1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * alloc.c 5 * 6 * Extent allocs and frees 7 * 8 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/swap.h> 31 32 #define MLOG_MASK_PREFIX ML_DISK_ALLOC 33 #include <cluster/masklog.h> 34 35 #include "ocfs2.h" 36 37 #include "alloc.h" 38 #include "aops.h" 39 #include "dlmglue.h" 40 #include "extent_map.h" 41 #include "inode.h" 42 #include "journal.h" 43 #include "localalloc.h" 44 #include "suballoc.h" 45 #include "sysfile.h" 46 #include "file.h" 47 #include "super.h" 48 #include "uptodate.h" 49 50 #include "buffer_head_io.h" 51 52 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc); 53 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 54 struct ocfs2_extent_block *eb); 55 56 /* 57 * Structures which describe a path through a btree, and functions to 58 * manipulate them. 59 * 60 * The idea here is to be as generic as possible with the tree 61 * manipulation code. 62 */ 63 struct ocfs2_path_item { 64 struct buffer_head *bh; 65 struct ocfs2_extent_list *el; 66 }; 67 68 #define OCFS2_MAX_PATH_DEPTH 5 69 70 struct ocfs2_path { 71 int p_tree_depth; 72 struct ocfs2_path_item p_node[OCFS2_MAX_PATH_DEPTH]; 73 }; 74 75 #define path_root_bh(_path) ((_path)->p_node[0].bh) 76 #define path_root_el(_path) ((_path)->p_node[0].el) 77 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh) 78 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el) 79 #define path_num_items(_path) ((_path)->p_tree_depth + 1) 80 81 /* 82 * Reset the actual path elements so that we can re-use the structure 83 * to build another path. Generally, this involves freeing the buffer 84 * heads. 85 */ 86 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root) 87 { 88 int i, start = 0, depth = 0; 89 struct ocfs2_path_item *node; 90 91 if (keep_root) 92 start = 1; 93 94 for(i = start; i < path_num_items(path); i++) { 95 node = &path->p_node[i]; 96 97 brelse(node->bh); 98 node->bh = NULL; 99 node->el = NULL; 100 } 101 102 /* 103 * Tree depth may change during truncate, or insert. If we're 104 * keeping the root extent list, then make sure that our path 105 * structure reflects the proper depth. 106 */ 107 if (keep_root) 108 depth = le16_to_cpu(path_root_el(path)->l_tree_depth); 109 110 path->p_tree_depth = depth; 111 } 112 113 static void ocfs2_free_path(struct ocfs2_path *path) 114 { 115 if (path) { 116 ocfs2_reinit_path(path, 0); 117 kfree(path); 118 } 119 } 120 121 /* 122 * All the elements of src into dest. After this call, src could be freed 123 * without affecting dest. 124 * 125 * Both paths should have the same root. Any non-root elements of dest 126 * will be freed. 127 */ 128 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src) 129 { 130 int i; 131 132 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 133 BUG_ON(path_root_el(dest) != path_root_el(src)); 134 135 ocfs2_reinit_path(dest, 1); 136 137 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 138 dest->p_node[i].bh = src->p_node[i].bh; 139 dest->p_node[i].el = src->p_node[i].el; 140 141 if (dest->p_node[i].bh) 142 get_bh(dest->p_node[i].bh); 143 } 144 } 145 146 /* 147 * Make the *dest path the same as src and re-initialize src path to 148 * have a root only. 149 */ 150 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src) 151 { 152 int i; 153 154 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 155 156 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 157 brelse(dest->p_node[i].bh); 158 159 dest->p_node[i].bh = src->p_node[i].bh; 160 dest->p_node[i].el = src->p_node[i].el; 161 162 src->p_node[i].bh = NULL; 163 src->p_node[i].el = NULL; 164 } 165 } 166 167 /* 168 * Insert an extent block at given index. 169 * 170 * This will not take an additional reference on eb_bh. 171 */ 172 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index, 173 struct buffer_head *eb_bh) 174 { 175 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data; 176 177 /* 178 * Right now, no root bh is an extent block, so this helps 179 * catch code errors with dinode trees. The assertion can be 180 * safely removed if we ever need to insert extent block 181 * structures at the root. 182 */ 183 BUG_ON(index == 0); 184 185 path->p_node[index].bh = eb_bh; 186 path->p_node[index].el = &eb->h_list; 187 } 188 189 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh, 190 struct ocfs2_extent_list *root_el) 191 { 192 struct ocfs2_path *path; 193 194 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH); 195 196 path = kzalloc(sizeof(*path), GFP_NOFS); 197 if (path) { 198 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth); 199 get_bh(root_bh); 200 path_root_bh(path) = root_bh; 201 path_root_el(path) = root_el; 202 } 203 204 return path; 205 } 206 207 /* 208 * Allocate and initialize a new path based on a disk inode tree. 209 */ 210 static struct ocfs2_path *ocfs2_new_inode_path(struct buffer_head *di_bh) 211 { 212 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 213 struct ocfs2_extent_list *el = &di->id2.i_list; 214 215 return ocfs2_new_path(di_bh, el); 216 } 217 218 /* 219 * Convenience function to journal all components in a path. 220 */ 221 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle, 222 struct ocfs2_path *path) 223 { 224 int i, ret = 0; 225 226 if (!path) 227 goto out; 228 229 for(i = 0; i < path_num_items(path); i++) { 230 ret = ocfs2_journal_access(handle, inode, path->p_node[i].bh, 231 OCFS2_JOURNAL_ACCESS_WRITE); 232 if (ret < 0) { 233 mlog_errno(ret); 234 goto out; 235 } 236 } 237 238 out: 239 return ret; 240 } 241 242 /* 243 * Return the index of the extent record which contains cluster #v_cluster. 244 * -1 is returned if it was not found. 245 * 246 * Should work fine on interior and exterior nodes. 247 */ 248 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster) 249 { 250 int ret = -1; 251 int i; 252 struct ocfs2_extent_rec *rec; 253 u32 rec_end, rec_start, clusters; 254 255 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 256 rec = &el->l_recs[i]; 257 258 rec_start = le32_to_cpu(rec->e_cpos); 259 clusters = ocfs2_rec_clusters(el, rec); 260 261 rec_end = rec_start + clusters; 262 263 if (v_cluster >= rec_start && v_cluster < rec_end) { 264 ret = i; 265 break; 266 } 267 } 268 269 return ret; 270 } 271 272 enum ocfs2_contig_type { 273 CONTIG_NONE = 0, 274 CONTIG_LEFT, 275 CONTIG_RIGHT, 276 CONTIG_LEFTRIGHT, 277 }; 278 279 280 /* 281 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and 282 * ocfs2_extent_contig only work properly against leaf nodes! 283 */ 284 static int ocfs2_block_extent_contig(struct super_block *sb, 285 struct ocfs2_extent_rec *ext, 286 u64 blkno) 287 { 288 u64 blk_end = le64_to_cpu(ext->e_blkno); 289 290 blk_end += ocfs2_clusters_to_blocks(sb, 291 le16_to_cpu(ext->e_leaf_clusters)); 292 293 return blkno == blk_end; 294 } 295 296 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left, 297 struct ocfs2_extent_rec *right) 298 { 299 u32 left_range; 300 301 left_range = le32_to_cpu(left->e_cpos) + 302 le16_to_cpu(left->e_leaf_clusters); 303 304 return (left_range == le32_to_cpu(right->e_cpos)); 305 } 306 307 static enum ocfs2_contig_type 308 ocfs2_extent_contig(struct inode *inode, 309 struct ocfs2_extent_rec *ext, 310 struct ocfs2_extent_rec *insert_rec) 311 { 312 u64 blkno = le64_to_cpu(insert_rec->e_blkno); 313 314 /* 315 * Refuse to coalesce extent records with different flag 316 * fields - we don't want to mix unwritten extents with user 317 * data. 318 */ 319 if (ext->e_flags != insert_rec->e_flags) 320 return CONTIG_NONE; 321 322 if (ocfs2_extents_adjacent(ext, insert_rec) && 323 ocfs2_block_extent_contig(inode->i_sb, ext, blkno)) 324 return CONTIG_RIGHT; 325 326 blkno = le64_to_cpu(ext->e_blkno); 327 if (ocfs2_extents_adjacent(insert_rec, ext) && 328 ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno)) 329 return CONTIG_LEFT; 330 331 return CONTIG_NONE; 332 } 333 334 /* 335 * NOTE: We can have pretty much any combination of contiguousness and 336 * appending. 337 * 338 * The usefulness of APPEND_TAIL is more in that it lets us know that 339 * we'll have to update the path to that leaf. 340 */ 341 enum ocfs2_append_type { 342 APPEND_NONE = 0, 343 APPEND_TAIL, 344 }; 345 346 enum ocfs2_split_type { 347 SPLIT_NONE = 0, 348 SPLIT_LEFT, 349 SPLIT_RIGHT, 350 }; 351 352 struct ocfs2_insert_type { 353 enum ocfs2_split_type ins_split; 354 enum ocfs2_append_type ins_appending; 355 enum ocfs2_contig_type ins_contig; 356 int ins_contig_index; 357 int ins_tree_depth; 358 }; 359 360 struct ocfs2_merge_ctxt { 361 enum ocfs2_contig_type c_contig_type; 362 int c_has_empty_extent; 363 int c_split_covers_rec; 364 }; 365 366 /* 367 * How many free extents have we got before we need more meta data? 368 */ 369 int ocfs2_num_free_extents(struct ocfs2_super *osb, 370 struct inode *inode, 371 struct ocfs2_dinode *fe) 372 { 373 int retval; 374 struct ocfs2_extent_list *el; 375 struct ocfs2_extent_block *eb; 376 struct buffer_head *eb_bh = NULL; 377 378 mlog_entry_void(); 379 380 if (!OCFS2_IS_VALID_DINODE(fe)) { 381 OCFS2_RO_ON_INVALID_DINODE(inode->i_sb, fe); 382 retval = -EIO; 383 goto bail; 384 } 385 386 if (fe->i_last_eb_blk) { 387 retval = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk), 388 &eb_bh, OCFS2_BH_CACHED, inode); 389 if (retval < 0) { 390 mlog_errno(retval); 391 goto bail; 392 } 393 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 394 el = &eb->h_list; 395 } else 396 el = &fe->id2.i_list; 397 398 BUG_ON(el->l_tree_depth != 0); 399 400 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec); 401 bail: 402 if (eb_bh) 403 brelse(eb_bh); 404 405 mlog_exit(retval); 406 return retval; 407 } 408 409 /* expects array to already be allocated 410 * 411 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and 412 * l_count for you 413 */ 414 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb, 415 handle_t *handle, 416 struct inode *inode, 417 int wanted, 418 struct ocfs2_alloc_context *meta_ac, 419 struct buffer_head *bhs[]) 420 { 421 int count, status, i; 422 u16 suballoc_bit_start; 423 u32 num_got; 424 u64 first_blkno; 425 struct ocfs2_extent_block *eb; 426 427 mlog_entry_void(); 428 429 count = 0; 430 while (count < wanted) { 431 status = ocfs2_claim_metadata(osb, 432 handle, 433 meta_ac, 434 wanted - count, 435 &suballoc_bit_start, 436 &num_got, 437 &first_blkno); 438 if (status < 0) { 439 mlog_errno(status); 440 goto bail; 441 } 442 443 for(i = count; i < (num_got + count); i++) { 444 bhs[i] = sb_getblk(osb->sb, first_blkno); 445 if (bhs[i] == NULL) { 446 status = -EIO; 447 mlog_errno(status); 448 goto bail; 449 } 450 ocfs2_set_new_buffer_uptodate(inode, bhs[i]); 451 452 status = ocfs2_journal_access(handle, inode, bhs[i], 453 OCFS2_JOURNAL_ACCESS_CREATE); 454 if (status < 0) { 455 mlog_errno(status); 456 goto bail; 457 } 458 459 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize); 460 eb = (struct ocfs2_extent_block *) bhs[i]->b_data; 461 /* Ok, setup the minimal stuff here. */ 462 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); 463 eb->h_blkno = cpu_to_le64(first_blkno); 464 eb->h_fs_generation = cpu_to_le32(osb->fs_generation); 465 eb->h_suballoc_slot = cpu_to_le16(osb->slot_num); 466 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start); 467 eb->h_list.l_count = 468 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); 469 470 suballoc_bit_start++; 471 first_blkno++; 472 473 /* We'll also be dirtied by the caller, so 474 * this isn't absolutely necessary. */ 475 status = ocfs2_journal_dirty(handle, bhs[i]); 476 if (status < 0) { 477 mlog_errno(status); 478 goto bail; 479 } 480 } 481 482 count += num_got; 483 } 484 485 status = 0; 486 bail: 487 if (status < 0) { 488 for(i = 0; i < wanted; i++) { 489 if (bhs[i]) 490 brelse(bhs[i]); 491 bhs[i] = NULL; 492 } 493 } 494 mlog_exit(status); 495 return status; 496 } 497 498 /* 499 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth(). 500 * 501 * Returns the sum of the rightmost extent rec logical offset and 502 * cluster count. 503 * 504 * ocfs2_add_branch() uses this to determine what logical cluster 505 * value should be populated into the leftmost new branch records. 506 * 507 * ocfs2_shift_tree_depth() uses this to determine the # clusters 508 * value for the new topmost tree record. 509 */ 510 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el) 511 { 512 int i; 513 514 i = le16_to_cpu(el->l_next_free_rec) - 1; 515 516 return le32_to_cpu(el->l_recs[i].e_cpos) + 517 ocfs2_rec_clusters(el, &el->l_recs[i]); 518 } 519 520 /* 521 * Add an entire tree branch to our inode. eb_bh is the extent block 522 * to start at, if we don't want to start the branch at the dinode 523 * structure. 524 * 525 * last_eb_bh is required as we have to update it's next_leaf pointer 526 * for the new last extent block. 527 * 528 * the new branch will be 'empty' in the sense that every block will 529 * contain a single record with cluster count == 0. 530 */ 531 static int ocfs2_add_branch(struct ocfs2_super *osb, 532 handle_t *handle, 533 struct inode *inode, 534 struct buffer_head *fe_bh, 535 struct buffer_head *eb_bh, 536 struct buffer_head **last_eb_bh, 537 struct ocfs2_alloc_context *meta_ac) 538 { 539 int status, new_blocks, i; 540 u64 next_blkno, new_last_eb_blk; 541 struct buffer_head *bh; 542 struct buffer_head **new_eb_bhs = NULL; 543 struct ocfs2_dinode *fe; 544 struct ocfs2_extent_block *eb; 545 struct ocfs2_extent_list *eb_el; 546 struct ocfs2_extent_list *el; 547 u32 new_cpos; 548 549 mlog_entry_void(); 550 551 BUG_ON(!last_eb_bh || !*last_eb_bh); 552 553 fe = (struct ocfs2_dinode *) fe_bh->b_data; 554 555 if (eb_bh) { 556 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 557 el = &eb->h_list; 558 } else 559 el = &fe->id2.i_list; 560 561 /* we never add a branch to a leaf. */ 562 BUG_ON(!el->l_tree_depth); 563 564 new_blocks = le16_to_cpu(el->l_tree_depth); 565 566 /* allocate the number of new eb blocks we need */ 567 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *), 568 GFP_KERNEL); 569 if (!new_eb_bhs) { 570 status = -ENOMEM; 571 mlog_errno(status); 572 goto bail; 573 } 574 575 status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks, 576 meta_ac, new_eb_bhs); 577 if (status < 0) { 578 mlog_errno(status); 579 goto bail; 580 } 581 582 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data; 583 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list); 584 585 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be 586 * linked with the rest of the tree. 587 * conversly, new_eb_bhs[0] is the new bottommost leaf. 588 * 589 * when we leave the loop, new_last_eb_blk will point to the 590 * newest leaf, and next_blkno will point to the topmost extent 591 * block. */ 592 next_blkno = new_last_eb_blk = 0; 593 for(i = 0; i < new_blocks; i++) { 594 bh = new_eb_bhs[i]; 595 eb = (struct ocfs2_extent_block *) bh->b_data; 596 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 597 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); 598 status = -EIO; 599 goto bail; 600 } 601 eb_el = &eb->h_list; 602 603 status = ocfs2_journal_access(handle, inode, bh, 604 OCFS2_JOURNAL_ACCESS_CREATE); 605 if (status < 0) { 606 mlog_errno(status); 607 goto bail; 608 } 609 610 eb->h_next_leaf_blk = 0; 611 eb_el->l_tree_depth = cpu_to_le16(i); 612 eb_el->l_next_free_rec = cpu_to_le16(1); 613 /* 614 * This actually counts as an empty extent as 615 * c_clusters == 0 616 */ 617 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos); 618 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno); 619 /* 620 * eb_el isn't always an interior node, but even leaf 621 * nodes want a zero'd flags and reserved field so 622 * this gets the whole 32 bits regardless of use. 623 */ 624 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0); 625 if (!eb_el->l_tree_depth) 626 new_last_eb_blk = le64_to_cpu(eb->h_blkno); 627 628 status = ocfs2_journal_dirty(handle, bh); 629 if (status < 0) { 630 mlog_errno(status); 631 goto bail; 632 } 633 634 next_blkno = le64_to_cpu(eb->h_blkno); 635 } 636 637 /* This is a bit hairy. We want to update up to three blocks 638 * here without leaving any of them in an inconsistent state 639 * in case of error. We don't have to worry about 640 * journal_dirty erroring as it won't unless we've aborted the 641 * handle (in which case we would never be here) so reserving 642 * the write with journal_access is all we need to do. */ 643 status = ocfs2_journal_access(handle, inode, *last_eb_bh, 644 OCFS2_JOURNAL_ACCESS_WRITE); 645 if (status < 0) { 646 mlog_errno(status); 647 goto bail; 648 } 649 status = ocfs2_journal_access(handle, inode, fe_bh, 650 OCFS2_JOURNAL_ACCESS_WRITE); 651 if (status < 0) { 652 mlog_errno(status); 653 goto bail; 654 } 655 if (eb_bh) { 656 status = ocfs2_journal_access(handle, inode, eb_bh, 657 OCFS2_JOURNAL_ACCESS_WRITE); 658 if (status < 0) { 659 mlog_errno(status); 660 goto bail; 661 } 662 } 663 664 /* Link the new branch into the rest of the tree (el will 665 * either be on the fe, or the extent block passed in. */ 666 i = le16_to_cpu(el->l_next_free_rec); 667 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno); 668 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos); 669 el->l_recs[i].e_int_clusters = 0; 670 le16_add_cpu(&el->l_next_free_rec, 1); 671 672 /* fe needs a new last extent block pointer, as does the 673 * next_leaf on the previously last-extent-block. */ 674 fe->i_last_eb_blk = cpu_to_le64(new_last_eb_blk); 675 676 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 677 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk); 678 679 status = ocfs2_journal_dirty(handle, *last_eb_bh); 680 if (status < 0) 681 mlog_errno(status); 682 status = ocfs2_journal_dirty(handle, fe_bh); 683 if (status < 0) 684 mlog_errno(status); 685 if (eb_bh) { 686 status = ocfs2_journal_dirty(handle, eb_bh); 687 if (status < 0) 688 mlog_errno(status); 689 } 690 691 /* 692 * Some callers want to track the rightmost leaf so pass it 693 * back here. 694 */ 695 brelse(*last_eb_bh); 696 get_bh(new_eb_bhs[0]); 697 *last_eb_bh = new_eb_bhs[0]; 698 699 status = 0; 700 bail: 701 if (new_eb_bhs) { 702 for (i = 0; i < new_blocks; i++) 703 if (new_eb_bhs[i]) 704 brelse(new_eb_bhs[i]); 705 kfree(new_eb_bhs); 706 } 707 708 mlog_exit(status); 709 return status; 710 } 711 712 /* 713 * adds another level to the allocation tree. 714 * returns back the new extent block so you can add a branch to it 715 * after this call. 716 */ 717 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb, 718 handle_t *handle, 719 struct inode *inode, 720 struct buffer_head *fe_bh, 721 struct ocfs2_alloc_context *meta_ac, 722 struct buffer_head **ret_new_eb_bh) 723 { 724 int status, i; 725 u32 new_clusters; 726 struct buffer_head *new_eb_bh = NULL; 727 struct ocfs2_dinode *fe; 728 struct ocfs2_extent_block *eb; 729 struct ocfs2_extent_list *fe_el; 730 struct ocfs2_extent_list *eb_el; 731 732 mlog_entry_void(); 733 734 status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac, 735 &new_eb_bh); 736 if (status < 0) { 737 mlog_errno(status); 738 goto bail; 739 } 740 741 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data; 742 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 743 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); 744 status = -EIO; 745 goto bail; 746 } 747 748 eb_el = &eb->h_list; 749 fe = (struct ocfs2_dinode *) fe_bh->b_data; 750 fe_el = &fe->id2.i_list; 751 752 status = ocfs2_journal_access(handle, inode, new_eb_bh, 753 OCFS2_JOURNAL_ACCESS_CREATE); 754 if (status < 0) { 755 mlog_errno(status); 756 goto bail; 757 } 758 759 /* copy the fe data into the new extent block */ 760 eb_el->l_tree_depth = fe_el->l_tree_depth; 761 eb_el->l_next_free_rec = fe_el->l_next_free_rec; 762 for(i = 0; i < le16_to_cpu(fe_el->l_next_free_rec); i++) 763 eb_el->l_recs[i] = fe_el->l_recs[i]; 764 765 status = ocfs2_journal_dirty(handle, new_eb_bh); 766 if (status < 0) { 767 mlog_errno(status); 768 goto bail; 769 } 770 771 status = ocfs2_journal_access(handle, inode, fe_bh, 772 OCFS2_JOURNAL_ACCESS_WRITE); 773 if (status < 0) { 774 mlog_errno(status); 775 goto bail; 776 } 777 778 new_clusters = ocfs2_sum_rightmost_rec(eb_el); 779 780 /* update fe now */ 781 le16_add_cpu(&fe_el->l_tree_depth, 1); 782 fe_el->l_recs[0].e_cpos = 0; 783 fe_el->l_recs[0].e_blkno = eb->h_blkno; 784 fe_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters); 785 for(i = 1; i < le16_to_cpu(fe_el->l_next_free_rec); i++) 786 memset(&fe_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 787 fe_el->l_next_free_rec = cpu_to_le16(1); 788 789 /* If this is our 1st tree depth shift, then last_eb_blk 790 * becomes the allocated extent block */ 791 if (fe_el->l_tree_depth == cpu_to_le16(1)) 792 fe->i_last_eb_blk = eb->h_blkno; 793 794 status = ocfs2_journal_dirty(handle, fe_bh); 795 if (status < 0) { 796 mlog_errno(status); 797 goto bail; 798 } 799 800 *ret_new_eb_bh = new_eb_bh; 801 new_eb_bh = NULL; 802 status = 0; 803 bail: 804 if (new_eb_bh) 805 brelse(new_eb_bh); 806 807 mlog_exit(status); 808 return status; 809 } 810 811 /* 812 * Should only be called when there is no space left in any of the 813 * leaf nodes. What we want to do is find the lowest tree depth 814 * non-leaf extent block with room for new records. There are three 815 * valid results of this search: 816 * 817 * 1) a lowest extent block is found, then we pass it back in 818 * *lowest_eb_bh and return '0' 819 * 820 * 2) the search fails to find anything, but the dinode has room. We 821 * pass NULL back in *lowest_eb_bh, but still return '0' 822 * 823 * 3) the search fails to find anything AND the dinode is full, in 824 * which case we return > 0 825 * 826 * return status < 0 indicates an error. 827 */ 828 static int ocfs2_find_branch_target(struct ocfs2_super *osb, 829 struct inode *inode, 830 struct buffer_head *fe_bh, 831 struct buffer_head **target_bh) 832 { 833 int status = 0, i; 834 u64 blkno; 835 struct ocfs2_dinode *fe; 836 struct ocfs2_extent_block *eb; 837 struct ocfs2_extent_list *el; 838 struct buffer_head *bh = NULL; 839 struct buffer_head *lowest_bh = NULL; 840 841 mlog_entry_void(); 842 843 *target_bh = NULL; 844 845 fe = (struct ocfs2_dinode *) fe_bh->b_data; 846 el = &fe->id2.i_list; 847 848 while(le16_to_cpu(el->l_tree_depth) > 1) { 849 if (le16_to_cpu(el->l_next_free_rec) == 0) { 850 ocfs2_error(inode->i_sb, "Dinode %llu has empty " 851 "extent list (next_free_rec == 0)", 852 (unsigned long long)OCFS2_I(inode)->ip_blkno); 853 status = -EIO; 854 goto bail; 855 } 856 i = le16_to_cpu(el->l_next_free_rec) - 1; 857 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 858 if (!blkno) { 859 ocfs2_error(inode->i_sb, "Dinode %llu has extent " 860 "list where extent # %d has no physical " 861 "block start", 862 (unsigned long long)OCFS2_I(inode)->ip_blkno, i); 863 status = -EIO; 864 goto bail; 865 } 866 867 if (bh) { 868 brelse(bh); 869 bh = NULL; 870 } 871 872 status = ocfs2_read_block(osb, blkno, &bh, OCFS2_BH_CACHED, 873 inode); 874 if (status < 0) { 875 mlog_errno(status); 876 goto bail; 877 } 878 879 eb = (struct ocfs2_extent_block *) bh->b_data; 880 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 881 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); 882 status = -EIO; 883 goto bail; 884 } 885 el = &eb->h_list; 886 887 if (le16_to_cpu(el->l_next_free_rec) < 888 le16_to_cpu(el->l_count)) { 889 if (lowest_bh) 890 brelse(lowest_bh); 891 lowest_bh = bh; 892 get_bh(lowest_bh); 893 } 894 } 895 896 /* If we didn't find one and the fe doesn't have any room, 897 * then return '1' */ 898 if (!lowest_bh 899 && (fe->id2.i_list.l_next_free_rec == fe->id2.i_list.l_count)) 900 status = 1; 901 902 *target_bh = lowest_bh; 903 bail: 904 if (bh) 905 brelse(bh); 906 907 mlog_exit(status); 908 return status; 909 } 910 911 /* 912 * Grow a b-tree so that it has more records. 913 * 914 * We might shift the tree depth in which case existing paths should 915 * be considered invalid. 916 * 917 * Tree depth after the grow is returned via *final_depth. 918 * 919 * *last_eb_bh will be updated by ocfs2_add_branch(). 920 */ 921 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle, 922 struct buffer_head *di_bh, int *final_depth, 923 struct buffer_head **last_eb_bh, 924 struct ocfs2_alloc_context *meta_ac) 925 { 926 int ret, shift; 927 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 928 int depth = le16_to_cpu(di->id2.i_list.l_tree_depth); 929 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 930 struct buffer_head *bh = NULL; 931 932 BUG_ON(meta_ac == NULL); 933 934 shift = ocfs2_find_branch_target(osb, inode, di_bh, &bh); 935 if (shift < 0) { 936 ret = shift; 937 mlog_errno(ret); 938 goto out; 939 } 940 941 /* We traveled all the way to the bottom of the allocation tree 942 * and didn't find room for any more extents - we need to add 943 * another tree level */ 944 if (shift) { 945 BUG_ON(bh); 946 mlog(0, "need to shift tree depth (current = %d)\n", depth); 947 948 /* ocfs2_shift_tree_depth will return us a buffer with 949 * the new extent block (so we can pass that to 950 * ocfs2_add_branch). */ 951 ret = ocfs2_shift_tree_depth(osb, handle, inode, di_bh, 952 meta_ac, &bh); 953 if (ret < 0) { 954 mlog_errno(ret); 955 goto out; 956 } 957 depth++; 958 if (depth == 1) { 959 /* 960 * Special case: we have room now if we shifted from 961 * tree_depth 0, so no more work needs to be done. 962 * 963 * We won't be calling add_branch, so pass 964 * back *last_eb_bh as the new leaf. At depth 965 * zero, it should always be null so there's 966 * no reason to brelse. 967 */ 968 BUG_ON(*last_eb_bh); 969 get_bh(bh); 970 *last_eb_bh = bh; 971 goto out; 972 } 973 } 974 975 /* call ocfs2_add_branch to add the final part of the tree with 976 * the new data. */ 977 mlog(0, "add branch. bh = %p\n", bh); 978 ret = ocfs2_add_branch(osb, handle, inode, di_bh, bh, last_eb_bh, 979 meta_ac); 980 if (ret < 0) { 981 mlog_errno(ret); 982 goto out; 983 } 984 985 out: 986 if (final_depth) 987 *final_depth = depth; 988 brelse(bh); 989 return ret; 990 } 991 992 /* 993 * This is only valid for leaf nodes, which are the only ones that can 994 * have empty extents anyway. 995 */ 996 static inline int ocfs2_is_empty_extent(struct ocfs2_extent_rec *rec) 997 { 998 return !rec->e_leaf_clusters; 999 } 1000 1001 /* 1002 * This function will discard the rightmost extent record. 1003 */ 1004 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el) 1005 { 1006 int next_free = le16_to_cpu(el->l_next_free_rec); 1007 int count = le16_to_cpu(el->l_count); 1008 unsigned int num_bytes; 1009 1010 BUG_ON(!next_free); 1011 /* This will cause us to go off the end of our extent list. */ 1012 BUG_ON(next_free >= count); 1013 1014 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free; 1015 1016 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes); 1017 } 1018 1019 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el, 1020 struct ocfs2_extent_rec *insert_rec) 1021 { 1022 int i, insert_index, next_free, has_empty, num_bytes; 1023 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos); 1024 struct ocfs2_extent_rec *rec; 1025 1026 next_free = le16_to_cpu(el->l_next_free_rec); 1027 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]); 1028 1029 BUG_ON(!next_free); 1030 1031 /* The tree code before us didn't allow enough room in the leaf. */ 1032 if (el->l_next_free_rec == el->l_count && !has_empty) 1033 BUG(); 1034 1035 /* 1036 * The easiest way to approach this is to just remove the 1037 * empty extent and temporarily decrement next_free. 1038 */ 1039 if (has_empty) { 1040 /* 1041 * If next_free was 1 (only an empty extent), this 1042 * loop won't execute, which is fine. We still want 1043 * the decrement above to happen. 1044 */ 1045 for(i = 0; i < (next_free - 1); i++) 1046 el->l_recs[i] = el->l_recs[i+1]; 1047 1048 next_free--; 1049 } 1050 1051 /* 1052 * Figure out what the new record index should be. 1053 */ 1054 for(i = 0; i < next_free; i++) { 1055 rec = &el->l_recs[i]; 1056 1057 if (insert_cpos < le32_to_cpu(rec->e_cpos)) 1058 break; 1059 } 1060 insert_index = i; 1061 1062 mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n", 1063 insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count)); 1064 1065 BUG_ON(insert_index < 0); 1066 BUG_ON(insert_index >= le16_to_cpu(el->l_count)); 1067 BUG_ON(insert_index > next_free); 1068 1069 /* 1070 * No need to memmove if we're just adding to the tail. 1071 */ 1072 if (insert_index != next_free) { 1073 BUG_ON(next_free >= le16_to_cpu(el->l_count)); 1074 1075 num_bytes = next_free - insert_index; 1076 num_bytes *= sizeof(struct ocfs2_extent_rec); 1077 memmove(&el->l_recs[insert_index + 1], 1078 &el->l_recs[insert_index], 1079 num_bytes); 1080 } 1081 1082 /* 1083 * Either we had an empty extent, and need to re-increment or 1084 * there was no empty extent on a non full rightmost leaf node, 1085 * in which case we still need to increment. 1086 */ 1087 next_free++; 1088 el->l_next_free_rec = cpu_to_le16(next_free); 1089 /* 1090 * Make sure none of the math above just messed up our tree. 1091 */ 1092 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count)); 1093 1094 el->l_recs[insert_index] = *insert_rec; 1095 1096 } 1097 1098 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el) 1099 { 1100 int size, num_recs = le16_to_cpu(el->l_next_free_rec); 1101 1102 BUG_ON(num_recs == 0); 1103 1104 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 1105 num_recs--; 1106 size = num_recs * sizeof(struct ocfs2_extent_rec); 1107 memmove(&el->l_recs[0], &el->l_recs[1], size); 1108 memset(&el->l_recs[num_recs], 0, 1109 sizeof(struct ocfs2_extent_rec)); 1110 el->l_next_free_rec = cpu_to_le16(num_recs); 1111 } 1112 } 1113 1114 /* 1115 * Create an empty extent record . 1116 * 1117 * l_next_free_rec may be updated. 1118 * 1119 * If an empty extent already exists do nothing. 1120 */ 1121 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el) 1122 { 1123 int next_free = le16_to_cpu(el->l_next_free_rec); 1124 1125 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 1126 1127 if (next_free == 0) 1128 goto set_and_inc; 1129 1130 if (ocfs2_is_empty_extent(&el->l_recs[0])) 1131 return; 1132 1133 mlog_bug_on_msg(el->l_count == el->l_next_free_rec, 1134 "Asked to create an empty extent in a full list:\n" 1135 "count = %u, tree depth = %u", 1136 le16_to_cpu(el->l_count), 1137 le16_to_cpu(el->l_tree_depth)); 1138 1139 ocfs2_shift_records_right(el); 1140 1141 set_and_inc: 1142 le16_add_cpu(&el->l_next_free_rec, 1); 1143 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 1144 } 1145 1146 /* 1147 * For a rotation which involves two leaf nodes, the "root node" is 1148 * the lowest level tree node which contains a path to both leafs. This 1149 * resulting set of information can be used to form a complete "subtree" 1150 * 1151 * This function is passed two full paths from the dinode down to a 1152 * pair of adjacent leaves. It's task is to figure out which path 1153 * index contains the subtree root - this can be the root index itself 1154 * in a worst-case rotation. 1155 * 1156 * The array index of the subtree root is passed back. 1157 */ 1158 static int ocfs2_find_subtree_root(struct inode *inode, 1159 struct ocfs2_path *left, 1160 struct ocfs2_path *right) 1161 { 1162 int i = 0; 1163 1164 /* 1165 * Check that the caller passed in two paths from the same tree. 1166 */ 1167 BUG_ON(path_root_bh(left) != path_root_bh(right)); 1168 1169 do { 1170 i++; 1171 1172 /* 1173 * The caller didn't pass two adjacent paths. 1174 */ 1175 mlog_bug_on_msg(i > left->p_tree_depth, 1176 "Inode %lu, left depth %u, right depth %u\n" 1177 "left leaf blk %llu, right leaf blk %llu\n", 1178 inode->i_ino, left->p_tree_depth, 1179 right->p_tree_depth, 1180 (unsigned long long)path_leaf_bh(left)->b_blocknr, 1181 (unsigned long long)path_leaf_bh(right)->b_blocknr); 1182 } while (left->p_node[i].bh->b_blocknr == 1183 right->p_node[i].bh->b_blocknr); 1184 1185 return i - 1; 1186 } 1187 1188 typedef void (path_insert_t)(void *, struct buffer_head *); 1189 1190 /* 1191 * Traverse a btree path in search of cpos, starting at root_el. 1192 * 1193 * This code can be called with a cpos larger than the tree, in which 1194 * case it will return the rightmost path. 1195 */ 1196 static int __ocfs2_find_path(struct inode *inode, 1197 struct ocfs2_extent_list *root_el, u32 cpos, 1198 path_insert_t *func, void *data) 1199 { 1200 int i, ret = 0; 1201 u32 range; 1202 u64 blkno; 1203 struct buffer_head *bh = NULL; 1204 struct ocfs2_extent_block *eb; 1205 struct ocfs2_extent_list *el; 1206 struct ocfs2_extent_rec *rec; 1207 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1208 1209 el = root_el; 1210 while (el->l_tree_depth) { 1211 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1212 ocfs2_error(inode->i_sb, 1213 "Inode %llu has empty extent list at " 1214 "depth %u\n", 1215 (unsigned long long)oi->ip_blkno, 1216 le16_to_cpu(el->l_tree_depth)); 1217 ret = -EROFS; 1218 goto out; 1219 1220 } 1221 1222 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) { 1223 rec = &el->l_recs[i]; 1224 1225 /* 1226 * In the case that cpos is off the allocation 1227 * tree, this should just wind up returning the 1228 * rightmost record. 1229 */ 1230 range = le32_to_cpu(rec->e_cpos) + 1231 ocfs2_rec_clusters(el, rec); 1232 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 1233 break; 1234 } 1235 1236 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1237 if (blkno == 0) { 1238 ocfs2_error(inode->i_sb, 1239 "Inode %llu has bad blkno in extent list " 1240 "at depth %u (index %d)\n", 1241 (unsigned long long)oi->ip_blkno, 1242 le16_to_cpu(el->l_tree_depth), i); 1243 ret = -EROFS; 1244 goto out; 1245 } 1246 1247 brelse(bh); 1248 bh = NULL; 1249 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), blkno, 1250 &bh, OCFS2_BH_CACHED, inode); 1251 if (ret) { 1252 mlog_errno(ret); 1253 goto out; 1254 } 1255 1256 eb = (struct ocfs2_extent_block *) bh->b_data; 1257 el = &eb->h_list; 1258 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 1259 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); 1260 ret = -EIO; 1261 goto out; 1262 } 1263 1264 if (le16_to_cpu(el->l_next_free_rec) > 1265 le16_to_cpu(el->l_count)) { 1266 ocfs2_error(inode->i_sb, 1267 "Inode %llu has bad count in extent list " 1268 "at block %llu (next free=%u, count=%u)\n", 1269 (unsigned long long)oi->ip_blkno, 1270 (unsigned long long)bh->b_blocknr, 1271 le16_to_cpu(el->l_next_free_rec), 1272 le16_to_cpu(el->l_count)); 1273 ret = -EROFS; 1274 goto out; 1275 } 1276 1277 if (func) 1278 func(data, bh); 1279 } 1280 1281 out: 1282 /* 1283 * Catch any trailing bh that the loop didn't handle. 1284 */ 1285 brelse(bh); 1286 1287 return ret; 1288 } 1289 1290 /* 1291 * Given an initialized path (that is, it has a valid root extent 1292 * list), this function will traverse the btree in search of the path 1293 * which would contain cpos. 1294 * 1295 * The path traveled is recorded in the path structure. 1296 * 1297 * Note that this will not do any comparisons on leaf node extent 1298 * records, so it will work fine in the case that we just added a tree 1299 * branch. 1300 */ 1301 struct find_path_data { 1302 int index; 1303 struct ocfs2_path *path; 1304 }; 1305 static void find_path_ins(void *data, struct buffer_head *bh) 1306 { 1307 struct find_path_data *fp = data; 1308 1309 get_bh(bh); 1310 ocfs2_path_insert_eb(fp->path, fp->index, bh); 1311 fp->index++; 1312 } 1313 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path, 1314 u32 cpos) 1315 { 1316 struct find_path_data data; 1317 1318 data.index = 1; 1319 data.path = path; 1320 return __ocfs2_find_path(inode, path_root_el(path), cpos, 1321 find_path_ins, &data); 1322 } 1323 1324 static void find_leaf_ins(void *data, struct buffer_head *bh) 1325 { 1326 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data; 1327 struct ocfs2_extent_list *el = &eb->h_list; 1328 struct buffer_head **ret = data; 1329 1330 /* We want to retain only the leaf block. */ 1331 if (le16_to_cpu(el->l_tree_depth) == 0) { 1332 get_bh(bh); 1333 *ret = bh; 1334 } 1335 } 1336 /* 1337 * Find the leaf block in the tree which would contain cpos. No 1338 * checking of the actual leaf is done. 1339 * 1340 * Some paths want to call this instead of allocating a path structure 1341 * and calling ocfs2_find_path(). 1342 * 1343 * This function doesn't handle non btree extent lists. 1344 */ 1345 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el, 1346 u32 cpos, struct buffer_head **leaf_bh) 1347 { 1348 int ret; 1349 struct buffer_head *bh = NULL; 1350 1351 ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh); 1352 if (ret) { 1353 mlog_errno(ret); 1354 goto out; 1355 } 1356 1357 *leaf_bh = bh; 1358 out: 1359 return ret; 1360 } 1361 1362 /* 1363 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation. 1364 * 1365 * Basically, we've moved stuff around at the bottom of the tree and 1366 * we need to fix up the extent records above the changes to reflect 1367 * the new changes. 1368 * 1369 * left_rec: the record on the left. 1370 * left_child_el: is the child list pointed to by left_rec 1371 * right_rec: the record to the right of left_rec 1372 * right_child_el: is the child list pointed to by right_rec 1373 * 1374 * By definition, this only works on interior nodes. 1375 */ 1376 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec, 1377 struct ocfs2_extent_list *left_child_el, 1378 struct ocfs2_extent_rec *right_rec, 1379 struct ocfs2_extent_list *right_child_el) 1380 { 1381 u32 left_clusters, right_end; 1382 1383 /* 1384 * Interior nodes never have holes. Their cpos is the cpos of 1385 * the leftmost record in their child list. Their cluster 1386 * count covers the full theoretical range of their child list 1387 * - the range between their cpos and the cpos of the record 1388 * immediately to their right. 1389 */ 1390 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos); 1391 if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) { 1392 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1); 1393 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos); 1394 } 1395 left_clusters -= le32_to_cpu(left_rec->e_cpos); 1396 left_rec->e_int_clusters = cpu_to_le32(left_clusters); 1397 1398 /* 1399 * Calculate the rightmost cluster count boundary before 1400 * moving cpos - we will need to adjust clusters after 1401 * updating e_cpos to keep the same highest cluster count. 1402 */ 1403 right_end = le32_to_cpu(right_rec->e_cpos); 1404 right_end += le32_to_cpu(right_rec->e_int_clusters); 1405 1406 right_rec->e_cpos = left_rec->e_cpos; 1407 le32_add_cpu(&right_rec->e_cpos, left_clusters); 1408 1409 right_end -= le32_to_cpu(right_rec->e_cpos); 1410 right_rec->e_int_clusters = cpu_to_le32(right_end); 1411 } 1412 1413 /* 1414 * Adjust the adjacent root node records involved in a 1415 * rotation. left_el_blkno is passed in as a key so that we can easily 1416 * find it's index in the root list. 1417 */ 1418 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el, 1419 struct ocfs2_extent_list *left_el, 1420 struct ocfs2_extent_list *right_el, 1421 u64 left_el_blkno) 1422 { 1423 int i; 1424 1425 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <= 1426 le16_to_cpu(left_el->l_tree_depth)); 1427 1428 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) { 1429 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno) 1430 break; 1431 } 1432 1433 /* 1434 * The path walking code should have never returned a root and 1435 * two paths which are not adjacent. 1436 */ 1437 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1)); 1438 1439 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el, 1440 &root_el->l_recs[i + 1], right_el); 1441 } 1442 1443 /* 1444 * We've changed a leaf block (in right_path) and need to reflect that 1445 * change back up the subtree. 1446 * 1447 * This happens in multiple places: 1448 * - When we've moved an extent record from the left path leaf to the right 1449 * path leaf to make room for an empty extent in the left path leaf. 1450 * - When our insert into the right path leaf is at the leftmost edge 1451 * and requires an update of the path immediately to it's left. This 1452 * can occur at the end of some types of rotation and appending inserts. 1453 */ 1454 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle, 1455 struct ocfs2_path *left_path, 1456 struct ocfs2_path *right_path, 1457 int subtree_index) 1458 { 1459 int ret, i, idx; 1460 struct ocfs2_extent_list *el, *left_el, *right_el; 1461 struct ocfs2_extent_rec *left_rec, *right_rec; 1462 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 1463 1464 /* 1465 * Update the counts and position values within all the 1466 * interior nodes to reflect the leaf rotation we just did. 1467 * 1468 * The root node is handled below the loop. 1469 * 1470 * We begin the loop with right_el and left_el pointing to the 1471 * leaf lists and work our way up. 1472 * 1473 * NOTE: within this loop, left_el and right_el always refer 1474 * to the *child* lists. 1475 */ 1476 left_el = path_leaf_el(left_path); 1477 right_el = path_leaf_el(right_path); 1478 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) { 1479 mlog(0, "Adjust records at index %u\n", i); 1480 1481 /* 1482 * One nice property of knowing that all of these 1483 * nodes are below the root is that we only deal with 1484 * the leftmost right node record and the rightmost 1485 * left node record. 1486 */ 1487 el = left_path->p_node[i].el; 1488 idx = le16_to_cpu(left_el->l_next_free_rec) - 1; 1489 left_rec = &el->l_recs[idx]; 1490 1491 el = right_path->p_node[i].el; 1492 right_rec = &el->l_recs[0]; 1493 1494 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec, 1495 right_el); 1496 1497 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh); 1498 if (ret) 1499 mlog_errno(ret); 1500 1501 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh); 1502 if (ret) 1503 mlog_errno(ret); 1504 1505 /* 1506 * Setup our list pointers now so that the current 1507 * parents become children in the next iteration. 1508 */ 1509 left_el = left_path->p_node[i].el; 1510 right_el = right_path->p_node[i].el; 1511 } 1512 1513 /* 1514 * At the root node, adjust the two adjacent records which 1515 * begin our path to the leaves. 1516 */ 1517 1518 el = left_path->p_node[subtree_index].el; 1519 left_el = left_path->p_node[subtree_index + 1].el; 1520 right_el = right_path->p_node[subtree_index + 1].el; 1521 1522 ocfs2_adjust_root_records(el, left_el, right_el, 1523 left_path->p_node[subtree_index + 1].bh->b_blocknr); 1524 1525 root_bh = left_path->p_node[subtree_index].bh; 1526 1527 ret = ocfs2_journal_dirty(handle, root_bh); 1528 if (ret) 1529 mlog_errno(ret); 1530 } 1531 1532 static int ocfs2_rotate_subtree_right(struct inode *inode, 1533 handle_t *handle, 1534 struct ocfs2_path *left_path, 1535 struct ocfs2_path *right_path, 1536 int subtree_index) 1537 { 1538 int ret, i; 1539 struct buffer_head *right_leaf_bh; 1540 struct buffer_head *left_leaf_bh = NULL; 1541 struct buffer_head *root_bh; 1542 struct ocfs2_extent_list *right_el, *left_el; 1543 struct ocfs2_extent_rec move_rec; 1544 1545 left_leaf_bh = path_leaf_bh(left_path); 1546 left_el = path_leaf_el(left_path); 1547 1548 if (left_el->l_next_free_rec != left_el->l_count) { 1549 ocfs2_error(inode->i_sb, 1550 "Inode %llu has non-full interior leaf node %llu" 1551 "(next free = %u)", 1552 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1553 (unsigned long long)left_leaf_bh->b_blocknr, 1554 le16_to_cpu(left_el->l_next_free_rec)); 1555 return -EROFS; 1556 } 1557 1558 /* 1559 * This extent block may already have an empty record, so we 1560 * return early if so. 1561 */ 1562 if (ocfs2_is_empty_extent(&left_el->l_recs[0])) 1563 return 0; 1564 1565 root_bh = left_path->p_node[subtree_index].bh; 1566 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 1567 1568 ret = ocfs2_journal_access(handle, inode, root_bh, 1569 OCFS2_JOURNAL_ACCESS_WRITE); 1570 if (ret) { 1571 mlog_errno(ret); 1572 goto out; 1573 } 1574 1575 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 1576 ret = ocfs2_journal_access(handle, inode, 1577 right_path->p_node[i].bh, 1578 OCFS2_JOURNAL_ACCESS_WRITE); 1579 if (ret) { 1580 mlog_errno(ret); 1581 goto out; 1582 } 1583 1584 ret = ocfs2_journal_access(handle, inode, 1585 left_path->p_node[i].bh, 1586 OCFS2_JOURNAL_ACCESS_WRITE); 1587 if (ret) { 1588 mlog_errno(ret); 1589 goto out; 1590 } 1591 } 1592 1593 right_leaf_bh = path_leaf_bh(right_path); 1594 right_el = path_leaf_el(right_path); 1595 1596 /* This is a code error, not a disk corruption. */ 1597 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails " 1598 "because rightmost leaf block %llu is empty\n", 1599 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1600 (unsigned long long)right_leaf_bh->b_blocknr); 1601 1602 ocfs2_create_empty_extent(right_el); 1603 1604 ret = ocfs2_journal_dirty(handle, right_leaf_bh); 1605 if (ret) { 1606 mlog_errno(ret); 1607 goto out; 1608 } 1609 1610 /* Do the copy now. */ 1611 i = le16_to_cpu(left_el->l_next_free_rec) - 1; 1612 move_rec = left_el->l_recs[i]; 1613 right_el->l_recs[0] = move_rec; 1614 1615 /* 1616 * Clear out the record we just copied and shift everything 1617 * over, leaving an empty extent in the left leaf. 1618 * 1619 * We temporarily subtract from next_free_rec so that the 1620 * shift will lose the tail record (which is now defunct). 1621 */ 1622 le16_add_cpu(&left_el->l_next_free_rec, -1); 1623 ocfs2_shift_records_right(left_el); 1624 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 1625 le16_add_cpu(&left_el->l_next_free_rec, 1); 1626 1627 ret = ocfs2_journal_dirty(handle, left_leaf_bh); 1628 if (ret) { 1629 mlog_errno(ret); 1630 goto out; 1631 } 1632 1633 ocfs2_complete_edge_insert(inode, handle, left_path, right_path, 1634 subtree_index); 1635 1636 out: 1637 return ret; 1638 } 1639 1640 /* 1641 * Given a full path, determine what cpos value would return us a path 1642 * containing the leaf immediately to the left of the current one. 1643 * 1644 * Will return zero if the path passed in is already the leftmost path. 1645 */ 1646 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb, 1647 struct ocfs2_path *path, u32 *cpos) 1648 { 1649 int i, j, ret = 0; 1650 u64 blkno; 1651 struct ocfs2_extent_list *el; 1652 1653 BUG_ON(path->p_tree_depth == 0); 1654 1655 *cpos = 0; 1656 1657 blkno = path_leaf_bh(path)->b_blocknr; 1658 1659 /* Start at the tree node just above the leaf and work our way up. */ 1660 i = path->p_tree_depth - 1; 1661 while (i >= 0) { 1662 el = path->p_node[i].el; 1663 1664 /* 1665 * Find the extent record just before the one in our 1666 * path. 1667 */ 1668 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 1669 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 1670 if (j == 0) { 1671 if (i == 0) { 1672 /* 1673 * We've determined that the 1674 * path specified is already 1675 * the leftmost one - return a 1676 * cpos of zero. 1677 */ 1678 goto out; 1679 } 1680 /* 1681 * The leftmost record points to our 1682 * leaf - we need to travel up the 1683 * tree one level. 1684 */ 1685 goto next_node; 1686 } 1687 1688 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos); 1689 *cpos = *cpos + ocfs2_rec_clusters(el, 1690 &el->l_recs[j - 1]); 1691 *cpos = *cpos - 1; 1692 goto out; 1693 } 1694 } 1695 1696 /* 1697 * If we got here, we never found a valid node where 1698 * the tree indicated one should be. 1699 */ 1700 ocfs2_error(sb, 1701 "Invalid extent tree at extent block %llu\n", 1702 (unsigned long long)blkno); 1703 ret = -EROFS; 1704 goto out; 1705 1706 next_node: 1707 blkno = path->p_node[i].bh->b_blocknr; 1708 i--; 1709 } 1710 1711 out: 1712 return ret; 1713 } 1714 1715 /* 1716 * Extend the transaction by enough credits to complete the rotation, 1717 * and still leave at least the original number of credits allocated 1718 * to this transaction. 1719 */ 1720 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth, 1721 int op_credits, 1722 struct ocfs2_path *path) 1723 { 1724 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits; 1725 1726 if (handle->h_buffer_credits < credits) 1727 return ocfs2_extend_trans(handle, credits); 1728 1729 return 0; 1730 } 1731 1732 /* 1733 * Trap the case where we're inserting into the theoretical range past 1734 * the _actual_ left leaf range. Otherwise, we'll rotate a record 1735 * whose cpos is less than ours into the right leaf. 1736 * 1737 * It's only necessary to look at the rightmost record of the left 1738 * leaf because the logic that calls us should ensure that the 1739 * theoretical ranges in the path components above the leaves are 1740 * correct. 1741 */ 1742 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path, 1743 u32 insert_cpos) 1744 { 1745 struct ocfs2_extent_list *left_el; 1746 struct ocfs2_extent_rec *rec; 1747 int next_free; 1748 1749 left_el = path_leaf_el(left_path); 1750 next_free = le16_to_cpu(left_el->l_next_free_rec); 1751 rec = &left_el->l_recs[next_free - 1]; 1752 1753 if (insert_cpos > le32_to_cpu(rec->e_cpos)) 1754 return 1; 1755 return 0; 1756 } 1757 1758 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos) 1759 { 1760 int next_free = le16_to_cpu(el->l_next_free_rec); 1761 unsigned int range; 1762 struct ocfs2_extent_rec *rec; 1763 1764 if (next_free == 0) 1765 return 0; 1766 1767 rec = &el->l_recs[0]; 1768 if (ocfs2_is_empty_extent(rec)) { 1769 /* Empty list. */ 1770 if (next_free == 1) 1771 return 0; 1772 rec = &el->l_recs[1]; 1773 } 1774 1775 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 1776 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 1777 return 1; 1778 return 0; 1779 } 1780 1781 /* 1782 * Rotate all the records in a btree right one record, starting at insert_cpos. 1783 * 1784 * The path to the rightmost leaf should be passed in. 1785 * 1786 * The array is assumed to be large enough to hold an entire path (tree depth). 1787 * 1788 * Upon succesful return from this function: 1789 * 1790 * - The 'right_path' array will contain a path to the leaf block 1791 * whose range contains e_cpos. 1792 * - That leaf block will have a single empty extent in list index 0. 1793 * - In the case that the rotation requires a post-insert update, 1794 * *ret_left_path will contain a valid path which can be passed to 1795 * ocfs2_insert_path(). 1796 */ 1797 static int ocfs2_rotate_tree_right(struct inode *inode, 1798 handle_t *handle, 1799 enum ocfs2_split_type split, 1800 u32 insert_cpos, 1801 struct ocfs2_path *right_path, 1802 struct ocfs2_path **ret_left_path) 1803 { 1804 int ret, start, orig_credits = handle->h_buffer_credits; 1805 u32 cpos; 1806 struct ocfs2_path *left_path = NULL; 1807 1808 *ret_left_path = NULL; 1809 1810 left_path = ocfs2_new_path(path_root_bh(right_path), 1811 path_root_el(right_path)); 1812 if (!left_path) { 1813 ret = -ENOMEM; 1814 mlog_errno(ret); 1815 goto out; 1816 } 1817 1818 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos); 1819 if (ret) { 1820 mlog_errno(ret); 1821 goto out; 1822 } 1823 1824 mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos); 1825 1826 /* 1827 * What we want to do here is: 1828 * 1829 * 1) Start with the rightmost path. 1830 * 1831 * 2) Determine a path to the leaf block directly to the left 1832 * of that leaf. 1833 * 1834 * 3) Determine the 'subtree root' - the lowest level tree node 1835 * which contains a path to both leaves. 1836 * 1837 * 4) Rotate the subtree. 1838 * 1839 * 5) Find the next subtree by considering the left path to be 1840 * the new right path. 1841 * 1842 * The check at the top of this while loop also accepts 1843 * insert_cpos == cpos because cpos is only a _theoretical_ 1844 * value to get us the left path - insert_cpos might very well 1845 * be filling that hole. 1846 * 1847 * Stop at a cpos of '0' because we either started at the 1848 * leftmost branch (i.e., a tree with one branch and a 1849 * rotation inside of it), or we've gone as far as we can in 1850 * rotating subtrees. 1851 */ 1852 while (cpos && insert_cpos <= cpos) { 1853 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n", 1854 insert_cpos, cpos); 1855 1856 ret = ocfs2_find_path(inode, left_path, cpos); 1857 if (ret) { 1858 mlog_errno(ret); 1859 goto out; 1860 } 1861 1862 mlog_bug_on_msg(path_leaf_bh(left_path) == 1863 path_leaf_bh(right_path), 1864 "Inode %lu: error during insert of %u " 1865 "(left path cpos %u) results in two identical " 1866 "paths ending at %llu\n", 1867 inode->i_ino, insert_cpos, cpos, 1868 (unsigned long long) 1869 path_leaf_bh(left_path)->b_blocknr); 1870 1871 if (split == SPLIT_NONE && 1872 ocfs2_rotate_requires_path_adjustment(left_path, 1873 insert_cpos)) { 1874 1875 /* 1876 * We've rotated the tree as much as we 1877 * should. The rest is up to 1878 * ocfs2_insert_path() to complete, after the 1879 * record insertion. We indicate this 1880 * situation by returning the left path. 1881 * 1882 * The reason we don't adjust the records here 1883 * before the record insert is that an error 1884 * later might break the rule where a parent 1885 * record e_cpos will reflect the actual 1886 * e_cpos of the 1st nonempty record of the 1887 * child list. 1888 */ 1889 *ret_left_path = left_path; 1890 goto out_ret_path; 1891 } 1892 1893 start = ocfs2_find_subtree_root(inode, left_path, right_path); 1894 1895 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n", 1896 start, 1897 (unsigned long long) right_path->p_node[start].bh->b_blocknr, 1898 right_path->p_tree_depth); 1899 1900 ret = ocfs2_extend_rotate_transaction(handle, start, 1901 orig_credits, right_path); 1902 if (ret) { 1903 mlog_errno(ret); 1904 goto out; 1905 } 1906 1907 ret = ocfs2_rotate_subtree_right(inode, handle, left_path, 1908 right_path, start); 1909 if (ret) { 1910 mlog_errno(ret); 1911 goto out; 1912 } 1913 1914 if (split != SPLIT_NONE && 1915 ocfs2_leftmost_rec_contains(path_leaf_el(right_path), 1916 insert_cpos)) { 1917 /* 1918 * A rotate moves the rightmost left leaf 1919 * record over to the leftmost right leaf 1920 * slot. If we're doing an extent split 1921 * instead of a real insert, then we have to 1922 * check that the extent to be split wasn't 1923 * just moved over. If it was, then we can 1924 * exit here, passing left_path back - 1925 * ocfs2_split_extent() is smart enough to 1926 * search both leaves. 1927 */ 1928 *ret_left_path = left_path; 1929 goto out_ret_path; 1930 } 1931 1932 /* 1933 * There is no need to re-read the next right path 1934 * as we know that it'll be our current left 1935 * path. Optimize by copying values instead. 1936 */ 1937 ocfs2_mv_path(right_path, left_path); 1938 1939 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, 1940 &cpos); 1941 if (ret) { 1942 mlog_errno(ret); 1943 goto out; 1944 } 1945 } 1946 1947 out: 1948 ocfs2_free_path(left_path); 1949 1950 out_ret_path: 1951 return ret; 1952 } 1953 1954 static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle, 1955 struct ocfs2_path *path) 1956 { 1957 int i, idx; 1958 struct ocfs2_extent_rec *rec; 1959 struct ocfs2_extent_list *el; 1960 struct ocfs2_extent_block *eb; 1961 u32 range; 1962 1963 /* Path should always be rightmost. */ 1964 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 1965 BUG_ON(eb->h_next_leaf_blk != 0ULL); 1966 1967 el = &eb->h_list; 1968 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 1969 idx = le16_to_cpu(el->l_next_free_rec) - 1; 1970 rec = &el->l_recs[idx]; 1971 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 1972 1973 for (i = 0; i < path->p_tree_depth; i++) { 1974 el = path->p_node[i].el; 1975 idx = le16_to_cpu(el->l_next_free_rec) - 1; 1976 rec = &el->l_recs[idx]; 1977 1978 rec->e_int_clusters = cpu_to_le32(range); 1979 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos)); 1980 1981 ocfs2_journal_dirty(handle, path->p_node[i].bh); 1982 } 1983 } 1984 1985 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle, 1986 struct ocfs2_cached_dealloc_ctxt *dealloc, 1987 struct ocfs2_path *path, int unlink_start) 1988 { 1989 int ret, i; 1990 struct ocfs2_extent_block *eb; 1991 struct ocfs2_extent_list *el; 1992 struct buffer_head *bh; 1993 1994 for(i = unlink_start; i < path_num_items(path); i++) { 1995 bh = path->p_node[i].bh; 1996 1997 eb = (struct ocfs2_extent_block *)bh->b_data; 1998 /* 1999 * Not all nodes might have had their final count 2000 * decremented by the caller - handle this here. 2001 */ 2002 el = &eb->h_list; 2003 if (le16_to_cpu(el->l_next_free_rec) > 1) { 2004 mlog(ML_ERROR, 2005 "Inode %llu, attempted to remove extent block " 2006 "%llu with %u records\n", 2007 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2008 (unsigned long long)le64_to_cpu(eb->h_blkno), 2009 le16_to_cpu(el->l_next_free_rec)); 2010 2011 ocfs2_journal_dirty(handle, bh); 2012 ocfs2_remove_from_cache(inode, bh); 2013 continue; 2014 } 2015 2016 el->l_next_free_rec = 0; 2017 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2018 2019 ocfs2_journal_dirty(handle, bh); 2020 2021 ret = ocfs2_cache_extent_block_free(dealloc, eb); 2022 if (ret) 2023 mlog_errno(ret); 2024 2025 ocfs2_remove_from_cache(inode, bh); 2026 } 2027 } 2028 2029 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle, 2030 struct ocfs2_path *left_path, 2031 struct ocfs2_path *right_path, 2032 int subtree_index, 2033 struct ocfs2_cached_dealloc_ctxt *dealloc) 2034 { 2035 int i; 2036 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2037 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el; 2038 struct ocfs2_extent_list *el; 2039 struct ocfs2_extent_block *eb; 2040 2041 el = path_leaf_el(left_path); 2042 2043 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data; 2044 2045 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 2046 if (root_el->l_recs[i].e_blkno == eb->h_blkno) 2047 break; 2048 2049 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec)); 2050 2051 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 2052 le16_add_cpu(&root_el->l_next_free_rec, -1); 2053 2054 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2055 eb->h_next_leaf_blk = 0; 2056 2057 ocfs2_journal_dirty(handle, root_bh); 2058 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2059 2060 ocfs2_unlink_path(inode, handle, dealloc, right_path, 2061 subtree_index + 1); 2062 } 2063 2064 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle, 2065 struct ocfs2_path *left_path, 2066 struct ocfs2_path *right_path, 2067 int subtree_index, 2068 struct ocfs2_cached_dealloc_ctxt *dealloc, 2069 int *deleted) 2070 { 2071 int ret, i, del_right_subtree = 0, right_has_empty = 0; 2072 struct buffer_head *root_bh, *di_bh = path_root_bh(right_path); 2073 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 2074 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el; 2075 struct ocfs2_extent_block *eb; 2076 2077 *deleted = 0; 2078 2079 right_leaf_el = path_leaf_el(right_path); 2080 left_leaf_el = path_leaf_el(left_path); 2081 root_bh = left_path->p_node[subtree_index].bh; 2082 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2083 2084 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0])) 2085 return 0; 2086 2087 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data; 2088 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) { 2089 /* 2090 * It's legal for us to proceed if the right leaf is 2091 * the rightmost one and it has an empty extent. There 2092 * are two cases to handle - whether the leaf will be 2093 * empty after removal or not. If the leaf isn't empty 2094 * then just remove the empty extent up front. The 2095 * next block will handle empty leaves by flagging 2096 * them for unlink. 2097 * 2098 * Non rightmost leaves will throw -EAGAIN and the 2099 * caller can manually move the subtree and retry. 2100 */ 2101 2102 if (eb->h_next_leaf_blk != 0ULL) 2103 return -EAGAIN; 2104 2105 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) { 2106 ret = ocfs2_journal_access(handle, inode, 2107 path_leaf_bh(right_path), 2108 OCFS2_JOURNAL_ACCESS_WRITE); 2109 if (ret) { 2110 mlog_errno(ret); 2111 goto out; 2112 } 2113 2114 ocfs2_remove_empty_extent(right_leaf_el); 2115 } else 2116 right_has_empty = 1; 2117 } 2118 2119 if (eb->h_next_leaf_blk == 0ULL && 2120 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) { 2121 /* 2122 * We have to update i_last_eb_blk during the meta 2123 * data delete. 2124 */ 2125 ret = ocfs2_journal_access(handle, inode, di_bh, 2126 OCFS2_JOURNAL_ACCESS_WRITE); 2127 if (ret) { 2128 mlog_errno(ret); 2129 goto out; 2130 } 2131 2132 del_right_subtree = 1; 2133 } 2134 2135 /* 2136 * Getting here with an empty extent in the right path implies 2137 * that it's the rightmost path and will be deleted. 2138 */ 2139 BUG_ON(right_has_empty && !del_right_subtree); 2140 2141 ret = ocfs2_journal_access(handle, inode, root_bh, 2142 OCFS2_JOURNAL_ACCESS_WRITE); 2143 if (ret) { 2144 mlog_errno(ret); 2145 goto out; 2146 } 2147 2148 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2149 ret = ocfs2_journal_access(handle, inode, 2150 right_path->p_node[i].bh, 2151 OCFS2_JOURNAL_ACCESS_WRITE); 2152 if (ret) { 2153 mlog_errno(ret); 2154 goto out; 2155 } 2156 2157 ret = ocfs2_journal_access(handle, inode, 2158 left_path->p_node[i].bh, 2159 OCFS2_JOURNAL_ACCESS_WRITE); 2160 if (ret) { 2161 mlog_errno(ret); 2162 goto out; 2163 } 2164 } 2165 2166 if (!right_has_empty) { 2167 /* 2168 * Only do this if we're moving a real 2169 * record. Otherwise, the action is delayed until 2170 * after removal of the right path in which case we 2171 * can do a simple shift to remove the empty extent. 2172 */ 2173 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]); 2174 memset(&right_leaf_el->l_recs[0], 0, 2175 sizeof(struct ocfs2_extent_rec)); 2176 } 2177 if (eb->h_next_leaf_blk == 0ULL) { 2178 /* 2179 * Move recs over to get rid of empty extent, decrease 2180 * next_free. This is allowed to remove the last 2181 * extent in our leaf (setting l_next_free_rec to 2182 * zero) - the delete code below won't care. 2183 */ 2184 ocfs2_remove_empty_extent(right_leaf_el); 2185 } 2186 2187 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2188 if (ret) 2189 mlog_errno(ret); 2190 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 2191 if (ret) 2192 mlog_errno(ret); 2193 2194 if (del_right_subtree) { 2195 ocfs2_unlink_subtree(inode, handle, left_path, right_path, 2196 subtree_index, dealloc); 2197 ocfs2_update_edge_lengths(inode, handle, left_path); 2198 2199 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2200 di->i_last_eb_blk = eb->h_blkno; 2201 2202 /* 2203 * Removal of the extent in the left leaf was skipped 2204 * above so we could delete the right path 2205 * 1st. 2206 */ 2207 if (right_has_empty) 2208 ocfs2_remove_empty_extent(left_leaf_el); 2209 2210 ret = ocfs2_journal_dirty(handle, di_bh); 2211 if (ret) 2212 mlog_errno(ret); 2213 2214 *deleted = 1; 2215 } else 2216 ocfs2_complete_edge_insert(inode, handle, left_path, right_path, 2217 subtree_index); 2218 2219 out: 2220 return ret; 2221 } 2222 2223 /* 2224 * Given a full path, determine what cpos value would return us a path 2225 * containing the leaf immediately to the right of the current one. 2226 * 2227 * Will return zero if the path passed in is already the rightmost path. 2228 * 2229 * This looks similar, but is subtly different to 2230 * ocfs2_find_cpos_for_left_leaf(). 2231 */ 2232 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb, 2233 struct ocfs2_path *path, u32 *cpos) 2234 { 2235 int i, j, ret = 0; 2236 u64 blkno; 2237 struct ocfs2_extent_list *el; 2238 2239 *cpos = 0; 2240 2241 if (path->p_tree_depth == 0) 2242 return 0; 2243 2244 blkno = path_leaf_bh(path)->b_blocknr; 2245 2246 /* Start at the tree node just above the leaf and work our way up. */ 2247 i = path->p_tree_depth - 1; 2248 while (i >= 0) { 2249 int next_free; 2250 2251 el = path->p_node[i].el; 2252 2253 /* 2254 * Find the extent record just after the one in our 2255 * path. 2256 */ 2257 next_free = le16_to_cpu(el->l_next_free_rec); 2258 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2259 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2260 if (j == (next_free - 1)) { 2261 if (i == 0) { 2262 /* 2263 * We've determined that the 2264 * path specified is already 2265 * the rightmost one - return a 2266 * cpos of zero. 2267 */ 2268 goto out; 2269 } 2270 /* 2271 * The rightmost record points to our 2272 * leaf - we need to travel up the 2273 * tree one level. 2274 */ 2275 goto next_node; 2276 } 2277 2278 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos); 2279 goto out; 2280 } 2281 } 2282 2283 /* 2284 * If we got here, we never found a valid node where 2285 * the tree indicated one should be. 2286 */ 2287 ocfs2_error(sb, 2288 "Invalid extent tree at extent block %llu\n", 2289 (unsigned long long)blkno); 2290 ret = -EROFS; 2291 goto out; 2292 2293 next_node: 2294 blkno = path->p_node[i].bh->b_blocknr; 2295 i--; 2296 } 2297 2298 out: 2299 return ret; 2300 } 2301 2302 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode, 2303 handle_t *handle, 2304 struct buffer_head *bh, 2305 struct ocfs2_extent_list *el) 2306 { 2307 int ret; 2308 2309 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 2310 return 0; 2311 2312 ret = ocfs2_journal_access(handle, inode, bh, 2313 OCFS2_JOURNAL_ACCESS_WRITE); 2314 if (ret) { 2315 mlog_errno(ret); 2316 goto out; 2317 } 2318 2319 ocfs2_remove_empty_extent(el); 2320 2321 ret = ocfs2_journal_dirty(handle, bh); 2322 if (ret) 2323 mlog_errno(ret); 2324 2325 out: 2326 return ret; 2327 } 2328 2329 static int __ocfs2_rotate_tree_left(struct inode *inode, 2330 handle_t *handle, int orig_credits, 2331 struct ocfs2_path *path, 2332 struct ocfs2_cached_dealloc_ctxt *dealloc, 2333 struct ocfs2_path **empty_extent_path) 2334 { 2335 int ret, subtree_root, deleted; 2336 u32 right_cpos; 2337 struct ocfs2_path *left_path = NULL; 2338 struct ocfs2_path *right_path = NULL; 2339 2340 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0]))); 2341 2342 *empty_extent_path = NULL; 2343 2344 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path, 2345 &right_cpos); 2346 if (ret) { 2347 mlog_errno(ret); 2348 goto out; 2349 } 2350 2351 left_path = ocfs2_new_path(path_root_bh(path), 2352 path_root_el(path)); 2353 if (!left_path) { 2354 ret = -ENOMEM; 2355 mlog_errno(ret); 2356 goto out; 2357 } 2358 2359 ocfs2_cp_path(left_path, path); 2360 2361 right_path = ocfs2_new_path(path_root_bh(path), 2362 path_root_el(path)); 2363 if (!right_path) { 2364 ret = -ENOMEM; 2365 mlog_errno(ret); 2366 goto out; 2367 } 2368 2369 while (right_cpos) { 2370 ret = ocfs2_find_path(inode, right_path, right_cpos); 2371 if (ret) { 2372 mlog_errno(ret); 2373 goto out; 2374 } 2375 2376 subtree_root = ocfs2_find_subtree_root(inode, left_path, 2377 right_path); 2378 2379 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n", 2380 subtree_root, 2381 (unsigned long long) 2382 right_path->p_node[subtree_root].bh->b_blocknr, 2383 right_path->p_tree_depth); 2384 2385 ret = ocfs2_extend_rotate_transaction(handle, subtree_root, 2386 orig_credits, left_path); 2387 if (ret) { 2388 mlog_errno(ret); 2389 goto out; 2390 } 2391 2392 /* 2393 * Caller might still want to make changes to the 2394 * tree root, so re-add it to the journal here. 2395 */ 2396 ret = ocfs2_journal_access(handle, inode, 2397 path_root_bh(left_path), 2398 OCFS2_JOURNAL_ACCESS_WRITE); 2399 if (ret) { 2400 mlog_errno(ret); 2401 goto out; 2402 } 2403 2404 ret = ocfs2_rotate_subtree_left(inode, handle, left_path, 2405 right_path, subtree_root, 2406 dealloc, &deleted); 2407 if (ret == -EAGAIN) { 2408 /* 2409 * The rotation has to temporarily stop due to 2410 * the right subtree having an empty 2411 * extent. Pass it back to the caller for a 2412 * fixup. 2413 */ 2414 *empty_extent_path = right_path; 2415 right_path = NULL; 2416 goto out; 2417 } 2418 if (ret) { 2419 mlog_errno(ret); 2420 goto out; 2421 } 2422 2423 /* 2424 * The subtree rotate might have removed records on 2425 * the rightmost edge. If so, then rotation is 2426 * complete. 2427 */ 2428 if (deleted) 2429 break; 2430 2431 ocfs2_mv_path(left_path, right_path); 2432 2433 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path, 2434 &right_cpos); 2435 if (ret) { 2436 mlog_errno(ret); 2437 goto out; 2438 } 2439 } 2440 2441 out: 2442 ocfs2_free_path(right_path); 2443 ocfs2_free_path(left_path); 2444 2445 return ret; 2446 } 2447 2448 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle, 2449 struct ocfs2_path *path, 2450 struct ocfs2_cached_dealloc_ctxt *dealloc) 2451 { 2452 int ret, subtree_index; 2453 u32 cpos; 2454 struct ocfs2_path *left_path = NULL; 2455 struct ocfs2_dinode *di; 2456 struct ocfs2_extent_block *eb; 2457 struct ocfs2_extent_list *el; 2458 2459 /* 2460 * XXX: This code assumes that the root is an inode, which is 2461 * true for now but may change as tree code gets generic. 2462 */ 2463 di = (struct ocfs2_dinode *)path_root_bh(path)->b_data; 2464 if (!OCFS2_IS_VALID_DINODE(di)) { 2465 ret = -EIO; 2466 ocfs2_error(inode->i_sb, 2467 "Inode %llu has invalid path root", 2468 (unsigned long long)OCFS2_I(inode)->ip_blkno); 2469 goto out; 2470 } 2471 2472 /* 2473 * There's two ways we handle this depending on 2474 * whether path is the only existing one. 2475 */ 2476 ret = ocfs2_extend_rotate_transaction(handle, 0, 2477 handle->h_buffer_credits, 2478 path); 2479 if (ret) { 2480 mlog_errno(ret); 2481 goto out; 2482 } 2483 2484 ret = ocfs2_journal_access_path(inode, handle, path); 2485 if (ret) { 2486 mlog_errno(ret); 2487 goto out; 2488 } 2489 2490 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos); 2491 if (ret) { 2492 mlog_errno(ret); 2493 goto out; 2494 } 2495 2496 if (cpos) { 2497 /* 2498 * We have a path to the left of this one - it needs 2499 * an update too. 2500 */ 2501 left_path = ocfs2_new_path(path_root_bh(path), 2502 path_root_el(path)); 2503 if (!left_path) { 2504 ret = -ENOMEM; 2505 mlog_errno(ret); 2506 goto out; 2507 } 2508 2509 ret = ocfs2_find_path(inode, left_path, cpos); 2510 if (ret) { 2511 mlog_errno(ret); 2512 goto out; 2513 } 2514 2515 ret = ocfs2_journal_access_path(inode, handle, left_path); 2516 if (ret) { 2517 mlog_errno(ret); 2518 goto out; 2519 } 2520 2521 subtree_index = ocfs2_find_subtree_root(inode, left_path, path); 2522 2523 ocfs2_unlink_subtree(inode, handle, left_path, path, 2524 subtree_index, dealloc); 2525 ocfs2_update_edge_lengths(inode, handle, left_path); 2526 2527 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2528 di->i_last_eb_blk = eb->h_blkno; 2529 } else { 2530 /* 2531 * 'path' is also the leftmost path which 2532 * means it must be the only one. This gets 2533 * handled differently because we want to 2534 * revert the inode back to having extents 2535 * in-line. 2536 */ 2537 ocfs2_unlink_path(inode, handle, dealloc, path, 1); 2538 2539 el = &di->id2.i_list; 2540 el->l_tree_depth = 0; 2541 el->l_next_free_rec = 0; 2542 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2543 2544 di->i_last_eb_blk = 0; 2545 } 2546 2547 ocfs2_journal_dirty(handle, path_root_bh(path)); 2548 2549 out: 2550 ocfs2_free_path(left_path); 2551 return ret; 2552 } 2553 2554 /* 2555 * Left rotation of btree records. 2556 * 2557 * In many ways, this is (unsurprisingly) the opposite of right 2558 * rotation. We start at some non-rightmost path containing an empty 2559 * extent in the leaf block. The code works its way to the rightmost 2560 * path by rotating records to the left in every subtree. 2561 * 2562 * This is used by any code which reduces the number of extent records 2563 * in a leaf. After removal, an empty record should be placed in the 2564 * leftmost list position. 2565 * 2566 * This won't handle a length update of the rightmost path records if 2567 * the rightmost tree leaf record is removed so the caller is 2568 * responsible for detecting and correcting that. 2569 */ 2570 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle, 2571 struct ocfs2_path *path, 2572 struct ocfs2_cached_dealloc_ctxt *dealloc) 2573 { 2574 int ret, orig_credits = handle->h_buffer_credits; 2575 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL; 2576 struct ocfs2_extent_block *eb; 2577 struct ocfs2_extent_list *el; 2578 2579 el = path_leaf_el(path); 2580 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 2581 return 0; 2582 2583 if (path->p_tree_depth == 0) { 2584 rightmost_no_delete: 2585 /* 2586 * In-inode extents. This is trivially handled, so do 2587 * it up front. 2588 */ 2589 ret = ocfs2_rotate_rightmost_leaf_left(inode, handle, 2590 path_leaf_bh(path), 2591 path_leaf_el(path)); 2592 if (ret) 2593 mlog_errno(ret); 2594 goto out; 2595 } 2596 2597 /* 2598 * Handle rightmost branch now. There's several cases: 2599 * 1) simple rotation leaving records in there. That's trivial. 2600 * 2) rotation requiring a branch delete - there's no more 2601 * records left. Two cases of this: 2602 * a) There are branches to the left. 2603 * b) This is also the leftmost (the only) branch. 2604 * 2605 * 1) is handled via ocfs2_rotate_rightmost_leaf_left() 2606 * 2a) we need the left branch so that we can update it with the unlink 2607 * 2b) we need to bring the inode back to inline extents. 2608 */ 2609 2610 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 2611 el = &eb->h_list; 2612 if (eb->h_next_leaf_blk == 0) { 2613 /* 2614 * This gets a bit tricky if we're going to delete the 2615 * rightmost path. Get the other cases out of the way 2616 * 1st. 2617 */ 2618 if (le16_to_cpu(el->l_next_free_rec) > 1) 2619 goto rightmost_no_delete; 2620 2621 if (le16_to_cpu(el->l_next_free_rec) == 0) { 2622 ret = -EIO; 2623 ocfs2_error(inode->i_sb, 2624 "Inode %llu has empty extent block at %llu", 2625 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2626 (unsigned long long)le64_to_cpu(eb->h_blkno)); 2627 goto out; 2628 } 2629 2630 /* 2631 * XXX: The caller can not trust "path" any more after 2632 * this as it will have been deleted. What do we do? 2633 * 2634 * In theory the rotate-for-merge code will never get 2635 * here because it'll always ask for a rotate in a 2636 * nonempty list. 2637 */ 2638 2639 ret = ocfs2_remove_rightmost_path(inode, handle, path, 2640 dealloc); 2641 if (ret) 2642 mlog_errno(ret); 2643 goto out; 2644 } 2645 2646 /* 2647 * Now we can loop, remembering the path we get from -EAGAIN 2648 * and restarting from there. 2649 */ 2650 try_rotate: 2651 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path, 2652 dealloc, &restart_path); 2653 if (ret && ret != -EAGAIN) { 2654 mlog_errno(ret); 2655 goto out; 2656 } 2657 2658 while (ret == -EAGAIN) { 2659 tmp_path = restart_path; 2660 restart_path = NULL; 2661 2662 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, 2663 tmp_path, dealloc, 2664 &restart_path); 2665 if (ret && ret != -EAGAIN) { 2666 mlog_errno(ret); 2667 goto out; 2668 } 2669 2670 ocfs2_free_path(tmp_path); 2671 tmp_path = NULL; 2672 2673 if (ret == 0) 2674 goto try_rotate; 2675 } 2676 2677 out: 2678 ocfs2_free_path(tmp_path); 2679 ocfs2_free_path(restart_path); 2680 return ret; 2681 } 2682 2683 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el, 2684 int index) 2685 { 2686 struct ocfs2_extent_rec *rec = &el->l_recs[index]; 2687 unsigned int size; 2688 2689 if (rec->e_leaf_clusters == 0) { 2690 /* 2691 * We consumed all of the merged-from record. An empty 2692 * extent cannot exist anywhere but the 1st array 2693 * position, so move things over if the merged-from 2694 * record doesn't occupy that position. 2695 * 2696 * This creates a new empty extent so the caller 2697 * should be smart enough to have removed any existing 2698 * ones. 2699 */ 2700 if (index > 0) { 2701 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 2702 size = index * sizeof(struct ocfs2_extent_rec); 2703 memmove(&el->l_recs[1], &el->l_recs[0], size); 2704 } 2705 2706 /* 2707 * Always memset - the caller doesn't check whether it 2708 * created an empty extent, so there could be junk in 2709 * the other fields. 2710 */ 2711 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2712 } 2713 } 2714 2715 /* 2716 * Remove split_rec clusters from the record at index and merge them 2717 * onto the beginning of the record at index + 1. 2718 */ 2719 static int ocfs2_merge_rec_right(struct inode *inode, struct buffer_head *bh, 2720 handle_t *handle, 2721 struct ocfs2_extent_rec *split_rec, 2722 struct ocfs2_extent_list *el, int index) 2723 { 2724 int ret; 2725 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 2726 struct ocfs2_extent_rec *left_rec; 2727 struct ocfs2_extent_rec *right_rec; 2728 2729 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec)); 2730 2731 left_rec = &el->l_recs[index]; 2732 right_rec = &el->l_recs[index + 1]; 2733 2734 ret = ocfs2_journal_access(handle, inode, bh, 2735 OCFS2_JOURNAL_ACCESS_WRITE); 2736 if (ret) { 2737 mlog_errno(ret); 2738 goto out; 2739 } 2740 2741 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters); 2742 2743 le32_add_cpu(&right_rec->e_cpos, -split_clusters); 2744 le64_add_cpu(&right_rec->e_blkno, 2745 -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters)); 2746 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters); 2747 2748 ocfs2_cleanup_merge(el, index); 2749 2750 ret = ocfs2_journal_dirty(handle, bh); 2751 if (ret) 2752 mlog_errno(ret); 2753 2754 out: 2755 return ret; 2756 } 2757 2758 /* 2759 * Remove split_rec clusters from the record at index and merge them 2760 * onto the tail of the record at index - 1. 2761 */ 2762 static int ocfs2_merge_rec_left(struct inode *inode, struct buffer_head *bh, 2763 handle_t *handle, 2764 struct ocfs2_extent_rec *split_rec, 2765 struct ocfs2_extent_list *el, int index) 2766 { 2767 int ret, has_empty_extent = 0; 2768 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 2769 struct ocfs2_extent_rec *left_rec; 2770 struct ocfs2_extent_rec *right_rec; 2771 2772 BUG_ON(index <= 0); 2773 2774 left_rec = &el->l_recs[index - 1]; 2775 right_rec = &el->l_recs[index]; 2776 if (ocfs2_is_empty_extent(&el->l_recs[0])) 2777 has_empty_extent = 1; 2778 2779 ret = ocfs2_journal_access(handle, inode, bh, 2780 OCFS2_JOURNAL_ACCESS_WRITE); 2781 if (ret) { 2782 mlog_errno(ret); 2783 goto out; 2784 } 2785 2786 if (has_empty_extent && index == 1) { 2787 /* 2788 * The easy case - we can just plop the record right in. 2789 */ 2790 *left_rec = *split_rec; 2791 2792 has_empty_extent = 0; 2793 } else { 2794 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters); 2795 } 2796 2797 le32_add_cpu(&right_rec->e_cpos, split_clusters); 2798 le64_add_cpu(&right_rec->e_blkno, 2799 ocfs2_clusters_to_blocks(inode->i_sb, split_clusters)); 2800 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters); 2801 2802 ocfs2_cleanup_merge(el, index); 2803 2804 ret = ocfs2_journal_dirty(handle, bh); 2805 if (ret) 2806 mlog_errno(ret); 2807 2808 out: 2809 return ret; 2810 } 2811 2812 static int ocfs2_try_to_merge_extent(struct inode *inode, 2813 handle_t *handle, 2814 struct ocfs2_path *left_path, 2815 int split_index, 2816 struct ocfs2_extent_rec *split_rec, 2817 struct ocfs2_cached_dealloc_ctxt *dealloc, 2818 struct ocfs2_merge_ctxt *ctxt) 2819 2820 { 2821 int ret = 0; 2822 struct ocfs2_extent_list *el = path_leaf_el(left_path); 2823 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 2824 2825 BUG_ON(ctxt->c_contig_type == CONTIG_NONE); 2826 2827 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) { 2828 /* 2829 * The merge code will need to create an empty 2830 * extent to take the place of the newly 2831 * emptied slot. Remove any pre-existing empty 2832 * extents - having more than one in a leaf is 2833 * illegal. 2834 */ 2835 ret = ocfs2_rotate_tree_left(inode, handle, left_path, 2836 dealloc); 2837 if (ret) { 2838 mlog_errno(ret); 2839 goto out; 2840 } 2841 split_index--; 2842 rec = &el->l_recs[split_index]; 2843 } 2844 2845 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) { 2846 /* 2847 * Left-right contig implies this. 2848 */ 2849 BUG_ON(!ctxt->c_split_covers_rec); 2850 BUG_ON(split_index == 0); 2851 2852 /* 2853 * Since the leftright insert always covers the entire 2854 * extent, this call will delete the insert record 2855 * entirely, resulting in an empty extent record added to 2856 * the extent block. 2857 * 2858 * Since the adding of an empty extent shifts 2859 * everything back to the right, there's no need to 2860 * update split_index here. 2861 */ 2862 ret = ocfs2_merge_rec_left(inode, path_leaf_bh(left_path), 2863 handle, split_rec, el, split_index); 2864 if (ret) { 2865 mlog_errno(ret); 2866 goto out; 2867 } 2868 2869 /* 2870 * We can only get this from logic error above. 2871 */ 2872 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0])); 2873 2874 /* 2875 * The left merge left us with an empty extent, remove 2876 * it. 2877 */ 2878 ret = ocfs2_rotate_tree_left(inode, handle, left_path, dealloc); 2879 if (ret) { 2880 mlog_errno(ret); 2881 goto out; 2882 } 2883 split_index--; 2884 rec = &el->l_recs[split_index]; 2885 2886 /* 2887 * Note that we don't pass split_rec here on purpose - 2888 * we've merged it into the left side. 2889 */ 2890 ret = ocfs2_merge_rec_right(inode, path_leaf_bh(left_path), 2891 handle, rec, el, split_index); 2892 if (ret) { 2893 mlog_errno(ret); 2894 goto out; 2895 } 2896 2897 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0])); 2898 2899 ret = ocfs2_rotate_tree_left(inode, handle, left_path, 2900 dealloc); 2901 /* 2902 * Error from this last rotate is not critical, so 2903 * print but don't bubble it up. 2904 */ 2905 if (ret) 2906 mlog_errno(ret); 2907 ret = 0; 2908 } else { 2909 /* 2910 * Merge a record to the left or right. 2911 * 2912 * 'contig_type' is relative to the existing record, 2913 * so for example, if we're "right contig", it's to 2914 * the record on the left (hence the left merge). 2915 */ 2916 if (ctxt->c_contig_type == CONTIG_RIGHT) { 2917 ret = ocfs2_merge_rec_left(inode, 2918 path_leaf_bh(left_path), 2919 handle, split_rec, el, 2920 split_index); 2921 if (ret) { 2922 mlog_errno(ret); 2923 goto out; 2924 } 2925 } else { 2926 ret = ocfs2_merge_rec_right(inode, 2927 path_leaf_bh(left_path), 2928 handle, split_rec, el, 2929 split_index); 2930 if (ret) { 2931 mlog_errno(ret); 2932 goto out; 2933 } 2934 } 2935 2936 if (ctxt->c_split_covers_rec) { 2937 /* 2938 * The merge may have left an empty extent in 2939 * our leaf. Try to rotate it away. 2940 */ 2941 ret = ocfs2_rotate_tree_left(inode, handle, left_path, 2942 dealloc); 2943 if (ret) 2944 mlog_errno(ret); 2945 ret = 0; 2946 } 2947 } 2948 2949 out: 2950 return ret; 2951 } 2952 2953 static void ocfs2_subtract_from_rec(struct super_block *sb, 2954 enum ocfs2_split_type split, 2955 struct ocfs2_extent_rec *rec, 2956 struct ocfs2_extent_rec *split_rec) 2957 { 2958 u64 len_blocks; 2959 2960 len_blocks = ocfs2_clusters_to_blocks(sb, 2961 le16_to_cpu(split_rec->e_leaf_clusters)); 2962 2963 if (split == SPLIT_LEFT) { 2964 /* 2965 * Region is on the left edge of the existing 2966 * record. 2967 */ 2968 le32_add_cpu(&rec->e_cpos, 2969 le16_to_cpu(split_rec->e_leaf_clusters)); 2970 le64_add_cpu(&rec->e_blkno, len_blocks); 2971 le16_add_cpu(&rec->e_leaf_clusters, 2972 -le16_to_cpu(split_rec->e_leaf_clusters)); 2973 } else { 2974 /* 2975 * Region is on the right edge of the existing 2976 * record. 2977 */ 2978 le16_add_cpu(&rec->e_leaf_clusters, 2979 -le16_to_cpu(split_rec->e_leaf_clusters)); 2980 } 2981 } 2982 2983 /* 2984 * Do the final bits of extent record insertion at the target leaf 2985 * list. If this leaf is part of an allocation tree, it is assumed 2986 * that the tree above has been prepared. 2987 */ 2988 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec, 2989 struct ocfs2_extent_list *el, 2990 struct ocfs2_insert_type *insert, 2991 struct inode *inode) 2992 { 2993 int i = insert->ins_contig_index; 2994 unsigned int range; 2995 struct ocfs2_extent_rec *rec; 2996 2997 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 2998 2999 if (insert->ins_split != SPLIT_NONE) { 3000 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos)); 3001 BUG_ON(i == -1); 3002 rec = &el->l_recs[i]; 3003 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec, 3004 insert_rec); 3005 goto rotate; 3006 } 3007 3008 /* 3009 * Contiguous insert - either left or right. 3010 */ 3011 if (insert->ins_contig != CONTIG_NONE) { 3012 rec = &el->l_recs[i]; 3013 if (insert->ins_contig == CONTIG_LEFT) { 3014 rec->e_blkno = insert_rec->e_blkno; 3015 rec->e_cpos = insert_rec->e_cpos; 3016 } 3017 le16_add_cpu(&rec->e_leaf_clusters, 3018 le16_to_cpu(insert_rec->e_leaf_clusters)); 3019 return; 3020 } 3021 3022 /* 3023 * Handle insert into an empty leaf. 3024 */ 3025 if (le16_to_cpu(el->l_next_free_rec) == 0 || 3026 ((le16_to_cpu(el->l_next_free_rec) == 1) && 3027 ocfs2_is_empty_extent(&el->l_recs[0]))) { 3028 el->l_recs[0] = *insert_rec; 3029 el->l_next_free_rec = cpu_to_le16(1); 3030 return; 3031 } 3032 3033 /* 3034 * Appending insert. 3035 */ 3036 if (insert->ins_appending == APPEND_TAIL) { 3037 i = le16_to_cpu(el->l_next_free_rec) - 1; 3038 rec = &el->l_recs[i]; 3039 range = le32_to_cpu(rec->e_cpos) 3040 + le16_to_cpu(rec->e_leaf_clusters); 3041 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range); 3042 3043 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >= 3044 le16_to_cpu(el->l_count), 3045 "inode %lu, depth %u, count %u, next free %u, " 3046 "rec.cpos %u, rec.clusters %u, " 3047 "insert.cpos %u, insert.clusters %u\n", 3048 inode->i_ino, 3049 le16_to_cpu(el->l_tree_depth), 3050 le16_to_cpu(el->l_count), 3051 le16_to_cpu(el->l_next_free_rec), 3052 le32_to_cpu(el->l_recs[i].e_cpos), 3053 le16_to_cpu(el->l_recs[i].e_leaf_clusters), 3054 le32_to_cpu(insert_rec->e_cpos), 3055 le16_to_cpu(insert_rec->e_leaf_clusters)); 3056 i++; 3057 el->l_recs[i] = *insert_rec; 3058 le16_add_cpu(&el->l_next_free_rec, 1); 3059 return; 3060 } 3061 3062 rotate: 3063 /* 3064 * Ok, we have to rotate. 3065 * 3066 * At this point, it is safe to assume that inserting into an 3067 * empty leaf and appending to a leaf have both been handled 3068 * above. 3069 * 3070 * This leaf needs to have space, either by the empty 1st 3071 * extent record, or by virtue of an l_next_rec < l_count. 3072 */ 3073 ocfs2_rotate_leaf(el, insert_rec); 3074 } 3075 3076 static inline void ocfs2_update_dinode_clusters(struct inode *inode, 3077 struct ocfs2_dinode *di, 3078 u32 clusters) 3079 { 3080 le32_add_cpu(&di->i_clusters, clusters); 3081 spin_lock(&OCFS2_I(inode)->ip_lock); 3082 OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters); 3083 spin_unlock(&OCFS2_I(inode)->ip_lock); 3084 } 3085 3086 static void ocfs2_adjust_rightmost_records(struct inode *inode, 3087 handle_t *handle, 3088 struct ocfs2_path *path, 3089 struct ocfs2_extent_rec *insert_rec) 3090 { 3091 int ret, i, next_free; 3092 struct buffer_head *bh; 3093 struct ocfs2_extent_list *el; 3094 struct ocfs2_extent_rec *rec; 3095 3096 /* 3097 * Update everything except the leaf block. 3098 */ 3099 for (i = 0; i < path->p_tree_depth; i++) { 3100 bh = path->p_node[i].bh; 3101 el = path->p_node[i].el; 3102 3103 next_free = le16_to_cpu(el->l_next_free_rec); 3104 if (next_free == 0) { 3105 ocfs2_error(inode->i_sb, 3106 "Dinode %llu has a bad extent list", 3107 (unsigned long long)OCFS2_I(inode)->ip_blkno); 3108 ret = -EIO; 3109 return; 3110 } 3111 3112 rec = &el->l_recs[next_free - 1]; 3113 3114 rec->e_int_clusters = insert_rec->e_cpos; 3115 le32_add_cpu(&rec->e_int_clusters, 3116 le16_to_cpu(insert_rec->e_leaf_clusters)); 3117 le32_add_cpu(&rec->e_int_clusters, 3118 -le32_to_cpu(rec->e_cpos)); 3119 3120 ret = ocfs2_journal_dirty(handle, bh); 3121 if (ret) 3122 mlog_errno(ret); 3123 3124 } 3125 } 3126 3127 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle, 3128 struct ocfs2_extent_rec *insert_rec, 3129 struct ocfs2_path *right_path, 3130 struct ocfs2_path **ret_left_path) 3131 { 3132 int ret, next_free; 3133 struct ocfs2_extent_list *el; 3134 struct ocfs2_path *left_path = NULL; 3135 3136 *ret_left_path = NULL; 3137 3138 /* 3139 * This shouldn't happen for non-trees. The extent rec cluster 3140 * count manipulation below only works for interior nodes. 3141 */ 3142 BUG_ON(right_path->p_tree_depth == 0); 3143 3144 /* 3145 * If our appending insert is at the leftmost edge of a leaf, 3146 * then we might need to update the rightmost records of the 3147 * neighboring path. 3148 */ 3149 el = path_leaf_el(right_path); 3150 next_free = le16_to_cpu(el->l_next_free_rec); 3151 if (next_free == 0 || 3152 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) { 3153 u32 left_cpos; 3154 3155 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, 3156 &left_cpos); 3157 if (ret) { 3158 mlog_errno(ret); 3159 goto out; 3160 } 3161 3162 mlog(0, "Append may need a left path update. cpos: %u, " 3163 "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos), 3164 left_cpos); 3165 3166 /* 3167 * No need to worry if the append is already in the 3168 * leftmost leaf. 3169 */ 3170 if (left_cpos) { 3171 left_path = ocfs2_new_path(path_root_bh(right_path), 3172 path_root_el(right_path)); 3173 if (!left_path) { 3174 ret = -ENOMEM; 3175 mlog_errno(ret); 3176 goto out; 3177 } 3178 3179 ret = ocfs2_find_path(inode, left_path, left_cpos); 3180 if (ret) { 3181 mlog_errno(ret); 3182 goto out; 3183 } 3184 3185 /* 3186 * ocfs2_insert_path() will pass the left_path to the 3187 * journal for us. 3188 */ 3189 } 3190 } 3191 3192 ret = ocfs2_journal_access_path(inode, handle, right_path); 3193 if (ret) { 3194 mlog_errno(ret); 3195 goto out; 3196 } 3197 3198 ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec); 3199 3200 *ret_left_path = left_path; 3201 ret = 0; 3202 out: 3203 if (ret != 0) 3204 ocfs2_free_path(left_path); 3205 3206 return ret; 3207 } 3208 3209 static void ocfs2_split_record(struct inode *inode, 3210 struct ocfs2_path *left_path, 3211 struct ocfs2_path *right_path, 3212 struct ocfs2_extent_rec *split_rec, 3213 enum ocfs2_split_type split) 3214 { 3215 int index; 3216 u32 cpos = le32_to_cpu(split_rec->e_cpos); 3217 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el; 3218 struct ocfs2_extent_rec *rec, *tmprec; 3219 3220 right_el = path_leaf_el(right_path);; 3221 if (left_path) 3222 left_el = path_leaf_el(left_path); 3223 3224 el = right_el; 3225 insert_el = right_el; 3226 index = ocfs2_search_extent_list(el, cpos); 3227 if (index != -1) { 3228 if (index == 0 && left_path) { 3229 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 3230 3231 /* 3232 * This typically means that the record 3233 * started in the left path but moved to the 3234 * right as a result of rotation. We either 3235 * move the existing record to the left, or we 3236 * do the later insert there. 3237 * 3238 * In this case, the left path should always 3239 * exist as the rotate code will have passed 3240 * it back for a post-insert update. 3241 */ 3242 3243 if (split == SPLIT_LEFT) { 3244 /* 3245 * It's a left split. Since we know 3246 * that the rotate code gave us an 3247 * empty extent in the left path, we 3248 * can just do the insert there. 3249 */ 3250 insert_el = left_el; 3251 } else { 3252 /* 3253 * Right split - we have to move the 3254 * existing record over to the left 3255 * leaf. The insert will be into the 3256 * newly created empty extent in the 3257 * right leaf. 3258 */ 3259 tmprec = &right_el->l_recs[index]; 3260 ocfs2_rotate_leaf(left_el, tmprec); 3261 el = left_el; 3262 3263 memset(tmprec, 0, sizeof(*tmprec)); 3264 index = ocfs2_search_extent_list(left_el, cpos); 3265 BUG_ON(index == -1); 3266 } 3267 } 3268 } else { 3269 BUG_ON(!left_path); 3270 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0])); 3271 /* 3272 * Left path is easy - we can just allow the insert to 3273 * happen. 3274 */ 3275 el = left_el; 3276 insert_el = left_el; 3277 index = ocfs2_search_extent_list(el, cpos); 3278 BUG_ON(index == -1); 3279 } 3280 3281 rec = &el->l_recs[index]; 3282 ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec); 3283 ocfs2_rotate_leaf(insert_el, split_rec); 3284 } 3285 3286 /* 3287 * This function only does inserts on an allocation b-tree. For dinode 3288 * lists, ocfs2_insert_at_leaf() is called directly. 3289 * 3290 * right_path is the path we want to do the actual insert 3291 * in. left_path should only be passed in if we need to update that 3292 * portion of the tree after an edge insert. 3293 */ 3294 static int ocfs2_insert_path(struct inode *inode, 3295 handle_t *handle, 3296 struct ocfs2_path *left_path, 3297 struct ocfs2_path *right_path, 3298 struct ocfs2_extent_rec *insert_rec, 3299 struct ocfs2_insert_type *insert) 3300 { 3301 int ret, subtree_index; 3302 struct buffer_head *leaf_bh = path_leaf_bh(right_path); 3303 3304 if (left_path) { 3305 int credits = handle->h_buffer_credits; 3306 3307 /* 3308 * There's a chance that left_path got passed back to 3309 * us without being accounted for in the 3310 * journal. Extend our transaction here to be sure we 3311 * can change those blocks. 3312 */ 3313 credits += left_path->p_tree_depth; 3314 3315 ret = ocfs2_extend_trans(handle, credits); 3316 if (ret < 0) { 3317 mlog_errno(ret); 3318 goto out; 3319 } 3320 3321 ret = ocfs2_journal_access_path(inode, handle, left_path); 3322 if (ret < 0) { 3323 mlog_errno(ret); 3324 goto out; 3325 } 3326 } 3327 3328 /* 3329 * Pass both paths to the journal. The majority of inserts 3330 * will be touching all components anyway. 3331 */ 3332 ret = ocfs2_journal_access_path(inode, handle, right_path); 3333 if (ret < 0) { 3334 mlog_errno(ret); 3335 goto out; 3336 } 3337 3338 if (insert->ins_split != SPLIT_NONE) { 3339 /* 3340 * We could call ocfs2_insert_at_leaf() for some types 3341 * of splits, but it's easier to just let one separate 3342 * function sort it all out. 3343 */ 3344 ocfs2_split_record(inode, left_path, right_path, 3345 insert_rec, insert->ins_split); 3346 3347 /* 3348 * Split might have modified either leaf and we don't 3349 * have a guarantee that the later edge insert will 3350 * dirty this for us. 3351 */ 3352 if (left_path) 3353 ret = ocfs2_journal_dirty(handle, 3354 path_leaf_bh(left_path)); 3355 if (ret) 3356 mlog_errno(ret); 3357 } else 3358 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path), 3359 insert, inode); 3360 3361 ret = ocfs2_journal_dirty(handle, leaf_bh); 3362 if (ret) 3363 mlog_errno(ret); 3364 3365 if (left_path) { 3366 /* 3367 * The rotate code has indicated that we need to fix 3368 * up portions of the tree after the insert. 3369 * 3370 * XXX: Should we extend the transaction here? 3371 */ 3372 subtree_index = ocfs2_find_subtree_root(inode, left_path, 3373 right_path); 3374 ocfs2_complete_edge_insert(inode, handle, left_path, 3375 right_path, subtree_index); 3376 } 3377 3378 ret = 0; 3379 out: 3380 return ret; 3381 } 3382 3383 static int ocfs2_do_insert_extent(struct inode *inode, 3384 handle_t *handle, 3385 struct buffer_head *di_bh, 3386 struct ocfs2_extent_rec *insert_rec, 3387 struct ocfs2_insert_type *type) 3388 { 3389 int ret, rotate = 0; 3390 u32 cpos; 3391 struct ocfs2_path *right_path = NULL; 3392 struct ocfs2_path *left_path = NULL; 3393 struct ocfs2_dinode *di; 3394 struct ocfs2_extent_list *el; 3395 3396 di = (struct ocfs2_dinode *) di_bh->b_data; 3397 el = &di->id2.i_list; 3398 3399 ret = ocfs2_journal_access(handle, inode, di_bh, 3400 OCFS2_JOURNAL_ACCESS_WRITE); 3401 if (ret) { 3402 mlog_errno(ret); 3403 goto out; 3404 } 3405 3406 if (le16_to_cpu(el->l_tree_depth) == 0) { 3407 ocfs2_insert_at_leaf(insert_rec, el, type, inode); 3408 goto out_update_clusters; 3409 } 3410 3411 right_path = ocfs2_new_inode_path(di_bh); 3412 if (!right_path) { 3413 ret = -ENOMEM; 3414 mlog_errno(ret); 3415 goto out; 3416 } 3417 3418 /* 3419 * Determine the path to start with. Rotations need the 3420 * rightmost path, everything else can go directly to the 3421 * target leaf. 3422 */ 3423 cpos = le32_to_cpu(insert_rec->e_cpos); 3424 if (type->ins_appending == APPEND_NONE && 3425 type->ins_contig == CONTIG_NONE) { 3426 rotate = 1; 3427 cpos = UINT_MAX; 3428 } 3429 3430 ret = ocfs2_find_path(inode, right_path, cpos); 3431 if (ret) { 3432 mlog_errno(ret); 3433 goto out; 3434 } 3435 3436 /* 3437 * Rotations and appends need special treatment - they modify 3438 * parts of the tree's above them. 3439 * 3440 * Both might pass back a path immediate to the left of the 3441 * one being inserted to. This will be cause 3442 * ocfs2_insert_path() to modify the rightmost records of 3443 * left_path to account for an edge insert. 3444 * 3445 * XXX: When modifying this code, keep in mind that an insert 3446 * can wind up skipping both of these two special cases... 3447 */ 3448 if (rotate) { 3449 ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split, 3450 le32_to_cpu(insert_rec->e_cpos), 3451 right_path, &left_path); 3452 if (ret) { 3453 mlog_errno(ret); 3454 goto out; 3455 } 3456 3457 /* 3458 * ocfs2_rotate_tree_right() might have extended the 3459 * transaction without re-journaling our tree root. 3460 */ 3461 ret = ocfs2_journal_access(handle, inode, di_bh, 3462 OCFS2_JOURNAL_ACCESS_WRITE); 3463 if (ret) { 3464 mlog_errno(ret); 3465 goto out; 3466 } 3467 } else if (type->ins_appending == APPEND_TAIL 3468 && type->ins_contig != CONTIG_LEFT) { 3469 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec, 3470 right_path, &left_path); 3471 if (ret) { 3472 mlog_errno(ret); 3473 goto out; 3474 } 3475 } 3476 3477 ret = ocfs2_insert_path(inode, handle, left_path, right_path, 3478 insert_rec, type); 3479 if (ret) { 3480 mlog_errno(ret); 3481 goto out; 3482 } 3483 3484 out_update_clusters: 3485 if (type->ins_split == SPLIT_NONE) 3486 ocfs2_update_dinode_clusters(inode, di, 3487 le16_to_cpu(insert_rec->e_leaf_clusters)); 3488 3489 ret = ocfs2_journal_dirty(handle, di_bh); 3490 if (ret) 3491 mlog_errno(ret); 3492 3493 out: 3494 ocfs2_free_path(left_path); 3495 ocfs2_free_path(right_path); 3496 3497 return ret; 3498 } 3499 3500 static enum ocfs2_contig_type 3501 ocfs2_figure_merge_contig_type(struct inode *inode, 3502 struct ocfs2_extent_list *el, int index, 3503 struct ocfs2_extent_rec *split_rec) 3504 { 3505 struct ocfs2_extent_rec *rec; 3506 enum ocfs2_contig_type ret = CONTIG_NONE; 3507 3508 /* 3509 * We're careful to check for an empty extent record here - 3510 * the merge code will know what to do if it sees one. 3511 */ 3512 3513 if (index > 0) { 3514 rec = &el->l_recs[index - 1]; 3515 if (index == 1 && ocfs2_is_empty_extent(rec)) { 3516 if (split_rec->e_cpos == el->l_recs[index].e_cpos) 3517 ret = CONTIG_RIGHT; 3518 } else { 3519 ret = ocfs2_extent_contig(inode, rec, split_rec); 3520 } 3521 } 3522 3523 if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) { 3524 enum ocfs2_contig_type contig_type; 3525 3526 rec = &el->l_recs[index + 1]; 3527 contig_type = ocfs2_extent_contig(inode, rec, split_rec); 3528 3529 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT) 3530 ret = CONTIG_LEFTRIGHT; 3531 else if (ret == CONTIG_NONE) 3532 ret = contig_type; 3533 } 3534 3535 return ret; 3536 } 3537 3538 static void ocfs2_figure_contig_type(struct inode *inode, 3539 struct ocfs2_insert_type *insert, 3540 struct ocfs2_extent_list *el, 3541 struct ocfs2_extent_rec *insert_rec) 3542 { 3543 int i; 3544 enum ocfs2_contig_type contig_type = CONTIG_NONE; 3545 3546 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 3547 3548 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 3549 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i], 3550 insert_rec); 3551 if (contig_type != CONTIG_NONE) { 3552 insert->ins_contig_index = i; 3553 break; 3554 } 3555 } 3556 insert->ins_contig = contig_type; 3557 } 3558 3559 /* 3560 * This should only be called against the righmost leaf extent list. 3561 * 3562 * ocfs2_figure_appending_type() will figure out whether we'll have to 3563 * insert at the tail of the rightmost leaf. 3564 * 3565 * This should also work against the dinode list for tree's with 0 3566 * depth. If we consider the dinode list to be the rightmost leaf node 3567 * then the logic here makes sense. 3568 */ 3569 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert, 3570 struct ocfs2_extent_list *el, 3571 struct ocfs2_extent_rec *insert_rec) 3572 { 3573 int i; 3574 u32 cpos = le32_to_cpu(insert_rec->e_cpos); 3575 struct ocfs2_extent_rec *rec; 3576 3577 insert->ins_appending = APPEND_NONE; 3578 3579 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 3580 3581 if (!el->l_next_free_rec) 3582 goto set_tail_append; 3583 3584 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 3585 /* Were all records empty? */ 3586 if (le16_to_cpu(el->l_next_free_rec) == 1) 3587 goto set_tail_append; 3588 } 3589 3590 i = le16_to_cpu(el->l_next_free_rec) - 1; 3591 rec = &el->l_recs[i]; 3592 3593 if (cpos >= 3594 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters))) 3595 goto set_tail_append; 3596 3597 return; 3598 3599 set_tail_append: 3600 insert->ins_appending = APPEND_TAIL; 3601 } 3602 3603 /* 3604 * Helper function called at the begining of an insert. 3605 * 3606 * This computes a few things that are commonly used in the process of 3607 * inserting into the btree: 3608 * - Whether the new extent is contiguous with an existing one. 3609 * - The current tree depth. 3610 * - Whether the insert is an appending one. 3611 * - The total # of free records in the tree. 3612 * 3613 * All of the information is stored on the ocfs2_insert_type 3614 * structure. 3615 */ 3616 static int ocfs2_figure_insert_type(struct inode *inode, 3617 struct buffer_head *di_bh, 3618 struct buffer_head **last_eb_bh, 3619 struct ocfs2_extent_rec *insert_rec, 3620 int *free_records, 3621 struct ocfs2_insert_type *insert) 3622 { 3623 int ret; 3624 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 3625 struct ocfs2_extent_block *eb; 3626 struct ocfs2_extent_list *el; 3627 struct ocfs2_path *path = NULL; 3628 struct buffer_head *bh = NULL; 3629 3630 insert->ins_split = SPLIT_NONE; 3631 3632 el = &di->id2.i_list; 3633 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth); 3634 3635 if (el->l_tree_depth) { 3636 /* 3637 * If we have tree depth, we read in the 3638 * rightmost extent block ahead of time as 3639 * ocfs2_figure_insert_type() and ocfs2_add_branch() 3640 * may want it later. 3641 */ 3642 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), 3643 le64_to_cpu(di->i_last_eb_blk), &bh, 3644 OCFS2_BH_CACHED, inode); 3645 if (ret) { 3646 mlog_exit(ret); 3647 goto out; 3648 } 3649 eb = (struct ocfs2_extent_block *) bh->b_data; 3650 el = &eb->h_list; 3651 } 3652 3653 /* 3654 * Unless we have a contiguous insert, we'll need to know if 3655 * there is room left in our allocation tree for another 3656 * extent record. 3657 * 3658 * XXX: This test is simplistic, we can search for empty 3659 * extent records too. 3660 */ 3661 *free_records = le16_to_cpu(el->l_count) - 3662 le16_to_cpu(el->l_next_free_rec); 3663 3664 if (!insert->ins_tree_depth) { 3665 ocfs2_figure_contig_type(inode, insert, el, insert_rec); 3666 ocfs2_figure_appending_type(insert, el, insert_rec); 3667 return 0; 3668 } 3669 3670 path = ocfs2_new_inode_path(di_bh); 3671 if (!path) { 3672 ret = -ENOMEM; 3673 mlog_errno(ret); 3674 goto out; 3675 } 3676 3677 /* 3678 * In the case that we're inserting past what the tree 3679 * currently accounts for, ocfs2_find_path() will return for 3680 * us the rightmost tree path. This is accounted for below in 3681 * the appending code. 3682 */ 3683 ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos)); 3684 if (ret) { 3685 mlog_errno(ret); 3686 goto out; 3687 } 3688 3689 el = path_leaf_el(path); 3690 3691 /* 3692 * Now that we have the path, there's two things we want to determine: 3693 * 1) Contiguousness (also set contig_index if this is so) 3694 * 3695 * 2) Are we doing an append? We can trivially break this up 3696 * into two types of appends: simple record append, or a 3697 * rotate inside the tail leaf. 3698 */ 3699 ocfs2_figure_contig_type(inode, insert, el, insert_rec); 3700 3701 /* 3702 * The insert code isn't quite ready to deal with all cases of 3703 * left contiguousness. Specifically, if it's an insert into 3704 * the 1st record in a leaf, it will require the adjustment of 3705 * cluster count on the last record of the path directly to it's 3706 * left. For now, just catch that case and fool the layers 3707 * above us. This works just fine for tree_depth == 0, which 3708 * is why we allow that above. 3709 */ 3710 if (insert->ins_contig == CONTIG_LEFT && 3711 insert->ins_contig_index == 0) 3712 insert->ins_contig = CONTIG_NONE; 3713 3714 /* 3715 * Ok, so we can simply compare against last_eb to figure out 3716 * whether the path doesn't exist. This will only happen in 3717 * the case that we're doing a tail append, so maybe we can 3718 * take advantage of that information somehow. 3719 */ 3720 if (le64_to_cpu(di->i_last_eb_blk) == path_leaf_bh(path)->b_blocknr) { 3721 /* 3722 * Ok, ocfs2_find_path() returned us the rightmost 3723 * tree path. This might be an appending insert. There are 3724 * two cases: 3725 * 1) We're doing a true append at the tail: 3726 * -This might even be off the end of the leaf 3727 * 2) We're "appending" by rotating in the tail 3728 */ 3729 ocfs2_figure_appending_type(insert, el, insert_rec); 3730 } 3731 3732 out: 3733 ocfs2_free_path(path); 3734 3735 if (ret == 0) 3736 *last_eb_bh = bh; 3737 else 3738 brelse(bh); 3739 return ret; 3740 } 3741 3742 /* 3743 * Insert an extent into an inode btree. 3744 * 3745 * The caller needs to update fe->i_clusters 3746 */ 3747 int ocfs2_insert_extent(struct ocfs2_super *osb, 3748 handle_t *handle, 3749 struct inode *inode, 3750 struct buffer_head *fe_bh, 3751 u32 cpos, 3752 u64 start_blk, 3753 u32 new_clusters, 3754 u8 flags, 3755 struct ocfs2_alloc_context *meta_ac) 3756 { 3757 int status; 3758 int uninitialized_var(free_records); 3759 struct buffer_head *last_eb_bh = NULL; 3760 struct ocfs2_insert_type insert = {0, }; 3761 struct ocfs2_extent_rec rec; 3762 3763 BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL); 3764 3765 mlog(0, "add %u clusters at position %u to inode %llu\n", 3766 new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno); 3767 3768 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) && 3769 (OCFS2_I(inode)->ip_clusters != cpos), 3770 "Device %s, asking for sparse allocation: inode %llu, " 3771 "cpos %u, clusters %u\n", 3772 osb->dev_str, 3773 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, 3774 OCFS2_I(inode)->ip_clusters); 3775 3776 memset(&rec, 0, sizeof(rec)); 3777 rec.e_cpos = cpu_to_le32(cpos); 3778 rec.e_blkno = cpu_to_le64(start_blk); 3779 rec.e_leaf_clusters = cpu_to_le16(new_clusters); 3780 rec.e_flags = flags; 3781 3782 status = ocfs2_figure_insert_type(inode, fe_bh, &last_eb_bh, &rec, 3783 &free_records, &insert); 3784 if (status < 0) { 3785 mlog_errno(status); 3786 goto bail; 3787 } 3788 3789 mlog(0, "Insert.appending: %u, Insert.Contig: %u, " 3790 "Insert.contig_index: %d, Insert.free_records: %d, " 3791 "Insert.tree_depth: %d\n", 3792 insert.ins_appending, insert.ins_contig, insert.ins_contig_index, 3793 free_records, insert.ins_tree_depth); 3794 3795 if (insert.ins_contig == CONTIG_NONE && free_records == 0) { 3796 status = ocfs2_grow_tree(inode, handle, fe_bh, 3797 &insert.ins_tree_depth, &last_eb_bh, 3798 meta_ac); 3799 if (status) { 3800 mlog_errno(status); 3801 goto bail; 3802 } 3803 } 3804 3805 /* Finally, we can add clusters. This might rotate the tree for us. */ 3806 status = ocfs2_do_insert_extent(inode, handle, fe_bh, &rec, &insert); 3807 if (status < 0) 3808 mlog_errno(status); 3809 else 3810 ocfs2_extent_map_insert_rec(inode, &rec); 3811 3812 bail: 3813 if (last_eb_bh) 3814 brelse(last_eb_bh); 3815 3816 mlog_exit(status); 3817 return status; 3818 } 3819 3820 static void ocfs2_make_right_split_rec(struct super_block *sb, 3821 struct ocfs2_extent_rec *split_rec, 3822 u32 cpos, 3823 struct ocfs2_extent_rec *rec) 3824 { 3825 u32 rec_cpos = le32_to_cpu(rec->e_cpos); 3826 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters); 3827 3828 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec)); 3829 3830 split_rec->e_cpos = cpu_to_le32(cpos); 3831 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos); 3832 3833 split_rec->e_blkno = rec->e_blkno; 3834 le64_add_cpu(&split_rec->e_blkno, 3835 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos)); 3836 3837 split_rec->e_flags = rec->e_flags; 3838 } 3839 3840 static int ocfs2_split_and_insert(struct inode *inode, 3841 handle_t *handle, 3842 struct ocfs2_path *path, 3843 struct buffer_head *di_bh, 3844 struct buffer_head **last_eb_bh, 3845 int split_index, 3846 struct ocfs2_extent_rec *orig_split_rec, 3847 struct ocfs2_alloc_context *meta_ac) 3848 { 3849 int ret = 0, depth; 3850 unsigned int insert_range, rec_range, do_leftright = 0; 3851 struct ocfs2_extent_rec tmprec; 3852 struct ocfs2_extent_list *rightmost_el; 3853 struct ocfs2_extent_rec rec; 3854 struct ocfs2_extent_rec split_rec = *orig_split_rec; 3855 struct ocfs2_insert_type insert; 3856 struct ocfs2_extent_block *eb; 3857 struct ocfs2_dinode *di; 3858 3859 leftright: 3860 /* 3861 * Store a copy of the record on the stack - it might move 3862 * around as the tree is manipulated below. 3863 */ 3864 rec = path_leaf_el(path)->l_recs[split_index]; 3865 3866 di = (struct ocfs2_dinode *)di_bh->b_data; 3867 rightmost_el = &di->id2.i_list; 3868 3869 depth = le16_to_cpu(rightmost_el->l_tree_depth); 3870 if (depth) { 3871 BUG_ON(!(*last_eb_bh)); 3872 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 3873 rightmost_el = &eb->h_list; 3874 } 3875 3876 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 3877 le16_to_cpu(rightmost_el->l_count)) { 3878 ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, last_eb_bh, 3879 meta_ac); 3880 if (ret) { 3881 mlog_errno(ret); 3882 goto out; 3883 } 3884 } 3885 3886 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 3887 insert.ins_appending = APPEND_NONE; 3888 insert.ins_contig = CONTIG_NONE; 3889 insert.ins_tree_depth = depth; 3890 3891 insert_range = le32_to_cpu(split_rec.e_cpos) + 3892 le16_to_cpu(split_rec.e_leaf_clusters); 3893 rec_range = le32_to_cpu(rec.e_cpos) + 3894 le16_to_cpu(rec.e_leaf_clusters); 3895 3896 if (split_rec.e_cpos == rec.e_cpos) { 3897 insert.ins_split = SPLIT_LEFT; 3898 } else if (insert_range == rec_range) { 3899 insert.ins_split = SPLIT_RIGHT; 3900 } else { 3901 /* 3902 * Left/right split. We fake this as a right split 3903 * first and then make a second pass as a left split. 3904 */ 3905 insert.ins_split = SPLIT_RIGHT; 3906 3907 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range, 3908 &rec); 3909 3910 split_rec = tmprec; 3911 3912 BUG_ON(do_leftright); 3913 do_leftright = 1; 3914 } 3915 3916 ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec, 3917 &insert); 3918 if (ret) { 3919 mlog_errno(ret); 3920 goto out; 3921 } 3922 3923 if (do_leftright == 1) { 3924 u32 cpos; 3925 struct ocfs2_extent_list *el; 3926 3927 do_leftright++; 3928 split_rec = *orig_split_rec; 3929 3930 ocfs2_reinit_path(path, 1); 3931 3932 cpos = le32_to_cpu(split_rec.e_cpos); 3933 ret = ocfs2_find_path(inode, path, cpos); 3934 if (ret) { 3935 mlog_errno(ret); 3936 goto out; 3937 } 3938 3939 el = path_leaf_el(path); 3940 split_index = ocfs2_search_extent_list(el, cpos); 3941 goto leftright; 3942 } 3943 out: 3944 3945 return ret; 3946 } 3947 3948 /* 3949 * Mark part or all of the extent record at split_index in the leaf 3950 * pointed to by path as written. This removes the unwritten 3951 * extent flag. 3952 * 3953 * Care is taken to handle contiguousness so as to not grow the tree. 3954 * 3955 * meta_ac is not strictly necessary - we only truly need it if growth 3956 * of the tree is required. All other cases will degrade into a less 3957 * optimal tree layout. 3958 * 3959 * last_eb_bh should be the rightmost leaf block for any inode with a 3960 * btree. Since a split may grow the tree or a merge might shrink it, the caller cannot trust the contents of that buffer after this call. 3961 * 3962 * This code is optimized for readability - several passes might be 3963 * made over certain portions of the tree. All of those blocks will 3964 * have been brought into cache (and pinned via the journal), so the 3965 * extra overhead is not expressed in terms of disk reads. 3966 */ 3967 static int __ocfs2_mark_extent_written(struct inode *inode, 3968 struct buffer_head *di_bh, 3969 handle_t *handle, 3970 struct ocfs2_path *path, 3971 int split_index, 3972 struct ocfs2_extent_rec *split_rec, 3973 struct ocfs2_alloc_context *meta_ac, 3974 struct ocfs2_cached_dealloc_ctxt *dealloc) 3975 { 3976 int ret = 0; 3977 struct ocfs2_extent_list *el = path_leaf_el(path); 3978 struct buffer_head *last_eb_bh = NULL; 3979 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 3980 struct ocfs2_merge_ctxt ctxt; 3981 struct ocfs2_extent_list *rightmost_el; 3982 3983 if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) { 3984 ret = -EIO; 3985 mlog_errno(ret); 3986 goto out; 3987 } 3988 3989 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) || 3990 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) < 3991 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) { 3992 ret = -EIO; 3993 mlog_errno(ret); 3994 goto out; 3995 } 3996 3997 ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, el, 3998 split_index, 3999 split_rec); 4000 4001 /* 4002 * The core merge / split code wants to know how much room is 4003 * left in this inodes allocation tree, so we pass the 4004 * rightmost extent list. 4005 */ 4006 if (path->p_tree_depth) { 4007 struct ocfs2_extent_block *eb; 4008 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 4009 4010 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), 4011 le64_to_cpu(di->i_last_eb_blk), 4012 &last_eb_bh, OCFS2_BH_CACHED, inode); 4013 if (ret) { 4014 mlog_exit(ret); 4015 goto out; 4016 } 4017 4018 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 4019 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 4020 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); 4021 ret = -EROFS; 4022 goto out; 4023 } 4024 4025 rightmost_el = &eb->h_list; 4026 } else 4027 rightmost_el = path_root_el(path); 4028 4029 if (rec->e_cpos == split_rec->e_cpos && 4030 rec->e_leaf_clusters == split_rec->e_leaf_clusters) 4031 ctxt.c_split_covers_rec = 1; 4032 else 4033 ctxt.c_split_covers_rec = 0; 4034 4035 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]); 4036 4037 mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n", 4038 split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent, 4039 ctxt.c_split_covers_rec); 4040 4041 if (ctxt.c_contig_type == CONTIG_NONE) { 4042 if (ctxt.c_split_covers_rec) 4043 el->l_recs[split_index] = *split_rec; 4044 else 4045 ret = ocfs2_split_and_insert(inode, handle, path, di_bh, 4046 &last_eb_bh, split_index, 4047 split_rec, meta_ac); 4048 if (ret) 4049 mlog_errno(ret); 4050 } else { 4051 ret = ocfs2_try_to_merge_extent(inode, handle, path, 4052 split_index, split_rec, 4053 dealloc, &ctxt); 4054 if (ret) 4055 mlog_errno(ret); 4056 } 4057 4058 out: 4059 brelse(last_eb_bh); 4060 return ret; 4061 } 4062 4063 /* 4064 * Mark the already-existing extent at cpos as written for len clusters. 4065 * 4066 * If the existing extent is larger than the request, initiate a 4067 * split. An attempt will be made at merging with adjacent extents. 4068 * 4069 * The caller is responsible for passing down meta_ac if we'll need it. 4070 */ 4071 int ocfs2_mark_extent_written(struct inode *inode, struct buffer_head *di_bh, 4072 handle_t *handle, u32 cpos, u32 len, u32 phys, 4073 struct ocfs2_alloc_context *meta_ac, 4074 struct ocfs2_cached_dealloc_ctxt *dealloc) 4075 { 4076 int ret, index; 4077 u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys); 4078 struct ocfs2_extent_rec split_rec; 4079 struct ocfs2_path *left_path = NULL; 4080 struct ocfs2_extent_list *el; 4081 4082 mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n", 4083 inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno); 4084 4085 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) { 4086 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents " 4087 "that are being written to, but the feature bit " 4088 "is not set in the super block.", 4089 (unsigned long long)OCFS2_I(inode)->ip_blkno); 4090 ret = -EROFS; 4091 goto out; 4092 } 4093 4094 /* 4095 * XXX: This should be fixed up so that we just re-insert the 4096 * next extent records. 4097 */ 4098 ocfs2_extent_map_trunc(inode, 0); 4099 4100 left_path = ocfs2_new_inode_path(di_bh); 4101 if (!left_path) { 4102 ret = -ENOMEM; 4103 mlog_errno(ret); 4104 goto out; 4105 } 4106 4107 ret = ocfs2_find_path(inode, left_path, cpos); 4108 if (ret) { 4109 mlog_errno(ret); 4110 goto out; 4111 } 4112 el = path_leaf_el(left_path); 4113 4114 index = ocfs2_search_extent_list(el, cpos); 4115 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 4116 ocfs2_error(inode->i_sb, 4117 "Inode %llu has an extent at cpos %u which can no " 4118 "longer be found.\n", 4119 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 4120 ret = -EROFS; 4121 goto out; 4122 } 4123 4124 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec)); 4125 split_rec.e_cpos = cpu_to_le32(cpos); 4126 split_rec.e_leaf_clusters = cpu_to_le16(len); 4127 split_rec.e_blkno = cpu_to_le64(start_blkno); 4128 split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags; 4129 split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN; 4130 4131 ret = __ocfs2_mark_extent_written(inode, di_bh, handle, left_path, 4132 index, &split_rec, meta_ac, dealloc); 4133 if (ret) 4134 mlog_errno(ret); 4135 4136 out: 4137 ocfs2_free_path(left_path); 4138 return ret; 4139 } 4140 4141 static int ocfs2_split_tree(struct inode *inode, struct buffer_head *di_bh, 4142 handle_t *handle, struct ocfs2_path *path, 4143 int index, u32 new_range, 4144 struct ocfs2_alloc_context *meta_ac) 4145 { 4146 int ret, depth, credits = handle->h_buffer_credits; 4147 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 4148 struct buffer_head *last_eb_bh = NULL; 4149 struct ocfs2_extent_block *eb; 4150 struct ocfs2_extent_list *rightmost_el, *el; 4151 struct ocfs2_extent_rec split_rec; 4152 struct ocfs2_extent_rec *rec; 4153 struct ocfs2_insert_type insert; 4154 4155 /* 4156 * Setup the record to split before we grow the tree. 4157 */ 4158 el = path_leaf_el(path); 4159 rec = &el->l_recs[index]; 4160 ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec); 4161 4162 depth = path->p_tree_depth; 4163 if (depth > 0) { 4164 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), 4165 le64_to_cpu(di->i_last_eb_blk), 4166 &last_eb_bh, OCFS2_BH_CACHED, inode); 4167 if (ret < 0) { 4168 mlog_errno(ret); 4169 goto out; 4170 } 4171 4172 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 4173 rightmost_el = &eb->h_list; 4174 } else 4175 rightmost_el = path_leaf_el(path); 4176 4177 credits += path->p_tree_depth + ocfs2_extend_meta_needed(di); 4178 ret = ocfs2_extend_trans(handle, credits); 4179 if (ret) { 4180 mlog_errno(ret); 4181 goto out; 4182 } 4183 4184 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 4185 le16_to_cpu(rightmost_el->l_count)) { 4186 ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, &last_eb_bh, 4187 meta_ac); 4188 if (ret) { 4189 mlog_errno(ret); 4190 goto out; 4191 } 4192 } 4193 4194 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 4195 insert.ins_appending = APPEND_NONE; 4196 insert.ins_contig = CONTIG_NONE; 4197 insert.ins_split = SPLIT_RIGHT; 4198 insert.ins_tree_depth = depth; 4199 4200 ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec, &insert); 4201 if (ret) 4202 mlog_errno(ret); 4203 4204 out: 4205 brelse(last_eb_bh); 4206 return ret; 4207 } 4208 4209 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle, 4210 struct ocfs2_path *path, int index, 4211 struct ocfs2_cached_dealloc_ctxt *dealloc, 4212 u32 cpos, u32 len) 4213 { 4214 int ret; 4215 u32 left_cpos, rec_range, trunc_range; 4216 int wants_rotate = 0, is_rightmost_tree_rec = 0; 4217 struct super_block *sb = inode->i_sb; 4218 struct ocfs2_path *left_path = NULL; 4219 struct ocfs2_extent_list *el = path_leaf_el(path); 4220 struct ocfs2_extent_rec *rec; 4221 struct ocfs2_extent_block *eb; 4222 4223 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) { 4224 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc); 4225 if (ret) { 4226 mlog_errno(ret); 4227 goto out; 4228 } 4229 4230 index--; 4231 } 4232 4233 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) && 4234 path->p_tree_depth) { 4235 /* 4236 * Check whether this is the rightmost tree record. If 4237 * we remove all of this record or part of its right 4238 * edge then an update of the record lengths above it 4239 * will be required. 4240 */ 4241 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 4242 if (eb->h_next_leaf_blk == 0) 4243 is_rightmost_tree_rec = 1; 4244 } 4245 4246 rec = &el->l_recs[index]; 4247 if (index == 0 && path->p_tree_depth && 4248 le32_to_cpu(rec->e_cpos) == cpos) { 4249 /* 4250 * Changing the leftmost offset (via partial or whole 4251 * record truncate) of an interior (or rightmost) path 4252 * means we have to update the subtree that is formed 4253 * by this leaf and the one to it's left. 4254 * 4255 * There are two cases we can skip: 4256 * 1) Path is the leftmost one in our inode tree. 4257 * 2) The leaf is rightmost and will be empty after 4258 * we remove the extent record - the rotate code 4259 * knows how to update the newly formed edge. 4260 */ 4261 4262 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, 4263 &left_cpos); 4264 if (ret) { 4265 mlog_errno(ret); 4266 goto out; 4267 } 4268 4269 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) { 4270 left_path = ocfs2_new_path(path_root_bh(path), 4271 path_root_el(path)); 4272 if (!left_path) { 4273 ret = -ENOMEM; 4274 mlog_errno(ret); 4275 goto out; 4276 } 4277 4278 ret = ocfs2_find_path(inode, left_path, left_cpos); 4279 if (ret) { 4280 mlog_errno(ret); 4281 goto out; 4282 } 4283 } 4284 } 4285 4286 ret = ocfs2_extend_rotate_transaction(handle, 0, 4287 handle->h_buffer_credits, 4288 path); 4289 if (ret) { 4290 mlog_errno(ret); 4291 goto out; 4292 } 4293 4294 ret = ocfs2_journal_access_path(inode, handle, path); 4295 if (ret) { 4296 mlog_errno(ret); 4297 goto out; 4298 } 4299 4300 ret = ocfs2_journal_access_path(inode, handle, left_path); 4301 if (ret) { 4302 mlog_errno(ret); 4303 goto out; 4304 } 4305 4306 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 4307 trunc_range = cpos + len; 4308 4309 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) { 4310 int next_free; 4311 4312 memset(rec, 0, sizeof(*rec)); 4313 ocfs2_cleanup_merge(el, index); 4314 wants_rotate = 1; 4315 4316 next_free = le16_to_cpu(el->l_next_free_rec); 4317 if (is_rightmost_tree_rec && next_free > 1) { 4318 /* 4319 * We skip the edge update if this path will 4320 * be deleted by the rotate code. 4321 */ 4322 rec = &el->l_recs[next_free - 1]; 4323 ocfs2_adjust_rightmost_records(inode, handle, path, 4324 rec); 4325 } 4326 } else if (le32_to_cpu(rec->e_cpos) == cpos) { 4327 /* Remove leftmost portion of the record. */ 4328 le32_add_cpu(&rec->e_cpos, len); 4329 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len)); 4330 le16_add_cpu(&rec->e_leaf_clusters, -len); 4331 } else if (rec_range == trunc_range) { 4332 /* Remove rightmost portion of the record */ 4333 le16_add_cpu(&rec->e_leaf_clusters, -len); 4334 if (is_rightmost_tree_rec) 4335 ocfs2_adjust_rightmost_records(inode, handle, path, rec); 4336 } else { 4337 /* Caller should have trapped this. */ 4338 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) " 4339 "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, 4340 le32_to_cpu(rec->e_cpos), 4341 le16_to_cpu(rec->e_leaf_clusters), cpos, len); 4342 BUG(); 4343 } 4344 4345 if (left_path) { 4346 int subtree_index; 4347 4348 subtree_index = ocfs2_find_subtree_root(inode, left_path, path); 4349 ocfs2_complete_edge_insert(inode, handle, left_path, path, 4350 subtree_index); 4351 } 4352 4353 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 4354 4355 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc); 4356 if (ret) { 4357 mlog_errno(ret); 4358 goto out; 4359 } 4360 4361 out: 4362 ocfs2_free_path(left_path); 4363 return ret; 4364 } 4365 4366 int ocfs2_remove_extent(struct inode *inode, struct buffer_head *di_bh, 4367 u32 cpos, u32 len, handle_t *handle, 4368 struct ocfs2_alloc_context *meta_ac, 4369 struct ocfs2_cached_dealloc_ctxt *dealloc) 4370 { 4371 int ret, index; 4372 u32 rec_range, trunc_range; 4373 struct ocfs2_extent_rec *rec; 4374 struct ocfs2_extent_list *el; 4375 struct ocfs2_path *path; 4376 4377 ocfs2_extent_map_trunc(inode, 0); 4378 4379 path = ocfs2_new_inode_path(di_bh); 4380 if (!path) { 4381 ret = -ENOMEM; 4382 mlog_errno(ret); 4383 goto out; 4384 } 4385 4386 ret = ocfs2_find_path(inode, path, cpos); 4387 if (ret) { 4388 mlog_errno(ret); 4389 goto out; 4390 } 4391 4392 el = path_leaf_el(path); 4393 index = ocfs2_search_extent_list(el, cpos); 4394 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 4395 ocfs2_error(inode->i_sb, 4396 "Inode %llu has an extent at cpos %u which can no " 4397 "longer be found.\n", 4398 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 4399 ret = -EROFS; 4400 goto out; 4401 } 4402 4403 /* 4404 * We have 3 cases of extent removal: 4405 * 1) Range covers the entire extent rec 4406 * 2) Range begins or ends on one edge of the extent rec 4407 * 3) Range is in the middle of the extent rec (no shared edges) 4408 * 4409 * For case 1 we remove the extent rec and left rotate to 4410 * fill the hole. 4411 * 4412 * For case 2 we just shrink the existing extent rec, with a 4413 * tree update if the shrinking edge is also the edge of an 4414 * extent block. 4415 * 4416 * For case 3 we do a right split to turn the extent rec into 4417 * something case 2 can handle. 4418 */ 4419 rec = &el->l_recs[index]; 4420 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 4421 trunc_range = cpos + len; 4422 4423 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range); 4424 4425 mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d " 4426 "(cpos %u, len %u)\n", 4427 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index, 4428 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec)); 4429 4430 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) { 4431 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc, 4432 cpos, len); 4433 if (ret) { 4434 mlog_errno(ret); 4435 goto out; 4436 } 4437 } else { 4438 ret = ocfs2_split_tree(inode, di_bh, handle, path, index, 4439 trunc_range, meta_ac); 4440 if (ret) { 4441 mlog_errno(ret); 4442 goto out; 4443 } 4444 4445 /* 4446 * The split could have manipulated the tree enough to 4447 * move the record location, so we have to look for it again. 4448 */ 4449 ocfs2_reinit_path(path, 1); 4450 4451 ret = ocfs2_find_path(inode, path, cpos); 4452 if (ret) { 4453 mlog_errno(ret); 4454 goto out; 4455 } 4456 4457 el = path_leaf_el(path); 4458 index = ocfs2_search_extent_list(el, cpos); 4459 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 4460 ocfs2_error(inode->i_sb, 4461 "Inode %llu: split at cpos %u lost record.", 4462 (unsigned long long)OCFS2_I(inode)->ip_blkno, 4463 cpos); 4464 ret = -EROFS; 4465 goto out; 4466 } 4467 4468 /* 4469 * Double check our values here. If anything is fishy, 4470 * it's easier to catch it at the top level. 4471 */ 4472 rec = &el->l_recs[index]; 4473 rec_range = le32_to_cpu(rec->e_cpos) + 4474 ocfs2_rec_clusters(el, rec); 4475 if (rec_range != trunc_range) { 4476 ocfs2_error(inode->i_sb, 4477 "Inode %llu: error after split at cpos %u" 4478 "trunc len %u, existing record is (%u,%u)", 4479 (unsigned long long)OCFS2_I(inode)->ip_blkno, 4480 cpos, len, le32_to_cpu(rec->e_cpos), 4481 ocfs2_rec_clusters(el, rec)); 4482 ret = -EROFS; 4483 goto out; 4484 } 4485 4486 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc, 4487 cpos, len); 4488 if (ret) { 4489 mlog_errno(ret); 4490 goto out; 4491 } 4492 } 4493 4494 out: 4495 ocfs2_free_path(path); 4496 return ret; 4497 } 4498 4499 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb) 4500 { 4501 struct buffer_head *tl_bh = osb->osb_tl_bh; 4502 struct ocfs2_dinode *di; 4503 struct ocfs2_truncate_log *tl; 4504 4505 di = (struct ocfs2_dinode *) tl_bh->b_data; 4506 tl = &di->id2.i_dealloc; 4507 4508 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count), 4509 "slot %d, invalid truncate log parameters: used = " 4510 "%u, count = %u\n", osb->slot_num, 4511 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count)); 4512 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count); 4513 } 4514 4515 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl, 4516 unsigned int new_start) 4517 { 4518 unsigned int tail_index; 4519 unsigned int current_tail; 4520 4521 /* No records, nothing to coalesce */ 4522 if (!le16_to_cpu(tl->tl_used)) 4523 return 0; 4524 4525 tail_index = le16_to_cpu(tl->tl_used) - 1; 4526 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start); 4527 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters); 4528 4529 return current_tail == new_start; 4530 } 4531 4532 int ocfs2_truncate_log_append(struct ocfs2_super *osb, 4533 handle_t *handle, 4534 u64 start_blk, 4535 unsigned int num_clusters) 4536 { 4537 int status, index; 4538 unsigned int start_cluster, tl_count; 4539 struct inode *tl_inode = osb->osb_tl_inode; 4540 struct buffer_head *tl_bh = osb->osb_tl_bh; 4541 struct ocfs2_dinode *di; 4542 struct ocfs2_truncate_log *tl; 4543 4544 mlog_entry("start_blk = %llu, num_clusters = %u\n", 4545 (unsigned long long)start_blk, num_clusters); 4546 4547 BUG_ON(mutex_trylock(&tl_inode->i_mutex)); 4548 4549 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk); 4550 4551 di = (struct ocfs2_dinode *) tl_bh->b_data; 4552 tl = &di->id2.i_dealloc; 4553 if (!OCFS2_IS_VALID_DINODE(di)) { 4554 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di); 4555 status = -EIO; 4556 goto bail; 4557 } 4558 4559 tl_count = le16_to_cpu(tl->tl_count); 4560 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) || 4561 tl_count == 0, 4562 "Truncate record count on #%llu invalid " 4563 "wanted %u, actual %u\n", 4564 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 4565 ocfs2_truncate_recs_per_inode(osb->sb), 4566 le16_to_cpu(tl->tl_count)); 4567 4568 /* Caller should have known to flush before calling us. */ 4569 index = le16_to_cpu(tl->tl_used); 4570 if (index >= tl_count) { 4571 status = -ENOSPC; 4572 mlog_errno(status); 4573 goto bail; 4574 } 4575 4576 status = ocfs2_journal_access(handle, tl_inode, tl_bh, 4577 OCFS2_JOURNAL_ACCESS_WRITE); 4578 if (status < 0) { 4579 mlog_errno(status); 4580 goto bail; 4581 } 4582 4583 mlog(0, "Log truncate of %u clusters starting at cluster %u to " 4584 "%llu (index = %d)\n", num_clusters, start_cluster, 4585 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index); 4586 4587 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) { 4588 /* 4589 * Move index back to the record we are coalescing with. 4590 * ocfs2_truncate_log_can_coalesce() guarantees nonzero 4591 */ 4592 index--; 4593 4594 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters); 4595 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n", 4596 index, le32_to_cpu(tl->tl_recs[index].t_start), 4597 num_clusters); 4598 } else { 4599 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster); 4600 tl->tl_used = cpu_to_le16(index + 1); 4601 } 4602 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters); 4603 4604 status = ocfs2_journal_dirty(handle, tl_bh); 4605 if (status < 0) { 4606 mlog_errno(status); 4607 goto bail; 4608 } 4609 4610 bail: 4611 mlog_exit(status); 4612 return status; 4613 } 4614 4615 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb, 4616 handle_t *handle, 4617 struct inode *data_alloc_inode, 4618 struct buffer_head *data_alloc_bh) 4619 { 4620 int status = 0; 4621 int i; 4622 unsigned int num_clusters; 4623 u64 start_blk; 4624 struct ocfs2_truncate_rec rec; 4625 struct ocfs2_dinode *di; 4626 struct ocfs2_truncate_log *tl; 4627 struct inode *tl_inode = osb->osb_tl_inode; 4628 struct buffer_head *tl_bh = osb->osb_tl_bh; 4629 4630 mlog_entry_void(); 4631 4632 di = (struct ocfs2_dinode *) tl_bh->b_data; 4633 tl = &di->id2.i_dealloc; 4634 i = le16_to_cpu(tl->tl_used) - 1; 4635 while (i >= 0) { 4636 /* Caller has given us at least enough credits to 4637 * update the truncate log dinode */ 4638 status = ocfs2_journal_access(handle, tl_inode, tl_bh, 4639 OCFS2_JOURNAL_ACCESS_WRITE); 4640 if (status < 0) { 4641 mlog_errno(status); 4642 goto bail; 4643 } 4644 4645 tl->tl_used = cpu_to_le16(i); 4646 4647 status = ocfs2_journal_dirty(handle, tl_bh); 4648 if (status < 0) { 4649 mlog_errno(status); 4650 goto bail; 4651 } 4652 4653 /* TODO: Perhaps we can calculate the bulk of the 4654 * credits up front rather than extending like 4655 * this. */ 4656 status = ocfs2_extend_trans(handle, 4657 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC); 4658 if (status < 0) { 4659 mlog_errno(status); 4660 goto bail; 4661 } 4662 4663 rec = tl->tl_recs[i]; 4664 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb, 4665 le32_to_cpu(rec.t_start)); 4666 num_clusters = le32_to_cpu(rec.t_clusters); 4667 4668 /* if start_blk is not set, we ignore the record as 4669 * invalid. */ 4670 if (start_blk) { 4671 mlog(0, "free record %d, start = %u, clusters = %u\n", 4672 i, le32_to_cpu(rec.t_start), num_clusters); 4673 4674 status = ocfs2_free_clusters(handle, data_alloc_inode, 4675 data_alloc_bh, start_blk, 4676 num_clusters); 4677 if (status < 0) { 4678 mlog_errno(status); 4679 goto bail; 4680 } 4681 } 4682 i--; 4683 } 4684 4685 bail: 4686 mlog_exit(status); 4687 return status; 4688 } 4689 4690 /* Expects you to already be holding tl_inode->i_mutex */ 4691 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb) 4692 { 4693 int status; 4694 unsigned int num_to_flush; 4695 handle_t *handle; 4696 struct inode *tl_inode = osb->osb_tl_inode; 4697 struct inode *data_alloc_inode = NULL; 4698 struct buffer_head *tl_bh = osb->osb_tl_bh; 4699 struct buffer_head *data_alloc_bh = NULL; 4700 struct ocfs2_dinode *di; 4701 struct ocfs2_truncate_log *tl; 4702 4703 mlog_entry_void(); 4704 4705 BUG_ON(mutex_trylock(&tl_inode->i_mutex)); 4706 4707 di = (struct ocfs2_dinode *) tl_bh->b_data; 4708 tl = &di->id2.i_dealloc; 4709 if (!OCFS2_IS_VALID_DINODE(di)) { 4710 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di); 4711 status = -EIO; 4712 goto out; 4713 } 4714 4715 num_to_flush = le16_to_cpu(tl->tl_used); 4716 mlog(0, "Flush %u records from truncate log #%llu\n", 4717 num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno); 4718 if (!num_to_flush) { 4719 status = 0; 4720 goto out; 4721 } 4722 4723 data_alloc_inode = ocfs2_get_system_file_inode(osb, 4724 GLOBAL_BITMAP_SYSTEM_INODE, 4725 OCFS2_INVALID_SLOT); 4726 if (!data_alloc_inode) { 4727 status = -EINVAL; 4728 mlog(ML_ERROR, "Could not get bitmap inode!\n"); 4729 goto out; 4730 } 4731 4732 mutex_lock(&data_alloc_inode->i_mutex); 4733 4734 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1); 4735 if (status < 0) { 4736 mlog_errno(status); 4737 goto out_mutex; 4738 } 4739 4740 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 4741 if (IS_ERR(handle)) { 4742 status = PTR_ERR(handle); 4743 mlog_errno(status); 4744 goto out_unlock; 4745 } 4746 4747 status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode, 4748 data_alloc_bh); 4749 if (status < 0) 4750 mlog_errno(status); 4751 4752 ocfs2_commit_trans(osb, handle); 4753 4754 out_unlock: 4755 brelse(data_alloc_bh); 4756 ocfs2_inode_unlock(data_alloc_inode, 1); 4757 4758 out_mutex: 4759 mutex_unlock(&data_alloc_inode->i_mutex); 4760 iput(data_alloc_inode); 4761 4762 out: 4763 mlog_exit(status); 4764 return status; 4765 } 4766 4767 int ocfs2_flush_truncate_log(struct ocfs2_super *osb) 4768 { 4769 int status; 4770 struct inode *tl_inode = osb->osb_tl_inode; 4771 4772 mutex_lock(&tl_inode->i_mutex); 4773 status = __ocfs2_flush_truncate_log(osb); 4774 mutex_unlock(&tl_inode->i_mutex); 4775 4776 return status; 4777 } 4778 4779 static void ocfs2_truncate_log_worker(struct work_struct *work) 4780 { 4781 int status; 4782 struct ocfs2_super *osb = 4783 container_of(work, struct ocfs2_super, 4784 osb_truncate_log_wq.work); 4785 4786 mlog_entry_void(); 4787 4788 status = ocfs2_flush_truncate_log(osb); 4789 if (status < 0) 4790 mlog_errno(status); 4791 4792 mlog_exit(status); 4793 } 4794 4795 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ) 4796 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb, 4797 int cancel) 4798 { 4799 if (osb->osb_tl_inode) { 4800 /* We want to push off log flushes while truncates are 4801 * still running. */ 4802 if (cancel) 4803 cancel_delayed_work(&osb->osb_truncate_log_wq); 4804 4805 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq, 4806 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL); 4807 } 4808 } 4809 4810 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb, 4811 int slot_num, 4812 struct inode **tl_inode, 4813 struct buffer_head **tl_bh) 4814 { 4815 int status; 4816 struct inode *inode = NULL; 4817 struct buffer_head *bh = NULL; 4818 4819 inode = ocfs2_get_system_file_inode(osb, 4820 TRUNCATE_LOG_SYSTEM_INODE, 4821 slot_num); 4822 if (!inode) { 4823 status = -EINVAL; 4824 mlog(ML_ERROR, "Could not get load truncate log inode!\n"); 4825 goto bail; 4826 } 4827 4828 status = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &bh, 4829 OCFS2_BH_CACHED, inode); 4830 if (status < 0) { 4831 iput(inode); 4832 mlog_errno(status); 4833 goto bail; 4834 } 4835 4836 *tl_inode = inode; 4837 *tl_bh = bh; 4838 bail: 4839 mlog_exit(status); 4840 return status; 4841 } 4842 4843 /* called during the 1st stage of node recovery. we stamp a clean 4844 * truncate log and pass back a copy for processing later. if the 4845 * truncate log does not require processing, a *tl_copy is set to 4846 * NULL. */ 4847 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb, 4848 int slot_num, 4849 struct ocfs2_dinode **tl_copy) 4850 { 4851 int status; 4852 struct inode *tl_inode = NULL; 4853 struct buffer_head *tl_bh = NULL; 4854 struct ocfs2_dinode *di; 4855 struct ocfs2_truncate_log *tl; 4856 4857 *tl_copy = NULL; 4858 4859 mlog(0, "recover truncate log from slot %d\n", slot_num); 4860 4861 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh); 4862 if (status < 0) { 4863 mlog_errno(status); 4864 goto bail; 4865 } 4866 4867 di = (struct ocfs2_dinode *) tl_bh->b_data; 4868 tl = &di->id2.i_dealloc; 4869 if (!OCFS2_IS_VALID_DINODE(di)) { 4870 OCFS2_RO_ON_INVALID_DINODE(tl_inode->i_sb, di); 4871 status = -EIO; 4872 goto bail; 4873 } 4874 4875 if (le16_to_cpu(tl->tl_used)) { 4876 mlog(0, "We'll have %u logs to recover\n", 4877 le16_to_cpu(tl->tl_used)); 4878 4879 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL); 4880 if (!(*tl_copy)) { 4881 status = -ENOMEM; 4882 mlog_errno(status); 4883 goto bail; 4884 } 4885 4886 /* Assuming the write-out below goes well, this copy 4887 * will be passed back to recovery for processing. */ 4888 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size); 4889 4890 /* All we need to do to clear the truncate log is set 4891 * tl_used. */ 4892 tl->tl_used = 0; 4893 4894 status = ocfs2_write_block(osb, tl_bh, tl_inode); 4895 if (status < 0) { 4896 mlog_errno(status); 4897 goto bail; 4898 } 4899 } 4900 4901 bail: 4902 if (tl_inode) 4903 iput(tl_inode); 4904 if (tl_bh) 4905 brelse(tl_bh); 4906 4907 if (status < 0 && (*tl_copy)) { 4908 kfree(*tl_copy); 4909 *tl_copy = NULL; 4910 } 4911 4912 mlog_exit(status); 4913 return status; 4914 } 4915 4916 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb, 4917 struct ocfs2_dinode *tl_copy) 4918 { 4919 int status = 0; 4920 int i; 4921 unsigned int clusters, num_recs, start_cluster; 4922 u64 start_blk; 4923 handle_t *handle; 4924 struct inode *tl_inode = osb->osb_tl_inode; 4925 struct ocfs2_truncate_log *tl; 4926 4927 mlog_entry_void(); 4928 4929 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) { 4930 mlog(ML_ERROR, "Asked to recover my own truncate log!\n"); 4931 return -EINVAL; 4932 } 4933 4934 tl = &tl_copy->id2.i_dealloc; 4935 num_recs = le16_to_cpu(tl->tl_used); 4936 mlog(0, "cleanup %u records from %llu\n", num_recs, 4937 (unsigned long long)le64_to_cpu(tl_copy->i_blkno)); 4938 4939 mutex_lock(&tl_inode->i_mutex); 4940 for(i = 0; i < num_recs; i++) { 4941 if (ocfs2_truncate_log_needs_flush(osb)) { 4942 status = __ocfs2_flush_truncate_log(osb); 4943 if (status < 0) { 4944 mlog_errno(status); 4945 goto bail_up; 4946 } 4947 } 4948 4949 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 4950 if (IS_ERR(handle)) { 4951 status = PTR_ERR(handle); 4952 mlog_errno(status); 4953 goto bail_up; 4954 } 4955 4956 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters); 4957 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start); 4958 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster); 4959 4960 status = ocfs2_truncate_log_append(osb, handle, 4961 start_blk, clusters); 4962 ocfs2_commit_trans(osb, handle); 4963 if (status < 0) { 4964 mlog_errno(status); 4965 goto bail_up; 4966 } 4967 } 4968 4969 bail_up: 4970 mutex_unlock(&tl_inode->i_mutex); 4971 4972 mlog_exit(status); 4973 return status; 4974 } 4975 4976 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb) 4977 { 4978 int status; 4979 struct inode *tl_inode = osb->osb_tl_inode; 4980 4981 mlog_entry_void(); 4982 4983 if (tl_inode) { 4984 cancel_delayed_work(&osb->osb_truncate_log_wq); 4985 flush_workqueue(ocfs2_wq); 4986 4987 status = ocfs2_flush_truncate_log(osb); 4988 if (status < 0) 4989 mlog_errno(status); 4990 4991 brelse(osb->osb_tl_bh); 4992 iput(osb->osb_tl_inode); 4993 } 4994 4995 mlog_exit_void(); 4996 } 4997 4998 int ocfs2_truncate_log_init(struct ocfs2_super *osb) 4999 { 5000 int status; 5001 struct inode *tl_inode = NULL; 5002 struct buffer_head *tl_bh = NULL; 5003 5004 mlog_entry_void(); 5005 5006 status = ocfs2_get_truncate_log_info(osb, 5007 osb->slot_num, 5008 &tl_inode, 5009 &tl_bh); 5010 if (status < 0) 5011 mlog_errno(status); 5012 5013 /* ocfs2_truncate_log_shutdown keys on the existence of 5014 * osb->osb_tl_inode so we don't set any of the osb variables 5015 * until we're sure all is well. */ 5016 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq, 5017 ocfs2_truncate_log_worker); 5018 osb->osb_tl_bh = tl_bh; 5019 osb->osb_tl_inode = tl_inode; 5020 5021 mlog_exit(status); 5022 return status; 5023 } 5024 5025 /* 5026 * Delayed de-allocation of suballocator blocks. 5027 * 5028 * Some sets of block de-allocations might involve multiple suballocator inodes. 5029 * 5030 * The locking for this can get extremely complicated, especially when 5031 * the suballocator inodes to delete from aren't known until deep 5032 * within an unrelated codepath. 5033 * 5034 * ocfs2_extent_block structures are a good example of this - an inode 5035 * btree could have been grown by any number of nodes each allocating 5036 * out of their own suballoc inode. 5037 * 5038 * These structures allow the delay of block de-allocation until a 5039 * later time, when locking of multiple cluster inodes won't cause 5040 * deadlock. 5041 */ 5042 5043 /* 5044 * Describes a single block free from a suballocator 5045 */ 5046 struct ocfs2_cached_block_free { 5047 struct ocfs2_cached_block_free *free_next; 5048 u64 free_blk; 5049 unsigned int free_bit; 5050 }; 5051 5052 struct ocfs2_per_slot_free_list { 5053 struct ocfs2_per_slot_free_list *f_next_suballocator; 5054 int f_inode_type; 5055 int f_slot; 5056 struct ocfs2_cached_block_free *f_first; 5057 }; 5058 5059 static int ocfs2_free_cached_items(struct ocfs2_super *osb, 5060 int sysfile_type, 5061 int slot, 5062 struct ocfs2_cached_block_free *head) 5063 { 5064 int ret; 5065 u64 bg_blkno; 5066 handle_t *handle; 5067 struct inode *inode; 5068 struct buffer_head *di_bh = NULL; 5069 struct ocfs2_cached_block_free *tmp; 5070 5071 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot); 5072 if (!inode) { 5073 ret = -EINVAL; 5074 mlog_errno(ret); 5075 goto out; 5076 } 5077 5078 mutex_lock(&inode->i_mutex); 5079 5080 ret = ocfs2_inode_lock(inode, &di_bh, 1); 5081 if (ret) { 5082 mlog_errno(ret); 5083 goto out_mutex; 5084 } 5085 5086 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE); 5087 if (IS_ERR(handle)) { 5088 ret = PTR_ERR(handle); 5089 mlog_errno(ret); 5090 goto out_unlock; 5091 } 5092 5093 while (head) { 5094 bg_blkno = ocfs2_which_suballoc_group(head->free_blk, 5095 head->free_bit); 5096 mlog(0, "Free bit: (bit %u, blkno %llu)\n", 5097 head->free_bit, (unsigned long long)head->free_blk); 5098 5099 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh, 5100 head->free_bit, bg_blkno, 1); 5101 if (ret) { 5102 mlog_errno(ret); 5103 goto out_journal; 5104 } 5105 5106 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE); 5107 if (ret) { 5108 mlog_errno(ret); 5109 goto out_journal; 5110 } 5111 5112 tmp = head; 5113 head = head->free_next; 5114 kfree(tmp); 5115 } 5116 5117 out_journal: 5118 ocfs2_commit_trans(osb, handle); 5119 5120 out_unlock: 5121 ocfs2_inode_unlock(inode, 1); 5122 brelse(di_bh); 5123 out_mutex: 5124 mutex_unlock(&inode->i_mutex); 5125 iput(inode); 5126 out: 5127 while(head) { 5128 /* Premature exit may have left some dangling items. */ 5129 tmp = head; 5130 head = head->free_next; 5131 kfree(tmp); 5132 } 5133 5134 return ret; 5135 } 5136 5137 int ocfs2_run_deallocs(struct ocfs2_super *osb, 5138 struct ocfs2_cached_dealloc_ctxt *ctxt) 5139 { 5140 int ret = 0, ret2; 5141 struct ocfs2_per_slot_free_list *fl; 5142 5143 if (!ctxt) 5144 return 0; 5145 5146 while (ctxt->c_first_suballocator) { 5147 fl = ctxt->c_first_suballocator; 5148 5149 if (fl->f_first) { 5150 mlog(0, "Free items: (type %u, slot %d)\n", 5151 fl->f_inode_type, fl->f_slot); 5152 ret2 = ocfs2_free_cached_items(osb, fl->f_inode_type, 5153 fl->f_slot, fl->f_first); 5154 if (ret2) 5155 mlog_errno(ret2); 5156 if (!ret) 5157 ret = ret2; 5158 } 5159 5160 ctxt->c_first_suballocator = fl->f_next_suballocator; 5161 kfree(fl); 5162 } 5163 5164 return ret; 5165 } 5166 5167 static struct ocfs2_per_slot_free_list * 5168 ocfs2_find_per_slot_free_list(int type, 5169 int slot, 5170 struct ocfs2_cached_dealloc_ctxt *ctxt) 5171 { 5172 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; 5173 5174 while (fl) { 5175 if (fl->f_inode_type == type && fl->f_slot == slot) 5176 return fl; 5177 5178 fl = fl->f_next_suballocator; 5179 } 5180 5181 fl = kmalloc(sizeof(*fl), GFP_NOFS); 5182 if (fl) { 5183 fl->f_inode_type = type; 5184 fl->f_slot = slot; 5185 fl->f_first = NULL; 5186 fl->f_next_suballocator = ctxt->c_first_suballocator; 5187 5188 ctxt->c_first_suballocator = fl; 5189 } 5190 return fl; 5191 } 5192 5193 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 5194 int type, int slot, u64 blkno, 5195 unsigned int bit) 5196 { 5197 int ret; 5198 struct ocfs2_per_slot_free_list *fl; 5199 struct ocfs2_cached_block_free *item; 5200 5201 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt); 5202 if (fl == NULL) { 5203 ret = -ENOMEM; 5204 mlog_errno(ret); 5205 goto out; 5206 } 5207 5208 item = kmalloc(sizeof(*item), GFP_NOFS); 5209 if (item == NULL) { 5210 ret = -ENOMEM; 5211 mlog_errno(ret); 5212 goto out; 5213 } 5214 5215 mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n", 5216 type, slot, bit, (unsigned long long)blkno); 5217 5218 item->free_blk = blkno; 5219 item->free_bit = bit; 5220 item->free_next = fl->f_first; 5221 5222 fl->f_first = item; 5223 5224 ret = 0; 5225 out: 5226 return ret; 5227 } 5228 5229 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 5230 struct ocfs2_extent_block *eb) 5231 { 5232 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE, 5233 le16_to_cpu(eb->h_suballoc_slot), 5234 le64_to_cpu(eb->h_blkno), 5235 le16_to_cpu(eb->h_suballoc_bit)); 5236 } 5237 5238 /* This function will figure out whether the currently last extent 5239 * block will be deleted, and if it will, what the new last extent 5240 * block will be so we can update his h_next_leaf_blk field, as well 5241 * as the dinodes i_last_eb_blk */ 5242 static int ocfs2_find_new_last_ext_blk(struct inode *inode, 5243 unsigned int clusters_to_del, 5244 struct ocfs2_path *path, 5245 struct buffer_head **new_last_eb) 5246 { 5247 int next_free, ret = 0; 5248 u32 cpos; 5249 struct ocfs2_extent_rec *rec; 5250 struct ocfs2_extent_block *eb; 5251 struct ocfs2_extent_list *el; 5252 struct buffer_head *bh = NULL; 5253 5254 *new_last_eb = NULL; 5255 5256 /* we have no tree, so of course, no last_eb. */ 5257 if (!path->p_tree_depth) 5258 goto out; 5259 5260 /* trunc to zero special case - this makes tree_depth = 0 5261 * regardless of what it is. */ 5262 if (OCFS2_I(inode)->ip_clusters == clusters_to_del) 5263 goto out; 5264 5265 el = path_leaf_el(path); 5266 BUG_ON(!el->l_next_free_rec); 5267 5268 /* 5269 * Make sure that this extent list will actually be empty 5270 * after we clear away the data. We can shortcut out if 5271 * there's more than one non-empty extent in the 5272 * list. Otherwise, a check of the remaining extent is 5273 * necessary. 5274 */ 5275 next_free = le16_to_cpu(el->l_next_free_rec); 5276 rec = NULL; 5277 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 5278 if (next_free > 2) 5279 goto out; 5280 5281 /* We may have a valid extent in index 1, check it. */ 5282 if (next_free == 2) 5283 rec = &el->l_recs[1]; 5284 5285 /* 5286 * Fall through - no more nonempty extents, so we want 5287 * to delete this leaf. 5288 */ 5289 } else { 5290 if (next_free > 1) 5291 goto out; 5292 5293 rec = &el->l_recs[0]; 5294 } 5295 5296 if (rec) { 5297 /* 5298 * Check it we'll only be trimming off the end of this 5299 * cluster. 5300 */ 5301 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del) 5302 goto out; 5303 } 5304 5305 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos); 5306 if (ret) { 5307 mlog_errno(ret); 5308 goto out; 5309 } 5310 5311 ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh); 5312 if (ret) { 5313 mlog_errno(ret); 5314 goto out; 5315 } 5316 5317 eb = (struct ocfs2_extent_block *) bh->b_data; 5318 el = &eb->h_list; 5319 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 5320 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); 5321 ret = -EROFS; 5322 goto out; 5323 } 5324 5325 *new_last_eb = bh; 5326 get_bh(*new_last_eb); 5327 mlog(0, "returning block %llu, (cpos: %u)\n", 5328 (unsigned long long)le64_to_cpu(eb->h_blkno), cpos); 5329 out: 5330 brelse(bh); 5331 5332 return ret; 5333 } 5334 5335 /* 5336 * Trim some clusters off the rightmost edge of a tree. Only called 5337 * during truncate. 5338 * 5339 * The caller needs to: 5340 * - start journaling of each path component. 5341 * - compute and fully set up any new last ext block 5342 */ 5343 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path, 5344 handle_t *handle, struct ocfs2_truncate_context *tc, 5345 u32 clusters_to_del, u64 *delete_start) 5346 { 5347 int ret, i, index = path->p_tree_depth; 5348 u32 new_edge = 0; 5349 u64 deleted_eb = 0; 5350 struct buffer_head *bh; 5351 struct ocfs2_extent_list *el; 5352 struct ocfs2_extent_rec *rec; 5353 5354 *delete_start = 0; 5355 5356 while (index >= 0) { 5357 bh = path->p_node[index].bh; 5358 el = path->p_node[index].el; 5359 5360 mlog(0, "traveling tree (index = %d, block = %llu)\n", 5361 index, (unsigned long long)bh->b_blocknr); 5362 5363 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 5364 5365 if (index != 5366 (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) { 5367 ocfs2_error(inode->i_sb, 5368 "Inode %lu has invalid ext. block %llu", 5369 inode->i_ino, 5370 (unsigned long long)bh->b_blocknr); 5371 ret = -EROFS; 5372 goto out; 5373 } 5374 5375 find_tail_record: 5376 i = le16_to_cpu(el->l_next_free_rec) - 1; 5377 rec = &el->l_recs[i]; 5378 5379 mlog(0, "Extent list before: record %d: (%u, %u, %llu), " 5380 "next = %u\n", i, le32_to_cpu(rec->e_cpos), 5381 ocfs2_rec_clusters(el, rec), 5382 (unsigned long long)le64_to_cpu(rec->e_blkno), 5383 le16_to_cpu(el->l_next_free_rec)); 5384 5385 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del); 5386 5387 if (le16_to_cpu(el->l_tree_depth) == 0) { 5388 /* 5389 * If the leaf block contains a single empty 5390 * extent and no records, we can just remove 5391 * the block. 5392 */ 5393 if (i == 0 && ocfs2_is_empty_extent(rec)) { 5394 memset(rec, 0, 5395 sizeof(struct ocfs2_extent_rec)); 5396 el->l_next_free_rec = cpu_to_le16(0); 5397 5398 goto delete; 5399 } 5400 5401 /* 5402 * Remove any empty extents by shifting things 5403 * left. That should make life much easier on 5404 * the code below. This condition is rare 5405 * enough that we shouldn't see a performance 5406 * hit. 5407 */ 5408 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 5409 le16_add_cpu(&el->l_next_free_rec, -1); 5410 5411 for(i = 0; 5412 i < le16_to_cpu(el->l_next_free_rec); i++) 5413 el->l_recs[i] = el->l_recs[i + 1]; 5414 5415 memset(&el->l_recs[i], 0, 5416 sizeof(struct ocfs2_extent_rec)); 5417 5418 /* 5419 * We've modified our extent list. The 5420 * simplest way to handle this change 5421 * is to being the search from the 5422 * start again. 5423 */ 5424 goto find_tail_record; 5425 } 5426 5427 le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del); 5428 5429 /* 5430 * We'll use "new_edge" on our way back up the 5431 * tree to know what our rightmost cpos is. 5432 */ 5433 new_edge = le16_to_cpu(rec->e_leaf_clusters); 5434 new_edge += le32_to_cpu(rec->e_cpos); 5435 5436 /* 5437 * The caller will use this to delete data blocks. 5438 */ 5439 *delete_start = le64_to_cpu(rec->e_blkno) 5440 + ocfs2_clusters_to_blocks(inode->i_sb, 5441 le16_to_cpu(rec->e_leaf_clusters)); 5442 5443 /* 5444 * If it's now empty, remove this record. 5445 */ 5446 if (le16_to_cpu(rec->e_leaf_clusters) == 0) { 5447 memset(rec, 0, 5448 sizeof(struct ocfs2_extent_rec)); 5449 le16_add_cpu(&el->l_next_free_rec, -1); 5450 } 5451 } else { 5452 if (le64_to_cpu(rec->e_blkno) == deleted_eb) { 5453 memset(rec, 0, 5454 sizeof(struct ocfs2_extent_rec)); 5455 le16_add_cpu(&el->l_next_free_rec, -1); 5456 5457 goto delete; 5458 } 5459 5460 /* Can this actually happen? */ 5461 if (le16_to_cpu(el->l_next_free_rec) == 0) 5462 goto delete; 5463 5464 /* 5465 * We never actually deleted any clusters 5466 * because our leaf was empty. There's no 5467 * reason to adjust the rightmost edge then. 5468 */ 5469 if (new_edge == 0) 5470 goto delete; 5471 5472 rec->e_int_clusters = cpu_to_le32(new_edge); 5473 le32_add_cpu(&rec->e_int_clusters, 5474 -le32_to_cpu(rec->e_cpos)); 5475 5476 /* 5477 * A deleted child record should have been 5478 * caught above. 5479 */ 5480 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0); 5481 } 5482 5483 delete: 5484 ret = ocfs2_journal_dirty(handle, bh); 5485 if (ret) { 5486 mlog_errno(ret); 5487 goto out; 5488 } 5489 5490 mlog(0, "extent list container %llu, after: record %d: " 5491 "(%u, %u, %llu), next = %u.\n", 5492 (unsigned long long)bh->b_blocknr, i, 5493 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec), 5494 (unsigned long long)le64_to_cpu(rec->e_blkno), 5495 le16_to_cpu(el->l_next_free_rec)); 5496 5497 /* 5498 * We must be careful to only attempt delete of an 5499 * extent block (and not the root inode block). 5500 */ 5501 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) { 5502 struct ocfs2_extent_block *eb = 5503 (struct ocfs2_extent_block *)bh->b_data; 5504 5505 /* 5506 * Save this for use when processing the 5507 * parent block. 5508 */ 5509 deleted_eb = le64_to_cpu(eb->h_blkno); 5510 5511 mlog(0, "deleting this extent block.\n"); 5512 5513 ocfs2_remove_from_cache(inode, bh); 5514 5515 BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0])); 5516 BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos)); 5517 BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno)); 5518 5519 ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb); 5520 /* An error here is not fatal. */ 5521 if (ret < 0) 5522 mlog_errno(ret); 5523 } else { 5524 deleted_eb = 0; 5525 } 5526 5527 index--; 5528 } 5529 5530 ret = 0; 5531 out: 5532 return ret; 5533 } 5534 5535 static int ocfs2_do_truncate(struct ocfs2_super *osb, 5536 unsigned int clusters_to_del, 5537 struct inode *inode, 5538 struct buffer_head *fe_bh, 5539 handle_t *handle, 5540 struct ocfs2_truncate_context *tc, 5541 struct ocfs2_path *path) 5542 { 5543 int status; 5544 struct ocfs2_dinode *fe; 5545 struct ocfs2_extent_block *last_eb = NULL; 5546 struct ocfs2_extent_list *el; 5547 struct buffer_head *last_eb_bh = NULL; 5548 u64 delete_blk = 0; 5549 5550 fe = (struct ocfs2_dinode *) fe_bh->b_data; 5551 5552 status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del, 5553 path, &last_eb_bh); 5554 if (status < 0) { 5555 mlog_errno(status); 5556 goto bail; 5557 } 5558 5559 /* 5560 * Each component will be touched, so we might as well journal 5561 * here to avoid having to handle errors later. 5562 */ 5563 status = ocfs2_journal_access_path(inode, handle, path); 5564 if (status < 0) { 5565 mlog_errno(status); 5566 goto bail; 5567 } 5568 5569 if (last_eb_bh) { 5570 status = ocfs2_journal_access(handle, inode, last_eb_bh, 5571 OCFS2_JOURNAL_ACCESS_WRITE); 5572 if (status < 0) { 5573 mlog_errno(status); 5574 goto bail; 5575 } 5576 5577 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5578 } 5579 5580 el = &(fe->id2.i_list); 5581 5582 /* 5583 * Lower levels depend on this never happening, but it's best 5584 * to check it up here before changing the tree. 5585 */ 5586 if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) { 5587 ocfs2_error(inode->i_sb, 5588 "Inode %lu has an empty extent record, depth %u\n", 5589 inode->i_ino, le16_to_cpu(el->l_tree_depth)); 5590 status = -EROFS; 5591 goto bail; 5592 } 5593 5594 spin_lock(&OCFS2_I(inode)->ip_lock); 5595 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) - 5596 clusters_to_del; 5597 spin_unlock(&OCFS2_I(inode)->ip_lock); 5598 le32_add_cpu(&fe->i_clusters, -clusters_to_del); 5599 inode->i_blocks = ocfs2_inode_sector_count(inode); 5600 5601 status = ocfs2_trim_tree(inode, path, handle, tc, 5602 clusters_to_del, &delete_blk); 5603 if (status) { 5604 mlog_errno(status); 5605 goto bail; 5606 } 5607 5608 if (le32_to_cpu(fe->i_clusters) == 0) { 5609 /* trunc to zero is a special case. */ 5610 el->l_tree_depth = 0; 5611 fe->i_last_eb_blk = 0; 5612 } else if (last_eb) 5613 fe->i_last_eb_blk = last_eb->h_blkno; 5614 5615 status = ocfs2_journal_dirty(handle, fe_bh); 5616 if (status < 0) { 5617 mlog_errno(status); 5618 goto bail; 5619 } 5620 5621 if (last_eb) { 5622 /* If there will be a new last extent block, then by 5623 * definition, there cannot be any leaves to the right of 5624 * him. */ 5625 last_eb->h_next_leaf_blk = 0; 5626 status = ocfs2_journal_dirty(handle, last_eb_bh); 5627 if (status < 0) { 5628 mlog_errno(status); 5629 goto bail; 5630 } 5631 } 5632 5633 if (delete_blk) { 5634 status = ocfs2_truncate_log_append(osb, handle, delete_blk, 5635 clusters_to_del); 5636 if (status < 0) { 5637 mlog_errno(status); 5638 goto bail; 5639 } 5640 } 5641 status = 0; 5642 bail: 5643 5644 mlog_exit(status); 5645 return status; 5646 } 5647 5648 static int ocfs2_writeback_zero_func(handle_t *handle, struct buffer_head *bh) 5649 { 5650 set_buffer_uptodate(bh); 5651 mark_buffer_dirty(bh); 5652 return 0; 5653 } 5654 5655 static int ocfs2_ordered_zero_func(handle_t *handle, struct buffer_head *bh) 5656 { 5657 set_buffer_uptodate(bh); 5658 mark_buffer_dirty(bh); 5659 return ocfs2_journal_dirty_data(handle, bh); 5660 } 5661 5662 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle, 5663 unsigned int from, unsigned int to, 5664 struct page *page, int zero, u64 *phys) 5665 { 5666 int ret, partial = 0; 5667 5668 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0); 5669 if (ret) 5670 mlog_errno(ret); 5671 5672 if (zero) 5673 zero_user_page(page, from, to - from, KM_USER0); 5674 5675 /* 5676 * Need to set the buffers we zero'd into uptodate 5677 * here if they aren't - ocfs2_map_page_blocks() 5678 * might've skipped some 5679 */ 5680 if (ocfs2_should_order_data(inode)) { 5681 ret = walk_page_buffers(handle, 5682 page_buffers(page), 5683 from, to, &partial, 5684 ocfs2_ordered_zero_func); 5685 if (ret < 0) 5686 mlog_errno(ret); 5687 } else { 5688 ret = walk_page_buffers(handle, page_buffers(page), 5689 from, to, &partial, 5690 ocfs2_writeback_zero_func); 5691 if (ret < 0) 5692 mlog_errno(ret); 5693 } 5694 5695 if (!partial) 5696 SetPageUptodate(page); 5697 5698 flush_dcache_page(page); 5699 } 5700 5701 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start, 5702 loff_t end, struct page **pages, 5703 int numpages, u64 phys, handle_t *handle) 5704 { 5705 int i; 5706 struct page *page; 5707 unsigned int from, to = PAGE_CACHE_SIZE; 5708 struct super_block *sb = inode->i_sb; 5709 5710 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb))); 5711 5712 if (numpages == 0) 5713 goto out; 5714 5715 to = PAGE_CACHE_SIZE; 5716 for(i = 0; i < numpages; i++) { 5717 page = pages[i]; 5718 5719 from = start & (PAGE_CACHE_SIZE - 1); 5720 if ((end >> PAGE_CACHE_SHIFT) == page->index) 5721 to = end & (PAGE_CACHE_SIZE - 1); 5722 5723 BUG_ON(from > PAGE_CACHE_SIZE); 5724 BUG_ON(to > PAGE_CACHE_SIZE); 5725 5726 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1, 5727 &phys); 5728 5729 start = (page->index + 1) << PAGE_CACHE_SHIFT; 5730 } 5731 out: 5732 if (pages) 5733 ocfs2_unlock_and_free_pages(pages, numpages); 5734 } 5735 5736 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end, 5737 struct page **pages, int *num) 5738 { 5739 int numpages, ret = 0; 5740 struct super_block *sb = inode->i_sb; 5741 struct address_space *mapping = inode->i_mapping; 5742 unsigned long index; 5743 loff_t last_page_bytes; 5744 5745 BUG_ON(start > end); 5746 5747 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits != 5748 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits); 5749 5750 numpages = 0; 5751 last_page_bytes = PAGE_ALIGN(end); 5752 index = start >> PAGE_CACHE_SHIFT; 5753 do { 5754 pages[numpages] = grab_cache_page(mapping, index); 5755 if (!pages[numpages]) { 5756 ret = -ENOMEM; 5757 mlog_errno(ret); 5758 goto out; 5759 } 5760 5761 numpages++; 5762 index++; 5763 } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT)); 5764 5765 out: 5766 if (ret != 0) { 5767 if (pages) 5768 ocfs2_unlock_and_free_pages(pages, numpages); 5769 numpages = 0; 5770 } 5771 5772 *num = numpages; 5773 5774 return ret; 5775 } 5776 5777 /* 5778 * Zero the area past i_size but still within an allocated 5779 * cluster. This avoids exposing nonzero data on subsequent file 5780 * extends. 5781 * 5782 * We need to call this before i_size is updated on the inode because 5783 * otherwise block_write_full_page() will skip writeout of pages past 5784 * i_size. The new_i_size parameter is passed for this reason. 5785 */ 5786 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle, 5787 u64 range_start, u64 range_end) 5788 { 5789 int ret = 0, numpages; 5790 struct page **pages = NULL; 5791 u64 phys; 5792 unsigned int ext_flags; 5793 struct super_block *sb = inode->i_sb; 5794 5795 /* 5796 * File systems which don't support sparse files zero on every 5797 * extend. 5798 */ 5799 if (!ocfs2_sparse_alloc(OCFS2_SB(sb))) 5800 return 0; 5801 5802 pages = kcalloc(ocfs2_pages_per_cluster(sb), 5803 sizeof(struct page *), GFP_NOFS); 5804 if (pages == NULL) { 5805 ret = -ENOMEM; 5806 mlog_errno(ret); 5807 goto out; 5808 } 5809 5810 if (range_start == range_end) 5811 goto out; 5812 5813 ret = ocfs2_extent_map_get_blocks(inode, 5814 range_start >> sb->s_blocksize_bits, 5815 &phys, NULL, &ext_flags); 5816 if (ret) { 5817 mlog_errno(ret); 5818 goto out; 5819 } 5820 5821 /* 5822 * Tail is a hole, or is marked unwritten. In either case, we 5823 * can count on read and write to return/push zero's. 5824 */ 5825 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN) 5826 goto out; 5827 5828 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages, 5829 &numpages); 5830 if (ret) { 5831 mlog_errno(ret); 5832 goto out; 5833 } 5834 5835 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages, 5836 numpages, phys, handle); 5837 5838 /* 5839 * Initiate writeout of the pages we zero'd here. We don't 5840 * wait on them - the truncate_inode_pages() call later will 5841 * do that for us. 5842 */ 5843 ret = do_sync_mapping_range(inode->i_mapping, range_start, 5844 range_end - 1, SYNC_FILE_RANGE_WRITE); 5845 if (ret) 5846 mlog_errno(ret); 5847 5848 out: 5849 if (pages) 5850 kfree(pages); 5851 5852 return ret; 5853 } 5854 5855 static void ocfs2_zero_dinode_id2(struct inode *inode, struct ocfs2_dinode *di) 5856 { 5857 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits; 5858 5859 memset(&di->id2, 0, blocksize - offsetof(struct ocfs2_dinode, id2)); 5860 } 5861 5862 void ocfs2_dinode_new_extent_list(struct inode *inode, 5863 struct ocfs2_dinode *di) 5864 { 5865 ocfs2_zero_dinode_id2(inode, di); 5866 di->id2.i_list.l_tree_depth = 0; 5867 di->id2.i_list.l_next_free_rec = 0; 5868 di->id2.i_list.l_count = cpu_to_le16(ocfs2_extent_recs_per_inode(inode->i_sb)); 5869 } 5870 5871 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di) 5872 { 5873 struct ocfs2_inode_info *oi = OCFS2_I(inode); 5874 struct ocfs2_inline_data *idata = &di->id2.i_data; 5875 5876 spin_lock(&oi->ip_lock); 5877 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL; 5878 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 5879 spin_unlock(&oi->ip_lock); 5880 5881 /* 5882 * We clear the entire i_data structure here so that all 5883 * fields can be properly initialized. 5884 */ 5885 ocfs2_zero_dinode_id2(inode, di); 5886 5887 idata->id_count = cpu_to_le16(ocfs2_max_inline_data(inode->i_sb)); 5888 } 5889 5890 int ocfs2_convert_inline_data_to_extents(struct inode *inode, 5891 struct buffer_head *di_bh) 5892 { 5893 int ret, i, has_data, num_pages = 0; 5894 handle_t *handle; 5895 u64 uninitialized_var(block); 5896 struct ocfs2_inode_info *oi = OCFS2_I(inode); 5897 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5898 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 5899 struct ocfs2_alloc_context *data_ac = NULL; 5900 struct page **pages = NULL; 5901 loff_t end = osb->s_clustersize; 5902 5903 has_data = i_size_read(inode) ? 1 : 0; 5904 5905 if (has_data) { 5906 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb), 5907 sizeof(struct page *), GFP_NOFS); 5908 if (pages == NULL) { 5909 ret = -ENOMEM; 5910 mlog_errno(ret); 5911 goto out; 5912 } 5913 5914 ret = ocfs2_reserve_clusters(osb, 1, &data_ac); 5915 if (ret) { 5916 mlog_errno(ret); 5917 goto out; 5918 } 5919 } 5920 5921 handle = ocfs2_start_trans(osb, OCFS2_INLINE_TO_EXTENTS_CREDITS); 5922 if (IS_ERR(handle)) { 5923 ret = PTR_ERR(handle); 5924 mlog_errno(ret); 5925 goto out_unlock; 5926 } 5927 5928 ret = ocfs2_journal_access(handle, inode, di_bh, 5929 OCFS2_JOURNAL_ACCESS_WRITE); 5930 if (ret) { 5931 mlog_errno(ret); 5932 goto out_commit; 5933 } 5934 5935 if (has_data) { 5936 u32 bit_off, num; 5937 unsigned int page_end; 5938 u64 phys; 5939 5940 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off, 5941 &num); 5942 if (ret) { 5943 mlog_errno(ret); 5944 goto out_commit; 5945 } 5946 5947 /* 5948 * Save two copies, one for insert, and one that can 5949 * be changed by ocfs2_map_and_dirty_page() below. 5950 */ 5951 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off); 5952 5953 /* 5954 * Non sparse file systems zero on extend, so no need 5955 * to do that now. 5956 */ 5957 if (!ocfs2_sparse_alloc(osb) && 5958 PAGE_CACHE_SIZE < osb->s_clustersize) 5959 end = PAGE_CACHE_SIZE; 5960 5961 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages); 5962 if (ret) { 5963 mlog_errno(ret); 5964 goto out_commit; 5965 } 5966 5967 /* 5968 * This should populate the 1st page for us and mark 5969 * it up to date. 5970 */ 5971 ret = ocfs2_read_inline_data(inode, pages[0], di_bh); 5972 if (ret) { 5973 mlog_errno(ret); 5974 goto out_commit; 5975 } 5976 5977 page_end = PAGE_CACHE_SIZE; 5978 if (PAGE_CACHE_SIZE > osb->s_clustersize) 5979 page_end = osb->s_clustersize; 5980 5981 for (i = 0; i < num_pages; i++) 5982 ocfs2_map_and_dirty_page(inode, handle, 0, page_end, 5983 pages[i], i > 0, &phys); 5984 } 5985 5986 spin_lock(&oi->ip_lock); 5987 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL; 5988 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 5989 spin_unlock(&oi->ip_lock); 5990 5991 ocfs2_dinode_new_extent_list(inode, di); 5992 5993 ocfs2_journal_dirty(handle, di_bh); 5994 5995 if (has_data) { 5996 /* 5997 * An error at this point should be extremely rare. If 5998 * this proves to be false, we could always re-build 5999 * the in-inode data from our pages. 6000 */ 6001 ret = ocfs2_insert_extent(osb, handle, inode, di_bh, 6002 0, block, 1, 0, NULL); 6003 if (ret) { 6004 mlog_errno(ret); 6005 goto out_commit; 6006 } 6007 6008 inode->i_blocks = ocfs2_inode_sector_count(inode); 6009 } 6010 6011 out_commit: 6012 ocfs2_commit_trans(osb, handle); 6013 6014 out_unlock: 6015 if (data_ac) 6016 ocfs2_free_alloc_context(data_ac); 6017 6018 out: 6019 if (pages) { 6020 ocfs2_unlock_and_free_pages(pages, num_pages); 6021 kfree(pages); 6022 } 6023 6024 return ret; 6025 } 6026 6027 /* 6028 * It is expected, that by the time you call this function, 6029 * inode->i_size and fe->i_size have been adjusted. 6030 * 6031 * WARNING: This will kfree the truncate context 6032 */ 6033 int ocfs2_commit_truncate(struct ocfs2_super *osb, 6034 struct inode *inode, 6035 struct buffer_head *fe_bh, 6036 struct ocfs2_truncate_context *tc) 6037 { 6038 int status, i, credits, tl_sem = 0; 6039 u32 clusters_to_del, new_highest_cpos, range; 6040 struct ocfs2_extent_list *el; 6041 handle_t *handle = NULL; 6042 struct inode *tl_inode = osb->osb_tl_inode; 6043 struct ocfs2_path *path = NULL; 6044 6045 mlog_entry_void(); 6046 6047 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb, 6048 i_size_read(inode)); 6049 6050 path = ocfs2_new_inode_path(fe_bh); 6051 if (!path) { 6052 status = -ENOMEM; 6053 mlog_errno(status); 6054 goto bail; 6055 } 6056 6057 ocfs2_extent_map_trunc(inode, new_highest_cpos); 6058 6059 start: 6060 /* 6061 * Check that we still have allocation to delete. 6062 */ 6063 if (OCFS2_I(inode)->ip_clusters == 0) { 6064 status = 0; 6065 goto bail; 6066 } 6067 6068 /* 6069 * Truncate always works against the rightmost tree branch. 6070 */ 6071 status = ocfs2_find_path(inode, path, UINT_MAX); 6072 if (status) { 6073 mlog_errno(status); 6074 goto bail; 6075 } 6076 6077 mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n", 6078 OCFS2_I(inode)->ip_clusters, path->p_tree_depth); 6079 6080 /* 6081 * By now, el will point to the extent list on the bottom most 6082 * portion of this tree. Only the tail record is considered in 6083 * each pass. 6084 * 6085 * We handle the following cases, in order: 6086 * - empty extent: delete the remaining branch 6087 * - remove the entire record 6088 * - remove a partial record 6089 * - no record needs to be removed (truncate has completed) 6090 */ 6091 el = path_leaf_el(path); 6092 if (le16_to_cpu(el->l_next_free_rec) == 0) { 6093 ocfs2_error(inode->i_sb, 6094 "Inode %llu has empty extent block at %llu\n", 6095 (unsigned long long)OCFS2_I(inode)->ip_blkno, 6096 (unsigned long long)path_leaf_bh(path)->b_blocknr); 6097 status = -EROFS; 6098 goto bail; 6099 } 6100 6101 i = le16_to_cpu(el->l_next_free_rec) - 1; 6102 range = le32_to_cpu(el->l_recs[i].e_cpos) + 6103 ocfs2_rec_clusters(el, &el->l_recs[i]); 6104 if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) { 6105 clusters_to_del = 0; 6106 } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) { 6107 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]); 6108 } else if (range > new_highest_cpos) { 6109 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) + 6110 le32_to_cpu(el->l_recs[i].e_cpos)) - 6111 new_highest_cpos; 6112 } else { 6113 status = 0; 6114 goto bail; 6115 } 6116 6117 mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n", 6118 clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr); 6119 6120 mutex_lock(&tl_inode->i_mutex); 6121 tl_sem = 1; 6122 /* ocfs2_truncate_log_needs_flush guarantees us at least one 6123 * record is free for use. If there isn't any, we flush to get 6124 * an empty truncate log. */ 6125 if (ocfs2_truncate_log_needs_flush(osb)) { 6126 status = __ocfs2_flush_truncate_log(osb); 6127 if (status < 0) { 6128 mlog_errno(status); 6129 goto bail; 6130 } 6131 } 6132 6133 credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del, 6134 (struct ocfs2_dinode *)fe_bh->b_data, 6135 el); 6136 handle = ocfs2_start_trans(osb, credits); 6137 if (IS_ERR(handle)) { 6138 status = PTR_ERR(handle); 6139 handle = NULL; 6140 mlog_errno(status); 6141 goto bail; 6142 } 6143 6144 status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle, 6145 tc, path); 6146 if (status < 0) { 6147 mlog_errno(status); 6148 goto bail; 6149 } 6150 6151 mutex_unlock(&tl_inode->i_mutex); 6152 tl_sem = 0; 6153 6154 ocfs2_commit_trans(osb, handle); 6155 handle = NULL; 6156 6157 ocfs2_reinit_path(path, 1); 6158 6159 /* 6160 * The check above will catch the case where we've truncated 6161 * away all allocation. 6162 */ 6163 goto start; 6164 6165 bail: 6166 6167 ocfs2_schedule_truncate_log_flush(osb, 1); 6168 6169 if (tl_sem) 6170 mutex_unlock(&tl_inode->i_mutex); 6171 6172 if (handle) 6173 ocfs2_commit_trans(osb, handle); 6174 6175 ocfs2_run_deallocs(osb, &tc->tc_dealloc); 6176 6177 ocfs2_free_path(path); 6178 6179 /* This will drop the ext_alloc cluster lock for us */ 6180 ocfs2_free_truncate_context(tc); 6181 6182 mlog_exit(status); 6183 return status; 6184 } 6185 6186 /* 6187 * Expects the inode to already be locked. 6188 */ 6189 int ocfs2_prepare_truncate(struct ocfs2_super *osb, 6190 struct inode *inode, 6191 struct buffer_head *fe_bh, 6192 struct ocfs2_truncate_context **tc) 6193 { 6194 int status; 6195 unsigned int new_i_clusters; 6196 struct ocfs2_dinode *fe; 6197 struct ocfs2_extent_block *eb; 6198 struct buffer_head *last_eb_bh = NULL; 6199 6200 mlog_entry_void(); 6201 6202 *tc = NULL; 6203 6204 new_i_clusters = ocfs2_clusters_for_bytes(osb->sb, 6205 i_size_read(inode)); 6206 fe = (struct ocfs2_dinode *) fe_bh->b_data; 6207 6208 mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size =" 6209 "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters, 6210 (unsigned long long)le64_to_cpu(fe->i_size)); 6211 6212 *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL); 6213 if (!(*tc)) { 6214 status = -ENOMEM; 6215 mlog_errno(status); 6216 goto bail; 6217 } 6218 ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc); 6219 6220 if (fe->id2.i_list.l_tree_depth) { 6221 status = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk), 6222 &last_eb_bh, OCFS2_BH_CACHED, inode); 6223 if (status < 0) { 6224 mlog_errno(status); 6225 goto bail; 6226 } 6227 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 6228 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 6229 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); 6230 6231 brelse(last_eb_bh); 6232 status = -EIO; 6233 goto bail; 6234 } 6235 } 6236 6237 (*tc)->tc_last_eb_bh = last_eb_bh; 6238 6239 status = 0; 6240 bail: 6241 if (status < 0) { 6242 if (*tc) 6243 ocfs2_free_truncate_context(*tc); 6244 *tc = NULL; 6245 } 6246 mlog_exit_void(); 6247 return status; 6248 } 6249 6250 /* 6251 * 'start' is inclusive, 'end' is not. 6252 */ 6253 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh, 6254 unsigned int start, unsigned int end, int trunc) 6255 { 6256 int ret; 6257 unsigned int numbytes; 6258 handle_t *handle; 6259 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 6260 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 6261 struct ocfs2_inline_data *idata = &di->id2.i_data; 6262 6263 if (end > i_size_read(inode)) 6264 end = i_size_read(inode); 6265 6266 BUG_ON(start >= end); 6267 6268 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) || 6269 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) || 6270 !ocfs2_supports_inline_data(osb)) { 6271 ocfs2_error(inode->i_sb, 6272 "Inline data flags for inode %llu don't agree! " 6273 "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n", 6274 (unsigned long long)OCFS2_I(inode)->ip_blkno, 6275 le16_to_cpu(di->i_dyn_features), 6276 OCFS2_I(inode)->ip_dyn_features, 6277 osb->s_feature_incompat); 6278 ret = -EROFS; 6279 goto out; 6280 } 6281 6282 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 6283 if (IS_ERR(handle)) { 6284 ret = PTR_ERR(handle); 6285 mlog_errno(ret); 6286 goto out; 6287 } 6288 6289 ret = ocfs2_journal_access(handle, inode, di_bh, 6290 OCFS2_JOURNAL_ACCESS_WRITE); 6291 if (ret) { 6292 mlog_errno(ret); 6293 goto out_commit; 6294 } 6295 6296 numbytes = end - start; 6297 memset(idata->id_data + start, 0, numbytes); 6298 6299 /* 6300 * No need to worry about the data page here - it's been 6301 * truncated already and inline data doesn't need it for 6302 * pushing zero's to disk, so we'll let readpage pick it up 6303 * later. 6304 */ 6305 if (trunc) { 6306 i_size_write(inode, start); 6307 di->i_size = cpu_to_le64(start); 6308 } 6309 6310 inode->i_blocks = ocfs2_inode_sector_count(inode); 6311 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 6312 6313 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 6314 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 6315 6316 ocfs2_journal_dirty(handle, di_bh); 6317 6318 out_commit: 6319 ocfs2_commit_trans(osb, handle); 6320 6321 out: 6322 return ret; 6323 } 6324 6325 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc) 6326 { 6327 /* 6328 * The caller is responsible for completing deallocation 6329 * before freeing the context. 6330 */ 6331 if (tc->tc_dealloc.c_first_suballocator != NULL) 6332 mlog(ML_NOTICE, 6333 "Truncate completion has non-empty dealloc context\n"); 6334 6335 if (tc->tc_last_eb_bh) 6336 brelse(tc->tc_last_eb_bh); 6337 6338 kfree(tc); 6339 } 6340