xref: /openbmc/linux/fs/ntfs3/ntfs.h (revision e142bd91)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  *
4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5  *
6  * on-disk ntfs structs
7  */
8 
9 // clang-format off
10 #ifndef _LINUX_NTFS3_NTFS_H
11 #define _LINUX_NTFS3_NTFS_H
12 
13 /* TODO: Check 4K MFT record and 512 bytes cluster. */
14 
15 /* Activate this define to use binary search in indexes. */
16 #define NTFS3_INDEX_BINARY_SEARCH
17 
18 /* Check each run for marked clusters. */
19 #define NTFS3_CHECK_FREE_CLST
20 
21 #define NTFS_NAME_LEN 255
22 
23 /* ntfs.sys used 500 maximum links on-disk struct allows up to 0xffff. */
24 #define NTFS_LINK_MAX 0x400
25 //#define NTFS_LINK_MAX 0xffff
26 
27 /*
28  * Activate to use 64 bit clusters instead of 32 bits in ntfs.sys.
29  * Logical and virtual cluster number if needed, may be
30  * redefined to use 64 bit value.
31  */
32 //#define CONFIG_NTFS3_64BIT_CLUSTER
33 
34 #define NTFS_LZNT_MAX_CLUSTER	4096
35 #define NTFS_LZNT_CUNIT		4
36 #define NTFS_LZNT_CLUSTERS	(1u<<NTFS_LZNT_CUNIT)
37 
38 struct GUID {
39 	__le32 Data1;
40 	__le16 Data2;
41 	__le16 Data3;
42 	u8 Data4[8];
43 };
44 
45 /*
46  * This struct repeats layout of ATTR_FILE_NAME
47  * at offset 0x40.
48  * It used to store global constants NAME_MFT/NAME_MIRROR...
49  * most constant names are shorter than 10.
50  */
51 struct cpu_str {
52 	u8 len;
53 	u8 unused;
54 	u16 name[10];
55 };
56 
57 struct le_str {
58 	u8 len;
59 	u8 unused;
60 	__le16 name[];
61 };
62 
63 static_assert(SECTOR_SHIFT == 9);
64 
65 #ifdef CONFIG_NTFS3_64BIT_CLUSTER
66 typedef u64 CLST;
67 static_assert(sizeof(size_t) == 8);
68 #else
69 typedef u32 CLST;
70 #endif
71 
72 #define SPARSE_LCN64   ((u64)-1)
73 #define SPARSE_LCN     ((CLST)-1)
74 #define RESIDENT_LCN   ((CLST)-2)
75 #define COMPRESSED_LCN ((CLST)-3)
76 
77 #define COMPRESSION_UNIT     4
78 #define COMPRESS_MAX_CLUSTER 0x1000
79 #define MFT_INCREASE_CHUNK   1024
80 
81 enum RECORD_NUM {
82 	MFT_REC_MFT		= 0,
83 	MFT_REC_MIRR		= 1,
84 	MFT_REC_LOG		= 2,
85 	MFT_REC_VOL		= 3,
86 	MFT_REC_ATTR		= 4,
87 	MFT_REC_ROOT		= 5,
88 	MFT_REC_BITMAP		= 6,
89 	MFT_REC_BOOT		= 7,
90 	MFT_REC_BADCLUST	= 8,
91 	//MFT_REC_QUOTA		= 9,
92 	MFT_REC_SECURE		= 9, // NTFS 3.0
93 	MFT_REC_UPCASE		= 10,
94 	MFT_REC_EXTEND		= 11, // NTFS 3.0
95 	MFT_REC_RESERVED	= 11,
96 	MFT_REC_FREE		= 16,
97 	MFT_REC_USER		= 24,
98 };
99 
100 enum ATTR_TYPE {
101 	ATTR_ZERO		= cpu_to_le32(0x00),
102 	ATTR_STD		= cpu_to_le32(0x10),
103 	ATTR_LIST		= cpu_to_le32(0x20),
104 	ATTR_NAME		= cpu_to_le32(0x30),
105 	// ATTR_VOLUME_VERSION on Nt4
106 	ATTR_ID			= cpu_to_le32(0x40),
107 	ATTR_SECURE		= cpu_to_le32(0x50),
108 	ATTR_LABEL		= cpu_to_le32(0x60),
109 	ATTR_VOL_INFO		= cpu_to_le32(0x70),
110 	ATTR_DATA		= cpu_to_le32(0x80),
111 	ATTR_ROOT		= cpu_to_le32(0x90),
112 	ATTR_ALLOC		= cpu_to_le32(0xA0),
113 	ATTR_BITMAP		= cpu_to_le32(0xB0),
114 	// ATTR_SYMLINK on Nt4
115 	ATTR_REPARSE		= cpu_to_le32(0xC0),
116 	ATTR_EA_INFO		= cpu_to_le32(0xD0),
117 	ATTR_EA			= cpu_to_le32(0xE0),
118 	ATTR_PROPERTYSET	= cpu_to_le32(0xF0),
119 	ATTR_LOGGED_UTILITY_STREAM = cpu_to_le32(0x100),
120 	ATTR_END		= cpu_to_le32(0xFFFFFFFF)
121 };
122 
123 static_assert(sizeof(enum ATTR_TYPE) == 4);
124 
125 enum FILE_ATTRIBUTE {
126 	FILE_ATTRIBUTE_READONLY		= cpu_to_le32(0x00000001),
127 	FILE_ATTRIBUTE_HIDDEN		= cpu_to_le32(0x00000002),
128 	FILE_ATTRIBUTE_SYSTEM		= cpu_to_le32(0x00000004),
129 	FILE_ATTRIBUTE_ARCHIVE		= cpu_to_le32(0x00000020),
130 	FILE_ATTRIBUTE_DEVICE		= cpu_to_le32(0x00000040),
131 	FILE_ATTRIBUTE_TEMPORARY	= cpu_to_le32(0x00000100),
132 	FILE_ATTRIBUTE_SPARSE_FILE	= cpu_to_le32(0x00000200),
133 	FILE_ATTRIBUTE_REPARSE_POINT	= cpu_to_le32(0x00000400),
134 	FILE_ATTRIBUTE_COMPRESSED	= cpu_to_le32(0x00000800),
135 	FILE_ATTRIBUTE_OFFLINE		= cpu_to_le32(0x00001000),
136 	FILE_ATTRIBUTE_NOT_CONTENT_INDEXED = cpu_to_le32(0x00002000),
137 	FILE_ATTRIBUTE_ENCRYPTED	= cpu_to_le32(0x00004000),
138 	FILE_ATTRIBUTE_VALID_FLAGS	= cpu_to_le32(0x00007fb7),
139 	FILE_ATTRIBUTE_DIRECTORY	= cpu_to_le32(0x10000000),
140 };
141 
142 static_assert(sizeof(enum FILE_ATTRIBUTE) == 4);
143 
144 extern const struct cpu_str NAME_MFT;
145 extern const struct cpu_str NAME_MIRROR;
146 extern const struct cpu_str NAME_LOGFILE;
147 extern const struct cpu_str NAME_VOLUME;
148 extern const struct cpu_str NAME_ATTRDEF;
149 extern const struct cpu_str NAME_ROOT;
150 extern const struct cpu_str NAME_BITMAP;
151 extern const struct cpu_str NAME_BOOT;
152 extern const struct cpu_str NAME_BADCLUS;
153 extern const struct cpu_str NAME_QUOTA;
154 extern const struct cpu_str NAME_SECURE;
155 extern const struct cpu_str NAME_UPCASE;
156 extern const struct cpu_str NAME_EXTEND;
157 extern const struct cpu_str NAME_OBJID;
158 extern const struct cpu_str NAME_REPARSE;
159 extern const struct cpu_str NAME_USNJRNL;
160 
161 extern const __le16 I30_NAME[4];
162 extern const __le16 SII_NAME[4];
163 extern const __le16 SDH_NAME[4];
164 extern const __le16 SO_NAME[2];
165 extern const __le16 SQ_NAME[2];
166 extern const __le16 SR_NAME[2];
167 
168 extern const __le16 BAD_NAME[4];
169 extern const __le16 SDS_NAME[4];
170 extern const __le16 WOF_NAME[17];	/* WofCompressedData */
171 
172 /* MFT record number structure. */
173 struct MFT_REF {
174 	__le32 low;	// The low part of the number.
175 	__le16 high;	// The high part of the number.
176 	__le16 seq;	// The sequence number of MFT record.
177 };
178 
179 static_assert(sizeof(__le64) == sizeof(struct MFT_REF));
180 
181 static inline CLST ino_get(const struct MFT_REF *ref)
182 {
183 #ifdef CONFIG_NTFS3_64BIT_CLUSTER
184 	return le32_to_cpu(ref->low) | ((u64)le16_to_cpu(ref->high) << 32);
185 #else
186 	return le32_to_cpu(ref->low);
187 #endif
188 }
189 
190 struct NTFS_BOOT {
191 	u8 jump_code[3];	// 0x00: Jump to boot code.
192 	u8 system_id[8];	// 0x03: System ID, equals "NTFS    "
193 
194 	// NOTE: This member is not aligned(!)
195 	// bytes_per_sector[0] must be 0.
196 	// bytes_per_sector[1] must be multiplied by 256.
197 	u8 bytes_per_sector[2];	// 0x0B: Bytes per sector.
198 
199 	u8 sectors_per_clusters;// 0x0D: Sectors per cluster.
200 	u8 unused1[7];
201 	u8 media_type;		// 0x15: Media type (0xF8 - harddisk)
202 	u8 unused2[2];
203 	__le16 sct_per_track;	// 0x18: number of sectors per track.
204 	__le16 heads;		// 0x1A: number of heads per cylinder.
205 	__le32 hidden_sectors;	// 0x1C: number of 'hidden' sectors.
206 	u8 unused3[4];
207 	u8 bios_drive_num;	// 0x24: BIOS drive number =0x80.
208 	u8 unused4;
209 	u8 signature_ex;	// 0x26: Extended BOOT signature =0x80.
210 	u8 unused5;
211 	__le64 sectors_per_volume;// 0x28: Size of volume in sectors.
212 	__le64 mft_clst;	// 0x30: First cluster of $MFT
213 	__le64 mft2_clst;	// 0x38: First cluster of $MFTMirr
214 	s8 record_size;		// 0x40: Size of MFT record in clusters(sectors).
215 	u8 unused6[3];
216 	s8 index_size;		// 0x44: Size of INDX record in clusters(sectors).
217 	u8 unused7[3];
218 	__le64 serial_num;	// 0x48: Volume serial number
219 	__le32 check_sum;	// 0x50: Simple additive checksum of all
220 				// of the u32's which precede the 'check_sum'.
221 
222 	u8 boot_code[0x200 - 0x50 - 2 - 4]; // 0x54:
223 	u8 boot_magic[2];	// 0x1FE: Boot signature =0x55 + 0xAA
224 };
225 
226 static_assert(sizeof(struct NTFS_BOOT) == 0x200);
227 
228 enum NTFS_SIGNATURE {
229 	NTFS_FILE_SIGNATURE = cpu_to_le32(0x454C4946), // 'FILE'
230 	NTFS_INDX_SIGNATURE = cpu_to_le32(0x58444E49), // 'INDX'
231 	NTFS_CHKD_SIGNATURE = cpu_to_le32(0x444B4843), // 'CHKD'
232 	NTFS_RSTR_SIGNATURE = cpu_to_le32(0x52545352), // 'RSTR'
233 	NTFS_RCRD_SIGNATURE = cpu_to_le32(0x44524352), // 'RCRD'
234 	NTFS_BAAD_SIGNATURE = cpu_to_le32(0x44414142), // 'BAAD'
235 	NTFS_HOLE_SIGNATURE = cpu_to_le32(0x454C4F48), // 'HOLE'
236 	NTFS_FFFF_SIGNATURE = cpu_to_le32(0xffffffff),
237 };
238 
239 static_assert(sizeof(enum NTFS_SIGNATURE) == 4);
240 
241 /* MFT Record header structure. */
242 struct NTFS_RECORD_HEADER {
243 	/* Record magic number, equals 'FILE'/'INDX'/'RSTR'/'RCRD'. */
244 	enum NTFS_SIGNATURE sign; // 0x00:
245 	__le16 fix_off;		// 0x04:
246 	__le16 fix_num;		// 0x06:
247 	__le64 lsn;		// 0x08: Log file sequence number,
248 };
249 
250 static_assert(sizeof(struct NTFS_RECORD_HEADER) == 0x10);
251 
252 static inline int is_baad(const struct NTFS_RECORD_HEADER *hdr)
253 {
254 	return hdr->sign == NTFS_BAAD_SIGNATURE;
255 }
256 
257 /* Possible bits in struct MFT_REC.flags. */
258 enum RECORD_FLAG {
259 	RECORD_FLAG_IN_USE	= cpu_to_le16(0x0001),
260 	RECORD_FLAG_DIR		= cpu_to_le16(0x0002),
261 	RECORD_FLAG_SYSTEM	= cpu_to_le16(0x0004),
262 	RECORD_FLAG_UNKNOWN	= cpu_to_le16(0x0008),
263 };
264 
265 /* MFT Record structure. */
266 struct MFT_REC {
267 	struct NTFS_RECORD_HEADER rhdr; // 'FILE'
268 
269 	__le16 seq;		// 0x10: Sequence number for this record.
270 	__le16 hard_links;	// 0x12: The number of hard links to record.
271 	__le16 attr_off;	// 0x14: Offset to attributes.
272 	__le16 flags;		// 0x16: See RECORD_FLAG.
273 	__le32 used;		// 0x18: The size of used part.
274 	__le32 total;		// 0x1C: Total record size.
275 
276 	struct MFT_REF parent_ref; // 0x20: Parent MFT record.
277 	__le16 next_attr_id;	// 0x28: The next attribute Id.
278 
279 	__le16 res;		// 0x2A: High part of MFT record?
280 	__le32 mft_record;	// 0x2C: Current MFT record number.
281 	__le16 fixups[];	// 0x30:
282 };
283 
284 #define MFTRECORD_FIXUP_OFFSET_1 offsetof(struct MFT_REC, res)
285 #define MFTRECORD_FIXUP_OFFSET_3 offsetof(struct MFT_REC, fixups)
286 
287 static_assert(MFTRECORD_FIXUP_OFFSET_1 == 0x2A);
288 static_assert(MFTRECORD_FIXUP_OFFSET_3 == 0x30);
289 
290 static inline bool is_rec_base(const struct MFT_REC *rec)
291 {
292 	const struct MFT_REF *r = &rec->parent_ref;
293 
294 	return !r->low && !r->high && !r->seq;
295 }
296 
297 static inline bool is_mft_rec5(const struct MFT_REC *rec)
298 {
299 	return le16_to_cpu(rec->rhdr.fix_off) >=
300 	       offsetof(struct MFT_REC, fixups);
301 }
302 
303 static inline bool is_rec_inuse(const struct MFT_REC *rec)
304 {
305 	return rec->flags & RECORD_FLAG_IN_USE;
306 }
307 
308 static inline bool clear_rec_inuse(struct MFT_REC *rec)
309 {
310 	return rec->flags &= ~RECORD_FLAG_IN_USE;
311 }
312 
313 /* Possible values of ATTR_RESIDENT.flags */
314 #define RESIDENT_FLAG_INDEXED 0x01
315 
316 struct ATTR_RESIDENT {
317 	__le32 data_size;	// 0x10: The size of data.
318 	__le16 data_off;	// 0x14: Offset to data.
319 	u8 flags;		// 0x16: Resident flags ( 1 - indexed ).
320 	u8 res;			// 0x17:
321 }; // sizeof() = 0x18
322 
323 struct ATTR_NONRESIDENT {
324 	__le64 svcn;		// 0x10: Starting VCN of this segment.
325 	__le64 evcn;		// 0x18: End VCN of this segment.
326 	__le16 run_off;		// 0x20: Offset to packed runs.
327 	//  Unit of Compression size for this stream, expressed
328 	//  as a log of the cluster size.
329 	//
330 	//	0 means file is not compressed
331 	//	1, 2, 3, and 4 are potentially legal values if the
332 	//	    stream is compressed, however the implementation
333 	//	    may only choose to use 4, or possibly 3.  Note
334 	//	    that 4 means cluster size time 16.	If convenient
335 	//	    the implementation may wish to accept a
336 	//	    reasonable range of legal values here (1-5?),
337 	//	    even if the implementation only generates
338 	//	    a smaller set of values itself.
339 	u8 c_unit;		// 0x22:
340 	u8 res1[5];		// 0x23:
341 	__le64 alloc_size;	// 0x28: The allocated size of attribute in bytes.
342 				// (multiple of cluster size)
343 	__le64 data_size;	// 0x30: The size of attribute  in bytes <= alloc_size.
344 	__le64 valid_size;	// 0x38: The size of valid part in bytes <= data_size.
345 	__le64 total_size;	// 0x40: The sum of the allocated clusters for a file.
346 				// (present only for the first segment (0 == vcn)
347 				// of compressed attribute)
348 
349 }; // sizeof()=0x40 or 0x48 (if compressed)
350 
351 /* Possible values of ATTRIB.flags: */
352 #define ATTR_FLAG_COMPRESSED	  cpu_to_le16(0x0001)
353 #define ATTR_FLAG_COMPRESSED_MASK cpu_to_le16(0x00FF)
354 #define ATTR_FLAG_ENCRYPTED	  cpu_to_le16(0x4000)
355 #define ATTR_FLAG_SPARSED	  cpu_to_le16(0x8000)
356 
357 struct ATTRIB {
358 	enum ATTR_TYPE type;	// 0x00: The type of this attribute.
359 	__le32 size;		// 0x04: The size of this attribute.
360 	u8 non_res;		// 0x08: Is this attribute non-resident?
361 	u8 name_len;		// 0x09: This attribute name length.
362 	__le16 name_off;	// 0x0A: Offset to the attribute name.
363 	__le16 flags;		// 0x0C: See ATTR_FLAG_XXX.
364 	__le16 id;		// 0x0E: Unique id (per record).
365 
366 	union {
367 		struct ATTR_RESIDENT res;     // 0x10
368 		struct ATTR_NONRESIDENT nres; // 0x10
369 	};
370 };
371 
372 /* Define attribute sizes. */
373 #define SIZEOF_RESIDENT			0x18
374 #define SIZEOF_NONRESIDENT_EX		0x48
375 #define SIZEOF_NONRESIDENT		0x40
376 
377 #define SIZEOF_RESIDENT_LE		cpu_to_le16(0x18)
378 #define SIZEOF_NONRESIDENT_EX_LE	cpu_to_le16(0x48)
379 #define SIZEOF_NONRESIDENT_LE		cpu_to_le16(0x40)
380 
381 static inline u64 attr_ondisk_size(const struct ATTRIB *attr)
382 {
383 	return attr->non_res ? ((attr->flags &
384 				 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ?
385 					le64_to_cpu(attr->nres.total_size) :
386 					le64_to_cpu(attr->nres.alloc_size))
387 			     : ALIGN(le32_to_cpu(attr->res.data_size), 8);
388 }
389 
390 static inline u64 attr_size(const struct ATTRIB *attr)
391 {
392 	return attr->non_res ? le64_to_cpu(attr->nres.data_size) :
393 			       le32_to_cpu(attr->res.data_size);
394 }
395 
396 static inline bool is_attr_encrypted(const struct ATTRIB *attr)
397 {
398 	return attr->flags & ATTR_FLAG_ENCRYPTED;
399 }
400 
401 static inline bool is_attr_sparsed(const struct ATTRIB *attr)
402 {
403 	return attr->flags & ATTR_FLAG_SPARSED;
404 }
405 
406 static inline bool is_attr_compressed(const struct ATTRIB *attr)
407 {
408 	return attr->flags & ATTR_FLAG_COMPRESSED;
409 }
410 
411 static inline bool is_attr_ext(const struct ATTRIB *attr)
412 {
413 	return attr->flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED);
414 }
415 
416 static inline bool is_attr_indexed(const struct ATTRIB *attr)
417 {
418 	return !attr->non_res && (attr->res.flags & RESIDENT_FLAG_INDEXED);
419 }
420 
421 static inline __le16 const *attr_name(const struct ATTRIB *attr)
422 {
423 	return Add2Ptr(attr, le16_to_cpu(attr->name_off));
424 }
425 
426 static inline u64 attr_svcn(const struct ATTRIB *attr)
427 {
428 	return attr->non_res ? le64_to_cpu(attr->nres.svcn) : 0;
429 }
430 
431 /* The size of resident attribute by its resident size. */
432 #define BYTES_PER_RESIDENT(b) (0x18 + (b))
433 
434 static_assert(sizeof(struct ATTRIB) == 0x48);
435 static_assert(sizeof(((struct ATTRIB *)NULL)->res) == 0x08);
436 static_assert(sizeof(((struct ATTRIB *)NULL)->nres) == 0x38);
437 
438 static inline void *resident_data_ex(const struct ATTRIB *attr, u32 datasize)
439 {
440 	u32 asize, rsize;
441 	u16 off;
442 
443 	if (attr->non_res)
444 		return NULL;
445 
446 	asize = le32_to_cpu(attr->size);
447 	off = le16_to_cpu(attr->res.data_off);
448 
449 	if (asize < datasize + off)
450 		return NULL;
451 
452 	rsize = le32_to_cpu(attr->res.data_size);
453 	if (rsize < datasize)
454 		return NULL;
455 
456 	return Add2Ptr(attr, off);
457 }
458 
459 static inline void *resident_data(const struct ATTRIB *attr)
460 {
461 	return Add2Ptr(attr, le16_to_cpu(attr->res.data_off));
462 }
463 
464 static inline void *attr_run(const struct ATTRIB *attr)
465 {
466 	return Add2Ptr(attr, le16_to_cpu(attr->nres.run_off));
467 }
468 
469 /* Standard information attribute (0x10). */
470 struct ATTR_STD_INFO {
471 	__le64 cr_time;		// 0x00: File creation file.
472 	__le64 m_time;		// 0x08: File modification time.
473 	__le64 c_time;		// 0x10: Last time any attribute was modified.
474 	__le64 a_time;		// 0x18: File last access time.
475 	enum FILE_ATTRIBUTE fa;	// 0x20: Standard DOS attributes & more.
476 	__le32 max_ver_num;	// 0x24: Maximum Number of Versions.
477 	__le32 ver_num;		// 0x28: Version Number.
478 	__le32 class_id;	// 0x2C: Class Id from bidirectional Class Id index.
479 };
480 
481 static_assert(sizeof(struct ATTR_STD_INFO) == 0x30);
482 
483 #define SECURITY_ID_INVALID 0x00000000
484 #define SECURITY_ID_FIRST 0x00000100
485 
486 struct ATTR_STD_INFO5 {
487 	__le64 cr_time;		// 0x00: File creation file.
488 	__le64 m_time;		// 0x08: File modification time.
489 	__le64 c_time;		// 0x10: Last time any attribute was modified.
490 	__le64 a_time;		// 0x18: File last access time.
491 	enum FILE_ATTRIBUTE fa;	// 0x20: Standard DOS attributes & more.
492 	__le32 max_ver_num;	// 0x24: Maximum Number of Versions.
493 	__le32 ver_num;		// 0x28: Version Number.
494 	__le32 class_id;	// 0x2C: Class Id from bidirectional Class Id index.
495 
496 	__le32 owner_id;	// 0x30: Owner Id of the user owning the file.
497 	__le32 security_id;	// 0x34: The Security Id is a key in the $SII Index and $SDS.
498 	__le64 quota_charge;	// 0x38:
499 	__le64 usn;		// 0x40: Last Update Sequence Number of the file. This is a direct
500 				// index into the file $UsnJrnl. If zero, the USN Journal is
501 				// disabled.
502 };
503 
504 static_assert(sizeof(struct ATTR_STD_INFO5) == 0x48);
505 
506 /* Attribute list entry structure (0x20) */
507 struct ATTR_LIST_ENTRY {
508 	enum ATTR_TYPE type;	// 0x00: The type of attribute.
509 	__le16 size;		// 0x04: The size of this record.
510 	u8 name_len;		// 0x06: The length of attribute name.
511 	u8 name_off;		// 0x07: The offset to attribute name.
512 	__le64 vcn;		// 0x08: Starting VCN of this attribute.
513 	struct MFT_REF ref;	// 0x10: MFT record number with attribute.
514 	__le16 id;		// 0x18: struct ATTRIB ID.
515 	__le16 name[3];		// 0x1A: Just to align. To get real name can use bNameOffset.
516 
517 }; // sizeof(0x20)
518 
519 static_assert(sizeof(struct ATTR_LIST_ENTRY) == 0x20);
520 
521 static inline u32 le_size(u8 name_len)
522 {
523 	return ALIGN(offsetof(struct ATTR_LIST_ENTRY, name) +
524 		     name_len * sizeof(short), 8);
525 }
526 
527 /* Returns 0 if 'attr' has the same type and name. */
528 static inline int le_cmp(const struct ATTR_LIST_ENTRY *le,
529 			 const struct ATTRIB *attr)
530 {
531 	return le->type != attr->type || le->name_len != attr->name_len ||
532 	       (!le->name_len &&
533 		memcmp(Add2Ptr(le, le->name_off),
534 		       Add2Ptr(attr, le16_to_cpu(attr->name_off)),
535 		       le->name_len * sizeof(short)));
536 }
537 
538 static inline __le16 const *le_name(const struct ATTR_LIST_ENTRY *le)
539 {
540 	return Add2Ptr(le, le->name_off);
541 }
542 
543 /* File name types (the field type in struct ATTR_FILE_NAME). */
544 #define FILE_NAME_POSIX   0
545 #define FILE_NAME_UNICODE 1
546 #define FILE_NAME_DOS	  2
547 #define FILE_NAME_UNICODE_AND_DOS (FILE_NAME_DOS | FILE_NAME_UNICODE)
548 
549 /* Filename attribute structure (0x30). */
550 struct NTFS_DUP_INFO {
551 	__le64 cr_time;		// 0x00: File creation file.
552 	__le64 m_time;		// 0x08: File modification time.
553 	__le64 c_time;		// 0x10: Last time any attribute was modified.
554 	__le64 a_time;		// 0x18: File last access time.
555 	__le64 alloc_size;	// 0x20: Data attribute allocated size, multiple of cluster size.
556 	__le64 data_size;	// 0x28: Data attribute size <= Dataalloc_size.
557 	enum FILE_ATTRIBUTE fa;	// 0x30: Standard DOS attributes & more.
558 	__le16 ea_size;		// 0x34: Packed EAs.
559 	__le16 reparse;		// 0x36: Used by Reparse.
560 
561 }; // 0x38
562 
563 struct ATTR_FILE_NAME {
564 	struct MFT_REF home;	// 0x00: MFT record for directory.
565 	struct NTFS_DUP_INFO dup;// 0x08:
566 	u8 name_len;		// 0x40: File name length in words.
567 	u8 type;		// 0x41: File name type.
568 	__le16 name[];		// 0x42: File name.
569 };
570 
571 static_assert(sizeof(((struct ATTR_FILE_NAME *)NULL)->dup) == 0x38);
572 static_assert(offsetof(struct ATTR_FILE_NAME, name) == 0x42);
573 #define SIZEOF_ATTRIBUTE_FILENAME     0x44
574 #define SIZEOF_ATTRIBUTE_FILENAME_MAX (0x42 + 255 * 2)
575 
576 static inline struct ATTRIB *attr_from_name(struct ATTR_FILE_NAME *fname)
577 {
578 	return (struct ATTRIB *)((char *)fname - SIZEOF_RESIDENT);
579 }
580 
581 static inline u16 fname_full_size(const struct ATTR_FILE_NAME *fname)
582 {
583 	/* Don't return struct_size(fname, name, fname->name_len); */
584 	return offsetof(struct ATTR_FILE_NAME, name) +
585 	       fname->name_len * sizeof(short);
586 }
587 
588 static inline u8 paired_name(u8 type)
589 {
590 	if (type == FILE_NAME_UNICODE)
591 		return FILE_NAME_DOS;
592 	if (type == FILE_NAME_DOS)
593 		return FILE_NAME_UNICODE;
594 	return FILE_NAME_POSIX;
595 }
596 
597 /* Index entry defines ( the field flags in NtfsDirEntry ). */
598 #define NTFS_IE_HAS_SUBNODES	cpu_to_le16(1)
599 #define NTFS_IE_LAST		cpu_to_le16(2)
600 
601 /* Directory entry structure. */
602 struct NTFS_DE {
603 	union {
604 		struct MFT_REF ref; // 0x00: MFT record number with this file.
605 		struct {
606 			__le16 data_off;  // 0x00:
607 			__le16 data_size; // 0x02:
608 			__le32 res;	  // 0x04: Must be 0.
609 		} view;
610 	};
611 	__le16 size;		// 0x08: The size of this entry.
612 	__le16 key_size;	// 0x0A: The size of File name length in bytes + 0x42.
613 	__le16 flags;		// 0x0C: Entry flags: NTFS_IE_XXX.
614 	__le16 res;		// 0x0E:
615 
616 	// Here any indexed attribute can be placed.
617 	// One of them is:
618 	// struct ATTR_FILE_NAME AttrFileName;
619 	//
620 
621 	// The last 8 bytes of this structure contains
622 	// the VBN of subnode.
623 	// !!! Note !!!
624 	// This field is presented only if (flags & NTFS_IE_HAS_SUBNODES)
625 	// __le64 vbn;
626 };
627 
628 static_assert(sizeof(struct NTFS_DE) == 0x10);
629 
630 static inline void de_set_vbn_le(struct NTFS_DE *e, __le64 vcn)
631 {
632 	__le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
633 
634 	*v = vcn;
635 }
636 
637 static inline void de_set_vbn(struct NTFS_DE *e, CLST vcn)
638 {
639 	__le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
640 
641 	*v = cpu_to_le64(vcn);
642 }
643 
644 static inline __le64 de_get_vbn_le(const struct NTFS_DE *e)
645 {
646 	return *(__le64 *)Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
647 }
648 
649 static inline CLST de_get_vbn(const struct NTFS_DE *e)
650 {
651 	__le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
652 
653 	return le64_to_cpu(*v);
654 }
655 
656 static inline struct NTFS_DE *de_get_next(const struct NTFS_DE *e)
657 {
658 	return Add2Ptr(e, le16_to_cpu(e->size));
659 }
660 
661 static inline struct ATTR_FILE_NAME *de_get_fname(const struct NTFS_DE *e)
662 {
663 	return le16_to_cpu(e->key_size) >= SIZEOF_ATTRIBUTE_FILENAME ?
664 		       Add2Ptr(e, sizeof(struct NTFS_DE)) :
665 		       NULL;
666 }
667 
668 static inline bool de_is_last(const struct NTFS_DE *e)
669 {
670 	return e->flags & NTFS_IE_LAST;
671 }
672 
673 static inline bool de_has_vcn(const struct NTFS_DE *e)
674 {
675 	return e->flags & NTFS_IE_HAS_SUBNODES;
676 }
677 
678 static inline bool de_has_vcn_ex(const struct NTFS_DE *e)
679 {
680 	return (e->flags & NTFS_IE_HAS_SUBNODES) &&
681 	       (u64)(-1) != *((u64 *)Add2Ptr(e, le16_to_cpu(e->size) -
682 							sizeof(__le64)));
683 }
684 
685 #define MAX_BYTES_PER_NAME_ENTRY \
686 	ALIGN(sizeof(struct NTFS_DE) + \
687 	      offsetof(struct ATTR_FILE_NAME, name) + \
688 	      NTFS_NAME_LEN * sizeof(short), 8)
689 
690 struct INDEX_HDR {
691 	__le32 de_off;	// 0x00: The offset from the start of this structure
692 			// to the first NTFS_DE.
693 	__le32 used;	// 0x04: The size of this structure plus all
694 			// entries (quad-word aligned).
695 	__le32 total;	// 0x08: The allocated size of for this structure plus all entries.
696 	u8 flags;	// 0x0C: 0x00 = Small directory, 0x01 = Large directory.
697 	u8 res[3];
698 
699 	//
700 	// de_off + used <= total
701 	//
702 };
703 
704 static_assert(sizeof(struct INDEX_HDR) == 0x10);
705 
706 static inline struct NTFS_DE *hdr_first_de(const struct INDEX_HDR *hdr)
707 {
708 	u32 de_off = le32_to_cpu(hdr->de_off);
709 	u32 used = le32_to_cpu(hdr->used);
710 	struct NTFS_DE *e = Add2Ptr(hdr, de_off);
711 	u16 esize;
712 
713 	if (de_off >= used || de_off >= le32_to_cpu(hdr->total))
714 		return NULL;
715 
716 	esize = le16_to_cpu(e->size);
717 	if (esize < sizeof(struct NTFS_DE) || de_off + esize > used)
718 		return NULL;
719 
720 	return e;
721 }
722 
723 static inline struct NTFS_DE *hdr_next_de(const struct INDEX_HDR *hdr,
724 					  const struct NTFS_DE *e)
725 {
726 	size_t off = PtrOffset(hdr, e);
727 	u32 used = le32_to_cpu(hdr->used);
728 	u16 esize;
729 
730 	if (off >= used)
731 		return NULL;
732 
733 	esize = le16_to_cpu(e->size);
734 
735 	if (esize < sizeof(struct NTFS_DE) ||
736 	    off + esize + sizeof(struct NTFS_DE) > used)
737 		return NULL;
738 
739 	return Add2Ptr(e, esize);
740 }
741 
742 static inline bool hdr_has_subnode(const struct INDEX_HDR *hdr)
743 {
744 	return hdr->flags & 1;
745 }
746 
747 struct INDEX_BUFFER {
748 	struct NTFS_RECORD_HEADER rhdr; // 'INDX'
749 	__le64 vbn; // 0x10: vcn if index >= cluster or vsn id index < cluster
750 	struct INDEX_HDR ihdr; // 0x18:
751 };
752 
753 static_assert(sizeof(struct INDEX_BUFFER) == 0x28);
754 
755 static inline bool ib_is_empty(const struct INDEX_BUFFER *ib)
756 {
757 	const struct NTFS_DE *first = hdr_first_de(&ib->ihdr);
758 
759 	return !first || de_is_last(first);
760 }
761 
762 static inline bool ib_is_leaf(const struct INDEX_BUFFER *ib)
763 {
764 	return !(ib->ihdr.flags & 1);
765 }
766 
767 /* Index root structure ( 0x90 ). */
768 enum COLLATION_RULE {
769 	NTFS_COLLATION_TYPE_BINARY	= cpu_to_le32(0),
770 	// $I30
771 	NTFS_COLLATION_TYPE_FILENAME	= cpu_to_le32(0x01),
772 	// $SII of $Secure and $Q of Quota
773 	NTFS_COLLATION_TYPE_UINT	= cpu_to_le32(0x10),
774 	// $O of Quota
775 	NTFS_COLLATION_TYPE_SID		= cpu_to_le32(0x11),
776 	// $SDH of $Secure
777 	NTFS_COLLATION_TYPE_SECURITY_HASH = cpu_to_le32(0x12),
778 	// $O of ObjId and "$R" for Reparse
779 	NTFS_COLLATION_TYPE_UINTS	= cpu_to_le32(0x13)
780 };
781 
782 static_assert(sizeof(enum COLLATION_RULE) == 4);
783 
784 //
785 struct INDEX_ROOT {
786 	enum ATTR_TYPE type;	// 0x00: The type of attribute to index on.
787 	enum COLLATION_RULE rule; // 0x04: The rule.
788 	__le32 index_block_size;// 0x08: The size of index record.
789 	u8 index_block_clst;	// 0x0C: The number of clusters or sectors per index.
790 	u8 res[3];
791 	struct INDEX_HDR ihdr;	// 0x10:
792 };
793 
794 static_assert(sizeof(struct INDEX_ROOT) == 0x20);
795 static_assert(offsetof(struct INDEX_ROOT, ihdr) == 0x10);
796 
797 #define VOLUME_FLAG_DIRTY	    cpu_to_le16(0x0001)
798 #define VOLUME_FLAG_RESIZE_LOG_FILE cpu_to_le16(0x0002)
799 
800 struct VOLUME_INFO {
801 	__le64 res1;	// 0x00
802 	u8 major_ver;	// 0x08: NTFS major version number (before .)
803 	u8 minor_ver;	// 0x09: NTFS minor version number (after .)
804 	__le16 flags;	// 0x0A: Volume flags, see VOLUME_FLAG_XXX
805 
806 }; // sizeof=0xC
807 
808 #define SIZEOF_ATTRIBUTE_VOLUME_INFO 0xc
809 
810 #define NTFS_LABEL_MAX_LENGTH		(0x100 / sizeof(short))
811 #define NTFS_ATTR_INDEXABLE		cpu_to_le32(0x00000002)
812 #define NTFS_ATTR_DUPALLOWED		cpu_to_le32(0x00000004)
813 #define NTFS_ATTR_MUST_BE_INDEXED	cpu_to_le32(0x00000010)
814 #define NTFS_ATTR_MUST_BE_NAMED		cpu_to_le32(0x00000020)
815 #define NTFS_ATTR_MUST_BE_RESIDENT	cpu_to_le32(0x00000040)
816 #define NTFS_ATTR_LOG_ALWAYS		cpu_to_le32(0x00000080)
817 
818 /* $AttrDef file entry. */
819 struct ATTR_DEF_ENTRY {
820 	__le16 name[0x40];	// 0x00: Attr name.
821 	enum ATTR_TYPE type;	// 0x80: struct ATTRIB type.
822 	__le32 res;		// 0x84:
823 	enum COLLATION_RULE rule; // 0x88:
824 	__le32 flags;		// 0x8C: NTFS_ATTR_XXX (see above).
825 	__le64 min_sz;		// 0x90: Minimum attribute data size.
826 	__le64 max_sz;		// 0x98: Maximum attribute data size.
827 };
828 
829 static_assert(sizeof(struct ATTR_DEF_ENTRY) == 0xa0);
830 
831 /* Object ID (0x40) */
832 struct OBJECT_ID {
833 	struct GUID ObjId;	// 0x00: Unique Id assigned to file.
834 	struct GUID BirthVolumeId; // 0x10: Birth Volume Id is the Object Id of the Volume on.
835 				// which the Object Id was allocated. It never changes.
836 	struct GUID BirthObjectId; // 0x20: Birth Object Id is the first Object Id that was
837 				// ever assigned to this MFT Record. I.e. If the Object Id
838 				// is changed for some reason, this field will reflect the
839 				// original value of the Object Id.
840 	struct GUID DomainId;	// 0x30: Domain Id is currently unused but it is intended to be
841 				// used in a network environment where the local machine is
842 				// part of a Windows 2000 Domain. This may be used in a Windows
843 				// 2000 Advanced Server managed domain.
844 };
845 
846 static_assert(sizeof(struct OBJECT_ID) == 0x40);
847 
848 /* O Directory entry structure ( rule = 0x13 ) */
849 struct NTFS_DE_O {
850 	struct NTFS_DE de;
851 	struct GUID ObjId;	// 0x10: Unique Id assigned to file.
852 	struct MFT_REF ref;	// 0x20: MFT record number with this file.
853 	struct GUID BirthVolumeId; // 0x28: Birth Volume Id is the Object Id of the Volume on
854 				// which the Object Id was allocated. It never changes.
855 	struct GUID BirthObjectId; // 0x38: Birth Object Id is the first Object Id that was
856 				// ever assigned to this MFT Record. I.e. If the Object Id
857 				// is changed for some reason, this field will reflect the
858 				// original value of the Object Id.
859 				// This field is valid if data_size == 0x48.
860 	struct GUID BirthDomainId; // 0x48: Domain Id is currently unused but it is intended
861 				// to be used in a network environment where the local
862 				// machine is part of a Windows 2000 Domain. This may be
863 				// used in a Windows 2000 Advanced Server managed domain.
864 };
865 
866 static_assert(sizeof(struct NTFS_DE_O) == 0x58);
867 
868 #define NTFS_OBJECT_ENTRY_DATA_SIZE1					       \
869 	0x38 // struct NTFS_DE_O.BirthDomainId is not used
870 #define NTFS_OBJECT_ENTRY_DATA_SIZE2					       \
871 	0x48 // struct NTFS_DE_O.BirthDomainId is used
872 
873 /* Q Directory entry structure ( rule = 0x11 ) */
874 struct NTFS_DE_Q {
875 	struct NTFS_DE de;
876 	__le32 owner_id;	// 0x10: Unique Id assigned to file
877 	__le32 Version;		// 0x14: 0x02
878 	__le32 flags2;		// 0x18: Quota flags, see above
879 	__le64 BytesUsed;	// 0x1C:
880 	__le64 ChangeTime;	// 0x24:
881 	__le64 WarningLimit;	// 0x28:
882 	__le64 HardLimit;	// 0x34:
883 	__le64 ExceededTime;	// 0x3C:
884 
885 	// SID is placed here
886 }; // sizeof() = 0x44
887 
888 #define SIZEOF_NTFS_DE_Q 0x44
889 
890 #define SecurityDescriptorsBlockSize 0x40000 // 256K
891 #define SecurityDescriptorMaxSize    0x20000 // 128K
892 #define Log2OfSecurityDescriptorsBlockSize 18
893 
894 struct SECURITY_KEY {
895 	__le32 hash; //  Hash value for descriptor
896 	__le32 sec_id; //  Security Id (guaranteed unique)
897 };
898 
899 /* Security descriptors (the content of $Secure::SDS data stream) */
900 struct SECURITY_HDR {
901 	struct SECURITY_KEY key;	// 0x00: Security Key.
902 	__le64 off;			// 0x08: Offset of this entry in the file.
903 	__le32 size;			// 0x10: Size of this entry, 8 byte aligned.
904 	/*
905 	 * Security descriptor itself is placed here.
906 	 * Total size is 16 byte aligned.
907 	 */
908 } __packed;
909 
910 #define SIZEOF_SECURITY_HDR 0x14
911 
912 /* SII Directory entry structure */
913 struct NTFS_DE_SII {
914 	struct NTFS_DE de;
915 	__le32 sec_id;			// 0x10: Key: sizeof(security_id) = wKeySize
916 	struct SECURITY_HDR sec_hdr;	// 0x14:
917 } __packed;
918 
919 #define SIZEOF_SII_DIRENTRY 0x28
920 
921 /* SDH Directory entry structure */
922 struct NTFS_DE_SDH {
923 	struct NTFS_DE de;
924 	struct SECURITY_KEY key;	// 0x10: Key
925 	struct SECURITY_HDR sec_hdr;	// 0x18: Data
926 	__le16 magic[2];		// 0x2C: 0x00490049 "I I"
927 };
928 
929 #define SIZEOF_SDH_DIRENTRY 0x30
930 
931 struct REPARSE_KEY {
932 	__le32 ReparseTag;		// 0x00: Reparse Tag
933 	struct MFT_REF ref;		// 0x04: MFT record number with this file
934 }; // sizeof() = 0x0C
935 
936 static_assert(offsetof(struct REPARSE_KEY, ref) == 0x04);
937 #define SIZEOF_REPARSE_KEY 0x0C
938 
939 /* Reparse Directory entry structure */
940 struct NTFS_DE_R {
941 	struct NTFS_DE de;
942 	struct REPARSE_KEY key;		// 0x10: Reparse Key.
943 	u32 zero;			// 0x1c:
944 }; // sizeof() = 0x20
945 
946 static_assert(sizeof(struct NTFS_DE_R) == 0x20);
947 
948 /* CompressReparseBuffer.WofVersion */
949 #define WOF_CURRENT_VERSION		cpu_to_le32(1)
950 /* CompressReparseBuffer.WofProvider */
951 #define WOF_PROVIDER_WIM		cpu_to_le32(1)
952 /* CompressReparseBuffer.WofProvider */
953 #define WOF_PROVIDER_SYSTEM		cpu_to_le32(2)
954 /* CompressReparseBuffer.ProviderVer */
955 #define WOF_PROVIDER_CURRENT_VERSION	cpu_to_le32(1)
956 
957 #define WOF_COMPRESSION_XPRESS4K	cpu_to_le32(0) // 4k
958 #define WOF_COMPRESSION_LZX32K		cpu_to_le32(1) // 32k
959 #define WOF_COMPRESSION_XPRESS8K	cpu_to_le32(2) // 8k
960 #define WOF_COMPRESSION_XPRESS16K	cpu_to_le32(3) // 16k
961 
962 /*
963  * ATTR_REPARSE (0xC0)
964  *
965  * The reparse struct GUID structure is used by all 3rd party layered drivers to
966  * store data in a reparse point. For non-Microsoft tags, The struct GUID field
967  * cannot be GUID_NULL.
968  * The constraints on reparse tags are defined below.
969  * Microsoft tags can also be used with this format of the reparse point buffer.
970  */
971 struct REPARSE_POINT {
972 	__le32 ReparseTag;	// 0x00:
973 	__le16 ReparseDataLength;// 0x04:
974 	__le16 Reserved;
975 
976 	struct GUID Guid;	// 0x08:
977 
978 	//
979 	// Here GenericReparseBuffer is placed
980 	//
981 };
982 
983 static_assert(sizeof(struct REPARSE_POINT) == 0x18);
984 
985 /* Maximum allowed size of the reparse data. */
986 #define MAXIMUM_REPARSE_DATA_BUFFER_SIZE	(16 * 1024)
987 
988 /*
989  * The value of the following constant needs to satisfy the following
990  * conditions:
991  *  (1) Be at least as large as the largest of the reserved tags.
992  *  (2) Be strictly smaller than all the tags in use.
993  */
994 #define IO_REPARSE_TAG_RESERVED_RANGE		1
995 
996 /*
997  * The reparse tags are a ULONG. The 32 bits are laid out as follows:
998  *
999  *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1000  *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1001  *  +-+-+-+-+-----------------------+-------------------------------+
1002  *  |M|R|N|R|	  Reserved bits     |	    Reparse Tag Value	    |
1003  *  +-+-+-+-+-----------------------+-------------------------------+
1004  *
1005  * M is the Microsoft bit. When set to 1, it denotes a tag owned by Microsoft.
1006  *   All ISVs must use a tag with a 0 in this position.
1007  *   Note: If a Microsoft tag is used by non-Microsoft software, the
1008  *   behavior is not defined.
1009  *
1010  * R is reserved.  Must be zero for non-Microsoft tags.
1011  *
1012  * N is name surrogate. When set to 1, the file represents another named
1013  *   entity in the system.
1014  *
1015  * The M and N bits are OR-able.
1016  * The following macros check for the M and N bit values:
1017  */
1018 
1019 /*
1020  * Macro to determine whether a reparse point tag corresponds to a tag
1021  * owned by Microsoft.
1022  */
1023 #define IsReparseTagMicrosoft(_tag)	(((_tag)&IO_REPARSE_TAG_MICROSOFT))
1024 
1025 /* Macro to determine whether a reparse point tag is a name surrogate. */
1026 #define IsReparseTagNameSurrogate(_tag)	(((_tag)&IO_REPARSE_TAG_NAME_SURROGATE))
1027 
1028 /*
1029  * The following constant represents the bits that are valid to use in
1030  * reparse tags.
1031  */
1032 #define IO_REPARSE_TAG_VALID_VALUES	0xF000FFFF
1033 
1034 /*
1035  * Macro to determine whether a reparse tag is a valid tag.
1036  */
1037 #define IsReparseTagValid(_tag)						       \
1038 	(!((_tag) & ~IO_REPARSE_TAG_VALID_VALUES) &&			       \
1039 	 ((_tag) > IO_REPARSE_TAG_RESERVED_RANGE))
1040 
1041 /* Microsoft tags for reparse points. */
1042 
1043 enum IO_REPARSE_TAG {
1044 	IO_REPARSE_TAG_SYMBOLIC_LINK	= cpu_to_le32(0),
1045 	IO_REPARSE_TAG_NAME_SURROGATE	= cpu_to_le32(0x20000000),
1046 	IO_REPARSE_TAG_MICROSOFT	= cpu_to_le32(0x80000000),
1047 	IO_REPARSE_TAG_MOUNT_POINT	= cpu_to_le32(0xA0000003),
1048 	IO_REPARSE_TAG_SYMLINK		= cpu_to_le32(0xA000000C),
1049 	IO_REPARSE_TAG_HSM		= cpu_to_le32(0xC0000004),
1050 	IO_REPARSE_TAG_SIS		= cpu_to_le32(0x80000007),
1051 	IO_REPARSE_TAG_DEDUP		= cpu_to_le32(0x80000013),
1052 	IO_REPARSE_TAG_COMPRESS		= cpu_to_le32(0x80000017),
1053 
1054 	/*
1055 	 * The reparse tag 0x80000008 is reserved for Microsoft internal use.
1056 	 * May be published in the future.
1057 	 */
1058 
1059 	/* Microsoft reparse tag reserved for DFS */
1060 	IO_REPARSE_TAG_DFS	= cpu_to_le32(0x8000000A),
1061 
1062 	/* Microsoft reparse tag reserved for the file system filter manager. */
1063 	IO_REPARSE_TAG_FILTER_MANAGER	= cpu_to_le32(0x8000000B),
1064 
1065 	/* Non-Microsoft tags for reparse points */
1066 
1067 	/* Tag allocated to CONGRUENT, May 2000. Used by IFSTEST. */
1068 	IO_REPARSE_TAG_IFSTEST_CONGRUENT = cpu_to_le32(0x00000009),
1069 
1070 	/* Tag allocated to ARKIVIO. */
1071 	IO_REPARSE_TAG_ARKIVIO	= cpu_to_le32(0x0000000C),
1072 
1073 	/* Tag allocated to SOLUTIONSOFT. */
1074 	IO_REPARSE_TAG_SOLUTIONSOFT	= cpu_to_le32(0x2000000D),
1075 
1076 	/* Tag allocated to COMMVAULT. */
1077 	IO_REPARSE_TAG_COMMVAULT	= cpu_to_le32(0x0000000E),
1078 
1079 	/* OneDrive?? */
1080 	IO_REPARSE_TAG_CLOUD	= cpu_to_le32(0x9000001A),
1081 	IO_REPARSE_TAG_CLOUD_1	= cpu_to_le32(0x9000101A),
1082 	IO_REPARSE_TAG_CLOUD_2	= cpu_to_le32(0x9000201A),
1083 	IO_REPARSE_TAG_CLOUD_3	= cpu_to_le32(0x9000301A),
1084 	IO_REPARSE_TAG_CLOUD_4	= cpu_to_le32(0x9000401A),
1085 	IO_REPARSE_TAG_CLOUD_5	= cpu_to_le32(0x9000501A),
1086 	IO_REPARSE_TAG_CLOUD_6	= cpu_to_le32(0x9000601A),
1087 	IO_REPARSE_TAG_CLOUD_7	= cpu_to_le32(0x9000701A),
1088 	IO_REPARSE_TAG_CLOUD_8	= cpu_to_le32(0x9000801A),
1089 	IO_REPARSE_TAG_CLOUD_9	= cpu_to_le32(0x9000901A),
1090 	IO_REPARSE_TAG_CLOUD_A	= cpu_to_le32(0x9000A01A),
1091 	IO_REPARSE_TAG_CLOUD_B	= cpu_to_le32(0x9000B01A),
1092 	IO_REPARSE_TAG_CLOUD_C	= cpu_to_le32(0x9000C01A),
1093 	IO_REPARSE_TAG_CLOUD_D	= cpu_to_le32(0x9000D01A),
1094 	IO_REPARSE_TAG_CLOUD_E	= cpu_to_le32(0x9000E01A),
1095 	IO_REPARSE_TAG_CLOUD_F	= cpu_to_le32(0x9000F01A),
1096 
1097 };
1098 
1099 #define SYMLINK_FLAG_RELATIVE		1
1100 
1101 /* Microsoft reparse buffer. (see DDK for details) */
1102 struct REPARSE_DATA_BUFFER {
1103 	__le32 ReparseTag;		// 0x00:
1104 	__le16 ReparseDataLength;	// 0x04:
1105 	__le16 Reserved;
1106 
1107 	union {
1108 		/* If ReparseTag == 0xA0000003 (IO_REPARSE_TAG_MOUNT_POINT) */
1109 		struct {
1110 			__le16 SubstituteNameOffset; // 0x08
1111 			__le16 SubstituteNameLength; // 0x0A
1112 			__le16 PrintNameOffset;      // 0x0C
1113 			__le16 PrintNameLength;      // 0x0E
1114 			__le16 PathBuffer[];	     // 0x10
1115 		} MountPointReparseBuffer;
1116 
1117 		/*
1118 		 * If ReparseTag == 0xA000000C (IO_REPARSE_TAG_SYMLINK)
1119 		 * https://msdn.microsoft.com/en-us/library/cc232006.aspx
1120 		 */
1121 		struct {
1122 			__le16 SubstituteNameOffset; // 0x08
1123 			__le16 SubstituteNameLength; // 0x0A
1124 			__le16 PrintNameOffset;      // 0x0C
1125 			__le16 PrintNameLength;      // 0x0E
1126 			// 0-absolute path 1- relative path, SYMLINK_FLAG_RELATIVE
1127 			__le32 Flags;		     // 0x10
1128 			__le16 PathBuffer[];	     // 0x14
1129 		} SymbolicLinkReparseBuffer;
1130 
1131 		/* If ReparseTag == 0x80000017U */
1132 		struct {
1133 			__le32 WofVersion;  // 0x08 == 1
1134 			/*
1135 			 * 1 - WIM backing provider ("WIMBoot"),
1136 			 * 2 - System compressed file provider
1137 			 */
1138 			__le32 WofProvider; // 0x0C:
1139 			__le32 ProviderVer; // 0x10: == 1 WOF_FILE_PROVIDER_CURRENT_VERSION == 1
1140 			__le32 CompressionFormat; // 0x14: 0, 1, 2, 3. See WOF_COMPRESSION_XXX
1141 		} CompressReparseBuffer;
1142 
1143 		struct {
1144 			u8 DataBuffer[1];   // 0x08:
1145 		} GenericReparseBuffer;
1146 	};
1147 };
1148 
1149 /* ATTR_EA_INFO (0xD0) */
1150 
1151 #define FILE_NEED_EA 0x80 // See ntifs.h
1152 /*
1153  *FILE_NEED_EA, indicates that the file to which the EA belongs cannot be
1154  * interpreted without understanding the associated extended attributes.
1155  */
1156 struct EA_INFO {
1157 	__le16 size_pack;	// 0x00: Size of buffer to hold in packed form.
1158 	__le16 count;		// 0x02: Count of EA's with FILE_NEED_EA bit set.
1159 	__le32 size;		// 0x04: Size of buffer to hold in unpacked form.
1160 };
1161 
1162 static_assert(sizeof(struct EA_INFO) == 8);
1163 
1164 /* ATTR_EA (0xE0) */
1165 struct EA_FULL {
1166 	__le32 size;		// 0x00: (not in packed)
1167 	u8 flags;		// 0x04:
1168 	u8 name_len;		// 0x05:
1169 	__le16 elength;		// 0x06:
1170 	u8 name[];		// 0x08:
1171 };
1172 
1173 static_assert(offsetof(struct EA_FULL, name) == 8);
1174 
1175 #define ACL_REVISION	2
1176 #define ACL_REVISION_DS 4
1177 
1178 #define SE_SELF_RELATIVE cpu_to_le16(0x8000)
1179 
1180 struct SECURITY_DESCRIPTOR_RELATIVE {
1181 	u8 Revision;
1182 	u8 Sbz1;
1183 	__le16 Control;
1184 	__le32 Owner;
1185 	__le32 Group;
1186 	__le32 Sacl;
1187 	__le32 Dacl;
1188 };
1189 static_assert(sizeof(struct SECURITY_DESCRIPTOR_RELATIVE) == 0x14);
1190 
1191 struct ACE_HEADER {
1192 	u8 AceType;
1193 	u8 AceFlags;
1194 	__le16 AceSize;
1195 };
1196 static_assert(sizeof(struct ACE_HEADER) == 4);
1197 
1198 struct ACL {
1199 	u8 AclRevision;
1200 	u8 Sbz1;
1201 	__le16 AclSize;
1202 	__le16 AceCount;
1203 	__le16 Sbz2;
1204 };
1205 static_assert(sizeof(struct ACL) == 8);
1206 
1207 struct SID {
1208 	u8 Revision;
1209 	u8 SubAuthorityCount;
1210 	u8 IdentifierAuthority[6];
1211 	__le32 SubAuthority[];
1212 };
1213 static_assert(offsetof(struct SID, SubAuthority) == 8);
1214 
1215 #endif /* _LINUX_NTFS3_NTFS_H */
1216 // clang-format on
1217