xref: /openbmc/linux/fs/ocfs2/alloc.c (revision 4f139972b489f8bc2c821aa25ac65018d92af3f7)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32 #include <linux/blkdev.h>
33 #include <linux/sched/signal.h>
34 
35 #include <cluster/masklog.h>
36 
37 #include "ocfs2.h"
38 
39 #include "alloc.h"
40 #include "aops.h"
41 #include "blockcheck.h"
42 #include "dlmglue.h"
43 #include "extent_map.h"
44 #include "inode.h"
45 #include "journal.h"
46 #include "localalloc.h"
47 #include "suballoc.h"
48 #include "sysfile.h"
49 #include "file.h"
50 #include "super.h"
51 #include "uptodate.h"
52 #include "xattr.h"
53 #include "refcounttree.h"
54 #include "ocfs2_trace.h"
55 
56 #include "buffer_head_io.h"
57 
58 enum ocfs2_contig_type {
59 	CONTIG_NONE = 0,
60 	CONTIG_LEFT,
61 	CONTIG_RIGHT,
62 	CONTIG_LEFTRIGHT,
63 };
64 
65 static enum ocfs2_contig_type
66 	ocfs2_extent_rec_contig(struct super_block *sb,
67 				struct ocfs2_extent_rec *ext,
68 				struct ocfs2_extent_rec *insert_rec);
69 /*
70  * Operations for a specific extent tree type.
71  *
72  * To implement an on-disk btree (extent tree) type in ocfs2, add
73  * an ocfs2_extent_tree_operations structure and the matching
74  * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
75  * for the allocation portion of the extent tree.
76  */
77 struct ocfs2_extent_tree_operations {
78 	/*
79 	 * last_eb_blk is the block number of the right most leaf extent
80 	 * block.  Most on-disk structures containing an extent tree store
81 	 * this value for fast access.  The ->eo_set_last_eb_blk() and
82 	 * ->eo_get_last_eb_blk() operations access this value.  They are
83 	 *  both required.
84 	 */
85 	void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
86 				   u64 blkno);
87 	u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
88 
89 	/*
90 	 * The on-disk structure usually keeps track of how many total
91 	 * clusters are stored in this extent tree.  This function updates
92 	 * that value.  new_clusters is the delta, and must be
93 	 * added to the total.  Required.
94 	 */
95 	void (*eo_update_clusters)(struct ocfs2_extent_tree *et,
96 				   u32 new_clusters);
97 
98 	/*
99 	 * If this extent tree is supported by an extent map, insert
100 	 * a record into the map.
101 	 */
102 	void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et,
103 				     struct ocfs2_extent_rec *rec);
104 
105 	/*
106 	 * If this extent tree is supported by an extent map, truncate the
107 	 * map to clusters,
108 	 */
109 	void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et,
110 				       u32 clusters);
111 
112 	/*
113 	 * If ->eo_insert_check() exists, it is called before rec is
114 	 * inserted into the extent tree.  It is optional.
115 	 */
116 	int (*eo_insert_check)(struct ocfs2_extent_tree *et,
117 			       struct ocfs2_extent_rec *rec);
118 	int (*eo_sanity_check)(struct ocfs2_extent_tree *et);
119 
120 	/*
121 	 * --------------------------------------------------------------
122 	 * The remaining are internal to ocfs2_extent_tree and don't have
123 	 * accessor functions
124 	 */
125 
126 	/*
127 	 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
128 	 * It is required.
129 	 */
130 	void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
131 
132 	/*
133 	 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
134 	 * it exists.  If it does not, et->et_max_leaf_clusters is set
135 	 * to 0 (unlimited).  Optional.
136 	 */
137 	void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et);
138 
139 	/*
140 	 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec
141 	 * are contiguous or not. Optional. Don't need to set it if use
142 	 * ocfs2_extent_rec as the tree leaf.
143 	 */
144 	enum ocfs2_contig_type
145 		(*eo_extent_contig)(struct ocfs2_extent_tree *et,
146 				    struct ocfs2_extent_rec *ext,
147 				    struct ocfs2_extent_rec *insert_rec);
148 };
149 
150 
151 /*
152  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
153  * in the methods.
154  */
155 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
156 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
157 					 u64 blkno);
158 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
159 					 u32 clusters);
160 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
161 					   struct ocfs2_extent_rec *rec);
162 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
163 					     u32 clusters);
164 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
165 				     struct ocfs2_extent_rec *rec);
166 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et);
167 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
168 static const struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
169 	.eo_set_last_eb_blk	= ocfs2_dinode_set_last_eb_blk,
170 	.eo_get_last_eb_blk	= ocfs2_dinode_get_last_eb_blk,
171 	.eo_update_clusters	= ocfs2_dinode_update_clusters,
172 	.eo_extent_map_insert	= ocfs2_dinode_extent_map_insert,
173 	.eo_extent_map_truncate	= ocfs2_dinode_extent_map_truncate,
174 	.eo_insert_check	= ocfs2_dinode_insert_check,
175 	.eo_sanity_check	= ocfs2_dinode_sanity_check,
176 	.eo_fill_root_el	= ocfs2_dinode_fill_root_el,
177 };
178 
179 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
180 					 u64 blkno)
181 {
182 	struct ocfs2_dinode *di = et->et_object;
183 
184 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
185 	di->i_last_eb_blk = cpu_to_le64(blkno);
186 }
187 
188 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
189 {
190 	struct ocfs2_dinode *di = et->et_object;
191 
192 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
193 	return le64_to_cpu(di->i_last_eb_blk);
194 }
195 
196 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
197 					 u32 clusters)
198 {
199 	struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
200 	struct ocfs2_dinode *di = et->et_object;
201 
202 	le32_add_cpu(&di->i_clusters, clusters);
203 	spin_lock(&oi->ip_lock);
204 	oi->ip_clusters = le32_to_cpu(di->i_clusters);
205 	spin_unlock(&oi->ip_lock);
206 }
207 
208 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
209 					   struct ocfs2_extent_rec *rec)
210 {
211 	struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
212 
213 	ocfs2_extent_map_insert_rec(inode, rec);
214 }
215 
216 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
217 					     u32 clusters)
218 {
219 	struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
220 
221 	ocfs2_extent_map_trunc(inode, clusters);
222 }
223 
224 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
225 				     struct ocfs2_extent_rec *rec)
226 {
227 	struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
228 	struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb);
229 
230 	BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL);
231 	mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
232 			(oi->ip_clusters != le32_to_cpu(rec->e_cpos)),
233 			"Device %s, asking for sparse allocation: inode %llu, "
234 			"cpos %u, clusters %u\n",
235 			osb->dev_str,
236 			(unsigned long long)oi->ip_blkno,
237 			rec->e_cpos, oi->ip_clusters);
238 
239 	return 0;
240 }
241 
242 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et)
243 {
244 	struct ocfs2_dinode *di = et->et_object;
245 
246 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
247 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
248 
249 	return 0;
250 }
251 
252 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
253 {
254 	struct ocfs2_dinode *di = et->et_object;
255 
256 	et->et_root_el = &di->id2.i_list;
257 }
258 
259 
260 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
261 {
262 	struct ocfs2_xattr_value_buf *vb = et->et_object;
263 
264 	et->et_root_el = &vb->vb_xv->xr_list;
265 }
266 
267 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
268 					      u64 blkno)
269 {
270 	struct ocfs2_xattr_value_buf *vb = et->et_object;
271 
272 	vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
273 }
274 
275 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
276 {
277 	struct ocfs2_xattr_value_buf *vb = et->et_object;
278 
279 	return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
280 }
281 
282 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et,
283 					      u32 clusters)
284 {
285 	struct ocfs2_xattr_value_buf *vb = et->et_object;
286 
287 	le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
288 }
289 
290 static const struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
291 	.eo_set_last_eb_blk	= ocfs2_xattr_value_set_last_eb_blk,
292 	.eo_get_last_eb_blk	= ocfs2_xattr_value_get_last_eb_blk,
293 	.eo_update_clusters	= ocfs2_xattr_value_update_clusters,
294 	.eo_fill_root_el	= ocfs2_xattr_value_fill_root_el,
295 };
296 
297 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
298 {
299 	struct ocfs2_xattr_block *xb = et->et_object;
300 
301 	et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
302 }
303 
304 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et)
305 {
306 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
307 	et->et_max_leaf_clusters =
308 		ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
309 }
310 
311 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
312 					     u64 blkno)
313 {
314 	struct ocfs2_xattr_block *xb = et->et_object;
315 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
316 
317 	xt->xt_last_eb_blk = cpu_to_le64(blkno);
318 }
319 
320 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
321 {
322 	struct ocfs2_xattr_block *xb = et->et_object;
323 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
324 
325 	return le64_to_cpu(xt->xt_last_eb_blk);
326 }
327 
328 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et,
329 					     u32 clusters)
330 {
331 	struct ocfs2_xattr_block *xb = et->et_object;
332 
333 	le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
334 }
335 
336 static const struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
337 	.eo_set_last_eb_blk	= ocfs2_xattr_tree_set_last_eb_blk,
338 	.eo_get_last_eb_blk	= ocfs2_xattr_tree_get_last_eb_blk,
339 	.eo_update_clusters	= ocfs2_xattr_tree_update_clusters,
340 	.eo_fill_root_el	= ocfs2_xattr_tree_fill_root_el,
341 	.eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
342 };
343 
344 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
345 					  u64 blkno)
346 {
347 	struct ocfs2_dx_root_block *dx_root = et->et_object;
348 
349 	dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
350 }
351 
352 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
353 {
354 	struct ocfs2_dx_root_block *dx_root = et->et_object;
355 
356 	return le64_to_cpu(dx_root->dr_last_eb_blk);
357 }
358 
359 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et,
360 					  u32 clusters)
361 {
362 	struct ocfs2_dx_root_block *dx_root = et->et_object;
363 
364 	le32_add_cpu(&dx_root->dr_clusters, clusters);
365 }
366 
367 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et)
368 {
369 	struct ocfs2_dx_root_block *dx_root = et->et_object;
370 
371 	BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
372 
373 	return 0;
374 }
375 
376 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
377 {
378 	struct ocfs2_dx_root_block *dx_root = et->et_object;
379 
380 	et->et_root_el = &dx_root->dr_list;
381 }
382 
383 static const struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
384 	.eo_set_last_eb_blk	= ocfs2_dx_root_set_last_eb_blk,
385 	.eo_get_last_eb_blk	= ocfs2_dx_root_get_last_eb_blk,
386 	.eo_update_clusters	= ocfs2_dx_root_update_clusters,
387 	.eo_sanity_check	= ocfs2_dx_root_sanity_check,
388 	.eo_fill_root_el	= ocfs2_dx_root_fill_root_el,
389 };
390 
391 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et)
392 {
393 	struct ocfs2_refcount_block *rb = et->et_object;
394 
395 	et->et_root_el = &rb->rf_list;
396 }
397 
398 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
399 						u64 blkno)
400 {
401 	struct ocfs2_refcount_block *rb = et->et_object;
402 
403 	rb->rf_last_eb_blk = cpu_to_le64(blkno);
404 }
405 
406 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
407 {
408 	struct ocfs2_refcount_block *rb = et->et_object;
409 
410 	return le64_to_cpu(rb->rf_last_eb_blk);
411 }
412 
413 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et,
414 						u32 clusters)
415 {
416 	struct ocfs2_refcount_block *rb = et->et_object;
417 
418 	le32_add_cpu(&rb->rf_clusters, clusters);
419 }
420 
421 static enum ocfs2_contig_type
422 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et,
423 				  struct ocfs2_extent_rec *ext,
424 				  struct ocfs2_extent_rec *insert_rec)
425 {
426 	return CONTIG_NONE;
427 }
428 
429 static const struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = {
430 	.eo_set_last_eb_blk	= ocfs2_refcount_tree_set_last_eb_blk,
431 	.eo_get_last_eb_blk	= ocfs2_refcount_tree_get_last_eb_blk,
432 	.eo_update_clusters	= ocfs2_refcount_tree_update_clusters,
433 	.eo_fill_root_el	= ocfs2_refcount_tree_fill_root_el,
434 	.eo_extent_contig	= ocfs2_refcount_tree_extent_contig,
435 };
436 
437 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
438 				     struct ocfs2_caching_info *ci,
439 				     struct buffer_head *bh,
440 				     ocfs2_journal_access_func access,
441 				     void *obj,
442 				     const struct ocfs2_extent_tree_operations *ops)
443 {
444 	et->et_ops = ops;
445 	et->et_root_bh = bh;
446 	et->et_ci = ci;
447 	et->et_root_journal_access = access;
448 	if (!obj)
449 		obj = (void *)bh->b_data;
450 	et->et_object = obj;
451 
452 	et->et_ops->eo_fill_root_el(et);
453 	if (!et->et_ops->eo_fill_max_leaf_clusters)
454 		et->et_max_leaf_clusters = 0;
455 	else
456 		et->et_ops->eo_fill_max_leaf_clusters(et);
457 }
458 
459 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
460 				   struct ocfs2_caching_info *ci,
461 				   struct buffer_head *bh)
462 {
463 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di,
464 				 NULL, &ocfs2_dinode_et_ops);
465 }
466 
467 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
468 				       struct ocfs2_caching_info *ci,
469 				       struct buffer_head *bh)
470 {
471 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb,
472 				 NULL, &ocfs2_xattr_tree_et_ops);
473 }
474 
475 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
476 					struct ocfs2_caching_info *ci,
477 					struct ocfs2_xattr_value_buf *vb)
478 {
479 	__ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb,
480 				 &ocfs2_xattr_value_et_ops);
481 }
482 
483 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
484 				    struct ocfs2_caching_info *ci,
485 				    struct buffer_head *bh)
486 {
487 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr,
488 				 NULL, &ocfs2_dx_root_et_ops);
489 }
490 
491 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et,
492 				     struct ocfs2_caching_info *ci,
493 				     struct buffer_head *bh)
494 {
495 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb,
496 				 NULL, &ocfs2_refcount_tree_et_ops);
497 }
498 
499 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
500 					    u64 new_last_eb_blk)
501 {
502 	et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
503 }
504 
505 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
506 {
507 	return et->et_ops->eo_get_last_eb_blk(et);
508 }
509 
510 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et,
511 					    u32 clusters)
512 {
513 	et->et_ops->eo_update_clusters(et, clusters);
514 }
515 
516 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et,
517 					      struct ocfs2_extent_rec *rec)
518 {
519 	if (et->et_ops->eo_extent_map_insert)
520 		et->et_ops->eo_extent_map_insert(et, rec);
521 }
522 
523 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et,
524 						u32 clusters)
525 {
526 	if (et->et_ops->eo_extent_map_truncate)
527 		et->et_ops->eo_extent_map_truncate(et, clusters);
528 }
529 
530 static inline int ocfs2_et_root_journal_access(handle_t *handle,
531 					       struct ocfs2_extent_tree *et,
532 					       int type)
533 {
534 	return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh,
535 					  type);
536 }
537 
538 static inline enum ocfs2_contig_type
539 	ocfs2_et_extent_contig(struct ocfs2_extent_tree *et,
540 			       struct ocfs2_extent_rec *rec,
541 			       struct ocfs2_extent_rec *insert_rec)
542 {
543 	if (et->et_ops->eo_extent_contig)
544 		return et->et_ops->eo_extent_contig(et, rec, insert_rec);
545 
546 	return ocfs2_extent_rec_contig(
547 				ocfs2_metadata_cache_get_super(et->et_ci),
548 				rec, insert_rec);
549 }
550 
551 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et,
552 					struct ocfs2_extent_rec *rec)
553 {
554 	int ret = 0;
555 
556 	if (et->et_ops->eo_insert_check)
557 		ret = et->et_ops->eo_insert_check(et, rec);
558 	return ret;
559 }
560 
561 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et)
562 {
563 	int ret = 0;
564 
565 	if (et->et_ops->eo_sanity_check)
566 		ret = et->et_ops->eo_sanity_check(et);
567 	return ret;
568 }
569 
570 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
571 					 struct ocfs2_extent_block *eb);
572 static void ocfs2_adjust_rightmost_records(handle_t *handle,
573 					   struct ocfs2_extent_tree *et,
574 					   struct ocfs2_path *path,
575 					   struct ocfs2_extent_rec *insert_rec);
576 /*
577  * Reset the actual path elements so that we can re-use the structure
578  * to build another path. Generally, this involves freeing the buffer
579  * heads.
580  */
581 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
582 {
583 	int i, start = 0, depth = 0;
584 	struct ocfs2_path_item *node;
585 
586 	if (keep_root)
587 		start = 1;
588 
589 	for(i = start; i < path_num_items(path); i++) {
590 		node = &path->p_node[i];
591 
592 		brelse(node->bh);
593 		node->bh = NULL;
594 		node->el = NULL;
595 	}
596 
597 	/*
598 	 * Tree depth may change during truncate, or insert. If we're
599 	 * keeping the root extent list, then make sure that our path
600 	 * structure reflects the proper depth.
601 	 */
602 	if (keep_root)
603 		depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
604 	else
605 		path_root_access(path) = NULL;
606 
607 	path->p_tree_depth = depth;
608 }
609 
610 void ocfs2_free_path(struct ocfs2_path *path)
611 {
612 	if (path) {
613 		ocfs2_reinit_path(path, 0);
614 		kfree(path);
615 	}
616 }
617 
618 /*
619  * All the elements of src into dest. After this call, src could be freed
620  * without affecting dest.
621  *
622  * Both paths should have the same root. Any non-root elements of dest
623  * will be freed.
624  */
625 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
626 {
627 	int i;
628 
629 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
630 	BUG_ON(path_root_el(dest) != path_root_el(src));
631 	BUG_ON(path_root_access(dest) != path_root_access(src));
632 
633 	ocfs2_reinit_path(dest, 1);
634 
635 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
636 		dest->p_node[i].bh = src->p_node[i].bh;
637 		dest->p_node[i].el = src->p_node[i].el;
638 
639 		if (dest->p_node[i].bh)
640 			get_bh(dest->p_node[i].bh);
641 	}
642 }
643 
644 /*
645  * Make the *dest path the same as src and re-initialize src path to
646  * have a root only.
647  */
648 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
649 {
650 	int i;
651 
652 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
653 	BUG_ON(path_root_access(dest) != path_root_access(src));
654 
655 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
656 		brelse(dest->p_node[i].bh);
657 
658 		dest->p_node[i].bh = src->p_node[i].bh;
659 		dest->p_node[i].el = src->p_node[i].el;
660 
661 		src->p_node[i].bh = NULL;
662 		src->p_node[i].el = NULL;
663 	}
664 }
665 
666 /*
667  * Insert an extent block at given index.
668  *
669  * This will not take an additional reference on eb_bh.
670  */
671 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
672 					struct buffer_head *eb_bh)
673 {
674 	struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
675 
676 	/*
677 	 * Right now, no root bh is an extent block, so this helps
678 	 * catch code errors with dinode trees. The assertion can be
679 	 * safely removed if we ever need to insert extent block
680 	 * structures at the root.
681 	 */
682 	BUG_ON(index == 0);
683 
684 	path->p_node[index].bh = eb_bh;
685 	path->p_node[index].el = &eb->h_list;
686 }
687 
688 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
689 					 struct ocfs2_extent_list *root_el,
690 					 ocfs2_journal_access_func access)
691 {
692 	struct ocfs2_path *path;
693 
694 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
695 
696 	path = kzalloc(sizeof(*path), GFP_NOFS);
697 	if (path) {
698 		path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
699 		get_bh(root_bh);
700 		path_root_bh(path) = root_bh;
701 		path_root_el(path) = root_el;
702 		path_root_access(path) = access;
703 	}
704 
705 	return path;
706 }
707 
708 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
709 {
710 	return ocfs2_new_path(path_root_bh(path), path_root_el(path),
711 			      path_root_access(path));
712 }
713 
714 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
715 {
716 	return ocfs2_new_path(et->et_root_bh, et->et_root_el,
717 			      et->et_root_journal_access);
718 }
719 
720 /*
721  * Journal the buffer at depth idx.  All idx>0 are extent_blocks,
722  * otherwise it's the root_access function.
723  *
724  * I don't like the way this function's name looks next to
725  * ocfs2_journal_access_path(), but I don't have a better one.
726  */
727 int ocfs2_path_bh_journal_access(handle_t *handle,
728 				 struct ocfs2_caching_info *ci,
729 				 struct ocfs2_path *path,
730 				 int idx)
731 {
732 	ocfs2_journal_access_func access = path_root_access(path);
733 
734 	if (!access)
735 		access = ocfs2_journal_access;
736 
737 	if (idx)
738 		access = ocfs2_journal_access_eb;
739 
740 	return access(handle, ci, path->p_node[idx].bh,
741 		      OCFS2_JOURNAL_ACCESS_WRITE);
742 }
743 
744 /*
745  * Convenience function to journal all components in a path.
746  */
747 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci,
748 			      handle_t *handle,
749 			      struct ocfs2_path *path)
750 {
751 	int i, ret = 0;
752 
753 	if (!path)
754 		goto out;
755 
756 	for(i = 0; i < path_num_items(path); i++) {
757 		ret = ocfs2_path_bh_journal_access(handle, ci, path, i);
758 		if (ret < 0) {
759 			mlog_errno(ret);
760 			goto out;
761 		}
762 	}
763 
764 out:
765 	return ret;
766 }
767 
768 /*
769  * Return the index of the extent record which contains cluster #v_cluster.
770  * -1 is returned if it was not found.
771  *
772  * Should work fine on interior and exterior nodes.
773  */
774 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
775 {
776 	int ret = -1;
777 	int i;
778 	struct ocfs2_extent_rec *rec;
779 	u32 rec_end, rec_start, clusters;
780 
781 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
782 		rec = &el->l_recs[i];
783 
784 		rec_start = le32_to_cpu(rec->e_cpos);
785 		clusters = ocfs2_rec_clusters(el, rec);
786 
787 		rec_end = rec_start + clusters;
788 
789 		if (v_cluster >= rec_start && v_cluster < rec_end) {
790 			ret = i;
791 			break;
792 		}
793 	}
794 
795 	return ret;
796 }
797 
798 /*
799  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
800  * ocfs2_extent_rec_contig only work properly against leaf nodes!
801  */
802 static int ocfs2_block_extent_contig(struct super_block *sb,
803 				     struct ocfs2_extent_rec *ext,
804 				     u64 blkno)
805 {
806 	u64 blk_end = le64_to_cpu(ext->e_blkno);
807 
808 	blk_end += ocfs2_clusters_to_blocks(sb,
809 				    le16_to_cpu(ext->e_leaf_clusters));
810 
811 	return blkno == blk_end;
812 }
813 
814 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
815 				  struct ocfs2_extent_rec *right)
816 {
817 	u32 left_range;
818 
819 	left_range = le32_to_cpu(left->e_cpos) +
820 		le16_to_cpu(left->e_leaf_clusters);
821 
822 	return (left_range == le32_to_cpu(right->e_cpos));
823 }
824 
825 static enum ocfs2_contig_type
826 	ocfs2_extent_rec_contig(struct super_block *sb,
827 				struct ocfs2_extent_rec *ext,
828 				struct ocfs2_extent_rec *insert_rec)
829 {
830 	u64 blkno = le64_to_cpu(insert_rec->e_blkno);
831 
832 	/*
833 	 * Refuse to coalesce extent records with different flag
834 	 * fields - we don't want to mix unwritten extents with user
835 	 * data.
836 	 */
837 	if (ext->e_flags != insert_rec->e_flags)
838 		return CONTIG_NONE;
839 
840 	if (ocfs2_extents_adjacent(ext, insert_rec) &&
841 	    ocfs2_block_extent_contig(sb, ext, blkno))
842 			return CONTIG_RIGHT;
843 
844 	blkno = le64_to_cpu(ext->e_blkno);
845 	if (ocfs2_extents_adjacent(insert_rec, ext) &&
846 	    ocfs2_block_extent_contig(sb, insert_rec, blkno))
847 		return CONTIG_LEFT;
848 
849 	return CONTIG_NONE;
850 }
851 
852 /*
853  * NOTE: We can have pretty much any combination of contiguousness and
854  * appending.
855  *
856  * The usefulness of APPEND_TAIL is more in that it lets us know that
857  * we'll have to update the path to that leaf.
858  */
859 enum ocfs2_append_type {
860 	APPEND_NONE = 0,
861 	APPEND_TAIL,
862 };
863 
864 enum ocfs2_split_type {
865 	SPLIT_NONE = 0,
866 	SPLIT_LEFT,
867 	SPLIT_RIGHT,
868 };
869 
870 struct ocfs2_insert_type {
871 	enum ocfs2_split_type	ins_split;
872 	enum ocfs2_append_type	ins_appending;
873 	enum ocfs2_contig_type	ins_contig;
874 	int			ins_contig_index;
875 	int			ins_tree_depth;
876 };
877 
878 struct ocfs2_merge_ctxt {
879 	enum ocfs2_contig_type	c_contig_type;
880 	int			c_has_empty_extent;
881 	int			c_split_covers_rec;
882 };
883 
884 static int ocfs2_validate_extent_block(struct super_block *sb,
885 				       struct buffer_head *bh)
886 {
887 	int rc;
888 	struct ocfs2_extent_block *eb =
889 		(struct ocfs2_extent_block *)bh->b_data;
890 
891 	trace_ocfs2_validate_extent_block((unsigned long long)bh->b_blocknr);
892 
893 	BUG_ON(!buffer_uptodate(bh));
894 
895 	/*
896 	 * If the ecc fails, we return the error but otherwise
897 	 * leave the filesystem running.  We know any error is
898 	 * local to this block.
899 	 */
900 	rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
901 	if (rc) {
902 		mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
903 		     (unsigned long long)bh->b_blocknr);
904 		return rc;
905 	}
906 
907 	/*
908 	 * Errors after here are fatal.
909 	 */
910 
911 	if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
912 		rc = ocfs2_error(sb,
913 				 "Extent block #%llu has bad signature %.*s\n",
914 				 (unsigned long long)bh->b_blocknr, 7,
915 				 eb->h_signature);
916 		goto bail;
917 	}
918 
919 	if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
920 		rc = ocfs2_error(sb,
921 				 "Extent block #%llu has an invalid h_blkno of %llu\n",
922 				 (unsigned long long)bh->b_blocknr,
923 				 (unsigned long long)le64_to_cpu(eb->h_blkno));
924 		goto bail;
925 	}
926 
927 	if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
928 		rc = ocfs2_error(sb,
929 				 "Extent block #%llu has an invalid h_fs_generation of #%u\n",
930 				 (unsigned long long)bh->b_blocknr,
931 				 le32_to_cpu(eb->h_fs_generation));
932 		goto bail;
933 	}
934 bail:
935 	return rc;
936 }
937 
938 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno,
939 			    struct buffer_head **bh)
940 {
941 	int rc;
942 	struct buffer_head *tmp = *bh;
943 
944 	rc = ocfs2_read_block(ci, eb_blkno, &tmp,
945 			      ocfs2_validate_extent_block);
946 
947 	/* If ocfs2_read_block() got us a new bh, pass it up. */
948 	if (!rc && !*bh)
949 		*bh = tmp;
950 
951 	return rc;
952 }
953 
954 
955 /*
956  * How many free extents have we got before we need more meta data?
957  */
958 int ocfs2_num_free_extents(struct ocfs2_super *osb,
959 			   struct ocfs2_extent_tree *et)
960 {
961 	int retval;
962 	struct ocfs2_extent_list *el = NULL;
963 	struct ocfs2_extent_block *eb;
964 	struct buffer_head *eb_bh = NULL;
965 	u64 last_eb_blk = 0;
966 
967 	el = et->et_root_el;
968 	last_eb_blk = ocfs2_et_get_last_eb_blk(et);
969 
970 	if (last_eb_blk) {
971 		retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk,
972 						 &eb_bh);
973 		if (retval < 0) {
974 			mlog_errno(retval);
975 			goto bail;
976 		}
977 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
978 		el = &eb->h_list;
979 	}
980 
981 	BUG_ON(el->l_tree_depth != 0);
982 
983 	retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
984 bail:
985 	brelse(eb_bh);
986 
987 	trace_ocfs2_num_free_extents(retval);
988 	return retval;
989 }
990 
991 /* expects array to already be allocated
992  *
993  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
994  * l_count for you
995  */
996 static int ocfs2_create_new_meta_bhs(handle_t *handle,
997 				     struct ocfs2_extent_tree *et,
998 				     int wanted,
999 				     struct ocfs2_alloc_context *meta_ac,
1000 				     struct buffer_head *bhs[])
1001 {
1002 	int count, status, i;
1003 	u16 suballoc_bit_start;
1004 	u32 num_got;
1005 	u64 suballoc_loc, first_blkno;
1006 	struct ocfs2_super *osb =
1007 		OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
1008 	struct ocfs2_extent_block *eb;
1009 
1010 	count = 0;
1011 	while (count < wanted) {
1012 		status = ocfs2_claim_metadata(handle,
1013 					      meta_ac,
1014 					      wanted - count,
1015 					      &suballoc_loc,
1016 					      &suballoc_bit_start,
1017 					      &num_got,
1018 					      &first_blkno);
1019 		if (status < 0) {
1020 			mlog_errno(status);
1021 			goto bail;
1022 		}
1023 
1024 		for(i = count;  i < (num_got + count); i++) {
1025 			bhs[i] = sb_getblk(osb->sb, first_blkno);
1026 			if (bhs[i] == NULL) {
1027 				status = -ENOMEM;
1028 				mlog_errno(status);
1029 				goto bail;
1030 			}
1031 			ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]);
1032 
1033 			status = ocfs2_journal_access_eb(handle, et->et_ci,
1034 							 bhs[i],
1035 							 OCFS2_JOURNAL_ACCESS_CREATE);
1036 			if (status < 0) {
1037 				mlog_errno(status);
1038 				goto bail;
1039 			}
1040 
1041 			memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
1042 			eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
1043 			/* Ok, setup the minimal stuff here. */
1044 			strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
1045 			eb->h_blkno = cpu_to_le64(first_blkno);
1046 			eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
1047 			eb->h_suballoc_slot =
1048 				cpu_to_le16(meta_ac->ac_alloc_slot);
1049 			eb->h_suballoc_loc = cpu_to_le64(suballoc_loc);
1050 			eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
1051 			eb->h_list.l_count =
1052 				cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
1053 
1054 			suballoc_bit_start++;
1055 			first_blkno++;
1056 
1057 			/* We'll also be dirtied by the caller, so
1058 			 * this isn't absolutely necessary. */
1059 			ocfs2_journal_dirty(handle, bhs[i]);
1060 		}
1061 
1062 		count += num_got;
1063 	}
1064 
1065 	status = 0;
1066 bail:
1067 	if (status < 0) {
1068 		for(i = 0; i < wanted; i++) {
1069 			brelse(bhs[i]);
1070 			bhs[i] = NULL;
1071 		}
1072 		mlog_errno(status);
1073 	}
1074 	return status;
1075 }
1076 
1077 /*
1078  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1079  *
1080  * Returns the sum of the rightmost extent rec logical offset and
1081  * cluster count.
1082  *
1083  * ocfs2_add_branch() uses this to determine what logical cluster
1084  * value should be populated into the leftmost new branch records.
1085  *
1086  * ocfs2_shift_tree_depth() uses this to determine the # clusters
1087  * value for the new topmost tree record.
1088  */
1089 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
1090 {
1091 	int i;
1092 
1093 	i = le16_to_cpu(el->l_next_free_rec) - 1;
1094 
1095 	return le32_to_cpu(el->l_recs[i].e_cpos) +
1096 		ocfs2_rec_clusters(el, &el->l_recs[i]);
1097 }
1098 
1099 /*
1100  * Change range of the branches in the right most path according to the leaf
1101  * extent block's rightmost record.
1102  */
1103 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1104 					 struct ocfs2_extent_tree *et)
1105 {
1106 	int status;
1107 	struct ocfs2_path *path = NULL;
1108 	struct ocfs2_extent_list *el;
1109 	struct ocfs2_extent_rec *rec;
1110 
1111 	path = ocfs2_new_path_from_et(et);
1112 	if (!path) {
1113 		status = -ENOMEM;
1114 		return status;
1115 	}
1116 
1117 	status = ocfs2_find_path(et->et_ci, path, UINT_MAX);
1118 	if (status < 0) {
1119 		mlog_errno(status);
1120 		goto out;
1121 	}
1122 
1123 	status = ocfs2_extend_trans(handle, path_num_items(path));
1124 	if (status < 0) {
1125 		mlog_errno(status);
1126 		goto out;
1127 	}
1128 
1129 	status = ocfs2_journal_access_path(et->et_ci, handle, path);
1130 	if (status < 0) {
1131 		mlog_errno(status);
1132 		goto out;
1133 	}
1134 
1135 	el = path_leaf_el(path);
1136 	rec = &el->l_recs[le16_to_cpu(el->l_next_free_rec) - 1];
1137 
1138 	ocfs2_adjust_rightmost_records(handle, et, path, rec);
1139 
1140 out:
1141 	ocfs2_free_path(path);
1142 	return status;
1143 }
1144 
1145 /*
1146  * Add an entire tree branch to our inode. eb_bh is the extent block
1147  * to start at, if we don't want to start the branch at the root
1148  * structure.
1149  *
1150  * last_eb_bh is required as we have to update it's next_leaf pointer
1151  * for the new last extent block.
1152  *
1153  * the new branch will be 'empty' in the sense that every block will
1154  * contain a single record with cluster count == 0.
1155  */
1156 static int ocfs2_add_branch(handle_t *handle,
1157 			    struct ocfs2_extent_tree *et,
1158 			    struct buffer_head *eb_bh,
1159 			    struct buffer_head **last_eb_bh,
1160 			    struct ocfs2_alloc_context *meta_ac)
1161 {
1162 	int status, new_blocks, i;
1163 	u64 next_blkno, new_last_eb_blk;
1164 	struct buffer_head *bh;
1165 	struct buffer_head **new_eb_bhs = NULL;
1166 	struct ocfs2_extent_block *eb;
1167 	struct ocfs2_extent_list  *eb_el;
1168 	struct ocfs2_extent_list  *el;
1169 	u32 new_cpos, root_end;
1170 
1171 	BUG_ON(!last_eb_bh || !*last_eb_bh);
1172 
1173 	if (eb_bh) {
1174 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1175 		el = &eb->h_list;
1176 	} else
1177 		el = et->et_root_el;
1178 
1179 	/* we never add a branch to a leaf. */
1180 	BUG_ON(!el->l_tree_depth);
1181 
1182 	new_blocks = le16_to_cpu(el->l_tree_depth);
1183 
1184 	eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1185 	new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1186 	root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1187 
1188 	/*
1189 	 * If there is a gap before the root end and the real end
1190 	 * of the righmost leaf block, we need to remove the gap
1191 	 * between new_cpos and root_end first so that the tree
1192 	 * is consistent after we add a new branch(it will start
1193 	 * from new_cpos).
1194 	 */
1195 	if (root_end > new_cpos) {
1196 		trace_ocfs2_adjust_rightmost_branch(
1197 			(unsigned long long)
1198 			ocfs2_metadata_cache_owner(et->et_ci),
1199 			root_end, new_cpos);
1200 
1201 		status = ocfs2_adjust_rightmost_branch(handle, et);
1202 		if (status) {
1203 			mlog_errno(status);
1204 			goto bail;
1205 		}
1206 	}
1207 
1208 	/* allocate the number of new eb blocks we need */
1209 	new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1210 			     GFP_KERNEL);
1211 	if (!new_eb_bhs) {
1212 		status = -ENOMEM;
1213 		mlog_errno(status);
1214 		goto bail;
1215 	}
1216 
1217 	status = ocfs2_create_new_meta_bhs(handle, et, new_blocks,
1218 					   meta_ac, new_eb_bhs);
1219 	if (status < 0) {
1220 		mlog_errno(status);
1221 		goto bail;
1222 	}
1223 
1224 	/* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1225 	 * linked with the rest of the tree.
1226 	 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1227 	 *
1228 	 * when we leave the loop, new_last_eb_blk will point to the
1229 	 * newest leaf, and next_blkno will point to the topmost extent
1230 	 * block. */
1231 	next_blkno = new_last_eb_blk = 0;
1232 	for(i = 0; i < new_blocks; i++) {
1233 		bh = new_eb_bhs[i];
1234 		eb = (struct ocfs2_extent_block *) bh->b_data;
1235 		/* ocfs2_create_new_meta_bhs() should create it right! */
1236 		BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1237 		eb_el = &eb->h_list;
1238 
1239 		status = ocfs2_journal_access_eb(handle, et->et_ci, bh,
1240 						 OCFS2_JOURNAL_ACCESS_CREATE);
1241 		if (status < 0) {
1242 			mlog_errno(status);
1243 			goto bail;
1244 		}
1245 
1246 		eb->h_next_leaf_blk = 0;
1247 		eb_el->l_tree_depth = cpu_to_le16(i);
1248 		eb_el->l_next_free_rec = cpu_to_le16(1);
1249 		/*
1250 		 * This actually counts as an empty extent as
1251 		 * c_clusters == 0
1252 		 */
1253 		eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1254 		eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1255 		/*
1256 		 * eb_el isn't always an interior node, but even leaf
1257 		 * nodes want a zero'd flags and reserved field so
1258 		 * this gets the whole 32 bits regardless of use.
1259 		 */
1260 		eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1261 		if (!eb_el->l_tree_depth)
1262 			new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1263 
1264 		ocfs2_journal_dirty(handle, bh);
1265 		next_blkno = le64_to_cpu(eb->h_blkno);
1266 	}
1267 
1268 	/* This is a bit hairy. We want to update up to three blocks
1269 	 * here without leaving any of them in an inconsistent state
1270 	 * in case of error. We don't have to worry about
1271 	 * journal_dirty erroring as it won't unless we've aborted the
1272 	 * handle (in which case we would never be here) so reserving
1273 	 * the write with journal_access is all we need to do. */
1274 	status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh,
1275 					 OCFS2_JOURNAL_ACCESS_WRITE);
1276 	if (status < 0) {
1277 		mlog_errno(status);
1278 		goto bail;
1279 	}
1280 	status = ocfs2_et_root_journal_access(handle, et,
1281 					      OCFS2_JOURNAL_ACCESS_WRITE);
1282 	if (status < 0) {
1283 		mlog_errno(status);
1284 		goto bail;
1285 	}
1286 	if (eb_bh) {
1287 		status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh,
1288 						 OCFS2_JOURNAL_ACCESS_WRITE);
1289 		if (status < 0) {
1290 			mlog_errno(status);
1291 			goto bail;
1292 		}
1293 	}
1294 
1295 	/* Link the new branch into the rest of the tree (el will
1296 	 * either be on the root_bh, or the extent block passed in. */
1297 	i = le16_to_cpu(el->l_next_free_rec);
1298 	el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1299 	el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1300 	el->l_recs[i].e_int_clusters = 0;
1301 	le16_add_cpu(&el->l_next_free_rec, 1);
1302 
1303 	/* fe needs a new last extent block pointer, as does the
1304 	 * next_leaf on the previously last-extent-block. */
1305 	ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1306 
1307 	eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1308 	eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1309 
1310 	ocfs2_journal_dirty(handle, *last_eb_bh);
1311 	ocfs2_journal_dirty(handle, et->et_root_bh);
1312 	if (eb_bh)
1313 		ocfs2_journal_dirty(handle, eb_bh);
1314 
1315 	/*
1316 	 * Some callers want to track the rightmost leaf so pass it
1317 	 * back here.
1318 	 */
1319 	brelse(*last_eb_bh);
1320 	get_bh(new_eb_bhs[0]);
1321 	*last_eb_bh = new_eb_bhs[0];
1322 
1323 	status = 0;
1324 bail:
1325 	if (new_eb_bhs) {
1326 		for (i = 0; i < new_blocks; i++)
1327 			brelse(new_eb_bhs[i]);
1328 		kfree(new_eb_bhs);
1329 	}
1330 
1331 	return status;
1332 }
1333 
1334 /*
1335  * adds another level to the allocation tree.
1336  * returns back the new extent block so you can add a branch to it
1337  * after this call.
1338  */
1339 static int ocfs2_shift_tree_depth(handle_t *handle,
1340 				  struct ocfs2_extent_tree *et,
1341 				  struct ocfs2_alloc_context *meta_ac,
1342 				  struct buffer_head **ret_new_eb_bh)
1343 {
1344 	int status, i;
1345 	u32 new_clusters;
1346 	struct buffer_head *new_eb_bh = NULL;
1347 	struct ocfs2_extent_block *eb;
1348 	struct ocfs2_extent_list  *root_el;
1349 	struct ocfs2_extent_list  *eb_el;
1350 
1351 	status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac,
1352 					   &new_eb_bh);
1353 	if (status < 0) {
1354 		mlog_errno(status);
1355 		goto bail;
1356 	}
1357 
1358 	eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1359 	/* ocfs2_create_new_meta_bhs() should create it right! */
1360 	BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1361 
1362 	eb_el = &eb->h_list;
1363 	root_el = et->et_root_el;
1364 
1365 	status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh,
1366 					 OCFS2_JOURNAL_ACCESS_CREATE);
1367 	if (status < 0) {
1368 		mlog_errno(status);
1369 		goto bail;
1370 	}
1371 
1372 	/* copy the root extent list data into the new extent block */
1373 	eb_el->l_tree_depth = root_el->l_tree_depth;
1374 	eb_el->l_next_free_rec = root_el->l_next_free_rec;
1375 	for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1376 		eb_el->l_recs[i] = root_el->l_recs[i];
1377 
1378 	ocfs2_journal_dirty(handle, new_eb_bh);
1379 
1380 	status = ocfs2_et_root_journal_access(handle, et,
1381 					      OCFS2_JOURNAL_ACCESS_WRITE);
1382 	if (status < 0) {
1383 		mlog_errno(status);
1384 		goto bail;
1385 	}
1386 
1387 	new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1388 
1389 	/* update root_bh now */
1390 	le16_add_cpu(&root_el->l_tree_depth, 1);
1391 	root_el->l_recs[0].e_cpos = 0;
1392 	root_el->l_recs[0].e_blkno = eb->h_blkno;
1393 	root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1394 	for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1395 		memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1396 	root_el->l_next_free_rec = cpu_to_le16(1);
1397 
1398 	/* If this is our 1st tree depth shift, then last_eb_blk
1399 	 * becomes the allocated extent block */
1400 	if (root_el->l_tree_depth == cpu_to_le16(1))
1401 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1402 
1403 	ocfs2_journal_dirty(handle, et->et_root_bh);
1404 
1405 	*ret_new_eb_bh = new_eb_bh;
1406 	new_eb_bh = NULL;
1407 	status = 0;
1408 bail:
1409 	brelse(new_eb_bh);
1410 
1411 	return status;
1412 }
1413 
1414 /*
1415  * Should only be called when there is no space left in any of the
1416  * leaf nodes. What we want to do is find the lowest tree depth
1417  * non-leaf extent block with room for new records. There are three
1418  * valid results of this search:
1419  *
1420  * 1) a lowest extent block is found, then we pass it back in
1421  *    *lowest_eb_bh and return '0'
1422  *
1423  * 2) the search fails to find anything, but the root_el has room. We
1424  *    pass NULL back in *lowest_eb_bh, but still return '0'
1425  *
1426  * 3) the search fails to find anything AND the root_el is full, in
1427  *    which case we return > 0
1428  *
1429  * return status < 0 indicates an error.
1430  */
1431 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et,
1432 				    struct buffer_head **target_bh)
1433 {
1434 	int status = 0, i;
1435 	u64 blkno;
1436 	struct ocfs2_extent_block *eb;
1437 	struct ocfs2_extent_list  *el;
1438 	struct buffer_head *bh = NULL;
1439 	struct buffer_head *lowest_bh = NULL;
1440 
1441 	*target_bh = NULL;
1442 
1443 	el = et->et_root_el;
1444 
1445 	while(le16_to_cpu(el->l_tree_depth) > 1) {
1446 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1447 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1448 				    "Owner %llu has empty extent list (next_free_rec == 0)\n",
1449 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
1450 			status = -EIO;
1451 			goto bail;
1452 		}
1453 		i = le16_to_cpu(el->l_next_free_rec) - 1;
1454 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1455 		if (!blkno) {
1456 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1457 				    "Owner %llu has extent list where extent # %d has no physical block start\n",
1458 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i);
1459 			status = -EIO;
1460 			goto bail;
1461 		}
1462 
1463 		brelse(bh);
1464 		bh = NULL;
1465 
1466 		status = ocfs2_read_extent_block(et->et_ci, blkno, &bh);
1467 		if (status < 0) {
1468 			mlog_errno(status);
1469 			goto bail;
1470 		}
1471 
1472 		eb = (struct ocfs2_extent_block *) bh->b_data;
1473 		el = &eb->h_list;
1474 
1475 		if (le16_to_cpu(el->l_next_free_rec) <
1476 		    le16_to_cpu(el->l_count)) {
1477 			brelse(lowest_bh);
1478 			lowest_bh = bh;
1479 			get_bh(lowest_bh);
1480 		}
1481 	}
1482 
1483 	/* If we didn't find one and the fe doesn't have any room,
1484 	 * then return '1' */
1485 	el = et->et_root_el;
1486 	if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1487 		status = 1;
1488 
1489 	*target_bh = lowest_bh;
1490 bail:
1491 	brelse(bh);
1492 
1493 	return status;
1494 }
1495 
1496 /*
1497  * Grow a b-tree so that it has more records.
1498  *
1499  * We might shift the tree depth in which case existing paths should
1500  * be considered invalid.
1501  *
1502  * Tree depth after the grow is returned via *final_depth.
1503  *
1504  * *last_eb_bh will be updated by ocfs2_add_branch().
1505  */
1506 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et,
1507 			   int *final_depth, struct buffer_head **last_eb_bh,
1508 			   struct ocfs2_alloc_context *meta_ac)
1509 {
1510 	int ret, shift;
1511 	struct ocfs2_extent_list *el = et->et_root_el;
1512 	int depth = le16_to_cpu(el->l_tree_depth);
1513 	struct buffer_head *bh = NULL;
1514 
1515 	BUG_ON(meta_ac == NULL);
1516 
1517 	shift = ocfs2_find_branch_target(et, &bh);
1518 	if (shift < 0) {
1519 		ret = shift;
1520 		mlog_errno(ret);
1521 		goto out;
1522 	}
1523 
1524 	/* We traveled all the way to the bottom of the allocation tree
1525 	 * and didn't find room for any more extents - we need to add
1526 	 * another tree level */
1527 	if (shift) {
1528 		BUG_ON(bh);
1529 		trace_ocfs2_grow_tree(
1530 			(unsigned long long)
1531 			ocfs2_metadata_cache_owner(et->et_ci),
1532 			depth);
1533 
1534 		/* ocfs2_shift_tree_depth will return us a buffer with
1535 		 * the new extent block (so we can pass that to
1536 		 * ocfs2_add_branch). */
1537 		ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh);
1538 		if (ret < 0) {
1539 			mlog_errno(ret);
1540 			goto out;
1541 		}
1542 		depth++;
1543 		if (depth == 1) {
1544 			/*
1545 			 * Special case: we have room now if we shifted from
1546 			 * tree_depth 0, so no more work needs to be done.
1547 			 *
1548 			 * We won't be calling add_branch, so pass
1549 			 * back *last_eb_bh as the new leaf. At depth
1550 			 * zero, it should always be null so there's
1551 			 * no reason to brelse.
1552 			 */
1553 			BUG_ON(*last_eb_bh);
1554 			get_bh(bh);
1555 			*last_eb_bh = bh;
1556 			goto out;
1557 		}
1558 	}
1559 
1560 	/* call ocfs2_add_branch to add the final part of the tree with
1561 	 * the new data. */
1562 	ret = ocfs2_add_branch(handle, et, bh, last_eb_bh,
1563 			       meta_ac);
1564 	if (ret < 0) {
1565 		mlog_errno(ret);
1566 		goto out;
1567 	}
1568 
1569 out:
1570 	if (final_depth)
1571 		*final_depth = depth;
1572 	brelse(bh);
1573 	return ret;
1574 }
1575 
1576 /*
1577  * This function will discard the rightmost extent record.
1578  */
1579 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1580 {
1581 	int next_free = le16_to_cpu(el->l_next_free_rec);
1582 	int count = le16_to_cpu(el->l_count);
1583 	unsigned int num_bytes;
1584 
1585 	BUG_ON(!next_free);
1586 	/* This will cause us to go off the end of our extent list. */
1587 	BUG_ON(next_free >= count);
1588 
1589 	num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1590 
1591 	memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1592 }
1593 
1594 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1595 			      struct ocfs2_extent_rec *insert_rec)
1596 {
1597 	int i, insert_index, next_free, has_empty, num_bytes;
1598 	u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1599 	struct ocfs2_extent_rec *rec;
1600 
1601 	next_free = le16_to_cpu(el->l_next_free_rec);
1602 	has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1603 
1604 	BUG_ON(!next_free);
1605 
1606 	/* The tree code before us didn't allow enough room in the leaf. */
1607 	BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1608 
1609 	/*
1610 	 * The easiest way to approach this is to just remove the
1611 	 * empty extent and temporarily decrement next_free.
1612 	 */
1613 	if (has_empty) {
1614 		/*
1615 		 * If next_free was 1 (only an empty extent), this
1616 		 * loop won't execute, which is fine. We still want
1617 		 * the decrement above to happen.
1618 		 */
1619 		for(i = 0; i < (next_free - 1); i++)
1620 			el->l_recs[i] = el->l_recs[i+1];
1621 
1622 		next_free--;
1623 	}
1624 
1625 	/*
1626 	 * Figure out what the new record index should be.
1627 	 */
1628 	for(i = 0; i < next_free; i++) {
1629 		rec = &el->l_recs[i];
1630 
1631 		if (insert_cpos < le32_to_cpu(rec->e_cpos))
1632 			break;
1633 	}
1634 	insert_index = i;
1635 
1636 	trace_ocfs2_rotate_leaf(insert_cpos, insert_index,
1637 				has_empty, next_free,
1638 				le16_to_cpu(el->l_count));
1639 
1640 	BUG_ON(insert_index < 0);
1641 	BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1642 	BUG_ON(insert_index > next_free);
1643 
1644 	/*
1645 	 * No need to memmove if we're just adding to the tail.
1646 	 */
1647 	if (insert_index != next_free) {
1648 		BUG_ON(next_free >= le16_to_cpu(el->l_count));
1649 
1650 		num_bytes = next_free - insert_index;
1651 		num_bytes *= sizeof(struct ocfs2_extent_rec);
1652 		memmove(&el->l_recs[insert_index + 1],
1653 			&el->l_recs[insert_index],
1654 			num_bytes);
1655 	}
1656 
1657 	/*
1658 	 * Either we had an empty extent, and need to re-increment or
1659 	 * there was no empty extent on a non full rightmost leaf node,
1660 	 * in which case we still need to increment.
1661 	 */
1662 	next_free++;
1663 	el->l_next_free_rec = cpu_to_le16(next_free);
1664 	/*
1665 	 * Make sure none of the math above just messed up our tree.
1666 	 */
1667 	BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1668 
1669 	el->l_recs[insert_index] = *insert_rec;
1670 
1671 }
1672 
1673 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1674 {
1675 	int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1676 
1677 	BUG_ON(num_recs == 0);
1678 
1679 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1680 		num_recs--;
1681 		size = num_recs * sizeof(struct ocfs2_extent_rec);
1682 		memmove(&el->l_recs[0], &el->l_recs[1], size);
1683 		memset(&el->l_recs[num_recs], 0,
1684 		       sizeof(struct ocfs2_extent_rec));
1685 		el->l_next_free_rec = cpu_to_le16(num_recs);
1686 	}
1687 }
1688 
1689 /*
1690  * Create an empty extent record .
1691  *
1692  * l_next_free_rec may be updated.
1693  *
1694  * If an empty extent already exists do nothing.
1695  */
1696 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1697 {
1698 	int next_free = le16_to_cpu(el->l_next_free_rec);
1699 
1700 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1701 
1702 	if (next_free == 0)
1703 		goto set_and_inc;
1704 
1705 	if (ocfs2_is_empty_extent(&el->l_recs[0]))
1706 		return;
1707 
1708 	mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1709 			"Asked to create an empty extent in a full list:\n"
1710 			"count = %u, tree depth = %u",
1711 			le16_to_cpu(el->l_count),
1712 			le16_to_cpu(el->l_tree_depth));
1713 
1714 	ocfs2_shift_records_right(el);
1715 
1716 set_and_inc:
1717 	le16_add_cpu(&el->l_next_free_rec, 1);
1718 	memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1719 }
1720 
1721 /*
1722  * For a rotation which involves two leaf nodes, the "root node" is
1723  * the lowest level tree node which contains a path to both leafs. This
1724  * resulting set of information can be used to form a complete "subtree"
1725  *
1726  * This function is passed two full paths from the dinode down to a
1727  * pair of adjacent leaves. It's task is to figure out which path
1728  * index contains the subtree root - this can be the root index itself
1729  * in a worst-case rotation.
1730  *
1731  * The array index of the subtree root is passed back.
1732  */
1733 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et,
1734 			    struct ocfs2_path *left,
1735 			    struct ocfs2_path *right)
1736 {
1737 	int i = 0;
1738 
1739 	/*
1740 	 * Check that the caller passed in two paths from the same tree.
1741 	 */
1742 	BUG_ON(path_root_bh(left) != path_root_bh(right));
1743 
1744 	do {
1745 		i++;
1746 
1747 		/*
1748 		 * The caller didn't pass two adjacent paths.
1749 		 */
1750 		mlog_bug_on_msg(i > left->p_tree_depth,
1751 				"Owner %llu, left depth %u, right depth %u\n"
1752 				"left leaf blk %llu, right leaf blk %llu\n",
1753 				(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
1754 				left->p_tree_depth, right->p_tree_depth,
1755 				(unsigned long long)path_leaf_bh(left)->b_blocknr,
1756 				(unsigned long long)path_leaf_bh(right)->b_blocknr);
1757 	} while (left->p_node[i].bh->b_blocknr ==
1758 		 right->p_node[i].bh->b_blocknr);
1759 
1760 	return i - 1;
1761 }
1762 
1763 typedef void (path_insert_t)(void *, struct buffer_head *);
1764 
1765 /*
1766  * Traverse a btree path in search of cpos, starting at root_el.
1767  *
1768  * This code can be called with a cpos larger than the tree, in which
1769  * case it will return the rightmost path.
1770  */
1771 static int __ocfs2_find_path(struct ocfs2_caching_info *ci,
1772 			     struct ocfs2_extent_list *root_el, u32 cpos,
1773 			     path_insert_t *func, void *data)
1774 {
1775 	int i, ret = 0;
1776 	u32 range;
1777 	u64 blkno;
1778 	struct buffer_head *bh = NULL;
1779 	struct ocfs2_extent_block *eb;
1780 	struct ocfs2_extent_list *el;
1781 	struct ocfs2_extent_rec *rec;
1782 
1783 	el = root_el;
1784 	while (el->l_tree_depth) {
1785 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1786 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1787 				    "Owner %llu has empty extent list at depth %u\n",
1788 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1789 				    le16_to_cpu(el->l_tree_depth));
1790 			ret = -EROFS;
1791 			goto out;
1792 
1793 		}
1794 
1795 		for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1796 			rec = &el->l_recs[i];
1797 
1798 			/*
1799 			 * In the case that cpos is off the allocation
1800 			 * tree, this should just wind up returning the
1801 			 * rightmost record.
1802 			 */
1803 			range = le32_to_cpu(rec->e_cpos) +
1804 				ocfs2_rec_clusters(el, rec);
1805 			if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1806 			    break;
1807 		}
1808 
1809 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1810 		if (blkno == 0) {
1811 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1812 				    "Owner %llu has bad blkno in extent list at depth %u (index %d)\n",
1813 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1814 				    le16_to_cpu(el->l_tree_depth), i);
1815 			ret = -EROFS;
1816 			goto out;
1817 		}
1818 
1819 		brelse(bh);
1820 		bh = NULL;
1821 		ret = ocfs2_read_extent_block(ci, blkno, &bh);
1822 		if (ret) {
1823 			mlog_errno(ret);
1824 			goto out;
1825 		}
1826 
1827 		eb = (struct ocfs2_extent_block *) bh->b_data;
1828 		el = &eb->h_list;
1829 
1830 		if (le16_to_cpu(el->l_next_free_rec) >
1831 		    le16_to_cpu(el->l_count)) {
1832 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1833 				    "Owner %llu has bad count in extent list at block %llu (next free=%u, count=%u)\n",
1834 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1835 				    (unsigned long long)bh->b_blocknr,
1836 				    le16_to_cpu(el->l_next_free_rec),
1837 				    le16_to_cpu(el->l_count));
1838 			ret = -EROFS;
1839 			goto out;
1840 		}
1841 
1842 		if (func)
1843 			func(data, bh);
1844 	}
1845 
1846 out:
1847 	/*
1848 	 * Catch any trailing bh that the loop didn't handle.
1849 	 */
1850 	brelse(bh);
1851 
1852 	return ret;
1853 }
1854 
1855 /*
1856  * Given an initialized path (that is, it has a valid root extent
1857  * list), this function will traverse the btree in search of the path
1858  * which would contain cpos.
1859  *
1860  * The path traveled is recorded in the path structure.
1861  *
1862  * Note that this will not do any comparisons on leaf node extent
1863  * records, so it will work fine in the case that we just added a tree
1864  * branch.
1865  */
1866 struct find_path_data {
1867 	int index;
1868 	struct ocfs2_path *path;
1869 };
1870 static void find_path_ins(void *data, struct buffer_head *bh)
1871 {
1872 	struct find_path_data *fp = data;
1873 
1874 	get_bh(bh);
1875 	ocfs2_path_insert_eb(fp->path, fp->index, bh);
1876 	fp->index++;
1877 }
1878 int ocfs2_find_path(struct ocfs2_caching_info *ci,
1879 		    struct ocfs2_path *path, u32 cpos)
1880 {
1881 	struct find_path_data data;
1882 
1883 	data.index = 1;
1884 	data.path = path;
1885 	return __ocfs2_find_path(ci, path_root_el(path), cpos,
1886 				 find_path_ins, &data);
1887 }
1888 
1889 static void find_leaf_ins(void *data, struct buffer_head *bh)
1890 {
1891 	struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1892 	struct ocfs2_extent_list *el = &eb->h_list;
1893 	struct buffer_head **ret = data;
1894 
1895 	/* We want to retain only the leaf block. */
1896 	if (le16_to_cpu(el->l_tree_depth) == 0) {
1897 		get_bh(bh);
1898 		*ret = bh;
1899 	}
1900 }
1901 /*
1902  * Find the leaf block in the tree which would contain cpos. No
1903  * checking of the actual leaf is done.
1904  *
1905  * Some paths want to call this instead of allocating a path structure
1906  * and calling ocfs2_find_path().
1907  *
1908  * This function doesn't handle non btree extent lists.
1909  */
1910 int ocfs2_find_leaf(struct ocfs2_caching_info *ci,
1911 		    struct ocfs2_extent_list *root_el, u32 cpos,
1912 		    struct buffer_head **leaf_bh)
1913 {
1914 	int ret;
1915 	struct buffer_head *bh = NULL;
1916 
1917 	ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh);
1918 	if (ret) {
1919 		mlog_errno(ret);
1920 		goto out;
1921 	}
1922 
1923 	*leaf_bh = bh;
1924 out:
1925 	return ret;
1926 }
1927 
1928 /*
1929  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1930  *
1931  * Basically, we've moved stuff around at the bottom of the tree and
1932  * we need to fix up the extent records above the changes to reflect
1933  * the new changes.
1934  *
1935  * left_rec: the record on the left.
1936  * left_child_el: is the child list pointed to by left_rec
1937  * right_rec: the record to the right of left_rec
1938  * right_child_el: is the child list pointed to by right_rec
1939  *
1940  * By definition, this only works on interior nodes.
1941  */
1942 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1943 				  struct ocfs2_extent_list *left_child_el,
1944 				  struct ocfs2_extent_rec *right_rec,
1945 				  struct ocfs2_extent_list *right_child_el)
1946 {
1947 	u32 left_clusters, right_end;
1948 
1949 	/*
1950 	 * Interior nodes never have holes. Their cpos is the cpos of
1951 	 * the leftmost record in their child list. Their cluster
1952 	 * count covers the full theoretical range of their child list
1953 	 * - the range between their cpos and the cpos of the record
1954 	 * immediately to their right.
1955 	 */
1956 	left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1957 	if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1958 		BUG_ON(right_child_el->l_tree_depth);
1959 		BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1960 		left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1961 	}
1962 	left_clusters -= le32_to_cpu(left_rec->e_cpos);
1963 	left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1964 
1965 	/*
1966 	 * Calculate the rightmost cluster count boundary before
1967 	 * moving cpos - we will need to adjust clusters after
1968 	 * updating e_cpos to keep the same highest cluster count.
1969 	 */
1970 	right_end = le32_to_cpu(right_rec->e_cpos);
1971 	right_end += le32_to_cpu(right_rec->e_int_clusters);
1972 
1973 	right_rec->e_cpos = left_rec->e_cpos;
1974 	le32_add_cpu(&right_rec->e_cpos, left_clusters);
1975 
1976 	right_end -= le32_to_cpu(right_rec->e_cpos);
1977 	right_rec->e_int_clusters = cpu_to_le32(right_end);
1978 }
1979 
1980 /*
1981  * Adjust the adjacent root node records involved in a
1982  * rotation. left_el_blkno is passed in as a key so that we can easily
1983  * find it's index in the root list.
1984  */
1985 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1986 				      struct ocfs2_extent_list *left_el,
1987 				      struct ocfs2_extent_list *right_el,
1988 				      u64 left_el_blkno)
1989 {
1990 	int i;
1991 
1992 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1993 	       le16_to_cpu(left_el->l_tree_depth));
1994 
1995 	for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1996 		if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1997 			break;
1998 	}
1999 
2000 	/*
2001 	 * The path walking code should have never returned a root and
2002 	 * two paths which are not adjacent.
2003 	 */
2004 	BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
2005 
2006 	ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
2007 				      &root_el->l_recs[i + 1], right_el);
2008 }
2009 
2010 /*
2011  * We've changed a leaf block (in right_path) and need to reflect that
2012  * change back up the subtree.
2013  *
2014  * This happens in multiple places:
2015  *   - When we've moved an extent record from the left path leaf to the right
2016  *     path leaf to make room for an empty extent in the left path leaf.
2017  *   - When our insert into the right path leaf is at the leftmost edge
2018  *     and requires an update of the path immediately to it's left. This
2019  *     can occur at the end of some types of rotation and appending inserts.
2020  *   - When we've adjusted the last extent record in the left path leaf and the
2021  *     1st extent record in the right path leaf during cross extent block merge.
2022  */
2023 static void ocfs2_complete_edge_insert(handle_t *handle,
2024 				       struct ocfs2_path *left_path,
2025 				       struct ocfs2_path *right_path,
2026 				       int subtree_index)
2027 {
2028 	int i, idx;
2029 	struct ocfs2_extent_list *el, *left_el, *right_el;
2030 	struct ocfs2_extent_rec *left_rec, *right_rec;
2031 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2032 
2033 	/*
2034 	 * Update the counts and position values within all the
2035 	 * interior nodes to reflect the leaf rotation we just did.
2036 	 *
2037 	 * The root node is handled below the loop.
2038 	 *
2039 	 * We begin the loop with right_el and left_el pointing to the
2040 	 * leaf lists and work our way up.
2041 	 *
2042 	 * NOTE: within this loop, left_el and right_el always refer
2043 	 * to the *child* lists.
2044 	 */
2045 	left_el = path_leaf_el(left_path);
2046 	right_el = path_leaf_el(right_path);
2047 	for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
2048 		trace_ocfs2_complete_edge_insert(i);
2049 
2050 		/*
2051 		 * One nice property of knowing that all of these
2052 		 * nodes are below the root is that we only deal with
2053 		 * the leftmost right node record and the rightmost
2054 		 * left node record.
2055 		 */
2056 		el = left_path->p_node[i].el;
2057 		idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2058 		left_rec = &el->l_recs[idx];
2059 
2060 		el = right_path->p_node[i].el;
2061 		right_rec = &el->l_recs[0];
2062 
2063 		ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
2064 					      right_el);
2065 
2066 		ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2067 		ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2068 
2069 		/*
2070 		 * Setup our list pointers now so that the current
2071 		 * parents become children in the next iteration.
2072 		 */
2073 		left_el = left_path->p_node[i].el;
2074 		right_el = right_path->p_node[i].el;
2075 	}
2076 
2077 	/*
2078 	 * At the root node, adjust the two adjacent records which
2079 	 * begin our path to the leaves.
2080 	 */
2081 
2082 	el = left_path->p_node[subtree_index].el;
2083 	left_el = left_path->p_node[subtree_index + 1].el;
2084 	right_el = right_path->p_node[subtree_index + 1].el;
2085 
2086 	ocfs2_adjust_root_records(el, left_el, right_el,
2087 				  left_path->p_node[subtree_index + 1].bh->b_blocknr);
2088 
2089 	root_bh = left_path->p_node[subtree_index].bh;
2090 
2091 	ocfs2_journal_dirty(handle, root_bh);
2092 }
2093 
2094 static int ocfs2_rotate_subtree_right(handle_t *handle,
2095 				      struct ocfs2_extent_tree *et,
2096 				      struct ocfs2_path *left_path,
2097 				      struct ocfs2_path *right_path,
2098 				      int subtree_index)
2099 {
2100 	int ret, i;
2101 	struct buffer_head *right_leaf_bh;
2102 	struct buffer_head *left_leaf_bh = NULL;
2103 	struct buffer_head *root_bh;
2104 	struct ocfs2_extent_list *right_el, *left_el;
2105 	struct ocfs2_extent_rec move_rec;
2106 
2107 	left_leaf_bh = path_leaf_bh(left_path);
2108 	left_el = path_leaf_el(left_path);
2109 
2110 	if (left_el->l_next_free_rec != left_el->l_count) {
2111 		ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
2112 			    "Inode %llu has non-full interior leaf node %llu (next free = %u)\n",
2113 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2114 			    (unsigned long long)left_leaf_bh->b_blocknr,
2115 			    le16_to_cpu(left_el->l_next_free_rec));
2116 		return -EROFS;
2117 	}
2118 
2119 	/*
2120 	 * This extent block may already have an empty record, so we
2121 	 * return early if so.
2122 	 */
2123 	if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2124 		return 0;
2125 
2126 	root_bh = left_path->p_node[subtree_index].bh;
2127 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2128 
2129 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2130 					   subtree_index);
2131 	if (ret) {
2132 		mlog_errno(ret);
2133 		goto out;
2134 	}
2135 
2136 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2137 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2138 						   right_path, i);
2139 		if (ret) {
2140 			mlog_errno(ret);
2141 			goto out;
2142 		}
2143 
2144 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2145 						   left_path, i);
2146 		if (ret) {
2147 			mlog_errno(ret);
2148 			goto out;
2149 		}
2150 	}
2151 
2152 	right_leaf_bh = path_leaf_bh(right_path);
2153 	right_el = path_leaf_el(right_path);
2154 
2155 	/* This is a code error, not a disk corruption. */
2156 	mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2157 			"because rightmost leaf block %llu is empty\n",
2158 			(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2159 			(unsigned long long)right_leaf_bh->b_blocknr);
2160 
2161 	ocfs2_create_empty_extent(right_el);
2162 
2163 	ocfs2_journal_dirty(handle, right_leaf_bh);
2164 
2165 	/* Do the copy now. */
2166 	i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2167 	move_rec = left_el->l_recs[i];
2168 	right_el->l_recs[0] = move_rec;
2169 
2170 	/*
2171 	 * Clear out the record we just copied and shift everything
2172 	 * over, leaving an empty extent in the left leaf.
2173 	 *
2174 	 * We temporarily subtract from next_free_rec so that the
2175 	 * shift will lose the tail record (which is now defunct).
2176 	 */
2177 	le16_add_cpu(&left_el->l_next_free_rec, -1);
2178 	ocfs2_shift_records_right(left_el);
2179 	memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2180 	le16_add_cpu(&left_el->l_next_free_rec, 1);
2181 
2182 	ocfs2_journal_dirty(handle, left_leaf_bh);
2183 
2184 	ocfs2_complete_edge_insert(handle, left_path, right_path,
2185 				   subtree_index);
2186 
2187 out:
2188 	return ret;
2189 }
2190 
2191 /*
2192  * Given a full path, determine what cpos value would return us a path
2193  * containing the leaf immediately to the left of the current one.
2194  *
2195  * Will return zero if the path passed in is already the leftmost path.
2196  */
2197 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2198 				  struct ocfs2_path *path, u32 *cpos)
2199 {
2200 	int i, j, ret = 0;
2201 	u64 blkno;
2202 	struct ocfs2_extent_list *el;
2203 
2204 	BUG_ON(path->p_tree_depth == 0);
2205 
2206 	*cpos = 0;
2207 
2208 	blkno = path_leaf_bh(path)->b_blocknr;
2209 
2210 	/* Start at the tree node just above the leaf and work our way up. */
2211 	i = path->p_tree_depth - 1;
2212 	while (i >= 0) {
2213 		el = path->p_node[i].el;
2214 
2215 		/*
2216 		 * Find the extent record just before the one in our
2217 		 * path.
2218 		 */
2219 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2220 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2221 				if (j == 0) {
2222 					if (i == 0) {
2223 						/*
2224 						 * We've determined that the
2225 						 * path specified is already
2226 						 * the leftmost one - return a
2227 						 * cpos of zero.
2228 						 */
2229 						goto out;
2230 					}
2231 					/*
2232 					 * The leftmost record points to our
2233 					 * leaf - we need to travel up the
2234 					 * tree one level.
2235 					 */
2236 					goto next_node;
2237 				}
2238 
2239 				*cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2240 				*cpos = *cpos + ocfs2_rec_clusters(el,
2241 							   &el->l_recs[j - 1]);
2242 				*cpos = *cpos - 1;
2243 				goto out;
2244 			}
2245 		}
2246 
2247 		/*
2248 		 * If we got here, we never found a valid node where
2249 		 * the tree indicated one should be.
2250 		 */
2251 		ocfs2_error(sb, "Invalid extent tree at extent block %llu\n",
2252 			    (unsigned long long)blkno);
2253 		ret = -EROFS;
2254 		goto out;
2255 
2256 next_node:
2257 		blkno = path->p_node[i].bh->b_blocknr;
2258 		i--;
2259 	}
2260 
2261 out:
2262 	return ret;
2263 }
2264 
2265 /*
2266  * Extend the transaction by enough credits to complete the rotation,
2267  * and still leave at least the original number of credits allocated
2268  * to this transaction.
2269  */
2270 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2271 					   int op_credits,
2272 					   struct ocfs2_path *path)
2273 {
2274 	int ret = 0;
2275 	int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2276 
2277 	if (handle->h_buffer_credits < credits)
2278 		ret = ocfs2_extend_trans(handle,
2279 					 credits - handle->h_buffer_credits);
2280 
2281 	return ret;
2282 }
2283 
2284 /*
2285  * Trap the case where we're inserting into the theoretical range past
2286  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2287  * whose cpos is less than ours into the right leaf.
2288  *
2289  * It's only necessary to look at the rightmost record of the left
2290  * leaf because the logic that calls us should ensure that the
2291  * theoretical ranges in the path components above the leaves are
2292  * correct.
2293  */
2294 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2295 						 u32 insert_cpos)
2296 {
2297 	struct ocfs2_extent_list *left_el;
2298 	struct ocfs2_extent_rec *rec;
2299 	int next_free;
2300 
2301 	left_el = path_leaf_el(left_path);
2302 	next_free = le16_to_cpu(left_el->l_next_free_rec);
2303 	rec = &left_el->l_recs[next_free - 1];
2304 
2305 	if (insert_cpos > le32_to_cpu(rec->e_cpos))
2306 		return 1;
2307 	return 0;
2308 }
2309 
2310 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2311 {
2312 	int next_free = le16_to_cpu(el->l_next_free_rec);
2313 	unsigned int range;
2314 	struct ocfs2_extent_rec *rec;
2315 
2316 	if (next_free == 0)
2317 		return 0;
2318 
2319 	rec = &el->l_recs[0];
2320 	if (ocfs2_is_empty_extent(rec)) {
2321 		/* Empty list. */
2322 		if (next_free == 1)
2323 			return 0;
2324 		rec = &el->l_recs[1];
2325 	}
2326 
2327 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2328 	if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2329 		return 1;
2330 	return 0;
2331 }
2332 
2333 /*
2334  * Rotate all the records in a btree right one record, starting at insert_cpos.
2335  *
2336  * The path to the rightmost leaf should be passed in.
2337  *
2338  * The array is assumed to be large enough to hold an entire path (tree depth).
2339  *
2340  * Upon successful return from this function:
2341  *
2342  * - The 'right_path' array will contain a path to the leaf block
2343  *   whose range contains e_cpos.
2344  * - That leaf block will have a single empty extent in list index 0.
2345  * - In the case that the rotation requires a post-insert update,
2346  *   *ret_left_path will contain a valid path which can be passed to
2347  *   ocfs2_insert_path().
2348  */
2349 static int ocfs2_rotate_tree_right(handle_t *handle,
2350 				   struct ocfs2_extent_tree *et,
2351 				   enum ocfs2_split_type split,
2352 				   u32 insert_cpos,
2353 				   struct ocfs2_path *right_path,
2354 				   struct ocfs2_path **ret_left_path)
2355 {
2356 	int ret, start, orig_credits = handle->h_buffer_credits;
2357 	u32 cpos;
2358 	struct ocfs2_path *left_path = NULL;
2359 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2360 
2361 	*ret_left_path = NULL;
2362 
2363 	left_path = ocfs2_new_path_from_path(right_path);
2364 	if (!left_path) {
2365 		ret = -ENOMEM;
2366 		mlog_errno(ret);
2367 		goto out;
2368 	}
2369 
2370 	ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2371 	if (ret) {
2372 		mlog_errno(ret);
2373 		goto out;
2374 	}
2375 
2376 	trace_ocfs2_rotate_tree_right(
2377 		(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2378 		insert_cpos, cpos);
2379 
2380 	/*
2381 	 * What we want to do here is:
2382 	 *
2383 	 * 1) Start with the rightmost path.
2384 	 *
2385 	 * 2) Determine a path to the leaf block directly to the left
2386 	 *    of that leaf.
2387 	 *
2388 	 * 3) Determine the 'subtree root' - the lowest level tree node
2389 	 *    which contains a path to both leaves.
2390 	 *
2391 	 * 4) Rotate the subtree.
2392 	 *
2393 	 * 5) Find the next subtree by considering the left path to be
2394 	 *    the new right path.
2395 	 *
2396 	 * The check at the top of this while loop also accepts
2397 	 * insert_cpos == cpos because cpos is only a _theoretical_
2398 	 * value to get us the left path - insert_cpos might very well
2399 	 * be filling that hole.
2400 	 *
2401 	 * Stop at a cpos of '0' because we either started at the
2402 	 * leftmost branch (i.e., a tree with one branch and a
2403 	 * rotation inside of it), or we've gone as far as we can in
2404 	 * rotating subtrees.
2405 	 */
2406 	while (cpos && insert_cpos <= cpos) {
2407 		trace_ocfs2_rotate_tree_right(
2408 			(unsigned long long)
2409 			ocfs2_metadata_cache_owner(et->et_ci),
2410 			insert_cpos, cpos);
2411 
2412 		ret = ocfs2_find_path(et->et_ci, left_path, cpos);
2413 		if (ret) {
2414 			mlog_errno(ret);
2415 			goto out;
2416 		}
2417 
2418 		mlog_bug_on_msg(path_leaf_bh(left_path) ==
2419 				path_leaf_bh(right_path),
2420 				"Owner %llu: error during insert of %u "
2421 				"(left path cpos %u) results in two identical "
2422 				"paths ending at %llu\n",
2423 				(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2424 				insert_cpos, cpos,
2425 				(unsigned long long)
2426 				path_leaf_bh(left_path)->b_blocknr);
2427 
2428 		if (split == SPLIT_NONE &&
2429 		    ocfs2_rotate_requires_path_adjustment(left_path,
2430 							  insert_cpos)) {
2431 
2432 			/*
2433 			 * We've rotated the tree as much as we
2434 			 * should. The rest is up to
2435 			 * ocfs2_insert_path() to complete, after the
2436 			 * record insertion. We indicate this
2437 			 * situation by returning the left path.
2438 			 *
2439 			 * The reason we don't adjust the records here
2440 			 * before the record insert is that an error
2441 			 * later might break the rule where a parent
2442 			 * record e_cpos will reflect the actual
2443 			 * e_cpos of the 1st nonempty record of the
2444 			 * child list.
2445 			 */
2446 			*ret_left_path = left_path;
2447 			goto out_ret_path;
2448 		}
2449 
2450 		start = ocfs2_find_subtree_root(et, left_path, right_path);
2451 
2452 		trace_ocfs2_rotate_subtree(start,
2453 			(unsigned long long)
2454 			right_path->p_node[start].bh->b_blocknr,
2455 			right_path->p_tree_depth);
2456 
2457 		ret = ocfs2_extend_rotate_transaction(handle, start,
2458 						      orig_credits, right_path);
2459 		if (ret) {
2460 			mlog_errno(ret);
2461 			goto out;
2462 		}
2463 
2464 		ret = ocfs2_rotate_subtree_right(handle, et, left_path,
2465 						 right_path, start);
2466 		if (ret) {
2467 			mlog_errno(ret);
2468 			goto out;
2469 		}
2470 
2471 		if (split != SPLIT_NONE &&
2472 		    ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2473 						insert_cpos)) {
2474 			/*
2475 			 * A rotate moves the rightmost left leaf
2476 			 * record over to the leftmost right leaf
2477 			 * slot. If we're doing an extent split
2478 			 * instead of a real insert, then we have to
2479 			 * check that the extent to be split wasn't
2480 			 * just moved over. If it was, then we can
2481 			 * exit here, passing left_path back -
2482 			 * ocfs2_split_extent() is smart enough to
2483 			 * search both leaves.
2484 			 */
2485 			*ret_left_path = left_path;
2486 			goto out_ret_path;
2487 		}
2488 
2489 		/*
2490 		 * There is no need to re-read the next right path
2491 		 * as we know that it'll be our current left
2492 		 * path. Optimize by copying values instead.
2493 		 */
2494 		ocfs2_mv_path(right_path, left_path);
2495 
2496 		ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2497 		if (ret) {
2498 			mlog_errno(ret);
2499 			goto out;
2500 		}
2501 	}
2502 
2503 out:
2504 	ocfs2_free_path(left_path);
2505 
2506 out_ret_path:
2507 	return ret;
2508 }
2509 
2510 static int ocfs2_update_edge_lengths(handle_t *handle,
2511 				     struct ocfs2_extent_tree *et,
2512 				     int subtree_index, struct ocfs2_path *path)
2513 {
2514 	int i, idx, ret;
2515 	struct ocfs2_extent_rec *rec;
2516 	struct ocfs2_extent_list *el;
2517 	struct ocfs2_extent_block *eb;
2518 	u32 range;
2519 
2520 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
2521 	if (ret) {
2522 		mlog_errno(ret);
2523 		goto out;
2524 	}
2525 
2526 	/* Path should always be rightmost. */
2527 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2528 	BUG_ON(eb->h_next_leaf_blk != 0ULL);
2529 
2530 	el = &eb->h_list;
2531 	BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2532 	idx = le16_to_cpu(el->l_next_free_rec) - 1;
2533 	rec = &el->l_recs[idx];
2534 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2535 
2536 	for (i = 0; i < path->p_tree_depth; i++) {
2537 		el = path->p_node[i].el;
2538 		idx = le16_to_cpu(el->l_next_free_rec) - 1;
2539 		rec = &el->l_recs[idx];
2540 
2541 		rec->e_int_clusters = cpu_to_le32(range);
2542 		le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2543 
2544 		ocfs2_journal_dirty(handle, path->p_node[i].bh);
2545 	}
2546 out:
2547 	return ret;
2548 }
2549 
2550 static void ocfs2_unlink_path(handle_t *handle,
2551 			      struct ocfs2_extent_tree *et,
2552 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
2553 			      struct ocfs2_path *path, int unlink_start)
2554 {
2555 	int ret, i;
2556 	struct ocfs2_extent_block *eb;
2557 	struct ocfs2_extent_list *el;
2558 	struct buffer_head *bh;
2559 
2560 	for(i = unlink_start; i < path_num_items(path); i++) {
2561 		bh = path->p_node[i].bh;
2562 
2563 		eb = (struct ocfs2_extent_block *)bh->b_data;
2564 		/*
2565 		 * Not all nodes might have had their final count
2566 		 * decremented by the caller - handle this here.
2567 		 */
2568 		el = &eb->h_list;
2569 		if (le16_to_cpu(el->l_next_free_rec) > 1) {
2570 			mlog(ML_ERROR,
2571 			     "Inode %llu, attempted to remove extent block "
2572 			     "%llu with %u records\n",
2573 			     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2574 			     (unsigned long long)le64_to_cpu(eb->h_blkno),
2575 			     le16_to_cpu(el->l_next_free_rec));
2576 
2577 			ocfs2_journal_dirty(handle, bh);
2578 			ocfs2_remove_from_cache(et->et_ci, bh);
2579 			continue;
2580 		}
2581 
2582 		el->l_next_free_rec = 0;
2583 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2584 
2585 		ocfs2_journal_dirty(handle, bh);
2586 
2587 		ret = ocfs2_cache_extent_block_free(dealloc, eb);
2588 		if (ret)
2589 			mlog_errno(ret);
2590 
2591 		ocfs2_remove_from_cache(et->et_ci, bh);
2592 	}
2593 }
2594 
2595 static void ocfs2_unlink_subtree(handle_t *handle,
2596 				 struct ocfs2_extent_tree *et,
2597 				 struct ocfs2_path *left_path,
2598 				 struct ocfs2_path *right_path,
2599 				 int subtree_index,
2600 				 struct ocfs2_cached_dealloc_ctxt *dealloc)
2601 {
2602 	int i;
2603 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2604 	struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2605 	struct ocfs2_extent_list *el;
2606 	struct ocfs2_extent_block *eb;
2607 
2608 	el = path_leaf_el(left_path);
2609 
2610 	eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2611 
2612 	for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2613 		if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2614 			break;
2615 
2616 	BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2617 
2618 	memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2619 	le16_add_cpu(&root_el->l_next_free_rec, -1);
2620 
2621 	eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2622 	eb->h_next_leaf_blk = 0;
2623 
2624 	ocfs2_journal_dirty(handle, root_bh);
2625 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2626 
2627 	ocfs2_unlink_path(handle, et, dealloc, right_path,
2628 			  subtree_index + 1);
2629 }
2630 
2631 static int ocfs2_rotate_subtree_left(handle_t *handle,
2632 				     struct ocfs2_extent_tree *et,
2633 				     struct ocfs2_path *left_path,
2634 				     struct ocfs2_path *right_path,
2635 				     int subtree_index,
2636 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
2637 				     int *deleted)
2638 {
2639 	int ret, i, del_right_subtree = 0, right_has_empty = 0;
2640 	struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2641 	struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2642 	struct ocfs2_extent_block *eb;
2643 
2644 	*deleted = 0;
2645 
2646 	right_leaf_el = path_leaf_el(right_path);
2647 	left_leaf_el = path_leaf_el(left_path);
2648 	root_bh = left_path->p_node[subtree_index].bh;
2649 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2650 
2651 	if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2652 		return 0;
2653 
2654 	eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2655 	if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2656 		/*
2657 		 * It's legal for us to proceed if the right leaf is
2658 		 * the rightmost one and it has an empty extent. There
2659 		 * are two cases to handle - whether the leaf will be
2660 		 * empty after removal or not. If the leaf isn't empty
2661 		 * then just remove the empty extent up front. The
2662 		 * next block will handle empty leaves by flagging
2663 		 * them for unlink.
2664 		 *
2665 		 * Non rightmost leaves will throw -EAGAIN and the
2666 		 * caller can manually move the subtree and retry.
2667 		 */
2668 
2669 		if (eb->h_next_leaf_blk != 0ULL)
2670 			return -EAGAIN;
2671 
2672 		if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2673 			ret = ocfs2_journal_access_eb(handle, et->et_ci,
2674 						      path_leaf_bh(right_path),
2675 						      OCFS2_JOURNAL_ACCESS_WRITE);
2676 			if (ret) {
2677 				mlog_errno(ret);
2678 				goto out;
2679 			}
2680 
2681 			ocfs2_remove_empty_extent(right_leaf_el);
2682 		} else
2683 			right_has_empty = 1;
2684 	}
2685 
2686 	if (eb->h_next_leaf_blk == 0ULL &&
2687 	    le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2688 		/*
2689 		 * We have to update i_last_eb_blk during the meta
2690 		 * data delete.
2691 		 */
2692 		ret = ocfs2_et_root_journal_access(handle, et,
2693 						   OCFS2_JOURNAL_ACCESS_WRITE);
2694 		if (ret) {
2695 			mlog_errno(ret);
2696 			goto out;
2697 		}
2698 
2699 		del_right_subtree = 1;
2700 	}
2701 
2702 	/*
2703 	 * Getting here with an empty extent in the right path implies
2704 	 * that it's the rightmost path and will be deleted.
2705 	 */
2706 	BUG_ON(right_has_empty && !del_right_subtree);
2707 
2708 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2709 					   subtree_index);
2710 	if (ret) {
2711 		mlog_errno(ret);
2712 		goto out;
2713 	}
2714 
2715 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2716 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2717 						   right_path, i);
2718 		if (ret) {
2719 			mlog_errno(ret);
2720 			goto out;
2721 		}
2722 
2723 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2724 						   left_path, i);
2725 		if (ret) {
2726 			mlog_errno(ret);
2727 			goto out;
2728 		}
2729 	}
2730 
2731 	if (!right_has_empty) {
2732 		/*
2733 		 * Only do this if we're moving a real
2734 		 * record. Otherwise, the action is delayed until
2735 		 * after removal of the right path in which case we
2736 		 * can do a simple shift to remove the empty extent.
2737 		 */
2738 		ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2739 		memset(&right_leaf_el->l_recs[0], 0,
2740 		       sizeof(struct ocfs2_extent_rec));
2741 	}
2742 	if (eb->h_next_leaf_blk == 0ULL) {
2743 		/*
2744 		 * Move recs over to get rid of empty extent, decrease
2745 		 * next_free. This is allowed to remove the last
2746 		 * extent in our leaf (setting l_next_free_rec to
2747 		 * zero) - the delete code below won't care.
2748 		 */
2749 		ocfs2_remove_empty_extent(right_leaf_el);
2750 	}
2751 
2752 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2753 	ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2754 
2755 	if (del_right_subtree) {
2756 		ocfs2_unlink_subtree(handle, et, left_path, right_path,
2757 				     subtree_index, dealloc);
2758 		ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
2759 						left_path);
2760 		if (ret) {
2761 			mlog_errno(ret);
2762 			goto out;
2763 		}
2764 
2765 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2766 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2767 
2768 		/*
2769 		 * Removal of the extent in the left leaf was skipped
2770 		 * above so we could delete the right path
2771 		 * 1st.
2772 		 */
2773 		if (right_has_empty)
2774 			ocfs2_remove_empty_extent(left_leaf_el);
2775 
2776 		ocfs2_journal_dirty(handle, et_root_bh);
2777 
2778 		*deleted = 1;
2779 	} else
2780 		ocfs2_complete_edge_insert(handle, left_path, right_path,
2781 					   subtree_index);
2782 
2783 out:
2784 	return ret;
2785 }
2786 
2787 /*
2788  * Given a full path, determine what cpos value would return us a path
2789  * containing the leaf immediately to the right of the current one.
2790  *
2791  * Will return zero if the path passed in is already the rightmost path.
2792  *
2793  * This looks similar, but is subtly different to
2794  * ocfs2_find_cpos_for_left_leaf().
2795  */
2796 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2797 				   struct ocfs2_path *path, u32 *cpos)
2798 {
2799 	int i, j, ret = 0;
2800 	u64 blkno;
2801 	struct ocfs2_extent_list *el;
2802 
2803 	*cpos = 0;
2804 
2805 	if (path->p_tree_depth == 0)
2806 		return 0;
2807 
2808 	blkno = path_leaf_bh(path)->b_blocknr;
2809 
2810 	/* Start at the tree node just above the leaf and work our way up. */
2811 	i = path->p_tree_depth - 1;
2812 	while (i >= 0) {
2813 		int next_free;
2814 
2815 		el = path->p_node[i].el;
2816 
2817 		/*
2818 		 * Find the extent record just after the one in our
2819 		 * path.
2820 		 */
2821 		next_free = le16_to_cpu(el->l_next_free_rec);
2822 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2823 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2824 				if (j == (next_free - 1)) {
2825 					if (i == 0) {
2826 						/*
2827 						 * We've determined that the
2828 						 * path specified is already
2829 						 * the rightmost one - return a
2830 						 * cpos of zero.
2831 						 */
2832 						goto out;
2833 					}
2834 					/*
2835 					 * The rightmost record points to our
2836 					 * leaf - we need to travel up the
2837 					 * tree one level.
2838 					 */
2839 					goto next_node;
2840 				}
2841 
2842 				*cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2843 				goto out;
2844 			}
2845 		}
2846 
2847 		/*
2848 		 * If we got here, we never found a valid node where
2849 		 * the tree indicated one should be.
2850 		 */
2851 		ocfs2_error(sb, "Invalid extent tree at extent block %llu\n",
2852 			    (unsigned long long)blkno);
2853 		ret = -EROFS;
2854 		goto out;
2855 
2856 next_node:
2857 		blkno = path->p_node[i].bh->b_blocknr;
2858 		i--;
2859 	}
2860 
2861 out:
2862 	return ret;
2863 }
2864 
2865 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle,
2866 					    struct ocfs2_extent_tree *et,
2867 					    struct ocfs2_path *path)
2868 {
2869 	int ret;
2870 	struct buffer_head *bh = path_leaf_bh(path);
2871 	struct ocfs2_extent_list *el = path_leaf_el(path);
2872 
2873 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2874 		return 0;
2875 
2876 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
2877 					   path_num_items(path) - 1);
2878 	if (ret) {
2879 		mlog_errno(ret);
2880 		goto out;
2881 	}
2882 
2883 	ocfs2_remove_empty_extent(el);
2884 	ocfs2_journal_dirty(handle, bh);
2885 
2886 out:
2887 	return ret;
2888 }
2889 
2890 static int __ocfs2_rotate_tree_left(handle_t *handle,
2891 				    struct ocfs2_extent_tree *et,
2892 				    int orig_credits,
2893 				    struct ocfs2_path *path,
2894 				    struct ocfs2_cached_dealloc_ctxt *dealloc,
2895 				    struct ocfs2_path **empty_extent_path)
2896 {
2897 	int ret, subtree_root, deleted;
2898 	u32 right_cpos;
2899 	struct ocfs2_path *left_path = NULL;
2900 	struct ocfs2_path *right_path = NULL;
2901 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2902 
2903 	if (!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])))
2904 		return 0;
2905 
2906 	*empty_extent_path = NULL;
2907 
2908 	ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
2909 	if (ret) {
2910 		mlog_errno(ret);
2911 		goto out;
2912 	}
2913 
2914 	left_path = ocfs2_new_path_from_path(path);
2915 	if (!left_path) {
2916 		ret = -ENOMEM;
2917 		mlog_errno(ret);
2918 		goto out;
2919 	}
2920 
2921 	ocfs2_cp_path(left_path, path);
2922 
2923 	right_path = ocfs2_new_path_from_path(path);
2924 	if (!right_path) {
2925 		ret = -ENOMEM;
2926 		mlog_errno(ret);
2927 		goto out;
2928 	}
2929 
2930 	while (right_cpos) {
2931 		ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
2932 		if (ret) {
2933 			mlog_errno(ret);
2934 			goto out;
2935 		}
2936 
2937 		subtree_root = ocfs2_find_subtree_root(et, left_path,
2938 						       right_path);
2939 
2940 		trace_ocfs2_rotate_subtree(subtree_root,
2941 		     (unsigned long long)
2942 		     right_path->p_node[subtree_root].bh->b_blocknr,
2943 		     right_path->p_tree_depth);
2944 
2945 		ret = ocfs2_extend_rotate_transaction(handle, 0,
2946 						      orig_credits, left_path);
2947 		if (ret) {
2948 			mlog_errno(ret);
2949 			goto out;
2950 		}
2951 
2952 		/*
2953 		 * Caller might still want to make changes to the
2954 		 * tree root, so re-add it to the journal here.
2955 		 */
2956 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2957 						   left_path, 0);
2958 		if (ret) {
2959 			mlog_errno(ret);
2960 			goto out;
2961 		}
2962 
2963 		ret = ocfs2_rotate_subtree_left(handle, et, left_path,
2964 						right_path, subtree_root,
2965 						dealloc, &deleted);
2966 		if (ret == -EAGAIN) {
2967 			/*
2968 			 * The rotation has to temporarily stop due to
2969 			 * the right subtree having an empty
2970 			 * extent. Pass it back to the caller for a
2971 			 * fixup.
2972 			 */
2973 			*empty_extent_path = right_path;
2974 			right_path = NULL;
2975 			goto out;
2976 		}
2977 		if (ret) {
2978 			mlog_errno(ret);
2979 			goto out;
2980 		}
2981 
2982 		/*
2983 		 * The subtree rotate might have removed records on
2984 		 * the rightmost edge. If so, then rotation is
2985 		 * complete.
2986 		 */
2987 		if (deleted)
2988 			break;
2989 
2990 		ocfs2_mv_path(left_path, right_path);
2991 
2992 		ret = ocfs2_find_cpos_for_right_leaf(sb, left_path,
2993 						     &right_cpos);
2994 		if (ret) {
2995 			mlog_errno(ret);
2996 			goto out;
2997 		}
2998 	}
2999 
3000 out:
3001 	ocfs2_free_path(right_path);
3002 	ocfs2_free_path(left_path);
3003 
3004 	return ret;
3005 }
3006 
3007 static int ocfs2_remove_rightmost_path(handle_t *handle,
3008 				struct ocfs2_extent_tree *et,
3009 				struct ocfs2_path *path,
3010 				struct ocfs2_cached_dealloc_ctxt *dealloc)
3011 {
3012 	int ret, subtree_index;
3013 	u32 cpos;
3014 	struct ocfs2_path *left_path = NULL;
3015 	struct ocfs2_extent_block *eb;
3016 	struct ocfs2_extent_list *el;
3017 
3018 	ret = ocfs2_et_sanity_check(et);
3019 	if (ret)
3020 		goto out;
3021 
3022 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
3023 	if (ret) {
3024 		mlog_errno(ret);
3025 		goto out;
3026 	}
3027 
3028 	ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3029 					    path, &cpos);
3030 	if (ret) {
3031 		mlog_errno(ret);
3032 		goto out;
3033 	}
3034 
3035 	if (cpos) {
3036 		/*
3037 		 * We have a path to the left of this one - it needs
3038 		 * an update too.
3039 		 */
3040 		left_path = ocfs2_new_path_from_path(path);
3041 		if (!left_path) {
3042 			ret = -ENOMEM;
3043 			mlog_errno(ret);
3044 			goto out;
3045 		}
3046 
3047 		ret = ocfs2_find_path(et->et_ci, left_path, cpos);
3048 		if (ret) {
3049 			mlog_errno(ret);
3050 			goto out;
3051 		}
3052 
3053 		ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
3054 		if (ret) {
3055 			mlog_errno(ret);
3056 			goto out;
3057 		}
3058 
3059 		subtree_index = ocfs2_find_subtree_root(et, left_path, path);
3060 
3061 		ocfs2_unlink_subtree(handle, et, left_path, path,
3062 				     subtree_index, dealloc);
3063 		ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
3064 						left_path);
3065 		if (ret) {
3066 			mlog_errno(ret);
3067 			goto out;
3068 		}
3069 
3070 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3071 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3072 	} else {
3073 		/*
3074 		 * 'path' is also the leftmost path which
3075 		 * means it must be the only one. This gets
3076 		 * handled differently because we want to
3077 		 * revert the root back to having extents
3078 		 * in-line.
3079 		 */
3080 		ocfs2_unlink_path(handle, et, dealloc, path, 1);
3081 
3082 		el = et->et_root_el;
3083 		el->l_tree_depth = 0;
3084 		el->l_next_free_rec = 0;
3085 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3086 
3087 		ocfs2_et_set_last_eb_blk(et, 0);
3088 	}
3089 
3090 	ocfs2_journal_dirty(handle, path_root_bh(path));
3091 
3092 out:
3093 	ocfs2_free_path(left_path);
3094 	return ret;
3095 }
3096 
3097 static int ocfs2_remove_rightmost_empty_extent(struct ocfs2_super *osb,
3098 				struct ocfs2_extent_tree *et,
3099 				struct ocfs2_path *path,
3100 				struct ocfs2_cached_dealloc_ctxt *dealloc)
3101 {
3102 	handle_t *handle;
3103 	int ret;
3104 	int credits = path->p_tree_depth * 2 + 1;
3105 
3106 	handle = ocfs2_start_trans(osb, credits);
3107 	if (IS_ERR(handle)) {
3108 		ret = PTR_ERR(handle);
3109 		mlog_errno(ret);
3110 		return ret;
3111 	}
3112 
3113 	ret = ocfs2_remove_rightmost_path(handle, et, path, dealloc);
3114 	if (ret)
3115 		mlog_errno(ret);
3116 
3117 	ocfs2_commit_trans(osb, handle);
3118 	return ret;
3119 }
3120 
3121 /*
3122  * Left rotation of btree records.
3123  *
3124  * In many ways, this is (unsurprisingly) the opposite of right
3125  * rotation. We start at some non-rightmost path containing an empty
3126  * extent in the leaf block. The code works its way to the rightmost
3127  * path by rotating records to the left in every subtree.
3128  *
3129  * This is used by any code which reduces the number of extent records
3130  * in a leaf. After removal, an empty record should be placed in the
3131  * leftmost list position.
3132  *
3133  * This won't handle a length update of the rightmost path records if
3134  * the rightmost tree leaf record is removed so the caller is
3135  * responsible for detecting and correcting that.
3136  */
3137 static int ocfs2_rotate_tree_left(handle_t *handle,
3138 				  struct ocfs2_extent_tree *et,
3139 				  struct ocfs2_path *path,
3140 				  struct ocfs2_cached_dealloc_ctxt *dealloc)
3141 {
3142 	int ret, orig_credits = handle->h_buffer_credits;
3143 	struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3144 	struct ocfs2_extent_block *eb;
3145 	struct ocfs2_extent_list *el;
3146 
3147 	el = path_leaf_el(path);
3148 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3149 		return 0;
3150 
3151 	if (path->p_tree_depth == 0) {
3152 rightmost_no_delete:
3153 		/*
3154 		 * Inline extents. This is trivially handled, so do
3155 		 * it up front.
3156 		 */
3157 		ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path);
3158 		if (ret)
3159 			mlog_errno(ret);
3160 		goto out;
3161 	}
3162 
3163 	/*
3164 	 * Handle rightmost branch now. There's several cases:
3165 	 *  1) simple rotation leaving records in there. That's trivial.
3166 	 *  2) rotation requiring a branch delete - there's no more
3167 	 *     records left. Two cases of this:
3168 	 *     a) There are branches to the left.
3169 	 *     b) This is also the leftmost (the only) branch.
3170 	 *
3171 	 *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
3172 	 *  2a) we need the left branch so that we can update it with the unlink
3173 	 *  2b) we need to bring the root back to inline extents.
3174 	 */
3175 
3176 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3177 	el = &eb->h_list;
3178 	if (eb->h_next_leaf_blk == 0) {
3179 		/*
3180 		 * This gets a bit tricky if we're going to delete the
3181 		 * rightmost path. Get the other cases out of the way
3182 		 * 1st.
3183 		 */
3184 		if (le16_to_cpu(el->l_next_free_rec) > 1)
3185 			goto rightmost_no_delete;
3186 
3187 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
3188 			ret = -EIO;
3189 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3190 				    "Owner %llu has empty extent block at %llu\n",
3191 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
3192 				    (unsigned long long)le64_to_cpu(eb->h_blkno));
3193 			goto out;
3194 		}
3195 
3196 		/*
3197 		 * XXX: The caller can not trust "path" any more after
3198 		 * this as it will have been deleted. What do we do?
3199 		 *
3200 		 * In theory the rotate-for-merge code will never get
3201 		 * here because it'll always ask for a rotate in a
3202 		 * nonempty list.
3203 		 */
3204 
3205 		ret = ocfs2_remove_rightmost_path(handle, et, path,
3206 						  dealloc);
3207 		if (ret)
3208 			mlog_errno(ret);
3209 		goto out;
3210 	}
3211 
3212 	/*
3213 	 * Now we can loop, remembering the path we get from -EAGAIN
3214 	 * and restarting from there.
3215 	 */
3216 try_rotate:
3217 	ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path,
3218 				       dealloc, &restart_path);
3219 	if (ret && ret != -EAGAIN) {
3220 		mlog_errno(ret);
3221 		goto out;
3222 	}
3223 
3224 	while (ret == -EAGAIN) {
3225 		tmp_path = restart_path;
3226 		restart_path = NULL;
3227 
3228 		ret = __ocfs2_rotate_tree_left(handle, et, orig_credits,
3229 					       tmp_path, dealloc,
3230 					       &restart_path);
3231 		if (ret && ret != -EAGAIN) {
3232 			mlog_errno(ret);
3233 			goto out;
3234 		}
3235 
3236 		ocfs2_free_path(tmp_path);
3237 		tmp_path = NULL;
3238 
3239 		if (ret == 0)
3240 			goto try_rotate;
3241 	}
3242 
3243 out:
3244 	ocfs2_free_path(tmp_path);
3245 	ocfs2_free_path(restart_path);
3246 	return ret;
3247 }
3248 
3249 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3250 				int index)
3251 {
3252 	struct ocfs2_extent_rec *rec = &el->l_recs[index];
3253 	unsigned int size;
3254 
3255 	if (rec->e_leaf_clusters == 0) {
3256 		/*
3257 		 * We consumed all of the merged-from record. An empty
3258 		 * extent cannot exist anywhere but the 1st array
3259 		 * position, so move things over if the merged-from
3260 		 * record doesn't occupy that position.
3261 		 *
3262 		 * This creates a new empty extent so the caller
3263 		 * should be smart enough to have removed any existing
3264 		 * ones.
3265 		 */
3266 		if (index > 0) {
3267 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3268 			size = index * sizeof(struct ocfs2_extent_rec);
3269 			memmove(&el->l_recs[1], &el->l_recs[0], size);
3270 		}
3271 
3272 		/*
3273 		 * Always memset - the caller doesn't check whether it
3274 		 * created an empty extent, so there could be junk in
3275 		 * the other fields.
3276 		 */
3277 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3278 	}
3279 }
3280 
3281 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et,
3282 				struct ocfs2_path *left_path,
3283 				struct ocfs2_path **ret_right_path)
3284 {
3285 	int ret;
3286 	u32 right_cpos;
3287 	struct ocfs2_path *right_path = NULL;
3288 	struct ocfs2_extent_list *left_el;
3289 
3290 	*ret_right_path = NULL;
3291 
3292 	/* This function shouldn't be called for non-trees. */
3293 	BUG_ON(left_path->p_tree_depth == 0);
3294 
3295 	left_el = path_leaf_el(left_path);
3296 	BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3297 
3298 	ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3299 					     left_path, &right_cpos);
3300 	if (ret) {
3301 		mlog_errno(ret);
3302 		goto out;
3303 	}
3304 
3305 	/* This function shouldn't be called for the rightmost leaf. */
3306 	BUG_ON(right_cpos == 0);
3307 
3308 	right_path = ocfs2_new_path_from_path(left_path);
3309 	if (!right_path) {
3310 		ret = -ENOMEM;
3311 		mlog_errno(ret);
3312 		goto out;
3313 	}
3314 
3315 	ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
3316 	if (ret) {
3317 		mlog_errno(ret);
3318 		goto out;
3319 	}
3320 
3321 	*ret_right_path = right_path;
3322 out:
3323 	if (ret)
3324 		ocfs2_free_path(right_path);
3325 	return ret;
3326 }
3327 
3328 /*
3329  * Remove split_rec clusters from the record at index and merge them
3330  * onto the beginning of the record "next" to it.
3331  * For index < l_count - 1, the next means the extent rec at index + 1.
3332  * For index == l_count - 1, the "next" means the 1st extent rec of the
3333  * next extent block.
3334  */
3335 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path,
3336 				 handle_t *handle,
3337 				 struct ocfs2_extent_tree *et,
3338 				 struct ocfs2_extent_rec *split_rec,
3339 				 int index)
3340 {
3341 	int ret, next_free, i;
3342 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3343 	struct ocfs2_extent_rec *left_rec;
3344 	struct ocfs2_extent_rec *right_rec;
3345 	struct ocfs2_extent_list *right_el;
3346 	struct ocfs2_path *right_path = NULL;
3347 	int subtree_index = 0;
3348 	struct ocfs2_extent_list *el = path_leaf_el(left_path);
3349 	struct buffer_head *bh = path_leaf_bh(left_path);
3350 	struct buffer_head *root_bh = NULL;
3351 
3352 	BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3353 	left_rec = &el->l_recs[index];
3354 
3355 	if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3356 	    le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3357 		/* we meet with a cross extent block merge. */
3358 		ret = ocfs2_get_right_path(et, left_path, &right_path);
3359 		if (ret) {
3360 			mlog_errno(ret);
3361 			return ret;
3362 		}
3363 
3364 		right_el = path_leaf_el(right_path);
3365 		next_free = le16_to_cpu(right_el->l_next_free_rec);
3366 		BUG_ON(next_free <= 0);
3367 		right_rec = &right_el->l_recs[0];
3368 		if (ocfs2_is_empty_extent(right_rec)) {
3369 			BUG_ON(next_free <= 1);
3370 			right_rec = &right_el->l_recs[1];
3371 		}
3372 
3373 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3374 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3375 		       le32_to_cpu(right_rec->e_cpos));
3376 
3377 		subtree_index = ocfs2_find_subtree_root(et, left_path,
3378 							right_path);
3379 
3380 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3381 						      handle->h_buffer_credits,
3382 						      right_path);
3383 		if (ret) {
3384 			mlog_errno(ret);
3385 			goto out;
3386 		}
3387 
3388 		root_bh = left_path->p_node[subtree_index].bh;
3389 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3390 
3391 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3392 						   subtree_index);
3393 		if (ret) {
3394 			mlog_errno(ret);
3395 			goto out;
3396 		}
3397 
3398 		for (i = subtree_index + 1;
3399 		     i < path_num_items(right_path); i++) {
3400 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3401 							   right_path, i);
3402 			if (ret) {
3403 				mlog_errno(ret);
3404 				goto out;
3405 			}
3406 
3407 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3408 							   left_path, i);
3409 			if (ret) {
3410 				mlog_errno(ret);
3411 				goto out;
3412 			}
3413 		}
3414 
3415 	} else {
3416 		BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3417 		right_rec = &el->l_recs[index + 1];
3418 	}
3419 
3420 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path,
3421 					   path_num_items(left_path) - 1);
3422 	if (ret) {
3423 		mlog_errno(ret);
3424 		goto out;
3425 	}
3426 
3427 	le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3428 
3429 	le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3430 	le64_add_cpu(&right_rec->e_blkno,
3431 		     -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3432 					       split_clusters));
3433 	le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3434 
3435 	ocfs2_cleanup_merge(el, index);
3436 
3437 	ocfs2_journal_dirty(handle, bh);
3438 	if (right_path) {
3439 		ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3440 		ocfs2_complete_edge_insert(handle, left_path, right_path,
3441 					   subtree_index);
3442 	}
3443 out:
3444 	ocfs2_free_path(right_path);
3445 	return ret;
3446 }
3447 
3448 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et,
3449 			       struct ocfs2_path *right_path,
3450 			       struct ocfs2_path **ret_left_path)
3451 {
3452 	int ret;
3453 	u32 left_cpos;
3454 	struct ocfs2_path *left_path = NULL;
3455 
3456 	*ret_left_path = NULL;
3457 
3458 	/* This function shouldn't be called for non-trees. */
3459 	BUG_ON(right_path->p_tree_depth == 0);
3460 
3461 	ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3462 					    right_path, &left_cpos);
3463 	if (ret) {
3464 		mlog_errno(ret);
3465 		goto out;
3466 	}
3467 
3468 	/* This function shouldn't be called for the leftmost leaf. */
3469 	BUG_ON(left_cpos == 0);
3470 
3471 	left_path = ocfs2_new_path_from_path(right_path);
3472 	if (!left_path) {
3473 		ret = -ENOMEM;
3474 		mlog_errno(ret);
3475 		goto out;
3476 	}
3477 
3478 	ret = ocfs2_find_path(et->et_ci, left_path, left_cpos);
3479 	if (ret) {
3480 		mlog_errno(ret);
3481 		goto out;
3482 	}
3483 
3484 	*ret_left_path = left_path;
3485 out:
3486 	if (ret)
3487 		ocfs2_free_path(left_path);
3488 	return ret;
3489 }
3490 
3491 /*
3492  * Remove split_rec clusters from the record at index and merge them
3493  * onto the tail of the record "before" it.
3494  * For index > 0, the "before" means the extent rec at index - 1.
3495  *
3496  * For index == 0, the "before" means the last record of the previous
3497  * extent block. And there is also a situation that we may need to
3498  * remove the rightmost leaf extent block in the right_path and change
3499  * the right path to indicate the new rightmost path.
3500  */
3501 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path,
3502 				handle_t *handle,
3503 				struct ocfs2_extent_tree *et,
3504 				struct ocfs2_extent_rec *split_rec,
3505 				struct ocfs2_cached_dealloc_ctxt *dealloc,
3506 				int index)
3507 {
3508 	int ret, i, subtree_index = 0, has_empty_extent = 0;
3509 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3510 	struct ocfs2_extent_rec *left_rec;
3511 	struct ocfs2_extent_rec *right_rec;
3512 	struct ocfs2_extent_list *el = path_leaf_el(right_path);
3513 	struct buffer_head *bh = path_leaf_bh(right_path);
3514 	struct buffer_head *root_bh = NULL;
3515 	struct ocfs2_path *left_path = NULL;
3516 	struct ocfs2_extent_list *left_el;
3517 
3518 	BUG_ON(index < 0);
3519 
3520 	right_rec = &el->l_recs[index];
3521 	if (index == 0) {
3522 		/* we meet with a cross extent block merge. */
3523 		ret = ocfs2_get_left_path(et, right_path, &left_path);
3524 		if (ret) {
3525 			mlog_errno(ret);
3526 			return ret;
3527 		}
3528 
3529 		left_el = path_leaf_el(left_path);
3530 		BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3531 		       le16_to_cpu(left_el->l_count));
3532 
3533 		left_rec = &left_el->l_recs[
3534 				le16_to_cpu(left_el->l_next_free_rec) - 1];
3535 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3536 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3537 		       le32_to_cpu(split_rec->e_cpos));
3538 
3539 		subtree_index = ocfs2_find_subtree_root(et, left_path,
3540 							right_path);
3541 
3542 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3543 						      handle->h_buffer_credits,
3544 						      left_path);
3545 		if (ret) {
3546 			mlog_errno(ret);
3547 			goto out;
3548 		}
3549 
3550 		root_bh = left_path->p_node[subtree_index].bh;
3551 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3552 
3553 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3554 						   subtree_index);
3555 		if (ret) {
3556 			mlog_errno(ret);
3557 			goto out;
3558 		}
3559 
3560 		for (i = subtree_index + 1;
3561 		     i < path_num_items(right_path); i++) {
3562 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3563 							   right_path, i);
3564 			if (ret) {
3565 				mlog_errno(ret);
3566 				goto out;
3567 			}
3568 
3569 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3570 							   left_path, i);
3571 			if (ret) {
3572 				mlog_errno(ret);
3573 				goto out;
3574 			}
3575 		}
3576 	} else {
3577 		left_rec = &el->l_recs[index - 1];
3578 		if (ocfs2_is_empty_extent(&el->l_recs[0]))
3579 			has_empty_extent = 1;
3580 	}
3581 
3582 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3583 					   path_num_items(right_path) - 1);
3584 	if (ret) {
3585 		mlog_errno(ret);
3586 		goto out;
3587 	}
3588 
3589 	if (has_empty_extent && index == 1) {
3590 		/*
3591 		 * The easy case - we can just plop the record right in.
3592 		 */
3593 		*left_rec = *split_rec;
3594 
3595 		has_empty_extent = 0;
3596 	} else
3597 		le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3598 
3599 	le32_add_cpu(&right_rec->e_cpos, split_clusters);
3600 	le64_add_cpu(&right_rec->e_blkno,
3601 		     ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3602 					      split_clusters));
3603 	le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3604 
3605 	ocfs2_cleanup_merge(el, index);
3606 
3607 	ocfs2_journal_dirty(handle, bh);
3608 	if (left_path) {
3609 		ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3610 
3611 		/*
3612 		 * In the situation that the right_rec is empty and the extent
3613 		 * block is empty also,  ocfs2_complete_edge_insert can't handle
3614 		 * it and we need to delete the right extent block.
3615 		 */
3616 		if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3617 		    le16_to_cpu(el->l_next_free_rec) == 1) {
3618 			/* extend credit for ocfs2_remove_rightmost_path */
3619 			ret = ocfs2_extend_rotate_transaction(handle, 0,
3620 					handle->h_buffer_credits,
3621 					right_path);
3622 			if (ret) {
3623 				mlog_errno(ret);
3624 				goto out;
3625 			}
3626 
3627 			ret = ocfs2_remove_rightmost_path(handle, et,
3628 							  right_path,
3629 							  dealloc);
3630 			if (ret) {
3631 				mlog_errno(ret);
3632 				goto out;
3633 			}
3634 
3635 			/* Now the rightmost extent block has been deleted.
3636 			 * So we use the new rightmost path.
3637 			 */
3638 			ocfs2_mv_path(right_path, left_path);
3639 			left_path = NULL;
3640 		} else
3641 			ocfs2_complete_edge_insert(handle, left_path,
3642 						   right_path, subtree_index);
3643 	}
3644 out:
3645 	ocfs2_free_path(left_path);
3646 	return ret;
3647 }
3648 
3649 static int ocfs2_try_to_merge_extent(handle_t *handle,
3650 				     struct ocfs2_extent_tree *et,
3651 				     struct ocfs2_path *path,
3652 				     int split_index,
3653 				     struct ocfs2_extent_rec *split_rec,
3654 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
3655 				     struct ocfs2_merge_ctxt *ctxt)
3656 {
3657 	int ret = 0;
3658 	struct ocfs2_extent_list *el = path_leaf_el(path);
3659 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3660 
3661 	BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3662 
3663 	if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3664 		/* extend credit for ocfs2_remove_rightmost_path */
3665 		ret = ocfs2_extend_rotate_transaction(handle, 0,
3666 				handle->h_buffer_credits,
3667 				path);
3668 		if (ret) {
3669 			mlog_errno(ret);
3670 			goto out;
3671 		}
3672 		/*
3673 		 * The merge code will need to create an empty
3674 		 * extent to take the place of the newly
3675 		 * emptied slot. Remove any pre-existing empty
3676 		 * extents - having more than one in a leaf is
3677 		 * illegal.
3678 		 */
3679 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3680 		if (ret) {
3681 			mlog_errno(ret);
3682 			goto out;
3683 		}
3684 		split_index--;
3685 		rec = &el->l_recs[split_index];
3686 	}
3687 
3688 	if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3689 		/*
3690 		 * Left-right contig implies this.
3691 		 */
3692 		BUG_ON(!ctxt->c_split_covers_rec);
3693 
3694 		/*
3695 		 * Since the leftright insert always covers the entire
3696 		 * extent, this call will delete the insert record
3697 		 * entirely, resulting in an empty extent record added to
3698 		 * the extent block.
3699 		 *
3700 		 * Since the adding of an empty extent shifts
3701 		 * everything back to the right, there's no need to
3702 		 * update split_index here.
3703 		 *
3704 		 * When the split_index is zero, we need to merge it to the
3705 		 * prevoius extent block. It is more efficient and easier
3706 		 * if we do merge_right first and merge_left later.
3707 		 */
3708 		ret = ocfs2_merge_rec_right(path, handle, et, split_rec,
3709 					    split_index);
3710 		if (ret) {
3711 			mlog_errno(ret);
3712 			goto out;
3713 		}
3714 
3715 		/*
3716 		 * We can only get this from logic error above.
3717 		 */
3718 		BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3719 
3720 		/* extend credit for ocfs2_remove_rightmost_path */
3721 		ret = ocfs2_extend_rotate_transaction(handle, 0,
3722 					handle->h_buffer_credits,
3723 					path);
3724 		if (ret) {
3725 			mlog_errno(ret);
3726 			goto out;
3727 		}
3728 
3729 		/* The merge left us with an empty extent, remove it. */
3730 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3731 		if (ret) {
3732 			mlog_errno(ret);
3733 			goto out;
3734 		}
3735 
3736 		rec = &el->l_recs[split_index];
3737 
3738 		/*
3739 		 * Note that we don't pass split_rec here on purpose -
3740 		 * we've merged it into the rec already.
3741 		 */
3742 		ret = ocfs2_merge_rec_left(path, handle, et, rec,
3743 					   dealloc, split_index);
3744 
3745 		if (ret) {
3746 			mlog_errno(ret);
3747 			goto out;
3748 		}
3749 
3750 		/* extend credit for ocfs2_remove_rightmost_path */
3751 		ret = ocfs2_extend_rotate_transaction(handle, 0,
3752 				handle->h_buffer_credits,
3753 				path);
3754 		if (ret) {
3755 			mlog_errno(ret);
3756 			goto out;
3757 		}
3758 
3759 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3760 		/*
3761 		 * Error from this last rotate is not critical, so
3762 		 * print but don't bubble it up.
3763 		 */
3764 		if (ret)
3765 			mlog_errno(ret);
3766 		ret = 0;
3767 	} else {
3768 		/*
3769 		 * Merge a record to the left or right.
3770 		 *
3771 		 * 'contig_type' is relative to the existing record,
3772 		 * so for example, if we're "right contig", it's to
3773 		 * the record on the left (hence the left merge).
3774 		 */
3775 		if (ctxt->c_contig_type == CONTIG_RIGHT) {
3776 			ret = ocfs2_merge_rec_left(path, handle, et,
3777 						   split_rec, dealloc,
3778 						   split_index);
3779 			if (ret) {
3780 				mlog_errno(ret);
3781 				goto out;
3782 			}
3783 		} else {
3784 			ret = ocfs2_merge_rec_right(path, handle,
3785 						    et, split_rec,
3786 						    split_index);
3787 			if (ret) {
3788 				mlog_errno(ret);
3789 				goto out;
3790 			}
3791 		}
3792 
3793 		if (ctxt->c_split_covers_rec) {
3794 			/* extend credit for ocfs2_remove_rightmost_path */
3795 			ret = ocfs2_extend_rotate_transaction(handle, 0,
3796 					handle->h_buffer_credits,
3797 					path);
3798 			if (ret) {
3799 				mlog_errno(ret);
3800 				ret = 0;
3801 				goto out;
3802 			}
3803 
3804 			/*
3805 			 * The merge may have left an empty extent in
3806 			 * our leaf. Try to rotate it away.
3807 			 */
3808 			ret = ocfs2_rotate_tree_left(handle, et, path,
3809 						     dealloc);
3810 			if (ret)
3811 				mlog_errno(ret);
3812 			ret = 0;
3813 		}
3814 	}
3815 
3816 out:
3817 	return ret;
3818 }
3819 
3820 static void ocfs2_subtract_from_rec(struct super_block *sb,
3821 				    enum ocfs2_split_type split,
3822 				    struct ocfs2_extent_rec *rec,
3823 				    struct ocfs2_extent_rec *split_rec)
3824 {
3825 	u64 len_blocks;
3826 
3827 	len_blocks = ocfs2_clusters_to_blocks(sb,
3828 				le16_to_cpu(split_rec->e_leaf_clusters));
3829 
3830 	if (split == SPLIT_LEFT) {
3831 		/*
3832 		 * Region is on the left edge of the existing
3833 		 * record.
3834 		 */
3835 		le32_add_cpu(&rec->e_cpos,
3836 			     le16_to_cpu(split_rec->e_leaf_clusters));
3837 		le64_add_cpu(&rec->e_blkno, len_blocks);
3838 		le16_add_cpu(&rec->e_leaf_clusters,
3839 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3840 	} else {
3841 		/*
3842 		 * Region is on the right edge of the existing
3843 		 * record.
3844 		 */
3845 		le16_add_cpu(&rec->e_leaf_clusters,
3846 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3847 	}
3848 }
3849 
3850 /*
3851  * Do the final bits of extent record insertion at the target leaf
3852  * list. If this leaf is part of an allocation tree, it is assumed
3853  * that the tree above has been prepared.
3854  */
3855 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et,
3856 				 struct ocfs2_extent_rec *insert_rec,
3857 				 struct ocfs2_extent_list *el,
3858 				 struct ocfs2_insert_type *insert)
3859 {
3860 	int i = insert->ins_contig_index;
3861 	unsigned int range;
3862 	struct ocfs2_extent_rec *rec;
3863 
3864 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3865 
3866 	if (insert->ins_split != SPLIT_NONE) {
3867 		i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3868 		BUG_ON(i == -1);
3869 		rec = &el->l_recs[i];
3870 		ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
3871 					insert->ins_split, rec,
3872 					insert_rec);
3873 		goto rotate;
3874 	}
3875 
3876 	/*
3877 	 * Contiguous insert - either left or right.
3878 	 */
3879 	if (insert->ins_contig != CONTIG_NONE) {
3880 		rec = &el->l_recs[i];
3881 		if (insert->ins_contig == CONTIG_LEFT) {
3882 			rec->e_blkno = insert_rec->e_blkno;
3883 			rec->e_cpos = insert_rec->e_cpos;
3884 		}
3885 		le16_add_cpu(&rec->e_leaf_clusters,
3886 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3887 		return;
3888 	}
3889 
3890 	/*
3891 	 * Handle insert into an empty leaf.
3892 	 */
3893 	if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3894 	    ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3895 	     ocfs2_is_empty_extent(&el->l_recs[0]))) {
3896 		el->l_recs[0] = *insert_rec;
3897 		el->l_next_free_rec = cpu_to_le16(1);
3898 		return;
3899 	}
3900 
3901 	/*
3902 	 * Appending insert.
3903 	 */
3904 	if (insert->ins_appending == APPEND_TAIL) {
3905 		i = le16_to_cpu(el->l_next_free_rec) - 1;
3906 		rec = &el->l_recs[i];
3907 		range = le32_to_cpu(rec->e_cpos)
3908 			+ le16_to_cpu(rec->e_leaf_clusters);
3909 		BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3910 
3911 		mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3912 				le16_to_cpu(el->l_count),
3913 				"owner %llu, depth %u, count %u, next free %u, "
3914 				"rec.cpos %u, rec.clusters %u, "
3915 				"insert.cpos %u, insert.clusters %u\n",
3916 				ocfs2_metadata_cache_owner(et->et_ci),
3917 				le16_to_cpu(el->l_tree_depth),
3918 				le16_to_cpu(el->l_count),
3919 				le16_to_cpu(el->l_next_free_rec),
3920 				le32_to_cpu(el->l_recs[i].e_cpos),
3921 				le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3922 				le32_to_cpu(insert_rec->e_cpos),
3923 				le16_to_cpu(insert_rec->e_leaf_clusters));
3924 		i++;
3925 		el->l_recs[i] = *insert_rec;
3926 		le16_add_cpu(&el->l_next_free_rec, 1);
3927 		return;
3928 	}
3929 
3930 rotate:
3931 	/*
3932 	 * Ok, we have to rotate.
3933 	 *
3934 	 * At this point, it is safe to assume that inserting into an
3935 	 * empty leaf and appending to a leaf have both been handled
3936 	 * above.
3937 	 *
3938 	 * This leaf needs to have space, either by the empty 1st
3939 	 * extent record, or by virtue of an l_next_rec < l_count.
3940 	 */
3941 	ocfs2_rotate_leaf(el, insert_rec);
3942 }
3943 
3944 static void ocfs2_adjust_rightmost_records(handle_t *handle,
3945 					   struct ocfs2_extent_tree *et,
3946 					   struct ocfs2_path *path,
3947 					   struct ocfs2_extent_rec *insert_rec)
3948 {
3949 	int ret, i, next_free;
3950 	struct buffer_head *bh;
3951 	struct ocfs2_extent_list *el;
3952 	struct ocfs2_extent_rec *rec;
3953 
3954 	/*
3955 	 * Update everything except the leaf block.
3956 	 */
3957 	for (i = 0; i < path->p_tree_depth; i++) {
3958 		bh = path->p_node[i].bh;
3959 		el = path->p_node[i].el;
3960 
3961 		next_free = le16_to_cpu(el->l_next_free_rec);
3962 		if (next_free == 0) {
3963 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3964 				    "Owner %llu has a bad extent list\n",
3965 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
3966 			ret = -EIO;
3967 			return;
3968 		}
3969 
3970 		rec = &el->l_recs[next_free - 1];
3971 
3972 		rec->e_int_clusters = insert_rec->e_cpos;
3973 		le32_add_cpu(&rec->e_int_clusters,
3974 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3975 		le32_add_cpu(&rec->e_int_clusters,
3976 			     -le32_to_cpu(rec->e_cpos));
3977 
3978 		ocfs2_journal_dirty(handle, bh);
3979 	}
3980 }
3981 
3982 static int ocfs2_append_rec_to_path(handle_t *handle,
3983 				    struct ocfs2_extent_tree *et,
3984 				    struct ocfs2_extent_rec *insert_rec,
3985 				    struct ocfs2_path *right_path,
3986 				    struct ocfs2_path **ret_left_path)
3987 {
3988 	int ret, next_free;
3989 	struct ocfs2_extent_list *el;
3990 	struct ocfs2_path *left_path = NULL;
3991 
3992 	*ret_left_path = NULL;
3993 
3994 	/*
3995 	 * This shouldn't happen for non-trees. The extent rec cluster
3996 	 * count manipulation below only works for interior nodes.
3997 	 */
3998 	BUG_ON(right_path->p_tree_depth == 0);
3999 
4000 	/*
4001 	 * If our appending insert is at the leftmost edge of a leaf,
4002 	 * then we might need to update the rightmost records of the
4003 	 * neighboring path.
4004 	 */
4005 	el = path_leaf_el(right_path);
4006 	next_free = le16_to_cpu(el->l_next_free_rec);
4007 	if (next_free == 0 ||
4008 	    (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
4009 		u32 left_cpos;
4010 
4011 		ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
4012 						    right_path, &left_cpos);
4013 		if (ret) {
4014 			mlog_errno(ret);
4015 			goto out;
4016 		}
4017 
4018 		trace_ocfs2_append_rec_to_path(
4019 			(unsigned long long)
4020 			ocfs2_metadata_cache_owner(et->et_ci),
4021 			le32_to_cpu(insert_rec->e_cpos),
4022 			left_cpos);
4023 
4024 		/*
4025 		 * No need to worry if the append is already in the
4026 		 * leftmost leaf.
4027 		 */
4028 		if (left_cpos) {
4029 			left_path = ocfs2_new_path_from_path(right_path);
4030 			if (!left_path) {
4031 				ret = -ENOMEM;
4032 				mlog_errno(ret);
4033 				goto out;
4034 			}
4035 
4036 			ret = ocfs2_find_path(et->et_ci, left_path,
4037 					      left_cpos);
4038 			if (ret) {
4039 				mlog_errno(ret);
4040 				goto out;
4041 			}
4042 
4043 			/*
4044 			 * ocfs2_insert_path() will pass the left_path to the
4045 			 * journal for us.
4046 			 */
4047 		}
4048 	}
4049 
4050 	ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4051 	if (ret) {
4052 		mlog_errno(ret);
4053 		goto out;
4054 	}
4055 
4056 	ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec);
4057 
4058 	*ret_left_path = left_path;
4059 	ret = 0;
4060 out:
4061 	if (ret != 0)
4062 		ocfs2_free_path(left_path);
4063 
4064 	return ret;
4065 }
4066 
4067 static void ocfs2_split_record(struct ocfs2_extent_tree *et,
4068 			       struct ocfs2_path *left_path,
4069 			       struct ocfs2_path *right_path,
4070 			       struct ocfs2_extent_rec *split_rec,
4071 			       enum ocfs2_split_type split)
4072 {
4073 	int index;
4074 	u32 cpos = le32_to_cpu(split_rec->e_cpos);
4075 	struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4076 	struct ocfs2_extent_rec *rec, *tmprec;
4077 
4078 	right_el = path_leaf_el(right_path);
4079 	if (left_path)
4080 		left_el = path_leaf_el(left_path);
4081 
4082 	el = right_el;
4083 	insert_el = right_el;
4084 	index = ocfs2_search_extent_list(el, cpos);
4085 	if (index != -1) {
4086 		if (index == 0 && left_path) {
4087 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4088 
4089 			/*
4090 			 * This typically means that the record
4091 			 * started in the left path but moved to the
4092 			 * right as a result of rotation. We either
4093 			 * move the existing record to the left, or we
4094 			 * do the later insert there.
4095 			 *
4096 			 * In this case, the left path should always
4097 			 * exist as the rotate code will have passed
4098 			 * it back for a post-insert update.
4099 			 */
4100 
4101 			if (split == SPLIT_LEFT) {
4102 				/*
4103 				 * It's a left split. Since we know
4104 				 * that the rotate code gave us an
4105 				 * empty extent in the left path, we
4106 				 * can just do the insert there.
4107 				 */
4108 				insert_el = left_el;
4109 			} else {
4110 				/*
4111 				 * Right split - we have to move the
4112 				 * existing record over to the left
4113 				 * leaf. The insert will be into the
4114 				 * newly created empty extent in the
4115 				 * right leaf.
4116 				 */
4117 				tmprec = &right_el->l_recs[index];
4118 				ocfs2_rotate_leaf(left_el, tmprec);
4119 				el = left_el;
4120 
4121 				memset(tmprec, 0, sizeof(*tmprec));
4122 				index = ocfs2_search_extent_list(left_el, cpos);
4123 				BUG_ON(index == -1);
4124 			}
4125 		}
4126 	} else {
4127 		BUG_ON(!left_path);
4128 		BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4129 		/*
4130 		 * Left path is easy - we can just allow the insert to
4131 		 * happen.
4132 		 */
4133 		el = left_el;
4134 		insert_el = left_el;
4135 		index = ocfs2_search_extent_list(el, cpos);
4136 		BUG_ON(index == -1);
4137 	}
4138 
4139 	rec = &el->l_recs[index];
4140 	ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4141 				split, rec, split_rec);
4142 	ocfs2_rotate_leaf(insert_el, split_rec);
4143 }
4144 
4145 /*
4146  * This function only does inserts on an allocation b-tree. For tree
4147  * depth = 0, ocfs2_insert_at_leaf() is called directly.
4148  *
4149  * right_path is the path we want to do the actual insert
4150  * in. left_path should only be passed in if we need to update that
4151  * portion of the tree after an edge insert.
4152  */
4153 static int ocfs2_insert_path(handle_t *handle,
4154 			     struct ocfs2_extent_tree *et,
4155 			     struct ocfs2_path *left_path,
4156 			     struct ocfs2_path *right_path,
4157 			     struct ocfs2_extent_rec *insert_rec,
4158 			     struct ocfs2_insert_type *insert)
4159 {
4160 	int ret, subtree_index;
4161 	struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4162 
4163 	if (left_path) {
4164 		/*
4165 		 * There's a chance that left_path got passed back to
4166 		 * us without being accounted for in the
4167 		 * journal. Extend our transaction here to be sure we
4168 		 * can change those blocks.
4169 		 */
4170 		ret = ocfs2_extend_trans(handle, left_path->p_tree_depth);
4171 		if (ret < 0) {
4172 			mlog_errno(ret);
4173 			goto out;
4174 		}
4175 
4176 		ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
4177 		if (ret < 0) {
4178 			mlog_errno(ret);
4179 			goto out;
4180 		}
4181 	}
4182 
4183 	/*
4184 	 * Pass both paths to the journal. The majority of inserts
4185 	 * will be touching all components anyway.
4186 	 */
4187 	ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4188 	if (ret < 0) {
4189 		mlog_errno(ret);
4190 		goto out;
4191 	}
4192 
4193 	if (insert->ins_split != SPLIT_NONE) {
4194 		/*
4195 		 * We could call ocfs2_insert_at_leaf() for some types
4196 		 * of splits, but it's easier to just let one separate
4197 		 * function sort it all out.
4198 		 */
4199 		ocfs2_split_record(et, left_path, right_path,
4200 				   insert_rec, insert->ins_split);
4201 
4202 		/*
4203 		 * Split might have modified either leaf and we don't
4204 		 * have a guarantee that the later edge insert will
4205 		 * dirty this for us.
4206 		 */
4207 		if (left_path)
4208 			ocfs2_journal_dirty(handle,
4209 					    path_leaf_bh(left_path));
4210 	} else
4211 		ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path),
4212 				     insert);
4213 
4214 	ocfs2_journal_dirty(handle, leaf_bh);
4215 
4216 	if (left_path) {
4217 		/*
4218 		 * The rotate code has indicated that we need to fix
4219 		 * up portions of the tree after the insert.
4220 		 *
4221 		 * XXX: Should we extend the transaction here?
4222 		 */
4223 		subtree_index = ocfs2_find_subtree_root(et, left_path,
4224 							right_path);
4225 		ocfs2_complete_edge_insert(handle, left_path, right_path,
4226 					   subtree_index);
4227 	}
4228 
4229 	ret = 0;
4230 out:
4231 	return ret;
4232 }
4233 
4234 static int ocfs2_do_insert_extent(handle_t *handle,
4235 				  struct ocfs2_extent_tree *et,
4236 				  struct ocfs2_extent_rec *insert_rec,
4237 				  struct ocfs2_insert_type *type)
4238 {
4239 	int ret, rotate = 0;
4240 	u32 cpos;
4241 	struct ocfs2_path *right_path = NULL;
4242 	struct ocfs2_path *left_path = NULL;
4243 	struct ocfs2_extent_list *el;
4244 
4245 	el = et->et_root_el;
4246 
4247 	ret = ocfs2_et_root_journal_access(handle, et,
4248 					   OCFS2_JOURNAL_ACCESS_WRITE);
4249 	if (ret) {
4250 		mlog_errno(ret);
4251 		goto out;
4252 	}
4253 
4254 	if (le16_to_cpu(el->l_tree_depth) == 0) {
4255 		ocfs2_insert_at_leaf(et, insert_rec, el, type);
4256 		goto out_update_clusters;
4257 	}
4258 
4259 	right_path = ocfs2_new_path_from_et(et);
4260 	if (!right_path) {
4261 		ret = -ENOMEM;
4262 		mlog_errno(ret);
4263 		goto out;
4264 	}
4265 
4266 	/*
4267 	 * Determine the path to start with. Rotations need the
4268 	 * rightmost path, everything else can go directly to the
4269 	 * target leaf.
4270 	 */
4271 	cpos = le32_to_cpu(insert_rec->e_cpos);
4272 	if (type->ins_appending == APPEND_NONE &&
4273 	    type->ins_contig == CONTIG_NONE) {
4274 		rotate = 1;
4275 		cpos = UINT_MAX;
4276 	}
4277 
4278 	ret = ocfs2_find_path(et->et_ci, right_path, cpos);
4279 	if (ret) {
4280 		mlog_errno(ret);
4281 		goto out;
4282 	}
4283 
4284 	/*
4285 	 * Rotations and appends need special treatment - they modify
4286 	 * parts of the tree's above them.
4287 	 *
4288 	 * Both might pass back a path immediate to the left of the
4289 	 * one being inserted to. This will be cause
4290 	 * ocfs2_insert_path() to modify the rightmost records of
4291 	 * left_path to account for an edge insert.
4292 	 *
4293 	 * XXX: When modifying this code, keep in mind that an insert
4294 	 * can wind up skipping both of these two special cases...
4295 	 */
4296 	if (rotate) {
4297 		ret = ocfs2_rotate_tree_right(handle, et, type->ins_split,
4298 					      le32_to_cpu(insert_rec->e_cpos),
4299 					      right_path, &left_path);
4300 		if (ret) {
4301 			mlog_errno(ret);
4302 			goto out;
4303 		}
4304 
4305 		/*
4306 		 * ocfs2_rotate_tree_right() might have extended the
4307 		 * transaction without re-journaling our tree root.
4308 		 */
4309 		ret = ocfs2_et_root_journal_access(handle, et,
4310 						   OCFS2_JOURNAL_ACCESS_WRITE);
4311 		if (ret) {
4312 			mlog_errno(ret);
4313 			goto out;
4314 		}
4315 	} else if (type->ins_appending == APPEND_TAIL
4316 		   && type->ins_contig != CONTIG_LEFT) {
4317 		ret = ocfs2_append_rec_to_path(handle, et, insert_rec,
4318 					       right_path, &left_path);
4319 		if (ret) {
4320 			mlog_errno(ret);
4321 			goto out;
4322 		}
4323 	}
4324 
4325 	ret = ocfs2_insert_path(handle, et, left_path, right_path,
4326 				insert_rec, type);
4327 	if (ret) {
4328 		mlog_errno(ret);
4329 		goto out;
4330 	}
4331 
4332 out_update_clusters:
4333 	if (type->ins_split == SPLIT_NONE)
4334 		ocfs2_et_update_clusters(et,
4335 					 le16_to_cpu(insert_rec->e_leaf_clusters));
4336 
4337 	ocfs2_journal_dirty(handle, et->et_root_bh);
4338 
4339 out:
4340 	ocfs2_free_path(left_path);
4341 	ocfs2_free_path(right_path);
4342 
4343 	return ret;
4344 }
4345 
4346 static int ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et,
4347 			       struct ocfs2_path *path,
4348 			       struct ocfs2_extent_list *el, int index,
4349 			       struct ocfs2_extent_rec *split_rec,
4350 			       struct ocfs2_merge_ctxt *ctxt)
4351 {
4352 	int status = 0;
4353 	enum ocfs2_contig_type ret = CONTIG_NONE;
4354 	u32 left_cpos, right_cpos;
4355 	struct ocfs2_extent_rec *rec = NULL;
4356 	struct ocfs2_extent_list *new_el;
4357 	struct ocfs2_path *left_path = NULL, *right_path = NULL;
4358 	struct buffer_head *bh;
4359 	struct ocfs2_extent_block *eb;
4360 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
4361 
4362 	if (index > 0) {
4363 		rec = &el->l_recs[index - 1];
4364 	} else if (path->p_tree_depth > 0) {
4365 		status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
4366 		if (status)
4367 			goto exit;
4368 
4369 		if (left_cpos != 0) {
4370 			left_path = ocfs2_new_path_from_path(path);
4371 			if (!left_path) {
4372 				status = -ENOMEM;
4373 				mlog_errno(status);
4374 				goto exit;
4375 			}
4376 
4377 			status = ocfs2_find_path(et->et_ci, left_path,
4378 						 left_cpos);
4379 			if (status)
4380 				goto free_left_path;
4381 
4382 			new_el = path_leaf_el(left_path);
4383 
4384 			if (le16_to_cpu(new_el->l_next_free_rec) !=
4385 			    le16_to_cpu(new_el->l_count)) {
4386 				bh = path_leaf_bh(left_path);
4387 				eb = (struct ocfs2_extent_block *)bh->b_data;
4388 				ocfs2_error(sb,
4389 					    "Extent block #%llu has an invalid l_next_free_rec of %d.  It should have matched the l_count of %d\n",
4390 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4391 					    le16_to_cpu(new_el->l_next_free_rec),
4392 					    le16_to_cpu(new_el->l_count));
4393 				status = -EINVAL;
4394 				goto free_left_path;
4395 			}
4396 			rec = &new_el->l_recs[
4397 				le16_to_cpu(new_el->l_next_free_rec) - 1];
4398 		}
4399 	}
4400 
4401 	/*
4402 	 * We're careful to check for an empty extent record here -
4403 	 * the merge code will know what to do if it sees one.
4404 	 */
4405 	if (rec) {
4406 		if (index == 1 && ocfs2_is_empty_extent(rec)) {
4407 			if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4408 				ret = CONTIG_RIGHT;
4409 		} else {
4410 			ret = ocfs2_et_extent_contig(et, rec, split_rec);
4411 		}
4412 	}
4413 
4414 	rec = NULL;
4415 	if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4416 		rec = &el->l_recs[index + 1];
4417 	else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4418 		 path->p_tree_depth > 0) {
4419 		status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
4420 		if (status)
4421 			goto free_left_path;
4422 
4423 		if (right_cpos == 0)
4424 			goto free_left_path;
4425 
4426 		right_path = ocfs2_new_path_from_path(path);
4427 		if (!right_path) {
4428 			status = -ENOMEM;
4429 			mlog_errno(status);
4430 			goto free_left_path;
4431 		}
4432 
4433 		status = ocfs2_find_path(et->et_ci, right_path, right_cpos);
4434 		if (status)
4435 			goto free_right_path;
4436 
4437 		new_el = path_leaf_el(right_path);
4438 		rec = &new_el->l_recs[0];
4439 		if (ocfs2_is_empty_extent(rec)) {
4440 			if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4441 				bh = path_leaf_bh(right_path);
4442 				eb = (struct ocfs2_extent_block *)bh->b_data;
4443 				ocfs2_error(sb,
4444 					    "Extent block #%llu has an invalid l_next_free_rec of %d\n",
4445 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4446 					    le16_to_cpu(new_el->l_next_free_rec));
4447 				status = -EINVAL;
4448 				goto free_right_path;
4449 			}
4450 			rec = &new_el->l_recs[1];
4451 		}
4452 	}
4453 
4454 	if (rec) {
4455 		enum ocfs2_contig_type contig_type;
4456 
4457 		contig_type = ocfs2_et_extent_contig(et, rec, split_rec);
4458 
4459 		if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4460 			ret = CONTIG_LEFTRIGHT;
4461 		else if (ret == CONTIG_NONE)
4462 			ret = contig_type;
4463 	}
4464 
4465 free_right_path:
4466 	ocfs2_free_path(right_path);
4467 free_left_path:
4468 	ocfs2_free_path(left_path);
4469 exit:
4470 	if (status == 0)
4471 		ctxt->c_contig_type = ret;
4472 
4473 	return status;
4474 }
4475 
4476 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et,
4477 				     struct ocfs2_insert_type *insert,
4478 				     struct ocfs2_extent_list *el,
4479 				     struct ocfs2_extent_rec *insert_rec)
4480 {
4481 	int i;
4482 	enum ocfs2_contig_type contig_type = CONTIG_NONE;
4483 
4484 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4485 
4486 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4487 		contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i],
4488 						     insert_rec);
4489 		if (contig_type != CONTIG_NONE) {
4490 			insert->ins_contig_index = i;
4491 			break;
4492 		}
4493 	}
4494 	insert->ins_contig = contig_type;
4495 
4496 	if (insert->ins_contig != CONTIG_NONE) {
4497 		struct ocfs2_extent_rec *rec =
4498 				&el->l_recs[insert->ins_contig_index];
4499 		unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4500 				   le16_to_cpu(insert_rec->e_leaf_clusters);
4501 
4502 		/*
4503 		 * Caller might want us to limit the size of extents, don't
4504 		 * calculate contiguousness if we might exceed that limit.
4505 		 */
4506 		if (et->et_max_leaf_clusters &&
4507 		    (len > et->et_max_leaf_clusters))
4508 			insert->ins_contig = CONTIG_NONE;
4509 	}
4510 }
4511 
4512 /*
4513  * This should only be called against the righmost leaf extent list.
4514  *
4515  * ocfs2_figure_appending_type() will figure out whether we'll have to
4516  * insert at the tail of the rightmost leaf.
4517  *
4518  * This should also work against the root extent list for tree's with 0
4519  * depth. If we consider the root extent list to be the rightmost leaf node
4520  * then the logic here makes sense.
4521  */
4522 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4523 					struct ocfs2_extent_list *el,
4524 					struct ocfs2_extent_rec *insert_rec)
4525 {
4526 	int i;
4527 	u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4528 	struct ocfs2_extent_rec *rec;
4529 
4530 	insert->ins_appending = APPEND_NONE;
4531 
4532 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4533 
4534 	if (!el->l_next_free_rec)
4535 		goto set_tail_append;
4536 
4537 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4538 		/* Were all records empty? */
4539 		if (le16_to_cpu(el->l_next_free_rec) == 1)
4540 			goto set_tail_append;
4541 	}
4542 
4543 	i = le16_to_cpu(el->l_next_free_rec) - 1;
4544 	rec = &el->l_recs[i];
4545 
4546 	if (cpos >=
4547 	    (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4548 		goto set_tail_append;
4549 
4550 	return;
4551 
4552 set_tail_append:
4553 	insert->ins_appending = APPEND_TAIL;
4554 }
4555 
4556 /*
4557  * Helper function called at the beginning of an insert.
4558  *
4559  * This computes a few things that are commonly used in the process of
4560  * inserting into the btree:
4561  *   - Whether the new extent is contiguous with an existing one.
4562  *   - The current tree depth.
4563  *   - Whether the insert is an appending one.
4564  *   - The total # of free records in the tree.
4565  *
4566  * All of the information is stored on the ocfs2_insert_type
4567  * structure.
4568  */
4569 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et,
4570 				    struct buffer_head **last_eb_bh,
4571 				    struct ocfs2_extent_rec *insert_rec,
4572 				    int *free_records,
4573 				    struct ocfs2_insert_type *insert)
4574 {
4575 	int ret;
4576 	struct ocfs2_extent_block *eb;
4577 	struct ocfs2_extent_list *el;
4578 	struct ocfs2_path *path = NULL;
4579 	struct buffer_head *bh = NULL;
4580 
4581 	insert->ins_split = SPLIT_NONE;
4582 
4583 	el = et->et_root_el;
4584 	insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4585 
4586 	if (el->l_tree_depth) {
4587 		/*
4588 		 * If we have tree depth, we read in the
4589 		 * rightmost extent block ahead of time as
4590 		 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4591 		 * may want it later.
4592 		 */
4593 		ret = ocfs2_read_extent_block(et->et_ci,
4594 					      ocfs2_et_get_last_eb_blk(et),
4595 					      &bh);
4596 		if (ret) {
4597 			mlog_errno(ret);
4598 			goto out;
4599 		}
4600 		eb = (struct ocfs2_extent_block *) bh->b_data;
4601 		el = &eb->h_list;
4602 	}
4603 
4604 	/*
4605 	 * Unless we have a contiguous insert, we'll need to know if
4606 	 * there is room left in our allocation tree for another
4607 	 * extent record.
4608 	 *
4609 	 * XXX: This test is simplistic, we can search for empty
4610 	 * extent records too.
4611 	 */
4612 	*free_records = le16_to_cpu(el->l_count) -
4613 		le16_to_cpu(el->l_next_free_rec);
4614 
4615 	if (!insert->ins_tree_depth) {
4616 		ocfs2_figure_contig_type(et, insert, el, insert_rec);
4617 		ocfs2_figure_appending_type(insert, el, insert_rec);
4618 		return 0;
4619 	}
4620 
4621 	path = ocfs2_new_path_from_et(et);
4622 	if (!path) {
4623 		ret = -ENOMEM;
4624 		mlog_errno(ret);
4625 		goto out;
4626 	}
4627 
4628 	/*
4629 	 * In the case that we're inserting past what the tree
4630 	 * currently accounts for, ocfs2_find_path() will return for
4631 	 * us the rightmost tree path. This is accounted for below in
4632 	 * the appending code.
4633 	 */
4634 	ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos));
4635 	if (ret) {
4636 		mlog_errno(ret);
4637 		goto out;
4638 	}
4639 
4640 	el = path_leaf_el(path);
4641 
4642 	/*
4643 	 * Now that we have the path, there's two things we want to determine:
4644 	 * 1) Contiguousness (also set contig_index if this is so)
4645 	 *
4646 	 * 2) Are we doing an append? We can trivially break this up
4647          *     into two types of appends: simple record append, or a
4648          *     rotate inside the tail leaf.
4649 	 */
4650 	ocfs2_figure_contig_type(et, insert, el, insert_rec);
4651 
4652 	/*
4653 	 * The insert code isn't quite ready to deal with all cases of
4654 	 * left contiguousness. Specifically, if it's an insert into
4655 	 * the 1st record in a leaf, it will require the adjustment of
4656 	 * cluster count on the last record of the path directly to it's
4657 	 * left. For now, just catch that case and fool the layers
4658 	 * above us. This works just fine for tree_depth == 0, which
4659 	 * is why we allow that above.
4660 	 */
4661 	if (insert->ins_contig == CONTIG_LEFT &&
4662 	    insert->ins_contig_index == 0)
4663 		insert->ins_contig = CONTIG_NONE;
4664 
4665 	/*
4666 	 * Ok, so we can simply compare against last_eb to figure out
4667 	 * whether the path doesn't exist. This will only happen in
4668 	 * the case that we're doing a tail append, so maybe we can
4669 	 * take advantage of that information somehow.
4670 	 */
4671 	if (ocfs2_et_get_last_eb_blk(et) ==
4672 	    path_leaf_bh(path)->b_blocknr) {
4673 		/*
4674 		 * Ok, ocfs2_find_path() returned us the rightmost
4675 		 * tree path. This might be an appending insert. There are
4676 		 * two cases:
4677 		 *    1) We're doing a true append at the tail:
4678 		 *	-This might even be off the end of the leaf
4679 		 *    2) We're "appending" by rotating in the tail
4680 		 */
4681 		ocfs2_figure_appending_type(insert, el, insert_rec);
4682 	}
4683 
4684 out:
4685 	ocfs2_free_path(path);
4686 
4687 	if (ret == 0)
4688 		*last_eb_bh = bh;
4689 	else
4690 		brelse(bh);
4691 	return ret;
4692 }
4693 
4694 /*
4695  * Insert an extent into a btree.
4696  *
4697  * The caller needs to update the owning btree's cluster count.
4698  */
4699 int ocfs2_insert_extent(handle_t *handle,
4700 			struct ocfs2_extent_tree *et,
4701 			u32 cpos,
4702 			u64 start_blk,
4703 			u32 new_clusters,
4704 			u8 flags,
4705 			struct ocfs2_alloc_context *meta_ac)
4706 {
4707 	int status;
4708 	int uninitialized_var(free_records);
4709 	struct buffer_head *last_eb_bh = NULL;
4710 	struct ocfs2_insert_type insert = {0, };
4711 	struct ocfs2_extent_rec rec;
4712 
4713 	trace_ocfs2_insert_extent_start(
4714 		(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4715 		cpos, new_clusters);
4716 
4717 	memset(&rec, 0, sizeof(rec));
4718 	rec.e_cpos = cpu_to_le32(cpos);
4719 	rec.e_blkno = cpu_to_le64(start_blk);
4720 	rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4721 	rec.e_flags = flags;
4722 	status = ocfs2_et_insert_check(et, &rec);
4723 	if (status) {
4724 		mlog_errno(status);
4725 		goto bail;
4726 	}
4727 
4728 	status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec,
4729 					  &free_records, &insert);
4730 	if (status < 0) {
4731 		mlog_errno(status);
4732 		goto bail;
4733 	}
4734 
4735 	trace_ocfs2_insert_extent(insert.ins_appending, insert.ins_contig,
4736 				  insert.ins_contig_index, free_records,
4737 				  insert.ins_tree_depth);
4738 
4739 	if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4740 		status = ocfs2_grow_tree(handle, et,
4741 					 &insert.ins_tree_depth, &last_eb_bh,
4742 					 meta_ac);
4743 		if (status) {
4744 			mlog_errno(status);
4745 			goto bail;
4746 		}
4747 	}
4748 
4749 	/* Finally, we can add clusters. This might rotate the tree for us. */
4750 	status = ocfs2_do_insert_extent(handle, et, &rec, &insert);
4751 	if (status < 0)
4752 		mlog_errno(status);
4753 	else
4754 		ocfs2_et_extent_map_insert(et, &rec);
4755 
4756 bail:
4757 	brelse(last_eb_bh);
4758 
4759 	return status;
4760 }
4761 
4762 /*
4763  * Allcate and add clusters into the extent b-tree.
4764  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4765  * The extent b-tree's root is specified by et, and
4766  * it is not limited to the file storage. Any extent tree can use this
4767  * function if it implements the proper ocfs2_extent_tree.
4768  */
4769 int ocfs2_add_clusters_in_btree(handle_t *handle,
4770 				struct ocfs2_extent_tree *et,
4771 				u32 *logical_offset,
4772 				u32 clusters_to_add,
4773 				int mark_unwritten,
4774 				struct ocfs2_alloc_context *data_ac,
4775 				struct ocfs2_alloc_context *meta_ac,
4776 				enum ocfs2_alloc_restarted *reason_ret)
4777 {
4778 	int status = 0, err = 0;
4779 	int need_free = 0;
4780 	int free_extents;
4781 	enum ocfs2_alloc_restarted reason = RESTART_NONE;
4782 	u32 bit_off, num_bits;
4783 	u64 block;
4784 	u8 flags = 0;
4785 	struct ocfs2_super *osb =
4786 		OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
4787 
4788 	BUG_ON(!clusters_to_add);
4789 
4790 	if (mark_unwritten)
4791 		flags = OCFS2_EXT_UNWRITTEN;
4792 
4793 	free_extents = ocfs2_num_free_extents(osb, et);
4794 	if (free_extents < 0) {
4795 		status = free_extents;
4796 		mlog_errno(status);
4797 		goto leave;
4798 	}
4799 
4800 	/* there are two cases which could cause us to EAGAIN in the
4801 	 * we-need-more-metadata case:
4802 	 * 1) we haven't reserved *any*
4803 	 * 2) we are so fragmented, we've needed to add metadata too
4804 	 *    many times. */
4805 	if (!free_extents && !meta_ac) {
4806 		err = -1;
4807 		status = -EAGAIN;
4808 		reason = RESTART_META;
4809 		goto leave;
4810 	} else if ((!free_extents)
4811 		   && (ocfs2_alloc_context_bits_left(meta_ac)
4812 		       < ocfs2_extend_meta_needed(et->et_root_el))) {
4813 		err = -2;
4814 		status = -EAGAIN;
4815 		reason = RESTART_META;
4816 		goto leave;
4817 	}
4818 
4819 	status = __ocfs2_claim_clusters(handle, data_ac, 1,
4820 					clusters_to_add, &bit_off, &num_bits);
4821 	if (status < 0) {
4822 		if (status != -ENOSPC)
4823 			mlog_errno(status);
4824 		goto leave;
4825 	}
4826 
4827 	BUG_ON(num_bits > clusters_to_add);
4828 
4829 	/* reserve our write early -- insert_extent may update the tree root */
4830 	status = ocfs2_et_root_journal_access(handle, et,
4831 					      OCFS2_JOURNAL_ACCESS_WRITE);
4832 	if (status < 0) {
4833 		mlog_errno(status);
4834 		need_free = 1;
4835 		goto bail;
4836 	}
4837 
4838 	block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4839 	trace_ocfs2_add_clusters_in_btree(
4840 	     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4841 	     bit_off, num_bits);
4842 	status = ocfs2_insert_extent(handle, et, *logical_offset, block,
4843 				     num_bits, flags, meta_ac);
4844 	if (status < 0) {
4845 		mlog_errno(status);
4846 		need_free = 1;
4847 		goto bail;
4848 	}
4849 
4850 	ocfs2_journal_dirty(handle, et->et_root_bh);
4851 
4852 	clusters_to_add -= num_bits;
4853 	*logical_offset += num_bits;
4854 
4855 	if (clusters_to_add) {
4856 		err = clusters_to_add;
4857 		status = -EAGAIN;
4858 		reason = RESTART_TRANS;
4859 	}
4860 
4861 bail:
4862 	if (need_free) {
4863 		if (data_ac->ac_which == OCFS2_AC_USE_LOCAL)
4864 			ocfs2_free_local_alloc_bits(osb, handle, data_ac,
4865 					bit_off, num_bits);
4866 		else
4867 			ocfs2_free_clusters(handle,
4868 					data_ac->ac_inode,
4869 					data_ac->ac_bh,
4870 					ocfs2_clusters_to_blocks(osb->sb, bit_off),
4871 					num_bits);
4872 	}
4873 
4874 leave:
4875 	if (reason_ret)
4876 		*reason_ret = reason;
4877 	trace_ocfs2_add_clusters_in_btree_ret(status, reason, err);
4878 	return status;
4879 }
4880 
4881 static void ocfs2_make_right_split_rec(struct super_block *sb,
4882 				       struct ocfs2_extent_rec *split_rec,
4883 				       u32 cpos,
4884 				       struct ocfs2_extent_rec *rec)
4885 {
4886 	u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4887 	u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4888 
4889 	memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4890 
4891 	split_rec->e_cpos = cpu_to_le32(cpos);
4892 	split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4893 
4894 	split_rec->e_blkno = rec->e_blkno;
4895 	le64_add_cpu(&split_rec->e_blkno,
4896 		     ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4897 
4898 	split_rec->e_flags = rec->e_flags;
4899 }
4900 
4901 static int ocfs2_split_and_insert(handle_t *handle,
4902 				  struct ocfs2_extent_tree *et,
4903 				  struct ocfs2_path *path,
4904 				  struct buffer_head **last_eb_bh,
4905 				  int split_index,
4906 				  struct ocfs2_extent_rec *orig_split_rec,
4907 				  struct ocfs2_alloc_context *meta_ac)
4908 {
4909 	int ret = 0, depth;
4910 	unsigned int insert_range, rec_range, do_leftright = 0;
4911 	struct ocfs2_extent_rec tmprec;
4912 	struct ocfs2_extent_list *rightmost_el;
4913 	struct ocfs2_extent_rec rec;
4914 	struct ocfs2_extent_rec split_rec = *orig_split_rec;
4915 	struct ocfs2_insert_type insert;
4916 	struct ocfs2_extent_block *eb;
4917 
4918 leftright:
4919 	/*
4920 	 * Store a copy of the record on the stack - it might move
4921 	 * around as the tree is manipulated below.
4922 	 */
4923 	rec = path_leaf_el(path)->l_recs[split_index];
4924 
4925 	rightmost_el = et->et_root_el;
4926 
4927 	depth = le16_to_cpu(rightmost_el->l_tree_depth);
4928 	if (depth) {
4929 		BUG_ON(!(*last_eb_bh));
4930 		eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4931 		rightmost_el = &eb->h_list;
4932 	}
4933 
4934 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4935 	    le16_to_cpu(rightmost_el->l_count)) {
4936 		ret = ocfs2_grow_tree(handle, et,
4937 				      &depth, last_eb_bh, meta_ac);
4938 		if (ret) {
4939 			mlog_errno(ret);
4940 			goto out;
4941 		}
4942 	}
4943 
4944 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4945 	insert.ins_appending = APPEND_NONE;
4946 	insert.ins_contig = CONTIG_NONE;
4947 	insert.ins_tree_depth = depth;
4948 
4949 	insert_range = le32_to_cpu(split_rec.e_cpos) +
4950 		le16_to_cpu(split_rec.e_leaf_clusters);
4951 	rec_range = le32_to_cpu(rec.e_cpos) +
4952 		le16_to_cpu(rec.e_leaf_clusters);
4953 
4954 	if (split_rec.e_cpos == rec.e_cpos) {
4955 		insert.ins_split = SPLIT_LEFT;
4956 	} else if (insert_range == rec_range) {
4957 		insert.ins_split = SPLIT_RIGHT;
4958 	} else {
4959 		/*
4960 		 * Left/right split. We fake this as a right split
4961 		 * first and then make a second pass as a left split.
4962 		 */
4963 		insert.ins_split = SPLIT_RIGHT;
4964 
4965 		ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4966 					   &tmprec, insert_range, &rec);
4967 
4968 		split_rec = tmprec;
4969 
4970 		BUG_ON(do_leftright);
4971 		do_leftright = 1;
4972 	}
4973 
4974 	ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
4975 	if (ret) {
4976 		mlog_errno(ret);
4977 		goto out;
4978 	}
4979 
4980 	if (do_leftright == 1) {
4981 		u32 cpos;
4982 		struct ocfs2_extent_list *el;
4983 
4984 		do_leftright++;
4985 		split_rec = *orig_split_rec;
4986 
4987 		ocfs2_reinit_path(path, 1);
4988 
4989 		cpos = le32_to_cpu(split_rec.e_cpos);
4990 		ret = ocfs2_find_path(et->et_ci, path, cpos);
4991 		if (ret) {
4992 			mlog_errno(ret);
4993 			goto out;
4994 		}
4995 
4996 		el = path_leaf_el(path);
4997 		split_index = ocfs2_search_extent_list(el, cpos);
4998 		if (split_index == -1) {
4999 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5000 				    "Owner %llu has an extent at cpos %u which can no longer be found\n",
5001 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5002 				    cpos);
5003 			ret = -EROFS;
5004 			goto out;
5005 		}
5006 		goto leftright;
5007 	}
5008 out:
5009 
5010 	return ret;
5011 }
5012 
5013 static int ocfs2_replace_extent_rec(handle_t *handle,
5014 				    struct ocfs2_extent_tree *et,
5015 				    struct ocfs2_path *path,
5016 				    struct ocfs2_extent_list *el,
5017 				    int split_index,
5018 				    struct ocfs2_extent_rec *split_rec)
5019 {
5020 	int ret;
5021 
5022 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
5023 					   path_num_items(path) - 1);
5024 	if (ret) {
5025 		mlog_errno(ret);
5026 		goto out;
5027 	}
5028 
5029 	el->l_recs[split_index] = *split_rec;
5030 
5031 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
5032 out:
5033 	return ret;
5034 }
5035 
5036 /*
5037  * Split part or all of the extent record at split_index in the leaf
5038  * pointed to by path. Merge with the contiguous extent record if needed.
5039  *
5040  * Care is taken to handle contiguousness so as to not grow the tree.
5041  *
5042  * meta_ac is not strictly necessary - we only truly need it if growth
5043  * of the tree is required. All other cases will degrade into a less
5044  * optimal tree layout.
5045  *
5046  * last_eb_bh should be the rightmost leaf block for any extent
5047  * btree. Since a split may grow the tree or a merge might shrink it,
5048  * the caller cannot trust the contents of that buffer after this call.
5049  *
5050  * This code is optimized for readability - several passes might be
5051  * made over certain portions of the tree. All of those blocks will
5052  * have been brought into cache (and pinned via the journal), so the
5053  * extra overhead is not expressed in terms of disk reads.
5054  */
5055 int ocfs2_split_extent(handle_t *handle,
5056 		       struct ocfs2_extent_tree *et,
5057 		       struct ocfs2_path *path,
5058 		       int split_index,
5059 		       struct ocfs2_extent_rec *split_rec,
5060 		       struct ocfs2_alloc_context *meta_ac,
5061 		       struct ocfs2_cached_dealloc_ctxt *dealloc)
5062 {
5063 	int ret = 0;
5064 	struct ocfs2_extent_list *el = path_leaf_el(path);
5065 	struct buffer_head *last_eb_bh = NULL;
5066 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5067 	struct ocfs2_merge_ctxt ctxt;
5068 	struct ocfs2_extent_list *rightmost_el;
5069 
5070 	if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5071 	    ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5072 	     (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5073 		ret = -EIO;
5074 		mlog_errno(ret);
5075 		goto out;
5076 	}
5077 
5078 	ret = ocfs2_figure_merge_contig_type(et, path, el,
5079 					     split_index,
5080 					     split_rec,
5081 					     &ctxt);
5082 	if (ret) {
5083 		mlog_errno(ret);
5084 		goto out;
5085 	}
5086 
5087 	/*
5088 	 * The core merge / split code wants to know how much room is
5089 	 * left in this allocation tree, so we pass the
5090 	 * rightmost extent list.
5091 	 */
5092 	if (path->p_tree_depth) {
5093 		struct ocfs2_extent_block *eb;
5094 
5095 		ret = ocfs2_read_extent_block(et->et_ci,
5096 					      ocfs2_et_get_last_eb_blk(et),
5097 					      &last_eb_bh);
5098 		if (ret) {
5099 			mlog_errno(ret);
5100 			goto out;
5101 		}
5102 
5103 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5104 		rightmost_el = &eb->h_list;
5105 	} else
5106 		rightmost_el = path_root_el(path);
5107 
5108 	if (rec->e_cpos == split_rec->e_cpos &&
5109 	    rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5110 		ctxt.c_split_covers_rec = 1;
5111 	else
5112 		ctxt.c_split_covers_rec = 0;
5113 
5114 	ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5115 
5116 	trace_ocfs2_split_extent(split_index, ctxt.c_contig_type,
5117 				 ctxt.c_has_empty_extent,
5118 				 ctxt.c_split_covers_rec);
5119 
5120 	if (ctxt.c_contig_type == CONTIG_NONE) {
5121 		if (ctxt.c_split_covers_rec)
5122 			ret = ocfs2_replace_extent_rec(handle, et, path, el,
5123 						       split_index, split_rec);
5124 		else
5125 			ret = ocfs2_split_and_insert(handle, et, path,
5126 						     &last_eb_bh, split_index,
5127 						     split_rec, meta_ac);
5128 		if (ret)
5129 			mlog_errno(ret);
5130 	} else {
5131 		ret = ocfs2_try_to_merge_extent(handle, et, path,
5132 						split_index, split_rec,
5133 						dealloc, &ctxt);
5134 		if (ret)
5135 			mlog_errno(ret);
5136 	}
5137 
5138 out:
5139 	brelse(last_eb_bh);
5140 	return ret;
5141 }
5142 
5143 /*
5144  * Change the flags of the already-existing extent at cpos for len clusters.
5145  *
5146  * new_flags: the flags we want to set.
5147  * clear_flags: the flags we want to clear.
5148  * phys: the new physical offset we want this new extent starts from.
5149  *
5150  * If the existing extent is larger than the request, initiate a
5151  * split. An attempt will be made at merging with adjacent extents.
5152  *
5153  * The caller is responsible for passing down meta_ac if we'll need it.
5154  */
5155 int ocfs2_change_extent_flag(handle_t *handle,
5156 			     struct ocfs2_extent_tree *et,
5157 			     u32 cpos, u32 len, u32 phys,
5158 			     struct ocfs2_alloc_context *meta_ac,
5159 			     struct ocfs2_cached_dealloc_ctxt *dealloc,
5160 			     int new_flags, int clear_flags)
5161 {
5162 	int ret, index;
5163 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5164 	u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys);
5165 	struct ocfs2_extent_rec split_rec;
5166 	struct ocfs2_path *left_path = NULL;
5167 	struct ocfs2_extent_list *el;
5168 	struct ocfs2_extent_rec *rec;
5169 
5170 	left_path = ocfs2_new_path_from_et(et);
5171 	if (!left_path) {
5172 		ret = -ENOMEM;
5173 		mlog_errno(ret);
5174 		goto out;
5175 	}
5176 
5177 	ret = ocfs2_find_path(et->et_ci, left_path, cpos);
5178 	if (ret) {
5179 		mlog_errno(ret);
5180 		goto out;
5181 	}
5182 	el = path_leaf_el(left_path);
5183 
5184 	index = ocfs2_search_extent_list(el, cpos);
5185 	if (index == -1) {
5186 		ocfs2_error(sb,
5187 			    "Owner %llu has an extent at cpos %u which can no longer be found\n",
5188 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5189 			    cpos);
5190 		ret = -EROFS;
5191 		goto out;
5192 	}
5193 
5194 	ret = -EIO;
5195 	rec = &el->l_recs[index];
5196 	if (new_flags && (rec->e_flags & new_flags)) {
5197 		mlog(ML_ERROR, "Owner %llu tried to set %d flags on an "
5198 		     "extent that already had them\n",
5199 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5200 		     new_flags);
5201 		goto out;
5202 	}
5203 
5204 	if (clear_flags && !(rec->e_flags & clear_flags)) {
5205 		mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an "
5206 		     "extent that didn't have them\n",
5207 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5208 		     clear_flags);
5209 		goto out;
5210 	}
5211 
5212 	memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5213 	split_rec.e_cpos = cpu_to_le32(cpos);
5214 	split_rec.e_leaf_clusters = cpu_to_le16(len);
5215 	split_rec.e_blkno = cpu_to_le64(start_blkno);
5216 	split_rec.e_flags = rec->e_flags;
5217 	if (new_flags)
5218 		split_rec.e_flags |= new_flags;
5219 	if (clear_flags)
5220 		split_rec.e_flags &= ~clear_flags;
5221 
5222 	ret = ocfs2_split_extent(handle, et, left_path,
5223 				 index, &split_rec, meta_ac,
5224 				 dealloc);
5225 	if (ret)
5226 		mlog_errno(ret);
5227 
5228 out:
5229 	ocfs2_free_path(left_path);
5230 	return ret;
5231 
5232 }
5233 
5234 /*
5235  * Mark the already-existing extent at cpos as written for len clusters.
5236  * This removes the unwritten extent flag.
5237  *
5238  * If the existing extent is larger than the request, initiate a
5239  * split. An attempt will be made at merging with adjacent extents.
5240  *
5241  * The caller is responsible for passing down meta_ac if we'll need it.
5242  */
5243 int ocfs2_mark_extent_written(struct inode *inode,
5244 			      struct ocfs2_extent_tree *et,
5245 			      handle_t *handle, u32 cpos, u32 len, u32 phys,
5246 			      struct ocfs2_alloc_context *meta_ac,
5247 			      struct ocfs2_cached_dealloc_ctxt *dealloc)
5248 {
5249 	int ret;
5250 
5251 	trace_ocfs2_mark_extent_written(
5252 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
5253 		cpos, len, phys);
5254 
5255 	if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5256 		ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents that are being written to, but the feature bit is not set in the super block\n",
5257 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
5258 		ret = -EROFS;
5259 		goto out;
5260 	}
5261 
5262 	/*
5263 	 * XXX: This should be fixed up so that we just re-insert the
5264 	 * next extent records.
5265 	 */
5266 	ocfs2_et_extent_map_truncate(et, 0);
5267 
5268 	ret = ocfs2_change_extent_flag(handle, et, cpos,
5269 				       len, phys, meta_ac, dealloc,
5270 				       0, OCFS2_EXT_UNWRITTEN);
5271 	if (ret)
5272 		mlog_errno(ret);
5273 
5274 out:
5275 	return ret;
5276 }
5277 
5278 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et,
5279 			    struct ocfs2_path *path,
5280 			    int index, u32 new_range,
5281 			    struct ocfs2_alloc_context *meta_ac)
5282 {
5283 	int ret, depth, credits;
5284 	struct buffer_head *last_eb_bh = NULL;
5285 	struct ocfs2_extent_block *eb;
5286 	struct ocfs2_extent_list *rightmost_el, *el;
5287 	struct ocfs2_extent_rec split_rec;
5288 	struct ocfs2_extent_rec *rec;
5289 	struct ocfs2_insert_type insert;
5290 
5291 	/*
5292 	 * Setup the record to split before we grow the tree.
5293 	 */
5294 	el = path_leaf_el(path);
5295 	rec = &el->l_recs[index];
5296 	ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
5297 				   &split_rec, new_range, rec);
5298 
5299 	depth = path->p_tree_depth;
5300 	if (depth > 0) {
5301 		ret = ocfs2_read_extent_block(et->et_ci,
5302 					      ocfs2_et_get_last_eb_blk(et),
5303 					      &last_eb_bh);
5304 		if (ret < 0) {
5305 			mlog_errno(ret);
5306 			goto out;
5307 		}
5308 
5309 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5310 		rightmost_el = &eb->h_list;
5311 	} else
5312 		rightmost_el = path_leaf_el(path);
5313 
5314 	credits = path->p_tree_depth +
5315 		  ocfs2_extend_meta_needed(et->et_root_el);
5316 	ret = ocfs2_extend_trans(handle, credits);
5317 	if (ret) {
5318 		mlog_errno(ret);
5319 		goto out;
5320 	}
5321 
5322 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5323 	    le16_to_cpu(rightmost_el->l_count)) {
5324 		ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh,
5325 				      meta_ac);
5326 		if (ret) {
5327 			mlog_errno(ret);
5328 			goto out;
5329 		}
5330 	}
5331 
5332 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5333 	insert.ins_appending = APPEND_NONE;
5334 	insert.ins_contig = CONTIG_NONE;
5335 	insert.ins_split = SPLIT_RIGHT;
5336 	insert.ins_tree_depth = depth;
5337 
5338 	ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
5339 	if (ret)
5340 		mlog_errno(ret);
5341 
5342 out:
5343 	brelse(last_eb_bh);
5344 	return ret;
5345 }
5346 
5347 static int ocfs2_truncate_rec(handle_t *handle,
5348 			      struct ocfs2_extent_tree *et,
5349 			      struct ocfs2_path *path, int index,
5350 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
5351 			      u32 cpos, u32 len)
5352 {
5353 	int ret;
5354 	u32 left_cpos, rec_range, trunc_range;
5355 	int is_rightmost_tree_rec = 0;
5356 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5357 	struct ocfs2_path *left_path = NULL;
5358 	struct ocfs2_extent_list *el = path_leaf_el(path);
5359 	struct ocfs2_extent_rec *rec;
5360 	struct ocfs2_extent_block *eb;
5361 
5362 	if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5363 		/* extend credit for ocfs2_remove_rightmost_path */
5364 		ret = ocfs2_extend_rotate_transaction(handle, 0,
5365 				handle->h_buffer_credits,
5366 				path);
5367 		if (ret) {
5368 			mlog_errno(ret);
5369 			goto out;
5370 		}
5371 
5372 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5373 		if (ret) {
5374 			mlog_errno(ret);
5375 			goto out;
5376 		}
5377 
5378 		index--;
5379 	}
5380 
5381 	if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5382 	    path->p_tree_depth) {
5383 		/*
5384 		 * Check whether this is the rightmost tree record. If
5385 		 * we remove all of this record or part of its right
5386 		 * edge then an update of the record lengths above it
5387 		 * will be required.
5388 		 */
5389 		eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5390 		if (eb->h_next_leaf_blk == 0)
5391 			is_rightmost_tree_rec = 1;
5392 	}
5393 
5394 	rec = &el->l_recs[index];
5395 	if (index == 0 && path->p_tree_depth &&
5396 	    le32_to_cpu(rec->e_cpos) == cpos) {
5397 		/*
5398 		 * Changing the leftmost offset (via partial or whole
5399 		 * record truncate) of an interior (or rightmost) path
5400 		 * means we have to update the subtree that is formed
5401 		 * by this leaf and the one to it's left.
5402 		 *
5403 		 * There are two cases we can skip:
5404 		 *   1) Path is the leftmost one in our btree.
5405 		 *   2) The leaf is rightmost and will be empty after
5406 		 *      we remove the extent record - the rotate code
5407 		 *      knows how to update the newly formed edge.
5408 		 */
5409 
5410 		ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
5411 		if (ret) {
5412 			mlog_errno(ret);
5413 			goto out;
5414 		}
5415 
5416 		if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5417 			left_path = ocfs2_new_path_from_path(path);
5418 			if (!left_path) {
5419 				ret = -ENOMEM;
5420 				mlog_errno(ret);
5421 				goto out;
5422 			}
5423 
5424 			ret = ocfs2_find_path(et->et_ci, left_path,
5425 					      left_cpos);
5426 			if (ret) {
5427 				mlog_errno(ret);
5428 				goto out;
5429 			}
5430 		}
5431 	}
5432 
5433 	ret = ocfs2_extend_rotate_transaction(handle, 0,
5434 					      handle->h_buffer_credits,
5435 					      path);
5436 	if (ret) {
5437 		mlog_errno(ret);
5438 		goto out;
5439 	}
5440 
5441 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
5442 	if (ret) {
5443 		mlog_errno(ret);
5444 		goto out;
5445 	}
5446 
5447 	ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
5448 	if (ret) {
5449 		mlog_errno(ret);
5450 		goto out;
5451 	}
5452 
5453 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5454 	trunc_range = cpos + len;
5455 
5456 	if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5457 		int next_free;
5458 
5459 		memset(rec, 0, sizeof(*rec));
5460 		ocfs2_cleanup_merge(el, index);
5461 
5462 		next_free = le16_to_cpu(el->l_next_free_rec);
5463 		if (is_rightmost_tree_rec && next_free > 1) {
5464 			/*
5465 			 * We skip the edge update if this path will
5466 			 * be deleted by the rotate code.
5467 			 */
5468 			rec = &el->l_recs[next_free - 1];
5469 			ocfs2_adjust_rightmost_records(handle, et, path,
5470 						       rec);
5471 		}
5472 	} else if (le32_to_cpu(rec->e_cpos) == cpos) {
5473 		/* Remove leftmost portion of the record. */
5474 		le32_add_cpu(&rec->e_cpos, len);
5475 		le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5476 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5477 	} else if (rec_range == trunc_range) {
5478 		/* Remove rightmost portion of the record */
5479 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5480 		if (is_rightmost_tree_rec)
5481 			ocfs2_adjust_rightmost_records(handle, et, path, rec);
5482 	} else {
5483 		/* Caller should have trapped this. */
5484 		mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) "
5485 		     "(%u, %u)\n",
5486 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5487 		     le32_to_cpu(rec->e_cpos),
5488 		     le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5489 		BUG();
5490 	}
5491 
5492 	if (left_path) {
5493 		int subtree_index;
5494 
5495 		subtree_index = ocfs2_find_subtree_root(et, left_path, path);
5496 		ocfs2_complete_edge_insert(handle, left_path, path,
5497 					   subtree_index);
5498 	}
5499 
5500 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
5501 
5502 	ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5503 	if (ret) {
5504 		mlog_errno(ret);
5505 		goto out;
5506 	}
5507 
5508 out:
5509 	ocfs2_free_path(left_path);
5510 	return ret;
5511 }
5512 
5513 int ocfs2_remove_extent(handle_t *handle,
5514 			struct ocfs2_extent_tree *et,
5515 			u32 cpos, u32 len,
5516 			struct ocfs2_alloc_context *meta_ac,
5517 			struct ocfs2_cached_dealloc_ctxt *dealloc)
5518 {
5519 	int ret, index;
5520 	u32 rec_range, trunc_range;
5521 	struct ocfs2_extent_rec *rec;
5522 	struct ocfs2_extent_list *el;
5523 	struct ocfs2_path *path = NULL;
5524 
5525 	/*
5526 	 * XXX: Why are we truncating to 0 instead of wherever this
5527 	 * affects us?
5528 	 */
5529 	ocfs2_et_extent_map_truncate(et, 0);
5530 
5531 	path = ocfs2_new_path_from_et(et);
5532 	if (!path) {
5533 		ret = -ENOMEM;
5534 		mlog_errno(ret);
5535 		goto out;
5536 	}
5537 
5538 	ret = ocfs2_find_path(et->et_ci, path, cpos);
5539 	if (ret) {
5540 		mlog_errno(ret);
5541 		goto out;
5542 	}
5543 
5544 	el = path_leaf_el(path);
5545 	index = ocfs2_search_extent_list(el, cpos);
5546 	if (index == -1) {
5547 		ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5548 			    "Owner %llu has an extent at cpos %u which can no longer be found\n",
5549 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5550 			    cpos);
5551 		ret = -EROFS;
5552 		goto out;
5553 	}
5554 
5555 	/*
5556 	 * We have 3 cases of extent removal:
5557 	 *   1) Range covers the entire extent rec
5558 	 *   2) Range begins or ends on one edge of the extent rec
5559 	 *   3) Range is in the middle of the extent rec (no shared edges)
5560 	 *
5561 	 * For case 1 we remove the extent rec and left rotate to
5562 	 * fill the hole.
5563 	 *
5564 	 * For case 2 we just shrink the existing extent rec, with a
5565 	 * tree update if the shrinking edge is also the edge of an
5566 	 * extent block.
5567 	 *
5568 	 * For case 3 we do a right split to turn the extent rec into
5569 	 * something case 2 can handle.
5570 	 */
5571 	rec = &el->l_recs[index];
5572 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5573 	trunc_range = cpos + len;
5574 
5575 	BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5576 
5577 	trace_ocfs2_remove_extent(
5578 		(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5579 		cpos, len, index, le32_to_cpu(rec->e_cpos),
5580 		ocfs2_rec_clusters(el, rec));
5581 
5582 	if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5583 		ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5584 					 cpos, len);
5585 		if (ret) {
5586 			mlog_errno(ret);
5587 			goto out;
5588 		}
5589 	} else {
5590 		ret = ocfs2_split_tree(handle, et, path, index,
5591 				       trunc_range, meta_ac);
5592 		if (ret) {
5593 			mlog_errno(ret);
5594 			goto out;
5595 		}
5596 
5597 		/*
5598 		 * The split could have manipulated the tree enough to
5599 		 * move the record location, so we have to look for it again.
5600 		 */
5601 		ocfs2_reinit_path(path, 1);
5602 
5603 		ret = ocfs2_find_path(et->et_ci, path, cpos);
5604 		if (ret) {
5605 			mlog_errno(ret);
5606 			goto out;
5607 		}
5608 
5609 		el = path_leaf_el(path);
5610 		index = ocfs2_search_extent_list(el, cpos);
5611 		if (index == -1) {
5612 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5613 				    "Owner %llu: split at cpos %u lost record\n",
5614 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5615 				    cpos);
5616 			ret = -EROFS;
5617 			goto out;
5618 		}
5619 
5620 		/*
5621 		 * Double check our values here. If anything is fishy,
5622 		 * it's easier to catch it at the top level.
5623 		 */
5624 		rec = &el->l_recs[index];
5625 		rec_range = le32_to_cpu(rec->e_cpos) +
5626 			ocfs2_rec_clusters(el, rec);
5627 		if (rec_range != trunc_range) {
5628 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5629 				    "Owner %llu: error after split at cpos %u trunc len %u, existing record is (%u,%u)\n",
5630 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5631 				    cpos, len, le32_to_cpu(rec->e_cpos),
5632 				    ocfs2_rec_clusters(el, rec));
5633 			ret = -EROFS;
5634 			goto out;
5635 		}
5636 
5637 		ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5638 					 cpos, len);
5639 		if (ret) {
5640 			mlog_errno(ret);
5641 			goto out;
5642 		}
5643 	}
5644 
5645 out:
5646 	ocfs2_free_path(path);
5647 	return ret;
5648 }
5649 
5650 /*
5651  * ocfs2_reserve_blocks_for_rec_trunc() would look basically the
5652  * same as ocfs2_lock_alloctors(), except for it accepts a blocks
5653  * number to reserve some extra blocks, and it only handles meta
5654  * data allocations.
5655  *
5656  * Currently, only ocfs2_remove_btree_range() uses it for truncating
5657  * and punching holes.
5658  */
5659 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode,
5660 					      struct ocfs2_extent_tree *et,
5661 					      u32 extents_to_split,
5662 					      struct ocfs2_alloc_context **ac,
5663 					      int extra_blocks)
5664 {
5665 	int ret = 0, num_free_extents;
5666 	unsigned int max_recs_needed = 2 * extents_to_split;
5667 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5668 
5669 	*ac = NULL;
5670 
5671 	num_free_extents = ocfs2_num_free_extents(osb, et);
5672 	if (num_free_extents < 0) {
5673 		ret = num_free_extents;
5674 		mlog_errno(ret);
5675 		goto out;
5676 	}
5677 
5678 	if (!num_free_extents ||
5679 	    (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed))
5680 		extra_blocks += ocfs2_extend_meta_needed(et->et_root_el);
5681 
5682 	if (extra_blocks) {
5683 		ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac);
5684 		if (ret < 0) {
5685 			if (ret != -ENOSPC)
5686 				mlog_errno(ret);
5687 			goto out;
5688 		}
5689 	}
5690 
5691 out:
5692 	if (ret) {
5693 		if (*ac) {
5694 			ocfs2_free_alloc_context(*ac);
5695 			*ac = NULL;
5696 		}
5697 	}
5698 
5699 	return ret;
5700 }
5701 
5702 int ocfs2_remove_btree_range(struct inode *inode,
5703 			     struct ocfs2_extent_tree *et,
5704 			     u32 cpos, u32 phys_cpos, u32 len, int flags,
5705 			     struct ocfs2_cached_dealloc_ctxt *dealloc,
5706 			     u64 refcount_loc, bool refcount_tree_locked)
5707 {
5708 	int ret, credits = 0, extra_blocks = 0;
5709 	u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5710 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5711 	struct inode *tl_inode = osb->osb_tl_inode;
5712 	handle_t *handle;
5713 	struct ocfs2_alloc_context *meta_ac = NULL;
5714 	struct ocfs2_refcount_tree *ref_tree = NULL;
5715 
5716 	if ((flags & OCFS2_EXT_REFCOUNTED) && len) {
5717 		BUG_ON(!ocfs2_is_refcount_inode(inode));
5718 
5719 		if (!refcount_tree_locked) {
5720 			ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
5721 						       &ref_tree, NULL);
5722 			if (ret) {
5723 				mlog_errno(ret);
5724 				goto bail;
5725 			}
5726 		}
5727 
5728 		ret = ocfs2_prepare_refcount_change_for_del(inode,
5729 							    refcount_loc,
5730 							    phys_blkno,
5731 							    len,
5732 							    &credits,
5733 							    &extra_blocks);
5734 		if (ret < 0) {
5735 			mlog_errno(ret);
5736 			goto bail;
5737 		}
5738 	}
5739 
5740 	ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac,
5741 						 extra_blocks);
5742 	if (ret) {
5743 		mlog_errno(ret);
5744 		goto bail;
5745 	}
5746 
5747 	inode_lock(tl_inode);
5748 
5749 	if (ocfs2_truncate_log_needs_flush(osb)) {
5750 		ret = __ocfs2_flush_truncate_log(osb);
5751 		if (ret < 0) {
5752 			mlog_errno(ret);
5753 			goto out;
5754 		}
5755 	}
5756 
5757 	handle = ocfs2_start_trans(osb,
5758 			ocfs2_remove_extent_credits(osb->sb) + credits);
5759 	if (IS_ERR(handle)) {
5760 		ret = PTR_ERR(handle);
5761 		mlog_errno(ret);
5762 		goto out;
5763 	}
5764 
5765 	ret = ocfs2_et_root_journal_access(handle, et,
5766 					   OCFS2_JOURNAL_ACCESS_WRITE);
5767 	if (ret) {
5768 		mlog_errno(ret);
5769 		goto out_commit;
5770 	}
5771 
5772 	dquot_free_space_nodirty(inode,
5773 				  ocfs2_clusters_to_bytes(inode->i_sb, len));
5774 
5775 	ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc);
5776 	if (ret) {
5777 		mlog_errno(ret);
5778 		goto out_commit;
5779 	}
5780 
5781 	ocfs2_et_update_clusters(et, -len);
5782 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
5783 
5784 	ocfs2_journal_dirty(handle, et->et_root_bh);
5785 
5786 	if (phys_blkno) {
5787 		if (flags & OCFS2_EXT_REFCOUNTED)
5788 			ret = ocfs2_decrease_refcount(inode, handle,
5789 					ocfs2_blocks_to_clusters(osb->sb,
5790 								 phys_blkno),
5791 					len, meta_ac,
5792 					dealloc, 1);
5793 		else
5794 			ret = ocfs2_truncate_log_append(osb, handle,
5795 							phys_blkno, len);
5796 		if (ret)
5797 			mlog_errno(ret);
5798 
5799 	}
5800 
5801 out_commit:
5802 	ocfs2_commit_trans(osb, handle);
5803 out:
5804 	inode_unlock(tl_inode);
5805 bail:
5806 	if (meta_ac)
5807 		ocfs2_free_alloc_context(meta_ac);
5808 
5809 	if (ref_tree)
5810 		ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
5811 
5812 	return ret;
5813 }
5814 
5815 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5816 {
5817 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5818 	struct ocfs2_dinode *di;
5819 	struct ocfs2_truncate_log *tl;
5820 
5821 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5822 	tl = &di->id2.i_dealloc;
5823 
5824 	mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5825 			"slot %d, invalid truncate log parameters: used = "
5826 			"%u, count = %u\n", osb->slot_num,
5827 			le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5828 	return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5829 }
5830 
5831 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5832 					   unsigned int new_start)
5833 {
5834 	unsigned int tail_index;
5835 	unsigned int current_tail;
5836 
5837 	/* No records, nothing to coalesce */
5838 	if (!le16_to_cpu(tl->tl_used))
5839 		return 0;
5840 
5841 	tail_index = le16_to_cpu(tl->tl_used) - 1;
5842 	current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5843 	current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5844 
5845 	return current_tail == new_start;
5846 }
5847 
5848 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5849 			      handle_t *handle,
5850 			      u64 start_blk,
5851 			      unsigned int num_clusters)
5852 {
5853 	int status, index;
5854 	unsigned int start_cluster, tl_count;
5855 	struct inode *tl_inode = osb->osb_tl_inode;
5856 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5857 	struct ocfs2_dinode *di;
5858 	struct ocfs2_truncate_log *tl;
5859 
5860 	BUG_ON(inode_trylock(tl_inode));
5861 
5862 	start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5863 
5864 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5865 
5866 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5867 	 * by the underlying call to ocfs2_read_inode_block(), so any
5868 	 * corruption is a code bug */
5869 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5870 
5871 	tl = &di->id2.i_dealloc;
5872 	tl_count = le16_to_cpu(tl->tl_count);
5873 	mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5874 			tl_count == 0,
5875 			"Truncate record count on #%llu invalid "
5876 			"wanted %u, actual %u\n",
5877 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5878 			ocfs2_truncate_recs_per_inode(osb->sb),
5879 			le16_to_cpu(tl->tl_count));
5880 
5881 	/* Caller should have known to flush before calling us. */
5882 	index = le16_to_cpu(tl->tl_used);
5883 	if (index >= tl_count) {
5884 		status = -ENOSPC;
5885 		mlog_errno(status);
5886 		goto bail;
5887 	}
5888 
5889 	status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5890 					 OCFS2_JOURNAL_ACCESS_WRITE);
5891 	if (status < 0) {
5892 		mlog_errno(status);
5893 		goto bail;
5894 	}
5895 
5896 	trace_ocfs2_truncate_log_append(
5897 		(unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index,
5898 		start_cluster, num_clusters);
5899 	if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5900 		/*
5901 		 * Move index back to the record we are coalescing with.
5902 		 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5903 		 */
5904 		index--;
5905 
5906 		num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5907 		trace_ocfs2_truncate_log_append(
5908 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5909 			index, le32_to_cpu(tl->tl_recs[index].t_start),
5910 			num_clusters);
5911 	} else {
5912 		tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5913 		tl->tl_used = cpu_to_le16(index + 1);
5914 	}
5915 	tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5916 
5917 	ocfs2_journal_dirty(handle, tl_bh);
5918 
5919 	osb->truncated_clusters += num_clusters;
5920 bail:
5921 	return status;
5922 }
5923 
5924 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5925 					 struct inode *data_alloc_inode,
5926 					 struct buffer_head *data_alloc_bh)
5927 {
5928 	int status = 0;
5929 	int i;
5930 	unsigned int num_clusters;
5931 	u64 start_blk;
5932 	struct ocfs2_truncate_rec rec;
5933 	struct ocfs2_dinode *di;
5934 	struct ocfs2_truncate_log *tl;
5935 	struct inode *tl_inode = osb->osb_tl_inode;
5936 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5937 	handle_t *handle;
5938 
5939 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5940 	tl = &di->id2.i_dealloc;
5941 	i = le16_to_cpu(tl->tl_used) - 1;
5942 	while (i >= 0) {
5943 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5944 		if (IS_ERR(handle)) {
5945 			status = PTR_ERR(handle);
5946 			mlog_errno(status);
5947 			goto bail;
5948 		}
5949 
5950 		/* Caller has given us at least enough credits to
5951 		 * update the truncate log dinode */
5952 		status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5953 						 OCFS2_JOURNAL_ACCESS_WRITE);
5954 		if (status < 0) {
5955 			mlog_errno(status);
5956 			goto bail;
5957 		}
5958 
5959 		tl->tl_used = cpu_to_le16(i);
5960 
5961 		ocfs2_journal_dirty(handle, tl_bh);
5962 
5963 		rec = tl->tl_recs[i];
5964 		start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5965 						    le32_to_cpu(rec.t_start));
5966 		num_clusters = le32_to_cpu(rec.t_clusters);
5967 
5968 		/* if start_blk is not set, we ignore the record as
5969 		 * invalid. */
5970 		if (start_blk) {
5971 			trace_ocfs2_replay_truncate_records(
5972 				(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5973 				i, le32_to_cpu(rec.t_start), num_clusters);
5974 
5975 			status = ocfs2_free_clusters(handle, data_alloc_inode,
5976 						     data_alloc_bh, start_blk,
5977 						     num_clusters);
5978 			if (status < 0) {
5979 				mlog_errno(status);
5980 				goto bail;
5981 			}
5982 		}
5983 
5984 		ocfs2_commit_trans(osb, handle);
5985 		i--;
5986 	}
5987 
5988 	osb->truncated_clusters = 0;
5989 
5990 bail:
5991 	return status;
5992 }
5993 
5994 /* Expects you to already be holding tl_inode->i_mutex */
5995 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5996 {
5997 	int status;
5998 	unsigned int num_to_flush;
5999 	struct inode *tl_inode = osb->osb_tl_inode;
6000 	struct inode *data_alloc_inode = NULL;
6001 	struct buffer_head *tl_bh = osb->osb_tl_bh;
6002 	struct buffer_head *data_alloc_bh = NULL;
6003 	struct ocfs2_dinode *di;
6004 	struct ocfs2_truncate_log *tl;
6005 
6006 	BUG_ON(inode_trylock(tl_inode));
6007 
6008 	di = (struct ocfs2_dinode *) tl_bh->b_data;
6009 
6010 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
6011 	 * by the underlying call to ocfs2_read_inode_block(), so any
6012 	 * corruption is a code bug */
6013 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
6014 
6015 	tl = &di->id2.i_dealloc;
6016 	num_to_flush = le16_to_cpu(tl->tl_used);
6017 	trace_ocfs2_flush_truncate_log(
6018 		(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
6019 		num_to_flush);
6020 	if (!num_to_flush) {
6021 		status = 0;
6022 		goto out;
6023 	}
6024 
6025 	data_alloc_inode = ocfs2_get_system_file_inode(osb,
6026 						       GLOBAL_BITMAP_SYSTEM_INODE,
6027 						       OCFS2_INVALID_SLOT);
6028 	if (!data_alloc_inode) {
6029 		status = -EINVAL;
6030 		mlog(ML_ERROR, "Could not get bitmap inode!\n");
6031 		goto out;
6032 	}
6033 
6034 	inode_lock(data_alloc_inode);
6035 
6036 	status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
6037 	if (status < 0) {
6038 		mlog_errno(status);
6039 		goto out_mutex;
6040 	}
6041 
6042 	status = ocfs2_replay_truncate_records(osb, data_alloc_inode,
6043 					       data_alloc_bh);
6044 	if (status < 0)
6045 		mlog_errno(status);
6046 
6047 	brelse(data_alloc_bh);
6048 	ocfs2_inode_unlock(data_alloc_inode, 1);
6049 
6050 out_mutex:
6051 	inode_unlock(data_alloc_inode);
6052 	iput(data_alloc_inode);
6053 
6054 out:
6055 	return status;
6056 }
6057 
6058 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
6059 {
6060 	int status;
6061 	struct inode *tl_inode = osb->osb_tl_inode;
6062 
6063 	inode_lock(tl_inode);
6064 	status = __ocfs2_flush_truncate_log(osb);
6065 	inode_unlock(tl_inode);
6066 
6067 	return status;
6068 }
6069 
6070 static void ocfs2_truncate_log_worker(struct work_struct *work)
6071 {
6072 	int status;
6073 	struct ocfs2_super *osb =
6074 		container_of(work, struct ocfs2_super,
6075 			     osb_truncate_log_wq.work);
6076 
6077 	status = ocfs2_flush_truncate_log(osb);
6078 	if (status < 0)
6079 		mlog_errno(status);
6080 	else
6081 		ocfs2_init_steal_slots(osb);
6082 }
6083 
6084 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
6085 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
6086 				       int cancel)
6087 {
6088 	if (osb->osb_tl_inode &&
6089 			atomic_read(&osb->osb_tl_disable) == 0) {
6090 		/* We want to push off log flushes while truncates are
6091 		 * still running. */
6092 		if (cancel)
6093 			cancel_delayed_work(&osb->osb_truncate_log_wq);
6094 
6095 		queue_delayed_work(osb->ocfs2_wq, &osb->osb_truncate_log_wq,
6096 				   OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
6097 	}
6098 }
6099 
6100 /*
6101  * Try to flush truncate logs if we can free enough clusters from it.
6102  * As for return value, "< 0" means error, "0" no space and "1" means
6103  * we have freed enough spaces and let the caller try to allocate again.
6104  */
6105 int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
6106 					unsigned int needed)
6107 {
6108 	tid_t target;
6109 	int ret = 0;
6110 	unsigned int truncated_clusters;
6111 
6112 	inode_lock(osb->osb_tl_inode);
6113 	truncated_clusters = osb->truncated_clusters;
6114 	inode_unlock(osb->osb_tl_inode);
6115 
6116 	/*
6117 	 * Check whether we can succeed in allocating if we free
6118 	 * the truncate log.
6119 	 */
6120 	if (truncated_clusters < needed)
6121 		goto out;
6122 
6123 	ret = ocfs2_flush_truncate_log(osb);
6124 	if (ret) {
6125 		mlog_errno(ret);
6126 		goto out;
6127 	}
6128 
6129 	if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
6130 		jbd2_log_wait_commit(osb->journal->j_journal, target);
6131 		ret = 1;
6132 	}
6133 out:
6134 	return ret;
6135 }
6136 
6137 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
6138 				       int slot_num,
6139 				       struct inode **tl_inode,
6140 				       struct buffer_head **tl_bh)
6141 {
6142 	int status;
6143 	struct inode *inode = NULL;
6144 	struct buffer_head *bh = NULL;
6145 
6146 	inode = ocfs2_get_system_file_inode(osb,
6147 					   TRUNCATE_LOG_SYSTEM_INODE,
6148 					   slot_num);
6149 	if (!inode) {
6150 		status = -EINVAL;
6151 		mlog(ML_ERROR, "Could not get load truncate log inode!\n");
6152 		goto bail;
6153 	}
6154 
6155 	status = ocfs2_read_inode_block(inode, &bh);
6156 	if (status < 0) {
6157 		iput(inode);
6158 		mlog_errno(status);
6159 		goto bail;
6160 	}
6161 
6162 	*tl_inode = inode;
6163 	*tl_bh    = bh;
6164 bail:
6165 	return status;
6166 }
6167 
6168 /* called during the 1st stage of node recovery. we stamp a clean
6169  * truncate log and pass back a copy for processing later. if the
6170  * truncate log does not require processing, a *tl_copy is set to
6171  * NULL. */
6172 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
6173 				      int slot_num,
6174 				      struct ocfs2_dinode **tl_copy)
6175 {
6176 	int status;
6177 	struct inode *tl_inode = NULL;
6178 	struct buffer_head *tl_bh = NULL;
6179 	struct ocfs2_dinode *di;
6180 	struct ocfs2_truncate_log *tl;
6181 
6182 	*tl_copy = NULL;
6183 
6184 	trace_ocfs2_begin_truncate_log_recovery(slot_num);
6185 
6186 	status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
6187 	if (status < 0) {
6188 		mlog_errno(status);
6189 		goto bail;
6190 	}
6191 
6192 	di = (struct ocfs2_dinode *) tl_bh->b_data;
6193 
6194 	/* tl_bh is loaded from ocfs2_get_truncate_log_info().  It's
6195 	 * validated by the underlying call to ocfs2_read_inode_block(),
6196 	 * so any corruption is a code bug */
6197 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
6198 
6199 	tl = &di->id2.i_dealloc;
6200 	if (le16_to_cpu(tl->tl_used)) {
6201 		trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl->tl_used));
6202 
6203 		*tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
6204 		if (!(*tl_copy)) {
6205 			status = -ENOMEM;
6206 			mlog_errno(status);
6207 			goto bail;
6208 		}
6209 
6210 		/* Assuming the write-out below goes well, this copy
6211 		 * will be passed back to recovery for processing. */
6212 		memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
6213 
6214 		/* All we need to do to clear the truncate log is set
6215 		 * tl_used. */
6216 		tl->tl_used = 0;
6217 
6218 		ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6219 		status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
6220 		if (status < 0) {
6221 			mlog_errno(status);
6222 			goto bail;
6223 		}
6224 	}
6225 
6226 bail:
6227 	iput(tl_inode);
6228 	brelse(tl_bh);
6229 
6230 	if (status < 0) {
6231 		kfree(*tl_copy);
6232 		*tl_copy = NULL;
6233 		mlog_errno(status);
6234 	}
6235 
6236 	return status;
6237 }
6238 
6239 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6240 					 struct ocfs2_dinode *tl_copy)
6241 {
6242 	int status = 0;
6243 	int i;
6244 	unsigned int clusters, num_recs, start_cluster;
6245 	u64 start_blk;
6246 	handle_t *handle;
6247 	struct inode *tl_inode = osb->osb_tl_inode;
6248 	struct ocfs2_truncate_log *tl;
6249 
6250 	if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6251 		mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6252 		return -EINVAL;
6253 	}
6254 
6255 	tl = &tl_copy->id2.i_dealloc;
6256 	num_recs = le16_to_cpu(tl->tl_used);
6257 	trace_ocfs2_complete_truncate_log_recovery(
6258 		(unsigned long long)le64_to_cpu(tl_copy->i_blkno),
6259 		num_recs);
6260 
6261 	inode_lock(tl_inode);
6262 	for(i = 0; i < num_recs; i++) {
6263 		if (ocfs2_truncate_log_needs_flush(osb)) {
6264 			status = __ocfs2_flush_truncate_log(osb);
6265 			if (status < 0) {
6266 				mlog_errno(status);
6267 				goto bail_up;
6268 			}
6269 		}
6270 
6271 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6272 		if (IS_ERR(handle)) {
6273 			status = PTR_ERR(handle);
6274 			mlog_errno(status);
6275 			goto bail_up;
6276 		}
6277 
6278 		clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6279 		start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6280 		start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6281 
6282 		status = ocfs2_truncate_log_append(osb, handle,
6283 						   start_blk, clusters);
6284 		ocfs2_commit_trans(osb, handle);
6285 		if (status < 0) {
6286 			mlog_errno(status);
6287 			goto bail_up;
6288 		}
6289 	}
6290 
6291 bail_up:
6292 	inode_unlock(tl_inode);
6293 
6294 	return status;
6295 }
6296 
6297 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6298 {
6299 	int status;
6300 	struct inode *tl_inode = osb->osb_tl_inode;
6301 
6302 	atomic_set(&osb->osb_tl_disable, 1);
6303 
6304 	if (tl_inode) {
6305 		cancel_delayed_work(&osb->osb_truncate_log_wq);
6306 		flush_workqueue(osb->ocfs2_wq);
6307 
6308 		status = ocfs2_flush_truncate_log(osb);
6309 		if (status < 0)
6310 			mlog_errno(status);
6311 
6312 		brelse(osb->osb_tl_bh);
6313 		iput(osb->osb_tl_inode);
6314 	}
6315 }
6316 
6317 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6318 {
6319 	int status;
6320 	struct inode *tl_inode = NULL;
6321 	struct buffer_head *tl_bh = NULL;
6322 
6323 	status = ocfs2_get_truncate_log_info(osb,
6324 					     osb->slot_num,
6325 					     &tl_inode,
6326 					     &tl_bh);
6327 	if (status < 0)
6328 		mlog_errno(status);
6329 
6330 	/* ocfs2_truncate_log_shutdown keys on the existence of
6331 	 * osb->osb_tl_inode so we don't set any of the osb variables
6332 	 * until we're sure all is well. */
6333 	INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6334 			  ocfs2_truncate_log_worker);
6335 	atomic_set(&osb->osb_tl_disable, 0);
6336 	osb->osb_tl_bh    = tl_bh;
6337 	osb->osb_tl_inode = tl_inode;
6338 
6339 	return status;
6340 }
6341 
6342 /*
6343  * Delayed de-allocation of suballocator blocks.
6344  *
6345  * Some sets of block de-allocations might involve multiple suballocator inodes.
6346  *
6347  * The locking for this can get extremely complicated, especially when
6348  * the suballocator inodes to delete from aren't known until deep
6349  * within an unrelated codepath.
6350  *
6351  * ocfs2_extent_block structures are a good example of this - an inode
6352  * btree could have been grown by any number of nodes each allocating
6353  * out of their own suballoc inode.
6354  *
6355  * These structures allow the delay of block de-allocation until a
6356  * later time, when locking of multiple cluster inodes won't cause
6357  * deadlock.
6358  */
6359 
6360 /*
6361  * Describe a single bit freed from a suballocator.  For the block
6362  * suballocators, it represents one block.  For the global cluster
6363  * allocator, it represents some clusters and free_bit indicates
6364  * clusters number.
6365  */
6366 struct ocfs2_cached_block_free {
6367 	struct ocfs2_cached_block_free		*free_next;
6368 	u64					free_bg;
6369 	u64					free_blk;
6370 	unsigned int				free_bit;
6371 };
6372 
6373 struct ocfs2_per_slot_free_list {
6374 	struct ocfs2_per_slot_free_list		*f_next_suballocator;
6375 	int					f_inode_type;
6376 	int					f_slot;
6377 	struct ocfs2_cached_block_free		*f_first;
6378 };
6379 
6380 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6381 				    int sysfile_type,
6382 				    int slot,
6383 				    struct ocfs2_cached_block_free *head)
6384 {
6385 	int ret;
6386 	u64 bg_blkno;
6387 	handle_t *handle;
6388 	struct inode *inode;
6389 	struct buffer_head *di_bh = NULL;
6390 	struct ocfs2_cached_block_free *tmp;
6391 
6392 	inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6393 	if (!inode) {
6394 		ret = -EINVAL;
6395 		mlog_errno(ret);
6396 		goto out;
6397 	}
6398 
6399 	inode_lock(inode);
6400 
6401 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
6402 	if (ret) {
6403 		mlog_errno(ret);
6404 		goto out_mutex;
6405 	}
6406 
6407 	while (head) {
6408 		if (head->free_bg)
6409 			bg_blkno = head->free_bg;
6410 		else
6411 			bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6412 							      head->free_bit);
6413 		handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6414 		if (IS_ERR(handle)) {
6415 			ret = PTR_ERR(handle);
6416 			mlog_errno(ret);
6417 			goto out_unlock;
6418 		}
6419 
6420 		trace_ocfs2_free_cached_blocks(
6421 		     (unsigned long long)head->free_blk, head->free_bit);
6422 
6423 		ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6424 					       head->free_bit, bg_blkno, 1);
6425 		if (ret)
6426 			mlog_errno(ret);
6427 
6428 		ocfs2_commit_trans(osb, handle);
6429 
6430 		tmp = head;
6431 		head = head->free_next;
6432 		kfree(tmp);
6433 	}
6434 
6435 out_unlock:
6436 	ocfs2_inode_unlock(inode, 1);
6437 	brelse(di_bh);
6438 out_mutex:
6439 	inode_unlock(inode);
6440 	iput(inode);
6441 out:
6442 	while(head) {
6443 		/* Premature exit may have left some dangling items. */
6444 		tmp = head;
6445 		head = head->free_next;
6446 		kfree(tmp);
6447 	}
6448 
6449 	return ret;
6450 }
6451 
6452 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6453 				u64 blkno, unsigned int bit)
6454 {
6455 	int ret = 0;
6456 	struct ocfs2_cached_block_free *item;
6457 
6458 	item = kzalloc(sizeof(*item), GFP_NOFS);
6459 	if (item == NULL) {
6460 		ret = -ENOMEM;
6461 		mlog_errno(ret);
6462 		return ret;
6463 	}
6464 
6465 	trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno, bit);
6466 
6467 	item->free_blk = blkno;
6468 	item->free_bit = bit;
6469 	item->free_next = ctxt->c_global_allocator;
6470 
6471 	ctxt->c_global_allocator = item;
6472 	return ret;
6473 }
6474 
6475 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6476 				      struct ocfs2_cached_block_free *head)
6477 {
6478 	struct ocfs2_cached_block_free *tmp;
6479 	struct inode *tl_inode = osb->osb_tl_inode;
6480 	handle_t *handle;
6481 	int ret = 0;
6482 
6483 	inode_lock(tl_inode);
6484 
6485 	while (head) {
6486 		if (ocfs2_truncate_log_needs_flush(osb)) {
6487 			ret = __ocfs2_flush_truncate_log(osb);
6488 			if (ret < 0) {
6489 				mlog_errno(ret);
6490 				break;
6491 			}
6492 		}
6493 
6494 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6495 		if (IS_ERR(handle)) {
6496 			ret = PTR_ERR(handle);
6497 			mlog_errno(ret);
6498 			break;
6499 		}
6500 
6501 		ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6502 						head->free_bit);
6503 
6504 		ocfs2_commit_trans(osb, handle);
6505 		tmp = head;
6506 		head = head->free_next;
6507 		kfree(tmp);
6508 
6509 		if (ret < 0) {
6510 			mlog_errno(ret);
6511 			break;
6512 		}
6513 	}
6514 
6515 	inode_unlock(tl_inode);
6516 
6517 	while (head) {
6518 		/* Premature exit may have left some dangling items. */
6519 		tmp = head;
6520 		head = head->free_next;
6521 		kfree(tmp);
6522 	}
6523 
6524 	return ret;
6525 }
6526 
6527 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6528 		       struct ocfs2_cached_dealloc_ctxt *ctxt)
6529 {
6530 	int ret = 0, ret2;
6531 	struct ocfs2_per_slot_free_list *fl;
6532 
6533 	if (!ctxt)
6534 		return 0;
6535 
6536 	while (ctxt->c_first_suballocator) {
6537 		fl = ctxt->c_first_suballocator;
6538 
6539 		if (fl->f_first) {
6540 			trace_ocfs2_run_deallocs(fl->f_inode_type,
6541 						 fl->f_slot);
6542 			ret2 = ocfs2_free_cached_blocks(osb,
6543 							fl->f_inode_type,
6544 							fl->f_slot,
6545 							fl->f_first);
6546 			if (ret2)
6547 				mlog_errno(ret2);
6548 			if (!ret)
6549 				ret = ret2;
6550 		}
6551 
6552 		ctxt->c_first_suballocator = fl->f_next_suballocator;
6553 		kfree(fl);
6554 	}
6555 
6556 	if (ctxt->c_global_allocator) {
6557 		ret2 = ocfs2_free_cached_clusters(osb,
6558 						  ctxt->c_global_allocator);
6559 		if (ret2)
6560 			mlog_errno(ret2);
6561 		if (!ret)
6562 			ret = ret2;
6563 
6564 		ctxt->c_global_allocator = NULL;
6565 	}
6566 
6567 	return ret;
6568 }
6569 
6570 static struct ocfs2_per_slot_free_list *
6571 ocfs2_find_per_slot_free_list(int type,
6572 			      int slot,
6573 			      struct ocfs2_cached_dealloc_ctxt *ctxt)
6574 {
6575 	struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6576 
6577 	while (fl) {
6578 		if (fl->f_inode_type == type && fl->f_slot == slot)
6579 			return fl;
6580 
6581 		fl = fl->f_next_suballocator;
6582 	}
6583 
6584 	fl = kmalloc(sizeof(*fl), GFP_NOFS);
6585 	if (fl) {
6586 		fl->f_inode_type = type;
6587 		fl->f_slot = slot;
6588 		fl->f_first = NULL;
6589 		fl->f_next_suballocator = ctxt->c_first_suballocator;
6590 
6591 		ctxt->c_first_suballocator = fl;
6592 	}
6593 	return fl;
6594 }
6595 
6596 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6597 			      int type, int slot, u64 suballoc,
6598 			      u64 blkno, unsigned int bit)
6599 {
6600 	int ret;
6601 	struct ocfs2_per_slot_free_list *fl;
6602 	struct ocfs2_cached_block_free *item;
6603 
6604 	fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6605 	if (fl == NULL) {
6606 		ret = -ENOMEM;
6607 		mlog_errno(ret);
6608 		goto out;
6609 	}
6610 
6611 	item = kzalloc(sizeof(*item), GFP_NOFS);
6612 	if (item == NULL) {
6613 		ret = -ENOMEM;
6614 		mlog_errno(ret);
6615 		goto out;
6616 	}
6617 
6618 	trace_ocfs2_cache_block_dealloc(type, slot,
6619 					(unsigned long long)suballoc,
6620 					(unsigned long long)blkno, bit);
6621 
6622 	item->free_bg = suballoc;
6623 	item->free_blk = blkno;
6624 	item->free_bit = bit;
6625 	item->free_next = fl->f_first;
6626 
6627 	fl->f_first = item;
6628 
6629 	ret = 0;
6630 out:
6631 	return ret;
6632 }
6633 
6634 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6635 					 struct ocfs2_extent_block *eb)
6636 {
6637 	return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6638 					 le16_to_cpu(eb->h_suballoc_slot),
6639 					 le64_to_cpu(eb->h_suballoc_loc),
6640 					 le64_to_cpu(eb->h_blkno),
6641 					 le16_to_cpu(eb->h_suballoc_bit));
6642 }
6643 
6644 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6645 {
6646 	set_buffer_uptodate(bh);
6647 	mark_buffer_dirty(bh);
6648 	return 0;
6649 }
6650 
6651 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6652 			      unsigned int from, unsigned int to,
6653 			      struct page *page, int zero, u64 *phys)
6654 {
6655 	int ret, partial = 0;
6656 
6657 	ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6658 	if (ret)
6659 		mlog_errno(ret);
6660 
6661 	if (zero)
6662 		zero_user_segment(page, from, to);
6663 
6664 	/*
6665 	 * Need to set the buffers we zero'd into uptodate
6666 	 * here if they aren't - ocfs2_map_page_blocks()
6667 	 * might've skipped some
6668 	 */
6669 	ret = walk_page_buffers(handle, page_buffers(page),
6670 				from, to, &partial,
6671 				ocfs2_zero_func);
6672 	if (ret < 0)
6673 		mlog_errno(ret);
6674 	else if (ocfs2_should_order_data(inode)) {
6675 		ret = ocfs2_jbd2_file_inode(handle, inode);
6676 		if (ret < 0)
6677 			mlog_errno(ret);
6678 	}
6679 
6680 	if (!partial)
6681 		SetPageUptodate(page);
6682 
6683 	flush_dcache_page(page);
6684 }
6685 
6686 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6687 				     loff_t end, struct page **pages,
6688 				     int numpages, u64 phys, handle_t *handle)
6689 {
6690 	int i;
6691 	struct page *page;
6692 	unsigned int from, to = PAGE_SIZE;
6693 	struct super_block *sb = inode->i_sb;
6694 
6695 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6696 
6697 	if (numpages == 0)
6698 		goto out;
6699 
6700 	to = PAGE_SIZE;
6701 	for(i = 0; i < numpages; i++) {
6702 		page = pages[i];
6703 
6704 		from = start & (PAGE_SIZE - 1);
6705 		if ((end >> PAGE_SHIFT) == page->index)
6706 			to = end & (PAGE_SIZE - 1);
6707 
6708 		BUG_ON(from > PAGE_SIZE);
6709 		BUG_ON(to > PAGE_SIZE);
6710 
6711 		ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6712 					 &phys);
6713 
6714 		start = (page->index + 1) << PAGE_SHIFT;
6715 	}
6716 out:
6717 	if (pages)
6718 		ocfs2_unlock_and_free_pages(pages, numpages);
6719 }
6720 
6721 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end,
6722 		     struct page **pages, int *num)
6723 {
6724 	int numpages, ret = 0;
6725 	struct address_space *mapping = inode->i_mapping;
6726 	unsigned long index;
6727 	loff_t last_page_bytes;
6728 
6729 	BUG_ON(start > end);
6730 
6731 	numpages = 0;
6732 	last_page_bytes = PAGE_ALIGN(end);
6733 	index = start >> PAGE_SHIFT;
6734 	do {
6735 		pages[numpages] = find_or_create_page(mapping, index, GFP_NOFS);
6736 		if (!pages[numpages]) {
6737 			ret = -ENOMEM;
6738 			mlog_errno(ret);
6739 			goto out;
6740 		}
6741 
6742 		numpages++;
6743 		index++;
6744 	} while (index < (last_page_bytes >> PAGE_SHIFT));
6745 
6746 out:
6747 	if (ret != 0) {
6748 		if (pages)
6749 			ocfs2_unlock_and_free_pages(pages, numpages);
6750 		numpages = 0;
6751 	}
6752 
6753 	*num = numpages;
6754 
6755 	return ret;
6756 }
6757 
6758 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6759 				struct page **pages, int *num)
6760 {
6761 	struct super_block *sb = inode->i_sb;
6762 
6763 	BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6764 	       (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6765 
6766 	return ocfs2_grab_pages(inode, start, end, pages, num);
6767 }
6768 
6769 /*
6770  * Zero the area past i_size but still within an allocated
6771  * cluster. This avoids exposing nonzero data on subsequent file
6772  * extends.
6773  *
6774  * We need to call this before i_size is updated on the inode because
6775  * otherwise block_write_full_page() will skip writeout of pages past
6776  * i_size. The new_i_size parameter is passed for this reason.
6777  */
6778 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6779 				  u64 range_start, u64 range_end)
6780 {
6781 	int ret = 0, numpages;
6782 	struct page **pages = NULL;
6783 	u64 phys;
6784 	unsigned int ext_flags;
6785 	struct super_block *sb = inode->i_sb;
6786 
6787 	/*
6788 	 * File systems which don't support sparse files zero on every
6789 	 * extend.
6790 	 */
6791 	if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6792 		return 0;
6793 
6794 	pages = kcalloc(ocfs2_pages_per_cluster(sb),
6795 			sizeof(struct page *), GFP_NOFS);
6796 	if (pages == NULL) {
6797 		ret = -ENOMEM;
6798 		mlog_errno(ret);
6799 		goto out;
6800 	}
6801 
6802 	if (range_start == range_end)
6803 		goto out;
6804 
6805 	ret = ocfs2_extent_map_get_blocks(inode,
6806 					  range_start >> sb->s_blocksize_bits,
6807 					  &phys, NULL, &ext_flags);
6808 	if (ret) {
6809 		mlog_errno(ret);
6810 		goto out;
6811 	}
6812 
6813 	/*
6814 	 * Tail is a hole, or is marked unwritten. In either case, we
6815 	 * can count on read and write to return/push zero's.
6816 	 */
6817 	if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6818 		goto out;
6819 
6820 	ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6821 				   &numpages);
6822 	if (ret) {
6823 		mlog_errno(ret);
6824 		goto out;
6825 	}
6826 
6827 	ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6828 				 numpages, phys, handle);
6829 
6830 	/*
6831 	 * Initiate writeout of the pages we zero'd here. We don't
6832 	 * wait on them - the truncate_inode_pages() call later will
6833 	 * do that for us.
6834 	 */
6835 	ret = filemap_fdatawrite_range(inode->i_mapping, range_start,
6836 				       range_end - 1);
6837 	if (ret)
6838 		mlog_errno(ret);
6839 
6840 out:
6841 	kfree(pages);
6842 
6843 	return ret;
6844 }
6845 
6846 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
6847 					     struct ocfs2_dinode *di)
6848 {
6849 	unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
6850 	unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
6851 
6852 	if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
6853 		memset(&di->id2, 0, blocksize -
6854 				    offsetof(struct ocfs2_dinode, id2) -
6855 				    xattrsize);
6856 	else
6857 		memset(&di->id2, 0, blocksize -
6858 				    offsetof(struct ocfs2_dinode, id2));
6859 }
6860 
6861 void ocfs2_dinode_new_extent_list(struct inode *inode,
6862 				  struct ocfs2_dinode *di)
6863 {
6864 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
6865 	di->id2.i_list.l_tree_depth = 0;
6866 	di->id2.i_list.l_next_free_rec = 0;
6867 	di->id2.i_list.l_count = cpu_to_le16(
6868 		ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
6869 }
6870 
6871 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
6872 {
6873 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
6874 	struct ocfs2_inline_data *idata = &di->id2.i_data;
6875 
6876 	spin_lock(&oi->ip_lock);
6877 	oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
6878 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6879 	spin_unlock(&oi->ip_lock);
6880 
6881 	/*
6882 	 * We clear the entire i_data structure here so that all
6883 	 * fields can be properly initialized.
6884 	 */
6885 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
6886 
6887 	idata->id_count = cpu_to_le16(
6888 			ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
6889 }
6890 
6891 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
6892 					 struct buffer_head *di_bh)
6893 {
6894 	int ret, i, has_data, num_pages = 0;
6895 	int need_free = 0;
6896 	u32 bit_off, num;
6897 	handle_t *handle;
6898 	u64 uninitialized_var(block);
6899 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
6900 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6901 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6902 	struct ocfs2_alloc_context *data_ac = NULL;
6903 	struct page **pages = NULL;
6904 	loff_t end = osb->s_clustersize;
6905 	struct ocfs2_extent_tree et;
6906 	int did_quota = 0;
6907 
6908 	has_data = i_size_read(inode) ? 1 : 0;
6909 
6910 	if (has_data) {
6911 		pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
6912 				sizeof(struct page *), GFP_NOFS);
6913 		if (pages == NULL) {
6914 			ret = -ENOMEM;
6915 			mlog_errno(ret);
6916 			return ret;
6917 		}
6918 
6919 		ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
6920 		if (ret) {
6921 			mlog_errno(ret);
6922 			goto free_pages;
6923 		}
6924 	}
6925 
6926 	handle = ocfs2_start_trans(osb,
6927 				   ocfs2_inline_to_extents_credits(osb->sb));
6928 	if (IS_ERR(handle)) {
6929 		ret = PTR_ERR(handle);
6930 		mlog_errno(ret);
6931 		goto out;
6932 	}
6933 
6934 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
6935 				      OCFS2_JOURNAL_ACCESS_WRITE);
6936 	if (ret) {
6937 		mlog_errno(ret);
6938 		goto out_commit;
6939 	}
6940 
6941 	if (has_data) {
6942 		unsigned int page_end;
6943 		u64 phys;
6944 
6945 		ret = dquot_alloc_space_nodirty(inode,
6946 				       ocfs2_clusters_to_bytes(osb->sb, 1));
6947 		if (ret)
6948 			goto out_commit;
6949 		did_quota = 1;
6950 
6951 		data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
6952 
6953 		ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off,
6954 					   &num);
6955 		if (ret) {
6956 			mlog_errno(ret);
6957 			goto out_commit;
6958 		}
6959 
6960 		/*
6961 		 * Save two copies, one for insert, and one that can
6962 		 * be changed by ocfs2_map_and_dirty_page() below.
6963 		 */
6964 		block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
6965 
6966 		/*
6967 		 * Non sparse file systems zero on extend, so no need
6968 		 * to do that now.
6969 		 */
6970 		if (!ocfs2_sparse_alloc(osb) &&
6971 		    PAGE_SIZE < osb->s_clustersize)
6972 			end = PAGE_SIZE;
6973 
6974 		ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
6975 		if (ret) {
6976 			mlog_errno(ret);
6977 			need_free = 1;
6978 			goto out_commit;
6979 		}
6980 
6981 		/*
6982 		 * This should populate the 1st page for us and mark
6983 		 * it up to date.
6984 		 */
6985 		ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
6986 		if (ret) {
6987 			mlog_errno(ret);
6988 			need_free = 1;
6989 			goto out_unlock;
6990 		}
6991 
6992 		page_end = PAGE_SIZE;
6993 		if (PAGE_SIZE > osb->s_clustersize)
6994 			page_end = osb->s_clustersize;
6995 
6996 		for (i = 0; i < num_pages; i++)
6997 			ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
6998 						 pages[i], i > 0, &phys);
6999 	}
7000 
7001 	spin_lock(&oi->ip_lock);
7002 	oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
7003 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7004 	spin_unlock(&oi->ip_lock);
7005 
7006 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
7007 	ocfs2_dinode_new_extent_list(inode, di);
7008 
7009 	ocfs2_journal_dirty(handle, di_bh);
7010 
7011 	if (has_data) {
7012 		/*
7013 		 * An error at this point should be extremely rare. If
7014 		 * this proves to be false, we could always re-build
7015 		 * the in-inode data from our pages.
7016 		 */
7017 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
7018 		ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL);
7019 		if (ret) {
7020 			mlog_errno(ret);
7021 			need_free = 1;
7022 			goto out_unlock;
7023 		}
7024 
7025 		inode->i_blocks = ocfs2_inode_sector_count(inode);
7026 	}
7027 
7028 out_unlock:
7029 	if (pages)
7030 		ocfs2_unlock_and_free_pages(pages, num_pages);
7031 
7032 out_commit:
7033 	if (ret < 0 && did_quota)
7034 		dquot_free_space_nodirty(inode,
7035 					  ocfs2_clusters_to_bytes(osb->sb, 1));
7036 
7037 	if (need_free) {
7038 		if (data_ac->ac_which == OCFS2_AC_USE_LOCAL)
7039 			ocfs2_free_local_alloc_bits(osb, handle, data_ac,
7040 					bit_off, num);
7041 		else
7042 			ocfs2_free_clusters(handle,
7043 					data_ac->ac_inode,
7044 					data_ac->ac_bh,
7045 					ocfs2_clusters_to_blocks(osb->sb, bit_off),
7046 					num);
7047 	}
7048 
7049 	ocfs2_commit_trans(osb, handle);
7050 
7051 out:
7052 	if (data_ac)
7053 		ocfs2_free_alloc_context(data_ac);
7054 free_pages:
7055 	kfree(pages);
7056 	return ret;
7057 }
7058 
7059 /*
7060  * It is expected, that by the time you call this function,
7061  * inode->i_size and fe->i_size have been adjusted.
7062  *
7063  * WARNING: This will kfree the truncate context
7064  */
7065 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7066 			  struct inode *inode,
7067 			  struct buffer_head *di_bh)
7068 {
7069 	int status = 0, i, flags = 0;
7070 	u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff;
7071 	u64 blkno = 0;
7072 	struct ocfs2_extent_list *el;
7073 	struct ocfs2_extent_rec *rec;
7074 	struct ocfs2_path *path = NULL;
7075 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7076 	struct ocfs2_extent_list *root_el = &(di->id2.i_list);
7077 	u64 refcount_loc = le64_to_cpu(di->i_refcount_loc);
7078 	struct ocfs2_extent_tree et;
7079 	struct ocfs2_cached_dealloc_ctxt dealloc;
7080 	struct ocfs2_refcount_tree *ref_tree = NULL;
7081 
7082 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
7083 	ocfs2_init_dealloc_ctxt(&dealloc);
7084 
7085 	new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7086 						     i_size_read(inode));
7087 
7088 	path = ocfs2_new_path(di_bh, &di->id2.i_list,
7089 			      ocfs2_journal_access_di);
7090 	if (!path) {
7091 		status = -ENOMEM;
7092 		mlog_errno(status);
7093 		goto bail;
7094 	}
7095 
7096 	ocfs2_extent_map_trunc(inode, new_highest_cpos);
7097 
7098 start:
7099 	/*
7100 	 * Check that we still have allocation to delete.
7101 	 */
7102 	if (OCFS2_I(inode)->ip_clusters == 0) {
7103 		status = 0;
7104 		goto bail;
7105 	}
7106 
7107 	/*
7108 	 * Truncate always works against the rightmost tree branch.
7109 	 */
7110 	status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX);
7111 	if (status) {
7112 		mlog_errno(status);
7113 		goto bail;
7114 	}
7115 
7116 	trace_ocfs2_commit_truncate(
7117 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
7118 		new_highest_cpos,
7119 		OCFS2_I(inode)->ip_clusters,
7120 		path->p_tree_depth);
7121 
7122 	/*
7123 	 * By now, el will point to the extent list on the bottom most
7124 	 * portion of this tree. Only the tail record is considered in
7125 	 * each pass.
7126 	 *
7127 	 * We handle the following cases, in order:
7128 	 * - empty extent: delete the remaining branch
7129 	 * - remove the entire record
7130 	 * - remove a partial record
7131 	 * - no record needs to be removed (truncate has completed)
7132 	 */
7133 	el = path_leaf_el(path);
7134 	if (le16_to_cpu(el->l_next_free_rec) == 0) {
7135 		ocfs2_error(inode->i_sb,
7136 			    "Inode %llu has empty extent block at %llu\n",
7137 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7138 			    (unsigned long long)path_leaf_bh(path)->b_blocknr);
7139 		status = -EROFS;
7140 		goto bail;
7141 	}
7142 
7143 	i = le16_to_cpu(el->l_next_free_rec) - 1;
7144 	rec = &el->l_recs[i];
7145 	flags = rec->e_flags;
7146 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
7147 
7148 	if (i == 0 && ocfs2_is_empty_extent(rec)) {
7149 		/*
7150 		 * Lower levels depend on this never happening, but it's best
7151 		 * to check it up here before changing the tree.
7152 		*/
7153 		if (root_el->l_tree_depth && rec->e_int_clusters == 0) {
7154 			mlog(ML_ERROR, "Inode %lu has an empty "
7155 				    "extent record, depth %u\n", inode->i_ino,
7156 				    le16_to_cpu(root_el->l_tree_depth));
7157 			status = ocfs2_remove_rightmost_empty_extent(osb,
7158 					&et, path, &dealloc);
7159 			if (status) {
7160 				mlog_errno(status);
7161 				goto bail;
7162 			}
7163 
7164 			ocfs2_reinit_path(path, 1);
7165 			goto start;
7166 		} else {
7167 			trunc_cpos = le32_to_cpu(rec->e_cpos);
7168 			trunc_len = 0;
7169 			blkno = 0;
7170 		}
7171 	} else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) {
7172 		/*
7173 		 * Truncate entire record.
7174 		 */
7175 		trunc_cpos = le32_to_cpu(rec->e_cpos);
7176 		trunc_len = ocfs2_rec_clusters(el, rec);
7177 		blkno = le64_to_cpu(rec->e_blkno);
7178 	} else if (range > new_highest_cpos) {
7179 		/*
7180 		 * Partial truncate. it also should be
7181 		 * the last truncate we're doing.
7182 		 */
7183 		trunc_cpos = new_highest_cpos;
7184 		trunc_len = range - new_highest_cpos;
7185 		coff = new_highest_cpos - le32_to_cpu(rec->e_cpos);
7186 		blkno = le64_to_cpu(rec->e_blkno) +
7187 				ocfs2_clusters_to_blocks(inode->i_sb, coff);
7188 	} else {
7189 		/*
7190 		 * Truncate completed, leave happily.
7191 		 */
7192 		status = 0;
7193 		goto bail;
7194 	}
7195 
7196 	phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
7197 
7198 	if ((flags & OCFS2_EXT_REFCOUNTED) && trunc_len && !ref_tree) {
7199 		status = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
7200 				&ref_tree, NULL);
7201 		if (status) {
7202 			mlog_errno(status);
7203 			goto bail;
7204 		}
7205 	}
7206 
7207 	status = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
7208 					  phys_cpos, trunc_len, flags, &dealloc,
7209 					  refcount_loc, true);
7210 	if (status < 0) {
7211 		mlog_errno(status);
7212 		goto bail;
7213 	}
7214 
7215 	ocfs2_reinit_path(path, 1);
7216 
7217 	/*
7218 	 * The check above will catch the case where we've truncated
7219 	 * away all allocation.
7220 	 */
7221 	goto start;
7222 
7223 bail:
7224 	if (ref_tree)
7225 		ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
7226 
7227 	ocfs2_schedule_truncate_log_flush(osb, 1);
7228 
7229 	ocfs2_run_deallocs(osb, &dealloc);
7230 
7231 	ocfs2_free_path(path);
7232 
7233 	return status;
7234 }
7235 
7236 /*
7237  * 'start' is inclusive, 'end' is not.
7238  */
7239 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7240 			  unsigned int start, unsigned int end, int trunc)
7241 {
7242 	int ret;
7243 	unsigned int numbytes;
7244 	handle_t *handle;
7245 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7246 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7247 	struct ocfs2_inline_data *idata = &di->id2.i_data;
7248 
7249 	if (end > i_size_read(inode))
7250 		end = i_size_read(inode);
7251 
7252 	BUG_ON(start > end);
7253 
7254 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7255 	    !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7256 	    !ocfs2_supports_inline_data(osb)) {
7257 		ocfs2_error(inode->i_sb,
7258 			    "Inline data flags for inode %llu don't agree! Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7259 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7260 			    le16_to_cpu(di->i_dyn_features),
7261 			    OCFS2_I(inode)->ip_dyn_features,
7262 			    osb->s_feature_incompat);
7263 		ret = -EROFS;
7264 		goto out;
7265 	}
7266 
7267 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7268 	if (IS_ERR(handle)) {
7269 		ret = PTR_ERR(handle);
7270 		mlog_errno(ret);
7271 		goto out;
7272 	}
7273 
7274 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7275 				      OCFS2_JOURNAL_ACCESS_WRITE);
7276 	if (ret) {
7277 		mlog_errno(ret);
7278 		goto out_commit;
7279 	}
7280 
7281 	numbytes = end - start;
7282 	memset(idata->id_data + start, 0, numbytes);
7283 
7284 	/*
7285 	 * No need to worry about the data page here - it's been
7286 	 * truncated already and inline data doesn't need it for
7287 	 * pushing zero's to disk, so we'll let readpage pick it up
7288 	 * later.
7289 	 */
7290 	if (trunc) {
7291 		i_size_write(inode, start);
7292 		di->i_size = cpu_to_le64(start);
7293 	}
7294 
7295 	inode->i_blocks = ocfs2_inode_sector_count(inode);
7296 	inode->i_ctime = inode->i_mtime = current_time(inode);
7297 
7298 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7299 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7300 
7301 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
7302 	ocfs2_journal_dirty(handle, di_bh);
7303 
7304 out_commit:
7305 	ocfs2_commit_trans(osb, handle);
7306 
7307 out:
7308 	return ret;
7309 }
7310 
7311 static int ocfs2_trim_extent(struct super_block *sb,
7312 			     struct ocfs2_group_desc *gd,
7313 			     u32 start, u32 count)
7314 {
7315 	u64 discard, bcount;
7316 
7317 	bcount = ocfs2_clusters_to_blocks(sb, count);
7318 	discard = le64_to_cpu(gd->bg_blkno) +
7319 			ocfs2_clusters_to_blocks(sb, start);
7320 
7321 	trace_ocfs2_trim_extent(sb, (unsigned long long)discard, bcount);
7322 
7323 	return sb_issue_discard(sb, discard, bcount, GFP_NOFS, 0);
7324 }
7325 
7326 static int ocfs2_trim_group(struct super_block *sb,
7327 			    struct ocfs2_group_desc *gd,
7328 			    u32 start, u32 max, u32 minbits)
7329 {
7330 	int ret = 0, count = 0, next;
7331 	void *bitmap = gd->bg_bitmap;
7332 
7333 	if (le16_to_cpu(gd->bg_free_bits_count) < minbits)
7334 		return 0;
7335 
7336 	trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd->bg_blkno),
7337 			       start, max, minbits);
7338 
7339 	while (start < max) {
7340 		start = ocfs2_find_next_zero_bit(bitmap, max, start);
7341 		if (start >= max)
7342 			break;
7343 		next = ocfs2_find_next_bit(bitmap, max, start);
7344 
7345 		if ((next - start) >= minbits) {
7346 			ret = ocfs2_trim_extent(sb, gd,
7347 						start, next - start);
7348 			if (ret < 0) {
7349 				mlog_errno(ret);
7350 				break;
7351 			}
7352 			count += next - start;
7353 		}
7354 		start = next + 1;
7355 
7356 		if (fatal_signal_pending(current)) {
7357 			count = -ERESTARTSYS;
7358 			break;
7359 		}
7360 
7361 		if ((le16_to_cpu(gd->bg_free_bits_count) - count) < minbits)
7362 			break;
7363 	}
7364 
7365 	if (ret < 0)
7366 		count = ret;
7367 
7368 	return count;
7369 }
7370 
7371 int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range)
7372 {
7373 	struct ocfs2_super *osb = OCFS2_SB(sb);
7374 	u64 start, len, trimmed, first_group, last_group, group;
7375 	int ret, cnt;
7376 	u32 first_bit, last_bit, minlen;
7377 	struct buffer_head *main_bm_bh = NULL;
7378 	struct inode *main_bm_inode = NULL;
7379 	struct buffer_head *gd_bh = NULL;
7380 	struct ocfs2_dinode *main_bm;
7381 	struct ocfs2_group_desc *gd = NULL;
7382 
7383 	start = range->start >> osb->s_clustersize_bits;
7384 	len = range->len >> osb->s_clustersize_bits;
7385 	minlen = range->minlen >> osb->s_clustersize_bits;
7386 
7387 	if (minlen >= osb->bitmap_cpg || range->len < sb->s_blocksize)
7388 		return -EINVAL;
7389 
7390 	main_bm_inode = ocfs2_get_system_file_inode(osb,
7391 						    GLOBAL_BITMAP_SYSTEM_INODE,
7392 						    OCFS2_INVALID_SLOT);
7393 	if (!main_bm_inode) {
7394 		ret = -EIO;
7395 		mlog_errno(ret);
7396 		goto out;
7397 	}
7398 
7399 	inode_lock(main_bm_inode);
7400 
7401 	ret = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 0);
7402 	if (ret < 0) {
7403 		mlog_errno(ret);
7404 		goto out_mutex;
7405 	}
7406 	main_bm = (struct ocfs2_dinode *)main_bm_bh->b_data;
7407 
7408 	if (start >= le32_to_cpu(main_bm->i_clusters)) {
7409 		ret = -EINVAL;
7410 		goto out_unlock;
7411 	}
7412 
7413 	len = range->len >> osb->s_clustersize_bits;
7414 	if (start + len > le32_to_cpu(main_bm->i_clusters))
7415 		len = le32_to_cpu(main_bm->i_clusters) - start;
7416 
7417 	trace_ocfs2_trim_fs(start, len, minlen);
7418 
7419 	/* Determine first and last group to examine based on start and len */
7420 	first_group = ocfs2_which_cluster_group(main_bm_inode, start);
7421 	if (first_group == osb->first_cluster_group_blkno)
7422 		first_bit = start;
7423 	else
7424 		first_bit = start - ocfs2_blocks_to_clusters(sb, first_group);
7425 	last_group = ocfs2_which_cluster_group(main_bm_inode, start + len - 1);
7426 	last_bit = osb->bitmap_cpg;
7427 
7428 	trimmed = 0;
7429 	for (group = first_group; group <= last_group;) {
7430 		if (first_bit + len >= osb->bitmap_cpg)
7431 			last_bit = osb->bitmap_cpg;
7432 		else
7433 			last_bit = first_bit + len;
7434 
7435 		ret = ocfs2_read_group_descriptor(main_bm_inode,
7436 						  main_bm, group,
7437 						  &gd_bh);
7438 		if (ret < 0) {
7439 			mlog_errno(ret);
7440 			break;
7441 		}
7442 
7443 		gd = (struct ocfs2_group_desc *)gd_bh->b_data;
7444 		cnt = ocfs2_trim_group(sb, gd, first_bit, last_bit, minlen);
7445 		brelse(gd_bh);
7446 		gd_bh = NULL;
7447 		if (cnt < 0) {
7448 			ret = cnt;
7449 			mlog_errno(ret);
7450 			break;
7451 		}
7452 
7453 		trimmed += cnt;
7454 		len -= osb->bitmap_cpg - first_bit;
7455 		first_bit = 0;
7456 		if (group == osb->first_cluster_group_blkno)
7457 			group = ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7458 		else
7459 			group += ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7460 	}
7461 	range->len = trimmed * sb->s_blocksize;
7462 out_unlock:
7463 	ocfs2_inode_unlock(main_bm_inode, 0);
7464 	brelse(main_bm_bh);
7465 out_mutex:
7466 	inode_unlock(main_bm_inode);
7467 	iput(main_bm_inode);
7468 out:
7469 	return ret;
7470 }
7471