xref: /openbmc/linux/fs/ntfs3/index.c (revision 8ffd3d5e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *
4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5  *
6  */
7 
8 #include <linux/blkdev.h>
9 #include <linux/buffer_head.h>
10 #include <linux/fs.h>
11 #include <linux/kernel.h>
12 
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16 
17 static const struct INDEX_NAMES {
18 	const __le16 *name;
19 	u8 name_len;
20 } s_index_names[INDEX_MUTEX_TOTAL] = {
21 	{ I30_NAME, ARRAY_SIZE(I30_NAME) }, { SII_NAME, ARRAY_SIZE(SII_NAME) },
22 	{ SDH_NAME, ARRAY_SIZE(SDH_NAME) }, { SO_NAME, ARRAY_SIZE(SO_NAME) },
23 	{ SQ_NAME, ARRAY_SIZE(SQ_NAME) },   { SR_NAME, ARRAY_SIZE(SR_NAME) },
24 };
25 
26 /*
27  * cmp_fnames - Compare two names in index.
28  *
29  * if l1 != 0
30  *   Both names are little endian on-disk ATTR_FILE_NAME structs.
31  * else
32  *   key1 - cpu_str, key2 - ATTR_FILE_NAME
33  */
34 static int cmp_fnames(const void *key1, size_t l1, const void *key2, size_t l2,
35 		      const void *data)
36 {
37 	const struct ATTR_FILE_NAME *f2 = key2;
38 	const struct ntfs_sb_info *sbi = data;
39 	const struct ATTR_FILE_NAME *f1;
40 	u16 fsize2;
41 	bool both_case;
42 
43 	if (l2 <= offsetof(struct ATTR_FILE_NAME, name))
44 		return -1;
45 
46 	fsize2 = fname_full_size(f2);
47 	if (l2 < fsize2)
48 		return -1;
49 
50 	both_case = f2->type != FILE_NAME_DOS && !sbi->options->nocase;
51 	if (!l1) {
52 		const struct le_str *s2 = (struct le_str *)&f2->name_len;
53 
54 		/*
55 		 * If names are equal (case insensitive)
56 		 * try to compare it case sensitive.
57 		 */
58 		return ntfs_cmp_names_cpu(key1, s2, sbi->upcase, both_case);
59 	}
60 
61 	f1 = key1;
62 	return ntfs_cmp_names(f1->name, f1->name_len, f2->name, f2->name_len,
63 			      sbi->upcase, both_case);
64 }
65 
66 /*
67  * cmp_uint - $SII of $Secure and $Q of Quota
68  */
69 static int cmp_uint(const void *key1, size_t l1, const void *key2, size_t l2,
70 		    const void *data)
71 {
72 	const u32 *k1 = key1;
73 	const u32 *k2 = key2;
74 
75 	if (l2 < sizeof(u32))
76 		return -1;
77 
78 	if (*k1 < *k2)
79 		return -1;
80 	if (*k1 > *k2)
81 		return 1;
82 	return 0;
83 }
84 
85 /*
86  * cmp_sdh - $SDH of $Secure
87  */
88 static int cmp_sdh(const void *key1, size_t l1, const void *key2, size_t l2,
89 		   const void *data)
90 {
91 	const struct SECURITY_KEY *k1 = key1;
92 	const struct SECURITY_KEY *k2 = key2;
93 	u32 t1, t2;
94 
95 	if (l2 < sizeof(struct SECURITY_KEY))
96 		return -1;
97 
98 	t1 = le32_to_cpu(k1->hash);
99 	t2 = le32_to_cpu(k2->hash);
100 
101 	/* First value is a hash value itself. */
102 	if (t1 < t2)
103 		return -1;
104 	if (t1 > t2)
105 		return 1;
106 
107 	/* Second value is security Id. */
108 	if (data) {
109 		t1 = le32_to_cpu(k1->sec_id);
110 		t2 = le32_to_cpu(k2->sec_id);
111 		if (t1 < t2)
112 			return -1;
113 		if (t1 > t2)
114 			return 1;
115 	}
116 
117 	return 0;
118 }
119 
120 /*
121  * cmp_uints - $O of ObjId and "$R" for Reparse.
122  */
123 static int cmp_uints(const void *key1, size_t l1, const void *key2, size_t l2,
124 		     const void *data)
125 {
126 	const __le32 *k1 = key1;
127 	const __le32 *k2 = key2;
128 	size_t count;
129 
130 	if ((size_t)data == 1) {
131 		/*
132 		 * ni_delete_all -> ntfs_remove_reparse ->
133 		 * delete all with this reference.
134 		 * k1, k2 - pointers to REPARSE_KEY
135 		 */
136 
137 		k1 += 1; // Skip REPARSE_KEY.ReparseTag
138 		k2 += 1; // Skip REPARSE_KEY.ReparseTag
139 		if (l2 <= sizeof(int))
140 			return -1;
141 		l2 -= sizeof(int);
142 		if (l1 <= sizeof(int))
143 			return 1;
144 		l1 -= sizeof(int);
145 	}
146 
147 	if (l2 < sizeof(int))
148 		return -1;
149 
150 	for (count = min(l1, l2) >> 2; count > 0; --count, ++k1, ++k2) {
151 		u32 t1 = le32_to_cpu(*k1);
152 		u32 t2 = le32_to_cpu(*k2);
153 
154 		if (t1 > t2)
155 			return 1;
156 		if (t1 < t2)
157 			return -1;
158 	}
159 
160 	if (l1 > l2)
161 		return 1;
162 	if (l1 < l2)
163 		return -1;
164 
165 	return 0;
166 }
167 
168 static inline NTFS_CMP_FUNC get_cmp_func(const struct INDEX_ROOT *root)
169 {
170 	switch (root->type) {
171 	case ATTR_NAME:
172 		if (root->rule == NTFS_COLLATION_TYPE_FILENAME)
173 			return &cmp_fnames;
174 		break;
175 	case ATTR_ZERO:
176 		switch (root->rule) {
177 		case NTFS_COLLATION_TYPE_UINT:
178 			return &cmp_uint;
179 		case NTFS_COLLATION_TYPE_SECURITY_HASH:
180 			return &cmp_sdh;
181 		case NTFS_COLLATION_TYPE_UINTS:
182 			return &cmp_uints;
183 		default:
184 			break;
185 		}
186 		break;
187 	default:
188 		break;
189 	}
190 
191 	return NULL;
192 }
193 
194 struct bmp_buf {
195 	struct ATTRIB *b;
196 	struct mft_inode *mi;
197 	struct buffer_head *bh;
198 	ulong *buf;
199 	size_t bit;
200 	u32 nbits;
201 	u64 new_valid;
202 };
203 
204 static int bmp_buf_get(struct ntfs_index *indx, struct ntfs_inode *ni,
205 		       size_t bit, struct bmp_buf *bbuf)
206 {
207 	struct ATTRIB *b;
208 	size_t data_size, valid_size, vbo, off = bit >> 3;
209 	struct ntfs_sb_info *sbi = ni->mi.sbi;
210 	CLST vcn = off >> sbi->cluster_bits;
211 	struct ATTR_LIST_ENTRY *le = NULL;
212 	struct buffer_head *bh;
213 	struct super_block *sb;
214 	u32 blocksize;
215 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
216 
217 	bbuf->bh = NULL;
218 
219 	b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
220 			 &vcn, &bbuf->mi);
221 	bbuf->b = b;
222 	if (!b)
223 		return -EINVAL;
224 
225 	if (!b->non_res) {
226 		data_size = le32_to_cpu(b->res.data_size);
227 
228 		if (off >= data_size)
229 			return -EINVAL;
230 
231 		bbuf->buf = (ulong *)resident_data(b);
232 		bbuf->bit = 0;
233 		bbuf->nbits = data_size * 8;
234 
235 		return 0;
236 	}
237 
238 	data_size = le64_to_cpu(b->nres.data_size);
239 	if (WARN_ON(off >= data_size)) {
240 		/* Looks like filesystem error. */
241 		return -EINVAL;
242 	}
243 
244 	valid_size = le64_to_cpu(b->nres.valid_size);
245 
246 	bh = ntfs_bread_run(sbi, &indx->bitmap_run, off);
247 	if (!bh)
248 		return -EIO;
249 
250 	if (IS_ERR(bh))
251 		return PTR_ERR(bh);
252 
253 	bbuf->bh = bh;
254 
255 	if (buffer_locked(bh))
256 		__wait_on_buffer(bh);
257 
258 	lock_buffer(bh);
259 
260 	sb = sbi->sb;
261 	blocksize = sb->s_blocksize;
262 
263 	vbo = off & ~(size_t)sbi->block_mask;
264 
265 	bbuf->new_valid = vbo + blocksize;
266 	if (bbuf->new_valid <= valid_size)
267 		bbuf->new_valid = 0;
268 	else if (bbuf->new_valid > data_size)
269 		bbuf->new_valid = data_size;
270 
271 	if (vbo >= valid_size) {
272 		memset(bh->b_data, 0, blocksize);
273 	} else if (vbo + blocksize > valid_size) {
274 		u32 voff = valid_size & sbi->block_mask;
275 
276 		memset(bh->b_data + voff, 0, blocksize - voff);
277 	}
278 
279 	bbuf->buf = (ulong *)bh->b_data;
280 	bbuf->bit = 8 * (off & ~(size_t)sbi->block_mask);
281 	bbuf->nbits = 8 * blocksize;
282 
283 	return 0;
284 }
285 
286 static void bmp_buf_put(struct bmp_buf *bbuf, bool dirty)
287 {
288 	struct buffer_head *bh = bbuf->bh;
289 	struct ATTRIB *b = bbuf->b;
290 
291 	if (!bh) {
292 		if (b && !b->non_res && dirty)
293 			bbuf->mi->dirty = true;
294 		return;
295 	}
296 
297 	if (!dirty)
298 		goto out;
299 
300 	if (bbuf->new_valid) {
301 		b->nres.valid_size = cpu_to_le64(bbuf->new_valid);
302 		bbuf->mi->dirty = true;
303 	}
304 
305 	set_buffer_uptodate(bh);
306 	mark_buffer_dirty(bh);
307 
308 out:
309 	unlock_buffer(bh);
310 	put_bh(bh);
311 }
312 
313 /*
314  * indx_mark_used - Mark the bit @bit as used.
315  */
316 static int indx_mark_used(struct ntfs_index *indx, struct ntfs_inode *ni,
317 			  size_t bit)
318 {
319 	int err;
320 	struct bmp_buf bbuf;
321 
322 	err = bmp_buf_get(indx, ni, bit, &bbuf);
323 	if (err)
324 		return err;
325 
326 	__set_bit_le(bit - bbuf.bit, bbuf.buf);
327 
328 	bmp_buf_put(&bbuf, true);
329 
330 	return 0;
331 }
332 
333 /*
334  * indx_mark_free - Mark the bit @bit as free.
335  */
336 static int indx_mark_free(struct ntfs_index *indx, struct ntfs_inode *ni,
337 			  size_t bit)
338 {
339 	int err;
340 	struct bmp_buf bbuf;
341 
342 	err = bmp_buf_get(indx, ni, bit, &bbuf);
343 	if (err)
344 		return err;
345 
346 	__clear_bit_le(bit - bbuf.bit, bbuf.buf);
347 
348 	bmp_buf_put(&bbuf, true);
349 
350 	return 0;
351 }
352 
353 /*
354  * scan_nres_bitmap
355  *
356  * If ntfs_readdir calls this function (indx_used_bit -> scan_nres_bitmap),
357  * inode is shared locked and no ni_lock.
358  * Use rw_semaphore for read/write access to bitmap_run.
359  */
360 static int scan_nres_bitmap(struct ntfs_inode *ni, struct ATTRIB *bitmap,
361 			    struct ntfs_index *indx, size_t from,
362 			    bool (*fn)(const ulong *buf, u32 bit, u32 bits,
363 				       size_t *ret),
364 			    size_t *ret)
365 {
366 	struct ntfs_sb_info *sbi = ni->mi.sbi;
367 	struct super_block *sb = sbi->sb;
368 	struct runs_tree *run = &indx->bitmap_run;
369 	struct rw_semaphore *lock = &indx->run_lock;
370 	u32 nbits = sb->s_blocksize * 8;
371 	u32 blocksize = sb->s_blocksize;
372 	u64 valid_size = le64_to_cpu(bitmap->nres.valid_size);
373 	u64 data_size = le64_to_cpu(bitmap->nres.data_size);
374 	sector_t eblock = bytes_to_block(sb, data_size);
375 	size_t vbo = from >> 3;
376 	sector_t blk = (vbo & sbi->cluster_mask) >> sb->s_blocksize_bits;
377 	sector_t vblock = vbo >> sb->s_blocksize_bits;
378 	sector_t blen, block;
379 	CLST lcn, clen, vcn, vcn_next;
380 	size_t idx;
381 	struct buffer_head *bh;
382 	bool ok;
383 
384 	*ret = MINUS_ONE_T;
385 
386 	if (vblock >= eblock)
387 		return 0;
388 
389 	from &= nbits - 1;
390 	vcn = vbo >> sbi->cluster_bits;
391 
392 	down_read(lock);
393 	ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
394 	up_read(lock);
395 
396 next_run:
397 	if (!ok) {
398 		int err;
399 		const struct INDEX_NAMES *name = &s_index_names[indx->type];
400 
401 		down_write(lock);
402 		err = attr_load_runs_vcn(ni, ATTR_BITMAP, name->name,
403 					 name->name_len, run, vcn);
404 		up_write(lock);
405 		if (err)
406 			return err;
407 		down_read(lock);
408 		ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
409 		up_read(lock);
410 		if (!ok)
411 			return -EINVAL;
412 	}
413 
414 	blen = (sector_t)clen * sbi->blocks_per_cluster;
415 	block = (sector_t)lcn * sbi->blocks_per_cluster;
416 
417 	for (; blk < blen; blk++, from = 0) {
418 		bh = ntfs_bread(sb, block + blk);
419 		if (!bh)
420 			return -EIO;
421 
422 		vbo = (u64)vblock << sb->s_blocksize_bits;
423 		if (vbo >= valid_size) {
424 			memset(bh->b_data, 0, blocksize);
425 		} else if (vbo + blocksize > valid_size) {
426 			u32 voff = valid_size & sbi->block_mask;
427 
428 			memset(bh->b_data + voff, 0, blocksize - voff);
429 		}
430 
431 		if (vbo + blocksize > data_size)
432 			nbits = 8 * (data_size - vbo);
433 
434 		ok = nbits > from ? (*fn)((ulong *)bh->b_data, from, nbits, ret)
435 				  : false;
436 		put_bh(bh);
437 
438 		if (ok) {
439 			*ret += 8 * vbo;
440 			return 0;
441 		}
442 
443 		if (++vblock >= eblock) {
444 			*ret = MINUS_ONE_T;
445 			return 0;
446 		}
447 	}
448 	blk = 0;
449 	vcn_next = vcn + clen;
450 	down_read(lock);
451 	ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && vcn == vcn_next;
452 	if (!ok)
453 		vcn = vcn_next;
454 	up_read(lock);
455 	goto next_run;
456 }
457 
458 static bool scan_for_free(const ulong *buf, u32 bit, u32 bits, size_t *ret)
459 {
460 	size_t pos = find_next_zero_bit_le(buf, bits, bit);
461 
462 	if (pos >= bits)
463 		return false;
464 	*ret = pos;
465 	return true;
466 }
467 
468 /*
469  * indx_find_free - Look for free bit.
470  *
471  * Return: -1 if no free bits.
472  */
473 static int indx_find_free(struct ntfs_index *indx, struct ntfs_inode *ni,
474 			  size_t *bit, struct ATTRIB **bitmap)
475 {
476 	struct ATTRIB *b;
477 	struct ATTR_LIST_ENTRY *le = NULL;
478 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
479 	int err;
480 
481 	b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
482 			 NULL, NULL);
483 
484 	if (!b)
485 		return -ENOENT;
486 
487 	*bitmap = b;
488 	*bit = MINUS_ONE_T;
489 
490 	if (!b->non_res) {
491 		u32 nbits = 8 * le32_to_cpu(b->res.data_size);
492 		size_t pos = find_next_zero_bit_le(resident_data(b), nbits, 0);
493 
494 		if (pos < nbits)
495 			*bit = pos;
496 	} else {
497 		err = scan_nres_bitmap(ni, b, indx, 0, &scan_for_free, bit);
498 
499 		if (err)
500 			return err;
501 	}
502 
503 	return 0;
504 }
505 
506 static bool scan_for_used(const ulong *buf, u32 bit, u32 bits, size_t *ret)
507 {
508 	size_t pos = find_next_bit_le(buf, bits, bit);
509 
510 	if (pos >= bits)
511 		return false;
512 	*ret = pos;
513 	return true;
514 }
515 
516 /*
517  * indx_used_bit - Look for used bit.
518  *
519  * Return: MINUS_ONE_T if no used bits.
520  */
521 int indx_used_bit(struct ntfs_index *indx, struct ntfs_inode *ni, size_t *bit)
522 {
523 	struct ATTRIB *b;
524 	struct ATTR_LIST_ENTRY *le = NULL;
525 	size_t from = *bit;
526 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
527 	int err;
528 
529 	b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
530 			 NULL, NULL);
531 
532 	if (!b)
533 		return -ENOENT;
534 
535 	*bit = MINUS_ONE_T;
536 
537 	if (!b->non_res) {
538 		u32 nbits = le32_to_cpu(b->res.data_size) * 8;
539 		size_t pos = find_next_bit_le(resident_data(b), nbits, from);
540 
541 		if (pos < nbits)
542 			*bit = pos;
543 	} else {
544 		err = scan_nres_bitmap(ni, b, indx, from, &scan_for_used, bit);
545 		if (err)
546 			return err;
547 	}
548 
549 	return 0;
550 }
551 
552 /*
553  * hdr_find_split
554  *
555  * Find a point at which the index allocation buffer would like to be split.
556  * NOTE: This function should never return 'END' entry NULL returns on error.
557  */
558 static const struct NTFS_DE *hdr_find_split(const struct INDEX_HDR *hdr)
559 {
560 	size_t o;
561 	const struct NTFS_DE *e = hdr_first_de(hdr);
562 	u32 used_2 = le32_to_cpu(hdr->used) >> 1;
563 	u16 esize;
564 
565 	if (!e || de_is_last(e))
566 		return NULL;
567 
568 	esize = le16_to_cpu(e->size);
569 	for (o = le32_to_cpu(hdr->de_off) + esize; o < used_2; o += esize) {
570 		const struct NTFS_DE *p = e;
571 
572 		e = Add2Ptr(hdr, o);
573 
574 		/* We must not return END entry. */
575 		if (de_is_last(e))
576 			return p;
577 
578 		esize = le16_to_cpu(e->size);
579 	}
580 
581 	return e;
582 }
583 
584 /*
585  * hdr_insert_head - Insert some entries at the beginning of the buffer.
586  *
587  * It is used to insert entries into a newly-created buffer.
588  */
589 static const struct NTFS_DE *hdr_insert_head(struct INDEX_HDR *hdr,
590 					     const void *ins, u32 ins_bytes)
591 {
592 	u32 to_move;
593 	struct NTFS_DE *e = hdr_first_de(hdr);
594 	u32 used = le32_to_cpu(hdr->used);
595 
596 	if (!e)
597 		return NULL;
598 
599 	/* Now we just make room for the inserted entries and jam it in. */
600 	to_move = used - le32_to_cpu(hdr->de_off);
601 	memmove(Add2Ptr(e, ins_bytes), e, to_move);
602 	memcpy(e, ins, ins_bytes);
603 	hdr->used = cpu_to_le32(used + ins_bytes);
604 
605 	return e;
606 }
607 
608 /*
609  * index_hdr_check
610  *
611  * return true if INDEX_HDR is valid
612  */
613 static bool index_hdr_check(const struct INDEX_HDR *hdr, u32 bytes)
614 {
615 	u32 end = le32_to_cpu(hdr->used);
616 	u32 tot = le32_to_cpu(hdr->total);
617 	u32 off = le32_to_cpu(hdr->de_off);
618 
619 	if (!IS_ALIGNED(off, 8) || tot > bytes || end > tot ||
620 	    off + sizeof(struct NTFS_DE) > end) {
621 		/* incorrect index buffer. */
622 		return false;
623 	}
624 
625 	return true;
626 }
627 
628 /*
629  * index_buf_check
630  *
631  * return true if INDEX_BUFFER seems is valid
632  */
633 static bool index_buf_check(const struct INDEX_BUFFER *ib, u32 bytes,
634 			    const CLST *vbn)
635 {
636 	const struct NTFS_RECORD_HEADER *rhdr = &ib->rhdr;
637 	u16 fo = le16_to_cpu(rhdr->fix_off);
638 	u16 fn = le16_to_cpu(rhdr->fix_num);
639 
640 	if (bytes <= offsetof(struct INDEX_BUFFER, ihdr) ||
641 	    rhdr->sign != NTFS_INDX_SIGNATURE ||
642 	    fo < sizeof(struct INDEX_BUFFER)
643 	    /* Check index buffer vbn. */
644 	    || (vbn && *vbn != le64_to_cpu(ib->vbn)) || (fo % sizeof(short)) ||
645 	    fo + fn * sizeof(short) >= bytes ||
646 	    fn != ((bytes >> SECTOR_SHIFT) + 1)) {
647 		/* incorrect index buffer. */
648 		return false;
649 	}
650 
651 	return index_hdr_check(&ib->ihdr,
652 			       bytes - offsetof(struct INDEX_BUFFER, ihdr));
653 }
654 
655 void fnd_clear(struct ntfs_fnd *fnd)
656 {
657 	int i;
658 
659 	for (i = fnd->level - 1; i >= 0; i--) {
660 		struct indx_node *n = fnd->nodes[i];
661 
662 		if (!n)
663 			continue;
664 
665 		put_indx_node(n);
666 		fnd->nodes[i] = NULL;
667 	}
668 	fnd->level = 0;
669 	fnd->root_de = NULL;
670 }
671 
672 static int fnd_push(struct ntfs_fnd *fnd, struct indx_node *n,
673 		    struct NTFS_DE *e)
674 {
675 	int i = fnd->level;
676 
677 	if (i < 0 || i >= ARRAY_SIZE(fnd->nodes))
678 		return -EINVAL;
679 	fnd->nodes[i] = n;
680 	fnd->de[i] = e;
681 	fnd->level += 1;
682 	return 0;
683 }
684 
685 static struct indx_node *fnd_pop(struct ntfs_fnd *fnd)
686 {
687 	struct indx_node *n;
688 	int i = fnd->level;
689 
690 	i -= 1;
691 	n = fnd->nodes[i];
692 	fnd->nodes[i] = NULL;
693 	fnd->level = i;
694 
695 	return n;
696 }
697 
698 static bool fnd_is_empty(struct ntfs_fnd *fnd)
699 {
700 	if (!fnd->level)
701 		return !fnd->root_de;
702 
703 	return !fnd->de[fnd->level - 1];
704 }
705 
706 /*
707  * hdr_find_e - Locate an entry the index buffer.
708  *
709  * If no matching entry is found, it returns the first entry which is greater
710  * than the desired entry If the search key is greater than all the entries the
711  * buffer, it returns the 'end' entry. This function does a binary search of the
712  * current index buffer, for the first entry that is <= to the search value.
713  *
714  * Return: NULL if error.
715  */
716 static struct NTFS_DE *hdr_find_e(const struct ntfs_index *indx,
717 				  const struct INDEX_HDR *hdr, const void *key,
718 				  size_t key_len, const void *ctx, int *diff)
719 {
720 	struct NTFS_DE *e, *found = NULL;
721 	NTFS_CMP_FUNC cmp = indx->cmp;
722 	int min_idx = 0, mid_idx, max_idx = 0;
723 	int diff2;
724 	int table_size = 8;
725 	u32 e_size, e_key_len;
726 	u32 end = le32_to_cpu(hdr->used);
727 	u32 off = le32_to_cpu(hdr->de_off);
728 	u16 offs[128];
729 
730 fill_table:
731 	if (off + sizeof(struct NTFS_DE) > end)
732 		return NULL;
733 
734 	e = Add2Ptr(hdr, off);
735 	e_size = le16_to_cpu(e->size);
736 
737 	if (e_size < sizeof(struct NTFS_DE) || off + e_size > end)
738 		return NULL;
739 
740 	if (!de_is_last(e)) {
741 		offs[max_idx] = off;
742 		off += e_size;
743 
744 		max_idx++;
745 		if (max_idx < table_size)
746 			goto fill_table;
747 
748 		max_idx--;
749 	}
750 
751 binary_search:
752 	e_key_len = le16_to_cpu(e->key_size);
753 
754 	diff2 = (*cmp)(key, key_len, e + 1, e_key_len, ctx);
755 	if (diff2 > 0) {
756 		if (found) {
757 			min_idx = mid_idx + 1;
758 		} else {
759 			if (de_is_last(e))
760 				return NULL;
761 
762 			max_idx = 0;
763 			table_size = min(table_size * 2,
764 					 (int)ARRAY_SIZE(offs));
765 			goto fill_table;
766 		}
767 	} else if (diff2 < 0) {
768 		if (found)
769 			max_idx = mid_idx - 1;
770 		else
771 			max_idx--;
772 
773 		found = e;
774 	} else {
775 		*diff = 0;
776 		return e;
777 	}
778 
779 	if (min_idx > max_idx) {
780 		*diff = -1;
781 		return found;
782 	}
783 
784 	mid_idx = (min_idx + max_idx) >> 1;
785 	e = Add2Ptr(hdr, offs[mid_idx]);
786 
787 	goto binary_search;
788 }
789 
790 /*
791  * hdr_insert_de - Insert an index entry into the buffer.
792  *
793  * 'before' should be a pointer previously returned from hdr_find_e.
794  */
795 static struct NTFS_DE *hdr_insert_de(const struct ntfs_index *indx,
796 				     struct INDEX_HDR *hdr,
797 				     const struct NTFS_DE *de,
798 				     struct NTFS_DE *before, const void *ctx)
799 {
800 	int diff;
801 	size_t off = PtrOffset(hdr, before);
802 	u32 used = le32_to_cpu(hdr->used);
803 	u32 total = le32_to_cpu(hdr->total);
804 	u16 de_size = le16_to_cpu(de->size);
805 
806 	/* First, check to see if there's enough room. */
807 	if (used + de_size > total)
808 		return NULL;
809 
810 	/* We know there's enough space, so we know we'll succeed. */
811 	if (before) {
812 		/* Check that before is inside Index. */
813 		if (off >= used || off < le32_to_cpu(hdr->de_off) ||
814 		    off + le16_to_cpu(before->size) > total) {
815 			return NULL;
816 		}
817 		goto ok;
818 	}
819 	/* No insert point is applied. Get it manually. */
820 	before = hdr_find_e(indx, hdr, de + 1, le16_to_cpu(de->key_size), ctx,
821 			    &diff);
822 	if (!before)
823 		return NULL;
824 	off = PtrOffset(hdr, before);
825 
826 ok:
827 	/* Now we just make room for the entry and jam it in. */
828 	memmove(Add2Ptr(before, de_size), before, used - off);
829 
830 	hdr->used = cpu_to_le32(used + de_size);
831 	memcpy(before, de, de_size);
832 
833 	return before;
834 }
835 
836 /*
837  * hdr_delete_de - Remove an entry from the index buffer.
838  */
839 static inline struct NTFS_DE *hdr_delete_de(struct INDEX_HDR *hdr,
840 					    struct NTFS_DE *re)
841 {
842 	u32 used = le32_to_cpu(hdr->used);
843 	u16 esize = le16_to_cpu(re->size);
844 	u32 off = PtrOffset(hdr, re);
845 	int bytes = used - (off + esize);
846 
847 	if (off >= used || esize < sizeof(struct NTFS_DE) ||
848 	    bytes < sizeof(struct NTFS_DE))
849 		return NULL;
850 
851 	hdr->used = cpu_to_le32(used - esize);
852 	memmove(re, Add2Ptr(re, esize), bytes);
853 
854 	return re;
855 }
856 
857 void indx_clear(struct ntfs_index *indx)
858 {
859 	run_close(&indx->alloc_run);
860 	run_close(&indx->bitmap_run);
861 }
862 
863 int indx_init(struct ntfs_index *indx, struct ntfs_sb_info *sbi,
864 	      const struct ATTRIB *attr, enum index_mutex_classed type)
865 {
866 	u32 t32;
867 	const struct INDEX_ROOT *root = resident_data(attr);
868 
869 	t32 = le32_to_cpu(attr->res.data_size);
870 	if (t32 <= offsetof(struct INDEX_ROOT, ihdr) ||
871 	    !index_hdr_check(&root->ihdr,
872 			     t32 - offsetof(struct INDEX_ROOT, ihdr))) {
873 		goto out;
874 	}
875 
876 	/* Check root fields. */
877 	if (!root->index_block_clst)
878 		goto out;
879 
880 	indx->type = type;
881 	indx->idx2vbn_bits = __ffs(root->index_block_clst);
882 
883 	t32 = le32_to_cpu(root->index_block_size);
884 	indx->index_bits = blksize_bits(t32);
885 
886 	/* Check index record size. */
887 	if (t32 < sbi->cluster_size) {
888 		/* Index record is smaller than a cluster, use 512 blocks. */
889 		if (t32 != root->index_block_clst * SECTOR_SIZE)
890 			goto out;
891 
892 		/* Check alignment to a cluster. */
893 		if ((sbi->cluster_size >> SECTOR_SHIFT) &
894 		    (root->index_block_clst - 1)) {
895 			goto out;
896 		}
897 
898 		indx->vbn2vbo_bits = SECTOR_SHIFT;
899 	} else {
900 		/* Index record must be a multiple of cluster size. */
901 		if (t32 != root->index_block_clst << sbi->cluster_bits)
902 			goto out;
903 
904 		indx->vbn2vbo_bits = sbi->cluster_bits;
905 	}
906 
907 	init_rwsem(&indx->run_lock);
908 
909 	indx->cmp = get_cmp_func(root);
910 	if (!indx->cmp)
911 		goto out;
912 
913 	return 0;
914 
915 out:
916 	ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
917 	return -EINVAL;
918 }
919 
920 static struct indx_node *indx_new(struct ntfs_index *indx,
921 				  struct ntfs_inode *ni, CLST vbn,
922 				  const __le64 *sub_vbn)
923 {
924 	int err;
925 	struct NTFS_DE *e;
926 	struct indx_node *r;
927 	struct INDEX_HDR *hdr;
928 	struct INDEX_BUFFER *index;
929 	u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
930 	u32 bytes = 1u << indx->index_bits;
931 	u16 fn;
932 	u32 eo;
933 
934 	r = kzalloc(sizeof(struct indx_node), GFP_NOFS);
935 	if (!r)
936 		return ERR_PTR(-ENOMEM);
937 
938 	index = kzalloc(bytes, GFP_NOFS);
939 	if (!index) {
940 		kfree(r);
941 		return ERR_PTR(-ENOMEM);
942 	}
943 
944 	err = ntfs_get_bh(ni->mi.sbi, &indx->alloc_run, vbo, bytes, &r->nb);
945 
946 	if (err) {
947 		kfree(index);
948 		kfree(r);
949 		return ERR_PTR(err);
950 	}
951 
952 	/* Create header. */
953 	index->rhdr.sign = NTFS_INDX_SIGNATURE;
954 	index->rhdr.fix_off = cpu_to_le16(sizeof(struct INDEX_BUFFER)); // 0x28
955 	fn = (bytes >> SECTOR_SHIFT) + 1; // 9
956 	index->rhdr.fix_num = cpu_to_le16(fn);
957 	index->vbn = cpu_to_le64(vbn);
958 	hdr = &index->ihdr;
959 	eo = ALIGN(sizeof(struct INDEX_BUFFER) + fn * sizeof(short), 8);
960 	hdr->de_off = cpu_to_le32(eo);
961 
962 	e = Add2Ptr(hdr, eo);
963 
964 	if (sub_vbn) {
965 		e->flags = NTFS_IE_LAST | NTFS_IE_HAS_SUBNODES;
966 		e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
967 		hdr->used =
968 			cpu_to_le32(eo + sizeof(struct NTFS_DE) + sizeof(u64));
969 		de_set_vbn_le(e, *sub_vbn);
970 		hdr->flags = 1;
971 	} else {
972 		e->size = cpu_to_le16(sizeof(struct NTFS_DE));
973 		hdr->used = cpu_to_le32(eo + sizeof(struct NTFS_DE));
974 		e->flags = NTFS_IE_LAST;
975 	}
976 
977 	hdr->total = cpu_to_le32(bytes - offsetof(struct INDEX_BUFFER, ihdr));
978 
979 	r->index = index;
980 	return r;
981 }
982 
983 struct INDEX_ROOT *indx_get_root(struct ntfs_index *indx, struct ntfs_inode *ni,
984 				 struct ATTRIB **attr, struct mft_inode **mi)
985 {
986 	struct ATTR_LIST_ENTRY *le = NULL;
987 	struct ATTRIB *a;
988 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
989 
990 	a = ni_find_attr(ni, NULL, &le, ATTR_ROOT, in->name, in->name_len, NULL,
991 			 mi);
992 	if (!a)
993 		return NULL;
994 
995 	if (attr)
996 		*attr = a;
997 
998 	return resident_data_ex(a, sizeof(struct INDEX_ROOT));
999 }
1000 
1001 static int indx_write(struct ntfs_index *indx, struct ntfs_inode *ni,
1002 		      struct indx_node *node, int sync)
1003 {
1004 	struct INDEX_BUFFER *ib = node->index;
1005 
1006 	return ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &node->nb, sync);
1007 }
1008 
1009 /*
1010  * indx_read
1011  *
1012  * If ntfs_readdir calls this function
1013  * inode is shared locked and no ni_lock.
1014  * Use rw_semaphore for read/write access to alloc_run.
1015  */
1016 int indx_read(struct ntfs_index *indx, struct ntfs_inode *ni, CLST vbn,
1017 	      struct indx_node **node)
1018 {
1019 	int err;
1020 	struct INDEX_BUFFER *ib;
1021 	struct runs_tree *run = &indx->alloc_run;
1022 	struct rw_semaphore *lock = &indx->run_lock;
1023 	u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
1024 	u32 bytes = 1u << indx->index_bits;
1025 	struct indx_node *in = *node;
1026 	const struct INDEX_NAMES *name;
1027 
1028 	if (!in) {
1029 		in = kzalloc(sizeof(struct indx_node), GFP_NOFS);
1030 		if (!in)
1031 			return -ENOMEM;
1032 	} else {
1033 		nb_put(&in->nb);
1034 	}
1035 
1036 	ib = in->index;
1037 	if (!ib) {
1038 		ib = kmalloc(bytes, GFP_NOFS);
1039 		if (!ib) {
1040 			err = -ENOMEM;
1041 			goto out;
1042 		}
1043 	}
1044 
1045 	down_read(lock);
1046 	err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
1047 	up_read(lock);
1048 	if (!err)
1049 		goto ok;
1050 
1051 	if (err == -E_NTFS_FIXUP)
1052 		goto ok;
1053 
1054 	if (err != -ENOENT)
1055 		goto out;
1056 
1057 	name = &s_index_names[indx->type];
1058 	down_write(lock);
1059 	err = attr_load_runs_range(ni, ATTR_ALLOC, name->name, name->name_len,
1060 				   run, vbo, vbo + bytes);
1061 	up_write(lock);
1062 	if (err)
1063 		goto out;
1064 
1065 	down_read(lock);
1066 	err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
1067 	up_read(lock);
1068 	if (err == -E_NTFS_FIXUP)
1069 		goto ok;
1070 
1071 	if (err)
1072 		goto out;
1073 
1074 ok:
1075 	if (!index_buf_check(ib, bytes, &vbn)) {
1076 		ntfs_inode_err(&ni->vfs_inode, "directory corrupted");
1077 		ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
1078 		err = -EINVAL;
1079 		goto out;
1080 	}
1081 
1082 	if (err == -E_NTFS_FIXUP) {
1083 		ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &in->nb, 0);
1084 		err = 0;
1085 	}
1086 
1087 	/* check for index header length */
1088 	if (offsetof(struct INDEX_BUFFER, ihdr) + ib->ihdr.used > bytes) {
1089 		err = -EINVAL;
1090 		goto out;
1091 	}
1092 
1093 	in->index = ib;
1094 	*node = in;
1095 
1096 out:
1097 	if (ib != in->index)
1098 		kfree(ib);
1099 
1100 	if (*node != in) {
1101 		nb_put(&in->nb);
1102 		kfree(in);
1103 	}
1104 
1105 	return err;
1106 }
1107 
1108 /*
1109  * indx_find - Scan NTFS directory for given entry.
1110  */
1111 int indx_find(struct ntfs_index *indx, struct ntfs_inode *ni,
1112 	      const struct INDEX_ROOT *root, const void *key, size_t key_len,
1113 	      const void *ctx, int *diff, struct NTFS_DE **entry,
1114 	      struct ntfs_fnd *fnd)
1115 {
1116 	int err;
1117 	struct NTFS_DE *e;
1118 	struct indx_node *node;
1119 
1120 	if (!root)
1121 		root = indx_get_root(&ni->dir, ni, NULL, NULL);
1122 
1123 	if (!root) {
1124 		/* Should not happen. */
1125 		return -EINVAL;
1126 	}
1127 
1128 	/* Check cache. */
1129 	e = fnd->level ? fnd->de[fnd->level - 1] : fnd->root_de;
1130 	if (e && !de_is_last(e) &&
1131 	    !(*indx->cmp)(key, key_len, e + 1, le16_to_cpu(e->key_size), ctx)) {
1132 		*entry = e;
1133 		*diff = 0;
1134 		return 0;
1135 	}
1136 
1137 	/* Soft finder reset. */
1138 	fnd_clear(fnd);
1139 
1140 	/* Lookup entry that is <= to the search value. */
1141 	e = hdr_find_e(indx, &root->ihdr, key, key_len, ctx, diff);
1142 	if (!e)
1143 		return -EINVAL;
1144 
1145 	fnd->root_de = e;
1146 
1147 	for (;;) {
1148 		node = NULL;
1149 		if (*diff >= 0 || !de_has_vcn_ex(e))
1150 			break;
1151 
1152 		/* Read next level. */
1153 		err = indx_read(indx, ni, de_get_vbn(e), &node);
1154 		if (err)
1155 			return err;
1156 
1157 		/* Lookup entry that is <= to the search value. */
1158 		e = hdr_find_e(indx, &node->index->ihdr, key, key_len, ctx,
1159 			       diff);
1160 		if (!e) {
1161 			put_indx_node(node);
1162 			return -EINVAL;
1163 		}
1164 
1165 		fnd_push(fnd, node, e);
1166 	}
1167 
1168 	*entry = e;
1169 	return 0;
1170 }
1171 
1172 int indx_find_sort(struct ntfs_index *indx, struct ntfs_inode *ni,
1173 		   const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1174 		   struct ntfs_fnd *fnd)
1175 {
1176 	int err;
1177 	struct indx_node *n = NULL;
1178 	struct NTFS_DE *e;
1179 	size_t iter = 0;
1180 	int level = fnd->level;
1181 
1182 	if (!*entry) {
1183 		/* Start find. */
1184 		e = hdr_first_de(&root->ihdr);
1185 		if (!e)
1186 			return 0;
1187 		fnd_clear(fnd);
1188 		fnd->root_de = e;
1189 	} else if (!level) {
1190 		if (de_is_last(fnd->root_de)) {
1191 			*entry = NULL;
1192 			return 0;
1193 		}
1194 
1195 		e = hdr_next_de(&root->ihdr, fnd->root_de);
1196 		if (!e)
1197 			return -EINVAL;
1198 		fnd->root_de = e;
1199 	} else {
1200 		n = fnd->nodes[level - 1];
1201 		e = fnd->de[level - 1];
1202 
1203 		if (de_is_last(e))
1204 			goto pop_level;
1205 
1206 		e = hdr_next_de(&n->index->ihdr, e);
1207 		if (!e)
1208 			return -EINVAL;
1209 
1210 		fnd->de[level - 1] = e;
1211 	}
1212 
1213 	/* Just to avoid tree cycle. */
1214 next_iter:
1215 	if (iter++ >= 1000)
1216 		return -EINVAL;
1217 
1218 	while (de_has_vcn_ex(e)) {
1219 		if (le16_to_cpu(e->size) <
1220 		    sizeof(struct NTFS_DE) + sizeof(u64)) {
1221 			if (n) {
1222 				fnd_pop(fnd);
1223 				kfree(n);
1224 			}
1225 			return -EINVAL;
1226 		}
1227 
1228 		/* Read next level. */
1229 		err = indx_read(indx, ni, de_get_vbn(e), &n);
1230 		if (err)
1231 			return err;
1232 
1233 		/* Try next level. */
1234 		e = hdr_first_de(&n->index->ihdr);
1235 		if (!e) {
1236 			kfree(n);
1237 			return -EINVAL;
1238 		}
1239 
1240 		fnd_push(fnd, n, e);
1241 	}
1242 
1243 	if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1244 		*entry = e;
1245 		return 0;
1246 	}
1247 
1248 pop_level:
1249 	for (;;) {
1250 		if (!de_is_last(e))
1251 			goto next_iter;
1252 
1253 		/* Pop one level. */
1254 		if (n) {
1255 			fnd_pop(fnd);
1256 			kfree(n);
1257 		}
1258 
1259 		level = fnd->level;
1260 
1261 		if (level) {
1262 			n = fnd->nodes[level - 1];
1263 			e = fnd->de[level - 1];
1264 		} else if (fnd->root_de) {
1265 			n = NULL;
1266 			e = fnd->root_de;
1267 			fnd->root_de = NULL;
1268 		} else {
1269 			*entry = NULL;
1270 			return 0;
1271 		}
1272 
1273 		if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1274 			*entry = e;
1275 			if (!fnd->root_de)
1276 				fnd->root_de = e;
1277 			return 0;
1278 		}
1279 	}
1280 }
1281 
1282 int indx_find_raw(struct ntfs_index *indx, struct ntfs_inode *ni,
1283 		  const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1284 		  size_t *off, struct ntfs_fnd *fnd)
1285 {
1286 	int err;
1287 	struct indx_node *n = NULL;
1288 	struct NTFS_DE *e = NULL;
1289 	struct NTFS_DE *e2;
1290 	size_t bit;
1291 	CLST next_used_vbn;
1292 	CLST next_vbn;
1293 	u32 record_size = ni->mi.sbi->record_size;
1294 
1295 	/* Use non sorted algorithm. */
1296 	if (!*entry) {
1297 		/* This is the first call. */
1298 		e = hdr_first_de(&root->ihdr);
1299 		if (!e)
1300 			return 0;
1301 		fnd_clear(fnd);
1302 		fnd->root_de = e;
1303 
1304 		/* The first call with setup of initial element. */
1305 		if (*off >= record_size) {
1306 			next_vbn = (((*off - record_size) >> indx->index_bits))
1307 				   << indx->idx2vbn_bits;
1308 			/* Jump inside cycle 'for'. */
1309 			goto next;
1310 		}
1311 
1312 		/* Start enumeration from root. */
1313 		*off = 0;
1314 	} else if (!fnd->root_de)
1315 		return -EINVAL;
1316 
1317 	for (;;) {
1318 		/* Check if current entry can be used. */
1319 		if (e && le16_to_cpu(e->size) > sizeof(struct NTFS_DE))
1320 			goto ok;
1321 
1322 		if (!fnd->level) {
1323 			/* Continue to enumerate root. */
1324 			if (!de_is_last(fnd->root_de)) {
1325 				e = hdr_next_de(&root->ihdr, fnd->root_de);
1326 				if (!e)
1327 					return -EINVAL;
1328 				fnd->root_de = e;
1329 				continue;
1330 			}
1331 
1332 			/* Start to enumerate indexes from 0. */
1333 			next_vbn = 0;
1334 		} else {
1335 			/* Continue to enumerate indexes. */
1336 			e2 = fnd->de[fnd->level - 1];
1337 
1338 			n = fnd->nodes[fnd->level - 1];
1339 
1340 			if (!de_is_last(e2)) {
1341 				e = hdr_next_de(&n->index->ihdr, e2);
1342 				if (!e)
1343 					return -EINVAL;
1344 				fnd->de[fnd->level - 1] = e;
1345 				continue;
1346 			}
1347 
1348 			/* Continue with next index. */
1349 			next_vbn = le64_to_cpu(n->index->vbn) +
1350 				   root->index_block_clst;
1351 		}
1352 
1353 next:
1354 		/* Release current index. */
1355 		if (n) {
1356 			fnd_pop(fnd);
1357 			put_indx_node(n);
1358 			n = NULL;
1359 		}
1360 
1361 		/* Skip all free indexes. */
1362 		bit = next_vbn >> indx->idx2vbn_bits;
1363 		err = indx_used_bit(indx, ni, &bit);
1364 		if (err == -ENOENT || bit == MINUS_ONE_T) {
1365 			/* No used indexes. */
1366 			*entry = NULL;
1367 			return 0;
1368 		}
1369 
1370 		next_used_vbn = bit << indx->idx2vbn_bits;
1371 
1372 		/* Read buffer into memory. */
1373 		err = indx_read(indx, ni, next_used_vbn, &n);
1374 		if (err)
1375 			return err;
1376 
1377 		e = hdr_first_de(&n->index->ihdr);
1378 		fnd_push(fnd, n, e);
1379 		if (!e)
1380 			return -EINVAL;
1381 	}
1382 
1383 ok:
1384 	/* Return offset to restore enumerator if necessary. */
1385 	if (!n) {
1386 		/* 'e' points in root, */
1387 		*off = PtrOffset(&root->ihdr, e);
1388 	} else {
1389 		/* 'e' points in index, */
1390 		*off = (le64_to_cpu(n->index->vbn) << indx->vbn2vbo_bits) +
1391 		       record_size + PtrOffset(&n->index->ihdr, e);
1392 	}
1393 
1394 	*entry = e;
1395 	return 0;
1396 }
1397 
1398 /*
1399  * indx_create_allocate - Create "Allocation + Bitmap" attributes.
1400  */
1401 static int indx_create_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1402 				CLST *vbn)
1403 {
1404 	int err;
1405 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1406 	struct ATTRIB *bitmap;
1407 	struct ATTRIB *alloc;
1408 	u32 data_size = 1u << indx->index_bits;
1409 	u32 alloc_size = ntfs_up_cluster(sbi, data_size);
1410 	CLST len = alloc_size >> sbi->cluster_bits;
1411 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
1412 	CLST alen;
1413 	struct runs_tree run;
1414 
1415 	run_init(&run);
1416 
1417 	err = attr_allocate_clusters(sbi, &run, 0, 0, len, NULL, ALLOCATE_DEF,
1418 				     &alen, 0, NULL, NULL);
1419 	if (err)
1420 		goto out;
1421 
1422 	err = ni_insert_nonresident(ni, ATTR_ALLOC, in->name, in->name_len,
1423 				    &run, 0, len, 0, &alloc, NULL, NULL);
1424 	if (err)
1425 		goto out1;
1426 
1427 	alloc->nres.valid_size = alloc->nres.data_size = cpu_to_le64(data_size);
1428 
1429 	err = ni_insert_resident(ni, bitmap_size(1), ATTR_BITMAP, in->name,
1430 				 in->name_len, &bitmap, NULL, NULL);
1431 	if (err)
1432 		goto out2;
1433 
1434 	if (in->name == I30_NAME) {
1435 		ni->vfs_inode.i_size = data_size;
1436 		inode_set_bytes(&ni->vfs_inode, alloc_size);
1437 	}
1438 
1439 	memcpy(&indx->alloc_run, &run, sizeof(run));
1440 
1441 	*vbn = 0;
1442 
1443 	return 0;
1444 
1445 out2:
1446 	mi_remove_attr(NULL, &ni->mi, alloc);
1447 
1448 out1:
1449 	run_deallocate(sbi, &run, false);
1450 
1451 out:
1452 	return err;
1453 }
1454 
1455 /*
1456  * indx_add_allocate - Add clusters to index.
1457  */
1458 static int indx_add_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1459 			     CLST *vbn)
1460 {
1461 	int err;
1462 	size_t bit;
1463 	u64 data_size;
1464 	u64 bmp_size, bmp_size_v;
1465 	struct ATTRIB *bmp, *alloc;
1466 	struct mft_inode *mi;
1467 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
1468 
1469 	err = indx_find_free(indx, ni, &bit, &bmp);
1470 	if (err)
1471 		goto out1;
1472 
1473 	if (bit != MINUS_ONE_T) {
1474 		bmp = NULL;
1475 	} else {
1476 		if (bmp->non_res) {
1477 			bmp_size = le64_to_cpu(bmp->nres.data_size);
1478 			bmp_size_v = le64_to_cpu(bmp->nres.valid_size);
1479 		} else {
1480 			bmp_size = bmp_size_v = le32_to_cpu(bmp->res.data_size);
1481 		}
1482 
1483 		bit = bmp_size << 3;
1484 	}
1485 
1486 	data_size = (u64)(bit + 1) << indx->index_bits;
1487 
1488 	if (bmp) {
1489 		/* Increase bitmap. */
1490 		err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1491 				    &indx->bitmap_run, bitmap_size(bit + 1),
1492 				    NULL, true, NULL);
1493 		if (err)
1494 			goto out1;
1495 	}
1496 
1497 	alloc = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, in->name, in->name_len,
1498 			     NULL, &mi);
1499 	if (!alloc) {
1500 		err = -EINVAL;
1501 		if (bmp)
1502 			goto out2;
1503 		goto out1;
1504 	}
1505 
1506 	/* Increase allocation. */
1507 	err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
1508 			    &indx->alloc_run, data_size, &data_size, true,
1509 			    NULL);
1510 	if (err) {
1511 		if (bmp)
1512 			goto out2;
1513 		goto out1;
1514 	}
1515 
1516 	if (in->name == I30_NAME)
1517 		ni->vfs_inode.i_size = data_size;
1518 
1519 	*vbn = bit << indx->idx2vbn_bits;
1520 
1521 	return 0;
1522 
1523 out2:
1524 	/* Ops. No space? */
1525 	attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1526 		      &indx->bitmap_run, bmp_size, &bmp_size_v, false, NULL);
1527 
1528 out1:
1529 	return err;
1530 }
1531 
1532 /*
1533  * indx_insert_into_root - Attempt to insert an entry into the index root.
1534  *
1535  * @undo - True if we undoing previous remove.
1536  * If necessary, it will twiddle the index b-tree.
1537  */
1538 static int indx_insert_into_root(struct ntfs_index *indx, struct ntfs_inode *ni,
1539 				 const struct NTFS_DE *new_de,
1540 				 struct NTFS_DE *root_de, const void *ctx,
1541 				 struct ntfs_fnd *fnd, bool undo)
1542 {
1543 	int err = 0;
1544 	struct NTFS_DE *e, *e0, *re;
1545 	struct mft_inode *mi;
1546 	struct ATTRIB *attr;
1547 	struct INDEX_HDR *hdr;
1548 	struct indx_node *n;
1549 	CLST new_vbn;
1550 	__le64 *sub_vbn, t_vbn;
1551 	u16 new_de_size;
1552 	u32 hdr_used, hdr_total, asize, to_move;
1553 	u32 root_size, new_root_size;
1554 	struct ntfs_sb_info *sbi;
1555 	int ds_root;
1556 	struct INDEX_ROOT *root, *a_root;
1557 
1558 	/* Get the record this root placed in. */
1559 	root = indx_get_root(indx, ni, &attr, &mi);
1560 	if (!root)
1561 		return -EINVAL;
1562 
1563 	/*
1564 	 * Try easy case:
1565 	 * hdr_insert_de will succeed if there's
1566 	 * room the root for the new entry.
1567 	 */
1568 	hdr = &root->ihdr;
1569 	sbi = ni->mi.sbi;
1570 	new_de_size = le16_to_cpu(new_de->size);
1571 	hdr_used = le32_to_cpu(hdr->used);
1572 	hdr_total = le32_to_cpu(hdr->total);
1573 	asize = le32_to_cpu(attr->size);
1574 	root_size = le32_to_cpu(attr->res.data_size);
1575 
1576 	ds_root = new_de_size + hdr_used - hdr_total;
1577 
1578 	/* If 'undo' is set then reduce requirements. */
1579 	if ((undo || asize + ds_root < sbi->max_bytes_per_attr) &&
1580 	    mi_resize_attr(mi, attr, ds_root)) {
1581 		hdr->total = cpu_to_le32(hdr_total + ds_root);
1582 		e = hdr_insert_de(indx, hdr, new_de, root_de, ctx);
1583 		WARN_ON(!e);
1584 		fnd_clear(fnd);
1585 		fnd->root_de = e;
1586 
1587 		return 0;
1588 	}
1589 
1590 	/* Make a copy of root attribute to restore if error. */
1591 	a_root = kmemdup(attr, asize, GFP_NOFS);
1592 	if (!a_root)
1593 		return -ENOMEM;
1594 
1595 	/*
1596 	 * Copy all the non-end entries from
1597 	 * the index root to the new buffer.
1598 	 */
1599 	to_move = 0;
1600 	e0 = hdr_first_de(hdr);
1601 
1602 	/* Calculate the size to copy. */
1603 	for (e = e0;; e = hdr_next_de(hdr, e)) {
1604 		if (!e) {
1605 			err = -EINVAL;
1606 			goto out_free_root;
1607 		}
1608 
1609 		if (de_is_last(e))
1610 			break;
1611 		to_move += le16_to_cpu(e->size);
1612 	}
1613 
1614 	if (!to_move) {
1615 		re = NULL;
1616 	} else {
1617 		re = kmemdup(e0, to_move, GFP_NOFS);
1618 		if (!re) {
1619 			err = -ENOMEM;
1620 			goto out_free_root;
1621 		}
1622 	}
1623 
1624 	sub_vbn = NULL;
1625 	if (de_has_vcn(e)) {
1626 		t_vbn = de_get_vbn_le(e);
1627 		sub_vbn = &t_vbn;
1628 	}
1629 
1630 	new_root_size = sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE) +
1631 			sizeof(u64);
1632 	ds_root = new_root_size - root_size;
1633 
1634 	if (ds_root > 0 && asize + ds_root > sbi->max_bytes_per_attr) {
1635 		/* Make root external. */
1636 		err = -EOPNOTSUPP;
1637 		goto out_free_re;
1638 	}
1639 
1640 	if (ds_root)
1641 		mi_resize_attr(mi, attr, ds_root);
1642 
1643 	/* Fill first entry (vcn will be set later). */
1644 	e = (struct NTFS_DE *)(root + 1);
1645 	memset(e, 0, sizeof(struct NTFS_DE));
1646 	e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
1647 	e->flags = NTFS_IE_HAS_SUBNODES | NTFS_IE_LAST;
1648 
1649 	hdr->flags = 1;
1650 	hdr->used = hdr->total =
1651 		cpu_to_le32(new_root_size - offsetof(struct INDEX_ROOT, ihdr));
1652 
1653 	fnd->root_de = hdr_first_de(hdr);
1654 	mi->dirty = true;
1655 
1656 	/* Create alloc and bitmap attributes (if not). */
1657 	err = run_is_empty(&indx->alloc_run)
1658 		      ? indx_create_allocate(indx, ni, &new_vbn)
1659 		      : indx_add_allocate(indx, ni, &new_vbn);
1660 
1661 	/* Layout of record may be changed, so rescan root. */
1662 	root = indx_get_root(indx, ni, &attr, &mi);
1663 	if (!root) {
1664 		/* Bug? */
1665 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1666 		err = -EINVAL;
1667 		goto out_free_re;
1668 	}
1669 
1670 	if (err) {
1671 		/* Restore root. */
1672 		if (mi_resize_attr(mi, attr, -ds_root)) {
1673 			memcpy(attr, a_root, asize);
1674 		} else {
1675 			/* Bug? */
1676 			ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1677 		}
1678 		goto out_free_re;
1679 	}
1680 
1681 	e = (struct NTFS_DE *)(root + 1);
1682 	*(__le64 *)(e + 1) = cpu_to_le64(new_vbn);
1683 	mi->dirty = true;
1684 
1685 	/* Now we can create/format the new buffer and copy the entries into. */
1686 	n = indx_new(indx, ni, new_vbn, sub_vbn);
1687 	if (IS_ERR(n)) {
1688 		err = PTR_ERR(n);
1689 		goto out_free_re;
1690 	}
1691 
1692 	hdr = &n->index->ihdr;
1693 	hdr_used = le32_to_cpu(hdr->used);
1694 	hdr_total = le32_to_cpu(hdr->total);
1695 
1696 	/* Copy root entries into new buffer. */
1697 	hdr_insert_head(hdr, re, to_move);
1698 
1699 	/* Update bitmap attribute. */
1700 	indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1701 
1702 	/* Check if we can insert new entry new index buffer. */
1703 	if (hdr_used + new_de_size > hdr_total) {
1704 		/*
1705 		 * This occurs if MFT record is the same or bigger than index
1706 		 * buffer. Move all root new index and have no space to add
1707 		 * new entry classic case when MFT record is 1K and index
1708 		 * buffer 4K the problem should not occurs.
1709 		 */
1710 		kfree(re);
1711 		indx_write(indx, ni, n, 0);
1712 
1713 		put_indx_node(n);
1714 		fnd_clear(fnd);
1715 		err = indx_insert_entry(indx, ni, new_de, ctx, fnd, undo);
1716 		goto out_free_root;
1717 	}
1718 
1719 	/*
1720 	 * Now root is a parent for new index buffer.
1721 	 * Insert NewEntry a new buffer.
1722 	 */
1723 	e = hdr_insert_de(indx, hdr, new_de, NULL, ctx);
1724 	if (!e) {
1725 		err = -EINVAL;
1726 		goto out_put_n;
1727 	}
1728 	fnd_push(fnd, n, e);
1729 
1730 	/* Just write updates index into disk. */
1731 	indx_write(indx, ni, n, 0);
1732 
1733 	n = NULL;
1734 
1735 out_put_n:
1736 	put_indx_node(n);
1737 out_free_re:
1738 	kfree(re);
1739 out_free_root:
1740 	kfree(a_root);
1741 	return err;
1742 }
1743 
1744 /*
1745  * indx_insert_into_buffer
1746  *
1747  * Attempt to insert an entry into an Index Allocation Buffer.
1748  * If necessary, it will split the buffer.
1749  */
1750 static int
1751 indx_insert_into_buffer(struct ntfs_index *indx, struct ntfs_inode *ni,
1752 			struct INDEX_ROOT *root, const struct NTFS_DE *new_de,
1753 			const void *ctx, int level, struct ntfs_fnd *fnd)
1754 {
1755 	int err;
1756 	const struct NTFS_DE *sp;
1757 	struct NTFS_DE *e, *de_t, *up_e;
1758 	struct indx_node *n2;
1759 	struct indx_node *n1 = fnd->nodes[level];
1760 	struct INDEX_HDR *hdr1 = &n1->index->ihdr;
1761 	struct INDEX_HDR *hdr2;
1762 	u32 to_copy, used;
1763 	CLST new_vbn;
1764 	__le64 t_vbn, *sub_vbn;
1765 	u16 sp_size;
1766 
1767 	/* Try the most easy case. */
1768 	e = fnd->level - 1 == level ? fnd->de[level] : NULL;
1769 	e = hdr_insert_de(indx, hdr1, new_de, e, ctx);
1770 	fnd->de[level] = e;
1771 	if (e) {
1772 		/* Just write updated index into disk. */
1773 		indx_write(indx, ni, n1, 0);
1774 		return 0;
1775 	}
1776 
1777 	/*
1778 	 * No space to insert into buffer. Split it.
1779 	 * To split we:
1780 	 *  - Save split point ('cause index buffers will be changed)
1781 	 * - Allocate NewBuffer and copy all entries <= sp into new buffer
1782 	 * - Remove all entries (sp including) from TargetBuffer
1783 	 * - Insert NewEntry into left or right buffer (depending on sp <=>
1784 	 *     NewEntry)
1785 	 * - Insert sp into parent buffer (or root)
1786 	 * - Make sp a parent for new buffer
1787 	 */
1788 	sp = hdr_find_split(hdr1);
1789 	if (!sp)
1790 		return -EINVAL;
1791 
1792 	sp_size = le16_to_cpu(sp->size);
1793 	up_e = kmalloc(sp_size + sizeof(u64), GFP_NOFS);
1794 	if (!up_e)
1795 		return -ENOMEM;
1796 	memcpy(up_e, sp, sp_size);
1797 
1798 	if (!hdr1->flags) {
1799 		up_e->flags |= NTFS_IE_HAS_SUBNODES;
1800 		up_e->size = cpu_to_le16(sp_size + sizeof(u64));
1801 		sub_vbn = NULL;
1802 	} else {
1803 		t_vbn = de_get_vbn_le(up_e);
1804 		sub_vbn = &t_vbn;
1805 	}
1806 
1807 	/* Allocate on disk a new index allocation buffer. */
1808 	err = indx_add_allocate(indx, ni, &new_vbn);
1809 	if (err)
1810 		goto out;
1811 
1812 	/* Allocate and format memory a new index buffer. */
1813 	n2 = indx_new(indx, ni, new_vbn, sub_vbn);
1814 	if (IS_ERR(n2)) {
1815 		err = PTR_ERR(n2);
1816 		goto out;
1817 	}
1818 
1819 	hdr2 = &n2->index->ihdr;
1820 
1821 	/* Make sp a parent for new buffer. */
1822 	de_set_vbn(up_e, new_vbn);
1823 
1824 	/* Copy all the entries <= sp into the new buffer. */
1825 	de_t = hdr_first_de(hdr1);
1826 	to_copy = PtrOffset(de_t, sp);
1827 	hdr_insert_head(hdr2, de_t, to_copy);
1828 
1829 	/* Remove all entries (sp including) from hdr1. */
1830 	used = le32_to_cpu(hdr1->used) - to_copy - sp_size;
1831 	memmove(de_t, Add2Ptr(sp, sp_size), used - le32_to_cpu(hdr1->de_off));
1832 	hdr1->used = cpu_to_le32(used);
1833 
1834 	/*
1835 	 * Insert new entry into left or right buffer
1836 	 * (depending on sp <=> new_de).
1837 	 */
1838 	hdr_insert_de(indx,
1839 		      (*indx->cmp)(new_de + 1, le16_to_cpu(new_de->key_size),
1840 				   up_e + 1, le16_to_cpu(up_e->key_size),
1841 				   ctx) < 0
1842 			      ? hdr2
1843 			      : hdr1,
1844 		      new_de, NULL, ctx);
1845 
1846 	indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1847 
1848 	indx_write(indx, ni, n1, 0);
1849 	indx_write(indx, ni, n2, 0);
1850 
1851 	put_indx_node(n2);
1852 
1853 	/*
1854 	 * We've finished splitting everybody, so we are ready to
1855 	 * insert the promoted entry into the parent.
1856 	 */
1857 	if (!level) {
1858 		/* Insert in root. */
1859 		err = indx_insert_into_root(indx, ni, up_e, NULL, ctx, fnd, 0);
1860 		if (err)
1861 			goto out;
1862 	} else {
1863 		/*
1864 		 * The target buffer's parent is another index buffer.
1865 		 * TODO: Remove recursion.
1866 		 */
1867 		err = indx_insert_into_buffer(indx, ni, root, up_e, ctx,
1868 					      level - 1, fnd);
1869 		if (err)
1870 			goto out;
1871 	}
1872 
1873 out:
1874 	kfree(up_e);
1875 
1876 	return err;
1877 }
1878 
1879 /*
1880  * indx_insert_entry - Insert new entry into index.
1881  *
1882  * @undo - True if we undoing previous remove.
1883  */
1884 int indx_insert_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
1885 		      const struct NTFS_DE *new_de, const void *ctx,
1886 		      struct ntfs_fnd *fnd, bool undo)
1887 {
1888 	int err;
1889 	int diff;
1890 	struct NTFS_DE *e;
1891 	struct ntfs_fnd *fnd_a = NULL;
1892 	struct INDEX_ROOT *root;
1893 
1894 	if (!fnd) {
1895 		fnd_a = fnd_get();
1896 		if (!fnd_a) {
1897 			err = -ENOMEM;
1898 			goto out1;
1899 		}
1900 		fnd = fnd_a;
1901 	}
1902 
1903 	root = indx_get_root(indx, ni, NULL, NULL);
1904 	if (!root) {
1905 		err = -EINVAL;
1906 		goto out;
1907 	}
1908 
1909 	if (fnd_is_empty(fnd)) {
1910 		/*
1911 		 * Find the spot the tree where we want to
1912 		 * insert the new entry.
1913 		 */
1914 		err = indx_find(indx, ni, root, new_de + 1,
1915 				le16_to_cpu(new_de->key_size), ctx, &diff, &e,
1916 				fnd);
1917 		if (err)
1918 			goto out;
1919 
1920 		if (!diff) {
1921 			err = -EEXIST;
1922 			goto out;
1923 		}
1924 	}
1925 
1926 	if (!fnd->level) {
1927 		/*
1928 		 * The root is also a leaf, so we'll insert the
1929 		 * new entry into it.
1930 		 */
1931 		err = indx_insert_into_root(indx, ni, new_de, fnd->root_de, ctx,
1932 					    fnd, undo);
1933 		if (err)
1934 			goto out;
1935 	} else {
1936 		/*
1937 		 * Found a leaf buffer, so we'll insert the new entry into it.
1938 		 */
1939 		err = indx_insert_into_buffer(indx, ni, root, new_de, ctx,
1940 					      fnd->level - 1, fnd);
1941 		if (err)
1942 			goto out;
1943 	}
1944 
1945 out:
1946 	fnd_put(fnd_a);
1947 out1:
1948 	return err;
1949 }
1950 
1951 /*
1952  * indx_find_buffer - Locate a buffer from the tree.
1953  */
1954 static struct indx_node *indx_find_buffer(struct ntfs_index *indx,
1955 					  struct ntfs_inode *ni,
1956 					  const struct INDEX_ROOT *root,
1957 					  __le64 vbn, struct indx_node *n)
1958 {
1959 	int err;
1960 	const struct NTFS_DE *e;
1961 	struct indx_node *r;
1962 	const struct INDEX_HDR *hdr = n ? &n->index->ihdr : &root->ihdr;
1963 
1964 	/* Step 1: Scan one level. */
1965 	for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
1966 		if (!e)
1967 			return ERR_PTR(-EINVAL);
1968 
1969 		if (de_has_vcn(e) && vbn == de_get_vbn_le(e))
1970 			return n;
1971 
1972 		if (de_is_last(e))
1973 			break;
1974 	}
1975 
1976 	/* Step2: Do recursion. */
1977 	e = Add2Ptr(hdr, le32_to_cpu(hdr->de_off));
1978 	for (;;) {
1979 		if (de_has_vcn_ex(e)) {
1980 			err = indx_read(indx, ni, de_get_vbn(e), &n);
1981 			if (err)
1982 				return ERR_PTR(err);
1983 
1984 			r = indx_find_buffer(indx, ni, root, vbn, n);
1985 			if (r)
1986 				return r;
1987 		}
1988 
1989 		if (de_is_last(e))
1990 			break;
1991 
1992 		e = Add2Ptr(e, le16_to_cpu(e->size));
1993 	}
1994 
1995 	return NULL;
1996 }
1997 
1998 /*
1999  * indx_shrink - Deallocate unused tail indexes.
2000  */
2001 static int indx_shrink(struct ntfs_index *indx, struct ntfs_inode *ni,
2002 		       size_t bit)
2003 {
2004 	int err = 0;
2005 	u64 bpb, new_data;
2006 	size_t nbits;
2007 	struct ATTRIB *b;
2008 	struct ATTR_LIST_ENTRY *le = NULL;
2009 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
2010 
2011 	b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
2012 			 NULL, NULL);
2013 
2014 	if (!b)
2015 		return -ENOENT;
2016 
2017 	if (!b->non_res) {
2018 		unsigned long pos;
2019 		const unsigned long *bm = resident_data(b);
2020 
2021 		nbits = (size_t)le32_to_cpu(b->res.data_size) * 8;
2022 
2023 		if (bit >= nbits)
2024 			return 0;
2025 
2026 		pos = find_next_bit_le(bm, nbits, bit);
2027 		if (pos < nbits)
2028 			return 0;
2029 	} else {
2030 		size_t used = MINUS_ONE_T;
2031 
2032 		nbits = le64_to_cpu(b->nres.data_size) * 8;
2033 
2034 		if (bit >= nbits)
2035 			return 0;
2036 
2037 		err = scan_nres_bitmap(ni, b, indx, bit, &scan_for_used, &used);
2038 		if (err)
2039 			return err;
2040 
2041 		if (used != MINUS_ONE_T)
2042 			return 0;
2043 	}
2044 
2045 	new_data = (u64)bit << indx->index_bits;
2046 
2047 	err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
2048 			    &indx->alloc_run, new_data, &new_data, false, NULL);
2049 	if (err)
2050 		return err;
2051 
2052 	if (in->name == I30_NAME)
2053 		ni->vfs_inode.i_size = new_data;
2054 
2055 	bpb = bitmap_size(bit);
2056 	if (bpb * 8 == nbits)
2057 		return 0;
2058 
2059 	err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
2060 			    &indx->bitmap_run, bpb, &bpb, false, NULL);
2061 
2062 	return err;
2063 }
2064 
2065 static int indx_free_children(struct ntfs_index *indx, struct ntfs_inode *ni,
2066 			      const struct NTFS_DE *e, bool trim)
2067 {
2068 	int err;
2069 	struct indx_node *n = NULL;
2070 	struct INDEX_HDR *hdr;
2071 	CLST vbn = de_get_vbn(e);
2072 	size_t i;
2073 
2074 	err = indx_read(indx, ni, vbn, &n);
2075 	if (err)
2076 		return err;
2077 
2078 	hdr = &n->index->ihdr;
2079 	/* First, recurse into the children, if any. */
2080 	if (hdr_has_subnode(hdr)) {
2081 		for (e = hdr_first_de(hdr); e; e = hdr_next_de(hdr, e)) {
2082 			indx_free_children(indx, ni, e, false);
2083 			if (de_is_last(e))
2084 				break;
2085 		}
2086 	}
2087 
2088 	put_indx_node(n);
2089 
2090 	i = vbn >> indx->idx2vbn_bits;
2091 	/*
2092 	 * We've gotten rid of the children; add this buffer to the free list.
2093 	 */
2094 	indx_mark_free(indx, ni, i);
2095 
2096 	if (!trim)
2097 		return 0;
2098 
2099 	/*
2100 	 * If there are no used indexes after current free index
2101 	 * then we can truncate allocation and bitmap.
2102 	 * Use bitmap to estimate the case.
2103 	 */
2104 	indx_shrink(indx, ni, i + 1);
2105 	return 0;
2106 }
2107 
2108 /*
2109  * indx_get_entry_to_replace
2110  *
2111  * Find a replacement entry for a deleted entry.
2112  * Always returns a node entry:
2113  * NTFS_IE_HAS_SUBNODES is set the flags and the size includes the sub_vcn.
2114  */
2115 static int indx_get_entry_to_replace(struct ntfs_index *indx,
2116 				     struct ntfs_inode *ni,
2117 				     const struct NTFS_DE *de_next,
2118 				     struct NTFS_DE **de_to_replace,
2119 				     struct ntfs_fnd *fnd)
2120 {
2121 	int err;
2122 	int level = -1;
2123 	CLST vbn;
2124 	struct NTFS_DE *e, *te, *re;
2125 	struct indx_node *n;
2126 	struct INDEX_BUFFER *ib;
2127 
2128 	*de_to_replace = NULL;
2129 
2130 	/* Find first leaf entry down from de_next. */
2131 	vbn = de_get_vbn(de_next);
2132 	for (;;) {
2133 		n = NULL;
2134 		err = indx_read(indx, ni, vbn, &n);
2135 		if (err)
2136 			goto out;
2137 
2138 		e = hdr_first_de(&n->index->ihdr);
2139 		fnd_push(fnd, n, e);
2140 
2141 		if (!de_is_last(e)) {
2142 			/*
2143 			 * This buffer is non-empty, so its first entry
2144 			 * could be used as the replacement entry.
2145 			 */
2146 			level = fnd->level - 1;
2147 		}
2148 
2149 		if (!de_has_vcn(e))
2150 			break;
2151 
2152 		/* This buffer is a node. Continue to go down. */
2153 		vbn = de_get_vbn(e);
2154 	}
2155 
2156 	if (level == -1)
2157 		goto out;
2158 
2159 	n = fnd->nodes[level];
2160 	te = hdr_first_de(&n->index->ihdr);
2161 	/* Copy the candidate entry into the replacement entry buffer. */
2162 	re = kmalloc(le16_to_cpu(te->size) + sizeof(u64), GFP_NOFS);
2163 	if (!re) {
2164 		err = -ENOMEM;
2165 		goto out;
2166 	}
2167 
2168 	*de_to_replace = re;
2169 	memcpy(re, te, le16_to_cpu(te->size));
2170 
2171 	if (!de_has_vcn(re)) {
2172 		/*
2173 		 * The replacement entry we found doesn't have a sub_vcn.
2174 		 * increase its size to hold one.
2175 		 */
2176 		le16_add_cpu(&re->size, sizeof(u64));
2177 		re->flags |= NTFS_IE_HAS_SUBNODES;
2178 	} else {
2179 		/*
2180 		 * The replacement entry we found was a node entry, which
2181 		 * means that all its child buffers are empty. Return them
2182 		 * to the free pool.
2183 		 */
2184 		indx_free_children(indx, ni, te, true);
2185 	}
2186 
2187 	/*
2188 	 * Expunge the replacement entry from its former location,
2189 	 * and then write that buffer.
2190 	 */
2191 	ib = n->index;
2192 	e = hdr_delete_de(&ib->ihdr, te);
2193 
2194 	fnd->de[level] = e;
2195 	indx_write(indx, ni, n, 0);
2196 
2197 	if (ib_is_leaf(ib) && ib_is_empty(ib)) {
2198 		/* An empty leaf. */
2199 		return 0;
2200 	}
2201 
2202 out:
2203 	fnd_clear(fnd);
2204 	return err;
2205 }
2206 
2207 /*
2208  * indx_delete_entry - Delete an entry from the index.
2209  */
2210 int indx_delete_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
2211 		      const void *key, u32 key_len, const void *ctx)
2212 {
2213 	int err, diff;
2214 	struct INDEX_ROOT *root;
2215 	struct INDEX_HDR *hdr;
2216 	struct ntfs_fnd *fnd, *fnd2;
2217 	struct INDEX_BUFFER *ib;
2218 	struct NTFS_DE *e, *re, *next, *prev, *me;
2219 	struct indx_node *n, *n2d = NULL;
2220 	__le64 sub_vbn;
2221 	int level, level2;
2222 	struct ATTRIB *attr;
2223 	struct mft_inode *mi;
2224 	u32 e_size, root_size, new_root_size;
2225 	size_t trim_bit;
2226 	const struct INDEX_NAMES *in;
2227 
2228 	fnd = fnd_get();
2229 	if (!fnd) {
2230 		err = -ENOMEM;
2231 		goto out2;
2232 	}
2233 
2234 	fnd2 = fnd_get();
2235 	if (!fnd2) {
2236 		err = -ENOMEM;
2237 		goto out1;
2238 	}
2239 
2240 	root = indx_get_root(indx, ni, &attr, &mi);
2241 	if (!root) {
2242 		err = -EINVAL;
2243 		goto out;
2244 	}
2245 
2246 	/* Locate the entry to remove. */
2247 	err = indx_find(indx, ni, root, key, key_len, ctx, &diff, &e, fnd);
2248 	if (err)
2249 		goto out;
2250 
2251 	if (!e || diff) {
2252 		err = -ENOENT;
2253 		goto out;
2254 	}
2255 
2256 	level = fnd->level;
2257 
2258 	if (level) {
2259 		n = fnd->nodes[level - 1];
2260 		e = fnd->de[level - 1];
2261 		ib = n->index;
2262 		hdr = &ib->ihdr;
2263 	} else {
2264 		hdr = &root->ihdr;
2265 		e = fnd->root_de;
2266 		n = NULL;
2267 	}
2268 
2269 	e_size = le16_to_cpu(e->size);
2270 
2271 	if (!de_has_vcn_ex(e)) {
2272 		/* The entry to delete is a leaf, so we can just rip it out. */
2273 		hdr_delete_de(hdr, e);
2274 
2275 		if (!level) {
2276 			hdr->total = hdr->used;
2277 
2278 			/* Shrink resident root attribute. */
2279 			mi_resize_attr(mi, attr, 0 - e_size);
2280 			goto out;
2281 		}
2282 
2283 		indx_write(indx, ni, n, 0);
2284 
2285 		/*
2286 		 * Check to see if removing that entry made
2287 		 * the leaf empty.
2288 		 */
2289 		if (ib_is_leaf(ib) && ib_is_empty(ib)) {
2290 			fnd_pop(fnd);
2291 			fnd_push(fnd2, n, e);
2292 		}
2293 	} else {
2294 		/*
2295 		 * The entry we wish to delete is a node buffer, so we
2296 		 * have to find a replacement for it.
2297 		 */
2298 		next = de_get_next(e);
2299 
2300 		err = indx_get_entry_to_replace(indx, ni, next, &re, fnd2);
2301 		if (err)
2302 			goto out;
2303 
2304 		if (re) {
2305 			de_set_vbn_le(re, de_get_vbn_le(e));
2306 			hdr_delete_de(hdr, e);
2307 
2308 			err = level ? indx_insert_into_buffer(indx, ni, root,
2309 							      re, ctx,
2310 							      fnd->level - 1,
2311 							      fnd)
2312 				    : indx_insert_into_root(indx, ni, re, e,
2313 							    ctx, fnd, 0);
2314 			kfree(re);
2315 
2316 			if (err)
2317 				goto out;
2318 		} else {
2319 			/*
2320 			 * There is no replacement for the current entry.
2321 			 * This means that the subtree rooted at its node
2322 			 * is empty, and can be deleted, which turn means
2323 			 * that the node can just inherit the deleted
2324 			 * entry sub_vcn.
2325 			 */
2326 			indx_free_children(indx, ni, next, true);
2327 
2328 			de_set_vbn_le(next, de_get_vbn_le(e));
2329 			hdr_delete_de(hdr, e);
2330 			if (level) {
2331 				indx_write(indx, ni, n, 0);
2332 			} else {
2333 				hdr->total = hdr->used;
2334 
2335 				/* Shrink resident root attribute. */
2336 				mi_resize_attr(mi, attr, 0 - e_size);
2337 			}
2338 		}
2339 	}
2340 
2341 	/* Delete a branch of tree. */
2342 	if (!fnd2 || !fnd2->level)
2343 		goto out;
2344 
2345 	/* Reinit root 'cause it can be changed. */
2346 	root = indx_get_root(indx, ni, &attr, &mi);
2347 	if (!root) {
2348 		err = -EINVAL;
2349 		goto out;
2350 	}
2351 
2352 	n2d = NULL;
2353 	sub_vbn = fnd2->nodes[0]->index->vbn;
2354 	level2 = 0;
2355 	level = fnd->level;
2356 
2357 	hdr = level ? &fnd->nodes[level - 1]->index->ihdr : &root->ihdr;
2358 
2359 	/* Scan current level. */
2360 	for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
2361 		if (!e) {
2362 			err = -EINVAL;
2363 			goto out;
2364 		}
2365 
2366 		if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2367 			break;
2368 
2369 		if (de_is_last(e)) {
2370 			e = NULL;
2371 			break;
2372 		}
2373 	}
2374 
2375 	if (!e) {
2376 		/* Do slow search from root. */
2377 		struct indx_node *in;
2378 
2379 		fnd_clear(fnd);
2380 
2381 		in = indx_find_buffer(indx, ni, root, sub_vbn, NULL);
2382 		if (IS_ERR(in)) {
2383 			err = PTR_ERR(in);
2384 			goto out;
2385 		}
2386 
2387 		if (in)
2388 			fnd_push(fnd, in, NULL);
2389 	}
2390 
2391 	/* Merge fnd2 -> fnd. */
2392 	for (level = 0; level < fnd2->level; level++) {
2393 		fnd_push(fnd, fnd2->nodes[level], fnd2->de[level]);
2394 		fnd2->nodes[level] = NULL;
2395 	}
2396 	fnd2->level = 0;
2397 
2398 	hdr = NULL;
2399 	for (level = fnd->level; level; level--) {
2400 		struct indx_node *in = fnd->nodes[level - 1];
2401 
2402 		ib = in->index;
2403 		if (ib_is_empty(ib)) {
2404 			sub_vbn = ib->vbn;
2405 		} else {
2406 			hdr = &ib->ihdr;
2407 			n2d = in;
2408 			level2 = level;
2409 			break;
2410 		}
2411 	}
2412 
2413 	if (!hdr)
2414 		hdr = &root->ihdr;
2415 
2416 	e = hdr_first_de(hdr);
2417 	if (!e) {
2418 		err = -EINVAL;
2419 		goto out;
2420 	}
2421 
2422 	if (hdr != &root->ihdr || !de_is_last(e)) {
2423 		prev = NULL;
2424 		while (!de_is_last(e)) {
2425 			if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2426 				break;
2427 			prev = e;
2428 			e = hdr_next_de(hdr, e);
2429 			if (!e) {
2430 				err = -EINVAL;
2431 				goto out;
2432 			}
2433 		}
2434 
2435 		if (sub_vbn != de_get_vbn_le(e)) {
2436 			/*
2437 			 * Didn't find the parent entry, although this buffer
2438 			 * is the parent trail. Something is corrupt.
2439 			 */
2440 			err = -EINVAL;
2441 			goto out;
2442 		}
2443 
2444 		if (de_is_last(e)) {
2445 			/*
2446 			 * Since we can't remove the end entry, we'll remove
2447 			 * its predecessor instead. This means we have to
2448 			 * transfer the predecessor's sub_vcn to the end entry.
2449 			 * Note: This index block is not empty, so the
2450 			 * predecessor must exist.
2451 			 */
2452 			if (!prev) {
2453 				err = -EINVAL;
2454 				goto out;
2455 			}
2456 
2457 			if (de_has_vcn(prev)) {
2458 				de_set_vbn_le(e, de_get_vbn_le(prev));
2459 			} else if (de_has_vcn(e)) {
2460 				le16_sub_cpu(&e->size, sizeof(u64));
2461 				e->flags &= ~NTFS_IE_HAS_SUBNODES;
2462 				le32_sub_cpu(&hdr->used, sizeof(u64));
2463 			}
2464 			e = prev;
2465 		}
2466 
2467 		/*
2468 		 * Copy the current entry into a temporary buffer (stripping
2469 		 * off its down-pointer, if any) and delete it from the current
2470 		 * buffer or root, as appropriate.
2471 		 */
2472 		e_size = le16_to_cpu(e->size);
2473 		me = kmemdup(e, e_size, GFP_NOFS);
2474 		if (!me) {
2475 			err = -ENOMEM;
2476 			goto out;
2477 		}
2478 
2479 		if (de_has_vcn(me)) {
2480 			me->flags &= ~NTFS_IE_HAS_SUBNODES;
2481 			le16_sub_cpu(&me->size, sizeof(u64));
2482 		}
2483 
2484 		hdr_delete_de(hdr, e);
2485 
2486 		if (hdr == &root->ihdr) {
2487 			level = 0;
2488 			hdr->total = hdr->used;
2489 
2490 			/* Shrink resident root attribute. */
2491 			mi_resize_attr(mi, attr, 0 - e_size);
2492 		} else {
2493 			indx_write(indx, ni, n2d, 0);
2494 			level = level2;
2495 		}
2496 
2497 		/* Mark unused buffers as free. */
2498 		trim_bit = -1;
2499 		for (; level < fnd->level; level++) {
2500 			ib = fnd->nodes[level]->index;
2501 			if (ib_is_empty(ib)) {
2502 				size_t k = le64_to_cpu(ib->vbn) >>
2503 					   indx->idx2vbn_bits;
2504 
2505 				indx_mark_free(indx, ni, k);
2506 				if (k < trim_bit)
2507 					trim_bit = k;
2508 			}
2509 		}
2510 
2511 		fnd_clear(fnd);
2512 		/*fnd->root_de = NULL;*/
2513 
2514 		/*
2515 		 * Re-insert the entry into the tree.
2516 		 * Find the spot the tree where we want to insert the new entry.
2517 		 */
2518 		err = indx_insert_entry(indx, ni, me, ctx, fnd, 0);
2519 		kfree(me);
2520 		if (err)
2521 			goto out;
2522 
2523 		if (trim_bit != -1)
2524 			indx_shrink(indx, ni, trim_bit);
2525 	} else {
2526 		/*
2527 		 * This tree needs to be collapsed down to an empty root.
2528 		 * Recreate the index root as an empty leaf and free all
2529 		 * the bits the index allocation bitmap.
2530 		 */
2531 		fnd_clear(fnd);
2532 		fnd_clear(fnd2);
2533 
2534 		in = &s_index_names[indx->type];
2535 
2536 		err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
2537 				    &indx->alloc_run, 0, NULL, false, NULL);
2538 		if (in->name == I30_NAME)
2539 			ni->vfs_inode.i_size = 0;
2540 
2541 		err = ni_remove_attr(ni, ATTR_ALLOC, in->name, in->name_len,
2542 				     false, NULL);
2543 		run_close(&indx->alloc_run);
2544 
2545 		err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
2546 				    &indx->bitmap_run, 0, NULL, false, NULL);
2547 		err = ni_remove_attr(ni, ATTR_BITMAP, in->name, in->name_len,
2548 				     false, NULL);
2549 		run_close(&indx->bitmap_run);
2550 
2551 		root = indx_get_root(indx, ni, &attr, &mi);
2552 		if (!root) {
2553 			err = -EINVAL;
2554 			goto out;
2555 		}
2556 
2557 		root_size = le32_to_cpu(attr->res.data_size);
2558 		new_root_size =
2559 			sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE);
2560 
2561 		if (new_root_size != root_size &&
2562 		    !mi_resize_attr(mi, attr, new_root_size - root_size)) {
2563 			err = -EINVAL;
2564 			goto out;
2565 		}
2566 
2567 		/* Fill first entry. */
2568 		e = (struct NTFS_DE *)(root + 1);
2569 		e->ref.low = 0;
2570 		e->ref.high = 0;
2571 		e->ref.seq = 0;
2572 		e->size = cpu_to_le16(sizeof(struct NTFS_DE));
2573 		e->flags = NTFS_IE_LAST; // 0x02
2574 		e->key_size = 0;
2575 		e->res = 0;
2576 
2577 		hdr = &root->ihdr;
2578 		hdr->flags = 0;
2579 		hdr->used = hdr->total = cpu_to_le32(
2580 			new_root_size - offsetof(struct INDEX_ROOT, ihdr));
2581 		mi->dirty = true;
2582 	}
2583 
2584 out:
2585 	fnd_put(fnd2);
2586 out1:
2587 	fnd_put(fnd);
2588 out2:
2589 	return err;
2590 }
2591 
2592 /*
2593  * Update duplicated information in directory entry
2594  * 'dup' - info from MFT record
2595  */
2596 int indx_update_dup(struct ntfs_inode *ni, struct ntfs_sb_info *sbi,
2597 		    const struct ATTR_FILE_NAME *fname,
2598 		    const struct NTFS_DUP_INFO *dup, int sync)
2599 {
2600 	int err, diff;
2601 	struct NTFS_DE *e = NULL;
2602 	struct ATTR_FILE_NAME *e_fname;
2603 	struct ntfs_fnd *fnd;
2604 	struct INDEX_ROOT *root;
2605 	struct mft_inode *mi;
2606 	struct ntfs_index *indx = &ni->dir;
2607 
2608 	fnd = fnd_get();
2609 	if (!fnd)
2610 		return -ENOMEM;
2611 
2612 	root = indx_get_root(indx, ni, NULL, &mi);
2613 	if (!root) {
2614 		err = -EINVAL;
2615 		goto out;
2616 	}
2617 
2618 	/* Find entry in directory. */
2619 	err = indx_find(indx, ni, root, fname, fname_full_size(fname), sbi,
2620 			&diff, &e, fnd);
2621 	if (err)
2622 		goto out;
2623 
2624 	if (!e) {
2625 		err = -EINVAL;
2626 		goto out;
2627 	}
2628 
2629 	if (diff) {
2630 		err = -EINVAL;
2631 		goto out;
2632 	}
2633 
2634 	e_fname = (struct ATTR_FILE_NAME *)(e + 1);
2635 
2636 	if (!memcmp(&e_fname->dup, dup, sizeof(*dup))) {
2637 		/*
2638 		 * Nothing to update in index! Try to avoid this call.
2639 		 */
2640 		goto out;
2641 	}
2642 
2643 	memcpy(&e_fname->dup, dup, sizeof(*dup));
2644 
2645 	if (fnd->level) {
2646 		/* Directory entry in index. */
2647 		err = indx_write(indx, ni, fnd->nodes[fnd->level - 1], sync);
2648 	} else {
2649 		/* Directory entry in directory MFT record. */
2650 		mi->dirty = true;
2651 		if (sync)
2652 			err = mi_write(mi, 1);
2653 		else
2654 			mark_inode_dirty(&ni->vfs_inode);
2655 	}
2656 
2657 out:
2658 	fnd_put(fnd);
2659 	return err;
2660 }
2661