xref: /openbmc/linux/fs/ocfs2/alloc.c (revision 4cff79e9)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32 #include <linux/blkdev.h>
33 #include <linux/sched/signal.h>
34 
35 #include <cluster/masklog.h>
36 
37 #include "ocfs2.h"
38 
39 #include "alloc.h"
40 #include "aops.h"
41 #include "blockcheck.h"
42 #include "dlmglue.h"
43 #include "extent_map.h"
44 #include "inode.h"
45 #include "journal.h"
46 #include "localalloc.h"
47 #include "suballoc.h"
48 #include "sysfile.h"
49 #include "file.h"
50 #include "super.h"
51 #include "uptodate.h"
52 #include "xattr.h"
53 #include "refcounttree.h"
54 #include "ocfs2_trace.h"
55 
56 #include "buffer_head_io.h"
57 
58 enum ocfs2_contig_type {
59 	CONTIG_NONE = 0,
60 	CONTIG_LEFT,
61 	CONTIG_RIGHT,
62 	CONTIG_LEFTRIGHT,
63 };
64 
65 static enum ocfs2_contig_type
66 	ocfs2_extent_rec_contig(struct super_block *sb,
67 				struct ocfs2_extent_rec *ext,
68 				struct ocfs2_extent_rec *insert_rec);
69 /*
70  * Operations for a specific extent tree type.
71  *
72  * To implement an on-disk btree (extent tree) type in ocfs2, add
73  * an ocfs2_extent_tree_operations structure and the matching
74  * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
75  * for the allocation portion of the extent tree.
76  */
77 struct ocfs2_extent_tree_operations {
78 	/*
79 	 * last_eb_blk is the block number of the right most leaf extent
80 	 * block.  Most on-disk structures containing an extent tree store
81 	 * this value for fast access.  The ->eo_set_last_eb_blk() and
82 	 * ->eo_get_last_eb_blk() operations access this value.  They are
83 	 *  both required.
84 	 */
85 	void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
86 				   u64 blkno);
87 	u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
88 
89 	/*
90 	 * The on-disk structure usually keeps track of how many total
91 	 * clusters are stored in this extent tree.  This function updates
92 	 * that value.  new_clusters is the delta, and must be
93 	 * added to the total.  Required.
94 	 */
95 	void (*eo_update_clusters)(struct ocfs2_extent_tree *et,
96 				   u32 new_clusters);
97 
98 	/*
99 	 * If this extent tree is supported by an extent map, insert
100 	 * a record into the map.
101 	 */
102 	void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et,
103 				     struct ocfs2_extent_rec *rec);
104 
105 	/*
106 	 * If this extent tree is supported by an extent map, truncate the
107 	 * map to clusters,
108 	 */
109 	void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et,
110 				       u32 clusters);
111 
112 	/*
113 	 * If ->eo_insert_check() exists, it is called before rec is
114 	 * inserted into the extent tree.  It is optional.
115 	 */
116 	int (*eo_insert_check)(struct ocfs2_extent_tree *et,
117 			       struct ocfs2_extent_rec *rec);
118 	int (*eo_sanity_check)(struct ocfs2_extent_tree *et);
119 
120 	/*
121 	 * --------------------------------------------------------------
122 	 * The remaining are internal to ocfs2_extent_tree and don't have
123 	 * accessor functions
124 	 */
125 
126 	/*
127 	 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
128 	 * It is required.
129 	 */
130 	void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
131 
132 	/*
133 	 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
134 	 * it exists.  If it does not, et->et_max_leaf_clusters is set
135 	 * to 0 (unlimited).  Optional.
136 	 */
137 	void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et);
138 
139 	/*
140 	 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec
141 	 * are contiguous or not. Optional. Don't need to set it if use
142 	 * ocfs2_extent_rec as the tree leaf.
143 	 */
144 	enum ocfs2_contig_type
145 		(*eo_extent_contig)(struct ocfs2_extent_tree *et,
146 				    struct ocfs2_extent_rec *ext,
147 				    struct ocfs2_extent_rec *insert_rec);
148 };
149 
150 
151 /*
152  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
153  * in the methods.
154  */
155 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
156 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
157 					 u64 blkno);
158 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
159 					 u32 clusters);
160 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
161 					   struct ocfs2_extent_rec *rec);
162 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
163 					     u32 clusters);
164 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
165 				     struct ocfs2_extent_rec *rec);
166 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et);
167 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
168 
169 static int ocfs2_reuse_blk_from_dealloc(handle_t *handle,
170 					struct ocfs2_extent_tree *et,
171 					struct buffer_head **new_eb_bh,
172 					int blk_wanted, int *blk_given);
173 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree *et);
174 
175 static const struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
176 	.eo_set_last_eb_blk	= ocfs2_dinode_set_last_eb_blk,
177 	.eo_get_last_eb_blk	= ocfs2_dinode_get_last_eb_blk,
178 	.eo_update_clusters	= ocfs2_dinode_update_clusters,
179 	.eo_extent_map_insert	= ocfs2_dinode_extent_map_insert,
180 	.eo_extent_map_truncate	= ocfs2_dinode_extent_map_truncate,
181 	.eo_insert_check	= ocfs2_dinode_insert_check,
182 	.eo_sanity_check	= ocfs2_dinode_sanity_check,
183 	.eo_fill_root_el	= ocfs2_dinode_fill_root_el,
184 };
185 
186 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
187 					 u64 blkno)
188 {
189 	struct ocfs2_dinode *di = et->et_object;
190 
191 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
192 	di->i_last_eb_blk = cpu_to_le64(blkno);
193 }
194 
195 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
196 {
197 	struct ocfs2_dinode *di = et->et_object;
198 
199 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
200 	return le64_to_cpu(di->i_last_eb_blk);
201 }
202 
203 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
204 					 u32 clusters)
205 {
206 	struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
207 	struct ocfs2_dinode *di = et->et_object;
208 
209 	le32_add_cpu(&di->i_clusters, clusters);
210 	spin_lock(&oi->ip_lock);
211 	oi->ip_clusters = le32_to_cpu(di->i_clusters);
212 	spin_unlock(&oi->ip_lock);
213 }
214 
215 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
216 					   struct ocfs2_extent_rec *rec)
217 {
218 	struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
219 
220 	ocfs2_extent_map_insert_rec(inode, rec);
221 }
222 
223 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
224 					     u32 clusters)
225 {
226 	struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
227 
228 	ocfs2_extent_map_trunc(inode, clusters);
229 }
230 
231 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
232 				     struct ocfs2_extent_rec *rec)
233 {
234 	struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
235 	struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb);
236 
237 	BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL);
238 	mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
239 			(oi->ip_clusters != le32_to_cpu(rec->e_cpos)),
240 			"Device %s, asking for sparse allocation: inode %llu, "
241 			"cpos %u, clusters %u\n",
242 			osb->dev_str,
243 			(unsigned long long)oi->ip_blkno,
244 			rec->e_cpos, oi->ip_clusters);
245 
246 	return 0;
247 }
248 
249 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et)
250 {
251 	struct ocfs2_dinode *di = et->et_object;
252 
253 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
254 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
255 
256 	return 0;
257 }
258 
259 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
260 {
261 	struct ocfs2_dinode *di = et->et_object;
262 
263 	et->et_root_el = &di->id2.i_list;
264 }
265 
266 
267 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
268 {
269 	struct ocfs2_xattr_value_buf *vb = et->et_object;
270 
271 	et->et_root_el = &vb->vb_xv->xr_list;
272 }
273 
274 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
275 					      u64 blkno)
276 {
277 	struct ocfs2_xattr_value_buf *vb = et->et_object;
278 
279 	vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
280 }
281 
282 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
283 {
284 	struct ocfs2_xattr_value_buf *vb = et->et_object;
285 
286 	return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
287 }
288 
289 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et,
290 					      u32 clusters)
291 {
292 	struct ocfs2_xattr_value_buf *vb = et->et_object;
293 
294 	le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
295 }
296 
297 static const struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
298 	.eo_set_last_eb_blk	= ocfs2_xattr_value_set_last_eb_blk,
299 	.eo_get_last_eb_blk	= ocfs2_xattr_value_get_last_eb_blk,
300 	.eo_update_clusters	= ocfs2_xattr_value_update_clusters,
301 	.eo_fill_root_el	= ocfs2_xattr_value_fill_root_el,
302 };
303 
304 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
305 {
306 	struct ocfs2_xattr_block *xb = et->et_object;
307 
308 	et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
309 }
310 
311 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et)
312 {
313 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
314 	et->et_max_leaf_clusters =
315 		ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
316 }
317 
318 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
319 					     u64 blkno)
320 {
321 	struct ocfs2_xattr_block *xb = et->et_object;
322 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
323 
324 	xt->xt_last_eb_blk = cpu_to_le64(blkno);
325 }
326 
327 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
328 {
329 	struct ocfs2_xattr_block *xb = et->et_object;
330 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
331 
332 	return le64_to_cpu(xt->xt_last_eb_blk);
333 }
334 
335 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et,
336 					     u32 clusters)
337 {
338 	struct ocfs2_xattr_block *xb = et->et_object;
339 
340 	le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
341 }
342 
343 static const struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
344 	.eo_set_last_eb_blk	= ocfs2_xattr_tree_set_last_eb_blk,
345 	.eo_get_last_eb_blk	= ocfs2_xattr_tree_get_last_eb_blk,
346 	.eo_update_clusters	= ocfs2_xattr_tree_update_clusters,
347 	.eo_fill_root_el	= ocfs2_xattr_tree_fill_root_el,
348 	.eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
349 };
350 
351 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
352 					  u64 blkno)
353 {
354 	struct ocfs2_dx_root_block *dx_root = et->et_object;
355 
356 	dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
357 }
358 
359 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
360 {
361 	struct ocfs2_dx_root_block *dx_root = et->et_object;
362 
363 	return le64_to_cpu(dx_root->dr_last_eb_blk);
364 }
365 
366 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et,
367 					  u32 clusters)
368 {
369 	struct ocfs2_dx_root_block *dx_root = et->et_object;
370 
371 	le32_add_cpu(&dx_root->dr_clusters, clusters);
372 }
373 
374 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et)
375 {
376 	struct ocfs2_dx_root_block *dx_root = et->et_object;
377 
378 	BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
379 
380 	return 0;
381 }
382 
383 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
384 {
385 	struct ocfs2_dx_root_block *dx_root = et->et_object;
386 
387 	et->et_root_el = &dx_root->dr_list;
388 }
389 
390 static const struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
391 	.eo_set_last_eb_blk	= ocfs2_dx_root_set_last_eb_blk,
392 	.eo_get_last_eb_blk	= ocfs2_dx_root_get_last_eb_blk,
393 	.eo_update_clusters	= ocfs2_dx_root_update_clusters,
394 	.eo_sanity_check	= ocfs2_dx_root_sanity_check,
395 	.eo_fill_root_el	= ocfs2_dx_root_fill_root_el,
396 };
397 
398 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et)
399 {
400 	struct ocfs2_refcount_block *rb = et->et_object;
401 
402 	et->et_root_el = &rb->rf_list;
403 }
404 
405 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
406 						u64 blkno)
407 {
408 	struct ocfs2_refcount_block *rb = et->et_object;
409 
410 	rb->rf_last_eb_blk = cpu_to_le64(blkno);
411 }
412 
413 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
414 {
415 	struct ocfs2_refcount_block *rb = et->et_object;
416 
417 	return le64_to_cpu(rb->rf_last_eb_blk);
418 }
419 
420 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et,
421 						u32 clusters)
422 {
423 	struct ocfs2_refcount_block *rb = et->et_object;
424 
425 	le32_add_cpu(&rb->rf_clusters, clusters);
426 }
427 
428 static enum ocfs2_contig_type
429 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et,
430 				  struct ocfs2_extent_rec *ext,
431 				  struct ocfs2_extent_rec *insert_rec)
432 {
433 	return CONTIG_NONE;
434 }
435 
436 static const struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = {
437 	.eo_set_last_eb_blk	= ocfs2_refcount_tree_set_last_eb_blk,
438 	.eo_get_last_eb_blk	= ocfs2_refcount_tree_get_last_eb_blk,
439 	.eo_update_clusters	= ocfs2_refcount_tree_update_clusters,
440 	.eo_fill_root_el	= ocfs2_refcount_tree_fill_root_el,
441 	.eo_extent_contig	= ocfs2_refcount_tree_extent_contig,
442 };
443 
444 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
445 				     struct ocfs2_caching_info *ci,
446 				     struct buffer_head *bh,
447 				     ocfs2_journal_access_func access,
448 				     void *obj,
449 				     const struct ocfs2_extent_tree_operations *ops)
450 {
451 	et->et_ops = ops;
452 	et->et_root_bh = bh;
453 	et->et_ci = ci;
454 	et->et_root_journal_access = access;
455 	if (!obj)
456 		obj = (void *)bh->b_data;
457 	et->et_object = obj;
458 	et->et_dealloc = NULL;
459 
460 	et->et_ops->eo_fill_root_el(et);
461 	if (!et->et_ops->eo_fill_max_leaf_clusters)
462 		et->et_max_leaf_clusters = 0;
463 	else
464 		et->et_ops->eo_fill_max_leaf_clusters(et);
465 }
466 
467 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
468 				   struct ocfs2_caching_info *ci,
469 				   struct buffer_head *bh)
470 {
471 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di,
472 				 NULL, &ocfs2_dinode_et_ops);
473 }
474 
475 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
476 				       struct ocfs2_caching_info *ci,
477 				       struct buffer_head *bh)
478 {
479 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb,
480 				 NULL, &ocfs2_xattr_tree_et_ops);
481 }
482 
483 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
484 					struct ocfs2_caching_info *ci,
485 					struct ocfs2_xattr_value_buf *vb)
486 {
487 	__ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb,
488 				 &ocfs2_xattr_value_et_ops);
489 }
490 
491 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
492 				    struct ocfs2_caching_info *ci,
493 				    struct buffer_head *bh)
494 {
495 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr,
496 				 NULL, &ocfs2_dx_root_et_ops);
497 }
498 
499 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et,
500 				     struct ocfs2_caching_info *ci,
501 				     struct buffer_head *bh)
502 {
503 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb,
504 				 NULL, &ocfs2_refcount_tree_et_ops);
505 }
506 
507 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
508 					    u64 new_last_eb_blk)
509 {
510 	et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
511 }
512 
513 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
514 {
515 	return et->et_ops->eo_get_last_eb_blk(et);
516 }
517 
518 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et,
519 					    u32 clusters)
520 {
521 	et->et_ops->eo_update_clusters(et, clusters);
522 }
523 
524 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et,
525 					      struct ocfs2_extent_rec *rec)
526 {
527 	if (et->et_ops->eo_extent_map_insert)
528 		et->et_ops->eo_extent_map_insert(et, rec);
529 }
530 
531 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et,
532 						u32 clusters)
533 {
534 	if (et->et_ops->eo_extent_map_truncate)
535 		et->et_ops->eo_extent_map_truncate(et, clusters);
536 }
537 
538 static inline int ocfs2_et_root_journal_access(handle_t *handle,
539 					       struct ocfs2_extent_tree *et,
540 					       int type)
541 {
542 	return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh,
543 					  type);
544 }
545 
546 static inline enum ocfs2_contig_type
547 	ocfs2_et_extent_contig(struct ocfs2_extent_tree *et,
548 			       struct ocfs2_extent_rec *rec,
549 			       struct ocfs2_extent_rec *insert_rec)
550 {
551 	if (et->et_ops->eo_extent_contig)
552 		return et->et_ops->eo_extent_contig(et, rec, insert_rec);
553 
554 	return ocfs2_extent_rec_contig(
555 				ocfs2_metadata_cache_get_super(et->et_ci),
556 				rec, insert_rec);
557 }
558 
559 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et,
560 					struct ocfs2_extent_rec *rec)
561 {
562 	int ret = 0;
563 
564 	if (et->et_ops->eo_insert_check)
565 		ret = et->et_ops->eo_insert_check(et, rec);
566 	return ret;
567 }
568 
569 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et)
570 {
571 	int ret = 0;
572 
573 	if (et->et_ops->eo_sanity_check)
574 		ret = et->et_ops->eo_sanity_check(et);
575 	return ret;
576 }
577 
578 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
579 					 struct ocfs2_extent_block *eb);
580 static void ocfs2_adjust_rightmost_records(handle_t *handle,
581 					   struct ocfs2_extent_tree *et,
582 					   struct ocfs2_path *path,
583 					   struct ocfs2_extent_rec *insert_rec);
584 /*
585  * Reset the actual path elements so that we can re-use the structure
586  * to build another path. Generally, this involves freeing the buffer
587  * heads.
588  */
589 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
590 {
591 	int i, start = 0, depth = 0;
592 	struct ocfs2_path_item *node;
593 
594 	if (keep_root)
595 		start = 1;
596 
597 	for(i = start; i < path_num_items(path); i++) {
598 		node = &path->p_node[i];
599 
600 		brelse(node->bh);
601 		node->bh = NULL;
602 		node->el = NULL;
603 	}
604 
605 	/*
606 	 * Tree depth may change during truncate, or insert. If we're
607 	 * keeping the root extent list, then make sure that our path
608 	 * structure reflects the proper depth.
609 	 */
610 	if (keep_root)
611 		depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
612 	else
613 		path_root_access(path) = NULL;
614 
615 	path->p_tree_depth = depth;
616 }
617 
618 void ocfs2_free_path(struct ocfs2_path *path)
619 {
620 	if (path) {
621 		ocfs2_reinit_path(path, 0);
622 		kfree(path);
623 	}
624 }
625 
626 /*
627  * All the elements of src into dest. After this call, src could be freed
628  * without affecting dest.
629  *
630  * Both paths should have the same root. Any non-root elements of dest
631  * will be freed.
632  */
633 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
634 {
635 	int i;
636 
637 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
638 	BUG_ON(path_root_el(dest) != path_root_el(src));
639 	BUG_ON(path_root_access(dest) != path_root_access(src));
640 
641 	ocfs2_reinit_path(dest, 1);
642 
643 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
644 		dest->p_node[i].bh = src->p_node[i].bh;
645 		dest->p_node[i].el = src->p_node[i].el;
646 
647 		if (dest->p_node[i].bh)
648 			get_bh(dest->p_node[i].bh);
649 	}
650 }
651 
652 /*
653  * Make the *dest path the same as src and re-initialize src path to
654  * have a root only.
655  */
656 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
657 {
658 	int i;
659 
660 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
661 	BUG_ON(path_root_access(dest) != path_root_access(src));
662 
663 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
664 		brelse(dest->p_node[i].bh);
665 
666 		dest->p_node[i].bh = src->p_node[i].bh;
667 		dest->p_node[i].el = src->p_node[i].el;
668 
669 		src->p_node[i].bh = NULL;
670 		src->p_node[i].el = NULL;
671 	}
672 }
673 
674 /*
675  * Insert an extent block at given index.
676  *
677  * This will not take an additional reference on eb_bh.
678  */
679 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
680 					struct buffer_head *eb_bh)
681 {
682 	struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
683 
684 	/*
685 	 * Right now, no root bh is an extent block, so this helps
686 	 * catch code errors with dinode trees. The assertion can be
687 	 * safely removed if we ever need to insert extent block
688 	 * structures at the root.
689 	 */
690 	BUG_ON(index == 0);
691 
692 	path->p_node[index].bh = eb_bh;
693 	path->p_node[index].el = &eb->h_list;
694 }
695 
696 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
697 					 struct ocfs2_extent_list *root_el,
698 					 ocfs2_journal_access_func access)
699 {
700 	struct ocfs2_path *path;
701 
702 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
703 
704 	path = kzalloc(sizeof(*path), GFP_NOFS);
705 	if (path) {
706 		path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
707 		get_bh(root_bh);
708 		path_root_bh(path) = root_bh;
709 		path_root_el(path) = root_el;
710 		path_root_access(path) = access;
711 	}
712 
713 	return path;
714 }
715 
716 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
717 {
718 	return ocfs2_new_path(path_root_bh(path), path_root_el(path),
719 			      path_root_access(path));
720 }
721 
722 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
723 {
724 	return ocfs2_new_path(et->et_root_bh, et->et_root_el,
725 			      et->et_root_journal_access);
726 }
727 
728 /*
729  * Journal the buffer at depth idx.  All idx>0 are extent_blocks,
730  * otherwise it's the root_access function.
731  *
732  * I don't like the way this function's name looks next to
733  * ocfs2_journal_access_path(), but I don't have a better one.
734  */
735 int ocfs2_path_bh_journal_access(handle_t *handle,
736 				 struct ocfs2_caching_info *ci,
737 				 struct ocfs2_path *path,
738 				 int idx)
739 {
740 	ocfs2_journal_access_func access = path_root_access(path);
741 
742 	if (!access)
743 		access = ocfs2_journal_access;
744 
745 	if (idx)
746 		access = ocfs2_journal_access_eb;
747 
748 	return access(handle, ci, path->p_node[idx].bh,
749 		      OCFS2_JOURNAL_ACCESS_WRITE);
750 }
751 
752 /*
753  * Convenience function to journal all components in a path.
754  */
755 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci,
756 			      handle_t *handle,
757 			      struct ocfs2_path *path)
758 {
759 	int i, ret = 0;
760 
761 	if (!path)
762 		goto out;
763 
764 	for(i = 0; i < path_num_items(path); i++) {
765 		ret = ocfs2_path_bh_journal_access(handle, ci, path, i);
766 		if (ret < 0) {
767 			mlog_errno(ret);
768 			goto out;
769 		}
770 	}
771 
772 out:
773 	return ret;
774 }
775 
776 /*
777  * Return the index of the extent record which contains cluster #v_cluster.
778  * -1 is returned if it was not found.
779  *
780  * Should work fine on interior and exterior nodes.
781  */
782 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
783 {
784 	int ret = -1;
785 	int i;
786 	struct ocfs2_extent_rec *rec;
787 	u32 rec_end, rec_start, clusters;
788 
789 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
790 		rec = &el->l_recs[i];
791 
792 		rec_start = le32_to_cpu(rec->e_cpos);
793 		clusters = ocfs2_rec_clusters(el, rec);
794 
795 		rec_end = rec_start + clusters;
796 
797 		if (v_cluster >= rec_start && v_cluster < rec_end) {
798 			ret = i;
799 			break;
800 		}
801 	}
802 
803 	return ret;
804 }
805 
806 /*
807  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
808  * ocfs2_extent_rec_contig only work properly against leaf nodes!
809  */
810 static int ocfs2_block_extent_contig(struct super_block *sb,
811 				     struct ocfs2_extent_rec *ext,
812 				     u64 blkno)
813 {
814 	u64 blk_end = le64_to_cpu(ext->e_blkno);
815 
816 	blk_end += ocfs2_clusters_to_blocks(sb,
817 				    le16_to_cpu(ext->e_leaf_clusters));
818 
819 	return blkno == blk_end;
820 }
821 
822 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
823 				  struct ocfs2_extent_rec *right)
824 {
825 	u32 left_range;
826 
827 	left_range = le32_to_cpu(left->e_cpos) +
828 		le16_to_cpu(left->e_leaf_clusters);
829 
830 	return (left_range == le32_to_cpu(right->e_cpos));
831 }
832 
833 static enum ocfs2_contig_type
834 	ocfs2_extent_rec_contig(struct super_block *sb,
835 				struct ocfs2_extent_rec *ext,
836 				struct ocfs2_extent_rec *insert_rec)
837 {
838 	u64 blkno = le64_to_cpu(insert_rec->e_blkno);
839 
840 	/*
841 	 * Refuse to coalesce extent records with different flag
842 	 * fields - we don't want to mix unwritten extents with user
843 	 * data.
844 	 */
845 	if (ext->e_flags != insert_rec->e_flags)
846 		return CONTIG_NONE;
847 
848 	if (ocfs2_extents_adjacent(ext, insert_rec) &&
849 	    ocfs2_block_extent_contig(sb, ext, blkno))
850 			return CONTIG_RIGHT;
851 
852 	blkno = le64_to_cpu(ext->e_blkno);
853 	if (ocfs2_extents_adjacent(insert_rec, ext) &&
854 	    ocfs2_block_extent_contig(sb, insert_rec, blkno))
855 		return CONTIG_LEFT;
856 
857 	return CONTIG_NONE;
858 }
859 
860 /*
861  * NOTE: We can have pretty much any combination of contiguousness and
862  * appending.
863  *
864  * The usefulness of APPEND_TAIL is more in that it lets us know that
865  * we'll have to update the path to that leaf.
866  */
867 enum ocfs2_append_type {
868 	APPEND_NONE = 0,
869 	APPEND_TAIL,
870 };
871 
872 enum ocfs2_split_type {
873 	SPLIT_NONE = 0,
874 	SPLIT_LEFT,
875 	SPLIT_RIGHT,
876 };
877 
878 struct ocfs2_insert_type {
879 	enum ocfs2_split_type	ins_split;
880 	enum ocfs2_append_type	ins_appending;
881 	enum ocfs2_contig_type	ins_contig;
882 	int			ins_contig_index;
883 	int			ins_tree_depth;
884 };
885 
886 struct ocfs2_merge_ctxt {
887 	enum ocfs2_contig_type	c_contig_type;
888 	int			c_has_empty_extent;
889 	int			c_split_covers_rec;
890 };
891 
892 static int ocfs2_validate_extent_block(struct super_block *sb,
893 				       struct buffer_head *bh)
894 {
895 	int rc;
896 	struct ocfs2_extent_block *eb =
897 		(struct ocfs2_extent_block *)bh->b_data;
898 
899 	trace_ocfs2_validate_extent_block((unsigned long long)bh->b_blocknr);
900 
901 	BUG_ON(!buffer_uptodate(bh));
902 
903 	/*
904 	 * If the ecc fails, we return the error but otherwise
905 	 * leave the filesystem running.  We know any error is
906 	 * local to this block.
907 	 */
908 	rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
909 	if (rc) {
910 		mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
911 		     (unsigned long long)bh->b_blocknr);
912 		return rc;
913 	}
914 
915 	/*
916 	 * Errors after here are fatal.
917 	 */
918 
919 	if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
920 		rc = ocfs2_error(sb,
921 				 "Extent block #%llu has bad signature %.*s\n",
922 				 (unsigned long long)bh->b_blocknr, 7,
923 				 eb->h_signature);
924 		goto bail;
925 	}
926 
927 	if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
928 		rc = ocfs2_error(sb,
929 				 "Extent block #%llu has an invalid h_blkno of %llu\n",
930 				 (unsigned long long)bh->b_blocknr,
931 				 (unsigned long long)le64_to_cpu(eb->h_blkno));
932 		goto bail;
933 	}
934 
935 	if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
936 		rc = ocfs2_error(sb,
937 				 "Extent block #%llu has an invalid h_fs_generation of #%u\n",
938 				 (unsigned long long)bh->b_blocknr,
939 				 le32_to_cpu(eb->h_fs_generation));
940 		goto bail;
941 	}
942 bail:
943 	return rc;
944 }
945 
946 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno,
947 			    struct buffer_head **bh)
948 {
949 	int rc;
950 	struct buffer_head *tmp = *bh;
951 
952 	rc = ocfs2_read_block(ci, eb_blkno, &tmp,
953 			      ocfs2_validate_extent_block);
954 
955 	/* If ocfs2_read_block() got us a new bh, pass it up. */
956 	if (!rc && !*bh)
957 		*bh = tmp;
958 
959 	return rc;
960 }
961 
962 
963 /*
964  * How many free extents have we got before we need more meta data?
965  */
966 int ocfs2_num_free_extents(struct ocfs2_extent_tree *et)
967 {
968 	int retval;
969 	struct ocfs2_extent_list *el = NULL;
970 	struct ocfs2_extent_block *eb;
971 	struct buffer_head *eb_bh = NULL;
972 	u64 last_eb_blk = 0;
973 
974 	el = et->et_root_el;
975 	last_eb_blk = ocfs2_et_get_last_eb_blk(et);
976 
977 	if (last_eb_blk) {
978 		retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk,
979 						 &eb_bh);
980 		if (retval < 0) {
981 			mlog_errno(retval);
982 			goto bail;
983 		}
984 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
985 		el = &eb->h_list;
986 	}
987 
988 	BUG_ON(el->l_tree_depth != 0);
989 
990 	retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
991 bail:
992 	brelse(eb_bh);
993 
994 	trace_ocfs2_num_free_extents(retval);
995 	return retval;
996 }
997 
998 /* expects array to already be allocated
999  *
1000  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
1001  * l_count for you
1002  */
1003 static int ocfs2_create_new_meta_bhs(handle_t *handle,
1004 				     struct ocfs2_extent_tree *et,
1005 				     int wanted,
1006 				     struct ocfs2_alloc_context *meta_ac,
1007 				     struct buffer_head *bhs[])
1008 {
1009 	int count, status, i;
1010 	u16 suballoc_bit_start;
1011 	u32 num_got;
1012 	u64 suballoc_loc, first_blkno;
1013 	struct ocfs2_super *osb =
1014 		OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
1015 	struct ocfs2_extent_block *eb;
1016 
1017 	count = 0;
1018 	while (count < wanted) {
1019 		status = ocfs2_claim_metadata(handle,
1020 					      meta_ac,
1021 					      wanted - count,
1022 					      &suballoc_loc,
1023 					      &suballoc_bit_start,
1024 					      &num_got,
1025 					      &first_blkno);
1026 		if (status < 0) {
1027 			mlog_errno(status);
1028 			goto bail;
1029 		}
1030 
1031 		for(i = count;  i < (num_got + count); i++) {
1032 			bhs[i] = sb_getblk(osb->sb, first_blkno);
1033 			if (bhs[i] == NULL) {
1034 				status = -ENOMEM;
1035 				mlog_errno(status);
1036 				goto bail;
1037 			}
1038 			ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]);
1039 
1040 			status = ocfs2_journal_access_eb(handle, et->et_ci,
1041 							 bhs[i],
1042 							 OCFS2_JOURNAL_ACCESS_CREATE);
1043 			if (status < 0) {
1044 				mlog_errno(status);
1045 				goto bail;
1046 			}
1047 
1048 			memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
1049 			eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
1050 			/* Ok, setup the minimal stuff here. */
1051 			strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
1052 			eb->h_blkno = cpu_to_le64(first_blkno);
1053 			eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
1054 			eb->h_suballoc_slot =
1055 				cpu_to_le16(meta_ac->ac_alloc_slot);
1056 			eb->h_suballoc_loc = cpu_to_le64(suballoc_loc);
1057 			eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
1058 			eb->h_list.l_count =
1059 				cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
1060 
1061 			suballoc_bit_start++;
1062 			first_blkno++;
1063 
1064 			/* We'll also be dirtied by the caller, so
1065 			 * this isn't absolutely necessary. */
1066 			ocfs2_journal_dirty(handle, bhs[i]);
1067 		}
1068 
1069 		count += num_got;
1070 	}
1071 
1072 	status = 0;
1073 bail:
1074 	if (status < 0) {
1075 		for(i = 0; i < wanted; i++) {
1076 			brelse(bhs[i]);
1077 			bhs[i] = NULL;
1078 		}
1079 		mlog_errno(status);
1080 	}
1081 	return status;
1082 }
1083 
1084 /*
1085  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1086  *
1087  * Returns the sum of the rightmost extent rec logical offset and
1088  * cluster count.
1089  *
1090  * ocfs2_add_branch() uses this to determine what logical cluster
1091  * value should be populated into the leftmost new branch records.
1092  *
1093  * ocfs2_shift_tree_depth() uses this to determine the # clusters
1094  * value for the new topmost tree record.
1095  */
1096 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
1097 {
1098 	int i;
1099 
1100 	i = le16_to_cpu(el->l_next_free_rec) - 1;
1101 
1102 	return le32_to_cpu(el->l_recs[i].e_cpos) +
1103 		ocfs2_rec_clusters(el, &el->l_recs[i]);
1104 }
1105 
1106 /*
1107  * Change range of the branches in the right most path according to the leaf
1108  * extent block's rightmost record.
1109  */
1110 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1111 					 struct ocfs2_extent_tree *et)
1112 {
1113 	int status;
1114 	struct ocfs2_path *path = NULL;
1115 	struct ocfs2_extent_list *el;
1116 	struct ocfs2_extent_rec *rec;
1117 
1118 	path = ocfs2_new_path_from_et(et);
1119 	if (!path) {
1120 		status = -ENOMEM;
1121 		return status;
1122 	}
1123 
1124 	status = ocfs2_find_path(et->et_ci, path, UINT_MAX);
1125 	if (status < 0) {
1126 		mlog_errno(status);
1127 		goto out;
1128 	}
1129 
1130 	status = ocfs2_extend_trans(handle, path_num_items(path));
1131 	if (status < 0) {
1132 		mlog_errno(status);
1133 		goto out;
1134 	}
1135 
1136 	status = ocfs2_journal_access_path(et->et_ci, handle, path);
1137 	if (status < 0) {
1138 		mlog_errno(status);
1139 		goto out;
1140 	}
1141 
1142 	el = path_leaf_el(path);
1143 	rec = &el->l_recs[le16_to_cpu(el->l_next_free_rec) - 1];
1144 
1145 	ocfs2_adjust_rightmost_records(handle, et, path, rec);
1146 
1147 out:
1148 	ocfs2_free_path(path);
1149 	return status;
1150 }
1151 
1152 /*
1153  * Add an entire tree branch to our inode. eb_bh is the extent block
1154  * to start at, if we don't want to start the branch at the root
1155  * structure.
1156  *
1157  * last_eb_bh is required as we have to update it's next_leaf pointer
1158  * for the new last extent block.
1159  *
1160  * the new branch will be 'empty' in the sense that every block will
1161  * contain a single record with cluster count == 0.
1162  */
1163 static int ocfs2_add_branch(handle_t *handle,
1164 			    struct ocfs2_extent_tree *et,
1165 			    struct buffer_head *eb_bh,
1166 			    struct buffer_head **last_eb_bh,
1167 			    struct ocfs2_alloc_context *meta_ac)
1168 {
1169 	int status, new_blocks, i, block_given = 0;
1170 	u64 next_blkno, new_last_eb_blk;
1171 	struct buffer_head *bh;
1172 	struct buffer_head **new_eb_bhs = NULL;
1173 	struct ocfs2_extent_block *eb;
1174 	struct ocfs2_extent_list  *eb_el;
1175 	struct ocfs2_extent_list  *el;
1176 	u32 new_cpos, root_end;
1177 
1178 	BUG_ON(!last_eb_bh || !*last_eb_bh);
1179 
1180 	if (eb_bh) {
1181 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1182 		el = &eb->h_list;
1183 	} else
1184 		el = et->et_root_el;
1185 
1186 	/* we never add a branch to a leaf. */
1187 	BUG_ON(!el->l_tree_depth);
1188 
1189 	new_blocks = le16_to_cpu(el->l_tree_depth);
1190 
1191 	eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1192 	new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1193 	root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1194 
1195 	/*
1196 	 * If there is a gap before the root end and the real end
1197 	 * of the righmost leaf block, we need to remove the gap
1198 	 * between new_cpos and root_end first so that the tree
1199 	 * is consistent after we add a new branch(it will start
1200 	 * from new_cpos).
1201 	 */
1202 	if (root_end > new_cpos) {
1203 		trace_ocfs2_adjust_rightmost_branch(
1204 			(unsigned long long)
1205 			ocfs2_metadata_cache_owner(et->et_ci),
1206 			root_end, new_cpos);
1207 
1208 		status = ocfs2_adjust_rightmost_branch(handle, et);
1209 		if (status) {
1210 			mlog_errno(status);
1211 			goto bail;
1212 		}
1213 	}
1214 
1215 	/* allocate the number of new eb blocks we need */
1216 	new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1217 			     GFP_KERNEL);
1218 	if (!new_eb_bhs) {
1219 		status = -ENOMEM;
1220 		mlog_errno(status);
1221 		goto bail;
1222 	}
1223 
1224 	/* Firstyly, try to reuse dealloc since we have already estimated how
1225 	 * many extent blocks we may use.
1226 	 */
1227 	if (!ocfs2_is_dealloc_empty(et)) {
1228 		status = ocfs2_reuse_blk_from_dealloc(handle, et,
1229 						      new_eb_bhs, new_blocks,
1230 						      &block_given);
1231 		if (status < 0) {
1232 			mlog_errno(status);
1233 			goto bail;
1234 		}
1235 	}
1236 
1237 	BUG_ON(block_given > new_blocks);
1238 
1239 	if (block_given < new_blocks) {
1240 		BUG_ON(!meta_ac);
1241 		status = ocfs2_create_new_meta_bhs(handle, et,
1242 						   new_blocks - block_given,
1243 						   meta_ac,
1244 						   &new_eb_bhs[block_given]);
1245 		if (status < 0) {
1246 			mlog_errno(status);
1247 			goto bail;
1248 		}
1249 	}
1250 
1251 	/* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1252 	 * linked with the rest of the tree.
1253 	 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1254 	 *
1255 	 * when we leave the loop, new_last_eb_blk will point to the
1256 	 * newest leaf, and next_blkno will point to the topmost extent
1257 	 * block. */
1258 	next_blkno = new_last_eb_blk = 0;
1259 	for(i = 0; i < new_blocks; i++) {
1260 		bh = new_eb_bhs[i];
1261 		eb = (struct ocfs2_extent_block *) bh->b_data;
1262 		/* ocfs2_create_new_meta_bhs() should create it right! */
1263 		BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1264 		eb_el = &eb->h_list;
1265 
1266 		status = ocfs2_journal_access_eb(handle, et->et_ci, bh,
1267 						 OCFS2_JOURNAL_ACCESS_CREATE);
1268 		if (status < 0) {
1269 			mlog_errno(status);
1270 			goto bail;
1271 		}
1272 
1273 		eb->h_next_leaf_blk = 0;
1274 		eb_el->l_tree_depth = cpu_to_le16(i);
1275 		eb_el->l_next_free_rec = cpu_to_le16(1);
1276 		/*
1277 		 * This actually counts as an empty extent as
1278 		 * c_clusters == 0
1279 		 */
1280 		eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1281 		eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1282 		/*
1283 		 * eb_el isn't always an interior node, but even leaf
1284 		 * nodes want a zero'd flags and reserved field so
1285 		 * this gets the whole 32 bits regardless of use.
1286 		 */
1287 		eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1288 		if (!eb_el->l_tree_depth)
1289 			new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1290 
1291 		ocfs2_journal_dirty(handle, bh);
1292 		next_blkno = le64_to_cpu(eb->h_blkno);
1293 	}
1294 
1295 	/* This is a bit hairy. We want to update up to three blocks
1296 	 * here without leaving any of them in an inconsistent state
1297 	 * in case of error. We don't have to worry about
1298 	 * journal_dirty erroring as it won't unless we've aborted the
1299 	 * handle (in which case we would never be here) so reserving
1300 	 * the write with journal_access is all we need to do. */
1301 	status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh,
1302 					 OCFS2_JOURNAL_ACCESS_WRITE);
1303 	if (status < 0) {
1304 		mlog_errno(status);
1305 		goto bail;
1306 	}
1307 	status = ocfs2_et_root_journal_access(handle, et,
1308 					      OCFS2_JOURNAL_ACCESS_WRITE);
1309 	if (status < 0) {
1310 		mlog_errno(status);
1311 		goto bail;
1312 	}
1313 	if (eb_bh) {
1314 		status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh,
1315 						 OCFS2_JOURNAL_ACCESS_WRITE);
1316 		if (status < 0) {
1317 			mlog_errno(status);
1318 			goto bail;
1319 		}
1320 	}
1321 
1322 	/* Link the new branch into the rest of the tree (el will
1323 	 * either be on the root_bh, or the extent block passed in. */
1324 	i = le16_to_cpu(el->l_next_free_rec);
1325 	el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1326 	el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1327 	el->l_recs[i].e_int_clusters = 0;
1328 	le16_add_cpu(&el->l_next_free_rec, 1);
1329 
1330 	/* fe needs a new last extent block pointer, as does the
1331 	 * next_leaf on the previously last-extent-block. */
1332 	ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1333 
1334 	eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1335 	eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1336 
1337 	ocfs2_journal_dirty(handle, *last_eb_bh);
1338 	ocfs2_journal_dirty(handle, et->et_root_bh);
1339 	if (eb_bh)
1340 		ocfs2_journal_dirty(handle, eb_bh);
1341 
1342 	/*
1343 	 * Some callers want to track the rightmost leaf so pass it
1344 	 * back here.
1345 	 */
1346 	brelse(*last_eb_bh);
1347 	get_bh(new_eb_bhs[0]);
1348 	*last_eb_bh = new_eb_bhs[0];
1349 
1350 	status = 0;
1351 bail:
1352 	if (new_eb_bhs) {
1353 		for (i = 0; i < new_blocks; i++)
1354 			brelse(new_eb_bhs[i]);
1355 		kfree(new_eb_bhs);
1356 	}
1357 
1358 	return status;
1359 }
1360 
1361 /*
1362  * adds another level to the allocation tree.
1363  * returns back the new extent block so you can add a branch to it
1364  * after this call.
1365  */
1366 static int ocfs2_shift_tree_depth(handle_t *handle,
1367 				  struct ocfs2_extent_tree *et,
1368 				  struct ocfs2_alloc_context *meta_ac,
1369 				  struct buffer_head **ret_new_eb_bh)
1370 {
1371 	int status, i, block_given = 0;
1372 	u32 new_clusters;
1373 	struct buffer_head *new_eb_bh = NULL;
1374 	struct ocfs2_extent_block *eb;
1375 	struct ocfs2_extent_list  *root_el;
1376 	struct ocfs2_extent_list  *eb_el;
1377 
1378 	if (!ocfs2_is_dealloc_empty(et)) {
1379 		status = ocfs2_reuse_blk_from_dealloc(handle, et,
1380 						      &new_eb_bh, 1,
1381 						      &block_given);
1382 	} else if (meta_ac) {
1383 		status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac,
1384 						   &new_eb_bh);
1385 
1386 	} else {
1387 		BUG();
1388 	}
1389 
1390 	if (status < 0) {
1391 		mlog_errno(status);
1392 		goto bail;
1393 	}
1394 
1395 	eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1396 	/* ocfs2_create_new_meta_bhs() should create it right! */
1397 	BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1398 
1399 	eb_el = &eb->h_list;
1400 	root_el = et->et_root_el;
1401 
1402 	status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh,
1403 					 OCFS2_JOURNAL_ACCESS_CREATE);
1404 	if (status < 0) {
1405 		mlog_errno(status);
1406 		goto bail;
1407 	}
1408 
1409 	/* copy the root extent list data into the new extent block */
1410 	eb_el->l_tree_depth = root_el->l_tree_depth;
1411 	eb_el->l_next_free_rec = root_el->l_next_free_rec;
1412 	for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1413 		eb_el->l_recs[i] = root_el->l_recs[i];
1414 
1415 	ocfs2_journal_dirty(handle, new_eb_bh);
1416 
1417 	status = ocfs2_et_root_journal_access(handle, et,
1418 					      OCFS2_JOURNAL_ACCESS_WRITE);
1419 	if (status < 0) {
1420 		mlog_errno(status);
1421 		goto bail;
1422 	}
1423 
1424 	new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1425 
1426 	/* update root_bh now */
1427 	le16_add_cpu(&root_el->l_tree_depth, 1);
1428 	root_el->l_recs[0].e_cpos = 0;
1429 	root_el->l_recs[0].e_blkno = eb->h_blkno;
1430 	root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1431 	for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1432 		memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1433 	root_el->l_next_free_rec = cpu_to_le16(1);
1434 
1435 	/* If this is our 1st tree depth shift, then last_eb_blk
1436 	 * becomes the allocated extent block */
1437 	if (root_el->l_tree_depth == cpu_to_le16(1))
1438 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1439 
1440 	ocfs2_journal_dirty(handle, et->et_root_bh);
1441 
1442 	*ret_new_eb_bh = new_eb_bh;
1443 	new_eb_bh = NULL;
1444 	status = 0;
1445 bail:
1446 	brelse(new_eb_bh);
1447 
1448 	return status;
1449 }
1450 
1451 /*
1452  * Should only be called when there is no space left in any of the
1453  * leaf nodes. What we want to do is find the lowest tree depth
1454  * non-leaf extent block with room for new records. There are three
1455  * valid results of this search:
1456  *
1457  * 1) a lowest extent block is found, then we pass it back in
1458  *    *lowest_eb_bh and return '0'
1459  *
1460  * 2) the search fails to find anything, but the root_el has room. We
1461  *    pass NULL back in *lowest_eb_bh, but still return '0'
1462  *
1463  * 3) the search fails to find anything AND the root_el is full, in
1464  *    which case we return > 0
1465  *
1466  * return status < 0 indicates an error.
1467  */
1468 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et,
1469 				    struct buffer_head **target_bh)
1470 {
1471 	int status = 0, i;
1472 	u64 blkno;
1473 	struct ocfs2_extent_block *eb;
1474 	struct ocfs2_extent_list  *el;
1475 	struct buffer_head *bh = NULL;
1476 	struct buffer_head *lowest_bh = NULL;
1477 
1478 	*target_bh = NULL;
1479 
1480 	el = et->et_root_el;
1481 
1482 	while(le16_to_cpu(el->l_tree_depth) > 1) {
1483 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1484 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1485 				    "Owner %llu has empty extent list (next_free_rec == 0)\n",
1486 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
1487 			status = -EIO;
1488 			goto bail;
1489 		}
1490 		i = le16_to_cpu(el->l_next_free_rec) - 1;
1491 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1492 		if (!blkno) {
1493 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1494 				    "Owner %llu has extent list where extent # %d has no physical block start\n",
1495 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i);
1496 			status = -EIO;
1497 			goto bail;
1498 		}
1499 
1500 		brelse(bh);
1501 		bh = NULL;
1502 
1503 		status = ocfs2_read_extent_block(et->et_ci, blkno, &bh);
1504 		if (status < 0) {
1505 			mlog_errno(status);
1506 			goto bail;
1507 		}
1508 
1509 		eb = (struct ocfs2_extent_block *) bh->b_data;
1510 		el = &eb->h_list;
1511 
1512 		if (le16_to_cpu(el->l_next_free_rec) <
1513 		    le16_to_cpu(el->l_count)) {
1514 			brelse(lowest_bh);
1515 			lowest_bh = bh;
1516 			get_bh(lowest_bh);
1517 		}
1518 	}
1519 
1520 	/* If we didn't find one and the fe doesn't have any room,
1521 	 * then return '1' */
1522 	el = et->et_root_el;
1523 	if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1524 		status = 1;
1525 
1526 	*target_bh = lowest_bh;
1527 bail:
1528 	brelse(bh);
1529 
1530 	return status;
1531 }
1532 
1533 /*
1534  * Grow a b-tree so that it has more records.
1535  *
1536  * We might shift the tree depth in which case existing paths should
1537  * be considered invalid.
1538  *
1539  * Tree depth after the grow is returned via *final_depth.
1540  *
1541  * *last_eb_bh will be updated by ocfs2_add_branch().
1542  */
1543 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et,
1544 			   int *final_depth, struct buffer_head **last_eb_bh,
1545 			   struct ocfs2_alloc_context *meta_ac)
1546 {
1547 	int ret, shift;
1548 	struct ocfs2_extent_list *el = et->et_root_el;
1549 	int depth = le16_to_cpu(el->l_tree_depth);
1550 	struct buffer_head *bh = NULL;
1551 
1552 	BUG_ON(meta_ac == NULL && ocfs2_is_dealloc_empty(et));
1553 
1554 	shift = ocfs2_find_branch_target(et, &bh);
1555 	if (shift < 0) {
1556 		ret = shift;
1557 		mlog_errno(ret);
1558 		goto out;
1559 	}
1560 
1561 	/* We traveled all the way to the bottom of the allocation tree
1562 	 * and didn't find room for any more extents - we need to add
1563 	 * another tree level */
1564 	if (shift) {
1565 		BUG_ON(bh);
1566 		trace_ocfs2_grow_tree(
1567 			(unsigned long long)
1568 			ocfs2_metadata_cache_owner(et->et_ci),
1569 			depth);
1570 
1571 		/* ocfs2_shift_tree_depth will return us a buffer with
1572 		 * the new extent block (so we can pass that to
1573 		 * ocfs2_add_branch). */
1574 		ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh);
1575 		if (ret < 0) {
1576 			mlog_errno(ret);
1577 			goto out;
1578 		}
1579 		depth++;
1580 		if (depth == 1) {
1581 			/*
1582 			 * Special case: we have room now if we shifted from
1583 			 * tree_depth 0, so no more work needs to be done.
1584 			 *
1585 			 * We won't be calling add_branch, so pass
1586 			 * back *last_eb_bh as the new leaf. At depth
1587 			 * zero, it should always be null so there's
1588 			 * no reason to brelse.
1589 			 */
1590 			BUG_ON(*last_eb_bh);
1591 			get_bh(bh);
1592 			*last_eb_bh = bh;
1593 			goto out;
1594 		}
1595 	}
1596 
1597 	/* call ocfs2_add_branch to add the final part of the tree with
1598 	 * the new data. */
1599 	ret = ocfs2_add_branch(handle, et, bh, last_eb_bh,
1600 			       meta_ac);
1601 	if (ret < 0) {
1602 		mlog_errno(ret);
1603 		goto out;
1604 	}
1605 
1606 out:
1607 	if (final_depth)
1608 		*final_depth = depth;
1609 	brelse(bh);
1610 	return ret;
1611 }
1612 
1613 /*
1614  * This function will discard the rightmost extent record.
1615  */
1616 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1617 {
1618 	int next_free = le16_to_cpu(el->l_next_free_rec);
1619 	int count = le16_to_cpu(el->l_count);
1620 	unsigned int num_bytes;
1621 
1622 	BUG_ON(!next_free);
1623 	/* This will cause us to go off the end of our extent list. */
1624 	BUG_ON(next_free >= count);
1625 
1626 	num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1627 
1628 	memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1629 }
1630 
1631 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1632 			      struct ocfs2_extent_rec *insert_rec)
1633 {
1634 	int i, insert_index, next_free, has_empty, num_bytes;
1635 	u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1636 	struct ocfs2_extent_rec *rec;
1637 
1638 	next_free = le16_to_cpu(el->l_next_free_rec);
1639 	has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1640 
1641 	BUG_ON(!next_free);
1642 
1643 	/* The tree code before us didn't allow enough room in the leaf. */
1644 	BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1645 
1646 	/*
1647 	 * The easiest way to approach this is to just remove the
1648 	 * empty extent and temporarily decrement next_free.
1649 	 */
1650 	if (has_empty) {
1651 		/*
1652 		 * If next_free was 1 (only an empty extent), this
1653 		 * loop won't execute, which is fine. We still want
1654 		 * the decrement above to happen.
1655 		 */
1656 		for(i = 0; i < (next_free - 1); i++)
1657 			el->l_recs[i] = el->l_recs[i+1];
1658 
1659 		next_free--;
1660 	}
1661 
1662 	/*
1663 	 * Figure out what the new record index should be.
1664 	 */
1665 	for(i = 0; i < next_free; i++) {
1666 		rec = &el->l_recs[i];
1667 
1668 		if (insert_cpos < le32_to_cpu(rec->e_cpos))
1669 			break;
1670 	}
1671 	insert_index = i;
1672 
1673 	trace_ocfs2_rotate_leaf(insert_cpos, insert_index,
1674 				has_empty, next_free,
1675 				le16_to_cpu(el->l_count));
1676 
1677 	BUG_ON(insert_index < 0);
1678 	BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1679 	BUG_ON(insert_index > next_free);
1680 
1681 	/*
1682 	 * No need to memmove if we're just adding to the tail.
1683 	 */
1684 	if (insert_index != next_free) {
1685 		BUG_ON(next_free >= le16_to_cpu(el->l_count));
1686 
1687 		num_bytes = next_free - insert_index;
1688 		num_bytes *= sizeof(struct ocfs2_extent_rec);
1689 		memmove(&el->l_recs[insert_index + 1],
1690 			&el->l_recs[insert_index],
1691 			num_bytes);
1692 	}
1693 
1694 	/*
1695 	 * Either we had an empty extent, and need to re-increment or
1696 	 * there was no empty extent on a non full rightmost leaf node,
1697 	 * in which case we still need to increment.
1698 	 */
1699 	next_free++;
1700 	el->l_next_free_rec = cpu_to_le16(next_free);
1701 	/*
1702 	 * Make sure none of the math above just messed up our tree.
1703 	 */
1704 	BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1705 
1706 	el->l_recs[insert_index] = *insert_rec;
1707 
1708 }
1709 
1710 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1711 {
1712 	int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1713 
1714 	BUG_ON(num_recs == 0);
1715 
1716 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1717 		num_recs--;
1718 		size = num_recs * sizeof(struct ocfs2_extent_rec);
1719 		memmove(&el->l_recs[0], &el->l_recs[1], size);
1720 		memset(&el->l_recs[num_recs], 0,
1721 		       sizeof(struct ocfs2_extent_rec));
1722 		el->l_next_free_rec = cpu_to_le16(num_recs);
1723 	}
1724 }
1725 
1726 /*
1727  * Create an empty extent record .
1728  *
1729  * l_next_free_rec may be updated.
1730  *
1731  * If an empty extent already exists do nothing.
1732  */
1733 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1734 {
1735 	int next_free = le16_to_cpu(el->l_next_free_rec);
1736 
1737 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1738 
1739 	if (next_free == 0)
1740 		goto set_and_inc;
1741 
1742 	if (ocfs2_is_empty_extent(&el->l_recs[0]))
1743 		return;
1744 
1745 	mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1746 			"Asked to create an empty extent in a full list:\n"
1747 			"count = %u, tree depth = %u",
1748 			le16_to_cpu(el->l_count),
1749 			le16_to_cpu(el->l_tree_depth));
1750 
1751 	ocfs2_shift_records_right(el);
1752 
1753 set_and_inc:
1754 	le16_add_cpu(&el->l_next_free_rec, 1);
1755 	memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1756 }
1757 
1758 /*
1759  * For a rotation which involves two leaf nodes, the "root node" is
1760  * the lowest level tree node which contains a path to both leafs. This
1761  * resulting set of information can be used to form a complete "subtree"
1762  *
1763  * This function is passed two full paths from the dinode down to a
1764  * pair of adjacent leaves. It's task is to figure out which path
1765  * index contains the subtree root - this can be the root index itself
1766  * in a worst-case rotation.
1767  *
1768  * The array index of the subtree root is passed back.
1769  */
1770 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et,
1771 			    struct ocfs2_path *left,
1772 			    struct ocfs2_path *right)
1773 {
1774 	int i = 0;
1775 
1776 	/*
1777 	 * Check that the caller passed in two paths from the same tree.
1778 	 */
1779 	BUG_ON(path_root_bh(left) != path_root_bh(right));
1780 
1781 	do {
1782 		i++;
1783 
1784 		/*
1785 		 * The caller didn't pass two adjacent paths.
1786 		 */
1787 		mlog_bug_on_msg(i > left->p_tree_depth,
1788 				"Owner %llu, left depth %u, right depth %u\n"
1789 				"left leaf blk %llu, right leaf blk %llu\n",
1790 				(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
1791 				left->p_tree_depth, right->p_tree_depth,
1792 				(unsigned long long)path_leaf_bh(left)->b_blocknr,
1793 				(unsigned long long)path_leaf_bh(right)->b_blocknr);
1794 	} while (left->p_node[i].bh->b_blocknr ==
1795 		 right->p_node[i].bh->b_blocknr);
1796 
1797 	return i - 1;
1798 }
1799 
1800 typedef void (path_insert_t)(void *, struct buffer_head *);
1801 
1802 /*
1803  * Traverse a btree path in search of cpos, starting at root_el.
1804  *
1805  * This code can be called with a cpos larger than the tree, in which
1806  * case it will return the rightmost path.
1807  */
1808 static int __ocfs2_find_path(struct ocfs2_caching_info *ci,
1809 			     struct ocfs2_extent_list *root_el, u32 cpos,
1810 			     path_insert_t *func, void *data)
1811 {
1812 	int i, ret = 0;
1813 	u32 range;
1814 	u64 blkno;
1815 	struct buffer_head *bh = NULL;
1816 	struct ocfs2_extent_block *eb;
1817 	struct ocfs2_extent_list *el;
1818 	struct ocfs2_extent_rec *rec;
1819 
1820 	el = root_el;
1821 	while (el->l_tree_depth) {
1822 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1823 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1824 				    "Owner %llu has empty extent list at depth %u\n",
1825 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1826 				    le16_to_cpu(el->l_tree_depth));
1827 			ret = -EROFS;
1828 			goto out;
1829 
1830 		}
1831 
1832 		for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1833 			rec = &el->l_recs[i];
1834 
1835 			/*
1836 			 * In the case that cpos is off the allocation
1837 			 * tree, this should just wind up returning the
1838 			 * rightmost record.
1839 			 */
1840 			range = le32_to_cpu(rec->e_cpos) +
1841 				ocfs2_rec_clusters(el, rec);
1842 			if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1843 			    break;
1844 		}
1845 
1846 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1847 		if (blkno == 0) {
1848 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1849 				    "Owner %llu has bad blkno in extent list at depth %u (index %d)\n",
1850 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1851 				    le16_to_cpu(el->l_tree_depth), i);
1852 			ret = -EROFS;
1853 			goto out;
1854 		}
1855 
1856 		brelse(bh);
1857 		bh = NULL;
1858 		ret = ocfs2_read_extent_block(ci, blkno, &bh);
1859 		if (ret) {
1860 			mlog_errno(ret);
1861 			goto out;
1862 		}
1863 
1864 		eb = (struct ocfs2_extent_block *) bh->b_data;
1865 		el = &eb->h_list;
1866 
1867 		if (le16_to_cpu(el->l_next_free_rec) >
1868 		    le16_to_cpu(el->l_count)) {
1869 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1870 				    "Owner %llu has bad count in extent list at block %llu (next free=%u, count=%u)\n",
1871 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1872 				    (unsigned long long)bh->b_blocknr,
1873 				    le16_to_cpu(el->l_next_free_rec),
1874 				    le16_to_cpu(el->l_count));
1875 			ret = -EROFS;
1876 			goto out;
1877 		}
1878 
1879 		if (func)
1880 			func(data, bh);
1881 	}
1882 
1883 out:
1884 	/*
1885 	 * Catch any trailing bh that the loop didn't handle.
1886 	 */
1887 	brelse(bh);
1888 
1889 	return ret;
1890 }
1891 
1892 /*
1893  * Given an initialized path (that is, it has a valid root extent
1894  * list), this function will traverse the btree in search of the path
1895  * which would contain cpos.
1896  *
1897  * The path traveled is recorded in the path structure.
1898  *
1899  * Note that this will not do any comparisons on leaf node extent
1900  * records, so it will work fine in the case that we just added a tree
1901  * branch.
1902  */
1903 struct find_path_data {
1904 	int index;
1905 	struct ocfs2_path *path;
1906 };
1907 static void find_path_ins(void *data, struct buffer_head *bh)
1908 {
1909 	struct find_path_data *fp = data;
1910 
1911 	get_bh(bh);
1912 	ocfs2_path_insert_eb(fp->path, fp->index, bh);
1913 	fp->index++;
1914 }
1915 int ocfs2_find_path(struct ocfs2_caching_info *ci,
1916 		    struct ocfs2_path *path, u32 cpos)
1917 {
1918 	struct find_path_data data;
1919 
1920 	data.index = 1;
1921 	data.path = path;
1922 	return __ocfs2_find_path(ci, path_root_el(path), cpos,
1923 				 find_path_ins, &data);
1924 }
1925 
1926 static void find_leaf_ins(void *data, struct buffer_head *bh)
1927 {
1928 	struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1929 	struct ocfs2_extent_list *el = &eb->h_list;
1930 	struct buffer_head **ret = data;
1931 
1932 	/* We want to retain only the leaf block. */
1933 	if (le16_to_cpu(el->l_tree_depth) == 0) {
1934 		get_bh(bh);
1935 		*ret = bh;
1936 	}
1937 }
1938 /*
1939  * Find the leaf block in the tree which would contain cpos. No
1940  * checking of the actual leaf is done.
1941  *
1942  * Some paths want to call this instead of allocating a path structure
1943  * and calling ocfs2_find_path().
1944  *
1945  * This function doesn't handle non btree extent lists.
1946  */
1947 int ocfs2_find_leaf(struct ocfs2_caching_info *ci,
1948 		    struct ocfs2_extent_list *root_el, u32 cpos,
1949 		    struct buffer_head **leaf_bh)
1950 {
1951 	int ret;
1952 	struct buffer_head *bh = NULL;
1953 
1954 	ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh);
1955 	if (ret) {
1956 		mlog_errno(ret);
1957 		goto out;
1958 	}
1959 
1960 	*leaf_bh = bh;
1961 out:
1962 	return ret;
1963 }
1964 
1965 /*
1966  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1967  *
1968  * Basically, we've moved stuff around at the bottom of the tree and
1969  * we need to fix up the extent records above the changes to reflect
1970  * the new changes.
1971  *
1972  * left_rec: the record on the left.
1973  * right_rec: the record to the right of left_rec
1974  * right_child_el: is the child list pointed to by right_rec
1975  *
1976  * By definition, this only works on interior nodes.
1977  */
1978 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1979 				  struct ocfs2_extent_rec *right_rec,
1980 				  struct ocfs2_extent_list *right_child_el)
1981 {
1982 	u32 left_clusters, right_end;
1983 
1984 	/*
1985 	 * Interior nodes never have holes. Their cpos is the cpos of
1986 	 * the leftmost record in their child list. Their cluster
1987 	 * count covers the full theoretical range of their child list
1988 	 * - the range between their cpos and the cpos of the record
1989 	 * immediately to their right.
1990 	 */
1991 	left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1992 	if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1993 		BUG_ON(right_child_el->l_tree_depth);
1994 		BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1995 		left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1996 	}
1997 	left_clusters -= le32_to_cpu(left_rec->e_cpos);
1998 	left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1999 
2000 	/*
2001 	 * Calculate the rightmost cluster count boundary before
2002 	 * moving cpos - we will need to adjust clusters after
2003 	 * updating e_cpos to keep the same highest cluster count.
2004 	 */
2005 	right_end = le32_to_cpu(right_rec->e_cpos);
2006 	right_end += le32_to_cpu(right_rec->e_int_clusters);
2007 
2008 	right_rec->e_cpos = left_rec->e_cpos;
2009 	le32_add_cpu(&right_rec->e_cpos, left_clusters);
2010 
2011 	right_end -= le32_to_cpu(right_rec->e_cpos);
2012 	right_rec->e_int_clusters = cpu_to_le32(right_end);
2013 }
2014 
2015 /*
2016  * Adjust the adjacent root node records involved in a
2017  * rotation. left_el_blkno is passed in as a key so that we can easily
2018  * find it's index in the root list.
2019  */
2020 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
2021 				      struct ocfs2_extent_list *left_el,
2022 				      struct ocfs2_extent_list *right_el,
2023 				      u64 left_el_blkno)
2024 {
2025 	int i;
2026 
2027 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
2028 	       le16_to_cpu(left_el->l_tree_depth));
2029 
2030 	for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
2031 		if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
2032 			break;
2033 	}
2034 
2035 	/*
2036 	 * The path walking code should have never returned a root and
2037 	 * two paths which are not adjacent.
2038 	 */
2039 	BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
2040 
2041 	ocfs2_adjust_adjacent_records(&root_el->l_recs[i],
2042 				      &root_el->l_recs[i + 1], right_el);
2043 }
2044 
2045 /*
2046  * We've changed a leaf block (in right_path) and need to reflect that
2047  * change back up the subtree.
2048  *
2049  * This happens in multiple places:
2050  *   - When we've moved an extent record from the left path leaf to the right
2051  *     path leaf to make room for an empty extent in the left path leaf.
2052  *   - When our insert into the right path leaf is at the leftmost edge
2053  *     and requires an update of the path immediately to it's left. This
2054  *     can occur at the end of some types of rotation and appending inserts.
2055  *   - When we've adjusted the last extent record in the left path leaf and the
2056  *     1st extent record in the right path leaf during cross extent block merge.
2057  */
2058 static void ocfs2_complete_edge_insert(handle_t *handle,
2059 				       struct ocfs2_path *left_path,
2060 				       struct ocfs2_path *right_path,
2061 				       int subtree_index)
2062 {
2063 	int i, idx;
2064 	struct ocfs2_extent_list *el, *left_el, *right_el;
2065 	struct ocfs2_extent_rec *left_rec, *right_rec;
2066 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2067 
2068 	/*
2069 	 * Update the counts and position values within all the
2070 	 * interior nodes to reflect the leaf rotation we just did.
2071 	 *
2072 	 * The root node is handled below the loop.
2073 	 *
2074 	 * We begin the loop with right_el and left_el pointing to the
2075 	 * leaf lists and work our way up.
2076 	 *
2077 	 * NOTE: within this loop, left_el and right_el always refer
2078 	 * to the *child* lists.
2079 	 */
2080 	left_el = path_leaf_el(left_path);
2081 	right_el = path_leaf_el(right_path);
2082 	for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
2083 		trace_ocfs2_complete_edge_insert(i);
2084 
2085 		/*
2086 		 * One nice property of knowing that all of these
2087 		 * nodes are below the root is that we only deal with
2088 		 * the leftmost right node record and the rightmost
2089 		 * left node record.
2090 		 */
2091 		el = left_path->p_node[i].el;
2092 		idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2093 		left_rec = &el->l_recs[idx];
2094 
2095 		el = right_path->p_node[i].el;
2096 		right_rec = &el->l_recs[0];
2097 
2098 		ocfs2_adjust_adjacent_records(left_rec, right_rec, right_el);
2099 
2100 		ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2101 		ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2102 
2103 		/*
2104 		 * Setup our list pointers now so that the current
2105 		 * parents become children in the next iteration.
2106 		 */
2107 		left_el = left_path->p_node[i].el;
2108 		right_el = right_path->p_node[i].el;
2109 	}
2110 
2111 	/*
2112 	 * At the root node, adjust the two adjacent records which
2113 	 * begin our path to the leaves.
2114 	 */
2115 
2116 	el = left_path->p_node[subtree_index].el;
2117 	left_el = left_path->p_node[subtree_index + 1].el;
2118 	right_el = right_path->p_node[subtree_index + 1].el;
2119 
2120 	ocfs2_adjust_root_records(el, left_el, right_el,
2121 				  left_path->p_node[subtree_index + 1].bh->b_blocknr);
2122 
2123 	root_bh = left_path->p_node[subtree_index].bh;
2124 
2125 	ocfs2_journal_dirty(handle, root_bh);
2126 }
2127 
2128 static int ocfs2_rotate_subtree_right(handle_t *handle,
2129 				      struct ocfs2_extent_tree *et,
2130 				      struct ocfs2_path *left_path,
2131 				      struct ocfs2_path *right_path,
2132 				      int subtree_index)
2133 {
2134 	int ret, i;
2135 	struct buffer_head *right_leaf_bh;
2136 	struct buffer_head *left_leaf_bh = NULL;
2137 	struct buffer_head *root_bh;
2138 	struct ocfs2_extent_list *right_el, *left_el;
2139 	struct ocfs2_extent_rec move_rec;
2140 
2141 	left_leaf_bh = path_leaf_bh(left_path);
2142 	left_el = path_leaf_el(left_path);
2143 
2144 	if (left_el->l_next_free_rec != left_el->l_count) {
2145 		ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
2146 			    "Inode %llu has non-full interior leaf node %llu (next free = %u)\n",
2147 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2148 			    (unsigned long long)left_leaf_bh->b_blocknr,
2149 			    le16_to_cpu(left_el->l_next_free_rec));
2150 		return -EROFS;
2151 	}
2152 
2153 	/*
2154 	 * This extent block may already have an empty record, so we
2155 	 * return early if so.
2156 	 */
2157 	if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2158 		return 0;
2159 
2160 	root_bh = left_path->p_node[subtree_index].bh;
2161 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2162 
2163 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2164 					   subtree_index);
2165 	if (ret) {
2166 		mlog_errno(ret);
2167 		goto out;
2168 	}
2169 
2170 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2171 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2172 						   right_path, i);
2173 		if (ret) {
2174 			mlog_errno(ret);
2175 			goto out;
2176 		}
2177 
2178 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2179 						   left_path, i);
2180 		if (ret) {
2181 			mlog_errno(ret);
2182 			goto out;
2183 		}
2184 	}
2185 
2186 	right_leaf_bh = path_leaf_bh(right_path);
2187 	right_el = path_leaf_el(right_path);
2188 
2189 	/* This is a code error, not a disk corruption. */
2190 	mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2191 			"because rightmost leaf block %llu is empty\n",
2192 			(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2193 			(unsigned long long)right_leaf_bh->b_blocknr);
2194 
2195 	ocfs2_create_empty_extent(right_el);
2196 
2197 	ocfs2_journal_dirty(handle, right_leaf_bh);
2198 
2199 	/* Do the copy now. */
2200 	i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2201 	move_rec = left_el->l_recs[i];
2202 	right_el->l_recs[0] = move_rec;
2203 
2204 	/*
2205 	 * Clear out the record we just copied and shift everything
2206 	 * over, leaving an empty extent in the left leaf.
2207 	 *
2208 	 * We temporarily subtract from next_free_rec so that the
2209 	 * shift will lose the tail record (which is now defunct).
2210 	 */
2211 	le16_add_cpu(&left_el->l_next_free_rec, -1);
2212 	ocfs2_shift_records_right(left_el);
2213 	memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2214 	le16_add_cpu(&left_el->l_next_free_rec, 1);
2215 
2216 	ocfs2_journal_dirty(handle, left_leaf_bh);
2217 
2218 	ocfs2_complete_edge_insert(handle, left_path, right_path,
2219 				   subtree_index);
2220 
2221 out:
2222 	return ret;
2223 }
2224 
2225 /*
2226  * Given a full path, determine what cpos value would return us a path
2227  * containing the leaf immediately to the left of the current one.
2228  *
2229  * Will return zero if the path passed in is already the leftmost path.
2230  */
2231 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2232 				  struct ocfs2_path *path, u32 *cpos)
2233 {
2234 	int i, j, ret = 0;
2235 	u64 blkno;
2236 	struct ocfs2_extent_list *el;
2237 
2238 	BUG_ON(path->p_tree_depth == 0);
2239 
2240 	*cpos = 0;
2241 
2242 	blkno = path_leaf_bh(path)->b_blocknr;
2243 
2244 	/* Start at the tree node just above the leaf and work our way up. */
2245 	i = path->p_tree_depth - 1;
2246 	while (i >= 0) {
2247 		el = path->p_node[i].el;
2248 
2249 		/*
2250 		 * Find the extent record just before the one in our
2251 		 * path.
2252 		 */
2253 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2254 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2255 				if (j == 0) {
2256 					if (i == 0) {
2257 						/*
2258 						 * We've determined that the
2259 						 * path specified is already
2260 						 * the leftmost one - return a
2261 						 * cpos of zero.
2262 						 */
2263 						goto out;
2264 					}
2265 					/*
2266 					 * The leftmost record points to our
2267 					 * leaf - we need to travel up the
2268 					 * tree one level.
2269 					 */
2270 					goto next_node;
2271 				}
2272 
2273 				*cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2274 				*cpos = *cpos + ocfs2_rec_clusters(el,
2275 							   &el->l_recs[j - 1]);
2276 				*cpos = *cpos - 1;
2277 				goto out;
2278 			}
2279 		}
2280 
2281 		/*
2282 		 * If we got here, we never found a valid node where
2283 		 * the tree indicated one should be.
2284 		 */
2285 		ocfs2_error(sb, "Invalid extent tree at extent block %llu\n",
2286 			    (unsigned long long)blkno);
2287 		ret = -EROFS;
2288 		goto out;
2289 
2290 next_node:
2291 		blkno = path->p_node[i].bh->b_blocknr;
2292 		i--;
2293 	}
2294 
2295 out:
2296 	return ret;
2297 }
2298 
2299 /*
2300  * Extend the transaction by enough credits to complete the rotation,
2301  * and still leave at least the original number of credits allocated
2302  * to this transaction.
2303  */
2304 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2305 					   int op_credits,
2306 					   struct ocfs2_path *path)
2307 {
2308 	int ret = 0;
2309 	int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2310 
2311 	if (handle->h_buffer_credits < credits)
2312 		ret = ocfs2_extend_trans(handle,
2313 					 credits - handle->h_buffer_credits);
2314 
2315 	return ret;
2316 }
2317 
2318 /*
2319  * Trap the case where we're inserting into the theoretical range past
2320  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2321  * whose cpos is less than ours into the right leaf.
2322  *
2323  * It's only necessary to look at the rightmost record of the left
2324  * leaf because the logic that calls us should ensure that the
2325  * theoretical ranges in the path components above the leaves are
2326  * correct.
2327  */
2328 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2329 						 u32 insert_cpos)
2330 {
2331 	struct ocfs2_extent_list *left_el;
2332 	struct ocfs2_extent_rec *rec;
2333 	int next_free;
2334 
2335 	left_el = path_leaf_el(left_path);
2336 	next_free = le16_to_cpu(left_el->l_next_free_rec);
2337 	rec = &left_el->l_recs[next_free - 1];
2338 
2339 	if (insert_cpos > le32_to_cpu(rec->e_cpos))
2340 		return 1;
2341 	return 0;
2342 }
2343 
2344 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2345 {
2346 	int next_free = le16_to_cpu(el->l_next_free_rec);
2347 	unsigned int range;
2348 	struct ocfs2_extent_rec *rec;
2349 
2350 	if (next_free == 0)
2351 		return 0;
2352 
2353 	rec = &el->l_recs[0];
2354 	if (ocfs2_is_empty_extent(rec)) {
2355 		/* Empty list. */
2356 		if (next_free == 1)
2357 			return 0;
2358 		rec = &el->l_recs[1];
2359 	}
2360 
2361 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2362 	if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2363 		return 1;
2364 	return 0;
2365 }
2366 
2367 /*
2368  * Rotate all the records in a btree right one record, starting at insert_cpos.
2369  *
2370  * The path to the rightmost leaf should be passed in.
2371  *
2372  * The array is assumed to be large enough to hold an entire path (tree depth).
2373  *
2374  * Upon successful return from this function:
2375  *
2376  * - The 'right_path' array will contain a path to the leaf block
2377  *   whose range contains e_cpos.
2378  * - That leaf block will have a single empty extent in list index 0.
2379  * - In the case that the rotation requires a post-insert update,
2380  *   *ret_left_path will contain a valid path which can be passed to
2381  *   ocfs2_insert_path().
2382  */
2383 static int ocfs2_rotate_tree_right(handle_t *handle,
2384 				   struct ocfs2_extent_tree *et,
2385 				   enum ocfs2_split_type split,
2386 				   u32 insert_cpos,
2387 				   struct ocfs2_path *right_path,
2388 				   struct ocfs2_path **ret_left_path)
2389 {
2390 	int ret, start, orig_credits = handle->h_buffer_credits;
2391 	u32 cpos;
2392 	struct ocfs2_path *left_path = NULL;
2393 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2394 
2395 	*ret_left_path = NULL;
2396 
2397 	left_path = ocfs2_new_path_from_path(right_path);
2398 	if (!left_path) {
2399 		ret = -ENOMEM;
2400 		mlog_errno(ret);
2401 		goto out;
2402 	}
2403 
2404 	ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2405 	if (ret) {
2406 		mlog_errno(ret);
2407 		goto out;
2408 	}
2409 
2410 	trace_ocfs2_rotate_tree_right(
2411 		(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2412 		insert_cpos, cpos);
2413 
2414 	/*
2415 	 * What we want to do here is:
2416 	 *
2417 	 * 1) Start with the rightmost path.
2418 	 *
2419 	 * 2) Determine a path to the leaf block directly to the left
2420 	 *    of that leaf.
2421 	 *
2422 	 * 3) Determine the 'subtree root' - the lowest level tree node
2423 	 *    which contains a path to both leaves.
2424 	 *
2425 	 * 4) Rotate the subtree.
2426 	 *
2427 	 * 5) Find the next subtree by considering the left path to be
2428 	 *    the new right path.
2429 	 *
2430 	 * The check at the top of this while loop also accepts
2431 	 * insert_cpos == cpos because cpos is only a _theoretical_
2432 	 * value to get us the left path - insert_cpos might very well
2433 	 * be filling that hole.
2434 	 *
2435 	 * Stop at a cpos of '0' because we either started at the
2436 	 * leftmost branch (i.e., a tree with one branch and a
2437 	 * rotation inside of it), or we've gone as far as we can in
2438 	 * rotating subtrees.
2439 	 */
2440 	while (cpos && insert_cpos <= cpos) {
2441 		trace_ocfs2_rotate_tree_right(
2442 			(unsigned long long)
2443 			ocfs2_metadata_cache_owner(et->et_ci),
2444 			insert_cpos, cpos);
2445 
2446 		ret = ocfs2_find_path(et->et_ci, left_path, cpos);
2447 		if (ret) {
2448 			mlog_errno(ret);
2449 			goto out;
2450 		}
2451 
2452 		mlog_bug_on_msg(path_leaf_bh(left_path) ==
2453 				path_leaf_bh(right_path),
2454 				"Owner %llu: error during insert of %u "
2455 				"(left path cpos %u) results in two identical "
2456 				"paths ending at %llu\n",
2457 				(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2458 				insert_cpos, cpos,
2459 				(unsigned long long)
2460 				path_leaf_bh(left_path)->b_blocknr);
2461 
2462 		if (split == SPLIT_NONE &&
2463 		    ocfs2_rotate_requires_path_adjustment(left_path,
2464 							  insert_cpos)) {
2465 
2466 			/*
2467 			 * We've rotated the tree as much as we
2468 			 * should. The rest is up to
2469 			 * ocfs2_insert_path() to complete, after the
2470 			 * record insertion. We indicate this
2471 			 * situation by returning the left path.
2472 			 *
2473 			 * The reason we don't adjust the records here
2474 			 * before the record insert is that an error
2475 			 * later might break the rule where a parent
2476 			 * record e_cpos will reflect the actual
2477 			 * e_cpos of the 1st nonempty record of the
2478 			 * child list.
2479 			 */
2480 			*ret_left_path = left_path;
2481 			goto out_ret_path;
2482 		}
2483 
2484 		start = ocfs2_find_subtree_root(et, left_path, right_path);
2485 
2486 		trace_ocfs2_rotate_subtree(start,
2487 			(unsigned long long)
2488 			right_path->p_node[start].bh->b_blocknr,
2489 			right_path->p_tree_depth);
2490 
2491 		ret = ocfs2_extend_rotate_transaction(handle, start,
2492 						      orig_credits, right_path);
2493 		if (ret) {
2494 			mlog_errno(ret);
2495 			goto out;
2496 		}
2497 
2498 		ret = ocfs2_rotate_subtree_right(handle, et, left_path,
2499 						 right_path, start);
2500 		if (ret) {
2501 			mlog_errno(ret);
2502 			goto out;
2503 		}
2504 
2505 		if (split != SPLIT_NONE &&
2506 		    ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2507 						insert_cpos)) {
2508 			/*
2509 			 * A rotate moves the rightmost left leaf
2510 			 * record over to the leftmost right leaf
2511 			 * slot. If we're doing an extent split
2512 			 * instead of a real insert, then we have to
2513 			 * check that the extent to be split wasn't
2514 			 * just moved over. If it was, then we can
2515 			 * exit here, passing left_path back -
2516 			 * ocfs2_split_extent() is smart enough to
2517 			 * search both leaves.
2518 			 */
2519 			*ret_left_path = left_path;
2520 			goto out_ret_path;
2521 		}
2522 
2523 		/*
2524 		 * There is no need to re-read the next right path
2525 		 * as we know that it'll be our current left
2526 		 * path. Optimize by copying values instead.
2527 		 */
2528 		ocfs2_mv_path(right_path, left_path);
2529 
2530 		ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2531 		if (ret) {
2532 			mlog_errno(ret);
2533 			goto out;
2534 		}
2535 	}
2536 
2537 out:
2538 	ocfs2_free_path(left_path);
2539 
2540 out_ret_path:
2541 	return ret;
2542 }
2543 
2544 static int ocfs2_update_edge_lengths(handle_t *handle,
2545 				     struct ocfs2_extent_tree *et,
2546 				     struct ocfs2_path *path)
2547 {
2548 	int i, idx, ret;
2549 	struct ocfs2_extent_rec *rec;
2550 	struct ocfs2_extent_list *el;
2551 	struct ocfs2_extent_block *eb;
2552 	u32 range;
2553 
2554 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
2555 	if (ret) {
2556 		mlog_errno(ret);
2557 		goto out;
2558 	}
2559 
2560 	/* Path should always be rightmost. */
2561 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2562 	BUG_ON(eb->h_next_leaf_blk != 0ULL);
2563 
2564 	el = &eb->h_list;
2565 	BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2566 	idx = le16_to_cpu(el->l_next_free_rec) - 1;
2567 	rec = &el->l_recs[idx];
2568 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2569 
2570 	for (i = 0; i < path->p_tree_depth; i++) {
2571 		el = path->p_node[i].el;
2572 		idx = le16_to_cpu(el->l_next_free_rec) - 1;
2573 		rec = &el->l_recs[idx];
2574 
2575 		rec->e_int_clusters = cpu_to_le32(range);
2576 		le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2577 
2578 		ocfs2_journal_dirty(handle, path->p_node[i].bh);
2579 	}
2580 out:
2581 	return ret;
2582 }
2583 
2584 static void ocfs2_unlink_path(handle_t *handle,
2585 			      struct ocfs2_extent_tree *et,
2586 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
2587 			      struct ocfs2_path *path, int unlink_start)
2588 {
2589 	int ret, i;
2590 	struct ocfs2_extent_block *eb;
2591 	struct ocfs2_extent_list *el;
2592 	struct buffer_head *bh;
2593 
2594 	for(i = unlink_start; i < path_num_items(path); i++) {
2595 		bh = path->p_node[i].bh;
2596 
2597 		eb = (struct ocfs2_extent_block *)bh->b_data;
2598 		/*
2599 		 * Not all nodes might have had their final count
2600 		 * decremented by the caller - handle this here.
2601 		 */
2602 		el = &eb->h_list;
2603 		if (le16_to_cpu(el->l_next_free_rec) > 1) {
2604 			mlog(ML_ERROR,
2605 			     "Inode %llu, attempted to remove extent block "
2606 			     "%llu with %u records\n",
2607 			     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2608 			     (unsigned long long)le64_to_cpu(eb->h_blkno),
2609 			     le16_to_cpu(el->l_next_free_rec));
2610 
2611 			ocfs2_journal_dirty(handle, bh);
2612 			ocfs2_remove_from_cache(et->et_ci, bh);
2613 			continue;
2614 		}
2615 
2616 		el->l_next_free_rec = 0;
2617 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2618 
2619 		ocfs2_journal_dirty(handle, bh);
2620 
2621 		ret = ocfs2_cache_extent_block_free(dealloc, eb);
2622 		if (ret)
2623 			mlog_errno(ret);
2624 
2625 		ocfs2_remove_from_cache(et->et_ci, bh);
2626 	}
2627 }
2628 
2629 static void ocfs2_unlink_subtree(handle_t *handle,
2630 				 struct ocfs2_extent_tree *et,
2631 				 struct ocfs2_path *left_path,
2632 				 struct ocfs2_path *right_path,
2633 				 int subtree_index,
2634 				 struct ocfs2_cached_dealloc_ctxt *dealloc)
2635 {
2636 	int i;
2637 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2638 	struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2639 	struct ocfs2_extent_block *eb;
2640 
2641 	eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2642 
2643 	for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2644 		if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2645 			break;
2646 
2647 	BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2648 
2649 	memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2650 	le16_add_cpu(&root_el->l_next_free_rec, -1);
2651 
2652 	eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2653 	eb->h_next_leaf_blk = 0;
2654 
2655 	ocfs2_journal_dirty(handle, root_bh);
2656 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2657 
2658 	ocfs2_unlink_path(handle, et, dealloc, right_path,
2659 			  subtree_index + 1);
2660 }
2661 
2662 static int ocfs2_rotate_subtree_left(handle_t *handle,
2663 				     struct ocfs2_extent_tree *et,
2664 				     struct ocfs2_path *left_path,
2665 				     struct ocfs2_path *right_path,
2666 				     int subtree_index,
2667 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
2668 				     int *deleted)
2669 {
2670 	int ret, i, del_right_subtree = 0, right_has_empty = 0;
2671 	struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2672 	struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2673 	struct ocfs2_extent_block *eb;
2674 
2675 	*deleted = 0;
2676 
2677 	right_leaf_el = path_leaf_el(right_path);
2678 	left_leaf_el = path_leaf_el(left_path);
2679 	root_bh = left_path->p_node[subtree_index].bh;
2680 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2681 
2682 	if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2683 		return 0;
2684 
2685 	eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2686 	if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2687 		/*
2688 		 * It's legal for us to proceed if the right leaf is
2689 		 * the rightmost one and it has an empty extent. There
2690 		 * are two cases to handle - whether the leaf will be
2691 		 * empty after removal or not. If the leaf isn't empty
2692 		 * then just remove the empty extent up front. The
2693 		 * next block will handle empty leaves by flagging
2694 		 * them for unlink.
2695 		 *
2696 		 * Non rightmost leaves will throw -EAGAIN and the
2697 		 * caller can manually move the subtree and retry.
2698 		 */
2699 
2700 		if (eb->h_next_leaf_blk != 0ULL)
2701 			return -EAGAIN;
2702 
2703 		if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2704 			ret = ocfs2_journal_access_eb(handle, et->et_ci,
2705 						      path_leaf_bh(right_path),
2706 						      OCFS2_JOURNAL_ACCESS_WRITE);
2707 			if (ret) {
2708 				mlog_errno(ret);
2709 				goto out;
2710 			}
2711 
2712 			ocfs2_remove_empty_extent(right_leaf_el);
2713 		} else
2714 			right_has_empty = 1;
2715 	}
2716 
2717 	if (eb->h_next_leaf_blk == 0ULL &&
2718 	    le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2719 		/*
2720 		 * We have to update i_last_eb_blk during the meta
2721 		 * data delete.
2722 		 */
2723 		ret = ocfs2_et_root_journal_access(handle, et,
2724 						   OCFS2_JOURNAL_ACCESS_WRITE);
2725 		if (ret) {
2726 			mlog_errno(ret);
2727 			goto out;
2728 		}
2729 
2730 		del_right_subtree = 1;
2731 	}
2732 
2733 	/*
2734 	 * Getting here with an empty extent in the right path implies
2735 	 * that it's the rightmost path and will be deleted.
2736 	 */
2737 	BUG_ON(right_has_empty && !del_right_subtree);
2738 
2739 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2740 					   subtree_index);
2741 	if (ret) {
2742 		mlog_errno(ret);
2743 		goto out;
2744 	}
2745 
2746 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2747 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2748 						   right_path, i);
2749 		if (ret) {
2750 			mlog_errno(ret);
2751 			goto out;
2752 		}
2753 
2754 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2755 						   left_path, i);
2756 		if (ret) {
2757 			mlog_errno(ret);
2758 			goto out;
2759 		}
2760 	}
2761 
2762 	if (!right_has_empty) {
2763 		/*
2764 		 * Only do this if we're moving a real
2765 		 * record. Otherwise, the action is delayed until
2766 		 * after removal of the right path in which case we
2767 		 * can do a simple shift to remove the empty extent.
2768 		 */
2769 		ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2770 		memset(&right_leaf_el->l_recs[0], 0,
2771 		       sizeof(struct ocfs2_extent_rec));
2772 	}
2773 	if (eb->h_next_leaf_blk == 0ULL) {
2774 		/*
2775 		 * Move recs over to get rid of empty extent, decrease
2776 		 * next_free. This is allowed to remove the last
2777 		 * extent in our leaf (setting l_next_free_rec to
2778 		 * zero) - the delete code below won't care.
2779 		 */
2780 		ocfs2_remove_empty_extent(right_leaf_el);
2781 	}
2782 
2783 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2784 	ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2785 
2786 	if (del_right_subtree) {
2787 		ocfs2_unlink_subtree(handle, et, left_path, right_path,
2788 				     subtree_index, dealloc);
2789 		ret = ocfs2_update_edge_lengths(handle, et, left_path);
2790 		if (ret) {
2791 			mlog_errno(ret);
2792 			goto out;
2793 		}
2794 
2795 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2796 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2797 
2798 		/*
2799 		 * Removal of the extent in the left leaf was skipped
2800 		 * above so we could delete the right path
2801 		 * 1st.
2802 		 */
2803 		if (right_has_empty)
2804 			ocfs2_remove_empty_extent(left_leaf_el);
2805 
2806 		ocfs2_journal_dirty(handle, et_root_bh);
2807 
2808 		*deleted = 1;
2809 	} else
2810 		ocfs2_complete_edge_insert(handle, left_path, right_path,
2811 					   subtree_index);
2812 
2813 out:
2814 	return ret;
2815 }
2816 
2817 /*
2818  * Given a full path, determine what cpos value would return us a path
2819  * containing the leaf immediately to the right of the current one.
2820  *
2821  * Will return zero if the path passed in is already the rightmost path.
2822  *
2823  * This looks similar, but is subtly different to
2824  * ocfs2_find_cpos_for_left_leaf().
2825  */
2826 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2827 				   struct ocfs2_path *path, u32 *cpos)
2828 {
2829 	int i, j, ret = 0;
2830 	u64 blkno;
2831 	struct ocfs2_extent_list *el;
2832 
2833 	*cpos = 0;
2834 
2835 	if (path->p_tree_depth == 0)
2836 		return 0;
2837 
2838 	blkno = path_leaf_bh(path)->b_blocknr;
2839 
2840 	/* Start at the tree node just above the leaf and work our way up. */
2841 	i = path->p_tree_depth - 1;
2842 	while (i >= 0) {
2843 		int next_free;
2844 
2845 		el = path->p_node[i].el;
2846 
2847 		/*
2848 		 * Find the extent record just after the one in our
2849 		 * path.
2850 		 */
2851 		next_free = le16_to_cpu(el->l_next_free_rec);
2852 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2853 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2854 				if (j == (next_free - 1)) {
2855 					if (i == 0) {
2856 						/*
2857 						 * We've determined that the
2858 						 * path specified is already
2859 						 * the rightmost one - return a
2860 						 * cpos of zero.
2861 						 */
2862 						goto out;
2863 					}
2864 					/*
2865 					 * The rightmost record points to our
2866 					 * leaf - we need to travel up the
2867 					 * tree one level.
2868 					 */
2869 					goto next_node;
2870 				}
2871 
2872 				*cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2873 				goto out;
2874 			}
2875 		}
2876 
2877 		/*
2878 		 * If we got here, we never found a valid node where
2879 		 * the tree indicated one should be.
2880 		 */
2881 		ocfs2_error(sb, "Invalid extent tree at extent block %llu\n",
2882 			    (unsigned long long)blkno);
2883 		ret = -EROFS;
2884 		goto out;
2885 
2886 next_node:
2887 		blkno = path->p_node[i].bh->b_blocknr;
2888 		i--;
2889 	}
2890 
2891 out:
2892 	return ret;
2893 }
2894 
2895 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle,
2896 					    struct ocfs2_extent_tree *et,
2897 					    struct ocfs2_path *path)
2898 {
2899 	int ret;
2900 	struct buffer_head *bh = path_leaf_bh(path);
2901 	struct ocfs2_extent_list *el = path_leaf_el(path);
2902 
2903 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2904 		return 0;
2905 
2906 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
2907 					   path_num_items(path) - 1);
2908 	if (ret) {
2909 		mlog_errno(ret);
2910 		goto out;
2911 	}
2912 
2913 	ocfs2_remove_empty_extent(el);
2914 	ocfs2_journal_dirty(handle, bh);
2915 
2916 out:
2917 	return ret;
2918 }
2919 
2920 static int __ocfs2_rotate_tree_left(handle_t *handle,
2921 				    struct ocfs2_extent_tree *et,
2922 				    int orig_credits,
2923 				    struct ocfs2_path *path,
2924 				    struct ocfs2_cached_dealloc_ctxt *dealloc,
2925 				    struct ocfs2_path **empty_extent_path)
2926 {
2927 	int ret, subtree_root, deleted;
2928 	u32 right_cpos;
2929 	struct ocfs2_path *left_path = NULL;
2930 	struct ocfs2_path *right_path = NULL;
2931 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2932 
2933 	if (!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])))
2934 		return 0;
2935 
2936 	*empty_extent_path = NULL;
2937 
2938 	ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
2939 	if (ret) {
2940 		mlog_errno(ret);
2941 		goto out;
2942 	}
2943 
2944 	left_path = ocfs2_new_path_from_path(path);
2945 	if (!left_path) {
2946 		ret = -ENOMEM;
2947 		mlog_errno(ret);
2948 		goto out;
2949 	}
2950 
2951 	ocfs2_cp_path(left_path, path);
2952 
2953 	right_path = ocfs2_new_path_from_path(path);
2954 	if (!right_path) {
2955 		ret = -ENOMEM;
2956 		mlog_errno(ret);
2957 		goto out;
2958 	}
2959 
2960 	while (right_cpos) {
2961 		ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
2962 		if (ret) {
2963 			mlog_errno(ret);
2964 			goto out;
2965 		}
2966 
2967 		subtree_root = ocfs2_find_subtree_root(et, left_path,
2968 						       right_path);
2969 
2970 		trace_ocfs2_rotate_subtree(subtree_root,
2971 		     (unsigned long long)
2972 		     right_path->p_node[subtree_root].bh->b_blocknr,
2973 		     right_path->p_tree_depth);
2974 
2975 		ret = ocfs2_extend_rotate_transaction(handle, 0,
2976 						      orig_credits, left_path);
2977 		if (ret) {
2978 			mlog_errno(ret);
2979 			goto out;
2980 		}
2981 
2982 		/*
2983 		 * Caller might still want to make changes to the
2984 		 * tree root, so re-add it to the journal here.
2985 		 */
2986 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2987 						   left_path, 0);
2988 		if (ret) {
2989 			mlog_errno(ret);
2990 			goto out;
2991 		}
2992 
2993 		ret = ocfs2_rotate_subtree_left(handle, et, left_path,
2994 						right_path, subtree_root,
2995 						dealloc, &deleted);
2996 		if (ret == -EAGAIN) {
2997 			/*
2998 			 * The rotation has to temporarily stop due to
2999 			 * the right subtree having an empty
3000 			 * extent. Pass it back to the caller for a
3001 			 * fixup.
3002 			 */
3003 			*empty_extent_path = right_path;
3004 			right_path = NULL;
3005 			goto out;
3006 		}
3007 		if (ret) {
3008 			mlog_errno(ret);
3009 			goto out;
3010 		}
3011 
3012 		/*
3013 		 * The subtree rotate might have removed records on
3014 		 * the rightmost edge. If so, then rotation is
3015 		 * complete.
3016 		 */
3017 		if (deleted)
3018 			break;
3019 
3020 		ocfs2_mv_path(left_path, right_path);
3021 
3022 		ret = ocfs2_find_cpos_for_right_leaf(sb, left_path,
3023 						     &right_cpos);
3024 		if (ret) {
3025 			mlog_errno(ret);
3026 			goto out;
3027 		}
3028 	}
3029 
3030 out:
3031 	ocfs2_free_path(right_path);
3032 	ocfs2_free_path(left_path);
3033 
3034 	return ret;
3035 }
3036 
3037 static int ocfs2_remove_rightmost_path(handle_t *handle,
3038 				struct ocfs2_extent_tree *et,
3039 				struct ocfs2_path *path,
3040 				struct ocfs2_cached_dealloc_ctxt *dealloc)
3041 {
3042 	int ret, subtree_index;
3043 	u32 cpos;
3044 	struct ocfs2_path *left_path = NULL;
3045 	struct ocfs2_extent_block *eb;
3046 	struct ocfs2_extent_list *el;
3047 
3048 	ret = ocfs2_et_sanity_check(et);
3049 	if (ret)
3050 		goto out;
3051 
3052 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
3053 	if (ret) {
3054 		mlog_errno(ret);
3055 		goto out;
3056 	}
3057 
3058 	ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3059 					    path, &cpos);
3060 	if (ret) {
3061 		mlog_errno(ret);
3062 		goto out;
3063 	}
3064 
3065 	if (cpos) {
3066 		/*
3067 		 * We have a path to the left of this one - it needs
3068 		 * an update too.
3069 		 */
3070 		left_path = ocfs2_new_path_from_path(path);
3071 		if (!left_path) {
3072 			ret = -ENOMEM;
3073 			mlog_errno(ret);
3074 			goto out;
3075 		}
3076 
3077 		ret = ocfs2_find_path(et->et_ci, left_path, cpos);
3078 		if (ret) {
3079 			mlog_errno(ret);
3080 			goto out;
3081 		}
3082 
3083 		ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
3084 		if (ret) {
3085 			mlog_errno(ret);
3086 			goto out;
3087 		}
3088 
3089 		subtree_index = ocfs2_find_subtree_root(et, left_path, path);
3090 
3091 		ocfs2_unlink_subtree(handle, et, left_path, path,
3092 				     subtree_index, dealloc);
3093 		ret = ocfs2_update_edge_lengths(handle, et, left_path);
3094 		if (ret) {
3095 			mlog_errno(ret);
3096 			goto out;
3097 		}
3098 
3099 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3100 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3101 	} else {
3102 		/*
3103 		 * 'path' is also the leftmost path which
3104 		 * means it must be the only one. This gets
3105 		 * handled differently because we want to
3106 		 * revert the root back to having extents
3107 		 * in-line.
3108 		 */
3109 		ocfs2_unlink_path(handle, et, dealloc, path, 1);
3110 
3111 		el = et->et_root_el;
3112 		el->l_tree_depth = 0;
3113 		el->l_next_free_rec = 0;
3114 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3115 
3116 		ocfs2_et_set_last_eb_blk(et, 0);
3117 	}
3118 
3119 	ocfs2_journal_dirty(handle, path_root_bh(path));
3120 
3121 out:
3122 	ocfs2_free_path(left_path);
3123 	return ret;
3124 }
3125 
3126 static int ocfs2_remove_rightmost_empty_extent(struct ocfs2_super *osb,
3127 				struct ocfs2_extent_tree *et,
3128 				struct ocfs2_path *path,
3129 				struct ocfs2_cached_dealloc_ctxt *dealloc)
3130 {
3131 	handle_t *handle;
3132 	int ret;
3133 	int credits = path->p_tree_depth * 2 + 1;
3134 
3135 	handle = ocfs2_start_trans(osb, credits);
3136 	if (IS_ERR(handle)) {
3137 		ret = PTR_ERR(handle);
3138 		mlog_errno(ret);
3139 		return ret;
3140 	}
3141 
3142 	ret = ocfs2_remove_rightmost_path(handle, et, path, dealloc);
3143 	if (ret)
3144 		mlog_errno(ret);
3145 
3146 	ocfs2_commit_trans(osb, handle);
3147 	return ret;
3148 }
3149 
3150 /*
3151  * Left rotation of btree records.
3152  *
3153  * In many ways, this is (unsurprisingly) the opposite of right
3154  * rotation. We start at some non-rightmost path containing an empty
3155  * extent in the leaf block. The code works its way to the rightmost
3156  * path by rotating records to the left in every subtree.
3157  *
3158  * This is used by any code which reduces the number of extent records
3159  * in a leaf. After removal, an empty record should be placed in the
3160  * leftmost list position.
3161  *
3162  * This won't handle a length update of the rightmost path records if
3163  * the rightmost tree leaf record is removed so the caller is
3164  * responsible for detecting and correcting that.
3165  */
3166 static int ocfs2_rotate_tree_left(handle_t *handle,
3167 				  struct ocfs2_extent_tree *et,
3168 				  struct ocfs2_path *path,
3169 				  struct ocfs2_cached_dealloc_ctxt *dealloc)
3170 {
3171 	int ret, orig_credits = handle->h_buffer_credits;
3172 	struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3173 	struct ocfs2_extent_block *eb;
3174 	struct ocfs2_extent_list *el;
3175 
3176 	el = path_leaf_el(path);
3177 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3178 		return 0;
3179 
3180 	if (path->p_tree_depth == 0) {
3181 rightmost_no_delete:
3182 		/*
3183 		 * Inline extents. This is trivially handled, so do
3184 		 * it up front.
3185 		 */
3186 		ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path);
3187 		if (ret)
3188 			mlog_errno(ret);
3189 		goto out;
3190 	}
3191 
3192 	/*
3193 	 * Handle rightmost branch now. There's several cases:
3194 	 *  1) simple rotation leaving records in there. That's trivial.
3195 	 *  2) rotation requiring a branch delete - there's no more
3196 	 *     records left. Two cases of this:
3197 	 *     a) There are branches to the left.
3198 	 *     b) This is also the leftmost (the only) branch.
3199 	 *
3200 	 *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
3201 	 *  2a) we need the left branch so that we can update it with the unlink
3202 	 *  2b) we need to bring the root back to inline extents.
3203 	 */
3204 
3205 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3206 	el = &eb->h_list;
3207 	if (eb->h_next_leaf_blk == 0) {
3208 		/*
3209 		 * This gets a bit tricky if we're going to delete the
3210 		 * rightmost path. Get the other cases out of the way
3211 		 * 1st.
3212 		 */
3213 		if (le16_to_cpu(el->l_next_free_rec) > 1)
3214 			goto rightmost_no_delete;
3215 
3216 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
3217 			ret = -EIO;
3218 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3219 				    "Owner %llu has empty extent block at %llu\n",
3220 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
3221 				    (unsigned long long)le64_to_cpu(eb->h_blkno));
3222 			goto out;
3223 		}
3224 
3225 		/*
3226 		 * XXX: The caller can not trust "path" any more after
3227 		 * this as it will have been deleted. What do we do?
3228 		 *
3229 		 * In theory the rotate-for-merge code will never get
3230 		 * here because it'll always ask for a rotate in a
3231 		 * nonempty list.
3232 		 */
3233 
3234 		ret = ocfs2_remove_rightmost_path(handle, et, path,
3235 						  dealloc);
3236 		if (ret)
3237 			mlog_errno(ret);
3238 		goto out;
3239 	}
3240 
3241 	/*
3242 	 * Now we can loop, remembering the path we get from -EAGAIN
3243 	 * and restarting from there.
3244 	 */
3245 try_rotate:
3246 	ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path,
3247 				       dealloc, &restart_path);
3248 	if (ret && ret != -EAGAIN) {
3249 		mlog_errno(ret);
3250 		goto out;
3251 	}
3252 
3253 	while (ret == -EAGAIN) {
3254 		tmp_path = restart_path;
3255 		restart_path = NULL;
3256 
3257 		ret = __ocfs2_rotate_tree_left(handle, et, orig_credits,
3258 					       tmp_path, dealloc,
3259 					       &restart_path);
3260 		if (ret && ret != -EAGAIN) {
3261 			mlog_errno(ret);
3262 			goto out;
3263 		}
3264 
3265 		ocfs2_free_path(tmp_path);
3266 		tmp_path = NULL;
3267 
3268 		if (ret == 0)
3269 			goto try_rotate;
3270 	}
3271 
3272 out:
3273 	ocfs2_free_path(tmp_path);
3274 	ocfs2_free_path(restart_path);
3275 	return ret;
3276 }
3277 
3278 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3279 				int index)
3280 {
3281 	struct ocfs2_extent_rec *rec = &el->l_recs[index];
3282 	unsigned int size;
3283 
3284 	if (rec->e_leaf_clusters == 0) {
3285 		/*
3286 		 * We consumed all of the merged-from record. An empty
3287 		 * extent cannot exist anywhere but the 1st array
3288 		 * position, so move things over if the merged-from
3289 		 * record doesn't occupy that position.
3290 		 *
3291 		 * This creates a new empty extent so the caller
3292 		 * should be smart enough to have removed any existing
3293 		 * ones.
3294 		 */
3295 		if (index > 0) {
3296 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3297 			size = index * sizeof(struct ocfs2_extent_rec);
3298 			memmove(&el->l_recs[1], &el->l_recs[0], size);
3299 		}
3300 
3301 		/*
3302 		 * Always memset - the caller doesn't check whether it
3303 		 * created an empty extent, so there could be junk in
3304 		 * the other fields.
3305 		 */
3306 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3307 	}
3308 }
3309 
3310 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et,
3311 				struct ocfs2_path *left_path,
3312 				struct ocfs2_path **ret_right_path)
3313 {
3314 	int ret;
3315 	u32 right_cpos;
3316 	struct ocfs2_path *right_path = NULL;
3317 	struct ocfs2_extent_list *left_el;
3318 
3319 	*ret_right_path = NULL;
3320 
3321 	/* This function shouldn't be called for non-trees. */
3322 	BUG_ON(left_path->p_tree_depth == 0);
3323 
3324 	left_el = path_leaf_el(left_path);
3325 	BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3326 
3327 	ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3328 					     left_path, &right_cpos);
3329 	if (ret) {
3330 		mlog_errno(ret);
3331 		goto out;
3332 	}
3333 
3334 	/* This function shouldn't be called for the rightmost leaf. */
3335 	BUG_ON(right_cpos == 0);
3336 
3337 	right_path = ocfs2_new_path_from_path(left_path);
3338 	if (!right_path) {
3339 		ret = -ENOMEM;
3340 		mlog_errno(ret);
3341 		goto out;
3342 	}
3343 
3344 	ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
3345 	if (ret) {
3346 		mlog_errno(ret);
3347 		goto out;
3348 	}
3349 
3350 	*ret_right_path = right_path;
3351 out:
3352 	if (ret)
3353 		ocfs2_free_path(right_path);
3354 	return ret;
3355 }
3356 
3357 /*
3358  * Remove split_rec clusters from the record at index and merge them
3359  * onto the beginning of the record "next" to it.
3360  * For index < l_count - 1, the next means the extent rec at index + 1.
3361  * For index == l_count - 1, the "next" means the 1st extent rec of the
3362  * next extent block.
3363  */
3364 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path,
3365 				 handle_t *handle,
3366 				 struct ocfs2_extent_tree *et,
3367 				 struct ocfs2_extent_rec *split_rec,
3368 				 int index)
3369 {
3370 	int ret, next_free, i;
3371 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3372 	struct ocfs2_extent_rec *left_rec;
3373 	struct ocfs2_extent_rec *right_rec;
3374 	struct ocfs2_extent_list *right_el;
3375 	struct ocfs2_path *right_path = NULL;
3376 	int subtree_index = 0;
3377 	struct ocfs2_extent_list *el = path_leaf_el(left_path);
3378 	struct buffer_head *bh = path_leaf_bh(left_path);
3379 	struct buffer_head *root_bh = NULL;
3380 
3381 	BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3382 	left_rec = &el->l_recs[index];
3383 
3384 	if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3385 	    le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3386 		/* we meet with a cross extent block merge. */
3387 		ret = ocfs2_get_right_path(et, left_path, &right_path);
3388 		if (ret) {
3389 			mlog_errno(ret);
3390 			return ret;
3391 		}
3392 
3393 		right_el = path_leaf_el(right_path);
3394 		next_free = le16_to_cpu(right_el->l_next_free_rec);
3395 		BUG_ON(next_free <= 0);
3396 		right_rec = &right_el->l_recs[0];
3397 		if (ocfs2_is_empty_extent(right_rec)) {
3398 			BUG_ON(next_free <= 1);
3399 			right_rec = &right_el->l_recs[1];
3400 		}
3401 
3402 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3403 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3404 		       le32_to_cpu(right_rec->e_cpos));
3405 
3406 		subtree_index = ocfs2_find_subtree_root(et, left_path,
3407 							right_path);
3408 
3409 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3410 						      handle->h_buffer_credits,
3411 						      right_path);
3412 		if (ret) {
3413 			mlog_errno(ret);
3414 			goto out;
3415 		}
3416 
3417 		root_bh = left_path->p_node[subtree_index].bh;
3418 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3419 
3420 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3421 						   subtree_index);
3422 		if (ret) {
3423 			mlog_errno(ret);
3424 			goto out;
3425 		}
3426 
3427 		for (i = subtree_index + 1;
3428 		     i < path_num_items(right_path); i++) {
3429 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3430 							   right_path, i);
3431 			if (ret) {
3432 				mlog_errno(ret);
3433 				goto out;
3434 			}
3435 
3436 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3437 							   left_path, i);
3438 			if (ret) {
3439 				mlog_errno(ret);
3440 				goto out;
3441 			}
3442 		}
3443 
3444 	} else {
3445 		BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3446 		right_rec = &el->l_recs[index + 1];
3447 	}
3448 
3449 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path,
3450 					   path_num_items(left_path) - 1);
3451 	if (ret) {
3452 		mlog_errno(ret);
3453 		goto out;
3454 	}
3455 
3456 	le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3457 
3458 	le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3459 	le64_add_cpu(&right_rec->e_blkno,
3460 		     -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3461 					       split_clusters));
3462 	le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3463 
3464 	ocfs2_cleanup_merge(el, index);
3465 
3466 	ocfs2_journal_dirty(handle, bh);
3467 	if (right_path) {
3468 		ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3469 		ocfs2_complete_edge_insert(handle, left_path, right_path,
3470 					   subtree_index);
3471 	}
3472 out:
3473 	ocfs2_free_path(right_path);
3474 	return ret;
3475 }
3476 
3477 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et,
3478 			       struct ocfs2_path *right_path,
3479 			       struct ocfs2_path **ret_left_path)
3480 {
3481 	int ret;
3482 	u32 left_cpos;
3483 	struct ocfs2_path *left_path = NULL;
3484 
3485 	*ret_left_path = NULL;
3486 
3487 	/* This function shouldn't be called for non-trees. */
3488 	BUG_ON(right_path->p_tree_depth == 0);
3489 
3490 	ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3491 					    right_path, &left_cpos);
3492 	if (ret) {
3493 		mlog_errno(ret);
3494 		goto out;
3495 	}
3496 
3497 	/* This function shouldn't be called for the leftmost leaf. */
3498 	BUG_ON(left_cpos == 0);
3499 
3500 	left_path = ocfs2_new_path_from_path(right_path);
3501 	if (!left_path) {
3502 		ret = -ENOMEM;
3503 		mlog_errno(ret);
3504 		goto out;
3505 	}
3506 
3507 	ret = ocfs2_find_path(et->et_ci, left_path, left_cpos);
3508 	if (ret) {
3509 		mlog_errno(ret);
3510 		goto out;
3511 	}
3512 
3513 	*ret_left_path = left_path;
3514 out:
3515 	if (ret)
3516 		ocfs2_free_path(left_path);
3517 	return ret;
3518 }
3519 
3520 /*
3521  * Remove split_rec clusters from the record at index and merge them
3522  * onto the tail of the record "before" it.
3523  * For index > 0, the "before" means the extent rec at index - 1.
3524  *
3525  * For index == 0, the "before" means the last record of the previous
3526  * extent block. And there is also a situation that we may need to
3527  * remove the rightmost leaf extent block in the right_path and change
3528  * the right path to indicate the new rightmost path.
3529  */
3530 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path,
3531 				handle_t *handle,
3532 				struct ocfs2_extent_tree *et,
3533 				struct ocfs2_extent_rec *split_rec,
3534 				struct ocfs2_cached_dealloc_ctxt *dealloc,
3535 				int index)
3536 {
3537 	int ret, i, subtree_index = 0, has_empty_extent = 0;
3538 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3539 	struct ocfs2_extent_rec *left_rec;
3540 	struct ocfs2_extent_rec *right_rec;
3541 	struct ocfs2_extent_list *el = path_leaf_el(right_path);
3542 	struct buffer_head *bh = path_leaf_bh(right_path);
3543 	struct buffer_head *root_bh = NULL;
3544 	struct ocfs2_path *left_path = NULL;
3545 	struct ocfs2_extent_list *left_el;
3546 
3547 	BUG_ON(index < 0);
3548 
3549 	right_rec = &el->l_recs[index];
3550 	if (index == 0) {
3551 		/* we meet with a cross extent block merge. */
3552 		ret = ocfs2_get_left_path(et, right_path, &left_path);
3553 		if (ret) {
3554 			mlog_errno(ret);
3555 			return ret;
3556 		}
3557 
3558 		left_el = path_leaf_el(left_path);
3559 		BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3560 		       le16_to_cpu(left_el->l_count));
3561 
3562 		left_rec = &left_el->l_recs[
3563 				le16_to_cpu(left_el->l_next_free_rec) - 1];
3564 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3565 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3566 		       le32_to_cpu(split_rec->e_cpos));
3567 
3568 		subtree_index = ocfs2_find_subtree_root(et, left_path,
3569 							right_path);
3570 
3571 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3572 						      handle->h_buffer_credits,
3573 						      left_path);
3574 		if (ret) {
3575 			mlog_errno(ret);
3576 			goto out;
3577 		}
3578 
3579 		root_bh = left_path->p_node[subtree_index].bh;
3580 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3581 
3582 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3583 						   subtree_index);
3584 		if (ret) {
3585 			mlog_errno(ret);
3586 			goto out;
3587 		}
3588 
3589 		for (i = subtree_index + 1;
3590 		     i < path_num_items(right_path); i++) {
3591 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3592 							   right_path, i);
3593 			if (ret) {
3594 				mlog_errno(ret);
3595 				goto out;
3596 			}
3597 
3598 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3599 							   left_path, i);
3600 			if (ret) {
3601 				mlog_errno(ret);
3602 				goto out;
3603 			}
3604 		}
3605 	} else {
3606 		left_rec = &el->l_recs[index - 1];
3607 		if (ocfs2_is_empty_extent(&el->l_recs[0]))
3608 			has_empty_extent = 1;
3609 	}
3610 
3611 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3612 					   path_num_items(right_path) - 1);
3613 	if (ret) {
3614 		mlog_errno(ret);
3615 		goto out;
3616 	}
3617 
3618 	if (has_empty_extent && index == 1) {
3619 		/*
3620 		 * The easy case - we can just plop the record right in.
3621 		 */
3622 		*left_rec = *split_rec;
3623 	} else
3624 		le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3625 
3626 	le32_add_cpu(&right_rec->e_cpos, split_clusters);
3627 	le64_add_cpu(&right_rec->e_blkno,
3628 		     ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3629 					      split_clusters));
3630 	le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3631 
3632 	ocfs2_cleanup_merge(el, index);
3633 
3634 	ocfs2_journal_dirty(handle, bh);
3635 	if (left_path) {
3636 		ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3637 
3638 		/*
3639 		 * In the situation that the right_rec is empty and the extent
3640 		 * block is empty also,  ocfs2_complete_edge_insert can't handle
3641 		 * it and we need to delete the right extent block.
3642 		 */
3643 		if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3644 		    le16_to_cpu(el->l_next_free_rec) == 1) {
3645 			/* extend credit for ocfs2_remove_rightmost_path */
3646 			ret = ocfs2_extend_rotate_transaction(handle, 0,
3647 					handle->h_buffer_credits,
3648 					right_path);
3649 			if (ret) {
3650 				mlog_errno(ret);
3651 				goto out;
3652 			}
3653 
3654 			ret = ocfs2_remove_rightmost_path(handle, et,
3655 							  right_path,
3656 							  dealloc);
3657 			if (ret) {
3658 				mlog_errno(ret);
3659 				goto out;
3660 			}
3661 
3662 			/* Now the rightmost extent block has been deleted.
3663 			 * So we use the new rightmost path.
3664 			 */
3665 			ocfs2_mv_path(right_path, left_path);
3666 			left_path = NULL;
3667 		} else
3668 			ocfs2_complete_edge_insert(handle, left_path,
3669 						   right_path, subtree_index);
3670 	}
3671 out:
3672 	ocfs2_free_path(left_path);
3673 	return ret;
3674 }
3675 
3676 static int ocfs2_try_to_merge_extent(handle_t *handle,
3677 				     struct ocfs2_extent_tree *et,
3678 				     struct ocfs2_path *path,
3679 				     int split_index,
3680 				     struct ocfs2_extent_rec *split_rec,
3681 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
3682 				     struct ocfs2_merge_ctxt *ctxt)
3683 {
3684 	int ret = 0;
3685 	struct ocfs2_extent_list *el = path_leaf_el(path);
3686 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3687 
3688 	BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3689 
3690 	if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3691 		/* extend credit for ocfs2_remove_rightmost_path */
3692 		ret = ocfs2_extend_rotate_transaction(handle, 0,
3693 				handle->h_buffer_credits,
3694 				path);
3695 		if (ret) {
3696 			mlog_errno(ret);
3697 			goto out;
3698 		}
3699 		/*
3700 		 * The merge code will need to create an empty
3701 		 * extent to take the place of the newly
3702 		 * emptied slot. Remove any pre-existing empty
3703 		 * extents - having more than one in a leaf is
3704 		 * illegal.
3705 		 */
3706 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3707 		if (ret) {
3708 			mlog_errno(ret);
3709 			goto out;
3710 		}
3711 		split_index--;
3712 		rec = &el->l_recs[split_index];
3713 	}
3714 
3715 	if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3716 		/*
3717 		 * Left-right contig implies this.
3718 		 */
3719 		BUG_ON(!ctxt->c_split_covers_rec);
3720 
3721 		/*
3722 		 * Since the leftright insert always covers the entire
3723 		 * extent, this call will delete the insert record
3724 		 * entirely, resulting in an empty extent record added to
3725 		 * the extent block.
3726 		 *
3727 		 * Since the adding of an empty extent shifts
3728 		 * everything back to the right, there's no need to
3729 		 * update split_index here.
3730 		 *
3731 		 * When the split_index is zero, we need to merge it to the
3732 		 * prevoius extent block. It is more efficient and easier
3733 		 * if we do merge_right first and merge_left later.
3734 		 */
3735 		ret = ocfs2_merge_rec_right(path, handle, et, split_rec,
3736 					    split_index);
3737 		if (ret) {
3738 			mlog_errno(ret);
3739 			goto out;
3740 		}
3741 
3742 		/*
3743 		 * We can only get this from logic error above.
3744 		 */
3745 		BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3746 
3747 		/* extend credit for ocfs2_remove_rightmost_path */
3748 		ret = ocfs2_extend_rotate_transaction(handle, 0,
3749 					handle->h_buffer_credits,
3750 					path);
3751 		if (ret) {
3752 			mlog_errno(ret);
3753 			goto out;
3754 		}
3755 
3756 		/* The merge left us with an empty extent, remove it. */
3757 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3758 		if (ret) {
3759 			mlog_errno(ret);
3760 			goto out;
3761 		}
3762 
3763 		rec = &el->l_recs[split_index];
3764 
3765 		/*
3766 		 * Note that we don't pass split_rec here on purpose -
3767 		 * we've merged it into the rec already.
3768 		 */
3769 		ret = ocfs2_merge_rec_left(path, handle, et, rec,
3770 					   dealloc, split_index);
3771 
3772 		if (ret) {
3773 			mlog_errno(ret);
3774 			goto out;
3775 		}
3776 
3777 		/* extend credit for ocfs2_remove_rightmost_path */
3778 		ret = ocfs2_extend_rotate_transaction(handle, 0,
3779 				handle->h_buffer_credits,
3780 				path);
3781 		if (ret) {
3782 			mlog_errno(ret);
3783 			goto out;
3784 		}
3785 
3786 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3787 		/*
3788 		 * Error from this last rotate is not critical, so
3789 		 * print but don't bubble it up.
3790 		 */
3791 		if (ret)
3792 			mlog_errno(ret);
3793 		ret = 0;
3794 	} else {
3795 		/*
3796 		 * Merge a record to the left or right.
3797 		 *
3798 		 * 'contig_type' is relative to the existing record,
3799 		 * so for example, if we're "right contig", it's to
3800 		 * the record on the left (hence the left merge).
3801 		 */
3802 		if (ctxt->c_contig_type == CONTIG_RIGHT) {
3803 			ret = ocfs2_merge_rec_left(path, handle, et,
3804 						   split_rec, dealloc,
3805 						   split_index);
3806 			if (ret) {
3807 				mlog_errno(ret);
3808 				goto out;
3809 			}
3810 		} else {
3811 			ret = ocfs2_merge_rec_right(path, handle,
3812 						    et, split_rec,
3813 						    split_index);
3814 			if (ret) {
3815 				mlog_errno(ret);
3816 				goto out;
3817 			}
3818 		}
3819 
3820 		if (ctxt->c_split_covers_rec) {
3821 			/* extend credit for ocfs2_remove_rightmost_path */
3822 			ret = ocfs2_extend_rotate_transaction(handle, 0,
3823 					handle->h_buffer_credits,
3824 					path);
3825 			if (ret) {
3826 				mlog_errno(ret);
3827 				ret = 0;
3828 				goto out;
3829 			}
3830 
3831 			/*
3832 			 * The merge may have left an empty extent in
3833 			 * our leaf. Try to rotate it away.
3834 			 */
3835 			ret = ocfs2_rotate_tree_left(handle, et, path,
3836 						     dealloc);
3837 			if (ret)
3838 				mlog_errno(ret);
3839 			ret = 0;
3840 		}
3841 	}
3842 
3843 out:
3844 	return ret;
3845 }
3846 
3847 static void ocfs2_subtract_from_rec(struct super_block *sb,
3848 				    enum ocfs2_split_type split,
3849 				    struct ocfs2_extent_rec *rec,
3850 				    struct ocfs2_extent_rec *split_rec)
3851 {
3852 	u64 len_blocks;
3853 
3854 	len_blocks = ocfs2_clusters_to_blocks(sb,
3855 				le16_to_cpu(split_rec->e_leaf_clusters));
3856 
3857 	if (split == SPLIT_LEFT) {
3858 		/*
3859 		 * Region is on the left edge of the existing
3860 		 * record.
3861 		 */
3862 		le32_add_cpu(&rec->e_cpos,
3863 			     le16_to_cpu(split_rec->e_leaf_clusters));
3864 		le64_add_cpu(&rec->e_blkno, len_blocks);
3865 		le16_add_cpu(&rec->e_leaf_clusters,
3866 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3867 	} else {
3868 		/*
3869 		 * Region is on the right edge of the existing
3870 		 * record.
3871 		 */
3872 		le16_add_cpu(&rec->e_leaf_clusters,
3873 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3874 	}
3875 }
3876 
3877 /*
3878  * Do the final bits of extent record insertion at the target leaf
3879  * list. If this leaf is part of an allocation tree, it is assumed
3880  * that the tree above has been prepared.
3881  */
3882 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et,
3883 				 struct ocfs2_extent_rec *insert_rec,
3884 				 struct ocfs2_extent_list *el,
3885 				 struct ocfs2_insert_type *insert)
3886 {
3887 	int i = insert->ins_contig_index;
3888 	unsigned int range;
3889 	struct ocfs2_extent_rec *rec;
3890 
3891 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3892 
3893 	if (insert->ins_split != SPLIT_NONE) {
3894 		i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3895 		BUG_ON(i == -1);
3896 		rec = &el->l_recs[i];
3897 		ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
3898 					insert->ins_split, rec,
3899 					insert_rec);
3900 		goto rotate;
3901 	}
3902 
3903 	/*
3904 	 * Contiguous insert - either left or right.
3905 	 */
3906 	if (insert->ins_contig != CONTIG_NONE) {
3907 		rec = &el->l_recs[i];
3908 		if (insert->ins_contig == CONTIG_LEFT) {
3909 			rec->e_blkno = insert_rec->e_blkno;
3910 			rec->e_cpos = insert_rec->e_cpos;
3911 		}
3912 		le16_add_cpu(&rec->e_leaf_clusters,
3913 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3914 		return;
3915 	}
3916 
3917 	/*
3918 	 * Handle insert into an empty leaf.
3919 	 */
3920 	if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3921 	    ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3922 	     ocfs2_is_empty_extent(&el->l_recs[0]))) {
3923 		el->l_recs[0] = *insert_rec;
3924 		el->l_next_free_rec = cpu_to_le16(1);
3925 		return;
3926 	}
3927 
3928 	/*
3929 	 * Appending insert.
3930 	 */
3931 	if (insert->ins_appending == APPEND_TAIL) {
3932 		i = le16_to_cpu(el->l_next_free_rec) - 1;
3933 		rec = &el->l_recs[i];
3934 		range = le32_to_cpu(rec->e_cpos)
3935 			+ le16_to_cpu(rec->e_leaf_clusters);
3936 		BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3937 
3938 		mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3939 				le16_to_cpu(el->l_count),
3940 				"owner %llu, depth %u, count %u, next free %u, "
3941 				"rec.cpos %u, rec.clusters %u, "
3942 				"insert.cpos %u, insert.clusters %u\n",
3943 				ocfs2_metadata_cache_owner(et->et_ci),
3944 				le16_to_cpu(el->l_tree_depth),
3945 				le16_to_cpu(el->l_count),
3946 				le16_to_cpu(el->l_next_free_rec),
3947 				le32_to_cpu(el->l_recs[i].e_cpos),
3948 				le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3949 				le32_to_cpu(insert_rec->e_cpos),
3950 				le16_to_cpu(insert_rec->e_leaf_clusters));
3951 		i++;
3952 		el->l_recs[i] = *insert_rec;
3953 		le16_add_cpu(&el->l_next_free_rec, 1);
3954 		return;
3955 	}
3956 
3957 rotate:
3958 	/*
3959 	 * Ok, we have to rotate.
3960 	 *
3961 	 * At this point, it is safe to assume that inserting into an
3962 	 * empty leaf and appending to a leaf have both been handled
3963 	 * above.
3964 	 *
3965 	 * This leaf needs to have space, either by the empty 1st
3966 	 * extent record, or by virtue of an l_next_rec < l_count.
3967 	 */
3968 	ocfs2_rotate_leaf(el, insert_rec);
3969 }
3970 
3971 static void ocfs2_adjust_rightmost_records(handle_t *handle,
3972 					   struct ocfs2_extent_tree *et,
3973 					   struct ocfs2_path *path,
3974 					   struct ocfs2_extent_rec *insert_rec)
3975 {
3976 	int i, next_free;
3977 	struct buffer_head *bh;
3978 	struct ocfs2_extent_list *el;
3979 	struct ocfs2_extent_rec *rec;
3980 
3981 	/*
3982 	 * Update everything except the leaf block.
3983 	 */
3984 	for (i = 0; i < path->p_tree_depth; i++) {
3985 		bh = path->p_node[i].bh;
3986 		el = path->p_node[i].el;
3987 
3988 		next_free = le16_to_cpu(el->l_next_free_rec);
3989 		if (next_free == 0) {
3990 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3991 				    "Owner %llu has a bad extent list\n",
3992 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
3993 			return;
3994 		}
3995 
3996 		rec = &el->l_recs[next_free - 1];
3997 
3998 		rec->e_int_clusters = insert_rec->e_cpos;
3999 		le32_add_cpu(&rec->e_int_clusters,
4000 			     le16_to_cpu(insert_rec->e_leaf_clusters));
4001 		le32_add_cpu(&rec->e_int_clusters,
4002 			     -le32_to_cpu(rec->e_cpos));
4003 
4004 		ocfs2_journal_dirty(handle, bh);
4005 	}
4006 }
4007 
4008 static int ocfs2_append_rec_to_path(handle_t *handle,
4009 				    struct ocfs2_extent_tree *et,
4010 				    struct ocfs2_extent_rec *insert_rec,
4011 				    struct ocfs2_path *right_path,
4012 				    struct ocfs2_path **ret_left_path)
4013 {
4014 	int ret, next_free;
4015 	struct ocfs2_extent_list *el;
4016 	struct ocfs2_path *left_path = NULL;
4017 
4018 	*ret_left_path = NULL;
4019 
4020 	/*
4021 	 * This shouldn't happen for non-trees. The extent rec cluster
4022 	 * count manipulation below only works for interior nodes.
4023 	 */
4024 	BUG_ON(right_path->p_tree_depth == 0);
4025 
4026 	/*
4027 	 * If our appending insert is at the leftmost edge of a leaf,
4028 	 * then we might need to update the rightmost records of the
4029 	 * neighboring path.
4030 	 */
4031 	el = path_leaf_el(right_path);
4032 	next_free = le16_to_cpu(el->l_next_free_rec);
4033 	if (next_free == 0 ||
4034 	    (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
4035 		u32 left_cpos;
4036 
4037 		ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
4038 						    right_path, &left_cpos);
4039 		if (ret) {
4040 			mlog_errno(ret);
4041 			goto out;
4042 		}
4043 
4044 		trace_ocfs2_append_rec_to_path(
4045 			(unsigned long long)
4046 			ocfs2_metadata_cache_owner(et->et_ci),
4047 			le32_to_cpu(insert_rec->e_cpos),
4048 			left_cpos);
4049 
4050 		/*
4051 		 * No need to worry if the append is already in the
4052 		 * leftmost leaf.
4053 		 */
4054 		if (left_cpos) {
4055 			left_path = ocfs2_new_path_from_path(right_path);
4056 			if (!left_path) {
4057 				ret = -ENOMEM;
4058 				mlog_errno(ret);
4059 				goto out;
4060 			}
4061 
4062 			ret = ocfs2_find_path(et->et_ci, left_path,
4063 					      left_cpos);
4064 			if (ret) {
4065 				mlog_errno(ret);
4066 				goto out;
4067 			}
4068 
4069 			/*
4070 			 * ocfs2_insert_path() will pass the left_path to the
4071 			 * journal for us.
4072 			 */
4073 		}
4074 	}
4075 
4076 	ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4077 	if (ret) {
4078 		mlog_errno(ret);
4079 		goto out;
4080 	}
4081 
4082 	ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec);
4083 
4084 	*ret_left_path = left_path;
4085 	ret = 0;
4086 out:
4087 	if (ret != 0)
4088 		ocfs2_free_path(left_path);
4089 
4090 	return ret;
4091 }
4092 
4093 static void ocfs2_split_record(struct ocfs2_extent_tree *et,
4094 			       struct ocfs2_path *left_path,
4095 			       struct ocfs2_path *right_path,
4096 			       struct ocfs2_extent_rec *split_rec,
4097 			       enum ocfs2_split_type split)
4098 {
4099 	int index;
4100 	u32 cpos = le32_to_cpu(split_rec->e_cpos);
4101 	struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4102 	struct ocfs2_extent_rec *rec, *tmprec;
4103 
4104 	right_el = path_leaf_el(right_path);
4105 	if (left_path)
4106 		left_el = path_leaf_el(left_path);
4107 
4108 	el = right_el;
4109 	insert_el = right_el;
4110 	index = ocfs2_search_extent_list(el, cpos);
4111 	if (index != -1) {
4112 		if (index == 0 && left_path) {
4113 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4114 
4115 			/*
4116 			 * This typically means that the record
4117 			 * started in the left path but moved to the
4118 			 * right as a result of rotation. We either
4119 			 * move the existing record to the left, or we
4120 			 * do the later insert there.
4121 			 *
4122 			 * In this case, the left path should always
4123 			 * exist as the rotate code will have passed
4124 			 * it back for a post-insert update.
4125 			 */
4126 
4127 			if (split == SPLIT_LEFT) {
4128 				/*
4129 				 * It's a left split. Since we know
4130 				 * that the rotate code gave us an
4131 				 * empty extent in the left path, we
4132 				 * can just do the insert there.
4133 				 */
4134 				insert_el = left_el;
4135 			} else {
4136 				/*
4137 				 * Right split - we have to move the
4138 				 * existing record over to the left
4139 				 * leaf. The insert will be into the
4140 				 * newly created empty extent in the
4141 				 * right leaf.
4142 				 */
4143 				tmprec = &right_el->l_recs[index];
4144 				ocfs2_rotate_leaf(left_el, tmprec);
4145 				el = left_el;
4146 
4147 				memset(tmprec, 0, sizeof(*tmprec));
4148 				index = ocfs2_search_extent_list(left_el, cpos);
4149 				BUG_ON(index == -1);
4150 			}
4151 		}
4152 	} else {
4153 		BUG_ON(!left_path);
4154 		BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4155 		/*
4156 		 * Left path is easy - we can just allow the insert to
4157 		 * happen.
4158 		 */
4159 		el = left_el;
4160 		insert_el = left_el;
4161 		index = ocfs2_search_extent_list(el, cpos);
4162 		BUG_ON(index == -1);
4163 	}
4164 
4165 	rec = &el->l_recs[index];
4166 	ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4167 				split, rec, split_rec);
4168 	ocfs2_rotate_leaf(insert_el, split_rec);
4169 }
4170 
4171 /*
4172  * This function only does inserts on an allocation b-tree. For tree
4173  * depth = 0, ocfs2_insert_at_leaf() is called directly.
4174  *
4175  * right_path is the path we want to do the actual insert
4176  * in. left_path should only be passed in if we need to update that
4177  * portion of the tree after an edge insert.
4178  */
4179 static int ocfs2_insert_path(handle_t *handle,
4180 			     struct ocfs2_extent_tree *et,
4181 			     struct ocfs2_path *left_path,
4182 			     struct ocfs2_path *right_path,
4183 			     struct ocfs2_extent_rec *insert_rec,
4184 			     struct ocfs2_insert_type *insert)
4185 {
4186 	int ret, subtree_index;
4187 	struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4188 
4189 	if (left_path) {
4190 		/*
4191 		 * There's a chance that left_path got passed back to
4192 		 * us without being accounted for in the
4193 		 * journal. Extend our transaction here to be sure we
4194 		 * can change those blocks.
4195 		 */
4196 		ret = ocfs2_extend_trans(handle, left_path->p_tree_depth);
4197 		if (ret < 0) {
4198 			mlog_errno(ret);
4199 			goto out;
4200 		}
4201 
4202 		ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
4203 		if (ret < 0) {
4204 			mlog_errno(ret);
4205 			goto out;
4206 		}
4207 	}
4208 
4209 	/*
4210 	 * Pass both paths to the journal. The majority of inserts
4211 	 * will be touching all components anyway.
4212 	 */
4213 	ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4214 	if (ret < 0) {
4215 		mlog_errno(ret);
4216 		goto out;
4217 	}
4218 
4219 	if (insert->ins_split != SPLIT_NONE) {
4220 		/*
4221 		 * We could call ocfs2_insert_at_leaf() for some types
4222 		 * of splits, but it's easier to just let one separate
4223 		 * function sort it all out.
4224 		 */
4225 		ocfs2_split_record(et, left_path, right_path,
4226 				   insert_rec, insert->ins_split);
4227 
4228 		/*
4229 		 * Split might have modified either leaf and we don't
4230 		 * have a guarantee that the later edge insert will
4231 		 * dirty this for us.
4232 		 */
4233 		if (left_path)
4234 			ocfs2_journal_dirty(handle,
4235 					    path_leaf_bh(left_path));
4236 	} else
4237 		ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path),
4238 				     insert);
4239 
4240 	ocfs2_journal_dirty(handle, leaf_bh);
4241 
4242 	if (left_path) {
4243 		/*
4244 		 * The rotate code has indicated that we need to fix
4245 		 * up portions of the tree after the insert.
4246 		 *
4247 		 * XXX: Should we extend the transaction here?
4248 		 */
4249 		subtree_index = ocfs2_find_subtree_root(et, left_path,
4250 							right_path);
4251 		ocfs2_complete_edge_insert(handle, left_path, right_path,
4252 					   subtree_index);
4253 	}
4254 
4255 	ret = 0;
4256 out:
4257 	return ret;
4258 }
4259 
4260 static int ocfs2_do_insert_extent(handle_t *handle,
4261 				  struct ocfs2_extent_tree *et,
4262 				  struct ocfs2_extent_rec *insert_rec,
4263 				  struct ocfs2_insert_type *type)
4264 {
4265 	int ret, rotate = 0;
4266 	u32 cpos;
4267 	struct ocfs2_path *right_path = NULL;
4268 	struct ocfs2_path *left_path = NULL;
4269 	struct ocfs2_extent_list *el;
4270 
4271 	el = et->et_root_el;
4272 
4273 	ret = ocfs2_et_root_journal_access(handle, et,
4274 					   OCFS2_JOURNAL_ACCESS_WRITE);
4275 	if (ret) {
4276 		mlog_errno(ret);
4277 		goto out;
4278 	}
4279 
4280 	if (le16_to_cpu(el->l_tree_depth) == 0) {
4281 		ocfs2_insert_at_leaf(et, insert_rec, el, type);
4282 		goto out_update_clusters;
4283 	}
4284 
4285 	right_path = ocfs2_new_path_from_et(et);
4286 	if (!right_path) {
4287 		ret = -ENOMEM;
4288 		mlog_errno(ret);
4289 		goto out;
4290 	}
4291 
4292 	/*
4293 	 * Determine the path to start with. Rotations need the
4294 	 * rightmost path, everything else can go directly to the
4295 	 * target leaf.
4296 	 */
4297 	cpos = le32_to_cpu(insert_rec->e_cpos);
4298 	if (type->ins_appending == APPEND_NONE &&
4299 	    type->ins_contig == CONTIG_NONE) {
4300 		rotate = 1;
4301 		cpos = UINT_MAX;
4302 	}
4303 
4304 	ret = ocfs2_find_path(et->et_ci, right_path, cpos);
4305 	if (ret) {
4306 		mlog_errno(ret);
4307 		goto out;
4308 	}
4309 
4310 	/*
4311 	 * Rotations and appends need special treatment - they modify
4312 	 * parts of the tree's above them.
4313 	 *
4314 	 * Both might pass back a path immediate to the left of the
4315 	 * one being inserted to. This will be cause
4316 	 * ocfs2_insert_path() to modify the rightmost records of
4317 	 * left_path to account for an edge insert.
4318 	 *
4319 	 * XXX: When modifying this code, keep in mind that an insert
4320 	 * can wind up skipping both of these two special cases...
4321 	 */
4322 	if (rotate) {
4323 		ret = ocfs2_rotate_tree_right(handle, et, type->ins_split,
4324 					      le32_to_cpu(insert_rec->e_cpos),
4325 					      right_path, &left_path);
4326 		if (ret) {
4327 			mlog_errno(ret);
4328 			goto out;
4329 		}
4330 
4331 		/*
4332 		 * ocfs2_rotate_tree_right() might have extended the
4333 		 * transaction without re-journaling our tree root.
4334 		 */
4335 		ret = ocfs2_et_root_journal_access(handle, et,
4336 						   OCFS2_JOURNAL_ACCESS_WRITE);
4337 		if (ret) {
4338 			mlog_errno(ret);
4339 			goto out;
4340 		}
4341 	} else if (type->ins_appending == APPEND_TAIL
4342 		   && type->ins_contig != CONTIG_LEFT) {
4343 		ret = ocfs2_append_rec_to_path(handle, et, insert_rec,
4344 					       right_path, &left_path);
4345 		if (ret) {
4346 			mlog_errno(ret);
4347 			goto out;
4348 		}
4349 	}
4350 
4351 	ret = ocfs2_insert_path(handle, et, left_path, right_path,
4352 				insert_rec, type);
4353 	if (ret) {
4354 		mlog_errno(ret);
4355 		goto out;
4356 	}
4357 
4358 out_update_clusters:
4359 	if (type->ins_split == SPLIT_NONE)
4360 		ocfs2_et_update_clusters(et,
4361 					 le16_to_cpu(insert_rec->e_leaf_clusters));
4362 
4363 	ocfs2_journal_dirty(handle, et->et_root_bh);
4364 
4365 out:
4366 	ocfs2_free_path(left_path);
4367 	ocfs2_free_path(right_path);
4368 
4369 	return ret;
4370 }
4371 
4372 static int ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et,
4373 			       struct ocfs2_path *path,
4374 			       struct ocfs2_extent_list *el, int index,
4375 			       struct ocfs2_extent_rec *split_rec,
4376 			       struct ocfs2_merge_ctxt *ctxt)
4377 {
4378 	int status = 0;
4379 	enum ocfs2_contig_type ret = CONTIG_NONE;
4380 	u32 left_cpos, right_cpos;
4381 	struct ocfs2_extent_rec *rec = NULL;
4382 	struct ocfs2_extent_list *new_el;
4383 	struct ocfs2_path *left_path = NULL, *right_path = NULL;
4384 	struct buffer_head *bh;
4385 	struct ocfs2_extent_block *eb;
4386 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
4387 
4388 	if (index > 0) {
4389 		rec = &el->l_recs[index - 1];
4390 	} else if (path->p_tree_depth > 0) {
4391 		status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
4392 		if (status)
4393 			goto exit;
4394 
4395 		if (left_cpos != 0) {
4396 			left_path = ocfs2_new_path_from_path(path);
4397 			if (!left_path) {
4398 				status = -ENOMEM;
4399 				mlog_errno(status);
4400 				goto exit;
4401 			}
4402 
4403 			status = ocfs2_find_path(et->et_ci, left_path,
4404 						 left_cpos);
4405 			if (status)
4406 				goto free_left_path;
4407 
4408 			new_el = path_leaf_el(left_path);
4409 
4410 			if (le16_to_cpu(new_el->l_next_free_rec) !=
4411 			    le16_to_cpu(new_el->l_count)) {
4412 				bh = path_leaf_bh(left_path);
4413 				eb = (struct ocfs2_extent_block *)bh->b_data;
4414 				ocfs2_error(sb,
4415 					    "Extent block #%llu has an invalid l_next_free_rec of %d.  It should have matched the l_count of %d\n",
4416 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4417 					    le16_to_cpu(new_el->l_next_free_rec),
4418 					    le16_to_cpu(new_el->l_count));
4419 				status = -EINVAL;
4420 				goto free_left_path;
4421 			}
4422 			rec = &new_el->l_recs[
4423 				le16_to_cpu(new_el->l_next_free_rec) - 1];
4424 		}
4425 	}
4426 
4427 	/*
4428 	 * We're careful to check for an empty extent record here -
4429 	 * the merge code will know what to do if it sees one.
4430 	 */
4431 	if (rec) {
4432 		if (index == 1 && ocfs2_is_empty_extent(rec)) {
4433 			if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4434 				ret = CONTIG_RIGHT;
4435 		} else {
4436 			ret = ocfs2_et_extent_contig(et, rec, split_rec);
4437 		}
4438 	}
4439 
4440 	rec = NULL;
4441 	if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4442 		rec = &el->l_recs[index + 1];
4443 	else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4444 		 path->p_tree_depth > 0) {
4445 		status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
4446 		if (status)
4447 			goto free_left_path;
4448 
4449 		if (right_cpos == 0)
4450 			goto free_left_path;
4451 
4452 		right_path = ocfs2_new_path_from_path(path);
4453 		if (!right_path) {
4454 			status = -ENOMEM;
4455 			mlog_errno(status);
4456 			goto free_left_path;
4457 		}
4458 
4459 		status = ocfs2_find_path(et->et_ci, right_path, right_cpos);
4460 		if (status)
4461 			goto free_right_path;
4462 
4463 		new_el = path_leaf_el(right_path);
4464 		rec = &new_el->l_recs[0];
4465 		if (ocfs2_is_empty_extent(rec)) {
4466 			if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4467 				bh = path_leaf_bh(right_path);
4468 				eb = (struct ocfs2_extent_block *)bh->b_data;
4469 				ocfs2_error(sb,
4470 					    "Extent block #%llu has an invalid l_next_free_rec of %d\n",
4471 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4472 					    le16_to_cpu(new_el->l_next_free_rec));
4473 				status = -EINVAL;
4474 				goto free_right_path;
4475 			}
4476 			rec = &new_el->l_recs[1];
4477 		}
4478 	}
4479 
4480 	if (rec) {
4481 		enum ocfs2_contig_type contig_type;
4482 
4483 		contig_type = ocfs2_et_extent_contig(et, rec, split_rec);
4484 
4485 		if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4486 			ret = CONTIG_LEFTRIGHT;
4487 		else if (ret == CONTIG_NONE)
4488 			ret = contig_type;
4489 	}
4490 
4491 free_right_path:
4492 	ocfs2_free_path(right_path);
4493 free_left_path:
4494 	ocfs2_free_path(left_path);
4495 exit:
4496 	if (status == 0)
4497 		ctxt->c_contig_type = ret;
4498 
4499 	return status;
4500 }
4501 
4502 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et,
4503 				     struct ocfs2_insert_type *insert,
4504 				     struct ocfs2_extent_list *el,
4505 				     struct ocfs2_extent_rec *insert_rec)
4506 {
4507 	int i;
4508 	enum ocfs2_contig_type contig_type = CONTIG_NONE;
4509 
4510 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4511 
4512 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4513 		contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i],
4514 						     insert_rec);
4515 		if (contig_type != CONTIG_NONE) {
4516 			insert->ins_contig_index = i;
4517 			break;
4518 		}
4519 	}
4520 	insert->ins_contig = contig_type;
4521 
4522 	if (insert->ins_contig != CONTIG_NONE) {
4523 		struct ocfs2_extent_rec *rec =
4524 				&el->l_recs[insert->ins_contig_index];
4525 		unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4526 				   le16_to_cpu(insert_rec->e_leaf_clusters);
4527 
4528 		/*
4529 		 * Caller might want us to limit the size of extents, don't
4530 		 * calculate contiguousness if we might exceed that limit.
4531 		 */
4532 		if (et->et_max_leaf_clusters &&
4533 		    (len > et->et_max_leaf_clusters))
4534 			insert->ins_contig = CONTIG_NONE;
4535 	}
4536 }
4537 
4538 /*
4539  * This should only be called against the righmost leaf extent list.
4540  *
4541  * ocfs2_figure_appending_type() will figure out whether we'll have to
4542  * insert at the tail of the rightmost leaf.
4543  *
4544  * This should also work against the root extent list for tree's with 0
4545  * depth. If we consider the root extent list to be the rightmost leaf node
4546  * then the logic here makes sense.
4547  */
4548 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4549 					struct ocfs2_extent_list *el,
4550 					struct ocfs2_extent_rec *insert_rec)
4551 {
4552 	int i;
4553 	u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4554 	struct ocfs2_extent_rec *rec;
4555 
4556 	insert->ins_appending = APPEND_NONE;
4557 
4558 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4559 
4560 	if (!el->l_next_free_rec)
4561 		goto set_tail_append;
4562 
4563 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4564 		/* Were all records empty? */
4565 		if (le16_to_cpu(el->l_next_free_rec) == 1)
4566 			goto set_tail_append;
4567 	}
4568 
4569 	i = le16_to_cpu(el->l_next_free_rec) - 1;
4570 	rec = &el->l_recs[i];
4571 
4572 	if (cpos >=
4573 	    (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4574 		goto set_tail_append;
4575 
4576 	return;
4577 
4578 set_tail_append:
4579 	insert->ins_appending = APPEND_TAIL;
4580 }
4581 
4582 /*
4583  * Helper function called at the beginning of an insert.
4584  *
4585  * This computes a few things that are commonly used in the process of
4586  * inserting into the btree:
4587  *   - Whether the new extent is contiguous with an existing one.
4588  *   - The current tree depth.
4589  *   - Whether the insert is an appending one.
4590  *   - The total # of free records in the tree.
4591  *
4592  * All of the information is stored on the ocfs2_insert_type
4593  * structure.
4594  */
4595 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et,
4596 				    struct buffer_head **last_eb_bh,
4597 				    struct ocfs2_extent_rec *insert_rec,
4598 				    int *free_records,
4599 				    struct ocfs2_insert_type *insert)
4600 {
4601 	int ret;
4602 	struct ocfs2_extent_block *eb;
4603 	struct ocfs2_extent_list *el;
4604 	struct ocfs2_path *path = NULL;
4605 	struct buffer_head *bh = NULL;
4606 
4607 	insert->ins_split = SPLIT_NONE;
4608 
4609 	el = et->et_root_el;
4610 	insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4611 
4612 	if (el->l_tree_depth) {
4613 		/*
4614 		 * If we have tree depth, we read in the
4615 		 * rightmost extent block ahead of time as
4616 		 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4617 		 * may want it later.
4618 		 */
4619 		ret = ocfs2_read_extent_block(et->et_ci,
4620 					      ocfs2_et_get_last_eb_blk(et),
4621 					      &bh);
4622 		if (ret) {
4623 			mlog_errno(ret);
4624 			goto out;
4625 		}
4626 		eb = (struct ocfs2_extent_block *) bh->b_data;
4627 		el = &eb->h_list;
4628 	}
4629 
4630 	/*
4631 	 * Unless we have a contiguous insert, we'll need to know if
4632 	 * there is room left in our allocation tree for another
4633 	 * extent record.
4634 	 *
4635 	 * XXX: This test is simplistic, we can search for empty
4636 	 * extent records too.
4637 	 */
4638 	*free_records = le16_to_cpu(el->l_count) -
4639 		le16_to_cpu(el->l_next_free_rec);
4640 
4641 	if (!insert->ins_tree_depth) {
4642 		ocfs2_figure_contig_type(et, insert, el, insert_rec);
4643 		ocfs2_figure_appending_type(insert, el, insert_rec);
4644 		return 0;
4645 	}
4646 
4647 	path = ocfs2_new_path_from_et(et);
4648 	if (!path) {
4649 		ret = -ENOMEM;
4650 		mlog_errno(ret);
4651 		goto out;
4652 	}
4653 
4654 	/*
4655 	 * In the case that we're inserting past what the tree
4656 	 * currently accounts for, ocfs2_find_path() will return for
4657 	 * us the rightmost tree path. This is accounted for below in
4658 	 * the appending code.
4659 	 */
4660 	ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos));
4661 	if (ret) {
4662 		mlog_errno(ret);
4663 		goto out;
4664 	}
4665 
4666 	el = path_leaf_el(path);
4667 
4668 	/*
4669 	 * Now that we have the path, there's two things we want to determine:
4670 	 * 1) Contiguousness (also set contig_index if this is so)
4671 	 *
4672 	 * 2) Are we doing an append? We can trivially break this up
4673          *     into two types of appends: simple record append, or a
4674          *     rotate inside the tail leaf.
4675 	 */
4676 	ocfs2_figure_contig_type(et, insert, el, insert_rec);
4677 
4678 	/*
4679 	 * The insert code isn't quite ready to deal with all cases of
4680 	 * left contiguousness. Specifically, if it's an insert into
4681 	 * the 1st record in a leaf, it will require the adjustment of
4682 	 * cluster count on the last record of the path directly to it's
4683 	 * left. For now, just catch that case and fool the layers
4684 	 * above us. This works just fine for tree_depth == 0, which
4685 	 * is why we allow that above.
4686 	 */
4687 	if (insert->ins_contig == CONTIG_LEFT &&
4688 	    insert->ins_contig_index == 0)
4689 		insert->ins_contig = CONTIG_NONE;
4690 
4691 	/*
4692 	 * Ok, so we can simply compare against last_eb to figure out
4693 	 * whether the path doesn't exist. This will only happen in
4694 	 * the case that we're doing a tail append, so maybe we can
4695 	 * take advantage of that information somehow.
4696 	 */
4697 	if (ocfs2_et_get_last_eb_blk(et) ==
4698 	    path_leaf_bh(path)->b_blocknr) {
4699 		/*
4700 		 * Ok, ocfs2_find_path() returned us the rightmost
4701 		 * tree path. This might be an appending insert. There are
4702 		 * two cases:
4703 		 *    1) We're doing a true append at the tail:
4704 		 *	-This might even be off the end of the leaf
4705 		 *    2) We're "appending" by rotating in the tail
4706 		 */
4707 		ocfs2_figure_appending_type(insert, el, insert_rec);
4708 	}
4709 
4710 out:
4711 	ocfs2_free_path(path);
4712 
4713 	if (ret == 0)
4714 		*last_eb_bh = bh;
4715 	else
4716 		brelse(bh);
4717 	return ret;
4718 }
4719 
4720 /*
4721  * Insert an extent into a btree.
4722  *
4723  * The caller needs to update the owning btree's cluster count.
4724  */
4725 int ocfs2_insert_extent(handle_t *handle,
4726 			struct ocfs2_extent_tree *et,
4727 			u32 cpos,
4728 			u64 start_blk,
4729 			u32 new_clusters,
4730 			u8 flags,
4731 			struct ocfs2_alloc_context *meta_ac)
4732 {
4733 	int status;
4734 	int uninitialized_var(free_records);
4735 	struct buffer_head *last_eb_bh = NULL;
4736 	struct ocfs2_insert_type insert = {0, };
4737 	struct ocfs2_extent_rec rec;
4738 
4739 	trace_ocfs2_insert_extent_start(
4740 		(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4741 		cpos, new_clusters);
4742 
4743 	memset(&rec, 0, sizeof(rec));
4744 	rec.e_cpos = cpu_to_le32(cpos);
4745 	rec.e_blkno = cpu_to_le64(start_blk);
4746 	rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4747 	rec.e_flags = flags;
4748 	status = ocfs2_et_insert_check(et, &rec);
4749 	if (status) {
4750 		mlog_errno(status);
4751 		goto bail;
4752 	}
4753 
4754 	status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec,
4755 					  &free_records, &insert);
4756 	if (status < 0) {
4757 		mlog_errno(status);
4758 		goto bail;
4759 	}
4760 
4761 	trace_ocfs2_insert_extent(insert.ins_appending, insert.ins_contig,
4762 				  insert.ins_contig_index, free_records,
4763 				  insert.ins_tree_depth);
4764 
4765 	if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4766 		status = ocfs2_grow_tree(handle, et,
4767 					 &insert.ins_tree_depth, &last_eb_bh,
4768 					 meta_ac);
4769 		if (status) {
4770 			mlog_errno(status);
4771 			goto bail;
4772 		}
4773 	}
4774 
4775 	/* Finally, we can add clusters. This might rotate the tree for us. */
4776 	status = ocfs2_do_insert_extent(handle, et, &rec, &insert);
4777 	if (status < 0)
4778 		mlog_errno(status);
4779 	else
4780 		ocfs2_et_extent_map_insert(et, &rec);
4781 
4782 bail:
4783 	brelse(last_eb_bh);
4784 
4785 	return status;
4786 }
4787 
4788 /*
4789  * Allcate and add clusters into the extent b-tree.
4790  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4791  * The extent b-tree's root is specified by et, and
4792  * it is not limited to the file storage. Any extent tree can use this
4793  * function if it implements the proper ocfs2_extent_tree.
4794  */
4795 int ocfs2_add_clusters_in_btree(handle_t *handle,
4796 				struct ocfs2_extent_tree *et,
4797 				u32 *logical_offset,
4798 				u32 clusters_to_add,
4799 				int mark_unwritten,
4800 				struct ocfs2_alloc_context *data_ac,
4801 				struct ocfs2_alloc_context *meta_ac,
4802 				enum ocfs2_alloc_restarted *reason_ret)
4803 {
4804 	int status = 0, err = 0;
4805 	int need_free = 0;
4806 	int free_extents;
4807 	enum ocfs2_alloc_restarted reason = RESTART_NONE;
4808 	u32 bit_off, num_bits;
4809 	u64 block;
4810 	u8 flags = 0;
4811 	struct ocfs2_super *osb =
4812 		OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
4813 
4814 	BUG_ON(!clusters_to_add);
4815 
4816 	if (mark_unwritten)
4817 		flags = OCFS2_EXT_UNWRITTEN;
4818 
4819 	free_extents = ocfs2_num_free_extents(et);
4820 	if (free_extents < 0) {
4821 		status = free_extents;
4822 		mlog_errno(status);
4823 		goto leave;
4824 	}
4825 
4826 	/* there are two cases which could cause us to EAGAIN in the
4827 	 * we-need-more-metadata case:
4828 	 * 1) we haven't reserved *any*
4829 	 * 2) we are so fragmented, we've needed to add metadata too
4830 	 *    many times. */
4831 	if (!free_extents && !meta_ac) {
4832 		err = -1;
4833 		status = -EAGAIN;
4834 		reason = RESTART_META;
4835 		goto leave;
4836 	} else if ((!free_extents)
4837 		   && (ocfs2_alloc_context_bits_left(meta_ac)
4838 		       < ocfs2_extend_meta_needed(et->et_root_el))) {
4839 		err = -2;
4840 		status = -EAGAIN;
4841 		reason = RESTART_META;
4842 		goto leave;
4843 	}
4844 
4845 	status = __ocfs2_claim_clusters(handle, data_ac, 1,
4846 					clusters_to_add, &bit_off, &num_bits);
4847 	if (status < 0) {
4848 		if (status != -ENOSPC)
4849 			mlog_errno(status);
4850 		goto leave;
4851 	}
4852 
4853 	BUG_ON(num_bits > clusters_to_add);
4854 
4855 	/* reserve our write early -- insert_extent may update the tree root */
4856 	status = ocfs2_et_root_journal_access(handle, et,
4857 					      OCFS2_JOURNAL_ACCESS_WRITE);
4858 	if (status < 0) {
4859 		mlog_errno(status);
4860 		need_free = 1;
4861 		goto bail;
4862 	}
4863 
4864 	block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4865 	trace_ocfs2_add_clusters_in_btree(
4866 	     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4867 	     bit_off, num_bits);
4868 	status = ocfs2_insert_extent(handle, et, *logical_offset, block,
4869 				     num_bits, flags, meta_ac);
4870 	if (status < 0) {
4871 		mlog_errno(status);
4872 		need_free = 1;
4873 		goto bail;
4874 	}
4875 
4876 	ocfs2_journal_dirty(handle, et->et_root_bh);
4877 
4878 	clusters_to_add -= num_bits;
4879 	*logical_offset += num_bits;
4880 
4881 	if (clusters_to_add) {
4882 		err = clusters_to_add;
4883 		status = -EAGAIN;
4884 		reason = RESTART_TRANS;
4885 	}
4886 
4887 bail:
4888 	if (need_free) {
4889 		if (data_ac->ac_which == OCFS2_AC_USE_LOCAL)
4890 			ocfs2_free_local_alloc_bits(osb, handle, data_ac,
4891 					bit_off, num_bits);
4892 		else
4893 			ocfs2_free_clusters(handle,
4894 					data_ac->ac_inode,
4895 					data_ac->ac_bh,
4896 					ocfs2_clusters_to_blocks(osb->sb, bit_off),
4897 					num_bits);
4898 	}
4899 
4900 leave:
4901 	if (reason_ret)
4902 		*reason_ret = reason;
4903 	trace_ocfs2_add_clusters_in_btree_ret(status, reason, err);
4904 	return status;
4905 }
4906 
4907 static void ocfs2_make_right_split_rec(struct super_block *sb,
4908 				       struct ocfs2_extent_rec *split_rec,
4909 				       u32 cpos,
4910 				       struct ocfs2_extent_rec *rec)
4911 {
4912 	u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4913 	u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4914 
4915 	memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4916 
4917 	split_rec->e_cpos = cpu_to_le32(cpos);
4918 	split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4919 
4920 	split_rec->e_blkno = rec->e_blkno;
4921 	le64_add_cpu(&split_rec->e_blkno,
4922 		     ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4923 
4924 	split_rec->e_flags = rec->e_flags;
4925 }
4926 
4927 static int ocfs2_split_and_insert(handle_t *handle,
4928 				  struct ocfs2_extent_tree *et,
4929 				  struct ocfs2_path *path,
4930 				  struct buffer_head **last_eb_bh,
4931 				  int split_index,
4932 				  struct ocfs2_extent_rec *orig_split_rec,
4933 				  struct ocfs2_alloc_context *meta_ac)
4934 {
4935 	int ret = 0, depth;
4936 	unsigned int insert_range, rec_range, do_leftright = 0;
4937 	struct ocfs2_extent_rec tmprec;
4938 	struct ocfs2_extent_list *rightmost_el;
4939 	struct ocfs2_extent_rec rec;
4940 	struct ocfs2_extent_rec split_rec = *orig_split_rec;
4941 	struct ocfs2_insert_type insert;
4942 	struct ocfs2_extent_block *eb;
4943 
4944 leftright:
4945 	/*
4946 	 * Store a copy of the record on the stack - it might move
4947 	 * around as the tree is manipulated below.
4948 	 */
4949 	rec = path_leaf_el(path)->l_recs[split_index];
4950 
4951 	rightmost_el = et->et_root_el;
4952 
4953 	depth = le16_to_cpu(rightmost_el->l_tree_depth);
4954 	if (depth) {
4955 		BUG_ON(!(*last_eb_bh));
4956 		eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4957 		rightmost_el = &eb->h_list;
4958 	}
4959 
4960 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4961 	    le16_to_cpu(rightmost_el->l_count)) {
4962 		ret = ocfs2_grow_tree(handle, et,
4963 				      &depth, last_eb_bh, meta_ac);
4964 		if (ret) {
4965 			mlog_errno(ret);
4966 			goto out;
4967 		}
4968 	}
4969 
4970 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4971 	insert.ins_appending = APPEND_NONE;
4972 	insert.ins_contig = CONTIG_NONE;
4973 	insert.ins_tree_depth = depth;
4974 
4975 	insert_range = le32_to_cpu(split_rec.e_cpos) +
4976 		le16_to_cpu(split_rec.e_leaf_clusters);
4977 	rec_range = le32_to_cpu(rec.e_cpos) +
4978 		le16_to_cpu(rec.e_leaf_clusters);
4979 
4980 	if (split_rec.e_cpos == rec.e_cpos) {
4981 		insert.ins_split = SPLIT_LEFT;
4982 	} else if (insert_range == rec_range) {
4983 		insert.ins_split = SPLIT_RIGHT;
4984 	} else {
4985 		/*
4986 		 * Left/right split. We fake this as a right split
4987 		 * first and then make a second pass as a left split.
4988 		 */
4989 		insert.ins_split = SPLIT_RIGHT;
4990 
4991 		ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4992 					   &tmprec, insert_range, &rec);
4993 
4994 		split_rec = tmprec;
4995 
4996 		BUG_ON(do_leftright);
4997 		do_leftright = 1;
4998 	}
4999 
5000 	ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
5001 	if (ret) {
5002 		mlog_errno(ret);
5003 		goto out;
5004 	}
5005 
5006 	if (do_leftright == 1) {
5007 		u32 cpos;
5008 		struct ocfs2_extent_list *el;
5009 
5010 		do_leftright++;
5011 		split_rec = *orig_split_rec;
5012 
5013 		ocfs2_reinit_path(path, 1);
5014 
5015 		cpos = le32_to_cpu(split_rec.e_cpos);
5016 		ret = ocfs2_find_path(et->et_ci, path, cpos);
5017 		if (ret) {
5018 			mlog_errno(ret);
5019 			goto out;
5020 		}
5021 
5022 		el = path_leaf_el(path);
5023 		split_index = ocfs2_search_extent_list(el, cpos);
5024 		if (split_index == -1) {
5025 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5026 				    "Owner %llu has an extent at cpos %u which can no longer be found\n",
5027 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5028 				    cpos);
5029 			ret = -EROFS;
5030 			goto out;
5031 		}
5032 		goto leftright;
5033 	}
5034 out:
5035 
5036 	return ret;
5037 }
5038 
5039 static int ocfs2_replace_extent_rec(handle_t *handle,
5040 				    struct ocfs2_extent_tree *et,
5041 				    struct ocfs2_path *path,
5042 				    struct ocfs2_extent_list *el,
5043 				    int split_index,
5044 				    struct ocfs2_extent_rec *split_rec)
5045 {
5046 	int ret;
5047 
5048 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
5049 					   path_num_items(path) - 1);
5050 	if (ret) {
5051 		mlog_errno(ret);
5052 		goto out;
5053 	}
5054 
5055 	el->l_recs[split_index] = *split_rec;
5056 
5057 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
5058 out:
5059 	return ret;
5060 }
5061 
5062 /*
5063  * Split part or all of the extent record at split_index in the leaf
5064  * pointed to by path. Merge with the contiguous extent record if needed.
5065  *
5066  * Care is taken to handle contiguousness so as to not grow the tree.
5067  *
5068  * meta_ac is not strictly necessary - we only truly need it if growth
5069  * of the tree is required. All other cases will degrade into a less
5070  * optimal tree layout.
5071  *
5072  * last_eb_bh should be the rightmost leaf block for any extent
5073  * btree. Since a split may grow the tree or a merge might shrink it,
5074  * the caller cannot trust the contents of that buffer after this call.
5075  *
5076  * This code is optimized for readability - several passes might be
5077  * made over certain portions of the tree. All of those blocks will
5078  * have been brought into cache (and pinned via the journal), so the
5079  * extra overhead is not expressed in terms of disk reads.
5080  */
5081 int ocfs2_split_extent(handle_t *handle,
5082 		       struct ocfs2_extent_tree *et,
5083 		       struct ocfs2_path *path,
5084 		       int split_index,
5085 		       struct ocfs2_extent_rec *split_rec,
5086 		       struct ocfs2_alloc_context *meta_ac,
5087 		       struct ocfs2_cached_dealloc_ctxt *dealloc)
5088 {
5089 	int ret = 0;
5090 	struct ocfs2_extent_list *el = path_leaf_el(path);
5091 	struct buffer_head *last_eb_bh = NULL;
5092 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5093 	struct ocfs2_merge_ctxt ctxt;
5094 
5095 	if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5096 	    ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5097 	     (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5098 		ret = -EIO;
5099 		mlog_errno(ret);
5100 		goto out;
5101 	}
5102 
5103 	ret = ocfs2_figure_merge_contig_type(et, path, el,
5104 					     split_index,
5105 					     split_rec,
5106 					     &ctxt);
5107 	if (ret) {
5108 		mlog_errno(ret);
5109 		goto out;
5110 	}
5111 
5112 	/*
5113 	 * The core merge / split code wants to know how much room is
5114 	 * left in this allocation tree, so we pass the
5115 	 * rightmost extent list.
5116 	 */
5117 	if (path->p_tree_depth) {
5118 		struct ocfs2_extent_block *eb;
5119 
5120 		ret = ocfs2_read_extent_block(et->et_ci,
5121 					      ocfs2_et_get_last_eb_blk(et),
5122 					      &last_eb_bh);
5123 		if (ret) {
5124 			mlog_errno(ret);
5125 			goto out;
5126 		}
5127 
5128 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5129 	}
5130 
5131 	if (rec->e_cpos == split_rec->e_cpos &&
5132 	    rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5133 		ctxt.c_split_covers_rec = 1;
5134 	else
5135 		ctxt.c_split_covers_rec = 0;
5136 
5137 	ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5138 
5139 	trace_ocfs2_split_extent(split_index, ctxt.c_contig_type,
5140 				 ctxt.c_has_empty_extent,
5141 				 ctxt.c_split_covers_rec);
5142 
5143 	if (ctxt.c_contig_type == CONTIG_NONE) {
5144 		if (ctxt.c_split_covers_rec)
5145 			ret = ocfs2_replace_extent_rec(handle, et, path, el,
5146 						       split_index, split_rec);
5147 		else
5148 			ret = ocfs2_split_and_insert(handle, et, path,
5149 						     &last_eb_bh, split_index,
5150 						     split_rec, meta_ac);
5151 		if (ret)
5152 			mlog_errno(ret);
5153 	} else {
5154 		ret = ocfs2_try_to_merge_extent(handle, et, path,
5155 						split_index, split_rec,
5156 						dealloc, &ctxt);
5157 		if (ret)
5158 			mlog_errno(ret);
5159 	}
5160 
5161 out:
5162 	brelse(last_eb_bh);
5163 	return ret;
5164 }
5165 
5166 /*
5167  * Change the flags of the already-existing extent at cpos for len clusters.
5168  *
5169  * new_flags: the flags we want to set.
5170  * clear_flags: the flags we want to clear.
5171  * phys: the new physical offset we want this new extent starts from.
5172  *
5173  * If the existing extent is larger than the request, initiate a
5174  * split. An attempt will be made at merging with adjacent extents.
5175  *
5176  * The caller is responsible for passing down meta_ac if we'll need it.
5177  */
5178 int ocfs2_change_extent_flag(handle_t *handle,
5179 			     struct ocfs2_extent_tree *et,
5180 			     u32 cpos, u32 len, u32 phys,
5181 			     struct ocfs2_alloc_context *meta_ac,
5182 			     struct ocfs2_cached_dealloc_ctxt *dealloc,
5183 			     int new_flags, int clear_flags)
5184 {
5185 	int ret, index;
5186 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5187 	u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys);
5188 	struct ocfs2_extent_rec split_rec;
5189 	struct ocfs2_path *left_path = NULL;
5190 	struct ocfs2_extent_list *el;
5191 	struct ocfs2_extent_rec *rec;
5192 
5193 	left_path = ocfs2_new_path_from_et(et);
5194 	if (!left_path) {
5195 		ret = -ENOMEM;
5196 		mlog_errno(ret);
5197 		goto out;
5198 	}
5199 
5200 	ret = ocfs2_find_path(et->et_ci, left_path, cpos);
5201 	if (ret) {
5202 		mlog_errno(ret);
5203 		goto out;
5204 	}
5205 	el = path_leaf_el(left_path);
5206 
5207 	index = ocfs2_search_extent_list(el, cpos);
5208 	if (index == -1) {
5209 		ocfs2_error(sb,
5210 			    "Owner %llu has an extent at cpos %u which can no longer be found\n",
5211 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5212 			    cpos);
5213 		ret = -EROFS;
5214 		goto out;
5215 	}
5216 
5217 	ret = -EIO;
5218 	rec = &el->l_recs[index];
5219 	if (new_flags && (rec->e_flags & new_flags)) {
5220 		mlog(ML_ERROR, "Owner %llu tried to set %d flags on an "
5221 		     "extent that already had them\n",
5222 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5223 		     new_flags);
5224 		goto out;
5225 	}
5226 
5227 	if (clear_flags && !(rec->e_flags & clear_flags)) {
5228 		mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an "
5229 		     "extent that didn't have them\n",
5230 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5231 		     clear_flags);
5232 		goto out;
5233 	}
5234 
5235 	memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5236 	split_rec.e_cpos = cpu_to_le32(cpos);
5237 	split_rec.e_leaf_clusters = cpu_to_le16(len);
5238 	split_rec.e_blkno = cpu_to_le64(start_blkno);
5239 	split_rec.e_flags = rec->e_flags;
5240 	if (new_flags)
5241 		split_rec.e_flags |= new_flags;
5242 	if (clear_flags)
5243 		split_rec.e_flags &= ~clear_flags;
5244 
5245 	ret = ocfs2_split_extent(handle, et, left_path,
5246 				 index, &split_rec, meta_ac,
5247 				 dealloc);
5248 	if (ret)
5249 		mlog_errno(ret);
5250 
5251 out:
5252 	ocfs2_free_path(left_path);
5253 	return ret;
5254 
5255 }
5256 
5257 /*
5258  * Mark the already-existing extent at cpos as written for len clusters.
5259  * This removes the unwritten extent flag.
5260  *
5261  * If the existing extent is larger than the request, initiate a
5262  * split. An attempt will be made at merging with adjacent extents.
5263  *
5264  * The caller is responsible for passing down meta_ac if we'll need it.
5265  */
5266 int ocfs2_mark_extent_written(struct inode *inode,
5267 			      struct ocfs2_extent_tree *et,
5268 			      handle_t *handle, u32 cpos, u32 len, u32 phys,
5269 			      struct ocfs2_alloc_context *meta_ac,
5270 			      struct ocfs2_cached_dealloc_ctxt *dealloc)
5271 {
5272 	int ret;
5273 
5274 	trace_ocfs2_mark_extent_written(
5275 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
5276 		cpos, len, phys);
5277 
5278 	if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5279 		ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents that are being written to, but the feature bit is not set in the super block\n",
5280 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
5281 		ret = -EROFS;
5282 		goto out;
5283 	}
5284 
5285 	/*
5286 	 * XXX: This should be fixed up so that we just re-insert the
5287 	 * next extent records.
5288 	 */
5289 	ocfs2_et_extent_map_truncate(et, 0);
5290 
5291 	ret = ocfs2_change_extent_flag(handle, et, cpos,
5292 				       len, phys, meta_ac, dealloc,
5293 				       0, OCFS2_EXT_UNWRITTEN);
5294 	if (ret)
5295 		mlog_errno(ret);
5296 
5297 out:
5298 	return ret;
5299 }
5300 
5301 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et,
5302 			    struct ocfs2_path *path,
5303 			    int index, u32 new_range,
5304 			    struct ocfs2_alloc_context *meta_ac)
5305 {
5306 	int ret, depth, credits;
5307 	struct buffer_head *last_eb_bh = NULL;
5308 	struct ocfs2_extent_block *eb;
5309 	struct ocfs2_extent_list *rightmost_el, *el;
5310 	struct ocfs2_extent_rec split_rec;
5311 	struct ocfs2_extent_rec *rec;
5312 	struct ocfs2_insert_type insert;
5313 
5314 	/*
5315 	 * Setup the record to split before we grow the tree.
5316 	 */
5317 	el = path_leaf_el(path);
5318 	rec = &el->l_recs[index];
5319 	ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
5320 				   &split_rec, new_range, rec);
5321 
5322 	depth = path->p_tree_depth;
5323 	if (depth > 0) {
5324 		ret = ocfs2_read_extent_block(et->et_ci,
5325 					      ocfs2_et_get_last_eb_blk(et),
5326 					      &last_eb_bh);
5327 		if (ret < 0) {
5328 			mlog_errno(ret);
5329 			goto out;
5330 		}
5331 
5332 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5333 		rightmost_el = &eb->h_list;
5334 	} else
5335 		rightmost_el = path_leaf_el(path);
5336 
5337 	credits = path->p_tree_depth +
5338 		  ocfs2_extend_meta_needed(et->et_root_el);
5339 	ret = ocfs2_extend_trans(handle, credits);
5340 	if (ret) {
5341 		mlog_errno(ret);
5342 		goto out;
5343 	}
5344 
5345 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5346 	    le16_to_cpu(rightmost_el->l_count)) {
5347 		ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh,
5348 				      meta_ac);
5349 		if (ret) {
5350 			mlog_errno(ret);
5351 			goto out;
5352 		}
5353 	}
5354 
5355 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5356 	insert.ins_appending = APPEND_NONE;
5357 	insert.ins_contig = CONTIG_NONE;
5358 	insert.ins_split = SPLIT_RIGHT;
5359 	insert.ins_tree_depth = depth;
5360 
5361 	ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
5362 	if (ret)
5363 		mlog_errno(ret);
5364 
5365 out:
5366 	brelse(last_eb_bh);
5367 	return ret;
5368 }
5369 
5370 static int ocfs2_truncate_rec(handle_t *handle,
5371 			      struct ocfs2_extent_tree *et,
5372 			      struct ocfs2_path *path, int index,
5373 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
5374 			      u32 cpos, u32 len)
5375 {
5376 	int ret;
5377 	u32 left_cpos, rec_range, trunc_range;
5378 	int is_rightmost_tree_rec = 0;
5379 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5380 	struct ocfs2_path *left_path = NULL;
5381 	struct ocfs2_extent_list *el = path_leaf_el(path);
5382 	struct ocfs2_extent_rec *rec;
5383 	struct ocfs2_extent_block *eb;
5384 
5385 	if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5386 		/* extend credit for ocfs2_remove_rightmost_path */
5387 		ret = ocfs2_extend_rotate_transaction(handle, 0,
5388 				handle->h_buffer_credits,
5389 				path);
5390 		if (ret) {
5391 			mlog_errno(ret);
5392 			goto out;
5393 		}
5394 
5395 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5396 		if (ret) {
5397 			mlog_errno(ret);
5398 			goto out;
5399 		}
5400 
5401 		index--;
5402 	}
5403 
5404 	if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5405 	    path->p_tree_depth) {
5406 		/*
5407 		 * Check whether this is the rightmost tree record. If
5408 		 * we remove all of this record or part of its right
5409 		 * edge then an update of the record lengths above it
5410 		 * will be required.
5411 		 */
5412 		eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5413 		if (eb->h_next_leaf_blk == 0)
5414 			is_rightmost_tree_rec = 1;
5415 	}
5416 
5417 	rec = &el->l_recs[index];
5418 	if (index == 0 && path->p_tree_depth &&
5419 	    le32_to_cpu(rec->e_cpos) == cpos) {
5420 		/*
5421 		 * Changing the leftmost offset (via partial or whole
5422 		 * record truncate) of an interior (or rightmost) path
5423 		 * means we have to update the subtree that is formed
5424 		 * by this leaf and the one to it's left.
5425 		 *
5426 		 * There are two cases we can skip:
5427 		 *   1) Path is the leftmost one in our btree.
5428 		 *   2) The leaf is rightmost and will be empty after
5429 		 *      we remove the extent record - the rotate code
5430 		 *      knows how to update the newly formed edge.
5431 		 */
5432 
5433 		ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
5434 		if (ret) {
5435 			mlog_errno(ret);
5436 			goto out;
5437 		}
5438 
5439 		if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5440 			left_path = ocfs2_new_path_from_path(path);
5441 			if (!left_path) {
5442 				ret = -ENOMEM;
5443 				mlog_errno(ret);
5444 				goto out;
5445 			}
5446 
5447 			ret = ocfs2_find_path(et->et_ci, left_path,
5448 					      left_cpos);
5449 			if (ret) {
5450 				mlog_errno(ret);
5451 				goto out;
5452 			}
5453 		}
5454 	}
5455 
5456 	ret = ocfs2_extend_rotate_transaction(handle, 0,
5457 					      handle->h_buffer_credits,
5458 					      path);
5459 	if (ret) {
5460 		mlog_errno(ret);
5461 		goto out;
5462 	}
5463 
5464 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
5465 	if (ret) {
5466 		mlog_errno(ret);
5467 		goto out;
5468 	}
5469 
5470 	ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
5471 	if (ret) {
5472 		mlog_errno(ret);
5473 		goto out;
5474 	}
5475 
5476 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5477 	trunc_range = cpos + len;
5478 
5479 	if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5480 		int next_free;
5481 
5482 		memset(rec, 0, sizeof(*rec));
5483 		ocfs2_cleanup_merge(el, index);
5484 
5485 		next_free = le16_to_cpu(el->l_next_free_rec);
5486 		if (is_rightmost_tree_rec && next_free > 1) {
5487 			/*
5488 			 * We skip the edge update if this path will
5489 			 * be deleted by the rotate code.
5490 			 */
5491 			rec = &el->l_recs[next_free - 1];
5492 			ocfs2_adjust_rightmost_records(handle, et, path,
5493 						       rec);
5494 		}
5495 	} else if (le32_to_cpu(rec->e_cpos) == cpos) {
5496 		/* Remove leftmost portion of the record. */
5497 		le32_add_cpu(&rec->e_cpos, len);
5498 		le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5499 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5500 	} else if (rec_range == trunc_range) {
5501 		/* Remove rightmost portion of the record */
5502 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5503 		if (is_rightmost_tree_rec)
5504 			ocfs2_adjust_rightmost_records(handle, et, path, rec);
5505 	} else {
5506 		/* Caller should have trapped this. */
5507 		mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) "
5508 		     "(%u, %u)\n",
5509 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5510 		     le32_to_cpu(rec->e_cpos),
5511 		     le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5512 		BUG();
5513 	}
5514 
5515 	if (left_path) {
5516 		int subtree_index;
5517 
5518 		subtree_index = ocfs2_find_subtree_root(et, left_path, path);
5519 		ocfs2_complete_edge_insert(handle, left_path, path,
5520 					   subtree_index);
5521 	}
5522 
5523 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
5524 
5525 	ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5526 	if (ret) {
5527 		mlog_errno(ret);
5528 		goto out;
5529 	}
5530 
5531 out:
5532 	ocfs2_free_path(left_path);
5533 	return ret;
5534 }
5535 
5536 int ocfs2_remove_extent(handle_t *handle,
5537 			struct ocfs2_extent_tree *et,
5538 			u32 cpos, u32 len,
5539 			struct ocfs2_alloc_context *meta_ac,
5540 			struct ocfs2_cached_dealloc_ctxt *dealloc)
5541 {
5542 	int ret, index;
5543 	u32 rec_range, trunc_range;
5544 	struct ocfs2_extent_rec *rec;
5545 	struct ocfs2_extent_list *el;
5546 	struct ocfs2_path *path = NULL;
5547 
5548 	/*
5549 	 * XXX: Why are we truncating to 0 instead of wherever this
5550 	 * affects us?
5551 	 */
5552 	ocfs2_et_extent_map_truncate(et, 0);
5553 
5554 	path = ocfs2_new_path_from_et(et);
5555 	if (!path) {
5556 		ret = -ENOMEM;
5557 		mlog_errno(ret);
5558 		goto out;
5559 	}
5560 
5561 	ret = ocfs2_find_path(et->et_ci, path, cpos);
5562 	if (ret) {
5563 		mlog_errno(ret);
5564 		goto out;
5565 	}
5566 
5567 	el = path_leaf_el(path);
5568 	index = ocfs2_search_extent_list(el, cpos);
5569 	if (index == -1) {
5570 		ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5571 			    "Owner %llu has an extent at cpos %u which can no longer be found\n",
5572 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5573 			    cpos);
5574 		ret = -EROFS;
5575 		goto out;
5576 	}
5577 
5578 	/*
5579 	 * We have 3 cases of extent removal:
5580 	 *   1) Range covers the entire extent rec
5581 	 *   2) Range begins or ends on one edge of the extent rec
5582 	 *   3) Range is in the middle of the extent rec (no shared edges)
5583 	 *
5584 	 * For case 1 we remove the extent rec and left rotate to
5585 	 * fill the hole.
5586 	 *
5587 	 * For case 2 we just shrink the existing extent rec, with a
5588 	 * tree update if the shrinking edge is also the edge of an
5589 	 * extent block.
5590 	 *
5591 	 * For case 3 we do a right split to turn the extent rec into
5592 	 * something case 2 can handle.
5593 	 */
5594 	rec = &el->l_recs[index];
5595 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5596 	trunc_range = cpos + len;
5597 
5598 	BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5599 
5600 	trace_ocfs2_remove_extent(
5601 		(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5602 		cpos, len, index, le32_to_cpu(rec->e_cpos),
5603 		ocfs2_rec_clusters(el, rec));
5604 
5605 	if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5606 		ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5607 					 cpos, len);
5608 		if (ret) {
5609 			mlog_errno(ret);
5610 			goto out;
5611 		}
5612 	} else {
5613 		ret = ocfs2_split_tree(handle, et, path, index,
5614 				       trunc_range, meta_ac);
5615 		if (ret) {
5616 			mlog_errno(ret);
5617 			goto out;
5618 		}
5619 
5620 		/*
5621 		 * The split could have manipulated the tree enough to
5622 		 * move the record location, so we have to look for it again.
5623 		 */
5624 		ocfs2_reinit_path(path, 1);
5625 
5626 		ret = ocfs2_find_path(et->et_ci, path, cpos);
5627 		if (ret) {
5628 			mlog_errno(ret);
5629 			goto out;
5630 		}
5631 
5632 		el = path_leaf_el(path);
5633 		index = ocfs2_search_extent_list(el, cpos);
5634 		if (index == -1) {
5635 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5636 				    "Owner %llu: split at cpos %u lost record\n",
5637 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5638 				    cpos);
5639 			ret = -EROFS;
5640 			goto out;
5641 		}
5642 
5643 		/*
5644 		 * Double check our values here. If anything is fishy,
5645 		 * it's easier to catch it at the top level.
5646 		 */
5647 		rec = &el->l_recs[index];
5648 		rec_range = le32_to_cpu(rec->e_cpos) +
5649 			ocfs2_rec_clusters(el, rec);
5650 		if (rec_range != trunc_range) {
5651 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5652 				    "Owner %llu: error after split at cpos %u trunc len %u, existing record is (%u,%u)\n",
5653 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5654 				    cpos, len, le32_to_cpu(rec->e_cpos),
5655 				    ocfs2_rec_clusters(el, rec));
5656 			ret = -EROFS;
5657 			goto out;
5658 		}
5659 
5660 		ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5661 					 cpos, len);
5662 		if (ret) {
5663 			mlog_errno(ret);
5664 			goto out;
5665 		}
5666 	}
5667 
5668 out:
5669 	ocfs2_free_path(path);
5670 	return ret;
5671 }
5672 
5673 /*
5674  * ocfs2_reserve_blocks_for_rec_trunc() would look basically the
5675  * same as ocfs2_lock_alloctors(), except for it accepts a blocks
5676  * number to reserve some extra blocks, and it only handles meta
5677  * data allocations.
5678  *
5679  * Currently, only ocfs2_remove_btree_range() uses it for truncating
5680  * and punching holes.
5681  */
5682 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode,
5683 					      struct ocfs2_extent_tree *et,
5684 					      u32 extents_to_split,
5685 					      struct ocfs2_alloc_context **ac,
5686 					      int extra_blocks)
5687 {
5688 	int ret = 0, num_free_extents;
5689 	unsigned int max_recs_needed = 2 * extents_to_split;
5690 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5691 
5692 	*ac = NULL;
5693 
5694 	num_free_extents = ocfs2_num_free_extents(et);
5695 	if (num_free_extents < 0) {
5696 		ret = num_free_extents;
5697 		mlog_errno(ret);
5698 		goto out;
5699 	}
5700 
5701 	if (!num_free_extents ||
5702 	    (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed))
5703 		extra_blocks += ocfs2_extend_meta_needed(et->et_root_el);
5704 
5705 	if (extra_blocks) {
5706 		ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac);
5707 		if (ret < 0) {
5708 			if (ret != -ENOSPC)
5709 				mlog_errno(ret);
5710 			goto out;
5711 		}
5712 	}
5713 
5714 out:
5715 	if (ret) {
5716 		if (*ac) {
5717 			ocfs2_free_alloc_context(*ac);
5718 			*ac = NULL;
5719 		}
5720 	}
5721 
5722 	return ret;
5723 }
5724 
5725 int ocfs2_remove_btree_range(struct inode *inode,
5726 			     struct ocfs2_extent_tree *et,
5727 			     u32 cpos, u32 phys_cpos, u32 len, int flags,
5728 			     struct ocfs2_cached_dealloc_ctxt *dealloc,
5729 			     u64 refcount_loc, bool refcount_tree_locked)
5730 {
5731 	int ret, credits = 0, extra_blocks = 0;
5732 	u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5733 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5734 	struct inode *tl_inode = osb->osb_tl_inode;
5735 	handle_t *handle;
5736 	struct ocfs2_alloc_context *meta_ac = NULL;
5737 	struct ocfs2_refcount_tree *ref_tree = NULL;
5738 
5739 	if ((flags & OCFS2_EXT_REFCOUNTED) && len) {
5740 		BUG_ON(!ocfs2_is_refcount_inode(inode));
5741 
5742 		if (!refcount_tree_locked) {
5743 			ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
5744 						       &ref_tree, NULL);
5745 			if (ret) {
5746 				mlog_errno(ret);
5747 				goto bail;
5748 			}
5749 		}
5750 
5751 		ret = ocfs2_prepare_refcount_change_for_del(inode,
5752 							    refcount_loc,
5753 							    phys_blkno,
5754 							    len,
5755 							    &credits,
5756 							    &extra_blocks);
5757 		if (ret < 0) {
5758 			mlog_errno(ret);
5759 			goto bail;
5760 		}
5761 	}
5762 
5763 	ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac,
5764 						 extra_blocks);
5765 	if (ret) {
5766 		mlog_errno(ret);
5767 		goto bail;
5768 	}
5769 
5770 	inode_lock(tl_inode);
5771 
5772 	if (ocfs2_truncate_log_needs_flush(osb)) {
5773 		ret = __ocfs2_flush_truncate_log(osb);
5774 		if (ret < 0) {
5775 			mlog_errno(ret);
5776 			goto out;
5777 		}
5778 	}
5779 
5780 	handle = ocfs2_start_trans(osb,
5781 			ocfs2_remove_extent_credits(osb->sb) + credits);
5782 	if (IS_ERR(handle)) {
5783 		ret = PTR_ERR(handle);
5784 		mlog_errno(ret);
5785 		goto out;
5786 	}
5787 
5788 	ret = ocfs2_et_root_journal_access(handle, et,
5789 					   OCFS2_JOURNAL_ACCESS_WRITE);
5790 	if (ret) {
5791 		mlog_errno(ret);
5792 		goto out_commit;
5793 	}
5794 
5795 	dquot_free_space_nodirty(inode,
5796 				  ocfs2_clusters_to_bytes(inode->i_sb, len));
5797 
5798 	ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc);
5799 	if (ret) {
5800 		mlog_errno(ret);
5801 		goto out_commit;
5802 	}
5803 
5804 	ocfs2_et_update_clusters(et, -len);
5805 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
5806 
5807 	ocfs2_journal_dirty(handle, et->et_root_bh);
5808 
5809 	if (phys_blkno) {
5810 		if (flags & OCFS2_EXT_REFCOUNTED)
5811 			ret = ocfs2_decrease_refcount(inode, handle,
5812 					ocfs2_blocks_to_clusters(osb->sb,
5813 								 phys_blkno),
5814 					len, meta_ac,
5815 					dealloc, 1);
5816 		else
5817 			ret = ocfs2_truncate_log_append(osb, handle,
5818 							phys_blkno, len);
5819 		if (ret)
5820 			mlog_errno(ret);
5821 
5822 	}
5823 
5824 out_commit:
5825 	ocfs2_commit_trans(osb, handle);
5826 out:
5827 	inode_unlock(tl_inode);
5828 bail:
5829 	if (meta_ac)
5830 		ocfs2_free_alloc_context(meta_ac);
5831 
5832 	if (ref_tree)
5833 		ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
5834 
5835 	return ret;
5836 }
5837 
5838 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5839 {
5840 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5841 	struct ocfs2_dinode *di;
5842 	struct ocfs2_truncate_log *tl;
5843 
5844 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5845 	tl = &di->id2.i_dealloc;
5846 
5847 	mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5848 			"slot %d, invalid truncate log parameters: used = "
5849 			"%u, count = %u\n", osb->slot_num,
5850 			le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5851 	return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5852 }
5853 
5854 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5855 					   unsigned int new_start)
5856 {
5857 	unsigned int tail_index;
5858 	unsigned int current_tail;
5859 
5860 	/* No records, nothing to coalesce */
5861 	if (!le16_to_cpu(tl->tl_used))
5862 		return 0;
5863 
5864 	tail_index = le16_to_cpu(tl->tl_used) - 1;
5865 	current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5866 	current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5867 
5868 	return current_tail == new_start;
5869 }
5870 
5871 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5872 			      handle_t *handle,
5873 			      u64 start_blk,
5874 			      unsigned int num_clusters)
5875 {
5876 	int status, index;
5877 	unsigned int start_cluster, tl_count;
5878 	struct inode *tl_inode = osb->osb_tl_inode;
5879 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5880 	struct ocfs2_dinode *di;
5881 	struct ocfs2_truncate_log *tl;
5882 
5883 	BUG_ON(inode_trylock(tl_inode));
5884 
5885 	start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5886 
5887 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5888 
5889 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5890 	 * by the underlying call to ocfs2_read_inode_block(), so any
5891 	 * corruption is a code bug */
5892 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5893 
5894 	tl = &di->id2.i_dealloc;
5895 	tl_count = le16_to_cpu(tl->tl_count);
5896 	mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5897 			tl_count == 0,
5898 			"Truncate record count on #%llu invalid "
5899 			"wanted %u, actual %u\n",
5900 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5901 			ocfs2_truncate_recs_per_inode(osb->sb),
5902 			le16_to_cpu(tl->tl_count));
5903 
5904 	/* Caller should have known to flush before calling us. */
5905 	index = le16_to_cpu(tl->tl_used);
5906 	if (index >= tl_count) {
5907 		status = -ENOSPC;
5908 		mlog_errno(status);
5909 		goto bail;
5910 	}
5911 
5912 	status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5913 					 OCFS2_JOURNAL_ACCESS_WRITE);
5914 	if (status < 0) {
5915 		mlog_errno(status);
5916 		goto bail;
5917 	}
5918 
5919 	trace_ocfs2_truncate_log_append(
5920 		(unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index,
5921 		start_cluster, num_clusters);
5922 	if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5923 		/*
5924 		 * Move index back to the record we are coalescing with.
5925 		 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5926 		 */
5927 		index--;
5928 
5929 		num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5930 		trace_ocfs2_truncate_log_append(
5931 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5932 			index, le32_to_cpu(tl->tl_recs[index].t_start),
5933 			num_clusters);
5934 	} else {
5935 		tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5936 		tl->tl_used = cpu_to_le16(index + 1);
5937 	}
5938 	tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5939 
5940 	ocfs2_journal_dirty(handle, tl_bh);
5941 
5942 	osb->truncated_clusters += num_clusters;
5943 bail:
5944 	return status;
5945 }
5946 
5947 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5948 					 struct inode *data_alloc_inode,
5949 					 struct buffer_head *data_alloc_bh)
5950 {
5951 	int status = 0;
5952 	int i;
5953 	unsigned int num_clusters;
5954 	u64 start_blk;
5955 	struct ocfs2_truncate_rec rec;
5956 	struct ocfs2_dinode *di;
5957 	struct ocfs2_truncate_log *tl;
5958 	struct inode *tl_inode = osb->osb_tl_inode;
5959 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5960 	handle_t *handle;
5961 
5962 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5963 	tl = &di->id2.i_dealloc;
5964 	i = le16_to_cpu(tl->tl_used) - 1;
5965 	while (i >= 0) {
5966 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5967 		if (IS_ERR(handle)) {
5968 			status = PTR_ERR(handle);
5969 			mlog_errno(status);
5970 			goto bail;
5971 		}
5972 
5973 		/* Caller has given us at least enough credits to
5974 		 * update the truncate log dinode */
5975 		status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5976 						 OCFS2_JOURNAL_ACCESS_WRITE);
5977 		if (status < 0) {
5978 			mlog_errno(status);
5979 			goto bail;
5980 		}
5981 
5982 		tl->tl_used = cpu_to_le16(i);
5983 
5984 		ocfs2_journal_dirty(handle, tl_bh);
5985 
5986 		rec = tl->tl_recs[i];
5987 		start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5988 						    le32_to_cpu(rec.t_start));
5989 		num_clusters = le32_to_cpu(rec.t_clusters);
5990 
5991 		/* if start_blk is not set, we ignore the record as
5992 		 * invalid. */
5993 		if (start_blk) {
5994 			trace_ocfs2_replay_truncate_records(
5995 				(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5996 				i, le32_to_cpu(rec.t_start), num_clusters);
5997 
5998 			status = ocfs2_free_clusters(handle, data_alloc_inode,
5999 						     data_alloc_bh, start_blk,
6000 						     num_clusters);
6001 			if (status < 0) {
6002 				mlog_errno(status);
6003 				goto bail;
6004 			}
6005 		}
6006 
6007 		ocfs2_commit_trans(osb, handle);
6008 		i--;
6009 	}
6010 
6011 	osb->truncated_clusters = 0;
6012 
6013 bail:
6014 	return status;
6015 }
6016 
6017 /* Expects you to already be holding tl_inode->i_mutex */
6018 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
6019 {
6020 	int status;
6021 	unsigned int num_to_flush;
6022 	struct inode *tl_inode = osb->osb_tl_inode;
6023 	struct inode *data_alloc_inode = NULL;
6024 	struct buffer_head *tl_bh = osb->osb_tl_bh;
6025 	struct buffer_head *data_alloc_bh = NULL;
6026 	struct ocfs2_dinode *di;
6027 	struct ocfs2_truncate_log *tl;
6028 
6029 	BUG_ON(inode_trylock(tl_inode));
6030 
6031 	di = (struct ocfs2_dinode *) tl_bh->b_data;
6032 
6033 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
6034 	 * by the underlying call to ocfs2_read_inode_block(), so any
6035 	 * corruption is a code bug */
6036 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
6037 
6038 	tl = &di->id2.i_dealloc;
6039 	num_to_flush = le16_to_cpu(tl->tl_used);
6040 	trace_ocfs2_flush_truncate_log(
6041 		(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
6042 		num_to_flush);
6043 	if (!num_to_flush) {
6044 		status = 0;
6045 		goto out;
6046 	}
6047 
6048 	data_alloc_inode = ocfs2_get_system_file_inode(osb,
6049 						       GLOBAL_BITMAP_SYSTEM_INODE,
6050 						       OCFS2_INVALID_SLOT);
6051 	if (!data_alloc_inode) {
6052 		status = -EINVAL;
6053 		mlog(ML_ERROR, "Could not get bitmap inode!\n");
6054 		goto out;
6055 	}
6056 
6057 	inode_lock(data_alloc_inode);
6058 
6059 	status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
6060 	if (status < 0) {
6061 		mlog_errno(status);
6062 		goto out_mutex;
6063 	}
6064 
6065 	status = ocfs2_replay_truncate_records(osb, data_alloc_inode,
6066 					       data_alloc_bh);
6067 	if (status < 0)
6068 		mlog_errno(status);
6069 
6070 	brelse(data_alloc_bh);
6071 	ocfs2_inode_unlock(data_alloc_inode, 1);
6072 
6073 out_mutex:
6074 	inode_unlock(data_alloc_inode);
6075 	iput(data_alloc_inode);
6076 
6077 out:
6078 	return status;
6079 }
6080 
6081 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
6082 {
6083 	int status;
6084 	struct inode *tl_inode = osb->osb_tl_inode;
6085 
6086 	inode_lock(tl_inode);
6087 	status = __ocfs2_flush_truncate_log(osb);
6088 	inode_unlock(tl_inode);
6089 
6090 	return status;
6091 }
6092 
6093 static void ocfs2_truncate_log_worker(struct work_struct *work)
6094 {
6095 	int status;
6096 	struct ocfs2_super *osb =
6097 		container_of(work, struct ocfs2_super,
6098 			     osb_truncate_log_wq.work);
6099 
6100 	status = ocfs2_flush_truncate_log(osb);
6101 	if (status < 0)
6102 		mlog_errno(status);
6103 	else
6104 		ocfs2_init_steal_slots(osb);
6105 }
6106 
6107 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
6108 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
6109 				       int cancel)
6110 {
6111 	if (osb->osb_tl_inode &&
6112 			atomic_read(&osb->osb_tl_disable) == 0) {
6113 		/* We want to push off log flushes while truncates are
6114 		 * still running. */
6115 		if (cancel)
6116 			cancel_delayed_work(&osb->osb_truncate_log_wq);
6117 
6118 		queue_delayed_work(osb->ocfs2_wq, &osb->osb_truncate_log_wq,
6119 				   OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
6120 	}
6121 }
6122 
6123 /*
6124  * Try to flush truncate logs if we can free enough clusters from it.
6125  * As for return value, "< 0" means error, "0" no space and "1" means
6126  * we have freed enough spaces and let the caller try to allocate again.
6127  */
6128 int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
6129 					unsigned int needed)
6130 {
6131 	tid_t target;
6132 	int ret = 0;
6133 	unsigned int truncated_clusters;
6134 
6135 	inode_lock(osb->osb_tl_inode);
6136 	truncated_clusters = osb->truncated_clusters;
6137 	inode_unlock(osb->osb_tl_inode);
6138 
6139 	/*
6140 	 * Check whether we can succeed in allocating if we free
6141 	 * the truncate log.
6142 	 */
6143 	if (truncated_clusters < needed)
6144 		goto out;
6145 
6146 	ret = ocfs2_flush_truncate_log(osb);
6147 	if (ret) {
6148 		mlog_errno(ret);
6149 		goto out;
6150 	}
6151 
6152 	if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
6153 		jbd2_log_wait_commit(osb->journal->j_journal, target);
6154 		ret = 1;
6155 	}
6156 out:
6157 	return ret;
6158 }
6159 
6160 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
6161 				       int slot_num,
6162 				       struct inode **tl_inode,
6163 				       struct buffer_head **tl_bh)
6164 {
6165 	int status;
6166 	struct inode *inode = NULL;
6167 	struct buffer_head *bh = NULL;
6168 
6169 	inode = ocfs2_get_system_file_inode(osb,
6170 					   TRUNCATE_LOG_SYSTEM_INODE,
6171 					   slot_num);
6172 	if (!inode) {
6173 		status = -EINVAL;
6174 		mlog(ML_ERROR, "Could not get load truncate log inode!\n");
6175 		goto bail;
6176 	}
6177 
6178 	status = ocfs2_read_inode_block(inode, &bh);
6179 	if (status < 0) {
6180 		iput(inode);
6181 		mlog_errno(status);
6182 		goto bail;
6183 	}
6184 
6185 	*tl_inode = inode;
6186 	*tl_bh    = bh;
6187 bail:
6188 	return status;
6189 }
6190 
6191 /* called during the 1st stage of node recovery. we stamp a clean
6192  * truncate log and pass back a copy for processing later. if the
6193  * truncate log does not require processing, a *tl_copy is set to
6194  * NULL. */
6195 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
6196 				      int slot_num,
6197 				      struct ocfs2_dinode **tl_copy)
6198 {
6199 	int status;
6200 	struct inode *tl_inode = NULL;
6201 	struct buffer_head *tl_bh = NULL;
6202 	struct ocfs2_dinode *di;
6203 	struct ocfs2_truncate_log *tl;
6204 
6205 	*tl_copy = NULL;
6206 
6207 	trace_ocfs2_begin_truncate_log_recovery(slot_num);
6208 
6209 	status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
6210 	if (status < 0) {
6211 		mlog_errno(status);
6212 		goto bail;
6213 	}
6214 
6215 	di = (struct ocfs2_dinode *) tl_bh->b_data;
6216 
6217 	/* tl_bh is loaded from ocfs2_get_truncate_log_info().  It's
6218 	 * validated by the underlying call to ocfs2_read_inode_block(),
6219 	 * so any corruption is a code bug */
6220 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
6221 
6222 	tl = &di->id2.i_dealloc;
6223 	if (le16_to_cpu(tl->tl_used)) {
6224 		trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl->tl_used));
6225 
6226 		*tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
6227 		if (!(*tl_copy)) {
6228 			status = -ENOMEM;
6229 			mlog_errno(status);
6230 			goto bail;
6231 		}
6232 
6233 		/* Assuming the write-out below goes well, this copy
6234 		 * will be passed back to recovery for processing. */
6235 		memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
6236 
6237 		/* All we need to do to clear the truncate log is set
6238 		 * tl_used. */
6239 		tl->tl_used = 0;
6240 
6241 		ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6242 		status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
6243 		if (status < 0) {
6244 			mlog_errno(status);
6245 			goto bail;
6246 		}
6247 	}
6248 
6249 bail:
6250 	iput(tl_inode);
6251 	brelse(tl_bh);
6252 
6253 	if (status < 0) {
6254 		kfree(*tl_copy);
6255 		*tl_copy = NULL;
6256 		mlog_errno(status);
6257 	}
6258 
6259 	return status;
6260 }
6261 
6262 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6263 					 struct ocfs2_dinode *tl_copy)
6264 {
6265 	int status = 0;
6266 	int i;
6267 	unsigned int clusters, num_recs, start_cluster;
6268 	u64 start_blk;
6269 	handle_t *handle;
6270 	struct inode *tl_inode = osb->osb_tl_inode;
6271 	struct ocfs2_truncate_log *tl;
6272 
6273 	if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6274 		mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6275 		return -EINVAL;
6276 	}
6277 
6278 	tl = &tl_copy->id2.i_dealloc;
6279 	num_recs = le16_to_cpu(tl->tl_used);
6280 	trace_ocfs2_complete_truncate_log_recovery(
6281 		(unsigned long long)le64_to_cpu(tl_copy->i_blkno),
6282 		num_recs);
6283 
6284 	inode_lock(tl_inode);
6285 	for(i = 0; i < num_recs; i++) {
6286 		if (ocfs2_truncate_log_needs_flush(osb)) {
6287 			status = __ocfs2_flush_truncate_log(osb);
6288 			if (status < 0) {
6289 				mlog_errno(status);
6290 				goto bail_up;
6291 			}
6292 		}
6293 
6294 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6295 		if (IS_ERR(handle)) {
6296 			status = PTR_ERR(handle);
6297 			mlog_errno(status);
6298 			goto bail_up;
6299 		}
6300 
6301 		clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6302 		start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6303 		start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6304 
6305 		status = ocfs2_truncate_log_append(osb, handle,
6306 						   start_blk, clusters);
6307 		ocfs2_commit_trans(osb, handle);
6308 		if (status < 0) {
6309 			mlog_errno(status);
6310 			goto bail_up;
6311 		}
6312 	}
6313 
6314 bail_up:
6315 	inode_unlock(tl_inode);
6316 
6317 	return status;
6318 }
6319 
6320 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6321 {
6322 	int status;
6323 	struct inode *tl_inode = osb->osb_tl_inode;
6324 
6325 	atomic_set(&osb->osb_tl_disable, 1);
6326 
6327 	if (tl_inode) {
6328 		cancel_delayed_work(&osb->osb_truncate_log_wq);
6329 		flush_workqueue(osb->ocfs2_wq);
6330 
6331 		status = ocfs2_flush_truncate_log(osb);
6332 		if (status < 0)
6333 			mlog_errno(status);
6334 
6335 		brelse(osb->osb_tl_bh);
6336 		iput(osb->osb_tl_inode);
6337 	}
6338 }
6339 
6340 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6341 {
6342 	int status;
6343 	struct inode *tl_inode = NULL;
6344 	struct buffer_head *tl_bh = NULL;
6345 
6346 	status = ocfs2_get_truncate_log_info(osb,
6347 					     osb->slot_num,
6348 					     &tl_inode,
6349 					     &tl_bh);
6350 	if (status < 0)
6351 		mlog_errno(status);
6352 
6353 	/* ocfs2_truncate_log_shutdown keys on the existence of
6354 	 * osb->osb_tl_inode so we don't set any of the osb variables
6355 	 * until we're sure all is well. */
6356 	INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6357 			  ocfs2_truncate_log_worker);
6358 	atomic_set(&osb->osb_tl_disable, 0);
6359 	osb->osb_tl_bh    = tl_bh;
6360 	osb->osb_tl_inode = tl_inode;
6361 
6362 	return status;
6363 }
6364 
6365 /*
6366  * Delayed de-allocation of suballocator blocks.
6367  *
6368  * Some sets of block de-allocations might involve multiple suballocator inodes.
6369  *
6370  * The locking for this can get extremely complicated, especially when
6371  * the suballocator inodes to delete from aren't known until deep
6372  * within an unrelated codepath.
6373  *
6374  * ocfs2_extent_block structures are a good example of this - an inode
6375  * btree could have been grown by any number of nodes each allocating
6376  * out of their own suballoc inode.
6377  *
6378  * These structures allow the delay of block de-allocation until a
6379  * later time, when locking of multiple cluster inodes won't cause
6380  * deadlock.
6381  */
6382 
6383 /*
6384  * Describe a single bit freed from a suballocator.  For the block
6385  * suballocators, it represents one block.  For the global cluster
6386  * allocator, it represents some clusters and free_bit indicates
6387  * clusters number.
6388  */
6389 struct ocfs2_cached_block_free {
6390 	struct ocfs2_cached_block_free		*free_next;
6391 	u64					free_bg;
6392 	u64					free_blk;
6393 	unsigned int				free_bit;
6394 };
6395 
6396 struct ocfs2_per_slot_free_list {
6397 	struct ocfs2_per_slot_free_list		*f_next_suballocator;
6398 	int					f_inode_type;
6399 	int					f_slot;
6400 	struct ocfs2_cached_block_free		*f_first;
6401 };
6402 
6403 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6404 				    int sysfile_type,
6405 				    int slot,
6406 				    struct ocfs2_cached_block_free *head)
6407 {
6408 	int ret;
6409 	u64 bg_blkno;
6410 	handle_t *handle;
6411 	struct inode *inode;
6412 	struct buffer_head *di_bh = NULL;
6413 	struct ocfs2_cached_block_free *tmp;
6414 
6415 	inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6416 	if (!inode) {
6417 		ret = -EINVAL;
6418 		mlog_errno(ret);
6419 		goto out;
6420 	}
6421 
6422 	inode_lock(inode);
6423 
6424 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
6425 	if (ret) {
6426 		mlog_errno(ret);
6427 		goto out_mutex;
6428 	}
6429 
6430 	while (head) {
6431 		if (head->free_bg)
6432 			bg_blkno = head->free_bg;
6433 		else
6434 			bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6435 							      head->free_bit);
6436 		handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6437 		if (IS_ERR(handle)) {
6438 			ret = PTR_ERR(handle);
6439 			mlog_errno(ret);
6440 			goto out_unlock;
6441 		}
6442 
6443 		trace_ocfs2_free_cached_blocks(
6444 		     (unsigned long long)head->free_blk, head->free_bit);
6445 
6446 		ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6447 					       head->free_bit, bg_blkno, 1);
6448 		if (ret)
6449 			mlog_errno(ret);
6450 
6451 		ocfs2_commit_trans(osb, handle);
6452 
6453 		tmp = head;
6454 		head = head->free_next;
6455 		kfree(tmp);
6456 	}
6457 
6458 out_unlock:
6459 	ocfs2_inode_unlock(inode, 1);
6460 	brelse(di_bh);
6461 out_mutex:
6462 	inode_unlock(inode);
6463 	iput(inode);
6464 out:
6465 	while(head) {
6466 		/* Premature exit may have left some dangling items. */
6467 		tmp = head;
6468 		head = head->free_next;
6469 		kfree(tmp);
6470 	}
6471 
6472 	return ret;
6473 }
6474 
6475 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6476 				u64 blkno, unsigned int bit)
6477 {
6478 	int ret = 0;
6479 	struct ocfs2_cached_block_free *item;
6480 
6481 	item = kzalloc(sizeof(*item), GFP_NOFS);
6482 	if (item == NULL) {
6483 		ret = -ENOMEM;
6484 		mlog_errno(ret);
6485 		return ret;
6486 	}
6487 
6488 	trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno, bit);
6489 
6490 	item->free_blk = blkno;
6491 	item->free_bit = bit;
6492 	item->free_next = ctxt->c_global_allocator;
6493 
6494 	ctxt->c_global_allocator = item;
6495 	return ret;
6496 }
6497 
6498 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6499 				      struct ocfs2_cached_block_free *head)
6500 {
6501 	struct ocfs2_cached_block_free *tmp;
6502 	struct inode *tl_inode = osb->osb_tl_inode;
6503 	handle_t *handle;
6504 	int ret = 0;
6505 
6506 	inode_lock(tl_inode);
6507 
6508 	while (head) {
6509 		if (ocfs2_truncate_log_needs_flush(osb)) {
6510 			ret = __ocfs2_flush_truncate_log(osb);
6511 			if (ret < 0) {
6512 				mlog_errno(ret);
6513 				break;
6514 			}
6515 		}
6516 
6517 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6518 		if (IS_ERR(handle)) {
6519 			ret = PTR_ERR(handle);
6520 			mlog_errno(ret);
6521 			break;
6522 		}
6523 
6524 		ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6525 						head->free_bit);
6526 
6527 		ocfs2_commit_trans(osb, handle);
6528 		tmp = head;
6529 		head = head->free_next;
6530 		kfree(tmp);
6531 
6532 		if (ret < 0) {
6533 			mlog_errno(ret);
6534 			break;
6535 		}
6536 	}
6537 
6538 	inode_unlock(tl_inode);
6539 
6540 	while (head) {
6541 		/* Premature exit may have left some dangling items. */
6542 		tmp = head;
6543 		head = head->free_next;
6544 		kfree(tmp);
6545 	}
6546 
6547 	return ret;
6548 }
6549 
6550 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6551 		       struct ocfs2_cached_dealloc_ctxt *ctxt)
6552 {
6553 	int ret = 0, ret2;
6554 	struct ocfs2_per_slot_free_list *fl;
6555 
6556 	if (!ctxt)
6557 		return 0;
6558 
6559 	while (ctxt->c_first_suballocator) {
6560 		fl = ctxt->c_first_suballocator;
6561 
6562 		if (fl->f_first) {
6563 			trace_ocfs2_run_deallocs(fl->f_inode_type,
6564 						 fl->f_slot);
6565 			ret2 = ocfs2_free_cached_blocks(osb,
6566 							fl->f_inode_type,
6567 							fl->f_slot,
6568 							fl->f_first);
6569 			if (ret2)
6570 				mlog_errno(ret2);
6571 			if (!ret)
6572 				ret = ret2;
6573 		}
6574 
6575 		ctxt->c_first_suballocator = fl->f_next_suballocator;
6576 		kfree(fl);
6577 	}
6578 
6579 	if (ctxt->c_global_allocator) {
6580 		ret2 = ocfs2_free_cached_clusters(osb,
6581 						  ctxt->c_global_allocator);
6582 		if (ret2)
6583 			mlog_errno(ret2);
6584 		if (!ret)
6585 			ret = ret2;
6586 
6587 		ctxt->c_global_allocator = NULL;
6588 	}
6589 
6590 	return ret;
6591 }
6592 
6593 static struct ocfs2_per_slot_free_list *
6594 ocfs2_find_per_slot_free_list(int type,
6595 			      int slot,
6596 			      struct ocfs2_cached_dealloc_ctxt *ctxt)
6597 {
6598 	struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6599 
6600 	while (fl) {
6601 		if (fl->f_inode_type == type && fl->f_slot == slot)
6602 			return fl;
6603 
6604 		fl = fl->f_next_suballocator;
6605 	}
6606 
6607 	fl = kmalloc(sizeof(*fl), GFP_NOFS);
6608 	if (fl) {
6609 		fl->f_inode_type = type;
6610 		fl->f_slot = slot;
6611 		fl->f_first = NULL;
6612 		fl->f_next_suballocator = ctxt->c_first_suballocator;
6613 
6614 		ctxt->c_first_suballocator = fl;
6615 	}
6616 	return fl;
6617 }
6618 
6619 static struct ocfs2_per_slot_free_list *
6620 ocfs2_find_preferred_free_list(int type,
6621 			       int preferred_slot,
6622 			       int *real_slot,
6623 			       struct ocfs2_cached_dealloc_ctxt *ctxt)
6624 {
6625 	struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6626 
6627 	while (fl) {
6628 		if (fl->f_inode_type == type && fl->f_slot == preferred_slot) {
6629 			*real_slot = fl->f_slot;
6630 			return fl;
6631 		}
6632 
6633 		fl = fl->f_next_suballocator;
6634 	}
6635 
6636 	/* If we can't find any free list matching preferred slot, just use
6637 	 * the first one.
6638 	 */
6639 	fl = ctxt->c_first_suballocator;
6640 	*real_slot = fl->f_slot;
6641 
6642 	return fl;
6643 }
6644 
6645 /* Return Value 1 indicates empty */
6646 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree *et)
6647 {
6648 	struct ocfs2_per_slot_free_list *fl = NULL;
6649 
6650 	if (!et->et_dealloc)
6651 		return 1;
6652 
6653 	fl = et->et_dealloc->c_first_suballocator;
6654 	if (!fl)
6655 		return 1;
6656 
6657 	if (!fl->f_first)
6658 		return 1;
6659 
6660 	return 0;
6661 }
6662 
6663 /* If extent was deleted from tree due to extent rotation and merging, and
6664  * no metadata is reserved ahead of time. Try to reuse some extents
6665  * just deleted. This is only used to reuse extent blocks.
6666  * It is supposed to find enough extent blocks in dealloc if our estimation
6667  * on metadata is accurate.
6668  */
6669 static int ocfs2_reuse_blk_from_dealloc(handle_t *handle,
6670 					struct ocfs2_extent_tree *et,
6671 					struct buffer_head **new_eb_bh,
6672 					int blk_wanted, int *blk_given)
6673 {
6674 	int i, status = 0, real_slot;
6675 	struct ocfs2_cached_dealloc_ctxt *dealloc;
6676 	struct ocfs2_per_slot_free_list *fl;
6677 	struct ocfs2_cached_block_free *bf;
6678 	struct ocfs2_extent_block *eb;
6679 	struct ocfs2_super *osb =
6680 		OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
6681 
6682 	*blk_given = 0;
6683 
6684 	/* If extent tree doesn't have a dealloc, this is not faulty. Just
6685 	 * tell upper caller dealloc can't provide any block and it should
6686 	 * ask for alloc to claim more space.
6687 	 */
6688 	dealloc = et->et_dealloc;
6689 	if (!dealloc)
6690 		goto bail;
6691 
6692 	for (i = 0; i < blk_wanted; i++) {
6693 		/* Prefer to use local slot */
6694 		fl = ocfs2_find_preferred_free_list(EXTENT_ALLOC_SYSTEM_INODE,
6695 						    osb->slot_num, &real_slot,
6696 						    dealloc);
6697 		/* If no more block can be reused, we should claim more
6698 		 * from alloc. Just return here normally.
6699 		 */
6700 		if (!fl) {
6701 			status = 0;
6702 			break;
6703 		}
6704 
6705 		bf = fl->f_first;
6706 		fl->f_first = bf->free_next;
6707 
6708 		new_eb_bh[i] = sb_getblk(osb->sb, bf->free_blk);
6709 		if (new_eb_bh[i] == NULL) {
6710 			status = -ENOMEM;
6711 			mlog_errno(status);
6712 			goto bail;
6713 		}
6714 
6715 		mlog(0, "Reusing block(%llu) from "
6716 		     "dealloc(local slot:%d, real slot:%d)\n",
6717 		     bf->free_blk, osb->slot_num, real_slot);
6718 
6719 		ocfs2_set_new_buffer_uptodate(et->et_ci, new_eb_bh[i]);
6720 
6721 		status = ocfs2_journal_access_eb(handle, et->et_ci,
6722 						 new_eb_bh[i],
6723 						 OCFS2_JOURNAL_ACCESS_CREATE);
6724 		if (status < 0) {
6725 			mlog_errno(status);
6726 			goto bail;
6727 		}
6728 
6729 		memset(new_eb_bh[i]->b_data, 0, osb->sb->s_blocksize);
6730 		eb = (struct ocfs2_extent_block *) new_eb_bh[i]->b_data;
6731 
6732 		/* We can't guarantee that buffer head is still cached, so
6733 		 * polutlate the extent block again.
6734 		 */
6735 		strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
6736 		eb->h_blkno = cpu_to_le64(bf->free_blk);
6737 		eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
6738 		eb->h_suballoc_slot = cpu_to_le16(real_slot);
6739 		eb->h_suballoc_loc = cpu_to_le64(bf->free_bg);
6740 		eb->h_suballoc_bit = cpu_to_le16(bf->free_bit);
6741 		eb->h_list.l_count =
6742 			cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
6743 
6744 		/* We'll also be dirtied by the caller, so
6745 		 * this isn't absolutely necessary.
6746 		 */
6747 		ocfs2_journal_dirty(handle, new_eb_bh[i]);
6748 
6749 		if (!fl->f_first) {
6750 			dealloc->c_first_suballocator = fl->f_next_suballocator;
6751 			kfree(fl);
6752 		}
6753 		kfree(bf);
6754 	}
6755 
6756 	*blk_given = i;
6757 
6758 bail:
6759 	if (unlikely(status < 0)) {
6760 		for (i = 0; i < blk_wanted; i++)
6761 			brelse(new_eb_bh[i]);
6762 	}
6763 
6764 	return status;
6765 }
6766 
6767 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6768 			      int type, int slot, u64 suballoc,
6769 			      u64 blkno, unsigned int bit)
6770 {
6771 	int ret;
6772 	struct ocfs2_per_slot_free_list *fl;
6773 	struct ocfs2_cached_block_free *item;
6774 
6775 	fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6776 	if (fl == NULL) {
6777 		ret = -ENOMEM;
6778 		mlog_errno(ret);
6779 		goto out;
6780 	}
6781 
6782 	item = kzalloc(sizeof(*item), GFP_NOFS);
6783 	if (item == NULL) {
6784 		ret = -ENOMEM;
6785 		mlog_errno(ret);
6786 		goto out;
6787 	}
6788 
6789 	trace_ocfs2_cache_block_dealloc(type, slot,
6790 					(unsigned long long)suballoc,
6791 					(unsigned long long)blkno, bit);
6792 
6793 	item->free_bg = suballoc;
6794 	item->free_blk = blkno;
6795 	item->free_bit = bit;
6796 	item->free_next = fl->f_first;
6797 
6798 	fl->f_first = item;
6799 
6800 	ret = 0;
6801 out:
6802 	return ret;
6803 }
6804 
6805 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6806 					 struct ocfs2_extent_block *eb)
6807 {
6808 	return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6809 					 le16_to_cpu(eb->h_suballoc_slot),
6810 					 le64_to_cpu(eb->h_suballoc_loc),
6811 					 le64_to_cpu(eb->h_blkno),
6812 					 le16_to_cpu(eb->h_suballoc_bit));
6813 }
6814 
6815 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6816 {
6817 	set_buffer_uptodate(bh);
6818 	mark_buffer_dirty(bh);
6819 	return 0;
6820 }
6821 
6822 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6823 			      unsigned int from, unsigned int to,
6824 			      struct page *page, int zero, u64 *phys)
6825 {
6826 	int ret, partial = 0;
6827 
6828 	ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6829 	if (ret)
6830 		mlog_errno(ret);
6831 
6832 	if (zero)
6833 		zero_user_segment(page, from, to);
6834 
6835 	/*
6836 	 * Need to set the buffers we zero'd into uptodate
6837 	 * here if they aren't - ocfs2_map_page_blocks()
6838 	 * might've skipped some
6839 	 */
6840 	ret = walk_page_buffers(handle, page_buffers(page),
6841 				from, to, &partial,
6842 				ocfs2_zero_func);
6843 	if (ret < 0)
6844 		mlog_errno(ret);
6845 	else if (ocfs2_should_order_data(inode)) {
6846 		ret = ocfs2_jbd2_file_inode(handle, inode);
6847 		if (ret < 0)
6848 			mlog_errno(ret);
6849 	}
6850 
6851 	if (!partial)
6852 		SetPageUptodate(page);
6853 
6854 	flush_dcache_page(page);
6855 }
6856 
6857 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6858 				     loff_t end, struct page **pages,
6859 				     int numpages, u64 phys, handle_t *handle)
6860 {
6861 	int i;
6862 	struct page *page;
6863 	unsigned int from, to = PAGE_SIZE;
6864 	struct super_block *sb = inode->i_sb;
6865 
6866 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6867 
6868 	if (numpages == 0)
6869 		goto out;
6870 
6871 	to = PAGE_SIZE;
6872 	for(i = 0; i < numpages; i++) {
6873 		page = pages[i];
6874 
6875 		from = start & (PAGE_SIZE - 1);
6876 		if ((end >> PAGE_SHIFT) == page->index)
6877 			to = end & (PAGE_SIZE - 1);
6878 
6879 		BUG_ON(from > PAGE_SIZE);
6880 		BUG_ON(to > PAGE_SIZE);
6881 
6882 		ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6883 					 &phys);
6884 
6885 		start = (page->index + 1) << PAGE_SHIFT;
6886 	}
6887 out:
6888 	if (pages)
6889 		ocfs2_unlock_and_free_pages(pages, numpages);
6890 }
6891 
6892 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end,
6893 		     struct page **pages, int *num)
6894 {
6895 	int numpages, ret = 0;
6896 	struct address_space *mapping = inode->i_mapping;
6897 	unsigned long index;
6898 	loff_t last_page_bytes;
6899 
6900 	BUG_ON(start > end);
6901 
6902 	numpages = 0;
6903 	last_page_bytes = PAGE_ALIGN(end);
6904 	index = start >> PAGE_SHIFT;
6905 	do {
6906 		pages[numpages] = find_or_create_page(mapping, index, GFP_NOFS);
6907 		if (!pages[numpages]) {
6908 			ret = -ENOMEM;
6909 			mlog_errno(ret);
6910 			goto out;
6911 		}
6912 
6913 		numpages++;
6914 		index++;
6915 	} while (index < (last_page_bytes >> PAGE_SHIFT));
6916 
6917 out:
6918 	if (ret != 0) {
6919 		if (pages)
6920 			ocfs2_unlock_and_free_pages(pages, numpages);
6921 		numpages = 0;
6922 	}
6923 
6924 	*num = numpages;
6925 
6926 	return ret;
6927 }
6928 
6929 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6930 				struct page **pages, int *num)
6931 {
6932 	struct super_block *sb = inode->i_sb;
6933 
6934 	BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6935 	       (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6936 
6937 	return ocfs2_grab_pages(inode, start, end, pages, num);
6938 }
6939 
6940 /*
6941  * Zero the area past i_size but still within an allocated
6942  * cluster. This avoids exposing nonzero data on subsequent file
6943  * extends.
6944  *
6945  * We need to call this before i_size is updated on the inode because
6946  * otherwise block_write_full_page() will skip writeout of pages past
6947  * i_size. The new_i_size parameter is passed for this reason.
6948  */
6949 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6950 				  u64 range_start, u64 range_end)
6951 {
6952 	int ret = 0, numpages;
6953 	struct page **pages = NULL;
6954 	u64 phys;
6955 	unsigned int ext_flags;
6956 	struct super_block *sb = inode->i_sb;
6957 
6958 	/*
6959 	 * File systems which don't support sparse files zero on every
6960 	 * extend.
6961 	 */
6962 	if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6963 		return 0;
6964 
6965 	pages = kcalloc(ocfs2_pages_per_cluster(sb),
6966 			sizeof(struct page *), GFP_NOFS);
6967 	if (pages == NULL) {
6968 		ret = -ENOMEM;
6969 		mlog_errno(ret);
6970 		goto out;
6971 	}
6972 
6973 	if (range_start == range_end)
6974 		goto out;
6975 
6976 	ret = ocfs2_extent_map_get_blocks(inode,
6977 					  range_start >> sb->s_blocksize_bits,
6978 					  &phys, NULL, &ext_flags);
6979 	if (ret) {
6980 		mlog_errno(ret);
6981 		goto out;
6982 	}
6983 
6984 	/*
6985 	 * Tail is a hole, or is marked unwritten. In either case, we
6986 	 * can count on read and write to return/push zero's.
6987 	 */
6988 	if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6989 		goto out;
6990 
6991 	ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6992 				   &numpages);
6993 	if (ret) {
6994 		mlog_errno(ret);
6995 		goto out;
6996 	}
6997 
6998 	ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6999 				 numpages, phys, handle);
7000 
7001 	/*
7002 	 * Initiate writeout of the pages we zero'd here. We don't
7003 	 * wait on them - the truncate_inode_pages() call later will
7004 	 * do that for us.
7005 	 */
7006 	ret = filemap_fdatawrite_range(inode->i_mapping, range_start,
7007 				       range_end - 1);
7008 	if (ret)
7009 		mlog_errno(ret);
7010 
7011 out:
7012 	kfree(pages);
7013 
7014 	return ret;
7015 }
7016 
7017 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
7018 					     struct ocfs2_dinode *di)
7019 {
7020 	unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
7021 	unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
7022 
7023 	if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
7024 		memset(&di->id2, 0, blocksize -
7025 				    offsetof(struct ocfs2_dinode, id2) -
7026 				    xattrsize);
7027 	else
7028 		memset(&di->id2, 0, blocksize -
7029 				    offsetof(struct ocfs2_dinode, id2));
7030 }
7031 
7032 void ocfs2_dinode_new_extent_list(struct inode *inode,
7033 				  struct ocfs2_dinode *di)
7034 {
7035 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
7036 	di->id2.i_list.l_tree_depth = 0;
7037 	di->id2.i_list.l_next_free_rec = 0;
7038 	di->id2.i_list.l_count = cpu_to_le16(
7039 		ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
7040 }
7041 
7042 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
7043 {
7044 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
7045 	struct ocfs2_inline_data *idata = &di->id2.i_data;
7046 
7047 	spin_lock(&oi->ip_lock);
7048 	oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
7049 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7050 	spin_unlock(&oi->ip_lock);
7051 
7052 	/*
7053 	 * We clear the entire i_data structure here so that all
7054 	 * fields can be properly initialized.
7055 	 */
7056 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
7057 
7058 	idata->id_count = cpu_to_le16(
7059 			ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
7060 }
7061 
7062 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
7063 					 struct buffer_head *di_bh)
7064 {
7065 	int ret, i, has_data, num_pages = 0;
7066 	int need_free = 0;
7067 	u32 bit_off, num;
7068 	handle_t *handle;
7069 	u64 uninitialized_var(block);
7070 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
7071 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7072 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7073 	struct ocfs2_alloc_context *data_ac = NULL;
7074 	struct page **pages = NULL;
7075 	loff_t end = osb->s_clustersize;
7076 	struct ocfs2_extent_tree et;
7077 	int did_quota = 0;
7078 
7079 	has_data = i_size_read(inode) ? 1 : 0;
7080 
7081 	if (has_data) {
7082 		pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
7083 				sizeof(struct page *), GFP_NOFS);
7084 		if (pages == NULL) {
7085 			ret = -ENOMEM;
7086 			mlog_errno(ret);
7087 			return ret;
7088 		}
7089 
7090 		ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
7091 		if (ret) {
7092 			mlog_errno(ret);
7093 			goto free_pages;
7094 		}
7095 	}
7096 
7097 	handle = ocfs2_start_trans(osb,
7098 				   ocfs2_inline_to_extents_credits(osb->sb));
7099 	if (IS_ERR(handle)) {
7100 		ret = PTR_ERR(handle);
7101 		mlog_errno(ret);
7102 		goto out;
7103 	}
7104 
7105 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7106 				      OCFS2_JOURNAL_ACCESS_WRITE);
7107 	if (ret) {
7108 		mlog_errno(ret);
7109 		goto out_commit;
7110 	}
7111 
7112 	if (has_data) {
7113 		unsigned int page_end;
7114 		u64 phys;
7115 
7116 		ret = dquot_alloc_space_nodirty(inode,
7117 				       ocfs2_clusters_to_bytes(osb->sb, 1));
7118 		if (ret)
7119 			goto out_commit;
7120 		did_quota = 1;
7121 
7122 		data_ac->ac_resv = &oi->ip_la_data_resv;
7123 
7124 		ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off,
7125 					   &num);
7126 		if (ret) {
7127 			mlog_errno(ret);
7128 			goto out_commit;
7129 		}
7130 
7131 		/*
7132 		 * Save two copies, one for insert, and one that can
7133 		 * be changed by ocfs2_map_and_dirty_page() below.
7134 		 */
7135 		block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
7136 
7137 		/*
7138 		 * Non sparse file systems zero on extend, so no need
7139 		 * to do that now.
7140 		 */
7141 		if (!ocfs2_sparse_alloc(osb) &&
7142 		    PAGE_SIZE < osb->s_clustersize)
7143 			end = PAGE_SIZE;
7144 
7145 		ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
7146 		if (ret) {
7147 			mlog_errno(ret);
7148 			need_free = 1;
7149 			goto out_commit;
7150 		}
7151 
7152 		/*
7153 		 * This should populate the 1st page for us and mark
7154 		 * it up to date.
7155 		 */
7156 		ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
7157 		if (ret) {
7158 			mlog_errno(ret);
7159 			need_free = 1;
7160 			goto out_unlock;
7161 		}
7162 
7163 		page_end = PAGE_SIZE;
7164 		if (PAGE_SIZE > osb->s_clustersize)
7165 			page_end = osb->s_clustersize;
7166 
7167 		for (i = 0; i < num_pages; i++)
7168 			ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
7169 						 pages[i], i > 0, &phys);
7170 	}
7171 
7172 	spin_lock(&oi->ip_lock);
7173 	oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
7174 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7175 	spin_unlock(&oi->ip_lock);
7176 
7177 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
7178 	ocfs2_dinode_new_extent_list(inode, di);
7179 
7180 	ocfs2_journal_dirty(handle, di_bh);
7181 
7182 	if (has_data) {
7183 		/*
7184 		 * An error at this point should be extremely rare. If
7185 		 * this proves to be false, we could always re-build
7186 		 * the in-inode data from our pages.
7187 		 */
7188 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
7189 		ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL);
7190 		if (ret) {
7191 			mlog_errno(ret);
7192 			need_free = 1;
7193 			goto out_unlock;
7194 		}
7195 
7196 		inode->i_blocks = ocfs2_inode_sector_count(inode);
7197 	}
7198 
7199 out_unlock:
7200 	if (pages)
7201 		ocfs2_unlock_and_free_pages(pages, num_pages);
7202 
7203 out_commit:
7204 	if (ret < 0 && did_quota)
7205 		dquot_free_space_nodirty(inode,
7206 					  ocfs2_clusters_to_bytes(osb->sb, 1));
7207 
7208 	if (need_free) {
7209 		if (data_ac->ac_which == OCFS2_AC_USE_LOCAL)
7210 			ocfs2_free_local_alloc_bits(osb, handle, data_ac,
7211 					bit_off, num);
7212 		else
7213 			ocfs2_free_clusters(handle,
7214 					data_ac->ac_inode,
7215 					data_ac->ac_bh,
7216 					ocfs2_clusters_to_blocks(osb->sb, bit_off),
7217 					num);
7218 	}
7219 
7220 	ocfs2_commit_trans(osb, handle);
7221 
7222 out:
7223 	if (data_ac)
7224 		ocfs2_free_alloc_context(data_ac);
7225 free_pages:
7226 	kfree(pages);
7227 	return ret;
7228 }
7229 
7230 /*
7231  * It is expected, that by the time you call this function,
7232  * inode->i_size and fe->i_size have been adjusted.
7233  *
7234  * WARNING: This will kfree the truncate context
7235  */
7236 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7237 			  struct inode *inode,
7238 			  struct buffer_head *di_bh)
7239 {
7240 	int status = 0, i, flags = 0;
7241 	u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff;
7242 	u64 blkno = 0;
7243 	struct ocfs2_extent_list *el;
7244 	struct ocfs2_extent_rec *rec;
7245 	struct ocfs2_path *path = NULL;
7246 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7247 	struct ocfs2_extent_list *root_el = &(di->id2.i_list);
7248 	u64 refcount_loc = le64_to_cpu(di->i_refcount_loc);
7249 	struct ocfs2_extent_tree et;
7250 	struct ocfs2_cached_dealloc_ctxt dealloc;
7251 	struct ocfs2_refcount_tree *ref_tree = NULL;
7252 
7253 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
7254 	ocfs2_init_dealloc_ctxt(&dealloc);
7255 
7256 	new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7257 						     i_size_read(inode));
7258 
7259 	path = ocfs2_new_path(di_bh, &di->id2.i_list,
7260 			      ocfs2_journal_access_di);
7261 	if (!path) {
7262 		status = -ENOMEM;
7263 		mlog_errno(status);
7264 		goto bail;
7265 	}
7266 
7267 	ocfs2_extent_map_trunc(inode, new_highest_cpos);
7268 
7269 start:
7270 	/*
7271 	 * Check that we still have allocation to delete.
7272 	 */
7273 	if (OCFS2_I(inode)->ip_clusters == 0) {
7274 		status = 0;
7275 		goto bail;
7276 	}
7277 
7278 	/*
7279 	 * Truncate always works against the rightmost tree branch.
7280 	 */
7281 	status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX);
7282 	if (status) {
7283 		mlog_errno(status);
7284 		goto bail;
7285 	}
7286 
7287 	trace_ocfs2_commit_truncate(
7288 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
7289 		new_highest_cpos,
7290 		OCFS2_I(inode)->ip_clusters,
7291 		path->p_tree_depth);
7292 
7293 	/*
7294 	 * By now, el will point to the extent list on the bottom most
7295 	 * portion of this tree. Only the tail record is considered in
7296 	 * each pass.
7297 	 *
7298 	 * We handle the following cases, in order:
7299 	 * - empty extent: delete the remaining branch
7300 	 * - remove the entire record
7301 	 * - remove a partial record
7302 	 * - no record needs to be removed (truncate has completed)
7303 	 */
7304 	el = path_leaf_el(path);
7305 	if (le16_to_cpu(el->l_next_free_rec) == 0) {
7306 		ocfs2_error(inode->i_sb,
7307 			    "Inode %llu has empty extent block at %llu\n",
7308 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7309 			    (unsigned long long)path_leaf_bh(path)->b_blocknr);
7310 		status = -EROFS;
7311 		goto bail;
7312 	}
7313 
7314 	i = le16_to_cpu(el->l_next_free_rec) - 1;
7315 	rec = &el->l_recs[i];
7316 	flags = rec->e_flags;
7317 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
7318 
7319 	if (i == 0 && ocfs2_is_empty_extent(rec)) {
7320 		/*
7321 		 * Lower levels depend on this never happening, but it's best
7322 		 * to check it up here before changing the tree.
7323 		*/
7324 		if (root_el->l_tree_depth && rec->e_int_clusters == 0) {
7325 			mlog(ML_ERROR, "Inode %lu has an empty "
7326 				    "extent record, depth %u\n", inode->i_ino,
7327 				    le16_to_cpu(root_el->l_tree_depth));
7328 			status = ocfs2_remove_rightmost_empty_extent(osb,
7329 					&et, path, &dealloc);
7330 			if (status) {
7331 				mlog_errno(status);
7332 				goto bail;
7333 			}
7334 
7335 			ocfs2_reinit_path(path, 1);
7336 			goto start;
7337 		} else {
7338 			trunc_cpos = le32_to_cpu(rec->e_cpos);
7339 			trunc_len = 0;
7340 			blkno = 0;
7341 		}
7342 	} else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) {
7343 		/*
7344 		 * Truncate entire record.
7345 		 */
7346 		trunc_cpos = le32_to_cpu(rec->e_cpos);
7347 		trunc_len = ocfs2_rec_clusters(el, rec);
7348 		blkno = le64_to_cpu(rec->e_blkno);
7349 	} else if (range > new_highest_cpos) {
7350 		/*
7351 		 * Partial truncate. it also should be
7352 		 * the last truncate we're doing.
7353 		 */
7354 		trunc_cpos = new_highest_cpos;
7355 		trunc_len = range - new_highest_cpos;
7356 		coff = new_highest_cpos - le32_to_cpu(rec->e_cpos);
7357 		blkno = le64_to_cpu(rec->e_blkno) +
7358 				ocfs2_clusters_to_blocks(inode->i_sb, coff);
7359 	} else {
7360 		/*
7361 		 * Truncate completed, leave happily.
7362 		 */
7363 		status = 0;
7364 		goto bail;
7365 	}
7366 
7367 	phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
7368 
7369 	if ((flags & OCFS2_EXT_REFCOUNTED) && trunc_len && !ref_tree) {
7370 		status = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
7371 				&ref_tree, NULL);
7372 		if (status) {
7373 			mlog_errno(status);
7374 			goto bail;
7375 		}
7376 	}
7377 
7378 	status = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
7379 					  phys_cpos, trunc_len, flags, &dealloc,
7380 					  refcount_loc, true);
7381 	if (status < 0) {
7382 		mlog_errno(status);
7383 		goto bail;
7384 	}
7385 
7386 	ocfs2_reinit_path(path, 1);
7387 
7388 	/*
7389 	 * The check above will catch the case where we've truncated
7390 	 * away all allocation.
7391 	 */
7392 	goto start;
7393 
7394 bail:
7395 	if (ref_tree)
7396 		ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
7397 
7398 	ocfs2_schedule_truncate_log_flush(osb, 1);
7399 
7400 	ocfs2_run_deallocs(osb, &dealloc);
7401 
7402 	ocfs2_free_path(path);
7403 
7404 	return status;
7405 }
7406 
7407 /*
7408  * 'start' is inclusive, 'end' is not.
7409  */
7410 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7411 			  unsigned int start, unsigned int end, int trunc)
7412 {
7413 	int ret;
7414 	unsigned int numbytes;
7415 	handle_t *handle;
7416 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7417 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7418 	struct ocfs2_inline_data *idata = &di->id2.i_data;
7419 
7420 	if (end > i_size_read(inode))
7421 		end = i_size_read(inode);
7422 
7423 	BUG_ON(start > end);
7424 
7425 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7426 	    !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7427 	    !ocfs2_supports_inline_data(osb)) {
7428 		ocfs2_error(inode->i_sb,
7429 			    "Inline data flags for inode %llu don't agree! Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7430 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7431 			    le16_to_cpu(di->i_dyn_features),
7432 			    OCFS2_I(inode)->ip_dyn_features,
7433 			    osb->s_feature_incompat);
7434 		ret = -EROFS;
7435 		goto out;
7436 	}
7437 
7438 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7439 	if (IS_ERR(handle)) {
7440 		ret = PTR_ERR(handle);
7441 		mlog_errno(ret);
7442 		goto out;
7443 	}
7444 
7445 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7446 				      OCFS2_JOURNAL_ACCESS_WRITE);
7447 	if (ret) {
7448 		mlog_errno(ret);
7449 		goto out_commit;
7450 	}
7451 
7452 	numbytes = end - start;
7453 	memset(idata->id_data + start, 0, numbytes);
7454 
7455 	/*
7456 	 * No need to worry about the data page here - it's been
7457 	 * truncated already and inline data doesn't need it for
7458 	 * pushing zero's to disk, so we'll let readpage pick it up
7459 	 * later.
7460 	 */
7461 	if (trunc) {
7462 		i_size_write(inode, start);
7463 		di->i_size = cpu_to_le64(start);
7464 	}
7465 
7466 	inode->i_blocks = ocfs2_inode_sector_count(inode);
7467 	inode->i_ctime = inode->i_mtime = current_time(inode);
7468 
7469 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7470 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7471 
7472 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
7473 	ocfs2_journal_dirty(handle, di_bh);
7474 
7475 out_commit:
7476 	ocfs2_commit_trans(osb, handle);
7477 
7478 out:
7479 	return ret;
7480 }
7481 
7482 static int ocfs2_trim_extent(struct super_block *sb,
7483 			     struct ocfs2_group_desc *gd,
7484 			     u64 group, u32 start, u32 count)
7485 {
7486 	u64 discard, bcount;
7487 	struct ocfs2_super *osb = OCFS2_SB(sb);
7488 
7489 	bcount = ocfs2_clusters_to_blocks(sb, count);
7490 	discard = ocfs2_clusters_to_blocks(sb, start);
7491 
7492 	/*
7493 	 * For the first cluster group, the gd->bg_blkno is not at the start
7494 	 * of the group, but at an offset from the start. If we add it while
7495 	 * calculating discard for first group, we will wrongly start fstrim a
7496 	 * few blocks after the desried start block and the range can cross
7497 	 * over into the next cluster group. So, add it only if this is not
7498 	 * the first cluster group.
7499 	 */
7500 	if (group != osb->first_cluster_group_blkno)
7501 		discard += le64_to_cpu(gd->bg_blkno);
7502 
7503 	trace_ocfs2_trim_extent(sb, (unsigned long long)discard, bcount);
7504 
7505 	return sb_issue_discard(sb, discard, bcount, GFP_NOFS, 0);
7506 }
7507 
7508 static int ocfs2_trim_group(struct super_block *sb,
7509 			    struct ocfs2_group_desc *gd, u64 group,
7510 			    u32 start, u32 max, u32 minbits)
7511 {
7512 	int ret = 0, count = 0, next;
7513 	void *bitmap = gd->bg_bitmap;
7514 
7515 	if (le16_to_cpu(gd->bg_free_bits_count) < minbits)
7516 		return 0;
7517 
7518 	trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd->bg_blkno),
7519 			       start, max, minbits);
7520 
7521 	while (start < max) {
7522 		start = ocfs2_find_next_zero_bit(bitmap, max, start);
7523 		if (start >= max)
7524 			break;
7525 		next = ocfs2_find_next_bit(bitmap, max, start);
7526 
7527 		if ((next - start) >= minbits) {
7528 			ret = ocfs2_trim_extent(sb, gd, group,
7529 						start, next - start);
7530 			if (ret < 0) {
7531 				mlog_errno(ret);
7532 				break;
7533 			}
7534 			count += next - start;
7535 		}
7536 		start = next + 1;
7537 
7538 		if (fatal_signal_pending(current)) {
7539 			count = -ERESTARTSYS;
7540 			break;
7541 		}
7542 
7543 		if ((le16_to_cpu(gd->bg_free_bits_count) - count) < minbits)
7544 			break;
7545 	}
7546 
7547 	if (ret < 0)
7548 		count = ret;
7549 
7550 	return count;
7551 }
7552 
7553 int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range)
7554 {
7555 	struct ocfs2_super *osb = OCFS2_SB(sb);
7556 	u64 start, len, trimmed, first_group, last_group, group;
7557 	int ret, cnt;
7558 	u32 first_bit, last_bit, minlen;
7559 	struct buffer_head *main_bm_bh = NULL;
7560 	struct inode *main_bm_inode = NULL;
7561 	struct buffer_head *gd_bh = NULL;
7562 	struct ocfs2_dinode *main_bm;
7563 	struct ocfs2_group_desc *gd = NULL;
7564 	struct ocfs2_trim_fs_info info, *pinfo = NULL;
7565 
7566 	start = range->start >> osb->s_clustersize_bits;
7567 	len = range->len >> osb->s_clustersize_bits;
7568 	minlen = range->minlen >> osb->s_clustersize_bits;
7569 
7570 	if (minlen >= osb->bitmap_cpg || range->len < sb->s_blocksize)
7571 		return -EINVAL;
7572 
7573 	main_bm_inode = ocfs2_get_system_file_inode(osb,
7574 						    GLOBAL_BITMAP_SYSTEM_INODE,
7575 						    OCFS2_INVALID_SLOT);
7576 	if (!main_bm_inode) {
7577 		ret = -EIO;
7578 		mlog_errno(ret);
7579 		goto out;
7580 	}
7581 
7582 	inode_lock(main_bm_inode);
7583 
7584 	ret = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 0);
7585 	if (ret < 0) {
7586 		mlog_errno(ret);
7587 		goto out_mutex;
7588 	}
7589 	main_bm = (struct ocfs2_dinode *)main_bm_bh->b_data;
7590 
7591 	if (start >= le32_to_cpu(main_bm->i_clusters)) {
7592 		ret = -EINVAL;
7593 		goto out_unlock;
7594 	}
7595 
7596 	len = range->len >> osb->s_clustersize_bits;
7597 	if (start + len > le32_to_cpu(main_bm->i_clusters))
7598 		len = le32_to_cpu(main_bm->i_clusters) - start;
7599 
7600 	trace_ocfs2_trim_fs(start, len, minlen);
7601 
7602 	ocfs2_trim_fs_lock_res_init(osb);
7603 	ret = ocfs2_trim_fs_lock(osb, NULL, 1);
7604 	if (ret < 0) {
7605 		if (ret != -EAGAIN) {
7606 			mlog_errno(ret);
7607 			ocfs2_trim_fs_lock_res_uninit(osb);
7608 			goto out_unlock;
7609 		}
7610 
7611 		mlog(ML_NOTICE, "Wait for trim on device (%s) to "
7612 		     "finish, which is running from another node.\n",
7613 		     osb->dev_str);
7614 		ret = ocfs2_trim_fs_lock(osb, &info, 0);
7615 		if (ret < 0) {
7616 			mlog_errno(ret);
7617 			ocfs2_trim_fs_lock_res_uninit(osb);
7618 			goto out_unlock;
7619 		}
7620 
7621 		if (info.tf_valid && info.tf_success &&
7622 		    info.tf_start == start && info.tf_len == len &&
7623 		    info.tf_minlen == minlen) {
7624 			/* Avoid sending duplicated trim to a shared device */
7625 			mlog(ML_NOTICE, "The same trim on device (%s) was "
7626 			     "just done from node (%u), return.\n",
7627 			     osb->dev_str, info.tf_nodenum);
7628 			range->len = info.tf_trimlen;
7629 			goto out_trimunlock;
7630 		}
7631 	}
7632 
7633 	info.tf_nodenum = osb->node_num;
7634 	info.tf_start = start;
7635 	info.tf_len = len;
7636 	info.tf_minlen = minlen;
7637 
7638 	/* Determine first and last group to examine based on start and len */
7639 	first_group = ocfs2_which_cluster_group(main_bm_inode, start);
7640 	if (first_group == osb->first_cluster_group_blkno)
7641 		first_bit = start;
7642 	else
7643 		first_bit = start - ocfs2_blocks_to_clusters(sb, first_group);
7644 	last_group = ocfs2_which_cluster_group(main_bm_inode, start + len - 1);
7645 	last_bit = osb->bitmap_cpg;
7646 
7647 	trimmed = 0;
7648 	for (group = first_group; group <= last_group;) {
7649 		if (first_bit + len >= osb->bitmap_cpg)
7650 			last_bit = osb->bitmap_cpg;
7651 		else
7652 			last_bit = first_bit + len;
7653 
7654 		ret = ocfs2_read_group_descriptor(main_bm_inode,
7655 						  main_bm, group,
7656 						  &gd_bh);
7657 		if (ret < 0) {
7658 			mlog_errno(ret);
7659 			break;
7660 		}
7661 
7662 		gd = (struct ocfs2_group_desc *)gd_bh->b_data;
7663 		cnt = ocfs2_trim_group(sb, gd, group,
7664 				       first_bit, last_bit, minlen);
7665 		brelse(gd_bh);
7666 		gd_bh = NULL;
7667 		if (cnt < 0) {
7668 			ret = cnt;
7669 			mlog_errno(ret);
7670 			break;
7671 		}
7672 
7673 		trimmed += cnt;
7674 		len -= osb->bitmap_cpg - first_bit;
7675 		first_bit = 0;
7676 		if (group == osb->first_cluster_group_blkno)
7677 			group = ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7678 		else
7679 			group += ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7680 	}
7681 	range->len = trimmed * sb->s_blocksize;
7682 
7683 	info.tf_trimlen = range->len;
7684 	info.tf_success = (ret ? 0 : 1);
7685 	pinfo = &info;
7686 out_trimunlock:
7687 	ocfs2_trim_fs_unlock(osb, pinfo);
7688 	ocfs2_trim_fs_lock_res_uninit(osb);
7689 out_unlock:
7690 	ocfs2_inode_unlock(main_bm_inode, 0);
7691 	brelse(main_bm_bh);
7692 out_mutex:
7693 	inode_unlock(main_bm_inode);
7694 	iput(main_bm_inode);
7695 out:
7696 	return ret;
7697 }
7698