xref: /openbmc/linux/fs/ntfs3/record.c (revision fbc8cf85f6cce5cb7316526f146d3072ae881409)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *
4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5  *
6  */
7 
8 #include <linux/fs.h>
9 
10 #include "debug.h"
11 #include "ntfs.h"
12 #include "ntfs_fs.h"
13 
14 static inline int compare_attr(const struct ATTRIB *left, enum ATTR_TYPE type,
15 			       const __le16 *name, u8 name_len,
16 			       const u16 *upcase)
17 {
18 	/* First, compare the type codes. */
19 	int diff = le32_to_cpu(left->type) - le32_to_cpu(type);
20 
21 	if (diff)
22 		return diff;
23 
24 	/* They have the same type code, so we have to compare the names. */
25 	return ntfs_cmp_names(attr_name(left), left->name_len, name, name_len,
26 			      upcase, true);
27 }
28 
29 /*
30  * mi_new_attt_id
31  *
32  * Return: Unused attribute id that is less than mrec->next_attr_id.
33  */
34 static __le16 mi_new_attt_id(struct mft_inode *mi)
35 {
36 	u16 free_id, max_id, t16;
37 	struct MFT_REC *rec = mi->mrec;
38 	struct ATTRIB *attr;
39 	__le16 id;
40 
41 	id = rec->next_attr_id;
42 	free_id = le16_to_cpu(id);
43 	if (free_id < 0x7FFF) {
44 		rec->next_attr_id = cpu_to_le16(free_id + 1);
45 		return id;
46 	}
47 
48 	/* One record can store up to 1024/24 ~= 42 attributes. */
49 	free_id = 0;
50 	max_id = 0;
51 
52 	attr = NULL;
53 
54 	for (;;) {
55 		attr = mi_enum_attr(mi, attr);
56 		if (!attr) {
57 			rec->next_attr_id = cpu_to_le16(max_id + 1);
58 			mi->dirty = true;
59 			return cpu_to_le16(free_id);
60 		}
61 
62 		t16 = le16_to_cpu(attr->id);
63 		if (t16 == free_id) {
64 			free_id += 1;
65 			attr = NULL;
66 		} else if (max_id < t16)
67 			max_id = t16;
68 	}
69 }
70 
71 int mi_get(struct ntfs_sb_info *sbi, CLST rno, struct mft_inode **mi)
72 {
73 	int err;
74 	struct mft_inode *m = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
75 
76 	if (!m)
77 		return -ENOMEM;
78 
79 	err = mi_init(m, sbi, rno);
80 	if (err) {
81 		kfree(m);
82 		return err;
83 	}
84 
85 	err = mi_read(m, false);
86 	if (err) {
87 		mi_put(m);
88 		return err;
89 	}
90 
91 	*mi = m;
92 	return 0;
93 }
94 
95 void mi_put(struct mft_inode *mi)
96 {
97 	mi_clear(mi);
98 	kfree(mi);
99 }
100 
101 int mi_init(struct mft_inode *mi, struct ntfs_sb_info *sbi, CLST rno)
102 {
103 	mi->sbi = sbi;
104 	mi->rno = rno;
105 	mi->mrec = kmalloc(sbi->record_size, GFP_NOFS);
106 	if (!mi->mrec)
107 		return -ENOMEM;
108 
109 	return 0;
110 }
111 
112 /*
113  * mi_read - Read MFT data.
114  */
115 int mi_read(struct mft_inode *mi, bool is_mft)
116 {
117 	int err;
118 	struct MFT_REC *rec = mi->mrec;
119 	struct ntfs_sb_info *sbi = mi->sbi;
120 	u32 bpr = sbi->record_size;
121 	u64 vbo = (u64)mi->rno << sbi->record_bits;
122 	struct ntfs_inode *mft_ni = sbi->mft.ni;
123 	struct runs_tree *run = mft_ni ? &mft_ni->file.run : NULL;
124 	struct rw_semaphore *rw_lock = NULL;
125 
126 	if (is_mounted(sbi)) {
127 		if (!is_mft && mft_ni) {
128 			rw_lock = &mft_ni->file.run_lock;
129 			down_read(rw_lock);
130 		}
131 	}
132 
133 	err = ntfs_read_bh(sbi, run, vbo, &rec->rhdr, bpr, &mi->nb);
134 	if (rw_lock)
135 		up_read(rw_lock);
136 	if (!err)
137 		goto ok;
138 
139 	if (err == -E_NTFS_FIXUP) {
140 		mi->dirty = true;
141 		goto ok;
142 	}
143 
144 	if (err != -ENOENT)
145 		goto out;
146 
147 	if (rw_lock) {
148 		ni_lock(mft_ni);
149 		down_write(rw_lock);
150 	}
151 	err = attr_load_runs_vcn(mft_ni, ATTR_DATA, NULL, 0, run,
152 				 vbo >> sbi->cluster_bits);
153 	if (rw_lock) {
154 		up_write(rw_lock);
155 		ni_unlock(mft_ni);
156 	}
157 	if (err)
158 		goto out;
159 
160 	if (rw_lock)
161 		down_read(rw_lock);
162 	err = ntfs_read_bh(sbi, run, vbo, &rec->rhdr, bpr, &mi->nb);
163 	if (rw_lock)
164 		up_read(rw_lock);
165 
166 	if (err == -E_NTFS_FIXUP) {
167 		mi->dirty = true;
168 		goto ok;
169 	}
170 	if (err)
171 		goto out;
172 
173 ok:
174 	/* Check field 'total' only here. */
175 	if (le32_to_cpu(rec->total) != bpr) {
176 		err = -EINVAL;
177 		goto out;
178 	}
179 
180 	return 0;
181 
182 out:
183 	if (err == -E_NTFS_CORRUPT) {
184 		ntfs_err(sbi->sb, "mft corrupted");
185 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
186 		err = -EINVAL;
187 	}
188 
189 	return err;
190 }
191 
192 /*
193  * mi_enum_attr - start/continue attributes enumeration in record.
194  *
195  * NOTE: mi->mrec - memory of size sbi->record_size
196  * here we sure that mi->mrec->total == sbi->record_size (see mi_read)
197  */
198 struct ATTRIB *mi_enum_attr(struct mft_inode *mi, struct ATTRIB *attr)
199 {
200 	const struct MFT_REC *rec = mi->mrec;
201 	u32 used = le32_to_cpu(rec->used);
202 	u32 t32, off, asize, prev_type;
203 	u16 t16;
204 	u64 data_size, alloc_size, tot_size;
205 
206 	if (!attr) {
207 		u32 total = le32_to_cpu(rec->total);
208 
209 		off = le16_to_cpu(rec->attr_off);
210 
211 		if (used > total)
212 			return NULL;
213 
214 		if (off >= used || off < MFTRECORD_FIXUP_OFFSET_1 ||
215 		    !IS_ALIGNED(off, 4)) {
216 			return NULL;
217 		}
218 
219 		/* Skip non-resident records. */
220 		if (!is_rec_inuse(rec))
221 			return NULL;
222 
223 		prev_type = 0;
224 		attr = Add2Ptr(rec, off);
225 	} else {
226 		/*
227 		 * We don't need to check previous attr here. There is
228 		 * a bounds checking in the previous round.
229 		 */
230 		off = PtrOffset(rec, attr);
231 
232 		asize = le32_to_cpu(attr->size);
233 
234 		prev_type = le32_to_cpu(attr->type);
235 		attr = Add2Ptr(attr, asize);
236 		off += asize;
237 	}
238 
239 	/* Can we use the first field (attr->type). */
240 	/* NOTE: this code also checks attr->size availability. */
241 	if (off + 8 > used) {
242 		static_assert(ALIGN(sizeof(enum ATTR_TYPE), 8) == 8);
243 		return NULL;
244 	}
245 
246 	if (attr->type == ATTR_END) {
247 		/* End of enumeration. */
248 		return NULL;
249 	}
250 
251 	/* 0x100 is last known attribute for now. */
252 	t32 = le32_to_cpu(attr->type);
253 	if (!t32 || (t32 & 0xf) || (t32 > 0x100))
254 		return NULL;
255 
256 	/* attributes in record must be ordered by type */
257 	if (t32 < prev_type)
258 		return NULL;
259 
260 	asize = le32_to_cpu(attr->size);
261 
262 	/* Check overflow and boundary. */
263 	if (off + asize < off || off + asize > used)
264 		return NULL;
265 
266 	/* Check size of attribute. */
267 	if (!attr->non_res) {
268 		/* Check resident fields. */
269 		if (asize < SIZEOF_RESIDENT)
270 			return NULL;
271 
272 		t16 = le16_to_cpu(attr->res.data_off);
273 		if (t16 > asize)
274 			return NULL;
275 
276 		if (le32_to_cpu(attr->res.data_size) > asize - t16)
277 			return NULL;
278 
279 		t32 = sizeof(short) * attr->name_len;
280 		if (t32 && le16_to_cpu(attr->name_off) + t32 > t16)
281 			return NULL;
282 
283 		return attr;
284 	}
285 
286 	/* Check nonresident fields. */
287 	if (attr->non_res != 1)
288 		return NULL;
289 
290 	/* Can we use memory including attr->nres.valid_size? */
291 	if (asize < SIZEOF_NONRESIDENT)
292 		return NULL;
293 
294 	t16 = le16_to_cpu(attr->nres.run_off);
295 	if (t16 > asize)
296 		return NULL;
297 
298 	t32 = sizeof(short) * attr->name_len;
299 	if (t32 && le16_to_cpu(attr->name_off) + t32 > t16)
300 		return NULL;
301 
302 	/* Check start/end vcn. */
303 	if (le64_to_cpu(attr->nres.svcn) > le64_to_cpu(attr->nres.evcn) + 1)
304 		return NULL;
305 
306 	data_size = le64_to_cpu(attr->nres.data_size);
307 	if (le64_to_cpu(attr->nres.valid_size) > data_size)
308 		return NULL;
309 
310 	alloc_size = le64_to_cpu(attr->nres.alloc_size);
311 	if (data_size > alloc_size)
312 		return NULL;
313 
314 	t32 = mi->sbi->cluster_mask;
315 	if (alloc_size & t32)
316 		return NULL;
317 
318 	if (!attr->nres.svcn && is_attr_ext(attr)) {
319 		/* First segment of sparse/compressed attribute */
320 		/* Can we use memory including attr->nres.total_size? */
321 		if (asize < SIZEOF_NONRESIDENT_EX)
322 			return NULL;
323 
324 		tot_size = le64_to_cpu(attr->nres.total_size);
325 		if (tot_size & t32)
326 			return NULL;
327 
328 		if (tot_size > alloc_size)
329 			return NULL;
330 	} else {
331 		if (attr->nres.c_unit)
332 			return NULL;
333 
334 		if (alloc_size > mi->sbi->volume.size)
335 			return NULL;
336 	}
337 
338 	return attr;
339 }
340 
341 /*
342  * mi_find_attr - Find the attribute by type and name and id.
343  */
344 struct ATTRIB *mi_find_attr(struct mft_inode *mi, struct ATTRIB *attr,
345 			    enum ATTR_TYPE type, const __le16 *name,
346 			    u8 name_len, const __le16 *id)
347 {
348 	u32 type_in = le32_to_cpu(type);
349 	u32 atype;
350 
351 next_attr:
352 	attr = mi_enum_attr(mi, attr);
353 	if (!attr)
354 		return NULL;
355 
356 	atype = le32_to_cpu(attr->type);
357 	if (atype > type_in)
358 		return NULL;
359 
360 	if (atype < type_in)
361 		goto next_attr;
362 
363 	if (attr->name_len != name_len)
364 		goto next_attr;
365 
366 	if (name_len && memcmp(attr_name(attr), name, name_len * sizeof(short)))
367 		goto next_attr;
368 
369 	if (id && *id != attr->id)
370 		goto next_attr;
371 
372 	return attr;
373 }
374 
375 int mi_write(struct mft_inode *mi, int wait)
376 {
377 	struct MFT_REC *rec;
378 	int err;
379 	struct ntfs_sb_info *sbi;
380 
381 	if (!mi->dirty)
382 		return 0;
383 
384 	sbi = mi->sbi;
385 	rec = mi->mrec;
386 
387 	err = ntfs_write_bh(sbi, &rec->rhdr, &mi->nb, wait);
388 	if (err)
389 		return err;
390 
391 	if (mi->rno < sbi->mft.recs_mirr)
392 		sbi->flags |= NTFS_FLAGS_MFTMIRR;
393 
394 	mi->dirty = false;
395 
396 	return 0;
397 }
398 
399 int mi_format_new(struct mft_inode *mi, struct ntfs_sb_info *sbi, CLST rno,
400 		  __le16 flags, bool is_mft)
401 {
402 	int err;
403 	u16 seq = 1;
404 	struct MFT_REC *rec;
405 	u64 vbo = (u64)rno << sbi->record_bits;
406 
407 	err = mi_init(mi, sbi, rno);
408 	if (err)
409 		return err;
410 
411 	rec = mi->mrec;
412 
413 	if (rno == MFT_REC_MFT) {
414 		;
415 	} else if (rno < MFT_REC_FREE) {
416 		seq = rno;
417 	} else if (rno >= sbi->mft.used) {
418 		;
419 	} else if (mi_read(mi, is_mft)) {
420 		;
421 	} else if (rec->rhdr.sign == NTFS_FILE_SIGNATURE) {
422 		/* Record is reused. Update its sequence number. */
423 		seq = le16_to_cpu(rec->seq) + 1;
424 		if (!seq)
425 			seq = 1;
426 	}
427 
428 	memcpy(rec, sbi->new_rec, sbi->record_size);
429 
430 	rec->seq = cpu_to_le16(seq);
431 	rec->flags = RECORD_FLAG_IN_USE | flags;
432 	if (MFTRECORD_FIXUP_OFFSET == MFTRECORD_FIXUP_OFFSET_3)
433 		rec->mft_record = cpu_to_le32(rno);
434 
435 	mi->dirty = true;
436 
437 	if (!mi->nb.nbufs) {
438 		struct ntfs_inode *ni = sbi->mft.ni;
439 		bool lock = false;
440 
441 		if (is_mounted(sbi) && !is_mft) {
442 			down_read(&ni->file.run_lock);
443 			lock = true;
444 		}
445 
446 		err = ntfs_get_bh(sbi, &ni->file.run, vbo, sbi->record_size,
447 				  &mi->nb);
448 		if (lock)
449 			up_read(&ni->file.run_lock);
450 	}
451 
452 	return err;
453 }
454 
455 /*
456  * mi_insert_attr - Reserve space for new attribute.
457  *
458  * Return: Not full constructed attribute or NULL if not possible to create.
459  */
460 struct ATTRIB *mi_insert_attr(struct mft_inode *mi, enum ATTR_TYPE type,
461 			      const __le16 *name, u8 name_len, u32 asize,
462 			      u16 name_off)
463 {
464 	size_t tail;
465 	struct ATTRIB *attr;
466 	__le16 id;
467 	struct MFT_REC *rec = mi->mrec;
468 	struct ntfs_sb_info *sbi = mi->sbi;
469 	u32 used = le32_to_cpu(rec->used);
470 	const u16 *upcase = sbi->upcase;
471 
472 	/* Can we insert mi attribute? */
473 	if (used + asize > sbi->record_size)
474 		return NULL;
475 
476 	/*
477 	 * Scan through the list of attributes to find the point
478 	 * at which we should insert it.
479 	 */
480 	attr = NULL;
481 	while ((attr = mi_enum_attr(mi, attr))) {
482 		int diff = compare_attr(attr, type, name, name_len, upcase);
483 
484 		if (diff < 0)
485 			continue;
486 
487 		if (!diff && !is_attr_indexed(attr))
488 			return NULL;
489 		break;
490 	}
491 
492 	if (!attr) {
493 		/* Append. */
494 		tail = 8;
495 		attr = Add2Ptr(rec, used - 8);
496 	} else {
497 		/* Insert before 'attr'. */
498 		tail = used - PtrOffset(rec, attr);
499 	}
500 
501 	id = mi_new_attt_id(mi);
502 
503 	memmove(Add2Ptr(attr, asize), attr, tail);
504 	memset(attr, 0, asize);
505 
506 	attr->type = type;
507 	attr->size = cpu_to_le32(asize);
508 	attr->name_len = name_len;
509 	attr->name_off = cpu_to_le16(name_off);
510 	attr->id = id;
511 
512 	memmove(Add2Ptr(attr, name_off), name, name_len * sizeof(short));
513 	rec->used = cpu_to_le32(used + asize);
514 
515 	mi->dirty = true;
516 
517 	return attr;
518 }
519 
520 /*
521  * mi_remove_attr - Remove the attribute from record.
522  *
523  * NOTE: The source attr will point to next attribute.
524  */
525 bool mi_remove_attr(struct ntfs_inode *ni, struct mft_inode *mi,
526 		    struct ATTRIB *attr)
527 {
528 	struct MFT_REC *rec = mi->mrec;
529 	u32 aoff = PtrOffset(rec, attr);
530 	u32 used = le32_to_cpu(rec->used);
531 	u32 asize = le32_to_cpu(attr->size);
532 
533 	if (aoff + asize > used)
534 		return false;
535 
536 	if (ni && is_attr_indexed(attr) && attr->type == ATTR_NAME) {
537 		u16 links = le16_to_cpu(ni->mi.mrec->hard_links);
538 		if (!links) {
539 			/* minor error. Not critical. */
540 		} else {
541 			ni->mi.mrec->hard_links = cpu_to_le16(links - 1);
542 			ni->mi.dirty = true;
543 		}
544 	}
545 
546 	used -= asize;
547 	memmove(attr, Add2Ptr(attr, asize), used - aoff);
548 	rec->used = cpu_to_le32(used);
549 	mi->dirty = true;
550 
551 	return true;
552 }
553 
554 /* bytes = "new attribute size" - "old attribute size" */
555 bool mi_resize_attr(struct mft_inode *mi, struct ATTRIB *attr, int bytes)
556 {
557 	struct MFT_REC *rec = mi->mrec;
558 	u32 aoff = PtrOffset(rec, attr);
559 	u32 total, used = le32_to_cpu(rec->used);
560 	u32 nsize, asize = le32_to_cpu(attr->size);
561 	u32 rsize = le32_to_cpu(attr->res.data_size);
562 	int tail = (int)(used - aoff - asize);
563 	int dsize;
564 	char *next;
565 
566 	if (tail < 0 || aoff >= used)
567 		return false;
568 
569 	if (!bytes)
570 		return true;
571 
572 	total = le32_to_cpu(rec->total);
573 	next = Add2Ptr(attr, asize);
574 
575 	if (bytes > 0) {
576 		dsize = ALIGN(bytes, 8);
577 		if (used + dsize > total)
578 			return false;
579 		nsize = asize + dsize;
580 		/* Move tail */
581 		memmove(next + dsize, next, tail);
582 		memset(next, 0, dsize);
583 		used += dsize;
584 		rsize += dsize;
585 	} else {
586 		dsize = ALIGN(-bytes, 8);
587 		if (dsize > asize)
588 			return false;
589 		nsize = asize - dsize;
590 		memmove(next - dsize, next, tail);
591 		used -= dsize;
592 		rsize -= dsize;
593 	}
594 
595 	rec->used = cpu_to_le32(used);
596 	attr->size = cpu_to_le32(nsize);
597 	if (!attr->non_res)
598 		attr->res.data_size = cpu_to_le32(rsize);
599 	mi->dirty = true;
600 
601 	return true;
602 }
603 
604 /*
605  * Pack runs in MFT record.
606  * If failed record is not changed.
607  */
608 int mi_pack_runs(struct mft_inode *mi, struct ATTRIB *attr,
609 		 struct runs_tree *run, CLST len)
610 {
611 	int err = 0;
612 	struct ntfs_sb_info *sbi = mi->sbi;
613 	u32 new_run_size;
614 	CLST plen;
615 	struct MFT_REC *rec = mi->mrec;
616 	CLST svcn = le64_to_cpu(attr->nres.svcn);
617 	u32 used = le32_to_cpu(rec->used);
618 	u32 aoff = PtrOffset(rec, attr);
619 	u32 asize = le32_to_cpu(attr->size);
620 	char *next = Add2Ptr(attr, asize);
621 	u16 run_off = le16_to_cpu(attr->nres.run_off);
622 	u32 run_size = asize - run_off;
623 	u32 tail = used - aoff - asize;
624 	u32 dsize = sbi->record_size - used;
625 
626 	/* Make a maximum gap in current record. */
627 	memmove(next + dsize, next, tail);
628 
629 	/* Pack as much as possible. */
630 	err = run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size + dsize,
631 		       &plen);
632 	if (err < 0) {
633 		memmove(next, next + dsize, tail);
634 		return err;
635 	}
636 
637 	new_run_size = ALIGN(err, 8);
638 
639 	memmove(next + new_run_size - run_size, next + dsize, tail);
640 
641 	attr->size = cpu_to_le32(asize + new_run_size - run_size);
642 	attr->nres.evcn = cpu_to_le64(svcn + plen - 1);
643 	rec->used = cpu_to_le32(used + new_run_size - run_size);
644 	mi->dirty = true;
645 
646 	return 0;
647 }
648