xref: /openbmc/linux/fs/ocfs2/alloc.c (revision 105ddc93)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32 #include <linux/blkdev.h>
33 #include <linux/sched/signal.h>
34 
35 #include <cluster/masklog.h>
36 
37 #include "ocfs2.h"
38 
39 #include "alloc.h"
40 #include "aops.h"
41 #include "blockcheck.h"
42 #include "dlmglue.h"
43 #include "extent_map.h"
44 #include "inode.h"
45 #include "journal.h"
46 #include "localalloc.h"
47 #include "suballoc.h"
48 #include "sysfile.h"
49 #include "file.h"
50 #include "super.h"
51 #include "uptodate.h"
52 #include "xattr.h"
53 #include "refcounttree.h"
54 #include "ocfs2_trace.h"
55 
56 #include "buffer_head_io.h"
57 
58 enum ocfs2_contig_type {
59 	CONTIG_NONE = 0,
60 	CONTIG_LEFT,
61 	CONTIG_RIGHT,
62 	CONTIG_LEFTRIGHT,
63 };
64 
65 static enum ocfs2_contig_type
66 	ocfs2_extent_rec_contig(struct super_block *sb,
67 				struct ocfs2_extent_rec *ext,
68 				struct ocfs2_extent_rec *insert_rec);
69 /*
70  * Operations for a specific extent tree type.
71  *
72  * To implement an on-disk btree (extent tree) type in ocfs2, add
73  * an ocfs2_extent_tree_operations structure and the matching
74  * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
75  * for the allocation portion of the extent tree.
76  */
77 struct ocfs2_extent_tree_operations {
78 	/*
79 	 * last_eb_blk is the block number of the right most leaf extent
80 	 * block.  Most on-disk structures containing an extent tree store
81 	 * this value for fast access.  The ->eo_set_last_eb_blk() and
82 	 * ->eo_get_last_eb_blk() operations access this value.  They are
83 	 *  both required.
84 	 */
85 	void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
86 				   u64 blkno);
87 	u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
88 
89 	/*
90 	 * The on-disk structure usually keeps track of how many total
91 	 * clusters are stored in this extent tree.  This function updates
92 	 * that value.  new_clusters is the delta, and must be
93 	 * added to the total.  Required.
94 	 */
95 	void (*eo_update_clusters)(struct ocfs2_extent_tree *et,
96 				   u32 new_clusters);
97 
98 	/*
99 	 * If this extent tree is supported by an extent map, insert
100 	 * a record into the map.
101 	 */
102 	void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et,
103 				     struct ocfs2_extent_rec *rec);
104 
105 	/*
106 	 * If this extent tree is supported by an extent map, truncate the
107 	 * map to clusters,
108 	 */
109 	void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et,
110 				       u32 clusters);
111 
112 	/*
113 	 * If ->eo_insert_check() exists, it is called before rec is
114 	 * inserted into the extent tree.  It is optional.
115 	 */
116 	int (*eo_insert_check)(struct ocfs2_extent_tree *et,
117 			       struct ocfs2_extent_rec *rec);
118 	int (*eo_sanity_check)(struct ocfs2_extent_tree *et);
119 
120 	/*
121 	 * --------------------------------------------------------------
122 	 * The remaining are internal to ocfs2_extent_tree and don't have
123 	 * accessor functions
124 	 */
125 
126 	/*
127 	 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
128 	 * It is required.
129 	 */
130 	void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
131 
132 	/*
133 	 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
134 	 * it exists.  If it does not, et->et_max_leaf_clusters is set
135 	 * to 0 (unlimited).  Optional.
136 	 */
137 	void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et);
138 
139 	/*
140 	 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec
141 	 * are contiguous or not. Optional. Don't need to set it if use
142 	 * ocfs2_extent_rec as the tree leaf.
143 	 */
144 	enum ocfs2_contig_type
145 		(*eo_extent_contig)(struct ocfs2_extent_tree *et,
146 				    struct ocfs2_extent_rec *ext,
147 				    struct ocfs2_extent_rec *insert_rec);
148 };
149 
150 
151 /*
152  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
153  * in the methods.
154  */
155 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
156 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
157 					 u64 blkno);
158 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
159 					 u32 clusters);
160 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
161 					   struct ocfs2_extent_rec *rec);
162 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
163 					     u32 clusters);
164 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
165 				     struct ocfs2_extent_rec *rec);
166 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et);
167 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
168 static const struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
169 	.eo_set_last_eb_blk	= ocfs2_dinode_set_last_eb_blk,
170 	.eo_get_last_eb_blk	= ocfs2_dinode_get_last_eb_blk,
171 	.eo_update_clusters	= ocfs2_dinode_update_clusters,
172 	.eo_extent_map_insert	= ocfs2_dinode_extent_map_insert,
173 	.eo_extent_map_truncate	= ocfs2_dinode_extent_map_truncate,
174 	.eo_insert_check	= ocfs2_dinode_insert_check,
175 	.eo_sanity_check	= ocfs2_dinode_sanity_check,
176 	.eo_fill_root_el	= ocfs2_dinode_fill_root_el,
177 };
178 
179 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
180 					 u64 blkno)
181 {
182 	struct ocfs2_dinode *di = et->et_object;
183 
184 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
185 	di->i_last_eb_blk = cpu_to_le64(blkno);
186 }
187 
188 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
189 {
190 	struct ocfs2_dinode *di = et->et_object;
191 
192 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
193 	return le64_to_cpu(di->i_last_eb_blk);
194 }
195 
196 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
197 					 u32 clusters)
198 {
199 	struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
200 	struct ocfs2_dinode *di = et->et_object;
201 
202 	le32_add_cpu(&di->i_clusters, clusters);
203 	spin_lock(&oi->ip_lock);
204 	oi->ip_clusters = le32_to_cpu(di->i_clusters);
205 	spin_unlock(&oi->ip_lock);
206 }
207 
208 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
209 					   struct ocfs2_extent_rec *rec)
210 {
211 	struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
212 
213 	ocfs2_extent_map_insert_rec(inode, rec);
214 }
215 
216 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
217 					     u32 clusters)
218 {
219 	struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
220 
221 	ocfs2_extent_map_trunc(inode, clusters);
222 }
223 
224 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
225 				     struct ocfs2_extent_rec *rec)
226 {
227 	struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
228 	struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb);
229 
230 	BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL);
231 	mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
232 			(oi->ip_clusters != le32_to_cpu(rec->e_cpos)),
233 			"Device %s, asking for sparse allocation: inode %llu, "
234 			"cpos %u, clusters %u\n",
235 			osb->dev_str,
236 			(unsigned long long)oi->ip_blkno,
237 			rec->e_cpos, oi->ip_clusters);
238 
239 	return 0;
240 }
241 
242 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et)
243 {
244 	struct ocfs2_dinode *di = et->et_object;
245 
246 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
247 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
248 
249 	return 0;
250 }
251 
252 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
253 {
254 	struct ocfs2_dinode *di = et->et_object;
255 
256 	et->et_root_el = &di->id2.i_list;
257 }
258 
259 
260 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
261 {
262 	struct ocfs2_xattr_value_buf *vb = et->et_object;
263 
264 	et->et_root_el = &vb->vb_xv->xr_list;
265 }
266 
267 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
268 					      u64 blkno)
269 {
270 	struct ocfs2_xattr_value_buf *vb = et->et_object;
271 
272 	vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
273 }
274 
275 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
276 {
277 	struct ocfs2_xattr_value_buf *vb = et->et_object;
278 
279 	return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
280 }
281 
282 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et,
283 					      u32 clusters)
284 {
285 	struct ocfs2_xattr_value_buf *vb = et->et_object;
286 
287 	le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
288 }
289 
290 static const struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
291 	.eo_set_last_eb_blk	= ocfs2_xattr_value_set_last_eb_blk,
292 	.eo_get_last_eb_blk	= ocfs2_xattr_value_get_last_eb_blk,
293 	.eo_update_clusters	= ocfs2_xattr_value_update_clusters,
294 	.eo_fill_root_el	= ocfs2_xattr_value_fill_root_el,
295 };
296 
297 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
298 {
299 	struct ocfs2_xattr_block *xb = et->et_object;
300 
301 	et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
302 }
303 
304 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et)
305 {
306 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
307 	et->et_max_leaf_clusters =
308 		ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
309 }
310 
311 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
312 					     u64 blkno)
313 {
314 	struct ocfs2_xattr_block *xb = et->et_object;
315 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
316 
317 	xt->xt_last_eb_blk = cpu_to_le64(blkno);
318 }
319 
320 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
321 {
322 	struct ocfs2_xattr_block *xb = et->et_object;
323 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
324 
325 	return le64_to_cpu(xt->xt_last_eb_blk);
326 }
327 
328 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et,
329 					     u32 clusters)
330 {
331 	struct ocfs2_xattr_block *xb = et->et_object;
332 
333 	le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
334 }
335 
336 static const struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
337 	.eo_set_last_eb_blk	= ocfs2_xattr_tree_set_last_eb_blk,
338 	.eo_get_last_eb_blk	= ocfs2_xattr_tree_get_last_eb_blk,
339 	.eo_update_clusters	= ocfs2_xattr_tree_update_clusters,
340 	.eo_fill_root_el	= ocfs2_xattr_tree_fill_root_el,
341 	.eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
342 };
343 
344 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
345 					  u64 blkno)
346 {
347 	struct ocfs2_dx_root_block *dx_root = et->et_object;
348 
349 	dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
350 }
351 
352 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
353 {
354 	struct ocfs2_dx_root_block *dx_root = et->et_object;
355 
356 	return le64_to_cpu(dx_root->dr_last_eb_blk);
357 }
358 
359 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et,
360 					  u32 clusters)
361 {
362 	struct ocfs2_dx_root_block *dx_root = et->et_object;
363 
364 	le32_add_cpu(&dx_root->dr_clusters, clusters);
365 }
366 
367 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et)
368 {
369 	struct ocfs2_dx_root_block *dx_root = et->et_object;
370 
371 	BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
372 
373 	return 0;
374 }
375 
376 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
377 {
378 	struct ocfs2_dx_root_block *dx_root = et->et_object;
379 
380 	et->et_root_el = &dx_root->dr_list;
381 }
382 
383 static const struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
384 	.eo_set_last_eb_blk	= ocfs2_dx_root_set_last_eb_blk,
385 	.eo_get_last_eb_blk	= ocfs2_dx_root_get_last_eb_blk,
386 	.eo_update_clusters	= ocfs2_dx_root_update_clusters,
387 	.eo_sanity_check	= ocfs2_dx_root_sanity_check,
388 	.eo_fill_root_el	= ocfs2_dx_root_fill_root_el,
389 };
390 
391 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et)
392 {
393 	struct ocfs2_refcount_block *rb = et->et_object;
394 
395 	et->et_root_el = &rb->rf_list;
396 }
397 
398 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
399 						u64 blkno)
400 {
401 	struct ocfs2_refcount_block *rb = et->et_object;
402 
403 	rb->rf_last_eb_blk = cpu_to_le64(blkno);
404 }
405 
406 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
407 {
408 	struct ocfs2_refcount_block *rb = et->et_object;
409 
410 	return le64_to_cpu(rb->rf_last_eb_blk);
411 }
412 
413 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et,
414 						u32 clusters)
415 {
416 	struct ocfs2_refcount_block *rb = et->et_object;
417 
418 	le32_add_cpu(&rb->rf_clusters, clusters);
419 }
420 
421 static enum ocfs2_contig_type
422 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et,
423 				  struct ocfs2_extent_rec *ext,
424 				  struct ocfs2_extent_rec *insert_rec)
425 {
426 	return CONTIG_NONE;
427 }
428 
429 static const struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = {
430 	.eo_set_last_eb_blk	= ocfs2_refcount_tree_set_last_eb_blk,
431 	.eo_get_last_eb_blk	= ocfs2_refcount_tree_get_last_eb_blk,
432 	.eo_update_clusters	= ocfs2_refcount_tree_update_clusters,
433 	.eo_fill_root_el	= ocfs2_refcount_tree_fill_root_el,
434 	.eo_extent_contig	= ocfs2_refcount_tree_extent_contig,
435 };
436 
437 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
438 				     struct ocfs2_caching_info *ci,
439 				     struct buffer_head *bh,
440 				     ocfs2_journal_access_func access,
441 				     void *obj,
442 				     const struct ocfs2_extent_tree_operations *ops)
443 {
444 	et->et_ops = ops;
445 	et->et_root_bh = bh;
446 	et->et_ci = ci;
447 	et->et_root_journal_access = access;
448 	if (!obj)
449 		obj = (void *)bh->b_data;
450 	et->et_object = obj;
451 
452 	et->et_ops->eo_fill_root_el(et);
453 	if (!et->et_ops->eo_fill_max_leaf_clusters)
454 		et->et_max_leaf_clusters = 0;
455 	else
456 		et->et_ops->eo_fill_max_leaf_clusters(et);
457 }
458 
459 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
460 				   struct ocfs2_caching_info *ci,
461 				   struct buffer_head *bh)
462 {
463 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di,
464 				 NULL, &ocfs2_dinode_et_ops);
465 }
466 
467 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
468 				       struct ocfs2_caching_info *ci,
469 				       struct buffer_head *bh)
470 {
471 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb,
472 				 NULL, &ocfs2_xattr_tree_et_ops);
473 }
474 
475 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
476 					struct ocfs2_caching_info *ci,
477 					struct ocfs2_xattr_value_buf *vb)
478 {
479 	__ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb,
480 				 &ocfs2_xattr_value_et_ops);
481 }
482 
483 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
484 				    struct ocfs2_caching_info *ci,
485 				    struct buffer_head *bh)
486 {
487 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr,
488 				 NULL, &ocfs2_dx_root_et_ops);
489 }
490 
491 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et,
492 				     struct ocfs2_caching_info *ci,
493 				     struct buffer_head *bh)
494 {
495 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb,
496 				 NULL, &ocfs2_refcount_tree_et_ops);
497 }
498 
499 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
500 					    u64 new_last_eb_blk)
501 {
502 	et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
503 }
504 
505 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
506 {
507 	return et->et_ops->eo_get_last_eb_blk(et);
508 }
509 
510 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et,
511 					    u32 clusters)
512 {
513 	et->et_ops->eo_update_clusters(et, clusters);
514 }
515 
516 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et,
517 					      struct ocfs2_extent_rec *rec)
518 {
519 	if (et->et_ops->eo_extent_map_insert)
520 		et->et_ops->eo_extent_map_insert(et, rec);
521 }
522 
523 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et,
524 						u32 clusters)
525 {
526 	if (et->et_ops->eo_extent_map_truncate)
527 		et->et_ops->eo_extent_map_truncate(et, clusters);
528 }
529 
530 static inline int ocfs2_et_root_journal_access(handle_t *handle,
531 					       struct ocfs2_extent_tree *et,
532 					       int type)
533 {
534 	return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh,
535 					  type);
536 }
537 
538 static inline enum ocfs2_contig_type
539 	ocfs2_et_extent_contig(struct ocfs2_extent_tree *et,
540 			       struct ocfs2_extent_rec *rec,
541 			       struct ocfs2_extent_rec *insert_rec)
542 {
543 	if (et->et_ops->eo_extent_contig)
544 		return et->et_ops->eo_extent_contig(et, rec, insert_rec);
545 
546 	return ocfs2_extent_rec_contig(
547 				ocfs2_metadata_cache_get_super(et->et_ci),
548 				rec, insert_rec);
549 }
550 
551 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et,
552 					struct ocfs2_extent_rec *rec)
553 {
554 	int ret = 0;
555 
556 	if (et->et_ops->eo_insert_check)
557 		ret = et->et_ops->eo_insert_check(et, rec);
558 	return ret;
559 }
560 
561 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et)
562 {
563 	int ret = 0;
564 
565 	if (et->et_ops->eo_sanity_check)
566 		ret = et->et_ops->eo_sanity_check(et);
567 	return ret;
568 }
569 
570 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
571 					 struct ocfs2_extent_block *eb);
572 static void ocfs2_adjust_rightmost_records(handle_t *handle,
573 					   struct ocfs2_extent_tree *et,
574 					   struct ocfs2_path *path,
575 					   struct ocfs2_extent_rec *insert_rec);
576 /*
577  * Reset the actual path elements so that we can re-use the structure
578  * to build another path. Generally, this involves freeing the buffer
579  * heads.
580  */
581 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
582 {
583 	int i, start = 0, depth = 0;
584 	struct ocfs2_path_item *node;
585 
586 	if (keep_root)
587 		start = 1;
588 
589 	for(i = start; i < path_num_items(path); i++) {
590 		node = &path->p_node[i];
591 
592 		brelse(node->bh);
593 		node->bh = NULL;
594 		node->el = NULL;
595 	}
596 
597 	/*
598 	 * Tree depth may change during truncate, or insert. If we're
599 	 * keeping the root extent list, then make sure that our path
600 	 * structure reflects the proper depth.
601 	 */
602 	if (keep_root)
603 		depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
604 	else
605 		path_root_access(path) = NULL;
606 
607 	path->p_tree_depth = depth;
608 }
609 
610 void ocfs2_free_path(struct ocfs2_path *path)
611 {
612 	if (path) {
613 		ocfs2_reinit_path(path, 0);
614 		kfree(path);
615 	}
616 }
617 
618 /*
619  * All the elements of src into dest. After this call, src could be freed
620  * without affecting dest.
621  *
622  * Both paths should have the same root. Any non-root elements of dest
623  * will be freed.
624  */
625 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
626 {
627 	int i;
628 
629 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
630 	BUG_ON(path_root_el(dest) != path_root_el(src));
631 	BUG_ON(path_root_access(dest) != path_root_access(src));
632 
633 	ocfs2_reinit_path(dest, 1);
634 
635 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
636 		dest->p_node[i].bh = src->p_node[i].bh;
637 		dest->p_node[i].el = src->p_node[i].el;
638 
639 		if (dest->p_node[i].bh)
640 			get_bh(dest->p_node[i].bh);
641 	}
642 }
643 
644 /*
645  * Make the *dest path the same as src and re-initialize src path to
646  * have a root only.
647  */
648 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
649 {
650 	int i;
651 
652 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
653 	BUG_ON(path_root_access(dest) != path_root_access(src));
654 
655 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
656 		brelse(dest->p_node[i].bh);
657 
658 		dest->p_node[i].bh = src->p_node[i].bh;
659 		dest->p_node[i].el = src->p_node[i].el;
660 
661 		src->p_node[i].bh = NULL;
662 		src->p_node[i].el = NULL;
663 	}
664 }
665 
666 /*
667  * Insert an extent block at given index.
668  *
669  * This will not take an additional reference on eb_bh.
670  */
671 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
672 					struct buffer_head *eb_bh)
673 {
674 	struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
675 
676 	/*
677 	 * Right now, no root bh is an extent block, so this helps
678 	 * catch code errors with dinode trees. The assertion can be
679 	 * safely removed if we ever need to insert extent block
680 	 * structures at the root.
681 	 */
682 	BUG_ON(index == 0);
683 
684 	path->p_node[index].bh = eb_bh;
685 	path->p_node[index].el = &eb->h_list;
686 }
687 
688 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
689 					 struct ocfs2_extent_list *root_el,
690 					 ocfs2_journal_access_func access)
691 {
692 	struct ocfs2_path *path;
693 
694 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
695 
696 	path = kzalloc(sizeof(*path), GFP_NOFS);
697 	if (path) {
698 		path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
699 		get_bh(root_bh);
700 		path_root_bh(path) = root_bh;
701 		path_root_el(path) = root_el;
702 		path_root_access(path) = access;
703 	}
704 
705 	return path;
706 }
707 
708 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
709 {
710 	return ocfs2_new_path(path_root_bh(path), path_root_el(path),
711 			      path_root_access(path));
712 }
713 
714 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
715 {
716 	return ocfs2_new_path(et->et_root_bh, et->et_root_el,
717 			      et->et_root_journal_access);
718 }
719 
720 /*
721  * Journal the buffer at depth idx.  All idx>0 are extent_blocks,
722  * otherwise it's the root_access function.
723  *
724  * I don't like the way this function's name looks next to
725  * ocfs2_journal_access_path(), but I don't have a better one.
726  */
727 int ocfs2_path_bh_journal_access(handle_t *handle,
728 				 struct ocfs2_caching_info *ci,
729 				 struct ocfs2_path *path,
730 				 int idx)
731 {
732 	ocfs2_journal_access_func access = path_root_access(path);
733 
734 	if (!access)
735 		access = ocfs2_journal_access;
736 
737 	if (idx)
738 		access = ocfs2_journal_access_eb;
739 
740 	return access(handle, ci, path->p_node[idx].bh,
741 		      OCFS2_JOURNAL_ACCESS_WRITE);
742 }
743 
744 /*
745  * Convenience function to journal all components in a path.
746  */
747 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci,
748 			      handle_t *handle,
749 			      struct ocfs2_path *path)
750 {
751 	int i, ret = 0;
752 
753 	if (!path)
754 		goto out;
755 
756 	for(i = 0; i < path_num_items(path); i++) {
757 		ret = ocfs2_path_bh_journal_access(handle, ci, path, i);
758 		if (ret < 0) {
759 			mlog_errno(ret);
760 			goto out;
761 		}
762 	}
763 
764 out:
765 	return ret;
766 }
767 
768 /*
769  * Return the index of the extent record which contains cluster #v_cluster.
770  * -1 is returned if it was not found.
771  *
772  * Should work fine on interior and exterior nodes.
773  */
774 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
775 {
776 	int ret = -1;
777 	int i;
778 	struct ocfs2_extent_rec *rec;
779 	u32 rec_end, rec_start, clusters;
780 
781 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
782 		rec = &el->l_recs[i];
783 
784 		rec_start = le32_to_cpu(rec->e_cpos);
785 		clusters = ocfs2_rec_clusters(el, rec);
786 
787 		rec_end = rec_start + clusters;
788 
789 		if (v_cluster >= rec_start && v_cluster < rec_end) {
790 			ret = i;
791 			break;
792 		}
793 	}
794 
795 	return ret;
796 }
797 
798 /*
799  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
800  * ocfs2_extent_rec_contig only work properly against leaf nodes!
801  */
802 static int ocfs2_block_extent_contig(struct super_block *sb,
803 				     struct ocfs2_extent_rec *ext,
804 				     u64 blkno)
805 {
806 	u64 blk_end = le64_to_cpu(ext->e_blkno);
807 
808 	blk_end += ocfs2_clusters_to_blocks(sb,
809 				    le16_to_cpu(ext->e_leaf_clusters));
810 
811 	return blkno == blk_end;
812 }
813 
814 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
815 				  struct ocfs2_extent_rec *right)
816 {
817 	u32 left_range;
818 
819 	left_range = le32_to_cpu(left->e_cpos) +
820 		le16_to_cpu(left->e_leaf_clusters);
821 
822 	return (left_range == le32_to_cpu(right->e_cpos));
823 }
824 
825 static enum ocfs2_contig_type
826 	ocfs2_extent_rec_contig(struct super_block *sb,
827 				struct ocfs2_extent_rec *ext,
828 				struct ocfs2_extent_rec *insert_rec)
829 {
830 	u64 blkno = le64_to_cpu(insert_rec->e_blkno);
831 
832 	/*
833 	 * Refuse to coalesce extent records with different flag
834 	 * fields - we don't want to mix unwritten extents with user
835 	 * data.
836 	 */
837 	if (ext->e_flags != insert_rec->e_flags)
838 		return CONTIG_NONE;
839 
840 	if (ocfs2_extents_adjacent(ext, insert_rec) &&
841 	    ocfs2_block_extent_contig(sb, ext, blkno))
842 			return CONTIG_RIGHT;
843 
844 	blkno = le64_to_cpu(ext->e_blkno);
845 	if (ocfs2_extents_adjacent(insert_rec, ext) &&
846 	    ocfs2_block_extent_contig(sb, insert_rec, blkno))
847 		return CONTIG_LEFT;
848 
849 	return CONTIG_NONE;
850 }
851 
852 /*
853  * NOTE: We can have pretty much any combination of contiguousness and
854  * appending.
855  *
856  * The usefulness of APPEND_TAIL is more in that it lets us know that
857  * we'll have to update the path to that leaf.
858  */
859 enum ocfs2_append_type {
860 	APPEND_NONE = 0,
861 	APPEND_TAIL,
862 };
863 
864 enum ocfs2_split_type {
865 	SPLIT_NONE = 0,
866 	SPLIT_LEFT,
867 	SPLIT_RIGHT,
868 };
869 
870 struct ocfs2_insert_type {
871 	enum ocfs2_split_type	ins_split;
872 	enum ocfs2_append_type	ins_appending;
873 	enum ocfs2_contig_type	ins_contig;
874 	int			ins_contig_index;
875 	int			ins_tree_depth;
876 };
877 
878 struct ocfs2_merge_ctxt {
879 	enum ocfs2_contig_type	c_contig_type;
880 	int			c_has_empty_extent;
881 	int			c_split_covers_rec;
882 };
883 
884 static int ocfs2_validate_extent_block(struct super_block *sb,
885 				       struct buffer_head *bh)
886 {
887 	int rc;
888 	struct ocfs2_extent_block *eb =
889 		(struct ocfs2_extent_block *)bh->b_data;
890 
891 	trace_ocfs2_validate_extent_block((unsigned long long)bh->b_blocknr);
892 
893 	BUG_ON(!buffer_uptodate(bh));
894 
895 	/*
896 	 * If the ecc fails, we return the error but otherwise
897 	 * leave the filesystem running.  We know any error is
898 	 * local to this block.
899 	 */
900 	rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
901 	if (rc) {
902 		mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
903 		     (unsigned long long)bh->b_blocknr);
904 		return rc;
905 	}
906 
907 	/*
908 	 * Errors after here are fatal.
909 	 */
910 
911 	if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
912 		rc = ocfs2_error(sb,
913 				 "Extent block #%llu has bad signature %.*s\n",
914 				 (unsigned long long)bh->b_blocknr, 7,
915 				 eb->h_signature);
916 		goto bail;
917 	}
918 
919 	if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
920 		rc = ocfs2_error(sb,
921 				 "Extent block #%llu has an invalid h_blkno of %llu\n",
922 				 (unsigned long long)bh->b_blocknr,
923 				 (unsigned long long)le64_to_cpu(eb->h_blkno));
924 		goto bail;
925 	}
926 
927 	if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
928 		rc = ocfs2_error(sb,
929 				 "Extent block #%llu has an invalid h_fs_generation of #%u\n",
930 				 (unsigned long long)bh->b_blocknr,
931 				 le32_to_cpu(eb->h_fs_generation));
932 		goto bail;
933 	}
934 bail:
935 	return rc;
936 }
937 
938 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno,
939 			    struct buffer_head **bh)
940 {
941 	int rc;
942 	struct buffer_head *tmp = *bh;
943 
944 	rc = ocfs2_read_block(ci, eb_blkno, &tmp,
945 			      ocfs2_validate_extent_block);
946 
947 	/* If ocfs2_read_block() got us a new bh, pass it up. */
948 	if (!rc && !*bh)
949 		*bh = tmp;
950 
951 	return rc;
952 }
953 
954 
955 /*
956  * How many free extents have we got before we need more meta data?
957  */
958 int ocfs2_num_free_extents(struct ocfs2_extent_tree *et)
959 {
960 	int retval;
961 	struct ocfs2_extent_list *el = NULL;
962 	struct ocfs2_extent_block *eb;
963 	struct buffer_head *eb_bh = NULL;
964 	u64 last_eb_blk = 0;
965 
966 	el = et->et_root_el;
967 	last_eb_blk = ocfs2_et_get_last_eb_blk(et);
968 
969 	if (last_eb_blk) {
970 		retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk,
971 						 &eb_bh);
972 		if (retval < 0) {
973 			mlog_errno(retval);
974 			goto bail;
975 		}
976 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
977 		el = &eb->h_list;
978 	}
979 
980 	BUG_ON(el->l_tree_depth != 0);
981 
982 	retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
983 bail:
984 	brelse(eb_bh);
985 
986 	trace_ocfs2_num_free_extents(retval);
987 	return retval;
988 }
989 
990 /* expects array to already be allocated
991  *
992  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
993  * l_count for you
994  */
995 static int ocfs2_create_new_meta_bhs(handle_t *handle,
996 				     struct ocfs2_extent_tree *et,
997 				     int wanted,
998 				     struct ocfs2_alloc_context *meta_ac,
999 				     struct buffer_head *bhs[])
1000 {
1001 	int count, status, i;
1002 	u16 suballoc_bit_start;
1003 	u32 num_got;
1004 	u64 suballoc_loc, first_blkno;
1005 	struct ocfs2_super *osb =
1006 		OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
1007 	struct ocfs2_extent_block *eb;
1008 
1009 	count = 0;
1010 	while (count < wanted) {
1011 		status = ocfs2_claim_metadata(handle,
1012 					      meta_ac,
1013 					      wanted - count,
1014 					      &suballoc_loc,
1015 					      &suballoc_bit_start,
1016 					      &num_got,
1017 					      &first_blkno);
1018 		if (status < 0) {
1019 			mlog_errno(status);
1020 			goto bail;
1021 		}
1022 
1023 		for(i = count;  i < (num_got + count); i++) {
1024 			bhs[i] = sb_getblk(osb->sb, first_blkno);
1025 			if (bhs[i] == NULL) {
1026 				status = -ENOMEM;
1027 				mlog_errno(status);
1028 				goto bail;
1029 			}
1030 			ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]);
1031 
1032 			status = ocfs2_journal_access_eb(handle, et->et_ci,
1033 							 bhs[i],
1034 							 OCFS2_JOURNAL_ACCESS_CREATE);
1035 			if (status < 0) {
1036 				mlog_errno(status);
1037 				goto bail;
1038 			}
1039 
1040 			memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
1041 			eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
1042 			/* Ok, setup the minimal stuff here. */
1043 			strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
1044 			eb->h_blkno = cpu_to_le64(first_blkno);
1045 			eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
1046 			eb->h_suballoc_slot =
1047 				cpu_to_le16(meta_ac->ac_alloc_slot);
1048 			eb->h_suballoc_loc = cpu_to_le64(suballoc_loc);
1049 			eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
1050 			eb->h_list.l_count =
1051 				cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
1052 
1053 			suballoc_bit_start++;
1054 			first_blkno++;
1055 
1056 			/* We'll also be dirtied by the caller, so
1057 			 * this isn't absolutely necessary. */
1058 			ocfs2_journal_dirty(handle, bhs[i]);
1059 		}
1060 
1061 		count += num_got;
1062 	}
1063 
1064 	status = 0;
1065 bail:
1066 	if (status < 0) {
1067 		for(i = 0; i < wanted; i++) {
1068 			brelse(bhs[i]);
1069 			bhs[i] = NULL;
1070 		}
1071 		mlog_errno(status);
1072 	}
1073 	return status;
1074 }
1075 
1076 /*
1077  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1078  *
1079  * Returns the sum of the rightmost extent rec logical offset and
1080  * cluster count.
1081  *
1082  * ocfs2_add_branch() uses this to determine what logical cluster
1083  * value should be populated into the leftmost new branch records.
1084  *
1085  * ocfs2_shift_tree_depth() uses this to determine the # clusters
1086  * value for the new topmost tree record.
1087  */
1088 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
1089 {
1090 	int i;
1091 
1092 	i = le16_to_cpu(el->l_next_free_rec) - 1;
1093 
1094 	return le32_to_cpu(el->l_recs[i].e_cpos) +
1095 		ocfs2_rec_clusters(el, &el->l_recs[i]);
1096 }
1097 
1098 /*
1099  * Change range of the branches in the right most path according to the leaf
1100  * extent block's rightmost record.
1101  */
1102 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1103 					 struct ocfs2_extent_tree *et)
1104 {
1105 	int status;
1106 	struct ocfs2_path *path = NULL;
1107 	struct ocfs2_extent_list *el;
1108 	struct ocfs2_extent_rec *rec;
1109 
1110 	path = ocfs2_new_path_from_et(et);
1111 	if (!path) {
1112 		status = -ENOMEM;
1113 		return status;
1114 	}
1115 
1116 	status = ocfs2_find_path(et->et_ci, path, UINT_MAX);
1117 	if (status < 0) {
1118 		mlog_errno(status);
1119 		goto out;
1120 	}
1121 
1122 	status = ocfs2_extend_trans(handle, path_num_items(path));
1123 	if (status < 0) {
1124 		mlog_errno(status);
1125 		goto out;
1126 	}
1127 
1128 	status = ocfs2_journal_access_path(et->et_ci, handle, path);
1129 	if (status < 0) {
1130 		mlog_errno(status);
1131 		goto out;
1132 	}
1133 
1134 	el = path_leaf_el(path);
1135 	rec = &el->l_recs[le16_to_cpu(el->l_next_free_rec) - 1];
1136 
1137 	ocfs2_adjust_rightmost_records(handle, et, path, rec);
1138 
1139 out:
1140 	ocfs2_free_path(path);
1141 	return status;
1142 }
1143 
1144 /*
1145  * Add an entire tree branch to our inode. eb_bh is the extent block
1146  * to start at, if we don't want to start the branch at the root
1147  * structure.
1148  *
1149  * last_eb_bh is required as we have to update it's next_leaf pointer
1150  * for the new last extent block.
1151  *
1152  * the new branch will be 'empty' in the sense that every block will
1153  * contain a single record with cluster count == 0.
1154  */
1155 static int ocfs2_add_branch(handle_t *handle,
1156 			    struct ocfs2_extent_tree *et,
1157 			    struct buffer_head *eb_bh,
1158 			    struct buffer_head **last_eb_bh,
1159 			    struct ocfs2_alloc_context *meta_ac)
1160 {
1161 	int status, new_blocks, i;
1162 	u64 next_blkno, new_last_eb_blk;
1163 	struct buffer_head *bh;
1164 	struct buffer_head **new_eb_bhs = NULL;
1165 	struct ocfs2_extent_block *eb;
1166 	struct ocfs2_extent_list  *eb_el;
1167 	struct ocfs2_extent_list  *el;
1168 	u32 new_cpos, root_end;
1169 
1170 	BUG_ON(!last_eb_bh || !*last_eb_bh);
1171 
1172 	if (eb_bh) {
1173 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1174 		el = &eb->h_list;
1175 	} else
1176 		el = et->et_root_el;
1177 
1178 	/* we never add a branch to a leaf. */
1179 	BUG_ON(!el->l_tree_depth);
1180 
1181 	new_blocks = le16_to_cpu(el->l_tree_depth);
1182 
1183 	eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1184 	new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1185 	root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1186 
1187 	/*
1188 	 * If there is a gap before the root end and the real end
1189 	 * of the righmost leaf block, we need to remove the gap
1190 	 * between new_cpos and root_end first so that the tree
1191 	 * is consistent after we add a new branch(it will start
1192 	 * from new_cpos).
1193 	 */
1194 	if (root_end > new_cpos) {
1195 		trace_ocfs2_adjust_rightmost_branch(
1196 			(unsigned long long)
1197 			ocfs2_metadata_cache_owner(et->et_ci),
1198 			root_end, new_cpos);
1199 
1200 		status = ocfs2_adjust_rightmost_branch(handle, et);
1201 		if (status) {
1202 			mlog_errno(status);
1203 			goto bail;
1204 		}
1205 	}
1206 
1207 	/* allocate the number of new eb blocks we need */
1208 	new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1209 			     GFP_KERNEL);
1210 	if (!new_eb_bhs) {
1211 		status = -ENOMEM;
1212 		mlog_errno(status);
1213 		goto bail;
1214 	}
1215 
1216 	status = ocfs2_create_new_meta_bhs(handle, et, new_blocks,
1217 					   meta_ac, new_eb_bhs);
1218 	if (status < 0) {
1219 		mlog_errno(status);
1220 		goto bail;
1221 	}
1222 
1223 	/* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1224 	 * linked with the rest of the tree.
1225 	 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1226 	 *
1227 	 * when we leave the loop, new_last_eb_blk will point to the
1228 	 * newest leaf, and next_blkno will point to the topmost extent
1229 	 * block. */
1230 	next_blkno = new_last_eb_blk = 0;
1231 	for(i = 0; i < new_blocks; i++) {
1232 		bh = new_eb_bhs[i];
1233 		eb = (struct ocfs2_extent_block *) bh->b_data;
1234 		/* ocfs2_create_new_meta_bhs() should create it right! */
1235 		BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1236 		eb_el = &eb->h_list;
1237 
1238 		status = ocfs2_journal_access_eb(handle, et->et_ci, bh,
1239 						 OCFS2_JOURNAL_ACCESS_CREATE);
1240 		if (status < 0) {
1241 			mlog_errno(status);
1242 			goto bail;
1243 		}
1244 
1245 		eb->h_next_leaf_blk = 0;
1246 		eb_el->l_tree_depth = cpu_to_le16(i);
1247 		eb_el->l_next_free_rec = cpu_to_le16(1);
1248 		/*
1249 		 * This actually counts as an empty extent as
1250 		 * c_clusters == 0
1251 		 */
1252 		eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1253 		eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1254 		/*
1255 		 * eb_el isn't always an interior node, but even leaf
1256 		 * nodes want a zero'd flags and reserved field so
1257 		 * this gets the whole 32 bits regardless of use.
1258 		 */
1259 		eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1260 		if (!eb_el->l_tree_depth)
1261 			new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1262 
1263 		ocfs2_journal_dirty(handle, bh);
1264 		next_blkno = le64_to_cpu(eb->h_blkno);
1265 	}
1266 
1267 	/* This is a bit hairy. We want to update up to three blocks
1268 	 * here without leaving any of them in an inconsistent state
1269 	 * in case of error. We don't have to worry about
1270 	 * journal_dirty erroring as it won't unless we've aborted the
1271 	 * handle (in which case we would never be here) so reserving
1272 	 * the write with journal_access is all we need to do. */
1273 	status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh,
1274 					 OCFS2_JOURNAL_ACCESS_WRITE);
1275 	if (status < 0) {
1276 		mlog_errno(status);
1277 		goto bail;
1278 	}
1279 	status = ocfs2_et_root_journal_access(handle, et,
1280 					      OCFS2_JOURNAL_ACCESS_WRITE);
1281 	if (status < 0) {
1282 		mlog_errno(status);
1283 		goto bail;
1284 	}
1285 	if (eb_bh) {
1286 		status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh,
1287 						 OCFS2_JOURNAL_ACCESS_WRITE);
1288 		if (status < 0) {
1289 			mlog_errno(status);
1290 			goto bail;
1291 		}
1292 	}
1293 
1294 	/* Link the new branch into the rest of the tree (el will
1295 	 * either be on the root_bh, or the extent block passed in. */
1296 	i = le16_to_cpu(el->l_next_free_rec);
1297 	el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1298 	el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1299 	el->l_recs[i].e_int_clusters = 0;
1300 	le16_add_cpu(&el->l_next_free_rec, 1);
1301 
1302 	/* fe needs a new last extent block pointer, as does the
1303 	 * next_leaf on the previously last-extent-block. */
1304 	ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1305 
1306 	eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1307 	eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1308 
1309 	ocfs2_journal_dirty(handle, *last_eb_bh);
1310 	ocfs2_journal_dirty(handle, et->et_root_bh);
1311 	if (eb_bh)
1312 		ocfs2_journal_dirty(handle, eb_bh);
1313 
1314 	/*
1315 	 * Some callers want to track the rightmost leaf so pass it
1316 	 * back here.
1317 	 */
1318 	brelse(*last_eb_bh);
1319 	get_bh(new_eb_bhs[0]);
1320 	*last_eb_bh = new_eb_bhs[0];
1321 
1322 	status = 0;
1323 bail:
1324 	if (new_eb_bhs) {
1325 		for (i = 0; i < new_blocks; i++)
1326 			brelse(new_eb_bhs[i]);
1327 		kfree(new_eb_bhs);
1328 	}
1329 
1330 	return status;
1331 }
1332 
1333 /*
1334  * adds another level to the allocation tree.
1335  * returns back the new extent block so you can add a branch to it
1336  * after this call.
1337  */
1338 static int ocfs2_shift_tree_depth(handle_t *handle,
1339 				  struct ocfs2_extent_tree *et,
1340 				  struct ocfs2_alloc_context *meta_ac,
1341 				  struct buffer_head **ret_new_eb_bh)
1342 {
1343 	int status, i;
1344 	u32 new_clusters;
1345 	struct buffer_head *new_eb_bh = NULL;
1346 	struct ocfs2_extent_block *eb;
1347 	struct ocfs2_extent_list  *root_el;
1348 	struct ocfs2_extent_list  *eb_el;
1349 
1350 	status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac,
1351 					   &new_eb_bh);
1352 	if (status < 0) {
1353 		mlog_errno(status);
1354 		goto bail;
1355 	}
1356 
1357 	eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1358 	/* ocfs2_create_new_meta_bhs() should create it right! */
1359 	BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1360 
1361 	eb_el = &eb->h_list;
1362 	root_el = et->et_root_el;
1363 
1364 	status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh,
1365 					 OCFS2_JOURNAL_ACCESS_CREATE);
1366 	if (status < 0) {
1367 		mlog_errno(status);
1368 		goto bail;
1369 	}
1370 
1371 	/* copy the root extent list data into the new extent block */
1372 	eb_el->l_tree_depth = root_el->l_tree_depth;
1373 	eb_el->l_next_free_rec = root_el->l_next_free_rec;
1374 	for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1375 		eb_el->l_recs[i] = root_el->l_recs[i];
1376 
1377 	ocfs2_journal_dirty(handle, new_eb_bh);
1378 
1379 	status = ocfs2_et_root_journal_access(handle, et,
1380 					      OCFS2_JOURNAL_ACCESS_WRITE);
1381 	if (status < 0) {
1382 		mlog_errno(status);
1383 		goto bail;
1384 	}
1385 
1386 	new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1387 
1388 	/* update root_bh now */
1389 	le16_add_cpu(&root_el->l_tree_depth, 1);
1390 	root_el->l_recs[0].e_cpos = 0;
1391 	root_el->l_recs[0].e_blkno = eb->h_blkno;
1392 	root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1393 	for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1394 		memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1395 	root_el->l_next_free_rec = cpu_to_le16(1);
1396 
1397 	/* If this is our 1st tree depth shift, then last_eb_blk
1398 	 * becomes the allocated extent block */
1399 	if (root_el->l_tree_depth == cpu_to_le16(1))
1400 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1401 
1402 	ocfs2_journal_dirty(handle, et->et_root_bh);
1403 
1404 	*ret_new_eb_bh = new_eb_bh;
1405 	new_eb_bh = NULL;
1406 	status = 0;
1407 bail:
1408 	brelse(new_eb_bh);
1409 
1410 	return status;
1411 }
1412 
1413 /*
1414  * Should only be called when there is no space left in any of the
1415  * leaf nodes. What we want to do is find the lowest tree depth
1416  * non-leaf extent block with room for new records. There are three
1417  * valid results of this search:
1418  *
1419  * 1) a lowest extent block is found, then we pass it back in
1420  *    *lowest_eb_bh and return '0'
1421  *
1422  * 2) the search fails to find anything, but the root_el has room. We
1423  *    pass NULL back in *lowest_eb_bh, but still return '0'
1424  *
1425  * 3) the search fails to find anything AND the root_el is full, in
1426  *    which case we return > 0
1427  *
1428  * return status < 0 indicates an error.
1429  */
1430 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et,
1431 				    struct buffer_head **target_bh)
1432 {
1433 	int status = 0, i;
1434 	u64 blkno;
1435 	struct ocfs2_extent_block *eb;
1436 	struct ocfs2_extent_list  *el;
1437 	struct buffer_head *bh = NULL;
1438 	struct buffer_head *lowest_bh = NULL;
1439 
1440 	*target_bh = NULL;
1441 
1442 	el = et->et_root_el;
1443 
1444 	while(le16_to_cpu(el->l_tree_depth) > 1) {
1445 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1446 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1447 				    "Owner %llu has empty extent list (next_free_rec == 0)\n",
1448 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
1449 			status = -EIO;
1450 			goto bail;
1451 		}
1452 		i = le16_to_cpu(el->l_next_free_rec) - 1;
1453 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1454 		if (!blkno) {
1455 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1456 				    "Owner %llu has extent list where extent # %d has no physical block start\n",
1457 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i);
1458 			status = -EIO;
1459 			goto bail;
1460 		}
1461 
1462 		brelse(bh);
1463 		bh = NULL;
1464 
1465 		status = ocfs2_read_extent_block(et->et_ci, blkno, &bh);
1466 		if (status < 0) {
1467 			mlog_errno(status);
1468 			goto bail;
1469 		}
1470 
1471 		eb = (struct ocfs2_extent_block *) bh->b_data;
1472 		el = &eb->h_list;
1473 
1474 		if (le16_to_cpu(el->l_next_free_rec) <
1475 		    le16_to_cpu(el->l_count)) {
1476 			brelse(lowest_bh);
1477 			lowest_bh = bh;
1478 			get_bh(lowest_bh);
1479 		}
1480 	}
1481 
1482 	/* If we didn't find one and the fe doesn't have any room,
1483 	 * then return '1' */
1484 	el = et->et_root_el;
1485 	if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1486 		status = 1;
1487 
1488 	*target_bh = lowest_bh;
1489 bail:
1490 	brelse(bh);
1491 
1492 	return status;
1493 }
1494 
1495 /*
1496  * Grow a b-tree so that it has more records.
1497  *
1498  * We might shift the tree depth in which case existing paths should
1499  * be considered invalid.
1500  *
1501  * Tree depth after the grow is returned via *final_depth.
1502  *
1503  * *last_eb_bh will be updated by ocfs2_add_branch().
1504  */
1505 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et,
1506 			   int *final_depth, struct buffer_head **last_eb_bh,
1507 			   struct ocfs2_alloc_context *meta_ac)
1508 {
1509 	int ret, shift;
1510 	struct ocfs2_extent_list *el = et->et_root_el;
1511 	int depth = le16_to_cpu(el->l_tree_depth);
1512 	struct buffer_head *bh = NULL;
1513 
1514 	BUG_ON(meta_ac == NULL);
1515 
1516 	shift = ocfs2_find_branch_target(et, &bh);
1517 	if (shift < 0) {
1518 		ret = shift;
1519 		mlog_errno(ret);
1520 		goto out;
1521 	}
1522 
1523 	/* We traveled all the way to the bottom of the allocation tree
1524 	 * and didn't find room for any more extents - we need to add
1525 	 * another tree level */
1526 	if (shift) {
1527 		BUG_ON(bh);
1528 		trace_ocfs2_grow_tree(
1529 			(unsigned long long)
1530 			ocfs2_metadata_cache_owner(et->et_ci),
1531 			depth);
1532 
1533 		/* ocfs2_shift_tree_depth will return us a buffer with
1534 		 * the new extent block (so we can pass that to
1535 		 * ocfs2_add_branch). */
1536 		ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh);
1537 		if (ret < 0) {
1538 			mlog_errno(ret);
1539 			goto out;
1540 		}
1541 		depth++;
1542 		if (depth == 1) {
1543 			/*
1544 			 * Special case: we have room now if we shifted from
1545 			 * tree_depth 0, so no more work needs to be done.
1546 			 *
1547 			 * We won't be calling add_branch, so pass
1548 			 * back *last_eb_bh as the new leaf. At depth
1549 			 * zero, it should always be null so there's
1550 			 * no reason to brelse.
1551 			 */
1552 			BUG_ON(*last_eb_bh);
1553 			get_bh(bh);
1554 			*last_eb_bh = bh;
1555 			goto out;
1556 		}
1557 	}
1558 
1559 	/* call ocfs2_add_branch to add the final part of the tree with
1560 	 * the new data. */
1561 	ret = ocfs2_add_branch(handle, et, bh, last_eb_bh,
1562 			       meta_ac);
1563 	if (ret < 0) {
1564 		mlog_errno(ret);
1565 		goto out;
1566 	}
1567 
1568 out:
1569 	if (final_depth)
1570 		*final_depth = depth;
1571 	brelse(bh);
1572 	return ret;
1573 }
1574 
1575 /*
1576  * This function will discard the rightmost extent record.
1577  */
1578 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1579 {
1580 	int next_free = le16_to_cpu(el->l_next_free_rec);
1581 	int count = le16_to_cpu(el->l_count);
1582 	unsigned int num_bytes;
1583 
1584 	BUG_ON(!next_free);
1585 	/* This will cause us to go off the end of our extent list. */
1586 	BUG_ON(next_free >= count);
1587 
1588 	num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1589 
1590 	memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1591 }
1592 
1593 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1594 			      struct ocfs2_extent_rec *insert_rec)
1595 {
1596 	int i, insert_index, next_free, has_empty, num_bytes;
1597 	u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1598 	struct ocfs2_extent_rec *rec;
1599 
1600 	next_free = le16_to_cpu(el->l_next_free_rec);
1601 	has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1602 
1603 	BUG_ON(!next_free);
1604 
1605 	/* The tree code before us didn't allow enough room in the leaf. */
1606 	BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1607 
1608 	/*
1609 	 * The easiest way to approach this is to just remove the
1610 	 * empty extent and temporarily decrement next_free.
1611 	 */
1612 	if (has_empty) {
1613 		/*
1614 		 * If next_free was 1 (only an empty extent), this
1615 		 * loop won't execute, which is fine. We still want
1616 		 * the decrement above to happen.
1617 		 */
1618 		for(i = 0; i < (next_free - 1); i++)
1619 			el->l_recs[i] = el->l_recs[i+1];
1620 
1621 		next_free--;
1622 	}
1623 
1624 	/*
1625 	 * Figure out what the new record index should be.
1626 	 */
1627 	for(i = 0; i < next_free; i++) {
1628 		rec = &el->l_recs[i];
1629 
1630 		if (insert_cpos < le32_to_cpu(rec->e_cpos))
1631 			break;
1632 	}
1633 	insert_index = i;
1634 
1635 	trace_ocfs2_rotate_leaf(insert_cpos, insert_index,
1636 				has_empty, next_free,
1637 				le16_to_cpu(el->l_count));
1638 
1639 	BUG_ON(insert_index < 0);
1640 	BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1641 	BUG_ON(insert_index > next_free);
1642 
1643 	/*
1644 	 * No need to memmove if we're just adding to the tail.
1645 	 */
1646 	if (insert_index != next_free) {
1647 		BUG_ON(next_free >= le16_to_cpu(el->l_count));
1648 
1649 		num_bytes = next_free - insert_index;
1650 		num_bytes *= sizeof(struct ocfs2_extent_rec);
1651 		memmove(&el->l_recs[insert_index + 1],
1652 			&el->l_recs[insert_index],
1653 			num_bytes);
1654 	}
1655 
1656 	/*
1657 	 * Either we had an empty extent, and need to re-increment or
1658 	 * there was no empty extent on a non full rightmost leaf node,
1659 	 * in which case we still need to increment.
1660 	 */
1661 	next_free++;
1662 	el->l_next_free_rec = cpu_to_le16(next_free);
1663 	/*
1664 	 * Make sure none of the math above just messed up our tree.
1665 	 */
1666 	BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1667 
1668 	el->l_recs[insert_index] = *insert_rec;
1669 
1670 }
1671 
1672 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1673 {
1674 	int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1675 
1676 	BUG_ON(num_recs == 0);
1677 
1678 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1679 		num_recs--;
1680 		size = num_recs * sizeof(struct ocfs2_extent_rec);
1681 		memmove(&el->l_recs[0], &el->l_recs[1], size);
1682 		memset(&el->l_recs[num_recs], 0,
1683 		       sizeof(struct ocfs2_extent_rec));
1684 		el->l_next_free_rec = cpu_to_le16(num_recs);
1685 	}
1686 }
1687 
1688 /*
1689  * Create an empty extent record .
1690  *
1691  * l_next_free_rec may be updated.
1692  *
1693  * If an empty extent already exists do nothing.
1694  */
1695 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1696 {
1697 	int next_free = le16_to_cpu(el->l_next_free_rec);
1698 
1699 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1700 
1701 	if (next_free == 0)
1702 		goto set_and_inc;
1703 
1704 	if (ocfs2_is_empty_extent(&el->l_recs[0]))
1705 		return;
1706 
1707 	mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1708 			"Asked to create an empty extent in a full list:\n"
1709 			"count = %u, tree depth = %u",
1710 			le16_to_cpu(el->l_count),
1711 			le16_to_cpu(el->l_tree_depth));
1712 
1713 	ocfs2_shift_records_right(el);
1714 
1715 set_and_inc:
1716 	le16_add_cpu(&el->l_next_free_rec, 1);
1717 	memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1718 }
1719 
1720 /*
1721  * For a rotation which involves two leaf nodes, the "root node" is
1722  * the lowest level tree node which contains a path to both leafs. This
1723  * resulting set of information can be used to form a complete "subtree"
1724  *
1725  * This function is passed two full paths from the dinode down to a
1726  * pair of adjacent leaves. It's task is to figure out which path
1727  * index contains the subtree root - this can be the root index itself
1728  * in a worst-case rotation.
1729  *
1730  * The array index of the subtree root is passed back.
1731  */
1732 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et,
1733 			    struct ocfs2_path *left,
1734 			    struct ocfs2_path *right)
1735 {
1736 	int i = 0;
1737 
1738 	/*
1739 	 * Check that the caller passed in two paths from the same tree.
1740 	 */
1741 	BUG_ON(path_root_bh(left) != path_root_bh(right));
1742 
1743 	do {
1744 		i++;
1745 
1746 		/*
1747 		 * The caller didn't pass two adjacent paths.
1748 		 */
1749 		mlog_bug_on_msg(i > left->p_tree_depth,
1750 				"Owner %llu, left depth %u, right depth %u\n"
1751 				"left leaf blk %llu, right leaf blk %llu\n",
1752 				(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
1753 				left->p_tree_depth, right->p_tree_depth,
1754 				(unsigned long long)path_leaf_bh(left)->b_blocknr,
1755 				(unsigned long long)path_leaf_bh(right)->b_blocknr);
1756 	} while (left->p_node[i].bh->b_blocknr ==
1757 		 right->p_node[i].bh->b_blocknr);
1758 
1759 	return i - 1;
1760 }
1761 
1762 typedef void (path_insert_t)(void *, struct buffer_head *);
1763 
1764 /*
1765  * Traverse a btree path in search of cpos, starting at root_el.
1766  *
1767  * This code can be called with a cpos larger than the tree, in which
1768  * case it will return the rightmost path.
1769  */
1770 static int __ocfs2_find_path(struct ocfs2_caching_info *ci,
1771 			     struct ocfs2_extent_list *root_el, u32 cpos,
1772 			     path_insert_t *func, void *data)
1773 {
1774 	int i, ret = 0;
1775 	u32 range;
1776 	u64 blkno;
1777 	struct buffer_head *bh = NULL;
1778 	struct ocfs2_extent_block *eb;
1779 	struct ocfs2_extent_list *el;
1780 	struct ocfs2_extent_rec *rec;
1781 
1782 	el = root_el;
1783 	while (el->l_tree_depth) {
1784 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1785 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1786 				    "Owner %llu has empty extent list at depth %u\n",
1787 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1788 				    le16_to_cpu(el->l_tree_depth));
1789 			ret = -EROFS;
1790 			goto out;
1791 
1792 		}
1793 
1794 		for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1795 			rec = &el->l_recs[i];
1796 
1797 			/*
1798 			 * In the case that cpos is off the allocation
1799 			 * tree, this should just wind up returning the
1800 			 * rightmost record.
1801 			 */
1802 			range = le32_to_cpu(rec->e_cpos) +
1803 				ocfs2_rec_clusters(el, rec);
1804 			if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1805 			    break;
1806 		}
1807 
1808 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1809 		if (blkno == 0) {
1810 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1811 				    "Owner %llu has bad blkno in extent list at depth %u (index %d)\n",
1812 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1813 				    le16_to_cpu(el->l_tree_depth), i);
1814 			ret = -EROFS;
1815 			goto out;
1816 		}
1817 
1818 		brelse(bh);
1819 		bh = NULL;
1820 		ret = ocfs2_read_extent_block(ci, blkno, &bh);
1821 		if (ret) {
1822 			mlog_errno(ret);
1823 			goto out;
1824 		}
1825 
1826 		eb = (struct ocfs2_extent_block *) bh->b_data;
1827 		el = &eb->h_list;
1828 
1829 		if (le16_to_cpu(el->l_next_free_rec) >
1830 		    le16_to_cpu(el->l_count)) {
1831 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1832 				    "Owner %llu has bad count in extent list at block %llu (next free=%u, count=%u)\n",
1833 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1834 				    (unsigned long long)bh->b_blocknr,
1835 				    le16_to_cpu(el->l_next_free_rec),
1836 				    le16_to_cpu(el->l_count));
1837 			ret = -EROFS;
1838 			goto out;
1839 		}
1840 
1841 		if (func)
1842 			func(data, bh);
1843 	}
1844 
1845 out:
1846 	/*
1847 	 * Catch any trailing bh that the loop didn't handle.
1848 	 */
1849 	brelse(bh);
1850 
1851 	return ret;
1852 }
1853 
1854 /*
1855  * Given an initialized path (that is, it has a valid root extent
1856  * list), this function will traverse the btree in search of the path
1857  * which would contain cpos.
1858  *
1859  * The path traveled is recorded in the path structure.
1860  *
1861  * Note that this will not do any comparisons on leaf node extent
1862  * records, so it will work fine in the case that we just added a tree
1863  * branch.
1864  */
1865 struct find_path_data {
1866 	int index;
1867 	struct ocfs2_path *path;
1868 };
1869 static void find_path_ins(void *data, struct buffer_head *bh)
1870 {
1871 	struct find_path_data *fp = data;
1872 
1873 	get_bh(bh);
1874 	ocfs2_path_insert_eb(fp->path, fp->index, bh);
1875 	fp->index++;
1876 }
1877 int ocfs2_find_path(struct ocfs2_caching_info *ci,
1878 		    struct ocfs2_path *path, u32 cpos)
1879 {
1880 	struct find_path_data data;
1881 
1882 	data.index = 1;
1883 	data.path = path;
1884 	return __ocfs2_find_path(ci, path_root_el(path), cpos,
1885 				 find_path_ins, &data);
1886 }
1887 
1888 static void find_leaf_ins(void *data, struct buffer_head *bh)
1889 {
1890 	struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1891 	struct ocfs2_extent_list *el = &eb->h_list;
1892 	struct buffer_head **ret = data;
1893 
1894 	/* We want to retain only the leaf block. */
1895 	if (le16_to_cpu(el->l_tree_depth) == 0) {
1896 		get_bh(bh);
1897 		*ret = bh;
1898 	}
1899 }
1900 /*
1901  * Find the leaf block in the tree which would contain cpos. No
1902  * checking of the actual leaf is done.
1903  *
1904  * Some paths want to call this instead of allocating a path structure
1905  * and calling ocfs2_find_path().
1906  *
1907  * This function doesn't handle non btree extent lists.
1908  */
1909 int ocfs2_find_leaf(struct ocfs2_caching_info *ci,
1910 		    struct ocfs2_extent_list *root_el, u32 cpos,
1911 		    struct buffer_head **leaf_bh)
1912 {
1913 	int ret;
1914 	struct buffer_head *bh = NULL;
1915 
1916 	ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh);
1917 	if (ret) {
1918 		mlog_errno(ret);
1919 		goto out;
1920 	}
1921 
1922 	*leaf_bh = bh;
1923 out:
1924 	return ret;
1925 }
1926 
1927 /*
1928  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1929  *
1930  * Basically, we've moved stuff around at the bottom of the tree and
1931  * we need to fix up the extent records above the changes to reflect
1932  * the new changes.
1933  *
1934  * left_rec: the record on the left.
1935  * right_rec: the record to the right of left_rec
1936  * right_child_el: is the child list pointed to by right_rec
1937  *
1938  * By definition, this only works on interior nodes.
1939  */
1940 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1941 				  struct ocfs2_extent_rec *right_rec,
1942 				  struct ocfs2_extent_list *right_child_el)
1943 {
1944 	u32 left_clusters, right_end;
1945 
1946 	/*
1947 	 * Interior nodes never have holes. Their cpos is the cpos of
1948 	 * the leftmost record in their child list. Their cluster
1949 	 * count covers the full theoretical range of their child list
1950 	 * - the range between their cpos and the cpos of the record
1951 	 * immediately to their right.
1952 	 */
1953 	left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1954 	if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1955 		BUG_ON(right_child_el->l_tree_depth);
1956 		BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1957 		left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1958 	}
1959 	left_clusters -= le32_to_cpu(left_rec->e_cpos);
1960 	left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1961 
1962 	/*
1963 	 * Calculate the rightmost cluster count boundary before
1964 	 * moving cpos - we will need to adjust clusters after
1965 	 * updating e_cpos to keep the same highest cluster count.
1966 	 */
1967 	right_end = le32_to_cpu(right_rec->e_cpos);
1968 	right_end += le32_to_cpu(right_rec->e_int_clusters);
1969 
1970 	right_rec->e_cpos = left_rec->e_cpos;
1971 	le32_add_cpu(&right_rec->e_cpos, left_clusters);
1972 
1973 	right_end -= le32_to_cpu(right_rec->e_cpos);
1974 	right_rec->e_int_clusters = cpu_to_le32(right_end);
1975 }
1976 
1977 /*
1978  * Adjust the adjacent root node records involved in a
1979  * rotation. left_el_blkno is passed in as a key so that we can easily
1980  * find it's index in the root list.
1981  */
1982 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1983 				      struct ocfs2_extent_list *left_el,
1984 				      struct ocfs2_extent_list *right_el,
1985 				      u64 left_el_blkno)
1986 {
1987 	int i;
1988 
1989 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1990 	       le16_to_cpu(left_el->l_tree_depth));
1991 
1992 	for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1993 		if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1994 			break;
1995 	}
1996 
1997 	/*
1998 	 * The path walking code should have never returned a root and
1999 	 * two paths which are not adjacent.
2000 	 */
2001 	BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
2002 
2003 	ocfs2_adjust_adjacent_records(&root_el->l_recs[i],
2004 				      &root_el->l_recs[i + 1], right_el);
2005 }
2006 
2007 /*
2008  * We've changed a leaf block (in right_path) and need to reflect that
2009  * change back up the subtree.
2010  *
2011  * This happens in multiple places:
2012  *   - When we've moved an extent record from the left path leaf to the right
2013  *     path leaf to make room for an empty extent in the left path leaf.
2014  *   - When our insert into the right path leaf is at the leftmost edge
2015  *     and requires an update of the path immediately to it's left. This
2016  *     can occur at the end of some types of rotation and appending inserts.
2017  *   - When we've adjusted the last extent record in the left path leaf and the
2018  *     1st extent record in the right path leaf during cross extent block merge.
2019  */
2020 static void ocfs2_complete_edge_insert(handle_t *handle,
2021 				       struct ocfs2_path *left_path,
2022 				       struct ocfs2_path *right_path,
2023 				       int subtree_index)
2024 {
2025 	int i, idx;
2026 	struct ocfs2_extent_list *el, *left_el, *right_el;
2027 	struct ocfs2_extent_rec *left_rec, *right_rec;
2028 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2029 
2030 	/*
2031 	 * Update the counts and position values within all the
2032 	 * interior nodes to reflect the leaf rotation we just did.
2033 	 *
2034 	 * The root node is handled below the loop.
2035 	 *
2036 	 * We begin the loop with right_el and left_el pointing to the
2037 	 * leaf lists and work our way up.
2038 	 *
2039 	 * NOTE: within this loop, left_el and right_el always refer
2040 	 * to the *child* lists.
2041 	 */
2042 	left_el = path_leaf_el(left_path);
2043 	right_el = path_leaf_el(right_path);
2044 	for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
2045 		trace_ocfs2_complete_edge_insert(i);
2046 
2047 		/*
2048 		 * One nice property of knowing that all of these
2049 		 * nodes are below the root is that we only deal with
2050 		 * the leftmost right node record and the rightmost
2051 		 * left node record.
2052 		 */
2053 		el = left_path->p_node[i].el;
2054 		idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2055 		left_rec = &el->l_recs[idx];
2056 
2057 		el = right_path->p_node[i].el;
2058 		right_rec = &el->l_recs[0];
2059 
2060 		ocfs2_adjust_adjacent_records(left_rec, right_rec, right_el);
2061 
2062 		ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2063 		ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2064 
2065 		/*
2066 		 * Setup our list pointers now so that the current
2067 		 * parents become children in the next iteration.
2068 		 */
2069 		left_el = left_path->p_node[i].el;
2070 		right_el = right_path->p_node[i].el;
2071 	}
2072 
2073 	/*
2074 	 * At the root node, adjust the two adjacent records which
2075 	 * begin our path to the leaves.
2076 	 */
2077 
2078 	el = left_path->p_node[subtree_index].el;
2079 	left_el = left_path->p_node[subtree_index + 1].el;
2080 	right_el = right_path->p_node[subtree_index + 1].el;
2081 
2082 	ocfs2_adjust_root_records(el, left_el, right_el,
2083 				  left_path->p_node[subtree_index + 1].bh->b_blocknr);
2084 
2085 	root_bh = left_path->p_node[subtree_index].bh;
2086 
2087 	ocfs2_journal_dirty(handle, root_bh);
2088 }
2089 
2090 static int ocfs2_rotate_subtree_right(handle_t *handle,
2091 				      struct ocfs2_extent_tree *et,
2092 				      struct ocfs2_path *left_path,
2093 				      struct ocfs2_path *right_path,
2094 				      int subtree_index)
2095 {
2096 	int ret, i;
2097 	struct buffer_head *right_leaf_bh;
2098 	struct buffer_head *left_leaf_bh = NULL;
2099 	struct buffer_head *root_bh;
2100 	struct ocfs2_extent_list *right_el, *left_el;
2101 	struct ocfs2_extent_rec move_rec;
2102 
2103 	left_leaf_bh = path_leaf_bh(left_path);
2104 	left_el = path_leaf_el(left_path);
2105 
2106 	if (left_el->l_next_free_rec != left_el->l_count) {
2107 		ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
2108 			    "Inode %llu has non-full interior leaf node %llu (next free = %u)\n",
2109 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2110 			    (unsigned long long)left_leaf_bh->b_blocknr,
2111 			    le16_to_cpu(left_el->l_next_free_rec));
2112 		return -EROFS;
2113 	}
2114 
2115 	/*
2116 	 * This extent block may already have an empty record, so we
2117 	 * return early if so.
2118 	 */
2119 	if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2120 		return 0;
2121 
2122 	root_bh = left_path->p_node[subtree_index].bh;
2123 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2124 
2125 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2126 					   subtree_index);
2127 	if (ret) {
2128 		mlog_errno(ret);
2129 		goto out;
2130 	}
2131 
2132 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2133 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2134 						   right_path, i);
2135 		if (ret) {
2136 			mlog_errno(ret);
2137 			goto out;
2138 		}
2139 
2140 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2141 						   left_path, i);
2142 		if (ret) {
2143 			mlog_errno(ret);
2144 			goto out;
2145 		}
2146 	}
2147 
2148 	right_leaf_bh = path_leaf_bh(right_path);
2149 	right_el = path_leaf_el(right_path);
2150 
2151 	/* This is a code error, not a disk corruption. */
2152 	mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2153 			"because rightmost leaf block %llu is empty\n",
2154 			(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2155 			(unsigned long long)right_leaf_bh->b_blocknr);
2156 
2157 	ocfs2_create_empty_extent(right_el);
2158 
2159 	ocfs2_journal_dirty(handle, right_leaf_bh);
2160 
2161 	/* Do the copy now. */
2162 	i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2163 	move_rec = left_el->l_recs[i];
2164 	right_el->l_recs[0] = move_rec;
2165 
2166 	/*
2167 	 * Clear out the record we just copied and shift everything
2168 	 * over, leaving an empty extent in the left leaf.
2169 	 *
2170 	 * We temporarily subtract from next_free_rec so that the
2171 	 * shift will lose the tail record (which is now defunct).
2172 	 */
2173 	le16_add_cpu(&left_el->l_next_free_rec, -1);
2174 	ocfs2_shift_records_right(left_el);
2175 	memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2176 	le16_add_cpu(&left_el->l_next_free_rec, 1);
2177 
2178 	ocfs2_journal_dirty(handle, left_leaf_bh);
2179 
2180 	ocfs2_complete_edge_insert(handle, left_path, right_path,
2181 				   subtree_index);
2182 
2183 out:
2184 	return ret;
2185 }
2186 
2187 /*
2188  * Given a full path, determine what cpos value would return us a path
2189  * containing the leaf immediately to the left of the current one.
2190  *
2191  * Will return zero if the path passed in is already the leftmost path.
2192  */
2193 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2194 				  struct ocfs2_path *path, u32 *cpos)
2195 {
2196 	int i, j, ret = 0;
2197 	u64 blkno;
2198 	struct ocfs2_extent_list *el;
2199 
2200 	BUG_ON(path->p_tree_depth == 0);
2201 
2202 	*cpos = 0;
2203 
2204 	blkno = path_leaf_bh(path)->b_blocknr;
2205 
2206 	/* Start at the tree node just above the leaf and work our way up. */
2207 	i = path->p_tree_depth - 1;
2208 	while (i >= 0) {
2209 		el = path->p_node[i].el;
2210 
2211 		/*
2212 		 * Find the extent record just before the one in our
2213 		 * path.
2214 		 */
2215 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2216 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2217 				if (j == 0) {
2218 					if (i == 0) {
2219 						/*
2220 						 * We've determined that the
2221 						 * path specified is already
2222 						 * the leftmost one - return a
2223 						 * cpos of zero.
2224 						 */
2225 						goto out;
2226 					}
2227 					/*
2228 					 * The leftmost record points to our
2229 					 * leaf - we need to travel up the
2230 					 * tree one level.
2231 					 */
2232 					goto next_node;
2233 				}
2234 
2235 				*cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2236 				*cpos = *cpos + ocfs2_rec_clusters(el,
2237 							   &el->l_recs[j - 1]);
2238 				*cpos = *cpos - 1;
2239 				goto out;
2240 			}
2241 		}
2242 
2243 		/*
2244 		 * If we got here, we never found a valid node where
2245 		 * the tree indicated one should be.
2246 		 */
2247 		ocfs2_error(sb, "Invalid extent tree at extent block %llu\n",
2248 			    (unsigned long long)blkno);
2249 		ret = -EROFS;
2250 		goto out;
2251 
2252 next_node:
2253 		blkno = path->p_node[i].bh->b_blocknr;
2254 		i--;
2255 	}
2256 
2257 out:
2258 	return ret;
2259 }
2260 
2261 /*
2262  * Extend the transaction by enough credits to complete the rotation,
2263  * and still leave at least the original number of credits allocated
2264  * to this transaction.
2265  */
2266 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2267 					   int op_credits,
2268 					   struct ocfs2_path *path)
2269 {
2270 	int ret = 0;
2271 	int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2272 
2273 	if (handle->h_buffer_credits < credits)
2274 		ret = ocfs2_extend_trans(handle,
2275 					 credits - handle->h_buffer_credits);
2276 
2277 	return ret;
2278 }
2279 
2280 /*
2281  * Trap the case where we're inserting into the theoretical range past
2282  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2283  * whose cpos is less than ours into the right leaf.
2284  *
2285  * It's only necessary to look at the rightmost record of the left
2286  * leaf because the logic that calls us should ensure that the
2287  * theoretical ranges in the path components above the leaves are
2288  * correct.
2289  */
2290 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2291 						 u32 insert_cpos)
2292 {
2293 	struct ocfs2_extent_list *left_el;
2294 	struct ocfs2_extent_rec *rec;
2295 	int next_free;
2296 
2297 	left_el = path_leaf_el(left_path);
2298 	next_free = le16_to_cpu(left_el->l_next_free_rec);
2299 	rec = &left_el->l_recs[next_free - 1];
2300 
2301 	if (insert_cpos > le32_to_cpu(rec->e_cpos))
2302 		return 1;
2303 	return 0;
2304 }
2305 
2306 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2307 {
2308 	int next_free = le16_to_cpu(el->l_next_free_rec);
2309 	unsigned int range;
2310 	struct ocfs2_extent_rec *rec;
2311 
2312 	if (next_free == 0)
2313 		return 0;
2314 
2315 	rec = &el->l_recs[0];
2316 	if (ocfs2_is_empty_extent(rec)) {
2317 		/* Empty list. */
2318 		if (next_free == 1)
2319 			return 0;
2320 		rec = &el->l_recs[1];
2321 	}
2322 
2323 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2324 	if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2325 		return 1;
2326 	return 0;
2327 }
2328 
2329 /*
2330  * Rotate all the records in a btree right one record, starting at insert_cpos.
2331  *
2332  * The path to the rightmost leaf should be passed in.
2333  *
2334  * The array is assumed to be large enough to hold an entire path (tree depth).
2335  *
2336  * Upon successful return from this function:
2337  *
2338  * - The 'right_path' array will contain a path to the leaf block
2339  *   whose range contains e_cpos.
2340  * - That leaf block will have a single empty extent in list index 0.
2341  * - In the case that the rotation requires a post-insert update,
2342  *   *ret_left_path will contain a valid path which can be passed to
2343  *   ocfs2_insert_path().
2344  */
2345 static int ocfs2_rotate_tree_right(handle_t *handle,
2346 				   struct ocfs2_extent_tree *et,
2347 				   enum ocfs2_split_type split,
2348 				   u32 insert_cpos,
2349 				   struct ocfs2_path *right_path,
2350 				   struct ocfs2_path **ret_left_path)
2351 {
2352 	int ret, start, orig_credits = handle->h_buffer_credits;
2353 	u32 cpos;
2354 	struct ocfs2_path *left_path = NULL;
2355 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2356 
2357 	*ret_left_path = NULL;
2358 
2359 	left_path = ocfs2_new_path_from_path(right_path);
2360 	if (!left_path) {
2361 		ret = -ENOMEM;
2362 		mlog_errno(ret);
2363 		goto out;
2364 	}
2365 
2366 	ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2367 	if (ret) {
2368 		mlog_errno(ret);
2369 		goto out;
2370 	}
2371 
2372 	trace_ocfs2_rotate_tree_right(
2373 		(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2374 		insert_cpos, cpos);
2375 
2376 	/*
2377 	 * What we want to do here is:
2378 	 *
2379 	 * 1) Start with the rightmost path.
2380 	 *
2381 	 * 2) Determine a path to the leaf block directly to the left
2382 	 *    of that leaf.
2383 	 *
2384 	 * 3) Determine the 'subtree root' - the lowest level tree node
2385 	 *    which contains a path to both leaves.
2386 	 *
2387 	 * 4) Rotate the subtree.
2388 	 *
2389 	 * 5) Find the next subtree by considering the left path to be
2390 	 *    the new right path.
2391 	 *
2392 	 * The check at the top of this while loop also accepts
2393 	 * insert_cpos == cpos because cpos is only a _theoretical_
2394 	 * value to get us the left path - insert_cpos might very well
2395 	 * be filling that hole.
2396 	 *
2397 	 * Stop at a cpos of '0' because we either started at the
2398 	 * leftmost branch (i.e., a tree with one branch and a
2399 	 * rotation inside of it), or we've gone as far as we can in
2400 	 * rotating subtrees.
2401 	 */
2402 	while (cpos && insert_cpos <= cpos) {
2403 		trace_ocfs2_rotate_tree_right(
2404 			(unsigned long long)
2405 			ocfs2_metadata_cache_owner(et->et_ci),
2406 			insert_cpos, cpos);
2407 
2408 		ret = ocfs2_find_path(et->et_ci, left_path, cpos);
2409 		if (ret) {
2410 			mlog_errno(ret);
2411 			goto out;
2412 		}
2413 
2414 		mlog_bug_on_msg(path_leaf_bh(left_path) ==
2415 				path_leaf_bh(right_path),
2416 				"Owner %llu: error during insert of %u "
2417 				"(left path cpos %u) results in two identical "
2418 				"paths ending at %llu\n",
2419 				(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2420 				insert_cpos, cpos,
2421 				(unsigned long long)
2422 				path_leaf_bh(left_path)->b_blocknr);
2423 
2424 		if (split == SPLIT_NONE &&
2425 		    ocfs2_rotate_requires_path_adjustment(left_path,
2426 							  insert_cpos)) {
2427 
2428 			/*
2429 			 * We've rotated the tree as much as we
2430 			 * should. The rest is up to
2431 			 * ocfs2_insert_path() to complete, after the
2432 			 * record insertion. We indicate this
2433 			 * situation by returning the left path.
2434 			 *
2435 			 * The reason we don't adjust the records here
2436 			 * before the record insert is that an error
2437 			 * later might break the rule where a parent
2438 			 * record e_cpos will reflect the actual
2439 			 * e_cpos of the 1st nonempty record of the
2440 			 * child list.
2441 			 */
2442 			*ret_left_path = left_path;
2443 			goto out_ret_path;
2444 		}
2445 
2446 		start = ocfs2_find_subtree_root(et, left_path, right_path);
2447 
2448 		trace_ocfs2_rotate_subtree(start,
2449 			(unsigned long long)
2450 			right_path->p_node[start].bh->b_blocknr,
2451 			right_path->p_tree_depth);
2452 
2453 		ret = ocfs2_extend_rotate_transaction(handle, start,
2454 						      orig_credits, right_path);
2455 		if (ret) {
2456 			mlog_errno(ret);
2457 			goto out;
2458 		}
2459 
2460 		ret = ocfs2_rotate_subtree_right(handle, et, left_path,
2461 						 right_path, start);
2462 		if (ret) {
2463 			mlog_errno(ret);
2464 			goto out;
2465 		}
2466 
2467 		if (split != SPLIT_NONE &&
2468 		    ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2469 						insert_cpos)) {
2470 			/*
2471 			 * A rotate moves the rightmost left leaf
2472 			 * record over to the leftmost right leaf
2473 			 * slot. If we're doing an extent split
2474 			 * instead of a real insert, then we have to
2475 			 * check that the extent to be split wasn't
2476 			 * just moved over. If it was, then we can
2477 			 * exit here, passing left_path back -
2478 			 * ocfs2_split_extent() is smart enough to
2479 			 * search both leaves.
2480 			 */
2481 			*ret_left_path = left_path;
2482 			goto out_ret_path;
2483 		}
2484 
2485 		/*
2486 		 * There is no need to re-read the next right path
2487 		 * as we know that it'll be our current left
2488 		 * path. Optimize by copying values instead.
2489 		 */
2490 		ocfs2_mv_path(right_path, left_path);
2491 
2492 		ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2493 		if (ret) {
2494 			mlog_errno(ret);
2495 			goto out;
2496 		}
2497 	}
2498 
2499 out:
2500 	ocfs2_free_path(left_path);
2501 
2502 out_ret_path:
2503 	return ret;
2504 }
2505 
2506 static int ocfs2_update_edge_lengths(handle_t *handle,
2507 				     struct ocfs2_extent_tree *et,
2508 				     struct ocfs2_path *path)
2509 {
2510 	int i, idx, ret;
2511 	struct ocfs2_extent_rec *rec;
2512 	struct ocfs2_extent_list *el;
2513 	struct ocfs2_extent_block *eb;
2514 	u32 range;
2515 
2516 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
2517 	if (ret) {
2518 		mlog_errno(ret);
2519 		goto out;
2520 	}
2521 
2522 	/* Path should always be rightmost. */
2523 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2524 	BUG_ON(eb->h_next_leaf_blk != 0ULL);
2525 
2526 	el = &eb->h_list;
2527 	BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2528 	idx = le16_to_cpu(el->l_next_free_rec) - 1;
2529 	rec = &el->l_recs[idx];
2530 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2531 
2532 	for (i = 0; i < path->p_tree_depth; i++) {
2533 		el = path->p_node[i].el;
2534 		idx = le16_to_cpu(el->l_next_free_rec) - 1;
2535 		rec = &el->l_recs[idx];
2536 
2537 		rec->e_int_clusters = cpu_to_le32(range);
2538 		le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2539 
2540 		ocfs2_journal_dirty(handle, path->p_node[i].bh);
2541 	}
2542 out:
2543 	return ret;
2544 }
2545 
2546 static void ocfs2_unlink_path(handle_t *handle,
2547 			      struct ocfs2_extent_tree *et,
2548 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
2549 			      struct ocfs2_path *path, int unlink_start)
2550 {
2551 	int ret, i;
2552 	struct ocfs2_extent_block *eb;
2553 	struct ocfs2_extent_list *el;
2554 	struct buffer_head *bh;
2555 
2556 	for(i = unlink_start; i < path_num_items(path); i++) {
2557 		bh = path->p_node[i].bh;
2558 
2559 		eb = (struct ocfs2_extent_block *)bh->b_data;
2560 		/*
2561 		 * Not all nodes might have had their final count
2562 		 * decremented by the caller - handle this here.
2563 		 */
2564 		el = &eb->h_list;
2565 		if (le16_to_cpu(el->l_next_free_rec) > 1) {
2566 			mlog(ML_ERROR,
2567 			     "Inode %llu, attempted to remove extent block "
2568 			     "%llu with %u records\n",
2569 			     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2570 			     (unsigned long long)le64_to_cpu(eb->h_blkno),
2571 			     le16_to_cpu(el->l_next_free_rec));
2572 
2573 			ocfs2_journal_dirty(handle, bh);
2574 			ocfs2_remove_from_cache(et->et_ci, bh);
2575 			continue;
2576 		}
2577 
2578 		el->l_next_free_rec = 0;
2579 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2580 
2581 		ocfs2_journal_dirty(handle, bh);
2582 
2583 		ret = ocfs2_cache_extent_block_free(dealloc, eb);
2584 		if (ret)
2585 			mlog_errno(ret);
2586 
2587 		ocfs2_remove_from_cache(et->et_ci, bh);
2588 	}
2589 }
2590 
2591 static void ocfs2_unlink_subtree(handle_t *handle,
2592 				 struct ocfs2_extent_tree *et,
2593 				 struct ocfs2_path *left_path,
2594 				 struct ocfs2_path *right_path,
2595 				 int subtree_index,
2596 				 struct ocfs2_cached_dealloc_ctxt *dealloc)
2597 {
2598 	int i;
2599 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2600 	struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2601 	struct ocfs2_extent_list *el;
2602 	struct ocfs2_extent_block *eb;
2603 
2604 	el = path_leaf_el(left_path);
2605 
2606 	eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2607 
2608 	for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2609 		if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2610 			break;
2611 
2612 	BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2613 
2614 	memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2615 	le16_add_cpu(&root_el->l_next_free_rec, -1);
2616 
2617 	eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2618 	eb->h_next_leaf_blk = 0;
2619 
2620 	ocfs2_journal_dirty(handle, root_bh);
2621 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2622 
2623 	ocfs2_unlink_path(handle, et, dealloc, right_path,
2624 			  subtree_index + 1);
2625 }
2626 
2627 static int ocfs2_rotate_subtree_left(handle_t *handle,
2628 				     struct ocfs2_extent_tree *et,
2629 				     struct ocfs2_path *left_path,
2630 				     struct ocfs2_path *right_path,
2631 				     int subtree_index,
2632 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
2633 				     int *deleted)
2634 {
2635 	int ret, i, del_right_subtree = 0, right_has_empty = 0;
2636 	struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2637 	struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2638 	struct ocfs2_extent_block *eb;
2639 
2640 	*deleted = 0;
2641 
2642 	right_leaf_el = path_leaf_el(right_path);
2643 	left_leaf_el = path_leaf_el(left_path);
2644 	root_bh = left_path->p_node[subtree_index].bh;
2645 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2646 
2647 	if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2648 		return 0;
2649 
2650 	eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2651 	if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2652 		/*
2653 		 * It's legal for us to proceed if the right leaf is
2654 		 * the rightmost one and it has an empty extent. There
2655 		 * are two cases to handle - whether the leaf will be
2656 		 * empty after removal or not. If the leaf isn't empty
2657 		 * then just remove the empty extent up front. The
2658 		 * next block will handle empty leaves by flagging
2659 		 * them for unlink.
2660 		 *
2661 		 * Non rightmost leaves will throw -EAGAIN and the
2662 		 * caller can manually move the subtree and retry.
2663 		 */
2664 
2665 		if (eb->h_next_leaf_blk != 0ULL)
2666 			return -EAGAIN;
2667 
2668 		if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2669 			ret = ocfs2_journal_access_eb(handle, et->et_ci,
2670 						      path_leaf_bh(right_path),
2671 						      OCFS2_JOURNAL_ACCESS_WRITE);
2672 			if (ret) {
2673 				mlog_errno(ret);
2674 				goto out;
2675 			}
2676 
2677 			ocfs2_remove_empty_extent(right_leaf_el);
2678 		} else
2679 			right_has_empty = 1;
2680 	}
2681 
2682 	if (eb->h_next_leaf_blk == 0ULL &&
2683 	    le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2684 		/*
2685 		 * We have to update i_last_eb_blk during the meta
2686 		 * data delete.
2687 		 */
2688 		ret = ocfs2_et_root_journal_access(handle, et,
2689 						   OCFS2_JOURNAL_ACCESS_WRITE);
2690 		if (ret) {
2691 			mlog_errno(ret);
2692 			goto out;
2693 		}
2694 
2695 		del_right_subtree = 1;
2696 	}
2697 
2698 	/*
2699 	 * Getting here with an empty extent in the right path implies
2700 	 * that it's the rightmost path and will be deleted.
2701 	 */
2702 	BUG_ON(right_has_empty && !del_right_subtree);
2703 
2704 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2705 					   subtree_index);
2706 	if (ret) {
2707 		mlog_errno(ret);
2708 		goto out;
2709 	}
2710 
2711 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2712 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2713 						   right_path, i);
2714 		if (ret) {
2715 			mlog_errno(ret);
2716 			goto out;
2717 		}
2718 
2719 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2720 						   left_path, i);
2721 		if (ret) {
2722 			mlog_errno(ret);
2723 			goto out;
2724 		}
2725 	}
2726 
2727 	if (!right_has_empty) {
2728 		/*
2729 		 * Only do this if we're moving a real
2730 		 * record. Otherwise, the action is delayed until
2731 		 * after removal of the right path in which case we
2732 		 * can do a simple shift to remove the empty extent.
2733 		 */
2734 		ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2735 		memset(&right_leaf_el->l_recs[0], 0,
2736 		       sizeof(struct ocfs2_extent_rec));
2737 	}
2738 	if (eb->h_next_leaf_blk == 0ULL) {
2739 		/*
2740 		 * Move recs over to get rid of empty extent, decrease
2741 		 * next_free. This is allowed to remove the last
2742 		 * extent in our leaf (setting l_next_free_rec to
2743 		 * zero) - the delete code below won't care.
2744 		 */
2745 		ocfs2_remove_empty_extent(right_leaf_el);
2746 	}
2747 
2748 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2749 	ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2750 
2751 	if (del_right_subtree) {
2752 		ocfs2_unlink_subtree(handle, et, left_path, right_path,
2753 				     subtree_index, dealloc);
2754 		ret = ocfs2_update_edge_lengths(handle, et, left_path);
2755 		if (ret) {
2756 			mlog_errno(ret);
2757 			goto out;
2758 		}
2759 
2760 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2761 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2762 
2763 		/*
2764 		 * Removal of the extent in the left leaf was skipped
2765 		 * above so we could delete the right path
2766 		 * 1st.
2767 		 */
2768 		if (right_has_empty)
2769 			ocfs2_remove_empty_extent(left_leaf_el);
2770 
2771 		ocfs2_journal_dirty(handle, et_root_bh);
2772 
2773 		*deleted = 1;
2774 	} else
2775 		ocfs2_complete_edge_insert(handle, left_path, right_path,
2776 					   subtree_index);
2777 
2778 out:
2779 	return ret;
2780 }
2781 
2782 /*
2783  * Given a full path, determine what cpos value would return us a path
2784  * containing the leaf immediately to the right of the current one.
2785  *
2786  * Will return zero if the path passed in is already the rightmost path.
2787  *
2788  * This looks similar, but is subtly different to
2789  * ocfs2_find_cpos_for_left_leaf().
2790  */
2791 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2792 				   struct ocfs2_path *path, u32 *cpos)
2793 {
2794 	int i, j, ret = 0;
2795 	u64 blkno;
2796 	struct ocfs2_extent_list *el;
2797 
2798 	*cpos = 0;
2799 
2800 	if (path->p_tree_depth == 0)
2801 		return 0;
2802 
2803 	blkno = path_leaf_bh(path)->b_blocknr;
2804 
2805 	/* Start at the tree node just above the leaf and work our way up. */
2806 	i = path->p_tree_depth - 1;
2807 	while (i >= 0) {
2808 		int next_free;
2809 
2810 		el = path->p_node[i].el;
2811 
2812 		/*
2813 		 * Find the extent record just after the one in our
2814 		 * path.
2815 		 */
2816 		next_free = le16_to_cpu(el->l_next_free_rec);
2817 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2818 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2819 				if (j == (next_free - 1)) {
2820 					if (i == 0) {
2821 						/*
2822 						 * We've determined that the
2823 						 * path specified is already
2824 						 * the rightmost one - return a
2825 						 * cpos of zero.
2826 						 */
2827 						goto out;
2828 					}
2829 					/*
2830 					 * The rightmost record points to our
2831 					 * leaf - we need to travel up the
2832 					 * tree one level.
2833 					 */
2834 					goto next_node;
2835 				}
2836 
2837 				*cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2838 				goto out;
2839 			}
2840 		}
2841 
2842 		/*
2843 		 * If we got here, we never found a valid node where
2844 		 * the tree indicated one should be.
2845 		 */
2846 		ocfs2_error(sb, "Invalid extent tree at extent block %llu\n",
2847 			    (unsigned long long)blkno);
2848 		ret = -EROFS;
2849 		goto out;
2850 
2851 next_node:
2852 		blkno = path->p_node[i].bh->b_blocknr;
2853 		i--;
2854 	}
2855 
2856 out:
2857 	return ret;
2858 }
2859 
2860 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle,
2861 					    struct ocfs2_extent_tree *et,
2862 					    struct ocfs2_path *path)
2863 {
2864 	int ret;
2865 	struct buffer_head *bh = path_leaf_bh(path);
2866 	struct ocfs2_extent_list *el = path_leaf_el(path);
2867 
2868 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2869 		return 0;
2870 
2871 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
2872 					   path_num_items(path) - 1);
2873 	if (ret) {
2874 		mlog_errno(ret);
2875 		goto out;
2876 	}
2877 
2878 	ocfs2_remove_empty_extent(el);
2879 	ocfs2_journal_dirty(handle, bh);
2880 
2881 out:
2882 	return ret;
2883 }
2884 
2885 static int __ocfs2_rotate_tree_left(handle_t *handle,
2886 				    struct ocfs2_extent_tree *et,
2887 				    int orig_credits,
2888 				    struct ocfs2_path *path,
2889 				    struct ocfs2_cached_dealloc_ctxt *dealloc,
2890 				    struct ocfs2_path **empty_extent_path)
2891 {
2892 	int ret, subtree_root, deleted;
2893 	u32 right_cpos;
2894 	struct ocfs2_path *left_path = NULL;
2895 	struct ocfs2_path *right_path = NULL;
2896 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2897 
2898 	if (!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])))
2899 		return 0;
2900 
2901 	*empty_extent_path = NULL;
2902 
2903 	ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
2904 	if (ret) {
2905 		mlog_errno(ret);
2906 		goto out;
2907 	}
2908 
2909 	left_path = ocfs2_new_path_from_path(path);
2910 	if (!left_path) {
2911 		ret = -ENOMEM;
2912 		mlog_errno(ret);
2913 		goto out;
2914 	}
2915 
2916 	ocfs2_cp_path(left_path, path);
2917 
2918 	right_path = ocfs2_new_path_from_path(path);
2919 	if (!right_path) {
2920 		ret = -ENOMEM;
2921 		mlog_errno(ret);
2922 		goto out;
2923 	}
2924 
2925 	while (right_cpos) {
2926 		ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
2927 		if (ret) {
2928 			mlog_errno(ret);
2929 			goto out;
2930 		}
2931 
2932 		subtree_root = ocfs2_find_subtree_root(et, left_path,
2933 						       right_path);
2934 
2935 		trace_ocfs2_rotate_subtree(subtree_root,
2936 		     (unsigned long long)
2937 		     right_path->p_node[subtree_root].bh->b_blocknr,
2938 		     right_path->p_tree_depth);
2939 
2940 		ret = ocfs2_extend_rotate_transaction(handle, 0,
2941 						      orig_credits, left_path);
2942 		if (ret) {
2943 			mlog_errno(ret);
2944 			goto out;
2945 		}
2946 
2947 		/*
2948 		 * Caller might still want to make changes to the
2949 		 * tree root, so re-add it to the journal here.
2950 		 */
2951 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2952 						   left_path, 0);
2953 		if (ret) {
2954 			mlog_errno(ret);
2955 			goto out;
2956 		}
2957 
2958 		ret = ocfs2_rotate_subtree_left(handle, et, left_path,
2959 						right_path, subtree_root,
2960 						dealloc, &deleted);
2961 		if (ret == -EAGAIN) {
2962 			/*
2963 			 * The rotation has to temporarily stop due to
2964 			 * the right subtree having an empty
2965 			 * extent. Pass it back to the caller for a
2966 			 * fixup.
2967 			 */
2968 			*empty_extent_path = right_path;
2969 			right_path = NULL;
2970 			goto out;
2971 		}
2972 		if (ret) {
2973 			mlog_errno(ret);
2974 			goto out;
2975 		}
2976 
2977 		/*
2978 		 * The subtree rotate might have removed records on
2979 		 * the rightmost edge. If so, then rotation is
2980 		 * complete.
2981 		 */
2982 		if (deleted)
2983 			break;
2984 
2985 		ocfs2_mv_path(left_path, right_path);
2986 
2987 		ret = ocfs2_find_cpos_for_right_leaf(sb, left_path,
2988 						     &right_cpos);
2989 		if (ret) {
2990 			mlog_errno(ret);
2991 			goto out;
2992 		}
2993 	}
2994 
2995 out:
2996 	ocfs2_free_path(right_path);
2997 	ocfs2_free_path(left_path);
2998 
2999 	return ret;
3000 }
3001 
3002 static int ocfs2_remove_rightmost_path(handle_t *handle,
3003 				struct ocfs2_extent_tree *et,
3004 				struct ocfs2_path *path,
3005 				struct ocfs2_cached_dealloc_ctxt *dealloc)
3006 {
3007 	int ret, subtree_index;
3008 	u32 cpos;
3009 	struct ocfs2_path *left_path = NULL;
3010 	struct ocfs2_extent_block *eb;
3011 	struct ocfs2_extent_list *el;
3012 
3013 	ret = ocfs2_et_sanity_check(et);
3014 	if (ret)
3015 		goto out;
3016 
3017 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
3018 	if (ret) {
3019 		mlog_errno(ret);
3020 		goto out;
3021 	}
3022 
3023 	ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3024 					    path, &cpos);
3025 	if (ret) {
3026 		mlog_errno(ret);
3027 		goto out;
3028 	}
3029 
3030 	if (cpos) {
3031 		/*
3032 		 * We have a path to the left of this one - it needs
3033 		 * an update too.
3034 		 */
3035 		left_path = ocfs2_new_path_from_path(path);
3036 		if (!left_path) {
3037 			ret = -ENOMEM;
3038 			mlog_errno(ret);
3039 			goto out;
3040 		}
3041 
3042 		ret = ocfs2_find_path(et->et_ci, left_path, cpos);
3043 		if (ret) {
3044 			mlog_errno(ret);
3045 			goto out;
3046 		}
3047 
3048 		ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
3049 		if (ret) {
3050 			mlog_errno(ret);
3051 			goto out;
3052 		}
3053 
3054 		subtree_index = ocfs2_find_subtree_root(et, left_path, path);
3055 
3056 		ocfs2_unlink_subtree(handle, et, left_path, path,
3057 				     subtree_index, dealloc);
3058 		ret = ocfs2_update_edge_lengths(handle, et, left_path);
3059 		if (ret) {
3060 			mlog_errno(ret);
3061 			goto out;
3062 		}
3063 
3064 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3065 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3066 	} else {
3067 		/*
3068 		 * 'path' is also the leftmost path which
3069 		 * means it must be the only one. This gets
3070 		 * handled differently because we want to
3071 		 * revert the root back to having extents
3072 		 * in-line.
3073 		 */
3074 		ocfs2_unlink_path(handle, et, dealloc, path, 1);
3075 
3076 		el = et->et_root_el;
3077 		el->l_tree_depth = 0;
3078 		el->l_next_free_rec = 0;
3079 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3080 
3081 		ocfs2_et_set_last_eb_blk(et, 0);
3082 	}
3083 
3084 	ocfs2_journal_dirty(handle, path_root_bh(path));
3085 
3086 out:
3087 	ocfs2_free_path(left_path);
3088 	return ret;
3089 }
3090 
3091 static int ocfs2_remove_rightmost_empty_extent(struct ocfs2_super *osb,
3092 				struct ocfs2_extent_tree *et,
3093 				struct ocfs2_path *path,
3094 				struct ocfs2_cached_dealloc_ctxt *dealloc)
3095 {
3096 	handle_t *handle;
3097 	int ret;
3098 	int credits = path->p_tree_depth * 2 + 1;
3099 
3100 	handle = ocfs2_start_trans(osb, credits);
3101 	if (IS_ERR(handle)) {
3102 		ret = PTR_ERR(handle);
3103 		mlog_errno(ret);
3104 		return ret;
3105 	}
3106 
3107 	ret = ocfs2_remove_rightmost_path(handle, et, path, dealloc);
3108 	if (ret)
3109 		mlog_errno(ret);
3110 
3111 	ocfs2_commit_trans(osb, handle);
3112 	return ret;
3113 }
3114 
3115 /*
3116  * Left rotation of btree records.
3117  *
3118  * In many ways, this is (unsurprisingly) the opposite of right
3119  * rotation. We start at some non-rightmost path containing an empty
3120  * extent in the leaf block. The code works its way to the rightmost
3121  * path by rotating records to the left in every subtree.
3122  *
3123  * This is used by any code which reduces the number of extent records
3124  * in a leaf. After removal, an empty record should be placed in the
3125  * leftmost list position.
3126  *
3127  * This won't handle a length update of the rightmost path records if
3128  * the rightmost tree leaf record is removed so the caller is
3129  * responsible for detecting and correcting that.
3130  */
3131 static int ocfs2_rotate_tree_left(handle_t *handle,
3132 				  struct ocfs2_extent_tree *et,
3133 				  struct ocfs2_path *path,
3134 				  struct ocfs2_cached_dealloc_ctxt *dealloc)
3135 {
3136 	int ret, orig_credits = handle->h_buffer_credits;
3137 	struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3138 	struct ocfs2_extent_block *eb;
3139 	struct ocfs2_extent_list *el;
3140 
3141 	el = path_leaf_el(path);
3142 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3143 		return 0;
3144 
3145 	if (path->p_tree_depth == 0) {
3146 rightmost_no_delete:
3147 		/*
3148 		 * Inline extents. This is trivially handled, so do
3149 		 * it up front.
3150 		 */
3151 		ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path);
3152 		if (ret)
3153 			mlog_errno(ret);
3154 		goto out;
3155 	}
3156 
3157 	/*
3158 	 * Handle rightmost branch now. There's several cases:
3159 	 *  1) simple rotation leaving records in there. That's trivial.
3160 	 *  2) rotation requiring a branch delete - there's no more
3161 	 *     records left. Two cases of this:
3162 	 *     a) There are branches to the left.
3163 	 *     b) This is also the leftmost (the only) branch.
3164 	 *
3165 	 *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
3166 	 *  2a) we need the left branch so that we can update it with the unlink
3167 	 *  2b) we need to bring the root back to inline extents.
3168 	 */
3169 
3170 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3171 	el = &eb->h_list;
3172 	if (eb->h_next_leaf_blk == 0) {
3173 		/*
3174 		 * This gets a bit tricky if we're going to delete the
3175 		 * rightmost path. Get the other cases out of the way
3176 		 * 1st.
3177 		 */
3178 		if (le16_to_cpu(el->l_next_free_rec) > 1)
3179 			goto rightmost_no_delete;
3180 
3181 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
3182 			ret = -EIO;
3183 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3184 				    "Owner %llu has empty extent block at %llu\n",
3185 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
3186 				    (unsigned long long)le64_to_cpu(eb->h_blkno));
3187 			goto out;
3188 		}
3189 
3190 		/*
3191 		 * XXX: The caller can not trust "path" any more after
3192 		 * this as it will have been deleted. What do we do?
3193 		 *
3194 		 * In theory the rotate-for-merge code will never get
3195 		 * here because it'll always ask for a rotate in a
3196 		 * nonempty list.
3197 		 */
3198 
3199 		ret = ocfs2_remove_rightmost_path(handle, et, path,
3200 						  dealloc);
3201 		if (ret)
3202 			mlog_errno(ret);
3203 		goto out;
3204 	}
3205 
3206 	/*
3207 	 * Now we can loop, remembering the path we get from -EAGAIN
3208 	 * and restarting from there.
3209 	 */
3210 try_rotate:
3211 	ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path,
3212 				       dealloc, &restart_path);
3213 	if (ret && ret != -EAGAIN) {
3214 		mlog_errno(ret);
3215 		goto out;
3216 	}
3217 
3218 	while (ret == -EAGAIN) {
3219 		tmp_path = restart_path;
3220 		restart_path = NULL;
3221 
3222 		ret = __ocfs2_rotate_tree_left(handle, et, orig_credits,
3223 					       tmp_path, dealloc,
3224 					       &restart_path);
3225 		if (ret && ret != -EAGAIN) {
3226 			mlog_errno(ret);
3227 			goto out;
3228 		}
3229 
3230 		ocfs2_free_path(tmp_path);
3231 		tmp_path = NULL;
3232 
3233 		if (ret == 0)
3234 			goto try_rotate;
3235 	}
3236 
3237 out:
3238 	ocfs2_free_path(tmp_path);
3239 	ocfs2_free_path(restart_path);
3240 	return ret;
3241 }
3242 
3243 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3244 				int index)
3245 {
3246 	struct ocfs2_extent_rec *rec = &el->l_recs[index];
3247 	unsigned int size;
3248 
3249 	if (rec->e_leaf_clusters == 0) {
3250 		/*
3251 		 * We consumed all of the merged-from record. An empty
3252 		 * extent cannot exist anywhere but the 1st array
3253 		 * position, so move things over if the merged-from
3254 		 * record doesn't occupy that position.
3255 		 *
3256 		 * This creates a new empty extent so the caller
3257 		 * should be smart enough to have removed any existing
3258 		 * ones.
3259 		 */
3260 		if (index > 0) {
3261 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3262 			size = index * sizeof(struct ocfs2_extent_rec);
3263 			memmove(&el->l_recs[1], &el->l_recs[0], size);
3264 		}
3265 
3266 		/*
3267 		 * Always memset - the caller doesn't check whether it
3268 		 * created an empty extent, so there could be junk in
3269 		 * the other fields.
3270 		 */
3271 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3272 	}
3273 }
3274 
3275 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et,
3276 				struct ocfs2_path *left_path,
3277 				struct ocfs2_path **ret_right_path)
3278 {
3279 	int ret;
3280 	u32 right_cpos;
3281 	struct ocfs2_path *right_path = NULL;
3282 	struct ocfs2_extent_list *left_el;
3283 
3284 	*ret_right_path = NULL;
3285 
3286 	/* This function shouldn't be called for non-trees. */
3287 	BUG_ON(left_path->p_tree_depth == 0);
3288 
3289 	left_el = path_leaf_el(left_path);
3290 	BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3291 
3292 	ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3293 					     left_path, &right_cpos);
3294 	if (ret) {
3295 		mlog_errno(ret);
3296 		goto out;
3297 	}
3298 
3299 	/* This function shouldn't be called for the rightmost leaf. */
3300 	BUG_ON(right_cpos == 0);
3301 
3302 	right_path = ocfs2_new_path_from_path(left_path);
3303 	if (!right_path) {
3304 		ret = -ENOMEM;
3305 		mlog_errno(ret);
3306 		goto out;
3307 	}
3308 
3309 	ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
3310 	if (ret) {
3311 		mlog_errno(ret);
3312 		goto out;
3313 	}
3314 
3315 	*ret_right_path = right_path;
3316 out:
3317 	if (ret)
3318 		ocfs2_free_path(right_path);
3319 	return ret;
3320 }
3321 
3322 /*
3323  * Remove split_rec clusters from the record at index and merge them
3324  * onto the beginning of the record "next" to it.
3325  * For index < l_count - 1, the next means the extent rec at index + 1.
3326  * For index == l_count - 1, the "next" means the 1st extent rec of the
3327  * next extent block.
3328  */
3329 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path,
3330 				 handle_t *handle,
3331 				 struct ocfs2_extent_tree *et,
3332 				 struct ocfs2_extent_rec *split_rec,
3333 				 int index)
3334 {
3335 	int ret, next_free, i;
3336 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3337 	struct ocfs2_extent_rec *left_rec;
3338 	struct ocfs2_extent_rec *right_rec;
3339 	struct ocfs2_extent_list *right_el;
3340 	struct ocfs2_path *right_path = NULL;
3341 	int subtree_index = 0;
3342 	struct ocfs2_extent_list *el = path_leaf_el(left_path);
3343 	struct buffer_head *bh = path_leaf_bh(left_path);
3344 	struct buffer_head *root_bh = NULL;
3345 
3346 	BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3347 	left_rec = &el->l_recs[index];
3348 
3349 	if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3350 	    le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3351 		/* we meet with a cross extent block merge. */
3352 		ret = ocfs2_get_right_path(et, left_path, &right_path);
3353 		if (ret) {
3354 			mlog_errno(ret);
3355 			return ret;
3356 		}
3357 
3358 		right_el = path_leaf_el(right_path);
3359 		next_free = le16_to_cpu(right_el->l_next_free_rec);
3360 		BUG_ON(next_free <= 0);
3361 		right_rec = &right_el->l_recs[0];
3362 		if (ocfs2_is_empty_extent(right_rec)) {
3363 			BUG_ON(next_free <= 1);
3364 			right_rec = &right_el->l_recs[1];
3365 		}
3366 
3367 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3368 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3369 		       le32_to_cpu(right_rec->e_cpos));
3370 
3371 		subtree_index = ocfs2_find_subtree_root(et, left_path,
3372 							right_path);
3373 
3374 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3375 						      handle->h_buffer_credits,
3376 						      right_path);
3377 		if (ret) {
3378 			mlog_errno(ret);
3379 			goto out;
3380 		}
3381 
3382 		root_bh = left_path->p_node[subtree_index].bh;
3383 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3384 
3385 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3386 						   subtree_index);
3387 		if (ret) {
3388 			mlog_errno(ret);
3389 			goto out;
3390 		}
3391 
3392 		for (i = subtree_index + 1;
3393 		     i < path_num_items(right_path); i++) {
3394 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3395 							   right_path, i);
3396 			if (ret) {
3397 				mlog_errno(ret);
3398 				goto out;
3399 			}
3400 
3401 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3402 							   left_path, i);
3403 			if (ret) {
3404 				mlog_errno(ret);
3405 				goto out;
3406 			}
3407 		}
3408 
3409 	} else {
3410 		BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3411 		right_rec = &el->l_recs[index + 1];
3412 	}
3413 
3414 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path,
3415 					   path_num_items(left_path) - 1);
3416 	if (ret) {
3417 		mlog_errno(ret);
3418 		goto out;
3419 	}
3420 
3421 	le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3422 
3423 	le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3424 	le64_add_cpu(&right_rec->e_blkno,
3425 		     -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3426 					       split_clusters));
3427 	le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3428 
3429 	ocfs2_cleanup_merge(el, index);
3430 
3431 	ocfs2_journal_dirty(handle, bh);
3432 	if (right_path) {
3433 		ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3434 		ocfs2_complete_edge_insert(handle, left_path, right_path,
3435 					   subtree_index);
3436 	}
3437 out:
3438 	ocfs2_free_path(right_path);
3439 	return ret;
3440 }
3441 
3442 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et,
3443 			       struct ocfs2_path *right_path,
3444 			       struct ocfs2_path **ret_left_path)
3445 {
3446 	int ret;
3447 	u32 left_cpos;
3448 	struct ocfs2_path *left_path = NULL;
3449 
3450 	*ret_left_path = NULL;
3451 
3452 	/* This function shouldn't be called for non-trees. */
3453 	BUG_ON(right_path->p_tree_depth == 0);
3454 
3455 	ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3456 					    right_path, &left_cpos);
3457 	if (ret) {
3458 		mlog_errno(ret);
3459 		goto out;
3460 	}
3461 
3462 	/* This function shouldn't be called for the leftmost leaf. */
3463 	BUG_ON(left_cpos == 0);
3464 
3465 	left_path = ocfs2_new_path_from_path(right_path);
3466 	if (!left_path) {
3467 		ret = -ENOMEM;
3468 		mlog_errno(ret);
3469 		goto out;
3470 	}
3471 
3472 	ret = ocfs2_find_path(et->et_ci, left_path, left_cpos);
3473 	if (ret) {
3474 		mlog_errno(ret);
3475 		goto out;
3476 	}
3477 
3478 	*ret_left_path = left_path;
3479 out:
3480 	if (ret)
3481 		ocfs2_free_path(left_path);
3482 	return ret;
3483 }
3484 
3485 /*
3486  * Remove split_rec clusters from the record at index and merge them
3487  * onto the tail of the record "before" it.
3488  * For index > 0, the "before" means the extent rec at index - 1.
3489  *
3490  * For index == 0, the "before" means the last record of the previous
3491  * extent block. And there is also a situation that we may need to
3492  * remove the rightmost leaf extent block in the right_path and change
3493  * the right path to indicate the new rightmost path.
3494  */
3495 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path,
3496 				handle_t *handle,
3497 				struct ocfs2_extent_tree *et,
3498 				struct ocfs2_extent_rec *split_rec,
3499 				struct ocfs2_cached_dealloc_ctxt *dealloc,
3500 				int index)
3501 {
3502 	int ret, i, subtree_index = 0, has_empty_extent = 0;
3503 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3504 	struct ocfs2_extent_rec *left_rec;
3505 	struct ocfs2_extent_rec *right_rec;
3506 	struct ocfs2_extent_list *el = path_leaf_el(right_path);
3507 	struct buffer_head *bh = path_leaf_bh(right_path);
3508 	struct buffer_head *root_bh = NULL;
3509 	struct ocfs2_path *left_path = NULL;
3510 	struct ocfs2_extent_list *left_el;
3511 
3512 	BUG_ON(index < 0);
3513 
3514 	right_rec = &el->l_recs[index];
3515 	if (index == 0) {
3516 		/* we meet with a cross extent block merge. */
3517 		ret = ocfs2_get_left_path(et, right_path, &left_path);
3518 		if (ret) {
3519 			mlog_errno(ret);
3520 			return ret;
3521 		}
3522 
3523 		left_el = path_leaf_el(left_path);
3524 		BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3525 		       le16_to_cpu(left_el->l_count));
3526 
3527 		left_rec = &left_el->l_recs[
3528 				le16_to_cpu(left_el->l_next_free_rec) - 1];
3529 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3530 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3531 		       le32_to_cpu(split_rec->e_cpos));
3532 
3533 		subtree_index = ocfs2_find_subtree_root(et, left_path,
3534 							right_path);
3535 
3536 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3537 						      handle->h_buffer_credits,
3538 						      left_path);
3539 		if (ret) {
3540 			mlog_errno(ret);
3541 			goto out;
3542 		}
3543 
3544 		root_bh = left_path->p_node[subtree_index].bh;
3545 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3546 
3547 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3548 						   subtree_index);
3549 		if (ret) {
3550 			mlog_errno(ret);
3551 			goto out;
3552 		}
3553 
3554 		for (i = subtree_index + 1;
3555 		     i < path_num_items(right_path); i++) {
3556 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3557 							   right_path, i);
3558 			if (ret) {
3559 				mlog_errno(ret);
3560 				goto out;
3561 			}
3562 
3563 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3564 							   left_path, i);
3565 			if (ret) {
3566 				mlog_errno(ret);
3567 				goto out;
3568 			}
3569 		}
3570 	} else {
3571 		left_rec = &el->l_recs[index - 1];
3572 		if (ocfs2_is_empty_extent(&el->l_recs[0]))
3573 			has_empty_extent = 1;
3574 	}
3575 
3576 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3577 					   path_num_items(right_path) - 1);
3578 	if (ret) {
3579 		mlog_errno(ret);
3580 		goto out;
3581 	}
3582 
3583 	if (has_empty_extent && index == 1) {
3584 		/*
3585 		 * The easy case - we can just plop the record right in.
3586 		 */
3587 		*left_rec = *split_rec;
3588 
3589 		has_empty_extent = 0;
3590 	} else
3591 		le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3592 
3593 	le32_add_cpu(&right_rec->e_cpos, split_clusters);
3594 	le64_add_cpu(&right_rec->e_blkno,
3595 		     ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3596 					      split_clusters));
3597 	le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3598 
3599 	ocfs2_cleanup_merge(el, index);
3600 
3601 	ocfs2_journal_dirty(handle, bh);
3602 	if (left_path) {
3603 		ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3604 
3605 		/*
3606 		 * In the situation that the right_rec is empty and the extent
3607 		 * block is empty also,  ocfs2_complete_edge_insert can't handle
3608 		 * it and we need to delete the right extent block.
3609 		 */
3610 		if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3611 		    le16_to_cpu(el->l_next_free_rec) == 1) {
3612 			/* extend credit for ocfs2_remove_rightmost_path */
3613 			ret = ocfs2_extend_rotate_transaction(handle, 0,
3614 					handle->h_buffer_credits,
3615 					right_path);
3616 			if (ret) {
3617 				mlog_errno(ret);
3618 				goto out;
3619 			}
3620 
3621 			ret = ocfs2_remove_rightmost_path(handle, et,
3622 							  right_path,
3623 							  dealloc);
3624 			if (ret) {
3625 				mlog_errno(ret);
3626 				goto out;
3627 			}
3628 
3629 			/* Now the rightmost extent block has been deleted.
3630 			 * So we use the new rightmost path.
3631 			 */
3632 			ocfs2_mv_path(right_path, left_path);
3633 			left_path = NULL;
3634 		} else
3635 			ocfs2_complete_edge_insert(handle, left_path,
3636 						   right_path, subtree_index);
3637 	}
3638 out:
3639 	ocfs2_free_path(left_path);
3640 	return ret;
3641 }
3642 
3643 static int ocfs2_try_to_merge_extent(handle_t *handle,
3644 				     struct ocfs2_extent_tree *et,
3645 				     struct ocfs2_path *path,
3646 				     int split_index,
3647 				     struct ocfs2_extent_rec *split_rec,
3648 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
3649 				     struct ocfs2_merge_ctxt *ctxt)
3650 {
3651 	int ret = 0;
3652 	struct ocfs2_extent_list *el = path_leaf_el(path);
3653 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3654 
3655 	BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3656 
3657 	if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3658 		/* extend credit for ocfs2_remove_rightmost_path */
3659 		ret = ocfs2_extend_rotate_transaction(handle, 0,
3660 				handle->h_buffer_credits,
3661 				path);
3662 		if (ret) {
3663 			mlog_errno(ret);
3664 			goto out;
3665 		}
3666 		/*
3667 		 * The merge code will need to create an empty
3668 		 * extent to take the place of the newly
3669 		 * emptied slot. Remove any pre-existing empty
3670 		 * extents - having more than one in a leaf is
3671 		 * illegal.
3672 		 */
3673 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3674 		if (ret) {
3675 			mlog_errno(ret);
3676 			goto out;
3677 		}
3678 		split_index--;
3679 		rec = &el->l_recs[split_index];
3680 	}
3681 
3682 	if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3683 		/*
3684 		 * Left-right contig implies this.
3685 		 */
3686 		BUG_ON(!ctxt->c_split_covers_rec);
3687 
3688 		/*
3689 		 * Since the leftright insert always covers the entire
3690 		 * extent, this call will delete the insert record
3691 		 * entirely, resulting in an empty extent record added to
3692 		 * the extent block.
3693 		 *
3694 		 * Since the adding of an empty extent shifts
3695 		 * everything back to the right, there's no need to
3696 		 * update split_index here.
3697 		 *
3698 		 * When the split_index is zero, we need to merge it to the
3699 		 * prevoius extent block. It is more efficient and easier
3700 		 * if we do merge_right first and merge_left later.
3701 		 */
3702 		ret = ocfs2_merge_rec_right(path, handle, et, split_rec,
3703 					    split_index);
3704 		if (ret) {
3705 			mlog_errno(ret);
3706 			goto out;
3707 		}
3708 
3709 		/*
3710 		 * We can only get this from logic error above.
3711 		 */
3712 		BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3713 
3714 		/* extend credit for ocfs2_remove_rightmost_path */
3715 		ret = ocfs2_extend_rotate_transaction(handle, 0,
3716 					handle->h_buffer_credits,
3717 					path);
3718 		if (ret) {
3719 			mlog_errno(ret);
3720 			goto out;
3721 		}
3722 
3723 		/* The merge left us with an empty extent, remove it. */
3724 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3725 		if (ret) {
3726 			mlog_errno(ret);
3727 			goto out;
3728 		}
3729 
3730 		rec = &el->l_recs[split_index];
3731 
3732 		/*
3733 		 * Note that we don't pass split_rec here on purpose -
3734 		 * we've merged it into the rec already.
3735 		 */
3736 		ret = ocfs2_merge_rec_left(path, handle, et, rec,
3737 					   dealloc, split_index);
3738 
3739 		if (ret) {
3740 			mlog_errno(ret);
3741 			goto out;
3742 		}
3743 
3744 		/* extend credit for ocfs2_remove_rightmost_path */
3745 		ret = ocfs2_extend_rotate_transaction(handle, 0,
3746 				handle->h_buffer_credits,
3747 				path);
3748 		if (ret) {
3749 			mlog_errno(ret);
3750 			goto out;
3751 		}
3752 
3753 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3754 		/*
3755 		 * Error from this last rotate is not critical, so
3756 		 * print but don't bubble it up.
3757 		 */
3758 		if (ret)
3759 			mlog_errno(ret);
3760 		ret = 0;
3761 	} else {
3762 		/*
3763 		 * Merge a record to the left or right.
3764 		 *
3765 		 * 'contig_type' is relative to the existing record,
3766 		 * so for example, if we're "right contig", it's to
3767 		 * the record on the left (hence the left merge).
3768 		 */
3769 		if (ctxt->c_contig_type == CONTIG_RIGHT) {
3770 			ret = ocfs2_merge_rec_left(path, handle, et,
3771 						   split_rec, dealloc,
3772 						   split_index);
3773 			if (ret) {
3774 				mlog_errno(ret);
3775 				goto out;
3776 			}
3777 		} else {
3778 			ret = ocfs2_merge_rec_right(path, handle,
3779 						    et, split_rec,
3780 						    split_index);
3781 			if (ret) {
3782 				mlog_errno(ret);
3783 				goto out;
3784 			}
3785 		}
3786 
3787 		if (ctxt->c_split_covers_rec) {
3788 			/* extend credit for ocfs2_remove_rightmost_path */
3789 			ret = ocfs2_extend_rotate_transaction(handle, 0,
3790 					handle->h_buffer_credits,
3791 					path);
3792 			if (ret) {
3793 				mlog_errno(ret);
3794 				ret = 0;
3795 				goto out;
3796 			}
3797 
3798 			/*
3799 			 * The merge may have left an empty extent in
3800 			 * our leaf. Try to rotate it away.
3801 			 */
3802 			ret = ocfs2_rotate_tree_left(handle, et, path,
3803 						     dealloc);
3804 			if (ret)
3805 				mlog_errno(ret);
3806 			ret = 0;
3807 		}
3808 	}
3809 
3810 out:
3811 	return ret;
3812 }
3813 
3814 static void ocfs2_subtract_from_rec(struct super_block *sb,
3815 				    enum ocfs2_split_type split,
3816 				    struct ocfs2_extent_rec *rec,
3817 				    struct ocfs2_extent_rec *split_rec)
3818 {
3819 	u64 len_blocks;
3820 
3821 	len_blocks = ocfs2_clusters_to_blocks(sb,
3822 				le16_to_cpu(split_rec->e_leaf_clusters));
3823 
3824 	if (split == SPLIT_LEFT) {
3825 		/*
3826 		 * Region is on the left edge of the existing
3827 		 * record.
3828 		 */
3829 		le32_add_cpu(&rec->e_cpos,
3830 			     le16_to_cpu(split_rec->e_leaf_clusters));
3831 		le64_add_cpu(&rec->e_blkno, len_blocks);
3832 		le16_add_cpu(&rec->e_leaf_clusters,
3833 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3834 	} else {
3835 		/*
3836 		 * Region is on the right edge of the existing
3837 		 * record.
3838 		 */
3839 		le16_add_cpu(&rec->e_leaf_clusters,
3840 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3841 	}
3842 }
3843 
3844 /*
3845  * Do the final bits of extent record insertion at the target leaf
3846  * list. If this leaf is part of an allocation tree, it is assumed
3847  * that the tree above has been prepared.
3848  */
3849 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et,
3850 				 struct ocfs2_extent_rec *insert_rec,
3851 				 struct ocfs2_extent_list *el,
3852 				 struct ocfs2_insert_type *insert)
3853 {
3854 	int i = insert->ins_contig_index;
3855 	unsigned int range;
3856 	struct ocfs2_extent_rec *rec;
3857 
3858 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3859 
3860 	if (insert->ins_split != SPLIT_NONE) {
3861 		i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3862 		BUG_ON(i == -1);
3863 		rec = &el->l_recs[i];
3864 		ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
3865 					insert->ins_split, rec,
3866 					insert_rec);
3867 		goto rotate;
3868 	}
3869 
3870 	/*
3871 	 * Contiguous insert - either left or right.
3872 	 */
3873 	if (insert->ins_contig != CONTIG_NONE) {
3874 		rec = &el->l_recs[i];
3875 		if (insert->ins_contig == CONTIG_LEFT) {
3876 			rec->e_blkno = insert_rec->e_blkno;
3877 			rec->e_cpos = insert_rec->e_cpos;
3878 		}
3879 		le16_add_cpu(&rec->e_leaf_clusters,
3880 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3881 		return;
3882 	}
3883 
3884 	/*
3885 	 * Handle insert into an empty leaf.
3886 	 */
3887 	if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3888 	    ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3889 	     ocfs2_is_empty_extent(&el->l_recs[0]))) {
3890 		el->l_recs[0] = *insert_rec;
3891 		el->l_next_free_rec = cpu_to_le16(1);
3892 		return;
3893 	}
3894 
3895 	/*
3896 	 * Appending insert.
3897 	 */
3898 	if (insert->ins_appending == APPEND_TAIL) {
3899 		i = le16_to_cpu(el->l_next_free_rec) - 1;
3900 		rec = &el->l_recs[i];
3901 		range = le32_to_cpu(rec->e_cpos)
3902 			+ le16_to_cpu(rec->e_leaf_clusters);
3903 		BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3904 
3905 		mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3906 				le16_to_cpu(el->l_count),
3907 				"owner %llu, depth %u, count %u, next free %u, "
3908 				"rec.cpos %u, rec.clusters %u, "
3909 				"insert.cpos %u, insert.clusters %u\n",
3910 				ocfs2_metadata_cache_owner(et->et_ci),
3911 				le16_to_cpu(el->l_tree_depth),
3912 				le16_to_cpu(el->l_count),
3913 				le16_to_cpu(el->l_next_free_rec),
3914 				le32_to_cpu(el->l_recs[i].e_cpos),
3915 				le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3916 				le32_to_cpu(insert_rec->e_cpos),
3917 				le16_to_cpu(insert_rec->e_leaf_clusters));
3918 		i++;
3919 		el->l_recs[i] = *insert_rec;
3920 		le16_add_cpu(&el->l_next_free_rec, 1);
3921 		return;
3922 	}
3923 
3924 rotate:
3925 	/*
3926 	 * Ok, we have to rotate.
3927 	 *
3928 	 * At this point, it is safe to assume that inserting into an
3929 	 * empty leaf and appending to a leaf have both been handled
3930 	 * above.
3931 	 *
3932 	 * This leaf needs to have space, either by the empty 1st
3933 	 * extent record, or by virtue of an l_next_rec < l_count.
3934 	 */
3935 	ocfs2_rotate_leaf(el, insert_rec);
3936 }
3937 
3938 static void ocfs2_adjust_rightmost_records(handle_t *handle,
3939 					   struct ocfs2_extent_tree *et,
3940 					   struct ocfs2_path *path,
3941 					   struct ocfs2_extent_rec *insert_rec)
3942 {
3943 	int ret, i, next_free;
3944 	struct buffer_head *bh;
3945 	struct ocfs2_extent_list *el;
3946 	struct ocfs2_extent_rec *rec;
3947 
3948 	/*
3949 	 * Update everything except the leaf block.
3950 	 */
3951 	for (i = 0; i < path->p_tree_depth; i++) {
3952 		bh = path->p_node[i].bh;
3953 		el = path->p_node[i].el;
3954 
3955 		next_free = le16_to_cpu(el->l_next_free_rec);
3956 		if (next_free == 0) {
3957 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3958 				    "Owner %llu has a bad extent list\n",
3959 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
3960 			ret = -EIO;
3961 			return;
3962 		}
3963 
3964 		rec = &el->l_recs[next_free - 1];
3965 
3966 		rec->e_int_clusters = insert_rec->e_cpos;
3967 		le32_add_cpu(&rec->e_int_clusters,
3968 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3969 		le32_add_cpu(&rec->e_int_clusters,
3970 			     -le32_to_cpu(rec->e_cpos));
3971 
3972 		ocfs2_journal_dirty(handle, bh);
3973 	}
3974 }
3975 
3976 static int ocfs2_append_rec_to_path(handle_t *handle,
3977 				    struct ocfs2_extent_tree *et,
3978 				    struct ocfs2_extent_rec *insert_rec,
3979 				    struct ocfs2_path *right_path,
3980 				    struct ocfs2_path **ret_left_path)
3981 {
3982 	int ret, next_free;
3983 	struct ocfs2_extent_list *el;
3984 	struct ocfs2_path *left_path = NULL;
3985 
3986 	*ret_left_path = NULL;
3987 
3988 	/*
3989 	 * This shouldn't happen for non-trees. The extent rec cluster
3990 	 * count manipulation below only works for interior nodes.
3991 	 */
3992 	BUG_ON(right_path->p_tree_depth == 0);
3993 
3994 	/*
3995 	 * If our appending insert is at the leftmost edge of a leaf,
3996 	 * then we might need to update the rightmost records of the
3997 	 * neighboring path.
3998 	 */
3999 	el = path_leaf_el(right_path);
4000 	next_free = le16_to_cpu(el->l_next_free_rec);
4001 	if (next_free == 0 ||
4002 	    (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
4003 		u32 left_cpos;
4004 
4005 		ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
4006 						    right_path, &left_cpos);
4007 		if (ret) {
4008 			mlog_errno(ret);
4009 			goto out;
4010 		}
4011 
4012 		trace_ocfs2_append_rec_to_path(
4013 			(unsigned long long)
4014 			ocfs2_metadata_cache_owner(et->et_ci),
4015 			le32_to_cpu(insert_rec->e_cpos),
4016 			left_cpos);
4017 
4018 		/*
4019 		 * No need to worry if the append is already in the
4020 		 * leftmost leaf.
4021 		 */
4022 		if (left_cpos) {
4023 			left_path = ocfs2_new_path_from_path(right_path);
4024 			if (!left_path) {
4025 				ret = -ENOMEM;
4026 				mlog_errno(ret);
4027 				goto out;
4028 			}
4029 
4030 			ret = ocfs2_find_path(et->et_ci, left_path,
4031 					      left_cpos);
4032 			if (ret) {
4033 				mlog_errno(ret);
4034 				goto out;
4035 			}
4036 
4037 			/*
4038 			 * ocfs2_insert_path() will pass the left_path to the
4039 			 * journal for us.
4040 			 */
4041 		}
4042 	}
4043 
4044 	ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4045 	if (ret) {
4046 		mlog_errno(ret);
4047 		goto out;
4048 	}
4049 
4050 	ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec);
4051 
4052 	*ret_left_path = left_path;
4053 	ret = 0;
4054 out:
4055 	if (ret != 0)
4056 		ocfs2_free_path(left_path);
4057 
4058 	return ret;
4059 }
4060 
4061 static void ocfs2_split_record(struct ocfs2_extent_tree *et,
4062 			       struct ocfs2_path *left_path,
4063 			       struct ocfs2_path *right_path,
4064 			       struct ocfs2_extent_rec *split_rec,
4065 			       enum ocfs2_split_type split)
4066 {
4067 	int index;
4068 	u32 cpos = le32_to_cpu(split_rec->e_cpos);
4069 	struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4070 	struct ocfs2_extent_rec *rec, *tmprec;
4071 
4072 	right_el = path_leaf_el(right_path);
4073 	if (left_path)
4074 		left_el = path_leaf_el(left_path);
4075 
4076 	el = right_el;
4077 	insert_el = right_el;
4078 	index = ocfs2_search_extent_list(el, cpos);
4079 	if (index != -1) {
4080 		if (index == 0 && left_path) {
4081 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4082 
4083 			/*
4084 			 * This typically means that the record
4085 			 * started in the left path but moved to the
4086 			 * right as a result of rotation. We either
4087 			 * move the existing record to the left, or we
4088 			 * do the later insert there.
4089 			 *
4090 			 * In this case, the left path should always
4091 			 * exist as the rotate code will have passed
4092 			 * it back for a post-insert update.
4093 			 */
4094 
4095 			if (split == SPLIT_LEFT) {
4096 				/*
4097 				 * It's a left split. Since we know
4098 				 * that the rotate code gave us an
4099 				 * empty extent in the left path, we
4100 				 * can just do the insert there.
4101 				 */
4102 				insert_el = left_el;
4103 			} else {
4104 				/*
4105 				 * Right split - we have to move the
4106 				 * existing record over to the left
4107 				 * leaf. The insert will be into the
4108 				 * newly created empty extent in the
4109 				 * right leaf.
4110 				 */
4111 				tmprec = &right_el->l_recs[index];
4112 				ocfs2_rotate_leaf(left_el, tmprec);
4113 				el = left_el;
4114 
4115 				memset(tmprec, 0, sizeof(*tmprec));
4116 				index = ocfs2_search_extent_list(left_el, cpos);
4117 				BUG_ON(index == -1);
4118 			}
4119 		}
4120 	} else {
4121 		BUG_ON(!left_path);
4122 		BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4123 		/*
4124 		 * Left path is easy - we can just allow the insert to
4125 		 * happen.
4126 		 */
4127 		el = left_el;
4128 		insert_el = left_el;
4129 		index = ocfs2_search_extent_list(el, cpos);
4130 		BUG_ON(index == -1);
4131 	}
4132 
4133 	rec = &el->l_recs[index];
4134 	ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4135 				split, rec, split_rec);
4136 	ocfs2_rotate_leaf(insert_el, split_rec);
4137 }
4138 
4139 /*
4140  * This function only does inserts on an allocation b-tree. For tree
4141  * depth = 0, ocfs2_insert_at_leaf() is called directly.
4142  *
4143  * right_path is the path we want to do the actual insert
4144  * in. left_path should only be passed in if we need to update that
4145  * portion of the tree after an edge insert.
4146  */
4147 static int ocfs2_insert_path(handle_t *handle,
4148 			     struct ocfs2_extent_tree *et,
4149 			     struct ocfs2_path *left_path,
4150 			     struct ocfs2_path *right_path,
4151 			     struct ocfs2_extent_rec *insert_rec,
4152 			     struct ocfs2_insert_type *insert)
4153 {
4154 	int ret, subtree_index;
4155 	struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4156 
4157 	if (left_path) {
4158 		/*
4159 		 * There's a chance that left_path got passed back to
4160 		 * us without being accounted for in the
4161 		 * journal. Extend our transaction here to be sure we
4162 		 * can change those blocks.
4163 		 */
4164 		ret = ocfs2_extend_trans(handle, left_path->p_tree_depth);
4165 		if (ret < 0) {
4166 			mlog_errno(ret);
4167 			goto out;
4168 		}
4169 
4170 		ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
4171 		if (ret < 0) {
4172 			mlog_errno(ret);
4173 			goto out;
4174 		}
4175 	}
4176 
4177 	/*
4178 	 * Pass both paths to the journal. The majority of inserts
4179 	 * will be touching all components anyway.
4180 	 */
4181 	ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4182 	if (ret < 0) {
4183 		mlog_errno(ret);
4184 		goto out;
4185 	}
4186 
4187 	if (insert->ins_split != SPLIT_NONE) {
4188 		/*
4189 		 * We could call ocfs2_insert_at_leaf() for some types
4190 		 * of splits, but it's easier to just let one separate
4191 		 * function sort it all out.
4192 		 */
4193 		ocfs2_split_record(et, left_path, right_path,
4194 				   insert_rec, insert->ins_split);
4195 
4196 		/*
4197 		 * Split might have modified either leaf and we don't
4198 		 * have a guarantee that the later edge insert will
4199 		 * dirty this for us.
4200 		 */
4201 		if (left_path)
4202 			ocfs2_journal_dirty(handle,
4203 					    path_leaf_bh(left_path));
4204 	} else
4205 		ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path),
4206 				     insert);
4207 
4208 	ocfs2_journal_dirty(handle, leaf_bh);
4209 
4210 	if (left_path) {
4211 		/*
4212 		 * The rotate code has indicated that we need to fix
4213 		 * up portions of the tree after the insert.
4214 		 *
4215 		 * XXX: Should we extend the transaction here?
4216 		 */
4217 		subtree_index = ocfs2_find_subtree_root(et, left_path,
4218 							right_path);
4219 		ocfs2_complete_edge_insert(handle, left_path, right_path,
4220 					   subtree_index);
4221 	}
4222 
4223 	ret = 0;
4224 out:
4225 	return ret;
4226 }
4227 
4228 static int ocfs2_do_insert_extent(handle_t *handle,
4229 				  struct ocfs2_extent_tree *et,
4230 				  struct ocfs2_extent_rec *insert_rec,
4231 				  struct ocfs2_insert_type *type)
4232 {
4233 	int ret, rotate = 0;
4234 	u32 cpos;
4235 	struct ocfs2_path *right_path = NULL;
4236 	struct ocfs2_path *left_path = NULL;
4237 	struct ocfs2_extent_list *el;
4238 
4239 	el = et->et_root_el;
4240 
4241 	ret = ocfs2_et_root_journal_access(handle, et,
4242 					   OCFS2_JOURNAL_ACCESS_WRITE);
4243 	if (ret) {
4244 		mlog_errno(ret);
4245 		goto out;
4246 	}
4247 
4248 	if (le16_to_cpu(el->l_tree_depth) == 0) {
4249 		ocfs2_insert_at_leaf(et, insert_rec, el, type);
4250 		goto out_update_clusters;
4251 	}
4252 
4253 	right_path = ocfs2_new_path_from_et(et);
4254 	if (!right_path) {
4255 		ret = -ENOMEM;
4256 		mlog_errno(ret);
4257 		goto out;
4258 	}
4259 
4260 	/*
4261 	 * Determine the path to start with. Rotations need the
4262 	 * rightmost path, everything else can go directly to the
4263 	 * target leaf.
4264 	 */
4265 	cpos = le32_to_cpu(insert_rec->e_cpos);
4266 	if (type->ins_appending == APPEND_NONE &&
4267 	    type->ins_contig == CONTIG_NONE) {
4268 		rotate = 1;
4269 		cpos = UINT_MAX;
4270 	}
4271 
4272 	ret = ocfs2_find_path(et->et_ci, right_path, cpos);
4273 	if (ret) {
4274 		mlog_errno(ret);
4275 		goto out;
4276 	}
4277 
4278 	/*
4279 	 * Rotations and appends need special treatment - they modify
4280 	 * parts of the tree's above them.
4281 	 *
4282 	 * Both might pass back a path immediate to the left of the
4283 	 * one being inserted to. This will be cause
4284 	 * ocfs2_insert_path() to modify the rightmost records of
4285 	 * left_path to account for an edge insert.
4286 	 *
4287 	 * XXX: When modifying this code, keep in mind that an insert
4288 	 * can wind up skipping both of these two special cases...
4289 	 */
4290 	if (rotate) {
4291 		ret = ocfs2_rotate_tree_right(handle, et, type->ins_split,
4292 					      le32_to_cpu(insert_rec->e_cpos),
4293 					      right_path, &left_path);
4294 		if (ret) {
4295 			mlog_errno(ret);
4296 			goto out;
4297 		}
4298 
4299 		/*
4300 		 * ocfs2_rotate_tree_right() might have extended the
4301 		 * transaction without re-journaling our tree root.
4302 		 */
4303 		ret = ocfs2_et_root_journal_access(handle, et,
4304 						   OCFS2_JOURNAL_ACCESS_WRITE);
4305 		if (ret) {
4306 			mlog_errno(ret);
4307 			goto out;
4308 		}
4309 	} else if (type->ins_appending == APPEND_TAIL
4310 		   && type->ins_contig != CONTIG_LEFT) {
4311 		ret = ocfs2_append_rec_to_path(handle, et, insert_rec,
4312 					       right_path, &left_path);
4313 		if (ret) {
4314 			mlog_errno(ret);
4315 			goto out;
4316 		}
4317 	}
4318 
4319 	ret = ocfs2_insert_path(handle, et, left_path, right_path,
4320 				insert_rec, type);
4321 	if (ret) {
4322 		mlog_errno(ret);
4323 		goto out;
4324 	}
4325 
4326 out_update_clusters:
4327 	if (type->ins_split == SPLIT_NONE)
4328 		ocfs2_et_update_clusters(et,
4329 					 le16_to_cpu(insert_rec->e_leaf_clusters));
4330 
4331 	ocfs2_journal_dirty(handle, et->et_root_bh);
4332 
4333 out:
4334 	ocfs2_free_path(left_path);
4335 	ocfs2_free_path(right_path);
4336 
4337 	return ret;
4338 }
4339 
4340 static int ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et,
4341 			       struct ocfs2_path *path,
4342 			       struct ocfs2_extent_list *el, int index,
4343 			       struct ocfs2_extent_rec *split_rec,
4344 			       struct ocfs2_merge_ctxt *ctxt)
4345 {
4346 	int status = 0;
4347 	enum ocfs2_contig_type ret = CONTIG_NONE;
4348 	u32 left_cpos, right_cpos;
4349 	struct ocfs2_extent_rec *rec = NULL;
4350 	struct ocfs2_extent_list *new_el;
4351 	struct ocfs2_path *left_path = NULL, *right_path = NULL;
4352 	struct buffer_head *bh;
4353 	struct ocfs2_extent_block *eb;
4354 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
4355 
4356 	if (index > 0) {
4357 		rec = &el->l_recs[index - 1];
4358 	} else if (path->p_tree_depth > 0) {
4359 		status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
4360 		if (status)
4361 			goto exit;
4362 
4363 		if (left_cpos != 0) {
4364 			left_path = ocfs2_new_path_from_path(path);
4365 			if (!left_path) {
4366 				status = -ENOMEM;
4367 				mlog_errno(status);
4368 				goto exit;
4369 			}
4370 
4371 			status = ocfs2_find_path(et->et_ci, left_path,
4372 						 left_cpos);
4373 			if (status)
4374 				goto free_left_path;
4375 
4376 			new_el = path_leaf_el(left_path);
4377 
4378 			if (le16_to_cpu(new_el->l_next_free_rec) !=
4379 			    le16_to_cpu(new_el->l_count)) {
4380 				bh = path_leaf_bh(left_path);
4381 				eb = (struct ocfs2_extent_block *)bh->b_data;
4382 				ocfs2_error(sb,
4383 					    "Extent block #%llu has an invalid l_next_free_rec of %d.  It should have matched the l_count of %d\n",
4384 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4385 					    le16_to_cpu(new_el->l_next_free_rec),
4386 					    le16_to_cpu(new_el->l_count));
4387 				status = -EINVAL;
4388 				goto free_left_path;
4389 			}
4390 			rec = &new_el->l_recs[
4391 				le16_to_cpu(new_el->l_next_free_rec) - 1];
4392 		}
4393 	}
4394 
4395 	/*
4396 	 * We're careful to check for an empty extent record here -
4397 	 * the merge code will know what to do if it sees one.
4398 	 */
4399 	if (rec) {
4400 		if (index == 1 && ocfs2_is_empty_extent(rec)) {
4401 			if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4402 				ret = CONTIG_RIGHT;
4403 		} else {
4404 			ret = ocfs2_et_extent_contig(et, rec, split_rec);
4405 		}
4406 	}
4407 
4408 	rec = NULL;
4409 	if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4410 		rec = &el->l_recs[index + 1];
4411 	else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4412 		 path->p_tree_depth > 0) {
4413 		status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
4414 		if (status)
4415 			goto free_left_path;
4416 
4417 		if (right_cpos == 0)
4418 			goto free_left_path;
4419 
4420 		right_path = ocfs2_new_path_from_path(path);
4421 		if (!right_path) {
4422 			status = -ENOMEM;
4423 			mlog_errno(status);
4424 			goto free_left_path;
4425 		}
4426 
4427 		status = ocfs2_find_path(et->et_ci, right_path, right_cpos);
4428 		if (status)
4429 			goto free_right_path;
4430 
4431 		new_el = path_leaf_el(right_path);
4432 		rec = &new_el->l_recs[0];
4433 		if (ocfs2_is_empty_extent(rec)) {
4434 			if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4435 				bh = path_leaf_bh(right_path);
4436 				eb = (struct ocfs2_extent_block *)bh->b_data;
4437 				ocfs2_error(sb,
4438 					    "Extent block #%llu has an invalid l_next_free_rec of %d\n",
4439 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4440 					    le16_to_cpu(new_el->l_next_free_rec));
4441 				status = -EINVAL;
4442 				goto free_right_path;
4443 			}
4444 			rec = &new_el->l_recs[1];
4445 		}
4446 	}
4447 
4448 	if (rec) {
4449 		enum ocfs2_contig_type contig_type;
4450 
4451 		contig_type = ocfs2_et_extent_contig(et, rec, split_rec);
4452 
4453 		if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4454 			ret = CONTIG_LEFTRIGHT;
4455 		else if (ret == CONTIG_NONE)
4456 			ret = contig_type;
4457 	}
4458 
4459 free_right_path:
4460 	ocfs2_free_path(right_path);
4461 free_left_path:
4462 	ocfs2_free_path(left_path);
4463 exit:
4464 	if (status == 0)
4465 		ctxt->c_contig_type = ret;
4466 
4467 	return status;
4468 }
4469 
4470 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et,
4471 				     struct ocfs2_insert_type *insert,
4472 				     struct ocfs2_extent_list *el,
4473 				     struct ocfs2_extent_rec *insert_rec)
4474 {
4475 	int i;
4476 	enum ocfs2_contig_type contig_type = CONTIG_NONE;
4477 
4478 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4479 
4480 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4481 		contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i],
4482 						     insert_rec);
4483 		if (contig_type != CONTIG_NONE) {
4484 			insert->ins_contig_index = i;
4485 			break;
4486 		}
4487 	}
4488 	insert->ins_contig = contig_type;
4489 
4490 	if (insert->ins_contig != CONTIG_NONE) {
4491 		struct ocfs2_extent_rec *rec =
4492 				&el->l_recs[insert->ins_contig_index];
4493 		unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4494 				   le16_to_cpu(insert_rec->e_leaf_clusters);
4495 
4496 		/*
4497 		 * Caller might want us to limit the size of extents, don't
4498 		 * calculate contiguousness if we might exceed that limit.
4499 		 */
4500 		if (et->et_max_leaf_clusters &&
4501 		    (len > et->et_max_leaf_clusters))
4502 			insert->ins_contig = CONTIG_NONE;
4503 	}
4504 }
4505 
4506 /*
4507  * This should only be called against the righmost leaf extent list.
4508  *
4509  * ocfs2_figure_appending_type() will figure out whether we'll have to
4510  * insert at the tail of the rightmost leaf.
4511  *
4512  * This should also work against the root extent list for tree's with 0
4513  * depth. If we consider the root extent list to be the rightmost leaf node
4514  * then the logic here makes sense.
4515  */
4516 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4517 					struct ocfs2_extent_list *el,
4518 					struct ocfs2_extent_rec *insert_rec)
4519 {
4520 	int i;
4521 	u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4522 	struct ocfs2_extent_rec *rec;
4523 
4524 	insert->ins_appending = APPEND_NONE;
4525 
4526 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4527 
4528 	if (!el->l_next_free_rec)
4529 		goto set_tail_append;
4530 
4531 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4532 		/* Were all records empty? */
4533 		if (le16_to_cpu(el->l_next_free_rec) == 1)
4534 			goto set_tail_append;
4535 	}
4536 
4537 	i = le16_to_cpu(el->l_next_free_rec) - 1;
4538 	rec = &el->l_recs[i];
4539 
4540 	if (cpos >=
4541 	    (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4542 		goto set_tail_append;
4543 
4544 	return;
4545 
4546 set_tail_append:
4547 	insert->ins_appending = APPEND_TAIL;
4548 }
4549 
4550 /*
4551  * Helper function called at the beginning of an insert.
4552  *
4553  * This computes a few things that are commonly used in the process of
4554  * inserting into the btree:
4555  *   - Whether the new extent is contiguous with an existing one.
4556  *   - The current tree depth.
4557  *   - Whether the insert is an appending one.
4558  *   - The total # of free records in the tree.
4559  *
4560  * All of the information is stored on the ocfs2_insert_type
4561  * structure.
4562  */
4563 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et,
4564 				    struct buffer_head **last_eb_bh,
4565 				    struct ocfs2_extent_rec *insert_rec,
4566 				    int *free_records,
4567 				    struct ocfs2_insert_type *insert)
4568 {
4569 	int ret;
4570 	struct ocfs2_extent_block *eb;
4571 	struct ocfs2_extent_list *el;
4572 	struct ocfs2_path *path = NULL;
4573 	struct buffer_head *bh = NULL;
4574 
4575 	insert->ins_split = SPLIT_NONE;
4576 
4577 	el = et->et_root_el;
4578 	insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4579 
4580 	if (el->l_tree_depth) {
4581 		/*
4582 		 * If we have tree depth, we read in the
4583 		 * rightmost extent block ahead of time as
4584 		 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4585 		 * may want it later.
4586 		 */
4587 		ret = ocfs2_read_extent_block(et->et_ci,
4588 					      ocfs2_et_get_last_eb_blk(et),
4589 					      &bh);
4590 		if (ret) {
4591 			mlog_errno(ret);
4592 			goto out;
4593 		}
4594 		eb = (struct ocfs2_extent_block *) bh->b_data;
4595 		el = &eb->h_list;
4596 	}
4597 
4598 	/*
4599 	 * Unless we have a contiguous insert, we'll need to know if
4600 	 * there is room left in our allocation tree for another
4601 	 * extent record.
4602 	 *
4603 	 * XXX: This test is simplistic, we can search for empty
4604 	 * extent records too.
4605 	 */
4606 	*free_records = le16_to_cpu(el->l_count) -
4607 		le16_to_cpu(el->l_next_free_rec);
4608 
4609 	if (!insert->ins_tree_depth) {
4610 		ocfs2_figure_contig_type(et, insert, el, insert_rec);
4611 		ocfs2_figure_appending_type(insert, el, insert_rec);
4612 		return 0;
4613 	}
4614 
4615 	path = ocfs2_new_path_from_et(et);
4616 	if (!path) {
4617 		ret = -ENOMEM;
4618 		mlog_errno(ret);
4619 		goto out;
4620 	}
4621 
4622 	/*
4623 	 * In the case that we're inserting past what the tree
4624 	 * currently accounts for, ocfs2_find_path() will return for
4625 	 * us the rightmost tree path. This is accounted for below in
4626 	 * the appending code.
4627 	 */
4628 	ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos));
4629 	if (ret) {
4630 		mlog_errno(ret);
4631 		goto out;
4632 	}
4633 
4634 	el = path_leaf_el(path);
4635 
4636 	/*
4637 	 * Now that we have the path, there's two things we want to determine:
4638 	 * 1) Contiguousness (also set contig_index if this is so)
4639 	 *
4640 	 * 2) Are we doing an append? We can trivially break this up
4641          *     into two types of appends: simple record append, or a
4642          *     rotate inside the tail leaf.
4643 	 */
4644 	ocfs2_figure_contig_type(et, insert, el, insert_rec);
4645 
4646 	/*
4647 	 * The insert code isn't quite ready to deal with all cases of
4648 	 * left contiguousness. Specifically, if it's an insert into
4649 	 * the 1st record in a leaf, it will require the adjustment of
4650 	 * cluster count on the last record of the path directly to it's
4651 	 * left. For now, just catch that case and fool the layers
4652 	 * above us. This works just fine for tree_depth == 0, which
4653 	 * is why we allow that above.
4654 	 */
4655 	if (insert->ins_contig == CONTIG_LEFT &&
4656 	    insert->ins_contig_index == 0)
4657 		insert->ins_contig = CONTIG_NONE;
4658 
4659 	/*
4660 	 * Ok, so we can simply compare against last_eb to figure out
4661 	 * whether the path doesn't exist. This will only happen in
4662 	 * the case that we're doing a tail append, so maybe we can
4663 	 * take advantage of that information somehow.
4664 	 */
4665 	if (ocfs2_et_get_last_eb_blk(et) ==
4666 	    path_leaf_bh(path)->b_blocknr) {
4667 		/*
4668 		 * Ok, ocfs2_find_path() returned us the rightmost
4669 		 * tree path. This might be an appending insert. There are
4670 		 * two cases:
4671 		 *    1) We're doing a true append at the tail:
4672 		 *	-This might even be off the end of the leaf
4673 		 *    2) We're "appending" by rotating in the tail
4674 		 */
4675 		ocfs2_figure_appending_type(insert, el, insert_rec);
4676 	}
4677 
4678 out:
4679 	ocfs2_free_path(path);
4680 
4681 	if (ret == 0)
4682 		*last_eb_bh = bh;
4683 	else
4684 		brelse(bh);
4685 	return ret;
4686 }
4687 
4688 /*
4689  * Insert an extent into a btree.
4690  *
4691  * The caller needs to update the owning btree's cluster count.
4692  */
4693 int ocfs2_insert_extent(handle_t *handle,
4694 			struct ocfs2_extent_tree *et,
4695 			u32 cpos,
4696 			u64 start_blk,
4697 			u32 new_clusters,
4698 			u8 flags,
4699 			struct ocfs2_alloc_context *meta_ac)
4700 {
4701 	int status;
4702 	int uninitialized_var(free_records);
4703 	struct buffer_head *last_eb_bh = NULL;
4704 	struct ocfs2_insert_type insert = {0, };
4705 	struct ocfs2_extent_rec rec;
4706 
4707 	trace_ocfs2_insert_extent_start(
4708 		(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4709 		cpos, new_clusters);
4710 
4711 	memset(&rec, 0, sizeof(rec));
4712 	rec.e_cpos = cpu_to_le32(cpos);
4713 	rec.e_blkno = cpu_to_le64(start_blk);
4714 	rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4715 	rec.e_flags = flags;
4716 	status = ocfs2_et_insert_check(et, &rec);
4717 	if (status) {
4718 		mlog_errno(status);
4719 		goto bail;
4720 	}
4721 
4722 	status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec,
4723 					  &free_records, &insert);
4724 	if (status < 0) {
4725 		mlog_errno(status);
4726 		goto bail;
4727 	}
4728 
4729 	trace_ocfs2_insert_extent(insert.ins_appending, insert.ins_contig,
4730 				  insert.ins_contig_index, free_records,
4731 				  insert.ins_tree_depth);
4732 
4733 	if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4734 		status = ocfs2_grow_tree(handle, et,
4735 					 &insert.ins_tree_depth, &last_eb_bh,
4736 					 meta_ac);
4737 		if (status) {
4738 			mlog_errno(status);
4739 			goto bail;
4740 		}
4741 	}
4742 
4743 	/* Finally, we can add clusters. This might rotate the tree for us. */
4744 	status = ocfs2_do_insert_extent(handle, et, &rec, &insert);
4745 	if (status < 0)
4746 		mlog_errno(status);
4747 	else
4748 		ocfs2_et_extent_map_insert(et, &rec);
4749 
4750 bail:
4751 	brelse(last_eb_bh);
4752 
4753 	return status;
4754 }
4755 
4756 /*
4757  * Allcate and add clusters into the extent b-tree.
4758  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4759  * The extent b-tree's root is specified by et, and
4760  * it is not limited to the file storage. Any extent tree can use this
4761  * function if it implements the proper ocfs2_extent_tree.
4762  */
4763 int ocfs2_add_clusters_in_btree(handle_t *handle,
4764 				struct ocfs2_extent_tree *et,
4765 				u32 *logical_offset,
4766 				u32 clusters_to_add,
4767 				int mark_unwritten,
4768 				struct ocfs2_alloc_context *data_ac,
4769 				struct ocfs2_alloc_context *meta_ac,
4770 				enum ocfs2_alloc_restarted *reason_ret)
4771 {
4772 	int status = 0, err = 0;
4773 	int need_free = 0;
4774 	int free_extents;
4775 	enum ocfs2_alloc_restarted reason = RESTART_NONE;
4776 	u32 bit_off, num_bits;
4777 	u64 block;
4778 	u8 flags = 0;
4779 	struct ocfs2_super *osb =
4780 		OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
4781 
4782 	BUG_ON(!clusters_to_add);
4783 
4784 	if (mark_unwritten)
4785 		flags = OCFS2_EXT_UNWRITTEN;
4786 
4787 	free_extents = ocfs2_num_free_extents(et);
4788 	if (free_extents < 0) {
4789 		status = free_extents;
4790 		mlog_errno(status);
4791 		goto leave;
4792 	}
4793 
4794 	/* there are two cases which could cause us to EAGAIN in the
4795 	 * we-need-more-metadata case:
4796 	 * 1) we haven't reserved *any*
4797 	 * 2) we are so fragmented, we've needed to add metadata too
4798 	 *    many times. */
4799 	if (!free_extents && !meta_ac) {
4800 		err = -1;
4801 		status = -EAGAIN;
4802 		reason = RESTART_META;
4803 		goto leave;
4804 	} else if ((!free_extents)
4805 		   && (ocfs2_alloc_context_bits_left(meta_ac)
4806 		       < ocfs2_extend_meta_needed(et->et_root_el))) {
4807 		err = -2;
4808 		status = -EAGAIN;
4809 		reason = RESTART_META;
4810 		goto leave;
4811 	}
4812 
4813 	status = __ocfs2_claim_clusters(handle, data_ac, 1,
4814 					clusters_to_add, &bit_off, &num_bits);
4815 	if (status < 0) {
4816 		if (status != -ENOSPC)
4817 			mlog_errno(status);
4818 		goto leave;
4819 	}
4820 
4821 	BUG_ON(num_bits > clusters_to_add);
4822 
4823 	/* reserve our write early -- insert_extent may update the tree root */
4824 	status = ocfs2_et_root_journal_access(handle, et,
4825 					      OCFS2_JOURNAL_ACCESS_WRITE);
4826 	if (status < 0) {
4827 		mlog_errno(status);
4828 		need_free = 1;
4829 		goto bail;
4830 	}
4831 
4832 	block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4833 	trace_ocfs2_add_clusters_in_btree(
4834 	     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4835 	     bit_off, num_bits);
4836 	status = ocfs2_insert_extent(handle, et, *logical_offset, block,
4837 				     num_bits, flags, meta_ac);
4838 	if (status < 0) {
4839 		mlog_errno(status);
4840 		need_free = 1;
4841 		goto bail;
4842 	}
4843 
4844 	ocfs2_journal_dirty(handle, et->et_root_bh);
4845 
4846 	clusters_to_add -= num_bits;
4847 	*logical_offset += num_bits;
4848 
4849 	if (clusters_to_add) {
4850 		err = clusters_to_add;
4851 		status = -EAGAIN;
4852 		reason = RESTART_TRANS;
4853 	}
4854 
4855 bail:
4856 	if (need_free) {
4857 		if (data_ac->ac_which == OCFS2_AC_USE_LOCAL)
4858 			ocfs2_free_local_alloc_bits(osb, handle, data_ac,
4859 					bit_off, num_bits);
4860 		else
4861 			ocfs2_free_clusters(handle,
4862 					data_ac->ac_inode,
4863 					data_ac->ac_bh,
4864 					ocfs2_clusters_to_blocks(osb->sb, bit_off),
4865 					num_bits);
4866 	}
4867 
4868 leave:
4869 	if (reason_ret)
4870 		*reason_ret = reason;
4871 	trace_ocfs2_add_clusters_in_btree_ret(status, reason, err);
4872 	return status;
4873 }
4874 
4875 static void ocfs2_make_right_split_rec(struct super_block *sb,
4876 				       struct ocfs2_extent_rec *split_rec,
4877 				       u32 cpos,
4878 				       struct ocfs2_extent_rec *rec)
4879 {
4880 	u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4881 	u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4882 
4883 	memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4884 
4885 	split_rec->e_cpos = cpu_to_le32(cpos);
4886 	split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4887 
4888 	split_rec->e_blkno = rec->e_blkno;
4889 	le64_add_cpu(&split_rec->e_blkno,
4890 		     ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4891 
4892 	split_rec->e_flags = rec->e_flags;
4893 }
4894 
4895 static int ocfs2_split_and_insert(handle_t *handle,
4896 				  struct ocfs2_extent_tree *et,
4897 				  struct ocfs2_path *path,
4898 				  struct buffer_head **last_eb_bh,
4899 				  int split_index,
4900 				  struct ocfs2_extent_rec *orig_split_rec,
4901 				  struct ocfs2_alloc_context *meta_ac)
4902 {
4903 	int ret = 0, depth;
4904 	unsigned int insert_range, rec_range, do_leftright = 0;
4905 	struct ocfs2_extent_rec tmprec;
4906 	struct ocfs2_extent_list *rightmost_el;
4907 	struct ocfs2_extent_rec rec;
4908 	struct ocfs2_extent_rec split_rec = *orig_split_rec;
4909 	struct ocfs2_insert_type insert;
4910 	struct ocfs2_extent_block *eb;
4911 
4912 leftright:
4913 	/*
4914 	 * Store a copy of the record on the stack - it might move
4915 	 * around as the tree is manipulated below.
4916 	 */
4917 	rec = path_leaf_el(path)->l_recs[split_index];
4918 
4919 	rightmost_el = et->et_root_el;
4920 
4921 	depth = le16_to_cpu(rightmost_el->l_tree_depth);
4922 	if (depth) {
4923 		BUG_ON(!(*last_eb_bh));
4924 		eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4925 		rightmost_el = &eb->h_list;
4926 	}
4927 
4928 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4929 	    le16_to_cpu(rightmost_el->l_count)) {
4930 		ret = ocfs2_grow_tree(handle, et,
4931 				      &depth, last_eb_bh, meta_ac);
4932 		if (ret) {
4933 			mlog_errno(ret);
4934 			goto out;
4935 		}
4936 	}
4937 
4938 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4939 	insert.ins_appending = APPEND_NONE;
4940 	insert.ins_contig = CONTIG_NONE;
4941 	insert.ins_tree_depth = depth;
4942 
4943 	insert_range = le32_to_cpu(split_rec.e_cpos) +
4944 		le16_to_cpu(split_rec.e_leaf_clusters);
4945 	rec_range = le32_to_cpu(rec.e_cpos) +
4946 		le16_to_cpu(rec.e_leaf_clusters);
4947 
4948 	if (split_rec.e_cpos == rec.e_cpos) {
4949 		insert.ins_split = SPLIT_LEFT;
4950 	} else if (insert_range == rec_range) {
4951 		insert.ins_split = SPLIT_RIGHT;
4952 	} else {
4953 		/*
4954 		 * Left/right split. We fake this as a right split
4955 		 * first and then make a second pass as a left split.
4956 		 */
4957 		insert.ins_split = SPLIT_RIGHT;
4958 
4959 		ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4960 					   &tmprec, insert_range, &rec);
4961 
4962 		split_rec = tmprec;
4963 
4964 		BUG_ON(do_leftright);
4965 		do_leftright = 1;
4966 	}
4967 
4968 	ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
4969 	if (ret) {
4970 		mlog_errno(ret);
4971 		goto out;
4972 	}
4973 
4974 	if (do_leftright == 1) {
4975 		u32 cpos;
4976 		struct ocfs2_extent_list *el;
4977 
4978 		do_leftright++;
4979 		split_rec = *orig_split_rec;
4980 
4981 		ocfs2_reinit_path(path, 1);
4982 
4983 		cpos = le32_to_cpu(split_rec.e_cpos);
4984 		ret = ocfs2_find_path(et->et_ci, path, cpos);
4985 		if (ret) {
4986 			mlog_errno(ret);
4987 			goto out;
4988 		}
4989 
4990 		el = path_leaf_el(path);
4991 		split_index = ocfs2_search_extent_list(el, cpos);
4992 		if (split_index == -1) {
4993 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
4994 				    "Owner %llu has an extent at cpos %u which can no longer be found\n",
4995 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4996 				    cpos);
4997 			ret = -EROFS;
4998 			goto out;
4999 		}
5000 		goto leftright;
5001 	}
5002 out:
5003 
5004 	return ret;
5005 }
5006 
5007 static int ocfs2_replace_extent_rec(handle_t *handle,
5008 				    struct ocfs2_extent_tree *et,
5009 				    struct ocfs2_path *path,
5010 				    struct ocfs2_extent_list *el,
5011 				    int split_index,
5012 				    struct ocfs2_extent_rec *split_rec)
5013 {
5014 	int ret;
5015 
5016 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
5017 					   path_num_items(path) - 1);
5018 	if (ret) {
5019 		mlog_errno(ret);
5020 		goto out;
5021 	}
5022 
5023 	el->l_recs[split_index] = *split_rec;
5024 
5025 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
5026 out:
5027 	return ret;
5028 }
5029 
5030 /*
5031  * Split part or all of the extent record at split_index in the leaf
5032  * pointed to by path. Merge with the contiguous extent record if needed.
5033  *
5034  * Care is taken to handle contiguousness so as to not grow the tree.
5035  *
5036  * meta_ac is not strictly necessary - we only truly need it if growth
5037  * of the tree is required. All other cases will degrade into a less
5038  * optimal tree layout.
5039  *
5040  * last_eb_bh should be the rightmost leaf block for any extent
5041  * btree. Since a split may grow the tree or a merge might shrink it,
5042  * the caller cannot trust the contents of that buffer after this call.
5043  *
5044  * This code is optimized for readability - several passes might be
5045  * made over certain portions of the tree. All of those blocks will
5046  * have been brought into cache (and pinned via the journal), so the
5047  * extra overhead is not expressed in terms of disk reads.
5048  */
5049 int ocfs2_split_extent(handle_t *handle,
5050 		       struct ocfs2_extent_tree *et,
5051 		       struct ocfs2_path *path,
5052 		       int split_index,
5053 		       struct ocfs2_extent_rec *split_rec,
5054 		       struct ocfs2_alloc_context *meta_ac,
5055 		       struct ocfs2_cached_dealloc_ctxt *dealloc)
5056 {
5057 	int ret = 0;
5058 	struct ocfs2_extent_list *el = path_leaf_el(path);
5059 	struct buffer_head *last_eb_bh = NULL;
5060 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5061 	struct ocfs2_merge_ctxt ctxt;
5062 	struct ocfs2_extent_list *rightmost_el;
5063 
5064 	if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5065 	    ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5066 	     (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5067 		ret = -EIO;
5068 		mlog_errno(ret);
5069 		goto out;
5070 	}
5071 
5072 	ret = ocfs2_figure_merge_contig_type(et, path, el,
5073 					     split_index,
5074 					     split_rec,
5075 					     &ctxt);
5076 	if (ret) {
5077 		mlog_errno(ret);
5078 		goto out;
5079 	}
5080 
5081 	/*
5082 	 * The core merge / split code wants to know how much room is
5083 	 * left in this allocation tree, so we pass the
5084 	 * rightmost extent list.
5085 	 */
5086 	if (path->p_tree_depth) {
5087 		struct ocfs2_extent_block *eb;
5088 
5089 		ret = ocfs2_read_extent_block(et->et_ci,
5090 					      ocfs2_et_get_last_eb_blk(et),
5091 					      &last_eb_bh);
5092 		if (ret) {
5093 			mlog_errno(ret);
5094 			goto out;
5095 		}
5096 
5097 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5098 		rightmost_el = &eb->h_list;
5099 	} else
5100 		rightmost_el = path_root_el(path);
5101 
5102 	if (rec->e_cpos == split_rec->e_cpos &&
5103 	    rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5104 		ctxt.c_split_covers_rec = 1;
5105 	else
5106 		ctxt.c_split_covers_rec = 0;
5107 
5108 	ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5109 
5110 	trace_ocfs2_split_extent(split_index, ctxt.c_contig_type,
5111 				 ctxt.c_has_empty_extent,
5112 				 ctxt.c_split_covers_rec);
5113 
5114 	if (ctxt.c_contig_type == CONTIG_NONE) {
5115 		if (ctxt.c_split_covers_rec)
5116 			ret = ocfs2_replace_extent_rec(handle, et, path, el,
5117 						       split_index, split_rec);
5118 		else
5119 			ret = ocfs2_split_and_insert(handle, et, path,
5120 						     &last_eb_bh, split_index,
5121 						     split_rec, meta_ac);
5122 		if (ret)
5123 			mlog_errno(ret);
5124 	} else {
5125 		ret = ocfs2_try_to_merge_extent(handle, et, path,
5126 						split_index, split_rec,
5127 						dealloc, &ctxt);
5128 		if (ret)
5129 			mlog_errno(ret);
5130 	}
5131 
5132 out:
5133 	brelse(last_eb_bh);
5134 	return ret;
5135 }
5136 
5137 /*
5138  * Change the flags of the already-existing extent at cpos for len clusters.
5139  *
5140  * new_flags: the flags we want to set.
5141  * clear_flags: the flags we want to clear.
5142  * phys: the new physical offset we want this new extent starts from.
5143  *
5144  * If the existing extent is larger than the request, initiate a
5145  * split. An attempt will be made at merging with adjacent extents.
5146  *
5147  * The caller is responsible for passing down meta_ac if we'll need it.
5148  */
5149 int ocfs2_change_extent_flag(handle_t *handle,
5150 			     struct ocfs2_extent_tree *et,
5151 			     u32 cpos, u32 len, u32 phys,
5152 			     struct ocfs2_alloc_context *meta_ac,
5153 			     struct ocfs2_cached_dealloc_ctxt *dealloc,
5154 			     int new_flags, int clear_flags)
5155 {
5156 	int ret, index;
5157 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5158 	u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys);
5159 	struct ocfs2_extent_rec split_rec;
5160 	struct ocfs2_path *left_path = NULL;
5161 	struct ocfs2_extent_list *el;
5162 	struct ocfs2_extent_rec *rec;
5163 
5164 	left_path = ocfs2_new_path_from_et(et);
5165 	if (!left_path) {
5166 		ret = -ENOMEM;
5167 		mlog_errno(ret);
5168 		goto out;
5169 	}
5170 
5171 	ret = ocfs2_find_path(et->et_ci, left_path, cpos);
5172 	if (ret) {
5173 		mlog_errno(ret);
5174 		goto out;
5175 	}
5176 	el = path_leaf_el(left_path);
5177 
5178 	index = ocfs2_search_extent_list(el, cpos);
5179 	if (index == -1) {
5180 		ocfs2_error(sb,
5181 			    "Owner %llu has an extent at cpos %u which can no longer be found\n",
5182 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5183 			    cpos);
5184 		ret = -EROFS;
5185 		goto out;
5186 	}
5187 
5188 	ret = -EIO;
5189 	rec = &el->l_recs[index];
5190 	if (new_flags && (rec->e_flags & new_flags)) {
5191 		mlog(ML_ERROR, "Owner %llu tried to set %d flags on an "
5192 		     "extent that already had them\n",
5193 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5194 		     new_flags);
5195 		goto out;
5196 	}
5197 
5198 	if (clear_flags && !(rec->e_flags & clear_flags)) {
5199 		mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an "
5200 		     "extent that didn't have them\n",
5201 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5202 		     clear_flags);
5203 		goto out;
5204 	}
5205 
5206 	memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5207 	split_rec.e_cpos = cpu_to_le32(cpos);
5208 	split_rec.e_leaf_clusters = cpu_to_le16(len);
5209 	split_rec.e_blkno = cpu_to_le64(start_blkno);
5210 	split_rec.e_flags = rec->e_flags;
5211 	if (new_flags)
5212 		split_rec.e_flags |= new_flags;
5213 	if (clear_flags)
5214 		split_rec.e_flags &= ~clear_flags;
5215 
5216 	ret = ocfs2_split_extent(handle, et, left_path,
5217 				 index, &split_rec, meta_ac,
5218 				 dealloc);
5219 	if (ret)
5220 		mlog_errno(ret);
5221 
5222 out:
5223 	ocfs2_free_path(left_path);
5224 	return ret;
5225 
5226 }
5227 
5228 /*
5229  * Mark the already-existing extent at cpos as written for len clusters.
5230  * This removes the unwritten extent flag.
5231  *
5232  * If the existing extent is larger than the request, initiate a
5233  * split. An attempt will be made at merging with adjacent extents.
5234  *
5235  * The caller is responsible for passing down meta_ac if we'll need it.
5236  */
5237 int ocfs2_mark_extent_written(struct inode *inode,
5238 			      struct ocfs2_extent_tree *et,
5239 			      handle_t *handle, u32 cpos, u32 len, u32 phys,
5240 			      struct ocfs2_alloc_context *meta_ac,
5241 			      struct ocfs2_cached_dealloc_ctxt *dealloc)
5242 {
5243 	int ret;
5244 
5245 	trace_ocfs2_mark_extent_written(
5246 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
5247 		cpos, len, phys);
5248 
5249 	if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5250 		ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents that are being written to, but the feature bit is not set in the super block\n",
5251 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
5252 		ret = -EROFS;
5253 		goto out;
5254 	}
5255 
5256 	/*
5257 	 * XXX: This should be fixed up so that we just re-insert the
5258 	 * next extent records.
5259 	 */
5260 	ocfs2_et_extent_map_truncate(et, 0);
5261 
5262 	ret = ocfs2_change_extent_flag(handle, et, cpos,
5263 				       len, phys, meta_ac, dealloc,
5264 				       0, OCFS2_EXT_UNWRITTEN);
5265 	if (ret)
5266 		mlog_errno(ret);
5267 
5268 out:
5269 	return ret;
5270 }
5271 
5272 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et,
5273 			    struct ocfs2_path *path,
5274 			    int index, u32 new_range,
5275 			    struct ocfs2_alloc_context *meta_ac)
5276 {
5277 	int ret, depth, credits;
5278 	struct buffer_head *last_eb_bh = NULL;
5279 	struct ocfs2_extent_block *eb;
5280 	struct ocfs2_extent_list *rightmost_el, *el;
5281 	struct ocfs2_extent_rec split_rec;
5282 	struct ocfs2_extent_rec *rec;
5283 	struct ocfs2_insert_type insert;
5284 
5285 	/*
5286 	 * Setup the record to split before we grow the tree.
5287 	 */
5288 	el = path_leaf_el(path);
5289 	rec = &el->l_recs[index];
5290 	ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
5291 				   &split_rec, new_range, rec);
5292 
5293 	depth = path->p_tree_depth;
5294 	if (depth > 0) {
5295 		ret = ocfs2_read_extent_block(et->et_ci,
5296 					      ocfs2_et_get_last_eb_blk(et),
5297 					      &last_eb_bh);
5298 		if (ret < 0) {
5299 			mlog_errno(ret);
5300 			goto out;
5301 		}
5302 
5303 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5304 		rightmost_el = &eb->h_list;
5305 	} else
5306 		rightmost_el = path_leaf_el(path);
5307 
5308 	credits = path->p_tree_depth +
5309 		  ocfs2_extend_meta_needed(et->et_root_el);
5310 	ret = ocfs2_extend_trans(handle, credits);
5311 	if (ret) {
5312 		mlog_errno(ret);
5313 		goto out;
5314 	}
5315 
5316 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5317 	    le16_to_cpu(rightmost_el->l_count)) {
5318 		ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh,
5319 				      meta_ac);
5320 		if (ret) {
5321 			mlog_errno(ret);
5322 			goto out;
5323 		}
5324 	}
5325 
5326 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5327 	insert.ins_appending = APPEND_NONE;
5328 	insert.ins_contig = CONTIG_NONE;
5329 	insert.ins_split = SPLIT_RIGHT;
5330 	insert.ins_tree_depth = depth;
5331 
5332 	ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
5333 	if (ret)
5334 		mlog_errno(ret);
5335 
5336 out:
5337 	brelse(last_eb_bh);
5338 	return ret;
5339 }
5340 
5341 static int ocfs2_truncate_rec(handle_t *handle,
5342 			      struct ocfs2_extent_tree *et,
5343 			      struct ocfs2_path *path, int index,
5344 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
5345 			      u32 cpos, u32 len)
5346 {
5347 	int ret;
5348 	u32 left_cpos, rec_range, trunc_range;
5349 	int is_rightmost_tree_rec = 0;
5350 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5351 	struct ocfs2_path *left_path = NULL;
5352 	struct ocfs2_extent_list *el = path_leaf_el(path);
5353 	struct ocfs2_extent_rec *rec;
5354 	struct ocfs2_extent_block *eb;
5355 
5356 	if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5357 		/* extend credit for ocfs2_remove_rightmost_path */
5358 		ret = ocfs2_extend_rotate_transaction(handle, 0,
5359 				handle->h_buffer_credits,
5360 				path);
5361 		if (ret) {
5362 			mlog_errno(ret);
5363 			goto out;
5364 		}
5365 
5366 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5367 		if (ret) {
5368 			mlog_errno(ret);
5369 			goto out;
5370 		}
5371 
5372 		index--;
5373 	}
5374 
5375 	if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5376 	    path->p_tree_depth) {
5377 		/*
5378 		 * Check whether this is the rightmost tree record. If
5379 		 * we remove all of this record or part of its right
5380 		 * edge then an update of the record lengths above it
5381 		 * will be required.
5382 		 */
5383 		eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5384 		if (eb->h_next_leaf_blk == 0)
5385 			is_rightmost_tree_rec = 1;
5386 	}
5387 
5388 	rec = &el->l_recs[index];
5389 	if (index == 0 && path->p_tree_depth &&
5390 	    le32_to_cpu(rec->e_cpos) == cpos) {
5391 		/*
5392 		 * Changing the leftmost offset (via partial or whole
5393 		 * record truncate) of an interior (or rightmost) path
5394 		 * means we have to update the subtree that is formed
5395 		 * by this leaf and the one to it's left.
5396 		 *
5397 		 * There are two cases we can skip:
5398 		 *   1) Path is the leftmost one in our btree.
5399 		 *   2) The leaf is rightmost and will be empty after
5400 		 *      we remove the extent record - the rotate code
5401 		 *      knows how to update the newly formed edge.
5402 		 */
5403 
5404 		ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
5405 		if (ret) {
5406 			mlog_errno(ret);
5407 			goto out;
5408 		}
5409 
5410 		if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5411 			left_path = ocfs2_new_path_from_path(path);
5412 			if (!left_path) {
5413 				ret = -ENOMEM;
5414 				mlog_errno(ret);
5415 				goto out;
5416 			}
5417 
5418 			ret = ocfs2_find_path(et->et_ci, left_path,
5419 					      left_cpos);
5420 			if (ret) {
5421 				mlog_errno(ret);
5422 				goto out;
5423 			}
5424 		}
5425 	}
5426 
5427 	ret = ocfs2_extend_rotate_transaction(handle, 0,
5428 					      handle->h_buffer_credits,
5429 					      path);
5430 	if (ret) {
5431 		mlog_errno(ret);
5432 		goto out;
5433 	}
5434 
5435 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
5436 	if (ret) {
5437 		mlog_errno(ret);
5438 		goto out;
5439 	}
5440 
5441 	ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
5442 	if (ret) {
5443 		mlog_errno(ret);
5444 		goto out;
5445 	}
5446 
5447 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5448 	trunc_range = cpos + len;
5449 
5450 	if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5451 		int next_free;
5452 
5453 		memset(rec, 0, sizeof(*rec));
5454 		ocfs2_cleanup_merge(el, index);
5455 
5456 		next_free = le16_to_cpu(el->l_next_free_rec);
5457 		if (is_rightmost_tree_rec && next_free > 1) {
5458 			/*
5459 			 * We skip the edge update if this path will
5460 			 * be deleted by the rotate code.
5461 			 */
5462 			rec = &el->l_recs[next_free - 1];
5463 			ocfs2_adjust_rightmost_records(handle, et, path,
5464 						       rec);
5465 		}
5466 	} else if (le32_to_cpu(rec->e_cpos) == cpos) {
5467 		/* Remove leftmost portion of the record. */
5468 		le32_add_cpu(&rec->e_cpos, len);
5469 		le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5470 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5471 	} else if (rec_range == trunc_range) {
5472 		/* Remove rightmost portion of the record */
5473 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5474 		if (is_rightmost_tree_rec)
5475 			ocfs2_adjust_rightmost_records(handle, et, path, rec);
5476 	} else {
5477 		/* Caller should have trapped this. */
5478 		mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) "
5479 		     "(%u, %u)\n",
5480 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5481 		     le32_to_cpu(rec->e_cpos),
5482 		     le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5483 		BUG();
5484 	}
5485 
5486 	if (left_path) {
5487 		int subtree_index;
5488 
5489 		subtree_index = ocfs2_find_subtree_root(et, left_path, path);
5490 		ocfs2_complete_edge_insert(handle, left_path, path,
5491 					   subtree_index);
5492 	}
5493 
5494 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
5495 
5496 	ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5497 	if (ret) {
5498 		mlog_errno(ret);
5499 		goto out;
5500 	}
5501 
5502 out:
5503 	ocfs2_free_path(left_path);
5504 	return ret;
5505 }
5506 
5507 int ocfs2_remove_extent(handle_t *handle,
5508 			struct ocfs2_extent_tree *et,
5509 			u32 cpos, u32 len,
5510 			struct ocfs2_alloc_context *meta_ac,
5511 			struct ocfs2_cached_dealloc_ctxt *dealloc)
5512 {
5513 	int ret, index;
5514 	u32 rec_range, trunc_range;
5515 	struct ocfs2_extent_rec *rec;
5516 	struct ocfs2_extent_list *el;
5517 	struct ocfs2_path *path = NULL;
5518 
5519 	/*
5520 	 * XXX: Why are we truncating to 0 instead of wherever this
5521 	 * affects us?
5522 	 */
5523 	ocfs2_et_extent_map_truncate(et, 0);
5524 
5525 	path = ocfs2_new_path_from_et(et);
5526 	if (!path) {
5527 		ret = -ENOMEM;
5528 		mlog_errno(ret);
5529 		goto out;
5530 	}
5531 
5532 	ret = ocfs2_find_path(et->et_ci, path, cpos);
5533 	if (ret) {
5534 		mlog_errno(ret);
5535 		goto out;
5536 	}
5537 
5538 	el = path_leaf_el(path);
5539 	index = ocfs2_search_extent_list(el, cpos);
5540 	if (index == -1) {
5541 		ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5542 			    "Owner %llu has an extent at cpos %u which can no longer be found\n",
5543 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5544 			    cpos);
5545 		ret = -EROFS;
5546 		goto out;
5547 	}
5548 
5549 	/*
5550 	 * We have 3 cases of extent removal:
5551 	 *   1) Range covers the entire extent rec
5552 	 *   2) Range begins or ends on one edge of the extent rec
5553 	 *   3) Range is in the middle of the extent rec (no shared edges)
5554 	 *
5555 	 * For case 1 we remove the extent rec and left rotate to
5556 	 * fill the hole.
5557 	 *
5558 	 * For case 2 we just shrink the existing extent rec, with a
5559 	 * tree update if the shrinking edge is also the edge of an
5560 	 * extent block.
5561 	 *
5562 	 * For case 3 we do a right split to turn the extent rec into
5563 	 * something case 2 can handle.
5564 	 */
5565 	rec = &el->l_recs[index];
5566 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5567 	trunc_range = cpos + len;
5568 
5569 	BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5570 
5571 	trace_ocfs2_remove_extent(
5572 		(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5573 		cpos, len, index, le32_to_cpu(rec->e_cpos),
5574 		ocfs2_rec_clusters(el, rec));
5575 
5576 	if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5577 		ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5578 					 cpos, len);
5579 		if (ret) {
5580 			mlog_errno(ret);
5581 			goto out;
5582 		}
5583 	} else {
5584 		ret = ocfs2_split_tree(handle, et, path, index,
5585 				       trunc_range, meta_ac);
5586 		if (ret) {
5587 			mlog_errno(ret);
5588 			goto out;
5589 		}
5590 
5591 		/*
5592 		 * The split could have manipulated the tree enough to
5593 		 * move the record location, so we have to look for it again.
5594 		 */
5595 		ocfs2_reinit_path(path, 1);
5596 
5597 		ret = ocfs2_find_path(et->et_ci, path, cpos);
5598 		if (ret) {
5599 			mlog_errno(ret);
5600 			goto out;
5601 		}
5602 
5603 		el = path_leaf_el(path);
5604 		index = ocfs2_search_extent_list(el, cpos);
5605 		if (index == -1) {
5606 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5607 				    "Owner %llu: split at cpos %u lost record\n",
5608 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5609 				    cpos);
5610 			ret = -EROFS;
5611 			goto out;
5612 		}
5613 
5614 		/*
5615 		 * Double check our values here. If anything is fishy,
5616 		 * it's easier to catch it at the top level.
5617 		 */
5618 		rec = &el->l_recs[index];
5619 		rec_range = le32_to_cpu(rec->e_cpos) +
5620 			ocfs2_rec_clusters(el, rec);
5621 		if (rec_range != trunc_range) {
5622 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5623 				    "Owner %llu: error after split at cpos %u trunc len %u, existing record is (%u,%u)\n",
5624 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5625 				    cpos, len, le32_to_cpu(rec->e_cpos),
5626 				    ocfs2_rec_clusters(el, rec));
5627 			ret = -EROFS;
5628 			goto out;
5629 		}
5630 
5631 		ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5632 					 cpos, len);
5633 		if (ret) {
5634 			mlog_errno(ret);
5635 			goto out;
5636 		}
5637 	}
5638 
5639 out:
5640 	ocfs2_free_path(path);
5641 	return ret;
5642 }
5643 
5644 /*
5645  * ocfs2_reserve_blocks_for_rec_trunc() would look basically the
5646  * same as ocfs2_lock_alloctors(), except for it accepts a blocks
5647  * number to reserve some extra blocks, and it only handles meta
5648  * data allocations.
5649  *
5650  * Currently, only ocfs2_remove_btree_range() uses it for truncating
5651  * and punching holes.
5652  */
5653 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode,
5654 					      struct ocfs2_extent_tree *et,
5655 					      u32 extents_to_split,
5656 					      struct ocfs2_alloc_context **ac,
5657 					      int extra_blocks)
5658 {
5659 	int ret = 0, num_free_extents;
5660 	unsigned int max_recs_needed = 2 * extents_to_split;
5661 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5662 
5663 	*ac = NULL;
5664 
5665 	num_free_extents = ocfs2_num_free_extents(et);
5666 	if (num_free_extents < 0) {
5667 		ret = num_free_extents;
5668 		mlog_errno(ret);
5669 		goto out;
5670 	}
5671 
5672 	if (!num_free_extents ||
5673 	    (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed))
5674 		extra_blocks += ocfs2_extend_meta_needed(et->et_root_el);
5675 
5676 	if (extra_blocks) {
5677 		ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac);
5678 		if (ret < 0) {
5679 			if (ret != -ENOSPC)
5680 				mlog_errno(ret);
5681 			goto out;
5682 		}
5683 	}
5684 
5685 out:
5686 	if (ret) {
5687 		if (*ac) {
5688 			ocfs2_free_alloc_context(*ac);
5689 			*ac = NULL;
5690 		}
5691 	}
5692 
5693 	return ret;
5694 }
5695 
5696 int ocfs2_remove_btree_range(struct inode *inode,
5697 			     struct ocfs2_extent_tree *et,
5698 			     u32 cpos, u32 phys_cpos, u32 len, int flags,
5699 			     struct ocfs2_cached_dealloc_ctxt *dealloc,
5700 			     u64 refcount_loc, bool refcount_tree_locked)
5701 {
5702 	int ret, credits = 0, extra_blocks = 0;
5703 	u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5704 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5705 	struct inode *tl_inode = osb->osb_tl_inode;
5706 	handle_t *handle;
5707 	struct ocfs2_alloc_context *meta_ac = NULL;
5708 	struct ocfs2_refcount_tree *ref_tree = NULL;
5709 
5710 	if ((flags & OCFS2_EXT_REFCOUNTED) && len) {
5711 		BUG_ON(!ocfs2_is_refcount_inode(inode));
5712 
5713 		if (!refcount_tree_locked) {
5714 			ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
5715 						       &ref_tree, NULL);
5716 			if (ret) {
5717 				mlog_errno(ret);
5718 				goto bail;
5719 			}
5720 		}
5721 
5722 		ret = ocfs2_prepare_refcount_change_for_del(inode,
5723 							    refcount_loc,
5724 							    phys_blkno,
5725 							    len,
5726 							    &credits,
5727 							    &extra_blocks);
5728 		if (ret < 0) {
5729 			mlog_errno(ret);
5730 			goto bail;
5731 		}
5732 	}
5733 
5734 	ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac,
5735 						 extra_blocks);
5736 	if (ret) {
5737 		mlog_errno(ret);
5738 		goto bail;
5739 	}
5740 
5741 	inode_lock(tl_inode);
5742 
5743 	if (ocfs2_truncate_log_needs_flush(osb)) {
5744 		ret = __ocfs2_flush_truncate_log(osb);
5745 		if (ret < 0) {
5746 			mlog_errno(ret);
5747 			goto out;
5748 		}
5749 	}
5750 
5751 	handle = ocfs2_start_trans(osb,
5752 			ocfs2_remove_extent_credits(osb->sb) + credits);
5753 	if (IS_ERR(handle)) {
5754 		ret = PTR_ERR(handle);
5755 		mlog_errno(ret);
5756 		goto out;
5757 	}
5758 
5759 	ret = ocfs2_et_root_journal_access(handle, et,
5760 					   OCFS2_JOURNAL_ACCESS_WRITE);
5761 	if (ret) {
5762 		mlog_errno(ret);
5763 		goto out_commit;
5764 	}
5765 
5766 	dquot_free_space_nodirty(inode,
5767 				  ocfs2_clusters_to_bytes(inode->i_sb, len));
5768 
5769 	ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc);
5770 	if (ret) {
5771 		mlog_errno(ret);
5772 		goto out_commit;
5773 	}
5774 
5775 	ocfs2_et_update_clusters(et, -len);
5776 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
5777 
5778 	ocfs2_journal_dirty(handle, et->et_root_bh);
5779 
5780 	if (phys_blkno) {
5781 		if (flags & OCFS2_EXT_REFCOUNTED)
5782 			ret = ocfs2_decrease_refcount(inode, handle,
5783 					ocfs2_blocks_to_clusters(osb->sb,
5784 								 phys_blkno),
5785 					len, meta_ac,
5786 					dealloc, 1);
5787 		else
5788 			ret = ocfs2_truncate_log_append(osb, handle,
5789 							phys_blkno, len);
5790 		if (ret)
5791 			mlog_errno(ret);
5792 
5793 	}
5794 
5795 out_commit:
5796 	ocfs2_commit_trans(osb, handle);
5797 out:
5798 	inode_unlock(tl_inode);
5799 bail:
5800 	if (meta_ac)
5801 		ocfs2_free_alloc_context(meta_ac);
5802 
5803 	if (ref_tree)
5804 		ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
5805 
5806 	return ret;
5807 }
5808 
5809 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5810 {
5811 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5812 	struct ocfs2_dinode *di;
5813 	struct ocfs2_truncate_log *tl;
5814 
5815 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5816 	tl = &di->id2.i_dealloc;
5817 
5818 	mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5819 			"slot %d, invalid truncate log parameters: used = "
5820 			"%u, count = %u\n", osb->slot_num,
5821 			le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5822 	return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5823 }
5824 
5825 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5826 					   unsigned int new_start)
5827 {
5828 	unsigned int tail_index;
5829 	unsigned int current_tail;
5830 
5831 	/* No records, nothing to coalesce */
5832 	if (!le16_to_cpu(tl->tl_used))
5833 		return 0;
5834 
5835 	tail_index = le16_to_cpu(tl->tl_used) - 1;
5836 	current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5837 	current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5838 
5839 	return current_tail == new_start;
5840 }
5841 
5842 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5843 			      handle_t *handle,
5844 			      u64 start_blk,
5845 			      unsigned int num_clusters)
5846 {
5847 	int status, index;
5848 	unsigned int start_cluster, tl_count;
5849 	struct inode *tl_inode = osb->osb_tl_inode;
5850 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5851 	struct ocfs2_dinode *di;
5852 	struct ocfs2_truncate_log *tl;
5853 
5854 	BUG_ON(inode_trylock(tl_inode));
5855 
5856 	start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5857 
5858 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5859 
5860 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5861 	 * by the underlying call to ocfs2_read_inode_block(), so any
5862 	 * corruption is a code bug */
5863 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5864 
5865 	tl = &di->id2.i_dealloc;
5866 	tl_count = le16_to_cpu(tl->tl_count);
5867 	mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5868 			tl_count == 0,
5869 			"Truncate record count on #%llu invalid "
5870 			"wanted %u, actual %u\n",
5871 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5872 			ocfs2_truncate_recs_per_inode(osb->sb),
5873 			le16_to_cpu(tl->tl_count));
5874 
5875 	/* Caller should have known to flush before calling us. */
5876 	index = le16_to_cpu(tl->tl_used);
5877 	if (index >= tl_count) {
5878 		status = -ENOSPC;
5879 		mlog_errno(status);
5880 		goto bail;
5881 	}
5882 
5883 	status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5884 					 OCFS2_JOURNAL_ACCESS_WRITE);
5885 	if (status < 0) {
5886 		mlog_errno(status);
5887 		goto bail;
5888 	}
5889 
5890 	trace_ocfs2_truncate_log_append(
5891 		(unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index,
5892 		start_cluster, num_clusters);
5893 	if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5894 		/*
5895 		 * Move index back to the record we are coalescing with.
5896 		 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5897 		 */
5898 		index--;
5899 
5900 		num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5901 		trace_ocfs2_truncate_log_append(
5902 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5903 			index, le32_to_cpu(tl->tl_recs[index].t_start),
5904 			num_clusters);
5905 	} else {
5906 		tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5907 		tl->tl_used = cpu_to_le16(index + 1);
5908 	}
5909 	tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5910 
5911 	ocfs2_journal_dirty(handle, tl_bh);
5912 
5913 	osb->truncated_clusters += num_clusters;
5914 bail:
5915 	return status;
5916 }
5917 
5918 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5919 					 struct inode *data_alloc_inode,
5920 					 struct buffer_head *data_alloc_bh)
5921 {
5922 	int status = 0;
5923 	int i;
5924 	unsigned int num_clusters;
5925 	u64 start_blk;
5926 	struct ocfs2_truncate_rec rec;
5927 	struct ocfs2_dinode *di;
5928 	struct ocfs2_truncate_log *tl;
5929 	struct inode *tl_inode = osb->osb_tl_inode;
5930 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5931 	handle_t *handle;
5932 
5933 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5934 	tl = &di->id2.i_dealloc;
5935 	i = le16_to_cpu(tl->tl_used) - 1;
5936 	while (i >= 0) {
5937 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5938 		if (IS_ERR(handle)) {
5939 			status = PTR_ERR(handle);
5940 			mlog_errno(status);
5941 			goto bail;
5942 		}
5943 
5944 		/* Caller has given us at least enough credits to
5945 		 * update the truncate log dinode */
5946 		status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5947 						 OCFS2_JOURNAL_ACCESS_WRITE);
5948 		if (status < 0) {
5949 			mlog_errno(status);
5950 			goto bail;
5951 		}
5952 
5953 		tl->tl_used = cpu_to_le16(i);
5954 
5955 		ocfs2_journal_dirty(handle, tl_bh);
5956 
5957 		rec = tl->tl_recs[i];
5958 		start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5959 						    le32_to_cpu(rec.t_start));
5960 		num_clusters = le32_to_cpu(rec.t_clusters);
5961 
5962 		/* if start_blk is not set, we ignore the record as
5963 		 * invalid. */
5964 		if (start_blk) {
5965 			trace_ocfs2_replay_truncate_records(
5966 				(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5967 				i, le32_to_cpu(rec.t_start), num_clusters);
5968 
5969 			status = ocfs2_free_clusters(handle, data_alloc_inode,
5970 						     data_alloc_bh, start_blk,
5971 						     num_clusters);
5972 			if (status < 0) {
5973 				mlog_errno(status);
5974 				goto bail;
5975 			}
5976 		}
5977 
5978 		ocfs2_commit_trans(osb, handle);
5979 		i--;
5980 	}
5981 
5982 	osb->truncated_clusters = 0;
5983 
5984 bail:
5985 	return status;
5986 }
5987 
5988 /* Expects you to already be holding tl_inode->i_mutex */
5989 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5990 {
5991 	int status;
5992 	unsigned int num_to_flush;
5993 	struct inode *tl_inode = osb->osb_tl_inode;
5994 	struct inode *data_alloc_inode = NULL;
5995 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5996 	struct buffer_head *data_alloc_bh = NULL;
5997 	struct ocfs2_dinode *di;
5998 	struct ocfs2_truncate_log *tl;
5999 
6000 	BUG_ON(inode_trylock(tl_inode));
6001 
6002 	di = (struct ocfs2_dinode *) tl_bh->b_data;
6003 
6004 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
6005 	 * by the underlying call to ocfs2_read_inode_block(), so any
6006 	 * corruption is a code bug */
6007 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
6008 
6009 	tl = &di->id2.i_dealloc;
6010 	num_to_flush = le16_to_cpu(tl->tl_used);
6011 	trace_ocfs2_flush_truncate_log(
6012 		(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
6013 		num_to_flush);
6014 	if (!num_to_flush) {
6015 		status = 0;
6016 		goto out;
6017 	}
6018 
6019 	data_alloc_inode = ocfs2_get_system_file_inode(osb,
6020 						       GLOBAL_BITMAP_SYSTEM_INODE,
6021 						       OCFS2_INVALID_SLOT);
6022 	if (!data_alloc_inode) {
6023 		status = -EINVAL;
6024 		mlog(ML_ERROR, "Could not get bitmap inode!\n");
6025 		goto out;
6026 	}
6027 
6028 	inode_lock(data_alloc_inode);
6029 
6030 	status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
6031 	if (status < 0) {
6032 		mlog_errno(status);
6033 		goto out_mutex;
6034 	}
6035 
6036 	status = ocfs2_replay_truncate_records(osb, data_alloc_inode,
6037 					       data_alloc_bh);
6038 	if (status < 0)
6039 		mlog_errno(status);
6040 
6041 	brelse(data_alloc_bh);
6042 	ocfs2_inode_unlock(data_alloc_inode, 1);
6043 
6044 out_mutex:
6045 	inode_unlock(data_alloc_inode);
6046 	iput(data_alloc_inode);
6047 
6048 out:
6049 	return status;
6050 }
6051 
6052 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
6053 {
6054 	int status;
6055 	struct inode *tl_inode = osb->osb_tl_inode;
6056 
6057 	inode_lock(tl_inode);
6058 	status = __ocfs2_flush_truncate_log(osb);
6059 	inode_unlock(tl_inode);
6060 
6061 	return status;
6062 }
6063 
6064 static void ocfs2_truncate_log_worker(struct work_struct *work)
6065 {
6066 	int status;
6067 	struct ocfs2_super *osb =
6068 		container_of(work, struct ocfs2_super,
6069 			     osb_truncate_log_wq.work);
6070 
6071 	status = ocfs2_flush_truncate_log(osb);
6072 	if (status < 0)
6073 		mlog_errno(status);
6074 	else
6075 		ocfs2_init_steal_slots(osb);
6076 }
6077 
6078 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
6079 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
6080 				       int cancel)
6081 {
6082 	if (osb->osb_tl_inode &&
6083 			atomic_read(&osb->osb_tl_disable) == 0) {
6084 		/* We want to push off log flushes while truncates are
6085 		 * still running. */
6086 		if (cancel)
6087 			cancel_delayed_work(&osb->osb_truncate_log_wq);
6088 
6089 		queue_delayed_work(osb->ocfs2_wq, &osb->osb_truncate_log_wq,
6090 				   OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
6091 	}
6092 }
6093 
6094 /*
6095  * Try to flush truncate logs if we can free enough clusters from it.
6096  * As for return value, "< 0" means error, "0" no space and "1" means
6097  * we have freed enough spaces and let the caller try to allocate again.
6098  */
6099 int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
6100 					unsigned int needed)
6101 {
6102 	tid_t target;
6103 	int ret = 0;
6104 	unsigned int truncated_clusters;
6105 
6106 	inode_lock(osb->osb_tl_inode);
6107 	truncated_clusters = osb->truncated_clusters;
6108 	inode_unlock(osb->osb_tl_inode);
6109 
6110 	/*
6111 	 * Check whether we can succeed in allocating if we free
6112 	 * the truncate log.
6113 	 */
6114 	if (truncated_clusters < needed)
6115 		goto out;
6116 
6117 	ret = ocfs2_flush_truncate_log(osb);
6118 	if (ret) {
6119 		mlog_errno(ret);
6120 		goto out;
6121 	}
6122 
6123 	if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
6124 		jbd2_log_wait_commit(osb->journal->j_journal, target);
6125 		ret = 1;
6126 	}
6127 out:
6128 	return ret;
6129 }
6130 
6131 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
6132 				       int slot_num,
6133 				       struct inode **tl_inode,
6134 				       struct buffer_head **tl_bh)
6135 {
6136 	int status;
6137 	struct inode *inode = NULL;
6138 	struct buffer_head *bh = NULL;
6139 
6140 	inode = ocfs2_get_system_file_inode(osb,
6141 					   TRUNCATE_LOG_SYSTEM_INODE,
6142 					   slot_num);
6143 	if (!inode) {
6144 		status = -EINVAL;
6145 		mlog(ML_ERROR, "Could not get load truncate log inode!\n");
6146 		goto bail;
6147 	}
6148 
6149 	status = ocfs2_read_inode_block(inode, &bh);
6150 	if (status < 0) {
6151 		iput(inode);
6152 		mlog_errno(status);
6153 		goto bail;
6154 	}
6155 
6156 	*tl_inode = inode;
6157 	*tl_bh    = bh;
6158 bail:
6159 	return status;
6160 }
6161 
6162 /* called during the 1st stage of node recovery. we stamp a clean
6163  * truncate log and pass back a copy for processing later. if the
6164  * truncate log does not require processing, a *tl_copy is set to
6165  * NULL. */
6166 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
6167 				      int slot_num,
6168 				      struct ocfs2_dinode **tl_copy)
6169 {
6170 	int status;
6171 	struct inode *tl_inode = NULL;
6172 	struct buffer_head *tl_bh = NULL;
6173 	struct ocfs2_dinode *di;
6174 	struct ocfs2_truncate_log *tl;
6175 
6176 	*tl_copy = NULL;
6177 
6178 	trace_ocfs2_begin_truncate_log_recovery(slot_num);
6179 
6180 	status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
6181 	if (status < 0) {
6182 		mlog_errno(status);
6183 		goto bail;
6184 	}
6185 
6186 	di = (struct ocfs2_dinode *) tl_bh->b_data;
6187 
6188 	/* tl_bh is loaded from ocfs2_get_truncate_log_info().  It's
6189 	 * validated by the underlying call to ocfs2_read_inode_block(),
6190 	 * so any corruption is a code bug */
6191 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
6192 
6193 	tl = &di->id2.i_dealloc;
6194 	if (le16_to_cpu(tl->tl_used)) {
6195 		trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl->tl_used));
6196 
6197 		*tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
6198 		if (!(*tl_copy)) {
6199 			status = -ENOMEM;
6200 			mlog_errno(status);
6201 			goto bail;
6202 		}
6203 
6204 		/* Assuming the write-out below goes well, this copy
6205 		 * will be passed back to recovery for processing. */
6206 		memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
6207 
6208 		/* All we need to do to clear the truncate log is set
6209 		 * tl_used. */
6210 		tl->tl_used = 0;
6211 
6212 		ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6213 		status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
6214 		if (status < 0) {
6215 			mlog_errno(status);
6216 			goto bail;
6217 		}
6218 	}
6219 
6220 bail:
6221 	iput(tl_inode);
6222 	brelse(tl_bh);
6223 
6224 	if (status < 0) {
6225 		kfree(*tl_copy);
6226 		*tl_copy = NULL;
6227 		mlog_errno(status);
6228 	}
6229 
6230 	return status;
6231 }
6232 
6233 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6234 					 struct ocfs2_dinode *tl_copy)
6235 {
6236 	int status = 0;
6237 	int i;
6238 	unsigned int clusters, num_recs, start_cluster;
6239 	u64 start_blk;
6240 	handle_t *handle;
6241 	struct inode *tl_inode = osb->osb_tl_inode;
6242 	struct ocfs2_truncate_log *tl;
6243 
6244 	if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6245 		mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6246 		return -EINVAL;
6247 	}
6248 
6249 	tl = &tl_copy->id2.i_dealloc;
6250 	num_recs = le16_to_cpu(tl->tl_used);
6251 	trace_ocfs2_complete_truncate_log_recovery(
6252 		(unsigned long long)le64_to_cpu(tl_copy->i_blkno),
6253 		num_recs);
6254 
6255 	inode_lock(tl_inode);
6256 	for(i = 0; i < num_recs; i++) {
6257 		if (ocfs2_truncate_log_needs_flush(osb)) {
6258 			status = __ocfs2_flush_truncate_log(osb);
6259 			if (status < 0) {
6260 				mlog_errno(status);
6261 				goto bail_up;
6262 			}
6263 		}
6264 
6265 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6266 		if (IS_ERR(handle)) {
6267 			status = PTR_ERR(handle);
6268 			mlog_errno(status);
6269 			goto bail_up;
6270 		}
6271 
6272 		clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6273 		start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6274 		start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6275 
6276 		status = ocfs2_truncate_log_append(osb, handle,
6277 						   start_blk, clusters);
6278 		ocfs2_commit_trans(osb, handle);
6279 		if (status < 0) {
6280 			mlog_errno(status);
6281 			goto bail_up;
6282 		}
6283 	}
6284 
6285 bail_up:
6286 	inode_unlock(tl_inode);
6287 
6288 	return status;
6289 }
6290 
6291 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6292 {
6293 	int status;
6294 	struct inode *tl_inode = osb->osb_tl_inode;
6295 
6296 	atomic_set(&osb->osb_tl_disable, 1);
6297 
6298 	if (tl_inode) {
6299 		cancel_delayed_work(&osb->osb_truncate_log_wq);
6300 		flush_workqueue(osb->ocfs2_wq);
6301 
6302 		status = ocfs2_flush_truncate_log(osb);
6303 		if (status < 0)
6304 			mlog_errno(status);
6305 
6306 		brelse(osb->osb_tl_bh);
6307 		iput(osb->osb_tl_inode);
6308 	}
6309 }
6310 
6311 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6312 {
6313 	int status;
6314 	struct inode *tl_inode = NULL;
6315 	struct buffer_head *tl_bh = NULL;
6316 
6317 	status = ocfs2_get_truncate_log_info(osb,
6318 					     osb->slot_num,
6319 					     &tl_inode,
6320 					     &tl_bh);
6321 	if (status < 0)
6322 		mlog_errno(status);
6323 
6324 	/* ocfs2_truncate_log_shutdown keys on the existence of
6325 	 * osb->osb_tl_inode so we don't set any of the osb variables
6326 	 * until we're sure all is well. */
6327 	INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6328 			  ocfs2_truncate_log_worker);
6329 	atomic_set(&osb->osb_tl_disable, 0);
6330 	osb->osb_tl_bh    = tl_bh;
6331 	osb->osb_tl_inode = tl_inode;
6332 
6333 	return status;
6334 }
6335 
6336 /*
6337  * Delayed de-allocation of suballocator blocks.
6338  *
6339  * Some sets of block de-allocations might involve multiple suballocator inodes.
6340  *
6341  * The locking for this can get extremely complicated, especially when
6342  * the suballocator inodes to delete from aren't known until deep
6343  * within an unrelated codepath.
6344  *
6345  * ocfs2_extent_block structures are a good example of this - an inode
6346  * btree could have been grown by any number of nodes each allocating
6347  * out of their own suballoc inode.
6348  *
6349  * These structures allow the delay of block de-allocation until a
6350  * later time, when locking of multiple cluster inodes won't cause
6351  * deadlock.
6352  */
6353 
6354 /*
6355  * Describe a single bit freed from a suballocator.  For the block
6356  * suballocators, it represents one block.  For the global cluster
6357  * allocator, it represents some clusters and free_bit indicates
6358  * clusters number.
6359  */
6360 struct ocfs2_cached_block_free {
6361 	struct ocfs2_cached_block_free		*free_next;
6362 	u64					free_bg;
6363 	u64					free_blk;
6364 	unsigned int				free_bit;
6365 };
6366 
6367 struct ocfs2_per_slot_free_list {
6368 	struct ocfs2_per_slot_free_list		*f_next_suballocator;
6369 	int					f_inode_type;
6370 	int					f_slot;
6371 	struct ocfs2_cached_block_free		*f_first;
6372 };
6373 
6374 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6375 				    int sysfile_type,
6376 				    int slot,
6377 				    struct ocfs2_cached_block_free *head)
6378 {
6379 	int ret;
6380 	u64 bg_blkno;
6381 	handle_t *handle;
6382 	struct inode *inode;
6383 	struct buffer_head *di_bh = NULL;
6384 	struct ocfs2_cached_block_free *tmp;
6385 
6386 	inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6387 	if (!inode) {
6388 		ret = -EINVAL;
6389 		mlog_errno(ret);
6390 		goto out;
6391 	}
6392 
6393 	inode_lock(inode);
6394 
6395 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
6396 	if (ret) {
6397 		mlog_errno(ret);
6398 		goto out_mutex;
6399 	}
6400 
6401 	while (head) {
6402 		if (head->free_bg)
6403 			bg_blkno = head->free_bg;
6404 		else
6405 			bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6406 							      head->free_bit);
6407 		handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6408 		if (IS_ERR(handle)) {
6409 			ret = PTR_ERR(handle);
6410 			mlog_errno(ret);
6411 			goto out_unlock;
6412 		}
6413 
6414 		trace_ocfs2_free_cached_blocks(
6415 		     (unsigned long long)head->free_blk, head->free_bit);
6416 
6417 		ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6418 					       head->free_bit, bg_blkno, 1);
6419 		if (ret)
6420 			mlog_errno(ret);
6421 
6422 		ocfs2_commit_trans(osb, handle);
6423 
6424 		tmp = head;
6425 		head = head->free_next;
6426 		kfree(tmp);
6427 	}
6428 
6429 out_unlock:
6430 	ocfs2_inode_unlock(inode, 1);
6431 	brelse(di_bh);
6432 out_mutex:
6433 	inode_unlock(inode);
6434 	iput(inode);
6435 out:
6436 	while(head) {
6437 		/* Premature exit may have left some dangling items. */
6438 		tmp = head;
6439 		head = head->free_next;
6440 		kfree(tmp);
6441 	}
6442 
6443 	return ret;
6444 }
6445 
6446 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6447 				u64 blkno, unsigned int bit)
6448 {
6449 	int ret = 0;
6450 	struct ocfs2_cached_block_free *item;
6451 
6452 	item = kzalloc(sizeof(*item), GFP_NOFS);
6453 	if (item == NULL) {
6454 		ret = -ENOMEM;
6455 		mlog_errno(ret);
6456 		return ret;
6457 	}
6458 
6459 	trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno, bit);
6460 
6461 	item->free_blk = blkno;
6462 	item->free_bit = bit;
6463 	item->free_next = ctxt->c_global_allocator;
6464 
6465 	ctxt->c_global_allocator = item;
6466 	return ret;
6467 }
6468 
6469 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6470 				      struct ocfs2_cached_block_free *head)
6471 {
6472 	struct ocfs2_cached_block_free *tmp;
6473 	struct inode *tl_inode = osb->osb_tl_inode;
6474 	handle_t *handle;
6475 	int ret = 0;
6476 
6477 	inode_lock(tl_inode);
6478 
6479 	while (head) {
6480 		if (ocfs2_truncate_log_needs_flush(osb)) {
6481 			ret = __ocfs2_flush_truncate_log(osb);
6482 			if (ret < 0) {
6483 				mlog_errno(ret);
6484 				break;
6485 			}
6486 		}
6487 
6488 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6489 		if (IS_ERR(handle)) {
6490 			ret = PTR_ERR(handle);
6491 			mlog_errno(ret);
6492 			break;
6493 		}
6494 
6495 		ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6496 						head->free_bit);
6497 
6498 		ocfs2_commit_trans(osb, handle);
6499 		tmp = head;
6500 		head = head->free_next;
6501 		kfree(tmp);
6502 
6503 		if (ret < 0) {
6504 			mlog_errno(ret);
6505 			break;
6506 		}
6507 	}
6508 
6509 	inode_unlock(tl_inode);
6510 
6511 	while (head) {
6512 		/* Premature exit may have left some dangling items. */
6513 		tmp = head;
6514 		head = head->free_next;
6515 		kfree(tmp);
6516 	}
6517 
6518 	return ret;
6519 }
6520 
6521 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6522 		       struct ocfs2_cached_dealloc_ctxt *ctxt)
6523 {
6524 	int ret = 0, ret2;
6525 	struct ocfs2_per_slot_free_list *fl;
6526 
6527 	if (!ctxt)
6528 		return 0;
6529 
6530 	while (ctxt->c_first_suballocator) {
6531 		fl = ctxt->c_first_suballocator;
6532 
6533 		if (fl->f_first) {
6534 			trace_ocfs2_run_deallocs(fl->f_inode_type,
6535 						 fl->f_slot);
6536 			ret2 = ocfs2_free_cached_blocks(osb,
6537 							fl->f_inode_type,
6538 							fl->f_slot,
6539 							fl->f_first);
6540 			if (ret2)
6541 				mlog_errno(ret2);
6542 			if (!ret)
6543 				ret = ret2;
6544 		}
6545 
6546 		ctxt->c_first_suballocator = fl->f_next_suballocator;
6547 		kfree(fl);
6548 	}
6549 
6550 	if (ctxt->c_global_allocator) {
6551 		ret2 = ocfs2_free_cached_clusters(osb,
6552 						  ctxt->c_global_allocator);
6553 		if (ret2)
6554 			mlog_errno(ret2);
6555 		if (!ret)
6556 			ret = ret2;
6557 
6558 		ctxt->c_global_allocator = NULL;
6559 	}
6560 
6561 	return ret;
6562 }
6563 
6564 static struct ocfs2_per_slot_free_list *
6565 ocfs2_find_per_slot_free_list(int type,
6566 			      int slot,
6567 			      struct ocfs2_cached_dealloc_ctxt *ctxt)
6568 {
6569 	struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6570 
6571 	while (fl) {
6572 		if (fl->f_inode_type == type && fl->f_slot == slot)
6573 			return fl;
6574 
6575 		fl = fl->f_next_suballocator;
6576 	}
6577 
6578 	fl = kmalloc(sizeof(*fl), GFP_NOFS);
6579 	if (fl) {
6580 		fl->f_inode_type = type;
6581 		fl->f_slot = slot;
6582 		fl->f_first = NULL;
6583 		fl->f_next_suballocator = ctxt->c_first_suballocator;
6584 
6585 		ctxt->c_first_suballocator = fl;
6586 	}
6587 	return fl;
6588 }
6589 
6590 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6591 			      int type, int slot, u64 suballoc,
6592 			      u64 blkno, unsigned int bit)
6593 {
6594 	int ret;
6595 	struct ocfs2_per_slot_free_list *fl;
6596 	struct ocfs2_cached_block_free *item;
6597 
6598 	fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6599 	if (fl == NULL) {
6600 		ret = -ENOMEM;
6601 		mlog_errno(ret);
6602 		goto out;
6603 	}
6604 
6605 	item = kzalloc(sizeof(*item), GFP_NOFS);
6606 	if (item == NULL) {
6607 		ret = -ENOMEM;
6608 		mlog_errno(ret);
6609 		goto out;
6610 	}
6611 
6612 	trace_ocfs2_cache_block_dealloc(type, slot,
6613 					(unsigned long long)suballoc,
6614 					(unsigned long long)blkno, bit);
6615 
6616 	item->free_bg = suballoc;
6617 	item->free_blk = blkno;
6618 	item->free_bit = bit;
6619 	item->free_next = fl->f_first;
6620 
6621 	fl->f_first = item;
6622 
6623 	ret = 0;
6624 out:
6625 	return ret;
6626 }
6627 
6628 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6629 					 struct ocfs2_extent_block *eb)
6630 {
6631 	return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6632 					 le16_to_cpu(eb->h_suballoc_slot),
6633 					 le64_to_cpu(eb->h_suballoc_loc),
6634 					 le64_to_cpu(eb->h_blkno),
6635 					 le16_to_cpu(eb->h_suballoc_bit));
6636 }
6637 
6638 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6639 {
6640 	set_buffer_uptodate(bh);
6641 	mark_buffer_dirty(bh);
6642 	return 0;
6643 }
6644 
6645 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6646 			      unsigned int from, unsigned int to,
6647 			      struct page *page, int zero, u64 *phys)
6648 {
6649 	int ret, partial = 0;
6650 
6651 	ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6652 	if (ret)
6653 		mlog_errno(ret);
6654 
6655 	if (zero)
6656 		zero_user_segment(page, from, to);
6657 
6658 	/*
6659 	 * Need to set the buffers we zero'd into uptodate
6660 	 * here if they aren't - ocfs2_map_page_blocks()
6661 	 * might've skipped some
6662 	 */
6663 	ret = walk_page_buffers(handle, page_buffers(page),
6664 				from, to, &partial,
6665 				ocfs2_zero_func);
6666 	if (ret < 0)
6667 		mlog_errno(ret);
6668 	else if (ocfs2_should_order_data(inode)) {
6669 		ret = ocfs2_jbd2_file_inode(handle, inode);
6670 		if (ret < 0)
6671 			mlog_errno(ret);
6672 	}
6673 
6674 	if (!partial)
6675 		SetPageUptodate(page);
6676 
6677 	flush_dcache_page(page);
6678 }
6679 
6680 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6681 				     loff_t end, struct page **pages,
6682 				     int numpages, u64 phys, handle_t *handle)
6683 {
6684 	int i;
6685 	struct page *page;
6686 	unsigned int from, to = PAGE_SIZE;
6687 	struct super_block *sb = inode->i_sb;
6688 
6689 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6690 
6691 	if (numpages == 0)
6692 		goto out;
6693 
6694 	to = PAGE_SIZE;
6695 	for(i = 0; i < numpages; i++) {
6696 		page = pages[i];
6697 
6698 		from = start & (PAGE_SIZE - 1);
6699 		if ((end >> PAGE_SHIFT) == page->index)
6700 			to = end & (PAGE_SIZE - 1);
6701 
6702 		BUG_ON(from > PAGE_SIZE);
6703 		BUG_ON(to > PAGE_SIZE);
6704 
6705 		ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6706 					 &phys);
6707 
6708 		start = (page->index + 1) << PAGE_SHIFT;
6709 	}
6710 out:
6711 	if (pages)
6712 		ocfs2_unlock_and_free_pages(pages, numpages);
6713 }
6714 
6715 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end,
6716 		     struct page **pages, int *num)
6717 {
6718 	int numpages, ret = 0;
6719 	struct address_space *mapping = inode->i_mapping;
6720 	unsigned long index;
6721 	loff_t last_page_bytes;
6722 
6723 	BUG_ON(start > end);
6724 
6725 	numpages = 0;
6726 	last_page_bytes = PAGE_ALIGN(end);
6727 	index = start >> PAGE_SHIFT;
6728 	do {
6729 		pages[numpages] = find_or_create_page(mapping, index, GFP_NOFS);
6730 		if (!pages[numpages]) {
6731 			ret = -ENOMEM;
6732 			mlog_errno(ret);
6733 			goto out;
6734 		}
6735 
6736 		numpages++;
6737 		index++;
6738 	} while (index < (last_page_bytes >> PAGE_SHIFT));
6739 
6740 out:
6741 	if (ret != 0) {
6742 		if (pages)
6743 			ocfs2_unlock_and_free_pages(pages, numpages);
6744 		numpages = 0;
6745 	}
6746 
6747 	*num = numpages;
6748 
6749 	return ret;
6750 }
6751 
6752 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6753 				struct page **pages, int *num)
6754 {
6755 	struct super_block *sb = inode->i_sb;
6756 
6757 	BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6758 	       (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6759 
6760 	return ocfs2_grab_pages(inode, start, end, pages, num);
6761 }
6762 
6763 /*
6764  * Zero the area past i_size but still within an allocated
6765  * cluster. This avoids exposing nonzero data on subsequent file
6766  * extends.
6767  *
6768  * We need to call this before i_size is updated on the inode because
6769  * otherwise block_write_full_page() will skip writeout of pages past
6770  * i_size. The new_i_size parameter is passed for this reason.
6771  */
6772 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6773 				  u64 range_start, u64 range_end)
6774 {
6775 	int ret = 0, numpages;
6776 	struct page **pages = NULL;
6777 	u64 phys;
6778 	unsigned int ext_flags;
6779 	struct super_block *sb = inode->i_sb;
6780 
6781 	/*
6782 	 * File systems which don't support sparse files zero on every
6783 	 * extend.
6784 	 */
6785 	if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6786 		return 0;
6787 
6788 	pages = kcalloc(ocfs2_pages_per_cluster(sb),
6789 			sizeof(struct page *), GFP_NOFS);
6790 	if (pages == NULL) {
6791 		ret = -ENOMEM;
6792 		mlog_errno(ret);
6793 		goto out;
6794 	}
6795 
6796 	if (range_start == range_end)
6797 		goto out;
6798 
6799 	ret = ocfs2_extent_map_get_blocks(inode,
6800 					  range_start >> sb->s_blocksize_bits,
6801 					  &phys, NULL, &ext_flags);
6802 	if (ret) {
6803 		mlog_errno(ret);
6804 		goto out;
6805 	}
6806 
6807 	/*
6808 	 * Tail is a hole, or is marked unwritten. In either case, we
6809 	 * can count on read and write to return/push zero's.
6810 	 */
6811 	if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6812 		goto out;
6813 
6814 	ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6815 				   &numpages);
6816 	if (ret) {
6817 		mlog_errno(ret);
6818 		goto out;
6819 	}
6820 
6821 	ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6822 				 numpages, phys, handle);
6823 
6824 	/*
6825 	 * Initiate writeout of the pages we zero'd here. We don't
6826 	 * wait on them - the truncate_inode_pages() call later will
6827 	 * do that for us.
6828 	 */
6829 	ret = filemap_fdatawrite_range(inode->i_mapping, range_start,
6830 				       range_end - 1);
6831 	if (ret)
6832 		mlog_errno(ret);
6833 
6834 out:
6835 	kfree(pages);
6836 
6837 	return ret;
6838 }
6839 
6840 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
6841 					     struct ocfs2_dinode *di)
6842 {
6843 	unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
6844 	unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
6845 
6846 	if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
6847 		memset(&di->id2, 0, blocksize -
6848 				    offsetof(struct ocfs2_dinode, id2) -
6849 				    xattrsize);
6850 	else
6851 		memset(&di->id2, 0, blocksize -
6852 				    offsetof(struct ocfs2_dinode, id2));
6853 }
6854 
6855 void ocfs2_dinode_new_extent_list(struct inode *inode,
6856 				  struct ocfs2_dinode *di)
6857 {
6858 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
6859 	di->id2.i_list.l_tree_depth = 0;
6860 	di->id2.i_list.l_next_free_rec = 0;
6861 	di->id2.i_list.l_count = cpu_to_le16(
6862 		ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
6863 }
6864 
6865 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
6866 {
6867 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
6868 	struct ocfs2_inline_data *idata = &di->id2.i_data;
6869 
6870 	spin_lock(&oi->ip_lock);
6871 	oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
6872 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6873 	spin_unlock(&oi->ip_lock);
6874 
6875 	/*
6876 	 * We clear the entire i_data structure here so that all
6877 	 * fields can be properly initialized.
6878 	 */
6879 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
6880 
6881 	idata->id_count = cpu_to_le16(
6882 			ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
6883 }
6884 
6885 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
6886 					 struct buffer_head *di_bh)
6887 {
6888 	int ret, i, has_data, num_pages = 0;
6889 	int need_free = 0;
6890 	u32 bit_off, num;
6891 	handle_t *handle;
6892 	u64 uninitialized_var(block);
6893 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
6894 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6895 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6896 	struct ocfs2_alloc_context *data_ac = NULL;
6897 	struct page **pages = NULL;
6898 	loff_t end = osb->s_clustersize;
6899 	struct ocfs2_extent_tree et;
6900 	int did_quota = 0;
6901 
6902 	has_data = i_size_read(inode) ? 1 : 0;
6903 
6904 	if (has_data) {
6905 		pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
6906 				sizeof(struct page *), GFP_NOFS);
6907 		if (pages == NULL) {
6908 			ret = -ENOMEM;
6909 			mlog_errno(ret);
6910 			return ret;
6911 		}
6912 
6913 		ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
6914 		if (ret) {
6915 			mlog_errno(ret);
6916 			goto free_pages;
6917 		}
6918 	}
6919 
6920 	handle = ocfs2_start_trans(osb,
6921 				   ocfs2_inline_to_extents_credits(osb->sb));
6922 	if (IS_ERR(handle)) {
6923 		ret = PTR_ERR(handle);
6924 		mlog_errno(ret);
6925 		goto out;
6926 	}
6927 
6928 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
6929 				      OCFS2_JOURNAL_ACCESS_WRITE);
6930 	if (ret) {
6931 		mlog_errno(ret);
6932 		goto out_commit;
6933 	}
6934 
6935 	if (has_data) {
6936 		unsigned int page_end;
6937 		u64 phys;
6938 
6939 		ret = dquot_alloc_space_nodirty(inode,
6940 				       ocfs2_clusters_to_bytes(osb->sb, 1));
6941 		if (ret)
6942 			goto out_commit;
6943 		did_quota = 1;
6944 
6945 		data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
6946 
6947 		ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off,
6948 					   &num);
6949 		if (ret) {
6950 			mlog_errno(ret);
6951 			goto out_commit;
6952 		}
6953 
6954 		/*
6955 		 * Save two copies, one for insert, and one that can
6956 		 * be changed by ocfs2_map_and_dirty_page() below.
6957 		 */
6958 		block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
6959 
6960 		/*
6961 		 * Non sparse file systems zero on extend, so no need
6962 		 * to do that now.
6963 		 */
6964 		if (!ocfs2_sparse_alloc(osb) &&
6965 		    PAGE_SIZE < osb->s_clustersize)
6966 			end = PAGE_SIZE;
6967 
6968 		ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
6969 		if (ret) {
6970 			mlog_errno(ret);
6971 			need_free = 1;
6972 			goto out_commit;
6973 		}
6974 
6975 		/*
6976 		 * This should populate the 1st page for us and mark
6977 		 * it up to date.
6978 		 */
6979 		ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
6980 		if (ret) {
6981 			mlog_errno(ret);
6982 			need_free = 1;
6983 			goto out_unlock;
6984 		}
6985 
6986 		page_end = PAGE_SIZE;
6987 		if (PAGE_SIZE > osb->s_clustersize)
6988 			page_end = osb->s_clustersize;
6989 
6990 		for (i = 0; i < num_pages; i++)
6991 			ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
6992 						 pages[i], i > 0, &phys);
6993 	}
6994 
6995 	spin_lock(&oi->ip_lock);
6996 	oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
6997 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6998 	spin_unlock(&oi->ip_lock);
6999 
7000 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
7001 	ocfs2_dinode_new_extent_list(inode, di);
7002 
7003 	ocfs2_journal_dirty(handle, di_bh);
7004 
7005 	if (has_data) {
7006 		/*
7007 		 * An error at this point should be extremely rare. If
7008 		 * this proves to be false, we could always re-build
7009 		 * the in-inode data from our pages.
7010 		 */
7011 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
7012 		ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL);
7013 		if (ret) {
7014 			mlog_errno(ret);
7015 			need_free = 1;
7016 			goto out_unlock;
7017 		}
7018 
7019 		inode->i_blocks = ocfs2_inode_sector_count(inode);
7020 	}
7021 
7022 out_unlock:
7023 	if (pages)
7024 		ocfs2_unlock_and_free_pages(pages, num_pages);
7025 
7026 out_commit:
7027 	if (ret < 0 && did_quota)
7028 		dquot_free_space_nodirty(inode,
7029 					  ocfs2_clusters_to_bytes(osb->sb, 1));
7030 
7031 	if (need_free) {
7032 		if (data_ac->ac_which == OCFS2_AC_USE_LOCAL)
7033 			ocfs2_free_local_alloc_bits(osb, handle, data_ac,
7034 					bit_off, num);
7035 		else
7036 			ocfs2_free_clusters(handle,
7037 					data_ac->ac_inode,
7038 					data_ac->ac_bh,
7039 					ocfs2_clusters_to_blocks(osb->sb, bit_off),
7040 					num);
7041 	}
7042 
7043 	ocfs2_commit_trans(osb, handle);
7044 
7045 out:
7046 	if (data_ac)
7047 		ocfs2_free_alloc_context(data_ac);
7048 free_pages:
7049 	kfree(pages);
7050 	return ret;
7051 }
7052 
7053 /*
7054  * It is expected, that by the time you call this function,
7055  * inode->i_size and fe->i_size have been adjusted.
7056  *
7057  * WARNING: This will kfree the truncate context
7058  */
7059 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7060 			  struct inode *inode,
7061 			  struct buffer_head *di_bh)
7062 {
7063 	int status = 0, i, flags = 0;
7064 	u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff;
7065 	u64 blkno = 0;
7066 	struct ocfs2_extent_list *el;
7067 	struct ocfs2_extent_rec *rec;
7068 	struct ocfs2_path *path = NULL;
7069 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7070 	struct ocfs2_extent_list *root_el = &(di->id2.i_list);
7071 	u64 refcount_loc = le64_to_cpu(di->i_refcount_loc);
7072 	struct ocfs2_extent_tree et;
7073 	struct ocfs2_cached_dealloc_ctxt dealloc;
7074 	struct ocfs2_refcount_tree *ref_tree = NULL;
7075 
7076 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
7077 	ocfs2_init_dealloc_ctxt(&dealloc);
7078 
7079 	new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7080 						     i_size_read(inode));
7081 
7082 	path = ocfs2_new_path(di_bh, &di->id2.i_list,
7083 			      ocfs2_journal_access_di);
7084 	if (!path) {
7085 		status = -ENOMEM;
7086 		mlog_errno(status);
7087 		goto bail;
7088 	}
7089 
7090 	ocfs2_extent_map_trunc(inode, new_highest_cpos);
7091 
7092 start:
7093 	/*
7094 	 * Check that we still have allocation to delete.
7095 	 */
7096 	if (OCFS2_I(inode)->ip_clusters == 0) {
7097 		status = 0;
7098 		goto bail;
7099 	}
7100 
7101 	/*
7102 	 * Truncate always works against the rightmost tree branch.
7103 	 */
7104 	status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX);
7105 	if (status) {
7106 		mlog_errno(status);
7107 		goto bail;
7108 	}
7109 
7110 	trace_ocfs2_commit_truncate(
7111 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
7112 		new_highest_cpos,
7113 		OCFS2_I(inode)->ip_clusters,
7114 		path->p_tree_depth);
7115 
7116 	/*
7117 	 * By now, el will point to the extent list on the bottom most
7118 	 * portion of this tree. Only the tail record is considered in
7119 	 * each pass.
7120 	 *
7121 	 * We handle the following cases, in order:
7122 	 * - empty extent: delete the remaining branch
7123 	 * - remove the entire record
7124 	 * - remove a partial record
7125 	 * - no record needs to be removed (truncate has completed)
7126 	 */
7127 	el = path_leaf_el(path);
7128 	if (le16_to_cpu(el->l_next_free_rec) == 0) {
7129 		ocfs2_error(inode->i_sb,
7130 			    "Inode %llu has empty extent block at %llu\n",
7131 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7132 			    (unsigned long long)path_leaf_bh(path)->b_blocknr);
7133 		status = -EROFS;
7134 		goto bail;
7135 	}
7136 
7137 	i = le16_to_cpu(el->l_next_free_rec) - 1;
7138 	rec = &el->l_recs[i];
7139 	flags = rec->e_flags;
7140 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
7141 
7142 	if (i == 0 && ocfs2_is_empty_extent(rec)) {
7143 		/*
7144 		 * Lower levels depend on this never happening, but it's best
7145 		 * to check it up here before changing the tree.
7146 		*/
7147 		if (root_el->l_tree_depth && rec->e_int_clusters == 0) {
7148 			mlog(ML_ERROR, "Inode %lu has an empty "
7149 				    "extent record, depth %u\n", inode->i_ino,
7150 				    le16_to_cpu(root_el->l_tree_depth));
7151 			status = ocfs2_remove_rightmost_empty_extent(osb,
7152 					&et, path, &dealloc);
7153 			if (status) {
7154 				mlog_errno(status);
7155 				goto bail;
7156 			}
7157 
7158 			ocfs2_reinit_path(path, 1);
7159 			goto start;
7160 		} else {
7161 			trunc_cpos = le32_to_cpu(rec->e_cpos);
7162 			trunc_len = 0;
7163 			blkno = 0;
7164 		}
7165 	} else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) {
7166 		/*
7167 		 * Truncate entire record.
7168 		 */
7169 		trunc_cpos = le32_to_cpu(rec->e_cpos);
7170 		trunc_len = ocfs2_rec_clusters(el, rec);
7171 		blkno = le64_to_cpu(rec->e_blkno);
7172 	} else if (range > new_highest_cpos) {
7173 		/*
7174 		 * Partial truncate. it also should be
7175 		 * the last truncate we're doing.
7176 		 */
7177 		trunc_cpos = new_highest_cpos;
7178 		trunc_len = range - new_highest_cpos;
7179 		coff = new_highest_cpos - le32_to_cpu(rec->e_cpos);
7180 		blkno = le64_to_cpu(rec->e_blkno) +
7181 				ocfs2_clusters_to_blocks(inode->i_sb, coff);
7182 	} else {
7183 		/*
7184 		 * Truncate completed, leave happily.
7185 		 */
7186 		status = 0;
7187 		goto bail;
7188 	}
7189 
7190 	phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
7191 
7192 	if ((flags & OCFS2_EXT_REFCOUNTED) && trunc_len && !ref_tree) {
7193 		status = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
7194 				&ref_tree, NULL);
7195 		if (status) {
7196 			mlog_errno(status);
7197 			goto bail;
7198 		}
7199 	}
7200 
7201 	status = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
7202 					  phys_cpos, trunc_len, flags, &dealloc,
7203 					  refcount_loc, true);
7204 	if (status < 0) {
7205 		mlog_errno(status);
7206 		goto bail;
7207 	}
7208 
7209 	ocfs2_reinit_path(path, 1);
7210 
7211 	/*
7212 	 * The check above will catch the case where we've truncated
7213 	 * away all allocation.
7214 	 */
7215 	goto start;
7216 
7217 bail:
7218 	if (ref_tree)
7219 		ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
7220 
7221 	ocfs2_schedule_truncate_log_flush(osb, 1);
7222 
7223 	ocfs2_run_deallocs(osb, &dealloc);
7224 
7225 	ocfs2_free_path(path);
7226 
7227 	return status;
7228 }
7229 
7230 /*
7231  * 'start' is inclusive, 'end' is not.
7232  */
7233 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7234 			  unsigned int start, unsigned int end, int trunc)
7235 {
7236 	int ret;
7237 	unsigned int numbytes;
7238 	handle_t *handle;
7239 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7240 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7241 	struct ocfs2_inline_data *idata = &di->id2.i_data;
7242 
7243 	if (end > i_size_read(inode))
7244 		end = i_size_read(inode);
7245 
7246 	BUG_ON(start > end);
7247 
7248 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7249 	    !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7250 	    !ocfs2_supports_inline_data(osb)) {
7251 		ocfs2_error(inode->i_sb,
7252 			    "Inline data flags for inode %llu don't agree! Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7253 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7254 			    le16_to_cpu(di->i_dyn_features),
7255 			    OCFS2_I(inode)->ip_dyn_features,
7256 			    osb->s_feature_incompat);
7257 		ret = -EROFS;
7258 		goto out;
7259 	}
7260 
7261 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7262 	if (IS_ERR(handle)) {
7263 		ret = PTR_ERR(handle);
7264 		mlog_errno(ret);
7265 		goto out;
7266 	}
7267 
7268 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7269 				      OCFS2_JOURNAL_ACCESS_WRITE);
7270 	if (ret) {
7271 		mlog_errno(ret);
7272 		goto out_commit;
7273 	}
7274 
7275 	numbytes = end - start;
7276 	memset(idata->id_data + start, 0, numbytes);
7277 
7278 	/*
7279 	 * No need to worry about the data page here - it's been
7280 	 * truncated already and inline data doesn't need it for
7281 	 * pushing zero's to disk, so we'll let readpage pick it up
7282 	 * later.
7283 	 */
7284 	if (trunc) {
7285 		i_size_write(inode, start);
7286 		di->i_size = cpu_to_le64(start);
7287 	}
7288 
7289 	inode->i_blocks = ocfs2_inode_sector_count(inode);
7290 	inode->i_ctime = inode->i_mtime = current_time(inode);
7291 
7292 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7293 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7294 
7295 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
7296 	ocfs2_journal_dirty(handle, di_bh);
7297 
7298 out_commit:
7299 	ocfs2_commit_trans(osb, handle);
7300 
7301 out:
7302 	return ret;
7303 }
7304 
7305 static int ocfs2_trim_extent(struct super_block *sb,
7306 			     struct ocfs2_group_desc *gd,
7307 			     u64 group, u32 start, u32 count)
7308 {
7309 	u64 discard, bcount;
7310 	struct ocfs2_super *osb = OCFS2_SB(sb);
7311 
7312 	bcount = ocfs2_clusters_to_blocks(sb, count);
7313 	discard = ocfs2_clusters_to_blocks(sb, start);
7314 
7315 	/*
7316 	 * For the first cluster group, the gd->bg_blkno is not at the start
7317 	 * of the group, but at an offset from the start. If we add it while
7318 	 * calculating discard for first group, we will wrongly start fstrim a
7319 	 * few blocks after the desried start block and the range can cross
7320 	 * over into the next cluster group. So, add it only if this is not
7321 	 * the first cluster group.
7322 	 */
7323 	if (group != osb->first_cluster_group_blkno)
7324 		discard += le64_to_cpu(gd->bg_blkno);
7325 
7326 	trace_ocfs2_trim_extent(sb, (unsigned long long)discard, bcount);
7327 
7328 	return sb_issue_discard(sb, discard, bcount, GFP_NOFS, 0);
7329 }
7330 
7331 static int ocfs2_trim_group(struct super_block *sb,
7332 			    struct ocfs2_group_desc *gd, u64 group,
7333 			    u32 start, u32 max, u32 minbits)
7334 {
7335 	int ret = 0, count = 0, next;
7336 	void *bitmap = gd->bg_bitmap;
7337 
7338 	if (le16_to_cpu(gd->bg_free_bits_count) < minbits)
7339 		return 0;
7340 
7341 	trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd->bg_blkno),
7342 			       start, max, minbits);
7343 
7344 	while (start < max) {
7345 		start = ocfs2_find_next_zero_bit(bitmap, max, start);
7346 		if (start >= max)
7347 			break;
7348 		next = ocfs2_find_next_bit(bitmap, max, start);
7349 
7350 		if ((next - start) >= minbits) {
7351 			ret = ocfs2_trim_extent(sb, gd, group,
7352 						start, next - start);
7353 			if (ret < 0) {
7354 				mlog_errno(ret);
7355 				break;
7356 			}
7357 			count += next - start;
7358 		}
7359 		start = next + 1;
7360 
7361 		if (fatal_signal_pending(current)) {
7362 			count = -ERESTARTSYS;
7363 			break;
7364 		}
7365 
7366 		if ((le16_to_cpu(gd->bg_free_bits_count) - count) < minbits)
7367 			break;
7368 	}
7369 
7370 	if (ret < 0)
7371 		count = ret;
7372 
7373 	return count;
7374 }
7375 
7376 int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range)
7377 {
7378 	struct ocfs2_super *osb = OCFS2_SB(sb);
7379 	u64 start, len, trimmed, first_group, last_group, group;
7380 	int ret, cnt;
7381 	u32 first_bit, last_bit, minlen;
7382 	struct buffer_head *main_bm_bh = NULL;
7383 	struct inode *main_bm_inode = NULL;
7384 	struct buffer_head *gd_bh = NULL;
7385 	struct ocfs2_dinode *main_bm;
7386 	struct ocfs2_group_desc *gd = NULL;
7387 
7388 	start = range->start >> osb->s_clustersize_bits;
7389 	len = range->len >> osb->s_clustersize_bits;
7390 	minlen = range->minlen >> osb->s_clustersize_bits;
7391 
7392 	if (minlen >= osb->bitmap_cpg || range->len < sb->s_blocksize)
7393 		return -EINVAL;
7394 
7395 	main_bm_inode = ocfs2_get_system_file_inode(osb,
7396 						    GLOBAL_BITMAP_SYSTEM_INODE,
7397 						    OCFS2_INVALID_SLOT);
7398 	if (!main_bm_inode) {
7399 		ret = -EIO;
7400 		mlog_errno(ret);
7401 		goto out;
7402 	}
7403 
7404 	inode_lock(main_bm_inode);
7405 
7406 	ret = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 0);
7407 	if (ret < 0) {
7408 		mlog_errno(ret);
7409 		goto out_mutex;
7410 	}
7411 	main_bm = (struct ocfs2_dinode *)main_bm_bh->b_data;
7412 
7413 	if (start >= le32_to_cpu(main_bm->i_clusters)) {
7414 		ret = -EINVAL;
7415 		goto out_unlock;
7416 	}
7417 
7418 	len = range->len >> osb->s_clustersize_bits;
7419 	if (start + len > le32_to_cpu(main_bm->i_clusters))
7420 		len = le32_to_cpu(main_bm->i_clusters) - start;
7421 
7422 	trace_ocfs2_trim_fs(start, len, minlen);
7423 
7424 	/* Determine first and last group to examine based on start and len */
7425 	first_group = ocfs2_which_cluster_group(main_bm_inode, start);
7426 	if (first_group == osb->first_cluster_group_blkno)
7427 		first_bit = start;
7428 	else
7429 		first_bit = start - ocfs2_blocks_to_clusters(sb, first_group);
7430 	last_group = ocfs2_which_cluster_group(main_bm_inode, start + len - 1);
7431 	last_bit = osb->bitmap_cpg;
7432 
7433 	trimmed = 0;
7434 	for (group = first_group; group <= last_group;) {
7435 		if (first_bit + len >= osb->bitmap_cpg)
7436 			last_bit = osb->bitmap_cpg;
7437 		else
7438 			last_bit = first_bit + len;
7439 
7440 		ret = ocfs2_read_group_descriptor(main_bm_inode,
7441 						  main_bm, group,
7442 						  &gd_bh);
7443 		if (ret < 0) {
7444 			mlog_errno(ret);
7445 			break;
7446 		}
7447 
7448 		gd = (struct ocfs2_group_desc *)gd_bh->b_data;
7449 		cnt = ocfs2_trim_group(sb, gd, group,
7450 				       first_bit, last_bit, minlen);
7451 		brelse(gd_bh);
7452 		gd_bh = NULL;
7453 		if (cnt < 0) {
7454 			ret = cnt;
7455 			mlog_errno(ret);
7456 			break;
7457 		}
7458 
7459 		trimmed += cnt;
7460 		len -= osb->bitmap_cpg - first_bit;
7461 		first_bit = 0;
7462 		if (group == osb->first_cluster_group_blkno)
7463 			group = ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7464 		else
7465 			group += ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7466 	}
7467 	range->len = trimmed * sb->s_blocksize;
7468 out_unlock:
7469 	ocfs2_inode_unlock(main_bm_inode, 0);
7470 	brelse(main_bm_bh);
7471 out_mutex:
7472 	inode_unlock(main_bm_inode);
7473 	iput(main_bm_inode);
7474 out:
7475 	return ret;
7476 }
7477