xref: /openbmc/linux/fs/ocfs2/alloc.c (revision 643d1f7f)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 
32 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
33 #include <cluster/masklog.h>
34 
35 #include "ocfs2.h"
36 
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "localalloc.h"
44 #include "suballoc.h"
45 #include "sysfile.h"
46 #include "file.h"
47 #include "super.h"
48 #include "uptodate.h"
49 
50 #include "buffer_head_io.h"
51 
52 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
53 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
54 					 struct ocfs2_extent_block *eb);
55 
56 /*
57  * Structures which describe a path through a btree, and functions to
58  * manipulate them.
59  *
60  * The idea here is to be as generic as possible with the tree
61  * manipulation code.
62  */
63 struct ocfs2_path_item {
64 	struct buffer_head		*bh;
65 	struct ocfs2_extent_list	*el;
66 };
67 
68 #define OCFS2_MAX_PATH_DEPTH	5
69 
70 struct ocfs2_path {
71 	int			p_tree_depth;
72 	struct ocfs2_path_item	p_node[OCFS2_MAX_PATH_DEPTH];
73 };
74 
75 #define path_root_bh(_path) ((_path)->p_node[0].bh)
76 #define path_root_el(_path) ((_path)->p_node[0].el)
77 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
78 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
79 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
80 
81 /*
82  * Reset the actual path elements so that we can re-use the structure
83  * to build another path. Generally, this involves freeing the buffer
84  * heads.
85  */
86 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
87 {
88 	int i, start = 0, depth = 0;
89 	struct ocfs2_path_item *node;
90 
91 	if (keep_root)
92 		start = 1;
93 
94 	for(i = start; i < path_num_items(path); i++) {
95 		node = &path->p_node[i];
96 
97 		brelse(node->bh);
98 		node->bh = NULL;
99 		node->el = NULL;
100 	}
101 
102 	/*
103 	 * Tree depth may change during truncate, or insert. If we're
104 	 * keeping the root extent list, then make sure that our path
105 	 * structure reflects the proper depth.
106 	 */
107 	if (keep_root)
108 		depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
109 
110 	path->p_tree_depth = depth;
111 }
112 
113 static void ocfs2_free_path(struct ocfs2_path *path)
114 {
115 	if (path) {
116 		ocfs2_reinit_path(path, 0);
117 		kfree(path);
118 	}
119 }
120 
121 /*
122  * All the elements of src into dest. After this call, src could be freed
123  * without affecting dest.
124  *
125  * Both paths should have the same root. Any non-root elements of dest
126  * will be freed.
127  */
128 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
129 {
130 	int i;
131 
132 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
133 	BUG_ON(path_root_el(dest) != path_root_el(src));
134 
135 	ocfs2_reinit_path(dest, 1);
136 
137 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
138 		dest->p_node[i].bh = src->p_node[i].bh;
139 		dest->p_node[i].el = src->p_node[i].el;
140 
141 		if (dest->p_node[i].bh)
142 			get_bh(dest->p_node[i].bh);
143 	}
144 }
145 
146 /*
147  * Make the *dest path the same as src and re-initialize src path to
148  * have a root only.
149  */
150 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
151 {
152 	int i;
153 
154 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
155 
156 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
157 		brelse(dest->p_node[i].bh);
158 
159 		dest->p_node[i].bh = src->p_node[i].bh;
160 		dest->p_node[i].el = src->p_node[i].el;
161 
162 		src->p_node[i].bh = NULL;
163 		src->p_node[i].el = NULL;
164 	}
165 }
166 
167 /*
168  * Insert an extent block at given index.
169  *
170  * This will not take an additional reference on eb_bh.
171  */
172 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
173 					struct buffer_head *eb_bh)
174 {
175 	struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
176 
177 	/*
178 	 * Right now, no root bh is an extent block, so this helps
179 	 * catch code errors with dinode trees. The assertion can be
180 	 * safely removed if we ever need to insert extent block
181 	 * structures at the root.
182 	 */
183 	BUG_ON(index == 0);
184 
185 	path->p_node[index].bh = eb_bh;
186 	path->p_node[index].el = &eb->h_list;
187 }
188 
189 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
190 					 struct ocfs2_extent_list *root_el)
191 {
192 	struct ocfs2_path *path;
193 
194 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
195 
196 	path = kzalloc(sizeof(*path), GFP_NOFS);
197 	if (path) {
198 		path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
199 		get_bh(root_bh);
200 		path_root_bh(path) = root_bh;
201 		path_root_el(path) = root_el;
202 	}
203 
204 	return path;
205 }
206 
207 /*
208  * Allocate and initialize a new path based on a disk inode tree.
209  */
210 static struct ocfs2_path *ocfs2_new_inode_path(struct buffer_head *di_bh)
211 {
212 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
213 	struct ocfs2_extent_list *el = &di->id2.i_list;
214 
215 	return ocfs2_new_path(di_bh, el);
216 }
217 
218 /*
219  * Convenience function to journal all components in a path.
220  */
221 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
222 				     struct ocfs2_path *path)
223 {
224 	int i, ret = 0;
225 
226 	if (!path)
227 		goto out;
228 
229 	for(i = 0; i < path_num_items(path); i++) {
230 		ret = ocfs2_journal_access(handle, inode, path->p_node[i].bh,
231 					   OCFS2_JOURNAL_ACCESS_WRITE);
232 		if (ret < 0) {
233 			mlog_errno(ret);
234 			goto out;
235 		}
236 	}
237 
238 out:
239 	return ret;
240 }
241 
242 /*
243  * Return the index of the extent record which contains cluster #v_cluster.
244  * -1 is returned if it was not found.
245  *
246  * Should work fine on interior and exterior nodes.
247  */
248 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
249 {
250 	int ret = -1;
251 	int i;
252 	struct ocfs2_extent_rec *rec;
253 	u32 rec_end, rec_start, clusters;
254 
255 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
256 		rec = &el->l_recs[i];
257 
258 		rec_start = le32_to_cpu(rec->e_cpos);
259 		clusters = ocfs2_rec_clusters(el, rec);
260 
261 		rec_end = rec_start + clusters;
262 
263 		if (v_cluster >= rec_start && v_cluster < rec_end) {
264 			ret = i;
265 			break;
266 		}
267 	}
268 
269 	return ret;
270 }
271 
272 enum ocfs2_contig_type {
273 	CONTIG_NONE = 0,
274 	CONTIG_LEFT,
275 	CONTIG_RIGHT,
276 	CONTIG_LEFTRIGHT,
277 };
278 
279 
280 /*
281  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
282  * ocfs2_extent_contig only work properly against leaf nodes!
283  */
284 static int ocfs2_block_extent_contig(struct super_block *sb,
285 				     struct ocfs2_extent_rec *ext,
286 				     u64 blkno)
287 {
288 	u64 blk_end = le64_to_cpu(ext->e_blkno);
289 
290 	blk_end += ocfs2_clusters_to_blocks(sb,
291 				    le16_to_cpu(ext->e_leaf_clusters));
292 
293 	return blkno == blk_end;
294 }
295 
296 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
297 				  struct ocfs2_extent_rec *right)
298 {
299 	u32 left_range;
300 
301 	left_range = le32_to_cpu(left->e_cpos) +
302 		le16_to_cpu(left->e_leaf_clusters);
303 
304 	return (left_range == le32_to_cpu(right->e_cpos));
305 }
306 
307 static enum ocfs2_contig_type
308 	ocfs2_extent_contig(struct inode *inode,
309 			    struct ocfs2_extent_rec *ext,
310 			    struct ocfs2_extent_rec *insert_rec)
311 {
312 	u64 blkno = le64_to_cpu(insert_rec->e_blkno);
313 
314 	/*
315 	 * Refuse to coalesce extent records with different flag
316 	 * fields - we don't want to mix unwritten extents with user
317 	 * data.
318 	 */
319 	if (ext->e_flags != insert_rec->e_flags)
320 		return CONTIG_NONE;
321 
322 	if (ocfs2_extents_adjacent(ext, insert_rec) &&
323 	    ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
324 			return CONTIG_RIGHT;
325 
326 	blkno = le64_to_cpu(ext->e_blkno);
327 	if (ocfs2_extents_adjacent(insert_rec, ext) &&
328 	    ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
329 		return CONTIG_LEFT;
330 
331 	return CONTIG_NONE;
332 }
333 
334 /*
335  * NOTE: We can have pretty much any combination of contiguousness and
336  * appending.
337  *
338  * The usefulness of APPEND_TAIL is more in that it lets us know that
339  * we'll have to update the path to that leaf.
340  */
341 enum ocfs2_append_type {
342 	APPEND_NONE = 0,
343 	APPEND_TAIL,
344 };
345 
346 enum ocfs2_split_type {
347 	SPLIT_NONE = 0,
348 	SPLIT_LEFT,
349 	SPLIT_RIGHT,
350 };
351 
352 struct ocfs2_insert_type {
353 	enum ocfs2_split_type	ins_split;
354 	enum ocfs2_append_type	ins_appending;
355 	enum ocfs2_contig_type	ins_contig;
356 	int			ins_contig_index;
357 	int			ins_tree_depth;
358 };
359 
360 struct ocfs2_merge_ctxt {
361 	enum ocfs2_contig_type	c_contig_type;
362 	int			c_has_empty_extent;
363 	int			c_split_covers_rec;
364 };
365 
366 /*
367  * How many free extents have we got before we need more meta data?
368  */
369 int ocfs2_num_free_extents(struct ocfs2_super *osb,
370 			   struct inode *inode,
371 			   struct ocfs2_dinode *fe)
372 {
373 	int retval;
374 	struct ocfs2_extent_list *el;
375 	struct ocfs2_extent_block *eb;
376 	struct buffer_head *eb_bh = NULL;
377 
378 	mlog_entry_void();
379 
380 	if (!OCFS2_IS_VALID_DINODE(fe)) {
381 		OCFS2_RO_ON_INVALID_DINODE(inode->i_sb, fe);
382 		retval = -EIO;
383 		goto bail;
384 	}
385 
386 	if (fe->i_last_eb_blk) {
387 		retval = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
388 					  &eb_bh, OCFS2_BH_CACHED, inode);
389 		if (retval < 0) {
390 			mlog_errno(retval);
391 			goto bail;
392 		}
393 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
394 		el = &eb->h_list;
395 	} else
396 		el = &fe->id2.i_list;
397 
398 	BUG_ON(el->l_tree_depth != 0);
399 
400 	retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
401 bail:
402 	if (eb_bh)
403 		brelse(eb_bh);
404 
405 	mlog_exit(retval);
406 	return retval;
407 }
408 
409 /* expects array to already be allocated
410  *
411  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
412  * l_count for you
413  */
414 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
415 				     handle_t *handle,
416 				     struct inode *inode,
417 				     int wanted,
418 				     struct ocfs2_alloc_context *meta_ac,
419 				     struct buffer_head *bhs[])
420 {
421 	int count, status, i;
422 	u16 suballoc_bit_start;
423 	u32 num_got;
424 	u64 first_blkno;
425 	struct ocfs2_extent_block *eb;
426 
427 	mlog_entry_void();
428 
429 	count = 0;
430 	while (count < wanted) {
431 		status = ocfs2_claim_metadata(osb,
432 					      handle,
433 					      meta_ac,
434 					      wanted - count,
435 					      &suballoc_bit_start,
436 					      &num_got,
437 					      &first_blkno);
438 		if (status < 0) {
439 			mlog_errno(status);
440 			goto bail;
441 		}
442 
443 		for(i = count;  i < (num_got + count); i++) {
444 			bhs[i] = sb_getblk(osb->sb, first_blkno);
445 			if (bhs[i] == NULL) {
446 				status = -EIO;
447 				mlog_errno(status);
448 				goto bail;
449 			}
450 			ocfs2_set_new_buffer_uptodate(inode, bhs[i]);
451 
452 			status = ocfs2_journal_access(handle, inode, bhs[i],
453 						      OCFS2_JOURNAL_ACCESS_CREATE);
454 			if (status < 0) {
455 				mlog_errno(status);
456 				goto bail;
457 			}
458 
459 			memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
460 			eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
461 			/* Ok, setup the minimal stuff here. */
462 			strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
463 			eb->h_blkno = cpu_to_le64(first_blkno);
464 			eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
465 			eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
466 			eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
467 			eb->h_list.l_count =
468 				cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
469 
470 			suballoc_bit_start++;
471 			first_blkno++;
472 
473 			/* We'll also be dirtied by the caller, so
474 			 * this isn't absolutely necessary. */
475 			status = ocfs2_journal_dirty(handle, bhs[i]);
476 			if (status < 0) {
477 				mlog_errno(status);
478 				goto bail;
479 			}
480 		}
481 
482 		count += num_got;
483 	}
484 
485 	status = 0;
486 bail:
487 	if (status < 0) {
488 		for(i = 0; i < wanted; i++) {
489 			if (bhs[i])
490 				brelse(bhs[i]);
491 			bhs[i] = NULL;
492 		}
493 	}
494 	mlog_exit(status);
495 	return status;
496 }
497 
498 /*
499  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
500  *
501  * Returns the sum of the rightmost extent rec logical offset and
502  * cluster count.
503  *
504  * ocfs2_add_branch() uses this to determine what logical cluster
505  * value should be populated into the leftmost new branch records.
506  *
507  * ocfs2_shift_tree_depth() uses this to determine the # clusters
508  * value for the new topmost tree record.
509  */
510 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
511 {
512 	int i;
513 
514 	i = le16_to_cpu(el->l_next_free_rec) - 1;
515 
516 	return le32_to_cpu(el->l_recs[i].e_cpos) +
517 		ocfs2_rec_clusters(el, &el->l_recs[i]);
518 }
519 
520 /*
521  * Add an entire tree branch to our inode. eb_bh is the extent block
522  * to start at, if we don't want to start the branch at the dinode
523  * structure.
524  *
525  * last_eb_bh is required as we have to update it's next_leaf pointer
526  * for the new last extent block.
527  *
528  * the new branch will be 'empty' in the sense that every block will
529  * contain a single record with cluster count == 0.
530  */
531 static int ocfs2_add_branch(struct ocfs2_super *osb,
532 			    handle_t *handle,
533 			    struct inode *inode,
534 			    struct buffer_head *fe_bh,
535 			    struct buffer_head *eb_bh,
536 			    struct buffer_head **last_eb_bh,
537 			    struct ocfs2_alloc_context *meta_ac)
538 {
539 	int status, new_blocks, i;
540 	u64 next_blkno, new_last_eb_blk;
541 	struct buffer_head *bh;
542 	struct buffer_head **new_eb_bhs = NULL;
543 	struct ocfs2_dinode *fe;
544 	struct ocfs2_extent_block *eb;
545 	struct ocfs2_extent_list  *eb_el;
546 	struct ocfs2_extent_list  *el;
547 	u32 new_cpos;
548 
549 	mlog_entry_void();
550 
551 	BUG_ON(!last_eb_bh || !*last_eb_bh);
552 
553 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
554 
555 	if (eb_bh) {
556 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
557 		el = &eb->h_list;
558 	} else
559 		el = &fe->id2.i_list;
560 
561 	/* we never add a branch to a leaf. */
562 	BUG_ON(!el->l_tree_depth);
563 
564 	new_blocks = le16_to_cpu(el->l_tree_depth);
565 
566 	/* allocate the number of new eb blocks we need */
567 	new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
568 			     GFP_KERNEL);
569 	if (!new_eb_bhs) {
570 		status = -ENOMEM;
571 		mlog_errno(status);
572 		goto bail;
573 	}
574 
575 	status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
576 					   meta_ac, new_eb_bhs);
577 	if (status < 0) {
578 		mlog_errno(status);
579 		goto bail;
580 	}
581 
582 	eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
583 	new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
584 
585 	/* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
586 	 * linked with the rest of the tree.
587 	 * conversly, new_eb_bhs[0] is the new bottommost leaf.
588 	 *
589 	 * when we leave the loop, new_last_eb_blk will point to the
590 	 * newest leaf, and next_blkno will point to the topmost extent
591 	 * block. */
592 	next_blkno = new_last_eb_blk = 0;
593 	for(i = 0; i < new_blocks; i++) {
594 		bh = new_eb_bhs[i];
595 		eb = (struct ocfs2_extent_block *) bh->b_data;
596 		if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
597 			OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
598 			status = -EIO;
599 			goto bail;
600 		}
601 		eb_el = &eb->h_list;
602 
603 		status = ocfs2_journal_access(handle, inode, bh,
604 					      OCFS2_JOURNAL_ACCESS_CREATE);
605 		if (status < 0) {
606 			mlog_errno(status);
607 			goto bail;
608 		}
609 
610 		eb->h_next_leaf_blk = 0;
611 		eb_el->l_tree_depth = cpu_to_le16(i);
612 		eb_el->l_next_free_rec = cpu_to_le16(1);
613 		/*
614 		 * This actually counts as an empty extent as
615 		 * c_clusters == 0
616 		 */
617 		eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
618 		eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
619 		/*
620 		 * eb_el isn't always an interior node, but even leaf
621 		 * nodes want a zero'd flags and reserved field so
622 		 * this gets the whole 32 bits regardless of use.
623 		 */
624 		eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
625 		if (!eb_el->l_tree_depth)
626 			new_last_eb_blk = le64_to_cpu(eb->h_blkno);
627 
628 		status = ocfs2_journal_dirty(handle, bh);
629 		if (status < 0) {
630 			mlog_errno(status);
631 			goto bail;
632 		}
633 
634 		next_blkno = le64_to_cpu(eb->h_blkno);
635 	}
636 
637 	/* This is a bit hairy. We want to update up to three blocks
638 	 * here without leaving any of them in an inconsistent state
639 	 * in case of error. We don't have to worry about
640 	 * journal_dirty erroring as it won't unless we've aborted the
641 	 * handle (in which case we would never be here) so reserving
642 	 * the write with journal_access is all we need to do. */
643 	status = ocfs2_journal_access(handle, inode, *last_eb_bh,
644 				      OCFS2_JOURNAL_ACCESS_WRITE);
645 	if (status < 0) {
646 		mlog_errno(status);
647 		goto bail;
648 	}
649 	status = ocfs2_journal_access(handle, inode, fe_bh,
650 				      OCFS2_JOURNAL_ACCESS_WRITE);
651 	if (status < 0) {
652 		mlog_errno(status);
653 		goto bail;
654 	}
655 	if (eb_bh) {
656 		status = ocfs2_journal_access(handle, inode, eb_bh,
657 					      OCFS2_JOURNAL_ACCESS_WRITE);
658 		if (status < 0) {
659 			mlog_errno(status);
660 			goto bail;
661 		}
662 	}
663 
664 	/* Link the new branch into the rest of the tree (el will
665 	 * either be on the fe, or the extent block passed in. */
666 	i = le16_to_cpu(el->l_next_free_rec);
667 	el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
668 	el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
669 	el->l_recs[i].e_int_clusters = 0;
670 	le16_add_cpu(&el->l_next_free_rec, 1);
671 
672 	/* fe needs a new last extent block pointer, as does the
673 	 * next_leaf on the previously last-extent-block. */
674 	fe->i_last_eb_blk = cpu_to_le64(new_last_eb_blk);
675 
676 	eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
677 	eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
678 
679 	status = ocfs2_journal_dirty(handle, *last_eb_bh);
680 	if (status < 0)
681 		mlog_errno(status);
682 	status = ocfs2_journal_dirty(handle, fe_bh);
683 	if (status < 0)
684 		mlog_errno(status);
685 	if (eb_bh) {
686 		status = ocfs2_journal_dirty(handle, eb_bh);
687 		if (status < 0)
688 			mlog_errno(status);
689 	}
690 
691 	/*
692 	 * Some callers want to track the rightmost leaf so pass it
693 	 * back here.
694 	 */
695 	brelse(*last_eb_bh);
696 	get_bh(new_eb_bhs[0]);
697 	*last_eb_bh = new_eb_bhs[0];
698 
699 	status = 0;
700 bail:
701 	if (new_eb_bhs) {
702 		for (i = 0; i < new_blocks; i++)
703 			if (new_eb_bhs[i])
704 				brelse(new_eb_bhs[i]);
705 		kfree(new_eb_bhs);
706 	}
707 
708 	mlog_exit(status);
709 	return status;
710 }
711 
712 /*
713  * adds another level to the allocation tree.
714  * returns back the new extent block so you can add a branch to it
715  * after this call.
716  */
717 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
718 				  handle_t *handle,
719 				  struct inode *inode,
720 				  struct buffer_head *fe_bh,
721 				  struct ocfs2_alloc_context *meta_ac,
722 				  struct buffer_head **ret_new_eb_bh)
723 {
724 	int status, i;
725 	u32 new_clusters;
726 	struct buffer_head *new_eb_bh = NULL;
727 	struct ocfs2_dinode *fe;
728 	struct ocfs2_extent_block *eb;
729 	struct ocfs2_extent_list  *fe_el;
730 	struct ocfs2_extent_list  *eb_el;
731 
732 	mlog_entry_void();
733 
734 	status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
735 					   &new_eb_bh);
736 	if (status < 0) {
737 		mlog_errno(status);
738 		goto bail;
739 	}
740 
741 	eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
742 	if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
743 		OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
744 		status = -EIO;
745 		goto bail;
746 	}
747 
748 	eb_el = &eb->h_list;
749 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
750 	fe_el = &fe->id2.i_list;
751 
752 	status = ocfs2_journal_access(handle, inode, new_eb_bh,
753 				      OCFS2_JOURNAL_ACCESS_CREATE);
754 	if (status < 0) {
755 		mlog_errno(status);
756 		goto bail;
757 	}
758 
759 	/* copy the fe data into the new extent block */
760 	eb_el->l_tree_depth = fe_el->l_tree_depth;
761 	eb_el->l_next_free_rec = fe_el->l_next_free_rec;
762 	for(i = 0; i < le16_to_cpu(fe_el->l_next_free_rec); i++)
763 		eb_el->l_recs[i] = fe_el->l_recs[i];
764 
765 	status = ocfs2_journal_dirty(handle, new_eb_bh);
766 	if (status < 0) {
767 		mlog_errno(status);
768 		goto bail;
769 	}
770 
771 	status = ocfs2_journal_access(handle, inode, fe_bh,
772 				      OCFS2_JOURNAL_ACCESS_WRITE);
773 	if (status < 0) {
774 		mlog_errno(status);
775 		goto bail;
776 	}
777 
778 	new_clusters = ocfs2_sum_rightmost_rec(eb_el);
779 
780 	/* update fe now */
781 	le16_add_cpu(&fe_el->l_tree_depth, 1);
782 	fe_el->l_recs[0].e_cpos = 0;
783 	fe_el->l_recs[0].e_blkno = eb->h_blkno;
784 	fe_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
785 	for(i = 1; i < le16_to_cpu(fe_el->l_next_free_rec); i++)
786 		memset(&fe_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
787 	fe_el->l_next_free_rec = cpu_to_le16(1);
788 
789 	/* If this is our 1st tree depth shift, then last_eb_blk
790 	 * becomes the allocated extent block */
791 	if (fe_el->l_tree_depth == cpu_to_le16(1))
792 		fe->i_last_eb_blk = eb->h_blkno;
793 
794 	status = ocfs2_journal_dirty(handle, fe_bh);
795 	if (status < 0) {
796 		mlog_errno(status);
797 		goto bail;
798 	}
799 
800 	*ret_new_eb_bh = new_eb_bh;
801 	new_eb_bh = NULL;
802 	status = 0;
803 bail:
804 	if (new_eb_bh)
805 		brelse(new_eb_bh);
806 
807 	mlog_exit(status);
808 	return status;
809 }
810 
811 /*
812  * Should only be called when there is no space left in any of the
813  * leaf nodes. What we want to do is find the lowest tree depth
814  * non-leaf extent block with room for new records. There are three
815  * valid results of this search:
816  *
817  * 1) a lowest extent block is found, then we pass it back in
818  *    *lowest_eb_bh and return '0'
819  *
820  * 2) the search fails to find anything, but the dinode has room. We
821  *    pass NULL back in *lowest_eb_bh, but still return '0'
822  *
823  * 3) the search fails to find anything AND the dinode is full, in
824  *    which case we return > 0
825  *
826  * return status < 0 indicates an error.
827  */
828 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
829 				    struct inode *inode,
830 				    struct buffer_head *fe_bh,
831 				    struct buffer_head **target_bh)
832 {
833 	int status = 0, i;
834 	u64 blkno;
835 	struct ocfs2_dinode *fe;
836 	struct ocfs2_extent_block *eb;
837 	struct ocfs2_extent_list  *el;
838 	struct buffer_head *bh = NULL;
839 	struct buffer_head *lowest_bh = NULL;
840 
841 	mlog_entry_void();
842 
843 	*target_bh = NULL;
844 
845 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
846 	el = &fe->id2.i_list;
847 
848 	while(le16_to_cpu(el->l_tree_depth) > 1) {
849 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
850 			ocfs2_error(inode->i_sb, "Dinode %llu has empty "
851 				    "extent list (next_free_rec == 0)",
852 				    (unsigned long long)OCFS2_I(inode)->ip_blkno);
853 			status = -EIO;
854 			goto bail;
855 		}
856 		i = le16_to_cpu(el->l_next_free_rec) - 1;
857 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
858 		if (!blkno) {
859 			ocfs2_error(inode->i_sb, "Dinode %llu has extent "
860 				    "list where extent # %d has no physical "
861 				    "block start",
862 				    (unsigned long long)OCFS2_I(inode)->ip_blkno, i);
863 			status = -EIO;
864 			goto bail;
865 		}
866 
867 		if (bh) {
868 			brelse(bh);
869 			bh = NULL;
870 		}
871 
872 		status = ocfs2_read_block(osb, blkno, &bh, OCFS2_BH_CACHED,
873 					  inode);
874 		if (status < 0) {
875 			mlog_errno(status);
876 			goto bail;
877 		}
878 
879 		eb = (struct ocfs2_extent_block *) bh->b_data;
880 		if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
881 			OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
882 			status = -EIO;
883 			goto bail;
884 		}
885 		el = &eb->h_list;
886 
887 		if (le16_to_cpu(el->l_next_free_rec) <
888 		    le16_to_cpu(el->l_count)) {
889 			if (lowest_bh)
890 				brelse(lowest_bh);
891 			lowest_bh = bh;
892 			get_bh(lowest_bh);
893 		}
894 	}
895 
896 	/* If we didn't find one and the fe doesn't have any room,
897 	 * then return '1' */
898 	if (!lowest_bh
899 	    && (fe->id2.i_list.l_next_free_rec == fe->id2.i_list.l_count))
900 		status = 1;
901 
902 	*target_bh = lowest_bh;
903 bail:
904 	if (bh)
905 		brelse(bh);
906 
907 	mlog_exit(status);
908 	return status;
909 }
910 
911 /*
912  * Grow a b-tree so that it has more records.
913  *
914  * We might shift the tree depth in which case existing paths should
915  * be considered invalid.
916  *
917  * Tree depth after the grow is returned via *final_depth.
918  *
919  * *last_eb_bh will be updated by ocfs2_add_branch().
920  */
921 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
922 			   struct buffer_head *di_bh, int *final_depth,
923 			   struct buffer_head **last_eb_bh,
924 			   struct ocfs2_alloc_context *meta_ac)
925 {
926 	int ret, shift;
927 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
928 	int depth = le16_to_cpu(di->id2.i_list.l_tree_depth);
929 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
930 	struct buffer_head *bh = NULL;
931 
932 	BUG_ON(meta_ac == NULL);
933 
934 	shift = ocfs2_find_branch_target(osb, inode, di_bh, &bh);
935 	if (shift < 0) {
936 		ret = shift;
937 		mlog_errno(ret);
938 		goto out;
939 	}
940 
941 	/* We traveled all the way to the bottom of the allocation tree
942 	 * and didn't find room for any more extents - we need to add
943 	 * another tree level */
944 	if (shift) {
945 		BUG_ON(bh);
946 		mlog(0, "need to shift tree depth (current = %d)\n", depth);
947 
948 		/* ocfs2_shift_tree_depth will return us a buffer with
949 		 * the new extent block (so we can pass that to
950 		 * ocfs2_add_branch). */
951 		ret = ocfs2_shift_tree_depth(osb, handle, inode, di_bh,
952 					     meta_ac, &bh);
953 		if (ret < 0) {
954 			mlog_errno(ret);
955 			goto out;
956 		}
957 		depth++;
958 		if (depth == 1) {
959 			/*
960 			 * Special case: we have room now if we shifted from
961 			 * tree_depth 0, so no more work needs to be done.
962 			 *
963 			 * We won't be calling add_branch, so pass
964 			 * back *last_eb_bh as the new leaf. At depth
965 			 * zero, it should always be null so there's
966 			 * no reason to brelse.
967 			 */
968 			BUG_ON(*last_eb_bh);
969 			get_bh(bh);
970 			*last_eb_bh = bh;
971 			goto out;
972 		}
973 	}
974 
975 	/* call ocfs2_add_branch to add the final part of the tree with
976 	 * the new data. */
977 	mlog(0, "add branch. bh = %p\n", bh);
978 	ret = ocfs2_add_branch(osb, handle, inode, di_bh, bh, last_eb_bh,
979 			       meta_ac);
980 	if (ret < 0) {
981 		mlog_errno(ret);
982 		goto out;
983 	}
984 
985 out:
986 	if (final_depth)
987 		*final_depth = depth;
988 	brelse(bh);
989 	return ret;
990 }
991 
992 /*
993  * This is only valid for leaf nodes, which are the only ones that can
994  * have empty extents anyway.
995  */
996 static inline int ocfs2_is_empty_extent(struct ocfs2_extent_rec *rec)
997 {
998 	return !rec->e_leaf_clusters;
999 }
1000 
1001 /*
1002  * This function will discard the rightmost extent record.
1003  */
1004 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1005 {
1006 	int next_free = le16_to_cpu(el->l_next_free_rec);
1007 	int count = le16_to_cpu(el->l_count);
1008 	unsigned int num_bytes;
1009 
1010 	BUG_ON(!next_free);
1011 	/* This will cause us to go off the end of our extent list. */
1012 	BUG_ON(next_free >= count);
1013 
1014 	num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1015 
1016 	memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1017 }
1018 
1019 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1020 			      struct ocfs2_extent_rec *insert_rec)
1021 {
1022 	int i, insert_index, next_free, has_empty, num_bytes;
1023 	u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1024 	struct ocfs2_extent_rec *rec;
1025 
1026 	next_free = le16_to_cpu(el->l_next_free_rec);
1027 	has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1028 
1029 	BUG_ON(!next_free);
1030 
1031 	/* The tree code before us didn't allow enough room in the leaf. */
1032 	if (el->l_next_free_rec == el->l_count && !has_empty)
1033 		BUG();
1034 
1035 	/*
1036 	 * The easiest way to approach this is to just remove the
1037 	 * empty extent and temporarily decrement next_free.
1038 	 */
1039 	if (has_empty) {
1040 		/*
1041 		 * If next_free was 1 (only an empty extent), this
1042 		 * loop won't execute, which is fine. We still want
1043 		 * the decrement above to happen.
1044 		 */
1045 		for(i = 0; i < (next_free - 1); i++)
1046 			el->l_recs[i] = el->l_recs[i+1];
1047 
1048 		next_free--;
1049 	}
1050 
1051 	/*
1052 	 * Figure out what the new record index should be.
1053 	 */
1054 	for(i = 0; i < next_free; i++) {
1055 		rec = &el->l_recs[i];
1056 
1057 		if (insert_cpos < le32_to_cpu(rec->e_cpos))
1058 			break;
1059 	}
1060 	insert_index = i;
1061 
1062 	mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1063 	     insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1064 
1065 	BUG_ON(insert_index < 0);
1066 	BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1067 	BUG_ON(insert_index > next_free);
1068 
1069 	/*
1070 	 * No need to memmove if we're just adding to the tail.
1071 	 */
1072 	if (insert_index != next_free) {
1073 		BUG_ON(next_free >= le16_to_cpu(el->l_count));
1074 
1075 		num_bytes = next_free - insert_index;
1076 		num_bytes *= sizeof(struct ocfs2_extent_rec);
1077 		memmove(&el->l_recs[insert_index + 1],
1078 			&el->l_recs[insert_index],
1079 			num_bytes);
1080 	}
1081 
1082 	/*
1083 	 * Either we had an empty extent, and need to re-increment or
1084 	 * there was no empty extent on a non full rightmost leaf node,
1085 	 * in which case we still need to increment.
1086 	 */
1087 	next_free++;
1088 	el->l_next_free_rec = cpu_to_le16(next_free);
1089 	/*
1090 	 * Make sure none of the math above just messed up our tree.
1091 	 */
1092 	BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1093 
1094 	el->l_recs[insert_index] = *insert_rec;
1095 
1096 }
1097 
1098 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1099 {
1100 	int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1101 
1102 	BUG_ON(num_recs == 0);
1103 
1104 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1105 		num_recs--;
1106 		size = num_recs * sizeof(struct ocfs2_extent_rec);
1107 		memmove(&el->l_recs[0], &el->l_recs[1], size);
1108 		memset(&el->l_recs[num_recs], 0,
1109 		       sizeof(struct ocfs2_extent_rec));
1110 		el->l_next_free_rec = cpu_to_le16(num_recs);
1111 	}
1112 }
1113 
1114 /*
1115  * Create an empty extent record .
1116  *
1117  * l_next_free_rec may be updated.
1118  *
1119  * If an empty extent already exists do nothing.
1120  */
1121 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1122 {
1123 	int next_free = le16_to_cpu(el->l_next_free_rec);
1124 
1125 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1126 
1127 	if (next_free == 0)
1128 		goto set_and_inc;
1129 
1130 	if (ocfs2_is_empty_extent(&el->l_recs[0]))
1131 		return;
1132 
1133 	mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1134 			"Asked to create an empty extent in a full list:\n"
1135 			"count = %u, tree depth = %u",
1136 			le16_to_cpu(el->l_count),
1137 			le16_to_cpu(el->l_tree_depth));
1138 
1139 	ocfs2_shift_records_right(el);
1140 
1141 set_and_inc:
1142 	le16_add_cpu(&el->l_next_free_rec, 1);
1143 	memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1144 }
1145 
1146 /*
1147  * For a rotation which involves two leaf nodes, the "root node" is
1148  * the lowest level tree node which contains a path to both leafs. This
1149  * resulting set of information can be used to form a complete "subtree"
1150  *
1151  * This function is passed two full paths from the dinode down to a
1152  * pair of adjacent leaves. It's task is to figure out which path
1153  * index contains the subtree root - this can be the root index itself
1154  * in a worst-case rotation.
1155  *
1156  * The array index of the subtree root is passed back.
1157  */
1158 static int ocfs2_find_subtree_root(struct inode *inode,
1159 				   struct ocfs2_path *left,
1160 				   struct ocfs2_path *right)
1161 {
1162 	int i = 0;
1163 
1164 	/*
1165 	 * Check that the caller passed in two paths from the same tree.
1166 	 */
1167 	BUG_ON(path_root_bh(left) != path_root_bh(right));
1168 
1169 	do {
1170 		i++;
1171 
1172 		/*
1173 		 * The caller didn't pass two adjacent paths.
1174 		 */
1175 		mlog_bug_on_msg(i > left->p_tree_depth,
1176 				"Inode %lu, left depth %u, right depth %u\n"
1177 				"left leaf blk %llu, right leaf blk %llu\n",
1178 				inode->i_ino, left->p_tree_depth,
1179 				right->p_tree_depth,
1180 				(unsigned long long)path_leaf_bh(left)->b_blocknr,
1181 				(unsigned long long)path_leaf_bh(right)->b_blocknr);
1182 	} while (left->p_node[i].bh->b_blocknr ==
1183 		 right->p_node[i].bh->b_blocknr);
1184 
1185 	return i - 1;
1186 }
1187 
1188 typedef void (path_insert_t)(void *, struct buffer_head *);
1189 
1190 /*
1191  * Traverse a btree path in search of cpos, starting at root_el.
1192  *
1193  * This code can be called with a cpos larger than the tree, in which
1194  * case it will return the rightmost path.
1195  */
1196 static int __ocfs2_find_path(struct inode *inode,
1197 			     struct ocfs2_extent_list *root_el, u32 cpos,
1198 			     path_insert_t *func, void *data)
1199 {
1200 	int i, ret = 0;
1201 	u32 range;
1202 	u64 blkno;
1203 	struct buffer_head *bh = NULL;
1204 	struct ocfs2_extent_block *eb;
1205 	struct ocfs2_extent_list *el;
1206 	struct ocfs2_extent_rec *rec;
1207 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1208 
1209 	el = root_el;
1210 	while (el->l_tree_depth) {
1211 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1212 			ocfs2_error(inode->i_sb,
1213 				    "Inode %llu has empty extent list at "
1214 				    "depth %u\n",
1215 				    (unsigned long long)oi->ip_blkno,
1216 				    le16_to_cpu(el->l_tree_depth));
1217 			ret = -EROFS;
1218 			goto out;
1219 
1220 		}
1221 
1222 		for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1223 			rec = &el->l_recs[i];
1224 
1225 			/*
1226 			 * In the case that cpos is off the allocation
1227 			 * tree, this should just wind up returning the
1228 			 * rightmost record.
1229 			 */
1230 			range = le32_to_cpu(rec->e_cpos) +
1231 				ocfs2_rec_clusters(el, rec);
1232 			if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1233 			    break;
1234 		}
1235 
1236 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1237 		if (blkno == 0) {
1238 			ocfs2_error(inode->i_sb,
1239 				    "Inode %llu has bad blkno in extent list "
1240 				    "at depth %u (index %d)\n",
1241 				    (unsigned long long)oi->ip_blkno,
1242 				    le16_to_cpu(el->l_tree_depth), i);
1243 			ret = -EROFS;
1244 			goto out;
1245 		}
1246 
1247 		brelse(bh);
1248 		bh = NULL;
1249 		ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), blkno,
1250 				       &bh, OCFS2_BH_CACHED, inode);
1251 		if (ret) {
1252 			mlog_errno(ret);
1253 			goto out;
1254 		}
1255 
1256 		eb = (struct ocfs2_extent_block *) bh->b_data;
1257 		el = &eb->h_list;
1258 		if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
1259 			OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1260 			ret = -EIO;
1261 			goto out;
1262 		}
1263 
1264 		if (le16_to_cpu(el->l_next_free_rec) >
1265 		    le16_to_cpu(el->l_count)) {
1266 			ocfs2_error(inode->i_sb,
1267 				    "Inode %llu has bad count in extent list "
1268 				    "at block %llu (next free=%u, count=%u)\n",
1269 				    (unsigned long long)oi->ip_blkno,
1270 				    (unsigned long long)bh->b_blocknr,
1271 				    le16_to_cpu(el->l_next_free_rec),
1272 				    le16_to_cpu(el->l_count));
1273 			ret = -EROFS;
1274 			goto out;
1275 		}
1276 
1277 		if (func)
1278 			func(data, bh);
1279 	}
1280 
1281 out:
1282 	/*
1283 	 * Catch any trailing bh that the loop didn't handle.
1284 	 */
1285 	brelse(bh);
1286 
1287 	return ret;
1288 }
1289 
1290 /*
1291  * Given an initialized path (that is, it has a valid root extent
1292  * list), this function will traverse the btree in search of the path
1293  * which would contain cpos.
1294  *
1295  * The path traveled is recorded in the path structure.
1296  *
1297  * Note that this will not do any comparisons on leaf node extent
1298  * records, so it will work fine in the case that we just added a tree
1299  * branch.
1300  */
1301 struct find_path_data {
1302 	int index;
1303 	struct ocfs2_path *path;
1304 };
1305 static void find_path_ins(void *data, struct buffer_head *bh)
1306 {
1307 	struct find_path_data *fp = data;
1308 
1309 	get_bh(bh);
1310 	ocfs2_path_insert_eb(fp->path, fp->index, bh);
1311 	fp->index++;
1312 }
1313 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
1314 			   u32 cpos)
1315 {
1316 	struct find_path_data data;
1317 
1318 	data.index = 1;
1319 	data.path = path;
1320 	return __ocfs2_find_path(inode, path_root_el(path), cpos,
1321 				 find_path_ins, &data);
1322 }
1323 
1324 static void find_leaf_ins(void *data, struct buffer_head *bh)
1325 {
1326 	struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1327 	struct ocfs2_extent_list *el = &eb->h_list;
1328 	struct buffer_head **ret = data;
1329 
1330 	/* We want to retain only the leaf block. */
1331 	if (le16_to_cpu(el->l_tree_depth) == 0) {
1332 		get_bh(bh);
1333 		*ret = bh;
1334 	}
1335 }
1336 /*
1337  * Find the leaf block in the tree which would contain cpos. No
1338  * checking of the actual leaf is done.
1339  *
1340  * Some paths want to call this instead of allocating a path structure
1341  * and calling ocfs2_find_path().
1342  *
1343  * This function doesn't handle non btree extent lists.
1344  */
1345 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
1346 		    u32 cpos, struct buffer_head **leaf_bh)
1347 {
1348 	int ret;
1349 	struct buffer_head *bh = NULL;
1350 
1351 	ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
1352 	if (ret) {
1353 		mlog_errno(ret);
1354 		goto out;
1355 	}
1356 
1357 	*leaf_bh = bh;
1358 out:
1359 	return ret;
1360 }
1361 
1362 /*
1363  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1364  *
1365  * Basically, we've moved stuff around at the bottom of the tree and
1366  * we need to fix up the extent records above the changes to reflect
1367  * the new changes.
1368  *
1369  * left_rec: the record on the left.
1370  * left_child_el: is the child list pointed to by left_rec
1371  * right_rec: the record to the right of left_rec
1372  * right_child_el: is the child list pointed to by right_rec
1373  *
1374  * By definition, this only works on interior nodes.
1375  */
1376 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1377 				  struct ocfs2_extent_list *left_child_el,
1378 				  struct ocfs2_extent_rec *right_rec,
1379 				  struct ocfs2_extent_list *right_child_el)
1380 {
1381 	u32 left_clusters, right_end;
1382 
1383 	/*
1384 	 * Interior nodes never have holes. Their cpos is the cpos of
1385 	 * the leftmost record in their child list. Their cluster
1386 	 * count covers the full theoretical range of their child list
1387 	 * - the range between their cpos and the cpos of the record
1388 	 * immediately to their right.
1389 	 */
1390 	left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1391 	if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) {
1392 		BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1393 		left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1394 	}
1395 	left_clusters -= le32_to_cpu(left_rec->e_cpos);
1396 	left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1397 
1398 	/*
1399 	 * Calculate the rightmost cluster count boundary before
1400 	 * moving cpos - we will need to adjust clusters after
1401 	 * updating e_cpos to keep the same highest cluster count.
1402 	 */
1403 	right_end = le32_to_cpu(right_rec->e_cpos);
1404 	right_end += le32_to_cpu(right_rec->e_int_clusters);
1405 
1406 	right_rec->e_cpos = left_rec->e_cpos;
1407 	le32_add_cpu(&right_rec->e_cpos, left_clusters);
1408 
1409 	right_end -= le32_to_cpu(right_rec->e_cpos);
1410 	right_rec->e_int_clusters = cpu_to_le32(right_end);
1411 }
1412 
1413 /*
1414  * Adjust the adjacent root node records involved in a
1415  * rotation. left_el_blkno is passed in as a key so that we can easily
1416  * find it's index in the root list.
1417  */
1418 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1419 				      struct ocfs2_extent_list *left_el,
1420 				      struct ocfs2_extent_list *right_el,
1421 				      u64 left_el_blkno)
1422 {
1423 	int i;
1424 
1425 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1426 	       le16_to_cpu(left_el->l_tree_depth));
1427 
1428 	for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1429 		if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1430 			break;
1431 	}
1432 
1433 	/*
1434 	 * The path walking code should have never returned a root and
1435 	 * two paths which are not adjacent.
1436 	 */
1437 	BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1438 
1439 	ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1440 				      &root_el->l_recs[i + 1], right_el);
1441 }
1442 
1443 /*
1444  * We've changed a leaf block (in right_path) and need to reflect that
1445  * change back up the subtree.
1446  *
1447  * This happens in multiple places:
1448  *   - When we've moved an extent record from the left path leaf to the right
1449  *     path leaf to make room for an empty extent in the left path leaf.
1450  *   - When our insert into the right path leaf is at the leftmost edge
1451  *     and requires an update of the path immediately to it's left. This
1452  *     can occur at the end of some types of rotation and appending inserts.
1453  */
1454 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1455 				       struct ocfs2_path *left_path,
1456 				       struct ocfs2_path *right_path,
1457 				       int subtree_index)
1458 {
1459 	int ret, i, idx;
1460 	struct ocfs2_extent_list *el, *left_el, *right_el;
1461 	struct ocfs2_extent_rec *left_rec, *right_rec;
1462 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1463 
1464 	/*
1465 	 * Update the counts and position values within all the
1466 	 * interior nodes to reflect the leaf rotation we just did.
1467 	 *
1468 	 * The root node is handled below the loop.
1469 	 *
1470 	 * We begin the loop with right_el and left_el pointing to the
1471 	 * leaf lists and work our way up.
1472 	 *
1473 	 * NOTE: within this loop, left_el and right_el always refer
1474 	 * to the *child* lists.
1475 	 */
1476 	left_el = path_leaf_el(left_path);
1477 	right_el = path_leaf_el(right_path);
1478 	for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
1479 		mlog(0, "Adjust records at index %u\n", i);
1480 
1481 		/*
1482 		 * One nice property of knowing that all of these
1483 		 * nodes are below the root is that we only deal with
1484 		 * the leftmost right node record and the rightmost
1485 		 * left node record.
1486 		 */
1487 		el = left_path->p_node[i].el;
1488 		idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
1489 		left_rec = &el->l_recs[idx];
1490 
1491 		el = right_path->p_node[i].el;
1492 		right_rec = &el->l_recs[0];
1493 
1494 		ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
1495 					      right_el);
1496 
1497 		ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
1498 		if (ret)
1499 			mlog_errno(ret);
1500 
1501 		ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
1502 		if (ret)
1503 			mlog_errno(ret);
1504 
1505 		/*
1506 		 * Setup our list pointers now so that the current
1507 		 * parents become children in the next iteration.
1508 		 */
1509 		left_el = left_path->p_node[i].el;
1510 		right_el = right_path->p_node[i].el;
1511 	}
1512 
1513 	/*
1514 	 * At the root node, adjust the two adjacent records which
1515 	 * begin our path to the leaves.
1516 	 */
1517 
1518 	el = left_path->p_node[subtree_index].el;
1519 	left_el = left_path->p_node[subtree_index + 1].el;
1520 	right_el = right_path->p_node[subtree_index + 1].el;
1521 
1522 	ocfs2_adjust_root_records(el, left_el, right_el,
1523 				  left_path->p_node[subtree_index + 1].bh->b_blocknr);
1524 
1525 	root_bh = left_path->p_node[subtree_index].bh;
1526 
1527 	ret = ocfs2_journal_dirty(handle, root_bh);
1528 	if (ret)
1529 		mlog_errno(ret);
1530 }
1531 
1532 static int ocfs2_rotate_subtree_right(struct inode *inode,
1533 				      handle_t *handle,
1534 				      struct ocfs2_path *left_path,
1535 				      struct ocfs2_path *right_path,
1536 				      int subtree_index)
1537 {
1538 	int ret, i;
1539 	struct buffer_head *right_leaf_bh;
1540 	struct buffer_head *left_leaf_bh = NULL;
1541 	struct buffer_head *root_bh;
1542 	struct ocfs2_extent_list *right_el, *left_el;
1543 	struct ocfs2_extent_rec move_rec;
1544 
1545 	left_leaf_bh = path_leaf_bh(left_path);
1546 	left_el = path_leaf_el(left_path);
1547 
1548 	if (left_el->l_next_free_rec != left_el->l_count) {
1549 		ocfs2_error(inode->i_sb,
1550 			    "Inode %llu has non-full interior leaf node %llu"
1551 			    "(next free = %u)",
1552 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1553 			    (unsigned long long)left_leaf_bh->b_blocknr,
1554 			    le16_to_cpu(left_el->l_next_free_rec));
1555 		return -EROFS;
1556 	}
1557 
1558 	/*
1559 	 * This extent block may already have an empty record, so we
1560 	 * return early if so.
1561 	 */
1562 	if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
1563 		return 0;
1564 
1565 	root_bh = left_path->p_node[subtree_index].bh;
1566 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
1567 
1568 	ret = ocfs2_journal_access(handle, inode, root_bh,
1569 				   OCFS2_JOURNAL_ACCESS_WRITE);
1570 	if (ret) {
1571 		mlog_errno(ret);
1572 		goto out;
1573 	}
1574 
1575 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
1576 		ret = ocfs2_journal_access(handle, inode,
1577 					   right_path->p_node[i].bh,
1578 					   OCFS2_JOURNAL_ACCESS_WRITE);
1579 		if (ret) {
1580 			mlog_errno(ret);
1581 			goto out;
1582 		}
1583 
1584 		ret = ocfs2_journal_access(handle, inode,
1585 					   left_path->p_node[i].bh,
1586 					   OCFS2_JOURNAL_ACCESS_WRITE);
1587 		if (ret) {
1588 			mlog_errno(ret);
1589 			goto out;
1590 		}
1591 	}
1592 
1593 	right_leaf_bh = path_leaf_bh(right_path);
1594 	right_el = path_leaf_el(right_path);
1595 
1596 	/* This is a code error, not a disk corruption. */
1597 	mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
1598 			"because rightmost leaf block %llu is empty\n",
1599 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1600 			(unsigned long long)right_leaf_bh->b_blocknr);
1601 
1602 	ocfs2_create_empty_extent(right_el);
1603 
1604 	ret = ocfs2_journal_dirty(handle, right_leaf_bh);
1605 	if (ret) {
1606 		mlog_errno(ret);
1607 		goto out;
1608 	}
1609 
1610 	/* Do the copy now. */
1611 	i = le16_to_cpu(left_el->l_next_free_rec) - 1;
1612 	move_rec = left_el->l_recs[i];
1613 	right_el->l_recs[0] = move_rec;
1614 
1615 	/*
1616 	 * Clear out the record we just copied and shift everything
1617 	 * over, leaving an empty extent in the left leaf.
1618 	 *
1619 	 * We temporarily subtract from next_free_rec so that the
1620 	 * shift will lose the tail record (which is now defunct).
1621 	 */
1622 	le16_add_cpu(&left_el->l_next_free_rec, -1);
1623 	ocfs2_shift_records_right(left_el);
1624 	memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1625 	le16_add_cpu(&left_el->l_next_free_rec, 1);
1626 
1627 	ret = ocfs2_journal_dirty(handle, left_leaf_bh);
1628 	if (ret) {
1629 		mlog_errno(ret);
1630 		goto out;
1631 	}
1632 
1633 	ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
1634 				subtree_index);
1635 
1636 out:
1637 	return ret;
1638 }
1639 
1640 /*
1641  * Given a full path, determine what cpos value would return us a path
1642  * containing the leaf immediately to the left of the current one.
1643  *
1644  * Will return zero if the path passed in is already the leftmost path.
1645  */
1646 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
1647 					 struct ocfs2_path *path, u32 *cpos)
1648 {
1649 	int i, j, ret = 0;
1650 	u64 blkno;
1651 	struct ocfs2_extent_list *el;
1652 
1653 	BUG_ON(path->p_tree_depth == 0);
1654 
1655 	*cpos = 0;
1656 
1657 	blkno = path_leaf_bh(path)->b_blocknr;
1658 
1659 	/* Start at the tree node just above the leaf and work our way up. */
1660 	i = path->p_tree_depth - 1;
1661 	while (i >= 0) {
1662 		el = path->p_node[i].el;
1663 
1664 		/*
1665 		 * Find the extent record just before the one in our
1666 		 * path.
1667 		 */
1668 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
1669 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
1670 				if (j == 0) {
1671 					if (i == 0) {
1672 						/*
1673 						 * We've determined that the
1674 						 * path specified is already
1675 						 * the leftmost one - return a
1676 						 * cpos of zero.
1677 						 */
1678 						goto out;
1679 					}
1680 					/*
1681 					 * The leftmost record points to our
1682 					 * leaf - we need to travel up the
1683 					 * tree one level.
1684 					 */
1685 					goto next_node;
1686 				}
1687 
1688 				*cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
1689 				*cpos = *cpos + ocfs2_rec_clusters(el,
1690 							   &el->l_recs[j - 1]);
1691 				*cpos = *cpos - 1;
1692 				goto out;
1693 			}
1694 		}
1695 
1696 		/*
1697 		 * If we got here, we never found a valid node where
1698 		 * the tree indicated one should be.
1699 		 */
1700 		ocfs2_error(sb,
1701 			    "Invalid extent tree at extent block %llu\n",
1702 			    (unsigned long long)blkno);
1703 		ret = -EROFS;
1704 		goto out;
1705 
1706 next_node:
1707 		blkno = path->p_node[i].bh->b_blocknr;
1708 		i--;
1709 	}
1710 
1711 out:
1712 	return ret;
1713 }
1714 
1715 /*
1716  * Extend the transaction by enough credits to complete the rotation,
1717  * and still leave at least the original number of credits allocated
1718  * to this transaction.
1719  */
1720 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
1721 					   int op_credits,
1722 					   struct ocfs2_path *path)
1723 {
1724 	int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
1725 
1726 	if (handle->h_buffer_credits < credits)
1727 		return ocfs2_extend_trans(handle, credits);
1728 
1729 	return 0;
1730 }
1731 
1732 /*
1733  * Trap the case where we're inserting into the theoretical range past
1734  * the _actual_ left leaf range. Otherwise, we'll rotate a record
1735  * whose cpos is less than ours into the right leaf.
1736  *
1737  * It's only necessary to look at the rightmost record of the left
1738  * leaf because the logic that calls us should ensure that the
1739  * theoretical ranges in the path components above the leaves are
1740  * correct.
1741  */
1742 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
1743 						 u32 insert_cpos)
1744 {
1745 	struct ocfs2_extent_list *left_el;
1746 	struct ocfs2_extent_rec *rec;
1747 	int next_free;
1748 
1749 	left_el = path_leaf_el(left_path);
1750 	next_free = le16_to_cpu(left_el->l_next_free_rec);
1751 	rec = &left_el->l_recs[next_free - 1];
1752 
1753 	if (insert_cpos > le32_to_cpu(rec->e_cpos))
1754 		return 1;
1755 	return 0;
1756 }
1757 
1758 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
1759 {
1760 	int next_free = le16_to_cpu(el->l_next_free_rec);
1761 	unsigned int range;
1762 	struct ocfs2_extent_rec *rec;
1763 
1764 	if (next_free == 0)
1765 		return 0;
1766 
1767 	rec = &el->l_recs[0];
1768 	if (ocfs2_is_empty_extent(rec)) {
1769 		/* Empty list. */
1770 		if (next_free == 1)
1771 			return 0;
1772 		rec = &el->l_recs[1];
1773 	}
1774 
1775 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1776 	if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1777 		return 1;
1778 	return 0;
1779 }
1780 
1781 /*
1782  * Rotate all the records in a btree right one record, starting at insert_cpos.
1783  *
1784  * The path to the rightmost leaf should be passed in.
1785  *
1786  * The array is assumed to be large enough to hold an entire path (tree depth).
1787  *
1788  * Upon succesful return from this function:
1789  *
1790  * - The 'right_path' array will contain a path to the leaf block
1791  *   whose range contains e_cpos.
1792  * - That leaf block will have a single empty extent in list index 0.
1793  * - In the case that the rotation requires a post-insert update,
1794  *   *ret_left_path will contain a valid path which can be passed to
1795  *   ocfs2_insert_path().
1796  */
1797 static int ocfs2_rotate_tree_right(struct inode *inode,
1798 				   handle_t *handle,
1799 				   enum ocfs2_split_type split,
1800 				   u32 insert_cpos,
1801 				   struct ocfs2_path *right_path,
1802 				   struct ocfs2_path **ret_left_path)
1803 {
1804 	int ret, start, orig_credits = handle->h_buffer_credits;
1805 	u32 cpos;
1806 	struct ocfs2_path *left_path = NULL;
1807 
1808 	*ret_left_path = NULL;
1809 
1810 	left_path = ocfs2_new_path(path_root_bh(right_path),
1811 				   path_root_el(right_path));
1812 	if (!left_path) {
1813 		ret = -ENOMEM;
1814 		mlog_errno(ret);
1815 		goto out;
1816 	}
1817 
1818 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
1819 	if (ret) {
1820 		mlog_errno(ret);
1821 		goto out;
1822 	}
1823 
1824 	mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
1825 
1826 	/*
1827 	 * What we want to do here is:
1828 	 *
1829 	 * 1) Start with the rightmost path.
1830 	 *
1831 	 * 2) Determine a path to the leaf block directly to the left
1832 	 *    of that leaf.
1833 	 *
1834 	 * 3) Determine the 'subtree root' - the lowest level tree node
1835 	 *    which contains a path to both leaves.
1836 	 *
1837 	 * 4) Rotate the subtree.
1838 	 *
1839 	 * 5) Find the next subtree by considering the left path to be
1840 	 *    the new right path.
1841 	 *
1842 	 * The check at the top of this while loop also accepts
1843 	 * insert_cpos == cpos because cpos is only a _theoretical_
1844 	 * value to get us the left path - insert_cpos might very well
1845 	 * be filling that hole.
1846 	 *
1847 	 * Stop at a cpos of '0' because we either started at the
1848 	 * leftmost branch (i.e., a tree with one branch and a
1849 	 * rotation inside of it), or we've gone as far as we can in
1850 	 * rotating subtrees.
1851 	 */
1852 	while (cpos && insert_cpos <= cpos) {
1853 		mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
1854 		     insert_cpos, cpos);
1855 
1856 		ret = ocfs2_find_path(inode, left_path, cpos);
1857 		if (ret) {
1858 			mlog_errno(ret);
1859 			goto out;
1860 		}
1861 
1862 		mlog_bug_on_msg(path_leaf_bh(left_path) ==
1863 				path_leaf_bh(right_path),
1864 				"Inode %lu: error during insert of %u "
1865 				"(left path cpos %u) results in two identical "
1866 				"paths ending at %llu\n",
1867 				inode->i_ino, insert_cpos, cpos,
1868 				(unsigned long long)
1869 				path_leaf_bh(left_path)->b_blocknr);
1870 
1871 		if (split == SPLIT_NONE &&
1872 		    ocfs2_rotate_requires_path_adjustment(left_path,
1873 							  insert_cpos)) {
1874 
1875 			/*
1876 			 * We've rotated the tree as much as we
1877 			 * should. The rest is up to
1878 			 * ocfs2_insert_path() to complete, after the
1879 			 * record insertion. We indicate this
1880 			 * situation by returning the left path.
1881 			 *
1882 			 * The reason we don't adjust the records here
1883 			 * before the record insert is that an error
1884 			 * later might break the rule where a parent
1885 			 * record e_cpos will reflect the actual
1886 			 * e_cpos of the 1st nonempty record of the
1887 			 * child list.
1888 			 */
1889 			*ret_left_path = left_path;
1890 			goto out_ret_path;
1891 		}
1892 
1893 		start = ocfs2_find_subtree_root(inode, left_path, right_path);
1894 
1895 		mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
1896 		     start,
1897 		     (unsigned long long) right_path->p_node[start].bh->b_blocknr,
1898 		     right_path->p_tree_depth);
1899 
1900 		ret = ocfs2_extend_rotate_transaction(handle, start,
1901 						      orig_credits, right_path);
1902 		if (ret) {
1903 			mlog_errno(ret);
1904 			goto out;
1905 		}
1906 
1907 		ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
1908 						 right_path, start);
1909 		if (ret) {
1910 			mlog_errno(ret);
1911 			goto out;
1912 		}
1913 
1914 		if (split != SPLIT_NONE &&
1915 		    ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
1916 						insert_cpos)) {
1917 			/*
1918 			 * A rotate moves the rightmost left leaf
1919 			 * record over to the leftmost right leaf
1920 			 * slot. If we're doing an extent split
1921 			 * instead of a real insert, then we have to
1922 			 * check that the extent to be split wasn't
1923 			 * just moved over. If it was, then we can
1924 			 * exit here, passing left_path back -
1925 			 * ocfs2_split_extent() is smart enough to
1926 			 * search both leaves.
1927 			 */
1928 			*ret_left_path = left_path;
1929 			goto out_ret_path;
1930 		}
1931 
1932 		/*
1933 		 * There is no need to re-read the next right path
1934 		 * as we know that it'll be our current left
1935 		 * path. Optimize by copying values instead.
1936 		 */
1937 		ocfs2_mv_path(right_path, left_path);
1938 
1939 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
1940 						    &cpos);
1941 		if (ret) {
1942 			mlog_errno(ret);
1943 			goto out;
1944 		}
1945 	}
1946 
1947 out:
1948 	ocfs2_free_path(left_path);
1949 
1950 out_ret_path:
1951 	return ret;
1952 }
1953 
1954 static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
1955 				      struct ocfs2_path *path)
1956 {
1957 	int i, idx;
1958 	struct ocfs2_extent_rec *rec;
1959 	struct ocfs2_extent_list *el;
1960 	struct ocfs2_extent_block *eb;
1961 	u32 range;
1962 
1963 	/* Path should always be rightmost. */
1964 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
1965 	BUG_ON(eb->h_next_leaf_blk != 0ULL);
1966 
1967 	el = &eb->h_list;
1968 	BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
1969 	idx = le16_to_cpu(el->l_next_free_rec) - 1;
1970 	rec = &el->l_recs[idx];
1971 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1972 
1973 	for (i = 0; i < path->p_tree_depth; i++) {
1974 		el = path->p_node[i].el;
1975 		idx = le16_to_cpu(el->l_next_free_rec) - 1;
1976 		rec = &el->l_recs[idx];
1977 
1978 		rec->e_int_clusters = cpu_to_le32(range);
1979 		le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
1980 
1981 		ocfs2_journal_dirty(handle, path->p_node[i].bh);
1982 	}
1983 }
1984 
1985 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
1986 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
1987 			      struct ocfs2_path *path, int unlink_start)
1988 {
1989 	int ret, i;
1990 	struct ocfs2_extent_block *eb;
1991 	struct ocfs2_extent_list *el;
1992 	struct buffer_head *bh;
1993 
1994 	for(i = unlink_start; i < path_num_items(path); i++) {
1995 		bh = path->p_node[i].bh;
1996 
1997 		eb = (struct ocfs2_extent_block *)bh->b_data;
1998 		/*
1999 		 * Not all nodes might have had their final count
2000 		 * decremented by the caller - handle this here.
2001 		 */
2002 		el = &eb->h_list;
2003 		if (le16_to_cpu(el->l_next_free_rec) > 1) {
2004 			mlog(ML_ERROR,
2005 			     "Inode %llu, attempted to remove extent block "
2006 			     "%llu with %u records\n",
2007 			     (unsigned long long)OCFS2_I(inode)->ip_blkno,
2008 			     (unsigned long long)le64_to_cpu(eb->h_blkno),
2009 			     le16_to_cpu(el->l_next_free_rec));
2010 
2011 			ocfs2_journal_dirty(handle, bh);
2012 			ocfs2_remove_from_cache(inode, bh);
2013 			continue;
2014 		}
2015 
2016 		el->l_next_free_rec = 0;
2017 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2018 
2019 		ocfs2_journal_dirty(handle, bh);
2020 
2021 		ret = ocfs2_cache_extent_block_free(dealloc, eb);
2022 		if (ret)
2023 			mlog_errno(ret);
2024 
2025 		ocfs2_remove_from_cache(inode, bh);
2026 	}
2027 }
2028 
2029 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
2030 				 struct ocfs2_path *left_path,
2031 				 struct ocfs2_path *right_path,
2032 				 int subtree_index,
2033 				 struct ocfs2_cached_dealloc_ctxt *dealloc)
2034 {
2035 	int i;
2036 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2037 	struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2038 	struct ocfs2_extent_list *el;
2039 	struct ocfs2_extent_block *eb;
2040 
2041 	el = path_leaf_el(left_path);
2042 
2043 	eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2044 
2045 	for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2046 		if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2047 			break;
2048 
2049 	BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2050 
2051 	memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2052 	le16_add_cpu(&root_el->l_next_free_rec, -1);
2053 
2054 	eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2055 	eb->h_next_leaf_blk = 0;
2056 
2057 	ocfs2_journal_dirty(handle, root_bh);
2058 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2059 
2060 	ocfs2_unlink_path(inode, handle, dealloc, right_path,
2061 			  subtree_index + 1);
2062 }
2063 
2064 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
2065 				     struct ocfs2_path *left_path,
2066 				     struct ocfs2_path *right_path,
2067 				     int subtree_index,
2068 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
2069 				     int *deleted)
2070 {
2071 	int ret, i, del_right_subtree = 0, right_has_empty = 0;
2072 	struct buffer_head *root_bh, *di_bh = path_root_bh(right_path);
2073 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
2074 	struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2075 	struct ocfs2_extent_block *eb;
2076 
2077 	*deleted = 0;
2078 
2079 	right_leaf_el = path_leaf_el(right_path);
2080 	left_leaf_el = path_leaf_el(left_path);
2081 	root_bh = left_path->p_node[subtree_index].bh;
2082 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2083 
2084 	if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2085 		return 0;
2086 
2087 	eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2088 	if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2089 		/*
2090 		 * It's legal for us to proceed if the right leaf is
2091 		 * the rightmost one and it has an empty extent. There
2092 		 * are two cases to handle - whether the leaf will be
2093 		 * empty after removal or not. If the leaf isn't empty
2094 		 * then just remove the empty extent up front. The
2095 		 * next block will handle empty leaves by flagging
2096 		 * them for unlink.
2097 		 *
2098 		 * Non rightmost leaves will throw -EAGAIN and the
2099 		 * caller can manually move the subtree and retry.
2100 		 */
2101 
2102 		if (eb->h_next_leaf_blk != 0ULL)
2103 			return -EAGAIN;
2104 
2105 		if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2106 			ret = ocfs2_journal_access(handle, inode,
2107 						   path_leaf_bh(right_path),
2108 						   OCFS2_JOURNAL_ACCESS_WRITE);
2109 			if (ret) {
2110 				mlog_errno(ret);
2111 				goto out;
2112 			}
2113 
2114 			ocfs2_remove_empty_extent(right_leaf_el);
2115 		} else
2116 			right_has_empty = 1;
2117 	}
2118 
2119 	if (eb->h_next_leaf_blk == 0ULL &&
2120 	    le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2121 		/*
2122 		 * We have to update i_last_eb_blk during the meta
2123 		 * data delete.
2124 		 */
2125 		ret = ocfs2_journal_access(handle, inode, di_bh,
2126 					   OCFS2_JOURNAL_ACCESS_WRITE);
2127 		if (ret) {
2128 			mlog_errno(ret);
2129 			goto out;
2130 		}
2131 
2132 		del_right_subtree = 1;
2133 	}
2134 
2135 	/*
2136 	 * Getting here with an empty extent in the right path implies
2137 	 * that it's the rightmost path and will be deleted.
2138 	 */
2139 	BUG_ON(right_has_empty && !del_right_subtree);
2140 
2141 	ret = ocfs2_journal_access(handle, inode, root_bh,
2142 				   OCFS2_JOURNAL_ACCESS_WRITE);
2143 	if (ret) {
2144 		mlog_errno(ret);
2145 		goto out;
2146 	}
2147 
2148 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2149 		ret = ocfs2_journal_access(handle, inode,
2150 					   right_path->p_node[i].bh,
2151 					   OCFS2_JOURNAL_ACCESS_WRITE);
2152 		if (ret) {
2153 			mlog_errno(ret);
2154 			goto out;
2155 		}
2156 
2157 		ret = ocfs2_journal_access(handle, inode,
2158 					   left_path->p_node[i].bh,
2159 					   OCFS2_JOURNAL_ACCESS_WRITE);
2160 		if (ret) {
2161 			mlog_errno(ret);
2162 			goto out;
2163 		}
2164 	}
2165 
2166 	if (!right_has_empty) {
2167 		/*
2168 		 * Only do this if we're moving a real
2169 		 * record. Otherwise, the action is delayed until
2170 		 * after removal of the right path in which case we
2171 		 * can do a simple shift to remove the empty extent.
2172 		 */
2173 		ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2174 		memset(&right_leaf_el->l_recs[0], 0,
2175 		       sizeof(struct ocfs2_extent_rec));
2176 	}
2177 	if (eb->h_next_leaf_blk == 0ULL) {
2178 		/*
2179 		 * Move recs over to get rid of empty extent, decrease
2180 		 * next_free. This is allowed to remove the last
2181 		 * extent in our leaf (setting l_next_free_rec to
2182 		 * zero) - the delete code below won't care.
2183 		 */
2184 		ocfs2_remove_empty_extent(right_leaf_el);
2185 	}
2186 
2187 	ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2188 	if (ret)
2189 		mlog_errno(ret);
2190 	ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2191 	if (ret)
2192 		mlog_errno(ret);
2193 
2194 	if (del_right_subtree) {
2195 		ocfs2_unlink_subtree(inode, handle, left_path, right_path,
2196 				     subtree_index, dealloc);
2197 		ocfs2_update_edge_lengths(inode, handle, left_path);
2198 
2199 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2200 		di->i_last_eb_blk = eb->h_blkno;
2201 
2202 		/*
2203 		 * Removal of the extent in the left leaf was skipped
2204 		 * above so we could delete the right path
2205 		 * 1st.
2206 		 */
2207 		if (right_has_empty)
2208 			ocfs2_remove_empty_extent(left_leaf_el);
2209 
2210 		ret = ocfs2_journal_dirty(handle, di_bh);
2211 		if (ret)
2212 			mlog_errno(ret);
2213 
2214 		*deleted = 1;
2215 	} else
2216 		ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2217 					   subtree_index);
2218 
2219 out:
2220 	return ret;
2221 }
2222 
2223 /*
2224  * Given a full path, determine what cpos value would return us a path
2225  * containing the leaf immediately to the right of the current one.
2226  *
2227  * Will return zero if the path passed in is already the rightmost path.
2228  *
2229  * This looks similar, but is subtly different to
2230  * ocfs2_find_cpos_for_left_leaf().
2231  */
2232 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2233 					  struct ocfs2_path *path, u32 *cpos)
2234 {
2235 	int i, j, ret = 0;
2236 	u64 blkno;
2237 	struct ocfs2_extent_list *el;
2238 
2239 	*cpos = 0;
2240 
2241 	if (path->p_tree_depth == 0)
2242 		return 0;
2243 
2244 	blkno = path_leaf_bh(path)->b_blocknr;
2245 
2246 	/* Start at the tree node just above the leaf and work our way up. */
2247 	i = path->p_tree_depth - 1;
2248 	while (i >= 0) {
2249 		int next_free;
2250 
2251 		el = path->p_node[i].el;
2252 
2253 		/*
2254 		 * Find the extent record just after the one in our
2255 		 * path.
2256 		 */
2257 		next_free = le16_to_cpu(el->l_next_free_rec);
2258 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2259 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2260 				if (j == (next_free - 1)) {
2261 					if (i == 0) {
2262 						/*
2263 						 * We've determined that the
2264 						 * path specified is already
2265 						 * the rightmost one - return a
2266 						 * cpos of zero.
2267 						 */
2268 						goto out;
2269 					}
2270 					/*
2271 					 * The rightmost record points to our
2272 					 * leaf - we need to travel up the
2273 					 * tree one level.
2274 					 */
2275 					goto next_node;
2276 				}
2277 
2278 				*cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2279 				goto out;
2280 			}
2281 		}
2282 
2283 		/*
2284 		 * If we got here, we never found a valid node where
2285 		 * the tree indicated one should be.
2286 		 */
2287 		ocfs2_error(sb,
2288 			    "Invalid extent tree at extent block %llu\n",
2289 			    (unsigned long long)blkno);
2290 		ret = -EROFS;
2291 		goto out;
2292 
2293 next_node:
2294 		blkno = path->p_node[i].bh->b_blocknr;
2295 		i--;
2296 	}
2297 
2298 out:
2299 	return ret;
2300 }
2301 
2302 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2303 					    handle_t *handle,
2304 					    struct buffer_head *bh,
2305 					    struct ocfs2_extent_list *el)
2306 {
2307 	int ret;
2308 
2309 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2310 		return 0;
2311 
2312 	ret = ocfs2_journal_access(handle, inode, bh,
2313 				   OCFS2_JOURNAL_ACCESS_WRITE);
2314 	if (ret) {
2315 		mlog_errno(ret);
2316 		goto out;
2317 	}
2318 
2319 	ocfs2_remove_empty_extent(el);
2320 
2321 	ret = ocfs2_journal_dirty(handle, bh);
2322 	if (ret)
2323 		mlog_errno(ret);
2324 
2325 out:
2326 	return ret;
2327 }
2328 
2329 static int __ocfs2_rotate_tree_left(struct inode *inode,
2330 				    handle_t *handle, int orig_credits,
2331 				    struct ocfs2_path *path,
2332 				    struct ocfs2_cached_dealloc_ctxt *dealloc,
2333 				    struct ocfs2_path **empty_extent_path)
2334 {
2335 	int ret, subtree_root, deleted;
2336 	u32 right_cpos;
2337 	struct ocfs2_path *left_path = NULL;
2338 	struct ocfs2_path *right_path = NULL;
2339 
2340 	BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2341 
2342 	*empty_extent_path = NULL;
2343 
2344 	ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2345 					     &right_cpos);
2346 	if (ret) {
2347 		mlog_errno(ret);
2348 		goto out;
2349 	}
2350 
2351 	left_path = ocfs2_new_path(path_root_bh(path),
2352 				   path_root_el(path));
2353 	if (!left_path) {
2354 		ret = -ENOMEM;
2355 		mlog_errno(ret);
2356 		goto out;
2357 	}
2358 
2359 	ocfs2_cp_path(left_path, path);
2360 
2361 	right_path = ocfs2_new_path(path_root_bh(path),
2362 				    path_root_el(path));
2363 	if (!right_path) {
2364 		ret = -ENOMEM;
2365 		mlog_errno(ret);
2366 		goto out;
2367 	}
2368 
2369 	while (right_cpos) {
2370 		ret = ocfs2_find_path(inode, right_path, right_cpos);
2371 		if (ret) {
2372 			mlog_errno(ret);
2373 			goto out;
2374 		}
2375 
2376 		subtree_root = ocfs2_find_subtree_root(inode, left_path,
2377 						       right_path);
2378 
2379 		mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2380 		     subtree_root,
2381 		     (unsigned long long)
2382 		     right_path->p_node[subtree_root].bh->b_blocknr,
2383 		     right_path->p_tree_depth);
2384 
2385 		ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2386 						      orig_credits, left_path);
2387 		if (ret) {
2388 			mlog_errno(ret);
2389 			goto out;
2390 		}
2391 
2392 		/*
2393 		 * Caller might still want to make changes to the
2394 		 * tree root, so re-add it to the journal here.
2395 		 */
2396 		ret = ocfs2_journal_access(handle, inode,
2397 					   path_root_bh(left_path),
2398 					   OCFS2_JOURNAL_ACCESS_WRITE);
2399 		if (ret) {
2400 			mlog_errno(ret);
2401 			goto out;
2402 		}
2403 
2404 		ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
2405 						right_path, subtree_root,
2406 						dealloc, &deleted);
2407 		if (ret == -EAGAIN) {
2408 			/*
2409 			 * The rotation has to temporarily stop due to
2410 			 * the right subtree having an empty
2411 			 * extent. Pass it back to the caller for a
2412 			 * fixup.
2413 			 */
2414 			*empty_extent_path = right_path;
2415 			right_path = NULL;
2416 			goto out;
2417 		}
2418 		if (ret) {
2419 			mlog_errno(ret);
2420 			goto out;
2421 		}
2422 
2423 		/*
2424 		 * The subtree rotate might have removed records on
2425 		 * the rightmost edge. If so, then rotation is
2426 		 * complete.
2427 		 */
2428 		if (deleted)
2429 			break;
2430 
2431 		ocfs2_mv_path(left_path, right_path);
2432 
2433 		ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2434 						     &right_cpos);
2435 		if (ret) {
2436 			mlog_errno(ret);
2437 			goto out;
2438 		}
2439 	}
2440 
2441 out:
2442 	ocfs2_free_path(right_path);
2443 	ocfs2_free_path(left_path);
2444 
2445 	return ret;
2446 }
2447 
2448 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
2449 				       struct ocfs2_path *path,
2450 				       struct ocfs2_cached_dealloc_ctxt *dealloc)
2451 {
2452 	int ret, subtree_index;
2453 	u32 cpos;
2454 	struct ocfs2_path *left_path = NULL;
2455 	struct ocfs2_dinode *di;
2456 	struct ocfs2_extent_block *eb;
2457 	struct ocfs2_extent_list *el;
2458 
2459 	/*
2460 	 * XXX: This code assumes that the root is an inode, which is
2461 	 * true for now but may change as tree code gets generic.
2462 	 */
2463 	di = (struct ocfs2_dinode *)path_root_bh(path)->b_data;
2464 	if (!OCFS2_IS_VALID_DINODE(di)) {
2465 		ret = -EIO;
2466 		ocfs2_error(inode->i_sb,
2467 			    "Inode %llu has invalid path root",
2468 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
2469 		goto out;
2470 	}
2471 
2472 	/*
2473 	 * There's two ways we handle this depending on
2474 	 * whether path is the only existing one.
2475 	 */
2476 	ret = ocfs2_extend_rotate_transaction(handle, 0,
2477 					      handle->h_buffer_credits,
2478 					      path);
2479 	if (ret) {
2480 		mlog_errno(ret);
2481 		goto out;
2482 	}
2483 
2484 	ret = ocfs2_journal_access_path(inode, handle, path);
2485 	if (ret) {
2486 		mlog_errno(ret);
2487 		goto out;
2488 	}
2489 
2490 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
2491 	if (ret) {
2492 		mlog_errno(ret);
2493 		goto out;
2494 	}
2495 
2496 	if (cpos) {
2497 		/*
2498 		 * We have a path to the left of this one - it needs
2499 		 * an update too.
2500 		 */
2501 		left_path = ocfs2_new_path(path_root_bh(path),
2502 					   path_root_el(path));
2503 		if (!left_path) {
2504 			ret = -ENOMEM;
2505 			mlog_errno(ret);
2506 			goto out;
2507 		}
2508 
2509 		ret = ocfs2_find_path(inode, left_path, cpos);
2510 		if (ret) {
2511 			mlog_errno(ret);
2512 			goto out;
2513 		}
2514 
2515 		ret = ocfs2_journal_access_path(inode, handle, left_path);
2516 		if (ret) {
2517 			mlog_errno(ret);
2518 			goto out;
2519 		}
2520 
2521 		subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
2522 
2523 		ocfs2_unlink_subtree(inode, handle, left_path, path,
2524 				     subtree_index, dealloc);
2525 		ocfs2_update_edge_lengths(inode, handle, left_path);
2526 
2527 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2528 		di->i_last_eb_blk = eb->h_blkno;
2529 	} else {
2530 		/*
2531 		 * 'path' is also the leftmost path which
2532 		 * means it must be the only one. This gets
2533 		 * handled differently because we want to
2534 		 * revert the inode back to having extents
2535 		 * in-line.
2536 		 */
2537 		ocfs2_unlink_path(inode, handle, dealloc, path, 1);
2538 
2539 		el = &di->id2.i_list;
2540 		el->l_tree_depth = 0;
2541 		el->l_next_free_rec = 0;
2542 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2543 
2544 		di->i_last_eb_blk = 0;
2545 	}
2546 
2547 	ocfs2_journal_dirty(handle, path_root_bh(path));
2548 
2549 out:
2550 	ocfs2_free_path(left_path);
2551 	return ret;
2552 }
2553 
2554 /*
2555  * Left rotation of btree records.
2556  *
2557  * In many ways, this is (unsurprisingly) the opposite of right
2558  * rotation. We start at some non-rightmost path containing an empty
2559  * extent in the leaf block. The code works its way to the rightmost
2560  * path by rotating records to the left in every subtree.
2561  *
2562  * This is used by any code which reduces the number of extent records
2563  * in a leaf. After removal, an empty record should be placed in the
2564  * leftmost list position.
2565  *
2566  * This won't handle a length update of the rightmost path records if
2567  * the rightmost tree leaf record is removed so the caller is
2568  * responsible for detecting and correcting that.
2569  */
2570 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
2571 				  struct ocfs2_path *path,
2572 				  struct ocfs2_cached_dealloc_ctxt *dealloc)
2573 {
2574 	int ret, orig_credits = handle->h_buffer_credits;
2575 	struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
2576 	struct ocfs2_extent_block *eb;
2577 	struct ocfs2_extent_list *el;
2578 
2579 	el = path_leaf_el(path);
2580 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2581 		return 0;
2582 
2583 	if (path->p_tree_depth == 0) {
2584 rightmost_no_delete:
2585 		/*
2586 		 * In-inode extents. This is trivially handled, so do
2587 		 * it up front.
2588 		 */
2589 		ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
2590 						       path_leaf_bh(path),
2591 						       path_leaf_el(path));
2592 		if (ret)
2593 			mlog_errno(ret);
2594 		goto out;
2595 	}
2596 
2597 	/*
2598 	 * Handle rightmost branch now. There's several cases:
2599 	 *  1) simple rotation leaving records in there. That's trivial.
2600 	 *  2) rotation requiring a branch delete - there's no more
2601 	 *     records left. Two cases of this:
2602 	 *     a) There are branches to the left.
2603 	 *     b) This is also the leftmost (the only) branch.
2604 	 *
2605 	 *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
2606 	 *  2a) we need the left branch so that we can update it with the unlink
2607 	 *  2b) we need to bring the inode back to inline extents.
2608 	 */
2609 
2610 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2611 	el = &eb->h_list;
2612 	if (eb->h_next_leaf_blk == 0) {
2613 		/*
2614 		 * This gets a bit tricky if we're going to delete the
2615 		 * rightmost path. Get the other cases out of the way
2616 		 * 1st.
2617 		 */
2618 		if (le16_to_cpu(el->l_next_free_rec) > 1)
2619 			goto rightmost_no_delete;
2620 
2621 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
2622 			ret = -EIO;
2623 			ocfs2_error(inode->i_sb,
2624 				    "Inode %llu has empty extent block at %llu",
2625 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
2626 				    (unsigned long long)le64_to_cpu(eb->h_blkno));
2627 			goto out;
2628 		}
2629 
2630 		/*
2631 		 * XXX: The caller can not trust "path" any more after
2632 		 * this as it will have been deleted. What do we do?
2633 		 *
2634 		 * In theory the rotate-for-merge code will never get
2635 		 * here because it'll always ask for a rotate in a
2636 		 * nonempty list.
2637 		 */
2638 
2639 		ret = ocfs2_remove_rightmost_path(inode, handle, path,
2640 						  dealloc);
2641 		if (ret)
2642 			mlog_errno(ret);
2643 		goto out;
2644 	}
2645 
2646 	/*
2647 	 * Now we can loop, remembering the path we get from -EAGAIN
2648 	 * and restarting from there.
2649 	 */
2650 try_rotate:
2651 	ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
2652 				       dealloc, &restart_path);
2653 	if (ret && ret != -EAGAIN) {
2654 		mlog_errno(ret);
2655 		goto out;
2656 	}
2657 
2658 	while (ret == -EAGAIN) {
2659 		tmp_path = restart_path;
2660 		restart_path = NULL;
2661 
2662 		ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
2663 					       tmp_path, dealloc,
2664 					       &restart_path);
2665 		if (ret && ret != -EAGAIN) {
2666 			mlog_errno(ret);
2667 			goto out;
2668 		}
2669 
2670 		ocfs2_free_path(tmp_path);
2671 		tmp_path = NULL;
2672 
2673 		if (ret == 0)
2674 			goto try_rotate;
2675 	}
2676 
2677 out:
2678 	ocfs2_free_path(tmp_path);
2679 	ocfs2_free_path(restart_path);
2680 	return ret;
2681 }
2682 
2683 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
2684 				int index)
2685 {
2686 	struct ocfs2_extent_rec *rec = &el->l_recs[index];
2687 	unsigned int size;
2688 
2689 	if (rec->e_leaf_clusters == 0) {
2690 		/*
2691 		 * We consumed all of the merged-from record. An empty
2692 		 * extent cannot exist anywhere but the 1st array
2693 		 * position, so move things over if the merged-from
2694 		 * record doesn't occupy that position.
2695 		 *
2696 		 * This creates a new empty extent so the caller
2697 		 * should be smart enough to have removed any existing
2698 		 * ones.
2699 		 */
2700 		if (index > 0) {
2701 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
2702 			size = index * sizeof(struct ocfs2_extent_rec);
2703 			memmove(&el->l_recs[1], &el->l_recs[0], size);
2704 		}
2705 
2706 		/*
2707 		 * Always memset - the caller doesn't check whether it
2708 		 * created an empty extent, so there could be junk in
2709 		 * the other fields.
2710 		 */
2711 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2712 	}
2713 }
2714 
2715 /*
2716  * Remove split_rec clusters from the record at index and merge them
2717  * onto the beginning of the record at index + 1.
2718  */
2719 static int ocfs2_merge_rec_right(struct inode *inode, struct buffer_head *bh,
2720 				handle_t *handle,
2721 				struct ocfs2_extent_rec *split_rec,
2722 				struct ocfs2_extent_list *el, int index)
2723 {
2724 	int ret;
2725 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
2726 	struct ocfs2_extent_rec *left_rec;
2727 	struct ocfs2_extent_rec *right_rec;
2728 
2729 	BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
2730 
2731 	left_rec = &el->l_recs[index];
2732 	right_rec = &el->l_recs[index + 1];
2733 
2734 	ret = ocfs2_journal_access(handle, inode, bh,
2735 				   OCFS2_JOURNAL_ACCESS_WRITE);
2736 	if (ret) {
2737 		mlog_errno(ret);
2738 		goto out;
2739 	}
2740 
2741 	le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
2742 
2743 	le32_add_cpu(&right_rec->e_cpos, -split_clusters);
2744 	le64_add_cpu(&right_rec->e_blkno,
2745 		     -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
2746 	le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
2747 
2748 	ocfs2_cleanup_merge(el, index);
2749 
2750 	ret = ocfs2_journal_dirty(handle, bh);
2751 	if (ret)
2752 		mlog_errno(ret);
2753 
2754 out:
2755 	return ret;
2756 }
2757 
2758 /*
2759  * Remove split_rec clusters from the record at index and merge them
2760  * onto the tail of the record at index - 1.
2761  */
2762 static int ocfs2_merge_rec_left(struct inode *inode, struct buffer_head *bh,
2763 				handle_t *handle,
2764 				struct ocfs2_extent_rec *split_rec,
2765 				struct ocfs2_extent_list *el, int index)
2766 {
2767 	int ret, has_empty_extent = 0;
2768 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
2769 	struct ocfs2_extent_rec *left_rec;
2770 	struct ocfs2_extent_rec *right_rec;
2771 
2772 	BUG_ON(index <= 0);
2773 
2774 	left_rec = &el->l_recs[index - 1];
2775 	right_rec = &el->l_recs[index];
2776 	if (ocfs2_is_empty_extent(&el->l_recs[0]))
2777 		has_empty_extent = 1;
2778 
2779 	ret = ocfs2_journal_access(handle, inode, bh,
2780 				   OCFS2_JOURNAL_ACCESS_WRITE);
2781 	if (ret) {
2782 		mlog_errno(ret);
2783 		goto out;
2784 	}
2785 
2786 	if (has_empty_extent && index == 1) {
2787 		/*
2788 		 * The easy case - we can just plop the record right in.
2789 		 */
2790 		*left_rec = *split_rec;
2791 
2792 		has_empty_extent = 0;
2793 	} else {
2794 		le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
2795 	}
2796 
2797 	le32_add_cpu(&right_rec->e_cpos, split_clusters);
2798 	le64_add_cpu(&right_rec->e_blkno,
2799 		     ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
2800 	le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
2801 
2802 	ocfs2_cleanup_merge(el, index);
2803 
2804 	ret = ocfs2_journal_dirty(handle, bh);
2805 	if (ret)
2806 		mlog_errno(ret);
2807 
2808 out:
2809 	return ret;
2810 }
2811 
2812 static int ocfs2_try_to_merge_extent(struct inode *inode,
2813 				     handle_t *handle,
2814 				     struct ocfs2_path *left_path,
2815 				     int split_index,
2816 				     struct ocfs2_extent_rec *split_rec,
2817 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
2818 				     struct ocfs2_merge_ctxt *ctxt)
2819 
2820 {
2821 	int ret = 0;
2822 	struct ocfs2_extent_list *el = path_leaf_el(left_path);
2823 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
2824 
2825 	BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
2826 
2827 	if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
2828 		/*
2829 		 * The merge code will need to create an empty
2830 		 * extent to take the place of the newly
2831 		 * emptied slot. Remove any pre-existing empty
2832 		 * extents - having more than one in a leaf is
2833 		 * illegal.
2834 		 */
2835 		ret = ocfs2_rotate_tree_left(inode, handle, left_path,
2836 					     dealloc);
2837 		if (ret) {
2838 			mlog_errno(ret);
2839 			goto out;
2840 		}
2841 		split_index--;
2842 		rec = &el->l_recs[split_index];
2843 	}
2844 
2845 	if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
2846 		/*
2847 		 * Left-right contig implies this.
2848 		 */
2849 		BUG_ON(!ctxt->c_split_covers_rec);
2850 		BUG_ON(split_index == 0);
2851 
2852 		/*
2853 		 * Since the leftright insert always covers the entire
2854 		 * extent, this call will delete the insert record
2855 		 * entirely, resulting in an empty extent record added to
2856 		 * the extent block.
2857 		 *
2858 		 * Since the adding of an empty extent shifts
2859 		 * everything back to the right, there's no need to
2860 		 * update split_index here.
2861 		 */
2862 		ret = ocfs2_merge_rec_left(inode, path_leaf_bh(left_path),
2863 					   handle, split_rec, el, split_index);
2864 		if (ret) {
2865 			mlog_errno(ret);
2866 			goto out;
2867 		}
2868 
2869 		/*
2870 		 * We can only get this from logic error above.
2871 		 */
2872 		BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
2873 
2874 		/*
2875 		 * The left merge left us with an empty extent, remove
2876 		 * it.
2877 		 */
2878 		ret = ocfs2_rotate_tree_left(inode, handle, left_path, dealloc);
2879 		if (ret) {
2880 			mlog_errno(ret);
2881 			goto out;
2882 		}
2883 		split_index--;
2884 		rec = &el->l_recs[split_index];
2885 
2886 		/*
2887 		 * Note that we don't pass split_rec here on purpose -
2888 		 * we've merged it into the left side.
2889 		 */
2890 		ret = ocfs2_merge_rec_right(inode, path_leaf_bh(left_path),
2891 					    handle, rec, el, split_index);
2892 		if (ret) {
2893 			mlog_errno(ret);
2894 			goto out;
2895 		}
2896 
2897 		BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
2898 
2899 		ret = ocfs2_rotate_tree_left(inode, handle, left_path,
2900 					     dealloc);
2901 		/*
2902 		 * Error from this last rotate is not critical, so
2903 		 * print but don't bubble it up.
2904 		 */
2905 		if (ret)
2906 			mlog_errno(ret);
2907 		ret = 0;
2908 	} else {
2909 		/*
2910 		 * Merge a record to the left or right.
2911 		 *
2912 		 * 'contig_type' is relative to the existing record,
2913 		 * so for example, if we're "right contig", it's to
2914 		 * the record on the left (hence the left merge).
2915 		 */
2916 		if (ctxt->c_contig_type == CONTIG_RIGHT) {
2917 			ret = ocfs2_merge_rec_left(inode,
2918 						   path_leaf_bh(left_path),
2919 						   handle, split_rec, el,
2920 						   split_index);
2921 			if (ret) {
2922 				mlog_errno(ret);
2923 				goto out;
2924 			}
2925 		} else {
2926 			ret = ocfs2_merge_rec_right(inode,
2927 						    path_leaf_bh(left_path),
2928 						    handle, split_rec, el,
2929 						    split_index);
2930 			if (ret) {
2931 				mlog_errno(ret);
2932 				goto out;
2933 			}
2934 		}
2935 
2936 		if (ctxt->c_split_covers_rec) {
2937 			/*
2938 			 * The merge may have left an empty extent in
2939 			 * our leaf. Try to rotate it away.
2940 			 */
2941 			ret = ocfs2_rotate_tree_left(inode, handle, left_path,
2942 						     dealloc);
2943 			if (ret)
2944 				mlog_errno(ret);
2945 			ret = 0;
2946 		}
2947 	}
2948 
2949 out:
2950 	return ret;
2951 }
2952 
2953 static void ocfs2_subtract_from_rec(struct super_block *sb,
2954 				    enum ocfs2_split_type split,
2955 				    struct ocfs2_extent_rec *rec,
2956 				    struct ocfs2_extent_rec *split_rec)
2957 {
2958 	u64 len_blocks;
2959 
2960 	len_blocks = ocfs2_clusters_to_blocks(sb,
2961 				le16_to_cpu(split_rec->e_leaf_clusters));
2962 
2963 	if (split == SPLIT_LEFT) {
2964 		/*
2965 		 * Region is on the left edge of the existing
2966 		 * record.
2967 		 */
2968 		le32_add_cpu(&rec->e_cpos,
2969 			     le16_to_cpu(split_rec->e_leaf_clusters));
2970 		le64_add_cpu(&rec->e_blkno, len_blocks);
2971 		le16_add_cpu(&rec->e_leaf_clusters,
2972 			     -le16_to_cpu(split_rec->e_leaf_clusters));
2973 	} else {
2974 		/*
2975 		 * Region is on the right edge of the existing
2976 		 * record.
2977 		 */
2978 		le16_add_cpu(&rec->e_leaf_clusters,
2979 			     -le16_to_cpu(split_rec->e_leaf_clusters));
2980 	}
2981 }
2982 
2983 /*
2984  * Do the final bits of extent record insertion at the target leaf
2985  * list. If this leaf is part of an allocation tree, it is assumed
2986  * that the tree above has been prepared.
2987  */
2988 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
2989 				 struct ocfs2_extent_list *el,
2990 				 struct ocfs2_insert_type *insert,
2991 				 struct inode *inode)
2992 {
2993 	int i = insert->ins_contig_index;
2994 	unsigned int range;
2995 	struct ocfs2_extent_rec *rec;
2996 
2997 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
2998 
2999 	if (insert->ins_split != SPLIT_NONE) {
3000 		i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3001 		BUG_ON(i == -1);
3002 		rec = &el->l_recs[i];
3003 		ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3004 					insert_rec);
3005 		goto rotate;
3006 	}
3007 
3008 	/*
3009 	 * Contiguous insert - either left or right.
3010 	 */
3011 	if (insert->ins_contig != CONTIG_NONE) {
3012 		rec = &el->l_recs[i];
3013 		if (insert->ins_contig == CONTIG_LEFT) {
3014 			rec->e_blkno = insert_rec->e_blkno;
3015 			rec->e_cpos = insert_rec->e_cpos;
3016 		}
3017 		le16_add_cpu(&rec->e_leaf_clusters,
3018 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3019 		return;
3020 	}
3021 
3022 	/*
3023 	 * Handle insert into an empty leaf.
3024 	 */
3025 	if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3026 	    ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3027 	     ocfs2_is_empty_extent(&el->l_recs[0]))) {
3028 		el->l_recs[0] = *insert_rec;
3029 		el->l_next_free_rec = cpu_to_le16(1);
3030 		return;
3031 	}
3032 
3033 	/*
3034 	 * Appending insert.
3035 	 */
3036 	if (insert->ins_appending == APPEND_TAIL) {
3037 		i = le16_to_cpu(el->l_next_free_rec) - 1;
3038 		rec = &el->l_recs[i];
3039 		range = le32_to_cpu(rec->e_cpos)
3040 			+ le16_to_cpu(rec->e_leaf_clusters);
3041 		BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3042 
3043 		mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3044 				le16_to_cpu(el->l_count),
3045 				"inode %lu, depth %u, count %u, next free %u, "
3046 				"rec.cpos %u, rec.clusters %u, "
3047 				"insert.cpos %u, insert.clusters %u\n",
3048 				inode->i_ino,
3049 				le16_to_cpu(el->l_tree_depth),
3050 				le16_to_cpu(el->l_count),
3051 				le16_to_cpu(el->l_next_free_rec),
3052 				le32_to_cpu(el->l_recs[i].e_cpos),
3053 				le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3054 				le32_to_cpu(insert_rec->e_cpos),
3055 				le16_to_cpu(insert_rec->e_leaf_clusters));
3056 		i++;
3057 		el->l_recs[i] = *insert_rec;
3058 		le16_add_cpu(&el->l_next_free_rec, 1);
3059 		return;
3060 	}
3061 
3062 rotate:
3063 	/*
3064 	 * Ok, we have to rotate.
3065 	 *
3066 	 * At this point, it is safe to assume that inserting into an
3067 	 * empty leaf and appending to a leaf have both been handled
3068 	 * above.
3069 	 *
3070 	 * This leaf needs to have space, either by the empty 1st
3071 	 * extent record, or by virtue of an l_next_rec < l_count.
3072 	 */
3073 	ocfs2_rotate_leaf(el, insert_rec);
3074 }
3075 
3076 static inline void ocfs2_update_dinode_clusters(struct inode *inode,
3077 						struct ocfs2_dinode *di,
3078 						u32 clusters)
3079 {
3080 	le32_add_cpu(&di->i_clusters, clusters);
3081 	spin_lock(&OCFS2_I(inode)->ip_lock);
3082 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
3083 	spin_unlock(&OCFS2_I(inode)->ip_lock);
3084 }
3085 
3086 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3087 					   handle_t *handle,
3088 					   struct ocfs2_path *path,
3089 					   struct ocfs2_extent_rec *insert_rec)
3090 {
3091 	int ret, i, next_free;
3092 	struct buffer_head *bh;
3093 	struct ocfs2_extent_list *el;
3094 	struct ocfs2_extent_rec *rec;
3095 
3096 	/*
3097 	 * Update everything except the leaf block.
3098 	 */
3099 	for (i = 0; i < path->p_tree_depth; i++) {
3100 		bh = path->p_node[i].bh;
3101 		el = path->p_node[i].el;
3102 
3103 		next_free = le16_to_cpu(el->l_next_free_rec);
3104 		if (next_free == 0) {
3105 			ocfs2_error(inode->i_sb,
3106 				    "Dinode %llu has a bad extent list",
3107 				    (unsigned long long)OCFS2_I(inode)->ip_blkno);
3108 			ret = -EIO;
3109 			return;
3110 		}
3111 
3112 		rec = &el->l_recs[next_free - 1];
3113 
3114 		rec->e_int_clusters = insert_rec->e_cpos;
3115 		le32_add_cpu(&rec->e_int_clusters,
3116 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3117 		le32_add_cpu(&rec->e_int_clusters,
3118 			     -le32_to_cpu(rec->e_cpos));
3119 
3120 		ret = ocfs2_journal_dirty(handle, bh);
3121 		if (ret)
3122 			mlog_errno(ret);
3123 
3124 	}
3125 }
3126 
3127 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3128 				    struct ocfs2_extent_rec *insert_rec,
3129 				    struct ocfs2_path *right_path,
3130 				    struct ocfs2_path **ret_left_path)
3131 {
3132 	int ret, next_free;
3133 	struct ocfs2_extent_list *el;
3134 	struct ocfs2_path *left_path = NULL;
3135 
3136 	*ret_left_path = NULL;
3137 
3138 	/*
3139 	 * This shouldn't happen for non-trees. The extent rec cluster
3140 	 * count manipulation below only works for interior nodes.
3141 	 */
3142 	BUG_ON(right_path->p_tree_depth == 0);
3143 
3144 	/*
3145 	 * If our appending insert is at the leftmost edge of a leaf,
3146 	 * then we might need to update the rightmost records of the
3147 	 * neighboring path.
3148 	 */
3149 	el = path_leaf_el(right_path);
3150 	next_free = le16_to_cpu(el->l_next_free_rec);
3151 	if (next_free == 0 ||
3152 	    (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3153 		u32 left_cpos;
3154 
3155 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3156 						    &left_cpos);
3157 		if (ret) {
3158 			mlog_errno(ret);
3159 			goto out;
3160 		}
3161 
3162 		mlog(0, "Append may need a left path update. cpos: %u, "
3163 		     "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3164 		     left_cpos);
3165 
3166 		/*
3167 		 * No need to worry if the append is already in the
3168 		 * leftmost leaf.
3169 		 */
3170 		if (left_cpos) {
3171 			left_path = ocfs2_new_path(path_root_bh(right_path),
3172 						   path_root_el(right_path));
3173 			if (!left_path) {
3174 				ret = -ENOMEM;
3175 				mlog_errno(ret);
3176 				goto out;
3177 			}
3178 
3179 			ret = ocfs2_find_path(inode, left_path, left_cpos);
3180 			if (ret) {
3181 				mlog_errno(ret);
3182 				goto out;
3183 			}
3184 
3185 			/*
3186 			 * ocfs2_insert_path() will pass the left_path to the
3187 			 * journal for us.
3188 			 */
3189 		}
3190 	}
3191 
3192 	ret = ocfs2_journal_access_path(inode, handle, right_path);
3193 	if (ret) {
3194 		mlog_errno(ret);
3195 		goto out;
3196 	}
3197 
3198 	ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
3199 
3200 	*ret_left_path = left_path;
3201 	ret = 0;
3202 out:
3203 	if (ret != 0)
3204 		ocfs2_free_path(left_path);
3205 
3206 	return ret;
3207 }
3208 
3209 static void ocfs2_split_record(struct inode *inode,
3210 			       struct ocfs2_path *left_path,
3211 			       struct ocfs2_path *right_path,
3212 			       struct ocfs2_extent_rec *split_rec,
3213 			       enum ocfs2_split_type split)
3214 {
3215 	int index;
3216 	u32 cpos = le32_to_cpu(split_rec->e_cpos);
3217 	struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
3218 	struct ocfs2_extent_rec *rec, *tmprec;
3219 
3220 	right_el = path_leaf_el(right_path);;
3221 	if (left_path)
3222 		left_el = path_leaf_el(left_path);
3223 
3224 	el = right_el;
3225 	insert_el = right_el;
3226 	index = ocfs2_search_extent_list(el, cpos);
3227 	if (index != -1) {
3228 		if (index == 0 && left_path) {
3229 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3230 
3231 			/*
3232 			 * This typically means that the record
3233 			 * started in the left path but moved to the
3234 			 * right as a result of rotation. We either
3235 			 * move the existing record to the left, or we
3236 			 * do the later insert there.
3237 			 *
3238 			 * In this case, the left path should always
3239 			 * exist as the rotate code will have passed
3240 			 * it back for a post-insert update.
3241 			 */
3242 
3243 			if (split == SPLIT_LEFT) {
3244 				/*
3245 				 * It's a left split. Since we know
3246 				 * that the rotate code gave us an
3247 				 * empty extent in the left path, we
3248 				 * can just do the insert there.
3249 				 */
3250 				insert_el = left_el;
3251 			} else {
3252 				/*
3253 				 * Right split - we have to move the
3254 				 * existing record over to the left
3255 				 * leaf. The insert will be into the
3256 				 * newly created empty extent in the
3257 				 * right leaf.
3258 				 */
3259 				tmprec = &right_el->l_recs[index];
3260 				ocfs2_rotate_leaf(left_el, tmprec);
3261 				el = left_el;
3262 
3263 				memset(tmprec, 0, sizeof(*tmprec));
3264 				index = ocfs2_search_extent_list(left_el, cpos);
3265 				BUG_ON(index == -1);
3266 			}
3267 		}
3268 	} else {
3269 		BUG_ON(!left_path);
3270 		BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
3271 		/*
3272 		 * Left path is easy - we can just allow the insert to
3273 		 * happen.
3274 		 */
3275 		el = left_el;
3276 		insert_el = left_el;
3277 		index = ocfs2_search_extent_list(el, cpos);
3278 		BUG_ON(index == -1);
3279 	}
3280 
3281 	rec = &el->l_recs[index];
3282 	ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
3283 	ocfs2_rotate_leaf(insert_el, split_rec);
3284 }
3285 
3286 /*
3287  * This function only does inserts on an allocation b-tree. For dinode
3288  * lists, ocfs2_insert_at_leaf() is called directly.
3289  *
3290  * right_path is the path we want to do the actual insert
3291  * in. left_path should only be passed in if we need to update that
3292  * portion of the tree after an edge insert.
3293  */
3294 static int ocfs2_insert_path(struct inode *inode,
3295 			     handle_t *handle,
3296 			     struct ocfs2_path *left_path,
3297 			     struct ocfs2_path *right_path,
3298 			     struct ocfs2_extent_rec *insert_rec,
3299 			     struct ocfs2_insert_type *insert)
3300 {
3301 	int ret, subtree_index;
3302 	struct buffer_head *leaf_bh = path_leaf_bh(right_path);
3303 
3304 	if (left_path) {
3305 		int credits = handle->h_buffer_credits;
3306 
3307 		/*
3308 		 * There's a chance that left_path got passed back to
3309 		 * us without being accounted for in the
3310 		 * journal. Extend our transaction here to be sure we
3311 		 * can change those blocks.
3312 		 */
3313 		credits += left_path->p_tree_depth;
3314 
3315 		ret = ocfs2_extend_trans(handle, credits);
3316 		if (ret < 0) {
3317 			mlog_errno(ret);
3318 			goto out;
3319 		}
3320 
3321 		ret = ocfs2_journal_access_path(inode, handle, left_path);
3322 		if (ret < 0) {
3323 			mlog_errno(ret);
3324 			goto out;
3325 		}
3326 	}
3327 
3328 	/*
3329 	 * Pass both paths to the journal. The majority of inserts
3330 	 * will be touching all components anyway.
3331 	 */
3332 	ret = ocfs2_journal_access_path(inode, handle, right_path);
3333 	if (ret < 0) {
3334 		mlog_errno(ret);
3335 		goto out;
3336 	}
3337 
3338 	if (insert->ins_split != SPLIT_NONE) {
3339 		/*
3340 		 * We could call ocfs2_insert_at_leaf() for some types
3341 		 * of splits, but it's easier to just let one separate
3342 		 * function sort it all out.
3343 		 */
3344 		ocfs2_split_record(inode, left_path, right_path,
3345 				   insert_rec, insert->ins_split);
3346 
3347 		/*
3348 		 * Split might have modified either leaf and we don't
3349 		 * have a guarantee that the later edge insert will
3350 		 * dirty this for us.
3351 		 */
3352 		if (left_path)
3353 			ret = ocfs2_journal_dirty(handle,
3354 						  path_leaf_bh(left_path));
3355 			if (ret)
3356 				mlog_errno(ret);
3357 	} else
3358 		ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
3359 				     insert, inode);
3360 
3361 	ret = ocfs2_journal_dirty(handle, leaf_bh);
3362 	if (ret)
3363 		mlog_errno(ret);
3364 
3365 	if (left_path) {
3366 		/*
3367 		 * The rotate code has indicated that we need to fix
3368 		 * up portions of the tree after the insert.
3369 		 *
3370 		 * XXX: Should we extend the transaction here?
3371 		 */
3372 		subtree_index = ocfs2_find_subtree_root(inode, left_path,
3373 							right_path);
3374 		ocfs2_complete_edge_insert(inode, handle, left_path,
3375 					   right_path, subtree_index);
3376 	}
3377 
3378 	ret = 0;
3379 out:
3380 	return ret;
3381 }
3382 
3383 static int ocfs2_do_insert_extent(struct inode *inode,
3384 				  handle_t *handle,
3385 				  struct buffer_head *di_bh,
3386 				  struct ocfs2_extent_rec *insert_rec,
3387 				  struct ocfs2_insert_type *type)
3388 {
3389 	int ret, rotate = 0;
3390 	u32 cpos;
3391 	struct ocfs2_path *right_path = NULL;
3392 	struct ocfs2_path *left_path = NULL;
3393 	struct ocfs2_dinode *di;
3394 	struct ocfs2_extent_list *el;
3395 
3396 	di = (struct ocfs2_dinode *) di_bh->b_data;
3397 	el = &di->id2.i_list;
3398 
3399 	ret = ocfs2_journal_access(handle, inode, di_bh,
3400 				   OCFS2_JOURNAL_ACCESS_WRITE);
3401 	if (ret) {
3402 		mlog_errno(ret);
3403 		goto out;
3404 	}
3405 
3406 	if (le16_to_cpu(el->l_tree_depth) == 0) {
3407 		ocfs2_insert_at_leaf(insert_rec, el, type, inode);
3408 		goto out_update_clusters;
3409 	}
3410 
3411 	right_path = ocfs2_new_inode_path(di_bh);
3412 	if (!right_path) {
3413 		ret = -ENOMEM;
3414 		mlog_errno(ret);
3415 		goto out;
3416 	}
3417 
3418 	/*
3419 	 * Determine the path to start with. Rotations need the
3420 	 * rightmost path, everything else can go directly to the
3421 	 * target leaf.
3422 	 */
3423 	cpos = le32_to_cpu(insert_rec->e_cpos);
3424 	if (type->ins_appending == APPEND_NONE &&
3425 	    type->ins_contig == CONTIG_NONE) {
3426 		rotate = 1;
3427 		cpos = UINT_MAX;
3428 	}
3429 
3430 	ret = ocfs2_find_path(inode, right_path, cpos);
3431 	if (ret) {
3432 		mlog_errno(ret);
3433 		goto out;
3434 	}
3435 
3436 	/*
3437 	 * Rotations and appends need special treatment - they modify
3438 	 * parts of the tree's above them.
3439 	 *
3440 	 * Both might pass back a path immediate to the left of the
3441 	 * one being inserted to. This will be cause
3442 	 * ocfs2_insert_path() to modify the rightmost records of
3443 	 * left_path to account for an edge insert.
3444 	 *
3445 	 * XXX: When modifying this code, keep in mind that an insert
3446 	 * can wind up skipping both of these two special cases...
3447 	 */
3448 	if (rotate) {
3449 		ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
3450 					      le32_to_cpu(insert_rec->e_cpos),
3451 					      right_path, &left_path);
3452 		if (ret) {
3453 			mlog_errno(ret);
3454 			goto out;
3455 		}
3456 
3457 		/*
3458 		 * ocfs2_rotate_tree_right() might have extended the
3459 		 * transaction without re-journaling our tree root.
3460 		 */
3461 		ret = ocfs2_journal_access(handle, inode, di_bh,
3462 					   OCFS2_JOURNAL_ACCESS_WRITE);
3463 		if (ret) {
3464 			mlog_errno(ret);
3465 			goto out;
3466 		}
3467 	} else if (type->ins_appending == APPEND_TAIL
3468 		   && type->ins_contig != CONTIG_LEFT) {
3469 		ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
3470 					       right_path, &left_path);
3471 		if (ret) {
3472 			mlog_errno(ret);
3473 			goto out;
3474 		}
3475 	}
3476 
3477 	ret = ocfs2_insert_path(inode, handle, left_path, right_path,
3478 				insert_rec, type);
3479 	if (ret) {
3480 		mlog_errno(ret);
3481 		goto out;
3482 	}
3483 
3484 out_update_clusters:
3485 	if (type->ins_split == SPLIT_NONE)
3486 		ocfs2_update_dinode_clusters(inode, di,
3487 					     le16_to_cpu(insert_rec->e_leaf_clusters));
3488 
3489 	ret = ocfs2_journal_dirty(handle, di_bh);
3490 	if (ret)
3491 		mlog_errno(ret);
3492 
3493 out:
3494 	ocfs2_free_path(left_path);
3495 	ocfs2_free_path(right_path);
3496 
3497 	return ret;
3498 }
3499 
3500 static enum ocfs2_contig_type
3501 ocfs2_figure_merge_contig_type(struct inode *inode,
3502 			       struct ocfs2_extent_list *el, int index,
3503 			       struct ocfs2_extent_rec *split_rec)
3504 {
3505 	struct ocfs2_extent_rec *rec;
3506 	enum ocfs2_contig_type ret = CONTIG_NONE;
3507 
3508 	/*
3509 	 * We're careful to check for an empty extent record here -
3510 	 * the merge code will know what to do if it sees one.
3511 	 */
3512 
3513 	if (index > 0) {
3514 		rec = &el->l_recs[index - 1];
3515 		if (index == 1 && ocfs2_is_empty_extent(rec)) {
3516 			if (split_rec->e_cpos == el->l_recs[index].e_cpos)
3517 				ret = CONTIG_RIGHT;
3518 		} else {
3519 			ret = ocfs2_extent_contig(inode, rec, split_rec);
3520 		}
3521 	}
3522 
3523 	if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) {
3524 		enum ocfs2_contig_type contig_type;
3525 
3526 		rec = &el->l_recs[index + 1];
3527 		contig_type = ocfs2_extent_contig(inode, rec, split_rec);
3528 
3529 		if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
3530 			ret = CONTIG_LEFTRIGHT;
3531 		else if (ret == CONTIG_NONE)
3532 			ret = contig_type;
3533 	}
3534 
3535 	return ret;
3536 }
3537 
3538 static void ocfs2_figure_contig_type(struct inode *inode,
3539 				     struct ocfs2_insert_type *insert,
3540 				     struct ocfs2_extent_list *el,
3541 				     struct ocfs2_extent_rec *insert_rec)
3542 {
3543 	int i;
3544 	enum ocfs2_contig_type contig_type = CONTIG_NONE;
3545 
3546 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3547 
3548 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
3549 		contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
3550 						  insert_rec);
3551 		if (contig_type != CONTIG_NONE) {
3552 			insert->ins_contig_index = i;
3553 			break;
3554 		}
3555 	}
3556 	insert->ins_contig = contig_type;
3557 }
3558 
3559 /*
3560  * This should only be called against the righmost leaf extent list.
3561  *
3562  * ocfs2_figure_appending_type() will figure out whether we'll have to
3563  * insert at the tail of the rightmost leaf.
3564  *
3565  * This should also work against the dinode list for tree's with 0
3566  * depth. If we consider the dinode list to be the rightmost leaf node
3567  * then the logic here makes sense.
3568  */
3569 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
3570 					struct ocfs2_extent_list *el,
3571 					struct ocfs2_extent_rec *insert_rec)
3572 {
3573 	int i;
3574 	u32 cpos = le32_to_cpu(insert_rec->e_cpos);
3575 	struct ocfs2_extent_rec *rec;
3576 
3577 	insert->ins_appending = APPEND_NONE;
3578 
3579 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3580 
3581 	if (!el->l_next_free_rec)
3582 		goto set_tail_append;
3583 
3584 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
3585 		/* Were all records empty? */
3586 		if (le16_to_cpu(el->l_next_free_rec) == 1)
3587 			goto set_tail_append;
3588 	}
3589 
3590 	i = le16_to_cpu(el->l_next_free_rec) - 1;
3591 	rec = &el->l_recs[i];
3592 
3593 	if (cpos >=
3594 	    (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
3595 		goto set_tail_append;
3596 
3597 	return;
3598 
3599 set_tail_append:
3600 	insert->ins_appending = APPEND_TAIL;
3601 }
3602 
3603 /*
3604  * Helper function called at the begining of an insert.
3605  *
3606  * This computes a few things that are commonly used in the process of
3607  * inserting into the btree:
3608  *   - Whether the new extent is contiguous with an existing one.
3609  *   - The current tree depth.
3610  *   - Whether the insert is an appending one.
3611  *   - The total # of free records in the tree.
3612  *
3613  * All of the information is stored on the ocfs2_insert_type
3614  * structure.
3615  */
3616 static int ocfs2_figure_insert_type(struct inode *inode,
3617 				    struct buffer_head *di_bh,
3618 				    struct buffer_head **last_eb_bh,
3619 				    struct ocfs2_extent_rec *insert_rec,
3620 				    int *free_records,
3621 				    struct ocfs2_insert_type *insert)
3622 {
3623 	int ret;
3624 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
3625 	struct ocfs2_extent_block *eb;
3626 	struct ocfs2_extent_list *el;
3627 	struct ocfs2_path *path = NULL;
3628 	struct buffer_head *bh = NULL;
3629 
3630 	insert->ins_split = SPLIT_NONE;
3631 
3632 	el = &di->id2.i_list;
3633 	insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
3634 
3635 	if (el->l_tree_depth) {
3636 		/*
3637 		 * If we have tree depth, we read in the
3638 		 * rightmost extent block ahead of time as
3639 		 * ocfs2_figure_insert_type() and ocfs2_add_branch()
3640 		 * may want it later.
3641 		 */
3642 		ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
3643 				       le64_to_cpu(di->i_last_eb_blk), &bh,
3644 				       OCFS2_BH_CACHED, inode);
3645 		if (ret) {
3646 			mlog_exit(ret);
3647 			goto out;
3648 		}
3649 		eb = (struct ocfs2_extent_block *) bh->b_data;
3650 		el = &eb->h_list;
3651 	}
3652 
3653 	/*
3654 	 * Unless we have a contiguous insert, we'll need to know if
3655 	 * there is room left in our allocation tree for another
3656 	 * extent record.
3657 	 *
3658 	 * XXX: This test is simplistic, we can search for empty
3659 	 * extent records too.
3660 	 */
3661 	*free_records = le16_to_cpu(el->l_count) -
3662 		le16_to_cpu(el->l_next_free_rec);
3663 
3664 	if (!insert->ins_tree_depth) {
3665 		ocfs2_figure_contig_type(inode, insert, el, insert_rec);
3666 		ocfs2_figure_appending_type(insert, el, insert_rec);
3667 		return 0;
3668 	}
3669 
3670 	path = ocfs2_new_inode_path(di_bh);
3671 	if (!path) {
3672 		ret = -ENOMEM;
3673 		mlog_errno(ret);
3674 		goto out;
3675 	}
3676 
3677 	/*
3678 	 * In the case that we're inserting past what the tree
3679 	 * currently accounts for, ocfs2_find_path() will return for
3680 	 * us the rightmost tree path. This is accounted for below in
3681 	 * the appending code.
3682 	 */
3683 	ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
3684 	if (ret) {
3685 		mlog_errno(ret);
3686 		goto out;
3687 	}
3688 
3689 	el = path_leaf_el(path);
3690 
3691 	/*
3692 	 * Now that we have the path, there's two things we want to determine:
3693 	 * 1) Contiguousness (also set contig_index if this is so)
3694 	 *
3695 	 * 2) Are we doing an append? We can trivially break this up
3696          *     into two types of appends: simple record append, or a
3697          *     rotate inside the tail leaf.
3698 	 */
3699 	ocfs2_figure_contig_type(inode, insert, el, insert_rec);
3700 
3701 	/*
3702 	 * The insert code isn't quite ready to deal with all cases of
3703 	 * left contiguousness. Specifically, if it's an insert into
3704 	 * the 1st record in a leaf, it will require the adjustment of
3705 	 * cluster count on the last record of the path directly to it's
3706 	 * left. For now, just catch that case and fool the layers
3707 	 * above us. This works just fine for tree_depth == 0, which
3708 	 * is why we allow that above.
3709 	 */
3710 	if (insert->ins_contig == CONTIG_LEFT &&
3711 	    insert->ins_contig_index == 0)
3712 		insert->ins_contig = CONTIG_NONE;
3713 
3714 	/*
3715 	 * Ok, so we can simply compare against last_eb to figure out
3716 	 * whether the path doesn't exist. This will only happen in
3717 	 * the case that we're doing a tail append, so maybe we can
3718 	 * take advantage of that information somehow.
3719 	 */
3720 	if (le64_to_cpu(di->i_last_eb_blk) == path_leaf_bh(path)->b_blocknr) {
3721 		/*
3722 		 * Ok, ocfs2_find_path() returned us the rightmost
3723 		 * tree path. This might be an appending insert. There are
3724 		 * two cases:
3725 		 *    1) We're doing a true append at the tail:
3726 		 *	-This might even be off the end of the leaf
3727 		 *    2) We're "appending" by rotating in the tail
3728 		 */
3729 		ocfs2_figure_appending_type(insert, el, insert_rec);
3730 	}
3731 
3732 out:
3733 	ocfs2_free_path(path);
3734 
3735 	if (ret == 0)
3736 		*last_eb_bh = bh;
3737 	else
3738 		brelse(bh);
3739 	return ret;
3740 }
3741 
3742 /*
3743  * Insert an extent into an inode btree.
3744  *
3745  * The caller needs to update fe->i_clusters
3746  */
3747 int ocfs2_insert_extent(struct ocfs2_super *osb,
3748 			handle_t *handle,
3749 			struct inode *inode,
3750 			struct buffer_head *fe_bh,
3751 			u32 cpos,
3752 			u64 start_blk,
3753 			u32 new_clusters,
3754 			u8 flags,
3755 			struct ocfs2_alloc_context *meta_ac)
3756 {
3757 	int status;
3758 	int uninitialized_var(free_records);
3759 	struct buffer_head *last_eb_bh = NULL;
3760 	struct ocfs2_insert_type insert = {0, };
3761 	struct ocfs2_extent_rec rec;
3762 
3763 	BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
3764 
3765 	mlog(0, "add %u clusters at position %u to inode %llu\n",
3766 	     new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
3767 
3768 	mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
3769 			(OCFS2_I(inode)->ip_clusters != cpos),
3770 			"Device %s, asking for sparse allocation: inode %llu, "
3771 			"cpos %u, clusters %u\n",
3772 			osb->dev_str,
3773 			(unsigned long long)OCFS2_I(inode)->ip_blkno, cpos,
3774 			OCFS2_I(inode)->ip_clusters);
3775 
3776 	memset(&rec, 0, sizeof(rec));
3777 	rec.e_cpos = cpu_to_le32(cpos);
3778 	rec.e_blkno = cpu_to_le64(start_blk);
3779 	rec.e_leaf_clusters = cpu_to_le16(new_clusters);
3780 	rec.e_flags = flags;
3781 
3782 	status = ocfs2_figure_insert_type(inode, fe_bh, &last_eb_bh, &rec,
3783 					  &free_records, &insert);
3784 	if (status < 0) {
3785 		mlog_errno(status);
3786 		goto bail;
3787 	}
3788 
3789 	mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
3790 	     "Insert.contig_index: %d, Insert.free_records: %d, "
3791 	     "Insert.tree_depth: %d\n",
3792 	     insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
3793 	     free_records, insert.ins_tree_depth);
3794 
3795 	if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
3796 		status = ocfs2_grow_tree(inode, handle, fe_bh,
3797 					 &insert.ins_tree_depth, &last_eb_bh,
3798 					 meta_ac);
3799 		if (status) {
3800 			mlog_errno(status);
3801 			goto bail;
3802 		}
3803 	}
3804 
3805 	/* Finally, we can add clusters. This might rotate the tree for us. */
3806 	status = ocfs2_do_insert_extent(inode, handle, fe_bh, &rec, &insert);
3807 	if (status < 0)
3808 		mlog_errno(status);
3809 	else
3810 		ocfs2_extent_map_insert_rec(inode, &rec);
3811 
3812 bail:
3813 	if (last_eb_bh)
3814 		brelse(last_eb_bh);
3815 
3816 	mlog_exit(status);
3817 	return status;
3818 }
3819 
3820 static void ocfs2_make_right_split_rec(struct super_block *sb,
3821 				       struct ocfs2_extent_rec *split_rec,
3822 				       u32 cpos,
3823 				       struct ocfs2_extent_rec *rec)
3824 {
3825 	u32 rec_cpos = le32_to_cpu(rec->e_cpos);
3826 	u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
3827 
3828 	memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
3829 
3830 	split_rec->e_cpos = cpu_to_le32(cpos);
3831 	split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
3832 
3833 	split_rec->e_blkno = rec->e_blkno;
3834 	le64_add_cpu(&split_rec->e_blkno,
3835 		     ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
3836 
3837 	split_rec->e_flags = rec->e_flags;
3838 }
3839 
3840 static int ocfs2_split_and_insert(struct inode *inode,
3841 				  handle_t *handle,
3842 				  struct ocfs2_path *path,
3843 				  struct buffer_head *di_bh,
3844 				  struct buffer_head **last_eb_bh,
3845 				  int split_index,
3846 				  struct ocfs2_extent_rec *orig_split_rec,
3847 				  struct ocfs2_alloc_context *meta_ac)
3848 {
3849 	int ret = 0, depth;
3850 	unsigned int insert_range, rec_range, do_leftright = 0;
3851 	struct ocfs2_extent_rec tmprec;
3852 	struct ocfs2_extent_list *rightmost_el;
3853 	struct ocfs2_extent_rec rec;
3854 	struct ocfs2_extent_rec split_rec = *orig_split_rec;
3855 	struct ocfs2_insert_type insert;
3856 	struct ocfs2_extent_block *eb;
3857 	struct ocfs2_dinode *di;
3858 
3859 leftright:
3860 	/*
3861 	 * Store a copy of the record on the stack - it might move
3862 	 * around as the tree is manipulated below.
3863 	 */
3864 	rec = path_leaf_el(path)->l_recs[split_index];
3865 
3866 	di = (struct ocfs2_dinode *)di_bh->b_data;
3867 	rightmost_el = &di->id2.i_list;
3868 
3869 	depth = le16_to_cpu(rightmost_el->l_tree_depth);
3870 	if (depth) {
3871 		BUG_ON(!(*last_eb_bh));
3872 		eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
3873 		rightmost_el = &eb->h_list;
3874 	}
3875 
3876 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
3877 	    le16_to_cpu(rightmost_el->l_count)) {
3878 		ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, last_eb_bh,
3879 				      meta_ac);
3880 		if (ret) {
3881 			mlog_errno(ret);
3882 			goto out;
3883 		}
3884 	}
3885 
3886 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
3887 	insert.ins_appending = APPEND_NONE;
3888 	insert.ins_contig = CONTIG_NONE;
3889 	insert.ins_tree_depth = depth;
3890 
3891 	insert_range = le32_to_cpu(split_rec.e_cpos) +
3892 		le16_to_cpu(split_rec.e_leaf_clusters);
3893 	rec_range = le32_to_cpu(rec.e_cpos) +
3894 		le16_to_cpu(rec.e_leaf_clusters);
3895 
3896 	if (split_rec.e_cpos == rec.e_cpos) {
3897 		insert.ins_split = SPLIT_LEFT;
3898 	} else if (insert_range == rec_range) {
3899 		insert.ins_split = SPLIT_RIGHT;
3900 	} else {
3901 		/*
3902 		 * Left/right split. We fake this as a right split
3903 		 * first and then make a second pass as a left split.
3904 		 */
3905 		insert.ins_split = SPLIT_RIGHT;
3906 
3907 		ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
3908 					   &rec);
3909 
3910 		split_rec = tmprec;
3911 
3912 		BUG_ON(do_leftright);
3913 		do_leftright = 1;
3914 	}
3915 
3916 	ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec,
3917 				     &insert);
3918 	if (ret) {
3919 		mlog_errno(ret);
3920 		goto out;
3921 	}
3922 
3923 	if (do_leftright == 1) {
3924 		u32 cpos;
3925 		struct ocfs2_extent_list *el;
3926 
3927 		do_leftright++;
3928 		split_rec = *orig_split_rec;
3929 
3930 		ocfs2_reinit_path(path, 1);
3931 
3932 		cpos = le32_to_cpu(split_rec.e_cpos);
3933 		ret = ocfs2_find_path(inode, path, cpos);
3934 		if (ret) {
3935 			mlog_errno(ret);
3936 			goto out;
3937 		}
3938 
3939 		el = path_leaf_el(path);
3940 		split_index = ocfs2_search_extent_list(el, cpos);
3941 		goto leftright;
3942 	}
3943 out:
3944 
3945 	return ret;
3946 }
3947 
3948 /*
3949  * Mark part or all of the extent record at split_index in the leaf
3950  * pointed to by path as written. This removes the unwritten
3951  * extent flag.
3952  *
3953  * Care is taken to handle contiguousness so as to not grow the tree.
3954  *
3955  * meta_ac is not strictly necessary - we only truly need it if growth
3956  * of the tree is required. All other cases will degrade into a less
3957  * optimal tree layout.
3958  *
3959  * last_eb_bh should be the rightmost leaf block for any inode with a
3960  * btree. Since a split may grow the tree or a merge might shrink it, the caller cannot trust the contents of that buffer after this call.
3961  *
3962  * This code is optimized for readability - several passes might be
3963  * made over certain portions of the tree. All of those blocks will
3964  * have been brought into cache (and pinned via the journal), so the
3965  * extra overhead is not expressed in terms of disk reads.
3966  */
3967 static int __ocfs2_mark_extent_written(struct inode *inode,
3968 				       struct buffer_head *di_bh,
3969 				       handle_t *handle,
3970 				       struct ocfs2_path *path,
3971 				       int split_index,
3972 				       struct ocfs2_extent_rec *split_rec,
3973 				       struct ocfs2_alloc_context *meta_ac,
3974 				       struct ocfs2_cached_dealloc_ctxt *dealloc)
3975 {
3976 	int ret = 0;
3977 	struct ocfs2_extent_list *el = path_leaf_el(path);
3978 	struct buffer_head *last_eb_bh = NULL;
3979 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3980 	struct ocfs2_merge_ctxt ctxt;
3981 	struct ocfs2_extent_list *rightmost_el;
3982 
3983 	if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
3984 		ret = -EIO;
3985 		mlog_errno(ret);
3986 		goto out;
3987 	}
3988 
3989 	if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
3990 	    ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
3991 	     (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
3992 		ret = -EIO;
3993 		mlog_errno(ret);
3994 		goto out;
3995 	}
3996 
3997 	ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, el,
3998 							    split_index,
3999 							    split_rec);
4000 
4001 	/*
4002 	 * The core merge / split code wants to know how much room is
4003 	 * left in this inodes allocation tree, so we pass the
4004 	 * rightmost extent list.
4005 	 */
4006 	if (path->p_tree_depth) {
4007 		struct ocfs2_extent_block *eb;
4008 		struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
4009 
4010 		ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
4011 				       le64_to_cpu(di->i_last_eb_blk),
4012 				       &last_eb_bh, OCFS2_BH_CACHED, inode);
4013 		if (ret) {
4014 			mlog_exit(ret);
4015 			goto out;
4016 		}
4017 
4018 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4019 		if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
4020 			OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
4021 			ret = -EROFS;
4022 			goto out;
4023 		}
4024 
4025 		rightmost_el = &eb->h_list;
4026 	} else
4027 		rightmost_el = path_root_el(path);
4028 
4029 	if (rec->e_cpos == split_rec->e_cpos &&
4030 	    rec->e_leaf_clusters == split_rec->e_leaf_clusters)
4031 		ctxt.c_split_covers_rec = 1;
4032 	else
4033 		ctxt.c_split_covers_rec = 0;
4034 
4035 	ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
4036 
4037 	mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
4038 	     split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
4039 	     ctxt.c_split_covers_rec);
4040 
4041 	if (ctxt.c_contig_type == CONTIG_NONE) {
4042 		if (ctxt.c_split_covers_rec)
4043 			el->l_recs[split_index] = *split_rec;
4044 		else
4045 			ret = ocfs2_split_and_insert(inode, handle, path, di_bh,
4046 						     &last_eb_bh, split_index,
4047 						     split_rec, meta_ac);
4048 		if (ret)
4049 			mlog_errno(ret);
4050 	} else {
4051 		ret = ocfs2_try_to_merge_extent(inode, handle, path,
4052 						split_index, split_rec,
4053 						dealloc, &ctxt);
4054 		if (ret)
4055 			mlog_errno(ret);
4056 	}
4057 
4058 out:
4059 	brelse(last_eb_bh);
4060 	return ret;
4061 }
4062 
4063 /*
4064  * Mark the already-existing extent at cpos as written for len clusters.
4065  *
4066  * If the existing extent is larger than the request, initiate a
4067  * split. An attempt will be made at merging with adjacent extents.
4068  *
4069  * The caller is responsible for passing down meta_ac if we'll need it.
4070  */
4071 int ocfs2_mark_extent_written(struct inode *inode, struct buffer_head *di_bh,
4072 			      handle_t *handle, u32 cpos, u32 len, u32 phys,
4073 			      struct ocfs2_alloc_context *meta_ac,
4074 			      struct ocfs2_cached_dealloc_ctxt *dealloc)
4075 {
4076 	int ret, index;
4077 	u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
4078 	struct ocfs2_extent_rec split_rec;
4079 	struct ocfs2_path *left_path = NULL;
4080 	struct ocfs2_extent_list *el;
4081 
4082 	mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
4083 	     inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
4084 
4085 	if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
4086 		ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
4087 			    "that are being written to, but the feature bit "
4088 			    "is not set in the super block.",
4089 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
4090 		ret = -EROFS;
4091 		goto out;
4092 	}
4093 
4094 	/*
4095 	 * XXX: This should be fixed up so that we just re-insert the
4096 	 * next extent records.
4097 	 */
4098 	ocfs2_extent_map_trunc(inode, 0);
4099 
4100 	left_path = ocfs2_new_inode_path(di_bh);
4101 	if (!left_path) {
4102 		ret = -ENOMEM;
4103 		mlog_errno(ret);
4104 		goto out;
4105 	}
4106 
4107 	ret = ocfs2_find_path(inode, left_path, cpos);
4108 	if (ret) {
4109 		mlog_errno(ret);
4110 		goto out;
4111 	}
4112 	el = path_leaf_el(left_path);
4113 
4114 	index = ocfs2_search_extent_list(el, cpos);
4115 	if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4116 		ocfs2_error(inode->i_sb,
4117 			    "Inode %llu has an extent at cpos %u which can no "
4118 			    "longer be found.\n",
4119 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4120 		ret = -EROFS;
4121 		goto out;
4122 	}
4123 
4124 	memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
4125 	split_rec.e_cpos = cpu_to_le32(cpos);
4126 	split_rec.e_leaf_clusters = cpu_to_le16(len);
4127 	split_rec.e_blkno = cpu_to_le64(start_blkno);
4128 	split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
4129 	split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
4130 
4131 	ret = __ocfs2_mark_extent_written(inode, di_bh, handle, left_path,
4132 					  index, &split_rec, meta_ac, dealloc);
4133 	if (ret)
4134 		mlog_errno(ret);
4135 
4136 out:
4137 	ocfs2_free_path(left_path);
4138 	return ret;
4139 }
4140 
4141 static int ocfs2_split_tree(struct inode *inode, struct buffer_head *di_bh,
4142 			    handle_t *handle, struct ocfs2_path *path,
4143 			    int index, u32 new_range,
4144 			    struct ocfs2_alloc_context *meta_ac)
4145 {
4146 	int ret, depth, credits = handle->h_buffer_credits;
4147 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
4148 	struct buffer_head *last_eb_bh = NULL;
4149 	struct ocfs2_extent_block *eb;
4150 	struct ocfs2_extent_list *rightmost_el, *el;
4151 	struct ocfs2_extent_rec split_rec;
4152 	struct ocfs2_extent_rec *rec;
4153 	struct ocfs2_insert_type insert;
4154 
4155 	/*
4156 	 * Setup the record to split before we grow the tree.
4157 	 */
4158 	el = path_leaf_el(path);
4159 	rec = &el->l_recs[index];
4160 	ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
4161 
4162 	depth = path->p_tree_depth;
4163 	if (depth > 0) {
4164 		ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
4165 				       le64_to_cpu(di->i_last_eb_blk),
4166 				       &last_eb_bh, OCFS2_BH_CACHED, inode);
4167 		if (ret < 0) {
4168 			mlog_errno(ret);
4169 			goto out;
4170 		}
4171 
4172 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4173 		rightmost_el = &eb->h_list;
4174 	} else
4175 		rightmost_el = path_leaf_el(path);
4176 
4177 	credits += path->p_tree_depth + ocfs2_extend_meta_needed(di);
4178 	ret = ocfs2_extend_trans(handle, credits);
4179 	if (ret) {
4180 		mlog_errno(ret);
4181 		goto out;
4182 	}
4183 
4184 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4185 	    le16_to_cpu(rightmost_el->l_count)) {
4186 		ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, &last_eb_bh,
4187 				      meta_ac);
4188 		if (ret) {
4189 			mlog_errno(ret);
4190 			goto out;
4191 		}
4192 	}
4193 
4194 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4195 	insert.ins_appending = APPEND_NONE;
4196 	insert.ins_contig = CONTIG_NONE;
4197 	insert.ins_split = SPLIT_RIGHT;
4198 	insert.ins_tree_depth = depth;
4199 
4200 	ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec, &insert);
4201 	if (ret)
4202 		mlog_errno(ret);
4203 
4204 out:
4205 	brelse(last_eb_bh);
4206 	return ret;
4207 }
4208 
4209 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
4210 			      struct ocfs2_path *path, int index,
4211 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
4212 			      u32 cpos, u32 len)
4213 {
4214 	int ret;
4215 	u32 left_cpos, rec_range, trunc_range;
4216 	int wants_rotate = 0, is_rightmost_tree_rec = 0;
4217 	struct super_block *sb = inode->i_sb;
4218 	struct ocfs2_path *left_path = NULL;
4219 	struct ocfs2_extent_list *el = path_leaf_el(path);
4220 	struct ocfs2_extent_rec *rec;
4221 	struct ocfs2_extent_block *eb;
4222 
4223 	if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
4224 		ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc);
4225 		if (ret) {
4226 			mlog_errno(ret);
4227 			goto out;
4228 		}
4229 
4230 		index--;
4231 	}
4232 
4233 	if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
4234 	    path->p_tree_depth) {
4235 		/*
4236 		 * Check whether this is the rightmost tree record. If
4237 		 * we remove all of this record or part of its right
4238 		 * edge then an update of the record lengths above it
4239 		 * will be required.
4240 		 */
4241 		eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
4242 		if (eb->h_next_leaf_blk == 0)
4243 			is_rightmost_tree_rec = 1;
4244 	}
4245 
4246 	rec = &el->l_recs[index];
4247 	if (index == 0 && path->p_tree_depth &&
4248 	    le32_to_cpu(rec->e_cpos) == cpos) {
4249 		/*
4250 		 * Changing the leftmost offset (via partial or whole
4251 		 * record truncate) of an interior (or rightmost) path
4252 		 * means we have to update the subtree that is formed
4253 		 * by this leaf and the one to it's left.
4254 		 *
4255 		 * There are two cases we can skip:
4256 		 *   1) Path is the leftmost one in our inode tree.
4257 		 *   2) The leaf is rightmost and will be empty after
4258 		 *      we remove the extent record - the rotate code
4259 		 *      knows how to update the newly formed edge.
4260 		 */
4261 
4262 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
4263 						    &left_cpos);
4264 		if (ret) {
4265 			mlog_errno(ret);
4266 			goto out;
4267 		}
4268 
4269 		if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
4270 			left_path = ocfs2_new_path(path_root_bh(path),
4271 						   path_root_el(path));
4272 			if (!left_path) {
4273 				ret = -ENOMEM;
4274 				mlog_errno(ret);
4275 				goto out;
4276 			}
4277 
4278 			ret = ocfs2_find_path(inode, left_path, left_cpos);
4279 			if (ret) {
4280 				mlog_errno(ret);
4281 				goto out;
4282 			}
4283 		}
4284 	}
4285 
4286 	ret = ocfs2_extend_rotate_transaction(handle, 0,
4287 					      handle->h_buffer_credits,
4288 					      path);
4289 	if (ret) {
4290 		mlog_errno(ret);
4291 		goto out;
4292 	}
4293 
4294 	ret = ocfs2_journal_access_path(inode, handle, path);
4295 	if (ret) {
4296 		mlog_errno(ret);
4297 		goto out;
4298 	}
4299 
4300 	ret = ocfs2_journal_access_path(inode, handle, left_path);
4301 	if (ret) {
4302 		mlog_errno(ret);
4303 		goto out;
4304 	}
4305 
4306 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
4307 	trunc_range = cpos + len;
4308 
4309 	if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
4310 		int next_free;
4311 
4312 		memset(rec, 0, sizeof(*rec));
4313 		ocfs2_cleanup_merge(el, index);
4314 		wants_rotate = 1;
4315 
4316 		next_free = le16_to_cpu(el->l_next_free_rec);
4317 		if (is_rightmost_tree_rec && next_free > 1) {
4318 			/*
4319 			 * We skip the edge update if this path will
4320 			 * be deleted by the rotate code.
4321 			 */
4322 			rec = &el->l_recs[next_free - 1];
4323 			ocfs2_adjust_rightmost_records(inode, handle, path,
4324 						       rec);
4325 		}
4326 	} else if (le32_to_cpu(rec->e_cpos) == cpos) {
4327 		/* Remove leftmost portion of the record. */
4328 		le32_add_cpu(&rec->e_cpos, len);
4329 		le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
4330 		le16_add_cpu(&rec->e_leaf_clusters, -len);
4331 	} else if (rec_range == trunc_range) {
4332 		/* Remove rightmost portion of the record */
4333 		le16_add_cpu(&rec->e_leaf_clusters, -len);
4334 		if (is_rightmost_tree_rec)
4335 			ocfs2_adjust_rightmost_records(inode, handle, path, rec);
4336 	} else {
4337 		/* Caller should have trapped this. */
4338 		mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
4339 		     "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
4340 		     le32_to_cpu(rec->e_cpos),
4341 		     le16_to_cpu(rec->e_leaf_clusters), cpos, len);
4342 		BUG();
4343 	}
4344 
4345 	if (left_path) {
4346 		int subtree_index;
4347 
4348 		subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
4349 		ocfs2_complete_edge_insert(inode, handle, left_path, path,
4350 					   subtree_index);
4351 	}
4352 
4353 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
4354 
4355 	ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc);
4356 	if (ret) {
4357 		mlog_errno(ret);
4358 		goto out;
4359 	}
4360 
4361 out:
4362 	ocfs2_free_path(left_path);
4363 	return ret;
4364 }
4365 
4366 int ocfs2_remove_extent(struct inode *inode, struct buffer_head *di_bh,
4367 			u32 cpos, u32 len, handle_t *handle,
4368 			struct ocfs2_alloc_context *meta_ac,
4369 			struct ocfs2_cached_dealloc_ctxt *dealloc)
4370 {
4371 	int ret, index;
4372 	u32 rec_range, trunc_range;
4373 	struct ocfs2_extent_rec *rec;
4374 	struct ocfs2_extent_list *el;
4375 	struct ocfs2_path *path;
4376 
4377 	ocfs2_extent_map_trunc(inode, 0);
4378 
4379 	path = ocfs2_new_inode_path(di_bh);
4380 	if (!path) {
4381 		ret = -ENOMEM;
4382 		mlog_errno(ret);
4383 		goto out;
4384 	}
4385 
4386 	ret = ocfs2_find_path(inode, path, cpos);
4387 	if (ret) {
4388 		mlog_errno(ret);
4389 		goto out;
4390 	}
4391 
4392 	el = path_leaf_el(path);
4393 	index = ocfs2_search_extent_list(el, cpos);
4394 	if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4395 		ocfs2_error(inode->i_sb,
4396 			    "Inode %llu has an extent at cpos %u which can no "
4397 			    "longer be found.\n",
4398 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4399 		ret = -EROFS;
4400 		goto out;
4401 	}
4402 
4403 	/*
4404 	 * We have 3 cases of extent removal:
4405 	 *   1) Range covers the entire extent rec
4406 	 *   2) Range begins or ends on one edge of the extent rec
4407 	 *   3) Range is in the middle of the extent rec (no shared edges)
4408 	 *
4409 	 * For case 1 we remove the extent rec and left rotate to
4410 	 * fill the hole.
4411 	 *
4412 	 * For case 2 we just shrink the existing extent rec, with a
4413 	 * tree update if the shrinking edge is also the edge of an
4414 	 * extent block.
4415 	 *
4416 	 * For case 3 we do a right split to turn the extent rec into
4417 	 * something case 2 can handle.
4418 	 */
4419 	rec = &el->l_recs[index];
4420 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
4421 	trunc_range = cpos + len;
4422 
4423 	BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
4424 
4425 	mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
4426 	     "(cpos %u, len %u)\n",
4427 	     (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
4428 	     le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
4429 
4430 	if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
4431 		ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
4432 					 cpos, len);
4433 		if (ret) {
4434 			mlog_errno(ret);
4435 			goto out;
4436 		}
4437 	} else {
4438 		ret = ocfs2_split_tree(inode, di_bh, handle, path, index,
4439 				       trunc_range, meta_ac);
4440 		if (ret) {
4441 			mlog_errno(ret);
4442 			goto out;
4443 		}
4444 
4445 		/*
4446 		 * The split could have manipulated the tree enough to
4447 		 * move the record location, so we have to look for it again.
4448 		 */
4449 		ocfs2_reinit_path(path, 1);
4450 
4451 		ret = ocfs2_find_path(inode, path, cpos);
4452 		if (ret) {
4453 			mlog_errno(ret);
4454 			goto out;
4455 		}
4456 
4457 		el = path_leaf_el(path);
4458 		index = ocfs2_search_extent_list(el, cpos);
4459 		if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4460 			ocfs2_error(inode->i_sb,
4461 				    "Inode %llu: split at cpos %u lost record.",
4462 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
4463 				    cpos);
4464 			ret = -EROFS;
4465 			goto out;
4466 		}
4467 
4468 		/*
4469 		 * Double check our values here. If anything is fishy,
4470 		 * it's easier to catch it at the top level.
4471 		 */
4472 		rec = &el->l_recs[index];
4473 		rec_range = le32_to_cpu(rec->e_cpos) +
4474 			ocfs2_rec_clusters(el, rec);
4475 		if (rec_range != trunc_range) {
4476 			ocfs2_error(inode->i_sb,
4477 				    "Inode %llu: error after split at cpos %u"
4478 				    "trunc len %u, existing record is (%u,%u)",
4479 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
4480 				    cpos, len, le32_to_cpu(rec->e_cpos),
4481 				    ocfs2_rec_clusters(el, rec));
4482 			ret = -EROFS;
4483 			goto out;
4484 		}
4485 
4486 		ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
4487 					 cpos, len);
4488 		if (ret) {
4489 			mlog_errno(ret);
4490 			goto out;
4491 		}
4492 	}
4493 
4494 out:
4495 	ocfs2_free_path(path);
4496 	return ret;
4497 }
4498 
4499 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
4500 {
4501 	struct buffer_head *tl_bh = osb->osb_tl_bh;
4502 	struct ocfs2_dinode *di;
4503 	struct ocfs2_truncate_log *tl;
4504 
4505 	di = (struct ocfs2_dinode *) tl_bh->b_data;
4506 	tl = &di->id2.i_dealloc;
4507 
4508 	mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
4509 			"slot %d, invalid truncate log parameters: used = "
4510 			"%u, count = %u\n", osb->slot_num,
4511 			le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
4512 	return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
4513 }
4514 
4515 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
4516 					   unsigned int new_start)
4517 {
4518 	unsigned int tail_index;
4519 	unsigned int current_tail;
4520 
4521 	/* No records, nothing to coalesce */
4522 	if (!le16_to_cpu(tl->tl_used))
4523 		return 0;
4524 
4525 	tail_index = le16_to_cpu(tl->tl_used) - 1;
4526 	current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
4527 	current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
4528 
4529 	return current_tail == new_start;
4530 }
4531 
4532 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
4533 			      handle_t *handle,
4534 			      u64 start_blk,
4535 			      unsigned int num_clusters)
4536 {
4537 	int status, index;
4538 	unsigned int start_cluster, tl_count;
4539 	struct inode *tl_inode = osb->osb_tl_inode;
4540 	struct buffer_head *tl_bh = osb->osb_tl_bh;
4541 	struct ocfs2_dinode *di;
4542 	struct ocfs2_truncate_log *tl;
4543 
4544 	mlog_entry("start_blk = %llu, num_clusters = %u\n",
4545 		   (unsigned long long)start_blk, num_clusters);
4546 
4547 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
4548 
4549 	start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
4550 
4551 	di = (struct ocfs2_dinode *) tl_bh->b_data;
4552 	tl = &di->id2.i_dealloc;
4553 	if (!OCFS2_IS_VALID_DINODE(di)) {
4554 		OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
4555 		status = -EIO;
4556 		goto bail;
4557 	}
4558 
4559 	tl_count = le16_to_cpu(tl->tl_count);
4560 	mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
4561 			tl_count == 0,
4562 			"Truncate record count on #%llu invalid "
4563 			"wanted %u, actual %u\n",
4564 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
4565 			ocfs2_truncate_recs_per_inode(osb->sb),
4566 			le16_to_cpu(tl->tl_count));
4567 
4568 	/* Caller should have known to flush before calling us. */
4569 	index = le16_to_cpu(tl->tl_used);
4570 	if (index >= tl_count) {
4571 		status = -ENOSPC;
4572 		mlog_errno(status);
4573 		goto bail;
4574 	}
4575 
4576 	status = ocfs2_journal_access(handle, tl_inode, tl_bh,
4577 				      OCFS2_JOURNAL_ACCESS_WRITE);
4578 	if (status < 0) {
4579 		mlog_errno(status);
4580 		goto bail;
4581 	}
4582 
4583 	mlog(0, "Log truncate of %u clusters starting at cluster %u to "
4584 	     "%llu (index = %d)\n", num_clusters, start_cluster,
4585 	     (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
4586 
4587 	if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
4588 		/*
4589 		 * Move index back to the record we are coalescing with.
4590 		 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
4591 		 */
4592 		index--;
4593 
4594 		num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
4595 		mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
4596 		     index, le32_to_cpu(tl->tl_recs[index].t_start),
4597 		     num_clusters);
4598 	} else {
4599 		tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
4600 		tl->tl_used = cpu_to_le16(index + 1);
4601 	}
4602 	tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
4603 
4604 	status = ocfs2_journal_dirty(handle, tl_bh);
4605 	if (status < 0) {
4606 		mlog_errno(status);
4607 		goto bail;
4608 	}
4609 
4610 bail:
4611 	mlog_exit(status);
4612 	return status;
4613 }
4614 
4615 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
4616 					 handle_t *handle,
4617 					 struct inode *data_alloc_inode,
4618 					 struct buffer_head *data_alloc_bh)
4619 {
4620 	int status = 0;
4621 	int i;
4622 	unsigned int num_clusters;
4623 	u64 start_blk;
4624 	struct ocfs2_truncate_rec rec;
4625 	struct ocfs2_dinode *di;
4626 	struct ocfs2_truncate_log *tl;
4627 	struct inode *tl_inode = osb->osb_tl_inode;
4628 	struct buffer_head *tl_bh = osb->osb_tl_bh;
4629 
4630 	mlog_entry_void();
4631 
4632 	di = (struct ocfs2_dinode *) tl_bh->b_data;
4633 	tl = &di->id2.i_dealloc;
4634 	i = le16_to_cpu(tl->tl_used) - 1;
4635 	while (i >= 0) {
4636 		/* Caller has given us at least enough credits to
4637 		 * update the truncate log dinode */
4638 		status = ocfs2_journal_access(handle, tl_inode, tl_bh,
4639 					      OCFS2_JOURNAL_ACCESS_WRITE);
4640 		if (status < 0) {
4641 			mlog_errno(status);
4642 			goto bail;
4643 		}
4644 
4645 		tl->tl_used = cpu_to_le16(i);
4646 
4647 		status = ocfs2_journal_dirty(handle, tl_bh);
4648 		if (status < 0) {
4649 			mlog_errno(status);
4650 			goto bail;
4651 		}
4652 
4653 		/* TODO: Perhaps we can calculate the bulk of the
4654 		 * credits up front rather than extending like
4655 		 * this. */
4656 		status = ocfs2_extend_trans(handle,
4657 					    OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
4658 		if (status < 0) {
4659 			mlog_errno(status);
4660 			goto bail;
4661 		}
4662 
4663 		rec = tl->tl_recs[i];
4664 		start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
4665 						    le32_to_cpu(rec.t_start));
4666 		num_clusters = le32_to_cpu(rec.t_clusters);
4667 
4668 		/* if start_blk is not set, we ignore the record as
4669 		 * invalid. */
4670 		if (start_blk) {
4671 			mlog(0, "free record %d, start = %u, clusters = %u\n",
4672 			     i, le32_to_cpu(rec.t_start), num_clusters);
4673 
4674 			status = ocfs2_free_clusters(handle, data_alloc_inode,
4675 						     data_alloc_bh, start_blk,
4676 						     num_clusters);
4677 			if (status < 0) {
4678 				mlog_errno(status);
4679 				goto bail;
4680 			}
4681 		}
4682 		i--;
4683 	}
4684 
4685 bail:
4686 	mlog_exit(status);
4687 	return status;
4688 }
4689 
4690 /* Expects you to already be holding tl_inode->i_mutex */
4691 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
4692 {
4693 	int status;
4694 	unsigned int num_to_flush;
4695 	handle_t *handle;
4696 	struct inode *tl_inode = osb->osb_tl_inode;
4697 	struct inode *data_alloc_inode = NULL;
4698 	struct buffer_head *tl_bh = osb->osb_tl_bh;
4699 	struct buffer_head *data_alloc_bh = NULL;
4700 	struct ocfs2_dinode *di;
4701 	struct ocfs2_truncate_log *tl;
4702 
4703 	mlog_entry_void();
4704 
4705 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
4706 
4707 	di = (struct ocfs2_dinode *) tl_bh->b_data;
4708 	tl = &di->id2.i_dealloc;
4709 	if (!OCFS2_IS_VALID_DINODE(di)) {
4710 		OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
4711 		status = -EIO;
4712 		goto out;
4713 	}
4714 
4715 	num_to_flush = le16_to_cpu(tl->tl_used);
4716 	mlog(0, "Flush %u records from truncate log #%llu\n",
4717 	     num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
4718 	if (!num_to_flush) {
4719 		status = 0;
4720 		goto out;
4721 	}
4722 
4723 	data_alloc_inode = ocfs2_get_system_file_inode(osb,
4724 						       GLOBAL_BITMAP_SYSTEM_INODE,
4725 						       OCFS2_INVALID_SLOT);
4726 	if (!data_alloc_inode) {
4727 		status = -EINVAL;
4728 		mlog(ML_ERROR, "Could not get bitmap inode!\n");
4729 		goto out;
4730 	}
4731 
4732 	mutex_lock(&data_alloc_inode->i_mutex);
4733 
4734 	status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
4735 	if (status < 0) {
4736 		mlog_errno(status);
4737 		goto out_mutex;
4738 	}
4739 
4740 	handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
4741 	if (IS_ERR(handle)) {
4742 		status = PTR_ERR(handle);
4743 		mlog_errno(status);
4744 		goto out_unlock;
4745 	}
4746 
4747 	status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
4748 					       data_alloc_bh);
4749 	if (status < 0)
4750 		mlog_errno(status);
4751 
4752 	ocfs2_commit_trans(osb, handle);
4753 
4754 out_unlock:
4755 	brelse(data_alloc_bh);
4756 	ocfs2_inode_unlock(data_alloc_inode, 1);
4757 
4758 out_mutex:
4759 	mutex_unlock(&data_alloc_inode->i_mutex);
4760 	iput(data_alloc_inode);
4761 
4762 out:
4763 	mlog_exit(status);
4764 	return status;
4765 }
4766 
4767 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
4768 {
4769 	int status;
4770 	struct inode *tl_inode = osb->osb_tl_inode;
4771 
4772 	mutex_lock(&tl_inode->i_mutex);
4773 	status = __ocfs2_flush_truncate_log(osb);
4774 	mutex_unlock(&tl_inode->i_mutex);
4775 
4776 	return status;
4777 }
4778 
4779 static void ocfs2_truncate_log_worker(struct work_struct *work)
4780 {
4781 	int status;
4782 	struct ocfs2_super *osb =
4783 		container_of(work, struct ocfs2_super,
4784 			     osb_truncate_log_wq.work);
4785 
4786 	mlog_entry_void();
4787 
4788 	status = ocfs2_flush_truncate_log(osb);
4789 	if (status < 0)
4790 		mlog_errno(status);
4791 
4792 	mlog_exit(status);
4793 }
4794 
4795 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
4796 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
4797 				       int cancel)
4798 {
4799 	if (osb->osb_tl_inode) {
4800 		/* We want to push off log flushes while truncates are
4801 		 * still running. */
4802 		if (cancel)
4803 			cancel_delayed_work(&osb->osb_truncate_log_wq);
4804 
4805 		queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
4806 				   OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
4807 	}
4808 }
4809 
4810 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
4811 				       int slot_num,
4812 				       struct inode **tl_inode,
4813 				       struct buffer_head **tl_bh)
4814 {
4815 	int status;
4816 	struct inode *inode = NULL;
4817 	struct buffer_head *bh = NULL;
4818 
4819 	inode = ocfs2_get_system_file_inode(osb,
4820 					   TRUNCATE_LOG_SYSTEM_INODE,
4821 					   slot_num);
4822 	if (!inode) {
4823 		status = -EINVAL;
4824 		mlog(ML_ERROR, "Could not get load truncate log inode!\n");
4825 		goto bail;
4826 	}
4827 
4828 	status = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &bh,
4829 				  OCFS2_BH_CACHED, inode);
4830 	if (status < 0) {
4831 		iput(inode);
4832 		mlog_errno(status);
4833 		goto bail;
4834 	}
4835 
4836 	*tl_inode = inode;
4837 	*tl_bh    = bh;
4838 bail:
4839 	mlog_exit(status);
4840 	return status;
4841 }
4842 
4843 /* called during the 1st stage of node recovery. we stamp a clean
4844  * truncate log and pass back a copy for processing later. if the
4845  * truncate log does not require processing, a *tl_copy is set to
4846  * NULL. */
4847 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
4848 				      int slot_num,
4849 				      struct ocfs2_dinode **tl_copy)
4850 {
4851 	int status;
4852 	struct inode *tl_inode = NULL;
4853 	struct buffer_head *tl_bh = NULL;
4854 	struct ocfs2_dinode *di;
4855 	struct ocfs2_truncate_log *tl;
4856 
4857 	*tl_copy = NULL;
4858 
4859 	mlog(0, "recover truncate log from slot %d\n", slot_num);
4860 
4861 	status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
4862 	if (status < 0) {
4863 		mlog_errno(status);
4864 		goto bail;
4865 	}
4866 
4867 	di = (struct ocfs2_dinode *) tl_bh->b_data;
4868 	tl = &di->id2.i_dealloc;
4869 	if (!OCFS2_IS_VALID_DINODE(di)) {
4870 		OCFS2_RO_ON_INVALID_DINODE(tl_inode->i_sb, di);
4871 		status = -EIO;
4872 		goto bail;
4873 	}
4874 
4875 	if (le16_to_cpu(tl->tl_used)) {
4876 		mlog(0, "We'll have %u logs to recover\n",
4877 		     le16_to_cpu(tl->tl_used));
4878 
4879 		*tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
4880 		if (!(*tl_copy)) {
4881 			status = -ENOMEM;
4882 			mlog_errno(status);
4883 			goto bail;
4884 		}
4885 
4886 		/* Assuming the write-out below goes well, this copy
4887 		 * will be passed back to recovery for processing. */
4888 		memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
4889 
4890 		/* All we need to do to clear the truncate log is set
4891 		 * tl_used. */
4892 		tl->tl_used = 0;
4893 
4894 		status = ocfs2_write_block(osb, tl_bh, tl_inode);
4895 		if (status < 0) {
4896 			mlog_errno(status);
4897 			goto bail;
4898 		}
4899 	}
4900 
4901 bail:
4902 	if (tl_inode)
4903 		iput(tl_inode);
4904 	if (tl_bh)
4905 		brelse(tl_bh);
4906 
4907 	if (status < 0 && (*tl_copy)) {
4908 		kfree(*tl_copy);
4909 		*tl_copy = NULL;
4910 	}
4911 
4912 	mlog_exit(status);
4913 	return status;
4914 }
4915 
4916 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
4917 					 struct ocfs2_dinode *tl_copy)
4918 {
4919 	int status = 0;
4920 	int i;
4921 	unsigned int clusters, num_recs, start_cluster;
4922 	u64 start_blk;
4923 	handle_t *handle;
4924 	struct inode *tl_inode = osb->osb_tl_inode;
4925 	struct ocfs2_truncate_log *tl;
4926 
4927 	mlog_entry_void();
4928 
4929 	if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
4930 		mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
4931 		return -EINVAL;
4932 	}
4933 
4934 	tl = &tl_copy->id2.i_dealloc;
4935 	num_recs = le16_to_cpu(tl->tl_used);
4936 	mlog(0, "cleanup %u records from %llu\n", num_recs,
4937 	     (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
4938 
4939 	mutex_lock(&tl_inode->i_mutex);
4940 	for(i = 0; i < num_recs; i++) {
4941 		if (ocfs2_truncate_log_needs_flush(osb)) {
4942 			status = __ocfs2_flush_truncate_log(osb);
4943 			if (status < 0) {
4944 				mlog_errno(status);
4945 				goto bail_up;
4946 			}
4947 		}
4948 
4949 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
4950 		if (IS_ERR(handle)) {
4951 			status = PTR_ERR(handle);
4952 			mlog_errno(status);
4953 			goto bail_up;
4954 		}
4955 
4956 		clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
4957 		start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
4958 		start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
4959 
4960 		status = ocfs2_truncate_log_append(osb, handle,
4961 						   start_blk, clusters);
4962 		ocfs2_commit_trans(osb, handle);
4963 		if (status < 0) {
4964 			mlog_errno(status);
4965 			goto bail_up;
4966 		}
4967 	}
4968 
4969 bail_up:
4970 	mutex_unlock(&tl_inode->i_mutex);
4971 
4972 	mlog_exit(status);
4973 	return status;
4974 }
4975 
4976 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
4977 {
4978 	int status;
4979 	struct inode *tl_inode = osb->osb_tl_inode;
4980 
4981 	mlog_entry_void();
4982 
4983 	if (tl_inode) {
4984 		cancel_delayed_work(&osb->osb_truncate_log_wq);
4985 		flush_workqueue(ocfs2_wq);
4986 
4987 		status = ocfs2_flush_truncate_log(osb);
4988 		if (status < 0)
4989 			mlog_errno(status);
4990 
4991 		brelse(osb->osb_tl_bh);
4992 		iput(osb->osb_tl_inode);
4993 	}
4994 
4995 	mlog_exit_void();
4996 }
4997 
4998 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
4999 {
5000 	int status;
5001 	struct inode *tl_inode = NULL;
5002 	struct buffer_head *tl_bh = NULL;
5003 
5004 	mlog_entry_void();
5005 
5006 	status = ocfs2_get_truncate_log_info(osb,
5007 					     osb->slot_num,
5008 					     &tl_inode,
5009 					     &tl_bh);
5010 	if (status < 0)
5011 		mlog_errno(status);
5012 
5013 	/* ocfs2_truncate_log_shutdown keys on the existence of
5014 	 * osb->osb_tl_inode so we don't set any of the osb variables
5015 	 * until we're sure all is well. */
5016 	INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
5017 			  ocfs2_truncate_log_worker);
5018 	osb->osb_tl_bh    = tl_bh;
5019 	osb->osb_tl_inode = tl_inode;
5020 
5021 	mlog_exit(status);
5022 	return status;
5023 }
5024 
5025 /*
5026  * Delayed de-allocation of suballocator blocks.
5027  *
5028  * Some sets of block de-allocations might involve multiple suballocator inodes.
5029  *
5030  * The locking for this can get extremely complicated, especially when
5031  * the suballocator inodes to delete from aren't known until deep
5032  * within an unrelated codepath.
5033  *
5034  * ocfs2_extent_block structures are a good example of this - an inode
5035  * btree could have been grown by any number of nodes each allocating
5036  * out of their own suballoc inode.
5037  *
5038  * These structures allow the delay of block de-allocation until a
5039  * later time, when locking of multiple cluster inodes won't cause
5040  * deadlock.
5041  */
5042 
5043 /*
5044  * Describes a single block free from a suballocator
5045  */
5046 struct ocfs2_cached_block_free {
5047 	struct ocfs2_cached_block_free		*free_next;
5048 	u64					free_blk;
5049 	unsigned int				free_bit;
5050 };
5051 
5052 struct ocfs2_per_slot_free_list {
5053 	struct ocfs2_per_slot_free_list		*f_next_suballocator;
5054 	int					f_inode_type;
5055 	int					f_slot;
5056 	struct ocfs2_cached_block_free		*f_first;
5057 };
5058 
5059 static int ocfs2_free_cached_items(struct ocfs2_super *osb,
5060 				   int sysfile_type,
5061 				   int slot,
5062 				   struct ocfs2_cached_block_free *head)
5063 {
5064 	int ret;
5065 	u64 bg_blkno;
5066 	handle_t *handle;
5067 	struct inode *inode;
5068 	struct buffer_head *di_bh = NULL;
5069 	struct ocfs2_cached_block_free *tmp;
5070 
5071 	inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
5072 	if (!inode) {
5073 		ret = -EINVAL;
5074 		mlog_errno(ret);
5075 		goto out;
5076 	}
5077 
5078 	mutex_lock(&inode->i_mutex);
5079 
5080 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
5081 	if (ret) {
5082 		mlog_errno(ret);
5083 		goto out_mutex;
5084 	}
5085 
5086 	handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
5087 	if (IS_ERR(handle)) {
5088 		ret = PTR_ERR(handle);
5089 		mlog_errno(ret);
5090 		goto out_unlock;
5091 	}
5092 
5093 	while (head) {
5094 		bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
5095 						      head->free_bit);
5096 		mlog(0, "Free bit: (bit %u, blkno %llu)\n",
5097 		     head->free_bit, (unsigned long long)head->free_blk);
5098 
5099 		ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
5100 					       head->free_bit, bg_blkno, 1);
5101 		if (ret) {
5102 			mlog_errno(ret);
5103 			goto out_journal;
5104 		}
5105 
5106 		ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
5107 		if (ret) {
5108 			mlog_errno(ret);
5109 			goto out_journal;
5110 		}
5111 
5112 		tmp = head;
5113 		head = head->free_next;
5114 		kfree(tmp);
5115 	}
5116 
5117 out_journal:
5118 	ocfs2_commit_trans(osb, handle);
5119 
5120 out_unlock:
5121 	ocfs2_inode_unlock(inode, 1);
5122 	brelse(di_bh);
5123 out_mutex:
5124 	mutex_unlock(&inode->i_mutex);
5125 	iput(inode);
5126 out:
5127 	while(head) {
5128 		/* Premature exit may have left some dangling items. */
5129 		tmp = head;
5130 		head = head->free_next;
5131 		kfree(tmp);
5132 	}
5133 
5134 	return ret;
5135 }
5136 
5137 int ocfs2_run_deallocs(struct ocfs2_super *osb,
5138 		       struct ocfs2_cached_dealloc_ctxt *ctxt)
5139 {
5140 	int ret = 0, ret2;
5141 	struct ocfs2_per_slot_free_list *fl;
5142 
5143 	if (!ctxt)
5144 		return 0;
5145 
5146 	while (ctxt->c_first_suballocator) {
5147 		fl = ctxt->c_first_suballocator;
5148 
5149 		if (fl->f_first) {
5150 			mlog(0, "Free items: (type %u, slot %d)\n",
5151 			     fl->f_inode_type, fl->f_slot);
5152 			ret2 = ocfs2_free_cached_items(osb, fl->f_inode_type,
5153 						       fl->f_slot, fl->f_first);
5154 			if (ret2)
5155 				mlog_errno(ret2);
5156 			if (!ret)
5157 				ret = ret2;
5158 		}
5159 
5160 		ctxt->c_first_suballocator = fl->f_next_suballocator;
5161 		kfree(fl);
5162 	}
5163 
5164 	return ret;
5165 }
5166 
5167 static struct ocfs2_per_slot_free_list *
5168 ocfs2_find_per_slot_free_list(int type,
5169 			      int slot,
5170 			      struct ocfs2_cached_dealloc_ctxt *ctxt)
5171 {
5172 	struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
5173 
5174 	while (fl) {
5175 		if (fl->f_inode_type == type && fl->f_slot == slot)
5176 			return fl;
5177 
5178 		fl = fl->f_next_suballocator;
5179 	}
5180 
5181 	fl = kmalloc(sizeof(*fl), GFP_NOFS);
5182 	if (fl) {
5183 		fl->f_inode_type = type;
5184 		fl->f_slot = slot;
5185 		fl->f_first = NULL;
5186 		fl->f_next_suballocator = ctxt->c_first_suballocator;
5187 
5188 		ctxt->c_first_suballocator = fl;
5189 	}
5190 	return fl;
5191 }
5192 
5193 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
5194 				     int type, int slot, u64 blkno,
5195 				     unsigned int bit)
5196 {
5197 	int ret;
5198 	struct ocfs2_per_slot_free_list *fl;
5199 	struct ocfs2_cached_block_free *item;
5200 
5201 	fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
5202 	if (fl == NULL) {
5203 		ret = -ENOMEM;
5204 		mlog_errno(ret);
5205 		goto out;
5206 	}
5207 
5208 	item = kmalloc(sizeof(*item), GFP_NOFS);
5209 	if (item == NULL) {
5210 		ret = -ENOMEM;
5211 		mlog_errno(ret);
5212 		goto out;
5213 	}
5214 
5215 	mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
5216 	     type, slot, bit, (unsigned long long)blkno);
5217 
5218 	item->free_blk = blkno;
5219 	item->free_bit = bit;
5220 	item->free_next = fl->f_first;
5221 
5222 	fl->f_first = item;
5223 
5224 	ret = 0;
5225 out:
5226 	return ret;
5227 }
5228 
5229 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
5230 					 struct ocfs2_extent_block *eb)
5231 {
5232 	return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
5233 					 le16_to_cpu(eb->h_suballoc_slot),
5234 					 le64_to_cpu(eb->h_blkno),
5235 					 le16_to_cpu(eb->h_suballoc_bit));
5236 }
5237 
5238 /* This function will figure out whether the currently last extent
5239  * block will be deleted, and if it will, what the new last extent
5240  * block will be so we can update his h_next_leaf_blk field, as well
5241  * as the dinodes i_last_eb_blk */
5242 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
5243 				       unsigned int clusters_to_del,
5244 				       struct ocfs2_path *path,
5245 				       struct buffer_head **new_last_eb)
5246 {
5247 	int next_free, ret = 0;
5248 	u32 cpos;
5249 	struct ocfs2_extent_rec *rec;
5250 	struct ocfs2_extent_block *eb;
5251 	struct ocfs2_extent_list *el;
5252 	struct buffer_head *bh = NULL;
5253 
5254 	*new_last_eb = NULL;
5255 
5256 	/* we have no tree, so of course, no last_eb. */
5257 	if (!path->p_tree_depth)
5258 		goto out;
5259 
5260 	/* trunc to zero special case - this makes tree_depth = 0
5261 	 * regardless of what it is.  */
5262 	if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
5263 		goto out;
5264 
5265 	el = path_leaf_el(path);
5266 	BUG_ON(!el->l_next_free_rec);
5267 
5268 	/*
5269 	 * Make sure that this extent list will actually be empty
5270 	 * after we clear away the data. We can shortcut out if
5271 	 * there's more than one non-empty extent in the
5272 	 * list. Otherwise, a check of the remaining extent is
5273 	 * necessary.
5274 	 */
5275 	next_free = le16_to_cpu(el->l_next_free_rec);
5276 	rec = NULL;
5277 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
5278 		if (next_free > 2)
5279 			goto out;
5280 
5281 		/* We may have a valid extent in index 1, check it. */
5282 		if (next_free == 2)
5283 			rec = &el->l_recs[1];
5284 
5285 		/*
5286 		 * Fall through - no more nonempty extents, so we want
5287 		 * to delete this leaf.
5288 		 */
5289 	} else {
5290 		if (next_free > 1)
5291 			goto out;
5292 
5293 		rec = &el->l_recs[0];
5294 	}
5295 
5296 	if (rec) {
5297 		/*
5298 		 * Check it we'll only be trimming off the end of this
5299 		 * cluster.
5300 		 */
5301 		if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
5302 			goto out;
5303 	}
5304 
5305 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
5306 	if (ret) {
5307 		mlog_errno(ret);
5308 		goto out;
5309 	}
5310 
5311 	ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
5312 	if (ret) {
5313 		mlog_errno(ret);
5314 		goto out;
5315 	}
5316 
5317 	eb = (struct ocfs2_extent_block *) bh->b_data;
5318 	el = &eb->h_list;
5319 	if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
5320 		OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
5321 		ret = -EROFS;
5322 		goto out;
5323 	}
5324 
5325 	*new_last_eb = bh;
5326 	get_bh(*new_last_eb);
5327 	mlog(0, "returning block %llu, (cpos: %u)\n",
5328 	     (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
5329 out:
5330 	brelse(bh);
5331 
5332 	return ret;
5333 }
5334 
5335 /*
5336  * Trim some clusters off the rightmost edge of a tree. Only called
5337  * during truncate.
5338  *
5339  * The caller needs to:
5340  *   - start journaling of each path component.
5341  *   - compute and fully set up any new last ext block
5342  */
5343 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
5344 			   handle_t *handle, struct ocfs2_truncate_context *tc,
5345 			   u32 clusters_to_del, u64 *delete_start)
5346 {
5347 	int ret, i, index = path->p_tree_depth;
5348 	u32 new_edge = 0;
5349 	u64 deleted_eb = 0;
5350 	struct buffer_head *bh;
5351 	struct ocfs2_extent_list *el;
5352 	struct ocfs2_extent_rec *rec;
5353 
5354 	*delete_start = 0;
5355 
5356 	while (index >= 0) {
5357 		bh = path->p_node[index].bh;
5358 		el = path->p_node[index].el;
5359 
5360 		mlog(0, "traveling tree (index = %d, block = %llu)\n",
5361 		     index,  (unsigned long long)bh->b_blocknr);
5362 
5363 		BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
5364 
5365 		if (index !=
5366 		    (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
5367 			ocfs2_error(inode->i_sb,
5368 				    "Inode %lu has invalid ext. block %llu",
5369 				    inode->i_ino,
5370 				    (unsigned long long)bh->b_blocknr);
5371 			ret = -EROFS;
5372 			goto out;
5373 		}
5374 
5375 find_tail_record:
5376 		i = le16_to_cpu(el->l_next_free_rec) - 1;
5377 		rec = &el->l_recs[i];
5378 
5379 		mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
5380 		     "next = %u\n", i, le32_to_cpu(rec->e_cpos),
5381 		     ocfs2_rec_clusters(el, rec),
5382 		     (unsigned long long)le64_to_cpu(rec->e_blkno),
5383 		     le16_to_cpu(el->l_next_free_rec));
5384 
5385 		BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
5386 
5387 		if (le16_to_cpu(el->l_tree_depth) == 0) {
5388 			/*
5389 			 * If the leaf block contains a single empty
5390 			 * extent and no records, we can just remove
5391 			 * the block.
5392 			 */
5393 			if (i == 0 && ocfs2_is_empty_extent(rec)) {
5394 				memset(rec, 0,
5395 				       sizeof(struct ocfs2_extent_rec));
5396 				el->l_next_free_rec = cpu_to_le16(0);
5397 
5398 				goto delete;
5399 			}
5400 
5401 			/*
5402 			 * Remove any empty extents by shifting things
5403 			 * left. That should make life much easier on
5404 			 * the code below. This condition is rare
5405 			 * enough that we shouldn't see a performance
5406 			 * hit.
5407 			 */
5408 			if (ocfs2_is_empty_extent(&el->l_recs[0])) {
5409 				le16_add_cpu(&el->l_next_free_rec, -1);
5410 
5411 				for(i = 0;
5412 				    i < le16_to_cpu(el->l_next_free_rec); i++)
5413 					el->l_recs[i] = el->l_recs[i + 1];
5414 
5415 				memset(&el->l_recs[i], 0,
5416 				       sizeof(struct ocfs2_extent_rec));
5417 
5418 				/*
5419 				 * We've modified our extent list. The
5420 				 * simplest way to handle this change
5421 				 * is to being the search from the
5422 				 * start again.
5423 				 */
5424 				goto find_tail_record;
5425 			}
5426 
5427 			le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
5428 
5429 			/*
5430 			 * We'll use "new_edge" on our way back up the
5431 			 * tree to know what our rightmost cpos is.
5432 			 */
5433 			new_edge = le16_to_cpu(rec->e_leaf_clusters);
5434 			new_edge += le32_to_cpu(rec->e_cpos);
5435 
5436 			/*
5437 			 * The caller will use this to delete data blocks.
5438 			 */
5439 			*delete_start = le64_to_cpu(rec->e_blkno)
5440 				+ ocfs2_clusters_to_blocks(inode->i_sb,
5441 					le16_to_cpu(rec->e_leaf_clusters));
5442 
5443 			/*
5444 			 * If it's now empty, remove this record.
5445 			 */
5446 			if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
5447 				memset(rec, 0,
5448 				       sizeof(struct ocfs2_extent_rec));
5449 				le16_add_cpu(&el->l_next_free_rec, -1);
5450 			}
5451 		} else {
5452 			if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
5453 				memset(rec, 0,
5454 				       sizeof(struct ocfs2_extent_rec));
5455 				le16_add_cpu(&el->l_next_free_rec, -1);
5456 
5457 				goto delete;
5458 			}
5459 
5460 			/* Can this actually happen? */
5461 			if (le16_to_cpu(el->l_next_free_rec) == 0)
5462 				goto delete;
5463 
5464 			/*
5465 			 * We never actually deleted any clusters
5466 			 * because our leaf was empty. There's no
5467 			 * reason to adjust the rightmost edge then.
5468 			 */
5469 			if (new_edge == 0)
5470 				goto delete;
5471 
5472 			rec->e_int_clusters = cpu_to_le32(new_edge);
5473 			le32_add_cpu(&rec->e_int_clusters,
5474 				     -le32_to_cpu(rec->e_cpos));
5475 
5476 			 /*
5477 			  * A deleted child record should have been
5478 			  * caught above.
5479 			  */
5480 			 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
5481 		}
5482 
5483 delete:
5484 		ret = ocfs2_journal_dirty(handle, bh);
5485 		if (ret) {
5486 			mlog_errno(ret);
5487 			goto out;
5488 		}
5489 
5490 		mlog(0, "extent list container %llu, after: record %d: "
5491 		     "(%u, %u, %llu), next = %u.\n",
5492 		     (unsigned long long)bh->b_blocknr, i,
5493 		     le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
5494 		     (unsigned long long)le64_to_cpu(rec->e_blkno),
5495 		     le16_to_cpu(el->l_next_free_rec));
5496 
5497 		/*
5498 		 * We must be careful to only attempt delete of an
5499 		 * extent block (and not the root inode block).
5500 		 */
5501 		if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
5502 			struct ocfs2_extent_block *eb =
5503 				(struct ocfs2_extent_block *)bh->b_data;
5504 
5505 			/*
5506 			 * Save this for use when processing the
5507 			 * parent block.
5508 			 */
5509 			deleted_eb = le64_to_cpu(eb->h_blkno);
5510 
5511 			mlog(0, "deleting this extent block.\n");
5512 
5513 			ocfs2_remove_from_cache(inode, bh);
5514 
5515 			BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
5516 			BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
5517 			BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
5518 
5519 			ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
5520 			/* An error here is not fatal. */
5521 			if (ret < 0)
5522 				mlog_errno(ret);
5523 		} else {
5524 			deleted_eb = 0;
5525 		}
5526 
5527 		index--;
5528 	}
5529 
5530 	ret = 0;
5531 out:
5532 	return ret;
5533 }
5534 
5535 static int ocfs2_do_truncate(struct ocfs2_super *osb,
5536 			     unsigned int clusters_to_del,
5537 			     struct inode *inode,
5538 			     struct buffer_head *fe_bh,
5539 			     handle_t *handle,
5540 			     struct ocfs2_truncate_context *tc,
5541 			     struct ocfs2_path *path)
5542 {
5543 	int status;
5544 	struct ocfs2_dinode *fe;
5545 	struct ocfs2_extent_block *last_eb = NULL;
5546 	struct ocfs2_extent_list *el;
5547 	struct buffer_head *last_eb_bh = NULL;
5548 	u64 delete_blk = 0;
5549 
5550 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
5551 
5552 	status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
5553 					     path, &last_eb_bh);
5554 	if (status < 0) {
5555 		mlog_errno(status);
5556 		goto bail;
5557 	}
5558 
5559 	/*
5560 	 * Each component will be touched, so we might as well journal
5561 	 * here to avoid having to handle errors later.
5562 	 */
5563 	status = ocfs2_journal_access_path(inode, handle, path);
5564 	if (status < 0) {
5565 		mlog_errno(status);
5566 		goto bail;
5567 	}
5568 
5569 	if (last_eb_bh) {
5570 		status = ocfs2_journal_access(handle, inode, last_eb_bh,
5571 					      OCFS2_JOURNAL_ACCESS_WRITE);
5572 		if (status < 0) {
5573 			mlog_errno(status);
5574 			goto bail;
5575 		}
5576 
5577 		last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5578 	}
5579 
5580 	el = &(fe->id2.i_list);
5581 
5582 	/*
5583 	 * Lower levels depend on this never happening, but it's best
5584 	 * to check it up here before changing the tree.
5585 	 */
5586 	if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
5587 		ocfs2_error(inode->i_sb,
5588 			    "Inode %lu has an empty extent record, depth %u\n",
5589 			    inode->i_ino, le16_to_cpu(el->l_tree_depth));
5590 		status = -EROFS;
5591 		goto bail;
5592 	}
5593 
5594 	spin_lock(&OCFS2_I(inode)->ip_lock);
5595 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
5596 				      clusters_to_del;
5597 	spin_unlock(&OCFS2_I(inode)->ip_lock);
5598 	le32_add_cpu(&fe->i_clusters, -clusters_to_del);
5599 	inode->i_blocks = ocfs2_inode_sector_count(inode);
5600 
5601 	status = ocfs2_trim_tree(inode, path, handle, tc,
5602 				 clusters_to_del, &delete_blk);
5603 	if (status) {
5604 		mlog_errno(status);
5605 		goto bail;
5606 	}
5607 
5608 	if (le32_to_cpu(fe->i_clusters) == 0) {
5609 		/* trunc to zero is a special case. */
5610 		el->l_tree_depth = 0;
5611 		fe->i_last_eb_blk = 0;
5612 	} else if (last_eb)
5613 		fe->i_last_eb_blk = last_eb->h_blkno;
5614 
5615 	status = ocfs2_journal_dirty(handle, fe_bh);
5616 	if (status < 0) {
5617 		mlog_errno(status);
5618 		goto bail;
5619 	}
5620 
5621 	if (last_eb) {
5622 		/* If there will be a new last extent block, then by
5623 		 * definition, there cannot be any leaves to the right of
5624 		 * him. */
5625 		last_eb->h_next_leaf_blk = 0;
5626 		status = ocfs2_journal_dirty(handle, last_eb_bh);
5627 		if (status < 0) {
5628 			mlog_errno(status);
5629 			goto bail;
5630 		}
5631 	}
5632 
5633 	if (delete_blk) {
5634 		status = ocfs2_truncate_log_append(osb, handle, delete_blk,
5635 						   clusters_to_del);
5636 		if (status < 0) {
5637 			mlog_errno(status);
5638 			goto bail;
5639 		}
5640 	}
5641 	status = 0;
5642 bail:
5643 
5644 	mlog_exit(status);
5645 	return status;
5646 }
5647 
5648 static int ocfs2_writeback_zero_func(handle_t *handle, struct buffer_head *bh)
5649 {
5650 	set_buffer_uptodate(bh);
5651 	mark_buffer_dirty(bh);
5652 	return 0;
5653 }
5654 
5655 static int ocfs2_ordered_zero_func(handle_t *handle, struct buffer_head *bh)
5656 {
5657 	set_buffer_uptodate(bh);
5658 	mark_buffer_dirty(bh);
5659 	return ocfs2_journal_dirty_data(handle, bh);
5660 }
5661 
5662 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
5663 				     unsigned int from, unsigned int to,
5664 				     struct page *page, int zero, u64 *phys)
5665 {
5666 	int ret, partial = 0;
5667 
5668 	ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
5669 	if (ret)
5670 		mlog_errno(ret);
5671 
5672 	if (zero)
5673 		zero_user_page(page, from, to - from, KM_USER0);
5674 
5675 	/*
5676 	 * Need to set the buffers we zero'd into uptodate
5677 	 * here if they aren't - ocfs2_map_page_blocks()
5678 	 * might've skipped some
5679 	 */
5680 	if (ocfs2_should_order_data(inode)) {
5681 		ret = walk_page_buffers(handle,
5682 					page_buffers(page),
5683 					from, to, &partial,
5684 					ocfs2_ordered_zero_func);
5685 		if (ret < 0)
5686 			mlog_errno(ret);
5687 	} else {
5688 		ret = walk_page_buffers(handle, page_buffers(page),
5689 					from, to, &partial,
5690 					ocfs2_writeback_zero_func);
5691 		if (ret < 0)
5692 			mlog_errno(ret);
5693 	}
5694 
5695 	if (!partial)
5696 		SetPageUptodate(page);
5697 
5698 	flush_dcache_page(page);
5699 }
5700 
5701 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
5702 				     loff_t end, struct page **pages,
5703 				     int numpages, u64 phys, handle_t *handle)
5704 {
5705 	int i;
5706 	struct page *page;
5707 	unsigned int from, to = PAGE_CACHE_SIZE;
5708 	struct super_block *sb = inode->i_sb;
5709 
5710 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
5711 
5712 	if (numpages == 0)
5713 		goto out;
5714 
5715 	to = PAGE_CACHE_SIZE;
5716 	for(i = 0; i < numpages; i++) {
5717 		page = pages[i];
5718 
5719 		from = start & (PAGE_CACHE_SIZE - 1);
5720 		if ((end >> PAGE_CACHE_SHIFT) == page->index)
5721 			to = end & (PAGE_CACHE_SIZE - 1);
5722 
5723 		BUG_ON(from > PAGE_CACHE_SIZE);
5724 		BUG_ON(to > PAGE_CACHE_SIZE);
5725 
5726 		ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
5727 					 &phys);
5728 
5729 		start = (page->index + 1) << PAGE_CACHE_SHIFT;
5730 	}
5731 out:
5732 	if (pages)
5733 		ocfs2_unlock_and_free_pages(pages, numpages);
5734 }
5735 
5736 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
5737 				struct page **pages, int *num)
5738 {
5739 	int numpages, ret = 0;
5740 	struct super_block *sb = inode->i_sb;
5741 	struct address_space *mapping = inode->i_mapping;
5742 	unsigned long index;
5743 	loff_t last_page_bytes;
5744 
5745 	BUG_ON(start > end);
5746 
5747 	BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
5748 	       (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
5749 
5750 	numpages = 0;
5751 	last_page_bytes = PAGE_ALIGN(end);
5752 	index = start >> PAGE_CACHE_SHIFT;
5753 	do {
5754 		pages[numpages] = grab_cache_page(mapping, index);
5755 		if (!pages[numpages]) {
5756 			ret = -ENOMEM;
5757 			mlog_errno(ret);
5758 			goto out;
5759 		}
5760 
5761 		numpages++;
5762 		index++;
5763 	} while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
5764 
5765 out:
5766 	if (ret != 0) {
5767 		if (pages)
5768 			ocfs2_unlock_and_free_pages(pages, numpages);
5769 		numpages = 0;
5770 	}
5771 
5772 	*num = numpages;
5773 
5774 	return ret;
5775 }
5776 
5777 /*
5778  * Zero the area past i_size but still within an allocated
5779  * cluster. This avoids exposing nonzero data on subsequent file
5780  * extends.
5781  *
5782  * We need to call this before i_size is updated on the inode because
5783  * otherwise block_write_full_page() will skip writeout of pages past
5784  * i_size. The new_i_size parameter is passed for this reason.
5785  */
5786 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
5787 				  u64 range_start, u64 range_end)
5788 {
5789 	int ret = 0, numpages;
5790 	struct page **pages = NULL;
5791 	u64 phys;
5792 	unsigned int ext_flags;
5793 	struct super_block *sb = inode->i_sb;
5794 
5795 	/*
5796 	 * File systems which don't support sparse files zero on every
5797 	 * extend.
5798 	 */
5799 	if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
5800 		return 0;
5801 
5802 	pages = kcalloc(ocfs2_pages_per_cluster(sb),
5803 			sizeof(struct page *), GFP_NOFS);
5804 	if (pages == NULL) {
5805 		ret = -ENOMEM;
5806 		mlog_errno(ret);
5807 		goto out;
5808 	}
5809 
5810 	if (range_start == range_end)
5811 		goto out;
5812 
5813 	ret = ocfs2_extent_map_get_blocks(inode,
5814 					  range_start >> sb->s_blocksize_bits,
5815 					  &phys, NULL, &ext_flags);
5816 	if (ret) {
5817 		mlog_errno(ret);
5818 		goto out;
5819 	}
5820 
5821 	/*
5822 	 * Tail is a hole, or is marked unwritten. In either case, we
5823 	 * can count on read and write to return/push zero's.
5824 	 */
5825 	if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
5826 		goto out;
5827 
5828 	ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
5829 				   &numpages);
5830 	if (ret) {
5831 		mlog_errno(ret);
5832 		goto out;
5833 	}
5834 
5835 	ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
5836 				 numpages, phys, handle);
5837 
5838 	/*
5839 	 * Initiate writeout of the pages we zero'd here. We don't
5840 	 * wait on them - the truncate_inode_pages() call later will
5841 	 * do that for us.
5842 	 */
5843 	ret = do_sync_mapping_range(inode->i_mapping, range_start,
5844 				    range_end - 1, SYNC_FILE_RANGE_WRITE);
5845 	if (ret)
5846 		mlog_errno(ret);
5847 
5848 out:
5849 	if (pages)
5850 		kfree(pages);
5851 
5852 	return ret;
5853 }
5854 
5855 static void ocfs2_zero_dinode_id2(struct inode *inode, struct ocfs2_dinode *di)
5856 {
5857 	unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
5858 
5859 	memset(&di->id2, 0, blocksize - offsetof(struct ocfs2_dinode, id2));
5860 }
5861 
5862 void ocfs2_dinode_new_extent_list(struct inode *inode,
5863 				  struct ocfs2_dinode *di)
5864 {
5865 	ocfs2_zero_dinode_id2(inode, di);
5866 	di->id2.i_list.l_tree_depth = 0;
5867 	di->id2.i_list.l_next_free_rec = 0;
5868 	di->id2.i_list.l_count = cpu_to_le16(ocfs2_extent_recs_per_inode(inode->i_sb));
5869 }
5870 
5871 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
5872 {
5873 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
5874 	struct ocfs2_inline_data *idata = &di->id2.i_data;
5875 
5876 	spin_lock(&oi->ip_lock);
5877 	oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
5878 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
5879 	spin_unlock(&oi->ip_lock);
5880 
5881 	/*
5882 	 * We clear the entire i_data structure here so that all
5883 	 * fields can be properly initialized.
5884 	 */
5885 	ocfs2_zero_dinode_id2(inode, di);
5886 
5887 	idata->id_count = cpu_to_le16(ocfs2_max_inline_data(inode->i_sb));
5888 }
5889 
5890 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
5891 					 struct buffer_head *di_bh)
5892 {
5893 	int ret, i, has_data, num_pages = 0;
5894 	handle_t *handle;
5895 	u64 uninitialized_var(block);
5896 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
5897 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5898 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
5899 	struct ocfs2_alloc_context *data_ac = NULL;
5900 	struct page **pages = NULL;
5901 	loff_t end = osb->s_clustersize;
5902 
5903 	has_data = i_size_read(inode) ? 1 : 0;
5904 
5905 	if (has_data) {
5906 		pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
5907 				sizeof(struct page *), GFP_NOFS);
5908 		if (pages == NULL) {
5909 			ret = -ENOMEM;
5910 			mlog_errno(ret);
5911 			goto out;
5912 		}
5913 
5914 		ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
5915 		if (ret) {
5916 			mlog_errno(ret);
5917 			goto out;
5918 		}
5919 	}
5920 
5921 	handle = ocfs2_start_trans(osb, OCFS2_INLINE_TO_EXTENTS_CREDITS);
5922 	if (IS_ERR(handle)) {
5923 		ret = PTR_ERR(handle);
5924 		mlog_errno(ret);
5925 		goto out_unlock;
5926 	}
5927 
5928 	ret = ocfs2_journal_access(handle, inode, di_bh,
5929 				   OCFS2_JOURNAL_ACCESS_WRITE);
5930 	if (ret) {
5931 		mlog_errno(ret);
5932 		goto out_commit;
5933 	}
5934 
5935 	if (has_data) {
5936 		u32 bit_off, num;
5937 		unsigned int page_end;
5938 		u64 phys;
5939 
5940 		ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
5941 					   &num);
5942 		if (ret) {
5943 			mlog_errno(ret);
5944 			goto out_commit;
5945 		}
5946 
5947 		/*
5948 		 * Save two copies, one for insert, and one that can
5949 		 * be changed by ocfs2_map_and_dirty_page() below.
5950 		 */
5951 		block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
5952 
5953 		/*
5954 		 * Non sparse file systems zero on extend, so no need
5955 		 * to do that now.
5956 		 */
5957 		if (!ocfs2_sparse_alloc(osb) &&
5958 		    PAGE_CACHE_SIZE < osb->s_clustersize)
5959 			end = PAGE_CACHE_SIZE;
5960 
5961 		ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
5962 		if (ret) {
5963 			mlog_errno(ret);
5964 			goto out_commit;
5965 		}
5966 
5967 		/*
5968 		 * This should populate the 1st page for us and mark
5969 		 * it up to date.
5970 		 */
5971 		ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
5972 		if (ret) {
5973 			mlog_errno(ret);
5974 			goto out_commit;
5975 		}
5976 
5977 		page_end = PAGE_CACHE_SIZE;
5978 		if (PAGE_CACHE_SIZE > osb->s_clustersize)
5979 			page_end = osb->s_clustersize;
5980 
5981 		for (i = 0; i < num_pages; i++)
5982 			ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
5983 						 pages[i], i > 0, &phys);
5984 	}
5985 
5986 	spin_lock(&oi->ip_lock);
5987 	oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
5988 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
5989 	spin_unlock(&oi->ip_lock);
5990 
5991 	ocfs2_dinode_new_extent_list(inode, di);
5992 
5993 	ocfs2_journal_dirty(handle, di_bh);
5994 
5995 	if (has_data) {
5996 		/*
5997 		 * An error at this point should be extremely rare. If
5998 		 * this proves to be false, we could always re-build
5999 		 * the in-inode data from our pages.
6000 		 */
6001 		ret = ocfs2_insert_extent(osb, handle, inode, di_bh,
6002 					  0, block, 1, 0, NULL);
6003 		if (ret) {
6004 			mlog_errno(ret);
6005 			goto out_commit;
6006 		}
6007 
6008 		inode->i_blocks = ocfs2_inode_sector_count(inode);
6009 	}
6010 
6011 out_commit:
6012 	ocfs2_commit_trans(osb, handle);
6013 
6014 out_unlock:
6015 	if (data_ac)
6016 		ocfs2_free_alloc_context(data_ac);
6017 
6018 out:
6019 	if (pages) {
6020 		ocfs2_unlock_and_free_pages(pages, num_pages);
6021 		kfree(pages);
6022 	}
6023 
6024 	return ret;
6025 }
6026 
6027 /*
6028  * It is expected, that by the time you call this function,
6029  * inode->i_size and fe->i_size have been adjusted.
6030  *
6031  * WARNING: This will kfree the truncate context
6032  */
6033 int ocfs2_commit_truncate(struct ocfs2_super *osb,
6034 			  struct inode *inode,
6035 			  struct buffer_head *fe_bh,
6036 			  struct ocfs2_truncate_context *tc)
6037 {
6038 	int status, i, credits, tl_sem = 0;
6039 	u32 clusters_to_del, new_highest_cpos, range;
6040 	struct ocfs2_extent_list *el;
6041 	handle_t *handle = NULL;
6042 	struct inode *tl_inode = osb->osb_tl_inode;
6043 	struct ocfs2_path *path = NULL;
6044 
6045 	mlog_entry_void();
6046 
6047 	new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
6048 						     i_size_read(inode));
6049 
6050 	path = ocfs2_new_inode_path(fe_bh);
6051 	if (!path) {
6052 		status = -ENOMEM;
6053 		mlog_errno(status);
6054 		goto bail;
6055 	}
6056 
6057 	ocfs2_extent_map_trunc(inode, new_highest_cpos);
6058 
6059 start:
6060 	/*
6061 	 * Check that we still have allocation to delete.
6062 	 */
6063 	if (OCFS2_I(inode)->ip_clusters == 0) {
6064 		status = 0;
6065 		goto bail;
6066 	}
6067 
6068 	/*
6069 	 * Truncate always works against the rightmost tree branch.
6070 	 */
6071 	status = ocfs2_find_path(inode, path, UINT_MAX);
6072 	if (status) {
6073 		mlog_errno(status);
6074 		goto bail;
6075 	}
6076 
6077 	mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
6078 	     OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
6079 
6080 	/*
6081 	 * By now, el will point to the extent list on the bottom most
6082 	 * portion of this tree. Only the tail record is considered in
6083 	 * each pass.
6084 	 *
6085 	 * We handle the following cases, in order:
6086 	 * - empty extent: delete the remaining branch
6087 	 * - remove the entire record
6088 	 * - remove a partial record
6089 	 * - no record needs to be removed (truncate has completed)
6090 	 */
6091 	el = path_leaf_el(path);
6092 	if (le16_to_cpu(el->l_next_free_rec) == 0) {
6093 		ocfs2_error(inode->i_sb,
6094 			    "Inode %llu has empty extent block at %llu\n",
6095 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
6096 			    (unsigned long long)path_leaf_bh(path)->b_blocknr);
6097 		status = -EROFS;
6098 		goto bail;
6099 	}
6100 
6101 	i = le16_to_cpu(el->l_next_free_rec) - 1;
6102 	range = le32_to_cpu(el->l_recs[i].e_cpos) +
6103 		ocfs2_rec_clusters(el, &el->l_recs[i]);
6104 	if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
6105 		clusters_to_del = 0;
6106 	} else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
6107 		clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
6108 	} else if (range > new_highest_cpos) {
6109 		clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
6110 				   le32_to_cpu(el->l_recs[i].e_cpos)) -
6111 				  new_highest_cpos;
6112 	} else {
6113 		status = 0;
6114 		goto bail;
6115 	}
6116 
6117 	mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
6118 	     clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
6119 
6120 	mutex_lock(&tl_inode->i_mutex);
6121 	tl_sem = 1;
6122 	/* ocfs2_truncate_log_needs_flush guarantees us at least one
6123 	 * record is free for use. If there isn't any, we flush to get
6124 	 * an empty truncate log.  */
6125 	if (ocfs2_truncate_log_needs_flush(osb)) {
6126 		status = __ocfs2_flush_truncate_log(osb);
6127 		if (status < 0) {
6128 			mlog_errno(status);
6129 			goto bail;
6130 		}
6131 	}
6132 
6133 	credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
6134 						(struct ocfs2_dinode *)fe_bh->b_data,
6135 						el);
6136 	handle = ocfs2_start_trans(osb, credits);
6137 	if (IS_ERR(handle)) {
6138 		status = PTR_ERR(handle);
6139 		handle = NULL;
6140 		mlog_errno(status);
6141 		goto bail;
6142 	}
6143 
6144 	status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
6145 				   tc, path);
6146 	if (status < 0) {
6147 		mlog_errno(status);
6148 		goto bail;
6149 	}
6150 
6151 	mutex_unlock(&tl_inode->i_mutex);
6152 	tl_sem = 0;
6153 
6154 	ocfs2_commit_trans(osb, handle);
6155 	handle = NULL;
6156 
6157 	ocfs2_reinit_path(path, 1);
6158 
6159 	/*
6160 	 * The check above will catch the case where we've truncated
6161 	 * away all allocation.
6162 	 */
6163 	goto start;
6164 
6165 bail:
6166 
6167 	ocfs2_schedule_truncate_log_flush(osb, 1);
6168 
6169 	if (tl_sem)
6170 		mutex_unlock(&tl_inode->i_mutex);
6171 
6172 	if (handle)
6173 		ocfs2_commit_trans(osb, handle);
6174 
6175 	ocfs2_run_deallocs(osb, &tc->tc_dealloc);
6176 
6177 	ocfs2_free_path(path);
6178 
6179 	/* This will drop the ext_alloc cluster lock for us */
6180 	ocfs2_free_truncate_context(tc);
6181 
6182 	mlog_exit(status);
6183 	return status;
6184 }
6185 
6186 /*
6187  * Expects the inode to already be locked.
6188  */
6189 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
6190 			   struct inode *inode,
6191 			   struct buffer_head *fe_bh,
6192 			   struct ocfs2_truncate_context **tc)
6193 {
6194 	int status;
6195 	unsigned int new_i_clusters;
6196 	struct ocfs2_dinode *fe;
6197 	struct ocfs2_extent_block *eb;
6198 	struct buffer_head *last_eb_bh = NULL;
6199 
6200 	mlog_entry_void();
6201 
6202 	*tc = NULL;
6203 
6204 	new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
6205 						  i_size_read(inode));
6206 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
6207 
6208 	mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
6209 	     "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
6210 	     (unsigned long long)le64_to_cpu(fe->i_size));
6211 
6212 	*tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
6213 	if (!(*tc)) {
6214 		status = -ENOMEM;
6215 		mlog_errno(status);
6216 		goto bail;
6217 	}
6218 	ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
6219 
6220 	if (fe->id2.i_list.l_tree_depth) {
6221 		status = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
6222 					  &last_eb_bh, OCFS2_BH_CACHED, inode);
6223 		if (status < 0) {
6224 			mlog_errno(status);
6225 			goto bail;
6226 		}
6227 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6228 		if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
6229 			OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
6230 
6231 			brelse(last_eb_bh);
6232 			status = -EIO;
6233 			goto bail;
6234 		}
6235 	}
6236 
6237 	(*tc)->tc_last_eb_bh = last_eb_bh;
6238 
6239 	status = 0;
6240 bail:
6241 	if (status < 0) {
6242 		if (*tc)
6243 			ocfs2_free_truncate_context(*tc);
6244 		*tc = NULL;
6245 	}
6246 	mlog_exit_void();
6247 	return status;
6248 }
6249 
6250 /*
6251  * 'start' is inclusive, 'end' is not.
6252  */
6253 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
6254 			  unsigned int start, unsigned int end, int trunc)
6255 {
6256 	int ret;
6257 	unsigned int numbytes;
6258 	handle_t *handle;
6259 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6260 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6261 	struct ocfs2_inline_data *idata = &di->id2.i_data;
6262 
6263 	if (end > i_size_read(inode))
6264 		end = i_size_read(inode);
6265 
6266 	BUG_ON(start >= end);
6267 
6268 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
6269 	    !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
6270 	    !ocfs2_supports_inline_data(osb)) {
6271 		ocfs2_error(inode->i_sb,
6272 			    "Inline data flags for inode %llu don't agree! "
6273 			    "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
6274 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
6275 			    le16_to_cpu(di->i_dyn_features),
6276 			    OCFS2_I(inode)->ip_dyn_features,
6277 			    osb->s_feature_incompat);
6278 		ret = -EROFS;
6279 		goto out;
6280 	}
6281 
6282 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
6283 	if (IS_ERR(handle)) {
6284 		ret = PTR_ERR(handle);
6285 		mlog_errno(ret);
6286 		goto out;
6287 	}
6288 
6289 	ret = ocfs2_journal_access(handle, inode, di_bh,
6290 				   OCFS2_JOURNAL_ACCESS_WRITE);
6291 	if (ret) {
6292 		mlog_errno(ret);
6293 		goto out_commit;
6294 	}
6295 
6296 	numbytes = end - start;
6297 	memset(idata->id_data + start, 0, numbytes);
6298 
6299 	/*
6300 	 * No need to worry about the data page here - it's been
6301 	 * truncated already and inline data doesn't need it for
6302 	 * pushing zero's to disk, so we'll let readpage pick it up
6303 	 * later.
6304 	 */
6305 	if (trunc) {
6306 		i_size_write(inode, start);
6307 		di->i_size = cpu_to_le64(start);
6308 	}
6309 
6310 	inode->i_blocks = ocfs2_inode_sector_count(inode);
6311 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
6312 
6313 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
6314 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
6315 
6316 	ocfs2_journal_dirty(handle, di_bh);
6317 
6318 out_commit:
6319 	ocfs2_commit_trans(osb, handle);
6320 
6321 out:
6322 	return ret;
6323 }
6324 
6325 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
6326 {
6327 	/*
6328 	 * The caller is responsible for completing deallocation
6329 	 * before freeing the context.
6330 	 */
6331 	if (tc->tc_dealloc.c_first_suballocator != NULL)
6332 		mlog(ML_NOTICE,
6333 		     "Truncate completion has non-empty dealloc context\n");
6334 
6335 	if (tc->tc_last_eb_bh)
6336 		brelse(tc->tc_last_eb_bh);
6337 
6338 	kfree(tc);
6339 }
6340