1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 *
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5 *
6 * on-disk ntfs structs
7 */
8
9 // clang-format off
10 #ifndef _LINUX_NTFS3_NTFS_H
11 #define _LINUX_NTFS3_NTFS_H
12
13 #include <linux/blkdev.h>
14 #include <linux/build_bug.h>
15 #include <linux/kernel.h>
16 #include <linux/stddef.h>
17 #include <linux/string.h>
18 #include <linux/types.h>
19
20 #include "debug.h"
21
22 /* TODO: Check 4K MFT record and 512 bytes cluster. */
23
24 /* Check each run for marked clusters. */
25 #define NTFS3_CHECK_FREE_CLST
26
27 #define NTFS_NAME_LEN 255
28
29 /*
30 * ntfs.sys used 500 maximum links on-disk struct allows up to 0xffff.
31 * xfstest generic/041 creates 3003 hardlinks.
32 */
33 #define NTFS_LINK_MAX 4000
34
35 /*
36 * Activate to use 64 bit clusters instead of 32 bits in ntfs.sys.
37 * Logical and virtual cluster number if needed, may be
38 * redefined to use 64 bit value.
39 */
40 //#define CONFIG_NTFS3_64BIT_CLUSTER
41
42 #define NTFS_LZNT_MAX_CLUSTER 4096
43 #define NTFS_LZNT_CUNIT 4
44 #define NTFS_LZNT_CLUSTERS (1u<<NTFS_LZNT_CUNIT)
45
46 struct GUID {
47 __le32 Data1;
48 __le16 Data2;
49 __le16 Data3;
50 u8 Data4[8];
51 };
52
53 /*
54 * This struct repeats layout of ATTR_FILE_NAME
55 * at offset 0x40.
56 * It used to store global constants NAME_MFT/NAME_MIRROR...
57 * most constant names are shorter than 10.
58 */
59 struct cpu_str {
60 u8 len;
61 u8 unused;
62 u16 name[];
63 };
64
65 struct le_str {
66 u8 len;
67 u8 unused;
68 __le16 name[];
69 };
70
71 static_assert(SECTOR_SHIFT == 9);
72
73 #ifdef CONFIG_NTFS3_64BIT_CLUSTER
74 typedef u64 CLST;
75 static_assert(sizeof(size_t) == 8);
76 #else
77 typedef u32 CLST;
78 #endif
79
80 #define SPARSE_LCN64 ((u64)-1)
81 #define SPARSE_LCN ((CLST)-1)
82 #define RESIDENT_LCN ((CLST)-2)
83 #define COMPRESSED_LCN ((CLST)-3)
84
85 enum RECORD_NUM {
86 MFT_REC_MFT = 0,
87 MFT_REC_MIRR = 1,
88 MFT_REC_LOG = 2,
89 MFT_REC_VOL = 3,
90 MFT_REC_ATTR = 4,
91 MFT_REC_ROOT = 5,
92 MFT_REC_BITMAP = 6,
93 MFT_REC_BOOT = 7,
94 MFT_REC_BADCLUST = 8,
95 MFT_REC_SECURE = 9,
96 MFT_REC_UPCASE = 10,
97 MFT_REC_EXTEND = 11,
98 MFT_REC_RESERVED = 12,
99 MFT_REC_FREE = 16,
100 MFT_REC_USER = 24,
101 };
102
103 enum ATTR_TYPE {
104 ATTR_ZERO = cpu_to_le32(0x00),
105 ATTR_STD = cpu_to_le32(0x10),
106 ATTR_LIST = cpu_to_le32(0x20),
107 ATTR_NAME = cpu_to_le32(0x30),
108 ATTR_ID = cpu_to_le32(0x40),
109 ATTR_SECURE = cpu_to_le32(0x50),
110 ATTR_LABEL = cpu_to_le32(0x60),
111 ATTR_VOL_INFO = cpu_to_le32(0x70),
112 ATTR_DATA = cpu_to_le32(0x80),
113 ATTR_ROOT = cpu_to_le32(0x90),
114 ATTR_ALLOC = cpu_to_le32(0xA0),
115 ATTR_BITMAP = cpu_to_le32(0xB0),
116 ATTR_REPARSE = cpu_to_le32(0xC0),
117 ATTR_EA_INFO = cpu_to_le32(0xD0),
118 ATTR_EA = cpu_to_le32(0xE0),
119 ATTR_PROPERTYSET = cpu_to_le32(0xF0),
120 ATTR_LOGGED_UTILITY_STREAM = cpu_to_le32(0x100),
121 ATTR_END = cpu_to_le32(0xFFFFFFFF)
122 };
123
124 static_assert(sizeof(enum ATTR_TYPE) == 4);
125
126 enum FILE_ATTRIBUTE {
127 FILE_ATTRIBUTE_READONLY = cpu_to_le32(0x00000001),
128 FILE_ATTRIBUTE_HIDDEN = cpu_to_le32(0x00000002),
129 FILE_ATTRIBUTE_SYSTEM = cpu_to_le32(0x00000004),
130 FILE_ATTRIBUTE_ARCHIVE = cpu_to_le32(0x00000020),
131 FILE_ATTRIBUTE_DEVICE = cpu_to_le32(0x00000040),
132 FILE_ATTRIBUTE_TEMPORARY = cpu_to_le32(0x00000100),
133 FILE_ATTRIBUTE_SPARSE_FILE = cpu_to_le32(0x00000200),
134 FILE_ATTRIBUTE_REPARSE_POINT = cpu_to_le32(0x00000400),
135 FILE_ATTRIBUTE_COMPRESSED = cpu_to_le32(0x00000800),
136 FILE_ATTRIBUTE_OFFLINE = cpu_to_le32(0x00001000),
137 FILE_ATTRIBUTE_NOT_CONTENT_INDEXED = cpu_to_le32(0x00002000),
138 FILE_ATTRIBUTE_ENCRYPTED = cpu_to_le32(0x00004000),
139 FILE_ATTRIBUTE_VALID_FLAGS = cpu_to_le32(0x00007fb7),
140 FILE_ATTRIBUTE_DIRECTORY = cpu_to_le32(0x10000000),
141 FILE_ATTRIBUTE_INDEX = cpu_to_le32(0x20000000)
142 };
143
144 static_assert(sizeof(enum FILE_ATTRIBUTE) == 4);
145
146 extern const struct cpu_str NAME_MFT;
147 extern const struct cpu_str NAME_MIRROR;
148 extern const struct cpu_str NAME_LOGFILE;
149 extern const struct cpu_str NAME_VOLUME;
150 extern const struct cpu_str NAME_ATTRDEF;
151 extern const struct cpu_str NAME_ROOT;
152 extern const struct cpu_str NAME_BITMAP;
153 extern const struct cpu_str NAME_BOOT;
154 extern const struct cpu_str NAME_BADCLUS;
155 extern const struct cpu_str NAME_QUOTA;
156 extern const struct cpu_str NAME_SECURE;
157 extern const struct cpu_str NAME_UPCASE;
158 extern const struct cpu_str NAME_EXTEND;
159 extern const struct cpu_str NAME_OBJID;
160 extern const struct cpu_str NAME_REPARSE;
161 extern const struct cpu_str NAME_USNJRNL;
162
163 extern const __le16 I30_NAME[4];
164 extern const __le16 SII_NAME[4];
165 extern const __le16 SDH_NAME[4];
166 extern const __le16 SO_NAME[2];
167 extern const __le16 SQ_NAME[2];
168 extern const __le16 SR_NAME[2];
169
170 extern const __le16 BAD_NAME[4];
171 extern const __le16 SDS_NAME[4];
172 extern const __le16 WOF_NAME[17]; /* WofCompressedData */
173
174 /* MFT record number structure. */
175 struct MFT_REF {
176 __le32 low; // The low part of the number.
177 __le16 high; // The high part of the number.
178 __le16 seq; // The sequence number of MFT record.
179 };
180
181 static_assert(sizeof(__le64) == sizeof(struct MFT_REF));
182
ino_get(const struct MFT_REF * ref)183 static inline CLST ino_get(const struct MFT_REF *ref)
184 {
185 #ifdef CONFIG_NTFS3_64BIT_CLUSTER
186 return le32_to_cpu(ref->low) | ((u64)le16_to_cpu(ref->high) << 32);
187 #else
188 return le32_to_cpu(ref->low);
189 #endif
190 }
191
192 struct NTFS_BOOT {
193 u8 jump_code[3]; // 0x00: Jump to boot code.
194 u8 system_id[8]; // 0x03: System ID, equals "NTFS "
195
196 // NOTE: This member is not aligned(!)
197 // bytes_per_sector[0] must be 0.
198 // bytes_per_sector[1] must be multiplied by 256.
199 u8 bytes_per_sector[2]; // 0x0B: Bytes per sector.
200
201 u8 sectors_per_clusters;// 0x0D: Sectors per cluster.
202 u8 unused1[7];
203 u8 media_type; // 0x15: Media type (0xF8 - harddisk)
204 u8 unused2[2];
205 __le16 sct_per_track; // 0x18: number of sectors per track.
206 __le16 heads; // 0x1A: number of heads per cylinder.
207 __le32 hidden_sectors; // 0x1C: number of 'hidden' sectors.
208 u8 unused3[4];
209 u8 bios_drive_num; // 0x24: BIOS drive number =0x80.
210 u8 unused4;
211 u8 signature_ex; // 0x26: Extended BOOT signature =0x80.
212 u8 unused5;
213 __le64 sectors_per_volume;// 0x28: Size of volume in sectors.
214 __le64 mft_clst; // 0x30: First cluster of $MFT
215 __le64 mft2_clst; // 0x38: First cluster of $MFTMirr
216 s8 record_size; // 0x40: Size of MFT record in clusters(sectors).
217 u8 unused6[3];
218 s8 index_size; // 0x44: Size of INDX record in clusters(sectors).
219 u8 unused7[3];
220 __le64 serial_num; // 0x48: Volume serial number
221 __le32 check_sum; // 0x50: Simple additive checksum of all
222 // of the u32's which precede the 'check_sum'.
223
224 u8 boot_code[0x200 - 0x50 - 2 - 4]; // 0x54:
225 u8 boot_magic[2]; // 0x1FE: Boot signature =0x55 + 0xAA
226 };
227
228 static_assert(sizeof(struct NTFS_BOOT) == 0x200);
229
230 enum NTFS_SIGNATURE {
231 NTFS_FILE_SIGNATURE = cpu_to_le32(0x454C4946), // 'FILE'
232 NTFS_INDX_SIGNATURE = cpu_to_le32(0x58444E49), // 'INDX'
233 NTFS_CHKD_SIGNATURE = cpu_to_le32(0x444B4843), // 'CHKD'
234 NTFS_RSTR_SIGNATURE = cpu_to_le32(0x52545352), // 'RSTR'
235 NTFS_RCRD_SIGNATURE = cpu_to_le32(0x44524352), // 'RCRD'
236 NTFS_BAAD_SIGNATURE = cpu_to_le32(0x44414142), // 'BAAD'
237 NTFS_HOLE_SIGNATURE = cpu_to_le32(0x454C4F48), // 'HOLE'
238 NTFS_FFFF_SIGNATURE = cpu_to_le32(0xffffffff),
239 };
240
241 static_assert(sizeof(enum NTFS_SIGNATURE) == 4);
242
243 /* MFT Record header structure. */
244 struct NTFS_RECORD_HEADER {
245 /* Record magic number, equals 'FILE'/'INDX'/'RSTR'/'RCRD'. */
246 enum NTFS_SIGNATURE sign; // 0x00:
247 __le16 fix_off; // 0x04:
248 __le16 fix_num; // 0x06:
249 __le64 lsn; // 0x08: Log file sequence number,
250 };
251
252 static_assert(sizeof(struct NTFS_RECORD_HEADER) == 0x10);
253
is_baad(const struct NTFS_RECORD_HEADER * hdr)254 static inline int is_baad(const struct NTFS_RECORD_HEADER *hdr)
255 {
256 return hdr->sign == NTFS_BAAD_SIGNATURE;
257 }
258
259 /* Possible bits in struct MFT_REC.flags. */
260 enum RECORD_FLAG {
261 RECORD_FLAG_IN_USE = cpu_to_le16(0x0001),
262 RECORD_FLAG_DIR = cpu_to_le16(0x0002),
263 RECORD_FLAG_SYSTEM = cpu_to_le16(0x0004),
264 RECORD_FLAG_INDEX = cpu_to_le16(0x0008),
265 };
266
267 /* MFT Record structure. */
268 struct MFT_REC {
269 struct NTFS_RECORD_HEADER rhdr; // 'FILE'
270
271 __le16 seq; // 0x10: Sequence number for this record.
272 __le16 hard_links; // 0x12: The number of hard links to record.
273 __le16 attr_off; // 0x14: Offset to attributes.
274 __le16 flags; // 0x16: See RECORD_FLAG.
275 __le32 used; // 0x18: The size of used part.
276 __le32 total; // 0x1C: Total record size.
277
278 struct MFT_REF parent_ref; // 0x20: Parent MFT record.
279 __le16 next_attr_id; // 0x28: The next attribute Id.
280
281 __le16 res; // 0x2A: High part of MFT record?
282 __le32 mft_record; // 0x2C: Current MFT record number.
283 __le16 fixups[]; // 0x30:
284 };
285
286 #define MFTRECORD_FIXUP_OFFSET_1 offsetof(struct MFT_REC, res)
287 #define MFTRECORD_FIXUP_OFFSET_3 offsetof(struct MFT_REC, fixups)
288 /*
289 * define MFTRECORD_FIXUP_OFFSET as MFTRECORD_FIXUP_OFFSET_3 (0x30)
290 * to format new mft records with bigger header (as current ntfs.sys does)
291 *
292 * define MFTRECORD_FIXUP_OFFSET as MFTRECORD_FIXUP_OFFSET_1 (0x2A)
293 * to format new mft records with smaller header (as old ntfs.sys did)
294 * Both variants are valid.
295 */
296 #define MFTRECORD_FIXUP_OFFSET MFTRECORD_FIXUP_OFFSET_1
297
298 static_assert(MFTRECORD_FIXUP_OFFSET_1 == 0x2A);
299 static_assert(MFTRECORD_FIXUP_OFFSET_3 == 0x30);
300
is_rec_base(const struct MFT_REC * rec)301 static inline bool is_rec_base(const struct MFT_REC *rec)
302 {
303 const struct MFT_REF *r = &rec->parent_ref;
304
305 return !r->low && !r->high && !r->seq;
306 }
307
is_mft_rec5(const struct MFT_REC * rec)308 static inline bool is_mft_rec5(const struct MFT_REC *rec)
309 {
310 return le16_to_cpu(rec->rhdr.fix_off) >=
311 offsetof(struct MFT_REC, fixups);
312 }
313
is_rec_inuse(const struct MFT_REC * rec)314 static inline bool is_rec_inuse(const struct MFT_REC *rec)
315 {
316 return rec->flags & RECORD_FLAG_IN_USE;
317 }
318
clear_rec_inuse(struct MFT_REC * rec)319 static inline bool clear_rec_inuse(struct MFT_REC *rec)
320 {
321 return rec->flags &= ~RECORD_FLAG_IN_USE;
322 }
323
324 /* Possible values of ATTR_RESIDENT.flags */
325 #define RESIDENT_FLAG_INDEXED 0x01
326
327 struct ATTR_RESIDENT {
328 __le32 data_size; // 0x10: The size of data.
329 __le16 data_off; // 0x14: Offset to data.
330 u8 flags; // 0x16: Resident flags ( 1 - indexed ).
331 u8 res; // 0x17:
332 }; // sizeof() = 0x18
333
334 struct ATTR_NONRESIDENT {
335 __le64 svcn; // 0x10: Starting VCN of this segment.
336 __le64 evcn; // 0x18: End VCN of this segment.
337 __le16 run_off; // 0x20: Offset to packed runs.
338 // Unit of Compression size for this stream, expressed
339 // as a log of the cluster size.
340 //
341 // 0 means file is not compressed
342 // 1, 2, 3, and 4 are potentially legal values if the
343 // stream is compressed, however the implementation
344 // may only choose to use 4, or possibly 3.
345 // Note that 4 means cluster size time 16.
346 // If convenient the implementation may wish to accept a
347 // reasonable range of legal values here (1-5?),
348 // even if the implementation only generates
349 // a smaller set of values itself.
350 u8 c_unit; // 0x22:
351 u8 res1[5]; // 0x23:
352 __le64 alloc_size; // 0x28: The allocated size of attribute in bytes.
353 // (multiple of cluster size)
354 __le64 data_size; // 0x30: The size of attribute in bytes <= alloc_size.
355 __le64 valid_size; // 0x38: The size of valid part in bytes <= data_size.
356 __le64 total_size; // 0x40: The sum of the allocated clusters for a file.
357 // (present only for the first segment (0 == vcn)
358 // of compressed attribute)
359
360 }; // sizeof()=0x40 or 0x48 (if compressed)
361
362 /* Possible values of ATTRIB.flags: */
363 #define ATTR_FLAG_COMPRESSED cpu_to_le16(0x0001)
364 #define ATTR_FLAG_COMPRESSED_MASK cpu_to_le16(0x00FF)
365 #define ATTR_FLAG_ENCRYPTED cpu_to_le16(0x4000)
366 #define ATTR_FLAG_SPARSED cpu_to_le16(0x8000)
367
368 struct ATTRIB {
369 enum ATTR_TYPE type; // 0x00: The type of this attribute.
370 __le32 size; // 0x04: The size of this attribute.
371 u8 non_res; // 0x08: Is this attribute non-resident?
372 u8 name_len; // 0x09: This attribute name length.
373 __le16 name_off; // 0x0A: Offset to the attribute name.
374 __le16 flags; // 0x0C: See ATTR_FLAG_XXX.
375 __le16 id; // 0x0E: Unique id (per record).
376
377 union {
378 struct ATTR_RESIDENT res; // 0x10
379 struct ATTR_NONRESIDENT nres; // 0x10
380 };
381 };
382
383 /* Define attribute sizes. */
384 #define SIZEOF_RESIDENT 0x18
385 #define SIZEOF_NONRESIDENT_EX 0x48
386 #define SIZEOF_NONRESIDENT 0x40
387
388 #define SIZEOF_RESIDENT_LE cpu_to_le16(0x18)
389 #define SIZEOF_NONRESIDENT_EX_LE cpu_to_le16(0x48)
390 #define SIZEOF_NONRESIDENT_LE cpu_to_le16(0x40)
391
attr_ondisk_size(const struct ATTRIB * attr)392 static inline u64 attr_ondisk_size(const struct ATTRIB *attr)
393 {
394 return attr->non_res ? ((attr->flags &
395 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ?
396 le64_to_cpu(attr->nres.total_size) :
397 le64_to_cpu(attr->nres.alloc_size))
398 : ALIGN(le32_to_cpu(attr->res.data_size), 8);
399 }
400
attr_size(const struct ATTRIB * attr)401 static inline u64 attr_size(const struct ATTRIB *attr)
402 {
403 return attr->non_res ? le64_to_cpu(attr->nres.data_size) :
404 le32_to_cpu(attr->res.data_size);
405 }
406
is_attr_encrypted(const struct ATTRIB * attr)407 static inline bool is_attr_encrypted(const struct ATTRIB *attr)
408 {
409 return attr->flags & ATTR_FLAG_ENCRYPTED;
410 }
411
is_attr_sparsed(const struct ATTRIB * attr)412 static inline bool is_attr_sparsed(const struct ATTRIB *attr)
413 {
414 return attr->flags & ATTR_FLAG_SPARSED;
415 }
416
is_attr_compressed(const struct ATTRIB * attr)417 static inline bool is_attr_compressed(const struct ATTRIB *attr)
418 {
419 return attr->flags & ATTR_FLAG_COMPRESSED;
420 }
421
is_attr_ext(const struct ATTRIB * attr)422 static inline bool is_attr_ext(const struct ATTRIB *attr)
423 {
424 return attr->flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED);
425 }
426
is_attr_indexed(const struct ATTRIB * attr)427 static inline bool is_attr_indexed(const struct ATTRIB *attr)
428 {
429 return !attr->non_res && (attr->res.flags & RESIDENT_FLAG_INDEXED);
430 }
431
attr_name(const struct ATTRIB * attr)432 static inline __le16 const *attr_name(const struct ATTRIB *attr)
433 {
434 return Add2Ptr(attr, le16_to_cpu(attr->name_off));
435 }
436
attr_svcn(const struct ATTRIB * attr)437 static inline u64 attr_svcn(const struct ATTRIB *attr)
438 {
439 return attr->non_res ? le64_to_cpu(attr->nres.svcn) : 0;
440 }
441
442 static_assert(sizeof(struct ATTRIB) == 0x48);
443 static_assert(sizeof(((struct ATTRIB *)NULL)->res) == 0x08);
444 static_assert(sizeof(((struct ATTRIB *)NULL)->nres) == 0x38);
445
resident_data_ex(const struct ATTRIB * attr,u32 datasize)446 static inline void *resident_data_ex(const struct ATTRIB *attr, u32 datasize)
447 {
448 u32 asize, rsize;
449 u16 off;
450
451 if (attr->non_res)
452 return NULL;
453
454 asize = le32_to_cpu(attr->size);
455 off = le16_to_cpu(attr->res.data_off);
456
457 if (asize < datasize + off)
458 return NULL;
459
460 rsize = le32_to_cpu(attr->res.data_size);
461 if (rsize < datasize)
462 return NULL;
463
464 return Add2Ptr(attr, off);
465 }
466
resident_data(const struct ATTRIB * attr)467 static inline void *resident_data(const struct ATTRIB *attr)
468 {
469 return Add2Ptr(attr, le16_to_cpu(attr->res.data_off));
470 }
471
attr_run(const struct ATTRIB * attr)472 static inline void *attr_run(const struct ATTRIB *attr)
473 {
474 return Add2Ptr(attr, le16_to_cpu(attr->nres.run_off));
475 }
476
477 /* Standard information attribute (0x10). */
478 struct ATTR_STD_INFO {
479 __le64 cr_time; // 0x00: File creation file.
480 __le64 m_time; // 0x08: File modification time.
481 __le64 c_time; // 0x10: Last time any attribute was modified.
482 __le64 a_time; // 0x18: File last access time.
483 enum FILE_ATTRIBUTE fa; // 0x20: Standard DOS attributes & more.
484 __le32 max_ver_num; // 0x24: Maximum Number of Versions.
485 __le32 ver_num; // 0x28: Version Number.
486 __le32 class_id; // 0x2C: Class Id from bidirectional Class Id index.
487 };
488
489 static_assert(sizeof(struct ATTR_STD_INFO) == 0x30);
490
491 #define SECURITY_ID_INVALID 0x00000000
492 #define SECURITY_ID_FIRST 0x00000100
493
494 struct ATTR_STD_INFO5 {
495 __le64 cr_time; // 0x00: File creation file.
496 __le64 m_time; // 0x08: File modification time.
497 __le64 c_time; // 0x10: Last time any attribute was modified.
498 __le64 a_time; // 0x18: File last access time.
499 enum FILE_ATTRIBUTE fa; // 0x20: Standard DOS attributes & more.
500 __le32 max_ver_num; // 0x24: Maximum Number of Versions.
501 __le32 ver_num; // 0x28: Version Number.
502 __le32 class_id; // 0x2C: Class Id from bidirectional Class Id index.
503
504 __le32 owner_id; // 0x30: Owner Id of the user owning the file.
505 __le32 security_id; // 0x34: The Security Id is a key in the $SII Index and $SDS.
506 __le64 quota_charge; // 0x38:
507 __le64 usn; // 0x40: Last Update Sequence Number of the file. This is a direct
508 // index into the file $UsnJrnl. If zero, the USN Journal is
509 // disabled.
510 };
511
512 static_assert(sizeof(struct ATTR_STD_INFO5) == 0x48);
513
514 /* Attribute list entry structure (0x20) */
515 struct ATTR_LIST_ENTRY {
516 enum ATTR_TYPE type; // 0x00: The type of attribute.
517 __le16 size; // 0x04: The size of this record.
518 u8 name_len; // 0x06: The length of attribute name.
519 u8 name_off; // 0x07: The offset to attribute name.
520 __le64 vcn; // 0x08: Starting VCN of this attribute.
521 struct MFT_REF ref; // 0x10: MFT record number with attribute.
522 __le16 id; // 0x18: struct ATTRIB ID.
523 __le16 name[]; // 0x1A: Just to align. To get real name can use name_off.
524
525 }; // sizeof(0x20)
526
le_size(u8 name_len)527 static inline u32 le_size(u8 name_len)
528 {
529 return ALIGN(offsetof(struct ATTR_LIST_ENTRY, name) +
530 name_len * sizeof(short), 8);
531 }
532
533 /* Returns 0 if 'attr' has the same type and name. */
le_cmp(const struct ATTR_LIST_ENTRY * le,const struct ATTRIB * attr)534 static inline int le_cmp(const struct ATTR_LIST_ENTRY *le,
535 const struct ATTRIB *attr)
536 {
537 return le->type != attr->type || le->name_len != attr->name_len ||
538 (!le->name_len &&
539 memcmp(Add2Ptr(le, le->name_off),
540 Add2Ptr(attr, le16_to_cpu(attr->name_off)),
541 le->name_len * sizeof(short)));
542 }
543
le_name(const struct ATTR_LIST_ENTRY * le)544 static inline __le16 const *le_name(const struct ATTR_LIST_ENTRY *le)
545 {
546 return Add2Ptr(le, le->name_off);
547 }
548
549 /* File name types (the field type in struct ATTR_FILE_NAME). */
550 #define FILE_NAME_POSIX 0
551 #define FILE_NAME_UNICODE 1
552 #define FILE_NAME_DOS 2
553 #define FILE_NAME_UNICODE_AND_DOS (FILE_NAME_DOS | FILE_NAME_UNICODE)
554
555 /* Filename attribute structure (0x30). */
556 struct NTFS_DUP_INFO {
557 __le64 cr_time; // 0x00: File creation file.
558 __le64 m_time; // 0x08: File modification time.
559 __le64 c_time; // 0x10: Last time any attribute was modified.
560 __le64 a_time; // 0x18: File last access time.
561 __le64 alloc_size; // 0x20: Data attribute allocated size, multiple of cluster size.
562 __le64 data_size; // 0x28: Data attribute size <= Dataalloc_size.
563 enum FILE_ATTRIBUTE fa; // 0x30: Standard DOS attributes & more.
564 __le16 ea_size; // 0x34: Packed EAs.
565 __le16 reparse; // 0x36: Used by Reparse.
566
567 }; // 0x38
568
569 struct ATTR_FILE_NAME {
570 struct MFT_REF home; // 0x00: MFT record for directory.
571 struct NTFS_DUP_INFO dup;// 0x08:
572 u8 name_len; // 0x40: File name length in words.
573 u8 type; // 0x41: File name type.
574 __le16 name[]; // 0x42: File name.
575 };
576
577 static_assert(sizeof(((struct ATTR_FILE_NAME *)NULL)->dup) == 0x38);
578 static_assert(offsetof(struct ATTR_FILE_NAME, name) == 0x42);
579 #define SIZEOF_ATTRIBUTE_FILENAME 0x44
580 #define SIZEOF_ATTRIBUTE_FILENAME_MAX (0x42 + 255 * 2)
581
attr_from_name(struct ATTR_FILE_NAME * fname)582 static inline struct ATTRIB *attr_from_name(struct ATTR_FILE_NAME *fname)
583 {
584 return (struct ATTRIB *)((char *)fname - SIZEOF_RESIDENT);
585 }
586
fname_full_size(const struct ATTR_FILE_NAME * fname)587 static inline u16 fname_full_size(const struct ATTR_FILE_NAME *fname)
588 {
589 /* Don't return struct_size(fname, name, fname->name_len); */
590 return offsetof(struct ATTR_FILE_NAME, name) +
591 fname->name_len * sizeof(short);
592 }
593
paired_name(u8 type)594 static inline u8 paired_name(u8 type)
595 {
596 if (type == FILE_NAME_UNICODE)
597 return FILE_NAME_DOS;
598 if (type == FILE_NAME_DOS)
599 return FILE_NAME_UNICODE;
600 return FILE_NAME_POSIX;
601 }
602
603 /* Index entry defines ( the field flags in NtfsDirEntry ). */
604 #define NTFS_IE_HAS_SUBNODES cpu_to_le16(1)
605 #define NTFS_IE_LAST cpu_to_le16(2)
606
607 /* Directory entry structure. */
608 struct NTFS_DE {
609 union {
610 struct MFT_REF ref; // 0x00: MFT record number with this file.
611 struct {
612 __le16 data_off; // 0x00:
613 __le16 data_size; // 0x02:
614 __le32 res; // 0x04: Must be 0.
615 } view;
616 };
617 __le16 size; // 0x08: The size of this entry.
618 __le16 key_size; // 0x0A: The size of File name length in bytes + 0x42.
619 __le16 flags; // 0x0C: Entry flags: NTFS_IE_XXX.
620 __le16 res; // 0x0E:
621
622 // Here any indexed attribute can be placed.
623 // One of them is:
624 // struct ATTR_FILE_NAME AttrFileName;
625 //
626
627 // The last 8 bytes of this structure contains
628 // the VBN of subnode.
629 // !!! Note !!!
630 // This field is presented only if (flags & NTFS_IE_HAS_SUBNODES)
631 // __le64 vbn;
632 };
633
634 static_assert(sizeof(struct NTFS_DE) == 0x10);
635
de_set_vbn_le(struct NTFS_DE * e,__le64 vcn)636 static inline void de_set_vbn_le(struct NTFS_DE *e, __le64 vcn)
637 {
638 __le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
639
640 *v = vcn;
641 }
642
de_set_vbn(struct NTFS_DE * e,CLST vcn)643 static inline void de_set_vbn(struct NTFS_DE *e, CLST vcn)
644 {
645 __le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
646
647 *v = cpu_to_le64(vcn);
648 }
649
de_get_vbn_le(const struct NTFS_DE * e)650 static inline __le64 de_get_vbn_le(const struct NTFS_DE *e)
651 {
652 return *(__le64 *)Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
653 }
654
de_get_vbn(const struct NTFS_DE * e)655 static inline CLST de_get_vbn(const struct NTFS_DE *e)
656 {
657 __le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
658
659 return le64_to_cpu(*v);
660 }
661
de_get_next(const struct NTFS_DE * e)662 static inline struct NTFS_DE *de_get_next(const struct NTFS_DE *e)
663 {
664 return Add2Ptr(e, le16_to_cpu(e->size));
665 }
666
de_get_fname(const struct NTFS_DE * e)667 static inline struct ATTR_FILE_NAME *de_get_fname(const struct NTFS_DE *e)
668 {
669 return le16_to_cpu(e->key_size) >= SIZEOF_ATTRIBUTE_FILENAME ?
670 Add2Ptr(e, sizeof(struct NTFS_DE)) :
671 NULL;
672 }
673
de_is_last(const struct NTFS_DE * e)674 static inline bool de_is_last(const struct NTFS_DE *e)
675 {
676 return e->flags & NTFS_IE_LAST;
677 }
678
de_has_vcn(const struct NTFS_DE * e)679 static inline bool de_has_vcn(const struct NTFS_DE *e)
680 {
681 return e->flags & NTFS_IE_HAS_SUBNODES;
682 }
683
de_has_vcn_ex(const struct NTFS_DE * e)684 static inline bool de_has_vcn_ex(const struct NTFS_DE *e)
685 {
686 return (e->flags & NTFS_IE_HAS_SUBNODES) &&
687 (u64)(-1) != *((u64 *)Add2Ptr(e, le16_to_cpu(e->size) -
688 sizeof(__le64)));
689 }
690
691 #define MAX_BYTES_PER_NAME_ENTRY \
692 ALIGN(sizeof(struct NTFS_DE) + \
693 offsetof(struct ATTR_FILE_NAME, name) + \
694 NTFS_NAME_LEN * sizeof(short), 8)
695
696 #define NTFS_INDEX_HDR_HAS_SUBNODES cpu_to_le32(1)
697
698 struct INDEX_HDR {
699 __le32 de_off; // 0x00: The offset from the start of this structure
700 // to the first NTFS_DE.
701 __le32 used; // 0x04: The size of this structure plus all
702 // entries (quad-word aligned).
703 __le32 total; // 0x08: The allocated size of for this structure plus all entries.
704 __le32 flags; // 0x0C: 0x00 = Small directory, 0x01 = Large directory.
705
706 //
707 // de_off + used <= total
708 //
709 };
710
711 static_assert(sizeof(struct INDEX_HDR) == 0x10);
712
hdr_first_de(const struct INDEX_HDR * hdr)713 static inline struct NTFS_DE *hdr_first_de(const struct INDEX_HDR *hdr)
714 {
715 u32 de_off = le32_to_cpu(hdr->de_off);
716 u32 used = le32_to_cpu(hdr->used);
717 struct NTFS_DE *e;
718 u16 esize;
719
720 if (de_off >= used || de_off + sizeof(struct NTFS_DE) > used )
721 return NULL;
722
723 e = Add2Ptr(hdr, de_off);
724 esize = le16_to_cpu(e->size);
725 if (esize < sizeof(struct NTFS_DE) || de_off + esize > used)
726 return NULL;
727
728 return e;
729 }
730
hdr_next_de(const struct INDEX_HDR * hdr,const struct NTFS_DE * e)731 static inline struct NTFS_DE *hdr_next_de(const struct INDEX_HDR *hdr,
732 const struct NTFS_DE *e)
733 {
734 size_t off = PtrOffset(hdr, e);
735 u32 used = le32_to_cpu(hdr->used);
736 u16 esize;
737
738 if (off >= used)
739 return NULL;
740
741 esize = le16_to_cpu(e->size);
742
743 if (esize < sizeof(struct NTFS_DE) ||
744 off + esize + sizeof(struct NTFS_DE) > used)
745 return NULL;
746
747 return Add2Ptr(e, esize);
748 }
749
hdr_has_subnode(const struct INDEX_HDR * hdr)750 static inline bool hdr_has_subnode(const struct INDEX_HDR *hdr)
751 {
752 return hdr->flags & NTFS_INDEX_HDR_HAS_SUBNODES;
753 }
754
755 struct INDEX_BUFFER {
756 struct NTFS_RECORD_HEADER rhdr; // 'INDX'
757 __le64 vbn; // 0x10: vcn if index >= cluster or vsn id index < cluster
758 struct INDEX_HDR ihdr; // 0x18:
759 };
760
761 static_assert(sizeof(struct INDEX_BUFFER) == 0x28);
762
ib_is_empty(const struct INDEX_BUFFER * ib)763 static inline bool ib_is_empty(const struct INDEX_BUFFER *ib)
764 {
765 const struct NTFS_DE *first = hdr_first_de(&ib->ihdr);
766
767 return !first || de_is_last(first);
768 }
769
ib_is_leaf(const struct INDEX_BUFFER * ib)770 static inline bool ib_is_leaf(const struct INDEX_BUFFER *ib)
771 {
772 return !(ib->ihdr.flags & NTFS_INDEX_HDR_HAS_SUBNODES);
773 }
774
775 /* Index root structure ( 0x90 ). */
776 enum COLLATION_RULE {
777 NTFS_COLLATION_TYPE_BINARY = cpu_to_le32(0),
778 // $I30
779 NTFS_COLLATION_TYPE_FILENAME = cpu_to_le32(0x01),
780 // $SII of $Secure and $Q of Quota
781 NTFS_COLLATION_TYPE_UINT = cpu_to_le32(0x10),
782 // $O of Quota
783 NTFS_COLLATION_TYPE_SID = cpu_to_le32(0x11),
784 // $SDH of $Secure
785 NTFS_COLLATION_TYPE_SECURITY_HASH = cpu_to_le32(0x12),
786 // $O of ObjId and "$R" for Reparse
787 NTFS_COLLATION_TYPE_UINTS = cpu_to_le32(0x13)
788 };
789
790 static_assert(sizeof(enum COLLATION_RULE) == 4);
791
792 //
793 struct INDEX_ROOT {
794 enum ATTR_TYPE type; // 0x00: The type of attribute to index on.
795 enum COLLATION_RULE rule; // 0x04: The rule.
796 __le32 index_block_size;// 0x08: The size of index record.
797 u8 index_block_clst; // 0x0C: The number of clusters or sectors per index.
798 u8 res[3];
799 struct INDEX_HDR ihdr; // 0x10:
800 };
801
802 static_assert(sizeof(struct INDEX_ROOT) == 0x20);
803 static_assert(offsetof(struct INDEX_ROOT, ihdr) == 0x10);
804
805 #define VOLUME_FLAG_DIRTY cpu_to_le16(0x0001)
806 #define VOLUME_FLAG_RESIZE_LOG_FILE cpu_to_le16(0x0002)
807
808 struct VOLUME_INFO {
809 __le64 res1; // 0x00
810 u8 major_ver; // 0x08: NTFS major version number (before .)
811 u8 minor_ver; // 0x09: NTFS minor version number (after .)
812 __le16 flags; // 0x0A: Volume flags, see VOLUME_FLAG_XXX
813
814 }; // sizeof=0xC
815
816 #define SIZEOF_ATTRIBUTE_VOLUME_INFO 0xc
817
818 #define NTFS_LABEL_MAX_LENGTH (0x100 / sizeof(short))
819 #define NTFS_ATTR_INDEXABLE cpu_to_le32(0x00000002)
820 #define NTFS_ATTR_DUPALLOWED cpu_to_le32(0x00000004)
821 #define NTFS_ATTR_MUST_BE_INDEXED cpu_to_le32(0x00000010)
822 #define NTFS_ATTR_MUST_BE_NAMED cpu_to_le32(0x00000020)
823 #define NTFS_ATTR_MUST_BE_RESIDENT cpu_to_le32(0x00000040)
824 #define NTFS_ATTR_LOG_ALWAYS cpu_to_le32(0x00000080)
825
826 /* $AttrDef file entry. */
827 struct ATTR_DEF_ENTRY {
828 __le16 name[0x40]; // 0x00: Attr name.
829 enum ATTR_TYPE type; // 0x80: struct ATTRIB type.
830 __le32 res; // 0x84:
831 enum COLLATION_RULE rule; // 0x88:
832 __le32 flags; // 0x8C: NTFS_ATTR_XXX (see above).
833 __le64 min_sz; // 0x90: Minimum attribute data size.
834 __le64 max_sz; // 0x98: Maximum attribute data size.
835 };
836
837 static_assert(sizeof(struct ATTR_DEF_ENTRY) == 0xa0);
838
839 /* Object ID (0x40) */
840 struct OBJECT_ID {
841 struct GUID ObjId; // 0x00: Unique Id assigned to file.
842
843 // Birth Volume Id is the Object Id of the Volume on.
844 // which the Object Id was allocated. It never changes.
845 struct GUID BirthVolumeId; //0x10:
846
847 // Birth Object Id is the first Object Id that was
848 // ever assigned to this MFT Record. I.e. If the Object Id
849 // is changed for some reason, this field will reflect the
850 // original value of the Object Id.
851 struct GUID BirthObjectId; // 0x20:
852
853 // Domain Id is currently unused but it is intended to be
854 // used in a network environment where the local machine is
855 // part of a Windows 2000 Domain. This may be used in a Windows
856 // 2000 Advanced Server managed domain.
857 struct GUID DomainId; // 0x30:
858 };
859
860 static_assert(sizeof(struct OBJECT_ID) == 0x40);
861
862 /* O Directory entry structure ( rule = 0x13 ) */
863 struct NTFS_DE_O {
864 struct NTFS_DE de;
865 struct GUID ObjId; // 0x10: Unique Id assigned to file.
866 struct MFT_REF ref; // 0x20: MFT record number with this file.
867
868 // Birth Volume Id is the Object Id of the Volume on
869 // which the Object Id was allocated. It never changes.
870 struct GUID BirthVolumeId; // 0x28:
871
872 // Birth Object Id is the first Object Id that was
873 // ever assigned to this MFT Record. I.e. If the Object Id
874 // is changed for some reason, this field will reflect the
875 // original value of the Object Id.
876 // This field is valid if data_size == 0x48.
877 struct GUID BirthObjectId; // 0x38:
878
879 // Domain Id is currently unused but it is intended
880 // to be used in a network environment where the local
881 // machine is part of a Windows 2000 Domain. This may be
882 // used in a Windows 2000 Advanced Server managed domain.
883 struct GUID BirthDomainId; // 0x48:
884 };
885
886 static_assert(sizeof(struct NTFS_DE_O) == 0x58);
887
888 /* Q Directory entry structure ( rule = 0x11 ) */
889 struct NTFS_DE_Q {
890 struct NTFS_DE de;
891 __le32 owner_id; // 0x10: Unique Id assigned to file
892
893 /* here is 0x30 bytes of user quota. NOTE: 4 byte aligned! */
894 __le32 Version; // 0x14: 0x02
895 __le32 Flags; // 0x18: Quota flags, see above
896 __le64 BytesUsed; // 0x1C:
897 __le64 ChangeTime; // 0x24:
898 __le64 WarningLimit; // 0x28:
899 __le64 HardLimit; // 0x34:
900 __le64 ExceededTime; // 0x3C:
901
902 // SID is placed here
903 }__packed; // sizeof() = 0x44
904
905 static_assert(sizeof(struct NTFS_DE_Q) == 0x44);
906
907 #define SecurityDescriptorsBlockSize 0x40000 // 256K
908 #define SecurityDescriptorMaxSize 0x20000 // 128K
909 #define Log2OfSecurityDescriptorsBlockSize 18
910
911 struct SECURITY_KEY {
912 __le32 hash; // Hash value for descriptor
913 __le32 sec_id; // Security Id (guaranteed unique)
914 };
915
916 /* Security descriptors (the content of $Secure::SDS data stream) */
917 struct SECURITY_HDR {
918 struct SECURITY_KEY key; // 0x00: Security Key.
919 __le64 off; // 0x08: Offset of this entry in the file.
920 __le32 size; // 0x10: Size of this entry, 8 byte aligned.
921 /*
922 * Security descriptor itself is placed here.
923 * Total size is 16 byte aligned.
924 */
925 } __packed;
926
927 static_assert(sizeof(struct SECURITY_HDR) == 0x14);
928
929 /* SII Directory entry structure */
930 struct NTFS_DE_SII {
931 struct NTFS_DE de;
932 __le32 sec_id; // 0x10: Key: sizeof(security_id) = wKeySize
933 struct SECURITY_HDR sec_hdr; // 0x14:
934 } __packed;
935
936 static_assert(offsetof(struct NTFS_DE_SII, sec_hdr) == 0x14);
937 static_assert(sizeof(struct NTFS_DE_SII) == 0x28);
938
939 /* SDH Directory entry structure */
940 struct NTFS_DE_SDH {
941 struct NTFS_DE de;
942 struct SECURITY_KEY key; // 0x10: Key
943 struct SECURITY_HDR sec_hdr; // 0x18: Data
944 __le16 magic[2]; // 0x2C: 0x00490049 "I I"
945 };
946
947 #define SIZEOF_SDH_DIRENTRY 0x30
948
949 struct REPARSE_KEY {
950 __le32 ReparseTag; // 0x00: Reparse Tag
951 struct MFT_REF ref; // 0x04: MFT record number with this file
952 }; // sizeof() = 0x0C
953
954 static_assert(offsetof(struct REPARSE_KEY, ref) == 0x04);
955 #define SIZEOF_REPARSE_KEY 0x0C
956
957 /* Reparse Directory entry structure */
958 struct NTFS_DE_R {
959 struct NTFS_DE de;
960 struct REPARSE_KEY key; // 0x10: Reparse Key.
961 u32 zero; // 0x1c:
962 }; // sizeof() = 0x20
963
964 static_assert(sizeof(struct NTFS_DE_R) == 0x20);
965
966 /* CompressReparseBuffer.WofVersion */
967 #define WOF_CURRENT_VERSION cpu_to_le32(1)
968 /* CompressReparseBuffer.WofProvider */
969 #define WOF_PROVIDER_WIM cpu_to_le32(1)
970 /* CompressReparseBuffer.WofProvider */
971 #define WOF_PROVIDER_SYSTEM cpu_to_le32(2)
972 /* CompressReparseBuffer.ProviderVer */
973 #define WOF_PROVIDER_CURRENT_VERSION cpu_to_le32(1)
974
975 #define WOF_COMPRESSION_XPRESS4K cpu_to_le32(0) // 4k
976 #define WOF_COMPRESSION_LZX32K cpu_to_le32(1) // 32k
977 #define WOF_COMPRESSION_XPRESS8K cpu_to_le32(2) // 8k
978 #define WOF_COMPRESSION_XPRESS16K cpu_to_le32(3) // 16k
979
980 /*
981 * ATTR_REPARSE (0xC0)
982 *
983 * The reparse struct GUID structure is used by all 3rd party layered drivers to
984 * store data in a reparse point. For non-Microsoft tags, The struct GUID field
985 * cannot be GUID_NULL.
986 * The constraints on reparse tags are defined below.
987 * Microsoft tags can also be used with this format of the reparse point buffer.
988 */
989 struct REPARSE_POINT {
990 __le32 ReparseTag; // 0x00:
991 __le16 ReparseDataLength;// 0x04:
992 __le16 Reserved;
993
994 struct GUID Guid; // 0x08:
995
996 //
997 // Here GenericReparseBuffer is placed
998 //
999 };
1000
1001 static_assert(sizeof(struct REPARSE_POINT) == 0x18);
1002
1003 /* Maximum allowed size of the reparse data. */
1004 #define MAXIMUM_REPARSE_DATA_BUFFER_SIZE (16 * 1024)
1005
1006 /*
1007 * The value of the following constant needs to satisfy the following
1008 * conditions:
1009 * (1) Be at least as large as the largest of the reserved tags.
1010 * (2) Be strictly smaller than all the tags in use.
1011 */
1012 #define IO_REPARSE_TAG_RESERVED_RANGE 1
1013
1014 /*
1015 * The reparse tags are a ULONG. The 32 bits are laid out as follows:
1016 *
1017 * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1018 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1019 * +-+-+-+-+-----------------------+-------------------------------+
1020 * |M|R|N|R| Reserved bits | Reparse Tag Value |
1021 * +-+-+-+-+-----------------------+-------------------------------+
1022 *
1023 * M is the Microsoft bit. When set to 1, it denotes a tag owned by Microsoft.
1024 * All ISVs must use a tag with a 0 in this position.
1025 * Note: If a Microsoft tag is used by non-Microsoft software, the
1026 * behavior is not defined.
1027 *
1028 * R is reserved. Must be zero for non-Microsoft tags.
1029 *
1030 * N is name surrogate. When set to 1, the file represents another named
1031 * entity in the system.
1032 *
1033 * The M and N bits are OR-able.
1034 * The following macros check for the M and N bit values:
1035 */
1036
1037 /*
1038 * Macro to determine whether a reparse point tag corresponds to a tag
1039 * owned by Microsoft.
1040 */
1041 #define IsReparseTagMicrosoft(_tag) (((_tag)&IO_REPARSE_TAG_MICROSOFT))
1042
1043 /* Macro to determine whether a reparse point tag is a name surrogate. */
1044 #define IsReparseTagNameSurrogate(_tag) (((_tag)&IO_REPARSE_TAG_NAME_SURROGATE))
1045
1046 /*
1047 * The following constant represents the bits that are valid to use in
1048 * reparse tags.
1049 */
1050 #define IO_REPARSE_TAG_VALID_VALUES 0xF000FFFF
1051
1052 /*
1053 * Macro to determine whether a reparse tag is a valid tag.
1054 */
1055 #define IsReparseTagValid(_tag) \
1056 (!((_tag) & ~IO_REPARSE_TAG_VALID_VALUES) && \
1057 ((_tag) > IO_REPARSE_TAG_RESERVED_RANGE))
1058
1059 /* Microsoft tags for reparse points. */
1060
1061 enum IO_REPARSE_TAG {
1062 IO_REPARSE_TAG_SYMBOLIC_LINK = cpu_to_le32(0),
1063 IO_REPARSE_TAG_NAME_SURROGATE = cpu_to_le32(0x20000000),
1064 IO_REPARSE_TAG_MICROSOFT = cpu_to_le32(0x80000000),
1065 IO_REPARSE_TAG_MOUNT_POINT = cpu_to_le32(0xA0000003),
1066 IO_REPARSE_TAG_SYMLINK = cpu_to_le32(0xA000000C),
1067 IO_REPARSE_TAG_HSM = cpu_to_le32(0xC0000004),
1068 IO_REPARSE_TAG_SIS = cpu_to_le32(0x80000007),
1069 IO_REPARSE_TAG_DEDUP = cpu_to_le32(0x80000013),
1070 IO_REPARSE_TAG_COMPRESS = cpu_to_le32(0x80000017),
1071
1072 /*
1073 * The reparse tag 0x80000008 is reserved for Microsoft internal use.
1074 * May be published in the future.
1075 */
1076
1077 /* Microsoft reparse tag reserved for DFS */
1078 IO_REPARSE_TAG_DFS = cpu_to_le32(0x8000000A),
1079
1080 /* Microsoft reparse tag reserved for the file system filter manager. */
1081 IO_REPARSE_TAG_FILTER_MANAGER = cpu_to_le32(0x8000000B),
1082
1083 /* Non-Microsoft tags for reparse points */
1084
1085 /* Tag allocated to CONGRUENT, May 2000. Used by IFSTEST. */
1086 IO_REPARSE_TAG_IFSTEST_CONGRUENT = cpu_to_le32(0x00000009),
1087
1088 /* Tag allocated to ARKIVIO. */
1089 IO_REPARSE_TAG_ARKIVIO = cpu_to_le32(0x0000000C),
1090
1091 /* Tag allocated to SOLUTIONSOFT. */
1092 IO_REPARSE_TAG_SOLUTIONSOFT = cpu_to_le32(0x2000000D),
1093
1094 /* Tag allocated to COMMVAULT. */
1095 IO_REPARSE_TAG_COMMVAULT = cpu_to_le32(0x0000000E),
1096
1097 /* OneDrive?? */
1098 IO_REPARSE_TAG_CLOUD = cpu_to_le32(0x9000001A),
1099 IO_REPARSE_TAG_CLOUD_1 = cpu_to_le32(0x9000101A),
1100 IO_REPARSE_TAG_CLOUD_2 = cpu_to_le32(0x9000201A),
1101 IO_REPARSE_TAG_CLOUD_3 = cpu_to_le32(0x9000301A),
1102 IO_REPARSE_TAG_CLOUD_4 = cpu_to_le32(0x9000401A),
1103 IO_REPARSE_TAG_CLOUD_5 = cpu_to_le32(0x9000501A),
1104 IO_REPARSE_TAG_CLOUD_6 = cpu_to_le32(0x9000601A),
1105 IO_REPARSE_TAG_CLOUD_7 = cpu_to_le32(0x9000701A),
1106 IO_REPARSE_TAG_CLOUD_8 = cpu_to_le32(0x9000801A),
1107 IO_REPARSE_TAG_CLOUD_9 = cpu_to_le32(0x9000901A),
1108 IO_REPARSE_TAG_CLOUD_A = cpu_to_le32(0x9000A01A),
1109 IO_REPARSE_TAG_CLOUD_B = cpu_to_le32(0x9000B01A),
1110 IO_REPARSE_TAG_CLOUD_C = cpu_to_le32(0x9000C01A),
1111 IO_REPARSE_TAG_CLOUD_D = cpu_to_le32(0x9000D01A),
1112 IO_REPARSE_TAG_CLOUD_E = cpu_to_le32(0x9000E01A),
1113 IO_REPARSE_TAG_CLOUD_F = cpu_to_le32(0x9000F01A),
1114
1115 };
1116
1117 #define SYMLINK_FLAG_RELATIVE 1
1118
1119 /* Microsoft reparse buffer. (see DDK for details) */
1120 struct REPARSE_DATA_BUFFER {
1121 __le32 ReparseTag; // 0x00:
1122 __le16 ReparseDataLength; // 0x04:
1123 __le16 Reserved;
1124
1125 union {
1126 /* If ReparseTag == 0xA0000003 (IO_REPARSE_TAG_MOUNT_POINT) */
1127 struct {
1128 __le16 SubstituteNameOffset; // 0x08
1129 __le16 SubstituteNameLength; // 0x0A
1130 __le16 PrintNameOffset; // 0x0C
1131 __le16 PrintNameLength; // 0x0E
1132 __le16 PathBuffer[]; // 0x10
1133 } MountPointReparseBuffer;
1134
1135 /*
1136 * If ReparseTag == 0xA000000C (IO_REPARSE_TAG_SYMLINK)
1137 * https://msdn.microsoft.com/en-us/library/cc232006.aspx
1138 */
1139 struct {
1140 __le16 SubstituteNameOffset; // 0x08
1141 __le16 SubstituteNameLength; // 0x0A
1142 __le16 PrintNameOffset; // 0x0C
1143 __le16 PrintNameLength; // 0x0E
1144 // 0-absolute path 1- relative path, SYMLINK_FLAG_RELATIVE
1145 __le32 Flags; // 0x10
1146 __le16 PathBuffer[]; // 0x14
1147 } SymbolicLinkReparseBuffer;
1148
1149 /* If ReparseTag == 0x80000017U */
1150 struct {
1151 __le32 WofVersion; // 0x08 == 1
1152 /*
1153 * 1 - WIM backing provider ("WIMBoot"),
1154 * 2 - System compressed file provider
1155 */
1156 __le32 WofProvider; // 0x0C:
1157 __le32 ProviderVer; // 0x10: == 1 WOF_FILE_PROVIDER_CURRENT_VERSION == 1
1158 __le32 CompressionFormat; // 0x14: 0, 1, 2, 3. See WOF_COMPRESSION_XXX
1159 } CompressReparseBuffer;
1160
1161 struct {
1162 u8 DataBuffer[1]; // 0x08:
1163 } GenericReparseBuffer;
1164 };
1165 };
1166
1167 /* ATTR_EA_INFO (0xD0) */
1168
1169 #define FILE_NEED_EA 0x80 // See ntifs.h
1170 /*
1171 * FILE_NEED_EA, indicates that the file to which the EA belongs cannot be
1172 * interpreted without understanding the associated extended attributes.
1173 */
1174 struct EA_INFO {
1175 __le16 size_pack; // 0x00: Size of buffer to hold in packed form.
1176 __le16 count; // 0x02: Count of EA's with FILE_NEED_EA bit set.
1177 __le32 size; // 0x04: Size of buffer to hold in unpacked form.
1178 };
1179
1180 static_assert(sizeof(struct EA_INFO) == 8);
1181
1182 /* ATTR_EA (0xE0) */
1183 struct EA_FULL {
1184 __le32 size; // 0x00: (not in packed)
1185 u8 flags; // 0x04:
1186 u8 name_len; // 0x05:
1187 __le16 elength; // 0x06:
1188 u8 name[]; // 0x08:
1189 };
1190
1191 static_assert(offsetof(struct EA_FULL, name) == 8);
1192
1193 #define ACL_REVISION 2
1194 #define ACL_REVISION_DS 4
1195
1196 #define SE_SELF_RELATIVE cpu_to_le16(0x8000)
1197
1198 struct SECURITY_DESCRIPTOR_RELATIVE {
1199 u8 Revision;
1200 u8 Sbz1;
1201 __le16 Control;
1202 __le32 Owner;
1203 __le32 Group;
1204 __le32 Sacl;
1205 __le32 Dacl;
1206 };
1207 static_assert(sizeof(struct SECURITY_DESCRIPTOR_RELATIVE) == 0x14);
1208
1209 struct ACE_HEADER {
1210 u8 AceType;
1211 u8 AceFlags;
1212 __le16 AceSize;
1213 };
1214 static_assert(sizeof(struct ACE_HEADER) == 4);
1215
1216 struct ACL {
1217 u8 AclRevision;
1218 u8 Sbz1;
1219 __le16 AclSize;
1220 __le16 AceCount;
1221 __le16 Sbz2;
1222 };
1223 static_assert(sizeof(struct ACL) == 8);
1224
1225 struct SID {
1226 u8 Revision;
1227 u8 SubAuthorityCount;
1228 u8 IdentifierAuthority[6];
1229 __le32 SubAuthority[];
1230 };
1231 static_assert(offsetof(struct SID, SubAuthority) == 8);
1232
1233 #endif /* _LINUX_NTFS3_NTFS_H */
1234 // clang-format on
1235