xref: /openbmc/linux/fs/ntfs3/ntfs.h (revision 34b7074d)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  *
4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5  *
6  * on-disk ntfs structs
7  */
8 
9 // clang-format off
10 #ifndef _LINUX_NTFS3_NTFS_H
11 #define _LINUX_NTFS3_NTFS_H
12 
13 #include <linux/blkdev.h>
14 #include <linux/build_bug.h>
15 #include <linux/kernel.h>
16 #include <linux/stddef.h>
17 #include <linux/string.h>
18 #include <linux/types.h>
19 
20 #include "debug.h"
21 
22 /* TODO: Check 4K MFT record and 512 bytes cluster. */
23 
24 /* Check each run for marked clusters. */
25 #define NTFS3_CHECK_FREE_CLST
26 
27 #define NTFS_NAME_LEN 255
28 
29 /*
30  * ntfs.sys used 500 maximum links on-disk struct allows up to 0xffff.
31  * xfstest generic/041 creates 3003 hardlinks.
32  */
33 #define NTFS_LINK_MAX 4000
34 
35 /*
36  * Activate to use 64 bit clusters instead of 32 bits in ntfs.sys.
37  * Logical and virtual cluster number if needed, may be
38  * redefined to use 64 bit value.
39  */
40 //#define CONFIG_NTFS3_64BIT_CLUSTER
41 
42 #define NTFS_LZNT_MAX_CLUSTER	4096
43 #define NTFS_LZNT_CUNIT		4
44 #define NTFS_LZNT_CLUSTERS	(1u<<NTFS_LZNT_CUNIT)
45 
46 struct GUID {
47 	__le32 Data1;
48 	__le16 Data2;
49 	__le16 Data3;
50 	u8 Data4[8];
51 };
52 
53 /*
54  * This struct repeats layout of ATTR_FILE_NAME
55  * at offset 0x40.
56  * It used to store global constants NAME_MFT/NAME_MIRROR...
57  * most constant names are shorter than 10.
58  */
59 struct cpu_str {
60 	u8 len;
61 	u8 unused;
62 	u16 name[10];
63 };
64 
65 struct le_str {
66 	u8 len;
67 	u8 unused;
68 	__le16 name[];
69 };
70 
71 static_assert(SECTOR_SHIFT == 9);
72 
73 #ifdef CONFIG_NTFS3_64BIT_CLUSTER
74 typedef u64 CLST;
75 static_assert(sizeof(size_t) == 8);
76 #else
77 typedef u32 CLST;
78 #endif
79 
80 #define SPARSE_LCN64   ((u64)-1)
81 #define SPARSE_LCN     ((CLST)-1)
82 #define RESIDENT_LCN   ((CLST)-2)
83 #define COMPRESSED_LCN ((CLST)-3)
84 
85 #define COMPRESSION_UNIT     4
86 #define COMPRESS_MAX_CLUSTER 0x1000
87 
88 enum RECORD_NUM {
89 	MFT_REC_MFT		= 0,
90 	MFT_REC_MIRR		= 1,
91 	MFT_REC_LOG		= 2,
92 	MFT_REC_VOL		= 3,
93 	MFT_REC_ATTR		= 4,
94 	MFT_REC_ROOT		= 5,
95 	MFT_REC_BITMAP		= 6,
96 	MFT_REC_BOOT		= 7,
97 	MFT_REC_BADCLUST	= 8,
98 	//MFT_REC_QUOTA		= 9,
99 	MFT_REC_SECURE		= 9, // NTFS 3.0
100 	MFT_REC_UPCASE		= 10,
101 	MFT_REC_EXTEND		= 11, // NTFS 3.0
102 	MFT_REC_RESERVED	= 11,
103 	MFT_REC_FREE		= 16,
104 	MFT_REC_USER		= 24,
105 };
106 
107 enum ATTR_TYPE {
108 	ATTR_ZERO		= cpu_to_le32(0x00),
109 	ATTR_STD		= cpu_to_le32(0x10),
110 	ATTR_LIST		= cpu_to_le32(0x20),
111 	ATTR_NAME		= cpu_to_le32(0x30),
112 	// ATTR_VOLUME_VERSION on Nt4
113 	ATTR_ID			= cpu_to_le32(0x40),
114 	ATTR_SECURE		= cpu_to_le32(0x50),
115 	ATTR_LABEL		= cpu_to_le32(0x60),
116 	ATTR_VOL_INFO		= cpu_to_le32(0x70),
117 	ATTR_DATA		= cpu_to_le32(0x80),
118 	ATTR_ROOT		= cpu_to_le32(0x90),
119 	ATTR_ALLOC		= cpu_to_le32(0xA0),
120 	ATTR_BITMAP		= cpu_to_le32(0xB0),
121 	// ATTR_SYMLINK on Nt4
122 	ATTR_REPARSE		= cpu_to_le32(0xC0),
123 	ATTR_EA_INFO		= cpu_to_le32(0xD0),
124 	ATTR_EA			= cpu_to_le32(0xE0),
125 	ATTR_PROPERTYSET	= cpu_to_le32(0xF0),
126 	ATTR_LOGGED_UTILITY_STREAM = cpu_to_le32(0x100),
127 	ATTR_END		= cpu_to_le32(0xFFFFFFFF)
128 };
129 
130 static_assert(sizeof(enum ATTR_TYPE) == 4);
131 
132 enum FILE_ATTRIBUTE {
133 	FILE_ATTRIBUTE_READONLY		= cpu_to_le32(0x00000001),
134 	FILE_ATTRIBUTE_HIDDEN		= cpu_to_le32(0x00000002),
135 	FILE_ATTRIBUTE_SYSTEM		= cpu_to_le32(0x00000004),
136 	FILE_ATTRIBUTE_ARCHIVE		= cpu_to_le32(0x00000020),
137 	FILE_ATTRIBUTE_DEVICE		= cpu_to_le32(0x00000040),
138 	FILE_ATTRIBUTE_TEMPORARY	= cpu_to_le32(0x00000100),
139 	FILE_ATTRIBUTE_SPARSE_FILE	= cpu_to_le32(0x00000200),
140 	FILE_ATTRIBUTE_REPARSE_POINT	= cpu_to_le32(0x00000400),
141 	FILE_ATTRIBUTE_COMPRESSED	= cpu_to_le32(0x00000800),
142 	FILE_ATTRIBUTE_OFFLINE		= cpu_to_le32(0x00001000),
143 	FILE_ATTRIBUTE_NOT_CONTENT_INDEXED = cpu_to_le32(0x00002000),
144 	FILE_ATTRIBUTE_ENCRYPTED	= cpu_to_le32(0x00004000),
145 	FILE_ATTRIBUTE_VALID_FLAGS	= cpu_to_le32(0x00007fb7),
146 	FILE_ATTRIBUTE_DIRECTORY	= cpu_to_le32(0x10000000),
147 };
148 
149 static_assert(sizeof(enum FILE_ATTRIBUTE) == 4);
150 
151 extern const struct cpu_str NAME_MFT;
152 extern const struct cpu_str NAME_MIRROR;
153 extern const struct cpu_str NAME_LOGFILE;
154 extern const struct cpu_str NAME_VOLUME;
155 extern const struct cpu_str NAME_ATTRDEF;
156 extern const struct cpu_str NAME_ROOT;
157 extern const struct cpu_str NAME_BITMAP;
158 extern const struct cpu_str NAME_BOOT;
159 extern const struct cpu_str NAME_BADCLUS;
160 extern const struct cpu_str NAME_QUOTA;
161 extern const struct cpu_str NAME_SECURE;
162 extern const struct cpu_str NAME_UPCASE;
163 extern const struct cpu_str NAME_EXTEND;
164 extern const struct cpu_str NAME_OBJID;
165 extern const struct cpu_str NAME_REPARSE;
166 extern const struct cpu_str NAME_USNJRNL;
167 
168 extern const __le16 I30_NAME[4];
169 extern const __le16 SII_NAME[4];
170 extern const __le16 SDH_NAME[4];
171 extern const __le16 SO_NAME[2];
172 extern const __le16 SQ_NAME[2];
173 extern const __le16 SR_NAME[2];
174 
175 extern const __le16 BAD_NAME[4];
176 extern const __le16 SDS_NAME[4];
177 extern const __le16 WOF_NAME[17];	/* WofCompressedData */
178 
179 /* MFT record number structure. */
180 struct MFT_REF {
181 	__le32 low;	// The low part of the number.
182 	__le16 high;	// The high part of the number.
183 	__le16 seq;	// The sequence number of MFT record.
184 };
185 
186 static_assert(sizeof(__le64) == sizeof(struct MFT_REF));
187 
188 static inline CLST ino_get(const struct MFT_REF *ref)
189 {
190 #ifdef CONFIG_NTFS3_64BIT_CLUSTER
191 	return le32_to_cpu(ref->low) | ((u64)le16_to_cpu(ref->high) << 32);
192 #else
193 	return le32_to_cpu(ref->low);
194 #endif
195 }
196 
197 struct NTFS_BOOT {
198 	u8 jump_code[3];	// 0x00: Jump to boot code.
199 	u8 system_id[8];	// 0x03: System ID, equals "NTFS    "
200 
201 	// NOTE: This member is not aligned(!)
202 	// bytes_per_sector[0] must be 0.
203 	// bytes_per_sector[1] must be multiplied by 256.
204 	u8 bytes_per_sector[2];	// 0x0B: Bytes per sector.
205 
206 	u8 sectors_per_clusters;// 0x0D: Sectors per cluster.
207 	u8 unused1[7];
208 	u8 media_type;		// 0x15: Media type (0xF8 - harddisk)
209 	u8 unused2[2];
210 	__le16 sct_per_track;	// 0x18: number of sectors per track.
211 	__le16 heads;		// 0x1A: number of heads per cylinder.
212 	__le32 hidden_sectors;	// 0x1C: number of 'hidden' sectors.
213 	u8 unused3[4];
214 	u8 bios_drive_num;	// 0x24: BIOS drive number =0x80.
215 	u8 unused4;
216 	u8 signature_ex;	// 0x26: Extended BOOT signature =0x80.
217 	u8 unused5;
218 	__le64 sectors_per_volume;// 0x28: Size of volume in sectors.
219 	__le64 mft_clst;	// 0x30: First cluster of $MFT
220 	__le64 mft2_clst;	// 0x38: First cluster of $MFTMirr
221 	s8 record_size;		// 0x40: Size of MFT record in clusters(sectors).
222 	u8 unused6[3];
223 	s8 index_size;		// 0x44: Size of INDX record in clusters(sectors).
224 	u8 unused7[3];
225 	__le64 serial_num;	// 0x48: Volume serial number
226 	__le32 check_sum;	// 0x50: Simple additive checksum of all
227 				// of the u32's which precede the 'check_sum'.
228 
229 	u8 boot_code[0x200 - 0x50 - 2 - 4]; // 0x54:
230 	u8 boot_magic[2];	// 0x1FE: Boot signature =0x55 + 0xAA
231 };
232 
233 static_assert(sizeof(struct NTFS_BOOT) == 0x200);
234 
235 enum NTFS_SIGNATURE {
236 	NTFS_FILE_SIGNATURE = cpu_to_le32(0x454C4946), // 'FILE'
237 	NTFS_INDX_SIGNATURE = cpu_to_le32(0x58444E49), // 'INDX'
238 	NTFS_CHKD_SIGNATURE = cpu_to_le32(0x444B4843), // 'CHKD'
239 	NTFS_RSTR_SIGNATURE = cpu_to_le32(0x52545352), // 'RSTR'
240 	NTFS_RCRD_SIGNATURE = cpu_to_le32(0x44524352), // 'RCRD'
241 	NTFS_BAAD_SIGNATURE = cpu_to_le32(0x44414142), // 'BAAD'
242 	NTFS_HOLE_SIGNATURE = cpu_to_le32(0x454C4F48), // 'HOLE'
243 	NTFS_FFFF_SIGNATURE = cpu_to_le32(0xffffffff),
244 };
245 
246 static_assert(sizeof(enum NTFS_SIGNATURE) == 4);
247 
248 /* MFT Record header structure. */
249 struct NTFS_RECORD_HEADER {
250 	/* Record magic number, equals 'FILE'/'INDX'/'RSTR'/'RCRD'. */
251 	enum NTFS_SIGNATURE sign; // 0x00:
252 	__le16 fix_off;		// 0x04:
253 	__le16 fix_num;		// 0x06:
254 	__le64 lsn;		// 0x08: Log file sequence number,
255 };
256 
257 static_assert(sizeof(struct NTFS_RECORD_HEADER) == 0x10);
258 
259 static inline int is_baad(const struct NTFS_RECORD_HEADER *hdr)
260 {
261 	return hdr->sign == NTFS_BAAD_SIGNATURE;
262 }
263 
264 /* Possible bits in struct MFT_REC.flags. */
265 enum RECORD_FLAG {
266 	RECORD_FLAG_IN_USE	= cpu_to_le16(0x0001),
267 	RECORD_FLAG_DIR		= cpu_to_le16(0x0002),
268 	RECORD_FLAG_SYSTEM	= cpu_to_le16(0x0004),
269 	RECORD_FLAG_UNKNOWN	= cpu_to_le16(0x0008),
270 };
271 
272 /* MFT Record structure. */
273 struct MFT_REC {
274 	struct NTFS_RECORD_HEADER rhdr; // 'FILE'
275 
276 	__le16 seq;		// 0x10: Sequence number for this record.
277 	__le16 hard_links;	// 0x12: The number of hard links to record.
278 	__le16 attr_off;	// 0x14: Offset to attributes.
279 	__le16 flags;		// 0x16: See RECORD_FLAG.
280 	__le32 used;		// 0x18: The size of used part.
281 	__le32 total;		// 0x1C: Total record size.
282 
283 	struct MFT_REF parent_ref; // 0x20: Parent MFT record.
284 	__le16 next_attr_id;	// 0x28: The next attribute Id.
285 
286 	__le16 res;		// 0x2A: High part of MFT record?
287 	__le32 mft_record;	// 0x2C: Current MFT record number.
288 	__le16 fixups[];	// 0x30:
289 };
290 
291 #define MFTRECORD_FIXUP_OFFSET_1 offsetof(struct MFT_REC, res)
292 #define MFTRECORD_FIXUP_OFFSET_3 offsetof(struct MFT_REC, fixups)
293 
294 static_assert(MFTRECORD_FIXUP_OFFSET_1 == 0x2A);
295 static_assert(MFTRECORD_FIXUP_OFFSET_3 == 0x30);
296 
297 static inline bool is_rec_base(const struct MFT_REC *rec)
298 {
299 	const struct MFT_REF *r = &rec->parent_ref;
300 
301 	return !r->low && !r->high && !r->seq;
302 }
303 
304 static inline bool is_mft_rec5(const struct MFT_REC *rec)
305 {
306 	return le16_to_cpu(rec->rhdr.fix_off) >=
307 	       offsetof(struct MFT_REC, fixups);
308 }
309 
310 static inline bool is_rec_inuse(const struct MFT_REC *rec)
311 {
312 	return rec->flags & RECORD_FLAG_IN_USE;
313 }
314 
315 static inline bool clear_rec_inuse(struct MFT_REC *rec)
316 {
317 	return rec->flags &= ~RECORD_FLAG_IN_USE;
318 }
319 
320 /* Possible values of ATTR_RESIDENT.flags */
321 #define RESIDENT_FLAG_INDEXED 0x01
322 
323 struct ATTR_RESIDENT {
324 	__le32 data_size;	// 0x10: The size of data.
325 	__le16 data_off;	// 0x14: Offset to data.
326 	u8 flags;		// 0x16: Resident flags ( 1 - indexed ).
327 	u8 res;			// 0x17:
328 }; // sizeof() = 0x18
329 
330 struct ATTR_NONRESIDENT {
331 	__le64 svcn;		// 0x10: Starting VCN of this segment.
332 	__le64 evcn;		// 0x18: End VCN of this segment.
333 	__le16 run_off;		// 0x20: Offset to packed runs.
334 	//  Unit of Compression size for this stream, expressed
335 	//  as a log of the cluster size.
336 	//
337 	//	0 means file is not compressed
338 	//	1, 2, 3, and 4 are potentially legal values if the
339 	//	    stream is compressed, however the implementation
340 	//	    may only choose to use 4, or possibly 3.  Note
341 	//	    that 4 means cluster size time 16.	If convenient
342 	//	    the implementation may wish to accept a
343 	//	    reasonable range of legal values here (1-5?),
344 	//	    even if the implementation only generates
345 	//	    a smaller set of values itself.
346 	u8 c_unit;		// 0x22:
347 	u8 res1[5];		// 0x23:
348 	__le64 alloc_size;	// 0x28: The allocated size of attribute in bytes.
349 				// (multiple of cluster size)
350 	__le64 data_size;	// 0x30: The size of attribute  in bytes <= alloc_size.
351 	__le64 valid_size;	// 0x38: The size of valid part in bytes <= data_size.
352 	__le64 total_size;	// 0x40: The sum of the allocated clusters for a file.
353 				// (present only for the first segment (0 == vcn)
354 				// of compressed attribute)
355 
356 }; // sizeof()=0x40 or 0x48 (if compressed)
357 
358 /* Possible values of ATTRIB.flags: */
359 #define ATTR_FLAG_COMPRESSED	  cpu_to_le16(0x0001)
360 #define ATTR_FLAG_COMPRESSED_MASK cpu_to_le16(0x00FF)
361 #define ATTR_FLAG_ENCRYPTED	  cpu_to_le16(0x4000)
362 #define ATTR_FLAG_SPARSED	  cpu_to_le16(0x8000)
363 
364 struct ATTRIB {
365 	enum ATTR_TYPE type;	// 0x00: The type of this attribute.
366 	__le32 size;		// 0x04: The size of this attribute.
367 	u8 non_res;		// 0x08: Is this attribute non-resident?
368 	u8 name_len;		// 0x09: This attribute name length.
369 	__le16 name_off;	// 0x0A: Offset to the attribute name.
370 	__le16 flags;		// 0x0C: See ATTR_FLAG_XXX.
371 	__le16 id;		// 0x0E: Unique id (per record).
372 
373 	union {
374 		struct ATTR_RESIDENT res;     // 0x10
375 		struct ATTR_NONRESIDENT nres; // 0x10
376 	};
377 };
378 
379 /* Define attribute sizes. */
380 #define SIZEOF_RESIDENT			0x18
381 #define SIZEOF_NONRESIDENT_EX		0x48
382 #define SIZEOF_NONRESIDENT		0x40
383 
384 #define SIZEOF_RESIDENT_LE		cpu_to_le16(0x18)
385 #define SIZEOF_NONRESIDENT_EX_LE	cpu_to_le16(0x48)
386 #define SIZEOF_NONRESIDENT_LE		cpu_to_le16(0x40)
387 
388 static inline u64 attr_ondisk_size(const struct ATTRIB *attr)
389 {
390 	return attr->non_res ? ((attr->flags &
391 				 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ?
392 					le64_to_cpu(attr->nres.total_size) :
393 					le64_to_cpu(attr->nres.alloc_size))
394 			     : ALIGN(le32_to_cpu(attr->res.data_size), 8);
395 }
396 
397 static inline u64 attr_size(const struct ATTRIB *attr)
398 {
399 	return attr->non_res ? le64_to_cpu(attr->nres.data_size) :
400 			       le32_to_cpu(attr->res.data_size);
401 }
402 
403 static inline bool is_attr_encrypted(const struct ATTRIB *attr)
404 {
405 	return attr->flags & ATTR_FLAG_ENCRYPTED;
406 }
407 
408 static inline bool is_attr_sparsed(const struct ATTRIB *attr)
409 {
410 	return attr->flags & ATTR_FLAG_SPARSED;
411 }
412 
413 static inline bool is_attr_compressed(const struct ATTRIB *attr)
414 {
415 	return attr->flags & ATTR_FLAG_COMPRESSED;
416 }
417 
418 static inline bool is_attr_ext(const struct ATTRIB *attr)
419 {
420 	return attr->flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED);
421 }
422 
423 static inline bool is_attr_indexed(const struct ATTRIB *attr)
424 {
425 	return !attr->non_res && (attr->res.flags & RESIDENT_FLAG_INDEXED);
426 }
427 
428 static inline __le16 const *attr_name(const struct ATTRIB *attr)
429 {
430 	return Add2Ptr(attr, le16_to_cpu(attr->name_off));
431 }
432 
433 static inline u64 attr_svcn(const struct ATTRIB *attr)
434 {
435 	return attr->non_res ? le64_to_cpu(attr->nres.svcn) : 0;
436 }
437 
438 /* The size of resident attribute by its resident size. */
439 #define BYTES_PER_RESIDENT(b) (0x18 + (b))
440 
441 static_assert(sizeof(struct ATTRIB) == 0x48);
442 static_assert(sizeof(((struct ATTRIB *)NULL)->res) == 0x08);
443 static_assert(sizeof(((struct ATTRIB *)NULL)->nres) == 0x38);
444 
445 static inline void *resident_data_ex(const struct ATTRIB *attr, u32 datasize)
446 {
447 	u32 asize, rsize;
448 	u16 off;
449 
450 	if (attr->non_res)
451 		return NULL;
452 
453 	asize = le32_to_cpu(attr->size);
454 	off = le16_to_cpu(attr->res.data_off);
455 
456 	if (asize < datasize + off)
457 		return NULL;
458 
459 	rsize = le32_to_cpu(attr->res.data_size);
460 	if (rsize < datasize)
461 		return NULL;
462 
463 	return Add2Ptr(attr, off);
464 }
465 
466 static inline void *resident_data(const struct ATTRIB *attr)
467 {
468 	return Add2Ptr(attr, le16_to_cpu(attr->res.data_off));
469 }
470 
471 static inline void *attr_run(const struct ATTRIB *attr)
472 {
473 	return Add2Ptr(attr, le16_to_cpu(attr->nres.run_off));
474 }
475 
476 /* Standard information attribute (0x10). */
477 struct ATTR_STD_INFO {
478 	__le64 cr_time;		// 0x00: File creation file.
479 	__le64 m_time;		// 0x08: File modification time.
480 	__le64 c_time;		// 0x10: Last time any attribute was modified.
481 	__le64 a_time;		// 0x18: File last access time.
482 	enum FILE_ATTRIBUTE fa;	// 0x20: Standard DOS attributes & more.
483 	__le32 max_ver_num;	// 0x24: Maximum Number of Versions.
484 	__le32 ver_num;		// 0x28: Version Number.
485 	__le32 class_id;	// 0x2C: Class Id from bidirectional Class Id index.
486 };
487 
488 static_assert(sizeof(struct ATTR_STD_INFO) == 0x30);
489 
490 #define SECURITY_ID_INVALID 0x00000000
491 #define SECURITY_ID_FIRST 0x00000100
492 
493 struct ATTR_STD_INFO5 {
494 	__le64 cr_time;		// 0x00: File creation file.
495 	__le64 m_time;		// 0x08: File modification time.
496 	__le64 c_time;		// 0x10: Last time any attribute was modified.
497 	__le64 a_time;		// 0x18: File last access time.
498 	enum FILE_ATTRIBUTE fa;	// 0x20: Standard DOS attributes & more.
499 	__le32 max_ver_num;	// 0x24: Maximum Number of Versions.
500 	__le32 ver_num;		// 0x28: Version Number.
501 	__le32 class_id;	// 0x2C: Class Id from bidirectional Class Id index.
502 
503 	__le32 owner_id;	// 0x30: Owner Id of the user owning the file.
504 	__le32 security_id;	// 0x34: The Security Id is a key in the $SII Index and $SDS.
505 	__le64 quota_charge;	// 0x38:
506 	__le64 usn;		// 0x40: Last Update Sequence Number of the file. This is a direct
507 				// index into the file $UsnJrnl. If zero, the USN Journal is
508 				// disabled.
509 };
510 
511 static_assert(sizeof(struct ATTR_STD_INFO5) == 0x48);
512 
513 /* Attribute list entry structure (0x20) */
514 struct ATTR_LIST_ENTRY {
515 	enum ATTR_TYPE type;	// 0x00: The type of attribute.
516 	__le16 size;		// 0x04: The size of this record.
517 	u8 name_len;		// 0x06: The length of attribute name.
518 	u8 name_off;		// 0x07: The offset to attribute name.
519 	__le64 vcn;		// 0x08: Starting VCN of this attribute.
520 	struct MFT_REF ref;	// 0x10: MFT record number with attribute.
521 	__le16 id;		// 0x18: struct ATTRIB ID.
522 	__le16 name[3];		// 0x1A: Just to align. To get real name can use bNameOffset.
523 
524 }; // sizeof(0x20)
525 
526 static_assert(sizeof(struct ATTR_LIST_ENTRY) == 0x20);
527 
528 static inline u32 le_size(u8 name_len)
529 {
530 	return ALIGN(offsetof(struct ATTR_LIST_ENTRY, name) +
531 		     name_len * sizeof(short), 8);
532 }
533 
534 /* Returns 0 if 'attr' has the same type and name. */
535 static inline int le_cmp(const struct ATTR_LIST_ENTRY *le,
536 			 const struct ATTRIB *attr)
537 {
538 	return le->type != attr->type || le->name_len != attr->name_len ||
539 	       (!le->name_len &&
540 		memcmp(Add2Ptr(le, le->name_off),
541 		       Add2Ptr(attr, le16_to_cpu(attr->name_off)),
542 		       le->name_len * sizeof(short)));
543 }
544 
545 static inline __le16 const *le_name(const struct ATTR_LIST_ENTRY *le)
546 {
547 	return Add2Ptr(le, le->name_off);
548 }
549 
550 /* File name types (the field type in struct ATTR_FILE_NAME). */
551 #define FILE_NAME_POSIX   0
552 #define FILE_NAME_UNICODE 1
553 #define FILE_NAME_DOS	  2
554 #define FILE_NAME_UNICODE_AND_DOS (FILE_NAME_DOS | FILE_NAME_UNICODE)
555 
556 /* Filename attribute structure (0x30). */
557 struct NTFS_DUP_INFO {
558 	__le64 cr_time;		// 0x00: File creation file.
559 	__le64 m_time;		// 0x08: File modification time.
560 	__le64 c_time;		// 0x10: Last time any attribute was modified.
561 	__le64 a_time;		// 0x18: File last access time.
562 	__le64 alloc_size;	// 0x20: Data attribute allocated size, multiple of cluster size.
563 	__le64 data_size;	// 0x28: Data attribute size <= Dataalloc_size.
564 	enum FILE_ATTRIBUTE fa;	// 0x30: Standard DOS attributes & more.
565 	__le16 ea_size;		// 0x34: Packed EAs.
566 	__le16 reparse;		// 0x36: Used by Reparse.
567 
568 }; // 0x38
569 
570 struct ATTR_FILE_NAME {
571 	struct MFT_REF home;	// 0x00: MFT record for directory.
572 	struct NTFS_DUP_INFO dup;// 0x08:
573 	u8 name_len;		// 0x40: File name length in words.
574 	u8 type;		// 0x41: File name type.
575 	__le16 name[];		// 0x42: File name.
576 };
577 
578 static_assert(sizeof(((struct ATTR_FILE_NAME *)NULL)->dup) == 0x38);
579 static_assert(offsetof(struct ATTR_FILE_NAME, name) == 0x42);
580 #define SIZEOF_ATTRIBUTE_FILENAME     0x44
581 #define SIZEOF_ATTRIBUTE_FILENAME_MAX (0x42 + 255 * 2)
582 
583 static inline struct ATTRIB *attr_from_name(struct ATTR_FILE_NAME *fname)
584 {
585 	return (struct ATTRIB *)((char *)fname - SIZEOF_RESIDENT);
586 }
587 
588 static inline u16 fname_full_size(const struct ATTR_FILE_NAME *fname)
589 {
590 	/* Don't return struct_size(fname, name, fname->name_len); */
591 	return offsetof(struct ATTR_FILE_NAME, name) +
592 	       fname->name_len * sizeof(short);
593 }
594 
595 static inline u8 paired_name(u8 type)
596 {
597 	if (type == FILE_NAME_UNICODE)
598 		return FILE_NAME_DOS;
599 	if (type == FILE_NAME_DOS)
600 		return FILE_NAME_UNICODE;
601 	return FILE_NAME_POSIX;
602 }
603 
604 /* Index entry defines ( the field flags in NtfsDirEntry ). */
605 #define NTFS_IE_HAS_SUBNODES	cpu_to_le16(1)
606 #define NTFS_IE_LAST		cpu_to_le16(2)
607 
608 /* Directory entry structure. */
609 struct NTFS_DE {
610 	union {
611 		struct MFT_REF ref; // 0x00: MFT record number with this file.
612 		struct {
613 			__le16 data_off;  // 0x00:
614 			__le16 data_size; // 0x02:
615 			__le32 res;	  // 0x04: Must be 0.
616 		} view;
617 	};
618 	__le16 size;		// 0x08: The size of this entry.
619 	__le16 key_size;	// 0x0A: The size of File name length in bytes + 0x42.
620 	__le16 flags;		// 0x0C: Entry flags: NTFS_IE_XXX.
621 	__le16 res;		// 0x0E:
622 
623 	// Here any indexed attribute can be placed.
624 	// One of them is:
625 	// struct ATTR_FILE_NAME AttrFileName;
626 	//
627 
628 	// The last 8 bytes of this structure contains
629 	// the VBN of subnode.
630 	// !!! Note !!!
631 	// This field is presented only if (flags & NTFS_IE_HAS_SUBNODES)
632 	// __le64 vbn;
633 };
634 
635 static_assert(sizeof(struct NTFS_DE) == 0x10);
636 
637 static inline void de_set_vbn_le(struct NTFS_DE *e, __le64 vcn)
638 {
639 	__le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
640 
641 	*v = vcn;
642 }
643 
644 static inline void de_set_vbn(struct NTFS_DE *e, CLST vcn)
645 {
646 	__le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
647 
648 	*v = cpu_to_le64(vcn);
649 }
650 
651 static inline __le64 de_get_vbn_le(const struct NTFS_DE *e)
652 {
653 	return *(__le64 *)Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
654 }
655 
656 static inline CLST de_get_vbn(const struct NTFS_DE *e)
657 {
658 	__le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
659 
660 	return le64_to_cpu(*v);
661 }
662 
663 static inline struct NTFS_DE *de_get_next(const struct NTFS_DE *e)
664 {
665 	return Add2Ptr(e, le16_to_cpu(e->size));
666 }
667 
668 static inline struct ATTR_FILE_NAME *de_get_fname(const struct NTFS_DE *e)
669 {
670 	return le16_to_cpu(e->key_size) >= SIZEOF_ATTRIBUTE_FILENAME ?
671 		       Add2Ptr(e, sizeof(struct NTFS_DE)) :
672 		       NULL;
673 }
674 
675 static inline bool de_is_last(const struct NTFS_DE *e)
676 {
677 	return e->flags & NTFS_IE_LAST;
678 }
679 
680 static inline bool de_has_vcn(const struct NTFS_DE *e)
681 {
682 	return e->flags & NTFS_IE_HAS_SUBNODES;
683 }
684 
685 static inline bool de_has_vcn_ex(const struct NTFS_DE *e)
686 {
687 	return (e->flags & NTFS_IE_HAS_SUBNODES) &&
688 	       (u64)(-1) != *((u64 *)Add2Ptr(e, le16_to_cpu(e->size) -
689 							sizeof(__le64)));
690 }
691 
692 #define MAX_BYTES_PER_NAME_ENTRY \
693 	ALIGN(sizeof(struct NTFS_DE) + \
694 	      offsetof(struct ATTR_FILE_NAME, name) + \
695 	      NTFS_NAME_LEN * sizeof(short), 8)
696 
697 struct INDEX_HDR {
698 	__le32 de_off;	// 0x00: The offset from the start of this structure
699 			// to the first NTFS_DE.
700 	__le32 used;	// 0x04: The size of this structure plus all
701 			// entries (quad-word aligned).
702 	__le32 total;	// 0x08: The allocated size of for this structure plus all entries.
703 	u8 flags;	// 0x0C: 0x00 = Small directory, 0x01 = Large directory.
704 	u8 res[3];
705 
706 	//
707 	// de_off + used <= total
708 	//
709 };
710 
711 static_assert(sizeof(struct INDEX_HDR) == 0x10);
712 
713 static inline struct NTFS_DE *hdr_first_de(const struct INDEX_HDR *hdr)
714 {
715 	u32 de_off = le32_to_cpu(hdr->de_off);
716 	u32 used = le32_to_cpu(hdr->used);
717 	struct NTFS_DE *e;
718 	u16 esize;
719 
720 	if (de_off >= used || de_off + sizeof(struct NTFS_DE) > used )
721 		return NULL;
722 
723 	e = Add2Ptr(hdr, de_off);
724 	esize = le16_to_cpu(e->size);
725 	if (esize < sizeof(struct NTFS_DE) || de_off + esize > used)
726 		return NULL;
727 
728 	return e;
729 }
730 
731 static inline struct NTFS_DE *hdr_next_de(const struct INDEX_HDR *hdr,
732 					  const struct NTFS_DE *e)
733 {
734 	size_t off = PtrOffset(hdr, e);
735 	u32 used = le32_to_cpu(hdr->used);
736 	u16 esize;
737 
738 	if (off >= used)
739 		return NULL;
740 
741 	esize = le16_to_cpu(e->size);
742 
743 	if (esize < sizeof(struct NTFS_DE) ||
744 	    off + esize + sizeof(struct NTFS_DE) > used)
745 		return NULL;
746 
747 	return Add2Ptr(e, esize);
748 }
749 
750 static inline bool hdr_has_subnode(const struct INDEX_HDR *hdr)
751 {
752 	return hdr->flags & 1;
753 }
754 
755 struct INDEX_BUFFER {
756 	struct NTFS_RECORD_HEADER rhdr; // 'INDX'
757 	__le64 vbn; // 0x10: vcn if index >= cluster or vsn id index < cluster
758 	struct INDEX_HDR ihdr; // 0x18:
759 };
760 
761 static_assert(sizeof(struct INDEX_BUFFER) == 0x28);
762 
763 static inline bool ib_is_empty(const struct INDEX_BUFFER *ib)
764 {
765 	const struct NTFS_DE *first = hdr_first_de(&ib->ihdr);
766 
767 	return !first || de_is_last(first);
768 }
769 
770 static inline bool ib_is_leaf(const struct INDEX_BUFFER *ib)
771 {
772 	return !(ib->ihdr.flags & 1);
773 }
774 
775 /* Index root structure ( 0x90 ). */
776 enum COLLATION_RULE {
777 	NTFS_COLLATION_TYPE_BINARY	= cpu_to_le32(0),
778 	// $I30
779 	NTFS_COLLATION_TYPE_FILENAME	= cpu_to_le32(0x01),
780 	// $SII of $Secure and $Q of Quota
781 	NTFS_COLLATION_TYPE_UINT	= cpu_to_le32(0x10),
782 	// $O of Quota
783 	NTFS_COLLATION_TYPE_SID		= cpu_to_le32(0x11),
784 	// $SDH of $Secure
785 	NTFS_COLLATION_TYPE_SECURITY_HASH = cpu_to_le32(0x12),
786 	// $O of ObjId and "$R" for Reparse
787 	NTFS_COLLATION_TYPE_UINTS	= cpu_to_le32(0x13)
788 };
789 
790 static_assert(sizeof(enum COLLATION_RULE) == 4);
791 
792 //
793 struct INDEX_ROOT {
794 	enum ATTR_TYPE type;	// 0x00: The type of attribute to index on.
795 	enum COLLATION_RULE rule; // 0x04: The rule.
796 	__le32 index_block_size;// 0x08: The size of index record.
797 	u8 index_block_clst;	// 0x0C: The number of clusters or sectors per index.
798 	u8 res[3];
799 	struct INDEX_HDR ihdr;	// 0x10:
800 };
801 
802 static_assert(sizeof(struct INDEX_ROOT) == 0x20);
803 static_assert(offsetof(struct INDEX_ROOT, ihdr) == 0x10);
804 
805 #define VOLUME_FLAG_DIRTY	    cpu_to_le16(0x0001)
806 #define VOLUME_FLAG_RESIZE_LOG_FILE cpu_to_le16(0x0002)
807 
808 struct VOLUME_INFO {
809 	__le64 res1;	// 0x00
810 	u8 major_ver;	// 0x08: NTFS major version number (before .)
811 	u8 minor_ver;	// 0x09: NTFS minor version number (after .)
812 	__le16 flags;	// 0x0A: Volume flags, see VOLUME_FLAG_XXX
813 
814 }; // sizeof=0xC
815 
816 #define SIZEOF_ATTRIBUTE_VOLUME_INFO 0xc
817 
818 #define NTFS_LABEL_MAX_LENGTH		(0x100 / sizeof(short))
819 #define NTFS_ATTR_INDEXABLE		cpu_to_le32(0x00000002)
820 #define NTFS_ATTR_DUPALLOWED		cpu_to_le32(0x00000004)
821 #define NTFS_ATTR_MUST_BE_INDEXED	cpu_to_le32(0x00000010)
822 #define NTFS_ATTR_MUST_BE_NAMED		cpu_to_le32(0x00000020)
823 #define NTFS_ATTR_MUST_BE_RESIDENT	cpu_to_le32(0x00000040)
824 #define NTFS_ATTR_LOG_ALWAYS		cpu_to_le32(0x00000080)
825 
826 /* $AttrDef file entry. */
827 struct ATTR_DEF_ENTRY {
828 	__le16 name[0x40];	// 0x00: Attr name.
829 	enum ATTR_TYPE type;	// 0x80: struct ATTRIB type.
830 	__le32 res;		// 0x84:
831 	enum COLLATION_RULE rule; // 0x88:
832 	__le32 flags;		// 0x8C: NTFS_ATTR_XXX (see above).
833 	__le64 min_sz;		// 0x90: Minimum attribute data size.
834 	__le64 max_sz;		// 0x98: Maximum attribute data size.
835 };
836 
837 static_assert(sizeof(struct ATTR_DEF_ENTRY) == 0xa0);
838 
839 /* Object ID (0x40) */
840 struct OBJECT_ID {
841 	struct GUID ObjId;	// 0x00: Unique Id assigned to file.
842 	struct GUID BirthVolumeId; // 0x10: Birth Volume Id is the Object Id of the Volume on.
843 				// which the Object Id was allocated. It never changes.
844 	struct GUID BirthObjectId; // 0x20: Birth Object Id is the first Object Id that was
845 				// ever assigned to this MFT Record. I.e. If the Object Id
846 				// is changed for some reason, this field will reflect the
847 				// original value of the Object Id.
848 	struct GUID DomainId;	// 0x30: Domain Id is currently unused but it is intended to be
849 				// used in a network environment where the local machine is
850 				// part of a Windows 2000 Domain. This may be used in a Windows
851 				// 2000 Advanced Server managed domain.
852 };
853 
854 static_assert(sizeof(struct OBJECT_ID) == 0x40);
855 
856 /* O Directory entry structure ( rule = 0x13 ) */
857 struct NTFS_DE_O {
858 	struct NTFS_DE de;
859 	struct GUID ObjId;	// 0x10: Unique Id assigned to file.
860 	struct MFT_REF ref;	// 0x20: MFT record number with this file.
861 	struct GUID BirthVolumeId; // 0x28: Birth Volume Id is the Object Id of the Volume on
862 				// which the Object Id was allocated. It never changes.
863 	struct GUID BirthObjectId; // 0x38: Birth Object Id is the first Object Id that was
864 				// ever assigned to this MFT Record. I.e. If the Object Id
865 				// is changed for some reason, this field will reflect the
866 				// original value of the Object Id.
867 				// This field is valid if data_size == 0x48.
868 	struct GUID BirthDomainId; // 0x48: Domain Id is currently unused but it is intended
869 				// to be used in a network environment where the local
870 				// machine is part of a Windows 2000 Domain. This may be
871 				// used in a Windows 2000 Advanced Server managed domain.
872 };
873 
874 static_assert(sizeof(struct NTFS_DE_O) == 0x58);
875 
876 #define NTFS_OBJECT_ENTRY_DATA_SIZE1					       \
877 	0x38 // struct NTFS_DE_O.BirthDomainId is not used
878 #define NTFS_OBJECT_ENTRY_DATA_SIZE2					       \
879 	0x48 // struct NTFS_DE_O.BirthDomainId is used
880 
881 /* Q Directory entry structure ( rule = 0x11 ) */
882 struct NTFS_DE_Q {
883 	struct NTFS_DE de;
884 	__le32 owner_id;	// 0x10: Unique Id assigned to file
885 	__le32 Version;		// 0x14: 0x02
886 	__le32 flags2;		// 0x18: Quota flags, see above
887 	__le64 BytesUsed;	// 0x1C:
888 	__le64 ChangeTime;	// 0x24:
889 	__le64 WarningLimit;	// 0x28:
890 	__le64 HardLimit;	// 0x34:
891 	__le64 ExceededTime;	// 0x3C:
892 
893 	// SID is placed here
894 }; // sizeof() = 0x44
895 
896 #define SIZEOF_NTFS_DE_Q 0x44
897 
898 #define SecurityDescriptorsBlockSize 0x40000 // 256K
899 #define SecurityDescriptorMaxSize    0x20000 // 128K
900 #define Log2OfSecurityDescriptorsBlockSize 18
901 
902 struct SECURITY_KEY {
903 	__le32 hash; //  Hash value for descriptor
904 	__le32 sec_id; //  Security Id (guaranteed unique)
905 };
906 
907 /* Security descriptors (the content of $Secure::SDS data stream) */
908 struct SECURITY_HDR {
909 	struct SECURITY_KEY key;	// 0x00: Security Key.
910 	__le64 off;			// 0x08: Offset of this entry in the file.
911 	__le32 size;			// 0x10: Size of this entry, 8 byte aligned.
912 	/*
913 	 * Security descriptor itself is placed here.
914 	 * Total size is 16 byte aligned.
915 	 */
916 } __packed;
917 
918 #define SIZEOF_SECURITY_HDR 0x14
919 
920 /* SII Directory entry structure */
921 struct NTFS_DE_SII {
922 	struct NTFS_DE de;
923 	__le32 sec_id;			// 0x10: Key: sizeof(security_id) = wKeySize
924 	struct SECURITY_HDR sec_hdr;	// 0x14:
925 } __packed;
926 
927 #define SIZEOF_SII_DIRENTRY 0x28
928 
929 /* SDH Directory entry structure */
930 struct NTFS_DE_SDH {
931 	struct NTFS_DE de;
932 	struct SECURITY_KEY key;	// 0x10: Key
933 	struct SECURITY_HDR sec_hdr;	// 0x18: Data
934 	__le16 magic[2];		// 0x2C: 0x00490049 "I I"
935 };
936 
937 #define SIZEOF_SDH_DIRENTRY 0x30
938 
939 struct REPARSE_KEY {
940 	__le32 ReparseTag;		// 0x00: Reparse Tag
941 	struct MFT_REF ref;		// 0x04: MFT record number with this file
942 }; // sizeof() = 0x0C
943 
944 static_assert(offsetof(struct REPARSE_KEY, ref) == 0x04);
945 #define SIZEOF_REPARSE_KEY 0x0C
946 
947 /* Reparse Directory entry structure */
948 struct NTFS_DE_R {
949 	struct NTFS_DE de;
950 	struct REPARSE_KEY key;		// 0x10: Reparse Key.
951 	u32 zero;			// 0x1c:
952 }; // sizeof() = 0x20
953 
954 static_assert(sizeof(struct NTFS_DE_R) == 0x20);
955 
956 /* CompressReparseBuffer.WofVersion */
957 #define WOF_CURRENT_VERSION		cpu_to_le32(1)
958 /* CompressReparseBuffer.WofProvider */
959 #define WOF_PROVIDER_WIM		cpu_to_le32(1)
960 /* CompressReparseBuffer.WofProvider */
961 #define WOF_PROVIDER_SYSTEM		cpu_to_le32(2)
962 /* CompressReparseBuffer.ProviderVer */
963 #define WOF_PROVIDER_CURRENT_VERSION	cpu_to_le32(1)
964 
965 #define WOF_COMPRESSION_XPRESS4K	cpu_to_le32(0) // 4k
966 #define WOF_COMPRESSION_LZX32K		cpu_to_le32(1) // 32k
967 #define WOF_COMPRESSION_XPRESS8K	cpu_to_le32(2) // 8k
968 #define WOF_COMPRESSION_XPRESS16K	cpu_to_le32(3) // 16k
969 
970 /*
971  * ATTR_REPARSE (0xC0)
972  *
973  * The reparse struct GUID structure is used by all 3rd party layered drivers to
974  * store data in a reparse point. For non-Microsoft tags, The struct GUID field
975  * cannot be GUID_NULL.
976  * The constraints on reparse tags are defined below.
977  * Microsoft tags can also be used with this format of the reparse point buffer.
978  */
979 struct REPARSE_POINT {
980 	__le32 ReparseTag;	// 0x00:
981 	__le16 ReparseDataLength;// 0x04:
982 	__le16 Reserved;
983 
984 	struct GUID Guid;	// 0x08:
985 
986 	//
987 	// Here GenericReparseBuffer is placed
988 	//
989 };
990 
991 static_assert(sizeof(struct REPARSE_POINT) == 0x18);
992 
993 /* Maximum allowed size of the reparse data. */
994 #define MAXIMUM_REPARSE_DATA_BUFFER_SIZE	(16 * 1024)
995 
996 /*
997  * The value of the following constant needs to satisfy the following
998  * conditions:
999  *  (1) Be at least as large as the largest of the reserved tags.
1000  *  (2) Be strictly smaller than all the tags in use.
1001  */
1002 #define IO_REPARSE_TAG_RESERVED_RANGE		1
1003 
1004 /*
1005  * The reparse tags are a ULONG. The 32 bits are laid out as follows:
1006  *
1007  *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1008  *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1009  *  +-+-+-+-+-----------------------+-------------------------------+
1010  *  |M|R|N|R|	  Reserved bits     |	    Reparse Tag Value	    |
1011  *  +-+-+-+-+-----------------------+-------------------------------+
1012  *
1013  * M is the Microsoft bit. When set to 1, it denotes a tag owned by Microsoft.
1014  *   All ISVs must use a tag with a 0 in this position.
1015  *   Note: If a Microsoft tag is used by non-Microsoft software, the
1016  *   behavior is not defined.
1017  *
1018  * R is reserved.  Must be zero for non-Microsoft tags.
1019  *
1020  * N is name surrogate. When set to 1, the file represents another named
1021  *   entity in the system.
1022  *
1023  * The M and N bits are OR-able.
1024  * The following macros check for the M and N bit values:
1025  */
1026 
1027 /*
1028  * Macro to determine whether a reparse point tag corresponds to a tag
1029  * owned by Microsoft.
1030  */
1031 #define IsReparseTagMicrosoft(_tag)	(((_tag)&IO_REPARSE_TAG_MICROSOFT))
1032 
1033 /* Macro to determine whether a reparse point tag is a name surrogate. */
1034 #define IsReparseTagNameSurrogate(_tag)	(((_tag)&IO_REPARSE_TAG_NAME_SURROGATE))
1035 
1036 /*
1037  * The following constant represents the bits that are valid to use in
1038  * reparse tags.
1039  */
1040 #define IO_REPARSE_TAG_VALID_VALUES	0xF000FFFF
1041 
1042 /*
1043  * Macro to determine whether a reparse tag is a valid tag.
1044  */
1045 #define IsReparseTagValid(_tag)						       \
1046 	(!((_tag) & ~IO_REPARSE_TAG_VALID_VALUES) &&			       \
1047 	 ((_tag) > IO_REPARSE_TAG_RESERVED_RANGE))
1048 
1049 /* Microsoft tags for reparse points. */
1050 
1051 enum IO_REPARSE_TAG {
1052 	IO_REPARSE_TAG_SYMBOLIC_LINK	= cpu_to_le32(0),
1053 	IO_REPARSE_TAG_NAME_SURROGATE	= cpu_to_le32(0x20000000),
1054 	IO_REPARSE_TAG_MICROSOFT	= cpu_to_le32(0x80000000),
1055 	IO_REPARSE_TAG_MOUNT_POINT	= cpu_to_le32(0xA0000003),
1056 	IO_REPARSE_TAG_SYMLINK		= cpu_to_le32(0xA000000C),
1057 	IO_REPARSE_TAG_HSM		= cpu_to_le32(0xC0000004),
1058 	IO_REPARSE_TAG_SIS		= cpu_to_le32(0x80000007),
1059 	IO_REPARSE_TAG_DEDUP		= cpu_to_le32(0x80000013),
1060 	IO_REPARSE_TAG_COMPRESS		= cpu_to_le32(0x80000017),
1061 
1062 	/*
1063 	 * The reparse tag 0x80000008 is reserved for Microsoft internal use.
1064 	 * May be published in the future.
1065 	 */
1066 
1067 	/* Microsoft reparse tag reserved for DFS */
1068 	IO_REPARSE_TAG_DFS	= cpu_to_le32(0x8000000A),
1069 
1070 	/* Microsoft reparse tag reserved for the file system filter manager. */
1071 	IO_REPARSE_TAG_FILTER_MANAGER	= cpu_to_le32(0x8000000B),
1072 
1073 	/* Non-Microsoft tags for reparse points */
1074 
1075 	/* Tag allocated to CONGRUENT, May 2000. Used by IFSTEST. */
1076 	IO_REPARSE_TAG_IFSTEST_CONGRUENT = cpu_to_le32(0x00000009),
1077 
1078 	/* Tag allocated to ARKIVIO. */
1079 	IO_REPARSE_TAG_ARKIVIO	= cpu_to_le32(0x0000000C),
1080 
1081 	/* Tag allocated to SOLUTIONSOFT. */
1082 	IO_REPARSE_TAG_SOLUTIONSOFT	= cpu_to_le32(0x2000000D),
1083 
1084 	/* Tag allocated to COMMVAULT. */
1085 	IO_REPARSE_TAG_COMMVAULT	= cpu_to_le32(0x0000000E),
1086 
1087 	/* OneDrive?? */
1088 	IO_REPARSE_TAG_CLOUD	= cpu_to_le32(0x9000001A),
1089 	IO_REPARSE_TAG_CLOUD_1	= cpu_to_le32(0x9000101A),
1090 	IO_REPARSE_TAG_CLOUD_2	= cpu_to_le32(0x9000201A),
1091 	IO_REPARSE_TAG_CLOUD_3	= cpu_to_le32(0x9000301A),
1092 	IO_REPARSE_TAG_CLOUD_4	= cpu_to_le32(0x9000401A),
1093 	IO_REPARSE_TAG_CLOUD_5	= cpu_to_le32(0x9000501A),
1094 	IO_REPARSE_TAG_CLOUD_6	= cpu_to_le32(0x9000601A),
1095 	IO_REPARSE_TAG_CLOUD_7	= cpu_to_le32(0x9000701A),
1096 	IO_REPARSE_TAG_CLOUD_8	= cpu_to_le32(0x9000801A),
1097 	IO_REPARSE_TAG_CLOUD_9	= cpu_to_le32(0x9000901A),
1098 	IO_REPARSE_TAG_CLOUD_A	= cpu_to_le32(0x9000A01A),
1099 	IO_REPARSE_TAG_CLOUD_B	= cpu_to_le32(0x9000B01A),
1100 	IO_REPARSE_TAG_CLOUD_C	= cpu_to_le32(0x9000C01A),
1101 	IO_REPARSE_TAG_CLOUD_D	= cpu_to_le32(0x9000D01A),
1102 	IO_REPARSE_TAG_CLOUD_E	= cpu_to_le32(0x9000E01A),
1103 	IO_REPARSE_TAG_CLOUD_F	= cpu_to_le32(0x9000F01A),
1104 
1105 };
1106 
1107 #define SYMLINK_FLAG_RELATIVE		1
1108 
1109 /* Microsoft reparse buffer. (see DDK for details) */
1110 struct REPARSE_DATA_BUFFER {
1111 	__le32 ReparseTag;		// 0x00:
1112 	__le16 ReparseDataLength;	// 0x04:
1113 	__le16 Reserved;
1114 
1115 	union {
1116 		/* If ReparseTag == 0xA0000003 (IO_REPARSE_TAG_MOUNT_POINT) */
1117 		struct {
1118 			__le16 SubstituteNameOffset; // 0x08
1119 			__le16 SubstituteNameLength; // 0x0A
1120 			__le16 PrintNameOffset;      // 0x0C
1121 			__le16 PrintNameLength;      // 0x0E
1122 			__le16 PathBuffer[];	     // 0x10
1123 		} MountPointReparseBuffer;
1124 
1125 		/*
1126 		 * If ReparseTag == 0xA000000C (IO_REPARSE_TAG_SYMLINK)
1127 		 * https://msdn.microsoft.com/en-us/library/cc232006.aspx
1128 		 */
1129 		struct {
1130 			__le16 SubstituteNameOffset; // 0x08
1131 			__le16 SubstituteNameLength; // 0x0A
1132 			__le16 PrintNameOffset;      // 0x0C
1133 			__le16 PrintNameLength;      // 0x0E
1134 			// 0-absolute path 1- relative path, SYMLINK_FLAG_RELATIVE
1135 			__le32 Flags;		     // 0x10
1136 			__le16 PathBuffer[];	     // 0x14
1137 		} SymbolicLinkReparseBuffer;
1138 
1139 		/* If ReparseTag == 0x80000017U */
1140 		struct {
1141 			__le32 WofVersion;  // 0x08 == 1
1142 			/*
1143 			 * 1 - WIM backing provider ("WIMBoot"),
1144 			 * 2 - System compressed file provider
1145 			 */
1146 			__le32 WofProvider; // 0x0C:
1147 			__le32 ProviderVer; // 0x10: == 1 WOF_FILE_PROVIDER_CURRENT_VERSION == 1
1148 			__le32 CompressionFormat; // 0x14: 0, 1, 2, 3. See WOF_COMPRESSION_XXX
1149 		} CompressReparseBuffer;
1150 
1151 		struct {
1152 			u8 DataBuffer[1];   // 0x08:
1153 		} GenericReparseBuffer;
1154 	};
1155 };
1156 
1157 /* ATTR_EA_INFO (0xD0) */
1158 
1159 #define FILE_NEED_EA 0x80 // See ntifs.h
1160 /*
1161  *FILE_NEED_EA, indicates that the file to which the EA belongs cannot be
1162  * interpreted without understanding the associated extended attributes.
1163  */
1164 struct EA_INFO {
1165 	__le16 size_pack;	// 0x00: Size of buffer to hold in packed form.
1166 	__le16 count;		// 0x02: Count of EA's with FILE_NEED_EA bit set.
1167 	__le32 size;		// 0x04: Size of buffer to hold in unpacked form.
1168 };
1169 
1170 static_assert(sizeof(struct EA_INFO) == 8);
1171 
1172 /* ATTR_EA (0xE0) */
1173 struct EA_FULL {
1174 	__le32 size;		// 0x00: (not in packed)
1175 	u8 flags;		// 0x04:
1176 	u8 name_len;		// 0x05:
1177 	__le16 elength;		// 0x06:
1178 	u8 name[];		// 0x08:
1179 };
1180 
1181 static_assert(offsetof(struct EA_FULL, name) == 8);
1182 
1183 #define ACL_REVISION	2
1184 #define ACL_REVISION_DS 4
1185 
1186 #define SE_SELF_RELATIVE cpu_to_le16(0x8000)
1187 
1188 struct SECURITY_DESCRIPTOR_RELATIVE {
1189 	u8 Revision;
1190 	u8 Sbz1;
1191 	__le16 Control;
1192 	__le32 Owner;
1193 	__le32 Group;
1194 	__le32 Sacl;
1195 	__le32 Dacl;
1196 };
1197 static_assert(sizeof(struct SECURITY_DESCRIPTOR_RELATIVE) == 0x14);
1198 
1199 struct ACE_HEADER {
1200 	u8 AceType;
1201 	u8 AceFlags;
1202 	__le16 AceSize;
1203 };
1204 static_assert(sizeof(struct ACE_HEADER) == 4);
1205 
1206 struct ACL {
1207 	u8 AclRevision;
1208 	u8 Sbz1;
1209 	__le16 AclSize;
1210 	__le16 AceCount;
1211 	__le16 Sbz2;
1212 };
1213 static_assert(sizeof(struct ACL) == 8);
1214 
1215 struct SID {
1216 	u8 Revision;
1217 	u8 SubAuthorityCount;
1218 	u8 IdentifierAuthority[6];
1219 	__le32 SubAuthority[];
1220 };
1221 static_assert(offsetof(struct SID, SubAuthority) == 8);
1222 
1223 #endif /* _LINUX_NTFS3_NTFS_H */
1224 // clang-format on
1225