1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* -*- mode: c; c-basic-offset: 8; -*- 3 * vim: noexpandtab sw=8 ts=8 sts=0: 4 * 5 * alloc.c 6 * 7 * Extent allocs and frees 8 * 9 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/types.h> 14 #include <linux/slab.h> 15 #include <linux/highmem.h> 16 #include <linux/swap.h> 17 #include <linux/quotaops.h> 18 #include <linux/blkdev.h> 19 #include <linux/sched/signal.h> 20 21 #include <cluster/masklog.h> 22 23 #include "ocfs2.h" 24 25 #include "alloc.h" 26 #include "aops.h" 27 #include "blockcheck.h" 28 #include "dlmglue.h" 29 #include "extent_map.h" 30 #include "inode.h" 31 #include "journal.h" 32 #include "localalloc.h" 33 #include "suballoc.h" 34 #include "sysfile.h" 35 #include "file.h" 36 #include "super.h" 37 #include "uptodate.h" 38 #include "xattr.h" 39 #include "refcounttree.h" 40 #include "ocfs2_trace.h" 41 42 #include "buffer_head_io.h" 43 44 enum ocfs2_contig_type { 45 CONTIG_NONE = 0, 46 CONTIG_LEFT, 47 CONTIG_RIGHT, 48 CONTIG_LEFTRIGHT, 49 }; 50 51 static enum ocfs2_contig_type 52 ocfs2_extent_rec_contig(struct super_block *sb, 53 struct ocfs2_extent_rec *ext, 54 struct ocfs2_extent_rec *insert_rec); 55 /* 56 * Operations for a specific extent tree type. 57 * 58 * To implement an on-disk btree (extent tree) type in ocfs2, add 59 * an ocfs2_extent_tree_operations structure and the matching 60 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it 61 * for the allocation portion of the extent tree. 62 */ 63 struct ocfs2_extent_tree_operations { 64 /* 65 * last_eb_blk is the block number of the right most leaf extent 66 * block. Most on-disk structures containing an extent tree store 67 * this value for fast access. The ->eo_set_last_eb_blk() and 68 * ->eo_get_last_eb_blk() operations access this value. They are 69 * both required. 70 */ 71 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et, 72 u64 blkno); 73 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et); 74 75 /* 76 * The on-disk structure usually keeps track of how many total 77 * clusters are stored in this extent tree. This function updates 78 * that value. new_clusters is the delta, and must be 79 * added to the total. Required. 80 */ 81 void (*eo_update_clusters)(struct ocfs2_extent_tree *et, 82 u32 new_clusters); 83 84 /* 85 * If this extent tree is supported by an extent map, insert 86 * a record into the map. 87 */ 88 void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et, 89 struct ocfs2_extent_rec *rec); 90 91 /* 92 * If this extent tree is supported by an extent map, truncate the 93 * map to clusters, 94 */ 95 void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et, 96 u32 clusters); 97 98 /* 99 * If ->eo_insert_check() exists, it is called before rec is 100 * inserted into the extent tree. It is optional. 101 */ 102 int (*eo_insert_check)(struct ocfs2_extent_tree *et, 103 struct ocfs2_extent_rec *rec); 104 int (*eo_sanity_check)(struct ocfs2_extent_tree *et); 105 106 /* 107 * -------------------------------------------------------------- 108 * The remaining are internal to ocfs2_extent_tree and don't have 109 * accessor functions 110 */ 111 112 /* 113 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el. 114 * It is required. 115 */ 116 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et); 117 118 /* 119 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if 120 * it exists. If it does not, et->et_max_leaf_clusters is set 121 * to 0 (unlimited). Optional. 122 */ 123 void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et); 124 125 /* 126 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec 127 * are contiguous or not. Optional. Don't need to set it if use 128 * ocfs2_extent_rec as the tree leaf. 129 */ 130 enum ocfs2_contig_type 131 (*eo_extent_contig)(struct ocfs2_extent_tree *et, 132 struct ocfs2_extent_rec *ext, 133 struct ocfs2_extent_rec *insert_rec); 134 }; 135 136 137 /* 138 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check 139 * in the methods. 140 */ 141 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et); 142 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 143 u64 blkno); 144 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, 145 u32 clusters); 146 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et, 147 struct ocfs2_extent_rec *rec); 148 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et, 149 u32 clusters); 150 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, 151 struct ocfs2_extent_rec *rec); 152 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et); 153 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et); 154 155 static int ocfs2_reuse_blk_from_dealloc(handle_t *handle, 156 struct ocfs2_extent_tree *et, 157 struct buffer_head **new_eb_bh, 158 int blk_wanted, int *blk_given); 159 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree *et); 160 161 static const struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = { 162 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk, 163 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk, 164 .eo_update_clusters = ocfs2_dinode_update_clusters, 165 .eo_extent_map_insert = ocfs2_dinode_extent_map_insert, 166 .eo_extent_map_truncate = ocfs2_dinode_extent_map_truncate, 167 .eo_insert_check = ocfs2_dinode_insert_check, 168 .eo_sanity_check = ocfs2_dinode_sanity_check, 169 .eo_fill_root_el = ocfs2_dinode_fill_root_el, 170 }; 171 172 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 173 u64 blkno) 174 { 175 struct ocfs2_dinode *di = et->et_object; 176 177 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 178 di->i_last_eb_blk = cpu_to_le64(blkno); 179 } 180 181 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et) 182 { 183 struct ocfs2_dinode *di = et->et_object; 184 185 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 186 return le64_to_cpu(di->i_last_eb_blk); 187 } 188 189 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, 190 u32 clusters) 191 { 192 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); 193 struct ocfs2_dinode *di = et->et_object; 194 195 le32_add_cpu(&di->i_clusters, clusters); 196 spin_lock(&oi->ip_lock); 197 oi->ip_clusters = le32_to_cpu(di->i_clusters); 198 spin_unlock(&oi->ip_lock); 199 } 200 201 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et, 202 struct ocfs2_extent_rec *rec) 203 { 204 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode; 205 206 ocfs2_extent_map_insert_rec(inode, rec); 207 } 208 209 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et, 210 u32 clusters) 211 { 212 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode; 213 214 ocfs2_extent_map_trunc(inode, clusters); 215 } 216 217 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, 218 struct ocfs2_extent_rec *rec) 219 { 220 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); 221 struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb); 222 223 BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL); 224 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) && 225 (oi->ip_clusters != le32_to_cpu(rec->e_cpos)), 226 "Device %s, asking for sparse allocation: inode %llu, " 227 "cpos %u, clusters %u\n", 228 osb->dev_str, 229 (unsigned long long)oi->ip_blkno, 230 rec->e_cpos, oi->ip_clusters); 231 232 return 0; 233 } 234 235 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et) 236 { 237 struct ocfs2_dinode *di = et->et_object; 238 239 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 240 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 241 242 return 0; 243 } 244 245 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et) 246 { 247 struct ocfs2_dinode *di = et->et_object; 248 249 et->et_root_el = &di->id2.i_list; 250 } 251 252 253 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et) 254 { 255 struct ocfs2_xattr_value_buf *vb = et->et_object; 256 257 et->et_root_el = &vb->vb_xv->xr_list; 258 } 259 260 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et, 261 u64 blkno) 262 { 263 struct ocfs2_xattr_value_buf *vb = et->et_object; 264 265 vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno); 266 } 267 268 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et) 269 { 270 struct ocfs2_xattr_value_buf *vb = et->et_object; 271 272 return le64_to_cpu(vb->vb_xv->xr_last_eb_blk); 273 } 274 275 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et, 276 u32 clusters) 277 { 278 struct ocfs2_xattr_value_buf *vb = et->et_object; 279 280 le32_add_cpu(&vb->vb_xv->xr_clusters, clusters); 281 } 282 283 static const struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = { 284 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk, 285 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk, 286 .eo_update_clusters = ocfs2_xattr_value_update_clusters, 287 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el, 288 }; 289 290 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et) 291 { 292 struct ocfs2_xattr_block *xb = et->et_object; 293 294 et->et_root_el = &xb->xb_attrs.xb_root.xt_list; 295 } 296 297 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et) 298 { 299 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 300 et->et_max_leaf_clusters = 301 ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE); 302 } 303 304 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 305 u64 blkno) 306 { 307 struct ocfs2_xattr_block *xb = et->et_object; 308 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 309 310 xt->xt_last_eb_blk = cpu_to_le64(blkno); 311 } 312 313 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 314 { 315 struct ocfs2_xattr_block *xb = et->et_object; 316 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 317 318 return le64_to_cpu(xt->xt_last_eb_blk); 319 } 320 321 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et, 322 u32 clusters) 323 { 324 struct ocfs2_xattr_block *xb = et->et_object; 325 326 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters); 327 } 328 329 static const struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = { 330 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk, 331 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk, 332 .eo_update_clusters = ocfs2_xattr_tree_update_clusters, 333 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el, 334 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters, 335 }; 336 337 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et, 338 u64 blkno) 339 { 340 struct ocfs2_dx_root_block *dx_root = et->et_object; 341 342 dx_root->dr_last_eb_blk = cpu_to_le64(blkno); 343 } 344 345 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et) 346 { 347 struct ocfs2_dx_root_block *dx_root = et->et_object; 348 349 return le64_to_cpu(dx_root->dr_last_eb_blk); 350 } 351 352 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et, 353 u32 clusters) 354 { 355 struct ocfs2_dx_root_block *dx_root = et->et_object; 356 357 le32_add_cpu(&dx_root->dr_clusters, clusters); 358 } 359 360 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et) 361 { 362 struct ocfs2_dx_root_block *dx_root = et->et_object; 363 364 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root)); 365 366 return 0; 367 } 368 369 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et) 370 { 371 struct ocfs2_dx_root_block *dx_root = et->et_object; 372 373 et->et_root_el = &dx_root->dr_list; 374 } 375 376 static const struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = { 377 .eo_set_last_eb_blk = ocfs2_dx_root_set_last_eb_blk, 378 .eo_get_last_eb_blk = ocfs2_dx_root_get_last_eb_blk, 379 .eo_update_clusters = ocfs2_dx_root_update_clusters, 380 .eo_sanity_check = ocfs2_dx_root_sanity_check, 381 .eo_fill_root_el = ocfs2_dx_root_fill_root_el, 382 }; 383 384 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et) 385 { 386 struct ocfs2_refcount_block *rb = et->et_object; 387 388 et->et_root_el = &rb->rf_list; 389 } 390 391 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 392 u64 blkno) 393 { 394 struct ocfs2_refcount_block *rb = et->et_object; 395 396 rb->rf_last_eb_blk = cpu_to_le64(blkno); 397 } 398 399 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 400 { 401 struct ocfs2_refcount_block *rb = et->et_object; 402 403 return le64_to_cpu(rb->rf_last_eb_blk); 404 } 405 406 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et, 407 u32 clusters) 408 { 409 struct ocfs2_refcount_block *rb = et->et_object; 410 411 le32_add_cpu(&rb->rf_clusters, clusters); 412 } 413 414 static enum ocfs2_contig_type 415 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et, 416 struct ocfs2_extent_rec *ext, 417 struct ocfs2_extent_rec *insert_rec) 418 { 419 return CONTIG_NONE; 420 } 421 422 static const struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = { 423 .eo_set_last_eb_blk = ocfs2_refcount_tree_set_last_eb_blk, 424 .eo_get_last_eb_blk = ocfs2_refcount_tree_get_last_eb_blk, 425 .eo_update_clusters = ocfs2_refcount_tree_update_clusters, 426 .eo_fill_root_el = ocfs2_refcount_tree_fill_root_el, 427 .eo_extent_contig = ocfs2_refcount_tree_extent_contig, 428 }; 429 430 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et, 431 struct ocfs2_caching_info *ci, 432 struct buffer_head *bh, 433 ocfs2_journal_access_func access, 434 void *obj, 435 const struct ocfs2_extent_tree_operations *ops) 436 { 437 et->et_ops = ops; 438 et->et_root_bh = bh; 439 et->et_ci = ci; 440 et->et_root_journal_access = access; 441 if (!obj) 442 obj = (void *)bh->b_data; 443 et->et_object = obj; 444 et->et_dealloc = NULL; 445 446 et->et_ops->eo_fill_root_el(et); 447 if (!et->et_ops->eo_fill_max_leaf_clusters) 448 et->et_max_leaf_clusters = 0; 449 else 450 et->et_ops->eo_fill_max_leaf_clusters(et); 451 } 452 453 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et, 454 struct ocfs2_caching_info *ci, 455 struct buffer_head *bh) 456 { 457 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di, 458 NULL, &ocfs2_dinode_et_ops); 459 } 460 461 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et, 462 struct ocfs2_caching_info *ci, 463 struct buffer_head *bh) 464 { 465 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb, 466 NULL, &ocfs2_xattr_tree_et_ops); 467 } 468 469 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et, 470 struct ocfs2_caching_info *ci, 471 struct ocfs2_xattr_value_buf *vb) 472 { 473 __ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb, 474 &ocfs2_xattr_value_et_ops); 475 } 476 477 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et, 478 struct ocfs2_caching_info *ci, 479 struct buffer_head *bh) 480 { 481 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr, 482 NULL, &ocfs2_dx_root_et_ops); 483 } 484 485 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et, 486 struct ocfs2_caching_info *ci, 487 struct buffer_head *bh) 488 { 489 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb, 490 NULL, &ocfs2_refcount_tree_et_ops); 491 } 492 493 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et, 494 u64 new_last_eb_blk) 495 { 496 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk); 497 } 498 499 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et) 500 { 501 return et->et_ops->eo_get_last_eb_blk(et); 502 } 503 504 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et, 505 u32 clusters) 506 { 507 et->et_ops->eo_update_clusters(et, clusters); 508 } 509 510 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et, 511 struct ocfs2_extent_rec *rec) 512 { 513 if (et->et_ops->eo_extent_map_insert) 514 et->et_ops->eo_extent_map_insert(et, rec); 515 } 516 517 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et, 518 u32 clusters) 519 { 520 if (et->et_ops->eo_extent_map_truncate) 521 et->et_ops->eo_extent_map_truncate(et, clusters); 522 } 523 524 static inline int ocfs2_et_root_journal_access(handle_t *handle, 525 struct ocfs2_extent_tree *et, 526 int type) 527 { 528 return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh, 529 type); 530 } 531 532 static inline enum ocfs2_contig_type 533 ocfs2_et_extent_contig(struct ocfs2_extent_tree *et, 534 struct ocfs2_extent_rec *rec, 535 struct ocfs2_extent_rec *insert_rec) 536 { 537 if (et->et_ops->eo_extent_contig) 538 return et->et_ops->eo_extent_contig(et, rec, insert_rec); 539 540 return ocfs2_extent_rec_contig( 541 ocfs2_metadata_cache_get_super(et->et_ci), 542 rec, insert_rec); 543 } 544 545 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et, 546 struct ocfs2_extent_rec *rec) 547 { 548 int ret = 0; 549 550 if (et->et_ops->eo_insert_check) 551 ret = et->et_ops->eo_insert_check(et, rec); 552 return ret; 553 } 554 555 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et) 556 { 557 int ret = 0; 558 559 if (et->et_ops->eo_sanity_check) 560 ret = et->et_ops->eo_sanity_check(et); 561 return ret; 562 } 563 564 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 565 struct ocfs2_extent_block *eb); 566 static void ocfs2_adjust_rightmost_records(handle_t *handle, 567 struct ocfs2_extent_tree *et, 568 struct ocfs2_path *path, 569 struct ocfs2_extent_rec *insert_rec); 570 /* 571 * Reset the actual path elements so that we can re-use the structure 572 * to build another path. Generally, this involves freeing the buffer 573 * heads. 574 */ 575 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root) 576 { 577 int i, start = 0, depth = 0; 578 struct ocfs2_path_item *node; 579 580 if (keep_root) 581 start = 1; 582 583 for(i = start; i < path_num_items(path); i++) { 584 node = &path->p_node[i]; 585 586 brelse(node->bh); 587 node->bh = NULL; 588 node->el = NULL; 589 } 590 591 /* 592 * Tree depth may change during truncate, or insert. If we're 593 * keeping the root extent list, then make sure that our path 594 * structure reflects the proper depth. 595 */ 596 if (keep_root) 597 depth = le16_to_cpu(path_root_el(path)->l_tree_depth); 598 else 599 path_root_access(path) = NULL; 600 601 path->p_tree_depth = depth; 602 } 603 604 void ocfs2_free_path(struct ocfs2_path *path) 605 { 606 if (path) { 607 ocfs2_reinit_path(path, 0); 608 kfree(path); 609 } 610 } 611 612 /* 613 * All the elements of src into dest. After this call, src could be freed 614 * without affecting dest. 615 * 616 * Both paths should have the same root. Any non-root elements of dest 617 * will be freed. 618 */ 619 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src) 620 { 621 int i; 622 623 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 624 BUG_ON(path_root_el(dest) != path_root_el(src)); 625 BUG_ON(path_root_access(dest) != path_root_access(src)); 626 627 ocfs2_reinit_path(dest, 1); 628 629 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 630 dest->p_node[i].bh = src->p_node[i].bh; 631 dest->p_node[i].el = src->p_node[i].el; 632 633 if (dest->p_node[i].bh) 634 get_bh(dest->p_node[i].bh); 635 } 636 } 637 638 /* 639 * Make the *dest path the same as src and re-initialize src path to 640 * have a root only. 641 */ 642 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src) 643 { 644 int i; 645 646 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 647 BUG_ON(path_root_access(dest) != path_root_access(src)); 648 649 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 650 brelse(dest->p_node[i].bh); 651 652 dest->p_node[i].bh = src->p_node[i].bh; 653 dest->p_node[i].el = src->p_node[i].el; 654 655 src->p_node[i].bh = NULL; 656 src->p_node[i].el = NULL; 657 } 658 } 659 660 /* 661 * Insert an extent block at given index. 662 * 663 * This will not take an additional reference on eb_bh. 664 */ 665 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index, 666 struct buffer_head *eb_bh) 667 { 668 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data; 669 670 /* 671 * Right now, no root bh is an extent block, so this helps 672 * catch code errors with dinode trees. The assertion can be 673 * safely removed if we ever need to insert extent block 674 * structures at the root. 675 */ 676 BUG_ON(index == 0); 677 678 path->p_node[index].bh = eb_bh; 679 path->p_node[index].el = &eb->h_list; 680 } 681 682 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh, 683 struct ocfs2_extent_list *root_el, 684 ocfs2_journal_access_func access) 685 { 686 struct ocfs2_path *path; 687 688 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH); 689 690 path = kzalloc(sizeof(*path), GFP_NOFS); 691 if (path) { 692 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth); 693 get_bh(root_bh); 694 path_root_bh(path) = root_bh; 695 path_root_el(path) = root_el; 696 path_root_access(path) = access; 697 } 698 699 return path; 700 } 701 702 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path) 703 { 704 return ocfs2_new_path(path_root_bh(path), path_root_el(path), 705 path_root_access(path)); 706 } 707 708 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et) 709 { 710 return ocfs2_new_path(et->et_root_bh, et->et_root_el, 711 et->et_root_journal_access); 712 } 713 714 /* 715 * Journal the buffer at depth idx. All idx>0 are extent_blocks, 716 * otherwise it's the root_access function. 717 * 718 * I don't like the way this function's name looks next to 719 * ocfs2_journal_access_path(), but I don't have a better one. 720 */ 721 int ocfs2_path_bh_journal_access(handle_t *handle, 722 struct ocfs2_caching_info *ci, 723 struct ocfs2_path *path, 724 int idx) 725 { 726 ocfs2_journal_access_func access = path_root_access(path); 727 728 if (!access) 729 access = ocfs2_journal_access; 730 731 if (idx) 732 access = ocfs2_journal_access_eb; 733 734 return access(handle, ci, path->p_node[idx].bh, 735 OCFS2_JOURNAL_ACCESS_WRITE); 736 } 737 738 /* 739 * Convenience function to journal all components in a path. 740 */ 741 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci, 742 handle_t *handle, 743 struct ocfs2_path *path) 744 { 745 int i, ret = 0; 746 747 if (!path) 748 goto out; 749 750 for(i = 0; i < path_num_items(path); i++) { 751 ret = ocfs2_path_bh_journal_access(handle, ci, path, i); 752 if (ret < 0) { 753 mlog_errno(ret); 754 goto out; 755 } 756 } 757 758 out: 759 return ret; 760 } 761 762 /* 763 * Return the index of the extent record which contains cluster #v_cluster. 764 * -1 is returned if it was not found. 765 * 766 * Should work fine on interior and exterior nodes. 767 */ 768 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster) 769 { 770 int ret = -1; 771 int i; 772 struct ocfs2_extent_rec *rec; 773 u32 rec_end, rec_start, clusters; 774 775 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 776 rec = &el->l_recs[i]; 777 778 rec_start = le32_to_cpu(rec->e_cpos); 779 clusters = ocfs2_rec_clusters(el, rec); 780 781 rec_end = rec_start + clusters; 782 783 if (v_cluster >= rec_start && v_cluster < rec_end) { 784 ret = i; 785 break; 786 } 787 } 788 789 return ret; 790 } 791 792 /* 793 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and 794 * ocfs2_extent_rec_contig only work properly against leaf nodes! 795 */ 796 static int ocfs2_block_extent_contig(struct super_block *sb, 797 struct ocfs2_extent_rec *ext, 798 u64 blkno) 799 { 800 u64 blk_end = le64_to_cpu(ext->e_blkno); 801 802 blk_end += ocfs2_clusters_to_blocks(sb, 803 le16_to_cpu(ext->e_leaf_clusters)); 804 805 return blkno == blk_end; 806 } 807 808 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left, 809 struct ocfs2_extent_rec *right) 810 { 811 u32 left_range; 812 813 left_range = le32_to_cpu(left->e_cpos) + 814 le16_to_cpu(left->e_leaf_clusters); 815 816 return (left_range == le32_to_cpu(right->e_cpos)); 817 } 818 819 static enum ocfs2_contig_type 820 ocfs2_extent_rec_contig(struct super_block *sb, 821 struct ocfs2_extent_rec *ext, 822 struct ocfs2_extent_rec *insert_rec) 823 { 824 u64 blkno = le64_to_cpu(insert_rec->e_blkno); 825 826 /* 827 * Refuse to coalesce extent records with different flag 828 * fields - we don't want to mix unwritten extents with user 829 * data. 830 */ 831 if (ext->e_flags != insert_rec->e_flags) 832 return CONTIG_NONE; 833 834 if (ocfs2_extents_adjacent(ext, insert_rec) && 835 ocfs2_block_extent_contig(sb, ext, blkno)) 836 return CONTIG_RIGHT; 837 838 blkno = le64_to_cpu(ext->e_blkno); 839 if (ocfs2_extents_adjacent(insert_rec, ext) && 840 ocfs2_block_extent_contig(sb, insert_rec, blkno)) 841 return CONTIG_LEFT; 842 843 return CONTIG_NONE; 844 } 845 846 /* 847 * NOTE: We can have pretty much any combination of contiguousness and 848 * appending. 849 * 850 * The usefulness of APPEND_TAIL is more in that it lets us know that 851 * we'll have to update the path to that leaf. 852 */ 853 enum ocfs2_append_type { 854 APPEND_NONE = 0, 855 APPEND_TAIL, 856 }; 857 858 enum ocfs2_split_type { 859 SPLIT_NONE = 0, 860 SPLIT_LEFT, 861 SPLIT_RIGHT, 862 }; 863 864 struct ocfs2_insert_type { 865 enum ocfs2_split_type ins_split; 866 enum ocfs2_append_type ins_appending; 867 enum ocfs2_contig_type ins_contig; 868 int ins_contig_index; 869 int ins_tree_depth; 870 }; 871 872 struct ocfs2_merge_ctxt { 873 enum ocfs2_contig_type c_contig_type; 874 int c_has_empty_extent; 875 int c_split_covers_rec; 876 }; 877 878 static int ocfs2_validate_extent_block(struct super_block *sb, 879 struct buffer_head *bh) 880 { 881 int rc; 882 struct ocfs2_extent_block *eb = 883 (struct ocfs2_extent_block *)bh->b_data; 884 885 trace_ocfs2_validate_extent_block((unsigned long long)bh->b_blocknr); 886 887 BUG_ON(!buffer_uptodate(bh)); 888 889 /* 890 * If the ecc fails, we return the error but otherwise 891 * leave the filesystem running. We know any error is 892 * local to this block. 893 */ 894 rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check); 895 if (rc) { 896 mlog(ML_ERROR, "Checksum failed for extent block %llu\n", 897 (unsigned long long)bh->b_blocknr); 898 return rc; 899 } 900 901 /* 902 * Errors after here are fatal. 903 */ 904 905 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 906 rc = ocfs2_error(sb, 907 "Extent block #%llu has bad signature %.*s\n", 908 (unsigned long long)bh->b_blocknr, 7, 909 eb->h_signature); 910 goto bail; 911 } 912 913 if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) { 914 rc = ocfs2_error(sb, 915 "Extent block #%llu has an invalid h_blkno of %llu\n", 916 (unsigned long long)bh->b_blocknr, 917 (unsigned long long)le64_to_cpu(eb->h_blkno)); 918 goto bail; 919 } 920 921 if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) 922 rc = ocfs2_error(sb, 923 "Extent block #%llu has an invalid h_fs_generation of #%u\n", 924 (unsigned long long)bh->b_blocknr, 925 le32_to_cpu(eb->h_fs_generation)); 926 bail: 927 return rc; 928 } 929 930 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno, 931 struct buffer_head **bh) 932 { 933 int rc; 934 struct buffer_head *tmp = *bh; 935 936 rc = ocfs2_read_block(ci, eb_blkno, &tmp, 937 ocfs2_validate_extent_block); 938 939 /* If ocfs2_read_block() got us a new bh, pass it up. */ 940 if (!rc && !*bh) 941 *bh = tmp; 942 943 return rc; 944 } 945 946 947 /* 948 * How many free extents have we got before we need more meta data? 949 */ 950 int ocfs2_num_free_extents(struct ocfs2_extent_tree *et) 951 { 952 int retval; 953 struct ocfs2_extent_list *el = NULL; 954 struct ocfs2_extent_block *eb; 955 struct buffer_head *eb_bh = NULL; 956 u64 last_eb_blk = 0; 957 958 el = et->et_root_el; 959 last_eb_blk = ocfs2_et_get_last_eb_blk(et); 960 961 if (last_eb_blk) { 962 retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk, 963 &eb_bh); 964 if (retval < 0) { 965 mlog_errno(retval); 966 goto bail; 967 } 968 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 969 el = &eb->h_list; 970 } 971 972 BUG_ON(el->l_tree_depth != 0); 973 974 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec); 975 bail: 976 brelse(eb_bh); 977 978 trace_ocfs2_num_free_extents(retval); 979 return retval; 980 } 981 982 /* expects array to already be allocated 983 * 984 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and 985 * l_count for you 986 */ 987 static int ocfs2_create_new_meta_bhs(handle_t *handle, 988 struct ocfs2_extent_tree *et, 989 int wanted, 990 struct ocfs2_alloc_context *meta_ac, 991 struct buffer_head *bhs[]) 992 { 993 int count, status, i; 994 u16 suballoc_bit_start; 995 u32 num_got; 996 u64 suballoc_loc, first_blkno; 997 struct ocfs2_super *osb = 998 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 999 struct ocfs2_extent_block *eb; 1000 1001 count = 0; 1002 while (count < wanted) { 1003 status = ocfs2_claim_metadata(handle, 1004 meta_ac, 1005 wanted - count, 1006 &suballoc_loc, 1007 &suballoc_bit_start, 1008 &num_got, 1009 &first_blkno); 1010 if (status < 0) { 1011 mlog_errno(status); 1012 goto bail; 1013 } 1014 1015 for(i = count; i < (num_got + count); i++) { 1016 bhs[i] = sb_getblk(osb->sb, first_blkno); 1017 if (bhs[i] == NULL) { 1018 status = -ENOMEM; 1019 mlog_errno(status); 1020 goto bail; 1021 } 1022 ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]); 1023 1024 status = ocfs2_journal_access_eb(handle, et->et_ci, 1025 bhs[i], 1026 OCFS2_JOURNAL_ACCESS_CREATE); 1027 if (status < 0) { 1028 mlog_errno(status); 1029 goto bail; 1030 } 1031 1032 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize); 1033 eb = (struct ocfs2_extent_block *) bhs[i]->b_data; 1034 /* Ok, setup the minimal stuff here. */ 1035 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); 1036 eb->h_blkno = cpu_to_le64(first_blkno); 1037 eb->h_fs_generation = cpu_to_le32(osb->fs_generation); 1038 eb->h_suballoc_slot = 1039 cpu_to_le16(meta_ac->ac_alloc_slot); 1040 eb->h_suballoc_loc = cpu_to_le64(suballoc_loc); 1041 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start); 1042 eb->h_list.l_count = 1043 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); 1044 1045 suballoc_bit_start++; 1046 first_blkno++; 1047 1048 /* We'll also be dirtied by the caller, so 1049 * this isn't absolutely necessary. */ 1050 ocfs2_journal_dirty(handle, bhs[i]); 1051 } 1052 1053 count += num_got; 1054 } 1055 1056 status = 0; 1057 bail: 1058 if (status < 0) { 1059 for(i = 0; i < wanted; i++) { 1060 brelse(bhs[i]); 1061 bhs[i] = NULL; 1062 } 1063 mlog_errno(status); 1064 } 1065 return status; 1066 } 1067 1068 /* 1069 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth(). 1070 * 1071 * Returns the sum of the rightmost extent rec logical offset and 1072 * cluster count. 1073 * 1074 * ocfs2_add_branch() uses this to determine what logical cluster 1075 * value should be populated into the leftmost new branch records. 1076 * 1077 * ocfs2_shift_tree_depth() uses this to determine the # clusters 1078 * value for the new topmost tree record. 1079 */ 1080 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el) 1081 { 1082 int i; 1083 1084 i = le16_to_cpu(el->l_next_free_rec) - 1; 1085 1086 return le32_to_cpu(el->l_recs[i].e_cpos) + 1087 ocfs2_rec_clusters(el, &el->l_recs[i]); 1088 } 1089 1090 /* 1091 * Change range of the branches in the right most path according to the leaf 1092 * extent block's rightmost record. 1093 */ 1094 static int ocfs2_adjust_rightmost_branch(handle_t *handle, 1095 struct ocfs2_extent_tree *et) 1096 { 1097 int status; 1098 struct ocfs2_path *path = NULL; 1099 struct ocfs2_extent_list *el; 1100 struct ocfs2_extent_rec *rec; 1101 1102 path = ocfs2_new_path_from_et(et); 1103 if (!path) { 1104 status = -ENOMEM; 1105 return status; 1106 } 1107 1108 status = ocfs2_find_path(et->et_ci, path, UINT_MAX); 1109 if (status < 0) { 1110 mlog_errno(status); 1111 goto out; 1112 } 1113 1114 status = ocfs2_extend_trans(handle, path_num_items(path)); 1115 if (status < 0) { 1116 mlog_errno(status); 1117 goto out; 1118 } 1119 1120 status = ocfs2_journal_access_path(et->et_ci, handle, path); 1121 if (status < 0) { 1122 mlog_errno(status); 1123 goto out; 1124 } 1125 1126 el = path_leaf_el(path); 1127 rec = &el->l_recs[le16_to_cpu(el->l_next_free_rec) - 1]; 1128 1129 ocfs2_adjust_rightmost_records(handle, et, path, rec); 1130 1131 out: 1132 ocfs2_free_path(path); 1133 return status; 1134 } 1135 1136 /* 1137 * Add an entire tree branch to our inode. eb_bh is the extent block 1138 * to start at, if we don't want to start the branch at the root 1139 * structure. 1140 * 1141 * last_eb_bh is required as we have to update it's next_leaf pointer 1142 * for the new last extent block. 1143 * 1144 * the new branch will be 'empty' in the sense that every block will 1145 * contain a single record with cluster count == 0. 1146 */ 1147 static int ocfs2_add_branch(handle_t *handle, 1148 struct ocfs2_extent_tree *et, 1149 struct buffer_head *eb_bh, 1150 struct buffer_head **last_eb_bh, 1151 struct ocfs2_alloc_context *meta_ac) 1152 { 1153 int status, new_blocks, i, block_given = 0; 1154 u64 next_blkno, new_last_eb_blk; 1155 struct buffer_head *bh; 1156 struct buffer_head **new_eb_bhs = NULL; 1157 struct ocfs2_extent_block *eb; 1158 struct ocfs2_extent_list *eb_el; 1159 struct ocfs2_extent_list *el; 1160 u32 new_cpos, root_end; 1161 1162 BUG_ON(!last_eb_bh || !*last_eb_bh); 1163 1164 if (eb_bh) { 1165 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 1166 el = &eb->h_list; 1167 } else 1168 el = et->et_root_el; 1169 1170 /* we never add a branch to a leaf. */ 1171 BUG_ON(!el->l_tree_depth); 1172 1173 new_blocks = le16_to_cpu(el->l_tree_depth); 1174 1175 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data; 1176 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list); 1177 root_end = ocfs2_sum_rightmost_rec(et->et_root_el); 1178 1179 /* 1180 * If there is a gap before the root end and the real end 1181 * of the righmost leaf block, we need to remove the gap 1182 * between new_cpos and root_end first so that the tree 1183 * is consistent after we add a new branch(it will start 1184 * from new_cpos). 1185 */ 1186 if (root_end > new_cpos) { 1187 trace_ocfs2_adjust_rightmost_branch( 1188 (unsigned long long) 1189 ocfs2_metadata_cache_owner(et->et_ci), 1190 root_end, new_cpos); 1191 1192 status = ocfs2_adjust_rightmost_branch(handle, et); 1193 if (status) { 1194 mlog_errno(status); 1195 goto bail; 1196 } 1197 } 1198 1199 /* allocate the number of new eb blocks we need */ 1200 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *), 1201 GFP_KERNEL); 1202 if (!new_eb_bhs) { 1203 status = -ENOMEM; 1204 mlog_errno(status); 1205 goto bail; 1206 } 1207 1208 /* Firstyly, try to reuse dealloc since we have already estimated how 1209 * many extent blocks we may use. 1210 */ 1211 if (!ocfs2_is_dealloc_empty(et)) { 1212 status = ocfs2_reuse_blk_from_dealloc(handle, et, 1213 new_eb_bhs, new_blocks, 1214 &block_given); 1215 if (status < 0) { 1216 mlog_errno(status); 1217 goto bail; 1218 } 1219 } 1220 1221 BUG_ON(block_given > new_blocks); 1222 1223 if (block_given < new_blocks) { 1224 BUG_ON(!meta_ac); 1225 status = ocfs2_create_new_meta_bhs(handle, et, 1226 new_blocks - block_given, 1227 meta_ac, 1228 &new_eb_bhs[block_given]); 1229 if (status < 0) { 1230 mlog_errno(status); 1231 goto bail; 1232 } 1233 } 1234 1235 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be 1236 * linked with the rest of the tree. 1237 * conversly, new_eb_bhs[0] is the new bottommost leaf. 1238 * 1239 * when we leave the loop, new_last_eb_blk will point to the 1240 * newest leaf, and next_blkno will point to the topmost extent 1241 * block. */ 1242 next_blkno = new_last_eb_blk = 0; 1243 for(i = 0; i < new_blocks; i++) { 1244 bh = new_eb_bhs[i]; 1245 eb = (struct ocfs2_extent_block *) bh->b_data; 1246 /* ocfs2_create_new_meta_bhs() should create it right! */ 1247 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1248 eb_el = &eb->h_list; 1249 1250 status = ocfs2_journal_access_eb(handle, et->et_ci, bh, 1251 OCFS2_JOURNAL_ACCESS_CREATE); 1252 if (status < 0) { 1253 mlog_errno(status); 1254 goto bail; 1255 } 1256 1257 eb->h_next_leaf_blk = 0; 1258 eb_el->l_tree_depth = cpu_to_le16(i); 1259 eb_el->l_next_free_rec = cpu_to_le16(1); 1260 /* 1261 * This actually counts as an empty extent as 1262 * c_clusters == 0 1263 */ 1264 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos); 1265 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno); 1266 /* 1267 * eb_el isn't always an interior node, but even leaf 1268 * nodes want a zero'd flags and reserved field so 1269 * this gets the whole 32 bits regardless of use. 1270 */ 1271 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0); 1272 if (!eb_el->l_tree_depth) 1273 new_last_eb_blk = le64_to_cpu(eb->h_blkno); 1274 1275 ocfs2_journal_dirty(handle, bh); 1276 next_blkno = le64_to_cpu(eb->h_blkno); 1277 } 1278 1279 /* This is a bit hairy. We want to update up to three blocks 1280 * here without leaving any of them in an inconsistent state 1281 * in case of error. We don't have to worry about 1282 * journal_dirty erroring as it won't unless we've aborted the 1283 * handle (in which case we would never be here) so reserving 1284 * the write with journal_access is all we need to do. */ 1285 status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh, 1286 OCFS2_JOURNAL_ACCESS_WRITE); 1287 if (status < 0) { 1288 mlog_errno(status); 1289 goto bail; 1290 } 1291 status = ocfs2_et_root_journal_access(handle, et, 1292 OCFS2_JOURNAL_ACCESS_WRITE); 1293 if (status < 0) { 1294 mlog_errno(status); 1295 goto bail; 1296 } 1297 if (eb_bh) { 1298 status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh, 1299 OCFS2_JOURNAL_ACCESS_WRITE); 1300 if (status < 0) { 1301 mlog_errno(status); 1302 goto bail; 1303 } 1304 } 1305 1306 /* Link the new branch into the rest of the tree (el will 1307 * either be on the root_bh, or the extent block passed in. */ 1308 i = le16_to_cpu(el->l_next_free_rec); 1309 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno); 1310 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos); 1311 el->l_recs[i].e_int_clusters = 0; 1312 le16_add_cpu(&el->l_next_free_rec, 1); 1313 1314 /* fe needs a new last extent block pointer, as does the 1315 * next_leaf on the previously last-extent-block. */ 1316 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk); 1317 1318 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 1319 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk); 1320 1321 ocfs2_journal_dirty(handle, *last_eb_bh); 1322 ocfs2_journal_dirty(handle, et->et_root_bh); 1323 if (eb_bh) 1324 ocfs2_journal_dirty(handle, eb_bh); 1325 1326 /* 1327 * Some callers want to track the rightmost leaf so pass it 1328 * back here. 1329 */ 1330 brelse(*last_eb_bh); 1331 get_bh(new_eb_bhs[0]); 1332 *last_eb_bh = new_eb_bhs[0]; 1333 1334 status = 0; 1335 bail: 1336 if (new_eb_bhs) { 1337 for (i = 0; i < new_blocks; i++) 1338 brelse(new_eb_bhs[i]); 1339 kfree(new_eb_bhs); 1340 } 1341 1342 return status; 1343 } 1344 1345 /* 1346 * adds another level to the allocation tree. 1347 * returns back the new extent block so you can add a branch to it 1348 * after this call. 1349 */ 1350 static int ocfs2_shift_tree_depth(handle_t *handle, 1351 struct ocfs2_extent_tree *et, 1352 struct ocfs2_alloc_context *meta_ac, 1353 struct buffer_head **ret_new_eb_bh) 1354 { 1355 int status, i, block_given = 0; 1356 u32 new_clusters; 1357 struct buffer_head *new_eb_bh = NULL; 1358 struct ocfs2_extent_block *eb; 1359 struct ocfs2_extent_list *root_el; 1360 struct ocfs2_extent_list *eb_el; 1361 1362 if (!ocfs2_is_dealloc_empty(et)) { 1363 status = ocfs2_reuse_blk_from_dealloc(handle, et, 1364 &new_eb_bh, 1, 1365 &block_given); 1366 } else if (meta_ac) { 1367 status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac, 1368 &new_eb_bh); 1369 1370 } else { 1371 BUG(); 1372 } 1373 1374 if (status < 0) { 1375 mlog_errno(status); 1376 goto bail; 1377 } 1378 1379 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data; 1380 /* ocfs2_create_new_meta_bhs() should create it right! */ 1381 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1382 1383 eb_el = &eb->h_list; 1384 root_el = et->et_root_el; 1385 1386 status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh, 1387 OCFS2_JOURNAL_ACCESS_CREATE); 1388 if (status < 0) { 1389 mlog_errno(status); 1390 goto bail; 1391 } 1392 1393 /* copy the root extent list data into the new extent block */ 1394 eb_el->l_tree_depth = root_el->l_tree_depth; 1395 eb_el->l_next_free_rec = root_el->l_next_free_rec; 1396 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1397 eb_el->l_recs[i] = root_el->l_recs[i]; 1398 1399 ocfs2_journal_dirty(handle, new_eb_bh); 1400 1401 status = ocfs2_et_root_journal_access(handle, et, 1402 OCFS2_JOURNAL_ACCESS_WRITE); 1403 if (status < 0) { 1404 mlog_errno(status); 1405 goto bail; 1406 } 1407 1408 new_clusters = ocfs2_sum_rightmost_rec(eb_el); 1409 1410 /* update root_bh now */ 1411 le16_add_cpu(&root_el->l_tree_depth, 1); 1412 root_el->l_recs[0].e_cpos = 0; 1413 root_el->l_recs[0].e_blkno = eb->h_blkno; 1414 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters); 1415 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1416 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 1417 root_el->l_next_free_rec = cpu_to_le16(1); 1418 1419 /* If this is our 1st tree depth shift, then last_eb_blk 1420 * becomes the allocated extent block */ 1421 if (root_el->l_tree_depth == cpu_to_le16(1)) 1422 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 1423 1424 ocfs2_journal_dirty(handle, et->et_root_bh); 1425 1426 *ret_new_eb_bh = new_eb_bh; 1427 new_eb_bh = NULL; 1428 status = 0; 1429 bail: 1430 brelse(new_eb_bh); 1431 1432 return status; 1433 } 1434 1435 /* 1436 * Should only be called when there is no space left in any of the 1437 * leaf nodes. What we want to do is find the lowest tree depth 1438 * non-leaf extent block with room for new records. There are three 1439 * valid results of this search: 1440 * 1441 * 1) a lowest extent block is found, then we pass it back in 1442 * *lowest_eb_bh and return '0' 1443 * 1444 * 2) the search fails to find anything, but the root_el has room. We 1445 * pass NULL back in *lowest_eb_bh, but still return '0' 1446 * 1447 * 3) the search fails to find anything AND the root_el is full, in 1448 * which case we return > 0 1449 * 1450 * return status < 0 indicates an error. 1451 */ 1452 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et, 1453 struct buffer_head **target_bh) 1454 { 1455 int status = 0, i; 1456 u64 blkno; 1457 struct ocfs2_extent_block *eb; 1458 struct ocfs2_extent_list *el; 1459 struct buffer_head *bh = NULL; 1460 struct buffer_head *lowest_bh = NULL; 1461 1462 *target_bh = NULL; 1463 1464 el = et->et_root_el; 1465 1466 while(le16_to_cpu(el->l_tree_depth) > 1) { 1467 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1468 status = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 1469 "Owner %llu has empty extent list (next_free_rec == 0)\n", 1470 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 1471 goto bail; 1472 } 1473 i = le16_to_cpu(el->l_next_free_rec) - 1; 1474 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1475 if (!blkno) { 1476 status = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 1477 "Owner %llu has extent list where extent # %d has no physical block start\n", 1478 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i); 1479 goto bail; 1480 } 1481 1482 brelse(bh); 1483 bh = NULL; 1484 1485 status = ocfs2_read_extent_block(et->et_ci, blkno, &bh); 1486 if (status < 0) { 1487 mlog_errno(status); 1488 goto bail; 1489 } 1490 1491 eb = (struct ocfs2_extent_block *) bh->b_data; 1492 el = &eb->h_list; 1493 1494 if (le16_to_cpu(el->l_next_free_rec) < 1495 le16_to_cpu(el->l_count)) { 1496 brelse(lowest_bh); 1497 lowest_bh = bh; 1498 get_bh(lowest_bh); 1499 } 1500 } 1501 1502 /* If we didn't find one and the fe doesn't have any room, 1503 * then return '1' */ 1504 el = et->et_root_el; 1505 if (!lowest_bh && (el->l_next_free_rec == el->l_count)) 1506 status = 1; 1507 1508 *target_bh = lowest_bh; 1509 bail: 1510 brelse(bh); 1511 1512 return status; 1513 } 1514 1515 /* 1516 * Grow a b-tree so that it has more records. 1517 * 1518 * We might shift the tree depth in which case existing paths should 1519 * be considered invalid. 1520 * 1521 * Tree depth after the grow is returned via *final_depth. 1522 * 1523 * *last_eb_bh will be updated by ocfs2_add_branch(). 1524 */ 1525 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et, 1526 int *final_depth, struct buffer_head **last_eb_bh, 1527 struct ocfs2_alloc_context *meta_ac) 1528 { 1529 int ret, shift; 1530 struct ocfs2_extent_list *el = et->et_root_el; 1531 int depth = le16_to_cpu(el->l_tree_depth); 1532 struct buffer_head *bh = NULL; 1533 1534 BUG_ON(meta_ac == NULL && ocfs2_is_dealloc_empty(et)); 1535 1536 shift = ocfs2_find_branch_target(et, &bh); 1537 if (shift < 0) { 1538 ret = shift; 1539 mlog_errno(ret); 1540 goto out; 1541 } 1542 1543 /* We traveled all the way to the bottom of the allocation tree 1544 * and didn't find room for any more extents - we need to add 1545 * another tree level */ 1546 if (shift) { 1547 BUG_ON(bh); 1548 trace_ocfs2_grow_tree( 1549 (unsigned long long) 1550 ocfs2_metadata_cache_owner(et->et_ci), 1551 depth); 1552 1553 /* ocfs2_shift_tree_depth will return us a buffer with 1554 * the new extent block (so we can pass that to 1555 * ocfs2_add_branch). */ 1556 ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh); 1557 if (ret < 0) { 1558 mlog_errno(ret); 1559 goto out; 1560 } 1561 depth++; 1562 if (depth == 1) { 1563 /* 1564 * Special case: we have room now if we shifted from 1565 * tree_depth 0, so no more work needs to be done. 1566 * 1567 * We won't be calling add_branch, so pass 1568 * back *last_eb_bh as the new leaf. At depth 1569 * zero, it should always be null so there's 1570 * no reason to brelse. 1571 */ 1572 BUG_ON(*last_eb_bh); 1573 get_bh(bh); 1574 *last_eb_bh = bh; 1575 goto out; 1576 } 1577 } 1578 1579 /* call ocfs2_add_branch to add the final part of the tree with 1580 * the new data. */ 1581 ret = ocfs2_add_branch(handle, et, bh, last_eb_bh, 1582 meta_ac); 1583 if (ret < 0) 1584 mlog_errno(ret); 1585 1586 out: 1587 if (final_depth) 1588 *final_depth = depth; 1589 brelse(bh); 1590 return ret; 1591 } 1592 1593 /* 1594 * This function will discard the rightmost extent record. 1595 */ 1596 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el) 1597 { 1598 int next_free = le16_to_cpu(el->l_next_free_rec); 1599 int count = le16_to_cpu(el->l_count); 1600 unsigned int num_bytes; 1601 1602 BUG_ON(!next_free); 1603 /* This will cause us to go off the end of our extent list. */ 1604 BUG_ON(next_free >= count); 1605 1606 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free; 1607 1608 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes); 1609 } 1610 1611 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el, 1612 struct ocfs2_extent_rec *insert_rec) 1613 { 1614 int i, insert_index, next_free, has_empty, num_bytes; 1615 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos); 1616 struct ocfs2_extent_rec *rec; 1617 1618 next_free = le16_to_cpu(el->l_next_free_rec); 1619 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]); 1620 1621 BUG_ON(!next_free); 1622 1623 /* The tree code before us didn't allow enough room in the leaf. */ 1624 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty); 1625 1626 /* 1627 * The easiest way to approach this is to just remove the 1628 * empty extent and temporarily decrement next_free. 1629 */ 1630 if (has_empty) { 1631 /* 1632 * If next_free was 1 (only an empty extent), this 1633 * loop won't execute, which is fine. We still want 1634 * the decrement above to happen. 1635 */ 1636 for(i = 0; i < (next_free - 1); i++) 1637 el->l_recs[i] = el->l_recs[i+1]; 1638 1639 next_free--; 1640 } 1641 1642 /* 1643 * Figure out what the new record index should be. 1644 */ 1645 for(i = 0; i < next_free; i++) { 1646 rec = &el->l_recs[i]; 1647 1648 if (insert_cpos < le32_to_cpu(rec->e_cpos)) 1649 break; 1650 } 1651 insert_index = i; 1652 1653 trace_ocfs2_rotate_leaf(insert_cpos, insert_index, 1654 has_empty, next_free, 1655 le16_to_cpu(el->l_count)); 1656 1657 BUG_ON(insert_index < 0); 1658 BUG_ON(insert_index >= le16_to_cpu(el->l_count)); 1659 BUG_ON(insert_index > next_free); 1660 1661 /* 1662 * No need to memmove if we're just adding to the tail. 1663 */ 1664 if (insert_index != next_free) { 1665 BUG_ON(next_free >= le16_to_cpu(el->l_count)); 1666 1667 num_bytes = next_free - insert_index; 1668 num_bytes *= sizeof(struct ocfs2_extent_rec); 1669 memmove(&el->l_recs[insert_index + 1], 1670 &el->l_recs[insert_index], 1671 num_bytes); 1672 } 1673 1674 /* 1675 * Either we had an empty extent, and need to re-increment or 1676 * there was no empty extent on a non full rightmost leaf node, 1677 * in which case we still need to increment. 1678 */ 1679 next_free++; 1680 el->l_next_free_rec = cpu_to_le16(next_free); 1681 /* 1682 * Make sure none of the math above just messed up our tree. 1683 */ 1684 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count)); 1685 1686 el->l_recs[insert_index] = *insert_rec; 1687 1688 } 1689 1690 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el) 1691 { 1692 int size, num_recs = le16_to_cpu(el->l_next_free_rec); 1693 1694 BUG_ON(num_recs == 0); 1695 1696 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 1697 num_recs--; 1698 size = num_recs * sizeof(struct ocfs2_extent_rec); 1699 memmove(&el->l_recs[0], &el->l_recs[1], size); 1700 memset(&el->l_recs[num_recs], 0, 1701 sizeof(struct ocfs2_extent_rec)); 1702 el->l_next_free_rec = cpu_to_le16(num_recs); 1703 } 1704 } 1705 1706 /* 1707 * Create an empty extent record . 1708 * 1709 * l_next_free_rec may be updated. 1710 * 1711 * If an empty extent already exists do nothing. 1712 */ 1713 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el) 1714 { 1715 int next_free = le16_to_cpu(el->l_next_free_rec); 1716 1717 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 1718 1719 if (next_free == 0) 1720 goto set_and_inc; 1721 1722 if (ocfs2_is_empty_extent(&el->l_recs[0])) 1723 return; 1724 1725 mlog_bug_on_msg(el->l_count == el->l_next_free_rec, 1726 "Asked to create an empty extent in a full list:\n" 1727 "count = %u, tree depth = %u", 1728 le16_to_cpu(el->l_count), 1729 le16_to_cpu(el->l_tree_depth)); 1730 1731 ocfs2_shift_records_right(el); 1732 1733 set_and_inc: 1734 le16_add_cpu(&el->l_next_free_rec, 1); 1735 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 1736 } 1737 1738 /* 1739 * For a rotation which involves two leaf nodes, the "root node" is 1740 * the lowest level tree node which contains a path to both leafs. This 1741 * resulting set of information can be used to form a complete "subtree" 1742 * 1743 * This function is passed two full paths from the dinode down to a 1744 * pair of adjacent leaves. It's task is to figure out which path 1745 * index contains the subtree root - this can be the root index itself 1746 * in a worst-case rotation. 1747 * 1748 * The array index of the subtree root is passed back. 1749 */ 1750 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et, 1751 struct ocfs2_path *left, 1752 struct ocfs2_path *right) 1753 { 1754 int i = 0; 1755 1756 /* 1757 * Check that the caller passed in two paths from the same tree. 1758 */ 1759 BUG_ON(path_root_bh(left) != path_root_bh(right)); 1760 1761 do { 1762 i++; 1763 1764 /* 1765 * The caller didn't pass two adjacent paths. 1766 */ 1767 mlog_bug_on_msg(i > left->p_tree_depth, 1768 "Owner %llu, left depth %u, right depth %u\n" 1769 "left leaf blk %llu, right leaf blk %llu\n", 1770 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 1771 left->p_tree_depth, right->p_tree_depth, 1772 (unsigned long long)path_leaf_bh(left)->b_blocknr, 1773 (unsigned long long)path_leaf_bh(right)->b_blocknr); 1774 } while (left->p_node[i].bh->b_blocknr == 1775 right->p_node[i].bh->b_blocknr); 1776 1777 return i - 1; 1778 } 1779 1780 typedef void (path_insert_t)(void *, struct buffer_head *); 1781 1782 /* 1783 * Traverse a btree path in search of cpos, starting at root_el. 1784 * 1785 * This code can be called with a cpos larger than the tree, in which 1786 * case it will return the rightmost path. 1787 */ 1788 static int __ocfs2_find_path(struct ocfs2_caching_info *ci, 1789 struct ocfs2_extent_list *root_el, u32 cpos, 1790 path_insert_t *func, void *data) 1791 { 1792 int i, ret = 0; 1793 u32 range; 1794 u64 blkno; 1795 struct buffer_head *bh = NULL; 1796 struct ocfs2_extent_block *eb; 1797 struct ocfs2_extent_list *el; 1798 struct ocfs2_extent_rec *rec; 1799 1800 el = root_el; 1801 while (el->l_tree_depth) { 1802 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1803 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1804 "Owner %llu has empty extent list at depth %u\n", 1805 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1806 le16_to_cpu(el->l_tree_depth)); 1807 ret = -EROFS; 1808 goto out; 1809 1810 } 1811 1812 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) { 1813 rec = &el->l_recs[i]; 1814 1815 /* 1816 * In the case that cpos is off the allocation 1817 * tree, this should just wind up returning the 1818 * rightmost record. 1819 */ 1820 range = le32_to_cpu(rec->e_cpos) + 1821 ocfs2_rec_clusters(el, rec); 1822 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 1823 break; 1824 } 1825 1826 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1827 if (blkno == 0) { 1828 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1829 "Owner %llu has bad blkno in extent list at depth %u (index %d)\n", 1830 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1831 le16_to_cpu(el->l_tree_depth), i); 1832 ret = -EROFS; 1833 goto out; 1834 } 1835 1836 brelse(bh); 1837 bh = NULL; 1838 ret = ocfs2_read_extent_block(ci, blkno, &bh); 1839 if (ret) { 1840 mlog_errno(ret); 1841 goto out; 1842 } 1843 1844 eb = (struct ocfs2_extent_block *) bh->b_data; 1845 el = &eb->h_list; 1846 1847 if (le16_to_cpu(el->l_next_free_rec) > 1848 le16_to_cpu(el->l_count)) { 1849 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1850 "Owner %llu has bad count in extent list at block %llu (next free=%u, count=%u)\n", 1851 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1852 (unsigned long long)bh->b_blocknr, 1853 le16_to_cpu(el->l_next_free_rec), 1854 le16_to_cpu(el->l_count)); 1855 ret = -EROFS; 1856 goto out; 1857 } 1858 1859 if (func) 1860 func(data, bh); 1861 } 1862 1863 out: 1864 /* 1865 * Catch any trailing bh that the loop didn't handle. 1866 */ 1867 brelse(bh); 1868 1869 return ret; 1870 } 1871 1872 /* 1873 * Given an initialized path (that is, it has a valid root extent 1874 * list), this function will traverse the btree in search of the path 1875 * which would contain cpos. 1876 * 1877 * The path traveled is recorded in the path structure. 1878 * 1879 * Note that this will not do any comparisons on leaf node extent 1880 * records, so it will work fine in the case that we just added a tree 1881 * branch. 1882 */ 1883 struct find_path_data { 1884 int index; 1885 struct ocfs2_path *path; 1886 }; 1887 static void find_path_ins(void *data, struct buffer_head *bh) 1888 { 1889 struct find_path_data *fp = data; 1890 1891 get_bh(bh); 1892 ocfs2_path_insert_eb(fp->path, fp->index, bh); 1893 fp->index++; 1894 } 1895 int ocfs2_find_path(struct ocfs2_caching_info *ci, 1896 struct ocfs2_path *path, u32 cpos) 1897 { 1898 struct find_path_data data; 1899 1900 data.index = 1; 1901 data.path = path; 1902 return __ocfs2_find_path(ci, path_root_el(path), cpos, 1903 find_path_ins, &data); 1904 } 1905 1906 static void find_leaf_ins(void *data, struct buffer_head *bh) 1907 { 1908 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data; 1909 struct ocfs2_extent_list *el = &eb->h_list; 1910 struct buffer_head **ret = data; 1911 1912 /* We want to retain only the leaf block. */ 1913 if (le16_to_cpu(el->l_tree_depth) == 0) { 1914 get_bh(bh); 1915 *ret = bh; 1916 } 1917 } 1918 /* 1919 * Find the leaf block in the tree which would contain cpos. No 1920 * checking of the actual leaf is done. 1921 * 1922 * Some paths want to call this instead of allocating a path structure 1923 * and calling ocfs2_find_path(). 1924 * 1925 * This function doesn't handle non btree extent lists. 1926 */ 1927 int ocfs2_find_leaf(struct ocfs2_caching_info *ci, 1928 struct ocfs2_extent_list *root_el, u32 cpos, 1929 struct buffer_head **leaf_bh) 1930 { 1931 int ret; 1932 struct buffer_head *bh = NULL; 1933 1934 ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh); 1935 if (ret) { 1936 mlog_errno(ret); 1937 goto out; 1938 } 1939 1940 *leaf_bh = bh; 1941 out: 1942 return ret; 1943 } 1944 1945 /* 1946 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation. 1947 * 1948 * Basically, we've moved stuff around at the bottom of the tree and 1949 * we need to fix up the extent records above the changes to reflect 1950 * the new changes. 1951 * 1952 * left_rec: the record on the left. 1953 * right_rec: the record to the right of left_rec 1954 * right_child_el: is the child list pointed to by right_rec 1955 * 1956 * By definition, this only works on interior nodes. 1957 */ 1958 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec, 1959 struct ocfs2_extent_rec *right_rec, 1960 struct ocfs2_extent_list *right_child_el) 1961 { 1962 u32 left_clusters, right_end; 1963 1964 /* 1965 * Interior nodes never have holes. Their cpos is the cpos of 1966 * the leftmost record in their child list. Their cluster 1967 * count covers the full theoretical range of their child list 1968 * - the range between their cpos and the cpos of the record 1969 * immediately to their right. 1970 */ 1971 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos); 1972 if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) { 1973 BUG_ON(right_child_el->l_tree_depth); 1974 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1); 1975 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos); 1976 } 1977 left_clusters -= le32_to_cpu(left_rec->e_cpos); 1978 left_rec->e_int_clusters = cpu_to_le32(left_clusters); 1979 1980 /* 1981 * Calculate the rightmost cluster count boundary before 1982 * moving cpos - we will need to adjust clusters after 1983 * updating e_cpos to keep the same highest cluster count. 1984 */ 1985 right_end = le32_to_cpu(right_rec->e_cpos); 1986 right_end += le32_to_cpu(right_rec->e_int_clusters); 1987 1988 right_rec->e_cpos = left_rec->e_cpos; 1989 le32_add_cpu(&right_rec->e_cpos, left_clusters); 1990 1991 right_end -= le32_to_cpu(right_rec->e_cpos); 1992 right_rec->e_int_clusters = cpu_to_le32(right_end); 1993 } 1994 1995 /* 1996 * Adjust the adjacent root node records involved in a 1997 * rotation. left_el_blkno is passed in as a key so that we can easily 1998 * find it's index in the root list. 1999 */ 2000 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el, 2001 struct ocfs2_extent_list *left_el, 2002 struct ocfs2_extent_list *right_el, 2003 u64 left_el_blkno) 2004 { 2005 int i; 2006 2007 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <= 2008 le16_to_cpu(left_el->l_tree_depth)); 2009 2010 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) { 2011 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno) 2012 break; 2013 } 2014 2015 /* 2016 * The path walking code should have never returned a root and 2017 * two paths which are not adjacent. 2018 */ 2019 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1)); 2020 2021 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], 2022 &root_el->l_recs[i + 1], right_el); 2023 } 2024 2025 /* 2026 * We've changed a leaf block (in right_path) and need to reflect that 2027 * change back up the subtree. 2028 * 2029 * This happens in multiple places: 2030 * - When we've moved an extent record from the left path leaf to the right 2031 * path leaf to make room for an empty extent in the left path leaf. 2032 * - When our insert into the right path leaf is at the leftmost edge 2033 * and requires an update of the path immediately to it's left. This 2034 * can occur at the end of some types of rotation and appending inserts. 2035 * - When we've adjusted the last extent record in the left path leaf and the 2036 * 1st extent record in the right path leaf during cross extent block merge. 2037 */ 2038 static void ocfs2_complete_edge_insert(handle_t *handle, 2039 struct ocfs2_path *left_path, 2040 struct ocfs2_path *right_path, 2041 int subtree_index) 2042 { 2043 int i, idx; 2044 struct ocfs2_extent_list *el, *left_el, *right_el; 2045 struct ocfs2_extent_rec *left_rec, *right_rec; 2046 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2047 2048 /* 2049 * Update the counts and position values within all the 2050 * interior nodes to reflect the leaf rotation we just did. 2051 * 2052 * The root node is handled below the loop. 2053 * 2054 * We begin the loop with right_el and left_el pointing to the 2055 * leaf lists and work our way up. 2056 * 2057 * NOTE: within this loop, left_el and right_el always refer 2058 * to the *child* lists. 2059 */ 2060 left_el = path_leaf_el(left_path); 2061 right_el = path_leaf_el(right_path); 2062 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) { 2063 trace_ocfs2_complete_edge_insert(i); 2064 2065 /* 2066 * One nice property of knowing that all of these 2067 * nodes are below the root is that we only deal with 2068 * the leftmost right node record and the rightmost 2069 * left node record. 2070 */ 2071 el = left_path->p_node[i].el; 2072 idx = le16_to_cpu(left_el->l_next_free_rec) - 1; 2073 left_rec = &el->l_recs[idx]; 2074 2075 el = right_path->p_node[i].el; 2076 right_rec = &el->l_recs[0]; 2077 2078 ocfs2_adjust_adjacent_records(left_rec, right_rec, right_el); 2079 2080 ocfs2_journal_dirty(handle, left_path->p_node[i].bh); 2081 ocfs2_journal_dirty(handle, right_path->p_node[i].bh); 2082 2083 /* 2084 * Setup our list pointers now so that the current 2085 * parents become children in the next iteration. 2086 */ 2087 left_el = left_path->p_node[i].el; 2088 right_el = right_path->p_node[i].el; 2089 } 2090 2091 /* 2092 * At the root node, adjust the two adjacent records which 2093 * begin our path to the leaves. 2094 */ 2095 2096 el = left_path->p_node[subtree_index].el; 2097 left_el = left_path->p_node[subtree_index + 1].el; 2098 right_el = right_path->p_node[subtree_index + 1].el; 2099 2100 ocfs2_adjust_root_records(el, left_el, right_el, 2101 left_path->p_node[subtree_index + 1].bh->b_blocknr); 2102 2103 root_bh = left_path->p_node[subtree_index].bh; 2104 2105 ocfs2_journal_dirty(handle, root_bh); 2106 } 2107 2108 static int ocfs2_rotate_subtree_right(handle_t *handle, 2109 struct ocfs2_extent_tree *et, 2110 struct ocfs2_path *left_path, 2111 struct ocfs2_path *right_path, 2112 int subtree_index) 2113 { 2114 int ret, i; 2115 struct buffer_head *right_leaf_bh; 2116 struct buffer_head *left_leaf_bh = NULL; 2117 struct buffer_head *root_bh; 2118 struct ocfs2_extent_list *right_el, *left_el; 2119 struct ocfs2_extent_rec move_rec; 2120 2121 left_leaf_bh = path_leaf_bh(left_path); 2122 left_el = path_leaf_el(left_path); 2123 2124 if (left_el->l_next_free_rec != left_el->l_count) { 2125 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 2126 "Inode %llu has non-full interior leaf node %llu (next free = %u)\n", 2127 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2128 (unsigned long long)left_leaf_bh->b_blocknr, 2129 le16_to_cpu(left_el->l_next_free_rec)); 2130 return -EROFS; 2131 } 2132 2133 /* 2134 * This extent block may already have an empty record, so we 2135 * return early if so. 2136 */ 2137 if (ocfs2_is_empty_extent(&left_el->l_recs[0])) 2138 return 0; 2139 2140 root_bh = left_path->p_node[subtree_index].bh; 2141 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2142 2143 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 2144 subtree_index); 2145 if (ret) { 2146 mlog_errno(ret); 2147 goto out; 2148 } 2149 2150 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2151 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2152 right_path, i); 2153 if (ret) { 2154 mlog_errno(ret); 2155 goto out; 2156 } 2157 2158 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2159 left_path, i); 2160 if (ret) { 2161 mlog_errno(ret); 2162 goto out; 2163 } 2164 } 2165 2166 right_leaf_bh = path_leaf_bh(right_path); 2167 right_el = path_leaf_el(right_path); 2168 2169 /* This is a code error, not a disk corruption. */ 2170 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails " 2171 "because rightmost leaf block %llu is empty\n", 2172 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2173 (unsigned long long)right_leaf_bh->b_blocknr); 2174 2175 ocfs2_create_empty_extent(right_el); 2176 2177 ocfs2_journal_dirty(handle, right_leaf_bh); 2178 2179 /* Do the copy now. */ 2180 i = le16_to_cpu(left_el->l_next_free_rec) - 1; 2181 move_rec = left_el->l_recs[i]; 2182 right_el->l_recs[0] = move_rec; 2183 2184 /* 2185 * Clear out the record we just copied and shift everything 2186 * over, leaving an empty extent in the left leaf. 2187 * 2188 * We temporarily subtract from next_free_rec so that the 2189 * shift will lose the tail record (which is now defunct). 2190 */ 2191 le16_add_cpu(&left_el->l_next_free_rec, -1); 2192 ocfs2_shift_records_right(left_el); 2193 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2194 le16_add_cpu(&left_el->l_next_free_rec, 1); 2195 2196 ocfs2_journal_dirty(handle, left_leaf_bh); 2197 2198 ocfs2_complete_edge_insert(handle, left_path, right_path, 2199 subtree_index); 2200 2201 out: 2202 return ret; 2203 } 2204 2205 /* 2206 * Given a full path, determine what cpos value would return us a path 2207 * containing the leaf immediately to the left of the current one. 2208 * 2209 * Will return zero if the path passed in is already the leftmost path. 2210 */ 2211 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb, 2212 struct ocfs2_path *path, u32 *cpos) 2213 { 2214 int i, j, ret = 0; 2215 u64 blkno; 2216 struct ocfs2_extent_list *el; 2217 2218 BUG_ON(path->p_tree_depth == 0); 2219 2220 *cpos = 0; 2221 2222 blkno = path_leaf_bh(path)->b_blocknr; 2223 2224 /* Start at the tree node just above the leaf and work our way up. */ 2225 i = path->p_tree_depth - 1; 2226 while (i >= 0) { 2227 el = path->p_node[i].el; 2228 2229 /* 2230 * Find the extent record just before the one in our 2231 * path. 2232 */ 2233 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2234 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2235 if (j == 0) { 2236 if (i == 0) { 2237 /* 2238 * We've determined that the 2239 * path specified is already 2240 * the leftmost one - return a 2241 * cpos of zero. 2242 */ 2243 goto out; 2244 } 2245 /* 2246 * The leftmost record points to our 2247 * leaf - we need to travel up the 2248 * tree one level. 2249 */ 2250 goto next_node; 2251 } 2252 2253 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos); 2254 *cpos = *cpos + ocfs2_rec_clusters(el, 2255 &el->l_recs[j - 1]); 2256 *cpos = *cpos - 1; 2257 goto out; 2258 } 2259 } 2260 2261 /* 2262 * If we got here, we never found a valid node where 2263 * the tree indicated one should be. 2264 */ 2265 ocfs2_error(sb, "Invalid extent tree at extent block %llu\n", 2266 (unsigned long long)blkno); 2267 ret = -EROFS; 2268 goto out; 2269 2270 next_node: 2271 blkno = path->p_node[i].bh->b_blocknr; 2272 i--; 2273 } 2274 2275 out: 2276 return ret; 2277 } 2278 2279 /* 2280 * Extend the transaction by enough credits to complete the rotation, 2281 * and still leave at least the original number of credits allocated 2282 * to this transaction. 2283 */ 2284 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth, 2285 int op_credits, 2286 struct ocfs2_path *path) 2287 { 2288 int ret = 0; 2289 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits; 2290 2291 if (jbd2_handle_buffer_credits(handle) < credits) 2292 ret = ocfs2_extend_trans(handle, 2293 credits - jbd2_handle_buffer_credits(handle)); 2294 2295 return ret; 2296 } 2297 2298 /* 2299 * Trap the case where we're inserting into the theoretical range past 2300 * the _actual_ left leaf range. Otherwise, we'll rotate a record 2301 * whose cpos is less than ours into the right leaf. 2302 * 2303 * It's only necessary to look at the rightmost record of the left 2304 * leaf because the logic that calls us should ensure that the 2305 * theoretical ranges in the path components above the leaves are 2306 * correct. 2307 */ 2308 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path, 2309 u32 insert_cpos) 2310 { 2311 struct ocfs2_extent_list *left_el; 2312 struct ocfs2_extent_rec *rec; 2313 int next_free; 2314 2315 left_el = path_leaf_el(left_path); 2316 next_free = le16_to_cpu(left_el->l_next_free_rec); 2317 rec = &left_el->l_recs[next_free - 1]; 2318 2319 if (insert_cpos > le32_to_cpu(rec->e_cpos)) 2320 return 1; 2321 return 0; 2322 } 2323 2324 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos) 2325 { 2326 int next_free = le16_to_cpu(el->l_next_free_rec); 2327 unsigned int range; 2328 struct ocfs2_extent_rec *rec; 2329 2330 if (next_free == 0) 2331 return 0; 2332 2333 rec = &el->l_recs[0]; 2334 if (ocfs2_is_empty_extent(rec)) { 2335 /* Empty list. */ 2336 if (next_free == 1) 2337 return 0; 2338 rec = &el->l_recs[1]; 2339 } 2340 2341 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2342 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 2343 return 1; 2344 return 0; 2345 } 2346 2347 /* 2348 * Rotate all the records in a btree right one record, starting at insert_cpos. 2349 * 2350 * The path to the rightmost leaf should be passed in. 2351 * 2352 * The array is assumed to be large enough to hold an entire path (tree depth). 2353 * 2354 * Upon successful return from this function: 2355 * 2356 * - The 'right_path' array will contain a path to the leaf block 2357 * whose range contains e_cpos. 2358 * - That leaf block will have a single empty extent in list index 0. 2359 * - In the case that the rotation requires a post-insert update, 2360 * *ret_left_path will contain a valid path which can be passed to 2361 * ocfs2_insert_path(). 2362 */ 2363 static int ocfs2_rotate_tree_right(handle_t *handle, 2364 struct ocfs2_extent_tree *et, 2365 enum ocfs2_split_type split, 2366 u32 insert_cpos, 2367 struct ocfs2_path *right_path, 2368 struct ocfs2_path **ret_left_path) 2369 { 2370 int ret, start, orig_credits = jbd2_handle_buffer_credits(handle); 2371 u32 cpos; 2372 struct ocfs2_path *left_path = NULL; 2373 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 2374 2375 *ret_left_path = NULL; 2376 2377 left_path = ocfs2_new_path_from_path(right_path); 2378 if (!left_path) { 2379 ret = -ENOMEM; 2380 mlog_errno(ret); 2381 goto out; 2382 } 2383 2384 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); 2385 if (ret) { 2386 mlog_errno(ret); 2387 goto out; 2388 } 2389 2390 trace_ocfs2_rotate_tree_right( 2391 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2392 insert_cpos, cpos); 2393 2394 /* 2395 * What we want to do here is: 2396 * 2397 * 1) Start with the rightmost path. 2398 * 2399 * 2) Determine a path to the leaf block directly to the left 2400 * of that leaf. 2401 * 2402 * 3) Determine the 'subtree root' - the lowest level tree node 2403 * which contains a path to both leaves. 2404 * 2405 * 4) Rotate the subtree. 2406 * 2407 * 5) Find the next subtree by considering the left path to be 2408 * the new right path. 2409 * 2410 * The check at the top of this while loop also accepts 2411 * insert_cpos == cpos because cpos is only a _theoretical_ 2412 * value to get us the left path - insert_cpos might very well 2413 * be filling that hole. 2414 * 2415 * Stop at a cpos of '0' because we either started at the 2416 * leftmost branch (i.e., a tree with one branch and a 2417 * rotation inside of it), or we've gone as far as we can in 2418 * rotating subtrees. 2419 */ 2420 while (cpos && insert_cpos <= cpos) { 2421 trace_ocfs2_rotate_tree_right( 2422 (unsigned long long) 2423 ocfs2_metadata_cache_owner(et->et_ci), 2424 insert_cpos, cpos); 2425 2426 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 2427 if (ret) { 2428 mlog_errno(ret); 2429 goto out; 2430 } 2431 2432 mlog_bug_on_msg(path_leaf_bh(left_path) == 2433 path_leaf_bh(right_path), 2434 "Owner %llu: error during insert of %u " 2435 "(left path cpos %u) results in two identical " 2436 "paths ending at %llu\n", 2437 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2438 insert_cpos, cpos, 2439 (unsigned long long) 2440 path_leaf_bh(left_path)->b_blocknr); 2441 2442 if (split == SPLIT_NONE && 2443 ocfs2_rotate_requires_path_adjustment(left_path, 2444 insert_cpos)) { 2445 2446 /* 2447 * We've rotated the tree as much as we 2448 * should. The rest is up to 2449 * ocfs2_insert_path() to complete, after the 2450 * record insertion. We indicate this 2451 * situation by returning the left path. 2452 * 2453 * The reason we don't adjust the records here 2454 * before the record insert is that an error 2455 * later might break the rule where a parent 2456 * record e_cpos will reflect the actual 2457 * e_cpos of the 1st nonempty record of the 2458 * child list. 2459 */ 2460 *ret_left_path = left_path; 2461 goto out_ret_path; 2462 } 2463 2464 start = ocfs2_find_subtree_root(et, left_path, right_path); 2465 2466 trace_ocfs2_rotate_subtree(start, 2467 (unsigned long long) 2468 right_path->p_node[start].bh->b_blocknr, 2469 right_path->p_tree_depth); 2470 2471 ret = ocfs2_extend_rotate_transaction(handle, start, 2472 orig_credits, right_path); 2473 if (ret) { 2474 mlog_errno(ret); 2475 goto out; 2476 } 2477 2478 ret = ocfs2_rotate_subtree_right(handle, et, left_path, 2479 right_path, start); 2480 if (ret) { 2481 mlog_errno(ret); 2482 goto out; 2483 } 2484 2485 if (split != SPLIT_NONE && 2486 ocfs2_leftmost_rec_contains(path_leaf_el(right_path), 2487 insert_cpos)) { 2488 /* 2489 * A rotate moves the rightmost left leaf 2490 * record over to the leftmost right leaf 2491 * slot. If we're doing an extent split 2492 * instead of a real insert, then we have to 2493 * check that the extent to be split wasn't 2494 * just moved over. If it was, then we can 2495 * exit here, passing left_path back - 2496 * ocfs2_split_extent() is smart enough to 2497 * search both leaves. 2498 */ 2499 *ret_left_path = left_path; 2500 goto out_ret_path; 2501 } 2502 2503 /* 2504 * There is no need to re-read the next right path 2505 * as we know that it'll be our current left 2506 * path. Optimize by copying values instead. 2507 */ 2508 ocfs2_mv_path(right_path, left_path); 2509 2510 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); 2511 if (ret) { 2512 mlog_errno(ret); 2513 goto out; 2514 } 2515 } 2516 2517 out: 2518 ocfs2_free_path(left_path); 2519 2520 out_ret_path: 2521 return ret; 2522 } 2523 2524 static int ocfs2_update_edge_lengths(handle_t *handle, 2525 struct ocfs2_extent_tree *et, 2526 struct ocfs2_path *path) 2527 { 2528 int i, idx, ret; 2529 struct ocfs2_extent_rec *rec; 2530 struct ocfs2_extent_list *el; 2531 struct ocfs2_extent_block *eb; 2532 u32 range; 2533 2534 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 2535 if (ret) { 2536 mlog_errno(ret); 2537 goto out; 2538 } 2539 2540 /* Path should always be rightmost. */ 2541 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 2542 BUG_ON(eb->h_next_leaf_blk != 0ULL); 2543 2544 el = &eb->h_list; 2545 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 2546 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2547 rec = &el->l_recs[idx]; 2548 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2549 2550 for (i = 0; i < path->p_tree_depth; i++) { 2551 el = path->p_node[i].el; 2552 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2553 rec = &el->l_recs[idx]; 2554 2555 rec->e_int_clusters = cpu_to_le32(range); 2556 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos)); 2557 2558 ocfs2_journal_dirty(handle, path->p_node[i].bh); 2559 } 2560 out: 2561 return ret; 2562 } 2563 2564 static void ocfs2_unlink_path(handle_t *handle, 2565 struct ocfs2_extent_tree *et, 2566 struct ocfs2_cached_dealloc_ctxt *dealloc, 2567 struct ocfs2_path *path, int unlink_start) 2568 { 2569 int ret, i; 2570 struct ocfs2_extent_block *eb; 2571 struct ocfs2_extent_list *el; 2572 struct buffer_head *bh; 2573 2574 for(i = unlink_start; i < path_num_items(path); i++) { 2575 bh = path->p_node[i].bh; 2576 2577 eb = (struct ocfs2_extent_block *)bh->b_data; 2578 /* 2579 * Not all nodes might have had their final count 2580 * decremented by the caller - handle this here. 2581 */ 2582 el = &eb->h_list; 2583 if (le16_to_cpu(el->l_next_free_rec) > 1) { 2584 mlog(ML_ERROR, 2585 "Inode %llu, attempted to remove extent block " 2586 "%llu with %u records\n", 2587 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2588 (unsigned long long)le64_to_cpu(eb->h_blkno), 2589 le16_to_cpu(el->l_next_free_rec)); 2590 2591 ocfs2_journal_dirty(handle, bh); 2592 ocfs2_remove_from_cache(et->et_ci, bh); 2593 continue; 2594 } 2595 2596 el->l_next_free_rec = 0; 2597 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2598 2599 ocfs2_journal_dirty(handle, bh); 2600 2601 ret = ocfs2_cache_extent_block_free(dealloc, eb); 2602 if (ret) 2603 mlog_errno(ret); 2604 2605 ocfs2_remove_from_cache(et->et_ci, bh); 2606 } 2607 } 2608 2609 static void ocfs2_unlink_subtree(handle_t *handle, 2610 struct ocfs2_extent_tree *et, 2611 struct ocfs2_path *left_path, 2612 struct ocfs2_path *right_path, 2613 int subtree_index, 2614 struct ocfs2_cached_dealloc_ctxt *dealloc) 2615 { 2616 int i; 2617 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2618 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el; 2619 struct ocfs2_extent_block *eb; 2620 2621 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data; 2622 2623 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 2624 if (root_el->l_recs[i].e_blkno == eb->h_blkno) 2625 break; 2626 2627 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec)); 2628 2629 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 2630 le16_add_cpu(&root_el->l_next_free_rec, -1); 2631 2632 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2633 eb->h_next_leaf_blk = 0; 2634 2635 ocfs2_journal_dirty(handle, root_bh); 2636 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2637 2638 ocfs2_unlink_path(handle, et, dealloc, right_path, 2639 subtree_index + 1); 2640 } 2641 2642 static int ocfs2_rotate_subtree_left(handle_t *handle, 2643 struct ocfs2_extent_tree *et, 2644 struct ocfs2_path *left_path, 2645 struct ocfs2_path *right_path, 2646 int subtree_index, 2647 struct ocfs2_cached_dealloc_ctxt *dealloc, 2648 int *deleted) 2649 { 2650 int ret, i, del_right_subtree = 0, right_has_empty = 0; 2651 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path); 2652 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el; 2653 struct ocfs2_extent_block *eb; 2654 2655 *deleted = 0; 2656 2657 right_leaf_el = path_leaf_el(right_path); 2658 left_leaf_el = path_leaf_el(left_path); 2659 root_bh = left_path->p_node[subtree_index].bh; 2660 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2661 2662 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0])) 2663 return 0; 2664 2665 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data; 2666 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) { 2667 /* 2668 * It's legal for us to proceed if the right leaf is 2669 * the rightmost one and it has an empty extent. There 2670 * are two cases to handle - whether the leaf will be 2671 * empty after removal or not. If the leaf isn't empty 2672 * then just remove the empty extent up front. The 2673 * next block will handle empty leaves by flagging 2674 * them for unlink. 2675 * 2676 * Non rightmost leaves will throw -EAGAIN and the 2677 * caller can manually move the subtree and retry. 2678 */ 2679 2680 if (eb->h_next_leaf_blk != 0ULL) 2681 return -EAGAIN; 2682 2683 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) { 2684 ret = ocfs2_journal_access_eb(handle, et->et_ci, 2685 path_leaf_bh(right_path), 2686 OCFS2_JOURNAL_ACCESS_WRITE); 2687 if (ret) { 2688 mlog_errno(ret); 2689 goto out; 2690 } 2691 2692 ocfs2_remove_empty_extent(right_leaf_el); 2693 } else 2694 right_has_empty = 1; 2695 } 2696 2697 if (eb->h_next_leaf_blk == 0ULL && 2698 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) { 2699 /* 2700 * We have to update i_last_eb_blk during the meta 2701 * data delete. 2702 */ 2703 ret = ocfs2_et_root_journal_access(handle, et, 2704 OCFS2_JOURNAL_ACCESS_WRITE); 2705 if (ret) { 2706 mlog_errno(ret); 2707 goto out; 2708 } 2709 2710 del_right_subtree = 1; 2711 } 2712 2713 /* 2714 * Getting here with an empty extent in the right path implies 2715 * that it's the rightmost path and will be deleted. 2716 */ 2717 BUG_ON(right_has_empty && !del_right_subtree); 2718 2719 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 2720 subtree_index); 2721 if (ret) { 2722 mlog_errno(ret); 2723 goto out; 2724 } 2725 2726 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2727 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2728 right_path, i); 2729 if (ret) { 2730 mlog_errno(ret); 2731 goto out; 2732 } 2733 2734 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2735 left_path, i); 2736 if (ret) { 2737 mlog_errno(ret); 2738 goto out; 2739 } 2740 } 2741 2742 if (!right_has_empty) { 2743 /* 2744 * Only do this if we're moving a real 2745 * record. Otherwise, the action is delayed until 2746 * after removal of the right path in which case we 2747 * can do a simple shift to remove the empty extent. 2748 */ 2749 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]); 2750 memset(&right_leaf_el->l_recs[0], 0, 2751 sizeof(struct ocfs2_extent_rec)); 2752 } 2753 if (eb->h_next_leaf_blk == 0ULL) { 2754 /* 2755 * Move recs over to get rid of empty extent, decrease 2756 * next_free. This is allowed to remove the last 2757 * extent in our leaf (setting l_next_free_rec to 2758 * zero) - the delete code below won't care. 2759 */ 2760 ocfs2_remove_empty_extent(right_leaf_el); 2761 } 2762 2763 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2764 ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 2765 2766 if (del_right_subtree) { 2767 ocfs2_unlink_subtree(handle, et, left_path, right_path, 2768 subtree_index, dealloc); 2769 ret = ocfs2_update_edge_lengths(handle, et, left_path); 2770 if (ret) { 2771 mlog_errno(ret); 2772 goto out; 2773 } 2774 2775 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2776 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 2777 2778 /* 2779 * Removal of the extent in the left leaf was skipped 2780 * above so we could delete the right path 2781 * 1st. 2782 */ 2783 if (right_has_empty) 2784 ocfs2_remove_empty_extent(left_leaf_el); 2785 2786 ocfs2_journal_dirty(handle, et_root_bh); 2787 2788 *deleted = 1; 2789 } else 2790 ocfs2_complete_edge_insert(handle, left_path, right_path, 2791 subtree_index); 2792 2793 out: 2794 return ret; 2795 } 2796 2797 /* 2798 * Given a full path, determine what cpos value would return us a path 2799 * containing the leaf immediately to the right of the current one. 2800 * 2801 * Will return zero if the path passed in is already the rightmost path. 2802 * 2803 * This looks similar, but is subtly different to 2804 * ocfs2_find_cpos_for_left_leaf(). 2805 */ 2806 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb, 2807 struct ocfs2_path *path, u32 *cpos) 2808 { 2809 int i, j, ret = 0; 2810 u64 blkno; 2811 struct ocfs2_extent_list *el; 2812 2813 *cpos = 0; 2814 2815 if (path->p_tree_depth == 0) 2816 return 0; 2817 2818 blkno = path_leaf_bh(path)->b_blocknr; 2819 2820 /* Start at the tree node just above the leaf and work our way up. */ 2821 i = path->p_tree_depth - 1; 2822 while (i >= 0) { 2823 int next_free; 2824 2825 el = path->p_node[i].el; 2826 2827 /* 2828 * Find the extent record just after the one in our 2829 * path. 2830 */ 2831 next_free = le16_to_cpu(el->l_next_free_rec); 2832 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2833 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2834 if (j == (next_free - 1)) { 2835 if (i == 0) { 2836 /* 2837 * We've determined that the 2838 * path specified is already 2839 * the rightmost one - return a 2840 * cpos of zero. 2841 */ 2842 goto out; 2843 } 2844 /* 2845 * The rightmost record points to our 2846 * leaf - we need to travel up the 2847 * tree one level. 2848 */ 2849 goto next_node; 2850 } 2851 2852 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos); 2853 goto out; 2854 } 2855 } 2856 2857 /* 2858 * If we got here, we never found a valid node where 2859 * the tree indicated one should be. 2860 */ 2861 ocfs2_error(sb, "Invalid extent tree at extent block %llu\n", 2862 (unsigned long long)blkno); 2863 ret = -EROFS; 2864 goto out; 2865 2866 next_node: 2867 blkno = path->p_node[i].bh->b_blocknr; 2868 i--; 2869 } 2870 2871 out: 2872 return ret; 2873 } 2874 2875 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle, 2876 struct ocfs2_extent_tree *et, 2877 struct ocfs2_path *path) 2878 { 2879 int ret; 2880 struct buffer_head *bh = path_leaf_bh(path); 2881 struct ocfs2_extent_list *el = path_leaf_el(path); 2882 2883 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 2884 return 0; 2885 2886 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path, 2887 path_num_items(path) - 1); 2888 if (ret) { 2889 mlog_errno(ret); 2890 goto out; 2891 } 2892 2893 ocfs2_remove_empty_extent(el); 2894 ocfs2_journal_dirty(handle, bh); 2895 2896 out: 2897 return ret; 2898 } 2899 2900 static int __ocfs2_rotate_tree_left(handle_t *handle, 2901 struct ocfs2_extent_tree *et, 2902 int orig_credits, 2903 struct ocfs2_path *path, 2904 struct ocfs2_cached_dealloc_ctxt *dealloc, 2905 struct ocfs2_path **empty_extent_path) 2906 { 2907 int ret, subtree_root, deleted; 2908 u32 right_cpos; 2909 struct ocfs2_path *left_path = NULL; 2910 struct ocfs2_path *right_path = NULL; 2911 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 2912 2913 if (!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0]))) 2914 return 0; 2915 2916 *empty_extent_path = NULL; 2917 2918 ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos); 2919 if (ret) { 2920 mlog_errno(ret); 2921 goto out; 2922 } 2923 2924 left_path = ocfs2_new_path_from_path(path); 2925 if (!left_path) { 2926 ret = -ENOMEM; 2927 mlog_errno(ret); 2928 goto out; 2929 } 2930 2931 ocfs2_cp_path(left_path, path); 2932 2933 right_path = ocfs2_new_path_from_path(path); 2934 if (!right_path) { 2935 ret = -ENOMEM; 2936 mlog_errno(ret); 2937 goto out; 2938 } 2939 2940 while (right_cpos) { 2941 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); 2942 if (ret) { 2943 mlog_errno(ret); 2944 goto out; 2945 } 2946 2947 subtree_root = ocfs2_find_subtree_root(et, left_path, 2948 right_path); 2949 2950 trace_ocfs2_rotate_subtree(subtree_root, 2951 (unsigned long long) 2952 right_path->p_node[subtree_root].bh->b_blocknr, 2953 right_path->p_tree_depth); 2954 2955 ret = ocfs2_extend_rotate_transaction(handle, 0, 2956 orig_credits, left_path); 2957 if (ret) { 2958 mlog_errno(ret); 2959 goto out; 2960 } 2961 2962 /* 2963 * Caller might still want to make changes to the 2964 * tree root, so re-add it to the journal here. 2965 */ 2966 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2967 left_path, 0); 2968 if (ret) { 2969 mlog_errno(ret); 2970 goto out; 2971 } 2972 2973 ret = ocfs2_rotate_subtree_left(handle, et, left_path, 2974 right_path, subtree_root, 2975 dealloc, &deleted); 2976 if (ret == -EAGAIN) { 2977 /* 2978 * The rotation has to temporarily stop due to 2979 * the right subtree having an empty 2980 * extent. Pass it back to the caller for a 2981 * fixup. 2982 */ 2983 *empty_extent_path = right_path; 2984 right_path = NULL; 2985 goto out; 2986 } 2987 if (ret) { 2988 mlog_errno(ret); 2989 goto out; 2990 } 2991 2992 /* 2993 * The subtree rotate might have removed records on 2994 * the rightmost edge. If so, then rotation is 2995 * complete. 2996 */ 2997 if (deleted) 2998 break; 2999 3000 ocfs2_mv_path(left_path, right_path); 3001 3002 ret = ocfs2_find_cpos_for_right_leaf(sb, left_path, 3003 &right_cpos); 3004 if (ret) { 3005 mlog_errno(ret); 3006 goto out; 3007 } 3008 } 3009 3010 out: 3011 ocfs2_free_path(right_path); 3012 ocfs2_free_path(left_path); 3013 3014 return ret; 3015 } 3016 3017 static int ocfs2_remove_rightmost_path(handle_t *handle, 3018 struct ocfs2_extent_tree *et, 3019 struct ocfs2_path *path, 3020 struct ocfs2_cached_dealloc_ctxt *dealloc) 3021 { 3022 int ret, subtree_index; 3023 u32 cpos; 3024 struct ocfs2_path *left_path = NULL; 3025 struct ocfs2_extent_block *eb; 3026 struct ocfs2_extent_list *el; 3027 3028 ret = ocfs2_et_sanity_check(et); 3029 if (ret) 3030 goto out; 3031 3032 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 3033 if (ret) { 3034 mlog_errno(ret); 3035 goto out; 3036 } 3037 3038 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3039 path, &cpos); 3040 if (ret) { 3041 mlog_errno(ret); 3042 goto out; 3043 } 3044 3045 if (cpos) { 3046 /* 3047 * We have a path to the left of this one - it needs 3048 * an update too. 3049 */ 3050 left_path = ocfs2_new_path_from_path(path); 3051 if (!left_path) { 3052 ret = -ENOMEM; 3053 mlog_errno(ret); 3054 goto out; 3055 } 3056 3057 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 3058 if (ret) { 3059 mlog_errno(ret); 3060 goto out; 3061 } 3062 3063 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 3064 if (ret) { 3065 mlog_errno(ret); 3066 goto out; 3067 } 3068 3069 subtree_index = ocfs2_find_subtree_root(et, left_path, path); 3070 3071 ocfs2_unlink_subtree(handle, et, left_path, path, 3072 subtree_index, dealloc); 3073 ret = ocfs2_update_edge_lengths(handle, et, left_path); 3074 if (ret) { 3075 mlog_errno(ret); 3076 goto out; 3077 } 3078 3079 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 3080 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 3081 } else { 3082 /* 3083 * 'path' is also the leftmost path which 3084 * means it must be the only one. This gets 3085 * handled differently because we want to 3086 * revert the root back to having extents 3087 * in-line. 3088 */ 3089 ocfs2_unlink_path(handle, et, dealloc, path, 1); 3090 3091 el = et->et_root_el; 3092 el->l_tree_depth = 0; 3093 el->l_next_free_rec = 0; 3094 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3095 3096 ocfs2_et_set_last_eb_blk(et, 0); 3097 } 3098 3099 ocfs2_journal_dirty(handle, path_root_bh(path)); 3100 3101 out: 3102 ocfs2_free_path(left_path); 3103 return ret; 3104 } 3105 3106 static int ocfs2_remove_rightmost_empty_extent(struct ocfs2_super *osb, 3107 struct ocfs2_extent_tree *et, 3108 struct ocfs2_path *path, 3109 struct ocfs2_cached_dealloc_ctxt *dealloc) 3110 { 3111 handle_t *handle; 3112 int ret; 3113 int credits = path->p_tree_depth * 2 + 1; 3114 3115 handle = ocfs2_start_trans(osb, credits); 3116 if (IS_ERR(handle)) { 3117 ret = PTR_ERR(handle); 3118 mlog_errno(ret); 3119 return ret; 3120 } 3121 3122 ret = ocfs2_remove_rightmost_path(handle, et, path, dealloc); 3123 if (ret) 3124 mlog_errno(ret); 3125 3126 ocfs2_commit_trans(osb, handle); 3127 return ret; 3128 } 3129 3130 /* 3131 * Left rotation of btree records. 3132 * 3133 * In many ways, this is (unsurprisingly) the opposite of right 3134 * rotation. We start at some non-rightmost path containing an empty 3135 * extent in the leaf block. The code works its way to the rightmost 3136 * path by rotating records to the left in every subtree. 3137 * 3138 * This is used by any code which reduces the number of extent records 3139 * in a leaf. After removal, an empty record should be placed in the 3140 * leftmost list position. 3141 * 3142 * This won't handle a length update of the rightmost path records if 3143 * the rightmost tree leaf record is removed so the caller is 3144 * responsible for detecting and correcting that. 3145 */ 3146 static int ocfs2_rotate_tree_left(handle_t *handle, 3147 struct ocfs2_extent_tree *et, 3148 struct ocfs2_path *path, 3149 struct ocfs2_cached_dealloc_ctxt *dealloc) 3150 { 3151 int ret, orig_credits = jbd2_handle_buffer_credits(handle); 3152 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL; 3153 struct ocfs2_extent_block *eb; 3154 struct ocfs2_extent_list *el; 3155 3156 el = path_leaf_el(path); 3157 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 3158 return 0; 3159 3160 if (path->p_tree_depth == 0) { 3161 rightmost_no_delete: 3162 /* 3163 * Inline extents. This is trivially handled, so do 3164 * it up front. 3165 */ 3166 ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path); 3167 if (ret) 3168 mlog_errno(ret); 3169 goto out; 3170 } 3171 3172 /* 3173 * Handle rightmost branch now. There's several cases: 3174 * 1) simple rotation leaving records in there. That's trivial. 3175 * 2) rotation requiring a branch delete - there's no more 3176 * records left. Two cases of this: 3177 * a) There are branches to the left. 3178 * b) This is also the leftmost (the only) branch. 3179 * 3180 * 1) is handled via ocfs2_rotate_rightmost_leaf_left() 3181 * 2a) we need the left branch so that we can update it with the unlink 3182 * 2b) we need to bring the root back to inline extents. 3183 */ 3184 3185 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 3186 el = &eb->h_list; 3187 if (eb->h_next_leaf_blk == 0) { 3188 /* 3189 * This gets a bit tricky if we're going to delete the 3190 * rightmost path. Get the other cases out of the way 3191 * 1st. 3192 */ 3193 if (le16_to_cpu(el->l_next_free_rec) > 1) 3194 goto rightmost_no_delete; 3195 3196 if (le16_to_cpu(el->l_next_free_rec) == 0) { 3197 ret = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 3198 "Owner %llu has empty extent block at %llu\n", 3199 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 3200 (unsigned long long)le64_to_cpu(eb->h_blkno)); 3201 goto out; 3202 } 3203 3204 /* 3205 * XXX: The caller can not trust "path" any more after 3206 * this as it will have been deleted. What do we do? 3207 * 3208 * In theory the rotate-for-merge code will never get 3209 * here because it'll always ask for a rotate in a 3210 * nonempty list. 3211 */ 3212 3213 ret = ocfs2_remove_rightmost_path(handle, et, path, 3214 dealloc); 3215 if (ret) 3216 mlog_errno(ret); 3217 goto out; 3218 } 3219 3220 /* 3221 * Now we can loop, remembering the path we get from -EAGAIN 3222 * and restarting from there. 3223 */ 3224 try_rotate: 3225 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path, 3226 dealloc, &restart_path); 3227 if (ret && ret != -EAGAIN) { 3228 mlog_errno(ret); 3229 goto out; 3230 } 3231 3232 while (ret == -EAGAIN) { 3233 tmp_path = restart_path; 3234 restart_path = NULL; 3235 3236 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, 3237 tmp_path, dealloc, 3238 &restart_path); 3239 if (ret && ret != -EAGAIN) { 3240 mlog_errno(ret); 3241 goto out; 3242 } 3243 3244 ocfs2_free_path(tmp_path); 3245 tmp_path = NULL; 3246 3247 if (ret == 0) 3248 goto try_rotate; 3249 } 3250 3251 out: 3252 ocfs2_free_path(tmp_path); 3253 ocfs2_free_path(restart_path); 3254 return ret; 3255 } 3256 3257 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el, 3258 int index) 3259 { 3260 struct ocfs2_extent_rec *rec = &el->l_recs[index]; 3261 unsigned int size; 3262 3263 if (rec->e_leaf_clusters == 0) { 3264 /* 3265 * We consumed all of the merged-from record. An empty 3266 * extent cannot exist anywhere but the 1st array 3267 * position, so move things over if the merged-from 3268 * record doesn't occupy that position. 3269 * 3270 * This creates a new empty extent so the caller 3271 * should be smart enough to have removed any existing 3272 * ones. 3273 */ 3274 if (index > 0) { 3275 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 3276 size = index * sizeof(struct ocfs2_extent_rec); 3277 memmove(&el->l_recs[1], &el->l_recs[0], size); 3278 } 3279 3280 /* 3281 * Always memset - the caller doesn't check whether it 3282 * created an empty extent, so there could be junk in 3283 * the other fields. 3284 */ 3285 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3286 } 3287 } 3288 3289 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et, 3290 struct ocfs2_path *left_path, 3291 struct ocfs2_path **ret_right_path) 3292 { 3293 int ret; 3294 u32 right_cpos; 3295 struct ocfs2_path *right_path = NULL; 3296 struct ocfs2_extent_list *left_el; 3297 3298 *ret_right_path = NULL; 3299 3300 /* This function shouldn't be called for non-trees. */ 3301 BUG_ON(left_path->p_tree_depth == 0); 3302 3303 left_el = path_leaf_el(left_path); 3304 BUG_ON(left_el->l_next_free_rec != left_el->l_count); 3305 3306 ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3307 left_path, &right_cpos); 3308 if (ret) { 3309 mlog_errno(ret); 3310 goto out; 3311 } 3312 3313 /* This function shouldn't be called for the rightmost leaf. */ 3314 BUG_ON(right_cpos == 0); 3315 3316 right_path = ocfs2_new_path_from_path(left_path); 3317 if (!right_path) { 3318 ret = -ENOMEM; 3319 mlog_errno(ret); 3320 goto out; 3321 } 3322 3323 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); 3324 if (ret) { 3325 mlog_errno(ret); 3326 goto out; 3327 } 3328 3329 *ret_right_path = right_path; 3330 out: 3331 if (ret) 3332 ocfs2_free_path(right_path); 3333 return ret; 3334 } 3335 3336 /* 3337 * Remove split_rec clusters from the record at index and merge them 3338 * onto the beginning of the record "next" to it. 3339 * For index < l_count - 1, the next means the extent rec at index + 1. 3340 * For index == l_count - 1, the "next" means the 1st extent rec of the 3341 * next extent block. 3342 */ 3343 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path, 3344 handle_t *handle, 3345 struct ocfs2_extent_tree *et, 3346 struct ocfs2_extent_rec *split_rec, 3347 int index) 3348 { 3349 int ret, next_free, i; 3350 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3351 struct ocfs2_extent_rec *left_rec; 3352 struct ocfs2_extent_rec *right_rec; 3353 struct ocfs2_extent_list *right_el; 3354 struct ocfs2_path *right_path = NULL; 3355 int subtree_index = 0; 3356 struct ocfs2_extent_list *el = path_leaf_el(left_path); 3357 struct buffer_head *bh = path_leaf_bh(left_path); 3358 struct buffer_head *root_bh = NULL; 3359 3360 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec)); 3361 left_rec = &el->l_recs[index]; 3362 3363 if (index == le16_to_cpu(el->l_next_free_rec) - 1 && 3364 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) { 3365 /* we meet with a cross extent block merge. */ 3366 ret = ocfs2_get_right_path(et, left_path, &right_path); 3367 if (ret) { 3368 mlog_errno(ret); 3369 return ret; 3370 } 3371 3372 right_el = path_leaf_el(right_path); 3373 next_free = le16_to_cpu(right_el->l_next_free_rec); 3374 BUG_ON(next_free <= 0); 3375 right_rec = &right_el->l_recs[0]; 3376 if (ocfs2_is_empty_extent(right_rec)) { 3377 BUG_ON(next_free <= 1); 3378 right_rec = &right_el->l_recs[1]; 3379 } 3380 3381 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3382 le16_to_cpu(left_rec->e_leaf_clusters) != 3383 le32_to_cpu(right_rec->e_cpos)); 3384 3385 subtree_index = ocfs2_find_subtree_root(et, left_path, 3386 right_path); 3387 3388 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3389 jbd2_handle_buffer_credits(handle), 3390 right_path); 3391 if (ret) { 3392 mlog_errno(ret); 3393 goto out; 3394 } 3395 3396 root_bh = left_path->p_node[subtree_index].bh; 3397 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3398 3399 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3400 subtree_index); 3401 if (ret) { 3402 mlog_errno(ret); 3403 goto out; 3404 } 3405 3406 for (i = subtree_index + 1; 3407 i < path_num_items(right_path); i++) { 3408 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3409 right_path, i); 3410 if (ret) { 3411 mlog_errno(ret); 3412 goto out; 3413 } 3414 3415 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3416 left_path, i); 3417 if (ret) { 3418 mlog_errno(ret); 3419 goto out; 3420 } 3421 } 3422 3423 } else { 3424 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1); 3425 right_rec = &el->l_recs[index + 1]; 3426 } 3427 3428 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path, 3429 path_num_items(left_path) - 1); 3430 if (ret) { 3431 mlog_errno(ret); 3432 goto out; 3433 } 3434 3435 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters); 3436 3437 le32_add_cpu(&right_rec->e_cpos, -split_clusters); 3438 le64_add_cpu(&right_rec->e_blkno, 3439 -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), 3440 split_clusters)); 3441 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters); 3442 3443 ocfs2_cleanup_merge(el, index); 3444 3445 ocfs2_journal_dirty(handle, bh); 3446 if (right_path) { 3447 ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 3448 ocfs2_complete_edge_insert(handle, left_path, right_path, 3449 subtree_index); 3450 } 3451 out: 3452 ocfs2_free_path(right_path); 3453 return ret; 3454 } 3455 3456 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et, 3457 struct ocfs2_path *right_path, 3458 struct ocfs2_path **ret_left_path) 3459 { 3460 int ret; 3461 u32 left_cpos; 3462 struct ocfs2_path *left_path = NULL; 3463 3464 *ret_left_path = NULL; 3465 3466 /* This function shouldn't be called for non-trees. */ 3467 BUG_ON(right_path->p_tree_depth == 0); 3468 3469 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3470 right_path, &left_cpos); 3471 if (ret) { 3472 mlog_errno(ret); 3473 goto out; 3474 } 3475 3476 /* This function shouldn't be called for the leftmost leaf. */ 3477 BUG_ON(left_cpos == 0); 3478 3479 left_path = ocfs2_new_path_from_path(right_path); 3480 if (!left_path) { 3481 ret = -ENOMEM; 3482 mlog_errno(ret); 3483 goto out; 3484 } 3485 3486 ret = ocfs2_find_path(et->et_ci, left_path, left_cpos); 3487 if (ret) { 3488 mlog_errno(ret); 3489 goto out; 3490 } 3491 3492 *ret_left_path = left_path; 3493 out: 3494 if (ret) 3495 ocfs2_free_path(left_path); 3496 return ret; 3497 } 3498 3499 /* 3500 * Remove split_rec clusters from the record at index and merge them 3501 * onto the tail of the record "before" it. 3502 * For index > 0, the "before" means the extent rec at index - 1. 3503 * 3504 * For index == 0, the "before" means the last record of the previous 3505 * extent block. And there is also a situation that we may need to 3506 * remove the rightmost leaf extent block in the right_path and change 3507 * the right path to indicate the new rightmost path. 3508 */ 3509 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path, 3510 handle_t *handle, 3511 struct ocfs2_extent_tree *et, 3512 struct ocfs2_extent_rec *split_rec, 3513 struct ocfs2_cached_dealloc_ctxt *dealloc, 3514 int index) 3515 { 3516 int ret, i, subtree_index = 0, has_empty_extent = 0; 3517 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3518 struct ocfs2_extent_rec *left_rec; 3519 struct ocfs2_extent_rec *right_rec; 3520 struct ocfs2_extent_list *el = path_leaf_el(right_path); 3521 struct buffer_head *bh = path_leaf_bh(right_path); 3522 struct buffer_head *root_bh = NULL; 3523 struct ocfs2_path *left_path = NULL; 3524 struct ocfs2_extent_list *left_el; 3525 3526 BUG_ON(index < 0); 3527 3528 right_rec = &el->l_recs[index]; 3529 if (index == 0) { 3530 /* we meet with a cross extent block merge. */ 3531 ret = ocfs2_get_left_path(et, right_path, &left_path); 3532 if (ret) { 3533 mlog_errno(ret); 3534 return ret; 3535 } 3536 3537 left_el = path_leaf_el(left_path); 3538 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) != 3539 le16_to_cpu(left_el->l_count)); 3540 3541 left_rec = &left_el->l_recs[ 3542 le16_to_cpu(left_el->l_next_free_rec) - 1]; 3543 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3544 le16_to_cpu(left_rec->e_leaf_clusters) != 3545 le32_to_cpu(split_rec->e_cpos)); 3546 3547 subtree_index = ocfs2_find_subtree_root(et, left_path, 3548 right_path); 3549 3550 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3551 jbd2_handle_buffer_credits(handle), 3552 left_path); 3553 if (ret) { 3554 mlog_errno(ret); 3555 goto out; 3556 } 3557 3558 root_bh = left_path->p_node[subtree_index].bh; 3559 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3560 3561 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3562 subtree_index); 3563 if (ret) { 3564 mlog_errno(ret); 3565 goto out; 3566 } 3567 3568 for (i = subtree_index + 1; 3569 i < path_num_items(right_path); i++) { 3570 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3571 right_path, i); 3572 if (ret) { 3573 mlog_errno(ret); 3574 goto out; 3575 } 3576 3577 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3578 left_path, i); 3579 if (ret) { 3580 mlog_errno(ret); 3581 goto out; 3582 } 3583 } 3584 } else { 3585 left_rec = &el->l_recs[index - 1]; 3586 if (ocfs2_is_empty_extent(&el->l_recs[0])) 3587 has_empty_extent = 1; 3588 } 3589 3590 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3591 path_num_items(right_path) - 1); 3592 if (ret) { 3593 mlog_errno(ret); 3594 goto out; 3595 } 3596 3597 if (has_empty_extent && index == 1) { 3598 /* 3599 * The easy case - we can just plop the record right in. 3600 */ 3601 *left_rec = *split_rec; 3602 } else 3603 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters); 3604 3605 le32_add_cpu(&right_rec->e_cpos, split_clusters); 3606 le64_add_cpu(&right_rec->e_blkno, 3607 ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), 3608 split_clusters)); 3609 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters); 3610 3611 ocfs2_cleanup_merge(el, index); 3612 3613 ocfs2_journal_dirty(handle, bh); 3614 if (left_path) { 3615 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 3616 3617 /* 3618 * In the situation that the right_rec is empty and the extent 3619 * block is empty also, ocfs2_complete_edge_insert can't handle 3620 * it and we need to delete the right extent block. 3621 */ 3622 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 && 3623 le16_to_cpu(el->l_next_free_rec) == 1) { 3624 /* extend credit for ocfs2_remove_rightmost_path */ 3625 ret = ocfs2_extend_rotate_transaction(handle, 0, 3626 jbd2_handle_buffer_credits(handle), 3627 right_path); 3628 if (ret) { 3629 mlog_errno(ret); 3630 goto out; 3631 } 3632 3633 ret = ocfs2_remove_rightmost_path(handle, et, 3634 right_path, 3635 dealloc); 3636 if (ret) { 3637 mlog_errno(ret); 3638 goto out; 3639 } 3640 3641 /* Now the rightmost extent block has been deleted. 3642 * So we use the new rightmost path. 3643 */ 3644 ocfs2_mv_path(right_path, left_path); 3645 left_path = NULL; 3646 } else 3647 ocfs2_complete_edge_insert(handle, left_path, 3648 right_path, subtree_index); 3649 } 3650 out: 3651 ocfs2_free_path(left_path); 3652 return ret; 3653 } 3654 3655 static int ocfs2_try_to_merge_extent(handle_t *handle, 3656 struct ocfs2_extent_tree *et, 3657 struct ocfs2_path *path, 3658 int split_index, 3659 struct ocfs2_extent_rec *split_rec, 3660 struct ocfs2_cached_dealloc_ctxt *dealloc, 3661 struct ocfs2_merge_ctxt *ctxt) 3662 { 3663 int ret = 0; 3664 struct ocfs2_extent_list *el = path_leaf_el(path); 3665 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 3666 3667 BUG_ON(ctxt->c_contig_type == CONTIG_NONE); 3668 3669 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) { 3670 /* extend credit for ocfs2_remove_rightmost_path */ 3671 ret = ocfs2_extend_rotate_transaction(handle, 0, 3672 jbd2_handle_buffer_credits(handle), 3673 path); 3674 if (ret) { 3675 mlog_errno(ret); 3676 goto out; 3677 } 3678 /* 3679 * The merge code will need to create an empty 3680 * extent to take the place of the newly 3681 * emptied slot. Remove any pre-existing empty 3682 * extents - having more than one in a leaf is 3683 * illegal. 3684 */ 3685 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3686 if (ret) { 3687 mlog_errno(ret); 3688 goto out; 3689 } 3690 split_index--; 3691 rec = &el->l_recs[split_index]; 3692 } 3693 3694 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) { 3695 /* 3696 * Left-right contig implies this. 3697 */ 3698 BUG_ON(!ctxt->c_split_covers_rec); 3699 3700 /* 3701 * Since the leftright insert always covers the entire 3702 * extent, this call will delete the insert record 3703 * entirely, resulting in an empty extent record added to 3704 * the extent block. 3705 * 3706 * Since the adding of an empty extent shifts 3707 * everything back to the right, there's no need to 3708 * update split_index here. 3709 * 3710 * When the split_index is zero, we need to merge it to the 3711 * prevoius extent block. It is more efficient and easier 3712 * if we do merge_right first and merge_left later. 3713 */ 3714 ret = ocfs2_merge_rec_right(path, handle, et, split_rec, 3715 split_index); 3716 if (ret) { 3717 mlog_errno(ret); 3718 goto out; 3719 } 3720 3721 /* 3722 * We can only get this from logic error above. 3723 */ 3724 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0])); 3725 3726 /* extend credit for ocfs2_remove_rightmost_path */ 3727 ret = ocfs2_extend_rotate_transaction(handle, 0, 3728 jbd2_handle_buffer_credits(handle), 3729 path); 3730 if (ret) { 3731 mlog_errno(ret); 3732 goto out; 3733 } 3734 3735 /* The merge left us with an empty extent, remove it. */ 3736 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3737 if (ret) { 3738 mlog_errno(ret); 3739 goto out; 3740 } 3741 3742 rec = &el->l_recs[split_index]; 3743 3744 /* 3745 * Note that we don't pass split_rec here on purpose - 3746 * we've merged it into the rec already. 3747 */ 3748 ret = ocfs2_merge_rec_left(path, handle, et, rec, 3749 dealloc, split_index); 3750 3751 if (ret) { 3752 mlog_errno(ret); 3753 goto out; 3754 } 3755 3756 /* extend credit for ocfs2_remove_rightmost_path */ 3757 ret = ocfs2_extend_rotate_transaction(handle, 0, 3758 jbd2_handle_buffer_credits(handle), 3759 path); 3760 if (ret) { 3761 mlog_errno(ret); 3762 goto out; 3763 } 3764 3765 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3766 /* 3767 * Error from this last rotate is not critical, so 3768 * print but don't bubble it up. 3769 */ 3770 if (ret) 3771 mlog_errno(ret); 3772 ret = 0; 3773 } else { 3774 /* 3775 * Merge a record to the left or right. 3776 * 3777 * 'contig_type' is relative to the existing record, 3778 * so for example, if we're "right contig", it's to 3779 * the record on the left (hence the left merge). 3780 */ 3781 if (ctxt->c_contig_type == CONTIG_RIGHT) { 3782 ret = ocfs2_merge_rec_left(path, handle, et, 3783 split_rec, dealloc, 3784 split_index); 3785 if (ret) { 3786 mlog_errno(ret); 3787 goto out; 3788 } 3789 } else { 3790 ret = ocfs2_merge_rec_right(path, handle, 3791 et, split_rec, 3792 split_index); 3793 if (ret) { 3794 mlog_errno(ret); 3795 goto out; 3796 } 3797 } 3798 3799 if (ctxt->c_split_covers_rec) { 3800 /* extend credit for ocfs2_remove_rightmost_path */ 3801 ret = ocfs2_extend_rotate_transaction(handle, 0, 3802 jbd2_handle_buffer_credits(handle), 3803 path); 3804 if (ret) { 3805 mlog_errno(ret); 3806 ret = 0; 3807 goto out; 3808 } 3809 3810 /* 3811 * The merge may have left an empty extent in 3812 * our leaf. Try to rotate it away. 3813 */ 3814 ret = ocfs2_rotate_tree_left(handle, et, path, 3815 dealloc); 3816 if (ret) 3817 mlog_errno(ret); 3818 ret = 0; 3819 } 3820 } 3821 3822 out: 3823 return ret; 3824 } 3825 3826 static void ocfs2_subtract_from_rec(struct super_block *sb, 3827 enum ocfs2_split_type split, 3828 struct ocfs2_extent_rec *rec, 3829 struct ocfs2_extent_rec *split_rec) 3830 { 3831 u64 len_blocks; 3832 3833 len_blocks = ocfs2_clusters_to_blocks(sb, 3834 le16_to_cpu(split_rec->e_leaf_clusters)); 3835 3836 if (split == SPLIT_LEFT) { 3837 /* 3838 * Region is on the left edge of the existing 3839 * record. 3840 */ 3841 le32_add_cpu(&rec->e_cpos, 3842 le16_to_cpu(split_rec->e_leaf_clusters)); 3843 le64_add_cpu(&rec->e_blkno, len_blocks); 3844 le16_add_cpu(&rec->e_leaf_clusters, 3845 -le16_to_cpu(split_rec->e_leaf_clusters)); 3846 } else { 3847 /* 3848 * Region is on the right edge of the existing 3849 * record. 3850 */ 3851 le16_add_cpu(&rec->e_leaf_clusters, 3852 -le16_to_cpu(split_rec->e_leaf_clusters)); 3853 } 3854 } 3855 3856 /* 3857 * Do the final bits of extent record insertion at the target leaf 3858 * list. If this leaf is part of an allocation tree, it is assumed 3859 * that the tree above has been prepared. 3860 */ 3861 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et, 3862 struct ocfs2_extent_rec *insert_rec, 3863 struct ocfs2_extent_list *el, 3864 struct ocfs2_insert_type *insert) 3865 { 3866 int i = insert->ins_contig_index; 3867 unsigned int range; 3868 struct ocfs2_extent_rec *rec; 3869 3870 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 3871 3872 if (insert->ins_split != SPLIT_NONE) { 3873 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos)); 3874 BUG_ON(i == -1); 3875 rec = &el->l_recs[i]; 3876 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci), 3877 insert->ins_split, rec, 3878 insert_rec); 3879 goto rotate; 3880 } 3881 3882 /* 3883 * Contiguous insert - either left or right. 3884 */ 3885 if (insert->ins_contig != CONTIG_NONE) { 3886 rec = &el->l_recs[i]; 3887 if (insert->ins_contig == CONTIG_LEFT) { 3888 rec->e_blkno = insert_rec->e_blkno; 3889 rec->e_cpos = insert_rec->e_cpos; 3890 } 3891 le16_add_cpu(&rec->e_leaf_clusters, 3892 le16_to_cpu(insert_rec->e_leaf_clusters)); 3893 return; 3894 } 3895 3896 /* 3897 * Handle insert into an empty leaf. 3898 */ 3899 if (le16_to_cpu(el->l_next_free_rec) == 0 || 3900 ((le16_to_cpu(el->l_next_free_rec) == 1) && 3901 ocfs2_is_empty_extent(&el->l_recs[0]))) { 3902 el->l_recs[0] = *insert_rec; 3903 el->l_next_free_rec = cpu_to_le16(1); 3904 return; 3905 } 3906 3907 /* 3908 * Appending insert. 3909 */ 3910 if (insert->ins_appending == APPEND_TAIL) { 3911 i = le16_to_cpu(el->l_next_free_rec) - 1; 3912 rec = &el->l_recs[i]; 3913 range = le32_to_cpu(rec->e_cpos) 3914 + le16_to_cpu(rec->e_leaf_clusters); 3915 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range); 3916 3917 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >= 3918 le16_to_cpu(el->l_count), 3919 "owner %llu, depth %u, count %u, next free %u, " 3920 "rec.cpos %u, rec.clusters %u, " 3921 "insert.cpos %u, insert.clusters %u\n", 3922 ocfs2_metadata_cache_owner(et->et_ci), 3923 le16_to_cpu(el->l_tree_depth), 3924 le16_to_cpu(el->l_count), 3925 le16_to_cpu(el->l_next_free_rec), 3926 le32_to_cpu(el->l_recs[i].e_cpos), 3927 le16_to_cpu(el->l_recs[i].e_leaf_clusters), 3928 le32_to_cpu(insert_rec->e_cpos), 3929 le16_to_cpu(insert_rec->e_leaf_clusters)); 3930 i++; 3931 el->l_recs[i] = *insert_rec; 3932 le16_add_cpu(&el->l_next_free_rec, 1); 3933 return; 3934 } 3935 3936 rotate: 3937 /* 3938 * Ok, we have to rotate. 3939 * 3940 * At this point, it is safe to assume that inserting into an 3941 * empty leaf and appending to a leaf have both been handled 3942 * above. 3943 * 3944 * This leaf needs to have space, either by the empty 1st 3945 * extent record, or by virtue of an l_next_rec < l_count. 3946 */ 3947 ocfs2_rotate_leaf(el, insert_rec); 3948 } 3949 3950 static void ocfs2_adjust_rightmost_records(handle_t *handle, 3951 struct ocfs2_extent_tree *et, 3952 struct ocfs2_path *path, 3953 struct ocfs2_extent_rec *insert_rec) 3954 { 3955 int i, next_free; 3956 struct buffer_head *bh; 3957 struct ocfs2_extent_list *el; 3958 struct ocfs2_extent_rec *rec; 3959 3960 /* 3961 * Update everything except the leaf block. 3962 */ 3963 for (i = 0; i < path->p_tree_depth; i++) { 3964 bh = path->p_node[i].bh; 3965 el = path->p_node[i].el; 3966 3967 next_free = le16_to_cpu(el->l_next_free_rec); 3968 if (next_free == 0) { 3969 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 3970 "Owner %llu has a bad extent list\n", 3971 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 3972 return; 3973 } 3974 3975 rec = &el->l_recs[next_free - 1]; 3976 3977 rec->e_int_clusters = insert_rec->e_cpos; 3978 le32_add_cpu(&rec->e_int_clusters, 3979 le16_to_cpu(insert_rec->e_leaf_clusters)); 3980 le32_add_cpu(&rec->e_int_clusters, 3981 -le32_to_cpu(rec->e_cpos)); 3982 3983 ocfs2_journal_dirty(handle, bh); 3984 } 3985 } 3986 3987 static int ocfs2_append_rec_to_path(handle_t *handle, 3988 struct ocfs2_extent_tree *et, 3989 struct ocfs2_extent_rec *insert_rec, 3990 struct ocfs2_path *right_path, 3991 struct ocfs2_path **ret_left_path) 3992 { 3993 int ret, next_free; 3994 struct ocfs2_extent_list *el; 3995 struct ocfs2_path *left_path = NULL; 3996 3997 *ret_left_path = NULL; 3998 3999 /* 4000 * This shouldn't happen for non-trees. The extent rec cluster 4001 * count manipulation below only works for interior nodes. 4002 */ 4003 BUG_ON(right_path->p_tree_depth == 0); 4004 4005 /* 4006 * If our appending insert is at the leftmost edge of a leaf, 4007 * then we might need to update the rightmost records of the 4008 * neighboring path. 4009 */ 4010 el = path_leaf_el(right_path); 4011 next_free = le16_to_cpu(el->l_next_free_rec); 4012 if (next_free == 0 || 4013 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) { 4014 u32 left_cpos; 4015 4016 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 4017 right_path, &left_cpos); 4018 if (ret) { 4019 mlog_errno(ret); 4020 goto out; 4021 } 4022 4023 trace_ocfs2_append_rec_to_path( 4024 (unsigned long long) 4025 ocfs2_metadata_cache_owner(et->et_ci), 4026 le32_to_cpu(insert_rec->e_cpos), 4027 left_cpos); 4028 4029 /* 4030 * No need to worry if the append is already in the 4031 * leftmost leaf. 4032 */ 4033 if (left_cpos) { 4034 left_path = ocfs2_new_path_from_path(right_path); 4035 if (!left_path) { 4036 ret = -ENOMEM; 4037 mlog_errno(ret); 4038 goto out; 4039 } 4040 4041 ret = ocfs2_find_path(et->et_ci, left_path, 4042 left_cpos); 4043 if (ret) { 4044 mlog_errno(ret); 4045 goto out; 4046 } 4047 4048 /* 4049 * ocfs2_insert_path() will pass the left_path to the 4050 * journal for us. 4051 */ 4052 } 4053 } 4054 4055 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path); 4056 if (ret) { 4057 mlog_errno(ret); 4058 goto out; 4059 } 4060 4061 ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec); 4062 4063 *ret_left_path = left_path; 4064 ret = 0; 4065 out: 4066 if (ret != 0) 4067 ocfs2_free_path(left_path); 4068 4069 return ret; 4070 } 4071 4072 static void ocfs2_split_record(struct ocfs2_extent_tree *et, 4073 struct ocfs2_path *left_path, 4074 struct ocfs2_path *right_path, 4075 struct ocfs2_extent_rec *split_rec, 4076 enum ocfs2_split_type split) 4077 { 4078 int index; 4079 u32 cpos = le32_to_cpu(split_rec->e_cpos); 4080 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el; 4081 struct ocfs2_extent_rec *rec, *tmprec; 4082 4083 right_el = path_leaf_el(right_path); 4084 if (left_path) 4085 left_el = path_leaf_el(left_path); 4086 4087 el = right_el; 4088 insert_el = right_el; 4089 index = ocfs2_search_extent_list(el, cpos); 4090 if (index != -1) { 4091 if (index == 0 && left_path) { 4092 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 4093 4094 /* 4095 * This typically means that the record 4096 * started in the left path but moved to the 4097 * right as a result of rotation. We either 4098 * move the existing record to the left, or we 4099 * do the later insert there. 4100 * 4101 * In this case, the left path should always 4102 * exist as the rotate code will have passed 4103 * it back for a post-insert update. 4104 */ 4105 4106 if (split == SPLIT_LEFT) { 4107 /* 4108 * It's a left split. Since we know 4109 * that the rotate code gave us an 4110 * empty extent in the left path, we 4111 * can just do the insert there. 4112 */ 4113 insert_el = left_el; 4114 } else { 4115 /* 4116 * Right split - we have to move the 4117 * existing record over to the left 4118 * leaf. The insert will be into the 4119 * newly created empty extent in the 4120 * right leaf. 4121 */ 4122 tmprec = &right_el->l_recs[index]; 4123 ocfs2_rotate_leaf(left_el, tmprec); 4124 el = left_el; 4125 4126 memset(tmprec, 0, sizeof(*tmprec)); 4127 index = ocfs2_search_extent_list(left_el, cpos); 4128 BUG_ON(index == -1); 4129 } 4130 } 4131 } else { 4132 BUG_ON(!left_path); 4133 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0])); 4134 /* 4135 * Left path is easy - we can just allow the insert to 4136 * happen. 4137 */ 4138 el = left_el; 4139 insert_el = left_el; 4140 index = ocfs2_search_extent_list(el, cpos); 4141 BUG_ON(index == -1); 4142 } 4143 4144 rec = &el->l_recs[index]; 4145 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci), 4146 split, rec, split_rec); 4147 ocfs2_rotate_leaf(insert_el, split_rec); 4148 } 4149 4150 /* 4151 * This function only does inserts on an allocation b-tree. For tree 4152 * depth = 0, ocfs2_insert_at_leaf() is called directly. 4153 * 4154 * right_path is the path we want to do the actual insert 4155 * in. left_path should only be passed in if we need to update that 4156 * portion of the tree after an edge insert. 4157 */ 4158 static int ocfs2_insert_path(handle_t *handle, 4159 struct ocfs2_extent_tree *et, 4160 struct ocfs2_path *left_path, 4161 struct ocfs2_path *right_path, 4162 struct ocfs2_extent_rec *insert_rec, 4163 struct ocfs2_insert_type *insert) 4164 { 4165 int ret, subtree_index; 4166 struct buffer_head *leaf_bh = path_leaf_bh(right_path); 4167 4168 if (left_path) { 4169 /* 4170 * There's a chance that left_path got passed back to 4171 * us without being accounted for in the 4172 * journal. Extend our transaction here to be sure we 4173 * can change those blocks. 4174 */ 4175 ret = ocfs2_extend_trans(handle, left_path->p_tree_depth); 4176 if (ret < 0) { 4177 mlog_errno(ret); 4178 goto out; 4179 } 4180 4181 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 4182 if (ret < 0) { 4183 mlog_errno(ret); 4184 goto out; 4185 } 4186 } 4187 4188 /* 4189 * Pass both paths to the journal. The majority of inserts 4190 * will be touching all components anyway. 4191 */ 4192 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path); 4193 if (ret < 0) { 4194 mlog_errno(ret); 4195 goto out; 4196 } 4197 4198 if (insert->ins_split != SPLIT_NONE) { 4199 /* 4200 * We could call ocfs2_insert_at_leaf() for some types 4201 * of splits, but it's easier to just let one separate 4202 * function sort it all out. 4203 */ 4204 ocfs2_split_record(et, left_path, right_path, 4205 insert_rec, insert->ins_split); 4206 4207 /* 4208 * Split might have modified either leaf and we don't 4209 * have a guarantee that the later edge insert will 4210 * dirty this for us. 4211 */ 4212 if (left_path) 4213 ocfs2_journal_dirty(handle, 4214 path_leaf_bh(left_path)); 4215 } else 4216 ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path), 4217 insert); 4218 4219 ocfs2_journal_dirty(handle, leaf_bh); 4220 4221 if (left_path) { 4222 /* 4223 * The rotate code has indicated that we need to fix 4224 * up portions of the tree after the insert. 4225 * 4226 * XXX: Should we extend the transaction here? 4227 */ 4228 subtree_index = ocfs2_find_subtree_root(et, left_path, 4229 right_path); 4230 ocfs2_complete_edge_insert(handle, left_path, right_path, 4231 subtree_index); 4232 } 4233 4234 ret = 0; 4235 out: 4236 return ret; 4237 } 4238 4239 static int ocfs2_do_insert_extent(handle_t *handle, 4240 struct ocfs2_extent_tree *et, 4241 struct ocfs2_extent_rec *insert_rec, 4242 struct ocfs2_insert_type *type) 4243 { 4244 int ret, rotate = 0; 4245 u32 cpos; 4246 struct ocfs2_path *right_path = NULL; 4247 struct ocfs2_path *left_path = NULL; 4248 struct ocfs2_extent_list *el; 4249 4250 el = et->et_root_el; 4251 4252 ret = ocfs2_et_root_journal_access(handle, et, 4253 OCFS2_JOURNAL_ACCESS_WRITE); 4254 if (ret) { 4255 mlog_errno(ret); 4256 goto out; 4257 } 4258 4259 if (le16_to_cpu(el->l_tree_depth) == 0) { 4260 ocfs2_insert_at_leaf(et, insert_rec, el, type); 4261 goto out_update_clusters; 4262 } 4263 4264 right_path = ocfs2_new_path_from_et(et); 4265 if (!right_path) { 4266 ret = -ENOMEM; 4267 mlog_errno(ret); 4268 goto out; 4269 } 4270 4271 /* 4272 * Determine the path to start with. Rotations need the 4273 * rightmost path, everything else can go directly to the 4274 * target leaf. 4275 */ 4276 cpos = le32_to_cpu(insert_rec->e_cpos); 4277 if (type->ins_appending == APPEND_NONE && 4278 type->ins_contig == CONTIG_NONE) { 4279 rotate = 1; 4280 cpos = UINT_MAX; 4281 } 4282 4283 ret = ocfs2_find_path(et->et_ci, right_path, cpos); 4284 if (ret) { 4285 mlog_errno(ret); 4286 goto out; 4287 } 4288 4289 /* 4290 * Rotations and appends need special treatment - they modify 4291 * parts of the tree's above them. 4292 * 4293 * Both might pass back a path immediate to the left of the 4294 * one being inserted to. This will be cause 4295 * ocfs2_insert_path() to modify the rightmost records of 4296 * left_path to account for an edge insert. 4297 * 4298 * XXX: When modifying this code, keep in mind that an insert 4299 * can wind up skipping both of these two special cases... 4300 */ 4301 if (rotate) { 4302 ret = ocfs2_rotate_tree_right(handle, et, type->ins_split, 4303 le32_to_cpu(insert_rec->e_cpos), 4304 right_path, &left_path); 4305 if (ret) { 4306 mlog_errno(ret); 4307 goto out; 4308 } 4309 4310 /* 4311 * ocfs2_rotate_tree_right() might have extended the 4312 * transaction without re-journaling our tree root. 4313 */ 4314 ret = ocfs2_et_root_journal_access(handle, et, 4315 OCFS2_JOURNAL_ACCESS_WRITE); 4316 if (ret) { 4317 mlog_errno(ret); 4318 goto out; 4319 } 4320 } else if (type->ins_appending == APPEND_TAIL 4321 && type->ins_contig != CONTIG_LEFT) { 4322 ret = ocfs2_append_rec_to_path(handle, et, insert_rec, 4323 right_path, &left_path); 4324 if (ret) { 4325 mlog_errno(ret); 4326 goto out; 4327 } 4328 } 4329 4330 ret = ocfs2_insert_path(handle, et, left_path, right_path, 4331 insert_rec, type); 4332 if (ret) { 4333 mlog_errno(ret); 4334 goto out; 4335 } 4336 4337 out_update_clusters: 4338 if (type->ins_split == SPLIT_NONE) 4339 ocfs2_et_update_clusters(et, 4340 le16_to_cpu(insert_rec->e_leaf_clusters)); 4341 4342 ocfs2_journal_dirty(handle, et->et_root_bh); 4343 4344 out: 4345 ocfs2_free_path(left_path); 4346 ocfs2_free_path(right_path); 4347 4348 return ret; 4349 } 4350 4351 static int ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et, 4352 struct ocfs2_path *path, 4353 struct ocfs2_extent_list *el, int index, 4354 struct ocfs2_extent_rec *split_rec, 4355 struct ocfs2_merge_ctxt *ctxt) 4356 { 4357 int status = 0; 4358 enum ocfs2_contig_type ret = CONTIG_NONE; 4359 u32 left_cpos, right_cpos; 4360 struct ocfs2_extent_rec *rec = NULL; 4361 struct ocfs2_extent_list *new_el; 4362 struct ocfs2_path *left_path = NULL, *right_path = NULL; 4363 struct buffer_head *bh; 4364 struct ocfs2_extent_block *eb; 4365 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 4366 4367 if (index > 0) { 4368 rec = &el->l_recs[index - 1]; 4369 } else if (path->p_tree_depth > 0) { 4370 status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos); 4371 if (status) 4372 goto exit; 4373 4374 if (left_cpos != 0) { 4375 left_path = ocfs2_new_path_from_path(path); 4376 if (!left_path) { 4377 status = -ENOMEM; 4378 mlog_errno(status); 4379 goto exit; 4380 } 4381 4382 status = ocfs2_find_path(et->et_ci, left_path, 4383 left_cpos); 4384 if (status) 4385 goto free_left_path; 4386 4387 new_el = path_leaf_el(left_path); 4388 4389 if (le16_to_cpu(new_el->l_next_free_rec) != 4390 le16_to_cpu(new_el->l_count)) { 4391 bh = path_leaf_bh(left_path); 4392 eb = (struct ocfs2_extent_block *)bh->b_data; 4393 status = ocfs2_error(sb, 4394 "Extent block #%llu has an invalid l_next_free_rec of %d. It should have matched the l_count of %d\n", 4395 (unsigned long long)le64_to_cpu(eb->h_blkno), 4396 le16_to_cpu(new_el->l_next_free_rec), 4397 le16_to_cpu(new_el->l_count)); 4398 goto free_left_path; 4399 } 4400 rec = &new_el->l_recs[ 4401 le16_to_cpu(new_el->l_next_free_rec) - 1]; 4402 } 4403 } 4404 4405 /* 4406 * We're careful to check for an empty extent record here - 4407 * the merge code will know what to do if it sees one. 4408 */ 4409 if (rec) { 4410 if (index == 1 && ocfs2_is_empty_extent(rec)) { 4411 if (split_rec->e_cpos == el->l_recs[index].e_cpos) 4412 ret = CONTIG_RIGHT; 4413 } else { 4414 ret = ocfs2_et_extent_contig(et, rec, split_rec); 4415 } 4416 } 4417 4418 rec = NULL; 4419 if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) 4420 rec = &el->l_recs[index + 1]; 4421 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) && 4422 path->p_tree_depth > 0) { 4423 status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos); 4424 if (status) 4425 goto free_left_path; 4426 4427 if (right_cpos == 0) 4428 goto free_left_path; 4429 4430 right_path = ocfs2_new_path_from_path(path); 4431 if (!right_path) { 4432 status = -ENOMEM; 4433 mlog_errno(status); 4434 goto free_left_path; 4435 } 4436 4437 status = ocfs2_find_path(et->et_ci, right_path, right_cpos); 4438 if (status) 4439 goto free_right_path; 4440 4441 new_el = path_leaf_el(right_path); 4442 rec = &new_el->l_recs[0]; 4443 if (ocfs2_is_empty_extent(rec)) { 4444 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) { 4445 bh = path_leaf_bh(right_path); 4446 eb = (struct ocfs2_extent_block *)bh->b_data; 4447 status = ocfs2_error(sb, 4448 "Extent block #%llu has an invalid l_next_free_rec of %d\n", 4449 (unsigned long long)le64_to_cpu(eb->h_blkno), 4450 le16_to_cpu(new_el->l_next_free_rec)); 4451 goto free_right_path; 4452 } 4453 rec = &new_el->l_recs[1]; 4454 } 4455 } 4456 4457 if (rec) { 4458 enum ocfs2_contig_type contig_type; 4459 4460 contig_type = ocfs2_et_extent_contig(et, rec, split_rec); 4461 4462 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT) 4463 ret = CONTIG_LEFTRIGHT; 4464 else if (ret == CONTIG_NONE) 4465 ret = contig_type; 4466 } 4467 4468 free_right_path: 4469 ocfs2_free_path(right_path); 4470 free_left_path: 4471 ocfs2_free_path(left_path); 4472 exit: 4473 if (status == 0) 4474 ctxt->c_contig_type = ret; 4475 4476 return status; 4477 } 4478 4479 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et, 4480 struct ocfs2_insert_type *insert, 4481 struct ocfs2_extent_list *el, 4482 struct ocfs2_extent_rec *insert_rec) 4483 { 4484 int i; 4485 enum ocfs2_contig_type contig_type = CONTIG_NONE; 4486 4487 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4488 4489 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 4490 contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i], 4491 insert_rec); 4492 if (contig_type != CONTIG_NONE) { 4493 insert->ins_contig_index = i; 4494 break; 4495 } 4496 } 4497 insert->ins_contig = contig_type; 4498 4499 if (insert->ins_contig != CONTIG_NONE) { 4500 struct ocfs2_extent_rec *rec = 4501 &el->l_recs[insert->ins_contig_index]; 4502 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) + 4503 le16_to_cpu(insert_rec->e_leaf_clusters); 4504 4505 /* 4506 * Caller might want us to limit the size of extents, don't 4507 * calculate contiguousness if we might exceed that limit. 4508 */ 4509 if (et->et_max_leaf_clusters && 4510 (len > et->et_max_leaf_clusters)) 4511 insert->ins_contig = CONTIG_NONE; 4512 } 4513 } 4514 4515 /* 4516 * This should only be called against the righmost leaf extent list. 4517 * 4518 * ocfs2_figure_appending_type() will figure out whether we'll have to 4519 * insert at the tail of the rightmost leaf. 4520 * 4521 * This should also work against the root extent list for tree's with 0 4522 * depth. If we consider the root extent list to be the rightmost leaf node 4523 * then the logic here makes sense. 4524 */ 4525 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert, 4526 struct ocfs2_extent_list *el, 4527 struct ocfs2_extent_rec *insert_rec) 4528 { 4529 int i; 4530 u32 cpos = le32_to_cpu(insert_rec->e_cpos); 4531 struct ocfs2_extent_rec *rec; 4532 4533 insert->ins_appending = APPEND_NONE; 4534 4535 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4536 4537 if (!el->l_next_free_rec) 4538 goto set_tail_append; 4539 4540 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 4541 /* Were all records empty? */ 4542 if (le16_to_cpu(el->l_next_free_rec) == 1) 4543 goto set_tail_append; 4544 } 4545 4546 i = le16_to_cpu(el->l_next_free_rec) - 1; 4547 rec = &el->l_recs[i]; 4548 4549 if (cpos >= 4550 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters))) 4551 goto set_tail_append; 4552 4553 return; 4554 4555 set_tail_append: 4556 insert->ins_appending = APPEND_TAIL; 4557 } 4558 4559 /* 4560 * Helper function called at the beginning of an insert. 4561 * 4562 * This computes a few things that are commonly used in the process of 4563 * inserting into the btree: 4564 * - Whether the new extent is contiguous with an existing one. 4565 * - The current tree depth. 4566 * - Whether the insert is an appending one. 4567 * - The total # of free records in the tree. 4568 * 4569 * All of the information is stored on the ocfs2_insert_type 4570 * structure. 4571 */ 4572 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et, 4573 struct buffer_head **last_eb_bh, 4574 struct ocfs2_extent_rec *insert_rec, 4575 int *free_records, 4576 struct ocfs2_insert_type *insert) 4577 { 4578 int ret; 4579 struct ocfs2_extent_block *eb; 4580 struct ocfs2_extent_list *el; 4581 struct ocfs2_path *path = NULL; 4582 struct buffer_head *bh = NULL; 4583 4584 insert->ins_split = SPLIT_NONE; 4585 4586 el = et->et_root_el; 4587 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth); 4588 4589 if (el->l_tree_depth) { 4590 /* 4591 * If we have tree depth, we read in the 4592 * rightmost extent block ahead of time as 4593 * ocfs2_figure_insert_type() and ocfs2_add_branch() 4594 * may want it later. 4595 */ 4596 ret = ocfs2_read_extent_block(et->et_ci, 4597 ocfs2_et_get_last_eb_blk(et), 4598 &bh); 4599 if (ret) { 4600 mlog_errno(ret); 4601 goto out; 4602 } 4603 eb = (struct ocfs2_extent_block *) bh->b_data; 4604 el = &eb->h_list; 4605 } 4606 4607 /* 4608 * Unless we have a contiguous insert, we'll need to know if 4609 * there is room left in our allocation tree for another 4610 * extent record. 4611 * 4612 * XXX: This test is simplistic, we can search for empty 4613 * extent records too. 4614 */ 4615 *free_records = le16_to_cpu(el->l_count) - 4616 le16_to_cpu(el->l_next_free_rec); 4617 4618 if (!insert->ins_tree_depth) { 4619 ocfs2_figure_contig_type(et, insert, el, insert_rec); 4620 ocfs2_figure_appending_type(insert, el, insert_rec); 4621 return 0; 4622 } 4623 4624 path = ocfs2_new_path_from_et(et); 4625 if (!path) { 4626 ret = -ENOMEM; 4627 mlog_errno(ret); 4628 goto out; 4629 } 4630 4631 /* 4632 * In the case that we're inserting past what the tree 4633 * currently accounts for, ocfs2_find_path() will return for 4634 * us the rightmost tree path. This is accounted for below in 4635 * the appending code. 4636 */ 4637 ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos)); 4638 if (ret) { 4639 mlog_errno(ret); 4640 goto out; 4641 } 4642 4643 el = path_leaf_el(path); 4644 4645 /* 4646 * Now that we have the path, there's two things we want to determine: 4647 * 1) Contiguousness (also set contig_index if this is so) 4648 * 4649 * 2) Are we doing an append? We can trivially break this up 4650 * into two types of appends: simple record append, or a 4651 * rotate inside the tail leaf. 4652 */ 4653 ocfs2_figure_contig_type(et, insert, el, insert_rec); 4654 4655 /* 4656 * The insert code isn't quite ready to deal with all cases of 4657 * left contiguousness. Specifically, if it's an insert into 4658 * the 1st record in a leaf, it will require the adjustment of 4659 * cluster count on the last record of the path directly to it's 4660 * left. For now, just catch that case and fool the layers 4661 * above us. This works just fine for tree_depth == 0, which 4662 * is why we allow that above. 4663 */ 4664 if (insert->ins_contig == CONTIG_LEFT && 4665 insert->ins_contig_index == 0) 4666 insert->ins_contig = CONTIG_NONE; 4667 4668 /* 4669 * Ok, so we can simply compare against last_eb to figure out 4670 * whether the path doesn't exist. This will only happen in 4671 * the case that we're doing a tail append, so maybe we can 4672 * take advantage of that information somehow. 4673 */ 4674 if (ocfs2_et_get_last_eb_blk(et) == 4675 path_leaf_bh(path)->b_blocknr) { 4676 /* 4677 * Ok, ocfs2_find_path() returned us the rightmost 4678 * tree path. This might be an appending insert. There are 4679 * two cases: 4680 * 1) We're doing a true append at the tail: 4681 * -This might even be off the end of the leaf 4682 * 2) We're "appending" by rotating in the tail 4683 */ 4684 ocfs2_figure_appending_type(insert, el, insert_rec); 4685 } 4686 4687 out: 4688 ocfs2_free_path(path); 4689 4690 if (ret == 0) 4691 *last_eb_bh = bh; 4692 else 4693 brelse(bh); 4694 return ret; 4695 } 4696 4697 /* 4698 * Insert an extent into a btree. 4699 * 4700 * The caller needs to update the owning btree's cluster count. 4701 */ 4702 int ocfs2_insert_extent(handle_t *handle, 4703 struct ocfs2_extent_tree *et, 4704 u32 cpos, 4705 u64 start_blk, 4706 u32 new_clusters, 4707 u8 flags, 4708 struct ocfs2_alloc_context *meta_ac) 4709 { 4710 int status; 4711 int uninitialized_var(free_records); 4712 struct buffer_head *last_eb_bh = NULL; 4713 struct ocfs2_insert_type insert = {0, }; 4714 struct ocfs2_extent_rec rec; 4715 4716 trace_ocfs2_insert_extent_start( 4717 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 4718 cpos, new_clusters); 4719 4720 memset(&rec, 0, sizeof(rec)); 4721 rec.e_cpos = cpu_to_le32(cpos); 4722 rec.e_blkno = cpu_to_le64(start_blk); 4723 rec.e_leaf_clusters = cpu_to_le16(new_clusters); 4724 rec.e_flags = flags; 4725 status = ocfs2_et_insert_check(et, &rec); 4726 if (status) { 4727 mlog_errno(status); 4728 goto bail; 4729 } 4730 4731 status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec, 4732 &free_records, &insert); 4733 if (status < 0) { 4734 mlog_errno(status); 4735 goto bail; 4736 } 4737 4738 trace_ocfs2_insert_extent(insert.ins_appending, insert.ins_contig, 4739 insert.ins_contig_index, free_records, 4740 insert.ins_tree_depth); 4741 4742 if (insert.ins_contig == CONTIG_NONE && free_records == 0) { 4743 status = ocfs2_grow_tree(handle, et, 4744 &insert.ins_tree_depth, &last_eb_bh, 4745 meta_ac); 4746 if (status) { 4747 mlog_errno(status); 4748 goto bail; 4749 } 4750 } 4751 4752 /* Finally, we can add clusters. This might rotate the tree for us. */ 4753 status = ocfs2_do_insert_extent(handle, et, &rec, &insert); 4754 if (status < 0) 4755 mlog_errno(status); 4756 else 4757 ocfs2_et_extent_map_insert(et, &rec); 4758 4759 bail: 4760 brelse(last_eb_bh); 4761 4762 return status; 4763 } 4764 4765 /* 4766 * Allcate and add clusters into the extent b-tree. 4767 * The new clusters(clusters_to_add) will be inserted at logical_offset. 4768 * The extent b-tree's root is specified by et, and 4769 * it is not limited to the file storage. Any extent tree can use this 4770 * function if it implements the proper ocfs2_extent_tree. 4771 */ 4772 int ocfs2_add_clusters_in_btree(handle_t *handle, 4773 struct ocfs2_extent_tree *et, 4774 u32 *logical_offset, 4775 u32 clusters_to_add, 4776 int mark_unwritten, 4777 struct ocfs2_alloc_context *data_ac, 4778 struct ocfs2_alloc_context *meta_ac, 4779 enum ocfs2_alloc_restarted *reason_ret) 4780 { 4781 int status = 0, err = 0; 4782 int need_free = 0; 4783 int free_extents; 4784 enum ocfs2_alloc_restarted reason = RESTART_NONE; 4785 u32 bit_off, num_bits; 4786 u64 block; 4787 u8 flags = 0; 4788 struct ocfs2_super *osb = 4789 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 4790 4791 BUG_ON(!clusters_to_add); 4792 4793 if (mark_unwritten) 4794 flags = OCFS2_EXT_UNWRITTEN; 4795 4796 free_extents = ocfs2_num_free_extents(et); 4797 if (free_extents < 0) { 4798 status = free_extents; 4799 mlog_errno(status); 4800 goto leave; 4801 } 4802 4803 /* there are two cases which could cause us to EAGAIN in the 4804 * we-need-more-metadata case: 4805 * 1) we haven't reserved *any* 4806 * 2) we are so fragmented, we've needed to add metadata too 4807 * many times. */ 4808 if (!free_extents && !meta_ac) { 4809 err = -1; 4810 status = -EAGAIN; 4811 reason = RESTART_META; 4812 goto leave; 4813 } else if ((!free_extents) 4814 && (ocfs2_alloc_context_bits_left(meta_ac) 4815 < ocfs2_extend_meta_needed(et->et_root_el))) { 4816 err = -2; 4817 status = -EAGAIN; 4818 reason = RESTART_META; 4819 goto leave; 4820 } 4821 4822 status = __ocfs2_claim_clusters(handle, data_ac, 1, 4823 clusters_to_add, &bit_off, &num_bits); 4824 if (status < 0) { 4825 if (status != -ENOSPC) 4826 mlog_errno(status); 4827 goto leave; 4828 } 4829 4830 BUG_ON(num_bits > clusters_to_add); 4831 4832 /* reserve our write early -- insert_extent may update the tree root */ 4833 status = ocfs2_et_root_journal_access(handle, et, 4834 OCFS2_JOURNAL_ACCESS_WRITE); 4835 if (status < 0) { 4836 mlog_errno(status); 4837 need_free = 1; 4838 goto bail; 4839 } 4840 4841 block = ocfs2_clusters_to_blocks(osb->sb, bit_off); 4842 trace_ocfs2_add_clusters_in_btree( 4843 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 4844 bit_off, num_bits); 4845 status = ocfs2_insert_extent(handle, et, *logical_offset, block, 4846 num_bits, flags, meta_ac); 4847 if (status < 0) { 4848 mlog_errno(status); 4849 need_free = 1; 4850 goto bail; 4851 } 4852 4853 ocfs2_journal_dirty(handle, et->et_root_bh); 4854 4855 clusters_to_add -= num_bits; 4856 *logical_offset += num_bits; 4857 4858 if (clusters_to_add) { 4859 err = clusters_to_add; 4860 status = -EAGAIN; 4861 reason = RESTART_TRANS; 4862 } 4863 4864 bail: 4865 if (need_free) { 4866 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL) 4867 ocfs2_free_local_alloc_bits(osb, handle, data_ac, 4868 bit_off, num_bits); 4869 else 4870 ocfs2_free_clusters(handle, 4871 data_ac->ac_inode, 4872 data_ac->ac_bh, 4873 ocfs2_clusters_to_blocks(osb->sb, bit_off), 4874 num_bits); 4875 } 4876 4877 leave: 4878 if (reason_ret) 4879 *reason_ret = reason; 4880 trace_ocfs2_add_clusters_in_btree_ret(status, reason, err); 4881 return status; 4882 } 4883 4884 static void ocfs2_make_right_split_rec(struct super_block *sb, 4885 struct ocfs2_extent_rec *split_rec, 4886 u32 cpos, 4887 struct ocfs2_extent_rec *rec) 4888 { 4889 u32 rec_cpos = le32_to_cpu(rec->e_cpos); 4890 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters); 4891 4892 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec)); 4893 4894 split_rec->e_cpos = cpu_to_le32(cpos); 4895 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos); 4896 4897 split_rec->e_blkno = rec->e_blkno; 4898 le64_add_cpu(&split_rec->e_blkno, 4899 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos)); 4900 4901 split_rec->e_flags = rec->e_flags; 4902 } 4903 4904 static int ocfs2_split_and_insert(handle_t *handle, 4905 struct ocfs2_extent_tree *et, 4906 struct ocfs2_path *path, 4907 struct buffer_head **last_eb_bh, 4908 int split_index, 4909 struct ocfs2_extent_rec *orig_split_rec, 4910 struct ocfs2_alloc_context *meta_ac) 4911 { 4912 int ret = 0, depth; 4913 unsigned int insert_range, rec_range, do_leftright = 0; 4914 struct ocfs2_extent_rec tmprec; 4915 struct ocfs2_extent_list *rightmost_el; 4916 struct ocfs2_extent_rec rec; 4917 struct ocfs2_extent_rec split_rec = *orig_split_rec; 4918 struct ocfs2_insert_type insert; 4919 struct ocfs2_extent_block *eb; 4920 4921 leftright: 4922 /* 4923 * Store a copy of the record on the stack - it might move 4924 * around as the tree is manipulated below. 4925 */ 4926 rec = path_leaf_el(path)->l_recs[split_index]; 4927 4928 rightmost_el = et->et_root_el; 4929 4930 depth = le16_to_cpu(rightmost_el->l_tree_depth); 4931 if (depth) { 4932 BUG_ON(!(*last_eb_bh)); 4933 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 4934 rightmost_el = &eb->h_list; 4935 } 4936 4937 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 4938 le16_to_cpu(rightmost_el->l_count)) { 4939 ret = ocfs2_grow_tree(handle, et, 4940 &depth, last_eb_bh, meta_ac); 4941 if (ret) { 4942 mlog_errno(ret); 4943 goto out; 4944 } 4945 } 4946 4947 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 4948 insert.ins_appending = APPEND_NONE; 4949 insert.ins_contig = CONTIG_NONE; 4950 insert.ins_tree_depth = depth; 4951 4952 insert_range = le32_to_cpu(split_rec.e_cpos) + 4953 le16_to_cpu(split_rec.e_leaf_clusters); 4954 rec_range = le32_to_cpu(rec.e_cpos) + 4955 le16_to_cpu(rec.e_leaf_clusters); 4956 4957 if (split_rec.e_cpos == rec.e_cpos) { 4958 insert.ins_split = SPLIT_LEFT; 4959 } else if (insert_range == rec_range) { 4960 insert.ins_split = SPLIT_RIGHT; 4961 } else { 4962 /* 4963 * Left/right split. We fake this as a right split 4964 * first and then make a second pass as a left split. 4965 */ 4966 insert.ins_split = SPLIT_RIGHT; 4967 4968 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci), 4969 &tmprec, insert_range, &rec); 4970 4971 split_rec = tmprec; 4972 4973 BUG_ON(do_leftright); 4974 do_leftright = 1; 4975 } 4976 4977 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert); 4978 if (ret) { 4979 mlog_errno(ret); 4980 goto out; 4981 } 4982 4983 if (do_leftright == 1) { 4984 u32 cpos; 4985 struct ocfs2_extent_list *el; 4986 4987 do_leftright++; 4988 split_rec = *orig_split_rec; 4989 4990 ocfs2_reinit_path(path, 1); 4991 4992 cpos = le32_to_cpu(split_rec.e_cpos); 4993 ret = ocfs2_find_path(et->et_ci, path, cpos); 4994 if (ret) { 4995 mlog_errno(ret); 4996 goto out; 4997 } 4998 4999 el = path_leaf_el(path); 5000 split_index = ocfs2_search_extent_list(el, cpos); 5001 if (split_index == -1) { 5002 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5003 "Owner %llu has an extent at cpos %u which can no longer be found\n", 5004 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5005 cpos); 5006 ret = -EROFS; 5007 goto out; 5008 } 5009 goto leftright; 5010 } 5011 out: 5012 5013 return ret; 5014 } 5015 5016 static int ocfs2_replace_extent_rec(handle_t *handle, 5017 struct ocfs2_extent_tree *et, 5018 struct ocfs2_path *path, 5019 struct ocfs2_extent_list *el, 5020 int split_index, 5021 struct ocfs2_extent_rec *split_rec) 5022 { 5023 int ret; 5024 5025 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path, 5026 path_num_items(path) - 1); 5027 if (ret) { 5028 mlog_errno(ret); 5029 goto out; 5030 } 5031 5032 el->l_recs[split_index] = *split_rec; 5033 5034 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 5035 out: 5036 return ret; 5037 } 5038 5039 /* 5040 * Split part or all of the extent record at split_index in the leaf 5041 * pointed to by path. Merge with the contiguous extent record if needed. 5042 * 5043 * Care is taken to handle contiguousness so as to not grow the tree. 5044 * 5045 * meta_ac is not strictly necessary - we only truly need it if growth 5046 * of the tree is required. All other cases will degrade into a less 5047 * optimal tree layout. 5048 * 5049 * last_eb_bh should be the rightmost leaf block for any extent 5050 * btree. Since a split may grow the tree or a merge might shrink it, 5051 * the caller cannot trust the contents of that buffer after this call. 5052 * 5053 * This code is optimized for readability - several passes might be 5054 * made over certain portions of the tree. All of those blocks will 5055 * have been brought into cache (and pinned via the journal), so the 5056 * extra overhead is not expressed in terms of disk reads. 5057 */ 5058 int ocfs2_split_extent(handle_t *handle, 5059 struct ocfs2_extent_tree *et, 5060 struct ocfs2_path *path, 5061 int split_index, 5062 struct ocfs2_extent_rec *split_rec, 5063 struct ocfs2_alloc_context *meta_ac, 5064 struct ocfs2_cached_dealloc_ctxt *dealloc) 5065 { 5066 int ret = 0; 5067 struct ocfs2_extent_list *el = path_leaf_el(path); 5068 struct buffer_head *last_eb_bh = NULL; 5069 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 5070 struct ocfs2_merge_ctxt ctxt; 5071 5072 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) || 5073 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) < 5074 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) { 5075 ret = -EIO; 5076 mlog_errno(ret); 5077 goto out; 5078 } 5079 5080 ret = ocfs2_figure_merge_contig_type(et, path, el, 5081 split_index, 5082 split_rec, 5083 &ctxt); 5084 if (ret) { 5085 mlog_errno(ret); 5086 goto out; 5087 } 5088 5089 /* 5090 * The core merge / split code wants to know how much room is 5091 * left in this allocation tree, so we pass the 5092 * rightmost extent list. 5093 */ 5094 if (path->p_tree_depth) { 5095 ret = ocfs2_read_extent_block(et->et_ci, 5096 ocfs2_et_get_last_eb_blk(et), 5097 &last_eb_bh); 5098 if (ret) { 5099 mlog_errno(ret); 5100 goto out; 5101 } 5102 } 5103 5104 if (rec->e_cpos == split_rec->e_cpos && 5105 rec->e_leaf_clusters == split_rec->e_leaf_clusters) 5106 ctxt.c_split_covers_rec = 1; 5107 else 5108 ctxt.c_split_covers_rec = 0; 5109 5110 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]); 5111 5112 trace_ocfs2_split_extent(split_index, ctxt.c_contig_type, 5113 ctxt.c_has_empty_extent, 5114 ctxt.c_split_covers_rec); 5115 5116 if (ctxt.c_contig_type == CONTIG_NONE) { 5117 if (ctxt.c_split_covers_rec) 5118 ret = ocfs2_replace_extent_rec(handle, et, path, el, 5119 split_index, split_rec); 5120 else 5121 ret = ocfs2_split_and_insert(handle, et, path, 5122 &last_eb_bh, split_index, 5123 split_rec, meta_ac); 5124 if (ret) 5125 mlog_errno(ret); 5126 } else { 5127 ret = ocfs2_try_to_merge_extent(handle, et, path, 5128 split_index, split_rec, 5129 dealloc, &ctxt); 5130 if (ret) 5131 mlog_errno(ret); 5132 } 5133 5134 out: 5135 brelse(last_eb_bh); 5136 return ret; 5137 } 5138 5139 /* 5140 * Change the flags of the already-existing extent at cpos for len clusters. 5141 * 5142 * new_flags: the flags we want to set. 5143 * clear_flags: the flags we want to clear. 5144 * phys: the new physical offset we want this new extent starts from. 5145 * 5146 * If the existing extent is larger than the request, initiate a 5147 * split. An attempt will be made at merging with adjacent extents. 5148 * 5149 * The caller is responsible for passing down meta_ac if we'll need it. 5150 */ 5151 int ocfs2_change_extent_flag(handle_t *handle, 5152 struct ocfs2_extent_tree *et, 5153 u32 cpos, u32 len, u32 phys, 5154 struct ocfs2_alloc_context *meta_ac, 5155 struct ocfs2_cached_dealloc_ctxt *dealloc, 5156 int new_flags, int clear_flags) 5157 { 5158 int ret, index; 5159 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 5160 u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys); 5161 struct ocfs2_extent_rec split_rec; 5162 struct ocfs2_path *left_path = NULL; 5163 struct ocfs2_extent_list *el; 5164 struct ocfs2_extent_rec *rec; 5165 5166 left_path = ocfs2_new_path_from_et(et); 5167 if (!left_path) { 5168 ret = -ENOMEM; 5169 mlog_errno(ret); 5170 goto out; 5171 } 5172 5173 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 5174 if (ret) { 5175 mlog_errno(ret); 5176 goto out; 5177 } 5178 el = path_leaf_el(left_path); 5179 5180 index = ocfs2_search_extent_list(el, cpos); 5181 if (index == -1) { 5182 ocfs2_error(sb, 5183 "Owner %llu has an extent at cpos %u which can no longer be found\n", 5184 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5185 cpos); 5186 ret = -EROFS; 5187 goto out; 5188 } 5189 5190 ret = -EIO; 5191 rec = &el->l_recs[index]; 5192 if (new_flags && (rec->e_flags & new_flags)) { 5193 mlog(ML_ERROR, "Owner %llu tried to set %d flags on an " 5194 "extent that already had them\n", 5195 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5196 new_flags); 5197 goto out; 5198 } 5199 5200 if (clear_flags && !(rec->e_flags & clear_flags)) { 5201 mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an " 5202 "extent that didn't have them\n", 5203 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5204 clear_flags); 5205 goto out; 5206 } 5207 5208 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec)); 5209 split_rec.e_cpos = cpu_to_le32(cpos); 5210 split_rec.e_leaf_clusters = cpu_to_le16(len); 5211 split_rec.e_blkno = cpu_to_le64(start_blkno); 5212 split_rec.e_flags = rec->e_flags; 5213 if (new_flags) 5214 split_rec.e_flags |= new_flags; 5215 if (clear_flags) 5216 split_rec.e_flags &= ~clear_flags; 5217 5218 ret = ocfs2_split_extent(handle, et, left_path, 5219 index, &split_rec, meta_ac, 5220 dealloc); 5221 if (ret) 5222 mlog_errno(ret); 5223 5224 out: 5225 ocfs2_free_path(left_path); 5226 return ret; 5227 5228 } 5229 5230 /* 5231 * Mark the already-existing extent at cpos as written for len clusters. 5232 * This removes the unwritten extent flag. 5233 * 5234 * If the existing extent is larger than the request, initiate a 5235 * split. An attempt will be made at merging with adjacent extents. 5236 * 5237 * The caller is responsible for passing down meta_ac if we'll need it. 5238 */ 5239 int ocfs2_mark_extent_written(struct inode *inode, 5240 struct ocfs2_extent_tree *et, 5241 handle_t *handle, u32 cpos, u32 len, u32 phys, 5242 struct ocfs2_alloc_context *meta_ac, 5243 struct ocfs2_cached_dealloc_ctxt *dealloc) 5244 { 5245 int ret; 5246 5247 trace_ocfs2_mark_extent_written( 5248 (unsigned long long)OCFS2_I(inode)->ip_blkno, 5249 cpos, len, phys); 5250 5251 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) { 5252 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents that are being written to, but the feature bit is not set in the super block\n", 5253 (unsigned long long)OCFS2_I(inode)->ip_blkno); 5254 ret = -EROFS; 5255 goto out; 5256 } 5257 5258 /* 5259 * XXX: This should be fixed up so that we just re-insert the 5260 * next extent records. 5261 */ 5262 ocfs2_et_extent_map_truncate(et, 0); 5263 5264 ret = ocfs2_change_extent_flag(handle, et, cpos, 5265 len, phys, meta_ac, dealloc, 5266 0, OCFS2_EXT_UNWRITTEN); 5267 if (ret) 5268 mlog_errno(ret); 5269 5270 out: 5271 return ret; 5272 } 5273 5274 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et, 5275 struct ocfs2_path *path, 5276 int index, u32 new_range, 5277 struct ocfs2_alloc_context *meta_ac) 5278 { 5279 int ret, depth, credits; 5280 struct buffer_head *last_eb_bh = NULL; 5281 struct ocfs2_extent_block *eb; 5282 struct ocfs2_extent_list *rightmost_el, *el; 5283 struct ocfs2_extent_rec split_rec; 5284 struct ocfs2_extent_rec *rec; 5285 struct ocfs2_insert_type insert; 5286 5287 /* 5288 * Setup the record to split before we grow the tree. 5289 */ 5290 el = path_leaf_el(path); 5291 rec = &el->l_recs[index]; 5292 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci), 5293 &split_rec, new_range, rec); 5294 5295 depth = path->p_tree_depth; 5296 if (depth > 0) { 5297 ret = ocfs2_read_extent_block(et->et_ci, 5298 ocfs2_et_get_last_eb_blk(et), 5299 &last_eb_bh); 5300 if (ret < 0) { 5301 mlog_errno(ret); 5302 goto out; 5303 } 5304 5305 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5306 rightmost_el = &eb->h_list; 5307 } else 5308 rightmost_el = path_leaf_el(path); 5309 5310 credits = path->p_tree_depth + 5311 ocfs2_extend_meta_needed(et->et_root_el); 5312 ret = ocfs2_extend_trans(handle, credits); 5313 if (ret) { 5314 mlog_errno(ret); 5315 goto out; 5316 } 5317 5318 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 5319 le16_to_cpu(rightmost_el->l_count)) { 5320 ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh, 5321 meta_ac); 5322 if (ret) { 5323 mlog_errno(ret); 5324 goto out; 5325 } 5326 } 5327 5328 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 5329 insert.ins_appending = APPEND_NONE; 5330 insert.ins_contig = CONTIG_NONE; 5331 insert.ins_split = SPLIT_RIGHT; 5332 insert.ins_tree_depth = depth; 5333 5334 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert); 5335 if (ret) 5336 mlog_errno(ret); 5337 5338 out: 5339 brelse(last_eb_bh); 5340 return ret; 5341 } 5342 5343 static int ocfs2_truncate_rec(handle_t *handle, 5344 struct ocfs2_extent_tree *et, 5345 struct ocfs2_path *path, int index, 5346 struct ocfs2_cached_dealloc_ctxt *dealloc, 5347 u32 cpos, u32 len) 5348 { 5349 int ret; 5350 u32 left_cpos, rec_range, trunc_range; 5351 int is_rightmost_tree_rec = 0; 5352 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 5353 struct ocfs2_path *left_path = NULL; 5354 struct ocfs2_extent_list *el = path_leaf_el(path); 5355 struct ocfs2_extent_rec *rec; 5356 struct ocfs2_extent_block *eb; 5357 5358 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) { 5359 /* extend credit for ocfs2_remove_rightmost_path */ 5360 ret = ocfs2_extend_rotate_transaction(handle, 0, 5361 jbd2_handle_buffer_credits(handle), 5362 path); 5363 if (ret) { 5364 mlog_errno(ret); 5365 goto out; 5366 } 5367 5368 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 5369 if (ret) { 5370 mlog_errno(ret); 5371 goto out; 5372 } 5373 5374 index--; 5375 } 5376 5377 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) && 5378 path->p_tree_depth) { 5379 /* 5380 * Check whether this is the rightmost tree record. If 5381 * we remove all of this record or part of its right 5382 * edge then an update of the record lengths above it 5383 * will be required. 5384 */ 5385 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 5386 if (eb->h_next_leaf_blk == 0) 5387 is_rightmost_tree_rec = 1; 5388 } 5389 5390 rec = &el->l_recs[index]; 5391 if (index == 0 && path->p_tree_depth && 5392 le32_to_cpu(rec->e_cpos) == cpos) { 5393 /* 5394 * Changing the leftmost offset (via partial or whole 5395 * record truncate) of an interior (or rightmost) path 5396 * means we have to update the subtree that is formed 5397 * by this leaf and the one to it's left. 5398 * 5399 * There are two cases we can skip: 5400 * 1) Path is the leftmost one in our btree. 5401 * 2) The leaf is rightmost and will be empty after 5402 * we remove the extent record - the rotate code 5403 * knows how to update the newly formed edge. 5404 */ 5405 5406 ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos); 5407 if (ret) { 5408 mlog_errno(ret); 5409 goto out; 5410 } 5411 5412 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) { 5413 left_path = ocfs2_new_path_from_path(path); 5414 if (!left_path) { 5415 ret = -ENOMEM; 5416 mlog_errno(ret); 5417 goto out; 5418 } 5419 5420 ret = ocfs2_find_path(et->et_ci, left_path, 5421 left_cpos); 5422 if (ret) { 5423 mlog_errno(ret); 5424 goto out; 5425 } 5426 } 5427 } 5428 5429 ret = ocfs2_extend_rotate_transaction(handle, 0, 5430 jbd2_handle_buffer_credits(handle), 5431 path); 5432 if (ret) { 5433 mlog_errno(ret); 5434 goto out; 5435 } 5436 5437 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 5438 if (ret) { 5439 mlog_errno(ret); 5440 goto out; 5441 } 5442 5443 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 5444 if (ret) { 5445 mlog_errno(ret); 5446 goto out; 5447 } 5448 5449 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5450 trunc_range = cpos + len; 5451 5452 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) { 5453 int next_free; 5454 5455 memset(rec, 0, sizeof(*rec)); 5456 ocfs2_cleanup_merge(el, index); 5457 5458 next_free = le16_to_cpu(el->l_next_free_rec); 5459 if (is_rightmost_tree_rec && next_free > 1) { 5460 /* 5461 * We skip the edge update if this path will 5462 * be deleted by the rotate code. 5463 */ 5464 rec = &el->l_recs[next_free - 1]; 5465 ocfs2_adjust_rightmost_records(handle, et, path, 5466 rec); 5467 } 5468 } else if (le32_to_cpu(rec->e_cpos) == cpos) { 5469 /* Remove leftmost portion of the record. */ 5470 le32_add_cpu(&rec->e_cpos, len); 5471 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len)); 5472 le16_add_cpu(&rec->e_leaf_clusters, -len); 5473 } else if (rec_range == trunc_range) { 5474 /* Remove rightmost portion of the record */ 5475 le16_add_cpu(&rec->e_leaf_clusters, -len); 5476 if (is_rightmost_tree_rec) 5477 ocfs2_adjust_rightmost_records(handle, et, path, rec); 5478 } else { 5479 /* Caller should have trapped this. */ 5480 mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) " 5481 "(%u, %u)\n", 5482 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5483 le32_to_cpu(rec->e_cpos), 5484 le16_to_cpu(rec->e_leaf_clusters), cpos, len); 5485 BUG(); 5486 } 5487 5488 if (left_path) { 5489 int subtree_index; 5490 5491 subtree_index = ocfs2_find_subtree_root(et, left_path, path); 5492 ocfs2_complete_edge_insert(handle, left_path, path, 5493 subtree_index); 5494 } 5495 5496 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 5497 5498 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 5499 if (ret) 5500 mlog_errno(ret); 5501 5502 out: 5503 ocfs2_free_path(left_path); 5504 return ret; 5505 } 5506 5507 int ocfs2_remove_extent(handle_t *handle, 5508 struct ocfs2_extent_tree *et, 5509 u32 cpos, u32 len, 5510 struct ocfs2_alloc_context *meta_ac, 5511 struct ocfs2_cached_dealloc_ctxt *dealloc) 5512 { 5513 int ret, index; 5514 u32 rec_range, trunc_range; 5515 struct ocfs2_extent_rec *rec; 5516 struct ocfs2_extent_list *el; 5517 struct ocfs2_path *path = NULL; 5518 5519 /* 5520 * XXX: Why are we truncating to 0 instead of wherever this 5521 * affects us? 5522 */ 5523 ocfs2_et_extent_map_truncate(et, 0); 5524 5525 path = ocfs2_new_path_from_et(et); 5526 if (!path) { 5527 ret = -ENOMEM; 5528 mlog_errno(ret); 5529 goto out; 5530 } 5531 5532 ret = ocfs2_find_path(et->et_ci, path, cpos); 5533 if (ret) { 5534 mlog_errno(ret); 5535 goto out; 5536 } 5537 5538 el = path_leaf_el(path); 5539 index = ocfs2_search_extent_list(el, cpos); 5540 if (index == -1) { 5541 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5542 "Owner %llu has an extent at cpos %u which can no longer be found\n", 5543 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5544 cpos); 5545 ret = -EROFS; 5546 goto out; 5547 } 5548 5549 /* 5550 * We have 3 cases of extent removal: 5551 * 1) Range covers the entire extent rec 5552 * 2) Range begins or ends on one edge of the extent rec 5553 * 3) Range is in the middle of the extent rec (no shared edges) 5554 * 5555 * For case 1 we remove the extent rec and left rotate to 5556 * fill the hole. 5557 * 5558 * For case 2 we just shrink the existing extent rec, with a 5559 * tree update if the shrinking edge is also the edge of an 5560 * extent block. 5561 * 5562 * For case 3 we do a right split to turn the extent rec into 5563 * something case 2 can handle. 5564 */ 5565 rec = &el->l_recs[index]; 5566 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5567 trunc_range = cpos + len; 5568 5569 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range); 5570 5571 trace_ocfs2_remove_extent( 5572 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5573 cpos, len, index, le32_to_cpu(rec->e_cpos), 5574 ocfs2_rec_clusters(el, rec)); 5575 5576 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) { 5577 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc, 5578 cpos, len); 5579 if (ret) { 5580 mlog_errno(ret); 5581 goto out; 5582 } 5583 } else { 5584 ret = ocfs2_split_tree(handle, et, path, index, 5585 trunc_range, meta_ac); 5586 if (ret) { 5587 mlog_errno(ret); 5588 goto out; 5589 } 5590 5591 /* 5592 * The split could have manipulated the tree enough to 5593 * move the record location, so we have to look for it again. 5594 */ 5595 ocfs2_reinit_path(path, 1); 5596 5597 ret = ocfs2_find_path(et->et_ci, path, cpos); 5598 if (ret) { 5599 mlog_errno(ret); 5600 goto out; 5601 } 5602 5603 el = path_leaf_el(path); 5604 index = ocfs2_search_extent_list(el, cpos); 5605 if (index == -1) { 5606 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5607 "Owner %llu: split at cpos %u lost record\n", 5608 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5609 cpos); 5610 ret = -EROFS; 5611 goto out; 5612 } 5613 5614 /* 5615 * Double check our values here. If anything is fishy, 5616 * it's easier to catch it at the top level. 5617 */ 5618 rec = &el->l_recs[index]; 5619 rec_range = le32_to_cpu(rec->e_cpos) + 5620 ocfs2_rec_clusters(el, rec); 5621 if (rec_range != trunc_range) { 5622 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5623 "Owner %llu: error after split at cpos %u trunc len %u, existing record is (%u,%u)\n", 5624 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5625 cpos, len, le32_to_cpu(rec->e_cpos), 5626 ocfs2_rec_clusters(el, rec)); 5627 ret = -EROFS; 5628 goto out; 5629 } 5630 5631 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc, 5632 cpos, len); 5633 if (ret) 5634 mlog_errno(ret); 5635 } 5636 5637 out: 5638 ocfs2_free_path(path); 5639 return ret; 5640 } 5641 5642 /* 5643 * ocfs2_reserve_blocks_for_rec_trunc() would look basically the 5644 * same as ocfs2_lock_alloctors(), except for it accepts a blocks 5645 * number to reserve some extra blocks, and it only handles meta 5646 * data allocations. 5647 * 5648 * Currently, only ocfs2_remove_btree_range() uses it for truncating 5649 * and punching holes. 5650 */ 5651 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode, 5652 struct ocfs2_extent_tree *et, 5653 u32 extents_to_split, 5654 struct ocfs2_alloc_context **ac, 5655 int extra_blocks) 5656 { 5657 int ret = 0, num_free_extents; 5658 unsigned int max_recs_needed = 2 * extents_to_split; 5659 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5660 5661 *ac = NULL; 5662 5663 num_free_extents = ocfs2_num_free_extents(et); 5664 if (num_free_extents < 0) { 5665 ret = num_free_extents; 5666 mlog_errno(ret); 5667 goto out; 5668 } 5669 5670 if (!num_free_extents || 5671 (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed)) 5672 extra_blocks += ocfs2_extend_meta_needed(et->et_root_el); 5673 5674 if (extra_blocks) { 5675 ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac); 5676 if (ret < 0) { 5677 if (ret != -ENOSPC) 5678 mlog_errno(ret); 5679 } 5680 } 5681 5682 out: 5683 if (ret) { 5684 if (*ac) { 5685 ocfs2_free_alloc_context(*ac); 5686 *ac = NULL; 5687 } 5688 } 5689 5690 return ret; 5691 } 5692 5693 int ocfs2_remove_btree_range(struct inode *inode, 5694 struct ocfs2_extent_tree *et, 5695 u32 cpos, u32 phys_cpos, u32 len, int flags, 5696 struct ocfs2_cached_dealloc_ctxt *dealloc, 5697 u64 refcount_loc, bool refcount_tree_locked) 5698 { 5699 int ret, credits = 0, extra_blocks = 0; 5700 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos); 5701 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5702 struct inode *tl_inode = osb->osb_tl_inode; 5703 handle_t *handle; 5704 struct ocfs2_alloc_context *meta_ac = NULL; 5705 struct ocfs2_refcount_tree *ref_tree = NULL; 5706 5707 if ((flags & OCFS2_EXT_REFCOUNTED) && len) { 5708 BUG_ON(!ocfs2_is_refcount_inode(inode)); 5709 5710 if (!refcount_tree_locked) { 5711 ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1, 5712 &ref_tree, NULL); 5713 if (ret) { 5714 mlog_errno(ret); 5715 goto bail; 5716 } 5717 } 5718 5719 ret = ocfs2_prepare_refcount_change_for_del(inode, 5720 refcount_loc, 5721 phys_blkno, 5722 len, 5723 &credits, 5724 &extra_blocks); 5725 if (ret < 0) { 5726 mlog_errno(ret); 5727 goto bail; 5728 } 5729 } 5730 5731 ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac, 5732 extra_blocks); 5733 if (ret) { 5734 mlog_errno(ret); 5735 goto bail; 5736 } 5737 5738 inode_lock(tl_inode); 5739 5740 if (ocfs2_truncate_log_needs_flush(osb)) { 5741 ret = __ocfs2_flush_truncate_log(osb); 5742 if (ret < 0) { 5743 mlog_errno(ret); 5744 goto out; 5745 } 5746 } 5747 5748 handle = ocfs2_start_trans(osb, 5749 ocfs2_remove_extent_credits(osb->sb) + credits); 5750 if (IS_ERR(handle)) { 5751 ret = PTR_ERR(handle); 5752 mlog_errno(ret); 5753 goto out; 5754 } 5755 5756 ret = ocfs2_et_root_journal_access(handle, et, 5757 OCFS2_JOURNAL_ACCESS_WRITE); 5758 if (ret) { 5759 mlog_errno(ret); 5760 goto out_commit; 5761 } 5762 5763 dquot_free_space_nodirty(inode, 5764 ocfs2_clusters_to_bytes(inode->i_sb, len)); 5765 5766 ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc); 5767 if (ret) { 5768 mlog_errno(ret); 5769 goto out_commit; 5770 } 5771 5772 ocfs2_et_update_clusters(et, -len); 5773 ocfs2_update_inode_fsync_trans(handle, inode, 1); 5774 5775 ocfs2_journal_dirty(handle, et->et_root_bh); 5776 5777 if (phys_blkno) { 5778 if (flags & OCFS2_EXT_REFCOUNTED) 5779 ret = ocfs2_decrease_refcount(inode, handle, 5780 ocfs2_blocks_to_clusters(osb->sb, 5781 phys_blkno), 5782 len, meta_ac, 5783 dealloc, 1); 5784 else 5785 ret = ocfs2_truncate_log_append(osb, handle, 5786 phys_blkno, len); 5787 if (ret) 5788 mlog_errno(ret); 5789 5790 } 5791 5792 out_commit: 5793 ocfs2_commit_trans(osb, handle); 5794 out: 5795 inode_unlock(tl_inode); 5796 bail: 5797 if (meta_ac) 5798 ocfs2_free_alloc_context(meta_ac); 5799 5800 if (ref_tree) 5801 ocfs2_unlock_refcount_tree(osb, ref_tree, 1); 5802 5803 return ret; 5804 } 5805 5806 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb) 5807 { 5808 struct buffer_head *tl_bh = osb->osb_tl_bh; 5809 struct ocfs2_dinode *di; 5810 struct ocfs2_truncate_log *tl; 5811 5812 di = (struct ocfs2_dinode *) tl_bh->b_data; 5813 tl = &di->id2.i_dealloc; 5814 5815 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count), 5816 "slot %d, invalid truncate log parameters: used = " 5817 "%u, count = %u\n", osb->slot_num, 5818 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count)); 5819 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count); 5820 } 5821 5822 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl, 5823 unsigned int new_start) 5824 { 5825 unsigned int tail_index; 5826 unsigned int current_tail; 5827 5828 /* No records, nothing to coalesce */ 5829 if (!le16_to_cpu(tl->tl_used)) 5830 return 0; 5831 5832 tail_index = le16_to_cpu(tl->tl_used) - 1; 5833 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start); 5834 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters); 5835 5836 return current_tail == new_start; 5837 } 5838 5839 int ocfs2_truncate_log_append(struct ocfs2_super *osb, 5840 handle_t *handle, 5841 u64 start_blk, 5842 unsigned int num_clusters) 5843 { 5844 int status, index; 5845 unsigned int start_cluster, tl_count; 5846 struct inode *tl_inode = osb->osb_tl_inode; 5847 struct buffer_head *tl_bh = osb->osb_tl_bh; 5848 struct ocfs2_dinode *di; 5849 struct ocfs2_truncate_log *tl; 5850 5851 BUG_ON(inode_trylock(tl_inode)); 5852 5853 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk); 5854 5855 di = (struct ocfs2_dinode *) tl_bh->b_data; 5856 5857 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 5858 * by the underlying call to ocfs2_read_inode_block(), so any 5859 * corruption is a code bug */ 5860 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5861 5862 tl = &di->id2.i_dealloc; 5863 tl_count = le16_to_cpu(tl->tl_count); 5864 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) || 5865 tl_count == 0, 5866 "Truncate record count on #%llu invalid " 5867 "wanted %u, actual %u\n", 5868 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5869 ocfs2_truncate_recs_per_inode(osb->sb), 5870 le16_to_cpu(tl->tl_count)); 5871 5872 /* Caller should have known to flush before calling us. */ 5873 index = le16_to_cpu(tl->tl_used); 5874 if (index >= tl_count) { 5875 status = -ENOSPC; 5876 mlog_errno(status); 5877 goto bail; 5878 } 5879 5880 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, 5881 OCFS2_JOURNAL_ACCESS_WRITE); 5882 if (status < 0) { 5883 mlog_errno(status); 5884 goto bail; 5885 } 5886 5887 trace_ocfs2_truncate_log_append( 5888 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index, 5889 start_cluster, num_clusters); 5890 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) { 5891 /* 5892 * Move index back to the record we are coalescing with. 5893 * ocfs2_truncate_log_can_coalesce() guarantees nonzero 5894 */ 5895 index--; 5896 5897 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters); 5898 trace_ocfs2_truncate_log_append( 5899 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5900 index, le32_to_cpu(tl->tl_recs[index].t_start), 5901 num_clusters); 5902 } else { 5903 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster); 5904 tl->tl_used = cpu_to_le16(index + 1); 5905 } 5906 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters); 5907 5908 ocfs2_journal_dirty(handle, tl_bh); 5909 5910 osb->truncated_clusters += num_clusters; 5911 bail: 5912 return status; 5913 } 5914 5915 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb, 5916 struct inode *data_alloc_inode, 5917 struct buffer_head *data_alloc_bh) 5918 { 5919 int status = 0; 5920 int i; 5921 unsigned int num_clusters; 5922 u64 start_blk; 5923 struct ocfs2_truncate_rec rec; 5924 struct ocfs2_dinode *di; 5925 struct ocfs2_truncate_log *tl; 5926 struct inode *tl_inode = osb->osb_tl_inode; 5927 struct buffer_head *tl_bh = osb->osb_tl_bh; 5928 handle_t *handle; 5929 5930 di = (struct ocfs2_dinode *) tl_bh->b_data; 5931 tl = &di->id2.i_dealloc; 5932 i = le16_to_cpu(tl->tl_used) - 1; 5933 while (i >= 0) { 5934 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC); 5935 if (IS_ERR(handle)) { 5936 status = PTR_ERR(handle); 5937 mlog_errno(status); 5938 goto bail; 5939 } 5940 5941 /* Caller has given us at least enough credits to 5942 * update the truncate log dinode */ 5943 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, 5944 OCFS2_JOURNAL_ACCESS_WRITE); 5945 if (status < 0) { 5946 mlog_errno(status); 5947 goto bail; 5948 } 5949 5950 tl->tl_used = cpu_to_le16(i); 5951 5952 ocfs2_journal_dirty(handle, tl_bh); 5953 5954 rec = tl->tl_recs[i]; 5955 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb, 5956 le32_to_cpu(rec.t_start)); 5957 num_clusters = le32_to_cpu(rec.t_clusters); 5958 5959 /* if start_blk is not set, we ignore the record as 5960 * invalid. */ 5961 if (start_blk) { 5962 trace_ocfs2_replay_truncate_records( 5963 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5964 i, le32_to_cpu(rec.t_start), num_clusters); 5965 5966 status = ocfs2_free_clusters(handle, data_alloc_inode, 5967 data_alloc_bh, start_blk, 5968 num_clusters); 5969 if (status < 0) { 5970 mlog_errno(status); 5971 goto bail; 5972 } 5973 } 5974 5975 ocfs2_commit_trans(osb, handle); 5976 i--; 5977 } 5978 5979 osb->truncated_clusters = 0; 5980 5981 bail: 5982 return status; 5983 } 5984 5985 /* Expects you to already be holding tl_inode->i_mutex */ 5986 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb) 5987 { 5988 int status; 5989 unsigned int num_to_flush; 5990 struct inode *tl_inode = osb->osb_tl_inode; 5991 struct inode *data_alloc_inode = NULL; 5992 struct buffer_head *tl_bh = osb->osb_tl_bh; 5993 struct buffer_head *data_alloc_bh = NULL; 5994 struct ocfs2_dinode *di; 5995 struct ocfs2_truncate_log *tl; 5996 struct ocfs2_journal *journal = osb->journal; 5997 5998 BUG_ON(inode_trylock(tl_inode)); 5999 6000 di = (struct ocfs2_dinode *) tl_bh->b_data; 6001 6002 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 6003 * by the underlying call to ocfs2_read_inode_block(), so any 6004 * corruption is a code bug */ 6005 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 6006 6007 tl = &di->id2.i_dealloc; 6008 num_to_flush = le16_to_cpu(tl->tl_used); 6009 trace_ocfs2_flush_truncate_log( 6010 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 6011 num_to_flush); 6012 if (!num_to_flush) { 6013 status = 0; 6014 goto out; 6015 } 6016 6017 /* Appending truncate log(TA) and and flushing truncate log(TF) are 6018 * two separated transactions. They can be both committed but not 6019 * checkpointed. If crash occurs then, both two transaction will be 6020 * replayed with several already released to global bitmap clusters. 6021 * Then truncate log will be replayed resulting in cluster double free. 6022 */ 6023 jbd2_journal_lock_updates(journal->j_journal); 6024 status = jbd2_journal_flush(journal->j_journal); 6025 jbd2_journal_unlock_updates(journal->j_journal); 6026 if (status < 0) { 6027 mlog_errno(status); 6028 goto out; 6029 } 6030 6031 data_alloc_inode = ocfs2_get_system_file_inode(osb, 6032 GLOBAL_BITMAP_SYSTEM_INODE, 6033 OCFS2_INVALID_SLOT); 6034 if (!data_alloc_inode) { 6035 status = -EINVAL; 6036 mlog(ML_ERROR, "Could not get bitmap inode!\n"); 6037 goto out; 6038 } 6039 6040 inode_lock(data_alloc_inode); 6041 6042 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1); 6043 if (status < 0) { 6044 mlog_errno(status); 6045 goto out_mutex; 6046 } 6047 6048 status = ocfs2_replay_truncate_records(osb, data_alloc_inode, 6049 data_alloc_bh); 6050 if (status < 0) 6051 mlog_errno(status); 6052 6053 brelse(data_alloc_bh); 6054 ocfs2_inode_unlock(data_alloc_inode, 1); 6055 6056 out_mutex: 6057 inode_unlock(data_alloc_inode); 6058 iput(data_alloc_inode); 6059 6060 out: 6061 return status; 6062 } 6063 6064 int ocfs2_flush_truncate_log(struct ocfs2_super *osb) 6065 { 6066 int status; 6067 struct inode *tl_inode = osb->osb_tl_inode; 6068 6069 inode_lock(tl_inode); 6070 status = __ocfs2_flush_truncate_log(osb); 6071 inode_unlock(tl_inode); 6072 6073 return status; 6074 } 6075 6076 static void ocfs2_truncate_log_worker(struct work_struct *work) 6077 { 6078 int status; 6079 struct ocfs2_super *osb = 6080 container_of(work, struct ocfs2_super, 6081 osb_truncate_log_wq.work); 6082 6083 status = ocfs2_flush_truncate_log(osb); 6084 if (status < 0) 6085 mlog_errno(status); 6086 else 6087 ocfs2_init_steal_slots(osb); 6088 } 6089 6090 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ) 6091 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb, 6092 int cancel) 6093 { 6094 if (osb->osb_tl_inode && 6095 atomic_read(&osb->osb_tl_disable) == 0) { 6096 /* We want to push off log flushes while truncates are 6097 * still running. */ 6098 if (cancel) 6099 cancel_delayed_work(&osb->osb_truncate_log_wq); 6100 6101 queue_delayed_work(osb->ocfs2_wq, &osb->osb_truncate_log_wq, 6102 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL); 6103 } 6104 } 6105 6106 /* 6107 * Try to flush truncate logs if we can free enough clusters from it. 6108 * As for return value, "< 0" means error, "0" no space and "1" means 6109 * we have freed enough spaces and let the caller try to allocate again. 6110 */ 6111 int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb, 6112 unsigned int needed) 6113 { 6114 tid_t target; 6115 int ret = 0; 6116 unsigned int truncated_clusters; 6117 6118 inode_lock(osb->osb_tl_inode); 6119 truncated_clusters = osb->truncated_clusters; 6120 inode_unlock(osb->osb_tl_inode); 6121 6122 /* 6123 * Check whether we can succeed in allocating if we free 6124 * the truncate log. 6125 */ 6126 if (truncated_clusters < needed) 6127 goto out; 6128 6129 ret = ocfs2_flush_truncate_log(osb); 6130 if (ret) { 6131 mlog_errno(ret); 6132 goto out; 6133 } 6134 6135 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) { 6136 jbd2_log_wait_commit(osb->journal->j_journal, target); 6137 ret = 1; 6138 } 6139 out: 6140 return ret; 6141 } 6142 6143 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb, 6144 int slot_num, 6145 struct inode **tl_inode, 6146 struct buffer_head **tl_bh) 6147 { 6148 int status; 6149 struct inode *inode = NULL; 6150 struct buffer_head *bh = NULL; 6151 6152 inode = ocfs2_get_system_file_inode(osb, 6153 TRUNCATE_LOG_SYSTEM_INODE, 6154 slot_num); 6155 if (!inode) { 6156 status = -EINVAL; 6157 mlog(ML_ERROR, "Could not get load truncate log inode!\n"); 6158 goto bail; 6159 } 6160 6161 status = ocfs2_read_inode_block(inode, &bh); 6162 if (status < 0) { 6163 iput(inode); 6164 mlog_errno(status); 6165 goto bail; 6166 } 6167 6168 *tl_inode = inode; 6169 *tl_bh = bh; 6170 bail: 6171 return status; 6172 } 6173 6174 /* called during the 1st stage of node recovery. we stamp a clean 6175 * truncate log and pass back a copy for processing later. if the 6176 * truncate log does not require processing, a *tl_copy is set to 6177 * NULL. */ 6178 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb, 6179 int slot_num, 6180 struct ocfs2_dinode **tl_copy) 6181 { 6182 int status; 6183 struct inode *tl_inode = NULL; 6184 struct buffer_head *tl_bh = NULL; 6185 struct ocfs2_dinode *di; 6186 struct ocfs2_truncate_log *tl; 6187 6188 *tl_copy = NULL; 6189 6190 trace_ocfs2_begin_truncate_log_recovery(slot_num); 6191 6192 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh); 6193 if (status < 0) { 6194 mlog_errno(status); 6195 goto bail; 6196 } 6197 6198 di = (struct ocfs2_dinode *) tl_bh->b_data; 6199 6200 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's 6201 * validated by the underlying call to ocfs2_read_inode_block(), 6202 * so any corruption is a code bug */ 6203 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 6204 6205 tl = &di->id2.i_dealloc; 6206 if (le16_to_cpu(tl->tl_used)) { 6207 trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl->tl_used)); 6208 6209 /* 6210 * Assuming the write-out below goes well, this copy will be 6211 * passed back to recovery for processing. 6212 */ 6213 *tl_copy = kmemdup(tl_bh->b_data, tl_bh->b_size, GFP_KERNEL); 6214 if (!(*tl_copy)) { 6215 status = -ENOMEM; 6216 mlog_errno(status); 6217 goto bail; 6218 } 6219 6220 /* All we need to do to clear the truncate log is set 6221 * tl_used. */ 6222 tl->tl_used = 0; 6223 6224 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check); 6225 status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode)); 6226 if (status < 0) { 6227 mlog_errno(status); 6228 goto bail; 6229 } 6230 } 6231 6232 bail: 6233 iput(tl_inode); 6234 brelse(tl_bh); 6235 6236 if (status < 0) { 6237 kfree(*tl_copy); 6238 *tl_copy = NULL; 6239 mlog_errno(status); 6240 } 6241 6242 return status; 6243 } 6244 6245 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb, 6246 struct ocfs2_dinode *tl_copy) 6247 { 6248 int status = 0; 6249 int i; 6250 unsigned int clusters, num_recs, start_cluster; 6251 u64 start_blk; 6252 handle_t *handle; 6253 struct inode *tl_inode = osb->osb_tl_inode; 6254 struct ocfs2_truncate_log *tl; 6255 6256 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) { 6257 mlog(ML_ERROR, "Asked to recover my own truncate log!\n"); 6258 return -EINVAL; 6259 } 6260 6261 tl = &tl_copy->id2.i_dealloc; 6262 num_recs = le16_to_cpu(tl->tl_used); 6263 trace_ocfs2_complete_truncate_log_recovery( 6264 (unsigned long long)le64_to_cpu(tl_copy->i_blkno), 6265 num_recs); 6266 6267 inode_lock(tl_inode); 6268 for(i = 0; i < num_recs; i++) { 6269 if (ocfs2_truncate_log_needs_flush(osb)) { 6270 status = __ocfs2_flush_truncate_log(osb); 6271 if (status < 0) { 6272 mlog_errno(status); 6273 goto bail_up; 6274 } 6275 } 6276 6277 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6278 if (IS_ERR(handle)) { 6279 status = PTR_ERR(handle); 6280 mlog_errno(status); 6281 goto bail_up; 6282 } 6283 6284 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters); 6285 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start); 6286 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster); 6287 6288 status = ocfs2_truncate_log_append(osb, handle, 6289 start_blk, clusters); 6290 ocfs2_commit_trans(osb, handle); 6291 if (status < 0) { 6292 mlog_errno(status); 6293 goto bail_up; 6294 } 6295 } 6296 6297 bail_up: 6298 inode_unlock(tl_inode); 6299 6300 return status; 6301 } 6302 6303 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb) 6304 { 6305 int status; 6306 struct inode *tl_inode = osb->osb_tl_inode; 6307 6308 atomic_set(&osb->osb_tl_disable, 1); 6309 6310 if (tl_inode) { 6311 cancel_delayed_work(&osb->osb_truncate_log_wq); 6312 flush_workqueue(osb->ocfs2_wq); 6313 6314 status = ocfs2_flush_truncate_log(osb); 6315 if (status < 0) 6316 mlog_errno(status); 6317 6318 brelse(osb->osb_tl_bh); 6319 iput(osb->osb_tl_inode); 6320 } 6321 } 6322 6323 int ocfs2_truncate_log_init(struct ocfs2_super *osb) 6324 { 6325 int status; 6326 struct inode *tl_inode = NULL; 6327 struct buffer_head *tl_bh = NULL; 6328 6329 status = ocfs2_get_truncate_log_info(osb, 6330 osb->slot_num, 6331 &tl_inode, 6332 &tl_bh); 6333 if (status < 0) 6334 mlog_errno(status); 6335 6336 /* ocfs2_truncate_log_shutdown keys on the existence of 6337 * osb->osb_tl_inode so we don't set any of the osb variables 6338 * until we're sure all is well. */ 6339 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq, 6340 ocfs2_truncate_log_worker); 6341 atomic_set(&osb->osb_tl_disable, 0); 6342 osb->osb_tl_bh = tl_bh; 6343 osb->osb_tl_inode = tl_inode; 6344 6345 return status; 6346 } 6347 6348 /* 6349 * Delayed de-allocation of suballocator blocks. 6350 * 6351 * Some sets of block de-allocations might involve multiple suballocator inodes. 6352 * 6353 * The locking for this can get extremely complicated, especially when 6354 * the suballocator inodes to delete from aren't known until deep 6355 * within an unrelated codepath. 6356 * 6357 * ocfs2_extent_block structures are a good example of this - an inode 6358 * btree could have been grown by any number of nodes each allocating 6359 * out of their own suballoc inode. 6360 * 6361 * These structures allow the delay of block de-allocation until a 6362 * later time, when locking of multiple cluster inodes won't cause 6363 * deadlock. 6364 */ 6365 6366 /* 6367 * Describe a single bit freed from a suballocator. For the block 6368 * suballocators, it represents one block. For the global cluster 6369 * allocator, it represents some clusters and free_bit indicates 6370 * clusters number. 6371 */ 6372 struct ocfs2_cached_block_free { 6373 struct ocfs2_cached_block_free *free_next; 6374 u64 free_bg; 6375 u64 free_blk; 6376 unsigned int free_bit; 6377 }; 6378 6379 struct ocfs2_per_slot_free_list { 6380 struct ocfs2_per_slot_free_list *f_next_suballocator; 6381 int f_inode_type; 6382 int f_slot; 6383 struct ocfs2_cached_block_free *f_first; 6384 }; 6385 6386 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb, 6387 int sysfile_type, 6388 int slot, 6389 struct ocfs2_cached_block_free *head) 6390 { 6391 int ret; 6392 u64 bg_blkno; 6393 handle_t *handle; 6394 struct inode *inode; 6395 struct buffer_head *di_bh = NULL; 6396 struct ocfs2_cached_block_free *tmp; 6397 6398 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot); 6399 if (!inode) { 6400 ret = -EINVAL; 6401 mlog_errno(ret); 6402 goto out; 6403 } 6404 6405 inode_lock(inode); 6406 6407 ret = ocfs2_inode_lock(inode, &di_bh, 1); 6408 if (ret) { 6409 mlog_errno(ret); 6410 goto out_mutex; 6411 } 6412 6413 while (head) { 6414 if (head->free_bg) 6415 bg_blkno = head->free_bg; 6416 else 6417 bg_blkno = ocfs2_which_suballoc_group(head->free_blk, 6418 head->free_bit); 6419 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE); 6420 if (IS_ERR(handle)) { 6421 ret = PTR_ERR(handle); 6422 mlog_errno(ret); 6423 goto out_unlock; 6424 } 6425 6426 trace_ocfs2_free_cached_blocks( 6427 (unsigned long long)head->free_blk, head->free_bit); 6428 6429 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh, 6430 head->free_bit, bg_blkno, 1); 6431 if (ret) 6432 mlog_errno(ret); 6433 6434 ocfs2_commit_trans(osb, handle); 6435 6436 tmp = head; 6437 head = head->free_next; 6438 kfree(tmp); 6439 } 6440 6441 out_unlock: 6442 ocfs2_inode_unlock(inode, 1); 6443 brelse(di_bh); 6444 out_mutex: 6445 inode_unlock(inode); 6446 iput(inode); 6447 out: 6448 while(head) { 6449 /* Premature exit may have left some dangling items. */ 6450 tmp = head; 6451 head = head->free_next; 6452 kfree(tmp); 6453 } 6454 6455 return ret; 6456 } 6457 6458 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6459 u64 blkno, unsigned int bit) 6460 { 6461 int ret = 0; 6462 struct ocfs2_cached_block_free *item; 6463 6464 item = kzalloc(sizeof(*item), GFP_NOFS); 6465 if (item == NULL) { 6466 ret = -ENOMEM; 6467 mlog_errno(ret); 6468 return ret; 6469 } 6470 6471 trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno, bit); 6472 6473 item->free_blk = blkno; 6474 item->free_bit = bit; 6475 item->free_next = ctxt->c_global_allocator; 6476 6477 ctxt->c_global_allocator = item; 6478 return ret; 6479 } 6480 6481 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb, 6482 struct ocfs2_cached_block_free *head) 6483 { 6484 struct ocfs2_cached_block_free *tmp; 6485 struct inode *tl_inode = osb->osb_tl_inode; 6486 handle_t *handle; 6487 int ret = 0; 6488 6489 inode_lock(tl_inode); 6490 6491 while (head) { 6492 if (ocfs2_truncate_log_needs_flush(osb)) { 6493 ret = __ocfs2_flush_truncate_log(osb); 6494 if (ret < 0) { 6495 mlog_errno(ret); 6496 break; 6497 } 6498 } 6499 6500 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6501 if (IS_ERR(handle)) { 6502 ret = PTR_ERR(handle); 6503 mlog_errno(ret); 6504 break; 6505 } 6506 6507 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk, 6508 head->free_bit); 6509 6510 ocfs2_commit_trans(osb, handle); 6511 tmp = head; 6512 head = head->free_next; 6513 kfree(tmp); 6514 6515 if (ret < 0) { 6516 mlog_errno(ret); 6517 break; 6518 } 6519 } 6520 6521 inode_unlock(tl_inode); 6522 6523 while (head) { 6524 /* Premature exit may have left some dangling items. */ 6525 tmp = head; 6526 head = head->free_next; 6527 kfree(tmp); 6528 } 6529 6530 return ret; 6531 } 6532 6533 int ocfs2_run_deallocs(struct ocfs2_super *osb, 6534 struct ocfs2_cached_dealloc_ctxt *ctxt) 6535 { 6536 int ret = 0, ret2; 6537 struct ocfs2_per_slot_free_list *fl; 6538 6539 if (!ctxt) 6540 return 0; 6541 6542 while (ctxt->c_first_suballocator) { 6543 fl = ctxt->c_first_suballocator; 6544 6545 if (fl->f_first) { 6546 trace_ocfs2_run_deallocs(fl->f_inode_type, 6547 fl->f_slot); 6548 ret2 = ocfs2_free_cached_blocks(osb, 6549 fl->f_inode_type, 6550 fl->f_slot, 6551 fl->f_first); 6552 if (ret2) 6553 mlog_errno(ret2); 6554 if (!ret) 6555 ret = ret2; 6556 } 6557 6558 ctxt->c_first_suballocator = fl->f_next_suballocator; 6559 kfree(fl); 6560 } 6561 6562 if (ctxt->c_global_allocator) { 6563 ret2 = ocfs2_free_cached_clusters(osb, 6564 ctxt->c_global_allocator); 6565 if (ret2) 6566 mlog_errno(ret2); 6567 if (!ret) 6568 ret = ret2; 6569 6570 ctxt->c_global_allocator = NULL; 6571 } 6572 6573 return ret; 6574 } 6575 6576 static struct ocfs2_per_slot_free_list * 6577 ocfs2_find_per_slot_free_list(int type, 6578 int slot, 6579 struct ocfs2_cached_dealloc_ctxt *ctxt) 6580 { 6581 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; 6582 6583 while (fl) { 6584 if (fl->f_inode_type == type && fl->f_slot == slot) 6585 return fl; 6586 6587 fl = fl->f_next_suballocator; 6588 } 6589 6590 fl = kmalloc(sizeof(*fl), GFP_NOFS); 6591 if (fl) { 6592 fl->f_inode_type = type; 6593 fl->f_slot = slot; 6594 fl->f_first = NULL; 6595 fl->f_next_suballocator = ctxt->c_first_suballocator; 6596 6597 ctxt->c_first_suballocator = fl; 6598 } 6599 return fl; 6600 } 6601 6602 static struct ocfs2_per_slot_free_list * 6603 ocfs2_find_preferred_free_list(int type, 6604 int preferred_slot, 6605 int *real_slot, 6606 struct ocfs2_cached_dealloc_ctxt *ctxt) 6607 { 6608 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; 6609 6610 while (fl) { 6611 if (fl->f_inode_type == type && fl->f_slot == preferred_slot) { 6612 *real_slot = fl->f_slot; 6613 return fl; 6614 } 6615 6616 fl = fl->f_next_suballocator; 6617 } 6618 6619 /* If we can't find any free list matching preferred slot, just use 6620 * the first one. 6621 */ 6622 fl = ctxt->c_first_suballocator; 6623 *real_slot = fl->f_slot; 6624 6625 return fl; 6626 } 6627 6628 /* Return Value 1 indicates empty */ 6629 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree *et) 6630 { 6631 struct ocfs2_per_slot_free_list *fl = NULL; 6632 6633 if (!et->et_dealloc) 6634 return 1; 6635 6636 fl = et->et_dealloc->c_first_suballocator; 6637 if (!fl) 6638 return 1; 6639 6640 if (!fl->f_first) 6641 return 1; 6642 6643 return 0; 6644 } 6645 6646 /* If extent was deleted from tree due to extent rotation and merging, and 6647 * no metadata is reserved ahead of time. Try to reuse some extents 6648 * just deleted. This is only used to reuse extent blocks. 6649 * It is supposed to find enough extent blocks in dealloc if our estimation 6650 * on metadata is accurate. 6651 */ 6652 static int ocfs2_reuse_blk_from_dealloc(handle_t *handle, 6653 struct ocfs2_extent_tree *et, 6654 struct buffer_head **new_eb_bh, 6655 int blk_wanted, int *blk_given) 6656 { 6657 int i, status = 0, real_slot; 6658 struct ocfs2_cached_dealloc_ctxt *dealloc; 6659 struct ocfs2_per_slot_free_list *fl; 6660 struct ocfs2_cached_block_free *bf; 6661 struct ocfs2_extent_block *eb; 6662 struct ocfs2_super *osb = 6663 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 6664 6665 *blk_given = 0; 6666 6667 /* If extent tree doesn't have a dealloc, this is not faulty. Just 6668 * tell upper caller dealloc can't provide any block and it should 6669 * ask for alloc to claim more space. 6670 */ 6671 dealloc = et->et_dealloc; 6672 if (!dealloc) 6673 goto bail; 6674 6675 for (i = 0; i < blk_wanted; i++) { 6676 /* Prefer to use local slot */ 6677 fl = ocfs2_find_preferred_free_list(EXTENT_ALLOC_SYSTEM_INODE, 6678 osb->slot_num, &real_slot, 6679 dealloc); 6680 /* If no more block can be reused, we should claim more 6681 * from alloc. Just return here normally. 6682 */ 6683 if (!fl) { 6684 status = 0; 6685 break; 6686 } 6687 6688 bf = fl->f_first; 6689 fl->f_first = bf->free_next; 6690 6691 new_eb_bh[i] = sb_getblk(osb->sb, bf->free_blk); 6692 if (new_eb_bh[i] == NULL) { 6693 status = -ENOMEM; 6694 mlog_errno(status); 6695 goto bail; 6696 } 6697 6698 mlog(0, "Reusing block(%llu) from " 6699 "dealloc(local slot:%d, real slot:%d)\n", 6700 bf->free_blk, osb->slot_num, real_slot); 6701 6702 ocfs2_set_new_buffer_uptodate(et->et_ci, new_eb_bh[i]); 6703 6704 status = ocfs2_journal_access_eb(handle, et->et_ci, 6705 new_eb_bh[i], 6706 OCFS2_JOURNAL_ACCESS_CREATE); 6707 if (status < 0) { 6708 mlog_errno(status); 6709 goto bail; 6710 } 6711 6712 memset(new_eb_bh[i]->b_data, 0, osb->sb->s_blocksize); 6713 eb = (struct ocfs2_extent_block *) new_eb_bh[i]->b_data; 6714 6715 /* We can't guarantee that buffer head is still cached, so 6716 * polutlate the extent block again. 6717 */ 6718 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); 6719 eb->h_blkno = cpu_to_le64(bf->free_blk); 6720 eb->h_fs_generation = cpu_to_le32(osb->fs_generation); 6721 eb->h_suballoc_slot = cpu_to_le16(real_slot); 6722 eb->h_suballoc_loc = cpu_to_le64(bf->free_bg); 6723 eb->h_suballoc_bit = cpu_to_le16(bf->free_bit); 6724 eb->h_list.l_count = 6725 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); 6726 6727 /* We'll also be dirtied by the caller, so 6728 * this isn't absolutely necessary. 6729 */ 6730 ocfs2_journal_dirty(handle, new_eb_bh[i]); 6731 6732 if (!fl->f_first) { 6733 dealloc->c_first_suballocator = fl->f_next_suballocator; 6734 kfree(fl); 6735 } 6736 kfree(bf); 6737 } 6738 6739 *blk_given = i; 6740 6741 bail: 6742 if (unlikely(status < 0)) { 6743 for (i = 0; i < blk_wanted; i++) 6744 brelse(new_eb_bh[i]); 6745 } 6746 6747 return status; 6748 } 6749 6750 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6751 int type, int slot, u64 suballoc, 6752 u64 blkno, unsigned int bit) 6753 { 6754 int ret; 6755 struct ocfs2_per_slot_free_list *fl; 6756 struct ocfs2_cached_block_free *item; 6757 6758 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt); 6759 if (fl == NULL) { 6760 ret = -ENOMEM; 6761 mlog_errno(ret); 6762 goto out; 6763 } 6764 6765 item = kzalloc(sizeof(*item), GFP_NOFS); 6766 if (item == NULL) { 6767 ret = -ENOMEM; 6768 mlog_errno(ret); 6769 goto out; 6770 } 6771 6772 trace_ocfs2_cache_block_dealloc(type, slot, 6773 (unsigned long long)suballoc, 6774 (unsigned long long)blkno, bit); 6775 6776 item->free_bg = suballoc; 6777 item->free_blk = blkno; 6778 item->free_bit = bit; 6779 item->free_next = fl->f_first; 6780 6781 fl->f_first = item; 6782 6783 ret = 0; 6784 out: 6785 return ret; 6786 } 6787 6788 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 6789 struct ocfs2_extent_block *eb) 6790 { 6791 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE, 6792 le16_to_cpu(eb->h_suballoc_slot), 6793 le64_to_cpu(eb->h_suballoc_loc), 6794 le64_to_cpu(eb->h_blkno), 6795 le16_to_cpu(eb->h_suballoc_bit)); 6796 } 6797 6798 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh) 6799 { 6800 set_buffer_uptodate(bh); 6801 mark_buffer_dirty(bh); 6802 return 0; 6803 } 6804 6805 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle, 6806 unsigned int from, unsigned int to, 6807 struct page *page, int zero, u64 *phys) 6808 { 6809 int ret, partial = 0; 6810 loff_t start_byte = ((loff_t)page->index << PAGE_SHIFT) + from; 6811 loff_t length = to - from; 6812 6813 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0); 6814 if (ret) 6815 mlog_errno(ret); 6816 6817 if (zero) 6818 zero_user_segment(page, from, to); 6819 6820 /* 6821 * Need to set the buffers we zero'd into uptodate 6822 * here if they aren't - ocfs2_map_page_blocks() 6823 * might've skipped some 6824 */ 6825 ret = walk_page_buffers(handle, page_buffers(page), 6826 from, to, &partial, 6827 ocfs2_zero_func); 6828 if (ret < 0) 6829 mlog_errno(ret); 6830 else if (ocfs2_should_order_data(inode)) { 6831 ret = ocfs2_jbd2_inode_add_write(handle, inode, 6832 start_byte, length); 6833 if (ret < 0) 6834 mlog_errno(ret); 6835 } 6836 6837 if (!partial) 6838 SetPageUptodate(page); 6839 6840 flush_dcache_page(page); 6841 } 6842 6843 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start, 6844 loff_t end, struct page **pages, 6845 int numpages, u64 phys, handle_t *handle) 6846 { 6847 int i; 6848 struct page *page; 6849 unsigned int from, to = PAGE_SIZE; 6850 struct super_block *sb = inode->i_sb; 6851 6852 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb))); 6853 6854 if (numpages == 0) 6855 goto out; 6856 6857 to = PAGE_SIZE; 6858 for(i = 0; i < numpages; i++) { 6859 page = pages[i]; 6860 6861 from = start & (PAGE_SIZE - 1); 6862 if ((end >> PAGE_SHIFT) == page->index) 6863 to = end & (PAGE_SIZE - 1); 6864 6865 BUG_ON(from > PAGE_SIZE); 6866 BUG_ON(to > PAGE_SIZE); 6867 6868 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1, 6869 &phys); 6870 6871 start = (page->index + 1) << PAGE_SHIFT; 6872 } 6873 out: 6874 if (pages) 6875 ocfs2_unlock_and_free_pages(pages, numpages); 6876 } 6877 6878 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end, 6879 struct page **pages, int *num) 6880 { 6881 int numpages, ret = 0; 6882 struct address_space *mapping = inode->i_mapping; 6883 unsigned long index; 6884 loff_t last_page_bytes; 6885 6886 BUG_ON(start > end); 6887 6888 numpages = 0; 6889 last_page_bytes = PAGE_ALIGN(end); 6890 index = start >> PAGE_SHIFT; 6891 do { 6892 pages[numpages] = find_or_create_page(mapping, index, GFP_NOFS); 6893 if (!pages[numpages]) { 6894 ret = -ENOMEM; 6895 mlog_errno(ret); 6896 goto out; 6897 } 6898 6899 numpages++; 6900 index++; 6901 } while (index < (last_page_bytes >> PAGE_SHIFT)); 6902 6903 out: 6904 if (ret != 0) { 6905 if (pages) 6906 ocfs2_unlock_and_free_pages(pages, numpages); 6907 numpages = 0; 6908 } 6909 6910 *num = numpages; 6911 6912 return ret; 6913 } 6914 6915 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end, 6916 struct page **pages, int *num) 6917 { 6918 struct super_block *sb = inode->i_sb; 6919 6920 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits != 6921 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits); 6922 6923 return ocfs2_grab_pages(inode, start, end, pages, num); 6924 } 6925 6926 /* 6927 * Zero the area past i_size but still within an allocated 6928 * cluster. This avoids exposing nonzero data on subsequent file 6929 * extends. 6930 * 6931 * We need to call this before i_size is updated on the inode because 6932 * otherwise block_write_full_page() will skip writeout of pages past 6933 * i_size. The new_i_size parameter is passed for this reason. 6934 */ 6935 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle, 6936 u64 range_start, u64 range_end) 6937 { 6938 int ret = 0, numpages; 6939 struct page **pages = NULL; 6940 u64 phys; 6941 unsigned int ext_flags; 6942 struct super_block *sb = inode->i_sb; 6943 6944 /* 6945 * File systems which don't support sparse files zero on every 6946 * extend. 6947 */ 6948 if (!ocfs2_sparse_alloc(OCFS2_SB(sb))) 6949 return 0; 6950 6951 pages = kcalloc(ocfs2_pages_per_cluster(sb), 6952 sizeof(struct page *), GFP_NOFS); 6953 if (pages == NULL) { 6954 ret = -ENOMEM; 6955 mlog_errno(ret); 6956 goto out; 6957 } 6958 6959 if (range_start == range_end) 6960 goto out; 6961 6962 ret = ocfs2_extent_map_get_blocks(inode, 6963 range_start >> sb->s_blocksize_bits, 6964 &phys, NULL, &ext_flags); 6965 if (ret) { 6966 mlog_errno(ret); 6967 goto out; 6968 } 6969 6970 /* 6971 * Tail is a hole, or is marked unwritten. In either case, we 6972 * can count on read and write to return/push zero's. 6973 */ 6974 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN) 6975 goto out; 6976 6977 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages, 6978 &numpages); 6979 if (ret) { 6980 mlog_errno(ret); 6981 goto out; 6982 } 6983 6984 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages, 6985 numpages, phys, handle); 6986 6987 /* 6988 * Initiate writeout of the pages we zero'd here. We don't 6989 * wait on them - the truncate_inode_pages() call later will 6990 * do that for us. 6991 */ 6992 ret = filemap_fdatawrite_range(inode->i_mapping, range_start, 6993 range_end - 1); 6994 if (ret) 6995 mlog_errno(ret); 6996 6997 out: 6998 kfree(pages); 6999 7000 return ret; 7001 } 7002 7003 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode, 7004 struct ocfs2_dinode *di) 7005 { 7006 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits; 7007 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size); 7008 7009 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL) 7010 memset(&di->id2, 0, blocksize - 7011 offsetof(struct ocfs2_dinode, id2) - 7012 xattrsize); 7013 else 7014 memset(&di->id2, 0, blocksize - 7015 offsetof(struct ocfs2_dinode, id2)); 7016 } 7017 7018 void ocfs2_dinode_new_extent_list(struct inode *inode, 7019 struct ocfs2_dinode *di) 7020 { 7021 ocfs2_zero_dinode_id2_with_xattr(inode, di); 7022 di->id2.i_list.l_tree_depth = 0; 7023 di->id2.i_list.l_next_free_rec = 0; 7024 di->id2.i_list.l_count = cpu_to_le16( 7025 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di)); 7026 } 7027 7028 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di) 7029 { 7030 struct ocfs2_inode_info *oi = OCFS2_I(inode); 7031 struct ocfs2_inline_data *idata = &di->id2.i_data; 7032 7033 spin_lock(&oi->ip_lock); 7034 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL; 7035 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 7036 spin_unlock(&oi->ip_lock); 7037 7038 /* 7039 * We clear the entire i_data structure here so that all 7040 * fields can be properly initialized. 7041 */ 7042 ocfs2_zero_dinode_id2_with_xattr(inode, di); 7043 7044 idata->id_count = cpu_to_le16( 7045 ocfs2_max_inline_data_with_xattr(inode->i_sb, di)); 7046 } 7047 7048 int ocfs2_convert_inline_data_to_extents(struct inode *inode, 7049 struct buffer_head *di_bh) 7050 { 7051 int ret, i, has_data, num_pages = 0; 7052 int need_free = 0; 7053 u32 bit_off, num; 7054 handle_t *handle; 7055 u64 uninitialized_var(block); 7056 struct ocfs2_inode_info *oi = OCFS2_I(inode); 7057 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 7058 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7059 struct ocfs2_alloc_context *data_ac = NULL; 7060 struct page **pages = NULL; 7061 loff_t end = osb->s_clustersize; 7062 struct ocfs2_extent_tree et; 7063 int did_quota = 0; 7064 7065 has_data = i_size_read(inode) ? 1 : 0; 7066 7067 if (has_data) { 7068 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb), 7069 sizeof(struct page *), GFP_NOFS); 7070 if (pages == NULL) { 7071 ret = -ENOMEM; 7072 mlog_errno(ret); 7073 return ret; 7074 } 7075 7076 ret = ocfs2_reserve_clusters(osb, 1, &data_ac); 7077 if (ret) { 7078 mlog_errno(ret); 7079 goto free_pages; 7080 } 7081 } 7082 7083 handle = ocfs2_start_trans(osb, 7084 ocfs2_inline_to_extents_credits(osb->sb)); 7085 if (IS_ERR(handle)) { 7086 ret = PTR_ERR(handle); 7087 mlog_errno(ret); 7088 goto out; 7089 } 7090 7091 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 7092 OCFS2_JOURNAL_ACCESS_WRITE); 7093 if (ret) { 7094 mlog_errno(ret); 7095 goto out_commit; 7096 } 7097 7098 if (has_data) { 7099 unsigned int page_end; 7100 u64 phys; 7101 7102 ret = dquot_alloc_space_nodirty(inode, 7103 ocfs2_clusters_to_bytes(osb->sb, 1)); 7104 if (ret) 7105 goto out_commit; 7106 did_quota = 1; 7107 7108 data_ac->ac_resv = &oi->ip_la_data_resv; 7109 7110 ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off, 7111 &num); 7112 if (ret) { 7113 mlog_errno(ret); 7114 goto out_commit; 7115 } 7116 7117 /* 7118 * Save two copies, one for insert, and one that can 7119 * be changed by ocfs2_map_and_dirty_page() below. 7120 */ 7121 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off); 7122 7123 /* 7124 * Non sparse file systems zero on extend, so no need 7125 * to do that now. 7126 */ 7127 if (!ocfs2_sparse_alloc(osb) && 7128 PAGE_SIZE < osb->s_clustersize) 7129 end = PAGE_SIZE; 7130 7131 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages); 7132 if (ret) { 7133 mlog_errno(ret); 7134 need_free = 1; 7135 goto out_commit; 7136 } 7137 7138 /* 7139 * This should populate the 1st page for us and mark 7140 * it up to date. 7141 */ 7142 ret = ocfs2_read_inline_data(inode, pages[0], di_bh); 7143 if (ret) { 7144 mlog_errno(ret); 7145 need_free = 1; 7146 goto out_unlock; 7147 } 7148 7149 page_end = PAGE_SIZE; 7150 if (PAGE_SIZE > osb->s_clustersize) 7151 page_end = osb->s_clustersize; 7152 7153 for (i = 0; i < num_pages; i++) 7154 ocfs2_map_and_dirty_page(inode, handle, 0, page_end, 7155 pages[i], i > 0, &phys); 7156 } 7157 7158 spin_lock(&oi->ip_lock); 7159 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL; 7160 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 7161 spin_unlock(&oi->ip_lock); 7162 7163 ocfs2_update_inode_fsync_trans(handle, inode, 1); 7164 ocfs2_dinode_new_extent_list(inode, di); 7165 7166 ocfs2_journal_dirty(handle, di_bh); 7167 7168 if (has_data) { 7169 /* 7170 * An error at this point should be extremely rare. If 7171 * this proves to be false, we could always re-build 7172 * the in-inode data from our pages. 7173 */ 7174 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 7175 ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL); 7176 if (ret) { 7177 mlog_errno(ret); 7178 need_free = 1; 7179 goto out_unlock; 7180 } 7181 7182 inode->i_blocks = ocfs2_inode_sector_count(inode); 7183 } 7184 7185 out_unlock: 7186 if (pages) 7187 ocfs2_unlock_and_free_pages(pages, num_pages); 7188 7189 out_commit: 7190 if (ret < 0 && did_quota) 7191 dquot_free_space_nodirty(inode, 7192 ocfs2_clusters_to_bytes(osb->sb, 1)); 7193 7194 if (need_free) { 7195 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL) 7196 ocfs2_free_local_alloc_bits(osb, handle, data_ac, 7197 bit_off, num); 7198 else 7199 ocfs2_free_clusters(handle, 7200 data_ac->ac_inode, 7201 data_ac->ac_bh, 7202 ocfs2_clusters_to_blocks(osb->sb, bit_off), 7203 num); 7204 } 7205 7206 ocfs2_commit_trans(osb, handle); 7207 7208 out: 7209 if (data_ac) 7210 ocfs2_free_alloc_context(data_ac); 7211 free_pages: 7212 kfree(pages); 7213 return ret; 7214 } 7215 7216 /* 7217 * It is expected, that by the time you call this function, 7218 * inode->i_size and fe->i_size have been adjusted. 7219 * 7220 * WARNING: This will kfree the truncate context 7221 */ 7222 int ocfs2_commit_truncate(struct ocfs2_super *osb, 7223 struct inode *inode, 7224 struct buffer_head *di_bh) 7225 { 7226 int status = 0, i, flags = 0; 7227 u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff; 7228 u64 blkno = 0; 7229 struct ocfs2_extent_list *el; 7230 struct ocfs2_extent_rec *rec; 7231 struct ocfs2_path *path = NULL; 7232 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7233 struct ocfs2_extent_list *root_el = &(di->id2.i_list); 7234 u64 refcount_loc = le64_to_cpu(di->i_refcount_loc); 7235 struct ocfs2_extent_tree et; 7236 struct ocfs2_cached_dealloc_ctxt dealloc; 7237 struct ocfs2_refcount_tree *ref_tree = NULL; 7238 7239 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 7240 ocfs2_init_dealloc_ctxt(&dealloc); 7241 7242 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb, 7243 i_size_read(inode)); 7244 7245 path = ocfs2_new_path(di_bh, &di->id2.i_list, 7246 ocfs2_journal_access_di); 7247 if (!path) { 7248 status = -ENOMEM; 7249 mlog_errno(status); 7250 goto bail; 7251 } 7252 7253 ocfs2_extent_map_trunc(inode, new_highest_cpos); 7254 7255 start: 7256 /* 7257 * Check that we still have allocation to delete. 7258 */ 7259 if (OCFS2_I(inode)->ip_clusters == 0) { 7260 status = 0; 7261 goto bail; 7262 } 7263 7264 /* 7265 * Truncate always works against the rightmost tree branch. 7266 */ 7267 status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX); 7268 if (status) { 7269 mlog_errno(status); 7270 goto bail; 7271 } 7272 7273 trace_ocfs2_commit_truncate( 7274 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7275 new_highest_cpos, 7276 OCFS2_I(inode)->ip_clusters, 7277 path->p_tree_depth); 7278 7279 /* 7280 * By now, el will point to the extent list on the bottom most 7281 * portion of this tree. Only the tail record is considered in 7282 * each pass. 7283 * 7284 * We handle the following cases, in order: 7285 * - empty extent: delete the remaining branch 7286 * - remove the entire record 7287 * - remove a partial record 7288 * - no record needs to be removed (truncate has completed) 7289 */ 7290 el = path_leaf_el(path); 7291 if (le16_to_cpu(el->l_next_free_rec) == 0) { 7292 ocfs2_error(inode->i_sb, 7293 "Inode %llu has empty extent block at %llu\n", 7294 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7295 (unsigned long long)path_leaf_bh(path)->b_blocknr); 7296 status = -EROFS; 7297 goto bail; 7298 } 7299 7300 i = le16_to_cpu(el->l_next_free_rec) - 1; 7301 rec = &el->l_recs[i]; 7302 flags = rec->e_flags; 7303 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 7304 7305 if (i == 0 && ocfs2_is_empty_extent(rec)) { 7306 /* 7307 * Lower levels depend on this never happening, but it's best 7308 * to check it up here before changing the tree. 7309 */ 7310 if (root_el->l_tree_depth && rec->e_int_clusters == 0) { 7311 mlog(ML_ERROR, "Inode %lu has an empty " 7312 "extent record, depth %u\n", inode->i_ino, 7313 le16_to_cpu(root_el->l_tree_depth)); 7314 status = ocfs2_remove_rightmost_empty_extent(osb, 7315 &et, path, &dealloc); 7316 if (status) { 7317 mlog_errno(status); 7318 goto bail; 7319 } 7320 7321 ocfs2_reinit_path(path, 1); 7322 goto start; 7323 } else { 7324 trunc_cpos = le32_to_cpu(rec->e_cpos); 7325 trunc_len = 0; 7326 blkno = 0; 7327 } 7328 } else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) { 7329 /* 7330 * Truncate entire record. 7331 */ 7332 trunc_cpos = le32_to_cpu(rec->e_cpos); 7333 trunc_len = ocfs2_rec_clusters(el, rec); 7334 blkno = le64_to_cpu(rec->e_blkno); 7335 } else if (range > new_highest_cpos) { 7336 /* 7337 * Partial truncate. it also should be 7338 * the last truncate we're doing. 7339 */ 7340 trunc_cpos = new_highest_cpos; 7341 trunc_len = range - new_highest_cpos; 7342 coff = new_highest_cpos - le32_to_cpu(rec->e_cpos); 7343 blkno = le64_to_cpu(rec->e_blkno) + 7344 ocfs2_clusters_to_blocks(inode->i_sb, coff); 7345 } else { 7346 /* 7347 * Truncate completed, leave happily. 7348 */ 7349 status = 0; 7350 goto bail; 7351 } 7352 7353 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 7354 7355 if ((flags & OCFS2_EXT_REFCOUNTED) && trunc_len && !ref_tree) { 7356 status = ocfs2_lock_refcount_tree(osb, refcount_loc, 1, 7357 &ref_tree, NULL); 7358 if (status) { 7359 mlog_errno(status); 7360 goto bail; 7361 } 7362 } 7363 7364 status = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 7365 phys_cpos, trunc_len, flags, &dealloc, 7366 refcount_loc, true); 7367 if (status < 0) { 7368 mlog_errno(status); 7369 goto bail; 7370 } 7371 7372 ocfs2_reinit_path(path, 1); 7373 7374 /* 7375 * The check above will catch the case where we've truncated 7376 * away all allocation. 7377 */ 7378 goto start; 7379 7380 bail: 7381 if (ref_tree) 7382 ocfs2_unlock_refcount_tree(osb, ref_tree, 1); 7383 7384 ocfs2_schedule_truncate_log_flush(osb, 1); 7385 7386 ocfs2_run_deallocs(osb, &dealloc); 7387 7388 ocfs2_free_path(path); 7389 7390 return status; 7391 } 7392 7393 /* 7394 * 'start' is inclusive, 'end' is not. 7395 */ 7396 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh, 7397 unsigned int start, unsigned int end, int trunc) 7398 { 7399 int ret; 7400 unsigned int numbytes; 7401 handle_t *handle; 7402 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 7403 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7404 struct ocfs2_inline_data *idata = &di->id2.i_data; 7405 7406 if (end > i_size_read(inode)) 7407 end = i_size_read(inode); 7408 7409 BUG_ON(start > end); 7410 7411 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) || 7412 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) || 7413 !ocfs2_supports_inline_data(osb)) { 7414 ocfs2_error(inode->i_sb, 7415 "Inline data flags for inode %llu don't agree! Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n", 7416 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7417 le16_to_cpu(di->i_dyn_features), 7418 OCFS2_I(inode)->ip_dyn_features, 7419 osb->s_feature_incompat); 7420 ret = -EROFS; 7421 goto out; 7422 } 7423 7424 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 7425 if (IS_ERR(handle)) { 7426 ret = PTR_ERR(handle); 7427 mlog_errno(ret); 7428 goto out; 7429 } 7430 7431 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 7432 OCFS2_JOURNAL_ACCESS_WRITE); 7433 if (ret) { 7434 mlog_errno(ret); 7435 goto out_commit; 7436 } 7437 7438 numbytes = end - start; 7439 memset(idata->id_data + start, 0, numbytes); 7440 7441 /* 7442 * No need to worry about the data page here - it's been 7443 * truncated already and inline data doesn't need it for 7444 * pushing zero's to disk, so we'll let readpage pick it up 7445 * later. 7446 */ 7447 if (trunc) { 7448 i_size_write(inode, start); 7449 di->i_size = cpu_to_le64(start); 7450 } 7451 7452 inode->i_blocks = ocfs2_inode_sector_count(inode); 7453 inode->i_ctime = inode->i_mtime = current_time(inode); 7454 7455 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 7456 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 7457 7458 ocfs2_update_inode_fsync_trans(handle, inode, 1); 7459 ocfs2_journal_dirty(handle, di_bh); 7460 7461 out_commit: 7462 ocfs2_commit_trans(osb, handle); 7463 7464 out: 7465 return ret; 7466 } 7467 7468 static int ocfs2_trim_extent(struct super_block *sb, 7469 struct ocfs2_group_desc *gd, 7470 u64 group, u32 start, u32 count) 7471 { 7472 u64 discard, bcount; 7473 struct ocfs2_super *osb = OCFS2_SB(sb); 7474 7475 bcount = ocfs2_clusters_to_blocks(sb, count); 7476 discard = ocfs2_clusters_to_blocks(sb, start); 7477 7478 /* 7479 * For the first cluster group, the gd->bg_blkno is not at the start 7480 * of the group, but at an offset from the start. If we add it while 7481 * calculating discard for first group, we will wrongly start fstrim a 7482 * few blocks after the desried start block and the range can cross 7483 * over into the next cluster group. So, add it only if this is not 7484 * the first cluster group. 7485 */ 7486 if (group != osb->first_cluster_group_blkno) 7487 discard += le64_to_cpu(gd->bg_blkno); 7488 7489 trace_ocfs2_trim_extent(sb, (unsigned long long)discard, bcount); 7490 7491 return sb_issue_discard(sb, discard, bcount, GFP_NOFS, 0); 7492 } 7493 7494 static int ocfs2_trim_group(struct super_block *sb, 7495 struct ocfs2_group_desc *gd, u64 group, 7496 u32 start, u32 max, u32 minbits) 7497 { 7498 int ret = 0, count = 0, next; 7499 void *bitmap = gd->bg_bitmap; 7500 7501 if (le16_to_cpu(gd->bg_free_bits_count) < minbits) 7502 return 0; 7503 7504 trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd->bg_blkno), 7505 start, max, minbits); 7506 7507 while (start < max) { 7508 start = ocfs2_find_next_zero_bit(bitmap, max, start); 7509 if (start >= max) 7510 break; 7511 next = ocfs2_find_next_bit(bitmap, max, start); 7512 7513 if ((next - start) >= minbits) { 7514 ret = ocfs2_trim_extent(sb, gd, group, 7515 start, next - start); 7516 if (ret < 0) { 7517 mlog_errno(ret); 7518 break; 7519 } 7520 count += next - start; 7521 } 7522 start = next + 1; 7523 7524 if (fatal_signal_pending(current)) { 7525 count = -ERESTARTSYS; 7526 break; 7527 } 7528 7529 if ((le16_to_cpu(gd->bg_free_bits_count) - count) < minbits) 7530 break; 7531 } 7532 7533 if (ret < 0) 7534 count = ret; 7535 7536 return count; 7537 } 7538 7539 static 7540 int ocfs2_trim_mainbm(struct super_block *sb, struct fstrim_range *range) 7541 { 7542 struct ocfs2_super *osb = OCFS2_SB(sb); 7543 u64 start, len, trimmed = 0, first_group, last_group = 0, group = 0; 7544 int ret, cnt; 7545 u32 first_bit, last_bit, minlen; 7546 struct buffer_head *main_bm_bh = NULL; 7547 struct inode *main_bm_inode = NULL; 7548 struct buffer_head *gd_bh = NULL; 7549 struct ocfs2_dinode *main_bm; 7550 struct ocfs2_group_desc *gd = NULL; 7551 7552 start = range->start >> osb->s_clustersize_bits; 7553 len = range->len >> osb->s_clustersize_bits; 7554 minlen = range->minlen >> osb->s_clustersize_bits; 7555 7556 if (minlen >= osb->bitmap_cpg || range->len < sb->s_blocksize) 7557 return -EINVAL; 7558 7559 trace_ocfs2_trim_mainbm(start, len, minlen); 7560 7561 next_group: 7562 main_bm_inode = ocfs2_get_system_file_inode(osb, 7563 GLOBAL_BITMAP_SYSTEM_INODE, 7564 OCFS2_INVALID_SLOT); 7565 if (!main_bm_inode) { 7566 ret = -EIO; 7567 mlog_errno(ret); 7568 goto out; 7569 } 7570 7571 inode_lock(main_bm_inode); 7572 7573 ret = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 0); 7574 if (ret < 0) { 7575 mlog_errno(ret); 7576 goto out_mutex; 7577 } 7578 main_bm = (struct ocfs2_dinode *)main_bm_bh->b_data; 7579 7580 /* 7581 * Do some check before trim the first group. 7582 */ 7583 if (!group) { 7584 if (start >= le32_to_cpu(main_bm->i_clusters)) { 7585 ret = -EINVAL; 7586 goto out_unlock; 7587 } 7588 7589 if (start + len > le32_to_cpu(main_bm->i_clusters)) 7590 len = le32_to_cpu(main_bm->i_clusters) - start; 7591 7592 /* 7593 * Determine first and last group to examine based on 7594 * start and len 7595 */ 7596 first_group = ocfs2_which_cluster_group(main_bm_inode, start); 7597 if (first_group == osb->first_cluster_group_blkno) 7598 first_bit = start; 7599 else 7600 first_bit = start - ocfs2_blocks_to_clusters(sb, 7601 first_group); 7602 last_group = ocfs2_which_cluster_group(main_bm_inode, 7603 start + len - 1); 7604 group = first_group; 7605 } 7606 7607 do { 7608 if (first_bit + len >= osb->bitmap_cpg) 7609 last_bit = osb->bitmap_cpg; 7610 else 7611 last_bit = first_bit + len; 7612 7613 ret = ocfs2_read_group_descriptor(main_bm_inode, 7614 main_bm, group, 7615 &gd_bh); 7616 if (ret < 0) { 7617 mlog_errno(ret); 7618 break; 7619 } 7620 7621 gd = (struct ocfs2_group_desc *)gd_bh->b_data; 7622 cnt = ocfs2_trim_group(sb, gd, group, 7623 first_bit, last_bit, minlen); 7624 brelse(gd_bh); 7625 gd_bh = NULL; 7626 if (cnt < 0) { 7627 ret = cnt; 7628 mlog_errno(ret); 7629 break; 7630 } 7631 7632 trimmed += cnt; 7633 len -= osb->bitmap_cpg - first_bit; 7634 first_bit = 0; 7635 if (group == osb->first_cluster_group_blkno) 7636 group = ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg); 7637 else 7638 group += ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg); 7639 } while (0); 7640 7641 out_unlock: 7642 ocfs2_inode_unlock(main_bm_inode, 0); 7643 brelse(main_bm_bh); 7644 main_bm_bh = NULL; 7645 out_mutex: 7646 inode_unlock(main_bm_inode); 7647 iput(main_bm_inode); 7648 7649 /* 7650 * If all the groups trim are not done or failed, but we should release 7651 * main_bm related locks for avoiding the current IO starve, then go to 7652 * trim the next group 7653 */ 7654 if (ret >= 0 && group <= last_group) 7655 goto next_group; 7656 out: 7657 range->len = trimmed * sb->s_blocksize; 7658 return ret; 7659 } 7660 7661 int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range) 7662 { 7663 int ret; 7664 struct ocfs2_super *osb = OCFS2_SB(sb); 7665 struct ocfs2_trim_fs_info info, *pinfo = NULL; 7666 7667 ocfs2_trim_fs_lock_res_init(osb); 7668 7669 trace_ocfs2_trim_fs(range->start, range->len, range->minlen); 7670 7671 ret = ocfs2_trim_fs_lock(osb, NULL, 1); 7672 if (ret < 0) { 7673 if (ret != -EAGAIN) { 7674 mlog_errno(ret); 7675 ocfs2_trim_fs_lock_res_uninit(osb); 7676 return ret; 7677 } 7678 7679 mlog(ML_NOTICE, "Wait for trim on device (%s) to " 7680 "finish, which is running from another node.\n", 7681 osb->dev_str); 7682 ret = ocfs2_trim_fs_lock(osb, &info, 0); 7683 if (ret < 0) { 7684 mlog_errno(ret); 7685 ocfs2_trim_fs_lock_res_uninit(osb); 7686 return ret; 7687 } 7688 7689 if (info.tf_valid && info.tf_success && 7690 info.tf_start == range->start && 7691 info.tf_len == range->len && 7692 info.tf_minlen == range->minlen) { 7693 /* Avoid sending duplicated trim to a shared device */ 7694 mlog(ML_NOTICE, "The same trim on device (%s) was " 7695 "just done from node (%u), return.\n", 7696 osb->dev_str, info.tf_nodenum); 7697 range->len = info.tf_trimlen; 7698 goto out; 7699 } 7700 } 7701 7702 info.tf_nodenum = osb->node_num; 7703 info.tf_start = range->start; 7704 info.tf_len = range->len; 7705 info.tf_minlen = range->minlen; 7706 7707 ret = ocfs2_trim_mainbm(sb, range); 7708 7709 info.tf_trimlen = range->len; 7710 info.tf_success = (ret < 0 ? 0 : 1); 7711 pinfo = &info; 7712 out: 7713 ocfs2_trim_fs_unlock(osb, pinfo); 7714 ocfs2_trim_fs_lock_res_uninit(osb); 7715 return ret; 7716 } 7717