1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * 4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. 5 * 6 * on-disk ntfs structs 7 */ 8 9 // clang-format off 10 #ifndef _LINUX_NTFS3_NTFS_H 11 #define _LINUX_NTFS3_NTFS_H 12 13 #include <linux/blkdev.h> 14 #include <linux/build_bug.h> 15 #include <linux/kernel.h> 16 #include <linux/stddef.h> 17 #include <linux/string.h> 18 #include <linux/types.h> 19 20 #include "debug.h" 21 22 /* TODO: Check 4K MFT record and 512 bytes cluster. */ 23 24 /* Check each run for marked clusters. */ 25 #define NTFS3_CHECK_FREE_CLST 26 27 #define NTFS_NAME_LEN 255 28 29 /* 30 * ntfs.sys used 500 maximum links on-disk struct allows up to 0xffff. 31 * xfstest generic/041 creates 3003 hardlinks. 32 */ 33 #define NTFS_LINK_MAX 4000 34 35 /* 36 * Activate to use 64 bit clusters instead of 32 bits in ntfs.sys. 37 * Logical and virtual cluster number if needed, may be 38 * redefined to use 64 bit value. 39 */ 40 //#define CONFIG_NTFS3_64BIT_CLUSTER 41 42 #define NTFS_LZNT_MAX_CLUSTER 4096 43 #define NTFS_LZNT_CUNIT 4 44 #define NTFS_LZNT_CLUSTERS (1u<<NTFS_LZNT_CUNIT) 45 46 struct GUID { 47 __le32 Data1; 48 __le16 Data2; 49 __le16 Data3; 50 u8 Data4[8]; 51 }; 52 53 /* 54 * This struct repeats layout of ATTR_FILE_NAME 55 * at offset 0x40. 56 * It used to store global constants NAME_MFT/NAME_MIRROR... 57 * most constant names are shorter than 10. 58 */ 59 struct cpu_str { 60 u8 len; 61 u8 unused; 62 u16 name[]; 63 }; 64 65 struct le_str { 66 u8 len; 67 u8 unused; 68 __le16 name[]; 69 }; 70 71 static_assert(SECTOR_SHIFT == 9); 72 73 #ifdef CONFIG_NTFS3_64BIT_CLUSTER 74 typedef u64 CLST; 75 static_assert(sizeof(size_t) == 8); 76 #else 77 typedef u32 CLST; 78 #endif 79 80 #define SPARSE_LCN64 ((u64)-1) 81 #define SPARSE_LCN ((CLST)-1) 82 #define RESIDENT_LCN ((CLST)-2) 83 #define COMPRESSED_LCN ((CLST)-3) 84 85 enum RECORD_NUM { 86 MFT_REC_MFT = 0, 87 MFT_REC_MIRR = 1, 88 MFT_REC_LOG = 2, 89 MFT_REC_VOL = 3, 90 MFT_REC_ATTR = 4, 91 MFT_REC_ROOT = 5, 92 MFT_REC_BITMAP = 6, 93 MFT_REC_BOOT = 7, 94 MFT_REC_BADCLUST = 8, 95 MFT_REC_SECURE = 9, 96 MFT_REC_UPCASE = 10, 97 MFT_REC_EXTEND = 11, 98 MFT_REC_RESERVED = 12, 99 MFT_REC_FREE = 16, 100 MFT_REC_USER = 24, 101 }; 102 103 enum ATTR_TYPE { 104 ATTR_ZERO = cpu_to_le32(0x00), 105 ATTR_STD = cpu_to_le32(0x10), 106 ATTR_LIST = cpu_to_le32(0x20), 107 ATTR_NAME = cpu_to_le32(0x30), 108 ATTR_ID = cpu_to_le32(0x40), 109 ATTR_SECURE = cpu_to_le32(0x50), 110 ATTR_LABEL = cpu_to_le32(0x60), 111 ATTR_VOL_INFO = cpu_to_le32(0x70), 112 ATTR_DATA = cpu_to_le32(0x80), 113 ATTR_ROOT = cpu_to_le32(0x90), 114 ATTR_ALLOC = cpu_to_le32(0xA0), 115 ATTR_BITMAP = cpu_to_le32(0xB0), 116 ATTR_REPARSE = cpu_to_le32(0xC0), 117 ATTR_EA_INFO = cpu_to_le32(0xD0), 118 ATTR_EA = cpu_to_le32(0xE0), 119 ATTR_PROPERTYSET = cpu_to_le32(0xF0), 120 ATTR_LOGGED_UTILITY_STREAM = cpu_to_le32(0x100), 121 ATTR_END = cpu_to_le32(0xFFFFFFFF) 122 }; 123 124 static_assert(sizeof(enum ATTR_TYPE) == 4); 125 126 enum FILE_ATTRIBUTE { 127 FILE_ATTRIBUTE_READONLY = cpu_to_le32(0x00000001), 128 FILE_ATTRIBUTE_HIDDEN = cpu_to_le32(0x00000002), 129 FILE_ATTRIBUTE_SYSTEM = cpu_to_le32(0x00000004), 130 FILE_ATTRIBUTE_ARCHIVE = cpu_to_le32(0x00000020), 131 FILE_ATTRIBUTE_DEVICE = cpu_to_le32(0x00000040), 132 FILE_ATTRIBUTE_TEMPORARY = cpu_to_le32(0x00000100), 133 FILE_ATTRIBUTE_SPARSE_FILE = cpu_to_le32(0x00000200), 134 FILE_ATTRIBUTE_REPARSE_POINT = cpu_to_le32(0x00000400), 135 FILE_ATTRIBUTE_COMPRESSED = cpu_to_le32(0x00000800), 136 FILE_ATTRIBUTE_OFFLINE = cpu_to_le32(0x00001000), 137 FILE_ATTRIBUTE_NOT_CONTENT_INDEXED = cpu_to_le32(0x00002000), 138 FILE_ATTRIBUTE_ENCRYPTED = cpu_to_le32(0x00004000), 139 FILE_ATTRIBUTE_VALID_FLAGS = cpu_to_le32(0x00007fb7), 140 FILE_ATTRIBUTE_DIRECTORY = cpu_to_le32(0x10000000), 141 FILE_ATTRIBUTE_INDEX = cpu_to_le32(0x20000000) 142 }; 143 144 static_assert(sizeof(enum FILE_ATTRIBUTE) == 4); 145 146 extern const struct cpu_str NAME_MFT; 147 extern const struct cpu_str NAME_MIRROR; 148 extern const struct cpu_str NAME_LOGFILE; 149 extern const struct cpu_str NAME_VOLUME; 150 extern const struct cpu_str NAME_ATTRDEF; 151 extern const struct cpu_str NAME_ROOT; 152 extern const struct cpu_str NAME_BITMAP; 153 extern const struct cpu_str NAME_BOOT; 154 extern const struct cpu_str NAME_BADCLUS; 155 extern const struct cpu_str NAME_QUOTA; 156 extern const struct cpu_str NAME_SECURE; 157 extern const struct cpu_str NAME_UPCASE; 158 extern const struct cpu_str NAME_EXTEND; 159 extern const struct cpu_str NAME_OBJID; 160 extern const struct cpu_str NAME_REPARSE; 161 extern const struct cpu_str NAME_USNJRNL; 162 163 extern const __le16 I30_NAME[4]; 164 extern const __le16 SII_NAME[4]; 165 extern const __le16 SDH_NAME[4]; 166 extern const __le16 SO_NAME[2]; 167 extern const __le16 SQ_NAME[2]; 168 extern const __le16 SR_NAME[2]; 169 170 extern const __le16 BAD_NAME[4]; 171 extern const __le16 SDS_NAME[4]; 172 extern const __le16 WOF_NAME[17]; /* WofCompressedData */ 173 174 /* MFT record number structure. */ 175 struct MFT_REF { 176 __le32 low; // The low part of the number. 177 __le16 high; // The high part of the number. 178 __le16 seq; // The sequence number of MFT record. 179 }; 180 181 static_assert(sizeof(__le64) == sizeof(struct MFT_REF)); 182 183 static inline CLST ino_get(const struct MFT_REF *ref) 184 { 185 #ifdef CONFIG_NTFS3_64BIT_CLUSTER 186 return le32_to_cpu(ref->low) | ((u64)le16_to_cpu(ref->high) << 32); 187 #else 188 return le32_to_cpu(ref->low); 189 #endif 190 } 191 192 struct NTFS_BOOT { 193 u8 jump_code[3]; // 0x00: Jump to boot code. 194 u8 system_id[8]; // 0x03: System ID, equals "NTFS " 195 196 // NOTE: This member is not aligned(!) 197 // bytes_per_sector[0] must be 0. 198 // bytes_per_sector[1] must be multiplied by 256. 199 u8 bytes_per_sector[2]; // 0x0B: Bytes per sector. 200 201 u8 sectors_per_clusters;// 0x0D: Sectors per cluster. 202 u8 unused1[7]; 203 u8 media_type; // 0x15: Media type (0xF8 - harddisk) 204 u8 unused2[2]; 205 __le16 sct_per_track; // 0x18: number of sectors per track. 206 __le16 heads; // 0x1A: number of heads per cylinder. 207 __le32 hidden_sectors; // 0x1C: number of 'hidden' sectors. 208 u8 unused3[4]; 209 u8 bios_drive_num; // 0x24: BIOS drive number =0x80. 210 u8 unused4; 211 u8 signature_ex; // 0x26: Extended BOOT signature =0x80. 212 u8 unused5; 213 __le64 sectors_per_volume;// 0x28: Size of volume in sectors. 214 __le64 mft_clst; // 0x30: First cluster of $MFT 215 __le64 mft2_clst; // 0x38: First cluster of $MFTMirr 216 s8 record_size; // 0x40: Size of MFT record in clusters(sectors). 217 u8 unused6[3]; 218 s8 index_size; // 0x44: Size of INDX record in clusters(sectors). 219 u8 unused7[3]; 220 __le64 serial_num; // 0x48: Volume serial number 221 __le32 check_sum; // 0x50: Simple additive checksum of all 222 // of the u32's which precede the 'check_sum'. 223 224 u8 boot_code[0x200 - 0x50 - 2 - 4]; // 0x54: 225 u8 boot_magic[2]; // 0x1FE: Boot signature =0x55 + 0xAA 226 }; 227 228 static_assert(sizeof(struct NTFS_BOOT) == 0x200); 229 230 enum NTFS_SIGNATURE { 231 NTFS_FILE_SIGNATURE = cpu_to_le32(0x454C4946), // 'FILE' 232 NTFS_INDX_SIGNATURE = cpu_to_le32(0x58444E49), // 'INDX' 233 NTFS_CHKD_SIGNATURE = cpu_to_le32(0x444B4843), // 'CHKD' 234 NTFS_RSTR_SIGNATURE = cpu_to_le32(0x52545352), // 'RSTR' 235 NTFS_RCRD_SIGNATURE = cpu_to_le32(0x44524352), // 'RCRD' 236 NTFS_BAAD_SIGNATURE = cpu_to_le32(0x44414142), // 'BAAD' 237 NTFS_HOLE_SIGNATURE = cpu_to_le32(0x454C4F48), // 'HOLE' 238 NTFS_FFFF_SIGNATURE = cpu_to_le32(0xffffffff), 239 }; 240 241 static_assert(sizeof(enum NTFS_SIGNATURE) == 4); 242 243 /* MFT Record header structure. */ 244 struct NTFS_RECORD_HEADER { 245 /* Record magic number, equals 'FILE'/'INDX'/'RSTR'/'RCRD'. */ 246 enum NTFS_SIGNATURE sign; // 0x00: 247 __le16 fix_off; // 0x04: 248 __le16 fix_num; // 0x06: 249 __le64 lsn; // 0x08: Log file sequence number, 250 }; 251 252 static_assert(sizeof(struct NTFS_RECORD_HEADER) == 0x10); 253 254 static inline int is_baad(const struct NTFS_RECORD_HEADER *hdr) 255 { 256 return hdr->sign == NTFS_BAAD_SIGNATURE; 257 } 258 259 /* Possible bits in struct MFT_REC.flags. */ 260 enum RECORD_FLAG { 261 RECORD_FLAG_IN_USE = cpu_to_le16(0x0001), 262 RECORD_FLAG_DIR = cpu_to_le16(0x0002), 263 RECORD_FLAG_SYSTEM = cpu_to_le16(0x0004), 264 RECORD_FLAG_INDEX = cpu_to_le16(0x0008), 265 }; 266 267 /* MFT Record structure. */ 268 struct MFT_REC { 269 struct NTFS_RECORD_HEADER rhdr; // 'FILE' 270 271 __le16 seq; // 0x10: Sequence number for this record. 272 __le16 hard_links; // 0x12: The number of hard links to record. 273 __le16 attr_off; // 0x14: Offset to attributes. 274 __le16 flags; // 0x16: See RECORD_FLAG. 275 __le32 used; // 0x18: The size of used part. 276 __le32 total; // 0x1C: Total record size. 277 278 struct MFT_REF parent_ref; // 0x20: Parent MFT record. 279 __le16 next_attr_id; // 0x28: The next attribute Id. 280 281 __le16 res; // 0x2A: High part of MFT record? 282 __le32 mft_record; // 0x2C: Current MFT record number. 283 __le16 fixups[]; // 0x30: 284 }; 285 286 #define MFTRECORD_FIXUP_OFFSET_1 offsetof(struct MFT_REC, res) 287 #define MFTRECORD_FIXUP_OFFSET_3 offsetof(struct MFT_REC, fixups) 288 /* 289 * define MFTRECORD_FIXUP_OFFSET as MFTRECORD_FIXUP_OFFSET_3 (0x30) 290 * to format new mft records with bigger header (as current ntfs.sys does) 291 * 292 * define MFTRECORD_FIXUP_OFFSET as MFTRECORD_FIXUP_OFFSET_1 (0x2A) 293 * to format new mft records with smaller header (as old ntfs.sys did) 294 * Both variants are valid. 295 */ 296 #define MFTRECORD_FIXUP_OFFSET MFTRECORD_FIXUP_OFFSET_1 297 298 static_assert(MFTRECORD_FIXUP_OFFSET_1 == 0x2A); 299 static_assert(MFTRECORD_FIXUP_OFFSET_3 == 0x30); 300 301 static inline bool is_rec_base(const struct MFT_REC *rec) 302 { 303 const struct MFT_REF *r = &rec->parent_ref; 304 305 return !r->low && !r->high && !r->seq; 306 } 307 308 static inline bool is_mft_rec5(const struct MFT_REC *rec) 309 { 310 return le16_to_cpu(rec->rhdr.fix_off) >= 311 offsetof(struct MFT_REC, fixups); 312 } 313 314 static inline bool is_rec_inuse(const struct MFT_REC *rec) 315 { 316 return rec->flags & RECORD_FLAG_IN_USE; 317 } 318 319 static inline bool clear_rec_inuse(struct MFT_REC *rec) 320 { 321 return rec->flags &= ~RECORD_FLAG_IN_USE; 322 } 323 324 /* Possible values of ATTR_RESIDENT.flags */ 325 #define RESIDENT_FLAG_INDEXED 0x01 326 327 struct ATTR_RESIDENT { 328 __le32 data_size; // 0x10: The size of data. 329 __le16 data_off; // 0x14: Offset to data. 330 u8 flags; // 0x16: Resident flags ( 1 - indexed ). 331 u8 res; // 0x17: 332 }; // sizeof() = 0x18 333 334 struct ATTR_NONRESIDENT { 335 __le64 svcn; // 0x10: Starting VCN of this segment. 336 __le64 evcn; // 0x18: End VCN of this segment. 337 __le16 run_off; // 0x20: Offset to packed runs. 338 // Unit of Compression size for this stream, expressed 339 // as a log of the cluster size. 340 // 341 // 0 means file is not compressed 342 // 1, 2, 3, and 4 are potentially legal values if the 343 // stream is compressed, however the implementation 344 // may only choose to use 4, or possibly 3. 345 // Note that 4 means cluster size time 16. 346 // If convenient the implementation may wish to accept a 347 // reasonable range of legal values here (1-5?), 348 // even if the implementation only generates 349 // a smaller set of values itself. 350 u8 c_unit; // 0x22: 351 u8 res1[5]; // 0x23: 352 __le64 alloc_size; // 0x28: The allocated size of attribute in bytes. 353 // (multiple of cluster size) 354 __le64 data_size; // 0x30: The size of attribute in bytes <= alloc_size. 355 __le64 valid_size; // 0x38: The size of valid part in bytes <= data_size. 356 __le64 total_size; // 0x40: The sum of the allocated clusters for a file. 357 // (present only for the first segment (0 == vcn) 358 // of compressed attribute) 359 360 }; // sizeof()=0x40 or 0x48 (if compressed) 361 362 /* Possible values of ATTRIB.flags: */ 363 #define ATTR_FLAG_COMPRESSED cpu_to_le16(0x0001) 364 #define ATTR_FLAG_COMPRESSED_MASK cpu_to_le16(0x00FF) 365 #define ATTR_FLAG_ENCRYPTED cpu_to_le16(0x4000) 366 #define ATTR_FLAG_SPARSED cpu_to_le16(0x8000) 367 368 struct ATTRIB { 369 enum ATTR_TYPE type; // 0x00: The type of this attribute. 370 __le32 size; // 0x04: The size of this attribute. 371 u8 non_res; // 0x08: Is this attribute non-resident? 372 u8 name_len; // 0x09: This attribute name length. 373 __le16 name_off; // 0x0A: Offset to the attribute name. 374 __le16 flags; // 0x0C: See ATTR_FLAG_XXX. 375 __le16 id; // 0x0E: Unique id (per record). 376 377 union { 378 struct ATTR_RESIDENT res; // 0x10 379 struct ATTR_NONRESIDENT nres; // 0x10 380 }; 381 }; 382 383 /* Define attribute sizes. */ 384 #define SIZEOF_RESIDENT 0x18 385 #define SIZEOF_NONRESIDENT_EX 0x48 386 #define SIZEOF_NONRESIDENT 0x40 387 388 #define SIZEOF_RESIDENT_LE cpu_to_le16(0x18) 389 #define SIZEOF_NONRESIDENT_EX_LE cpu_to_le16(0x48) 390 #define SIZEOF_NONRESIDENT_LE cpu_to_le16(0x40) 391 392 static inline u64 attr_ondisk_size(const struct ATTRIB *attr) 393 { 394 return attr->non_res ? ((attr->flags & 395 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ? 396 le64_to_cpu(attr->nres.total_size) : 397 le64_to_cpu(attr->nres.alloc_size)) 398 : ALIGN(le32_to_cpu(attr->res.data_size), 8); 399 } 400 401 static inline u64 attr_size(const struct ATTRIB *attr) 402 { 403 return attr->non_res ? le64_to_cpu(attr->nres.data_size) : 404 le32_to_cpu(attr->res.data_size); 405 } 406 407 static inline bool is_attr_encrypted(const struct ATTRIB *attr) 408 { 409 return attr->flags & ATTR_FLAG_ENCRYPTED; 410 } 411 412 static inline bool is_attr_sparsed(const struct ATTRIB *attr) 413 { 414 return attr->flags & ATTR_FLAG_SPARSED; 415 } 416 417 static inline bool is_attr_compressed(const struct ATTRIB *attr) 418 { 419 return attr->flags & ATTR_FLAG_COMPRESSED; 420 } 421 422 static inline bool is_attr_ext(const struct ATTRIB *attr) 423 { 424 return attr->flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED); 425 } 426 427 static inline bool is_attr_indexed(const struct ATTRIB *attr) 428 { 429 return !attr->non_res && (attr->res.flags & RESIDENT_FLAG_INDEXED); 430 } 431 432 static inline __le16 const *attr_name(const struct ATTRIB *attr) 433 { 434 return Add2Ptr(attr, le16_to_cpu(attr->name_off)); 435 } 436 437 static inline u64 attr_svcn(const struct ATTRIB *attr) 438 { 439 return attr->non_res ? le64_to_cpu(attr->nres.svcn) : 0; 440 } 441 442 static_assert(sizeof(struct ATTRIB) == 0x48); 443 static_assert(sizeof(((struct ATTRIB *)NULL)->res) == 0x08); 444 static_assert(sizeof(((struct ATTRIB *)NULL)->nres) == 0x38); 445 446 static inline void *resident_data_ex(const struct ATTRIB *attr, u32 datasize) 447 { 448 u32 asize, rsize; 449 u16 off; 450 451 if (attr->non_res) 452 return NULL; 453 454 asize = le32_to_cpu(attr->size); 455 off = le16_to_cpu(attr->res.data_off); 456 457 if (asize < datasize + off) 458 return NULL; 459 460 rsize = le32_to_cpu(attr->res.data_size); 461 if (rsize < datasize) 462 return NULL; 463 464 return Add2Ptr(attr, off); 465 } 466 467 static inline void *resident_data(const struct ATTRIB *attr) 468 { 469 return Add2Ptr(attr, le16_to_cpu(attr->res.data_off)); 470 } 471 472 static inline void *attr_run(const struct ATTRIB *attr) 473 { 474 return Add2Ptr(attr, le16_to_cpu(attr->nres.run_off)); 475 } 476 477 /* Standard information attribute (0x10). */ 478 struct ATTR_STD_INFO { 479 __le64 cr_time; // 0x00: File creation file. 480 __le64 m_time; // 0x08: File modification time. 481 __le64 c_time; // 0x10: Last time any attribute was modified. 482 __le64 a_time; // 0x18: File last access time. 483 enum FILE_ATTRIBUTE fa; // 0x20: Standard DOS attributes & more. 484 __le32 max_ver_num; // 0x24: Maximum Number of Versions. 485 __le32 ver_num; // 0x28: Version Number. 486 __le32 class_id; // 0x2C: Class Id from bidirectional Class Id index. 487 }; 488 489 static_assert(sizeof(struct ATTR_STD_INFO) == 0x30); 490 491 #define SECURITY_ID_INVALID 0x00000000 492 #define SECURITY_ID_FIRST 0x00000100 493 494 struct ATTR_STD_INFO5 { 495 __le64 cr_time; // 0x00: File creation file. 496 __le64 m_time; // 0x08: File modification time. 497 __le64 c_time; // 0x10: Last time any attribute was modified. 498 __le64 a_time; // 0x18: File last access time. 499 enum FILE_ATTRIBUTE fa; // 0x20: Standard DOS attributes & more. 500 __le32 max_ver_num; // 0x24: Maximum Number of Versions. 501 __le32 ver_num; // 0x28: Version Number. 502 __le32 class_id; // 0x2C: Class Id from bidirectional Class Id index. 503 504 __le32 owner_id; // 0x30: Owner Id of the user owning the file. 505 __le32 security_id; // 0x34: The Security Id is a key in the $SII Index and $SDS. 506 __le64 quota_charge; // 0x38: 507 __le64 usn; // 0x40: Last Update Sequence Number of the file. This is a direct 508 // index into the file $UsnJrnl. If zero, the USN Journal is 509 // disabled. 510 }; 511 512 static_assert(sizeof(struct ATTR_STD_INFO5) == 0x48); 513 514 /* Attribute list entry structure (0x20) */ 515 struct ATTR_LIST_ENTRY { 516 enum ATTR_TYPE type; // 0x00: The type of attribute. 517 __le16 size; // 0x04: The size of this record. 518 u8 name_len; // 0x06: The length of attribute name. 519 u8 name_off; // 0x07: The offset to attribute name. 520 __le64 vcn; // 0x08: Starting VCN of this attribute. 521 struct MFT_REF ref; // 0x10: MFT record number with attribute. 522 __le16 id; // 0x18: struct ATTRIB ID. 523 __le16 name[]; // 0x1A: Just to align. To get real name can use name_off. 524 525 }; // sizeof(0x20) 526 527 static inline u32 le_size(u8 name_len) 528 { 529 return ALIGN(offsetof(struct ATTR_LIST_ENTRY, name) + 530 name_len * sizeof(short), 8); 531 } 532 533 /* Returns 0 if 'attr' has the same type and name. */ 534 static inline int le_cmp(const struct ATTR_LIST_ENTRY *le, 535 const struct ATTRIB *attr) 536 { 537 return le->type != attr->type || le->name_len != attr->name_len || 538 (!le->name_len && 539 memcmp(Add2Ptr(le, le->name_off), 540 Add2Ptr(attr, le16_to_cpu(attr->name_off)), 541 le->name_len * sizeof(short))); 542 } 543 544 static inline __le16 const *le_name(const struct ATTR_LIST_ENTRY *le) 545 { 546 return Add2Ptr(le, le->name_off); 547 } 548 549 /* File name types (the field type in struct ATTR_FILE_NAME). */ 550 #define FILE_NAME_POSIX 0 551 #define FILE_NAME_UNICODE 1 552 #define FILE_NAME_DOS 2 553 #define FILE_NAME_UNICODE_AND_DOS (FILE_NAME_DOS | FILE_NAME_UNICODE) 554 555 /* Filename attribute structure (0x30). */ 556 struct NTFS_DUP_INFO { 557 __le64 cr_time; // 0x00: File creation file. 558 __le64 m_time; // 0x08: File modification time. 559 __le64 c_time; // 0x10: Last time any attribute was modified. 560 __le64 a_time; // 0x18: File last access time. 561 __le64 alloc_size; // 0x20: Data attribute allocated size, multiple of cluster size. 562 __le64 data_size; // 0x28: Data attribute size <= Dataalloc_size. 563 enum FILE_ATTRIBUTE fa; // 0x30: Standard DOS attributes & more. 564 __le16 ea_size; // 0x34: Packed EAs. 565 __le16 reparse; // 0x36: Used by Reparse. 566 567 }; // 0x38 568 569 struct ATTR_FILE_NAME { 570 struct MFT_REF home; // 0x00: MFT record for directory. 571 struct NTFS_DUP_INFO dup;// 0x08: 572 u8 name_len; // 0x40: File name length in words. 573 u8 type; // 0x41: File name type. 574 __le16 name[]; // 0x42: File name. 575 }; 576 577 static_assert(sizeof(((struct ATTR_FILE_NAME *)NULL)->dup) == 0x38); 578 static_assert(offsetof(struct ATTR_FILE_NAME, name) == 0x42); 579 #define SIZEOF_ATTRIBUTE_FILENAME 0x44 580 #define SIZEOF_ATTRIBUTE_FILENAME_MAX (0x42 + 255 * 2) 581 582 static inline struct ATTRIB *attr_from_name(struct ATTR_FILE_NAME *fname) 583 { 584 return (struct ATTRIB *)((char *)fname - SIZEOF_RESIDENT); 585 } 586 587 static inline u16 fname_full_size(const struct ATTR_FILE_NAME *fname) 588 { 589 /* Don't return struct_size(fname, name, fname->name_len); */ 590 return offsetof(struct ATTR_FILE_NAME, name) + 591 fname->name_len * sizeof(short); 592 } 593 594 static inline u8 paired_name(u8 type) 595 { 596 if (type == FILE_NAME_UNICODE) 597 return FILE_NAME_DOS; 598 if (type == FILE_NAME_DOS) 599 return FILE_NAME_UNICODE; 600 return FILE_NAME_POSIX; 601 } 602 603 /* Index entry defines ( the field flags in NtfsDirEntry ). */ 604 #define NTFS_IE_HAS_SUBNODES cpu_to_le16(1) 605 #define NTFS_IE_LAST cpu_to_le16(2) 606 607 /* Directory entry structure. */ 608 struct NTFS_DE { 609 union { 610 struct MFT_REF ref; // 0x00: MFT record number with this file. 611 struct { 612 __le16 data_off; // 0x00: 613 __le16 data_size; // 0x02: 614 __le32 res; // 0x04: Must be 0. 615 } view; 616 }; 617 __le16 size; // 0x08: The size of this entry. 618 __le16 key_size; // 0x0A: The size of File name length in bytes + 0x42. 619 __le16 flags; // 0x0C: Entry flags: NTFS_IE_XXX. 620 __le16 res; // 0x0E: 621 622 // Here any indexed attribute can be placed. 623 // One of them is: 624 // struct ATTR_FILE_NAME AttrFileName; 625 // 626 627 // The last 8 bytes of this structure contains 628 // the VBN of subnode. 629 // !!! Note !!! 630 // This field is presented only if (flags & NTFS_IE_HAS_SUBNODES) 631 // __le64 vbn; 632 }; 633 634 static_assert(sizeof(struct NTFS_DE) == 0x10); 635 636 static inline void de_set_vbn_le(struct NTFS_DE *e, __le64 vcn) 637 { 638 __le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64)); 639 640 *v = vcn; 641 } 642 643 static inline void de_set_vbn(struct NTFS_DE *e, CLST vcn) 644 { 645 __le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64)); 646 647 *v = cpu_to_le64(vcn); 648 } 649 650 static inline __le64 de_get_vbn_le(const struct NTFS_DE *e) 651 { 652 return *(__le64 *)Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64)); 653 } 654 655 static inline CLST de_get_vbn(const struct NTFS_DE *e) 656 { 657 __le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64)); 658 659 return le64_to_cpu(*v); 660 } 661 662 static inline struct NTFS_DE *de_get_next(const struct NTFS_DE *e) 663 { 664 return Add2Ptr(e, le16_to_cpu(e->size)); 665 } 666 667 static inline struct ATTR_FILE_NAME *de_get_fname(const struct NTFS_DE *e) 668 { 669 return le16_to_cpu(e->key_size) >= SIZEOF_ATTRIBUTE_FILENAME ? 670 Add2Ptr(e, sizeof(struct NTFS_DE)) : 671 NULL; 672 } 673 674 static inline bool de_is_last(const struct NTFS_DE *e) 675 { 676 return e->flags & NTFS_IE_LAST; 677 } 678 679 static inline bool de_has_vcn(const struct NTFS_DE *e) 680 { 681 return e->flags & NTFS_IE_HAS_SUBNODES; 682 } 683 684 static inline bool de_has_vcn_ex(const struct NTFS_DE *e) 685 { 686 return (e->flags & NTFS_IE_HAS_SUBNODES) && 687 (u64)(-1) != *((u64 *)Add2Ptr(e, le16_to_cpu(e->size) - 688 sizeof(__le64))); 689 } 690 691 #define MAX_BYTES_PER_NAME_ENTRY \ 692 ALIGN(sizeof(struct NTFS_DE) + \ 693 offsetof(struct ATTR_FILE_NAME, name) + \ 694 NTFS_NAME_LEN * sizeof(short), 8) 695 696 #define NTFS_INDEX_HDR_HAS_SUBNODES cpu_to_le32(1) 697 698 struct INDEX_HDR { 699 __le32 de_off; // 0x00: The offset from the start of this structure 700 // to the first NTFS_DE. 701 __le32 used; // 0x04: The size of this structure plus all 702 // entries (quad-word aligned). 703 __le32 total; // 0x08: The allocated size of for this structure plus all entries. 704 __le32 flags; // 0x0C: 0x00 = Small directory, 0x01 = Large directory. 705 706 // 707 // de_off + used <= total 708 // 709 }; 710 711 static_assert(sizeof(struct INDEX_HDR) == 0x10); 712 713 static inline struct NTFS_DE *hdr_first_de(const struct INDEX_HDR *hdr) 714 { 715 u32 de_off = le32_to_cpu(hdr->de_off); 716 u32 used = le32_to_cpu(hdr->used); 717 struct NTFS_DE *e; 718 u16 esize; 719 720 if (de_off >= used || de_off + sizeof(struct NTFS_DE) > used ) 721 return NULL; 722 723 e = Add2Ptr(hdr, de_off); 724 esize = le16_to_cpu(e->size); 725 if (esize < sizeof(struct NTFS_DE) || de_off + esize > used) 726 return NULL; 727 728 return e; 729 } 730 731 static inline struct NTFS_DE *hdr_next_de(const struct INDEX_HDR *hdr, 732 const struct NTFS_DE *e) 733 { 734 size_t off = PtrOffset(hdr, e); 735 u32 used = le32_to_cpu(hdr->used); 736 u16 esize; 737 738 if (off >= used) 739 return NULL; 740 741 esize = le16_to_cpu(e->size); 742 743 if (esize < sizeof(struct NTFS_DE) || 744 off + esize + sizeof(struct NTFS_DE) > used) 745 return NULL; 746 747 return Add2Ptr(e, esize); 748 } 749 750 static inline bool hdr_has_subnode(const struct INDEX_HDR *hdr) 751 { 752 return hdr->flags & NTFS_INDEX_HDR_HAS_SUBNODES; 753 } 754 755 struct INDEX_BUFFER { 756 struct NTFS_RECORD_HEADER rhdr; // 'INDX' 757 __le64 vbn; // 0x10: vcn if index >= cluster or vsn id index < cluster 758 struct INDEX_HDR ihdr; // 0x18: 759 }; 760 761 static_assert(sizeof(struct INDEX_BUFFER) == 0x28); 762 763 static inline bool ib_is_empty(const struct INDEX_BUFFER *ib) 764 { 765 const struct NTFS_DE *first = hdr_first_de(&ib->ihdr); 766 767 return !first || de_is_last(first); 768 } 769 770 static inline bool ib_is_leaf(const struct INDEX_BUFFER *ib) 771 { 772 return !(ib->ihdr.flags & NTFS_INDEX_HDR_HAS_SUBNODES); 773 } 774 775 /* Index root structure ( 0x90 ). */ 776 enum COLLATION_RULE { 777 NTFS_COLLATION_TYPE_BINARY = cpu_to_le32(0), 778 // $I30 779 NTFS_COLLATION_TYPE_FILENAME = cpu_to_le32(0x01), 780 // $SII of $Secure and $Q of Quota 781 NTFS_COLLATION_TYPE_UINT = cpu_to_le32(0x10), 782 // $O of Quota 783 NTFS_COLLATION_TYPE_SID = cpu_to_le32(0x11), 784 // $SDH of $Secure 785 NTFS_COLLATION_TYPE_SECURITY_HASH = cpu_to_le32(0x12), 786 // $O of ObjId and "$R" for Reparse 787 NTFS_COLLATION_TYPE_UINTS = cpu_to_le32(0x13) 788 }; 789 790 static_assert(sizeof(enum COLLATION_RULE) == 4); 791 792 // 793 struct INDEX_ROOT { 794 enum ATTR_TYPE type; // 0x00: The type of attribute to index on. 795 enum COLLATION_RULE rule; // 0x04: The rule. 796 __le32 index_block_size;// 0x08: The size of index record. 797 u8 index_block_clst; // 0x0C: The number of clusters or sectors per index. 798 u8 res[3]; 799 struct INDEX_HDR ihdr; // 0x10: 800 }; 801 802 static_assert(sizeof(struct INDEX_ROOT) == 0x20); 803 static_assert(offsetof(struct INDEX_ROOT, ihdr) == 0x10); 804 805 #define VOLUME_FLAG_DIRTY cpu_to_le16(0x0001) 806 #define VOLUME_FLAG_RESIZE_LOG_FILE cpu_to_le16(0x0002) 807 808 struct VOLUME_INFO { 809 __le64 res1; // 0x00 810 u8 major_ver; // 0x08: NTFS major version number (before .) 811 u8 minor_ver; // 0x09: NTFS minor version number (after .) 812 __le16 flags; // 0x0A: Volume flags, see VOLUME_FLAG_XXX 813 814 }; // sizeof=0xC 815 816 #define SIZEOF_ATTRIBUTE_VOLUME_INFO 0xc 817 818 #define NTFS_LABEL_MAX_LENGTH (0x100 / sizeof(short)) 819 #define NTFS_ATTR_INDEXABLE cpu_to_le32(0x00000002) 820 #define NTFS_ATTR_DUPALLOWED cpu_to_le32(0x00000004) 821 #define NTFS_ATTR_MUST_BE_INDEXED cpu_to_le32(0x00000010) 822 #define NTFS_ATTR_MUST_BE_NAMED cpu_to_le32(0x00000020) 823 #define NTFS_ATTR_MUST_BE_RESIDENT cpu_to_le32(0x00000040) 824 #define NTFS_ATTR_LOG_ALWAYS cpu_to_le32(0x00000080) 825 826 /* $AttrDef file entry. */ 827 struct ATTR_DEF_ENTRY { 828 __le16 name[0x40]; // 0x00: Attr name. 829 enum ATTR_TYPE type; // 0x80: struct ATTRIB type. 830 __le32 res; // 0x84: 831 enum COLLATION_RULE rule; // 0x88: 832 __le32 flags; // 0x8C: NTFS_ATTR_XXX (see above). 833 __le64 min_sz; // 0x90: Minimum attribute data size. 834 __le64 max_sz; // 0x98: Maximum attribute data size. 835 }; 836 837 static_assert(sizeof(struct ATTR_DEF_ENTRY) == 0xa0); 838 839 /* Object ID (0x40) */ 840 struct OBJECT_ID { 841 struct GUID ObjId; // 0x00: Unique Id assigned to file. 842 843 // Birth Volume Id is the Object Id of the Volume on. 844 // which the Object Id was allocated. It never changes. 845 struct GUID BirthVolumeId; //0x10: 846 847 // Birth Object Id is the first Object Id that was 848 // ever assigned to this MFT Record. I.e. If the Object Id 849 // is changed for some reason, this field will reflect the 850 // original value of the Object Id. 851 struct GUID BirthObjectId; // 0x20: 852 853 // Domain Id is currently unused but it is intended to be 854 // used in a network environment where the local machine is 855 // part of a Windows 2000 Domain. This may be used in a Windows 856 // 2000 Advanced Server managed domain. 857 struct GUID DomainId; // 0x30: 858 }; 859 860 static_assert(sizeof(struct OBJECT_ID) == 0x40); 861 862 /* O Directory entry structure ( rule = 0x13 ) */ 863 struct NTFS_DE_O { 864 struct NTFS_DE de; 865 struct GUID ObjId; // 0x10: Unique Id assigned to file. 866 struct MFT_REF ref; // 0x20: MFT record number with this file. 867 868 // Birth Volume Id is the Object Id of the Volume on 869 // which the Object Id was allocated. It never changes. 870 struct GUID BirthVolumeId; // 0x28: 871 872 // Birth Object Id is the first Object Id that was 873 // ever assigned to this MFT Record. I.e. If the Object Id 874 // is changed for some reason, this field will reflect the 875 // original value of the Object Id. 876 // This field is valid if data_size == 0x48. 877 struct GUID BirthObjectId; // 0x38: 878 879 // Domain Id is currently unused but it is intended 880 // to be used in a network environment where the local 881 // machine is part of a Windows 2000 Domain. This may be 882 // used in a Windows 2000 Advanced Server managed domain. 883 struct GUID BirthDomainId; // 0x48: 884 }; 885 886 static_assert(sizeof(struct NTFS_DE_O) == 0x58); 887 888 /* Q Directory entry structure ( rule = 0x11 ) */ 889 struct NTFS_DE_Q { 890 struct NTFS_DE de; 891 __le32 owner_id; // 0x10: Unique Id assigned to file 892 893 /* here is 0x30 bytes of user quota. NOTE: 4 byte aligned! */ 894 __le32 Version; // 0x14: 0x02 895 __le32 Flags; // 0x18: Quota flags, see above 896 __le64 BytesUsed; // 0x1C: 897 __le64 ChangeTime; // 0x24: 898 __le64 WarningLimit; // 0x28: 899 __le64 HardLimit; // 0x34: 900 __le64 ExceededTime; // 0x3C: 901 902 // SID is placed here 903 }__packed; // sizeof() = 0x44 904 905 static_assert(sizeof(struct NTFS_DE_Q) == 0x44); 906 907 #define SecurityDescriptorsBlockSize 0x40000 // 256K 908 #define SecurityDescriptorMaxSize 0x20000 // 128K 909 #define Log2OfSecurityDescriptorsBlockSize 18 910 911 struct SECURITY_KEY { 912 __le32 hash; // Hash value for descriptor 913 __le32 sec_id; // Security Id (guaranteed unique) 914 }; 915 916 /* Security descriptors (the content of $Secure::SDS data stream) */ 917 struct SECURITY_HDR { 918 struct SECURITY_KEY key; // 0x00: Security Key. 919 __le64 off; // 0x08: Offset of this entry in the file. 920 __le32 size; // 0x10: Size of this entry, 8 byte aligned. 921 /* 922 * Security descriptor itself is placed here. 923 * Total size is 16 byte aligned. 924 */ 925 } __packed; 926 927 static_assert(sizeof(struct SECURITY_HDR) == 0x14); 928 929 /* SII Directory entry structure */ 930 struct NTFS_DE_SII { 931 struct NTFS_DE de; 932 __le32 sec_id; // 0x10: Key: sizeof(security_id) = wKeySize 933 struct SECURITY_HDR sec_hdr; // 0x14: 934 } __packed; 935 936 static_assert(offsetof(struct NTFS_DE_SII, sec_hdr) == 0x14); 937 static_assert(sizeof(struct NTFS_DE_SII) == 0x28); 938 939 /* SDH Directory entry structure */ 940 struct NTFS_DE_SDH { 941 struct NTFS_DE de; 942 struct SECURITY_KEY key; // 0x10: Key 943 struct SECURITY_HDR sec_hdr; // 0x18: Data 944 __le16 magic[2]; // 0x2C: 0x00490049 "I I" 945 }; 946 947 #define SIZEOF_SDH_DIRENTRY 0x30 948 949 struct REPARSE_KEY { 950 __le32 ReparseTag; // 0x00: Reparse Tag 951 struct MFT_REF ref; // 0x04: MFT record number with this file 952 }; // sizeof() = 0x0C 953 954 static_assert(offsetof(struct REPARSE_KEY, ref) == 0x04); 955 #define SIZEOF_REPARSE_KEY 0x0C 956 957 /* Reparse Directory entry structure */ 958 struct NTFS_DE_R { 959 struct NTFS_DE de; 960 struct REPARSE_KEY key; // 0x10: Reparse Key. 961 u32 zero; // 0x1c: 962 }; // sizeof() = 0x20 963 964 static_assert(sizeof(struct NTFS_DE_R) == 0x20); 965 966 /* CompressReparseBuffer.WofVersion */ 967 #define WOF_CURRENT_VERSION cpu_to_le32(1) 968 /* CompressReparseBuffer.WofProvider */ 969 #define WOF_PROVIDER_WIM cpu_to_le32(1) 970 /* CompressReparseBuffer.WofProvider */ 971 #define WOF_PROVIDER_SYSTEM cpu_to_le32(2) 972 /* CompressReparseBuffer.ProviderVer */ 973 #define WOF_PROVIDER_CURRENT_VERSION cpu_to_le32(1) 974 975 #define WOF_COMPRESSION_XPRESS4K cpu_to_le32(0) // 4k 976 #define WOF_COMPRESSION_LZX32K cpu_to_le32(1) // 32k 977 #define WOF_COMPRESSION_XPRESS8K cpu_to_le32(2) // 8k 978 #define WOF_COMPRESSION_XPRESS16K cpu_to_le32(3) // 16k 979 980 /* 981 * ATTR_REPARSE (0xC0) 982 * 983 * The reparse struct GUID structure is used by all 3rd party layered drivers to 984 * store data in a reparse point. For non-Microsoft tags, The struct GUID field 985 * cannot be GUID_NULL. 986 * The constraints on reparse tags are defined below. 987 * Microsoft tags can also be used with this format of the reparse point buffer. 988 */ 989 struct REPARSE_POINT { 990 __le32 ReparseTag; // 0x00: 991 __le16 ReparseDataLength;// 0x04: 992 __le16 Reserved; 993 994 struct GUID Guid; // 0x08: 995 996 // 997 // Here GenericReparseBuffer is placed 998 // 999 }; 1000 1001 static_assert(sizeof(struct REPARSE_POINT) == 0x18); 1002 1003 /* Maximum allowed size of the reparse data. */ 1004 #define MAXIMUM_REPARSE_DATA_BUFFER_SIZE (16 * 1024) 1005 1006 /* 1007 * The value of the following constant needs to satisfy the following 1008 * conditions: 1009 * (1) Be at least as large as the largest of the reserved tags. 1010 * (2) Be strictly smaller than all the tags in use. 1011 */ 1012 #define IO_REPARSE_TAG_RESERVED_RANGE 1 1013 1014 /* 1015 * The reparse tags are a ULONG. The 32 bits are laid out as follows: 1016 * 1017 * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1018 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 1019 * +-+-+-+-+-----------------------+-------------------------------+ 1020 * |M|R|N|R| Reserved bits | Reparse Tag Value | 1021 * +-+-+-+-+-----------------------+-------------------------------+ 1022 * 1023 * M is the Microsoft bit. When set to 1, it denotes a tag owned by Microsoft. 1024 * All ISVs must use a tag with a 0 in this position. 1025 * Note: If a Microsoft tag is used by non-Microsoft software, the 1026 * behavior is not defined. 1027 * 1028 * R is reserved. Must be zero for non-Microsoft tags. 1029 * 1030 * N is name surrogate. When set to 1, the file represents another named 1031 * entity in the system. 1032 * 1033 * The M and N bits are OR-able. 1034 * The following macros check for the M and N bit values: 1035 */ 1036 1037 /* 1038 * Macro to determine whether a reparse point tag corresponds to a tag 1039 * owned by Microsoft. 1040 */ 1041 #define IsReparseTagMicrosoft(_tag) (((_tag)&IO_REPARSE_TAG_MICROSOFT)) 1042 1043 /* Macro to determine whether a reparse point tag is a name surrogate. */ 1044 #define IsReparseTagNameSurrogate(_tag) (((_tag)&IO_REPARSE_TAG_NAME_SURROGATE)) 1045 1046 /* 1047 * The following constant represents the bits that are valid to use in 1048 * reparse tags. 1049 */ 1050 #define IO_REPARSE_TAG_VALID_VALUES 0xF000FFFF 1051 1052 /* 1053 * Macro to determine whether a reparse tag is a valid tag. 1054 */ 1055 #define IsReparseTagValid(_tag) \ 1056 (!((_tag) & ~IO_REPARSE_TAG_VALID_VALUES) && \ 1057 ((_tag) > IO_REPARSE_TAG_RESERVED_RANGE)) 1058 1059 /* Microsoft tags for reparse points. */ 1060 1061 enum IO_REPARSE_TAG { 1062 IO_REPARSE_TAG_SYMBOLIC_LINK = cpu_to_le32(0), 1063 IO_REPARSE_TAG_NAME_SURROGATE = cpu_to_le32(0x20000000), 1064 IO_REPARSE_TAG_MICROSOFT = cpu_to_le32(0x80000000), 1065 IO_REPARSE_TAG_MOUNT_POINT = cpu_to_le32(0xA0000003), 1066 IO_REPARSE_TAG_SYMLINK = cpu_to_le32(0xA000000C), 1067 IO_REPARSE_TAG_HSM = cpu_to_le32(0xC0000004), 1068 IO_REPARSE_TAG_SIS = cpu_to_le32(0x80000007), 1069 IO_REPARSE_TAG_DEDUP = cpu_to_le32(0x80000013), 1070 IO_REPARSE_TAG_COMPRESS = cpu_to_le32(0x80000017), 1071 1072 /* 1073 * The reparse tag 0x80000008 is reserved for Microsoft internal use. 1074 * May be published in the future. 1075 */ 1076 1077 /* Microsoft reparse tag reserved for DFS */ 1078 IO_REPARSE_TAG_DFS = cpu_to_le32(0x8000000A), 1079 1080 /* Microsoft reparse tag reserved for the file system filter manager. */ 1081 IO_REPARSE_TAG_FILTER_MANAGER = cpu_to_le32(0x8000000B), 1082 1083 /* Non-Microsoft tags for reparse points */ 1084 1085 /* Tag allocated to CONGRUENT, May 2000. Used by IFSTEST. */ 1086 IO_REPARSE_TAG_IFSTEST_CONGRUENT = cpu_to_le32(0x00000009), 1087 1088 /* Tag allocated to ARKIVIO. */ 1089 IO_REPARSE_TAG_ARKIVIO = cpu_to_le32(0x0000000C), 1090 1091 /* Tag allocated to SOLUTIONSOFT. */ 1092 IO_REPARSE_TAG_SOLUTIONSOFT = cpu_to_le32(0x2000000D), 1093 1094 /* Tag allocated to COMMVAULT. */ 1095 IO_REPARSE_TAG_COMMVAULT = cpu_to_le32(0x0000000E), 1096 1097 /* OneDrive?? */ 1098 IO_REPARSE_TAG_CLOUD = cpu_to_le32(0x9000001A), 1099 IO_REPARSE_TAG_CLOUD_1 = cpu_to_le32(0x9000101A), 1100 IO_REPARSE_TAG_CLOUD_2 = cpu_to_le32(0x9000201A), 1101 IO_REPARSE_TAG_CLOUD_3 = cpu_to_le32(0x9000301A), 1102 IO_REPARSE_TAG_CLOUD_4 = cpu_to_le32(0x9000401A), 1103 IO_REPARSE_TAG_CLOUD_5 = cpu_to_le32(0x9000501A), 1104 IO_REPARSE_TAG_CLOUD_6 = cpu_to_le32(0x9000601A), 1105 IO_REPARSE_TAG_CLOUD_7 = cpu_to_le32(0x9000701A), 1106 IO_REPARSE_TAG_CLOUD_8 = cpu_to_le32(0x9000801A), 1107 IO_REPARSE_TAG_CLOUD_9 = cpu_to_le32(0x9000901A), 1108 IO_REPARSE_TAG_CLOUD_A = cpu_to_le32(0x9000A01A), 1109 IO_REPARSE_TAG_CLOUD_B = cpu_to_le32(0x9000B01A), 1110 IO_REPARSE_TAG_CLOUD_C = cpu_to_le32(0x9000C01A), 1111 IO_REPARSE_TAG_CLOUD_D = cpu_to_le32(0x9000D01A), 1112 IO_REPARSE_TAG_CLOUD_E = cpu_to_le32(0x9000E01A), 1113 IO_REPARSE_TAG_CLOUD_F = cpu_to_le32(0x9000F01A), 1114 1115 }; 1116 1117 #define SYMLINK_FLAG_RELATIVE 1 1118 1119 /* Microsoft reparse buffer. (see DDK for details) */ 1120 struct REPARSE_DATA_BUFFER { 1121 __le32 ReparseTag; // 0x00: 1122 __le16 ReparseDataLength; // 0x04: 1123 __le16 Reserved; 1124 1125 union { 1126 /* If ReparseTag == 0xA0000003 (IO_REPARSE_TAG_MOUNT_POINT) */ 1127 struct { 1128 __le16 SubstituteNameOffset; // 0x08 1129 __le16 SubstituteNameLength; // 0x0A 1130 __le16 PrintNameOffset; // 0x0C 1131 __le16 PrintNameLength; // 0x0E 1132 __le16 PathBuffer[]; // 0x10 1133 } MountPointReparseBuffer; 1134 1135 /* 1136 * If ReparseTag == 0xA000000C (IO_REPARSE_TAG_SYMLINK) 1137 * https://msdn.microsoft.com/en-us/library/cc232006.aspx 1138 */ 1139 struct { 1140 __le16 SubstituteNameOffset; // 0x08 1141 __le16 SubstituteNameLength; // 0x0A 1142 __le16 PrintNameOffset; // 0x0C 1143 __le16 PrintNameLength; // 0x0E 1144 // 0-absolute path 1- relative path, SYMLINK_FLAG_RELATIVE 1145 __le32 Flags; // 0x10 1146 __le16 PathBuffer[]; // 0x14 1147 } SymbolicLinkReparseBuffer; 1148 1149 /* If ReparseTag == 0x80000017U */ 1150 struct { 1151 __le32 WofVersion; // 0x08 == 1 1152 /* 1153 * 1 - WIM backing provider ("WIMBoot"), 1154 * 2 - System compressed file provider 1155 */ 1156 __le32 WofProvider; // 0x0C: 1157 __le32 ProviderVer; // 0x10: == 1 WOF_FILE_PROVIDER_CURRENT_VERSION == 1 1158 __le32 CompressionFormat; // 0x14: 0, 1, 2, 3. See WOF_COMPRESSION_XXX 1159 } CompressReparseBuffer; 1160 1161 struct { 1162 u8 DataBuffer[1]; // 0x08: 1163 } GenericReparseBuffer; 1164 }; 1165 }; 1166 1167 /* ATTR_EA_INFO (0xD0) */ 1168 1169 #define FILE_NEED_EA 0x80 // See ntifs.h 1170 /* 1171 * FILE_NEED_EA, indicates that the file to which the EA belongs cannot be 1172 * interpreted without understanding the associated extended attributes. 1173 */ 1174 struct EA_INFO { 1175 __le16 size_pack; // 0x00: Size of buffer to hold in packed form. 1176 __le16 count; // 0x02: Count of EA's with FILE_NEED_EA bit set. 1177 __le32 size; // 0x04: Size of buffer to hold in unpacked form. 1178 }; 1179 1180 static_assert(sizeof(struct EA_INFO) == 8); 1181 1182 /* ATTR_EA (0xE0) */ 1183 struct EA_FULL { 1184 __le32 size; // 0x00: (not in packed) 1185 u8 flags; // 0x04: 1186 u8 name_len; // 0x05: 1187 __le16 elength; // 0x06: 1188 u8 name[]; // 0x08: 1189 }; 1190 1191 static_assert(offsetof(struct EA_FULL, name) == 8); 1192 1193 #define ACL_REVISION 2 1194 #define ACL_REVISION_DS 4 1195 1196 #define SE_SELF_RELATIVE cpu_to_le16(0x8000) 1197 1198 struct SECURITY_DESCRIPTOR_RELATIVE { 1199 u8 Revision; 1200 u8 Sbz1; 1201 __le16 Control; 1202 __le32 Owner; 1203 __le32 Group; 1204 __le32 Sacl; 1205 __le32 Dacl; 1206 }; 1207 static_assert(sizeof(struct SECURITY_DESCRIPTOR_RELATIVE) == 0x14); 1208 1209 struct ACE_HEADER { 1210 u8 AceType; 1211 u8 AceFlags; 1212 __le16 AceSize; 1213 }; 1214 static_assert(sizeof(struct ACE_HEADER) == 4); 1215 1216 struct ACL { 1217 u8 AclRevision; 1218 u8 Sbz1; 1219 __le16 AclSize; 1220 __le16 AceCount; 1221 __le16 Sbz2; 1222 }; 1223 static_assert(sizeof(struct ACL) == 8); 1224 1225 struct SID { 1226 u8 Revision; 1227 u8 SubAuthorityCount; 1228 u8 IdentifierAuthority[6]; 1229 __le32 SubAuthority[]; 1230 }; 1231 static_assert(offsetof(struct SID, SubAuthority) == 8); 1232 1233 #endif /* _LINUX_NTFS3_NTFS_H */ 1234 // clang-format on 1235