1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * 4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. 5 * 6 */ 7 8 #include <linux/blkdev.h> 9 #include <linux/buffer_head.h> 10 #include <linux/fs.h> 11 #include <linux/kernel.h> 12 13 #include "debug.h" 14 #include "ntfs.h" 15 #include "ntfs_fs.h" 16 17 static const struct INDEX_NAMES { 18 const __le16 *name; 19 u8 name_len; 20 } s_index_names[INDEX_MUTEX_TOTAL] = { 21 { I30_NAME, ARRAY_SIZE(I30_NAME) }, { SII_NAME, ARRAY_SIZE(SII_NAME) }, 22 { SDH_NAME, ARRAY_SIZE(SDH_NAME) }, { SO_NAME, ARRAY_SIZE(SO_NAME) }, 23 { SQ_NAME, ARRAY_SIZE(SQ_NAME) }, { SR_NAME, ARRAY_SIZE(SR_NAME) }, 24 }; 25 26 /* 27 * cmp_fnames - Compare two names in index. 28 * 29 * if l1 != 0 30 * Both names are little endian on-disk ATTR_FILE_NAME structs. 31 * else 32 * key1 - cpu_str, key2 - ATTR_FILE_NAME 33 */ 34 static int cmp_fnames(const void *key1, size_t l1, const void *key2, size_t l2, 35 const void *data) 36 { 37 const struct ATTR_FILE_NAME *f2 = key2; 38 const struct ntfs_sb_info *sbi = data; 39 const struct ATTR_FILE_NAME *f1; 40 u16 fsize2; 41 bool both_case; 42 43 if (l2 <= offsetof(struct ATTR_FILE_NAME, name)) 44 return -1; 45 46 fsize2 = fname_full_size(f2); 47 if (l2 < fsize2) 48 return -1; 49 50 both_case = f2->type != FILE_NAME_DOS /*&& !sbi->options.nocase*/; 51 if (!l1) { 52 const struct le_str *s2 = (struct le_str *)&f2->name_len; 53 54 /* 55 * If names are equal (case insensitive) 56 * try to compare it case sensitive. 57 */ 58 return ntfs_cmp_names_cpu(key1, s2, sbi->upcase, both_case); 59 } 60 61 f1 = key1; 62 return ntfs_cmp_names(f1->name, f1->name_len, f2->name, f2->name_len, 63 sbi->upcase, both_case); 64 } 65 66 /* 67 * cmp_uint - $SII of $Secure and $Q of Quota 68 */ 69 static int cmp_uint(const void *key1, size_t l1, const void *key2, size_t l2, 70 const void *data) 71 { 72 const u32 *k1 = key1; 73 const u32 *k2 = key2; 74 75 if (l2 < sizeof(u32)) 76 return -1; 77 78 if (*k1 < *k2) 79 return -1; 80 if (*k1 > *k2) 81 return 1; 82 return 0; 83 } 84 85 /* 86 * cmp_sdh - $SDH of $Secure 87 */ 88 static int cmp_sdh(const void *key1, size_t l1, const void *key2, size_t l2, 89 const void *data) 90 { 91 const struct SECURITY_KEY *k1 = key1; 92 const struct SECURITY_KEY *k2 = key2; 93 u32 t1, t2; 94 95 if (l2 < sizeof(struct SECURITY_KEY)) 96 return -1; 97 98 t1 = le32_to_cpu(k1->hash); 99 t2 = le32_to_cpu(k2->hash); 100 101 /* First value is a hash value itself. */ 102 if (t1 < t2) 103 return -1; 104 if (t1 > t2) 105 return 1; 106 107 /* Second value is security Id. */ 108 if (data) { 109 t1 = le32_to_cpu(k1->sec_id); 110 t2 = le32_to_cpu(k2->sec_id); 111 if (t1 < t2) 112 return -1; 113 if (t1 > t2) 114 return 1; 115 } 116 117 return 0; 118 } 119 120 /* 121 * cmp_uints - $O of ObjId and "$R" for Reparse. 122 */ 123 static int cmp_uints(const void *key1, size_t l1, const void *key2, size_t l2, 124 const void *data) 125 { 126 const __le32 *k1 = key1; 127 const __le32 *k2 = key2; 128 size_t count; 129 130 if ((size_t)data == 1) { 131 /* 132 * ni_delete_all -> ntfs_remove_reparse -> 133 * delete all with this reference. 134 * k1, k2 - pointers to REPARSE_KEY 135 */ 136 137 k1 += 1; // Skip REPARSE_KEY.ReparseTag 138 k2 += 1; // Skip REPARSE_KEY.ReparseTag 139 if (l2 <= sizeof(int)) 140 return -1; 141 l2 -= sizeof(int); 142 if (l1 <= sizeof(int)) 143 return 1; 144 l1 -= sizeof(int); 145 } 146 147 if (l2 < sizeof(int)) 148 return -1; 149 150 for (count = min(l1, l2) >> 2; count > 0; --count, ++k1, ++k2) { 151 u32 t1 = le32_to_cpu(*k1); 152 u32 t2 = le32_to_cpu(*k2); 153 154 if (t1 > t2) 155 return 1; 156 if (t1 < t2) 157 return -1; 158 } 159 160 if (l1 > l2) 161 return 1; 162 if (l1 < l2) 163 return -1; 164 165 return 0; 166 } 167 168 static inline NTFS_CMP_FUNC get_cmp_func(const struct INDEX_ROOT *root) 169 { 170 switch (root->type) { 171 case ATTR_NAME: 172 if (root->rule == NTFS_COLLATION_TYPE_FILENAME) 173 return &cmp_fnames; 174 break; 175 case ATTR_ZERO: 176 switch (root->rule) { 177 case NTFS_COLLATION_TYPE_UINT: 178 return &cmp_uint; 179 case NTFS_COLLATION_TYPE_SECURITY_HASH: 180 return &cmp_sdh; 181 case NTFS_COLLATION_TYPE_UINTS: 182 return &cmp_uints; 183 default: 184 break; 185 } 186 break; 187 default: 188 break; 189 } 190 191 return NULL; 192 } 193 194 struct bmp_buf { 195 struct ATTRIB *b; 196 struct mft_inode *mi; 197 struct buffer_head *bh; 198 ulong *buf; 199 size_t bit; 200 u32 nbits; 201 u64 new_valid; 202 }; 203 204 static int bmp_buf_get(struct ntfs_index *indx, struct ntfs_inode *ni, 205 size_t bit, struct bmp_buf *bbuf) 206 { 207 struct ATTRIB *b; 208 size_t data_size, valid_size, vbo, off = bit >> 3; 209 struct ntfs_sb_info *sbi = ni->mi.sbi; 210 CLST vcn = off >> sbi->cluster_bits; 211 struct ATTR_LIST_ENTRY *le = NULL; 212 struct buffer_head *bh; 213 struct super_block *sb; 214 u32 blocksize; 215 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 216 217 bbuf->bh = NULL; 218 219 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len, 220 &vcn, &bbuf->mi); 221 bbuf->b = b; 222 if (!b) 223 return -EINVAL; 224 225 if (!b->non_res) { 226 data_size = le32_to_cpu(b->res.data_size); 227 228 if (off >= data_size) 229 return -EINVAL; 230 231 bbuf->buf = (ulong *)resident_data(b); 232 bbuf->bit = 0; 233 bbuf->nbits = data_size * 8; 234 235 return 0; 236 } 237 238 data_size = le64_to_cpu(b->nres.data_size); 239 if (WARN_ON(off >= data_size)) { 240 /* Looks like filesystem error. */ 241 return -EINVAL; 242 } 243 244 valid_size = le64_to_cpu(b->nres.valid_size); 245 246 bh = ntfs_bread_run(sbi, &indx->bitmap_run, off); 247 if (!bh) 248 return -EIO; 249 250 if (IS_ERR(bh)) 251 return PTR_ERR(bh); 252 253 bbuf->bh = bh; 254 255 if (buffer_locked(bh)) 256 __wait_on_buffer(bh); 257 258 lock_buffer(bh); 259 260 sb = sbi->sb; 261 blocksize = sb->s_blocksize; 262 263 vbo = off & ~(size_t)sbi->block_mask; 264 265 bbuf->new_valid = vbo + blocksize; 266 if (bbuf->new_valid <= valid_size) 267 bbuf->new_valid = 0; 268 else if (bbuf->new_valid > data_size) 269 bbuf->new_valid = data_size; 270 271 if (vbo >= valid_size) { 272 memset(bh->b_data, 0, blocksize); 273 } else if (vbo + blocksize > valid_size) { 274 u32 voff = valid_size & sbi->block_mask; 275 276 memset(bh->b_data + voff, 0, blocksize - voff); 277 } 278 279 bbuf->buf = (ulong *)bh->b_data; 280 bbuf->bit = 8 * (off & ~(size_t)sbi->block_mask); 281 bbuf->nbits = 8 * blocksize; 282 283 return 0; 284 } 285 286 static void bmp_buf_put(struct bmp_buf *bbuf, bool dirty) 287 { 288 struct buffer_head *bh = bbuf->bh; 289 struct ATTRIB *b = bbuf->b; 290 291 if (!bh) { 292 if (b && !b->non_res && dirty) 293 bbuf->mi->dirty = true; 294 return; 295 } 296 297 if (!dirty) 298 goto out; 299 300 if (bbuf->new_valid) { 301 b->nres.valid_size = cpu_to_le64(bbuf->new_valid); 302 bbuf->mi->dirty = true; 303 } 304 305 set_buffer_uptodate(bh); 306 mark_buffer_dirty(bh); 307 308 out: 309 unlock_buffer(bh); 310 put_bh(bh); 311 } 312 313 /* 314 * indx_mark_used - Mark the bit @bit as used. 315 */ 316 static int indx_mark_used(struct ntfs_index *indx, struct ntfs_inode *ni, 317 size_t bit) 318 { 319 int err; 320 struct bmp_buf bbuf; 321 322 err = bmp_buf_get(indx, ni, bit, &bbuf); 323 if (err) 324 return err; 325 326 __set_bit(bit - bbuf.bit, bbuf.buf); 327 328 bmp_buf_put(&bbuf, true); 329 330 return 0; 331 } 332 333 /* 334 * indx_mark_free - Mark the bit @bit as free. 335 */ 336 static int indx_mark_free(struct ntfs_index *indx, struct ntfs_inode *ni, 337 size_t bit) 338 { 339 int err; 340 struct bmp_buf bbuf; 341 342 err = bmp_buf_get(indx, ni, bit, &bbuf); 343 if (err) 344 return err; 345 346 __clear_bit(bit - bbuf.bit, bbuf.buf); 347 348 bmp_buf_put(&bbuf, true); 349 350 return 0; 351 } 352 353 /* 354 * scan_nres_bitmap 355 * 356 * If ntfs_readdir calls this function (indx_used_bit -> scan_nres_bitmap), 357 * inode is shared locked and no ni_lock. 358 * Use rw_semaphore for read/write access to bitmap_run. 359 */ 360 static int scan_nres_bitmap(struct ntfs_inode *ni, struct ATTRIB *bitmap, 361 struct ntfs_index *indx, size_t from, 362 bool (*fn)(const ulong *buf, u32 bit, u32 bits, 363 size_t *ret), 364 size_t *ret) 365 { 366 struct ntfs_sb_info *sbi = ni->mi.sbi; 367 struct super_block *sb = sbi->sb; 368 struct runs_tree *run = &indx->bitmap_run; 369 struct rw_semaphore *lock = &indx->run_lock; 370 u32 nbits = sb->s_blocksize * 8; 371 u32 blocksize = sb->s_blocksize; 372 u64 valid_size = le64_to_cpu(bitmap->nres.valid_size); 373 u64 data_size = le64_to_cpu(bitmap->nres.data_size); 374 sector_t eblock = bytes_to_block(sb, data_size); 375 size_t vbo = from >> 3; 376 sector_t blk = (vbo & sbi->cluster_mask) >> sb->s_blocksize_bits; 377 sector_t vblock = vbo >> sb->s_blocksize_bits; 378 sector_t blen, block; 379 CLST lcn, clen, vcn, vcn_next; 380 size_t idx; 381 struct buffer_head *bh; 382 bool ok; 383 384 *ret = MINUS_ONE_T; 385 386 if (vblock >= eblock) 387 return 0; 388 389 from &= nbits - 1; 390 vcn = vbo >> sbi->cluster_bits; 391 392 down_read(lock); 393 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx); 394 up_read(lock); 395 396 next_run: 397 if (!ok) { 398 int err; 399 const struct INDEX_NAMES *name = &s_index_names[indx->type]; 400 401 down_write(lock); 402 err = attr_load_runs_vcn(ni, ATTR_BITMAP, name->name, 403 name->name_len, run, vcn); 404 up_write(lock); 405 if (err) 406 return err; 407 down_read(lock); 408 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx); 409 up_read(lock); 410 if (!ok) 411 return -EINVAL; 412 } 413 414 blen = (sector_t)clen * sbi->blocks_per_cluster; 415 block = (sector_t)lcn * sbi->blocks_per_cluster; 416 417 for (; blk < blen; blk++, from = 0) { 418 bh = ntfs_bread(sb, block + blk); 419 if (!bh) 420 return -EIO; 421 422 vbo = (u64)vblock << sb->s_blocksize_bits; 423 if (vbo >= valid_size) { 424 memset(bh->b_data, 0, blocksize); 425 } else if (vbo + blocksize > valid_size) { 426 u32 voff = valid_size & sbi->block_mask; 427 428 memset(bh->b_data + voff, 0, blocksize - voff); 429 } 430 431 if (vbo + blocksize > data_size) 432 nbits = 8 * (data_size - vbo); 433 434 ok = nbits > from ? (*fn)((ulong *)bh->b_data, from, nbits, ret) 435 : false; 436 put_bh(bh); 437 438 if (ok) { 439 *ret += 8 * vbo; 440 return 0; 441 } 442 443 if (++vblock >= eblock) { 444 *ret = MINUS_ONE_T; 445 return 0; 446 } 447 } 448 blk = 0; 449 vcn_next = vcn + clen; 450 down_read(lock); 451 ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && vcn == vcn_next; 452 if (!ok) 453 vcn = vcn_next; 454 up_read(lock); 455 goto next_run; 456 } 457 458 static bool scan_for_free(const ulong *buf, u32 bit, u32 bits, size_t *ret) 459 { 460 size_t pos = find_next_zero_bit(buf, bits, bit); 461 462 if (pos >= bits) 463 return false; 464 *ret = pos; 465 return true; 466 } 467 468 /* 469 * indx_find_free - Look for free bit. 470 * 471 * Return: -1 if no free bits. 472 */ 473 static int indx_find_free(struct ntfs_index *indx, struct ntfs_inode *ni, 474 size_t *bit, struct ATTRIB **bitmap) 475 { 476 struct ATTRIB *b; 477 struct ATTR_LIST_ENTRY *le = NULL; 478 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 479 int err; 480 481 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len, 482 NULL, NULL); 483 484 if (!b) 485 return -ENOENT; 486 487 *bitmap = b; 488 *bit = MINUS_ONE_T; 489 490 if (!b->non_res) { 491 u32 nbits = 8 * le32_to_cpu(b->res.data_size); 492 size_t pos = find_next_zero_bit(resident_data(b), nbits, 0); 493 494 if (pos < nbits) 495 *bit = pos; 496 } else { 497 err = scan_nres_bitmap(ni, b, indx, 0, &scan_for_free, bit); 498 499 if (err) 500 return err; 501 } 502 503 return 0; 504 } 505 506 static bool scan_for_used(const ulong *buf, u32 bit, u32 bits, size_t *ret) 507 { 508 size_t pos = find_next_bit(buf, bits, bit); 509 510 if (pos >= bits) 511 return false; 512 *ret = pos; 513 return true; 514 } 515 516 /* 517 * indx_used_bit - Look for used bit. 518 * 519 * Return: MINUS_ONE_T if no used bits. 520 */ 521 int indx_used_bit(struct ntfs_index *indx, struct ntfs_inode *ni, size_t *bit) 522 { 523 struct ATTRIB *b; 524 struct ATTR_LIST_ENTRY *le = NULL; 525 size_t from = *bit; 526 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 527 int err; 528 529 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len, 530 NULL, NULL); 531 532 if (!b) 533 return -ENOENT; 534 535 *bit = MINUS_ONE_T; 536 537 if (!b->non_res) { 538 u32 nbits = le32_to_cpu(b->res.data_size) * 8; 539 size_t pos = find_next_bit(resident_data(b), nbits, from); 540 541 if (pos < nbits) 542 *bit = pos; 543 } else { 544 err = scan_nres_bitmap(ni, b, indx, from, &scan_for_used, bit); 545 if (err) 546 return err; 547 } 548 549 return 0; 550 } 551 552 /* 553 * hdr_find_split 554 * 555 * Find a point at which the index allocation buffer would like to be split. 556 * NOTE: This function should never return 'END' entry NULL returns on error. 557 */ 558 static const struct NTFS_DE *hdr_find_split(const struct INDEX_HDR *hdr) 559 { 560 size_t o; 561 const struct NTFS_DE *e = hdr_first_de(hdr); 562 u32 used_2 = le32_to_cpu(hdr->used) >> 1; 563 u16 esize; 564 565 if (!e || de_is_last(e)) 566 return NULL; 567 568 esize = le16_to_cpu(e->size); 569 for (o = le32_to_cpu(hdr->de_off) + esize; o < used_2; o += esize) { 570 const struct NTFS_DE *p = e; 571 572 e = Add2Ptr(hdr, o); 573 574 /* We must not return END entry. */ 575 if (de_is_last(e)) 576 return p; 577 578 esize = le16_to_cpu(e->size); 579 } 580 581 return e; 582 } 583 584 /* 585 * hdr_insert_head - Insert some entries at the beginning of the buffer. 586 * 587 * It is used to insert entries into a newly-created buffer. 588 */ 589 static const struct NTFS_DE *hdr_insert_head(struct INDEX_HDR *hdr, 590 const void *ins, u32 ins_bytes) 591 { 592 u32 to_move; 593 struct NTFS_DE *e = hdr_first_de(hdr); 594 u32 used = le32_to_cpu(hdr->used); 595 596 if (!e) 597 return NULL; 598 599 /* Now we just make room for the inserted entries and jam it in. */ 600 to_move = used - le32_to_cpu(hdr->de_off); 601 memmove(Add2Ptr(e, ins_bytes), e, to_move); 602 memcpy(e, ins, ins_bytes); 603 hdr->used = cpu_to_le32(used + ins_bytes); 604 605 return e; 606 } 607 608 void fnd_clear(struct ntfs_fnd *fnd) 609 { 610 int i; 611 612 for (i = 0; i < fnd->level; i++) { 613 struct indx_node *n = fnd->nodes[i]; 614 615 if (!n) 616 continue; 617 618 put_indx_node(n); 619 fnd->nodes[i] = NULL; 620 } 621 fnd->level = 0; 622 fnd->root_de = NULL; 623 } 624 625 static int fnd_push(struct ntfs_fnd *fnd, struct indx_node *n, 626 struct NTFS_DE *e) 627 { 628 int i; 629 630 i = fnd->level; 631 if (i < 0 || i >= ARRAY_SIZE(fnd->nodes)) 632 return -EINVAL; 633 fnd->nodes[i] = n; 634 fnd->de[i] = e; 635 fnd->level += 1; 636 return 0; 637 } 638 639 static struct indx_node *fnd_pop(struct ntfs_fnd *fnd) 640 { 641 struct indx_node *n; 642 int i = fnd->level; 643 644 i -= 1; 645 n = fnd->nodes[i]; 646 fnd->nodes[i] = NULL; 647 fnd->level = i; 648 649 return n; 650 } 651 652 static bool fnd_is_empty(struct ntfs_fnd *fnd) 653 { 654 if (!fnd->level) 655 return !fnd->root_de; 656 657 return !fnd->de[fnd->level - 1]; 658 } 659 660 /* 661 * hdr_find_e - Locate an entry the index buffer. 662 * 663 * If no matching entry is found, it returns the first entry which is greater 664 * than the desired entry If the search key is greater than all the entries the 665 * buffer, it returns the 'end' entry. This function does a binary search of the 666 * current index buffer, for the first entry that is <= to the search value. 667 * 668 * Return: NULL if error. 669 */ 670 static struct NTFS_DE *hdr_find_e(const struct ntfs_index *indx, 671 const struct INDEX_HDR *hdr, const void *key, 672 size_t key_len, const void *ctx, int *diff) 673 { 674 struct NTFS_DE *e, *found = NULL; 675 NTFS_CMP_FUNC cmp = indx->cmp; 676 int min_idx = 0, mid_idx, max_idx = 0; 677 int diff2; 678 int table_size = 8; 679 u32 e_size, e_key_len; 680 u32 end = le32_to_cpu(hdr->used); 681 u32 off = le32_to_cpu(hdr->de_off); 682 u16 offs[128]; 683 684 fill_table: 685 if (off + sizeof(struct NTFS_DE) > end) 686 return NULL; 687 688 e = Add2Ptr(hdr, off); 689 e_size = le16_to_cpu(e->size); 690 691 if (e_size < sizeof(struct NTFS_DE) || off + e_size > end) 692 return NULL; 693 694 if (!de_is_last(e)) { 695 offs[max_idx] = off; 696 off += e_size; 697 698 max_idx++; 699 if (max_idx < table_size) 700 goto fill_table; 701 702 max_idx--; 703 } 704 705 binary_search: 706 e_key_len = le16_to_cpu(e->key_size); 707 708 diff2 = (*cmp)(key, key_len, e + 1, e_key_len, ctx); 709 if (diff2 > 0) { 710 if (found) { 711 min_idx = mid_idx + 1; 712 } else { 713 if (de_is_last(e)) 714 return NULL; 715 716 max_idx = 0; 717 table_size = min(table_size * 2, 718 (int)ARRAY_SIZE(offs)); 719 goto fill_table; 720 } 721 } else if (diff2 < 0) { 722 if (found) 723 max_idx = mid_idx - 1; 724 else 725 max_idx--; 726 727 found = e; 728 } else { 729 *diff = 0; 730 return e; 731 } 732 733 if (min_idx > max_idx) { 734 *diff = -1; 735 return found; 736 } 737 738 mid_idx = (min_idx + max_idx) >> 1; 739 e = Add2Ptr(hdr, offs[mid_idx]); 740 741 goto binary_search; 742 } 743 744 /* 745 * hdr_insert_de - Insert an index entry into the buffer. 746 * 747 * 'before' should be a pointer previously returned from hdr_find_e. 748 */ 749 static struct NTFS_DE *hdr_insert_de(const struct ntfs_index *indx, 750 struct INDEX_HDR *hdr, 751 const struct NTFS_DE *de, 752 struct NTFS_DE *before, const void *ctx) 753 { 754 int diff; 755 size_t off = PtrOffset(hdr, before); 756 u32 used = le32_to_cpu(hdr->used); 757 u32 total = le32_to_cpu(hdr->total); 758 u16 de_size = le16_to_cpu(de->size); 759 760 /* First, check to see if there's enough room. */ 761 if (used + de_size > total) 762 return NULL; 763 764 /* We know there's enough space, so we know we'll succeed. */ 765 if (before) { 766 /* Check that before is inside Index. */ 767 if (off >= used || off < le32_to_cpu(hdr->de_off) || 768 off + le16_to_cpu(before->size) > total) { 769 return NULL; 770 } 771 goto ok; 772 } 773 /* No insert point is applied. Get it manually. */ 774 before = hdr_find_e(indx, hdr, de + 1, le16_to_cpu(de->key_size), ctx, 775 &diff); 776 if (!before) 777 return NULL; 778 off = PtrOffset(hdr, before); 779 780 ok: 781 /* Now we just make room for the entry and jam it in. */ 782 memmove(Add2Ptr(before, de_size), before, used - off); 783 784 hdr->used = cpu_to_le32(used + de_size); 785 memcpy(before, de, de_size); 786 787 return before; 788 } 789 790 /* 791 * hdr_delete_de - Remove an entry from the index buffer. 792 */ 793 static inline struct NTFS_DE *hdr_delete_de(struct INDEX_HDR *hdr, 794 struct NTFS_DE *re) 795 { 796 u32 used = le32_to_cpu(hdr->used); 797 u16 esize = le16_to_cpu(re->size); 798 u32 off = PtrOffset(hdr, re); 799 int bytes = used - (off + esize); 800 801 if (off >= used || esize < sizeof(struct NTFS_DE) || 802 bytes < sizeof(struct NTFS_DE)) 803 return NULL; 804 805 hdr->used = cpu_to_le32(used - esize); 806 memmove(re, Add2Ptr(re, esize), bytes); 807 808 return re; 809 } 810 811 void indx_clear(struct ntfs_index *indx) 812 { 813 run_close(&indx->alloc_run); 814 run_close(&indx->bitmap_run); 815 } 816 817 int indx_init(struct ntfs_index *indx, struct ntfs_sb_info *sbi, 818 const struct ATTRIB *attr, enum index_mutex_classed type) 819 { 820 u32 t32; 821 const struct INDEX_ROOT *root = resident_data(attr); 822 823 /* Check root fields. */ 824 if (!root->index_block_clst) 825 return -EINVAL; 826 827 indx->type = type; 828 indx->idx2vbn_bits = __ffs(root->index_block_clst); 829 830 t32 = le32_to_cpu(root->index_block_size); 831 indx->index_bits = blksize_bits(t32); 832 833 /* Check index record size. */ 834 if (t32 < sbi->cluster_size) { 835 /* Index record is smaller than a cluster, use 512 blocks. */ 836 if (t32 != root->index_block_clst * SECTOR_SIZE) 837 return -EINVAL; 838 839 /* Check alignment to a cluster. */ 840 if ((sbi->cluster_size >> SECTOR_SHIFT) & 841 (root->index_block_clst - 1)) { 842 return -EINVAL; 843 } 844 845 indx->vbn2vbo_bits = SECTOR_SHIFT; 846 } else { 847 /* Index record must be a multiple of cluster size. */ 848 if (t32 != root->index_block_clst << sbi->cluster_bits) 849 return -EINVAL; 850 851 indx->vbn2vbo_bits = sbi->cluster_bits; 852 } 853 854 init_rwsem(&indx->run_lock); 855 856 indx->cmp = get_cmp_func(root); 857 return indx->cmp ? 0 : -EINVAL; 858 } 859 860 static struct indx_node *indx_new(struct ntfs_index *indx, 861 struct ntfs_inode *ni, CLST vbn, 862 const __le64 *sub_vbn) 863 { 864 int err; 865 struct NTFS_DE *e; 866 struct indx_node *r; 867 struct INDEX_HDR *hdr; 868 struct INDEX_BUFFER *index; 869 u64 vbo = (u64)vbn << indx->vbn2vbo_bits; 870 u32 bytes = 1u << indx->index_bits; 871 u16 fn; 872 u32 eo; 873 874 r = kzalloc(sizeof(struct indx_node), GFP_NOFS); 875 if (!r) 876 return ERR_PTR(-ENOMEM); 877 878 index = kzalloc(bytes, GFP_NOFS); 879 if (!index) { 880 kfree(r); 881 return ERR_PTR(-ENOMEM); 882 } 883 884 err = ntfs_get_bh(ni->mi.sbi, &indx->alloc_run, vbo, bytes, &r->nb); 885 886 if (err) { 887 kfree(index); 888 kfree(r); 889 return ERR_PTR(err); 890 } 891 892 /* Create header. */ 893 index->rhdr.sign = NTFS_INDX_SIGNATURE; 894 index->rhdr.fix_off = cpu_to_le16(sizeof(struct INDEX_BUFFER)); // 0x28 895 fn = (bytes >> SECTOR_SHIFT) + 1; // 9 896 index->rhdr.fix_num = cpu_to_le16(fn); 897 index->vbn = cpu_to_le64(vbn); 898 hdr = &index->ihdr; 899 eo = ALIGN(sizeof(struct INDEX_BUFFER) + fn * sizeof(short), 8); 900 hdr->de_off = cpu_to_le32(eo); 901 902 e = Add2Ptr(hdr, eo); 903 904 if (sub_vbn) { 905 e->flags = NTFS_IE_LAST | NTFS_IE_HAS_SUBNODES; 906 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64)); 907 hdr->used = 908 cpu_to_le32(eo + sizeof(struct NTFS_DE) + sizeof(u64)); 909 de_set_vbn_le(e, *sub_vbn); 910 hdr->flags = 1; 911 } else { 912 e->size = cpu_to_le16(sizeof(struct NTFS_DE)); 913 hdr->used = cpu_to_le32(eo + sizeof(struct NTFS_DE)); 914 e->flags = NTFS_IE_LAST; 915 } 916 917 hdr->total = cpu_to_le32(bytes - offsetof(struct INDEX_BUFFER, ihdr)); 918 919 r->index = index; 920 return r; 921 } 922 923 struct INDEX_ROOT *indx_get_root(struct ntfs_index *indx, struct ntfs_inode *ni, 924 struct ATTRIB **attr, struct mft_inode **mi) 925 { 926 struct ATTR_LIST_ENTRY *le = NULL; 927 struct ATTRIB *a; 928 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 929 930 a = ni_find_attr(ni, NULL, &le, ATTR_ROOT, in->name, in->name_len, NULL, 931 mi); 932 if (!a) 933 return NULL; 934 935 if (attr) 936 *attr = a; 937 938 return resident_data_ex(a, sizeof(struct INDEX_ROOT)); 939 } 940 941 static int indx_write(struct ntfs_index *indx, struct ntfs_inode *ni, 942 struct indx_node *node, int sync) 943 { 944 struct INDEX_BUFFER *ib = node->index; 945 946 return ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &node->nb, sync); 947 } 948 949 /* 950 * indx_read 951 * 952 * If ntfs_readdir calls this function 953 * inode is shared locked and no ni_lock. 954 * Use rw_semaphore for read/write access to alloc_run. 955 */ 956 int indx_read(struct ntfs_index *indx, struct ntfs_inode *ni, CLST vbn, 957 struct indx_node **node) 958 { 959 int err; 960 struct INDEX_BUFFER *ib; 961 struct runs_tree *run = &indx->alloc_run; 962 struct rw_semaphore *lock = &indx->run_lock; 963 u64 vbo = (u64)vbn << indx->vbn2vbo_bits; 964 u32 bytes = 1u << indx->index_bits; 965 struct indx_node *in = *node; 966 const struct INDEX_NAMES *name; 967 968 if (!in) { 969 in = kzalloc(sizeof(struct indx_node), GFP_NOFS); 970 if (!in) 971 return -ENOMEM; 972 } else { 973 nb_put(&in->nb); 974 } 975 976 ib = in->index; 977 if (!ib) { 978 ib = kmalloc(bytes, GFP_NOFS); 979 if (!ib) { 980 err = -ENOMEM; 981 goto out; 982 } 983 } 984 985 down_read(lock); 986 err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb); 987 up_read(lock); 988 if (!err) 989 goto ok; 990 991 if (err == -E_NTFS_FIXUP) 992 goto ok; 993 994 if (err != -ENOENT) 995 goto out; 996 997 name = &s_index_names[indx->type]; 998 down_write(lock); 999 err = attr_load_runs_range(ni, ATTR_ALLOC, name->name, name->name_len, 1000 run, vbo, vbo + bytes); 1001 up_write(lock); 1002 if (err) 1003 goto out; 1004 1005 down_read(lock); 1006 err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb); 1007 up_read(lock); 1008 if (err == -E_NTFS_FIXUP) 1009 goto ok; 1010 1011 if (err) 1012 goto out; 1013 1014 ok: 1015 if (err == -E_NTFS_FIXUP) { 1016 ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &in->nb, 0); 1017 err = 0; 1018 } 1019 1020 in->index = ib; 1021 *node = in; 1022 1023 out: 1024 if (ib != in->index) 1025 kfree(ib); 1026 1027 if (*node != in) { 1028 nb_put(&in->nb); 1029 kfree(in); 1030 } 1031 1032 return err; 1033 } 1034 1035 /* 1036 * indx_find - Scan NTFS directory for given entry. 1037 */ 1038 int indx_find(struct ntfs_index *indx, struct ntfs_inode *ni, 1039 const struct INDEX_ROOT *root, const void *key, size_t key_len, 1040 const void *ctx, int *diff, struct NTFS_DE **entry, 1041 struct ntfs_fnd *fnd) 1042 { 1043 int err; 1044 struct NTFS_DE *e; 1045 const struct INDEX_HDR *hdr; 1046 struct indx_node *node; 1047 1048 if (!root) 1049 root = indx_get_root(&ni->dir, ni, NULL, NULL); 1050 1051 if (!root) { 1052 err = -EINVAL; 1053 goto out; 1054 } 1055 1056 hdr = &root->ihdr; 1057 1058 /* Check cache. */ 1059 e = fnd->level ? fnd->de[fnd->level - 1] : fnd->root_de; 1060 if (e && !de_is_last(e) && 1061 !(*indx->cmp)(key, key_len, e + 1, le16_to_cpu(e->key_size), ctx)) { 1062 *entry = e; 1063 *diff = 0; 1064 return 0; 1065 } 1066 1067 /* Soft finder reset. */ 1068 fnd_clear(fnd); 1069 1070 /* Lookup entry that is <= to the search value. */ 1071 e = hdr_find_e(indx, hdr, key, key_len, ctx, diff); 1072 if (!e) 1073 return -EINVAL; 1074 1075 fnd->root_de = e; 1076 err = 0; 1077 1078 for (;;) { 1079 node = NULL; 1080 if (*diff >= 0 || !de_has_vcn_ex(e)) { 1081 *entry = e; 1082 goto out; 1083 } 1084 1085 /* Read next level. */ 1086 err = indx_read(indx, ni, de_get_vbn(e), &node); 1087 if (err) 1088 goto out; 1089 1090 /* Lookup entry that is <= to the search value. */ 1091 e = hdr_find_e(indx, &node->index->ihdr, key, key_len, ctx, 1092 diff); 1093 if (!e) { 1094 err = -EINVAL; 1095 put_indx_node(node); 1096 goto out; 1097 } 1098 1099 fnd_push(fnd, node, e); 1100 } 1101 1102 out: 1103 return err; 1104 } 1105 1106 int indx_find_sort(struct ntfs_index *indx, struct ntfs_inode *ni, 1107 const struct INDEX_ROOT *root, struct NTFS_DE **entry, 1108 struct ntfs_fnd *fnd) 1109 { 1110 int err; 1111 struct indx_node *n = NULL; 1112 struct NTFS_DE *e; 1113 size_t iter = 0; 1114 int level = fnd->level; 1115 1116 if (!*entry) { 1117 /* Start find. */ 1118 e = hdr_first_de(&root->ihdr); 1119 if (!e) 1120 return 0; 1121 fnd_clear(fnd); 1122 fnd->root_de = e; 1123 } else if (!level) { 1124 if (de_is_last(fnd->root_de)) { 1125 *entry = NULL; 1126 return 0; 1127 } 1128 1129 e = hdr_next_de(&root->ihdr, fnd->root_de); 1130 if (!e) 1131 return -EINVAL; 1132 fnd->root_de = e; 1133 } else { 1134 n = fnd->nodes[level - 1]; 1135 e = fnd->de[level - 1]; 1136 1137 if (de_is_last(e)) 1138 goto pop_level; 1139 1140 e = hdr_next_de(&n->index->ihdr, e); 1141 if (!e) 1142 return -EINVAL; 1143 1144 fnd->de[level - 1] = e; 1145 } 1146 1147 /* Just to avoid tree cycle. */ 1148 next_iter: 1149 if (iter++ >= 1000) 1150 return -EINVAL; 1151 1152 while (de_has_vcn_ex(e)) { 1153 if (le16_to_cpu(e->size) < 1154 sizeof(struct NTFS_DE) + sizeof(u64)) { 1155 if (n) { 1156 fnd_pop(fnd); 1157 kfree(n); 1158 } 1159 return -EINVAL; 1160 } 1161 1162 /* Read next level. */ 1163 err = indx_read(indx, ni, de_get_vbn(e), &n); 1164 if (err) 1165 return err; 1166 1167 /* Try next level. */ 1168 e = hdr_first_de(&n->index->ihdr); 1169 if (!e) { 1170 kfree(n); 1171 return -EINVAL; 1172 } 1173 1174 fnd_push(fnd, n, e); 1175 } 1176 1177 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) { 1178 *entry = e; 1179 return 0; 1180 } 1181 1182 pop_level: 1183 for (;;) { 1184 if (!de_is_last(e)) 1185 goto next_iter; 1186 1187 /* Pop one level. */ 1188 if (n) { 1189 fnd_pop(fnd); 1190 kfree(n); 1191 } 1192 1193 level = fnd->level; 1194 1195 if (level) { 1196 n = fnd->nodes[level - 1]; 1197 e = fnd->de[level - 1]; 1198 } else if (fnd->root_de) { 1199 n = NULL; 1200 e = fnd->root_de; 1201 fnd->root_de = NULL; 1202 } else { 1203 *entry = NULL; 1204 return 0; 1205 } 1206 1207 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) { 1208 *entry = e; 1209 if (!fnd->root_de) 1210 fnd->root_de = e; 1211 return 0; 1212 } 1213 } 1214 } 1215 1216 int indx_find_raw(struct ntfs_index *indx, struct ntfs_inode *ni, 1217 const struct INDEX_ROOT *root, struct NTFS_DE **entry, 1218 size_t *off, struct ntfs_fnd *fnd) 1219 { 1220 int err; 1221 struct indx_node *n = NULL; 1222 struct NTFS_DE *e = NULL; 1223 struct NTFS_DE *e2; 1224 size_t bit; 1225 CLST next_used_vbn; 1226 CLST next_vbn; 1227 u32 record_size = ni->mi.sbi->record_size; 1228 1229 /* Use non sorted algorithm. */ 1230 if (!*entry) { 1231 /* This is the first call. */ 1232 e = hdr_first_de(&root->ihdr); 1233 if (!e) 1234 return 0; 1235 fnd_clear(fnd); 1236 fnd->root_de = e; 1237 1238 /* The first call with setup of initial element. */ 1239 if (*off >= record_size) { 1240 next_vbn = (((*off - record_size) >> indx->index_bits)) 1241 << indx->idx2vbn_bits; 1242 /* Jump inside cycle 'for'. */ 1243 goto next; 1244 } 1245 1246 /* Start enumeration from root. */ 1247 *off = 0; 1248 } else if (!fnd->root_de) 1249 return -EINVAL; 1250 1251 for (;;) { 1252 /* Check if current entry can be used. */ 1253 if (e && le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) 1254 goto ok; 1255 1256 if (!fnd->level) { 1257 /* Continue to enumerate root. */ 1258 if (!de_is_last(fnd->root_de)) { 1259 e = hdr_next_de(&root->ihdr, fnd->root_de); 1260 if (!e) 1261 return -EINVAL; 1262 fnd->root_de = e; 1263 continue; 1264 } 1265 1266 /* Start to enumerate indexes from 0. */ 1267 next_vbn = 0; 1268 } else { 1269 /* Continue to enumerate indexes. */ 1270 e2 = fnd->de[fnd->level - 1]; 1271 1272 n = fnd->nodes[fnd->level - 1]; 1273 1274 if (!de_is_last(e2)) { 1275 e = hdr_next_de(&n->index->ihdr, e2); 1276 if (!e) 1277 return -EINVAL; 1278 fnd->de[fnd->level - 1] = e; 1279 continue; 1280 } 1281 1282 /* Continue with next index. */ 1283 next_vbn = le64_to_cpu(n->index->vbn) + 1284 root->index_block_clst; 1285 } 1286 1287 next: 1288 /* Release current index. */ 1289 if (n) { 1290 fnd_pop(fnd); 1291 put_indx_node(n); 1292 n = NULL; 1293 } 1294 1295 /* Skip all free indexes. */ 1296 bit = next_vbn >> indx->idx2vbn_bits; 1297 err = indx_used_bit(indx, ni, &bit); 1298 if (err == -ENOENT || bit == MINUS_ONE_T) { 1299 /* No used indexes. */ 1300 *entry = NULL; 1301 return 0; 1302 } 1303 1304 next_used_vbn = bit << indx->idx2vbn_bits; 1305 1306 /* Read buffer into memory. */ 1307 err = indx_read(indx, ni, next_used_vbn, &n); 1308 if (err) 1309 return err; 1310 1311 e = hdr_first_de(&n->index->ihdr); 1312 fnd_push(fnd, n, e); 1313 if (!e) 1314 return -EINVAL; 1315 } 1316 1317 ok: 1318 /* Return offset to restore enumerator if necessary. */ 1319 if (!n) { 1320 /* 'e' points in root, */ 1321 *off = PtrOffset(&root->ihdr, e); 1322 } else { 1323 /* 'e' points in index, */ 1324 *off = (le64_to_cpu(n->index->vbn) << indx->vbn2vbo_bits) + 1325 record_size + PtrOffset(&n->index->ihdr, e); 1326 } 1327 1328 *entry = e; 1329 return 0; 1330 } 1331 1332 /* 1333 * indx_create_allocate - Create "Allocation + Bitmap" attributes. 1334 */ 1335 static int indx_create_allocate(struct ntfs_index *indx, struct ntfs_inode *ni, 1336 CLST *vbn) 1337 { 1338 int err; 1339 struct ntfs_sb_info *sbi = ni->mi.sbi; 1340 struct ATTRIB *bitmap; 1341 struct ATTRIB *alloc; 1342 u32 data_size = 1u << indx->index_bits; 1343 u32 alloc_size = ntfs_up_cluster(sbi, data_size); 1344 CLST len = alloc_size >> sbi->cluster_bits; 1345 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 1346 CLST alen; 1347 struct runs_tree run; 1348 1349 run_init(&run); 1350 1351 err = attr_allocate_clusters(sbi, &run, 0, 0, len, NULL, 0, &alen, 0, 1352 NULL); 1353 if (err) 1354 goto out; 1355 1356 err = ni_insert_nonresident(ni, ATTR_ALLOC, in->name, in->name_len, 1357 &run, 0, len, 0, &alloc, NULL); 1358 if (err) 1359 goto out1; 1360 1361 alloc->nres.valid_size = alloc->nres.data_size = cpu_to_le64(data_size); 1362 1363 err = ni_insert_resident(ni, bitmap_size(1), ATTR_BITMAP, in->name, 1364 in->name_len, &bitmap, NULL, NULL); 1365 if (err) 1366 goto out2; 1367 1368 if (in->name == I30_NAME) { 1369 ni->vfs_inode.i_size = data_size; 1370 inode_set_bytes(&ni->vfs_inode, alloc_size); 1371 } 1372 1373 memcpy(&indx->alloc_run, &run, sizeof(run)); 1374 1375 *vbn = 0; 1376 1377 return 0; 1378 1379 out2: 1380 mi_remove_attr(NULL, &ni->mi, alloc); 1381 1382 out1: 1383 run_deallocate(sbi, &run, false); 1384 1385 out: 1386 return err; 1387 } 1388 1389 /* 1390 * indx_add_allocate - Add clusters to index. 1391 */ 1392 static int indx_add_allocate(struct ntfs_index *indx, struct ntfs_inode *ni, 1393 CLST *vbn) 1394 { 1395 int err; 1396 size_t bit; 1397 u64 data_size; 1398 u64 bmp_size, bmp_size_v; 1399 struct ATTRIB *bmp, *alloc; 1400 struct mft_inode *mi; 1401 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 1402 1403 err = indx_find_free(indx, ni, &bit, &bmp); 1404 if (err) 1405 goto out1; 1406 1407 if (bit != MINUS_ONE_T) { 1408 bmp = NULL; 1409 } else { 1410 if (bmp->non_res) { 1411 bmp_size = le64_to_cpu(bmp->nres.data_size); 1412 bmp_size_v = le64_to_cpu(bmp->nres.valid_size); 1413 } else { 1414 bmp_size = bmp_size_v = le32_to_cpu(bmp->res.data_size); 1415 } 1416 1417 bit = bmp_size << 3; 1418 } 1419 1420 data_size = (u64)(bit + 1) << indx->index_bits; 1421 1422 if (bmp) { 1423 /* Increase bitmap. */ 1424 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len, 1425 &indx->bitmap_run, bitmap_size(bit + 1), 1426 NULL, true, NULL); 1427 if (err) 1428 goto out1; 1429 } 1430 1431 alloc = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, in->name, in->name_len, 1432 NULL, &mi); 1433 if (!alloc) { 1434 err = -EINVAL; 1435 if (bmp) 1436 goto out2; 1437 goto out1; 1438 } 1439 1440 /* Increase allocation. */ 1441 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len, 1442 &indx->alloc_run, data_size, &data_size, true, 1443 NULL); 1444 if (err) { 1445 if (bmp) 1446 goto out2; 1447 goto out1; 1448 } 1449 1450 *vbn = bit << indx->idx2vbn_bits; 1451 1452 return 0; 1453 1454 out2: 1455 /* Ops. No space? */ 1456 attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len, 1457 &indx->bitmap_run, bmp_size, &bmp_size_v, false, NULL); 1458 1459 out1: 1460 return err; 1461 } 1462 1463 /* 1464 * indx_insert_into_root - Attempt to insert an entry into the index root. 1465 * 1466 * @undo - True if we undoing previous remove. 1467 * If necessary, it will twiddle the index b-tree. 1468 */ 1469 static int indx_insert_into_root(struct ntfs_index *indx, struct ntfs_inode *ni, 1470 const struct NTFS_DE *new_de, 1471 struct NTFS_DE *root_de, const void *ctx, 1472 struct ntfs_fnd *fnd, bool undo) 1473 { 1474 int err = 0; 1475 struct NTFS_DE *e, *e0, *re; 1476 struct mft_inode *mi; 1477 struct ATTRIB *attr; 1478 struct INDEX_HDR *hdr; 1479 struct indx_node *n; 1480 CLST new_vbn; 1481 __le64 *sub_vbn, t_vbn; 1482 u16 new_de_size; 1483 u32 hdr_used, hdr_total, asize, to_move; 1484 u32 root_size, new_root_size; 1485 struct ntfs_sb_info *sbi; 1486 int ds_root; 1487 struct INDEX_ROOT *root, *a_root; 1488 1489 /* Get the record this root placed in. */ 1490 root = indx_get_root(indx, ni, &attr, &mi); 1491 if (!root) 1492 return -EINVAL; 1493 1494 /* 1495 * Try easy case: 1496 * hdr_insert_de will succeed if there's 1497 * room the root for the new entry. 1498 */ 1499 hdr = &root->ihdr; 1500 sbi = ni->mi.sbi; 1501 new_de_size = le16_to_cpu(new_de->size); 1502 hdr_used = le32_to_cpu(hdr->used); 1503 hdr_total = le32_to_cpu(hdr->total); 1504 asize = le32_to_cpu(attr->size); 1505 root_size = le32_to_cpu(attr->res.data_size); 1506 1507 ds_root = new_de_size + hdr_used - hdr_total; 1508 1509 /* If 'undo' is set then reduce requirements. */ 1510 if ((undo || asize + ds_root < sbi->max_bytes_per_attr) && 1511 mi_resize_attr(mi, attr, ds_root)) { 1512 hdr->total = cpu_to_le32(hdr_total + ds_root); 1513 e = hdr_insert_de(indx, hdr, new_de, root_de, ctx); 1514 WARN_ON(!e); 1515 fnd_clear(fnd); 1516 fnd->root_de = e; 1517 1518 return 0; 1519 } 1520 1521 /* Make a copy of root attribute to restore if error. */ 1522 a_root = kmemdup(attr, asize, GFP_NOFS); 1523 if (!a_root) 1524 return -ENOMEM; 1525 1526 /* 1527 * Copy all the non-end entries from 1528 * the index root to the new buffer. 1529 */ 1530 to_move = 0; 1531 e0 = hdr_first_de(hdr); 1532 1533 /* Calculate the size to copy. */ 1534 for (e = e0;; e = hdr_next_de(hdr, e)) { 1535 if (!e) { 1536 err = -EINVAL; 1537 goto out_free_root; 1538 } 1539 1540 if (de_is_last(e)) 1541 break; 1542 to_move += le16_to_cpu(e->size); 1543 } 1544 1545 if (!to_move) { 1546 re = NULL; 1547 } else { 1548 re = kmemdup(e0, to_move, GFP_NOFS); 1549 if (!re) { 1550 err = -ENOMEM; 1551 goto out_free_root; 1552 } 1553 } 1554 1555 sub_vbn = NULL; 1556 if (de_has_vcn(e)) { 1557 t_vbn = de_get_vbn_le(e); 1558 sub_vbn = &t_vbn; 1559 } 1560 1561 new_root_size = sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE) + 1562 sizeof(u64); 1563 ds_root = new_root_size - root_size; 1564 1565 if (ds_root > 0 && asize + ds_root > sbi->max_bytes_per_attr) { 1566 /* Make root external. */ 1567 err = -EOPNOTSUPP; 1568 goto out_free_re; 1569 } 1570 1571 if (ds_root) 1572 mi_resize_attr(mi, attr, ds_root); 1573 1574 /* Fill first entry (vcn will be set later). */ 1575 e = (struct NTFS_DE *)(root + 1); 1576 memset(e, 0, sizeof(struct NTFS_DE)); 1577 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64)); 1578 e->flags = NTFS_IE_HAS_SUBNODES | NTFS_IE_LAST; 1579 1580 hdr->flags = 1; 1581 hdr->used = hdr->total = 1582 cpu_to_le32(new_root_size - offsetof(struct INDEX_ROOT, ihdr)); 1583 1584 fnd->root_de = hdr_first_de(hdr); 1585 mi->dirty = true; 1586 1587 /* Create alloc and bitmap attributes (if not). */ 1588 err = run_is_empty(&indx->alloc_run) 1589 ? indx_create_allocate(indx, ni, &new_vbn) 1590 : indx_add_allocate(indx, ni, &new_vbn); 1591 1592 /* Layout of record may be changed, so rescan root. */ 1593 root = indx_get_root(indx, ni, &attr, &mi); 1594 if (!root) { 1595 /* Bug? */ 1596 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 1597 err = -EINVAL; 1598 goto out_free_re; 1599 } 1600 1601 if (err) { 1602 /* Restore root. */ 1603 if (mi_resize_attr(mi, attr, -ds_root)) 1604 memcpy(attr, a_root, asize); 1605 else { 1606 /* Bug? */ 1607 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 1608 } 1609 goto out_free_re; 1610 } 1611 1612 e = (struct NTFS_DE *)(root + 1); 1613 *(__le64 *)(e + 1) = cpu_to_le64(new_vbn); 1614 mi->dirty = true; 1615 1616 /* Now we can create/format the new buffer and copy the entries into. */ 1617 n = indx_new(indx, ni, new_vbn, sub_vbn); 1618 if (IS_ERR(n)) { 1619 err = PTR_ERR(n); 1620 goto out_free_re; 1621 } 1622 1623 hdr = &n->index->ihdr; 1624 hdr_used = le32_to_cpu(hdr->used); 1625 hdr_total = le32_to_cpu(hdr->total); 1626 1627 /* Copy root entries into new buffer. */ 1628 hdr_insert_head(hdr, re, to_move); 1629 1630 /* Update bitmap attribute. */ 1631 indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits); 1632 1633 /* Check if we can insert new entry new index buffer. */ 1634 if (hdr_used + new_de_size > hdr_total) { 1635 /* 1636 * This occurs if MFT record is the same or bigger than index 1637 * buffer. Move all root new index and have no space to add 1638 * new entry classic case when MFT record is 1K and index 1639 * buffer 4K the problem should not occurs. 1640 */ 1641 kfree(re); 1642 indx_write(indx, ni, n, 0); 1643 1644 put_indx_node(n); 1645 fnd_clear(fnd); 1646 err = indx_insert_entry(indx, ni, new_de, ctx, fnd, undo); 1647 goto out_free_root; 1648 } 1649 1650 /* 1651 * Now root is a parent for new index buffer. 1652 * Insert NewEntry a new buffer. 1653 */ 1654 e = hdr_insert_de(indx, hdr, new_de, NULL, ctx); 1655 if (!e) { 1656 err = -EINVAL; 1657 goto out_put_n; 1658 } 1659 fnd_push(fnd, n, e); 1660 1661 /* Just write updates index into disk. */ 1662 indx_write(indx, ni, n, 0); 1663 1664 n = NULL; 1665 1666 out_put_n: 1667 put_indx_node(n); 1668 out_free_re: 1669 kfree(re); 1670 out_free_root: 1671 kfree(a_root); 1672 return err; 1673 } 1674 1675 /* 1676 * indx_insert_into_buffer 1677 * 1678 * Attempt to insert an entry into an Index Allocation Buffer. 1679 * If necessary, it will split the buffer. 1680 */ 1681 static int 1682 indx_insert_into_buffer(struct ntfs_index *indx, struct ntfs_inode *ni, 1683 struct INDEX_ROOT *root, const struct NTFS_DE *new_de, 1684 const void *ctx, int level, struct ntfs_fnd *fnd) 1685 { 1686 int err; 1687 const struct NTFS_DE *sp; 1688 struct NTFS_DE *e, *de_t, *up_e = NULL; 1689 struct indx_node *n2 = NULL; 1690 struct indx_node *n1 = fnd->nodes[level]; 1691 struct INDEX_HDR *hdr1 = &n1->index->ihdr; 1692 struct INDEX_HDR *hdr2; 1693 u32 to_copy, used; 1694 CLST new_vbn; 1695 __le64 t_vbn, *sub_vbn; 1696 u16 sp_size; 1697 1698 /* Try the most easy case. */ 1699 e = fnd->level - 1 == level ? fnd->de[level] : NULL; 1700 e = hdr_insert_de(indx, hdr1, new_de, e, ctx); 1701 fnd->de[level] = e; 1702 if (e) { 1703 /* Just write updated index into disk. */ 1704 indx_write(indx, ni, n1, 0); 1705 return 0; 1706 } 1707 1708 /* 1709 * No space to insert into buffer. Split it. 1710 * To split we: 1711 * - Save split point ('cause index buffers will be changed) 1712 * - Allocate NewBuffer and copy all entries <= sp into new buffer 1713 * - Remove all entries (sp including) from TargetBuffer 1714 * - Insert NewEntry into left or right buffer (depending on sp <=> 1715 * NewEntry) 1716 * - Insert sp into parent buffer (or root) 1717 * - Make sp a parent for new buffer 1718 */ 1719 sp = hdr_find_split(hdr1); 1720 if (!sp) 1721 return -EINVAL; 1722 1723 sp_size = le16_to_cpu(sp->size); 1724 up_e = kmalloc(sp_size + sizeof(u64), GFP_NOFS); 1725 if (!up_e) 1726 return -ENOMEM; 1727 memcpy(up_e, sp, sp_size); 1728 1729 if (!hdr1->flags) { 1730 up_e->flags |= NTFS_IE_HAS_SUBNODES; 1731 up_e->size = cpu_to_le16(sp_size + sizeof(u64)); 1732 sub_vbn = NULL; 1733 } else { 1734 t_vbn = de_get_vbn_le(up_e); 1735 sub_vbn = &t_vbn; 1736 } 1737 1738 /* Allocate on disk a new index allocation buffer. */ 1739 err = indx_add_allocate(indx, ni, &new_vbn); 1740 if (err) 1741 goto out; 1742 1743 /* Allocate and format memory a new index buffer. */ 1744 n2 = indx_new(indx, ni, new_vbn, sub_vbn); 1745 if (IS_ERR(n2)) { 1746 err = PTR_ERR(n2); 1747 goto out; 1748 } 1749 1750 hdr2 = &n2->index->ihdr; 1751 1752 /* Make sp a parent for new buffer. */ 1753 de_set_vbn(up_e, new_vbn); 1754 1755 /* Copy all the entries <= sp into the new buffer. */ 1756 de_t = hdr_first_de(hdr1); 1757 to_copy = PtrOffset(de_t, sp); 1758 hdr_insert_head(hdr2, de_t, to_copy); 1759 1760 /* Remove all entries (sp including) from hdr1. */ 1761 used = le32_to_cpu(hdr1->used) - to_copy - sp_size; 1762 memmove(de_t, Add2Ptr(sp, sp_size), used - le32_to_cpu(hdr1->de_off)); 1763 hdr1->used = cpu_to_le32(used); 1764 1765 /* 1766 * Insert new entry into left or right buffer 1767 * (depending on sp <=> new_de). 1768 */ 1769 hdr_insert_de(indx, 1770 (*indx->cmp)(new_de + 1, le16_to_cpu(new_de->key_size), 1771 up_e + 1, le16_to_cpu(up_e->key_size), 1772 ctx) < 0 1773 ? hdr2 1774 : hdr1, 1775 new_de, NULL, ctx); 1776 1777 indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits); 1778 1779 indx_write(indx, ni, n1, 0); 1780 indx_write(indx, ni, n2, 0); 1781 1782 put_indx_node(n2); 1783 1784 /* 1785 * We've finished splitting everybody, so we are ready to 1786 * insert the promoted entry into the parent. 1787 */ 1788 if (!level) { 1789 /* Insert in root. */ 1790 err = indx_insert_into_root(indx, ni, up_e, NULL, ctx, fnd, 0); 1791 if (err) 1792 goto out; 1793 } else { 1794 /* 1795 * The target buffer's parent is another index buffer. 1796 * TODO: Remove recursion. 1797 */ 1798 err = indx_insert_into_buffer(indx, ni, root, up_e, ctx, 1799 level - 1, fnd); 1800 if (err) 1801 goto out; 1802 } 1803 1804 out: 1805 kfree(up_e); 1806 1807 return err; 1808 } 1809 1810 /* 1811 * indx_insert_entry - Insert new entry into index. 1812 * 1813 * @undo - True if we undoing previous remove. 1814 */ 1815 int indx_insert_entry(struct ntfs_index *indx, struct ntfs_inode *ni, 1816 const struct NTFS_DE *new_de, const void *ctx, 1817 struct ntfs_fnd *fnd, bool undo) 1818 { 1819 int err; 1820 int diff; 1821 struct NTFS_DE *e; 1822 struct ntfs_fnd *fnd_a = NULL; 1823 struct INDEX_ROOT *root; 1824 1825 if (!fnd) { 1826 fnd_a = fnd_get(); 1827 if (!fnd_a) { 1828 err = -ENOMEM; 1829 goto out1; 1830 } 1831 fnd = fnd_a; 1832 } 1833 1834 root = indx_get_root(indx, ni, NULL, NULL); 1835 if (!root) { 1836 err = -EINVAL; 1837 goto out; 1838 } 1839 1840 if (fnd_is_empty(fnd)) { 1841 /* 1842 * Find the spot the tree where we want to 1843 * insert the new entry. 1844 */ 1845 err = indx_find(indx, ni, root, new_de + 1, 1846 le16_to_cpu(new_de->key_size), ctx, &diff, &e, 1847 fnd); 1848 if (err) 1849 goto out; 1850 1851 if (!diff) { 1852 err = -EEXIST; 1853 goto out; 1854 } 1855 } 1856 1857 if (!fnd->level) { 1858 /* 1859 * The root is also a leaf, so we'll insert the 1860 * new entry into it. 1861 */ 1862 err = indx_insert_into_root(indx, ni, new_de, fnd->root_de, ctx, 1863 fnd, undo); 1864 if (err) 1865 goto out; 1866 } else { 1867 /* 1868 * Found a leaf buffer, so we'll insert the new entry into it. 1869 */ 1870 err = indx_insert_into_buffer(indx, ni, root, new_de, ctx, 1871 fnd->level - 1, fnd); 1872 if (err) 1873 goto out; 1874 } 1875 1876 out: 1877 fnd_put(fnd_a); 1878 out1: 1879 return err; 1880 } 1881 1882 /* 1883 * indx_find_buffer - Locate a buffer from the tree. 1884 */ 1885 static struct indx_node *indx_find_buffer(struct ntfs_index *indx, 1886 struct ntfs_inode *ni, 1887 const struct INDEX_ROOT *root, 1888 __le64 vbn, struct indx_node *n) 1889 { 1890 int err; 1891 const struct NTFS_DE *e; 1892 struct indx_node *r; 1893 const struct INDEX_HDR *hdr = n ? &n->index->ihdr : &root->ihdr; 1894 1895 /* Step 1: Scan one level. */ 1896 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) { 1897 if (!e) 1898 return ERR_PTR(-EINVAL); 1899 1900 if (de_has_vcn(e) && vbn == de_get_vbn_le(e)) 1901 return n; 1902 1903 if (de_is_last(e)) 1904 break; 1905 } 1906 1907 /* Step2: Do recursion. */ 1908 e = Add2Ptr(hdr, le32_to_cpu(hdr->de_off)); 1909 for (;;) { 1910 if (de_has_vcn_ex(e)) { 1911 err = indx_read(indx, ni, de_get_vbn(e), &n); 1912 if (err) 1913 return ERR_PTR(err); 1914 1915 r = indx_find_buffer(indx, ni, root, vbn, n); 1916 if (r) 1917 return r; 1918 } 1919 1920 if (de_is_last(e)) 1921 break; 1922 1923 e = Add2Ptr(e, le16_to_cpu(e->size)); 1924 } 1925 1926 return NULL; 1927 } 1928 1929 /* 1930 * indx_shrink - Deallocate unused tail indexes. 1931 */ 1932 static int indx_shrink(struct ntfs_index *indx, struct ntfs_inode *ni, 1933 size_t bit) 1934 { 1935 int err = 0; 1936 u64 bpb, new_data; 1937 size_t nbits; 1938 struct ATTRIB *b; 1939 struct ATTR_LIST_ENTRY *le = NULL; 1940 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 1941 1942 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len, 1943 NULL, NULL); 1944 1945 if (!b) 1946 return -ENOENT; 1947 1948 if (!b->non_res) { 1949 unsigned long pos; 1950 const unsigned long *bm = resident_data(b); 1951 1952 nbits = (size_t)le32_to_cpu(b->res.data_size) * 8; 1953 1954 if (bit >= nbits) 1955 return 0; 1956 1957 pos = find_next_bit(bm, nbits, bit); 1958 if (pos < nbits) 1959 return 0; 1960 } else { 1961 size_t used = MINUS_ONE_T; 1962 1963 nbits = le64_to_cpu(b->nres.data_size) * 8; 1964 1965 if (bit >= nbits) 1966 return 0; 1967 1968 err = scan_nres_bitmap(ni, b, indx, bit, &scan_for_used, &used); 1969 if (err) 1970 return err; 1971 1972 if (used != MINUS_ONE_T) 1973 return 0; 1974 } 1975 1976 new_data = (u64)bit << indx->index_bits; 1977 1978 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len, 1979 &indx->alloc_run, new_data, &new_data, false, NULL); 1980 if (err) 1981 return err; 1982 1983 bpb = bitmap_size(bit); 1984 if (bpb * 8 == nbits) 1985 return 0; 1986 1987 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len, 1988 &indx->bitmap_run, bpb, &bpb, false, NULL); 1989 1990 return err; 1991 } 1992 1993 static int indx_free_children(struct ntfs_index *indx, struct ntfs_inode *ni, 1994 const struct NTFS_DE *e, bool trim) 1995 { 1996 int err; 1997 struct indx_node *n; 1998 struct INDEX_HDR *hdr; 1999 CLST vbn = de_get_vbn(e); 2000 size_t i; 2001 2002 err = indx_read(indx, ni, vbn, &n); 2003 if (err) 2004 return err; 2005 2006 hdr = &n->index->ihdr; 2007 /* First, recurse into the children, if any. */ 2008 if (hdr_has_subnode(hdr)) { 2009 for (e = hdr_first_de(hdr); e; e = hdr_next_de(hdr, e)) { 2010 indx_free_children(indx, ni, e, false); 2011 if (de_is_last(e)) 2012 break; 2013 } 2014 } 2015 2016 put_indx_node(n); 2017 2018 i = vbn >> indx->idx2vbn_bits; 2019 /* 2020 * We've gotten rid of the children; add this buffer to the free list. 2021 */ 2022 indx_mark_free(indx, ni, i); 2023 2024 if (!trim) 2025 return 0; 2026 2027 /* 2028 * If there are no used indexes after current free index 2029 * then we can truncate allocation and bitmap. 2030 * Use bitmap to estimate the case. 2031 */ 2032 indx_shrink(indx, ni, i + 1); 2033 return 0; 2034 } 2035 2036 /* 2037 * indx_get_entry_to_replace 2038 * 2039 * Find a replacement entry for a deleted entry. 2040 * Always returns a node entry: 2041 * NTFS_IE_HAS_SUBNODES is set the flags and the size includes the sub_vcn. 2042 */ 2043 static int indx_get_entry_to_replace(struct ntfs_index *indx, 2044 struct ntfs_inode *ni, 2045 const struct NTFS_DE *de_next, 2046 struct NTFS_DE **de_to_replace, 2047 struct ntfs_fnd *fnd) 2048 { 2049 int err; 2050 int level = -1; 2051 CLST vbn; 2052 struct NTFS_DE *e, *te, *re; 2053 struct indx_node *n; 2054 struct INDEX_BUFFER *ib; 2055 2056 *de_to_replace = NULL; 2057 2058 /* Find first leaf entry down from de_next. */ 2059 vbn = de_get_vbn(de_next); 2060 for (;;) { 2061 n = NULL; 2062 err = indx_read(indx, ni, vbn, &n); 2063 if (err) 2064 goto out; 2065 2066 e = hdr_first_de(&n->index->ihdr); 2067 fnd_push(fnd, n, e); 2068 2069 if (!de_is_last(e)) { 2070 /* 2071 * This buffer is non-empty, so its first entry 2072 * could be used as the replacement entry. 2073 */ 2074 level = fnd->level - 1; 2075 } 2076 2077 if (!de_has_vcn(e)) 2078 break; 2079 2080 /* This buffer is a node. Continue to go down. */ 2081 vbn = de_get_vbn(e); 2082 } 2083 2084 if (level == -1) 2085 goto out; 2086 2087 n = fnd->nodes[level]; 2088 te = hdr_first_de(&n->index->ihdr); 2089 /* Copy the candidate entry into the replacement entry buffer. */ 2090 re = kmalloc(le16_to_cpu(te->size) + sizeof(u64), GFP_NOFS); 2091 if (!re) { 2092 err = -ENOMEM; 2093 goto out; 2094 } 2095 2096 *de_to_replace = re; 2097 memcpy(re, te, le16_to_cpu(te->size)); 2098 2099 if (!de_has_vcn(re)) { 2100 /* 2101 * The replacement entry we found doesn't have a sub_vcn. 2102 * increase its size to hold one. 2103 */ 2104 le16_add_cpu(&re->size, sizeof(u64)); 2105 re->flags |= NTFS_IE_HAS_SUBNODES; 2106 } else { 2107 /* 2108 * The replacement entry we found was a node entry, which 2109 * means that all its child buffers are empty. Return them 2110 * to the free pool. 2111 */ 2112 indx_free_children(indx, ni, te, true); 2113 } 2114 2115 /* 2116 * Expunge the replacement entry from its former location, 2117 * and then write that buffer. 2118 */ 2119 ib = n->index; 2120 e = hdr_delete_de(&ib->ihdr, te); 2121 2122 fnd->de[level] = e; 2123 indx_write(indx, ni, n, 0); 2124 2125 /* Check to see if this action created an empty leaf. */ 2126 if (ib_is_leaf(ib) && ib_is_empty(ib)) 2127 return 0; 2128 2129 out: 2130 fnd_clear(fnd); 2131 return err; 2132 } 2133 2134 /* 2135 * indx_delete_entry - Delete an entry from the index. 2136 */ 2137 int indx_delete_entry(struct ntfs_index *indx, struct ntfs_inode *ni, 2138 const void *key, u32 key_len, const void *ctx) 2139 { 2140 int err, diff; 2141 struct INDEX_ROOT *root; 2142 struct INDEX_HDR *hdr; 2143 struct ntfs_fnd *fnd, *fnd2; 2144 struct INDEX_BUFFER *ib; 2145 struct NTFS_DE *e, *re, *next, *prev, *me; 2146 struct indx_node *n, *n2d = NULL; 2147 __le64 sub_vbn; 2148 int level, level2; 2149 struct ATTRIB *attr; 2150 struct mft_inode *mi; 2151 u32 e_size, root_size, new_root_size; 2152 size_t trim_bit; 2153 const struct INDEX_NAMES *in; 2154 2155 fnd = fnd_get(); 2156 if (!fnd) { 2157 err = -ENOMEM; 2158 goto out2; 2159 } 2160 2161 fnd2 = fnd_get(); 2162 if (!fnd2) { 2163 err = -ENOMEM; 2164 goto out1; 2165 } 2166 2167 root = indx_get_root(indx, ni, &attr, &mi); 2168 if (!root) { 2169 err = -EINVAL; 2170 goto out; 2171 } 2172 2173 /* Locate the entry to remove. */ 2174 err = indx_find(indx, ni, root, key, key_len, ctx, &diff, &e, fnd); 2175 if (err) 2176 goto out; 2177 2178 if (!e || diff) { 2179 err = -ENOENT; 2180 goto out; 2181 } 2182 2183 level = fnd->level; 2184 2185 if (level) { 2186 n = fnd->nodes[level - 1]; 2187 e = fnd->de[level - 1]; 2188 ib = n->index; 2189 hdr = &ib->ihdr; 2190 } else { 2191 hdr = &root->ihdr; 2192 e = fnd->root_de; 2193 n = NULL; 2194 } 2195 2196 e_size = le16_to_cpu(e->size); 2197 2198 if (!de_has_vcn_ex(e)) { 2199 /* The entry to delete is a leaf, so we can just rip it out. */ 2200 hdr_delete_de(hdr, e); 2201 2202 if (!level) { 2203 hdr->total = hdr->used; 2204 2205 /* Shrink resident root attribute. */ 2206 mi_resize_attr(mi, attr, 0 - e_size); 2207 goto out; 2208 } 2209 2210 indx_write(indx, ni, n, 0); 2211 2212 /* 2213 * Check to see if removing that entry made 2214 * the leaf empty. 2215 */ 2216 if (ib_is_leaf(ib) && ib_is_empty(ib)) { 2217 fnd_pop(fnd); 2218 fnd_push(fnd2, n, e); 2219 } 2220 } else { 2221 /* 2222 * The entry we wish to delete is a node buffer, so we 2223 * have to find a replacement for it. 2224 */ 2225 next = de_get_next(e); 2226 2227 err = indx_get_entry_to_replace(indx, ni, next, &re, fnd2); 2228 if (err) 2229 goto out; 2230 2231 if (re) { 2232 de_set_vbn_le(re, de_get_vbn_le(e)); 2233 hdr_delete_de(hdr, e); 2234 2235 err = level ? indx_insert_into_buffer(indx, ni, root, 2236 re, ctx, 2237 fnd->level - 1, 2238 fnd) 2239 : indx_insert_into_root(indx, ni, re, e, 2240 ctx, fnd, 0); 2241 kfree(re); 2242 2243 if (err) 2244 goto out; 2245 } else { 2246 /* 2247 * There is no replacement for the current entry. 2248 * This means that the subtree rooted at its node 2249 * is empty, and can be deleted, which turn means 2250 * that the node can just inherit the deleted 2251 * entry sub_vcn. 2252 */ 2253 indx_free_children(indx, ni, next, true); 2254 2255 de_set_vbn_le(next, de_get_vbn_le(e)); 2256 hdr_delete_de(hdr, e); 2257 if (level) { 2258 indx_write(indx, ni, n, 0); 2259 } else { 2260 hdr->total = hdr->used; 2261 2262 /* Shrink resident root attribute. */ 2263 mi_resize_attr(mi, attr, 0 - e_size); 2264 } 2265 } 2266 } 2267 2268 /* Delete a branch of tree. */ 2269 if (!fnd2 || !fnd2->level) 2270 goto out; 2271 2272 /* Reinit root 'cause it can be changed. */ 2273 root = indx_get_root(indx, ni, &attr, &mi); 2274 if (!root) { 2275 err = -EINVAL; 2276 goto out; 2277 } 2278 2279 n2d = NULL; 2280 sub_vbn = fnd2->nodes[0]->index->vbn; 2281 level2 = 0; 2282 level = fnd->level; 2283 2284 hdr = level ? &fnd->nodes[level - 1]->index->ihdr : &root->ihdr; 2285 2286 /* Scan current level. */ 2287 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) { 2288 if (!e) { 2289 err = -EINVAL; 2290 goto out; 2291 } 2292 2293 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e)) 2294 break; 2295 2296 if (de_is_last(e)) { 2297 e = NULL; 2298 break; 2299 } 2300 } 2301 2302 if (!e) { 2303 /* Do slow search from root. */ 2304 struct indx_node *in; 2305 2306 fnd_clear(fnd); 2307 2308 in = indx_find_buffer(indx, ni, root, sub_vbn, NULL); 2309 if (IS_ERR(in)) { 2310 err = PTR_ERR(in); 2311 goto out; 2312 } 2313 2314 if (in) 2315 fnd_push(fnd, in, NULL); 2316 } 2317 2318 /* Merge fnd2 -> fnd. */ 2319 for (level = 0; level < fnd2->level; level++) { 2320 fnd_push(fnd, fnd2->nodes[level], fnd2->de[level]); 2321 fnd2->nodes[level] = NULL; 2322 } 2323 fnd2->level = 0; 2324 2325 hdr = NULL; 2326 for (level = fnd->level; level; level--) { 2327 struct indx_node *in = fnd->nodes[level - 1]; 2328 2329 ib = in->index; 2330 if (ib_is_empty(ib)) { 2331 sub_vbn = ib->vbn; 2332 } else { 2333 hdr = &ib->ihdr; 2334 n2d = in; 2335 level2 = level; 2336 break; 2337 } 2338 } 2339 2340 if (!hdr) 2341 hdr = &root->ihdr; 2342 2343 e = hdr_first_de(hdr); 2344 if (!e) { 2345 err = -EINVAL; 2346 goto out; 2347 } 2348 2349 if (hdr != &root->ihdr || !de_is_last(e)) { 2350 prev = NULL; 2351 while (!de_is_last(e)) { 2352 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e)) 2353 break; 2354 prev = e; 2355 e = hdr_next_de(hdr, e); 2356 if (!e) { 2357 err = -EINVAL; 2358 goto out; 2359 } 2360 } 2361 2362 if (sub_vbn != de_get_vbn_le(e)) { 2363 /* 2364 * Didn't find the parent entry, although this buffer 2365 * is the parent trail. Something is corrupt. 2366 */ 2367 err = -EINVAL; 2368 goto out; 2369 } 2370 2371 if (de_is_last(e)) { 2372 /* 2373 * Since we can't remove the end entry, we'll remove 2374 * its predecessor instead. This means we have to 2375 * transfer the predecessor's sub_vcn to the end entry. 2376 * Note: This index block is not empty, so the 2377 * predecessor must exist. 2378 */ 2379 if (!prev) { 2380 err = -EINVAL; 2381 goto out; 2382 } 2383 2384 if (de_has_vcn(prev)) { 2385 de_set_vbn_le(e, de_get_vbn_le(prev)); 2386 } else if (de_has_vcn(e)) { 2387 le16_sub_cpu(&e->size, sizeof(u64)); 2388 e->flags &= ~NTFS_IE_HAS_SUBNODES; 2389 le32_sub_cpu(&hdr->used, sizeof(u64)); 2390 } 2391 e = prev; 2392 } 2393 2394 /* 2395 * Copy the current entry into a temporary buffer (stripping 2396 * off its down-pointer, if any) and delete it from the current 2397 * buffer or root, as appropriate. 2398 */ 2399 e_size = le16_to_cpu(e->size); 2400 me = kmemdup(e, e_size, GFP_NOFS); 2401 if (!me) { 2402 err = -ENOMEM; 2403 goto out; 2404 } 2405 2406 if (de_has_vcn(me)) { 2407 me->flags &= ~NTFS_IE_HAS_SUBNODES; 2408 le16_sub_cpu(&me->size, sizeof(u64)); 2409 } 2410 2411 hdr_delete_de(hdr, e); 2412 2413 if (hdr == &root->ihdr) { 2414 level = 0; 2415 hdr->total = hdr->used; 2416 2417 /* Shrink resident root attribute. */ 2418 mi_resize_attr(mi, attr, 0 - e_size); 2419 } else { 2420 indx_write(indx, ni, n2d, 0); 2421 level = level2; 2422 } 2423 2424 /* Mark unused buffers as free. */ 2425 trim_bit = -1; 2426 for (; level < fnd->level; level++) { 2427 ib = fnd->nodes[level]->index; 2428 if (ib_is_empty(ib)) { 2429 size_t k = le64_to_cpu(ib->vbn) >> 2430 indx->idx2vbn_bits; 2431 2432 indx_mark_free(indx, ni, k); 2433 if (k < trim_bit) 2434 trim_bit = k; 2435 } 2436 } 2437 2438 fnd_clear(fnd); 2439 /*fnd->root_de = NULL;*/ 2440 2441 /* 2442 * Re-insert the entry into the tree. 2443 * Find the spot the tree where we want to insert the new entry. 2444 */ 2445 err = indx_insert_entry(indx, ni, me, ctx, fnd, 0); 2446 kfree(me); 2447 if (err) 2448 goto out; 2449 2450 if (trim_bit != -1) 2451 indx_shrink(indx, ni, trim_bit); 2452 } else { 2453 /* 2454 * This tree needs to be collapsed down to an empty root. 2455 * Recreate the index root as an empty leaf and free all 2456 * the bits the index allocation bitmap. 2457 */ 2458 fnd_clear(fnd); 2459 fnd_clear(fnd2); 2460 2461 in = &s_index_names[indx->type]; 2462 2463 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len, 2464 &indx->alloc_run, 0, NULL, false, NULL); 2465 err = ni_remove_attr(ni, ATTR_ALLOC, in->name, in->name_len, 2466 false, NULL); 2467 run_close(&indx->alloc_run); 2468 2469 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len, 2470 &indx->bitmap_run, 0, NULL, false, NULL); 2471 err = ni_remove_attr(ni, ATTR_BITMAP, in->name, in->name_len, 2472 false, NULL); 2473 run_close(&indx->bitmap_run); 2474 2475 root = indx_get_root(indx, ni, &attr, &mi); 2476 if (!root) { 2477 err = -EINVAL; 2478 goto out; 2479 } 2480 2481 root_size = le32_to_cpu(attr->res.data_size); 2482 new_root_size = 2483 sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE); 2484 2485 if (new_root_size != root_size && 2486 !mi_resize_attr(mi, attr, new_root_size - root_size)) { 2487 err = -EINVAL; 2488 goto out; 2489 } 2490 2491 /* Fill first entry. */ 2492 e = (struct NTFS_DE *)(root + 1); 2493 e->ref.low = 0; 2494 e->ref.high = 0; 2495 e->ref.seq = 0; 2496 e->size = cpu_to_le16(sizeof(struct NTFS_DE)); 2497 e->flags = NTFS_IE_LAST; // 0x02 2498 e->key_size = 0; 2499 e->res = 0; 2500 2501 hdr = &root->ihdr; 2502 hdr->flags = 0; 2503 hdr->used = hdr->total = cpu_to_le32( 2504 new_root_size - offsetof(struct INDEX_ROOT, ihdr)); 2505 mi->dirty = true; 2506 } 2507 2508 out: 2509 fnd_put(fnd2); 2510 out1: 2511 fnd_put(fnd); 2512 out2: 2513 return err; 2514 } 2515 2516 /* 2517 * Update duplicated information in directory entry 2518 * 'dup' - info from MFT record 2519 */ 2520 int indx_update_dup(struct ntfs_inode *ni, struct ntfs_sb_info *sbi, 2521 const struct ATTR_FILE_NAME *fname, 2522 const struct NTFS_DUP_INFO *dup, int sync) 2523 { 2524 int err, diff; 2525 struct NTFS_DE *e = NULL; 2526 struct ATTR_FILE_NAME *e_fname; 2527 struct ntfs_fnd *fnd; 2528 struct INDEX_ROOT *root; 2529 struct mft_inode *mi; 2530 struct ntfs_index *indx = &ni->dir; 2531 2532 fnd = fnd_get(); 2533 if (!fnd) 2534 return -ENOMEM; 2535 2536 root = indx_get_root(indx, ni, NULL, &mi); 2537 if (!root) { 2538 err = -EINVAL; 2539 goto out; 2540 } 2541 2542 /* Find entry in directory. */ 2543 err = indx_find(indx, ni, root, fname, fname_full_size(fname), sbi, 2544 &diff, &e, fnd); 2545 if (err) 2546 goto out; 2547 2548 if (!e) { 2549 err = -EINVAL; 2550 goto out; 2551 } 2552 2553 if (diff) { 2554 err = -EINVAL; 2555 goto out; 2556 } 2557 2558 e_fname = (struct ATTR_FILE_NAME *)(e + 1); 2559 2560 if (!memcmp(&e_fname->dup, dup, sizeof(*dup))) { 2561 /* 2562 * Nothing to update in index! Try to avoid this call. 2563 */ 2564 goto out; 2565 } 2566 2567 memcpy(&e_fname->dup, dup, sizeof(*dup)); 2568 2569 if (fnd->level) { 2570 /* Directory entry in index. */ 2571 err = indx_write(indx, ni, fnd->nodes[fnd->level - 1], sync); 2572 } else { 2573 /* Directory entry in directory MFT record. */ 2574 mi->dirty = true; 2575 if (sync) 2576 err = mi_write(mi, 1); 2577 else 2578 mark_inode_dirty(&ni->vfs_inode); 2579 } 2580 2581 out: 2582 fnd_put(fnd); 2583 return err; 2584 } 2585