xref: /openbmc/linux/fs/ocfs2/alloc.c (revision 6a108a14)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32 
33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
34 #include <cluster/masklog.h>
35 
36 #include "ocfs2.h"
37 
38 #include "alloc.h"
39 #include "aops.h"
40 #include "blockcheck.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "localalloc.h"
46 #include "suballoc.h"
47 #include "sysfile.h"
48 #include "file.h"
49 #include "super.h"
50 #include "uptodate.h"
51 #include "xattr.h"
52 #include "refcounttree.h"
53 
54 #include "buffer_head_io.h"
55 
56 enum ocfs2_contig_type {
57 	CONTIG_NONE = 0,
58 	CONTIG_LEFT,
59 	CONTIG_RIGHT,
60 	CONTIG_LEFTRIGHT,
61 };
62 
63 static enum ocfs2_contig_type
64 	ocfs2_extent_rec_contig(struct super_block *sb,
65 				struct ocfs2_extent_rec *ext,
66 				struct ocfs2_extent_rec *insert_rec);
67 /*
68  * Operations for a specific extent tree type.
69  *
70  * To implement an on-disk btree (extent tree) type in ocfs2, add
71  * an ocfs2_extent_tree_operations structure and the matching
72  * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
73  * for the allocation portion of the extent tree.
74  */
75 struct ocfs2_extent_tree_operations {
76 	/*
77 	 * last_eb_blk is the block number of the right most leaf extent
78 	 * block.  Most on-disk structures containing an extent tree store
79 	 * this value for fast access.  The ->eo_set_last_eb_blk() and
80 	 * ->eo_get_last_eb_blk() operations access this value.  They are
81 	 *  both required.
82 	 */
83 	void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
84 				   u64 blkno);
85 	u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
86 
87 	/*
88 	 * The on-disk structure usually keeps track of how many total
89 	 * clusters are stored in this extent tree.  This function updates
90 	 * that value.  new_clusters is the delta, and must be
91 	 * added to the total.  Required.
92 	 */
93 	void (*eo_update_clusters)(struct ocfs2_extent_tree *et,
94 				   u32 new_clusters);
95 
96 	/*
97 	 * If this extent tree is supported by an extent map, insert
98 	 * a record into the map.
99 	 */
100 	void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et,
101 				     struct ocfs2_extent_rec *rec);
102 
103 	/*
104 	 * If this extent tree is supported by an extent map, truncate the
105 	 * map to clusters,
106 	 */
107 	void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et,
108 				       u32 clusters);
109 
110 	/*
111 	 * If ->eo_insert_check() exists, it is called before rec is
112 	 * inserted into the extent tree.  It is optional.
113 	 */
114 	int (*eo_insert_check)(struct ocfs2_extent_tree *et,
115 			       struct ocfs2_extent_rec *rec);
116 	int (*eo_sanity_check)(struct ocfs2_extent_tree *et);
117 
118 	/*
119 	 * --------------------------------------------------------------
120 	 * The remaining are internal to ocfs2_extent_tree and don't have
121 	 * accessor functions
122 	 */
123 
124 	/*
125 	 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
126 	 * It is required.
127 	 */
128 	void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
129 
130 	/*
131 	 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
132 	 * it exists.  If it does not, et->et_max_leaf_clusters is set
133 	 * to 0 (unlimited).  Optional.
134 	 */
135 	void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et);
136 
137 	/*
138 	 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec
139 	 * are contiguous or not. Optional. Don't need to set it if use
140 	 * ocfs2_extent_rec as the tree leaf.
141 	 */
142 	enum ocfs2_contig_type
143 		(*eo_extent_contig)(struct ocfs2_extent_tree *et,
144 				    struct ocfs2_extent_rec *ext,
145 				    struct ocfs2_extent_rec *insert_rec);
146 };
147 
148 
149 /*
150  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
151  * in the methods.
152  */
153 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
154 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
155 					 u64 blkno);
156 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
157 					 u32 clusters);
158 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
159 					   struct ocfs2_extent_rec *rec);
160 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
161 					     u32 clusters);
162 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
163 				     struct ocfs2_extent_rec *rec);
164 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et);
165 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
166 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
167 	.eo_set_last_eb_blk	= ocfs2_dinode_set_last_eb_blk,
168 	.eo_get_last_eb_blk	= ocfs2_dinode_get_last_eb_blk,
169 	.eo_update_clusters	= ocfs2_dinode_update_clusters,
170 	.eo_extent_map_insert	= ocfs2_dinode_extent_map_insert,
171 	.eo_extent_map_truncate	= ocfs2_dinode_extent_map_truncate,
172 	.eo_insert_check	= ocfs2_dinode_insert_check,
173 	.eo_sanity_check	= ocfs2_dinode_sanity_check,
174 	.eo_fill_root_el	= ocfs2_dinode_fill_root_el,
175 };
176 
177 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
178 					 u64 blkno)
179 {
180 	struct ocfs2_dinode *di = et->et_object;
181 
182 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
183 	di->i_last_eb_blk = cpu_to_le64(blkno);
184 }
185 
186 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
187 {
188 	struct ocfs2_dinode *di = et->et_object;
189 
190 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
191 	return le64_to_cpu(di->i_last_eb_blk);
192 }
193 
194 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
195 					 u32 clusters)
196 {
197 	struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
198 	struct ocfs2_dinode *di = et->et_object;
199 
200 	le32_add_cpu(&di->i_clusters, clusters);
201 	spin_lock(&oi->ip_lock);
202 	oi->ip_clusters = le32_to_cpu(di->i_clusters);
203 	spin_unlock(&oi->ip_lock);
204 }
205 
206 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
207 					   struct ocfs2_extent_rec *rec)
208 {
209 	struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
210 
211 	ocfs2_extent_map_insert_rec(inode, rec);
212 }
213 
214 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
215 					     u32 clusters)
216 {
217 	struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
218 
219 	ocfs2_extent_map_trunc(inode, clusters);
220 }
221 
222 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
223 				     struct ocfs2_extent_rec *rec)
224 {
225 	struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
226 	struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb);
227 
228 	BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL);
229 	mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
230 			(oi->ip_clusters != le32_to_cpu(rec->e_cpos)),
231 			"Device %s, asking for sparse allocation: inode %llu, "
232 			"cpos %u, clusters %u\n",
233 			osb->dev_str,
234 			(unsigned long long)oi->ip_blkno,
235 			rec->e_cpos, oi->ip_clusters);
236 
237 	return 0;
238 }
239 
240 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et)
241 {
242 	struct ocfs2_dinode *di = et->et_object;
243 
244 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
245 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
246 
247 	return 0;
248 }
249 
250 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
251 {
252 	struct ocfs2_dinode *di = et->et_object;
253 
254 	et->et_root_el = &di->id2.i_list;
255 }
256 
257 
258 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
259 {
260 	struct ocfs2_xattr_value_buf *vb = et->et_object;
261 
262 	et->et_root_el = &vb->vb_xv->xr_list;
263 }
264 
265 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
266 					      u64 blkno)
267 {
268 	struct ocfs2_xattr_value_buf *vb = et->et_object;
269 
270 	vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
271 }
272 
273 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
274 {
275 	struct ocfs2_xattr_value_buf *vb = et->et_object;
276 
277 	return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
278 }
279 
280 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et,
281 					      u32 clusters)
282 {
283 	struct ocfs2_xattr_value_buf *vb = et->et_object;
284 
285 	le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
286 }
287 
288 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
289 	.eo_set_last_eb_blk	= ocfs2_xattr_value_set_last_eb_blk,
290 	.eo_get_last_eb_blk	= ocfs2_xattr_value_get_last_eb_blk,
291 	.eo_update_clusters	= ocfs2_xattr_value_update_clusters,
292 	.eo_fill_root_el	= ocfs2_xattr_value_fill_root_el,
293 };
294 
295 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
296 {
297 	struct ocfs2_xattr_block *xb = et->et_object;
298 
299 	et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
300 }
301 
302 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et)
303 {
304 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
305 	et->et_max_leaf_clusters =
306 		ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
307 }
308 
309 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
310 					     u64 blkno)
311 {
312 	struct ocfs2_xattr_block *xb = et->et_object;
313 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
314 
315 	xt->xt_last_eb_blk = cpu_to_le64(blkno);
316 }
317 
318 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
319 {
320 	struct ocfs2_xattr_block *xb = et->et_object;
321 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
322 
323 	return le64_to_cpu(xt->xt_last_eb_blk);
324 }
325 
326 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et,
327 					     u32 clusters)
328 {
329 	struct ocfs2_xattr_block *xb = et->et_object;
330 
331 	le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
332 }
333 
334 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
335 	.eo_set_last_eb_blk	= ocfs2_xattr_tree_set_last_eb_blk,
336 	.eo_get_last_eb_blk	= ocfs2_xattr_tree_get_last_eb_blk,
337 	.eo_update_clusters	= ocfs2_xattr_tree_update_clusters,
338 	.eo_fill_root_el	= ocfs2_xattr_tree_fill_root_el,
339 	.eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
340 };
341 
342 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
343 					  u64 blkno)
344 {
345 	struct ocfs2_dx_root_block *dx_root = et->et_object;
346 
347 	dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
348 }
349 
350 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
351 {
352 	struct ocfs2_dx_root_block *dx_root = et->et_object;
353 
354 	return le64_to_cpu(dx_root->dr_last_eb_blk);
355 }
356 
357 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et,
358 					  u32 clusters)
359 {
360 	struct ocfs2_dx_root_block *dx_root = et->et_object;
361 
362 	le32_add_cpu(&dx_root->dr_clusters, clusters);
363 }
364 
365 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et)
366 {
367 	struct ocfs2_dx_root_block *dx_root = et->et_object;
368 
369 	BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
370 
371 	return 0;
372 }
373 
374 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
375 {
376 	struct ocfs2_dx_root_block *dx_root = et->et_object;
377 
378 	et->et_root_el = &dx_root->dr_list;
379 }
380 
381 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
382 	.eo_set_last_eb_blk	= ocfs2_dx_root_set_last_eb_blk,
383 	.eo_get_last_eb_blk	= ocfs2_dx_root_get_last_eb_blk,
384 	.eo_update_clusters	= ocfs2_dx_root_update_clusters,
385 	.eo_sanity_check	= ocfs2_dx_root_sanity_check,
386 	.eo_fill_root_el	= ocfs2_dx_root_fill_root_el,
387 };
388 
389 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et)
390 {
391 	struct ocfs2_refcount_block *rb = et->et_object;
392 
393 	et->et_root_el = &rb->rf_list;
394 }
395 
396 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
397 						u64 blkno)
398 {
399 	struct ocfs2_refcount_block *rb = et->et_object;
400 
401 	rb->rf_last_eb_blk = cpu_to_le64(blkno);
402 }
403 
404 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
405 {
406 	struct ocfs2_refcount_block *rb = et->et_object;
407 
408 	return le64_to_cpu(rb->rf_last_eb_blk);
409 }
410 
411 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et,
412 						u32 clusters)
413 {
414 	struct ocfs2_refcount_block *rb = et->et_object;
415 
416 	le32_add_cpu(&rb->rf_clusters, clusters);
417 }
418 
419 static enum ocfs2_contig_type
420 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et,
421 				  struct ocfs2_extent_rec *ext,
422 				  struct ocfs2_extent_rec *insert_rec)
423 {
424 	return CONTIG_NONE;
425 }
426 
427 static struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = {
428 	.eo_set_last_eb_blk	= ocfs2_refcount_tree_set_last_eb_blk,
429 	.eo_get_last_eb_blk	= ocfs2_refcount_tree_get_last_eb_blk,
430 	.eo_update_clusters	= ocfs2_refcount_tree_update_clusters,
431 	.eo_fill_root_el	= ocfs2_refcount_tree_fill_root_el,
432 	.eo_extent_contig	= ocfs2_refcount_tree_extent_contig,
433 };
434 
435 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
436 				     struct ocfs2_caching_info *ci,
437 				     struct buffer_head *bh,
438 				     ocfs2_journal_access_func access,
439 				     void *obj,
440 				     struct ocfs2_extent_tree_operations *ops)
441 {
442 	et->et_ops = ops;
443 	et->et_root_bh = bh;
444 	et->et_ci = ci;
445 	et->et_root_journal_access = access;
446 	if (!obj)
447 		obj = (void *)bh->b_data;
448 	et->et_object = obj;
449 
450 	et->et_ops->eo_fill_root_el(et);
451 	if (!et->et_ops->eo_fill_max_leaf_clusters)
452 		et->et_max_leaf_clusters = 0;
453 	else
454 		et->et_ops->eo_fill_max_leaf_clusters(et);
455 }
456 
457 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
458 				   struct ocfs2_caching_info *ci,
459 				   struct buffer_head *bh)
460 {
461 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di,
462 				 NULL, &ocfs2_dinode_et_ops);
463 }
464 
465 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
466 				       struct ocfs2_caching_info *ci,
467 				       struct buffer_head *bh)
468 {
469 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb,
470 				 NULL, &ocfs2_xattr_tree_et_ops);
471 }
472 
473 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
474 					struct ocfs2_caching_info *ci,
475 					struct ocfs2_xattr_value_buf *vb)
476 {
477 	__ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb,
478 				 &ocfs2_xattr_value_et_ops);
479 }
480 
481 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
482 				    struct ocfs2_caching_info *ci,
483 				    struct buffer_head *bh)
484 {
485 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr,
486 				 NULL, &ocfs2_dx_root_et_ops);
487 }
488 
489 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et,
490 				     struct ocfs2_caching_info *ci,
491 				     struct buffer_head *bh)
492 {
493 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb,
494 				 NULL, &ocfs2_refcount_tree_et_ops);
495 }
496 
497 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
498 					    u64 new_last_eb_blk)
499 {
500 	et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
501 }
502 
503 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
504 {
505 	return et->et_ops->eo_get_last_eb_blk(et);
506 }
507 
508 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et,
509 					    u32 clusters)
510 {
511 	et->et_ops->eo_update_clusters(et, clusters);
512 }
513 
514 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et,
515 					      struct ocfs2_extent_rec *rec)
516 {
517 	if (et->et_ops->eo_extent_map_insert)
518 		et->et_ops->eo_extent_map_insert(et, rec);
519 }
520 
521 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et,
522 						u32 clusters)
523 {
524 	if (et->et_ops->eo_extent_map_truncate)
525 		et->et_ops->eo_extent_map_truncate(et, clusters);
526 }
527 
528 static inline int ocfs2_et_root_journal_access(handle_t *handle,
529 					       struct ocfs2_extent_tree *et,
530 					       int type)
531 {
532 	return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh,
533 					  type);
534 }
535 
536 static inline enum ocfs2_contig_type
537 	ocfs2_et_extent_contig(struct ocfs2_extent_tree *et,
538 			       struct ocfs2_extent_rec *rec,
539 			       struct ocfs2_extent_rec *insert_rec)
540 {
541 	if (et->et_ops->eo_extent_contig)
542 		return et->et_ops->eo_extent_contig(et, rec, insert_rec);
543 
544 	return ocfs2_extent_rec_contig(
545 				ocfs2_metadata_cache_get_super(et->et_ci),
546 				rec, insert_rec);
547 }
548 
549 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et,
550 					struct ocfs2_extent_rec *rec)
551 {
552 	int ret = 0;
553 
554 	if (et->et_ops->eo_insert_check)
555 		ret = et->et_ops->eo_insert_check(et, rec);
556 	return ret;
557 }
558 
559 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et)
560 {
561 	int ret = 0;
562 
563 	if (et->et_ops->eo_sanity_check)
564 		ret = et->et_ops->eo_sanity_check(et);
565 	return ret;
566 }
567 
568 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
569 					 struct ocfs2_extent_block *eb);
570 static void ocfs2_adjust_rightmost_records(handle_t *handle,
571 					   struct ocfs2_extent_tree *et,
572 					   struct ocfs2_path *path,
573 					   struct ocfs2_extent_rec *insert_rec);
574 /*
575  * Reset the actual path elements so that we can re-use the structure
576  * to build another path. Generally, this involves freeing the buffer
577  * heads.
578  */
579 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
580 {
581 	int i, start = 0, depth = 0;
582 	struct ocfs2_path_item *node;
583 
584 	if (keep_root)
585 		start = 1;
586 
587 	for(i = start; i < path_num_items(path); i++) {
588 		node = &path->p_node[i];
589 
590 		brelse(node->bh);
591 		node->bh = NULL;
592 		node->el = NULL;
593 	}
594 
595 	/*
596 	 * Tree depth may change during truncate, or insert. If we're
597 	 * keeping the root extent list, then make sure that our path
598 	 * structure reflects the proper depth.
599 	 */
600 	if (keep_root)
601 		depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
602 	else
603 		path_root_access(path) = NULL;
604 
605 	path->p_tree_depth = depth;
606 }
607 
608 void ocfs2_free_path(struct ocfs2_path *path)
609 {
610 	if (path) {
611 		ocfs2_reinit_path(path, 0);
612 		kfree(path);
613 	}
614 }
615 
616 /*
617  * All the elements of src into dest. After this call, src could be freed
618  * without affecting dest.
619  *
620  * Both paths should have the same root. Any non-root elements of dest
621  * will be freed.
622  */
623 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
624 {
625 	int i;
626 
627 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
628 	BUG_ON(path_root_el(dest) != path_root_el(src));
629 	BUG_ON(path_root_access(dest) != path_root_access(src));
630 
631 	ocfs2_reinit_path(dest, 1);
632 
633 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
634 		dest->p_node[i].bh = src->p_node[i].bh;
635 		dest->p_node[i].el = src->p_node[i].el;
636 
637 		if (dest->p_node[i].bh)
638 			get_bh(dest->p_node[i].bh);
639 	}
640 }
641 
642 /*
643  * Make the *dest path the same as src and re-initialize src path to
644  * have a root only.
645  */
646 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
647 {
648 	int i;
649 
650 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
651 	BUG_ON(path_root_access(dest) != path_root_access(src));
652 
653 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
654 		brelse(dest->p_node[i].bh);
655 
656 		dest->p_node[i].bh = src->p_node[i].bh;
657 		dest->p_node[i].el = src->p_node[i].el;
658 
659 		src->p_node[i].bh = NULL;
660 		src->p_node[i].el = NULL;
661 	}
662 }
663 
664 /*
665  * Insert an extent block at given index.
666  *
667  * This will not take an additional reference on eb_bh.
668  */
669 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
670 					struct buffer_head *eb_bh)
671 {
672 	struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
673 
674 	/*
675 	 * Right now, no root bh is an extent block, so this helps
676 	 * catch code errors with dinode trees. The assertion can be
677 	 * safely removed if we ever need to insert extent block
678 	 * structures at the root.
679 	 */
680 	BUG_ON(index == 0);
681 
682 	path->p_node[index].bh = eb_bh;
683 	path->p_node[index].el = &eb->h_list;
684 }
685 
686 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
687 					 struct ocfs2_extent_list *root_el,
688 					 ocfs2_journal_access_func access)
689 {
690 	struct ocfs2_path *path;
691 
692 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
693 
694 	path = kzalloc(sizeof(*path), GFP_NOFS);
695 	if (path) {
696 		path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
697 		get_bh(root_bh);
698 		path_root_bh(path) = root_bh;
699 		path_root_el(path) = root_el;
700 		path_root_access(path) = access;
701 	}
702 
703 	return path;
704 }
705 
706 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
707 {
708 	return ocfs2_new_path(path_root_bh(path), path_root_el(path),
709 			      path_root_access(path));
710 }
711 
712 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
713 {
714 	return ocfs2_new_path(et->et_root_bh, et->et_root_el,
715 			      et->et_root_journal_access);
716 }
717 
718 /*
719  * Journal the buffer at depth idx.  All idx>0 are extent_blocks,
720  * otherwise it's the root_access function.
721  *
722  * I don't like the way this function's name looks next to
723  * ocfs2_journal_access_path(), but I don't have a better one.
724  */
725 int ocfs2_path_bh_journal_access(handle_t *handle,
726 				 struct ocfs2_caching_info *ci,
727 				 struct ocfs2_path *path,
728 				 int idx)
729 {
730 	ocfs2_journal_access_func access = path_root_access(path);
731 
732 	if (!access)
733 		access = ocfs2_journal_access;
734 
735 	if (idx)
736 		access = ocfs2_journal_access_eb;
737 
738 	return access(handle, ci, path->p_node[idx].bh,
739 		      OCFS2_JOURNAL_ACCESS_WRITE);
740 }
741 
742 /*
743  * Convenience function to journal all components in a path.
744  */
745 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci,
746 			      handle_t *handle,
747 			      struct ocfs2_path *path)
748 {
749 	int i, ret = 0;
750 
751 	if (!path)
752 		goto out;
753 
754 	for(i = 0; i < path_num_items(path); i++) {
755 		ret = ocfs2_path_bh_journal_access(handle, ci, path, i);
756 		if (ret < 0) {
757 			mlog_errno(ret);
758 			goto out;
759 		}
760 	}
761 
762 out:
763 	return ret;
764 }
765 
766 /*
767  * Return the index of the extent record which contains cluster #v_cluster.
768  * -1 is returned if it was not found.
769  *
770  * Should work fine on interior and exterior nodes.
771  */
772 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
773 {
774 	int ret = -1;
775 	int i;
776 	struct ocfs2_extent_rec *rec;
777 	u32 rec_end, rec_start, clusters;
778 
779 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
780 		rec = &el->l_recs[i];
781 
782 		rec_start = le32_to_cpu(rec->e_cpos);
783 		clusters = ocfs2_rec_clusters(el, rec);
784 
785 		rec_end = rec_start + clusters;
786 
787 		if (v_cluster >= rec_start && v_cluster < rec_end) {
788 			ret = i;
789 			break;
790 		}
791 	}
792 
793 	return ret;
794 }
795 
796 /*
797  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
798  * ocfs2_extent_rec_contig only work properly against leaf nodes!
799  */
800 static int ocfs2_block_extent_contig(struct super_block *sb,
801 				     struct ocfs2_extent_rec *ext,
802 				     u64 blkno)
803 {
804 	u64 blk_end = le64_to_cpu(ext->e_blkno);
805 
806 	blk_end += ocfs2_clusters_to_blocks(sb,
807 				    le16_to_cpu(ext->e_leaf_clusters));
808 
809 	return blkno == blk_end;
810 }
811 
812 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
813 				  struct ocfs2_extent_rec *right)
814 {
815 	u32 left_range;
816 
817 	left_range = le32_to_cpu(left->e_cpos) +
818 		le16_to_cpu(left->e_leaf_clusters);
819 
820 	return (left_range == le32_to_cpu(right->e_cpos));
821 }
822 
823 static enum ocfs2_contig_type
824 	ocfs2_extent_rec_contig(struct super_block *sb,
825 				struct ocfs2_extent_rec *ext,
826 				struct ocfs2_extent_rec *insert_rec)
827 {
828 	u64 blkno = le64_to_cpu(insert_rec->e_blkno);
829 
830 	/*
831 	 * Refuse to coalesce extent records with different flag
832 	 * fields - we don't want to mix unwritten extents with user
833 	 * data.
834 	 */
835 	if (ext->e_flags != insert_rec->e_flags)
836 		return CONTIG_NONE;
837 
838 	if (ocfs2_extents_adjacent(ext, insert_rec) &&
839 	    ocfs2_block_extent_contig(sb, ext, blkno))
840 			return CONTIG_RIGHT;
841 
842 	blkno = le64_to_cpu(ext->e_blkno);
843 	if (ocfs2_extents_adjacent(insert_rec, ext) &&
844 	    ocfs2_block_extent_contig(sb, insert_rec, blkno))
845 		return CONTIG_LEFT;
846 
847 	return CONTIG_NONE;
848 }
849 
850 /*
851  * NOTE: We can have pretty much any combination of contiguousness and
852  * appending.
853  *
854  * The usefulness of APPEND_TAIL is more in that it lets us know that
855  * we'll have to update the path to that leaf.
856  */
857 enum ocfs2_append_type {
858 	APPEND_NONE = 0,
859 	APPEND_TAIL,
860 };
861 
862 enum ocfs2_split_type {
863 	SPLIT_NONE = 0,
864 	SPLIT_LEFT,
865 	SPLIT_RIGHT,
866 };
867 
868 struct ocfs2_insert_type {
869 	enum ocfs2_split_type	ins_split;
870 	enum ocfs2_append_type	ins_appending;
871 	enum ocfs2_contig_type	ins_contig;
872 	int			ins_contig_index;
873 	int			ins_tree_depth;
874 };
875 
876 struct ocfs2_merge_ctxt {
877 	enum ocfs2_contig_type	c_contig_type;
878 	int			c_has_empty_extent;
879 	int			c_split_covers_rec;
880 };
881 
882 static int ocfs2_validate_extent_block(struct super_block *sb,
883 				       struct buffer_head *bh)
884 {
885 	int rc;
886 	struct ocfs2_extent_block *eb =
887 		(struct ocfs2_extent_block *)bh->b_data;
888 
889 	mlog(0, "Validating extent block %llu\n",
890 	     (unsigned long long)bh->b_blocknr);
891 
892 	BUG_ON(!buffer_uptodate(bh));
893 
894 	/*
895 	 * If the ecc fails, we return the error but otherwise
896 	 * leave the filesystem running.  We know any error is
897 	 * local to this block.
898 	 */
899 	rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
900 	if (rc) {
901 		mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
902 		     (unsigned long long)bh->b_blocknr);
903 		return rc;
904 	}
905 
906 	/*
907 	 * Errors after here are fatal.
908 	 */
909 
910 	if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
911 		ocfs2_error(sb,
912 			    "Extent block #%llu has bad signature %.*s",
913 			    (unsigned long long)bh->b_blocknr, 7,
914 			    eb->h_signature);
915 		return -EINVAL;
916 	}
917 
918 	if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
919 		ocfs2_error(sb,
920 			    "Extent block #%llu has an invalid h_blkno "
921 			    "of %llu",
922 			    (unsigned long long)bh->b_blocknr,
923 			    (unsigned long long)le64_to_cpu(eb->h_blkno));
924 		return -EINVAL;
925 	}
926 
927 	if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
928 		ocfs2_error(sb,
929 			    "Extent block #%llu has an invalid "
930 			    "h_fs_generation of #%u",
931 			    (unsigned long long)bh->b_blocknr,
932 			    le32_to_cpu(eb->h_fs_generation));
933 		return -EINVAL;
934 	}
935 
936 	return 0;
937 }
938 
939 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno,
940 			    struct buffer_head **bh)
941 {
942 	int rc;
943 	struct buffer_head *tmp = *bh;
944 
945 	rc = ocfs2_read_block(ci, eb_blkno, &tmp,
946 			      ocfs2_validate_extent_block);
947 
948 	/* If ocfs2_read_block() got us a new bh, pass it up. */
949 	if (!rc && !*bh)
950 		*bh = tmp;
951 
952 	return rc;
953 }
954 
955 
956 /*
957  * How many free extents have we got before we need more meta data?
958  */
959 int ocfs2_num_free_extents(struct ocfs2_super *osb,
960 			   struct ocfs2_extent_tree *et)
961 {
962 	int retval;
963 	struct ocfs2_extent_list *el = NULL;
964 	struct ocfs2_extent_block *eb;
965 	struct buffer_head *eb_bh = NULL;
966 	u64 last_eb_blk = 0;
967 
968 	mlog_entry_void();
969 
970 	el = et->et_root_el;
971 	last_eb_blk = ocfs2_et_get_last_eb_blk(et);
972 
973 	if (last_eb_blk) {
974 		retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk,
975 						 &eb_bh);
976 		if (retval < 0) {
977 			mlog_errno(retval);
978 			goto bail;
979 		}
980 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
981 		el = &eb->h_list;
982 	}
983 
984 	BUG_ON(el->l_tree_depth != 0);
985 
986 	retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
987 bail:
988 	brelse(eb_bh);
989 
990 	mlog_exit(retval);
991 	return retval;
992 }
993 
994 /* expects array to already be allocated
995  *
996  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
997  * l_count for you
998  */
999 static int ocfs2_create_new_meta_bhs(handle_t *handle,
1000 				     struct ocfs2_extent_tree *et,
1001 				     int wanted,
1002 				     struct ocfs2_alloc_context *meta_ac,
1003 				     struct buffer_head *bhs[])
1004 {
1005 	int count, status, i;
1006 	u16 suballoc_bit_start;
1007 	u32 num_got;
1008 	u64 suballoc_loc, first_blkno;
1009 	struct ocfs2_super *osb =
1010 		OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
1011 	struct ocfs2_extent_block *eb;
1012 
1013 	mlog_entry_void();
1014 
1015 	count = 0;
1016 	while (count < wanted) {
1017 		status = ocfs2_claim_metadata(handle,
1018 					      meta_ac,
1019 					      wanted - count,
1020 					      &suballoc_loc,
1021 					      &suballoc_bit_start,
1022 					      &num_got,
1023 					      &first_blkno);
1024 		if (status < 0) {
1025 			mlog_errno(status);
1026 			goto bail;
1027 		}
1028 
1029 		for(i = count;  i < (num_got + count); i++) {
1030 			bhs[i] = sb_getblk(osb->sb, first_blkno);
1031 			if (bhs[i] == NULL) {
1032 				status = -EIO;
1033 				mlog_errno(status);
1034 				goto bail;
1035 			}
1036 			ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]);
1037 
1038 			status = ocfs2_journal_access_eb(handle, et->et_ci,
1039 							 bhs[i],
1040 							 OCFS2_JOURNAL_ACCESS_CREATE);
1041 			if (status < 0) {
1042 				mlog_errno(status);
1043 				goto bail;
1044 			}
1045 
1046 			memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
1047 			eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
1048 			/* Ok, setup the minimal stuff here. */
1049 			strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
1050 			eb->h_blkno = cpu_to_le64(first_blkno);
1051 			eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
1052 			eb->h_suballoc_slot =
1053 				cpu_to_le16(meta_ac->ac_alloc_slot);
1054 			eb->h_suballoc_loc = cpu_to_le64(suballoc_loc);
1055 			eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
1056 			eb->h_list.l_count =
1057 				cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
1058 
1059 			suballoc_bit_start++;
1060 			first_blkno++;
1061 
1062 			/* We'll also be dirtied by the caller, so
1063 			 * this isn't absolutely necessary. */
1064 			ocfs2_journal_dirty(handle, bhs[i]);
1065 		}
1066 
1067 		count += num_got;
1068 	}
1069 
1070 	status = 0;
1071 bail:
1072 	if (status < 0) {
1073 		for(i = 0; i < wanted; i++) {
1074 			brelse(bhs[i]);
1075 			bhs[i] = NULL;
1076 		}
1077 	}
1078 	mlog_exit(status);
1079 	return status;
1080 }
1081 
1082 /*
1083  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1084  *
1085  * Returns the sum of the rightmost extent rec logical offset and
1086  * cluster count.
1087  *
1088  * ocfs2_add_branch() uses this to determine what logical cluster
1089  * value should be populated into the leftmost new branch records.
1090  *
1091  * ocfs2_shift_tree_depth() uses this to determine the # clusters
1092  * value for the new topmost tree record.
1093  */
1094 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
1095 {
1096 	int i;
1097 
1098 	i = le16_to_cpu(el->l_next_free_rec) - 1;
1099 
1100 	return le32_to_cpu(el->l_recs[i].e_cpos) +
1101 		ocfs2_rec_clusters(el, &el->l_recs[i]);
1102 }
1103 
1104 /*
1105  * Change range of the branches in the right most path according to the leaf
1106  * extent block's rightmost record.
1107  */
1108 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1109 					 struct ocfs2_extent_tree *et)
1110 {
1111 	int status;
1112 	struct ocfs2_path *path = NULL;
1113 	struct ocfs2_extent_list *el;
1114 	struct ocfs2_extent_rec *rec;
1115 
1116 	path = ocfs2_new_path_from_et(et);
1117 	if (!path) {
1118 		status = -ENOMEM;
1119 		return status;
1120 	}
1121 
1122 	status = ocfs2_find_path(et->et_ci, path, UINT_MAX);
1123 	if (status < 0) {
1124 		mlog_errno(status);
1125 		goto out;
1126 	}
1127 
1128 	status = ocfs2_extend_trans(handle, path_num_items(path));
1129 	if (status < 0) {
1130 		mlog_errno(status);
1131 		goto out;
1132 	}
1133 
1134 	status = ocfs2_journal_access_path(et->et_ci, handle, path);
1135 	if (status < 0) {
1136 		mlog_errno(status);
1137 		goto out;
1138 	}
1139 
1140 	el = path_leaf_el(path);
1141 	rec = &el->l_recs[le32_to_cpu(el->l_next_free_rec) - 1];
1142 
1143 	ocfs2_adjust_rightmost_records(handle, et, path, rec);
1144 
1145 out:
1146 	ocfs2_free_path(path);
1147 	return status;
1148 }
1149 
1150 /*
1151  * Add an entire tree branch to our inode. eb_bh is the extent block
1152  * to start at, if we don't want to start the branch at the root
1153  * structure.
1154  *
1155  * last_eb_bh is required as we have to update it's next_leaf pointer
1156  * for the new last extent block.
1157  *
1158  * the new branch will be 'empty' in the sense that every block will
1159  * contain a single record with cluster count == 0.
1160  */
1161 static int ocfs2_add_branch(handle_t *handle,
1162 			    struct ocfs2_extent_tree *et,
1163 			    struct buffer_head *eb_bh,
1164 			    struct buffer_head **last_eb_bh,
1165 			    struct ocfs2_alloc_context *meta_ac)
1166 {
1167 	int status, new_blocks, i;
1168 	u64 next_blkno, new_last_eb_blk;
1169 	struct buffer_head *bh;
1170 	struct buffer_head **new_eb_bhs = NULL;
1171 	struct ocfs2_extent_block *eb;
1172 	struct ocfs2_extent_list  *eb_el;
1173 	struct ocfs2_extent_list  *el;
1174 	u32 new_cpos, root_end;
1175 
1176 	mlog_entry_void();
1177 
1178 	BUG_ON(!last_eb_bh || !*last_eb_bh);
1179 
1180 	if (eb_bh) {
1181 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1182 		el = &eb->h_list;
1183 	} else
1184 		el = et->et_root_el;
1185 
1186 	/* we never add a branch to a leaf. */
1187 	BUG_ON(!el->l_tree_depth);
1188 
1189 	new_blocks = le16_to_cpu(el->l_tree_depth);
1190 
1191 	eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1192 	new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1193 	root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1194 
1195 	/*
1196 	 * If there is a gap before the root end and the real end
1197 	 * of the righmost leaf block, we need to remove the gap
1198 	 * between new_cpos and root_end first so that the tree
1199 	 * is consistent after we add a new branch(it will start
1200 	 * from new_cpos).
1201 	 */
1202 	if (root_end > new_cpos) {
1203 		mlog(0, "adjust the cluster end from %u to %u\n",
1204 		     root_end, new_cpos);
1205 		status = ocfs2_adjust_rightmost_branch(handle, et);
1206 		if (status) {
1207 			mlog_errno(status);
1208 			goto bail;
1209 		}
1210 	}
1211 
1212 	/* allocate the number of new eb blocks we need */
1213 	new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1214 			     GFP_KERNEL);
1215 	if (!new_eb_bhs) {
1216 		status = -ENOMEM;
1217 		mlog_errno(status);
1218 		goto bail;
1219 	}
1220 
1221 	status = ocfs2_create_new_meta_bhs(handle, et, new_blocks,
1222 					   meta_ac, new_eb_bhs);
1223 	if (status < 0) {
1224 		mlog_errno(status);
1225 		goto bail;
1226 	}
1227 
1228 	/* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1229 	 * linked with the rest of the tree.
1230 	 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1231 	 *
1232 	 * when we leave the loop, new_last_eb_blk will point to the
1233 	 * newest leaf, and next_blkno will point to the topmost extent
1234 	 * block. */
1235 	next_blkno = new_last_eb_blk = 0;
1236 	for(i = 0; i < new_blocks; i++) {
1237 		bh = new_eb_bhs[i];
1238 		eb = (struct ocfs2_extent_block *) bh->b_data;
1239 		/* ocfs2_create_new_meta_bhs() should create it right! */
1240 		BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1241 		eb_el = &eb->h_list;
1242 
1243 		status = ocfs2_journal_access_eb(handle, et->et_ci, bh,
1244 						 OCFS2_JOURNAL_ACCESS_CREATE);
1245 		if (status < 0) {
1246 			mlog_errno(status);
1247 			goto bail;
1248 		}
1249 
1250 		eb->h_next_leaf_blk = 0;
1251 		eb_el->l_tree_depth = cpu_to_le16(i);
1252 		eb_el->l_next_free_rec = cpu_to_le16(1);
1253 		/*
1254 		 * This actually counts as an empty extent as
1255 		 * c_clusters == 0
1256 		 */
1257 		eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1258 		eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1259 		/*
1260 		 * eb_el isn't always an interior node, but even leaf
1261 		 * nodes want a zero'd flags and reserved field so
1262 		 * this gets the whole 32 bits regardless of use.
1263 		 */
1264 		eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1265 		if (!eb_el->l_tree_depth)
1266 			new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1267 
1268 		ocfs2_journal_dirty(handle, bh);
1269 		next_blkno = le64_to_cpu(eb->h_blkno);
1270 	}
1271 
1272 	/* This is a bit hairy. We want to update up to three blocks
1273 	 * here without leaving any of them in an inconsistent state
1274 	 * in case of error. We don't have to worry about
1275 	 * journal_dirty erroring as it won't unless we've aborted the
1276 	 * handle (in which case we would never be here) so reserving
1277 	 * the write with journal_access is all we need to do. */
1278 	status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh,
1279 					 OCFS2_JOURNAL_ACCESS_WRITE);
1280 	if (status < 0) {
1281 		mlog_errno(status);
1282 		goto bail;
1283 	}
1284 	status = ocfs2_et_root_journal_access(handle, et,
1285 					      OCFS2_JOURNAL_ACCESS_WRITE);
1286 	if (status < 0) {
1287 		mlog_errno(status);
1288 		goto bail;
1289 	}
1290 	if (eb_bh) {
1291 		status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh,
1292 						 OCFS2_JOURNAL_ACCESS_WRITE);
1293 		if (status < 0) {
1294 			mlog_errno(status);
1295 			goto bail;
1296 		}
1297 	}
1298 
1299 	/* Link the new branch into the rest of the tree (el will
1300 	 * either be on the root_bh, or the extent block passed in. */
1301 	i = le16_to_cpu(el->l_next_free_rec);
1302 	el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1303 	el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1304 	el->l_recs[i].e_int_clusters = 0;
1305 	le16_add_cpu(&el->l_next_free_rec, 1);
1306 
1307 	/* fe needs a new last extent block pointer, as does the
1308 	 * next_leaf on the previously last-extent-block. */
1309 	ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1310 
1311 	eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1312 	eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1313 
1314 	ocfs2_journal_dirty(handle, *last_eb_bh);
1315 	ocfs2_journal_dirty(handle, et->et_root_bh);
1316 	if (eb_bh)
1317 		ocfs2_journal_dirty(handle, eb_bh);
1318 
1319 	/*
1320 	 * Some callers want to track the rightmost leaf so pass it
1321 	 * back here.
1322 	 */
1323 	brelse(*last_eb_bh);
1324 	get_bh(new_eb_bhs[0]);
1325 	*last_eb_bh = new_eb_bhs[0];
1326 
1327 	status = 0;
1328 bail:
1329 	if (new_eb_bhs) {
1330 		for (i = 0; i < new_blocks; i++)
1331 			brelse(new_eb_bhs[i]);
1332 		kfree(new_eb_bhs);
1333 	}
1334 
1335 	mlog_exit(status);
1336 	return status;
1337 }
1338 
1339 /*
1340  * adds another level to the allocation tree.
1341  * returns back the new extent block so you can add a branch to it
1342  * after this call.
1343  */
1344 static int ocfs2_shift_tree_depth(handle_t *handle,
1345 				  struct ocfs2_extent_tree *et,
1346 				  struct ocfs2_alloc_context *meta_ac,
1347 				  struct buffer_head **ret_new_eb_bh)
1348 {
1349 	int status, i;
1350 	u32 new_clusters;
1351 	struct buffer_head *new_eb_bh = NULL;
1352 	struct ocfs2_extent_block *eb;
1353 	struct ocfs2_extent_list  *root_el;
1354 	struct ocfs2_extent_list  *eb_el;
1355 
1356 	mlog_entry_void();
1357 
1358 	status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac,
1359 					   &new_eb_bh);
1360 	if (status < 0) {
1361 		mlog_errno(status);
1362 		goto bail;
1363 	}
1364 
1365 	eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1366 	/* ocfs2_create_new_meta_bhs() should create it right! */
1367 	BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1368 
1369 	eb_el = &eb->h_list;
1370 	root_el = et->et_root_el;
1371 
1372 	status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh,
1373 					 OCFS2_JOURNAL_ACCESS_CREATE);
1374 	if (status < 0) {
1375 		mlog_errno(status);
1376 		goto bail;
1377 	}
1378 
1379 	/* copy the root extent list data into the new extent block */
1380 	eb_el->l_tree_depth = root_el->l_tree_depth;
1381 	eb_el->l_next_free_rec = root_el->l_next_free_rec;
1382 	for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1383 		eb_el->l_recs[i] = root_el->l_recs[i];
1384 
1385 	ocfs2_journal_dirty(handle, new_eb_bh);
1386 
1387 	status = ocfs2_et_root_journal_access(handle, et,
1388 					      OCFS2_JOURNAL_ACCESS_WRITE);
1389 	if (status < 0) {
1390 		mlog_errno(status);
1391 		goto bail;
1392 	}
1393 
1394 	new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1395 
1396 	/* update root_bh now */
1397 	le16_add_cpu(&root_el->l_tree_depth, 1);
1398 	root_el->l_recs[0].e_cpos = 0;
1399 	root_el->l_recs[0].e_blkno = eb->h_blkno;
1400 	root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1401 	for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1402 		memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1403 	root_el->l_next_free_rec = cpu_to_le16(1);
1404 
1405 	/* If this is our 1st tree depth shift, then last_eb_blk
1406 	 * becomes the allocated extent block */
1407 	if (root_el->l_tree_depth == cpu_to_le16(1))
1408 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1409 
1410 	ocfs2_journal_dirty(handle, et->et_root_bh);
1411 
1412 	*ret_new_eb_bh = new_eb_bh;
1413 	new_eb_bh = NULL;
1414 	status = 0;
1415 bail:
1416 	brelse(new_eb_bh);
1417 
1418 	mlog_exit(status);
1419 	return status;
1420 }
1421 
1422 /*
1423  * Should only be called when there is no space left in any of the
1424  * leaf nodes. What we want to do is find the lowest tree depth
1425  * non-leaf extent block with room for new records. There are three
1426  * valid results of this search:
1427  *
1428  * 1) a lowest extent block is found, then we pass it back in
1429  *    *lowest_eb_bh and return '0'
1430  *
1431  * 2) the search fails to find anything, but the root_el has room. We
1432  *    pass NULL back in *lowest_eb_bh, but still return '0'
1433  *
1434  * 3) the search fails to find anything AND the root_el is full, in
1435  *    which case we return > 0
1436  *
1437  * return status < 0 indicates an error.
1438  */
1439 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et,
1440 				    struct buffer_head **target_bh)
1441 {
1442 	int status = 0, i;
1443 	u64 blkno;
1444 	struct ocfs2_extent_block *eb;
1445 	struct ocfs2_extent_list  *el;
1446 	struct buffer_head *bh = NULL;
1447 	struct buffer_head *lowest_bh = NULL;
1448 
1449 	mlog_entry_void();
1450 
1451 	*target_bh = NULL;
1452 
1453 	el = et->et_root_el;
1454 
1455 	while(le16_to_cpu(el->l_tree_depth) > 1) {
1456 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1457 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1458 				    "Owner %llu has empty "
1459 				    "extent list (next_free_rec == 0)",
1460 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
1461 			status = -EIO;
1462 			goto bail;
1463 		}
1464 		i = le16_to_cpu(el->l_next_free_rec) - 1;
1465 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1466 		if (!blkno) {
1467 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1468 				    "Owner %llu has extent "
1469 				    "list where extent # %d has no physical "
1470 				    "block start",
1471 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i);
1472 			status = -EIO;
1473 			goto bail;
1474 		}
1475 
1476 		brelse(bh);
1477 		bh = NULL;
1478 
1479 		status = ocfs2_read_extent_block(et->et_ci, blkno, &bh);
1480 		if (status < 0) {
1481 			mlog_errno(status);
1482 			goto bail;
1483 		}
1484 
1485 		eb = (struct ocfs2_extent_block *) bh->b_data;
1486 		el = &eb->h_list;
1487 
1488 		if (le16_to_cpu(el->l_next_free_rec) <
1489 		    le16_to_cpu(el->l_count)) {
1490 			brelse(lowest_bh);
1491 			lowest_bh = bh;
1492 			get_bh(lowest_bh);
1493 		}
1494 	}
1495 
1496 	/* If we didn't find one and the fe doesn't have any room,
1497 	 * then return '1' */
1498 	el = et->et_root_el;
1499 	if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1500 		status = 1;
1501 
1502 	*target_bh = lowest_bh;
1503 bail:
1504 	brelse(bh);
1505 
1506 	mlog_exit(status);
1507 	return status;
1508 }
1509 
1510 /*
1511  * Grow a b-tree so that it has more records.
1512  *
1513  * We might shift the tree depth in which case existing paths should
1514  * be considered invalid.
1515  *
1516  * Tree depth after the grow is returned via *final_depth.
1517  *
1518  * *last_eb_bh will be updated by ocfs2_add_branch().
1519  */
1520 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et,
1521 			   int *final_depth, struct buffer_head **last_eb_bh,
1522 			   struct ocfs2_alloc_context *meta_ac)
1523 {
1524 	int ret, shift;
1525 	struct ocfs2_extent_list *el = et->et_root_el;
1526 	int depth = le16_to_cpu(el->l_tree_depth);
1527 	struct buffer_head *bh = NULL;
1528 
1529 	BUG_ON(meta_ac == NULL);
1530 
1531 	shift = ocfs2_find_branch_target(et, &bh);
1532 	if (shift < 0) {
1533 		ret = shift;
1534 		mlog_errno(ret);
1535 		goto out;
1536 	}
1537 
1538 	/* We traveled all the way to the bottom of the allocation tree
1539 	 * and didn't find room for any more extents - we need to add
1540 	 * another tree level */
1541 	if (shift) {
1542 		BUG_ON(bh);
1543 		mlog(0, "need to shift tree depth (current = %d)\n", depth);
1544 
1545 		/* ocfs2_shift_tree_depth will return us a buffer with
1546 		 * the new extent block (so we can pass that to
1547 		 * ocfs2_add_branch). */
1548 		ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh);
1549 		if (ret < 0) {
1550 			mlog_errno(ret);
1551 			goto out;
1552 		}
1553 		depth++;
1554 		if (depth == 1) {
1555 			/*
1556 			 * Special case: we have room now if we shifted from
1557 			 * tree_depth 0, so no more work needs to be done.
1558 			 *
1559 			 * We won't be calling add_branch, so pass
1560 			 * back *last_eb_bh as the new leaf. At depth
1561 			 * zero, it should always be null so there's
1562 			 * no reason to brelse.
1563 			 */
1564 			BUG_ON(*last_eb_bh);
1565 			get_bh(bh);
1566 			*last_eb_bh = bh;
1567 			goto out;
1568 		}
1569 	}
1570 
1571 	/* call ocfs2_add_branch to add the final part of the tree with
1572 	 * the new data. */
1573 	mlog(0, "add branch. bh = %p\n", bh);
1574 	ret = ocfs2_add_branch(handle, et, bh, last_eb_bh,
1575 			       meta_ac);
1576 	if (ret < 0) {
1577 		mlog_errno(ret);
1578 		goto out;
1579 	}
1580 
1581 out:
1582 	if (final_depth)
1583 		*final_depth = depth;
1584 	brelse(bh);
1585 	return ret;
1586 }
1587 
1588 /*
1589  * This function will discard the rightmost extent record.
1590  */
1591 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1592 {
1593 	int next_free = le16_to_cpu(el->l_next_free_rec);
1594 	int count = le16_to_cpu(el->l_count);
1595 	unsigned int num_bytes;
1596 
1597 	BUG_ON(!next_free);
1598 	/* This will cause us to go off the end of our extent list. */
1599 	BUG_ON(next_free >= count);
1600 
1601 	num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1602 
1603 	memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1604 }
1605 
1606 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1607 			      struct ocfs2_extent_rec *insert_rec)
1608 {
1609 	int i, insert_index, next_free, has_empty, num_bytes;
1610 	u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1611 	struct ocfs2_extent_rec *rec;
1612 
1613 	next_free = le16_to_cpu(el->l_next_free_rec);
1614 	has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1615 
1616 	BUG_ON(!next_free);
1617 
1618 	/* The tree code before us didn't allow enough room in the leaf. */
1619 	BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1620 
1621 	/*
1622 	 * The easiest way to approach this is to just remove the
1623 	 * empty extent and temporarily decrement next_free.
1624 	 */
1625 	if (has_empty) {
1626 		/*
1627 		 * If next_free was 1 (only an empty extent), this
1628 		 * loop won't execute, which is fine. We still want
1629 		 * the decrement above to happen.
1630 		 */
1631 		for(i = 0; i < (next_free - 1); i++)
1632 			el->l_recs[i] = el->l_recs[i+1];
1633 
1634 		next_free--;
1635 	}
1636 
1637 	/*
1638 	 * Figure out what the new record index should be.
1639 	 */
1640 	for(i = 0; i < next_free; i++) {
1641 		rec = &el->l_recs[i];
1642 
1643 		if (insert_cpos < le32_to_cpu(rec->e_cpos))
1644 			break;
1645 	}
1646 	insert_index = i;
1647 
1648 	mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1649 	     insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1650 
1651 	BUG_ON(insert_index < 0);
1652 	BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1653 	BUG_ON(insert_index > next_free);
1654 
1655 	/*
1656 	 * No need to memmove if we're just adding to the tail.
1657 	 */
1658 	if (insert_index != next_free) {
1659 		BUG_ON(next_free >= le16_to_cpu(el->l_count));
1660 
1661 		num_bytes = next_free - insert_index;
1662 		num_bytes *= sizeof(struct ocfs2_extent_rec);
1663 		memmove(&el->l_recs[insert_index + 1],
1664 			&el->l_recs[insert_index],
1665 			num_bytes);
1666 	}
1667 
1668 	/*
1669 	 * Either we had an empty extent, and need to re-increment or
1670 	 * there was no empty extent on a non full rightmost leaf node,
1671 	 * in which case we still need to increment.
1672 	 */
1673 	next_free++;
1674 	el->l_next_free_rec = cpu_to_le16(next_free);
1675 	/*
1676 	 * Make sure none of the math above just messed up our tree.
1677 	 */
1678 	BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1679 
1680 	el->l_recs[insert_index] = *insert_rec;
1681 
1682 }
1683 
1684 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1685 {
1686 	int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1687 
1688 	BUG_ON(num_recs == 0);
1689 
1690 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1691 		num_recs--;
1692 		size = num_recs * sizeof(struct ocfs2_extent_rec);
1693 		memmove(&el->l_recs[0], &el->l_recs[1], size);
1694 		memset(&el->l_recs[num_recs], 0,
1695 		       sizeof(struct ocfs2_extent_rec));
1696 		el->l_next_free_rec = cpu_to_le16(num_recs);
1697 	}
1698 }
1699 
1700 /*
1701  * Create an empty extent record .
1702  *
1703  * l_next_free_rec may be updated.
1704  *
1705  * If an empty extent already exists do nothing.
1706  */
1707 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1708 {
1709 	int next_free = le16_to_cpu(el->l_next_free_rec);
1710 
1711 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1712 
1713 	if (next_free == 0)
1714 		goto set_and_inc;
1715 
1716 	if (ocfs2_is_empty_extent(&el->l_recs[0]))
1717 		return;
1718 
1719 	mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1720 			"Asked to create an empty extent in a full list:\n"
1721 			"count = %u, tree depth = %u",
1722 			le16_to_cpu(el->l_count),
1723 			le16_to_cpu(el->l_tree_depth));
1724 
1725 	ocfs2_shift_records_right(el);
1726 
1727 set_and_inc:
1728 	le16_add_cpu(&el->l_next_free_rec, 1);
1729 	memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1730 }
1731 
1732 /*
1733  * For a rotation which involves two leaf nodes, the "root node" is
1734  * the lowest level tree node which contains a path to both leafs. This
1735  * resulting set of information can be used to form a complete "subtree"
1736  *
1737  * This function is passed two full paths from the dinode down to a
1738  * pair of adjacent leaves. It's task is to figure out which path
1739  * index contains the subtree root - this can be the root index itself
1740  * in a worst-case rotation.
1741  *
1742  * The array index of the subtree root is passed back.
1743  */
1744 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et,
1745 			    struct ocfs2_path *left,
1746 			    struct ocfs2_path *right)
1747 {
1748 	int i = 0;
1749 
1750 	/*
1751 	 * Check that the caller passed in two paths from the same tree.
1752 	 */
1753 	BUG_ON(path_root_bh(left) != path_root_bh(right));
1754 
1755 	do {
1756 		i++;
1757 
1758 		/*
1759 		 * The caller didn't pass two adjacent paths.
1760 		 */
1761 		mlog_bug_on_msg(i > left->p_tree_depth,
1762 				"Owner %llu, left depth %u, right depth %u\n"
1763 				"left leaf blk %llu, right leaf blk %llu\n",
1764 				(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
1765 				left->p_tree_depth, right->p_tree_depth,
1766 				(unsigned long long)path_leaf_bh(left)->b_blocknr,
1767 				(unsigned long long)path_leaf_bh(right)->b_blocknr);
1768 	} while (left->p_node[i].bh->b_blocknr ==
1769 		 right->p_node[i].bh->b_blocknr);
1770 
1771 	return i - 1;
1772 }
1773 
1774 typedef void (path_insert_t)(void *, struct buffer_head *);
1775 
1776 /*
1777  * Traverse a btree path in search of cpos, starting at root_el.
1778  *
1779  * This code can be called with a cpos larger than the tree, in which
1780  * case it will return the rightmost path.
1781  */
1782 static int __ocfs2_find_path(struct ocfs2_caching_info *ci,
1783 			     struct ocfs2_extent_list *root_el, u32 cpos,
1784 			     path_insert_t *func, void *data)
1785 {
1786 	int i, ret = 0;
1787 	u32 range;
1788 	u64 blkno;
1789 	struct buffer_head *bh = NULL;
1790 	struct ocfs2_extent_block *eb;
1791 	struct ocfs2_extent_list *el;
1792 	struct ocfs2_extent_rec *rec;
1793 
1794 	el = root_el;
1795 	while (el->l_tree_depth) {
1796 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1797 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1798 				    "Owner %llu has empty extent list at "
1799 				    "depth %u\n",
1800 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1801 				    le16_to_cpu(el->l_tree_depth));
1802 			ret = -EROFS;
1803 			goto out;
1804 
1805 		}
1806 
1807 		for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1808 			rec = &el->l_recs[i];
1809 
1810 			/*
1811 			 * In the case that cpos is off the allocation
1812 			 * tree, this should just wind up returning the
1813 			 * rightmost record.
1814 			 */
1815 			range = le32_to_cpu(rec->e_cpos) +
1816 				ocfs2_rec_clusters(el, rec);
1817 			if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1818 			    break;
1819 		}
1820 
1821 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1822 		if (blkno == 0) {
1823 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1824 				    "Owner %llu has bad blkno in extent list "
1825 				    "at depth %u (index %d)\n",
1826 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1827 				    le16_to_cpu(el->l_tree_depth), i);
1828 			ret = -EROFS;
1829 			goto out;
1830 		}
1831 
1832 		brelse(bh);
1833 		bh = NULL;
1834 		ret = ocfs2_read_extent_block(ci, blkno, &bh);
1835 		if (ret) {
1836 			mlog_errno(ret);
1837 			goto out;
1838 		}
1839 
1840 		eb = (struct ocfs2_extent_block *) bh->b_data;
1841 		el = &eb->h_list;
1842 
1843 		if (le16_to_cpu(el->l_next_free_rec) >
1844 		    le16_to_cpu(el->l_count)) {
1845 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1846 				    "Owner %llu has bad count in extent list "
1847 				    "at block %llu (next free=%u, count=%u)\n",
1848 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1849 				    (unsigned long long)bh->b_blocknr,
1850 				    le16_to_cpu(el->l_next_free_rec),
1851 				    le16_to_cpu(el->l_count));
1852 			ret = -EROFS;
1853 			goto out;
1854 		}
1855 
1856 		if (func)
1857 			func(data, bh);
1858 	}
1859 
1860 out:
1861 	/*
1862 	 * Catch any trailing bh that the loop didn't handle.
1863 	 */
1864 	brelse(bh);
1865 
1866 	return ret;
1867 }
1868 
1869 /*
1870  * Given an initialized path (that is, it has a valid root extent
1871  * list), this function will traverse the btree in search of the path
1872  * which would contain cpos.
1873  *
1874  * The path traveled is recorded in the path structure.
1875  *
1876  * Note that this will not do any comparisons on leaf node extent
1877  * records, so it will work fine in the case that we just added a tree
1878  * branch.
1879  */
1880 struct find_path_data {
1881 	int index;
1882 	struct ocfs2_path *path;
1883 };
1884 static void find_path_ins(void *data, struct buffer_head *bh)
1885 {
1886 	struct find_path_data *fp = data;
1887 
1888 	get_bh(bh);
1889 	ocfs2_path_insert_eb(fp->path, fp->index, bh);
1890 	fp->index++;
1891 }
1892 int ocfs2_find_path(struct ocfs2_caching_info *ci,
1893 		    struct ocfs2_path *path, u32 cpos)
1894 {
1895 	struct find_path_data data;
1896 
1897 	data.index = 1;
1898 	data.path = path;
1899 	return __ocfs2_find_path(ci, path_root_el(path), cpos,
1900 				 find_path_ins, &data);
1901 }
1902 
1903 static void find_leaf_ins(void *data, struct buffer_head *bh)
1904 {
1905 	struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1906 	struct ocfs2_extent_list *el = &eb->h_list;
1907 	struct buffer_head **ret = data;
1908 
1909 	/* We want to retain only the leaf block. */
1910 	if (le16_to_cpu(el->l_tree_depth) == 0) {
1911 		get_bh(bh);
1912 		*ret = bh;
1913 	}
1914 }
1915 /*
1916  * Find the leaf block in the tree which would contain cpos. No
1917  * checking of the actual leaf is done.
1918  *
1919  * Some paths want to call this instead of allocating a path structure
1920  * and calling ocfs2_find_path().
1921  *
1922  * This function doesn't handle non btree extent lists.
1923  */
1924 int ocfs2_find_leaf(struct ocfs2_caching_info *ci,
1925 		    struct ocfs2_extent_list *root_el, u32 cpos,
1926 		    struct buffer_head **leaf_bh)
1927 {
1928 	int ret;
1929 	struct buffer_head *bh = NULL;
1930 
1931 	ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh);
1932 	if (ret) {
1933 		mlog_errno(ret);
1934 		goto out;
1935 	}
1936 
1937 	*leaf_bh = bh;
1938 out:
1939 	return ret;
1940 }
1941 
1942 /*
1943  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1944  *
1945  * Basically, we've moved stuff around at the bottom of the tree and
1946  * we need to fix up the extent records above the changes to reflect
1947  * the new changes.
1948  *
1949  * left_rec: the record on the left.
1950  * left_child_el: is the child list pointed to by left_rec
1951  * right_rec: the record to the right of left_rec
1952  * right_child_el: is the child list pointed to by right_rec
1953  *
1954  * By definition, this only works on interior nodes.
1955  */
1956 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1957 				  struct ocfs2_extent_list *left_child_el,
1958 				  struct ocfs2_extent_rec *right_rec,
1959 				  struct ocfs2_extent_list *right_child_el)
1960 {
1961 	u32 left_clusters, right_end;
1962 
1963 	/*
1964 	 * Interior nodes never have holes. Their cpos is the cpos of
1965 	 * the leftmost record in their child list. Their cluster
1966 	 * count covers the full theoretical range of their child list
1967 	 * - the range between their cpos and the cpos of the record
1968 	 * immediately to their right.
1969 	 */
1970 	left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1971 	if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1972 		BUG_ON(right_child_el->l_tree_depth);
1973 		BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1974 		left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1975 	}
1976 	left_clusters -= le32_to_cpu(left_rec->e_cpos);
1977 	left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1978 
1979 	/*
1980 	 * Calculate the rightmost cluster count boundary before
1981 	 * moving cpos - we will need to adjust clusters after
1982 	 * updating e_cpos to keep the same highest cluster count.
1983 	 */
1984 	right_end = le32_to_cpu(right_rec->e_cpos);
1985 	right_end += le32_to_cpu(right_rec->e_int_clusters);
1986 
1987 	right_rec->e_cpos = left_rec->e_cpos;
1988 	le32_add_cpu(&right_rec->e_cpos, left_clusters);
1989 
1990 	right_end -= le32_to_cpu(right_rec->e_cpos);
1991 	right_rec->e_int_clusters = cpu_to_le32(right_end);
1992 }
1993 
1994 /*
1995  * Adjust the adjacent root node records involved in a
1996  * rotation. left_el_blkno is passed in as a key so that we can easily
1997  * find it's index in the root list.
1998  */
1999 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
2000 				      struct ocfs2_extent_list *left_el,
2001 				      struct ocfs2_extent_list *right_el,
2002 				      u64 left_el_blkno)
2003 {
2004 	int i;
2005 
2006 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
2007 	       le16_to_cpu(left_el->l_tree_depth));
2008 
2009 	for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
2010 		if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
2011 			break;
2012 	}
2013 
2014 	/*
2015 	 * The path walking code should have never returned a root and
2016 	 * two paths which are not adjacent.
2017 	 */
2018 	BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
2019 
2020 	ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
2021 				      &root_el->l_recs[i + 1], right_el);
2022 }
2023 
2024 /*
2025  * We've changed a leaf block (in right_path) and need to reflect that
2026  * change back up the subtree.
2027  *
2028  * This happens in multiple places:
2029  *   - When we've moved an extent record from the left path leaf to the right
2030  *     path leaf to make room for an empty extent in the left path leaf.
2031  *   - When our insert into the right path leaf is at the leftmost edge
2032  *     and requires an update of the path immediately to it's left. This
2033  *     can occur at the end of some types of rotation and appending inserts.
2034  *   - When we've adjusted the last extent record in the left path leaf and the
2035  *     1st extent record in the right path leaf during cross extent block merge.
2036  */
2037 static void ocfs2_complete_edge_insert(handle_t *handle,
2038 				       struct ocfs2_path *left_path,
2039 				       struct ocfs2_path *right_path,
2040 				       int subtree_index)
2041 {
2042 	int i, idx;
2043 	struct ocfs2_extent_list *el, *left_el, *right_el;
2044 	struct ocfs2_extent_rec *left_rec, *right_rec;
2045 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2046 
2047 	/*
2048 	 * Update the counts and position values within all the
2049 	 * interior nodes to reflect the leaf rotation we just did.
2050 	 *
2051 	 * The root node is handled below the loop.
2052 	 *
2053 	 * We begin the loop with right_el and left_el pointing to the
2054 	 * leaf lists and work our way up.
2055 	 *
2056 	 * NOTE: within this loop, left_el and right_el always refer
2057 	 * to the *child* lists.
2058 	 */
2059 	left_el = path_leaf_el(left_path);
2060 	right_el = path_leaf_el(right_path);
2061 	for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
2062 		mlog(0, "Adjust records at index %u\n", i);
2063 
2064 		/*
2065 		 * One nice property of knowing that all of these
2066 		 * nodes are below the root is that we only deal with
2067 		 * the leftmost right node record and the rightmost
2068 		 * left node record.
2069 		 */
2070 		el = left_path->p_node[i].el;
2071 		idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2072 		left_rec = &el->l_recs[idx];
2073 
2074 		el = right_path->p_node[i].el;
2075 		right_rec = &el->l_recs[0];
2076 
2077 		ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
2078 					      right_el);
2079 
2080 		ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2081 		ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2082 
2083 		/*
2084 		 * Setup our list pointers now so that the current
2085 		 * parents become children in the next iteration.
2086 		 */
2087 		left_el = left_path->p_node[i].el;
2088 		right_el = right_path->p_node[i].el;
2089 	}
2090 
2091 	/*
2092 	 * At the root node, adjust the two adjacent records which
2093 	 * begin our path to the leaves.
2094 	 */
2095 
2096 	el = left_path->p_node[subtree_index].el;
2097 	left_el = left_path->p_node[subtree_index + 1].el;
2098 	right_el = right_path->p_node[subtree_index + 1].el;
2099 
2100 	ocfs2_adjust_root_records(el, left_el, right_el,
2101 				  left_path->p_node[subtree_index + 1].bh->b_blocknr);
2102 
2103 	root_bh = left_path->p_node[subtree_index].bh;
2104 
2105 	ocfs2_journal_dirty(handle, root_bh);
2106 }
2107 
2108 static int ocfs2_rotate_subtree_right(handle_t *handle,
2109 				      struct ocfs2_extent_tree *et,
2110 				      struct ocfs2_path *left_path,
2111 				      struct ocfs2_path *right_path,
2112 				      int subtree_index)
2113 {
2114 	int ret, i;
2115 	struct buffer_head *right_leaf_bh;
2116 	struct buffer_head *left_leaf_bh = NULL;
2117 	struct buffer_head *root_bh;
2118 	struct ocfs2_extent_list *right_el, *left_el;
2119 	struct ocfs2_extent_rec move_rec;
2120 
2121 	left_leaf_bh = path_leaf_bh(left_path);
2122 	left_el = path_leaf_el(left_path);
2123 
2124 	if (left_el->l_next_free_rec != left_el->l_count) {
2125 		ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
2126 			    "Inode %llu has non-full interior leaf node %llu"
2127 			    "(next free = %u)",
2128 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2129 			    (unsigned long long)left_leaf_bh->b_blocknr,
2130 			    le16_to_cpu(left_el->l_next_free_rec));
2131 		return -EROFS;
2132 	}
2133 
2134 	/*
2135 	 * This extent block may already have an empty record, so we
2136 	 * return early if so.
2137 	 */
2138 	if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2139 		return 0;
2140 
2141 	root_bh = left_path->p_node[subtree_index].bh;
2142 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2143 
2144 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2145 					   subtree_index);
2146 	if (ret) {
2147 		mlog_errno(ret);
2148 		goto out;
2149 	}
2150 
2151 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2152 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2153 						   right_path, i);
2154 		if (ret) {
2155 			mlog_errno(ret);
2156 			goto out;
2157 		}
2158 
2159 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2160 						   left_path, i);
2161 		if (ret) {
2162 			mlog_errno(ret);
2163 			goto out;
2164 		}
2165 	}
2166 
2167 	right_leaf_bh = path_leaf_bh(right_path);
2168 	right_el = path_leaf_el(right_path);
2169 
2170 	/* This is a code error, not a disk corruption. */
2171 	mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2172 			"because rightmost leaf block %llu is empty\n",
2173 			(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2174 			(unsigned long long)right_leaf_bh->b_blocknr);
2175 
2176 	ocfs2_create_empty_extent(right_el);
2177 
2178 	ocfs2_journal_dirty(handle, right_leaf_bh);
2179 
2180 	/* Do the copy now. */
2181 	i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2182 	move_rec = left_el->l_recs[i];
2183 	right_el->l_recs[0] = move_rec;
2184 
2185 	/*
2186 	 * Clear out the record we just copied and shift everything
2187 	 * over, leaving an empty extent in the left leaf.
2188 	 *
2189 	 * We temporarily subtract from next_free_rec so that the
2190 	 * shift will lose the tail record (which is now defunct).
2191 	 */
2192 	le16_add_cpu(&left_el->l_next_free_rec, -1);
2193 	ocfs2_shift_records_right(left_el);
2194 	memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2195 	le16_add_cpu(&left_el->l_next_free_rec, 1);
2196 
2197 	ocfs2_journal_dirty(handle, left_leaf_bh);
2198 
2199 	ocfs2_complete_edge_insert(handle, left_path, right_path,
2200 				   subtree_index);
2201 
2202 out:
2203 	return ret;
2204 }
2205 
2206 /*
2207  * Given a full path, determine what cpos value would return us a path
2208  * containing the leaf immediately to the left of the current one.
2209  *
2210  * Will return zero if the path passed in is already the leftmost path.
2211  */
2212 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2213 				  struct ocfs2_path *path, u32 *cpos)
2214 {
2215 	int i, j, ret = 0;
2216 	u64 blkno;
2217 	struct ocfs2_extent_list *el;
2218 
2219 	BUG_ON(path->p_tree_depth == 0);
2220 
2221 	*cpos = 0;
2222 
2223 	blkno = path_leaf_bh(path)->b_blocknr;
2224 
2225 	/* Start at the tree node just above the leaf and work our way up. */
2226 	i = path->p_tree_depth - 1;
2227 	while (i >= 0) {
2228 		el = path->p_node[i].el;
2229 
2230 		/*
2231 		 * Find the extent record just before the one in our
2232 		 * path.
2233 		 */
2234 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2235 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2236 				if (j == 0) {
2237 					if (i == 0) {
2238 						/*
2239 						 * We've determined that the
2240 						 * path specified is already
2241 						 * the leftmost one - return a
2242 						 * cpos of zero.
2243 						 */
2244 						goto out;
2245 					}
2246 					/*
2247 					 * The leftmost record points to our
2248 					 * leaf - we need to travel up the
2249 					 * tree one level.
2250 					 */
2251 					goto next_node;
2252 				}
2253 
2254 				*cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2255 				*cpos = *cpos + ocfs2_rec_clusters(el,
2256 							   &el->l_recs[j - 1]);
2257 				*cpos = *cpos - 1;
2258 				goto out;
2259 			}
2260 		}
2261 
2262 		/*
2263 		 * If we got here, we never found a valid node where
2264 		 * the tree indicated one should be.
2265 		 */
2266 		ocfs2_error(sb,
2267 			    "Invalid extent tree at extent block %llu\n",
2268 			    (unsigned long long)blkno);
2269 		ret = -EROFS;
2270 		goto out;
2271 
2272 next_node:
2273 		blkno = path->p_node[i].bh->b_blocknr;
2274 		i--;
2275 	}
2276 
2277 out:
2278 	return ret;
2279 }
2280 
2281 /*
2282  * Extend the transaction by enough credits to complete the rotation,
2283  * and still leave at least the original number of credits allocated
2284  * to this transaction.
2285  */
2286 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2287 					   int op_credits,
2288 					   struct ocfs2_path *path)
2289 {
2290 	int ret = 0;
2291 	int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2292 
2293 	if (handle->h_buffer_credits < credits)
2294 		ret = ocfs2_extend_trans(handle,
2295 					 credits - handle->h_buffer_credits);
2296 
2297 	return ret;
2298 }
2299 
2300 /*
2301  * Trap the case where we're inserting into the theoretical range past
2302  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2303  * whose cpos is less than ours into the right leaf.
2304  *
2305  * It's only necessary to look at the rightmost record of the left
2306  * leaf because the logic that calls us should ensure that the
2307  * theoretical ranges in the path components above the leaves are
2308  * correct.
2309  */
2310 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2311 						 u32 insert_cpos)
2312 {
2313 	struct ocfs2_extent_list *left_el;
2314 	struct ocfs2_extent_rec *rec;
2315 	int next_free;
2316 
2317 	left_el = path_leaf_el(left_path);
2318 	next_free = le16_to_cpu(left_el->l_next_free_rec);
2319 	rec = &left_el->l_recs[next_free - 1];
2320 
2321 	if (insert_cpos > le32_to_cpu(rec->e_cpos))
2322 		return 1;
2323 	return 0;
2324 }
2325 
2326 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2327 {
2328 	int next_free = le16_to_cpu(el->l_next_free_rec);
2329 	unsigned int range;
2330 	struct ocfs2_extent_rec *rec;
2331 
2332 	if (next_free == 0)
2333 		return 0;
2334 
2335 	rec = &el->l_recs[0];
2336 	if (ocfs2_is_empty_extent(rec)) {
2337 		/* Empty list. */
2338 		if (next_free == 1)
2339 			return 0;
2340 		rec = &el->l_recs[1];
2341 	}
2342 
2343 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2344 	if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2345 		return 1;
2346 	return 0;
2347 }
2348 
2349 /*
2350  * Rotate all the records in a btree right one record, starting at insert_cpos.
2351  *
2352  * The path to the rightmost leaf should be passed in.
2353  *
2354  * The array is assumed to be large enough to hold an entire path (tree depth).
2355  *
2356  * Upon successful return from this function:
2357  *
2358  * - The 'right_path' array will contain a path to the leaf block
2359  *   whose range contains e_cpos.
2360  * - That leaf block will have a single empty extent in list index 0.
2361  * - In the case that the rotation requires a post-insert update,
2362  *   *ret_left_path will contain a valid path which can be passed to
2363  *   ocfs2_insert_path().
2364  */
2365 static int ocfs2_rotate_tree_right(handle_t *handle,
2366 				   struct ocfs2_extent_tree *et,
2367 				   enum ocfs2_split_type split,
2368 				   u32 insert_cpos,
2369 				   struct ocfs2_path *right_path,
2370 				   struct ocfs2_path **ret_left_path)
2371 {
2372 	int ret, start, orig_credits = handle->h_buffer_credits;
2373 	u32 cpos;
2374 	struct ocfs2_path *left_path = NULL;
2375 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2376 
2377 	*ret_left_path = NULL;
2378 
2379 	left_path = ocfs2_new_path_from_path(right_path);
2380 	if (!left_path) {
2381 		ret = -ENOMEM;
2382 		mlog_errno(ret);
2383 		goto out;
2384 	}
2385 
2386 	ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2387 	if (ret) {
2388 		mlog_errno(ret);
2389 		goto out;
2390 	}
2391 
2392 	mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
2393 
2394 	/*
2395 	 * What we want to do here is:
2396 	 *
2397 	 * 1) Start with the rightmost path.
2398 	 *
2399 	 * 2) Determine a path to the leaf block directly to the left
2400 	 *    of that leaf.
2401 	 *
2402 	 * 3) Determine the 'subtree root' - the lowest level tree node
2403 	 *    which contains a path to both leaves.
2404 	 *
2405 	 * 4) Rotate the subtree.
2406 	 *
2407 	 * 5) Find the next subtree by considering the left path to be
2408 	 *    the new right path.
2409 	 *
2410 	 * The check at the top of this while loop also accepts
2411 	 * insert_cpos == cpos because cpos is only a _theoretical_
2412 	 * value to get us the left path - insert_cpos might very well
2413 	 * be filling that hole.
2414 	 *
2415 	 * Stop at a cpos of '0' because we either started at the
2416 	 * leftmost branch (i.e., a tree with one branch and a
2417 	 * rotation inside of it), or we've gone as far as we can in
2418 	 * rotating subtrees.
2419 	 */
2420 	while (cpos && insert_cpos <= cpos) {
2421 		mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2422 		     insert_cpos, cpos);
2423 
2424 		ret = ocfs2_find_path(et->et_ci, left_path, cpos);
2425 		if (ret) {
2426 			mlog_errno(ret);
2427 			goto out;
2428 		}
2429 
2430 		mlog_bug_on_msg(path_leaf_bh(left_path) ==
2431 				path_leaf_bh(right_path),
2432 				"Owner %llu: error during insert of %u "
2433 				"(left path cpos %u) results in two identical "
2434 				"paths ending at %llu\n",
2435 				(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2436 				insert_cpos, cpos,
2437 				(unsigned long long)
2438 				path_leaf_bh(left_path)->b_blocknr);
2439 
2440 		if (split == SPLIT_NONE &&
2441 		    ocfs2_rotate_requires_path_adjustment(left_path,
2442 							  insert_cpos)) {
2443 
2444 			/*
2445 			 * We've rotated the tree as much as we
2446 			 * should. The rest is up to
2447 			 * ocfs2_insert_path() to complete, after the
2448 			 * record insertion. We indicate this
2449 			 * situation by returning the left path.
2450 			 *
2451 			 * The reason we don't adjust the records here
2452 			 * before the record insert is that an error
2453 			 * later might break the rule where a parent
2454 			 * record e_cpos will reflect the actual
2455 			 * e_cpos of the 1st nonempty record of the
2456 			 * child list.
2457 			 */
2458 			*ret_left_path = left_path;
2459 			goto out_ret_path;
2460 		}
2461 
2462 		start = ocfs2_find_subtree_root(et, left_path, right_path);
2463 
2464 		mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2465 		     start,
2466 		     (unsigned long long) right_path->p_node[start].bh->b_blocknr,
2467 		     right_path->p_tree_depth);
2468 
2469 		ret = ocfs2_extend_rotate_transaction(handle, start,
2470 						      orig_credits, right_path);
2471 		if (ret) {
2472 			mlog_errno(ret);
2473 			goto out;
2474 		}
2475 
2476 		ret = ocfs2_rotate_subtree_right(handle, et, left_path,
2477 						 right_path, start);
2478 		if (ret) {
2479 			mlog_errno(ret);
2480 			goto out;
2481 		}
2482 
2483 		if (split != SPLIT_NONE &&
2484 		    ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2485 						insert_cpos)) {
2486 			/*
2487 			 * A rotate moves the rightmost left leaf
2488 			 * record over to the leftmost right leaf
2489 			 * slot. If we're doing an extent split
2490 			 * instead of a real insert, then we have to
2491 			 * check that the extent to be split wasn't
2492 			 * just moved over. If it was, then we can
2493 			 * exit here, passing left_path back -
2494 			 * ocfs2_split_extent() is smart enough to
2495 			 * search both leaves.
2496 			 */
2497 			*ret_left_path = left_path;
2498 			goto out_ret_path;
2499 		}
2500 
2501 		/*
2502 		 * There is no need to re-read the next right path
2503 		 * as we know that it'll be our current left
2504 		 * path. Optimize by copying values instead.
2505 		 */
2506 		ocfs2_mv_path(right_path, left_path);
2507 
2508 		ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2509 		if (ret) {
2510 			mlog_errno(ret);
2511 			goto out;
2512 		}
2513 	}
2514 
2515 out:
2516 	ocfs2_free_path(left_path);
2517 
2518 out_ret_path:
2519 	return ret;
2520 }
2521 
2522 static int ocfs2_update_edge_lengths(handle_t *handle,
2523 				     struct ocfs2_extent_tree *et,
2524 				     int subtree_index, struct ocfs2_path *path)
2525 {
2526 	int i, idx, ret;
2527 	struct ocfs2_extent_rec *rec;
2528 	struct ocfs2_extent_list *el;
2529 	struct ocfs2_extent_block *eb;
2530 	u32 range;
2531 
2532 	/*
2533 	 * In normal tree rotation process, we will never touch the
2534 	 * tree branch above subtree_index and ocfs2_extend_rotate_transaction
2535 	 * doesn't reserve the credits for them either.
2536 	 *
2537 	 * But we do have a special case here which will update the rightmost
2538 	 * records for all the bh in the path.
2539 	 * So we have to allocate extra credits and access them.
2540 	 */
2541 	ret = ocfs2_extend_trans(handle, subtree_index);
2542 	if (ret) {
2543 		mlog_errno(ret);
2544 		goto out;
2545 	}
2546 
2547 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
2548 	if (ret) {
2549 		mlog_errno(ret);
2550 		goto out;
2551 	}
2552 
2553 	/* Path should always be rightmost. */
2554 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2555 	BUG_ON(eb->h_next_leaf_blk != 0ULL);
2556 
2557 	el = &eb->h_list;
2558 	BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2559 	idx = le16_to_cpu(el->l_next_free_rec) - 1;
2560 	rec = &el->l_recs[idx];
2561 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2562 
2563 	for (i = 0; i < path->p_tree_depth; i++) {
2564 		el = path->p_node[i].el;
2565 		idx = le16_to_cpu(el->l_next_free_rec) - 1;
2566 		rec = &el->l_recs[idx];
2567 
2568 		rec->e_int_clusters = cpu_to_le32(range);
2569 		le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2570 
2571 		ocfs2_journal_dirty(handle, path->p_node[i].bh);
2572 	}
2573 out:
2574 	return ret;
2575 }
2576 
2577 static void ocfs2_unlink_path(handle_t *handle,
2578 			      struct ocfs2_extent_tree *et,
2579 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
2580 			      struct ocfs2_path *path, int unlink_start)
2581 {
2582 	int ret, i;
2583 	struct ocfs2_extent_block *eb;
2584 	struct ocfs2_extent_list *el;
2585 	struct buffer_head *bh;
2586 
2587 	for(i = unlink_start; i < path_num_items(path); i++) {
2588 		bh = path->p_node[i].bh;
2589 
2590 		eb = (struct ocfs2_extent_block *)bh->b_data;
2591 		/*
2592 		 * Not all nodes might have had their final count
2593 		 * decremented by the caller - handle this here.
2594 		 */
2595 		el = &eb->h_list;
2596 		if (le16_to_cpu(el->l_next_free_rec) > 1) {
2597 			mlog(ML_ERROR,
2598 			     "Inode %llu, attempted to remove extent block "
2599 			     "%llu with %u records\n",
2600 			     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2601 			     (unsigned long long)le64_to_cpu(eb->h_blkno),
2602 			     le16_to_cpu(el->l_next_free_rec));
2603 
2604 			ocfs2_journal_dirty(handle, bh);
2605 			ocfs2_remove_from_cache(et->et_ci, bh);
2606 			continue;
2607 		}
2608 
2609 		el->l_next_free_rec = 0;
2610 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2611 
2612 		ocfs2_journal_dirty(handle, bh);
2613 
2614 		ret = ocfs2_cache_extent_block_free(dealloc, eb);
2615 		if (ret)
2616 			mlog_errno(ret);
2617 
2618 		ocfs2_remove_from_cache(et->et_ci, bh);
2619 	}
2620 }
2621 
2622 static void ocfs2_unlink_subtree(handle_t *handle,
2623 				 struct ocfs2_extent_tree *et,
2624 				 struct ocfs2_path *left_path,
2625 				 struct ocfs2_path *right_path,
2626 				 int subtree_index,
2627 				 struct ocfs2_cached_dealloc_ctxt *dealloc)
2628 {
2629 	int i;
2630 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2631 	struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2632 	struct ocfs2_extent_list *el;
2633 	struct ocfs2_extent_block *eb;
2634 
2635 	el = path_leaf_el(left_path);
2636 
2637 	eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2638 
2639 	for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2640 		if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2641 			break;
2642 
2643 	BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2644 
2645 	memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2646 	le16_add_cpu(&root_el->l_next_free_rec, -1);
2647 
2648 	eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2649 	eb->h_next_leaf_blk = 0;
2650 
2651 	ocfs2_journal_dirty(handle, root_bh);
2652 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2653 
2654 	ocfs2_unlink_path(handle, et, dealloc, right_path,
2655 			  subtree_index + 1);
2656 }
2657 
2658 static int ocfs2_rotate_subtree_left(handle_t *handle,
2659 				     struct ocfs2_extent_tree *et,
2660 				     struct ocfs2_path *left_path,
2661 				     struct ocfs2_path *right_path,
2662 				     int subtree_index,
2663 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
2664 				     int *deleted)
2665 {
2666 	int ret, i, del_right_subtree = 0, right_has_empty = 0;
2667 	struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2668 	struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2669 	struct ocfs2_extent_block *eb;
2670 
2671 	*deleted = 0;
2672 
2673 	right_leaf_el = path_leaf_el(right_path);
2674 	left_leaf_el = path_leaf_el(left_path);
2675 	root_bh = left_path->p_node[subtree_index].bh;
2676 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2677 
2678 	if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2679 		return 0;
2680 
2681 	eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2682 	if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2683 		/*
2684 		 * It's legal for us to proceed if the right leaf is
2685 		 * the rightmost one and it has an empty extent. There
2686 		 * are two cases to handle - whether the leaf will be
2687 		 * empty after removal or not. If the leaf isn't empty
2688 		 * then just remove the empty extent up front. The
2689 		 * next block will handle empty leaves by flagging
2690 		 * them for unlink.
2691 		 *
2692 		 * Non rightmost leaves will throw -EAGAIN and the
2693 		 * caller can manually move the subtree and retry.
2694 		 */
2695 
2696 		if (eb->h_next_leaf_blk != 0ULL)
2697 			return -EAGAIN;
2698 
2699 		if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2700 			ret = ocfs2_journal_access_eb(handle, et->et_ci,
2701 						      path_leaf_bh(right_path),
2702 						      OCFS2_JOURNAL_ACCESS_WRITE);
2703 			if (ret) {
2704 				mlog_errno(ret);
2705 				goto out;
2706 			}
2707 
2708 			ocfs2_remove_empty_extent(right_leaf_el);
2709 		} else
2710 			right_has_empty = 1;
2711 	}
2712 
2713 	if (eb->h_next_leaf_blk == 0ULL &&
2714 	    le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2715 		/*
2716 		 * We have to update i_last_eb_blk during the meta
2717 		 * data delete.
2718 		 */
2719 		ret = ocfs2_et_root_journal_access(handle, et,
2720 						   OCFS2_JOURNAL_ACCESS_WRITE);
2721 		if (ret) {
2722 			mlog_errno(ret);
2723 			goto out;
2724 		}
2725 
2726 		del_right_subtree = 1;
2727 	}
2728 
2729 	/*
2730 	 * Getting here with an empty extent in the right path implies
2731 	 * that it's the rightmost path and will be deleted.
2732 	 */
2733 	BUG_ON(right_has_empty && !del_right_subtree);
2734 
2735 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2736 					   subtree_index);
2737 	if (ret) {
2738 		mlog_errno(ret);
2739 		goto out;
2740 	}
2741 
2742 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2743 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2744 						   right_path, i);
2745 		if (ret) {
2746 			mlog_errno(ret);
2747 			goto out;
2748 		}
2749 
2750 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2751 						   left_path, i);
2752 		if (ret) {
2753 			mlog_errno(ret);
2754 			goto out;
2755 		}
2756 	}
2757 
2758 	if (!right_has_empty) {
2759 		/*
2760 		 * Only do this if we're moving a real
2761 		 * record. Otherwise, the action is delayed until
2762 		 * after removal of the right path in which case we
2763 		 * can do a simple shift to remove the empty extent.
2764 		 */
2765 		ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2766 		memset(&right_leaf_el->l_recs[0], 0,
2767 		       sizeof(struct ocfs2_extent_rec));
2768 	}
2769 	if (eb->h_next_leaf_blk == 0ULL) {
2770 		/*
2771 		 * Move recs over to get rid of empty extent, decrease
2772 		 * next_free. This is allowed to remove the last
2773 		 * extent in our leaf (setting l_next_free_rec to
2774 		 * zero) - the delete code below won't care.
2775 		 */
2776 		ocfs2_remove_empty_extent(right_leaf_el);
2777 	}
2778 
2779 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2780 	ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2781 
2782 	if (del_right_subtree) {
2783 		ocfs2_unlink_subtree(handle, et, left_path, right_path,
2784 				     subtree_index, dealloc);
2785 		ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
2786 						left_path);
2787 		if (ret) {
2788 			mlog_errno(ret);
2789 			goto out;
2790 		}
2791 
2792 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2793 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2794 
2795 		/*
2796 		 * Removal of the extent in the left leaf was skipped
2797 		 * above so we could delete the right path
2798 		 * 1st.
2799 		 */
2800 		if (right_has_empty)
2801 			ocfs2_remove_empty_extent(left_leaf_el);
2802 
2803 		ocfs2_journal_dirty(handle, et_root_bh);
2804 
2805 		*deleted = 1;
2806 	} else
2807 		ocfs2_complete_edge_insert(handle, left_path, right_path,
2808 					   subtree_index);
2809 
2810 out:
2811 	return ret;
2812 }
2813 
2814 /*
2815  * Given a full path, determine what cpos value would return us a path
2816  * containing the leaf immediately to the right of the current one.
2817  *
2818  * Will return zero if the path passed in is already the rightmost path.
2819  *
2820  * This looks similar, but is subtly different to
2821  * ocfs2_find_cpos_for_left_leaf().
2822  */
2823 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2824 				   struct ocfs2_path *path, u32 *cpos)
2825 {
2826 	int i, j, ret = 0;
2827 	u64 blkno;
2828 	struct ocfs2_extent_list *el;
2829 
2830 	*cpos = 0;
2831 
2832 	if (path->p_tree_depth == 0)
2833 		return 0;
2834 
2835 	blkno = path_leaf_bh(path)->b_blocknr;
2836 
2837 	/* Start at the tree node just above the leaf and work our way up. */
2838 	i = path->p_tree_depth - 1;
2839 	while (i >= 0) {
2840 		int next_free;
2841 
2842 		el = path->p_node[i].el;
2843 
2844 		/*
2845 		 * Find the extent record just after the one in our
2846 		 * path.
2847 		 */
2848 		next_free = le16_to_cpu(el->l_next_free_rec);
2849 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2850 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2851 				if (j == (next_free - 1)) {
2852 					if (i == 0) {
2853 						/*
2854 						 * We've determined that the
2855 						 * path specified is already
2856 						 * the rightmost one - return a
2857 						 * cpos of zero.
2858 						 */
2859 						goto out;
2860 					}
2861 					/*
2862 					 * The rightmost record points to our
2863 					 * leaf - we need to travel up the
2864 					 * tree one level.
2865 					 */
2866 					goto next_node;
2867 				}
2868 
2869 				*cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2870 				goto out;
2871 			}
2872 		}
2873 
2874 		/*
2875 		 * If we got here, we never found a valid node where
2876 		 * the tree indicated one should be.
2877 		 */
2878 		ocfs2_error(sb,
2879 			    "Invalid extent tree at extent block %llu\n",
2880 			    (unsigned long long)blkno);
2881 		ret = -EROFS;
2882 		goto out;
2883 
2884 next_node:
2885 		blkno = path->p_node[i].bh->b_blocknr;
2886 		i--;
2887 	}
2888 
2889 out:
2890 	return ret;
2891 }
2892 
2893 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle,
2894 					    struct ocfs2_extent_tree *et,
2895 					    struct ocfs2_path *path)
2896 {
2897 	int ret;
2898 	struct buffer_head *bh = path_leaf_bh(path);
2899 	struct ocfs2_extent_list *el = path_leaf_el(path);
2900 
2901 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2902 		return 0;
2903 
2904 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
2905 					   path_num_items(path) - 1);
2906 	if (ret) {
2907 		mlog_errno(ret);
2908 		goto out;
2909 	}
2910 
2911 	ocfs2_remove_empty_extent(el);
2912 	ocfs2_journal_dirty(handle, bh);
2913 
2914 out:
2915 	return ret;
2916 }
2917 
2918 static int __ocfs2_rotate_tree_left(handle_t *handle,
2919 				    struct ocfs2_extent_tree *et,
2920 				    int orig_credits,
2921 				    struct ocfs2_path *path,
2922 				    struct ocfs2_cached_dealloc_ctxt *dealloc,
2923 				    struct ocfs2_path **empty_extent_path)
2924 {
2925 	int ret, subtree_root, deleted;
2926 	u32 right_cpos;
2927 	struct ocfs2_path *left_path = NULL;
2928 	struct ocfs2_path *right_path = NULL;
2929 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2930 
2931 	BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2932 
2933 	*empty_extent_path = NULL;
2934 
2935 	ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
2936 	if (ret) {
2937 		mlog_errno(ret);
2938 		goto out;
2939 	}
2940 
2941 	left_path = ocfs2_new_path_from_path(path);
2942 	if (!left_path) {
2943 		ret = -ENOMEM;
2944 		mlog_errno(ret);
2945 		goto out;
2946 	}
2947 
2948 	ocfs2_cp_path(left_path, path);
2949 
2950 	right_path = ocfs2_new_path_from_path(path);
2951 	if (!right_path) {
2952 		ret = -ENOMEM;
2953 		mlog_errno(ret);
2954 		goto out;
2955 	}
2956 
2957 	while (right_cpos) {
2958 		ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
2959 		if (ret) {
2960 			mlog_errno(ret);
2961 			goto out;
2962 		}
2963 
2964 		subtree_root = ocfs2_find_subtree_root(et, left_path,
2965 						       right_path);
2966 
2967 		mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2968 		     subtree_root,
2969 		     (unsigned long long)
2970 		     right_path->p_node[subtree_root].bh->b_blocknr,
2971 		     right_path->p_tree_depth);
2972 
2973 		ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2974 						      orig_credits, left_path);
2975 		if (ret) {
2976 			mlog_errno(ret);
2977 			goto out;
2978 		}
2979 
2980 		/*
2981 		 * Caller might still want to make changes to the
2982 		 * tree root, so re-add it to the journal here.
2983 		 */
2984 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2985 						   left_path, 0);
2986 		if (ret) {
2987 			mlog_errno(ret);
2988 			goto out;
2989 		}
2990 
2991 		ret = ocfs2_rotate_subtree_left(handle, et, left_path,
2992 						right_path, subtree_root,
2993 						dealloc, &deleted);
2994 		if (ret == -EAGAIN) {
2995 			/*
2996 			 * The rotation has to temporarily stop due to
2997 			 * the right subtree having an empty
2998 			 * extent. Pass it back to the caller for a
2999 			 * fixup.
3000 			 */
3001 			*empty_extent_path = right_path;
3002 			right_path = NULL;
3003 			goto out;
3004 		}
3005 		if (ret) {
3006 			mlog_errno(ret);
3007 			goto out;
3008 		}
3009 
3010 		/*
3011 		 * The subtree rotate might have removed records on
3012 		 * the rightmost edge. If so, then rotation is
3013 		 * complete.
3014 		 */
3015 		if (deleted)
3016 			break;
3017 
3018 		ocfs2_mv_path(left_path, right_path);
3019 
3020 		ret = ocfs2_find_cpos_for_right_leaf(sb, left_path,
3021 						     &right_cpos);
3022 		if (ret) {
3023 			mlog_errno(ret);
3024 			goto out;
3025 		}
3026 	}
3027 
3028 out:
3029 	ocfs2_free_path(right_path);
3030 	ocfs2_free_path(left_path);
3031 
3032 	return ret;
3033 }
3034 
3035 static int ocfs2_remove_rightmost_path(handle_t *handle,
3036 				struct ocfs2_extent_tree *et,
3037 				struct ocfs2_path *path,
3038 				struct ocfs2_cached_dealloc_ctxt *dealloc)
3039 {
3040 	int ret, subtree_index;
3041 	u32 cpos;
3042 	struct ocfs2_path *left_path = NULL;
3043 	struct ocfs2_extent_block *eb;
3044 	struct ocfs2_extent_list *el;
3045 
3046 
3047 	ret = ocfs2_et_sanity_check(et);
3048 	if (ret)
3049 		goto out;
3050 	/*
3051 	 * There's two ways we handle this depending on
3052 	 * whether path is the only existing one.
3053 	 */
3054 	ret = ocfs2_extend_rotate_transaction(handle, 0,
3055 					      handle->h_buffer_credits,
3056 					      path);
3057 	if (ret) {
3058 		mlog_errno(ret);
3059 		goto out;
3060 	}
3061 
3062 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
3063 	if (ret) {
3064 		mlog_errno(ret);
3065 		goto out;
3066 	}
3067 
3068 	ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3069 					    path, &cpos);
3070 	if (ret) {
3071 		mlog_errno(ret);
3072 		goto out;
3073 	}
3074 
3075 	if (cpos) {
3076 		/*
3077 		 * We have a path to the left of this one - it needs
3078 		 * an update too.
3079 		 */
3080 		left_path = ocfs2_new_path_from_path(path);
3081 		if (!left_path) {
3082 			ret = -ENOMEM;
3083 			mlog_errno(ret);
3084 			goto out;
3085 		}
3086 
3087 		ret = ocfs2_find_path(et->et_ci, left_path, cpos);
3088 		if (ret) {
3089 			mlog_errno(ret);
3090 			goto out;
3091 		}
3092 
3093 		ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
3094 		if (ret) {
3095 			mlog_errno(ret);
3096 			goto out;
3097 		}
3098 
3099 		subtree_index = ocfs2_find_subtree_root(et, left_path, path);
3100 
3101 		ocfs2_unlink_subtree(handle, et, left_path, path,
3102 				     subtree_index, dealloc);
3103 		ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
3104 						left_path);
3105 		if (ret) {
3106 			mlog_errno(ret);
3107 			goto out;
3108 		}
3109 
3110 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3111 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3112 	} else {
3113 		/*
3114 		 * 'path' is also the leftmost path which
3115 		 * means it must be the only one. This gets
3116 		 * handled differently because we want to
3117 		 * revert the root back to having extents
3118 		 * in-line.
3119 		 */
3120 		ocfs2_unlink_path(handle, et, dealloc, path, 1);
3121 
3122 		el = et->et_root_el;
3123 		el->l_tree_depth = 0;
3124 		el->l_next_free_rec = 0;
3125 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3126 
3127 		ocfs2_et_set_last_eb_blk(et, 0);
3128 	}
3129 
3130 	ocfs2_journal_dirty(handle, path_root_bh(path));
3131 
3132 out:
3133 	ocfs2_free_path(left_path);
3134 	return ret;
3135 }
3136 
3137 /*
3138  * Left rotation of btree records.
3139  *
3140  * In many ways, this is (unsurprisingly) the opposite of right
3141  * rotation. We start at some non-rightmost path containing an empty
3142  * extent in the leaf block. The code works its way to the rightmost
3143  * path by rotating records to the left in every subtree.
3144  *
3145  * This is used by any code which reduces the number of extent records
3146  * in a leaf. After removal, an empty record should be placed in the
3147  * leftmost list position.
3148  *
3149  * This won't handle a length update of the rightmost path records if
3150  * the rightmost tree leaf record is removed so the caller is
3151  * responsible for detecting and correcting that.
3152  */
3153 static int ocfs2_rotate_tree_left(handle_t *handle,
3154 				  struct ocfs2_extent_tree *et,
3155 				  struct ocfs2_path *path,
3156 				  struct ocfs2_cached_dealloc_ctxt *dealloc)
3157 {
3158 	int ret, orig_credits = handle->h_buffer_credits;
3159 	struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3160 	struct ocfs2_extent_block *eb;
3161 	struct ocfs2_extent_list *el;
3162 
3163 	el = path_leaf_el(path);
3164 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3165 		return 0;
3166 
3167 	if (path->p_tree_depth == 0) {
3168 rightmost_no_delete:
3169 		/*
3170 		 * Inline extents. This is trivially handled, so do
3171 		 * it up front.
3172 		 */
3173 		ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path);
3174 		if (ret)
3175 			mlog_errno(ret);
3176 		goto out;
3177 	}
3178 
3179 	/*
3180 	 * Handle rightmost branch now. There's several cases:
3181 	 *  1) simple rotation leaving records in there. That's trivial.
3182 	 *  2) rotation requiring a branch delete - there's no more
3183 	 *     records left. Two cases of this:
3184 	 *     a) There are branches to the left.
3185 	 *     b) This is also the leftmost (the only) branch.
3186 	 *
3187 	 *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
3188 	 *  2a) we need the left branch so that we can update it with the unlink
3189 	 *  2b) we need to bring the root back to inline extents.
3190 	 */
3191 
3192 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3193 	el = &eb->h_list;
3194 	if (eb->h_next_leaf_blk == 0) {
3195 		/*
3196 		 * This gets a bit tricky if we're going to delete the
3197 		 * rightmost path. Get the other cases out of the way
3198 		 * 1st.
3199 		 */
3200 		if (le16_to_cpu(el->l_next_free_rec) > 1)
3201 			goto rightmost_no_delete;
3202 
3203 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
3204 			ret = -EIO;
3205 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3206 				    "Owner %llu has empty extent block at %llu",
3207 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
3208 				    (unsigned long long)le64_to_cpu(eb->h_blkno));
3209 			goto out;
3210 		}
3211 
3212 		/*
3213 		 * XXX: The caller can not trust "path" any more after
3214 		 * this as it will have been deleted. What do we do?
3215 		 *
3216 		 * In theory the rotate-for-merge code will never get
3217 		 * here because it'll always ask for a rotate in a
3218 		 * nonempty list.
3219 		 */
3220 
3221 		ret = ocfs2_remove_rightmost_path(handle, et, path,
3222 						  dealloc);
3223 		if (ret)
3224 			mlog_errno(ret);
3225 		goto out;
3226 	}
3227 
3228 	/*
3229 	 * Now we can loop, remembering the path we get from -EAGAIN
3230 	 * and restarting from there.
3231 	 */
3232 try_rotate:
3233 	ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path,
3234 				       dealloc, &restart_path);
3235 	if (ret && ret != -EAGAIN) {
3236 		mlog_errno(ret);
3237 		goto out;
3238 	}
3239 
3240 	while (ret == -EAGAIN) {
3241 		tmp_path = restart_path;
3242 		restart_path = NULL;
3243 
3244 		ret = __ocfs2_rotate_tree_left(handle, et, orig_credits,
3245 					       tmp_path, dealloc,
3246 					       &restart_path);
3247 		if (ret && ret != -EAGAIN) {
3248 			mlog_errno(ret);
3249 			goto out;
3250 		}
3251 
3252 		ocfs2_free_path(tmp_path);
3253 		tmp_path = NULL;
3254 
3255 		if (ret == 0)
3256 			goto try_rotate;
3257 	}
3258 
3259 out:
3260 	ocfs2_free_path(tmp_path);
3261 	ocfs2_free_path(restart_path);
3262 	return ret;
3263 }
3264 
3265 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3266 				int index)
3267 {
3268 	struct ocfs2_extent_rec *rec = &el->l_recs[index];
3269 	unsigned int size;
3270 
3271 	if (rec->e_leaf_clusters == 0) {
3272 		/*
3273 		 * We consumed all of the merged-from record. An empty
3274 		 * extent cannot exist anywhere but the 1st array
3275 		 * position, so move things over if the merged-from
3276 		 * record doesn't occupy that position.
3277 		 *
3278 		 * This creates a new empty extent so the caller
3279 		 * should be smart enough to have removed any existing
3280 		 * ones.
3281 		 */
3282 		if (index > 0) {
3283 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3284 			size = index * sizeof(struct ocfs2_extent_rec);
3285 			memmove(&el->l_recs[1], &el->l_recs[0], size);
3286 		}
3287 
3288 		/*
3289 		 * Always memset - the caller doesn't check whether it
3290 		 * created an empty extent, so there could be junk in
3291 		 * the other fields.
3292 		 */
3293 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3294 	}
3295 }
3296 
3297 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et,
3298 				struct ocfs2_path *left_path,
3299 				struct ocfs2_path **ret_right_path)
3300 {
3301 	int ret;
3302 	u32 right_cpos;
3303 	struct ocfs2_path *right_path = NULL;
3304 	struct ocfs2_extent_list *left_el;
3305 
3306 	*ret_right_path = NULL;
3307 
3308 	/* This function shouldn't be called for non-trees. */
3309 	BUG_ON(left_path->p_tree_depth == 0);
3310 
3311 	left_el = path_leaf_el(left_path);
3312 	BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3313 
3314 	ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3315 					     left_path, &right_cpos);
3316 	if (ret) {
3317 		mlog_errno(ret);
3318 		goto out;
3319 	}
3320 
3321 	/* This function shouldn't be called for the rightmost leaf. */
3322 	BUG_ON(right_cpos == 0);
3323 
3324 	right_path = ocfs2_new_path_from_path(left_path);
3325 	if (!right_path) {
3326 		ret = -ENOMEM;
3327 		mlog_errno(ret);
3328 		goto out;
3329 	}
3330 
3331 	ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
3332 	if (ret) {
3333 		mlog_errno(ret);
3334 		goto out;
3335 	}
3336 
3337 	*ret_right_path = right_path;
3338 out:
3339 	if (ret)
3340 		ocfs2_free_path(right_path);
3341 	return ret;
3342 }
3343 
3344 /*
3345  * Remove split_rec clusters from the record at index and merge them
3346  * onto the beginning of the record "next" to it.
3347  * For index < l_count - 1, the next means the extent rec at index + 1.
3348  * For index == l_count - 1, the "next" means the 1st extent rec of the
3349  * next extent block.
3350  */
3351 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path,
3352 				 handle_t *handle,
3353 				 struct ocfs2_extent_tree *et,
3354 				 struct ocfs2_extent_rec *split_rec,
3355 				 int index)
3356 {
3357 	int ret, next_free, i;
3358 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3359 	struct ocfs2_extent_rec *left_rec;
3360 	struct ocfs2_extent_rec *right_rec;
3361 	struct ocfs2_extent_list *right_el;
3362 	struct ocfs2_path *right_path = NULL;
3363 	int subtree_index = 0;
3364 	struct ocfs2_extent_list *el = path_leaf_el(left_path);
3365 	struct buffer_head *bh = path_leaf_bh(left_path);
3366 	struct buffer_head *root_bh = NULL;
3367 
3368 	BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3369 	left_rec = &el->l_recs[index];
3370 
3371 	if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3372 	    le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3373 		/* we meet with a cross extent block merge. */
3374 		ret = ocfs2_get_right_path(et, left_path, &right_path);
3375 		if (ret) {
3376 			mlog_errno(ret);
3377 			goto out;
3378 		}
3379 
3380 		right_el = path_leaf_el(right_path);
3381 		next_free = le16_to_cpu(right_el->l_next_free_rec);
3382 		BUG_ON(next_free <= 0);
3383 		right_rec = &right_el->l_recs[0];
3384 		if (ocfs2_is_empty_extent(right_rec)) {
3385 			BUG_ON(next_free <= 1);
3386 			right_rec = &right_el->l_recs[1];
3387 		}
3388 
3389 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3390 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3391 		       le32_to_cpu(right_rec->e_cpos));
3392 
3393 		subtree_index = ocfs2_find_subtree_root(et, left_path,
3394 							right_path);
3395 
3396 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3397 						      handle->h_buffer_credits,
3398 						      right_path);
3399 		if (ret) {
3400 			mlog_errno(ret);
3401 			goto out;
3402 		}
3403 
3404 		root_bh = left_path->p_node[subtree_index].bh;
3405 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3406 
3407 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3408 						   subtree_index);
3409 		if (ret) {
3410 			mlog_errno(ret);
3411 			goto out;
3412 		}
3413 
3414 		for (i = subtree_index + 1;
3415 		     i < path_num_items(right_path); i++) {
3416 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3417 							   right_path, i);
3418 			if (ret) {
3419 				mlog_errno(ret);
3420 				goto out;
3421 			}
3422 
3423 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3424 							   left_path, i);
3425 			if (ret) {
3426 				mlog_errno(ret);
3427 				goto out;
3428 			}
3429 		}
3430 
3431 	} else {
3432 		BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3433 		right_rec = &el->l_recs[index + 1];
3434 	}
3435 
3436 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path,
3437 					   path_num_items(left_path) - 1);
3438 	if (ret) {
3439 		mlog_errno(ret);
3440 		goto out;
3441 	}
3442 
3443 	le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3444 
3445 	le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3446 	le64_add_cpu(&right_rec->e_blkno,
3447 		     -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3448 					       split_clusters));
3449 	le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3450 
3451 	ocfs2_cleanup_merge(el, index);
3452 
3453 	ocfs2_journal_dirty(handle, bh);
3454 	if (right_path) {
3455 		ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3456 		ocfs2_complete_edge_insert(handle, left_path, right_path,
3457 					   subtree_index);
3458 	}
3459 out:
3460 	if (right_path)
3461 		ocfs2_free_path(right_path);
3462 	return ret;
3463 }
3464 
3465 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et,
3466 			       struct ocfs2_path *right_path,
3467 			       struct ocfs2_path **ret_left_path)
3468 {
3469 	int ret;
3470 	u32 left_cpos;
3471 	struct ocfs2_path *left_path = NULL;
3472 
3473 	*ret_left_path = NULL;
3474 
3475 	/* This function shouldn't be called for non-trees. */
3476 	BUG_ON(right_path->p_tree_depth == 0);
3477 
3478 	ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3479 					    right_path, &left_cpos);
3480 	if (ret) {
3481 		mlog_errno(ret);
3482 		goto out;
3483 	}
3484 
3485 	/* This function shouldn't be called for the leftmost leaf. */
3486 	BUG_ON(left_cpos == 0);
3487 
3488 	left_path = ocfs2_new_path_from_path(right_path);
3489 	if (!left_path) {
3490 		ret = -ENOMEM;
3491 		mlog_errno(ret);
3492 		goto out;
3493 	}
3494 
3495 	ret = ocfs2_find_path(et->et_ci, left_path, left_cpos);
3496 	if (ret) {
3497 		mlog_errno(ret);
3498 		goto out;
3499 	}
3500 
3501 	*ret_left_path = left_path;
3502 out:
3503 	if (ret)
3504 		ocfs2_free_path(left_path);
3505 	return ret;
3506 }
3507 
3508 /*
3509  * Remove split_rec clusters from the record at index and merge them
3510  * onto the tail of the record "before" it.
3511  * For index > 0, the "before" means the extent rec at index - 1.
3512  *
3513  * For index == 0, the "before" means the last record of the previous
3514  * extent block. And there is also a situation that we may need to
3515  * remove the rightmost leaf extent block in the right_path and change
3516  * the right path to indicate the new rightmost path.
3517  */
3518 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path,
3519 				handle_t *handle,
3520 				struct ocfs2_extent_tree *et,
3521 				struct ocfs2_extent_rec *split_rec,
3522 				struct ocfs2_cached_dealloc_ctxt *dealloc,
3523 				int index)
3524 {
3525 	int ret, i, subtree_index = 0, has_empty_extent = 0;
3526 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3527 	struct ocfs2_extent_rec *left_rec;
3528 	struct ocfs2_extent_rec *right_rec;
3529 	struct ocfs2_extent_list *el = path_leaf_el(right_path);
3530 	struct buffer_head *bh = path_leaf_bh(right_path);
3531 	struct buffer_head *root_bh = NULL;
3532 	struct ocfs2_path *left_path = NULL;
3533 	struct ocfs2_extent_list *left_el;
3534 
3535 	BUG_ON(index < 0);
3536 
3537 	right_rec = &el->l_recs[index];
3538 	if (index == 0) {
3539 		/* we meet with a cross extent block merge. */
3540 		ret = ocfs2_get_left_path(et, right_path, &left_path);
3541 		if (ret) {
3542 			mlog_errno(ret);
3543 			goto out;
3544 		}
3545 
3546 		left_el = path_leaf_el(left_path);
3547 		BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3548 		       le16_to_cpu(left_el->l_count));
3549 
3550 		left_rec = &left_el->l_recs[
3551 				le16_to_cpu(left_el->l_next_free_rec) - 1];
3552 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3553 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3554 		       le32_to_cpu(split_rec->e_cpos));
3555 
3556 		subtree_index = ocfs2_find_subtree_root(et, left_path,
3557 							right_path);
3558 
3559 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3560 						      handle->h_buffer_credits,
3561 						      left_path);
3562 		if (ret) {
3563 			mlog_errno(ret);
3564 			goto out;
3565 		}
3566 
3567 		root_bh = left_path->p_node[subtree_index].bh;
3568 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3569 
3570 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3571 						   subtree_index);
3572 		if (ret) {
3573 			mlog_errno(ret);
3574 			goto out;
3575 		}
3576 
3577 		for (i = subtree_index + 1;
3578 		     i < path_num_items(right_path); i++) {
3579 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3580 							   right_path, i);
3581 			if (ret) {
3582 				mlog_errno(ret);
3583 				goto out;
3584 			}
3585 
3586 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3587 							   left_path, i);
3588 			if (ret) {
3589 				mlog_errno(ret);
3590 				goto out;
3591 			}
3592 		}
3593 	} else {
3594 		left_rec = &el->l_recs[index - 1];
3595 		if (ocfs2_is_empty_extent(&el->l_recs[0]))
3596 			has_empty_extent = 1;
3597 	}
3598 
3599 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3600 					   path_num_items(right_path) - 1);
3601 	if (ret) {
3602 		mlog_errno(ret);
3603 		goto out;
3604 	}
3605 
3606 	if (has_empty_extent && index == 1) {
3607 		/*
3608 		 * The easy case - we can just plop the record right in.
3609 		 */
3610 		*left_rec = *split_rec;
3611 
3612 		has_empty_extent = 0;
3613 	} else
3614 		le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3615 
3616 	le32_add_cpu(&right_rec->e_cpos, split_clusters);
3617 	le64_add_cpu(&right_rec->e_blkno,
3618 		     ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3619 					      split_clusters));
3620 	le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3621 
3622 	ocfs2_cleanup_merge(el, index);
3623 
3624 	ocfs2_journal_dirty(handle, bh);
3625 	if (left_path) {
3626 		ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3627 
3628 		/*
3629 		 * In the situation that the right_rec is empty and the extent
3630 		 * block is empty also,  ocfs2_complete_edge_insert can't handle
3631 		 * it and we need to delete the right extent block.
3632 		 */
3633 		if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3634 		    le16_to_cpu(el->l_next_free_rec) == 1) {
3635 
3636 			ret = ocfs2_remove_rightmost_path(handle, et,
3637 							  right_path,
3638 							  dealloc);
3639 			if (ret) {
3640 				mlog_errno(ret);
3641 				goto out;
3642 			}
3643 
3644 			/* Now the rightmost extent block has been deleted.
3645 			 * So we use the new rightmost path.
3646 			 */
3647 			ocfs2_mv_path(right_path, left_path);
3648 			left_path = NULL;
3649 		} else
3650 			ocfs2_complete_edge_insert(handle, left_path,
3651 						   right_path, subtree_index);
3652 	}
3653 out:
3654 	if (left_path)
3655 		ocfs2_free_path(left_path);
3656 	return ret;
3657 }
3658 
3659 static int ocfs2_try_to_merge_extent(handle_t *handle,
3660 				     struct ocfs2_extent_tree *et,
3661 				     struct ocfs2_path *path,
3662 				     int split_index,
3663 				     struct ocfs2_extent_rec *split_rec,
3664 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
3665 				     struct ocfs2_merge_ctxt *ctxt)
3666 {
3667 	int ret = 0;
3668 	struct ocfs2_extent_list *el = path_leaf_el(path);
3669 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3670 
3671 	BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3672 
3673 	if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3674 		/*
3675 		 * The merge code will need to create an empty
3676 		 * extent to take the place of the newly
3677 		 * emptied slot. Remove any pre-existing empty
3678 		 * extents - having more than one in a leaf is
3679 		 * illegal.
3680 		 */
3681 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3682 		if (ret) {
3683 			mlog_errno(ret);
3684 			goto out;
3685 		}
3686 		split_index--;
3687 		rec = &el->l_recs[split_index];
3688 	}
3689 
3690 	if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3691 		/*
3692 		 * Left-right contig implies this.
3693 		 */
3694 		BUG_ON(!ctxt->c_split_covers_rec);
3695 
3696 		/*
3697 		 * Since the leftright insert always covers the entire
3698 		 * extent, this call will delete the insert record
3699 		 * entirely, resulting in an empty extent record added to
3700 		 * the extent block.
3701 		 *
3702 		 * Since the adding of an empty extent shifts
3703 		 * everything back to the right, there's no need to
3704 		 * update split_index here.
3705 		 *
3706 		 * When the split_index is zero, we need to merge it to the
3707 		 * prevoius extent block. It is more efficient and easier
3708 		 * if we do merge_right first and merge_left later.
3709 		 */
3710 		ret = ocfs2_merge_rec_right(path, handle, et, split_rec,
3711 					    split_index);
3712 		if (ret) {
3713 			mlog_errno(ret);
3714 			goto out;
3715 		}
3716 
3717 		/*
3718 		 * We can only get this from logic error above.
3719 		 */
3720 		BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3721 
3722 		/* The merge left us with an empty extent, remove it. */
3723 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3724 		if (ret) {
3725 			mlog_errno(ret);
3726 			goto out;
3727 		}
3728 
3729 		rec = &el->l_recs[split_index];
3730 
3731 		/*
3732 		 * Note that we don't pass split_rec here on purpose -
3733 		 * we've merged it into the rec already.
3734 		 */
3735 		ret = ocfs2_merge_rec_left(path, handle, et, rec,
3736 					   dealloc, split_index);
3737 
3738 		if (ret) {
3739 			mlog_errno(ret);
3740 			goto out;
3741 		}
3742 
3743 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3744 		/*
3745 		 * Error from this last rotate is not critical, so
3746 		 * print but don't bubble it up.
3747 		 */
3748 		if (ret)
3749 			mlog_errno(ret);
3750 		ret = 0;
3751 	} else {
3752 		/*
3753 		 * Merge a record to the left or right.
3754 		 *
3755 		 * 'contig_type' is relative to the existing record,
3756 		 * so for example, if we're "right contig", it's to
3757 		 * the record on the left (hence the left merge).
3758 		 */
3759 		if (ctxt->c_contig_type == CONTIG_RIGHT) {
3760 			ret = ocfs2_merge_rec_left(path, handle, et,
3761 						   split_rec, dealloc,
3762 						   split_index);
3763 			if (ret) {
3764 				mlog_errno(ret);
3765 				goto out;
3766 			}
3767 		} else {
3768 			ret = ocfs2_merge_rec_right(path, handle,
3769 						    et, split_rec,
3770 						    split_index);
3771 			if (ret) {
3772 				mlog_errno(ret);
3773 				goto out;
3774 			}
3775 		}
3776 
3777 		if (ctxt->c_split_covers_rec) {
3778 			/*
3779 			 * The merge may have left an empty extent in
3780 			 * our leaf. Try to rotate it away.
3781 			 */
3782 			ret = ocfs2_rotate_tree_left(handle, et, path,
3783 						     dealloc);
3784 			if (ret)
3785 				mlog_errno(ret);
3786 			ret = 0;
3787 		}
3788 	}
3789 
3790 out:
3791 	return ret;
3792 }
3793 
3794 static void ocfs2_subtract_from_rec(struct super_block *sb,
3795 				    enum ocfs2_split_type split,
3796 				    struct ocfs2_extent_rec *rec,
3797 				    struct ocfs2_extent_rec *split_rec)
3798 {
3799 	u64 len_blocks;
3800 
3801 	len_blocks = ocfs2_clusters_to_blocks(sb,
3802 				le16_to_cpu(split_rec->e_leaf_clusters));
3803 
3804 	if (split == SPLIT_LEFT) {
3805 		/*
3806 		 * Region is on the left edge of the existing
3807 		 * record.
3808 		 */
3809 		le32_add_cpu(&rec->e_cpos,
3810 			     le16_to_cpu(split_rec->e_leaf_clusters));
3811 		le64_add_cpu(&rec->e_blkno, len_blocks);
3812 		le16_add_cpu(&rec->e_leaf_clusters,
3813 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3814 	} else {
3815 		/*
3816 		 * Region is on the right edge of the existing
3817 		 * record.
3818 		 */
3819 		le16_add_cpu(&rec->e_leaf_clusters,
3820 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3821 	}
3822 }
3823 
3824 /*
3825  * Do the final bits of extent record insertion at the target leaf
3826  * list. If this leaf is part of an allocation tree, it is assumed
3827  * that the tree above has been prepared.
3828  */
3829 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et,
3830 				 struct ocfs2_extent_rec *insert_rec,
3831 				 struct ocfs2_extent_list *el,
3832 				 struct ocfs2_insert_type *insert)
3833 {
3834 	int i = insert->ins_contig_index;
3835 	unsigned int range;
3836 	struct ocfs2_extent_rec *rec;
3837 
3838 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3839 
3840 	if (insert->ins_split != SPLIT_NONE) {
3841 		i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3842 		BUG_ON(i == -1);
3843 		rec = &el->l_recs[i];
3844 		ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
3845 					insert->ins_split, rec,
3846 					insert_rec);
3847 		goto rotate;
3848 	}
3849 
3850 	/*
3851 	 * Contiguous insert - either left or right.
3852 	 */
3853 	if (insert->ins_contig != CONTIG_NONE) {
3854 		rec = &el->l_recs[i];
3855 		if (insert->ins_contig == CONTIG_LEFT) {
3856 			rec->e_blkno = insert_rec->e_blkno;
3857 			rec->e_cpos = insert_rec->e_cpos;
3858 		}
3859 		le16_add_cpu(&rec->e_leaf_clusters,
3860 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3861 		return;
3862 	}
3863 
3864 	/*
3865 	 * Handle insert into an empty leaf.
3866 	 */
3867 	if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3868 	    ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3869 	     ocfs2_is_empty_extent(&el->l_recs[0]))) {
3870 		el->l_recs[0] = *insert_rec;
3871 		el->l_next_free_rec = cpu_to_le16(1);
3872 		return;
3873 	}
3874 
3875 	/*
3876 	 * Appending insert.
3877 	 */
3878 	if (insert->ins_appending == APPEND_TAIL) {
3879 		i = le16_to_cpu(el->l_next_free_rec) - 1;
3880 		rec = &el->l_recs[i];
3881 		range = le32_to_cpu(rec->e_cpos)
3882 			+ le16_to_cpu(rec->e_leaf_clusters);
3883 		BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3884 
3885 		mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3886 				le16_to_cpu(el->l_count),
3887 				"owner %llu, depth %u, count %u, next free %u, "
3888 				"rec.cpos %u, rec.clusters %u, "
3889 				"insert.cpos %u, insert.clusters %u\n",
3890 				ocfs2_metadata_cache_owner(et->et_ci),
3891 				le16_to_cpu(el->l_tree_depth),
3892 				le16_to_cpu(el->l_count),
3893 				le16_to_cpu(el->l_next_free_rec),
3894 				le32_to_cpu(el->l_recs[i].e_cpos),
3895 				le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3896 				le32_to_cpu(insert_rec->e_cpos),
3897 				le16_to_cpu(insert_rec->e_leaf_clusters));
3898 		i++;
3899 		el->l_recs[i] = *insert_rec;
3900 		le16_add_cpu(&el->l_next_free_rec, 1);
3901 		return;
3902 	}
3903 
3904 rotate:
3905 	/*
3906 	 * Ok, we have to rotate.
3907 	 *
3908 	 * At this point, it is safe to assume that inserting into an
3909 	 * empty leaf and appending to a leaf have both been handled
3910 	 * above.
3911 	 *
3912 	 * This leaf needs to have space, either by the empty 1st
3913 	 * extent record, or by virtue of an l_next_rec < l_count.
3914 	 */
3915 	ocfs2_rotate_leaf(el, insert_rec);
3916 }
3917 
3918 static void ocfs2_adjust_rightmost_records(handle_t *handle,
3919 					   struct ocfs2_extent_tree *et,
3920 					   struct ocfs2_path *path,
3921 					   struct ocfs2_extent_rec *insert_rec)
3922 {
3923 	int ret, i, next_free;
3924 	struct buffer_head *bh;
3925 	struct ocfs2_extent_list *el;
3926 	struct ocfs2_extent_rec *rec;
3927 
3928 	/*
3929 	 * Update everything except the leaf block.
3930 	 */
3931 	for (i = 0; i < path->p_tree_depth; i++) {
3932 		bh = path->p_node[i].bh;
3933 		el = path->p_node[i].el;
3934 
3935 		next_free = le16_to_cpu(el->l_next_free_rec);
3936 		if (next_free == 0) {
3937 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3938 				    "Owner %llu has a bad extent list",
3939 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
3940 			ret = -EIO;
3941 			return;
3942 		}
3943 
3944 		rec = &el->l_recs[next_free - 1];
3945 
3946 		rec->e_int_clusters = insert_rec->e_cpos;
3947 		le32_add_cpu(&rec->e_int_clusters,
3948 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3949 		le32_add_cpu(&rec->e_int_clusters,
3950 			     -le32_to_cpu(rec->e_cpos));
3951 
3952 		ocfs2_journal_dirty(handle, bh);
3953 	}
3954 }
3955 
3956 static int ocfs2_append_rec_to_path(handle_t *handle,
3957 				    struct ocfs2_extent_tree *et,
3958 				    struct ocfs2_extent_rec *insert_rec,
3959 				    struct ocfs2_path *right_path,
3960 				    struct ocfs2_path **ret_left_path)
3961 {
3962 	int ret, next_free;
3963 	struct ocfs2_extent_list *el;
3964 	struct ocfs2_path *left_path = NULL;
3965 
3966 	*ret_left_path = NULL;
3967 
3968 	/*
3969 	 * This shouldn't happen for non-trees. The extent rec cluster
3970 	 * count manipulation below only works for interior nodes.
3971 	 */
3972 	BUG_ON(right_path->p_tree_depth == 0);
3973 
3974 	/*
3975 	 * If our appending insert is at the leftmost edge of a leaf,
3976 	 * then we might need to update the rightmost records of the
3977 	 * neighboring path.
3978 	 */
3979 	el = path_leaf_el(right_path);
3980 	next_free = le16_to_cpu(el->l_next_free_rec);
3981 	if (next_free == 0 ||
3982 	    (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3983 		u32 left_cpos;
3984 
3985 		ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3986 						    right_path, &left_cpos);
3987 		if (ret) {
3988 			mlog_errno(ret);
3989 			goto out;
3990 		}
3991 
3992 		mlog(0, "Append may need a left path update. cpos: %u, "
3993 		     "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3994 		     left_cpos);
3995 
3996 		/*
3997 		 * No need to worry if the append is already in the
3998 		 * leftmost leaf.
3999 		 */
4000 		if (left_cpos) {
4001 			left_path = ocfs2_new_path_from_path(right_path);
4002 			if (!left_path) {
4003 				ret = -ENOMEM;
4004 				mlog_errno(ret);
4005 				goto out;
4006 			}
4007 
4008 			ret = ocfs2_find_path(et->et_ci, left_path,
4009 					      left_cpos);
4010 			if (ret) {
4011 				mlog_errno(ret);
4012 				goto out;
4013 			}
4014 
4015 			/*
4016 			 * ocfs2_insert_path() will pass the left_path to the
4017 			 * journal for us.
4018 			 */
4019 		}
4020 	}
4021 
4022 	ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4023 	if (ret) {
4024 		mlog_errno(ret);
4025 		goto out;
4026 	}
4027 
4028 	ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec);
4029 
4030 	*ret_left_path = left_path;
4031 	ret = 0;
4032 out:
4033 	if (ret != 0)
4034 		ocfs2_free_path(left_path);
4035 
4036 	return ret;
4037 }
4038 
4039 static void ocfs2_split_record(struct ocfs2_extent_tree *et,
4040 			       struct ocfs2_path *left_path,
4041 			       struct ocfs2_path *right_path,
4042 			       struct ocfs2_extent_rec *split_rec,
4043 			       enum ocfs2_split_type split)
4044 {
4045 	int index;
4046 	u32 cpos = le32_to_cpu(split_rec->e_cpos);
4047 	struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4048 	struct ocfs2_extent_rec *rec, *tmprec;
4049 
4050 	right_el = path_leaf_el(right_path);
4051 	if (left_path)
4052 		left_el = path_leaf_el(left_path);
4053 
4054 	el = right_el;
4055 	insert_el = right_el;
4056 	index = ocfs2_search_extent_list(el, cpos);
4057 	if (index != -1) {
4058 		if (index == 0 && left_path) {
4059 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4060 
4061 			/*
4062 			 * This typically means that the record
4063 			 * started in the left path but moved to the
4064 			 * right as a result of rotation. We either
4065 			 * move the existing record to the left, or we
4066 			 * do the later insert there.
4067 			 *
4068 			 * In this case, the left path should always
4069 			 * exist as the rotate code will have passed
4070 			 * it back for a post-insert update.
4071 			 */
4072 
4073 			if (split == SPLIT_LEFT) {
4074 				/*
4075 				 * It's a left split. Since we know
4076 				 * that the rotate code gave us an
4077 				 * empty extent in the left path, we
4078 				 * can just do the insert there.
4079 				 */
4080 				insert_el = left_el;
4081 			} else {
4082 				/*
4083 				 * Right split - we have to move the
4084 				 * existing record over to the left
4085 				 * leaf. The insert will be into the
4086 				 * newly created empty extent in the
4087 				 * right leaf.
4088 				 */
4089 				tmprec = &right_el->l_recs[index];
4090 				ocfs2_rotate_leaf(left_el, tmprec);
4091 				el = left_el;
4092 
4093 				memset(tmprec, 0, sizeof(*tmprec));
4094 				index = ocfs2_search_extent_list(left_el, cpos);
4095 				BUG_ON(index == -1);
4096 			}
4097 		}
4098 	} else {
4099 		BUG_ON(!left_path);
4100 		BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4101 		/*
4102 		 * Left path is easy - we can just allow the insert to
4103 		 * happen.
4104 		 */
4105 		el = left_el;
4106 		insert_el = left_el;
4107 		index = ocfs2_search_extent_list(el, cpos);
4108 		BUG_ON(index == -1);
4109 	}
4110 
4111 	rec = &el->l_recs[index];
4112 	ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4113 				split, rec, split_rec);
4114 	ocfs2_rotate_leaf(insert_el, split_rec);
4115 }
4116 
4117 /*
4118  * This function only does inserts on an allocation b-tree. For tree
4119  * depth = 0, ocfs2_insert_at_leaf() is called directly.
4120  *
4121  * right_path is the path we want to do the actual insert
4122  * in. left_path should only be passed in if we need to update that
4123  * portion of the tree after an edge insert.
4124  */
4125 static int ocfs2_insert_path(handle_t *handle,
4126 			     struct ocfs2_extent_tree *et,
4127 			     struct ocfs2_path *left_path,
4128 			     struct ocfs2_path *right_path,
4129 			     struct ocfs2_extent_rec *insert_rec,
4130 			     struct ocfs2_insert_type *insert)
4131 {
4132 	int ret, subtree_index;
4133 	struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4134 
4135 	if (left_path) {
4136 		/*
4137 		 * There's a chance that left_path got passed back to
4138 		 * us without being accounted for in the
4139 		 * journal. Extend our transaction here to be sure we
4140 		 * can change those blocks.
4141 		 */
4142 		ret = ocfs2_extend_trans(handle, left_path->p_tree_depth);
4143 		if (ret < 0) {
4144 			mlog_errno(ret);
4145 			goto out;
4146 		}
4147 
4148 		ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
4149 		if (ret < 0) {
4150 			mlog_errno(ret);
4151 			goto out;
4152 		}
4153 	}
4154 
4155 	/*
4156 	 * Pass both paths to the journal. The majority of inserts
4157 	 * will be touching all components anyway.
4158 	 */
4159 	ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4160 	if (ret < 0) {
4161 		mlog_errno(ret);
4162 		goto out;
4163 	}
4164 
4165 	if (insert->ins_split != SPLIT_NONE) {
4166 		/*
4167 		 * We could call ocfs2_insert_at_leaf() for some types
4168 		 * of splits, but it's easier to just let one separate
4169 		 * function sort it all out.
4170 		 */
4171 		ocfs2_split_record(et, left_path, right_path,
4172 				   insert_rec, insert->ins_split);
4173 
4174 		/*
4175 		 * Split might have modified either leaf and we don't
4176 		 * have a guarantee that the later edge insert will
4177 		 * dirty this for us.
4178 		 */
4179 		if (left_path)
4180 			ocfs2_journal_dirty(handle,
4181 					    path_leaf_bh(left_path));
4182 	} else
4183 		ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path),
4184 				     insert);
4185 
4186 	ocfs2_journal_dirty(handle, leaf_bh);
4187 
4188 	if (left_path) {
4189 		/*
4190 		 * The rotate code has indicated that we need to fix
4191 		 * up portions of the tree after the insert.
4192 		 *
4193 		 * XXX: Should we extend the transaction here?
4194 		 */
4195 		subtree_index = ocfs2_find_subtree_root(et, left_path,
4196 							right_path);
4197 		ocfs2_complete_edge_insert(handle, left_path, right_path,
4198 					   subtree_index);
4199 	}
4200 
4201 	ret = 0;
4202 out:
4203 	return ret;
4204 }
4205 
4206 static int ocfs2_do_insert_extent(handle_t *handle,
4207 				  struct ocfs2_extent_tree *et,
4208 				  struct ocfs2_extent_rec *insert_rec,
4209 				  struct ocfs2_insert_type *type)
4210 {
4211 	int ret, rotate = 0;
4212 	u32 cpos;
4213 	struct ocfs2_path *right_path = NULL;
4214 	struct ocfs2_path *left_path = NULL;
4215 	struct ocfs2_extent_list *el;
4216 
4217 	el = et->et_root_el;
4218 
4219 	ret = ocfs2_et_root_journal_access(handle, et,
4220 					   OCFS2_JOURNAL_ACCESS_WRITE);
4221 	if (ret) {
4222 		mlog_errno(ret);
4223 		goto out;
4224 	}
4225 
4226 	if (le16_to_cpu(el->l_tree_depth) == 0) {
4227 		ocfs2_insert_at_leaf(et, insert_rec, el, type);
4228 		goto out_update_clusters;
4229 	}
4230 
4231 	right_path = ocfs2_new_path_from_et(et);
4232 	if (!right_path) {
4233 		ret = -ENOMEM;
4234 		mlog_errno(ret);
4235 		goto out;
4236 	}
4237 
4238 	/*
4239 	 * Determine the path to start with. Rotations need the
4240 	 * rightmost path, everything else can go directly to the
4241 	 * target leaf.
4242 	 */
4243 	cpos = le32_to_cpu(insert_rec->e_cpos);
4244 	if (type->ins_appending == APPEND_NONE &&
4245 	    type->ins_contig == CONTIG_NONE) {
4246 		rotate = 1;
4247 		cpos = UINT_MAX;
4248 	}
4249 
4250 	ret = ocfs2_find_path(et->et_ci, right_path, cpos);
4251 	if (ret) {
4252 		mlog_errno(ret);
4253 		goto out;
4254 	}
4255 
4256 	/*
4257 	 * Rotations and appends need special treatment - they modify
4258 	 * parts of the tree's above them.
4259 	 *
4260 	 * Both might pass back a path immediate to the left of the
4261 	 * one being inserted to. This will be cause
4262 	 * ocfs2_insert_path() to modify the rightmost records of
4263 	 * left_path to account for an edge insert.
4264 	 *
4265 	 * XXX: When modifying this code, keep in mind that an insert
4266 	 * can wind up skipping both of these two special cases...
4267 	 */
4268 	if (rotate) {
4269 		ret = ocfs2_rotate_tree_right(handle, et, type->ins_split,
4270 					      le32_to_cpu(insert_rec->e_cpos),
4271 					      right_path, &left_path);
4272 		if (ret) {
4273 			mlog_errno(ret);
4274 			goto out;
4275 		}
4276 
4277 		/*
4278 		 * ocfs2_rotate_tree_right() might have extended the
4279 		 * transaction without re-journaling our tree root.
4280 		 */
4281 		ret = ocfs2_et_root_journal_access(handle, et,
4282 						   OCFS2_JOURNAL_ACCESS_WRITE);
4283 		if (ret) {
4284 			mlog_errno(ret);
4285 			goto out;
4286 		}
4287 	} else if (type->ins_appending == APPEND_TAIL
4288 		   && type->ins_contig != CONTIG_LEFT) {
4289 		ret = ocfs2_append_rec_to_path(handle, et, insert_rec,
4290 					       right_path, &left_path);
4291 		if (ret) {
4292 			mlog_errno(ret);
4293 			goto out;
4294 		}
4295 	}
4296 
4297 	ret = ocfs2_insert_path(handle, et, left_path, right_path,
4298 				insert_rec, type);
4299 	if (ret) {
4300 		mlog_errno(ret);
4301 		goto out;
4302 	}
4303 
4304 out_update_clusters:
4305 	if (type->ins_split == SPLIT_NONE)
4306 		ocfs2_et_update_clusters(et,
4307 					 le16_to_cpu(insert_rec->e_leaf_clusters));
4308 
4309 	ocfs2_journal_dirty(handle, et->et_root_bh);
4310 
4311 out:
4312 	ocfs2_free_path(left_path);
4313 	ocfs2_free_path(right_path);
4314 
4315 	return ret;
4316 }
4317 
4318 static enum ocfs2_contig_type
4319 ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et,
4320 			       struct ocfs2_path *path,
4321 			       struct ocfs2_extent_list *el, int index,
4322 			       struct ocfs2_extent_rec *split_rec)
4323 {
4324 	int status;
4325 	enum ocfs2_contig_type ret = CONTIG_NONE;
4326 	u32 left_cpos, right_cpos;
4327 	struct ocfs2_extent_rec *rec = NULL;
4328 	struct ocfs2_extent_list *new_el;
4329 	struct ocfs2_path *left_path = NULL, *right_path = NULL;
4330 	struct buffer_head *bh;
4331 	struct ocfs2_extent_block *eb;
4332 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
4333 
4334 	if (index > 0) {
4335 		rec = &el->l_recs[index - 1];
4336 	} else if (path->p_tree_depth > 0) {
4337 		status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
4338 		if (status)
4339 			goto out;
4340 
4341 		if (left_cpos != 0) {
4342 			left_path = ocfs2_new_path_from_path(path);
4343 			if (!left_path)
4344 				goto out;
4345 
4346 			status = ocfs2_find_path(et->et_ci, left_path,
4347 						 left_cpos);
4348 			if (status)
4349 				goto out;
4350 
4351 			new_el = path_leaf_el(left_path);
4352 
4353 			if (le16_to_cpu(new_el->l_next_free_rec) !=
4354 			    le16_to_cpu(new_el->l_count)) {
4355 				bh = path_leaf_bh(left_path);
4356 				eb = (struct ocfs2_extent_block *)bh->b_data;
4357 				ocfs2_error(sb,
4358 					    "Extent block #%llu has an "
4359 					    "invalid l_next_free_rec of "
4360 					    "%d.  It should have "
4361 					    "matched the l_count of %d",
4362 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4363 					    le16_to_cpu(new_el->l_next_free_rec),
4364 					    le16_to_cpu(new_el->l_count));
4365 				status = -EINVAL;
4366 				goto out;
4367 			}
4368 			rec = &new_el->l_recs[
4369 				le16_to_cpu(new_el->l_next_free_rec) - 1];
4370 		}
4371 	}
4372 
4373 	/*
4374 	 * We're careful to check for an empty extent record here -
4375 	 * the merge code will know what to do if it sees one.
4376 	 */
4377 	if (rec) {
4378 		if (index == 1 && ocfs2_is_empty_extent(rec)) {
4379 			if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4380 				ret = CONTIG_RIGHT;
4381 		} else {
4382 			ret = ocfs2_et_extent_contig(et, rec, split_rec);
4383 		}
4384 	}
4385 
4386 	rec = NULL;
4387 	if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4388 		rec = &el->l_recs[index + 1];
4389 	else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4390 		 path->p_tree_depth > 0) {
4391 		status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
4392 		if (status)
4393 			goto out;
4394 
4395 		if (right_cpos == 0)
4396 			goto out;
4397 
4398 		right_path = ocfs2_new_path_from_path(path);
4399 		if (!right_path)
4400 			goto out;
4401 
4402 		status = ocfs2_find_path(et->et_ci, right_path, right_cpos);
4403 		if (status)
4404 			goto out;
4405 
4406 		new_el = path_leaf_el(right_path);
4407 		rec = &new_el->l_recs[0];
4408 		if (ocfs2_is_empty_extent(rec)) {
4409 			if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4410 				bh = path_leaf_bh(right_path);
4411 				eb = (struct ocfs2_extent_block *)bh->b_data;
4412 				ocfs2_error(sb,
4413 					    "Extent block #%llu has an "
4414 					    "invalid l_next_free_rec of %d",
4415 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4416 					    le16_to_cpu(new_el->l_next_free_rec));
4417 				status = -EINVAL;
4418 				goto out;
4419 			}
4420 			rec = &new_el->l_recs[1];
4421 		}
4422 	}
4423 
4424 	if (rec) {
4425 		enum ocfs2_contig_type contig_type;
4426 
4427 		contig_type = ocfs2_et_extent_contig(et, rec, split_rec);
4428 
4429 		if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4430 			ret = CONTIG_LEFTRIGHT;
4431 		else if (ret == CONTIG_NONE)
4432 			ret = contig_type;
4433 	}
4434 
4435 out:
4436 	if (left_path)
4437 		ocfs2_free_path(left_path);
4438 	if (right_path)
4439 		ocfs2_free_path(right_path);
4440 
4441 	return ret;
4442 }
4443 
4444 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et,
4445 				     struct ocfs2_insert_type *insert,
4446 				     struct ocfs2_extent_list *el,
4447 				     struct ocfs2_extent_rec *insert_rec)
4448 {
4449 	int i;
4450 	enum ocfs2_contig_type contig_type = CONTIG_NONE;
4451 
4452 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4453 
4454 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4455 		contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i],
4456 						     insert_rec);
4457 		if (contig_type != CONTIG_NONE) {
4458 			insert->ins_contig_index = i;
4459 			break;
4460 		}
4461 	}
4462 	insert->ins_contig = contig_type;
4463 
4464 	if (insert->ins_contig != CONTIG_NONE) {
4465 		struct ocfs2_extent_rec *rec =
4466 				&el->l_recs[insert->ins_contig_index];
4467 		unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4468 				   le16_to_cpu(insert_rec->e_leaf_clusters);
4469 
4470 		/*
4471 		 * Caller might want us to limit the size of extents, don't
4472 		 * calculate contiguousness if we might exceed that limit.
4473 		 */
4474 		if (et->et_max_leaf_clusters &&
4475 		    (len > et->et_max_leaf_clusters))
4476 			insert->ins_contig = CONTIG_NONE;
4477 	}
4478 }
4479 
4480 /*
4481  * This should only be called against the righmost leaf extent list.
4482  *
4483  * ocfs2_figure_appending_type() will figure out whether we'll have to
4484  * insert at the tail of the rightmost leaf.
4485  *
4486  * This should also work against the root extent list for tree's with 0
4487  * depth. If we consider the root extent list to be the rightmost leaf node
4488  * then the logic here makes sense.
4489  */
4490 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4491 					struct ocfs2_extent_list *el,
4492 					struct ocfs2_extent_rec *insert_rec)
4493 {
4494 	int i;
4495 	u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4496 	struct ocfs2_extent_rec *rec;
4497 
4498 	insert->ins_appending = APPEND_NONE;
4499 
4500 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4501 
4502 	if (!el->l_next_free_rec)
4503 		goto set_tail_append;
4504 
4505 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4506 		/* Were all records empty? */
4507 		if (le16_to_cpu(el->l_next_free_rec) == 1)
4508 			goto set_tail_append;
4509 	}
4510 
4511 	i = le16_to_cpu(el->l_next_free_rec) - 1;
4512 	rec = &el->l_recs[i];
4513 
4514 	if (cpos >=
4515 	    (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4516 		goto set_tail_append;
4517 
4518 	return;
4519 
4520 set_tail_append:
4521 	insert->ins_appending = APPEND_TAIL;
4522 }
4523 
4524 /*
4525  * Helper function called at the begining of an insert.
4526  *
4527  * This computes a few things that are commonly used in the process of
4528  * inserting into the btree:
4529  *   - Whether the new extent is contiguous with an existing one.
4530  *   - The current tree depth.
4531  *   - Whether the insert is an appending one.
4532  *   - The total # of free records in the tree.
4533  *
4534  * All of the information is stored on the ocfs2_insert_type
4535  * structure.
4536  */
4537 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et,
4538 				    struct buffer_head **last_eb_bh,
4539 				    struct ocfs2_extent_rec *insert_rec,
4540 				    int *free_records,
4541 				    struct ocfs2_insert_type *insert)
4542 {
4543 	int ret;
4544 	struct ocfs2_extent_block *eb;
4545 	struct ocfs2_extent_list *el;
4546 	struct ocfs2_path *path = NULL;
4547 	struct buffer_head *bh = NULL;
4548 
4549 	insert->ins_split = SPLIT_NONE;
4550 
4551 	el = et->et_root_el;
4552 	insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4553 
4554 	if (el->l_tree_depth) {
4555 		/*
4556 		 * If we have tree depth, we read in the
4557 		 * rightmost extent block ahead of time as
4558 		 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4559 		 * may want it later.
4560 		 */
4561 		ret = ocfs2_read_extent_block(et->et_ci,
4562 					      ocfs2_et_get_last_eb_blk(et),
4563 					      &bh);
4564 		if (ret) {
4565 			mlog_exit(ret);
4566 			goto out;
4567 		}
4568 		eb = (struct ocfs2_extent_block *) bh->b_data;
4569 		el = &eb->h_list;
4570 	}
4571 
4572 	/*
4573 	 * Unless we have a contiguous insert, we'll need to know if
4574 	 * there is room left in our allocation tree for another
4575 	 * extent record.
4576 	 *
4577 	 * XXX: This test is simplistic, we can search for empty
4578 	 * extent records too.
4579 	 */
4580 	*free_records = le16_to_cpu(el->l_count) -
4581 		le16_to_cpu(el->l_next_free_rec);
4582 
4583 	if (!insert->ins_tree_depth) {
4584 		ocfs2_figure_contig_type(et, insert, el, insert_rec);
4585 		ocfs2_figure_appending_type(insert, el, insert_rec);
4586 		return 0;
4587 	}
4588 
4589 	path = ocfs2_new_path_from_et(et);
4590 	if (!path) {
4591 		ret = -ENOMEM;
4592 		mlog_errno(ret);
4593 		goto out;
4594 	}
4595 
4596 	/*
4597 	 * In the case that we're inserting past what the tree
4598 	 * currently accounts for, ocfs2_find_path() will return for
4599 	 * us the rightmost tree path. This is accounted for below in
4600 	 * the appending code.
4601 	 */
4602 	ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos));
4603 	if (ret) {
4604 		mlog_errno(ret);
4605 		goto out;
4606 	}
4607 
4608 	el = path_leaf_el(path);
4609 
4610 	/*
4611 	 * Now that we have the path, there's two things we want to determine:
4612 	 * 1) Contiguousness (also set contig_index if this is so)
4613 	 *
4614 	 * 2) Are we doing an append? We can trivially break this up
4615          *     into two types of appends: simple record append, or a
4616          *     rotate inside the tail leaf.
4617 	 */
4618 	ocfs2_figure_contig_type(et, insert, el, insert_rec);
4619 
4620 	/*
4621 	 * The insert code isn't quite ready to deal with all cases of
4622 	 * left contiguousness. Specifically, if it's an insert into
4623 	 * the 1st record in a leaf, it will require the adjustment of
4624 	 * cluster count on the last record of the path directly to it's
4625 	 * left. For now, just catch that case and fool the layers
4626 	 * above us. This works just fine for tree_depth == 0, which
4627 	 * is why we allow that above.
4628 	 */
4629 	if (insert->ins_contig == CONTIG_LEFT &&
4630 	    insert->ins_contig_index == 0)
4631 		insert->ins_contig = CONTIG_NONE;
4632 
4633 	/*
4634 	 * Ok, so we can simply compare against last_eb to figure out
4635 	 * whether the path doesn't exist. This will only happen in
4636 	 * the case that we're doing a tail append, so maybe we can
4637 	 * take advantage of that information somehow.
4638 	 */
4639 	if (ocfs2_et_get_last_eb_blk(et) ==
4640 	    path_leaf_bh(path)->b_blocknr) {
4641 		/*
4642 		 * Ok, ocfs2_find_path() returned us the rightmost
4643 		 * tree path. This might be an appending insert. There are
4644 		 * two cases:
4645 		 *    1) We're doing a true append at the tail:
4646 		 *	-This might even be off the end of the leaf
4647 		 *    2) We're "appending" by rotating in the tail
4648 		 */
4649 		ocfs2_figure_appending_type(insert, el, insert_rec);
4650 	}
4651 
4652 out:
4653 	ocfs2_free_path(path);
4654 
4655 	if (ret == 0)
4656 		*last_eb_bh = bh;
4657 	else
4658 		brelse(bh);
4659 	return ret;
4660 }
4661 
4662 /*
4663  * Insert an extent into a btree.
4664  *
4665  * The caller needs to update the owning btree's cluster count.
4666  */
4667 int ocfs2_insert_extent(handle_t *handle,
4668 			struct ocfs2_extent_tree *et,
4669 			u32 cpos,
4670 			u64 start_blk,
4671 			u32 new_clusters,
4672 			u8 flags,
4673 			struct ocfs2_alloc_context *meta_ac)
4674 {
4675 	int status;
4676 	int uninitialized_var(free_records);
4677 	struct buffer_head *last_eb_bh = NULL;
4678 	struct ocfs2_insert_type insert = {0, };
4679 	struct ocfs2_extent_rec rec;
4680 
4681 	mlog(0, "add %u clusters at position %u to owner %llu\n",
4682 	     new_clusters, cpos,
4683 	     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
4684 
4685 	memset(&rec, 0, sizeof(rec));
4686 	rec.e_cpos = cpu_to_le32(cpos);
4687 	rec.e_blkno = cpu_to_le64(start_blk);
4688 	rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4689 	rec.e_flags = flags;
4690 	status = ocfs2_et_insert_check(et, &rec);
4691 	if (status) {
4692 		mlog_errno(status);
4693 		goto bail;
4694 	}
4695 
4696 	status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec,
4697 					  &free_records, &insert);
4698 	if (status < 0) {
4699 		mlog_errno(status);
4700 		goto bail;
4701 	}
4702 
4703 	mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4704 	     "Insert.contig_index: %d, Insert.free_records: %d, "
4705 	     "Insert.tree_depth: %d\n",
4706 	     insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4707 	     free_records, insert.ins_tree_depth);
4708 
4709 	if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4710 		status = ocfs2_grow_tree(handle, et,
4711 					 &insert.ins_tree_depth, &last_eb_bh,
4712 					 meta_ac);
4713 		if (status) {
4714 			mlog_errno(status);
4715 			goto bail;
4716 		}
4717 	}
4718 
4719 	/* Finally, we can add clusters. This might rotate the tree for us. */
4720 	status = ocfs2_do_insert_extent(handle, et, &rec, &insert);
4721 	if (status < 0)
4722 		mlog_errno(status);
4723 	else
4724 		ocfs2_et_extent_map_insert(et, &rec);
4725 
4726 bail:
4727 	brelse(last_eb_bh);
4728 
4729 	mlog_exit(status);
4730 	return status;
4731 }
4732 
4733 /*
4734  * Allcate and add clusters into the extent b-tree.
4735  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4736  * The extent b-tree's root is specified by et, and
4737  * it is not limited to the file storage. Any extent tree can use this
4738  * function if it implements the proper ocfs2_extent_tree.
4739  */
4740 int ocfs2_add_clusters_in_btree(handle_t *handle,
4741 				struct ocfs2_extent_tree *et,
4742 				u32 *logical_offset,
4743 				u32 clusters_to_add,
4744 				int mark_unwritten,
4745 				struct ocfs2_alloc_context *data_ac,
4746 				struct ocfs2_alloc_context *meta_ac,
4747 				enum ocfs2_alloc_restarted *reason_ret)
4748 {
4749 	int status = 0;
4750 	int free_extents;
4751 	enum ocfs2_alloc_restarted reason = RESTART_NONE;
4752 	u32 bit_off, num_bits;
4753 	u64 block;
4754 	u8 flags = 0;
4755 	struct ocfs2_super *osb =
4756 		OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
4757 
4758 	BUG_ON(!clusters_to_add);
4759 
4760 	if (mark_unwritten)
4761 		flags = OCFS2_EXT_UNWRITTEN;
4762 
4763 	free_extents = ocfs2_num_free_extents(osb, et);
4764 	if (free_extents < 0) {
4765 		status = free_extents;
4766 		mlog_errno(status);
4767 		goto leave;
4768 	}
4769 
4770 	/* there are two cases which could cause us to EAGAIN in the
4771 	 * we-need-more-metadata case:
4772 	 * 1) we haven't reserved *any*
4773 	 * 2) we are so fragmented, we've needed to add metadata too
4774 	 *    many times. */
4775 	if (!free_extents && !meta_ac) {
4776 		mlog(0, "we haven't reserved any metadata!\n");
4777 		status = -EAGAIN;
4778 		reason = RESTART_META;
4779 		goto leave;
4780 	} else if ((!free_extents)
4781 		   && (ocfs2_alloc_context_bits_left(meta_ac)
4782 		       < ocfs2_extend_meta_needed(et->et_root_el))) {
4783 		mlog(0, "filesystem is really fragmented...\n");
4784 		status = -EAGAIN;
4785 		reason = RESTART_META;
4786 		goto leave;
4787 	}
4788 
4789 	status = __ocfs2_claim_clusters(handle, data_ac, 1,
4790 					clusters_to_add, &bit_off, &num_bits);
4791 	if (status < 0) {
4792 		if (status != -ENOSPC)
4793 			mlog_errno(status);
4794 		goto leave;
4795 	}
4796 
4797 	BUG_ON(num_bits > clusters_to_add);
4798 
4799 	/* reserve our write early -- insert_extent may update the tree root */
4800 	status = ocfs2_et_root_journal_access(handle, et,
4801 					      OCFS2_JOURNAL_ACCESS_WRITE);
4802 	if (status < 0) {
4803 		mlog_errno(status);
4804 		goto leave;
4805 	}
4806 
4807 	block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4808 	mlog(0, "Allocating %u clusters at block %u for owner %llu\n",
4809 	     num_bits, bit_off,
4810 	     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
4811 	status = ocfs2_insert_extent(handle, et, *logical_offset, block,
4812 				     num_bits, flags, meta_ac);
4813 	if (status < 0) {
4814 		mlog_errno(status);
4815 		goto leave;
4816 	}
4817 
4818 	ocfs2_journal_dirty(handle, et->et_root_bh);
4819 
4820 	clusters_to_add -= num_bits;
4821 	*logical_offset += num_bits;
4822 
4823 	if (clusters_to_add) {
4824 		mlog(0, "need to alloc once more, wanted = %u\n",
4825 		     clusters_to_add);
4826 		status = -EAGAIN;
4827 		reason = RESTART_TRANS;
4828 	}
4829 
4830 leave:
4831 	mlog_exit(status);
4832 	if (reason_ret)
4833 		*reason_ret = reason;
4834 	return status;
4835 }
4836 
4837 static void ocfs2_make_right_split_rec(struct super_block *sb,
4838 				       struct ocfs2_extent_rec *split_rec,
4839 				       u32 cpos,
4840 				       struct ocfs2_extent_rec *rec)
4841 {
4842 	u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4843 	u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4844 
4845 	memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4846 
4847 	split_rec->e_cpos = cpu_to_le32(cpos);
4848 	split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4849 
4850 	split_rec->e_blkno = rec->e_blkno;
4851 	le64_add_cpu(&split_rec->e_blkno,
4852 		     ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4853 
4854 	split_rec->e_flags = rec->e_flags;
4855 }
4856 
4857 static int ocfs2_split_and_insert(handle_t *handle,
4858 				  struct ocfs2_extent_tree *et,
4859 				  struct ocfs2_path *path,
4860 				  struct buffer_head **last_eb_bh,
4861 				  int split_index,
4862 				  struct ocfs2_extent_rec *orig_split_rec,
4863 				  struct ocfs2_alloc_context *meta_ac)
4864 {
4865 	int ret = 0, depth;
4866 	unsigned int insert_range, rec_range, do_leftright = 0;
4867 	struct ocfs2_extent_rec tmprec;
4868 	struct ocfs2_extent_list *rightmost_el;
4869 	struct ocfs2_extent_rec rec;
4870 	struct ocfs2_extent_rec split_rec = *orig_split_rec;
4871 	struct ocfs2_insert_type insert;
4872 	struct ocfs2_extent_block *eb;
4873 
4874 leftright:
4875 	/*
4876 	 * Store a copy of the record on the stack - it might move
4877 	 * around as the tree is manipulated below.
4878 	 */
4879 	rec = path_leaf_el(path)->l_recs[split_index];
4880 
4881 	rightmost_el = et->et_root_el;
4882 
4883 	depth = le16_to_cpu(rightmost_el->l_tree_depth);
4884 	if (depth) {
4885 		BUG_ON(!(*last_eb_bh));
4886 		eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4887 		rightmost_el = &eb->h_list;
4888 	}
4889 
4890 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4891 	    le16_to_cpu(rightmost_el->l_count)) {
4892 		ret = ocfs2_grow_tree(handle, et,
4893 				      &depth, last_eb_bh, meta_ac);
4894 		if (ret) {
4895 			mlog_errno(ret);
4896 			goto out;
4897 		}
4898 	}
4899 
4900 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4901 	insert.ins_appending = APPEND_NONE;
4902 	insert.ins_contig = CONTIG_NONE;
4903 	insert.ins_tree_depth = depth;
4904 
4905 	insert_range = le32_to_cpu(split_rec.e_cpos) +
4906 		le16_to_cpu(split_rec.e_leaf_clusters);
4907 	rec_range = le32_to_cpu(rec.e_cpos) +
4908 		le16_to_cpu(rec.e_leaf_clusters);
4909 
4910 	if (split_rec.e_cpos == rec.e_cpos) {
4911 		insert.ins_split = SPLIT_LEFT;
4912 	} else if (insert_range == rec_range) {
4913 		insert.ins_split = SPLIT_RIGHT;
4914 	} else {
4915 		/*
4916 		 * Left/right split. We fake this as a right split
4917 		 * first and then make a second pass as a left split.
4918 		 */
4919 		insert.ins_split = SPLIT_RIGHT;
4920 
4921 		ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4922 					   &tmprec, insert_range, &rec);
4923 
4924 		split_rec = tmprec;
4925 
4926 		BUG_ON(do_leftright);
4927 		do_leftright = 1;
4928 	}
4929 
4930 	ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
4931 	if (ret) {
4932 		mlog_errno(ret);
4933 		goto out;
4934 	}
4935 
4936 	if (do_leftright == 1) {
4937 		u32 cpos;
4938 		struct ocfs2_extent_list *el;
4939 
4940 		do_leftright++;
4941 		split_rec = *orig_split_rec;
4942 
4943 		ocfs2_reinit_path(path, 1);
4944 
4945 		cpos = le32_to_cpu(split_rec.e_cpos);
4946 		ret = ocfs2_find_path(et->et_ci, path, cpos);
4947 		if (ret) {
4948 			mlog_errno(ret);
4949 			goto out;
4950 		}
4951 
4952 		el = path_leaf_el(path);
4953 		split_index = ocfs2_search_extent_list(el, cpos);
4954 		goto leftright;
4955 	}
4956 out:
4957 
4958 	return ret;
4959 }
4960 
4961 static int ocfs2_replace_extent_rec(handle_t *handle,
4962 				    struct ocfs2_extent_tree *et,
4963 				    struct ocfs2_path *path,
4964 				    struct ocfs2_extent_list *el,
4965 				    int split_index,
4966 				    struct ocfs2_extent_rec *split_rec)
4967 {
4968 	int ret;
4969 
4970 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
4971 					   path_num_items(path) - 1);
4972 	if (ret) {
4973 		mlog_errno(ret);
4974 		goto out;
4975 	}
4976 
4977 	el->l_recs[split_index] = *split_rec;
4978 
4979 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
4980 out:
4981 	return ret;
4982 }
4983 
4984 /*
4985  * Split part or all of the extent record at split_index in the leaf
4986  * pointed to by path. Merge with the contiguous extent record if needed.
4987  *
4988  * Care is taken to handle contiguousness so as to not grow the tree.
4989  *
4990  * meta_ac is not strictly necessary - we only truly need it if growth
4991  * of the tree is required. All other cases will degrade into a less
4992  * optimal tree layout.
4993  *
4994  * last_eb_bh should be the rightmost leaf block for any extent
4995  * btree. Since a split may grow the tree or a merge might shrink it,
4996  * the caller cannot trust the contents of that buffer after this call.
4997  *
4998  * This code is optimized for readability - several passes might be
4999  * made over certain portions of the tree. All of those blocks will
5000  * have been brought into cache (and pinned via the journal), so the
5001  * extra overhead is not expressed in terms of disk reads.
5002  */
5003 int ocfs2_split_extent(handle_t *handle,
5004 		       struct ocfs2_extent_tree *et,
5005 		       struct ocfs2_path *path,
5006 		       int split_index,
5007 		       struct ocfs2_extent_rec *split_rec,
5008 		       struct ocfs2_alloc_context *meta_ac,
5009 		       struct ocfs2_cached_dealloc_ctxt *dealloc)
5010 {
5011 	int ret = 0;
5012 	struct ocfs2_extent_list *el = path_leaf_el(path);
5013 	struct buffer_head *last_eb_bh = NULL;
5014 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5015 	struct ocfs2_merge_ctxt ctxt;
5016 	struct ocfs2_extent_list *rightmost_el;
5017 
5018 	if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5019 	    ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5020 	     (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5021 		ret = -EIO;
5022 		mlog_errno(ret);
5023 		goto out;
5024 	}
5025 
5026 	ctxt.c_contig_type = ocfs2_figure_merge_contig_type(et, path, el,
5027 							    split_index,
5028 							    split_rec);
5029 
5030 	/*
5031 	 * The core merge / split code wants to know how much room is
5032 	 * left in this allocation tree, so we pass the
5033 	 * rightmost extent list.
5034 	 */
5035 	if (path->p_tree_depth) {
5036 		struct ocfs2_extent_block *eb;
5037 
5038 		ret = ocfs2_read_extent_block(et->et_ci,
5039 					      ocfs2_et_get_last_eb_blk(et),
5040 					      &last_eb_bh);
5041 		if (ret) {
5042 			mlog_exit(ret);
5043 			goto out;
5044 		}
5045 
5046 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5047 		rightmost_el = &eb->h_list;
5048 	} else
5049 		rightmost_el = path_root_el(path);
5050 
5051 	if (rec->e_cpos == split_rec->e_cpos &&
5052 	    rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5053 		ctxt.c_split_covers_rec = 1;
5054 	else
5055 		ctxt.c_split_covers_rec = 0;
5056 
5057 	ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5058 
5059 	mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
5060 	     split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
5061 	     ctxt.c_split_covers_rec);
5062 
5063 	if (ctxt.c_contig_type == CONTIG_NONE) {
5064 		if (ctxt.c_split_covers_rec)
5065 			ret = ocfs2_replace_extent_rec(handle, et, path, el,
5066 						       split_index, split_rec);
5067 		else
5068 			ret = ocfs2_split_and_insert(handle, et, path,
5069 						     &last_eb_bh, split_index,
5070 						     split_rec, meta_ac);
5071 		if (ret)
5072 			mlog_errno(ret);
5073 	} else {
5074 		ret = ocfs2_try_to_merge_extent(handle, et, path,
5075 						split_index, split_rec,
5076 						dealloc, &ctxt);
5077 		if (ret)
5078 			mlog_errno(ret);
5079 	}
5080 
5081 out:
5082 	brelse(last_eb_bh);
5083 	return ret;
5084 }
5085 
5086 /*
5087  * Change the flags of the already-existing extent at cpos for len clusters.
5088  *
5089  * new_flags: the flags we want to set.
5090  * clear_flags: the flags we want to clear.
5091  * phys: the new physical offset we want this new extent starts from.
5092  *
5093  * If the existing extent is larger than the request, initiate a
5094  * split. An attempt will be made at merging with adjacent extents.
5095  *
5096  * The caller is responsible for passing down meta_ac if we'll need it.
5097  */
5098 int ocfs2_change_extent_flag(handle_t *handle,
5099 			     struct ocfs2_extent_tree *et,
5100 			     u32 cpos, u32 len, u32 phys,
5101 			     struct ocfs2_alloc_context *meta_ac,
5102 			     struct ocfs2_cached_dealloc_ctxt *dealloc,
5103 			     int new_flags, int clear_flags)
5104 {
5105 	int ret, index;
5106 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5107 	u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys);
5108 	struct ocfs2_extent_rec split_rec;
5109 	struct ocfs2_path *left_path = NULL;
5110 	struct ocfs2_extent_list *el;
5111 	struct ocfs2_extent_rec *rec;
5112 
5113 	left_path = ocfs2_new_path_from_et(et);
5114 	if (!left_path) {
5115 		ret = -ENOMEM;
5116 		mlog_errno(ret);
5117 		goto out;
5118 	}
5119 
5120 	ret = ocfs2_find_path(et->et_ci, left_path, cpos);
5121 	if (ret) {
5122 		mlog_errno(ret);
5123 		goto out;
5124 	}
5125 	el = path_leaf_el(left_path);
5126 
5127 	index = ocfs2_search_extent_list(el, cpos);
5128 	if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5129 		ocfs2_error(sb,
5130 			    "Owner %llu has an extent at cpos %u which can no "
5131 			    "longer be found.\n",
5132 			     (unsigned long long)
5133 			     ocfs2_metadata_cache_owner(et->et_ci), cpos);
5134 		ret = -EROFS;
5135 		goto out;
5136 	}
5137 
5138 	ret = -EIO;
5139 	rec = &el->l_recs[index];
5140 	if (new_flags && (rec->e_flags & new_flags)) {
5141 		mlog(ML_ERROR, "Owner %llu tried to set %d flags on an "
5142 		     "extent that already had them",
5143 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5144 		     new_flags);
5145 		goto out;
5146 	}
5147 
5148 	if (clear_flags && !(rec->e_flags & clear_flags)) {
5149 		mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an "
5150 		     "extent that didn't have them",
5151 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5152 		     clear_flags);
5153 		goto out;
5154 	}
5155 
5156 	memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5157 	split_rec.e_cpos = cpu_to_le32(cpos);
5158 	split_rec.e_leaf_clusters = cpu_to_le16(len);
5159 	split_rec.e_blkno = cpu_to_le64(start_blkno);
5160 	split_rec.e_flags = rec->e_flags;
5161 	if (new_flags)
5162 		split_rec.e_flags |= new_flags;
5163 	if (clear_flags)
5164 		split_rec.e_flags &= ~clear_flags;
5165 
5166 	ret = ocfs2_split_extent(handle, et, left_path,
5167 				 index, &split_rec, meta_ac,
5168 				 dealloc);
5169 	if (ret)
5170 		mlog_errno(ret);
5171 
5172 out:
5173 	ocfs2_free_path(left_path);
5174 	return ret;
5175 
5176 }
5177 
5178 /*
5179  * Mark the already-existing extent at cpos as written for len clusters.
5180  * This removes the unwritten extent flag.
5181  *
5182  * If the existing extent is larger than the request, initiate a
5183  * split. An attempt will be made at merging with adjacent extents.
5184  *
5185  * The caller is responsible for passing down meta_ac if we'll need it.
5186  */
5187 int ocfs2_mark_extent_written(struct inode *inode,
5188 			      struct ocfs2_extent_tree *et,
5189 			      handle_t *handle, u32 cpos, u32 len, u32 phys,
5190 			      struct ocfs2_alloc_context *meta_ac,
5191 			      struct ocfs2_cached_dealloc_ctxt *dealloc)
5192 {
5193 	int ret;
5194 
5195 	mlog(0, "Inode %lu cpos %u, len %u, phys clusters %u\n",
5196 	     inode->i_ino, cpos, len, phys);
5197 
5198 	if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5199 		ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
5200 			    "that are being written to, but the feature bit "
5201 			    "is not set in the super block.",
5202 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
5203 		ret = -EROFS;
5204 		goto out;
5205 	}
5206 
5207 	/*
5208 	 * XXX: This should be fixed up so that we just re-insert the
5209 	 * next extent records.
5210 	 */
5211 	ocfs2_et_extent_map_truncate(et, 0);
5212 
5213 	ret = ocfs2_change_extent_flag(handle, et, cpos,
5214 				       len, phys, meta_ac, dealloc,
5215 				       0, OCFS2_EXT_UNWRITTEN);
5216 	if (ret)
5217 		mlog_errno(ret);
5218 
5219 out:
5220 	return ret;
5221 }
5222 
5223 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et,
5224 			    struct ocfs2_path *path,
5225 			    int index, u32 new_range,
5226 			    struct ocfs2_alloc_context *meta_ac)
5227 {
5228 	int ret, depth, credits;
5229 	struct buffer_head *last_eb_bh = NULL;
5230 	struct ocfs2_extent_block *eb;
5231 	struct ocfs2_extent_list *rightmost_el, *el;
5232 	struct ocfs2_extent_rec split_rec;
5233 	struct ocfs2_extent_rec *rec;
5234 	struct ocfs2_insert_type insert;
5235 
5236 	/*
5237 	 * Setup the record to split before we grow the tree.
5238 	 */
5239 	el = path_leaf_el(path);
5240 	rec = &el->l_recs[index];
5241 	ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
5242 				   &split_rec, new_range, rec);
5243 
5244 	depth = path->p_tree_depth;
5245 	if (depth > 0) {
5246 		ret = ocfs2_read_extent_block(et->et_ci,
5247 					      ocfs2_et_get_last_eb_blk(et),
5248 					      &last_eb_bh);
5249 		if (ret < 0) {
5250 			mlog_errno(ret);
5251 			goto out;
5252 		}
5253 
5254 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5255 		rightmost_el = &eb->h_list;
5256 	} else
5257 		rightmost_el = path_leaf_el(path);
5258 
5259 	credits = path->p_tree_depth +
5260 		  ocfs2_extend_meta_needed(et->et_root_el);
5261 	ret = ocfs2_extend_trans(handle, credits);
5262 	if (ret) {
5263 		mlog_errno(ret);
5264 		goto out;
5265 	}
5266 
5267 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5268 	    le16_to_cpu(rightmost_el->l_count)) {
5269 		ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh,
5270 				      meta_ac);
5271 		if (ret) {
5272 			mlog_errno(ret);
5273 			goto out;
5274 		}
5275 	}
5276 
5277 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5278 	insert.ins_appending = APPEND_NONE;
5279 	insert.ins_contig = CONTIG_NONE;
5280 	insert.ins_split = SPLIT_RIGHT;
5281 	insert.ins_tree_depth = depth;
5282 
5283 	ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
5284 	if (ret)
5285 		mlog_errno(ret);
5286 
5287 out:
5288 	brelse(last_eb_bh);
5289 	return ret;
5290 }
5291 
5292 static int ocfs2_truncate_rec(handle_t *handle,
5293 			      struct ocfs2_extent_tree *et,
5294 			      struct ocfs2_path *path, int index,
5295 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
5296 			      u32 cpos, u32 len)
5297 {
5298 	int ret;
5299 	u32 left_cpos, rec_range, trunc_range;
5300 	int wants_rotate = 0, is_rightmost_tree_rec = 0;
5301 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5302 	struct ocfs2_path *left_path = NULL;
5303 	struct ocfs2_extent_list *el = path_leaf_el(path);
5304 	struct ocfs2_extent_rec *rec;
5305 	struct ocfs2_extent_block *eb;
5306 
5307 	if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5308 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5309 		if (ret) {
5310 			mlog_errno(ret);
5311 			goto out;
5312 		}
5313 
5314 		index--;
5315 	}
5316 
5317 	if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5318 	    path->p_tree_depth) {
5319 		/*
5320 		 * Check whether this is the rightmost tree record. If
5321 		 * we remove all of this record or part of its right
5322 		 * edge then an update of the record lengths above it
5323 		 * will be required.
5324 		 */
5325 		eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5326 		if (eb->h_next_leaf_blk == 0)
5327 			is_rightmost_tree_rec = 1;
5328 	}
5329 
5330 	rec = &el->l_recs[index];
5331 	if (index == 0 && path->p_tree_depth &&
5332 	    le32_to_cpu(rec->e_cpos) == cpos) {
5333 		/*
5334 		 * Changing the leftmost offset (via partial or whole
5335 		 * record truncate) of an interior (or rightmost) path
5336 		 * means we have to update the subtree that is formed
5337 		 * by this leaf and the one to it's left.
5338 		 *
5339 		 * There are two cases we can skip:
5340 		 *   1) Path is the leftmost one in our btree.
5341 		 *   2) The leaf is rightmost and will be empty after
5342 		 *      we remove the extent record - the rotate code
5343 		 *      knows how to update the newly formed edge.
5344 		 */
5345 
5346 		ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
5347 		if (ret) {
5348 			mlog_errno(ret);
5349 			goto out;
5350 		}
5351 
5352 		if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5353 			left_path = ocfs2_new_path_from_path(path);
5354 			if (!left_path) {
5355 				ret = -ENOMEM;
5356 				mlog_errno(ret);
5357 				goto out;
5358 			}
5359 
5360 			ret = ocfs2_find_path(et->et_ci, left_path,
5361 					      left_cpos);
5362 			if (ret) {
5363 				mlog_errno(ret);
5364 				goto out;
5365 			}
5366 		}
5367 	}
5368 
5369 	ret = ocfs2_extend_rotate_transaction(handle, 0,
5370 					      handle->h_buffer_credits,
5371 					      path);
5372 	if (ret) {
5373 		mlog_errno(ret);
5374 		goto out;
5375 	}
5376 
5377 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
5378 	if (ret) {
5379 		mlog_errno(ret);
5380 		goto out;
5381 	}
5382 
5383 	ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
5384 	if (ret) {
5385 		mlog_errno(ret);
5386 		goto out;
5387 	}
5388 
5389 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5390 	trunc_range = cpos + len;
5391 
5392 	if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5393 		int next_free;
5394 
5395 		memset(rec, 0, sizeof(*rec));
5396 		ocfs2_cleanup_merge(el, index);
5397 		wants_rotate = 1;
5398 
5399 		next_free = le16_to_cpu(el->l_next_free_rec);
5400 		if (is_rightmost_tree_rec && next_free > 1) {
5401 			/*
5402 			 * We skip the edge update if this path will
5403 			 * be deleted by the rotate code.
5404 			 */
5405 			rec = &el->l_recs[next_free - 1];
5406 			ocfs2_adjust_rightmost_records(handle, et, path,
5407 						       rec);
5408 		}
5409 	} else if (le32_to_cpu(rec->e_cpos) == cpos) {
5410 		/* Remove leftmost portion of the record. */
5411 		le32_add_cpu(&rec->e_cpos, len);
5412 		le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5413 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5414 	} else if (rec_range == trunc_range) {
5415 		/* Remove rightmost portion of the record */
5416 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5417 		if (is_rightmost_tree_rec)
5418 			ocfs2_adjust_rightmost_records(handle, et, path, rec);
5419 	} else {
5420 		/* Caller should have trapped this. */
5421 		mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) "
5422 		     "(%u, %u)\n",
5423 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5424 		     le32_to_cpu(rec->e_cpos),
5425 		     le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5426 		BUG();
5427 	}
5428 
5429 	if (left_path) {
5430 		int subtree_index;
5431 
5432 		subtree_index = ocfs2_find_subtree_root(et, left_path, path);
5433 		ocfs2_complete_edge_insert(handle, left_path, path,
5434 					   subtree_index);
5435 	}
5436 
5437 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
5438 
5439 	ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5440 	if (ret) {
5441 		mlog_errno(ret);
5442 		goto out;
5443 	}
5444 
5445 out:
5446 	ocfs2_free_path(left_path);
5447 	return ret;
5448 }
5449 
5450 int ocfs2_remove_extent(handle_t *handle,
5451 			struct ocfs2_extent_tree *et,
5452 			u32 cpos, u32 len,
5453 			struct ocfs2_alloc_context *meta_ac,
5454 			struct ocfs2_cached_dealloc_ctxt *dealloc)
5455 {
5456 	int ret, index;
5457 	u32 rec_range, trunc_range;
5458 	struct ocfs2_extent_rec *rec;
5459 	struct ocfs2_extent_list *el;
5460 	struct ocfs2_path *path = NULL;
5461 
5462 	/*
5463 	 * XXX: Why are we truncating to 0 instead of wherever this
5464 	 * affects us?
5465 	 */
5466 	ocfs2_et_extent_map_truncate(et, 0);
5467 
5468 	path = ocfs2_new_path_from_et(et);
5469 	if (!path) {
5470 		ret = -ENOMEM;
5471 		mlog_errno(ret);
5472 		goto out;
5473 	}
5474 
5475 	ret = ocfs2_find_path(et->et_ci, path, cpos);
5476 	if (ret) {
5477 		mlog_errno(ret);
5478 		goto out;
5479 	}
5480 
5481 	el = path_leaf_el(path);
5482 	index = ocfs2_search_extent_list(el, cpos);
5483 	if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5484 		ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5485 			    "Owner %llu has an extent at cpos %u which can no "
5486 			    "longer be found.\n",
5487 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5488 			    cpos);
5489 		ret = -EROFS;
5490 		goto out;
5491 	}
5492 
5493 	/*
5494 	 * We have 3 cases of extent removal:
5495 	 *   1) Range covers the entire extent rec
5496 	 *   2) Range begins or ends on one edge of the extent rec
5497 	 *   3) Range is in the middle of the extent rec (no shared edges)
5498 	 *
5499 	 * For case 1 we remove the extent rec and left rotate to
5500 	 * fill the hole.
5501 	 *
5502 	 * For case 2 we just shrink the existing extent rec, with a
5503 	 * tree update if the shrinking edge is also the edge of an
5504 	 * extent block.
5505 	 *
5506 	 * For case 3 we do a right split to turn the extent rec into
5507 	 * something case 2 can handle.
5508 	 */
5509 	rec = &el->l_recs[index];
5510 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5511 	trunc_range = cpos + len;
5512 
5513 	BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5514 
5515 	mlog(0, "Owner %llu, remove (cpos %u, len %u). Existing index %d "
5516 	     "(cpos %u, len %u)\n",
5517 	     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5518 	     cpos, len, index,
5519 	     le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
5520 
5521 	if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5522 		ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5523 					 cpos, len);
5524 		if (ret) {
5525 			mlog_errno(ret);
5526 			goto out;
5527 		}
5528 	} else {
5529 		ret = ocfs2_split_tree(handle, et, path, index,
5530 				       trunc_range, meta_ac);
5531 		if (ret) {
5532 			mlog_errno(ret);
5533 			goto out;
5534 		}
5535 
5536 		/*
5537 		 * The split could have manipulated the tree enough to
5538 		 * move the record location, so we have to look for it again.
5539 		 */
5540 		ocfs2_reinit_path(path, 1);
5541 
5542 		ret = ocfs2_find_path(et->et_ci, path, cpos);
5543 		if (ret) {
5544 			mlog_errno(ret);
5545 			goto out;
5546 		}
5547 
5548 		el = path_leaf_el(path);
5549 		index = ocfs2_search_extent_list(el, cpos);
5550 		if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5551 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5552 				    "Owner %llu: split at cpos %u lost record.",
5553 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5554 				    cpos);
5555 			ret = -EROFS;
5556 			goto out;
5557 		}
5558 
5559 		/*
5560 		 * Double check our values here. If anything is fishy,
5561 		 * it's easier to catch it at the top level.
5562 		 */
5563 		rec = &el->l_recs[index];
5564 		rec_range = le32_to_cpu(rec->e_cpos) +
5565 			ocfs2_rec_clusters(el, rec);
5566 		if (rec_range != trunc_range) {
5567 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5568 				    "Owner %llu: error after split at cpos %u"
5569 				    "trunc len %u, existing record is (%u,%u)",
5570 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5571 				    cpos, len, le32_to_cpu(rec->e_cpos),
5572 				    ocfs2_rec_clusters(el, rec));
5573 			ret = -EROFS;
5574 			goto out;
5575 		}
5576 
5577 		ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5578 					 cpos, len);
5579 		if (ret) {
5580 			mlog_errno(ret);
5581 			goto out;
5582 		}
5583 	}
5584 
5585 out:
5586 	ocfs2_free_path(path);
5587 	return ret;
5588 }
5589 
5590 /*
5591  * ocfs2_reserve_blocks_for_rec_trunc() would look basically the
5592  * same as ocfs2_lock_alloctors(), except for it accepts a blocks
5593  * number to reserve some extra blocks, and it only handles meta
5594  * data allocations.
5595  *
5596  * Currently, only ocfs2_remove_btree_range() uses it for truncating
5597  * and punching holes.
5598  */
5599 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode,
5600 					      struct ocfs2_extent_tree *et,
5601 					      u32 extents_to_split,
5602 					      struct ocfs2_alloc_context **ac,
5603 					      int extra_blocks)
5604 {
5605 	int ret = 0, num_free_extents;
5606 	unsigned int max_recs_needed = 2 * extents_to_split;
5607 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5608 
5609 	*ac = NULL;
5610 
5611 	num_free_extents = ocfs2_num_free_extents(osb, et);
5612 	if (num_free_extents < 0) {
5613 		ret = num_free_extents;
5614 		mlog_errno(ret);
5615 		goto out;
5616 	}
5617 
5618 	if (!num_free_extents ||
5619 	    (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed))
5620 		extra_blocks += ocfs2_extend_meta_needed(et->et_root_el);
5621 
5622 	if (extra_blocks) {
5623 		ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac);
5624 		if (ret < 0) {
5625 			if (ret != -ENOSPC)
5626 				mlog_errno(ret);
5627 			goto out;
5628 		}
5629 	}
5630 
5631 out:
5632 	if (ret) {
5633 		if (*ac) {
5634 			ocfs2_free_alloc_context(*ac);
5635 			*ac = NULL;
5636 		}
5637 	}
5638 
5639 	return ret;
5640 }
5641 
5642 int ocfs2_remove_btree_range(struct inode *inode,
5643 			     struct ocfs2_extent_tree *et,
5644 			     u32 cpos, u32 phys_cpos, u32 len, int flags,
5645 			     struct ocfs2_cached_dealloc_ctxt *dealloc,
5646 			     u64 refcount_loc)
5647 {
5648 	int ret, credits = 0, extra_blocks = 0;
5649 	u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5650 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5651 	struct inode *tl_inode = osb->osb_tl_inode;
5652 	handle_t *handle;
5653 	struct ocfs2_alloc_context *meta_ac = NULL;
5654 	struct ocfs2_refcount_tree *ref_tree = NULL;
5655 
5656 	if ((flags & OCFS2_EXT_REFCOUNTED) && len) {
5657 		BUG_ON(!(OCFS2_I(inode)->ip_dyn_features &
5658 			 OCFS2_HAS_REFCOUNT_FL));
5659 
5660 		ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
5661 					       &ref_tree, NULL);
5662 		if (ret) {
5663 			mlog_errno(ret);
5664 			goto out;
5665 		}
5666 
5667 		ret = ocfs2_prepare_refcount_change_for_del(inode,
5668 							    refcount_loc,
5669 							    phys_blkno,
5670 							    len,
5671 							    &credits,
5672 							    &extra_blocks);
5673 		if (ret < 0) {
5674 			mlog_errno(ret);
5675 			goto out;
5676 		}
5677 	}
5678 
5679 	ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac,
5680 						 extra_blocks);
5681 	if (ret) {
5682 		mlog_errno(ret);
5683 		return ret;
5684 	}
5685 
5686 	mutex_lock(&tl_inode->i_mutex);
5687 
5688 	if (ocfs2_truncate_log_needs_flush(osb)) {
5689 		ret = __ocfs2_flush_truncate_log(osb);
5690 		if (ret < 0) {
5691 			mlog_errno(ret);
5692 			goto out;
5693 		}
5694 	}
5695 
5696 	handle = ocfs2_start_trans(osb,
5697 			ocfs2_remove_extent_credits(osb->sb) + credits);
5698 	if (IS_ERR(handle)) {
5699 		ret = PTR_ERR(handle);
5700 		mlog_errno(ret);
5701 		goto out;
5702 	}
5703 
5704 	ret = ocfs2_et_root_journal_access(handle, et,
5705 					   OCFS2_JOURNAL_ACCESS_WRITE);
5706 	if (ret) {
5707 		mlog_errno(ret);
5708 		goto out;
5709 	}
5710 
5711 	dquot_free_space_nodirty(inode,
5712 				  ocfs2_clusters_to_bytes(inode->i_sb, len));
5713 
5714 	ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc);
5715 	if (ret) {
5716 		mlog_errno(ret);
5717 		goto out_commit;
5718 	}
5719 
5720 	ocfs2_et_update_clusters(et, -len);
5721 
5722 	ocfs2_journal_dirty(handle, et->et_root_bh);
5723 
5724 	if (phys_blkno) {
5725 		if (flags & OCFS2_EXT_REFCOUNTED)
5726 			ret = ocfs2_decrease_refcount(inode, handle,
5727 					ocfs2_blocks_to_clusters(osb->sb,
5728 								 phys_blkno),
5729 					len, meta_ac,
5730 					dealloc, 1);
5731 		else
5732 			ret = ocfs2_truncate_log_append(osb, handle,
5733 							phys_blkno, len);
5734 		if (ret)
5735 			mlog_errno(ret);
5736 
5737 	}
5738 
5739 out_commit:
5740 	ocfs2_commit_trans(osb, handle);
5741 out:
5742 	mutex_unlock(&tl_inode->i_mutex);
5743 
5744 	if (meta_ac)
5745 		ocfs2_free_alloc_context(meta_ac);
5746 
5747 	if (ref_tree)
5748 		ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
5749 
5750 	return ret;
5751 }
5752 
5753 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5754 {
5755 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5756 	struct ocfs2_dinode *di;
5757 	struct ocfs2_truncate_log *tl;
5758 
5759 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5760 	tl = &di->id2.i_dealloc;
5761 
5762 	mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5763 			"slot %d, invalid truncate log parameters: used = "
5764 			"%u, count = %u\n", osb->slot_num,
5765 			le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5766 	return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5767 }
5768 
5769 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5770 					   unsigned int new_start)
5771 {
5772 	unsigned int tail_index;
5773 	unsigned int current_tail;
5774 
5775 	/* No records, nothing to coalesce */
5776 	if (!le16_to_cpu(tl->tl_used))
5777 		return 0;
5778 
5779 	tail_index = le16_to_cpu(tl->tl_used) - 1;
5780 	current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5781 	current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5782 
5783 	return current_tail == new_start;
5784 }
5785 
5786 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5787 			      handle_t *handle,
5788 			      u64 start_blk,
5789 			      unsigned int num_clusters)
5790 {
5791 	int status, index;
5792 	unsigned int start_cluster, tl_count;
5793 	struct inode *tl_inode = osb->osb_tl_inode;
5794 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5795 	struct ocfs2_dinode *di;
5796 	struct ocfs2_truncate_log *tl;
5797 
5798 	mlog_entry("start_blk = %llu, num_clusters = %u\n",
5799 		   (unsigned long long)start_blk, num_clusters);
5800 
5801 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5802 
5803 	start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5804 
5805 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5806 
5807 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5808 	 * by the underlying call to ocfs2_read_inode_block(), so any
5809 	 * corruption is a code bug */
5810 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5811 
5812 	tl = &di->id2.i_dealloc;
5813 	tl_count = le16_to_cpu(tl->tl_count);
5814 	mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5815 			tl_count == 0,
5816 			"Truncate record count on #%llu invalid "
5817 			"wanted %u, actual %u\n",
5818 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5819 			ocfs2_truncate_recs_per_inode(osb->sb),
5820 			le16_to_cpu(tl->tl_count));
5821 
5822 	/* Caller should have known to flush before calling us. */
5823 	index = le16_to_cpu(tl->tl_used);
5824 	if (index >= tl_count) {
5825 		status = -ENOSPC;
5826 		mlog_errno(status);
5827 		goto bail;
5828 	}
5829 
5830 	status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5831 					 OCFS2_JOURNAL_ACCESS_WRITE);
5832 	if (status < 0) {
5833 		mlog_errno(status);
5834 		goto bail;
5835 	}
5836 
5837 	mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5838 	     "%llu (index = %d)\n", num_clusters, start_cluster,
5839 	     (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
5840 
5841 	if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5842 		/*
5843 		 * Move index back to the record we are coalescing with.
5844 		 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5845 		 */
5846 		index--;
5847 
5848 		num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5849 		mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5850 		     index, le32_to_cpu(tl->tl_recs[index].t_start),
5851 		     num_clusters);
5852 	} else {
5853 		tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5854 		tl->tl_used = cpu_to_le16(index + 1);
5855 	}
5856 	tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5857 
5858 	ocfs2_journal_dirty(handle, tl_bh);
5859 
5860 	osb->truncated_clusters += num_clusters;
5861 bail:
5862 	mlog_exit(status);
5863 	return status;
5864 }
5865 
5866 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5867 					 handle_t *handle,
5868 					 struct inode *data_alloc_inode,
5869 					 struct buffer_head *data_alloc_bh)
5870 {
5871 	int status = 0;
5872 	int i;
5873 	unsigned int num_clusters;
5874 	u64 start_blk;
5875 	struct ocfs2_truncate_rec rec;
5876 	struct ocfs2_dinode *di;
5877 	struct ocfs2_truncate_log *tl;
5878 	struct inode *tl_inode = osb->osb_tl_inode;
5879 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5880 
5881 	mlog_entry_void();
5882 
5883 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5884 	tl = &di->id2.i_dealloc;
5885 	i = le16_to_cpu(tl->tl_used) - 1;
5886 	while (i >= 0) {
5887 		/* Caller has given us at least enough credits to
5888 		 * update the truncate log dinode */
5889 		status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5890 						 OCFS2_JOURNAL_ACCESS_WRITE);
5891 		if (status < 0) {
5892 			mlog_errno(status);
5893 			goto bail;
5894 		}
5895 
5896 		tl->tl_used = cpu_to_le16(i);
5897 
5898 		ocfs2_journal_dirty(handle, tl_bh);
5899 
5900 		/* TODO: Perhaps we can calculate the bulk of the
5901 		 * credits up front rather than extending like
5902 		 * this. */
5903 		status = ocfs2_extend_trans(handle,
5904 					    OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5905 		if (status < 0) {
5906 			mlog_errno(status);
5907 			goto bail;
5908 		}
5909 
5910 		rec = tl->tl_recs[i];
5911 		start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5912 						    le32_to_cpu(rec.t_start));
5913 		num_clusters = le32_to_cpu(rec.t_clusters);
5914 
5915 		/* if start_blk is not set, we ignore the record as
5916 		 * invalid. */
5917 		if (start_blk) {
5918 			mlog(0, "free record %d, start = %u, clusters = %u\n",
5919 			     i, le32_to_cpu(rec.t_start), num_clusters);
5920 
5921 			status = ocfs2_free_clusters(handle, data_alloc_inode,
5922 						     data_alloc_bh, start_blk,
5923 						     num_clusters);
5924 			if (status < 0) {
5925 				mlog_errno(status);
5926 				goto bail;
5927 			}
5928 		}
5929 		i--;
5930 	}
5931 
5932 	osb->truncated_clusters = 0;
5933 
5934 bail:
5935 	mlog_exit(status);
5936 	return status;
5937 }
5938 
5939 /* Expects you to already be holding tl_inode->i_mutex */
5940 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5941 {
5942 	int status;
5943 	unsigned int num_to_flush;
5944 	handle_t *handle;
5945 	struct inode *tl_inode = osb->osb_tl_inode;
5946 	struct inode *data_alloc_inode = NULL;
5947 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5948 	struct buffer_head *data_alloc_bh = NULL;
5949 	struct ocfs2_dinode *di;
5950 	struct ocfs2_truncate_log *tl;
5951 
5952 	mlog_entry_void();
5953 
5954 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5955 
5956 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5957 
5958 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5959 	 * by the underlying call to ocfs2_read_inode_block(), so any
5960 	 * corruption is a code bug */
5961 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5962 
5963 	tl = &di->id2.i_dealloc;
5964 	num_to_flush = le16_to_cpu(tl->tl_used);
5965 	mlog(0, "Flush %u records from truncate log #%llu\n",
5966 	     num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5967 	if (!num_to_flush) {
5968 		status = 0;
5969 		goto out;
5970 	}
5971 
5972 	data_alloc_inode = ocfs2_get_system_file_inode(osb,
5973 						       GLOBAL_BITMAP_SYSTEM_INODE,
5974 						       OCFS2_INVALID_SLOT);
5975 	if (!data_alloc_inode) {
5976 		status = -EINVAL;
5977 		mlog(ML_ERROR, "Could not get bitmap inode!\n");
5978 		goto out;
5979 	}
5980 
5981 	mutex_lock(&data_alloc_inode->i_mutex);
5982 
5983 	status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5984 	if (status < 0) {
5985 		mlog_errno(status);
5986 		goto out_mutex;
5987 	}
5988 
5989 	handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5990 	if (IS_ERR(handle)) {
5991 		status = PTR_ERR(handle);
5992 		mlog_errno(status);
5993 		goto out_unlock;
5994 	}
5995 
5996 	status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5997 					       data_alloc_bh);
5998 	if (status < 0)
5999 		mlog_errno(status);
6000 
6001 	ocfs2_commit_trans(osb, handle);
6002 
6003 out_unlock:
6004 	brelse(data_alloc_bh);
6005 	ocfs2_inode_unlock(data_alloc_inode, 1);
6006 
6007 out_mutex:
6008 	mutex_unlock(&data_alloc_inode->i_mutex);
6009 	iput(data_alloc_inode);
6010 
6011 out:
6012 	mlog_exit(status);
6013 	return status;
6014 }
6015 
6016 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
6017 {
6018 	int status;
6019 	struct inode *tl_inode = osb->osb_tl_inode;
6020 
6021 	mutex_lock(&tl_inode->i_mutex);
6022 	status = __ocfs2_flush_truncate_log(osb);
6023 	mutex_unlock(&tl_inode->i_mutex);
6024 
6025 	return status;
6026 }
6027 
6028 static void ocfs2_truncate_log_worker(struct work_struct *work)
6029 {
6030 	int status;
6031 	struct ocfs2_super *osb =
6032 		container_of(work, struct ocfs2_super,
6033 			     osb_truncate_log_wq.work);
6034 
6035 	mlog_entry_void();
6036 
6037 	status = ocfs2_flush_truncate_log(osb);
6038 	if (status < 0)
6039 		mlog_errno(status);
6040 	else
6041 		ocfs2_init_steal_slots(osb);
6042 
6043 	mlog_exit(status);
6044 }
6045 
6046 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
6047 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
6048 				       int cancel)
6049 {
6050 	if (osb->osb_tl_inode) {
6051 		/* We want to push off log flushes while truncates are
6052 		 * still running. */
6053 		if (cancel)
6054 			cancel_delayed_work(&osb->osb_truncate_log_wq);
6055 
6056 		queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
6057 				   OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
6058 	}
6059 }
6060 
6061 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
6062 				       int slot_num,
6063 				       struct inode **tl_inode,
6064 				       struct buffer_head **tl_bh)
6065 {
6066 	int status;
6067 	struct inode *inode = NULL;
6068 	struct buffer_head *bh = NULL;
6069 
6070 	inode = ocfs2_get_system_file_inode(osb,
6071 					   TRUNCATE_LOG_SYSTEM_INODE,
6072 					   slot_num);
6073 	if (!inode) {
6074 		status = -EINVAL;
6075 		mlog(ML_ERROR, "Could not get load truncate log inode!\n");
6076 		goto bail;
6077 	}
6078 
6079 	status = ocfs2_read_inode_block(inode, &bh);
6080 	if (status < 0) {
6081 		iput(inode);
6082 		mlog_errno(status);
6083 		goto bail;
6084 	}
6085 
6086 	*tl_inode = inode;
6087 	*tl_bh    = bh;
6088 bail:
6089 	mlog_exit(status);
6090 	return status;
6091 }
6092 
6093 /* called during the 1st stage of node recovery. we stamp a clean
6094  * truncate log and pass back a copy for processing later. if the
6095  * truncate log does not require processing, a *tl_copy is set to
6096  * NULL. */
6097 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
6098 				      int slot_num,
6099 				      struct ocfs2_dinode **tl_copy)
6100 {
6101 	int status;
6102 	struct inode *tl_inode = NULL;
6103 	struct buffer_head *tl_bh = NULL;
6104 	struct ocfs2_dinode *di;
6105 	struct ocfs2_truncate_log *tl;
6106 
6107 	*tl_copy = NULL;
6108 
6109 	mlog(0, "recover truncate log from slot %d\n", slot_num);
6110 
6111 	status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
6112 	if (status < 0) {
6113 		mlog_errno(status);
6114 		goto bail;
6115 	}
6116 
6117 	di = (struct ocfs2_dinode *) tl_bh->b_data;
6118 
6119 	/* tl_bh is loaded from ocfs2_get_truncate_log_info().  It's
6120 	 * validated by the underlying call to ocfs2_read_inode_block(),
6121 	 * so any corruption is a code bug */
6122 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
6123 
6124 	tl = &di->id2.i_dealloc;
6125 	if (le16_to_cpu(tl->tl_used)) {
6126 		mlog(0, "We'll have %u logs to recover\n",
6127 		     le16_to_cpu(tl->tl_used));
6128 
6129 		*tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
6130 		if (!(*tl_copy)) {
6131 			status = -ENOMEM;
6132 			mlog_errno(status);
6133 			goto bail;
6134 		}
6135 
6136 		/* Assuming the write-out below goes well, this copy
6137 		 * will be passed back to recovery for processing. */
6138 		memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
6139 
6140 		/* All we need to do to clear the truncate log is set
6141 		 * tl_used. */
6142 		tl->tl_used = 0;
6143 
6144 		ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6145 		status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
6146 		if (status < 0) {
6147 			mlog_errno(status);
6148 			goto bail;
6149 		}
6150 	}
6151 
6152 bail:
6153 	if (tl_inode)
6154 		iput(tl_inode);
6155 	brelse(tl_bh);
6156 
6157 	if (status < 0 && (*tl_copy)) {
6158 		kfree(*tl_copy);
6159 		*tl_copy = NULL;
6160 	}
6161 
6162 	mlog_exit(status);
6163 	return status;
6164 }
6165 
6166 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6167 					 struct ocfs2_dinode *tl_copy)
6168 {
6169 	int status = 0;
6170 	int i;
6171 	unsigned int clusters, num_recs, start_cluster;
6172 	u64 start_blk;
6173 	handle_t *handle;
6174 	struct inode *tl_inode = osb->osb_tl_inode;
6175 	struct ocfs2_truncate_log *tl;
6176 
6177 	mlog_entry_void();
6178 
6179 	if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6180 		mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6181 		return -EINVAL;
6182 	}
6183 
6184 	tl = &tl_copy->id2.i_dealloc;
6185 	num_recs = le16_to_cpu(tl->tl_used);
6186 	mlog(0, "cleanup %u records from %llu\n", num_recs,
6187 	     (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
6188 
6189 	mutex_lock(&tl_inode->i_mutex);
6190 	for(i = 0; i < num_recs; i++) {
6191 		if (ocfs2_truncate_log_needs_flush(osb)) {
6192 			status = __ocfs2_flush_truncate_log(osb);
6193 			if (status < 0) {
6194 				mlog_errno(status);
6195 				goto bail_up;
6196 			}
6197 		}
6198 
6199 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6200 		if (IS_ERR(handle)) {
6201 			status = PTR_ERR(handle);
6202 			mlog_errno(status);
6203 			goto bail_up;
6204 		}
6205 
6206 		clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6207 		start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6208 		start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6209 
6210 		status = ocfs2_truncate_log_append(osb, handle,
6211 						   start_blk, clusters);
6212 		ocfs2_commit_trans(osb, handle);
6213 		if (status < 0) {
6214 			mlog_errno(status);
6215 			goto bail_up;
6216 		}
6217 	}
6218 
6219 bail_up:
6220 	mutex_unlock(&tl_inode->i_mutex);
6221 
6222 	mlog_exit(status);
6223 	return status;
6224 }
6225 
6226 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6227 {
6228 	int status;
6229 	struct inode *tl_inode = osb->osb_tl_inode;
6230 
6231 	mlog_entry_void();
6232 
6233 	if (tl_inode) {
6234 		cancel_delayed_work(&osb->osb_truncate_log_wq);
6235 		flush_workqueue(ocfs2_wq);
6236 
6237 		status = ocfs2_flush_truncate_log(osb);
6238 		if (status < 0)
6239 			mlog_errno(status);
6240 
6241 		brelse(osb->osb_tl_bh);
6242 		iput(osb->osb_tl_inode);
6243 	}
6244 
6245 	mlog_exit_void();
6246 }
6247 
6248 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6249 {
6250 	int status;
6251 	struct inode *tl_inode = NULL;
6252 	struct buffer_head *tl_bh = NULL;
6253 
6254 	mlog_entry_void();
6255 
6256 	status = ocfs2_get_truncate_log_info(osb,
6257 					     osb->slot_num,
6258 					     &tl_inode,
6259 					     &tl_bh);
6260 	if (status < 0)
6261 		mlog_errno(status);
6262 
6263 	/* ocfs2_truncate_log_shutdown keys on the existence of
6264 	 * osb->osb_tl_inode so we don't set any of the osb variables
6265 	 * until we're sure all is well. */
6266 	INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6267 			  ocfs2_truncate_log_worker);
6268 	osb->osb_tl_bh    = tl_bh;
6269 	osb->osb_tl_inode = tl_inode;
6270 
6271 	mlog_exit(status);
6272 	return status;
6273 }
6274 
6275 /*
6276  * Delayed de-allocation of suballocator blocks.
6277  *
6278  * Some sets of block de-allocations might involve multiple suballocator inodes.
6279  *
6280  * The locking for this can get extremely complicated, especially when
6281  * the suballocator inodes to delete from aren't known until deep
6282  * within an unrelated codepath.
6283  *
6284  * ocfs2_extent_block structures are a good example of this - an inode
6285  * btree could have been grown by any number of nodes each allocating
6286  * out of their own suballoc inode.
6287  *
6288  * These structures allow the delay of block de-allocation until a
6289  * later time, when locking of multiple cluster inodes won't cause
6290  * deadlock.
6291  */
6292 
6293 /*
6294  * Describe a single bit freed from a suballocator.  For the block
6295  * suballocators, it represents one block.  For the global cluster
6296  * allocator, it represents some clusters and free_bit indicates
6297  * clusters number.
6298  */
6299 struct ocfs2_cached_block_free {
6300 	struct ocfs2_cached_block_free		*free_next;
6301 	u64					free_bg;
6302 	u64					free_blk;
6303 	unsigned int				free_bit;
6304 };
6305 
6306 struct ocfs2_per_slot_free_list {
6307 	struct ocfs2_per_slot_free_list		*f_next_suballocator;
6308 	int					f_inode_type;
6309 	int					f_slot;
6310 	struct ocfs2_cached_block_free		*f_first;
6311 };
6312 
6313 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6314 				    int sysfile_type,
6315 				    int slot,
6316 				    struct ocfs2_cached_block_free *head)
6317 {
6318 	int ret;
6319 	u64 bg_blkno;
6320 	handle_t *handle;
6321 	struct inode *inode;
6322 	struct buffer_head *di_bh = NULL;
6323 	struct ocfs2_cached_block_free *tmp;
6324 
6325 	inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6326 	if (!inode) {
6327 		ret = -EINVAL;
6328 		mlog_errno(ret);
6329 		goto out;
6330 	}
6331 
6332 	mutex_lock(&inode->i_mutex);
6333 
6334 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
6335 	if (ret) {
6336 		mlog_errno(ret);
6337 		goto out_mutex;
6338 	}
6339 
6340 	handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6341 	if (IS_ERR(handle)) {
6342 		ret = PTR_ERR(handle);
6343 		mlog_errno(ret);
6344 		goto out_unlock;
6345 	}
6346 
6347 	while (head) {
6348 		if (head->free_bg)
6349 			bg_blkno = head->free_bg;
6350 		else
6351 			bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6352 							      head->free_bit);
6353 		mlog(0, "Free bit: (bit %u, blkno %llu)\n",
6354 		     head->free_bit, (unsigned long long)head->free_blk);
6355 
6356 		ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6357 					       head->free_bit, bg_blkno, 1);
6358 		if (ret) {
6359 			mlog_errno(ret);
6360 			goto out_journal;
6361 		}
6362 
6363 		ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
6364 		if (ret) {
6365 			mlog_errno(ret);
6366 			goto out_journal;
6367 		}
6368 
6369 		tmp = head;
6370 		head = head->free_next;
6371 		kfree(tmp);
6372 	}
6373 
6374 out_journal:
6375 	ocfs2_commit_trans(osb, handle);
6376 
6377 out_unlock:
6378 	ocfs2_inode_unlock(inode, 1);
6379 	brelse(di_bh);
6380 out_mutex:
6381 	mutex_unlock(&inode->i_mutex);
6382 	iput(inode);
6383 out:
6384 	while(head) {
6385 		/* Premature exit may have left some dangling items. */
6386 		tmp = head;
6387 		head = head->free_next;
6388 		kfree(tmp);
6389 	}
6390 
6391 	return ret;
6392 }
6393 
6394 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6395 				u64 blkno, unsigned int bit)
6396 {
6397 	int ret = 0;
6398 	struct ocfs2_cached_block_free *item;
6399 
6400 	item = kzalloc(sizeof(*item), GFP_NOFS);
6401 	if (item == NULL) {
6402 		ret = -ENOMEM;
6403 		mlog_errno(ret);
6404 		return ret;
6405 	}
6406 
6407 	mlog(0, "Insert clusters: (bit %u, blk %llu)\n",
6408 	     bit, (unsigned long long)blkno);
6409 
6410 	item->free_blk = blkno;
6411 	item->free_bit = bit;
6412 	item->free_next = ctxt->c_global_allocator;
6413 
6414 	ctxt->c_global_allocator = item;
6415 	return ret;
6416 }
6417 
6418 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6419 				      struct ocfs2_cached_block_free *head)
6420 {
6421 	struct ocfs2_cached_block_free *tmp;
6422 	struct inode *tl_inode = osb->osb_tl_inode;
6423 	handle_t *handle;
6424 	int ret = 0;
6425 
6426 	mutex_lock(&tl_inode->i_mutex);
6427 
6428 	while (head) {
6429 		if (ocfs2_truncate_log_needs_flush(osb)) {
6430 			ret = __ocfs2_flush_truncate_log(osb);
6431 			if (ret < 0) {
6432 				mlog_errno(ret);
6433 				break;
6434 			}
6435 		}
6436 
6437 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6438 		if (IS_ERR(handle)) {
6439 			ret = PTR_ERR(handle);
6440 			mlog_errno(ret);
6441 			break;
6442 		}
6443 
6444 		ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6445 						head->free_bit);
6446 
6447 		ocfs2_commit_trans(osb, handle);
6448 		tmp = head;
6449 		head = head->free_next;
6450 		kfree(tmp);
6451 
6452 		if (ret < 0) {
6453 			mlog_errno(ret);
6454 			break;
6455 		}
6456 	}
6457 
6458 	mutex_unlock(&tl_inode->i_mutex);
6459 
6460 	while (head) {
6461 		/* Premature exit may have left some dangling items. */
6462 		tmp = head;
6463 		head = head->free_next;
6464 		kfree(tmp);
6465 	}
6466 
6467 	return ret;
6468 }
6469 
6470 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6471 		       struct ocfs2_cached_dealloc_ctxt *ctxt)
6472 {
6473 	int ret = 0, ret2;
6474 	struct ocfs2_per_slot_free_list *fl;
6475 
6476 	if (!ctxt)
6477 		return 0;
6478 
6479 	while (ctxt->c_first_suballocator) {
6480 		fl = ctxt->c_first_suballocator;
6481 
6482 		if (fl->f_first) {
6483 			mlog(0, "Free items: (type %u, slot %d)\n",
6484 			     fl->f_inode_type, fl->f_slot);
6485 			ret2 = ocfs2_free_cached_blocks(osb,
6486 							fl->f_inode_type,
6487 							fl->f_slot,
6488 							fl->f_first);
6489 			if (ret2)
6490 				mlog_errno(ret2);
6491 			if (!ret)
6492 				ret = ret2;
6493 		}
6494 
6495 		ctxt->c_first_suballocator = fl->f_next_suballocator;
6496 		kfree(fl);
6497 	}
6498 
6499 	if (ctxt->c_global_allocator) {
6500 		ret2 = ocfs2_free_cached_clusters(osb,
6501 						  ctxt->c_global_allocator);
6502 		if (ret2)
6503 			mlog_errno(ret2);
6504 		if (!ret)
6505 			ret = ret2;
6506 
6507 		ctxt->c_global_allocator = NULL;
6508 	}
6509 
6510 	return ret;
6511 }
6512 
6513 static struct ocfs2_per_slot_free_list *
6514 ocfs2_find_per_slot_free_list(int type,
6515 			      int slot,
6516 			      struct ocfs2_cached_dealloc_ctxt *ctxt)
6517 {
6518 	struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6519 
6520 	while (fl) {
6521 		if (fl->f_inode_type == type && fl->f_slot == slot)
6522 			return fl;
6523 
6524 		fl = fl->f_next_suballocator;
6525 	}
6526 
6527 	fl = kmalloc(sizeof(*fl), GFP_NOFS);
6528 	if (fl) {
6529 		fl->f_inode_type = type;
6530 		fl->f_slot = slot;
6531 		fl->f_first = NULL;
6532 		fl->f_next_suballocator = ctxt->c_first_suballocator;
6533 
6534 		ctxt->c_first_suballocator = fl;
6535 	}
6536 	return fl;
6537 }
6538 
6539 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6540 			      int type, int slot, u64 suballoc,
6541 			      u64 blkno, unsigned int bit)
6542 {
6543 	int ret;
6544 	struct ocfs2_per_slot_free_list *fl;
6545 	struct ocfs2_cached_block_free *item;
6546 
6547 	fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6548 	if (fl == NULL) {
6549 		ret = -ENOMEM;
6550 		mlog_errno(ret);
6551 		goto out;
6552 	}
6553 
6554 	item = kzalloc(sizeof(*item), GFP_NOFS);
6555 	if (item == NULL) {
6556 		ret = -ENOMEM;
6557 		mlog_errno(ret);
6558 		goto out;
6559 	}
6560 
6561 	mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
6562 	     type, slot, bit, (unsigned long long)blkno);
6563 
6564 	item->free_bg = suballoc;
6565 	item->free_blk = blkno;
6566 	item->free_bit = bit;
6567 	item->free_next = fl->f_first;
6568 
6569 	fl->f_first = item;
6570 
6571 	ret = 0;
6572 out:
6573 	return ret;
6574 }
6575 
6576 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6577 					 struct ocfs2_extent_block *eb)
6578 {
6579 	return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6580 					 le16_to_cpu(eb->h_suballoc_slot),
6581 					 le64_to_cpu(eb->h_suballoc_loc),
6582 					 le64_to_cpu(eb->h_blkno),
6583 					 le16_to_cpu(eb->h_suballoc_bit));
6584 }
6585 
6586 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6587 {
6588 	set_buffer_uptodate(bh);
6589 	mark_buffer_dirty(bh);
6590 	return 0;
6591 }
6592 
6593 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6594 			      unsigned int from, unsigned int to,
6595 			      struct page *page, int zero, u64 *phys)
6596 {
6597 	int ret, partial = 0;
6598 
6599 	ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6600 	if (ret)
6601 		mlog_errno(ret);
6602 
6603 	if (zero)
6604 		zero_user_segment(page, from, to);
6605 
6606 	/*
6607 	 * Need to set the buffers we zero'd into uptodate
6608 	 * here if they aren't - ocfs2_map_page_blocks()
6609 	 * might've skipped some
6610 	 */
6611 	ret = walk_page_buffers(handle, page_buffers(page),
6612 				from, to, &partial,
6613 				ocfs2_zero_func);
6614 	if (ret < 0)
6615 		mlog_errno(ret);
6616 	else if (ocfs2_should_order_data(inode)) {
6617 		ret = ocfs2_jbd2_file_inode(handle, inode);
6618 		if (ret < 0)
6619 			mlog_errno(ret);
6620 	}
6621 
6622 	if (!partial)
6623 		SetPageUptodate(page);
6624 
6625 	flush_dcache_page(page);
6626 }
6627 
6628 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6629 				     loff_t end, struct page **pages,
6630 				     int numpages, u64 phys, handle_t *handle)
6631 {
6632 	int i;
6633 	struct page *page;
6634 	unsigned int from, to = PAGE_CACHE_SIZE;
6635 	struct super_block *sb = inode->i_sb;
6636 
6637 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6638 
6639 	if (numpages == 0)
6640 		goto out;
6641 
6642 	to = PAGE_CACHE_SIZE;
6643 	for(i = 0; i < numpages; i++) {
6644 		page = pages[i];
6645 
6646 		from = start & (PAGE_CACHE_SIZE - 1);
6647 		if ((end >> PAGE_CACHE_SHIFT) == page->index)
6648 			to = end & (PAGE_CACHE_SIZE - 1);
6649 
6650 		BUG_ON(from > PAGE_CACHE_SIZE);
6651 		BUG_ON(to > PAGE_CACHE_SIZE);
6652 
6653 		ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6654 					 &phys);
6655 
6656 		start = (page->index + 1) << PAGE_CACHE_SHIFT;
6657 	}
6658 out:
6659 	if (pages)
6660 		ocfs2_unlock_and_free_pages(pages, numpages);
6661 }
6662 
6663 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end,
6664 		     struct page **pages, int *num)
6665 {
6666 	int numpages, ret = 0;
6667 	struct address_space *mapping = inode->i_mapping;
6668 	unsigned long index;
6669 	loff_t last_page_bytes;
6670 
6671 	BUG_ON(start > end);
6672 
6673 	numpages = 0;
6674 	last_page_bytes = PAGE_ALIGN(end);
6675 	index = start >> PAGE_CACHE_SHIFT;
6676 	do {
6677 		pages[numpages] = find_or_create_page(mapping, index, GFP_NOFS);
6678 		if (!pages[numpages]) {
6679 			ret = -ENOMEM;
6680 			mlog_errno(ret);
6681 			goto out;
6682 		}
6683 
6684 		numpages++;
6685 		index++;
6686 	} while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6687 
6688 out:
6689 	if (ret != 0) {
6690 		if (pages)
6691 			ocfs2_unlock_and_free_pages(pages, numpages);
6692 		numpages = 0;
6693 	}
6694 
6695 	*num = numpages;
6696 
6697 	return ret;
6698 }
6699 
6700 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6701 				struct page **pages, int *num)
6702 {
6703 	struct super_block *sb = inode->i_sb;
6704 
6705 	BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6706 	       (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6707 
6708 	return ocfs2_grab_pages(inode, start, end, pages, num);
6709 }
6710 
6711 /*
6712  * Zero the area past i_size but still within an allocated
6713  * cluster. This avoids exposing nonzero data on subsequent file
6714  * extends.
6715  *
6716  * We need to call this before i_size is updated on the inode because
6717  * otherwise block_write_full_page() will skip writeout of pages past
6718  * i_size. The new_i_size parameter is passed for this reason.
6719  */
6720 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6721 				  u64 range_start, u64 range_end)
6722 {
6723 	int ret = 0, numpages;
6724 	struct page **pages = NULL;
6725 	u64 phys;
6726 	unsigned int ext_flags;
6727 	struct super_block *sb = inode->i_sb;
6728 
6729 	/*
6730 	 * File systems which don't support sparse files zero on every
6731 	 * extend.
6732 	 */
6733 	if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6734 		return 0;
6735 
6736 	pages = kcalloc(ocfs2_pages_per_cluster(sb),
6737 			sizeof(struct page *), GFP_NOFS);
6738 	if (pages == NULL) {
6739 		ret = -ENOMEM;
6740 		mlog_errno(ret);
6741 		goto out;
6742 	}
6743 
6744 	if (range_start == range_end)
6745 		goto out;
6746 
6747 	ret = ocfs2_extent_map_get_blocks(inode,
6748 					  range_start >> sb->s_blocksize_bits,
6749 					  &phys, NULL, &ext_flags);
6750 	if (ret) {
6751 		mlog_errno(ret);
6752 		goto out;
6753 	}
6754 
6755 	/*
6756 	 * Tail is a hole, or is marked unwritten. In either case, we
6757 	 * can count on read and write to return/push zero's.
6758 	 */
6759 	if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6760 		goto out;
6761 
6762 	ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6763 				   &numpages);
6764 	if (ret) {
6765 		mlog_errno(ret);
6766 		goto out;
6767 	}
6768 
6769 	ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6770 				 numpages, phys, handle);
6771 
6772 	/*
6773 	 * Initiate writeout of the pages we zero'd here. We don't
6774 	 * wait on them - the truncate_inode_pages() call later will
6775 	 * do that for us.
6776 	 */
6777 	ret = filemap_fdatawrite_range(inode->i_mapping, range_start,
6778 				       range_end - 1);
6779 	if (ret)
6780 		mlog_errno(ret);
6781 
6782 out:
6783 	if (pages)
6784 		kfree(pages);
6785 
6786 	return ret;
6787 }
6788 
6789 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
6790 					     struct ocfs2_dinode *di)
6791 {
6792 	unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
6793 	unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
6794 
6795 	if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
6796 		memset(&di->id2, 0, blocksize -
6797 				    offsetof(struct ocfs2_dinode, id2) -
6798 				    xattrsize);
6799 	else
6800 		memset(&di->id2, 0, blocksize -
6801 				    offsetof(struct ocfs2_dinode, id2));
6802 }
6803 
6804 void ocfs2_dinode_new_extent_list(struct inode *inode,
6805 				  struct ocfs2_dinode *di)
6806 {
6807 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
6808 	di->id2.i_list.l_tree_depth = 0;
6809 	di->id2.i_list.l_next_free_rec = 0;
6810 	di->id2.i_list.l_count = cpu_to_le16(
6811 		ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
6812 }
6813 
6814 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
6815 {
6816 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
6817 	struct ocfs2_inline_data *idata = &di->id2.i_data;
6818 
6819 	spin_lock(&oi->ip_lock);
6820 	oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
6821 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6822 	spin_unlock(&oi->ip_lock);
6823 
6824 	/*
6825 	 * We clear the entire i_data structure here so that all
6826 	 * fields can be properly initialized.
6827 	 */
6828 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
6829 
6830 	idata->id_count = cpu_to_le16(
6831 			ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
6832 }
6833 
6834 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
6835 					 struct buffer_head *di_bh)
6836 {
6837 	int ret, i, has_data, num_pages = 0;
6838 	handle_t *handle;
6839 	u64 uninitialized_var(block);
6840 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
6841 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6842 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6843 	struct ocfs2_alloc_context *data_ac = NULL;
6844 	struct page **pages = NULL;
6845 	loff_t end = osb->s_clustersize;
6846 	struct ocfs2_extent_tree et;
6847 	int did_quota = 0;
6848 
6849 	has_data = i_size_read(inode) ? 1 : 0;
6850 
6851 	if (has_data) {
6852 		pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
6853 				sizeof(struct page *), GFP_NOFS);
6854 		if (pages == NULL) {
6855 			ret = -ENOMEM;
6856 			mlog_errno(ret);
6857 			goto out;
6858 		}
6859 
6860 		ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
6861 		if (ret) {
6862 			mlog_errno(ret);
6863 			goto out;
6864 		}
6865 	}
6866 
6867 	handle = ocfs2_start_trans(osb,
6868 				   ocfs2_inline_to_extents_credits(osb->sb));
6869 	if (IS_ERR(handle)) {
6870 		ret = PTR_ERR(handle);
6871 		mlog_errno(ret);
6872 		goto out_unlock;
6873 	}
6874 
6875 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
6876 				      OCFS2_JOURNAL_ACCESS_WRITE);
6877 	if (ret) {
6878 		mlog_errno(ret);
6879 		goto out_commit;
6880 	}
6881 
6882 	if (has_data) {
6883 		u32 bit_off, num;
6884 		unsigned int page_end;
6885 		u64 phys;
6886 
6887 		ret = dquot_alloc_space_nodirty(inode,
6888 				       ocfs2_clusters_to_bytes(osb->sb, 1));
6889 		if (ret)
6890 			goto out_commit;
6891 		did_quota = 1;
6892 
6893 		data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
6894 
6895 		ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off,
6896 					   &num);
6897 		if (ret) {
6898 			mlog_errno(ret);
6899 			goto out_commit;
6900 		}
6901 
6902 		/*
6903 		 * Save two copies, one for insert, and one that can
6904 		 * be changed by ocfs2_map_and_dirty_page() below.
6905 		 */
6906 		block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
6907 
6908 		/*
6909 		 * Non sparse file systems zero on extend, so no need
6910 		 * to do that now.
6911 		 */
6912 		if (!ocfs2_sparse_alloc(osb) &&
6913 		    PAGE_CACHE_SIZE < osb->s_clustersize)
6914 			end = PAGE_CACHE_SIZE;
6915 
6916 		ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
6917 		if (ret) {
6918 			mlog_errno(ret);
6919 			goto out_commit;
6920 		}
6921 
6922 		/*
6923 		 * This should populate the 1st page for us and mark
6924 		 * it up to date.
6925 		 */
6926 		ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
6927 		if (ret) {
6928 			mlog_errno(ret);
6929 			goto out_commit;
6930 		}
6931 
6932 		page_end = PAGE_CACHE_SIZE;
6933 		if (PAGE_CACHE_SIZE > osb->s_clustersize)
6934 			page_end = osb->s_clustersize;
6935 
6936 		for (i = 0; i < num_pages; i++)
6937 			ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
6938 						 pages[i], i > 0, &phys);
6939 	}
6940 
6941 	spin_lock(&oi->ip_lock);
6942 	oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
6943 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6944 	spin_unlock(&oi->ip_lock);
6945 
6946 	ocfs2_dinode_new_extent_list(inode, di);
6947 
6948 	ocfs2_journal_dirty(handle, di_bh);
6949 
6950 	if (has_data) {
6951 		/*
6952 		 * An error at this point should be extremely rare. If
6953 		 * this proves to be false, we could always re-build
6954 		 * the in-inode data from our pages.
6955 		 */
6956 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
6957 		ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL);
6958 		if (ret) {
6959 			mlog_errno(ret);
6960 			goto out_commit;
6961 		}
6962 
6963 		inode->i_blocks = ocfs2_inode_sector_count(inode);
6964 	}
6965 
6966 out_commit:
6967 	if (ret < 0 && did_quota)
6968 		dquot_free_space_nodirty(inode,
6969 					  ocfs2_clusters_to_bytes(osb->sb, 1));
6970 
6971 	ocfs2_commit_trans(osb, handle);
6972 
6973 out_unlock:
6974 	if (data_ac)
6975 		ocfs2_free_alloc_context(data_ac);
6976 
6977 out:
6978 	if (pages) {
6979 		ocfs2_unlock_and_free_pages(pages, num_pages);
6980 		kfree(pages);
6981 	}
6982 
6983 	return ret;
6984 }
6985 
6986 /*
6987  * It is expected, that by the time you call this function,
6988  * inode->i_size and fe->i_size have been adjusted.
6989  *
6990  * WARNING: This will kfree the truncate context
6991  */
6992 int ocfs2_commit_truncate(struct ocfs2_super *osb,
6993 			  struct inode *inode,
6994 			  struct buffer_head *di_bh)
6995 {
6996 	int status = 0, i, flags = 0;
6997 	u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff;
6998 	u64 blkno = 0;
6999 	struct ocfs2_extent_list *el;
7000 	struct ocfs2_extent_rec *rec;
7001 	struct ocfs2_path *path = NULL;
7002 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7003 	struct ocfs2_extent_list *root_el = &(di->id2.i_list);
7004 	u64 refcount_loc = le64_to_cpu(di->i_refcount_loc);
7005 	struct ocfs2_extent_tree et;
7006 	struct ocfs2_cached_dealloc_ctxt dealloc;
7007 
7008 	mlog_entry_void();
7009 
7010 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
7011 	ocfs2_init_dealloc_ctxt(&dealloc);
7012 
7013 	new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7014 						     i_size_read(inode));
7015 
7016 	path = ocfs2_new_path(di_bh, &di->id2.i_list,
7017 			      ocfs2_journal_access_di);
7018 	if (!path) {
7019 		status = -ENOMEM;
7020 		mlog_errno(status);
7021 		goto bail;
7022 	}
7023 
7024 	ocfs2_extent_map_trunc(inode, new_highest_cpos);
7025 
7026 start:
7027 	/*
7028 	 * Check that we still have allocation to delete.
7029 	 */
7030 	if (OCFS2_I(inode)->ip_clusters == 0) {
7031 		status = 0;
7032 		goto bail;
7033 	}
7034 
7035 	/*
7036 	 * Truncate always works against the rightmost tree branch.
7037 	 */
7038 	status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX);
7039 	if (status) {
7040 		mlog_errno(status);
7041 		goto bail;
7042 	}
7043 
7044 	mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
7045 	     OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
7046 
7047 	/*
7048 	 * By now, el will point to the extent list on the bottom most
7049 	 * portion of this tree. Only the tail record is considered in
7050 	 * each pass.
7051 	 *
7052 	 * We handle the following cases, in order:
7053 	 * - empty extent: delete the remaining branch
7054 	 * - remove the entire record
7055 	 * - remove a partial record
7056 	 * - no record needs to be removed (truncate has completed)
7057 	 */
7058 	el = path_leaf_el(path);
7059 	if (le16_to_cpu(el->l_next_free_rec) == 0) {
7060 		ocfs2_error(inode->i_sb,
7061 			    "Inode %llu has empty extent block at %llu\n",
7062 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7063 			    (unsigned long long)path_leaf_bh(path)->b_blocknr);
7064 		status = -EROFS;
7065 		goto bail;
7066 	}
7067 
7068 	i = le16_to_cpu(el->l_next_free_rec) - 1;
7069 	rec = &el->l_recs[i];
7070 	flags = rec->e_flags;
7071 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
7072 
7073 	if (i == 0 && ocfs2_is_empty_extent(rec)) {
7074 		/*
7075 		 * Lower levels depend on this never happening, but it's best
7076 		 * to check it up here before changing the tree.
7077 		*/
7078 		if (root_el->l_tree_depth && rec->e_int_clusters == 0) {
7079 			ocfs2_error(inode->i_sb, "Inode %lu has an empty "
7080 				    "extent record, depth %u\n", inode->i_ino,
7081 				    le16_to_cpu(root_el->l_tree_depth));
7082 			status = -EROFS;
7083 			goto bail;
7084 		}
7085 		trunc_cpos = le32_to_cpu(rec->e_cpos);
7086 		trunc_len = 0;
7087 		blkno = 0;
7088 	} else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) {
7089 		/*
7090 		 * Truncate entire record.
7091 		 */
7092 		trunc_cpos = le32_to_cpu(rec->e_cpos);
7093 		trunc_len = ocfs2_rec_clusters(el, rec);
7094 		blkno = le64_to_cpu(rec->e_blkno);
7095 	} else if (range > new_highest_cpos) {
7096 		/*
7097 		 * Partial truncate. it also should be
7098 		 * the last truncate we're doing.
7099 		 */
7100 		trunc_cpos = new_highest_cpos;
7101 		trunc_len = range - new_highest_cpos;
7102 		coff = new_highest_cpos - le32_to_cpu(rec->e_cpos);
7103 		blkno = le64_to_cpu(rec->e_blkno) +
7104 				ocfs2_clusters_to_blocks(inode->i_sb, coff);
7105 	} else {
7106 		/*
7107 		 * Truncate completed, leave happily.
7108 		 */
7109 		status = 0;
7110 		goto bail;
7111 	}
7112 
7113 	phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
7114 
7115 	status = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
7116 					  phys_cpos, trunc_len, flags, &dealloc,
7117 					  refcount_loc);
7118 	if (status < 0) {
7119 		mlog_errno(status);
7120 		goto bail;
7121 	}
7122 
7123 	ocfs2_reinit_path(path, 1);
7124 
7125 	/*
7126 	 * The check above will catch the case where we've truncated
7127 	 * away all allocation.
7128 	 */
7129 	goto start;
7130 
7131 bail:
7132 
7133 	ocfs2_schedule_truncate_log_flush(osb, 1);
7134 
7135 	ocfs2_run_deallocs(osb, &dealloc);
7136 
7137 	ocfs2_free_path(path);
7138 
7139 	mlog_exit(status);
7140 	return status;
7141 }
7142 
7143 /*
7144  * 'start' is inclusive, 'end' is not.
7145  */
7146 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7147 			  unsigned int start, unsigned int end, int trunc)
7148 {
7149 	int ret;
7150 	unsigned int numbytes;
7151 	handle_t *handle;
7152 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7153 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7154 	struct ocfs2_inline_data *idata = &di->id2.i_data;
7155 
7156 	if (end > i_size_read(inode))
7157 		end = i_size_read(inode);
7158 
7159 	BUG_ON(start >= end);
7160 
7161 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7162 	    !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7163 	    !ocfs2_supports_inline_data(osb)) {
7164 		ocfs2_error(inode->i_sb,
7165 			    "Inline data flags for inode %llu don't agree! "
7166 			    "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7167 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7168 			    le16_to_cpu(di->i_dyn_features),
7169 			    OCFS2_I(inode)->ip_dyn_features,
7170 			    osb->s_feature_incompat);
7171 		ret = -EROFS;
7172 		goto out;
7173 	}
7174 
7175 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7176 	if (IS_ERR(handle)) {
7177 		ret = PTR_ERR(handle);
7178 		mlog_errno(ret);
7179 		goto out;
7180 	}
7181 
7182 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7183 				      OCFS2_JOURNAL_ACCESS_WRITE);
7184 	if (ret) {
7185 		mlog_errno(ret);
7186 		goto out_commit;
7187 	}
7188 
7189 	numbytes = end - start;
7190 	memset(idata->id_data + start, 0, numbytes);
7191 
7192 	/*
7193 	 * No need to worry about the data page here - it's been
7194 	 * truncated already and inline data doesn't need it for
7195 	 * pushing zero's to disk, so we'll let readpage pick it up
7196 	 * later.
7197 	 */
7198 	if (trunc) {
7199 		i_size_write(inode, start);
7200 		di->i_size = cpu_to_le64(start);
7201 	}
7202 
7203 	inode->i_blocks = ocfs2_inode_sector_count(inode);
7204 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7205 
7206 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7207 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7208 
7209 	ocfs2_journal_dirty(handle, di_bh);
7210 
7211 out_commit:
7212 	ocfs2_commit_trans(osb, handle);
7213 
7214 out:
7215 	return ret;
7216 }
7217