1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * 4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. 5 * 6 */ 7 8 #include <linux/blkdev.h> 9 #include <linux/buffer_head.h> 10 #include <linux/fs.h> 11 #include <linux/kernel.h> 12 13 #include "debug.h" 14 #include "ntfs.h" 15 #include "ntfs_fs.h" 16 17 static const struct INDEX_NAMES { 18 const __le16 *name; 19 u8 name_len; 20 } s_index_names[INDEX_MUTEX_TOTAL] = { 21 { I30_NAME, ARRAY_SIZE(I30_NAME) }, { SII_NAME, ARRAY_SIZE(SII_NAME) }, 22 { SDH_NAME, ARRAY_SIZE(SDH_NAME) }, { SO_NAME, ARRAY_SIZE(SO_NAME) }, 23 { SQ_NAME, ARRAY_SIZE(SQ_NAME) }, { SR_NAME, ARRAY_SIZE(SR_NAME) }, 24 }; 25 26 /* 27 * cmp_fnames - Compare two names in index. 28 * 29 * if l1 != 0 30 * Both names are little endian on-disk ATTR_FILE_NAME structs. 31 * else 32 * key1 - cpu_str, key2 - ATTR_FILE_NAME 33 */ 34 static int cmp_fnames(const void *key1, size_t l1, const void *key2, size_t l2, 35 const void *data) 36 { 37 const struct ATTR_FILE_NAME *f2 = key2; 38 const struct ntfs_sb_info *sbi = data; 39 const struct ATTR_FILE_NAME *f1; 40 u16 fsize2; 41 bool both_case; 42 43 if (l2 <= offsetof(struct ATTR_FILE_NAME, name)) 44 return -1; 45 46 fsize2 = fname_full_size(f2); 47 if (l2 < fsize2) 48 return -1; 49 50 both_case = f2->type != FILE_NAME_DOS && !sbi->options->nocase; 51 if (!l1) { 52 const struct le_str *s2 = (struct le_str *)&f2->name_len; 53 54 /* 55 * If names are equal (case insensitive) 56 * try to compare it case sensitive. 57 */ 58 return ntfs_cmp_names_cpu(key1, s2, sbi->upcase, both_case); 59 } 60 61 f1 = key1; 62 return ntfs_cmp_names(f1->name, f1->name_len, f2->name, f2->name_len, 63 sbi->upcase, both_case); 64 } 65 66 /* 67 * cmp_uint - $SII of $Secure and $Q of Quota 68 */ 69 static int cmp_uint(const void *key1, size_t l1, const void *key2, size_t l2, 70 const void *data) 71 { 72 const u32 *k1 = key1; 73 const u32 *k2 = key2; 74 75 if (l2 < sizeof(u32)) 76 return -1; 77 78 if (*k1 < *k2) 79 return -1; 80 if (*k1 > *k2) 81 return 1; 82 return 0; 83 } 84 85 /* 86 * cmp_sdh - $SDH of $Secure 87 */ 88 static int cmp_sdh(const void *key1, size_t l1, const void *key2, size_t l2, 89 const void *data) 90 { 91 const struct SECURITY_KEY *k1 = key1; 92 const struct SECURITY_KEY *k2 = key2; 93 u32 t1, t2; 94 95 if (l2 < sizeof(struct SECURITY_KEY)) 96 return -1; 97 98 t1 = le32_to_cpu(k1->hash); 99 t2 = le32_to_cpu(k2->hash); 100 101 /* First value is a hash value itself. */ 102 if (t1 < t2) 103 return -1; 104 if (t1 > t2) 105 return 1; 106 107 /* Second value is security Id. */ 108 if (data) { 109 t1 = le32_to_cpu(k1->sec_id); 110 t2 = le32_to_cpu(k2->sec_id); 111 if (t1 < t2) 112 return -1; 113 if (t1 > t2) 114 return 1; 115 } 116 117 return 0; 118 } 119 120 /* 121 * cmp_uints - $O of ObjId and "$R" for Reparse. 122 */ 123 static int cmp_uints(const void *key1, size_t l1, const void *key2, size_t l2, 124 const void *data) 125 { 126 const __le32 *k1 = key1; 127 const __le32 *k2 = key2; 128 size_t count; 129 130 if ((size_t)data == 1) { 131 /* 132 * ni_delete_all -> ntfs_remove_reparse -> 133 * delete all with this reference. 134 * k1, k2 - pointers to REPARSE_KEY 135 */ 136 137 k1 += 1; // Skip REPARSE_KEY.ReparseTag 138 k2 += 1; // Skip REPARSE_KEY.ReparseTag 139 if (l2 <= sizeof(int)) 140 return -1; 141 l2 -= sizeof(int); 142 if (l1 <= sizeof(int)) 143 return 1; 144 l1 -= sizeof(int); 145 } 146 147 if (l2 < sizeof(int)) 148 return -1; 149 150 for (count = min(l1, l2) >> 2; count > 0; --count, ++k1, ++k2) { 151 u32 t1 = le32_to_cpu(*k1); 152 u32 t2 = le32_to_cpu(*k2); 153 154 if (t1 > t2) 155 return 1; 156 if (t1 < t2) 157 return -1; 158 } 159 160 if (l1 > l2) 161 return 1; 162 if (l1 < l2) 163 return -1; 164 165 return 0; 166 } 167 168 static inline NTFS_CMP_FUNC get_cmp_func(const struct INDEX_ROOT *root) 169 { 170 switch (root->type) { 171 case ATTR_NAME: 172 if (root->rule == NTFS_COLLATION_TYPE_FILENAME) 173 return &cmp_fnames; 174 break; 175 case ATTR_ZERO: 176 switch (root->rule) { 177 case NTFS_COLLATION_TYPE_UINT: 178 return &cmp_uint; 179 case NTFS_COLLATION_TYPE_SECURITY_HASH: 180 return &cmp_sdh; 181 case NTFS_COLLATION_TYPE_UINTS: 182 return &cmp_uints; 183 default: 184 break; 185 } 186 break; 187 default: 188 break; 189 } 190 191 return NULL; 192 } 193 194 struct bmp_buf { 195 struct ATTRIB *b; 196 struct mft_inode *mi; 197 struct buffer_head *bh; 198 ulong *buf; 199 size_t bit; 200 u32 nbits; 201 u64 new_valid; 202 }; 203 204 static int bmp_buf_get(struct ntfs_index *indx, struct ntfs_inode *ni, 205 size_t bit, struct bmp_buf *bbuf) 206 { 207 struct ATTRIB *b; 208 size_t data_size, valid_size, vbo, off = bit >> 3; 209 struct ntfs_sb_info *sbi = ni->mi.sbi; 210 CLST vcn = off >> sbi->cluster_bits; 211 struct ATTR_LIST_ENTRY *le = NULL; 212 struct buffer_head *bh; 213 struct super_block *sb; 214 u32 blocksize; 215 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 216 217 bbuf->bh = NULL; 218 219 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len, 220 &vcn, &bbuf->mi); 221 bbuf->b = b; 222 if (!b) 223 return -EINVAL; 224 225 if (!b->non_res) { 226 data_size = le32_to_cpu(b->res.data_size); 227 228 if (off >= data_size) 229 return -EINVAL; 230 231 bbuf->buf = (ulong *)resident_data(b); 232 bbuf->bit = 0; 233 bbuf->nbits = data_size * 8; 234 235 return 0; 236 } 237 238 data_size = le64_to_cpu(b->nres.data_size); 239 if (WARN_ON(off >= data_size)) { 240 /* Looks like filesystem error. */ 241 return -EINVAL; 242 } 243 244 valid_size = le64_to_cpu(b->nres.valid_size); 245 246 bh = ntfs_bread_run(sbi, &indx->bitmap_run, off); 247 if (!bh) 248 return -EIO; 249 250 if (IS_ERR(bh)) 251 return PTR_ERR(bh); 252 253 bbuf->bh = bh; 254 255 if (buffer_locked(bh)) 256 __wait_on_buffer(bh); 257 258 lock_buffer(bh); 259 260 sb = sbi->sb; 261 blocksize = sb->s_blocksize; 262 263 vbo = off & ~(size_t)sbi->block_mask; 264 265 bbuf->new_valid = vbo + blocksize; 266 if (bbuf->new_valid <= valid_size) 267 bbuf->new_valid = 0; 268 else if (bbuf->new_valid > data_size) 269 bbuf->new_valid = data_size; 270 271 if (vbo >= valid_size) { 272 memset(bh->b_data, 0, blocksize); 273 } else if (vbo + blocksize > valid_size) { 274 u32 voff = valid_size & sbi->block_mask; 275 276 memset(bh->b_data + voff, 0, blocksize - voff); 277 } 278 279 bbuf->buf = (ulong *)bh->b_data; 280 bbuf->bit = 8 * (off & ~(size_t)sbi->block_mask); 281 bbuf->nbits = 8 * blocksize; 282 283 return 0; 284 } 285 286 static void bmp_buf_put(struct bmp_buf *bbuf, bool dirty) 287 { 288 struct buffer_head *bh = bbuf->bh; 289 struct ATTRIB *b = bbuf->b; 290 291 if (!bh) { 292 if (b && !b->non_res && dirty) 293 bbuf->mi->dirty = true; 294 return; 295 } 296 297 if (!dirty) 298 goto out; 299 300 if (bbuf->new_valid) { 301 b->nres.valid_size = cpu_to_le64(bbuf->new_valid); 302 bbuf->mi->dirty = true; 303 } 304 305 set_buffer_uptodate(bh); 306 mark_buffer_dirty(bh); 307 308 out: 309 unlock_buffer(bh); 310 put_bh(bh); 311 } 312 313 /* 314 * indx_mark_used - Mark the bit @bit as used. 315 */ 316 static int indx_mark_used(struct ntfs_index *indx, struct ntfs_inode *ni, 317 size_t bit) 318 { 319 int err; 320 struct bmp_buf bbuf; 321 322 err = bmp_buf_get(indx, ni, bit, &bbuf); 323 if (err) 324 return err; 325 326 __set_bit_le(bit - bbuf.bit, bbuf.buf); 327 328 bmp_buf_put(&bbuf, true); 329 330 return 0; 331 } 332 333 /* 334 * indx_mark_free - Mark the bit @bit as free. 335 */ 336 static int indx_mark_free(struct ntfs_index *indx, struct ntfs_inode *ni, 337 size_t bit) 338 { 339 int err; 340 struct bmp_buf bbuf; 341 342 err = bmp_buf_get(indx, ni, bit, &bbuf); 343 if (err) 344 return err; 345 346 __clear_bit_le(bit - bbuf.bit, bbuf.buf); 347 348 bmp_buf_put(&bbuf, true); 349 350 return 0; 351 } 352 353 /* 354 * scan_nres_bitmap 355 * 356 * If ntfs_readdir calls this function (indx_used_bit -> scan_nres_bitmap), 357 * inode is shared locked and no ni_lock. 358 * Use rw_semaphore for read/write access to bitmap_run. 359 */ 360 static int scan_nres_bitmap(struct ntfs_inode *ni, struct ATTRIB *bitmap, 361 struct ntfs_index *indx, size_t from, 362 bool (*fn)(const ulong *buf, u32 bit, u32 bits, 363 size_t *ret), 364 size_t *ret) 365 { 366 struct ntfs_sb_info *sbi = ni->mi.sbi; 367 struct super_block *sb = sbi->sb; 368 struct runs_tree *run = &indx->bitmap_run; 369 struct rw_semaphore *lock = &indx->run_lock; 370 u32 nbits = sb->s_blocksize * 8; 371 u32 blocksize = sb->s_blocksize; 372 u64 valid_size = le64_to_cpu(bitmap->nres.valid_size); 373 u64 data_size = le64_to_cpu(bitmap->nres.data_size); 374 sector_t eblock = bytes_to_block(sb, data_size); 375 size_t vbo = from >> 3; 376 sector_t blk = (vbo & sbi->cluster_mask) >> sb->s_blocksize_bits; 377 sector_t vblock = vbo >> sb->s_blocksize_bits; 378 sector_t blen, block; 379 CLST lcn, clen, vcn, vcn_next; 380 size_t idx; 381 struct buffer_head *bh; 382 bool ok; 383 384 *ret = MINUS_ONE_T; 385 386 if (vblock >= eblock) 387 return 0; 388 389 from &= nbits - 1; 390 vcn = vbo >> sbi->cluster_bits; 391 392 down_read(lock); 393 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx); 394 up_read(lock); 395 396 next_run: 397 if (!ok) { 398 int err; 399 const struct INDEX_NAMES *name = &s_index_names[indx->type]; 400 401 down_write(lock); 402 err = attr_load_runs_vcn(ni, ATTR_BITMAP, name->name, 403 name->name_len, run, vcn); 404 up_write(lock); 405 if (err) 406 return err; 407 down_read(lock); 408 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx); 409 up_read(lock); 410 if (!ok) 411 return -EINVAL; 412 } 413 414 blen = (sector_t)clen * sbi->blocks_per_cluster; 415 block = (sector_t)lcn * sbi->blocks_per_cluster; 416 417 for (; blk < blen; blk++, from = 0) { 418 bh = ntfs_bread(sb, block + blk); 419 if (!bh) 420 return -EIO; 421 422 vbo = (u64)vblock << sb->s_blocksize_bits; 423 if (vbo >= valid_size) { 424 memset(bh->b_data, 0, blocksize); 425 } else if (vbo + blocksize > valid_size) { 426 u32 voff = valid_size & sbi->block_mask; 427 428 memset(bh->b_data + voff, 0, blocksize - voff); 429 } 430 431 if (vbo + blocksize > data_size) 432 nbits = 8 * (data_size - vbo); 433 434 ok = nbits > from ? 435 (*fn)((ulong *)bh->b_data, from, nbits, ret) : 436 false; 437 put_bh(bh); 438 439 if (ok) { 440 *ret += 8 * vbo; 441 return 0; 442 } 443 444 if (++vblock >= eblock) { 445 *ret = MINUS_ONE_T; 446 return 0; 447 } 448 } 449 blk = 0; 450 vcn_next = vcn + clen; 451 down_read(lock); 452 ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && vcn == vcn_next; 453 if (!ok) 454 vcn = vcn_next; 455 up_read(lock); 456 goto next_run; 457 } 458 459 static bool scan_for_free(const ulong *buf, u32 bit, u32 bits, size_t *ret) 460 { 461 size_t pos = find_next_zero_bit_le(buf, bits, bit); 462 463 if (pos >= bits) 464 return false; 465 *ret = pos; 466 return true; 467 } 468 469 /* 470 * indx_find_free - Look for free bit. 471 * 472 * Return: -1 if no free bits. 473 */ 474 static int indx_find_free(struct ntfs_index *indx, struct ntfs_inode *ni, 475 size_t *bit, struct ATTRIB **bitmap) 476 { 477 struct ATTRIB *b; 478 struct ATTR_LIST_ENTRY *le = NULL; 479 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 480 int err; 481 482 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len, 483 NULL, NULL); 484 485 if (!b) 486 return -ENOENT; 487 488 *bitmap = b; 489 *bit = MINUS_ONE_T; 490 491 if (!b->non_res) { 492 u32 nbits = 8 * le32_to_cpu(b->res.data_size); 493 size_t pos = find_next_zero_bit_le(resident_data(b), nbits, 0); 494 495 if (pos < nbits) 496 *bit = pos; 497 } else { 498 err = scan_nres_bitmap(ni, b, indx, 0, &scan_for_free, bit); 499 500 if (err) 501 return err; 502 } 503 504 return 0; 505 } 506 507 static bool scan_for_used(const ulong *buf, u32 bit, u32 bits, size_t *ret) 508 { 509 size_t pos = find_next_bit_le(buf, bits, bit); 510 511 if (pos >= bits) 512 return false; 513 *ret = pos; 514 return true; 515 } 516 517 /* 518 * indx_used_bit - Look for used bit. 519 * 520 * Return: MINUS_ONE_T if no used bits. 521 */ 522 int indx_used_bit(struct ntfs_index *indx, struct ntfs_inode *ni, size_t *bit) 523 { 524 struct ATTRIB *b; 525 struct ATTR_LIST_ENTRY *le = NULL; 526 size_t from = *bit; 527 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 528 int err; 529 530 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len, 531 NULL, NULL); 532 533 if (!b) 534 return -ENOENT; 535 536 *bit = MINUS_ONE_T; 537 538 if (!b->non_res) { 539 u32 nbits = le32_to_cpu(b->res.data_size) * 8; 540 size_t pos = find_next_bit_le(resident_data(b), nbits, from); 541 542 if (pos < nbits) 543 *bit = pos; 544 } else { 545 err = scan_nres_bitmap(ni, b, indx, from, &scan_for_used, bit); 546 if (err) 547 return err; 548 } 549 550 return 0; 551 } 552 553 /* 554 * hdr_find_split 555 * 556 * Find a point at which the index allocation buffer would like to be split. 557 * NOTE: This function should never return 'END' entry NULL returns on error. 558 */ 559 static const struct NTFS_DE *hdr_find_split(const struct INDEX_HDR *hdr) 560 { 561 size_t o; 562 const struct NTFS_DE *e = hdr_first_de(hdr); 563 u32 used_2 = le32_to_cpu(hdr->used) >> 1; 564 u16 esize; 565 566 if (!e || de_is_last(e)) 567 return NULL; 568 569 esize = le16_to_cpu(e->size); 570 for (o = le32_to_cpu(hdr->de_off) + esize; o < used_2; o += esize) { 571 const struct NTFS_DE *p = e; 572 573 e = Add2Ptr(hdr, o); 574 575 /* We must not return END entry. */ 576 if (de_is_last(e)) 577 return p; 578 579 esize = le16_to_cpu(e->size); 580 } 581 582 return e; 583 } 584 585 /* 586 * hdr_insert_head - Insert some entries at the beginning of the buffer. 587 * 588 * It is used to insert entries into a newly-created buffer. 589 */ 590 static const struct NTFS_DE *hdr_insert_head(struct INDEX_HDR *hdr, 591 const void *ins, u32 ins_bytes) 592 { 593 u32 to_move; 594 struct NTFS_DE *e = hdr_first_de(hdr); 595 u32 used = le32_to_cpu(hdr->used); 596 597 if (!e) 598 return NULL; 599 600 /* Now we just make room for the inserted entries and jam it in. */ 601 to_move = used - le32_to_cpu(hdr->de_off); 602 memmove(Add2Ptr(e, ins_bytes), e, to_move); 603 memcpy(e, ins, ins_bytes); 604 hdr->used = cpu_to_le32(used + ins_bytes); 605 606 return e; 607 } 608 609 /* 610 * index_hdr_check 611 * 612 * return true if INDEX_HDR is valid 613 */ 614 static bool index_hdr_check(const struct INDEX_HDR *hdr, u32 bytes) 615 { 616 u32 end = le32_to_cpu(hdr->used); 617 u32 tot = le32_to_cpu(hdr->total); 618 u32 off = le32_to_cpu(hdr->de_off); 619 620 if (!IS_ALIGNED(off, 8) || tot > bytes || end > tot || 621 off + sizeof(struct NTFS_DE) > end) { 622 /* incorrect index buffer. */ 623 return false; 624 } 625 626 return true; 627 } 628 629 /* 630 * index_buf_check 631 * 632 * return true if INDEX_BUFFER seems is valid 633 */ 634 static bool index_buf_check(const struct INDEX_BUFFER *ib, u32 bytes, 635 const CLST *vbn) 636 { 637 const struct NTFS_RECORD_HEADER *rhdr = &ib->rhdr; 638 u16 fo = le16_to_cpu(rhdr->fix_off); 639 u16 fn = le16_to_cpu(rhdr->fix_num); 640 641 if (bytes <= offsetof(struct INDEX_BUFFER, ihdr) || 642 rhdr->sign != NTFS_INDX_SIGNATURE || 643 fo < sizeof(struct INDEX_BUFFER) 644 /* Check index buffer vbn. */ 645 || (vbn && *vbn != le64_to_cpu(ib->vbn)) || (fo % sizeof(short)) || 646 fo + fn * sizeof(short) >= bytes || 647 fn != ((bytes >> SECTOR_SHIFT) + 1)) { 648 /* incorrect index buffer. */ 649 return false; 650 } 651 652 return index_hdr_check(&ib->ihdr, 653 bytes - offsetof(struct INDEX_BUFFER, ihdr)); 654 } 655 656 void fnd_clear(struct ntfs_fnd *fnd) 657 { 658 int i; 659 660 for (i = fnd->level - 1; i >= 0; i--) { 661 struct indx_node *n = fnd->nodes[i]; 662 663 if (!n) 664 continue; 665 666 put_indx_node(n); 667 fnd->nodes[i] = NULL; 668 } 669 fnd->level = 0; 670 fnd->root_de = NULL; 671 } 672 673 static int fnd_push(struct ntfs_fnd *fnd, struct indx_node *n, 674 struct NTFS_DE *e) 675 { 676 int i = fnd->level; 677 678 if (i < 0 || i >= ARRAY_SIZE(fnd->nodes)) 679 return -EINVAL; 680 fnd->nodes[i] = n; 681 fnd->de[i] = e; 682 fnd->level += 1; 683 return 0; 684 } 685 686 static struct indx_node *fnd_pop(struct ntfs_fnd *fnd) 687 { 688 struct indx_node *n; 689 int i = fnd->level; 690 691 i -= 1; 692 n = fnd->nodes[i]; 693 fnd->nodes[i] = NULL; 694 fnd->level = i; 695 696 return n; 697 } 698 699 static bool fnd_is_empty(struct ntfs_fnd *fnd) 700 { 701 if (!fnd->level) 702 return !fnd->root_de; 703 704 return !fnd->de[fnd->level - 1]; 705 } 706 707 /* 708 * hdr_find_e - Locate an entry the index buffer. 709 * 710 * If no matching entry is found, it returns the first entry which is greater 711 * than the desired entry If the search key is greater than all the entries the 712 * buffer, it returns the 'end' entry. This function does a binary search of the 713 * current index buffer, for the first entry that is <= to the search value. 714 * 715 * Return: NULL if error. 716 */ 717 static struct NTFS_DE *hdr_find_e(const struct ntfs_index *indx, 718 const struct INDEX_HDR *hdr, const void *key, 719 size_t key_len, const void *ctx, int *diff) 720 { 721 struct NTFS_DE *e, *found = NULL; 722 NTFS_CMP_FUNC cmp = indx->cmp; 723 int min_idx = 0, mid_idx, max_idx = 0; 724 int diff2; 725 int table_size = 8; 726 u32 e_size, e_key_len; 727 u32 end = le32_to_cpu(hdr->used); 728 u32 off = le32_to_cpu(hdr->de_off); 729 u32 total = le32_to_cpu(hdr->total); 730 u16 offs[128]; 731 732 fill_table: 733 if (end > total) 734 return NULL; 735 736 if (off + sizeof(struct NTFS_DE) > end) 737 return NULL; 738 739 e = Add2Ptr(hdr, off); 740 e_size = le16_to_cpu(e->size); 741 742 if (e_size < sizeof(struct NTFS_DE) || off + e_size > end) 743 return NULL; 744 745 if (!de_is_last(e)) { 746 offs[max_idx] = off; 747 off += e_size; 748 749 max_idx++; 750 if (max_idx < table_size) 751 goto fill_table; 752 753 max_idx--; 754 } 755 756 binary_search: 757 e_key_len = le16_to_cpu(e->key_size); 758 759 diff2 = (*cmp)(key, key_len, e + 1, e_key_len, ctx); 760 if (diff2 > 0) { 761 if (found) { 762 min_idx = mid_idx + 1; 763 } else { 764 if (de_is_last(e)) 765 return NULL; 766 767 max_idx = 0; 768 table_size = min(table_size * 2, (int)ARRAY_SIZE(offs)); 769 goto fill_table; 770 } 771 } else if (diff2 < 0) { 772 if (found) 773 max_idx = mid_idx - 1; 774 else 775 max_idx--; 776 777 found = e; 778 } else { 779 *diff = 0; 780 return e; 781 } 782 783 if (min_idx > max_idx) { 784 *diff = -1; 785 return found; 786 } 787 788 mid_idx = (min_idx + max_idx) >> 1; 789 e = Add2Ptr(hdr, offs[mid_idx]); 790 791 goto binary_search; 792 } 793 794 /* 795 * hdr_insert_de - Insert an index entry into the buffer. 796 * 797 * 'before' should be a pointer previously returned from hdr_find_e. 798 */ 799 static struct NTFS_DE *hdr_insert_de(const struct ntfs_index *indx, 800 struct INDEX_HDR *hdr, 801 const struct NTFS_DE *de, 802 struct NTFS_DE *before, const void *ctx) 803 { 804 int diff; 805 size_t off = PtrOffset(hdr, before); 806 u32 used = le32_to_cpu(hdr->used); 807 u32 total = le32_to_cpu(hdr->total); 808 u16 de_size = le16_to_cpu(de->size); 809 810 /* First, check to see if there's enough room. */ 811 if (used + de_size > total) 812 return NULL; 813 814 /* We know there's enough space, so we know we'll succeed. */ 815 if (before) { 816 /* Check that before is inside Index. */ 817 if (off >= used || off < le32_to_cpu(hdr->de_off) || 818 off + le16_to_cpu(before->size) > total) { 819 return NULL; 820 } 821 goto ok; 822 } 823 /* No insert point is applied. Get it manually. */ 824 before = hdr_find_e(indx, hdr, de + 1, le16_to_cpu(de->key_size), ctx, 825 &diff); 826 if (!before) 827 return NULL; 828 off = PtrOffset(hdr, before); 829 830 ok: 831 /* Now we just make room for the entry and jam it in. */ 832 memmove(Add2Ptr(before, de_size), before, used - off); 833 834 hdr->used = cpu_to_le32(used + de_size); 835 memcpy(before, de, de_size); 836 837 return before; 838 } 839 840 /* 841 * hdr_delete_de - Remove an entry from the index buffer. 842 */ 843 static inline struct NTFS_DE *hdr_delete_de(struct INDEX_HDR *hdr, 844 struct NTFS_DE *re) 845 { 846 u32 used = le32_to_cpu(hdr->used); 847 u16 esize = le16_to_cpu(re->size); 848 u32 off = PtrOffset(hdr, re); 849 int bytes = used - (off + esize); 850 851 /* check INDEX_HDR valid before using INDEX_HDR */ 852 if (!check_index_header(hdr, le32_to_cpu(hdr->total))) 853 return NULL; 854 855 if (off >= used || esize < sizeof(struct NTFS_DE) || 856 bytes < sizeof(struct NTFS_DE)) 857 return NULL; 858 859 hdr->used = cpu_to_le32(used - esize); 860 memmove(re, Add2Ptr(re, esize), bytes); 861 862 return re; 863 } 864 865 void indx_clear(struct ntfs_index *indx) 866 { 867 run_close(&indx->alloc_run); 868 run_close(&indx->bitmap_run); 869 } 870 871 int indx_init(struct ntfs_index *indx, struct ntfs_sb_info *sbi, 872 const struct ATTRIB *attr, enum index_mutex_classed type) 873 { 874 u32 t32; 875 const struct INDEX_ROOT *root = resident_data(attr); 876 877 t32 = le32_to_cpu(attr->res.data_size); 878 if (t32 <= offsetof(struct INDEX_ROOT, ihdr) || 879 !index_hdr_check(&root->ihdr, 880 t32 - offsetof(struct INDEX_ROOT, ihdr))) { 881 goto out; 882 } 883 884 /* Check root fields. */ 885 if (!root->index_block_clst) 886 goto out; 887 888 indx->type = type; 889 indx->idx2vbn_bits = __ffs(root->index_block_clst); 890 891 t32 = le32_to_cpu(root->index_block_size); 892 indx->index_bits = blksize_bits(t32); 893 894 /* Check index record size. */ 895 if (t32 < sbi->cluster_size) { 896 /* Index record is smaller than a cluster, use 512 blocks. */ 897 if (t32 != root->index_block_clst * SECTOR_SIZE) 898 goto out; 899 900 /* Check alignment to a cluster. */ 901 if ((sbi->cluster_size >> SECTOR_SHIFT) & 902 (root->index_block_clst - 1)) { 903 goto out; 904 } 905 906 indx->vbn2vbo_bits = SECTOR_SHIFT; 907 } else { 908 /* Index record must be a multiple of cluster size. */ 909 if (t32 != root->index_block_clst << sbi->cluster_bits) 910 goto out; 911 912 indx->vbn2vbo_bits = sbi->cluster_bits; 913 } 914 915 init_rwsem(&indx->run_lock); 916 917 indx->cmp = get_cmp_func(root); 918 if (!indx->cmp) 919 goto out; 920 921 return 0; 922 923 out: 924 ntfs_set_state(sbi, NTFS_DIRTY_DIRTY); 925 return -EINVAL; 926 } 927 928 static struct indx_node *indx_new(struct ntfs_index *indx, 929 struct ntfs_inode *ni, CLST vbn, 930 const __le64 *sub_vbn) 931 { 932 int err; 933 struct NTFS_DE *e; 934 struct indx_node *r; 935 struct INDEX_HDR *hdr; 936 struct INDEX_BUFFER *index; 937 u64 vbo = (u64)vbn << indx->vbn2vbo_bits; 938 u32 bytes = 1u << indx->index_bits; 939 u16 fn; 940 u32 eo; 941 942 r = kzalloc(sizeof(struct indx_node), GFP_NOFS); 943 if (!r) 944 return ERR_PTR(-ENOMEM); 945 946 index = kzalloc(bytes, GFP_NOFS); 947 if (!index) { 948 kfree(r); 949 return ERR_PTR(-ENOMEM); 950 } 951 952 err = ntfs_get_bh(ni->mi.sbi, &indx->alloc_run, vbo, bytes, &r->nb); 953 954 if (err) { 955 kfree(index); 956 kfree(r); 957 return ERR_PTR(err); 958 } 959 960 /* Create header. */ 961 index->rhdr.sign = NTFS_INDX_SIGNATURE; 962 index->rhdr.fix_off = cpu_to_le16(sizeof(struct INDEX_BUFFER)); // 0x28 963 fn = (bytes >> SECTOR_SHIFT) + 1; // 9 964 index->rhdr.fix_num = cpu_to_le16(fn); 965 index->vbn = cpu_to_le64(vbn); 966 hdr = &index->ihdr; 967 eo = ALIGN(sizeof(struct INDEX_BUFFER) + fn * sizeof(short), 8); 968 hdr->de_off = cpu_to_le32(eo); 969 970 e = Add2Ptr(hdr, eo); 971 972 if (sub_vbn) { 973 e->flags = NTFS_IE_LAST | NTFS_IE_HAS_SUBNODES; 974 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64)); 975 hdr->used = 976 cpu_to_le32(eo + sizeof(struct NTFS_DE) + sizeof(u64)); 977 de_set_vbn_le(e, *sub_vbn); 978 hdr->flags = 1; 979 } else { 980 e->size = cpu_to_le16(sizeof(struct NTFS_DE)); 981 hdr->used = cpu_to_le32(eo + sizeof(struct NTFS_DE)); 982 e->flags = NTFS_IE_LAST; 983 } 984 985 hdr->total = cpu_to_le32(bytes - offsetof(struct INDEX_BUFFER, ihdr)); 986 987 r->index = index; 988 return r; 989 } 990 991 struct INDEX_ROOT *indx_get_root(struct ntfs_index *indx, struct ntfs_inode *ni, 992 struct ATTRIB **attr, struct mft_inode **mi) 993 { 994 struct ATTR_LIST_ENTRY *le = NULL; 995 struct ATTRIB *a; 996 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 997 struct INDEX_ROOT *root; 998 999 a = ni_find_attr(ni, NULL, &le, ATTR_ROOT, in->name, in->name_len, NULL, 1000 mi); 1001 if (!a) 1002 return NULL; 1003 1004 if (attr) 1005 *attr = a; 1006 1007 root = resident_data_ex(a, sizeof(struct INDEX_ROOT)); 1008 1009 /* length check */ 1010 if (root && 1011 offsetof(struct INDEX_ROOT, ihdr) + le32_to_cpu(root->ihdr.used) > 1012 le32_to_cpu(a->res.data_size)) { 1013 return NULL; 1014 } 1015 1016 return root; 1017 } 1018 1019 static int indx_write(struct ntfs_index *indx, struct ntfs_inode *ni, 1020 struct indx_node *node, int sync) 1021 { 1022 struct INDEX_BUFFER *ib = node->index; 1023 1024 return ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &node->nb, sync); 1025 } 1026 1027 /* 1028 * indx_read 1029 * 1030 * If ntfs_readdir calls this function 1031 * inode is shared locked and no ni_lock. 1032 * Use rw_semaphore for read/write access to alloc_run. 1033 */ 1034 int indx_read(struct ntfs_index *indx, struct ntfs_inode *ni, CLST vbn, 1035 struct indx_node **node) 1036 { 1037 int err; 1038 struct INDEX_BUFFER *ib; 1039 struct runs_tree *run = &indx->alloc_run; 1040 struct rw_semaphore *lock = &indx->run_lock; 1041 u64 vbo = (u64)vbn << indx->vbn2vbo_bits; 1042 u32 bytes = 1u << indx->index_bits; 1043 struct indx_node *in = *node; 1044 const struct INDEX_NAMES *name; 1045 1046 if (!in) { 1047 in = kzalloc(sizeof(struct indx_node), GFP_NOFS); 1048 if (!in) 1049 return -ENOMEM; 1050 } else { 1051 nb_put(&in->nb); 1052 } 1053 1054 ib = in->index; 1055 if (!ib) { 1056 ib = kmalloc(bytes, GFP_NOFS); 1057 if (!ib) { 1058 err = -ENOMEM; 1059 goto out; 1060 } 1061 } 1062 1063 down_read(lock); 1064 err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb); 1065 up_read(lock); 1066 if (!err) 1067 goto ok; 1068 1069 if (err == -E_NTFS_FIXUP) 1070 goto ok; 1071 1072 if (err != -ENOENT) 1073 goto out; 1074 1075 name = &s_index_names[indx->type]; 1076 down_write(lock); 1077 err = attr_load_runs_range(ni, ATTR_ALLOC, name->name, name->name_len, 1078 run, vbo, vbo + bytes); 1079 up_write(lock); 1080 if (err) 1081 goto out; 1082 1083 down_read(lock); 1084 err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb); 1085 up_read(lock); 1086 if (err == -E_NTFS_FIXUP) 1087 goto ok; 1088 1089 if (err) 1090 goto out; 1091 1092 ok: 1093 if (!index_buf_check(ib, bytes, &vbn)) { 1094 ntfs_inode_err(&ni->vfs_inode, "directory corrupted"); 1095 ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR); 1096 err = -EINVAL; 1097 goto out; 1098 } 1099 1100 if (err == -E_NTFS_FIXUP) { 1101 ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &in->nb, 0); 1102 err = 0; 1103 } 1104 1105 /* check for index header length */ 1106 if (offsetof(struct INDEX_BUFFER, ihdr) + le32_to_cpu(ib->ihdr.used) > 1107 bytes) { 1108 err = -EINVAL; 1109 goto out; 1110 } 1111 1112 in->index = ib; 1113 *node = in; 1114 1115 out: 1116 if (ib != in->index) 1117 kfree(ib); 1118 1119 if (*node != in) { 1120 nb_put(&in->nb); 1121 kfree(in); 1122 } 1123 1124 return err; 1125 } 1126 1127 /* 1128 * indx_find - Scan NTFS directory for given entry. 1129 */ 1130 int indx_find(struct ntfs_index *indx, struct ntfs_inode *ni, 1131 const struct INDEX_ROOT *root, const void *key, size_t key_len, 1132 const void *ctx, int *diff, struct NTFS_DE **entry, 1133 struct ntfs_fnd *fnd) 1134 { 1135 int err; 1136 struct NTFS_DE *e; 1137 struct indx_node *node; 1138 1139 if (!root) 1140 root = indx_get_root(&ni->dir, ni, NULL, NULL); 1141 1142 if (!root) { 1143 /* Should not happen. */ 1144 return -EINVAL; 1145 } 1146 1147 /* Check cache. */ 1148 e = fnd->level ? fnd->de[fnd->level - 1] : fnd->root_de; 1149 if (e && !de_is_last(e) && 1150 !(*indx->cmp)(key, key_len, e + 1, le16_to_cpu(e->key_size), ctx)) { 1151 *entry = e; 1152 *diff = 0; 1153 return 0; 1154 } 1155 1156 /* Soft finder reset. */ 1157 fnd_clear(fnd); 1158 1159 /* Lookup entry that is <= to the search value. */ 1160 e = hdr_find_e(indx, &root->ihdr, key, key_len, ctx, diff); 1161 if (!e) 1162 return -EINVAL; 1163 1164 fnd->root_de = e; 1165 1166 for (;;) { 1167 node = NULL; 1168 if (*diff >= 0 || !de_has_vcn_ex(e)) 1169 break; 1170 1171 /* Read next level. */ 1172 err = indx_read(indx, ni, de_get_vbn(e), &node); 1173 if (err) { 1174 /* io error? */ 1175 return err; 1176 } 1177 1178 /* Lookup entry that is <= to the search value. */ 1179 e = hdr_find_e(indx, &node->index->ihdr, key, key_len, ctx, 1180 diff); 1181 if (!e) { 1182 put_indx_node(node); 1183 return -EINVAL; 1184 } 1185 1186 fnd_push(fnd, node, e); 1187 } 1188 1189 *entry = e; 1190 return 0; 1191 } 1192 1193 int indx_find_sort(struct ntfs_index *indx, struct ntfs_inode *ni, 1194 const struct INDEX_ROOT *root, struct NTFS_DE **entry, 1195 struct ntfs_fnd *fnd) 1196 { 1197 int err; 1198 struct indx_node *n = NULL; 1199 struct NTFS_DE *e; 1200 size_t iter = 0; 1201 int level = fnd->level; 1202 1203 if (!*entry) { 1204 /* Start find. */ 1205 e = hdr_first_de(&root->ihdr); 1206 if (!e) 1207 return 0; 1208 fnd_clear(fnd); 1209 fnd->root_de = e; 1210 } else if (!level) { 1211 if (de_is_last(fnd->root_de)) { 1212 *entry = NULL; 1213 return 0; 1214 } 1215 1216 e = hdr_next_de(&root->ihdr, fnd->root_de); 1217 if (!e) 1218 return -EINVAL; 1219 fnd->root_de = e; 1220 } else { 1221 n = fnd->nodes[level - 1]; 1222 e = fnd->de[level - 1]; 1223 1224 if (de_is_last(e)) 1225 goto pop_level; 1226 1227 e = hdr_next_de(&n->index->ihdr, e); 1228 if (!e) 1229 return -EINVAL; 1230 1231 fnd->de[level - 1] = e; 1232 } 1233 1234 /* Just to avoid tree cycle. */ 1235 next_iter: 1236 if (iter++ >= 1000) 1237 return -EINVAL; 1238 1239 while (de_has_vcn_ex(e)) { 1240 if (le16_to_cpu(e->size) < 1241 sizeof(struct NTFS_DE) + sizeof(u64)) { 1242 if (n) { 1243 fnd_pop(fnd); 1244 kfree(n); 1245 } 1246 return -EINVAL; 1247 } 1248 1249 /* Read next level. */ 1250 err = indx_read(indx, ni, de_get_vbn(e), &n); 1251 if (err) 1252 return err; 1253 1254 /* Try next level. */ 1255 e = hdr_first_de(&n->index->ihdr); 1256 if (!e) { 1257 kfree(n); 1258 return -EINVAL; 1259 } 1260 1261 fnd_push(fnd, n, e); 1262 } 1263 1264 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) { 1265 *entry = e; 1266 return 0; 1267 } 1268 1269 pop_level: 1270 for (;;) { 1271 if (!de_is_last(e)) 1272 goto next_iter; 1273 1274 /* Pop one level. */ 1275 if (n) { 1276 fnd_pop(fnd); 1277 kfree(n); 1278 } 1279 1280 level = fnd->level; 1281 1282 if (level) { 1283 n = fnd->nodes[level - 1]; 1284 e = fnd->de[level - 1]; 1285 } else if (fnd->root_de) { 1286 n = NULL; 1287 e = fnd->root_de; 1288 fnd->root_de = NULL; 1289 } else { 1290 *entry = NULL; 1291 return 0; 1292 } 1293 1294 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) { 1295 *entry = e; 1296 if (!fnd->root_de) 1297 fnd->root_de = e; 1298 return 0; 1299 } 1300 } 1301 } 1302 1303 int indx_find_raw(struct ntfs_index *indx, struct ntfs_inode *ni, 1304 const struct INDEX_ROOT *root, struct NTFS_DE **entry, 1305 size_t *off, struct ntfs_fnd *fnd) 1306 { 1307 int err; 1308 struct indx_node *n = NULL; 1309 struct NTFS_DE *e = NULL; 1310 struct NTFS_DE *e2; 1311 size_t bit; 1312 CLST next_used_vbn; 1313 CLST next_vbn; 1314 u32 record_size = ni->mi.sbi->record_size; 1315 1316 /* Use non sorted algorithm. */ 1317 if (!*entry) { 1318 /* This is the first call. */ 1319 e = hdr_first_de(&root->ihdr); 1320 if (!e) 1321 return 0; 1322 fnd_clear(fnd); 1323 fnd->root_de = e; 1324 1325 /* The first call with setup of initial element. */ 1326 if (*off >= record_size) { 1327 next_vbn = (((*off - record_size) >> indx->index_bits)) 1328 << indx->idx2vbn_bits; 1329 /* Jump inside cycle 'for'. */ 1330 goto next; 1331 } 1332 1333 /* Start enumeration from root. */ 1334 *off = 0; 1335 } else if (!fnd->root_de) 1336 return -EINVAL; 1337 1338 for (;;) { 1339 /* Check if current entry can be used. */ 1340 if (e && le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) 1341 goto ok; 1342 1343 if (!fnd->level) { 1344 /* Continue to enumerate root. */ 1345 if (!de_is_last(fnd->root_de)) { 1346 e = hdr_next_de(&root->ihdr, fnd->root_de); 1347 if (!e) 1348 return -EINVAL; 1349 fnd->root_de = e; 1350 continue; 1351 } 1352 1353 /* Start to enumerate indexes from 0. */ 1354 next_vbn = 0; 1355 } else { 1356 /* Continue to enumerate indexes. */ 1357 e2 = fnd->de[fnd->level - 1]; 1358 1359 n = fnd->nodes[fnd->level - 1]; 1360 1361 if (!de_is_last(e2)) { 1362 e = hdr_next_de(&n->index->ihdr, e2); 1363 if (!e) 1364 return -EINVAL; 1365 fnd->de[fnd->level - 1] = e; 1366 continue; 1367 } 1368 1369 /* Continue with next index. */ 1370 next_vbn = le64_to_cpu(n->index->vbn) + 1371 root->index_block_clst; 1372 } 1373 1374 next: 1375 /* Release current index. */ 1376 if (n) { 1377 fnd_pop(fnd); 1378 put_indx_node(n); 1379 n = NULL; 1380 } 1381 1382 /* Skip all free indexes. */ 1383 bit = next_vbn >> indx->idx2vbn_bits; 1384 err = indx_used_bit(indx, ni, &bit); 1385 if (err == -ENOENT || bit == MINUS_ONE_T) { 1386 /* No used indexes. */ 1387 *entry = NULL; 1388 return 0; 1389 } 1390 1391 next_used_vbn = bit << indx->idx2vbn_bits; 1392 1393 /* Read buffer into memory. */ 1394 err = indx_read(indx, ni, next_used_vbn, &n); 1395 if (err) 1396 return err; 1397 1398 e = hdr_first_de(&n->index->ihdr); 1399 fnd_push(fnd, n, e); 1400 if (!e) 1401 return -EINVAL; 1402 } 1403 1404 ok: 1405 /* Return offset to restore enumerator if necessary. */ 1406 if (!n) { 1407 /* 'e' points in root, */ 1408 *off = PtrOffset(&root->ihdr, e); 1409 } else { 1410 /* 'e' points in index, */ 1411 *off = (le64_to_cpu(n->index->vbn) << indx->vbn2vbo_bits) + 1412 record_size + PtrOffset(&n->index->ihdr, e); 1413 } 1414 1415 *entry = e; 1416 return 0; 1417 } 1418 1419 /* 1420 * indx_create_allocate - Create "Allocation + Bitmap" attributes. 1421 */ 1422 static int indx_create_allocate(struct ntfs_index *indx, struct ntfs_inode *ni, 1423 CLST *vbn) 1424 { 1425 int err; 1426 struct ntfs_sb_info *sbi = ni->mi.sbi; 1427 struct ATTRIB *bitmap; 1428 struct ATTRIB *alloc; 1429 u32 data_size = 1u << indx->index_bits; 1430 u32 alloc_size = ntfs_up_cluster(sbi, data_size); 1431 CLST len = alloc_size >> sbi->cluster_bits; 1432 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 1433 CLST alen; 1434 struct runs_tree run; 1435 1436 run_init(&run); 1437 1438 err = attr_allocate_clusters(sbi, &run, 0, 0, len, NULL, ALLOCATE_DEF, 1439 &alen, 0, NULL, NULL); 1440 if (err) 1441 goto out; 1442 1443 err = ni_insert_nonresident(ni, ATTR_ALLOC, in->name, in->name_len, 1444 &run, 0, len, 0, &alloc, NULL, NULL); 1445 if (err) 1446 goto out1; 1447 1448 alloc->nres.valid_size = alloc->nres.data_size = cpu_to_le64(data_size); 1449 1450 err = ni_insert_resident(ni, bitmap_size(1), ATTR_BITMAP, in->name, 1451 in->name_len, &bitmap, NULL, NULL); 1452 if (err) 1453 goto out2; 1454 1455 if (in->name == I30_NAME) { 1456 ni->vfs_inode.i_size = data_size; 1457 inode_set_bytes(&ni->vfs_inode, alloc_size); 1458 } 1459 1460 memcpy(&indx->alloc_run, &run, sizeof(run)); 1461 1462 *vbn = 0; 1463 1464 return 0; 1465 1466 out2: 1467 mi_remove_attr(NULL, &ni->mi, alloc); 1468 1469 out1: 1470 run_deallocate(sbi, &run, false); 1471 1472 out: 1473 return err; 1474 } 1475 1476 /* 1477 * indx_add_allocate - Add clusters to index. 1478 */ 1479 static int indx_add_allocate(struct ntfs_index *indx, struct ntfs_inode *ni, 1480 CLST *vbn) 1481 { 1482 int err; 1483 size_t bit; 1484 u64 data_size; 1485 u64 bmp_size, bmp_size_v; 1486 struct ATTRIB *bmp, *alloc; 1487 struct mft_inode *mi; 1488 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 1489 1490 err = indx_find_free(indx, ni, &bit, &bmp); 1491 if (err) 1492 goto out1; 1493 1494 if (bit != MINUS_ONE_T) { 1495 bmp = NULL; 1496 } else { 1497 if (bmp->non_res) { 1498 bmp_size = le64_to_cpu(bmp->nres.data_size); 1499 bmp_size_v = le64_to_cpu(bmp->nres.valid_size); 1500 } else { 1501 bmp_size = bmp_size_v = le32_to_cpu(bmp->res.data_size); 1502 } 1503 1504 bit = bmp_size << 3; 1505 } 1506 1507 data_size = (u64)(bit + 1) << indx->index_bits; 1508 1509 if (bmp) { 1510 /* Increase bitmap. */ 1511 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len, 1512 &indx->bitmap_run, bitmap_size(bit + 1), 1513 NULL, true, NULL); 1514 if (err) 1515 goto out1; 1516 } 1517 1518 alloc = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, in->name, in->name_len, 1519 NULL, &mi); 1520 if (!alloc) { 1521 err = -EINVAL; 1522 if (bmp) 1523 goto out2; 1524 goto out1; 1525 } 1526 1527 /* Increase allocation. */ 1528 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len, 1529 &indx->alloc_run, data_size, &data_size, true, 1530 NULL); 1531 if (err) { 1532 if (bmp) 1533 goto out2; 1534 goto out1; 1535 } 1536 1537 if (in->name == I30_NAME) 1538 ni->vfs_inode.i_size = data_size; 1539 1540 *vbn = bit << indx->idx2vbn_bits; 1541 1542 return 0; 1543 1544 out2: 1545 /* Ops. No space? */ 1546 attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len, 1547 &indx->bitmap_run, bmp_size, &bmp_size_v, false, NULL); 1548 1549 out1: 1550 return err; 1551 } 1552 1553 /* 1554 * indx_insert_into_root - Attempt to insert an entry into the index root. 1555 * 1556 * @undo - True if we undoing previous remove. 1557 * If necessary, it will twiddle the index b-tree. 1558 */ 1559 static int indx_insert_into_root(struct ntfs_index *indx, struct ntfs_inode *ni, 1560 const struct NTFS_DE *new_de, 1561 struct NTFS_DE *root_de, const void *ctx, 1562 struct ntfs_fnd *fnd, bool undo) 1563 { 1564 int err = 0; 1565 struct NTFS_DE *e, *e0, *re; 1566 struct mft_inode *mi; 1567 struct ATTRIB *attr; 1568 struct INDEX_HDR *hdr; 1569 struct indx_node *n; 1570 CLST new_vbn; 1571 __le64 *sub_vbn, t_vbn; 1572 u16 new_de_size; 1573 u32 hdr_used, hdr_total, asize, to_move; 1574 u32 root_size, new_root_size; 1575 struct ntfs_sb_info *sbi; 1576 int ds_root; 1577 struct INDEX_ROOT *root, *a_root; 1578 1579 /* Get the record this root placed in. */ 1580 root = indx_get_root(indx, ni, &attr, &mi); 1581 if (!root) 1582 return -EINVAL; 1583 1584 /* 1585 * Try easy case: 1586 * hdr_insert_de will succeed if there's 1587 * room the root for the new entry. 1588 */ 1589 hdr = &root->ihdr; 1590 sbi = ni->mi.sbi; 1591 new_de_size = le16_to_cpu(new_de->size); 1592 hdr_used = le32_to_cpu(hdr->used); 1593 hdr_total = le32_to_cpu(hdr->total); 1594 asize = le32_to_cpu(attr->size); 1595 root_size = le32_to_cpu(attr->res.data_size); 1596 1597 ds_root = new_de_size + hdr_used - hdr_total; 1598 1599 /* If 'undo' is set then reduce requirements. */ 1600 if ((undo || asize + ds_root < sbi->max_bytes_per_attr) && 1601 mi_resize_attr(mi, attr, ds_root)) { 1602 hdr->total = cpu_to_le32(hdr_total + ds_root); 1603 e = hdr_insert_de(indx, hdr, new_de, root_de, ctx); 1604 WARN_ON(!e); 1605 fnd_clear(fnd); 1606 fnd->root_de = e; 1607 1608 return 0; 1609 } 1610 1611 /* Make a copy of root attribute to restore if error. */ 1612 a_root = kmemdup(attr, asize, GFP_NOFS); 1613 if (!a_root) 1614 return -ENOMEM; 1615 1616 /* 1617 * Copy all the non-end entries from 1618 * the index root to the new buffer. 1619 */ 1620 to_move = 0; 1621 e0 = hdr_first_de(hdr); 1622 1623 /* Calculate the size to copy. */ 1624 for (e = e0;; e = hdr_next_de(hdr, e)) { 1625 if (!e) { 1626 err = -EINVAL; 1627 goto out_free_root; 1628 } 1629 1630 if (de_is_last(e)) 1631 break; 1632 to_move += le16_to_cpu(e->size); 1633 } 1634 1635 if (!to_move) { 1636 re = NULL; 1637 } else { 1638 re = kmemdup(e0, to_move, GFP_NOFS); 1639 if (!re) { 1640 err = -ENOMEM; 1641 goto out_free_root; 1642 } 1643 } 1644 1645 sub_vbn = NULL; 1646 if (de_has_vcn(e)) { 1647 t_vbn = de_get_vbn_le(e); 1648 sub_vbn = &t_vbn; 1649 } 1650 1651 new_root_size = sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE) + 1652 sizeof(u64); 1653 ds_root = new_root_size - root_size; 1654 1655 if (ds_root > 0 && asize + ds_root > sbi->max_bytes_per_attr) { 1656 /* Make root external. */ 1657 err = -EOPNOTSUPP; 1658 goto out_free_re; 1659 } 1660 1661 if (ds_root) 1662 mi_resize_attr(mi, attr, ds_root); 1663 1664 /* Fill first entry (vcn will be set later). */ 1665 e = (struct NTFS_DE *)(root + 1); 1666 memset(e, 0, sizeof(struct NTFS_DE)); 1667 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64)); 1668 e->flags = NTFS_IE_HAS_SUBNODES | NTFS_IE_LAST; 1669 1670 hdr->flags = 1; 1671 hdr->used = hdr->total = 1672 cpu_to_le32(new_root_size - offsetof(struct INDEX_ROOT, ihdr)); 1673 1674 fnd->root_de = hdr_first_de(hdr); 1675 mi->dirty = true; 1676 1677 /* Create alloc and bitmap attributes (if not). */ 1678 err = run_is_empty(&indx->alloc_run) ? 1679 indx_create_allocate(indx, ni, &new_vbn) : 1680 indx_add_allocate(indx, ni, &new_vbn); 1681 1682 /* Layout of record may be changed, so rescan root. */ 1683 root = indx_get_root(indx, ni, &attr, &mi); 1684 if (!root) { 1685 /* Bug? */ 1686 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 1687 err = -EINVAL; 1688 goto out_free_re; 1689 } 1690 1691 if (err) { 1692 /* Restore root. */ 1693 if (mi_resize_attr(mi, attr, -ds_root)) { 1694 memcpy(attr, a_root, asize); 1695 } else { 1696 /* Bug? */ 1697 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 1698 } 1699 goto out_free_re; 1700 } 1701 1702 e = (struct NTFS_DE *)(root + 1); 1703 *(__le64 *)(e + 1) = cpu_to_le64(new_vbn); 1704 mi->dirty = true; 1705 1706 /* Now we can create/format the new buffer and copy the entries into. */ 1707 n = indx_new(indx, ni, new_vbn, sub_vbn); 1708 if (IS_ERR(n)) { 1709 err = PTR_ERR(n); 1710 goto out_free_re; 1711 } 1712 1713 hdr = &n->index->ihdr; 1714 hdr_used = le32_to_cpu(hdr->used); 1715 hdr_total = le32_to_cpu(hdr->total); 1716 1717 /* Copy root entries into new buffer. */ 1718 hdr_insert_head(hdr, re, to_move); 1719 1720 /* Update bitmap attribute. */ 1721 indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits); 1722 1723 /* Check if we can insert new entry new index buffer. */ 1724 if (hdr_used + new_de_size > hdr_total) { 1725 /* 1726 * This occurs if MFT record is the same or bigger than index 1727 * buffer. Move all root new index and have no space to add 1728 * new entry classic case when MFT record is 1K and index 1729 * buffer 4K the problem should not occurs. 1730 */ 1731 kfree(re); 1732 indx_write(indx, ni, n, 0); 1733 1734 put_indx_node(n); 1735 fnd_clear(fnd); 1736 err = indx_insert_entry(indx, ni, new_de, ctx, fnd, undo); 1737 goto out_free_root; 1738 } 1739 1740 /* 1741 * Now root is a parent for new index buffer. 1742 * Insert NewEntry a new buffer. 1743 */ 1744 e = hdr_insert_de(indx, hdr, new_de, NULL, ctx); 1745 if (!e) { 1746 err = -EINVAL; 1747 goto out_put_n; 1748 } 1749 fnd_push(fnd, n, e); 1750 1751 /* Just write updates index into disk. */ 1752 indx_write(indx, ni, n, 0); 1753 1754 n = NULL; 1755 1756 out_put_n: 1757 put_indx_node(n); 1758 out_free_re: 1759 kfree(re); 1760 out_free_root: 1761 kfree(a_root); 1762 return err; 1763 } 1764 1765 /* 1766 * indx_insert_into_buffer 1767 * 1768 * Attempt to insert an entry into an Index Allocation Buffer. 1769 * If necessary, it will split the buffer. 1770 */ 1771 static int 1772 indx_insert_into_buffer(struct ntfs_index *indx, struct ntfs_inode *ni, 1773 struct INDEX_ROOT *root, const struct NTFS_DE *new_de, 1774 const void *ctx, int level, struct ntfs_fnd *fnd) 1775 { 1776 int err; 1777 const struct NTFS_DE *sp; 1778 struct NTFS_DE *e, *de_t, *up_e; 1779 struct indx_node *n2; 1780 struct indx_node *n1 = fnd->nodes[level]; 1781 struct INDEX_HDR *hdr1 = &n1->index->ihdr; 1782 struct INDEX_HDR *hdr2; 1783 u32 to_copy, used, used1; 1784 CLST new_vbn; 1785 __le64 t_vbn, *sub_vbn; 1786 u16 sp_size; 1787 void *hdr1_saved = NULL; 1788 1789 /* Try the most easy case. */ 1790 e = fnd->level - 1 == level ? fnd->de[level] : NULL; 1791 e = hdr_insert_de(indx, hdr1, new_de, e, ctx); 1792 fnd->de[level] = e; 1793 if (e) { 1794 /* Just write updated index into disk. */ 1795 indx_write(indx, ni, n1, 0); 1796 return 0; 1797 } 1798 1799 /* 1800 * No space to insert into buffer. Split it. 1801 * To split we: 1802 * - Save split point ('cause index buffers will be changed) 1803 * - Allocate NewBuffer and copy all entries <= sp into new buffer 1804 * - Remove all entries (sp including) from TargetBuffer 1805 * - Insert NewEntry into left or right buffer (depending on sp <=> 1806 * NewEntry) 1807 * - Insert sp into parent buffer (or root) 1808 * - Make sp a parent for new buffer 1809 */ 1810 sp = hdr_find_split(hdr1); 1811 if (!sp) 1812 return -EINVAL; 1813 1814 sp_size = le16_to_cpu(sp->size); 1815 up_e = kmalloc(sp_size + sizeof(u64), GFP_NOFS); 1816 if (!up_e) 1817 return -ENOMEM; 1818 memcpy(up_e, sp, sp_size); 1819 1820 used1 = le32_to_cpu(hdr1->used); 1821 hdr1_saved = kmemdup(hdr1, used1, GFP_NOFS); 1822 if (!hdr1_saved) { 1823 err = -ENOMEM; 1824 goto out; 1825 } 1826 1827 if (!hdr1->flags) { 1828 up_e->flags |= NTFS_IE_HAS_SUBNODES; 1829 up_e->size = cpu_to_le16(sp_size + sizeof(u64)); 1830 sub_vbn = NULL; 1831 } else { 1832 t_vbn = de_get_vbn_le(up_e); 1833 sub_vbn = &t_vbn; 1834 } 1835 1836 /* Allocate on disk a new index allocation buffer. */ 1837 err = indx_add_allocate(indx, ni, &new_vbn); 1838 if (err) 1839 goto out; 1840 1841 /* Allocate and format memory a new index buffer. */ 1842 n2 = indx_new(indx, ni, new_vbn, sub_vbn); 1843 if (IS_ERR(n2)) { 1844 err = PTR_ERR(n2); 1845 goto out; 1846 } 1847 1848 hdr2 = &n2->index->ihdr; 1849 1850 /* Make sp a parent for new buffer. */ 1851 de_set_vbn(up_e, new_vbn); 1852 1853 /* Copy all the entries <= sp into the new buffer. */ 1854 de_t = hdr_first_de(hdr1); 1855 to_copy = PtrOffset(de_t, sp); 1856 hdr_insert_head(hdr2, de_t, to_copy); 1857 1858 /* Remove all entries (sp including) from hdr1. */ 1859 used = used1 - to_copy - sp_size; 1860 memmove(de_t, Add2Ptr(sp, sp_size), used - le32_to_cpu(hdr1->de_off)); 1861 hdr1->used = cpu_to_le32(used); 1862 1863 /* 1864 * Insert new entry into left or right buffer 1865 * (depending on sp <=> new_de). 1866 */ 1867 hdr_insert_de(indx, 1868 (*indx->cmp)(new_de + 1, le16_to_cpu(new_de->key_size), 1869 up_e + 1, le16_to_cpu(up_e->key_size), 1870 ctx) < 0 ? 1871 hdr2 : 1872 hdr1, 1873 new_de, NULL, ctx); 1874 1875 indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits); 1876 1877 indx_write(indx, ni, n1, 0); 1878 indx_write(indx, ni, n2, 0); 1879 1880 put_indx_node(n2); 1881 1882 /* 1883 * We've finished splitting everybody, so we are ready to 1884 * insert the promoted entry into the parent. 1885 */ 1886 if (!level) { 1887 /* Insert in root. */ 1888 err = indx_insert_into_root(indx, ni, up_e, NULL, ctx, fnd, 0); 1889 } else { 1890 /* 1891 * The target buffer's parent is another index buffer. 1892 * TODO: Remove recursion. 1893 */ 1894 err = indx_insert_into_buffer(indx, ni, root, up_e, ctx, 1895 level - 1, fnd); 1896 } 1897 1898 if (err) { 1899 /* 1900 * Undo critical operations. 1901 */ 1902 indx_mark_free(indx, ni, new_vbn >> indx->idx2vbn_bits); 1903 memcpy(hdr1, hdr1_saved, used1); 1904 indx_write(indx, ni, n1, 0); 1905 } 1906 1907 out: 1908 kfree(up_e); 1909 kfree(hdr1_saved); 1910 1911 return err; 1912 } 1913 1914 /* 1915 * indx_insert_entry - Insert new entry into index. 1916 * 1917 * @undo - True if we undoing previous remove. 1918 */ 1919 int indx_insert_entry(struct ntfs_index *indx, struct ntfs_inode *ni, 1920 const struct NTFS_DE *new_de, const void *ctx, 1921 struct ntfs_fnd *fnd, bool undo) 1922 { 1923 int err; 1924 int diff; 1925 struct NTFS_DE *e; 1926 struct ntfs_fnd *fnd_a = NULL; 1927 struct INDEX_ROOT *root; 1928 1929 if (!fnd) { 1930 fnd_a = fnd_get(); 1931 if (!fnd_a) { 1932 err = -ENOMEM; 1933 goto out1; 1934 } 1935 fnd = fnd_a; 1936 } 1937 1938 root = indx_get_root(indx, ni, NULL, NULL); 1939 if (!root) { 1940 err = -EINVAL; 1941 goto out; 1942 } 1943 1944 if (fnd_is_empty(fnd)) { 1945 /* 1946 * Find the spot the tree where we want to 1947 * insert the new entry. 1948 */ 1949 err = indx_find(indx, ni, root, new_de + 1, 1950 le16_to_cpu(new_de->key_size), ctx, &diff, &e, 1951 fnd); 1952 if (err) 1953 goto out; 1954 1955 if (!diff) { 1956 err = -EEXIST; 1957 goto out; 1958 } 1959 } 1960 1961 if (!fnd->level) { 1962 /* 1963 * The root is also a leaf, so we'll insert the 1964 * new entry into it. 1965 */ 1966 err = indx_insert_into_root(indx, ni, new_de, fnd->root_de, ctx, 1967 fnd, undo); 1968 } else { 1969 /* 1970 * Found a leaf buffer, so we'll insert the new entry into it. 1971 */ 1972 err = indx_insert_into_buffer(indx, ni, root, new_de, ctx, 1973 fnd->level - 1, fnd); 1974 } 1975 1976 out: 1977 fnd_put(fnd_a); 1978 out1: 1979 return err; 1980 } 1981 1982 /* 1983 * indx_find_buffer - Locate a buffer from the tree. 1984 */ 1985 static struct indx_node *indx_find_buffer(struct ntfs_index *indx, 1986 struct ntfs_inode *ni, 1987 const struct INDEX_ROOT *root, 1988 __le64 vbn, struct indx_node *n) 1989 { 1990 int err; 1991 const struct NTFS_DE *e; 1992 struct indx_node *r; 1993 const struct INDEX_HDR *hdr = n ? &n->index->ihdr : &root->ihdr; 1994 1995 /* Step 1: Scan one level. */ 1996 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) { 1997 if (!e) 1998 return ERR_PTR(-EINVAL); 1999 2000 if (de_has_vcn(e) && vbn == de_get_vbn_le(e)) 2001 return n; 2002 2003 if (de_is_last(e)) 2004 break; 2005 } 2006 2007 /* Step2: Do recursion. */ 2008 e = Add2Ptr(hdr, le32_to_cpu(hdr->de_off)); 2009 for (;;) { 2010 if (de_has_vcn_ex(e)) { 2011 err = indx_read(indx, ni, de_get_vbn(e), &n); 2012 if (err) 2013 return ERR_PTR(err); 2014 2015 r = indx_find_buffer(indx, ni, root, vbn, n); 2016 if (r) 2017 return r; 2018 } 2019 2020 if (de_is_last(e)) 2021 break; 2022 2023 e = Add2Ptr(e, le16_to_cpu(e->size)); 2024 } 2025 2026 return NULL; 2027 } 2028 2029 /* 2030 * indx_shrink - Deallocate unused tail indexes. 2031 */ 2032 static int indx_shrink(struct ntfs_index *indx, struct ntfs_inode *ni, 2033 size_t bit) 2034 { 2035 int err = 0; 2036 u64 bpb, new_data; 2037 size_t nbits; 2038 struct ATTRIB *b; 2039 struct ATTR_LIST_ENTRY *le = NULL; 2040 const struct INDEX_NAMES *in = &s_index_names[indx->type]; 2041 2042 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len, 2043 NULL, NULL); 2044 2045 if (!b) 2046 return -ENOENT; 2047 2048 if (!b->non_res) { 2049 unsigned long pos; 2050 const unsigned long *bm = resident_data(b); 2051 2052 nbits = (size_t)le32_to_cpu(b->res.data_size) * 8; 2053 2054 if (bit >= nbits) 2055 return 0; 2056 2057 pos = find_next_bit_le(bm, nbits, bit); 2058 if (pos < nbits) 2059 return 0; 2060 } else { 2061 size_t used = MINUS_ONE_T; 2062 2063 nbits = le64_to_cpu(b->nres.data_size) * 8; 2064 2065 if (bit >= nbits) 2066 return 0; 2067 2068 err = scan_nres_bitmap(ni, b, indx, bit, &scan_for_used, &used); 2069 if (err) 2070 return err; 2071 2072 if (used != MINUS_ONE_T) 2073 return 0; 2074 } 2075 2076 new_data = (u64)bit << indx->index_bits; 2077 2078 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len, 2079 &indx->alloc_run, new_data, &new_data, false, NULL); 2080 if (err) 2081 return err; 2082 2083 if (in->name == I30_NAME) 2084 ni->vfs_inode.i_size = new_data; 2085 2086 bpb = bitmap_size(bit); 2087 if (bpb * 8 == nbits) 2088 return 0; 2089 2090 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len, 2091 &indx->bitmap_run, bpb, &bpb, false, NULL); 2092 2093 return err; 2094 } 2095 2096 static int indx_free_children(struct ntfs_index *indx, struct ntfs_inode *ni, 2097 const struct NTFS_DE *e, bool trim) 2098 { 2099 int err; 2100 struct indx_node *n = NULL; 2101 struct INDEX_HDR *hdr; 2102 CLST vbn = de_get_vbn(e); 2103 size_t i; 2104 2105 err = indx_read(indx, ni, vbn, &n); 2106 if (err) 2107 return err; 2108 2109 hdr = &n->index->ihdr; 2110 /* First, recurse into the children, if any. */ 2111 if (hdr_has_subnode(hdr)) { 2112 for (e = hdr_first_de(hdr); e; e = hdr_next_de(hdr, e)) { 2113 indx_free_children(indx, ni, e, false); 2114 if (de_is_last(e)) 2115 break; 2116 } 2117 } 2118 2119 put_indx_node(n); 2120 2121 i = vbn >> indx->idx2vbn_bits; 2122 /* 2123 * We've gotten rid of the children; add this buffer to the free list. 2124 */ 2125 indx_mark_free(indx, ni, i); 2126 2127 if (!trim) 2128 return 0; 2129 2130 /* 2131 * If there are no used indexes after current free index 2132 * then we can truncate allocation and bitmap. 2133 * Use bitmap to estimate the case. 2134 */ 2135 indx_shrink(indx, ni, i + 1); 2136 return 0; 2137 } 2138 2139 /* 2140 * indx_get_entry_to_replace 2141 * 2142 * Find a replacement entry for a deleted entry. 2143 * Always returns a node entry: 2144 * NTFS_IE_HAS_SUBNODES is set the flags and the size includes the sub_vcn. 2145 */ 2146 static int indx_get_entry_to_replace(struct ntfs_index *indx, 2147 struct ntfs_inode *ni, 2148 const struct NTFS_DE *de_next, 2149 struct NTFS_DE **de_to_replace, 2150 struct ntfs_fnd *fnd) 2151 { 2152 int err; 2153 int level = -1; 2154 CLST vbn; 2155 struct NTFS_DE *e, *te, *re; 2156 struct indx_node *n; 2157 struct INDEX_BUFFER *ib; 2158 2159 *de_to_replace = NULL; 2160 2161 /* Find first leaf entry down from de_next. */ 2162 vbn = de_get_vbn(de_next); 2163 for (;;) { 2164 n = NULL; 2165 err = indx_read(indx, ni, vbn, &n); 2166 if (err) 2167 goto out; 2168 2169 e = hdr_first_de(&n->index->ihdr); 2170 fnd_push(fnd, n, e); 2171 2172 if (!de_is_last(e)) { 2173 /* 2174 * This buffer is non-empty, so its first entry 2175 * could be used as the replacement entry. 2176 */ 2177 level = fnd->level - 1; 2178 } 2179 2180 if (!de_has_vcn(e)) 2181 break; 2182 2183 /* This buffer is a node. Continue to go down. */ 2184 vbn = de_get_vbn(e); 2185 } 2186 2187 if (level == -1) 2188 goto out; 2189 2190 n = fnd->nodes[level]; 2191 te = hdr_first_de(&n->index->ihdr); 2192 /* Copy the candidate entry into the replacement entry buffer. */ 2193 re = kmalloc(le16_to_cpu(te->size) + sizeof(u64), GFP_NOFS); 2194 if (!re) { 2195 err = -ENOMEM; 2196 goto out; 2197 } 2198 2199 *de_to_replace = re; 2200 memcpy(re, te, le16_to_cpu(te->size)); 2201 2202 if (!de_has_vcn(re)) { 2203 /* 2204 * The replacement entry we found doesn't have a sub_vcn. 2205 * increase its size to hold one. 2206 */ 2207 le16_add_cpu(&re->size, sizeof(u64)); 2208 re->flags |= NTFS_IE_HAS_SUBNODES; 2209 } else { 2210 /* 2211 * The replacement entry we found was a node entry, which 2212 * means that all its child buffers are empty. Return them 2213 * to the free pool. 2214 */ 2215 indx_free_children(indx, ni, te, true); 2216 } 2217 2218 /* 2219 * Expunge the replacement entry from its former location, 2220 * and then write that buffer. 2221 */ 2222 ib = n->index; 2223 e = hdr_delete_de(&ib->ihdr, te); 2224 2225 fnd->de[level] = e; 2226 indx_write(indx, ni, n, 0); 2227 2228 if (ib_is_leaf(ib) && ib_is_empty(ib)) { 2229 /* An empty leaf. */ 2230 return 0; 2231 } 2232 2233 out: 2234 fnd_clear(fnd); 2235 return err; 2236 } 2237 2238 /* 2239 * indx_delete_entry - Delete an entry from the index. 2240 */ 2241 int indx_delete_entry(struct ntfs_index *indx, struct ntfs_inode *ni, 2242 const void *key, u32 key_len, const void *ctx) 2243 { 2244 int err, diff; 2245 struct INDEX_ROOT *root; 2246 struct INDEX_HDR *hdr; 2247 struct ntfs_fnd *fnd, *fnd2; 2248 struct INDEX_BUFFER *ib; 2249 struct NTFS_DE *e, *re, *next, *prev, *me; 2250 struct indx_node *n, *n2d = NULL; 2251 __le64 sub_vbn; 2252 int level, level2; 2253 struct ATTRIB *attr; 2254 struct mft_inode *mi; 2255 u32 e_size, root_size, new_root_size; 2256 size_t trim_bit; 2257 const struct INDEX_NAMES *in; 2258 2259 fnd = fnd_get(); 2260 if (!fnd) { 2261 err = -ENOMEM; 2262 goto out2; 2263 } 2264 2265 fnd2 = fnd_get(); 2266 if (!fnd2) { 2267 err = -ENOMEM; 2268 goto out1; 2269 } 2270 2271 root = indx_get_root(indx, ni, &attr, &mi); 2272 if (!root) { 2273 err = -EINVAL; 2274 goto out; 2275 } 2276 2277 /* Locate the entry to remove. */ 2278 err = indx_find(indx, ni, root, key, key_len, ctx, &diff, &e, fnd); 2279 if (err) 2280 goto out; 2281 2282 if (!e || diff) { 2283 err = -ENOENT; 2284 goto out; 2285 } 2286 2287 level = fnd->level; 2288 2289 if (level) { 2290 n = fnd->nodes[level - 1]; 2291 e = fnd->de[level - 1]; 2292 ib = n->index; 2293 hdr = &ib->ihdr; 2294 } else { 2295 hdr = &root->ihdr; 2296 e = fnd->root_de; 2297 n = NULL; 2298 } 2299 2300 e_size = le16_to_cpu(e->size); 2301 2302 if (!de_has_vcn_ex(e)) { 2303 /* The entry to delete is a leaf, so we can just rip it out. */ 2304 hdr_delete_de(hdr, e); 2305 2306 if (!level) { 2307 hdr->total = hdr->used; 2308 2309 /* Shrink resident root attribute. */ 2310 mi_resize_attr(mi, attr, 0 - e_size); 2311 goto out; 2312 } 2313 2314 indx_write(indx, ni, n, 0); 2315 2316 /* 2317 * Check to see if removing that entry made 2318 * the leaf empty. 2319 */ 2320 if (ib_is_leaf(ib) && ib_is_empty(ib)) { 2321 fnd_pop(fnd); 2322 fnd_push(fnd2, n, e); 2323 } 2324 } else { 2325 /* 2326 * The entry we wish to delete is a node buffer, so we 2327 * have to find a replacement for it. 2328 */ 2329 next = de_get_next(e); 2330 2331 err = indx_get_entry_to_replace(indx, ni, next, &re, fnd2); 2332 if (err) 2333 goto out; 2334 2335 if (re) { 2336 de_set_vbn_le(re, de_get_vbn_le(e)); 2337 hdr_delete_de(hdr, e); 2338 2339 err = level ? indx_insert_into_buffer(indx, ni, root, 2340 re, ctx, 2341 fnd->level - 1, 2342 fnd) : 2343 indx_insert_into_root(indx, ni, re, e, 2344 ctx, fnd, 0); 2345 kfree(re); 2346 2347 if (err) 2348 goto out; 2349 } else { 2350 /* 2351 * There is no replacement for the current entry. 2352 * This means that the subtree rooted at its node 2353 * is empty, and can be deleted, which turn means 2354 * that the node can just inherit the deleted 2355 * entry sub_vcn. 2356 */ 2357 indx_free_children(indx, ni, next, true); 2358 2359 de_set_vbn_le(next, de_get_vbn_le(e)); 2360 hdr_delete_de(hdr, e); 2361 if (level) { 2362 indx_write(indx, ni, n, 0); 2363 } else { 2364 hdr->total = hdr->used; 2365 2366 /* Shrink resident root attribute. */ 2367 mi_resize_attr(mi, attr, 0 - e_size); 2368 } 2369 } 2370 } 2371 2372 /* Delete a branch of tree. */ 2373 if (!fnd2 || !fnd2->level) 2374 goto out; 2375 2376 /* Reinit root 'cause it can be changed. */ 2377 root = indx_get_root(indx, ni, &attr, &mi); 2378 if (!root) { 2379 err = -EINVAL; 2380 goto out; 2381 } 2382 2383 n2d = NULL; 2384 sub_vbn = fnd2->nodes[0]->index->vbn; 2385 level2 = 0; 2386 level = fnd->level; 2387 2388 hdr = level ? &fnd->nodes[level - 1]->index->ihdr : &root->ihdr; 2389 2390 /* Scan current level. */ 2391 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) { 2392 if (!e) { 2393 err = -EINVAL; 2394 goto out; 2395 } 2396 2397 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e)) 2398 break; 2399 2400 if (de_is_last(e)) { 2401 e = NULL; 2402 break; 2403 } 2404 } 2405 2406 if (!e) { 2407 /* Do slow search from root. */ 2408 struct indx_node *in; 2409 2410 fnd_clear(fnd); 2411 2412 in = indx_find_buffer(indx, ni, root, sub_vbn, NULL); 2413 if (IS_ERR(in)) { 2414 err = PTR_ERR(in); 2415 goto out; 2416 } 2417 2418 if (in) 2419 fnd_push(fnd, in, NULL); 2420 } 2421 2422 /* Merge fnd2 -> fnd. */ 2423 for (level = 0; level < fnd2->level; level++) { 2424 fnd_push(fnd, fnd2->nodes[level], fnd2->de[level]); 2425 fnd2->nodes[level] = NULL; 2426 } 2427 fnd2->level = 0; 2428 2429 hdr = NULL; 2430 for (level = fnd->level; level; level--) { 2431 struct indx_node *in = fnd->nodes[level - 1]; 2432 2433 ib = in->index; 2434 if (ib_is_empty(ib)) { 2435 sub_vbn = ib->vbn; 2436 } else { 2437 hdr = &ib->ihdr; 2438 n2d = in; 2439 level2 = level; 2440 break; 2441 } 2442 } 2443 2444 if (!hdr) 2445 hdr = &root->ihdr; 2446 2447 e = hdr_first_de(hdr); 2448 if (!e) { 2449 err = -EINVAL; 2450 goto out; 2451 } 2452 2453 if (hdr != &root->ihdr || !de_is_last(e)) { 2454 prev = NULL; 2455 while (!de_is_last(e)) { 2456 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e)) 2457 break; 2458 prev = e; 2459 e = hdr_next_de(hdr, e); 2460 if (!e) { 2461 err = -EINVAL; 2462 goto out; 2463 } 2464 } 2465 2466 if (sub_vbn != de_get_vbn_le(e)) { 2467 /* 2468 * Didn't find the parent entry, although this buffer 2469 * is the parent trail. Something is corrupt. 2470 */ 2471 err = -EINVAL; 2472 goto out; 2473 } 2474 2475 if (de_is_last(e)) { 2476 /* 2477 * Since we can't remove the end entry, we'll remove 2478 * its predecessor instead. This means we have to 2479 * transfer the predecessor's sub_vcn to the end entry. 2480 * Note: This index block is not empty, so the 2481 * predecessor must exist. 2482 */ 2483 if (!prev) { 2484 err = -EINVAL; 2485 goto out; 2486 } 2487 2488 if (de_has_vcn(prev)) { 2489 de_set_vbn_le(e, de_get_vbn_le(prev)); 2490 } else if (de_has_vcn(e)) { 2491 le16_sub_cpu(&e->size, sizeof(u64)); 2492 e->flags &= ~NTFS_IE_HAS_SUBNODES; 2493 le32_sub_cpu(&hdr->used, sizeof(u64)); 2494 } 2495 e = prev; 2496 } 2497 2498 /* 2499 * Copy the current entry into a temporary buffer (stripping 2500 * off its down-pointer, if any) and delete it from the current 2501 * buffer or root, as appropriate. 2502 */ 2503 e_size = le16_to_cpu(e->size); 2504 me = kmemdup(e, e_size, GFP_NOFS); 2505 if (!me) { 2506 err = -ENOMEM; 2507 goto out; 2508 } 2509 2510 if (de_has_vcn(me)) { 2511 me->flags &= ~NTFS_IE_HAS_SUBNODES; 2512 le16_sub_cpu(&me->size, sizeof(u64)); 2513 } 2514 2515 hdr_delete_de(hdr, e); 2516 2517 if (hdr == &root->ihdr) { 2518 level = 0; 2519 hdr->total = hdr->used; 2520 2521 /* Shrink resident root attribute. */ 2522 mi_resize_attr(mi, attr, 0 - e_size); 2523 } else { 2524 indx_write(indx, ni, n2d, 0); 2525 level = level2; 2526 } 2527 2528 /* Mark unused buffers as free. */ 2529 trim_bit = -1; 2530 for (; level < fnd->level; level++) { 2531 ib = fnd->nodes[level]->index; 2532 if (ib_is_empty(ib)) { 2533 size_t k = le64_to_cpu(ib->vbn) >> 2534 indx->idx2vbn_bits; 2535 2536 indx_mark_free(indx, ni, k); 2537 if (k < trim_bit) 2538 trim_bit = k; 2539 } 2540 } 2541 2542 fnd_clear(fnd); 2543 /*fnd->root_de = NULL;*/ 2544 2545 /* 2546 * Re-insert the entry into the tree. 2547 * Find the spot the tree where we want to insert the new entry. 2548 */ 2549 err = indx_insert_entry(indx, ni, me, ctx, fnd, 0); 2550 kfree(me); 2551 if (err) 2552 goto out; 2553 2554 if (trim_bit != -1) 2555 indx_shrink(indx, ni, trim_bit); 2556 } else { 2557 /* 2558 * This tree needs to be collapsed down to an empty root. 2559 * Recreate the index root as an empty leaf and free all 2560 * the bits the index allocation bitmap. 2561 */ 2562 fnd_clear(fnd); 2563 fnd_clear(fnd2); 2564 2565 in = &s_index_names[indx->type]; 2566 2567 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len, 2568 &indx->alloc_run, 0, NULL, false, NULL); 2569 if (in->name == I30_NAME) 2570 ni->vfs_inode.i_size = 0; 2571 2572 err = ni_remove_attr(ni, ATTR_ALLOC, in->name, in->name_len, 2573 false, NULL); 2574 run_close(&indx->alloc_run); 2575 2576 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len, 2577 &indx->bitmap_run, 0, NULL, false, NULL); 2578 err = ni_remove_attr(ni, ATTR_BITMAP, in->name, in->name_len, 2579 false, NULL); 2580 run_close(&indx->bitmap_run); 2581 2582 root = indx_get_root(indx, ni, &attr, &mi); 2583 if (!root) { 2584 err = -EINVAL; 2585 goto out; 2586 } 2587 2588 root_size = le32_to_cpu(attr->res.data_size); 2589 new_root_size = 2590 sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE); 2591 2592 if (new_root_size != root_size && 2593 !mi_resize_attr(mi, attr, new_root_size - root_size)) { 2594 err = -EINVAL; 2595 goto out; 2596 } 2597 2598 /* Fill first entry. */ 2599 e = (struct NTFS_DE *)(root + 1); 2600 e->ref.low = 0; 2601 e->ref.high = 0; 2602 e->ref.seq = 0; 2603 e->size = cpu_to_le16(sizeof(struct NTFS_DE)); 2604 e->flags = NTFS_IE_LAST; // 0x02 2605 e->key_size = 0; 2606 e->res = 0; 2607 2608 hdr = &root->ihdr; 2609 hdr->flags = 0; 2610 hdr->used = hdr->total = cpu_to_le32( 2611 new_root_size - offsetof(struct INDEX_ROOT, ihdr)); 2612 mi->dirty = true; 2613 } 2614 2615 out: 2616 fnd_put(fnd2); 2617 out1: 2618 fnd_put(fnd); 2619 out2: 2620 return err; 2621 } 2622 2623 /* 2624 * Update duplicated information in directory entry 2625 * 'dup' - info from MFT record 2626 */ 2627 int indx_update_dup(struct ntfs_inode *ni, struct ntfs_sb_info *sbi, 2628 const struct ATTR_FILE_NAME *fname, 2629 const struct NTFS_DUP_INFO *dup, int sync) 2630 { 2631 int err, diff; 2632 struct NTFS_DE *e = NULL; 2633 struct ATTR_FILE_NAME *e_fname; 2634 struct ntfs_fnd *fnd; 2635 struct INDEX_ROOT *root; 2636 struct mft_inode *mi; 2637 struct ntfs_index *indx = &ni->dir; 2638 2639 fnd = fnd_get(); 2640 if (!fnd) 2641 return -ENOMEM; 2642 2643 root = indx_get_root(indx, ni, NULL, &mi); 2644 if (!root) { 2645 err = -EINVAL; 2646 goto out; 2647 } 2648 2649 /* Find entry in directory. */ 2650 err = indx_find(indx, ni, root, fname, fname_full_size(fname), sbi, 2651 &diff, &e, fnd); 2652 if (err) 2653 goto out; 2654 2655 if (!e) { 2656 err = -EINVAL; 2657 goto out; 2658 } 2659 2660 if (diff) { 2661 err = -EINVAL; 2662 goto out; 2663 } 2664 2665 e_fname = (struct ATTR_FILE_NAME *)(e + 1); 2666 2667 if (!memcmp(&e_fname->dup, dup, sizeof(*dup))) { 2668 /* 2669 * Nothing to update in index! Try to avoid this call. 2670 */ 2671 goto out; 2672 } 2673 2674 memcpy(&e_fname->dup, dup, sizeof(*dup)); 2675 2676 if (fnd->level) { 2677 /* Directory entry in index. */ 2678 err = indx_write(indx, ni, fnd->nodes[fnd->level - 1], sync); 2679 } else { 2680 /* Directory entry in directory MFT record. */ 2681 mi->dirty = true; 2682 if (sync) 2683 err = mi_write(mi, 1); 2684 else 2685 mark_inode_dirty(&ni->vfs_inode); 2686 } 2687 2688 out: 2689 fnd_put(fnd); 2690 return err; 2691 } 2692