1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * alloc.c 5 * 6 * Extent allocs and frees 7 * 8 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/swap.h> 31 #include <linux/quotaops.h> 32 #include <linux/blkdev.h> 33 #include <linux/sched/signal.h> 34 35 #include <cluster/masklog.h> 36 37 #include "ocfs2.h" 38 39 #include "alloc.h" 40 #include "aops.h" 41 #include "blockcheck.h" 42 #include "dlmglue.h" 43 #include "extent_map.h" 44 #include "inode.h" 45 #include "journal.h" 46 #include "localalloc.h" 47 #include "suballoc.h" 48 #include "sysfile.h" 49 #include "file.h" 50 #include "super.h" 51 #include "uptodate.h" 52 #include "xattr.h" 53 #include "refcounttree.h" 54 #include "ocfs2_trace.h" 55 56 #include "buffer_head_io.h" 57 58 enum ocfs2_contig_type { 59 CONTIG_NONE = 0, 60 CONTIG_LEFT, 61 CONTIG_RIGHT, 62 CONTIG_LEFTRIGHT, 63 }; 64 65 static enum ocfs2_contig_type 66 ocfs2_extent_rec_contig(struct super_block *sb, 67 struct ocfs2_extent_rec *ext, 68 struct ocfs2_extent_rec *insert_rec); 69 /* 70 * Operations for a specific extent tree type. 71 * 72 * To implement an on-disk btree (extent tree) type in ocfs2, add 73 * an ocfs2_extent_tree_operations structure and the matching 74 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it 75 * for the allocation portion of the extent tree. 76 */ 77 struct ocfs2_extent_tree_operations { 78 /* 79 * last_eb_blk is the block number of the right most leaf extent 80 * block. Most on-disk structures containing an extent tree store 81 * this value for fast access. The ->eo_set_last_eb_blk() and 82 * ->eo_get_last_eb_blk() operations access this value. They are 83 * both required. 84 */ 85 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et, 86 u64 blkno); 87 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et); 88 89 /* 90 * The on-disk structure usually keeps track of how many total 91 * clusters are stored in this extent tree. This function updates 92 * that value. new_clusters is the delta, and must be 93 * added to the total. Required. 94 */ 95 void (*eo_update_clusters)(struct ocfs2_extent_tree *et, 96 u32 new_clusters); 97 98 /* 99 * If this extent tree is supported by an extent map, insert 100 * a record into the map. 101 */ 102 void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et, 103 struct ocfs2_extent_rec *rec); 104 105 /* 106 * If this extent tree is supported by an extent map, truncate the 107 * map to clusters, 108 */ 109 void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et, 110 u32 clusters); 111 112 /* 113 * If ->eo_insert_check() exists, it is called before rec is 114 * inserted into the extent tree. It is optional. 115 */ 116 int (*eo_insert_check)(struct ocfs2_extent_tree *et, 117 struct ocfs2_extent_rec *rec); 118 int (*eo_sanity_check)(struct ocfs2_extent_tree *et); 119 120 /* 121 * -------------------------------------------------------------- 122 * The remaining are internal to ocfs2_extent_tree and don't have 123 * accessor functions 124 */ 125 126 /* 127 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el. 128 * It is required. 129 */ 130 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et); 131 132 /* 133 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if 134 * it exists. If it does not, et->et_max_leaf_clusters is set 135 * to 0 (unlimited). Optional. 136 */ 137 void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et); 138 139 /* 140 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec 141 * are contiguous or not. Optional. Don't need to set it if use 142 * ocfs2_extent_rec as the tree leaf. 143 */ 144 enum ocfs2_contig_type 145 (*eo_extent_contig)(struct ocfs2_extent_tree *et, 146 struct ocfs2_extent_rec *ext, 147 struct ocfs2_extent_rec *insert_rec); 148 }; 149 150 151 /* 152 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check 153 * in the methods. 154 */ 155 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et); 156 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 157 u64 blkno); 158 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, 159 u32 clusters); 160 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et, 161 struct ocfs2_extent_rec *rec); 162 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et, 163 u32 clusters); 164 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, 165 struct ocfs2_extent_rec *rec); 166 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et); 167 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et); 168 static const struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = { 169 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk, 170 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk, 171 .eo_update_clusters = ocfs2_dinode_update_clusters, 172 .eo_extent_map_insert = ocfs2_dinode_extent_map_insert, 173 .eo_extent_map_truncate = ocfs2_dinode_extent_map_truncate, 174 .eo_insert_check = ocfs2_dinode_insert_check, 175 .eo_sanity_check = ocfs2_dinode_sanity_check, 176 .eo_fill_root_el = ocfs2_dinode_fill_root_el, 177 }; 178 179 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 180 u64 blkno) 181 { 182 struct ocfs2_dinode *di = et->et_object; 183 184 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 185 di->i_last_eb_blk = cpu_to_le64(blkno); 186 } 187 188 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et) 189 { 190 struct ocfs2_dinode *di = et->et_object; 191 192 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 193 return le64_to_cpu(di->i_last_eb_blk); 194 } 195 196 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, 197 u32 clusters) 198 { 199 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); 200 struct ocfs2_dinode *di = et->et_object; 201 202 le32_add_cpu(&di->i_clusters, clusters); 203 spin_lock(&oi->ip_lock); 204 oi->ip_clusters = le32_to_cpu(di->i_clusters); 205 spin_unlock(&oi->ip_lock); 206 } 207 208 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et, 209 struct ocfs2_extent_rec *rec) 210 { 211 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode; 212 213 ocfs2_extent_map_insert_rec(inode, rec); 214 } 215 216 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et, 217 u32 clusters) 218 { 219 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode; 220 221 ocfs2_extent_map_trunc(inode, clusters); 222 } 223 224 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, 225 struct ocfs2_extent_rec *rec) 226 { 227 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); 228 struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb); 229 230 BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL); 231 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) && 232 (oi->ip_clusters != le32_to_cpu(rec->e_cpos)), 233 "Device %s, asking for sparse allocation: inode %llu, " 234 "cpos %u, clusters %u\n", 235 osb->dev_str, 236 (unsigned long long)oi->ip_blkno, 237 rec->e_cpos, oi->ip_clusters); 238 239 return 0; 240 } 241 242 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et) 243 { 244 struct ocfs2_dinode *di = et->et_object; 245 246 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 247 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 248 249 return 0; 250 } 251 252 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et) 253 { 254 struct ocfs2_dinode *di = et->et_object; 255 256 et->et_root_el = &di->id2.i_list; 257 } 258 259 260 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et) 261 { 262 struct ocfs2_xattr_value_buf *vb = et->et_object; 263 264 et->et_root_el = &vb->vb_xv->xr_list; 265 } 266 267 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et, 268 u64 blkno) 269 { 270 struct ocfs2_xattr_value_buf *vb = et->et_object; 271 272 vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno); 273 } 274 275 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et) 276 { 277 struct ocfs2_xattr_value_buf *vb = et->et_object; 278 279 return le64_to_cpu(vb->vb_xv->xr_last_eb_blk); 280 } 281 282 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et, 283 u32 clusters) 284 { 285 struct ocfs2_xattr_value_buf *vb = et->et_object; 286 287 le32_add_cpu(&vb->vb_xv->xr_clusters, clusters); 288 } 289 290 static const struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = { 291 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk, 292 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk, 293 .eo_update_clusters = ocfs2_xattr_value_update_clusters, 294 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el, 295 }; 296 297 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et) 298 { 299 struct ocfs2_xattr_block *xb = et->et_object; 300 301 et->et_root_el = &xb->xb_attrs.xb_root.xt_list; 302 } 303 304 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et) 305 { 306 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 307 et->et_max_leaf_clusters = 308 ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE); 309 } 310 311 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 312 u64 blkno) 313 { 314 struct ocfs2_xattr_block *xb = et->et_object; 315 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 316 317 xt->xt_last_eb_blk = cpu_to_le64(blkno); 318 } 319 320 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 321 { 322 struct ocfs2_xattr_block *xb = et->et_object; 323 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 324 325 return le64_to_cpu(xt->xt_last_eb_blk); 326 } 327 328 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et, 329 u32 clusters) 330 { 331 struct ocfs2_xattr_block *xb = et->et_object; 332 333 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters); 334 } 335 336 static const struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = { 337 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk, 338 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk, 339 .eo_update_clusters = ocfs2_xattr_tree_update_clusters, 340 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el, 341 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters, 342 }; 343 344 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et, 345 u64 blkno) 346 { 347 struct ocfs2_dx_root_block *dx_root = et->et_object; 348 349 dx_root->dr_last_eb_blk = cpu_to_le64(blkno); 350 } 351 352 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et) 353 { 354 struct ocfs2_dx_root_block *dx_root = et->et_object; 355 356 return le64_to_cpu(dx_root->dr_last_eb_blk); 357 } 358 359 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et, 360 u32 clusters) 361 { 362 struct ocfs2_dx_root_block *dx_root = et->et_object; 363 364 le32_add_cpu(&dx_root->dr_clusters, clusters); 365 } 366 367 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et) 368 { 369 struct ocfs2_dx_root_block *dx_root = et->et_object; 370 371 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root)); 372 373 return 0; 374 } 375 376 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et) 377 { 378 struct ocfs2_dx_root_block *dx_root = et->et_object; 379 380 et->et_root_el = &dx_root->dr_list; 381 } 382 383 static const struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = { 384 .eo_set_last_eb_blk = ocfs2_dx_root_set_last_eb_blk, 385 .eo_get_last_eb_blk = ocfs2_dx_root_get_last_eb_blk, 386 .eo_update_clusters = ocfs2_dx_root_update_clusters, 387 .eo_sanity_check = ocfs2_dx_root_sanity_check, 388 .eo_fill_root_el = ocfs2_dx_root_fill_root_el, 389 }; 390 391 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et) 392 { 393 struct ocfs2_refcount_block *rb = et->et_object; 394 395 et->et_root_el = &rb->rf_list; 396 } 397 398 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 399 u64 blkno) 400 { 401 struct ocfs2_refcount_block *rb = et->et_object; 402 403 rb->rf_last_eb_blk = cpu_to_le64(blkno); 404 } 405 406 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 407 { 408 struct ocfs2_refcount_block *rb = et->et_object; 409 410 return le64_to_cpu(rb->rf_last_eb_blk); 411 } 412 413 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et, 414 u32 clusters) 415 { 416 struct ocfs2_refcount_block *rb = et->et_object; 417 418 le32_add_cpu(&rb->rf_clusters, clusters); 419 } 420 421 static enum ocfs2_contig_type 422 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et, 423 struct ocfs2_extent_rec *ext, 424 struct ocfs2_extent_rec *insert_rec) 425 { 426 return CONTIG_NONE; 427 } 428 429 static const struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = { 430 .eo_set_last_eb_blk = ocfs2_refcount_tree_set_last_eb_blk, 431 .eo_get_last_eb_blk = ocfs2_refcount_tree_get_last_eb_blk, 432 .eo_update_clusters = ocfs2_refcount_tree_update_clusters, 433 .eo_fill_root_el = ocfs2_refcount_tree_fill_root_el, 434 .eo_extent_contig = ocfs2_refcount_tree_extent_contig, 435 }; 436 437 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et, 438 struct ocfs2_caching_info *ci, 439 struct buffer_head *bh, 440 ocfs2_journal_access_func access, 441 void *obj, 442 const struct ocfs2_extent_tree_operations *ops) 443 { 444 et->et_ops = ops; 445 et->et_root_bh = bh; 446 et->et_ci = ci; 447 et->et_root_journal_access = access; 448 if (!obj) 449 obj = (void *)bh->b_data; 450 et->et_object = obj; 451 452 et->et_ops->eo_fill_root_el(et); 453 if (!et->et_ops->eo_fill_max_leaf_clusters) 454 et->et_max_leaf_clusters = 0; 455 else 456 et->et_ops->eo_fill_max_leaf_clusters(et); 457 } 458 459 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et, 460 struct ocfs2_caching_info *ci, 461 struct buffer_head *bh) 462 { 463 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di, 464 NULL, &ocfs2_dinode_et_ops); 465 } 466 467 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et, 468 struct ocfs2_caching_info *ci, 469 struct buffer_head *bh) 470 { 471 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb, 472 NULL, &ocfs2_xattr_tree_et_ops); 473 } 474 475 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et, 476 struct ocfs2_caching_info *ci, 477 struct ocfs2_xattr_value_buf *vb) 478 { 479 __ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb, 480 &ocfs2_xattr_value_et_ops); 481 } 482 483 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et, 484 struct ocfs2_caching_info *ci, 485 struct buffer_head *bh) 486 { 487 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr, 488 NULL, &ocfs2_dx_root_et_ops); 489 } 490 491 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et, 492 struct ocfs2_caching_info *ci, 493 struct buffer_head *bh) 494 { 495 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb, 496 NULL, &ocfs2_refcount_tree_et_ops); 497 } 498 499 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et, 500 u64 new_last_eb_blk) 501 { 502 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk); 503 } 504 505 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et) 506 { 507 return et->et_ops->eo_get_last_eb_blk(et); 508 } 509 510 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et, 511 u32 clusters) 512 { 513 et->et_ops->eo_update_clusters(et, clusters); 514 } 515 516 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et, 517 struct ocfs2_extent_rec *rec) 518 { 519 if (et->et_ops->eo_extent_map_insert) 520 et->et_ops->eo_extent_map_insert(et, rec); 521 } 522 523 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et, 524 u32 clusters) 525 { 526 if (et->et_ops->eo_extent_map_truncate) 527 et->et_ops->eo_extent_map_truncate(et, clusters); 528 } 529 530 static inline int ocfs2_et_root_journal_access(handle_t *handle, 531 struct ocfs2_extent_tree *et, 532 int type) 533 { 534 return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh, 535 type); 536 } 537 538 static inline enum ocfs2_contig_type 539 ocfs2_et_extent_contig(struct ocfs2_extent_tree *et, 540 struct ocfs2_extent_rec *rec, 541 struct ocfs2_extent_rec *insert_rec) 542 { 543 if (et->et_ops->eo_extent_contig) 544 return et->et_ops->eo_extent_contig(et, rec, insert_rec); 545 546 return ocfs2_extent_rec_contig( 547 ocfs2_metadata_cache_get_super(et->et_ci), 548 rec, insert_rec); 549 } 550 551 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et, 552 struct ocfs2_extent_rec *rec) 553 { 554 int ret = 0; 555 556 if (et->et_ops->eo_insert_check) 557 ret = et->et_ops->eo_insert_check(et, rec); 558 return ret; 559 } 560 561 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et) 562 { 563 int ret = 0; 564 565 if (et->et_ops->eo_sanity_check) 566 ret = et->et_ops->eo_sanity_check(et); 567 return ret; 568 } 569 570 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 571 struct ocfs2_extent_block *eb); 572 static void ocfs2_adjust_rightmost_records(handle_t *handle, 573 struct ocfs2_extent_tree *et, 574 struct ocfs2_path *path, 575 struct ocfs2_extent_rec *insert_rec); 576 /* 577 * Reset the actual path elements so that we can re-use the structure 578 * to build another path. Generally, this involves freeing the buffer 579 * heads. 580 */ 581 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root) 582 { 583 int i, start = 0, depth = 0; 584 struct ocfs2_path_item *node; 585 586 if (keep_root) 587 start = 1; 588 589 for(i = start; i < path_num_items(path); i++) { 590 node = &path->p_node[i]; 591 592 brelse(node->bh); 593 node->bh = NULL; 594 node->el = NULL; 595 } 596 597 /* 598 * Tree depth may change during truncate, or insert. If we're 599 * keeping the root extent list, then make sure that our path 600 * structure reflects the proper depth. 601 */ 602 if (keep_root) 603 depth = le16_to_cpu(path_root_el(path)->l_tree_depth); 604 else 605 path_root_access(path) = NULL; 606 607 path->p_tree_depth = depth; 608 } 609 610 void ocfs2_free_path(struct ocfs2_path *path) 611 { 612 if (path) { 613 ocfs2_reinit_path(path, 0); 614 kfree(path); 615 } 616 } 617 618 /* 619 * All the elements of src into dest. After this call, src could be freed 620 * without affecting dest. 621 * 622 * Both paths should have the same root. Any non-root elements of dest 623 * will be freed. 624 */ 625 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src) 626 { 627 int i; 628 629 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 630 BUG_ON(path_root_el(dest) != path_root_el(src)); 631 BUG_ON(path_root_access(dest) != path_root_access(src)); 632 633 ocfs2_reinit_path(dest, 1); 634 635 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 636 dest->p_node[i].bh = src->p_node[i].bh; 637 dest->p_node[i].el = src->p_node[i].el; 638 639 if (dest->p_node[i].bh) 640 get_bh(dest->p_node[i].bh); 641 } 642 } 643 644 /* 645 * Make the *dest path the same as src and re-initialize src path to 646 * have a root only. 647 */ 648 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src) 649 { 650 int i; 651 652 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 653 BUG_ON(path_root_access(dest) != path_root_access(src)); 654 655 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 656 brelse(dest->p_node[i].bh); 657 658 dest->p_node[i].bh = src->p_node[i].bh; 659 dest->p_node[i].el = src->p_node[i].el; 660 661 src->p_node[i].bh = NULL; 662 src->p_node[i].el = NULL; 663 } 664 } 665 666 /* 667 * Insert an extent block at given index. 668 * 669 * This will not take an additional reference on eb_bh. 670 */ 671 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index, 672 struct buffer_head *eb_bh) 673 { 674 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data; 675 676 /* 677 * Right now, no root bh is an extent block, so this helps 678 * catch code errors with dinode trees. The assertion can be 679 * safely removed if we ever need to insert extent block 680 * structures at the root. 681 */ 682 BUG_ON(index == 0); 683 684 path->p_node[index].bh = eb_bh; 685 path->p_node[index].el = &eb->h_list; 686 } 687 688 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh, 689 struct ocfs2_extent_list *root_el, 690 ocfs2_journal_access_func access) 691 { 692 struct ocfs2_path *path; 693 694 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH); 695 696 path = kzalloc(sizeof(*path), GFP_NOFS); 697 if (path) { 698 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth); 699 get_bh(root_bh); 700 path_root_bh(path) = root_bh; 701 path_root_el(path) = root_el; 702 path_root_access(path) = access; 703 } 704 705 return path; 706 } 707 708 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path) 709 { 710 return ocfs2_new_path(path_root_bh(path), path_root_el(path), 711 path_root_access(path)); 712 } 713 714 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et) 715 { 716 return ocfs2_new_path(et->et_root_bh, et->et_root_el, 717 et->et_root_journal_access); 718 } 719 720 /* 721 * Journal the buffer at depth idx. All idx>0 are extent_blocks, 722 * otherwise it's the root_access function. 723 * 724 * I don't like the way this function's name looks next to 725 * ocfs2_journal_access_path(), but I don't have a better one. 726 */ 727 int ocfs2_path_bh_journal_access(handle_t *handle, 728 struct ocfs2_caching_info *ci, 729 struct ocfs2_path *path, 730 int idx) 731 { 732 ocfs2_journal_access_func access = path_root_access(path); 733 734 if (!access) 735 access = ocfs2_journal_access; 736 737 if (idx) 738 access = ocfs2_journal_access_eb; 739 740 return access(handle, ci, path->p_node[idx].bh, 741 OCFS2_JOURNAL_ACCESS_WRITE); 742 } 743 744 /* 745 * Convenience function to journal all components in a path. 746 */ 747 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci, 748 handle_t *handle, 749 struct ocfs2_path *path) 750 { 751 int i, ret = 0; 752 753 if (!path) 754 goto out; 755 756 for(i = 0; i < path_num_items(path); i++) { 757 ret = ocfs2_path_bh_journal_access(handle, ci, path, i); 758 if (ret < 0) { 759 mlog_errno(ret); 760 goto out; 761 } 762 } 763 764 out: 765 return ret; 766 } 767 768 /* 769 * Return the index of the extent record which contains cluster #v_cluster. 770 * -1 is returned if it was not found. 771 * 772 * Should work fine on interior and exterior nodes. 773 */ 774 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster) 775 { 776 int ret = -1; 777 int i; 778 struct ocfs2_extent_rec *rec; 779 u32 rec_end, rec_start, clusters; 780 781 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 782 rec = &el->l_recs[i]; 783 784 rec_start = le32_to_cpu(rec->e_cpos); 785 clusters = ocfs2_rec_clusters(el, rec); 786 787 rec_end = rec_start + clusters; 788 789 if (v_cluster >= rec_start && v_cluster < rec_end) { 790 ret = i; 791 break; 792 } 793 } 794 795 return ret; 796 } 797 798 /* 799 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and 800 * ocfs2_extent_rec_contig only work properly against leaf nodes! 801 */ 802 static int ocfs2_block_extent_contig(struct super_block *sb, 803 struct ocfs2_extent_rec *ext, 804 u64 blkno) 805 { 806 u64 blk_end = le64_to_cpu(ext->e_blkno); 807 808 blk_end += ocfs2_clusters_to_blocks(sb, 809 le16_to_cpu(ext->e_leaf_clusters)); 810 811 return blkno == blk_end; 812 } 813 814 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left, 815 struct ocfs2_extent_rec *right) 816 { 817 u32 left_range; 818 819 left_range = le32_to_cpu(left->e_cpos) + 820 le16_to_cpu(left->e_leaf_clusters); 821 822 return (left_range == le32_to_cpu(right->e_cpos)); 823 } 824 825 static enum ocfs2_contig_type 826 ocfs2_extent_rec_contig(struct super_block *sb, 827 struct ocfs2_extent_rec *ext, 828 struct ocfs2_extent_rec *insert_rec) 829 { 830 u64 blkno = le64_to_cpu(insert_rec->e_blkno); 831 832 /* 833 * Refuse to coalesce extent records with different flag 834 * fields - we don't want to mix unwritten extents with user 835 * data. 836 */ 837 if (ext->e_flags != insert_rec->e_flags) 838 return CONTIG_NONE; 839 840 if (ocfs2_extents_adjacent(ext, insert_rec) && 841 ocfs2_block_extent_contig(sb, ext, blkno)) 842 return CONTIG_RIGHT; 843 844 blkno = le64_to_cpu(ext->e_blkno); 845 if (ocfs2_extents_adjacent(insert_rec, ext) && 846 ocfs2_block_extent_contig(sb, insert_rec, blkno)) 847 return CONTIG_LEFT; 848 849 return CONTIG_NONE; 850 } 851 852 /* 853 * NOTE: We can have pretty much any combination of contiguousness and 854 * appending. 855 * 856 * The usefulness of APPEND_TAIL is more in that it lets us know that 857 * we'll have to update the path to that leaf. 858 */ 859 enum ocfs2_append_type { 860 APPEND_NONE = 0, 861 APPEND_TAIL, 862 }; 863 864 enum ocfs2_split_type { 865 SPLIT_NONE = 0, 866 SPLIT_LEFT, 867 SPLIT_RIGHT, 868 }; 869 870 struct ocfs2_insert_type { 871 enum ocfs2_split_type ins_split; 872 enum ocfs2_append_type ins_appending; 873 enum ocfs2_contig_type ins_contig; 874 int ins_contig_index; 875 int ins_tree_depth; 876 }; 877 878 struct ocfs2_merge_ctxt { 879 enum ocfs2_contig_type c_contig_type; 880 int c_has_empty_extent; 881 int c_split_covers_rec; 882 }; 883 884 static int ocfs2_validate_extent_block(struct super_block *sb, 885 struct buffer_head *bh) 886 { 887 int rc; 888 struct ocfs2_extent_block *eb = 889 (struct ocfs2_extent_block *)bh->b_data; 890 891 trace_ocfs2_validate_extent_block((unsigned long long)bh->b_blocknr); 892 893 BUG_ON(!buffer_uptodate(bh)); 894 895 /* 896 * If the ecc fails, we return the error but otherwise 897 * leave the filesystem running. We know any error is 898 * local to this block. 899 */ 900 rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check); 901 if (rc) { 902 mlog(ML_ERROR, "Checksum failed for extent block %llu\n", 903 (unsigned long long)bh->b_blocknr); 904 return rc; 905 } 906 907 /* 908 * Errors after here are fatal. 909 */ 910 911 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 912 rc = ocfs2_error(sb, 913 "Extent block #%llu has bad signature %.*s\n", 914 (unsigned long long)bh->b_blocknr, 7, 915 eb->h_signature); 916 goto bail; 917 } 918 919 if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) { 920 rc = ocfs2_error(sb, 921 "Extent block #%llu has an invalid h_blkno of %llu\n", 922 (unsigned long long)bh->b_blocknr, 923 (unsigned long long)le64_to_cpu(eb->h_blkno)); 924 goto bail; 925 } 926 927 if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) { 928 rc = ocfs2_error(sb, 929 "Extent block #%llu has an invalid h_fs_generation of #%u\n", 930 (unsigned long long)bh->b_blocknr, 931 le32_to_cpu(eb->h_fs_generation)); 932 goto bail; 933 } 934 bail: 935 return rc; 936 } 937 938 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno, 939 struct buffer_head **bh) 940 { 941 int rc; 942 struct buffer_head *tmp = *bh; 943 944 rc = ocfs2_read_block(ci, eb_blkno, &tmp, 945 ocfs2_validate_extent_block); 946 947 /* If ocfs2_read_block() got us a new bh, pass it up. */ 948 if (!rc && !*bh) 949 *bh = tmp; 950 951 return rc; 952 } 953 954 955 /* 956 * How many free extents have we got before we need more meta data? 957 */ 958 int ocfs2_num_free_extents(struct ocfs2_extent_tree *et) 959 { 960 int retval; 961 struct ocfs2_extent_list *el = NULL; 962 struct ocfs2_extent_block *eb; 963 struct buffer_head *eb_bh = NULL; 964 u64 last_eb_blk = 0; 965 966 el = et->et_root_el; 967 last_eb_blk = ocfs2_et_get_last_eb_blk(et); 968 969 if (last_eb_blk) { 970 retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk, 971 &eb_bh); 972 if (retval < 0) { 973 mlog_errno(retval); 974 goto bail; 975 } 976 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 977 el = &eb->h_list; 978 } 979 980 BUG_ON(el->l_tree_depth != 0); 981 982 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec); 983 bail: 984 brelse(eb_bh); 985 986 trace_ocfs2_num_free_extents(retval); 987 return retval; 988 } 989 990 /* expects array to already be allocated 991 * 992 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and 993 * l_count for you 994 */ 995 static int ocfs2_create_new_meta_bhs(handle_t *handle, 996 struct ocfs2_extent_tree *et, 997 int wanted, 998 struct ocfs2_alloc_context *meta_ac, 999 struct buffer_head *bhs[]) 1000 { 1001 int count, status, i; 1002 u16 suballoc_bit_start; 1003 u32 num_got; 1004 u64 suballoc_loc, first_blkno; 1005 struct ocfs2_super *osb = 1006 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 1007 struct ocfs2_extent_block *eb; 1008 1009 count = 0; 1010 while (count < wanted) { 1011 status = ocfs2_claim_metadata(handle, 1012 meta_ac, 1013 wanted - count, 1014 &suballoc_loc, 1015 &suballoc_bit_start, 1016 &num_got, 1017 &first_blkno); 1018 if (status < 0) { 1019 mlog_errno(status); 1020 goto bail; 1021 } 1022 1023 for(i = count; i < (num_got + count); i++) { 1024 bhs[i] = sb_getblk(osb->sb, first_blkno); 1025 if (bhs[i] == NULL) { 1026 status = -ENOMEM; 1027 mlog_errno(status); 1028 goto bail; 1029 } 1030 ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]); 1031 1032 status = ocfs2_journal_access_eb(handle, et->et_ci, 1033 bhs[i], 1034 OCFS2_JOURNAL_ACCESS_CREATE); 1035 if (status < 0) { 1036 mlog_errno(status); 1037 goto bail; 1038 } 1039 1040 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize); 1041 eb = (struct ocfs2_extent_block *) bhs[i]->b_data; 1042 /* Ok, setup the minimal stuff here. */ 1043 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); 1044 eb->h_blkno = cpu_to_le64(first_blkno); 1045 eb->h_fs_generation = cpu_to_le32(osb->fs_generation); 1046 eb->h_suballoc_slot = 1047 cpu_to_le16(meta_ac->ac_alloc_slot); 1048 eb->h_suballoc_loc = cpu_to_le64(suballoc_loc); 1049 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start); 1050 eb->h_list.l_count = 1051 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); 1052 1053 suballoc_bit_start++; 1054 first_blkno++; 1055 1056 /* We'll also be dirtied by the caller, so 1057 * this isn't absolutely necessary. */ 1058 ocfs2_journal_dirty(handle, bhs[i]); 1059 } 1060 1061 count += num_got; 1062 } 1063 1064 status = 0; 1065 bail: 1066 if (status < 0) { 1067 for(i = 0; i < wanted; i++) { 1068 brelse(bhs[i]); 1069 bhs[i] = NULL; 1070 } 1071 mlog_errno(status); 1072 } 1073 return status; 1074 } 1075 1076 /* 1077 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth(). 1078 * 1079 * Returns the sum of the rightmost extent rec logical offset and 1080 * cluster count. 1081 * 1082 * ocfs2_add_branch() uses this to determine what logical cluster 1083 * value should be populated into the leftmost new branch records. 1084 * 1085 * ocfs2_shift_tree_depth() uses this to determine the # clusters 1086 * value for the new topmost tree record. 1087 */ 1088 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el) 1089 { 1090 int i; 1091 1092 i = le16_to_cpu(el->l_next_free_rec) - 1; 1093 1094 return le32_to_cpu(el->l_recs[i].e_cpos) + 1095 ocfs2_rec_clusters(el, &el->l_recs[i]); 1096 } 1097 1098 /* 1099 * Change range of the branches in the right most path according to the leaf 1100 * extent block's rightmost record. 1101 */ 1102 static int ocfs2_adjust_rightmost_branch(handle_t *handle, 1103 struct ocfs2_extent_tree *et) 1104 { 1105 int status; 1106 struct ocfs2_path *path = NULL; 1107 struct ocfs2_extent_list *el; 1108 struct ocfs2_extent_rec *rec; 1109 1110 path = ocfs2_new_path_from_et(et); 1111 if (!path) { 1112 status = -ENOMEM; 1113 return status; 1114 } 1115 1116 status = ocfs2_find_path(et->et_ci, path, UINT_MAX); 1117 if (status < 0) { 1118 mlog_errno(status); 1119 goto out; 1120 } 1121 1122 status = ocfs2_extend_trans(handle, path_num_items(path)); 1123 if (status < 0) { 1124 mlog_errno(status); 1125 goto out; 1126 } 1127 1128 status = ocfs2_journal_access_path(et->et_ci, handle, path); 1129 if (status < 0) { 1130 mlog_errno(status); 1131 goto out; 1132 } 1133 1134 el = path_leaf_el(path); 1135 rec = &el->l_recs[le16_to_cpu(el->l_next_free_rec) - 1]; 1136 1137 ocfs2_adjust_rightmost_records(handle, et, path, rec); 1138 1139 out: 1140 ocfs2_free_path(path); 1141 return status; 1142 } 1143 1144 /* 1145 * Add an entire tree branch to our inode. eb_bh is the extent block 1146 * to start at, if we don't want to start the branch at the root 1147 * structure. 1148 * 1149 * last_eb_bh is required as we have to update it's next_leaf pointer 1150 * for the new last extent block. 1151 * 1152 * the new branch will be 'empty' in the sense that every block will 1153 * contain a single record with cluster count == 0. 1154 */ 1155 static int ocfs2_add_branch(handle_t *handle, 1156 struct ocfs2_extent_tree *et, 1157 struct buffer_head *eb_bh, 1158 struct buffer_head **last_eb_bh, 1159 struct ocfs2_alloc_context *meta_ac) 1160 { 1161 int status, new_blocks, i; 1162 u64 next_blkno, new_last_eb_blk; 1163 struct buffer_head *bh; 1164 struct buffer_head **new_eb_bhs = NULL; 1165 struct ocfs2_extent_block *eb; 1166 struct ocfs2_extent_list *eb_el; 1167 struct ocfs2_extent_list *el; 1168 u32 new_cpos, root_end; 1169 1170 BUG_ON(!last_eb_bh || !*last_eb_bh); 1171 1172 if (eb_bh) { 1173 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 1174 el = &eb->h_list; 1175 } else 1176 el = et->et_root_el; 1177 1178 /* we never add a branch to a leaf. */ 1179 BUG_ON(!el->l_tree_depth); 1180 1181 new_blocks = le16_to_cpu(el->l_tree_depth); 1182 1183 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data; 1184 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list); 1185 root_end = ocfs2_sum_rightmost_rec(et->et_root_el); 1186 1187 /* 1188 * If there is a gap before the root end and the real end 1189 * of the righmost leaf block, we need to remove the gap 1190 * between new_cpos and root_end first so that the tree 1191 * is consistent after we add a new branch(it will start 1192 * from new_cpos). 1193 */ 1194 if (root_end > new_cpos) { 1195 trace_ocfs2_adjust_rightmost_branch( 1196 (unsigned long long) 1197 ocfs2_metadata_cache_owner(et->et_ci), 1198 root_end, new_cpos); 1199 1200 status = ocfs2_adjust_rightmost_branch(handle, et); 1201 if (status) { 1202 mlog_errno(status); 1203 goto bail; 1204 } 1205 } 1206 1207 /* allocate the number of new eb blocks we need */ 1208 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *), 1209 GFP_KERNEL); 1210 if (!new_eb_bhs) { 1211 status = -ENOMEM; 1212 mlog_errno(status); 1213 goto bail; 1214 } 1215 1216 status = ocfs2_create_new_meta_bhs(handle, et, new_blocks, 1217 meta_ac, new_eb_bhs); 1218 if (status < 0) { 1219 mlog_errno(status); 1220 goto bail; 1221 } 1222 1223 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be 1224 * linked with the rest of the tree. 1225 * conversly, new_eb_bhs[0] is the new bottommost leaf. 1226 * 1227 * when we leave the loop, new_last_eb_blk will point to the 1228 * newest leaf, and next_blkno will point to the topmost extent 1229 * block. */ 1230 next_blkno = new_last_eb_blk = 0; 1231 for(i = 0; i < new_blocks; i++) { 1232 bh = new_eb_bhs[i]; 1233 eb = (struct ocfs2_extent_block *) bh->b_data; 1234 /* ocfs2_create_new_meta_bhs() should create it right! */ 1235 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1236 eb_el = &eb->h_list; 1237 1238 status = ocfs2_journal_access_eb(handle, et->et_ci, bh, 1239 OCFS2_JOURNAL_ACCESS_CREATE); 1240 if (status < 0) { 1241 mlog_errno(status); 1242 goto bail; 1243 } 1244 1245 eb->h_next_leaf_blk = 0; 1246 eb_el->l_tree_depth = cpu_to_le16(i); 1247 eb_el->l_next_free_rec = cpu_to_le16(1); 1248 /* 1249 * This actually counts as an empty extent as 1250 * c_clusters == 0 1251 */ 1252 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos); 1253 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno); 1254 /* 1255 * eb_el isn't always an interior node, but even leaf 1256 * nodes want a zero'd flags and reserved field so 1257 * this gets the whole 32 bits regardless of use. 1258 */ 1259 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0); 1260 if (!eb_el->l_tree_depth) 1261 new_last_eb_blk = le64_to_cpu(eb->h_blkno); 1262 1263 ocfs2_journal_dirty(handle, bh); 1264 next_blkno = le64_to_cpu(eb->h_blkno); 1265 } 1266 1267 /* This is a bit hairy. We want to update up to three blocks 1268 * here without leaving any of them in an inconsistent state 1269 * in case of error. We don't have to worry about 1270 * journal_dirty erroring as it won't unless we've aborted the 1271 * handle (in which case we would never be here) so reserving 1272 * the write with journal_access is all we need to do. */ 1273 status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh, 1274 OCFS2_JOURNAL_ACCESS_WRITE); 1275 if (status < 0) { 1276 mlog_errno(status); 1277 goto bail; 1278 } 1279 status = ocfs2_et_root_journal_access(handle, et, 1280 OCFS2_JOURNAL_ACCESS_WRITE); 1281 if (status < 0) { 1282 mlog_errno(status); 1283 goto bail; 1284 } 1285 if (eb_bh) { 1286 status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh, 1287 OCFS2_JOURNAL_ACCESS_WRITE); 1288 if (status < 0) { 1289 mlog_errno(status); 1290 goto bail; 1291 } 1292 } 1293 1294 /* Link the new branch into the rest of the tree (el will 1295 * either be on the root_bh, or the extent block passed in. */ 1296 i = le16_to_cpu(el->l_next_free_rec); 1297 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno); 1298 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos); 1299 el->l_recs[i].e_int_clusters = 0; 1300 le16_add_cpu(&el->l_next_free_rec, 1); 1301 1302 /* fe needs a new last extent block pointer, as does the 1303 * next_leaf on the previously last-extent-block. */ 1304 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk); 1305 1306 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 1307 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk); 1308 1309 ocfs2_journal_dirty(handle, *last_eb_bh); 1310 ocfs2_journal_dirty(handle, et->et_root_bh); 1311 if (eb_bh) 1312 ocfs2_journal_dirty(handle, eb_bh); 1313 1314 /* 1315 * Some callers want to track the rightmost leaf so pass it 1316 * back here. 1317 */ 1318 brelse(*last_eb_bh); 1319 get_bh(new_eb_bhs[0]); 1320 *last_eb_bh = new_eb_bhs[0]; 1321 1322 status = 0; 1323 bail: 1324 if (new_eb_bhs) { 1325 for (i = 0; i < new_blocks; i++) 1326 brelse(new_eb_bhs[i]); 1327 kfree(new_eb_bhs); 1328 } 1329 1330 return status; 1331 } 1332 1333 /* 1334 * adds another level to the allocation tree. 1335 * returns back the new extent block so you can add a branch to it 1336 * after this call. 1337 */ 1338 static int ocfs2_shift_tree_depth(handle_t *handle, 1339 struct ocfs2_extent_tree *et, 1340 struct ocfs2_alloc_context *meta_ac, 1341 struct buffer_head **ret_new_eb_bh) 1342 { 1343 int status, i; 1344 u32 new_clusters; 1345 struct buffer_head *new_eb_bh = NULL; 1346 struct ocfs2_extent_block *eb; 1347 struct ocfs2_extent_list *root_el; 1348 struct ocfs2_extent_list *eb_el; 1349 1350 status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac, 1351 &new_eb_bh); 1352 if (status < 0) { 1353 mlog_errno(status); 1354 goto bail; 1355 } 1356 1357 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data; 1358 /* ocfs2_create_new_meta_bhs() should create it right! */ 1359 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1360 1361 eb_el = &eb->h_list; 1362 root_el = et->et_root_el; 1363 1364 status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh, 1365 OCFS2_JOURNAL_ACCESS_CREATE); 1366 if (status < 0) { 1367 mlog_errno(status); 1368 goto bail; 1369 } 1370 1371 /* copy the root extent list data into the new extent block */ 1372 eb_el->l_tree_depth = root_el->l_tree_depth; 1373 eb_el->l_next_free_rec = root_el->l_next_free_rec; 1374 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1375 eb_el->l_recs[i] = root_el->l_recs[i]; 1376 1377 ocfs2_journal_dirty(handle, new_eb_bh); 1378 1379 status = ocfs2_et_root_journal_access(handle, et, 1380 OCFS2_JOURNAL_ACCESS_WRITE); 1381 if (status < 0) { 1382 mlog_errno(status); 1383 goto bail; 1384 } 1385 1386 new_clusters = ocfs2_sum_rightmost_rec(eb_el); 1387 1388 /* update root_bh now */ 1389 le16_add_cpu(&root_el->l_tree_depth, 1); 1390 root_el->l_recs[0].e_cpos = 0; 1391 root_el->l_recs[0].e_blkno = eb->h_blkno; 1392 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters); 1393 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1394 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 1395 root_el->l_next_free_rec = cpu_to_le16(1); 1396 1397 /* If this is our 1st tree depth shift, then last_eb_blk 1398 * becomes the allocated extent block */ 1399 if (root_el->l_tree_depth == cpu_to_le16(1)) 1400 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 1401 1402 ocfs2_journal_dirty(handle, et->et_root_bh); 1403 1404 *ret_new_eb_bh = new_eb_bh; 1405 new_eb_bh = NULL; 1406 status = 0; 1407 bail: 1408 brelse(new_eb_bh); 1409 1410 return status; 1411 } 1412 1413 /* 1414 * Should only be called when there is no space left in any of the 1415 * leaf nodes. What we want to do is find the lowest tree depth 1416 * non-leaf extent block with room for new records. There are three 1417 * valid results of this search: 1418 * 1419 * 1) a lowest extent block is found, then we pass it back in 1420 * *lowest_eb_bh and return '0' 1421 * 1422 * 2) the search fails to find anything, but the root_el has room. We 1423 * pass NULL back in *lowest_eb_bh, but still return '0' 1424 * 1425 * 3) the search fails to find anything AND the root_el is full, in 1426 * which case we return > 0 1427 * 1428 * return status < 0 indicates an error. 1429 */ 1430 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et, 1431 struct buffer_head **target_bh) 1432 { 1433 int status = 0, i; 1434 u64 blkno; 1435 struct ocfs2_extent_block *eb; 1436 struct ocfs2_extent_list *el; 1437 struct buffer_head *bh = NULL; 1438 struct buffer_head *lowest_bh = NULL; 1439 1440 *target_bh = NULL; 1441 1442 el = et->et_root_el; 1443 1444 while(le16_to_cpu(el->l_tree_depth) > 1) { 1445 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1446 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 1447 "Owner %llu has empty extent list (next_free_rec == 0)\n", 1448 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 1449 status = -EIO; 1450 goto bail; 1451 } 1452 i = le16_to_cpu(el->l_next_free_rec) - 1; 1453 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1454 if (!blkno) { 1455 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 1456 "Owner %llu has extent list where extent # %d has no physical block start\n", 1457 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i); 1458 status = -EIO; 1459 goto bail; 1460 } 1461 1462 brelse(bh); 1463 bh = NULL; 1464 1465 status = ocfs2_read_extent_block(et->et_ci, blkno, &bh); 1466 if (status < 0) { 1467 mlog_errno(status); 1468 goto bail; 1469 } 1470 1471 eb = (struct ocfs2_extent_block *) bh->b_data; 1472 el = &eb->h_list; 1473 1474 if (le16_to_cpu(el->l_next_free_rec) < 1475 le16_to_cpu(el->l_count)) { 1476 brelse(lowest_bh); 1477 lowest_bh = bh; 1478 get_bh(lowest_bh); 1479 } 1480 } 1481 1482 /* If we didn't find one and the fe doesn't have any room, 1483 * then return '1' */ 1484 el = et->et_root_el; 1485 if (!lowest_bh && (el->l_next_free_rec == el->l_count)) 1486 status = 1; 1487 1488 *target_bh = lowest_bh; 1489 bail: 1490 brelse(bh); 1491 1492 return status; 1493 } 1494 1495 /* 1496 * Grow a b-tree so that it has more records. 1497 * 1498 * We might shift the tree depth in which case existing paths should 1499 * be considered invalid. 1500 * 1501 * Tree depth after the grow is returned via *final_depth. 1502 * 1503 * *last_eb_bh will be updated by ocfs2_add_branch(). 1504 */ 1505 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et, 1506 int *final_depth, struct buffer_head **last_eb_bh, 1507 struct ocfs2_alloc_context *meta_ac) 1508 { 1509 int ret, shift; 1510 struct ocfs2_extent_list *el = et->et_root_el; 1511 int depth = le16_to_cpu(el->l_tree_depth); 1512 struct buffer_head *bh = NULL; 1513 1514 BUG_ON(meta_ac == NULL); 1515 1516 shift = ocfs2_find_branch_target(et, &bh); 1517 if (shift < 0) { 1518 ret = shift; 1519 mlog_errno(ret); 1520 goto out; 1521 } 1522 1523 /* We traveled all the way to the bottom of the allocation tree 1524 * and didn't find room for any more extents - we need to add 1525 * another tree level */ 1526 if (shift) { 1527 BUG_ON(bh); 1528 trace_ocfs2_grow_tree( 1529 (unsigned long long) 1530 ocfs2_metadata_cache_owner(et->et_ci), 1531 depth); 1532 1533 /* ocfs2_shift_tree_depth will return us a buffer with 1534 * the new extent block (so we can pass that to 1535 * ocfs2_add_branch). */ 1536 ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh); 1537 if (ret < 0) { 1538 mlog_errno(ret); 1539 goto out; 1540 } 1541 depth++; 1542 if (depth == 1) { 1543 /* 1544 * Special case: we have room now if we shifted from 1545 * tree_depth 0, so no more work needs to be done. 1546 * 1547 * We won't be calling add_branch, so pass 1548 * back *last_eb_bh as the new leaf. At depth 1549 * zero, it should always be null so there's 1550 * no reason to brelse. 1551 */ 1552 BUG_ON(*last_eb_bh); 1553 get_bh(bh); 1554 *last_eb_bh = bh; 1555 goto out; 1556 } 1557 } 1558 1559 /* call ocfs2_add_branch to add the final part of the tree with 1560 * the new data. */ 1561 ret = ocfs2_add_branch(handle, et, bh, last_eb_bh, 1562 meta_ac); 1563 if (ret < 0) { 1564 mlog_errno(ret); 1565 goto out; 1566 } 1567 1568 out: 1569 if (final_depth) 1570 *final_depth = depth; 1571 brelse(bh); 1572 return ret; 1573 } 1574 1575 /* 1576 * This function will discard the rightmost extent record. 1577 */ 1578 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el) 1579 { 1580 int next_free = le16_to_cpu(el->l_next_free_rec); 1581 int count = le16_to_cpu(el->l_count); 1582 unsigned int num_bytes; 1583 1584 BUG_ON(!next_free); 1585 /* This will cause us to go off the end of our extent list. */ 1586 BUG_ON(next_free >= count); 1587 1588 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free; 1589 1590 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes); 1591 } 1592 1593 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el, 1594 struct ocfs2_extent_rec *insert_rec) 1595 { 1596 int i, insert_index, next_free, has_empty, num_bytes; 1597 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos); 1598 struct ocfs2_extent_rec *rec; 1599 1600 next_free = le16_to_cpu(el->l_next_free_rec); 1601 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]); 1602 1603 BUG_ON(!next_free); 1604 1605 /* The tree code before us didn't allow enough room in the leaf. */ 1606 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty); 1607 1608 /* 1609 * The easiest way to approach this is to just remove the 1610 * empty extent and temporarily decrement next_free. 1611 */ 1612 if (has_empty) { 1613 /* 1614 * If next_free was 1 (only an empty extent), this 1615 * loop won't execute, which is fine. We still want 1616 * the decrement above to happen. 1617 */ 1618 for(i = 0; i < (next_free - 1); i++) 1619 el->l_recs[i] = el->l_recs[i+1]; 1620 1621 next_free--; 1622 } 1623 1624 /* 1625 * Figure out what the new record index should be. 1626 */ 1627 for(i = 0; i < next_free; i++) { 1628 rec = &el->l_recs[i]; 1629 1630 if (insert_cpos < le32_to_cpu(rec->e_cpos)) 1631 break; 1632 } 1633 insert_index = i; 1634 1635 trace_ocfs2_rotate_leaf(insert_cpos, insert_index, 1636 has_empty, next_free, 1637 le16_to_cpu(el->l_count)); 1638 1639 BUG_ON(insert_index < 0); 1640 BUG_ON(insert_index >= le16_to_cpu(el->l_count)); 1641 BUG_ON(insert_index > next_free); 1642 1643 /* 1644 * No need to memmove if we're just adding to the tail. 1645 */ 1646 if (insert_index != next_free) { 1647 BUG_ON(next_free >= le16_to_cpu(el->l_count)); 1648 1649 num_bytes = next_free - insert_index; 1650 num_bytes *= sizeof(struct ocfs2_extent_rec); 1651 memmove(&el->l_recs[insert_index + 1], 1652 &el->l_recs[insert_index], 1653 num_bytes); 1654 } 1655 1656 /* 1657 * Either we had an empty extent, and need to re-increment or 1658 * there was no empty extent on a non full rightmost leaf node, 1659 * in which case we still need to increment. 1660 */ 1661 next_free++; 1662 el->l_next_free_rec = cpu_to_le16(next_free); 1663 /* 1664 * Make sure none of the math above just messed up our tree. 1665 */ 1666 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count)); 1667 1668 el->l_recs[insert_index] = *insert_rec; 1669 1670 } 1671 1672 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el) 1673 { 1674 int size, num_recs = le16_to_cpu(el->l_next_free_rec); 1675 1676 BUG_ON(num_recs == 0); 1677 1678 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 1679 num_recs--; 1680 size = num_recs * sizeof(struct ocfs2_extent_rec); 1681 memmove(&el->l_recs[0], &el->l_recs[1], size); 1682 memset(&el->l_recs[num_recs], 0, 1683 sizeof(struct ocfs2_extent_rec)); 1684 el->l_next_free_rec = cpu_to_le16(num_recs); 1685 } 1686 } 1687 1688 /* 1689 * Create an empty extent record . 1690 * 1691 * l_next_free_rec may be updated. 1692 * 1693 * If an empty extent already exists do nothing. 1694 */ 1695 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el) 1696 { 1697 int next_free = le16_to_cpu(el->l_next_free_rec); 1698 1699 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 1700 1701 if (next_free == 0) 1702 goto set_and_inc; 1703 1704 if (ocfs2_is_empty_extent(&el->l_recs[0])) 1705 return; 1706 1707 mlog_bug_on_msg(el->l_count == el->l_next_free_rec, 1708 "Asked to create an empty extent in a full list:\n" 1709 "count = %u, tree depth = %u", 1710 le16_to_cpu(el->l_count), 1711 le16_to_cpu(el->l_tree_depth)); 1712 1713 ocfs2_shift_records_right(el); 1714 1715 set_and_inc: 1716 le16_add_cpu(&el->l_next_free_rec, 1); 1717 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 1718 } 1719 1720 /* 1721 * For a rotation which involves two leaf nodes, the "root node" is 1722 * the lowest level tree node which contains a path to both leafs. This 1723 * resulting set of information can be used to form a complete "subtree" 1724 * 1725 * This function is passed two full paths from the dinode down to a 1726 * pair of adjacent leaves. It's task is to figure out which path 1727 * index contains the subtree root - this can be the root index itself 1728 * in a worst-case rotation. 1729 * 1730 * The array index of the subtree root is passed back. 1731 */ 1732 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et, 1733 struct ocfs2_path *left, 1734 struct ocfs2_path *right) 1735 { 1736 int i = 0; 1737 1738 /* 1739 * Check that the caller passed in two paths from the same tree. 1740 */ 1741 BUG_ON(path_root_bh(left) != path_root_bh(right)); 1742 1743 do { 1744 i++; 1745 1746 /* 1747 * The caller didn't pass two adjacent paths. 1748 */ 1749 mlog_bug_on_msg(i > left->p_tree_depth, 1750 "Owner %llu, left depth %u, right depth %u\n" 1751 "left leaf blk %llu, right leaf blk %llu\n", 1752 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 1753 left->p_tree_depth, right->p_tree_depth, 1754 (unsigned long long)path_leaf_bh(left)->b_blocknr, 1755 (unsigned long long)path_leaf_bh(right)->b_blocknr); 1756 } while (left->p_node[i].bh->b_blocknr == 1757 right->p_node[i].bh->b_blocknr); 1758 1759 return i - 1; 1760 } 1761 1762 typedef void (path_insert_t)(void *, struct buffer_head *); 1763 1764 /* 1765 * Traverse a btree path in search of cpos, starting at root_el. 1766 * 1767 * This code can be called with a cpos larger than the tree, in which 1768 * case it will return the rightmost path. 1769 */ 1770 static int __ocfs2_find_path(struct ocfs2_caching_info *ci, 1771 struct ocfs2_extent_list *root_el, u32 cpos, 1772 path_insert_t *func, void *data) 1773 { 1774 int i, ret = 0; 1775 u32 range; 1776 u64 blkno; 1777 struct buffer_head *bh = NULL; 1778 struct ocfs2_extent_block *eb; 1779 struct ocfs2_extent_list *el; 1780 struct ocfs2_extent_rec *rec; 1781 1782 el = root_el; 1783 while (el->l_tree_depth) { 1784 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1785 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1786 "Owner %llu has empty extent list at depth %u\n", 1787 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1788 le16_to_cpu(el->l_tree_depth)); 1789 ret = -EROFS; 1790 goto out; 1791 1792 } 1793 1794 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) { 1795 rec = &el->l_recs[i]; 1796 1797 /* 1798 * In the case that cpos is off the allocation 1799 * tree, this should just wind up returning the 1800 * rightmost record. 1801 */ 1802 range = le32_to_cpu(rec->e_cpos) + 1803 ocfs2_rec_clusters(el, rec); 1804 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 1805 break; 1806 } 1807 1808 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1809 if (blkno == 0) { 1810 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1811 "Owner %llu has bad blkno in extent list at depth %u (index %d)\n", 1812 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1813 le16_to_cpu(el->l_tree_depth), i); 1814 ret = -EROFS; 1815 goto out; 1816 } 1817 1818 brelse(bh); 1819 bh = NULL; 1820 ret = ocfs2_read_extent_block(ci, blkno, &bh); 1821 if (ret) { 1822 mlog_errno(ret); 1823 goto out; 1824 } 1825 1826 eb = (struct ocfs2_extent_block *) bh->b_data; 1827 el = &eb->h_list; 1828 1829 if (le16_to_cpu(el->l_next_free_rec) > 1830 le16_to_cpu(el->l_count)) { 1831 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1832 "Owner %llu has bad count in extent list at block %llu (next free=%u, count=%u)\n", 1833 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1834 (unsigned long long)bh->b_blocknr, 1835 le16_to_cpu(el->l_next_free_rec), 1836 le16_to_cpu(el->l_count)); 1837 ret = -EROFS; 1838 goto out; 1839 } 1840 1841 if (func) 1842 func(data, bh); 1843 } 1844 1845 out: 1846 /* 1847 * Catch any trailing bh that the loop didn't handle. 1848 */ 1849 brelse(bh); 1850 1851 return ret; 1852 } 1853 1854 /* 1855 * Given an initialized path (that is, it has a valid root extent 1856 * list), this function will traverse the btree in search of the path 1857 * which would contain cpos. 1858 * 1859 * The path traveled is recorded in the path structure. 1860 * 1861 * Note that this will not do any comparisons on leaf node extent 1862 * records, so it will work fine in the case that we just added a tree 1863 * branch. 1864 */ 1865 struct find_path_data { 1866 int index; 1867 struct ocfs2_path *path; 1868 }; 1869 static void find_path_ins(void *data, struct buffer_head *bh) 1870 { 1871 struct find_path_data *fp = data; 1872 1873 get_bh(bh); 1874 ocfs2_path_insert_eb(fp->path, fp->index, bh); 1875 fp->index++; 1876 } 1877 int ocfs2_find_path(struct ocfs2_caching_info *ci, 1878 struct ocfs2_path *path, u32 cpos) 1879 { 1880 struct find_path_data data; 1881 1882 data.index = 1; 1883 data.path = path; 1884 return __ocfs2_find_path(ci, path_root_el(path), cpos, 1885 find_path_ins, &data); 1886 } 1887 1888 static void find_leaf_ins(void *data, struct buffer_head *bh) 1889 { 1890 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data; 1891 struct ocfs2_extent_list *el = &eb->h_list; 1892 struct buffer_head **ret = data; 1893 1894 /* We want to retain only the leaf block. */ 1895 if (le16_to_cpu(el->l_tree_depth) == 0) { 1896 get_bh(bh); 1897 *ret = bh; 1898 } 1899 } 1900 /* 1901 * Find the leaf block in the tree which would contain cpos. No 1902 * checking of the actual leaf is done. 1903 * 1904 * Some paths want to call this instead of allocating a path structure 1905 * and calling ocfs2_find_path(). 1906 * 1907 * This function doesn't handle non btree extent lists. 1908 */ 1909 int ocfs2_find_leaf(struct ocfs2_caching_info *ci, 1910 struct ocfs2_extent_list *root_el, u32 cpos, 1911 struct buffer_head **leaf_bh) 1912 { 1913 int ret; 1914 struct buffer_head *bh = NULL; 1915 1916 ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh); 1917 if (ret) { 1918 mlog_errno(ret); 1919 goto out; 1920 } 1921 1922 *leaf_bh = bh; 1923 out: 1924 return ret; 1925 } 1926 1927 /* 1928 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation. 1929 * 1930 * Basically, we've moved stuff around at the bottom of the tree and 1931 * we need to fix up the extent records above the changes to reflect 1932 * the new changes. 1933 * 1934 * left_rec: the record on the left. 1935 * right_rec: the record to the right of left_rec 1936 * right_child_el: is the child list pointed to by right_rec 1937 * 1938 * By definition, this only works on interior nodes. 1939 */ 1940 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec, 1941 struct ocfs2_extent_rec *right_rec, 1942 struct ocfs2_extent_list *right_child_el) 1943 { 1944 u32 left_clusters, right_end; 1945 1946 /* 1947 * Interior nodes never have holes. Their cpos is the cpos of 1948 * the leftmost record in their child list. Their cluster 1949 * count covers the full theoretical range of their child list 1950 * - the range between their cpos and the cpos of the record 1951 * immediately to their right. 1952 */ 1953 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos); 1954 if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) { 1955 BUG_ON(right_child_el->l_tree_depth); 1956 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1); 1957 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos); 1958 } 1959 left_clusters -= le32_to_cpu(left_rec->e_cpos); 1960 left_rec->e_int_clusters = cpu_to_le32(left_clusters); 1961 1962 /* 1963 * Calculate the rightmost cluster count boundary before 1964 * moving cpos - we will need to adjust clusters after 1965 * updating e_cpos to keep the same highest cluster count. 1966 */ 1967 right_end = le32_to_cpu(right_rec->e_cpos); 1968 right_end += le32_to_cpu(right_rec->e_int_clusters); 1969 1970 right_rec->e_cpos = left_rec->e_cpos; 1971 le32_add_cpu(&right_rec->e_cpos, left_clusters); 1972 1973 right_end -= le32_to_cpu(right_rec->e_cpos); 1974 right_rec->e_int_clusters = cpu_to_le32(right_end); 1975 } 1976 1977 /* 1978 * Adjust the adjacent root node records involved in a 1979 * rotation. left_el_blkno is passed in as a key so that we can easily 1980 * find it's index in the root list. 1981 */ 1982 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el, 1983 struct ocfs2_extent_list *left_el, 1984 struct ocfs2_extent_list *right_el, 1985 u64 left_el_blkno) 1986 { 1987 int i; 1988 1989 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <= 1990 le16_to_cpu(left_el->l_tree_depth)); 1991 1992 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) { 1993 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno) 1994 break; 1995 } 1996 1997 /* 1998 * The path walking code should have never returned a root and 1999 * two paths which are not adjacent. 2000 */ 2001 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1)); 2002 2003 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], 2004 &root_el->l_recs[i + 1], right_el); 2005 } 2006 2007 /* 2008 * We've changed a leaf block (in right_path) and need to reflect that 2009 * change back up the subtree. 2010 * 2011 * This happens in multiple places: 2012 * - When we've moved an extent record from the left path leaf to the right 2013 * path leaf to make room for an empty extent in the left path leaf. 2014 * - When our insert into the right path leaf is at the leftmost edge 2015 * and requires an update of the path immediately to it's left. This 2016 * can occur at the end of some types of rotation and appending inserts. 2017 * - When we've adjusted the last extent record in the left path leaf and the 2018 * 1st extent record in the right path leaf during cross extent block merge. 2019 */ 2020 static void ocfs2_complete_edge_insert(handle_t *handle, 2021 struct ocfs2_path *left_path, 2022 struct ocfs2_path *right_path, 2023 int subtree_index) 2024 { 2025 int i, idx; 2026 struct ocfs2_extent_list *el, *left_el, *right_el; 2027 struct ocfs2_extent_rec *left_rec, *right_rec; 2028 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2029 2030 /* 2031 * Update the counts and position values within all the 2032 * interior nodes to reflect the leaf rotation we just did. 2033 * 2034 * The root node is handled below the loop. 2035 * 2036 * We begin the loop with right_el and left_el pointing to the 2037 * leaf lists and work our way up. 2038 * 2039 * NOTE: within this loop, left_el and right_el always refer 2040 * to the *child* lists. 2041 */ 2042 left_el = path_leaf_el(left_path); 2043 right_el = path_leaf_el(right_path); 2044 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) { 2045 trace_ocfs2_complete_edge_insert(i); 2046 2047 /* 2048 * One nice property of knowing that all of these 2049 * nodes are below the root is that we only deal with 2050 * the leftmost right node record and the rightmost 2051 * left node record. 2052 */ 2053 el = left_path->p_node[i].el; 2054 idx = le16_to_cpu(left_el->l_next_free_rec) - 1; 2055 left_rec = &el->l_recs[idx]; 2056 2057 el = right_path->p_node[i].el; 2058 right_rec = &el->l_recs[0]; 2059 2060 ocfs2_adjust_adjacent_records(left_rec, right_rec, right_el); 2061 2062 ocfs2_journal_dirty(handle, left_path->p_node[i].bh); 2063 ocfs2_journal_dirty(handle, right_path->p_node[i].bh); 2064 2065 /* 2066 * Setup our list pointers now so that the current 2067 * parents become children in the next iteration. 2068 */ 2069 left_el = left_path->p_node[i].el; 2070 right_el = right_path->p_node[i].el; 2071 } 2072 2073 /* 2074 * At the root node, adjust the two adjacent records which 2075 * begin our path to the leaves. 2076 */ 2077 2078 el = left_path->p_node[subtree_index].el; 2079 left_el = left_path->p_node[subtree_index + 1].el; 2080 right_el = right_path->p_node[subtree_index + 1].el; 2081 2082 ocfs2_adjust_root_records(el, left_el, right_el, 2083 left_path->p_node[subtree_index + 1].bh->b_blocknr); 2084 2085 root_bh = left_path->p_node[subtree_index].bh; 2086 2087 ocfs2_journal_dirty(handle, root_bh); 2088 } 2089 2090 static int ocfs2_rotate_subtree_right(handle_t *handle, 2091 struct ocfs2_extent_tree *et, 2092 struct ocfs2_path *left_path, 2093 struct ocfs2_path *right_path, 2094 int subtree_index) 2095 { 2096 int ret, i; 2097 struct buffer_head *right_leaf_bh; 2098 struct buffer_head *left_leaf_bh = NULL; 2099 struct buffer_head *root_bh; 2100 struct ocfs2_extent_list *right_el, *left_el; 2101 struct ocfs2_extent_rec move_rec; 2102 2103 left_leaf_bh = path_leaf_bh(left_path); 2104 left_el = path_leaf_el(left_path); 2105 2106 if (left_el->l_next_free_rec != left_el->l_count) { 2107 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 2108 "Inode %llu has non-full interior leaf node %llu (next free = %u)\n", 2109 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2110 (unsigned long long)left_leaf_bh->b_blocknr, 2111 le16_to_cpu(left_el->l_next_free_rec)); 2112 return -EROFS; 2113 } 2114 2115 /* 2116 * This extent block may already have an empty record, so we 2117 * return early if so. 2118 */ 2119 if (ocfs2_is_empty_extent(&left_el->l_recs[0])) 2120 return 0; 2121 2122 root_bh = left_path->p_node[subtree_index].bh; 2123 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2124 2125 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 2126 subtree_index); 2127 if (ret) { 2128 mlog_errno(ret); 2129 goto out; 2130 } 2131 2132 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2133 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2134 right_path, i); 2135 if (ret) { 2136 mlog_errno(ret); 2137 goto out; 2138 } 2139 2140 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2141 left_path, i); 2142 if (ret) { 2143 mlog_errno(ret); 2144 goto out; 2145 } 2146 } 2147 2148 right_leaf_bh = path_leaf_bh(right_path); 2149 right_el = path_leaf_el(right_path); 2150 2151 /* This is a code error, not a disk corruption. */ 2152 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails " 2153 "because rightmost leaf block %llu is empty\n", 2154 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2155 (unsigned long long)right_leaf_bh->b_blocknr); 2156 2157 ocfs2_create_empty_extent(right_el); 2158 2159 ocfs2_journal_dirty(handle, right_leaf_bh); 2160 2161 /* Do the copy now. */ 2162 i = le16_to_cpu(left_el->l_next_free_rec) - 1; 2163 move_rec = left_el->l_recs[i]; 2164 right_el->l_recs[0] = move_rec; 2165 2166 /* 2167 * Clear out the record we just copied and shift everything 2168 * over, leaving an empty extent in the left leaf. 2169 * 2170 * We temporarily subtract from next_free_rec so that the 2171 * shift will lose the tail record (which is now defunct). 2172 */ 2173 le16_add_cpu(&left_el->l_next_free_rec, -1); 2174 ocfs2_shift_records_right(left_el); 2175 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2176 le16_add_cpu(&left_el->l_next_free_rec, 1); 2177 2178 ocfs2_journal_dirty(handle, left_leaf_bh); 2179 2180 ocfs2_complete_edge_insert(handle, left_path, right_path, 2181 subtree_index); 2182 2183 out: 2184 return ret; 2185 } 2186 2187 /* 2188 * Given a full path, determine what cpos value would return us a path 2189 * containing the leaf immediately to the left of the current one. 2190 * 2191 * Will return zero if the path passed in is already the leftmost path. 2192 */ 2193 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb, 2194 struct ocfs2_path *path, u32 *cpos) 2195 { 2196 int i, j, ret = 0; 2197 u64 blkno; 2198 struct ocfs2_extent_list *el; 2199 2200 BUG_ON(path->p_tree_depth == 0); 2201 2202 *cpos = 0; 2203 2204 blkno = path_leaf_bh(path)->b_blocknr; 2205 2206 /* Start at the tree node just above the leaf and work our way up. */ 2207 i = path->p_tree_depth - 1; 2208 while (i >= 0) { 2209 el = path->p_node[i].el; 2210 2211 /* 2212 * Find the extent record just before the one in our 2213 * path. 2214 */ 2215 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2216 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2217 if (j == 0) { 2218 if (i == 0) { 2219 /* 2220 * We've determined that the 2221 * path specified is already 2222 * the leftmost one - return a 2223 * cpos of zero. 2224 */ 2225 goto out; 2226 } 2227 /* 2228 * The leftmost record points to our 2229 * leaf - we need to travel up the 2230 * tree one level. 2231 */ 2232 goto next_node; 2233 } 2234 2235 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos); 2236 *cpos = *cpos + ocfs2_rec_clusters(el, 2237 &el->l_recs[j - 1]); 2238 *cpos = *cpos - 1; 2239 goto out; 2240 } 2241 } 2242 2243 /* 2244 * If we got here, we never found a valid node where 2245 * the tree indicated one should be. 2246 */ 2247 ocfs2_error(sb, "Invalid extent tree at extent block %llu\n", 2248 (unsigned long long)blkno); 2249 ret = -EROFS; 2250 goto out; 2251 2252 next_node: 2253 blkno = path->p_node[i].bh->b_blocknr; 2254 i--; 2255 } 2256 2257 out: 2258 return ret; 2259 } 2260 2261 /* 2262 * Extend the transaction by enough credits to complete the rotation, 2263 * and still leave at least the original number of credits allocated 2264 * to this transaction. 2265 */ 2266 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth, 2267 int op_credits, 2268 struct ocfs2_path *path) 2269 { 2270 int ret = 0; 2271 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits; 2272 2273 if (handle->h_buffer_credits < credits) 2274 ret = ocfs2_extend_trans(handle, 2275 credits - handle->h_buffer_credits); 2276 2277 return ret; 2278 } 2279 2280 /* 2281 * Trap the case where we're inserting into the theoretical range past 2282 * the _actual_ left leaf range. Otherwise, we'll rotate a record 2283 * whose cpos is less than ours into the right leaf. 2284 * 2285 * It's only necessary to look at the rightmost record of the left 2286 * leaf because the logic that calls us should ensure that the 2287 * theoretical ranges in the path components above the leaves are 2288 * correct. 2289 */ 2290 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path, 2291 u32 insert_cpos) 2292 { 2293 struct ocfs2_extent_list *left_el; 2294 struct ocfs2_extent_rec *rec; 2295 int next_free; 2296 2297 left_el = path_leaf_el(left_path); 2298 next_free = le16_to_cpu(left_el->l_next_free_rec); 2299 rec = &left_el->l_recs[next_free - 1]; 2300 2301 if (insert_cpos > le32_to_cpu(rec->e_cpos)) 2302 return 1; 2303 return 0; 2304 } 2305 2306 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos) 2307 { 2308 int next_free = le16_to_cpu(el->l_next_free_rec); 2309 unsigned int range; 2310 struct ocfs2_extent_rec *rec; 2311 2312 if (next_free == 0) 2313 return 0; 2314 2315 rec = &el->l_recs[0]; 2316 if (ocfs2_is_empty_extent(rec)) { 2317 /* Empty list. */ 2318 if (next_free == 1) 2319 return 0; 2320 rec = &el->l_recs[1]; 2321 } 2322 2323 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2324 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 2325 return 1; 2326 return 0; 2327 } 2328 2329 /* 2330 * Rotate all the records in a btree right one record, starting at insert_cpos. 2331 * 2332 * The path to the rightmost leaf should be passed in. 2333 * 2334 * The array is assumed to be large enough to hold an entire path (tree depth). 2335 * 2336 * Upon successful return from this function: 2337 * 2338 * - The 'right_path' array will contain a path to the leaf block 2339 * whose range contains e_cpos. 2340 * - That leaf block will have a single empty extent in list index 0. 2341 * - In the case that the rotation requires a post-insert update, 2342 * *ret_left_path will contain a valid path which can be passed to 2343 * ocfs2_insert_path(). 2344 */ 2345 static int ocfs2_rotate_tree_right(handle_t *handle, 2346 struct ocfs2_extent_tree *et, 2347 enum ocfs2_split_type split, 2348 u32 insert_cpos, 2349 struct ocfs2_path *right_path, 2350 struct ocfs2_path **ret_left_path) 2351 { 2352 int ret, start, orig_credits = handle->h_buffer_credits; 2353 u32 cpos; 2354 struct ocfs2_path *left_path = NULL; 2355 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 2356 2357 *ret_left_path = NULL; 2358 2359 left_path = ocfs2_new_path_from_path(right_path); 2360 if (!left_path) { 2361 ret = -ENOMEM; 2362 mlog_errno(ret); 2363 goto out; 2364 } 2365 2366 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); 2367 if (ret) { 2368 mlog_errno(ret); 2369 goto out; 2370 } 2371 2372 trace_ocfs2_rotate_tree_right( 2373 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2374 insert_cpos, cpos); 2375 2376 /* 2377 * What we want to do here is: 2378 * 2379 * 1) Start with the rightmost path. 2380 * 2381 * 2) Determine a path to the leaf block directly to the left 2382 * of that leaf. 2383 * 2384 * 3) Determine the 'subtree root' - the lowest level tree node 2385 * which contains a path to both leaves. 2386 * 2387 * 4) Rotate the subtree. 2388 * 2389 * 5) Find the next subtree by considering the left path to be 2390 * the new right path. 2391 * 2392 * The check at the top of this while loop also accepts 2393 * insert_cpos == cpos because cpos is only a _theoretical_ 2394 * value to get us the left path - insert_cpos might very well 2395 * be filling that hole. 2396 * 2397 * Stop at a cpos of '0' because we either started at the 2398 * leftmost branch (i.e., a tree with one branch and a 2399 * rotation inside of it), or we've gone as far as we can in 2400 * rotating subtrees. 2401 */ 2402 while (cpos && insert_cpos <= cpos) { 2403 trace_ocfs2_rotate_tree_right( 2404 (unsigned long long) 2405 ocfs2_metadata_cache_owner(et->et_ci), 2406 insert_cpos, cpos); 2407 2408 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 2409 if (ret) { 2410 mlog_errno(ret); 2411 goto out; 2412 } 2413 2414 mlog_bug_on_msg(path_leaf_bh(left_path) == 2415 path_leaf_bh(right_path), 2416 "Owner %llu: error during insert of %u " 2417 "(left path cpos %u) results in two identical " 2418 "paths ending at %llu\n", 2419 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2420 insert_cpos, cpos, 2421 (unsigned long long) 2422 path_leaf_bh(left_path)->b_blocknr); 2423 2424 if (split == SPLIT_NONE && 2425 ocfs2_rotate_requires_path_adjustment(left_path, 2426 insert_cpos)) { 2427 2428 /* 2429 * We've rotated the tree as much as we 2430 * should. The rest is up to 2431 * ocfs2_insert_path() to complete, after the 2432 * record insertion. We indicate this 2433 * situation by returning the left path. 2434 * 2435 * The reason we don't adjust the records here 2436 * before the record insert is that an error 2437 * later might break the rule where a parent 2438 * record e_cpos will reflect the actual 2439 * e_cpos of the 1st nonempty record of the 2440 * child list. 2441 */ 2442 *ret_left_path = left_path; 2443 goto out_ret_path; 2444 } 2445 2446 start = ocfs2_find_subtree_root(et, left_path, right_path); 2447 2448 trace_ocfs2_rotate_subtree(start, 2449 (unsigned long long) 2450 right_path->p_node[start].bh->b_blocknr, 2451 right_path->p_tree_depth); 2452 2453 ret = ocfs2_extend_rotate_transaction(handle, start, 2454 orig_credits, right_path); 2455 if (ret) { 2456 mlog_errno(ret); 2457 goto out; 2458 } 2459 2460 ret = ocfs2_rotate_subtree_right(handle, et, left_path, 2461 right_path, start); 2462 if (ret) { 2463 mlog_errno(ret); 2464 goto out; 2465 } 2466 2467 if (split != SPLIT_NONE && 2468 ocfs2_leftmost_rec_contains(path_leaf_el(right_path), 2469 insert_cpos)) { 2470 /* 2471 * A rotate moves the rightmost left leaf 2472 * record over to the leftmost right leaf 2473 * slot. If we're doing an extent split 2474 * instead of a real insert, then we have to 2475 * check that the extent to be split wasn't 2476 * just moved over. If it was, then we can 2477 * exit here, passing left_path back - 2478 * ocfs2_split_extent() is smart enough to 2479 * search both leaves. 2480 */ 2481 *ret_left_path = left_path; 2482 goto out_ret_path; 2483 } 2484 2485 /* 2486 * There is no need to re-read the next right path 2487 * as we know that it'll be our current left 2488 * path. Optimize by copying values instead. 2489 */ 2490 ocfs2_mv_path(right_path, left_path); 2491 2492 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); 2493 if (ret) { 2494 mlog_errno(ret); 2495 goto out; 2496 } 2497 } 2498 2499 out: 2500 ocfs2_free_path(left_path); 2501 2502 out_ret_path: 2503 return ret; 2504 } 2505 2506 static int ocfs2_update_edge_lengths(handle_t *handle, 2507 struct ocfs2_extent_tree *et, 2508 struct ocfs2_path *path) 2509 { 2510 int i, idx, ret; 2511 struct ocfs2_extent_rec *rec; 2512 struct ocfs2_extent_list *el; 2513 struct ocfs2_extent_block *eb; 2514 u32 range; 2515 2516 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 2517 if (ret) { 2518 mlog_errno(ret); 2519 goto out; 2520 } 2521 2522 /* Path should always be rightmost. */ 2523 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 2524 BUG_ON(eb->h_next_leaf_blk != 0ULL); 2525 2526 el = &eb->h_list; 2527 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 2528 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2529 rec = &el->l_recs[idx]; 2530 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2531 2532 for (i = 0; i < path->p_tree_depth; i++) { 2533 el = path->p_node[i].el; 2534 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2535 rec = &el->l_recs[idx]; 2536 2537 rec->e_int_clusters = cpu_to_le32(range); 2538 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos)); 2539 2540 ocfs2_journal_dirty(handle, path->p_node[i].bh); 2541 } 2542 out: 2543 return ret; 2544 } 2545 2546 static void ocfs2_unlink_path(handle_t *handle, 2547 struct ocfs2_extent_tree *et, 2548 struct ocfs2_cached_dealloc_ctxt *dealloc, 2549 struct ocfs2_path *path, int unlink_start) 2550 { 2551 int ret, i; 2552 struct ocfs2_extent_block *eb; 2553 struct ocfs2_extent_list *el; 2554 struct buffer_head *bh; 2555 2556 for(i = unlink_start; i < path_num_items(path); i++) { 2557 bh = path->p_node[i].bh; 2558 2559 eb = (struct ocfs2_extent_block *)bh->b_data; 2560 /* 2561 * Not all nodes might have had their final count 2562 * decremented by the caller - handle this here. 2563 */ 2564 el = &eb->h_list; 2565 if (le16_to_cpu(el->l_next_free_rec) > 1) { 2566 mlog(ML_ERROR, 2567 "Inode %llu, attempted to remove extent block " 2568 "%llu with %u records\n", 2569 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2570 (unsigned long long)le64_to_cpu(eb->h_blkno), 2571 le16_to_cpu(el->l_next_free_rec)); 2572 2573 ocfs2_journal_dirty(handle, bh); 2574 ocfs2_remove_from_cache(et->et_ci, bh); 2575 continue; 2576 } 2577 2578 el->l_next_free_rec = 0; 2579 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2580 2581 ocfs2_journal_dirty(handle, bh); 2582 2583 ret = ocfs2_cache_extent_block_free(dealloc, eb); 2584 if (ret) 2585 mlog_errno(ret); 2586 2587 ocfs2_remove_from_cache(et->et_ci, bh); 2588 } 2589 } 2590 2591 static void ocfs2_unlink_subtree(handle_t *handle, 2592 struct ocfs2_extent_tree *et, 2593 struct ocfs2_path *left_path, 2594 struct ocfs2_path *right_path, 2595 int subtree_index, 2596 struct ocfs2_cached_dealloc_ctxt *dealloc) 2597 { 2598 int i; 2599 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2600 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el; 2601 struct ocfs2_extent_list *el; 2602 struct ocfs2_extent_block *eb; 2603 2604 el = path_leaf_el(left_path); 2605 2606 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data; 2607 2608 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 2609 if (root_el->l_recs[i].e_blkno == eb->h_blkno) 2610 break; 2611 2612 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec)); 2613 2614 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 2615 le16_add_cpu(&root_el->l_next_free_rec, -1); 2616 2617 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2618 eb->h_next_leaf_blk = 0; 2619 2620 ocfs2_journal_dirty(handle, root_bh); 2621 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2622 2623 ocfs2_unlink_path(handle, et, dealloc, right_path, 2624 subtree_index + 1); 2625 } 2626 2627 static int ocfs2_rotate_subtree_left(handle_t *handle, 2628 struct ocfs2_extent_tree *et, 2629 struct ocfs2_path *left_path, 2630 struct ocfs2_path *right_path, 2631 int subtree_index, 2632 struct ocfs2_cached_dealloc_ctxt *dealloc, 2633 int *deleted) 2634 { 2635 int ret, i, del_right_subtree = 0, right_has_empty = 0; 2636 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path); 2637 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el; 2638 struct ocfs2_extent_block *eb; 2639 2640 *deleted = 0; 2641 2642 right_leaf_el = path_leaf_el(right_path); 2643 left_leaf_el = path_leaf_el(left_path); 2644 root_bh = left_path->p_node[subtree_index].bh; 2645 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2646 2647 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0])) 2648 return 0; 2649 2650 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data; 2651 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) { 2652 /* 2653 * It's legal for us to proceed if the right leaf is 2654 * the rightmost one and it has an empty extent. There 2655 * are two cases to handle - whether the leaf will be 2656 * empty after removal or not. If the leaf isn't empty 2657 * then just remove the empty extent up front. The 2658 * next block will handle empty leaves by flagging 2659 * them for unlink. 2660 * 2661 * Non rightmost leaves will throw -EAGAIN and the 2662 * caller can manually move the subtree and retry. 2663 */ 2664 2665 if (eb->h_next_leaf_blk != 0ULL) 2666 return -EAGAIN; 2667 2668 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) { 2669 ret = ocfs2_journal_access_eb(handle, et->et_ci, 2670 path_leaf_bh(right_path), 2671 OCFS2_JOURNAL_ACCESS_WRITE); 2672 if (ret) { 2673 mlog_errno(ret); 2674 goto out; 2675 } 2676 2677 ocfs2_remove_empty_extent(right_leaf_el); 2678 } else 2679 right_has_empty = 1; 2680 } 2681 2682 if (eb->h_next_leaf_blk == 0ULL && 2683 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) { 2684 /* 2685 * We have to update i_last_eb_blk during the meta 2686 * data delete. 2687 */ 2688 ret = ocfs2_et_root_journal_access(handle, et, 2689 OCFS2_JOURNAL_ACCESS_WRITE); 2690 if (ret) { 2691 mlog_errno(ret); 2692 goto out; 2693 } 2694 2695 del_right_subtree = 1; 2696 } 2697 2698 /* 2699 * Getting here with an empty extent in the right path implies 2700 * that it's the rightmost path and will be deleted. 2701 */ 2702 BUG_ON(right_has_empty && !del_right_subtree); 2703 2704 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 2705 subtree_index); 2706 if (ret) { 2707 mlog_errno(ret); 2708 goto out; 2709 } 2710 2711 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2712 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2713 right_path, i); 2714 if (ret) { 2715 mlog_errno(ret); 2716 goto out; 2717 } 2718 2719 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2720 left_path, i); 2721 if (ret) { 2722 mlog_errno(ret); 2723 goto out; 2724 } 2725 } 2726 2727 if (!right_has_empty) { 2728 /* 2729 * Only do this if we're moving a real 2730 * record. Otherwise, the action is delayed until 2731 * after removal of the right path in which case we 2732 * can do a simple shift to remove the empty extent. 2733 */ 2734 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]); 2735 memset(&right_leaf_el->l_recs[0], 0, 2736 sizeof(struct ocfs2_extent_rec)); 2737 } 2738 if (eb->h_next_leaf_blk == 0ULL) { 2739 /* 2740 * Move recs over to get rid of empty extent, decrease 2741 * next_free. This is allowed to remove the last 2742 * extent in our leaf (setting l_next_free_rec to 2743 * zero) - the delete code below won't care. 2744 */ 2745 ocfs2_remove_empty_extent(right_leaf_el); 2746 } 2747 2748 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2749 ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 2750 2751 if (del_right_subtree) { 2752 ocfs2_unlink_subtree(handle, et, left_path, right_path, 2753 subtree_index, dealloc); 2754 ret = ocfs2_update_edge_lengths(handle, et, left_path); 2755 if (ret) { 2756 mlog_errno(ret); 2757 goto out; 2758 } 2759 2760 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2761 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 2762 2763 /* 2764 * Removal of the extent in the left leaf was skipped 2765 * above so we could delete the right path 2766 * 1st. 2767 */ 2768 if (right_has_empty) 2769 ocfs2_remove_empty_extent(left_leaf_el); 2770 2771 ocfs2_journal_dirty(handle, et_root_bh); 2772 2773 *deleted = 1; 2774 } else 2775 ocfs2_complete_edge_insert(handle, left_path, right_path, 2776 subtree_index); 2777 2778 out: 2779 return ret; 2780 } 2781 2782 /* 2783 * Given a full path, determine what cpos value would return us a path 2784 * containing the leaf immediately to the right of the current one. 2785 * 2786 * Will return zero if the path passed in is already the rightmost path. 2787 * 2788 * This looks similar, but is subtly different to 2789 * ocfs2_find_cpos_for_left_leaf(). 2790 */ 2791 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb, 2792 struct ocfs2_path *path, u32 *cpos) 2793 { 2794 int i, j, ret = 0; 2795 u64 blkno; 2796 struct ocfs2_extent_list *el; 2797 2798 *cpos = 0; 2799 2800 if (path->p_tree_depth == 0) 2801 return 0; 2802 2803 blkno = path_leaf_bh(path)->b_blocknr; 2804 2805 /* Start at the tree node just above the leaf and work our way up. */ 2806 i = path->p_tree_depth - 1; 2807 while (i >= 0) { 2808 int next_free; 2809 2810 el = path->p_node[i].el; 2811 2812 /* 2813 * Find the extent record just after the one in our 2814 * path. 2815 */ 2816 next_free = le16_to_cpu(el->l_next_free_rec); 2817 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2818 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2819 if (j == (next_free - 1)) { 2820 if (i == 0) { 2821 /* 2822 * We've determined that the 2823 * path specified is already 2824 * the rightmost one - return a 2825 * cpos of zero. 2826 */ 2827 goto out; 2828 } 2829 /* 2830 * The rightmost record points to our 2831 * leaf - we need to travel up the 2832 * tree one level. 2833 */ 2834 goto next_node; 2835 } 2836 2837 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos); 2838 goto out; 2839 } 2840 } 2841 2842 /* 2843 * If we got here, we never found a valid node where 2844 * the tree indicated one should be. 2845 */ 2846 ocfs2_error(sb, "Invalid extent tree at extent block %llu\n", 2847 (unsigned long long)blkno); 2848 ret = -EROFS; 2849 goto out; 2850 2851 next_node: 2852 blkno = path->p_node[i].bh->b_blocknr; 2853 i--; 2854 } 2855 2856 out: 2857 return ret; 2858 } 2859 2860 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle, 2861 struct ocfs2_extent_tree *et, 2862 struct ocfs2_path *path) 2863 { 2864 int ret; 2865 struct buffer_head *bh = path_leaf_bh(path); 2866 struct ocfs2_extent_list *el = path_leaf_el(path); 2867 2868 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 2869 return 0; 2870 2871 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path, 2872 path_num_items(path) - 1); 2873 if (ret) { 2874 mlog_errno(ret); 2875 goto out; 2876 } 2877 2878 ocfs2_remove_empty_extent(el); 2879 ocfs2_journal_dirty(handle, bh); 2880 2881 out: 2882 return ret; 2883 } 2884 2885 static int __ocfs2_rotate_tree_left(handle_t *handle, 2886 struct ocfs2_extent_tree *et, 2887 int orig_credits, 2888 struct ocfs2_path *path, 2889 struct ocfs2_cached_dealloc_ctxt *dealloc, 2890 struct ocfs2_path **empty_extent_path) 2891 { 2892 int ret, subtree_root, deleted; 2893 u32 right_cpos; 2894 struct ocfs2_path *left_path = NULL; 2895 struct ocfs2_path *right_path = NULL; 2896 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 2897 2898 if (!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0]))) 2899 return 0; 2900 2901 *empty_extent_path = NULL; 2902 2903 ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos); 2904 if (ret) { 2905 mlog_errno(ret); 2906 goto out; 2907 } 2908 2909 left_path = ocfs2_new_path_from_path(path); 2910 if (!left_path) { 2911 ret = -ENOMEM; 2912 mlog_errno(ret); 2913 goto out; 2914 } 2915 2916 ocfs2_cp_path(left_path, path); 2917 2918 right_path = ocfs2_new_path_from_path(path); 2919 if (!right_path) { 2920 ret = -ENOMEM; 2921 mlog_errno(ret); 2922 goto out; 2923 } 2924 2925 while (right_cpos) { 2926 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); 2927 if (ret) { 2928 mlog_errno(ret); 2929 goto out; 2930 } 2931 2932 subtree_root = ocfs2_find_subtree_root(et, left_path, 2933 right_path); 2934 2935 trace_ocfs2_rotate_subtree(subtree_root, 2936 (unsigned long long) 2937 right_path->p_node[subtree_root].bh->b_blocknr, 2938 right_path->p_tree_depth); 2939 2940 ret = ocfs2_extend_rotate_transaction(handle, 0, 2941 orig_credits, left_path); 2942 if (ret) { 2943 mlog_errno(ret); 2944 goto out; 2945 } 2946 2947 /* 2948 * Caller might still want to make changes to the 2949 * tree root, so re-add it to the journal here. 2950 */ 2951 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2952 left_path, 0); 2953 if (ret) { 2954 mlog_errno(ret); 2955 goto out; 2956 } 2957 2958 ret = ocfs2_rotate_subtree_left(handle, et, left_path, 2959 right_path, subtree_root, 2960 dealloc, &deleted); 2961 if (ret == -EAGAIN) { 2962 /* 2963 * The rotation has to temporarily stop due to 2964 * the right subtree having an empty 2965 * extent. Pass it back to the caller for a 2966 * fixup. 2967 */ 2968 *empty_extent_path = right_path; 2969 right_path = NULL; 2970 goto out; 2971 } 2972 if (ret) { 2973 mlog_errno(ret); 2974 goto out; 2975 } 2976 2977 /* 2978 * The subtree rotate might have removed records on 2979 * the rightmost edge. If so, then rotation is 2980 * complete. 2981 */ 2982 if (deleted) 2983 break; 2984 2985 ocfs2_mv_path(left_path, right_path); 2986 2987 ret = ocfs2_find_cpos_for_right_leaf(sb, left_path, 2988 &right_cpos); 2989 if (ret) { 2990 mlog_errno(ret); 2991 goto out; 2992 } 2993 } 2994 2995 out: 2996 ocfs2_free_path(right_path); 2997 ocfs2_free_path(left_path); 2998 2999 return ret; 3000 } 3001 3002 static int ocfs2_remove_rightmost_path(handle_t *handle, 3003 struct ocfs2_extent_tree *et, 3004 struct ocfs2_path *path, 3005 struct ocfs2_cached_dealloc_ctxt *dealloc) 3006 { 3007 int ret, subtree_index; 3008 u32 cpos; 3009 struct ocfs2_path *left_path = NULL; 3010 struct ocfs2_extent_block *eb; 3011 struct ocfs2_extent_list *el; 3012 3013 ret = ocfs2_et_sanity_check(et); 3014 if (ret) 3015 goto out; 3016 3017 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 3018 if (ret) { 3019 mlog_errno(ret); 3020 goto out; 3021 } 3022 3023 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3024 path, &cpos); 3025 if (ret) { 3026 mlog_errno(ret); 3027 goto out; 3028 } 3029 3030 if (cpos) { 3031 /* 3032 * We have a path to the left of this one - it needs 3033 * an update too. 3034 */ 3035 left_path = ocfs2_new_path_from_path(path); 3036 if (!left_path) { 3037 ret = -ENOMEM; 3038 mlog_errno(ret); 3039 goto out; 3040 } 3041 3042 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 3043 if (ret) { 3044 mlog_errno(ret); 3045 goto out; 3046 } 3047 3048 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 3049 if (ret) { 3050 mlog_errno(ret); 3051 goto out; 3052 } 3053 3054 subtree_index = ocfs2_find_subtree_root(et, left_path, path); 3055 3056 ocfs2_unlink_subtree(handle, et, left_path, path, 3057 subtree_index, dealloc); 3058 ret = ocfs2_update_edge_lengths(handle, et, left_path); 3059 if (ret) { 3060 mlog_errno(ret); 3061 goto out; 3062 } 3063 3064 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 3065 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 3066 } else { 3067 /* 3068 * 'path' is also the leftmost path which 3069 * means it must be the only one. This gets 3070 * handled differently because we want to 3071 * revert the root back to having extents 3072 * in-line. 3073 */ 3074 ocfs2_unlink_path(handle, et, dealloc, path, 1); 3075 3076 el = et->et_root_el; 3077 el->l_tree_depth = 0; 3078 el->l_next_free_rec = 0; 3079 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3080 3081 ocfs2_et_set_last_eb_blk(et, 0); 3082 } 3083 3084 ocfs2_journal_dirty(handle, path_root_bh(path)); 3085 3086 out: 3087 ocfs2_free_path(left_path); 3088 return ret; 3089 } 3090 3091 static int ocfs2_remove_rightmost_empty_extent(struct ocfs2_super *osb, 3092 struct ocfs2_extent_tree *et, 3093 struct ocfs2_path *path, 3094 struct ocfs2_cached_dealloc_ctxt *dealloc) 3095 { 3096 handle_t *handle; 3097 int ret; 3098 int credits = path->p_tree_depth * 2 + 1; 3099 3100 handle = ocfs2_start_trans(osb, credits); 3101 if (IS_ERR(handle)) { 3102 ret = PTR_ERR(handle); 3103 mlog_errno(ret); 3104 return ret; 3105 } 3106 3107 ret = ocfs2_remove_rightmost_path(handle, et, path, dealloc); 3108 if (ret) 3109 mlog_errno(ret); 3110 3111 ocfs2_commit_trans(osb, handle); 3112 return ret; 3113 } 3114 3115 /* 3116 * Left rotation of btree records. 3117 * 3118 * In many ways, this is (unsurprisingly) the opposite of right 3119 * rotation. We start at some non-rightmost path containing an empty 3120 * extent in the leaf block. The code works its way to the rightmost 3121 * path by rotating records to the left in every subtree. 3122 * 3123 * This is used by any code which reduces the number of extent records 3124 * in a leaf. After removal, an empty record should be placed in the 3125 * leftmost list position. 3126 * 3127 * This won't handle a length update of the rightmost path records if 3128 * the rightmost tree leaf record is removed so the caller is 3129 * responsible for detecting and correcting that. 3130 */ 3131 static int ocfs2_rotate_tree_left(handle_t *handle, 3132 struct ocfs2_extent_tree *et, 3133 struct ocfs2_path *path, 3134 struct ocfs2_cached_dealloc_ctxt *dealloc) 3135 { 3136 int ret, orig_credits = handle->h_buffer_credits; 3137 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL; 3138 struct ocfs2_extent_block *eb; 3139 struct ocfs2_extent_list *el; 3140 3141 el = path_leaf_el(path); 3142 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 3143 return 0; 3144 3145 if (path->p_tree_depth == 0) { 3146 rightmost_no_delete: 3147 /* 3148 * Inline extents. This is trivially handled, so do 3149 * it up front. 3150 */ 3151 ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path); 3152 if (ret) 3153 mlog_errno(ret); 3154 goto out; 3155 } 3156 3157 /* 3158 * Handle rightmost branch now. There's several cases: 3159 * 1) simple rotation leaving records in there. That's trivial. 3160 * 2) rotation requiring a branch delete - there's no more 3161 * records left. Two cases of this: 3162 * a) There are branches to the left. 3163 * b) This is also the leftmost (the only) branch. 3164 * 3165 * 1) is handled via ocfs2_rotate_rightmost_leaf_left() 3166 * 2a) we need the left branch so that we can update it with the unlink 3167 * 2b) we need to bring the root back to inline extents. 3168 */ 3169 3170 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 3171 el = &eb->h_list; 3172 if (eb->h_next_leaf_blk == 0) { 3173 /* 3174 * This gets a bit tricky if we're going to delete the 3175 * rightmost path. Get the other cases out of the way 3176 * 1st. 3177 */ 3178 if (le16_to_cpu(el->l_next_free_rec) > 1) 3179 goto rightmost_no_delete; 3180 3181 if (le16_to_cpu(el->l_next_free_rec) == 0) { 3182 ret = -EIO; 3183 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 3184 "Owner %llu has empty extent block at %llu\n", 3185 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 3186 (unsigned long long)le64_to_cpu(eb->h_blkno)); 3187 goto out; 3188 } 3189 3190 /* 3191 * XXX: The caller can not trust "path" any more after 3192 * this as it will have been deleted. What do we do? 3193 * 3194 * In theory the rotate-for-merge code will never get 3195 * here because it'll always ask for a rotate in a 3196 * nonempty list. 3197 */ 3198 3199 ret = ocfs2_remove_rightmost_path(handle, et, path, 3200 dealloc); 3201 if (ret) 3202 mlog_errno(ret); 3203 goto out; 3204 } 3205 3206 /* 3207 * Now we can loop, remembering the path we get from -EAGAIN 3208 * and restarting from there. 3209 */ 3210 try_rotate: 3211 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path, 3212 dealloc, &restart_path); 3213 if (ret && ret != -EAGAIN) { 3214 mlog_errno(ret); 3215 goto out; 3216 } 3217 3218 while (ret == -EAGAIN) { 3219 tmp_path = restart_path; 3220 restart_path = NULL; 3221 3222 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, 3223 tmp_path, dealloc, 3224 &restart_path); 3225 if (ret && ret != -EAGAIN) { 3226 mlog_errno(ret); 3227 goto out; 3228 } 3229 3230 ocfs2_free_path(tmp_path); 3231 tmp_path = NULL; 3232 3233 if (ret == 0) 3234 goto try_rotate; 3235 } 3236 3237 out: 3238 ocfs2_free_path(tmp_path); 3239 ocfs2_free_path(restart_path); 3240 return ret; 3241 } 3242 3243 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el, 3244 int index) 3245 { 3246 struct ocfs2_extent_rec *rec = &el->l_recs[index]; 3247 unsigned int size; 3248 3249 if (rec->e_leaf_clusters == 0) { 3250 /* 3251 * We consumed all of the merged-from record. An empty 3252 * extent cannot exist anywhere but the 1st array 3253 * position, so move things over if the merged-from 3254 * record doesn't occupy that position. 3255 * 3256 * This creates a new empty extent so the caller 3257 * should be smart enough to have removed any existing 3258 * ones. 3259 */ 3260 if (index > 0) { 3261 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 3262 size = index * sizeof(struct ocfs2_extent_rec); 3263 memmove(&el->l_recs[1], &el->l_recs[0], size); 3264 } 3265 3266 /* 3267 * Always memset - the caller doesn't check whether it 3268 * created an empty extent, so there could be junk in 3269 * the other fields. 3270 */ 3271 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3272 } 3273 } 3274 3275 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et, 3276 struct ocfs2_path *left_path, 3277 struct ocfs2_path **ret_right_path) 3278 { 3279 int ret; 3280 u32 right_cpos; 3281 struct ocfs2_path *right_path = NULL; 3282 struct ocfs2_extent_list *left_el; 3283 3284 *ret_right_path = NULL; 3285 3286 /* This function shouldn't be called for non-trees. */ 3287 BUG_ON(left_path->p_tree_depth == 0); 3288 3289 left_el = path_leaf_el(left_path); 3290 BUG_ON(left_el->l_next_free_rec != left_el->l_count); 3291 3292 ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3293 left_path, &right_cpos); 3294 if (ret) { 3295 mlog_errno(ret); 3296 goto out; 3297 } 3298 3299 /* This function shouldn't be called for the rightmost leaf. */ 3300 BUG_ON(right_cpos == 0); 3301 3302 right_path = ocfs2_new_path_from_path(left_path); 3303 if (!right_path) { 3304 ret = -ENOMEM; 3305 mlog_errno(ret); 3306 goto out; 3307 } 3308 3309 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); 3310 if (ret) { 3311 mlog_errno(ret); 3312 goto out; 3313 } 3314 3315 *ret_right_path = right_path; 3316 out: 3317 if (ret) 3318 ocfs2_free_path(right_path); 3319 return ret; 3320 } 3321 3322 /* 3323 * Remove split_rec clusters from the record at index and merge them 3324 * onto the beginning of the record "next" to it. 3325 * For index < l_count - 1, the next means the extent rec at index + 1. 3326 * For index == l_count - 1, the "next" means the 1st extent rec of the 3327 * next extent block. 3328 */ 3329 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path, 3330 handle_t *handle, 3331 struct ocfs2_extent_tree *et, 3332 struct ocfs2_extent_rec *split_rec, 3333 int index) 3334 { 3335 int ret, next_free, i; 3336 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3337 struct ocfs2_extent_rec *left_rec; 3338 struct ocfs2_extent_rec *right_rec; 3339 struct ocfs2_extent_list *right_el; 3340 struct ocfs2_path *right_path = NULL; 3341 int subtree_index = 0; 3342 struct ocfs2_extent_list *el = path_leaf_el(left_path); 3343 struct buffer_head *bh = path_leaf_bh(left_path); 3344 struct buffer_head *root_bh = NULL; 3345 3346 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec)); 3347 left_rec = &el->l_recs[index]; 3348 3349 if (index == le16_to_cpu(el->l_next_free_rec) - 1 && 3350 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) { 3351 /* we meet with a cross extent block merge. */ 3352 ret = ocfs2_get_right_path(et, left_path, &right_path); 3353 if (ret) { 3354 mlog_errno(ret); 3355 return ret; 3356 } 3357 3358 right_el = path_leaf_el(right_path); 3359 next_free = le16_to_cpu(right_el->l_next_free_rec); 3360 BUG_ON(next_free <= 0); 3361 right_rec = &right_el->l_recs[0]; 3362 if (ocfs2_is_empty_extent(right_rec)) { 3363 BUG_ON(next_free <= 1); 3364 right_rec = &right_el->l_recs[1]; 3365 } 3366 3367 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3368 le16_to_cpu(left_rec->e_leaf_clusters) != 3369 le32_to_cpu(right_rec->e_cpos)); 3370 3371 subtree_index = ocfs2_find_subtree_root(et, left_path, 3372 right_path); 3373 3374 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3375 handle->h_buffer_credits, 3376 right_path); 3377 if (ret) { 3378 mlog_errno(ret); 3379 goto out; 3380 } 3381 3382 root_bh = left_path->p_node[subtree_index].bh; 3383 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3384 3385 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3386 subtree_index); 3387 if (ret) { 3388 mlog_errno(ret); 3389 goto out; 3390 } 3391 3392 for (i = subtree_index + 1; 3393 i < path_num_items(right_path); i++) { 3394 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3395 right_path, i); 3396 if (ret) { 3397 mlog_errno(ret); 3398 goto out; 3399 } 3400 3401 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3402 left_path, i); 3403 if (ret) { 3404 mlog_errno(ret); 3405 goto out; 3406 } 3407 } 3408 3409 } else { 3410 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1); 3411 right_rec = &el->l_recs[index + 1]; 3412 } 3413 3414 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path, 3415 path_num_items(left_path) - 1); 3416 if (ret) { 3417 mlog_errno(ret); 3418 goto out; 3419 } 3420 3421 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters); 3422 3423 le32_add_cpu(&right_rec->e_cpos, -split_clusters); 3424 le64_add_cpu(&right_rec->e_blkno, 3425 -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), 3426 split_clusters)); 3427 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters); 3428 3429 ocfs2_cleanup_merge(el, index); 3430 3431 ocfs2_journal_dirty(handle, bh); 3432 if (right_path) { 3433 ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 3434 ocfs2_complete_edge_insert(handle, left_path, right_path, 3435 subtree_index); 3436 } 3437 out: 3438 ocfs2_free_path(right_path); 3439 return ret; 3440 } 3441 3442 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et, 3443 struct ocfs2_path *right_path, 3444 struct ocfs2_path **ret_left_path) 3445 { 3446 int ret; 3447 u32 left_cpos; 3448 struct ocfs2_path *left_path = NULL; 3449 3450 *ret_left_path = NULL; 3451 3452 /* This function shouldn't be called for non-trees. */ 3453 BUG_ON(right_path->p_tree_depth == 0); 3454 3455 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3456 right_path, &left_cpos); 3457 if (ret) { 3458 mlog_errno(ret); 3459 goto out; 3460 } 3461 3462 /* This function shouldn't be called for the leftmost leaf. */ 3463 BUG_ON(left_cpos == 0); 3464 3465 left_path = ocfs2_new_path_from_path(right_path); 3466 if (!left_path) { 3467 ret = -ENOMEM; 3468 mlog_errno(ret); 3469 goto out; 3470 } 3471 3472 ret = ocfs2_find_path(et->et_ci, left_path, left_cpos); 3473 if (ret) { 3474 mlog_errno(ret); 3475 goto out; 3476 } 3477 3478 *ret_left_path = left_path; 3479 out: 3480 if (ret) 3481 ocfs2_free_path(left_path); 3482 return ret; 3483 } 3484 3485 /* 3486 * Remove split_rec clusters from the record at index and merge them 3487 * onto the tail of the record "before" it. 3488 * For index > 0, the "before" means the extent rec at index - 1. 3489 * 3490 * For index == 0, the "before" means the last record of the previous 3491 * extent block. And there is also a situation that we may need to 3492 * remove the rightmost leaf extent block in the right_path and change 3493 * the right path to indicate the new rightmost path. 3494 */ 3495 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path, 3496 handle_t *handle, 3497 struct ocfs2_extent_tree *et, 3498 struct ocfs2_extent_rec *split_rec, 3499 struct ocfs2_cached_dealloc_ctxt *dealloc, 3500 int index) 3501 { 3502 int ret, i, subtree_index = 0, has_empty_extent = 0; 3503 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3504 struct ocfs2_extent_rec *left_rec; 3505 struct ocfs2_extent_rec *right_rec; 3506 struct ocfs2_extent_list *el = path_leaf_el(right_path); 3507 struct buffer_head *bh = path_leaf_bh(right_path); 3508 struct buffer_head *root_bh = NULL; 3509 struct ocfs2_path *left_path = NULL; 3510 struct ocfs2_extent_list *left_el; 3511 3512 BUG_ON(index < 0); 3513 3514 right_rec = &el->l_recs[index]; 3515 if (index == 0) { 3516 /* we meet with a cross extent block merge. */ 3517 ret = ocfs2_get_left_path(et, right_path, &left_path); 3518 if (ret) { 3519 mlog_errno(ret); 3520 return ret; 3521 } 3522 3523 left_el = path_leaf_el(left_path); 3524 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) != 3525 le16_to_cpu(left_el->l_count)); 3526 3527 left_rec = &left_el->l_recs[ 3528 le16_to_cpu(left_el->l_next_free_rec) - 1]; 3529 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3530 le16_to_cpu(left_rec->e_leaf_clusters) != 3531 le32_to_cpu(split_rec->e_cpos)); 3532 3533 subtree_index = ocfs2_find_subtree_root(et, left_path, 3534 right_path); 3535 3536 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3537 handle->h_buffer_credits, 3538 left_path); 3539 if (ret) { 3540 mlog_errno(ret); 3541 goto out; 3542 } 3543 3544 root_bh = left_path->p_node[subtree_index].bh; 3545 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3546 3547 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3548 subtree_index); 3549 if (ret) { 3550 mlog_errno(ret); 3551 goto out; 3552 } 3553 3554 for (i = subtree_index + 1; 3555 i < path_num_items(right_path); i++) { 3556 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3557 right_path, i); 3558 if (ret) { 3559 mlog_errno(ret); 3560 goto out; 3561 } 3562 3563 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3564 left_path, i); 3565 if (ret) { 3566 mlog_errno(ret); 3567 goto out; 3568 } 3569 } 3570 } else { 3571 left_rec = &el->l_recs[index - 1]; 3572 if (ocfs2_is_empty_extent(&el->l_recs[0])) 3573 has_empty_extent = 1; 3574 } 3575 3576 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3577 path_num_items(right_path) - 1); 3578 if (ret) { 3579 mlog_errno(ret); 3580 goto out; 3581 } 3582 3583 if (has_empty_extent && index == 1) { 3584 /* 3585 * The easy case - we can just plop the record right in. 3586 */ 3587 *left_rec = *split_rec; 3588 } else 3589 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters); 3590 3591 le32_add_cpu(&right_rec->e_cpos, split_clusters); 3592 le64_add_cpu(&right_rec->e_blkno, 3593 ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), 3594 split_clusters)); 3595 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters); 3596 3597 ocfs2_cleanup_merge(el, index); 3598 3599 ocfs2_journal_dirty(handle, bh); 3600 if (left_path) { 3601 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 3602 3603 /* 3604 * In the situation that the right_rec is empty and the extent 3605 * block is empty also, ocfs2_complete_edge_insert can't handle 3606 * it and we need to delete the right extent block. 3607 */ 3608 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 && 3609 le16_to_cpu(el->l_next_free_rec) == 1) { 3610 /* extend credit for ocfs2_remove_rightmost_path */ 3611 ret = ocfs2_extend_rotate_transaction(handle, 0, 3612 handle->h_buffer_credits, 3613 right_path); 3614 if (ret) { 3615 mlog_errno(ret); 3616 goto out; 3617 } 3618 3619 ret = ocfs2_remove_rightmost_path(handle, et, 3620 right_path, 3621 dealloc); 3622 if (ret) { 3623 mlog_errno(ret); 3624 goto out; 3625 } 3626 3627 /* Now the rightmost extent block has been deleted. 3628 * So we use the new rightmost path. 3629 */ 3630 ocfs2_mv_path(right_path, left_path); 3631 left_path = NULL; 3632 } else 3633 ocfs2_complete_edge_insert(handle, left_path, 3634 right_path, subtree_index); 3635 } 3636 out: 3637 ocfs2_free_path(left_path); 3638 return ret; 3639 } 3640 3641 static int ocfs2_try_to_merge_extent(handle_t *handle, 3642 struct ocfs2_extent_tree *et, 3643 struct ocfs2_path *path, 3644 int split_index, 3645 struct ocfs2_extent_rec *split_rec, 3646 struct ocfs2_cached_dealloc_ctxt *dealloc, 3647 struct ocfs2_merge_ctxt *ctxt) 3648 { 3649 int ret = 0; 3650 struct ocfs2_extent_list *el = path_leaf_el(path); 3651 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 3652 3653 BUG_ON(ctxt->c_contig_type == CONTIG_NONE); 3654 3655 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) { 3656 /* extend credit for ocfs2_remove_rightmost_path */ 3657 ret = ocfs2_extend_rotate_transaction(handle, 0, 3658 handle->h_buffer_credits, 3659 path); 3660 if (ret) { 3661 mlog_errno(ret); 3662 goto out; 3663 } 3664 /* 3665 * The merge code will need to create an empty 3666 * extent to take the place of the newly 3667 * emptied slot. Remove any pre-existing empty 3668 * extents - having more than one in a leaf is 3669 * illegal. 3670 */ 3671 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3672 if (ret) { 3673 mlog_errno(ret); 3674 goto out; 3675 } 3676 split_index--; 3677 rec = &el->l_recs[split_index]; 3678 } 3679 3680 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) { 3681 /* 3682 * Left-right contig implies this. 3683 */ 3684 BUG_ON(!ctxt->c_split_covers_rec); 3685 3686 /* 3687 * Since the leftright insert always covers the entire 3688 * extent, this call will delete the insert record 3689 * entirely, resulting in an empty extent record added to 3690 * the extent block. 3691 * 3692 * Since the adding of an empty extent shifts 3693 * everything back to the right, there's no need to 3694 * update split_index here. 3695 * 3696 * When the split_index is zero, we need to merge it to the 3697 * prevoius extent block. It is more efficient and easier 3698 * if we do merge_right first and merge_left later. 3699 */ 3700 ret = ocfs2_merge_rec_right(path, handle, et, split_rec, 3701 split_index); 3702 if (ret) { 3703 mlog_errno(ret); 3704 goto out; 3705 } 3706 3707 /* 3708 * We can only get this from logic error above. 3709 */ 3710 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0])); 3711 3712 /* extend credit for ocfs2_remove_rightmost_path */ 3713 ret = ocfs2_extend_rotate_transaction(handle, 0, 3714 handle->h_buffer_credits, 3715 path); 3716 if (ret) { 3717 mlog_errno(ret); 3718 goto out; 3719 } 3720 3721 /* The merge left us with an empty extent, remove it. */ 3722 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3723 if (ret) { 3724 mlog_errno(ret); 3725 goto out; 3726 } 3727 3728 rec = &el->l_recs[split_index]; 3729 3730 /* 3731 * Note that we don't pass split_rec here on purpose - 3732 * we've merged it into the rec already. 3733 */ 3734 ret = ocfs2_merge_rec_left(path, handle, et, rec, 3735 dealloc, split_index); 3736 3737 if (ret) { 3738 mlog_errno(ret); 3739 goto out; 3740 } 3741 3742 /* extend credit for ocfs2_remove_rightmost_path */ 3743 ret = ocfs2_extend_rotate_transaction(handle, 0, 3744 handle->h_buffer_credits, 3745 path); 3746 if (ret) { 3747 mlog_errno(ret); 3748 goto out; 3749 } 3750 3751 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3752 /* 3753 * Error from this last rotate is not critical, so 3754 * print but don't bubble it up. 3755 */ 3756 if (ret) 3757 mlog_errno(ret); 3758 ret = 0; 3759 } else { 3760 /* 3761 * Merge a record to the left or right. 3762 * 3763 * 'contig_type' is relative to the existing record, 3764 * so for example, if we're "right contig", it's to 3765 * the record on the left (hence the left merge). 3766 */ 3767 if (ctxt->c_contig_type == CONTIG_RIGHT) { 3768 ret = ocfs2_merge_rec_left(path, handle, et, 3769 split_rec, dealloc, 3770 split_index); 3771 if (ret) { 3772 mlog_errno(ret); 3773 goto out; 3774 } 3775 } else { 3776 ret = ocfs2_merge_rec_right(path, handle, 3777 et, split_rec, 3778 split_index); 3779 if (ret) { 3780 mlog_errno(ret); 3781 goto out; 3782 } 3783 } 3784 3785 if (ctxt->c_split_covers_rec) { 3786 /* extend credit for ocfs2_remove_rightmost_path */ 3787 ret = ocfs2_extend_rotate_transaction(handle, 0, 3788 handle->h_buffer_credits, 3789 path); 3790 if (ret) { 3791 mlog_errno(ret); 3792 ret = 0; 3793 goto out; 3794 } 3795 3796 /* 3797 * The merge may have left an empty extent in 3798 * our leaf. Try to rotate it away. 3799 */ 3800 ret = ocfs2_rotate_tree_left(handle, et, path, 3801 dealloc); 3802 if (ret) 3803 mlog_errno(ret); 3804 ret = 0; 3805 } 3806 } 3807 3808 out: 3809 return ret; 3810 } 3811 3812 static void ocfs2_subtract_from_rec(struct super_block *sb, 3813 enum ocfs2_split_type split, 3814 struct ocfs2_extent_rec *rec, 3815 struct ocfs2_extent_rec *split_rec) 3816 { 3817 u64 len_blocks; 3818 3819 len_blocks = ocfs2_clusters_to_blocks(sb, 3820 le16_to_cpu(split_rec->e_leaf_clusters)); 3821 3822 if (split == SPLIT_LEFT) { 3823 /* 3824 * Region is on the left edge of the existing 3825 * record. 3826 */ 3827 le32_add_cpu(&rec->e_cpos, 3828 le16_to_cpu(split_rec->e_leaf_clusters)); 3829 le64_add_cpu(&rec->e_blkno, len_blocks); 3830 le16_add_cpu(&rec->e_leaf_clusters, 3831 -le16_to_cpu(split_rec->e_leaf_clusters)); 3832 } else { 3833 /* 3834 * Region is on the right edge of the existing 3835 * record. 3836 */ 3837 le16_add_cpu(&rec->e_leaf_clusters, 3838 -le16_to_cpu(split_rec->e_leaf_clusters)); 3839 } 3840 } 3841 3842 /* 3843 * Do the final bits of extent record insertion at the target leaf 3844 * list. If this leaf is part of an allocation tree, it is assumed 3845 * that the tree above has been prepared. 3846 */ 3847 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et, 3848 struct ocfs2_extent_rec *insert_rec, 3849 struct ocfs2_extent_list *el, 3850 struct ocfs2_insert_type *insert) 3851 { 3852 int i = insert->ins_contig_index; 3853 unsigned int range; 3854 struct ocfs2_extent_rec *rec; 3855 3856 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 3857 3858 if (insert->ins_split != SPLIT_NONE) { 3859 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos)); 3860 BUG_ON(i == -1); 3861 rec = &el->l_recs[i]; 3862 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci), 3863 insert->ins_split, rec, 3864 insert_rec); 3865 goto rotate; 3866 } 3867 3868 /* 3869 * Contiguous insert - either left or right. 3870 */ 3871 if (insert->ins_contig != CONTIG_NONE) { 3872 rec = &el->l_recs[i]; 3873 if (insert->ins_contig == CONTIG_LEFT) { 3874 rec->e_blkno = insert_rec->e_blkno; 3875 rec->e_cpos = insert_rec->e_cpos; 3876 } 3877 le16_add_cpu(&rec->e_leaf_clusters, 3878 le16_to_cpu(insert_rec->e_leaf_clusters)); 3879 return; 3880 } 3881 3882 /* 3883 * Handle insert into an empty leaf. 3884 */ 3885 if (le16_to_cpu(el->l_next_free_rec) == 0 || 3886 ((le16_to_cpu(el->l_next_free_rec) == 1) && 3887 ocfs2_is_empty_extent(&el->l_recs[0]))) { 3888 el->l_recs[0] = *insert_rec; 3889 el->l_next_free_rec = cpu_to_le16(1); 3890 return; 3891 } 3892 3893 /* 3894 * Appending insert. 3895 */ 3896 if (insert->ins_appending == APPEND_TAIL) { 3897 i = le16_to_cpu(el->l_next_free_rec) - 1; 3898 rec = &el->l_recs[i]; 3899 range = le32_to_cpu(rec->e_cpos) 3900 + le16_to_cpu(rec->e_leaf_clusters); 3901 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range); 3902 3903 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >= 3904 le16_to_cpu(el->l_count), 3905 "owner %llu, depth %u, count %u, next free %u, " 3906 "rec.cpos %u, rec.clusters %u, " 3907 "insert.cpos %u, insert.clusters %u\n", 3908 ocfs2_metadata_cache_owner(et->et_ci), 3909 le16_to_cpu(el->l_tree_depth), 3910 le16_to_cpu(el->l_count), 3911 le16_to_cpu(el->l_next_free_rec), 3912 le32_to_cpu(el->l_recs[i].e_cpos), 3913 le16_to_cpu(el->l_recs[i].e_leaf_clusters), 3914 le32_to_cpu(insert_rec->e_cpos), 3915 le16_to_cpu(insert_rec->e_leaf_clusters)); 3916 i++; 3917 el->l_recs[i] = *insert_rec; 3918 le16_add_cpu(&el->l_next_free_rec, 1); 3919 return; 3920 } 3921 3922 rotate: 3923 /* 3924 * Ok, we have to rotate. 3925 * 3926 * At this point, it is safe to assume that inserting into an 3927 * empty leaf and appending to a leaf have both been handled 3928 * above. 3929 * 3930 * This leaf needs to have space, either by the empty 1st 3931 * extent record, or by virtue of an l_next_rec < l_count. 3932 */ 3933 ocfs2_rotate_leaf(el, insert_rec); 3934 } 3935 3936 static void ocfs2_adjust_rightmost_records(handle_t *handle, 3937 struct ocfs2_extent_tree *et, 3938 struct ocfs2_path *path, 3939 struct ocfs2_extent_rec *insert_rec) 3940 { 3941 int ret, i, next_free; 3942 struct buffer_head *bh; 3943 struct ocfs2_extent_list *el; 3944 struct ocfs2_extent_rec *rec; 3945 3946 /* 3947 * Update everything except the leaf block. 3948 */ 3949 for (i = 0; i < path->p_tree_depth; i++) { 3950 bh = path->p_node[i].bh; 3951 el = path->p_node[i].el; 3952 3953 next_free = le16_to_cpu(el->l_next_free_rec); 3954 if (next_free == 0) { 3955 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 3956 "Owner %llu has a bad extent list\n", 3957 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 3958 ret = -EIO; 3959 return; 3960 } 3961 3962 rec = &el->l_recs[next_free - 1]; 3963 3964 rec->e_int_clusters = insert_rec->e_cpos; 3965 le32_add_cpu(&rec->e_int_clusters, 3966 le16_to_cpu(insert_rec->e_leaf_clusters)); 3967 le32_add_cpu(&rec->e_int_clusters, 3968 -le32_to_cpu(rec->e_cpos)); 3969 3970 ocfs2_journal_dirty(handle, bh); 3971 } 3972 } 3973 3974 static int ocfs2_append_rec_to_path(handle_t *handle, 3975 struct ocfs2_extent_tree *et, 3976 struct ocfs2_extent_rec *insert_rec, 3977 struct ocfs2_path *right_path, 3978 struct ocfs2_path **ret_left_path) 3979 { 3980 int ret, next_free; 3981 struct ocfs2_extent_list *el; 3982 struct ocfs2_path *left_path = NULL; 3983 3984 *ret_left_path = NULL; 3985 3986 /* 3987 * This shouldn't happen for non-trees. The extent rec cluster 3988 * count manipulation below only works for interior nodes. 3989 */ 3990 BUG_ON(right_path->p_tree_depth == 0); 3991 3992 /* 3993 * If our appending insert is at the leftmost edge of a leaf, 3994 * then we might need to update the rightmost records of the 3995 * neighboring path. 3996 */ 3997 el = path_leaf_el(right_path); 3998 next_free = le16_to_cpu(el->l_next_free_rec); 3999 if (next_free == 0 || 4000 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) { 4001 u32 left_cpos; 4002 4003 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 4004 right_path, &left_cpos); 4005 if (ret) { 4006 mlog_errno(ret); 4007 goto out; 4008 } 4009 4010 trace_ocfs2_append_rec_to_path( 4011 (unsigned long long) 4012 ocfs2_metadata_cache_owner(et->et_ci), 4013 le32_to_cpu(insert_rec->e_cpos), 4014 left_cpos); 4015 4016 /* 4017 * No need to worry if the append is already in the 4018 * leftmost leaf. 4019 */ 4020 if (left_cpos) { 4021 left_path = ocfs2_new_path_from_path(right_path); 4022 if (!left_path) { 4023 ret = -ENOMEM; 4024 mlog_errno(ret); 4025 goto out; 4026 } 4027 4028 ret = ocfs2_find_path(et->et_ci, left_path, 4029 left_cpos); 4030 if (ret) { 4031 mlog_errno(ret); 4032 goto out; 4033 } 4034 4035 /* 4036 * ocfs2_insert_path() will pass the left_path to the 4037 * journal for us. 4038 */ 4039 } 4040 } 4041 4042 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path); 4043 if (ret) { 4044 mlog_errno(ret); 4045 goto out; 4046 } 4047 4048 ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec); 4049 4050 *ret_left_path = left_path; 4051 ret = 0; 4052 out: 4053 if (ret != 0) 4054 ocfs2_free_path(left_path); 4055 4056 return ret; 4057 } 4058 4059 static void ocfs2_split_record(struct ocfs2_extent_tree *et, 4060 struct ocfs2_path *left_path, 4061 struct ocfs2_path *right_path, 4062 struct ocfs2_extent_rec *split_rec, 4063 enum ocfs2_split_type split) 4064 { 4065 int index; 4066 u32 cpos = le32_to_cpu(split_rec->e_cpos); 4067 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el; 4068 struct ocfs2_extent_rec *rec, *tmprec; 4069 4070 right_el = path_leaf_el(right_path); 4071 if (left_path) 4072 left_el = path_leaf_el(left_path); 4073 4074 el = right_el; 4075 insert_el = right_el; 4076 index = ocfs2_search_extent_list(el, cpos); 4077 if (index != -1) { 4078 if (index == 0 && left_path) { 4079 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 4080 4081 /* 4082 * This typically means that the record 4083 * started in the left path but moved to the 4084 * right as a result of rotation. We either 4085 * move the existing record to the left, or we 4086 * do the later insert there. 4087 * 4088 * In this case, the left path should always 4089 * exist as the rotate code will have passed 4090 * it back for a post-insert update. 4091 */ 4092 4093 if (split == SPLIT_LEFT) { 4094 /* 4095 * It's a left split. Since we know 4096 * that the rotate code gave us an 4097 * empty extent in the left path, we 4098 * can just do the insert there. 4099 */ 4100 insert_el = left_el; 4101 } else { 4102 /* 4103 * Right split - we have to move the 4104 * existing record over to the left 4105 * leaf. The insert will be into the 4106 * newly created empty extent in the 4107 * right leaf. 4108 */ 4109 tmprec = &right_el->l_recs[index]; 4110 ocfs2_rotate_leaf(left_el, tmprec); 4111 el = left_el; 4112 4113 memset(tmprec, 0, sizeof(*tmprec)); 4114 index = ocfs2_search_extent_list(left_el, cpos); 4115 BUG_ON(index == -1); 4116 } 4117 } 4118 } else { 4119 BUG_ON(!left_path); 4120 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0])); 4121 /* 4122 * Left path is easy - we can just allow the insert to 4123 * happen. 4124 */ 4125 el = left_el; 4126 insert_el = left_el; 4127 index = ocfs2_search_extent_list(el, cpos); 4128 BUG_ON(index == -1); 4129 } 4130 4131 rec = &el->l_recs[index]; 4132 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci), 4133 split, rec, split_rec); 4134 ocfs2_rotate_leaf(insert_el, split_rec); 4135 } 4136 4137 /* 4138 * This function only does inserts on an allocation b-tree. For tree 4139 * depth = 0, ocfs2_insert_at_leaf() is called directly. 4140 * 4141 * right_path is the path we want to do the actual insert 4142 * in. left_path should only be passed in if we need to update that 4143 * portion of the tree after an edge insert. 4144 */ 4145 static int ocfs2_insert_path(handle_t *handle, 4146 struct ocfs2_extent_tree *et, 4147 struct ocfs2_path *left_path, 4148 struct ocfs2_path *right_path, 4149 struct ocfs2_extent_rec *insert_rec, 4150 struct ocfs2_insert_type *insert) 4151 { 4152 int ret, subtree_index; 4153 struct buffer_head *leaf_bh = path_leaf_bh(right_path); 4154 4155 if (left_path) { 4156 /* 4157 * There's a chance that left_path got passed back to 4158 * us without being accounted for in the 4159 * journal. Extend our transaction here to be sure we 4160 * can change those blocks. 4161 */ 4162 ret = ocfs2_extend_trans(handle, left_path->p_tree_depth); 4163 if (ret < 0) { 4164 mlog_errno(ret); 4165 goto out; 4166 } 4167 4168 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 4169 if (ret < 0) { 4170 mlog_errno(ret); 4171 goto out; 4172 } 4173 } 4174 4175 /* 4176 * Pass both paths to the journal. The majority of inserts 4177 * will be touching all components anyway. 4178 */ 4179 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path); 4180 if (ret < 0) { 4181 mlog_errno(ret); 4182 goto out; 4183 } 4184 4185 if (insert->ins_split != SPLIT_NONE) { 4186 /* 4187 * We could call ocfs2_insert_at_leaf() for some types 4188 * of splits, but it's easier to just let one separate 4189 * function sort it all out. 4190 */ 4191 ocfs2_split_record(et, left_path, right_path, 4192 insert_rec, insert->ins_split); 4193 4194 /* 4195 * Split might have modified either leaf and we don't 4196 * have a guarantee that the later edge insert will 4197 * dirty this for us. 4198 */ 4199 if (left_path) 4200 ocfs2_journal_dirty(handle, 4201 path_leaf_bh(left_path)); 4202 } else 4203 ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path), 4204 insert); 4205 4206 ocfs2_journal_dirty(handle, leaf_bh); 4207 4208 if (left_path) { 4209 /* 4210 * The rotate code has indicated that we need to fix 4211 * up portions of the tree after the insert. 4212 * 4213 * XXX: Should we extend the transaction here? 4214 */ 4215 subtree_index = ocfs2_find_subtree_root(et, left_path, 4216 right_path); 4217 ocfs2_complete_edge_insert(handle, left_path, right_path, 4218 subtree_index); 4219 } 4220 4221 ret = 0; 4222 out: 4223 return ret; 4224 } 4225 4226 static int ocfs2_do_insert_extent(handle_t *handle, 4227 struct ocfs2_extent_tree *et, 4228 struct ocfs2_extent_rec *insert_rec, 4229 struct ocfs2_insert_type *type) 4230 { 4231 int ret, rotate = 0; 4232 u32 cpos; 4233 struct ocfs2_path *right_path = NULL; 4234 struct ocfs2_path *left_path = NULL; 4235 struct ocfs2_extent_list *el; 4236 4237 el = et->et_root_el; 4238 4239 ret = ocfs2_et_root_journal_access(handle, et, 4240 OCFS2_JOURNAL_ACCESS_WRITE); 4241 if (ret) { 4242 mlog_errno(ret); 4243 goto out; 4244 } 4245 4246 if (le16_to_cpu(el->l_tree_depth) == 0) { 4247 ocfs2_insert_at_leaf(et, insert_rec, el, type); 4248 goto out_update_clusters; 4249 } 4250 4251 right_path = ocfs2_new_path_from_et(et); 4252 if (!right_path) { 4253 ret = -ENOMEM; 4254 mlog_errno(ret); 4255 goto out; 4256 } 4257 4258 /* 4259 * Determine the path to start with. Rotations need the 4260 * rightmost path, everything else can go directly to the 4261 * target leaf. 4262 */ 4263 cpos = le32_to_cpu(insert_rec->e_cpos); 4264 if (type->ins_appending == APPEND_NONE && 4265 type->ins_contig == CONTIG_NONE) { 4266 rotate = 1; 4267 cpos = UINT_MAX; 4268 } 4269 4270 ret = ocfs2_find_path(et->et_ci, right_path, cpos); 4271 if (ret) { 4272 mlog_errno(ret); 4273 goto out; 4274 } 4275 4276 /* 4277 * Rotations and appends need special treatment - they modify 4278 * parts of the tree's above them. 4279 * 4280 * Both might pass back a path immediate to the left of the 4281 * one being inserted to. This will be cause 4282 * ocfs2_insert_path() to modify the rightmost records of 4283 * left_path to account for an edge insert. 4284 * 4285 * XXX: When modifying this code, keep in mind that an insert 4286 * can wind up skipping both of these two special cases... 4287 */ 4288 if (rotate) { 4289 ret = ocfs2_rotate_tree_right(handle, et, type->ins_split, 4290 le32_to_cpu(insert_rec->e_cpos), 4291 right_path, &left_path); 4292 if (ret) { 4293 mlog_errno(ret); 4294 goto out; 4295 } 4296 4297 /* 4298 * ocfs2_rotate_tree_right() might have extended the 4299 * transaction without re-journaling our tree root. 4300 */ 4301 ret = ocfs2_et_root_journal_access(handle, et, 4302 OCFS2_JOURNAL_ACCESS_WRITE); 4303 if (ret) { 4304 mlog_errno(ret); 4305 goto out; 4306 } 4307 } else if (type->ins_appending == APPEND_TAIL 4308 && type->ins_contig != CONTIG_LEFT) { 4309 ret = ocfs2_append_rec_to_path(handle, et, insert_rec, 4310 right_path, &left_path); 4311 if (ret) { 4312 mlog_errno(ret); 4313 goto out; 4314 } 4315 } 4316 4317 ret = ocfs2_insert_path(handle, et, left_path, right_path, 4318 insert_rec, type); 4319 if (ret) { 4320 mlog_errno(ret); 4321 goto out; 4322 } 4323 4324 out_update_clusters: 4325 if (type->ins_split == SPLIT_NONE) 4326 ocfs2_et_update_clusters(et, 4327 le16_to_cpu(insert_rec->e_leaf_clusters)); 4328 4329 ocfs2_journal_dirty(handle, et->et_root_bh); 4330 4331 out: 4332 ocfs2_free_path(left_path); 4333 ocfs2_free_path(right_path); 4334 4335 return ret; 4336 } 4337 4338 static int ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et, 4339 struct ocfs2_path *path, 4340 struct ocfs2_extent_list *el, int index, 4341 struct ocfs2_extent_rec *split_rec, 4342 struct ocfs2_merge_ctxt *ctxt) 4343 { 4344 int status = 0; 4345 enum ocfs2_contig_type ret = CONTIG_NONE; 4346 u32 left_cpos, right_cpos; 4347 struct ocfs2_extent_rec *rec = NULL; 4348 struct ocfs2_extent_list *new_el; 4349 struct ocfs2_path *left_path = NULL, *right_path = NULL; 4350 struct buffer_head *bh; 4351 struct ocfs2_extent_block *eb; 4352 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 4353 4354 if (index > 0) { 4355 rec = &el->l_recs[index - 1]; 4356 } else if (path->p_tree_depth > 0) { 4357 status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos); 4358 if (status) 4359 goto exit; 4360 4361 if (left_cpos != 0) { 4362 left_path = ocfs2_new_path_from_path(path); 4363 if (!left_path) { 4364 status = -ENOMEM; 4365 mlog_errno(status); 4366 goto exit; 4367 } 4368 4369 status = ocfs2_find_path(et->et_ci, left_path, 4370 left_cpos); 4371 if (status) 4372 goto free_left_path; 4373 4374 new_el = path_leaf_el(left_path); 4375 4376 if (le16_to_cpu(new_el->l_next_free_rec) != 4377 le16_to_cpu(new_el->l_count)) { 4378 bh = path_leaf_bh(left_path); 4379 eb = (struct ocfs2_extent_block *)bh->b_data; 4380 ocfs2_error(sb, 4381 "Extent block #%llu has an invalid l_next_free_rec of %d. It should have matched the l_count of %d\n", 4382 (unsigned long long)le64_to_cpu(eb->h_blkno), 4383 le16_to_cpu(new_el->l_next_free_rec), 4384 le16_to_cpu(new_el->l_count)); 4385 status = -EINVAL; 4386 goto free_left_path; 4387 } 4388 rec = &new_el->l_recs[ 4389 le16_to_cpu(new_el->l_next_free_rec) - 1]; 4390 } 4391 } 4392 4393 /* 4394 * We're careful to check for an empty extent record here - 4395 * the merge code will know what to do if it sees one. 4396 */ 4397 if (rec) { 4398 if (index == 1 && ocfs2_is_empty_extent(rec)) { 4399 if (split_rec->e_cpos == el->l_recs[index].e_cpos) 4400 ret = CONTIG_RIGHT; 4401 } else { 4402 ret = ocfs2_et_extent_contig(et, rec, split_rec); 4403 } 4404 } 4405 4406 rec = NULL; 4407 if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) 4408 rec = &el->l_recs[index + 1]; 4409 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) && 4410 path->p_tree_depth > 0) { 4411 status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos); 4412 if (status) 4413 goto free_left_path; 4414 4415 if (right_cpos == 0) 4416 goto free_left_path; 4417 4418 right_path = ocfs2_new_path_from_path(path); 4419 if (!right_path) { 4420 status = -ENOMEM; 4421 mlog_errno(status); 4422 goto free_left_path; 4423 } 4424 4425 status = ocfs2_find_path(et->et_ci, right_path, right_cpos); 4426 if (status) 4427 goto free_right_path; 4428 4429 new_el = path_leaf_el(right_path); 4430 rec = &new_el->l_recs[0]; 4431 if (ocfs2_is_empty_extent(rec)) { 4432 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) { 4433 bh = path_leaf_bh(right_path); 4434 eb = (struct ocfs2_extent_block *)bh->b_data; 4435 ocfs2_error(sb, 4436 "Extent block #%llu has an invalid l_next_free_rec of %d\n", 4437 (unsigned long long)le64_to_cpu(eb->h_blkno), 4438 le16_to_cpu(new_el->l_next_free_rec)); 4439 status = -EINVAL; 4440 goto free_right_path; 4441 } 4442 rec = &new_el->l_recs[1]; 4443 } 4444 } 4445 4446 if (rec) { 4447 enum ocfs2_contig_type contig_type; 4448 4449 contig_type = ocfs2_et_extent_contig(et, rec, split_rec); 4450 4451 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT) 4452 ret = CONTIG_LEFTRIGHT; 4453 else if (ret == CONTIG_NONE) 4454 ret = contig_type; 4455 } 4456 4457 free_right_path: 4458 ocfs2_free_path(right_path); 4459 free_left_path: 4460 ocfs2_free_path(left_path); 4461 exit: 4462 if (status == 0) 4463 ctxt->c_contig_type = ret; 4464 4465 return status; 4466 } 4467 4468 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et, 4469 struct ocfs2_insert_type *insert, 4470 struct ocfs2_extent_list *el, 4471 struct ocfs2_extent_rec *insert_rec) 4472 { 4473 int i; 4474 enum ocfs2_contig_type contig_type = CONTIG_NONE; 4475 4476 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4477 4478 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 4479 contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i], 4480 insert_rec); 4481 if (contig_type != CONTIG_NONE) { 4482 insert->ins_contig_index = i; 4483 break; 4484 } 4485 } 4486 insert->ins_contig = contig_type; 4487 4488 if (insert->ins_contig != CONTIG_NONE) { 4489 struct ocfs2_extent_rec *rec = 4490 &el->l_recs[insert->ins_contig_index]; 4491 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) + 4492 le16_to_cpu(insert_rec->e_leaf_clusters); 4493 4494 /* 4495 * Caller might want us to limit the size of extents, don't 4496 * calculate contiguousness if we might exceed that limit. 4497 */ 4498 if (et->et_max_leaf_clusters && 4499 (len > et->et_max_leaf_clusters)) 4500 insert->ins_contig = CONTIG_NONE; 4501 } 4502 } 4503 4504 /* 4505 * This should only be called against the righmost leaf extent list. 4506 * 4507 * ocfs2_figure_appending_type() will figure out whether we'll have to 4508 * insert at the tail of the rightmost leaf. 4509 * 4510 * This should also work against the root extent list for tree's with 0 4511 * depth. If we consider the root extent list to be the rightmost leaf node 4512 * then the logic here makes sense. 4513 */ 4514 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert, 4515 struct ocfs2_extent_list *el, 4516 struct ocfs2_extent_rec *insert_rec) 4517 { 4518 int i; 4519 u32 cpos = le32_to_cpu(insert_rec->e_cpos); 4520 struct ocfs2_extent_rec *rec; 4521 4522 insert->ins_appending = APPEND_NONE; 4523 4524 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4525 4526 if (!el->l_next_free_rec) 4527 goto set_tail_append; 4528 4529 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 4530 /* Were all records empty? */ 4531 if (le16_to_cpu(el->l_next_free_rec) == 1) 4532 goto set_tail_append; 4533 } 4534 4535 i = le16_to_cpu(el->l_next_free_rec) - 1; 4536 rec = &el->l_recs[i]; 4537 4538 if (cpos >= 4539 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters))) 4540 goto set_tail_append; 4541 4542 return; 4543 4544 set_tail_append: 4545 insert->ins_appending = APPEND_TAIL; 4546 } 4547 4548 /* 4549 * Helper function called at the beginning of an insert. 4550 * 4551 * This computes a few things that are commonly used in the process of 4552 * inserting into the btree: 4553 * - Whether the new extent is contiguous with an existing one. 4554 * - The current tree depth. 4555 * - Whether the insert is an appending one. 4556 * - The total # of free records in the tree. 4557 * 4558 * All of the information is stored on the ocfs2_insert_type 4559 * structure. 4560 */ 4561 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et, 4562 struct buffer_head **last_eb_bh, 4563 struct ocfs2_extent_rec *insert_rec, 4564 int *free_records, 4565 struct ocfs2_insert_type *insert) 4566 { 4567 int ret; 4568 struct ocfs2_extent_block *eb; 4569 struct ocfs2_extent_list *el; 4570 struct ocfs2_path *path = NULL; 4571 struct buffer_head *bh = NULL; 4572 4573 insert->ins_split = SPLIT_NONE; 4574 4575 el = et->et_root_el; 4576 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth); 4577 4578 if (el->l_tree_depth) { 4579 /* 4580 * If we have tree depth, we read in the 4581 * rightmost extent block ahead of time as 4582 * ocfs2_figure_insert_type() and ocfs2_add_branch() 4583 * may want it later. 4584 */ 4585 ret = ocfs2_read_extent_block(et->et_ci, 4586 ocfs2_et_get_last_eb_blk(et), 4587 &bh); 4588 if (ret) { 4589 mlog_errno(ret); 4590 goto out; 4591 } 4592 eb = (struct ocfs2_extent_block *) bh->b_data; 4593 el = &eb->h_list; 4594 } 4595 4596 /* 4597 * Unless we have a contiguous insert, we'll need to know if 4598 * there is room left in our allocation tree for another 4599 * extent record. 4600 * 4601 * XXX: This test is simplistic, we can search for empty 4602 * extent records too. 4603 */ 4604 *free_records = le16_to_cpu(el->l_count) - 4605 le16_to_cpu(el->l_next_free_rec); 4606 4607 if (!insert->ins_tree_depth) { 4608 ocfs2_figure_contig_type(et, insert, el, insert_rec); 4609 ocfs2_figure_appending_type(insert, el, insert_rec); 4610 return 0; 4611 } 4612 4613 path = ocfs2_new_path_from_et(et); 4614 if (!path) { 4615 ret = -ENOMEM; 4616 mlog_errno(ret); 4617 goto out; 4618 } 4619 4620 /* 4621 * In the case that we're inserting past what the tree 4622 * currently accounts for, ocfs2_find_path() will return for 4623 * us the rightmost tree path. This is accounted for below in 4624 * the appending code. 4625 */ 4626 ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos)); 4627 if (ret) { 4628 mlog_errno(ret); 4629 goto out; 4630 } 4631 4632 el = path_leaf_el(path); 4633 4634 /* 4635 * Now that we have the path, there's two things we want to determine: 4636 * 1) Contiguousness (also set contig_index if this is so) 4637 * 4638 * 2) Are we doing an append? We can trivially break this up 4639 * into two types of appends: simple record append, or a 4640 * rotate inside the tail leaf. 4641 */ 4642 ocfs2_figure_contig_type(et, insert, el, insert_rec); 4643 4644 /* 4645 * The insert code isn't quite ready to deal with all cases of 4646 * left contiguousness. Specifically, if it's an insert into 4647 * the 1st record in a leaf, it will require the adjustment of 4648 * cluster count on the last record of the path directly to it's 4649 * left. For now, just catch that case and fool the layers 4650 * above us. This works just fine for tree_depth == 0, which 4651 * is why we allow that above. 4652 */ 4653 if (insert->ins_contig == CONTIG_LEFT && 4654 insert->ins_contig_index == 0) 4655 insert->ins_contig = CONTIG_NONE; 4656 4657 /* 4658 * Ok, so we can simply compare against last_eb to figure out 4659 * whether the path doesn't exist. This will only happen in 4660 * the case that we're doing a tail append, so maybe we can 4661 * take advantage of that information somehow. 4662 */ 4663 if (ocfs2_et_get_last_eb_blk(et) == 4664 path_leaf_bh(path)->b_blocknr) { 4665 /* 4666 * Ok, ocfs2_find_path() returned us the rightmost 4667 * tree path. This might be an appending insert. There are 4668 * two cases: 4669 * 1) We're doing a true append at the tail: 4670 * -This might even be off the end of the leaf 4671 * 2) We're "appending" by rotating in the tail 4672 */ 4673 ocfs2_figure_appending_type(insert, el, insert_rec); 4674 } 4675 4676 out: 4677 ocfs2_free_path(path); 4678 4679 if (ret == 0) 4680 *last_eb_bh = bh; 4681 else 4682 brelse(bh); 4683 return ret; 4684 } 4685 4686 /* 4687 * Insert an extent into a btree. 4688 * 4689 * The caller needs to update the owning btree's cluster count. 4690 */ 4691 int ocfs2_insert_extent(handle_t *handle, 4692 struct ocfs2_extent_tree *et, 4693 u32 cpos, 4694 u64 start_blk, 4695 u32 new_clusters, 4696 u8 flags, 4697 struct ocfs2_alloc_context *meta_ac) 4698 { 4699 int status; 4700 int uninitialized_var(free_records); 4701 struct buffer_head *last_eb_bh = NULL; 4702 struct ocfs2_insert_type insert = {0, }; 4703 struct ocfs2_extent_rec rec; 4704 4705 trace_ocfs2_insert_extent_start( 4706 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 4707 cpos, new_clusters); 4708 4709 memset(&rec, 0, sizeof(rec)); 4710 rec.e_cpos = cpu_to_le32(cpos); 4711 rec.e_blkno = cpu_to_le64(start_blk); 4712 rec.e_leaf_clusters = cpu_to_le16(new_clusters); 4713 rec.e_flags = flags; 4714 status = ocfs2_et_insert_check(et, &rec); 4715 if (status) { 4716 mlog_errno(status); 4717 goto bail; 4718 } 4719 4720 status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec, 4721 &free_records, &insert); 4722 if (status < 0) { 4723 mlog_errno(status); 4724 goto bail; 4725 } 4726 4727 trace_ocfs2_insert_extent(insert.ins_appending, insert.ins_contig, 4728 insert.ins_contig_index, free_records, 4729 insert.ins_tree_depth); 4730 4731 if (insert.ins_contig == CONTIG_NONE && free_records == 0) { 4732 status = ocfs2_grow_tree(handle, et, 4733 &insert.ins_tree_depth, &last_eb_bh, 4734 meta_ac); 4735 if (status) { 4736 mlog_errno(status); 4737 goto bail; 4738 } 4739 } 4740 4741 /* Finally, we can add clusters. This might rotate the tree for us. */ 4742 status = ocfs2_do_insert_extent(handle, et, &rec, &insert); 4743 if (status < 0) 4744 mlog_errno(status); 4745 else 4746 ocfs2_et_extent_map_insert(et, &rec); 4747 4748 bail: 4749 brelse(last_eb_bh); 4750 4751 return status; 4752 } 4753 4754 /* 4755 * Allcate and add clusters into the extent b-tree. 4756 * The new clusters(clusters_to_add) will be inserted at logical_offset. 4757 * The extent b-tree's root is specified by et, and 4758 * it is not limited to the file storage. Any extent tree can use this 4759 * function if it implements the proper ocfs2_extent_tree. 4760 */ 4761 int ocfs2_add_clusters_in_btree(handle_t *handle, 4762 struct ocfs2_extent_tree *et, 4763 u32 *logical_offset, 4764 u32 clusters_to_add, 4765 int mark_unwritten, 4766 struct ocfs2_alloc_context *data_ac, 4767 struct ocfs2_alloc_context *meta_ac, 4768 enum ocfs2_alloc_restarted *reason_ret) 4769 { 4770 int status = 0, err = 0; 4771 int need_free = 0; 4772 int free_extents; 4773 enum ocfs2_alloc_restarted reason = RESTART_NONE; 4774 u32 bit_off, num_bits; 4775 u64 block; 4776 u8 flags = 0; 4777 struct ocfs2_super *osb = 4778 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 4779 4780 BUG_ON(!clusters_to_add); 4781 4782 if (mark_unwritten) 4783 flags = OCFS2_EXT_UNWRITTEN; 4784 4785 free_extents = ocfs2_num_free_extents(et); 4786 if (free_extents < 0) { 4787 status = free_extents; 4788 mlog_errno(status); 4789 goto leave; 4790 } 4791 4792 /* there are two cases which could cause us to EAGAIN in the 4793 * we-need-more-metadata case: 4794 * 1) we haven't reserved *any* 4795 * 2) we are so fragmented, we've needed to add metadata too 4796 * many times. */ 4797 if (!free_extents && !meta_ac) { 4798 err = -1; 4799 status = -EAGAIN; 4800 reason = RESTART_META; 4801 goto leave; 4802 } else if ((!free_extents) 4803 && (ocfs2_alloc_context_bits_left(meta_ac) 4804 < ocfs2_extend_meta_needed(et->et_root_el))) { 4805 err = -2; 4806 status = -EAGAIN; 4807 reason = RESTART_META; 4808 goto leave; 4809 } 4810 4811 status = __ocfs2_claim_clusters(handle, data_ac, 1, 4812 clusters_to_add, &bit_off, &num_bits); 4813 if (status < 0) { 4814 if (status != -ENOSPC) 4815 mlog_errno(status); 4816 goto leave; 4817 } 4818 4819 BUG_ON(num_bits > clusters_to_add); 4820 4821 /* reserve our write early -- insert_extent may update the tree root */ 4822 status = ocfs2_et_root_journal_access(handle, et, 4823 OCFS2_JOURNAL_ACCESS_WRITE); 4824 if (status < 0) { 4825 mlog_errno(status); 4826 need_free = 1; 4827 goto bail; 4828 } 4829 4830 block = ocfs2_clusters_to_blocks(osb->sb, bit_off); 4831 trace_ocfs2_add_clusters_in_btree( 4832 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 4833 bit_off, num_bits); 4834 status = ocfs2_insert_extent(handle, et, *logical_offset, block, 4835 num_bits, flags, meta_ac); 4836 if (status < 0) { 4837 mlog_errno(status); 4838 need_free = 1; 4839 goto bail; 4840 } 4841 4842 ocfs2_journal_dirty(handle, et->et_root_bh); 4843 4844 clusters_to_add -= num_bits; 4845 *logical_offset += num_bits; 4846 4847 if (clusters_to_add) { 4848 err = clusters_to_add; 4849 status = -EAGAIN; 4850 reason = RESTART_TRANS; 4851 } 4852 4853 bail: 4854 if (need_free) { 4855 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL) 4856 ocfs2_free_local_alloc_bits(osb, handle, data_ac, 4857 bit_off, num_bits); 4858 else 4859 ocfs2_free_clusters(handle, 4860 data_ac->ac_inode, 4861 data_ac->ac_bh, 4862 ocfs2_clusters_to_blocks(osb->sb, bit_off), 4863 num_bits); 4864 } 4865 4866 leave: 4867 if (reason_ret) 4868 *reason_ret = reason; 4869 trace_ocfs2_add_clusters_in_btree_ret(status, reason, err); 4870 return status; 4871 } 4872 4873 static void ocfs2_make_right_split_rec(struct super_block *sb, 4874 struct ocfs2_extent_rec *split_rec, 4875 u32 cpos, 4876 struct ocfs2_extent_rec *rec) 4877 { 4878 u32 rec_cpos = le32_to_cpu(rec->e_cpos); 4879 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters); 4880 4881 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec)); 4882 4883 split_rec->e_cpos = cpu_to_le32(cpos); 4884 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos); 4885 4886 split_rec->e_blkno = rec->e_blkno; 4887 le64_add_cpu(&split_rec->e_blkno, 4888 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos)); 4889 4890 split_rec->e_flags = rec->e_flags; 4891 } 4892 4893 static int ocfs2_split_and_insert(handle_t *handle, 4894 struct ocfs2_extent_tree *et, 4895 struct ocfs2_path *path, 4896 struct buffer_head **last_eb_bh, 4897 int split_index, 4898 struct ocfs2_extent_rec *orig_split_rec, 4899 struct ocfs2_alloc_context *meta_ac) 4900 { 4901 int ret = 0, depth; 4902 unsigned int insert_range, rec_range, do_leftright = 0; 4903 struct ocfs2_extent_rec tmprec; 4904 struct ocfs2_extent_list *rightmost_el; 4905 struct ocfs2_extent_rec rec; 4906 struct ocfs2_extent_rec split_rec = *orig_split_rec; 4907 struct ocfs2_insert_type insert; 4908 struct ocfs2_extent_block *eb; 4909 4910 leftright: 4911 /* 4912 * Store a copy of the record on the stack - it might move 4913 * around as the tree is manipulated below. 4914 */ 4915 rec = path_leaf_el(path)->l_recs[split_index]; 4916 4917 rightmost_el = et->et_root_el; 4918 4919 depth = le16_to_cpu(rightmost_el->l_tree_depth); 4920 if (depth) { 4921 BUG_ON(!(*last_eb_bh)); 4922 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 4923 rightmost_el = &eb->h_list; 4924 } 4925 4926 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 4927 le16_to_cpu(rightmost_el->l_count)) { 4928 ret = ocfs2_grow_tree(handle, et, 4929 &depth, last_eb_bh, meta_ac); 4930 if (ret) { 4931 mlog_errno(ret); 4932 goto out; 4933 } 4934 } 4935 4936 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 4937 insert.ins_appending = APPEND_NONE; 4938 insert.ins_contig = CONTIG_NONE; 4939 insert.ins_tree_depth = depth; 4940 4941 insert_range = le32_to_cpu(split_rec.e_cpos) + 4942 le16_to_cpu(split_rec.e_leaf_clusters); 4943 rec_range = le32_to_cpu(rec.e_cpos) + 4944 le16_to_cpu(rec.e_leaf_clusters); 4945 4946 if (split_rec.e_cpos == rec.e_cpos) { 4947 insert.ins_split = SPLIT_LEFT; 4948 } else if (insert_range == rec_range) { 4949 insert.ins_split = SPLIT_RIGHT; 4950 } else { 4951 /* 4952 * Left/right split. We fake this as a right split 4953 * first and then make a second pass as a left split. 4954 */ 4955 insert.ins_split = SPLIT_RIGHT; 4956 4957 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci), 4958 &tmprec, insert_range, &rec); 4959 4960 split_rec = tmprec; 4961 4962 BUG_ON(do_leftright); 4963 do_leftright = 1; 4964 } 4965 4966 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert); 4967 if (ret) { 4968 mlog_errno(ret); 4969 goto out; 4970 } 4971 4972 if (do_leftright == 1) { 4973 u32 cpos; 4974 struct ocfs2_extent_list *el; 4975 4976 do_leftright++; 4977 split_rec = *orig_split_rec; 4978 4979 ocfs2_reinit_path(path, 1); 4980 4981 cpos = le32_to_cpu(split_rec.e_cpos); 4982 ret = ocfs2_find_path(et->et_ci, path, cpos); 4983 if (ret) { 4984 mlog_errno(ret); 4985 goto out; 4986 } 4987 4988 el = path_leaf_el(path); 4989 split_index = ocfs2_search_extent_list(el, cpos); 4990 if (split_index == -1) { 4991 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 4992 "Owner %llu has an extent at cpos %u which can no longer be found\n", 4993 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 4994 cpos); 4995 ret = -EROFS; 4996 goto out; 4997 } 4998 goto leftright; 4999 } 5000 out: 5001 5002 return ret; 5003 } 5004 5005 static int ocfs2_replace_extent_rec(handle_t *handle, 5006 struct ocfs2_extent_tree *et, 5007 struct ocfs2_path *path, 5008 struct ocfs2_extent_list *el, 5009 int split_index, 5010 struct ocfs2_extent_rec *split_rec) 5011 { 5012 int ret; 5013 5014 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path, 5015 path_num_items(path) - 1); 5016 if (ret) { 5017 mlog_errno(ret); 5018 goto out; 5019 } 5020 5021 el->l_recs[split_index] = *split_rec; 5022 5023 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 5024 out: 5025 return ret; 5026 } 5027 5028 /* 5029 * Split part or all of the extent record at split_index in the leaf 5030 * pointed to by path. Merge with the contiguous extent record if needed. 5031 * 5032 * Care is taken to handle contiguousness so as to not grow the tree. 5033 * 5034 * meta_ac is not strictly necessary - we only truly need it if growth 5035 * of the tree is required. All other cases will degrade into a less 5036 * optimal tree layout. 5037 * 5038 * last_eb_bh should be the rightmost leaf block for any extent 5039 * btree. Since a split may grow the tree or a merge might shrink it, 5040 * the caller cannot trust the contents of that buffer after this call. 5041 * 5042 * This code is optimized for readability - several passes might be 5043 * made over certain portions of the tree. All of those blocks will 5044 * have been brought into cache (and pinned via the journal), so the 5045 * extra overhead is not expressed in terms of disk reads. 5046 */ 5047 int ocfs2_split_extent(handle_t *handle, 5048 struct ocfs2_extent_tree *et, 5049 struct ocfs2_path *path, 5050 int split_index, 5051 struct ocfs2_extent_rec *split_rec, 5052 struct ocfs2_alloc_context *meta_ac, 5053 struct ocfs2_cached_dealloc_ctxt *dealloc) 5054 { 5055 int ret = 0; 5056 struct ocfs2_extent_list *el = path_leaf_el(path); 5057 struct buffer_head *last_eb_bh = NULL; 5058 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 5059 struct ocfs2_merge_ctxt ctxt; 5060 struct ocfs2_extent_list *rightmost_el; 5061 5062 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) || 5063 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) < 5064 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) { 5065 ret = -EIO; 5066 mlog_errno(ret); 5067 goto out; 5068 } 5069 5070 ret = ocfs2_figure_merge_contig_type(et, path, el, 5071 split_index, 5072 split_rec, 5073 &ctxt); 5074 if (ret) { 5075 mlog_errno(ret); 5076 goto out; 5077 } 5078 5079 /* 5080 * The core merge / split code wants to know how much room is 5081 * left in this allocation tree, so we pass the 5082 * rightmost extent list. 5083 */ 5084 if (path->p_tree_depth) { 5085 struct ocfs2_extent_block *eb; 5086 5087 ret = ocfs2_read_extent_block(et->et_ci, 5088 ocfs2_et_get_last_eb_blk(et), 5089 &last_eb_bh); 5090 if (ret) { 5091 mlog_errno(ret); 5092 goto out; 5093 } 5094 5095 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5096 rightmost_el = &eb->h_list; 5097 } else 5098 rightmost_el = path_root_el(path); 5099 5100 if (rec->e_cpos == split_rec->e_cpos && 5101 rec->e_leaf_clusters == split_rec->e_leaf_clusters) 5102 ctxt.c_split_covers_rec = 1; 5103 else 5104 ctxt.c_split_covers_rec = 0; 5105 5106 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]); 5107 5108 trace_ocfs2_split_extent(split_index, ctxt.c_contig_type, 5109 ctxt.c_has_empty_extent, 5110 ctxt.c_split_covers_rec); 5111 5112 if (ctxt.c_contig_type == CONTIG_NONE) { 5113 if (ctxt.c_split_covers_rec) 5114 ret = ocfs2_replace_extent_rec(handle, et, path, el, 5115 split_index, split_rec); 5116 else 5117 ret = ocfs2_split_and_insert(handle, et, path, 5118 &last_eb_bh, split_index, 5119 split_rec, meta_ac); 5120 if (ret) 5121 mlog_errno(ret); 5122 } else { 5123 ret = ocfs2_try_to_merge_extent(handle, et, path, 5124 split_index, split_rec, 5125 dealloc, &ctxt); 5126 if (ret) 5127 mlog_errno(ret); 5128 } 5129 5130 out: 5131 brelse(last_eb_bh); 5132 return ret; 5133 } 5134 5135 /* 5136 * Change the flags of the already-existing extent at cpos for len clusters. 5137 * 5138 * new_flags: the flags we want to set. 5139 * clear_flags: the flags we want to clear. 5140 * phys: the new physical offset we want this new extent starts from. 5141 * 5142 * If the existing extent is larger than the request, initiate a 5143 * split. An attempt will be made at merging with adjacent extents. 5144 * 5145 * The caller is responsible for passing down meta_ac if we'll need it. 5146 */ 5147 int ocfs2_change_extent_flag(handle_t *handle, 5148 struct ocfs2_extent_tree *et, 5149 u32 cpos, u32 len, u32 phys, 5150 struct ocfs2_alloc_context *meta_ac, 5151 struct ocfs2_cached_dealloc_ctxt *dealloc, 5152 int new_flags, int clear_flags) 5153 { 5154 int ret, index; 5155 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 5156 u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys); 5157 struct ocfs2_extent_rec split_rec; 5158 struct ocfs2_path *left_path = NULL; 5159 struct ocfs2_extent_list *el; 5160 struct ocfs2_extent_rec *rec; 5161 5162 left_path = ocfs2_new_path_from_et(et); 5163 if (!left_path) { 5164 ret = -ENOMEM; 5165 mlog_errno(ret); 5166 goto out; 5167 } 5168 5169 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 5170 if (ret) { 5171 mlog_errno(ret); 5172 goto out; 5173 } 5174 el = path_leaf_el(left_path); 5175 5176 index = ocfs2_search_extent_list(el, cpos); 5177 if (index == -1) { 5178 ocfs2_error(sb, 5179 "Owner %llu has an extent at cpos %u which can no longer be found\n", 5180 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5181 cpos); 5182 ret = -EROFS; 5183 goto out; 5184 } 5185 5186 ret = -EIO; 5187 rec = &el->l_recs[index]; 5188 if (new_flags && (rec->e_flags & new_flags)) { 5189 mlog(ML_ERROR, "Owner %llu tried to set %d flags on an " 5190 "extent that already had them\n", 5191 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5192 new_flags); 5193 goto out; 5194 } 5195 5196 if (clear_flags && !(rec->e_flags & clear_flags)) { 5197 mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an " 5198 "extent that didn't have them\n", 5199 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5200 clear_flags); 5201 goto out; 5202 } 5203 5204 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec)); 5205 split_rec.e_cpos = cpu_to_le32(cpos); 5206 split_rec.e_leaf_clusters = cpu_to_le16(len); 5207 split_rec.e_blkno = cpu_to_le64(start_blkno); 5208 split_rec.e_flags = rec->e_flags; 5209 if (new_flags) 5210 split_rec.e_flags |= new_flags; 5211 if (clear_flags) 5212 split_rec.e_flags &= ~clear_flags; 5213 5214 ret = ocfs2_split_extent(handle, et, left_path, 5215 index, &split_rec, meta_ac, 5216 dealloc); 5217 if (ret) 5218 mlog_errno(ret); 5219 5220 out: 5221 ocfs2_free_path(left_path); 5222 return ret; 5223 5224 } 5225 5226 /* 5227 * Mark the already-existing extent at cpos as written for len clusters. 5228 * This removes the unwritten extent flag. 5229 * 5230 * If the existing extent is larger than the request, initiate a 5231 * split. An attempt will be made at merging with adjacent extents. 5232 * 5233 * The caller is responsible for passing down meta_ac if we'll need it. 5234 */ 5235 int ocfs2_mark_extent_written(struct inode *inode, 5236 struct ocfs2_extent_tree *et, 5237 handle_t *handle, u32 cpos, u32 len, u32 phys, 5238 struct ocfs2_alloc_context *meta_ac, 5239 struct ocfs2_cached_dealloc_ctxt *dealloc) 5240 { 5241 int ret; 5242 5243 trace_ocfs2_mark_extent_written( 5244 (unsigned long long)OCFS2_I(inode)->ip_blkno, 5245 cpos, len, phys); 5246 5247 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) { 5248 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents that are being written to, but the feature bit is not set in the super block\n", 5249 (unsigned long long)OCFS2_I(inode)->ip_blkno); 5250 ret = -EROFS; 5251 goto out; 5252 } 5253 5254 /* 5255 * XXX: This should be fixed up so that we just re-insert the 5256 * next extent records. 5257 */ 5258 ocfs2_et_extent_map_truncate(et, 0); 5259 5260 ret = ocfs2_change_extent_flag(handle, et, cpos, 5261 len, phys, meta_ac, dealloc, 5262 0, OCFS2_EXT_UNWRITTEN); 5263 if (ret) 5264 mlog_errno(ret); 5265 5266 out: 5267 return ret; 5268 } 5269 5270 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et, 5271 struct ocfs2_path *path, 5272 int index, u32 new_range, 5273 struct ocfs2_alloc_context *meta_ac) 5274 { 5275 int ret, depth, credits; 5276 struct buffer_head *last_eb_bh = NULL; 5277 struct ocfs2_extent_block *eb; 5278 struct ocfs2_extent_list *rightmost_el, *el; 5279 struct ocfs2_extent_rec split_rec; 5280 struct ocfs2_extent_rec *rec; 5281 struct ocfs2_insert_type insert; 5282 5283 /* 5284 * Setup the record to split before we grow the tree. 5285 */ 5286 el = path_leaf_el(path); 5287 rec = &el->l_recs[index]; 5288 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci), 5289 &split_rec, new_range, rec); 5290 5291 depth = path->p_tree_depth; 5292 if (depth > 0) { 5293 ret = ocfs2_read_extent_block(et->et_ci, 5294 ocfs2_et_get_last_eb_blk(et), 5295 &last_eb_bh); 5296 if (ret < 0) { 5297 mlog_errno(ret); 5298 goto out; 5299 } 5300 5301 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5302 rightmost_el = &eb->h_list; 5303 } else 5304 rightmost_el = path_leaf_el(path); 5305 5306 credits = path->p_tree_depth + 5307 ocfs2_extend_meta_needed(et->et_root_el); 5308 ret = ocfs2_extend_trans(handle, credits); 5309 if (ret) { 5310 mlog_errno(ret); 5311 goto out; 5312 } 5313 5314 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 5315 le16_to_cpu(rightmost_el->l_count)) { 5316 ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh, 5317 meta_ac); 5318 if (ret) { 5319 mlog_errno(ret); 5320 goto out; 5321 } 5322 } 5323 5324 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 5325 insert.ins_appending = APPEND_NONE; 5326 insert.ins_contig = CONTIG_NONE; 5327 insert.ins_split = SPLIT_RIGHT; 5328 insert.ins_tree_depth = depth; 5329 5330 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert); 5331 if (ret) 5332 mlog_errno(ret); 5333 5334 out: 5335 brelse(last_eb_bh); 5336 return ret; 5337 } 5338 5339 static int ocfs2_truncate_rec(handle_t *handle, 5340 struct ocfs2_extent_tree *et, 5341 struct ocfs2_path *path, int index, 5342 struct ocfs2_cached_dealloc_ctxt *dealloc, 5343 u32 cpos, u32 len) 5344 { 5345 int ret; 5346 u32 left_cpos, rec_range, trunc_range; 5347 int is_rightmost_tree_rec = 0; 5348 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 5349 struct ocfs2_path *left_path = NULL; 5350 struct ocfs2_extent_list *el = path_leaf_el(path); 5351 struct ocfs2_extent_rec *rec; 5352 struct ocfs2_extent_block *eb; 5353 5354 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) { 5355 /* extend credit for ocfs2_remove_rightmost_path */ 5356 ret = ocfs2_extend_rotate_transaction(handle, 0, 5357 handle->h_buffer_credits, 5358 path); 5359 if (ret) { 5360 mlog_errno(ret); 5361 goto out; 5362 } 5363 5364 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 5365 if (ret) { 5366 mlog_errno(ret); 5367 goto out; 5368 } 5369 5370 index--; 5371 } 5372 5373 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) && 5374 path->p_tree_depth) { 5375 /* 5376 * Check whether this is the rightmost tree record. If 5377 * we remove all of this record or part of its right 5378 * edge then an update of the record lengths above it 5379 * will be required. 5380 */ 5381 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 5382 if (eb->h_next_leaf_blk == 0) 5383 is_rightmost_tree_rec = 1; 5384 } 5385 5386 rec = &el->l_recs[index]; 5387 if (index == 0 && path->p_tree_depth && 5388 le32_to_cpu(rec->e_cpos) == cpos) { 5389 /* 5390 * Changing the leftmost offset (via partial or whole 5391 * record truncate) of an interior (or rightmost) path 5392 * means we have to update the subtree that is formed 5393 * by this leaf and the one to it's left. 5394 * 5395 * There are two cases we can skip: 5396 * 1) Path is the leftmost one in our btree. 5397 * 2) The leaf is rightmost and will be empty after 5398 * we remove the extent record - the rotate code 5399 * knows how to update the newly formed edge. 5400 */ 5401 5402 ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos); 5403 if (ret) { 5404 mlog_errno(ret); 5405 goto out; 5406 } 5407 5408 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) { 5409 left_path = ocfs2_new_path_from_path(path); 5410 if (!left_path) { 5411 ret = -ENOMEM; 5412 mlog_errno(ret); 5413 goto out; 5414 } 5415 5416 ret = ocfs2_find_path(et->et_ci, left_path, 5417 left_cpos); 5418 if (ret) { 5419 mlog_errno(ret); 5420 goto out; 5421 } 5422 } 5423 } 5424 5425 ret = ocfs2_extend_rotate_transaction(handle, 0, 5426 handle->h_buffer_credits, 5427 path); 5428 if (ret) { 5429 mlog_errno(ret); 5430 goto out; 5431 } 5432 5433 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 5434 if (ret) { 5435 mlog_errno(ret); 5436 goto out; 5437 } 5438 5439 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 5440 if (ret) { 5441 mlog_errno(ret); 5442 goto out; 5443 } 5444 5445 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5446 trunc_range = cpos + len; 5447 5448 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) { 5449 int next_free; 5450 5451 memset(rec, 0, sizeof(*rec)); 5452 ocfs2_cleanup_merge(el, index); 5453 5454 next_free = le16_to_cpu(el->l_next_free_rec); 5455 if (is_rightmost_tree_rec && next_free > 1) { 5456 /* 5457 * We skip the edge update if this path will 5458 * be deleted by the rotate code. 5459 */ 5460 rec = &el->l_recs[next_free - 1]; 5461 ocfs2_adjust_rightmost_records(handle, et, path, 5462 rec); 5463 } 5464 } else if (le32_to_cpu(rec->e_cpos) == cpos) { 5465 /* Remove leftmost portion of the record. */ 5466 le32_add_cpu(&rec->e_cpos, len); 5467 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len)); 5468 le16_add_cpu(&rec->e_leaf_clusters, -len); 5469 } else if (rec_range == trunc_range) { 5470 /* Remove rightmost portion of the record */ 5471 le16_add_cpu(&rec->e_leaf_clusters, -len); 5472 if (is_rightmost_tree_rec) 5473 ocfs2_adjust_rightmost_records(handle, et, path, rec); 5474 } else { 5475 /* Caller should have trapped this. */ 5476 mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) " 5477 "(%u, %u)\n", 5478 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5479 le32_to_cpu(rec->e_cpos), 5480 le16_to_cpu(rec->e_leaf_clusters), cpos, len); 5481 BUG(); 5482 } 5483 5484 if (left_path) { 5485 int subtree_index; 5486 5487 subtree_index = ocfs2_find_subtree_root(et, left_path, path); 5488 ocfs2_complete_edge_insert(handle, left_path, path, 5489 subtree_index); 5490 } 5491 5492 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 5493 5494 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 5495 if (ret) { 5496 mlog_errno(ret); 5497 goto out; 5498 } 5499 5500 out: 5501 ocfs2_free_path(left_path); 5502 return ret; 5503 } 5504 5505 int ocfs2_remove_extent(handle_t *handle, 5506 struct ocfs2_extent_tree *et, 5507 u32 cpos, u32 len, 5508 struct ocfs2_alloc_context *meta_ac, 5509 struct ocfs2_cached_dealloc_ctxt *dealloc) 5510 { 5511 int ret, index; 5512 u32 rec_range, trunc_range; 5513 struct ocfs2_extent_rec *rec; 5514 struct ocfs2_extent_list *el; 5515 struct ocfs2_path *path = NULL; 5516 5517 /* 5518 * XXX: Why are we truncating to 0 instead of wherever this 5519 * affects us? 5520 */ 5521 ocfs2_et_extent_map_truncate(et, 0); 5522 5523 path = ocfs2_new_path_from_et(et); 5524 if (!path) { 5525 ret = -ENOMEM; 5526 mlog_errno(ret); 5527 goto out; 5528 } 5529 5530 ret = ocfs2_find_path(et->et_ci, path, cpos); 5531 if (ret) { 5532 mlog_errno(ret); 5533 goto out; 5534 } 5535 5536 el = path_leaf_el(path); 5537 index = ocfs2_search_extent_list(el, cpos); 5538 if (index == -1) { 5539 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5540 "Owner %llu has an extent at cpos %u which can no longer be found\n", 5541 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5542 cpos); 5543 ret = -EROFS; 5544 goto out; 5545 } 5546 5547 /* 5548 * We have 3 cases of extent removal: 5549 * 1) Range covers the entire extent rec 5550 * 2) Range begins or ends on one edge of the extent rec 5551 * 3) Range is in the middle of the extent rec (no shared edges) 5552 * 5553 * For case 1 we remove the extent rec and left rotate to 5554 * fill the hole. 5555 * 5556 * For case 2 we just shrink the existing extent rec, with a 5557 * tree update if the shrinking edge is also the edge of an 5558 * extent block. 5559 * 5560 * For case 3 we do a right split to turn the extent rec into 5561 * something case 2 can handle. 5562 */ 5563 rec = &el->l_recs[index]; 5564 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5565 trunc_range = cpos + len; 5566 5567 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range); 5568 5569 trace_ocfs2_remove_extent( 5570 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5571 cpos, len, index, le32_to_cpu(rec->e_cpos), 5572 ocfs2_rec_clusters(el, rec)); 5573 5574 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) { 5575 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc, 5576 cpos, len); 5577 if (ret) { 5578 mlog_errno(ret); 5579 goto out; 5580 } 5581 } else { 5582 ret = ocfs2_split_tree(handle, et, path, index, 5583 trunc_range, meta_ac); 5584 if (ret) { 5585 mlog_errno(ret); 5586 goto out; 5587 } 5588 5589 /* 5590 * The split could have manipulated the tree enough to 5591 * move the record location, so we have to look for it again. 5592 */ 5593 ocfs2_reinit_path(path, 1); 5594 5595 ret = ocfs2_find_path(et->et_ci, path, cpos); 5596 if (ret) { 5597 mlog_errno(ret); 5598 goto out; 5599 } 5600 5601 el = path_leaf_el(path); 5602 index = ocfs2_search_extent_list(el, cpos); 5603 if (index == -1) { 5604 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5605 "Owner %llu: split at cpos %u lost record\n", 5606 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5607 cpos); 5608 ret = -EROFS; 5609 goto out; 5610 } 5611 5612 /* 5613 * Double check our values here. If anything is fishy, 5614 * it's easier to catch it at the top level. 5615 */ 5616 rec = &el->l_recs[index]; 5617 rec_range = le32_to_cpu(rec->e_cpos) + 5618 ocfs2_rec_clusters(el, rec); 5619 if (rec_range != trunc_range) { 5620 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5621 "Owner %llu: error after split at cpos %u trunc len %u, existing record is (%u,%u)\n", 5622 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5623 cpos, len, le32_to_cpu(rec->e_cpos), 5624 ocfs2_rec_clusters(el, rec)); 5625 ret = -EROFS; 5626 goto out; 5627 } 5628 5629 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc, 5630 cpos, len); 5631 if (ret) { 5632 mlog_errno(ret); 5633 goto out; 5634 } 5635 } 5636 5637 out: 5638 ocfs2_free_path(path); 5639 return ret; 5640 } 5641 5642 /* 5643 * ocfs2_reserve_blocks_for_rec_trunc() would look basically the 5644 * same as ocfs2_lock_alloctors(), except for it accepts a blocks 5645 * number to reserve some extra blocks, and it only handles meta 5646 * data allocations. 5647 * 5648 * Currently, only ocfs2_remove_btree_range() uses it for truncating 5649 * and punching holes. 5650 */ 5651 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode, 5652 struct ocfs2_extent_tree *et, 5653 u32 extents_to_split, 5654 struct ocfs2_alloc_context **ac, 5655 int extra_blocks) 5656 { 5657 int ret = 0, num_free_extents; 5658 unsigned int max_recs_needed = 2 * extents_to_split; 5659 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5660 5661 *ac = NULL; 5662 5663 num_free_extents = ocfs2_num_free_extents(et); 5664 if (num_free_extents < 0) { 5665 ret = num_free_extents; 5666 mlog_errno(ret); 5667 goto out; 5668 } 5669 5670 if (!num_free_extents || 5671 (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed)) 5672 extra_blocks += ocfs2_extend_meta_needed(et->et_root_el); 5673 5674 if (extra_blocks) { 5675 ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac); 5676 if (ret < 0) { 5677 if (ret != -ENOSPC) 5678 mlog_errno(ret); 5679 goto out; 5680 } 5681 } 5682 5683 out: 5684 if (ret) { 5685 if (*ac) { 5686 ocfs2_free_alloc_context(*ac); 5687 *ac = NULL; 5688 } 5689 } 5690 5691 return ret; 5692 } 5693 5694 int ocfs2_remove_btree_range(struct inode *inode, 5695 struct ocfs2_extent_tree *et, 5696 u32 cpos, u32 phys_cpos, u32 len, int flags, 5697 struct ocfs2_cached_dealloc_ctxt *dealloc, 5698 u64 refcount_loc, bool refcount_tree_locked) 5699 { 5700 int ret, credits = 0, extra_blocks = 0; 5701 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos); 5702 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5703 struct inode *tl_inode = osb->osb_tl_inode; 5704 handle_t *handle; 5705 struct ocfs2_alloc_context *meta_ac = NULL; 5706 struct ocfs2_refcount_tree *ref_tree = NULL; 5707 5708 if ((flags & OCFS2_EXT_REFCOUNTED) && len) { 5709 BUG_ON(!ocfs2_is_refcount_inode(inode)); 5710 5711 if (!refcount_tree_locked) { 5712 ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1, 5713 &ref_tree, NULL); 5714 if (ret) { 5715 mlog_errno(ret); 5716 goto bail; 5717 } 5718 } 5719 5720 ret = ocfs2_prepare_refcount_change_for_del(inode, 5721 refcount_loc, 5722 phys_blkno, 5723 len, 5724 &credits, 5725 &extra_blocks); 5726 if (ret < 0) { 5727 mlog_errno(ret); 5728 goto bail; 5729 } 5730 } 5731 5732 ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac, 5733 extra_blocks); 5734 if (ret) { 5735 mlog_errno(ret); 5736 goto bail; 5737 } 5738 5739 inode_lock(tl_inode); 5740 5741 if (ocfs2_truncate_log_needs_flush(osb)) { 5742 ret = __ocfs2_flush_truncate_log(osb); 5743 if (ret < 0) { 5744 mlog_errno(ret); 5745 goto out; 5746 } 5747 } 5748 5749 handle = ocfs2_start_trans(osb, 5750 ocfs2_remove_extent_credits(osb->sb) + credits); 5751 if (IS_ERR(handle)) { 5752 ret = PTR_ERR(handle); 5753 mlog_errno(ret); 5754 goto out; 5755 } 5756 5757 ret = ocfs2_et_root_journal_access(handle, et, 5758 OCFS2_JOURNAL_ACCESS_WRITE); 5759 if (ret) { 5760 mlog_errno(ret); 5761 goto out_commit; 5762 } 5763 5764 dquot_free_space_nodirty(inode, 5765 ocfs2_clusters_to_bytes(inode->i_sb, len)); 5766 5767 ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc); 5768 if (ret) { 5769 mlog_errno(ret); 5770 goto out_commit; 5771 } 5772 5773 ocfs2_et_update_clusters(et, -len); 5774 ocfs2_update_inode_fsync_trans(handle, inode, 1); 5775 5776 ocfs2_journal_dirty(handle, et->et_root_bh); 5777 5778 if (phys_blkno) { 5779 if (flags & OCFS2_EXT_REFCOUNTED) 5780 ret = ocfs2_decrease_refcount(inode, handle, 5781 ocfs2_blocks_to_clusters(osb->sb, 5782 phys_blkno), 5783 len, meta_ac, 5784 dealloc, 1); 5785 else 5786 ret = ocfs2_truncate_log_append(osb, handle, 5787 phys_blkno, len); 5788 if (ret) 5789 mlog_errno(ret); 5790 5791 } 5792 5793 out_commit: 5794 ocfs2_commit_trans(osb, handle); 5795 out: 5796 inode_unlock(tl_inode); 5797 bail: 5798 if (meta_ac) 5799 ocfs2_free_alloc_context(meta_ac); 5800 5801 if (ref_tree) 5802 ocfs2_unlock_refcount_tree(osb, ref_tree, 1); 5803 5804 return ret; 5805 } 5806 5807 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb) 5808 { 5809 struct buffer_head *tl_bh = osb->osb_tl_bh; 5810 struct ocfs2_dinode *di; 5811 struct ocfs2_truncate_log *tl; 5812 5813 di = (struct ocfs2_dinode *) tl_bh->b_data; 5814 tl = &di->id2.i_dealloc; 5815 5816 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count), 5817 "slot %d, invalid truncate log parameters: used = " 5818 "%u, count = %u\n", osb->slot_num, 5819 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count)); 5820 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count); 5821 } 5822 5823 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl, 5824 unsigned int new_start) 5825 { 5826 unsigned int tail_index; 5827 unsigned int current_tail; 5828 5829 /* No records, nothing to coalesce */ 5830 if (!le16_to_cpu(tl->tl_used)) 5831 return 0; 5832 5833 tail_index = le16_to_cpu(tl->tl_used) - 1; 5834 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start); 5835 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters); 5836 5837 return current_tail == new_start; 5838 } 5839 5840 int ocfs2_truncate_log_append(struct ocfs2_super *osb, 5841 handle_t *handle, 5842 u64 start_blk, 5843 unsigned int num_clusters) 5844 { 5845 int status, index; 5846 unsigned int start_cluster, tl_count; 5847 struct inode *tl_inode = osb->osb_tl_inode; 5848 struct buffer_head *tl_bh = osb->osb_tl_bh; 5849 struct ocfs2_dinode *di; 5850 struct ocfs2_truncate_log *tl; 5851 5852 BUG_ON(inode_trylock(tl_inode)); 5853 5854 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk); 5855 5856 di = (struct ocfs2_dinode *) tl_bh->b_data; 5857 5858 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 5859 * by the underlying call to ocfs2_read_inode_block(), so any 5860 * corruption is a code bug */ 5861 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5862 5863 tl = &di->id2.i_dealloc; 5864 tl_count = le16_to_cpu(tl->tl_count); 5865 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) || 5866 tl_count == 0, 5867 "Truncate record count on #%llu invalid " 5868 "wanted %u, actual %u\n", 5869 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5870 ocfs2_truncate_recs_per_inode(osb->sb), 5871 le16_to_cpu(tl->tl_count)); 5872 5873 /* Caller should have known to flush before calling us. */ 5874 index = le16_to_cpu(tl->tl_used); 5875 if (index >= tl_count) { 5876 status = -ENOSPC; 5877 mlog_errno(status); 5878 goto bail; 5879 } 5880 5881 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, 5882 OCFS2_JOURNAL_ACCESS_WRITE); 5883 if (status < 0) { 5884 mlog_errno(status); 5885 goto bail; 5886 } 5887 5888 trace_ocfs2_truncate_log_append( 5889 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index, 5890 start_cluster, num_clusters); 5891 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) { 5892 /* 5893 * Move index back to the record we are coalescing with. 5894 * ocfs2_truncate_log_can_coalesce() guarantees nonzero 5895 */ 5896 index--; 5897 5898 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters); 5899 trace_ocfs2_truncate_log_append( 5900 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5901 index, le32_to_cpu(tl->tl_recs[index].t_start), 5902 num_clusters); 5903 } else { 5904 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster); 5905 tl->tl_used = cpu_to_le16(index + 1); 5906 } 5907 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters); 5908 5909 ocfs2_journal_dirty(handle, tl_bh); 5910 5911 osb->truncated_clusters += num_clusters; 5912 bail: 5913 return status; 5914 } 5915 5916 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb, 5917 struct inode *data_alloc_inode, 5918 struct buffer_head *data_alloc_bh) 5919 { 5920 int status = 0; 5921 int i; 5922 unsigned int num_clusters; 5923 u64 start_blk; 5924 struct ocfs2_truncate_rec rec; 5925 struct ocfs2_dinode *di; 5926 struct ocfs2_truncate_log *tl; 5927 struct inode *tl_inode = osb->osb_tl_inode; 5928 struct buffer_head *tl_bh = osb->osb_tl_bh; 5929 handle_t *handle; 5930 5931 di = (struct ocfs2_dinode *) tl_bh->b_data; 5932 tl = &di->id2.i_dealloc; 5933 i = le16_to_cpu(tl->tl_used) - 1; 5934 while (i >= 0) { 5935 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC); 5936 if (IS_ERR(handle)) { 5937 status = PTR_ERR(handle); 5938 mlog_errno(status); 5939 goto bail; 5940 } 5941 5942 /* Caller has given us at least enough credits to 5943 * update the truncate log dinode */ 5944 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, 5945 OCFS2_JOURNAL_ACCESS_WRITE); 5946 if (status < 0) { 5947 mlog_errno(status); 5948 goto bail; 5949 } 5950 5951 tl->tl_used = cpu_to_le16(i); 5952 5953 ocfs2_journal_dirty(handle, tl_bh); 5954 5955 rec = tl->tl_recs[i]; 5956 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb, 5957 le32_to_cpu(rec.t_start)); 5958 num_clusters = le32_to_cpu(rec.t_clusters); 5959 5960 /* if start_blk is not set, we ignore the record as 5961 * invalid. */ 5962 if (start_blk) { 5963 trace_ocfs2_replay_truncate_records( 5964 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5965 i, le32_to_cpu(rec.t_start), num_clusters); 5966 5967 status = ocfs2_free_clusters(handle, data_alloc_inode, 5968 data_alloc_bh, start_blk, 5969 num_clusters); 5970 if (status < 0) { 5971 mlog_errno(status); 5972 goto bail; 5973 } 5974 } 5975 5976 ocfs2_commit_trans(osb, handle); 5977 i--; 5978 } 5979 5980 osb->truncated_clusters = 0; 5981 5982 bail: 5983 return status; 5984 } 5985 5986 /* Expects you to already be holding tl_inode->i_mutex */ 5987 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb) 5988 { 5989 int status; 5990 unsigned int num_to_flush; 5991 struct inode *tl_inode = osb->osb_tl_inode; 5992 struct inode *data_alloc_inode = NULL; 5993 struct buffer_head *tl_bh = osb->osb_tl_bh; 5994 struct buffer_head *data_alloc_bh = NULL; 5995 struct ocfs2_dinode *di; 5996 struct ocfs2_truncate_log *tl; 5997 5998 BUG_ON(inode_trylock(tl_inode)); 5999 6000 di = (struct ocfs2_dinode *) tl_bh->b_data; 6001 6002 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 6003 * by the underlying call to ocfs2_read_inode_block(), so any 6004 * corruption is a code bug */ 6005 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 6006 6007 tl = &di->id2.i_dealloc; 6008 num_to_flush = le16_to_cpu(tl->tl_used); 6009 trace_ocfs2_flush_truncate_log( 6010 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 6011 num_to_flush); 6012 if (!num_to_flush) { 6013 status = 0; 6014 goto out; 6015 } 6016 6017 data_alloc_inode = ocfs2_get_system_file_inode(osb, 6018 GLOBAL_BITMAP_SYSTEM_INODE, 6019 OCFS2_INVALID_SLOT); 6020 if (!data_alloc_inode) { 6021 status = -EINVAL; 6022 mlog(ML_ERROR, "Could not get bitmap inode!\n"); 6023 goto out; 6024 } 6025 6026 inode_lock(data_alloc_inode); 6027 6028 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1); 6029 if (status < 0) { 6030 mlog_errno(status); 6031 goto out_mutex; 6032 } 6033 6034 status = ocfs2_replay_truncate_records(osb, data_alloc_inode, 6035 data_alloc_bh); 6036 if (status < 0) 6037 mlog_errno(status); 6038 6039 brelse(data_alloc_bh); 6040 ocfs2_inode_unlock(data_alloc_inode, 1); 6041 6042 out_mutex: 6043 inode_unlock(data_alloc_inode); 6044 iput(data_alloc_inode); 6045 6046 out: 6047 return status; 6048 } 6049 6050 int ocfs2_flush_truncate_log(struct ocfs2_super *osb) 6051 { 6052 int status; 6053 struct inode *tl_inode = osb->osb_tl_inode; 6054 6055 inode_lock(tl_inode); 6056 status = __ocfs2_flush_truncate_log(osb); 6057 inode_unlock(tl_inode); 6058 6059 return status; 6060 } 6061 6062 static void ocfs2_truncate_log_worker(struct work_struct *work) 6063 { 6064 int status; 6065 struct ocfs2_super *osb = 6066 container_of(work, struct ocfs2_super, 6067 osb_truncate_log_wq.work); 6068 6069 status = ocfs2_flush_truncate_log(osb); 6070 if (status < 0) 6071 mlog_errno(status); 6072 else 6073 ocfs2_init_steal_slots(osb); 6074 } 6075 6076 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ) 6077 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb, 6078 int cancel) 6079 { 6080 if (osb->osb_tl_inode && 6081 atomic_read(&osb->osb_tl_disable) == 0) { 6082 /* We want to push off log flushes while truncates are 6083 * still running. */ 6084 if (cancel) 6085 cancel_delayed_work(&osb->osb_truncate_log_wq); 6086 6087 queue_delayed_work(osb->ocfs2_wq, &osb->osb_truncate_log_wq, 6088 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL); 6089 } 6090 } 6091 6092 /* 6093 * Try to flush truncate logs if we can free enough clusters from it. 6094 * As for return value, "< 0" means error, "0" no space and "1" means 6095 * we have freed enough spaces and let the caller try to allocate again. 6096 */ 6097 int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb, 6098 unsigned int needed) 6099 { 6100 tid_t target; 6101 int ret = 0; 6102 unsigned int truncated_clusters; 6103 6104 inode_lock(osb->osb_tl_inode); 6105 truncated_clusters = osb->truncated_clusters; 6106 inode_unlock(osb->osb_tl_inode); 6107 6108 /* 6109 * Check whether we can succeed in allocating if we free 6110 * the truncate log. 6111 */ 6112 if (truncated_clusters < needed) 6113 goto out; 6114 6115 ret = ocfs2_flush_truncate_log(osb); 6116 if (ret) { 6117 mlog_errno(ret); 6118 goto out; 6119 } 6120 6121 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) { 6122 jbd2_log_wait_commit(osb->journal->j_journal, target); 6123 ret = 1; 6124 } 6125 out: 6126 return ret; 6127 } 6128 6129 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb, 6130 int slot_num, 6131 struct inode **tl_inode, 6132 struct buffer_head **tl_bh) 6133 { 6134 int status; 6135 struct inode *inode = NULL; 6136 struct buffer_head *bh = NULL; 6137 6138 inode = ocfs2_get_system_file_inode(osb, 6139 TRUNCATE_LOG_SYSTEM_INODE, 6140 slot_num); 6141 if (!inode) { 6142 status = -EINVAL; 6143 mlog(ML_ERROR, "Could not get load truncate log inode!\n"); 6144 goto bail; 6145 } 6146 6147 status = ocfs2_read_inode_block(inode, &bh); 6148 if (status < 0) { 6149 iput(inode); 6150 mlog_errno(status); 6151 goto bail; 6152 } 6153 6154 *tl_inode = inode; 6155 *tl_bh = bh; 6156 bail: 6157 return status; 6158 } 6159 6160 /* called during the 1st stage of node recovery. we stamp a clean 6161 * truncate log and pass back a copy for processing later. if the 6162 * truncate log does not require processing, a *tl_copy is set to 6163 * NULL. */ 6164 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb, 6165 int slot_num, 6166 struct ocfs2_dinode **tl_copy) 6167 { 6168 int status; 6169 struct inode *tl_inode = NULL; 6170 struct buffer_head *tl_bh = NULL; 6171 struct ocfs2_dinode *di; 6172 struct ocfs2_truncate_log *tl; 6173 6174 *tl_copy = NULL; 6175 6176 trace_ocfs2_begin_truncate_log_recovery(slot_num); 6177 6178 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh); 6179 if (status < 0) { 6180 mlog_errno(status); 6181 goto bail; 6182 } 6183 6184 di = (struct ocfs2_dinode *) tl_bh->b_data; 6185 6186 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's 6187 * validated by the underlying call to ocfs2_read_inode_block(), 6188 * so any corruption is a code bug */ 6189 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 6190 6191 tl = &di->id2.i_dealloc; 6192 if (le16_to_cpu(tl->tl_used)) { 6193 trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl->tl_used)); 6194 6195 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL); 6196 if (!(*tl_copy)) { 6197 status = -ENOMEM; 6198 mlog_errno(status); 6199 goto bail; 6200 } 6201 6202 /* Assuming the write-out below goes well, this copy 6203 * will be passed back to recovery for processing. */ 6204 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size); 6205 6206 /* All we need to do to clear the truncate log is set 6207 * tl_used. */ 6208 tl->tl_used = 0; 6209 6210 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check); 6211 status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode)); 6212 if (status < 0) { 6213 mlog_errno(status); 6214 goto bail; 6215 } 6216 } 6217 6218 bail: 6219 iput(tl_inode); 6220 brelse(tl_bh); 6221 6222 if (status < 0) { 6223 kfree(*tl_copy); 6224 *tl_copy = NULL; 6225 mlog_errno(status); 6226 } 6227 6228 return status; 6229 } 6230 6231 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb, 6232 struct ocfs2_dinode *tl_copy) 6233 { 6234 int status = 0; 6235 int i; 6236 unsigned int clusters, num_recs, start_cluster; 6237 u64 start_blk; 6238 handle_t *handle; 6239 struct inode *tl_inode = osb->osb_tl_inode; 6240 struct ocfs2_truncate_log *tl; 6241 6242 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) { 6243 mlog(ML_ERROR, "Asked to recover my own truncate log!\n"); 6244 return -EINVAL; 6245 } 6246 6247 tl = &tl_copy->id2.i_dealloc; 6248 num_recs = le16_to_cpu(tl->tl_used); 6249 trace_ocfs2_complete_truncate_log_recovery( 6250 (unsigned long long)le64_to_cpu(tl_copy->i_blkno), 6251 num_recs); 6252 6253 inode_lock(tl_inode); 6254 for(i = 0; i < num_recs; i++) { 6255 if (ocfs2_truncate_log_needs_flush(osb)) { 6256 status = __ocfs2_flush_truncate_log(osb); 6257 if (status < 0) { 6258 mlog_errno(status); 6259 goto bail_up; 6260 } 6261 } 6262 6263 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6264 if (IS_ERR(handle)) { 6265 status = PTR_ERR(handle); 6266 mlog_errno(status); 6267 goto bail_up; 6268 } 6269 6270 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters); 6271 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start); 6272 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster); 6273 6274 status = ocfs2_truncate_log_append(osb, handle, 6275 start_blk, clusters); 6276 ocfs2_commit_trans(osb, handle); 6277 if (status < 0) { 6278 mlog_errno(status); 6279 goto bail_up; 6280 } 6281 } 6282 6283 bail_up: 6284 inode_unlock(tl_inode); 6285 6286 return status; 6287 } 6288 6289 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb) 6290 { 6291 int status; 6292 struct inode *tl_inode = osb->osb_tl_inode; 6293 6294 atomic_set(&osb->osb_tl_disable, 1); 6295 6296 if (tl_inode) { 6297 cancel_delayed_work(&osb->osb_truncate_log_wq); 6298 flush_workqueue(osb->ocfs2_wq); 6299 6300 status = ocfs2_flush_truncate_log(osb); 6301 if (status < 0) 6302 mlog_errno(status); 6303 6304 brelse(osb->osb_tl_bh); 6305 iput(osb->osb_tl_inode); 6306 } 6307 } 6308 6309 int ocfs2_truncate_log_init(struct ocfs2_super *osb) 6310 { 6311 int status; 6312 struct inode *tl_inode = NULL; 6313 struct buffer_head *tl_bh = NULL; 6314 6315 status = ocfs2_get_truncate_log_info(osb, 6316 osb->slot_num, 6317 &tl_inode, 6318 &tl_bh); 6319 if (status < 0) 6320 mlog_errno(status); 6321 6322 /* ocfs2_truncate_log_shutdown keys on the existence of 6323 * osb->osb_tl_inode so we don't set any of the osb variables 6324 * until we're sure all is well. */ 6325 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq, 6326 ocfs2_truncate_log_worker); 6327 atomic_set(&osb->osb_tl_disable, 0); 6328 osb->osb_tl_bh = tl_bh; 6329 osb->osb_tl_inode = tl_inode; 6330 6331 return status; 6332 } 6333 6334 /* 6335 * Delayed de-allocation of suballocator blocks. 6336 * 6337 * Some sets of block de-allocations might involve multiple suballocator inodes. 6338 * 6339 * The locking for this can get extremely complicated, especially when 6340 * the suballocator inodes to delete from aren't known until deep 6341 * within an unrelated codepath. 6342 * 6343 * ocfs2_extent_block structures are a good example of this - an inode 6344 * btree could have been grown by any number of nodes each allocating 6345 * out of their own suballoc inode. 6346 * 6347 * These structures allow the delay of block de-allocation until a 6348 * later time, when locking of multiple cluster inodes won't cause 6349 * deadlock. 6350 */ 6351 6352 /* 6353 * Describe a single bit freed from a suballocator. For the block 6354 * suballocators, it represents one block. For the global cluster 6355 * allocator, it represents some clusters and free_bit indicates 6356 * clusters number. 6357 */ 6358 struct ocfs2_cached_block_free { 6359 struct ocfs2_cached_block_free *free_next; 6360 u64 free_bg; 6361 u64 free_blk; 6362 unsigned int free_bit; 6363 }; 6364 6365 struct ocfs2_per_slot_free_list { 6366 struct ocfs2_per_slot_free_list *f_next_suballocator; 6367 int f_inode_type; 6368 int f_slot; 6369 struct ocfs2_cached_block_free *f_first; 6370 }; 6371 6372 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb, 6373 int sysfile_type, 6374 int slot, 6375 struct ocfs2_cached_block_free *head) 6376 { 6377 int ret; 6378 u64 bg_blkno; 6379 handle_t *handle; 6380 struct inode *inode; 6381 struct buffer_head *di_bh = NULL; 6382 struct ocfs2_cached_block_free *tmp; 6383 6384 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot); 6385 if (!inode) { 6386 ret = -EINVAL; 6387 mlog_errno(ret); 6388 goto out; 6389 } 6390 6391 inode_lock(inode); 6392 6393 ret = ocfs2_inode_lock(inode, &di_bh, 1); 6394 if (ret) { 6395 mlog_errno(ret); 6396 goto out_mutex; 6397 } 6398 6399 while (head) { 6400 if (head->free_bg) 6401 bg_blkno = head->free_bg; 6402 else 6403 bg_blkno = ocfs2_which_suballoc_group(head->free_blk, 6404 head->free_bit); 6405 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE); 6406 if (IS_ERR(handle)) { 6407 ret = PTR_ERR(handle); 6408 mlog_errno(ret); 6409 goto out_unlock; 6410 } 6411 6412 trace_ocfs2_free_cached_blocks( 6413 (unsigned long long)head->free_blk, head->free_bit); 6414 6415 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh, 6416 head->free_bit, bg_blkno, 1); 6417 if (ret) 6418 mlog_errno(ret); 6419 6420 ocfs2_commit_trans(osb, handle); 6421 6422 tmp = head; 6423 head = head->free_next; 6424 kfree(tmp); 6425 } 6426 6427 out_unlock: 6428 ocfs2_inode_unlock(inode, 1); 6429 brelse(di_bh); 6430 out_mutex: 6431 inode_unlock(inode); 6432 iput(inode); 6433 out: 6434 while(head) { 6435 /* Premature exit may have left some dangling items. */ 6436 tmp = head; 6437 head = head->free_next; 6438 kfree(tmp); 6439 } 6440 6441 return ret; 6442 } 6443 6444 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6445 u64 blkno, unsigned int bit) 6446 { 6447 int ret = 0; 6448 struct ocfs2_cached_block_free *item; 6449 6450 item = kzalloc(sizeof(*item), GFP_NOFS); 6451 if (item == NULL) { 6452 ret = -ENOMEM; 6453 mlog_errno(ret); 6454 return ret; 6455 } 6456 6457 trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno, bit); 6458 6459 item->free_blk = blkno; 6460 item->free_bit = bit; 6461 item->free_next = ctxt->c_global_allocator; 6462 6463 ctxt->c_global_allocator = item; 6464 return ret; 6465 } 6466 6467 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb, 6468 struct ocfs2_cached_block_free *head) 6469 { 6470 struct ocfs2_cached_block_free *tmp; 6471 struct inode *tl_inode = osb->osb_tl_inode; 6472 handle_t *handle; 6473 int ret = 0; 6474 6475 inode_lock(tl_inode); 6476 6477 while (head) { 6478 if (ocfs2_truncate_log_needs_flush(osb)) { 6479 ret = __ocfs2_flush_truncate_log(osb); 6480 if (ret < 0) { 6481 mlog_errno(ret); 6482 break; 6483 } 6484 } 6485 6486 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6487 if (IS_ERR(handle)) { 6488 ret = PTR_ERR(handle); 6489 mlog_errno(ret); 6490 break; 6491 } 6492 6493 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk, 6494 head->free_bit); 6495 6496 ocfs2_commit_trans(osb, handle); 6497 tmp = head; 6498 head = head->free_next; 6499 kfree(tmp); 6500 6501 if (ret < 0) { 6502 mlog_errno(ret); 6503 break; 6504 } 6505 } 6506 6507 inode_unlock(tl_inode); 6508 6509 while (head) { 6510 /* Premature exit may have left some dangling items. */ 6511 tmp = head; 6512 head = head->free_next; 6513 kfree(tmp); 6514 } 6515 6516 return ret; 6517 } 6518 6519 int ocfs2_run_deallocs(struct ocfs2_super *osb, 6520 struct ocfs2_cached_dealloc_ctxt *ctxt) 6521 { 6522 int ret = 0, ret2; 6523 struct ocfs2_per_slot_free_list *fl; 6524 6525 if (!ctxt) 6526 return 0; 6527 6528 while (ctxt->c_first_suballocator) { 6529 fl = ctxt->c_first_suballocator; 6530 6531 if (fl->f_first) { 6532 trace_ocfs2_run_deallocs(fl->f_inode_type, 6533 fl->f_slot); 6534 ret2 = ocfs2_free_cached_blocks(osb, 6535 fl->f_inode_type, 6536 fl->f_slot, 6537 fl->f_first); 6538 if (ret2) 6539 mlog_errno(ret2); 6540 if (!ret) 6541 ret = ret2; 6542 } 6543 6544 ctxt->c_first_suballocator = fl->f_next_suballocator; 6545 kfree(fl); 6546 } 6547 6548 if (ctxt->c_global_allocator) { 6549 ret2 = ocfs2_free_cached_clusters(osb, 6550 ctxt->c_global_allocator); 6551 if (ret2) 6552 mlog_errno(ret2); 6553 if (!ret) 6554 ret = ret2; 6555 6556 ctxt->c_global_allocator = NULL; 6557 } 6558 6559 return ret; 6560 } 6561 6562 static struct ocfs2_per_slot_free_list * 6563 ocfs2_find_per_slot_free_list(int type, 6564 int slot, 6565 struct ocfs2_cached_dealloc_ctxt *ctxt) 6566 { 6567 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; 6568 6569 while (fl) { 6570 if (fl->f_inode_type == type && fl->f_slot == slot) 6571 return fl; 6572 6573 fl = fl->f_next_suballocator; 6574 } 6575 6576 fl = kmalloc(sizeof(*fl), GFP_NOFS); 6577 if (fl) { 6578 fl->f_inode_type = type; 6579 fl->f_slot = slot; 6580 fl->f_first = NULL; 6581 fl->f_next_suballocator = ctxt->c_first_suballocator; 6582 6583 ctxt->c_first_suballocator = fl; 6584 } 6585 return fl; 6586 } 6587 6588 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6589 int type, int slot, u64 suballoc, 6590 u64 blkno, unsigned int bit) 6591 { 6592 int ret; 6593 struct ocfs2_per_slot_free_list *fl; 6594 struct ocfs2_cached_block_free *item; 6595 6596 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt); 6597 if (fl == NULL) { 6598 ret = -ENOMEM; 6599 mlog_errno(ret); 6600 goto out; 6601 } 6602 6603 item = kzalloc(sizeof(*item), GFP_NOFS); 6604 if (item == NULL) { 6605 ret = -ENOMEM; 6606 mlog_errno(ret); 6607 goto out; 6608 } 6609 6610 trace_ocfs2_cache_block_dealloc(type, slot, 6611 (unsigned long long)suballoc, 6612 (unsigned long long)blkno, bit); 6613 6614 item->free_bg = suballoc; 6615 item->free_blk = blkno; 6616 item->free_bit = bit; 6617 item->free_next = fl->f_first; 6618 6619 fl->f_first = item; 6620 6621 ret = 0; 6622 out: 6623 return ret; 6624 } 6625 6626 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 6627 struct ocfs2_extent_block *eb) 6628 { 6629 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE, 6630 le16_to_cpu(eb->h_suballoc_slot), 6631 le64_to_cpu(eb->h_suballoc_loc), 6632 le64_to_cpu(eb->h_blkno), 6633 le16_to_cpu(eb->h_suballoc_bit)); 6634 } 6635 6636 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh) 6637 { 6638 set_buffer_uptodate(bh); 6639 mark_buffer_dirty(bh); 6640 return 0; 6641 } 6642 6643 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle, 6644 unsigned int from, unsigned int to, 6645 struct page *page, int zero, u64 *phys) 6646 { 6647 int ret, partial = 0; 6648 6649 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0); 6650 if (ret) 6651 mlog_errno(ret); 6652 6653 if (zero) 6654 zero_user_segment(page, from, to); 6655 6656 /* 6657 * Need to set the buffers we zero'd into uptodate 6658 * here if they aren't - ocfs2_map_page_blocks() 6659 * might've skipped some 6660 */ 6661 ret = walk_page_buffers(handle, page_buffers(page), 6662 from, to, &partial, 6663 ocfs2_zero_func); 6664 if (ret < 0) 6665 mlog_errno(ret); 6666 else if (ocfs2_should_order_data(inode)) { 6667 ret = ocfs2_jbd2_file_inode(handle, inode); 6668 if (ret < 0) 6669 mlog_errno(ret); 6670 } 6671 6672 if (!partial) 6673 SetPageUptodate(page); 6674 6675 flush_dcache_page(page); 6676 } 6677 6678 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start, 6679 loff_t end, struct page **pages, 6680 int numpages, u64 phys, handle_t *handle) 6681 { 6682 int i; 6683 struct page *page; 6684 unsigned int from, to = PAGE_SIZE; 6685 struct super_block *sb = inode->i_sb; 6686 6687 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb))); 6688 6689 if (numpages == 0) 6690 goto out; 6691 6692 to = PAGE_SIZE; 6693 for(i = 0; i < numpages; i++) { 6694 page = pages[i]; 6695 6696 from = start & (PAGE_SIZE - 1); 6697 if ((end >> PAGE_SHIFT) == page->index) 6698 to = end & (PAGE_SIZE - 1); 6699 6700 BUG_ON(from > PAGE_SIZE); 6701 BUG_ON(to > PAGE_SIZE); 6702 6703 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1, 6704 &phys); 6705 6706 start = (page->index + 1) << PAGE_SHIFT; 6707 } 6708 out: 6709 if (pages) 6710 ocfs2_unlock_and_free_pages(pages, numpages); 6711 } 6712 6713 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end, 6714 struct page **pages, int *num) 6715 { 6716 int numpages, ret = 0; 6717 struct address_space *mapping = inode->i_mapping; 6718 unsigned long index; 6719 loff_t last_page_bytes; 6720 6721 BUG_ON(start > end); 6722 6723 numpages = 0; 6724 last_page_bytes = PAGE_ALIGN(end); 6725 index = start >> PAGE_SHIFT; 6726 do { 6727 pages[numpages] = find_or_create_page(mapping, index, GFP_NOFS); 6728 if (!pages[numpages]) { 6729 ret = -ENOMEM; 6730 mlog_errno(ret); 6731 goto out; 6732 } 6733 6734 numpages++; 6735 index++; 6736 } while (index < (last_page_bytes >> PAGE_SHIFT)); 6737 6738 out: 6739 if (ret != 0) { 6740 if (pages) 6741 ocfs2_unlock_and_free_pages(pages, numpages); 6742 numpages = 0; 6743 } 6744 6745 *num = numpages; 6746 6747 return ret; 6748 } 6749 6750 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end, 6751 struct page **pages, int *num) 6752 { 6753 struct super_block *sb = inode->i_sb; 6754 6755 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits != 6756 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits); 6757 6758 return ocfs2_grab_pages(inode, start, end, pages, num); 6759 } 6760 6761 /* 6762 * Zero the area past i_size but still within an allocated 6763 * cluster. This avoids exposing nonzero data on subsequent file 6764 * extends. 6765 * 6766 * We need to call this before i_size is updated on the inode because 6767 * otherwise block_write_full_page() will skip writeout of pages past 6768 * i_size. The new_i_size parameter is passed for this reason. 6769 */ 6770 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle, 6771 u64 range_start, u64 range_end) 6772 { 6773 int ret = 0, numpages; 6774 struct page **pages = NULL; 6775 u64 phys; 6776 unsigned int ext_flags; 6777 struct super_block *sb = inode->i_sb; 6778 6779 /* 6780 * File systems which don't support sparse files zero on every 6781 * extend. 6782 */ 6783 if (!ocfs2_sparse_alloc(OCFS2_SB(sb))) 6784 return 0; 6785 6786 pages = kcalloc(ocfs2_pages_per_cluster(sb), 6787 sizeof(struct page *), GFP_NOFS); 6788 if (pages == NULL) { 6789 ret = -ENOMEM; 6790 mlog_errno(ret); 6791 goto out; 6792 } 6793 6794 if (range_start == range_end) 6795 goto out; 6796 6797 ret = ocfs2_extent_map_get_blocks(inode, 6798 range_start >> sb->s_blocksize_bits, 6799 &phys, NULL, &ext_flags); 6800 if (ret) { 6801 mlog_errno(ret); 6802 goto out; 6803 } 6804 6805 /* 6806 * Tail is a hole, or is marked unwritten. In either case, we 6807 * can count on read and write to return/push zero's. 6808 */ 6809 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN) 6810 goto out; 6811 6812 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages, 6813 &numpages); 6814 if (ret) { 6815 mlog_errno(ret); 6816 goto out; 6817 } 6818 6819 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages, 6820 numpages, phys, handle); 6821 6822 /* 6823 * Initiate writeout of the pages we zero'd here. We don't 6824 * wait on them - the truncate_inode_pages() call later will 6825 * do that for us. 6826 */ 6827 ret = filemap_fdatawrite_range(inode->i_mapping, range_start, 6828 range_end - 1); 6829 if (ret) 6830 mlog_errno(ret); 6831 6832 out: 6833 kfree(pages); 6834 6835 return ret; 6836 } 6837 6838 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode, 6839 struct ocfs2_dinode *di) 6840 { 6841 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits; 6842 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size); 6843 6844 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL) 6845 memset(&di->id2, 0, blocksize - 6846 offsetof(struct ocfs2_dinode, id2) - 6847 xattrsize); 6848 else 6849 memset(&di->id2, 0, blocksize - 6850 offsetof(struct ocfs2_dinode, id2)); 6851 } 6852 6853 void ocfs2_dinode_new_extent_list(struct inode *inode, 6854 struct ocfs2_dinode *di) 6855 { 6856 ocfs2_zero_dinode_id2_with_xattr(inode, di); 6857 di->id2.i_list.l_tree_depth = 0; 6858 di->id2.i_list.l_next_free_rec = 0; 6859 di->id2.i_list.l_count = cpu_to_le16( 6860 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di)); 6861 } 6862 6863 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di) 6864 { 6865 struct ocfs2_inode_info *oi = OCFS2_I(inode); 6866 struct ocfs2_inline_data *idata = &di->id2.i_data; 6867 6868 spin_lock(&oi->ip_lock); 6869 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL; 6870 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 6871 spin_unlock(&oi->ip_lock); 6872 6873 /* 6874 * We clear the entire i_data structure here so that all 6875 * fields can be properly initialized. 6876 */ 6877 ocfs2_zero_dinode_id2_with_xattr(inode, di); 6878 6879 idata->id_count = cpu_to_le16( 6880 ocfs2_max_inline_data_with_xattr(inode->i_sb, di)); 6881 } 6882 6883 int ocfs2_convert_inline_data_to_extents(struct inode *inode, 6884 struct buffer_head *di_bh) 6885 { 6886 int ret, i, has_data, num_pages = 0; 6887 int need_free = 0; 6888 u32 bit_off, num; 6889 handle_t *handle; 6890 u64 uninitialized_var(block); 6891 struct ocfs2_inode_info *oi = OCFS2_I(inode); 6892 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 6893 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 6894 struct ocfs2_alloc_context *data_ac = NULL; 6895 struct page **pages = NULL; 6896 loff_t end = osb->s_clustersize; 6897 struct ocfs2_extent_tree et; 6898 int did_quota = 0; 6899 6900 has_data = i_size_read(inode) ? 1 : 0; 6901 6902 if (has_data) { 6903 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb), 6904 sizeof(struct page *), GFP_NOFS); 6905 if (pages == NULL) { 6906 ret = -ENOMEM; 6907 mlog_errno(ret); 6908 return ret; 6909 } 6910 6911 ret = ocfs2_reserve_clusters(osb, 1, &data_ac); 6912 if (ret) { 6913 mlog_errno(ret); 6914 goto free_pages; 6915 } 6916 } 6917 6918 handle = ocfs2_start_trans(osb, 6919 ocfs2_inline_to_extents_credits(osb->sb)); 6920 if (IS_ERR(handle)) { 6921 ret = PTR_ERR(handle); 6922 mlog_errno(ret); 6923 goto out; 6924 } 6925 6926 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 6927 OCFS2_JOURNAL_ACCESS_WRITE); 6928 if (ret) { 6929 mlog_errno(ret); 6930 goto out_commit; 6931 } 6932 6933 if (has_data) { 6934 unsigned int page_end; 6935 u64 phys; 6936 6937 ret = dquot_alloc_space_nodirty(inode, 6938 ocfs2_clusters_to_bytes(osb->sb, 1)); 6939 if (ret) 6940 goto out_commit; 6941 did_quota = 1; 6942 6943 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 6944 6945 ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off, 6946 &num); 6947 if (ret) { 6948 mlog_errno(ret); 6949 goto out_commit; 6950 } 6951 6952 /* 6953 * Save two copies, one for insert, and one that can 6954 * be changed by ocfs2_map_and_dirty_page() below. 6955 */ 6956 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off); 6957 6958 /* 6959 * Non sparse file systems zero on extend, so no need 6960 * to do that now. 6961 */ 6962 if (!ocfs2_sparse_alloc(osb) && 6963 PAGE_SIZE < osb->s_clustersize) 6964 end = PAGE_SIZE; 6965 6966 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages); 6967 if (ret) { 6968 mlog_errno(ret); 6969 need_free = 1; 6970 goto out_commit; 6971 } 6972 6973 /* 6974 * This should populate the 1st page for us and mark 6975 * it up to date. 6976 */ 6977 ret = ocfs2_read_inline_data(inode, pages[0], di_bh); 6978 if (ret) { 6979 mlog_errno(ret); 6980 need_free = 1; 6981 goto out_unlock; 6982 } 6983 6984 page_end = PAGE_SIZE; 6985 if (PAGE_SIZE > osb->s_clustersize) 6986 page_end = osb->s_clustersize; 6987 6988 for (i = 0; i < num_pages; i++) 6989 ocfs2_map_and_dirty_page(inode, handle, 0, page_end, 6990 pages[i], i > 0, &phys); 6991 } 6992 6993 spin_lock(&oi->ip_lock); 6994 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL; 6995 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 6996 spin_unlock(&oi->ip_lock); 6997 6998 ocfs2_update_inode_fsync_trans(handle, inode, 1); 6999 ocfs2_dinode_new_extent_list(inode, di); 7000 7001 ocfs2_journal_dirty(handle, di_bh); 7002 7003 if (has_data) { 7004 /* 7005 * An error at this point should be extremely rare. If 7006 * this proves to be false, we could always re-build 7007 * the in-inode data from our pages. 7008 */ 7009 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 7010 ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL); 7011 if (ret) { 7012 mlog_errno(ret); 7013 need_free = 1; 7014 goto out_unlock; 7015 } 7016 7017 inode->i_blocks = ocfs2_inode_sector_count(inode); 7018 } 7019 7020 out_unlock: 7021 if (pages) 7022 ocfs2_unlock_and_free_pages(pages, num_pages); 7023 7024 out_commit: 7025 if (ret < 0 && did_quota) 7026 dquot_free_space_nodirty(inode, 7027 ocfs2_clusters_to_bytes(osb->sb, 1)); 7028 7029 if (need_free) { 7030 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL) 7031 ocfs2_free_local_alloc_bits(osb, handle, data_ac, 7032 bit_off, num); 7033 else 7034 ocfs2_free_clusters(handle, 7035 data_ac->ac_inode, 7036 data_ac->ac_bh, 7037 ocfs2_clusters_to_blocks(osb->sb, bit_off), 7038 num); 7039 } 7040 7041 ocfs2_commit_trans(osb, handle); 7042 7043 out: 7044 if (data_ac) 7045 ocfs2_free_alloc_context(data_ac); 7046 free_pages: 7047 kfree(pages); 7048 return ret; 7049 } 7050 7051 /* 7052 * It is expected, that by the time you call this function, 7053 * inode->i_size and fe->i_size have been adjusted. 7054 * 7055 * WARNING: This will kfree the truncate context 7056 */ 7057 int ocfs2_commit_truncate(struct ocfs2_super *osb, 7058 struct inode *inode, 7059 struct buffer_head *di_bh) 7060 { 7061 int status = 0, i, flags = 0; 7062 u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff; 7063 u64 blkno = 0; 7064 struct ocfs2_extent_list *el; 7065 struct ocfs2_extent_rec *rec; 7066 struct ocfs2_path *path = NULL; 7067 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7068 struct ocfs2_extent_list *root_el = &(di->id2.i_list); 7069 u64 refcount_loc = le64_to_cpu(di->i_refcount_loc); 7070 struct ocfs2_extent_tree et; 7071 struct ocfs2_cached_dealloc_ctxt dealloc; 7072 struct ocfs2_refcount_tree *ref_tree = NULL; 7073 7074 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 7075 ocfs2_init_dealloc_ctxt(&dealloc); 7076 7077 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb, 7078 i_size_read(inode)); 7079 7080 path = ocfs2_new_path(di_bh, &di->id2.i_list, 7081 ocfs2_journal_access_di); 7082 if (!path) { 7083 status = -ENOMEM; 7084 mlog_errno(status); 7085 goto bail; 7086 } 7087 7088 ocfs2_extent_map_trunc(inode, new_highest_cpos); 7089 7090 start: 7091 /* 7092 * Check that we still have allocation to delete. 7093 */ 7094 if (OCFS2_I(inode)->ip_clusters == 0) { 7095 status = 0; 7096 goto bail; 7097 } 7098 7099 /* 7100 * Truncate always works against the rightmost tree branch. 7101 */ 7102 status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX); 7103 if (status) { 7104 mlog_errno(status); 7105 goto bail; 7106 } 7107 7108 trace_ocfs2_commit_truncate( 7109 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7110 new_highest_cpos, 7111 OCFS2_I(inode)->ip_clusters, 7112 path->p_tree_depth); 7113 7114 /* 7115 * By now, el will point to the extent list on the bottom most 7116 * portion of this tree. Only the tail record is considered in 7117 * each pass. 7118 * 7119 * We handle the following cases, in order: 7120 * - empty extent: delete the remaining branch 7121 * - remove the entire record 7122 * - remove a partial record 7123 * - no record needs to be removed (truncate has completed) 7124 */ 7125 el = path_leaf_el(path); 7126 if (le16_to_cpu(el->l_next_free_rec) == 0) { 7127 ocfs2_error(inode->i_sb, 7128 "Inode %llu has empty extent block at %llu\n", 7129 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7130 (unsigned long long)path_leaf_bh(path)->b_blocknr); 7131 status = -EROFS; 7132 goto bail; 7133 } 7134 7135 i = le16_to_cpu(el->l_next_free_rec) - 1; 7136 rec = &el->l_recs[i]; 7137 flags = rec->e_flags; 7138 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 7139 7140 if (i == 0 && ocfs2_is_empty_extent(rec)) { 7141 /* 7142 * Lower levels depend on this never happening, but it's best 7143 * to check it up here before changing the tree. 7144 */ 7145 if (root_el->l_tree_depth && rec->e_int_clusters == 0) { 7146 mlog(ML_ERROR, "Inode %lu has an empty " 7147 "extent record, depth %u\n", inode->i_ino, 7148 le16_to_cpu(root_el->l_tree_depth)); 7149 status = ocfs2_remove_rightmost_empty_extent(osb, 7150 &et, path, &dealloc); 7151 if (status) { 7152 mlog_errno(status); 7153 goto bail; 7154 } 7155 7156 ocfs2_reinit_path(path, 1); 7157 goto start; 7158 } else { 7159 trunc_cpos = le32_to_cpu(rec->e_cpos); 7160 trunc_len = 0; 7161 blkno = 0; 7162 } 7163 } else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) { 7164 /* 7165 * Truncate entire record. 7166 */ 7167 trunc_cpos = le32_to_cpu(rec->e_cpos); 7168 trunc_len = ocfs2_rec_clusters(el, rec); 7169 blkno = le64_to_cpu(rec->e_blkno); 7170 } else if (range > new_highest_cpos) { 7171 /* 7172 * Partial truncate. it also should be 7173 * the last truncate we're doing. 7174 */ 7175 trunc_cpos = new_highest_cpos; 7176 trunc_len = range - new_highest_cpos; 7177 coff = new_highest_cpos - le32_to_cpu(rec->e_cpos); 7178 blkno = le64_to_cpu(rec->e_blkno) + 7179 ocfs2_clusters_to_blocks(inode->i_sb, coff); 7180 } else { 7181 /* 7182 * Truncate completed, leave happily. 7183 */ 7184 status = 0; 7185 goto bail; 7186 } 7187 7188 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 7189 7190 if ((flags & OCFS2_EXT_REFCOUNTED) && trunc_len && !ref_tree) { 7191 status = ocfs2_lock_refcount_tree(osb, refcount_loc, 1, 7192 &ref_tree, NULL); 7193 if (status) { 7194 mlog_errno(status); 7195 goto bail; 7196 } 7197 } 7198 7199 status = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 7200 phys_cpos, trunc_len, flags, &dealloc, 7201 refcount_loc, true); 7202 if (status < 0) { 7203 mlog_errno(status); 7204 goto bail; 7205 } 7206 7207 ocfs2_reinit_path(path, 1); 7208 7209 /* 7210 * The check above will catch the case where we've truncated 7211 * away all allocation. 7212 */ 7213 goto start; 7214 7215 bail: 7216 if (ref_tree) 7217 ocfs2_unlock_refcount_tree(osb, ref_tree, 1); 7218 7219 ocfs2_schedule_truncate_log_flush(osb, 1); 7220 7221 ocfs2_run_deallocs(osb, &dealloc); 7222 7223 ocfs2_free_path(path); 7224 7225 return status; 7226 } 7227 7228 /* 7229 * 'start' is inclusive, 'end' is not. 7230 */ 7231 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh, 7232 unsigned int start, unsigned int end, int trunc) 7233 { 7234 int ret; 7235 unsigned int numbytes; 7236 handle_t *handle; 7237 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 7238 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7239 struct ocfs2_inline_data *idata = &di->id2.i_data; 7240 7241 if (end > i_size_read(inode)) 7242 end = i_size_read(inode); 7243 7244 BUG_ON(start > end); 7245 7246 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) || 7247 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) || 7248 !ocfs2_supports_inline_data(osb)) { 7249 ocfs2_error(inode->i_sb, 7250 "Inline data flags for inode %llu don't agree! Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n", 7251 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7252 le16_to_cpu(di->i_dyn_features), 7253 OCFS2_I(inode)->ip_dyn_features, 7254 osb->s_feature_incompat); 7255 ret = -EROFS; 7256 goto out; 7257 } 7258 7259 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 7260 if (IS_ERR(handle)) { 7261 ret = PTR_ERR(handle); 7262 mlog_errno(ret); 7263 goto out; 7264 } 7265 7266 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 7267 OCFS2_JOURNAL_ACCESS_WRITE); 7268 if (ret) { 7269 mlog_errno(ret); 7270 goto out_commit; 7271 } 7272 7273 numbytes = end - start; 7274 memset(idata->id_data + start, 0, numbytes); 7275 7276 /* 7277 * No need to worry about the data page here - it's been 7278 * truncated already and inline data doesn't need it for 7279 * pushing zero's to disk, so we'll let readpage pick it up 7280 * later. 7281 */ 7282 if (trunc) { 7283 i_size_write(inode, start); 7284 di->i_size = cpu_to_le64(start); 7285 } 7286 7287 inode->i_blocks = ocfs2_inode_sector_count(inode); 7288 inode->i_ctime = inode->i_mtime = current_time(inode); 7289 7290 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 7291 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 7292 7293 ocfs2_update_inode_fsync_trans(handle, inode, 1); 7294 ocfs2_journal_dirty(handle, di_bh); 7295 7296 out_commit: 7297 ocfs2_commit_trans(osb, handle); 7298 7299 out: 7300 return ret; 7301 } 7302 7303 static int ocfs2_trim_extent(struct super_block *sb, 7304 struct ocfs2_group_desc *gd, 7305 u64 group, u32 start, u32 count) 7306 { 7307 u64 discard, bcount; 7308 struct ocfs2_super *osb = OCFS2_SB(sb); 7309 7310 bcount = ocfs2_clusters_to_blocks(sb, count); 7311 discard = ocfs2_clusters_to_blocks(sb, start); 7312 7313 /* 7314 * For the first cluster group, the gd->bg_blkno is not at the start 7315 * of the group, but at an offset from the start. If we add it while 7316 * calculating discard for first group, we will wrongly start fstrim a 7317 * few blocks after the desried start block and the range can cross 7318 * over into the next cluster group. So, add it only if this is not 7319 * the first cluster group. 7320 */ 7321 if (group != osb->first_cluster_group_blkno) 7322 discard += le64_to_cpu(gd->bg_blkno); 7323 7324 trace_ocfs2_trim_extent(sb, (unsigned long long)discard, bcount); 7325 7326 return sb_issue_discard(sb, discard, bcount, GFP_NOFS, 0); 7327 } 7328 7329 static int ocfs2_trim_group(struct super_block *sb, 7330 struct ocfs2_group_desc *gd, u64 group, 7331 u32 start, u32 max, u32 minbits) 7332 { 7333 int ret = 0, count = 0, next; 7334 void *bitmap = gd->bg_bitmap; 7335 7336 if (le16_to_cpu(gd->bg_free_bits_count) < minbits) 7337 return 0; 7338 7339 trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd->bg_blkno), 7340 start, max, minbits); 7341 7342 while (start < max) { 7343 start = ocfs2_find_next_zero_bit(bitmap, max, start); 7344 if (start >= max) 7345 break; 7346 next = ocfs2_find_next_bit(bitmap, max, start); 7347 7348 if ((next - start) >= minbits) { 7349 ret = ocfs2_trim_extent(sb, gd, group, 7350 start, next - start); 7351 if (ret < 0) { 7352 mlog_errno(ret); 7353 break; 7354 } 7355 count += next - start; 7356 } 7357 start = next + 1; 7358 7359 if (fatal_signal_pending(current)) { 7360 count = -ERESTARTSYS; 7361 break; 7362 } 7363 7364 if ((le16_to_cpu(gd->bg_free_bits_count) - count) < minbits) 7365 break; 7366 } 7367 7368 if (ret < 0) 7369 count = ret; 7370 7371 return count; 7372 } 7373 7374 int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range) 7375 { 7376 struct ocfs2_super *osb = OCFS2_SB(sb); 7377 u64 start, len, trimmed, first_group, last_group, group; 7378 int ret, cnt; 7379 u32 first_bit, last_bit, minlen; 7380 struct buffer_head *main_bm_bh = NULL; 7381 struct inode *main_bm_inode = NULL; 7382 struct buffer_head *gd_bh = NULL; 7383 struct ocfs2_dinode *main_bm; 7384 struct ocfs2_group_desc *gd = NULL; 7385 7386 start = range->start >> osb->s_clustersize_bits; 7387 len = range->len >> osb->s_clustersize_bits; 7388 minlen = range->minlen >> osb->s_clustersize_bits; 7389 7390 if (minlen >= osb->bitmap_cpg || range->len < sb->s_blocksize) 7391 return -EINVAL; 7392 7393 main_bm_inode = ocfs2_get_system_file_inode(osb, 7394 GLOBAL_BITMAP_SYSTEM_INODE, 7395 OCFS2_INVALID_SLOT); 7396 if (!main_bm_inode) { 7397 ret = -EIO; 7398 mlog_errno(ret); 7399 goto out; 7400 } 7401 7402 inode_lock(main_bm_inode); 7403 7404 ret = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 0); 7405 if (ret < 0) { 7406 mlog_errno(ret); 7407 goto out_mutex; 7408 } 7409 main_bm = (struct ocfs2_dinode *)main_bm_bh->b_data; 7410 7411 if (start >= le32_to_cpu(main_bm->i_clusters)) { 7412 ret = -EINVAL; 7413 goto out_unlock; 7414 } 7415 7416 len = range->len >> osb->s_clustersize_bits; 7417 if (start + len > le32_to_cpu(main_bm->i_clusters)) 7418 len = le32_to_cpu(main_bm->i_clusters) - start; 7419 7420 trace_ocfs2_trim_fs(start, len, minlen); 7421 7422 /* Determine first and last group to examine based on start and len */ 7423 first_group = ocfs2_which_cluster_group(main_bm_inode, start); 7424 if (first_group == osb->first_cluster_group_blkno) 7425 first_bit = start; 7426 else 7427 first_bit = start - ocfs2_blocks_to_clusters(sb, first_group); 7428 last_group = ocfs2_which_cluster_group(main_bm_inode, start + len - 1); 7429 last_bit = osb->bitmap_cpg; 7430 7431 trimmed = 0; 7432 for (group = first_group; group <= last_group;) { 7433 if (first_bit + len >= osb->bitmap_cpg) 7434 last_bit = osb->bitmap_cpg; 7435 else 7436 last_bit = first_bit + len; 7437 7438 ret = ocfs2_read_group_descriptor(main_bm_inode, 7439 main_bm, group, 7440 &gd_bh); 7441 if (ret < 0) { 7442 mlog_errno(ret); 7443 break; 7444 } 7445 7446 gd = (struct ocfs2_group_desc *)gd_bh->b_data; 7447 cnt = ocfs2_trim_group(sb, gd, group, 7448 first_bit, last_bit, minlen); 7449 brelse(gd_bh); 7450 gd_bh = NULL; 7451 if (cnt < 0) { 7452 ret = cnt; 7453 mlog_errno(ret); 7454 break; 7455 } 7456 7457 trimmed += cnt; 7458 len -= osb->bitmap_cpg - first_bit; 7459 first_bit = 0; 7460 if (group == osb->first_cluster_group_blkno) 7461 group = ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg); 7462 else 7463 group += ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg); 7464 } 7465 range->len = trimmed * sb->s_blocksize; 7466 out_unlock: 7467 ocfs2_inode_unlock(main_bm_inode, 0); 7468 brelse(main_bm_bh); 7469 out_mutex: 7470 inode_unlock(main_bm_inode); 7471 iput(main_bm_inode); 7472 out: 7473 return ret; 7474 } 7475