1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * 4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. 5 * 6 */ 7 8 #include <linux/blkdev.h> 9 #include <linux/buffer_head.h> 10 #include <linux/fs.h> 11 #include <linux/kernel.h> 12 13 #include "debug.h" 14 #include "ntfs.h" 15 #include "ntfs_fs.h" 16 17 static const struct INDEX_NAMES { 18 const __le16 *name; 19 u8 name_len; 20 } s_index_names[INDEX_MUTEX_TOTAL] = { 21 { I30_NAME, ARRAY_SIZE(I30_NAME) }, { SII_NAME, ARRAY_SIZE(SII_NAME) }, 22 { SDH_NAME, ARRAY_SIZE(SDH_NAME) }, { SO_NAME, ARRAY_SIZE(SO_NAME) }, 23 { SQ_NAME, ARRAY_SIZE(SQ_NAME) }, { SR_NAME, ARRAY_SIZE(SR_NAME) }, 24 }; 25 26 /* 27 * cmp_fnames - Compare two names in index. 28 * 29 * if l1 != 0 30 * Both names are little endian on-disk ATTR_FILE_NAME structs. 31 * else 32 * key1 - cpu_str, key2 - ATTR_FILE_NAME 33 */ 34 static int cmp_fnames(const void *key1, size_t l1, const void *key2, size_t l2, 35 const void *data) 36 { 37 const struct ATTR_FILE_NAME *f2 = key2; 38 const struct ntfs_sb_info *sbi = data; 39 const struct ATTR_FILE_NAME *f1; 40 u16 fsize2; 41 bool both_case; 42 43 if (l2 <= offsetof(struct ATTR_FILE_NAME, name)) 44 return -1; 45 46 fsize2 = fname_full_size(f2); 47 if (l2 < fsize2) 48 return -1; 49 50 both_case = f2->type != FILE_NAME_DOS && !sbi->options->nocase; 51 if (!l1) { 52 const struct le_str *s2 = (struct le_str *)&f2->name_len; 53 54 /* 55 * If names are equal (case insensitive) 56 * try to compare it case sensitive. 57 */ 58 return ntfs_cmp_names_cpu(key1, s2, sbi->upcase, both_case); 59 } 60 61 f1 = key1; 62 return ntfs_cmp_names(f1->name, f1->name_len, f2->name, f2->name_len, 63 sbi->upcase, both_case); 64 } 65 66 /* 67 * cmp_uint - $SII of $Secure and $Q of Quota 68 */ 69 static int cmp_uint(const void *key1, size_t l1, const void *key2, size_t l2, 70 const void *data) 71 { 72 const u32 *k1 = key1; 73 const u32 *k2 = key2; 74 75 if (l2 < sizeof(u32)) 76 return -1; 77 78 if (*k1 < *k2) 79 return -1; 80 if (*k1 > *k2) 81 return 1; 82 return 0; 83 } 84 85 /* 86 * cmp_sdh - $SDH of $Secure 87 */ 88 static int cmp_sdh(const void *key1, size_t l1, const void *key2, size_t l2, 89 const void *data) 90 { 91 const struct SECURITY_KEY *k1 = key1; 92 const struct SECURITY_KEY *k2 = key2; 93 u32 t1, t2; 94 95 if (l2 < sizeof(struct SECURITY_KEY)) 96 return -1; 97 98 t1 = le32_to_cpu(k1->hash); 99 t2 = le32_to_cpu(k2->hash); 100 101 /* First value is a hash value itself. */ 102 if (t1 < t2) 103 return -1; 104 if (t1 > t2) 105 return 1; 106 107 /* Second value is security Id. */ 108 if (data) { 109 t1 = le32_to_cpu(k1->sec_id); 110 t2 = le32_to_cpu(k2->sec_id); 111 if (t1 < t2) 112 return -1; 113 if (t1 > t2) 114 return 1; 115 } 116 117 return 0; 118 } 119 120 /* 121 * cmp_uints - $O of ObjId and "$R" for Reparse. 122 */ 123 static int cmp_uints(const void *key1, size_t l1, const void *key2, size_t l2, 124 const void *data) 125 { 126 const __le32 *k1 = key1; 127 const __le32 *k2 = key2; 128 size_t count; 129 130 if ((size_t)data == 1) { 131 /* 132 * ni_delete_all -> ntfs_remove_reparse -> 133 * delete all with this reference. 134 * k1, k2 - pointers to REPARSE_KEY 135 */ 136 137 k1 += 1; // Skip REPARSE_KEY.ReparseTag 138 k2 += 1; // Skip REPARSE_KEY.ReparseTag 139 if (l2 <= sizeof(int)) 140 return -1; 141 l2 -= sizeof(int); 142 if (l1 <= sizeof(int)) 143 return 1; 144 l1 -= sizeof(int); 145 } 146 147 if (l2 < sizeof(int)) 148 return -1; 149 150 for (count = min(l1, l2) >> 2; count > 0; --count, ++k1, ++k2) { 151 u32 t1 = le32_to_cpu(*k1); 152 u32 t2 = le32_to_cpu(*k2); 153 154 if (t1 > t2) 155 return 1; 156 if (t1 < t2) 157 return -1; 158 } 159 160 if (l1 > l2) 161 return 1; 162 if (l1 < l2) 163 return -1; 164 165 return 0; 166 } 167 168 static inline NTFS_CMP_FUNC get_cmp_func(const struct INDEX_ROOT *root) 169 { 170 switch (root->type) { 171 case ATTR_NAME: 172 if (root->rule == NTFS_COLLATION_TYPE_FILENAME) 173 return &cmp_fnames; 174 break; 175 case ATTR_ZERO: 176 switch (root->rule) { 177 case NTFS_COLLATION_TYPE_UINT: 178 return &cmp_uint; 179 case NTFS_COLLATION_TYPE_SECURITY_HASH: 180 return &cmp_sdh; 181 case NTFS_COLLATION_TYPE_UINTS: 182 return &cmp_uints; 183 default: 184 break; 185 } 186 break; 187 default: 188 break; 189 } 190 191 return NULL; 192 } 193 194 struct bmp_buf { 195 struct ATTRIB *b; 196 struct mft_inode *mi; 197 struct buffer_head *bh; 198 ulong *buf; 199 size_t bit; 200 u32 nbits; 201 u64 new_valid; 202 }; 203 204 static int bmp_buf_get(struct ntfs_index *indx, struct ntfs_inode *ni, 205 size_t bit, struct bmp_buf *bbuf) 206 { 207 struct ATTRIB *b; 208 size_t data_size, valid_size, vbo, off = bit >> 3; 209 struct ntfs_sb_info *sbi = ni->mi.sbi; 210 CLST vcn = off >> sbi->cluster_bits; 211 struct ATTR_LIST_ENTRY *le = NULL; 212 struct buffer_head *bh; 213 struct super_block *sb; 214 u32 blocksize; 215 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 216 217 bbuf->bh = NULL; 218 219 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len, 220 &vcn, &bbuf->mi); 221 bbuf->b = b; 222 if (!b) 223 return -EINVAL; 224 225 if (!b->non_res) { 226 data_size = le32_to_cpu(b->res.data_size); 227 228 if (off >= data_size) 229 return -EINVAL; 230 231 bbuf->buf = (ulong *)resident_data(b); 232 bbuf->bit = 0; 233 bbuf->nbits = data_size * 8; 234 235 return 0; 236 } 237 238 data_size = le64_to_cpu(b->nres.data_size); 239 if (WARN_ON(off >= data_size)) { 240 /* Looks like filesystem error. */ 241 return -EINVAL; 242 } 243 244 valid_size = le64_to_cpu(b->nres.valid_size); 245 246 bh = ntfs_bread_run(sbi, &indx->bitmap_run, off); 247 if (!bh) 248 return -EIO; 249 250 if (IS_ERR(bh)) 251 return PTR_ERR(bh); 252 253 bbuf->bh = bh; 254 255 if (buffer_locked(bh)) 256 __wait_on_buffer(bh); 257 258 lock_buffer(bh); 259 260 sb = sbi->sb; 261 blocksize = sb->s_blocksize; 262 263 vbo = off & ~(size_t)sbi->block_mask; 264 265 bbuf->new_valid = vbo + blocksize; 266 if (bbuf->new_valid <= valid_size) 267 bbuf->new_valid = 0; 268 else if (bbuf->new_valid > data_size) 269 bbuf->new_valid = data_size; 270 271 if (vbo >= valid_size) { 272 memset(bh->b_data, 0, blocksize); 273 } else if (vbo + blocksize > valid_size) { 274 u32 voff = valid_size & sbi->block_mask; 275 276 memset(bh->b_data + voff, 0, blocksize - voff); 277 } 278 279 bbuf->buf = (ulong *)bh->b_data; 280 bbuf->bit = 8 * (off & ~(size_t)sbi->block_mask); 281 bbuf->nbits = 8 * blocksize; 282 283 return 0; 284 } 285 286 static void bmp_buf_put(struct bmp_buf *bbuf, bool dirty) 287 { 288 struct buffer_head *bh = bbuf->bh; 289 struct ATTRIB *b = bbuf->b; 290 291 if (!bh) { 292 if (b && !b->non_res && dirty) 293 bbuf->mi->dirty = true; 294 return; 295 } 296 297 if (!dirty) 298 goto out; 299 300 if (bbuf->new_valid) { 301 b->nres.valid_size = cpu_to_le64(bbuf->new_valid); 302 bbuf->mi->dirty = true; 303 } 304 305 set_buffer_uptodate(bh); 306 mark_buffer_dirty(bh); 307 308 out: 309 unlock_buffer(bh); 310 put_bh(bh); 311 } 312 313 /* 314 * indx_mark_used - Mark the bit @bit as used. 315 */ 316 static int indx_mark_used(struct ntfs_index *indx, struct ntfs_inode *ni, 317 size_t bit) 318 { 319 int err; 320 struct bmp_buf bbuf; 321 322 err = bmp_buf_get(indx, ni, bit, &bbuf); 323 if (err) 324 return err; 325 326 __set_bit_le(bit - bbuf.bit, bbuf.buf); 327 328 bmp_buf_put(&bbuf, true); 329 330 return 0; 331 } 332 333 /* 334 * indx_mark_free - Mark the bit @bit as free. 335 */ 336 static int indx_mark_free(struct ntfs_index *indx, struct ntfs_inode *ni, 337 size_t bit) 338 { 339 int err; 340 struct bmp_buf bbuf; 341 342 err = bmp_buf_get(indx, ni, bit, &bbuf); 343 if (err) 344 return err; 345 346 __clear_bit_le(bit - bbuf.bit, bbuf.buf); 347 348 bmp_buf_put(&bbuf, true); 349 350 return 0; 351 } 352 353 /* 354 * scan_nres_bitmap 355 * 356 * If ntfs_readdir calls this function (indx_used_bit -> scan_nres_bitmap), 357 * inode is shared locked and no ni_lock. 358 * Use rw_semaphore for read/write access to bitmap_run. 359 */ 360 static int scan_nres_bitmap(struct ntfs_inode *ni, struct ATTRIB *bitmap, 361 struct ntfs_index *indx, size_t from, 362 bool (*fn)(const ulong *buf, u32 bit, u32 bits, 363 size_t *ret), 364 size_t *ret) 365 { 366 struct ntfs_sb_info *sbi = ni->mi.sbi; 367 struct super_block *sb = sbi->sb; 368 struct runs_tree *run = &indx->bitmap_run; 369 struct rw_semaphore *lock = &indx->run_lock; 370 u32 nbits = sb->s_blocksize * 8; 371 u32 blocksize = sb->s_blocksize; 372 u64 valid_size = le64_to_cpu(bitmap->nres.valid_size); 373 u64 data_size = le64_to_cpu(bitmap->nres.data_size); 374 sector_t eblock = bytes_to_block(sb, data_size); 375 size_t vbo = from >> 3; 376 sector_t blk = (vbo & sbi->cluster_mask) >> sb->s_blocksize_bits; 377 sector_t vblock = vbo >> sb->s_blocksize_bits; 378 sector_t blen, block; 379 CLST lcn, clen, vcn, vcn_next; 380 size_t idx; 381 struct buffer_head *bh; 382 bool ok; 383 384 *ret = MINUS_ONE_T; 385 386 if (vblock >= eblock) 387 return 0; 388 389 from &= nbits - 1; 390 vcn = vbo >> sbi->cluster_bits; 391 392 down_read(lock); 393 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx); 394 up_read(lock); 395 396 next_run: 397 if (!ok) { 398 int err; 399 const struct INDEX_NAMES *name = &s_index_names[indx->type]; 400 401 down_write(lock); 402 err = attr_load_runs_vcn(ni, ATTR_BITMAP, name->name, 403 name->name_len, run, vcn); 404 up_write(lock); 405 if (err) 406 return err; 407 down_read(lock); 408 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx); 409 up_read(lock); 410 if (!ok) 411 return -EINVAL; 412 } 413 414 blen = (sector_t)clen * sbi->blocks_per_cluster; 415 block = (sector_t)lcn * sbi->blocks_per_cluster; 416 417 for (; blk < blen; blk++, from = 0) { 418 bh = ntfs_bread(sb, block + blk); 419 if (!bh) 420 return -EIO; 421 422 vbo = (u64)vblock << sb->s_blocksize_bits; 423 if (vbo >= valid_size) { 424 memset(bh->b_data, 0, blocksize); 425 } else if (vbo + blocksize > valid_size) { 426 u32 voff = valid_size & sbi->block_mask; 427 428 memset(bh->b_data + voff, 0, blocksize - voff); 429 } 430 431 if (vbo + blocksize > data_size) 432 nbits = 8 * (data_size - vbo); 433 434 ok = nbits > from ? (*fn)((ulong *)bh->b_data, from, nbits, ret) 435 : false; 436 put_bh(bh); 437 438 if (ok) { 439 *ret += 8 * vbo; 440 return 0; 441 } 442 443 if (++vblock >= eblock) { 444 *ret = MINUS_ONE_T; 445 return 0; 446 } 447 } 448 blk = 0; 449 vcn_next = vcn + clen; 450 down_read(lock); 451 ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && vcn == vcn_next; 452 if (!ok) 453 vcn = vcn_next; 454 up_read(lock); 455 goto next_run; 456 } 457 458 static bool scan_for_free(const ulong *buf, u32 bit, u32 bits, size_t *ret) 459 { 460 size_t pos = find_next_zero_bit_le(buf, bits, bit); 461 462 if (pos >= bits) 463 return false; 464 *ret = pos; 465 return true; 466 } 467 468 /* 469 * indx_find_free - Look for free bit. 470 * 471 * Return: -1 if no free bits. 472 */ 473 static int indx_find_free(struct ntfs_index *indx, struct ntfs_inode *ni, 474 size_t *bit, struct ATTRIB **bitmap) 475 { 476 struct ATTRIB *b; 477 struct ATTR_LIST_ENTRY *le = NULL; 478 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 479 int err; 480 481 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len, 482 NULL, NULL); 483 484 if (!b) 485 return -ENOENT; 486 487 *bitmap = b; 488 *bit = MINUS_ONE_T; 489 490 if (!b->non_res) { 491 u32 nbits = 8 * le32_to_cpu(b->res.data_size); 492 size_t pos = find_next_zero_bit_le(resident_data(b), nbits, 0); 493 494 if (pos < nbits) 495 *bit = pos; 496 } else { 497 err = scan_nres_bitmap(ni, b, indx, 0, &scan_for_free, bit); 498 499 if (err) 500 return err; 501 } 502 503 return 0; 504 } 505 506 static bool scan_for_used(const ulong *buf, u32 bit, u32 bits, size_t *ret) 507 { 508 size_t pos = find_next_bit_le(buf, bits, bit); 509 510 if (pos >= bits) 511 return false; 512 *ret = pos; 513 return true; 514 } 515 516 /* 517 * indx_used_bit - Look for used bit. 518 * 519 * Return: MINUS_ONE_T if no used bits. 520 */ 521 int indx_used_bit(struct ntfs_index *indx, struct ntfs_inode *ni, size_t *bit) 522 { 523 struct ATTRIB *b; 524 struct ATTR_LIST_ENTRY *le = NULL; 525 size_t from = *bit; 526 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 527 int err; 528 529 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len, 530 NULL, NULL); 531 532 if (!b) 533 return -ENOENT; 534 535 *bit = MINUS_ONE_T; 536 537 if (!b->non_res) { 538 u32 nbits = le32_to_cpu(b->res.data_size) * 8; 539 size_t pos = find_next_bit_le(resident_data(b), nbits, from); 540 541 if (pos < nbits) 542 *bit = pos; 543 } else { 544 err = scan_nres_bitmap(ni, b, indx, from, &scan_for_used, bit); 545 if (err) 546 return err; 547 } 548 549 return 0; 550 } 551 552 /* 553 * hdr_find_split 554 * 555 * Find a point at which the index allocation buffer would like to be split. 556 * NOTE: This function should never return 'END' entry NULL returns on error. 557 */ 558 static const struct NTFS_DE *hdr_find_split(const struct INDEX_HDR *hdr) 559 { 560 size_t o; 561 const struct NTFS_DE *e = hdr_first_de(hdr); 562 u32 used_2 = le32_to_cpu(hdr->used) >> 1; 563 u16 esize; 564 565 if (!e || de_is_last(e)) 566 return NULL; 567 568 esize = le16_to_cpu(e->size); 569 for (o = le32_to_cpu(hdr->de_off) + esize; o < used_2; o += esize) { 570 const struct NTFS_DE *p = e; 571 572 e = Add2Ptr(hdr, o); 573 574 /* We must not return END entry. */ 575 if (de_is_last(e)) 576 return p; 577 578 esize = le16_to_cpu(e->size); 579 } 580 581 return e; 582 } 583 584 /* 585 * hdr_insert_head - Insert some entries at the beginning of the buffer. 586 * 587 * It is used to insert entries into a newly-created buffer. 588 */ 589 static const struct NTFS_DE *hdr_insert_head(struct INDEX_HDR *hdr, 590 const void *ins, u32 ins_bytes) 591 { 592 u32 to_move; 593 struct NTFS_DE *e = hdr_first_de(hdr); 594 u32 used = le32_to_cpu(hdr->used); 595 596 if (!e) 597 return NULL; 598 599 /* Now we just make room for the inserted entries and jam it in. */ 600 to_move = used - le32_to_cpu(hdr->de_off); 601 memmove(Add2Ptr(e, ins_bytes), e, to_move); 602 memcpy(e, ins, ins_bytes); 603 hdr->used = cpu_to_le32(used + ins_bytes); 604 605 return e; 606 } 607 608 /* 609 * index_hdr_check 610 * 611 * return true if INDEX_HDR is valid 612 */ 613 static bool index_hdr_check(const struct INDEX_HDR *hdr, u32 bytes) 614 { 615 u32 end = le32_to_cpu(hdr->used); 616 u32 tot = le32_to_cpu(hdr->total); 617 u32 off = le32_to_cpu(hdr->de_off); 618 619 if (!IS_ALIGNED(off, 8) || tot > bytes || end > tot || 620 off + sizeof(struct NTFS_DE) > end) { 621 /* incorrect index buffer. */ 622 return false; 623 } 624 625 return true; 626 } 627 628 /* 629 * index_buf_check 630 * 631 * return true if INDEX_BUFFER seems is valid 632 */ 633 static bool index_buf_check(const struct INDEX_BUFFER *ib, u32 bytes, 634 const CLST *vbn) 635 { 636 const struct NTFS_RECORD_HEADER *rhdr = &ib->rhdr; 637 u16 fo = le16_to_cpu(rhdr->fix_off); 638 u16 fn = le16_to_cpu(rhdr->fix_num); 639 640 if (bytes <= offsetof(struct INDEX_BUFFER, ihdr) || 641 rhdr->sign != NTFS_INDX_SIGNATURE || 642 fo < sizeof(struct INDEX_BUFFER) 643 /* Check index buffer vbn. */ 644 || (vbn && *vbn != le64_to_cpu(ib->vbn)) || (fo % sizeof(short)) || 645 fo + fn * sizeof(short) >= bytes || 646 fn != ((bytes >> SECTOR_SHIFT) + 1)) { 647 /* incorrect index buffer. */ 648 return false; 649 } 650 651 return index_hdr_check(&ib->ihdr, 652 bytes - offsetof(struct INDEX_BUFFER, ihdr)); 653 } 654 655 void fnd_clear(struct ntfs_fnd *fnd) 656 { 657 int i; 658 659 for (i = fnd->level - 1; i >= 0; i--) { 660 struct indx_node *n = fnd->nodes[i]; 661 662 if (!n) 663 continue; 664 665 put_indx_node(n); 666 fnd->nodes[i] = NULL; 667 } 668 fnd->level = 0; 669 fnd->root_de = NULL; 670 } 671 672 static int fnd_push(struct ntfs_fnd *fnd, struct indx_node *n, 673 struct NTFS_DE *e) 674 { 675 int i = fnd->level; 676 677 if (i < 0 || i >= ARRAY_SIZE(fnd->nodes)) 678 return -EINVAL; 679 fnd->nodes[i] = n; 680 fnd->de[i] = e; 681 fnd->level += 1; 682 return 0; 683 } 684 685 static struct indx_node *fnd_pop(struct ntfs_fnd *fnd) 686 { 687 struct indx_node *n; 688 int i = fnd->level; 689 690 i -= 1; 691 n = fnd->nodes[i]; 692 fnd->nodes[i] = NULL; 693 fnd->level = i; 694 695 return n; 696 } 697 698 static bool fnd_is_empty(struct ntfs_fnd *fnd) 699 { 700 if (!fnd->level) 701 return !fnd->root_de; 702 703 return !fnd->de[fnd->level - 1]; 704 } 705 706 /* 707 * hdr_find_e - Locate an entry the index buffer. 708 * 709 * If no matching entry is found, it returns the first entry which is greater 710 * than the desired entry If the search key is greater than all the entries the 711 * buffer, it returns the 'end' entry. This function does a binary search of the 712 * current index buffer, for the first entry that is <= to the search value. 713 * 714 * Return: NULL if error. 715 */ 716 static struct NTFS_DE *hdr_find_e(const struct ntfs_index *indx, 717 const struct INDEX_HDR *hdr, const void *key, 718 size_t key_len, const void *ctx, int *diff) 719 { 720 struct NTFS_DE *e, *found = NULL; 721 NTFS_CMP_FUNC cmp = indx->cmp; 722 int min_idx = 0, mid_idx, max_idx = 0; 723 int diff2; 724 int table_size = 8; 725 u32 e_size, e_key_len; 726 u32 end = le32_to_cpu(hdr->used); 727 u32 off = le32_to_cpu(hdr->de_off); 728 u16 offs[128]; 729 730 fill_table: 731 if (off + sizeof(struct NTFS_DE) > end) 732 return NULL; 733 734 e = Add2Ptr(hdr, off); 735 e_size = le16_to_cpu(e->size); 736 737 if (e_size < sizeof(struct NTFS_DE) || off + e_size > end) 738 return NULL; 739 740 if (!de_is_last(e)) { 741 offs[max_idx] = off; 742 off += e_size; 743 744 max_idx++; 745 if (max_idx < table_size) 746 goto fill_table; 747 748 max_idx--; 749 } 750 751 binary_search: 752 e_key_len = le16_to_cpu(e->key_size); 753 754 diff2 = (*cmp)(key, key_len, e + 1, e_key_len, ctx); 755 if (diff2 > 0) { 756 if (found) { 757 min_idx = mid_idx + 1; 758 } else { 759 if (de_is_last(e)) 760 return NULL; 761 762 max_idx = 0; 763 table_size = min(table_size * 2, 764 (int)ARRAY_SIZE(offs)); 765 goto fill_table; 766 } 767 } else if (diff2 < 0) { 768 if (found) 769 max_idx = mid_idx - 1; 770 else 771 max_idx--; 772 773 found = e; 774 } else { 775 *diff = 0; 776 return e; 777 } 778 779 if (min_idx > max_idx) { 780 *diff = -1; 781 return found; 782 } 783 784 mid_idx = (min_idx + max_idx) >> 1; 785 e = Add2Ptr(hdr, offs[mid_idx]); 786 787 goto binary_search; 788 } 789 790 /* 791 * hdr_insert_de - Insert an index entry into the buffer. 792 * 793 * 'before' should be a pointer previously returned from hdr_find_e. 794 */ 795 static struct NTFS_DE *hdr_insert_de(const struct ntfs_index *indx, 796 struct INDEX_HDR *hdr, 797 const struct NTFS_DE *de, 798 struct NTFS_DE *before, const void *ctx) 799 { 800 int diff; 801 size_t off = PtrOffset(hdr, before); 802 u32 used = le32_to_cpu(hdr->used); 803 u32 total = le32_to_cpu(hdr->total); 804 u16 de_size = le16_to_cpu(de->size); 805 806 /* First, check to see if there's enough room. */ 807 if (used + de_size > total) 808 return NULL; 809 810 /* We know there's enough space, so we know we'll succeed. */ 811 if (before) { 812 /* Check that before is inside Index. */ 813 if (off >= used || off < le32_to_cpu(hdr->de_off) || 814 off + le16_to_cpu(before->size) > total) { 815 return NULL; 816 } 817 goto ok; 818 } 819 /* No insert point is applied. Get it manually. */ 820 before = hdr_find_e(indx, hdr, de + 1, le16_to_cpu(de->key_size), ctx, 821 &diff); 822 if (!before) 823 return NULL; 824 off = PtrOffset(hdr, before); 825 826 ok: 827 /* Now we just make room for the entry and jam it in. */ 828 memmove(Add2Ptr(before, de_size), before, used - off); 829 830 hdr->used = cpu_to_le32(used + de_size); 831 memcpy(before, de, de_size); 832 833 return before; 834 } 835 836 /* 837 * hdr_delete_de - Remove an entry from the index buffer. 838 */ 839 static inline struct NTFS_DE *hdr_delete_de(struct INDEX_HDR *hdr, 840 struct NTFS_DE *re) 841 { 842 u32 used = le32_to_cpu(hdr->used); 843 u16 esize = le16_to_cpu(re->size); 844 u32 off = PtrOffset(hdr, re); 845 int bytes = used - (off + esize); 846 847 if (off >= used || esize < sizeof(struct NTFS_DE) || 848 bytes < sizeof(struct NTFS_DE)) 849 return NULL; 850 851 hdr->used = cpu_to_le32(used - esize); 852 memmove(re, Add2Ptr(re, esize), bytes); 853 854 return re; 855 } 856 857 void indx_clear(struct ntfs_index *indx) 858 { 859 run_close(&indx->alloc_run); 860 run_close(&indx->bitmap_run); 861 } 862 863 int indx_init(struct ntfs_index *indx, struct ntfs_sb_info *sbi, 864 const struct ATTRIB *attr, enum index_mutex_classed type) 865 { 866 u32 t32; 867 const struct INDEX_ROOT *root = resident_data(attr); 868 869 t32 = le32_to_cpu(attr->res.data_size); 870 if (t32 <= offsetof(struct INDEX_ROOT, ihdr) || 871 !index_hdr_check(&root->ihdr, 872 t32 - offsetof(struct INDEX_ROOT, ihdr))) { 873 goto out; 874 } 875 876 /* Check root fields. */ 877 if (!root->index_block_clst) 878 goto out; 879 880 indx->type = type; 881 indx->idx2vbn_bits = __ffs(root->index_block_clst); 882 883 t32 = le32_to_cpu(root->index_block_size); 884 indx->index_bits = blksize_bits(t32); 885 886 /* Check index record size. */ 887 if (t32 < sbi->cluster_size) { 888 /* Index record is smaller than a cluster, use 512 blocks. */ 889 if (t32 != root->index_block_clst * SECTOR_SIZE) 890 goto out; 891 892 /* Check alignment to a cluster. */ 893 if ((sbi->cluster_size >> SECTOR_SHIFT) & 894 (root->index_block_clst - 1)) { 895 goto out; 896 } 897 898 indx->vbn2vbo_bits = SECTOR_SHIFT; 899 } else { 900 /* Index record must be a multiple of cluster size. */ 901 if (t32 != root->index_block_clst << sbi->cluster_bits) 902 goto out; 903 904 indx->vbn2vbo_bits = sbi->cluster_bits; 905 } 906 907 init_rwsem(&indx->run_lock); 908 909 indx->cmp = get_cmp_func(root); 910 if (!indx->cmp) 911 goto out; 912 913 return 0; 914 915 out: 916 ntfs_set_state(sbi, NTFS_DIRTY_DIRTY); 917 return -EINVAL; 918 } 919 920 static struct indx_node *indx_new(struct ntfs_index *indx, 921 struct ntfs_inode *ni, CLST vbn, 922 const __le64 *sub_vbn) 923 { 924 int err; 925 struct NTFS_DE *e; 926 struct indx_node *r; 927 struct INDEX_HDR *hdr; 928 struct INDEX_BUFFER *index; 929 u64 vbo = (u64)vbn << indx->vbn2vbo_bits; 930 u32 bytes = 1u << indx->index_bits; 931 u16 fn; 932 u32 eo; 933 934 r = kzalloc(sizeof(struct indx_node), GFP_NOFS); 935 if (!r) 936 return ERR_PTR(-ENOMEM); 937 938 index = kzalloc(bytes, GFP_NOFS); 939 if (!index) { 940 kfree(r); 941 return ERR_PTR(-ENOMEM); 942 } 943 944 err = ntfs_get_bh(ni->mi.sbi, &indx->alloc_run, vbo, bytes, &r->nb); 945 946 if (err) { 947 kfree(index); 948 kfree(r); 949 return ERR_PTR(err); 950 } 951 952 /* Create header. */ 953 index->rhdr.sign = NTFS_INDX_SIGNATURE; 954 index->rhdr.fix_off = cpu_to_le16(sizeof(struct INDEX_BUFFER)); // 0x28 955 fn = (bytes >> SECTOR_SHIFT) + 1; // 9 956 index->rhdr.fix_num = cpu_to_le16(fn); 957 index->vbn = cpu_to_le64(vbn); 958 hdr = &index->ihdr; 959 eo = ALIGN(sizeof(struct INDEX_BUFFER) + fn * sizeof(short), 8); 960 hdr->de_off = cpu_to_le32(eo); 961 962 e = Add2Ptr(hdr, eo); 963 964 if (sub_vbn) { 965 e->flags = NTFS_IE_LAST | NTFS_IE_HAS_SUBNODES; 966 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64)); 967 hdr->used = 968 cpu_to_le32(eo + sizeof(struct NTFS_DE) + sizeof(u64)); 969 de_set_vbn_le(e, *sub_vbn); 970 hdr->flags = 1; 971 } else { 972 e->size = cpu_to_le16(sizeof(struct NTFS_DE)); 973 hdr->used = cpu_to_le32(eo + sizeof(struct NTFS_DE)); 974 e->flags = NTFS_IE_LAST; 975 } 976 977 hdr->total = cpu_to_le32(bytes - offsetof(struct INDEX_BUFFER, ihdr)); 978 979 r->index = index; 980 return r; 981 } 982 983 struct INDEX_ROOT *indx_get_root(struct ntfs_index *indx, struct ntfs_inode *ni, 984 struct ATTRIB **attr, struct mft_inode **mi) 985 { 986 struct ATTR_LIST_ENTRY *le = NULL; 987 struct ATTRIB *a; 988 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 989 990 a = ni_find_attr(ni, NULL, &le, ATTR_ROOT, in->name, in->name_len, NULL, 991 mi); 992 if (!a) 993 return NULL; 994 995 if (attr) 996 *attr = a; 997 998 return resident_data_ex(a, sizeof(struct INDEX_ROOT)); 999 } 1000 1001 static int indx_write(struct ntfs_index *indx, struct ntfs_inode *ni, 1002 struct indx_node *node, int sync) 1003 { 1004 struct INDEX_BUFFER *ib = node->index; 1005 1006 return ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &node->nb, sync); 1007 } 1008 1009 /* 1010 * indx_read 1011 * 1012 * If ntfs_readdir calls this function 1013 * inode is shared locked and no ni_lock. 1014 * Use rw_semaphore for read/write access to alloc_run. 1015 */ 1016 int indx_read(struct ntfs_index *indx, struct ntfs_inode *ni, CLST vbn, 1017 struct indx_node **node) 1018 { 1019 int err; 1020 struct INDEX_BUFFER *ib; 1021 struct runs_tree *run = &indx->alloc_run; 1022 struct rw_semaphore *lock = &indx->run_lock; 1023 u64 vbo = (u64)vbn << indx->vbn2vbo_bits; 1024 u32 bytes = 1u << indx->index_bits; 1025 struct indx_node *in = *node; 1026 const struct INDEX_NAMES *name; 1027 1028 if (!in) { 1029 in = kzalloc(sizeof(struct indx_node), GFP_NOFS); 1030 if (!in) 1031 return -ENOMEM; 1032 } else { 1033 nb_put(&in->nb); 1034 } 1035 1036 ib = in->index; 1037 if (!ib) { 1038 ib = kmalloc(bytes, GFP_NOFS); 1039 if (!ib) { 1040 err = -ENOMEM; 1041 goto out; 1042 } 1043 } 1044 1045 down_read(lock); 1046 err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb); 1047 up_read(lock); 1048 if (!err) 1049 goto ok; 1050 1051 if (err == -E_NTFS_FIXUP) 1052 goto ok; 1053 1054 if (err != -ENOENT) 1055 goto out; 1056 1057 name = &s_index_names[indx->type]; 1058 down_write(lock); 1059 err = attr_load_runs_range(ni, ATTR_ALLOC, name->name, name->name_len, 1060 run, vbo, vbo + bytes); 1061 up_write(lock); 1062 if (err) 1063 goto out; 1064 1065 down_read(lock); 1066 err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb); 1067 up_read(lock); 1068 if (err == -E_NTFS_FIXUP) 1069 goto ok; 1070 1071 if (err) 1072 goto out; 1073 1074 ok: 1075 if (!index_buf_check(ib, bytes, &vbn)) { 1076 ntfs_inode_err(&ni->vfs_inode, "directory corrupted"); 1077 ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR); 1078 err = -EINVAL; 1079 goto out; 1080 } 1081 1082 if (err == -E_NTFS_FIXUP) { 1083 ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &in->nb, 0); 1084 err = 0; 1085 } 1086 1087 /* check for index header length */ 1088 if (offsetof(struct INDEX_BUFFER, ihdr) + ib->ihdr.used > bytes) { 1089 err = -EINVAL; 1090 goto out; 1091 } 1092 1093 in->index = ib; 1094 *node = in; 1095 1096 out: 1097 if (ib != in->index) 1098 kfree(ib); 1099 1100 if (*node != in) { 1101 nb_put(&in->nb); 1102 kfree(in); 1103 } 1104 1105 return err; 1106 } 1107 1108 /* 1109 * indx_find - Scan NTFS directory for given entry. 1110 */ 1111 int indx_find(struct ntfs_index *indx, struct ntfs_inode *ni, 1112 const struct INDEX_ROOT *root, const void *key, size_t key_len, 1113 const void *ctx, int *diff, struct NTFS_DE **entry, 1114 struct ntfs_fnd *fnd) 1115 { 1116 int err; 1117 struct NTFS_DE *e; 1118 struct indx_node *node; 1119 1120 if (!root) 1121 root = indx_get_root(&ni->dir, ni, NULL, NULL); 1122 1123 if (!root) { 1124 /* Should not happen. */ 1125 return -EINVAL; 1126 } 1127 1128 /* Check cache. */ 1129 e = fnd->level ? fnd->de[fnd->level - 1] : fnd->root_de; 1130 if (e && !de_is_last(e) && 1131 !(*indx->cmp)(key, key_len, e + 1, le16_to_cpu(e->key_size), ctx)) { 1132 *entry = e; 1133 *diff = 0; 1134 return 0; 1135 } 1136 1137 /* Soft finder reset. */ 1138 fnd_clear(fnd); 1139 1140 /* Lookup entry that is <= to the search value. */ 1141 e = hdr_find_e(indx, &root->ihdr, key, key_len, ctx, diff); 1142 if (!e) 1143 return -EINVAL; 1144 1145 fnd->root_de = e; 1146 1147 for (;;) { 1148 node = NULL; 1149 if (*diff >= 0 || !de_has_vcn_ex(e)) 1150 break; 1151 1152 /* Read next level. */ 1153 err = indx_read(indx, ni, de_get_vbn(e), &node); 1154 if (err) 1155 return err; 1156 1157 /* Lookup entry that is <= to the search value. */ 1158 e = hdr_find_e(indx, &node->index->ihdr, key, key_len, ctx, 1159 diff); 1160 if (!e) { 1161 put_indx_node(node); 1162 return -EINVAL; 1163 } 1164 1165 fnd_push(fnd, node, e); 1166 } 1167 1168 *entry = e; 1169 return 0; 1170 } 1171 1172 int indx_find_sort(struct ntfs_index *indx, struct ntfs_inode *ni, 1173 const struct INDEX_ROOT *root, struct NTFS_DE **entry, 1174 struct ntfs_fnd *fnd) 1175 { 1176 int err; 1177 struct indx_node *n = NULL; 1178 struct NTFS_DE *e; 1179 size_t iter = 0; 1180 int level = fnd->level; 1181 1182 if (!*entry) { 1183 /* Start find. */ 1184 e = hdr_first_de(&root->ihdr); 1185 if (!e) 1186 return 0; 1187 fnd_clear(fnd); 1188 fnd->root_de = e; 1189 } else if (!level) { 1190 if (de_is_last(fnd->root_de)) { 1191 *entry = NULL; 1192 return 0; 1193 } 1194 1195 e = hdr_next_de(&root->ihdr, fnd->root_de); 1196 if (!e) 1197 return -EINVAL; 1198 fnd->root_de = e; 1199 } else { 1200 n = fnd->nodes[level - 1]; 1201 e = fnd->de[level - 1]; 1202 1203 if (de_is_last(e)) 1204 goto pop_level; 1205 1206 e = hdr_next_de(&n->index->ihdr, e); 1207 if (!e) 1208 return -EINVAL; 1209 1210 fnd->de[level - 1] = e; 1211 } 1212 1213 /* Just to avoid tree cycle. */ 1214 next_iter: 1215 if (iter++ >= 1000) 1216 return -EINVAL; 1217 1218 while (de_has_vcn_ex(e)) { 1219 if (le16_to_cpu(e->size) < 1220 sizeof(struct NTFS_DE) + sizeof(u64)) { 1221 if (n) { 1222 fnd_pop(fnd); 1223 kfree(n); 1224 } 1225 return -EINVAL; 1226 } 1227 1228 /* Read next level. */ 1229 err = indx_read(indx, ni, de_get_vbn(e), &n); 1230 if (err) 1231 return err; 1232 1233 /* Try next level. */ 1234 e = hdr_first_de(&n->index->ihdr); 1235 if (!e) { 1236 kfree(n); 1237 return -EINVAL; 1238 } 1239 1240 fnd_push(fnd, n, e); 1241 } 1242 1243 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) { 1244 *entry = e; 1245 return 0; 1246 } 1247 1248 pop_level: 1249 for (;;) { 1250 if (!de_is_last(e)) 1251 goto next_iter; 1252 1253 /* Pop one level. */ 1254 if (n) { 1255 fnd_pop(fnd); 1256 kfree(n); 1257 } 1258 1259 level = fnd->level; 1260 1261 if (level) { 1262 n = fnd->nodes[level - 1]; 1263 e = fnd->de[level - 1]; 1264 } else if (fnd->root_de) { 1265 n = NULL; 1266 e = fnd->root_de; 1267 fnd->root_de = NULL; 1268 } else { 1269 *entry = NULL; 1270 return 0; 1271 } 1272 1273 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) { 1274 *entry = e; 1275 if (!fnd->root_de) 1276 fnd->root_de = e; 1277 return 0; 1278 } 1279 } 1280 } 1281 1282 int indx_find_raw(struct ntfs_index *indx, struct ntfs_inode *ni, 1283 const struct INDEX_ROOT *root, struct NTFS_DE **entry, 1284 size_t *off, struct ntfs_fnd *fnd) 1285 { 1286 int err; 1287 struct indx_node *n = NULL; 1288 struct NTFS_DE *e = NULL; 1289 struct NTFS_DE *e2; 1290 size_t bit; 1291 CLST next_used_vbn; 1292 CLST next_vbn; 1293 u32 record_size = ni->mi.sbi->record_size; 1294 1295 /* Use non sorted algorithm. */ 1296 if (!*entry) { 1297 /* This is the first call. */ 1298 e = hdr_first_de(&root->ihdr); 1299 if (!e) 1300 return 0; 1301 fnd_clear(fnd); 1302 fnd->root_de = e; 1303 1304 /* The first call with setup of initial element. */ 1305 if (*off >= record_size) { 1306 next_vbn = (((*off - record_size) >> indx->index_bits)) 1307 << indx->idx2vbn_bits; 1308 /* Jump inside cycle 'for'. */ 1309 goto next; 1310 } 1311 1312 /* Start enumeration from root. */ 1313 *off = 0; 1314 } else if (!fnd->root_de) 1315 return -EINVAL; 1316 1317 for (;;) { 1318 /* Check if current entry can be used. */ 1319 if (e && le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) 1320 goto ok; 1321 1322 if (!fnd->level) { 1323 /* Continue to enumerate root. */ 1324 if (!de_is_last(fnd->root_de)) { 1325 e = hdr_next_de(&root->ihdr, fnd->root_de); 1326 if (!e) 1327 return -EINVAL; 1328 fnd->root_de = e; 1329 continue; 1330 } 1331 1332 /* Start to enumerate indexes from 0. */ 1333 next_vbn = 0; 1334 } else { 1335 /* Continue to enumerate indexes. */ 1336 e2 = fnd->de[fnd->level - 1]; 1337 1338 n = fnd->nodes[fnd->level - 1]; 1339 1340 if (!de_is_last(e2)) { 1341 e = hdr_next_de(&n->index->ihdr, e2); 1342 if (!e) 1343 return -EINVAL; 1344 fnd->de[fnd->level - 1] = e; 1345 continue; 1346 } 1347 1348 /* Continue with next index. */ 1349 next_vbn = le64_to_cpu(n->index->vbn) + 1350 root->index_block_clst; 1351 } 1352 1353 next: 1354 /* Release current index. */ 1355 if (n) { 1356 fnd_pop(fnd); 1357 put_indx_node(n); 1358 n = NULL; 1359 } 1360 1361 /* Skip all free indexes. */ 1362 bit = next_vbn >> indx->idx2vbn_bits; 1363 err = indx_used_bit(indx, ni, &bit); 1364 if (err == -ENOENT || bit == MINUS_ONE_T) { 1365 /* No used indexes. */ 1366 *entry = NULL; 1367 return 0; 1368 } 1369 1370 next_used_vbn = bit << indx->idx2vbn_bits; 1371 1372 /* Read buffer into memory. */ 1373 err = indx_read(indx, ni, next_used_vbn, &n); 1374 if (err) 1375 return err; 1376 1377 e = hdr_first_de(&n->index->ihdr); 1378 fnd_push(fnd, n, e); 1379 if (!e) 1380 return -EINVAL; 1381 } 1382 1383 ok: 1384 /* Return offset to restore enumerator if necessary. */ 1385 if (!n) { 1386 /* 'e' points in root, */ 1387 *off = PtrOffset(&root->ihdr, e); 1388 } else { 1389 /* 'e' points in index, */ 1390 *off = (le64_to_cpu(n->index->vbn) << indx->vbn2vbo_bits) + 1391 record_size + PtrOffset(&n->index->ihdr, e); 1392 } 1393 1394 *entry = e; 1395 return 0; 1396 } 1397 1398 /* 1399 * indx_create_allocate - Create "Allocation + Bitmap" attributes. 1400 */ 1401 static int indx_create_allocate(struct ntfs_index *indx, struct ntfs_inode *ni, 1402 CLST *vbn) 1403 { 1404 int err; 1405 struct ntfs_sb_info *sbi = ni->mi.sbi; 1406 struct ATTRIB *bitmap; 1407 struct ATTRIB *alloc; 1408 u32 data_size = 1u << indx->index_bits; 1409 u32 alloc_size = ntfs_up_cluster(sbi, data_size); 1410 CLST len = alloc_size >> sbi->cluster_bits; 1411 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 1412 CLST alen; 1413 struct runs_tree run; 1414 1415 run_init(&run); 1416 1417 err = attr_allocate_clusters(sbi, &run, 0, 0, len, NULL, ALLOCATE_DEF, 1418 &alen, 0, NULL, NULL); 1419 if (err) 1420 goto out; 1421 1422 err = ni_insert_nonresident(ni, ATTR_ALLOC, in->name, in->name_len, 1423 &run, 0, len, 0, &alloc, NULL, NULL); 1424 if (err) 1425 goto out1; 1426 1427 alloc->nres.valid_size = alloc->nres.data_size = cpu_to_le64(data_size); 1428 1429 err = ni_insert_resident(ni, bitmap_size(1), ATTR_BITMAP, in->name, 1430 in->name_len, &bitmap, NULL, NULL); 1431 if (err) 1432 goto out2; 1433 1434 if (in->name == I30_NAME) { 1435 ni->vfs_inode.i_size = data_size; 1436 inode_set_bytes(&ni->vfs_inode, alloc_size); 1437 } 1438 1439 memcpy(&indx->alloc_run, &run, sizeof(run)); 1440 1441 *vbn = 0; 1442 1443 return 0; 1444 1445 out2: 1446 mi_remove_attr(NULL, &ni->mi, alloc); 1447 1448 out1: 1449 run_deallocate(sbi, &run, false); 1450 1451 out: 1452 return err; 1453 } 1454 1455 /* 1456 * indx_add_allocate - Add clusters to index. 1457 */ 1458 static int indx_add_allocate(struct ntfs_index *indx, struct ntfs_inode *ni, 1459 CLST *vbn) 1460 { 1461 int err; 1462 size_t bit; 1463 u64 data_size; 1464 u64 bmp_size, bmp_size_v; 1465 struct ATTRIB *bmp, *alloc; 1466 struct mft_inode *mi; 1467 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 1468 1469 err = indx_find_free(indx, ni, &bit, &bmp); 1470 if (err) 1471 goto out1; 1472 1473 if (bit != MINUS_ONE_T) { 1474 bmp = NULL; 1475 } else { 1476 if (bmp->non_res) { 1477 bmp_size = le64_to_cpu(bmp->nres.data_size); 1478 bmp_size_v = le64_to_cpu(bmp->nres.valid_size); 1479 } else { 1480 bmp_size = bmp_size_v = le32_to_cpu(bmp->res.data_size); 1481 } 1482 1483 bit = bmp_size << 3; 1484 } 1485 1486 data_size = (u64)(bit + 1) << indx->index_bits; 1487 1488 if (bmp) { 1489 /* Increase bitmap. */ 1490 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len, 1491 &indx->bitmap_run, bitmap_size(bit + 1), 1492 NULL, true, NULL); 1493 if (err) 1494 goto out1; 1495 } 1496 1497 alloc = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, in->name, in->name_len, 1498 NULL, &mi); 1499 if (!alloc) { 1500 err = -EINVAL; 1501 if (bmp) 1502 goto out2; 1503 goto out1; 1504 } 1505 1506 /* Increase allocation. */ 1507 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len, 1508 &indx->alloc_run, data_size, &data_size, true, 1509 NULL); 1510 if (err) { 1511 if (bmp) 1512 goto out2; 1513 goto out1; 1514 } 1515 1516 if (in->name == I30_NAME) 1517 ni->vfs_inode.i_size = data_size; 1518 1519 *vbn = bit << indx->idx2vbn_bits; 1520 1521 return 0; 1522 1523 out2: 1524 /* Ops. No space? */ 1525 attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len, 1526 &indx->bitmap_run, bmp_size, &bmp_size_v, false, NULL); 1527 1528 out1: 1529 return err; 1530 } 1531 1532 /* 1533 * indx_insert_into_root - Attempt to insert an entry into the index root. 1534 * 1535 * @undo - True if we undoing previous remove. 1536 * If necessary, it will twiddle the index b-tree. 1537 */ 1538 static int indx_insert_into_root(struct ntfs_index *indx, struct ntfs_inode *ni, 1539 const struct NTFS_DE *new_de, 1540 struct NTFS_DE *root_de, const void *ctx, 1541 struct ntfs_fnd *fnd, bool undo) 1542 { 1543 int err = 0; 1544 struct NTFS_DE *e, *e0, *re; 1545 struct mft_inode *mi; 1546 struct ATTRIB *attr; 1547 struct INDEX_HDR *hdr; 1548 struct indx_node *n; 1549 CLST new_vbn; 1550 __le64 *sub_vbn, t_vbn; 1551 u16 new_de_size; 1552 u32 hdr_used, hdr_total, asize, to_move; 1553 u32 root_size, new_root_size; 1554 struct ntfs_sb_info *sbi; 1555 int ds_root; 1556 struct INDEX_ROOT *root, *a_root; 1557 1558 /* Get the record this root placed in. */ 1559 root = indx_get_root(indx, ni, &attr, &mi); 1560 if (!root) 1561 return -EINVAL; 1562 1563 /* 1564 * Try easy case: 1565 * hdr_insert_de will succeed if there's 1566 * room the root for the new entry. 1567 */ 1568 hdr = &root->ihdr; 1569 sbi = ni->mi.sbi; 1570 new_de_size = le16_to_cpu(new_de->size); 1571 hdr_used = le32_to_cpu(hdr->used); 1572 hdr_total = le32_to_cpu(hdr->total); 1573 asize = le32_to_cpu(attr->size); 1574 root_size = le32_to_cpu(attr->res.data_size); 1575 1576 ds_root = new_de_size + hdr_used - hdr_total; 1577 1578 /* If 'undo' is set then reduce requirements. */ 1579 if ((undo || asize + ds_root < sbi->max_bytes_per_attr) && 1580 mi_resize_attr(mi, attr, ds_root)) { 1581 hdr->total = cpu_to_le32(hdr_total + ds_root); 1582 e = hdr_insert_de(indx, hdr, new_de, root_de, ctx); 1583 WARN_ON(!e); 1584 fnd_clear(fnd); 1585 fnd->root_de = e; 1586 1587 return 0; 1588 } 1589 1590 /* Make a copy of root attribute to restore if error. */ 1591 a_root = kmemdup(attr, asize, GFP_NOFS); 1592 if (!a_root) 1593 return -ENOMEM; 1594 1595 /* 1596 * Copy all the non-end entries from 1597 * the index root to the new buffer. 1598 */ 1599 to_move = 0; 1600 e0 = hdr_first_de(hdr); 1601 1602 /* Calculate the size to copy. */ 1603 for (e = e0;; e = hdr_next_de(hdr, e)) { 1604 if (!e) { 1605 err = -EINVAL; 1606 goto out_free_root; 1607 } 1608 1609 if (de_is_last(e)) 1610 break; 1611 to_move += le16_to_cpu(e->size); 1612 } 1613 1614 if (!to_move) { 1615 re = NULL; 1616 } else { 1617 re = kmemdup(e0, to_move, GFP_NOFS); 1618 if (!re) { 1619 err = -ENOMEM; 1620 goto out_free_root; 1621 } 1622 } 1623 1624 sub_vbn = NULL; 1625 if (de_has_vcn(e)) { 1626 t_vbn = de_get_vbn_le(e); 1627 sub_vbn = &t_vbn; 1628 } 1629 1630 new_root_size = sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE) + 1631 sizeof(u64); 1632 ds_root = new_root_size - root_size; 1633 1634 if (ds_root > 0 && asize + ds_root > sbi->max_bytes_per_attr) { 1635 /* Make root external. */ 1636 err = -EOPNOTSUPP; 1637 goto out_free_re; 1638 } 1639 1640 if (ds_root) 1641 mi_resize_attr(mi, attr, ds_root); 1642 1643 /* Fill first entry (vcn will be set later). */ 1644 e = (struct NTFS_DE *)(root + 1); 1645 memset(e, 0, sizeof(struct NTFS_DE)); 1646 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64)); 1647 e->flags = NTFS_IE_HAS_SUBNODES | NTFS_IE_LAST; 1648 1649 hdr->flags = 1; 1650 hdr->used = hdr->total = 1651 cpu_to_le32(new_root_size - offsetof(struct INDEX_ROOT, ihdr)); 1652 1653 fnd->root_de = hdr_first_de(hdr); 1654 mi->dirty = true; 1655 1656 /* Create alloc and bitmap attributes (if not). */ 1657 err = run_is_empty(&indx->alloc_run) 1658 ? indx_create_allocate(indx, ni, &new_vbn) 1659 : indx_add_allocate(indx, ni, &new_vbn); 1660 1661 /* Layout of record may be changed, so rescan root. */ 1662 root = indx_get_root(indx, ni, &attr, &mi); 1663 if (!root) { 1664 /* Bug? */ 1665 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 1666 err = -EINVAL; 1667 goto out_free_re; 1668 } 1669 1670 if (err) { 1671 /* Restore root. */ 1672 if (mi_resize_attr(mi, attr, -ds_root)) { 1673 memcpy(attr, a_root, asize); 1674 } else { 1675 /* Bug? */ 1676 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 1677 } 1678 goto out_free_re; 1679 } 1680 1681 e = (struct NTFS_DE *)(root + 1); 1682 *(__le64 *)(e + 1) = cpu_to_le64(new_vbn); 1683 mi->dirty = true; 1684 1685 /* Now we can create/format the new buffer and copy the entries into. */ 1686 n = indx_new(indx, ni, new_vbn, sub_vbn); 1687 if (IS_ERR(n)) { 1688 err = PTR_ERR(n); 1689 goto out_free_re; 1690 } 1691 1692 hdr = &n->index->ihdr; 1693 hdr_used = le32_to_cpu(hdr->used); 1694 hdr_total = le32_to_cpu(hdr->total); 1695 1696 /* Copy root entries into new buffer. */ 1697 hdr_insert_head(hdr, re, to_move); 1698 1699 /* Update bitmap attribute. */ 1700 indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits); 1701 1702 /* Check if we can insert new entry new index buffer. */ 1703 if (hdr_used + new_de_size > hdr_total) { 1704 /* 1705 * This occurs if MFT record is the same or bigger than index 1706 * buffer. Move all root new index and have no space to add 1707 * new entry classic case when MFT record is 1K and index 1708 * buffer 4K the problem should not occurs. 1709 */ 1710 kfree(re); 1711 indx_write(indx, ni, n, 0); 1712 1713 put_indx_node(n); 1714 fnd_clear(fnd); 1715 err = indx_insert_entry(indx, ni, new_de, ctx, fnd, undo); 1716 goto out_free_root; 1717 } 1718 1719 /* 1720 * Now root is a parent for new index buffer. 1721 * Insert NewEntry a new buffer. 1722 */ 1723 e = hdr_insert_de(indx, hdr, new_de, NULL, ctx); 1724 if (!e) { 1725 err = -EINVAL; 1726 goto out_put_n; 1727 } 1728 fnd_push(fnd, n, e); 1729 1730 /* Just write updates index into disk. */ 1731 indx_write(indx, ni, n, 0); 1732 1733 n = NULL; 1734 1735 out_put_n: 1736 put_indx_node(n); 1737 out_free_re: 1738 kfree(re); 1739 out_free_root: 1740 kfree(a_root); 1741 return err; 1742 } 1743 1744 /* 1745 * indx_insert_into_buffer 1746 * 1747 * Attempt to insert an entry into an Index Allocation Buffer. 1748 * If necessary, it will split the buffer. 1749 */ 1750 static int 1751 indx_insert_into_buffer(struct ntfs_index *indx, struct ntfs_inode *ni, 1752 struct INDEX_ROOT *root, const struct NTFS_DE *new_de, 1753 const void *ctx, int level, struct ntfs_fnd *fnd) 1754 { 1755 int err; 1756 const struct NTFS_DE *sp; 1757 struct NTFS_DE *e, *de_t, *up_e; 1758 struct indx_node *n2; 1759 struct indx_node *n1 = fnd->nodes[level]; 1760 struct INDEX_HDR *hdr1 = &n1->index->ihdr; 1761 struct INDEX_HDR *hdr2; 1762 u32 to_copy, used; 1763 CLST new_vbn; 1764 __le64 t_vbn, *sub_vbn; 1765 u16 sp_size; 1766 1767 /* Try the most easy case. */ 1768 e = fnd->level - 1 == level ? fnd->de[level] : NULL; 1769 e = hdr_insert_de(indx, hdr1, new_de, e, ctx); 1770 fnd->de[level] = e; 1771 if (e) { 1772 /* Just write updated index into disk. */ 1773 indx_write(indx, ni, n1, 0); 1774 return 0; 1775 } 1776 1777 /* 1778 * No space to insert into buffer. Split it. 1779 * To split we: 1780 * - Save split point ('cause index buffers will be changed) 1781 * - Allocate NewBuffer and copy all entries <= sp into new buffer 1782 * - Remove all entries (sp including) from TargetBuffer 1783 * - Insert NewEntry into left or right buffer (depending on sp <=> 1784 * NewEntry) 1785 * - Insert sp into parent buffer (or root) 1786 * - Make sp a parent for new buffer 1787 */ 1788 sp = hdr_find_split(hdr1); 1789 if (!sp) 1790 return -EINVAL; 1791 1792 sp_size = le16_to_cpu(sp->size); 1793 up_e = kmalloc(sp_size + sizeof(u64), GFP_NOFS); 1794 if (!up_e) 1795 return -ENOMEM; 1796 memcpy(up_e, sp, sp_size); 1797 1798 if (!hdr1->flags) { 1799 up_e->flags |= NTFS_IE_HAS_SUBNODES; 1800 up_e->size = cpu_to_le16(sp_size + sizeof(u64)); 1801 sub_vbn = NULL; 1802 } else { 1803 t_vbn = de_get_vbn_le(up_e); 1804 sub_vbn = &t_vbn; 1805 } 1806 1807 /* Allocate on disk a new index allocation buffer. */ 1808 err = indx_add_allocate(indx, ni, &new_vbn); 1809 if (err) 1810 goto out; 1811 1812 /* Allocate and format memory a new index buffer. */ 1813 n2 = indx_new(indx, ni, new_vbn, sub_vbn); 1814 if (IS_ERR(n2)) { 1815 err = PTR_ERR(n2); 1816 goto out; 1817 } 1818 1819 hdr2 = &n2->index->ihdr; 1820 1821 /* Make sp a parent for new buffer. */ 1822 de_set_vbn(up_e, new_vbn); 1823 1824 /* Copy all the entries <= sp into the new buffer. */ 1825 de_t = hdr_first_de(hdr1); 1826 to_copy = PtrOffset(de_t, sp); 1827 hdr_insert_head(hdr2, de_t, to_copy); 1828 1829 /* Remove all entries (sp including) from hdr1. */ 1830 used = le32_to_cpu(hdr1->used) - to_copy - sp_size; 1831 memmove(de_t, Add2Ptr(sp, sp_size), used - le32_to_cpu(hdr1->de_off)); 1832 hdr1->used = cpu_to_le32(used); 1833 1834 /* 1835 * Insert new entry into left or right buffer 1836 * (depending on sp <=> new_de). 1837 */ 1838 hdr_insert_de(indx, 1839 (*indx->cmp)(new_de + 1, le16_to_cpu(new_de->key_size), 1840 up_e + 1, le16_to_cpu(up_e->key_size), 1841 ctx) < 0 1842 ? hdr2 1843 : hdr1, 1844 new_de, NULL, ctx); 1845 1846 indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits); 1847 1848 indx_write(indx, ni, n1, 0); 1849 indx_write(indx, ni, n2, 0); 1850 1851 put_indx_node(n2); 1852 1853 /* 1854 * We've finished splitting everybody, so we are ready to 1855 * insert the promoted entry into the parent. 1856 */ 1857 if (!level) { 1858 /* Insert in root. */ 1859 err = indx_insert_into_root(indx, ni, up_e, NULL, ctx, fnd, 0); 1860 if (err) 1861 goto out; 1862 } else { 1863 /* 1864 * The target buffer's parent is another index buffer. 1865 * TODO: Remove recursion. 1866 */ 1867 err = indx_insert_into_buffer(indx, ni, root, up_e, ctx, 1868 level - 1, fnd); 1869 if (err) 1870 goto out; 1871 } 1872 1873 out: 1874 kfree(up_e); 1875 1876 return err; 1877 } 1878 1879 /* 1880 * indx_insert_entry - Insert new entry into index. 1881 * 1882 * @undo - True if we undoing previous remove. 1883 */ 1884 int indx_insert_entry(struct ntfs_index *indx, struct ntfs_inode *ni, 1885 const struct NTFS_DE *new_de, const void *ctx, 1886 struct ntfs_fnd *fnd, bool undo) 1887 { 1888 int err; 1889 int diff; 1890 struct NTFS_DE *e; 1891 struct ntfs_fnd *fnd_a = NULL; 1892 struct INDEX_ROOT *root; 1893 1894 if (!fnd) { 1895 fnd_a = fnd_get(); 1896 if (!fnd_a) { 1897 err = -ENOMEM; 1898 goto out1; 1899 } 1900 fnd = fnd_a; 1901 } 1902 1903 root = indx_get_root(indx, ni, NULL, NULL); 1904 if (!root) { 1905 err = -EINVAL; 1906 goto out; 1907 } 1908 1909 if (fnd_is_empty(fnd)) { 1910 /* 1911 * Find the spot the tree where we want to 1912 * insert the new entry. 1913 */ 1914 err = indx_find(indx, ni, root, new_de + 1, 1915 le16_to_cpu(new_de->key_size), ctx, &diff, &e, 1916 fnd); 1917 if (err) 1918 goto out; 1919 1920 if (!diff) { 1921 err = -EEXIST; 1922 goto out; 1923 } 1924 } 1925 1926 if (!fnd->level) { 1927 /* 1928 * The root is also a leaf, so we'll insert the 1929 * new entry into it. 1930 */ 1931 err = indx_insert_into_root(indx, ni, new_de, fnd->root_de, ctx, 1932 fnd, undo); 1933 if (err) 1934 goto out; 1935 } else { 1936 /* 1937 * Found a leaf buffer, so we'll insert the new entry into it. 1938 */ 1939 err = indx_insert_into_buffer(indx, ni, root, new_de, ctx, 1940 fnd->level - 1, fnd); 1941 if (err) 1942 goto out; 1943 } 1944 1945 out: 1946 fnd_put(fnd_a); 1947 out1: 1948 return err; 1949 } 1950 1951 /* 1952 * indx_find_buffer - Locate a buffer from the tree. 1953 */ 1954 static struct indx_node *indx_find_buffer(struct ntfs_index *indx, 1955 struct ntfs_inode *ni, 1956 const struct INDEX_ROOT *root, 1957 __le64 vbn, struct indx_node *n) 1958 { 1959 int err; 1960 const struct NTFS_DE *e; 1961 struct indx_node *r; 1962 const struct INDEX_HDR *hdr = n ? &n->index->ihdr : &root->ihdr; 1963 1964 /* Step 1: Scan one level. */ 1965 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) { 1966 if (!e) 1967 return ERR_PTR(-EINVAL); 1968 1969 if (de_has_vcn(e) && vbn == de_get_vbn_le(e)) 1970 return n; 1971 1972 if (de_is_last(e)) 1973 break; 1974 } 1975 1976 /* Step2: Do recursion. */ 1977 e = Add2Ptr(hdr, le32_to_cpu(hdr->de_off)); 1978 for (;;) { 1979 if (de_has_vcn_ex(e)) { 1980 err = indx_read(indx, ni, de_get_vbn(e), &n); 1981 if (err) 1982 return ERR_PTR(err); 1983 1984 r = indx_find_buffer(indx, ni, root, vbn, n); 1985 if (r) 1986 return r; 1987 } 1988 1989 if (de_is_last(e)) 1990 break; 1991 1992 e = Add2Ptr(e, le16_to_cpu(e->size)); 1993 } 1994 1995 return NULL; 1996 } 1997 1998 /* 1999 * indx_shrink - Deallocate unused tail indexes. 2000 */ 2001 static int indx_shrink(struct ntfs_index *indx, struct ntfs_inode *ni, 2002 size_t bit) 2003 { 2004 int err = 0; 2005 u64 bpb, new_data; 2006 size_t nbits; 2007 struct ATTRIB *b; 2008 struct ATTR_LIST_ENTRY *le = NULL; 2009 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 2010 2011 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len, 2012 NULL, NULL); 2013 2014 if (!b) 2015 return -ENOENT; 2016 2017 if (!b->non_res) { 2018 unsigned long pos; 2019 const unsigned long *bm = resident_data(b); 2020 2021 nbits = (size_t)le32_to_cpu(b->res.data_size) * 8; 2022 2023 if (bit >= nbits) 2024 return 0; 2025 2026 pos = find_next_bit_le(bm, nbits, bit); 2027 if (pos < nbits) 2028 return 0; 2029 } else { 2030 size_t used = MINUS_ONE_T; 2031 2032 nbits = le64_to_cpu(b->nres.data_size) * 8; 2033 2034 if (bit >= nbits) 2035 return 0; 2036 2037 err = scan_nres_bitmap(ni, b, indx, bit, &scan_for_used, &used); 2038 if (err) 2039 return err; 2040 2041 if (used != MINUS_ONE_T) 2042 return 0; 2043 } 2044 2045 new_data = (u64)bit << indx->index_bits; 2046 2047 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len, 2048 &indx->alloc_run, new_data, &new_data, false, NULL); 2049 if (err) 2050 return err; 2051 2052 if (in->name == I30_NAME) 2053 ni->vfs_inode.i_size = new_data; 2054 2055 bpb = bitmap_size(bit); 2056 if (bpb * 8 == nbits) 2057 return 0; 2058 2059 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len, 2060 &indx->bitmap_run, bpb, &bpb, false, NULL); 2061 2062 return err; 2063 } 2064 2065 static int indx_free_children(struct ntfs_index *indx, struct ntfs_inode *ni, 2066 const struct NTFS_DE *e, bool trim) 2067 { 2068 int err; 2069 struct indx_node *n = NULL; 2070 struct INDEX_HDR *hdr; 2071 CLST vbn = de_get_vbn(e); 2072 size_t i; 2073 2074 err = indx_read(indx, ni, vbn, &n); 2075 if (err) 2076 return err; 2077 2078 hdr = &n->index->ihdr; 2079 /* First, recurse into the children, if any. */ 2080 if (hdr_has_subnode(hdr)) { 2081 for (e = hdr_first_de(hdr); e; e = hdr_next_de(hdr, e)) { 2082 indx_free_children(indx, ni, e, false); 2083 if (de_is_last(e)) 2084 break; 2085 } 2086 } 2087 2088 put_indx_node(n); 2089 2090 i = vbn >> indx->idx2vbn_bits; 2091 /* 2092 * We've gotten rid of the children; add this buffer to the free list. 2093 */ 2094 indx_mark_free(indx, ni, i); 2095 2096 if (!trim) 2097 return 0; 2098 2099 /* 2100 * If there are no used indexes after current free index 2101 * then we can truncate allocation and bitmap. 2102 * Use bitmap to estimate the case. 2103 */ 2104 indx_shrink(indx, ni, i + 1); 2105 return 0; 2106 } 2107 2108 /* 2109 * indx_get_entry_to_replace 2110 * 2111 * Find a replacement entry for a deleted entry. 2112 * Always returns a node entry: 2113 * NTFS_IE_HAS_SUBNODES is set the flags and the size includes the sub_vcn. 2114 */ 2115 static int indx_get_entry_to_replace(struct ntfs_index *indx, 2116 struct ntfs_inode *ni, 2117 const struct NTFS_DE *de_next, 2118 struct NTFS_DE **de_to_replace, 2119 struct ntfs_fnd *fnd) 2120 { 2121 int err; 2122 int level = -1; 2123 CLST vbn; 2124 struct NTFS_DE *e, *te, *re; 2125 struct indx_node *n; 2126 struct INDEX_BUFFER *ib; 2127 2128 *de_to_replace = NULL; 2129 2130 /* Find first leaf entry down from de_next. */ 2131 vbn = de_get_vbn(de_next); 2132 for (;;) { 2133 n = NULL; 2134 err = indx_read(indx, ni, vbn, &n); 2135 if (err) 2136 goto out; 2137 2138 e = hdr_first_de(&n->index->ihdr); 2139 fnd_push(fnd, n, e); 2140 2141 if (!de_is_last(e)) { 2142 /* 2143 * This buffer is non-empty, so its first entry 2144 * could be used as the replacement entry. 2145 */ 2146 level = fnd->level - 1; 2147 } 2148 2149 if (!de_has_vcn(e)) 2150 break; 2151 2152 /* This buffer is a node. Continue to go down. */ 2153 vbn = de_get_vbn(e); 2154 } 2155 2156 if (level == -1) 2157 goto out; 2158 2159 n = fnd->nodes[level]; 2160 te = hdr_first_de(&n->index->ihdr); 2161 /* Copy the candidate entry into the replacement entry buffer. */ 2162 re = kmalloc(le16_to_cpu(te->size) + sizeof(u64), GFP_NOFS); 2163 if (!re) { 2164 err = -ENOMEM; 2165 goto out; 2166 } 2167 2168 *de_to_replace = re; 2169 memcpy(re, te, le16_to_cpu(te->size)); 2170 2171 if (!de_has_vcn(re)) { 2172 /* 2173 * The replacement entry we found doesn't have a sub_vcn. 2174 * increase its size to hold one. 2175 */ 2176 le16_add_cpu(&re->size, sizeof(u64)); 2177 re->flags |= NTFS_IE_HAS_SUBNODES; 2178 } else { 2179 /* 2180 * The replacement entry we found was a node entry, which 2181 * means that all its child buffers are empty. Return them 2182 * to the free pool. 2183 */ 2184 indx_free_children(indx, ni, te, true); 2185 } 2186 2187 /* 2188 * Expunge the replacement entry from its former location, 2189 * and then write that buffer. 2190 */ 2191 ib = n->index; 2192 e = hdr_delete_de(&ib->ihdr, te); 2193 2194 fnd->de[level] = e; 2195 indx_write(indx, ni, n, 0); 2196 2197 if (ib_is_leaf(ib) && ib_is_empty(ib)) { 2198 /* An empty leaf. */ 2199 return 0; 2200 } 2201 2202 out: 2203 fnd_clear(fnd); 2204 return err; 2205 } 2206 2207 /* 2208 * indx_delete_entry - Delete an entry from the index. 2209 */ 2210 int indx_delete_entry(struct ntfs_index *indx, struct ntfs_inode *ni, 2211 const void *key, u32 key_len, const void *ctx) 2212 { 2213 int err, diff; 2214 struct INDEX_ROOT *root; 2215 struct INDEX_HDR *hdr; 2216 struct ntfs_fnd *fnd, *fnd2; 2217 struct INDEX_BUFFER *ib; 2218 struct NTFS_DE *e, *re, *next, *prev, *me; 2219 struct indx_node *n, *n2d = NULL; 2220 __le64 sub_vbn; 2221 int level, level2; 2222 struct ATTRIB *attr; 2223 struct mft_inode *mi; 2224 u32 e_size, root_size, new_root_size; 2225 size_t trim_bit; 2226 const struct INDEX_NAMES *in; 2227 2228 fnd = fnd_get(); 2229 if (!fnd) { 2230 err = -ENOMEM; 2231 goto out2; 2232 } 2233 2234 fnd2 = fnd_get(); 2235 if (!fnd2) { 2236 err = -ENOMEM; 2237 goto out1; 2238 } 2239 2240 root = indx_get_root(indx, ni, &attr, &mi); 2241 if (!root) { 2242 err = -EINVAL; 2243 goto out; 2244 } 2245 2246 /* Locate the entry to remove. */ 2247 err = indx_find(indx, ni, root, key, key_len, ctx, &diff, &e, fnd); 2248 if (err) 2249 goto out; 2250 2251 if (!e || diff) { 2252 err = -ENOENT; 2253 goto out; 2254 } 2255 2256 level = fnd->level; 2257 2258 if (level) { 2259 n = fnd->nodes[level - 1]; 2260 e = fnd->de[level - 1]; 2261 ib = n->index; 2262 hdr = &ib->ihdr; 2263 } else { 2264 hdr = &root->ihdr; 2265 e = fnd->root_de; 2266 n = NULL; 2267 } 2268 2269 e_size = le16_to_cpu(e->size); 2270 2271 if (!de_has_vcn_ex(e)) { 2272 /* The entry to delete is a leaf, so we can just rip it out. */ 2273 hdr_delete_de(hdr, e); 2274 2275 if (!level) { 2276 hdr->total = hdr->used; 2277 2278 /* Shrink resident root attribute. */ 2279 mi_resize_attr(mi, attr, 0 - e_size); 2280 goto out; 2281 } 2282 2283 indx_write(indx, ni, n, 0); 2284 2285 /* 2286 * Check to see if removing that entry made 2287 * the leaf empty. 2288 */ 2289 if (ib_is_leaf(ib) && ib_is_empty(ib)) { 2290 fnd_pop(fnd); 2291 fnd_push(fnd2, n, e); 2292 } 2293 } else { 2294 /* 2295 * The entry we wish to delete is a node buffer, so we 2296 * have to find a replacement for it. 2297 */ 2298 next = de_get_next(e); 2299 2300 err = indx_get_entry_to_replace(indx, ni, next, &re, fnd2); 2301 if (err) 2302 goto out; 2303 2304 if (re) { 2305 de_set_vbn_le(re, de_get_vbn_le(e)); 2306 hdr_delete_de(hdr, e); 2307 2308 err = level ? indx_insert_into_buffer(indx, ni, root, 2309 re, ctx, 2310 fnd->level - 1, 2311 fnd) 2312 : indx_insert_into_root(indx, ni, re, e, 2313 ctx, fnd, 0); 2314 kfree(re); 2315 2316 if (err) 2317 goto out; 2318 } else { 2319 /* 2320 * There is no replacement for the current entry. 2321 * This means that the subtree rooted at its node 2322 * is empty, and can be deleted, which turn means 2323 * that the node can just inherit the deleted 2324 * entry sub_vcn. 2325 */ 2326 indx_free_children(indx, ni, next, true); 2327 2328 de_set_vbn_le(next, de_get_vbn_le(e)); 2329 hdr_delete_de(hdr, e); 2330 if (level) { 2331 indx_write(indx, ni, n, 0); 2332 } else { 2333 hdr->total = hdr->used; 2334 2335 /* Shrink resident root attribute. */ 2336 mi_resize_attr(mi, attr, 0 - e_size); 2337 } 2338 } 2339 } 2340 2341 /* Delete a branch of tree. */ 2342 if (!fnd2 || !fnd2->level) 2343 goto out; 2344 2345 /* Reinit root 'cause it can be changed. */ 2346 root = indx_get_root(indx, ni, &attr, &mi); 2347 if (!root) { 2348 err = -EINVAL; 2349 goto out; 2350 } 2351 2352 n2d = NULL; 2353 sub_vbn = fnd2->nodes[0]->index->vbn; 2354 level2 = 0; 2355 level = fnd->level; 2356 2357 hdr = level ? &fnd->nodes[level - 1]->index->ihdr : &root->ihdr; 2358 2359 /* Scan current level. */ 2360 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) { 2361 if (!e) { 2362 err = -EINVAL; 2363 goto out; 2364 } 2365 2366 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e)) 2367 break; 2368 2369 if (de_is_last(e)) { 2370 e = NULL; 2371 break; 2372 } 2373 } 2374 2375 if (!e) { 2376 /* Do slow search from root. */ 2377 struct indx_node *in; 2378 2379 fnd_clear(fnd); 2380 2381 in = indx_find_buffer(indx, ni, root, sub_vbn, NULL); 2382 if (IS_ERR(in)) { 2383 err = PTR_ERR(in); 2384 goto out; 2385 } 2386 2387 if (in) 2388 fnd_push(fnd, in, NULL); 2389 } 2390 2391 /* Merge fnd2 -> fnd. */ 2392 for (level = 0; level < fnd2->level; level++) { 2393 fnd_push(fnd, fnd2->nodes[level], fnd2->de[level]); 2394 fnd2->nodes[level] = NULL; 2395 } 2396 fnd2->level = 0; 2397 2398 hdr = NULL; 2399 for (level = fnd->level; level; level--) { 2400 struct indx_node *in = fnd->nodes[level - 1]; 2401 2402 ib = in->index; 2403 if (ib_is_empty(ib)) { 2404 sub_vbn = ib->vbn; 2405 } else { 2406 hdr = &ib->ihdr; 2407 n2d = in; 2408 level2 = level; 2409 break; 2410 } 2411 } 2412 2413 if (!hdr) 2414 hdr = &root->ihdr; 2415 2416 e = hdr_first_de(hdr); 2417 if (!e) { 2418 err = -EINVAL; 2419 goto out; 2420 } 2421 2422 if (hdr != &root->ihdr || !de_is_last(e)) { 2423 prev = NULL; 2424 while (!de_is_last(e)) { 2425 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e)) 2426 break; 2427 prev = e; 2428 e = hdr_next_de(hdr, e); 2429 if (!e) { 2430 err = -EINVAL; 2431 goto out; 2432 } 2433 } 2434 2435 if (sub_vbn != de_get_vbn_le(e)) { 2436 /* 2437 * Didn't find the parent entry, although this buffer 2438 * is the parent trail. Something is corrupt. 2439 */ 2440 err = -EINVAL; 2441 goto out; 2442 } 2443 2444 if (de_is_last(e)) { 2445 /* 2446 * Since we can't remove the end entry, we'll remove 2447 * its predecessor instead. This means we have to 2448 * transfer the predecessor's sub_vcn to the end entry. 2449 * Note: This index block is not empty, so the 2450 * predecessor must exist. 2451 */ 2452 if (!prev) { 2453 err = -EINVAL; 2454 goto out; 2455 } 2456 2457 if (de_has_vcn(prev)) { 2458 de_set_vbn_le(e, de_get_vbn_le(prev)); 2459 } else if (de_has_vcn(e)) { 2460 le16_sub_cpu(&e->size, sizeof(u64)); 2461 e->flags &= ~NTFS_IE_HAS_SUBNODES; 2462 le32_sub_cpu(&hdr->used, sizeof(u64)); 2463 } 2464 e = prev; 2465 } 2466 2467 /* 2468 * Copy the current entry into a temporary buffer (stripping 2469 * off its down-pointer, if any) and delete it from the current 2470 * buffer or root, as appropriate. 2471 */ 2472 e_size = le16_to_cpu(e->size); 2473 me = kmemdup(e, e_size, GFP_NOFS); 2474 if (!me) { 2475 err = -ENOMEM; 2476 goto out; 2477 } 2478 2479 if (de_has_vcn(me)) { 2480 me->flags &= ~NTFS_IE_HAS_SUBNODES; 2481 le16_sub_cpu(&me->size, sizeof(u64)); 2482 } 2483 2484 hdr_delete_de(hdr, e); 2485 2486 if (hdr == &root->ihdr) { 2487 level = 0; 2488 hdr->total = hdr->used; 2489 2490 /* Shrink resident root attribute. */ 2491 mi_resize_attr(mi, attr, 0 - e_size); 2492 } else { 2493 indx_write(indx, ni, n2d, 0); 2494 level = level2; 2495 } 2496 2497 /* Mark unused buffers as free. */ 2498 trim_bit = -1; 2499 for (; level < fnd->level; level++) { 2500 ib = fnd->nodes[level]->index; 2501 if (ib_is_empty(ib)) { 2502 size_t k = le64_to_cpu(ib->vbn) >> 2503 indx->idx2vbn_bits; 2504 2505 indx_mark_free(indx, ni, k); 2506 if (k < trim_bit) 2507 trim_bit = k; 2508 } 2509 } 2510 2511 fnd_clear(fnd); 2512 /*fnd->root_de = NULL;*/ 2513 2514 /* 2515 * Re-insert the entry into the tree. 2516 * Find the spot the tree where we want to insert the new entry. 2517 */ 2518 err = indx_insert_entry(indx, ni, me, ctx, fnd, 0); 2519 kfree(me); 2520 if (err) 2521 goto out; 2522 2523 if (trim_bit != -1) 2524 indx_shrink(indx, ni, trim_bit); 2525 } else { 2526 /* 2527 * This tree needs to be collapsed down to an empty root. 2528 * Recreate the index root as an empty leaf and free all 2529 * the bits the index allocation bitmap. 2530 */ 2531 fnd_clear(fnd); 2532 fnd_clear(fnd2); 2533 2534 in = &s_index_names[indx->type]; 2535 2536 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len, 2537 &indx->alloc_run, 0, NULL, false, NULL); 2538 if (in->name == I30_NAME) 2539 ni->vfs_inode.i_size = 0; 2540 2541 err = ni_remove_attr(ni, ATTR_ALLOC, in->name, in->name_len, 2542 false, NULL); 2543 run_close(&indx->alloc_run); 2544 2545 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len, 2546 &indx->bitmap_run, 0, NULL, false, NULL); 2547 err = ni_remove_attr(ni, ATTR_BITMAP, in->name, in->name_len, 2548 false, NULL); 2549 run_close(&indx->bitmap_run); 2550 2551 root = indx_get_root(indx, ni, &attr, &mi); 2552 if (!root) { 2553 err = -EINVAL; 2554 goto out; 2555 } 2556 2557 root_size = le32_to_cpu(attr->res.data_size); 2558 new_root_size = 2559 sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE); 2560 2561 if (new_root_size != root_size && 2562 !mi_resize_attr(mi, attr, new_root_size - root_size)) { 2563 err = -EINVAL; 2564 goto out; 2565 } 2566 2567 /* Fill first entry. */ 2568 e = (struct NTFS_DE *)(root + 1); 2569 e->ref.low = 0; 2570 e->ref.high = 0; 2571 e->ref.seq = 0; 2572 e->size = cpu_to_le16(sizeof(struct NTFS_DE)); 2573 e->flags = NTFS_IE_LAST; // 0x02 2574 e->key_size = 0; 2575 e->res = 0; 2576 2577 hdr = &root->ihdr; 2578 hdr->flags = 0; 2579 hdr->used = hdr->total = cpu_to_le32( 2580 new_root_size - offsetof(struct INDEX_ROOT, ihdr)); 2581 mi->dirty = true; 2582 } 2583 2584 out: 2585 fnd_put(fnd2); 2586 out1: 2587 fnd_put(fnd); 2588 out2: 2589 return err; 2590 } 2591 2592 /* 2593 * Update duplicated information in directory entry 2594 * 'dup' - info from MFT record 2595 */ 2596 int indx_update_dup(struct ntfs_inode *ni, struct ntfs_sb_info *sbi, 2597 const struct ATTR_FILE_NAME *fname, 2598 const struct NTFS_DUP_INFO *dup, int sync) 2599 { 2600 int err, diff; 2601 struct NTFS_DE *e = NULL; 2602 struct ATTR_FILE_NAME *e_fname; 2603 struct ntfs_fnd *fnd; 2604 struct INDEX_ROOT *root; 2605 struct mft_inode *mi; 2606 struct ntfs_index *indx = &ni->dir; 2607 2608 fnd = fnd_get(); 2609 if (!fnd) 2610 return -ENOMEM; 2611 2612 root = indx_get_root(indx, ni, NULL, &mi); 2613 if (!root) { 2614 err = -EINVAL; 2615 goto out; 2616 } 2617 2618 /* Find entry in directory. */ 2619 err = indx_find(indx, ni, root, fname, fname_full_size(fname), sbi, 2620 &diff, &e, fnd); 2621 if (err) 2622 goto out; 2623 2624 if (!e) { 2625 err = -EINVAL; 2626 goto out; 2627 } 2628 2629 if (diff) { 2630 err = -EINVAL; 2631 goto out; 2632 } 2633 2634 e_fname = (struct ATTR_FILE_NAME *)(e + 1); 2635 2636 if (!memcmp(&e_fname->dup, dup, sizeof(*dup))) { 2637 /* 2638 * Nothing to update in index! Try to avoid this call. 2639 */ 2640 goto out; 2641 } 2642 2643 memcpy(&e_fname->dup, dup, sizeof(*dup)); 2644 2645 if (fnd->level) { 2646 /* Directory entry in index. */ 2647 err = indx_write(indx, ni, fnd->nodes[fnd->level - 1], sync); 2648 } else { 2649 /* Directory entry in directory MFT record. */ 2650 mi->dirty = true; 2651 if (sync) 2652 err = mi_write(mi, 1); 2653 else 2654 mark_inode_dirty(&ni->vfs_inode); 2655 } 2656 2657 out: 2658 fnd_put(fnd); 2659 return err; 2660 } 2661