1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * alloc.c 5 * 6 * Extent allocs and frees 7 * 8 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/swap.h> 31 #include <linux/quotaops.h> 32 #include <linux/blkdev.h> 33 34 #include <cluster/masklog.h> 35 36 #include "ocfs2.h" 37 38 #include "alloc.h" 39 #include "aops.h" 40 #include "blockcheck.h" 41 #include "dlmglue.h" 42 #include "extent_map.h" 43 #include "inode.h" 44 #include "journal.h" 45 #include "localalloc.h" 46 #include "suballoc.h" 47 #include "sysfile.h" 48 #include "file.h" 49 #include "super.h" 50 #include "uptodate.h" 51 #include "xattr.h" 52 #include "refcounttree.h" 53 #include "ocfs2_trace.h" 54 55 #include "buffer_head_io.h" 56 57 enum ocfs2_contig_type { 58 CONTIG_NONE = 0, 59 CONTIG_LEFT, 60 CONTIG_RIGHT, 61 CONTIG_LEFTRIGHT, 62 }; 63 64 static enum ocfs2_contig_type 65 ocfs2_extent_rec_contig(struct super_block *sb, 66 struct ocfs2_extent_rec *ext, 67 struct ocfs2_extent_rec *insert_rec); 68 /* 69 * Operations for a specific extent tree type. 70 * 71 * To implement an on-disk btree (extent tree) type in ocfs2, add 72 * an ocfs2_extent_tree_operations structure and the matching 73 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it 74 * for the allocation portion of the extent tree. 75 */ 76 struct ocfs2_extent_tree_operations { 77 /* 78 * last_eb_blk is the block number of the right most leaf extent 79 * block. Most on-disk structures containing an extent tree store 80 * this value for fast access. The ->eo_set_last_eb_blk() and 81 * ->eo_get_last_eb_blk() operations access this value. They are 82 * both required. 83 */ 84 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et, 85 u64 blkno); 86 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et); 87 88 /* 89 * The on-disk structure usually keeps track of how many total 90 * clusters are stored in this extent tree. This function updates 91 * that value. new_clusters is the delta, and must be 92 * added to the total. Required. 93 */ 94 void (*eo_update_clusters)(struct ocfs2_extent_tree *et, 95 u32 new_clusters); 96 97 /* 98 * If this extent tree is supported by an extent map, insert 99 * a record into the map. 100 */ 101 void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et, 102 struct ocfs2_extent_rec *rec); 103 104 /* 105 * If this extent tree is supported by an extent map, truncate the 106 * map to clusters, 107 */ 108 void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et, 109 u32 clusters); 110 111 /* 112 * If ->eo_insert_check() exists, it is called before rec is 113 * inserted into the extent tree. It is optional. 114 */ 115 int (*eo_insert_check)(struct ocfs2_extent_tree *et, 116 struct ocfs2_extent_rec *rec); 117 int (*eo_sanity_check)(struct ocfs2_extent_tree *et); 118 119 /* 120 * -------------------------------------------------------------- 121 * The remaining are internal to ocfs2_extent_tree and don't have 122 * accessor functions 123 */ 124 125 /* 126 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el. 127 * It is required. 128 */ 129 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et); 130 131 /* 132 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if 133 * it exists. If it does not, et->et_max_leaf_clusters is set 134 * to 0 (unlimited). Optional. 135 */ 136 void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et); 137 138 /* 139 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec 140 * are contiguous or not. Optional. Don't need to set it if use 141 * ocfs2_extent_rec as the tree leaf. 142 */ 143 enum ocfs2_contig_type 144 (*eo_extent_contig)(struct ocfs2_extent_tree *et, 145 struct ocfs2_extent_rec *ext, 146 struct ocfs2_extent_rec *insert_rec); 147 }; 148 149 150 /* 151 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check 152 * in the methods. 153 */ 154 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et); 155 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 156 u64 blkno); 157 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, 158 u32 clusters); 159 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et, 160 struct ocfs2_extent_rec *rec); 161 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et, 162 u32 clusters); 163 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, 164 struct ocfs2_extent_rec *rec); 165 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et); 166 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et); 167 static const struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = { 168 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk, 169 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk, 170 .eo_update_clusters = ocfs2_dinode_update_clusters, 171 .eo_extent_map_insert = ocfs2_dinode_extent_map_insert, 172 .eo_extent_map_truncate = ocfs2_dinode_extent_map_truncate, 173 .eo_insert_check = ocfs2_dinode_insert_check, 174 .eo_sanity_check = ocfs2_dinode_sanity_check, 175 .eo_fill_root_el = ocfs2_dinode_fill_root_el, 176 }; 177 178 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 179 u64 blkno) 180 { 181 struct ocfs2_dinode *di = et->et_object; 182 183 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 184 di->i_last_eb_blk = cpu_to_le64(blkno); 185 } 186 187 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et) 188 { 189 struct ocfs2_dinode *di = et->et_object; 190 191 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 192 return le64_to_cpu(di->i_last_eb_blk); 193 } 194 195 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, 196 u32 clusters) 197 { 198 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); 199 struct ocfs2_dinode *di = et->et_object; 200 201 le32_add_cpu(&di->i_clusters, clusters); 202 spin_lock(&oi->ip_lock); 203 oi->ip_clusters = le32_to_cpu(di->i_clusters); 204 spin_unlock(&oi->ip_lock); 205 } 206 207 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et, 208 struct ocfs2_extent_rec *rec) 209 { 210 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode; 211 212 ocfs2_extent_map_insert_rec(inode, rec); 213 } 214 215 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et, 216 u32 clusters) 217 { 218 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode; 219 220 ocfs2_extent_map_trunc(inode, clusters); 221 } 222 223 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, 224 struct ocfs2_extent_rec *rec) 225 { 226 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); 227 struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb); 228 229 BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL); 230 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) && 231 (oi->ip_clusters != le32_to_cpu(rec->e_cpos)), 232 "Device %s, asking for sparse allocation: inode %llu, " 233 "cpos %u, clusters %u\n", 234 osb->dev_str, 235 (unsigned long long)oi->ip_blkno, 236 rec->e_cpos, oi->ip_clusters); 237 238 return 0; 239 } 240 241 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et) 242 { 243 struct ocfs2_dinode *di = et->et_object; 244 245 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 246 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 247 248 return 0; 249 } 250 251 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et) 252 { 253 struct ocfs2_dinode *di = et->et_object; 254 255 et->et_root_el = &di->id2.i_list; 256 } 257 258 259 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et) 260 { 261 struct ocfs2_xattr_value_buf *vb = et->et_object; 262 263 et->et_root_el = &vb->vb_xv->xr_list; 264 } 265 266 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et, 267 u64 blkno) 268 { 269 struct ocfs2_xattr_value_buf *vb = et->et_object; 270 271 vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno); 272 } 273 274 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et) 275 { 276 struct ocfs2_xattr_value_buf *vb = et->et_object; 277 278 return le64_to_cpu(vb->vb_xv->xr_last_eb_blk); 279 } 280 281 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et, 282 u32 clusters) 283 { 284 struct ocfs2_xattr_value_buf *vb = et->et_object; 285 286 le32_add_cpu(&vb->vb_xv->xr_clusters, clusters); 287 } 288 289 static const struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = { 290 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk, 291 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk, 292 .eo_update_clusters = ocfs2_xattr_value_update_clusters, 293 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el, 294 }; 295 296 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et) 297 { 298 struct ocfs2_xattr_block *xb = et->et_object; 299 300 et->et_root_el = &xb->xb_attrs.xb_root.xt_list; 301 } 302 303 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et) 304 { 305 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 306 et->et_max_leaf_clusters = 307 ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE); 308 } 309 310 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 311 u64 blkno) 312 { 313 struct ocfs2_xattr_block *xb = et->et_object; 314 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 315 316 xt->xt_last_eb_blk = cpu_to_le64(blkno); 317 } 318 319 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 320 { 321 struct ocfs2_xattr_block *xb = et->et_object; 322 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 323 324 return le64_to_cpu(xt->xt_last_eb_blk); 325 } 326 327 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et, 328 u32 clusters) 329 { 330 struct ocfs2_xattr_block *xb = et->et_object; 331 332 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters); 333 } 334 335 static const struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = { 336 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk, 337 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk, 338 .eo_update_clusters = ocfs2_xattr_tree_update_clusters, 339 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el, 340 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters, 341 }; 342 343 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et, 344 u64 blkno) 345 { 346 struct ocfs2_dx_root_block *dx_root = et->et_object; 347 348 dx_root->dr_last_eb_blk = cpu_to_le64(blkno); 349 } 350 351 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et) 352 { 353 struct ocfs2_dx_root_block *dx_root = et->et_object; 354 355 return le64_to_cpu(dx_root->dr_last_eb_blk); 356 } 357 358 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et, 359 u32 clusters) 360 { 361 struct ocfs2_dx_root_block *dx_root = et->et_object; 362 363 le32_add_cpu(&dx_root->dr_clusters, clusters); 364 } 365 366 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et) 367 { 368 struct ocfs2_dx_root_block *dx_root = et->et_object; 369 370 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root)); 371 372 return 0; 373 } 374 375 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et) 376 { 377 struct ocfs2_dx_root_block *dx_root = et->et_object; 378 379 et->et_root_el = &dx_root->dr_list; 380 } 381 382 static const struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = { 383 .eo_set_last_eb_blk = ocfs2_dx_root_set_last_eb_blk, 384 .eo_get_last_eb_blk = ocfs2_dx_root_get_last_eb_blk, 385 .eo_update_clusters = ocfs2_dx_root_update_clusters, 386 .eo_sanity_check = ocfs2_dx_root_sanity_check, 387 .eo_fill_root_el = ocfs2_dx_root_fill_root_el, 388 }; 389 390 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et) 391 { 392 struct ocfs2_refcount_block *rb = et->et_object; 393 394 et->et_root_el = &rb->rf_list; 395 } 396 397 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 398 u64 blkno) 399 { 400 struct ocfs2_refcount_block *rb = et->et_object; 401 402 rb->rf_last_eb_blk = cpu_to_le64(blkno); 403 } 404 405 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 406 { 407 struct ocfs2_refcount_block *rb = et->et_object; 408 409 return le64_to_cpu(rb->rf_last_eb_blk); 410 } 411 412 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et, 413 u32 clusters) 414 { 415 struct ocfs2_refcount_block *rb = et->et_object; 416 417 le32_add_cpu(&rb->rf_clusters, clusters); 418 } 419 420 static enum ocfs2_contig_type 421 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et, 422 struct ocfs2_extent_rec *ext, 423 struct ocfs2_extent_rec *insert_rec) 424 { 425 return CONTIG_NONE; 426 } 427 428 static const struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = { 429 .eo_set_last_eb_blk = ocfs2_refcount_tree_set_last_eb_blk, 430 .eo_get_last_eb_blk = ocfs2_refcount_tree_get_last_eb_blk, 431 .eo_update_clusters = ocfs2_refcount_tree_update_clusters, 432 .eo_fill_root_el = ocfs2_refcount_tree_fill_root_el, 433 .eo_extent_contig = ocfs2_refcount_tree_extent_contig, 434 }; 435 436 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et, 437 struct ocfs2_caching_info *ci, 438 struct buffer_head *bh, 439 ocfs2_journal_access_func access, 440 void *obj, 441 const struct ocfs2_extent_tree_operations *ops) 442 { 443 et->et_ops = ops; 444 et->et_root_bh = bh; 445 et->et_ci = ci; 446 et->et_root_journal_access = access; 447 if (!obj) 448 obj = (void *)bh->b_data; 449 et->et_object = obj; 450 451 et->et_ops->eo_fill_root_el(et); 452 if (!et->et_ops->eo_fill_max_leaf_clusters) 453 et->et_max_leaf_clusters = 0; 454 else 455 et->et_ops->eo_fill_max_leaf_clusters(et); 456 } 457 458 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et, 459 struct ocfs2_caching_info *ci, 460 struct buffer_head *bh) 461 { 462 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di, 463 NULL, &ocfs2_dinode_et_ops); 464 } 465 466 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et, 467 struct ocfs2_caching_info *ci, 468 struct buffer_head *bh) 469 { 470 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb, 471 NULL, &ocfs2_xattr_tree_et_ops); 472 } 473 474 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et, 475 struct ocfs2_caching_info *ci, 476 struct ocfs2_xattr_value_buf *vb) 477 { 478 __ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb, 479 &ocfs2_xattr_value_et_ops); 480 } 481 482 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et, 483 struct ocfs2_caching_info *ci, 484 struct buffer_head *bh) 485 { 486 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr, 487 NULL, &ocfs2_dx_root_et_ops); 488 } 489 490 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et, 491 struct ocfs2_caching_info *ci, 492 struct buffer_head *bh) 493 { 494 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb, 495 NULL, &ocfs2_refcount_tree_et_ops); 496 } 497 498 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et, 499 u64 new_last_eb_blk) 500 { 501 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk); 502 } 503 504 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et) 505 { 506 return et->et_ops->eo_get_last_eb_blk(et); 507 } 508 509 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et, 510 u32 clusters) 511 { 512 et->et_ops->eo_update_clusters(et, clusters); 513 } 514 515 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et, 516 struct ocfs2_extent_rec *rec) 517 { 518 if (et->et_ops->eo_extent_map_insert) 519 et->et_ops->eo_extent_map_insert(et, rec); 520 } 521 522 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et, 523 u32 clusters) 524 { 525 if (et->et_ops->eo_extent_map_truncate) 526 et->et_ops->eo_extent_map_truncate(et, clusters); 527 } 528 529 static inline int ocfs2_et_root_journal_access(handle_t *handle, 530 struct ocfs2_extent_tree *et, 531 int type) 532 { 533 return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh, 534 type); 535 } 536 537 static inline enum ocfs2_contig_type 538 ocfs2_et_extent_contig(struct ocfs2_extent_tree *et, 539 struct ocfs2_extent_rec *rec, 540 struct ocfs2_extent_rec *insert_rec) 541 { 542 if (et->et_ops->eo_extent_contig) 543 return et->et_ops->eo_extent_contig(et, rec, insert_rec); 544 545 return ocfs2_extent_rec_contig( 546 ocfs2_metadata_cache_get_super(et->et_ci), 547 rec, insert_rec); 548 } 549 550 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et, 551 struct ocfs2_extent_rec *rec) 552 { 553 int ret = 0; 554 555 if (et->et_ops->eo_insert_check) 556 ret = et->et_ops->eo_insert_check(et, rec); 557 return ret; 558 } 559 560 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et) 561 { 562 int ret = 0; 563 564 if (et->et_ops->eo_sanity_check) 565 ret = et->et_ops->eo_sanity_check(et); 566 return ret; 567 } 568 569 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 570 struct ocfs2_extent_block *eb); 571 static void ocfs2_adjust_rightmost_records(handle_t *handle, 572 struct ocfs2_extent_tree *et, 573 struct ocfs2_path *path, 574 struct ocfs2_extent_rec *insert_rec); 575 /* 576 * Reset the actual path elements so that we can re-use the structure 577 * to build another path. Generally, this involves freeing the buffer 578 * heads. 579 */ 580 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root) 581 { 582 int i, start = 0, depth = 0; 583 struct ocfs2_path_item *node; 584 585 if (keep_root) 586 start = 1; 587 588 for(i = start; i < path_num_items(path); i++) { 589 node = &path->p_node[i]; 590 591 brelse(node->bh); 592 node->bh = NULL; 593 node->el = NULL; 594 } 595 596 /* 597 * Tree depth may change during truncate, or insert. If we're 598 * keeping the root extent list, then make sure that our path 599 * structure reflects the proper depth. 600 */ 601 if (keep_root) 602 depth = le16_to_cpu(path_root_el(path)->l_tree_depth); 603 else 604 path_root_access(path) = NULL; 605 606 path->p_tree_depth = depth; 607 } 608 609 void ocfs2_free_path(struct ocfs2_path *path) 610 { 611 if (path) { 612 ocfs2_reinit_path(path, 0); 613 kfree(path); 614 } 615 } 616 617 /* 618 * All the elements of src into dest. After this call, src could be freed 619 * without affecting dest. 620 * 621 * Both paths should have the same root. Any non-root elements of dest 622 * will be freed. 623 */ 624 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src) 625 { 626 int i; 627 628 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 629 BUG_ON(path_root_el(dest) != path_root_el(src)); 630 BUG_ON(path_root_access(dest) != path_root_access(src)); 631 632 ocfs2_reinit_path(dest, 1); 633 634 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 635 dest->p_node[i].bh = src->p_node[i].bh; 636 dest->p_node[i].el = src->p_node[i].el; 637 638 if (dest->p_node[i].bh) 639 get_bh(dest->p_node[i].bh); 640 } 641 } 642 643 /* 644 * Make the *dest path the same as src and re-initialize src path to 645 * have a root only. 646 */ 647 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src) 648 { 649 int i; 650 651 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 652 BUG_ON(path_root_access(dest) != path_root_access(src)); 653 654 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 655 brelse(dest->p_node[i].bh); 656 657 dest->p_node[i].bh = src->p_node[i].bh; 658 dest->p_node[i].el = src->p_node[i].el; 659 660 src->p_node[i].bh = NULL; 661 src->p_node[i].el = NULL; 662 } 663 } 664 665 /* 666 * Insert an extent block at given index. 667 * 668 * This will not take an additional reference on eb_bh. 669 */ 670 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index, 671 struct buffer_head *eb_bh) 672 { 673 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data; 674 675 /* 676 * Right now, no root bh is an extent block, so this helps 677 * catch code errors with dinode trees. The assertion can be 678 * safely removed if we ever need to insert extent block 679 * structures at the root. 680 */ 681 BUG_ON(index == 0); 682 683 path->p_node[index].bh = eb_bh; 684 path->p_node[index].el = &eb->h_list; 685 } 686 687 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh, 688 struct ocfs2_extent_list *root_el, 689 ocfs2_journal_access_func access) 690 { 691 struct ocfs2_path *path; 692 693 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH); 694 695 path = kzalloc(sizeof(*path), GFP_NOFS); 696 if (path) { 697 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth); 698 get_bh(root_bh); 699 path_root_bh(path) = root_bh; 700 path_root_el(path) = root_el; 701 path_root_access(path) = access; 702 } 703 704 return path; 705 } 706 707 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path) 708 { 709 return ocfs2_new_path(path_root_bh(path), path_root_el(path), 710 path_root_access(path)); 711 } 712 713 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et) 714 { 715 return ocfs2_new_path(et->et_root_bh, et->et_root_el, 716 et->et_root_journal_access); 717 } 718 719 /* 720 * Journal the buffer at depth idx. All idx>0 are extent_blocks, 721 * otherwise it's the root_access function. 722 * 723 * I don't like the way this function's name looks next to 724 * ocfs2_journal_access_path(), but I don't have a better one. 725 */ 726 int ocfs2_path_bh_journal_access(handle_t *handle, 727 struct ocfs2_caching_info *ci, 728 struct ocfs2_path *path, 729 int idx) 730 { 731 ocfs2_journal_access_func access = path_root_access(path); 732 733 if (!access) 734 access = ocfs2_journal_access; 735 736 if (idx) 737 access = ocfs2_journal_access_eb; 738 739 return access(handle, ci, path->p_node[idx].bh, 740 OCFS2_JOURNAL_ACCESS_WRITE); 741 } 742 743 /* 744 * Convenience function to journal all components in a path. 745 */ 746 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci, 747 handle_t *handle, 748 struct ocfs2_path *path) 749 { 750 int i, ret = 0; 751 752 if (!path) 753 goto out; 754 755 for(i = 0; i < path_num_items(path); i++) { 756 ret = ocfs2_path_bh_journal_access(handle, ci, path, i); 757 if (ret < 0) { 758 mlog_errno(ret); 759 goto out; 760 } 761 } 762 763 out: 764 return ret; 765 } 766 767 /* 768 * Return the index of the extent record which contains cluster #v_cluster. 769 * -1 is returned if it was not found. 770 * 771 * Should work fine on interior and exterior nodes. 772 */ 773 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster) 774 { 775 int ret = -1; 776 int i; 777 struct ocfs2_extent_rec *rec; 778 u32 rec_end, rec_start, clusters; 779 780 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 781 rec = &el->l_recs[i]; 782 783 rec_start = le32_to_cpu(rec->e_cpos); 784 clusters = ocfs2_rec_clusters(el, rec); 785 786 rec_end = rec_start + clusters; 787 788 if (v_cluster >= rec_start && v_cluster < rec_end) { 789 ret = i; 790 break; 791 } 792 } 793 794 return ret; 795 } 796 797 /* 798 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and 799 * ocfs2_extent_rec_contig only work properly against leaf nodes! 800 */ 801 static int ocfs2_block_extent_contig(struct super_block *sb, 802 struct ocfs2_extent_rec *ext, 803 u64 blkno) 804 { 805 u64 blk_end = le64_to_cpu(ext->e_blkno); 806 807 blk_end += ocfs2_clusters_to_blocks(sb, 808 le16_to_cpu(ext->e_leaf_clusters)); 809 810 return blkno == blk_end; 811 } 812 813 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left, 814 struct ocfs2_extent_rec *right) 815 { 816 u32 left_range; 817 818 left_range = le32_to_cpu(left->e_cpos) + 819 le16_to_cpu(left->e_leaf_clusters); 820 821 return (left_range == le32_to_cpu(right->e_cpos)); 822 } 823 824 static enum ocfs2_contig_type 825 ocfs2_extent_rec_contig(struct super_block *sb, 826 struct ocfs2_extent_rec *ext, 827 struct ocfs2_extent_rec *insert_rec) 828 { 829 u64 blkno = le64_to_cpu(insert_rec->e_blkno); 830 831 /* 832 * Refuse to coalesce extent records with different flag 833 * fields - we don't want to mix unwritten extents with user 834 * data. 835 */ 836 if (ext->e_flags != insert_rec->e_flags) 837 return CONTIG_NONE; 838 839 if (ocfs2_extents_adjacent(ext, insert_rec) && 840 ocfs2_block_extent_contig(sb, ext, blkno)) 841 return CONTIG_RIGHT; 842 843 blkno = le64_to_cpu(ext->e_blkno); 844 if (ocfs2_extents_adjacent(insert_rec, ext) && 845 ocfs2_block_extent_contig(sb, insert_rec, blkno)) 846 return CONTIG_LEFT; 847 848 return CONTIG_NONE; 849 } 850 851 /* 852 * NOTE: We can have pretty much any combination of contiguousness and 853 * appending. 854 * 855 * The usefulness of APPEND_TAIL is more in that it lets us know that 856 * we'll have to update the path to that leaf. 857 */ 858 enum ocfs2_append_type { 859 APPEND_NONE = 0, 860 APPEND_TAIL, 861 }; 862 863 enum ocfs2_split_type { 864 SPLIT_NONE = 0, 865 SPLIT_LEFT, 866 SPLIT_RIGHT, 867 }; 868 869 struct ocfs2_insert_type { 870 enum ocfs2_split_type ins_split; 871 enum ocfs2_append_type ins_appending; 872 enum ocfs2_contig_type ins_contig; 873 int ins_contig_index; 874 int ins_tree_depth; 875 }; 876 877 struct ocfs2_merge_ctxt { 878 enum ocfs2_contig_type c_contig_type; 879 int c_has_empty_extent; 880 int c_split_covers_rec; 881 }; 882 883 static int ocfs2_validate_extent_block(struct super_block *sb, 884 struct buffer_head *bh) 885 { 886 int rc; 887 struct ocfs2_extent_block *eb = 888 (struct ocfs2_extent_block *)bh->b_data; 889 890 trace_ocfs2_validate_extent_block((unsigned long long)bh->b_blocknr); 891 892 BUG_ON(!buffer_uptodate(bh)); 893 894 /* 895 * If the ecc fails, we return the error but otherwise 896 * leave the filesystem running. We know any error is 897 * local to this block. 898 */ 899 rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check); 900 if (rc) { 901 mlog(ML_ERROR, "Checksum failed for extent block %llu\n", 902 (unsigned long long)bh->b_blocknr); 903 return rc; 904 } 905 906 /* 907 * Errors after here are fatal. 908 */ 909 910 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 911 rc = ocfs2_error(sb, 912 "Extent block #%llu has bad signature %.*s\n", 913 (unsigned long long)bh->b_blocknr, 7, 914 eb->h_signature); 915 goto bail; 916 } 917 918 if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) { 919 rc = ocfs2_error(sb, 920 "Extent block #%llu has an invalid h_blkno of %llu\n", 921 (unsigned long long)bh->b_blocknr, 922 (unsigned long long)le64_to_cpu(eb->h_blkno)); 923 goto bail; 924 } 925 926 if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) { 927 rc = ocfs2_error(sb, 928 "Extent block #%llu has an invalid h_fs_generation of #%u\n", 929 (unsigned long long)bh->b_blocknr, 930 le32_to_cpu(eb->h_fs_generation)); 931 goto bail; 932 } 933 bail: 934 return rc; 935 } 936 937 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno, 938 struct buffer_head **bh) 939 { 940 int rc; 941 struct buffer_head *tmp = *bh; 942 943 rc = ocfs2_read_block(ci, eb_blkno, &tmp, 944 ocfs2_validate_extent_block); 945 946 /* If ocfs2_read_block() got us a new bh, pass it up. */ 947 if (!rc && !*bh) 948 *bh = tmp; 949 950 return rc; 951 } 952 953 954 /* 955 * How many free extents have we got before we need more meta data? 956 */ 957 int ocfs2_num_free_extents(struct ocfs2_super *osb, 958 struct ocfs2_extent_tree *et) 959 { 960 int retval; 961 struct ocfs2_extent_list *el = NULL; 962 struct ocfs2_extent_block *eb; 963 struct buffer_head *eb_bh = NULL; 964 u64 last_eb_blk = 0; 965 966 el = et->et_root_el; 967 last_eb_blk = ocfs2_et_get_last_eb_blk(et); 968 969 if (last_eb_blk) { 970 retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk, 971 &eb_bh); 972 if (retval < 0) { 973 mlog_errno(retval); 974 goto bail; 975 } 976 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 977 el = &eb->h_list; 978 } 979 980 BUG_ON(el->l_tree_depth != 0); 981 982 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec); 983 bail: 984 brelse(eb_bh); 985 986 trace_ocfs2_num_free_extents(retval); 987 return retval; 988 } 989 990 /* expects array to already be allocated 991 * 992 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and 993 * l_count for you 994 */ 995 static int ocfs2_create_new_meta_bhs(handle_t *handle, 996 struct ocfs2_extent_tree *et, 997 int wanted, 998 struct ocfs2_alloc_context *meta_ac, 999 struct buffer_head *bhs[]) 1000 { 1001 int count, status, i; 1002 u16 suballoc_bit_start; 1003 u32 num_got; 1004 u64 suballoc_loc, first_blkno; 1005 struct ocfs2_super *osb = 1006 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 1007 struct ocfs2_extent_block *eb; 1008 1009 count = 0; 1010 while (count < wanted) { 1011 status = ocfs2_claim_metadata(handle, 1012 meta_ac, 1013 wanted - count, 1014 &suballoc_loc, 1015 &suballoc_bit_start, 1016 &num_got, 1017 &first_blkno); 1018 if (status < 0) { 1019 mlog_errno(status); 1020 goto bail; 1021 } 1022 1023 for(i = count; i < (num_got + count); i++) { 1024 bhs[i] = sb_getblk(osb->sb, first_blkno); 1025 if (bhs[i] == NULL) { 1026 status = -ENOMEM; 1027 mlog_errno(status); 1028 goto bail; 1029 } 1030 ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]); 1031 1032 status = ocfs2_journal_access_eb(handle, et->et_ci, 1033 bhs[i], 1034 OCFS2_JOURNAL_ACCESS_CREATE); 1035 if (status < 0) { 1036 mlog_errno(status); 1037 goto bail; 1038 } 1039 1040 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize); 1041 eb = (struct ocfs2_extent_block *) bhs[i]->b_data; 1042 /* Ok, setup the minimal stuff here. */ 1043 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); 1044 eb->h_blkno = cpu_to_le64(first_blkno); 1045 eb->h_fs_generation = cpu_to_le32(osb->fs_generation); 1046 eb->h_suballoc_slot = 1047 cpu_to_le16(meta_ac->ac_alloc_slot); 1048 eb->h_suballoc_loc = cpu_to_le64(suballoc_loc); 1049 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start); 1050 eb->h_list.l_count = 1051 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); 1052 1053 suballoc_bit_start++; 1054 first_blkno++; 1055 1056 /* We'll also be dirtied by the caller, so 1057 * this isn't absolutely necessary. */ 1058 ocfs2_journal_dirty(handle, bhs[i]); 1059 } 1060 1061 count += num_got; 1062 } 1063 1064 status = 0; 1065 bail: 1066 if (status < 0) { 1067 for(i = 0; i < wanted; i++) { 1068 brelse(bhs[i]); 1069 bhs[i] = NULL; 1070 } 1071 mlog_errno(status); 1072 } 1073 return status; 1074 } 1075 1076 /* 1077 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth(). 1078 * 1079 * Returns the sum of the rightmost extent rec logical offset and 1080 * cluster count. 1081 * 1082 * ocfs2_add_branch() uses this to determine what logical cluster 1083 * value should be populated into the leftmost new branch records. 1084 * 1085 * ocfs2_shift_tree_depth() uses this to determine the # clusters 1086 * value for the new topmost tree record. 1087 */ 1088 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el) 1089 { 1090 int i; 1091 1092 i = le16_to_cpu(el->l_next_free_rec) - 1; 1093 1094 return le32_to_cpu(el->l_recs[i].e_cpos) + 1095 ocfs2_rec_clusters(el, &el->l_recs[i]); 1096 } 1097 1098 /* 1099 * Change range of the branches in the right most path according to the leaf 1100 * extent block's rightmost record. 1101 */ 1102 static int ocfs2_adjust_rightmost_branch(handle_t *handle, 1103 struct ocfs2_extent_tree *et) 1104 { 1105 int status; 1106 struct ocfs2_path *path = NULL; 1107 struct ocfs2_extent_list *el; 1108 struct ocfs2_extent_rec *rec; 1109 1110 path = ocfs2_new_path_from_et(et); 1111 if (!path) { 1112 status = -ENOMEM; 1113 return status; 1114 } 1115 1116 status = ocfs2_find_path(et->et_ci, path, UINT_MAX); 1117 if (status < 0) { 1118 mlog_errno(status); 1119 goto out; 1120 } 1121 1122 status = ocfs2_extend_trans(handle, path_num_items(path)); 1123 if (status < 0) { 1124 mlog_errno(status); 1125 goto out; 1126 } 1127 1128 status = ocfs2_journal_access_path(et->et_ci, handle, path); 1129 if (status < 0) { 1130 mlog_errno(status); 1131 goto out; 1132 } 1133 1134 el = path_leaf_el(path); 1135 rec = &el->l_recs[le16_to_cpu(el->l_next_free_rec) - 1]; 1136 1137 ocfs2_adjust_rightmost_records(handle, et, path, rec); 1138 1139 out: 1140 ocfs2_free_path(path); 1141 return status; 1142 } 1143 1144 /* 1145 * Add an entire tree branch to our inode. eb_bh is the extent block 1146 * to start at, if we don't want to start the branch at the root 1147 * structure. 1148 * 1149 * last_eb_bh is required as we have to update it's next_leaf pointer 1150 * for the new last extent block. 1151 * 1152 * the new branch will be 'empty' in the sense that every block will 1153 * contain a single record with cluster count == 0. 1154 */ 1155 static int ocfs2_add_branch(handle_t *handle, 1156 struct ocfs2_extent_tree *et, 1157 struct buffer_head *eb_bh, 1158 struct buffer_head **last_eb_bh, 1159 struct ocfs2_alloc_context *meta_ac) 1160 { 1161 int status, new_blocks, i; 1162 u64 next_blkno, new_last_eb_blk; 1163 struct buffer_head *bh; 1164 struct buffer_head **new_eb_bhs = NULL; 1165 struct ocfs2_extent_block *eb; 1166 struct ocfs2_extent_list *eb_el; 1167 struct ocfs2_extent_list *el; 1168 u32 new_cpos, root_end; 1169 1170 BUG_ON(!last_eb_bh || !*last_eb_bh); 1171 1172 if (eb_bh) { 1173 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 1174 el = &eb->h_list; 1175 } else 1176 el = et->et_root_el; 1177 1178 /* we never add a branch to a leaf. */ 1179 BUG_ON(!el->l_tree_depth); 1180 1181 new_blocks = le16_to_cpu(el->l_tree_depth); 1182 1183 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data; 1184 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list); 1185 root_end = ocfs2_sum_rightmost_rec(et->et_root_el); 1186 1187 /* 1188 * If there is a gap before the root end and the real end 1189 * of the righmost leaf block, we need to remove the gap 1190 * between new_cpos and root_end first so that the tree 1191 * is consistent after we add a new branch(it will start 1192 * from new_cpos). 1193 */ 1194 if (root_end > new_cpos) { 1195 trace_ocfs2_adjust_rightmost_branch( 1196 (unsigned long long) 1197 ocfs2_metadata_cache_owner(et->et_ci), 1198 root_end, new_cpos); 1199 1200 status = ocfs2_adjust_rightmost_branch(handle, et); 1201 if (status) { 1202 mlog_errno(status); 1203 goto bail; 1204 } 1205 } 1206 1207 /* allocate the number of new eb blocks we need */ 1208 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *), 1209 GFP_KERNEL); 1210 if (!new_eb_bhs) { 1211 status = -ENOMEM; 1212 mlog_errno(status); 1213 goto bail; 1214 } 1215 1216 status = ocfs2_create_new_meta_bhs(handle, et, new_blocks, 1217 meta_ac, new_eb_bhs); 1218 if (status < 0) { 1219 mlog_errno(status); 1220 goto bail; 1221 } 1222 1223 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be 1224 * linked with the rest of the tree. 1225 * conversly, new_eb_bhs[0] is the new bottommost leaf. 1226 * 1227 * when we leave the loop, new_last_eb_blk will point to the 1228 * newest leaf, and next_blkno will point to the topmost extent 1229 * block. */ 1230 next_blkno = new_last_eb_blk = 0; 1231 for(i = 0; i < new_blocks; i++) { 1232 bh = new_eb_bhs[i]; 1233 eb = (struct ocfs2_extent_block *) bh->b_data; 1234 /* ocfs2_create_new_meta_bhs() should create it right! */ 1235 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1236 eb_el = &eb->h_list; 1237 1238 status = ocfs2_journal_access_eb(handle, et->et_ci, bh, 1239 OCFS2_JOURNAL_ACCESS_CREATE); 1240 if (status < 0) { 1241 mlog_errno(status); 1242 goto bail; 1243 } 1244 1245 eb->h_next_leaf_blk = 0; 1246 eb_el->l_tree_depth = cpu_to_le16(i); 1247 eb_el->l_next_free_rec = cpu_to_le16(1); 1248 /* 1249 * This actually counts as an empty extent as 1250 * c_clusters == 0 1251 */ 1252 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos); 1253 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno); 1254 /* 1255 * eb_el isn't always an interior node, but even leaf 1256 * nodes want a zero'd flags and reserved field so 1257 * this gets the whole 32 bits regardless of use. 1258 */ 1259 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0); 1260 if (!eb_el->l_tree_depth) 1261 new_last_eb_blk = le64_to_cpu(eb->h_blkno); 1262 1263 ocfs2_journal_dirty(handle, bh); 1264 next_blkno = le64_to_cpu(eb->h_blkno); 1265 } 1266 1267 /* This is a bit hairy. We want to update up to three blocks 1268 * here without leaving any of them in an inconsistent state 1269 * in case of error. We don't have to worry about 1270 * journal_dirty erroring as it won't unless we've aborted the 1271 * handle (in which case we would never be here) so reserving 1272 * the write with journal_access is all we need to do. */ 1273 status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh, 1274 OCFS2_JOURNAL_ACCESS_WRITE); 1275 if (status < 0) { 1276 mlog_errno(status); 1277 goto bail; 1278 } 1279 status = ocfs2_et_root_journal_access(handle, et, 1280 OCFS2_JOURNAL_ACCESS_WRITE); 1281 if (status < 0) { 1282 mlog_errno(status); 1283 goto bail; 1284 } 1285 if (eb_bh) { 1286 status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh, 1287 OCFS2_JOURNAL_ACCESS_WRITE); 1288 if (status < 0) { 1289 mlog_errno(status); 1290 goto bail; 1291 } 1292 } 1293 1294 /* Link the new branch into the rest of the tree (el will 1295 * either be on the root_bh, or the extent block passed in. */ 1296 i = le16_to_cpu(el->l_next_free_rec); 1297 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno); 1298 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos); 1299 el->l_recs[i].e_int_clusters = 0; 1300 le16_add_cpu(&el->l_next_free_rec, 1); 1301 1302 /* fe needs a new last extent block pointer, as does the 1303 * next_leaf on the previously last-extent-block. */ 1304 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk); 1305 1306 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 1307 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk); 1308 1309 ocfs2_journal_dirty(handle, *last_eb_bh); 1310 ocfs2_journal_dirty(handle, et->et_root_bh); 1311 if (eb_bh) 1312 ocfs2_journal_dirty(handle, eb_bh); 1313 1314 /* 1315 * Some callers want to track the rightmost leaf so pass it 1316 * back here. 1317 */ 1318 brelse(*last_eb_bh); 1319 get_bh(new_eb_bhs[0]); 1320 *last_eb_bh = new_eb_bhs[0]; 1321 1322 status = 0; 1323 bail: 1324 if (new_eb_bhs) { 1325 for (i = 0; i < new_blocks; i++) 1326 brelse(new_eb_bhs[i]); 1327 kfree(new_eb_bhs); 1328 } 1329 1330 return status; 1331 } 1332 1333 /* 1334 * adds another level to the allocation tree. 1335 * returns back the new extent block so you can add a branch to it 1336 * after this call. 1337 */ 1338 static int ocfs2_shift_tree_depth(handle_t *handle, 1339 struct ocfs2_extent_tree *et, 1340 struct ocfs2_alloc_context *meta_ac, 1341 struct buffer_head **ret_new_eb_bh) 1342 { 1343 int status, i; 1344 u32 new_clusters; 1345 struct buffer_head *new_eb_bh = NULL; 1346 struct ocfs2_extent_block *eb; 1347 struct ocfs2_extent_list *root_el; 1348 struct ocfs2_extent_list *eb_el; 1349 1350 status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac, 1351 &new_eb_bh); 1352 if (status < 0) { 1353 mlog_errno(status); 1354 goto bail; 1355 } 1356 1357 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data; 1358 /* ocfs2_create_new_meta_bhs() should create it right! */ 1359 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1360 1361 eb_el = &eb->h_list; 1362 root_el = et->et_root_el; 1363 1364 status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh, 1365 OCFS2_JOURNAL_ACCESS_CREATE); 1366 if (status < 0) { 1367 mlog_errno(status); 1368 goto bail; 1369 } 1370 1371 /* copy the root extent list data into the new extent block */ 1372 eb_el->l_tree_depth = root_el->l_tree_depth; 1373 eb_el->l_next_free_rec = root_el->l_next_free_rec; 1374 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1375 eb_el->l_recs[i] = root_el->l_recs[i]; 1376 1377 ocfs2_journal_dirty(handle, new_eb_bh); 1378 1379 status = ocfs2_et_root_journal_access(handle, et, 1380 OCFS2_JOURNAL_ACCESS_WRITE); 1381 if (status < 0) { 1382 mlog_errno(status); 1383 goto bail; 1384 } 1385 1386 new_clusters = ocfs2_sum_rightmost_rec(eb_el); 1387 1388 /* update root_bh now */ 1389 le16_add_cpu(&root_el->l_tree_depth, 1); 1390 root_el->l_recs[0].e_cpos = 0; 1391 root_el->l_recs[0].e_blkno = eb->h_blkno; 1392 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters); 1393 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1394 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 1395 root_el->l_next_free_rec = cpu_to_le16(1); 1396 1397 /* If this is our 1st tree depth shift, then last_eb_blk 1398 * becomes the allocated extent block */ 1399 if (root_el->l_tree_depth == cpu_to_le16(1)) 1400 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 1401 1402 ocfs2_journal_dirty(handle, et->et_root_bh); 1403 1404 *ret_new_eb_bh = new_eb_bh; 1405 new_eb_bh = NULL; 1406 status = 0; 1407 bail: 1408 brelse(new_eb_bh); 1409 1410 return status; 1411 } 1412 1413 /* 1414 * Should only be called when there is no space left in any of the 1415 * leaf nodes. What we want to do is find the lowest tree depth 1416 * non-leaf extent block with room for new records. There are three 1417 * valid results of this search: 1418 * 1419 * 1) a lowest extent block is found, then we pass it back in 1420 * *lowest_eb_bh and return '0' 1421 * 1422 * 2) the search fails to find anything, but the root_el has room. We 1423 * pass NULL back in *lowest_eb_bh, but still return '0' 1424 * 1425 * 3) the search fails to find anything AND the root_el is full, in 1426 * which case we return > 0 1427 * 1428 * return status < 0 indicates an error. 1429 */ 1430 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et, 1431 struct buffer_head **target_bh) 1432 { 1433 int status = 0, i; 1434 u64 blkno; 1435 struct ocfs2_extent_block *eb; 1436 struct ocfs2_extent_list *el; 1437 struct buffer_head *bh = NULL; 1438 struct buffer_head *lowest_bh = NULL; 1439 1440 *target_bh = NULL; 1441 1442 el = et->et_root_el; 1443 1444 while(le16_to_cpu(el->l_tree_depth) > 1) { 1445 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1446 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 1447 "Owner %llu has empty extent list (next_free_rec == 0)\n", 1448 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 1449 status = -EIO; 1450 goto bail; 1451 } 1452 i = le16_to_cpu(el->l_next_free_rec) - 1; 1453 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1454 if (!blkno) { 1455 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 1456 "Owner %llu has extent list where extent # %d has no physical block start\n", 1457 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i); 1458 status = -EIO; 1459 goto bail; 1460 } 1461 1462 brelse(bh); 1463 bh = NULL; 1464 1465 status = ocfs2_read_extent_block(et->et_ci, blkno, &bh); 1466 if (status < 0) { 1467 mlog_errno(status); 1468 goto bail; 1469 } 1470 1471 eb = (struct ocfs2_extent_block *) bh->b_data; 1472 el = &eb->h_list; 1473 1474 if (le16_to_cpu(el->l_next_free_rec) < 1475 le16_to_cpu(el->l_count)) { 1476 brelse(lowest_bh); 1477 lowest_bh = bh; 1478 get_bh(lowest_bh); 1479 } 1480 } 1481 1482 /* If we didn't find one and the fe doesn't have any room, 1483 * then return '1' */ 1484 el = et->et_root_el; 1485 if (!lowest_bh && (el->l_next_free_rec == el->l_count)) 1486 status = 1; 1487 1488 *target_bh = lowest_bh; 1489 bail: 1490 brelse(bh); 1491 1492 return status; 1493 } 1494 1495 /* 1496 * Grow a b-tree so that it has more records. 1497 * 1498 * We might shift the tree depth in which case existing paths should 1499 * be considered invalid. 1500 * 1501 * Tree depth after the grow is returned via *final_depth. 1502 * 1503 * *last_eb_bh will be updated by ocfs2_add_branch(). 1504 */ 1505 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et, 1506 int *final_depth, struct buffer_head **last_eb_bh, 1507 struct ocfs2_alloc_context *meta_ac) 1508 { 1509 int ret, shift; 1510 struct ocfs2_extent_list *el = et->et_root_el; 1511 int depth = le16_to_cpu(el->l_tree_depth); 1512 struct buffer_head *bh = NULL; 1513 1514 BUG_ON(meta_ac == NULL); 1515 1516 shift = ocfs2_find_branch_target(et, &bh); 1517 if (shift < 0) { 1518 ret = shift; 1519 mlog_errno(ret); 1520 goto out; 1521 } 1522 1523 /* We traveled all the way to the bottom of the allocation tree 1524 * and didn't find room for any more extents - we need to add 1525 * another tree level */ 1526 if (shift) { 1527 BUG_ON(bh); 1528 trace_ocfs2_grow_tree( 1529 (unsigned long long) 1530 ocfs2_metadata_cache_owner(et->et_ci), 1531 depth); 1532 1533 /* ocfs2_shift_tree_depth will return us a buffer with 1534 * the new extent block (so we can pass that to 1535 * ocfs2_add_branch). */ 1536 ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh); 1537 if (ret < 0) { 1538 mlog_errno(ret); 1539 goto out; 1540 } 1541 depth++; 1542 if (depth == 1) { 1543 /* 1544 * Special case: we have room now if we shifted from 1545 * tree_depth 0, so no more work needs to be done. 1546 * 1547 * We won't be calling add_branch, so pass 1548 * back *last_eb_bh as the new leaf. At depth 1549 * zero, it should always be null so there's 1550 * no reason to brelse. 1551 */ 1552 BUG_ON(*last_eb_bh); 1553 get_bh(bh); 1554 *last_eb_bh = bh; 1555 goto out; 1556 } 1557 } 1558 1559 /* call ocfs2_add_branch to add the final part of the tree with 1560 * the new data. */ 1561 ret = ocfs2_add_branch(handle, et, bh, last_eb_bh, 1562 meta_ac); 1563 if (ret < 0) { 1564 mlog_errno(ret); 1565 goto out; 1566 } 1567 1568 out: 1569 if (final_depth) 1570 *final_depth = depth; 1571 brelse(bh); 1572 return ret; 1573 } 1574 1575 /* 1576 * This function will discard the rightmost extent record. 1577 */ 1578 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el) 1579 { 1580 int next_free = le16_to_cpu(el->l_next_free_rec); 1581 int count = le16_to_cpu(el->l_count); 1582 unsigned int num_bytes; 1583 1584 BUG_ON(!next_free); 1585 /* This will cause us to go off the end of our extent list. */ 1586 BUG_ON(next_free >= count); 1587 1588 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free; 1589 1590 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes); 1591 } 1592 1593 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el, 1594 struct ocfs2_extent_rec *insert_rec) 1595 { 1596 int i, insert_index, next_free, has_empty, num_bytes; 1597 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos); 1598 struct ocfs2_extent_rec *rec; 1599 1600 next_free = le16_to_cpu(el->l_next_free_rec); 1601 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]); 1602 1603 BUG_ON(!next_free); 1604 1605 /* The tree code before us didn't allow enough room in the leaf. */ 1606 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty); 1607 1608 /* 1609 * The easiest way to approach this is to just remove the 1610 * empty extent and temporarily decrement next_free. 1611 */ 1612 if (has_empty) { 1613 /* 1614 * If next_free was 1 (only an empty extent), this 1615 * loop won't execute, which is fine. We still want 1616 * the decrement above to happen. 1617 */ 1618 for(i = 0; i < (next_free - 1); i++) 1619 el->l_recs[i] = el->l_recs[i+1]; 1620 1621 next_free--; 1622 } 1623 1624 /* 1625 * Figure out what the new record index should be. 1626 */ 1627 for(i = 0; i < next_free; i++) { 1628 rec = &el->l_recs[i]; 1629 1630 if (insert_cpos < le32_to_cpu(rec->e_cpos)) 1631 break; 1632 } 1633 insert_index = i; 1634 1635 trace_ocfs2_rotate_leaf(insert_cpos, insert_index, 1636 has_empty, next_free, 1637 le16_to_cpu(el->l_count)); 1638 1639 BUG_ON(insert_index < 0); 1640 BUG_ON(insert_index >= le16_to_cpu(el->l_count)); 1641 BUG_ON(insert_index > next_free); 1642 1643 /* 1644 * No need to memmove if we're just adding to the tail. 1645 */ 1646 if (insert_index != next_free) { 1647 BUG_ON(next_free >= le16_to_cpu(el->l_count)); 1648 1649 num_bytes = next_free - insert_index; 1650 num_bytes *= sizeof(struct ocfs2_extent_rec); 1651 memmove(&el->l_recs[insert_index + 1], 1652 &el->l_recs[insert_index], 1653 num_bytes); 1654 } 1655 1656 /* 1657 * Either we had an empty extent, and need to re-increment or 1658 * there was no empty extent on a non full rightmost leaf node, 1659 * in which case we still need to increment. 1660 */ 1661 next_free++; 1662 el->l_next_free_rec = cpu_to_le16(next_free); 1663 /* 1664 * Make sure none of the math above just messed up our tree. 1665 */ 1666 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count)); 1667 1668 el->l_recs[insert_index] = *insert_rec; 1669 1670 } 1671 1672 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el) 1673 { 1674 int size, num_recs = le16_to_cpu(el->l_next_free_rec); 1675 1676 BUG_ON(num_recs == 0); 1677 1678 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 1679 num_recs--; 1680 size = num_recs * sizeof(struct ocfs2_extent_rec); 1681 memmove(&el->l_recs[0], &el->l_recs[1], size); 1682 memset(&el->l_recs[num_recs], 0, 1683 sizeof(struct ocfs2_extent_rec)); 1684 el->l_next_free_rec = cpu_to_le16(num_recs); 1685 } 1686 } 1687 1688 /* 1689 * Create an empty extent record . 1690 * 1691 * l_next_free_rec may be updated. 1692 * 1693 * If an empty extent already exists do nothing. 1694 */ 1695 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el) 1696 { 1697 int next_free = le16_to_cpu(el->l_next_free_rec); 1698 1699 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 1700 1701 if (next_free == 0) 1702 goto set_and_inc; 1703 1704 if (ocfs2_is_empty_extent(&el->l_recs[0])) 1705 return; 1706 1707 mlog_bug_on_msg(el->l_count == el->l_next_free_rec, 1708 "Asked to create an empty extent in a full list:\n" 1709 "count = %u, tree depth = %u", 1710 le16_to_cpu(el->l_count), 1711 le16_to_cpu(el->l_tree_depth)); 1712 1713 ocfs2_shift_records_right(el); 1714 1715 set_and_inc: 1716 le16_add_cpu(&el->l_next_free_rec, 1); 1717 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 1718 } 1719 1720 /* 1721 * For a rotation which involves two leaf nodes, the "root node" is 1722 * the lowest level tree node which contains a path to both leafs. This 1723 * resulting set of information can be used to form a complete "subtree" 1724 * 1725 * This function is passed two full paths from the dinode down to a 1726 * pair of adjacent leaves. It's task is to figure out which path 1727 * index contains the subtree root - this can be the root index itself 1728 * in a worst-case rotation. 1729 * 1730 * The array index of the subtree root is passed back. 1731 */ 1732 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et, 1733 struct ocfs2_path *left, 1734 struct ocfs2_path *right) 1735 { 1736 int i = 0; 1737 1738 /* 1739 * Check that the caller passed in two paths from the same tree. 1740 */ 1741 BUG_ON(path_root_bh(left) != path_root_bh(right)); 1742 1743 do { 1744 i++; 1745 1746 /* 1747 * The caller didn't pass two adjacent paths. 1748 */ 1749 mlog_bug_on_msg(i > left->p_tree_depth, 1750 "Owner %llu, left depth %u, right depth %u\n" 1751 "left leaf blk %llu, right leaf blk %llu\n", 1752 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 1753 left->p_tree_depth, right->p_tree_depth, 1754 (unsigned long long)path_leaf_bh(left)->b_blocknr, 1755 (unsigned long long)path_leaf_bh(right)->b_blocknr); 1756 } while (left->p_node[i].bh->b_blocknr == 1757 right->p_node[i].bh->b_blocknr); 1758 1759 return i - 1; 1760 } 1761 1762 typedef void (path_insert_t)(void *, struct buffer_head *); 1763 1764 /* 1765 * Traverse a btree path in search of cpos, starting at root_el. 1766 * 1767 * This code can be called with a cpos larger than the tree, in which 1768 * case it will return the rightmost path. 1769 */ 1770 static int __ocfs2_find_path(struct ocfs2_caching_info *ci, 1771 struct ocfs2_extent_list *root_el, u32 cpos, 1772 path_insert_t *func, void *data) 1773 { 1774 int i, ret = 0; 1775 u32 range; 1776 u64 blkno; 1777 struct buffer_head *bh = NULL; 1778 struct ocfs2_extent_block *eb; 1779 struct ocfs2_extent_list *el; 1780 struct ocfs2_extent_rec *rec; 1781 1782 el = root_el; 1783 while (el->l_tree_depth) { 1784 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1785 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1786 "Owner %llu has empty extent list at depth %u\n", 1787 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1788 le16_to_cpu(el->l_tree_depth)); 1789 ret = -EROFS; 1790 goto out; 1791 1792 } 1793 1794 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) { 1795 rec = &el->l_recs[i]; 1796 1797 /* 1798 * In the case that cpos is off the allocation 1799 * tree, this should just wind up returning the 1800 * rightmost record. 1801 */ 1802 range = le32_to_cpu(rec->e_cpos) + 1803 ocfs2_rec_clusters(el, rec); 1804 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 1805 break; 1806 } 1807 1808 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1809 if (blkno == 0) { 1810 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1811 "Owner %llu has bad blkno in extent list at depth %u (index %d)\n", 1812 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1813 le16_to_cpu(el->l_tree_depth), i); 1814 ret = -EROFS; 1815 goto out; 1816 } 1817 1818 brelse(bh); 1819 bh = NULL; 1820 ret = ocfs2_read_extent_block(ci, blkno, &bh); 1821 if (ret) { 1822 mlog_errno(ret); 1823 goto out; 1824 } 1825 1826 eb = (struct ocfs2_extent_block *) bh->b_data; 1827 el = &eb->h_list; 1828 1829 if (le16_to_cpu(el->l_next_free_rec) > 1830 le16_to_cpu(el->l_count)) { 1831 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1832 "Owner %llu has bad count in extent list at block %llu (next free=%u, count=%u)\n", 1833 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1834 (unsigned long long)bh->b_blocknr, 1835 le16_to_cpu(el->l_next_free_rec), 1836 le16_to_cpu(el->l_count)); 1837 ret = -EROFS; 1838 goto out; 1839 } 1840 1841 if (func) 1842 func(data, bh); 1843 } 1844 1845 out: 1846 /* 1847 * Catch any trailing bh that the loop didn't handle. 1848 */ 1849 brelse(bh); 1850 1851 return ret; 1852 } 1853 1854 /* 1855 * Given an initialized path (that is, it has a valid root extent 1856 * list), this function will traverse the btree in search of the path 1857 * which would contain cpos. 1858 * 1859 * The path traveled is recorded in the path structure. 1860 * 1861 * Note that this will not do any comparisons on leaf node extent 1862 * records, so it will work fine in the case that we just added a tree 1863 * branch. 1864 */ 1865 struct find_path_data { 1866 int index; 1867 struct ocfs2_path *path; 1868 }; 1869 static void find_path_ins(void *data, struct buffer_head *bh) 1870 { 1871 struct find_path_data *fp = data; 1872 1873 get_bh(bh); 1874 ocfs2_path_insert_eb(fp->path, fp->index, bh); 1875 fp->index++; 1876 } 1877 int ocfs2_find_path(struct ocfs2_caching_info *ci, 1878 struct ocfs2_path *path, u32 cpos) 1879 { 1880 struct find_path_data data; 1881 1882 data.index = 1; 1883 data.path = path; 1884 return __ocfs2_find_path(ci, path_root_el(path), cpos, 1885 find_path_ins, &data); 1886 } 1887 1888 static void find_leaf_ins(void *data, struct buffer_head *bh) 1889 { 1890 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data; 1891 struct ocfs2_extent_list *el = &eb->h_list; 1892 struct buffer_head **ret = data; 1893 1894 /* We want to retain only the leaf block. */ 1895 if (le16_to_cpu(el->l_tree_depth) == 0) { 1896 get_bh(bh); 1897 *ret = bh; 1898 } 1899 } 1900 /* 1901 * Find the leaf block in the tree which would contain cpos. No 1902 * checking of the actual leaf is done. 1903 * 1904 * Some paths want to call this instead of allocating a path structure 1905 * and calling ocfs2_find_path(). 1906 * 1907 * This function doesn't handle non btree extent lists. 1908 */ 1909 int ocfs2_find_leaf(struct ocfs2_caching_info *ci, 1910 struct ocfs2_extent_list *root_el, u32 cpos, 1911 struct buffer_head **leaf_bh) 1912 { 1913 int ret; 1914 struct buffer_head *bh = NULL; 1915 1916 ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh); 1917 if (ret) { 1918 mlog_errno(ret); 1919 goto out; 1920 } 1921 1922 *leaf_bh = bh; 1923 out: 1924 return ret; 1925 } 1926 1927 /* 1928 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation. 1929 * 1930 * Basically, we've moved stuff around at the bottom of the tree and 1931 * we need to fix up the extent records above the changes to reflect 1932 * the new changes. 1933 * 1934 * left_rec: the record on the left. 1935 * left_child_el: is the child list pointed to by left_rec 1936 * right_rec: the record to the right of left_rec 1937 * right_child_el: is the child list pointed to by right_rec 1938 * 1939 * By definition, this only works on interior nodes. 1940 */ 1941 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec, 1942 struct ocfs2_extent_list *left_child_el, 1943 struct ocfs2_extent_rec *right_rec, 1944 struct ocfs2_extent_list *right_child_el) 1945 { 1946 u32 left_clusters, right_end; 1947 1948 /* 1949 * Interior nodes never have holes. Their cpos is the cpos of 1950 * the leftmost record in their child list. Their cluster 1951 * count covers the full theoretical range of their child list 1952 * - the range between their cpos and the cpos of the record 1953 * immediately to their right. 1954 */ 1955 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos); 1956 if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) { 1957 BUG_ON(right_child_el->l_tree_depth); 1958 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1); 1959 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos); 1960 } 1961 left_clusters -= le32_to_cpu(left_rec->e_cpos); 1962 left_rec->e_int_clusters = cpu_to_le32(left_clusters); 1963 1964 /* 1965 * Calculate the rightmost cluster count boundary before 1966 * moving cpos - we will need to adjust clusters after 1967 * updating e_cpos to keep the same highest cluster count. 1968 */ 1969 right_end = le32_to_cpu(right_rec->e_cpos); 1970 right_end += le32_to_cpu(right_rec->e_int_clusters); 1971 1972 right_rec->e_cpos = left_rec->e_cpos; 1973 le32_add_cpu(&right_rec->e_cpos, left_clusters); 1974 1975 right_end -= le32_to_cpu(right_rec->e_cpos); 1976 right_rec->e_int_clusters = cpu_to_le32(right_end); 1977 } 1978 1979 /* 1980 * Adjust the adjacent root node records involved in a 1981 * rotation. left_el_blkno is passed in as a key so that we can easily 1982 * find it's index in the root list. 1983 */ 1984 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el, 1985 struct ocfs2_extent_list *left_el, 1986 struct ocfs2_extent_list *right_el, 1987 u64 left_el_blkno) 1988 { 1989 int i; 1990 1991 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <= 1992 le16_to_cpu(left_el->l_tree_depth)); 1993 1994 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) { 1995 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno) 1996 break; 1997 } 1998 1999 /* 2000 * The path walking code should have never returned a root and 2001 * two paths which are not adjacent. 2002 */ 2003 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1)); 2004 2005 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el, 2006 &root_el->l_recs[i + 1], right_el); 2007 } 2008 2009 /* 2010 * We've changed a leaf block (in right_path) and need to reflect that 2011 * change back up the subtree. 2012 * 2013 * This happens in multiple places: 2014 * - When we've moved an extent record from the left path leaf to the right 2015 * path leaf to make room for an empty extent in the left path leaf. 2016 * - When our insert into the right path leaf is at the leftmost edge 2017 * and requires an update of the path immediately to it's left. This 2018 * can occur at the end of some types of rotation and appending inserts. 2019 * - When we've adjusted the last extent record in the left path leaf and the 2020 * 1st extent record in the right path leaf during cross extent block merge. 2021 */ 2022 static void ocfs2_complete_edge_insert(handle_t *handle, 2023 struct ocfs2_path *left_path, 2024 struct ocfs2_path *right_path, 2025 int subtree_index) 2026 { 2027 int i, idx; 2028 struct ocfs2_extent_list *el, *left_el, *right_el; 2029 struct ocfs2_extent_rec *left_rec, *right_rec; 2030 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2031 2032 /* 2033 * Update the counts and position values within all the 2034 * interior nodes to reflect the leaf rotation we just did. 2035 * 2036 * The root node is handled below the loop. 2037 * 2038 * We begin the loop with right_el and left_el pointing to the 2039 * leaf lists and work our way up. 2040 * 2041 * NOTE: within this loop, left_el and right_el always refer 2042 * to the *child* lists. 2043 */ 2044 left_el = path_leaf_el(left_path); 2045 right_el = path_leaf_el(right_path); 2046 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) { 2047 trace_ocfs2_complete_edge_insert(i); 2048 2049 /* 2050 * One nice property of knowing that all of these 2051 * nodes are below the root is that we only deal with 2052 * the leftmost right node record and the rightmost 2053 * left node record. 2054 */ 2055 el = left_path->p_node[i].el; 2056 idx = le16_to_cpu(left_el->l_next_free_rec) - 1; 2057 left_rec = &el->l_recs[idx]; 2058 2059 el = right_path->p_node[i].el; 2060 right_rec = &el->l_recs[0]; 2061 2062 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec, 2063 right_el); 2064 2065 ocfs2_journal_dirty(handle, left_path->p_node[i].bh); 2066 ocfs2_journal_dirty(handle, right_path->p_node[i].bh); 2067 2068 /* 2069 * Setup our list pointers now so that the current 2070 * parents become children in the next iteration. 2071 */ 2072 left_el = left_path->p_node[i].el; 2073 right_el = right_path->p_node[i].el; 2074 } 2075 2076 /* 2077 * At the root node, adjust the two adjacent records which 2078 * begin our path to the leaves. 2079 */ 2080 2081 el = left_path->p_node[subtree_index].el; 2082 left_el = left_path->p_node[subtree_index + 1].el; 2083 right_el = right_path->p_node[subtree_index + 1].el; 2084 2085 ocfs2_adjust_root_records(el, left_el, right_el, 2086 left_path->p_node[subtree_index + 1].bh->b_blocknr); 2087 2088 root_bh = left_path->p_node[subtree_index].bh; 2089 2090 ocfs2_journal_dirty(handle, root_bh); 2091 } 2092 2093 static int ocfs2_rotate_subtree_right(handle_t *handle, 2094 struct ocfs2_extent_tree *et, 2095 struct ocfs2_path *left_path, 2096 struct ocfs2_path *right_path, 2097 int subtree_index) 2098 { 2099 int ret, i; 2100 struct buffer_head *right_leaf_bh; 2101 struct buffer_head *left_leaf_bh = NULL; 2102 struct buffer_head *root_bh; 2103 struct ocfs2_extent_list *right_el, *left_el; 2104 struct ocfs2_extent_rec move_rec; 2105 2106 left_leaf_bh = path_leaf_bh(left_path); 2107 left_el = path_leaf_el(left_path); 2108 2109 if (left_el->l_next_free_rec != left_el->l_count) { 2110 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 2111 "Inode %llu has non-full interior leaf node %llu (next free = %u)\n", 2112 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2113 (unsigned long long)left_leaf_bh->b_blocknr, 2114 le16_to_cpu(left_el->l_next_free_rec)); 2115 return -EROFS; 2116 } 2117 2118 /* 2119 * This extent block may already have an empty record, so we 2120 * return early if so. 2121 */ 2122 if (ocfs2_is_empty_extent(&left_el->l_recs[0])) 2123 return 0; 2124 2125 root_bh = left_path->p_node[subtree_index].bh; 2126 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2127 2128 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 2129 subtree_index); 2130 if (ret) { 2131 mlog_errno(ret); 2132 goto out; 2133 } 2134 2135 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2136 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2137 right_path, i); 2138 if (ret) { 2139 mlog_errno(ret); 2140 goto out; 2141 } 2142 2143 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2144 left_path, i); 2145 if (ret) { 2146 mlog_errno(ret); 2147 goto out; 2148 } 2149 } 2150 2151 right_leaf_bh = path_leaf_bh(right_path); 2152 right_el = path_leaf_el(right_path); 2153 2154 /* This is a code error, not a disk corruption. */ 2155 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails " 2156 "because rightmost leaf block %llu is empty\n", 2157 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2158 (unsigned long long)right_leaf_bh->b_blocknr); 2159 2160 ocfs2_create_empty_extent(right_el); 2161 2162 ocfs2_journal_dirty(handle, right_leaf_bh); 2163 2164 /* Do the copy now. */ 2165 i = le16_to_cpu(left_el->l_next_free_rec) - 1; 2166 move_rec = left_el->l_recs[i]; 2167 right_el->l_recs[0] = move_rec; 2168 2169 /* 2170 * Clear out the record we just copied and shift everything 2171 * over, leaving an empty extent in the left leaf. 2172 * 2173 * We temporarily subtract from next_free_rec so that the 2174 * shift will lose the tail record (which is now defunct). 2175 */ 2176 le16_add_cpu(&left_el->l_next_free_rec, -1); 2177 ocfs2_shift_records_right(left_el); 2178 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2179 le16_add_cpu(&left_el->l_next_free_rec, 1); 2180 2181 ocfs2_journal_dirty(handle, left_leaf_bh); 2182 2183 ocfs2_complete_edge_insert(handle, left_path, right_path, 2184 subtree_index); 2185 2186 out: 2187 return ret; 2188 } 2189 2190 /* 2191 * Given a full path, determine what cpos value would return us a path 2192 * containing the leaf immediately to the left of the current one. 2193 * 2194 * Will return zero if the path passed in is already the leftmost path. 2195 */ 2196 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb, 2197 struct ocfs2_path *path, u32 *cpos) 2198 { 2199 int i, j, ret = 0; 2200 u64 blkno; 2201 struct ocfs2_extent_list *el; 2202 2203 BUG_ON(path->p_tree_depth == 0); 2204 2205 *cpos = 0; 2206 2207 blkno = path_leaf_bh(path)->b_blocknr; 2208 2209 /* Start at the tree node just above the leaf and work our way up. */ 2210 i = path->p_tree_depth - 1; 2211 while (i >= 0) { 2212 el = path->p_node[i].el; 2213 2214 /* 2215 * Find the extent record just before the one in our 2216 * path. 2217 */ 2218 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2219 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2220 if (j == 0) { 2221 if (i == 0) { 2222 /* 2223 * We've determined that the 2224 * path specified is already 2225 * the leftmost one - return a 2226 * cpos of zero. 2227 */ 2228 goto out; 2229 } 2230 /* 2231 * The leftmost record points to our 2232 * leaf - we need to travel up the 2233 * tree one level. 2234 */ 2235 goto next_node; 2236 } 2237 2238 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos); 2239 *cpos = *cpos + ocfs2_rec_clusters(el, 2240 &el->l_recs[j - 1]); 2241 *cpos = *cpos - 1; 2242 goto out; 2243 } 2244 } 2245 2246 /* 2247 * If we got here, we never found a valid node where 2248 * the tree indicated one should be. 2249 */ 2250 ocfs2_error(sb, "Invalid extent tree at extent block %llu\n", 2251 (unsigned long long)blkno); 2252 ret = -EROFS; 2253 goto out; 2254 2255 next_node: 2256 blkno = path->p_node[i].bh->b_blocknr; 2257 i--; 2258 } 2259 2260 out: 2261 return ret; 2262 } 2263 2264 /* 2265 * Extend the transaction by enough credits to complete the rotation, 2266 * and still leave at least the original number of credits allocated 2267 * to this transaction. 2268 */ 2269 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth, 2270 int op_credits, 2271 struct ocfs2_path *path) 2272 { 2273 int ret = 0; 2274 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits; 2275 2276 if (handle->h_buffer_credits < credits) 2277 ret = ocfs2_extend_trans(handle, 2278 credits - handle->h_buffer_credits); 2279 2280 return ret; 2281 } 2282 2283 /* 2284 * Trap the case where we're inserting into the theoretical range past 2285 * the _actual_ left leaf range. Otherwise, we'll rotate a record 2286 * whose cpos is less than ours into the right leaf. 2287 * 2288 * It's only necessary to look at the rightmost record of the left 2289 * leaf because the logic that calls us should ensure that the 2290 * theoretical ranges in the path components above the leaves are 2291 * correct. 2292 */ 2293 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path, 2294 u32 insert_cpos) 2295 { 2296 struct ocfs2_extent_list *left_el; 2297 struct ocfs2_extent_rec *rec; 2298 int next_free; 2299 2300 left_el = path_leaf_el(left_path); 2301 next_free = le16_to_cpu(left_el->l_next_free_rec); 2302 rec = &left_el->l_recs[next_free - 1]; 2303 2304 if (insert_cpos > le32_to_cpu(rec->e_cpos)) 2305 return 1; 2306 return 0; 2307 } 2308 2309 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos) 2310 { 2311 int next_free = le16_to_cpu(el->l_next_free_rec); 2312 unsigned int range; 2313 struct ocfs2_extent_rec *rec; 2314 2315 if (next_free == 0) 2316 return 0; 2317 2318 rec = &el->l_recs[0]; 2319 if (ocfs2_is_empty_extent(rec)) { 2320 /* Empty list. */ 2321 if (next_free == 1) 2322 return 0; 2323 rec = &el->l_recs[1]; 2324 } 2325 2326 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2327 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 2328 return 1; 2329 return 0; 2330 } 2331 2332 /* 2333 * Rotate all the records in a btree right one record, starting at insert_cpos. 2334 * 2335 * The path to the rightmost leaf should be passed in. 2336 * 2337 * The array is assumed to be large enough to hold an entire path (tree depth). 2338 * 2339 * Upon successful return from this function: 2340 * 2341 * - The 'right_path' array will contain a path to the leaf block 2342 * whose range contains e_cpos. 2343 * - That leaf block will have a single empty extent in list index 0. 2344 * - In the case that the rotation requires a post-insert update, 2345 * *ret_left_path will contain a valid path which can be passed to 2346 * ocfs2_insert_path(). 2347 */ 2348 static int ocfs2_rotate_tree_right(handle_t *handle, 2349 struct ocfs2_extent_tree *et, 2350 enum ocfs2_split_type split, 2351 u32 insert_cpos, 2352 struct ocfs2_path *right_path, 2353 struct ocfs2_path **ret_left_path) 2354 { 2355 int ret, start, orig_credits = handle->h_buffer_credits; 2356 u32 cpos; 2357 struct ocfs2_path *left_path = NULL; 2358 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 2359 2360 *ret_left_path = NULL; 2361 2362 left_path = ocfs2_new_path_from_path(right_path); 2363 if (!left_path) { 2364 ret = -ENOMEM; 2365 mlog_errno(ret); 2366 goto out; 2367 } 2368 2369 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); 2370 if (ret) { 2371 mlog_errno(ret); 2372 goto out; 2373 } 2374 2375 trace_ocfs2_rotate_tree_right( 2376 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2377 insert_cpos, cpos); 2378 2379 /* 2380 * What we want to do here is: 2381 * 2382 * 1) Start with the rightmost path. 2383 * 2384 * 2) Determine a path to the leaf block directly to the left 2385 * of that leaf. 2386 * 2387 * 3) Determine the 'subtree root' - the lowest level tree node 2388 * which contains a path to both leaves. 2389 * 2390 * 4) Rotate the subtree. 2391 * 2392 * 5) Find the next subtree by considering the left path to be 2393 * the new right path. 2394 * 2395 * The check at the top of this while loop also accepts 2396 * insert_cpos == cpos because cpos is only a _theoretical_ 2397 * value to get us the left path - insert_cpos might very well 2398 * be filling that hole. 2399 * 2400 * Stop at a cpos of '0' because we either started at the 2401 * leftmost branch (i.e., a tree with one branch and a 2402 * rotation inside of it), or we've gone as far as we can in 2403 * rotating subtrees. 2404 */ 2405 while (cpos && insert_cpos <= cpos) { 2406 trace_ocfs2_rotate_tree_right( 2407 (unsigned long long) 2408 ocfs2_metadata_cache_owner(et->et_ci), 2409 insert_cpos, cpos); 2410 2411 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 2412 if (ret) { 2413 mlog_errno(ret); 2414 goto out; 2415 } 2416 2417 mlog_bug_on_msg(path_leaf_bh(left_path) == 2418 path_leaf_bh(right_path), 2419 "Owner %llu: error during insert of %u " 2420 "(left path cpos %u) results in two identical " 2421 "paths ending at %llu\n", 2422 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2423 insert_cpos, cpos, 2424 (unsigned long long) 2425 path_leaf_bh(left_path)->b_blocknr); 2426 2427 if (split == SPLIT_NONE && 2428 ocfs2_rotate_requires_path_adjustment(left_path, 2429 insert_cpos)) { 2430 2431 /* 2432 * We've rotated the tree as much as we 2433 * should. The rest is up to 2434 * ocfs2_insert_path() to complete, after the 2435 * record insertion. We indicate this 2436 * situation by returning the left path. 2437 * 2438 * The reason we don't adjust the records here 2439 * before the record insert is that an error 2440 * later might break the rule where a parent 2441 * record e_cpos will reflect the actual 2442 * e_cpos of the 1st nonempty record of the 2443 * child list. 2444 */ 2445 *ret_left_path = left_path; 2446 goto out_ret_path; 2447 } 2448 2449 start = ocfs2_find_subtree_root(et, left_path, right_path); 2450 2451 trace_ocfs2_rotate_subtree(start, 2452 (unsigned long long) 2453 right_path->p_node[start].bh->b_blocknr, 2454 right_path->p_tree_depth); 2455 2456 ret = ocfs2_extend_rotate_transaction(handle, start, 2457 orig_credits, right_path); 2458 if (ret) { 2459 mlog_errno(ret); 2460 goto out; 2461 } 2462 2463 ret = ocfs2_rotate_subtree_right(handle, et, left_path, 2464 right_path, start); 2465 if (ret) { 2466 mlog_errno(ret); 2467 goto out; 2468 } 2469 2470 if (split != SPLIT_NONE && 2471 ocfs2_leftmost_rec_contains(path_leaf_el(right_path), 2472 insert_cpos)) { 2473 /* 2474 * A rotate moves the rightmost left leaf 2475 * record over to the leftmost right leaf 2476 * slot. If we're doing an extent split 2477 * instead of a real insert, then we have to 2478 * check that the extent to be split wasn't 2479 * just moved over. If it was, then we can 2480 * exit here, passing left_path back - 2481 * ocfs2_split_extent() is smart enough to 2482 * search both leaves. 2483 */ 2484 *ret_left_path = left_path; 2485 goto out_ret_path; 2486 } 2487 2488 /* 2489 * There is no need to re-read the next right path 2490 * as we know that it'll be our current left 2491 * path. Optimize by copying values instead. 2492 */ 2493 ocfs2_mv_path(right_path, left_path); 2494 2495 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); 2496 if (ret) { 2497 mlog_errno(ret); 2498 goto out; 2499 } 2500 } 2501 2502 out: 2503 ocfs2_free_path(left_path); 2504 2505 out_ret_path: 2506 return ret; 2507 } 2508 2509 static int ocfs2_update_edge_lengths(handle_t *handle, 2510 struct ocfs2_extent_tree *et, 2511 int subtree_index, struct ocfs2_path *path) 2512 { 2513 int i, idx, ret; 2514 struct ocfs2_extent_rec *rec; 2515 struct ocfs2_extent_list *el; 2516 struct ocfs2_extent_block *eb; 2517 u32 range; 2518 2519 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 2520 if (ret) { 2521 mlog_errno(ret); 2522 goto out; 2523 } 2524 2525 /* Path should always be rightmost. */ 2526 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 2527 BUG_ON(eb->h_next_leaf_blk != 0ULL); 2528 2529 el = &eb->h_list; 2530 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 2531 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2532 rec = &el->l_recs[idx]; 2533 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2534 2535 for (i = 0; i < path->p_tree_depth; i++) { 2536 el = path->p_node[i].el; 2537 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2538 rec = &el->l_recs[idx]; 2539 2540 rec->e_int_clusters = cpu_to_le32(range); 2541 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos)); 2542 2543 ocfs2_journal_dirty(handle, path->p_node[i].bh); 2544 } 2545 out: 2546 return ret; 2547 } 2548 2549 static void ocfs2_unlink_path(handle_t *handle, 2550 struct ocfs2_extent_tree *et, 2551 struct ocfs2_cached_dealloc_ctxt *dealloc, 2552 struct ocfs2_path *path, int unlink_start) 2553 { 2554 int ret, i; 2555 struct ocfs2_extent_block *eb; 2556 struct ocfs2_extent_list *el; 2557 struct buffer_head *bh; 2558 2559 for(i = unlink_start; i < path_num_items(path); i++) { 2560 bh = path->p_node[i].bh; 2561 2562 eb = (struct ocfs2_extent_block *)bh->b_data; 2563 /* 2564 * Not all nodes might have had their final count 2565 * decremented by the caller - handle this here. 2566 */ 2567 el = &eb->h_list; 2568 if (le16_to_cpu(el->l_next_free_rec) > 1) { 2569 mlog(ML_ERROR, 2570 "Inode %llu, attempted to remove extent block " 2571 "%llu with %u records\n", 2572 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2573 (unsigned long long)le64_to_cpu(eb->h_blkno), 2574 le16_to_cpu(el->l_next_free_rec)); 2575 2576 ocfs2_journal_dirty(handle, bh); 2577 ocfs2_remove_from_cache(et->et_ci, bh); 2578 continue; 2579 } 2580 2581 el->l_next_free_rec = 0; 2582 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2583 2584 ocfs2_journal_dirty(handle, bh); 2585 2586 ret = ocfs2_cache_extent_block_free(dealloc, eb); 2587 if (ret) 2588 mlog_errno(ret); 2589 2590 ocfs2_remove_from_cache(et->et_ci, bh); 2591 } 2592 } 2593 2594 static void ocfs2_unlink_subtree(handle_t *handle, 2595 struct ocfs2_extent_tree *et, 2596 struct ocfs2_path *left_path, 2597 struct ocfs2_path *right_path, 2598 int subtree_index, 2599 struct ocfs2_cached_dealloc_ctxt *dealloc) 2600 { 2601 int i; 2602 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2603 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el; 2604 struct ocfs2_extent_list *el; 2605 struct ocfs2_extent_block *eb; 2606 2607 el = path_leaf_el(left_path); 2608 2609 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data; 2610 2611 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 2612 if (root_el->l_recs[i].e_blkno == eb->h_blkno) 2613 break; 2614 2615 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec)); 2616 2617 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 2618 le16_add_cpu(&root_el->l_next_free_rec, -1); 2619 2620 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2621 eb->h_next_leaf_blk = 0; 2622 2623 ocfs2_journal_dirty(handle, root_bh); 2624 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2625 2626 ocfs2_unlink_path(handle, et, dealloc, right_path, 2627 subtree_index + 1); 2628 } 2629 2630 static int ocfs2_rotate_subtree_left(handle_t *handle, 2631 struct ocfs2_extent_tree *et, 2632 struct ocfs2_path *left_path, 2633 struct ocfs2_path *right_path, 2634 int subtree_index, 2635 struct ocfs2_cached_dealloc_ctxt *dealloc, 2636 int *deleted) 2637 { 2638 int ret, i, del_right_subtree = 0, right_has_empty = 0; 2639 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path); 2640 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el; 2641 struct ocfs2_extent_block *eb; 2642 2643 *deleted = 0; 2644 2645 right_leaf_el = path_leaf_el(right_path); 2646 left_leaf_el = path_leaf_el(left_path); 2647 root_bh = left_path->p_node[subtree_index].bh; 2648 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2649 2650 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0])) 2651 return 0; 2652 2653 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data; 2654 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) { 2655 /* 2656 * It's legal for us to proceed if the right leaf is 2657 * the rightmost one and it has an empty extent. There 2658 * are two cases to handle - whether the leaf will be 2659 * empty after removal or not. If the leaf isn't empty 2660 * then just remove the empty extent up front. The 2661 * next block will handle empty leaves by flagging 2662 * them for unlink. 2663 * 2664 * Non rightmost leaves will throw -EAGAIN and the 2665 * caller can manually move the subtree and retry. 2666 */ 2667 2668 if (eb->h_next_leaf_blk != 0ULL) 2669 return -EAGAIN; 2670 2671 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) { 2672 ret = ocfs2_journal_access_eb(handle, et->et_ci, 2673 path_leaf_bh(right_path), 2674 OCFS2_JOURNAL_ACCESS_WRITE); 2675 if (ret) { 2676 mlog_errno(ret); 2677 goto out; 2678 } 2679 2680 ocfs2_remove_empty_extent(right_leaf_el); 2681 } else 2682 right_has_empty = 1; 2683 } 2684 2685 if (eb->h_next_leaf_blk == 0ULL && 2686 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) { 2687 /* 2688 * We have to update i_last_eb_blk during the meta 2689 * data delete. 2690 */ 2691 ret = ocfs2_et_root_journal_access(handle, et, 2692 OCFS2_JOURNAL_ACCESS_WRITE); 2693 if (ret) { 2694 mlog_errno(ret); 2695 goto out; 2696 } 2697 2698 del_right_subtree = 1; 2699 } 2700 2701 /* 2702 * Getting here with an empty extent in the right path implies 2703 * that it's the rightmost path and will be deleted. 2704 */ 2705 BUG_ON(right_has_empty && !del_right_subtree); 2706 2707 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 2708 subtree_index); 2709 if (ret) { 2710 mlog_errno(ret); 2711 goto out; 2712 } 2713 2714 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2715 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2716 right_path, i); 2717 if (ret) { 2718 mlog_errno(ret); 2719 goto out; 2720 } 2721 2722 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2723 left_path, i); 2724 if (ret) { 2725 mlog_errno(ret); 2726 goto out; 2727 } 2728 } 2729 2730 if (!right_has_empty) { 2731 /* 2732 * Only do this if we're moving a real 2733 * record. Otherwise, the action is delayed until 2734 * after removal of the right path in which case we 2735 * can do a simple shift to remove the empty extent. 2736 */ 2737 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]); 2738 memset(&right_leaf_el->l_recs[0], 0, 2739 sizeof(struct ocfs2_extent_rec)); 2740 } 2741 if (eb->h_next_leaf_blk == 0ULL) { 2742 /* 2743 * Move recs over to get rid of empty extent, decrease 2744 * next_free. This is allowed to remove the last 2745 * extent in our leaf (setting l_next_free_rec to 2746 * zero) - the delete code below won't care. 2747 */ 2748 ocfs2_remove_empty_extent(right_leaf_el); 2749 } 2750 2751 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2752 ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 2753 2754 if (del_right_subtree) { 2755 ocfs2_unlink_subtree(handle, et, left_path, right_path, 2756 subtree_index, dealloc); 2757 ret = ocfs2_update_edge_lengths(handle, et, subtree_index, 2758 left_path); 2759 if (ret) { 2760 mlog_errno(ret); 2761 goto out; 2762 } 2763 2764 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2765 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 2766 2767 /* 2768 * Removal of the extent in the left leaf was skipped 2769 * above so we could delete the right path 2770 * 1st. 2771 */ 2772 if (right_has_empty) 2773 ocfs2_remove_empty_extent(left_leaf_el); 2774 2775 ocfs2_journal_dirty(handle, et_root_bh); 2776 2777 *deleted = 1; 2778 } else 2779 ocfs2_complete_edge_insert(handle, left_path, right_path, 2780 subtree_index); 2781 2782 out: 2783 return ret; 2784 } 2785 2786 /* 2787 * Given a full path, determine what cpos value would return us a path 2788 * containing the leaf immediately to the right of the current one. 2789 * 2790 * Will return zero if the path passed in is already the rightmost path. 2791 * 2792 * This looks similar, but is subtly different to 2793 * ocfs2_find_cpos_for_left_leaf(). 2794 */ 2795 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb, 2796 struct ocfs2_path *path, u32 *cpos) 2797 { 2798 int i, j, ret = 0; 2799 u64 blkno; 2800 struct ocfs2_extent_list *el; 2801 2802 *cpos = 0; 2803 2804 if (path->p_tree_depth == 0) 2805 return 0; 2806 2807 blkno = path_leaf_bh(path)->b_blocknr; 2808 2809 /* Start at the tree node just above the leaf and work our way up. */ 2810 i = path->p_tree_depth - 1; 2811 while (i >= 0) { 2812 int next_free; 2813 2814 el = path->p_node[i].el; 2815 2816 /* 2817 * Find the extent record just after the one in our 2818 * path. 2819 */ 2820 next_free = le16_to_cpu(el->l_next_free_rec); 2821 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2822 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2823 if (j == (next_free - 1)) { 2824 if (i == 0) { 2825 /* 2826 * We've determined that the 2827 * path specified is already 2828 * the rightmost one - return a 2829 * cpos of zero. 2830 */ 2831 goto out; 2832 } 2833 /* 2834 * The rightmost record points to our 2835 * leaf - we need to travel up the 2836 * tree one level. 2837 */ 2838 goto next_node; 2839 } 2840 2841 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos); 2842 goto out; 2843 } 2844 } 2845 2846 /* 2847 * If we got here, we never found a valid node where 2848 * the tree indicated one should be. 2849 */ 2850 ocfs2_error(sb, "Invalid extent tree at extent block %llu\n", 2851 (unsigned long long)blkno); 2852 ret = -EROFS; 2853 goto out; 2854 2855 next_node: 2856 blkno = path->p_node[i].bh->b_blocknr; 2857 i--; 2858 } 2859 2860 out: 2861 return ret; 2862 } 2863 2864 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle, 2865 struct ocfs2_extent_tree *et, 2866 struct ocfs2_path *path) 2867 { 2868 int ret; 2869 struct buffer_head *bh = path_leaf_bh(path); 2870 struct ocfs2_extent_list *el = path_leaf_el(path); 2871 2872 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 2873 return 0; 2874 2875 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path, 2876 path_num_items(path) - 1); 2877 if (ret) { 2878 mlog_errno(ret); 2879 goto out; 2880 } 2881 2882 ocfs2_remove_empty_extent(el); 2883 ocfs2_journal_dirty(handle, bh); 2884 2885 out: 2886 return ret; 2887 } 2888 2889 static int __ocfs2_rotate_tree_left(handle_t *handle, 2890 struct ocfs2_extent_tree *et, 2891 int orig_credits, 2892 struct ocfs2_path *path, 2893 struct ocfs2_cached_dealloc_ctxt *dealloc, 2894 struct ocfs2_path **empty_extent_path) 2895 { 2896 int ret, subtree_root, deleted; 2897 u32 right_cpos; 2898 struct ocfs2_path *left_path = NULL; 2899 struct ocfs2_path *right_path = NULL; 2900 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 2901 2902 if (!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0]))) 2903 return 0; 2904 2905 *empty_extent_path = NULL; 2906 2907 ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos); 2908 if (ret) { 2909 mlog_errno(ret); 2910 goto out; 2911 } 2912 2913 left_path = ocfs2_new_path_from_path(path); 2914 if (!left_path) { 2915 ret = -ENOMEM; 2916 mlog_errno(ret); 2917 goto out; 2918 } 2919 2920 ocfs2_cp_path(left_path, path); 2921 2922 right_path = ocfs2_new_path_from_path(path); 2923 if (!right_path) { 2924 ret = -ENOMEM; 2925 mlog_errno(ret); 2926 goto out; 2927 } 2928 2929 while (right_cpos) { 2930 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); 2931 if (ret) { 2932 mlog_errno(ret); 2933 goto out; 2934 } 2935 2936 subtree_root = ocfs2_find_subtree_root(et, left_path, 2937 right_path); 2938 2939 trace_ocfs2_rotate_subtree(subtree_root, 2940 (unsigned long long) 2941 right_path->p_node[subtree_root].bh->b_blocknr, 2942 right_path->p_tree_depth); 2943 2944 ret = ocfs2_extend_rotate_transaction(handle, 0, 2945 orig_credits, left_path); 2946 if (ret) { 2947 mlog_errno(ret); 2948 goto out; 2949 } 2950 2951 /* 2952 * Caller might still want to make changes to the 2953 * tree root, so re-add it to the journal here. 2954 */ 2955 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2956 left_path, 0); 2957 if (ret) { 2958 mlog_errno(ret); 2959 goto out; 2960 } 2961 2962 ret = ocfs2_rotate_subtree_left(handle, et, left_path, 2963 right_path, subtree_root, 2964 dealloc, &deleted); 2965 if (ret == -EAGAIN) { 2966 /* 2967 * The rotation has to temporarily stop due to 2968 * the right subtree having an empty 2969 * extent. Pass it back to the caller for a 2970 * fixup. 2971 */ 2972 *empty_extent_path = right_path; 2973 right_path = NULL; 2974 goto out; 2975 } 2976 if (ret) { 2977 mlog_errno(ret); 2978 goto out; 2979 } 2980 2981 /* 2982 * The subtree rotate might have removed records on 2983 * the rightmost edge. If so, then rotation is 2984 * complete. 2985 */ 2986 if (deleted) 2987 break; 2988 2989 ocfs2_mv_path(left_path, right_path); 2990 2991 ret = ocfs2_find_cpos_for_right_leaf(sb, left_path, 2992 &right_cpos); 2993 if (ret) { 2994 mlog_errno(ret); 2995 goto out; 2996 } 2997 } 2998 2999 out: 3000 ocfs2_free_path(right_path); 3001 ocfs2_free_path(left_path); 3002 3003 return ret; 3004 } 3005 3006 static int ocfs2_remove_rightmost_path(handle_t *handle, 3007 struct ocfs2_extent_tree *et, 3008 struct ocfs2_path *path, 3009 struct ocfs2_cached_dealloc_ctxt *dealloc) 3010 { 3011 int ret, subtree_index; 3012 u32 cpos; 3013 struct ocfs2_path *left_path = NULL; 3014 struct ocfs2_extent_block *eb; 3015 struct ocfs2_extent_list *el; 3016 3017 ret = ocfs2_et_sanity_check(et); 3018 if (ret) 3019 goto out; 3020 3021 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 3022 if (ret) { 3023 mlog_errno(ret); 3024 goto out; 3025 } 3026 3027 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3028 path, &cpos); 3029 if (ret) { 3030 mlog_errno(ret); 3031 goto out; 3032 } 3033 3034 if (cpos) { 3035 /* 3036 * We have a path to the left of this one - it needs 3037 * an update too. 3038 */ 3039 left_path = ocfs2_new_path_from_path(path); 3040 if (!left_path) { 3041 ret = -ENOMEM; 3042 mlog_errno(ret); 3043 goto out; 3044 } 3045 3046 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 3047 if (ret) { 3048 mlog_errno(ret); 3049 goto out; 3050 } 3051 3052 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 3053 if (ret) { 3054 mlog_errno(ret); 3055 goto out; 3056 } 3057 3058 subtree_index = ocfs2_find_subtree_root(et, left_path, path); 3059 3060 ocfs2_unlink_subtree(handle, et, left_path, path, 3061 subtree_index, dealloc); 3062 ret = ocfs2_update_edge_lengths(handle, et, subtree_index, 3063 left_path); 3064 if (ret) { 3065 mlog_errno(ret); 3066 goto out; 3067 } 3068 3069 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 3070 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 3071 } else { 3072 /* 3073 * 'path' is also the leftmost path which 3074 * means it must be the only one. This gets 3075 * handled differently because we want to 3076 * revert the root back to having extents 3077 * in-line. 3078 */ 3079 ocfs2_unlink_path(handle, et, dealloc, path, 1); 3080 3081 el = et->et_root_el; 3082 el->l_tree_depth = 0; 3083 el->l_next_free_rec = 0; 3084 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3085 3086 ocfs2_et_set_last_eb_blk(et, 0); 3087 } 3088 3089 ocfs2_journal_dirty(handle, path_root_bh(path)); 3090 3091 out: 3092 ocfs2_free_path(left_path); 3093 return ret; 3094 } 3095 3096 static int ocfs2_remove_rightmost_empty_extent(struct ocfs2_super *osb, 3097 struct ocfs2_extent_tree *et, 3098 struct ocfs2_path *path, 3099 struct ocfs2_cached_dealloc_ctxt *dealloc) 3100 { 3101 handle_t *handle; 3102 int ret; 3103 int credits = path->p_tree_depth * 2 + 1; 3104 3105 handle = ocfs2_start_trans(osb, credits); 3106 if (IS_ERR(handle)) { 3107 ret = PTR_ERR(handle); 3108 mlog_errno(ret); 3109 return ret; 3110 } 3111 3112 ret = ocfs2_remove_rightmost_path(handle, et, path, dealloc); 3113 if (ret) 3114 mlog_errno(ret); 3115 3116 ocfs2_commit_trans(osb, handle); 3117 return ret; 3118 } 3119 3120 /* 3121 * Left rotation of btree records. 3122 * 3123 * In many ways, this is (unsurprisingly) the opposite of right 3124 * rotation. We start at some non-rightmost path containing an empty 3125 * extent in the leaf block. The code works its way to the rightmost 3126 * path by rotating records to the left in every subtree. 3127 * 3128 * This is used by any code which reduces the number of extent records 3129 * in a leaf. After removal, an empty record should be placed in the 3130 * leftmost list position. 3131 * 3132 * This won't handle a length update of the rightmost path records if 3133 * the rightmost tree leaf record is removed so the caller is 3134 * responsible for detecting and correcting that. 3135 */ 3136 static int ocfs2_rotate_tree_left(handle_t *handle, 3137 struct ocfs2_extent_tree *et, 3138 struct ocfs2_path *path, 3139 struct ocfs2_cached_dealloc_ctxt *dealloc) 3140 { 3141 int ret, orig_credits = handle->h_buffer_credits; 3142 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL; 3143 struct ocfs2_extent_block *eb; 3144 struct ocfs2_extent_list *el; 3145 3146 el = path_leaf_el(path); 3147 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 3148 return 0; 3149 3150 if (path->p_tree_depth == 0) { 3151 rightmost_no_delete: 3152 /* 3153 * Inline extents. This is trivially handled, so do 3154 * it up front. 3155 */ 3156 ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path); 3157 if (ret) 3158 mlog_errno(ret); 3159 goto out; 3160 } 3161 3162 /* 3163 * Handle rightmost branch now. There's several cases: 3164 * 1) simple rotation leaving records in there. That's trivial. 3165 * 2) rotation requiring a branch delete - there's no more 3166 * records left. Two cases of this: 3167 * a) There are branches to the left. 3168 * b) This is also the leftmost (the only) branch. 3169 * 3170 * 1) is handled via ocfs2_rotate_rightmost_leaf_left() 3171 * 2a) we need the left branch so that we can update it with the unlink 3172 * 2b) we need to bring the root back to inline extents. 3173 */ 3174 3175 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 3176 el = &eb->h_list; 3177 if (eb->h_next_leaf_blk == 0) { 3178 /* 3179 * This gets a bit tricky if we're going to delete the 3180 * rightmost path. Get the other cases out of the way 3181 * 1st. 3182 */ 3183 if (le16_to_cpu(el->l_next_free_rec) > 1) 3184 goto rightmost_no_delete; 3185 3186 if (le16_to_cpu(el->l_next_free_rec) == 0) { 3187 ret = -EIO; 3188 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 3189 "Owner %llu has empty extent block at %llu\n", 3190 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 3191 (unsigned long long)le64_to_cpu(eb->h_blkno)); 3192 goto out; 3193 } 3194 3195 /* 3196 * XXX: The caller can not trust "path" any more after 3197 * this as it will have been deleted. What do we do? 3198 * 3199 * In theory the rotate-for-merge code will never get 3200 * here because it'll always ask for a rotate in a 3201 * nonempty list. 3202 */ 3203 3204 ret = ocfs2_remove_rightmost_path(handle, et, path, 3205 dealloc); 3206 if (ret) 3207 mlog_errno(ret); 3208 goto out; 3209 } 3210 3211 /* 3212 * Now we can loop, remembering the path we get from -EAGAIN 3213 * and restarting from there. 3214 */ 3215 try_rotate: 3216 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path, 3217 dealloc, &restart_path); 3218 if (ret && ret != -EAGAIN) { 3219 mlog_errno(ret); 3220 goto out; 3221 } 3222 3223 while (ret == -EAGAIN) { 3224 tmp_path = restart_path; 3225 restart_path = NULL; 3226 3227 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, 3228 tmp_path, dealloc, 3229 &restart_path); 3230 if (ret && ret != -EAGAIN) { 3231 mlog_errno(ret); 3232 goto out; 3233 } 3234 3235 ocfs2_free_path(tmp_path); 3236 tmp_path = NULL; 3237 3238 if (ret == 0) 3239 goto try_rotate; 3240 } 3241 3242 out: 3243 ocfs2_free_path(tmp_path); 3244 ocfs2_free_path(restart_path); 3245 return ret; 3246 } 3247 3248 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el, 3249 int index) 3250 { 3251 struct ocfs2_extent_rec *rec = &el->l_recs[index]; 3252 unsigned int size; 3253 3254 if (rec->e_leaf_clusters == 0) { 3255 /* 3256 * We consumed all of the merged-from record. An empty 3257 * extent cannot exist anywhere but the 1st array 3258 * position, so move things over if the merged-from 3259 * record doesn't occupy that position. 3260 * 3261 * This creates a new empty extent so the caller 3262 * should be smart enough to have removed any existing 3263 * ones. 3264 */ 3265 if (index > 0) { 3266 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 3267 size = index * sizeof(struct ocfs2_extent_rec); 3268 memmove(&el->l_recs[1], &el->l_recs[0], size); 3269 } 3270 3271 /* 3272 * Always memset - the caller doesn't check whether it 3273 * created an empty extent, so there could be junk in 3274 * the other fields. 3275 */ 3276 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3277 } 3278 } 3279 3280 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et, 3281 struct ocfs2_path *left_path, 3282 struct ocfs2_path **ret_right_path) 3283 { 3284 int ret; 3285 u32 right_cpos; 3286 struct ocfs2_path *right_path = NULL; 3287 struct ocfs2_extent_list *left_el; 3288 3289 *ret_right_path = NULL; 3290 3291 /* This function shouldn't be called for non-trees. */ 3292 BUG_ON(left_path->p_tree_depth == 0); 3293 3294 left_el = path_leaf_el(left_path); 3295 BUG_ON(left_el->l_next_free_rec != left_el->l_count); 3296 3297 ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3298 left_path, &right_cpos); 3299 if (ret) { 3300 mlog_errno(ret); 3301 goto out; 3302 } 3303 3304 /* This function shouldn't be called for the rightmost leaf. */ 3305 BUG_ON(right_cpos == 0); 3306 3307 right_path = ocfs2_new_path_from_path(left_path); 3308 if (!right_path) { 3309 ret = -ENOMEM; 3310 mlog_errno(ret); 3311 goto out; 3312 } 3313 3314 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); 3315 if (ret) { 3316 mlog_errno(ret); 3317 goto out; 3318 } 3319 3320 *ret_right_path = right_path; 3321 out: 3322 if (ret) 3323 ocfs2_free_path(right_path); 3324 return ret; 3325 } 3326 3327 /* 3328 * Remove split_rec clusters from the record at index and merge them 3329 * onto the beginning of the record "next" to it. 3330 * For index < l_count - 1, the next means the extent rec at index + 1. 3331 * For index == l_count - 1, the "next" means the 1st extent rec of the 3332 * next extent block. 3333 */ 3334 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path, 3335 handle_t *handle, 3336 struct ocfs2_extent_tree *et, 3337 struct ocfs2_extent_rec *split_rec, 3338 int index) 3339 { 3340 int ret, next_free, i; 3341 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3342 struct ocfs2_extent_rec *left_rec; 3343 struct ocfs2_extent_rec *right_rec; 3344 struct ocfs2_extent_list *right_el; 3345 struct ocfs2_path *right_path = NULL; 3346 int subtree_index = 0; 3347 struct ocfs2_extent_list *el = path_leaf_el(left_path); 3348 struct buffer_head *bh = path_leaf_bh(left_path); 3349 struct buffer_head *root_bh = NULL; 3350 3351 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec)); 3352 left_rec = &el->l_recs[index]; 3353 3354 if (index == le16_to_cpu(el->l_next_free_rec) - 1 && 3355 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) { 3356 /* we meet with a cross extent block merge. */ 3357 ret = ocfs2_get_right_path(et, left_path, &right_path); 3358 if (ret) { 3359 mlog_errno(ret); 3360 return ret; 3361 } 3362 3363 right_el = path_leaf_el(right_path); 3364 next_free = le16_to_cpu(right_el->l_next_free_rec); 3365 BUG_ON(next_free <= 0); 3366 right_rec = &right_el->l_recs[0]; 3367 if (ocfs2_is_empty_extent(right_rec)) { 3368 BUG_ON(next_free <= 1); 3369 right_rec = &right_el->l_recs[1]; 3370 } 3371 3372 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3373 le16_to_cpu(left_rec->e_leaf_clusters) != 3374 le32_to_cpu(right_rec->e_cpos)); 3375 3376 subtree_index = ocfs2_find_subtree_root(et, left_path, 3377 right_path); 3378 3379 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3380 handle->h_buffer_credits, 3381 right_path); 3382 if (ret) { 3383 mlog_errno(ret); 3384 goto out; 3385 } 3386 3387 root_bh = left_path->p_node[subtree_index].bh; 3388 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3389 3390 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3391 subtree_index); 3392 if (ret) { 3393 mlog_errno(ret); 3394 goto out; 3395 } 3396 3397 for (i = subtree_index + 1; 3398 i < path_num_items(right_path); i++) { 3399 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3400 right_path, i); 3401 if (ret) { 3402 mlog_errno(ret); 3403 goto out; 3404 } 3405 3406 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3407 left_path, i); 3408 if (ret) { 3409 mlog_errno(ret); 3410 goto out; 3411 } 3412 } 3413 3414 } else { 3415 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1); 3416 right_rec = &el->l_recs[index + 1]; 3417 } 3418 3419 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path, 3420 path_num_items(left_path) - 1); 3421 if (ret) { 3422 mlog_errno(ret); 3423 goto out; 3424 } 3425 3426 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters); 3427 3428 le32_add_cpu(&right_rec->e_cpos, -split_clusters); 3429 le64_add_cpu(&right_rec->e_blkno, 3430 -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), 3431 split_clusters)); 3432 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters); 3433 3434 ocfs2_cleanup_merge(el, index); 3435 3436 ocfs2_journal_dirty(handle, bh); 3437 if (right_path) { 3438 ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 3439 ocfs2_complete_edge_insert(handle, left_path, right_path, 3440 subtree_index); 3441 } 3442 out: 3443 ocfs2_free_path(right_path); 3444 return ret; 3445 } 3446 3447 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et, 3448 struct ocfs2_path *right_path, 3449 struct ocfs2_path **ret_left_path) 3450 { 3451 int ret; 3452 u32 left_cpos; 3453 struct ocfs2_path *left_path = NULL; 3454 3455 *ret_left_path = NULL; 3456 3457 /* This function shouldn't be called for non-trees. */ 3458 BUG_ON(right_path->p_tree_depth == 0); 3459 3460 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3461 right_path, &left_cpos); 3462 if (ret) { 3463 mlog_errno(ret); 3464 goto out; 3465 } 3466 3467 /* This function shouldn't be called for the leftmost leaf. */ 3468 BUG_ON(left_cpos == 0); 3469 3470 left_path = ocfs2_new_path_from_path(right_path); 3471 if (!left_path) { 3472 ret = -ENOMEM; 3473 mlog_errno(ret); 3474 goto out; 3475 } 3476 3477 ret = ocfs2_find_path(et->et_ci, left_path, left_cpos); 3478 if (ret) { 3479 mlog_errno(ret); 3480 goto out; 3481 } 3482 3483 *ret_left_path = left_path; 3484 out: 3485 if (ret) 3486 ocfs2_free_path(left_path); 3487 return ret; 3488 } 3489 3490 /* 3491 * Remove split_rec clusters from the record at index and merge them 3492 * onto the tail of the record "before" it. 3493 * For index > 0, the "before" means the extent rec at index - 1. 3494 * 3495 * For index == 0, the "before" means the last record of the previous 3496 * extent block. And there is also a situation that we may need to 3497 * remove the rightmost leaf extent block in the right_path and change 3498 * the right path to indicate the new rightmost path. 3499 */ 3500 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path, 3501 handle_t *handle, 3502 struct ocfs2_extent_tree *et, 3503 struct ocfs2_extent_rec *split_rec, 3504 struct ocfs2_cached_dealloc_ctxt *dealloc, 3505 int index) 3506 { 3507 int ret, i, subtree_index = 0, has_empty_extent = 0; 3508 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3509 struct ocfs2_extent_rec *left_rec; 3510 struct ocfs2_extent_rec *right_rec; 3511 struct ocfs2_extent_list *el = path_leaf_el(right_path); 3512 struct buffer_head *bh = path_leaf_bh(right_path); 3513 struct buffer_head *root_bh = NULL; 3514 struct ocfs2_path *left_path = NULL; 3515 struct ocfs2_extent_list *left_el; 3516 3517 BUG_ON(index < 0); 3518 3519 right_rec = &el->l_recs[index]; 3520 if (index == 0) { 3521 /* we meet with a cross extent block merge. */ 3522 ret = ocfs2_get_left_path(et, right_path, &left_path); 3523 if (ret) { 3524 mlog_errno(ret); 3525 return ret; 3526 } 3527 3528 left_el = path_leaf_el(left_path); 3529 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) != 3530 le16_to_cpu(left_el->l_count)); 3531 3532 left_rec = &left_el->l_recs[ 3533 le16_to_cpu(left_el->l_next_free_rec) - 1]; 3534 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3535 le16_to_cpu(left_rec->e_leaf_clusters) != 3536 le32_to_cpu(split_rec->e_cpos)); 3537 3538 subtree_index = ocfs2_find_subtree_root(et, left_path, 3539 right_path); 3540 3541 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3542 handle->h_buffer_credits, 3543 left_path); 3544 if (ret) { 3545 mlog_errno(ret); 3546 goto out; 3547 } 3548 3549 root_bh = left_path->p_node[subtree_index].bh; 3550 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3551 3552 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3553 subtree_index); 3554 if (ret) { 3555 mlog_errno(ret); 3556 goto out; 3557 } 3558 3559 for (i = subtree_index + 1; 3560 i < path_num_items(right_path); i++) { 3561 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3562 right_path, i); 3563 if (ret) { 3564 mlog_errno(ret); 3565 goto out; 3566 } 3567 3568 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3569 left_path, i); 3570 if (ret) { 3571 mlog_errno(ret); 3572 goto out; 3573 } 3574 } 3575 } else { 3576 left_rec = &el->l_recs[index - 1]; 3577 if (ocfs2_is_empty_extent(&el->l_recs[0])) 3578 has_empty_extent = 1; 3579 } 3580 3581 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3582 path_num_items(right_path) - 1); 3583 if (ret) { 3584 mlog_errno(ret); 3585 goto out; 3586 } 3587 3588 if (has_empty_extent && index == 1) { 3589 /* 3590 * The easy case - we can just plop the record right in. 3591 */ 3592 *left_rec = *split_rec; 3593 3594 has_empty_extent = 0; 3595 } else 3596 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters); 3597 3598 le32_add_cpu(&right_rec->e_cpos, split_clusters); 3599 le64_add_cpu(&right_rec->e_blkno, 3600 ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), 3601 split_clusters)); 3602 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters); 3603 3604 ocfs2_cleanup_merge(el, index); 3605 3606 ocfs2_journal_dirty(handle, bh); 3607 if (left_path) { 3608 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 3609 3610 /* 3611 * In the situation that the right_rec is empty and the extent 3612 * block is empty also, ocfs2_complete_edge_insert can't handle 3613 * it and we need to delete the right extent block. 3614 */ 3615 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 && 3616 le16_to_cpu(el->l_next_free_rec) == 1) { 3617 /* extend credit for ocfs2_remove_rightmost_path */ 3618 ret = ocfs2_extend_rotate_transaction(handle, 0, 3619 handle->h_buffer_credits, 3620 right_path); 3621 if (ret) { 3622 mlog_errno(ret); 3623 goto out; 3624 } 3625 3626 ret = ocfs2_remove_rightmost_path(handle, et, 3627 right_path, 3628 dealloc); 3629 if (ret) { 3630 mlog_errno(ret); 3631 goto out; 3632 } 3633 3634 /* Now the rightmost extent block has been deleted. 3635 * So we use the new rightmost path. 3636 */ 3637 ocfs2_mv_path(right_path, left_path); 3638 left_path = NULL; 3639 } else 3640 ocfs2_complete_edge_insert(handle, left_path, 3641 right_path, subtree_index); 3642 } 3643 out: 3644 ocfs2_free_path(left_path); 3645 return ret; 3646 } 3647 3648 static int ocfs2_try_to_merge_extent(handle_t *handle, 3649 struct ocfs2_extent_tree *et, 3650 struct ocfs2_path *path, 3651 int split_index, 3652 struct ocfs2_extent_rec *split_rec, 3653 struct ocfs2_cached_dealloc_ctxt *dealloc, 3654 struct ocfs2_merge_ctxt *ctxt) 3655 { 3656 int ret = 0; 3657 struct ocfs2_extent_list *el = path_leaf_el(path); 3658 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 3659 3660 BUG_ON(ctxt->c_contig_type == CONTIG_NONE); 3661 3662 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) { 3663 /* extend credit for ocfs2_remove_rightmost_path */ 3664 ret = ocfs2_extend_rotate_transaction(handle, 0, 3665 handle->h_buffer_credits, 3666 path); 3667 if (ret) { 3668 mlog_errno(ret); 3669 goto out; 3670 } 3671 /* 3672 * The merge code will need to create an empty 3673 * extent to take the place of the newly 3674 * emptied slot. Remove any pre-existing empty 3675 * extents - having more than one in a leaf is 3676 * illegal. 3677 */ 3678 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3679 if (ret) { 3680 mlog_errno(ret); 3681 goto out; 3682 } 3683 split_index--; 3684 rec = &el->l_recs[split_index]; 3685 } 3686 3687 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) { 3688 /* 3689 * Left-right contig implies this. 3690 */ 3691 BUG_ON(!ctxt->c_split_covers_rec); 3692 3693 /* 3694 * Since the leftright insert always covers the entire 3695 * extent, this call will delete the insert record 3696 * entirely, resulting in an empty extent record added to 3697 * the extent block. 3698 * 3699 * Since the adding of an empty extent shifts 3700 * everything back to the right, there's no need to 3701 * update split_index here. 3702 * 3703 * When the split_index is zero, we need to merge it to the 3704 * prevoius extent block. It is more efficient and easier 3705 * if we do merge_right first and merge_left later. 3706 */ 3707 ret = ocfs2_merge_rec_right(path, handle, et, split_rec, 3708 split_index); 3709 if (ret) { 3710 mlog_errno(ret); 3711 goto out; 3712 } 3713 3714 /* 3715 * We can only get this from logic error above. 3716 */ 3717 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0])); 3718 3719 /* extend credit for ocfs2_remove_rightmost_path */ 3720 ret = ocfs2_extend_rotate_transaction(handle, 0, 3721 handle->h_buffer_credits, 3722 path); 3723 if (ret) { 3724 mlog_errno(ret); 3725 goto out; 3726 } 3727 3728 /* The merge left us with an empty extent, remove it. */ 3729 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3730 if (ret) { 3731 mlog_errno(ret); 3732 goto out; 3733 } 3734 3735 rec = &el->l_recs[split_index]; 3736 3737 /* 3738 * Note that we don't pass split_rec here on purpose - 3739 * we've merged it into the rec already. 3740 */ 3741 ret = ocfs2_merge_rec_left(path, handle, et, rec, 3742 dealloc, split_index); 3743 3744 if (ret) { 3745 mlog_errno(ret); 3746 goto out; 3747 } 3748 3749 /* extend credit for ocfs2_remove_rightmost_path */ 3750 ret = ocfs2_extend_rotate_transaction(handle, 0, 3751 handle->h_buffer_credits, 3752 path); 3753 if (ret) { 3754 mlog_errno(ret); 3755 goto out; 3756 } 3757 3758 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3759 /* 3760 * Error from this last rotate is not critical, so 3761 * print but don't bubble it up. 3762 */ 3763 if (ret) 3764 mlog_errno(ret); 3765 ret = 0; 3766 } else { 3767 /* 3768 * Merge a record to the left or right. 3769 * 3770 * 'contig_type' is relative to the existing record, 3771 * so for example, if we're "right contig", it's to 3772 * the record on the left (hence the left merge). 3773 */ 3774 if (ctxt->c_contig_type == CONTIG_RIGHT) { 3775 ret = ocfs2_merge_rec_left(path, handle, et, 3776 split_rec, dealloc, 3777 split_index); 3778 if (ret) { 3779 mlog_errno(ret); 3780 goto out; 3781 } 3782 } else { 3783 ret = ocfs2_merge_rec_right(path, handle, 3784 et, split_rec, 3785 split_index); 3786 if (ret) { 3787 mlog_errno(ret); 3788 goto out; 3789 } 3790 } 3791 3792 if (ctxt->c_split_covers_rec) { 3793 /* extend credit for ocfs2_remove_rightmost_path */ 3794 ret = ocfs2_extend_rotate_transaction(handle, 0, 3795 handle->h_buffer_credits, 3796 path); 3797 if (ret) { 3798 mlog_errno(ret); 3799 ret = 0; 3800 goto out; 3801 } 3802 3803 /* 3804 * The merge may have left an empty extent in 3805 * our leaf. Try to rotate it away. 3806 */ 3807 ret = ocfs2_rotate_tree_left(handle, et, path, 3808 dealloc); 3809 if (ret) 3810 mlog_errno(ret); 3811 ret = 0; 3812 } 3813 } 3814 3815 out: 3816 return ret; 3817 } 3818 3819 static void ocfs2_subtract_from_rec(struct super_block *sb, 3820 enum ocfs2_split_type split, 3821 struct ocfs2_extent_rec *rec, 3822 struct ocfs2_extent_rec *split_rec) 3823 { 3824 u64 len_blocks; 3825 3826 len_blocks = ocfs2_clusters_to_blocks(sb, 3827 le16_to_cpu(split_rec->e_leaf_clusters)); 3828 3829 if (split == SPLIT_LEFT) { 3830 /* 3831 * Region is on the left edge of the existing 3832 * record. 3833 */ 3834 le32_add_cpu(&rec->e_cpos, 3835 le16_to_cpu(split_rec->e_leaf_clusters)); 3836 le64_add_cpu(&rec->e_blkno, len_blocks); 3837 le16_add_cpu(&rec->e_leaf_clusters, 3838 -le16_to_cpu(split_rec->e_leaf_clusters)); 3839 } else { 3840 /* 3841 * Region is on the right edge of the existing 3842 * record. 3843 */ 3844 le16_add_cpu(&rec->e_leaf_clusters, 3845 -le16_to_cpu(split_rec->e_leaf_clusters)); 3846 } 3847 } 3848 3849 /* 3850 * Do the final bits of extent record insertion at the target leaf 3851 * list. If this leaf is part of an allocation tree, it is assumed 3852 * that the tree above has been prepared. 3853 */ 3854 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et, 3855 struct ocfs2_extent_rec *insert_rec, 3856 struct ocfs2_extent_list *el, 3857 struct ocfs2_insert_type *insert) 3858 { 3859 int i = insert->ins_contig_index; 3860 unsigned int range; 3861 struct ocfs2_extent_rec *rec; 3862 3863 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 3864 3865 if (insert->ins_split != SPLIT_NONE) { 3866 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos)); 3867 BUG_ON(i == -1); 3868 rec = &el->l_recs[i]; 3869 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci), 3870 insert->ins_split, rec, 3871 insert_rec); 3872 goto rotate; 3873 } 3874 3875 /* 3876 * Contiguous insert - either left or right. 3877 */ 3878 if (insert->ins_contig != CONTIG_NONE) { 3879 rec = &el->l_recs[i]; 3880 if (insert->ins_contig == CONTIG_LEFT) { 3881 rec->e_blkno = insert_rec->e_blkno; 3882 rec->e_cpos = insert_rec->e_cpos; 3883 } 3884 le16_add_cpu(&rec->e_leaf_clusters, 3885 le16_to_cpu(insert_rec->e_leaf_clusters)); 3886 return; 3887 } 3888 3889 /* 3890 * Handle insert into an empty leaf. 3891 */ 3892 if (le16_to_cpu(el->l_next_free_rec) == 0 || 3893 ((le16_to_cpu(el->l_next_free_rec) == 1) && 3894 ocfs2_is_empty_extent(&el->l_recs[0]))) { 3895 el->l_recs[0] = *insert_rec; 3896 el->l_next_free_rec = cpu_to_le16(1); 3897 return; 3898 } 3899 3900 /* 3901 * Appending insert. 3902 */ 3903 if (insert->ins_appending == APPEND_TAIL) { 3904 i = le16_to_cpu(el->l_next_free_rec) - 1; 3905 rec = &el->l_recs[i]; 3906 range = le32_to_cpu(rec->e_cpos) 3907 + le16_to_cpu(rec->e_leaf_clusters); 3908 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range); 3909 3910 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >= 3911 le16_to_cpu(el->l_count), 3912 "owner %llu, depth %u, count %u, next free %u, " 3913 "rec.cpos %u, rec.clusters %u, " 3914 "insert.cpos %u, insert.clusters %u\n", 3915 ocfs2_metadata_cache_owner(et->et_ci), 3916 le16_to_cpu(el->l_tree_depth), 3917 le16_to_cpu(el->l_count), 3918 le16_to_cpu(el->l_next_free_rec), 3919 le32_to_cpu(el->l_recs[i].e_cpos), 3920 le16_to_cpu(el->l_recs[i].e_leaf_clusters), 3921 le32_to_cpu(insert_rec->e_cpos), 3922 le16_to_cpu(insert_rec->e_leaf_clusters)); 3923 i++; 3924 el->l_recs[i] = *insert_rec; 3925 le16_add_cpu(&el->l_next_free_rec, 1); 3926 return; 3927 } 3928 3929 rotate: 3930 /* 3931 * Ok, we have to rotate. 3932 * 3933 * At this point, it is safe to assume that inserting into an 3934 * empty leaf and appending to a leaf have both been handled 3935 * above. 3936 * 3937 * This leaf needs to have space, either by the empty 1st 3938 * extent record, or by virtue of an l_next_rec < l_count. 3939 */ 3940 ocfs2_rotate_leaf(el, insert_rec); 3941 } 3942 3943 static void ocfs2_adjust_rightmost_records(handle_t *handle, 3944 struct ocfs2_extent_tree *et, 3945 struct ocfs2_path *path, 3946 struct ocfs2_extent_rec *insert_rec) 3947 { 3948 int ret, i, next_free; 3949 struct buffer_head *bh; 3950 struct ocfs2_extent_list *el; 3951 struct ocfs2_extent_rec *rec; 3952 3953 /* 3954 * Update everything except the leaf block. 3955 */ 3956 for (i = 0; i < path->p_tree_depth; i++) { 3957 bh = path->p_node[i].bh; 3958 el = path->p_node[i].el; 3959 3960 next_free = le16_to_cpu(el->l_next_free_rec); 3961 if (next_free == 0) { 3962 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 3963 "Owner %llu has a bad extent list\n", 3964 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 3965 ret = -EIO; 3966 return; 3967 } 3968 3969 rec = &el->l_recs[next_free - 1]; 3970 3971 rec->e_int_clusters = insert_rec->e_cpos; 3972 le32_add_cpu(&rec->e_int_clusters, 3973 le16_to_cpu(insert_rec->e_leaf_clusters)); 3974 le32_add_cpu(&rec->e_int_clusters, 3975 -le32_to_cpu(rec->e_cpos)); 3976 3977 ocfs2_journal_dirty(handle, bh); 3978 } 3979 } 3980 3981 static int ocfs2_append_rec_to_path(handle_t *handle, 3982 struct ocfs2_extent_tree *et, 3983 struct ocfs2_extent_rec *insert_rec, 3984 struct ocfs2_path *right_path, 3985 struct ocfs2_path **ret_left_path) 3986 { 3987 int ret, next_free; 3988 struct ocfs2_extent_list *el; 3989 struct ocfs2_path *left_path = NULL; 3990 3991 *ret_left_path = NULL; 3992 3993 /* 3994 * This shouldn't happen for non-trees. The extent rec cluster 3995 * count manipulation below only works for interior nodes. 3996 */ 3997 BUG_ON(right_path->p_tree_depth == 0); 3998 3999 /* 4000 * If our appending insert is at the leftmost edge of a leaf, 4001 * then we might need to update the rightmost records of the 4002 * neighboring path. 4003 */ 4004 el = path_leaf_el(right_path); 4005 next_free = le16_to_cpu(el->l_next_free_rec); 4006 if (next_free == 0 || 4007 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) { 4008 u32 left_cpos; 4009 4010 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 4011 right_path, &left_cpos); 4012 if (ret) { 4013 mlog_errno(ret); 4014 goto out; 4015 } 4016 4017 trace_ocfs2_append_rec_to_path( 4018 (unsigned long long) 4019 ocfs2_metadata_cache_owner(et->et_ci), 4020 le32_to_cpu(insert_rec->e_cpos), 4021 left_cpos); 4022 4023 /* 4024 * No need to worry if the append is already in the 4025 * leftmost leaf. 4026 */ 4027 if (left_cpos) { 4028 left_path = ocfs2_new_path_from_path(right_path); 4029 if (!left_path) { 4030 ret = -ENOMEM; 4031 mlog_errno(ret); 4032 goto out; 4033 } 4034 4035 ret = ocfs2_find_path(et->et_ci, left_path, 4036 left_cpos); 4037 if (ret) { 4038 mlog_errno(ret); 4039 goto out; 4040 } 4041 4042 /* 4043 * ocfs2_insert_path() will pass the left_path to the 4044 * journal for us. 4045 */ 4046 } 4047 } 4048 4049 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path); 4050 if (ret) { 4051 mlog_errno(ret); 4052 goto out; 4053 } 4054 4055 ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec); 4056 4057 *ret_left_path = left_path; 4058 ret = 0; 4059 out: 4060 if (ret != 0) 4061 ocfs2_free_path(left_path); 4062 4063 return ret; 4064 } 4065 4066 static void ocfs2_split_record(struct ocfs2_extent_tree *et, 4067 struct ocfs2_path *left_path, 4068 struct ocfs2_path *right_path, 4069 struct ocfs2_extent_rec *split_rec, 4070 enum ocfs2_split_type split) 4071 { 4072 int index; 4073 u32 cpos = le32_to_cpu(split_rec->e_cpos); 4074 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el; 4075 struct ocfs2_extent_rec *rec, *tmprec; 4076 4077 right_el = path_leaf_el(right_path); 4078 if (left_path) 4079 left_el = path_leaf_el(left_path); 4080 4081 el = right_el; 4082 insert_el = right_el; 4083 index = ocfs2_search_extent_list(el, cpos); 4084 if (index != -1) { 4085 if (index == 0 && left_path) { 4086 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 4087 4088 /* 4089 * This typically means that the record 4090 * started in the left path but moved to the 4091 * right as a result of rotation. We either 4092 * move the existing record to the left, or we 4093 * do the later insert there. 4094 * 4095 * In this case, the left path should always 4096 * exist as the rotate code will have passed 4097 * it back for a post-insert update. 4098 */ 4099 4100 if (split == SPLIT_LEFT) { 4101 /* 4102 * It's a left split. Since we know 4103 * that the rotate code gave us an 4104 * empty extent in the left path, we 4105 * can just do the insert there. 4106 */ 4107 insert_el = left_el; 4108 } else { 4109 /* 4110 * Right split - we have to move the 4111 * existing record over to the left 4112 * leaf. The insert will be into the 4113 * newly created empty extent in the 4114 * right leaf. 4115 */ 4116 tmprec = &right_el->l_recs[index]; 4117 ocfs2_rotate_leaf(left_el, tmprec); 4118 el = left_el; 4119 4120 memset(tmprec, 0, sizeof(*tmprec)); 4121 index = ocfs2_search_extent_list(left_el, cpos); 4122 BUG_ON(index == -1); 4123 } 4124 } 4125 } else { 4126 BUG_ON(!left_path); 4127 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0])); 4128 /* 4129 * Left path is easy - we can just allow the insert to 4130 * happen. 4131 */ 4132 el = left_el; 4133 insert_el = left_el; 4134 index = ocfs2_search_extent_list(el, cpos); 4135 BUG_ON(index == -1); 4136 } 4137 4138 rec = &el->l_recs[index]; 4139 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci), 4140 split, rec, split_rec); 4141 ocfs2_rotate_leaf(insert_el, split_rec); 4142 } 4143 4144 /* 4145 * This function only does inserts on an allocation b-tree. For tree 4146 * depth = 0, ocfs2_insert_at_leaf() is called directly. 4147 * 4148 * right_path is the path we want to do the actual insert 4149 * in. left_path should only be passed in if we need to update that 4150 * portion of the tree after an edge insert. 4151 */ 4152 static int ocfs2_insert_path(handle_t *handle, 4153 struct ocfs2_extent_tree *et, 4154 struct ocfs2_path *left_path, 4155 struct ocfs2_path *right_path, 4156 struct ocfs2_extent_rec *insert_rec, 4157 struct ocfs2_insert_type *insert) 4158 { 4159 int ret, subtree_index; 4160 struct buffer_head *leaf_bh = path_leaf_bh(right_path); 4161 4162 if (left_path) { 4163 /* 4164 * There's a chance that left_path got passed back to 4165 * us without being accounted for in the 4166 * journal. Extend our transaction here to be sure we 4167 * can change those blocks. 4168 */ 4169 ret = ocfs2_extend_trans(handle, left_path->p_tree_depth); 4170 if (ret < 0) { 4171 mlog_errno(ret); 4172 goto out; 4173 } 4174 4175 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 4176 if (ret < 0) { 4177 mlog_errno(ret); 4178 goto out; 4179 } 4180 } 4181 4182 /* 4183 * Pass both paths to the journal. The majority of inserts 4184 * will be touching all components anyway. 4185 */ 4186 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path); 4187 if (ret < 0) { 4188 mlog_errno(ret); 4189 goto out; 4190 } 4191 4192 if (insert->ins_split != SPLIT_NONE) { 4193 /* 4194 * We could call ocfs2_insert_at_leaf() for some types 4195 * of splits, but it's easier to just let one separate 4196 * function sort it all out. 4197 */ 4198 ocfs2_split_record(et, left_path, right_path, 4199 insert_rec, insert->ins_split); 4200 4201 /* 4202 * Split might have modified either leaf and we don't 4203 * have a guarantee that the later edge insert will 4204 * dirty this for us. 4205 */ 4206 if (left_path) 4207 ocfs2_journal_dirty(handle, 4208 path_leaf_bh(left_path)); 4209 } else 4210 ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path), 4211 insert); 4212 4213 ocfs2_journal_dirty(handle, leaf_bh); 4214 4215 if (left_path) { 4216 /* 4217 * The rotate code has indicated that we need to fix 4218 * up portions of the tree after the insert. 4219 * 4220 * XXX: Should we extend the transaction here? 4221 */ 4222 subtree_index = ocfs2_find_subtree_root(et, left_path, 4223 right_path); 4224 ocfs2_complete_edge_insert(handle, left_path, right_path, 4225 subtree_index); 4226 } 4227 4228 ret = 0; 4229 out: 4230 return ret; 4231 } 4232 4233 static int ocfs2_do_insert_extent(handle_t *handle, 4234 struct ocfs2_extent_tree *et, 4235 struct ocfs2_extent_rec *insert_rec, 4236 struct ocfs2_insert_type *type) 4237 { 4238 int ret, rotate = 0; 4239 u32 cpos; 4240 struct ocfs2_path *right_path = NULL; 4241 struct ocfs2_path *left_path = NULL; 4242 struct ocfs2_extent_list *el; 4243 4244 el = et->et_root_el; 4245 4246 ret = ocfs2_et_root_journal_access(handle, et, 4247 OCFS2_JOURNAL_ACCESS_WRITE); 4248 if (ret) { 4249 mlog_errno(ret); 4250 goto out; 4251 } 4252 4253 if (le16_to_cpu(el->l_tree_depth) == 0) { 4254 ocfs2_insert_at_leaf(et, insert_rec, el, type); 4255 goto out_update_clusters; 4256 } 4257 4258 right_path = ocfs2_new_path_from_et(et); 4259 if (!right_path) { 4260 ret = -ENOMEM; 4261 mlog_errno(ret); 4262 goto out; 4263 } 4264 4265 /* 4266 * Determine the path to start with. Rotations need the 4267 * rightmost path, everything else can go directly to the 4268 * target leaf. 4269 */ 4270 cpos = le32_to_cpu(insert_rec->e_cpos); 4271 if (type->ins_appending == APPEND_NONE && 4272 type->ins_contig == CONTIG_NONE) { 4273 rotate = 1; 4274 cpos = UINT_MAX; 4275 } 4276 4277 ret = ocfs2_find_path(et->et_ci, right_path, cpos); 4278 if (ret) { 4279 mlog_errno(ret); 4280 goto out; 4281 } 4282 4283 /* 4284 * Rotations and appends need special treatment - they modify 4285 * parts of the tree's above them. 4286 * 4287 * Both might pass back a path immediate to the left of the 4288 * one being inserted to. This will be cause 4289 * ocfs2_insert_path() to modify the rightmost records of 4290 * left_path to account for an edge insert. 4291 * 4292 * XXX: When modifying this code, keep in mind that an insert 4293 * can wind up skipping both of these two special cases... 4294 */ 4295 if (rotate) { 4296 ret = ocfs2_rotate_tree_right(handle, et, type->ins_split, 4297 le32_to_cpu(insert_rec->e_cpos), 4298 right_path, &left_path); 4299 if (ret) { 4300 mlog_errno(ret); 4301 goto out; 4302 } 4303 4304 /* 4305 * ocfs2_rotate_tree_right() might have extended the 4306 * transaction without re-journaling our tree root. 4307 */ 4308 ret = ocfs2_et_root_journal_access(handle, et, 4309 OCFS2_JOURNAL_ACCESS_WRITE); 4310 if (ret) { 4311 mlog_errno(ret); 4312 goto out; 4313 } 4314 } else if (type->ins_appending == APPEND_TAIL 4315 && type->ins_contig != CONTIG_LEFT) { 4316 ret = ocfs2_append_rec_to_path(handle, et, insert_rec, 4317 right_path, &left_path); 4318 if (ret) { 4319 mlog_errno(ret); 4320 goto out; 4321 } 4322 } 4323 4324 ret = ocfs2_insert_path(handle, et, left_path, right_path, 4325 insert_rec, type); 4326 if (ret) { 4327 mlog_errno(ret); 4328 goto out; 4329 } 4330 4331 out_update_clusters: 4332 if (type->ins_split == SPLIT_NONE) 4333 ocfs2_et_update_clusters(et, 4334 le16_to_cpu(insert_rec->e_leaf_clusters)); 4335 4336 ocfs2_journal_dirty(handle, et->et_root_bh); 4337 4338 out: 4339 ocfs2_free_path(left_path); 4340 ocfs2_free_path(right_path); 4341 4342 return ret; 4343 } 4344 4345 static int ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et, 4346 struct ocfs2_path *path, 4347 struct ocfs2_extent_list *el, int index, 4348 struct ocfs2_extent_rec *split_rec, 4349 struct ocfs2_merge_ctxt *ctxt) 4350 { 4351 int status = 0; 4352 enum ocfs2_contig_type ret = CONTIG_NONE; 4353 u32 left_cpos, right_cpos; 4354 struct ocfs2_extent_rec *rec = NULL; 4355 struct ocfs2_extent_list *new_el; 4356 struct ocfs2_path *left_path = NULL, *right_path = NULL; 4357 struct buffer_head *bh; 4358 struct ocfs2_extent_block *eb; 4359 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 4360 4361 if (index > 0) { 4362 rec = &el->l_recs[index - 1]; 4363 } else if (path->p_tree_depth > 0) { 4364 status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos); 4365 if (status) 4366 goto exit; 4367 4368 if (left_cpos != 0) { 4369 left_path = ocfs2_new_path_from_path(path); 4370 if (!left_path) { 4371 status = -ENOMEM; 4372 mlog_errno(status); 4373 goto exit; 4374 } 4375 4376 status = ocfs2_find_path(et->et_ci, left_path, 4377 left_cpos); 4378 if (status) 4379 goto free_left_path; 4380 4381 new_el = path_leaf_el(left_path); 4382 4383 if (le16_to_cpu(new_el->l_next_free_rec) != 4384 le16_to_cpu(new_el->l_count)) { 4385 bh = path_leaf_bh(left_path); 4386 eb = (struct ocfs2_extent_block *)bh->b_data; 4387 ocfs2_error(sb, 4388 "Extent block #%llu has an invalid l_next_free_rec of %d. It should have matched the l_count of %d\n", 4389 (unsigned long long)le64_to_cpu(eb->h_blkno), 4390 le16_to_cpu(new_el->l_next_free_rec), 4391 le16_to_cpu(new_el->l_count)); 4392 status = -EINVAL; 4393 goto free_left_path; 4394 } 4395 rec = &new_el->l_recs[ 4396 le16_to_cpu(new_el->l_next_free_rec) - 1]; 4397 } 4398 } 4399 4400 /* 4401 * We're careful to check for an empty extent record here - 4402 * the merge code will know what to do if it sees one. 4403 */ 4404 if (rec) { 4405 if (index == 1 && ocfs2_is_empty_extent(rec)) { 4406 if (split_rec->e_cpos == el->l_recs[index].e_cpos) 4407 ret = CONTIG_RIGHT; 4408 } else { 4409 ret = ocfs2_et_extent_contig(et, rec, split_rec); 4410 } 4411 } 4412 4413 rec = NULL; 4414 if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) 4415 rec = &el->l_recs[index + 1]; 4416 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) && 4417 path->p_tree_depth > 0) { 4418 status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos); 4419 if (status) 4420 goto free_left_path; 4421 4422 if (right_cpos == 0) 4423 goto free_left_path; 4424 4425 right_path = ocfs2_new_path_from_path(path); 4426 if (!right_path) { 4427 status = -ENOMEM; 4428 mlog_errno(status); 4429 goto free_left_path; 4430 } 4431 4432 status = ocfs2_find_path(et->et_ci, right_path, right_cpos); 4433 if (status) 4434 goto free_right_path; 4435 4436 new_el = path_leaf_el(right_path); 4437 rec = &new_el->l_recs[0]; 4438 if (ocfs2_is_empty_extent(rec)) { 4439 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) { 4440 bh = path_leaf_bh(right_path); 4441 eb = (struct ocfs2_extent_block *)bh->b_data; 4442 ocfs2_error(sb, 4443 "Extent block #%llu has an invalid l_next_free_rec of %d\n", 4444 (unsigned long long)le64_to_cpu(eb->h_blkno), 4445 le16_to_cpu(new_el->l_next_free_rec)); 4446 status = -EINVAL; 4447 goto free_right_path; 4448 } 4449 rec = &new_el->l_recs[1]; 4450 } 4451 } 4452 4453 if (rec) { 4454 enum ocfs2_contig_type contig_type; 4455 4456 contig_type = ocfs2_et_extent_contig(et, rec, split_rec); 4457 4458 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT) 4459 ret = CONTIG_LEFTRIGHT; 4460 else if (ret == CONTIG_NONE) 4461 ret = contig_type; 4462 } 4463 4464 free_right_path: 4465 ocfs2_free_path(right_path); 4466 free_left_path: 4467 ocfs2_free_path(left_path); 4468 exit: 4469 if (status == 0) 4470 ctxt->c_contig_type = ret; 4471 4472 return status; 4473 } 4474 4475 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et, 4476 struct ocfs2_insert_type *insert, 4477 struct ocfs2_extent_list *el, 4478 struct ocfs2_extent_rec *insert_rec) 4479 { 4480 int i; 4481 enum ocfs2_contig_type contig_type = CONTIG_NONE; 4482 4483 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4484 4485 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 4486 contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i], 4487 insert_rec); 4488 if (contig_type != CONTIG_NONE) { 4489 insert->ins_contig_index = i; 4490 break; 4491 } 4492 } 4493 insert->ins_contig = contig_type; 4494 4495 if (insert->ins_contig != CONTIG_NONE) { 4496 struct ocfs2_extent_rec *rec = 4497 &el->l_recs[insert->ins_contig_index]; 4498 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) + 4499 le16_to_cpu(insert_rec->e_leaf_clusters); 4500 4501 /* 4502 * Caller might want us to limit the size of extents, don't 4503 * calculate contiguousness if we might exceed that limit. 4504 */ 4505 if (et->et_max_leaf_clusters && 4506 (len > et->et_max_leaf_clusters)) 4507 insert->ins_contig = CONTIG_NONE; 4508 } 4509 } 4510 4511 /* 4512 * This should only be called against the righmost leaf extent list. 4513 * 4514 * ocfs2_figure_appending_type() will figure out whether we'll have to 4515 * insert at the tail of the rightmost leaf. 4516 * 4517 * This should also work against the root extent list for tree's with 0 4518 * depth. If we consider the root extent list to be the rightmost leaf node 4519 * then the logic here makes sense. 4520 */ 4521 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert, 4522 struct ocfs2_extent_list *el, 4523 struct ocfs2_extent_rec *insert_rec) 4524 { 4525 int i; 4526 u32 cpos = le32_to_cpu(insert_rec->e_cpos); 4527 struct ocfs2_extent_rec *rec; 4528 4529 insert->ins_appending = APPEND_NONE; 4530 4531 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4532 4533 if (!el->l_next_free_rec) 4534 goto set_tail_append; 4535 4536 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 4537 /* Were all records empty? */ 4538 if (le16_to_cpu(el->l_next_free_rec) == 1) 4539 goto set_tail_append; 4540 } 4541 4542 i = le16_to_cpu(el->l_next_free_rec) - 1; 4543 rec = &el->l_recs[i]; 4544 4545 if (cpos >= 4546 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters))) 4547 goto set_tail_append; 4548 4549 return; 4550 4551 set_tail_append: 4552 insert->ins_appending = APPEND_TAIL; 4553 } 4554 4555 /* 4556 * Helper function called at the beginning of an insert. 4557 * 4558 * This computes a few things that are commonly used in the process of 4559 * inserting into the btree: 4560 * - Whether the new extent is contiguous with an existing one. 4561 * - The current tree depth. 4562 * - Whether the insert is an appending one. 4563 * - The total # of free records in the tree. 4564 * 4565 * All of the information is stored on the ocfs2_insert_type 4566 * structure. 4567 */ 4568 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et, 4569 struct buffer_head **last_eb_bh, 4570 struct ocfs2_extent_rec *insert_rec, 4571 int *free_records, 4572 struct ocfs2_insert_type *insert) 4573 { 4574 int ret; 4575 struct ocfs2_extent_block *eb; 4576 struct ocfs2_extent_list *el; 4577 struct ocfs2_path *path = NULL; 4578 struct buffer_head *bh = NULL; 4579 4580 insert->ins_split = SPLIT_NONE; 4581 4582 el = et->et_root_el; 4583 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth); 4584 4585 if (el->l_tree_depth) { 4586 /* 4587 * If we have tree depth, we read in the 4588 * rightmost extent block ahead of time as 4589 * ocfs2_figure_insert_type() and ocfs2_add_branch() 4590 * may want it later. 4591 */ 4592 ret = ocfs2_read_extent_block(et->et_ci, 4593 ocfs2_et_get_last_eb_blk(et), 4594 &bh); 4595 if (ret) { 4596 mlog_errno(ret); 4597 goto out; 4598 } 4599 eb = (struct ocfs2_extent_block *) bh->b_data; 4600 el = &eb->h_list; 4601 } 4602 4603 /* 4604 * Unless we have a contiguous insert, we'll need to know if 4605 * there is room left in our allocation tree for another 4606 * extent record. 4607 * 4608 * XXX: This test is simplistic, we can search for empty 4609 * extent records too. 4610 */ 4611 *free_records = le16_to_cpu(el->l_count) - 4612 le16_to_cpu(el->l_next_free_rec); 4613 4614 if (!insert->ins_tree_depth) { 4615 ocfs2_figure_contig_type(et, insert, el, insert_rec); 4616 ocfs2_figure_appending_type(insert, el, insert_rec); 4617 return 0; 4618 } 4619 4620 path = ocfs2_new_path_from_et(et); 4621 if (!path) { 4622 ret = -ENOMEM; 4623 mlog_errno(ret); 4624 goto out; 4625 } 4626 4627 /* 4628 * In the case that we're inserting past what the tree 4629 * currently accounts for, ocfs2_find_path() will return for 4630 * us the rightmost tree path. This is accounted for below in 4631 * the appending code. 4632 */ 4633 ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos)); 4634 if (ret) { 4635 mlog_errno(ret); 4636 goto out; 4637 } 4638 4639 el = path_leaf_el(path); 4640 4641 /* 4642 * Now that we have the path, there's two things we want to determine: 4643 * 1) Contiguousness (also set contig_index if this is so) 4644 * 4645 * 2) Are we doing an append? We can trivially break this up 4646 * into two types of appends: simple record append, or a 4647 * rotate inside the tail leaf. 4648 */ 4649 ocfs2_figure_contig_type(et, insert, el, insert_rec); 4650 4651 /* 4652 * The insert code isn't quite ready to deal with all cases of 4653 * left contiguousness. Specifically, if it's an insert into 4654 * the 1st record in a leaf, it will require the adjustment of 4655 * cluster count on the last record of the path directly to it's 4656 * left. For now, just catch that case and fool the layers 4657 * above us. This works just fine for tree_depth == 0, which 4658 * is why we allow that above. 4659 */ 4660 if (insert->ins_contig == CONTIG_LEFT && 4661 insert->ins_contig_index == 0) 4662 insert->ins_contig = CONTIG_NONE; 4663 4664 /* 4665 * Ok, so we can simply compare against last_eb to figure out 4666 * whether the path doesn't exist. This will only happen in 4667 * the case that we're doing a tail append, so maybe we can 4668 * take advantage of that information somehow. 4669 */ 4670 if (ocfs2_et_get_last_eb_blk(et) == 4671 path_leaf_bh(path)->b_blocknr) { 4672 /* 4673 * Ok, ocfs2_find_path() returned us the rightmost 4674 * tree path. This might be an appending insert. There are 4675 * two cases: 4676 * 1) We're doing a true append at the tail: 4677 * -This might even be off the end of the leaf 4678 * 2) We're "appending" by rotating in the tail 4679 */ 4680 ocfs2_figure_appending_type(insert, el, insert_rec); 4681 } 4682 4683 out: 4684 ocfs2_free_path(path); 4685 4686 if (ret == 0) 4687 *last_eb_bh = bh; 4688 else 4689 brelse(bh); 4690 return ret; 4691 } 4692 4693 /* 4694 * Insert an extent into a btree. 4695 * 4696 * The caller needs to update the owning btree's cluster count. 4697 */ 4698 int ocfs2_insert_extent(handle_t *handle, 4699 struct ocfs2_extent_tree *et, 4700 u32 cpos, 4701 u64 start_blk, 4702 u32 new_clusters, 4703 u8 flags, 4704 struct ocfs2_alloc_context *meta_ac) 4705 { 4706 int status; 4707 int uninitialized_var(free_records); 4708 struct buffer_head *last_eb_bh = NULL; 4709 struct ocfs2_insert_type insert = {0, }; 4710 struct ocfs2_extent_rec rec; 4711 4712 trace_ocfs2_insert_extent_start( 4713 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 4714 cpos, new_clusters); 4715 4716 memset(&rec, 0, sizeof(rec)); 4717 rec.e_cpos = cpu_to_le32(cpos); 4718 rec.e_blkno = cpu_to_le64(start_blk); 4719 rec.e_leaf_clusters = cpu_to_le16(new_clusters); 4720 rec.e_flags = flags; 4721 status = ocfs2_et_insert_check(et, &rec); 4722 if (status) { 4723 mlog_errno(status); 4724 goto bail; 4725 } 4726 4727 status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec, 4728 &free_records, &insert); 4729 if (status < 0) { 4730 mlog_errno(status); 4731 goto bail; 4732 } 4733 4734 trace_ocfs2_insert_extent(insert.ins_appending, insert.ins_contig, 4735 insert.ins_contig_index, free_records, 4736 insert.ins_tree_depth); 4737 4738 if (insert.ins_contig == CONTIG_NONE && free_records == 0) { 4739 status = ocfs2_grow_tree(handle, et, 4740 &insert.ins_tree_depth, &last_eb_bh, 4741 meta_ac); 4742 if (status) { 4743 mlog_errno(status); 4744 goto bail; 4745 } 4746 } 4747 4748 /* Finally, we can add clusters. This might rotate the tree for us. */ 4749 status = ocfs2_do_insert_extent(handle, et, &rec, &insert); 4750 if (status < 0) 4751 mlog_errno(status); 4752 else 4753 ocfs2_et_extent_map_insert(et, &rec); 4754 4755 bail: 4756 brelse(last_eb_bh); 4757 4758 return status; 4759 } 4760 4761 /* 4762 * Allcate and add clusters into the extent b-tree. 4763 * The new clusters(clusters_to_add) will be inserted at logical_offset. 4764 * The extent b-tree's root is specified by et, and 4765 * it is not limited to the file storage. Any extent tree can use this 4766 * function if it implements the proper ocfs2_extent_tree. 4767 */ 4768 int ocfs2_add_clusters_in_btree(handle_t *handle, 4769 struct ocfs2_extent_tree *et, 4770 u32 *logical_offset, 4771 u32 clusters_to_add, 4772 int mark_unwritten, 4773 struct ocfs2_alloc_context *data_ac, 4774 struct ocfs2_alloc_context *meta_ac, 4775 enum ocfs2_alloc_restarted *reason_ret) 4776 { 4777 int status = 0, err = 0; 4778 int need_free = 0; 4779 int free_extents; 4780 enum ocfs2_alloc_restarted reason = RESTART_NONE; 4781 u32 bit_off, num_bits; 4782 u64 block; 4783 u8 flags = 0; 4784 struct ocfs2_super *osb = 4785 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 4786 4787 BUG_ON(!clusters_to_add); 4788 4789 if (mark_unwritten) 4790 flags = OCFS2_EXT_UNWRITTEN; 4791 4792 free_extents = ocfs2_num_free_extents(osb, et); 4793 if (free_extents < 0) { 4794 status = free_extents; 4795 mlog_errno(status); 4796 goto leave; 4797 } 4798 4799 /* there are two cases which could cause us to EAGAIN in the 4800 * we-need-more-metadata case: 4801 * 1) we haven't reserved *any* 4802 * 2) we are so fragmented, we've needed to add metadata too 4803 * many times. */ 4804 if (!free_extents && !meta_ac) { 4805 err = -1; 4806 status = -EAGAIN; 4807 reason = RESTART_META; 4808 goto leave; 4809 } else if ((!free_extents) 4810 && (ocfs2_alloc_context_bits_left(meta_ac) 4811 < ocfs2_extend_meta_needed(et->et_root_el))) { 4812 err = -2; 4813 status = -EAGAIN; 4814 reason = RESTART_META; 4815 goto leave; 4816 } 4817 4818 status = __ocfs2_claim_clusters(handle, data_ac, 1, 4819 clusters_to_add, &bit_off, &num_bits); 4820 if (status < 0) { 4821 if (status != -ENOSPC) 4822 mlog_errno(status); 4823 goto leave; 4824 } 4825 4826 BUG_ON(num_bits > clusters_to_add); 4827 4828 /* reserve our write early -- insert_extent may update the tree root */ 4829 status = ocfs2_et_root_journal_access(handle, et, 4830 OCFS2_JOURNAL_ACCESS_WRITE); 4831 if (status < 0) { 4832 mlog_errno(status); 4833 need_free = 1; 4834 goto bail; 4835 } 4836 4837 block = ocfs2_clusters_to_blocks(osb->sb, bit_off); 4838 trace_ocfs2_add_clusters_in_btree( 4839 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 4840 bit_off, num_bits); 4841 status = ocfs2_insert_extent(handle, et, *logical_offset, block, 4842 num_bits, flags, meta_ac); 4843 if (status < 0) { 4844 mlog_errno(status); 4845 need_free = 1; 4846 goto bail; 4847 } 4848 4849 ocfs2_journal_dirty(handle, et->et_root_bh); 4850 4851 clusters_to_add -= num_bits; 4852 *logical_offset += num_bits; 4853 4854 if (clusters_to_add) { 4855 err = clusters_to_add; 4856 status = -EAGAIN; 4857 reason = RESTART_TRANS; 4858 } 4859 4860 bail: 4861 if (need_free) { 4862 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL) 4863 ocfs2_free_local_alloc_bits(osb, handle, data_ac, 4864 bit_off, num_bits); 4865 else 4866 ocfs2_free_clusters(handle, 4867 data_ac->ac_inode, 4868 data_ac->ac_bh, 4869 ocfs2_clusters_to_blocks(osb->sb, bit_off), 4870 num_bits); 4871 } 4872 4873 leave: 4874 if (reason_ret) 4875 *reason_ret = reason; 4876 trace_ocfs2_add_clusters_in_btree_ret(status, reason, err); 4877 return status; 4878 } 4879 4880 static void ocfs2_make_right_split_rec(struct super_block *sb, 4881 struct ocfs2_extent_rec *split_rec, 4882 u32 cpos, 4883 struct ocfs2_extent_rec *rec) 4884 { 4885 u32 rec_cpos = le32_to_cpu(rec->e_cpos); 4886 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters); 4887 4888 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec)); 4889 4890 split_rec->e_cpos = cpu_to_le32(cpos); 4891 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos); 4892 4893 split_rec->e_blkno = rec->e_blkno; 4894 le64_add_cpu(&split_rec->e_blkno, 4895 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos)); 4896 4897 split_rec->e_flags = rec->e_flags; 4898 } 4899 4900 static int ocfs2_split_and_insert(handle_t *handle, 4901 struct ocfs2_extent_tree *et, 4902 struct ocfs2_path *path, 4903 struct buffer_head **last_eb_bh, 4904 int split_index, 4905 struct ocfs2_extent_rec *orig_split_rec, 4906 struct ocfs2_alloc_context *meta_ac) 4907 { 4908 int ret = 0, depth; 4909 unsigned int insert_range, rec_range, do_leftright = 0; 4910 struct ocfs2_extent_rec tmprec; 4911 struct ocfs2_extent_list *rightmost_el; 4912 struct ocfs2_extent_rec rec; 4913 struct ocfs2_extent_rec split_rec = *orig_split_rec; 4914 struct ocfs2_insert_type insert; 4915 struct ocfs2_extent_block *eb; 4916 4917 leftright: 4918 /* 4919 * Store a copy of the record on the stack - it might move 4920 * around as the tree is manipulated below. 4921 */ 4922 rec = path_leaf_el(path)->l_recs[split_index]; 4923 4924 rightmost_el = et->et_root_el; 4925 4926 depth = le16_to_cpu(rightmost_el->l_tree_depth); 4927 if (depth) { 4928 BUG_ON(!(*last_eb_bh)); 4929 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 4930 rightmost_el = &eb->h_list; 4931 } 4932 4933 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 4934 le16_to_cpu(rightmost_el->l_count)) { 4935 ret = ocfs2_grow_tree(handle, et, 4936 &depth, last_eb_bh, meta_ac); 4937 if (ret) { 4938 mlog_errno(ret); 4939 goto out; 4940 } 4941 } 4942 4943 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 4944 insert.ins_appending = APPEND_NONE; 4945 insert.ins_contig = CONTIG_NONE; 4946 insert.ins_tree_depth = depth; 4947 4948 insert_range = le32_to_cpu(split_rec.e_cpos) + 4949 le16_to_cpu(split_rec.e_leaf_clusters); 4950 rec_range = le32_to_cpu(rec.e_cpos) + 4951 le16_to_cpu(rec.e_leaf_clusters); 4952 4953 if (split_rec.e_cpos == rec.e_cpos) { 4954 insert.ins_split = SPLIT_LEFT; 4955 } else if (insert_range == rec_range) { 4956 insert.ins_split = SPLIT_RIGHT; 4957 } else { 4958 /* 4959 * Left/right split. We fake this as a right split 4960 * first and then make a second pass as a left split. 4961 */ 4962 insert.ins_split = SPLIT_RIGHT; 4963 4964 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci), 4965 &tmprec, insert_range, &rec); 4966 4967 split_rec = tmprec; 4968 4969 BUG_ON(do_leftright); 4970 do_leftright = 1; 4971 } 4972 4973 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert); 4974 if (ret) { 4975 mlog_errno(ret); 4976 goto out; 4977 } 4978 4979 if (do_leftright == 1) { 4980 u32 cpos; 4981 struct ocfs2_extent_list *el; 4982 4983 do_leftright++; 4984 split_rec = *orig_split_rec; 4985 4986 ocfs2_reinit_path(path, 1); 4987 4988 cpos = le32_to_cpu(split_rec.e_cpos); 4989 ret = ocfs2_find_path(et->et_ci, path, cpos); 4990 if (ret) { 4991 mlog_errno(ret); 4992 goto out; 4993 } 4994 4995 el = path_leaf_el(path); 4996 split_index = ocfs2_search_extent_list(el, cpos); 4997 if (split_index == -1) { 4998 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 4999 "Owner %llu has an extent at cpos %u which can no longer be found\n", 5000 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5001 cpos); 5002 ret = -EROFS; 5003 goto out; 5004 } 5005 goto leftright; 5006 } 5007 out: 5008 5009 return ret; 5010 } 5011 5012 static int ocfs2_replace_extent_rec(handle_t *handle, 5013 struct ocfs2_extent_tree *et, 5014 struct ocfs2_path *path, 5015 struct ocfs2_extent_list *el, 5016 int split_index, 5017 struct ocfs2_extent_rec *split_rec) 5018 { 5019 int ret; 5020 5021 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path, 5022 path_num_items(path) - 1); 5023 if (ret) { 5024 mlog_errno(ret); 5025 goto out; 5026 } 5027 5028 el->l_recs[split_index] = *split_rec; 5029 5030 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 5031 out: 5032 return ret; 5033 } 5034 5035 /* 5036 * Split part or all of the extent record at split_index in the leaf 5037 * pointed to by path. Merge with the contiguous extent record if needed. 5038 * 5039 * Care is taken to handle contiguousness so as to not grow the tree. 5040 * 5041 * meta_ac is not strictly necessary - we only truly need it if growth 5042 * of the tree is required. All other cases will degrade into a less 5043 * optimal tree layout. 5044 * 5045 * last_eb_bh should be the rightmost leaf block for any extent 5046 * btree. Since a split may grow the tree or a merge might shrink it, 5047 * the caller cannot trust the contents of that buffer after this call. 5048 * 5049 * This code is optimized for readability - several passes might be 5050 * made over certain portions of the tree. All of those blocks will 5051 * have been brought into cache (and pinned via the journal), so the 5052 * extra overhead is not expressed in terms of disk reads. 5053 */ 5054 int ocfs2_split_extent(handle_t *handle, 5055 struct ocfs2_extent_tree *et, 5056 struct ocfs2_path *path, 5057 int split_index, 5058 struct ocfs2_extent_rec *split_rec, 5059 struct ocfs2_alloc_context *meta_ac, 5060 struct ocfs2_cached_dealloc_ctxt *dealloc) 5061 { 5062 int ret = 0; 5063 struct ocfs2_extent_list *el = path_leaf_el(path); 5064 struct buffer_head *last_eb_bh = NULL; 5065 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 5066 struct ocfs2_merge_ctxt ctxt; 5067 struct ocfs2_extent_list *rightmost_el; 5068 5069 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) || 5070 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) < 5071 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) { 5072 ret = -EIO; 5073 mlog_errno(ret); 5074 goto out; 5075 } 5076 5077 ret = ocfs2_figure_merge_contig_type(et, path, el, 5078 split_index, 5079 split_rec, 5080 &ctxt); 5081 if (ret) { 5082 mlog_errno(ret); 5083 goto out; 5084 } 5085 5086 /* 5087 * The core merge / split code wants to know how much room is 5088 * left in this allocation tree, so we pass the 5089 * rightmost extent list. 5090 */ 5091 if (path->p_tree_depth) { 5092 struct ocfs2_extent_block *eb; 5093 5094 ret = ocfs2_read_extent_block(et->et_ci, 5095 ocfs2_et_get_last_eb_blk(et), 5096 &last_eb_bh); 5097 if (ret) { 5098 mlog_errno(ret); 5099 goto out; 5100 } 5101 5102 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5103 rightmost_el = &eb->h_list; 5104 } else 5105 rightmost_el = path_root_el(path); 5106 5107 if (rec->e_cpos == split_rec->e_cpos && 5108 rec->e_leaf_clusters == split_rec->e_leaf_clusters) 5109 ctxt.c_split_covers_rec = 1; 5110 else 5111 ctxt.c_split_covers_rec = 0; 5112 5113 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]); 5114 5115 trace_ocfs2_split_extent(split_index, ctxt.c_contig_type, 5116 ctxt.c_has_empty_extent, 5117 ctxt.c_split_covers_rec); 5118 5119 if (ctxt.c_contig_type == CONTIG_NONE) { 5120 if (ctxt.c_split_covers_rec) 5121 ret = ocfs2_replace_extent_rec(handle, et, path, el, 5122 split_index, split_rec); 5123 else 5124 ret = ocfs2_split_and_insert(handle, et, path, 5125 &last_eb_bh, split_index, 5126 split_rec, meta_ac); 5127 if (ret) 5128 mlog_errno(ret); 5129 } else { 5130 ret = ocfs2_try_to_merge_extent(handle, et, path, 5131 split_index, split_rec, 5132 dealloc, &ctxt); 5133 if (ret) 5134 mlog_errno(ret); 5135 } 5136 5137 out: 5138 brelse(last_eb_bh); 5139 return ret; 5140 } 5141 5142 /* 5143 * Change the flags of the already-existing extent at cpos for len clusters. 5144 * 5145 * new_flags: the flags we want to set. 5146 * clear_flags: the flags we want to clear. 5147 * phys: the new physical offset we want this new extent starts from. 5148 * 5149 * If the existing extent is larger than the request, initiate a 5150 * split. An attempt will be made at merging with adjacent extents. 5151 * 5152 * The caller is responsible for passing down meta_ac if we'll need it. 5153 */ 5154 int ocfs2_change_extent_flag(handle_t *handle, 5155 struct ocfs2_extent_tree *et, 5156 u32 cpos, u32 len, u32 phys, 5157 struct ocfs2_alloc_context *meta_ac, 5158 struct ocfs2_cached_dealloc_ctxt *dealloc, 5159 int new_flags, int clear_flags) 5160 { 5161 int ret, index; 5162 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 5163 u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys); 5164 struct ocfs2_extent_rec split_rec; 5165 struct ocfs2_path *left_path = NULL; 5166 struct ocfs2_extent_list *el; 5167 struct ocfs2_extent_rec *rec; 5168 5169 left_path = ocfs2_new_path_from_et(et); 5170 if (!left_path) { 5171 ret = -ENOMEM; 5172 mlog_errno(ret); 5173 goto out; 5174 } 5175 5176 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 5177 if (ret) { 5178 mlog_errno(ret); 5179 goto out; 5180 } 5181 el = path_leaf_el(left_path); 5182 5183 index = ocfs2_search_extent_list(el, cpos); 5184 if (index == -1) { 5185 ocfs2_error(sb, 5186 "Owner %llu has an extent at cpos %u which can no longer be found\n", 5187 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5188 cpos); 5189 ret = -EROFS; 5190 goto out; 5191 } 5192 5193 ret = -EIO; 5194 rec = &el->l_recs[index]; 5195 if (new_flags && (rec->e_flags & new_flags)) { 5196 mlog(ML_ERROR, "Owner %llu tried to set %d flags on an " 5197 "extent that already had them", 5198 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5199 new_flags); 5200 goto out; 5201 } 5202 5203 if (clear_flags && !(rec->e_flags & clear_flags)) { 5204 mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an " 5205 "extent that didn't have them", 5206 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5207 clear_flags); 5208 goto out; 5209 } 5210 5211 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec)); 5212 split_rec.e_cpos = cpu_to_le32(cpos); 5213 split_rec.e_leaf_clusters = cpu_to_le16(len); 5214 split_rec.e_blkno = cpu_to_le64(start_blkno); 5215 split_rec.e_flags = rec->e_flags; 5216 if (new_flags) 5217 split_rec.e_flags |= new_flags; 5218 if (clear_flags) 5219 split_rec.e_flags &= ~clear_flags; 5220 5221 ret = ocfs2_split_extent(handle, et, left_path, 5222 index, &split_rec, meta_ac, 5223 dealloc); 5224 if (ret) 5225 mlog_errno(ret); 5226 5227 out: 5228 ocfs2_free_path(left_path); 5229 return ret; 5230 5231 } 5232 5233 /* 5234 * Mark the already-existing extent at cpos as written for len clusters. 5235 * This removes the unwritten extent flag. 5236 * 5237 * If the existing extent is larger than the request, initiate a 5238 * split. An attempt will be made at merging with adjacent extents. 5239 * 5240 * The caller is responsible for passing down meta_ac if we'll need it. 5241 */ 5242 int ocfs2_mark_extent_written(struct inode *inode, 5243 struct ocfs2_extent_tree *et, 5244 handle_t *handle, u32 cpos, u32 len, u32 phys, 5245 struct ocfs2_alloc_context *meta_ac, 5246 struct ocfs2_cached_dealloc_ctxt *dealloc) 5247 { 5248 int ret; 5249 5250 trace_ocfs2_mark_extent_written( 5251 (unsigned long long)OCFS2_I(inode)->ip_blkno, 5252 cpos, len, phys); 5253 5254 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) { 5255 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents that are being written to, but the feature bit is not set in the super block\n", 5256 (unsigned long long)OCFS2_I(inode)->ip_blkno); 5257 ret = -EROFS; 5258 goto out; 5259 } 5260 5261 /* 5262 * XXX: This should be fixed up so that we just re-insert the 5263 * next extent records. 5264 */ 5265 ocfs2_et_extent_map_truncate(et, 0); 5266 5267 ret = ocfs2_change_extent_flag(handle, et, cpos, 5268 len, phys, meta_ac, dealloc, 5269 0, OCFS2_EXT_UNWRITTEN); 5270 if (ret) 5271 mlog_errno(ret); 5272 5273 out: 5274 return ret; 5275 } 5276 5277 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et, 5278 struct ocfs2_path *path, 5279 int index, u32 new_range, 5280 struct ocfs2_alloc_context *meta_ac) 5281 { 5282 int ret, depth, credits; 5283 struct buffer_head *last_eb_bh = NULL; 5284 struct ocfs2_extent_block *eb; 5285 struct ocfs2_extent_list *rightmost_el, *el; 5286 struct ocfs2_extent_rec split_rec; 5287 struct ocfs2_extent_rec *rec; 5288 struct ocfs2_insert_type insert; 5289 5290 /* 5291 * Setup the record to split before we grow the tree. 5292 */ 5293 el = path_leaf_el(path); 5294 rec = &el->l_recs[index]; 5295 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci), 5296 &split_rec, new_range, rec); 5297 5298 depth = path->p_tree_depth; 5299 if (depth > 0) { 5300 ret = ocfs2_read_extent_block(et->et_ci, 5301 ocfs2_et_get_last_eb_blk(et), 5302 &last_eb_bh); 5303 if (ret < 0) { 5304 mlog_errno(ret); 5305 goto out; 5306 } 5307 5308 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5309 rightmost_el = &eb->h_list; 5310 } else 5311 rightmost_el = path_leaf_el(path); 5312 5313 credits = path->p_tree_depth + 5314 ocfs2_extend_meta_needed(et->et_root_el); 5315 ret = ocfs2_extend_trans(handle, credits); 5316 if (ret) { 5317 mlog_errno(ret); 5318 goto out; 5319 } 5320 5321 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 5322 le16_to_cpu(rightmost_el->l_count)) { 5323 ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh, 5324 meta_ac); 5325 if (ret) { 5326 mlog_errno(ret); 5327 goto out; 5328 } 5329 } 5330 5331 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 5332 insert.ins_appending = APPEND_NONE; 5333 insert.ins_contig = CONTIG_NONE; 5334 insert.ins_split = SPLIT_RIGHT; 5335 insert.ins_tree_depth = depth; 5336 5337 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert); 5338 if (ret) 5339 mlog_errno(ret); 5340 5341 out: 5342 brelse(last_eb_bh); 5343 return ret; 5344 } 5345 5346 static int ocfs2_truncate_rec(handle_t *handle, 5347 struct ocfs2_extent_tree *et, 5348 struct ocfs2_path *path, int index, 5349 struct ocfs2_cached_dealloc_ctxt *dealloc, 5350 u32 cpos, u32 len) 5351 { 5352 int ret; 5353 u32 left_cpos, rec_range, trunc_range; 5354 int is_rightmost_tree_rec = 0; 5355 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 5356 struct ocfs2_path *left_path = NULL; 5357 struct ocfs2_extent_list *el = path_leaf_el(path); 5358 struct ocfs2_extent_rec *rec; 5359 struct ocfs2_extent_block *eb; 5360 5361 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) { 5362 /* extend credit for ocfs2_remove_rightmost_path */ 5363 ret = ocfs2_extend_rotate_transaction(handle, 0, 5364 handle->h_buffer_credits, 5365 path); 5366 if (ret) { 5367 mlog_errno(ret); 5368 goto out; 5369 } 5370 5371 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 5372 if (ret) { 5373 mlog_errno(ret); 5374 goto out; 5375 } 5376 5377 index--; 5378 } 5379 5380 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) && 5381 path->p_tree_depth) { 5382 /* 5383 * Check whether this is the rightmost tree record. If 5384 * we remove all of this record or part of its right 5385 * edge then an update of the record lengths above it 5386 * will be required. 5387 */ 5388 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 5389 if (eb->h_next_leaf_blk == 0) 5390 is_rightmost_tree_rec = 1; 5391 } 5392 5393 rec = &el->l_recs[index]; 5394 if (index == 0 && path->p_tree_depth && 5395 le32_to_cpu(rec->e_cpos) == cpos) { 5396 /* 5397 * Changing the leftmost offset (via partial or whole 5398 * record truncate) of an interior (or rightmost) path 5399 * means we have to update the subtree that is formed 5400 * by this leaf and the one to it's left. 5401 * 5402 * There are two cases we can skip: 5403 * 1) Path is the leftmost one in our btree. 5404 * 2) The leaf is rightmost and will be empty after 5405 * we remove the extent record - the rotate code 5406 * knows how to update the newly formed edge. 5407 */ 5408 5409 ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos); 5410 if (ret) { 5411 mlog_errno(ret); 5412 goto out; 5413 } 5414 5415 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) { 5416 left_path = ocfs2_new_path_from_path(path); 5417 if (!left_path) { 5418 ret = -ENOMEM; 5419 mlog_errno(ret); 5420 goto out; 5421 } 5422 5423 ret = ocfs2_find_path(et->et_ci, left_path, 5424 left_cpos); 5425 if (ret) { 5426 mlog_errno(ret); 5427 goto out; 5428 } 5429 } 5430 } 5431 5432 ret = ocfs2_extend_rotate_transaction(handle, 0, 5433 handle->h_buffer_credits, 5434 path); 5435 if (ret) { 5436 mlog_errno(ret); 5437 goto out; 5438 } 5439 5440 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 5441 if (ret) { 5442 mlog_errno(ret); 5443 goto out; 5444 } 5445 5446 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 5447 if (ret) { 5448 mlog_errno(ret); 5449 goto out; 5450 } 5451 5452 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5453 trunc_range = cpos + len; 5454 5455 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) { 5456 int next_free; 5457 5458 memset(rec, 0, sizeof(*rec)); 5459 ocfs2_cleanup_merge(el, index); 5460 5461 next_free = le16_to_cpu(el->l_next_free_rec); 5462 if (is_rightmost_tree_rec && next_free > 1) { 5463 /* 5464 * We skip the edge update if this path will 5465 * be deleted by the rotate code. 5466 */ 5467 rec = &el->l_recs[next_free - 1]; 5468 ocfs2_adjust_rightmost_records(handle, et, path, 5469 rec); 5470 } 5471 } else if (le32_to_cpu(rec->e_cpos) == cpos) { 5472 /* Remove leftmost portion of the record. */ 5473 le32_add_cpu(&rec->e_cpos, len); 5474 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len)); 5475 le16_add_cpu(&rec->e_leaf_clusters, -len); 5476 } else if (rec_range == trunc_range) { 5477 /* Remove rightmost portion of the record */ 5478 le16_add_cpu(&rec->e_leaf_clusters, -len); 5479 if (is_rightmost_tree_rec) 5480 ocfs2_adjust_rightmost_records(handle, et, path, rec); 5481 } else { 5482 /* Caller should have trapped this. */ 5483 mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) " 5484 "(%u, %u)\n", 5485 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5486 le32_to_cpu(rec->e_cpos), 5487 le16_to_cpu(rec->e_leaf_clusters), cpos, len); 5488 BUG(); 5489 } 5490 5491 if (left_path) { 5492 int subtree_index; 5493 5494 subtree_index = ocfs2_find_subtree_root(et, left_path, path); 5495 ocfs2_complete_edge_insert(handle, left_path, path, 5496 subtree_index); 5497 } 5498 5499 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 5500 5501 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 5502 if (ret) { 5503 mlog_errno(ret); 5504 goto out; 5505 } 5506 5507 out: 5508 ocfs2_free_path(left_path); 5509 return ret; 5510 } 5511 5512 int ocfs2_remove_extent(handle_t *handle, 5513 struct ocfs2_extent_tree *et, 5514 u32 cpos, u32 len, 5515 struct ocfs2_alloc_context *meta_ac, 5516 struct ocfs2_cached_dealloc_ctxt *dealloc) 5517 { 5518 int ret, index; 5519 u32 rec_range, trunc_range; 5520 struct ocfs2_extent_rec *rec; 5521 struct ocfs2_extent_list *el; 5522 struct ocfs2_path *path = NULL; 5523 5524 /* 5525 * XXX: Why are we truncating to 0 instead of wherever this 5526 * affects us? 5527 */ 5528 ocfs2_et_extent_map_truncate(et, 0); 5529 5530 path = ocfs2_new_path_from_et(et); 5531 if (!path) { 5532 ret = -ENOMEM; 5533 mlog_errno(ret); 5534 goto out; 5535 } 5536 5537 ret = ocfs2_find_path(et->et_ci, path, cpos); 5538 if (ret) { 5539 mlog_errno(ret); 5540 goto out; 5541 } 5542 5543 el = path_leaf_el(path); 5544 index = ocfs2_search_extent_list(el, cpos); 5545 if (index == -1) { 5546 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5547 "Owner %llu has an extent at cpos %u which can no longer be found\n", 5548 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5549 cpos); 5550 ret = -EROFS; 5551 goto out; 5552 } 5553 5554 /* 5555 * We have 3 cases of extent removal: 5556 * 1) Range covers the entire extent rec 5557 * 2) Range begins or ends on one edge of the extent rec 5558 * 3) Range is in the middle of the extent rec (no shared edges) 5559 * 5560 * For case 1 we remove the extent rec and left rotate to 5561 * fill the hole. 5562 * 5563 * For case 2 we just shrink the existing extent rec, with a 5564 * tree update if the shrinking edge is also the edge of an 5565 * extent block. 5566 * 5567 * For case 3 we do a right split to turn the extent rec into 5568 * something case 2 can handle. 5569 */ 5570 rec = &el->l_recs[index]; 5571 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5572 trunc_range = cpos + len; 5573 5574 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range); 5575 5576 trace_ocfs2_remove_extent( 5577 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5578 cpos, len, index, le32_to_cpu(rec->e_cpos), 5579 ocfs2_rec_clusters(el, rec)); 5580 5581 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) { 5582 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc, 5583 cpos, len); 5584 if (ret) { 5585 mlog_errno(ret); 5586 goto out; 5587 } 5588 } else { 5589 ret = ocfs2_split_tree(handle, et, path, index, 5590 trunc_range, meta_ac); 5591 if (ret) { 5592 mlog_errno(ret); 5593 goto out; 5594 } 5595 5596 /* 5597 * The split could have manipulated the tree enough to 5598 * move the record location, so we have to look for it again. 5599 */ 5600 ocfs2_reinit_path(path, 1); 5601 5602 ret = ocfs2_find_path(et->et_ci, path, cpos); 5603 if (ret) { 5604 mlog_errno(ret); 5605 goto out; 5606 } 5607 5608 el = path_leaf_el(path); 5609 index = ocfs2_search_extent_list(el, cpos); 5610 if (index == -1) { 5611 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5612 "Owner %llu: split at cpos %u lost record\n", 5613 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5614 cpos); 5615 ret = -EROFS; 5616 goto out; 5617 } 5618 5619 /* 5620 * Double check our values here. If anything is fishy, 5621 * it's easier to catch it at the top level. 5622 */ 5623 rec = &el->l_recs[index]; 5624 rec_range = le32_to_cpu(rec->e_cpos) + 5625 ocfs2_rec_clusters(el, rec); 5626 if (rec_range != trunc_range) { 5627 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5628 "Owner %llu: error after split at cpos %u trunc len %u, existing record is (%u,%u)\n", 5629 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5630 cpos, len, le32_to_cpu(rec->e_cpos), 5631 ocfs2_rec_clusters(el, rec)); 5632 ret = -EROFS; 5633 goto out; 5634 } 5635 5636 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc, 5637 cpos, len); 5638 if (ret) { 5639 mlog_errno(ret); 5640 goto out; 5641 } 5642 } 5643 5644 out: 5645 ocfs2_free_path(path); 5646 return ret; 5647 } 5648 5649 /* 5650 * ocfs2_reserve_blocks_for_rec_trunc() would look basically the 5651 * same as ocfs2_lock_alloctors(), except for it accepts a blocks 5652 * number to reserve some extra blocks, and it only handles meta 5653 * data allocations. 5654 * 5655 * Currently, only ocfs2_remove_btree_range() uses it for truncating 5656 * and punching holes. 5657 */ 5658 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode, 5659 struct ocfs2_extent_tree *et, 5660 u32 extents_to_split, 5661 struct ocfs2_alloc_context **ac, 5662 int extra_blocks) 5663 { 5664 int ret = 0, num_free_extents; 5665 unsigned int max_recs_needed = 2 * extents_to_split; 5666 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5667 5668 *ac = NULL; 5669 5670 num_free_extents = ocfs2_num_free_extents(osb, et); 5671 if (num_free_extents < 0) { 5672 ret = num_free_extents; 5673 mlog_errno(ret); 5674 goto out; 5675 } 5676 5677 if (!num_free_extents || 5678 (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed)) 5679 extra_blocks += ocfs2_extend_meta_needed(et->et_root_el); 5680 5681 if (extra_blocks) { 5682 ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac); 5683 if (ret < 0) { 5684 if (ret != -ENOSPC) 5685 mlog_errno(ret); 5686 goto out; 5687 } 5688 } 5689 5690 out: 5691 if (ret) { 5692 if (*ac) { 5693 ocfs2_free_alloc_context(*ac); 5694 *ac = NULL; 5695 } 5696 } 5697 5698 return ret; 5699 } 5700 5701 int ocfs2_remove_btree_range(struct inode *inode, 5702 struct ocfs2_extent_tree *et, 5703 u32 cpos, u32 phys_cpos, u32 len, int flags, 5704 struct ocfs2_cached_dealloc_ctxt *dealloc, 5705 u64 refcount_loc, bool refcount_tree_locked) 5706 { 5707 int ret, credits = 0, extra_blocks = 0; 5708 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos); 5709 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5710 struct inode *tl_inode = osb->osb_tl_inode; 5711 handle_t *handle; 5712 struct ocfs2_alloc_context *meta_ac = NULL; 5713 struct ocfs2_refcount_tree *ref_tree = NULL; 5714 5715 if ((flags & OCFS2_EXT_REFCOUNTED) && len) { 5716 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & 5717 OCFS2_HAS_REFCOUNT_FL)); 5718 5719 if (!refcount_tree_locked) { 5720 ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1, 5721 &ref_tree, NULL); 5722 if (ret) { 5723 mlog_errno(ret); 5724 goto bail; 5725 } 5726 } 5727 5728 ret = ocfs2_prepare_refcount_change_for_del(inode, 5729 refcount_loc, 5730 phys_blkno, 5731 len, 5732 &credits, 5733 &extra_blocks); 5734 if (ret < 0) { 5735 mlog_errno(ret); 5736 goto bail; 5737 } 5738 } 5739 5740 ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac, 5741 extra_blocks); 5742 if (ret) { 5743 mlog_errno(ret); 5744 goto bail; 5745 } 5746 5747 inode_lock(tl_inode); 5748 5749 if (ocfs2_truncate_log_needs_flush(osb)) { 5750 ret = __ocfs2_flush_truncate_log(osb); 5751 if (ret < 0) { 5752 mlog_errno(ret); 5753 goto out; 5754 } 5755 } 5756 5757 handle = ocfs2_start_trans(osb, 5758 ocfs2_remove_extent_credits(osb->sb) + credits); 5759 if (IS_ERR(handle)) { 5760 ret = PTR_ERR(handle); 5761 mlog_errno(ret); 5762 goto out; 5763 } 5764 5765 ret = ocfs2_et_root_journal_access(handle, et, 5766 OCFS2_JOURNAL_ACCESS_WRITE); 5767 if (ret) { 5768 mlog_errno(ret); 5769 goto out_commit; 5770 } 5771 5772 dquot_free_space_nodirty(inode, 5773 ocfs2_clusters_to_bytes(inode->i_sb, len)); 5774 5775 ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc); 5776 if (ret) { 5777 mlog_errno(ret); 5778 goto out_commit; 5779 } 5780 5781 ocfs2_et_update_clusters(et, -len); 5782 ocfs2_update_inode_fsync_trans(handle, inode, 1); 5783 5784 ocfs2_journal_dirty(handle, et->et_root_bh); 5785 5786 if (phys_blkno) { 5787 if (flags & OCFS2_EXT_REFCOUNTED) 5788 ret = ocfs2_decrease_refcount(inode, handle, 5789 ocfs2_blocks_to_clusters(osb->sb, 5790 phys_blkno), 5791 len, meta_ac, 5792 dealloc, 1); 5793 else 5794 ret = ocfs2_truncate_log_append(osb, handle, 5795 phys_blkno, len); 5796 if (ret) 5797 mlog_errno(ret); 5798 5799 } 5800 5801 out_commit: 5802 ocfs2_commit_trans(osb, handle); 5803 out: 5804 inode_unlock(tl_inode); 5805 bail: 5806 if (meta_ac) 5807 ocfs2_free_alloc_context(meta_ac); 5808 5809 if (ref_tree) 5810 ocfs2_unlock_refcount_tree(osb, ref_tree, 1); 5811 5812 return ret; 5813 } 5814 5815 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb) 5816 { 5817 struct buffer_head *tl_bh = osb->osb_tl_bh; 5818 struct ocfs2_dinode *di; 5819 struct ocfs2_truncate_log *tl; 5820 5821 di = (struct ocfs2_dinode *) tl_bh->b_data; 5822 tl = &di->id2.i_dealloc; 5823 5824 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count), 5825 "slot %d, invalid truncate log parameters: used = " 5826 "%u, count = %u\n", osb->slot_num, 5827 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count)); 5828 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count); 5829 } 5830 5831 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl, 5832 unsigned int new_start) 5833 { 5834 unsigned int tail_index; 5835 unsigned int current_tail; 5836 5837 /* No records, nothing to coalesce */ 5838 if (!le16_to_cpu(tl->tl_used)) 5839 return 0; 5840 5841 tail_index = le16_to_cpu(tl->tl_used) - 1; 5842 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start); 5843 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters); 5844 5845 return current_tail == new_start; 5846 } 5847 5848 int ocfs2_truncate_log_append(struct ocfs2_super *osb, 5849 handle_t *handle, 5850 u64 start_blk, 5851 unsigned int num_clusters) 5852 { 5853 int status, index; 5854 unsigned int start_cluster, tl_count; 5855 struct inode *tl_inode = osb->osb_tl_inode; 5856 struct buffer_head *tl_bh = osb->osb_tl_bh; 5857 struct ocfs2_dinode *di; 5858 struct ocfs2_truncate_log *tl; 5859 5860 BUG_ON(inode_trylock(tl_inode)); 5861 5862 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk); 5863 5864 di = (struct ocfs2_dinode *) tl_bh->b_data; 5865 5866 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 5867 * by the underlying call to ocfs2_read_inode_block(), so any 5868 * corruption is a code bug */ 5869 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5870 5871 tl = &di->id2.i_dealloc; 5872 tl_count = le16_to_cpu(tl->tl_count); 5873 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) || 5874 tl_count == 0, 5875 "Truncate record count on #%llu invalid " 5876 "wanted %u, actual %u\n", 5877 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5878 ocfs2_truncate_recs_per_inode(osb->sb), 5879 le16_to_cpu(tl->tl_count)); 5880 5881 /* Caller should have known to flush before calling us. */ 5882 index = le16_to_cpu(tl->tl_used); 5883 if (index >= tl_count) { 5884 status = -ENOSPC; 5885 mlog_errno(status); 5886 goto bail; 5887 } 5888 5889 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, 5890 OCFS2_JOURNAL_ACCESS_WRITE); 5891 if (status < 0) { 5892 mlog_errno(status); 5893 goto bail; 5894 } 5895 5896 trace_ocfs2_truncate_log_append( 5897 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index, 5898 start_cluster, num_clusters); 5899 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) { 5900 /* 5901 * Move index back to the record we are coalescing with. 5902 * ocfs2_truncate_log_can_coalesce() guarantees nonzero 5903 */ 5904 index--; 5905 5906 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters); 5907 trace_ocfs2_truncate_log_append( 5908 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5909 index, le32_to_cpu(tl->tl_recs[index].t_start), 5910 num_clusters); 5911 } else { 5912 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster); 5913 tl->tl_used = cpu_to_le16(index + 1); 5914 } 5915 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters); 5916 5917 ocfs2_journal_dirty(handle, tl_bh); 5918 5919 osb->truncated_clusters += num_clusters; 5920 bail: 5921 return status; 5922 } 5923 5924 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb, 5925 struct inode *data_alloc_inode, 5926 struct buffer_head *data_alloc_bh) 5927 { 5928 int status = 0; 5929 int i; 5930 unsigned int num_clusters; 5931 u64 start_blk; 5932 struct ocfs2_truncate_rec rec; 5933 struct ocfs2_dinode *di; 5934 struct ocfs2_truncate_log *tl; 5935 struct inode *tl_inode = osb->osb_tl_inode; 5936 struct buffer_head *tl_bh = osb->osb_tl_bh; 5937 handle_t *handle; 5938 5939 di = (struct ocfs2_dinode *) tl_bh->b_data; 5940 tl = &di->id2.i_dealloc; 5941 i = le16_to_cpu(tl->tl_used) - 1; 5942 while (i >= 0) { 5943 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC); 5944 if (IS_ERR(handle)) { 5945 status = PTR_ERR(handle); 5946 mlog_errno(status); 5947 goto bail; 5948 } 5949 5950 /* Caller has given us at least enough credits to 5951 * update the truncate log dinode */ 5952 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, 5953 OCFS2_JOURNAL_ACCESS_WRITE); 5954 if (status < 0) { 5955 mlog_errno(status); 5956 goto bail; 5957 } 5958 5959 tl->tl_used = cpu_to_le16(i); 5960 5961 ocfs2_journal_dirty(handle, tl_bh); 5962 5963 rec = tl->tl_recs[i]; 5964 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb, 5965 le32_to_cpu(rec.t_start)); 5966 num_clusters = le32_to_cpu(rec.t_clusters); 5967 5968 /* if start_blk is not set, we ignore the record as 5969 * invalid. */ 5970 if (start_blk) { 5971 trace_ocfs2_replay_truncate_records( 5972 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5973 i, le32_to_cpu(rec.t_start), num_clusters); 5974 5975 status = ocfs2_free_clusters(handle, data_alloc_inode, 5976 data_alloc_bh, start_blk, 5977 num_clusters); 5978 if (status < 0) { 5979 mlog_errno(status); 5980 goto bail; 5981 } 5982 } 5983 5984 ocfs2_commit_trans(osb, handle); 5985 i--; 5986 } 5987 5988 osb->truncated_clusters = 0; 5989 5990 bail: 5991 return status; 5992 } 5993 5994 /* Expects you to already be holding tl_inode->i_mutex */ 5995 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb) 5996 { 5997 int status; 5998 unsigned int num_to_flush; 5999 struct inode *tl_inode = osb->osb_tl_inode; 6000 struct inode *data_alloc_inode = NULL; 6001 struct buffer_head *tl_bh = osb->osb_tl_bh; 6002 struct buffer_head *data_alloc_bh = NULL; 6003 struct ocfs2_dinode *di; 6004 struct ocfs2_truncate_log *tl; 6005 6006 BUG_ON(inode_trylock(tl_inode)); 6007 6008 di = (struct ocfs2_dinode *) tl_bh->b_data; 6009 6010 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 6011 * by the underlying call to ocfs2_read_inode_block(), so any 6012 * corruption is a code bug */ 6013 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 6014 6015 tl = &di->id2.i_dealloc; 6016 num_to_flush = le16_to_cpu(tl->tl_used); 6017 trace_ocfs2_flush_truncate_log( 6018 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 6019 num_to_flush); 6020 if (!num_to_flush) { 6021 status = 0; 6022 goto out; 6023 } 6024 6025 data_alloc_inode = ocfs2_get_system_file_inode(osb, 6026 GLOBAL_BITMAP_SYSTEM_INODE, 6027 OCFS2_INVALID_SLOT); 6028 if (!data_alloc_inode) { 6029 status = -EINVAL; 6030 mlog(ML_ERROR, "Could not get bitmap inode!\n"); 6031 goto out; 6032 } 6033 6034 inode_lock(data_alloc_inode); 6035 6036 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1); 6037 if (status < 0) { 6038 mlog_errno(status); 6039 goto out_mutex; 6040 } 6041 6042 status = ocfs2_replay_truncate_records(osb, data_alloc_inode, 6043 data_alloc_bh); 6044 if (status < 0) 6045 mlog_errno(status); 6046 6047 brelse(data_alloc_bh); 6048 ocfs2_inode_unlock(data_alloc_inode, 1); 6049 6050 out_mutex: 6051 inode_unlock(data_alloc_inode); 6052 iput(data_alloc_inode); 6053 6054 out: 6055 return status; 6056 } 6057 6058 int ocfs2_flush_truncate_log(struct ocfs2_super *osb) 6059 { 6060 int status; 6061 struct inode *tl_inode = osb->osb_tl_inode; 6062 6063 inode_lock(tl_inode); 6064 status = __ocfs2_flush_truncate_log(osb); 6065 inode_unlock(tl_inode); 6066 6067 return status; 6068 } 6069 6070 static void ocfs2_truncate_log_worker(struct work_struct *work) 6071 { 6072 int status; 6073 struct ocfs2_super *osb = 6074 container_of(work, struct ocfs2_super, 6075 osb_truncate_log_wq.work); 6076 6077 status = ocfs2_flush_truncate_log(osb); 6078 if (status < 0) 6079 mlog_errno(status); 6080 else 6081 ocfs2_init_steal_slots(osb); 6082 } 6083 6084 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ) 6085 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb, 6086 int cancel) 6087 { 6088 if (osb->osb_tl_inode && 6089 atomic_read(&osb->osb_tl_disable) == 0) { 6090 /* We want to push off log flushes while truncates are 6091 * still running. */ 6092 if (cancel) 6093 cancel_delayed_work(&osb->osb_truncate_log_wq); 6094 6095 queue_delayed_work(osb->ocfs2_wq, &osb->osb_truncate_log_wq, 6096 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL); 6097 } 6098 } 6099 6100 /* 6101 * Try to flush truncate logs if we can free enough clusters from it. 6102 * As for return value, "< 0" means error, "0" no space and "1" means 6103 * we have freed enough spaces and let the caller try to allocate again. 6104 */ 6105 int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb, 6106 unsigned int needed) 6107 { 6108 tid_t target; 6109 int ret = 0; 6110 unsigned int truncated_clusters; 6111 6112 inode_lock(osb->osb_tl_inode); 6113 truncated_clusters = osb->truncated_clusters; 6114 inode_unlock(osb->osb_tl_inode); 6115 6116 /* 6117 * Check whether we can succeed in allocating if we free 6118 * the truncate log. 6119 */ 6120 if (truncated_clusters < needed) 6121 goto out; 6122 6123 ret = ocfs2_flush_truncate_log(osb); 6124 if (ret) { 6125 mlog_errno(ret); 6126 goto out; 6127 } 6128 6129 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) { 6130 jbd2_log_wait_commit(osb->journal->j_journal, target); 6131 ret = 1; 6132 } 6133 out: 6134 return ret; 6135 } 6136 6137 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb, 6138 int slot_num, 6139 struct inode **tl_inode, 6140 struct buffer_head **tl_bh) 6141 { 6142 int status; 6143 struct inode *inode = NULL; 6144 struct buffer_head *bh = NULL; 6145 6146 inode = ocfs2_get_system_file_inode(osb, 6147 TRUNCATE_LOG_SYSTEM_INODE, 6148 slot_num); 6149 if (!inode) { 6150 status = -EINVAL; 6151 mlog(ML_ERROR, "Could not get load truncate log inode!\n"); 6152 goto bail; 6153 } 6154 6155 status = ocfs2_read_inode_block(inode, &bh); 6156 if (status < 0) { 6157 iput(inode); 6158 mlog_errno(status); 6159 goto bail; 6160 } 6161 6162 *tl_inode = inode; 6163 *tl_bh = bh; 6164 bail: 6165 return status; 6166 } 6167 6168 /* called during the 1st stage of node recovery. we stamp a clean 6169 * truncate log and pass back a copy for processing later. if the 6170 * truncate log does not require processing, a *tl_copy is set to 6171 * NULL. */ 6172 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb, 6173 int slot_num, 6174 struct ocfs2_dinode **tl_copy) 6175 { 6176 int status; 6177 struct inode *tl_inode = NULL; 6178 struct buffer_head *tl_bh = NULL; 6179 struct ocfs2_dinode *di; 6180 struct ocfs2_truncate_log *tl; 6181 6182 *tl_copy = NULL; 6183 6184 trace_ocfs2_begin_truncate_log_recovery(slot_num); 6185 6186 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh); 6187 if (status < 0) { 6188 mlog_errno(status); 6189 goto bail; 6190 } 6191 6192 di = (struct ocfs2_dinode *) tl_bh->b_data; 6193 6194 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's 6195 * validated by the underlying call to ocfs2_read_inode_block(), 6196 * so any corruption is a code bug */ 6197 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 6198 6199 tl = &di->id2.i_dealloc; 6200 if (le16_to_cpu(tl->tl_used)) { 6201 trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl->tl_used)); 6202 6203 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL); 6204 if (!(*tl_copy)) { 6205 status = -ENOMEM; 6206 mlog_errno(status); 6207 goto bail; 6208 } 6209 6210 /* Assuming the write-out below goes well, this copy 6211 * will be passed back to recovery for processing. */ 6212 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size); 6213 6214 /* All we need to do to clear the truncate log is set 6215 * tl_used. */ 6216 tl->tl_used = 0; 6217 6218 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check); 6219 status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode)); 6220 if (status < 0) { 6221 mlog_errno(status); 6222 goto bail; 6223 } 6224 } 6225 6226 bail: 6227 iput(tl_inode); 6228 brelse(tl_bh); 6229 6230 if (status < 0) { 6231 kfree(*tl_copy); 6232 *tl_copy = NULL; 6233 mlog_errno(status); 6234 } 6235 6236 return status; 6237 } 6238 6239 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb, 6240 struct ocfs2_dinode *tl_copy) 6241 { 6242 int status = 0; 6243 int i; 6244 unsigned int clusters, num_recs, start_cluster; 6245 u64 start_blk; 6246 handle_t *handle; 6247 struct inode *tl_inode = osb->osb_tl_inode; 6248 struct ocfs2_truncate_log *tl; 6249 6250 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) { 6251 mlog(ML_ERROR, "Asked to recover my own truncate log!\n"); 6252 return -EINVAL; 6253 } 6254 6255 tl = &tl_copy->id2.i_dealloc; 6256 num_recs = le16_to_cpu(tl->tl_used); 6257 trace_ocfs2_complete_truncate_log_recovery( 6258 (unsigned long long)le64_to_cpu(tl_copy->i_blkno), 6259 num_recs); 6260 6261 inode_lock(tl_inode); 6262 for(i = 0; i < num_recs; i++) { 6263 if (ocfs2_truncate_log_needs_flush(osb)) { 6264 status = __ocfs2_flush_truncate_log(osb); 6265 if (status < 0) { 6266 mlog_errno(status); 6267 goto bail_up; 6268 } 6269 } 6270 6271 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6272 if (IS_ERR(handle)) { 6273 status = PTR_ERR(handle); 6274 mlog_errno(status); 6275 goto bail_up; 6276 } 6277 6278 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters); 6279 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start); 6280 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster); 6281 6282 status = ocfs2_truncate_log_append(osb, handle, 6283 start_blk, clusters); 6284 ocfs2_commit_trans(osb, handle); 6285 if (status < 0) { 6286 mlog_errno(status); 6287 goto bail_up; 6288 } 6289 } 6290 6291 bail_up: 6292 inode_unlock(tl_inode); 6293 6294 return status; 6295 } 6296 6297 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb) 6298 { 6299 int status; 6300 struct inode *tl_inode = osb->osb_tl_inode; 6301 6302 atomic_set(&osb->osb_tl_disable, 1); 6303 6304 if (tl_inode) { 6305 cancel_delayed_work(&osb->osb_truncate_log_wq); 6306 flush_workqueue(osb->ocfs2_wq); 6307 6308 status = ocfs2_flush_truncate_log(osb); 6309 if (status < 0) 6310 mlog_errno(status); 6311 6312 brelse(osb->osb_tl_bh); 6313 iput(osb->osb_tl_inode); 6314 } 6315 } 6316 6317 int ocfs2_truncate_log_init(struct ocfs2_super *osb) 6318 { 6319 int status; 6320 struct inode *tl_inode = NULL; 6321 struct buffer_head *tl_bh = NULL; 6322 6323 status = ocfs2_get_truncate_log_info(osb, 6324 osb->slot_num, 6325 &tl_inode, 6326 &tl_bh); 6327 if (status < 0) 6328 mlog_errno(status); 6329 6330 /* ocfs2_truncate_log_shutdown keys on the existence of 6331 * osb->osb_tl_inode so we don't set any of the osb variables 6332 * until we're sure all is well. */ 6333 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq, 6334 ocfs2_truncate_log_worker); 6335 atomic_set(&osb->osb_tl_disable, 0); 6336 osb->osb_tl_bh = tl_bh; 6337 osb->osb_tl_inode = tl_inode; 6338 6339 return status; 6340 } 6341 6342 /* 6343 * Delayed de-allocation of suballocator blocks. 6344 * 6345 * Some sets of block de-allocations might involve multiple suballocator inodes. 6346 * 6347 * The locking for this can get extremely complicated, especially when 6348 * the suballocator inodes to delete from aren't known until deep 6349 * within an unrelated codepath. 6350 * 6351 * ocfs2_extent_block structures are a good example of this - an inode 6352 * btree could have been grown by any number of nodes each allocating 6353 * out of their own suballoc inode. 6354 * 6355 * These structures allow the delay of block de-allocation until a 6356 * later time, when locking of multiple cluster inodes won't cause 6357 * deadlock. 6358 */ 6359 6360 /* 6361 * Describe a single bit freed from a suballocator. For the block 6362 * suballocators, it represents one block. For the global cluster 6363 * allocator, it represents some clusters and free_bit indicates 6364 * clusters number. 6365 */ 6366 struct ocfs2_cached_block_free { 6367 struct ocfs2_cached_block_free *free_next; 6368 u64 free_bg; 6369 u64 free_blk; 6370 unsigned int free_bit; 6371 }; 6372 6373 struct ocfs2_per_slot_free_list { 6374 struct ocfs2_per_slot_free_list *f_next_suballocator; 6375 int f_inode_type; 6376 int f_slot; 6377 struct ocfs2_cached_block_free *f_first; 6378 }; 6379 6380 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb, 6381 int sysfile_type, 6382 int slot, 6383 struct ocfs2_cached_block_free *head) 6384 { 6385 int ret; 6386 u64 bg_blkno; 6387 handle_t *handle; 6388 struct inode *inode; 6389 struct buffer_head *di_bh = NULL; 6390 struct ocfs2_cached_block_free *tmp; 6391 6392 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot); 6393 if (!inode) { 6394 ret = -EINVAL; 6395 mlog_errno(ret); 6396 goto out; 6397 } 6398 6399 inode_lock(inode); 6400 6401 ret = ocfs2_inode_lock(inode, &di_bh, 1); 6402 if (ret) { 6403 mlog_errno(ret); 6404 goto out_mutex; 6405 } 6406 6407 while (head) { 6408 if (head->free_bg) 6409 bg_blkno = head->free_bg; 6410 else 6411 bg_blkno = ocfs2_which_suballoc_group(head->free_blk, 6412 head->free_bit); 6413 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE); 6414 if (IS_ERR(handle)) { 6415 ret = PTR_ERR(handle); 6416 mlog_errno(ret); 6417 goto out_unlock; 6418 } 6419 6420 trace_ocfs2_free_cached_blocks( 6421 (unsigned long long)head->free_blk, head->free_bit); 6422 6423 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh, 6424 head->free_bit, bg_blkno, 1); 6425 if (ret) 6426 mlog_errno(ret); 6427 6428 ocfs2_commit_trans(osb, handle); 6429 6430 tmp = head; 6431 head = head->free_next; 6432 kfree(tmp); 6433 } 6434 6435 out_unlock: 6436 ocfs2_inode_unlock(inode, 1); 6437 brelse(di_bh); 6438 out_mutex: 6439 inode_unlock(inode); 6440 iput(inode); 6441 out: 6442 while(head) { 6443 /* Premature exit may have left some dangling items. */ 6444 tmp = head; 6445 head = head->free_next; 6446 kfree(tmp); 6447 } 6448 6449 return ret; 6450 } 6451 6452 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6453 u64 blkno, unsigned int bit) 6454 { 6455 int ret = 0; 6456 struct ocfs2_cached_block_free *item; 6457 6458 item = kzalloc(sizeof(*item), GFP_NOFS); 6459 if (item == NULL) { 6460 ret = -ENOMEM; 6461 mlog_errno(ret); 6462 return ret; 6463 } 6464 6465 trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno, bit); 6466 6467 item->free_blk = blkno; 6468 item->free_bit = bit; 6469 item->free_next = ctxt->c_global_allocator; 6470 6471 ctxt->c_global_allocator = item; 6472 return ret; 6473 } 6474 6475 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb, 6476 struct ocfs2_cached_block_free *head) 6477 { 6478 struct ocfs2_cached_block_free *tmp; 6479 struct inode *tl_inode = osb->osb_tl_inode; 6480 handle_t *handle; 6481 int ret = 0; 6482 6483 inode_lock(tl_inode); 6484 6485 while (head) { 6486 if (ocfs2_truncate_log_needs_flush(osb)) { 6487 ret = __ocfs2_flush_truncate_log(osb); 6488 if (ret < 0) { 6489 mlog_errno(ret); 6490 break; 6491 } 6492 } 6493 6494 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6495 if (IS_ERR(handle)) { 6496 ret = PTR_ERR(handle); 6497 mlog_errno(ret); 6498 break; 6499 } 6500 6501 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk, 6502 head->free_bit); 6503 6504 ocfs2_commit_trans(osb, handle); 6505 tmp = head; 6506 head = head->free_next; 6507 kfree(tmp); 6508 6509 if (ret < 0) { 6510 mlog_errno(ret); 6511 break; 6512 } 6513 } 6514 6515 inode_unlock(tl_inode); 6516 6517 while (head) { 6518 /* Premature exit may have left some dangling items. */ 6519 tmp = head; 6520 head = head->free_next; 6521 kfree(tmp); 6522 } 6523 6524 return ret; 6525 } 6526 6527 int ocfs2_run_deallocs(struct ocfs2_super *osb, 6528 struct ocfs2_cached_dealloc_ctxt *ctxt) 6529 { 6530 int ret = 0, ret2; 6531 struct ocfs2_per_slot_free_list *fl; 6532 6533 if (!ctxt) 6534 return 0; 6535 6536 while (ctxt->c_first_suballocator) { 6537 fl = ctxt->c_first_suballocator; 6538 6539 if (fl->f_first) { 6540 trace_ocfs2_run_deallocs(fl->f_inode_type, 6541 fl->f_slot); 6542 ret2 = ocfs2_free_cached_blocks(osb, 6543 fl->f_inode_type, 6544 fl->f_slot, 6545 fl->f_first); 6546 if (ret2) 6547 mlog_errno(ret2); 6548 if (!ret) 6549 ret = ret2; 6550 } 6551 6552 ctxt->c_first_suballocator = fl->f_next_suballocator; 6553 kfree(fl); 6554 } 6555 6556 if (ctxt->c_global_allocator) { 6557 ret2 = ocfs2_free_cached_clusters(osb, 6558 ctxt->c_global_allocator); 6559 if (ret2) 6560 mlog_errno(ret2); 6561 if (!ret) 6562 ret = ret2; 6563 6564 ctxt->c_global_allocator = NULL; 6565 } 6566 6567 return ret; 6568 } 6569 6570 static struct ocfs2_per_slot_free_list * 6571 ocfs2_find_per_slot_free_list(int type, 6572 int slot, 6573 struct ocfs2_cached_dealloc_ctxt *ctxt) 6574 { 6575 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; 6576 6577 while (fl) { 6578 if (fl->f_inode_type == type && fl->f_slot == slot) 6579 return fl; 6580 6581 fl = fl->f_next_suballocator; 6582 } 6583 6584 fl = kmalloc(sizeof(*fl), GFP_NOFS); 6585 if (fl) { 6586 fl->f_inode_type = type; 6587 fl->f_slot = slot; 6588 fl->f_first = NULL; 6589 fl->f_next_suballocator = ctxt->c_first_suballocator; 6590 6591 ctxt->c_first_suballocator = fl; 6592 } 6593 return fl; 6594 } 6595 6596 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6597 int type, int slot, u64 suballoc, 6598 u64 blkno, unsigned int bit) 6599 { 6600 int ret; 6601 struct ocfs2_per_slot_free_list *fl; 6602 struct ocfs2_cached_block_free *item; 6603 6604 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt); 6605 if (fl == NULL) { 6606 ret = -ENOMEM; 6607 mlog_errno(ret); 6608 goto out; 6609 } 6610 6611 item = kzalloc(sizeof(*item), GFP_NOFS); 6612 if (item == NULL) { 6613 ret = -ENOMEM; 6614 mlog_errno(ret); 6615 goto out; 6616 } 6617 6618 trace_ocfs2_cache_block_dealloc(type, slot, 6619 (unsigned long long)suballoc, 6620 (unsigned long long)blkno, bit); 6621 6622 item->free_bg = suballoc; 6623 item->free_blk = blkno; 6624 item->free_bit = bit; 6625 item->free_next = fl->f_first; 6626 6627 fl->f_first = item; 6628 6629 ret = 0; 6630 out: 6631 return ret; 6632 } 6633 6634 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 6635 struct ocfs2_extent_block *eb) 6636 { 6637 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE, 6638 le16_to_cpu(eb->h_suballoc_slot), 6639 le64_to_cpu(eb->h_suballoc_loc), 6640 le64_to_cpu(eb->h_blkno), 6641 le16_to_cpu(eb->h_suballoc_bit)); 6642 } 6643 6644 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh) 6645 { 6646 set_buffer_uptodate(bh); 6647 mark_buffer_dirty(bh); 6648 return 0; 6649 } 6650 6651 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle, 6652 unsigned int from, unsigned int to, 6653 struct page *page, int zero, u64 *phys) 6654 { 6655 int ret, partial = 0; 6656 6657 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0); 6658 if (ret) 6659 mlog_errno(ret); 6660 6661 if (zero) 6662 zero_user_segment(page, from, to); 6663 6664 /* 6665 * Need to set the buffers we zero'd into uptodate 6666 * here if they aren't - ocfs2_map_page_blocks() 6667 * might've skipped some 6668 */ 6669 ret = walk_page_buffers(handle, page_buffers(page), 6670 from, to, &partial, 6671 ocfs2_zero_func); 6672 if (ret < 0) 6673 mlog_errno(ret); 6674 else if (ocfs2_should_order_data(inode)) { 6675 ret = ocfs2_jbd2_file_inode(handle, inode); 6676 if (ret < 0) 6677 mlog_errno(ret); 6678 } 6679 6680 if (!partial) 6681 SetPageUptodate(page); 6682 6683 flush_dcache_page(page); 6684 } 6685 6686 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start, 6687 loff_t end, struct page **pages, 6688 int numpages, u64 phys, handle_t *handle) 6689 { 6690 int i; 6691 struct page *page; 6692 unsigned int from, to = PAGE_SIZE; 6693 struct super_block *sb = inode->i_sb; 6694 6695 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb))); 6696 6697 if (numpages == 0) 6698 goto out; 6699 6700 to = PAGE_SIZE; 6701 for(i = 0; i < numpages; i++) { 6702 page = pages[i]; 6703 6704 from = start & (PAGE_SIZE - 1); 6705 if ((end >> PAGE_SHIFT) == page->index) 6706 to = end & (PAGE_SIZE - 1); 6707 6708 BUG_ON(from > PAGE_SIZE); 6709 BUG_ON(to > PAGE_SIZE); 6710 6711 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1, 6712 &phys); 6713 6714 start = (page->index + 1) << PAGE_SHIFT; 6715 } 6716 out: 6717 if (pages) 6718 ocfs2_unlock_and_free_pages(pages, numpages); 6719 } 6720 6721 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end, 6722 struct page **pages, int *num) 6723 { 6724 int numpages, ret = 0; 6725 struct address_space *mapping = inode->i_mapping; 6726 unsigned long index; 6727 loff_t last_page_bytes; 6728 6729 BUG_ON(start > end); 6730 6731 numpages = 0; 6732 last_page_bytes = PAGE_ALIGN(end); 6733 index = start >> PAGE_SHIFT; 6734 do { 6735 pages[numpages] = find_or_create_page(mapping, index, GFP_NOFS); 6736 if (!pages[numpages]) { 6737 ret = -ENOMEM; 6738 mlog_errno(ret); 6739 goto out; 6740 } 6741 6742 numpages++; 6743 index++; 6744 } while (index < (last_page_bytes >> PAGE_SHIFT)); 6745 6746 out: 6747 if (ret != 0) { 6748 if (pages) 6749 ocfs2_unlock_and_free_pages(pages, numpages); 6750 numpages = 0; 6751 } 6752 6753 *num = numpages; 6754 6755 return ret; 6756 } 6757 6758 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end, 6759 struct page **pages, int *num) 6760 { 6761 struct super_block *sb = inode->i_sb; 6762 6763 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits != 6764 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits); 6765 6766 return ocfs2_grab_pages(inode, start, end, pages, num); 6767 } 6768 6769 /* 6770 * Zero the area past i_size but still within an allocated 6771 * cluster. This avoids exposing nonzero data on subsequent file 6772 * extends. 6773 * 6774 * We need to call this before i_size is updated on the inode because 6775 * otherwise block_write_full_page() will skip writeout of pages past 6776 * i_size. The new_i_size parameter is passed for this reason. 6777 */ 6778 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle, 6779 u64 range_start, u64 range_end) 6780 { 6781 int ret = 0, numpages; 6782 struct page **pages = NULL; 6783 u64 phys; 6784 unsigned int ext_flags; 6785 struct super_block *sb = inode->i_sb; 6786 6787 /* 6788 * File systems which don't support sparse files zero on every 6789 * extend. 6790 */ 6791 if (!ocfs2_sparse_alloc(OCFS2_SB(sb))) 6792 return 0; 6793 6794 pages = kcalloc(ocfs2_pages_per_cluster(sb), 6795 sizeof(struct page *), GFP_NOFS); 6796 if (pages == NULL) { 6797 ret = -ENOMEM; 6798 mlog_errno(ret); 6799 goto out; 6800 } 6801 6802 if (range_start == range_end) 6803 goto out; 6804 6805 ret = ocfs2_extent_map_get_blocks(inode, 6806 range_start >> sb->s_blocksize_bits, 6807 &phys, NULL, &ext_flags); 6808 if (ret) { 6809 mlog_errno(ret); 6810 goto out; 6811 } 6812 6813 /* 6814 * Tail is a hole, or is marked unwritten. In either case, we 6815 * can count on read and write to return/push zero's. 6816 */ 6817 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN) 6818 goto out; 6819 6820 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages, 6821 &numpages); 6822 if (ret) { 6823 mlog_errno(ret); 6824 goto out; 6825 } 6826 6827 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages, 6828 numpages, phys, handle); 6829 6830 /* 6831 * Initiate writeout of the pages we zero'd here. We don't 6832 * wait on them - the truncate_inode_pages() call later will 6833 * do that for us. 6834 */ 6835 ret = filemap_fdatawrite_range(inode->i_mapping, range_start, 6836 range_end - 1); 6837 if (ret) 6838 mlog_errno(ret); 6839 6840 out: 6841 kfree(pages); 6842 6843 return ret; 6844 } 6845 6846 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode, 6847 struct ocfs2_dinode *di) 6848 { 6849 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits; 6850 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size); 6851 6852 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL) 6853 memset(&di->id2, 0, blocksize - 6854 offsetof(struct ocfs2_dinode, id2) - 6855 xattrsize); 6856 else 6857 memset(&di->id2, 0, blocksize - 6858 offsetof(struct ocfs2_dinode, id2)); 6859 } 6860 6861 void ocfs2_dinode_new_extent_list(struct inode *inode, 6862 struct ocfs2_dinode *di) 6863 { 6864 ocfs2_zero_dinode_id2_with_xattr(inode, di); 6865 di->id2.i_list.l_tree_depth = 0; 6866 di->id2.i_list.l_next_free_rec = 0; 6867 di->id2.i_list.l_count = cpu_to_le16( 6868 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di)); 6869 } 6870 6871 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di) 6872 { 6873 struct ocfs2_inode_info *oi = OCFS2_I(inode); 6874 struct ocfs2_inline_data *idata = &di->id2.i_data; 6875 6876 spin_lock(&oi->ip_lock); 6877 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL; 6878 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 6879 spin_unlock(&oi->ip_lock); 6880 6881 /* 6882 * We clear the entire i_data structure here so that all 6883 * fields can be properly initialized. 6884 */ 6885 ocfs2_zero_dinode_id2_with_xattr(inode, di); 6886 6887 idata->id_count = cpu_to_le16( 6888 ocfs2_max_inline_data_with_xattr(inode->i_sb, di)); 6889 } 6890 6891 int ocfs2_convert_inline_data_to_extents(struct inode *inode, 6892 struct buffer_head *di_bh) 6893 { 6894 int ret, i, has_data, num_pages = 0; 6895 int need_free = 0; 6896 u32 bit_off, num; 6897 handle_t *handle; 6898 u64 uninitialized_var(block); 6899 struct ocfs2_inode_info *oi = OCFS2_I(inode); 6900 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 6901 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 6902 struct ocfs2_alloc_context *data_ac = NULL; 6903 struct page **pages = NULL; 6904 loff_t end = osb->s_clustersize; 6905 struct ocfs2_extent_tree et; 6906 int did_quota = 0; 6907 6908 has_data = i_size_read(inode) ? 1 : 0; 6909 6910 if (has_data) { 6911 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb), 6912 sizeof(struct page *), GFP_NOFS); 6913 if (pages == NULL) { 6914 ret = -ENOMEM; 6915 mlog_errno(ret); 6916 return ret; 6917 } 6918 6919 ret = ocfs2_reserve_clusters(osb, 1, &data_ac); 6920 if (ret) { 6921 mlog_errno(ret); 6922 goto free_pages; 6923 } 6924 } 6925 6926 handle = ocfs2_start_trans(osb, 6927 ocfs2_inline_to_extents_credits(osb->sb)); 6928 if (IS_ERR(handle)) { 6929 ret = PTR_ERR(handle); 6930 mlog_errno(ret); 6931 goto out; 6932 } 6933 6934 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 6935 OCFS2_JOURNAL_ACCESS_WRITE); 6936 if (ret) { 6937 mlog_errno(ret); 6938 goto out_commit; 6939 } 6940 6941 if (has_data) { 6942 unsigned int page_end; 6943 u64 phys; 6944 6945 ret = dquot_alloc_space_nodirty(inode, 6946 ocfs2_clusters_to_bytes(osb->sb, 1)); 6947 if (ret) 6948 goto out_commit; 6949 did_quota = 1; 6950 6951 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 6952 6953 ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off, 6954 &num); 6955 if (ret) { 6956 mlog_errno(ret); 6957 goto out_commit; 6958 } 6959 6960 /* 6961 * Save two copies, one for insert, and one that can 6962 * be changed by ocfs2_map_and_dirty_page() below. 6963 */ 6964 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off); 6965 6966 /* 6967 * Non sparse file systems zero on extend, so no need 6968 * to do that now. 6969 */ 6970 if (!ocfs2_sparse_alloc(osb) && 6971 PAGE_SIZE < osb->s_clustersize) 6972 end = PAGE_SIZE; 6973 6974 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages); 6975 if (ret) { 6976 mlog_errno(ret); 6977 need_free = 1; 6978 goto out_commit; 6979 } 6980 6981 /* 6982 * This should populate the 1st page for us and mark 6983 * it up to date. 6984 */ 6985 ret = ocfs2_read_inline_data(inode, pages[0], di_bh); 6986 if (ret) { 6987 mlog_errno(ret); 6988 need_free = 1; 6989 goto out_unlock; 6990 } 6991 6992 page_end = PAGE_SIZE; 6993 if (PAGE_SIZE > osb->s_clustersize) 6994 page_end = osb->s_clustersize; 6995 6996 for (i = 0; i < num_pages; i++) 6997 ocfs2_map_and_dirty_page(inode, handle, 0, page_end, 6998 pages[i], i > 0, &phys); 6999 } 7000 7001 spin_lock(&oi->ip_lock); 7002 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL; 7003 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 7004 spin_unlock(&oi->ip_lock); 7005 7006 ocfs2_update_inode_fsync_trans(handle, inode, 1); 7007 ocfs2_dinode_new_extent_list(inode, di); 7008 7009 ocfs2_journal_dirty(handle, di_bh); 7010 7011 if (has_data) { 7012 /* 7013 * An error at this point should be extremely rare. If 7014 * this proves to be false, we could always re-build 7015 * the in-inode data from our pages. 7016 */ 7017 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 7018 ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL); 7019 if (ret) { 7020 mlog_errno(ret); 7021 need_free = 1; 7022 goto out_unlock; 7023 } 7024 7025 inode->i_blocks = ocfs2_inode_sector_count(inode); 7026 } 7027 7028 out_unlock: 7029 if (pages) 7030 ocfs2_unlock_and_free_pages(pages, num_pages); 7031 7032 out_commit: 7033 if (ret < 0 && did_quota) 7034 dquot_free_space_nodirty(inode, 7035 ocfs2_clusters_to_bytes(osb->sb, 1)); 7036 7037 if (need_free) { 7038 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL) 7039 ocfs2_free_local_alloc_bits(osb, handle, data_ac, 7040 bit_off, num); 7041 else 7042 ocfs2_free_clusters(handle, 7043 data_ac->ac_inode, 7044 data_ac->ac_bh, 7045 ocfs2_clusters_to_blocks(osb->sb, bit_off), 7046 num); 7047 } 7048 7049 ocfs2_commit_trans(osb, handle); 7050 7051 out: 7052 if (data_ac) 7053 ocfs2_free_alloc_context(data_ac); 7054 free_pages: 7055 kfree(pages); 7056 return ret; 7057 } 7058 7059 /* 7060 * It is expected, that by the time you call this function, 7061 * inode->i_size and fe->i_size have been adjusted. 7062 * 7063 * WARNING: This will kfree the truncate context 7064 */ 7065 int ocfs2_commit_truncate(struct ocfs2_super *osb, 7066 struct inode *inode, 7067 struct buffer_head *di_bh) 7068 { 7069 int status = 0, i, flags = 0; 7070 u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff; 7071 u64 blkno = 0; 7072 struct ocfs2_extent_list *el; 7073 struct ocfs2_extent_rec *rec; 7074 struct ocfs2_path *path = NULL; 7075 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7076 struct ocfs2_extent_list *root_el = &(di->id2.i_list); 7077 u64 refcount_loc = le64_to_cpu(di->i_refcount_loc); 7078 struct ocfs2_extent_tree et; 7079 struct ocfs2_cached_dealloc_ctxt dealloc; 7080 struct ocfs2_refcount_tree *ref_tree = NULL; 7081 7082 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 7083 ocfs2_init_dealloc_ctxt(&dealloc); 7084 7085 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb, 7086 i_size_read(inode)); 7087 7088 path = ocfs2_new_path(di_bh, &di->id2.i_list, 7089 ocfs2_journal_access_di); 7090 if (!path) { 7091 status = -ENOMEM; 7092 mlog_errno(status); 7093 goto bail; 7094 } 7095 7096 ocfs2_extent_map_trunc(inode, new_highest_cpos); 7097 7098 start: 7099 /* 7100 * Check that we still have allocation to delete. 7101 */ 7102 if (OCFS2_I(inode)->ip_clusters == 0) { 7103 status = 0; 7104 goto bail; 7105 } 7106 7107 /* 7108 * Truncate always works against the rightmost tree branch. 7109 */ 7110 status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX); 7111 if (status) { 7112 mlog_errno(status); 7113 goto bail; 7114 } 7115 7116 trace_ocfs2_commit_truncate( 7117 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7118 new_highest_cpos, 7119 OCFS2_I(inode)->ip_clusters, 7120 path->p_tree_depth); 7121 7122 /* 7123 * By now, el will point to the extent list on the bottom most 7124 * portion of this tree. Only the tail record is considered in 7125 * each pass. 7126 * 7127 * We handle the following cases, in order: 7128 * - empty extent: delete the remaining branch 7129 * - remove the entire record 7130 * - remove a partial record 7131 * - no record needs to be removed (truncate has completed) 7132 */ 7133 el = path_leaf_el(path); 7134 if (le16_to_cpu(el->l_next_free_rec) == 0) { 7135 ocfs2_error(inode->i_sb, 7136 "Inode %llu has empty extent block at %llu\n", 7137 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7138 (unsigned long long)path_leaf_bh(path)->b_blocknr); 7139 status = -EROFS; 7140 goto bail; 7141 } 7142 7143 i = le16_to_cpu(el->l_next_free_rec) - 1; 7144 rec = &el->l_recs[i]; 7145 flags = rec->e_flags; 7146 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 7147 7148 if (i == 0 && ocfs2_is_empty_extent(rec)) { 7149 /* 7150 * Lower levels depend on this never happening, but it's best 7151 * to check it up here before changing the tree. 7152 */ 7153 if (root_el->l_tree_depth && rec->e_int_clusters == 0) { 7154 mlog(ML_ERROR, "Inode %lu has an empty " 7155 "extent record, depth %u\n", inode->i_ino, 7156 le16_to_cpu(root_el->l_tree_depth)); 7157 status = ocfs2_remove_rightmost_empty_extent(osb, 7158 &et, path, &dealloc); 7159 if (status) { 7160 mlog_errno(status); 7161 goto bail; 7162 } 7163 7164 ocfs2_reinit_path(path, 1); 7165 goto start; 7166 } else { 7167 trunc_cpos = le32_to_cpu(rec->e_cpos); 7168 trunc_len = 0; 7169 blkno = 0; 7170 } 7171 } else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) { 7172 /* 7173 * Truncate entire record. 7174 */ 7175 trunc_cpos = le32_to_cpu(rec->e_cpos); 7176 trunc_len = ocfs2_rec_clusters(el, rec); 7177 blkno = le64_to_cpu(rec->e_blkno); 7178 } else if (range > new_highest_cpos) { 7179 /* 7180 * Partial truncate. it also should be 7181 * the last truncate we're doing. 7182 */ 7183 trunc_cpos = new_highest_cpos; 7184 trunc_len = range - new_highest_cpos; 7185 coff = new_highest_cpos - le32_to_cpu(rec->e_cpos); 7186 blkno = le64_to_cpu(rec->e_blkno) + 7187 ocfs2_clusters_to_blocks(inode->i_sb, coff); 7188 } else { 7189 /* 7190 * Truncate completed, leave happily. 7191 */ 7192 status = 0; 7193 goto bail; 7194 } 7195 7196 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 7197 7198 if ((flags & OCFS2_EXT_REFCOUNTED) && trunc_len && !ref_tree) { 7199 status = ocfs2_lock_refcount_tree(osb, refcount_loc, 1, 7200 &ref_tree, NULL); 7201 if (status) { 7202 mlog_errno(status); 7203 goto bail; 7204 } 7205 } 7206 7207 status = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 7208 phys_cpos, trunc_len, flags, &dealloc, 7209 refcount_loc, true); 7210 if (status < 0) { 7211 mlog_errno(status); 7212 goto bail; 7213 } 7214 7215 ocfs2_reinit_path(path, 1); 7216 7217 /* 7218 * The check above will catch the case where we've truncated 7219 * away all allocation. 7220 */ 7221 goto start; 7222 7223 bail: 7224 if (ref_tree) 7225 ocfs2_unlock_refcount_tree(osb, ref_tree, 1); 7226 7227 ocfs2_schedule_truncate_log_flush(osb, 1); 7228 7229 ocfs2_run_deallocs(osb, &dealloc); 7230 7231 ocfs2_free_path(path); 7232 7233 return status; 7234 } 7235 7236 /* 7237 * 'start' is inclusive, 'end' is not. 7238 */ 7239 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh, 7240 unsigned int start, unsigned int end, int trunc) 7241 { 7242 int ret; 7243 unsigned int numbytes; 7244 handle_t *handle; 7245 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 7246 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7247 struct ocfs2_inline_data *idata = &di->id2.i_data; 7248 7249 if (end > i_size_read(inode)) 7250 end = i_size_read(inode); 7251 7252 BUG_ON(start > end); 7253 7254 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) || 7255 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) || 7256 !ocfs2_supports_inline_data(osb)) { 7257 ocfs2_error(inode->i_sb, 7258 "Inline data flags for inode %llu don't agree! Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n", 7259 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7260 le16_to_cpu(di->i_dyn_features), 7261 OCFS2_I(inode)->ip_dyn_features, 7262 osb->s_feature_incompat); 7263 ret = -EROFS; 7264 goto out; 7265 } 7266 7267 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 7268 if (IS_ERR(handle)) { 7269 ret = PTR_ERR(handle); 7270 mlog_errno(ret); 7271 goto out; 7272 } 7273 7274 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 7275 OCFS2_JOURNAL_ACCESS_WRITE); 7276 if (ret) { 7277 mlog_errno(ret); 7278 goto out_commit; 7279 } 7280 7281 numbytes = end - start; 7282 memset(idata->id_data + start, 0, numbytes); 7283 7284 /* 7285 * No need to worry about the data page here - it's been 7286 * truncated already and inline data doesn't need it for 7287 * pushing zero's to disk, so we'll let readpage pick it up 7288 * later. 7289 */ 7290 if (trunc) { 7291 i_size_write(inode, start); 7292 di->i_size = cpu_to_le64(start); 7293 } 7294 7295 inode->i_blocks = ocfs2_inode_sector_count(inode); 7296 inode->i_ctime = inode->i_mtime = current_time(inode); 7297 7298 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 7299 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 7300 7301 ocfs2_update_inode_fsync_trans(handle, inode, 1); 7302 ocfs2_journal_dirty(handle, di_bh); 7303 7304 out_commit: 7305 ocfs2_commit_trans(osb, handle); 7306 7307 out: 7308 return ret; 7309 } 7310 7311 static int ocfs2_trim_extent(struct super_block *sb, 7312 struct ocfs2_group_desc *gd, 7313 u32 start, u32 count) 7314 { 7315 u64 discard, bcount; 7316 7317 bcount = ocfs2_clusters_to_blocks(sb, count); 7318 discard = le64_to_cpu(gd->bg_blkno) + 7319 ocfs2_clusters_to_blocks(sb, start); 7320 7321 trace_ocfs2_trim_extent(sb, (unsigned long long)discard, bcount); 7322 7323 return sb_issue_discard(sb, discard, bcount, GFP_NOFS, 0); 7324 } 7325 7326 static int ocfs2_trim_group(struct super_block *sb, 7327 struct ocfs2_group_desc *gd, 7328 u32 start, u32 max, u32 minbits) 7329 { 7330 int ret = 0, count = 0, next; 7331 void *bitmap = gd->bg_bitmap; 7332 7333 if (le16_to_cpu(gd->bg_free_bits_count) < minbits) 7334 return 0; 7335 7336 trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd->bg_blkno), 7337 start, max, minbits); 7338 7339 while (start < max) { 7340 start = ocfs2_find_next_zero_bit(bitmap, max, start); 7341 if (start >= max) 7342 break; 7343 next = ocfs2_find_next_bit(bitmap, max, start); 7344 7345 if ((next - start) >= minbits) { 7346 ret = ocfs2_trim_extent(sb, gd, 7347 start, next - start); 7348 if (ret < 0) { 7349 mlog_errno(ret); 7350 break; 7351 } 7352 count += next - start; 7353 } 7354 start = next + 1; 7355 7356 if (fatal_signal_pending(current)) { 7357 count = -ERESTARTSYS; 7358 break; 7359 } 7360 7361 if ((le16_to_cpu(gd->bg_free_bits_count) - count) < minbits) 7362 break; 7363 } 7364 7365 if (ret < 0) 7366 count = ret; 7367 7368 return count; 7369 } 7370 7371 int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range) 7372 { 7373 struct ocfs2_super *osb = OCFS2_SB(sb); 7374 u64 start, len, trimmed, first_group, last_group, group; 7375 int ret, cnt; 7376 u32 first_bit, last_bit, minlen; 7377 struct buffer_head *main_bm_bh = NULL; 7378 struct inode *main_bm_inode = NULL; 7379 struct buffer_head *gd_bh = NULL; 7380 struct ocfs2_dinode *main_bm; 7381 struct ocfs2_group_desc *gd = NULL; 7382 7383 start = range->start >> osb->s_clustersize_bits; 7384 len = range->len >> osb->s_clustersize_bits; 7385 minlen = range->minlen >> osb->s_clustersize_bits; 7386 7387 if (minlen >= osb->bitmap_cpg || range->len < sb->s_blocksize) 7388 return -EINVAL; 7389 7390 main_bm_inode = ocfs2_get_system_file_inode(osb, 7391 GLOBAL_BITMAP_SYSTEM_INODE, 7392 OCFS2_INVALID_SLOT); 7393 if (!main_bm_inode) { 7394 ret = -EIO; 7395 mlog_errno(ret); 7396 goto out; 7397 } 7398 7399 inode_lock(main_bm_inode); 7400 7401 ret = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 0); 7402 if (ret < 0) { 7403 mlog_errno(ret); 7404 goto out_mutex; 7405 } 7406 main_bm = (struct ocfs2_dinode *)main_bm_bh->b_data; 7407 7408 if (start >= le32_to_cpu(main_bm->i_clusters)) { 7409 ret = -EINVAL; 7410 goto out_unlock; 7411 } 7412 7413 len = range->len >> osb->s_clustersize_bits; 7414 if (start + len > le32_to_cpu(main_bm->i_clusters)) 7415 len = le32_to_cpu(main_bm->i_clusters) - start; 7416 7417 trace_ocfs2_trim_fs(start, len, minlen); 7418 7419 /* Determine first and last group to examine based on start and len */ 7420 first_group = ocfs2_which_cluster_group(main_bm_inode, start); 7421 if (first_group == osb->first_cluster_group_blkno) 7422 first_bit = start; 7423 else 7424 first_bit = start - ocfs2_blocks_to_clusters(sb, first_group); 7425 last_group = ocfs2_which_cluster_group(main_bm_inode, start + len - 1); 7426 last_bit = osb->bitmap_cpg; 7427 7428 trimmed = 0; 7429 for (group = first_group; group <= last_group;) { 7430 if (first_bit + len >= osb->bitmap_cpg) 7431 last_bit = osb->bitmap_cpg; 7432 else 7433 last_bit = first_bit + len; 7434 7435 ret = ocfs2_read_group_descriptor(main_bm_inode, 7436 main_bm, group, 7437 &gd_bh); 7438 if (ret < 0) { 7439 mlog_errno(ret); 7440 break; 7441 } 7442 7443 gd = (struct ocfs2_group_desc *)gd_bh->b_data; 7444 cnt = ocfs2_trim_group(sb, gd, first_bit, last_bit, minlen); 7445 brelse(gd_bh); 7446 gd_bh = NULL; 7447 if (cnt < 0) { 7448 ret = cnt; 7449 mlog_errno(ret); 7450 break; 7451 } 7452 7453 trimmed += cnt; 7454 len -= osb->bitmap_cpg - first_bit; 7455 first_bit = 0; 7456 if (group == osb->first_cluster_group_blkno) 7457 group = ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg); 7458 else 7459 group += ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg); 7460 } 7461 range->len = trimmed * sb->s_blocksize; 7462 out_unlock: 7463 ocfs2_inode_unlock(main_bm_inode, 0); 7464 brelse(main_bm_bh); 7465 out_mutex: 7466 inode_unlock(main_bm_inode); 7467 iput(main_bm_inode); 7468 out: 7469 return ret; 7470 } 7471