xref: /openbmc/linux/fs/ocfs2/alloc.c (revision 4fe82c31)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32 
33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
34 #include <cluster/masklog.h>
35 
36 #include "ocfs2.h"
37 
38 #include "alloc.h"
39 #include "aops.h"
40 #include "blockcheck.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "localalloc.h"
46 #include "suballoc.h"
47 #include "sysfile.h"
48 #include "file.h"
49 #include "super.h"
50 #include "uptodate.h"
51 #include "xattr.h"
52 
53 #include "buffer_head_io.h"
54 
55 
56 /*
57  * Operations for a specific extent tree type.
58  *
59  * To implement an on-disk btree (extent tree) type in ocfs2, add
60  * an ocfs2_extent_tree_operations structure and the matching
61  * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
62  * for the allocation portion of the extent tree.
63  */
64 struct ocfs2_extent_tree_operations {
65 	/*
66 	 * last_eb_blk is the block number of the right most leaf extent
67 	 * block.  Most on-disk structures containing an extent tree store
68 	 * this value for fast access.  The ->eo_set_last_eb_blk() and
69 	 * ->eo_get_last_eb_blk() operations access this value.  They are
70 	 *  both required.
71 	 */
72 	void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
73 				   u64 blkno);
74 	u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
75 
76 	/*
77 	 * The on-disk structure usually keeps track of how many total
78 	 * clusters are stored in this extent tree.  This function updates
79 	 * that value.  new_clusters is the delta, and must be
80 	 * added to the total.  Required.
81 	 */
82 	void (*eo_update_clusters)(struct ocfs2_extent_tree *et,
83 				   u32 new_clusters);
84 
85 	/*
86 	 * If ->eo_insert_check() exists, it is called before rec is
87 	 * inserted into the extent tree.  It is optional.
88 	 */
89 	int (*eo_insert_check)(struct ocfs2_extent_tree *et,
90 			       struct ocfs2_extent_rec *rec);
91 	int (*eo_sanity_check)(struct ocfs2_extent_tree *et);
92 
93 	/*
94 	 * --------------------------------------------------------------
95 	 * The remaining are internal to ocfs2_extent_tree and don't have
96 	 * accessor functions
97 	 */
98 
99 	/*
100 	 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
101 	 * It is required.
102 	 */
103 	void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
104 
105 	/*
106 	 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
107 	 * it exists.  If it does not, et->et_max_leaf_clusters is set
108 	 * to 0 (unlimited).  Optional.
109 	 */
110 	void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et);
111 };
112 
113 
114 /*
115  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
116  * in the methods.
117  */
118 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
119 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
120 					 u64 blkno);
121 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
122 					 u32 clusters);
123 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
124 				     struct ocfs2_extent_rec *rec);
125 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et);
126 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
127 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
128 	.eo_set_last_eb_blk	= ocfs2_dinode_set_last_eb_blk,
129 	.eo_get_last_eb_blk	= ocfs2_dinode_get_last_eb_blk,
130 	.eo_update_clusters	= ocfs2_dinode_update_clusters,
131 	.eo_insert_check	= ocfs2_dinode_insert_check,
132 	.eo_sanity_check	= ocfs2_dinode_sanity_check,
133 	.eo_fill_root_el	= ocfs2_dinode_fill_root_el,
134 };
135 
136 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
137 					 u64 blkno)
138 {
139 	struct ocfs2_dinode *di = et->et_object;
140 
141 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
142 	di->i_last_eb_blk = cpu_to_le64(blkno);
143 }
144 
145 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
146 {
147 	struct ocfs2_dinode *di = et->et_object;
148 
149 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
150 	return le64_to_cpu(di->i_last_eb_blk);
151 }
152 
153 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
154 					 u32 clusters)
155 {
156 	struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
157 	struct ocfs2_dinode *di = et->et_object;
158 
159 	le32_add_cpu(&di->i_clusters, clusters);
160 	spin_lock(&oi->ip_lock);
161 	oi->ip_clusters = le32_to_cpu(di->i_clusters);
162 	spin_unlock(&oi->ip_lock);
163 }
164 
165 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
166 				     struct ocfs2_extent_rec *rec)
167 {
168 	struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
169 	struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb);
170 
171 	BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL);
172 	mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
173 			(oi->ip_clusters != le32_to_cpu(rec->e_cpos)),
174 			"Device %s, asking for sparse allocation: inode %llu, "
175 			"cpos %u, clusters %u\n",
176 			osb->dev_str,
177 			(unsigned long long)oi->ip_blkno,
178 			rec->e_cpos, oi->ip_clusters);
179 
180 	return 0;
181 }
182 
183 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et)
184 {
185 	struct ocfs2_dinode *di = et->et_object;
186 
187 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
188 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
189 
190 	return 0;
191 }
192 
193 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
194 {
195 	struct ocfs2_dinode *di = et->et_object;
196 
197 	et->et_root_el = &di->id2.i_list;
198 }
199 
200 
201 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
202 {
203 	struct ocfs2_xattr_value_buf *vb = et->et_object;
204 
205 	et->et_root_el = &vb->vb_xv->xr_list;
206 }
207 
208 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
209 					      u64 blkno)
210 {
211 	struct ocfs2_xattr_value_buf *vb = et->et_object;
212 
213 	vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
214 }
215 
216 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
217 {
218 	struct ocfs2_xattr_value_buf *vb = et->et_object;
219 
220 	return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
221 }
222 
223 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et,
224 					      u32 clusters)
225 {
226 	struct ocfs2_xattr_value_buf *vb = et->et_object;
227 
228 	le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
229 }
230 
231 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
232 	.eo_set_last_eb_blk	= ocfs2_xattr_value_set_last_eb_blk,
233 	.eo_get_last_eb_blk	= ocfs2_xattr_value_get_last_eb_blk,
234 	.eo_update_clusters	= ocfs2_xattr_value_update_clusters,
235 	.eo_fill_root_el	= ocfs2_xattr_value_fill_root_el,
236 };
237 
238 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
239 {
240 	struct ocfs2_xattr_block *xb = et->et_object;
241 
242 	et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
243 }
244 
245 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et)
246 {
247 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
248 	et->et_max_leaf_clusters =
249 		ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
250 }
251 
252 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
253 					     u64 blkno)
254 {
255 	struct ocfs2_xattr_block *xb = et->et_object;
256 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
257 
258 	xt->xt_last_eb_blk = cpu_to_le64(blkno);
259 }
260 
261 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
262 {
263 	struct ocfs2_xattr_block *xb = et->et_object;
264 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
265 
266 	return le64_to_cpu(xt->xt_last_eb_blk);
267 }
268 
269 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et,
270 					     u32 clusters)
271 {
272 	struct ocfs2_xattr_block *xb = et->et_object;
273 
274 	le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
275 }
276 
277 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
278 	.eo_set_last_eb_blk	= ocfs2_xattr_tree_set_last_eb_blk,
279 	.eo_get_last_eb_blk	= ocfs2_xattr_tree_get_last_eb_blk,
280 	.eo_update_clusters	= ocfs2_xattr_tree_update_clusters,
281 	.eo_fill_root_el	= ocfs2_xattr_tree_fill_root_el,
282 	.eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
283 };
284 
285 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
286 					  u64 blkno)
287 {
288 	struct ocfs2_dx_root_block *dx_root = et->et_object;
289 
290 	dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
291 }
292 
293 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
294 {
295 	struct ocfs2_dx_root_block *dx_root = et->et_object;
296 
297 	return le64_to_cpu(dx_root->dr_last_eb_blk);
298 }
299 
300 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et,
301 					  u32 clusters)
302 {
303 	struct ocfs2_dx_root_block *dx_root = et->et_object;
304 
305 	le32_add_cpu(&dx_root->dr_clusters, clusters);
306 }
307 
308 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et)
309 {
310 	struct ocfs2_dx_root_block *dx_root = et->et_object;
311 
312 	BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
313 
314 	return 0;
315 }
316 
317 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
318 {
319 	struct ocfs2_dx_root_block *dx_root = et->et_object;
320 
321 	et->et_root_el = &dx_root->dr_list;
322 }
323 
324 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
325 	.eo_set_last_eb_blk	= ocfs2_dx_root_set_last_eb_blk,
326 	.eo_get_last_eb_blk	= ocfs2_dx_root_get_last_eb_blk,
327 	.eo_update_clusters	= ocfs2_dx_root_update_clusters,
328 	.eo_sanity_check	= ocfs2_dx_root_sanity_check,
329 	.eo_fill_root_el	= ocfs2_dx_root_fill_root_el,
330 };
331 
332 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
333 				     struct inode *inode,
334 				     struct buffer_head *bh,
335 				     ocfs2_journal_access_func access,
336 				     void *obj,
337 				     struct ocfs2_extent_tree_operations *ops)
338 {
339 	et->et_ops = ops;
340 	et->et_root_bh = bh;
341 	et->et_ci = INODE_CACHE(inode);
342 	et->et_root_journal_access = access;
343 	if (!obj)
344 		obj = (void *)bh->b_data;
345 	et->et_object = obj;
346 
347 	et->et_ops->eo_fill_root_el(et);
348 	if (!et->et_ops->eo_fill_max_leaf_clusters)
349 		et->et_max_leaf_clusters = 0;
350 	else
351 		et->et_ops->eo_fill_max_leaf_clusters(et);
352 }
353 
354 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
355 				   struct inode *inode,
356 				   struct buffer_head *bh)
357 {
358 	__ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_di,
359 				 NULL, &ocfs2_dinode_et_ops);
360 }
361 
362 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
363 				       struct inode *inode,
364 				       struct buffer_head *bh)
365 {
366 	__ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_xb,
367 				 NULL, &ocfs2_xattr_tree_et_ops);
368 }
369 
370 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
371 					struct inode *inode,
372 					struct ocfs2_xattr_value_buf *vb)
373 {
374 	__ocfs2_init_extent_tree(et, inode, vb->vb_bh, vb->vb_access, vb,
375 				 &ocfs2_xattr_value_et_ops);
376 }
377 
378 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
379 				    struct inode *inode,
380 				    struct buffer_head *bh)
381 {
382 	__ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_dr,
383 				 NULL, &ocfs2_dx_root_et_ops);
384 }
385 
386 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
387 					    u64 new_last_eb_blk)
388 {
389 	et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
390 }
391 
392 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
393 {
394 	return et->et_ops->eo_get_last_eb_blk(et);
395 }
396 
397 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et,
398 					    u32 clusters)
399 {
400 	et->et_ops->eo_update_clusters(et, clusters);
401 }
402 
403 static inline int ocfs2_et_root_journal_access(handle_t *handle,
404 					       struct ocfs2_extent_tree *et,
405 					       int type)
406 {
407 	return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh,
408 					  type);
409 }
410 
411 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et,
412 					struct ocfs2_extent_rec *rec)
413 {
414 	int ret = 0;
415 
416 	if (et->et_ops->eo_insert_check)
417 		ret = et->et_ops->eo_insert_check(et, rec);
418 	return ret;
419 }
420 
421 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et)
422 {
423 	int ret = 0;
424 
425 	if (et->et_ops->eo_sanity_check)
426 		ret = et->et_ops->eo_sanity_check(et);
427 	return ret;
428 }
429 
430 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
431 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
432 					 struct ocfs2_extent_block *eb);
433 
434 /*
435  * Structures which describe a path through a btree, and functions to
436  * manipulate them.
437  *
438  * The idea here is to be as generic as possible with the tree
439  * manipulation code.
440  */
441 struct ocfs2_path_item {
442 	struct buffer_head		*bh;
443 	struct ocfs2_extent_list	*el;
444 };
445 
446 #define OCFS2_MAX_PATH_DEPTH	5
447 
448 struct ocfs2_path {
449 	int				p_tree_depth;
450 	ocfs2_journal_access_func	p_root_access;
451 	struct ocfs2_path_item		p_node[OCFS2_MAX_PATH_DEPTH];
452 };
453 
454 #define path_root_bh(_path) ((_path)->p_node[0].bh)
455 #define path_root_el(_path) ((_path)->p_node[0].el)
456 #define path_root_access(_path)((_path)->p_root_access)
457 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
458 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
459 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
460 
461 static int ocfs2_find_path(struct ocfs2_caching_info *ci,
462 			   struct ocfs2_path *path, u32 cpos);
463 static void ocfs2_adjust_rightmost_records(struct inode *inode,
464 					   handle_t *handle,
465 					   struct ocfs2_path *path,
466 					   struct ocfs2_extent_rec *insert_rec);
467 /*
468  * Reset the actual path elements so that we can re-use the structure
469  * to build another path. Generally, this involves freeing the buffer
470  * heads.
471  */
472 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
473 {
474 	int i, start = 0, depth = 0;
475 	struct ocfs2_path_item *node;
476 
477 	if (keep_root)
478 		start = 1;
479 
480 	for(i = start; i < path_num_items(path); i++) {
481 		node = &path->p_node[i];
482 
483 		brelse(node->bh);
484 		node->bh = NULL;
485 		node->el = NULL;
486 	}
487 
488 	/*
489 	 * Tree depth may change during truncate, or insert. If we're
490 	 * keeping the root extent list, then make sure that our path
491 	 * structure reflects the proper depth.
492 	 */
493 	if (keep_root)
494 		depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
495 	else
496 		path_root_access(path) = NULL;
497 
498 	path->p_tree_depth = depth;
499 }
500 
501 static void ocfs2_free_path(struct ocfs2_path *path)
502 {
503 	if (path) {
504 		ocfs2_reinit_path(path, 0);
505 		kfree(path);
506 	}
507 }
508 
509 /*
510  * All the elements of src into dest. After this call, src could be freed
511  * without affecting dest.
512  *
513  * Both paths should have the same root. Any non-root elements of dest
514  * will be freed.
515  */
516 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
517 {
518 	int i;
519 
520 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
521 	BUG_ON(path_root_el(dest) != path_root_el(src));
522 	BUG_ON(path_root_access(dest) != path_root_access(src));
523 
524 	ocfs2_reinit_path(dest, 1);
525 
526 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
527 		dest->p_node[i].bh = src->p_node[i].bh;
528 		dest->p_node[i].el = src->p_node[i].el;
529 
530 		if (dest->p_node[i].bh)
531 			get_bh(dest->p_node[i].bh);
532 	}
533 }
534 
535 /*
536  * Make the *dest path the same as src and re-initialize src path to
537  * have a root only.
538  */
539 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
540 {
541 	int i;
542 
543 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
544 	BUG_ON(path_root_access(dest) != path_root_access(src));
545 
546 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
547 		brelse(dest->p_node[i].bh);
548 
549 		dest->p_node[i].bh = src->p_node[i].bh;
550 		dest->p_node[i].el = src->p_node[i].el;
551 
552 		src->p_node[i].bh = NULL;
553 		src->p_node[i].el = NULL;
554 	}
555 }
556 
557 /*
558  * Insert an extent block at given index.
559  *
560  * This will not take an additional reference on eb_bh.
561  */
562 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
563 					struct buffer_head *eb_bh)
564 {
565 	struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
566 
567 	/*
568 	 * Right now, no root bh is an extent block, so this helps
569 	 * catch code errors with dinode trees. The assertion can be
570 	 * safely removed if we ever need to insert extent block
571 	 * structures at the root.
572 	 */
573 	BUG_ON(index == 0);
574 
575 	path->p_node[index].bh = eb_bh;
576 	path->p_node[index].el = &eb->h_list;
577 }
578 
579 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
580 					 struct ocfs2_extent_list *root_el,
581 					 ocfs2_journal_access_func access)
582 {
583 	struct ocfs2_path *path;
584 
585 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
586 
587 	path = kzalloc(sizeof(*path), GFP_NOFS);
588 	if (path) {
589 		path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
590 		get_bh(root_bh);
591 		path_root_bh(path) = root_bh;
592 		path_root_el(path) = root_el;
593 		path_root_access(path) = access;
594 	}
595 
596 	return path;
597 }
598 
599 static struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
600 {
601 	return ocfs2_new_path(path_root_bh(path), path_root_el(path),
602 			      path_root_access(path));
603 }
604 
605 static struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
606 {
607 	return ocfs2_new_path(et->et_root_bh, et->et_root_el,
608 			      et->et_root_journal_access);
609 }
610 
611 /*
612  * Journal the buffer at depth idx.  All idx>0 are extent_blocks,
613  * otherwise it's the root_access function.
614  *
615  * I don't like the way this function's name looks next to
616  * ocfs2_journal_access_path(), but I don't have a better one.
617  */
618 static int ocfs2_path_bh_journal_access(handle_t *handle,
619 					struct ocfs2_caching_info *ci,
620 					struct ocfs2_path *path,
621 					int idx)
622 {
623 	ocfs2_journal_access_func access = path_root_access(path);
624 
625 	if (!access)
626 		access = ocfs2_journal_access;
627 
628 	if (idx)
629 		access = ocfs2_journal_access_eb;
630 
631 	return access(handle, ci, path->p_node[idx].bh,
632 		      OCFS2_JOURNAL_ACCESS_WRITE);
633 }
634 
635 /*
636  * Convenience function to journal all components in a path.
637  */
638 static int ocfs2_journal_access_path(struct ocfs2_caching_info *ci,
639 				     handle_t *handle,
640 				     struct ocfs2_path *path)
641 {
642 	int i, ret = 0;
643 
644 	if (!path)
645 		goto out;
646 
647 	for(i = 0; i < path_num_items(path); i++) {
648 		ret = ocfs2_path_bh_journal_access(handle, ci, path, i);
649 		if (ret < 0) {
650 			mlog_errno(ret);
651 			goto out;
652 		}
653 	}
654 
655 out:
656 	return ret;
657 }
658 
659 /*
660  * Return the index of the extent record which contains cluster #v_cluster.
661  * -1 is returned if it was not found.
662  *
663  * Should work fine on interior and exterior nodes.
664  */
665 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
666 {
667 	int ret = -1;
668 	int i;
669 	struct ocfs2_extent_rec *rec;
670 	u32 rec_end, rec_start, clusters;
671 
672 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
673 		rec = &el->l_recs[i];
674 
675 		rec_start = le32_to_cpu(rec->e_cpos);
676 		clusters = ocfs2_rec_clusters(el, rec);
677 
678 		rec_end = rec_start + clusters;
679 
680 		if (v_cluster >= rec_start && v_cluster < rec_end) {
681 			ret = i;
682 			break;
683 		}
684 	}
685 
686 	return ret;
687 }
688 
689 enum ocfs2_contig_type {
690 	CONTIG_NONE = 0,
691 	CONTIG_LEFT,
692 	CONTIG_RIGHT,
693 	CONTIG_LEFTRIGHT,
694 };
695 
696 
697 /*
698  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
699  * ocfs2_extent_contig only work properly against leaf nodes!
700  */
701 static int ocfs2_block_extent_contig(struct super_block *sb,
702 				     struct ocfs2_extent_rec *ext,
703 				     u64 blkno)
704 {
705 	u64 blk_end = le64_to_cpu(ext->e_blkno);
706 
707 	blk_end += ocfs2_clusters_to_blocks(sb,
708 				    le16_to_cpu(ext->e_leaf_clusters));
709 
710 	return blkno == blk_end;
711 }
712 
713 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
714 				  struct ocfs2_extent_rec *right)
715 {
716 	u32 left_range;
717 
718 	left_range = le32_to_cpu(left->e_cpos) +
719 		le16_to_cpu(left->e_leaf_clusters);
720 
721 	return (left_range == le32_to_cpu(right->e_cpos));
722 }
723 
724 static enum ocfs2_contig_type
725 	ocfs2_extent_contig(struct inode *inode,
726 			    struct ocfs2_extent_rec *ext,
727 			    struct ocfs2_extent_rec *insert_rec)
728 {
729 	u64 blkno = le64_to_cpu(insert_rec->e_blkno);
730 
731 	/*
732 	 * Refuse to coalesce extent records with different flag
733 	 * fields - we don't want to mix unwritten extents with user
734 	 * data.
735 	 */
736 	if (ext->e_flags != insert_rec->e_flags)
737 		return CONTIG_NONE;
738 
739 	if (ocfs2_extents_adjacent(ext, insert_rec) &&
740 	    ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
741 			return CONTIG_RIGHT;
742 
743 	blkno = le64_to_cpu(ext->e_blkno);
744 	if (ocfs2_extents_adjacent(insert_rec, ext) &&
745 	    ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
746 		return CONTIG_LEFT;
747 
748 	return CONTIG_NONE;
749 }
750 
751 /*
752  * NOTE: We can have pretty much any combination of contiguousness and
753  * appending.
754  *
755  * The usefulness of APPEND_TAIL is more in that it lets us know that
756  * we'll have to update the path to that leaf.
757  */
758 enum ocfs2_append_type {
759 	APPEND_NONE = 0,
760 	APPEND_TAIL,
761 };
762 
763 enum ocfs2_split_type {
764 	SPLIT_NONE = 0,
765 	SPLIT_LEFT,
766 	SPLIT_RIGHT,
767 };
768 
769 struct ocfs2_insert_type {
770 	enum ocfs2_split_type	ins_split;
771 	enum ocfs2_append_type	ins_appending;
772 	enum ocfs2_contig_type	ins_contig;
773 	int			ins_contig_index;
774 	int			ins_tree_depth;
775 };
776 
777 struct ocfs2_merge_ctxt {
778 	enum ocfs2_contig_type	c_contig_type;
779 	int			c_has_empty_extent;
780 	int			c_split_covers_rec;
781 };
782 
783 static int ocfs2_validate_extent_block(struct super_block *sb,
784 				       struct buffer_head *bh)
785 {
786 	int rc;
787 	struct ocfs2_extent_block *eb =
788 		(struct ocfs2_extent_block *)bh->b_data;
789 
790 	mlog(0, "Validating extent block %llu\n",
791 	     (unsigned long long)bh->b_blocknr);
792 
793 	BUG_ON(!buffer_uptodate(bh));
794 
795 	/*
796 	 * If the ecc fails, we return the error but otherwise
797 	 * leave the filesystem running.  We know any error is
798 	 * local to this block.
799 	 */
800 	rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
801 	if (rc) {
802 		mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
803 		     (unsigned long long)bh->b_blocknr);
804 		return rc;
805 	}
806 
807 	/*
808 	 * Errors after here are fatal.
809 	 */
810 
811 	if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
812 		ocfs2_error(sb,
813 			    "Extent block #%llu has bad signature %.*s",
814 			    (unsigned long long)bh->b_blocknr, 7,
815 			    eb->h_signature);
816 		return -EINVAL;
817 	}
818 
819 	if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
820 		ocfs2_error(sb,
821 			    "Extent block #%llu has an invalid h_blkno "
822 			    "of %llu",
823 			    (unsigned long long)bh->b_blocknr,
824 			    (unsigned long long)le64_to_cpu(eb->h_blkno));
825 		return -EINVAL;
826 	}
827 
828 	if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
829 		ocfs2_error(sb,
830 			    "Extent block #%llu has an invalid "
831 			    "h_fs_generation of #%u",
832 			    (unsigned long long)bh->b_blocknr,
833 			    le32_to_cpu(eb->h_fs_generation));
834 		return -EINVAL;
835 	}
836 
837 	return 0;
838 }
839 
840 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno,
841 			    struct buffer_head **bh)
842 {
843 	int rc;
844 	struct buffer_head *tmp = *bh;
845 
846 	rc = ocfs2_read_block(ci, eb_blkno, &tmp,
847 			      ocfs2_validate_extent_block);
848 
849 	/* If ocfs2_read_block() got us a new bh, pass it up. */
850 	if (!rc && !*bh)
851 		*bh = tmp;
852 
853 	return rc;
854 }
855 
856 
857 /*
858  * How many free extents have we got before we need more meta data?
859  */
860 int ocfs2_num_free_extents(struct ocfs2_super *osb,
861 			   struct ocfs2_extent_tree *et)
862 {
863 	int retval;
864 	struct ocfs2_extent_list *el = NULL;
865 	struct ocfs2_extent_block *eb;
866 	struct buffer_head *eb_bh = NULL;
867 	u64 last_eb_blk = 0;
868 
869 	mlog_entry_void();
870 
871 	el = et->et_root_el;
872 	last_eb_blk = ocfs2_et_get_last_eb_blk(et);
873 
874 	if (last_eb_blk) {
875 		retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk,
876 						 &eb_bh);
877 		if (retval < 0) {
878 			mlog_errno(retval);
879 			goto bail;
880 		}
881 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
882 		el = &eb->h_list;
883 	}
884 
885 	BUG_ON(el->l_tree_depth != 0);
886 
887 	retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
888 bail:
889 	brelse(eb_bh);
890 
891 	mlog_exit(retval);
892 	return retval;
893 }
894 
895 /* expects array to already be allocated
896  *
897  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
898  * l_count for you
899  */
900 static int ocfs2_create_new_meta_bhs(handle_t *handle,
901 				     struct ocfs2_extent_tree *et,
902 				     int wanted,
903 				     struct ocfs2_alloc_context *meta_ac,
904 				     struct buffer_head *bhs[])
905 {
906 	int count, status, i;
907 	u16 suballoc_bit_start;
908 	u32 num_got;
909 	u64 first_blkno;
910 	struct ocfs2_super *osb =
911 		OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
912 	struct ocfs2_extent_block *eb;
913 
914 	mlog_entry_void();
915 
916 	count = 0;
917 	while (count < wanted) {
918 		status = ocfs2_claim_metadata(osb,
919 					      handle,
920 					      meta_ac,
921 					      wanted - count,
922 					      &suballoc_bit_start,
923 					      &num_got,
924 					      &first_blkno);
925 		if (status < 0) {
926 			mlog_errno(status);
927 			goto bail;
928 		}
929 
930 		for(i = count;  i < (num_got + count); i++) {
931 			bhs[i] = sb_getblk(osb->sb, first_blkno);
932 			if (bhs[i] == NULL) {
933 				status = -EIO;
934 				mlog_errno(status);
935 				goto bail;
936 			}
937 			ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]);
938 
939 			status = ocfs2_journal_access_eb(handle, et->et_ci,
940 							 bhs[i],
941 							 OCFS2_JOURNAL_ACCESS_CREATE);
942 			if (status < 0) {
943 				mlog_errno(status);
944 				goto bail;
945 			}
946 
947 			memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
948 			eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
949 			/* Ok, setup the minimal stuff here. */
950 			strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
951 			eb->h_blkno = cpu_to_le64(first_blkno);
952 			eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
953 			eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
954 			eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
955 			eb->h_list.l_count =
956 				cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
957 
958 			suballoc_bit_start++;
959 			first_blkno++;
960 
961 			/* We'll also be dirtied by the caller, so
962 			 * this isn't absolutely necessary. */
963 			status = ocfs2_journal_dirty(handle, bhs[i]);
964 			if (status < 0) {
965 				mlog_errno(status);
966 				goto bail;
967 			}
968 		}
969 
970 		count += num_got;
971 	}
972 
973 	status = 0;
974 bail:
975 	if (status < 0) {
976 		for(i = 0; i < wanted; i++) {
977 			brelse(bhs[i]);
978 			bhs[i] = NULL;
979 		}
980 	}
981 	mlog_exit(status);
982 	return status;
983 }
984 
985 /*
986  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
987  *
988  * Returns the sum of the rightmost extent rec logical offset and
989  * cluster count.
990  *
991  * ocfs2_add_branch() uses this to determine what logical cluster
992  * value should be populated into the leftmost new branch records.
993  *
994  * ocfs2_shift_tree_depth() uses this to determine the # clusters
995  * value for the new topmost tree record.
996  */
997 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
998 {
999 	int i;
1000 
1001 	i = le16_to_cpu(el->l_next_free_rec) - 1;
1002 
1003 	return le32_to_cpu(el->l_recs[i].e_cpos) +
1004 		ocfs2_rec_clusters(el, &el->l_recs[i]);
1005 }
1006 
1007 /*
1008  * Change range of the branches in the right most path according to the leaf
1009  * extent block's rightmost record.
1010  */
1011 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1012 					 struct inode *inode,
1013 					 struct ocfs2_extent_tree *et)
1014 {
1015 	int status;
1016 	struct ocfs2_path *path = NULL;
1017 	struct ocfs2_extent_list *el;
1018 	struct ocfs2_extent_rec *rec;
1019 
1020 	path = ocfs2_new_path_from_et(et);
1021 	if (!path) {
1022 		status = -ENOMEM;
1023 		return status;
1024 	}
1025 
1026 	status = ocfs2_find_path(et->et_ci, path, UINT_MAX);
1027 	if (status < 0) {
1028 		mlog_errno(status);
1029 		goto out;
1030 	}
1031 
1032 	status = ocfs2_extend_trans(handle, path_num_items(path) +
1033 				    handle->h_buffer_credits);
1034 	if (status < 0) {
1035 		mlog_errno(status);
1036 		goto out;
1037 	}
1038 
1039 	status = ocfs2_journal_access_path(INODE_CACHE(inode), handle, path);
1040 	if (status < 0) {
1041 		mlog_errno(status);
1042 		goto out;
1043 	}
1044 
1045 	el = path_leaf_el(path);
1046 	rec = &el->l_recs[le32_to_cpu(el->l_next_free_rec) - 1];
1047 
1048 	ocfs2_adjust_rightmost_records(inode, handle, path, rec);
1049 
1050 out:
1051 	ocfs2_free_path(path);
1052 	return status;
1053 }
1054 
1055 /*
1056  * Add an entire tree branch to our inode. eb_bh is the extent block
1057  * to start at, if we don't want to start the branch at the dinode
1058  * structure.
1059  *
1060  * last_eb_bh is required as we have to update it's next_leaf pointer
1061  * for the new last extent block.
1062  *
1063  * the new branch will be 'empty' in the sense that every block will
1064  * contain a single record with cluster count == 0.
1065  */
1066 static int ocfs2_add_branch(struct ocfs2_super *osb,
1067 			    handle_t *handle,
1068 			    struct inode *inode,
1069 			    struct ocfs2_extent_tree *et,
1070 			    struct buffer_head *eb_bh,
1071 			    struct buffer_head **last_eb_bh,
1072 			    struct ocfs2_alloc_context *meta_ac)
1073 {
1074 	int status, new_blocks, i;
1075 	u64 next_blkno, new_last_eb_blk;
1076 	struct buffer_head *bh;
1077 	struct buffer_head **new_eb_bhs = NULL;
1078 	struct ocfs2_extent_block *eb;
1079 	struct ocfs2_extent_list  *eb_el;
1080 	struct ocfs2_extent_list  *el;
1081 	u32 new_cpos, root_end;
1082 
1083 	mlog_entry_void();
1084 
1085 	BUG_ON(!last_eb_bh || !*last_eb_bh);
1086 
1087 	if (eb_bh) {
1088 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1089 		el = &eb->h_list;
1090 	} else
1091 		el = et->et_root_el;
1092 
1093 	/* we never add a branch to a leaf. */
1094 	BUG_ON(!el->l_tree_depth);
1095 
1096 	new_blocks = le16_to_cpu(el->l_tree_depth);
1097 
1098 	eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1099 	new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1100 	root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1101 
1102 	/*
1103 	 * If there is a gap before the root end and the real end
1104 	 * of the righmost leaf block, we need to remove the gap
1105 	 * between new_cpos and root_end first so that the tree
1106 	 * is consistent after we add a new branch(it will start
1107 	 * from new_cpos).
1108 	 */
1109 	if (root_end > new_cpos) {
1110 		mlog(0, "adjust the cluster end from %u to %u\n",
1111 		     root_end, new_cpos);
1112 		status = ocfs2_adjust_rightmost_branch(handle, inode, et);
1113 		if (status) {
1114 			mlog_errno(status);
1115 			goto bail;
1116 		}
1117 	}
1118 
1119 	/* allocate the number of new eb blocks we need */
1120 	new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1121 			     GFP_KERNEL);
1122 	if (!new_eb_bhs) {
1123 		status = -ENOMEM;
1124 		mlog_errno(status);
1125 		goto bail;
1126 	}
1127 
1128 	status = ocfs2_create_new_meta_bhs(handle, et, new_blocks,
1129 					   meta_ac, new_eb_bhs);
1130 	if (status < 0) {
1131 		mlog_errno(status);
1132 		goto bail;
1133 	}
1134 
1135 	/* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1136 	 * linked with the rest of the tree.
1137 	 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1138 	 *
1139 	 * when we leave the loop, new_last_eb_blk will point to the
1140 	 * newest leaf, and next_blkno will point to the topmost extent
1141 	 * block. */
1142 	next_blkno = new_last_eb_blk = 0;
1143 	for(i = 0; i < new_blocks; i++) {
1144 		bh = new_eb_bhs[i];
1145 		eb = (struct ocfs2_extent_block *) bh->b_data;
1146 		/* ocfs2_create_new_meta_bhs() should create it right! */
1147 		BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1148 		eb_el = &eb->h_list;
1149 
1150 		status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), bh,
1151 						 OCFS2_JOURNAL_ACCESS_CREATE);
1152 		if (status < 0) {
1153 			mlog_errno(status);
1154 			goto bail;
1155 		}
1156 
1157 		eb->h_next_leaf_blk = 0;
1158 		eb_el->l_tree_depth = cpu_to_le16(i);
1159 		eb_el->l_next_free_rec = cpu_to_le16(1);
1160 		/*
1161 		 * This actually counts as an empty extent as
1162 		 * c_clusters == 0
1163 		 */
1164 		eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1165 		eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1166 		/*
1167 		 * eb_el isn't always an interior node, but even leaf
1168 		 * nodes want a zero'd flags and reserved field so
1169 		 * this gets the whole 32 bits regardless of use.
1170 		 */
1171 		eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1172 		if (!eb_el->l_tree_depth)
1173 			new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1174 
1175 		status = ocfs2_journal_dirty(handle, bh);
1176 		if (status < 0) {
1177 			mlog_errno(status);
1178 			goto bail;
1179 		}
1180 
1181 		next_blkno = le64_to_cpu(eb->h_blkno);
1182 	}
1183 
1184 	/* This is a bit hairy. We want to update up to three blocks
1185 	 * here without leaving any of them in an inconsistent state
1186 	 * in case of error. We don't have to worry about
1187 	 * journal_dirty erroring as it won't unless we've aborted the
1188 	 * handle (in which case we would never be here) so reserving
1189 	 * the write with journal_access is all we need to do. */
1190 	status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), *last_eb_bh,
1191 					 OCFS2_JOURNAL_ACCESS_WRITE);
1192 	if (status < 0) {
1193 		mlog_errno(status);
1194 		goto bail;
1195 	}
1196 	status = ocfs2_et_root_journal_access(handle, et,
1197 					      OCFS2_JOURNAL_ACCESS_WRITE);
1198 	if (status < 0) {
1199 		mlog_errno(status);
1200 		goto bail;
1201 	}
1202 	if (eb_bh) {
1203 		status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), eb_bh,
1204 						 OCFS2_JOURNAL_ACCESS_WRITE);
1205 		if (status < 0) {
1206 			mlog_errno(status);
1207 			goto bail;
1208 		}
1209 	}
1210 
1211 	/* Link the new branch into the rest of the tree (el will
1212 	 * either be on the root_bh, or the extent block passed in. */
1213 	i = le16_to_cpu(el->l_next_free_rec);
1214 	el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1215 	el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1216 	el->l_recs[i].e_int_clusters = 0;
1217 	le16_add_cpu(&el->l_next_free_rec, 1);
1218 
1219 	/* fe needs a new last extent block pointer, as does the
1220 	 * next_leaf on the previously last-extent-block. */
1221 	ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1222 
1223 	eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1224 	eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1225 
1226 	status = ocfs2_journal_dirty(handle, *last_eb_bh);
1227 	if (status < 0)
1228 		mlog_errno(status);
1229 	status = ocfs2_journal_dirty(handle, et->et_root_bh);
1230 	if (status < 0)
1231 		mlog_errno(status);
1232 	if (eb_bh) {
1233 		status = ocfs2_journal_dirty(handle, eb_bh);
1234 		if (status < 0)
1235 			mlog_errno(status);
1236 	}
1237 
1238 	/*
1239 	 * Some callers want to track the rightmost leaf so pass it
1240 	 * back here.
1241 	 */
1242 	brelse(*last_eb_bh);
1243 	get_bh(new_eb_bhs[0]);
1244 	*last_eb_bh = new_eb_bhs[0];
1245 
1246 	status = 0;
1247 bail:
1248 	if (new_eb_bhs) {
1249 		for (i = 0; i < new_blocks; i++)
1250 			brelse(new_eb_bhs[i]);
1251 		kfree(new_eb_bhs);
1252 	}
1253 
1254 	mlog_exit(status);
1255 	return status;
1256 }
1257 
1258 /*
1259  * adds another level to the allocation tree.
1260  * returns back the new extent block so you can add a branch to it
1261  * after this call.
1262  */
1263 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
1264 				  handle_t *handle,
1265 				  struct inode *inode,
1266 				  struct ocfs2_extent_tree *et,
1267 				  struct ocfs2_alloc_context *meta_ac,
1268 				  struct buffer_head **ret_new_eb_bh)
1269 {
1270 	int status, i;
1271 	u32 new_clusters;
1272 	struct buffer_head *new_eb_bh = NULL;
1273 	struct ocfs2_extent_block *eb;
1274 	struct ocfs2_extent_list  *root_el;
1275 	struct ocfs2_extent_list  *eb_el;
1276 
1277 	mlog_entry_void();
1278 
1279 	status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac,
1280 					   &new_eb_bh);
1281 	if (status < 0) {
1282 		mlog_errno(status);
1283 		goto bail;
1284 	}
1285 
1286 	eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1287 	/* ocfs2_create_new_meta_bhs() should create it right! */
1288 	BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1289 
1290 	eb_el = &eb->h_list;
1291 	root_el = et->et_root_el;
1292 
1293 	status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), new_eb_bh,
1294 					 OCFS2_JOURNAL_ACCESS_CREATE);
1295 	if (status < 0) {
1296 		mlog_errno(status);
1297 		goto bail;
1298 	}
1299 
1300 	/* copy the root extent list data into the new extent block */
1301 	eb_el->l_tree_depth = root_el->l_tree_depth;
1302 	eb_el->l_next_free_rec = root_el->l_next_free_rec;
1303 	for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1304 		eb_el->l_recs[i] = root_el->l_recs[i];
1305 
1306 	status = ocfs2_journal_dirty(handle, new_eb_bh);
1307 	if (status < 0) {
1308 		mlog_errno(status);
1309 		goto bail;
1310 	}
1311 
1312 	status = ocfs2_et_root_journal_access(handle, et,
1313 					      OCFS2_JOURNAL_ACCESS_WRITE);
1314 	if (status < 0) {
1315 		mlog_errno(status);
1316 		goto bail;
1317 	}
1318 
1319 	new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1320 
1321 	/* update root_bh now */
1322 	le16_add_cpu(&root_el->l_tree_depth, 1);
1323 	root_el->l_recs[0].e_cpos = 0;
1324 	root_el->l_recs[0].e_blkno = eb->h_blkno;
1325 	root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1326 	for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1327 		memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1328 	root_el->l_next_free_rec = cpu_to_le16(1);
1329 
1330 	/* If this is our 1st tree depth shift, then last_eb_blk
1331 	 * becomes the allocated extent block */
1332 	if (root_el->l_tree_depth == cpu_to_le16(1))
1333 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1334 
1335 	status = ocfs2_journal_dirty(handle, et->et_root_bh);
1336 	if (status < 0) {
1337 		mlog_errno(status);
1338 		goto bail;
1339 	}
1340 
1341 	*ret_new_eb_bh = new_eb_bh;
1342 	new_eb_bh = NULL;
1343 	status = 0;
1344 bail:
1345 	brelse(new_eb_bh);
1346 
1347 	mlog_exit(status);
1348 	return status;
1349 }
1350 
1351 /*
1352  * Should only be called when there is no space left in any of the
1353  * leaf nodes. What we want to do is find the lowest tree depth
1354  * non-leaf extent block with room for new records. There are three
1355  * valid results of this search:
1356  *
1357  * 1) a lowest extent block is found, then we pass it back in
1358  *    *lowest_eb_bh and return '0'
1359  *
1360  * 2) the search fails to find anything, but the root_el has room. We
1361  *    pass NULL back in *lowest_eb_bh, but still return '0'
1362  *
1363  * 3) the search fails to find anything AND the root_el is full, in
1364  *    which case we return > 0
1365  *
1366  * return status < 0 indicates an error.
1367  */
1368 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
1369 				    struct ocfs2_extent_tree *et,
1370 				    struct buffer_head **target_bh)
1371 {
1372 	int status = 0, i;
1373 	u64 blkno;
1374 	struct ocfs2_extent_block *eb;
1375 	struct ocfs2_extent_list  *el;
1376 	struct buffer_head *bh = NULL;
1377 	struct buffer_head *lowest_bh = NULL;
1378 
1379 	mlog_entry_void();
1380 
1381 	*target_bh = NULL;
1382 
1383 	el = et->et_root_el;
1384 
1385 	while(le16_to_cpu(el->l_tree_depth) > 1) {
1386 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1387 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1388 				    "Owner %llu has empty "
1389 				    "extent list (next_free_rec == 0)",
1390 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
1391 			status = -EIO;
1392 			goto bail;
1393 		}
1394 		i = le16_to_cpu(el->l_next_free_rec) - 1;
1395 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1396 		if (!blkno) {
1397 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1398 				    "Owner %llu has extent "
1399 				    "list where extent # %d has no physical "
1400 				    "block start",
1401 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i);
1402 			status = -EIO;
1403 			goto bail;
1404 		}
1405 
1406 		brelse(bh);
1407 		bh = NULL;
1408 
1409 		status = ocfs2_read_extent_block(et->et_ci, blkno, &bh);
1410 		if (status < 0) {
1411 			mlog_errno(status);
1412 			goto bail;
1413 		}
1414 
1415 		eb = (struct ocfs2_extent_block *) bh->b_data;
1416 		el = &eb->h_list;
1417 
1418 		if (le16_to_cpu(el->l_next_free_rec) <
1419 		    le16_to_cpu(el->l_count)) {
1420 			brelse(lowest_bh);
1421 			lowest_bh = bh;
1422 			get_bh(lowest_bh);
1423 		}
1424 	}
1425 
1426 	/* If we didn't find one and the fe doesn't have any room,
1427 	 * then return '1' */
1428 	el = et->et_root_el;
1429 	if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1430 		status = 1;
1431 
1432 	*target_bh = lowest_bh;
1433 bail:
1434 	brelse(bh);
1435 
1436 	mlog_exit(status);
1437 	return status;
1438 }
1439 
1440 /*
1441  * Grow a b-tree so that it has more records.
1442  *
1443  * We might shift the tree depth in which case existing paths should
1444  * be considered invalid.
1445  *
1446  * Tree depth after the grow is returned via *final_depth.
1447  *
1448  * *last_eb_bh will be updated by ocfs2_add_branch().
1449  */
1450 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
1451 			   struct ocfs2_extent_tree *et, int *final_depth,
1452 			   struct buffer_head **last_eb_bh,
1453 			   struct ocfs2_alloc_context *meta_ac)
1454 {
1455 	int ret, shift;
1456 	struct ocfs2_extent_list *el = et->et_root_el;
1457 	int depth = le16_to_cpu(el->l_tree_depth);
1458 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1459 	struct buffer_head *bh = NULL;
1460 
1461 	BUG_ON(meta_ac == NULL);
1462 
1463 	shift = ocfs2_find_branch_target(osb, et, &bh);
1464 	if (shift < 0) {
1465 		ret = shift;
1466 		mlog_errno(ret);
1467 		goto out;
1468 	}
1469 
1470 	/* We traveled all the way to the bottom of the allocation tree
1471 	 * and didn't find room for any more extents - we need to add
1472 	 * another tree level */
1473 	if (shift) {
1474 		BUG_ON(bh);
1475 		mlog(0, "need to shift tree depth (current = %d)\n", depth);
1476 
1477 		/* ocfs2_shift_tree_depth will return us a buffer with
1478 		 * the new extent block (so we can pass that to
1479 		 * ocfs2_add_branch). */
1480 		ret = ocfs2_shift_tree_depth(osb, handle, inode, et,
1481 					     meta_ac, &bh);
1482 		if (ret < 0) {
1483 			mlog_errno(ret);
1484 			goto out;
1485 		}
1486 		depth++;
1487 		if (depth == 1) {
1488 			/*
1489 			 * Special case: we have room now if we shifted from
1490 			 * tree_depth 0, so no more work needs to be done.
1491 			 *
1492 			 * We won't be calling add_branch, so pass
1493 			 * back *last_eb_bh as the new leaf. At depth
1494 			 * zero, it should always be null so there's
1495 			 * no reason to brelse.
1496 			 */
1497 			BUG_ON(*last_eb_bh);
1498 			get_bh(bh);
1499 			*last_eb_bh = bh;
1500 			goto out;
1501 		}
1502 	}
1503 
1504 	/* call ocfs2_add_branch to add the final part of the tree with
1505 	 * the new data. */
1506 	mlog(0, "add branch. bh = %p\n", bh);
1507 	ret = ocfs2_add_branch(osb, handle, inode, et, bh, last_eb_bh,
1508 			       meta_ac);
1509 	if (ret < 0) {
1510 		mlog_errno(ret);
1511 		goto out;
1512 	}
1513 
1514 out:
1515 	if (final_depth)
1516 		*final_depth = depth;
1517 	brelse(bh);
1518 	return ret;
1519 }
1520 
1521 /*
1522  * This function will discard the rightmost extent record.
1523  */
1524 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1525 {
1526 	int next_free = le16_to_cpu(el->l_next_free_rec);
1527 	int count = le16_to_cpu(el->l_count);
1528 	unsigned int num_bytes;
1529 
1530 	BUG_ON(!next_free);
1531 	/* This will cause us to go off the end of our extent list. */
1532 	BUG_ON(next_free >= count);
1533 
1534 	num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1535 
1536 	memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1537 }
1538 
1539 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1540 			      struct ocfs2_extent_rec *insert_rec)
1541 {
1542 	int i, insert_index, next_free, has_empty, num_bytes;
1543 	u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1544 	struct ocfs2_extent_rec *rec;
1545 
1546 	next_free = le16_to_cpu(el->l_next_free_rec);
1547 	has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1548 
1549 	BUG_ON(!next_free);
1550 
1551 	/* The tree code before us didn't allow enough room in the leaf. */
1552 	BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1553 
1554 	/*
1555 	 * The easiest way to approach this is to just remove the
1556 	 * empty extent and temporarily decrement next_free.
1557 	 */
1558 	if (has_empty) {
1559 		/*
1560 		 * If next_free was 1 (only an empty extent), this
1561 		 * loop won't execute, which is fine. We still want
1562 		 * the decrement above to happen.
1563 		 */
1564 		for(i = 0; i < (next_free - 1); i++)
1565 			el->l_recs[i] = el->l_recs[i+1];
1566 
1567 		next_free--;
1568 	}
1569 
1570 	/*
1571 	 * Figure out what the new record index should be.
1572 	 */
1573 	for(i = 0; i < next_free; i++) {
1574 		rec = &el->l_recs[i];
1575 
1576 		if (insert_cpos < le32_to_cpu(rec->e_cpos))
1577 			break;
1578 	}
1579 	insert_index = i;
1580 
1581 	mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1582 	     insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1583 
1584 	BUG_ON(insert_index < 0);
1585 	BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1586 	BUG_ON(insert_index > next_free);
1587 
1588 	/*
1589 	 * No need to memmove if we're just adding to the tail.
1590 	 */
1591 	if (insert_index != next_free) {
1592 		BUG_ON(next_free >= le16_to_cpu(el->l_count));
1593 
1594 		num_bytes = next_free - insert_index;
1595 		num_bytes *= sizeof(struct ocfs2_extent_rec);
1596 		memmove(&el->l_recs[insert_index + 1],
1597 			&el->l_recs[insert_index],
1598 			num_bytes);
1599 	}
1600 
1601 	/*
1602 	 * Either we had an empty extent, and need to re-increment or
1603 	 * there was no empty extent on a non full rightmost leaf node,
1604 	 * in which case we still need to increment.
1605 	 */
1606 	next_free++;
1607 	el->l_next_free_rec = cpu_to_le16(next_free);
1608 	/*
1609 	 * Make sure none of the math above just messed up our tree.
1610 	 */
1611 	BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1612 
1613 	el->l_recs[insert_index] = *insert_rec;
1614 
1615 }
1616 
1617 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1618 {
1619 	int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1620 
1621 	BUG_ON(num_recs == 0);
1622 
1623 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1624 		num_recs--;
1625 		size = num_recs * sizeof(struct ocfs2_extent_rec);
1626 		memmove(&el->l_recs[0], &el->l_recs[1], size);
1627 		memset(&el->l_recs[num_recs], 0,
1628 		       sizeof(struct ocfs2_extent_rec));
1629 		el->l_next_free_rec = cpu_to_le16(num_recs);
1630 	}
1631 }
1632 
1633 /*
1634  * Create an empty extent record .
1635  *
1636  * l_next_free_rec may be updated.
1637  *
1638  * If an empty extent already exists do nothing.
1639  */
1640 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1641 {
1642 	int next_free = le16_to_cpu(el->l_next_free_rec);
1643 
1644 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1645 
1646 	if (next_free == 0)
1647 		goto set_and_inc;
1648 
1649 	if (ocfs2_is_empty_extent(&el->l_recs[0]))
1650 		return;
1651 
1652 	mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1653 			"Asked to create an empty extent in a full list:\n"
1654 			"count = %u, tree depth = %u",
1655 			le16_to_cpu(el->l_count),
1656 			le16_to_cpu(el->l_tree_depth));
1657 
1658 	ocfs2_shift_records_right(el);
1659 
1660 set_and_inc:
1661 	le16_add_cpu(&el->l_next_free_rec, 1);
1662 	memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1663 }
1664 
1665 /*
1666  * For a rotation which involves two leaf nodes, the "root node" is
1667  * the lowest level tree node which contains a path to both leafs. This
1668  * resulting set of information can be used to form a complete "subtree"
1669  *
1670  * This function is passed two full paths from the dinode down to a
1671  * pair of adjacent leaves. It's task is to figure out which path
1672  * index contains the subtree root - this can be the root index itself
1673  * in a worst-case rotation.
1674  *
1675  * The array index of the subtree root is passed back.
1676  */
1677 static int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et,
1678 				   struct ocfs2_path *left,
1679 				   struct ocfs2_path *right)
1680 {
1681 	int i = 0;
1682 
1683 	/*
1684 	 * Check that the caller passed in two paths from the same tree.
1685 	 */
1686 	BUG_ON(path_root_bh(left) != path_root_bh(right));
1687 
1688 	do {
1689 		i++;
1690 
1691 		/*
1692 		 * The caller didn't pass two adjacent paths.
1693 		 */
1694 		mlog_bug_on_msg(i > left->p_tree_depth,
1695 				"Owner %llu, left depth %u, right depth %u\n"
1696 				"left leaf blk %llu, right leaf blk %llu\n",
1697 				(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
1698 				left->p_tree_depth, right->p_tree_depth,
1699 				(unsigned long long)path_leaf_bh(left)->b_blocknr,
1700 				(unsigned long long)path_leaf_bh(right)->b_blocknr);
1701 	} while (left->p_node[i].bh->b_blocknr ==
1702 		 right->p_node[i].bh->b_blocknr);
1703 
1704 	return i - 1;
1705 }
1706 
1707 typedef void (path_insert_t)(void *, struct buffer_head *);
1708 
1709 /*
1710  * Traverse a btree path in search of cpos, starting at root_el.
1711  *
1712  * This code can be called with a cpos larger than the tree, in which
1713  * case it will return the rightmost path.
1714  */
1715 static int __ocfs2_find_path(struct ocfs2_caching_info *ci,
1716 			     struct ocfs2_extent_list *root_el, u32 cpos,
1717 			     path_insert_t *func, void *data)
1718 {
1719 	int i, ret = 0;
1720 	u32 range;
1721 	u64 blkno;
1722 	struct buffer_head *bh = NULL;
1723 	struct ocfs2_extent_block *eb;
1724 	struct ocfs2_extent_list *el;
1725 	struct ocfs2_extent_rec *rec;
1726 
1727 	el = root_el;
1728 	while (el->l_tree_depth) {
1729 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1730 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1731 				    "Owner %llu has empty extent list at "
1732 				    "depth %u\n",
1733 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1734 				    le16_to_cpu(el->l_tree_depth));
1735 			ret = -EROFS;
1736 			goto out;
1737 
1738 		}
1739 
1740 		for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1741 			rec = &el->l_recs[i];
1742 
1743 			/*
1744 			 * In the case that cpos is off the allocation
1745 			 * tree, this should just wind up returning the
1746 			 * rightmost record.
1747 			 */
1748 			range = le32_to_cpu(rec->e_cpos) +
1749 				ocfs2_rec_clusters(el, rec);
1750 			if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1751 			    break;
1752 		}
1753 
1754 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1755 		if (blkno == 0) {
1756 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1757 				    "Owner %llu has bad blkno in extent list "
1758 				    "at depth %u (index %d)\n",
1759 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1760 				    le16_to_cpu(el->l_tree_depth), i);
1761 			ret = -EROFS;
1762 			goto out;
1763 		}
1764 
1765 		brelse(bh);
1766 		bh = NULL;
1767 		ret = ocfs2_read_extent_block(ci, blkno, &bh);
1768 		if (ret) {
1769 			mlog_errno(ret);
1770 			goto out;
1771 		}
1772 
1773 		eb = (struct ocfs2_extent_block *) bh->b_data;
1774 		el = &eb->h_list;
1775 
1776 		if (le16_to_cpu(el->l_next_free_rec) >
1777 		    le16_to_cpu(el->l_count)) {
1778 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1779 				    "Owner %llu has bad count in extent list "
1780 				    "at block %llu (next free=%u, count=%u)\n",
1781 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1782 				    (unsigned long long)bh->b_blocknr,
1783 				    le16_to_cpu(el->l_next_free_rec),
1784 				    le16_to_cpu(el->l_count));
1785 			ret = -EROFS;
1786 			goto out;
1787 		}
1788 
1789 		if (func)
1790 			func(data, bh);
1791 	}
1792 
1793 out:
1794 	/*
1795 	 * Catch any trailing bh that the loop didn't handle.
1796 	 */
1797 	brelse(bh);
1798 
1799 	return ret;
1800 }
1801 
1802 /*
1803  * Given an initialized path (that is, it has a valid root extent
1804  * list), this function will traverse the btree in search of the path
1805  * which would contain cpos.
1806  *
1807  * The path traveled is recorded in the path structure.
1808  *
1809  * Note that this will not do any comparisons on leaf node extent
1810  * records, so it will work fine in the case that we just added a tree
1811  * branch.
1812  */
1813 struct find_path_data {
1814 	int index;
1815 	struct ocfs2_path *path;
1816 };
1817 static void find_path_ins(void *data, struct buffer_head *bh)
1818 {
1819 	struct find_path_data *fp = data;
1820 
1821 	get_bh(bh);
1822 	ocfs2_path_insert_eb(fp->path, fp->index, bh);
1823 	fp->index++;
1824 }
1825 static int ocfs2_find_path(struct ocfs2_caching_info *ci,
1826 			   struct ocfs2_path *path, u32 cpos)
1827 {
1828 	struct find_path_data data;
1829 
1830 	data.index = 1;
1831 	data.path = path;
1832 	return __ocfs2_find_path(ci, path_root_el(path), cpos,
1833 				 find_path_ins, &data);
1834 }
1835 
1836 static void find_leaf_ins(void *data, struct buffer_head *bh)
1837 {
1838 	struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1839 	struct ocfs2_extent_list *el = &eb->h_list;
1840 	struct buffer_head **ret = data;
1841 
1842 	/* We want to retain only the leaf block. */
1843 	if (le16_to_cpu(el->l_tree_depth) == 0) {
1844 		get_bh(bh);
1845 		*ret = bh;
1846 	}
1847 }
1848 /*
1849  * Find the leaf block in the tree which would contain cpos. No
1850  * checking of the actual leaf is done.
1851  *
1852  * Some paths want to call this instead of allocating a path structure
1853  * and calling ocfs2_find_path().
1854  *
1855  * This function doesn't handle non btree extent lists.
1856  */
1857 int ocfs2_find_leaf(struct ocfs2_caching_info *ci,
1858 		    struct ocfs2_extent_list *root_el, u32 cpos,
1859 		    struct buffer_head **leaf_bh)
1860 {
1861 	int ret;
1862 	struct buffer_head *bh = NULL;
1863 
1864 	ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh);
1865 	if (ret) {
1866 		mlog_errno(ret);
1867 		goto out;
1868 	}
1869 
1870 	*leaf_bh = bh;
1871 out:
1872 	return ret;
1873 }
1874 
1875 /*
1876  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1877  *
1878  * Basically, we've moved stuff around at the bottom of the tree and
1879  * we need to fix up the extent records above the changes to reflect
1880  * the new changes.
1881  *
1882  * left_rec: the record on the left.
1883  * left_child_el: is the child list pointed to by left_rec
1884  * right_rec: the record to the right of left_rec
1885  * right_child_el: is the child list pointed to by right_rec
1886  *
1887  * By definition, this only works on interior nodes.
1888  */
1889 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1890 				  struct ocfs2_extent_list *left_child_el,
1891 				  struct ocfs2_extent_rec *right_rec,
1892 				  struct ocfs2_extent_list *right_child_el)
1893 {
1894 	u32 left_clusters, right_end;
1895 
1896 	/*
1897 	 * Interior nodes never have holes. Their cpos is the cpos of
1898 	 * the leftmost record in their child list. Their cluster
1899 	 * count covers the full theoretical range of their child list
1900 	 * - the range between their cpos and the cpos of the record
1901 	 * immediately to their right.
1902 	 */
1903 	left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1904 	if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1905 		BUG_ON(right_child_el->l_tree_depth);
1906 		BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1907 		left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1908 	}
1909 	left_clusters -= le32_to_cpu(left_rec->e_cpos);
1910 	left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1911 
1912 	/*
1913 	 * Calculate the rightmost cluster count boundary before
1914 	 * moving cpos - we will need to adjust clusters after
1915 	 * updating e_cpos to keep the same highest cluster count.
1916 	 */
1917 	right_end = le32_to_cpu(right_rec->e_cpos);
1918 	right_end += le32_to_cpu(right_rec->e_int_clusters);
1919 
1920 	right_rec->e_cpos = left_rec->e_cpos;
1921 	le32_add_cpu(&right_rec->e_cpos, left_clusters);
1922 
1923 	right_end -= le32_to_cpu(right_rec->e_cpos);
1924 	right_rec->e_int_clusters = cpu_to_le32(right_end);
1925 }
1926 
1927 /*
1928  * Adjust the adjacent root node records involved in a
1929  * rotation. left_el_blkno is passed in as a key so that we can easily
1930  * find it's index in the root list.
1931  */
1932 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1933 				      struct ocfs2_extent_list *left_el,
1934 				      struct ocfs2_extent_list *right_el,
1935 				      u64 left_el_blkno)
1936 {
1937 	int i;
1938 
1939 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1940 	       le16_to_cpu(left_el->l_tree_depth));
1941 
1942 	for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1943 		if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1944 			break;
1945 	}
1946 
1947 	/*
1948 	 * The path walking code should have never returned a root and
1949 	 * two paths which are not adjacent.
1950 	 */
1951 	BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1952 
1953 	ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1954 				      &root_el->l_recs[i + 1], right_el);
1955 }
1956 
1957 /*
1958  * We've changed a leaf block (in right_path) and need to reflect that
1959  * change back up the subtree.
1960  *
1961  * This happens in multiple places:
1962  *   - When we've moved an extent record from the left path leaf to the right
1963  *     path leaf to make room for an empty extent in the left path leaf.
1964  *   - When our insert into the right path leaf is at the leftmost edge
1965  *     and requires an update of the path immediately to it's left. This
1966  *     can occur at the end of some types of rotation and appending inserts.
1967  *   - When we've adjusted the last extent record in the left path leaf and the
1968  *     1st extent record in the right path leaf during cross extent block merge.
1969  */
1970 static void ocfs2_complete_edge_insert(handle_t *handle,
1971 				       struct ocfs2_path *left_path,
1972 				       struct ocfs2_path *right_path,
1973 				       int subtree_index)
1974 {
1975 	int ret, i, idx;
1976 	struct ocfs2_extent_list *el, *left_el, *right_el;
1977 	struct ocfs2_extent_rec *left_rec, *right_rec;
1978 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1979 
1980 	/*
1981 	 * Update the counts and position values within all the
1982 	 * interior nodes to reflect the leaf rotation we just did.
1983 	 *
1984 	 * The root node is handled below the loop.
1985 	 *
1986 	 * We begin the loop with right_el and left_el pointing to the
1987 	 * leaf lists and work our way up.
1988 	 *
1989 	 * NOTE: within this loop, left_el and right_el always refer
1990 	 * to the *child* lists.
1991 	 */
1992 	left_el = path_leaf_el(left_path);
1993 	right_el = path_leaf_el(right_path);
1994 	for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
1995 		mlog(0, "Adjust records at index %u\n", i);
1996 
1997 		/*
1998 		 * One nice property of knowing that all of these
1999 		 * nodes are below the root is that we only deal with
2000 		 * the leftmost right node record and the rightmost
2001 		 * left node record.
2002 		 */
2003 		el = left_path->p_node[i].el;
2004 		idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2005 		left_rec = &el->l_recs[idx];
2006 
2007 		el = right_path->p_node[i].el;
2008 		right_rec = &el->l_recs[0];
2009 
2010 		ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
2011 					      right_el);
2012 
2013 		ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2014 		if (ret)
2015 			mlog_errno(ret);
2016 
2017 		ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2018 		if (ret)
2019 			mlog_errno(ret);
2020 
2021 		/*
2022 		 * Setup our list pointers now so that the current
2023 		 * parents become children in the next iteration.
2024 		 */
2025 		left_el = left_path->p_node[i].el;
2026 		right_el = right_path->p_node[i].el;
2027 	}
2028 
2029 	/*
2030 	 * At the root node, adjust the two adjacent records which
2031 	 * begin our path to the leaves.
2032 	 */
2033 
2034 	el = left_path->p_node[subtree_index].el;
2035 	left_el = left_path->p_node[subtree_index + 1].el;
2036 	right_el = right_path->p_node[subtree_index + 1].el;
2037 
2038 	ocfs2_adjust_root_records(el, left_el, right_el,
2039 				  left_path->p_node[subtree_index + 1].bh->b_blocknr);
2040 
2041 	root_bh = left_path->p_node[subtree_index].bh;
2042 
2043 	ret = ocfs2_journal_dirty(handle, root_bh);
2044 	if (ret)
2045 		mlog_errno(ret);
2046 }
2047 
2048 static int ocfs2_rotate_subtree_right(handle_t *handle,
2049 				      struct ocfs2_extent_tree *et,
2050 				      struct ocfs2_path *left_path,
2051 				      struct ocfs2_path *right_path,
2052 				      int subtree_index)
2053 {
2054 	int ret, i;
2055 	struct buffer_head *right_leaf_bh;
2056 	struct buffer_head *left_leaf_bh = NULL;
2057 	struct buffer_head *root_bh;
2058 	struct ocfs2_extent_list *right_el, *left_el;
2059 	struct ocfs2_extent_rec move_rec;
2060 
2061 	left_leaf_bh = path_leaf_bh(left_path);
2062 	left_el = path_leaf_el(left_path);
2063 
2064 	if (left_el->l_next_free_rec != left_el->l_count) {
2065 		ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
2066 			    "Inode %llu has non-full interior leaf node %llu"
2067 			    "(next free = %u)",
2068 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2069 			    (unsigned long long)left_leaf_bh->b_blocknr,
2070 			    le16_to_cpu(left_el->l_next_free_rec));
2071 		return -EROFS;
2072 	}
2073 
2074 	/*
2075 	 * This extent block may already have an empty record, so we
2076 	 * return early if so.
2077 	 */
2078 	if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2079 		return 0;
2080 
2081 	root_bh = left_path->p_node[subtree_index].bh;
2082 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2083 
2084 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2085 					   subtree_index);
2086 	if (ret) {
2087 		mlog_errno(ret);
2088 		goto out;
2089 	}
2090 
2091 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2092 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2093 						   right_path, i);
2094 		if (ret) {
2095 			mlog_errno(ret);
2096 			goto out;
2097 		}
2098 
2099 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2100 						   left_path, i);
2101 		if (ret) {
2102 			mlog_errno(ret);
2103 			goto out;
2104 		}
2105 	}
2106 
2107 	right_leaf_bh = path_leaf_bh(right_path);
2108 	right_el = path_leaf_el(right_path);
2109 
2110 	/* This is a code error, not a disk corruption. */
2111 	mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2112 			"because rightmost leaf block %llu is empty\n",
2113 			(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2114 			(unsigned long long)right_leaf_bh->b_blocknr);
2115 
2116 	ocfs2_create_empty_extent(right_el);
2117 
2118 	ret = ocfs2_journal_dirty(handle, right_leaf_bh);
2119 	if (ret) {
2120 		mlog_errno(ret);
2121 		goto out;
2122 	}
2123 
2124 	/* Do the copy now. */
2125 	i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2126 	move_rec = left_el->l_recs[i];
2127 	right_el->l_recs[0] = move_rec;
2128 
2129 	/*
2130 	 * Clear out the record we just copied and shift everything
2131 	 * over, leaving an empty extent in the left leaf.
2132 	 *
2133 	 * We temporarily subtract from next_free_rec so that the
2134 	 * shift will lose the tail record (which is now defunct).
2135 	 */
2136 	le16_add_cpu(&left_el->l_next_free_rec, -1);
2137 	ocfs2_shift_records_right(left_el);
2138 	memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2139 	le16_add_cpu(&left_el->l_next_free_rec, 1);
2140 
2141 	ret = ocfs2_journal_dirty(handle, left_leaf_bh);
2142 	if (ret) {
2143 		mlog_errno(ret);
2144 		goto out;
2145 	}
2146 
2147 	ocfs2_complete_edge_insert(handle, left_path, right_path,
2148 				   subtree_index);
2149 
2150 out:
2151 	return ret;
2152 }
2153 
2154 /*
2155  * Given a full path, determine what cpos value would return us a path
2156  * containing the leaf immediately to the left of the current one.
2157  *
2158  * Will return zero if the path passed in is already the leftmost path.
2159  */
2160 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2161 					 struct ocfs2_path *path, u32 *cpos)
2162 {
2163 	int i, j, ret = 0;
2164 	u64 blkno;
2165 	struct ocfs2_extent_list *el;
2166 
2167 	BUG_ON(path->p_tree_depth == 0);
2168 
2169 	*cpos = 0;
2170 
2171 	blkno = path_leaf_bh(path)->b_blocknr;
2172 
2173 	/* Start at the tree node just above the leaf and work our way up. */
2174 	i = path->p_tree_depth - 1;
2175 	while (i >= 0) {
2176 		el = path->p_node[i].el;
2177 
2178 		/*
2179 		 * Find the extent record just before the one in our
2180 		 * path.
2181 		 */
2182 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2183 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2184 				if (j == 0) {
2185 					if (i == 0) {
2186 						/*
2187 						 * We've determined that the
2188 						 * path specified is already
2189 						 * the leftmost one - return a
2190 						 * cpos of zero.
2191 						 */
2192 						goto out;
2193 					}
2194 					/*
2195 					 * The leftmost record points to our
2196 					 * leaf - we need to travel up the
2197 					 * tree one level.
2198 					 */
2199 					goto next_node;
2200 				}
2201 
2202 				*cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2203 				*cpos = *cpos + ocfs2_rec_clusters(el,
2204 							   &el->l_recs[j - 1]);
2205 				*cpos = *cpos - 1;
2206 				goto out;
2207 			}
2208 		}
2209 
2210 		/*
2211 		 * If we got here, we never found a valid node where
2212 		 * the tree indicated one should be.
2213 		 */
2214 		ocfs2_error(sb,
2215 			    "Invalid extent tree at extent block %llu\n",
2216 			    (unsigned long long)blkno);
2217 		ret = -EROFS;
2218 		goto out;
2219 
2220 next_node:
2221 		blkno = path->p_node[i].bh->b_blocknr;
2222 		i--;
2223 	}
2224 
2225 out:
2226 	return ret;
2227 }
2228 
2229 /*
2230  * Extend the transaction by enough credits to complete the rotation,
2231  * and still leave at least the original number of credits allocated
2232  * to this transaction.
2233  */
2234 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2235 					   int op_credits,
2236 					   struct ocfs2_path *path)
2237 {
2238 	int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2239 
2240 	if (handle->h_buffer_credits < credits)
2241 		return ocfs2_extend_trans(handle, credits);
2242 
2243 	return 0;
2244 }
2245 
2246 /*
2247  * Trap the case where we're inserting into the theoretical range past
2248  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2249  * whose cpos is less than ours into the right leaf.
2250  *
2251  * It's only necessary to look at the rightmost record of the left
2252  * leaf because the logic that calls us should ensure that the
2253  * theoretical ranges in the path components above the leaves are
2254  * correct.
2255  */
2256 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2257 						 u32 insert_cpos)
2258 {
2259 	struct ocfs2_extent_list *left_el;
2260 	struct ocfs2_extent_rec *rec;
2261 	int next_free;
2262 
2263 	left_el = path_leaf_el(left_path);
2264 	next_free = le16_to_cpu(left_el->l_next_free_rec);
2265 	rec = &left_el->l_recs[next_free - 1];
2266 
2267 	if (insert_cpos > le32_to_cpu(rec->e_cpos))
2268 		return 1;
2269 	return 0;
2270 }
2271 
2272 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2273 {
2274 	int next_free = le16_to_cpu(el->l_next_free_rec);
2275 	unsigned int range;
2276 	struct ocfs2_extent_rec *rec;
2277 
2278 	if (next_free == 0)
2279 		return 0;
2280 
2281 	rec = &el->l_recs[0];
2282 	if (ocfs2_is_empty_extent(rec)) {
2283 		/* Empty list. */
2284 		if (next_free == 1)
2285 			return 0;
2286 		rec = &el->l_recs[1];
2287 	}
2288 
2289 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2290 	if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2291 		return 1;
2292 	return 0;
2293 }
2294 
2295 /*
2296  * Rotate all the records in a btree right one record, starting at insert_cpos.
2297  *
2298  * The path to the rightmost leaf should be passed in.
2299  *
2300  * The array is assumed to be large enough to hold an entire path (tree depth).
2301  *
2302  * Upon succesful return from this function:
2303  *
2304  * - The 'right_path' array will contain a path to the leaf block
2305  *   whose range contains e_cpos.
2306  * - That leaf block will have a single empty extent in list index 0.
2307  * - In the case that the rotation requires a post-insert update,
2308  *   *ret_left_path will contain a valid path which can be passed to
2309  *   ocfs2_insert_path().
2310  */
2311 static int ocfs2_rotate_tree_right(handle_t *handle,
2312 				   struct ocfs2_extent_tree *et,
2313 				   enum ocfs2_split_type split,
2314 				   u32 insert_cpos,
2315 				   struct ocfs2_path *right_path,
2316 				   struct ocfs2_path **ret_left_path)
2317 {
2318 	int ret, start, orig_credits = handle->h_buffer_credits;
2319 	u32 cpos;
2320 	struct ocfs2_path *left_path = NULL;
2321 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2322 
2323 	*ret_left_path = NULL;
2324 
2325 	left_path = ocfs2_new_path_from_path(right_path);
2326 	if (!left_path) {
2327 		ret = -ENOMEM;
2328 		mlog_errno(ret);
2329 		goto out;
2330 	}
2331 
2332 	ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2333 	if (ret) {
2334 		mlog_errno(ret);
2335 		goto out;
2336 	}
2337 
2338 	mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
2339 
2340 	/*
2341 	 * What we want to do here is:
2342 	 *
2343 	 * 1) Start with the rightmost path.
2344 	 *
2345 	 * 2) Determine a path to the leaf block directly to the left
2346 	 *    of that leaf.
2347 	 *
2348 	 * 3) Determine the 'subtree root' - the lowest level tree node
2349 	 *    which contains a path to both leaves.
2350 	 *
2351 	 * 4) Rotate the subtree.
2352 	 *
2353 	 * 5) Find the next subtree by considering the left path to be
2354 	 *    the new right path.
2355 	 *
2356 	 * The check at the top of this while loop also accepts
2357 	 * insert_cpos == cpos because cpos is only a _theoretical_
2358 	 * value to get us the left path - insert_cpos might very well
2359 	 * be filling that hole.
2360 	 *
2361 	 * Stop at a cpos of '0' because we either started at the
2362 	 * leftmost branch (i.e., a tree with one branch and a
2363 	 * rotation inside of it), or we've gone as far as we can in
2364 	 * rotating subtrees.
2365 	 */
2366 	while (cpos && insert_cpos <= cpos) {
2367 		mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2368 		     insert_cpos, cpos);
2369 
2370 		ret = ocfs2_find_path(et->et_ci, left_path, cpos);
2371 		if (ret) {
2372 			mlog_errno(ret);
2373 			goto out;
2374 		}
2375 
2376 		mlog_bug_on_msg(path_leaf_bh(left_path) ==
2377 				path_leaf_bh(right_path),
2378 				"Owner %llu: error during insert of %u "
2379 				"(left path cpos %u) results in two identical "
2380 				"paths ending at %llu\n",
2381 				(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2382 				insert_cpos, cpos,
2383 				(unsigned long long)
2384 				path_leaf_bh(left_path)->b_blocknr);
2385 
2386 		if (split == SPLIT_NONE &&
2387 		    ocfs2_rotate_requires_path_adjustment(left_path,
2388 							  insert_cpos)) {
2389 
2390 			/*
2391 			 * We've rotated the tree as much as we
2392 			 * should. The rest is up to
2393 			 * ocfs2_insert_path() to complete, after the
2394 			 * record insertion. We indicate this
2395 			 * situation by returning the left path.
2396 			 *
2397 			 * The reason we don't adjust the records here
2398 			 * before the record insert is that an error
2399 			 * later might break the rule where a parent
2400 			 * record e_cpos will reflect the actual
2401 			 * e_cpos of the 1st nonempty record of the
2402 			 * child list.
2403 			 */
2404 			*ret_left_path = left_path;
2405 			goto out_ret_path;
2406 		}
2407 
2408 		start = ocfs2_find_subtree_root(et, left_path, right_path);
2409 
2410 		mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2411 		     start,
2412 		     (unsigned long long) right_path->p_node[start].bh->b_blocknr,
2413 		     right_path->p_tree_depth);
2414 
2415 		ret = ocfs2_extend_rotate_transaction(handle, start,
2416 						      orig_credits, right_path);
2417 		if (ret) {
2418 			mlog_errno(ret);
2419 			goto out;
2420 		}
2421 
2422 		ret = ocfs2_rotate_subtree_right(handle, et, left_path,
2423 						 right_path, start);
2424 		if (ret) {
2425 			mlog_errno(ret);
2426 			goto out;
2427 		}
2428 
2429 		if (split != SPLIT_NONE &&
2430 		    ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2431 						insert_cpos)) {
2432 			/*
2433 			 * A rotate moves the rightmost left leaf
2434 			 * record over to the leftmost right leaf
2435 			 * slot. If we're doing an extent split
2436 			 * instead of a real insert, then we have to
2437 			 * check that the extent to be split wasn't
2438 			 * just moved over. If it was, then we can
2439 			 * exit here, passing left_path back -
2440 			 * ocfs2_split_extent() is smart enough to
2441 			 * search both leaves.
2442 			 */
2443 			*ret_left_path = left_path;
2444 			goto out_ret_path;
2445 		}
2446 
2447 		/*
2448 		 * There is no need to re-read the next right path
2449 		 * as we know that it'll be our current left
2450 		 * path. Optimize by copying values instead.
2451 		 */
2452 		ocfs2_mv_path(right_path, left_path);
2453 
2454 		ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2455 		if (ret) {
2456 			mlog_errno(ret);
2457 			goto out;
2458 		}
2459 	}
2460 
2461 out:
2462 	ocfs2_free_path(left_path);
2463 
2464 out_ret_path:
2465 	return ret;
2466 }
2467 
2468 static int ocfs2_update_edge_lengths(handle_t *handle,
2469 				     struct ocfs2_extent_tree *et,
2470 				     int subtree_index, struct ocfs2_path *path)
2471 {
2472 	int i, idx, ret;
2473 	struct ocfs2_extent_rec *rec;
2474 	struct ocfs2_extent_list *el;
2475 	struct ocfs2_extent_block *eb;
2476 	u32 range;
2477 
2478 	/*
2479 	 * In normal tree rotation process, we will never touch the
2480 	 * tree branch above subtree_index and ocfs2_extend_rotate_transaction
2481 	 * doesn't reserve the credits for them either.
2482 	 *
2483 	 * But we do have a special case here which will update the rightmost
2484 	 * records for all the bh in the path.
2485 	 * So we have to allocate extra credits and access them.
2486 	 */
2487 	ret = ocfs2_extend_trans(handle,
2488 				 handle->h_buffer_credits + subtree_index);
2489 	if (ret) {
2490 		mlog_errno(ret);
2491 		goto out;
2492 	}
2493 
2494 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
2495 	if (ret) {
2496 		mlog_errno(ret);
2497 		goto out;
2498 	}
2499 
2500 	/* Path should always be rightmost. */
2501 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2502 	BUG_ON(eb->h_next_leaf_blk != 0ULL);
2503 
2504 	el = &eb->h_list;
2505 	BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2506 	idx = le16_to_cpu(el->l_next_free_rec) - 1;
2507 	rec = &el->l_recs[idx];
2508 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2509 
2510 	for (i = 0; i < path->p_tree_depth; i++) {
2511 		el = path->p_node[i].el;
2512 		idx = le16_to_cpu(el->l_next_free_rec) - 1;
2513 		rec = &el->l_recs[idx];
2514 
2515 		rec->e_int_clusters = cpu_to_le32(range);
2516 		le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2517 
2518 		ocfs2_journal_dirty(handle, path->p_node[i].bh);
2519 	}
2520 out:
2521 	return ret;
2522 }
2523 
2524 static void ocfs2_unlink_path(handle_t *handle,
2525 			      struct ocfs2_extent_tree *et,
2526 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
2527 			      struct ocfs2_path *path, int unlink_start)
2528 {
2529 	int ret, i;
2530 	struct ocfs2_extent_block *eb;
2531 	struct ocfs2_extent_list *el;
2532 	struct buffer_head *bh;
2533 
2534 	for(i = unlink_start; i < path_num_items(path); i++) {
2535 		bh = path->p_node[i].bh;
2536 
2537 		eb = (struct ocfs2_extent_block *)bh->b_data;
2538 		/*
2539 		 * Not all nodes might have had their final count
2540 		 * decremented by the caller - handle this here.
2541 		 */
2542 		el = &eb->h_list;
2543 		if (le16_to_cpu(el->l_next_free_rec) > 1) {
2544 			mlog(ML_ERROR,
2545 			     "Inode %llu, attempted to remove extent block "
2546 			     "%llu with %u records\n",
2547 			     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2548 			     (unsigned long long)le64_to_cpu(eb->h_blkno),
2549 			     le16_to_cpu(el->l_next_free_rec));
2550 
2551 			ocfs2_journal_dirty(handle, bh);
2552 			ocfs2_remove_from_cache(et->et_ci, bh);
2553 			continue;
2554 		}
2555 
2556 		el->l_next_free_rec = 0;
2557 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2558 
2559 		ocfs2_journal_dirty(handle, bh);
2560 
2561 		ret = ocfs2_cache_extent_block_free(dealloc, eb);
2562 		if (ret)
2563 			mlog_errno(ret);
2564 
2565 		ocfs2_remove_from_cache(et->et_ci, bh);
2566 	}
2567 }
2568 
2569 static void ocfs2_unlink_subtree(handle_t *handle,
2570 				 struct ocfs2_extent_tree *et,
2571 				 struct ocfs2_path *left_path,
2572 				 struct ocfs2_path *right_path,
2573 				 int subtree_index,
2574 				 struct ocfs2_cached_dealloc_ctxt *dealloc)
2575 {
2576 	int i;
2577 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2578 	struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2579 	struct ocfs2_extent_list *el;
2580 	struct ocfs2_extent_block *eb;
2581 
2582 	el = path_leaf_el(left_path);
2583 
2584 	eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2585 
2586 	for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2587 		if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2588 			break;
2589 
2590 	BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2591 
2592 	memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2593 	le16_add_cpu(&root_el->l_next_free_rec, -1);
2594 
2595 	eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2596 	eb->h_next_leaf_blk = 0;
2597 
2598 	ocfs2_journal_dirty(handle, root_bh);
2599 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2600 
2601 	ocfs2_unlink_path(handle, et, dealloc, right_path,
2602 			  subtree_index + 1);
2603 }
2604 
2605 static int ocfs2_rotate_subtree_left(handle_t *handle,
2606 				     struct ocfs2_extent_tree *et,
2607 				     struct ocfs2_path *left_path,
2608 				     struct ocfs2_path *right_path,
2609 				     int subtree_index,
2610 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
2611 				     int *deleted)
2612 {
2613 	int ret, i, del_right_subtree = 0, right_has_empty = 0;
2614 	struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2615 	struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2616 	struct ocfs2_extent_block *eb;
2617 
2618 	*deleted = 0;
2619 
2620 	right_leaf_el = path_leaf_el(right_path);
2621 	left_leaf_el = path_leaf_el(left_path);
2622 	root_bh = left_path->p_node[subtree_index].bh;
2623 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2624 
2625 	if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2626 		return 0;
2627 
2628 	eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2629 	if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2630 		/*
2631 		 * It's legal for us to proceed if the right leaf is
2632 		 * the rightmost one and it has an empty extent. There
2633 		 * are two cases to handle - whether the leaf will be
2634 		 * empty after removal or not. If the leaf isn't empty
2635 		 * then just remove the empty extent up front. The
2636 		 * next block will handle empty leaves by flagging
2637 		 * them for unlink.
2638 		 *
2639 		 * Non rightmost leaves will throw -EAGAIN and the
2640 		 * caller can manually move the subtree and retry.
2641 		 */
2642 
2643 		if (eb->h_next_leaf_blk != 0ULL)
2644 			return -EAGAIN;
2645 
2646 		if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2647 			ret = ocfs2_journal_access_eb(handle, et->et_ci,
2648 						      path_leaf_bh(right_path),
2649 						      OCFS2_JOURNAL_ACCESS_WRITE);
2650 			if (ret) {
2651 				mlog_errno(ret);
2652 				goto out;
2653 			}
2654 
2655 			ocfs2_remove_empty_extent(right_leaf_el);
2656 		} else
2657 			right_has_empty = 1;
2658 	}
2659 
2660 	if (eb->h_next_leaf_blk == 0ULL &&
2661 	    le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2662 		/*
2663 		 * We have to update i_last_eb_blk during the meta
2664 		 * data delete.
2665 		 */
2666 		ret = ocfs2_et_root_journal_access(handle, et,
2667 						   OCFS2_JOURNAL_ACCESS_WRITE);
2668 		if (ret) {
2669 			mlog_errno(ret);
2670 			goto out;
2671 		}
2672 
2673 		del_right_subtree = 1;
2674 	}
2675 
2676 	/*
2677 	 * Getting here with an empty extent in the right path implies
2678 	 * that it's the rightmost path and will be deleted.
2679 	 */
2680 	BUG_ON(right_has_empty && !del_right_subtree);
2681 
2682 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2683 					   subtree_index);
2684 	if (ret) {
2685 		mlog_errno(ret);
2686 		goto out;
2687 	}
2688 
2689 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2690 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2691 						   right_path, i);
2692 		if (ret) {
2693 			mlog_errno(ret);
2694 			goto out;
2695 		}
2696 
2697 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2698 						   left_path, i);
2699 		if (ret) {
2700 			mlog_errno(ret);
2701 			goto out;
2702 		}
2703 	}
2704 
2705 	if (!right_has_empty) {
2706 		/*
2707 		 * Only do this if we're moving a real
2708 		 * record. Otherwise, the action is delayed until
2709 		 * after removal of the right path in which case we
2710 		 * can do a simple shift to remove the empty extent.
2711 		 */
2712 		ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2713 		memset(&right_leaf_el->l_recs[0], 0,
2714 		       sizeof(struct ocfs2_extent_rec));
2715 	}
2716 	if (eb->h_next_leaf_blk == 0ULL) {
2717 		/*
2718 		 * Move recs over to get rid of empty extent, decrease
2719 		 * next_free. This is allowed to remove the last
2720 		 * extent in our leaf (setting l_next_free_rec to
2721 		 * zero) - the delete code below won't care.
2722 		 */
2723 		ocfs2_remove_empty_extent(right_leaf_el);
2724 	}
2725 
2726 	ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2727 	if (ret)
2728 		mlog_errno(ret);
2729 	ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2730 	if (ret)
2731 		mlog_errno(ret);
2732 
2733 	if (del_right_subtree) {
2734 		ocfs2_unlink_subtree(handle, et, left_path, right_path,
2735 				     subtree_index, dealloc);
2736 		ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
2737 						left_path);
2738 		if (ret) {
2739 			mlog_errno(ret);
2740 			goto out;
2741 		}
2742 
2743 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2744 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2745 
2746 		/*
2747 		 * Removal of the extent in the left leaf was skipped
2748 		 * above so we could delete the right path
2749 		 * 1st.
2750 		 */
2751 		if (right_has_empty)
2752 			ocfs2_remove_empty_extent(left_leaf_el);
2753 
2754 		ret = ocfs2_journal_dirty(handle, et_root_bh);
2755 		if (ret)
2756 			mlog_errno(ret);
2757 
2758 		*deleted = 1;
2759 	} else
2760 		ocfs2_complete_edge_insert(handle, left_path, right_path,
2761 					   subtree_index);
2762 
2763 out:
2764 	return ret;
2765 }
2766 
2767 /*
2768  * Given a full path, determine what cpos value would return us a path
2769  * containing the leaf immediately to the right of the current one.
2770  *
2771  * Will return zero if the path passed in is already the rightmost path.
2772  *
2773  * This looks similar, but is subtly different to
2774  * ocfs2_find_cpos_for_left_leaf().
2775  */
2776 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2777 					  struct ocfs2_path *path, u32 *cpos)
2778 {
2779 	int i, j, ret = 0;
2780 	u64 blkno;
2781 	struct ocfs2_extent_list *el;
2782 
2783 	*cpos = 0;
2784 
2785 	if (path->p_tree_depth == 0)
2786 		return 0;
2787 
2788 	blkno = path_leaf_bh(path)->b_blocknr;
2789 
2790 	/* Start at the tree node just above the leaf and work our way up. */
2791 	i = path->p_tree_depth - 1;
2792 	while (i >= 0) {
2793 		int next_free;
2794 
2795 		el = path->p_node[i].el;
2796 
2797 		/*
2798 		 * Find the extent record just after the one in our
2799 		 * path.
2800 		 */
2801 		next_free = le16_to_cpu(el->l_next_free_rec);
2802 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2803 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2804 				if (j == (next_free - 1)) {
2805 					if (i == 0) {
2806 						/*
2807 						 * We've determined that the
2808 						 * path specified is already
2809 						 * the rightmost one - return a
2810 						 * cpos of zero.
2811 						 */
2812 						goto out;
2813 					}
2814 					/*
2815 					 * The rightmost record points to our
2816 					 * leaf - we need to travel up the
2817 					 * tree one level.
2818 					 */
2819 					goto next_node;
2820 				}
2821 
2822 				*cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2823 				goto out;
2824 			}
2825 		}
2826 
2827 		/*
2828 		 * If we got here, we never found a valid node where
2829 		 * the tree indicated one should be.
2830 		 */
2831 		ocfs2_error(sb,
2832 			    "Invalid extent tree at extent block %llu\n",
2833 			    (unsigned long long)blkno);
2834 		ret = -EROFS;
2835 		goto out;
2836 
2837 next_node:
2838 		blkno = path->p_node[i].bh->b_blocknr;
2839 		i--;
2840 	}
2841 
2842 out:
2843 	return ret;
2844 }
2845 
2846 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle,
2847 					    struct ocfs2_extent_tree *et,
2848 					    struct ocfs2_path *path)
2849 {
2850 	int ret;
2851 	struct buffer_head *bh = path_leaf_bh(path);
2852 	struct ocfs2_extent_list *el = path_leaf_el(path);
2853 
2854 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2855 		return 0;
2856 
2857 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
2858 					   path_num_items(path) - 1);
2859 	if (ret) {
2860 		mlog_errno(ret);
2861 		goto out;
2862 	}
2863 
2864 	ocfs2_remove_empty_extent(el);
2865 
2866 	ret = ocfs2_journal_dirty(handle, bh);
2867 	if (ret)
2868 		mlog_errno(ret);
2869 
2870 out:
2871 	return ret;
2872 }
2873 
2874 static int __ocfs2_rotate_tree_left(handle_t *handle,
2875 				    struct ocfs2_extent_tree *et,
2876 				    int orig_credits,
2877 				    struct ocfs2_path *path,
2878 				    struct ocfs2_cached_dealloc_ctxt *dealloc,
2879 				    struct ocfs2_path **empty_extent_path)
2880 {
2881 	int ret, subtree_root, deleted;
2882 	u32 right_cpos;
2883 	struct ocfs2_path *left_path = NULL;
2884 	struct ocfs2_path *right_path = NULL;
2885 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2886 
2887 	BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2888 
2889 	*empty_extent_path = NULL;
2890 
2891 	ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
2892 	if (ret) {
2893 		mlog_errno(ret);
2894 		goto out;
2895 	}
2896 
2897 	left_path = ocfs2_new_path_from_path(path);
2898 	if (!left_path) {
2899 		ret = -ENOMEM;
2900 		mlog_errno(ret);
2901 		goto out;
2902 	}
2903 
2904 	ocfs2_cp_path(left_path, path);
2905 
2906 	right_path = ocfs2_new_path_from_path(path);
2907 	if (!right_path) {
2908 		ret = -ENOMEM;
2909 		mlog_errno(ret);
2910 		goto out;
2911 	}
2912 
2913 	while (right_cpos) {
2914 		ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
2915 		if (ret) {
2916 			mlog_errno(ret);
2917 			goto out;
2918 		}
2919 
2920 		subtree_root = ocfs2_find_subtree_root(et, left_path,
2921 						       right_path);
2922 
2923 		mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2924 		     subtree_root,
2925 		     (unsigned long long)
2926 		     right_path->p_node[subtree_root].bh->b_blocknr,
2927 		     right_path->p_tree_depth);
2928 
2929 		ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2930 						      orig_credits, left_path);
2931 		if (ret) {
2932 			mlog_errno(ret);
2933 			goto out;
2934 		}
2935 
2936 		/*
2937 		 * Caller might still want to make changes to the
2938 		 * tree root, so re-add it to the journal here.
2939 		 */
2940 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2941 						   left_path, 0);
2942 		if (ret) {
2943 			mlog_errno(ret);
2944 			goto out;
2945 		}
2946 
2947 		ret = ocfs2_rotate_subtree_left(handle, et, left_path,
2948 						right_path, subtree_root,
2949 						dealloc, &deleted);
2950 		if (ret == -EAGAIN) {
2951 			/*
2952 			 * The rotation has to temporarily stop due to
2953 			 * the right subtree having an empty
2954 			 * extent. Pass it back to the caller for a
2955 			 * fixup.
2956 			 */
2957 			*empty_extent_path = right_path;
2958 			right_path = NULL;
2959 			goto out;
2960 		}
2961 		if (ret) {
2962 			mlog_errno(ret);
2963 			goto out;
2964 		}
2965 
2966 		/*
2967 		 * The subtree rotate might have removed records on
2968 		 * the rightmost edge. If so, then rotation is
2969 		 * complete.
2970 		 */
2971 		if (deleted)
2972 			break;
2973 
2974 		ocfs2_mv_path(left_path, right_path);
2975 
2976 		ret = ocfs2_find_cpos_for_right_leaf(sb, left_path,
2977 						     &right_cpos);
2978 		if (ret) {
2979 			mlog_errno(ret);
2980 			goto out;
2981 		}
2982 	}
2983 
2984 out:
2985 	ocfs2_free_path(right_path);
2986 	ocfs2_free_path(left_path);
2987 
2988 	return ret;
2989 }
2990 
2991 static int ocfs2_remove_rightmost_path(handle_t *handle,
2992 				struct ocfs2_extent_tree *et,
2993 				struct ocfs2_path *path,
2994 				struct ocfs2_cached_dealloc_ctxt *dealloc)
2995 {
2996 	int ret, subtree_index;
2997 	u32 cpos;
2998 	struct ocfs2_path *left_path = NULL;
2999 	struct ocfs2_extent_block *eb;
3000 	struct ocfs2_extent_list *el;
3001 
3002 
3003 	ret = ocfs2_et_sanity_check(et);
3004 	if (ret)
3005 		goto out;
3006 	/*
3007 	 * There's two ways we handle this depending on
3008 	 * whether path is the only existing one.
3009 	 */
3010 	ret = ocfs2_extend_rotate_transaction(handle, 0,
3011 					      handle->h_buffer_credits,
3012 					      path);
3013 	if (ret) {
3014 		mlog_errno(ret);
3015 		goto out;
3016 	}
3017 
3018 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
3019 	if (ret) {
3020 		mlog_errno(ret);
3021 		goto out;
3022 	}
3023 
3024 	ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3025 					    path, &cpos);
3026 	if (ret) {
3027 		mlog_errno(ret);
3028 		goto out;
3029 	}
3030 
3031 	if (cpos) {
3032 		/*
3033 		 * We have a path to the left of this one - it needs
3034 		 * an update too.
3035 		 */
3036 		left_path = ocfs2_new_path_from_path(path);
3037 		if (!left_path) {
3038 			ret = -ENOMEM;
3039 			mlog_errno(ret);
3040 			goto out;
3041 		}
3042 
3043 		ret = ocfs2_find_path(et->et_ci, left_path, cpos);
3044 		if (ret) {
3045 			mlog_errno(ret);
3046 			goto out;
3047 		}
3048 
3049 		ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
3050 		if (ret) {
3051 			mlog_errno(ret);
3052 			goto out;
3053 		}
3054 
3055 		subtree_index = ocfs2_find_subtree_root(et, left_path, path);
3056 
3057 		ocfs2_unlink_subtree(handle, et, left_path, path,
3058 				     subtree_index, dealloc);
3059 		ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
3060 						left_path);
3061 		if (ret) {
3062 			mlog_errno(ret);
3063 			goto out;
3064 		}
3065 
3066 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3067 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3068 	} else {
3069 		/*
3070 		 * 'path' is also the leftmost path which
3071 		 * means it must be the only one. This gets
3072 		 * handled differently because we want to
3073 		 * revert the root back to having extents
3074 		 * in-line.
3075 		 */
3076 		ocfs2_unlink_path(handle, et, dealloc, path, 1);
3077 
3078 		el = et->et_root_el;
3079 		el->l_tree_depth = 0;
3080 		el->l_next_free_rec = 0;
3081 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3082 
3083 		ocfs2_et_set_last_eb_blk(et, 0);
3084 	}
3085 
3086 	ocfs2_journal_dirty(handle, path_root_bh(path));
3087 
3088 out:
3089 	ocfs2_free_path(left_path);
3090 	return ret;
3091 }
3092 
3093 /*
3094  * Left rotation of btree records.
3095  *
3096  * In many ways, this is (unsurprisingly) the opposite of right
3097  * rotation. We start at some non-rightmost path containing an empty
3098  * extent in the leaf block. The code works its way to the rightmost
3099  * path by rotating records to the left in every subtree.
3100  *
3101  * This is used by any code which reduces the number of extent records
3102  * in a leaf. After removal, an empty record should be placed in the
3103  * leftmost list position.
3104  *
3105  * This won't handle a length update of the rightmost path records if
3106  * the rightmost tree leaf record is removed so the caller is
3107  * responsible for detecting and correcting that.
3108  */
3109 static int ocfs2_rotate_tree_left(handle_t *handle,
3110 				  struct ocfs2_extent_tree *et,
3111 				  struct ocfs2_path *path,
3112 				  struct ocfs2_cached_dealloc_ctxt *dealloc)
3113 {
3114 	int ret, orig_credits = handle->h_buffer_credits;
3115 	struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3116 	struct ocfs2_extent_block *eb;
3117 	struct ocfs2_extent_list *el;
3118 
3119 	el = path_leaf_el(path);
3120 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3121 		return 0;
3122 
3123 	if (path->p_tree_depth == 0) {
3124 rightmost_no_delete:
3125 		/*
3126 		 * Inline extents. This is trivially handled, so do
3127 		 * it up front.
3128 		 */
3129 		ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path);
3130 		if (ret)
3131 			mlog_errno(ret);
3132 		goto out;
3133 	}
3134 
3135 	/*
3136 	 * Handle rightmost branch now. There's several cases:
3137 	 *  1) simple rotation leaving records in there. That's trivial.
3138 	 *  2) rotation requiring a branch delete - there's no more
3139 	 *     records left. Two cases of this:
3140 	 *     a) There are branches to the left.
3141 	 *     b) This is also the leftmost (the only) branch.
3142 	 *
3143 	 *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
3144 	 *  2a) we need the left branch so that we can update it with the unlink
3145 	 *  2b) we need to bring the root back to inline extents.
3146 	 */
3147 
3148 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3149 	el = &eb->h_list;
3150 	if (eb->h_next_leaf_blk == 0) {
3151 		/*
3152 		 * This gets a bit tricky if we're going to delete the
3153 		 * rightmost path. Get the other cases out of the way
3154 		 * 1st.
3155 		 */
3156 		if (le16_to_cpu(el->l_next_free_rec) > 1)
3157 			goto rightmost_no_delete;
3158 
3159 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
3160 			ret = -EIO;
3161 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3162 				    "Owner %llu has empty extent block at %llu",
3163 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
3164 				    (unsigned long long)le64_to_cpu(eb->h_blkno));
3165 			goto out;
3166 		}
3167 
3168 		/*
3169 		 * XXX: The caller can not trust "path" any more after
3170 		 * this as it will have been deleted. What do we do?
3171 		 *
3172 		 * In theory the rotate-for-merge code will never get
3173 		 * here because it'll always ask for a rotate in a
3174 		 * nonempty list.
3175 		 */
3176 
3177 		ret = ocfs2_remove_rightmost_path(handle, et, path,
3178 						  dealloc);
3179 		if (ret)
3180 			mlog_errno(ret);
3181 		goto out;
3182 	}
3183 
3184 	/*
3185 	 * Now we can loop, remembering the path we get from -EAGAIN
3186 	 * and restarting from there.
3187 	 */
3188 try_rotate:
3189 	ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path,
3190 				       dealloc, &restart_path);
3191 	if (ret && ret != -EAGAIN) {
3192 		mlog_errno(ret);
3193 		goto out;
3194 	}
3195 
3196 	while (ret == -EAGAIN) {
3197 		tmp_path = restart_path;
3198 		restart_path = NULL;
3199 
3200 		ret = __ocfs2_rotate_tree_left(handle, et, orig_credits,
3201 					       tmp_path, dealloc,
3202 					       &restart_path);
3203 		if (ret && ret != -EAGAIN) {
3204 			mlog_errno(ret);
3205 			goto out;
3206 		}
3207 
3208 		ocfs2_free_path(tmp_path);
3209 		tmp_path = NULL;
3210 
3211 		if (ret == 0)
3212 			goto try_rotate;
3213 	}
3214 
3215 out:
3216 	ocfs2_free_path(tmp_path);
3217 	ocfs2_free_path(restart_path);
3218 	return ret;
3219 }
3220 
3221 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3222 				int index)
3223 {
3224 	struct ocfs2_extent_rec *rec = &el->l_recs[index];
3225 	unsigned int size;
3226 
3227 	if (rec->e_leaf_clusters == 0) {
3228 		/*
3229 		 * We consumed all of the merged-from record. An empty
3230 		 * extent cannot exist anywhere but the 1st array
3231 		 * position, so move things over if the merged-from
3232 		 * record doesn't occupy that position.
3233 		 *
3234 		 * This creates a new empty extent so the caller
3235 		 * should be smart enough to have removed any existing
3236 		 * ones.
3237 		 */
3238 		if (index > 0) {
3239 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3240 			size = index * sizeof(struct ocfs2_extent_rec);
3241 			memmove(&el->l_recs[1], &el->l_recs[0], size);
3242 		}
3243 
3244 		/*
3245 		 * Always memset - the caller doesn't check whether it
3246 		 * created an empty extent, so there could be junk in
3247 		 * the other fields.
3248 		 */
3249 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3250 	}
3251 }
3252 
3253 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et,
3254 				struct ocfs2_path *left_path,
3255 				struct ocfs2_path **ret_right_path)
3256 {
3257 	int ret;
3258 	u32 right_cpos;
3259 	struct ocfs2_path *right_path = NULL;
3260 	struct ocfs2_extent_list *left_el;
3261 
3262 	*ret_right_path = NULL;
3263 
3264 	/* This function shouldn't be called for non-trees. */
3265 	BUG_ON(left_path->p_tree_depth == 0);
3266 
3267 	left_el = path_leaf_el(left_path);
3268 	BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3269 
3270 	ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3271 					     left_path, &right_cpos);
3272 	if (ret) {
3273 		mlog_errno(ret);
3274 		goto out;
3275 	}
3276 
3277 	/* This function shouldn't be called for the rightmost leaf. */
3278 	BUG_ON(right_cpos == 0);
3279 
3280 	right_path = ocfs2_new_path_from_path(left_path);
3281 	if (!right_path) {
3282 		ret = -ENOMEM;
3283 		mlog_errno(ret);
3284 		goto out;
3285 	}
3286 
3287 	ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
3288 	if (ret) {
3289 		mlog_errno(ret);
3290 		goto out;
3291 	}
3292 
3293 	*ret_right_path = right_path;
3294 out:
3295 	if (ret)
3296 		ocfs2_free_path(right_path);
3297 	return ret;
3298 }
3299 
3300 /*
3301  * Remove split_rec clusters from the record at index and merge them
3302  * onto the beginning of the record "next" to it.
3303  * For index < l_count - 1, the next means the extent rec at index + 1.
3304  * For index == l_count - 1, the "next" means the 1st extent rec of the
3305  * next extent block.
3306  */
3307 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path,
3308 				 handle_t *handle,
3309 				 struct ocfs2_extent_tree *et,
3310 				 struct ocfs2_extent_rec *split_rec,
3311 				 int index)
3312 {
3313 	int ret, next_free, i;
3314 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3315 	struct ocfs2_extent_rec *left_rec;
3316 	struct ocfs2_extent_rec *right_rec;
3317 	struct ocfs2_extent_list *right_el;
3318 	struct ocfs2_path *right_path = NULL;
3319 	int subtree_index = 0;
3320 	struct ocfs2_extent_list *el = path_leaf_el(left_path);
3321 	struct buffer_head *bh = path_leaf_bh(left_path);
3322 	struct buffer_head *root_bh = NULL;
3323 
3324 	BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3325 	left_rec = &el->l_recs[index];
3326 
3327 	if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3328 	    le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3329 		/* we meet with a cross extent block merge. */
3330 		ret = ocfs2_get_right_path(et, left_path, &right_path);
3331 		if (ret) {
3332 			mlog_errno(ret);
3333 			goto out;
3334 		}
3335 
3336 		right_el = path_leaf_el(right_path);
3337 		next_free = le16_to_cpu(right_el->l_next_free_rec);
3338 		BUG_ON(next_free <= 0);
3339 		right_rec = &right_el->l_recs[0];
3340 		if (ocfs2_is_empty_extent(right_rec)) {
3341 			BUG_ON(next_free <= 1);
3342 			right_rec = &right_el->l_recs[1];
3343 		}
3344 
3345 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3346 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3347 		       le32_to_cpu(right_rec->e_cpos));
3348 
3349 		subtree_index = ocfs2_find_subtree_root(et, left_path,
3350 							right_path);
3351 
3352 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3353 						      handle->h_buffer_credits,
3354 						      right_path);
3355 		if (ret) {
3356 			mlog_errno(ret);
3357 			goto out;
3358 		}
3359 
3360 		root_bh = left_path->p_node[subtree_index].bh;
3361 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3362 
3363 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3364 						   subtree_index);
3365 		if (ret) {
3366 			mlog_errno(ret);
3367 			goto out;
3368 		}
3369 
3370 		for (i = subtree_index + 1;
3371 		     i < path_num_items(right_path); i++) {
3372 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3373 							   right_path, i);
3374 			if (ret) {
3375 				mlog_errno(ret);
3376 				goto out;
3377 			}
3378 
3379 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3380 							   left_path, i);
3381 			if (ret) {
3382 				mlog_errno(ret);
3383 				goto out;
3384 			}
3385 		}
3386 
3387 	} else {
3388 		BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3389 		right_rec = &el->l_recs[index + 1];
3390 	}
3391 
3392 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path,
3393 					   path_num_items(left_path) - 1);
3394 	if (ret) {
3395 		mlog_errno(ret);
3396 		goto out;
3397 	}
3398 
3399 	le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3400 
3401 	le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3402 	le64_add_cpu(&right_rec->e_blkno,
3403 		     -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3404 					       split_clusters));
3405 	le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3406 
3407 	ocfs2_cleanup_merge(el, index);
3408 
3409 	ret = ocfs2_journal_dirty(handle, bh);
3410 	if (ret)
3411 		mlog_errno(ret);
3412 
3413 	if (right_path) {
3414 		ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3415 		if (ret)
3416 			mlog_errno(ret);
3417 
3418 		ocfs2_complete_edge_insert(handle, left_path, right_path,
3419 					   subtree_index);
3420 	}
3421 out:
3422 	if (right_path)
3423 		ocfs2_free_path(right_path);
3424 	return ret;
3425 }
3426 
3427 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et,
3428 			       struct ocfs2_path *right_path,
3429 			       struct ocfs2_path **ret_left_path)
3430 {
3431 	int ret;
3432 	u32 left_cpos;
3433 	struct ocfs2_path *left_path = NULL;
3434 
3435 	*ret_left_path = NULL;
3436 
3437 	/* This function shouldn't be called for non-trees. */
3438 	BUG_ON(right_path->p_tree_depth == 0);
3439 
3440 	ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3441 					    right_path, &left_cpos);
3442 	if (ret) {
3443 		mlog_errno(ret);
3444 		goto out;
3445 	}
3446 
3447 	/* This function shouldn't be called for the leftmost leaf. */
3448 	BUG_ON(left_cpos == 0);
3449 
3450 	left_path = ocfs2_new_path_from_path(right_path);
3451 	if (!left_path) {
3452 		ret = -ENOMEM;
3453 		mlog_errno(ret);
3454 		goto out;
3455 	}
3456 
3457 	ret = ocfs2_find_path(et->et_ci, left_path, left_cpos);
3458 	if (ret) {
3459 		mlog_errno(ret);
3460 		goto out;
3461 	}
3462 
3463 	*ret_left_path = left_path;
3464 out:
3465 	if (ret)
3466 		ocfs2_free_path(left_path);
3467 	return ret;
3468 }
3469 
3470 /*
3471  * Remove split_rec clusters from the record at index and merge them
3472  * onto the tail of the record "before" it.
3473  * For index > 0, the "before" means the extent rec at index - 1.
3474  *
3475  * For index == 0, the "before" means the last record of the previous
3476  * extent block. And there is also a situation that we may need to
3477  * remove the rightmost leaf extent block in the right_path and change
3478  * the right path to indicate the new rightmost path.
3479  */
3480 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path,
3481 				handle_t *handle,
3482 				struct ocfs2_extent_tree *et,
3483 				struct ocfs2_extent_rec *split_rec,
3484 				struct ocfs2_cached_dealloc_ctxt *dealloc,
3485 				int index)
3486 {
3487 	int ret, i, subtree_index = 0, has_empty_extent = 0;
3488 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3489 	struct ocfs2_extent_rec *left_rec;
3490 	struct ocfs2_extent_rec *right_rec;
3491 	struct ocfs2_extent_list *el = path_leaf_el(right_path);
3492 	struct buffer_head *bh = path_leaf_bh(right_path);
3493 	struct buffer_head *root_bh = NULL;
3494 	struct ocfs2_path *left_path = NULL;
3495 	struct ocfs2_extent_list *left_el;
3496 
3497 	BUG_ON(index < 0);
3498 
3499 	right_rec = &el->l_recs[index];
3500 	if (index == 0) {
3501 		/* we meet with a cross extent block merge. */
3502 		ret = ocfs2_get_left_path(et, right_path, &left_path);
3503 		if (ret) {
3504 			mlog_errno(ret);
3505 			goto out;
3506 		}
3507 
3508 		left_el = path_leaf_el(left_path);
3509 		BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3510 		       le16_to_cpu(left_el->l_count));
3511 
3512 		left_rec = &left_el->l_recs[
3513 				le16_to_cpu(left_el->l_next_free_rec) - 1];
3514 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3515 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3516 		       le32_to_cpu(split_rec->e_cpos));
3517 
3518 		subtree_index = ocfs2_find_subtree_root(et, left_path,
3519 							right_path);
3520 
3521 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3522 						      handle->h_buffer_credits,
3523 						      left_path);
3524 		if (ret) {
3525 			mlog_errno(ret);
3526 			goto out;
3527 		}
3528 
3529 		root_bh = left_path->p_node[subtree_index].bh;
3530 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3531 
3532 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3533 						   subtree_index);
3534 		if (ret) {
3535 			mlog_errno(ret);
3536 			goto out;
3537 		}
3538 
3539 		for (i = subtree_index + 1;
3540 		     i < path_num_items(right_path); i++) {
3541 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3542 							   right_path, i);
3543 			if (ret) {
3544 				mlog_errno(ret);
3545 				goto out;
3546 			}
3547 
3548 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3549 							   left_path, i);
3550 			if (ret) {
3551 				mlog_errno(ret);
3552 				goto out;
3553 			}
3554 		}
3555 	} else {
3556 		left_rec = &el->l_recs[index - 1];
3557 		if (ocfs2_is_empty_extent(&el->l_recs[0]))
3558 			has_empty_extent = 1;
3559 	}
3560 
3561 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3562 					   path_num_items(right_path) - 1);
3563 	if (ret) {
3564 		mlog_errno(ret);
3565 		goto out;
3566 	}
3567 
3568 	if (has_empty_extent && index == 1) {
3569 		/*
3570 		 * The easy case - we can just plop the record right in.
3571 		 */
3572 		*left_rec = *split_rec;
3573 
3574 		has_empty_extent = 0;
3575 	} else
3576 		le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3577 
3578 	le32_add_cpu(&right_rec->e_cpos, split_clusters);
3579 	le64_add_cpu(&right_rec->e_blkno,
3580 		     ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3581 					      split_clusters));
3582 	le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3583 
3584 	ocfs2_cleanup_merge(el, index);
3585 
3586 	ret = ocfs2_journal_dirty(handle, bh);
3587 	if (ret)
3588 		mlog_errno(ret);
3589 
3590 	if (left_path) {
3591 		ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3592 		if (ret)
3593 			mlog_errno(ret);
3594 
3595 		/*
3596 		 * In the situation that the right_rec is empty and the extent
3597 		 * block is empty also,  ocfs2_complete_edge_insert can't handle
3598 		 * it and we need to delete the right extent block.
3599 		 */
3600 		if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3601 		    le16_to_cpu(el->l_next_free_rec) == 1) {
3602 
3603 			ret = ocfs2_remove_rightmost_path(handle, et,
3604 							  right_path,
3605 							  dealloc);
3606 			if (ret) {
3607 				mlog_errno(ret);
3608 				goto out;
3609 			}
3610 
3611 			/* Now the rightmost extent block has been deleted.
3612 			 * So we use the new rightmost path.
3613 			 */
3614 			ocfs2_mv_path(right_path, left_path);
3615 			left_path = NULL;
3616 		} else
3617 			ocfs2_complete_edge_insert(handle, left_path,
3618 						   right_path, subtree_index);
3619 	}
3620 out:
3621 	if (left_path)
3622 		ocfs2_free_path(left_path);
3623 	return ret;
3624 }
3625 
3626 static int ocfs2_try_to_merge_extent(struct inode *inode,
3627 				     handle_t *handle,
3628 				     struct ocfs2_path *path,
3629 				     int split_index,
3630 				     struct ocfs2_extent_rec *split_rec,
3631 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
3632 				     struct ocfs2_merge_ctxt *ctxt,
3633 				     struct ocfs2_extent_tree *et)
3634 
3635 {
3636 	int ret = 0;
3637 	struct ocfs2_extent_list *el = path_leaf_el(path);
3638 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3639 
3640 	BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3641 
3642 	if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3643 		/*
3644 		 * The merge code will need to create an empty
3645 		 * extent to take the place of the newly
3646 		 * emptied slot. Remove any pre-existing empty
3647 		 * extents - having more than one in a leaf is
3648 		 * illegal.
3649 		 */
3650 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3651 		if (ret) {
3652 			mlog_errno(ret);
3653 			goto out;
3654 		}
3655 		split_index--;
3656 		rec = &el->l_recs[split_index];
3657 	}
3658 
3659 	if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3660 		/*
3661 		 * Left-right contig implies this.
3662 		 */
3663 		BUG_ON(!ctxt->c_split_covers_rec);
3664 
3665 		/*
3666 		 * Since the leftright insert always covers the entire
3667 		 * extent, this call will delete the insert record
3668 		 * entirely, resulting in an empty extent record added to
3669 		 * the extent block.
3670 		 *
3671 		 * Since the adding of an empty extent shifts
3672 		 * everything back to the right, there's no need to
3673 		 * update split_index here.
3674 		 *
3675 		 * When the split_index is zero, we need to merge it to the
3676 		 * prevoius extent block. It is more efficient and easier
3677 		 * if we do merge_right first and merge_left later.
3678 		 */
3679 		ret = ocfs2_merge_rec_right(path, handle, et, split_rec,
3680 					    split_index);
3681 		if (ret) {
3682 			mlog_errno(ret);
3683 			goto out;
3684 		}
3685 
3686 		/*
3687 		 * We can only get this from logic error above.
3688 		 */
3689 		BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3690 
3691 		/* The merge left us with an empty extent, remove it. */
3692 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3693 		if (ret) {
3694 			mlog_errno(ret);
3695 			goto out;
3696 		}
3697 
3698 		rec = &el->l_recs[split_index];
3699 
3700 		/*
3701 		 * Note that we don't pass split_rec here on purpose -
3702 		 * we've merged it into the rec already.
3703 		 */
3704 		ret = ocfs2_merge_rec_left(path, handle, et, rec,
3705 					   dealloc, split_index);
3706 
3707 		if (ret) {
3708 			mlog_errno(ret);
3709 			goto out;
3710 		}
3711 
3712 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3713 		/*
3714 		 * Error from this last rotate is not critical, so
3715 		 * print but don't bubble it up.
3716 		 */
3717 		if (ret)
3718 			mlog_errno(ret);
3719 		ret = 0;
3720 	} else {
3721 		/*
3722 		 * Merge a record to the left or right.
3723 		 *
3724 		 * 'contig_type' is relative to the existing record,
3725 		 * so for example, if we're "right contig", it's to
3726 		 * the record on the left (hence the left merge).
3727 		 */
3728 		if (ctxt->c_contig_type == CONTIG_RIGHT) {
3729 			ret = ocfs2_merge_rec_left(path, handle, et,
3730 						   split_rec, dealloc,
3731 						   split_index);
3732 			if (ret) {
3733 				mlog_errno(ret);
3734 				goto out;
3735 			}
3736 		} else {
3737 			ret = ocfs2_merge_rec_right(path, handle,
3738 						    et, split_rec,
3739 						    split_index);
3740 			if (ret) {
3741 				mlog_errno(ret);
3742 				goto out;
3743 			}
3744 		}
3745 
3746 		if (ctxt->c_split_covers_rec) {
3747 			/*
3748 			 * The merge may have left an empty extent in
3749 			 * our leaf. Try to rotate it away.
3750 			 */
3751 			ret = ocfs2_rotate_tree_left(handle, et, path,
3752 						     dealloc);
3753 			if (ret)
3754 				mlog_errno(ret);
3755 			ret = 0;
3756 		}
3757 	}
3758 
3759 out:
3760 	return ret;
3761 }
3762 
3763 static void ocfs2_subtract_from_rec(struct super_block *sb,
3764 				    enum ocfs2_split_type split,
3765 				    struct ocfs2_extent_rec *rec,
3766 				    struct ocfs2_extent_rec *split_rec)
3767 {
3768 	u64 len_blocks;
3769 
3770 	len_blocks = ocfs2_clusters_to_blocks(sb,
3771 				le16_to_cpu(split_rec->e_leaf_clusters));
3772 
3773 	if (split == SPLIT_LEFT) {
3774 		/*
3775 		 * Region is on the left edge of the existing
3776 		 * record.
3777 		 */
3778 		le32_add_cpu(&rec->e_cpos,
3779 			     le16_to_cpu(split_rec->e_leaf_clusters));
3780 		le64_add_cpu(&rec->e_blkno, len_blocks);
3781 		le16_add_cpu(&rec->e_leaf_clusters,
3782 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3783 	} else {
3784 		/*
3785 		 * Region is on the right edge of the existing
3786 		 * record.
3787 		 */
3788 		le16_add_cpu(&rec->e_leaf_clusters,
3789 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3790 	}
3791 }
3792 
3793 /*
3794  * Do the final bits of extent record insertion at the target leaf
3795  * list. If this leaf is part of an allocation tree, it is assumed
3796  * that the tree above has been prepared.
3797  */
3798 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
3799 				 struct ocfs2_extent_list *el,
3800 				 struct ocfs2_insert_type *insert,
3801 				 struct inode *inode)
3802 {
3803 	int i = insert->ins_contig_index;
3804 	unsigned int range;
3805 	struct ocfs2_extent_rec *rec;
3806 
3807 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3808 
3809 	if (insert->ins_split != SPLIT_NONE) {
3810 		i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3811 		BUG_ON(i == -1);
3812 		rec = &el->l_recs[i];
3813 		ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3814 					insert_rec);
3815 		goto rotate;
3816 	}
3817 
3818 	/*
3819 	 * Contiguous insert - either left or right.
3820 	 */
3821 	if (insert->ins_contig != CONTIG_NONE) {
3822 		rec = &el->l_recs[i];
3823 		if (insert->ins_contig == CONTIG_LEFT) {
3824 			rec->e_blkno = insert_rec->e_blkno;
3825 			rec->e_cpos = insert_rec->e_cpos;
3826 		}
3827 		le16_add_cpu(&rec->e_leaf_clusters,
3828 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3829 		return;
3830 	}
3831 
3832 	/*
3833 	 * Handle insert into an empty leaf.
3834 	 */
3835 	if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3836 	    ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3837 	     ocfs2_is_empty_extent(&el->l_recs[0]))) {
3838 		el->l_recs[0] = *insert_rec;
3839 		el->l_next_free_rec = cpu_to_le16(1);
3840 		return;
3841 	}
3842 
3843 	/*
3844 	 * Appending insert.
3845 	 */
3846 	if (insert->ins_appending == APPEND_TAIL) {
3847 		i = le16_to_cpu(el->l_next_free_rec) - 1;
3848 		rec = &el->l_recs[i];
3849 		range = le32_to_cpu(rec->e_cpos)
3850 			+ le16_to_cpu(rec->e_leaf_clusters);
3851 		BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3852 
3853 		mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3854 				le16_to_cpu(el->l_count),
3855 				"inode %lu, depth %u, count %u, next free %u, "
3856 				"rec.cpos %u, rec.clusters %u, "
3857 				"insert.cpos %u, insert.clusters %u\n",
3858 				inode->i_ino,
3859 				le16_to_cpu(el->l_tree_depth),
3860 				le16_to_cpu(el->l_count),
3861 				le16_to_cpu(el->l_next_free_rec),
3862 				le32_to_cpu(el->l_recs[i].e_cpos),
3863 				le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3864 				le32_to_cpu(insert_rec->e_cpos),
3865 				le16_to_cpu(insert_rec->e_leaf_clusters));
3866 		i++;
3867 		el->l_recs[i] = *insert_rec;
3868 		le16_add_cpu(&el->l_next_free_rec, 1);
3869 		return;
3870 	}
3871 
3872 rotate:
3873 	/*
3874 	 * Ok, we have to rotate.
3875 	 *
3876 	 * At this point, it is safe to assume that inserting into an
3877 	 * empty leaf and appending to a leaf have both been handled
3878 	 * above.
3879 	 *
3880 	 * This leaf needs to have space, either by the empty 1st
3881 	 * extent record, or by virtue of an l_next_rec < l_count.
3882 	 */
3883 	ocfs2_rotate_leaf(el, insert_rec);
3884 }
3885 
3886 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3887 					   handle_t *handle,
3888 					   struct ocfs2_path *path,
3889 					   struct ocfs2_extent_rec *insert_rec)
3890 {
3891 	int ret, i, next_free;
3892 	struct buffer_head *bh;
3893 	struct ocfs2_extent_list *el;
3894 	struct ocfs2_extent_rec *rec;
3895 
3896 	/*
3897 	 * Update everything except the leaf block.
3898 	 */
3899 	for (i = 0; i < path->p_tree_depth; i++) {
3900 		bh = path->p_node[i].bh;
3901 		el = path->p_node[i].el;
3902 
3903 		next_free = le16_to_cpu(el->l_next_free_rec);
3904 		if (next_free == 0) {
3905 			ocfs2_error(inode->i_sb,
3906 				    "Dinode %llu has a bad extent list",
3907 				    (unsigned long long)OCFS2_I(inode)->ip_blkno);
3908 			ret = -EIO;
3909 			return;
3910 		}
3911 
3912 		rec = &el->l_recs[next_free - 1];
3913 
3914 		rec->e_int_clusters = insert_rec->e_cpos;
3915 		le32_add_cpu(&rec->e_int_clusters,
3916 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3917 		le32_add_cpu(&rec->e_int_clusters,
3918 			     -le32_to_cpu(rec->e_cpos));
3919 
3920 		ret = ocfs2_journal_dirty(handle, bh);
3921 		if (ret)
3922 			mlog_errno(ret);
3923 
3924 	}
3925 }
3926 
3927 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3928 				    struct ocfs2_extent_rec *insert_rec,
3929 				    struct ocfs2_path *right_path,
3930 				    struct ocfs2_path **ret_left_path)
3931 {
3932 	int ret, next_free;
3933 	struct ocfs2_extent_list *el;
3934 	struct ocfs2_path *left_path = NULL;
3935 
3936 	*ret_left_path = NULL;
3937 
3938 	/*
3939 	 * This shouldn't happen for non-trees. The extent rec cluster
3940 	 * count manipulation below only works for interior nodes.
3941 	 */
3942 	BUG_ON(right_path->p_tree_depth == 0);
3943 
3944 	/*
3945 	 * If our appending insert is at the leftmost edge of a leaf,
3946 	 * then we might need to update the rightmost records of the
3947 	 * neighboring path.
3948 	 */
3949 	el = path_leaf_el(right_path);
3950 	next_free = le16_to_cpu(el->l_next_free_rec);
3951 	if (next_free == 0 ||
3952 	    (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3953 		u32 left_cpos;
3954 
3955 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3956 						    &left_cpos);
3957 		if (ret) {
3958 			mlog_errno(ret);
3959 			goto out;
3960 		}
3961 
3962 		mlog(0, "Append may need a left path update. cpos: %u, "
3963 		     "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3964 		     left_cpos);
3965 
3966 		/*
3967 		 * No need to worry if the append is already in the
3968 		 * leftmost leaf.
3969 		 */
3970 		if (left_cpos) {
3971 			left_path = ocfs2_new_path_from_path(right_path);
3972 			if (!left_path) {
3973 				ret = -ENOMEM;
3974 				mlog_errno(ret);
3975 				goto out;
3976 			}
3977 
3978 			ret = ocfs2_find_path(INODE_CACHE(inode), left_path,
3979 					      left_cpos);
3980 			if (ret) {
3981 				mlog_errno(ret);
3982 				goto out;
3983 			}
3984 
3985 			/*
3986 			 * ocfs2_insert_path() will pass the left_path to the
3987 			 * journal for us.
3988 			 */
3989 		}
3990 	}
3991 
3992 	ret = ocfs2_journal_access_path(INODE_CACHE(inode), handle, right_path);
3993 	if (ret) {
3994 		mlog_errno(ret);
3995 		goto out;
3996 	}
3997 
3998 	ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
3999 
4000 	*ret_left_path = left_path;
4001 	ret = 0;
4002 out:
4003 	if (ret != 0)
4004 		ocfs2_free_path(left_path);
4005 
4006 	return ret;
4007 }
4008 
4009 static void ocfs2_split_record(struct inode *inode,
4010 			       struct ocfs2_path *left_path,
4011 			       struct ocfs2_path *right_path,
4012 			       struct ocfs2_extent_rec *split_rec,
4013 			       enum ocfs2_split_type split)
4014 {
4015 	int index;
4016 	u32 cpos = le32_to_cpu(split_rec->e_cpos);
4017 	struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4018 	struct ocfs2_extent_rec *rec, *tmprec;
4019 
4020 	right_el = path_leaf_el(right_path);
4021 	if (left_path)
4022 		left_el = path_leaf_el(left_path);
4023 
4024 	el = right_el;
4025 	insert_el = right_el;
4026 	index = ocfs2_search_extent_list(el, cpos);
4027 	if (index != -1) {
4028 		if (index == 0 && left_path) {
4029 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4030 
4031 			/*
4032 			 * This typically means that the record
4033 			 * started in the left path but moved to the
4034 			 * right as a result of rotation. We either
4035 			 * move the existing record to the left, or we
4036 			 * do the later insert there.
4037 			 *
4038 			 * In this case, the left path should always
4039 			 * exist as the rotate code will have passed
4040 			 * it back for a post-insert update.
4041 			 */
4042 
4043 			if (split == SPLIT_LEFT) {
4044 				/*
4045 				 * It's a left split. Since we know
4046 				 * that the rotate code gave us an
4047 				 * empty extent in the left path, we
4048 				 * can just do the insert there.
4049 				 */
4050 				insert_el = left_el;
4051 			} else {
4052 				/*
4053 				 * Right split - we have to move the
4054 				 * existing record over to the left
4055 				 * leaf. The insert will be into the
4056 				 * newly created empty extent in the
4057 				 * right leaf.
4058 				 */
4059 				tmprec = &right_el->l_recs[index];
4060 				ocfs2_rotate_leaf(left_el, tmprec);
4061 				el = left_el;
4062 
4063 				memset(tmprec, 0, sizeof(*tmprec));
4064 				index = ocfs2_search_extent_list(left_el, cpos);
4065 				BUG_ON(index == -1);
4066 			}
4067 		}
4068 	} else {
4069 		BUG_ON(!left_path);
4070 		BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4071 		/*
4072 		 * Left path is easy - we can just allow the insert to
4073 		 * happen.
4074 		 */
4075 		el = left_el;
4076 		insert_el = left_el;
4077 		index = ocfs2_search_extent_list(el, cpos);
4078 		BUG_ON(index == -1);
4079 	}
4080 
4081 	rec = &el->l_recs[index];
4082 	ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
4083 	ocfs2_rotate_leaf(insert_el, split_rec);
4084 }
4085 
4086 /*
4087  * This function only does inserts on an allocation b-tree. For tree
4088  * depth = 0, ocfs2_insert_at_leaf() is called directly.
4089  *
4090  * right_path is the path we want to do the actual insert
4091  * in. left_path should only be passed in if we need to update that
4092  * portion of the tree after an edge insert.
4093  */
4094 static int ocfs2_insert_path(struct inode *inode,
4095 			     handle_t *handle,
4096 			     struct ocfs2_extent_tree *et,
4097 			     struct ocfs2_path *left_path,
4098 			     struct ocfs2_path *right_path,
4099 			     struct ocfs2_extent_rec *insert_rec,
4100 			     struct ocfs2_insert_type *insert)
4101 {
4102 	int ret, subtree_index;
4103 	struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4104 
4105 	if (left_path) {
4106 		int credits = handle->h_buffer_credits;
4107 
4108 		/*
4109 		 * There's a chance that left_path got passed back to
4110 		 * us without being accounted for in the
4111 		 * journal. Extend our transaction here to be sure we
4112 		 * can change those blocks.
4113 		 */
4114 		credits += left_path->p_tree_depth;
4115 
4116 		ret = ocfs2_extend_trans(handle, credits);
4117 		if (ret < 0) {
4118 			mlog_errno(ret);
4119 			goto out;
4120 		}
4121 
4122 		ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
4123 		if (ret < 0) {
4124 			mlog_errno(ret);
4125 			goto out;
4126 		}
4127 	}
4128 
4129 	/*
4130 	 * Pass both paths to the journal. The majority of inserts
4131 	 * will be touching all components anyway.
4132 	 */
4133 	ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4134 	if (ret < 0) {
4135 		mlog_errno(ret);
4136 		goto out;
4137 	}
4138 
4139 	if (insert->ins_split != SPLIT_NONE) {
4140 		/*
4141 		 * We could call ocfs2_insert_at_leaf() for some types
4142 		 * of splits, but it's easier to just let one separate
4143 		 * function sort it all out.
4144 		 */
4145 		ocfs2_split_record(inode, left_path, right_path,
4146 				   insert_rec, insert->ins_split);
4147 
4148 		/*
4149 		 * Split might have modified either leaf and we don't
4150 		 * have a guarantee that the later edge insert will
4151 		 * dirty this for us.
4152 		 */
4153 		if (left_path)
4154 			ret = ocfs2_journal_dirty(handle,
4155 						  path_leaf_bh(left_path));
4156 			if (ret)
4157 				mlog_errno(ret);
4158 	} else
4159 		ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
4160 				     insert, inode);
4161 
4162 	ret = ocfs2_journal_dirty(handle, leaf_bh);
4163 	if (ret)
4164 		mlog_errno(ret);
4165 
4166 	if (left_path) {
4167 		/*
4168 		 * The rotate code has indicated that we need to fix
4169 		 * up portions of the tree after the insert.
4170 		 *
4171 		 * XXX: Should we extend the transaction here?
4172 		 */
4173 		subtree_index = ocfs2_find_subtree_root(et, left_path,
4174 							right_path);
4175 		ocfs2_complete_edge_insert(handle, left_path, right_path,
4176 					   subtree_index);
4177 	}
4178 
4179 	ret = 0;
4180 out:
4181 	return ret;
4182 }
4183 
4184 static int ocfs2_do_insert_extent(struct inode *inode,
4185 				  handle_t *handle,
4186 				  struct ocfs2_extent_tree *et,
4187 				  struct ocfs2_extent_rec *insert_rec,
4188 				  struct ocfs2_insert_type *type)
4189 {
4190 	int ret, rotate = 0;
4191 	u32 cpos;
4192 	struct ocfs2_path *right_path = NULL;
4193 	struct ocfs2_path *left_path = NULL;
4194 	struct ocfs2_extent_list *el;
4195 
4196 	el = et->et_root_el;
4197 
4198 	ret = ocfs2_et_root_journal_access(handle, et,
4199 					   OCFS2_JOURNAL_ACCESS_WRITE);
4200 	if (ret) {
4201 		mlog_errno(ret);
4202 		goto out;
4203 	}
4204 
4205 	if (le16_to_cpu(el->l_tree_depth) == 0) {
4206 		ocfs2_insert_at_leaf(insert_rec, el, type, inode);
4207 		goto out_update_clusters;
4208 	}
4209 
4210 	right_path = ocfs2_new_path_from_et(et);
4211 	if (!right_path) {
4212 		ret = -ENOMEM;
4213 		mlog_errno(ret);
4214 		goto out;
4215 	}
4216 
4217 	/*
4218 	 * Determine the path to start with. Rotations need the
4219 	 * rightmost path, everything else can go directly to the
4220 	 * target leaf.
4221 	 */
4222 	cpos = le32_to_cpu(insert_rec->e_cpos);
4223 	if (type->ins_appending == APPEND_NONE &&
4224 	    type->ins_contig == CONTIG_NONE) {
4225 		rotate = 1;
4226 		cpos = UINT_MAX;
4227 	}
4228 
4229 	ret = ocfs2_find_path(et->et_ci, right_path, cpos);
4230 	if (ret) {
4231 		mlog_errno(ret);
4232 		goto out;
4233 	}
4234 
4235 	/*
4236 	 * Rotations and appends need special treatment - they modify
4237 	 * parts of the tree's above them.
4238 	 *
4239 	 * Both might pass back a path immediate to the left of the
4240 	 * one being inserted to. This will be cause
4241 	 * ocfs2_insert_path() to modify the rightmost records of
4242 	 * left_path to account for an edge insert.
4243 	 *
4244 	 * XXX: When modifying this code, keep in mind that an insert
4245 	 * can wind up skipping both of these two special cases...
4246 	 */
4247 	if (rotate) {
4248 		ret = ocfs2_rotate_tree_right(handle, et, type->ins_split,
4249 					      le32_to_cpu(insert_rec->e_cpos),
4250 					      right_path, &left_path);
4251 		if (ret) {
4252 			mlog_errno(ret);
4253 			goto out;
4254 		}
4255 
4256 		/*
4257 		 * ocfs2_rotate_tree_right() might have extended the
4258 		 * transaction without re-journaling our tree root.
4259 		 */
4260 		ret = ocfs2_et_root_journal_access(handle, et,
4261 						   OCFS2_JOURNAL_ACCESS_WRITE);
4262 		if (ret) {
4263 			mlog_errno(ret);
4264 			goto out;
4265 		}
4266 	} else if (type->ins_appending == APPEND_TAIL
4267 		   && type->ins_contig != CONTIG_LEFT) {
4268 		ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
4269 					       right_path, &left_path);
4270 		if (ret) {
4271 			mlog_errno(ret);
4272 			goto out;
4273 		}
4274 	}
4275 
4276 	ret = ocfs2_insert_path(inode, handle, et, left_path, right_path,
4277 				insert_rec, type);
4278 	if (ret) {
4279 		mlog_errno(ret);
4280 		goto out;
4281 	}
4282 
4283 out_update_clusters:
4284 	if (type->ins_split == SPLIT_NONE)
4285 		ocfs2_et_update_clusters(et,
4286 					 le16_to_cpu(insert_rec->e_leaf_clusters));
4287 
4288 	ret = ocfs2_journal_dirty(handle, et->et_root_bh);
4289 	if (ret)
4290 		mlog_errno(ret);
4291 
4292 out:
4293 	ocfs2_free_path(left_path);
4294 	ocfs2_free_path(right_path);
4295 
4296 	return ret;
4297 }
4298 
4299 static enum ocfs2_contig_type
4300 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path,
4301 			       struct ocfs2_extent_list *el, int index,
4302 			       struct ocfs2_extent_rec *split_rec)
4303 {
4304 	int status;
4305 	enum ocfs2_contig_type ret = CONTIG_NONE;
4306 	u32 left_cpos, right_cpos;
4307 	struct ocfs2_extent_rec *rec = NULL;
4308 	struct ocfs2_extent_list *new_el;
4309 	struct ocfs2_path *left_path = NULL, *right_path = NULL;
4310 	struct buffer_head *bh;
4311 	struct ocfs2_extent_block *eb;
4312 
4313 	if (index > 0) {
4314 		rec = &el->l_recs[index - 1];
4315 	} else if (path->p_tree_depth > 0) {
4316 		status = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
4317 						       path, &left_cpos);
4318 		if (status)
4319 			goto out;
4320 
4321 		if (left_cpos != 0) {
4322 			left_path = ocfs2_new_path_from_path(path);
4323 			if (!left_path)
4324 				goto out;
4325 
4326 			status = ocfs2_find_path(INODE_CACHE(inode),
4327 						 left_path, left_cpos);
4328 			if (status)
4329 				goto out;
4330 
4331 			new_el = path_leaf_el(left_path);
4332 
4333 			if (le16_to_cpu(new_el->l_next_free_rec) !=
4334 			    le16_to_cpu(new_el->l_count)) {
4335 				bh = path_leaf_bh(left_path);
4336 				eb = (struct ocfs2_extent_block *)bh->b_data;
4337 				ocfs2_error(inode->i_sb,
4338 					    "Extent block #%llu has an "
4339 					    "invalid l_next_free_rec of "
4340 					    "%d.  It should have "
4341 					    "matched the l_count of %d",
4342 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4343 					    le16_to_cpu(new_el->l_next_free_rec),
4344 					    le16_to_cpu(new_el->l_count));
4345 				status = -EINVAL;
4346 				goto out;
4347 			}
4348 			rec = &new_el->l_recs[
4349 				le16_to_cpu(new_el->l_next_free_rec) - 1];
4350 		}
4351 	}
4352 
4353 	/*
4354 	 * We're careful to check for an empty extent record here -
4355 	 * the merge code will know what to do if it sees one.
4356 	 */
4357 	if (rec) {
4358 		if (index == 1 && ocfs2_is_empty_extent(rec)) {
4359 			if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4360 				ret = CONTIG_RIGHT;
4361 		} else {
4362 			ret = ocfs2_extent_contig(inode, rec, split_rec);
4363 		}
4364 	}
4365 
4366 	rec = NULL;
4367 	if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4368 		rec = &el->l_recs[index + 1];
4369 	else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4370 		 path->p_tree_depth > 0) {
4371 		status = ocfs2_find_cpos_for_right_leaf(inode->i_sb,
4372 							path, &right_cpos);
4373 		if (status)
4374 			goto out;
4375 
4376 		if (right_cpos == 0)
4377 			goto out;
4378 
4379 		right_path = ocfs2_new_path_from_path(path);
4380 		if (!right_path)
4381 			goto out;
4382 
4383 		status = ocfs2_find_path(INODE_CACHE(inode), right_path, right_cpos);
4384 		if (status)
4385 			goto out;
4386 
4387 		new_el = path_leaf_el(right_path);
4388 		rec = &new_el->l_recs[0];
4389 		if (ocfs2_is_empty_extent(rec)) {
4390 			if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4391 				bh = path_leaf_bh(right_path);
4392 				eb = (struct ocfs2_extent_block *)bh->b_data;
4393 				ocfs2_error(inode->i_sb,
4394 					    "Extent block #%llu has an "
4395 					    "invalid l_next_free_rec of %d",
4396 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4397 					    le16_to_cpu(new_el->l_next_free_rec));
4398 				status = -EINVAL;
4399 				goto out;
4400 			}
4401 			rec = &new_el->l_recs[1];
4402 		}
4403 	}
4404 
4405 	if (rec) {
4406 		enum ocfs2_contig_type contig_type;
4407 
4408 		contig_type = ocfs2_extent_contig(inode, rec, split_rec);
4409 
4410 		if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4411 			ret = CONTIG_LEFTRIGHT;
4412 		else if (ret == CONTIG_NONE)
4413 			ret = contig_type;
4414 	}
4415 
4416 out:
4417 	if (left_path)
4418 		ocfs2_free_path(left_path);
4419 	if (right_path)
4420 		ocfs2_free_path(right_path);
4421 
4422 	return ret;
4423 }
4424 
4425 static void ocfs2_figure_contig_type(struct inode *inode,
4426 				     struct ocfs2_insert_type *insert,
4427 				     struct ocfs2_extent_list *el,
4428 				     struct ocfs2_extent_rec *insert_rec,
4429 				     struct ocfs2_extent_tree *et)
4430 {
4431 	int i;
4432 	enum ocfs2_contig_type contig_type = CONTIG_NONE;
4433 
4434 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4435 
4436 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4437 		contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
4438 						  insert_rec);
4439 		if (contig_type != CONTIG_NONE) {
4440 			insert->ins_contig_index = i;
4441 			break;
4442 		}
4443 	}
4444 	insert->ins_contig = contig_type;
4445 
4446 	if (insert->ins_contig != CONTIG_NONE) {
4447 		struct ocfs2_extent_rec *rec =
4448 				&el->l_recs[insert->ins_contig_index];
4449 		unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4450 				   le16_to_cpu(insert_rec->e_leaf_clusters);
4451 
4452 		/*
4453 		 * Caller might want us to limit the size of extents, don't
4454 		 * calculate contiguousness if we might exceed that limit.
4455 		 */
4456 		if (et->et_max_leaf_clusters &&
4457 		    (len > et->et_max_leaf_clusters))
4458 			insert->ins_contig = CONTIG_NONE;
4459 	}
4460 }
4461 
4462 /*
4463  * This should only be called against the righmost leaf extent list.
4464  *
4465  * ocfs2_figure_appending_type() will figure out whether we'll have to
4466  * insert at the tail of the rightmost leaf.
4467  *
4468  * This should also work against the root extent list for tree's with 0
4469  * depth. If we consider the root extent list to be the rightmost leaf node
4470  * then the logic here makes sense.
4471  */
4472 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4473 					struct ocfs2_extent_list *el,
4474 					struct ocfs2_extent_rec *insert_rec)
4475 {
4476 	int i;
4477 	u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4478 	struct ocfs2_extent_rec *rec;
4479 
4480 	insert->ins_appending = APPEND_NONE;
4481 
4482 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4483 
4484 	if (!el->l_next_free_rec)
4485 		goto set_tail_append;
4486 
4487 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4488 		/* Were all records empty? */
4489 		if (le16_to_cpu(el->l_next_free_rec) == 1)
4490 			goto set_tail_append;
4491 	}
4492 
4493 	i = le16_to_cpu(el->l_next_free_rec) - 1;
4494 	rec = &el->l_recs[i];
4495 
4496 	if (cpos >=
4497 	    (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4498 		goto set_tail_append;
4499 
4500 	return;
4501 
4502 set_tail_append:
4503 	insert->ins_appending = APPEND_TAIL;
4504 }
4505 
4506 /*
4507  * Helper function called at the begining of an insert.
4508  *
4509  * This computes a few things that are commonly used in the process of
4510  * inserting into the btree:
4511  *   - Whether the new extent is contiguous with an existing one.
4512  *   - The current tree depth.
4513  *   - Whether the insert is an appending one.
4514  *   - The total # of free records in the tree.
4515  *
4516  * All of the information is stored on the ocfs2_insert_type
4517  * structure.
4518  */
4519 static int ocfs2_figure_insert_type(struct inode *inode,
4520 				    struct ocfs2_extent_tree *et,
4521 				    struct buffer_head **last_eb_bh,
4522 				    struct ocfs2_extent_rec *insert_rec,
4523 				    int *free_records,
4524 				    struct ocfs2_insert_type *insert)
4525 {
4526 	int ret;
4527 	struct ocfs2_extent_block *eb;
4528 	struct ocfs2_extent_list *el;
4529 	struct ocfs2_path *path = NULL;
4530 	struct buffer_head *bh = NULL;
4531 
4532 	insert->ins_split = SPLIT_NONE;
4533 
4534 	el = et->et_root_el;
4535 	insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4536 
4537 	if (el->l_tree_depth) {
4538 		/*
4539 		 * If we have tree depth, we read in the
4540 		 * rightmost extent block ahead of time as
4541 		 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4542 		 * may want it later.
4543 		 */
4544 		ret = ocfs2_read_extent_block(et->et_ci,
4545 					      ocfs2_et_get_last_eb_blk(et),
4546 					      &bh);
4547 		if (ret) {
4548 			mlog_exit(ret);
4549 			goto out;
4550 		}
4551 		eb = (struct ocfs2_extent_block *) bh->b_data;
4552 		el = &eb->h_list;
4553 	}
4554 
4555 	/*
4556 	 * Unless we have a contiguous insert, we'll need to know if
4557 	 * there is room left in our allocation tree for another
4558 	 * extent record.
4559 	 *
4560 	 * XXX: This test is simplistic, we can search for empty
4561 	 * extent records too.
4562 	 */
4563 	*free_records = le16_to_cpu(el->l_count) -
4564 		le16_to_cpu(el->l_next_free_rec);
4565 
4566 	if (!insert->ins_tree_depth) {
4567 		ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4568 		ocfs2_figure_appending_type(insert, el, insert_rec);
4569 		return 0;
4570 	}
4571 
4572 	path = ocfs2_new_path_from_et(et);
4573 	if (!path) {
4574 		ret = -ENOMEM;
4575 		mlog_errno(ret);
4576 		goto out;
4577 	}
4578 
4579 	/*
4580 	 * In the case that we're inserting past what the tree
4581 	 * currently accounts for, ocfs2_find_path() will return for
4582 	 * us the rightmost tree path. This is accounted for below in
4583 	 * the appending code.
4584 	 */
4585 	ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos));
4586 	if (ret) {
4587 		mlog_errno(ret);
4588 		goto out;
4589 	}
4590 
4591 	el = path_leaf_el(path);
4592 
4593 	/*
4594 	 * Now that we have the path, there's two things we want to determine:
4595 	 * 1) Contiguousness (also set contig_index if this is so)
4596 	 *
4597 	 * 2) Are we doing an append? We can trivially break this up
4598          *     into two types of appends: simple record append, or a
4599          *     rotate inside the tail leaf.
4600 	 */
4601 	ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4602 
4603 	/*
4604 	 * The insert code isn't quite ready to deal with all cases of
4605 	 * left contiguousness. Specifically, if it's an insert into
4606 	 * the 1st record in a leaf, it will require the adjustment of
4607 	 * cluster count on the last record of the path directly to it's
4608 	 * left. For now, just catch that case and fool the layers
4609 	 * above us. This works just fine for tree_depth == 0, which
4610 	 * is why we allow that above.
4611 	 */
4612 	if (insert->ins_contig == CONTIG_LEFT &&
4613 	    insert->ins_contig_index == 0)
4614 		insert->ins_contig = CONTIG_NONE;
4615 
4616 	/*
4617 	 * Ok, so we can simply compare against last_eb to figure out
4618 	 * whether the path doesn't exist. This will only happen in
4619 	 * the case that we're doing a tail append, so maybe we can
4620 	 * take advantage of that information somehow.
4621 	 */
4622 	if (ocfs2_et_get_last_eb_blk(et) ==
4623 	    path_leaf_bh(path)->b_blocknr) {
4624 		/*
4625 		 * Ok, ocfs2_find_path() returned us the rightmost
4626 		 * tree path. This might be an appending insert. There are
4627 		 * two cases:
4628 		 *    1) We're doing a true append at the tail:
4629 		 *	-This might even be off the end of the leaf
4630 		 *    2) We're "appending" by rotating in the tail
4631 		 */
4632 		ocfs2_figure_appending_type(insert, el, insert_rec);
4633 	}
4634 
4635 out:
4636 	ocfs2_free_path(path);
4637 
4638 	if (ret == 0)
4639 		*last_eb_bh = bh;
4640 	else
4641 		brelse(bh);
4642 	return ret;
4643 }
4644 
4645 /*
4646  * Insert an extent into an inode btree.
4647  *
4648  * The caller needs to update fe->i_clusters
4649  */
4650 int ocfs2_insert_extent(struct ocfs2_super *osb,
4651 			handle_t *handle,
4652 			struct inode *inode,
4653 			struct ocfs2_extent_tree *et,
4654 			u32 cpos,
4655 			u64 start_blk,
4656 			u32 new_clusters,
4657 			u8 flags,
4658 			struct ocfs2_alloc_context *meta_ac)
4659 {
4660 	int status;
4661 	int uninitialized_var(free_records);
4662 	struct buffer_head *last_eb_bh = NULL;
4663 	struct ocfs2_insert_type insert = {0, };
4664 	struct ocfs2_extent_rec rec;
4665 
4666 	mlog(0, "add %u clusters at position %u to inode %llu\n",
4667 	     new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4668 
4669 	memset(&rec, 0, sizeof(rec));
4670 	rec.e_cpos = cpu_to_le32(cpos);
4671 	rec.e_blkno = cpu_to_le64(start_blk);
4672 	rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4673 	rec.e_flags = flags;
4674 	status = ocfs2_et_insert_check(et, &rec);
4675 	if (status) {
4676 		mlog_errno(status);
4677 		goto bail;
4678 	}
4679 
4680 	status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec,
4681 					  &free_records, &insert);
4682 	if (status < 0) {
4683 		mlog_errno(status);
4684 		goto bail;
4685 	}
4686 
4687 	mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4688 	     "Insert.contig_index: %d, Insert.free_records: %d, "
4689 	     "Insert.tree_depth: %d\n",
4690 	     insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4691 	     free_records, insert.ins_tree_depth);
4692 
4693 	if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4694 		status = ocfs2_grow_tree(inode, handle, et,
4695 					 &insert.ins_tree_depth, &last_eb_bh,
4696 					 meta_ac);
4697 		if (status) {
4698 			mlog_errno(status);
4699 			goto bail;
4700 		}
4701 	}
4702 
4703 	/* Finally, we can add clusters. This might rotate the tree for us. */
4704 	status = ocfs2_do_insert_extent(inode, handle, et, &rec, &insert);
4705 	if (status < 0)
4706 		mlog_errno(status);
4707 	else if (et->et_ops == &ocfs2_dinode_et_ops)
4708 		ocfs2_extent_map_insert_rec(inode, &rec);
4709 
4710 bail:
4711 	brelse(last_eb_bh);
4712 
4713 	mlog_exit(status);
4714 	return status;
4715 }
4716 
4717 /*
4718  * Allcate and add clusters into the extent b-tree.
4719  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4720  * The extent b-tree's root is specified by et, and
4721  * it is not limited to the file storage. Any extent tree can use this
4722  * function if it implements the proper ocfs2_extent_tree.
4723  */
4724 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb,
4725 				struct inode *inode,
4726 				u32 *logical_offset,
4727 				u32 clusters_to_add,
4728 				int mark_unwritten,
4729 				struct ocfs2_extent_tree *et,
4730 				handle_t *handle,
4731 				struct ocfs2_alloc_context *data_ac,
4732 				struct ocfs2_alloc_context *meta_ac,
4733 				enum ocfs2_alloc_restarted *reason_ret)
4734 {
4735 	int status = 0;
4736 	int free_extents;
4737 	enum ocfs2_alloc_restarted reason = RESTART_NONE;
4738 	u32 bit_off, num_bits;
4739 	u64 block;
4740 	u8 flags = 0;
4741 
4742 	BUG_ON(!clusters_to_add);
4743 
4744 	if (mark_unwritten)
4745 		flags = OCFS2_EXT_UNWRITTEN;
4746 
4747 	free_extents = ocfs2_num_free_extents(osb, et);
4748 	if (free_extents < 0) {
4749 		status = free_extents;
4750 		mlog_errno(status);
4751 		goto leave;
4752 	}
4753 
4754 	/* there are two cases which could cause us to EAGAIN in the
4755 	 * we-need-more-metadata case:
4756 	 * 1) we haven't reserved *any*
4757 	 * 2) we are so fragmented, we've needed to add metadata too
4758 	 *    many times. */
4759 	if (!free_extents && !meta_ac) {
4760 		mlog(0, "we haven't reserved any metadata!\n");
4761 		status = -EAGAIN;
4762 		reason = RESTART_META;
4763 		goto leave;
4764 	} else if ((!free_extents)
4765 		   && (ocfs2_alloc_context_bits_left(meta_ac)
4766 		       < ocfs2_extend_meta_needed(et->et_root_el))) {
4767 		mlog(0, "filesystem is really fragmented...\n");
4768 		status = -EAGAIN;
4769 		reason = RESTART_META;
4770 		goto leave;
4771 	}
4772 
4773 	status = __ocfs2_claim_clusters(osb, handle, data_ac, 1,
4774 					clusters_to_add, &bit_off, &num_bits);
4775 	if (status < 0) {
4776 		if (status != -ENOSPC)
4777 			mlog_errno(status);
4778 		goto leave;
4779 	}
4780 
4781 	BUG_ON(num_bits > clusters_to_add);
4782 
4783 	/* reserve our write early -- insert_extent may update the tree root */
4784 	status = ocfs2_et_root_journal_access(handle, et,
4785 					      OCFS2_JOURNAL_ACCESS_WRITE);
4786 	if (status < 0) {
4787 		mlog_errno(status);
4788 		goto leave;
4789 	}
4790 
4791 	block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4792 	mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
4793 	     num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4794 	status = ocfs2_insert_extent(osb, handle, inode, et,
4795 				     *logical_offset, block,
4796 				     num_bits, flags, meta_ac);
4797 	if (status < 0) {
4798 		mlog_errno(status);
4799 		goto leave;
4800 	}
4801 
4802 	status = ocfs2_journal_dirty(handle, et->et_root_bh);
4803 	if (status < 0) {
4804 		mlog_errno(status);
4805 		goto leave;
4806 	}
4807 
4808 	clusters_to_add -= num_bits;
4809 	*logical_offset += num_bits;
4810 
4811 	if (clusters_to_add) {
4812 		mlog(0, "need to alloc once more, wanted = %u\n",
4813 		     clusters_to_add);
4814 		status = -EAGAIN;
4815 		reason = RESTART_TRANS;
4816 	}
4817 
4818 leave:
4819 	mlog_exit(status);
4820 	if (reason_ret)
4821 		*reason_ret = reason;
4822 	return status;
4823 }
4824 
4825 static void ocfs2_make_right_split_rec(struct super_block *sb,
4826 				       struct ocfs2_extent_rec *split_rec,
4827 				       u32 cpos,
4828 				       struct ocfs2_extent_rec *rec)
4829 {
4830 	u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4831 	u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4832 
4833 	memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4834 
4835 	split_rec->e_cpos = cpu_to_le32(cpos);
4836 	split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4837 
4838 	split_rec->e_blkno = rec->e_blkno;
4839 	le64_add_cpu(&split_rec->e_blkno,
4840 		     ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4841 
4842 	split_rec->e_flags = rec->e_flags;
4843 }
4844 
4845 static int ocfs2_split_and_insert(struct inode *inode,
4846 				  handle_t *handle,
4847 				  struct ocfs2_path *path,
4848 				  struct ocfs2_extent_tree *et,
4849 				  struct buffer_head **last_eb_bh,
4850 				  int split_index,
4851 				  struct ocfs2_extent_rec *orig_split_rec,
4852 				  struct ocfs2_alloc_context *meta_ac)
4853 {
4854 	int ret = 0, depth;
4855 	unsigned int insert_range, rec_range, do_leftright = 0;
4856 	struct ocfs2_extent_rec tmprec;
4857 	struct ocfs2_extent_list *rightmost_el;
4858 	struct ocfs2_extent_rec rec;
4859 	struct ocfs2_extent_rec split_rec = *orig_split_rec;
4860 	struct ocfs2_insert_type insert;
4861 	struct ocfs2_extent_block *eb;
4862 
4863 leftright:
4864 	/*
4865 	 * Store a copy of the record on the stack - it might move
4866 	 * around as the tree is manipulated below.
4867 	 */
4868 	rec = path_leaf_el(path)->l_recs[split_index];
4869 
4870 	rightmost_el = et->et_root_el;
4871 
4872 	depth = le16_to_cpu(rightmost_el->l_tree_depth);
4873 	if (depth) {
4874 		BUG_ON(!(*last_eb_bh));
4875 		eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4876 		rightmost_el = &eb->h_list;
4877 	}
4878 
4879 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4880 	    le16_to_cpu(rightmost_el->l_count)) {
4881 		ret = ocfs2_grow_tree(inode, handle, et,
4882 				      &depth, last_eb_bh, meta_ac);
4883 		if (ret) {
4884 			mlog_errno(ret);
4885 			goto out;
4886 		}
4887 	}
4888 
4889 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4890 	insert.ins_appending = APPEND_NONE;
4891 	insert.ins_contig = CONTIG_NONE;
4892 	insert.ins_tree_depth = depth;
4893 
4894 	insert_range = le32_to_cpu(split_rec.e_cpos) +
4895 		le16_to_cpu(split_rec.e_leaf_clusters);
4896 	rec_range = le32_to_cpu(rec.e_cpos) +
4897 		le16_to_cpu(rec.e_leaf_clusters);
4898 
4899 	if (split_rec.e_cpos == rec.e_cpos) {
4900 		insert.ins_split = SPLIT_LEFT;
4901 	} else if (insert_range == rec_range) {
4902 		insert.ins_split = SPLIT_RIGHT;
4903 	} else {
4904 		/*
4905 		 * Left/right split. We fake this as a right split
4906 		 * first and then make a second pass as a left split.
4907 		 */
4908 		insert.ins_split = SPLIT_RIGHT;
4909 
4910 		ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
4911 					   &rec);
4912 
4913 		split_rec = tmprec;
4914 
4915 		BUG_ON(do_leftright);
4916 		do_leftright = 1;
4917 	}
4918 
4919 	ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
4920 	if (ret) {
4921 		mlog_errno(ret);
4922 		goto out;
4923 	}
4924 
4925 	if (do_leftright == 1) {
4926 		u32 cpos;
4927 		struct ocfs2_extent_list *el;
4928 
4929 		do_leftright++;
4930 		split_rec = *orig_split_rec;
4931 
4932 		ocfs2_reinit_path(path, 1);
4933 
4934 		cpos = le32_to_cpu(split_rec.e_cpos);
4935 		ret = ocfs2_find_path(et->et_ci, path, cpos);
4936 		if (ret) {
4937 			mlog_errno(ret);
4938 			goto out;
4939 		}
4940 
4941 		el = path_leaf_el(path);
4942 		split_index = ocfs2_search_extent_list(el, cpos);
4943 		goto leftright;
4944 	}
4945 out:
4946 
4947 	return ret;
4948 }
4949 
4950 static int ocfs2_replace_extent_rec(struct inode *inode,
4951 				    handle_t *handle,
4952 				    struct ocfs2_path *path,
4953 				    struct ocfs2_extent_list *el,
4954 				    int split_index,
4955 				    struct ocfs2_extent_rec *split_rec)
4956 {
4957 	int ret;
4958 
4959 	ret = ocfs2_path_bh_journal_access(handle, INODE_CACHE(inode), path,
4960 					   path_num_items(path) - 1);
4961 	if (ret) {
4962 		mlog_errno(ret);
4963 		goto out;
4964 	}
4965 
4966 	el->l_recs[split_index] = *split_rec;
4967 
4968 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
4969 out:
4970 	return ret;
4971 }
4972 
4973 /*
4974  * Mark part or all of the extent record at split_index in the leaf
4975  * pointed to by path as written. This removes the unwritten
4976  * extent flag.
4977  *
4978  * Care is taken to handle contiguousness so as to not grow the tree.
4979  *
4980  * meta_ac is not strictly necessary - we only truly need it if growth
4981  * of the tree is required. All other cases will degrade into a less
4982  * optimal tree layout.
4983  *
4984  * last_eb_bh should be the rightmost leaf block for any extent
4985  * btree. Since a split may grow the tree or a merge might shrink it,
4986  * the caller cannot trust the contents of that buffer after this call.
4987  *
4988  * This code is optimized for readability - several passes might be
4989  * made over certain portions of the tree. All of those blocks will
4990  * have been brought into cache (and pinned via the journal), so the
4991  * extra overhead is not expressed in terms of disk reads.
4992  */
4993 static int __ocfs2_mark_extent_written(struct inode *inode,
4994 				       struct ocfs2_extent_tree *et,
4995 				       handle_t *handle,
4996 				       struct ocfs2_path *path,
4997 				       int split_index,
4998 				       struct ocfs2_extent_rec *split_rec,
4999 				       struct ocfs2_alloc_context *meta_ac,
5000 				       struct ocfs2_cached_dealloc_ctxt *dealloc)
5001 {
5002 	int ret = 0;
5003 	struct ocfs2_extent_list *el = path_leaf_el(path);
5004 	struct buffer_head *last_eb_bh = NULL;
5005 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5006 	struct ocfs2_merge_ctxt ctxt;
5007 	struct ocfs2_extent_list *rightmost_el;
5008 
5009 	if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
5010 		ret = -EIO;
5011 		mlog_errno(ret);
5012 		goto out;
5013 	}
5014 
5015 	if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5016 	    ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5017 	     (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5018 		ret = -EIO;
5019 		mlog_errno(ret);
5020 		goto out;
5021 	}
5022 
5023 	ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el,
5024 							    split_index,
5025 							    split_rec);
5026 
5027 	/*
5028 	 * The core merge / split code wants to know how much room is
5029 	 * left in this inodes allocation tree, so we pass the
5030 	 * rightmost extent list.
5031 	 */
5032 	if (path->p_tree_depth) {
5033 		struct ocfs2_extent_block *eb;
5034 
5035 		ret = ocfs2_read_extent_block(et->et_ci,
5036 					      ocfs2_et_get_last_eb_blk(et),
5037 					      &last_eb_bh);
5038 		if (ret) {
5039 			mlog_exit(ret);
5040 			goto out;
5041 		}
5042 
5043 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5044 		rightmost_el = &eb->h_list;
5045 	} else
5046 		rightmost_el = path_root_el(path);
5047 
5048 	if (rec->e_cpos == split_rec->e_cpos &&
5049 	    rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5050 		ctxt.c_split_covers_rec = 1;
5051 	else
5052 		ctxt.c_split_covers_rec = 0;
5053 
5054 	ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5055 
5056 	mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
5057 	     split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
5058 	     ctxt.c_split_covers_rec);
5059 
5060 	if (ctxt.c_contig_type == CONTIG_NONE) {
5061 		if (ctxt.c_split_covers_rec)
5062 			ret = ocfs2_replace_extent_rec(inode, handle,
5063 						       path, el,
5064 						       split_index, split_rec);
5065 		else
5066 			ret = ocfs2_split_and_insert(inode, handle, path, et,
5067 						     &last_eb_bh, split_index,
5068 						     split_rec, meta_ac);
5069 		if (ret)
5070 			mlog_errno(ret);
5071 	} else {
5072 		ret = ocfs2_try_to_merge_extent(inode, handle, path,
5073 						split_index, split_rec,
5074 						dealloc, &ctxt, et);
5075 		if (ret)
5076 			mlog_errno(ret);
5077 	}
5078 
5079 out:
5080 	brelse(last_eb_bh);
5081 	return ret;
5082 }
5083 
5084 /*
5085  * Mark the already-existing extent at cpos as written for len clusters.
5086  *
5087  * If the existing extent is larger than the request, initiate a
5088  * split. An attempt will be made at merging with adjacent extents.
5089  *
5090  * The caller is responsible for passing down meta_ac if we'll need it.
5091  */
5092 int ocfs2_mark_extent_written(struct inode *inode,
5093 			      struct ocfs2_extent_tree *et,
5094 			      handle_t *handle, u32 cpos, u32 len, u32 phys,
5095 			      struct ocfs2_alloc_context *meta_ac,
5096 			      struct ocfs2_cached_dealloc_ctxt *dealloc)
5097 {
5098 	int ret, index;
5099 	u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
5100 	struct ocfs2_extent_rec split_rec;
5101 	struct ocfs2_path *left_path = NULL;
5102 	struct ocfs2_extent_list *el;
5103 
5104 	mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
5105 	     inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
5106 
5107 	if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5108 		ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
5109 			    "that are being written to, but the feature bit "
5110 			    "is not set in the super block.",
5111 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
5112 		ret = -EROFS;
5113 		goto out;
5114 	}
5115 
5116 	/*
5117 	 * XXX: This should be fixed up so that we just re-insert the
5118 	 * next extent records.
5119 	 *
5120 	 * XXX: This is a hack on the extent tree, maybe it should be
5121 	 * an op?
5122 	 */
5123 	if (et->et_ops == &ocfs2_dinode_et_ops)
5124 		ocfs2_extent_map_trunc(inode, 0);
5125 
5126 	left_path = ocfs2_new_path_from_et(et);
5127 	if (!left_path) {
5128 		ret = -ENOMEM;
5129 		mlog_errno(ret);
5130 		goto out;
5131 	}
5132 
5133 	ret = ocfs2_find_path(et->et_ci, left_path, cpos);
5134 	if (ret) {
5135 		mlog_errno(ret);
5136 		goto out;
5137 	}
5138 	el = path_leaf_el(left_path);
5139 
5140 	index = ocfs2_search_extent_list(el, cpos);
5141 	if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5142 		ocfs2_error(inode->i_sb,
5143 			    "Inode %llu has an extent at cpos %u which can no "
5144 			    "longer be found.\n",
5145 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5146 		ret = -EROFS;
5147 		goto out;
5148 	}
5149 
5150 	memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5151 	split_rec.e_cpos = cpu_to_le32(cpos);
5152 	split_rec.e_leaf_clusters = cpu_to_le16(len);
5153 	split_rec.e_blkno = cpu_to_le64(start_blkno);
5154 	split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
5155 	split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
5156 
5157 	ret = __ocfs2_mark_extent_written(inode, et, handle, left_path,
5158 					  index, &split_rec, meta_ac,
5159 					  dealloc);
5160 	if (ret)
5161 		mlog_errno(ret);
5162 
5163 out:
5164 	ocfs2_free_path(left_path);
5165 	return ret;
5166 }
5167 
5168 static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et,
5169 			    handle_t *handle, struct ocfs2_path *path,
5170 			    int index, u32 new_range,
5171 			    struct ocfs2_alloc_context *meta_ac)
5172 {
5173 	int ret, depth, credits = handle->h_buffer_credits;
5174 	struct buffer_head *last_eb_bh = NULL;
5175 	struct ocfs2_extent_block *eb;
5176 	struct ocfs2_extent_list *rightmost_el, *el;
5177 	struct ocfs2_extent_rec split_rec;
5178 	struct ocfs2_extent_rec *rec;
5179 	struct ocfs2_insert_type insert;
5180 
5181 	/*
5182 	 * Setup the record to split before we grow the tree.
5183 	 */
5184 	el = path_leaf_el(path);
5185 	rec = &el->l_recs[index];
5186 	ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
5187 
5188 	depth = path->p_tree_depth;
5189 	if (depth > 0) {
5190 		ret = ocfs2_read_extent_block(et->et_ci,
5191 					      ocfs2_et_get_last_eb_blk(et),
5192 					      &last_eb_bh);
5193 		if (ret < 0) {
5194 			mlog_errno(ret);
5195 			goto out;
5196 		}
5197 
5198 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5199 		rightmost_el = &eb->h_list;
5200 	} else
5201 		rightmost_el = path_leaf_el(path);
5202 
5203 	credits += path->p_tree_depth +
5204 		   ocfs2_extend_meta_needed(et->et_root_el);
5205 	ret = ocfs2_extend_trans(handle, credits);
5206 	if (ret) {
5207 		mlog_errno(ret);
5208 		goto out;
5209 	}
5210 
5211 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5212 	    le16_to_cpu(rightmost_el->l_count)) {
5213 		ret = ocfs2_grow_tree(inode, handle, et, &depth, &last_eb_bh,
5214 				      meta_ac);
5215 		if (ret) {
5216 			mlog_errno(ret);
5217 			goto out;
5218 		}
5219 	}
5220 
5221 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5222 	insert.ins_appending = APPEND_NONE;
5223 	insert.ins_contig = CONTIG_NONE;
5224 	insert.ins_split = SPLIT_RIGHT;
5225 	insert.ins_tree_depth = depth;
5226 
5227 	ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
5228 	if (ret)
5229 		mlog_errno(ret);
5230 
5231 out:
5232 	brelse(last_eb_bh);
5233 	return ret;
5234 }
5235 
5236 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
5237 			      struct ocfs2_path *path, int index,
5238 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
5239 			      u32 cpos, u32 len,
5240 			      struct ocfs2_extent_tree *et)
5241 {
5242 	int ret;
5243 	u32 left_cpos, rec_range, trunc_range;
5244 	int wants_rotate = 0, is_rightmost_tree_rec = 0;
5245 	struct super_block *sb = inode->i_sb;
5246 	struct ocfs2_path *left_path = NULL;
5247 	struct ocfs2_extent_list *el = path_leaf_el(path);
5248 	struct ocfs2_extent_rec *rec;
5249 	struct ocfs2_extent_block *eb;
5250 
5251 	if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5252 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5253 		if (ret) {
5254 			mlog_errno(ret);
5255 			goto out;
5256 		}
5257 
5258 		index--;
5259 	}
5260 
5261 	if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5262 	    path->p_tree_depth) {
5263 		/*
5264 		 * Check whether this is the rightmost tree record. If
5265 		 * we remove all of this record or part of its right
5266 		 * edge then an update of the record lengths above it
5267 		 * will be required.
5268 		 */
5269 		eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5270 		if (eb->h_next_leaf_blk == 0)
5271 			is_rightmost_tree_rec = 1;
5272 	}
5273 
5274 	rec = &el->l_recs[index];
5275 	if (index == 0 && path->p_tree_depth &&
5276 	    le32_to_cpu(rec->e_cpos) == cpos) {
5277 		/*
5278 		 * Changing the leftmost offset (via partial or whole
5279 		 * record truncate) of an interior (or rightmost) path
5280 		 * means we have to update the subtree that is formed
5281 		 * by this leaf and the one to it's left.
5282 		 *
5283 		 * There are two cases we can skip:
5284 		 *   1) Path is the leftmost one in our inode tree.
5285 		 *   2) The leaf is rightmost and will be empty after
5286 		 *      we remove the extent record - the rotate code
5287 		 *      knows how to update the newly formed edge.
5288 		 */
5289 
5290 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
5291 						    &left_cpos);
5292 		if (ret) {
5293 			mlog_errno(ret);
5294 			goto out;
5295 		}
5296 
5297 		if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5298 			left_path = ocfs2_new_path_from_path(path);
5299 			if (!left_path) {
5300 				ret = -ENOMEM;
5301 				mlog_errno(ret);
5302 				goto out;
5303 			}
5304 
5305 			ret = ocfs2_find_path(et->et_ci, left_path,
5306 					      left_cpos);
5307 			if (ret) {
5308 				mlog_errno(ret);
5309 				goto out;
5310 			}
5311 		}
5312 	}
5313 
5314 	ret = ocfs2_extend_rotate_transaction(handle, 0,
5315 					      handle->h_buffer_credits,
5316 					      path);
5317 	if (ret) {
5318 		mlog_errno(ret);
5319 		goto out;
5320 	}
5321 
5322 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
5323 	if (ret) {
5324 		mlog_errno(ret);
5325 		goto out;
5326 	}
5327 
5328 	ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
5329 	if (ret) {
5330 		mlog_errno(ret);
5331 		goto out;
5332 	}
5333 
5334 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5335 	trunc_range = cpos + len;
5336 
5337 	if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5338 		int next_free;
5339 
5340 		memset(rec, 0, sizeof(*rec));
5341 		ocfs2_cleanup_merge(el, index);
5342 		wants_rotate = 1;
5343 
5344 		next_free = le16_to_cpu(el->l_next_free_rec);
5345 		if (is_rightmost_tree_rec && next_free > 1) {
5346 			/*
5347 			 * We skip the edge update if this path will
5348 			 * be deleted by the rotate code.
5349 			 */
5350 			rec = &el->l_recs[next_free - 1];
5351 			ocfs2_adjust_rightmost_records(inode, handle, path,
5352 						       rec);
5353 		}
5354 	} else if (le32_to_cpu(rec->e_cpos) == cpos) {
5355 		/* Remove leftmost portion of the record. */
5356 		le32_add_cpu(&rec->e_cpos, len);
5357 		le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5358 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5359 	} else if (rec_range == trunc_range) {
5360 		/* Remove rightmost portion of the record */
5361 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5362 		if (is_rightmost_tree_rec)
5363 			ocfs2_adjust_rightmost_records(inode, handle, path, rec);
5364 	} else {
5365 		/* Caller should have trapped this. */
5366 		mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
5367 		     "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
5368 		     le32_to_cpu(rec->e_cpos),
5369 		     le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5370 		BUG();
5371 	}
5372 
5373 	if (left_path) {
5374 		int subtree_index;
5375 
5376 		subtree_index = ocfs2_find_subtree_root(et, left_path, path);
5377 		ocfs2_complete_edge_insert(handle, left_path, path,
5378 					   subtree_index);
5379 	}
5380 
5381 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
5382 
5383 	ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5384 	if (ret) {
5385 		mlog_errno(ret);
5386 		goto out;
5387 	}
5388 
5389 out:
5390 	ocfs2_free_path(left_path);
5391 	return ret;
5392 }
5393 
5394 int ocfs2_remove_extent(struct inode *inode,
5395 			struct ocfs2_extent_tree *et,
5396 			u32 cpos, u32 len, handle_t *handle,
5397 			struct ocfs2_alloc_context *meta_ac,
5398 			struct ocfs2_cached_dealloc_ctxt *dealloc)
5399 {
5400 	int ret, index;
5401 	u32 rec_range, trunc_range;
5402 	struct ocfs2_extent_rec *rec;
5403 	struct ocfs2_extent_list *el;
5404 	struct ocfs2_path *path = NULL;
5405 
5406 	ocfs2_extent_map_trunc(inode, 0);
5407 
5408 	path = ocfs2_new_path_from_et(et);
5409 	if (!path) {
5410 		ret = -ENOMEM;
5411 		mlog_errno(ret);
5412 		goto out;
5413 	}
5414 
5415 	ret = ocfs2_find_path(et->et_ci, path, cpos);
5416 	if (ret) {
5417 		mlog_errno(ret);
5418 		goto out;
5419 	}
5420 
5421 	el = path_leaf_el(path);
5422 	index = ocfs2_search_extent_list(el, cpos);
5423 	if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5424 		ocfs2_error(inode->i_sb,
5425 			    "Inode %llu has an extent at cpos %u which can no "
5426 			    "longer be found.\n",
5427 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5428 		ret = -EROFS;
5429 		goto out;
5430 	}
5431 
5432 	/*
5433 	 * We have 3 cases of extent removal:
5434 	 *   1) Range covers the entire extent rec
5435 	 *   2) Range begins or ends on one edge of the extent rec
5436 	 *   3) Range is in the middle of the extent rec (no shared edges)
5437 	 *
5438 	 * For case 1 we remove the extent rec and left rotate to
5439 	 * fill the hole.
5440 	 *
5441 	 * For case 2 we just shrink the existing extent rec, with a
5442 	 * tree update if the shrinking edge is also the edge of an
5443 	 * extent block.
5444 	 *
5445 	 * For case 3 we do a right split to turn the extent rec into
5446 	 * something case 2 can handle.
5447 	 */
5448 	rec = &el->l_recs[index];
5449 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5450 	trunc_range = cpos + len;
5451 
5452 	BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5453 
5454 	mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
5455 	     "(cpos %u, len %u)\n",
5456 	     (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
5457 	     le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
5458 
5459 	if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5460 		ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5461 					 cpos, len, et);
5462 		if (ret) {
5463 			mlog_errno(ret);
5464 			goto out;
5465 		}
5466 	} else {
5467 		ret = ocfs2_split_tree(inode, et, handle, path, index,
5468 				       trunc_range, meta_ac);
5469 		if (ret) {
5470 			mlog_errno(ret);
5471 			goto out;
5472 		}
5473 
5474 		/*
5475 		 * The split could have manipulated the tree enough to
5476 		 * move the record location, so we have to look for it again.
5477 		 */
5478 		ocfs2_reinit_path(path, 1);
5479 
5480 		ret = ocfs2_find_path(et->et_ci, path, cpos);
5481 		if (ret) {
5482 			mlog_errno(ret);
5483 			goto out;
5484 		}
5485 
5486 		el = path_leaf_el(path);
5487 		index = ocfs2_search_extent_list(el, cpos);
5488 		if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5489 			ocfs2_error(inode->i_sb,
5490 				    "Inode %llu: split at cpos %u lost record.",
5491 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
5492 				    cpos);
5493 			ret = -EROFS;
5494 			goto out;
5495 		}
5496 
5497 		/*
5498 		 * Double check our values here. If anything is fishy,
5499 		 * it's easier to catch it at the top level.
5500 		 */
5501 		rec = &el->l_recs[index];
5502 		rec_range = le32_to_cpu(rec->e_cpos) +
5503 			ocfs2_rec_clusters(el, rec);
5504 		if (rec_range != trunc_range) {
5505 			ocfs2_error(inode->i_sb,
5506 				    "Inode %llu: error after split at cpos %u"
5507 				    "trunc len %u, existing record is (%u,%u)",
5508 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
5509 				    cpos, len, le32_to_cpu(rec->e_cpos),
5510 				    ocfs2_rec_clusters(el, rec));
5511 			ret = -EROFS;
5512 			goto out;
5513 		}
5514 
5515 		ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5516 					 cpos, len, et);
5517 		if (ret) {
5518 			mlog_errno(ret);
5519 			goto out;
5520 		}
5521 	}
5522 
5523 out:
5524 	ocfs2_free_path(path);
5525 	return ret;
5526 }
5527 
5528 int ocfs2_remove_btree_range(struct inode *inode,
5529 			     struct ocfs2_extent_tree *et,
5530 			     u32 cpos, u32 phys_cpos, u32 len,
5531 			     struct ocfs2_cached_dealloc_ctxt *dealloc)
5532 {
5533 	int ret;
5534 	u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5535 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5536 	struct inode *tl_inode = osb->osb_tl_inode;
5537 	handle_t *handle;
5538 	struct ocfs2_alloc_context *meta_ac = NULL;
5539 
5540 	ret = ocfs2_lock_allocators(inode, et, 0, 1, NULL, &meta_ac);
5541 	if (ret) {
5542 		mlog_errno(ret);
5543 		return ret;
5544 	}
5545 
5546 	mutex_lock(&tl_inode->i_mutex);
5547 
5548 	if (ocfs2_truncate_log_needs_flush(osb)) {
5549 		ret = __ocfs2_flush_truncate_log(osb);
5550 		if (ret < 0) {
5551 			mlog_errno(ret);
5552 			goto out;
5553 		}
5554 	}
5555 
5556 	handle = ocfs2_start_trans(osb, ocfs2_remove_extent_credits(osb->sb));
5557 	if (IS_ERR(handle)) {
5558 		ret = PTR_ERR(handle);
5559 		mlog_errno(ret);
5560 		goto out;
5561 	}
5562 
5563 	ret = ocfs2_et_root_journal_access(handle, et,
5564 					   OCFS2_JOURNAL_ACCESS_WRITE);
5565 	if (ret) {
5566 		mlog_errno(ret);
5567 		goto out;
5568 	}
5569 
5570 	vfs_dq_free_space_nodirty(inode,
5571 				  ocfs2_clusters_to_bytes(inode->i_sb, len));
5572 
5573 	ret = ocfs2_remove_extent(inode, et, cpos, len, handle, meta_ac,
5574 				  dealloc);
5575 	if (ret) {
5576 		mlog_errno(ret);
5577 		goto out_commit;
5578 	}
5579 
5580 	ocfs2_et_update_clusters(et, -len);
5581 
5582 	ret = ocfs2_journal_dirty(handle, et->et_root_bh);
5583 	if (ret) {
5584 		mlog_errno(ret);
5585 		goto out_commit;
5586 	}
5587 
5588 	ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len);
5589 	if (ret)
5590 		mlog_errno(ret);
5591 
5592 out_commit:
5593 	ocfs2_commit_trans(osb, handle);
5594 out:
5595 	mutex_unlock(&tl_inode->i_mutex);
5596 
5597 	if (meta_ac)
5598 		ocfs2_free_alloc_context(meta_ac);
5599 
5600 	return ret;
5601 }
5602 
5603 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5604 {
5605 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5606 	struct ocfs2_dinode *di;
5607 	struct ocfs2_truncate_log *tl;
5608 
5609 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5610 	tl = &di->id2.i_dealloc;
5611 
5612 	mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5613 			"slot %d, invalid truncate log parameters: used = "
5614 			"%u, count = %u\n", osb->slot_num,
5615 			le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5616 	return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5617 }
5618 
5619 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5620 					   unsigned int new_start)
5621 {
5622 	unsigned int tail_index;
5623 	unsigned int current_tail;
5624 
5625 	/* No records, nothing to coalesce */
5626 	if (!le16_to_cpu(tl->tl_used))
5627 		return 0;
5628 
5629 	tail_index = le16_to_cpu(tl->tl_used) - 1;
5630 	current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5631 	current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5632 
5633 	return current_tail == new_start;
5634 }
5635 
5636 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5637 			      handle_t *handle,
5638 			      u64 start_blk,
5639 			      unsigned int num_clusters)
5640 {
5641 	int status, index;
5642 	unsigned int start_cluster, tl_count;
5643 	struct inode *tl_inode = osb->osb_tl_inode;
5644 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5645 	struct ocfs2_dinode *di;
5646 	struct ocfs2_truncate_log *tl;
5647 
5648 	mlog_entry("start_blk = %llu, num_clusters = %u\n",
5649 		   (unsigned long long)start_blk, num_clusters);
5650 
5651 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5652 
5653 	start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5654 
5655 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5656 
5657 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5658 	 * by the underlying call to ocfs2_read_inode_block(), so any
5659 	 * corruption is a code bug */
5660 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5661 
5662 	tl = &di->id2.i_dealloc;
5663 	tl_count = le16_to_cpu(tl->tl_count);
5664 	mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5665 			tl_count == 0,
5666 			"Truncate record count on #%llu invalid "
5667 			"wanted %u, actual %u\n",
5668 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5669 			ocfs2_truncate_recs_per_inode(osb->sb),
5670 			le16_to_cpu(tl->tl_count));
5671 
5672 	/* Caller should have known to flush before calling us. */
5673 	index = le16_to_cpu(tl->tl_used);
5674 	if (index >= tl_count) {
5675 		status = -ENOSPC;
5676 		mlog_errno(status);
5677 		goto bail;
5678 	}
5679 
5680 	status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5681 					 OCFS2_JOURNAL_ACCESS_WRITE);
5682 	if (status < 0) {
5683 		mlog_errno(status);
5684 		goto bail;
5685 	}
5686 
5687 	mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5688 	     "%llu (index = %d)\n", num_clusters, start_cluster,
5689 	     (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
5690 
5691 	if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5692 		/*
5693 		 * Move index back to the record we are coalescing with.
5694 		 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5695 		 */
5696 		index--;
5697 
5698 		num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5699 		mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5700 		     index, le32_to_cpu(tl->tl_recs[index].t_start),
5701 		     num_clusters);
5702 	} else {
5703 		tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5704 		tl->tl_used = cpu_to_le16(index + 1);
5705 	}
5706 	tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5707 
5708 	status = ocfs2_journal_dirty(handle, tl_bh);
5709 	if (status < 0) {
5710 		mlog_errno(status);
5711 		goto bail;
5712 	}
5713 
5714 bail:
5715 	mlog_exit(status);
5716 	return status;
5717 }
5718 
5719 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5720 					 handle_t *handle,
5721 					 struct inode *data_alloc_inode,
5722 					 struct buffer_head *data_alloc_bh)
5723 {
5724 	int status = 0;
5725 	int i;
5726 	unsigned int num_clusters;
5727 	u64 start_blk;
5728 	struct ocfs2_truncate_rec rec;
5729 	struct ocfs2_dinode *di;
5730 	struct ocfs2_truncate_log *tl;
5731 	struct inode *tl_inode = osb->osb_tl_inode;
5732 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5733 
5734 	mlog_entry_void();
5735 
5736 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5737 	tl = &di->id2.i_dealloc;
5738 	i = le16_to_cpu(tl->tl_used) - 1;
5739 	while (i >= 0) {
5740 		/* Caller has given us at least enough credits to
5741 		 * update the truncate log dinode */
5742 		status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5743 						 OCFS2_JOURNAL_ACCESS_WRITE);
5744 		if (status < 0) {
5745 			mlog_errno(status);
5746 			goto bail;
5747 		}
5748 
5749 		tl->tl_used = cpu_to_le16(i);
5750 
5751 		status = ocfs2_journal_dirty(handle, tl_bh);
5752 		if (status < 0) {
5753 			mlog_errno(status);
5754 			goto bail;
5755 		}
5756 
5757 		/* TODO: Perhaps we can calculate the bulk of the
5758 		 * credits up front rather than extending like
5759 		 * this. */
5760 		status = ocfs2_extend_trans(handle,
5761 					    OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5762 		if (status < 0) {
5763 			mlog_errno(status);
5764 			goto bail;
5765 		}
5766 
5767 		rec = tl->tl_recs[i];
5768 		start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5769 						    le32_to_cpu(rec.t_start));
5770 		num_clusters = le32_to_cpu(rec.t_clusters);
5771 
5772 		/* if start_blk is not set, we ignore the record as
5773 		 * invalid. */
5774 		if (start_blk) {
5775 			mlog(0, "free record %d, start = %u, clusters = %u\n",
5776 			     i, le32_to_cpu(rec.t_start), num_clusters);
5777 
5778 			status = ocfs2_free_clusters(handle, data_alloc_inode,
5779 						     data_alloc_bh, start_blk,
5780 						     num_clusters);
5781 			if (status < 0) {
5782 				mlog_errno(status);
5783 				goto bail;
5784 			}
5785 		}
5786 		i--;
5787 	}
5788 
5789 bail:
5790 	mlog_exit(status);
5791 	return status;
5792 }
5793 
5794 /* Expects you to already be holding tl_inode->i_mutex */
5795 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5796 {
5797 	int status;
5798 	unsigned int num_to_flush;
5799 	handle_t *handle;
5800 	struct inode *tl_inode = osb->osb_tl_inode;
5801 	struct inode *data_alloc_inode = NULL;
5802 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5803 	struct buffer_head *data_alloc_bh = NULL;
5804 	struct ocfs2_dinode *di;
5805 	struct ocfs2_truncate_log *tl;
5806 
5807 	mlog_entry_void();
5808 
5809 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5810 
5811 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5812 
5813 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5814 	 * by the underlying call to ocfs2_read_inode_block(), so any
5815 	 * corruption is a code bug */
5816 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5817 
5818 	tl = &di->id2.i_dealloc;
5819 	num_to_flush = le16_to_cpu(tl->tl_used);
5820 	mlog(0, "Flush %u records from truncate log #%llu\n",
5821 	     num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5822 	if (!num_to_flush) {
5823 		status = 0;
5824 		goto out;
5825 	}
5826 
5827 	data_alloc_inode = ocfs2_get_system_file_inode(osb,
5828 						       GLOBAL_BITMAP_SYSTEM_INODE,
5829 						       OCFS2_INVALID_SLOT);
5830 	if (!data_alloc_inode) {
5831 		status = -EINVAL;
5832 		mlog(ML_ERROR, "Could not get bitmap inode!\n");
5833 		goto out;
5834 	}
5835 
5836 	mutex_lock(&data_alloc_inode->i_mutex);
5837 
5838 	status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5839 	if (status < 0) {
5840 		mlog_errno(status);
5841 		goto out_mutex;
5842 	}
5843 
5844 	handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5845 	if (IS_ERR(handle)) {
5846 		status = PTR_ERR(handle);
5847 		mlog_errno(status);
5848 		goto out_unlock;
5849 	}
5850 
5851 	status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5852 					       data_alloc_bh);
5853 	if (status < 0)
5854 		mlog_errno(status);
5855 
5856 	ocfs2_commit_trans(osb, handle);
5857 
5858 out_unlock:
5859 	brelse(data_alloc_bh);
5860 	ocfs2_inode_unlock(data_alloc_inode, 1);
5861 
5862 out_mutex:
5863 	mutex_unlock(&data_alloc_inode->i_mutex);
5864 	iput(data_alloc_inode);
5865 
5866 out:
5867 	mlog_exit(status);
5868 	return status;
5869 }
5870 
5871 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5872 {
5873 	int status;
5874 	struct inode *tl_inode = osb->osb_tl_inode;
5875 
5876 	mutex_lock(&tl_inode->i_mutex);
5877 	status = __ocfs2_flush_truncate_log(osb);
5878 	mutex_unlock(&tl_inode->i_mutex);
5879 
5880 	return status;
5881 }
5882 
5883 static void ocfs2_truncate_log_worker(struct work_struct *work)
5884 {
5885 	int status;
5886 	struct ocfs2_super *osb =
5887 		container_of(work, struct ocfs2_super,
5888 			     osb_truncate_log_wq.work);
5889 
5890 	mlog_entry_void();
5891 
5892 	status = ocfs2_flush_truncate_log(osb);
5893 	if (status < 0)
5894 		mlog_errno(status);
5895 	else
5896 		ocfs2_init_inode_steal_slot(osb);
5897 
5898 	mlog_exit(status);
5899 }
5900 
5901 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5902 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
5903 				       int cancel)
5904 {
5905 	if (osb->osb_tl_inode) {
5906 		/* We want to push off log flushes while truncates are
5907 		 * still running. */
5908 		if (cancel)
5909 			cancel_delayed_work(&osb->osb_truncate_log_wq);
5910 
5911 		queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
5912 				   OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
5913 	}
5914 }
5915 
5916 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
5917 				       int slot_num,
5918 				       struct inode **tl_inode,
5919 				       struct buffer_head **tl_bh)
5920 {
5921 	int status;
5922 	struct inode *inode = NULL;
5923 	struct buffer_head *bh = NULL;
5924 
5925 	inode = ocfs2_get_system_file_inode(osb,
5926 					   TRUNCATE_LOG_SYSTEM_INODE,
5927 					   slot_num);
5928 	if (!inode) {
5929 		status = -EINVAL;
5930 		mlog(ML_ERROR, "Could not get load truncate log inode!\n");
5931 		goto bail;
5932 	}
5933 
5934 	status = ocfs2_read_inode_block(inode, &bh);
5935 	if (status < 0) {
5936 		iput(inode);
5937 		mlog_errno(status);
5938 		goto bail;
5939 	}
5940 
5941 	*tl_inode = inode;
5942 	*tl_bh    = bh;
5943 bail:
5944 	mlog_exit(status);
5945 	return status;
5946 }
5947 
5948 /* called during the 1st stage of node recovery. we stamp a clean
5949  * truncate log and pass back a copy for processing later. if the
5950  * truncate log does not require processing, a *tl_copy is set to
5951  * NULL. */
5952 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
5953 				      int slot_num,
5954 				      struct ocfs2_dinode **tl_copy)
5955 {
5956 	int status;
5957 	struct inode *tl_inode = NULL;
5958 	struct buffer_head *tl_bh = NULL;
5959 	struct ocfs2_dinode *di;
5960 	struct ocfs2_truncate_log *tl;
5961 
5962 	*tl_copy = NULL;
5963 
5964 	mlog(0, "recover truncate log from slot %d\n", slot_num);
5965 
5966 	status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
5967 	if (status < 0) {
5968 		mlog_errno(status);
5969 		goto bail;
5970 	}
5971 
5972 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5973 
5974 	/* tl_bh is loaded from ocfs2_get_truncate_log_info().  It's
5975 	 * validated by the underlying call to ocfs2_read_inode_block(),
5976 	 * so any corruption is a code bug */
5977 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5978 
5979 	tl = &di->id2.i_dealloc;
5980 	if (le16_to_cpu(tl->tl_used)) {
5981 		mlog(0, "We'll have %u logs to recover\n",
5982 		     le16_to_cpu(tl->tl_used));
5983 
5984 		*tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
5985 		if (!(*tl_copy)) {
5986 			status = -ENOMEM;
5987 			mlog_errno(status);
5988 			goto bail;
5989 		}
5990 
5991 		/* Assuming the write-out below goes well, this copy
5992 		 * will be passed back to recovery for processing. */
5993 		memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
5994 
5995 		/* All we need to do to clear the truncate log is set
5996 		 * tl_used. */
5997 		tl->tl_used = 0;
5998 
5999 		ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6000 		status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
6001 		if (status < 0) {
6002 			mlog_errno(status);
6003 			goto bail;
6004 		}
6005 	}
6006 
6007 bail:
6008 	if (tl_inode)
6009 		iput(tl_inode);
6010 	brelse(tl_bh);
6011 
6012 	if (status < 0 && (*tl_copy)) {
6013 		kfree(*tl_copy);
6014 		*tl_copy = NULL;
6015 	}
6016 
6017 	mlog_exit(status);
6018 	return status;
6019 }
6020 
6021 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6022 					 struct ocfs2_dinode *tl_copy)
6023 {
6024 	int status = 0;
6025 	int i;
6026 	unsigned int clusters, num_recs, start_cluster;
6027 	u64 start_blk;
6028 	handle_t *handle;
6029 	struct inode *tl_inode = osb->osb_tl_inode;
6030 	struct ocfs2_truncate_log *tl;
6031 
6032 	mlog_entry_void();
6033 
6034 	if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6035 		mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6036 		return -EINVAL;
6037 	}
6038 
6039 	tl = &tl_copy->id2.i_dealloc;
6040 	num_recs = le16_to_cpu(tl->tl_used);
6041 	mlog(0, "cleanup %u records from %llu\n", num_recs,
6042 	     (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
6043 
6044 	mutex_lock(&tl_inode->i_mutex);
6045 	for(i = 0; i < num_recs; i++) {
6046 		if (ocfs2_truncate_log_needs_flush(osb)) {
6047 			status = __ocfs2_flush_truncate_log(osb);
6048 			if (status < 0) {
6049 				mlog_errno(status);
6050 				goto bail_up;
6051 			}
6052 		}
6053 
6054 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6055 		if (IS_ERR(handle)) {
6056 			status = PTR_ERR(handle);
6057 			mlog_errno(status);
6058 			goto bail_up;
6059 		}
6060 
6061 		clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6062 		start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6063 		start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6064 
6065 		status = ocfs2_truncate_log_append(osb, handle,
6066 						   start_blk, clusters);
6067 		ocfs2_commit_trans(osb, handle);
6068 		if (status < 0) {
6069 			mlog_errno(status);
6070 			goto bail_up;
6071 		}
6072 	}
6073 
6074 bail_up:
6075 	mutex_unlock(&tl_inode->i_mutex);
6076 
6077 	mlog_exit(status);
6078 	return status;
6079 }
6080 
6081 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6082 {
6083 	int status;
6084 	struct inode *tl_inode = osb->osb_tl_inode;
6085 
6086 	mlog_entry_void();
6087 
6088 	if (tl_inode) {
6089 		cancel_delayed_work(&osb->osb_truncate_log_wq);
6090 		flush_workqueue(ocfs2_wq);
6091 
6092 		status = ocfs2_flush_truncate_log(osb);
6093 		if (status < 0)
6094 			mlog_errno(status);
6095 
6096 		brelse(osb->osb_tl_bh);
6097 		iput(osb->osb_tl_inode);
6098 	}
6099 
6100 	mlog_exit_void();
6101 }
6102 
6103 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6104 {
6105 	int status;
6106 	struct inode *tl_inode = NULL;
6107 	struct buffer_head *tl_bh = NULL;
6108 
6109 	mlog_entry_void();
6110 
6111 	status = ocfs2_get_truncate_log_info(osb,
6112 					     osb->slot_num,
6113 					     &tl_inode,
6114 					     &tl_bh);
6115 	if (status < 0)
6116 		mlog_errno(status);
6117 
6118 	/* ocfs2_truncate_log_shutdown keys on the existence of
6119 	 * osb->osb_tl_inode so we don't set any of the osb variables
6120 	 * until we're sure all is well. */
6121 	INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6122 			  ocfs2_truncate_log_worker);
6123 	osb->osb_tl_bh    = tl_bh;
6124 	osb->osb_tl_inode = tl_inode;
6125 
6126 	mlog_exit(status);
6127 	return status;
6128 }
6129 
6130 /*
6131  * Delayed de-allocation of suballocator blocks.
6132  *
6133  * Some sets of block de-allocations might involve multiple suballocator inodes.
6134  *
6135  * The locking for this can get extremely complicated, especially when
6136  * the suballocator inodes to delete from aren't known until deep
6137  * within an unrelated codepath.
6138  *
6139  * ocfs2_extent_block structures are a good example of this - an inode
6140  * btree could have been grown by any number of nodes each allocating
6141  * out of their own suballoc inode.
6142  *
6143  * These structures allow the delay of block de-allocation until a
6144  * later time, when locking of multiple cluster inodes won't cause
6145  * deadlock.
6146  */
6147 
6148 /*
6149  * Describe a single bit freed from a suballocator.  For the block
6150  * suballocators, it represents one block.  For the global cluster
6151  * allocator, it represents some clusters and free_bit indicates
6152  * clusters number.
6153  */
6154 struct ocfs2_cached_block_free {
6155 	struct ocfs2_cached_block_free		*free_next;
6156 	u64					free_blk;
6157 	unsigned int				free_bit;
6158 };
6159 
6160 struct ocfs2_per_slot_free_list {
6161 	struct ocfs2_per_slot_free_list		*f_next_suballocator;
6162 	int					f_inode_type;
6163 	int					f_slot;
6164 	struct ocfs2_cached_block_free		*f_first;
6165 };
6166 
6167 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6168 				    int sysfile_type,
6169 				    int slot,
6170 				    struct ocfs2_cached_block_free *head)
6171 {
6172 	int ret;
6173 	u64 bg_blkno;
6174 	handle_t *handle;
6175 	struct inode *inode;
6176 	struct buffer_head *di_bh = NULL;
6177 	struct ocfs2_cached_block_free *tmp;
6178 
6179 	inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6180 	if (!inode) {
6181 		ret = -EINVAL;
6182 		mlog_errno(ret);
6183 		goto out;
6184 	}
6185 
6186 	mutex_lock(&inode->i_mutex);
6187 
6188 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
6189 	if (ret) {
6190 		mlog_errno(ret);
6191 		goto out_mutex;
6192 	}
6193 
6194 	handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6195 	if (IS_ERR(handle)) {
6196 		ret = PTR_ERR(handle);
6197 		mlog_errno(ret);
6198 		goto out_unlock;
6199 	}
6200 
6201 	while (head) {
6202 		bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6203 						      head->free_bit);
6204 		mlog(0, "Free bit: (bit %u, blkno %llu)\n",
6205 		     head->free_bit, (unsigned long long)head->free_blk);
6206 
6207 		ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6208 					       head->free_bit, bg_blkno, 1);
6209 		if (ret) {
6210 			mlog_errno(ret);
6211 			goto out_journal;
6212 		}
6213 
6214 		ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
6215 		if (ret) {
6216 			mlog_errno(ret);
6217 			goto out_journal;
6218 		}
6219 
6220 		tmp = head;
6221 		head = head->free_next;
6222 		kfree(tmp);
6223 	}
6224 
6225 out_journal:
6226 	ocfs2_commit_trans(osb, handle);
6227 
6228 out_unlock:
6229 	ocfs2_inode_unlock(inode, 1);
6230 	brelse(di_bh);
6231 out_mutex:
6232 	mutex_unlock(&inode->i_mutex);
6233 	iput(inode);
6234 out:
6235 	while(head) {
6236 		/* Premature exit may have left some dangling items. */
6237 		tmp = head;
6238 		head = head->free_next;
6239 		kfree(tmp);
6240 	}
6241 
6242 	return ret;
6243 }
6244 
6245 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6246 				u64 blkno, unsigned int bit)
6247 {
6248 	int ret = 0;
6249 	struct ocfs2_cached_block_free *item;
6250 
6251 	item = kmalloc(sizeof(*item), GFP_NOFS);
6252 	if (item == NULL) {
6253 		ret = -ENOMEM;
6254 		mlog_errno(ret);
6255 		return ret;
6256 	}
6257 
6258 	mlog(0, "Insert clusters: (bit %u, blk %llu)\n",
6259 	     bit, (unsigned long long)blkno);
6260 
6261 	item->free_blk = blkno;
6262 	item->free_bit = bit;
6263 	item->free_next = ctxt->c_global_allocator;
6264 
6265 	ctxt->c_global_allocator = item;
6266 	return ret;
6267 }
6268 
6269 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6270 				      struct ocfs2_cached_block_free *head)
6271 {
6272 	struct ocfs2_cached_block_free *tmp;
6273 	struct inode *tl_inode = osb->osb_tl_inode;
6274 	handle_t *handle;
6275 	int ret = 0;
6276 
6277 	mutex_lock(&tl_inode->i_mutex);
6278 
6279 	while (head) {
6280 		if (ocfs2_truncate_log_needs_flush(osb)) {
6281 			ret = __ocfs2_flush_truncate_log(osb);
6282 			if (ret < 0) {
6283 				mlog_errno(ret);
6284 				break;
6285 			}
6286 		}
6287 
6288 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6289 		if (IS_ERR(handle)) {
6290 			ret = PTR_ERR(handle);
6291 			mlog_errno(ret);
6292 			break;
6293 		}
6294 
6295 		ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6296 						head->free_bit);
6297 
6298 		ocfs2_commit_trans(osb, handle);
6299 		tmp = head;
6300 		head = head->free_next;
6301 		kfree(tmp);
6302 
6303 		if (ret < 0) {
6304 			mlog_errno(ret);
6305 			break;
6306 		}
6307 	}
6308 
6309 	mutex_unlock(&tl_inode->i_mutex);
6310 
6311 	while (head) {
6312 		/* Premature exit may have left some dangling items. */
6313 		tmp = head;
6314 		head = head->free_next;
6315 		kfree(tmp);
6316 	}
6317 
6318 	return ret;
6319 }
6320 
6321 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6322 		       struct ocfs2_cached_dealloc_ctxt *ctxt)
6323 {
6324 	int ret = 0, ret2;
6325 	struct ocfs2_per_slot_free_list *fl;
6326 
6327 	if (!ctxt)
6328 		return 0;
6329 
6330 	while (ctxt->c_first_suballocator) {
6331 		fl = ctxt->c_first_suballocator;
6332 
6333 		if (fl->f_first) {
6334 			mlog(0, "Free items: (type %u, slot %d)\n",
6335 			     fl->f_inode_type, fl->f_slot);
6336 			ret2 = ocfs2_free_cached_blocks(osb,
6337 							fl->f_inode_type,
6338 							fl->f_slot,
6339 							fl->f_first);
6340 			if (ret2)
6341 				mlog_errno(ret2);
6342 			if (!ret)
6343 				ret = ret2;
6344 		}
6345 
6346 		ctxt->c_first_suballocator = fl->f_next_suballocator;
6347 		kfree(fl);
6348 	}
6349 
6350 	if (ctxt->c_global_allocator) {
6351 		ret2 = ocfs2_free_cached_clusters(osb,
6352 						  ctxt->c_global_allocator);
6353 		if (ret2)
6354 			mlog_errno(ret2);
6355 		if (!ret)
6356 			ret = ret2;
6357 
6358 		ctxt->c_global_allocator = NULL;
6359 	}
6360 
6361 	return ret;
6362 }
6363 
6364 static struct ocfs2_per_slot_free_list *
6365 ocfs2_find_per_slot_free_list(int type,
6366 			      int slot,
6367 			      struct ocfs2_cached_dealloc_ctxt *ctxt)
6368 {
6369 	struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6370 
6371 	while (fl) {
6372 		if (fl->f_inode_type == type && fl->f_slot == slot)
6373 			return fl;
6374 
6375 		fl = fl->f_next_suballocator;
6376 	}
6377 
6378 	fl = kmalloc(sizeof(*fl), GFP_NOFS);
6379 	if (fl) {
6380 		fl->f_inode_type = type;
6381 		fl->f_slot = slot;
6382 		fl->f_first = NULL;
6383 		fl->f_next_suballocator = ctxt->c_first_suballocator;
6384 
6385 		ctxt->c_first_suballocator = fl;
6386 	}
6387 	return fl;
6388 }
6389 
6390 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6391 				     int type, int slot, u64 blkno,
6392 				     unsigned int bit)
6393 {
6394 	int ret;
6395 	struct ocfs2_per_slot_free_list *fl;
6396 	struct ocfs2_cached_block_free *item;
6397 
6398 	fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6399 	if (fl == NULL) {
6400 		ret = -ENOMEM;
6401 		mlog_errno(ret);
6402 		goto out;
6403 	}
6404 
6405 	item = kmalloc(sizeof(*item), GFP_NOFS);
6406 	if (item == NULL) {
6407 		ret = -ENOMEM;
6408 		mlog_errno(ret);
6409 		goto out;
6410 	}
6411 
6412 	mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
6413 	     type, slot, bit, (unsigned long long)blkno);
6414 
6415 	item->free_blk = blkno;
6416 	item->free_bit = bit;
6417 	item->free_next = fl->f_first;
6418 
6419 	fl->f_first = item;
6420 
6421 	ret = 0;
6422 out:
6423 	return ret;
6424 }
6425 
6426 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6427 					 struct ocfs2_extent_block *eb)
6428 {
6429 	return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6430 					 le16_to_cpu(eb->h_suballoc_slot),
6431 					 le64_to_cpu(eb->h_blkno),
6432 					 le16_to_cpu(eb->h_suballoc_bit));
6433 }
6434 
6435 /* This function will figure out whether the currently last extent
6436  * block will be deleted, and if it will, what the new last extent
6437  * block will be so we can update his h_next_leaf_blk field, as well
6438  * as the dinodes i_last_eb_blk */
6439 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
6440 				       unsigned int clusters_to_del,
6441 				       struct ocfs2_path *path,
6442 				       struct buffer_head **new_last_eb)
6443 {
6444 	int next_free, ret = 0;
6445 	u32 cpos;
6446 	struct ocfs2_extent_rec *rec;
6447 	struct ocfs2_extent_block *eb;
6448 	struct ocfs2_extent_list *el;
6449 	struct buffer_head *bh = NULL;
6450 
6451 	*new_last_eb = NULL;
6452 
6453 	/* we have no tree, so of course, no last_eb. */
6454 	if (!path->p_tree_depth)
6455 		goto out;
6456 
6457 	/* trunc to zero special case - this makes tree_depth = 0
6458 	 * regardless of what it is.  */
6459 	if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
6460 		goto out;
6461 
6462 	el = path_leaf_el(path);
6463 	BUG_ON(!el->l_next_free_rec);
6464 
6465 	/*
6466 	 * Make sure that this extent list will actually be empty
6467 	 * after we clear away the data. We can shortcut out if
6468 	 * there's more than one non-empty extent in the
6469 	 * list. Otherwise, a check of the remaining extent is
6470 	 * necessary.
6471 	 */
6472 	next_free = le16_to_cpu(el->l_next_free_rec);
6473 	rec = NULL;
6474 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6475 		if (next_free > 2)
6476 			goto out;
6477 
6478 		/* We may have a valid extent in index 1, check it. */
6479 		if (next_free == 2)
6480 			rec = &el->l_recs[1];
6481 
6482 		/*
6483 		 * Fall through - no more nonempty extents, so we want
6484 		 * to delete this leaf.
6485 		 */
6486 	} else {
6487 		if (next_free > 1)
6488 			goto out;
6489 
6490 		rec = &el->l_recs[0];
6491 	}
6492 
6493 	if (rec) {
6494 		/*
6495 		 * Check it we'll only be trimming off the end of this
6496 		 * cluster.
6497 		 */
6498 		if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
6499 			goto out;
6500 	}
6501 
6502 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
6503 	if (ret) {
6504 		mlog_errno(ret);
6505 		goto out;
6506 	}
6507 
6508 	ret = ocfs2_find_leaf(INODE_CACHE(inode), path_root_el(path), cpos, &bh);
6509 	if (ret) {
6510 		mlog_errno(ret);
6511 		goto out;
6512 	}
6513 
6514 	eb = (struct ocfs2_extent_block *) bh->b_data;
6515 	el = &eb->h_list;
6516 
6517 	/* ocfs2_find_leaf() gets the eb from ocfs2_read_extent_block().
6518 	 * Any corruption is a code bug. */
6519 	BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
6520 
6521 	*new_last_eb = bh;
6522 	get_bh(*new_last_eb);
6523 	mlog(0, "returning block %llu, (cpos: %u)\n",
6524 	     (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
6525 out:
6526 	brelse(bh);
6527 
6528 	return ret;
6529 }
6530 
6531 /*
6532  * Trim some clusters off the rightmost edge of a tree. Only called
6533  * during truncate.
6534  *
6535  * The caller needs to:
6536  *   - start journaling of each path component.
6537  *   - compute and fully set up any new last ext block
6538  */
6539 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
6540 			   handle_t *handle, struct ocfs2_truncate_context *tc,
6541 			   u32 clusters_to_del, u64 *delete_start)
6542 {
6543 	int ret, i, index = path->p_tree_depth;
6544 	u32 new_edge = 0;
6545 	u64 deleted_eb = 0;
6546 	struct buffer_head *bh;
6547 	struct ocfs2_extent_list *el;
6548 	struct ocfs2_extent_rec *rec;
6549 
6550 	*delete_start = 0;
6551 
6552 	while (index >= 0) {
6553 		bh = path->p_node[index].bh;
6554 		el = path->p_node[index].el;
6555 
6556 		mlog(0, "traveling tree (index = %d, block = %llu)\n",
6557 		     index,  (unsigned long long)bh->b_blocknr);
6558 
6559 		BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
6560 
6561 		if (index !=
6562 		    (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
6563 			ocfs2_error(inode->i_sb,
6564 				    "Inode %lu has invalid ext. block %llu",
6565 				    inode->i_ino,
6566 				    (unsigned long long)bh->b_blocknr);
6567 			ret = -EROFS;
6568 			goto out;
6569 		}
6570 
6571 find_tail_record:
6572 		i = le16_to_cpu(el->l_next_free_rec) - 1;
6573 		rec = &el->l_recs[i];
6574 
6575 		mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
6576 		     "next = %u\n", i, le32_to_cpu(rec->e_cpos),
6577 		     ocfs2_rec_clusters(el, rec),
6578 		     (unsigned long long)le64_to_cpu(rec->e_blkno),
6579 		     le16_to_cpu(el->l_next_free_rec));
6580 
6581 		BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
6582 
6583 		if (le16_to_cpu(el->l_tree_depth) == 0) {
6584 			/*
6585 			 * If the leaf block contains a single empty
6586 			 * extent and no records, we can just remove
6587 			 * the block.
6588 			 */
6589 			if (i == 0 && ocfs2_is_empty_extent(rec)) {
6590 				memset(rec, 0,
6591 				       sizeof(struct ocfs2_extent_rec));
6592 				el->l_next_free_rec = cpu_to_le16(0);
6593 
6594 				goto delete;
6595 			}
6596 
6597 			/*
6598 			 * Remove any empty extents by shifting things
6599 			 * left. That should make life much easier on
6600 			 * the code below. This condition is rare
6601 			 * enough that we shouldn't see a performance
6602 			 * hit.
6603 			 */
6604 			if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6605 				le16_add_cpu(&el->l_next_free_rec, -1);
6606 
6607 				for(i = 0;
6608 				    i < le16_to_cpu(el->l_next_free_rec); i++)
6609 					el->l_recs[i] = el->l_recs[i + 1];
6610 
6611 				memset(&el->l_recs[i], 0,
6612 				       sizeof(struct ocfs2_extent_rec));
6613 
6614 				/*
6615 				 * We've modified our extent list. The
6616 				 * simplest way to handle this change
6617 				 * is to being the search from the
6618 				 * start again.
6619 				 */
6620 				goto find_tail_record;
6621 			}
6622 
6623 			le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
6624 
6625 			/*
6626 			 * We'll use "new_edge" on our way back up the
6627 			 * tree to know what our rightmost cpos is.
6628 			 */
6629 			new_edge = le16_to_cpu(rec->e_leaf_clusters);
6630 			new_edge += le32_to_cpu(rec->e_cpos);
6631 
6632 			/*
6633 			 * The caller will use this to delete data blocks.
6634 			 */
6635 			*delete_start = le64_to_cpu(rec->e_blkno)
6636 				+ ocfs2_clusters_to_blocks(inode->i_sb,
6637 					le16_to_cpu(rec->e_leaf_clusters));
6638 
6639 			/*
6640 			 * If it's now empty, remove this record.
6641 			 */
6642 			if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
6643 				memset(rec, 0,
6644 				       sizeof(struct ocfs2_extent_rec));
6645 				le16_add_cpu(&el->l_next_free_rec, -1);
6646 			}
6647 		} else {
6648 			if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
6649 				memset(rec, 0,
6650 				       sizeof(struct ocfs2_extent_rec));
6651 				le16_add_cpu(&el->l_next_free_rec, -1);
6652 
6653 				goto delete;
6654 			}
6655 
6656 			/* Can this actually happen? */
6657 			if (le16_to_cpu(el->l_next_free_rec) == 0)
6658 				goto delete;
6659 
6660 			/*
6661 			 * We never actually deleted any clusters
6662 			 * because our leaf was empty. There's no
6663 			 * reason to adjust the rightmost edge then.
6664 			 */
6665 			if (new_edge == 0)
6666 				goto delete;
6667 
6668 			rec->e_int_clusters = cpu_to_le32(new_edge);
6669 			le32_add_cpu(&rec->e_int_clusters,
6670 				     -le32_to_cpu(rec->e_cpos));
6671 
6672 			 /*
6673 			  * A deleted child record should have been
6674 			  * caught above.
6675 			  */
6676 			 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
6677 		}
6678 
6679 delete:
6680 		ret = ocfs2_journal_dirty(handle, bh);
6681 		if (ret) {
6682 			mlog_errno(ret);
6683 			goto out;
6684 		}
6685 
6686 		mlog(0, "extent list container %llu, after: record %d: "
6687 		     "(%u, %u, %llu), next = %u.\n",
6688 		     (unsigned long long)bh->b_blocknr, i,
6689 		     le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
6690 		     (unsigned long long)le64_to_cpu(rec->e_blkno),
6691 		     le16_to_cpu(el->l_next_free_rec));
6692 
6693 		/*
6694 		 * We must be careful to only attempt delete of an
6695 		 * extent block (and not the root inode block).
6696 		 */
6697 		if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
6698 			struct ocfs2_extent_block *eb =
6699 				(struct ocfs2_extent_block *)bh->b_data;
6700 
6701 			/*
6702 			 * Save this for use when processing the
6703 			 * parent block.
6704 			 */
6705 			deleted_eb = le64_to_cpu(eb->h_blkno);
6706 
6707 			mlog(0, "deleting this extent block.\n");
6708 
6709 			ocfs2_remove_from_cache(INODE_CACHE(inode), bh);
6710 
6711 			BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
6712 			BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
6713 			BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
6714 
6715 			ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
6716 			/* An error here is not fatal. */
6717 			if (ret < 0)
6718 				mlog_errno(ret);
6719 		} else {
6720 			deleted_eb = 0;
6721 		}
6722 
6723 		index--;
6724 	}
6725 
6726 	ret = 0;
6727 out:
6728 	return ret;
6729 }
6730 
6731 static int ocfs2_do_truncate(struct ocfs2_super *osb,
6732 			     unsigned int clusters_to_del,
6733 			     struct inode *inode,
6734 			     struct buffer_head *fe_bh,
6735 			     handle_t *handle,
6736 			     struct ocfs2_truncate_context *tc,
6737 			     struct ocfs2_path *path)
6738 {
6739 	int status;
6740 	struct ocfs2_dinode *fe;
6741 	struct ocfs2_extent_block *last_eb = NULL;
6742 	struct ocfs2_extent_list *el;
6743 	struct buffer_head *last_eb_bh = NULL;
6744 	u64 delete_blk = 0;
6745 
6746 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
6747 
6748 	status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
6749 					     path, &last_eb_bh);
6750 	if (status < 0) {
6751 		mlog_errno(status);
6752 		goto bail;
6753 	}
6754 
6755 	/*
6756 	 * Each component will be touched, so we might as well journal
6757 	 * here to avoid having to handle errors later.
6758 	 */
6759 	status = ocfs2_journal_access_path(INODE_CACHE(inode), handle, path);
6760 	if (status < 0) {
6761 		mlog_errno(status);
6762 		goto bail;
6763 	}
6764 
6765 	if (last_eb_bh) {
6766 		status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), last_eb_bh,
6767 						 OCFS2_JOURNAL_ACCESS_WRITE);
6768 		if (status < 0) {
6769 			mlog_errno(status);
6770 			goto bail;
6771 		}
6772 
6773 		last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6774 	}
6775 
6776 	el = &(fe->id2.i_list);
6777 
6778 	/*
6779 	 * Lower levels depend on this never happening, but it's best
6780 	 * to check it up here before changing the tree.
6781 	 */
6782 	if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
6783 		ocfs2_error(inode->i_sb,
6784 			    "Inode %lu has an empty extent record, depth %u\n",
6785 			    inode->i_ino, le16_to_cpu(el->l_tree_depth));
6786 		status = -EROFS;
6787 		goto bail;
6788 	}
6789 
6790 	vfs_dq_free_space_nodirty(inode,
6791 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_del));
6792 	spin_lock(&OCFS2_I(inode)->ip_lock);
6793 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
6794 				      clusters_to_del;
6795 	spin_unlock(&OCFS2_I(inode)->ip_lock);
6796 	le32_add_cpu(&fe->i_clusters, -clusters_to_del);
6797 	inode->i_blocks = ocfs2_inode_sector_count(inode);
6798 
6799 	status = ocfs2_trim_tree(inode, path, handle, tc,
6800 				 clusters_to_del, &delete_blk);
6801 	if (status) {
6802 		mlog_errno(status);
6803 		goto bail;
6804 	}
6805 
6806 	if (le32_to_cpu(fe->i_clusters) == 0) {
6807 		/* trunc to zero is a special case. */
6808 		el->l_tree_depth = 0;
6809 		fe->i_last_eb_blk = 0;
6810 	} else if (last_eb)
6811 		fe->i_last_eb_blk = last_eb->h_blkno;
6812 
6813 	status = ocfs2_journal_dirty(handle, fe_bh);
6814 	if (status < 0) {
6815 		mlog_errno(status);
6816 		goto bail;
6817 	}
6818 
6819 	if (last_eb) {
6820 		/* If there will be a new last extent block, then by
6821 		 * definition, there cannot be any leaves to the right of
6822 		 * him. */
6823 		last_eb->h_next_leaf_blk = 0;
6824 		status = ocfs2_journal_dirty(handle, last_eb_bh);
6825 		if (status < 0) {
6826 			mlog_errno(status);
6827 			goto bail;
6828 		}
6829 	}
6830 
6831 	if (delete_blk) {
6832 		status = ocfs2_truncate_log_append(osb, handle, delete_blk,
6833 						   clusters_to_del);
6834 		if (status < 0) {
6835 			mlog_errno(status);
6836 			goto bail;
6837 		}
6838 	}
6839 	status = 0;
6840 bail:
6841 	brelse(last_eb_bh);
6842 	mlog_exit(status);
6843 	return status;
6844 }
6845 
6846 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6847 {
6848 	set_buffer_uptodate(bh);
6849 	mark_buffer_dirty(bh);
6850 	return 0;
6851 }
6852 
6853 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6854 				     unsigned int from, unsigned int to,
6855 				     struct page *page, int zero, u64 *phys)
6856 {
6857 	int ret, partial = 0;
6858 
6859 	ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6860 	if (ret)
6861 		mlog_errno(ret);
6862 
6863 	if (zero)
6864 		zero_user_segment(page, from, to);
6865 
6866 	/*
6867 	 * Need to set the buffers we zero'd into uptodate
6868 	 * here if they aren't - ocfs2_map_page_blocks()
6869 	 * might've skipped some
6870 	 */
6871 	ret = walk_page_buffers(handle, page_buffers(page),
6872 				from, to, &partial,
6873 				ocfs2_zero_func);
6874 	if (ret < 0)
6875 		mlog_errno(ret);
6876 	else if (ocfs2_should_order_data(inode)) {
6877 		ret = ocfs2_jbd2_file_inode(handle, inode);
6878 		if (ret < 0)
6879 			mlog_errno(ret);
6880 	}
6881 
6882 	if (!partial)
6883 		SetPageUptodate(page);
6884 
6885 	flush_dcache_page(page);
6886 }
6887 
6888 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6889 				     loff_t end, struct page **pages,
6890 				     int numpages, u64 phys, handle_t *handle)
6891 {
6892 	int i;
6893 	struct page *page;
6894 	unsigned int from, to = PAGE_CACHE_SIZE;
6895 	struct super_block *sb = inode->i_sb;
6896 
6897 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6898 
6899 	if (numpages == 0)
6900 		goto out;
6901 
6902 	to = PAGE_CACHE_SIZE;
6903 	for(i = 0; i < numpages; i++) {
6904 		page = pages[i];
6905 
6906 		from = start & (PAGE_CACHE_SIZE - 1);
6907 		if ((end >> PAGE_CACHE_SHIFT) == page->index)
6908 			to = end & (PAGE_CACHE_SIZE - 1);
6909 
6910 		BUG_ON(from > PAGE_CACHE_SIZE);
6911 		BUG_ON(to > PAGE_CACHE_SIZE);
6912 
6913 		ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6914 					 &phys);
6915 
6916 		start = (page->index + 1) << PAGE_CACHE_SHIFT;
6917 	}
6918 out:
6919 	if (pages)
6920 		ocfs2_unlock_and_free_pages(pages, numpages);
6921 }
6922 
6923 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6924 				struct page **pages, int *num)
6925 {
6926 	int numpages, ret = 0;
6927 	struct super_block *sb = inode->i_sb;
6928 	struct address_space *mapping = inode->i_mapping;
6929 	unsigned long index;
6930 	loff_t last_page_bytes;
6931 
6932 	BUG_ON(start > end);
6933 
6934 	BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6935 	       (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6936 
6937 	numpages = 0;
6938 	last_page_bytes = PAGE_ALIGN(end);
6939 	index = start >> PAGE_CACHE_SHIFT;
6940 	do {
6941 		pages[numpages] = grab_cache_page(mapping, index);
6942 		if (!pages[numpages]) {
6943 			ret = -ENOMEM;
6944 			mlog_errno(ret);
6945 			goto out;
6946 		}
6947 
6948 		numpages++;
6949 		index++;
6950 	} while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6951 
6952 out:
6953 	if (ret != 0) {
6954 		if (pages)
6955 			ocfs2_unlock_and_free_pages(pages, numpages);
6956 		numpages = 0;
6957 	}
6958 
6959 	*num = numpages;
6960 
6961 	return ret;
6962 }
6963 
6964 /*
6965  * Zero the area past i_size but still within an allocated
6966  * cluster. This avoids exposing nonzero data on subsequent file
6967  * extends.
6968  *
6969  * We need to call this before i_size is updated on the inode because
6970  * otherwise block_write_full_page() will skip writeout of pages past
6971  * i_size. The new_i_size parameter is passed for this reason.
6972  */
6973 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6974 				  u64 range_start, u64 range_end)
6975 {
6976 	int ret = 0, numpages;
6977 	struct page **pages = NULL;
6978 	u64 phys;
6979 	unsigned int ext_flags;
6980 	struct super_block *sb = inode->i_sb;
6981 
6982 	/*
6983 	 * File systems which don't support sparse files zero on every
6984 	 * extend.
6985 	 */
6986 	if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6987 		return 0;
6988 
6989 	pages = kcalloc(ocfs2_pages_per_cluster(sb),
6990 			sizeof(struct page *), GFP_NOFS);
6991 	if (pages == NULL) {
6992 		ret = -ENOMEM;
6993 		mlog_errno(ret);
6994 		goto out;
6995 	}
6996 
6997 	if (range_start == range_end)
6998 		goto out;
6999 
7000 	ret = ocfs2_extent_map_get_blocks(inode,
7001 					  range_start >> sb->s_blocksize_bits,
7002 					  &phys, NULL, &ext_flags);
7003 	if (ret) {
7004 		mlog_errno(ret);
7005 		goto out;
7006 	}
7007 
7008 	/*
7009 	 * Tail is a hole, or is marked unwritten. In either case, we
7010 	 * can count on read and write to return/push zero's.
7011 	 */
7012 	if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
7013 		goto out;
7014 
7015 	ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
7016 				   &numpages);
7017 	if (ret) {
7018 		mlog_errno(ret);
7019 		goto out;
7020 	}
7021 
7022 	ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
7023 				 numpages, phys, handle);
7024 
7025 	/*
7026 	 * Initiate writeout of the pages we zero'd here. We don't
7027 	 * wait on them - the truncate_inode_pages() call later will
7028 	 * do that for us.
7029 	 */
7030 	ret = do_sync_mapping_range(inode->i_mapping, range_start,
7031 				    range_end - 1, SYNC_FILE_RANGE_WRITE);
7032 	if (ret)
7033 		mlog_errno(ret);
7034 
7035 out:
7036 	if (pages)
7037 		kfree(pages);
7038 
7039 	return ret;
7040 }
7041 
7042 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
7043 					     struct ocfs2_dinode *di)
7044 {
7045 	unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
7046 	unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
7047 
7048 	if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
7049 		memset(&di->id2, 0, blocksize -
7050 				    offsetof(struct ocfs2_dinode, id2) -
7051 				    xattrsize);
7052 	else
7053 		memset(&di->id2, 0, blocksize -
7054 				    offsetof(struct ocfs2_dinode, id2));
7055 }
7056 
7057 void ocfs2_dinode_new_extent_list(struct inode *inode,
7058 				  struct ocfs2_dinode *di)
7059 {
7060 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
7061 	di->id2.i_list.l_tree_depth = 0;
7062 	di->id2.i_list.l_next_free_rec = 0;
7063 	di->id2.i_list.l_count = cpu_to_le16(
7064 		ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
7065 }
7066 
7067 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
7068 {
7069 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
7070 	struct ocfs2_inline_data *idata = &di->id2.i_data;
7071 
7072 	spin_lock(&oi->ip_lock);
7073 	oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
7074 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7075 	spin_unlock(&oi->ip_lock);
7076 
7077 	/*
7078 	 * We clear the entire i_data structure here so that all
7079 	 * fields can be properly initialized.
7080 	 */
7081 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
7082 
7083 	idata->id_count = cpu_to_le16(
7084 			ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
7085 }
7086 
7087 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
7088 					 struct buffer_head *di_bh)
7089 {
7090 	int ret, i, has_data, num_pages = 0;
7091 	handle_t *handle;
7092 	u64 uninitialized_var(block);
7093 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
7094 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7095 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7096 	struct ocfs2_alloc_context *data_ac = NULL;
7097 	struct page **pages = NULL;
7098 	loff_t end = osb->s_clustersize;
7099 	struct ocfs2_extent_tree et;
7100 	int did_quota = 0;
7101 
7102 	has_data = i_size_read(inode) ? 1 : 0;
7103 
7104 	if (has_data) {
7105 		pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
7106 				sizeof(struct page *), GFP_NOFS);
7107 		if (pages == NULL) {
7108 			ret = -ENOMEM;
7109 			mlog_errno(ret);
7110 			goto out;
7111 		}
7112 
7113 		ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
7114 		if (ret) {
7115 			mlog_errno(ret);
7116 			goto out;
7117 		}
7118 	}
7119 
7120 	handle = ocfs2_start_trans(osb,
7121 				   ocfs2_inline_to_extents_credits(osb->sb));
7122 	if (IS_ERR(handle)) {
7123 		ret = PTR_ERR(handle);
7124 		mlog_errno(ret);
7125 		goto out_unlock;
7126 	}
7127 
7128 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7129 				      OCFS2_JOURNAL_ACCESS_WRITE);
7130 	if (ret) {
7131 		mlog_errno(ret);
7132 		goto out_commit;
7133 	}
7134 
7135 	if (has_data) {
7136 		u32 bit_off, num;
7137 		unsigned int page_end;
7138 		u64 phys;
7139 
7140 		if (vfs_dq_alloc_space_nodirty(inode,
7141 				       ocfs2_clusters_to_bytes(osb->sb, 1))) {
7142 			ret = -EDQUOT;
7143 			goto out_commit;
7144 		}
7145 		did_quota = 1;
7146 
7147 		ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
7148 					   &num);
7149 		if (ret) {
7150 			mlog_errno(ret);
7151 			goto out_commit;
7152 		}
7153 
7154 		/*
7155 		 * Save two copies, one for insert, and one that can
7156 		 * be changed by ocfs2_map_and_dirty_page() below.
7157 		 */
7158 		block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
7159 
7160 		/*
7161 		 * Non sparse file systems zero on extend, so no need
7162 		 * to do that now.
7163 		 */
7164 		if (!ocfs2_sparse_alloc(osb) &&
7165 		    PAGE_CACHE_SIZE < osb->s_clustersize)
7166 			end = PAGE_CACHE_SIZE;
7167 
7168 		ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
7169 		if (ret) {
7170 			mlog_errno(ret);
7171 			goto out_commit;
7172 		}
7173 
7174 		/*
7175 		 * This should populate the 1st page for us and mark
7176 		 * it up to date.
7177 		 */
7178 		ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
7179 		if (ret) {
7180 			mlog_errno(ret);
7181 			goto out_commit;
7182 		}
7183 
7184 		page_end = PAGE_CACHE_SIZE;
7185 		if (PAGE_CACHE_SIZE > osb->s_clustersize)
7186 			page_end = osb->s_clustersize;
7187 
7188 		for (i = 0; i < num_pages; i++)
7189 			ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
7190 						 pages[i], i > 0, &phys);
7191 	}
7192 
7193 	spin_lock(&oi->ip_lock);
7194 	oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
7195 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7196 	spin_unlock(&oi->ip_lock);
7197 
7198 	ocfs2_dinode_new_extent_list(inode, di);
7199 
7200 	ocfs2_journal_dirty(handle, di_bh);
7201 
7202 	if (has_data) {
7203 		/*
7204 		 * An error at this point should be extremely rare. If
7205 		 * this proves to be false, we could always re-build
7206 		 * the in-inode data from our pages.
7207 		 */
7208 		ocfs2_init_dinode_extent_tree(&et, inode, di_bh);
7209 		ret = ocfs2_insert_extent(osb, handle, inode, &et,
7210 					  0, block, 1, 0, NULL);
7211 		if (ret) {
7212 			mlog_errno(ret);
7213 			goto out_commit;
7214 		}
7215 
7216 		inode->i_blocks = ocfs2_inode_sector_count(inode);
7217 	}
7218 
7219 out_commit:
7220 	if (ret < 0 && did_quota)
7221 		vfs_dq_free_space_nodirty(inode,
7222 					  ocfs2_clusters_to_bytes(osb->sb, 1));
7223 
7224 	ocfs2_commit_trans(osb, handle);
7225 
7226 out_unlock:
7227 	if (data_ac)
7228 		ocfs2_free_alloc_context(data_ac);
7229 
7230 out:
7231 	if (pages) {
7232 		ocfs2_unlock_and_free_pages(pages, num_pages);
7233 		kfree(pages);
7234 	}
7235 
7236 	return ret;
7237 }
7238 
7239 /*
7240  * It is expected, that by the time you call this function,
7241  * inode->i_size and fe->i_size have been adjusted.
7242  *
7243  * WARNING: This will kfree the truncate context
7244  */
7245 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7246 			  struct inode *inode,
7247 			  struct buffer_head *fe_bh,
7248 			  struct ocfs2_truncate_context *tc)
7249 {
7250 	int status, i, credits, tl_sem = 0;
7251 	u32 clusters_to_del, new_highest_cpos, range;
7252 	struct ocfs2_extent_list *el;
7253 	handle_t *handle = NULL;
7254 	struct inode *tl_inode = osb->osb_tl_inode;
7255 	struct ocfs2_path *path = NULL;
7256 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data;
7257 
7258 	mlog_entry_void();
7259 
7260 	new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7261 						     i_size_read(inode));
7262 
7263 	path = ocfs2_new_path(fe_bh, &di->id2.i_list,
7264 			      ocfs2_journal_access_di);
7265 	if (!path) {
7266 		status = -ENOMEM;
7267 		mlog_errno(status);
7268 		goto bail;
7269 	}
7270 
7271 	ocfs2_extent_map_trunc(inode, new_highest_cpos);
7272 
7273 start:
7274 	/*
7275 	 * Check that we still have allocation to delete.
7276 	 */
7277 	if (OCFS2_I(inode)->ip_clusters == 0) {
7278 		status = 0;
7279 		goto bail;
7280 	}
7281 
7282 	/*
7283 	 * Truncate always works against the rightmost tree branch.
7284 	 */
7285 	status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX);
7286 	if (status) {
7287 		mlog_errno(status);
7288 		goto bail;
7289 	}
7290 
7291 	mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
7292 	     OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
7293 
7294 	/*
7295 	 * By now, el will point to the extent list on the bottom most
7296 	 * portion of this tree. Only the tail record is considered in
7297 	 * each pass.
7298 	 *
7299 	 * We handle the following cases, in order:
7300 	 * - empty extent: delete the remaining branch
7301 	 * - remove the entire record
7302 	 * - remove a partial record
7303 	 * - no record needs to be removed (truncate has completed)
7304 	 */
7305 	el = path_leaf_el(path);
7306 	if (le16_to_cpu(el->l_next_free_rec) == 0) {
7307 		ocfs2_error(inode->i_sb,
7308 			    "Inode %llu has empty extent block at %llu\n",
7309 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7310 			    (unsigned long long)path_leaf_bh(path)->b_blocknr);
7311 		status = -EROFS;
7312 		goto bail;
7313 	}
7314 
7315 	i = le16_to_cpu(el->l_next_free_rec) - 1;
7316 	range = le32_to_cpu(el->l_recs[i].e_cpos) +
7317 		ocfs2_rec_clusters(el, &el->l_recs[i]);
7318 	if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
7319 		clusters_to_del = 0;
7320 	} else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
7321 		clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
7322 	} else if (range > new_highest_cpos) {
7323 		clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
7324 				   le32_to_cpu(el->l_recs[i].e_cpos)) -
7325 				  new_highest_cpos;
7326 	} else {
7327 		status = 0;
7328 		goto bail;
7329 	}
7330 
7331 	mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
7332 	     clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
7333 
7334 	mutex_lock(&tl_inode->i_mutex);
7335 	tl_sem = 1;
7336 	/* ocfs2_truncate_log_needs_flush guarantees us at least one
7337 	 * record is free for use. If there isn't any, we flush to get
7338 	 * an empty truncate log.  */
7339 	if (ocfs2_truncate_log_needs_flush(osb)) {
7340 		status = __ocfs2_flush_truncate_log(osb);
7341 		if (status < 0) {
7342 			mlog_errno(status);
7343 			goto bail;
7344 		}
7345 	}
7346 
7347 	credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
7348 						(struct ocfs2_dinode *)fe_bh->b_data,
7349 						el);
7350 	handle = ocfs2_start_trans(osb, credits);
7351 	if (IS_ERR(handle)) {
7352 		status = PTR_ERR(handle);
7353 		handle = NULL;
7354 		mlog_errno(status);
7355 		goto bail;
7356 	}
7357 
7358 	status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
7359 				   tc, path);
7360 	if (status < 0) {
7361 		mlog_errno(status);
7362 		goto bail;
7363 	}
7364 
7365 	mutex_unlock(&tl_inode->i_mutex);
7366 	tl_sem = 0;
7367 
7368 	ocfs2_commit_trans(osb, handle);
7369 	handle = NULL;
7370 
7371 	ocfs2_reinit_path(path, 1);
7372 
7373 	/*
7374 	 * The check above will catch the case where we've truncated
7375 	 * away all allocation.
7376 	 */
7377 	goto start;
7378 
7379 bail:
7380 
7381 	ocfs2_schedule_truncate_log_flush(osb, 1);
7382 
7383 	if (tl_sem)
7384 		mutex_unlock(&tl_inode->i_mutex);
7385 
7386 	if (handle)
7387 		ocfs2_commit_trans(osb, handle);
7388 
7389 	ocfs2_run_deallocs(osb, &tc->tc_dealloc);
7390 
7391 	ocfs2_free_path(path);
7392 
7393 	/* This will drop the ext_alloc cluster lock for us */
7394 	ocfs2_free_truncate_context(tc);
7395 
7396 	mlog_exit(status);
7397 	return status;
7398 }
7399 
7400 /*
7401  * Expects the inode to already be locked.
7402  */
7403 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
7404 			   struct inode *inode,
7405 			   struct buffer_head *fe_bh,
7406 			   struct ocfs2_truncate_context **tc)
7407 {
7408 	int status;
7409 	unsigned int new_i_clusters;
7410 	struct ocfs2_dinode *fe;
7411 	struct ocfs2_extent_block *eb;
7412 	struct buffer_head *last_eb_bh = NULL;
7413 
7414 	mlog_entry_void();
7415 
7416 	*tc = NULL;
7417 
7418 	new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
7419 						  i_size_read(inode));
7420 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
7421 
7422 	mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
7423 	     "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
7424 	     (unsigned long long)le64_to_cpu(fe->i_size));
7425 
7426 	*tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
7427 	if (!(*tc)) {
7428 		status = -ENOMEM;
7429 		mlog_errno(status);
7430 		goto bail;
7431 	}
7432 	ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
7433 
7434 	if (fe->id2.i_list.l_tree_depth) {
7435 		status = ocfs2_read_extent_block(INODE_CACHE(inode),
7436 						 le64_to_cpu(fe->i_last_eb_blk),
7437 						 &last_eb_bh);
7438 		if (status < 0) {
7439 			mlog_errno(status);
7440 			goto bail;
7441 		}
7442 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
7443 	}
7444 
7445 	(*tc)->tc_last_eb_bh = last_eb_bh;
7446 
7447 	status = 0;
7448 bail:
7449 	if (status < 0) {
7450 		if (*tc)
7451 			ocfs2_free_truncate_context(*tc);
7452 		*tc = NULL;
7453 	}
7454 	mlog_exit_void();
7455 	return status;
7456 }
7457 
7458 /*
7459  * 'start' is inclusive, 'end' is not.
7460  */
7461 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7462 			  unsigned int start, unsigned int end, int trunc)
7463 {
7464 	int ret;
7465 	unsigned int numbytes;
7466 	handle_t *handle;
7467 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7468 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7469 	struct ocfs2_inline_data *idata = &di->id2.i_data;
7470 
7471 	if (end > i_size_read(inode))
7472 		end = i_size_read(inode);
7473 
7474 	BUG_ON(start >= end);
7475 
7476 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7477 	    !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7478 	    !ocfs2_supports_inline_data(osb)) {
7479 		ocfs2_error(inode->i_sb,
7480 			    "Inline data flags for inode %llu don't agree! "
7481 			    "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7482 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7483 			    le16_to_cpu(di->i_dyn_features),
7484 			    OCFS2_I(inode)->ip_dyn_features,
7485 			    osb->s_feature_incompat);
7486 		ret = -EROFS;
7487 		goto out;
7488 	}
7489 
7490 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7491 	if (IS_ERR(handle)) {
7492 		ret = PTR_ERR(handle);
7493 		mlog_errno(ret);
7494 		goto out;
7495 	}
7496 
7497 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7498 				      OCFS2_JOURNAL_ACCESS_WRITE);
7499 	if (ret) {
7500 		mlog_errno(ret);
7501 		goto out_commit;
7502 	}
7503 
7504 	numbytes = end - start;
7505 	memset(idata->id_data + start, 0, numbytes);
7506 
7507 	/*
7508 	 * No need to worry about the data page here - it's been
7509 	 * truncated already and inline data doesn't need it for
7510 	 * pushing zero's to disk, so we'll let readpage pick it up
7511 	 * later.
7512 	 */
7513 	if (trunc) {
7514 		i_size_write(inode, start);
7515 		di->i_size = cpu_to_le64(start);
7516 	}
7517 
7518 	inode->i_blocks = ocfs2_inode_sector_count(inode);
7519 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7520 
7521 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7522 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7523 
7524 	ocfs2_journal_dirty(handle, di_bh);
7525 
7526 out_commit:
7527 	ocfs2_commit_trans(osb, handle);
7528 
7529 out:
7530 	return ret;
7531 }
7532 
7533 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
7534 {
7535 	/*
7536 	 * The caller is responsible for completing deallocation
7537 	 * before freeing the context.
7538 	 */
7539 	if (tc->tc_dealloc.c_first_suballocator != NULL)
7540 		mlog(ML_NOTICE,
7541 		     "Truncate completion has non-empty dealloc context\n");
7542 
7543 	brelse(tc->tc_last_eb_bh);
7544 
7545 	kfree(tc);
7546 }
7547