = NULL; 163 src->p_node[i].el = NULL; 164 } 165 } 166 167 /* 168 * Insert an extent block at given index. 169 * 170 * This will not take an additional reference on eb_bh. 171 */ 172 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index, 173 struct buffer_head *eb_bh) 174 { 175 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data; 176 177 /* 178 * Right now, no root bh is an extent block, so this helps 179 * catch code errors with dinode trees. The assertion can be 180 * safely removed if we ever need to insert extent block 181 * structures at the root. 182 */ 183 BUG_ON(index == 0); 184 185 path->p_node[index].bh = eb_bh; 186 path->p_node[index].el = &eb->h_list; 187 } 188 189 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh, 190 struct ocfs2_extent_list *root_el) 191 { 192 struct ocfs2_path *path; 193 194 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH); 195 196 path = kzalloc(sizeof(*path), GFP_NOFS); 197 if (path) { 198 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth); 199 get_bh(root_bh); 200 path_root_bh(path) = root_bh; 201 path_root_el(path) = root_el; 202 } 203 204 return path; 205 } 206 207 /* 208 * Allocate and initialize a new path based on a disk inode tree. 209 */ 210 static struct ocfs2_path *ocfs2_new_inode_path(struct buffer_head *di_bh) 211 { 212 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 213 struct ocfs2_extent_list *el = &di->id2.i_list; 214 215 return ocfs2_new_path(di_bh, el); 216 } 217 218 /* 219 * Convenience function to journal all components in a path. 220 */ 221 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle, 222 struct ocfs2_path *path) 223 { 224 int i, ret = 0; 225 226 if (!path) 227 goto out; 228 229 for(i = 0; i < path_num_items(path); i++) { 230 ret = ocfs2_journal_access(handle, inode, path->p_node[i].bh, 231 OCFS2_JOURNAL_ACCESS_WRITE); 232 if (ret < 0) { 233 mlog_errno(ret); 234 goto out; 235 } 236 } 237 238 out: 239 return ret; 240 } 241 242 /* 243 * Return the index of the extent record which contains cluster #v_cluster. 244 * -1 is returned if it was not found. 245 * 246 * Should work fine on interior and exterior nodes. 247 */ 248 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster) 249 { 250 int ret = -1; 251 int i; 252 struct ocfs2_extent_rec *rec; 253 u32 rec_end, rec_start, clusters; 254 255 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 256 rec = &el->l_recs[i]; 257 258 rec_start = le32_to_cpu(rec->e_cpos); 259 clusters = ocfs2_rec_clusters(el, rec); 260 261 rec_end = rec_start + clusters; 262 263 if (v_cluster >= rec_start && v_cluster < rec_end) { 264 ret = i; 265 break; 266 } 267 } 268 269 return ret; 270 } 271 272 enum ocfs2_contig_type { 273 CONTIG_NONE = 0, 274 CONTIG_LEFT, 275 CONTIG_RIGHT, 276 CONTIG_LEFTRIGHT, 277 }; 278 279 280 /* 281 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and 282 * ocfs2_extent_contig only work properly against leaf nodes! 283 */ 284 static int ocfs2_block_extent_contig(struct super_block *sb, 285 struct ocfs2_extent_rec *ext, 286 u64 blkno) 287 { 288 u64 blk_end = le64_to_cpu(ext->e_blkno); 289 290 blk_end += ocfs2_clusters_to_blocks(sb, 291 le16_to_cpu(ext->e_leaf_clusters)); 292 293 return blkno == blk_end; 294 } 295 296 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left, 297 struct ocfs2_extent_rec *right) 298 { 299 u32 left_range; 300 301 left_range = le32_to_cpu(left->e_cpos) + 302 le16_to_cpu(left->e_leaf_clusters); 303 304 return (left_range == le32_to_cpu(right->e_cpos)); 305 } 306 307 static enum ocfs2_contig_type 308 ocfs2_extent_contig(struct inode *inode, 309 struct ocfs2_extent_rec *ext, 310 struct ocfs2_extent_rec *insert_rec) 311 { 312 u64 blkno = le64_to_cpu(insert_rec->e_blkno); 313 314 /* 315 * Refuse to coalesce extent records with different flag 316 * fields - we don't want to mix unwritten extents with user 317 * data. 318 */ 319 if (ext->e_flags != insert_rec->e_flags) 320 return CONTIG_NONE; 321 322 if (ocfs2_extents_adjacent(ext, insert_rec) && 323 ocfs2_block_extent_contig(inode->i_sb, ext, blkno)) 324 return CONTIG_RIGHT; 325 326 blkno = le64_to_cpu(ext->e_blkno); 327 if (ocfs2_extents_adjacent(insert_rec, ext) && 328 ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno)) 329 return CONTIG_LEFT; 330 331 return CONTIG_NONE; 332 } 333 334 /* 335 * NOTE: We can have pretty much any combination of contiguousness and 336 * appending. 337 * 338 * The usefulness of APPEND_TAIL is more in that it lets us know that 339 * we'll have to update the path to that leaf. 340 */ 341 enum ocfs2_append_type { 342 APPEND_NONE = 0, 343 APPEND_TAIL, 344 }; 345 346 enum ocfs2_split_type { 347 SPLIT_NONE = 0, 348 SPLIT_LEFT, 349 SPLIT_RIGHT, 350 }; 351 352 struct ocfs2_insert_type { 353 enum ocfs2_split_type ins_split; 354 enum ocfs2_append_type ins_appending; 355 enum ocfs2_contig_type ins_contig; 356 int ins_contig_index; 357 int ins_tree_depth; 358 }; 359 360 struct ocfs2_merge_ctxt { 361 enum ocfs2_contig_type c_contig_type; 362 int c_has_empty_extent; 363 int c_split_covers_rec; 364 }; 365 366 /* 367 * How many free extents have we got before we need more meta data? 368 */ 369 int ocfs2_num_free_extents(struct ocfs2_super *osb, 370 struct inode *inode, 371 struct ocfs2_dinode *fe) 372 { 373 int retval; 374 struct ocfs2_extent_list *el; 375 struct ocfs2_extent_block *eb; 376 struct buffer_head *eb_bh = NULL; 377 378 mlog_entry_void(); 379 380 if (!OCFS2_IS_VALID_DINODE(fe)) { 381 OCFS2_RO_ON_INVALID_DINODE(inode->i_sb, fe); 382 retval = -EIO; 383 goto bail; 384 } 385 386 if (fe->i_last_eb_blk) { 387 retval = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk), 388 &eb_bh, OCFS2_BH_CACHED, inode); 389 if (retval < 0) { 390 mlog_errno(retval); 391 goto bail; 392 } 393 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 394 el = &eb->h_list; 395 } else 396 el = &fe->id2.i_list; 397 398 BUG_ON(el->l_tree_depth != 0); 399 400 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec); 401 bail: 402 if (eb_bh) 403 brelse(eb_bh); 404 405 mlog_exit(retval); 406 return retval; 407 } 408 409 /* expects array to already be allocated 410 * 411 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and 412 * l_count for you 413 */ 414 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb, 415 handle_t *handle, 416 struct inode *inode, 417 int wanted, 418 struct ocfs2_alloc_context *meta_ac, 419 struct buffer_head *bhs[]) 420 { 421 int count, status, i; 422 u16 suballoc_bit_start; 423 u32 num_got; 424 u64 first_blkno; 425 struct ocfs2_extent_block *eb; 426 427 mlog_entry_void(); 428 429 count = 0; 430 while (count < wanted) { 431 status = ocfs2_claim_metadata(osb, 432 handle, 433 meta_ac, 434 wanted - count, 435 &suballoc_bit_start, 436 &num_got, 437 &first_blkno); 438 if (status < 0) { 439 mlog_errno(status); 440 goto bail; 441 } 442 443 for(i = count; i < (num_got + count); i++) { 444 bhs[i] = sb_getblk(osb->sb, first_blkno); 445 if (bhs[i] == NULL) { 446 status = -EIO; 447 mlog_errno(status); 448 goto bail; 449 } 450 ocfs2_set_new_buffer_uptodate(inode, bhs[i]); 451 452 status = ocfs2_journal_access(handle, inode, bhs[i], 453 OCFS2_JOURNAL_ACCESS_CREATE); 454 if (status < 0) { 455 mlog_errno(status); 456 goto bail; 457 } 458 459 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize); 460 eb = (struct ocfs2_extent_block *) bhs[i]->b_data; 461 /* Ok, setup the minimal stuff here. */ 462 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); 463 eb->h_blkno = cpu_to_le64(first_blkno); 464 eb->h_fs_generation = cpu_to_le32(osb->fs_generation); 465 eb->h_suballoc_slot = cpu_to_le16(osb->slot_num); 466 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start); 467 eb->h_list.l_count = 468 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); 469 470 suballoc_bit_start++; 471 first_blkno++; 472 473 /* We'll also be dirtied by the caller, so 474 * this isn't absolutely necessary. */ 475 status = ocfs2_journal_dirty(handle, bhs[i]); 476 if (status < 0) { 477 mlog_errno(status); 478 goto bail; 479 } 480 } 481 482 count += num_got; 483 } 484 485 status = 0; 486 bail: 487 if (status < 0) { 488 for(i = 0; i < wanted; i++) { 489 if (bhs[i]) 490 brelse(bhs[i]); 491 bhs[i] = NULL; 492 } 493 } 494 mlog_exit(status); 495 return status; 496 } 497 498 /* 499 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth(). 500 * 501 * Returns the sum of the rightmost extent rec logical offset and 502 * cluster count. 503 * 504 * ocfs2_add_branch() uses this to determine what logical cluster 505 * value should be populated into the leftmost new branch records. 506 * 507 * ocfs2_shift_tree_depth() uses this to determine the # clusters 508 * value for the new topmost tree record. 509 */ 510 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el) 511 { 512 int i; 513 514 i = le16_to_cpu(el->l_next_free_rec) - 1; 515 516 return le32_to_cpu(el->l_recs[i].e_cpos) + 517 ocfs2_rec_clusters(el, &el->l_recs[i]); 518 } 519 520 /* 521 * Add an entire tree branch to our inode. eb_bh is the extent block 522 * to start at, if we don't want to start the branch at the dinode 523 * structure. 524 * 525 * last_eb_bh is required as we have to update it's next_leaf pointer 526 * for the new last extent block. 527 * 528 * the new branch will be 'empty' in the sense that every block will 529 * contain a single record with cluster count == 0. 530 */ 531 static int ocfs2_add_branch(struct ocfs2_super *osb, 532 handle_t *handle, 533 struct inode *inode, 534 struct buffer_head *fe_bh, 535 struct buffer_head *eb_bh, 536 struct buffer_head **last_eb_bh, 537 struct ocfs2_alloc_context *meta_ac) 538 { 539 int status, new_blocks, i; 540 u64 next_blkno, new_last_eb_blk; 541 struct buffer_head *bh; 542 struct buffer_head **new_eb_bhs = NULL; 543 struct ocfs2_dinode *fe; 544 struct ocfs2_extent_block *eb; 545 struct ocfs2_extent_list *eb_el; 546 struct ocfs2_extent_list *el; 547 u32 new_cpos; 548 549 mlog_entry_void(); 550 551 BUG_ON(!last_eb_bh || !*last_eb_bh); 552 553 fe = (struct ocfs2_dinode *) fe_bh->b_data; 554 555 if (eb_bh) { 556 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 557 el = &eb->h_list; 558 } else 559 el = &fe->id2.i_list; 560 561 /* we never add a branch to a leaf. */ 562 BUG_ON(!el->l_tree_depth); 563 564 new_blocks = le16_to_cpu(el->l_tree_depth); 565 566 /* allocate the number of new eb blocks we need */ 567 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *), 568 GFP_KERNEL); 569 if (!new_eb_bhs) { 570 status = -ENOMEM; 571 mlog_errno(status); 572 goto bail; 573 } 574 575 status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks, 576 meta_ac, new_eb_bhs); 577 if (status < 0) { 578 mlog_errno(status); 579 goto bail; 580 } 581 582 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data; 583 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list); 584 585 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be 586 * linked with the rest of the tree. 587 * conversly, new_eb_bhs[0] is the new bottommost leaf. 588 * 589 * when we leave the loop, new_last_eb_blk will point to the 590 * newest leaf, and next_blkno will point to the topmost extent 591 * block. */ 592 next_blkno = new_last_eb_blk = 0; 593 for(i = 0; i < new_blocks; i++) { 594 bh = new_eb_bhs[i]; 595 eb = (struct ocfs2_extent_block *) bh->b_data; 596 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 597 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); 598 status = -EIO; 599 goto bail; 600 } 601 eb_el = &eb->h_list; 602 603 status = ocfs2_journal_access(handle, inode, bh, 604 OCFS2_JOURNAL_ACCESS_CREATE); 605 if (status < 0) { 606 mlog_errno(status); 607 goto bail; 608 } 609 610 eb->h_next_leaf_blk = 0; 611 eb_el->l_tree_depth = cpu_to_le16(i); 612 eb_el->l_next_free_rec = cpu_to_le16(1); 613 /* 614 * This actually counts as an empty extent as 615 * c_clusters == 0 616 */ 617 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos); 618 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno); 619 /* 620 * eb_el isn't always an interior node, but even leaf 621 * nodes want a zero'd flags and reserved field so 622 * this gets the whole 32 bits regardless of use. 623 */ 624 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0); 625 if (!eb_el->l_tree_depth) 626 new_last_eb_blk = le64_to_cpu(eb->h_blkno); 627 628 status = ocfs2_journal_dirty(handle, bh); 629 if (status < 0) { 630 mlog_errno(status); 631 goto bail; 632 } 633 634 next_blkno = le64_to_cpu(eb->h_blkno); 635 } 636 637 /* This is a bit hairy. We want to update up to three blocks 638 * here without leaving any of them in an inconsistent state 639 * in case of error. We don't have to worry about 640 * journal_dirty erroring as it won't unless we've aborted the 641 * handle (in which case we would never be here) so reserving 642 * the write with journal_access is all we need to do. */ 643 status = ocfs2_journal_access(handle, inode, *last_eb_bh, 644 OCFS2_JOURNAL_ACCESS_WRITE); 645 if (status < 0) { 646 mlog_errno(status); 647 goto bail; 648 } 649 status = ocfs2_journal_access(handle, inode, fe_bh, 650 OCFS2_JOURNAL_ACCESS_WRITE); 651 if (status < 0) { 652 mlog_errno(status); 653 goto bail; 654 } 655 if (eb_bh) { 656 status = ocfs2_journal_access(handle, inode, eb_bh, 657 OCFS2_JOURNAL_ACCESS_WRITE); 658 if (status < 0) { 659 mlog_errno(status); 660 goto bail; 661 } 662 } 663 664 /* Link the new branch into the rest of the tree (el will 665 * either be on the fe, or the extent block passed in. */ 666 i = le16_to_cpu(el->l_next_free_rec); 667 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno); 668 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos); 669 el->l_recs[i].e_int_clusters = 0; 670 le16_add_cpu(&el->l_next_free_rec, 1); 671 672 /* fe needs a new last extent block pointer, as does the 673 * next_leaf on the previously last-extent-block. */ 674 fe->i_last_eb_blk = cpu_to_le64(new_last_eb_blk); 675 676 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 677 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk); 678 679 status = ocfs2_journal_dirty(handle, *last_eb_bh); 680 if (status < 0) 681 mlog_errno(status); 682 status = ocfs2_journal_dirty(handle, fe_bh); 683 if (status < 0) 684 mlog_errno(status); 685 if (eb_bh) { 686 status = ocfs2_journal_dirty(handle, eb_bh); 687 if (status < 0) 688 mlog_errno(status); 689 } 690 691 /* 692 * Some callers want to track the rightmost leaf so pass it 693 * back here. 694 */ 695 brelse(*last_eb_bh); 696 get_bh(new_eb_bhs[0]); 697 *last_eb_bh = new_eb_bhs[0]; 698 699 status = 0; 700 bail: 701 if (new_eb_bhs) { 702 for (i = 0; i < new_blocks; i++) 703 if (new_eb_bhs[i]) 704 brelse(new_eb_bhs[i]); 705 kfree(new_eb_bhs); 706 } 707 708 mlog_exit(status); 709 return status; 710 } 711 712 /* 713 * adds another level to the allocation tree. 714 * returns back the new extent block so you can add a branch to it 715 * after this call. 716 */ 717 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb, 718 handle_t *handle, 719 struct inode *inode, 720 struct buffer_head *fe_bh, 721 struct ocfs2_alloc_context *meta_ac, 722 struct buffer_head **ret_new_eb_bh) 723 { 724 int status, i; 725 u32 new_clusters; 726 struct buffer_head *new_eb_bh = NULL; 727 struct ocfs2_dinode *fe; 728 struct ocfs2_extent_block *eb; 729 struct ocfs2_extent_list *fe_el; 730 struct ocfs2_extent_list *eb_el; 731 732 mlog_entry_void(); 733 734 status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac, 735 &new_eb_bh); 736 if (status < 0) { 737 mlog_errno(status); 738 goto bail; 739 } 740 741 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data; 742 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 743 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); 744 status = -EIO; 745 goto bail; 746 } 747 748 eb_el = &eb->h_list; 749 fe = (struct ocfs2_dinode *) fe_bh->b_data; 750 fe_el = &fe->id2.i_list; 751 752 status = ocfs2_journal_access(handle, inode, new_eb_bh, 753 OCFS2_JOURNAL_ACCESS_CREATE); 754 if (status < 0) { 755 mlog_errno(status); 756 goto bail; 757 } 758 759 /* copy the fe data into the new extent block */ 760 eb_el->l_tree_depth = fe_el->l_tree_depth; 761 eb_el->l_next_free_rec = fe_el->l_next_free_rec; 762 for(i = 0; i < le16_to_cpu(fe_el->l_next_free_rec); i++) 763 eb_el->l_recs[i] = fe_el->l_recs[i]; 764 765 status = ocfs2_journal_dirty(handle, new_eb_bh); 766 if (status < 0) { 767 mlog_errno(status); 768 goto bail; 769 } 770 771 status = ocfs2_journal_access(handle, inode, fe_bh, 772 OCFS2_JOURNAL_ACCESS_WRITE); 773 if (status < 0) { 774 mlog_errno(status); 775 goto bail; 776 } 777 778 new_clusters = ocfs2_sum_rightmost_rec(eb_el); 779 780 /* update fe now */ 781 le16_add_cpu(&fe_el->l_tree_depth, 1); 782 fe_el->l_recs[0].e_cpos = 0; 783 fe_el->l_recs[0].e_blkno = eb->h_blkno; 784 fe_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters); 785 for(i = 1; i < le16_to_cpu(fe_el->l_next_free_rec); i++) 786 memset(&fe_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 787 fe_el->l_next_free_rec = cpu_to_le16(1); 788 789 /* If this is our 1st tree depth shift, then last_eb_blk 790 * becomes the allocated extent block */ 791 if (fe_el->l_tree_depth == cpu_to_le16(1)) 792 fe->i_last_eb_blk = eb->h_blkno; 793 794 status = ocfs2_journal_dirty(handle, fe_bh); 795 if (status < 0) { 796 mlog_errno(status); 797 goto bail; 798 } 799 800 *ret_new_eb_bh = new_eb_bh; 801 new_eb_bh = NULL; 802 status = 0; 803 bail: 804 if (new_eb_bh) 805 brelse(new_eb_bh); 806 807 mlog_exit(status); 808 return status; 809 } 810 811 /* 812 * Should only be called when there is no space left in any of the 813 * leaf nodes. What we want to do is find the lowest tree depth 814 * non-leaf extent block with room for new records. There are three 815 * valid results of this search: 816 * 817 * 1) a lowest extent block is found, then we pass it back in 818 * *lowest_eb_bh and return '0' 819 * 820 * 2) the search fails to find anything, but the dinode has room. We 821 * pass NULL back in *lowest_eb_bh, but still return '0' 822 * 823 * 3) the search fails to find anything AND the dinode is full, in 824 * which case we return > 0 825 * 826 * return status < 0 indicates an error. 827 */ 828 static int ocfs2_find_branch_target(struct ocfs2_super *osb, 829 struct inode *inode, 830 struct buffer_head *fe_bh, 831 struct buffer_head **target_bh) 832 { 833 int status = 0, i; 834 u64 blkno; 835 struct ocfs2_dinode *fe; 836 struct ocfs2_extent_block *eb; 837 struct ocfs2_extent_list *el; 838 struct buffer_head *bh = NULL; 839 struct buffer_head *lowest_bh = NULL; 840 841 mlog_entry_void(); 842 843 *target_bh = NULL; 844 845 fe = (struct ocfs2_dinode *) fe_bh->b_data; 846 el = &fe->id2.i_list; 847 848 while(le16_to_cpu(el->l_tree_depth) > 1) { 849 if (le16_to_cpu(el->l_next_free_rec) == 0) { 850 ocfs2_error(inode->i_sb, "Dinode %llu has empty " 851 "extent list (next_free_rec == 0)", 852 (unsigned long long)OCFS2_I(inode)->ip_blkno); 853 status = -EIO; 854 goto bail; 855 } 856 i = le16_to_cpu(el->l_next_free_rec) - 1; 857 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 858 if (!blkno) { 859 ocfs2_error(inode->i_sb, "Dinode %llu has extent " 860 "list where extent # %d has no physical " 861 "block start", 862 (unsigned long long)OCFS2_I(inode)->ip_blkno, i); 863 status = -EIO; 864 goto bail; 865 } 866 867 if (bh) { 868 brelse(bh); 869 bh = NULL; 870 } 871 872 status = ocfs2_read_block(osb, blkno, &bh, OCFS2_BH_CACHED, 873 inode); 874 if (status < 0) { 875 mlog_errno(status); 876 goto bail; 877 } 878 879 eb = (struct ocfs2_extent_block *) bh->b_data; 880 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 881 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); 882 status = -EIO; 883 goto bail; 884 } 885 el = &eb->h_list; 886 887 if (le16_to_cpu(el->l_next_free_rec) < 888 le16_to_cpu(el->l_count)) { 889 if (lowest_bh) 890 brelse(lowest_bh); 891 lowest_bh = bh; 892 get_bh(lowest_bh); 893 } 894 } 895 896 /* If we didn't find one and the fe doesn't have any room, 897 * then return '1' */ 898 if (!lowest_bh 899 && (fe->id2.i_list.l_next_free_rec == fe->id2.i_list.l_count)) 900 status = 1; 901 902 *target_bh = lowest_bh; 903 bail: 904 if (bh) 905 brelse(bh); 906 907 mlog_exit(status); 908 return status; 909 } 910 911 /* 912 * Grow a b-tree so that it has more records. 913 * 914 * We might shift the tree depth in which case existing paths should 915 * be considered invalid. 916 * 917 * Tree depth after the grow is returned via *final_depth. 918 * 919 * *last_eb_bh will be updated by ocfs2_add_branch(). 920 */ 921 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle, 922 struct buffer_head *di_bh, int *final_depth, 923 struct buffer_head **last_eb_bh, 924 struct ocfs2_alloc_context *meta_ac) 925 { 926 int ret, shift; 927 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 928 int depth = le16_to_cpu(di->id2.i_list.l_tree_depth); 929 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 930 struct buffer_head *bh = NULL; 931 932 BUG_ON(meta_ac == NULL); 933 934 shift = ocfs2_find_branch_target(osb, inode, di_bh, &bh); 935 if (shift < 0) { 936 ret = shift; 937 mlog_errno(ret); 938 goto out; 939 } 940 941 /* We traveled all the way to the bottom of the allocation tree 942 * and didn't find room for any more extents - we need to add 943 * another tree level */ 944 if (shift) { 945 BUG_ON(bh); 946 mlog(0, "need to shift tree depth (current = %d)\n", depth); 947 948 /* ocfs2_shift_tree_depth will return us a buffer with 949 * the new extent block (so we can pass that to 950 * ocfs2_add_branch). */ 951 ret = ocfs2_shift_tree_depth(osb, handle, inode, di_bh, 952 meta_ac, &bh); 953 if (ret < 0) { 954 mlog_errno(ret); 955 goto out; 956 } 957 depth++; 958 if (depth == 1) { 959 /* 960 * Special case: we have room now if we shifted from 961 * tree_depth 0, so no more work needs to be done. 962 * 963 * We won't be calling add_branch, so pass 964 * back *last_eb_bh as the new leaf. At depth 965 * zero, it should always be null so there's 966 * no reason to brelse. 967 */ 968 BUG_ON(*last_eb_bh); 969 get_bh(bh); 970 *last_eb_bh = bh; 971 goto out; 972 } 973 } 974 975 /* call ocfs2_add_branch to add the final part of the tree with 976 * the new data. */ 977 mlog(0, "add branch. bh = %p\n", bh); 978 ret = ocfs2_add_branch(osb, handle, inode, di_bh, bh, last_eb_bh, 979 meta_ac); 980 if (ret < 0) { 981 mlog_errno(ret); 982 goto out; 983 } 984 985 out: 986 if (final_depth) 987 *final_depth = depth; 988 brelse(bh); 989 return ret; 990 } 991 992 /* 993 * This is only valid for leaf nodes, which are the only ones that can 994 * have empty extents anyway. 995 */ 996 static inline int ocfs2_is_empty_extent(struct ocfs2_extent_rec *rec) 997 { 998 return !rec->e_leaf_clusters; 999 } 1000 1001 /* 1002 * This function will discard the rightmost extent record. 1003 */ 1004 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el) 1005 { 1006 int next_free = le16_to_cpu(el->l_next_free_rec); 1007 int count = le16_to_cpu(el->l_count); 1008 unsigned int num_bytes; 1009 1010 BUG_ON(!next_free); 1011 /* This will cause us to go off the end of our extent list. */ 1012 BUG_ON(next_free >= count); 1013 1014 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free; 1015 1016 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes); 1017 } 1018 1019 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el, 1020 struct ocfs2_extent_rec *insert_rec) 1021 { 1022 int i, insert_index, next_free, has_empty, num_bytes; 1023 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos); 1024 struct ocfs2_extent_rec *rec; 1025 1026 next_free = le16_to_cpu(el->l_next_free_rec); 1027 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]); 1028 1029 BUG_ON(!next_free); 1030 1031 /* The tree code before us didn't allow enough room in the leaf. */ 1032 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty); 1033 1034 /* 1035 * The easiest way to approach this is to just remove the 1036 * empty extent and temporarily decrement next_free. 1037 */ 1038 if (has_empty) { 1039 /* 1040 * If next_free was 1 (only an empty extent), this 1041 * loop won't execute, which is fine. We still want 1042 * the decrement above to happen. 1043 */ 1044 for(i = 0; i < (next_free - 1); i++) 1045 el->l_recs[i] = el->l_recs[i+1]; 1046 1047 next_free--; 1048 } 1049 1050 /* 1051 * Figure out what the new record index should be. 1052 */ 1053 for(i = 0; i < next_free; i++) { 1054 rec = &el->l_recs[i]; 1055 1056 if (insert_cpos < le32_to_cpu(rec->e_cpos)) 1057 break; 1058 } 1059 insert_index = i; 1060 1061 mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n", 1062 insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count)); 1063 1064 BUG_ON(insert_index < 0); 1065 BUG_ON(insert_index >= le16_to_cpu(el->l_count)); 1066 BUG_ON(insert_index > next_free); 1067 1068 /* 1069 * No need to memmove if we're just adding to the tail. 1070 */ 1071 if (insert_index != next_free) { 1072 BUG_ON(next_free >= le16_to_cpu(el->l_count)); 1073 1074 num_bytes = next_free - insert_index; 1075 num_bytes *= sizeof(struct ocfs2_extent_rec); 1076 memmove(&el->l_recs[insert_index + 1], 1077 &el->l_recs[insert_index], 1078 num_bytes); 1079 } 1080 1081 /* 1082 * Either we had an empty extent, and need to re-increment or 1083 * there was no empty extent on a non full rightmost leaf node, 1084 * in which case we still need to increment. 1085 */ 1086 next_free++; 1087 el->l_next_free_rec = cpu_to_le16(next_free); 1088 /* 1089 * Make sure none of the math above just messed up our tree. 1090 */ 1091 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count)); 1092 1093 el->l_recs[insert_index] = *insert_rec; 1094 1095 } 1096 1097 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el) 1098 { 1099 int size, num_recs = le16_to_cpu(el->l_next_free_rec); 1100 1101 BUG_ON(num_recs == 0); 1102 1103 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 1104 num_recs--; 1105 size = num_recs * sizeof(struct ocfs2_extent_rec); 1106 memmove(&el->l_recs[0], &el->l_recs[1], size); 1107 memset(&el->l_recs[num_recs], 0, 1108 sizeof(struct ocfs2_extent_rec)); 1109 el->l_next_free_rec = cpu_to_le16(num_recs); 1110 } 1111 } 1112 1113 /* 1114 * Create an empty extent record . 1115 * 1116 * l_next_free_rec may be updated. 1117 * 1118 * If an empty extent already exists do nothing. 1119 */ 1120 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el) 1121 { 1122 int next_free = le16_to_cpu(el->l_next_free_rec); 1123 1124 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 1125 1126 if (next_free == 0) 1127 goto set_and_inc; 1128 1129 if (ocfs2_is_empty_extent(&el->l_recs[0])) 1130 return; 1131 1132 mlog_bug_on_msg(el->l_count == el->l_next_free_rec, 1133 "Asked to create an empty extent in a full list:\n" 1134 "count = %u, tree depth = %u", 1135 le16_to_cpu(el->l_count), 1136 le16_to_cpu(el->l_tree_depth)); 1137 1138 ocfs2_shift_records_right(el); 1139 1140 set_and_inc: 1141 le16_add_cpu(&el->l_next_free_rec, 1); 1142 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 1143 } 1144 1145 /* 1146 * For a rotation which involves two leaf nodes, the "root node" is 1147 * the lowest level tree node which contains a path to both leafs. This 1148 * resulting set of information can be used to form a complete "subtree" 1149 * 1150 * This function is passed two full paths from the dinode down to a 1151 * pair of adjacent leaves. It's task is to figure out which path 1152 * index contains the subtree root - this can be the root index itself 1153 * in a worst-case rotation. 1154 * 1155 * The array index of the subtree root is passed back. 1156 */ 1157 static int ocfs2_find_subtree_root(struct inode *inode, 1158 struct ocfs2_path *left, 1159 struct ocfs2_path *right) 1160 { 1161 int i = 0; 1162 1163 /* 1164 * Check that the caller passed in two paths from the same tree. 1165 */ 1166 BUG_ON(path_root_bh(left) != path_root_bh(right)); 1167 1168 do { 1169 i++; 1170 1171 /* 1172 * The caller didn't pass two adjacent paths. 1173 */ 1174 mlog_bug_on_msg(i > left->p_tree_depth, 1175 "Inode %lu, left depth %u, right depth %u\n" 1176 "left leaf blk %llu, right leaf blk %llu\n", 1177 inode->i_ino, left->p_tree_depth, 1178 right->p_tree_depth, 1179 (unsigned long long)path_leaf_bh(left)->b_blocknr, 1180 (unsigned long long)path_leaf_bh(right)->b_blocknr); 1181 } while (left->p_node[i].bh->b_blocknr == 1182 right->p_node[i].bh->b_blocknr); 1183 1184 return i - 1; 1185 } 1186 1187 typedef void (path_insert_t)(void *, struct buffer_head *); 1188 1189 /* 1190 * Traverse a btree path in search of cpos, starting at root_el. 1191 * 1192 * This code can be called with a cpos larger than the tree, in which 1193 * case it will return the rightmost path. 1194 */ 1195 static int __ocfs2_find_path(struct inode *inode, 1196 struct ocfs2_extent_list *root_el, u32 cpos, 1197 path_insert_t *func, void *data) 1198 { 1199 int i, ret = 0; 1200 u32 range; 1201 u64 blkno; 1202 struct buffer_head *bh = NULL; 1203 struct ocfs2_extent_block *eb; 1204 struct ocfs2_extent_list *el; 1205 struct ocfs2_extent_rec *rec; 1206 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1207 1208 el = root_el; 1209 while (el->l_tree_depth) { 1210 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1211 ocfs2_error(inode->i_sb, 1212 "Inode %llu has empty extent list at " 1213 "depth %u\n", 1214 (unsigned long long)oi->ip_blkno, 1215 le16_to_cpu(el->l_tree_depth)); 1216 ret = -EROFS; 1217 goto out; 1218 1219 } 1220 1221 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) { 1222 rec = &el->l_recs[i]; 1223 1224 /* 1225 * In the case that cpos is off the allocation 1226 * tree, this should just wind up returning the 1227 * rightmost record. 1228 */ 1229 range = le32_to_cpu(rec->e_cpos) + 1230 ocfs2_rec_clusters(el, rec); 1231 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 1232 break; 1233 } 1234 1235 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1236 if (blkno == 0) { 1237 ocfs2_error(inode->i_sb, 1238 "Inode %llu has bad blkno in extent list " 1239 "at depth %u (index %d)\n", 1240 (unsigned long long)oi->ip_blkno, 1241 le16_to_cpu(el->l_tree_depth), i); 1242 ret = -EROFS; 1243 goto out; 1244 } 1245 1246 brelse(bh); 1247 bh = NULL; 1248 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), blkno, 1249 &bh, OCFS2_BH_CACHED, inode); 1250 if (ret) { 1251 mlog_errno(ret); 1252 goto out; 1253 } 1254 1255 eb = (struct ocfs2_extent_block *) bh->b_data; 1256 el = &eb->h_list; 1257 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 1258 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); 1259 ret = -EIO; 1260 goto out; 1261 } 1262 1263 if (le16_to_cpu(el->l_next_free_rec) > 1264 le16_to_cpu(el->l_count)) { 1265 ocfs2_error(inode->i_sb, 1266 "Inode %llu has bad count in extent list " 1267 "at block %llu (next free=%u, count=%u)\n", 1268 (unsigned long long)oi->ip_blkno, 1269 (unsigned long long)bh->b_blocknr, 1270 le16_to_cpu(el->l_next_free_rec), 1271 le16_to_cpu(el->l_count)); 1272 ret = -EROFS; 1273 goto out; 1274 } 1275 1276 if (func) 1277 func(data, bh); 1278 } 1279 1280 out: 1281 /* 1282 * Catch any trailing bh that the loop didn't handle. 1283 */ 1284 brelse(bh); 1285 1286 return ret; 1287 } 1288 1289 /* 1290 * Given an initialized path (that is, it has a valid root extent 1291 * list), this function will traverse the btree in search of the path 1292 * which would contain cpos. 1293 * 1294 * The path traveled is recorded in the path structure. 1295 * 1296 * Note that this will not do any comparisons on leaf node extent 1297 * records, so it will work fine in the case that we just added a tree 1298 * branch. 1299 */ 1300 struct find_path_data { 1301 int index; 1302 struct ocfs2_path *path; 1303 }; 1304 static void find_path_ins(void *data, struct buffer_head *bh) 1305 { 1306 struct find_path_data *fp = data; 1307 1308 get_bh(bh); 1309 ocfs2_path_insert_eb(fp->path, fp->index, bh); 1310 fp->index++; 1311 } 1312 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path, 1313 u32 cpos) 1314 { 1315 struct find_path_data data; 1316 1317 data.index = 1; 1318 data.path = path; 1319 return __ocfs2_find_path(inode, path_root_el(path), cpos, 1320 find_path_ins, &data); 1321 } 1322 1323 static void find_leaf_ins(void *data, struct buffer_head *bh) 1324 { 1325 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data; 1326 struct ocfs2_extent_list *el = &eb->h_list; 1327 struct buffer_head **ret = data; 1328 1329 /* We want to retain only the leaf block. */ 1330 if (le16_to_cpu(el->l_tree_depth) == 0) { 1331 get_bh(bh); 1332 *ret = bh; 1333 } 1334 } 1335 /* 1336 * Find the leaf block in the tree which would contain cpos. No 1337 * checking of the actual leaf is done. 1338 * 1339 * Some paths want to call this instead of allocating a path structure 1340 * and calling ocfs2_find_path(). 1341 * 1342 * This function doesn't handle non btree extent lists. 1343 */ 1344 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el, 1345 u32 cpos, struct buffer_head **leaf_bh) 1346 { 1347 int ret; 1348 struct buffer_head *bh = NULL; 1349 1350 ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh); 1351 if (ret) { 1352 mlog_errno(ret); 1353 goto out; 1354 } 1355 1356 *leaf_bh = bh; 1357 out: 1358 return ret; 1359 } 1360 1361 /* 1362 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation. 1363 * 1364 * Basically, we've moved stuff around at the bottom of the tree and 1365 * we need to fix up the extent records above the changes to reflect 1366 * the new changes. 1367 * 1368 * left_rec: the record on the left. 1369 * left_child_el: is the child list pointed to by left_rec 1370 * right_rec: the record to the right of left_rec 1371 * right_child_el: is the child list pointed to by right_rec 1372 * 1373 * By definition, this only works on interior nodes. 1374 */ 1375 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec, 1376 struct ocfs2_extent_list *left_child_el, 1377 struct ocfs2_extent_rec *right_rec, 1378 struct ocfs2_extent_list *right_child_el) 1379 { 1380 u32 left_clusters, right_end; 1381 1382 /* 1383 * Interior nodes never have holes. Their cpos is the cpos of 1384 * the leftmost record in their child list. Their cluster 1385 * count covers the full theoretical range of their child list 1386 * - the range between their cpos and the cpos of the record 1387 * immediately to their right. 1388 */ 1389 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos); 1390 if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) { 1391 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1); 1392 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos); 1393 } 1394 left_clusters -= le32_to_cpu(left_rec->e_cpos); 1395 left_rec->e_int_clusters = cpu_to_le32(left_clusters); 1396 1397 /* 1398 * Calculate the rightmost cluster count boundary before 1399 * moving cpos - we will need to adjust clusters after 1400 * updating e_cpos to keep the same highest cluster count. 1401 */ 1402 right_end = le32_to_cpu(right_rec->e_cpos); 1403 right_end += le32_to_cpu(right_rec->e_int_clusters); 1404 1405 right_rec->e_cpos = left_rec->e_cpos; 1406 le32_add_cpu(&right_rec->e_cpos, left_clusters); 1407 1408 right_end -= le32_to_cpu(right_rec->e_cpos); 1409 right_rec->e_int_clusters = cpu_to_le32(right_end); 1410 } 1411 1412 /* 1413 * Adjust the adjacent root node records involved in a 1414 * rotation. left_el_blkno is passed in as a key so that we can easily 1415 * find it's index in the root list. 1416 */ 1417 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el, 1418 struct ocfs2_extent_list *left_el, 1419 struct ocfs2_extent_list *right_el, 1420 u64 left_el_blkno) 1421 { 1422 int i; 1423 1424 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <= 1425 le16_to_cpu(left_el->l_tree_depth)); 1426 1427 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) { 1428 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno) 1429 break; 1430 } 1431 1432 /* 1433 * The path walking code should have never returned a root and 1434 * two paths which are not adjacent. 1435 */ 1436 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1)); 1437 1438 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el, 1439 &root_el->l_recs[i + 1], right_el); 1440 } 1441 1442 /* 1443 * We've changed a leaf block (in right_path) and need to reflect that 1444 * change back up the subtree. 1445 * 1446 * This happens in multiple places: 1447 * - When we've moved an extent record from the left path leaf to the right 1448 * path leaf to make room for an empty extent in the left path leaf. 1449 * - When our insert into the right path leaf is at the leftmost edge 1450 * and requires an update of the path immediately to it's left. This 1451 * can occur at the end of some types of rotation and appending inserts. 1452 * - When we've adjusted the last extent record in the left path leaf and the 1453 * 1st extent record in the right path leaf during cross extent block merge. 1454 */ 1455 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle, 1456 struct ocfs2_path *left_path, 1457 struct ocfs2_path *right_path, 1458 int subtree_index) 1459 { 1460 int ret, i, idx; 1461 struct ocfs2_extent_list *el, *left_el, *right_el; 1462 struct ocfs2_extent_rec *left_rec, *right_rec; 1463 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 1464 1465 /* 1466 * Update the counts and position values within all the 1467 * interior nodes to reflect the leaf rotation we just did. 1468 * 1469 * The root node is handled below the loop. 1470 * 1471 * We begin the loop with right_el and left_el pointing to the 1472 * leaf lists and work our way up. 1473 * 1474 * NOTE: within this loop, left_el and right_el always refer 1475 * to the *child* lists. 1476 */ 1477 left_el = path_leaf_el(left_path); 1478 right_el = path_leaf_el(right_path); 1479 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) { 1480 mlog(0, "Adjust records at index %u\n", i); 1481 1482 /* 1483 * One nice property of knowing that all of these 1484 * nodes are below the root is that we only deal with 1485 * the leftmost right node record and the rightmost 1486 * left node record. 1487 */ 1488 el = left_path->p_node[i].el; 1489 idx = le16_to_cpu(left_el->l_next_free_rec) - 1; 1490 left_rec = &el->l_recs[idx]; 1491 1492 el = right_path->p_node[i].el; 1493 right_rec = &el->l_recs[0]; 1494 1495 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec, 1496 right_el); 1497 1498 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh); 1499 if (ret) 1500 mlog_errno(ret); 1501 1502 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh); 1503 if (ret) 1504 mlog_errno(ret); 1505 1506 /* 1507 * Setup our list pointers now so that the current 1508 * parents become children in the next iteration. 1509 */ 1510 left_el = left_path->p_node[i].el; 1511 right_el = right_path->p_node[i].el; 1512 } 1513 1514 /* 1515 * At the root node, adjust the two adjacent records which 1516 * begin our path to the leaves. 1517 */ 1518 1519 el = left_path->p_node[subtree_index].el; 1520 left_el = left_path->p_node[subtree_index + 1].el; 1521 right_el = right_path->p_node[subtree_index + 1].el; 1522 1523 ocfs2_adjust_root_records(el, left_el, right_el, 1524 left_path->p_node[subtree_index + 1].bh->b_blocknr); 1525 1526 root_bh = left_path->p_node[subtree_index].bh; 1527 1528 ret = ocfs2_journal_dirty(handle, root_bh); 1529 if (ret) 1530 mlog_errno(ret); 1531 } 1532 1533 static int ocfs2_rotate_subtree_right(struct inode *inode, 1534 handle_t *handle, 1535 struct ocfs2_path *left_path, 1536 struct ocfs2_path *right_path, 1537 int subtree_index) 1538 { 1539 int ret, i; 1540 struct buffer_head *right_leaf_bh; 1541 struct buffer_head *left_leaf_bh = NULL; 1542 struct buffer_head *root_bh; 1543 struct ocfs2_extent_list *right_el, *left_el; 1544 struct ocfs2_extent_rec move_rec; 1545 1546 left_leaf_bh = path_leaf_bh(left_path); 1547 left_el = path_leaf_el(left_path); 1548 1549 if (left_el->l_next_free_rec != left_el->l_count) { 1550 ocfs2_error(inode->i_sb, 1551 "Inode %llu has non-full interior leaf node %llu" 1552 "(next free = %u)", 1553 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1554 (unsigned long long)left_leaf_bh->b_blocknr, 1555 le16_to_cpu(left_el->l_next_free_rec)); 1556 return -EROFS; 1557 } 1558 1559 /* 1560 * This extent block may already have an empty record, so we 1561 * return early if so. 1562 */ 1563 if (ocfs2_is_empty_extent(&left_el->l_recs[0])) 1564 return 0; 1565 1566 root_bh = left_path->p_node[subtree_index].bh; 1567 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 1568 1569 ret = ocfs2_journal_access(handle, inode, root_bh, 1570 OCFS2_JOURNAL_ACCESS_WRITE); 1571 if (ret) { 1572 mlog_errno(ret); 1573 goto out; 1574 } 1575 1576 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 1577 ret = ocfs2_journal_access(handle, inode, 1578 right_path->p_node[i].bh, 1579 OCFS2_JOURNAL_ACCESS_WRITE); 1580 if (ret) { 1581 mlog_errno(ret); 1582 goto out; 1583 } 1584 1585 ret = ocfs2_journal_access(handle, inode, 1586 left_path->p_node[i].bh, 1587 OCFS2_JOURNAL_ACCESS_WRITE); 1588 if (ret) { 1589 mlog_errno(ret); 1590 goto out; 1591 } 1592 } 1593 1594 right_leaf_bh = path_leaf_bh(right_path); 1595 right_el = path_leaf_el(right_path); 1596 1597 /* This is a code error, not a disk corruption. */ 1598 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails " 1599 "because rightmost leaf block %llu is empty\n", 1600 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1601 (unsigned long long)right_leaf_bh->b_blocknr); 1602 1603 ocfs2_create_empty_extent(right_el); 1604 1605 ret = ocfs2_journal_dirty(handle, right_leaf_bh); 1606 if (ret) { 1607 mlog_errno(ret); 1608 goto out; 1609 } 1610 1611 /* Do the copy now. */ 1612 i = le16_to_cpu(left_el->l_next_free_rec) - 1; 1613 move_rec = left_el->l_recs[i]; 1614 right_el->l_recs[0] = move_rec; 1615 1616 /* 1617 * Clear out the record we just copied and shift everything 1618 * over, leaving an empty extent in the left leaf. 1619 * 1620 * We temporarily subtract from next_free_rec so that the 1621 * shift will lose the tail record (which is now defunct). 1622 */ 1623 le16_add_cpu(&left_el->l_next_free_rec, -1); 1624 ocfs2_shift_records_right(left_el); 1625 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 1626 le16_add_cpu(&left_el->l_next_free_rec, 1); 1627 1628 ret = ocfs2_journal_dirty(handle, left_leaf_bh); 1629 if (ret) { 1630 mlog_errno(ret); 1631 goto out; 1632 } 1633 1634 ocfs2_complete_edge_insert(inode, handle, left_path, right_path, 1635 subtree_index); 1636 1637 out: 1638 return ret; 1639 } 1640 1641 /* 1642 * Given a full path, determine what cpos value would return us a path 1643 * containing the leaf immediately to the left of the current one. 1644 * 1645 * Will return zero if the path passed in is already the leftmost path. 1646 */ 1647 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb, 1648 struct ocfs2_path *path, u32 *cpos) 1649 { 1650 int i, j, ret = 0; 1651 u64 blkno; 1652 struct ocfs2_extent_list *el; 1653 1654 BUG_ON(path->p_tree_depth == 0); 1655 1656 *cpos = 0; 1657 1658 blkno = path_leaf_bh(path)->b_blocknr; 1659 1660 /* Start at the tree node just above the leaf and work our way up. */ 1661 i = path->p_tree_depth - 1; 1662 while (i >= 0) { 1663 el = path->p_node[i].el; 1664 1665 /* 1666 * Find the extent record just before the one in our 1667 * path. 1668 */ 1669 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 1670 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 1671 if (j == 0) { 1672 if (i == 0) { 1673 /* 1674 * We've determined that the 1675 * path specified is already 1676 * the leftmost one - return a 1677 * cpos of zero. 1678 */ 1679 goto out; 1680 } 1681 /* 1682 * The leftmost record points to our 1683 * leaf - we need to travel up the 1684 * tree one level. 1685 */ 1686 goto next_node; 1687 } 1688 1689 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos); 1690 *cpos = *cpos + ocfs2_rec_clusters(el, 1691 &el->l_recs[j - 1]); 1692 *cpos = *cpos - 1; 1693 goto out; 1694 } 1695 } 1696 1697 /* 1698 * If we got here, we never found a valid node where 1699 * the tree indicated one should be. 1700 */ 1701 ocfs2_error(sb, 1702 "Invalid extent tree at extent block %llu\n", 1703 (unsigned long long)blkno); 1704 ret = -EROFS; 1705 goto out; 1706 1707 next_node: 1708 blkno = path->p_node[i].bh->b_blocknr; 1709 i--; 1710 } 1711 1712 out: 1713 return ret; 1714 } 1715 1716 /* 1717 * Extend the transaction by enough credits to complete the rotation, 1718 * and still leave at least the original number of credits allocated 1719 * to this transaction. 1720 */ 1721 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth, 1722 int op_credits, 1723 struct ocfs2_path *path) 1724 { 1725 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits; 1726 1727 if (handle->h_buffer_credits < credits) 1728 return ocfs2_extend_trans(handle, credits); 1729 1730 return 0; 1731 } 1732 1733 /* 1734 * Trap the case where we're inserting into the theoretical range past 1735 * the _actual_ left leaf range. Otherwise, we'll rotate a record 1736 * whose cpos is less than ours into the right leaf. 1737 * 1738 * It's only necessary to look at the rightmost record of the left 1739 * leaf because the logic that calls us should ensure that the 1740 * theoretical ranges in the path components above the leaves are 1741 * correct. 1742 */ 1743 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path, 1744 u32 insert_cpos) 1745 { 1746 struct ocfs2_extent_list *left_el; 1747 struct ocfs2_extent_rec *rec; 1748 int next_free; 1749 1750 left_el = path_leaf_el(left_path); 1751 next_free = le16_to_cpu(left_el->l_next_free_rec); 1752 rec = &left_el->l_recs[next_free - 1]; 1753 1754 if (insert_cpos > le32_to_cpu(rec->e_cpos)) 1755 return 1; 1756 return 0; 1757 } 1758 1759 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos) 1760 { 1761 int next_free = le16_to_cpu(el->l_next_free_rec); 1762 unsigned int range; 1763 struct ocfs2_extent_rec *rec; 1764 1765 if (next_free == 0) 1766 return 0; 1767 1768 rec = &el->l_recs[0]; 1769 if (ocfs2_is_empty_extent(rec)) { 1770 /* Empty list. */ 1771 if (next_free == 1) 1772 return 0; 1773 rec = &el->l_recs[1]; 1774 } 1775 1776 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 1777 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 1778 return 1; 1779 return 0; 1780 } 1781 1782 /* 1783 * Rotate all the records in a btree right one record, starting at insert_cpos. 1784 * 1785 * The path to the rightmost leaf should be passed in. 1786 * 1787 * The array is assumed to be large enough to hold an entire path (tree depth). 1788 * 1789 * Upon succesful return from this function: 1790 * 1791 * - The 'right_path' array will contain a path to the leaf block 1792 * whose range contains e_cpos. 1793 * - That leaf block will have a single empty extent in list index 0. 1794 * - In the case that the rotation requires a post-insert update, 1795 * *ret_left_path will contain a valid path which can be passed to 1796 * ocfs2_insert_path(). 1797 */ 1798 static int ocfs2_rotate_tree_right(struct inode *inode, 1799 handle_t *handle, 1800 enum ocfs2_split_type split, 1801 u32 insert_cpos, 1802 struct ocfs2_path *right_path, 1803 struct ocfs2_path **ret_left_path) 1804 { 1805 int ret, start, orig_credits = handle->h_buffer_credits; 1806 u32 cpos; 1807 struct ocfs2_path *left_path = NULL; 1808 1809 *ret_left_path = NULL; 1810 1811 left_path = ocfs2_new_path(path_root_bh(right_path), 1812 path_root_el(right_path)); 1813 if (!left_path) { 1814 ret = -ENOMEM; 1815 mlog_errno(ret); 1816 goto out; 1817 } 1818 1819 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos); 1820 if (ret) { 1821 mlog_errno(ret); 1822 goto out; 1823 } 1824 1825 mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos); 1826 1827 /* 1828 * What we want to do here is: 1829 * 1830 * 1) Start with the rightmost path. 1831 * 1832 * 2) Determine a path to the leaf block directly to the left 1833 * of that leaf. 1834 * 1835 * 3) Determine the 'subtree root' - the lowest level tree node 1836 * which contains a path to both leaves. 1837 * 1838 * 4) Rotate the subtree. 1839 * 1840 * 5) Find the next subtree by considering the left path to be 1841 * the new right path. 1842 * 1843 * The check at the top of this while loop also accepts 1844 * insert_cpos == cpos because cpos is only a _theoretical_ 1845 * value to get us the left path - insert_cpos might very well 1846 * be filling that hole. 1847 * 1848 * Stop at a cpos of '0' because we either started at the 1849 * leftmost branch (i.e., a tree with one branch and a 1850 * rotation inside of it), or we've gone as far as we can in 1851 * rotating subtrees. 1852 */ 1853 while (cpos && insert_cpos <= cpos) { 1854 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n", 1855 insert_cpos, cpos); 1856 1857 ret = ocfs2_find_path(inode, left_path, cpos); 1858 if (ret) { 1859 mlog_errno(ret); 1860 goto out; 1861 } 1862 1863 mlog_bug_on_msg(path_leaf_bh(left_path) == 1864 path_leaf_bh(right_path), 1865 "Inode %lu: error during insert of %u " 1866 "(left path cpos %u) results in two identical " 1867 "paths ending at %llu\n", 1868 inode->i_ino, insert_cpos, cpos, 1869 (unsigned long long) 1870 path_leaf_bh(left_path)->b_blocknr); 1871 1872 if (split == SPLIT_NONE && 1873 ocfs2_rotate_requires_path_adjustment(left_path, 1874 insert_cpos)) { 1875 1876 /* 1877 * We've rotated the tree as much as we 1878 * should. The rest is up to 1879 * ocfs2_insert_path() to complete, after the 1880 * record insertion. We indicate this 1881 * situation by returning the left path. 1882 * 1883 * The reason we don't adjust the records here 1884 * before the record insert is that an error 1885 * later might break the rule where a parent 1886 * record e_cpos will reflect the actual 1887 * e_cpos of the 1st nonempty record of the 1888 * child list. 1889 */ 1890 *ret_left_path = left_path; 1891 goto out_ret_path; 1892 } 1893 1894 start = ocfs2_find_subtree_root(inode, left_path, right_path); 1895 1896 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n", 1897 start, 1898 (unsigned long long) right_path->p_node[start].bh->b_blocknr, 1899 right_path->p_tree_depth); 1900 1901 ret = ocfs2_extend_rotate_transaction(handle, start, 1902 orig_credits, right_path); 1903 if (ret) { 1904 mlog_errno(ret); 1905 goto out; 1906 } 1907 1908 ret = ocfs2_rotate_subtree_right(inode, handle, left_path, 1909 right_path, start); 1910 if (ret) { 1911 mlog_errno(ret); 1912 goto out; 1913 } 1914 1915 if (split != SPLIT_NONE && 1916 ocfs2_leftmost_rec_contains(path_leaf_el(right_path), 1917 insert_cpos)) { 1918 /* 1919 * A rotate moves the rightmost left leaf 1920 * record over to the leftmost right leaf 1921 * slot. If we're doing an extent split 1922 * instead of a real insert, then we have to 1923 * check that the extent to be split wasn't 1924 * just moved over. If it was, then we can 1925 * exit here, passing left_path back - 1926 * ocfs2_split_extent() is smart enough to 1927 * search both leaves. 1928 */ 1929 *ret_left_path = left_path; 1930 goto out_ret_path; 1931 } 1932 1933 /* 1934 * There is no need to re-read the next right path 1935 * as we know that it'll be our current left 1936 * path. Optimize by copying values instead. 1937 */ 1938 ocfs2_mv_path(right_path, left_path); 1939 1940 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, 1941 &cpos); 1942 if (ret) { 1943 mlog_errno(ret); 1944 goto out; 1945 } 1946 } 1947 1948 out: 1949 ocfs2_free_path(left_path); 1950 1951 out_ret_path: 1952 return ret; 1953 } 1954 1955 static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle, 1956 struct ocfs2_path *path) 1957 { 1958 int i, idx; 1959 struct ocfs2_extent_rec *rec; 1960 struct ocfs2_extent_list *el; 1961 struct ocfs2_extent_block *eb; 1962 u32 range; 1963 1964 /* Path should always be rightmost. */ 1965 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 1966 BUG_ON(eb->h_next_leaf_blk != 0ULL); 1967 1968 el = &eb->h_list; 1969 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 1970 idx = le16_to_cpu(el->l_next_free_rec) - 1; 1971 rec = &el->l_recs[idx]; 1972 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 1973 1974 for (i = 0; i < path->p_tree_depth; i++) { 1975 el = path->p_node[i].el; 1976 idx = le16_to_cpu(el->l_next_free_rec) - 1; 1977 rec = &el->l_recs[idx]; 1978 1979 rec->e_int_clusters = cpu_to_le32(range); 1980 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos)); 1981 1982 ocfs2_journal_dirty(handle, path->p_node[i].bh); 1983 } 1984 } 1985 1986 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle, 1987 struct ocfs2_cached_dealloc_ctxt *dealloc, 1988 struct ocfs2_path *path, int unlink_start) 1989 { 1990 int ret, i; 1991 struct ocfs2_extent_block *eb; 1992 struct ocfs2_extent_list *el; 1993 struct buffer_head *bh; 1994 1995 for(i = unlink_start; i < path_num_items(path); i++) { 1996 bh = path->p_node[i].bh; 1997 1998 eb = (struct ocfs2_extent_block *)bh->b_data; 1999 /* 2000 * Not all nodes might have had their final count 2001 * decremented by the caller - handle this here. 2002 */ 2003 el = &eb->h_list; 2004 if (le16_to_cpu(el->l_next_free_rec) > 1) { 2005 mlog(ML_ERROR, 2006 "Inode %llu, attempted to remove extent block " 2007 "%llu with %u records\n", 2008 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2009 (unsigned long long)le64_to_cpu(eb->h_blkno), 2010 le16_to_cpu(el->l_next_free_rec)); 2011 2012 ocfs2_journal_dirty(handle, bh); 2013 ocfs2_remove_from_cache(inode, bh); 2014 continue; 2015 } 2016 2017 el->l_next_free_rec = 0; 2018 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2019 2020 ocfs2_journal_dirty(handle, bh); 2021 2022 ret = ocfs2_cache_extent_block_free(dealloc, eb); 2023 if (ret) 2024 mlog_errno(ret); 2025 2026 ocfs2_remove_from_cache(inode, bh); 2027 } 2028 } 2029 2030 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle, 2031 struct ocfs2_path *left_path, 2032 struct ocfs2_path *right_path, 2033 int subtree_index, 2034 struct ocfs2_cached_dealloc_ctxt *dealloc) 2035 { 2036 int i; 2037 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2038 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el; 2039 struct ocfs2_extent_list *el; 2040 struct ocfs2_extent_block *eb; 2041 2042 el = path_leaf_el(left_path); 2043 2044 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data; 2045 2046 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 2047 if (root_el->l_recs[i].e_blkno == eb->h_blkno) 2048 break; 2049 2050 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec)); 2051 2052 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 2053 le16_add_cpu(&root_el->l_next_free_rec, -1); 2054 2055 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2056 eb->h_next_leaf_blk = 0; 2057 2058 ocfs2_journal_dirty(handle, root_bh); 2059 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2060 2061 ocfs2_unlink_path(inode, handle, dealloc, right_path, 2062 subtree_index + 1); 2063 } 2064 2065 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle, 2066 struct ocfs2_path *left_path, 2067 struct ocfs2_path *right_path, 2068 int subtree_index, 2069 struct ocfs2_cached_dealloc_ctxt *dealloc, 2070 int *deleted) 2071 { 2072 int ret, i, del_right_subtree = 0, right_has_empty = 0; 2073 struct buffer_head *root_bh, *di_bh = path_root_bh(right_path); 2074 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 2075 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el; 2076 struct ocfs2_extent_block *eb; 2077 2078 *deleted = 0; 2079 2080 right_leaf_el = path_leaf_el(right_path); 2081 left_leaf_el = path_leaf_el(left_path); 2082 root_bh = left_path->p_node[subtree_index].bh; 2083 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2084 2085 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0])) 2086 return 0; 2087 2088 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data; 2089 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) { 2090 /* 2091 * It's legal for us to proceed if the right leaf is 2092 * the rightmost one and it has an empty extent. There 2093 * are two cases to handle - whether the leaf will be 2094 * empty after removal or not. If the leaf isn't empty 2095 * then just remove the empty extent up front. The 2096 * next block will handle empty leaves by flagging 2097 * them for unlink. 2098 * 2099 * Non rightmost leaves will throw -EAGAIN and the 2100 * caller can manually move the subtree and retry. 2101 */ 2102 2103 if (eb->h_next_leaf_blk != 0ULL) 2104 return -EAGAIN; 2105 2106 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) { 2107 ret = ocfs2_journal_access(handle, inode, 2108 path_leaf_bh(right_path), 2109 OCFS2_JOURNAL_ACCESS_WRITE); 2110 if (ret) { 2111 mlog_errno(ret); 2112 goto out; 2113 } 2114 2115 ocfs2_remove_empty_extent(right_leaf_el); 2116 } else 2117 right_has_empty = 1; 2118 } 2119 2120 if (eb->h_next_leaf_blk == 0ULL && 2121 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) { 2122 /* 2123 * We have to update i_last_eb_blk during the meta 2124 * data delete. 2125 */ 2126 ret = ocfs2_journal_access(handle, inode, di_bh, 2127 OCFS2_JOURNAL_ACCESS_WRITE); 2128 if (ret) { 2129 mlog_errno(ret); 2130 goto out; 2131 } 2132 2133 del_right_subtree = 1; 2134 } 2135 2136 /* 2137 * Getting here with an empty extent in the right path implies 2138 * that it's the rightmost path and will be deleted. 2139 */ 2140 BUG_ON(right_has_empty && !del_right_subtree); 2141 2142 ret = ocfs2_journal_access(handle, inode, root_bh, 2143 OCFS2_JOURNAL_ACCESS_WRITE); 2144 if (ret) { 2145 mlog_errno(ret); 2146 goto out; 2147 } 2148 2149 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2150 ret = ocfs2_journal_access(handle, inode, 2151 right_path->p_node[i].bh, 2152 OCFS2_JOURNAL_ACCESS_WRITE); 2153 if (ret) { 2154 mlog_errno(ret); 2155 goto out; 2156 } 2157 2158 ret = ocfs2_journal_access(handle, inode, 2159 left_path->p_node[i].bh, 2160 OCFS2_JOURNAL_ACCESS_WRITE); 2161 if (ret) { 2162 mlog_errno(ret); 2163 goto out; 2164 } 2165 } 2166 2167 if (!right_has_empty) { 2168 /* 2169 * Only do this if we're moving a real 2170 * record. Otherwise, the action is delayed until 2171 * after removal of the right path in which case we 2172 * can do a simple shift to remove the empty extent. 2173 */ 2174 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]); 2175 memset(&right_leaf_el->l_recs[0], 0, 2176 sizeof(struct ocfs2_extent_rec)); 2177 } 2178 if (eb->h_next_leaf_blk == 0ULL) { 2179 /* 2180 * Move recs over to get rid of empty extent, decrease 2181 * next_free. This is allowed to remove the last 2182 * extent in our leaf (setting l_next_free_rec to 2183 * zero) - the delete code below won't care. 2184 */ 2185 ocfs2_remove_empty_extent(right_leaf_el); 2186 } 2187 2188 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2189 if (ret) 2190 mlog_errno(ret); 2191 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 2192 if (ret) 2193 mlog_errno(ret); 2194 2195 if (del_right_subtree) { 2196 ocfs2_unlink_subtree(inode, handle, left_path, right_path, 2197 subtree_index, dealloc); 2198 ocfs2_update_edge_lengths(inode, handle, left_path); 2199 2200 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2201 di->i_last_eb_blk = eb->h_blkno; 2202 2203 /* 2204 * Removal of the extent in the left leaf was skipped 2205 * above so we could delete the right path 2206 * 1st. 2207 */ 2208 if (right_has_empty) 2209 ocfs2_remove_empty_extent(left_leaf_el); 2210 2211 ret = ocfs2_journal_dirty(handle, di_bh); 2212 if (ret) 2213 mlog_errno(ret); 2214 2215 *deleted = 1; 2216 } else 2217 ocfs2_complete_edge_insert(inode, handle, left_path, right_path, 2218 subtree_index); 2219 2220 out: 2221 return ret; 2222 } 2223 2224 /* 2225 * Given a full path, determine what cpos value would return us a path 2226 * containing the leaf immediately to the right of the current one. 2227 * 2228 * Will return zero if the path passed in is already the rightmost path. 2229 * 2230 * This looks similar, but is subtly different to 2231 * ocfs2_find_cpos_for_left_leaf(). 2232 */ 2233 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb, 2234 struct ocfs2_path *path, u32 *cpos) 2235 { 2236 int i, j, ret = 0; 2237 u64 blkno; 2238 struct ocfs2_extent_list *el; 2239 2240 *cpos = 0; 2241 2242 if (path->p_tree_depth == 0) 2243 return 0; 2244 2245 blkno = path_leaf_bh(path)->b_blocknr; 2246 2247 /* Start at the tree node just above the leaf and work our way up. */ 2248 i = path->p_tree_depth - 1; 2249 while (i >= 0) { 2250 int next_free; 2251 2252 el = path->p_node[i].el; 2253 2254 /* 2255 * Find the extent record just after the one in our 2256 * path. 2257 */ 2258 next_free = le16_to_cpu(el->l_next_free_rec); 2259 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2260 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2261 if (j == (next_free - 1)) { 2262 if (i == 0) { 2263 /* 2264 * We've determined that the 2265 * path specified is already 2266 * the rightmost one - return a 2267 * cpos of zero. 2268 */ 2269 goto out; 2270 } 2271 /* 2272 * The rightmost record points to our 2273 * leaf - we need to travel up the 2274 * tree one level. 2275 */ 2276 goto next_node; 2277 } 2278 2279 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos); 2280 goto out; 2281 } 2282 } 2283 2284 /* 2285 * If we got here, we never found a valid node where 2286 * the tree indicated one should be. 2287 */ 2288 ocfs2_error(sb, 2289 "Invalid extent tree at extent block %llu\n", 2290 (unsigned long long)blkno); 2291 ret = -EROFS; 2292 goto out; 2293 2294 next_node: 2295 blkno = path->p_node[i].bh->b_blocknr; 2296 i--; 2297 } 2298 2299 out: 2300 return ret; 2301 } 2302 2303 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode, 2304 handle_t *handle, 2305 struct buffer_head *bh, 2306 struct ocfs2_extent_list *el) 2307 { 2308 int ret; 2309 2310 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 2311 return 0; 2312 2313 ret = ocfs2_journal_access(handle, inode, bh, 2314 OCFS2_JOURNAL_ACCESS_WRITE); 2315 if (ret) { 2316 mlog_errno(ret); 2317 goto out; 2318 } 2319 2320 ocfs2_remove_empty_extent(el); 2321 2322 ret = ocfs2_journal_dirty(handle, bh); 2323 if (ret) 2324 mlog_errno(ret); 2325 2326 out: 2327 return ret; 2328 } 2329 2330 static int __ocfs2_rotate_tree_left(struct inode *inode, 2331 handle_t *handle, int orig_credits, 2332 struct ocfs2_path *path, 2333 struct ocfs2_cached_dealloc_ctxt *dealloc, 2334 struct ocfs2_path **empty_extent_path) 2335 { 2336 int ret, subtree_root, deleted; 2337 u32 right_cpos; 2338 struct ocfs2_path *left_path = NULL; 2339 struct ocfs2_path *right_path = NULL; 2340 2341 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0]))); 2342 2343 *empty_extent_path = NULL; 2344 2345 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path, 2346 &right_cpos); 2347 if (ret) { 2348 mlog_errno(ret); 2349 goto out; 2350 } 2351 2352 left_path = ocfs2_new_path(path_root_bh(path), 2353 path_root_el(path)); 2354 if (!left_path) { 2355 ret = -ENOMEM; 2356 mlog_errno(ret); 2357 goto out; 2358 } 2359 2360 ocfs2_cp_path(left_path, path); 2361 2362 right_path = ocfs2_new_path(path_root_bh(path), 2363 path_root_el(path)); 2364 if (!right_path) { 2365 ret = -ENOMEM; 2366 mlog_errno(ret); 2367 goto out; 2368 } 2369 2370 while (right_cpos) { 2371 ret = ocfs2_find_path(inode, right_path, right_cpos); 2372 if (ret) { 2373 mlog_errno(ret); 2374 goto out; 2375 } 2376 2377 subtree_root = ocfs2_find_subtree_root(inode, left_path, 2378 right_path); 2379 2380 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n", 2381 subtree_root, 2382 (unsigned long long) 2383 right_path->p_node[subtree_root].bh->b_blocknr, 2384 right_path->p_tree_depth); 2385 2386 ret = ocfs2_extend_rotate_transaction(handle, subtree_root, 2387 orig_credits, left_path); 2388 if (ret) { 2389 mlog_errno(ret); 2390 goto out; 2391 } 2392 2393 /* 2394 * Caller might still want to make changes to the 2395 * tree root, so re-add it to the journal here. 2396 */ 2397 ret = ocfs2_journal_access(handle, inode, 2398 path_root_bh(left_path), 2399 OCFS2_JOURNAL_ACCESS_WRITE); 2400 if (ret) { 2401 mlog_errno(ret); 2402 goto out; 2403 } 2404 2405 ret = ocfs2_rotate_subtree_left(inode, handle, left_path, 2406 right_path, subtree_root, 2407 dealloc, &deleted); 2408 if (ret == -EAGAIN) { 2409 /* 2410 * The rotation has to temporarily stop due to 2411 * the right subtree having an empty 2412 * extent. Pass it back to the caller for a 2413 * fixup. 2414 */ 2415 *empty_extent_path = right_path; 2416 right_path = NULL; 2417 goto out; 2418 } 2419 if (ret) { 2420 mlog_errno(ret); 2421 goto out; 2422 } 2423 2424 /* 2425 * The subtree rotate might have removed records on 2426 * the rightmost edge. If so, then rotation is 2427 * complete. 2428 */ 2429 if (deleted) 2430 break; 2431 2432 ocfs2_mv_path(left_path, right_path); 2433 2434 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path, 2435 &right_cpos); 2436 if (ret) { 2437 mlog_errno(ret); 2438 goto out; 2439 } 2440 } 2441 2442 out: 2443 ocfs2_free_path(right_path); 2444 ocfs2_free_path(left_path); 2445 2446 return ret; 2447 } 2448 2449 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle, 2450 struct ocfs2_path *path, 2451 struct ocfs2_cached_dealloc_ctxt *dealloc) 2452 { 2453 int ret, subtree_index; 2454 u32 cpos; 2455 struct ocfs2_path *left_path = NULL; 2456 struct ocfs2_dinode *di; 2457 struct ocfs2_extent_block *eb; 2458 struct ocfs2_extent_list *el; 2459 2460 /* 2461 * XXX: This code assumes that the root is an inode, which is 2462 * true for now but may change as tree code gets generic. 2463 */ 2464 di = (struct ocfs2_dinode *)path_root_bh(path)->b_data; 2465 if (!OCFS2_IS_VALID_DINODE(di)) { 2466 ret = -EIO; 2467 ocfs2_error(inode->i_sb, 2468 "Inode %llu has invalid path root", 2469 (unsigned long long)OCFS2_I(inode)->ip_blkno); 2470 goto out; 2471 } 2472 2473 /* 2474 * There's two ways we handle this depending on 2475 * whether path is the only existing one. 2476 */ 2477 ret = ocfs2_extend_rotate_transaction(handle, 0, 2478 handle->h_buffer_credits, 2479 path); 2480 if (ret) { 2481 mlog_errno(ret); 2482 goto out; 2483 } 2484 2485 ret = ocfs2_journal_access_path(inode, handle, path); 2486 if (ret) { 2487 mlog_errno(ret); 2488 goto out; 2489 } 2490 2491 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos); 2492 if (ret) { 2493 mlog_errno(ret); 2494 goto out; 2495 } 2496 2497 if (cpos) { 2498 /* 2499 * We have a path to the left of this one - it needs 2500 * an update too. 2501 */ 2502 left_path = ocfs2_new_path(path_root_bh(path), 2503 path_root_el(path)); 2504 if (!left_path) { 2505 ret = -ENOMEM; 2506 mlog_errno(ret); 2507 goto out; 2508 } 2509 2510 ret = ocfs2_find_path(inode, left_path, cpos); 2511 if (ret) { 2512 mlog_errno(ret); 2513 goto out; 2514 } 2515 2516 ret = ocfs2_journal_access_path(inode, handle, left_path); 2517 if (ret) { 2518 mlog_errno(ret); 2519 goto out; 2520 } 2521 2522 subtree_index = ocfs2_find_subtree_root(inode, left_path, path); 2523 2524 ocfs2_unlink_subtree(inode, handle, left_path, path, 2525 subtree_index, dealloc); 2526 ocfs2_update_edge_lengths(inode, handle, left_path); 2527 2528 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2529 di->i_last_eb_blk = eb->h_blkno; 2530 } else { 2531 /* 2532 * 'path' is also the leftmost path which 2533 * means it must be the only one. This gets 2534 * handled differently because we want to 2535 * revert the inode back to having extents 2536 * in-line. 2537 */ 2538 ocfs2_unlink_path(inode, handle, dealloc, path, 1); 2539 2540 el = &di->id2.i_list; 2541 el->l_tree_depth = 0; 2542 el->l_next_free_rec = 0; 2543 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2544 2545 di->i_last_eb_blk = 0; 2546 } 2547 2548 ocfs2_journal_dirty(handle, path_root_bh(path)); 2549 2550 out: 2551 ocfs2_free_path(left_path); 2552 return ret; 2553 } 2554 2555 /* 2556 * Left rotation of btree records. 2557 * 2558 * In many ways, this is (unsurprisingly) the opposite of right 2559 * rotation. We start at some non-rightmost path containing an empty 2560 * extent in the leaf block. The code works its way to the rightmost 2561 * path by rotating records to the left in every subtree. 2562 * 2563 * This is used by any code which reduces the number of extent records 2564 * in a leaf. After removal, an empty record should be placed in the 2565 * leftmost list position. 2566 * 2567 * This won't handle a length update of the rightmost path records if 2568 * the rightmost tree leaf record is removed so the caller is 2569 * responsible for detecting and correcting that. 2570 */ 2571 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle, 2572 struct ocfs2_path *path, 2573 struct ocfs2_cached_dealloc_ctxt *dealloc) 2574 { 2575 int ret, orig_credits = handle->h_buffer_credits; 2576 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL; 2577 struct ocfs2_extent_block *eb; 2578 struct ocfs2_extent_list *el; 2579 2580 el = path_leaf_el(path); 2581 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 2582 return 0; 2583 2584 if (path->p_tree_depth == 0) { 2585 rightmost_no_delete: 2586 /* 2587 * In-inode extents. This is trivially handled, so do 2588 * it up front. 2589 */ 2590 ret = ocfs2_rotate_rightmost_leaf_left(inode, handle, 2591 path_leaf_bh(path), 2592 path_leaf_el(path)); 2593 if (ret) 2594 mlog_errno(ret); 2595 goto out; 2596 } 2597 2598 /* 2599 * Handle rightmost branch now. There's several cases: 2600 * 1) simple rotation leaving records in there. That's trivial. 2601 * 2) rotation requiring a branch delete - there's no more 2602 * records left. Two cases of this: 2603 * a) There are branches to the left. 2604 * b) This is also the leftmost (the only) branch. 2605 * 2606 * 1) is handled via ocfs2_rotate_rightmost_leaf_left() 2607 * 2a) we need the left branch so that we can update it with the unlink 2608 * 2b) we need to bring the inode back to inline extents. 2609 */ 2610 2611 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 2612 el = &eb->h_list; 2613 if (eb->h_next_leaf_blk == 0) { 2614 /* 2615 * This gets a bit tricky if we're going to delete the 2616 * rightmost path. Get the other cases out of the way 2617 * 1st. 2618 */ 2619 if (le16_to_cpu(el->l_next_free_rec) > 1) 2620 goto rightmost_no_delete; 2621 2622 if (le16_to_cpu(el->l_next_free_rec) == 0) { 2623 ret = -EIO; 2624 ocfs2_error(inode->i_sb, 2625 "Inode %llu has empty extent block at %llu", 2626 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2627 (unsigned long long)le64_to_cpu(eb->h_blkno)); 2628 goto out; 2629 } 2630 2631 /* 2632 * XXX: The caller can not trust "path" any more after 2633 * this as it will have been deleted. What do we do? 2634 * 2635 * In theory the rotate-for-merge code will never get 2636 * here because it'll always ask for a rotate in a 2637 * nonempty list. 2638 */ 2639 2640 ret = ocfs2_remove_rightmost_path(inode, handle, path, 2641 dealloc); 2642 if (ret) 2643 mlog_errno(ret); 2644 goto out; 2645 } 2646 2647 /* 2648 * Now we can loop, remembering the path we get from -EAGAIN 2649 * and restarting from there. 2650 */ 2651 try_rotate: 2652 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path, 2653 dealloc, &restart_path); 2654 if (ret && ret != -EAGAIN) { 2655 mlog_errno(ret); 2656 goto out; 2657 } 2658 2659 while (ret == -EAGAIN) { 2660 tmp_path = restart_path; 2661 restart_path = NULL; 2662 2663 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, 2664 tmp_path, dealloc, 2665 &restart_path); 2666 if (ret && ret != -EAGAIN) { 2667 mlog_errno(ret); 2668 goto out; 2669 } 2670 2671 ocfs2_free_path(tmp_path); 2672 tmp_path = NULL; 2673 2674 if (ret == 0) 2675 goto try_rotate; 2676 } 2677 2678 out: 2679 ocfs2_free_path(tmp_path); 2680 ocfs2_free_path(restart_path); 2681 return ret; 2682 } 2683 2684 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el, 2685 int index) 2686 { 2687 struct ocfs2_extent_rec *rec = &el->l_recs[index]; 2688 unsigned int size; 2689 2690 if (rec->e_leaf_clusters == 0) { 2691 /* 2692 * We consumed all of the merged-from record. An empty 2693 * extent cannot exist anywhere but the 1st array 2694 * position, so move things over if the merged-from 2695 * record doesn't occupy that position. 2696 * 2697 * This creates a new empty extent so the caller 2698 * should be smart enough to have removed any existing 2699 * ones. 2700 */ 2701 if (index > 0) { 2702 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 2703 size = index * sizeof(struct ocfs2_extent_rec); 2704 memmove(&el->l_recs[1], &el->l_recs[0], size); 2705 } 2706 2707 /* 2708 * Always memset - the caller doesn't check whether it 2709 * created an empty extent, so there could be junk in 2710 * the other fields. 2711 */ 2712 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2713 } 2714 } 2715 2716 static int ocfs2_get_right_path(struct inode *inode, 2717 struct ocfs2_path *left_path, 2718 struct ocfs2_path **ret_right_path) 2719 { 2720 int ret; 2721 u32 right_cpos; 2722 struct ocfs2_path *right_path = NULL; 2723 struct ocfs2_extent_list *left_el; 2724 2725 *ret_right_path = NULL; 2726 2727 /* This function shouldn't be called for non-trees. */ 2728 BUG_ON(left_path->p_tree_depth == 0); 2729 2730 left_el = path_leaf_el(left_path); 2731 BUG_ON(left_el->l_next_free_rec != left_el->l_count); 2732 2733 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path, 2734 &right_cpos); 2735 if (ret) { 2736 mlog_errno(ret); 2737 goto out; 2738 } 2739 2740 /* This function shouldn't be called for the rightmost leaf. */ 2741 BUG_ON(right_cpos == 0); 2742 2743 right_path = ocfs2_new_path(path_root_bh(left_path), 2744 path_root_el(left_path)); 2745 if (!right_path) { 2746 ret = -ENOMEM; 2747 mlog_errno(ret); 2748 goto out; 2749 } 2750 2751 ret = ocfs2_find_path(inode, right_path, right_cpos); 2752 if (ret) { 2753 mlog_errno(ret); 2754 goto out; 2755 } 2756 2757 *ret_right_path = right_path; 2758 out: 2759 if (ret) 2760 ocfs2_free_path(right_path); 2761 return ret; 2762 } 2763 2764 /* 2765 * Remove split_rec clusters from the record at index and merge them 2766 * onto the beginning of the record "next" to it. 2767 * For index < l_count - 1, the next means the extent rec at index + 1. 2768 * For index == l_count - 1, the "next" means the 1st extent rec of the 2769 * next extent block. 2770 */ 2771 static int ocfs2_merge_rec_right(struct inode *inode, 2772 struct ocfs2_path *left_path, 2773 handle_t *handle, 2774 struct ocfs2_extent_rec *split_rec, 2775 int index) 2776 { 2777 int ret, next_free, i; 2778 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 2779 struct ocfs2_extent_rec *left_rec; 2780 struct ocfs2_extent_rec *right_rec; 2781 struct ocfs2_extent_list *right_el; 2782 struct ocfs2_path *right_path = NULL; 2783 int subtree_index = 0; 2784 struct ocfs2_extent_list *el = path_leaf_el(left_path); 2785 struct buffer_head *bh = path_leaf_bh(left_path); 2786 struct buffer_head *root_bh = NULL; 2787 2788 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec)); 2789 left_rec = &el->l_recs[index]; 2790 2791 if (index == le16_to_cpu(el->l_next_free_rec) - 1 && 2792 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) { 2793 /* we meet with a cross extent block merge. */ 2794 ret = ocfs2_get_right_path(inode, left_path, &right_path); 2795 if (ret) { 2796 mlog_errno(ret); 2797 goto out; 2798 } 2799 2800 right_el = path_leaf_el(right_path); 2801 next_free = le16_to_cpu(right_el->l_next_free_rec); 2802 BUG_ON(next_free <= 0); 2803 right_rec = &right_el->l_recs[0]; 2804 if (ocfs2_is_empty_extent(right_rec)) { 2805 BUG_ON(next_free <= 1); 2806 right_rec = &right_el->l_recs[1]; 2807 } 2808 2809 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 2810 le16_to_cpu(left_rec->e_leaf_clusters) != 2811 le32_to_cpu(right_rec->e_cpos)); 2812 2813 subtree_index = ocfs2_find_subtree_root(inode, 2814 left_path, right_path); 2815 2816 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 2817 handle->h_buffer_credits, 2818 right_path); 2819 if (ret) { 2820 mlog_errno(ret); 2821 goto out; 2822 } 2823 2824 root_bh = left_path->p_node[subtree_index].bh; 2825 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2826 2827 ret = ocfs2_journal_access(handle, inode, root_bh, 2828 OCFS2_JOURNAL_ACCESS_WRITE); 2829 if (ret) { 2830 mlog_errno(ret); 2831 goto out; 2832 } 2833 2834 for (i = subtree_index + 1; 2835 i < path_num_items(right_path); i++) { 2836 ret = ocfs2_journal_access(handle, inode, 2837 right_path->p_node[i].bh, 2838 OCFS2_JOURNAL_ACCESS_WRITE); 2839 if (ret) { 2840 mlog_errno(ret); 2841 goto out; 2842 } 2843 2844 ret = ocfs2_journal_access(handle, inode, 2845 left_path->p_node[i].bh, 2846 OCFS2_JOURNAL_ACCESS_WRITE); 2847 if (ret) { 2848 mlog_errno(ret); 2849 goto out; 2850 } 2851 } 2852 2853 } else { 2854 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1); 2855 right_rec = &el->l_recs[index + 1]; 2856 } 2857 2858 ret = ocfs2_journal_access(handle, inode, bh, 2859 OCFS2_JOURNAL_ACCESS_WRITE); 2860 if (ret) { 2861 mlog_errno(ret); 2862 goto out; 2863 } 2864 2865 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters); 2866 2867 le32_add_cpu(&right_rec->e_cpos, -split_clusters); 2868 le64_add_cpu(&right_rec->e_blkno, 2869 -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters)); 2870 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters); 2871 2872 ocfs2_cleanup_merge(el, index); 2873 2874 ret = ocfs2_journal_dirty(handle, bh); 2875 if (ret) 2876 mlog_errno(ret); 2877 2878 if (right_path) { 2879 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 2880 if (ret) 2881 mlog_errno(ret); 2882 2883 ocfs2_complete_edge_insert(inode, handle, left_path, 2884 right_path, subtree_index); 2885 } 2886 out: 2887 if (right_path) 2888 ocfs2_free_path(right_path); 2889 return ret; 2890 } 2891 2892 static int ocfs2_get_left_path(struct inode *inode, 2893 struct ocfs2_path *right_path, 2894 struct ocfs2_path **ret_left_path) 2895 { 2896 int ret; 2897 u32 left_cpos; 2898 struct ocfs2_path *left_path = NULL; 2899 2900 *ret_left_path = NULL; 2901 2902 /* This function shouldn't be called for non-trees. */ 2903 BUG_ON(right_path->p_tree_depth == 0); 2904 2905 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 2906 right_path, &left_cpos); 2907 if (ret) { 2908 mlog_errno(ret); 2909 goto out; 2910 } 2911 2912 /* This function shouldn't be called for the leftmost leaf. */ 2913 BUG_ON(left_cpos == 0); 2914 2915 left_path = ocfs2_new_path(path_root_bh(right_path), 2916 path_root_el(right_path)); 2917 if (!left_path) { 2918 ret = -ENOMEM; 2919 mlog_errno(ret); 2920 goto out; 2921 } 2922 2923 ret = ocfs2_find_path(inode, left_path, left_cpos); 2924 if (ret) { 2925 mlog_errno(ret); 2926 goto out; 2927 } 2928 2929 *ret_left_path = left_path; 2930 out: 2931 if (ret) 2932 ocfs2_free_path(left_path); 2933 return ret; 2934 } 2935 2936 /* 2937 * Remove split_rec clusters from the record at index and merge them 2938 * onto the tail of the record "before" it. 2939 * For index > 0, the "before" means the extent rec at index - 1. 2940 * 2941 * For index == 0, the "before" means the last record of the previous 2942 * extent block. And there is also a situation that we may need to 2943 * remove the rightmost leaf extent block in the right_path and change 2944 * the right path to indicate the new rightmost path. 2945 */ 2946 static int ocfs2_merge_rec_left(struct inode *inode, 2947 struct ocfs2_path *right_path, 2948 handle_t *handle, 2949 struct ocfs2_extent_rec *split_rec, 2950 struct ocfs2_cached_dealloc_ctxt *dealloc, 2951 int index) 2952 { 2953 int ret, i, subtree_index = 0, has_empty_extent = 0; 2954 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 2955 struct ocfs2_extent_rec *left_rec; 2956 struct ocfs2_extent_rec *right_rec; 2957 struct ocfs2_extent_list *el = path_leaf_el(right_path); 2958 struct buffer_head *bh = path_leaf_bh(right_path); 2959 struct buffer_head *root_bh = NULL; 2960 struct ocfs2_path *left_path = NULL; 2961 struct ocfs2_extent_list *left_el; 2962 2963 BUG_ON(index < 0); 2964 2965 right_rec = &el->l_recs[index]; 2966 if (index == 0) { 2967 /* we meet with a cross extent block merge. */ 2968 ret = ocfs2_get_left_path(inode, right_path, &left_path); 2969 if (ret) { 2970 mlog_errno(ret); 2971 goto out; 2972 } 2973 2974 left_el = path_leaf_el(left_path); 2975 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) != 2976 le16_to_cpu(left_el->l_count)); 2977 2978 left_rec = &left_el->l_recs[ 2979 le16_to_cpu(left_el->l_next_free_rec) - 1]; 2980 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 2981 le16_to_cpu(left_rec->e_leaf_clusters) != 2982 le32_to_cpu(split_rec->e_cpos)); 2983 2984 subtree_index = ocfs2_find_subtree_root(inode, 2985 left_path, right_path); 2986 2987 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 2988 handle->h_buffer_credits, 2989 left_path); 2990 if (ret) { 2991 mlog_errno(ret); 2992 goto out; 2993 } 2994 2995 root_bh = left_path->p_node[subtree_index].bh; 2996 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2997 2998 ret = ocfs2_journal_access(handle, inode, root_bh, 2999 OCFS2_JOURNAL_ACCESS_WRITE); 3000 if (ret) { 3001 mlog_errno(ret); 3002 goto out; 3003 } 3004 3005 for (i = subtree_index + 1; 3006 i < path_num_items(right_path); i++) { 3007 ret = ocfs2_journal_access(handle, inode, 3008 right_path->p_node[i].bh, 3009 OCFS2_JOURNAL_ACCESS_WRITE); 3010 if (ret) { 3011 mlog_errno(ret); 3012 goto out; 3013 } 3014 3015 ret = ocfs2_journal_access(handle, inode, 3016 left_path->p_node[i].bh, 3017 OCFS2_JOURNAL_ACCESS_WRITE); 3018 if (ret) { 3019 mlog_errno(ret); 3020 goto out; 3021 } 3022 } 3023 } else { 3024 left_rec = &el->l_recs[index - 1]; 3025 if (ocfs2_is_empty_extent(&el->l_recs[0])) 3026 has_empty_extent = 1; 3027 } 3028 3029 ret = ocfs2_journal_access(handle, inode, bh, 3030 OCFS2_JOURNAL_ACCESS_WRITE); 3031 if (ret) { 3032 mlog_errno(ret); 3033 goto out; 3034 } 3035 3036 if (has_empty_extent && index == 1) { 3037 /* 3038 * The easy case - we can just plop the record right in. 3039 */ 3040 *left_rec = *split_rec; 3041 3042 has_empty_extent = 0; 3043 } else 3044 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters); 3045 3046 le32_add_cpu(&right_rec->e_cpos, split_clusters); 3047 le64_add_cpu(&right_rec->e_blkno, 3048 ocfs2_clusters_to_blocks(inode->i_sb, split_clusters)); 3049 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters); 3050 3051 ocfs2_cleanup_merge(el, index); 3052 3053 ret = ocfs2_journal_dirty(handle, bh); 3054 if (ret) 3055 mlog_errno(ret); 3056 3057 if (left_path) { 3058 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 3059 if (ret) 3060 mlog_errno(ret); 3061 3062 /* 3063 * In the situation that the right_rec is empty and the extent 3064 * block is empty also, ocfs2_complete_edge_insert can't handle 3065 * it and we need to delete the right extent block. 3066 */ 3067 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 && 3068 le16_to_cpu(el->l_next_free_rec) == 1) { 3069 3070 ret = ocfs2_remove_rightmost_path(inode, handle, 3071 right_path, dealloc); 3072 if (ret) { 3073 mlog_errno(ret); 3074 goto out; 3075 } 3076 3077 /* Now the rightmost extent block has been deleted. 3078 * So we use the new rightmost path. 3079 */ 3080 ocfs2_mv_path(right_path, left_path); 3081 left_path = NULL; 3082 } else 3083 ocfs2_complete_edge_insert(inode, handle, left_path, 3084 right_path, subtree_index); 3085 } 3086 out: 3087 if (left_path) 3088 ocfs2_free_path(left_path); 3089 return ret; 3090 } 3091 3092 static int ocfs2_try_to_merge_extent(struct inode *inode, 3093 handle_t *handle, 3094 struct ocfs2_path *path, 3095 int split_index, 3096 struct ocfs2_extent_rec *split_rec, 3097 struct ocfs2_cached_dealloc_ctxt *dealloc, 3098 struct ocfs2_merge_ctxt *ctxt) 3099 3100 { 3101 int ret = 0; 3102 struct ocfs2_extent_list *el = path_leaf_el(path); 3103 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 3104 3105 BUG_ON(ctxt->c_contig_type == CONTIG_NONE); 3106 3107 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) { 3108 /* 3109 * The merge code will need to create an empty 3110 * extent to take the place of the newly 3111 * emptied slot. Remove any pre-existing empty 3112 * extents - having more than one in a leaf is 3113 * illegal. 3114 */ 3115 ret = ocfs2_rotate_tree_left(inode, handle, path, 3116 dealloc); 3117 if (ret) { 3118 mlog_errno(ret); 3119 goto out; 3120 } 3121 split_index--; 3122 rec = &el->l_recs[split_index]; 3123 } 3124 3125 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) { 3126 /* 3127 * Left-right contig implies this. 3128 */ 3129 BUG_ON(!ctxt->c_split_covers_rec); 3130 3131 /* 3132 * Since the leftright insert always covers the entire 3133 * extent, this call will delete the insert record 3134 * entirely, resulting in an empty extent record added to 3135 * the extent block. 3136 * 3137 * Since the adding of an empty extent shifts 3138 * everything back to the right, there's no need to 3139 * update split_index here. 3140 * 3141 * When the split_index is zero, we need to merge it to the 3142 * prevoius extent block. It is more efficient and easier 3143 * if we do merge_right first and merge_left later. 3144 */ 3145 ret = ocfs2_merge_rec_right(inode, path, 3146 handle, split_rec, 3147 split_index); 3148 if (ret) { 3149 mlog_errno(ret); 3150 goto out; 3151 } 3152 3153 /* 3154 * We can only get this from logic error above. 3155 */ 3156 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0])); 3157 3158 /* The merge left us with an empty extent, remove it. */ 3159 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc); 3160 if (ret) { 3161 mlog_errno(ret); 3162 goto out; 3163 } 3164 3165 rec = &el->l_recs[split_index]; 3166 3167 /* 3168 * Note that we don't pass split_rec here on purpose - 3169 * we've merged it into the rec already. 3170 */ 3171 ret = ocfs2_merge_rec_left(inode, path, 3172 handle, rec, 3173 dealloc, 3174 split_index); 3175 3176 if (ret) { 3177 mlog_errno(ret); 3178 goto out; 3179 } 3180 3181 ret = ocfs2_rotate_tree_left(inode, handle, path, 3182 dealloc); 3183 /* 3184 * Error from this last rotate is not critical, so 3185 * print but don't bubble it up. 3186 */ 3187 if (ret) 3188 mlog_errno(ret); 3189 ret = 0; 3190 } else { 3191 /* 3192 * Merge a record to the left or right. 3193 * 3194 * 'contig_type' is relative to the existing record, 3195 * so for example, if we're "right contig", it's to 3196 * the record on the left (hence the left merge). 3197 */ 3198 if (ctxt->c_contig_type == CONTIG_RIGHT) { 3199 ret = ocfs2_merge_rec_left(inode, 3200 path, 3201 handle, split_rec, 3202 dealloc, 3203 split_index); 3204 if (ret) { 3205 mlog_errno(ret); 3206 goto out; 3207 } 3208 } else { 3209 ret = ocfs2_merge_rec_right(inode, 3210 path, 3211 handle, split_rec, 3212 split_index); 3213 if (ret) { 3214 mlog_errno(ret); 3215 goto out; 3216 } 3217 } 3218 3219 if (ctxt->c_split_covers_rec) { 3220 /* 3221 * The merge may have left an empty extent in 3222 * our leaf. Try to rotate it away. 3223 */ 3224 ret = ocfs2_rotate_tree_left(inode, handle, path, 3225 dealloc); 3226 if (ret) 3227 mlog_errno(ret); 3228 ret = 0; 3229 } 3230 } 3231 3232 out: 3233 return ret; 3234 } 3235 3236 static void ocfs2_subtract_from_rec(struct super_block *sb, 3237 enum ocfs2_split_type split, 3238 struct ocfs2_extent_rec *rec, 3239 struct ocfs2_extent_rec *split_rec) 3240 { 3241 u64 len_blocks; 3242 3243 len_blocks = ocfs2_clusters_to_blocks(sb, 3244 le16_to_cpu(split_rec->e_leaf_clusters)); 3245 3246 if (split == SPLIT_LEFT) { 3247 /* 3248 * Region is on the left edge of the existing 3249 * record. 3250 */ 3251 le32_add_cpu(&rec->e_cpos, 3252 le16_to_cpu(split_rec->e_leaf_clusters)); 3253 le64_add_cpu(&rec->e_blkno, len_blocks); 3254 le16_add_cpu(&rec->e_leaf_clusters, 3255 -le16_to_cpu(split_rec->e_leaf_clusters)); 3256 } else { 3257 /* 3258 * Region is on the right edge of the existing 3259 * record. 3260 */ 3261 le16_add_cpu(&rec->e_leaf_clusters, 3262 -le16_to_cpu(split_rec->e_leaf_clusters)); 3263 } 3264 } 3265 3266 /* 3267 * Do the final bits of extent record insertion at the target leaf 3268 * list. If this leaf is part of an allocation tree, it is assumed 3269 * that the tree above has been prepared. 3270 */ 3271 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec, 3272 struct ocfs2_extent_list *el, 3273 struct ocfs2_insert_type *insert, 3274 struct inode *inode) 3275 { 3276 int i = insert->ins_contig_index; 3277 unsigned int range; 3278 struct ocfs2_extent_rec *rec; 3279 3280 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 3281 3282 if (insert->ins_split != SPLIT_NONE) { 3283 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos)); 3284 BUG_ON(i == -1); 3285 rec = &el->l_recs[i]; 3286 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec, 3287 insert_rec); 3288 goto rotate; 3289 } 3290 3291 /* 3292 * Contiguous insert - either left or right. 3293 */ 3294 if (insert->ins_contig != CONTIG_NONE) { 3295 rec = &el->l_recs[i]; 3296 if (insert->ins_contig == CONTIG_LEFT) { 3297 rec->e_blkno = insert_rec->e_blkno; 3298 rec->e_cpos = insert_rec->e_cpos; 3299 } 3300 le16_add_cpu(&rec->e_leaf_clusters, 3301 le16_to_cpu(insert_rec->e_leaf_clusters)); 3302 return; 3303 } 3304 3305 /* 3306 * Handle insert into an empty leaf. 3307 */ 3308 if (le16_to_cpu(el->l_next_free_rec) == 0 || 3309 ((le16_to_cpu(el->l_next_free_rec) == 1) && 3310 ocfs2_is_empty_extent(&el->l_recs[0]))) { 3311 el->l_recs[0] = *insert_rec; 3312 el->l_next_free_rec = cpu_to_le16(1); 3313 return; 3314 } 3315 3316 /* 3317 * Appending insert. 3318 */ 3319 if (insert->ins_appending == APPEND_TAIL) { 3320 i = le16_to_cpu(el->l_next_free_rec) - 1; 3321 rec = &el->l_recs[i]; 3322 range = le32_to_cpu(rec->e_cpos) 3323 + le16_to_cpu(rec->e_leaf_clusters); 3324 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range); 3325 3326 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >= 3327 le16_to_cpu(el->l_count), 3328 "inode %lu, depth %u, count %u, next free %u, " 3329 "rec.cpos %u, rec.clusters %u, " 3330 "insert.cpos %u, insert.clusters %u\n", 3331 inode->i_ino, 3332 le16_to_cpu(el->l_tree_depth), 3333 le16_to_cpu(el->l_count), 3334 le16_to_cpu(el->l_next_free_rec), 3335 le32_to_cpu(el->l_recs[i].e_cpos), 3336 le16_to_cpu(el->l_recs[i].e_leaf_clusters), 3337 le32_to_cpu(insert_rec->e_cpos), 3338 le16_to_cpu(insert_rec->e_leaf_clusters)); 3339 i++; 3340 el->l_recs[i] = *insert_rec; 3341 le16_add_cpu(&el->l_next_free_rec, 1); 3342 return; 3343 } 3344 3345 rotate: 3346 /* 3347 * Ok, we have to rotate. 3348 * 3349 * At this point, it is safe to assume that inserting into an 3350 * empty leaf and appending to a leaf have both been handled 3351 * above. 3352 * 3353 * This leaf needs to have space, either by the empty 1st 3354 * extent record, or by virtue of an l_next_rec < l_count. 3355 */ 3356 ocfs2_rotate_leaf(el, insert_rec); 3357 } 3358 3359 static inline void ocfs2_update_dinode_clusters(struct inode *inode, 3360 struct ocfs2_dinode *di, 3361 u32 clusters) 3362 { 3363 le32_add_cpu(&di->i_clusters, clusters); 3364 spin_lock(&OCFS2_I(inode)->ip_lock); 3365 OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters); 3366 spin_unlock(&OCFS2_I(inode)->ip_lock); 3367 } 3368 3369 static void ocfs2_adjust_rightmost_records(struct inode *inode, 3370 handle_t *handle, 3371 struct ocfs2_path *path, 3372 struct ocfs2_extent_rec *insert_rec) 3373 { 3374 int ret, i, next_free; 3375 struct buffer_head *bh; 3376 struct ocfs2_extent_list *el; 3377 struct ocfs2_extent_rec *rec; 3378 3379 /* 3380 * Update everything except the leaf block. 3381 */ 3382 for (i = 0; i < path->p_tree_depth; i++) { 3383 bh = path->p_node[i].bh; 3384 el = path->p_node[i].el; 3385 3386 next_free = le16_to_cpu(el->l_next_free_rec); 3387 if (next_free == 0) { 3388 ocfs2_error(inode->i_sb, 3389 "Dinode %llu has a bad extent list", 3390 (unsigned long long)OCFS2_I(inode)->ip_blkno); 3391 ret = -EIO; 3392 return; 3393 } 3394 3395 rec = &el->l_recs[next_free - 1]; 3396 3397 rec->e_int_clusters = insert_rec->e_cpos; 3398 le32_add_cpu(&rec->e_int_clusters, 3399 le16_to_cpu(insert_rec->e_leaf_clusters)); 3400 le32_add_cpu(&rec->e_int_clusters, 3401 -le32_to_cpu(rec->e_cpos)); 3402 3403 ret = ocfs2_journal_dirty(handle, bh); 3404 if (ret) 3405 mlog_errno(ret); 3406 3407 } 3408 } 3409 3410 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle, 3411 struct ocfs2_extent_rec *insert_rec, 3412 struct ocfs2_path *right_path, 3413 struct ocfs2_path **ret_left_path) 3414 { 3415 int ret, next_free; 3416 struct ocfs2_extent_list *el; 3417 struct ocfs2_path *left_path = NULL; 3418 3419 *ret_left_path = NULL; 3420 3421 /* 3422 * This shouldn't happen for non-trees. The extent rec cluster 3423 * count manipulation below only works for interior nodes. 3424 */ 3425 BUG_ON(right_path->p_tree_depth == 0); 3426 3427 /* 3428 * If our appending insert is at the leftmost edge of a leaf, 3429 * then we might need to update the rightmost records of the 3430 * neighboring path. 3431 */ 3432 el = path_leaf_el(right_path); 3433 next_free = le16_to_cpu(el->l_next_free_rec); 3434 if (next_free == 0 || 3435 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) { 3436 u32 left_cpos; 3437 3438 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, 3439 &left_cpos); 3440 if (ret) { 3441 mlog_errno(ret); 3442 goto out; 3443 } 3444 3445 mlog(0, "Append may need a left path update. cpos: %u, " 3446 "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos), 3447 left_cpos); 3448 3449 /* 3450 * No need to worry if the append is already in the 3451 * leftmost leaf. 3452 */ 3453 if (left_cpos) { 3454 left_path = ocfs2_new_path(path_root_bh(right_path), 3455 path_root_el(right_path)); 3456 if (!left_path) { 3457 ret = -ENOMEM; 3458 mlog_errno(ret); 3459 goto out; 3460 } 3461 3462 ret = ocfs2_find_path(inode, left_path, left_cpos); 3463 if (ret) { 3464 mlog_errno(ret); 3465 goto out; 3466 } 3467 3468 /* 3469 * ocfs2_insert_path() will pass the left_path to the 3470 * journal for us. 3471 */ 3472 } 3473 } 3474 3475 ret = ocfs2_journal_access_path(inode, handle, right_path); 3476 if (ret) { 3477 mlog_errno(ret); 3478 goto out; 3479 } 3480 3481 ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec); 3482 3483 *ret_left_path = left_path; 3484 ret = 0; 3485 out: 3486 if (ret != 0) 3487 ocfs2_free_path(left_path); 3488 3489 return ret; 3490 } 3491 3492 static void ocfs2_split_record(struct inode *inode, 3493 struct ocfs2_path *left_path, 3494 struct ocfs2_path *right_path, 3495 struct ocfs2_extent_rec *split_rec, 3496 enum ocfs2_split_type split) 3497 { 3498 int index; 3499 u32 cpos = le32_to_cpu(split_rec->e_cpos); 3500 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el; 3501 struct ocfs2_extent_rec *rec, *tmprec; 3502 3503 right_el = path_leaf_el(right_path);; 3504 if (left_path) 3505 left_el = path_leaf_el(left_path); 3506 3507 el = right_el; 3508 insert_el = right_el; 3509 index = ocfs2_search_extent_list(el, cpos); 3510 if (index != -1) { 3511 if (index == 0 && left_path) { 3512 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 3513 3514 /* 3515 * This typically means that the record 3516 * started in the left path but moved to the 3517 * right as a result of rotation. We either 3518 * move the existing record to the left, or we 3519 * do the later insert there. 3520 * 3521 * In this case, the left path should always 3522 * exist as the rotate code will have passed 3523 * it back for a post-insert update. 3524 */ 3525 3526 if (split == SPLIT_LEFT) { 3527 /* 3528 * It's a left split. Since we know 3529 * that the rotate code gave us an 3530 * empty extent in the left path, we 3531 * can just do the insert there. 3532 */ 3533 insert_el = left_el; 3534 } else { 3535 /* 3536 * Right split - we have to move the 3537 * existing record over to the left 3538 * leaf. The insert will be into the 3539 * newly created empty extent in the 3540 * right leaf. 3541 */ 3542 tmprec = &right_el->l_recs[index]; 3543 ocfs2_rotate_leaf(left_el, tmprec); 3544 el = left_el; 3545 3546 memset(tmprec, 0, sizeof(*tmprec)); 3547 index = ocfs2_search_extent_list(left_el, cpos); 3548 BUG_ON(index == -1); 3549 } 3550 } 3551 } else { 3552 BUG_ON(!left_path); 3553 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0])); 3554 /* 3555 * Left path is easy - we can just allow the insert to 3556 * happen. 3557 */ 3558 el = left_el; 3559 insert_el = left_el; 3560 index = ocfs2_search_extent_list(el, cpos); 3561 BUG_ON(index == -1); 3562 } 3563 3564 rec = &el->l_recs[index]; 3565 ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec); 3566 ocfs2_rotate_leaf(insert_el, split_rec); 3567 } 3568 3569 /* 3570 * This function only does inserts on an allocation b-tree. For dinode 3571 * lists, ocfs2_insert_at_leaf() is called directly. 3572 * 3573 * right_path is the path we want to do the actual insert 3574 * in. left_path should only be passed in if we need to update that 3575 * portion of the tree after an edge insert. 3576 */ 3577 static int ocfs2_insert_path(struct inode *inode, 3578 handle_t *handle, 3579 struct ocfs2_path *left_path, 3580 struct ocfs2_path *right_path, 3581 struct ocfs2_extent_rec *insert_rec, 3582 struct ocfs2_insert_type *insert) 3583 { 3584 int ret, subtree_index; 3585 struct buffer_head *leaf_bh = path_leaf_bh(right_path); 3586 3587 if (left_path) { 3588 int credits = handle->h_buffer_credits; 3589 3590 /* 3591 * There's a chance that left_path got passed back to 3592 * us without being accounted for in the 3593 * journal. Extend our transaction here to be sure we 3594 * can change those blocks. 3595 */ 3596 credits += left_path->p_tree_depth; 3597 3598 ret = ocfs2_extend_trans(handle, credits); 3599 if (ret < 0) { 3600 mlog_errno(ret); 3601 goto out; 3602 } 3603 3604 ret = ocfs2_journal_access_path(inode, handle, left_path); 3605 if (ret < 0) { 3606 mlog_errno(ret); 3607 goto out; 3608 } 3609 } 3610 3611 /* 3612 * Pass both paths to the journal. The majority of inserts 3613 * will be touching all components anyway. 3614 */ 3615 ret = ocfs2_journal_access_path(inode, handle, right_path); 3616 if (ret < 0) { 3617 mlog_errno(ret); 3618 goto out; 3619 } 3620 3621 if (insert->ins_split != SPLIT_NONE) { 3622 /* 3623 * We could call ocfs2_insert_at_leaf() for some types 3624 * of splits, but it's easier to just let one separate 3625 * function sort it all out. 3626 */ 3627 ocfs2_split_record(inode, left_path, right_path, 3628 insert_rec, insert->ins_split); 3629 3630 /* 3631 * Split might have modified either leaf and we don't 3632 * have a guarantee that the later edge insert will 3633 * dirty this for us. 3634 */ 3635 if (left_path) 3636 ret = ocfs2_journal_dirty(handle, 3637 path_leaf_bh(left_path)); 3638 if (ret) 3639 mlog_errno(ret); 3640 } else 3641 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path), 3642 insert, inode); 3643 3644 ret = ocfs2_journal_dirty(handle, leaf_bh); 3645 if (ret) 3646 mlog_errno(ret); 3647 3648 if (left_path) { 3649 /* 3650 * The rotate code has indicated that we need to fix 3651 * up portions of the tree after the insert. 3652 * 3653 * XXX: Should we extend the transaction here? 3654 */ 3655 subtree_index = ocfs2_find_subtree_root(inode, left_path, 3656 right_path); 3657 ocfs2_complete_edge_insert(inode, handle, left_path, 3658 right_path, subtree_index); 3659 } 3660 3661 ret = 0; 3662 out: 3663 return ret; 3664 } 3665 3666 static int ocfs2_do_insert_extent(struct inode *inode, 3667 handle_t *handle, 3668 struct buffer_head *di_bh, 3669 struct ocfs2_extent_rec *insert_rec, 3670 struct ocfs2_insert_type *type) 3671 { 3672 int ret, rotate = 0; 3673 u32 cpos; 3674 struct ocfs2_path *right_path = NULL; 3675 struct ocfs2_path *left_path = NULL; 3676 struct ocfs2_dinode *di; 3677 struct ocfs2_extent_list *el; 3678 3679 di = (struct ocfs2_dinode *) di_bh->b_data; 3680 el = &di->id2.i_list; 3681 3682 ret = ocfs2_journal_access(handle, inode, di_bh, 3683 OCFS2_JOURNAL_ACCESS_WRITE); 3684 if (ret) { 3685 mlog_errno(ret); 3686 goto out; 3687 } 3688 3689 if (le16_to_cpu(el->l_tree_depth) == 0) { 3690 ocfs2_insert_at_leaf(insert_rec, el, type, inode); 3691 goto out_update_clusters; 3692 } 3693 3694 right_path = ocfs2_new_inode_path(di_bh); 3695 if (!right_path) { 3696 ret = -ENOMEM; 3697 mlog_errno(ret); 3698 goto out; 3699 } 3700 3701 /* 3702 * Determine the path to start with. Rotations need the 3703 * rightmost path, everything else can go directly to the 3704 * target leaf. 3705 */ 3706 cpos = le32_to_cpu(insert_rec->e_cpos); 3707 if (type->ins_appending == APPEND_NONE && 3708 type->ins_contig == CONTIG_NONE) { 3709 rotate = 1; 3710 cpos = UINT_MAX; 3711 } 3712 3713 ret = ocfs2_find_path(inode, right_path, cpos); 3714 if (ret) { 3715 mlog_errno(ret); 3716 goto out; 3717 } 3718 3719 /* 3720 * Rotations and appends need special treatment - they modify 3721 * parts of the tree's above them. 3722 * 3723 * Both might pass back a path immediate to the left of the 3724 * one being inserted to. This will be cause 3725 * ocfs2_insert_path() to modify the rightmost records of 3726 * left_path to account for an edge insert. 3727 * 3728 * XXX: When modifying this code, keep in mind that an insert 3729 * can wind up skipping both of these two special cases... 3730 */ 3731 if (rotate) { 3732 ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split, 3733 le32_to_cpu(insert_rec->e_cpos), 3734 right_path, &left_path); 3735 if (ret) { 3736 mlog_errno(ret); 3737 goto out; 3738 } 3739 3740 /* 3741 * ocfs2_rotate_tree_right() might have extended the 3742 * transaction without re-journaling our tree root. 3743 */ 3744 ret = ocfs2_journal_access(handle, inode, di_bh, 3745 OCFS2_JOURNAL_ACCESS_WRITE); 3746 if (ret) { 3747 mlog_errno(ret); 3748 goto out; 3749 } 3750 } else if (type->ins_appending == APPEND_TAIL 3751 && type->ins_contig != CONTIG_LEFT) { 3752 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec, 3753 right_path, &left_path); 3754 if (ret) { 3755 mlog_errno(ret); 3756 goto out; 3757 } 3758 } 3759 3760 ret = ocfs2_insert_path(inode, handle, left_path, right_path, 3761 insert_rec, type); 3762 if (ret) { 3763 mlog_errno(ret); 3764 goto out; 3765 } 3766 3767 out_update_clusters: 3768 if (type->ins_split == SPLIT_NONE) 3769 ocfs2_update_dinode_clusters(inode, di, 3770 le16_to_cpu(insert_rec->e_leaf_clusters)); 3771 3772 ret = ocfs2_journal_dirty(handle, di_bh); 3773 if (ret) 3774 mlog_errno(ret); 3775 3776 out: 3777 ocfs2_free_path(left_path); 3778 ocfs2_free_path(right_path); 3779 3780 return ret; 3781 } 3782 3783 static enum ocfs2_contig_type 3784 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path, 3785 struct ocfs2_extent_list *el, int index, 3786 struct ocfs2_extent_rec *split_rec) 3787 { 3788 int status; 3789 enum ocfs2_contig_type ret = CONTIG_NONE; 3790 u32 left_cpos, right_cpos; 3791 struct ocfs2_extent_rec *rec = NULL; 3792 struct ocfs2_extent_list *new_el; 3793 struct ocfs2_path *left_path = NULL, *right_path = NULL; 3794 struct buffer_head *bh; 3795 struct ocfs2_extent_block *eb; 3796 3797 if (index > 0) { 3798 rec = &el->l_recs[index - 1]; 3799 } else if (path->p_tree_depth > 0) { 3800 status = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 3801 path, &left_cpos); 3802 if (status) 3803 goto out; 3804 3805 if (left_cpos != 0) { 3806 left_path = ocfs2_new_path(path_root_bh(path), 3807 path_root_el(path)); 3808 if (!left_path) 3809 goto out; 3810 3811 status = ocfs2_find_path(inode, left_path, left_cpos); 3812 if (status) 3813 goto out; 3814 3815 new_el = path_leaf_el(left_path); 3816 3817 if (le16_to_cpu(new_el->l_next_free_rec) != 3818 le16_to_cpu(new_el->l_count)) { 3819 bh = path_leaf_bh(left_path); 3820 eb = (struct ocfs2_extent_block *)bh->b_data; 3821 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, 3822 eb); 3823 goto out; 3824 } 3825 rec = &new_el->l_recs[ 3826 le16_to_cpu(new_el->l_next_free_rec) - 1]; 3827 } 3828 } 3829 3830 /* 3831 * We're careful to check for an empty extent record here - 3832 * the merge code will know what to do if it sees one. 3833 */ 3834 if (rec) { 3835 if (index == 1 && ocfs2_is_empty_extent(rec)) { 3836 if (split_rec->e_cpos == el->l_recs[index].e_cpos) 3837 ret = CONTIG_RIGHT; 3838 } else { 3839 ret = ocfs2_extent_contig(inode, rec, split_rec); 3840 } 3841 } 3842 3843 rec = NULL; 3844 if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) 3845 rec = &el->l_recs[index + 1]; 3846 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) && 3847 path->p_tree_depth > 0) { 3848 status = ocfs2_find_cpos_for_right_leaf(inode->i_sb, 3849 path, &right_cpos); 3850 if (status) 3851 goto out; 3852 3853 if (right_cpos == 0) 3854 goto out; 3855 3856 right_path = ocfs2_new_path(path_root_bh(path), 3857 path_root_el(path)); 3858 if (!right_path) 3859 goto out; 3860 3861 status = ocfs2_find_path(inode, right_path, right_cpos); 3862 if (status) 3863 goto out; 3864 3865 new_el = path_leaf_el(right_path); 3866 rec = &new_el->l_recs[0]; 3867 if (ocfs2_is_empty_extent(rec)) { 3868 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) { 3869 bh = path_leaf_bh(right_path); 3870 eb = (struct ocfs2_extent_block *)bh->b_data; 3871 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, 3872 eb); 3873 goto out; 3874 } 3875 rec = &new_el->l_recs[1]; 3876 } 3877 } 3878 3879 if (rec) { 3880 enum ocfs2_contig_type contig_type; 3881 3882 contig_type = ocfs2_extent_contig(inode, rec, split_rec); 3883 3884 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT) 3885 ret = CONTIG_LEFTRIGHT; 3886 else if (ret == CONTIG_NONE) 3887 ret = contig_type; 3888 } 3889 3890 out: 3891 if (left_path) 3892 ocfs2_free_path(left_path); 3893 if (right_path) 3894 ocfs2_free_path(right_path); 3895 3896 return ret; 3897 } 3898 3899 static void ocfs2_figure_contig_type(struct inode *inode, 3900 struct ocfs2_insert_type *insert, 3901 struct ocfs2_extent_list *el, 3902 struct ocfs2_extent_rec *insert_rec) 3903 { 3904 int i; 3905 enum ocfs2_contig_type contig_type = CONTIG_NONE; 3906 3907 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 3908 3909 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 3910 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i], 3911 insert_rec); 3912 if (contig_type != CONTIG_NONE) { 3913 insert->ins_contig_index = i; 3914 break; 3915 } 3916 } 3917 insert->ins_contig = contig_type; 3918 } 3919 3920 /* 3921 * This should only be called against the righmost leaf extent list. 3922 * 3923 * ocfs2_figure_appending_type() will figure out whether we'll have to 3924 * insert at the tail of the rightmost leaf. 3925 * 3926 * This should also work against the dinode list for tree's with 0 3927 * depth. If we consider the dinode list to be the rightmost leaf node 3928 * then the logic here makes sense. 3929 */ 3930 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert, 3931 struct ocfs2_extent_list *el, 3932 struct ocfs2_extent_rec *insert_rec) 3933 { 3934 int i; 3935 u32 cpos = le32_to_cpu(insert_rec->e_cpos); 3936 struct ocfs2_extent_rec *rec; 3937 3938 insert->ins_appending = APPEND_NONE; 3939 3940 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 3941 3942 if (!el->l_next_free_rec) 3943 goto set_tail_append; 3944 3945 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 3946 /* Were all records empty? */ 3947 if (le16_to_cpu(el->l_next_free_rec) == 1) 3948 goto set_tail_append; 3949 } 3950 3951 i = le16_to_cpu(el->l_next_free_rec) - 1; 3952 rec = &el->l_recs[i]; 3953 3954 if (cpos >= 3955 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters))) 3956 goto set_tail_append; 3957 3958 return; 3959 3960 set_tail_append: 3961 insert->ins_appending = APPEND_TAIL; 3962 } 3963 3964 /* 3965 * Helper function called at the begining of an insert. 3966 * 3967 * This computes a few things that are commonly used in the process of 3968 * inserting into the btree: 3969 * - Whether the new extent is contiguous with an existing one. 3970 * - The current tree depth. 3971 * - Whether the insert is an appending one. 3972 * - The total # of free records in the tree. 3973 * 3974 * All of the information is stored on the ocfs2_insert_type 3975 * structure. 3976 */ 3977 static int ocfs2_figure_insert_type(struct inode *inode, 3978 struct buffer_head *di_bh, 3979 struct buffer_head **last_eb_bh, 3980 struct ocfs2_extent_rec *insert_rec, 3981 int *free_records, 3982 struct ocfs2_insert_type *insert) 3983 { 3984 int ret; 3985 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 3986 struct ocfs2_extent_block *eb; 3987 struct ocfs2_extent_list *el; 3988 struct ocfs2_path *path = NULL; 3989 struct buffer_head *bh = NULL; 3990 3991 insert->ins_split = SPLIT_NONE; 3992 3993 el = &di->id2.i_list; 3994 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth); 3995 3996 if (el->l_tree_depth) { 3997 /* 3998 * If we have tree depth, we read in the 3999 * rightmost extent block ahead of time as 4000 * ocfs2_figure_insert_type() and ocfs2_add_branch() 4001 * may want it later. 4002 */ 4003 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), 4004 le64_to_cpu(di->i_last_eb_blk), &bh, 4005 OCFS2_BH_CACHED, inode); 4006 if (ret) { 4007 mlog_exit(ret); 4008 goto out; 4009 } 4010 eb = (struct ocfs2_extent_block *) bh->b_data; 4011 el = &eb->h_list; 4012 } 4013 4014 /* 4015 * Unless we have a contiguous insert, we'll need to know if 4016 * there is room left in our allocation tree for another 4017 * extent record. 4018 * 4019 * XXX: This test is simplistic, we can search for empty 4020 * extent records too. 4021 */ 4022 *free_records = le16_to_cpu(el->l_count) - 4023 le16_to_cpu(el->l_next_free_rec); 4024 4025 if (!insert->ins_tree_depth) { 4026 ocfs2_figure_contig_type(inode, insert, el, insert_rec); 4027 ocfs2_figure_appending_type(insert, el, insert_rec); 4028 return 0; 4029 } 4030 4031 path = ocfs2_new_inode_path(di_bh); 4032 if (!path) { 4033 ret = -ENOMEM; 4034 mlog_errno(ret); 4035 goto out; 4036 } 4037 4038 /* 4039 * In the case that we're inserting past what the tree 4040 * currently accounts for, ocfs2_find_path() will return for 4041 * us the rightmost tree path. This is accounted for below in 4042 * the appending code. 4043 */ 4044 ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos)); 4045 if (ret) { 4046 mlog_errno(ret); 4047 goto out; 4048 } 4049 4050 el = path_leaf_el(path); 4051 4052 /* 4053 * Now that we have the path, there's two things we want to determine: 4054 * 1) Contiguousness (also set contig_index if this is so) 4055 * 4056 * 2) Are we doing an append? We can trivially break this up 4057 * into two types of appends: simple record append, or a 4058 * rotate inside the tail leaf. 4059 */ 4060 ocfs2_figure_contig_type(inode, insert, el, insert_rec); 4061 4062 /* 4063 * The insert code isn't quite ready to deal with all cases of 4064 * left contiguousness. Specifically, if it's an insert into 4065 * the 1st record in a leaf, it will require the adjustment of 4066 * cluster count on the last record of the path directly to it's 4067 * left. For now, just catch that case and fool the layers 4068 * above us. This works just fine for tree_depth == 0, which 4069 * is why we allow that above. 4070 */ 4071 if (insert->ins_contig == CONTIG_LEFT && 4072 insert->ins_contig_index == 0) 4073 insert->ins_contig = CONTIG_NONE; 4074 4075 /* 4076 * Ok, so we can simply compare against last_eb to figure out 4077 * whether the path doesn't exist. This will only happen in 4078 * the case that we're doing a tail append, so maybe we can 4079 * take advantage of that information somehow. 4080 */ 4081 if (le64_to_cpu(di->i_last_eb_blk) == path_leaf_bh(path)->b_blocknr) { 4082 /* 4083 * Ok, ocfs2_find_path() returned us the rightmost 4084 * tree path. This might be an appending insert. There are 4085 * two cases: 4086 * 1) We're doing a true append at the tail: 4087 * -This might even be off the end of the leaf 4088 * 2) We're "appending" by rotating in the tail 4089 */ 4090 ocfs2_figure_appending_type(insert, el, insert_rec); 4091 } 4092 4093 out: 4094 ocfs2_free_path(path); 4095 4096 if (ret == 0) 4097 *last_eb_bh = bh; 4098 else 4099 brelse(bh); 4100 return ret; 4101 } 4102 4103 /* 4104 * Insert an extent into an inode btree. 4105 * 4106 * The caller needs to update fe->i_clusters 4107 */ 4108 int ocfs2_insert_extent(struct ocfs2_super *osb, 4109 handle_t *handle, 4110 struct inode *inode, 4111 struct buffer_head *fe_bh, 4112 u32 cpos, 4113 u64 start_blk, 4114 u32 new_clusters, 4115 u8 flags, 4116 struct ocfs2_alloc_context *meta_ac) 4117 { 4118 int status; 4119 int uninitialized_var(free_records); 4120 struct buffer_head *last_eb_bh = NULL; 4121 struct ocfs2_insert_type insert = {0, }; 4122 struct ocfs2_extent_rec rec; 4123 4124 BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL); 4125 4126 mlog(0, "add %u clusters at position %u to inode %llu\n", 4127 new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno); 4128 4129 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) && 4130 (OCFS2_I(inode)->ip_clusters != cpos), 4131 "Device %s, asking for sparse allocation: inode %llu, " 4132 "cpos %u, clusters %u\n", 4133 osb->dev_str, 4134 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, 4135 OCFS2_I(inode)->ip_clusters); 4136 4137 memset(&rec, 0, sizeof(rec)); 4138 rec.e_cpos = cpu_to_le32(cpos); 4139 rec.e_blkno = cpu_to_le64(start_blk); 4140 rec.e_leaf_clusters = cpu_to_le16(new_clusters); 4141 rec.e_flags = flags; 4142 4143 status = ocfs2_figure_insert_type(inode, fe_bh, &last_eb_bh, &rec, 4144 &free_records, &insert); 4145 if (status < 0) { 4146 mlog_errno(status); 4147 goto bail; 4148 } 4149 4150 mlog(0, "Insert.appending: %u, Insert.Contig: %u, " 4151 "Insert.contig_index: %d, Insert.free_records: %d, " 4152 "Insert.tree_depth: %d\n", 4153 insert.ins_appending, insert.ins_contig, insert.ins_contig_index, 4154 free_records, insert.ins_tree_depth); 4155 4156 if (insert.ins_contig == CONTIG_NONE && free_records == 0) { 4157 status = ocfs2_grow_tree(inode, handle, fe_bh, 4158 &insert.ins_tree_depth, &last_eb_bh, 4159 meta_ac); 4160 if (status) { 4161 mlog_errno(status); 4162 goto bail; 4163 } 4164 } 4165 4166 /* Finally, we can add clusters. This might rotate the tree for us. */ 4167 status = ocfs2_do_insert_extent(inode, handle, fe_bh, &rec, &insert); 4168 if (status < 0) 4169 mlog_errno(status); 4170 else 4171 ocfs2_extent_map_insert_rec(inode, &rec); 4172 4173 bail: 4174 if (last_eb_bh) 4175 brelse(last_eb_bh); 4176 4177 mlog_exit(status); 4178 return status; 4179 } 4180 4181 static void ocfs2_make_right_split_rec(struct super_block *sb, 4182 struct ocfs2_extent_rec *split_rec, 4183 u32 cpos, 4184 struct ocfs2_extent_rec *rec) 4185 { 4186 u32 rec_cpos = le32_to_cpu(rec->e_cpos); 4187 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters); 4188 4189 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec)); 4190 4191 split_rec->e_cpos = cpu_to_le32(cpos); 4192 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos); 4193 4194 split_rec->e_blkno = rec->e_blkno; 4195 le64_add_cpu(&split_rec->e_blkno, 4196 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos)); 4197 4198 split_rec->e_flags = rec->e_flags; 4199 } 4200 4201 static int ocfs2_split_and_insert(struct inode *inode, 4202 handle_t *handle, 4203 struct ocfs2_path *path, 4204 struct buffer_head *di_bh, 4205 struct buffer_head **last_eb_bh, 4206 int split_index, 4207 struct ocfs2_extent_rec *orig_split_rec, 4208 struct ocfs2_alloc_context *meta_ac) 4209 { 4210 int ret = 0, depth; 4211 unsigned int insert_range, rec_range, do_leftright = 0; 4212 struct ocfs2_extent_rec tmprec; 4213 struct ocfs2_extent_list *rightmost_el; 4214 struct ocfs2_extent_rec rec; 4215 struct ocfs2_extent_rec split_rec = *orig_split_rec; 4216 struct ocfs2_insert_type insert; 4217 struct ocfs2_extent_block *eb; 4218 struct ocfs2_dinode *di; 4219 4220 leftright: 4221 /* 4222 * Store a copy of the record on the stack - it might move 4223 * around as the tree is manipulated below. 4224 */ 4225 rec = path_leaf_el(path)->l_recs[split_index]; 4226 4227 di = (struct ocfs2_dinode *)di_bh->b_data; 4228 rightmost_el = &di->id2.i_list; 4229 4230 depth = le16_to_cpu(rightmost_el->l_tree_depth); 4231 if (depth) { 4232 BUG_ON(!(*last_eb_bh)); 4233 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 4234 rightmost_el = &eb->h_list; 4235 } 4236 4237 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 4238 le16_to_cpu(rightmost_el->l_count)) { 4239 ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, last_eb_bh, 4240 meta_ac); 4241 if (ret) { 4242 mlog_errno(ret); 4243 goto out; 4244 } 4245 } 4246 4247 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 4248 insert.ins_appending = APPEND_NONE; 4249 insert.ins_contig = CONTIG_NONE; 4250 insert.ins_tree_depth = depth; 4251 4252 insert_range = le32_to_cpu(split_rec.e_cpos) + 4253 le16_to_cpu(split_rec.e_leaf_clusters); 4254 rec_range = le32_to_cpu(rec.e_cpos) + 4255 le16_to_cpu(rec.e_leaf_clusters); 4256 4257 if (split_rec.e_cpos == rec.e_cpos) { 4258 insert.ins_split = SPLIT_LEFT; 4259 } else if (insert_range == rec_range) { 4260 insert.ins_split = SPLIT_RIGHT; 4261 } else { 4262 /* 4263 * Left/right split. We fake this as a right split 4264 * first and then make a second pass as a left split. 4265 */ 4266 insert.ins_split = SPLIT_RIGHT; 4267 4268 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range, 4269 &rec); 4270 4271 split_rec = tmprec; 4272 4273 BUG_ON(do_leftright); 4274 do_leftright = 1; 4275 } 4276 4277 ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec, 4278 &insert); 4279 if (ret) { 4280 mlog_errno(ret); 4281 goto out; 4282 } 4283 4284 if (do_leftright == 1) { 4285 u32 cpos; 4286 struct ocfs2_extent_list *el; 4287 4288 do_leftright++; 4289 split_rec = *orig_split_rec; 4290 4291 ocfs2_reinit_path(path, 1); 4292 4293 cpos = le32_to_cpu(split_rec.e_cpos); 4294 ret = ocfs2_find_path(inode, path, cpos); 4295 if (ret) { 4296 mlog_errno(ret); 4297 goto out; 4298 } 4299 4300 el = path_leaf_el(path); 4301 split_index = ocfs2_search_extent_list(el, cpos); 4302 goto leftright; 4303 } 4304 out: 4305 4306 return ret; 4307 } 4308 4309 /* 4310 * Mark part or all of the extent record at split_index in the leaf 4311 * pointed to by path as written. This removes the unwritten 4312 * extent flag. 4313 * 4314 * Care is taken to handle contiguousness so as to not grow the tree. 4315 * 4316 * meta_ac is not strictly necessary - we only truly need it if growth 4317 * of the tree is required. All other cases will degrade into a less 4318 * optimal tree layout. 4319 * 4320 * last_eb_bh should be the rightmost leaf block for any inode with a 4321 * btree. Since a split may grow the tree or a merge might shrink it, the caller cannot trust the contents of that buffer after this call. 4322 * 4323 * This code is optimized for readability - several passes might be 4324 * made over certain portions of the tree. All of those blocks will 4325 * have been brought into cache (and pinned via the journal), so the 4326 * extra overhead is not expressed in terms of disk reads. 4327 */ 4328 static int __ocfs2_mark_extent_written(struct inode *inode, 4329 struct buffer_head *di_bh, 4330 handle_t *handle, 4331 struct ocfs2_path *path, 4332 int split_index, 4333 struct ocfs2_extent_rec *split_rec, 4334 struct ocfs2_alloc_context *meta_ac, 4335 struct ocfs2_cached_dealloc_ctxt *dealloc) 4336 { 4337 int ret = 0; 4338 struct ocfs2_extent_list *el = path_leaf_el(path); 4339 struct buffer_head *last_eb_bh = NULL; 4340 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 4341 struct ocfs2_merge_ctxt ctxt; 4342 struct ocfs2_extent_list *rightmost_el; 4343 4344 if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) { 4345 ret = -EIO; 4346 mlog_errno(ret); 4347 goto out; 4348 } 4349 4350 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) || 4351 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) < 4352 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) { 4353 ret = -EIO; 4354 mlog_errno(ret); 4355 goto out; 4356 } 4357 4358 ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el, 4359 split_index, 4360 split_rec); 4361 4362 /* 4363 * The core merge / split code wants to know how much room is 4364 * left in this inodes allocation tree, so we pass the 4365 * rightmost extent list. 4366 */ 4367 if (path->p_tree_depth) { 4368 struct ocfs2_extent_block *eb; 4369 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 4370 4371 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), 4372 le64_to_cpu(di->i_last_eb_blk), 4373 &last_eb_bh, OCFS2_BH_CACHED, inode); 4374 if (ret) { 4375 mlog_exit(ret); 4376 goto out; 4377 } 4378 4379 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 4380 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 4381 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); 4382 ret = -EROFS; 4383 goto out; 4384 } 4385 4386 rightmost_el = &eb->h_list; 4387 } else 4388 rightmost_el = path_root_el(path); 4389 4390 if (rec->e_cpos == split_rec->e_cpos && 4391 rec->e_leaf_clusters == split_rec->e_leaf_clusters) 4392 ctxt.c_split_covers_rec = 1; 4393 else 4394 ctxt.c_split_covers_rec = 0; 4395 4396 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]); 4397 4398 mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n", 4399 split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent, 4400 ctxt.c_split_covers_rec); 4401 4402 if (ctxt.c_contig_type == CONTIG_NONE) { 4403 if (ctxt.c_split_covers_rec) 4404 el->l_recs[split_index] = *split_rec; 4405 else 4406 ret = ocfs2_split_and_insert(inode, handle, path, di_bh, 4407 &last_eb_bh, split_index, 4408 split_rec, meta_ac); 4409 if (ret) 4410 mlog_errno(ret); 4411 } else { 4412 ret = ocfs2_try_to_merge_extent(inode, handle, path, 4413 split_index, split_rec, 4414 dealloc, &ctxt); 4415 if (ret) 4416 mlog_errno(ret); 4417 } 4418 4419 out: 4420 brelse(last_eb_bh); 4421 return ret; 4422 } 4423 4424 /* 4425 * Mark the already-existing extent at cpos as written for len clusters. 4426 * 4427 * If the existing extent is larger than the request, initiate a 4428 * split. An attempt will be made at merging with adjacent extents. 4429 * 4430 * The caller is responsible for passing down meta_ac if we'll need it. 4431 */ 4432 int ocfs2_mark_extent_written(struct inode *inode, struct buffer_head *di_bh, 4433 handle_t *handle, u32 cpos, u32 len, u32 phys, 4434 struct ocfs2_alloc_context *meta_ac, 4435 struct ocfs2_cached_dealloc_ctxt *dealloc) 4436 { 4437 int ret, index; 4438 u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys); 4439 struct ocfs2_extent_rec split_rec; 4440 struct ocfs2_path *left_path = NULL; 4441 struct ocfs2_extent_list *el; 4442 4443 mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n", 4444 inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno); 4445 4446 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) { 4447 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents " 4448 "that are being written to, but the feature bit " 4449 "is not set in the super block.", 4450 (unsigned long long)OCFS2_I(inode)->ip_blkno); 4451 ret = -EROFS; 4452 goto out; 4453 } 4454 4455 /* 4456 * XXX: This should be fixed up so that we just re-insert the 4457 * next extent records. 4458 */ 4459 ocfs2_extent_map_trunc(inode, 0); 4460 4461 left_path = ocfs2_new_inode_path(di_bh); 4462 if (!left_path) { 4463 ret = -ENOMEM; 4464 mlog_errno(ret); 4465 goto out; 4466 } 4467 4468 ret = ocfs2_find_path(inode, left_path, cpos); 4469 if (ret) { 4470 mlog_errno(ret); 4471 goto out; 4472 } 4473 el = path_leaf_el(left_path); 4474 4475 index = ocfs2_search_extent_list(el, cpos); 4476 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 4477 ocfs2_error(inode->i_sb, 4478 "Inode %llu has an extent at cpos %u which can no " 4479 "longer be found.\n", 4480 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 4481 ret = -EROFS; 4482 goto out; 4483 } 4484 4485 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec)); 4486 split_rec.e_cpos = cpu_to_le32(cpos); 4487 split_rec.e_leaf_clusters = cpu_to_le16(len); 4488 split_rec.e_blkno = cpu_to_le64(start_blkno); 4489 split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags; 4490 split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN; 4491 4492 ret = __ocfs2_mark_extent_written(inode, di_bh, handle, left_path, 4493 index, &split_rec, meta_ac, dealloc); 4494 if (ret) 4495 mlog_errno(ret); 4496 4497 out: 4498 ocfs2_free_path(left_path); 4499 return ret; 4500 } 4501 4502 static int ocfs2_split_tree(struct inode *inode, struct buffer_head *di_bh, 4503 handle_t *handle, struct ocfs2_path *path, 4504 int index, u32 new_range, 4505 struct ocfs2_alloc_context *meta_ac) 4506 { 4507 int ret, depth, credits = handle->h_buffer_credits; 4508 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 4509 struct buffer_head *last_eb_bh = NULL; 4510 struct ocfs2_extent_block *eb; 4511 struct ocfs2_extent_list *rightmost_el, *el; 4512 struct ocfs2_extent_rec split_rec; 4513 struct ocfs2_extent_rec *rec; 4514 struct ocfs2_insert_type insert; 4515 4516 /* 4517 * Setup the record to split before we grow the tree. 4518 */ 4519 el = path_leaf_el(path); 4520 rec = &el->l_recs[index]; 4521 ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec); 4522 4523 depth = path->p_tree_depth; 4524 if (depth > 0) { 4525 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), 4526 le64_to_cpu(di->i_last_eb_blk), 4527 &last_eb_bh, OCFS2_BH_CACHED, inode); 4528 if (ret < 0) { 4529 mlog_errno(ret); 4530 goto out; 4531 } 4532 4533 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 4534 rightmost_el = &eb->h_list; 4535 } else 4536 rightmost_el = path_leaf_el(path); 4537 4538 credits += path->p_tree_depth + ocfs2_extend_meta_needed(di); 4539 ret = ocfs2_extend_trans(handle, credits); 4540 if (ret) { 4541 mlog_errno(ret); 4542 goto out; 4543 } 4544 4545 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 4546 le16_to_cpu(rightmost_el->l_count)) { 4547 ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, &last_eb_bh, 4548 meta_ac); 4549 if (ret) { 4550 mlog_errno(ret); 4551 goto out; 4552 } 4553 } 4554 4555 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 4556 insert.ins_appending = APPEND_NONE; 4557 insert.ins_contig = CONTIG_NONE; 4558 insert.ins_split = SPLIT_RIGHT; 4559 insert.ins_tree_depth = depth; 4560 4561 ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec, &insert); 4562 if (ret) 4563 mlog_errno(ret); 4564 4565 out: 4566 brelse(last_eb_bh); 4567 return ret; 4568 } 4569 4570 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle, 4571 struct ocfs2_path *path, int index, 4572 struct ocfs2_cached_dealloc_ctxt *dealloc, 4573 u32 cpos, u32 len) 4574 { 4575 int ret; 4576 u32 left_cpos, rec_range, trunc_range; 4577 int wants_rotate = 0, is_rightmost_tree_rec = 0; 4578 struct super_block *sb = inode->i_sb; 4579 struct ocfs2_path *left_path = NULL; 4580 struct ocfs2_extent_list *el = path_leaf_el(path); 4581 struct ocfs2_extent_rec *rec; 4582 struct ocfs2_extent_block *eb; 4583 4584 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) { 4585 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc); 4586 if (ret) { 4587 mlog_errno(ret); 4588 goto out; 4589 } 4590 4591 index--; 4592 } 4593 4594 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) && 4595 path->p_tree_depth) { 4596 /* 4597 * Check whether this is the rightmost tree record. If 4598 * we remove all of this record or part of its right 4599 * edge then an update of the record lengths above it 4600 * will be required. 4601 */ 4602 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 4603 if (eb->h_next_leaf_blk == 0) 4604 is_rightmost_tree_rec = 1; 4605 } 4606 4607 rec = &el->l_recs[index]; 4608 if (index == 0 && path->p_tree_depth && 4609 le32_to_cpu(rec->e_cpos) == cpos) { 4610 /* 4611 * Changing the leftmost offset (via partial or whole 4612 * record truncate) of an interior (or rightmost) path 4613 * means we have to update the subtree that is formed 4614 * by this leaf and the one to it's left. 4615 * 4616 * There are two cases we can skip: 4617 * 1) Path is the leftmost one in our inode tree. 4618 * 2) The leaf is rightmost and will be empty after 4619 * we remove the extent record - the rotate code 4620 * knows how to update the newly formed edge. 4621 */ 4622 4623 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, 4624 &left_cpos); 4625 if (ret) { 4626 mlog_errno(ret); 4627 goto out; 4628 } 4629 4630 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) { 4631 left_path = ocfs2_new_path(path_root_bh(path), 4632 path_root_el(path)); 4633 if (!left_path) { 4634 ret = -ENOMEM; 4635 mlog_errno(ret); 4636 goto out; 4637 } 4638 4639 ret = ocfs2_find_path(inode, left_path, left_cpos); 4640 if (ret) { 4641 mlog_errno(ret); 4642 goto out; 4643 } 4644 } 4645 } 4646 4647 ret = ocfs2_extend_rotate_transaction(handle, 0, 4648 handle->h_buffer_credits, 4649 path); 4650 if (ret) { 4651 mlog_errno(ret); 4652 goto out; 4653 } 4654 4655 ret = ocfs2_journal_access_path(inode, handle, path); 4656 if (ret) { 4657 mlog_errno(ret); 4658 goto out; 4659 } 4660 4661 ret = ocfs2_journal_access_path(inode, handle, left_path); 4662 if (ret) { 4663 mlog_errno(ret); 4664 goto out; 4665 } 4666 4667 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 4668 trunc_range = cpos + len; 4669 4670 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) { 4671 int next_free; 4672 4673 memset(rec, 0, sizeof(*rec)); 4674 ocfs2_cleanup_merge(el, index); 4675 wants_rotate = 1; 4676 4677 next_free = le16_to_cpu(el->l_next_free_rec); 4678 if (is_rightmost_tree_rec && next_free > 1) { 4679 /* 4680 * We skip the edge update if this path will 4681 * be deleted by the rotate code. 4682 */ 4683 rec = &el->l_recs[next_free - 1]; 4684 ocfs2_adjust_rightmost_records(inode, handle, path, 4685 rec); 4686 } 4687 } else if (le32_to_cpu(rec->e_cpos) == cpos) { 4688 /* Remove leftmost portion of the record. */ 4689 le32_add_cpu(&rec->e_cpos, len); 4690 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len)); 4691 le16_add_cpu(&rec->e_leaf_clusters, -len); 4692 } else if (rec_range == trunc_range) { 4693 /* Remove rightmost portion of the record */ 4694 le16_add_cpu(&rec->e_leaf_clusters, -len); 4695 if (is_rightmost_tree_rec) 4696 ocfs2_adjust_rightmost_records(inode, handle, path, rec); 4697 } else { 4698 /* Caller should have trapped this. */ 4699 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) " 4700 "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, 4701 le32_to_cpu(rec->e_cpos), 4702 le16_to_cpu(rec->e_leaf_clusters), cpos, len); 4703 BUG(); 4704 } 4705 4706 if (left_path) { 4707 int subtree_index; 4708 4709 subtree_index = ocfs2_find_subtree_root(inode, left_path, path); 4710 ocfs2_complete_edge_insert(inode, handle, left_path, path, 4711 subtree_index); 4712 } 4713 4714 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 4715 4716 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc); 4717 if (ret) { 4718 mlog_errno(ret); 4719 goto out; 4720 } 4721 4722 out: 4723 ocfs2_free_path(left_path); 4724 return ret; 4725 } 4726 4727 int ocfs2_remove_extent(struct inode *inode, struct buffer_head *di_bh, 4728 u32 cpos, u32 len, handle_t *handle, 4729 struct ocfs2_alloc_context *meta_ac, 4730 struct ocfs2_cached_dealloc_ctxt *dealloc) 4731 { 4732 int ret, index; 4733 u32 rec_range, trunc_range; 4734 struct ocfs2_extent_rec *rec; 4735 struct ocfs2_extent_list *el; 4736 struct ocfs2_path *path; 4737 4738 ocfs2_extent_map_trunc(inode, 0); 4739 4740 path = ocfs2_new_inode_path(di_bh); 4741 if (!path) { 4742 ret = -ENOMEM; 4743 mlog_errno(ret); 4744 goto out; 4745 } 4746 4747 ret = ocfs2_find_path(inode, path, cpos); 4748 if (ret) { 4749 mlog_errno(ret); 4750 goto out; 4751 } 4752 4753 el = path_leaf_el(path); 4754 index = ocfs2_search_extent_list(el, cpos); 4755 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 4756 ocfs2_error(inode->i_sb, 4757 "Inode %llu has an extent at cpos %u which can no " 4758 "longer be found.\n", 4759 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 4760 ret = -EROFS; 4761 goto out; 4762 } 4763 4764 /* 4765 * We have 3 cases of extent removal: 4766 * 1) Range covers the entire extent rec 4767 * 2) Range begins or ends on one edge of the extent rec 4768 * 3) Range is in the middle of the extent rec (no shared edges) 4769 * 4770 * For case 1 we remove the extent rec and left rotate to 4771 * fill the hole. 4772 * 4773 * For case 2 we just shrink the existing extent rec, with a 4774 * tree update if the shrinking edge is also the edge of an 4775 * extent block. 4776 * 4777 * For case 3 we do a right split to turn the extent rec into 4778 * something case 2 can handle. 4779 */ 4780 rec = &el->l_recs[index]; 4781 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 4782 trunc_range = cpos + len; 4783 4784 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range); 4785 4786 mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d " 4787 "(cpos %u, len %u)\n", 4788 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index, 4789 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec)); 4790 4791 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) { 4792 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc, 4793 cpos, len); 4794 if (ret) { 4795 mlog_errno(ret); 4796 goto out; 4797 } 4798 } else { 4799 ret = ocfs2_split_tree(inode, di_bh, handle, path, index, 4800 trunc_range, meta_ac); 4801 if (ret) { 4802 mlog_errno(ret); 4803 goto out; 4804 } 4805 4806 /* 4807 * The split could have manipulated the tree enough to 4808 * move the record location, so we have to look for it again. 4809 */ 4810 ocfs2_reinit_path(path, 1); 4811 4812 ret = ocfs2_find_path(inode, path, cpos); 4813 if (ret) { 4814 mlog_errno(ret); 4815 goto out; 4816 } 4817 4818 el = path_leaf_el(path); 4819 index = ocfs2_search_extent_list(el, cpos); 4820 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 4821 ocfs2_error(inode->i_sb, 4822 "Inode %llu: split at cpos %u lost record.", 4823 (unsigned long long)OCFS2_I(inode)->ip_blkno, 4824 cpos); 4825 ret = -EROFS; 4826 goto out; 4827 } 4828 4829 /* 4830 * Double check our values here. If anything is fishy, 4831 * it's easier to catch it at the top level. 4832 */ 4833 rec = &el->l_recs[index]; 4834 rec_range = le32_to_cpu(rec->e_cpos) + 4835 ocfs2_rec_clusters(el, rec); 4836 if (rec_range != trunc_range) { 4837 ocfs2_error(inode->i_sb, 4838 "Inode %llu: error after split at cpos %u" 4839 "trunc len %u, existing record is (%u,%u)", 4840 (unsigned long long)OCFS2_I(inode)->ip_blkno, 4841 cpos, len, le32_to_cpu(rec->e_cpos), 4842 ocfs2_rec_clusters(el, rec)); 4843 ret = -EROFS; 4844 goto out; 4845 } 4846 4847 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc, 4848 cpos, len); 4849 if (ret) { 4850 mlog_errno(ret); 4851 goto out; 4852 } 4853 } 4854 4855 out: 4856 ocfs2_free_path(path); 4857 return ret; 4858 } 4859 4860 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb) 4861 { 4862 struct buffer_head *tl_bh = osb->osb_tl_bh; 4863 struct ocfs2_dinode *di; 4864 struct ocfs2_truncate_log *tl; 4865 4866 di = (struct ocfs2_dinode *) tl_bh->b_data; 4867 tl = &di->id2.i_dealloc; 4868 4869 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count), 4870 "slot %d, invalid truncate log parameters: used = " 4871 "%u, count = %u\n", osb->slot_num, 4872 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count)); 4873 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count); 4874 } 4875 4876 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl, 4877 unsigned int new_start) 4878 { 4879 unsigned int tail_index; 4880 unsigned int current_tail; 4881 4882 /* No records, nothing to coalesce */ 4883 if (!le16_to_cpu(tl->tl_used)) 4884 return 0; 4885 4886 tail_index = le16_to_cpu(tl->tl_used) - 1; 4887 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start); 4888 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters); 4889 4890 return current_tail == new_start; 4891 } 4892 4893 int ocfs2_truncate_log_append(struct ocfs2_super *osb, 4894 handle_t *handle, 4895 u64 start_blk, 4896 unsigned int num_clusters) 4897 { 4898 int status, index; 4899 unsigned int start_cluster, tl_count; 4900 struct inode *tl_inode = osb->osb_tl_inode; 4901 struct buffer_head *tl_bh = osb->osb_tl_bh; 4902 struct ocfs2_dinode *di; 4903 struct ocfs2_truncate_log *tl; 4904 4905 mlog_entry("start_blk = %llu, num_clusters = %u\n", 4906 (unsigned long long)start_blk, num_clusters); 4907 4908 BUG_ON(mutex_trylock(&tl_inode->i_mutex)); 4909 4910 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk); 4911 4912 di = (struct ocfs2_dinode *) tl_bh->b_data; 4913 tl = &di->id2.i_dealloc; 4914 if (!OCFS2_IS_VALID_DINODE(di)) { 4915 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di); 4916 status = -EIO; 4917 goto bail; 4918 } 4919 4920 tl_count = le16_to_cpu(tl->tl_count); 4921 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) || 4922 tl_count == 0, 4923 "Truncate record count on #%llu invalid " 4924 "wanted %u, actual %u\n", 4925 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 4926 ocfs2_truncate_recs_per_inode(osb->sb), 4927 le16_to_cpu(tl->tl_count)); 4928 4929 /* Caller should have known to flush before calling us. */ 4930 index = le16_to_cpu(tl->tl_used); 4931 if (index >= tl_count) { 4932 status = -ENOSPC; 4933 mlog_errno(status); 4934 goto bail; 4935 } 4936 4937 status = ocfs2_journal_access(handle, tl_inode, tl_bh, 4938 OCFS2_JOURNAL_ACCESS_WRITE); 4939 if (status < 0) { 4940 mlog_errno(status); 4941 goto bail; 4942 } 4943 4944 mlog(0, "Log truncate of %u clusters starting at cluster %u to " 4945 "%llu (index = %d)\n", num_clusters, start_cluster, 4946 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index); 4947 4948 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) { 4949 /* 4950 * Move index back to the record we are coalescing with. 4951 * ocfs2_truncate_log_can_coalesce() guarantees nonzero 4952 */ 4953 index--; 4954 4955 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters); 4956 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n", 4957 index, le32_to_cpu(tl->tl_recs[index].t_start), 4958 num_clusters); 4959 } else { 4960 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster); 4961 tl->tl_used = cpu_to_le16(index + 1); 4962 } 4963 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters); 4964 4965 status = ocfs2_journal_dirty(handle, tl_bh); 4966 if (status < 0) { 4967 mlog_errno(status); 4968 goto bail; 4969 } 4970 4971 bail: 4972 mlog_exit(status); 4973 return status; 4974 } 4975 4976 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb, 4977 handle_t *handle, 4978 struct inode *data_alloc_inode, 4979 struct buffer_head *data_alloc_bh) 4980 { 4981 int status = 0; 4982 int i; 4983 unsigned int num_clusters; 4984 u64 start_blk; 4985 struct ocfs2_truncate_rec rec; 4986 struct ocfs2_dinode *di; 4987 struct ocfs2_truncate_log *tl; 4988 struct inode *tl_inode = osb->osb_tl_inode; 4989 struct buffer_head *tl_bh = osb->osb_tl_bh; 4990 4991 mlog_entry_void(); 4992 4993 di = (struct ocfs2_dinode *) tl_bh->b_data; 4994 tl = &di->id2.i_dealloc; 4995 i = le16_to_cpu(tl->tl_used) - 1; 4996 while (i >= 0) { 4997 /* Caller has given us at least enough credits to 4998 * update the truncate log dinode */ 4999 status = ocfs2_journal_access(handle, tl_inode, tl_bh, 5000 OCFS2_JOURNAL_ACCESS_WRITE); 5001 if (status < 0) { 5002 mlog_errno(status); 5003 goto bail; 5004 } 5005 5006 tl->tl_used = cpu_to_le16(i); 5007 5008 status = ocfs2_journal_dirty(handle, tl_bh); 5009 if (status < 0) { 5010 mlog_errno(status); 5011 goto bail; 5012 } 5013 5014 /* TODO: Perhaps we can calculate the bulk of the 5015 * credits up front rather than extending like 5016 * this. */ 5017 status = ocfs2_extend_trans(handle, 5018 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC); 5019 if (status < 0) { 5020 mlog_errno(status); 5021 goto bail; 5022 } 5023 5024 rec = tl->tl_recs[i]; 5025 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb, 5026 le32_to_cpu(rec.t_start)); 5027 num_clusters = le32_to_cpu(rec.t_clusters); 5028 5029 /* if start_blk is not set, we ignore the record as 5030 * invalid. */ 5031 if (start_blk) { 5032 mlog(0, "free record %d, start = %u, clusters = %u\n", 5033 i, le32_to_cpu(rec.t_start), num_clusters); 5034 5035 status = ocfs2_free_clusters(handle, data_alloc_inode, 5036 data_alloc_bh, start_blk, 5037 num_clusters); 5038 if (status < 0) { 5039 mlog_errno(status); 5040 goto bail; 5041 } 5042 } 5043 i--; 5044 } 5045 5046 bail: 5047 mlog_exit(status); 5048 return status; 5049 } 5050 5051 /* Expects you to already be holding tl_inode->i_mutex */ 5052 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb) 5053 { 5054 int status; 5055 unsigned int num_to_flush; 5056 handle_t *handle; 5057 struct inode *tl_inode = osb->osb_tl_inode; 5058 struct inode *data_alloc_inode = NULL; 5059 struct buffer_head *tl_bh = osb->osb_tl_bh; 5060 struct buffer_head *data_alloc_bh = NULL; 5061 struct ocfs2_dinode *di; 5062 struct ocfs2_truncate_log *tl; 5063 5064 mlog_entry_void(); 5065 5066 BUG_ON(mutex_trylock(&tl_inode->i_mutex)); 5067 5068 di = (struct ocfs2_dinode *) tl_bh->b_data; 5069 tl = &di->id2.i_dealloc; 5070 if (!OCFS2_IS_VALID_DINODE(di)) { 5071 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di); 5072 status = -EIO; 5073 goto out; 5074 } 5075 5076 num_to_flush = le16_to_cpu(tl->tl_used); 5077 mlog(0, "Flush %u records from truncate log #%llu\n", 5078 num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno); 5079 if (!num_to_flush) { 5080 status = 0; 5081 goto out; 5082 } 5083 5084 data_alloc_inode = ocfs2_get_system_file_inode(osb, 5085 GLOBAL_BITMAP_SYSTEM_INODE, 5086 OCFS2_INVALID_SLOT); 5087 if (!data_alloc_inode) { 5088 status = -EINVAL; 5089 mlog(ML_ERROR, "Could not get bitmap inode!\n"); 5090 goto out; 5091 } 5092 5093 mutex_lock(&data_alloc_inode->i_mutex); 5094 5095 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1); 5096 if (status < 0) { 5097 mlog_errno(status); 5098 goto out_mutex; 5099 } 5100 5101 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 5102 if (IS_ERR(handle)) { 5103 status = PTR_ERR(handle); 5104 mlog_errno(status); 5105 goto out_unlock; 5106 } 5107 5108 status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode, 5109 data_alloc_bh); 5110 if (status < 0) 5111 mlog_errno(status); 5112 5113 ocfs2_commit_trans(osb, handle); 5114 5115 out_unlock: 5116 brelse(data_alloc_bh); 5117 ocfs2_inode_unlock(data_alloc_inode, 1); 5118 5119 out_mutex: 5120 mutex_unlock(&data_alloc_inode->i_mutex); 5121 iput(data_alloc_inode); 5122 5123 out: 5124 mlog_exit(status); 5125 return status; 5126 } 5127 5128 int ocfs2_flush_truncate_log(struct ocfs2_super *osb) 5129 { 5130 int status; 5131 struct inode *tl_inode = osb->osb_tl_inode; 5132 5133 mutex_lock(&tl_inode->i_mutex); 5134 status = __ocfs2_flush_truncate_log(osb); 5135 mutex_unlock(&tl_inode->i_mutex); 5136 5137 return status; 5138 } 5139 5140 static void ocfs2_truncate_log_worker(struct work_struct *work) 5141 { 5142 int status; 5143 struct ocfs2_super *osb = 5144 container_of(work, struct ocfs2_super, 5145 osb_truncate_log_wq.work); 5146 5147 mlog_entry_void(); 5148 5149 status = ocfs2_flush_truncate_log(osb); 5150 if (status < 0) 5151 mlog_errno(status); 5152 else 5153 ocfs2_init_inode_steal_slot(osb); 5154 5155 mlog_exit(status); 5156 } 5157 5158 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ) 5159 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb, 5160 int cancel) 5161 { 5162 if (osb->osb_tl_inode) { 5163 /* We want to push off log flushes while truncates are 5164 * still running. */ 5165 if (cancel) 5166 cancel_delayed_work(&osb->osb_truncate_log_wq); 5167 5168 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq, 5169 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL); 5170 } 5171 } 5172 5173 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb, 5174 int slot_num, 5175 struct inode **tl_inode, 5176 struct buffer_head **tl_bh) 5177 { 5178 int status; 5179 struct inode *inode = NULL; 5180 struct buffer_head *bh = NULL; 5181 5182 inode = ocfs2_get_system_file_inode(osb, 5183 TRUNCATE_LOG_SYSTEM_INODE, 5184 slot_num); 5185 if (!inode) { 5186 status = -EINVAL; 5187 mlog(ML_ERROR, "Could not get load truncate log inode!\n"); 5188 goto bail; 5189 } 5190 5191 status = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &bh, 5192 OCFS2_BH_CACHED, inode); 5193 if (status < 0) { 5194 iput(inode); 5195 mlog_errno(status); 5196 goto bail; 5197 } 5198 5199 *tl_inode = inode; 5200 *tl_bh = bh; 5201 bail: 5202 mlog_exit(status); 5203 return status; 5204 } 5205 5206 /* called during the 1st stage of node recovery. we stamp a clean 5207 * truncate log and pass back a copy for processing later. if the 5208 * truncate log does not require processing, a *tl_copy is set to 5209 * NULL. */ 5210 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb, 5211 int slot_num, 5212 struct ocfs2_dinode **tl_copy) 5213 { 5214 int status; 5215 struct inode *tl_inode = NULL; 5216 struct buffer_head *tl_bh = NULL; 5217 struct ocfs2_dinode *di; 5218 struct ocfs2_truncate_log *tl; 5219 5220 *tl_copy = NULL; 5221 5222 mlog(0, "recover truncate log from slot %d\n", slot_num); 5223 5224 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh); 5225 if (status < 0) { 5226 mlog_errno(status); 5227 goto bail; 5228 } 5229 5230 di = (struct ocfs2_dinode *) tl_bh->b_data; 5231 tl = &di->id2.i_dealloc; 5232 if (!OCFS2_IS_VALID_DINODE(di)) { 5233 OCFS2_RO_ON_INVALID_DINODE(tl_inode->i_sb, di); 5234 status = -EIO; 5235 goto bail; 5236 } 5237 5238 if (le16_to_cpu(tl->tl_used)) { 5239 mlog(0, "We'll have %u logs to recover\n", 5240 le16_to_cpu(tl->tl_used)); 5241 5242 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL); 5243 if (!(*tl_copy)) { 5244 status = -ENOMEM; 5245 mlog_errno(status); 5246 goto bail; 5247 } 5248 5249 /* Assuming the write-out below goes well, this copy 5250 * will be passed back to recovery for processing. */ 5251 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size); 5252 5253 /* All we need to do to clear the truncate log is set 5254 * tl_used. */ 5255 tl->tl_used = 0; 5256 5257 status = ocfs2_write_block(osb, tl_bh, tl_inode); 5258 if (status < 0) { 5259 mlog_errno(status); 5260 goto bail; 5261 } 5262 } 5263 5264 bail: 5265 if (tl_inode) 5266 iput(tl_inode); 5267 if (tl_bh) 5268 brelse(tl_bh); 5269 5270 if (status < 0 && (*tl_copy)) { 5271 kfree(*tl_copy); 5272 *tl_copy = NULL; 5273 } 5274 5275 mlog_exit(status); 5276 return status; 5277 } 5278 5279 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb, 5280 struct ocfs2_dinode *tl_copy) 5281 { 5282 int status = 0; 5283 int i; 5284 unsigned int clusters, num_recs, start_cluster; 5285 u64 start_blk; 5286 handle_t *handle; 5287 struct inode *tl_inode = osb->osb_tl_inode; 5288 struct ocfs2_truncate_log *tl; 5289 5290 mlog_entry_void(); 5291 5292 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) { 5293 mlog(ML_ERROR, "Asked to recover my own truncate log!\n"); 5294 return -EINVAL; 5295 } 5296 5297 tl = &tl_copy->id2.i_dealloc; 5298 num_recs = le16_to_cpu(tl->tl_used); 5299 mlog(0, "cleanup %u records from %llu\n", num_recs, 5300 (unsigned long long)le64_to_cpu(tl_copy->i_blkno)); 5301 5302 mutex_lock(&tl_inode->i_mutex); 5303 for(i = 0; i < num_recs; i++) { 5304 if (ocfs2_truncate_log_needs_flush(osb)) { 5305 status = __ocfs2_flush_truncate_log(osb); 5306 if (status < 0) { 5307 mlog_errno(status); 5308 goto bail_up; 5309 } 5310 } 5311 5312 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 5313 if (IS_ERR(handle)) { 5314 status = PTR_ERR(handle); 5315 mlog_errno(status); 5316 goto bail_up; 5317 } 5318 5319 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters); 5320 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start); 5321 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster); 5322 5323 status = ocfs2_truncate_log_append(osb, handle, 5324 start_blk, clusters); 5325 ocfs2_commit_trans(osb, handle); 5326 if (status < 0) { 5327 mlog_errno(status); 5328 goto bail_up; 5329 } 5330 } 5331 5332 bail_up: 5333 mutex_unlock(&tl_inode->i_mutex); 5334 5335 mlog_exit(status); 5336 return status; 5337 } 5338 5339 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb) 5340 { 5341 int status; 5342 struct inode *tl_inode = osb->osb_tl_inode; 5343 5344 mlog_entry_void(); 5345 5346 if (tl_inode) { 5347 cancel_delayed_work(&osb->osb_truncate_log_wq); 5348 flush_workqueue(ocfs2_wq); 5349 5350 status = ocfs2_flush_truncate_log(osb); 5351 if (status < 0) 5352 mlog_errno(status); 5353 5354 brelse(osb->osb_tl_bh); 5355 iput(osb->osb_tl_inode); 5356 } 5357 5358 mlog_exit_void(); 5359 } 5360 5361 int ocfs2_truncate_log_init(struct ocfs2_super *osb) 5362 { 5363 int status; 5364 struct inode *tl_inode = NULL; 5365 struct buffer_head *tl_bh = NULL; 5366 5367 mlog_entry_void(); 5368 5369 status = ocfs2_get_truncate_log_info(osb, 5370 osb->slot_num, 5371 &tl_inode, 5372 &tl_bh); 5373 if (status < 0) 5374 mlog_errno(status); 5375 5376 /* ocfs2_truncate_log_shutdown keys on the existence of 5377 * osb->osb_tl_inode so we don't set any of the osb variables 5378 * until we're sure all is well. */ 5379 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq, 5380 ocfs2_truncate_log_worker); 5381 osb->osb_tl_bh = tl_bh; 5382 osb->osb_tl_inode = tl_inode; 5383 5384 mlog_exit(status); 5385 return status; 5386 } 5387 5388 /* 5389 * Delayed de-allocation of suballocator blocks. 5390 * 5391 * Some sets of block de-allocations might involve multiple suballocator inodes. 5392 * 5393 * The locking for this can get extremely complicated, especially when 5394 * the suballocator inodes to delete from aren't known until deep 5395 * within an unrelated codepath. 5396 * 5397 * ocfs2_extent_block structures are a good example of this - an inode 5398 * btree could have been grown by any number of nodes each allocating 5399 * out of their own suballoc inode. 5400 * 5401 * These structures allow the delay of block de-allocation until a 5402 * later time, when locking of multiple cluster inodes won't cause 5403 * deadlock. 5404 */ 5405 5406 /* 5407 * Describes a single block free from a suballocator 5408 */ 5409 struct ocfs2_cached_block_free { 5410 struct ocfs2_cached_block_free *free_next; 5411 u64 free_blk; 5412 unsigned int free_bit; 5413 }; 5414 5415 struct ocfs2_per_slot_free_list { 5416 struct ocfs2_per_slot_free_list *f_next_suballocator; 5417 int f_inode_type; 5418 int f_slot; 5419 struct ocfs2_cached_block_free *f_first; 5420 }; 5421 5422 static int ocfs2_free_cached_items(struct ocfs2_super *osb, 5423 int sysfile_type, 5424 int slot, 5425 struct ocfs2_cached_block_free *head) 5426 { 5427 int ret; 5428 u64 bg_blkno; 5429 handle_t *handle; 5430 struct inode *inode; 5431 struct buffer_head *di_bh = NULL; 5432 struct ocfs2_cached_block_free *tmp; 5433 5434 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot); 5435 if (!inode) { 5436 ret = -EINVAL; 5437 mlog_errno(ret); 5438 goto out; 5439 } 5440 5441 mutex_lock(&inode->i_mutex); 5442 5443 ret = ocfs2_inode_lock(inode, &di_bh, 1); 5444 if (ret) { 5445 mlog_errno(ret); 5446 goto out_mutex; 5447 } 5448 5449 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE); 5450 if (IS_ERR(handle)) { 5451 ret = PTR_ERR(handle); 5452 mlog_errno(ret); 5453 goto out_unlock; 5454 } 5455 5456 while (head) { 5457 bg_blkno = ocfs2_which_suballoc_group(head->free_blk, 5458 head->free_bit); 5459 mlog(0, "Free bit: (bit %u, blkno %llu)\n", 5460 head->free_bit, (unsigned long long)head->free_blk); 5461 5462 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh, 5463 head->free_bit, bg_blkno, 1); 5464 if (ret) { 5465 mlog_errno(ret); 5466 goto out_journal; 5467 } 5468 5469 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE); 5470 if (ret) { 5471 mlog_errno(ret); 5472 goto out_journal; 5473 } 5474 5475 tmp = head; 5476 head = head->free_next; 5477 kfree(tmp); 5478 } 5479 5480 out_journal: 5481 ocfs2_commit_trans(osb, handle); 5482 5483 out_unlock: 5484 ocfs2_inode_unlock(inode, 1); 5485 brelse(di_bh); 5486 out_mutex: 5487 mutex_unlock(&inode->i_mutex); 5488 iput(inode); 5489 out: 5490 while(head) { 5491 /* Premature exit may have left some dangling items. */ 5492 tmp = head; 5493 head = head->free_next; 5494 kfree(tmp); 5495 } 5496 5497 return ret; 5498 } 5499 5500 int ocfs2_run_deallocs(struct ocfs2_super *osb, 5501 struct ocfs2_cached_dealloc_ctxt *ctxt) 5502 { 5503 int ret = 0, ret2; 5504 struct ocfs2_per_slot_free_list *fl; 5505 5506 if (!ctxt) 5507 return 0; 5508 5509 while (ctxt->c_first_suballocator) { 5510 fl = ctxt->c_first_suballocator; 5511 5512 if (fl->f_first) { 5513 mlog(0, "Free items: (type %u, slot %d)\n", 5514 fl->f_inode_type, fl->f_slot); 5515 ret2 = ocfs2_free_cached_items(osb, fl->f_inode_type, 5516 fl->f_slot, fl->f_first); 5517 if (ret2) 5518 mlog_errno(ret2); 5519 if (!ret) 5520 ret = ret2; 5521 } 5522 5523 ctxt->c_first_suballocator = fl->f_next_suballocator; 5524 kfree(fl); 5525 } 5526 5527 return ret; 5528 } 5529 5530 static struct ocfs2_per_slot_free_list * 5531 ocfs2_find_per_slot_free_list(int type, 5532 int slot, 5533 struct ocfs2_cached_dealloc_ctxt *ctxt) 5534 { 5535 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; 5536 5537 while (fl) { 5538 if (fl->f_inode_type == type && fl->f_slot == slot) 5539 return fl; 5540 5541 fl = fl->f_next_suballocator; 5542 } 5543 5544 fl = kmalloc(sizeof(*fl), GFP_NOFS); 5545 if (fl) { 5546 fl->f_inode_type = type; 5547 fl->f_slot = slot; 5548 fl->f_first = NULL; 5549 fl->f_next_suballocator = ctxt->c_first_suballocator; 5550 5551 ctxt->c_first_suballocator = fl; 5552 } 5553 return fl; 5554 } 5555 5556 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 5557 int type, int slot, u64 blkno, 5558 unsigned int bit) 5559 { 5560 int ret; 5561 struct ocfs2_per_slot_free_list *fl; 5562 struct ocfs2_cached_block_free *item; 5563 5564 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt); 5565 if (fl == NULL) { 5566 ret = -ENOMEM; 5567 mlog_errno(ret); 5568 goto out; 5569 } 5570 5571 item = kmalloc(sizeof(*item), GFP_NOFS); 5572 if (item == NULL) { 5573 ret = -ENOMEM; 5574 mlog_errno(ret); 5575 goto out; 5576 } 5577 5578 mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n", 5579 type, slot, bit, (unsigned long long)blkno); 5580 5581 item->free_blk = blkno; 5582 item->free_bit = bit; 5583 item->free_next = fl->f_first; 5584 5585 fl->f_first = item; 5586 5587 ret = 0; 5588 out: 5589 return ret; 5590 } 5591 5592 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 5593 struct ocfs2_extent_block *eb) 5594 { 5595 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE, 5596 le16_to_cpu(eb->h_suballoc_slot), 5597 le64_to_cpu(eb->h_blkno), 5598 le16_to_cpu(eb->h_suballoc_bit)); 5599 } 5600 5601 /* This function will figure out whether the currently last extent 5602 * block will be deleted, and if it will, what the new last extent 5603 * block will be so we can update his h_next_leaf_blk field, as well 5604 * as the dinodes i_last_eb_blk */ 5605 static int ocfs2_find_new_last_ext_blk(struct inode *inode, 5606 unsigned int clusters_to_del, 5607 struct ocfs2_path *path, 5608 struct buffer_head **new_last_eb) 5609 { 5610 int next_free, ret = 0; 5611 u32 cpos; 5612 struct ocfs2_extent_rec *rec; 5613 struct ocfs2_extent_block *eb; 5614 struct ocfs2_extent_list *el; 5615 struct buffer_head *bh = NULL; 5616 5617 *new_last_eb = NULL; 5618 5619 /* we have no tree, so of course, no last_eb. */ 5620 if (!path->p_tree_depth) 5621 goto out; 5622 5623 /* trunc to zero special case - this makes tree_depth = 0 5624 * regardless of what it is. */ 5625 if (OCFS2_I(inode)->ip_clusters == clusters_to_del) 5626 goto out; 5627 5628 el = path_leaf_el(path); 5629 BUG_ON(!el->l_next_free_rec); 5630 5631 /* 5632 * Make sure that this extent list will actually be empty 5633 * after we clear away the data. We can shortcut out if 5634 * there's more than one non-empty extent in the 5635 * list. Otherwise, a check of the remaining extent is 5636 * necessary. 5637 */ 5638 next_free = le16_to_cpu(el->l_next_free_rec); 5639 rec = NULL; 5640 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 5641 if (next_free > 2) 5642 goto out; 5643 5644 /* We may have a valid extent in index 1, check it. */ 5645 if (next_free == 2) 5646 rec = &el->l_recs[1]; 5647 5648 /* 5649 * Fall through - no more nonempty extents, so we want 5650 * to delete this leaf. 5651 */ 5652 } else { 5653 if (next_free > 1) 5654 goto out; 5655 5656 rec = &el->l_recs[0]; 5657 } 5658 5659 if (rec) { 5660 /* 5661 * Check it we'll only be trimming off the end of this 5662 * cluster. 5663 */ 5664 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del) 5665 goto out; 5666 } 5667 5668 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos); 5669 if (ret) { 5670 mlog_errno(ret); 5671 goto out; 5672 } 5673 5674 ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh); 5675 if (ret) { 5676 mlog_errno(ret); 5677 goto out; 5678 } 5679 5680 eb = (struct ocfs2_extent_block *) bh->b_data; 5681 el = &eb->h_list; 5682 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 5683 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); 5684 ret = -EROFS; 5685 goto out; 5686 } 5687 5688 *new_last_eb = bh; 5689 get_bh(*new_last_eb); 5690 mlog(0, "returning block %llu, (cpos: %u)\n", 5691 (unsigned long long)le64_to_cpu(eb->h_blkno), cpos); 5692 out: 5693 brelse(bh); 5694 5695 return ret; 5696 } 5697 5698 /* 5699 * Trim some clusters off the rightmost edge of a tree. Only called 5700 * during truncate. 5701 * 5702 * The caller needs to: 5703 * - start journaling of each path component. 5704 * - compute and fully set up any new last ext block 5705 */ 5706 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path, 5707 handle_t *handle, struct ocfs2_truncate_context *tc, 5708 u32 clusters_to_del, u64 *delete_start) 5709 { 5710 int ret, i, index = path->p_tree_depth; 5711 u32 new_edge = 0; 5712 u64 deleted_eb = 0; 5713 struct buffer_head *bh; 5714 struct ocfs2_extent_list *el; 5715 struct ocfs2_extent_rec *rec; 5716 5717 *delete_start = 0; 5718 5719 while (index >= 0) { 5720 bh = path->p_node[index].bh; 5721 el = path->p_node[index].el; 5722 5723 mlog(0, "traveling tree (index = %d, block = %llu)\n", 5724 index, (unsigned long long)bh->b_blocknr); 5725 5726 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 5727 5728 if (index != 5729 (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) { 5730 ocfs2_error(inode->i_sb, 5731 "Inode %lu has invalid ext. block %llu", 5732 inode->i_ino, 5733 (unsigned long long)bh->b_blocknr); 5734 ret = -EROFS; 5735 goto out; 5736 } 5737 5738 find_tail_record: 5739 i = le16_to_cpu(el->l_next_free_rec) - 1; 5740 rec = &el->l_recs[i]; 5741 5742 mlog(0, "Extent list before: record %d: (%u, %u, %llu), " 5743 "next = %u\n", i, le32_to_cpu(rec->e_cpos), 5744 ocfs2_rec_clusters(el, rec), 5745 (unsigned long long)le64_to_cpu(rec->e_blkno), 5746 le16_to_cpu(el->l_next_free_rec)); 5747 5748 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del); 5749 5750 if (le16_to_cpu(el->l_tree_depth) == 0) { 5751 /* 5752 * If the leaf block contains a single empty 5753 * extent and no records, we can just remove 5754 * the block. 5755 */ 5756 if (i == 0 && ocfs2_is_empty_extent(rec)) { 5757 memset(rec, 0, 5758 sizeof(struct ocfs2_extent_rec)); 5759 el->l_next_free_rec = cpu_to_le16(0); 5760 5761 goto delete; 5762 } 5763 5764 /* 5765 * Remove any empty extents by shifting things 5766 * left. That should make life much easier on 5767 * the code below. This condition is rare 5768 * enough that we shouldn't see a performance 5769 * hit. 5770 */ 5771 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 5772 le16_add_cpu(&el->l_next_free_rec, -1); 5773 5774 for(i = 0; 5775 i < le16_to_cpu(el->l_next_free_rec); i++) 5776 el->l_recs[i] = el->l_recs[i + 1]; 5777 5778 memset(&el->l_recs[i], 0, 5779 sizeof(struct ocfs2_extent_rec)); 5780 5781 /* 5782 * We've modified our extent list. The 5783 * simplest way to handle this change 5784 * is to being the search from the 5785 * start again. 5786 */ 5787 goto find_tail_record; 5788 } 5789 5790 le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del); 5791 5792 /* 5793 * We'll use "new_edge" on our way back up the 5794 * tree to know what our rightmost cpos is. 5795 */ 5796 new_edge = le16_to_cpu(rec->e_leaf_clusters); 5797 new_edge += le32_to_cpu(rec->e_cpos); 5798 5799 /* 5800 * The caller will use this to delete data blocks. 5801 */ 5802 *delete_start = le64_to_cpu(rec->e_blkno) 5803 + ocfs2_clusters_to_blocks(inode->i_sb, 5804 le16_to_cpu(rec->e_leaf_clusters)); 5805 5806 /* 5807 * If it's now empty, remove this record. 5808 */ 5809 if (le16_to_cpu(rec->e_leaf_clusters) == 0) { 5810 memset(rec, 0, 5811 sizeof(struct ocfs2_extent_rec)); 5812 le16_add_cpu(&el->l_next_free_rec, -1); 5813 } 5814 } else { 5815 if (le64_to_cpu(rec->e_blkno) == deleted_eb) { 5816 memset(rec, 0, 5817 sizeof(struct ocfs2_extent_rec)); 5818 le16_add_cpu(&el->l_next_free_rec, -1); 5819 5820 goto delete; 5821 } 5822 5823 /* Can this actually happen? */ 5824 if (le16_to_cpu(el->l_next_free_rec) == 0) 5825 goto delete; 5826 5827 /* 5828 * We never actually deleted any clusters 5829 * because our leaf was empty. There's no 5830 * reason to adjust the rightmost edge then. 5831 */ 5832 if (new_edge == 0) 5833 goto delete; 5834 5835 rec->e_int_clusters = cpu_to_le32(new_edge); 5836 le32_add_cpu(&rec->e_int_clusters, 5837 -le32_to_cpu(rec->e_cpos)); 5838 5839 /* 5840 * A deleted child record should have been 5841 * caught above. 5842 */ 5843 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0); 5844 } 5845 5846 delete: 5847 ret = ocfs2_journal_dirty(handle, bh); 5848 if (ret) { 5849 mlog_errno(ret); 5850 goto out; 5851 } 5852 5853 mlog(0, "extent list container %llu, after: record %d: " 5854 "(%u, %u, %llu), next = %u.\n", 5855 (unsigned long long)bh->b_blocknr, i, 5856 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec), 5857 (unsigned long long)le64_to_cpu(rec->e_blkno), 5858 le16_to_cpu(el->l_next_free_rec)); 5859 5860 /* 5861 * We must be careful to only attempt delete of an 5862 * extent block (and not the root inode block). 5863 */ 5864 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) { 5865 struct ocfs2_extent_block *eb = 5866 (struct ocfs2_extent_block *)bh->b_data; 5867 5868 /* 5869 * Save this for use when processing the 5870 * parent block. 5871 */ 5872 deleted_eb = le64_to_cpu(eb->h_blkno); 5873 5874 mlog(0, "deleting this extent block.\n"); 5875 5876 ocfs2_remove_from_cache(inode, bh); 5877 5878 BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0])); 5879 BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos)); 5880 BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno)); 5881 5882 ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb); 5883 /* An error here is not fatal. */ 5884 if (ret < 0) 5885 mlog_errno(ret); 5886 } else { 5887 deleted_eb = 0; 5888 } 5889 5890 index--; 5891 } 5892 5893 ret = 0; 5894 out: 5895 return ret; 5896 } 5897 5898 static int ocfs2_do_truncate(struct ocfs2_super *osb, 5899 unsigned int clusters_to_del, 5900 struct inode *inode, 5901 struct buffer_head *fe_bh, 5902 handle_t *handle, 5903 struct ocfs2_truncate_context *tc, 5904 struct ocfs2_path *path) 5905 { 5906 int status; 5907 struct ocfs2_dinode *fe; 5908 struct ocfs2_extent_block *last_eb = NULL; 5909 struct ocfs2_extent_list *el; 5910 struct buffer_head *last_eb_bh = NULL; 5911 u64 delete_blk = 0; 5912 5913 fe = (struct ocfs2_dinode *) fe_bh->b_data; 5914 5915 status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del, 5916 path, &last_eb_bh); 5917 if (status < 0) { 5918 mlog_errno(status); 5919 goto bail; 5920 } 5921 5922 /* 5923 * Each component will be touched, so we might as well journal 5924 * here to avoid having to handle errors later. 5925 */ 5926 status = ocfs2_journal_access_path(inode, handle, path); 5927 if (status < 0) { 5928 mlog_errno(status); 5929 goto bail; 5930 } 5931 5932 if (last_eb_bh) { 5933 status = ocfs2_journal_access(handle, inode, last_eb_bh, 5934 OCFS2_JOURNAL_ACCESS_WRITE); 5935 if (status < 0) { 5936 mlog_errno(status); 5937 goto bail; 5938 } 5939 5940 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5941 } 5942 5943 el = &(fe->id2.i_list); 5944 5945 /* 5946 * Lower levels depend on this never happening, but it's best 5947 * to check it up here before changing the tree. 5948 */ 5949 if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) { 5950 ocfs2_error(inode->i_sb, 5951 "Inode %lu has an empty extent record, depth %u\n", 5952 inode->i_ino, le16_to_cpu(el->l_tree_depth)); 5953 status = -EROFS; 5954 goto bail; 5955 } 5956 5957 spin_lock(&OCFS2_I(inode)->ip_lock); 5958 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) - 5959 clusters_to_del; 5960 spin_unlock(&OCFS2_I(inode)->ip_lock); 5961 le32_add_cpu(&fe->i_clusters, -clusters_to_del); 5962 inode->i_blocks = ocfs2_inode_sector_count(inode); 5963 5964 status = ocfs2_trim_tree(inode, path, handle, tc, 5965 clusters_to_del, &delete_blk); 5966 if (status) { 5967 mlog_errno(status); 5968 goto bail; 5969 } 5970 5971 if (le32_to_cpu(fe->i_clusters) == 0) { 5972 /* trunc to zero is a special case. */ 5973 el->l_tree_depth = 0; 5974 fe->i_last_eb_blk = 0; 5975 } else if (last_eb) 5976 fe->i_last_eb_blk = last_eb->h_blkno; 5977 5978 status = ocfs2_journal_dirty(handle, fe_bh); 5979 if (status < 0) { 5980 mlog_errno(status); 5981 goto bail; 5982 } 5983 5984 if (last_eb) { 5985 /* If there will be a new last extent block, then by 5986 * definition, there cannot be any leaves to the right of 5987 * him. */ 5988 last_eb->h_next_leaf_blk = 0; 5989 status = ocfs2_journal_dirty(handle, last_eb_bh); 5990 if (status < 0) { 5991 mlog_errno(status); 5992 goto bail; 5993 } 5994 } 5995 5996 if (delete_blk) { 5997 status = ocfs2_truncate_log_append(osb, handle, delete_blk, 5998 clusters_to_del); 5999 if (status < 0) { 6000 mlog_errno(status); 6001 goto bail; 6002 } 6003 } 6004 status = 0; 6005 bail: 6006 6007 mlog_exit(status); 6008 return status; 6009 } 6010 6011 static int ocfs2_writeback_zero_func(handle_t *handle, struct buffer_head *bh) 6012 { 6013 set_buffer_uptodate(bh); 6014 mark_buffer_dirty(bh); 6015 return 0; 6016 } 6017 6018 static int ocfs2_ordered_zero_func(handle_t *handle, struct buffer_head *bh) 6019 { 6020 set_buffer_uptodate(bh); 6021 mark_buffer_dirty(bh); 6022 return ocfs2_journal_dirty_data(handle, bh); 6023 } 6024 6025 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle, 6026 unsigned int from, unsigned int to, 6027 struct page *page, int zero, u64 *phys) 6028 { 6029 int ret, partial = 0; 6030 6031 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0); 6032 if (ret) 6033 mlog_errno(ret); 6034 6035 if (zero) 6036 zero_user_segment(page, from, to); 6037 6038 /* 6039 * Need to set the buffers we zero'd into uptodate 6040 * here if they aren't - ocfs2_map_page_blocks() 6041 * might've skipped some 6042 */ 6043 if (ocfs2_should_order_data(inode)) { 6044 ret = walk_page_buffers(handle, 6045 page_buffers(page), 6046 from, to, &partial, 6047 ocfs2_ordered_zero_func); 6048 if (ret < 0) 6049 mlog_errno(ret); 6050 } else { 6051 ret = walk_page_buffers(handle, page_buffers(page), 6052 from, to, &partial, 6053 ocfs2_writeback_zero_func); 6054 if (ret < 0) 6055 mlog_errno(ret); 6056 } 6057 6058 if (!partial) 6059 SetPageUptodate(page); 6060 6061 flush_dcache_page(page); 6062 } 6063 6064 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start, 6065 loff_t end, struct page **pages, 6066 int numpages, u64 phys, handle_t *handle) 6067 { 6068 int i; 6069 struct page *page; 6070 unsigned int from, to = PAGE_CACHE_SIZE; 6071 struct super_block *sb = inode->i_sb; 6072 6073 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb))); 6074 6075 if (numpages == 0) 6076 goto out; 6077 6078 to = PAGE_CACHE_SIZE; 6079 for(i = 0; i < numpages; i++) { 6080 page = pages[i]; 6081 6082 from = start & (PAGE_CACHE_SIZE - 1); 6083 if ((end >> PAGE_CACHE_SHIFT) == page->index) 6084 to = end & (PAGE_CACHE_SIZE - 1); 6085 6086 BUG_ON(from > PAGE_CACHE_SIZE); 6087 BUG_ON(to > PAGE_CACHE_SIZE); 6088 6089 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1, 6090 &phys); 6091 6092 start = (page->index + 1) << PAGE_CACHE_SHIFT; 6093 } 6094 out: 6095 if (pages) 6096 ocfs2_unlock_and_free_pages(pages, numpages); 6097 } 6098 6099 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end, 6100 struct page **pages, int *num) 6101 { 6102 int numpages, ret = 0; 6103 struct super_block *sb = inode->i_sb; 6104 struct address_space *mapping = inode->i_mapping; 6105 unsigned long index; 6106 loff_t last_page_bytes; 6107 6108 BUG_ON(start > end); 6109 6110 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits != 6111 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits); 6112 6113 numpages = 0; 6114 last_page_bytes = PAGE_ALIGN(end); 6115 index = start >> PAGE_CACHE_SHIFT; 6116 do { 6117 pages[numpages] = grab_cache_page(mapping, index); 6118 if (!pages[numpages]) { 6119 ret = -ENOMEM; 6120 mlog_errno(ret); 6121 goto out; 6122 } 6123 6124 numpages++; 6125 index++; 6126 } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT)); 6127 6128 out: 6129 if (ret != 0) { 6130 if (pages) 6131 ocfs2_unlock_and_free_pages(pages, numpages); 6132 numpages = 0; 6133 } 6134 6135 *num = numpages; 6136 6137 return ret; 6138 } 6139 6140 /* 6141 * Zero the area past i_size but still within an allocated 6142 * cluster. This avoids exposing nonzero data on subsequent file 6143 * extends. 6144 * 6145 * We need to call this before i_size is updated on the inode because 6146 * otherwise block_write_full_page() will skip writeout of pages past 6147 * i_size. The new_i_size parameter is passed for this reason. 6148 */ 6149 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle, 6150 u64 range_start, u64 range_end) 6151 { 6152 int ret = 0, numpages; 6153 struct page **pages = NULL; 6154 u64 phys; 6155 unsigned int ext_flags; 6156 struct super_block *sb = inode->i_sb; 6157 6158 /* 6159 * File systems which don't support sparse files zero on every 6160 * extend. 6161 */ 6162 if (!ocfs2_sparse_alloc(OCFS2_SB(sb))) 6163 return 0; 6164 6165 pages = kcalloc(ocfs2_pages_per_cluster(sb), 6166 sizeof(struct page *), GFP_NOFS); 6167 if (pages == NULL) { 6168 ret = -ENOMEM; 6169 mlog_errno(ret); 6170 goto out; 6171 } 6172 6173 if (range_start == range_end) 6174 goto out; 6175 6176 ret = ocfs2_extent_map_get_blocks(inode, 6177 range_start >> sb->s_blocksize_bits, 6178 &phys, NULL, &ext_flags); 6179 if (ret) { 6180 mlog_errno(ret); 6181 goto out; 6182 } 6183 6184 /* 6185 * Tail is a hole, or is marked unwritten. In either case, we 6186 * can count on read and write to return/push zero's. 6187 */ 6188 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN) 6189 goto out; 6190 6191 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages, 6192 &numpages); 6193 if (ret) { 6194 mlog_errno(ret); 6195 goto out; 6196 } 6197 6198 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages, 6199 numpages, phys, handle); 6200 6201 /* 6202 * Initiate writeout of the pages we zero'd here. We don't 6203 * wait on them - the truncate_inode_pages() call later will 6204 * do that for us. 6205 */ 6206 ret = do_sync_mapping_range(inode->i_mapping, range_start, 6207 range_end - 1, SYNC_FILE_RANGE_WRITE); 6208 if (ret) 6209 mlog_errno(ret); 6210 6211 out: 6212 if (pages) 6213 kfree(pages); 6214 6215 return ret; 6216 } 6217 6218 static void ocfs2_zero_dinode_id2(struct inode *inode, struct ocfs2_dinode *di) 6219 { 6220 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits; 6221 6222 memset(&di->id2, 0, blocksize - offsetof(struct ocfs2_dinode, id2)); 6223 } 6224 6225 void ocfs2_dinode_new_extent_list(struct inode *inode, 6226 struct ocfs2_dinode *di) 6227 { 6228 ocfs2_zero_dinode_id2(inode, di); 6229 di->id2.i_list.l_tree_depth = 0; 6230 di->id2.i_list.l_next_free_rec = 0; 6231 di->id2.i_list.l_count = cpu_to_le16(ocfs2_extent_recs_per_inode(inode->i_sb)); 6232 } 6233 6234 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di) 6235 { 6236 struct ocfs2_inode_info *oi = OCFS2_I(inode); 6237 struct ocfs2_inline_data *idata = &di->id2.i_data; 6238 6239 spin_lock(&oi->ip_lock); 6240 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL; 6241 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 6242 spin_unlock(&oi->ip_lock); 6243 6244 /* 6245 * We clear the entire i_data structure here so that all 6246 * fields can be properly initialized. 6247 */ 6248 ocfs2_zero_dinode_id2(inode, di); 6249 6250 idata->id_count = cpu_to_le16(ocfs2_max_inline_data(inode->i_sb)); 6251 } 6252 6253 int ocfs2_convert_inline_data_to_extents(struct inode *inode, 6254 struct buffer_head *di_bh) 6255 { 6256 int ret, i, has_data, num_pages = 0; 6257 handle_t *handle; 6258 u64 uninitialized_var(block); 6259 struct ocfs2_inode_info *oi = OCFS2_I(inode); 6260 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 6261 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 6262 struct ocfs2_alloc_context *data_ac = NULL; 6263 struct page **pages = NULL; 6264 loff_t end = osb->s_clustersize; 6265 6266 has_data = i_size_read(inode) ? 1 : 0; 6267 6268 if (has_data) { 6269 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb), 6270 sizeof(struct page *), GFP_NOFS); 6271 if (pages == NULL) { 6272 ret = -ENOMEM; 6273 mlog_errno(ret); 6274 goto out; 6275 } 6276 6277 ret = ocfs2_reserve_clusters(osb, 1, &data_ac); 6278 if (ret) { 6279 mlog_errno(ret); 6280 goto out; 6281 } 6282 } 6283 6284 handle = ocfs2_start_trans(osb, OCFS2_INLINE_TO_EXTENTS_CREDITS); 6285 if (IS_ERR(handle)) { 6286 ret = PTR_ERR(handle); 6287 mlog_errno(ret); 6288 goto out_unlock; 6289 } 6290 6291 ret = ocfs2_journal_access(handle, inode, di_bh, 6292 OCFS2_JOURNAL_ACCESS_WRITE); 6293 if (ret) { 6294 mlog_errno(ret); 6295 goto out_commit; 6296 } 6297 6298 if (has_data) { 6299 u32 bit_off, num; 6300 unsigned int page_end; 6301 u64 phys; 6302 6303 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off, 6304 &num); 6305 if (ret) { 6306 mlog_errno(ret); 6307 goto out_commit; 6308 } 6309 6310 /* 6311 * Save two copies, one for insert, and one that can 6312 * be changed by ocfs2_map_and_dirty_page() below. 6313 */ 6314 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off); 6315 6316 /* 6317 * Non sparse file systems zero on extend, so no need 6318 * to do that now. 6319 */ 6320 if (!ocfs2_sparse_alloc(osb) && 6321 PAGE_CACHE_SIZE < osb->s_clustersize) 6322 end = PAGE_CACHE_SIZE; 6323 6324 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages); 6325 if (ret) { 6326 mlog_errno(ret); 6327 goto out_commit; 6328 } 6329 6330 /* 6331 * This should populate the 1st page for us and mark 6332 * it up to date. 6333 */ 6334 ret = ocfs2_read_inline_data(inode, pages[0], di_bh); 6335 if (ret) { 6336 mlog_errno(ret); 6337 goto out_commit; 6338 } 6339 6340 page_end = PAGE_CACHE_SIZE; 6341 if (PAGE_CACHE_SIZE > osb->s_clustersize) 6342 page_end = osb->s_clustersize; 6343 6344 for (i = 0; i < num_pages; i++) 6345 ocfs2_map_and_dirty_page(inode, handle, 0, page_end, 6346 pages[i], i > 0, &phys); 6347 } 6348 6349 spin_lock(&oi->ip_lock); 6350 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL; 6351 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 6352 spin_unlock(&oi->ip_lock); 6353 6354 ocfs2_dinode_new_extent_list(inode, di); 6355 6356 ocfs2_journal_dirty(handle, di_bh); 6357 6358 if (has_data) { 6359 /* 6360 * An error at this point should be extremely rare. If 6361 * this proves to be false, we could always re-build 6362 * the in-inode data from our pages. 6363 */ 6364 ret = ocfs2_insert_extent(osb, handle, inode, di_bh, 6365 0, block, 1, 0, NULL); 6366 if (ret) { 6367 mlog_errno(ret); 6368 goto out_commit; 6369 } 6370 6371 inode->i_blocks = ocfs2_inode_sector_count(inode); 6372 } 6373 6374 out_commit: 6375 ocfs2_commit_trans(osb, handle); 6376 6377 out_unlock: 6378 if (data_ac) 6379 ocfs2_free_alloc_context(data_ac); 6380 6381 out: 6382 if (pages) { 6383 ocfs2_unlock_and_free_pages(pages, num_pages); 6384 kfree(pages); 6385 } 6386 6387 return ret; 6388 } 6389 6390 /* 6391 * It is expected, that by the time you call this function, 6392 * inode->i_size and fe->i_size have been adjusted. 6393 * 6394 * WARNING: This will kfree the truncate context 6395 */ 6396 int ocfs2_commit_truncate(struct ocfs2_super *osb, 6397 struct inode *inode, 6398 struct buffer_head *fe_bh, 6399 struct ocfs2_truncate_context *tc) 6400 { 6401 int status, i, credits, tl_sem = 0; 6402 u32 clusters_to_del, new_highest_cpos, range; 6403 struct ocfs2_extent_list *el; 6404 handle_t *handle = NULL; 6405 struct inode *tl_inode = osb->osb_tl_inode; 6406 struct ocfs2_path *path = NULL; 6407 6408 mlog_entry_void(); 6409 6410 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb, 6411 i_size_read(inode)); 6412 6413 path = ocfs2_new_inode_path(fe_bh); 6414 if (!path) { 6415 status = -ENOMEM; 6416 mlog_errno(status); 6417 goto bail; 6418 } 6419 6420 ocfs2_extent_map_trunc(inode, new_highest_cpos); 6421 6422 start: 6423 /* 6424 * Check that we still have allocation to delete. 6425 */ 6426 if (OCFS2_I(inode)->ip_clusters == 0) { 6427 status = 0; 6428 goto bail; 6429 } 6430 6431 /* 6432 * Truncate always works against the rightmost tree branch. 6433 */ 6434 status = ocfs2_find_path(inode, path, UINT_MAX); 6435 if (status) { 6436 mlog_errno(status); 6437 goto bail; 6438 } 6439 6440 mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n", 6441 OCFS2_I(inode)->ip_clusters, path->p_tree_depth); 6442 6443 /* 6444 * By now, el will point to the extent list on the bottom most 6445 * portion of this tree. Only the tail record is considered in 6446 * each pass. 6447 * 6448 * We handle the following cases, in order: 6449 * - empty extent: delete the remaining branch 6450 * - remove the entire record 6451 * - remove a partial record 6452 * - no record needs to be removed (truncate has completed) 6453 */ 6454 el = path_leaf_el(path); 6455 if (le16_to_cpu(el->l_next_free_rec) == 0) { 6456 ocfs2_error(inode->i_sb, 6457 "Inode %llu has empty extent block at %llu\n", 6458 (unsigned long long)OCFS2_I(inode)->ip_blkno, 6459 (unsigned long long)path_leaf_bh(path)->b_blocknr); 6460 status = -EROFS; 6461 goto bail; 6462 } 6463 6464 i = le16_to_cpu(el->l_next_free_rec) - 1; 6465 range = le32_to_cpu(el->l_recs[i].e_cpos) + 6466 ocfs2_rec_clusters(el, &el->l_recs[i]); 6467 if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) { 6468 clusters_to_del = 0; 6469 } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) { 6470 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]); 6471 } else if (range > new_highest_cpos) { 6472 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) + 6473 le32_to_cpu(el->l_recs[i].e_cpos)) - 6474 new_highest_cpos; 6475 } else { 6476 status = 0; 6477 goto bail; 6478 } 6479 6480 mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n", 6481 clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr); 6482 6483 mutex_lock(&tl_inode->i_mutex); 6484 tl_sem = 1; 6485 /* ocfs2_truncate_log_needs_flush guarantees us at least one 6486 * record is free for use. If there isn't any, we flush to get 6487 * an empty truncate log. */ 6488 if (ocfs2_truncate_log_needs_flush(osb)) { 6489 status = __ocfs2_flush_truncate_log(osb); 6490 if (status < 0) { 6491 mlog_errno(status); 6492 goto bail; 6493 } 6494 } 6495 6496 credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del, 6497 (struct ocfs2_dinode *)fe_bh->b_data, 6498 el); 6499 handle = ocfs2_start_trans(osb, credits); 6500 if (IS_ERR(handle)) { 6501 status = PTR_ERR(handle); 6502 handle = NULL; 6503 mlog_errno(status); 6504 goto bail; 6505 } 6506 6507 status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle, 6508 tc, path); 6509 if (status < 0) { 6510 mlog_errno(status); 6511 goto bail; 6512 } 6513 6514 mutex_unlock(&tl_inode->i_mutex); 6515 tl_sem = 0; 6516 6517 ocfs2_commit_trans(osb, handle); 6518 handle = NULL; 6519 6520 ocfs2_reinit_path(path, 1); 6521 6522 /* 6523 * The check above will catch the case where we've truncated 6524 * away all allocation. 6525 */ 6526 goto start; 6527 6528 bail: 6529 6530 ocfs2_schedule_truncate_log_flush(osb, 1); 6531 6532 if (tl_sem) 6533 mutex_unlock(&tl_inode->i_mutex); 6534 6535 if (handle) 6536 ocfs2_commit_trans(osb, handle); 6537 6538 ocfs2_run_deallocs(osb, &tc->tc_dealloc); 6539 6540 ocfs2_free_path(path); 6541 6542 /* This will drop the ext_alloc cluster lock for us */ 6543 ocfs2_free_truncate_context(tc); 6544 6545 mlog_exit(status); 6546 return status; 6547 } 6548 6549 /* 6550 * Expects the inode to already be locked. 6551 */ 6552 int ocfs2_prepare_truncate(struct ocfs2_super *osb, 6553 struct inode *inode, 6554 struct buffer_head *fe_bh, 6555 struct ocfs2_truncate_context **tc) 6556 { 6557 int status; 6558 unsigned int new_i_clusters; 6559 struct ocfs2_dinode *fe; 6560 struct ocfs2_extent_block *eb; 6561 struct buffer_head *last_eb_bh = NULL; 6562 6563 mlog_entry_void(); 6564 6565 *tc = NULL; 6566 6567 new_i_clusters = ocfs2_clusters_for_bytes(osb->sb, 6568 i_size_read(inode)); 6569 fe = (struct ocfs2_dinode *) fe_bh->b_data; 6570 6571 mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size =" 6572 "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters, 6573 (unsigned long long)le64_to_cpu(fe->i_size)); 6574 6575 *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL); 6576 if (!(*tc)) { 6577 status = -ENOMEM; 6578 mlog_errno(status); 6579 goto bail; 6580 } 6581 ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc); 6582 6583 if (fe->id2.i_list.l_tree_depth) { 6584 status = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk), 6585 &last_eb_bh, OCFS2_BH_CACHED, inode); 6586 if (status < 0) { 6587 mlog_errno(status); 6588 goto bail; 6589 } 6590 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 6591 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 6592 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); 6593 6594 brelse(last_eb_bh); 6595 status = -EIO; 6596 goto bail; 6597 } 6598 } 6599 6600 (*tc)->tc_last_eb_bh = last_eb_bh; 6601 6602 status = 0; 6603 bail: 6604 if (status < 0) { 6605 if (*tc) 6606 ocfs2_free_truncate_context(*tc); 6607 *tc = NULL; 6608 } 6609 mlog_exit_void(); 6610 return status; 6611 } 6612 6613 /* 6614 * 'start' is inclusive, 'end' is not. 6615 */ 6616 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh, 6617 unsigned int start, unsigned int end, int trunc) 6618 { 6619 int ret; 6620 unsigned int numbytes; 6621 handle_t *handle; 6622 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 6623 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 6624 struct ocfs2_inline_data *idata = &di->id2.i_data; 6625 6626 if (end > i_size_read(inode)) 6627 end = i_size_read(inode); 6628 6629 BUG_ON(start >= end); 6630 6631 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) || 6632 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) || 6633 !ocfs2_supports_inline_data(osb)) { 6634 ocfs2_error(inode->i_sb, 6635 "Inline data flags for inode %llu don't agree! " 6636 "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n", 6637 (unsigned long long)OCFS2_I(inode)->ip_blkno, 6638 le16_to_cpu(di->i_dyn_features), 6639 OCFS2_I(inode)->ip_dyn_features, 6640 osb->s_feature_incompat); 6641 ret = -EROFS; 6642 goto out; 6643 } 6644 6645 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 6646 if (IS_ERR(handle)) { 6647 ret = PTR_ERR(handle); 6648 mlog_errno(ret); 6649 goto out; 6650 } 6651 6652 ret = ocfs2_journal_access(handle, inode, di_bh, 6653 OCFS2_JOURNAL_ACCESS_WRITE); 6654 if (ret) { 6655 mlog_errno(ret); 6656 goto out_commit; 6657 } 6658 6659 numbytes = end - start; 6660 memset(idata->id_data + start, 0, numbytes); 6661 6662 /* 6663 * No need to worry about the data page here - it's been 6664 * truncated already and inline data doesn't need it for 6665 * pushing zero's to disk, so we'll let readpage pick it up 6666 * later. 6667 */ 6668 if (trunc) { 6669 i_size_write(inode, start); 6670 di->i_size = cpu_to_le64(start); 6671 } 6672 6673 inode->i_blocks = ocfs2_inode_sector_count(inode); 6674 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 6675 6676 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 6677 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 6678 6679 ocfs2_journal_dirty(handle, di_bh); 6680 6681 out_commit: 6682 ocfs2_commit_trans(osb, handle); 6683 6684 out: 6685 return ret; 6686 } 6687 6688 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc) 6689 { 6690 /* 6691 * The caller is responsible for completing deallocation 6692 * before freeing the context. 6693 */ 6694 if (tc->tc_dealloc.c_first_suballocator != NULL) 6695 mlog(ML_NOTICE, 6696 "Truncate completion has non-empty dealloc context\n"); 6697 6698 if (tc->tc_last_eb_bh) 6699 brelse(tc->tc_last_eb_bh); 6700 6701 kfree(tc); 6702 } 6703