1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * 4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. 5 * 6 */ 7 8 #include <linux/blkdev.h> 9 #include <linux/buffer_head.h> 10 #include <linux/fs.h> 11 #include <linux/nls.h> 12 13 #include "debug.h" 14 #include "ntfs.h" 15 #include "ntfs_fs.h" 16 17 static const struct INDEX_NAMES { 18 const __le16 *name; 19 u8 name_len; 20 } s_index_names[INDEX_MUTEX_TOTAL] = { 21 { I30_NAME, ARRAY_SIZE(I30_NAME) }, { SII_NAME, ARRAY_SIZE(SII_NAME) }, 22 { SDH_NAME, ARRAY_SIZE(SDH_NAME) }, { SO_NAME, ARRAY_SIZE(SO_NAME) }, 23 { SQ_NAME, ARRAY_SIZE(SQ_NAME) }, { SR_NAME, ARRAY_SIZE(SR_NAME) }, 24 }; 25 26 /* 27 * cmp_fnames - Compare two names in index. 28 * 29 * if l1 != 0 30 * Both names are little endian on-disk ATTR_FILE_NAME structs. 31 * else 32 * key1 - cpu_str, key2 - ATTR_FILE_NAME 33 */ 34 static int cmp_fnames(const void *key1, size_t l1, const void *key2, size_t l2, 35 const void *data) 36 { 37 const struct ATTR_FILE_NAME *f2 = key2; 38 const struct ntfs_sb_info *sbi = data; 39 const struct ATTR_FILE_NAME *f1; 40 u16 fsize2; 41 bool both_case; 42 43 if (l2 <= offsetof(struct ATTR_FILE_NAME, name)) 44 return -1; 45 46 fsize2 = fname_full_size(f2); 47 if (l2 < fsize2) 48 return -1; 49 50 both_case = f2->type != FILE_NAME_DOS /*&& !sbi->options.nocase*/; 51 if (!l1) { 52 const struct le_str *s2 = (struct le_str *)&f2->name_len; 53 54 /* 55 * If names are equal (case insensitive) 56 * try to compare it case sensitive. 57 */ 58 return ntfs_cmp_names_cpu(key1, s2, sbi->upcase, both_case); 59 } 60 61 f1 = key1; 62 return ntfs_cmp_names(f1->name, f1->name_len, f2->name, f2->name_len, 63 sbi->upcase, both_case); 64 } 65 66 /* 67 * cmp_uint - $SII of $Secure and $Q of Quota 68 */ 69 static int cmp_uint(const void *key1, size_t l1, const void *key2, size_t l2, 70 const void *data) 71 { 72 const u32 *k1 = key1; 73 const u32 *k2 = key2; 74 75 if (l2 < sizeof(u32)) 76 return -1; 77 78 if (*k1 < *k2) 79 return -1; 80 if (*k1 > *k2) 81 return 1; 82 return 0; 83 } 84 85 /* 86 * cmp_sdh - $SDH of $Secure 87 */ 88 static int cmp_sdh(const void *key1, size_t l1, const void *key2, size_t l2, 89 const void *data) 90 { 91 const struct SECURITY_KEY *k1 = key1; 92 const struct SECURITY_KEY *k2 = key2; 93 u32 t1, t2; 94 95 if (l2 < sizeof(struct SECURITY_KEY)) 96 return -1; 97 98 t1 = le32_to_cpu(k1->hash); 99 t2 = le32_to_cpu(k2->hash); 100 101 /* First value is a hash value itself. */ 102 if (t1 < t2) 103 return -1; 104 if (t1 > t2) 105 return 1; 106 107 /* Second value is security Id. */ 108 if (data) { 109 t1 = le32_to_cpu(k1->sec_id); 110 t2 = le32_to_cpu(k2->sec_id); 111 if (t1 < t2) 112 return -1; 113 if (t1 > t2) 114 return 1; 115 } 116 117 return 0; 118 } 119 120 /* 121 * cmp_uints - $O of ObjId and "$R" for Reparse. 122 */ 123 static int cmp_uints(const void *key1, size_t l1, const void *key2, size_t l2, 124 const void *data) 125 { 126 const __le32 *k1 = key1; 127 const __le32 *k2 = key2; 128 size_t count; 129 130 if ((size_t)data == 1) { 131 /* 132 * ni_delete_all -> ntfs_remove_reparse -> 133 * delete all with this reference. 134 * k1, k2 - pointers to REPARSE_KEY 135 */ 136 137 k1 += 1; // Skip REPARSE_KEY.ReparseTag 138 k2 += 1; // Skip REPARSE_KEY.ReparseTag 139 if (l2 <= sizeof(int)) 140 return -1; 141 l2 -= sizeof(int); 142 if (l1 <= sizeof(int)) 143 return 1; 144 l1 -= sizeof(int); 145 } 146 147 if (l2 < sizeof(int)) 148 return -1; 149 150 for (count = min(l1, l2) >> 2; count > 0; --count, ++k1, ++k2) { 151 u32 t1 = le32_to_cpu(*k1); 152 u32 t2 = le32_to_cpu(*k2); 153 154 if (t1 > t2) 155 return 1; 156 if (t1 < t2) 157 return -1; 158 } 159 160 if (l1 > l2) 161 return 1; 162 if (l1 < l2) 163 return -1; 164 165 return 0; 166 } 167 168 static inline NTFS_CMP_FUNC get_cmp_func(const struct INDEX_ROOT *root) 169 { 170 switch (root->type) { 171 case ATTR_NAME: 172 if (root->rule == NTFS_COLLATION_TYPE_FILENAME) 173 return &cmp_fnames; 174 break; 175 case ATTR_ZERO: 176 switch (root->rule) { 177 case NTFS_COLLATION_TYPE_UINT: 178 return &cmp_uint; 179 case NTFS_COLLATION_TYPE_SECURITY_HASH: 180 return &cmp_sdh; 181 case NTFS_COLLATION_TYPE_UINTS: 182 return &cmp_uints; 183 default: 184 break; 185 } 186 break; 187 default: 188 break; 189 } 190 191 return NULL; 192 } 193 194 struct bmp_buf { 195 struct ATTRIB *b; 196 struct mft_inode *mi; 197 struct buffer_head *bh; 198 ulong *buf; 199 size_t bit; 200 u32 nbits; 201 u64 new_valid; 202 }; 203 204 static int bmp_buf_get(struct ntfs_index *indx, struct ntfs_inode *ni, 205 size_t bit, struct bmp_buf *bbuf) 206 { 207 struct ATTRIB *b; 208 size_t data_size, valid_size, vbo, off = bit >> 3; 209 struct ntfs_sb_info *sbi = ni->mi.sbi; 210 CLST vcn = off >> sbi->cluster_bits; 211 struct ATTR_LIST_ENTRY *le = NULL; 212 struct buffer_head *bh; 213 struct super_block *sb; 214 u32 blocksize; 215 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 216 217 bbuf->bh = NULL; 218 219 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len, 220 &vcn, &bbuf->mi); 221 bbuf->b = b; 222 if (!b) 223 return -EINVAL; 224 225 if (!b->non_res) { 226 data_size = le32_to_cpu(b->res.data_size); 227 228 if (off >= data_size) 229 return -EINVAL; 230 231 bbuf->buf = (ulong *)resident_data(b); 232 bbuf->bit = 0; 233 bbuf->nbits = data_size * 8; 234 235 return 0; 236 } 237 238 data_size = le64_to_cpu(b->nres.data_size); 239 if (WARN_ON(off >= data_size)) { 240 /* Looks like filesystem error. */ 241 return -EINVAL; 242 } 243 244 valid_size = le64_to_cpu(b->nres.valid_size); 245 246 bh = ntfs_bread_run(sbi, &indx->bitmap_run, off); 247 if (!bh) 248 return -EIO; 249 250 if (IS_ERR(bh)) 251 return PTR_ERR(bh); 252 253 bbuf->bh = bh; 254 255 if (buffer_locked(bh)) 256 __wait_on_buffer(bh); 257 258 lock_buffer(bh); 259 260 sb = sbi->sb; 261 blocksize = sb->s_blocksize; 262 263 vbo = off & ~(size_t)sbi->block_mask; 264 265 bbuf->new_valid = vbo + blocksize; 266 if (bbuf->new_valid <= valid_size) 267 bbuf->new_valid = 0; 268 else if (bbuf->new_valid > data_size) 269 bbuf->new_valid = data_size; 270 271 if (vbo >= valid_size) { 272 memset(bh->b_data, 0, blocksize); 273 } else if (vbo + blocksize > valid_size) { 274 u32 voff = valid_size & sbi->block_mask; 275 276 memset(bh->b_data + voff, 0, blocksize - voff); 277 } 278 279 bbuf->buf = (ulong *)bh->b_data; 280 bbuf->bit = 8 * (off & ~(size_t)sbi->block_mask); 281 bbuf->nbits = 8 * blocksize; 282 283 return 0; 284 } 285 286 static void bmp_buf_put(struct bmp_buf *bbuf, bool dirty) 287 { 288 struct buffer_head *bh = bbuf->bh; 289 struct ATTRIB *b = bbuf->b; 290 291 if (!bh) { 292 if (b && !b->non_res && dirty) 293 bbuf->mi->dirty = true; 294 return; 295 } 296 297 if (!dirty) 298 goto out; 299 300 if (bbuf->new_valid) { 301 b->nres.valid_size = cpu_to_le64(bbuf->new_valid); 302 bbuf->mi->dirty = true; 303 } 304 305 set_buffer_uptodate(bh); 306 mark_buffer_dirty(bh); 307 308 out: 309 unlock_buffer(bh); 310 put_bh(bh); 311 } 312 313 /* 314 * indx_mark_used - Mark the bit @bit as used. 315 */ 316 static int indx_mark_used(struct ntfs_index *indx, struct ntfs_inode *ni, 317 size_t bit) 318 { 319 int err; 320 struct bmp_buf bbuf; 321 322 err = bmp_buf_get(indx, ni, bit, &bbuf); 323 if (err) 324 return err; 325 326 __set_bit(bit - bbuf.bit, bbuf.buf); 327 328 bmp_buf_put(&bbuf, true); 329 330 return 0; 331 } 332 333 /* 334 * indx_mark_free - Mark the bit @bit as free. 335 */ 336 static int indx_mark_free(struct ntfs_index *indx, struct ntfs_inode *ni, 337 size_t bit) 338 { 339 int err; 340 struct bmp_buf bbuf; 341 342 err = bmp_buf_get(indx, ni, bit, &bbuf); 343 if (err) 344 return err; 345 346 __clear_bit(bit - bbuf.bit, bbuf.buf); 347 348 bmp_buf_put(&bbuf, true); 349 350 return 0; 351 } 352 353 /* 354 * scan_nres_bitmap 355 * 356 * If ntfs_readdir calls this function (indx_used_bit -> scan_nres_bitmap), 357 * inode is shared locked and no ni_lock. 358 * Use rw_semaphore for read/write access to bitmap_run. 359 */ 360 static int scan_nres_bitmap(struct ntfs_inode *ni, struct ATTRIB *bitmap, 361 struct ntfs_index *indx, size_t from, 362 bool (*fn)(const ulong *buf, u32 bit, u32 bits, 363 size_t *ret), 364 size_t *ret) 365 { 366 struct ntfs_sb_info *sbi = ni->mi.sbi; 367 struct super_block *sb = sbi->sb; 368 struct runs_tree *run = &indx->bitmap_run; 369 struct rw_semaphore *lock = &indx->run_lock; 370 u32 nbits = sb->s_blocksize * 8; 371 u32 blocksize = sb->s_blocksize; 372 u64 valid_size = le64_to_cpu(bitmap->nres.valid_size); 373 u64 data_size = le64_to_cpu(bitmap->nres.data_size); 374 sector_t eblock = bytes_to_block(sb, data_size); 375 size_t vbo = from >> 3; 376 sector_t blk = (vbo & sbi->cluster_mask) >> sb->s_blocksize_bits; 377 sector_t vblock = vbo >> sb->s_blocksize_bits; 378 sector_t blen, block; 379 CLST lcn, clen, vcn, vcn_next; 380 size_t idx; 381 struct buffer_head *bh; 382 bool ok; 383 384 *ret = MINUS_ONE_T; 385 386 if (vblock >= eblock) 387 return 0; 388 389 from &= nbits - 1; 390 vcn = vbo >> sbi->cluster_bits; 391 392 down_read(lock); 393 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx); 394 up_read(lock); 395 396 next_run: 397 if (!ok) { 398 int err; 399 const struct INDEX_NAMES *name = &s_index_names[indx->type]; 400 401 down_write(lock); 402 err = attr_load_runs_vcn(ni, ATTR_BITMAP, name->name, 403 name->name_len, run, vcn); 404 up_write(lock); 405 if (err) 406 return err; 407 down_read(lock); 408 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx); 409 up_read(lock); 410 if (!ok) 411 return -EINVAL; 412 } 413 414 blen = (sector_t)clen * sbi->blocks_per_cluster; 415 block = (sector_t)lcn * sbi->blocks_per_cluster; 416 417 for (; blk < blen; blk++, from = 0) { 418 bh = ntfs_bread(sb, block + blk); 419 if (!bh) 420 return -EIO; 421 422 vbo = (u64)vblock << sb->s_blocksize_bits; 423 if (vbo >= valid_size) { 424 memset(bh->b_data, 0, blocksize); 425 } else if (vbo + blocksize > valid_size) { 426 u32 voff = valid_size & sbi->block_mask; 427 428 memset(bh->b_data + voff, 0, blocksize - voff); 429 } 430 431 if (vbo + blocksize > data_size) 432 nbits = 8 * (data_size - vbo); 433 434 ok = nbits > from ? (*fn)((ulong *)bh->b_data, from, nbits, ret) 435 : false; 436 put_bh(bh); 437 438 if (ok) { 439 *ret += 8 * vbo; 440 return 0; 441 } 442 443 if (++vblock >= eblock) { 444 *ret = MINUS_ONE_T; 445 return 0; 446 } 447 } 448 blk = 0; 449 vcn_next = vcn + clen; 450 down_read(lock); 451 ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && vcn == vcn_next; 452 if (!ok) 453 vcn = vcn_next; 454 up_read(lock); 455 goto next_run; 456 } 457 458 static bool scan_for_free(const ulong *buf, u32 bit, u32 bits, size_t *ret) 459 { 460 size_t pos = find_next_zero_bit(buf, bits, bit); 461 462 if (pos >= bits) 463 return false; 464 *ret = pos; 465 return true; 466 } 467 468 /* 469 * indx_find_free - Look for free bit. 470 * 471 * Return: -1 if no free bits. 472 */ 473 static int indx_find_free(struct ntfs_index *indx, struct ntfs_inode *ni, 474 size_t *bit, struct ATTRIB **bitmap) 475 { 476 struct ATTRIB *b; 477 struct ATTR_LIST_ENTRY *le = NULL; 478 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 479 int err; 480 481 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len, 482 NULL, NULL); 483 484 if (!b) 485 return -ENOENT; 486 487 *bitmap = b; 488 *bit = MINUS_ONE_T; 489 490 if (!b->non_res) { 491 u32 nbits = 8 * le32_to_cpu(b->res.data_size); 492 size_t pos = find_next_zero_bit(resident_data(b), nbits, 0); 493 494 if (pos < nbits) 495 *bit = pos; 496 } else { 497 err = scan_nres_bitmap(ni, b, indx, 0, &scan_for_free, bit); 498 499 if (err) 500 return err; 501 } 502 503 return 0; 504 } 505 506 static bool scan_for_used(const ulong *buf, u32 bit, u32 bits, size_t *ret) 507 { 508 size_t pos = find_next_bit(buf, bits, bit); 509 510 if (pos >= bits) 511 return false; 512 *ret = pos; 513 return true; 514 } 515 516 /* 517 * indx_used_bit - Look for used bit. 518 * 519 * Return: MINUS_ONE_T if no used bits. 520 */ 521 int indx_used_bit(struct ntfs_index *indx, struct ntfs_inode *ni, size_t *bit) 522 { 523 struct ATTRIB *b; 524 struct ATTR_LIST_ENTRY *le = NULL; 525 size_t from = *bit; 526 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 527 int err; 528 529 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len, 530 NULL, NULL); 531 532 if (!b) 533 return -ENOENT; 534 535 *bit = MINUS_ONE_T; 536 537 if (!b->non_res) { 538 u32 nbits = le32_to_cpu(b->res.data_size) * 8; 539 size_t pos = find_next_bit(resident_data(b), nbits, from); 540 541 if (pos < nbits) 542 *bit = pos; 543 } else { 544 err = scan_nres_bitmap(ni, b, indx, from, &scan_for_used, bit); 545 if (err) 546 return err; 547 } 548 549 return 0; 550 } 551 552 /* 553 * hdr_find_split 554 * 555 * Find a point at which the index allocation buffer would like to be split. 556 * NOTE: This function should never return 'END' entry NULL returns on error. 557 */ 558 static const struct NTFS_DE *hdr_find_split(const struct INDEX_HDR *hdr) 559 { 560 size_t o; 561 const struct NTFS_DE *e = hdr_first_de(hdr); 562 u32 used_2 = le32_to_cpu(hdr->used) >> 1; 563 u16 esize; 564 565 if (!e || de_is_last(e)) 566 return NULL; 567 568 esize = le16_to_cpu(e->size); 569 for (o = le32_to_cpu(hdr->de_off) + esize; o < used_2; o += esize) { 570 const struct NTFS_DE *p = e; 571 572 e = Add2Ptr(hdr, o); 573 574 /* We must not return END entry. */ 575 if (de_is_last(e)) 576 return p; 577 578 esize = le16_to_cpu(e->size); 579 } 580 581 return e; 582 } 583 584 /* 585 * hdr_insert_head - Insert some entries at the beginning of the buffer. 586 * 587 * It is used to insert entries into a newly-created buffer. 588 */ 589 static const struct NTFS_DE *hdr_insert_head(struct INDEX_HDR *hdr, 590 const void *ins, u32 ins_bytes) 591 { 592 u32 to_move; 593 struct NTFS_DE *e = hdr_first_de(hdr); 594 u32 used = le32_to_cpu(hdr->used); 595 596 if (!e) 597 return NULL; 598 599 /* Now we just make room for the inserted entries and jam it in. */ 600 to_move = used - le32_to_cpu(hdr->de_off); 601 memmove(Add2Ptr(e, ins_bytes), e, to_move); 602 memcpy(e, ins, ins_bytes); 603 hdr->used = cpu_to_le32(used + ins_bytes); 604 605 return e; 606 } 607 608 void fnd_clear(struct ntfs_fnd *fnd) 609 { 610 int i; 611 612 for (i = 0; i < fnd->level; i++) { 613 struct indx_node *n = fnd->nodes[i]; 614 615 if (!n) 616 continue; 617 618 put_indx_node(n); 619 fnd->nodes[i] = NULL; 620 } 621 fnd->level = 0; 622 fnd->root_de = NULL; 623 } 624 625 static int fnd_push(struct ntfs_fnd *fnd, struct indx_node *n, 626 struct NTFS_DE *e) 627 { 628 int i; 629 630 i = fnd->level; 631 if (i < 0 || i >= ARRAY_SIZE(fnd->nodes)) 632 return -EINVAL; 633 fnd->nodes[i] = n; 634 fnd->de[i] = e; 635 fnd->level += 1; 636 return 0; 637 } 638 639 static struct indx_node *fnd_pop(struct ntfs_fnd *fnd) 640 { 641 struct indx_node *n; 642 int i = fnd->level; 643 644 i -= 1; 645 n = fnd->nodes[i]; 646 fnd->nodes[i] = NULL; 647 fnd->level = i; 648 649 return n; 650 } 651 652 static bool fnd_is_empty(struct ntfs_fnd *fnd) 653 { 654 if (!fnd->level) 655 return !fnd->root_de; 656 657 return !fnd->de[fnd->level - 1]; 658 } 659 660 /* 661 * hdr_find_e - Locate an entry the index buffer. 662 * 663 * If no matching entry is found, it returns the first entry which is greater 664 * than the desired entry If the search key is greater than all the entries the 665 * buffer, it returns the 'end' entry. This function does a binary search of the 666 * current index buffer, for the first entry that is <= to the search value. 667 * 668 * Return: NULL if error. 669 */ 670 static struct NTFS_DE *hdr_find_e(const struct ntfs_index *indx, 671 const struct INDEX_HDR *hdr, const void *key, 672 size_t key_len, const void *ctx, int *diff) 673 { 674 struct NTFS_DE *e; 675 NTFS_CMP_FUNC cmp = indx->cmp; 676 u32 e_size, e_key_len; 677 u32 end = le32_to_cpu(hdr->used); 678 u32 off = le32_to_cpu(hdr->de_off); 679 680 #ifdef NTFS3_INDEX_BINARY_SEARCH 681 int max_idx = 0, fnd, min_idx; 682 int nslots = 64; 683 u16 *offs; 684 685 if (end > 0x10000) 686 goto next; 687 688 offs = kmalloc(sizeof(u16) * nslots, GFP_NOFS); 689 if (!offs) 690 goto next; 691 692 /* Use binary search algorithm. */ 693 next1: 694 if (off + sizeof(struct NTFS_DE) > end) { 695 e = NULL; 696 goto out1; 697 } 698 e = Add2Ptr(hdr, off); 699 e_size = le16_to_cpu(e->size); 700 701 if (e_size < sizeof(struct NTFS_DE) || off + e_size > end) { 702 e = NULL; 703 goto out1; 704 } 705 706 if (max_idx >= nslots) { 707 u16 *ptr; 708 int new_slots = ALIGN(2 * nslots, 8); 709 710 ptr = kmalloc(sizeof(u16) * new_slots, GFP_NOFS); 711 if (ptr) 712 memcpy(ptr, offs, sizeof(u16) * max_idx); 713 kfree(offs); 714 offs = ptr; 715 nslots = new_slots; 716 if (!ptr) 717 goto next; 718 } 719 720 /* Store entry table. */ 721 offs[max_idx] = off; 722 723 if (!de_is_last(e)) { 724 off += e_size; 725 max_idx += 1; 726 goto next1; 727 } 728 729 /* 730 * Table of pointers is created. 731 * Use binary search to find entry that is <= to the search value. 732 */ 733 fnd = -1; 734 min_idx = 0; 735 736 while (min_idx <= max_idx) { 737 int mid_idx = min_idx + ((max_idx - min_idx) >> 1); 738 int diff2; 739 740 e = Add2Ptr(hdr, offs[mid_idx]); 741 742 e_key_len = le16_to_cpu(e->key_size); 743 744 diff2 = (*cmp)(key, key_len, e + 1, e_key_len, ctx); 745 746 if (!diff2) { 747 *diff = 0; 748 goto out1; 749 } 750 751 if (diff2 < 0) { 752 max_idx = mid_idx - 1; 753 fnd = mid_idx; 754 if (!fnd) 755 break; 756 } else { 757 min_idx = mid_idx + 1; 758 } 759 } 760 761 if (fnd == -1) { 762 e = NULL; 763 goto out1; 764 } 765 766 *diff = -1; 767 e = Add2Ptr(hdr, offs[fnd]); 768 769 out1: 770 kfree(offs); 771 772 return e; 773 #endif 774 775 next: 776 /* 777 * Entries index are sorted. 778 * Enumerate all entries until we find entry 779 * that is <= to the search value. 780 */ 781 if (off + sizeof(struct NTFS_DE) > end) 782 return NULL; 783 784 e = Add2Ptr(hdr, off); 785 e_size = le16_to_cpu(e->size); 786 787 if (e_size < sizeof(struct NTFS_DE) || off + e_size > end) 788 return NULL; 789 790 off += e_size; 791 792 e_key_len = le16_to_cpu(e->key_size); 793 794 *diff = (*cmp)(key, key_len, e + 1, e_key_len, ctx); 795 if (!*diff) 796 return e; 797 798 if (*diff <= 0) 799 return e; 800 801 if (de_is_last(e)) { 802 *diff = 1; 803 return e; 804 } 805 goto next; 806 } 807 808 /* 809 * hdr_insert_de - Insert an index entry into the buffer. 810 * 811 * 'before' should be a pointer previously returned from hdr_find_e. 812 */ 813 static struct NTFS_DE *hdr_insert_de(const struct ntfs_index *indx, 814 struct INDEX_HDR *hdr, 815 const struct NTFS_DE *de, 816 struct NTFS_DE *before, const void *ctx) 817 { 818 int diff; 819 size_t off = PtrOffset(hdr, before); 820 u32 used = le32_to_cpu(hdr->used); 821 u32 total = le32_to_cpu(hdr->total); 822 u16 de_size = le16_to_cpu(de->size); 823 824 /* First, check to see if there's enough room. */ 825 if (used + de_size > total) 826 return NULL; 827 828 /* We know there's enough space, so we know we'll succeed. */ 829 if (before) { 830 /* Check that before is inside Index. */ 831 if (off >= used || off < le32_to_cpu(hdr->de_off) || 832 off + le16_to_cpu(before->size) > total) { 833 return NULL; 834 } 835 goto ok; 836 } 837 /* No insert point is applied. Get it manually. */ 838 before = hdr_find_e(indx, hdr, de + 1, le16_to_cpu(de->key_size), ctx, 839 &diff); 840 if (!before) 841 return NULL; 842 off = PtrOffset(hdr, before); 843 844 ok: 845 /* Now we just make room for the entry and jam it in. */ 846 memmove(Add2Ptr(before, de_size), before, used - off); 847 848 hdr->used = cpu_to_le32(used + de_size); 849 memcpy(before, de, de_size); 850 851 return before; 852 } 853 854 /* 855 * hdr_delete_de - Remove an entry from the index buffer. 856 */ 857 static inline struct NTFS_DE *hdr_delete_de(struct INDEX_HDR *hdr, 858 struct NTFS_DE *re) 859 { 860 u32 used = le32_to_cpu(hdr->used); 861 u16 esize = le16_to_cpu(re->size); 862 u32 off = PtrOffset(hdr, re); 863 int bytes = used - (off + esize); 864 865 if (off >= used || esize < sizeof(struct NTFS_DE) || 866 bytes < sizeof(struct NTFS_DE)) 867 return NULL; 868 869 hdr->used = cpu_to_le32(used - esize); 870 memmove(re, Add2Ptr(re, esize), bytes); 871 872 return re; 873 } 874 875 void indx_clear(struct ntfs_index *indx) 876 { 877 run_close(&indx->alloc_run); 878 run_close(&indx->bitmap_run); 879 } 880 881 int indx_init(struct ntfs_index *indx, struct ntfs_sb_info *sbi, 882 const struct ATTRIB *attr, enum index_mutex_classed type) 883 { 884 u32 t32; 885 const struct INDEX_ROOT *root = resident_data(attr); 886 887 /* Check root fields. */ 888 if (!root->index_block_clst) 889 return -EINVAL; 890 891 indx->type = type; 892 indx->idx2vbn_bits = __ffs(root->index_block_clst); 893 894 t32 = le32_to_cpu(root->index_block_size); 895 indx->index_bits = blksize_bits(t32); 896 897 /* Check index record size. */ 898 if (t32 < sbi->cluster_size) { 899 /* Index record is smaller than a cluster, use 512 blocks. */ 900 if (t32 != root->index_block_clst * SECTOR_SIZE) 901 return -EINVAL; 902 903 /* Check alignment to a cluster. */ 904 if ((sbi->cluster_size >> SECTOR_SHIFT) & 905 (root->index_block_clst - 1)) { 906 return -EINVAL; 907 } 908 909 indx->vbn2vbo_bits = SECTOR_SHIFT; 910 } else { 911 /* Index record must be a multiple of cluster size. */ 912 if (t32 != root->index_block_clst << sbi->cluster_bits) 913 return -EINVAL; 914 915 indx->vbn2vbo_bits = sbi->cluster_bits; 916 } 917 918 init_rwsem(&indx->run_lock); 919 920 indx->cmp = get_cmp_func(root); 921 return indx->cmp ? 0 : -EINVAL; 922 } 923 924 static struct indx_node *indx_new(struct ntfs_index *indx, 925 struct ntfs_inode *ni, CLST vbn, 926 const __le64 *sub_vbn) 927 { 928 int err; 929 struct NTFS_DE *e; 930 struct indx_node *r; 931 struct INDEX_HDR *hdr; 932 struct INDEX_BUFFER *index; 933 u64 vbo = (u64)vbn << indx->vbn2vbo_bits; 934 u32 bytes = 1u << indx->index_bits; 935 u16 fn; 936 u32 eo; 937 938 r = kzalloc(sizeof(struct indx_node), GFP_NOFS); 939 if (!r) 940 return ERR_PTR(-ENOMEM); 941 942 index = kzalloc(bytes, GFP_NOFS); 943 if (!index) { 944 kfree(r); 945 return ERR_PTR(-ENOMEM); 946 } 947 948 err = ntfs_get_bh(ni->mi.sbi, &indx->alloc_run, vbo, bytes, &r->nb); 949 950 if (err) { 951 kfree(index); 952 kfree(r); 953 return ERR_PTR(err); 954 } 955 956 /* Create header. */ 957 index->rhdr.sign = NTFS_INDX_SIGNATURE; 958 index->rhdr.fix_off = cpu_to_le16(sizeof(struct INDEX_BUFFER)); // 0x28 959 fn = (bytes >> SECTOR_SHIFT) + 1; // 9 960 index->rhdr.fix_num = cpu_to_le16(fn); 961 index->vbn = cpu_to_le64(vbn); 962 hdr = &index->ihdr; 963 eo = ALIGN(sizeof(struct INDEX_BUFFER) + fn * sizeof(short), 8); 964 hdr->de_off = cpu_to_le32(eo); 965 966 e = Add2Ptr(hdr, eo); 967 968 if (sub_vbn) { 969 e->flags = NTFS_IE_LAST | NTFS_IE_HAS_SUBNODES; 970 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64)); 971 hdr->used = 972 cpu_to_le32(eo + sizeof(struct NTFS_DE) + sizeof(u64)); 973 de_set_vbn_le(e, *sub_vbn); 974 hdr->flags = 1; 975 } else { 976 e->size = cpu_to_le16(sizeof(struct NTFS_DE)); 977 hdr->used = cpu_to_le32(eo + sizeof(struct NTFS_DE)); 978 e->flags = NTFS_IE_LAST; 979 } 980 981 hdr->total = cpu_to_le32(bytes - offsetof(struct INDEX_BUFFER, ihdr)); 982 983 r->index = index; 984 return r; 985 } 986 987 struct INDEX_ROOT *indx_get_root(struct ntfs_index *indx, struct ntfs_inode *ni, 988 struct ATTRIB **attr, struct mft_inode **mi) 989 { 990 struct ATTR_LIST_ENTRY *le = NULL; 991 struct ATTRIB *a; 992 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 993 994 a = ni_find_attr(ni, NULL, &le, ATTR_ROOT, in->name, in->name_len, NULL, 995 mi); 996 if (!a) 997 return NULL; 998 999 if (attr) 1000 *attr = a; 1001 1002 return resident_data_ex(a, sizeof(struct INDEX_ROOT)); 1003 } 1004 1005 static int indx_write(struct ntfs_index *indx, struct ntfs_inode *ni, 1006 struct indx_node *node, int sync) 1007 { 1008 struct INDEX_BUFFER *ib = node->index; 1009 1010 return ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &node->nb, sync); 1011 } 1012 1013 /* 1014 * indx_read 1015 * 1016 * If ntfs_readdir calls this function 1017 * inode is shared locked and no ni_lock. 1018 * Use rw_semaphore for read/write access to alloc_run. 1019 */ 1020 int indx_read(struct ntfs_index *indx, struct ntfs_inode *ni, CLST vbn, 1021 struct indx_node **node) 1022 { 1023 int err; 1024 struct INDEX_BUFFER *ib; 1025 struct runs_tree *run = &indx->alloc_run; 1026 struct rw_semaphore *lock = &indx->run_lock; 1027 u64 vbo = (u64)vbn << indx->vbn2vbo_bits; 1028 u32 bytes = 1u << indx->index_bits; 1029 struct indx_node *in = *node; 1030 const struct INDEX_NAMES *name; 1031 1032 if (!in) { 1033 in = kzalloc(sizeof(struct indx_node), GFP_NOFS); 1034 if (!in) 1035 return -ENOMEM; 1036 } else { 1037 nb_put(&in->nb); 1038 } 1039 1040 ib = in->index; 1041 if (!ib) { 1042 ib = kmalloc(bytes, GFP_NOFS); 1043 if (!ib) { 1044 err = -ENOMEM; 1045 goto out; 1046 } 1047 } 1048 1049 down_read(lock); 1050 err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb); 1051 up_read(lock); 1052 if (!err) 1053 goto ok; 1054 1055 if (err == -E_NTFS_FIXUP) 1056 goto ok; 1057 1058 if (err != -ENOENT) 1059 goto out; 1060 1061 name = &s_index_names[indx->type]; 1062 down_write(lock); 1063 err = attr_load_runs_range(ni, ATTR_ALLOC, name->name, name->name_len, 1064 run, vbo, vbo + bytes); 1065 up_write(lock); 1066 if (err) 1067 goto out; 1068 1069 down_read(lock); 1070 err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb); 1071 up_read(lock); 1072 if (err == -E_NTFS_FIXUP) 1073 goto ok; 1074 1075 if (err) 1076 goto out; 1077 1078 ok: 1079 if (err == -E_NTFS_FIXUP) { 1080 ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &in->nb, 0); 1081 err = 0; 1082 } 1083 1084 in->index = ib; 1085 *node = in; 1086 1087 out: 1088 if (ib != in->index) 1089 kfree(ib); 1090 1091 if (*node != in) { 1092 nb_put(&in->nb); 1093 kfree(in); 1094 } 1095 1096 return err; 1097 } 1098 1099 /* 1100 * indx_find - Scan NTFS directory for given entry. 1101 */ 1102 int indx_find(struct ntfs_index *indx, struct ntfs_inode *ni, 1103 const struct INDEX_ROOT *root, const void *key, size_t key_len, 1104 const void *ctx, int *diff, struct NTFS_DE **entry, 1105 struct ntfs_fnd *fnd) 1106 { 1107 int err; 1108 struct NTFS_DE *e; 1109 const struct INDEX_HDR *hdr; 1110 struct indx_node *node; 1111 1112 if (!root) 1113 root = indx_get_root(&ni->dir, ni, NULL, NULL); 1114 1115 if (!root) { 1116 err = -EINVAL; 1117 goto out; 1118 } 1119 1120 hdr = &root->ihdr; 1121 1122 /* Check cache. */ 1123 e = fnd->level ? fnd->de[fnd->level - 1] : fnd->root_de; 1124 if (e && !de_is_last(e) && 1125 !(*indx->cmp)(key, key_len, e + 1, le16_to_cpu(e->key_size), ctx)) { 1126 *entry = e; 1127 *diff = 0; 1128 return 0; 1129 } 1130 1131 /* Soft finder reset. */ 1132 fnd_clear(fnd); 1133 1134 /* Lookup entry that is <= to the search value. */ 1135 e = hdr_find_e(indx, hdr, key, key_len, ctx, diff); 1136 if (!e) 1137 return -EINVAL; 1138 1139 if (fnd) 1140 fnd->root_de = e; 1141 1142 err = 0; 1143 1144 for (;;) { 1145 node = NULL; 1146 if (*diff >= 0 || !de_has_vcn_ex(e)) { 1147 *entry = e; 1148 goto out; 1149 } 1150 1151 /* Read next level. */ 1152 err = indx_read(indx, ni, de_get_vbn(e), &node); 1153 if (err) 1154 goto out; 1155 1156 /* Lookup entry that is <= to the search value. */ 1157 e = hdr_find_e(indx, &node->index->ihdr, key, key_len, ctx, 1158 diff); 1159 if (!e) { 1160 err = -EINVAL; 1161 put_indx_node(node); 1162 goto out; 1163 } 1164 1165 fnd_push(fnd, node, e); 1166 } 1167 1168 out: 1169 return err; 1170 } 1171 1172 int indx_find_sort(struct ntfs_index *indx, struct ntfs_inode *ni, 1173 const struct INDEX_ROOT *root, struct NTFS_DE **entry, 1174 struct ntfs_fnd *fnd) 1175 { 1176 int err; 1177 struct indx_node *n = NULL; 1178 struct NTFS_DE *e; 1179 size_t iter = 0; 1180 int level = fnd->level; 1181 1182 if (!*entry) { 1183 /* Start find. */ 1184 e = hdr_first_de(&root->ihdr); 1185 if (!e) 1186 return 0; 1187 fnd_clear(fnd); 1188 fnd->root_de = e; 1189 } else if (!level) { 1190 if (de_is_last(fnd->root_de)) { 1191 *entry = NULL; 1192 return 0; 1193 } 1194 1195 e = hdr_next_de(&root->ihdr, fnd->root_de); 1196 if (!e) 1197 return -EINVAL; 1198 fnd->root_de = e; 1199 } else { 1200 n = fnd->nodes[level - 1]; 1201 e = fnd->de[level - 1]; 1202 1203 if (de_is_last(e)) 1204 goto pop_level; 1205 1206 e = hdr_next_de(&n->index->ihdr, e); 1207 if (!e) 1208 return -EINVAL; 1209 1210 fnd->de[level - 1] = e; 1211 } 1212 1213 /* Just to avoid tree cycle. */ 1214 next_iter: 1215 if (iter++ >= 1000) 1216 return -EINVAL; 1217 1218 while (de_has_vcn_ex(e)) { 1219 if (le16_to_cpu(e->size) < 1220 sizeof(struct NTFS_DE) + sizeof(u64)) { 1221 if (n) { 1222 fnd_pop(fnd); 1223 kfree(n); 1224 } 1225 return -EINVAL; 1226 } 1227 1228 /* Read next level. */ 1229 err = indx_read(indx, ni, de_get_vbn(e), &n); 1230 if (err) 1231 return err; 1232 1233 /* Try next level. */ 1234 e = hdr_first_de(&n->index->ihdr); 1235 if (!e) { 1236 kfree(n); 1237 return -EINVAL; 1238 } 1239 1240 fnd_push(fnd, n, e); 1241 } 1242 1243 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) { 1244 *entry = e; 1245 return 0; 1246 } 1247 1248 pop_level: 1249 for (;;) { 1250 if (!de_is_last(e)) 1251 goto next_iter; 1252 1253 /* Pop one level. */ 1254 if (n) { 1255 fnd_pop(fnd); 1256 kfree(n); 1257 } 1258 1259 level = fnd->level; 1260 1261 if (level) { 1262 n = fnd->nodes[level - 1]; 1263 e = fnd->de[level - 1]; 1264 } else if (fnd->root_de) { 1265 n = NULL; 1266 e = fnd->root_de; 1267 fnd->root_de = NULL; 1268 } else { 1269 *entry = NULL; 1270 return 0; 1271 } 1272 1273 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) { 1274 *entry = e; 1275 if (!fnd->root_de) 1276 fnd->root_de = e; 1277 return 0; 1278 } 1279 } 1280 } 1281 1282 int indx_find_raw(struct ntfs_index *indx, struct ntfs_inode *ni, 1283 const struct INDEX_ROOT *root, struct NTFS_DE **entry, 1284 size_t *off, struct ntfs_fnd *fnd) 1285 { 1286 int err; 1287 struct indx_node *n = NULL; 1288 struct NTFS_DE *e = NULL; 1289 struct NTFS_DE *e2; 1290 size_t bit; 1291 CLST next_used_vbn; 1292 CLST next_vbn; 1293 u32 record_size = ni->mi.sbi->record_size; 1294 1295 /* Use non sorted algorithm. */ 1296 if (!*entry) { 1297 /* This is the first call. */ 1298 e = hdr_first_de(&root->ihdr); 1299 if (!e) 1300 return 0; 1301 fnd_clear(fnd); 1302 fnd->root_de = e; 1303 1304 /* The first call with setup of initial element. */ 1305 if (*off >= record_size) { 1306 next_vbn = (((*off - record_size) >> indx->index_bits)) 1307 << indx->idx2vbn_bits; 1308 /* Jump inside cycle 'for'. */ 1309 goto next; 1310 } 1311 1312 /* Start enumeration from root. */ 1313 *off = 0; 1314 } else if (!fnd->root_de) 1315 return -EINVAL; 1316 1317 for (;;) { 1318 /* Check if current entry can be used. */ 1319 if (e && le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) 1320 goto ok; 1321 1322 if (!fnd->level) { 1323 /* Continue to enumerate root. */ 1324 if (!de_is_last(fnd->root_de)) { 1325 e = hdr_next_de(&root->ihdr, fnd->root_de); 1326 if (!e) 1327 return -EINVAL; 1328 fnd->root_de = e; 1329 continue; 1330 } 1331 1332 /* Start to enumerate indexes from 0. */ 1333 next_vbn = 0; 1334 } else { 1335 /* Continue to enumerate indexes. */ 1336 e2 = fnd->de[fnd->level - 1]; 1337 1338 n = fnd->nodes[fnd->level - 1]; 1339 1340 if (!de_is_last(e2)) { 1341 e = hdr_next_de(&n->index->ihdr, e2); 1342 if (!e) 1343 return -EINVAL; 1344 fnd->de[fnd->level - 1] = e; 1345 continue; 1346 } 1347 1348 /* Continue with next index. */ 1349 next_vbn = le64_to_cpu(n->index->vbn) + 1350 root->index_block_clst; 1351 } 1352 1353 next: 1354 /* Release current index. */ 1355 if (n) { 1356 fnd_pop(fnd); 1357 put_indx_node(n); 1358 n = NULL; 1359 } 1360 1361 /* Skip all free indexes. */ 1362 bit = next_vbn >> indx->idx2vbn_bits; 1363 err = indx_used_bit(indx, ni, &bit); 1364 if (err == -ENOENT || bit == MINUS_ONE_T) { 1365 /* No used indexes. */ 1366 *entry = NULL; 1367 return 0; 1368 } 1369 1370 next_used_vbn = bit << indx->idx2vbn_bits; 1371 1372 /* Read buffer into memory. */ 1373 err = indx_read(indx, ni, next_used_vbn, &n); 1374 if (err) 1375 return err; 1376 1377 e = hdr_first_de(&n->index->ihdr); 1378 fnd_push(fnd, n, e); 1379 if (!e) 1380 return -EINVAL; 1381 } 1382 1383 ok: 1384 /* Return offset to restore enumerator if necessary. */ 1385 if (!n) { 1386 /* 'e' points in root, */ 1387 *off = PtrOffset(&root->ihdr, e); 1388 } else { 1389 /* 'e' points in index, */ 1390 *off = (le64_to_cpu(n->index->vbn) << indx->vbn2vbo_bits) + 1391 record_size + PtrOffset(&n->index->ihdr, e); 1392 } 1393 1394 *entry = e; 1395 return 0; 1396 } 1397 1398 /* 1399 * indx_create_allocate - Create "Allocation + Bitmap" attributes. 1400 */ 1401 static int indx_create_allocate(struct ntfs_index *indx, struct ntfs_inode *ni, 1402 CLST *vbn) 1403 { 1404 int err = -ENOMEM; 1405 struct ntfs_sb_info *sbi = ni->mi.sbi; 1406 struct ATTRIB *bitmap; 1407 struct ATTRIB *alloc; 1408 u32 data_size = 1u << indx->index_bits; 1409 u32 alloc_size = ntfs_up_cluster(sbi, data_size); 1410 CLST len = alloc_size >> sbi->cluster_bits; 1411 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 1412 CLST alen; 1413 struct runs_tree run; 1414 1415 run_init(&run); 1416 1417 err = attr_allocate_clusters(sbi, &run, 0, 0, len, NULL, 0, &alen, 0, 1418 NULL); 1419 if (err) 1420 goto out; 1421 1422 err = ni_insert_nonresident(ni, ATTR_ALLOC, in->name, in->name_len, 1423 &run, 0, len, 0, &alloc, NULL); 1424 if (err) 1425 goto out1; 1426 1427 alloc->nres.valid_size = alloc->nres.data_size = cpu_to_le64(data_size); 1428 1429 err = ni_insert_resident(ni, bitmap_size(1), ATTR_BITMAP, in->name, 1430 in->name_len, &bitmap, NULL, NULL); 1431 if (err) 1432 goto out2; 1433 1434 if (in->name == I30_NAME) { 1435 ni->vfs_inode.i_size = data_size; 1436 inode_set_bytes(&ni->vfs_inode, alloc_size); 1437 } 1438 1439 memcpy(&indx->alloc_run, &run, sizeof(run)); 1440 1441 *vbn = 0; 1442 1443 return 0; 1444 1445 out2: 1446 mi_remove_attr(NULL, &ni->mi, alloc); 1447 1448 out1: 1449 run_deallocate(sbi, &run, false); 1450 1451 out: 1452 return err; 1453 } 1454 1455 /* 1456 * indx_add_allocate - Add clusters to index. 1457 */ 1458 static int indx_add_allocate(struct ntfs_index *indx, struct ntfs_inode *ni, 1459 CLST *vbn) 1460 { 1461 int err; 1462 size_t bit; 1463 u64 data_size; 1464 u64 bmp_size, bmp_size_v; 1465 struct ATTRIB *bmp, *alloc; 1466 struct mft_inode *mi; 1467 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 1468 1469 err = indx_find_free(indx, ni, &bit, &bmp); 1470 if (err) 1471 goto out1; 1472 1473 if (bit != MINUS_ONE_T) { 1474 bmp = NULL; 1475 } else { 1476 if (bmp->non_res) { 1477 bmp_size = le64_to_cpu(bmp->nres.data_size); 1478 bmp_size_v = le64_to_cpu(bmp->nres.valid_size); 1479 } else { 1480 bmp_size = bmp_size_v = le32_to_cpu(bmp->res.data_size); 1481 } 1482 1483 bit = bmp_size << 3; 1484 } 1485 1486 data_size = (u64)(bit + 1) << indx->index_bits; 1487 1488 if (bmp) { 1489 /* Increase bitmap. */ 1490 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len, 1491 &indx->bitmap_run, bitmap_size(bit + 1), 1492 NULL, true, NULL); 1493 if (err) 1494 goto out1; 1495 } 1496 1497 alloc = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, in->name, in->name_len, 1498 NULL, &mi); 1499 if (!alloc) { 1500 err = -EINVAL; 1501 if (bmp) 1502 goto out2; 1503 goto out1; 1504 } 1505 1506 /* Increase allocation. */ 1507 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len, 1508 &indx->alloc_run, data_size, &data_size, true, 1509 NULL); 1510 if (err) { 1511 if (bmp) 1512 goto out2; 1513 goto out1; 1514 } 1515 1516 *vbn = bit << indx->idx2vbn_bits; 1517 1518 return 0; 1519 1520 out2: 1521 /* Ops. No space? */ 1522 attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len, 1523 &indx->bitmap_run, bmp_size, &bmp_size_v, false, NULL); 1524 1525 out1: 1526 return err; 1527 } 1528 1529 /* 1530 * indx_insert_into_root - Attempt to insert an entry into the index root. 1531 * 1532 * @undo - True if we undoing previous remove. 1533 * If necessary, it will twiddle the index b-tree. 1534 */ 1535 static int indx_insert_into_root(struct ntfs_index *indx, struct ntfs_inode *ni, 1536 const struct NTFS_DE *new_de, 1537 struct NTFS_DE *root_de, const void *ctx, 1538 struct ntfs_fnd *fnd, bool undo) 1539 { 1540 int err = 0; 1541 struct NTFS_DE *e, *e0, *re; 1542 struct mft_inode *mi; 1543 struct ATTRIB *attr; 1544 struct INDEX_HDR *hdr; 1545 struct indx_node *n; 1546 CLST new_vbn; 1547 __le64 *sub_vbn, t_vbn; 1548 u16 new_de_size; 1549 u32 hdr_used, hdr_total, asize, to_move; 1550 u32 root_size, new_root_size; 1551 struct ntfs_sb_info *sbi; 1552 int ds_root; 1553 struct INDEX_ROOT *root, *a_root; 1554 1555 /* Get the record this root placed in. */ 1556 root = indx_get_root(indx, ni, &attr, &mi); 1557 if (!root) 1558 return -EINVAL; 1559 1560 /* 1561 * Try easy case: 1562 * hdr_insert_de will succeed if there's 1563 * room the root for the new entry. 1564 */ 1565 hdr = &root->ihdr; 1566 sbi = ni->mi.sbi; 1567 new_de_size = le16_to_cpu(new_de->size); 1568 hdr_used = le32_to_cpu(hdr->used); 1569 hdr_total = le32_to_cpu(hdr->total); 1570 asize = le32_to_cpu(attr->size); 1571 root_size = le32_to_cpu(attr->res.data_size); 1572 1573 ds_root = new_de_size + hdr_used - hdr_total; 1574 1575 /* If 'undo' is set then reduce requirements. */ 1576 if ((undo || asize + ds_root < sbi->max_bytes_per_attr) && 1577 mi_resize_attr(mi, attr, ds_root)) { 1578 hdr->total = cpu_to_le32(hdr_total + ds_root); 1579 e = hdr_insert_de(indx, hdr, new_de, root_de, ctx); 1580 WARN_ON(!e); 1581 fnd_clear(fnd); 1582 fnd->root_de = e; 1583 1584 return 0; 1585 } 1586 1587 /* Make a copy of root attribute to restore if error. */ 1588 a_root = kmemdup(attr, asize, GFP_NOFS); 1589 if (!a_root) 1590 return -ENOMEM; 1591 1592 /* 1593 * Copy all the non-end entries from 1594 * the index root to the new buffer. 1595 */ 1596 to_move = 0; 1597 e0 = hdr_first_de(hdr); 1598 1599 /* Calculate the size to copy. */ 1600 for (e = e0;; e = hdr_next_de(hdr, e)) { 1601 if (!e) { 1602 err = -EINVAL; 1603 goto out_free_root; 1604 } 1605 1606 if (de_is_last(e)) 1607 break; 1608 to_move += le16_to_cpu(e->size); 1609 } 1610 1611 if (!to_move) { 1612 re = NULL; 1613 } else { 1614 re = kmemdup(e0, to_move, GFP_NOFS); 1615 if (!re) { 1616 err = -ENOMEM; 1617 goto out_free_root; 1618 } 1619 } 1620 1621 sub_vbn = NULL; 1622 if (de_has_vcn(e)) { 1623 t_vbn = de_get_vbn_le(e); 1624 sub_vbn = &t_vbn; 1625 } 1626 1627 new_root_size = sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE) + 1628 sizeof(u64); 1629 ds_root = new_root_size - root_size; 1630 1631 if (ds_root > 0 && asize + ds_root > sbi->max_bytes_per_attr) { 1632 /* Make root external. */ 1633 err = -EOPNOTSUPP; 1634 goto out_free_re; 1635 } 1636 1637 if (ds_root) 1638 mi_resize_attr(mi, attr, ds_root); 1639 1640 /* Fill first entry (vcn will be set later). */ 1641 e = (struct NTFS_DE *)(root + 1); 1642 memset(e, 0, sizeof(struct NTFS_DE)); 1643 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64)); 1644 e->flags = NTFS_IE_HAS_SUBNODES | NTFS_IE_LAST; 1645 1646 hdr->flags = 1; 1647 hdr->used = hdr->total = 1648 cpu_to_le32(new_root_size - offsetof(struct INDEX_ROOT, ihdr)); 1649 1650 fnd->root_de = hdr_first_de(hdr); 1651 mi->dirty = true; 1652 1653 /* Create alloc and bitmap attributes (if not). */ 1654 err = run_is_empty(&indx->alloc_run) 1655 ? indx_create_allocate(indx, ni, &new_vbn) 1656 : indx_add_allocate(indx, ni, &new_vbn); 1657 1658 /* Layout of record may be changed, so rescan root. */ 1659 root = indx_get_root(indx, ni, &attr, &mi); 1660 if (!root) { 1661 /* Bug? */ 1662 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 1663 err = -EINVAL; 1664 goto out_free_re; 1665 } 1666 1667 if (err) { 1668 /* Restore root. */ 1669 if (mi_resize_attr(mi, attr, -ds_root)) 1670 memcpy(attr, a_root, asize); 1671 else { 1672 /* Bug? */ 1673 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 1674 } 1675 goto out_free_re; 1676 } 1677 1678 e = (struct NTFS_DE *)(root + 1); 1679 *(__le64 *)(e + 1) = cpu_to_le64(new_vbn); 1680 mi->dirty = true; 1681 1682 /* Now we can create/format the new buffer and copy the entries into. */ 1683 n = indx_new(indx, ni, new_vbn, sub_vbn); 1684 if (IS_ERR(n)) { 1685 err = PTR_ERR(n); 1686 goto out_free_re; 1687 } 1688 1689 hdr = &n->index->ihdr; 1690 hdr_used = le32_to_cpu(hdr->used); 1691 hdr_total = le32_to_cpu(hdr->total); 1692 1693 /* Copy root entries into new buffer. */ 1694 hdr_insert_head(hdr, re, to_move); 1695 1696 /* Update bitmap attribute. */ 1697 indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits); 1698 1699 /* Check if we can insert new entry new index buffer. */ 1700 if (hdr_used + new_de_size > hdr_total) { 1701 /* 1702 * This occurs if MFT record is the same or bigger than index 1703 * buffer. Move all root new index and have no space to add 1704 * new entry classic case when MFT record is 1K and index 1705 * buffer 4K the problem should not occurs. 1706 */ 1707 kfree(re); 1708 indx_write(indx, ni, n, 0); 1709 1710 put_indx_node(n); 1711 fnd_clear(fnd); 1712 err = indx_insert_entry(indx, ni, new_de, ctx, fnd, undo); 1713 goto out_free_root; 1714 } 1715 1716 /* 1717 * Now root is a parent for new index buffer. 1718 * Insert NewEntry a new buffer. 1719 */ 1720 e = hdr_insert_de(indx, hdr, new_de, NULL, ctx); 1721 if (!e) { 1722 err = -EINVAL; 1723 goto out_put_n; 1724 } 1725 fnd_push(fnd, n, e); 1726 1727 /* Just write updates index into disk. */ 1728 indx_write(indx, ni, n, 0); 1729 1730 n = NULL; 1731 1732 out_put_n: 1733 put_indx_node(n); 1734 out_free_re: 1735 kfree(re); 1736 out_free_root: 1737 kfree(a_root); 1738 return err; 1739 } 1740 1741 /* 1742 * indx_insert_into_buffer 1743 * 1744 * Attempt to insert an entry into an Index Allocation Buffer. 1745 * If necessary, it will split the buffer. 1746 */ 1747 static int 1748 indx_insert_into_buffer(struct ntfs_index *indx, struct ntfs_inode *ni, 1749 struct INDEX_ROOT *root, const struct NTFS_DE *new_de, 1750 const void *ctx, int level, struct ntfs_fnd *fnd) 1751 { 1752 int err; 1753 const struct NTFS_DE *sp; 1754 struct NTFS_DE *e, *de_t, *up_e = NULL; 1755 struct indx_node *n2 = NULL; 1756 struct indx_node *n1 = fnd->nodes[level]; 1757 struct INDEX_HDR *hdr1 = &n1->index->ihdr; 1758 struct INDEX_HDR *hdr2; 1759 u32 to_copy, used; 1760 CLST new_vbn; 1761 __le64 t_vbn, *sub_vbn; 1762 u16 sp_size; 1763 1764 /* Try the most easy case. */ 1765 e = fnd->level - 1 == level ? fnd->de[level] : NULL; 1766 e = hdr_insert_de(indx, hdr1, new_de, e, ctx); 1767 fnd->de[level] = e; 1768 if (e) { 1769 /* Just write updated index into disk. */ 1770 indx_write(indx, ni, n1, 0); 1771 return 0; 1772 } 1773 1774 /* 1775 * No space to insert into buffer. Split it. 1776 * To split we: 1777 * - Save split point ('cause index buffers will be changed) 1778 * - Allocate NewBuffer and copy all entries <= sp into new buffer 1779 * - Remove all entries (sp including) from TargetBuffer 1780 * - Insert NewEntry into left or right buffer (depending on sp <=> 1781 * NewEntry) 1782 * - Insert sp into parent buffer (or root) 1783 * - Make sp a parent for new buffer 1784 */ 1785 sp = hdr_find_split(hdr1); 1786 if (!sp) 1787 return -EINVAL; 1788 1789 sp_size = le16_to_cpu(sp->size); 1790 up_e = kmalloc(sp_size + sizeof(u64), GFP_NOFS); 1791 if (!up_e) 1792 return -ENOMEM; 1793 memcpy(up_e, sp, sp_size); 1794 1795 if (!hdr1->flags) { 1796 up_e->flags |= NTFS_IE_HAS_SUBNODES; 1797 up_e->size = cpu_to_le16(sp_size + sizeof(u64)); 1798 sub_vbn = NULL; 1799 } else { 1800 t_vbn = de_get_vbn_le(up_e); 1801 sub_vbn = &t_vbn; 1802 } 1803 1804 /* Allocate on disk a new index allocation buffer. */ 1805 err = indx_add_allocate(indx, ni, &new_vbn); 1806 if (err) 1807 goto out; 1808 1809 /* Allocate and format memory a new index buffer. */ 1810 n2 = indx_new(indx, ni, new_vbn, sub_vbn); 1811 if (IS_ERR(n2)) { 1812 err = PTR_ERR(n2); 1813 goto out; 1814 } 1815 1816 hdr2 = &n2->index->ihdr; 1817 1818 /* Make sp a parent for new buffer. */ 1819 de_set_vbn(up_e, new_vbn); 1820 1821 /* Copy all the entries <= sp into the new buffer. */ 1822 de_t = hdr_first_de(hdr1); 1823 to_copy = PtrOffset(de_t, sp); 1824 hdr_insert_head(hdr2, de_t, to_copy); 1825 1826 /* Remove all entries (sp including) from hdr1. */ 1827 used = le32_to_cpu(hdr1->used) - to_copy - sp_size; 1828 memmove(de_t, Add2Ptr(sp, sp_size), used - le32_to_cpu(hdr1->de_off)); 1829 hdr1->used = cpu_to_le32(used); 1830 1831 /* 1832 * Insert new entry into left or right buffer 1833 * (depending on sp <=> new_de). 1834 */ 1835 hdr_insert_de(indx, 1836 (*indx->cmp)(new_de + 1, le16_to_cpu(new_de->key_size), 1837 up_e + 1, le16_to_cpu(up_e->key_size), 1838 ctx) < 0 1839 ? hdr2 1840 : hdr1, 1841 new_de, NULL, ctx); 1842 1843 indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits); 1844 1845 indx_write(indx, ni, n1, 0); 1846 indx_write(indx, ni, n2, 0); 1847 1848 put_indx_node(n2); 1849 1850 /* 1851 * We've finished splitting everybody, so we are ready to 1852 * insert the promoted entry into the parent. 1853 */ 1854 if (!level) { 1855 /* Insert in root. */ 1856 err = indx_insert_into_root(indx, ni, up_e, NULL, ctx, fnd, 0); 1857 if (err) 1858 goto out; 1859 } else { 1860 /* 1861 * The target buffer's parent is another index buffer. 1862 * TODO: Remove recursion. 1863 */ 1864 err = indx_insert_into_buffer(indx, ni, root, up_e, ctx, 1865 level - 1, fnd); 1866 if (err) 1867 goto out; 1868 } 1869 1870 out: 1871 kfree(up_e); 1872 1873 return err; 1874 } 1875 1876 /* 1877 * indx_insert_entry - Insert new entry into index. 1878 * 1879 * @undo - True if we undoing previous remove. 1880 */ 1881 int indx_insert_entry(struct ntfs_index *indx, struct ntfs_inode *ni, 1882 const struct NTFS_DE *new_de, const void *ctx, 1883 struct ntfs_fnd *fnd, bool undo) 1884 { 1885 int err; 1886 int diff; 1887 struct NTFS_DE *e; 1888 struct ntfs_fnd *fnd_a = NULL; 1889 struct INDEX_ROOT *root; 1890 1891 if (!fnd) { 1892 fnd_a = fnd_get(); 1893 if (!fnd_a) { 1894 err = -ENOMEM; 1895 goto out1; 1896 } 1897 fnd = fnd_a; 1898 } 1899 1900 root = indx_get_root(indx, ni, NULL, NULL); 1901 if (!root) { 1902 err = -EINVAL; 1903 goto out; 1904 } 1905 1906 if (fnd_is_empty(fnd)) { 1907 /* 1908 * Find the spot the tree where we want to 1909 * insert the new entry. 1910 */ 1911 err = indx_find(indx, ni, root, new_de + 1, 1912 le16_to_cpu(new_de->key_size), ctx, &diff, &e, 1913 fnd); 1914 if (err) 1915 goto out; 1916 1917 if (!diff) { 1918 err = -EEXIST; 1919 goto out; 1920 } 1921 } 1922 1923 if (!fnd->level) { 1924 /* 1925 * The root is also a leaf, so we'll insert the 1926 * new entry into it. 1927 */ 1928 err = indx_insert_into_root(indx, ni, new_de, fnd->root_de, ctx, 1929 fnd, undo); 1930 if (err) 1931 goto out; 1932 } else { 1933 /* 1934 * Found a leaf buffer, so we'll insert the new entry into it. 1935 */ 1936 err = indx_insert_into_buffer(indx, ni, root, new_de, ctx, 1937 fnd->level - 1, fnd); 1938 if (err) 1939 goto out; 1940 } 1941 1942 out: 1943 fnd_put(fnd_a); 1944 out1: 1945 return err; 1946 } 1947 1948 /* 1949 * indx_find_buffer - Locate a buffer from the tree. 1950 */ 1951 static struct indx_node *indx_find_buffer(struct ntfs_index *indx, 1952 struct ntfs_inode *ni, 1953 const struct INDEX_ROOT *root, 1954 __le64 vbn, struct indx_node *n) 1955 { 1956 int err; 1957 const struct NTFS_DE *e; 1958 struct indx_node *r; 1959 const struct INDEX_HDR *hdr = n ? &n->index->ihdr : &root->ihdr; 1960 1961 /* Step 1: Scan one level. */ 1962 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) { 1963 if (!e) 1964 return ERR_PTR(-EINVAL); 1965 1966 if (de_has_vcn(e) && vbn == de_get_vbn_le(e)) 1967 return n; 1968 1969 if (de_is_last(e)) 1970 break; 1971 } 1972 1973 /* Step2: Do recursion. */ 1974 e = Add2Ptr(hdr, le32_to_cpu(hdr->de_off)); 1975 for (;;) { 1976 if (de_has_vcn_ex(e)) { 1977 err = indx_read(indx, ni, de_get_vbn(e), &n); 1978 if (err) 1979 return ERR_PTR(err); 1980 1981 r = indx_find_buffer(indx, ni, root, vbn, n); 1982 if (r) 1983 return r; 1984 } 1985 1986 if (de_is_last(e)) 1987 break; 1988 1989 e = Add2Ptr(e, le16_to_cpu(e->size)); 1990 } 1991 1992 return NULL; 1993 } 1994 1995 /* 1996 * indx_shrink - Deallocate unused tail indexes. 1997 */ 1998 static int indx_shrink(struct ntfs_index *indx, struct ntfs_inode *ni, 1999 size_t bit) 2000 { 2001 int err = 0; 2002 u64 bpb, new_data; 2003 size_t nbits; 2004 struct ATTRIB *b; 2005 struct ATTR_LIST_ENTRY *le = NULL; 2006 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 2007 2008 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len, 2009 NULL, NULL); 2010 2011 if (!b) 2012 return -ENOENT; 2013 2014 if (!b->non_res) { 2015 unsigned long pos; 2016 const unsigned long *bm = resident_data(b); 2017 2018 nbits = (size_t)le32_to_cpu(b->res.data_size) * 8; 2019 2020 if (bit >= nbits) 2021 return 0; 2022 2023 pos = find_next_bit(bm, nbits, bit); 2024 if (pos < nbits) 2025 return 0; 2026 } else { 2027 size_t used = MINUS_ONE_T; 2028 2029 nbits = le64_to_cpu(b->nres.data_size) * 8; 2030 2031 if (bit >= nbits) 2032 return 0; 2033 2034 err = scan_nres_bitmap(ni, b, indx, bit, &scan_for_used, &used); 2035 if (err) 2036 return err; 2037 2038 if (used != MINUS_ONE_T) 2039 return 0; 2040 } 2041 2042 new_data = (u64)bit << indx->index_bits; 2043 2044 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len, 2045 &indx->alloc_run, new_data, &new_data, false, NULL); 2046 if (err) 2047 return err; 2048 2049 bpb = bitmap_size(bit); 2050 if (bpb * 8 == nbits) 2051 return 0; 2052 2053 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len, 2054 &indx->bitmap_run, bpb, &bpb, false, NULL); 2055 2056 return err; 2057 } 2058 2059 static int indx_free_children(struct ntfs_index *indx, struct ntfs_inode *ni, 2060 const struct NTFS_DE *e, bool trim) 2061 { 2062 int err; 2063 struct indx_node *n; 2064 struct INDEX_HDR *hdr; 2065 CLST vbn = de_get_vbn(e); 2066 size_t i; 2067 2068 err = indx_read(indx, ni, vbn, &n); 2069 if (err) 2070 return err; 2071 2072 hdr = &n->index->ihdr; 2073 /* First, recurse into the children, if any. */ 2074 if (hdr_has_subnode(hdr)) { 2075 for (e = hdr_first_de(hdr); e; e = hdr_next_de(hdr, e)) { 2076 indx_free_children(indx, ni, e, false); 2077 if (de_is_last(e)) 2078 break; 2079 } 2080 } 2081 2082 put_indx_node(n); 2083 2084 i = vbn >> indx->idx2vbn_bits; 2085 /* 2086 * We've gotten rid of the children; add this buffer to the free list. 2087 */ 2088 indx_mark_free(indx, ni, i); 2089 2090 if (!trim) 2091 return 0; 2092 2093 /* 2094 * If there are no used indexes after current free index 2095 * then we can truncate allocation and bitmap. 2096 * Use bitmap to estimate the case. 2097 */ 2098 indx_shrink(indx, ni, i + 1); 2099 return 0; 2100 } 2101 2102 /* 2103 * indx_get_entry_to_replace 2104 * 2105 * Find a replacement entry for a deleted entry. 2106 * Always returns a node entry: 2107 * NTFS_IE_HAS_SUBNODES is set the flags and the size includes the sub_vcn. 2108 */ 2109 static int indx_get_entry_to_replace(struct ntfs_index *indx, 2110 struct ntfs_inode *ni, 2111 const struct NTFS_DE *de_next, 2112 struct NTFS_DE **de_to_replace, 2113 struct ntfs_fnd *fnd) 2114 { 2115 int err; 2116 int level = -1; 2117 CLST vbn; 2118 struct NTFS_DE *e, *te, *re; 2119 struct indx_node *n; 2120 struct INDEX_BUFFER *ib; 2121 2122 *de_to_replace = NULL; 2123 2124 /* Find first leaf entry down from de_next. */ 2125 vbn = de_get_vbn(de_next); 2126 for (;;) { 2127 n = NULL; 2128 err = indx_read(indx, ni, vbn, &n); 2129 if (err) 2130 goto out; 2131 2132 e = hdr_first_de(&n->index->ihdr); 2133 fnd_push(fnd, n, e); 2134 2135 if (!de_is_last(e)) { 2136 /* 2137 * This buffer is non-empty, so its first entry 2138 * could be used as the replacement entry. 2139 */ 2140 level = fnd->level - 1; 2141 } 2142 2143 if (!de_has_vcn(e)) 2144 break; 2145 2146 /* This buffer is a node. Continue to go down. */ 2147 vbn = de_get_vbn(e); 2148 } 2149 2150 if (level == -1) 2151 goto out; 2152 2153 n = fnd->nodes[level]; 2154 te = hdr_first_de(&n->index->ihdr); 2155 /* Copy the candidate entry into the replacement entry buffer. */ 2156 re = kmalloc(le16_to_cpu(te->size) + sizeof(u64), GFP_NOFS); 2157 if (!re) { 2158 err = -ENOMEM; 2159 goto out; 2160 } 2161 2162 *de_to_replace = re; 2163 memcpy(re, te, le16_to_cpu(te->size)); 2164 2165 if (!de_has_vcn(re)) { 2166 /* 2167 * The replacement entry we found doesn't have a sub_vcn. 2168 * increase its size to hold one. 2169 */ 2170 le16_add_cpu(&re->size, sizeof(u64)); 2171 re->flags |= NTFS_IE_HAS_SUBNODES; 2172 } else { 2173 /* 2174 * The replacement entry we found was a node entry, which 2175 * means that all its child buffers are empty. Return them 2176 * to the free pool. 2177 */ 2178 indx_free_children(indx, ni, te, true); 2179 } 2180 2181 /* 2182 * Expunge the replacement entry from its former location, 2183 * and then write that buffer. 2184 */ 2185 ib = n->index; 2186 e = hdr_delete_de(&ib->ihdr, te); 2187 2188 fnd->de[level] = e; 2189 indx_write(indx, ni, n, 0); 2190 2191 /* Check to see if this action created an empty leaf. */ 2192 if (ib_is_leaf(ib) && ib_is_empty(ib)) 2193 return 0; 2194 2195 out: 2196 fnd_clear(fnd); 2197 return err; 2198 } 2199 2200 /* 2201 * indx_delete_entry - Delete an entry from the index. 2202 */ 2203 int indx_delete_entry(struct ntfs_index *indx, struct ntfs_inode *ni, 2204 const void *key, u32 key_len, const void *ctx) 2205 { 2206 int err, diff; 2207 struct INDEX_ROOT *root; 2208 struct INDEX_HDR *hdr; 2209 struct ntfs_fnd *fnd, *fnd2; 2210 struct INDEX_BUFFER *ib; 2211 struct NTFS_DE *e, *re, *next, *prev, *me; 2212 struct indx_node *n, *n2d = NULL; 2213 __le64 sub_vbn; 2214 int level, level2; 2215 struct ATTRIB *attr; 2216 struct mft_inode *mi; 2217 u32 e_size, root_size, new_root_size; 2218 size_t trim_bit; 2219 const struct INDEX_NAMES *in; 2220 2221 fnd = fnd_get(); 2222 if (!fnd) { 2223 err = -ENOMEM; 2224 goto out2; 2225 } 2226 2227 fnd2 = fnd_get(); 2228 if (!fnd2) { 2229 err = -ENOMEM; 2230 goto out1; 2231 } 2232 2233 root = indx_get_root(indx, ni, &attr, &mi); 2234 if (!root) { 2235 err = -EINVAL; 2236 goto out; 2237 } 2238 2239 /* Locate the entry to remove. */ 2240 err = indx_find(indx, ni, root, key, key_len, ctx, &diff, &e, fnd); 2241 if (err) 2242 goto out; 2243 2244 if (!e || diff) { 2245 err = -ENOENT; 2246 goto out; 2247 } 2248 2249 level = fnd->level; 2250 2251 if (level) { 2252 n = fnd->nodes[level - 1]; 2253 e = fnd->de[level - 1]; 2254 ib = n->index; 2255 hdr = &ib->ihdr; 2256 } else { 2257 hdr = &root->ihdr; 2258 e = fnd->root_de; 2259 n = NULL; 2260 } 2261 2262 e_size = le16_to_cpu(e->size); 2263 2264 if (!de_has_vcn_ex(e)) { 2265 /* The entry to delete is a leaf, so we can just rip it out. */ 2266 hdr_delete_de(hdr, e); 2267 2268 if (!level) { 2269 hdr->total = hdr->used; 2270 2271 /* Shrink resident root attribute. */ 2272 mi_resize_attr(mi, attr, 0 - e_size); 2273 goto out; 2274 } 2275 2276 indx_write(indx, ni, n, 0); 2277 2278 /* 2279 * Check to see if removing that entry made 2280 * the leaf empty. 2281 */ 2282 if (ib_is_leaf(ib) && ib_is_empty(ib)) { 2283 fnd_pop(fnd); 2284 fnd_push(fnd2, n, e); 2285 } 2286 } else { 2287 /* 2288 * The entry we wish to delete is a node buffer, so we 2289 * have to find a replacement for it. 2290 */ 2291 next = de_get_next(e); 2292 2293 err = indx_get_entry_to_replace(indx, ni, next, &re, fnd2); 2294 if (err) 2295 goto out; 2296 2297 if (re) { 2298 de_set_vbn_le(re, de_get_vbn_le(e)); 2299 hdr_delete_de(hdr, e); 2300 2301 err = level ? indx_insert_into_buffer(indx, ni, root, 2302 re, ctx, 2303 fnd->level - 1, 2304 fnd) 2305 : indx_insert_into_root(indx, ni, re, e, 2306 ctx, fnd, 0); 2307 kfree(re); 2308 2309 if (err) 2310 goto out; 2311 } else { 2312 /* 2313 * There is no replacement for the current entry. 2314 * This means that the subtree rooted at its node 2315 * is empty, and can be deleted, which turn means 2316 * that the node can just inherit the deleted 2317 * entry sub_vcn. 2318 */ 2319 indx_free_children(indx, ni, next, true); 2320 2321 de_set_vbn_le(next, de_get_vbn_le(e)); 2322 hdr_delete_de(hdr, e); 2323 if (level) { 2324 indx_write(indx, ni, n, 0); 2325 } else { 2326 hdr->total = hdr->used; 2327 2328 /* Shrink resident root attribute. */ 2329 mi_resize_attr(mi, attr, 0 - e_size); 2330 } 2331 } 2332 } 2333 2334 /* Delete a branch of tree. */ 2335 if (!fnd2 || !fnd2->level) 2336 goto out; 2337 2338 /* Reinit root 'cause it can be changed. */ 2339 root = indx_get_root(indx, ni, &attr, &mi); 2340 if (!root) { 2341 err = -EINVAL; 2342 goto out; 2343 } 2344 2345 n2d = NULL; 2346 sub_vbn = fnd2->nodes[0]->index->vbn; 2347 level2 = 0; 2348 level = fnd->level; 2349 2350 hdr = level ? &fnd->nodes[level - 1]->index->ihdr : &root->ihdr; 2351 2352 /* Scan current level. */ 2353 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) { 2354 if (!e) { 2355 err = -EINVAL; 2356 goto out; 2357 } 2358 2359 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e)) 2360 break; 2361 2362 if (de_is_last(e)) { 2363 e = NULL; 2364 break; 2365 } 2366 } 2367 2368 if (!e) { 2369 /* Do slow search from root. */ 2370 struct indx_node *in; 2371 2372 fnd_clear(fnd); 2373 2374 in = indx_find_buffer(indx, ni, root, sub_vbn, NULL); 2375 if (IS_ERR(in)) { 2376 err = PTR_ERR(in); 2377 goto out; 2378 } 2379 2380 if (in) 2381 fnd_push(fnd, in, NULL); 2382 } 2383 2384 /* Merge fnd2 -> fnd. */ 2385 for (level = 0; level < fnd2->level; level++) { 2386 fnd_push(fnd, fnd2->nodes[level], fnd2->de[level]); 2387 fnd2->nodes[level] = NULL; 2388 } 2389 fnd2->level = 0; 2390 2391 hdr = NULL; 2392 for (level = fnd->level; level; level--) { 2393 struct indx_node *in = fnd->nodes[level - 1]; 2394 2395 ib = in->index; 2396 if (ib_is_empty(ib)) { 2397 sub_vbn = ib->vbn; 2398 } else { 2399 hdr = &ib->ihdr; 2400 n2d = in; 2401 level2 = level; 2402 break; 2403 } 2404 } 2405 2406 if (!hdr) 2407 hdr = &root->ihdr; 2408 2409 e = hdr_first_de(hdr); 2410 if (!e) { 2411 err = -EINVAL; 2412 goto out; 2413 } 2414 2415 if (hdr != &root->ihdr || !de_is_last(e)) { 2416 prev = NULL; 2417 while (!de_is_last(e)) { 2418 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e)) 2419 break; 2420 prev = e; 2421 e = hdr_next_de(hdr, e); 2422 if (!e) { 2423 err = -EINVAL; 2424 goto out; 2425 } 2426 } 2427 2428 if (sub_vbn != de_get_vbn_le(e)) { 2429 /* 2430 * Didn't find the parent entry, although this buffer 2431 * is the parent trail. Something is corrupt. 2432 */ 2433 err = -EINVAL; 2434 goto out; 2435 } 2436 2437 if (de_is_last(e)) { 2438 /* 2439 * Since we can't remove the end entry, we'll remove 2440 * its predecessor instead. This means we have to 2441 * transfer the predecessor's sub_vcn to the end entry. 2442 * Note: This index block is not empty, so the 2443 * predecessor must exist. 2444 */ 2445 if (!prev) { 2446 err = -EINVAL; 2447 goto out; 2448 } 2449 2450 if (de_has_vcn(prev)) { 2451 de_set_vbn_le(e, de_get_vbn_le(prev)); 2452 } else if (de_has_vcn(e)) { 2453 le16_sub_cpu(&e->size, sizeof(u64)); 2454 e->flags &= ~NTFS_IE_HAS_SUBNODES; 2455 le32_sub_cpu(&hdr->used, sizeof(u64)); 2456 } 2457 e = prev; 2458 } 2459 2460 /* 2461 * Copy the current entry into a temporary buffer (stripping 2462 * off its down-pointer, if any) and delete it from the current 2463 * buffer or root, as appropriate. 2464 */ 2465 e_size = le16_to_cpu(e->size); 2466 me = kmemdup(e, e_size, GFP_NOFS); 2467 if (!me) { 2468 err = -ENOMEM; 2469 goto out; 2470 } 2471 2472 if (de_has_vcn(me)) { 2473 me->flags &= ~NTFS_IE_HAS_SUBNODES; 2474 le16_sub_cpu(&me->size, sizeof(u64)); 2475 } 2476 2477 hdr_delete_de(hdr, e); 2478 2479 if (hdr == &root->ihdr) { 2480 level = 0; 2481 hdr->total = hdr->used; 2482 2483 /* Shrink resident root attribute. */ 2484 mi_resize_attr(mi, attr, 0 - e_size); 2485 } else { 2486 indx_write(indx, ni, n2d, 0); 2487 level = level2; 2488 } 2489 2490 /* Mark unused buffers as free. */ 2491 trim_bit = -1; 2492 for (; level < fnd->level; level++) { 2493 ib = fnd->nodes[level]->index; 2494 if (ib_is_empty(ib)) { 2495 size_t k = le64_to_cpu(ib->vbn) >> 2496 indx->idx2vbn_bits; 2497 2498 indx_mark_free(indx, ni, k); 2499 if (k < trim_bit) 2500 trim_bit = k; 2501 } 2502 } 2503 2504 fnd_clear(fnd); 2505 /*fnd->root_de = NULL;*/ 2506 2507 /* 2508 * Re-insert the entry into the tree. 2509 * Find the spot the tree where we want to insert the new entry. 2510 */ 2511 err = indx_insert_entry(indx, ni, me, ctx, fnd, 0); 2512 kfree(me); 2513 if (err) 2514 goto out; 2515 2516 if (trim_bit != -1) 2517 indx_shrink(indx, ni, trim_bit); 2518 } else { 2519 /* 2520 * This tree needs to be collapsed down to an empty root. 2521 * Recreate the index root as an empty leaf and free all 2522 * the bits the index allocation bitmap. 2523 */ 2524 fnd_clear(fnd); 2525 fnd_clear(fnd2); 2526 2527 in = &s_index_names[indx->type]; 2528 2529 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len, 2530 &indx->alloc_run, 0, NULL, false, NULL); 2531 err = ni_remove_attr(ni, ATTR_ALLOC, in->name, in->name_len, 2532 false, NULL); 2533 run_close(&indx->alloc_run); 2534 2535 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len, 2536 &indx->bitmap_run, 0, NULL, false, NULL); 2537 err = ni_remove_attr(ni, ATTR_BITMAP, in->name, in->name_len, 2538 false, NULL); 2539 run_close(&indx->bitmap_run); 2540 2541 root = indx_get_root(indx, ni, &attr, &mi); 2542 if (!root) { 2543 err = -EINVAL; 2544 goto out; 2545 } 2546 2547 root_size = le32_to_cpu(attr->res.data_size); 2548 new_root_size = 2549 sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE); 2550 2551 if (new_root_size != root_size && 2552 !mi_resize_attr(mi, attr, new_root_size - root_size)) { 2553 err = -EINVAL; 2554 goto out; 2555 } 2556 2557 /* Fill first entry. */ 2558 e = (struct NTFS_DE *)(root + 1); 2559 e->ref.low = 0; 2560 e->ref.high = 0; 2561 e->ref.seq = 0; 2562 e->size = cpu_to_le16(sizeof(struct NTFS_DE)); 2563 e->flags = NTFS_IE_LAST; // 0x02 2564 e->key_size = 0; 2565 e->res = 0; 2566 2567 hdr = &root->ihdr; 2568 hdr->flags = 0; 2569 hdr->used = hdr->total = cpu_to_le32( 2570 new_root_size - offsetof(struct INDEX_ROOT, ihdr)); 2571 mi->dirty = true; 2572 } 2573 2574 out: 2575 fnd_put(fnd2); 2576 out1: 2577 fnd_put(fnd); 2578 out2: 2579 return err; 2580 } 2581 2582 /* 2583 * Update duplicated information in directory entry 2584 * 'dup' - info from MFT record 2585 */ 2586 int indx_update_dup(struct ntfs_inode *ni, struct ntfs_sb_info *sbi, 2587 const struct ATTR_FILE_NAME *fname, 2588 const struct NTFS_DUP_INFO *dup, int sync) 2589 { 2590 int err, diff; 2591 struct NTFS_DE *e = NULL; 2592 struct ATTR_FILE_NAME *e_fname; 2593 struct ntfs_fnd *fnd; 2594 struct INDEX_ROOT *root; 2595 struct mft_inode *mi; 2596 struct ntfs_index *indx = &ni->dir; 2597 2598 fnd = fnd_get(); 2599 if (!fnd) 2600 return -ENOMEM; 2601 2602 root = indx_get_root(indx, ni, NULL, &mi); 2603 if (!root) { 2604 err = -EINVAL; 2605 goto out; 2606 } 2607 2608 /* Find entry in directory. */ 2609 err = indx_find(indx, ni, root, fname, fname_full_size(fname), sbi, 2610 &diff, &e, fnd); 2611 if (err) 2612 goto out; 2613 2614 if (!e) { 2615 err = -EINVAL; 2616 goto out; 2617 } 2618 2619 if (diff) { 2620 err = -EINVAL; 2621 goto out; 2622 } 2623 2624 e_fname = (struct ATTR_FILE_NAME *)(e + 1); 2625 2626 if (!memcmp(&e_fname->dup, dup, sizeof(*dup))) { 2627 /* 2628 * Nothing to update in index! Try to avoid this call. 2629 */ 2630 goto out; 2631 } 2632 2633 memcpy(&e_fname->dup, dup, sizeof(*dup)); 2634 2635 if (fnd->level) { 2636 /* Directory entry in index. */ 2637 err = indx_write(indx, ni, fnd->nodes[fnd->level - 1], sync); 2638 } else { 2639 /* Directory entry in directory MFT record. */ 2640 mi->dirty = true; 2641 if (sync) 2642 err = mi_write(mi, 1); 2643 else 2644 mark_inode_dirty(&ni->vfs_inode); 2645 } 2646 2647 out: 2648 fnd_put(fnd); 2649 return err; 2650 } 2651