xref: /openbmc/linux/fs/ntfs3/fslog.c (revision f3531d1a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *
4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5  *
6  */
7 
8 #include <linux/blkdev.h>
9 #include <linux/fs.h>
10 #include <linux/random.h>
11 #include <linux/slab.h>
12 
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16 
17 /*
18  * LOG FILE structs
19  */
20 
21 // clang-format off
22 
23 #define MaxLogFileSize     0x100000000ull
24 #define DefaultLogPageSize 4096
25 #define MinLogRecordPages  0x30
26 
27 struct RESTART_HDR {
28 	struct NTFS_RECORD_HEADER rhdr; // 'RSTR'
29 	__le32 sys_page_size; // 0x10: Page size of the system which initialized the log.
30 	__le32 page_size;     // 0x14: Log page size used for this log file.
31 	__le16 ra_off;        // 0x18:
32 	__le16 minor_ver;     // 0x1A:
33 	__le16 major_ver;     // 0x1C:
34 	__le16 fixups[];
35 };
36 
37 #define LFS_NO_CLIENT 0xffff
38 #define LFS_NO_CLIENT_LE cpu_to_le16(0xffff)
39 
40 struct CLIENT_REC {
41 	__le64 oldest_lsn;
42 	__le64 restart_lsn; // 0x08:
43 	__le16 prev_client; // 0x10:
44 	__le16 next_client; // 0x12:
45 	__le16 seq_num;     // 0x14:
46 	u8 align[6];        // 0x16:
47 	__le32 name_bytes;  // 0x1C: In bytes.
48 	__le16 name[32];    // 0x20: Name of client.
49 };
50 
51 static_assert(sizeof(struct CLIENT_REC) == 0x60);
52 
53 /* Two copies of these will exist at the beginning of the log file */
54 struct RESTART_AREA {
55 	__le64 current_lsn;    // 0x00: Current logical end of log file.
56 	__le16 log_clients;    // 0x08: Maximum number of clients.
57 	__le16 client_idx[2];  // 0x0A: Free/use index into the client record arrays.
58 	__le16 flags;          // 0x0E: See RESTART_SINGLE_PAGE_IO.
59 	__le32 seq_num_bits;   // 0x10: The number of bits in sequence number.
60 	__le16 ra_len;         // 0x14:
61 	__le16 client_off;     // 0x16:
62 	__le64 l_size;         // 0x18: Usable log file size.
63 	__le32 last_lsn_data_len; // 0x20:
64 	__le16 rec_hdr_len;    // 0x24: Log page data offset.
65 	__le16 data_off;       // 0x26: Log page data length.
66 	__le32 open_log_count; // 0x28:
67 	__le32 align[5];       // 0x2C:
68 	struct CLIENT_REC clients[]; // 0x40:
69 };
70 
71 struct LOG_REC_HDR {
72 	__le16 redo_op;      // 0x00:  NTFS_LOG_OPERATION
73 	__le16 undo_op;      // 0x02:  NTFS_LOG_OPERATION
74 	__le16 redo_off;     // 0x04:  Offset to Redo record.
75 	__le16 redo_len;     // 0x06:  Redo length.
76 	__le16 undo_off;     // 0x08:  Offset to Undo record.
77 	__le16 undo_len;     // 0x0A:  Undo length.
78 	__le16 target_attr;  // 0x0C:
79 	__le16 lcns_follow;  // 0x0E:
80 	__le16 record_off;   // 0x10:
81 	__le16 attr_off;     // 0x12:
82 	__le16 cluster_off;  // 0x14:
83 	__le16 reserved;     // 0x16:
84 	__le64 target_vcn;   // 0x18:
85 	__le64 page_lcns[];  // 0x20:
86 };
87 
88 static_assert(sizeof(struct LOG_REC_HDR) == 0x20);
89 
90 #define RESTART_ENTRY_ALLOCATED    0xFFFFFFFF
91 #define RESTART_ENTRY_ALLOCATED_LE cpu_to_le32(0xFFFFFFFF)
92 
93 struct RESTART_TABLE {
94 	__le16 size;       // 0x00: In bytes
95 	__le16 used;       // 0x02: Entries
96 	__le16 total;      // 0x04: Entries
97 	__le16 res[3];     // 0x06:
98 	__le32 free_goal;  // 0x0C:
99 	__le32 first_free; // 0x10:
100 	__le32 last_free;  // 0x14:
101 
102 };
103 
104 static_assert(sizeof(struct RESTART_TABLE) == 0x18);
105 
106 struct ATTR_NAME_ENTRY {
107 	__le16 off; // Offset in the Open attribute Table.
108 	__le16 name_bytes;
109 	__le16 name[];
110 };
111 
112 struct OPEN_ATTR_ENRTY {
113 	__le32 next;            // 0x00: RESTART_ENTRY_ALLOCATED if allocated
114 	__le32 bytes_per_index; // 0x04:
115 	enum ATTR_TYPE type;    // 0x08:
116 	u8 is_dirty_pages;      // 0x0C:
117 	u8 is_attr_name;        // 0x0B: Faked field to manage 'ptr'
118 	u8 name_len;            // 0x0C: Faked field to manage 'ptr'
119 	u8 res;
120 	struct MFT_REF ref;     // 0x10: File Reference of file containing attribute
121 	__le64 open_record_lsn; // 0x18:
122 	void *ptr;              // 0x20:
123 };
124 
125 /* 32 bit version of 'struct OPEN_ATTR_ENRTY' */
126 struct OPEN_ATTR_ENRTY_32 {
127 	__le32 next;            // 0x00: RESTART_ENTRY_ALLOCATED if allocated
128 	__le32 ptr;             // 0x04:
129 	struct MFT_REF ref;     // 0x08:
130 	__le64 open_record_lsn; // 0x10:
131 	u8 is_dirty_pages;      // 0x18:
132 	u8 is_attr_name;        // 0x19:
133 	u8 res1[2];
134 	enum ATTR_TYPE type;    // 0x1C:
135 	u8 name_len;            // 0x20: In wchar
136 	u8 res2[3];
137 	__le32 AttributeName;   // 0x24:
138 	__le32 bytes_per_index; // 0x28:
139 };
140 
141 #define SIZEOF_OPENATTRIBUTEENTRY0 0x2c
142 // static_assert( 0x2C == sizeof(struct OPEN_ATTR_ENRTY_32) );
143 static_assert(sizeof(struct OPEN_ATTR_ENRTY) < SIZEOF_OPENATTRIBUTEENTRY0);
144 
145 /*
146  * One entry exists in the Dirty Pages Table for each page which is dirty at
147  * the time the Restart Area is written.
148  */
149 struct DIR_PAGE_ENTRY {
150 	__le32 next;         // 0x00: RESTART_ENTRY_ALLOCATED if allocated
151 	__le32 target_attr;  // 0x04: Index into the Open attribute Table
152 	__le32 transfer_len; // 0x08:
153 	__le32 lcns_follow;  // 0x0C:
154 	__le64 vcn;          // 0x10: Vcn of dirty page
155 	__le64 oldest_lsn;   // 0x18:
156 	__le64 page_lcns[];  // 0x20:
157 };
158 
159 static_assert(sizeof(struct DIR_PAGE_ENTRY) == 0x20);
160 
161 /* 32 bit version of 'struct DIR_PAGE_ENTRY' */
162 struct DIR_PAGE_ENTRY_32 {
163 	__le32 next;		// 0x00: RESTART_ENTRY_ALLOCATED if allocated
164 	__le32 target_attr;	// 0x04: Index into the Open attribute Table
165 	__le32 transfer_len;	// 0x08:
166 	__le32 lcns_follow;	// 0x0C:
167 	__le32 reserved;	// 0x10:
168 	__le32 vcn_low;		// 0x14: Vcn of dirty page
169 	__le32 vcn_hi;		// 0x18: Vcn of dirty page
170 	__le32 oldest_lsn_low;	// 0x1C:
171 	__le32 oldest_lsn_hi;	// 0x1C:
172 	__le32 page_lcns_low;	// 0x24:
173 	__le32 page_lcns_hi;	// 0x24:
174 };
175 
176 static_assert(offsetof(struct DIR_PAGE_ENTRY_32, vcn_low) == 0x14);
177 static_assert(sizeof(struct DIR_PAGE_ENTRY_32) == 0x2c);
178 
179 enum transact_state {
180 	TransactionUninitialized = 0,
181 	TransactionActive,
182 	TransactionPrepared,
183 	TransactionCommitted
184 };
185 
186 struct TRANSACTION_ENTRY {
187 	__le32 next;          // 0x00: RESTART_ENTRY_ALLOCATED if allocated
188 	u8 transact_state;    // 0x04:
189 	u8 reserved[3];       // 0x05:
190 	__le64 first_lsn;     // 0x08:
191 	__le64 prev_lsn;      // 0x10:
192 	__le64 undo_next_lsn; // 0x18:
193 	__le32 undo_records;  // 0x20: Number of undo log records pending abort
194 	__le32 undo_len;      // 0x24: Total undo size
195 };
196 
197 static_assert(sizeof(struct TRANSACTION_ENTRY) == 0x28);
198 
199 struct NTFS_RESTART {
200 	__le32 major_ver;             // 0x00:
201 	__le32 minor_ver;             // 0x04:
202 	__le64 check_point_start;     // 0x08:
203 	__le64 open_attr_table_lsn;   // 0x10:
204 	__le64 attr_names_lsn;        // 0x18:
205 	__le64 dirty_pages_table_lsn; // 0x20:
206 	__le64 transact_table_lsn;    // 0x28:
207 	__le32 open_attr_len;         // 0x30: In bytes
208 	__le32 attr_names_len;        // 0x34: In bytes
209 	__le32 dirty_pages_len;       // 0x38: In bytes
210 	__le32 transact_table_len;    // 0x3C: In bytes
211 };
212 
213 static_assert(sizeof(struct NTFS_RESTART) == 0x40);
214 
215 struct NEW_ATTRIBUTE_SIZES {
216 	__le64 alloc_size;
217 	__le64 valid_size;
218 	__le64 data_size;
219 	__le64 total_size;
220 };
221 
222 struct BITMAP_RANGE {
223 	__le32 bitmap_off;
224 	__le32 bits;
225 };
226 
227 struct LCN_RANGE {
228 	__le64 lcn;
229 	__le64 len;
230 };
231 
232 /* The following type defines the different log record types. */
233 #define LfsClientRecord  cpu_to_le32(1)
234 #define LfsClientRestart cpu_to_le32(2)
235 
236 /* This is used to uniquely identify a client for a particular log file. */
237 struct CLIENT_ID {
238 	__le16 seq_num;
239 	__le16 client_idx;
240 };
241 
242 /* This is the header that begins every Log Record in the log file. */
243 struct LFS_RECORD_HDR {
244 	__le64 this_lsn;		// 0x00:
245 	__le64 client_prev_lsn;		// 0x08:
246 	__le64 client_undo_next_lsn;	// 0x10:
247 	__le32 client_data_len;		// 0x18:
248 	struct CLIENT_ID client;	// 0x1C: Owner of this log record.
249 	__le32 record_type;		// 0x20: LfsClientRecord or LfsClientRestart.
250 	__le32 transact_id;		// 0x24:
251 	__le16 flags;			// 0x28: LOG_RECORD_MULTI_PAGE
252 	u8 align[6];			// 0x2A:
253 };
254 
255 #define LOG_RECORD_MULTI_PAGE cpu_to_le16(1)
256 
257 static_assert(sizeof(struct LFS_RECORD_HDR) == 0x30);
258 
259 struct LFS_RECORD {
260 	__le16 next_record_off;	// 0x00: Offset of the free space in the page,
261 	u8 align[6];		// 0x02:
262 	__le64 last_end_lsn;	// 0x08: lsn for the last log record which ends on the page,
263 };
264 
265 static_assert(sizeof(struct LFS_RECORD) == 0x10);
266 
267 struct RECORD_PAGE_HDR {
268 	struct NTFS_RECORD_HEADER rhdr;	// 'RCRD'
269 	__le32 rflags;			// 0x10: See LOG_PAGE_LOG_RECORD_END
270 	__le16 page_count;		// 0x14:
271 	__le16 page_pos;		// 0x16:
272 	struct LFS_RECORD record_hdr;	// 0x18:
273 	__le16 fixups[10];		// 0x28:
274 	__le32 file_off;		// 0x3c: Used when major version >= 2
275 };
276 
277 // clang-format on
278 
279 // Page contains the end of a log record.
280 #define LOG_PAGE_LOG_RECORD_END cpu_to_le32(0x00000001)
281 
282 static inline bool is_log_record_end(const struct RECORD_PAGE_HDR *hdr)
283 {
284 	return hdr->rflags & LOG_PAGE_LOG_RECORD_END;
285 }
286 
287 static_assert(offsetof(struct RECORD_PAGE_HDR, file_off) == 0x3c);
288 
289 /*
290  * END of NTFS LOG structures
291  */
292 
293 /* Define some tuning parameters to keep the restart tables a reasonable size. */
294 #define INITIAL_NUMBER_TRANSACTIONS 5
295 
296 enum NTFS_LOG_OPERATION {
297 
298 	Noop = 0x00,
299 	CompensationLogRecord = 0x01,
300 	InitializeFileRecordSegment = 0x02,
301 	DeallocateFileRecordSegment = 0x03,
302 	WriteEndOfFileRecordSegment = 0x04,
303 	CreateAttribute = 0x05,
304 	DeleteAttribute = 0x06,
305 	UpdateResidentValue = 0x07,
306 	UpdateNonresidentValue = 0x08,
307 	UpdateMappingPairs = 0x09,
308 	DeleteDirtyClusters = 0x0A,
309 	SetNewAttributeSizes = 0x0B,
310 	AddIndexEntryRoot = 0x0C,
311 	DeleteIndexEntryRoot = 0x0D,
312 	AddIndexEntryAllocation = 0x0E,
313 	DeleteIndexEntryAllocation = 0x0F,
314 	WriteEndOfIndexBuffer = 0x10,
315 	SetIndexEntryVcnRoot = 0x11,
316 	SetIndexEntryVcnAllocation = 0x12,
317 	UpdateFileNameRoot = 0x13,
318 	UpdateFileNameAllocation = 0x14,
319 	SetBitsInNonresidentBitMap = 0x15,
320 	ClearBitsInNonresidentBitMap = 0x16,
321 	HotFix = 0x17,
322 	EndTopLevelAction = 0x18,
323 	PrepareTransaction = 0x19,
324 	CommitTransaction = 0x1A,
325 	ForgetTransaction = 0x1B,
326 	OpenNonresidentAttribute = 0x1C,
327 	OpenAttributeTableDump = 0x1D,
328 	AttributeNamesDump = 0x1E,
329 	DirtyPageTableDump = 0x1F,
330 	TransactionTableDump = 0x20,
331 	UpdateRecordDataRoot = 0x21,
332 	UpdateRecordDataAllocation = 0x22,
333 
334 	UpdateRelativeDataInIndex =
335 		0x23, // NtOfsRestartUpdateRelativeDataInIndex
336 	UpdateRelativeDataInIndex2 = 0x24,
337 	ZeroEndOfFileRecord = 0x25,
338 };
339 
340 /*
341  * Array for log records which require a target attribute.
342  * A true indicates that the corresponding restart operation
343  * requires a target attribute.
344  */
345 static const u8 AttributeRequired[] = {
346 	0xFC, 0xFB, 0xFF, 0x10, 0x06,
347 };
348 
349 static inline bool is_target_required(u16 op)
350 {
351 	bool ret = op <= UpdateRecordDataAllocation &&
352 		   (AttributeRequired[op >> 3] >> (op & 7) & 1);
353 	return ret;
354 }
355 
356 static inline bool can_skip_action(enum NTFS_LOG_OPERATION op)
357 {
358 	switch (op) {
359 	case Noop:
360 	case DeleteDirtyClusters:
361 	case HotFix:
362 	case EndTopLevelAction:
363 	case PrepareTransaction:
364 	case CommitTransaction:
365 	case ForgetTransaction:
366 	case CompensationLogRecord:
367 	case OpenNonresidentAttribute:
368 	case OpenAttributeTableDump:
369 	case AttributeNamesDump:
370 	case DirtyPageTableDump:
371 	case TransactionTableDump:
372 		return true;
373 	default:
374 		return false;
375 	}
376 }
377 
378 enum { lcb_ctx_undo_next, lcb_ctx_prev, lcb_ctx_next };
379 
380 /* Bytes per restart table. */
381 static inline u32 bytes_per_rt(const struct RESTART_TABLE *rt)
382 {
383 	return le16_to_cpu(rt->used) * le16_to_cpu(rt->size) +
384 	       sizeof(struct RESTART_TABLE);
385 }
386 
387 /* Log record length. */
388 static inline u32 lrh_length(const struct LOG_REC_HDR *lr)
389 {
390 	u16 t16 = le16_to_cpu(lr->lcns_follow);
391 
392 	return struct_size(lr, page_lcns, max_t(u16, 1, t16));
393 }
394 
395 struct lcb {
396 	struct LFS_RECORD_HDR *lrh; // Log record header of the current lsn.
397 	struct LOG_REC_HDR *log_rec;
398 	u32 ctx_mode; // lcb_ctx_undo_next/lcb_ctx_prev/lcb_ctx_next
399 	struct CLIENT_ID client;
400 	bool alloc; // If true the we should deallocate 'log_rec'.
401 };
402 
403 static void lcb_put(struct lcb *lcb)
404 {
405 	if (lcb->alloc)
406 		kfree(lcb->log_rec);
407 	kfree(lcb->lrh);
408 	kfree(lcb);
409 }
410 
411 /* Find the oldest lsn from active clients. */
412 static inline void oldest_client_lsn(const struct CLIENT_REC *ca,
413 				     __le16 next_client, u64 *oldest_lsn)
414 {
415 	while (next_client != LFS_NO_CLIENT_LE) {
416 		const struct CLIENT_REC *cr = ca + le16_to_cpu(next_client);
417 		u64 lsn = le64_to_cpu(cr->oldest_lsn);
418 
419 		/* Ignore this block if it's oldest lsn is 0. */
420 		if (lsn && lsn < *oldest_lsn)
421 			*oldest_lsn = lsn;
422 
423 		next_client = cr->next_client;
424 	}
425 }
426 
427 static inline bool is_rst_page_hdr_valid(u32 file_off,
428 					 const struct RESTART_HDR *rhdr)
429 {
430 	u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
431 	u32 page_size = le32_to_cpu(rhdr->page_size);
432 	u32 end_usa;
433 	u16 ro;
434 
435 	if (sys_page < SECTOR_SIZE || page_size < SECTOR_SIZE ||
436 	    sys_page & (sys_page - 1) || page_size & (page_size - 1)) {
437 		return false;
438 	}
439 
440 	/* Check that if the file offset isn't 0, it is the system page size. */
441 	if (file_off && file_off != sys_page)
442 		return false;
443 
444 	/* Check support version 1.1+. */
445 	if (le16_to_cpu(rhdr->major_ver) <= 1 && !rhdr->minor_ver)
446 		return false;
447 
448 	if (le16_to_cpu(rhdr->major_ver) > 2)
449 		return false;
450 
451 	ro = le16_to_cpu(rhdr->ra_off);
452 	if (!IS_ALIGNED(ro, 8) || ro > sys_page)
453 		return false;
454 
455 	end_usa = ((sys_page >> SECTOR_SHIFT) + 1) * sizeof(short);
456 	end_usa += le16_to_cpu(rhdr->rhdr.fix_off);
457 
458 	if (ro < end_usa)
459 		return false;
460 
461 	return true;
462 }
463 
464 static inline bool is_rst_area_valid(const struct RESTART_HDR *rhdr)
465 {
466 	const struct RESTART_AREA *ra;
467 	u16 cl, fl, ul;
468 	u32 off, l_size, file_dat_bits, file_size_round;
469 	u16 ro = le16_to_cpu(rhdr->ra_off);
470 	u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
471 
472 	if (ro + offsetof(struct RESTART_AREA, l_size) >
473 	    SECTOR_SIZE - sizeof(short))
474 		return false;
475 
476 	ra = Add2Ptr(rhdr, ro);
477 	cl = le16_to_cpu(ra->log_clients);
478 
479 	if (cl > 1)
480 		return false;
481 
482 	off = le16_to_cpu(ra->client_off);
483 
484 	if (!IS_ALIGNED(off, 8) || ro + off > SECTOR_SIZE - sizeof(short))
485 		return false;
486 
487 	off += cl * sizeof(struct CLIENT_REC);
488 
489 	if (off > sys_page)
490 		return false;
491 
492 	/*
493 	 * Check the restart length field and whether the entire
494 	 * restart area is contained that length.
495 	 */
496 	if (le16_to_cpu(rhdr->ra_off) + le16_to_cpu(ra->ra_len) > sys_page ||
497 	    off > le16_to_cpu(ra->ra_len)) {
498 		return false;
499 	}
500 
501 	/*
502 	 * As a final check make sure that the use list and the free list
503 	 * are either empty or point to a valid client.
504 	 */
505 	fl = le16_to_cpu(ra->client_idx[0]);
506 	ul = le16_to_cpu(ra->client_idx[1]);
507 	if ((fl != LFS_NO_CLIENT && fl >= cl) ||
508 	    (ul != LFS_NO_CLIENT && ul >= cl))
509 		return false;
510 
511 	/* Make sure the sequence number bits match the log file size. */
512 	l_size = le64_to_cpu(ra->l_size);
513 
514 	file_dat_bits = sizeof(u64) * 8 - le32_to_cpu(ra->seq_num_bits);
515 	file_size_round = 1u << (file_dat_bits + 3);
516 	if (file_size_round != l_size &&
517 	    (file_size_round < l_size || (file_size_round / 2) > l_size)) {
518 		return false;
519 	}
520 
521 	/* The log page data offset and record header length must be quad-aligned. */
522 	if (!IS_ALIGNED(le16_to_cpu(ra->data_off), 8) ||
523 	    !IS_ALIGNED(le16_to_cpu(ra->rec_hdr_len), 8))
524 		return false;
525 
526 	return true;
527 }
528 
529 static inline bool is_client_area_valid(const struct RESTART_HDR *rhdr,
530 					bool usa_error)
531 {
532 	u16 ro = le16_to_cpu(rhdr->ra_off);
533 	const struct RESTART_AREA *ra = Add2Ptr(rhdr, ro);
534 	u16 ra_len = le16_to_cpu(ra->ra_len);
535 	const struct CLIENT_REC *ca;
536 	u32 i;
537 
538 	if (usa_error && ra_len + ro > SECTOR_SIZE - sizeof(short))
539 		return false;
540 
541 	/* Find the start of the client array. */
542 	ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
543 
544 	/*
545 	 * Start with the free list.
546 	 * Check that all the clients are valid and that there isn't a cycle.
547 	 * Do the in-use list on the second pass.
548 	 */
549 	for (i = 0; i < 2; i++) {
550 		u16 client_idx = le16_to_cpu(ra->client_idx[i]);
551 		bool first_client = true;
552 		u16 clients = le16_to_cpu(ra->log_clients);
553 
554 		while (client_idx != LFS_NO_CLIENT) {
555 			const struct CLIENT_REC *cr;
556 
557 			if (!clients ||
558 			    client_idx >= le16_to_cpu(ra->log_clients))
559 				return false;
560 
561 			clients -= 1;
562 			cr = ca + client_idx;
563 
564 			client_idx = le16_to_cpu(cr->next_client);
565 
566 			if (first_client) {
567 				first_client = false;
568 				if (cr->prev_client != LFS_NO_CLIENT_LE)
569 					return false;
570 			}
571 		}
572 	}
573 
574 	return true;
575 }
576 
577 /*
578  * remove_client
579  *
580  * Remove a client record from a client record list an restart area.
581  */
582 static inline void remove_client(struct CLIENT_REC *ca,
583 				 const struct CLIENT_REC *cr, __le16 *head)
584 {
585 	if (cr->prev_client == LFS_NO_CLIENT_LE)
586 		*head = cr->next_client;
587 	else
588 		ca[le16_to_cpu(cr->prev_client)].next_client = cr->next_client;
589 
590 	if (cr->next_client != LFS_NO_CLIENT_LE)
591 		ca[le16_to_cpu(cr->next_client)].prev_client = cr->prev_client;
592 }
593 
594 /*
595  * add_client - Add a client record to the start of a list.
596  */
597 static inline void add_client(struct CLIENT_REC *ca, u16 index, __le16 *head)
598 {
599 	struct CLIENT_REC *cr = ca + index;
600 
601 	cr->prev_client = LFS_NO_CLIENT_LE;
602 	cr->next_client = *head;
603 
604 	if (*head != LFS_NO_CLIENT_LE)
605 		ca[le16_to_cpu(*head)].prev_client = cpu_to_le16(index);
606 
607 	*head = cpu_to_le16(index);
608 }
609 
610 static inline void *enum_rstbl(struct RESTART_TABLE *t, void *c)
611 {
612 	__le32 *e;
613 	u32 bprt;
614 	u16 rsize = t ? le16_to_cpu(t->size) : 0;
615 
616 	if (!c) {
617 		if (!t || !t->total)
618 			return NULL;
619 		e = Add2Ptr(t, sizeof(struct RESTART_TABLE));
620 	} else {
621 		e = Add2Ptr(c, rsize);
622 	}
623 
624 	/* Loop until we hit the first one allocated, or the end of the list. */
625 	for (bprt = bytes_per_rt(t); PtrOffset(t, e) < bprt;
626 	     e = Add2Ptr(e, rsize)) {
627 		if (*e == RESTART_ENTRY_ALLOCATED_LE)
628 			return e;
629 	}
630 	return NULL;
631 }
632 
633 /*
634  * find_dp - Search for a @vcn in Dirty Page Table.
635  */
636 static inline struct DIR_PAGE_ENTRY *find_dp(struct RESTART_TABLE *dptbl,
637 					     u32 target_attr, u64 vcn)
638 {
639 	__le32 ta = cpu_to_le32(target_attr);
640 	struct DIR_PAGE_ENTRY *dp = NULL;
641 
642 	while ((dp = enum_rstbl(dptbl, dp))) {
643 		u64 dp_vcn = le64_to_cpu(dp->vcn);
644 
645 		if (dp->target_attr == ta && vcn >= dp_vcn &&
646 		    vcn < dp_vcn + le32_to_cpu(dp->lcns_follow)) {
647 			return dp;
648 		}
649 	}
650 	return NULL;
651 }
652 
653 static inline u32 norm_file_page(u32 page_size, u32 *l_size, bool use_default)
654 {
655 	if (use_default)
656 		page_size = DefaultLogPageSize;
657 
658 	/* Round the file size down to a system page boundary. */
659 	*l_size &= ~(page_size - 1);
660 
661 	/* File should contain at least 2 restart pages and MinLogRecordPages pages. */
662 	if (*l_size < (MinLogRecordPages + 2) * page_size)
663 		return 0;
664 
665 	return page_size;
666 }
667 
668 static bool check_log_rec(const struct LOG_REC_HDR *lr, u32 bytes, u32 tr,
669 			  u32 bytes_per_attr_entry)
670 {
671 	u16 t16;
672 
673 	if (bytes < sizeof(struct LOG_REC_HDR))
674 		return false;
675 	if (!tr)
676 		return false;
677 
678 	if ((tr - sizeof(struct RESTART_TABLE)) %
679 	    sizeof(struct TRANSACTION_ENTRY))
680 		return false;
681 
682 	if (le16_to_cpu(lr->redo_off) & 7)
683 		return false;
684 
685 	if (le16_to_cpu(lr->undo_off) & 7)
686 		return false;
687 
688 	if (lr->target_attr)
689 		goto check_lcns;
690 
691 	if (is_target_required(le16_to_cpu(lr->redo_op)))
692 		return false;
693 
694 	if (is_target_required(le16_to_cpu(lr->undo_op)))
695 		return false;
696 
697 check_lcns:
698 	if (!lr->lcns_follow)
699 		goto check_length;
700 
701 	t16 = le16_to_cpu(lr->target_attr);
702 	if ((t16 - sizeof(struct RESTART_TABLE)) % bytes_per_attr_entry)
703 		return false;
704 
705 check_length:
706 	if (bytes < lrh_length(lr))
707 		return false;
708 
709 	return true;
710 }
711 
712 static bool check_rstbl(const struct RESTART_TABLE *rt, size_t bytes)
713 {
714 	u32 ts;
715 	u32 i, off;
716 	u16 rsize = le16_to_cpu(rt->size);
717 	u16 ne = le16_to_cpu(rt->used);
718 	u32 ff = le32_to_cpu(rt->first_free);
719 	u32 lf = le32_to_cpu(rt->last_free);
720 
721 	ts = rsize * ne + sizeof(struct RESTART_TABLE);
722 
723 	if (!rsize || rsize > bytes ||
724 	    rsize + sizeof(struct RESTART_TABLE) > bytes || bytes < ts ||
725 	    le16_to_cpu(rt->total) > ne || ff > ts || lf > ts ||
726 	    (ff && ff < sizeof(struct RESTART_TABLE)) ||
727 	    (lf && lf < sizeof(struct RESTART_TABLE))) {
728 		return false;
729 	}
730 
731 	/*
732 	 * Verify each entry is either allocated or points
733 	 * to a valid offset the table.
734 	 */
735 	for (i = 0; i < ne; i++) {
736 		off = le32_to_cpu(*(__le32 *)Add2Ptr(
737 			rt, i * rsize + sizeof(struct RESTART_TABLE)));
738 
739 		if (off != RESTART_ENTRY_ALLOCATED && off &&
740 		    (off < sizeof(struct RESTART_TABLE) ||
741 		     ((off - sizeof(struct RESTART_TABLE)) % rsize))) {
742 			return false;
743 		}
744 	}
745 
746 	/*
747 	 * Walk through the list headed by the first entry to make
748 	 * sure none of the entries are currently being used.
749 	 */
750 	for (off = ff; off;) {
751 		if (off == RESTART_ENTRY_ALLOCATED)
752 			return false;
753 
754 		off = le32_to_cpu(*(__le32 *)Add2Ptr(rt, off));
755 	}
756 
757 	return true;
758 }
759 
760 /*
761  * free_rsttbl_idx - Free a previously allocated index a Restart Table.
762  */
763 static inline void free_rsttbl_idx(struct RESTART_TABLE *rt, u32 off)
764 {
765 	__le32 *e;
766 	u32 lf = le32_to_cpu(rt->last_free);
767 	__le32 off_le = cpu_to_le32(off);
768 
769 	e = Add2Ptr(rt, off);
770 
771 	if (off < le32_to_cpu(rt->free_goal)) {
772 		*e = rt->first_free;
773 		rt->first_free = off_le;
774 		if (!lf)
775 			rt->last_free = off_le;
776 	} else {
777 		if (lf)
778 			*(__le32 *)Add2Ptr(rt, lf) = off_le;
779 		else
780 			rt->first_free = off_le;
781 
782 		rt->last_free = off_le;
783 		*e = 0;
784 	}
785 
786 	le16_sub_cpu(&rt->total, 1);
787 }
788 
789 static inline struct RESTART_TABLE *init_rsttbl(u16 esize, u16 used)
790 {
791 	__le32 *e, *last_free;
792 	u32 off;
793 	u32 bytes = esize * used + sizeof(struct RESTART_TABLE);
794 	u32 lf = sizeof(struct RESTART_TABLE) + (used - 1) * esize;
795 	struct RESTART_TABLE *t = kzalloc(bytes, GFP_NOFS);
796 
797 	if (!t)
798 		return NULL;
799 
800 	t->size = cpu_to_le16(esize);
801 	t->used = cpu_to_le16(used);
802 	t->free_goal = cpu_to_le32(~0u);
803 	t->first_free = cpu_to_le32(sizeof(struct RESTART_TABLE));
804 	t->last_free = cpu_to_le32(lf);
805 
806 	e = (__le32 *)(t + 1);
807 	last_free = Add2Ptr(t, lf);
808 
809 	for (off = sizeof(struct RESTART_TABLE) + esize; e < last_free;
810 	     e = Add2Ptr(e, esize), off += esize) {
811 		*e = cpu_to_le32(off);
812 	}
813 	return t;
814 }
815 
816 static inline struct RESTART_TABLE *extend_rsttbl(struct RESTART_TABLE *tbl,
817 						  u32 add, u32 free_goal)
818 {
819 	u16 esize = le16_to_cpu(tbl->size);
820 	__le32 osize = cpu_to_le32(bytes_per_rt(tbl));
821 	u32 used = le16_to_cpu(tbl->used);
822 	struct RESTART_TABLE *rt;
823 
824 	rt = init_rsttbl(esize, used + add);
825 	if (!rt)
826 		return NULL;
827 
828 	memcpy(rt + 1, tbl + 1, esize * used);
829 
830 	rt->free_goal = free_goal == ~0u
831 				? cpu_to_le32(~0u)
832 				: cpu_to_le32(sizeof(struct RESTART_TABLE) +
833 					      free_goal * esize);
834 
835 	if (tbl->first_free) {
836 		rt->first_free = tbl->first_free;
837 		*(__le32 *)Add2Ptr(rt, le32_to_cpu(tbl->last_free)) = osize;
838 	} else {
839 		rt->first_free = osize;
840 	}
841 
842 	rt->total = tbl->total;
843 
844 	kfree(tbl);
845 	return rt;
846 }
847 
848 /*
849  * alloc_rsttbl_idx
850  *
851  * Allocate an index from within a previously initialized Restart Table.
852  */
853 static inline void *alloc_rsttbl_idx(struct RESTART_TABLE **tbl)
854 {
855 	u32 off;
856 	__le32 *e;
857 	struct RESTART_TABLE *t = *tbl;
858 
859 	if (!t->first_free) {
860 		*tbl = t = extend_rsttbl(t, 16, ~0u);
861 		if (!t)
862 			return NULL;
863 	}
864 
865 	off = le32_to_cpu(t->first_free);
866 
867 	/* Dequeue this entry and zero it. */
868 	e = Add2Ptr(t, off);
869 
870 	t->first_free = *e;
871 
872 	memset(e, 0, le16_to_cpu(t->size));
873 
874 	*e = RESTART_ENTRY_ALLOCATED_LE;
875 
876 	/* If list is going empty, then we fix the last_free as well. */
877 	if (!t->first_free)
878 		t->last_free = 0;
879 
880 	le16_add_cpu(&t->total, 1);
881 
882 	return Add2Ptr(t, off);
883 }
884 
885 /*
886  * alloc_rsttbl_from_idx
887  *
888  * Allocate a specific index from within a previously initialized Restart Table.
889  */
890 static inline void *alloc_rsttbl_from_idx(struct RESTART_TABLE **tbl, u32 vbo)
891 {
892 	u32 off;
893 	__le32 *e;
894 	struct RESTART_TABLE *rt = *tbl;
895 	u32 bytes = bytes_per_rt(rt);
896 	u16 esize = le16_to_cpu(rt->size);
897 
898 	/* If the entry is not the table, we will have to extend the table. */
899 	if (vbo >= bytes) {
900 		/*
901 		 * Extend the size by computing the number of entries between
902 		 * the existing size and the desired index and adding 1 to that.
903 		 */
904 		u32 bytes2idx = vbo - bytes;
905 
906 		/*
907 		 * There should always be an integral number of entries
908 		 * being added. Now extend the table.
909 		 */
910 		*tbl = rt = extend_rsttbl(rt, bytes2idx / esize + 1, bytes);
911 		if (!rt)
912 			return NULL;
913 	}
914 
915 	/* See if the entry is already allocated, and just return if it is. */
916 	e = Add2Ptr(rt, vbo);
917 
918 	if (*e == RESTART_ENTRY_ALLOCATED_LE)
919 		return e;
920 
921 	/*
922 	 * Walk through the table, looking for the entry we're
923 	 * interested and the previous entry.
924 	 */
925 	off = le32_to_cpu(rt->first_free);
926 	e = Add2Ptr(rt, off);
927 
928 	if (off == vbo) {
929 		/* this is a match */
930 		rt->first_free = *e;
931 		goto skip_looking;
932 	}
933 
934 	/*
935 	 * Need to walk through the list looking for the predecessor
936 	 * of our entry.
937 	 */
938 	for (;;) {
939 		/* Remember the entry just found */
940 		u32 last_off = off;
941 		__le32 *last_e = e;
942 
943 		/* Should never run of entries. */
944 
945 		/* Lookup up the next entry the list. */
946 		off = le32_to_cpu(*last_e);
947 		e = Add2Ptr(rt, off);
948 
949 		/* If this is our match we are done. */
950 		if (off == vbo) {
951 			*last_e = *e;
952 
953 			/*
954 			 * If this was the last entry, we update that
955 			 * table as well.
956 			 */
957 			if (le32_to_cpu(rt->last_free) == off)
958 				rt->last_free = cpu_to_le32(last_off);
959 			break;
960 		}
961 	}
962 
963 skip_looking:
964 	/* If the list is now empty, we fix the last_free as well. */
965 	if (!rt->first_free)
966 		rt->last_free = 0;
967 
968 	/* Zero this entry. */
969 	memset(e, 0, esize);
970 	*e = RESTART_ENTRY_ALLOCATED_LE;
971 
972 	le16_add_cpu(&rt->total, 1);
973 
974 	return e;
975 }
976 
977 #define RESTART_SINGLE_PAGE_IO cpu_to_le16(0x0001)
978 
979 #define NTFSLOG_WRAPPED 0x00000001
980 #define NTFSLOG_MULTIPLE_PAGE_IO 0x00000002
981 #define NTFSLOG_NO_LAST_LSN 0x00000004
982 #define NTFSLOG_REUSE_TAIL 0x00000010
983 #define NTFSLOG_NO_OLDEST_LSN 0x00000020
984 
985 /* Helper struct to work with NTFS $LogFile. */
986 struct ntfs_log {
987 	struct ntfs_inode *ni;
988 
989 	u32 l_size;
990 	u32 sys_page_size;
991 	u32 sys_page_mask;
992 	u32 page_size;
993 	u32 page_mask; // page_size - 1
994 	u8 page_bits;
995 	struct RECORD_PAGE_HDR *one_page_buf;
996 
997 	struct RESTART_TABLE *open_attr_tbl;
998 	u32 transaction_id;
999 	u32 clst_per_page;
1000 
1001 	u32 first_page;
1002 	u32 next_page;
1003 	u32 ra_off;
1004 	u32 data_off;
1005 	u32 restart_size;
1006 	u32 data_size;
1007 	u16 record_header_len;
1008 	u64 seq_num;
1009 	u32 seq_num_bits;
1010 	u32 file_data_bits;
1011 	u32 seq_num_mask; /* (1 << file_data_bits) - 1 */
1012 
1013 	struct RESTART_AREA *ra; /* In-memory image of the next restart area. */
1014 	u32 ra_size; /* The usable size of the restart area. */
1015 
1016 	/*
1017 	 * If true, then the in-memory restart area is to be written
1018 	 * to the first position on the disk.
1019 	 */
1020 	bool init_ra;
1021 	bool set_dirty; /* True if we need to set dirty flag. */
1022 
1023 	u64 oldest_lsn;
1024 
1025 	u32 oldest_lsn_off;
1026 	u64 last_lsn;
1027 
1028 	u32 total_avail;
1029 	u32 total_avail_pages;
1030 	u32 total_undo_commit;
1031 	u32 max_current_avail;
1032 	u32 current_avail;
1033 	u32 reserved;
1034 
1035 	short major_ver;
1036 	short minor_ver;
1037 
1038 	u32 l_flags; /* See NTFSLOG_XXX */
1039 	u32 current_openlog_count; /* On-disk value for open_log_count. */
1040 
1041 	struct CLIENT_ID client_id;
1042 	u32 client_undo_commit;
1043 };
1044 
1045 static inline u32 lsn_to_vbo(struct ntfs_log *log, const u64 lsn)
1046 {
1047 	u32 vbo = (lsn << log->seq_num_bits) >> (log->seq_num_bits - 3);
1048 
1049 	return vbo;
1050 }
1051 
1052 /* Compute the offset in the log file of the next log page. */
1053 static inline u32 next_page_off(struct ntfs_log *log, u32 off)
1054 {
1055 	off = (off & ~log->sys_page_mask) + log->page_size;
1056 	return off >= log->l_size ? log->first_page : off;
1057 }
1058 
1059 static inline u32 lsn_to_page_off(struct ntfs_log *log, u64 lsn)
1060 {
1061 	return (((u32)lsn) << 3) & log->page_mask;
1062 }
1063 
1064 static inline u64 vbo_to_lsn(struct ntfs_log *log, u32 off, u64 Seq)
1065 {
1066 	return (off >> 3) + (Seq << log->file_data_bits);
1067 }
1068 
1069 static inline bool is_lsn_in_file(struct ntfs_log *log, u64 lsn)
1070 {
1071 	return lsn >= log->oldest_lsn &&
1072 	       lsn <= le64_to_cpu(log->ra->current_lsn);
1073 }
1074 
1075 static inline u32 hdr_file_off(struct ntfs_log *log,
1076 			       struct RECORD_PAGE_HDR *hdr)
1077 {
1078 	if (log->major_ver < 2)
1079 		return le64_to_cpu(hdr->rhdr.lsn);
1080 
1081 	return le32_to_cpu(hdr->file_off);
1082 }
1083 
1084 static inline u64 base_lsn(struct ntfs_log *log,
1085 			   const struct RECORD_PAGE_HDR *hdr, u64 lsn)
1086 {
1087 	u64 h_lsn = le64_to_cpu(hdr->rhdr.lsn);
1088 	u64 ret = (((h_lsn >> log->file_data_bits) +
1089 		    (lsn < (lsn_to_vbo(log, h_lsn) & ~log->page_mask) ? 1 : 0))
1090 		   << log->file_data_bits) +
1091 		  ((((is_log_record_end(hdr) &&
1092 		      h_lsn <= le64_to_cpu(hdr->record_hdr.last_end_lsn))
1093 			     ? le16_to_cpu(hdr->record_hdr.next_record_off)
1094 			     : log->page_size) +
1095 		    lsn) >>
1096 		   3);
1097 
1098 	return ret;
1099 }
1100 
1101 static inline bool verify_client_lsn(struct ntfs_log *log,
1102 				     const struct CLIENT_REC *client, u64 lsn)
1103 {
1104 	return lsn >= le64_to_cpu(client->oldest_lsn) &&
1105 	       lsn <= le64_to_cpu(log->ra->current_lsn) && lsn;
1106 }
1107 
1108 struct restart_info {
1109 	u64 last_lsn;
1110 	struct RESTART_HDR *r_page;
1111 	u32 vbo;
1112 	bool chkdsk_was_run;
1113 	bool valid_page;
1114 	bool initialized;
1115 	bool restart;
1116 };
1117 
1118 static int read_log_page(struct ntfs_log *log, u32 vbo,
1119 			 struct RECORD_PAGE_HDR **buffer, bool *usa_error)
1120 {
1121 	int err = 0;
1122 	u32 page_idx = vbo >> log->page_bits;
1123 	u32 page_off = vbo & log->page_mask;
1124 	u32 bytes = log->page_size - page_off;
1125 	void *to_free = NULL;
1126 	u32 page_vbo = page_idx << log->page_bits;
1127 	struct RECORD_PAGE_HDR *page_buf;
1128 	struct ntfs_inode *ni = log->ni;
1129 	bool bBAAD;
1130 
1131 	if (vbo >= log->l_size)
1132 		return -EINVAL;
1133 
1134 	if (!*buffer) {
1135 		to_free = kmalloc(log->page_size, GFP_NOFS);
1136 		if (!to_free)
1137 			return -ENOMEM;
1138 		*buffer = to_free;
1139 	}
1140 
1141 	page_buf = page_off ? log->one_page_buf : *buffer;
1142 
1143 	err = ntfs_read_run_nb(ni->mi.sbi, &ni->file.run, page_vbo, page_buf,
1144 			       log->page_size, NULL);
1145 	if (err)
1146 		goto out;
1147 
1148 	if (page_buf->rhdr.sign != NTFS_FFFF_SIGNATURE)
1149 		ntfs_fix_post_read(&page_buf->rhdr, PAGE_SIZE, false);
1150 
1151 	if (page_buf != *buffer)
1152 		memcpy(*buffer, Add2Ptr(page_buf, page_off), bytes);
1153 
1154 	bBAAD = page_buf->rhdr.sign == NTFS_BAAD_SIGNATURE;
1155 
1156 	if (usa_error)
1157 		*usa_error = bBAAD;
1158 	/* Check that the update sequence array for this page is valid */
1159 	/* If we don't allow errors, raise an error status */
1160 	else if (bBAAD)
1161 		err = -EINVAL;
1162 
1163 out:
1164 	if (err && to_free) {
1165 		kfree(to_free);
1166 		*buffer = NULL;
1167 	}
1168 
1169 	return err;
1170 }
1171 
1172 /*
1173  * log_read_rst
1174  *
1175  * It walks through 512 blocks of the file looking for a valid
1176  * restart page header. It will stop the first time we find a
1177  * valid page header.
1178  */
1179 static int log_read_rst(struct ntfs_log *log, u32 l_size, bool first,
1180 			struct restart_info *info)
1181 {
1182 	u32 skip, vbo;
1183 	struct RESTART_HDR *r_page = NULL;
1184 
1185 	/* Determine which restart area we are looking for. */
1186 	if (first) {
1187 		vbo = 0;
1188 		skip = 512;
1189 	} else {
1190 		vbo = 512;
1191 		skip = 0;
1192 	}
1193 
1194 	/* Loop continuously until we succeed. */
1195 	for (; vbo < l_size; vbo = 2 * vbo + skip, skip = 0) {
1196 		bool usa_error;
1197 		bool brst, bchk;
1198 		struct RESTART_AREA *ra;
1199 
1200 		/* Read a page header at the current offset. */
1201 		if (read_log_page(log, vbo, (struct RECORD_PAGE_HDR **)&r_page,
1202 				  &usa_error)) {
1203 			/* Ignore any errors. */
1204 			continue;
1205 		}
1206 
1207 		/* Exit if the signature is a log record page. */
1208 		if (r_page->rhdr.sign == NTFS_RCRD_SIGNATURE) {
1209 			info->initialized = true;
1210 			break;
1211 		}
1212 
1213 		brst = r_page->rhdr.sign == NTFS_RSTR_SIGNATURE;
1214 		bchk = r_page->rhdr.sign == NTFS_CHKD_SIGNATURE;
1215 
1216 		if (!bchk && !brst) {
1217 			if (r_page->rhdr.sign != NTFS_FFFF_SIGNATURE) {
1218 				/*
1219 				 * Remember if the signature does not
1220 				 * indicate uninitialized file.
1221 				 */
1222 				info->initialized = true;
1223 			}
1224 			continue;
1225 		}
1226 
1227 		ra = NULL;
1228 		info->valid_page = false;
1229 		info->initialized = true;
1230 		info->vbo = vbo;
1231 
1232 		/* Let's check the restart area if this is a valid page. */
1233 		if (!is_rst_page_hdr_valid(vbo, r_page))
1234 			goto check_result;
1235 		ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1236 
1237 		if (!is_rst_area_valid(r_page))
1238 			goto check_result;
1239 
1240 		/*
1241 		 * We have a valid restart page header and restart area.
1242 		 * If chkdsk was run or we have no clients then we have
1243 		 * no more checking to do.
1244 		 */
1245 		if (bchk || ra->client_idx[1] == LFS_NO_CLIENT_LE) {
1246 			info->valid_page = true;
1247 			goto check_result;
1248 		}
1249 
1250 		if (is_client_area_valid(r_page, usa_error)) {
1251 			info->valid_page = true;
1252 			ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1253 		}
1254 
1255 check_result:
1256 		/*
1257 		 * If chkdsk was run then update the caller's
1258 		 * values and return.
1259 		 */
1260 		if (r_page->rhdr.sign == NTFS_CHKD_SIGNATURE) {
1261 			info->chkdsk_was_run = true;
1262 			info->last_lsn = le64_to_cpu(r_page->rhdr.lsn);
1263 			info->restart = true;
1264 			info->r_page = r_page;
1265 			return 0;
1266 		}
1267 
1268 		/*
1269 		 * If we have a valid page then copy the values
1270 		 * we need from it.
1271 		 */
1272 		if (info->valid_page) {
1273 			info->last_lsn = le64_to_cpu(ra->current_lsn);
1274 			info->restart = true;
1275 			info->r_page = r_page;
1276 			return 0;
1277 		}
1278 	}
1279 
1280 	kfree(r_page);
1281 
1282 	return 0;
1283 }
1284 
1285 /*
1286  * Ilog_init_pg_hdr - Init @log from restart page header.
1287  */
1288 static void log_init_pg_hdr(struct ntfs_log *log, u32 sys_page_size,
1289 			    u32 page_size, u16 major_ver, u16 minor_ver)
1290 {
1291 	log->sys_page_size = sys_page_size;
1292 	log->sys_page_mask = sys_page_size - 1;
1293 	log->page_size = page_size;
1294 	log->page_mask = page_size - 1;
1295 	log->page_bits = blksize_bits(page_size);
1296 
1297 	log->clst_per_page = log->page_size >> log->ni->mi.sbi->cluster_bits;
1298 	if (!log->clst_per_page)
1299 		log->clst_per_page = 1;
1300 
1301 	log->first_page = major_ver >= 2
1302 				  ? 0x22 * page_size
1303 				  : ((sys_page_size << 1) + (page_size << 1));
1304 	log->major_ver = major_ver;
1305 	log->minor_ver = minor_ver;
1306 }
1307 
1308 /*
1309  * log_create - Init @log in cases when we don't have a restart area to use.
1310  */
1311 static void log_create(struct ntfs_log *log, u32 l_size, const u64 last_lsn,
1312 		       u32 open_log_count, bool wrapped, bool use_multi_page)
1313 {
1314 	log->l_size = l_size;
1315 	/* All file offsets must be quadword aligned. */
1316 	log->file_data_bits = blksize_bits(l_size) - 3;
1317 	log->seq_num_mask = (8 << log->file_data_bits) - 1;
1318 	log->seq_num_bits = sizeof(u64) * 8 - log->file_data_bits;
1319 	log->seq_num = (last_lsn >> log->file_data_bits) + 2;
1320 	log->next_page = log->first_page;
1321 	log->oldest_lsn = log->seq_num << log->file_data_bits;
1322 	log->oldest_lsn_off = 0;
1323 	log->last_lsn = log->oldest_lsn;
1324 
1325 	log->l_flags |= NTFSLOG_NO_LAST_LSN | NTFSLOG_NO_OLDEST_LSN;
1326 
1327 	/* Set the correct flags for the I/O and indicate if we have wrapped. */
1328 	if (wrapped)
1329 		log->l_flags |= NTFSLOG_WRAPPED;
1330 
1331 	if (use_multi_page)
1332 		log->l_flags |= NTFSLOG_MULTIPLE_PAGE_IO;
1333 
1334 	/* Compute the log page values. */
1335 	log->data_off = ALIGN(
1336 		offsetof(struct RECORD_PAGE_HDR, fixups) +
1337 			sizeof(short) * ((log->page_size >> SECTOR_SHIFT) + 1),
1338 		8);
1339 	log->data_size = log->page_size - log->data_off;
1340 	log->record_header_len = sizeof(struct LFS_RECORD_HDR);
1341 
1342 	/* Remember the different page sizes for reservation. */
1343 	log->reserved = log->data_size - log->record_header_len;
1344 
1345 	/* Compute the restart page values. */
1346 	log->ra_off = ALIGN(
1347 		offsetof(struct RESTART_HDR, fixups) +
1348 			sizeof(short) *
1349 				((log->sys_page_size >> SECTOR_SHIFT) + 1),
1350 		8);
1351 	log->restart_size = log->sys_page_size - log->ra_off;
1352 	log->ra_size = struct_size(log->ra, clients, 1);
1353 	log->current_openlog_count = open_log_count;
1354 
1355 	/*
1356 	 * The total available log file space is the number of
1357 	 * log file pages times the space available on each page.
1358 	 */
1359 	log->total_avail_pages = log->l_size - log->first_page;
1360 	log->total_avail = log->total_avail_pages >> log->page_bits;
1361 
1362 	/*
1363 	 * We assume that we can't use the end of the page less than
1364 	 * the file record size.
1365 	 * Then we won't need to reserve more than the caller asks for.
1366 	 */
1367 	log->max_current_avail = log->total_avail * log->reserved;
1368 	log->total_avail = log->total_avail * log->data_size;
1369 	log->current_avail = log->max_current_avail;
1370 }
1371 
1372 /*
1373  * log_create_ra - Fill a restart area from the values stored in @log.
1374  */
1375 static struct RESTART_AREA *log_create_ra(struct ntfs_log *log)
1376 {
1377 	struct CLIENT_REC *cr;
1378 	struct RESTART_AREA *ra = kzalloc(log->restart_size, GFP_NOFS);
1379 
1380 	if (!ra)
1381 		return NULL;
1382 
1383 	ra->current_lsn = cpu_to_le64(log->last_lsn);
1384 	ra->log_clients = cpu_to_le16(1);
1385 	ra->client_idx[1] = LFS_NO_CLIENT_LE;
1386 	if (log->l_flags & NTFSLOG_MULTIPLE_PAGE_IO)
1387 		ra->flags = RESTART_SINGLE_PAGE_IO;
1388 	ra->seq_num_bits = cpu_to_le32(log->seq_num_bits);
1389 	ra->ra_len = cpu_to_le16(log->ra_size);
1390 	ra->client_off = cpu_to_le16(offsetof(struct RESTART_AREA, clients));
1391 	ra->l_size = cpu_to_le64(log->l_size);
1392 	ra->rec_hdr_len = cpu_to_le16(log->record_header_len);
1393 	ra->data_off = cpu_to_le16(log->data_off);
1394 	ra->open_log_count = cpu_to_le32(log->current_openlog_count + 1);
1395 
1396 	cr = ra->clients;
1397 
1398 	cr->prev_client = LFS_NO_CLIENT_LE;
1399 	cr->next_client = LFS_NO_CLIENT_LE;
1400 
1401 	return ra;
1402 }
1403 
1404 static u32 final_log_off(struct ntfs_log *log, u64 lsn, u32 data_len)
1405 {
1406 	u32 base_vbo = lsn << 3;
1407 	u32 final_log_off = (base_vbo & log->seq_num_mask) & ~log->page_mask;
1408 	u32 page_off = base_vbo & log->page_mask;
1409 	u32 tail = log->page_size - page_off;
1410 
1411 	page_off -= 1;
1412 
1413 	/* Add the length of the header. */
1414 	data_len += log->record_header_len;
1415 
1416 	/*
1417 	 * If this lsn is contained this log page we are done.
1418 	 * Otherwise we need to walk through several log pages.
1419 	 */
1420 	if (data_len > tail) {
1421 		data_len -= tail;
1422 		tail = log->data_size;
1423 		page_off = log->data_off - 1;
1424 
1425 		for (;;) {
1426 			final_log_off = next_page_off(log, final_log_off);
1427 
1428 			/*
1429 			 * We are done if the remaining bytes
1430 			 * fit on this page.
1431 			 */
1432 			if (data_len <= tail)
1433 				break;
1434 			data_len -= tail;
1435 		}
1436 	}
1437 
1438 	/*
1439 	 * We add the remaining bytes to our starting position on this page
1440 	 * and then add that value to the file offset of this log page.
1441 	 */
1442 	return final_log_off + data_len + page_off;
1443 }
1444 
1445 static int next_log_lsn(struct ntfs_log *log, const struct LFS_RECORD_HDR *rh,
1446 			u64 *lsn)
1447 {
1448 	int err;
1449 	u64 this_lsn = le64_to_cpu(rh->this_lsn);
1450 	u32 vbo = lsn_to_vbo(log, this_lsn);
1451 	u32 end =
1452 		final_log_off(log, this_lsn, le32_to_cpu(rh->client_data_len));
1453 	u32 hdr_off = end & ~log->sys_page_mask;
1454 	u64 seq = this_lsn >> log->file_data_bits;
1455 	struct RECORD_PAGE_HDR *page = NULL;
1456 
1457 	/* Remember if we wrapped. */
1458 	if (end <= vbo)
1459 		seq += 1;
1460 
1461 	/* Log page header for this page. */
1462 	err = read_log_page(log, hdr_off, &page, NULL);
1463 	if (err)
1464 		return err;
1465 
1466 	/*
1467 	 * If the lsn we were given was not the last lsn on this page,
1468 	 * then the starting offset for the next lsn is on a quad word
1469 	 * boundary following the last file offset for the current lsn.
1470 	 * Otherwise the file offset is the start of the data on the next page.
1471 	 */
1472 	if (this_lsn == le64_to_cpu(page->rhdr.lsn)) {
1473 		/* If we wrapped, we need to increment the sequence number. */
1474 		hdr_off = next_page_off(log, hdr_off);
1475 		if (hdr_off == log->first_page)
1476 			seq += 1;
1477 
1478 		vbo = hdr_off + log->data_off;
1479 	} else {
1480 		vbo = ALIGN(end, 8);
1481 	}
1482 
1483 	/* Compute the lsn based on the file offset and the sequence count. */
1484 	*lsn = vbo_to_lsn(log, vbo, seq);
1485 
1486 	/*
1487 	 * If this lsn is within the legal range for the file, we return true.
1488 	 * Otherwise false indicates that there are no more lsn's.
1489 	 */
1490 	if (!is_lsn_in_file(log, *lsn))
1491 		*lsn = 0;
1492 
1493 	kfree(page);
1494 
1495 	return 0;
1496 }
1497 
1498 /*
1499  * current_log_avail - Calculate the number of bytes available for log records.
1500  */
1501 static u32 current_log_avail(struct ntfs_log *log)
1502 {
1503 	u32 oldest_off, next_free_off, free_bytes;
1504 
1505 	if (log->l_flags & NTFSLOG_NO_LAST_LSN) {
1506 		/* The entire file is available. */
1507 		return log->max_current_avail;
1508 	}
1509 
1510 	/*
1511 	 * If there is a last lsn the restart area then we know that we will
1512 	 * have to compute the free range.
1513 	 * If there is no oldest lsn then start at the first page of the file.
1514 	 */
1515 	oldest_off = (log->l_flags & NTFSLOG_NO_OLDEST_LSN)
1516 			     ? log->first_page
1517 			     : (log->oldest_lsn_off & ~log->sys_page_mask);
1518 
1519 	/*
1520 	 * We will use the next log page offset to compute the next free page.
1521 	 * If we are going to reuse this page go to the next page.
1522 	 * If we are at the first page then use the end of the file.
1523 	 */
1524 	next_free_off = (log->l_flags & NTFSLOG_REUSE_TAIL)
1525 				? log->next_page + log->page_size
1526 				: log->next_page == log->first_page
1527 					  ? log->l_size
1528 					  : log->next_page;
1529 
1530 	/* If the two offsets are the same then there is no available space. */
1531 	if (oldest_off == next_free_off)
1532 		return 0;
1533 	/*
1534 	 * If the free offset follows the oldest offset then subtract
1535 	 * this range from the total available pages.
1536 	 */
1537 	free_bytes =
1538 		oldest_off < next_free_off
1539 			? log->total_avail_pages - (next_free_off - oldest_off)
1540 			: oldest_off - next_free_off;
1541 
1542 	free_bytes >>= log->page_bits;
1543 	return free_bytes * log->reserved;
1544 }
1545 
1546 static bool check_subseq_log_page(struct ntfs_log *log,
1547 				  const struct RECORD_PAGE_HDR *rp, u32 vbo,
1548 				  u64 seq)
1549 {
1550 	u64 lsn_seq;
1551 	const struct NTFS_RECORD_HEADER *rhdr = &rp->rhdr;
1552 	u64 lsn = le64_to_cpu(rhdr->lsn);
1553 
1554 	if (rhdr->sign == NTFS_FFFF_SIGNATURE || !rhdr->sign)
1555 		return false;
1556 
1557 	/*
1558 	 * If the last lsn on the page occurs was written after the page
1559 	 * that caused the original error then we have a fatal error.
1560 	 */
1561 	lsn_seq = lsn >> log->file_data_bits;
1562 
1563 	/*
1564 	 * If the sequence number for the lsn the page is equal or greater
1565 	 * than lsn we expect, then this is a subsequent write.
1566 	 */
1567 	return lsn_seq >= seq ||
1568 	       (lsn_seq == seq - 1 && log->first_page == vbo &&
1569 		vbo != (lsn_to_vbo(log, lsn) & ~log->page_mask));
1570 }
1571 
1572 /*
1573  * last_log_lsn
1574  *
1575  * Walks through the log pages for a file, searching for the
1576  * last log page written to the file.
1577  */
1578 static int last_log_lsn(struct ntfs_log *log)
1579 {
1580 	int err;
1581 	bool usa_error = false;
1582 	bool replace_page = false;
1583 	bool reuse_page = log->l_flags & NTFSLOG_REUSE_TAIL;
1584 	bool wrapped_file, wrapped;
1585 
1586 	u32 page_cnt = 1, page_pos = 1;
1587 	u32 page_off = 0, page_off1 = 0, saved_off = 0;
1588 	u32 final_off, second_off, final_off_prev = 0, second_off_prev = 0;
1589 	u32 first_file_off = 0, second_file_off = 0;
1590 	u32 part_io_count = 0;
1591 	u32 tails = 0;
1592 	u32 this_off, curpage_off, nextpage_off, remain_pages;
1593 
1594 	u64 expected_seq, seq_base = 0, lsn_base = 0;
1595 	u64 best_lsn, best_lsn1, best_lsn2;
1596 	u64 lsn_cur, lsn1, lsn2;
1597 	u64 last_ok_lsn = reuse_page ? log->last_lsn : 0;
1598 
1599 	u16 cur_pos, best_page_pos;
1600 
1601 	struct RECORD_PAGE_HDR *page = NULL;
1602 	struct RECORD_PAGE_HDR *tst_page = NULL;
1603 	struct RECORD_PAGE_HDR *first_tail = NULL;
1604 	struct RECORD_PAGE_HDR *second_tail = NULL;
1605 	struct RECORD_PAGE_HDR *tail_page = NULL;
1606 	struct RECORD_PAGE_HDR *second_tail_prev = NULL;
1607 	struct RECORD_PAGE_HDR *first_tail_prev = NULL;
1608 	struct RECORD_PAGE_HDR *page_bufs = NULL;
1609 	struct RECORD_PAGE_HDR *best_page;
1610 
1611 	if (log->major_ver >= 2) {
1612 		final_off = 0x02 * log->page_size;
1613 		second_off = 0x12 * log->page_size;
1614 
1615 		// 0x10 == 0x12 - 0x2
1616 		page_bufs = kmalloc(log->page_size * 0x10, GFP_NOFS);
1617 		if (!page_bufs)
1618 			return -ENOMEM;
1619 	} else {
1620 		second_off = log->first_page - log->page_size;
1621 		final_off = second_off - log->page_size;
1622 	}
1623 
1624 next_tail:
1625 	/* Read second tail page (at pos 3/0x12000). */
1626 	if (read_log_page(log, second_off, &second_tail, &usa_error) ||
1627 	    usa_error || second_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
1628 		kfree(second_tail);
1629 		second_tail = NULL;
1630 		second_file_off = 0;
1631 		lsn2 = 0;
1632 	} else {
1633 		second_file_off = hdr_file_off(log, second_tail);
1634 		lsn2 = le64_to_cpu(second_tail->record_hdr.last_end_lsn);
1635 	}
1636 
1637 	/* Read first tail page (at pos 2/0x2000). */
1638 	if (read_log_page(log, final_off, &first_tail, &usa_error) ||
1639 	    usa_error || first_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
1640 		kfree(first_tail);
1641 		first_tail = NULL;
1642 		first_file_off = 0;
1643 		lsn1 = 0;
1644 	} else {
1645 		first_file_off = hdr_file_off(log, first_tail);
1646 		lsn1 = le64_to_cpu(first_tail->record_hdr.last_end_lsn);
1647 	}
1648 
1649 	if (log->major_ver < 2) {
1650 		int best_page;
1651 
1652 		first_tail_prev = first_tail;
1653 		final_off_prev = first_file_off;
1654 		second_tail_prev = second_tail;
1655 		second_off_prev = second_file_off;
1656 		tails = 1;
1657 
1658 		if (!first_tail && !second_tail)
1659 			goto tail_read;
1660 
1661 		if (first_tail && second_tail)
1662 			best_page = lsn1 < lsn2 ? 1 : 0;
1663 		else if (first_tail)
1664 			best_page = 0;
1665 		else
1666 			best_page = 1;
1667 
1668 		page_off = best_page ? second_file_off : first_file_off;
1669 		seq_base = (best_page ? lsn2 : lsn1) >> log->file_data_bits;
1670 		goto tail_read;
1671 	}
1672 
1673 	best_lsn1 = first_tail ? base_lsn(log, first_tail, first_file_off) : 0;
1674 	best_lsn2 =
1675 		second_tail ? base_lsn(log, second_tail, second_file_off) : 0;
1676 
1677 	if (first_tail && second_tail) {
1678 		if (best_lsn1 > best_lsn2) {
1679 			best_lsn = best_lsn1;
1680 			best_page = first_tail;
1681 			this_off = first_file_off;
1682 		} else {
1683 			best_lsn = best_lsn2;
1684 			best_page = second_tail;
1685 			this_off = second_file_off;
1686 		}
1687 	} else if (first_tail) {
1688 		best_lsn = best_lsn1;
1689 		best_page = first_tail;
1690 		this_off = first_file_off;
1691 	} else if (second_tail) {
1692 		best_lsn = best_lsn2;
1693 		best_page = second_tail;
1694 		this_off = second_file_off;
1695 	} else {
1696 		goto tail_read;
1697 	}
1698 
1699 	best_page_pos = le16_to_cpu(best_page->page_pos);
1700 
1701 	if (!tails) {
1702 		if (best_page_pos == page_pos) {
1703 			seq_base = best_lsn >> log->file_data_bits;
1704 			saved_off = page_off = le32_to_cpu(best_page->file_off);
1705 			lsn_base = best_lsn;
1706 
1707 			memmove(page_bufs, best_page, log->page_size);
1708 
1709 			page_cnt = le16_to_cpu(best_page->page_count);
1710 			if (page_cnt > 1)
1711 				page_pos += 1;
1712 
1713 			tails = 1;
1714 		}
1715 	} else if (seq_base == (best_lsn >> log->file_data_bits) &&
1716 		   saved_off + log->page_size == this_off &&
1717 		   lsn_base < best_lsn &&
1718 		   (page_pos != page_cnt || best_page_pos == page_pos ||
1719 		    best_page_pos == 1) &&
1720 		   (page_pos >= page_cnt || best_page_pos == page_pos)) {
1721 		u16 bppc = le16_to_cpu(best_page->page_count);
1722 
1723 		saved_off += log->page_size;
1724 		lsn_base = best_lsn;
1725 
1726 		memmove(Add2Ptr(page_bufs, tails * log->page_size), best_page,
1727 			log->page_size);
1728 
1729 		tails += 1;
1730 
1731 		if (best_page_pos != bppc) {
1732 			page_cnt = bppc;
1733 			page_pos = best_page_pos;
1734 
1735 			if (page_cnt > 1)
1736 				page_pos += 1;
1737 		} else {
1738 			page_pos = page_cnt = 1;
1739 		}
1740 	} else {
1741 		kfree(first_tail);
1742 		kfree(second_tail);
1743 		goto tail_read;
1744 	}
1745 
1746 	kfree(first_tail_prev);
1747 	first_tail_prev = first_tail;
1748 	final_off_prev = first_file_off;
1749 	first_tail = NULL;
1750 
1751 	kfree(second_tail_prev);
1752 	second_tail_prev = second_tail;
1753 	second_off_prev = second_file_off;
1754 	second_tail = NULL;
1755 
1756 	final_off += log->page_size;
1757 	second_off += log->page_size;
1758 
1759 	if (tails < 0x10)
1760 		goto next_tail;
1761 tail_read:
1762 	first_tail = first_tail_prev;
1763 	final_off = final_off_prev;
1764 
1765 	second_tail = second_tail_prev;
1766 	second_off = second_off_prev;
1767 
1768 	page_cnt = page_pos = 1;
1769 
1770 	curpage_off = seq_base == log->seq_num ? min(log->next_page, page_off)
1771 					       : log->next_page;
1772 
1773 	wrapped_file =
1774 		curpage_off == log->first_page &&
1775 		!(log->l_flags & (NTFSLOG_NO_LAST_LSN | NTFSLOG_REUSE_TAIL));
1776 
1777 	expected_seq = wrapped_file ? (log->seq_num + 1) : log->seq_num;
1778 
1779 	nextpage_off = curpage_off;
1780 
1781 next_page:
1782 	tail_page = NULL;
1783 	/* Read the next log page. */
1784 	err = read_log_page(log, curpage_off, &page, &usa_error);
1785 
1786 	/* Compute the next log page offset the file. */
1787 	nextpage_off = next_page_off(log, curpage_off);
1788 	wrapped = nextpage_off == log->first_page;
1789 
1790 	if (tails > 1) {
1791 		struct RECORD_PAGE_HDR *cur_page =
1792 			Add2Ptr(page_bufs, curpage_off - page_off);
1793 
1794 		if (curpage_off == saved_off) {
1795 			tail_page = cur_page;
1796 			goto use_tail_page;
1797 		}
1798 
1799 		if (page_off > curpage_off || curpage_off >= saved_off)
1800 			goto use_tail_page;
1801 
1802 		if (page_off1)
1803 			goto use_cur_page;
1804 
1805 		if (!err && !usa_error &&
1806 		    page->rhdr.sign == NTFS_RCRD_SIGNATURE &&
1807 		    cur_page->rhdr.lsn == page->rhdr.lsn &&
1808 		    cur_page->record_hdr.next_record_off ==
1809 			    page->record_hdr.next_record_off &&
1810 		    ((page_pos == page_cnt &&
1811 		      le16_to_cpu(page->page_pos) == 1) ||
1812 		     (page_pos != page_cnt &&
1813 		      le16_to_cpu(page->page_pos) == page_pos + 1 &&
1814 		      le16_to_cpu(page->page_count) == page_cnt))) {
1815 			cur_page = NULL;
1816 			goto use_tail_page;
1817 		}
1818 
1819 		page_off1 = page_off;
1820 
1821 use_cur_page:
1822 
1823 		lsn_cur = le64_to_cpu(cur_page->rhdr.lsn);
1824 
1825 		if (last_ok_lsn !=
1826 			    le64_to_cpu(cur_page->record_hdr.last_end_lsn) &&
1827 		    ((lsn_cur >> log->file_data_bits) +
1828 		     ((curpage_off <
1829 		       (lsn_to_vbo(log, lsn_cur) & ~log->page_mask))
1830 			      ? 1
1831 			      : 0)) != expected_seq) {
1832 			goto check_tail;
1833 		}
1834 
1835 		if (!is_log_record_end(cur_page)) {
1836 			tail_page = NULL;
1837 			last_ok_lsn = lsn_cur;
1838 			goto next_page_1;
1839 		}
1840 
1841 		log->seq_num = expected_seq;
1842 		log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
1843 		log->last_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1844 		log->ra->current_lsn = cur_page->record_hdr.last_end_lsn;
1845 
1846 		if (log->record_header_len <=
1847 		    log->page_size -
1848 			    le16_to_cpu(cur_page->record_hdr.next_record_off)) {
1849 			log->l_flags |= NTFSLOG_REUSE_TAIL;
1850 			log->next_page = curpage_off;
1851 		} else {
1852 			log->l_flags &= ~NTFSLOG_REUSE_TAIL;
1853 			log->next_page = nextpage_off;
1854 		}
1855 
1856 		if (wrapped_file)
1857 			log->l_flags |= NTFSLOG_WRAPPED;
1858 
1859 		last_ok_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1860 		goto next_page_1;
1861 	}
1862 
1863 	/*
1864 	 * If we are at the expected first page of a transfer check to see
1865 	 * if either tail copy is at this offset.
1866 	 * If this page is the last page of a transfer, check if we wrote
1867 	 * a subsequent tail copy.
1868 	 */
1869 	if (page_cnt == page_pos || page_cnt == page_pos + 1) {
1870 		/*
1871 		 * Check if the offset matches either the first or second
1872 		 * tail copy. It is possible it will match both.
1873 		 */
1874 		if (curpage_off == final_off)
1875 			tail_page = first_tail;
1876 
1877 		/*
1878 		 * If we already matched on the first page then
1879 		 * check the ending lsn's.
1880 		 */
1881 		if (curpage_off == second_off) {
1882 			if (!tail_page ||
1883 			    (second_tail &&
1884 			     le64_to_cpu(second_tail->record_hdr.last_end_lsn) >
1885 				     le64_to_cpu(first_tail->record_hdr
1886 							 .last_end_lsn))) {
1887 				tail_page = second_tail;
1888 			}
1889 		}
1890 	}
1891 
1892 use_tail_page:
1893 	if (tail_page) {
1894 		/* We have a candidate for a tail copy. */
1895 		lsn_cur = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
1896 
1897 		if (last_ok_lsn < lsn_cur) {
1898 			/*
1899 			 * If the sequence number is not expected,
1900 			 * then don't use the tail copy.
1901 			 */
1902 			if (expected_seq != (lsn_cur >> log->file_data_bits))
1903 				tail_page = NULL;
1904 		} else if (last_ok_lsn > lsn_cur) {
1905 			/*
1906 			 * If the last lsn is greater than the one on
1907 			 * this page then forget this tail.
1908 			 */
1909 			tail_page = NULL;
1910 		}
1911 	}
1912 
1913 	/*
1914 	 *If we have an error on the current page,
1915 	 * we will break of this loop.
1916 	 */
1917 	if (err || usa_error)
1918 		goto check_tail;
1919 
1920 	/*
1921 	 * Done if the last lsn on this page doesn't match the previous known
1922 	 * last lsn or the sequence number is not expected.
1923 	 */
1924 	lsn_cur = le64_to_cpu(page->rhdr.lsn);
1925 	if (last_ok_lsn != lsn_cur &&
1926 	    expected_seq != (lsn_cur >> log->file_data_bits)) {
1927 		goto check_tail;
1928 	}
1929 
1930 	/*
1931 	 * Check that the page position and page count values are correct.
1932 	 * If this is the first page of a transfer the position must be 1
1933 	 * and the count will be unknown.
1934 	 */
1935 	if (page_cnt == page_pos) {
1936 		if (page->page_pos != cpu_to_le16(1) &&
1937 		    (!reuse_page || page->page_pos != page->page_count)) {
1938 			/*
1939 			 * If the current page is the first page we are
1940 			 * looking at and we are reusing this page then
1941 			 * it can be either the first or last page of a
1942 			 * transfer. Otherwise it can only be the first.
1943 			 */
1944 			goto check_tail;
1945 		}
1946 	} else if (le16_to_cpu(page->page_count) != page_cnt ||
1947 		   le16_to_cpu(page->page_pos) != page_pos + 1) {
1948 		/*
1949 		 * The page position better be 1 more than the last page
1950 		 * position and the page count better match.
1951 		 */
1952 		goto check_tail;
1953 	}
1954 
1955 	/*
1956 	 * We have a valid page the file and may have a valid page
1957 	 * the tail copy area.
1958 	 * If the tail page was written after the page the file then
1959 	 * break of the loop.
1960 	 */
1961 	if (tail_page &&
1962 	    le64_to_cpu(tail_page->record_hdr.last_end_lsn) > lsn_cur) {
1963 		/* Remember if we will replace the page. */
1964 		replace_page = true;
1965 		goto check_tail;
1966 	}
1967 
1968 	tail_page = NULL;
1969 
1970 	if (is_log_record_end(page)) {
1971 		/*
1972 		 * Since we have read this page we know the sequence number
1973 		 * is the same as our expected value.
1974 		 */
1975 		log->seq_num = expected_seq;
1976 		log->last_lsn = le64_to_cpu(page->record_hdr.last_end_lsn);
1977 		log->ra->current_lsn = page->record_hdr.last_end_lsn;
1978 		log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
1979 
1980 		/*
1981 		 * If there is room on this page for another header then
1982 		 * remember we want to reuse the page.
1983 		 */
1984 		if (log->record_header_len <=
1985 		    log->page_size -
1986 			    le16_to_cpu(page->record_hdr.next_record_off)) {
1987 			log->l_flags |= NTFSLOG_REUSE_TAIL;
1988 			log->next_page = curpage_off;
1989 		} else {
1990 			log->l_flags &= ~NTFSLOG_REUSE_TAIL;
1991 			log->next_page = nextpage_off;
1992 		}
1993 
1994 		/* Remember if we wrapped the log file. */
1995 		if (wrapped_file)
1996 			log->l_flags |= NTFSLOG_WRAPPED;
1997 	}
1998 
1999 	/*
2000 	 * Remember the last page count and position.
2001 	 * Also remember the last known lsn.
2002 	 */
2003 	page_cnt = le16_to_cpu(page->page_count);
2004 	page_pos = le16_to_cpu(page->page_pos);
2005 	last_ok_lsn = le64_to_cpu(page->rhdr.lsn);
2006 
2007 next_page_1:
2008 
2009 	if (wrapped) {
2010 		expected_seq += 1;
2011 		wrapped_file = 1;
2012 	}
2013 
2014 	curpage_off = nextpage_off;
2015 	kfree(page);
2016 	page = NULL;
2017 	reuse_page = 0;
2018 	goto next_page;
2019 
2020 check_tail:
2021 	if (tail_page) {
2022 		log->seq_num = expected_seq;
2023 		log->last_lsn = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
2024 		log->ra->current_lsn = tail_page->record_hdr.last_end_lsn;
2025 		log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
2026 
2027 		if (log->page_size -
2028 			    le16_to_cpu(
2029 				    tail_page->record_hdr.next_record_off) >=
2030 		    log->record_header_len) {
2031 			log->l_flags |= NTFSLOG_REUSE_TAIL;
2032 			log->next_page = curpage_off;
2033 		} else {
2034 			log->l_flags &= ~NTFSLOG_REUSE_TAIL;
2035 			log->next_page = nextpage_off;
2036 		}
2037 
2038 		if (wrapped)
2039 			log->l_flags |= NTFSLOG_WRAPPED;
2040 	}
2041 
2042 	/* Remember that the partial IO will start at the next page. */
2043 	second_off = nextpage_off;
2044 
2045 	/*
2046 	 * If the next page is the first page of the file then update
2047 	 * the sequence number for log records which begon the next page.
2048 	 */
2049 	if (wrapped)
2050 		expected_seq += 1;
2051 
2052 	/*
2053 	 * If we have a tail copy or are performing single page I/O we can
2054 	 * immediately look at the next page.
2055 	 */
2056 	if (replace_page || (log->ra->flags & RESTART_SINGLE_PAGE_IO)) {
2057 		page_cnt = 2;
2058 		page_pos = 1;
2059 		goto check_valid;
2060 	}
2061 
2062 	if (page_pos != page_cnt)
2063 		goto check_valid;
2064 	/*
2065 	 * If the next page causes us to wrap to the beginning of the log
2066 	 * file then we know which page to check next.
2067 	 */
2068 	if (wrapped) {
2069 		page_cnt = 2;
2070 		page_pos = 1;
2071 		goto check_valid;
2072 	}
2073 
2074 	cur_pos = 2;
2075 
2076 next_test_page:
2077 	kfree(tst_page);
2078 	tst_page = NULL;
2079 
2080 	/* Walk through the file, reading log pages. */
2081 	err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
2082 
2083 	/*
2084 	 * If we get a USA error then assume that we correctly found
2085 	 * the end of the original transfer.
2086 	 */
2087 	if (usa_error)
2088 		goto file_is_valid;
2089 
2090 	/*
2091 	 * If we were able to read the page, we examine it to see if it
2092 	 * is the same or different Io block.
2093 	 */
2094 	if (err)
2095 		goto next_test_page_1;
2096 
2097 	if (le16_to_cpu(tst_page->page_pos) == cur_pos &&
2098 	    check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
2099 		page_cnt = le16_to_cpu(tst_page->page_count) + 1;
2100 		page_pos = le16_to_cpu(tst_page->page_pos);
2101 		goto check_valid;
2102 	} else {
2103 		goto file_is_valid;
2104 	}
2105 
2106 next_test_page_1:
2107 
2108 	nextpage_off = next_page_off(log, curpage_off);
2109 	wrapped = nextpage_off == log->first_page;
2110 
2111 	if (wrapped) {
2112 		expected_seq += 1;
2113 		page_cnt = 2;
2114 		page_pos = 1;
2115 	}
2116 
2117 	cur_pos += 1;
2118 	part_io_count += 1;
2119 	if (!wrapped)
2120 		goto next_test_page;
2121 
2122 check_valid:
2123 	/* Skip over the remaining pages this transfer. */
2124 	remain_pages = page_cnt - page_pos - 1;
2125 	part_io_count += remain_pages;
2126 
2127 	while (remain_pages--) {
2128 		nextpage_off = next_page_off(log, curpage_off);
2129 		wrapped = nextpage_off == log->first_page;
2130 
2131 		if (wrapped)
2132 			expected_seq += 1;
2133 	}
2134 
2135 	/* Call our routine to check this log page. */
2136 	kfree(tst_page);
2137 	tst_page = NULL;
2138 
2139 	err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
2140 	if (!err && !usa_error &&
2141 	    check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
2142 		err = -EINVAL;
2143 		goto out;
2144 	}
2145 
2146 file_is_valid:
2147 
2148 	/* We have a valid file. */
2149 	if (page_off1 || tail_page) {
2150 		struct RECORD_PAGE_HDR *tmp_page;
2151 
2152 		if (sb_rdonly(log->ni->mi.sbi->sb)) {
2153 			err = -EROFS;
2154 			goto out;
2155 		}
2156 
2157 		if (page_off1) {
2158 			tmp_page = Add2Ptr(page_bufs, page_off1 - page_off);
2159 			tails -= (page_off1 - page_off) / log->page_size;
2160 			if (!tail_page)
2161 				tails -= 1;
2162 		} else {
2163 			tmp_page = tail_page;
2164 			tails = 1;
2165 		}
2166 
2167 		while (tails--) {
2168 			u64 off = hdr_file_off(log, tmp_page);
2169 
2170 			if (!page) {
2171 				page = kmalloc(log->page_size, GFP_NOFS);
2172 				if (!page)
2173 					return -ENOMEM;
2174 			}
2175 
2176 			/*
2177 			 * Correct page and copy the data from this page
2178 			 * into it and flush it to disk.
2179 			 */
2180 			memcpy(page, tmp_page, log->page_size);
2181 
2182 			/* Fill last flushed lsn value flush the page. */
2183 			if (log->major_ver < 2)
2184 				page->rhdr.lsn = page->record_hdr.last_end_lsn;
2185 			else
2186 				page->file_off = 0;
2187 
2188 			page->page_pos = page->page_count = cpu_to_le16(1);
2189 
2190 			ntfs_fix_pre_write(&page->rhdr, log->page_size);
2191 
2192 			err = ntfs_sb_write_run(log->ni->mi.sbi,
2193 						&log->ni->file.run, off, page,
2194 						log->page_size, 0);
2195 
2196 			if (err)
2197 				goto out;
2198 
2199 			if (part_io_count && second_off == off) {
2200 				second_off += log->page_size;
2201 				part_io_count -= 1;
2202 			}
2203 
2204 			tmp_page = Add2Ptr(tmp_page, log->page_size);
2205 		}
2206 	}
2207 
2208 	if (part_io_count) {
2209 		if (sb_rdonly(log->ni->mi.sbi->sb)) {
2210 			err = -EROFS;
2211 			goto out;
2212 		}
2213 	}
2214 
2215 out:
2216 	kfree(second_tail);
2217 	kfree(first_tail);
2218 	kfree(page);
2219 	kfree(tst_page);
2220 	kfree(page_bufs);
2221 
2222 	return err;
2223 }
2224 
2225 /*
2226  * read_log_rec_buf - Copy a log record from the file to a buffer.
2227  *
2228  * The log record may span several log pages and may even wrap the file.
2229  */
2230 static int read_log_rec_buf(struct ntfs_log *log,
2231 			    const struct LFS_RECORD_HDR *rh, void *buffer)
2232 {
2233 	int err;
2234 	struct RECORD_PAGE_HDR *ph = NULL;
2235 	u64 lsn = le64_to_cpu(rh->this_lsn);
2236 	u32 vbo = lsn_to_vbo(log, lsn) & ~log->page_mask;
2237 	u32 off = lsn_to_page_off(log, lsn) + log->record_header_len;
2238 	u32 data_len = le32_to_cpu(rh->client_data_len);
2239 
2240 	/*
2241 	 * While there are more bytes to transfer,
2242 	 * we continue to attempt to perform the read.
2243 	 */
2244 	for (;;) {
2245 		bool usa_error;
2246 		u32 tail = log->page_size - off;
2247 
2248 		if (tail >= data_len)
2249 			tail = data_len;
2250 
2251 		data_len -= tail;
2252 
2253 		err = read_log_page(log, vbo, &ph, &usa_error);
2254 		if (err)
2255 			goto out;
2256 
2257 		/*
2258 		 * The last lsn on this page better be greater or equal
2259 		 * to the lsn we are copying.
2260 		 */
2261 		if (lsn > le64_to_cpu(ph->rhdr.lsn)) {
2262 			err = -EINVAL;
2263 			goto out;
2264 		}
2265 
2266 		memcpy(buffer, Add2Ptr(ph, off), tail);
2267 
2268 		/* If there are no more bytes to transfer, we exit the loop. */
2269 		if (!data_len) {
2270 			if (!is_log_record_end(ph) ||
2271 			    lsn > le64_to_cpu(ph->record_hdr.last_end_lsn)) {
2272 				err = -EINVAL;
2273 				goto out;
2274 			}
2275 			break;
2276 		}
2277 
2278 		if (ph->rhdr.lsn == ph->record_hdr.last_end_lsn ||
2279 		    lsn > le64_to_cpu(ph->rhdr.lsn)) {
2280 			err = -EINVAL;
2281 			goto out;
2282 		}
2283 
2284 		vbo = next_page_off(log, vbo);
2285 		off = log->data_off;
2286 
2287 		/*
2288 		 * Adjust our pointer the user's buffer to transfer
2289 		 * the next block to.
2290 		 */
2291 		buffer = Add2Ptr(buffer, tail);
2292 	}
2293 
2294 out:
2295 	kfree(ph);
2296 	return err;
2297 }
2298 
2299 static int read_rst_area(struct ntfs_log *log, struct NTFS_RESTART **rst_,
2300 			 u64 *lsn)
2301 {
2302 	int err;
2303 	struct LFS_RECORD_HDR *rh = NULL;
2304 	const struct CLIENT_REC *cr =
2305 		Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2306 	u64 lsnr, lsnc = le64_to_cpu(cr->restart_lsn);
2307 	u32 len;
2308 	struct NTFS_RESTART *rst;
2309 
2310 	*lsn = 0;
2311 	*rst_ = NULL;
2312 
2313 	/* If the client doesn't have a restart area, go ahead and exit now. */
2314 	if (!lsnc)
2315 		return 0;
2316 
2317 	err = read_log_page(log, lsn_to_vbo(log, lsnc),
2318 			    (struct RECORD_PAGE_HDR **)&rh, NULL);
2319 	if (err)
2320 		return err;
2321 
2322 	rst = NULL;
2323 	lsnr = le64_to_cpu(rh->this_lsn);
2324 
2325 	if (lsnc != lsnr) {
2326 		/* If the lsn values don't match, then the disk is corrupt. */
2327 		err = -EINVAL;
2328 		goto out;
2329 	}
2330 
2331 	*lsn = lsnr;
2332 	len = le32_to_cpu(rh->client_data_len);
2333 
2334 	if (!len) {
2335 		err = 0;
2336 		goto out;
2337 	}
2338 
2339 	if (len < sizeof(struct NTFS_RESTART)) {
2340 		err = -EINVAL;
2341 		goto out;
2342 	}
2343 
2344 	rst = kmalloc(len, GFP_NOFS);
2345 	if (!rst) {
2346 		err = -ENOMEM;
2347 		goto out;
2348 	}
2349 
2350 	/* Copy the data into the 'rst' buffer. */
2351 	err = read_log_rec_buf(log, rh, rst);
2352 	if (err)
2353 		goto out;
2354 
2355 	*rst_ = rst;
2356 	rst = NULL;
2357 
2358 out:
2359 	kfree(rh);
2360 	kfree(rst);
2361 
2362 	return err;
2363 }
2364 
2365 static int find_log_rec(struct ntfs_log *log, u64 lsn, struct lcb *lcb)
2366 {
2367 	int err;
2368 	struct LFS_RECORD_HDR *rh = lcb->lrh;
2369 	u32 rec_len, len;
2370 
2371 	/* Read the record header for this lsn. */
2372 	if (!rh) {
2373 		err = read_log_page(log, lsn_to_vbo(log, lsn),
2374 				    (struct RECORD_PAGE_HDR **)&rh, NULL);
2375 
2376 		lcb->lrh = rh;
2377 		if (err)
2378 			return err;
2379 	}
2380 
2381 	/*
2382 	 * If the lsn the log record doesn't match the desired
2383 	 * lsn then the disk is corrupt.
2384 	 */
2385 	if (lsn != le64_to_cpu(rh->this_lsn))
2386 		return -EINVAL;
2387 
2388 	len = le32_to_cpu(rh->client_data_len);
2389 
2390 	/*
2391 	 * Check that the length field isn't greater than the total
2392 	 * available space the log file.
2393 	 */
2394 	rec_len = len + log->record_header_len;
2395 	if (rec_len >= log->total_avail)
2396 		return -EINVAL;
2397 
2398 	/*
2399 	 * If the entire log record is on this log page,
2400 	 * put a pointer to the log record the context block.
2401 	 */
2402 	if (rh->flags & LOG_RECORD_MULTI_PAGE) {
2403 		void *lr = kmalloc(len, GFP_NOFS);
2404 
2405 		if (!lr)
2406 			return -ENOMEM;
2407 
2408 		lcb->log_rec = lr;
2409 		lcb->alloc = true;
2410 
2411 		/* Copy the data into the buffer returned. */
2412 		err = read_log_rec_buf(log, rh, lr);
2413 		if (err)
2414 			return err;
2415 	} else {
2416 		/* If beyond the end of the current page -> an error. */
2417 		u32 page_off = lsn_to_page_off(log, lsn);
2418 
2419 		if (page_off + len + log->record_header_len > log->page_size)
2420 			return -EINVAL;
2421 
2422 		lcb->log_rec = Add2Ptr(rh, sizeof(struct LFS_RECORD_HDR));
2423 		lcb->alloc = false;
2424 	}
2425 
2426 	return 0;
2427 }
2428 
2429 /*
2430  * read_log_rec_lcb - Init the query operation.
2431  */
2432 static int read_log_rec_lcb(struct ntfs_log *log, u64 lsn, u32 ctx_mode,
2433 			    struct lcb **lcb_)
2434 {
2435 	int err;
2436 	const struct CLIENT_REC *cr;
2437 	struct lcb *lcb;
2438 
2439 	switch (ctx_mode) {
2440 	case lcb_ctx_undo_next:
2441 	case lcb_ctx_prev:
2442 	case lcb_ctx_next:
2443 		break;
2444 	default:
2445 		return -EINVAL;
2446 	}
2447 
2448 	/* Check that the given lsn is the legal range for this client. */
2449 	cr = Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2450 
2451 	if (!verify_client_lsn(log, cr, lsn))
2452 		return -EINVAL;
2453 
2454 	lcb = kzalloc(sizeof(struct lcb), GFP_NOFS);
2455 	if (!lcb)
2456 		return -ENOMEM;
2457 	lcb->client = log->client_id;
2458 	lcb->ctx_mode = ctx_mode;
2459 
2460 	/* Find the log record indicated by the given lsn. */
2461 	err = find_log_rec(log, lsn, lcb);
2462 	if (err)
2463 		goto out;
2464 
2465 	*lcb_ = lcb;
2466 	return 0;
2467 
2468 out:
2469 	lcb_put(lcb);
2470 	*lcb_ = NULL;
2471 	return err;
2472 }
2473 
2474 /*
2475  * find_client_next_lsn
2476  *
2477  * Attempt to find the next lsn to return to a client based on the context mode.
2478  */
2479 static int find_client_next_lsn(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2480 {
2481 	int err;
2482 	u64 next_lsn;
2483 	struct LFS_RECORD_HDR *hdr;
2484 
2485 	hdr = lcb->lrh;
2486 	*lsn = 0;
2487 
2488 	if (lcb_ctx_next != lcb->ctx_mode)
2489 		goto check_undo_next;
2490 
2491 	/* Loop as long as another lsn can be found. */
2492 	for (;;) {
2493 		u64 current_lsn;
2494 
2495 		err = next_log_lsn(log, hdr, &current_lsn);
2496 		if (err)
2497 			goto out;
2498 
2499 		if (!current_lsn)
2500 			break;
2501 
2502 		if (hdr != lcb->lrh)
2503 			kfree(hdr);
2504 
2505 		hdr = NULL;
2506 		err = read_log_page(log, lsn_to_vbo(log, current_lsn),
2507 				    (struct RECORD_PAGE_HDR **)&hdr, NULL);
2508 		if (err)
2509 			goto out;
2510 
2511 		if (memcmp(&hdr->client, &lcb->client,
2512 			   sizeof(struct CLIENT_ID))) {
2513 			/*err = -EINVAL; */
2514 		} else if (LfsClientRecord == hdr->record_type) {
2515 			kfree(lcb->lrh);
2516 			lcb->lrh = hdr;
2517 			*lsn = current_lsn;
2518 			return 0;
2519 		}
2520 	}
2521 
2522 out:
2523 	if (hdr != lcb->lrh)
2524 		kfree(hdr);
2525 	return err;
2526 
2527 check_undo_next:
2528 	if (lcb_ctx_undo_next == lcb->ctx_mode)
2529 		next_lsn = le64_to_cpu(hdr->client_undo_next_lsn);
2530 	else if (lcb_ctx_prev == lcb->ctx_mode)
2531 		next_lsn = le64_to_cpu(hdr->client_prev_lsn);
2532 	else
2533 		return 0;
2534 
2535 	if (!next_lsn)
2536 		return 0;
2537 
2538 	if (!verify_client_lsn(
2539 		    log, Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)),
2540 		    next_lsn))
2541 		return 0;
2542 
2543 	hdr = NULL;
2544 	err = read_log_page(log, lsn_to_vbo(log, next_lsn),
2545 			    (struct RECORD_PAGE_HDR **)&hdr, NULL);
2546 	if (err)
2547 		return err;
2548 	kfree(lcb->lrh);
2549 	lcb->lrh = hdr;
2550 
2551 	*lsn = next_lsn;
2552 
2553 	return 0;
2554 }
2555 
2556 static int read_next_log_rec(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2557 {
2558 	int err;
2559 
2560 	err = find_client_next_lsn(log, lcb, lsn);
2561 	if (err)
2562 		return err;
2563 
2564 	if (!*lsn)
2565 		return 0;
2566 
2567 	if (lcb->alloc)
2568 		kfree(lcb->log_rec);
2569 
2570 	lcb->log_rec = NULL;
2571 	lcb->alloc = false;
2572 	kfree(lcb->lrh);
2573 	lcb->lrh = NULL;
2574 
2575 	return find_log_rec(log, *lsn, lcb);
2576 }
2577 
2578 static inline bool check_index_header(const struct INDEX_HDR *hdr, size_t bytes)
2579 {
2580 	__le16 mask;
2581 	u32 min_de, de_off, used, total;
2582 	const struct NTFS_DE *e;
2583 
2584 	if (hdr_has_subnode(hdr)) {
2585 		min_de = sizeof(struct NTFS_DE) + sizeof(u64);
2586 		mask = NTFS_IE_HAS_SUBNODES;
2587 	} else {
2588 		min_de = sizeof(struct NTFS_DE);
2589 		mask = 0;
2590 	}
2591 
2592 	de_off = le32_to_cpu(hdr->de_off);
2593 	used = le32_to_cpu(hdr->used);
2594 	total = le32_to_cpu(hdr->total);
2595 
2596 	if (de_off > bytes - min_de || used > bytes || total > bytes ||
2597 	    de_off + min_de > used || used > total) {
2598 		return false;
2599 	}
2600 
2601 	e = Add2Ptr(hdr, de_off);
2602 	for (;;) {
2603 		u16 esize = le16_to_cpu(e->size);
2604 		struct NTFS_DE *next = Add2Ptr(e, esize);
2605 
2606 		if (esize < min_de || PtrOffset(hdr, next) > used ||
2607 		    (e->flags & NTFS_IE_HAS_SUBNODES) != mask) {
2608 			return false;
2609 		}
2610 
2611 		if (de_is_last(e))
2612 			break;
2613 
2614 		e = next;
2615 	}
2616 
2617 	return true;
2618 }
2619 
2620 static inline bool check_index_buffer(const struct INDEX_BUFFER *ib, u32 bytes)
2621 {
2622 	u16 fo;
2623 	const struct NTFS_RECORD_HEADER *r = &ib->rhdr;
2624 
2625 	if (r->sign != NTFS_INDX_SIGNATURE)
2626 		return false;
2627 
2628 	fo = (SECTOR_SIZE - ((bytes >> SECTOR_SHIFT) + 1) * sizeof(short));
2629 
2630 	if (le16_to_cpu(r->fix_off) > fo)
2631 		return false;
2632 
2633 	if ((le16_to_cpu(r->fix_num) - 1) * SECTOR_SIZE != bytes)
2634 		return false;
2635 
2636 	return check_index_header(&ib->ihdr,
2637 				  bytes - offsetof(struct INDEX_BUFFER, ihdr));
2638 }
2639 
2640 static inline bool check_index_root(const struct ATTRIB *attr,
2641 				    struct ntfs_sb_info *sbi)
2642 {
2643 	bool ret;
2644 	const struct INDEX_ROOT *root = resident_data(attr);
2645 	u8 index_bits = le32_to_cpu(root->index_block_size) >= sbi->cluster_size
2646 				? sbi->cluster_bits
2647 				: SECTOR_SHIFT;
2648 	u8 block_clst = root->index_block_clst;
2649 
2650 	if (le32_to_cpu(attr->res.data_size) < sizeof(struct INDEX_ROOT) ||
2651 	    (root->type != ATTR_NAME && root->type != ATTR_ZERO) ||
2652 	    (root->type == ATTR_NAME &&
2653 	     root->rule != NTFS_COLLATION_TYPE_FILENAME) ||
2654 	    (le32_to_cpu(root->index_block_size) !=
2655 	     (block_clst << index_bits)) ||
2656 	    (block_clst != 1 && block_clst != 2 && block_clst != 4 &&
2657 	     block_clst != 8 && block_clst != 0x10 && block_clst != 0x20 &&
2658 	     block_clst != 0x40 && block_clst != 0x80)) {
2659 		return false;
2660 	}
2661 
2662 	ret = check_index_header(&root->ihdr,
2663 				 le32_to_cpu(attr->res.data_size) -
2664 					 offsetof(struct INDEX_ROOT, ihdr));
2665 	return ret;
2666 }
2667 
2668 static inline bool check_attr(const struct MFT_REC *rec,
2669 			      const struct ATTRIB *attr,
2670 			      struct ntfs_sb_info *sbi)
2671 {
2672 	u32 asize = le32_to_cpu(attr->size);
2673 	u32 rsize = 0;
2674 	u64 dsize, svcn, evcn;
2675 	u16 run_off;
2676 
2677 	/* Check the fixed part of the attribute record header. */
2678 	if (asize >= sbi->record_size ||
2679 	    asize + PtrOffset(rec, attr) >= sbi->record_size ||
2680 	    (attr->name_len &&
2681 	     le16_to_cpu(attr->name_off) + attr->name_len * sizeof(short) >
2682 		     asize)) {
2683 		return false;
2684 	}
2685 
2686 	/* Check the attribute fields. */
2687 	switch (attr->non_res) {
2688 	case 0:
2689 		rsize = le32_to_cpu(attr->res.data_size);
2690 		if (rsize >= asize ||
2691 		    le16_to_cpu(attr->res.data_off) + rsize > asize) {
2692 			return false;
2693 		}
2694 		break;
2695 
2696 	case 1:
2697 		dsize = le64_to_cpu(attr->nres.data_size);
2698 		svcn = le64_to_cpu(attr->nres.svcn);
2699 		evcn = le64_to_cpu(attr->nres.evcn);
2700 		run_off = le16_to_cpu(attr->nres.run_off);
2701 
2702 		if (svcn > evcn + 1 || run_off >= asize ||
2703 		    le64_to_cpu(attr->nres.valid_size) > dsize ||
2704 		    dsize > le64_to_cpu(attr->nres.alloc_size)) {
2705 			return false;
2706 		}
2707 
2708 		if (run_off > asize)
2709 			return false;
2710 
2711 		if (run_unpack(NULL, sbi, 0, svcn, evcn, svcn,
2712 			       Add2Ptr(attr, run_off), asize - run_off) < 0) {
2713 			return false;
2714 		}
2715 
2716 		return true;
2717 
2718 	default:
2719 		return false;
2720 	}
2721 
2722 	switch (attr->type) {
2723 	case ATTR_NAME:
2724 		if (fname_full_size(Add2Ptr(
2725 			    attr, le16_to_cpu(attr->res.data_off))) > asize) {
2726 			return false;
2727 		}
2728 		break;
2729 
2730 	case ATTR_ROOT:
2731 		return check_index_root(attr, sbi);
2732 
2733 	case ATTR_STD:
2734 		if (rsize < sizeof(struct ATTR_STD_INFO5) &&
2735 		    rsize != sizeof(struct ATTR_STD_INFO)) {
2736 			return false;
2737 		}
2738 		break;
2739 
2740 	case ATTR_LIST:
2741 	case ATTR_ID:
2742 	case ATTR_SECURE:
2743 	case ATTR_LABEL:
2744 	case ATTR_VOL_INFO:
2745 	case ATTR_DATA:
2746 	case ATTR_ALLOC:
2747 	case ATTR_BITMAP:
2748 	case ATTR_REPARSE:
2749 	case ATTR_EA_INFO:
2750 	case ATTR_EA:
2751 	case ATTR_PROPERTYSET:
2752 	case ATTR_LOGGED_UTILITY_STREAM:
2753 		break;
2754 
2755 	default:
2756 		return false;
2757 	}
2758 
2759 	return true;
2760 }
2761 
2762 static inline bool check_file_record(const struct MFT_REC *rec,
2763 				     const struct MFT_REC *rec2,
2764 				     struct ntfs_sb_info *sbi)
2765 {
2766 	const struct ATTRIB *attr;
2767 	u16 fo = le16_to_cpu(rec->rhdr.fix_off);
2768 	u16 fn = le16_to_cpu(rec->rhdr.fix_num);
2769 	u16 ao = le16_to_cpu(rec->attr_off);
2770 	u32 rs = sbi->record_size;
2771 
2772 	/* Check the file record header for consistency. */
2773 	if (rec->rhdr.sign != NTFS_FILE_SIGNATURE ||
2774 	    fo > (SECTOR_SIZE - ((rs >> SECTOR_SHIFT) + 1) * sizeof(short)) ||
2775 	    (fn - 1) * SECTOR_SIZE != rs || ao < MFTRECORD_FIXUP_OFFSET_1 ||
2776 	    ao > sbi->record_size - SIZEOF_RESIDENT || !is_rec_inuse(rec) ||
2777 	    le32_to_cpu(rec->total) != rs) {
2778 		return false;
2779 	}
2780 
2781 	/* Loop to check all of the attributes. */
2782 	for (attr = Add2Ptr(rec, ao); attr->type != ATTR_END;
2783 	     attr = Add2Ptr(attr, le32_to_cpu(attr->size))) {
2784 		if (check_attr(rec, attr, sbi))
2785 			continue;
2786 		return false;
2787 	}
2788 
2789 	return true;
2790 }
2791 
2792 static inline int check_lsn(const struct NTFS_RECORD_HEADER *hdr,
2793 			    const u64 *rlsn)
2794 {
2795 	u64 lsn;
2796 
2797 	if (!rlsn)
2798 		return true;
2799 
2800 	lsn = le64_to_cpu(hdr->lsn);
2801 
2802 	if (hdr->sign == NTFS_HOLE_SIGNATURE)
2803 		return false;
2804 
2805 	if (*rlsn > lsn)
2806 		return true;
2807 
2808 	return false;
2809 }
2810 
2811 static inline bool check_if_attr(const struct MFT_REC *rec,
2812 				 const struct LOG_REC_HDR *lrh)
2813 {
2814 	u16 ro = le16_to_cpu(lrh->record_off);
2815 	u16 o = le16_to_cpu(rec->attr_off);
2816 	const struct ATTRIB *attr = Add2Ptr(rec, o);
2817 
2818 	while (o < ro) {
2819 		u32 asize;
2820 
2821 		if (attr->type == ATTR_END)
2822 			break;
2823 
2824 		asize = le32_to_cpu(attr->size);
2825 		if (!asize)
2826 			break;
2827 
2828 		o += asize;
2829 		attr = Add2Ptr(attr, asize);
2830 	}
2831 
2832 	return o == ro;
2833 }
2834 
2835 static inline bool check_if_index_root(const struct MFT_REC *rec,
2836 				       const struct LOG_REC_HDR *lrh)
2837 {
2838 	u16 ro = le16_to_cpu(lrh->record_off);
2839 	u16 o = le16_to_cpu(rec->attr_off);
2840 	const struct ATTRIB *attr = Add2Ptr(rec, o);
2841 
2842 	while (o < ro) {
2843 		u32 asize;
2844 
2845 		if (attr->type == ATTR_END)
2846 			break;
2847 
2848 		asize = le32_to_cpu(attr->size);
2849 		if (!asize)
2850 			break;
2851 
2852 		o += asize;
2853 		attr = Add2Ptr(attr, asize);
2854 	}
2855 
2856 	return o == ro && attr->type == ATTR_ROOT;
2857 }
2858 
2859 static inline bool check_if_root_index(const struct ATTRIB *attr,
2860 				       const struct INDEX_HDR *hdr,
2861 				       const struct LOG_REC_HDR *lrh)
2862 {
2863 	u16 ao = le16_to_cpu(lrh->attr_off);
2864 	u32 de_off = le32_to_cpu(hdr->de_off);
2865 	u32 o = PtrOffset(attr, hdr) + de_off;
2866 	const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2867 	u32 asize = le32_to_cpu(attr->size);
2868 
2869 	while (o < ao) {
2870 		u16 esize;
2871 
2872 		if (o >= asize)
2873 			break;
2874 
2875 		esize = le16_to_cpu(e->size);
2876 		if (!esize)
2877 			break;
2878 
2879 		o += esize;
2880 		e = Add2Ptr(e, esize);
2881 	}
2882 
2883 	return o == ao;
2884 }
2885 
2886 static inline bool check_if_alloc_index(const struct INDEX_HDR *hdr,
2887 					u32 attr_off)
2888 {
2889 	u32 de_off = le32_to_cpu(hdr->de_off);
2890 	u32 o = offsetof(struct INDEX_BUFFER, ihdr) + de_off;
2891 	const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2892 	u32 used = le32_to_cpu(hdr->used);
2893 
2894 	while (o < attr_off) {
2895 		u16 esize;
2896 
2897 		if (de_off >= used)
2898 			break;
2899 
2900 		esize = le16_to_cpu(e->size);
2901 		if (!esize)
2902 			break;
2903 
2904 		o += esize;
2905 		de_off += esize;
2906 		e = Add2Ptr(e, esize);
2907 	}
2908 
2909 	return o == attr_off;
2910 }
2911 
2912 static inline void change_attr_size(struct MFT_REC *rec, struct ATTRIB *attr,
2913 				    u32 nsize)
2914 {
2915 	u32 asize = le32_to_cpu(attr->size);
2916 	int dsize = nsize - asize;
2917 	u8 *next = Add2Ptr(attr, asize);
2918 	u32 used = le32_to_cpu(rec->used);
2919 
2920 	memmove(Add2Ptr(attr, nsize), next, used - PtrOffset(rec, next));
2921 
2922 	rec->used = cpu_to_le32(used + dsize);
2923 	attr->size = cpu_to_le32(nsize);
2924 }
2925 
2926 struct OpenAttr {
2927 	struct ATTRIB *attr;
2928 	struct runs_tree *run1;
2929 	struct runs_tree run0;
2930 	struct ntfs_inode *ni;
2931 	// CLST rno;
2932 };
2933 
2934 /*
2935  * cmp_type_and_name
2936  *
2937  * Return: 0 if 'attr' has the same type and name.
2938  */
2939 static inline int cmp_type_and_name(const struct ATTRIB *a1,
2940 				    const struct ATTRIB *a2)
2941 {
2942 	return a1->type != a2->type || a1->name_len != a2->name_len ||
2943 	       (a1->name_len && memcmp(attr_name(a1), attr_name(a2),
2944 				       a1->name_len * sizeof(short)));
2945 }
2946 
2947 static struct OpenAttr *find_loaded_attr(struct ntfs_log *log,
2948 					 const struct ATTRIB *attr, CLST rno)
2949 {
2950 	struct OPEN_ATTR_ENRTY *oe = NULL;
2951 
2952 	while ((oe = enum_rstbl(log->open_attr_tbl, oe))) {
2953 		struct OpenAttr *op_attr;
2954 
2955 		if (ino_get(&oe->ref) != rno)
2956 			continue;
2957 
2958 		op_attr = (struct OpenAttr *)oe->ptr;
2959 		if (!cmp_type_and_name(op_attr->attr, attr))
2960 			return op_attr;
2961 	}
2962 	return NULL;
2963 }
2964 
2965 static struct ATTRIB *attr_create_nonres_log(struct ntfs_sb_info *sbi,
2966 					     enum ATTR_TYPE type, u64 size,
2967 					     const u16 *name, size_t name_len,
2968 					     __le16 flags)
2969 {
2970 	struct ATTRIB *attr;
2971 	u32 name_size = ALIGN(name_len * sizeof(short), 8);
2972 	bool is_ext = flags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED);
2973 	u32 asize = name_size +
2974 		    (is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT);
2975 
2976 	attr = kzalloc(asize, GFP_NOFS);
2977 	if (!attr)
2978 		return NULL;
2979 
2980 	attr->type = type;
2981 	attr->size = cpu_to_le32(asize);
2982 	attr->flags = flags;
2983 	attr->non_res = 1;
2984 	attr->name_len = name_len;
2985 
2986 	attr->nres.evcn = cpu_to_le64((u64)bytes_to_cluster(sbi, size) - 1);
2987 	attr->nres.alloc_size = cpu_to_le64(ntfs_up_cluster(sbi, size));
2988 	attr->nres.data_size = cpu_to_le64(size);
2989 	attr->nres.valid_size = attr->nres.data_size;
2990 	if (is_ext) {
2991 		attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
2992 		if (is_attr_compressed(attr))
2993 			attr->nres.c_unit = COMPRESSION_UNIT;
2994 
2995 		attr->nres.run_off =
2996 			cpu_to_le16(SIZEOF_NONRESIDENT_EX + name_size);
2997 		memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT_EX), name,
2998 		       name_len * sizeof(short));
2999 	} else {
3000 		attr->name_off = SIZEOF_NONRESIDENT_LE;
3001 		attr->nres.run_off =
3002 			cpu_to_le16(SIZEOF_NONRESIDENT + name_size);
3003 		memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT), name,
3004 		       name_len * sizeof(short));
3005 	}
3006 
3007 	return attr;
3008 }
3009 
3010 /*
3011  * do_action - Common routine for the Redo and Undo Passes.
3012  * @rlsn: If it is NULL then undo.
3013  */
3014 static int do_action(struct ntfs_log *log, struct OPEN_ATTR_ENRTY *oe,
3015 		     const struct LOG_REC_HDR *lrh, u32 op, void *data,
3016 		     u32 dlen, u32 rec_len, const u64 *rlsn)
3017 {
3018 	int err = 0;
3019 	struct ntfs_sb_info *sbi = log->ni->mi.sbi;
3020 	struct inode *inode = NULL, *inode_parent;
3021 	struct mft_inode *mi = NULL, *mi2_child = NULL;
3022 	CLST rno = 0, rno_base = 0;
3023 	struct INDEX_BUFFER *ib = NULL;
3024 	struct MFT_REC *rec = NULL;
3025 	struct ATTRIB *attr = NULL, *attr2;
3026 	struct INDEX_HDR *hdr;
3027 	struct INDEX_ROOT *root;
3028 	struct NTFS_DE *e, *e1, *e2;
3029 	struct NEW_ATTRIBUTE_SIZES *new_sz;
3030 	struct ATTR_FILE_NAME *fname;
3031 	struct OpenAttr *oa, *oa2;
3032 	u32 nsize, t32, asize, used, esize, off, bits;
3033 	u16 id, id2;
3034 	u32 record_size = sbi->record_size;
3035 	u64 t64;
3036 	u16 roff = le16_to_cpu(lrh->record_off);
3037 	u16 aoff = le16_to_cpu(lrh->attr_off);
3038 	u64 lco = 0;
3039 	u64 cbo = (u64)le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
3040 	u64 tvo = le64_to_cpu(lrh->target_vcn) << sbi->cluster_bits;
3041 	u64 vbo = cbo + tvo;
3042 	void *buffer_le = NULL;
3043 	u32 bytes = 0;
3044 	bool a_dirty = false;
3045 	u16 data_off;
3046 
3047 	oa = oe->ptr;
3048 
3049 	/* Big switch to prepare. */
3050 	switch (op) {
3051 	/* ============================================================
3052 	 * Process MFT records, as described by the current log record.
3053 	 * ============================================================
3054 	 */
3055 	case InitializeFileRecordSegment:
3056 	case DeallocateFileRecordSegment:
3057 	case WriteEndOfFileRecordSegment:
3058 	case CreateAttribute:
3059 	case DeleteAttribute:
3060 	case UpdateResidentValue:
3061 	case UpdateMappingPairs:
3062 	case SetNewAttributeSizes:
3063 	case AddIndexEntryRoot:
3064 	case DeleteIndexEntryRoot:
3065 	case SetIndexEntryVcnRoot:
3066 	case UpdateFileNameRoot:
3067 	case UpdateRecordDataRoot:
3068 	case ZeroEndOfFileRecord:
3069 		rno = vbo >> sbi->record_bits;
3070 		inode = ilookup(sbi->sb, rno);
3071 		if (inode) {
3072 			mi = &ntfs_i(inode)->mi;
3073 		} else if (op == InitializeFileRecordSegment) {
3074 			mi = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
3075 			if (!mi)
3076 				return -ENOMEM;
3077 			err = mi_format_new(mi, sbi, rno, 0, false);
3078 			if (err)
3079 				goto out;
3080 		} else {
3081 			/* Read from disk. */
3082 			err = mi_get(sbi, rno, &mi);
3083 			if (err)
3084 				return err;
3085 		}
3086 		rec = mi->mrec;
3087 
3088 		if (op == DeallocateFileRecordSegment)
3089 			goto skip_load_parent;
3090 
3091 		if (InitializeFileRecordSegment != op) {
3092 			if (rec->rhdr.sign == NTFS_BAAD_SIGNATURE)
3093 				goto dirty_vol;
3094 			if (!check_lsn(&rec->rhdr, rlsn))
3095 				goto out;
3096 			if (!check_file_record(rec, NULL, sbi))
3097 				goto dirty_vol;
3098 			attr = Add2Ptr(rec, roff);
3099 		}
3100 
3101 		if (is_rec_base(rec) || InitializeFileRecordSegment == op) {
3102 			rno_base = rno;
3103 			goto skip_load_parent;
3104 		}
3105 
3106 		rno_base = ino_get(&rec->parent_ref);
3107 		inode_parent = ntfs_iget5(sbi->sb, &rec->parent_ref, NULL);
3108 		if (IS_ERR(inode_parent))
3109 			goto skip_load_parent;
3110 
3111 		if (is_bad_inode(inode_parent)) {
3112 			iput(inode_parent);
3113 			goto skip_load_parent;
3114 		}
3115 
3116 		if (ni_load_mi_ex(ntfs_i(inode_parent), rno, &mi2_child)) {
3117 			iput(inode_parent);
3118 		} else {
3119 			if (mi2_child->mrec != mi->mrec)
3120 				memcpy(mi2_child->mrec, mi->mrec,
3121 				       sbi->record_size);
3122 
3123 			if (inode)
3124 				iput(inode);
3125 			else if (mi)
3126 				mi_put(mi);
3127 
3128 			inode = inode_parent;
3129 			mi = mi2_child;
3130 			rec = mi2_child->mrec;
3131 			attr = Add2Ptr(rec, roff);
3132 		}
3133 
3134 skip_load_parent:
3135 		inode_parent = NULL;
3136 		break;
3137 
3138 	/*
3139 	 * Process attributes, as described by the current log record.
3140 	 */
3141 	case UpdateNonresidentValue:
3142 	case AddIndexEntryAllocation:
3143 	case DeleteIndexEntryAllocation:
3144 	case WriteEndOfIndexBuffer:
3145 	case SetIndexEntryVcnAllocation:
3146 	case UpdateFileNameAllocation:
3147 	case SetBitsInNonresidentBitMap:
3148 	case ClearBitsInNonresidentBitMap:
3149 	case UpdateRecordDataAllocation:
3150 		attr = oa->attr;
3151 		bytes = UpdateNonresidentValue == op ? dlen : 0;
3152 		lco = (u64)le16_to_cpu(lrh->lcns_follow) << sbi->cluster_bits;
3153 
3154 		if (attr->type == ATTR_ALLOC) {
3155 			t32 = le32_to_cpu(oe->bytes_per_index);
3156 			if (bytes < t32)
3157 				bytes = t32;
3158 		}
3159 
3160 		if (!bytes)
3161 			bytes = lco - cbo;
3162 
3163 		bytes += roff;
3164 		if (attr->type == ATTR_ALLOC)
3165 			bytes = (bytes + 511) & ~511; // align
3166 
3167 		buffer_le = kmalloc(bytes, GFP_NOFS);
3168 		if (!buffer_le)
3169 			return -ENOMEM;
3170 
3171 		err = ntfs_read_run_nb(sbi, oa->run1, vbo, buffer_le, bytes,
3172 				       NULL);
3173 		if (err)
3174 			goto out;
3175 
3176 		if (attr->type == ATTR_ALLOC && *(int *)buffer_le)
3177 			ntfs_fix_post_read(buffer_le, bytes, false);
3178 		break;
3179 
3180 	default:
3181 		WARN_ON(1);
3182 	}
3183 
3184 	/* Big switch to do operation. */
3185 	switch (op) {
3186 	case InitializeFileRecordSegment:
3187 		if (roff + dlen > record_size)
3188 			goto dirty_vol;
3189 
3190 		memcpy(Add2Ptr(rec, roff), data, dlen);
3191 		mi->dirty = true;
3192 		break;
3193 
3194 	case DeallocateFileRecordSegment:
3195 		clear_rec_inuse(rec);
3196 		le16_add_cpu(&rec->seq, 1);
3197 		mi->dirty = true;
3198 		break;
3199 
3200 	case WriteEndOfFileRecordSegment:
3201 		attr2 = (struct ATTRIB *)data;
3202 		if (!check_if_attr(rec, lrh) || roff + dlen > record_size)
3203 			goto dirty_vol;
3204 
3205 		memmove(attr, attr2, dlen);
3206 		rec->used = cpu_to_le32(ALIGN(roff + dlen, 8));
3207 
3208 		mi->dirty = true;
3209 		break;
3210 
3211 	case CreateAttribute:
3212 		attr2 = (struct ATTRIB *)data;
3213 		asize = le32_to_cpu(attr2->size);
3214 		used = le32_to_cpu(rec->used);
3215 
3216 		if (!check_if_attr(rec, lrh) || dlen < SIZEOF_RESIDENT ||
3217 		    !IS_ALIGNED(asize, 8) ||
3218 		    Add2Ptr(attr2, asize) > Add2Ptr(lrh, rec_len) ||
3219 		    dlen > record_size - used) {
3220 			goto dirty_vol;
3221 		}
3222 
3223 		memmove(Add2Ptr(attr, asize), attr, used - roff);
3224 		memcpy(attr, attr2, asize);
3225 
3226 		rec->used = cpu_to_le32(used + asize);
3227 		id = le16_to_cpu(rec->next_attr_id);
3228 		id2 = le16_to_cpu(attr2->id);
3229 		if (id <= id2)
3230 			rec->next_attr_id = cpu_to_le16(id2 + 1);
3231 		if (is_attr_indexed(attr))
3232 			le16_add_cpu(&rec->hard_links, 1);
3233 
3234 		oa2 = find_loaded_attr(log, attr, rno_base);
3235 		if (oa2) {
3236 			void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3237 					   GFP_NOFS);
3238 			if (p2) {
3239 				// run_close(oa2->run1);
3240 				kfree(oa2->attr);
3241 				oa2->attr = p2;
3242 			}
3243 		}
3244 
3245 		mi->dirty = true;
3246 		break;
3247 
3248 	case DeleteAttribute:
3249 		asize = le32_to_cpu(attr->size);
3250 		used = le32_to_cpu(rec->used);
3251 
3252 		if (!check_if_attr(rec, lrh))
3253 			goto dirty_vol;
3254 
3255 		rec->used = cpu_to_le32(used - asize);
3256 		if (is_attr_indexed(attr))
3257 			le16_add_cpu(&rec->hard_links, -1);
3258 
3259 		memmove(attr, Add2Ptr(attr, asize), used - asize - roff);
3260 
3261 		mi->dirty = true;
3262 		break;
3263 
3264 	case UpdateResidentValue:
3265 		nsize = aoff + dlen;
3266 
3267 		if (!check_if_attr(rec, lrh))
3268 			goto dirty_vol;
3269 
3270 		asize = le32_to_cpu(attr->size);
3271 		used = le32_to_cpu(rec->used);
3272 
3273 		if (lrh->redo_len == lrh->undo_len) {
3274 			if (nsize > asize)
3275 				goto dirty_vol;
3276 			goto move_data;
3277 		}
3278 
3279 		if (nsize > asize && nsize - asize > record_size - used)
3280 			goto dirty_vol;
3281 
3282 		nsize = ALIGN(nsize, 8);
3283 		data_off = le16_to_cpu(attr->res.data_off);
3284 
3285 		if (nsize < asize) {
3286 			memmove(Add2Ptr(attr, aoff), data, dlen);
3287 			data = NULL; // To skip below memmove().
3288 		}
3289 
3290 		memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3291 			used - le16_to_cpu(lrh->record_off) - asize);
3292 
3293 		rec->used = cpu_to_le32(used + nsize - asize);
3294 		attr->size = cpu_to_le32(nsize);
3295 		attr->res.data_size = cpu_to_le32(aoff + dlen - data_off);
3296 
3297 move_data:
3298 		if (data)
3299 			memmove(Add2Ptr(attr, aoff), data, dlen);
3300 
3301 		oa2 = find_loaded_attr(log, attr, rno_base);
3302 		if (oa2) {
3303 			void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3304 					   GFP_NOFS);
3305 			if (p2) {
3306 				// run_close(&oa2->run0);
3307 				oa2->run1 = &oa2->run0;
3308 				kfree(oa2->attr);
3309 				oa2->attr = p2;
3310 			}
3311 		}
3312 
3313 		mi->dirty = true;
3314 		break;
3315 
3316 	case UpdateMappingPairs:
3317 		nsize = aoff + dlen;
3318 		asize = le32_to_cpu(attr->size);
3319 		used = le32_to_cpu(rec->used);
3320 
3321 		if (!check_if_attr(rec, lrh) || !attr->non_res ||
3322 		    aoff < le16_to_cpu(attr->nres.run_off) || aoff > asize ||
3323 		    (nsize > asize && nsize - asize > record_size - used)) {
3324 			goto dirty_vol;
3325 		}
3326 
3327 		nsize = ALIGN(nsize, 8);
3328 
3329 		memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3330 			used - le16_to_cpu(lrh->record_off) - asize);
3331 		rec->used = cpu_to_le32(used + nsize - asize);
3332 		attr->size = cpu_to_le32(nsize);
3333 		memmove(Add2Ptr(attr, aoff), data, dlen);
3334 
3335 		if (run_get_highest_vcn(le64_to_cpu(attr->nres.svcn),
3336 					attr_run(attr), &t64)) {
3337 			goto dirty_vol;
3338 		}
3339 
3340 		attr->nres.evcn = cpu_to_le64(t64);
3341 		oa2 = find_loaded_attr(log, attr, rno_base);
3342 		if (oa2 && oa2->attr->non_res)
3343 			oa2->attr->nres.evcn = attr->nres.evcn;
3344 
3345 		mi->dirty = true;
3346 		break;
3347 
3348 	case SetNewAttributeSizes:
3349 		new_sz = data;
3350 		if (!check_if_attr(rec, lrh) || !attr->non_res)
3351 			goto dirty_vol;
3352 
3353 		attr->nres.alloc_size = new_sz->alloc_size;
3354 		attr->nres.data_size = new_sz->data_size;
3355 		attr->nres.valid_size = new_sz->valid_size;
3356 
3357 		if (dlen >= sizeof(struct NEW_ATTRIBUTE_SIZES))
3358 			attr->nres.total_size = new_sz->total_size;
3359 
3360 		oa2 = find_loaded_attr(log, attr, rno_base);
3361 		if (oa2) {
3362 			void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3363 					   GFP_NOFS);
3364 			if (p2) {
3365 				kfree(oa2->attr);
3366 				oa2->attr = p2;
3367 			}
3368 		}
3369 		mi->dirty = true;
3370 		break;
3371 
3372 	case AddIndexEntryRoot:
3373 		e = (struct NTFS_DE *)data;
3374 		esize = le16_to_cpu(e->size);
3375 		root = resident_data(attr);
3376 		hdr = &root->ihdr;
3377 		used = le32_to_cpu(hdr->used);
3378 
3379 		if (!check_if_index_root(rec, lrh) ||
3380 		    !check_if_root_index(attr, hdr, lrh) ||
3381 		    Add2Ptr(data, esize) > Add2Ptr(lrh, rec_len) ||
3382 		    esize > le32_to_cpu(rec->total) - le32_to_cpu(rec->used)) {
3383 			goto dirty_vol;
3384 		}
3385 
3386 		e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3387 
3388 		change_attr_size(rec, attr, le32_to_cpu(attr->size) + esize);
3389 
3390 		memmove(Add2Ptr(e1, esize), e1,
3391 			PtrOffset(e1, Add2Ptr(hdr, used)));
3392 		memmove(e1, e, esize);
3393 
3394 		le32_add_cpu(&attr->res.data_size, esize);
3395 		hdr->used = cpu_to_le32(used + esize);
3396 		le32_add_cpu(&hdr->total, esize);
3397 
3398 		mi->dirty = true;
3399 		break;
3400 
3401 	case DeleteIndexEntryRoot:
3402 		root = resident_data(attr);
3403 		hdr = &root->ihdr;
3404 		used = le32_to_cpu(hdr->used);
3405 
3406 		if (!check_if_index_root(rec, lrh) ||
3407 		    !check_if_root_index(attr, hdr, lrh)) {
3408 			goto dirty_vol;
3409 		}
3410 
3411 		e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3412 		esize = le16_to_cpu(e1->size);
3413 		e2 = Add2Ptr(e1, esize);
3414 
3415 		memmove(e1, e2, PtrOffset(e2, Add2Ptr(hdr, used)));
3416 
3417 		le32_sub_cpu(&attr->res.data_size, esize);
3418 		hdr->used = cpu_to_le32(used - esize);
3419 		le32_sub_cpu(&hdr->total, esize);
3420 
3421 		change_attr_size(rec, attr, le32_to_cpu(attr->size) - esize);
3422 
3423 		mi->dirty = true;
3424 		break;
3425 
3426 	case SetIndexEntryVcnRoot:
3427 		root = resident_data(attr);
3428 		hdr = &root->ihdr;
3429 
3430 		if (!check_if_index_root(rec, lrh) ||
3431 		    !check_if_root_index(attr, hdr, lrh)) {
3432 			goto dirty_vol;
3433 		}
3434 
3435 		e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3436 
3437 		de_set_vbn_le(e, *(__le64 *)data);
3438 		mi->dirty = true;
3439 		break;
3440 
3441 	case UpdateFileNameRoot:
3442 		root = resident_data(attr);
3443 		hdr = &root->ihdr;
3444 
3445 		if (!check_if_index_root(rec, lrh) ||
3446 		    !check_if_root_index(attr, hdr, lrh)) {
3447 			goto dirty_vol;
3448 		}
3449 
3450 		e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3451 		fname = (struct ATTR_FILE_NAME *)(e + 1);
3452 		memmove(&fname->dup, data, sizeof(fname->dup)); //
3453 		mi->dirty = true;
3454 		break;
3455 
3456 	case UpdateRecordDataRoot:
3457 		root = resident_data(attr);
3458 		hdr = &root->ihdr;
3459 
3460 		if (!check_if_index_root(rec, lrh) ||
3461 		    !check_if_root_index(attr, hdr, lrh)) {
3462 			goto dirty_vol;
3463 		}
3464 
3465 		e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3466 
3467 		memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3468 
3469 		mi->dirty = true;
3470 		break;
3471 
3472 	case ZeroEndOfFileRecord:
3473 		if (roff + dlen > record_size)
3474 			goto dirty_vol;
3475 
3476 		memset(attr, 0, dlen);
3477 		mi->dirty = true;
3478 		break;
3479 
3480 	case UpdateNonresidentValue:
3481 		if (lco < cbo + roff + dlen)
3482 			goto dirty_vol;
3483 
3484 		memcpy(Add2Ptr(buffer_le, roff), data, dlen);
3485 
3486 		a_dirty = true;
3487 		if (attr->type == ATTR_ALLOC)
3488 			ntfs_fix_pre_write(buffer_le, bytes);
3489 		break;
3490 
3491 	case AddIndexEntryAllocation:
3492 		ib = Add2Ptr(buffer_le, roff);
3493 		hdr = &ib->ihdr;
3494 		e = data;
3495 		esize = le16_to_cpu(e->size);
3496 		e1 = Add2Ptr(ib, aoff);
3497 
3498 		if (is_baad(&ib->rhdr))
3499 			goto dirty_vol;
3500 		if (!check_lsn(&ib->rhdr, rlsn))
3501 			goto out;
3502 
3503 		used = le32_to_cpu(hdr->used);
3504 
3505 		if (!check_index_buffer(ib, bytes) ||
3506 		    !check_if_alloc_index(hdr, aoff) ||
3507 		    Add2Ptr(e, esize) > Add2Ptr(lrh, rec_len) ||
3508 		    used + esize > le32_to_cpu(hdr->total)) {
3509 			goto dirty_vol;
3510 		}
3511 
3512 		memmove(Add2Ptr(e1, esize), e1,
3513 			PtrOffset(e1, Add2Ptr(hdr, used)));
3514 		memcpy(e1, e, esize);
3515 
3516 		hdr->used = cpu_to_le32(used + esize);
3517 
3518 		a_dirty = true;
3519 
3520 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3521 		break;
3522 
3523 	case DeleteIndexEntryAllocation:
3524 		ib = Add2Ptr(buffer_le, roff);
3525 		hdr = &ib->ihdr;
3526 		e = Add2Ptr(ib, aoff);
3527 		esize = le16_to_cpu(e->size);
3528 
3529 		if (is_baad(&ib->rhdr))
3530 			goto dirty_vol;
3531 		if (!check_lsn(&ib->rhdr, rlsn))
3532 			goto out;
3533 
3534 		if (!check_index_buffer(ib, bytes) ||
3535 		    !check_if_alloc_index(hdr, aoff)) {
3536 			goto dirty_vol;
3537 		}
3538 
3539 		e1 = Add2Ptr(e, esize);
3540 		nsize = esize;
3541 		used = le32_to_cpu(hdr->used);
3542 
3543 		memmove(e, e1, PtrOffset(e1, Add2Ptr(hdr, used)));
3544 
3545 		hdr->used = cpu_to_le32(used - nsize);
3546 
3547 		a_dirty = true;
3548 
3549 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3550 		break;
3551 
3552 	case WriteEndOfIndexBuffer:
3553 		ib = Add2Ptr(buffer_le, roff);
3554 		hdr = &ib->ihdr;
3555 		e = Add2Ptr(ib, aoff);
3556 
3557 		if (is_baad(&ib->rhdr))
3558 			goto dirty_vol;
3559 		if (!check_lsn(&ib->rhdr, rlsn))
3560 			goto out;
3561 		if (!check_index_buffer(ib, bytes) ||
3562 		    !check_if_alloc_index(hdr, aoff) ||
3563 		    aoff + dlen > offsetof(struct INDEX_BUFFER, ihdr) +
3564 					  le32_to_cpu(hdr->total)) {
3565 			goto dirty_vol;
3566 		}
3567 
3568 		hdr->used = cpu_to_le32(dlen + PtrOffset(hdr, e));
3569 		memmove(e, data, dlen);
3570 
3571 		a_dirty = true;
3572 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3573 		break;
3574 
3575 	case SetIndexEntryVcnAllocation:
3576 		ib = Add2Ptr(buffer_le, roff);
3577 		hdr = &ib->ihdr;
3578 		e = Add2Ptr(ib, aoff);
3579 
3580 		if (is_baad(&ib->rhdr))
3581 			goto dirty_vol;
3582 
3583 		if (!check_lsn(&ib->rhdr, rlsn))
3584 			goto out;
3585 		if (!check_index_buffer(ib, bytes) ||
3586 		    !check_if_alloc_index(hdr, aoff)) {
3587 			goto dirty_vol;
3588 		}
3589 
3590 		de_set_vbn_le(e, *(__le64 *)data);
3591 
3592 		a_dirty = true;
3593 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3594 		break;
3595 
3596 	case UpdateFileNameAllocation:
3597 		ib = Add2Ptr(buffer_le, roff);
3598 		hdr = &ib->ihdr;
3599 		e = Add2Ptr(ib, aoff);
3600 
3601 		if (is_baad(&ib->rhdr))
3602 			goto dirty_vol;
3603 
3604 		if (!check_lsn(&ib->rhdr, rlsn))
3605 			goto out;
3606 		if (!check_index_buffer(ib, bytes) ||
3607 		    !check_if_alloc_index(hdr, aoff)) {
3608 			goto dirty_vol;
3609 		}
3610 
3611 		fname = (struct ATTR_FILE_NAME *)(e + 1);
3612 		memmove(&fname->dup, data, sizeof(fname->dup));
3613 
3614 		a_dirty = true;
3615 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3616 		break;
3617 
3618 	case SetBitsInNonresidentBitMap:
3619 		off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3620 		bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
3621 
3622 		if (cbo + (off + 7) / 8 > lco ||
3623 		    cbo + ((off + bits + 7) / 8) > lco) {
3624 			goto dirty_vol;
3625 		}
3626 
3627 		ntfs_bitmap_set_le(Add2Ptr(buffer_le, roff), off, bits);
3628 		a_dirty = true;
3629 		break;
3630 
3631 	case ClearBitsInNonresidentBitMap:
3632 		off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3633 		bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
3634 
3635 		if (cbo + (off + 7) / 8 > lco ||
3636 		    cbo + ((off + bits + 7) / 8) > lco) {
3637 			goto dirty_vol;
3638 		}
3639 
3640 		ntfs_bitmap_clear_le(Add2Ptr(buffer_le, roff), off, bits);
3641 		a_dirty = true;
3642 		break;
3643 
3644 	case UpdateRecordDataAllocation:
3645 		ib = Add2Ptr(buffer_le, roff);
3646 		hdr = &ib->ihdr;
3647 		e = Add2Ptr(ib, aoff);
3648 
3649 		if (is_baad(&ib->rhdr))
3650 			goto dirty_vol;
3651 
3652 		if (!check_lsn(&ib->rhdr, rlsn))
3653 			goto out;
3654 		if (!check_index_buffer(ib, bytes) ||
3655 		    !check_if_alloc_index(hdr, aoff)) {
3656 			goto dirty_vol;
3657 		}
3658 
3659 		memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3660 
3661 		a_dirty = true;
3662 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3663 		break;
3664 
3665 	default:
3666 		WARN_ON(1);
3667 	}
3668 
3669 	if (rlsn) {
3670 		__le64 t64 = cpu_to_le64(*rlsn);
3671 
3672 		if (rec)
3673 			rec->rhdr.lsn = t64;
3674 		if (ib)
3675 			ib->rhdr.lsn = t64;
3676 	}
3677 
3678 	if (mi && mi->dirty) {
3679 		err = mi_write(mi, 0);
3680 		if (err)
3681 			goto out;
3682 	}
3683 
3684 	if (a_dirty) {
3685 		attr = oa->attr;
3686 		err = ntfs_sb_write_run(sbi, oa->run1, vbo, buffer_le, bytes, 0);
3687 		if (err)
3688 			goto out;
3689 	}
3690 
3691 out:
3692 
3693 	if (inode)
3694 		iput(inode);
3695 	else if (mi != mi2_child)
3696 		mi_put(mi);
3697 
3698 	kfree(buffer_le);
3699 
3700 	return err;
3701 
3702 dirty_vol:
3703 	log->set_dirty = true;
3704 	goto out;
3705 }
3706 
3707 /*
3708  * log_replay - Replays log and empties it.
3709  *
3710  * This function is called during mount operation.
3711  * It replays log and empties it.
3712  * Initialized is set false if logfile contains '-1'.
3713  */
3714 int log_replay(struct ntfs_inode *ni, bool *initialized)
3715 {
3716 	int err;
3717 	struct ntfs_sb_info *sbi = ni->mi.sbi;
3718 	struct ntfs_log *log;
3719 
3720 	struct restart_info rst_info, rst_info2;
3721 	u64 rec_lsn, ra_lsn, checkpt_lsn = 0, rlsn = 0;
3722 	struct ATTR_NAME_ENTRY *attr_names = NULL;
3723 	struct ATTR_NAME_ENTRY *ane;
3724 	struct RESTART_TABLE *dptbl = NULL;
3725 	struct RESTART_TABLE *trtbl = NULL;
3726 	const struct RESTART_TABLE *rt;
3727 	struct RESTART_TABLE *oatbl = NULL;
3728 	struct inode *inode;
3729 	struct OpenAttr *oa;
3730 	struct ntfs_inode *ni_oe;
3731 	struct ATTRIB *attr = NULL;
3732 	u64 size, vcn, undo_next_lsn;
3733 	CLST rno, lcn, lcn0, len0, clen;
3734 	void *data;
3735 	struct NTFS_RESTART *rst = NULL;
3736 	struct lcb *lcb = NULL;
3737 	struct OPEN_ATTR_ENRTY *oe;
3738 	struct TRANSACTION_ENTRY *tr;
3739 	struct DIR_PAGE_ENTRY *dp;
3740 	u32 i, bytes_per_attr_entry;
3741 	u32 l_size = ni->vfs_inode.i_size;
3742 	u32 orig_file_size = l_size;
3743 	u32 page_size, vbo, tail, off, dlen;
3744 	u32 saved_len, rec_len, transact_id;
3745 	bool use_second_page;
3746 	struct RESTART_AREA *ra2, *ra = NULL;
3747 	struct CLIENT_REC *ca, *cr;
3748 	__le16 client;
3749 	struct RESTART_HDR *rh;
3750 	const struct LFS_RECORD_HDR *frh;
3751 	const struct LOG_REC_HDR *lrh;
3752 	bool is_mapped;
3753 	bool is_ro = sb_rdonly(sbi->sb);
3754 	u64 t64;
3755 	u16 t16;
3756 	u32 t32;
3757 
3758 	/* Get the size of page. NOTE: To replay we can use default page. */
3759 #if PAGE_SIZE >= DefaultLogPageSize && PAGE_SIZE <= DefaultLogPageSize * 2
3760 	page_size = norm_file_page(PAGE_SIZE, &l_size, true);
3761 #else
3762 	page_size = norm_file_page(PAGE_SIZE, &l_size, false);
3763 #endif
3764 	if (!page_size)
3765 		return -EINVAL;
3766 
3767 	log = kzalloc(sizeof(struct ntfs_log), GFP_NOFS);
3768 	if (!log)
3769 		return -ENOMEM;
3770 
3771 	memset(&rst_info, 0, sizeof(struct restart_info));
3772 
3773 	log->ni = ni;
3774 	log->l_size = l_size;
3775 	log->one_page_buf = kmalloc(page_size, GFP_NOFS);
3776 	if (!log->one_page_buf) {
3777 		err = -ENOMEM;
3778 		goto out;
3779 	}
3780 
3781 	log->page_size = page_size;
3782 	log->page_mask = page_size - 1;
3783 	log->page_bits = blksize_bits(page_size);
3784 
3785 	/* Look for a restart area on the disk. */
3786 	err = log_read_rst(log, l_size, true, &rst_info);
3787 	if (err)
3788 		goto out;
3789 
3790 	/* remember 'initialized' */
3791 	*initialized = rst_info.initialized;
3792 
3793 	if (!rst_info.restart) {
3794 		if (rst_info.initialized) {
3795 			/* No restart area but the file is not initialized. */
3796 			err = -EINVAL;
3797 			goto out;
3798 		}
3799 
3800 		log_init_pg_hdr(log, page_size, page_size, 1, 1);
3801 		log_create(log, l_size, 0, get_random_u32(), false, false);
3802 
3803 		log->ra = ra;
3804 
3805 		ra = log_create_ra(log);
3806 		if (!ra) {
3807 			err = -ENOMEM;
3808 			goto out;
3809 		}
3810 		log->ra = ra;
3811 		log->init_ra = true;
3812 
3813 		goto process_log;
3814 	}
3815 
3816 	/*
3817 	 * If the restart offset above wasn't zero then we won't
3818 	 * look for a second restart.
3819 	 */
3820 	if (rst_info.vbo)
3821 		goto check_restart_area;
3822 
3823 	memset(&rst_info2, 0, sizeof(struct restart_info));
3824 	err = log_read_rst(log, l_size, false, &rst_info2);
3825 	if (err)
3826 		goto out;
3827 
3828 	/* Determine which restart area to use. */
3829 	if (!rst_info2.restart || rst_info2.last_lsn <= rst_info.last_lsn)
3830 		goto use_first_page;
3831 
3832 	use_second_page = true;
3833 
3834 	if (rst_info.chkdsk_was_run && page_size != rst_info.vbo) {
3835 		struct RECORD_PAGE_HDR *sp = NULL;
3836 		bool usa_error;
3837 
3838 		if (!read_log_page(log, page_size, &sp, &usa_error) &&
3839 		    sp->rhdr.sign == NTFS_CHKD_SIGNATURE) {
3840 			use_second_page = false;
3841 		}
3842 		kfree(sp);
3843 	}
3844 
3845 	if (use_second_page) {
3846 		kfree(rst_info.r_page);
3847 		memcpy(&rst_info, &rst_info2, sizeof(struct restart_info));
3848 		rst_info2.r_page = NULL;
3849 	}
3850 
3851 use_first_page:
3852 	kfree(rst_info2.r_page);
3853 
3854 check_restart_area:
3855 	/*
3856 	 * If the restart area is at offset 0, we want
3857 	 * to write the second restart area first.
3858 	 */
3859 	log->init_ra = !!rst_info.vbo;
3860 
3861 	/* If we have a valid page then grab a pointer to the restart area. */
3862 	ra2 = rst_info.valid_page
3863 		      ? Add2Ptr(rst_info.r_page,
3864 				le16_to_cpu(rst_info.r_page->ra_off))
3865 		      : NULL;
3866 
3867 	if (rst_info.chkdsk_was_run ||
3868 	    (ra2 && ra2->client_idx[1] == LFS_NO_CLIENT_LE)) {
3869 		bool wrapped = false;
3870 		bool use_multi_page = false;
3871 		u32 open_log_count;
3872 
3873 		/* Do some checks based on whether we have a valid log page. */
3874 		if (!rst_info.valid_page) {
3875 			open_log_count = get_random_u32();
3876 			goto init_log_instance;
3877 		}
3878 		open_log_count = le32_to_cpu(ra2->open_log_count);
3879 
3880 		/*
3881 		 * If the restart page size isn't changing then we want to
3882 		 * check how much work we need to do.
3883 		 */
3884 		if (page_size != le32_to_cpu(rst_info.r_page->sys_page_size))
3885 			goto init_log_instance;
3886 
3887 init_log_instance:
3888 		log_init_pg_hdr(log, page_size, page_size, 1, 1);
3889 
3890 		log_create(log, l_size, rst_info.last_lsn, open_log_count,
3891 			   wrapped, use_multi_page);
3892 
3893 		ra = log_create_ra(log);
3894 		if (!ra) {
3895 			err = -ENOMEM;
3896 			goto out;
3897 		}
3898 		log->ra = ra;
3899 
3900 		/* Put the restart areas and initialize
3901 		 * the log file as required.
3902 		 */
3903 		goto process_log;
3904 	}
3905 
3906 	if (!ra2) {
3907 		err = -EINVAL;
3908 		goto out;
3909 	}
3910 
3911 	/*
3912 	 * If the log page or the system page sizes have changed, we can't
3913 	 * use the log file. We must use the system page size instead of the
3914 	 * default size if there is not a clean shutdown.
3915 	 */
3916 	t32 = le32_to_cpu(rst_info.r_page->sys_page_size);
3917 	if (page_size != t32) {
3918 		l_size = orig_file_size;
3919 		page_size =
3920 			norm_file_page(t32, &l_size, t32 == DefaultLogPageSize);
3921 	}
3922 
3923 	if (page_size != t32 ||
3924 	    page_size != le32_to_cpu(rst_info.r_page->page_size)) {
3925 		err = -EINVAL;
3926 		goto out;
3927 	}
3928 
3929 	/* If the file size has shrunk then we won't mount it. */
3930 	if (l_size < le64_to_cpu(ra2->l_size)) {
3931 		err = -EINVAL;
3932 		goto out;
3933 	}
3934 
3935 	log_init_pg_hdr(log, page_size, page_size,
3936 			le16_to_cpu(rst_info.r_page->major_ver),
3937 			le16_to_cpu(rst_info.r_page->minor_ver));
3938 
3939 	log->l_size = le64_to_cpu(ra2->l_size);
3940 	log->seq_num_bits = le32_to_cpu(ra2->seq_num_bits);
3941 	log->file_data_bits = sizeof(u64) * 8 - log->seq_num_bits;
3942 	log->seq_num_mask = (8 << log->file_data_bits) - 1;
3943 	log->last_lsn = le64_to_cpu(ra2->current_lsn);
3944 	log->seq_num = log->last_lsn >> log->file_data_bits;
3945 	log->ra_off = le16_to_cpu(rst_info.r_page->ra_off);
3946 	log->restart_size = log->sys_page_size - log->ra_off;
3947 	log->record_header_len = le16_to_cpu(ra2->rec_hdr_len);
3948 	log->ra_size = le16_to_cpu(ra2->ra_len);
3949 	log->data_off = le16_to_cpu(ra2->data_off);
3950 	log->data_size = log->page_size - log->data_off;
3951 	log->reserved = log->data_size - log->record_header_len;
3952 
3953 	vbo = lsn_to_vbo(log, log->last_lsn);
3954 
3955 	if (vbo < log->first_page) {
3956 		/* This is a pseudo lsn. */
3957 		log->l_flags |= NTFSLOG_NO_LAST_LSN;
3958 		log->next_page = log->first_page;
3959 		goto find_oldest;
3960 	}
3961 
3962 	/* Find the end of this log record. */
3963 	off = final_log_off(log, log->last_lsn,
3964 			    le32_to_cpu(ra2->last_lsn_data_len));
3965 
3966 	/* If we wrapped the file then increment the sequence number. */
3967 	if (off <= vbo) {
3968 		log->seq_num += 1;
3969 		log->l_flags |= NTFSLOG_WRAPPED;
3970 	}
3971 
3972 	/* Now compute the next log page to use. */
3973 	vbo &= ~log->sys_page_mask;
3974 	tail = log->page_size - (off & log->page_mask) - 1;
3975 
3976 	/*
3977 	 *If we can fit another log record on the page,
3978 	 * move back a page the log file.
3979 	 */
3980 	if (tail >= log->record_header_len) {
3981 		log->l_flags |= NTFSLOG_REUSE_TAIL;
3982 		log->next_page = vbo;
3983 	} else {
3984 		log->next_page = next_page_off(log, vbo);
3985 	}
3986 
3987 find_oldest:
3988 	/*
3989 	 * Find the oldest client lsn. Use the last
3990 	 * flushed lsn as a starting point.
3991 	 */
3992 	log->oldest_lsn = log->last_lsn;
3993 	oldest_client_lsn(Add2Ptr(ra2, le16_to_cpu(ra2->client_off)),
3994 			  ra2->client_idx[1], &log->oldest_lsn);
3995 	log->oldest_lsn_off = lsn_to_vbo(log, log->oldest_lsn);
3996 
3997 	if (log->oldest_lsn_off < log->first_page)
3998 		log->l_flags |= NTFSLOG_NO_OLDEST_LSN;
3999 
4000 	if (!(ra2->flags & RESTART_SINGLE_PAGE_IO))
4001 		log->l_flags |= NTFSLOG_WRAPPED | NTFSLOG_MULTIPLE_PAGE_IO;
4002 
4003 	log->current_openlog_count = le32_to_cpu(ra2->open_log_count);
4004 	log->total_avail_pages = log->l_size - log->first_page;
4005 	log->total_avail = log->total_avail_pages >> log->page_bits;
4006 	log->max_current_avail = log->total_avail * log->reserved;
4007 	log->total_avail = log->total_avail * log->data_size;
4008 
4009 	log->current_avail = current_log_avail(log);
4010 
4011 	ra = kzalloc(log->restart_size, GFP_NOFS);
4012 	if (!ra) {
4013 		err = -ENOMEM;
4014 		goto out;
4015 	}
4016 	log->ra = ra;
4017 
4018 	t16 = le16_to_cpu(ra2->client_off);
4019 	if (t16 == offsetof(struct RESTART_AREA, clients)) {
4020 		memcpy(ra, ra2, log->ra_size);
4021 	} else {
4022 		memcpy(ra, ra2, offsetof(struct RESTART_AREA, clients));
4023 		memcpy(ra->clients, Add2Ptr(ra2, t16),
4024 		       le16_to_cpu(ra2->ra_len) - t16);
4025 
4026 		log->current_openlog_count = get_random_u32();
4027 		ra->open_log_count = cpu_to_le32(log->current_openlog_count);
4028 		log->ra_size = offsetof(struct RESTART_AREA, clients) +
4029 			       sizeof(struct CLIENT_REC);
4030 		ra->client_off =
4031 			cpu_to_le16(offsetof(struct RESTART_AREA, clients));
4032 		ra->ra_len = cpu_to_le16(log->ra_size);
4033 	}
4034 
4035 	le32_add_cpu(&ra->open_log_count, 1);
4036 
4037 	/* Now we need to walk through looking for the last lsn. */
4038 	err = last_log_lsn(log);
4039 	if (err)
4040 		goto out;
4041 
4042 	log->current_avail = current_log_avail(log);
4043 
4044 	/* Remember which restart area to write first. */
4045 	log->init_ra = rst_info.vbo;
4046 
4047 process_log:
4048 	/* 1.0, 1.1, 2.0 log->major_ver/minor_ver - short values. */
4049 	switch ((log->major_ver << 16) + log->minor_ver) {
4050 	case 0x10000:
4051 	case 0x10001:
4052 	case 0x20000:
4053 		break;
4054 	default:
4055 		ntfs_warn(sbi->sb, "\x24LogFile version %d.%d is not supported",
4056 			  log->major_ver, log->minor_ver);
4057 		err = -EOPNOTSUPP;
4058 		log->set_dirty = true;
4059 		goto out;
4060 	}
4061 
4062 	/* One client "NTFS" per logfile. */
4063 	ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
4064 
4065 	for (client = ra->client_idx[1];; client = cr->next_client) {
4066 		if (client == LFS_NO_CLIENT_LE) {
4067 			/* Insert "NTFS" client LogFile. */
4068 			client = ra->client_idx[0];
4069 			if (client == LFS_NO_CLIENT_LE) {
4070 				err = -EINVAL;
4071 				goto out;
4072 			}
4073 
4074 			t16 = le16_to_cpu(client);
4075 			cr = ca + t16;
4076 
4077 			remove_client(ca, cr, &ra->client_idx[0]);
4078 
4079 			cr->restart_lsn = 0;
4080 			cr->oldest_lsn = cpu_to_le64(log->oldest_lsn);
4081 			cr->name_bytes = cpu_to_le32(8);
4082 			cr->name[0] = cpu_to_le16('N');
4083 			cr->name[1] = cpu_to_le16('T');
4084 			cr->name[2] = cpu_to_le16('F');
4085 			cr->name[3] = cpu_to_le16('S');
4086 
4087 			add_client(ca, t16, &ra->client_idx[1]);
4088 			break;
4089 		}
4090 
4091 		cr = ca + le16_to_cpu(client);
4092 
4093 		if (cpu_to_le32(8) == cr->name_bytes &&
4094 		    cpu_to_le16('N') == cr->name[0] &&
4095 		    cpu_to_le16('T') == cr->name[1] &&
4096 		    cpu_to_le16('F') == cr->name[2] &&
4097 		    cpu_to_le16('S') == cr->name[3])
4098 			break;
4099 	}
4100 
4101 	/* Update the client handle with the client block information. */
4102 	log->client_id.seq_num = cr->seq_num;
4103 	log->client_id.client_idx = client;
4104 
4105 	err = read_rst_area(log, &rst, &ra_lsn);
4106 	if (err)
4107 		goto out;
4108 
4109 	if (!rst)
4110 		goto out;
4111 
4112 	bytes_per_attr_entry = !rst->major_ver ? 0x2C : 0x28;
4113 
4114 	checkpt_lsn = le64_to_cpu(rst->check_point_start);
4115 	if (!checkpt_lsn)
4116 		checkpt_lsn = ra_lsn;
4117 
4118 	/* Allocate and Read the Transaction Table. */
4119 	if (!rst->transact_table_len)
4120 		goto check_dirty_page_table;
4121 
4122 	t64 = le64_to_cpu(rst->transact_table_lsn);
4123 	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4124 	if (err)
4125 		goto out;
4126 
4127 	lrh = lcb->log_rec;
4128 	frh = lcb->lrh;
4129 	rec_len = le32_to_cpu(frh->client_data_len);
4130 
4131 	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4132 			   bytes_per_attr_entry)) {
4133 		err = -EINVAL;
4134 		goto out;
4135 	}
4136 
4137 	t16 = le16_to_cpu(lrh->redo_off);
4138 
4139 	rt = Add2Ptr(lrh, t16);
4140 	t32 = rec_len - t16;
4141 
4142 	/* Now check that this is a valid restart table. */
4143 	if (!check_rstbl(rt, t32)) {
4144 		err = -EINVAL;
4145 		goto out;
4146 	}
4147 
4148 	trtbl = kmemdup(rt, t32, GFP_NOFS);
4149 	if (!trtbl) {
4150 		err = -ENOMEM;
4151 		goto out;
4152 	}
4153 
4154 	lcb_put(lcb);
4155 	lcb = NULL;
4156 
4157 check_dirty_page_table:
4158 	/* The next record back should be the Dirty Pages Table. */
4159 	if (!rst->dirty_pages_len)
4160 		goto check_attribute_names;
4161 
4162 	t64 = le64_to_cpu(rst->dirty_pages_table_lsn);
4163 	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4164 	if (err)
4165 		goto out;
4166 
4167 	lrh = lcb->log_rec;
4168 	frh = lcb->lrh;
4169 	rec_len = le32_to_cpu(frh->client_data_len);
4170 
4171 	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4172 			   bytes_per_attr_entry)) {
4173 		err = -EINVAL;
4174 		goto out;
4175 	}
4176 
4177 	t16 = le16_to_cpu(lrh->redo_off);
4178 
4179 	rt = Add2Ptr(lrh, t16);
4180 	t32 = rec_len - t16;
4181 
4182 	/* Now check that this is a valid restart table. */
4183 	if (!check_rstbl(rt, t32)) {
4184 		err = -EINVAL;
4185 		goto out;
4186 	}
4187 
4188 	dptbl = kmemdup(rt, t32, GFP_NOFS);
4189 	if (!dptbl) {
4190 		err = -ENOMEM;
4191 		goto out;
4192 	}
4193 
4194 	/* Convert Ra version '0' into version '1'. */
4195 	if (rst->major_ver)
4196 		goto end_conv_1;
4197 
4198 	dp = NULL;
4199 	while ((dp = enum_rstbl(dptbl, dp))) {
4200 		struct DIR_PAGE_ENTRY_32 *dp0 = (struct DIR_PAGE_ENTRY_32 *)dp;
4201 		// NOTE: Danger. Check for of boundary.
4202 		memmove(&dp->vcn, &dp0->vcn_low,
4203 			2 * sizeof(u64) +
4204 				le32_to_cpu(dp->lcns_follow) * sizeof(u64));
4205 	}
4206 
4207 end_conv_1:
4208 	lcb_put(lcb);
4209 	lcb = NULL;
4210 
4211 	/*
4212 	 * Go through the table and remove the duplicates,
4213 	 * remembering the oldest lsn values.
4214 	 */
4215 	if (sbi->cluster_size <= log->page_size)
4216 		goto trace_dp_table;
4217 
4218 	dp = NULL;
4219 	while ((dp = enum_rstbl(dptbl, dp))) {
4220 		struct DIR_PAGE_ENTRY *next = dp;
4221 
4222 		while ((next = enum_rstbl(dptbl, next))) {
4223 			if (next->target_attr == dp->target_attr &&
4224 			    next->vcn == dp->vcn) {
4225 				if (le64_to_cpu(next->oldest_lsn) <
4226 				    le64_to_cpu(dp->oldest_lsn)) {
4227 					dp->oldest_lsn = next->oldest_lsn;
4228 				}
4229 
4230 				free_rsttbl_idx(dptbl, PtrOffset(dptbl, next));
4231 			}
4232 		}
4233 	}
4234 trace_dp_table:
4235 check_attribute_names:
4236 	/* The next record should be the Attribute Names. */
4237 	if (!rst->attr_names_len)
4238 		goto check_attr_table;
4239 
4240 	t64 = le64_to_cpu(rst->attr_names_lsn);
4241 	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4242 	if (err)
4243 		goto out;
4244 
4245 	lrh = lcb->log_rec;
4246 	frh = lcb->lrh;
4247 	rec_len = le32_to_cpu(frh->client_data_len);
4248 
4249 	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4250 			   bytes_per_attr_entry)) {
4251 		err = -EINVAL;
4252 		goto out;
4253 	}
4254 
4255 	t32 = lrh_length(lrh);
4256 	rec_len -= t32;
4257 
4258 	attr_names = kmemdup(Add2Ptr(lrh, t32), rec_len, GFP_NOFS);
4259 
4260 	lcb_put(lcb);
4261 	lcb = NULL;
4262 
4263 check_attr_table:
4264 	/* The next record should be the attribute Table. */
4265 	if (!rst->open_attr_len)
4266 		goto check_attribute_names2;
4267 
4268 	t64 = le64_to_cpu(rst->open_attr_table_lsn);
4269 	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4270 	if (err)
4271 		goto out;
4272 
4273 	lrh = lcb->log_rec;
4274 	frh = lcb->lrh;
4275 	rec_len = le32_to_cpu(frh->client_data_len);
4276 
4277 	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4278 			   bytes_per_attr_entry)) {
4279 		err = -EINVAL;
4280 		goto out;
4281 	}
4282 
4283 	t16 = le16_to_cpu(lrh->redo_off);
4284 
4285 	rt = Add2Ptr(lrh, t16);
4286 	t32 = rec_len - t16;
4287 
4288 	if (!check_rstbl(rt, t32)) {
4289 		err = -EINVAL;
4290 		goto out;
4291 	}
4292 
4293 	oatbl = kmemdup(rt, t32, GFP_NOFS);
4294 	if (!oatbl) {
4295 		err = -ENOMEM;
4296 		goto out;
4297 	}
4298 
4299 	log->open_attr_tbl = oatbl;
4300 
4301 	/* Clear all of the Attr pointers. */
4302 	oe = NULL;
4303 	while ((oe = enum_rstbl(oatbl, oe))) {
4304 		if (!rst->major_ver) {
4305 			struct OPEN_ATTR_ENRTY_32 oe0;
4306 
4307 			/* Really 'oe' points to OPEN_ATTR_ENRTY_32. */
4308 			memcpy(&oe0, oe, SIZEOF_OPENATTRIBUTEENTRY0);
4309 
4310 			oe->bytes_per_index = oe0.bytes_per_index;
4311 			oe->type = oe0.type;
4312 			oe->is_dirty_pages = oe0.is_dirty_pages;
4313 			oe->name_len = 0;
4314 			oe->ref = oe0.ref;
4315 			oe->open_record_lsn = oe0.open_record_lsn;
4316 		}
4317 
4318 		oe->is_attr_name = 0;
4319 		oe->ptr = NULL;
4320 	}
4321 
4322 	lcb_put(lcb);
4323 	lcb = NULL;
4324 
4325 check_attribute_names2:
4326 	if (!rst->attr_names_len)
4327 		goto trace_attribute_table;
4328 
4329 	ane = attr_names;
4330 	if (!oatbl)
4331 		goto trace_attribute_table;
4332 	while (ane->off) {
4333 		/* TODO: Clear table on exit! */
4334 		oe = Add2Ptr(oatbl, le16_to_cpu(ane->off));
4335 		t16 = le16_to_cpu(ane->name_bytes);
4336 		oe->name_len = t16 / sizeof(short);
4337 		oe->ptr = ane->name;
4338 		oe->is_attr_name = 2;
4339 		ane = Add2Ptr(ane, sizeof(struct ATTR_NAME_ENTRY) + t16);
4340 	}
4341 
4342 trace_attribute_table:
4343 	/*
4344 	 * If the checkpt_lsn is zero, then this is a freshly
4345 	 * formatted disk and we have no work to do.
4346 	 */
4347 	if (!checkpt_lsn) {
4348 		err = 0;
4349 		goto out;
4350 	}
4351 
4352 	if (!oatbl) {
4353 		oatbl = init_rsttbl(bytes_per_attr_entry, 8);
4354 		if (!oatbl) {
4355 			err = -ENOMEM;
4356 			goto out;
4357 		}
4358 	}
4359 
4360 	log->open_attr_tbl = oatbl;
4361 
4362 	/* Start the analysis pass from the Checkpoint lsn. */
4363 	rec_lsn = checkpt_lsn;
4364 
4365 	/* Read the first lsn. */
4366 	err = read_log_rec_lcb(log, checkpt_lsn, lcb_ctx_next, &lcb);
4367 	if (err)
4368 		goto out;
4369 
4370 	/* Loop to read all subsequent records to the end of the log file. */
4371 next_log_record_analyze:
4372 	err = read_next_log_rec(log, lcb, &rec_lsn);
4373 	if (err)
4374 		goto out;
4375 
4376 	if (!rec_lsn)
4377 		goto end_log_records_enumerate;
4378 
4379 	frh = lcb->lrh;
4380 	transact_id = le32_to_cpu(frh->transact_id);
4381 	rec_len = le32_to_cpu(frh->client_data_len);
4382 	lrh = lcb->log_rec;
4383 
4384 	if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
4385 		err = -EINVAL;
4386 		goto out;
4387 	}
4388 
4389 	/*
4390 	 * The first lsn after the previous lsn remembered
4391 	 * the checkpoint is the first candidate for the rlsn.
4392 	 */
4393 	if (!rlsn)
4394 		rlsn = rec_lsn;
4395 
4396 	if (LfsClientRecord != frh->record_type)
4397 		goto next_log_record_analyze;
4398 
4399 	/*
4400 	 * Now update the Transaction Table for this transaction. If there
4401 	 * is no entry present or it is unallocated we allocate the entry.
4402 	 */
4403 	if (!trtbl) {
4404 		trtbl = init_rsttbl(sizeof(struct TRANSACTION_ENTRY),
4405 				    INITIAL_NUMBER_TRANSACTIONS);
4406 		if (!trtbl) {
4407 			err = -ENOMEM;
4408 			goto out;
4409 		}
4410 	}
4411 
4412 	tr = Add2Ptr(trtbl, transact_id);
4413 
4414 	if (transact_id >= bytes_per_rt(trtbl) ||
4415 	    tr->next != RESTART_ENTRY_ALLOCATED_LE) {
4416 		tr = alloc_rsttbl_from_idx(&trtbl, transact_id);
4417 		if (!tr) {
4418 			err = -ENOMEM;
4419 			goto out;
4420 		}
4421 		tr->transact_state = TransactionActive;
4422 		tr->first_lsn = cpu_to_le64(rec_lsn);
4423 	}
4424 
4425 	tr->prev_lsn = tr->undo_next_lsn = cpu_to_le64(rec_lsn);
4426 
4427 	/*
4428 	 * If this is a compensation log record, then change
4429 	 * the undo_next_lsn to be the undo_next_lsn of this record.
4430 	 */
4431 	if (lrh->undo_op == cpu_to_le16(CompensationLogRecord))
4432 		tr->undo_next_lsn = frh->client_undo_next_lsn;
4433 
4434 	/* Dispatch to handle log record depending on type. */
4435 	switch (le16_to_cpu(lrh->redo_op)) {
4436 	case InitializeFileRecordSegment:
4437 	case DeallocateFileRecordSegment:
4438 	case WriteEndOfFileRecordSegment:
4439 	case CreateAttribute:
4440 	case DeleteAttribute:
4441 	case UpdateResidentValue:
4442 	case UpdateNonresidentValue:
4443 	case UpdateMappingPairs:
4444 	case SetNewAttributeSizes:
4445 	case AddIndexEntryRoot:
4446 	case DeleteIndexEntryRoot:
4447 	case AddIndexEntryAllocation:
4448 	case DeleteIndexEntryAllocation:
4449 	case WriteEndOfIndexBuffer:
4450 	case SetIndexEntryVcnRoot:
4451 	case SetIndexEntryVcnAllocation:
4452 	case UpdateFileNameRoot:
4453 	case UpdateFileNameAllocation:
4454 	case SetBitsInNonresidentBitMap:
4455 	case ClearBitsInNonresidentBitMap:
4456 	case UpdateRecordDataRoot:
4457 	case UpdateRecordDataAllocation:
4458 	case ZeroEndOfFileRecord:
4459 		t16 = le16_to_cpu(lrh->target_attr);
4460 		t64 = le64_to_cpu(lrh->target_vcn);
4461 		dp = find_dp(dptbl, t16, t64);
4462 
4463 		if (dp)
4464 			goto copy_lcns;
4465 
4466 		/*
4467 		 * Calculate the number of clusters per page the system
4468 		 * which wrote the checkpoint, possibly creating the table.
4469 		 */
4470 		if (dptbl) {
4471 			t32 = (le16_to_cpu(dptbl->size) -
4472 			       sizeof(struct DIR_PAGE_ENTRY)) /
4473 			      sizeof(u64);
4474 		} else {
4475 			t32 = log->clst_per_page;
4476 			kfree(dptbl);
4477 			dptbl = init_rsttbl(struct_size(dp, page_lcns, t32),
4478 					    32);
4479 			if (!dptbl) {
4480 				err = -ENOMEM;
4481 				goto out;
4482 			}
4483 		}
4484 
4485 		dp = alloc_rsttbl_idx(&dptbl);
4486 		if (!dp) {
4487 			err = -ENOMEM;
4488 			goto out;
4489 		}
4490 		dp->target_attr = cpu_to_le32(t16);
4491 		dp->transfer_len = cpu_to_le32(t32 << sbi->cluster_bits);
4492 		dp->lcns_follow = cpu_to_le32(t32);
4493 		dp->vcn = cpu_to_le64(t64 & ~((u64)t32 - 1));
4494 		dp->oldest_lsn = cpu_to_le64(rec_lsn);
4495 
4496 copy_lcns:
4497 		/*
4498 		 * Copy the Lcns from the log record into the Dirty Page Entry.
4499 		 * TODO: For different page size support, must somehow make
4500 		 * whole routine a loop, case Lcns do not fit below.
4501 		 */
4502 		t16 = le16_to_cpu(lrh->lcns_follow);
4503 		for (i = 0; i < t16; i++) {
4504 			size_t j = (size_t)(le64_to_cpu(lrh->target_vcn) -
4505 					    le64_to_cpu(dp->vcn));
4506 			dp->page_lcns[j + i] = lrh->page_lcns[i];
4507 		}
4508 
4509 		goto next_log_record_analyze;
4510 
4511 	case DeleteDirtyClusters: {
4512 		u32 range_count =
4513 			le16_to_cpu(lrh->redo_len) / sizeof(struct LCN_RANGE);
4514 		const struct LCN_RANGE *r =
4515 			Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4516 
4517 		/* Loop through all of the Lcn ranges this log record. */
4518 		for (i = 0; i < range_count; i++, r++) {
4519 			u64 lcn0 = le64_to_cpu(r->lcn);
4520 			u64 lcn_e = lcn0 + le64_to_cpu(r->len) - 1;
4521 
4522 			dp = NULL;
4523 			while ((dp = enum_rstbl(dptbl, dp))) {
4524 				u32 j;
4525 
4526 				t32 = le32_to_cpu(dp->lcns_follow);
4527 				for (j = 0; j < t32; j++) {
4528 					t64 = le64_to_cpu(dp->page_lcns[j]);
4529 					if (t64 >= lcn0 && t64 <= lcn_e)
4530 						dp->page_lcns[j] = 0;
4531 				}
4532 			}
4533 		}
4534 		goto next_log_record_analyze;
4535 		;
4536 	}
4537 
4538 	case OpenNonresidentAttribute:
4539 		t16 = le16_to_cpu(lrh->target_attr);
4540 		if (t16 >= bytes_per_rt(oatbl)) {
4541 			/*
4542 			 * Compute how big the table needs to be.
4543 			 * Add 10 extra entries for some cushion.
4544 			 */
4545 			u32 new_e = t16 / le16_to_cpu(oatbl->size);
4546 
4547 			new_e += 10 - le16_to_cpu(oatbl->used);
4548 
4549 			oatbl = extend_rsttbl(oatbl, new_e, ~0u);
4550 			log->open_attr_tbl = oatbl;
4551 			if (!oatbl) {
4552 				err = -ENOMEM;
4553 				goto out;
4554 			}
4555 		}
4556 
4557 		/* Point to the entry being opened. */
4558 		oe = alloc_rsttbl_from_idx(&oatbl, t16);
4559 		log->open_attr_tbl = oatbl;
4560 		if (!oe) {
4561 			err = -ENOMEM;
4562 			goto out;
4563 		}
4564 
4565 		/* Initialize this entry from the log record. */
4566 		t16 = le16_to_cpu(lrh->redo_off);
4567 		if (!rst->major_ver) {
4568 			/* Convert version '0' into version '1'. */
4569 			struct OPEN_ATTR_ENRTY_32 *oe0 = Add2Ptr(lrh, t16);
4570 
4571 			oe->bytes_per_index = oe0->bytes_per_index;
4572 			oe->type = oe0->type;
4573 			oe->is_dirty_pages = oe0->is_dirty_pages;
4574 			oe->name_len = 0; //oe0.name_len;
4575 			oe->ref = oe0->ref;
4576 			oe->open_record_lsn = oe0->open_record_lsn;
4577 		} else {
4578 			memcpy(oe, Add2Ptr(lrh, t16), bytes_per_attr_entry);
4579 		}
4580 
4581 		t16 = le16_to_cpu(lrh->undo_len);
4582 		if (t16) {
4583 			oe->ptr = kmalloc(t16, GFP_NOFS);
4584 			if (!oe->ptr) {
4585 				err = -ENOMEM;
4586 				goto out;
4587 			}
4588 			oe->name_len = t16 / sizeof(short);
4589 			memcpy(oe->ptr,
4590 			       Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)), t16);
4591 			oe->is_attr_name = 1;
4592 		} else {
4593 			oe->ptr = NULL;
4594 			oe->is_attr_name = 0;
4595 		}
4596 
4597 		goto next_log_record_analyze;
4598 
4599 	case HotFix:
4600 		t16 = le16_to_cpu(lrh->target_attr);
4601 		t64 = le64_to_cpu(lrh->target_vcn);
4602 		dp = find_dp(dptbl, t16, t64);
4603 		if (dp) {
4604 			size_t j = le64_to_cpu(lrh->target_vcn) -
4605 				   le64_to_cpu(dp->vcn);
4606 			if (dp->page_lcns[j])
4607 				dp->page_lcns[j] = lrh->page_lcns[0];
4608 		}
4609 		goto next_log_record_analyze;
4610 
4611 	case EndTopLevelAction:
4612 		tr = Add2Ptr(trtbl, transact_id);
4613 		tr->prev_lsn = cpu_to_le64(rec_lsn);
4614 		tr->undo_next_lsn = frh->client_undo_next_lsn;
4615 		goto next_log_record_analyze;
4616 
4617 	case PrepareTransaction:
4618 		tr = Add2Ptr(trtbl, transact_id);
4619 		tr->transact_state = TransactionPrepared;
4620 		goto next_log_record_analyze;
4621 
4622 	case CommitTransaction:
4623 		tr = Add2Ptr(trtbl, transact_id);
4624 		tr->transact_state = TransactionCommitted;
4625 		goto next_log_record_analyze;
4626 
4627 	case ForgetTransaction:
4628 		free_rsttbl_idx(trtbl, transact_id);
4629 		goto next_log_record_analyze;
4630 
4631 	case Noop:
4632 	case OpenAttributeTableDump:
4633 	case AttributeNamesDump:
4634 	case DirtyPageTableDump:
4635 	case TransactionTableDump:
4636 		/* The following cases require no action the Analysis Pass. */
4637 		goto next_log_record_analyze;
4638 
4639 	default:
4640 		/*
4641 		 * All codes will be explicitly handled.
4642 		 * If we see a code we do not expect, then we are trouble.
4643 		 */
4644 		goto next_log_record_analyze;
4645 	}
4646 
4647 end_log_records_enumerate:
4648 	lcb_put(lcb);
4649 	lcb = NULL;
4650 
4651 	/*
4652 	 * Scan the Dirty Page Table and Transaction Table for
4653 	 * the lowest lsn, and return it as the Redo lsn.
4654 	 */
4655 	dp = NULL;
4656 	while ((dp = enum_rstbl(dptbl, dp))) {
4657 		t64 = le64_to_cpu(dp->oldest_lsn);
4658 		if (t64 && t64 < rlsn)
4659 			rlsn = t64;
4660 	}
4661 
4662 	tr = NULL;
4663 	while ((tr = enum_rstbl(trtbl, tr))) {
4664 		t64 = le64_to_cpu(tr->first_lsn);
4665 		if (t64 && t64 < rlsn)
4666 			rlsn = t64;
4667 	}
4668 
4669 	/*
4670 	 * Only proceed if the Dirty Page Table or Transaction
4671 	 * table are not empty.
4672 	 */
4673 	if ((!dptbl || !dptbl->total) && (!trtbl || !trtbl->total))
4674 		goto end_reply;
4675 
4676 	sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
4677 	if (is_ro)
4678 		goto out;
4679 
4680 	/* Reopen all of the attributes with dirty pages. */
4681 	oe = NULL;
4682 next_open_attribute:
4683 
4684 	oe = enum_rstbl(oatbl, oe);
4685 	if (!oe) {
4686 		err = 0;
4687 		dp = NULL;
4688 		goto next_dirty_page;
4689 	}
4690 
4691 	oa = kzalloc(sizeof(struct OpenAttr), GFP_NOFS);
4692 	if (!oa) {
4693 		err = -ENOMEM;
4694 		goto out;
4695 	}
4696 
4697 	inode = ntfs_iget5(sbi->sb, &oe->ref, NULL);
4698 	if (IS_ERR(inode))
4699 		goto fake_attr;
4700 
4701 	if (is_bad_inode(inode)) {
4702 		iput(inode);
4703 fake_attr:
4704 		if (oa->ni) {
4705 			iput(&oa->ni->vfs_inode);
4706 			oa->ni = NULL;
4707 		}
4708 
4709 		attr = attr_create_nonres_log(sbi, oe->type, 0, oe->ptr,
4710 					      oe->name_len, 0);
4711 		if (!attr) {
4712 			kfree(oa);
4713 			err = -ENOMEM;
4714 			goto out;
4715 		}
4716 		oa->attr = attr;
4717 		oa->run1 = &oa->run0;
4718 		goto final_oe;
4719 	}
4720 
4721 	ni_oe = ntfs_i(inode);
4722 	oa->ni = ni_oe;
4723 
4724 	attr = ni_find_attr(ni_oe, NULL, NULL, oe->type, oe->ptr, oe->name_len,
4725 			    NULL, NULL);
4726 
4727 	if (!attr)
4728 		goto fake_attr;
4729 
4730 	t32 = le32_to_cpu(attr->size);
4731 	oa->attr = kmemdup(attr, t32, GFP_NOFS);
4732 	if (!oa->attr)
4733 		goto fake_attr;
4734 
4735 	if (!S_ISDIR(inode->i_mode)) {
4736 		if (attr->type == ATTR_DATA && !attr->name_len) {
4737 			oa->run1 = &ni_oe->file.run;
4738 			goto final_oe;
4739 		}
4740 	} else {
4741 		if (attr->type == ATTR_ALLOC &&
4742 		    attr->name_len == ARRAY_SIZE(I30_NAME) &&
4743 		    !memcmp(attr_name(attr), I30_NAME, sizeof(I30_NAME))) {
4744 			oa->run1 = &ni_oe->dir.alloc_run;
4745 			goto final_oe;
4746 		}
4747 	}
4748 
4749 	if (attr->non_res) {
4750 		u16 roff = le16_to_cpu(attr->nres.run_off);
4751 		CLST svcn = le64_to_cpu(attr->nres.svcn);
4752 
4753 		if (roff > t32) {
4754 			kfree(oa->attr);
4755 			oa->attr = NULL;
4756 			goto fake_attr;
4757 		}
4758 
4759 		err = run_unpack(&oa->run0, sbi, inode->i_ino, svcn,
4760 				 le64_to_cpu(attr->nres.evcn), svcn,
4761 				 Add2Ptr(attr, roff), t32 - roff);
4762 		if (err < 0) {
4763 			kfree(oa->attr);
4764 			oa->attr = NULL;
4765 			goto fake_attr;
4766 		}
4767 		err = 0;
4768 	}
4769 	oa->run1 = &oa->run0;
4770 	attr = oa->attr;
4771 
4772 final_oe:
4773 	if (oe->is_attr_name == 1)
4774 		kfree(oe->ptr);
4775 	oe->is_attr_name = 0;
4776 	oe->ptr = oa;
4777 	oe->name_len = attr->name_len;
4778 
4779 	goto next_open_attribute;
4780 
4781 	/*
4782 	 * Now loop through the dirty page table to extract all of the Vcn/Lcn.
4783 	 * Mapping that we have, and insert it into the appropriate run.
4784 	 */
4785 next_dirty_page:
4786 	dp = enum_rstbl(dptbl, dp);
4787 	if (!dp)
4788 		goto do_redo_1;
4789 
4790 	oe = Add2Ptr(oatbl, le32_to_cpu(dp->target_attr));
4791 
4792 	if (oe->next != RESTART_ENTRY_ALLOCATED_LE)
4793 		goto next_dirty_page;
4794 
4795 	oa = oe->ptr;
4796 	if (!oa)
4797 		goto next_dirty_page;
4798 
4799 	i = -1;
4800 next_dirty_page_vcn:
4801 	i += 1;
4802 	if (i >= le32_to_cpu(dp->lcns_follow))
4803 		goto next_dirty_page;
4804 
4805 	vcn = le64_to_cpu(dp->vcn) + i;
4806 	size = (vcn + 1) << sbi->cluster_bits;
4807 
4808 	if (!dp->page_lcns[i])
4809 		goto next_dirty_page_vcn;
4810 
4811 	rno = ino_get(&oe->ref);
4812 	if (rno <= MFT_REC_MIRR &&
4813 	    size < (MFT_REC_VOL + 1) * sbi->record_size &&
4814 	    oe->type == ATTR_DATA) {
4815 		goto next_dirty_page_vcn;
4816 	}
4817 
4818 	lcn = le64_to_cpu(dp->page_lcns[i]);
4819 
4820 	if ((!run_lookup_entry(oa->run1, vcn, &lcn0, &len0, NULL) ||
4821 	     lcn0 != lcn) &&
4822 	    !run_add_entry(oa->run1, vcn, lcn, 1, false)) {
4823 		err = -ENOMEM;
4824 		goto out;
4825 	}
4826 	attr = oa->attr;
4827 	if (size > le64_to_cpu(attr->nres.alloc_size)) {
4828 		attr->nres.valid_size = attr->nres.data_size =
4829 			attr->nres.alloc_size = cpu_to_le64(size);
4830 	}
4831 	goto next_dirty_page_vcn;
4832 
4833 do_redo_1:
4834 	/*
4835 	 * Perform the Redo Pass, to restore all of the dirty pages to the same
4836 	 * contents that they had immediately before the crash. If the dirty
4837 	 * page table is empty, then we can skip the entire Redo Pass.
4838 	 */
4839 	if (!dptbl || !dptbl->total)
4840 		goto do_undo_action;
4841 
4842 	rec_lsn = rlsn;
4843 
4844 	/*
4845 	 * Read the record at the Redo lsn, before falling
4846 	 * into common code to handle each record.
4847 	 */
4848 	err = read_log_rec_lcb(log, rlsn, lcb_ctx_next, &lcb);
4849 	if (err)
4850 		goto out;
4851 
4852 	/*
4853 	 * Now loop to read all of our log records forwards, until
4854 	 * we hit the end of the file, cleaning up at the end.
4855 	 */
4856 do_action_next:
4857 	frh = lcb->lrh;
4858 
4859 	if (LfsClientRecord != frh->record_type)
4860 		goto read_next_log_do_action;
4861 
4862 	transact_id = le32_to_cpu(frh->transact_id);
4863 	rec_len = le32_to_cpu(frh->client_data_len);
4864 	lrh = lcb->log_rec;
4865 
4866 	if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
4867 		err = -EINVAL;
4868 		goto out;
4869 	}
4870 
4871 	/* Ignore log records that do not update pages. */
4872 	if (lrh->lcns_follow)
4873 		goto find_dirty_page;
4874 
4875 	goto read_next_log_do_action;
4876 
4877 find_dirty_page:
4878 	t16 = le16_to_cpu(lrh->target_attr);
4879 	t64 = le64_to_cpu(lrh->target_vcn);
4880 	dp = find_dp(dptbl, t16, t64);
4881 
4882 	if (!dp)
4883 		goto read_next_log_do_action;
4884 
4885 	if (rec_lsn < le64_to_cpu(dp->oldest_lsn))
4886 		goto read_next_log_do_action;
4887 
4888 	t16 = le16_to_cpu(lrh->target_attr);
4889 	if (t16 >= bytes_per_rt(oatbl)) {
4890 		err = -EINVAL;
4891 		goto out;
4892 	}
4893 
4894 	oe = Add2Ptr(oatbl, t16);
4895 
4896 	if (oe->next != RESTART_ENTRY_ALLOCATED_LE) {
4897 		err = -EINVAL;
4898 		goto out;
4899 	}
4900 
4901 	oa = oe->ptr;
4902 
4903 	if (!oa) {
4904 		err = -EINVAL;
4905 		goto out;
4906 	}
4907 	attr = oa->attr;
4908 
4909 	vcn = le64_to_cpu(lrh->target_vcn);
4910 
4911 	if (!run_lookup_entry(oa->run1, vcn, &lcn, NULL, NULL) ||
4912 	    lcn == SPARSE_LCN) {
4913 		goto read_next_log_do_action;
4914 	}
4915 
4916 	/* Point to the Redo data and get its length. */
4917 	data = Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4918 	dlen = le16_to_cpu(lrh->redo_len);
4919 
4920 	/* Shorten length by any Lcns which were deleted. */
4921 	saved_len = dlen;
4922 
4923 	for (i = le16_to_cpu(lrh->lcns_follow); i; i--) {
4924 		size_t j;
4925 		u32 alen, voff;
4926 
4927 		voff = le16_to_cpu(lrh->record_off) +
4928 		       le16_to_cpu(lrh->attr_off);
4929 		voff += le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
4930 
4931 		/* If the Vcn question is allocated, we can just get out. */
4932 		j = le64_to_cpu(lrh->target_vcn) - le64_to_cpu(dp->vcn);
4933 		if (dp->page_lcns[j + i - 1])
4934 			break;
4935 
4936 		if (!saved_len)
4937 			saved_len = 1;
4938 
4939 		/*
4940 		 * Calculate the allocated space left relative to the
4941 		 * log record Vcn, after removing this unallocated Vcn.
4942 		 */
4943 		alen = (i - 1) << sbi->cluster_bits;
4944 
4945 		/*
4946 		 * If the update described this log record goes beyond
4947 		 * the allocated space, then we will have to reduce the length.
4948 		 */
4949 		if (voff >= alen)
4950 			dlen = 0;
4951 		else if (voff + dlen > alen)
4952 			dlen = alen - voff;
4953 	}
4954 
4955 	/*
4956 	 * If the resulting dlen from above is now zero,
4957 	 * we can skip this log record.
4958 	 */
4959 	if (!dlen && saved_len)
4960 		goto read_next_log_do_action;
4961 
4962 	t16 = le16_to_cpu(lrh->redo_op);
4963 	if (can_skip_action(t16))
4964 		goto read_next_log_do_action;
4965 
4966 	/* Apply the Redo operation a common routine. */
4967 	err = do_action(log, oe, lrh, t16, data, dlen, rec_len, &rec_lsn);
4968 	if (err)
4969 		goto out;
4970 
4971 	/* Keep reading and looping back until end of file. */
4972 read_next_log_do_action:
4973 	err = read_next_log_rec(log, lcb, &rec_lsn);
4974 	if (!err && rec_lsn)
4975 		goto do_action_next;
4976 
4977 	lcb_put(lcb);
4978 	lcb = NULL;
4979 
4980 do_undo_action:
4981 	/* Scan Transaction Table. */
4982 	tr = NULL;
4983 transaction_table_next:
4984 	tr = enum_rstbl(trtbl, tr);
4985 	if (!tr)
4986 		goto undo_action_done;
4987 
4988 	if (TransactionActive != tr->transact_state || !tr->undo_next_lsn) {
4989 		free_rsttbl_idx(trtbl, PtrOffset(trtbl, tr));
4990 		goto transaction_table_next;
4991 	}
4992 
4993 	log->transaction_id = PtrOffset(trtbl, tr);
4994 	undo_next_lsn = le64_to_cpu(tr->undo_next_lsn);
4995 
4996 	/*
4997 	 * We only have to do anything if the transaction has
4998 	 * something its undo_next_lsn field.
4999 	 */
5000 	if (!undo_next_lsn)
5001 		goto commit_undo;
5002 
5003 	/* Read the first record to be undone by this transaction. */
5004 	err = read_log_rec_lcb(log, undo_next_lsn, lcb_ctx_undo_next, &lcb);
5005 	if (err)
5006 		goto out;
5007 
5008 	/*
5009 	 * Now loop to read all of our log records forwards,
5010 	 * until we hit the end of the file, cleaning up at the end.
5011 	 */
5012 undo_action_next:
5013 
5014 	lrh = lcb->log_rec;
5015 	frh = lcb->lrh;
5016 	transact_id = le32_to_cpu(frh->transact_id);
5017 	rec_len = le32_to_cpu(frh->client_data_len);
5018 
5019 	if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
5020 		err = -EINVAL;
5021 		goto out;
5022 	}
5023 
5024 	if (lrh->undo_op == cpu_to_le16(Noop))
5025 		goto read_next_log_undo_action;
5026 
5027 	oe = Add2Ptr(oatbl, le16_to_cpu(lrh->target_attr));
5028 	oa = oe->ptr;
5029 
5030 	t16 = le16_to_cpu(lrh->lcns_follow);
5031 	if (!t16)
5032 		goto add_allocated_vcns;
5033 
5034 	is_mapped = run_lookup_entry(oa->run1, le64_to_cpu(lrh->target_vcn),
5035 				     &lcn, &clen, NULL);
5036 
5037 	/*
5038 	 * If the mapping isn't already the table or the  mapping
5039 	 * corresponds to a hole the mapping, we need to make sure
5040 	 * there is no partial page already memory.
5041 	 */
5042 	if (is_mapped && lcn != SPARSE_LCN && clen >= t16)
5043 		goto add_allocated_vcns;
5044 
5045 	vcn = le64_to_cpu(lrh->target_vcn);
5046 	vcn &= ~(u64)(log->clst_per_page - 1);
5047 
5048 add_allocated_vcns:
5049 	for (i = 0, vcn = le64_to_cpu(lrh->target_vcn),
5050 	    size = (vcn + 1) << sbi->cluster_bits;
5051 	     i < t16; i++, vcn += 1, size += sbi->cluster_size) {
5052 		attr = oa->attr;
5053 		if (!attr->non_res) {
5054 			if (size > le32_to_cpu(attr->res.data_size))
5055 				attr->res.data_size = cpu_to_le32(size);
5056 		} else {
5057 			if (size > le64_to_cpu(attr->nres.data_size))
5058 				attr->nres.valid_size = attr->nres.data_size =
5059 					attr->nres.alloc_size =
5060 						cpu_to_le64(size);
5061 		}
5062 	}
5063 
5064 	t16 = le16_to_cpu(lrh->undo_op);
5065 	if (can_skip_action(t16))
5066 		goto read_next_log_undo_action;
5067 
5068 	/* Point to the Redo data and get its length. */
5069 	data = Add2Ptr(lrh, le16_to_cpu(lrh->undo_off));
5070 	dlen = le16_to_cpu(lrh->undo_len);
5071 
5072 	/* It is time to apply the undo action. */
5073 	err = do_action(log, oe, lrh, t16, data, dlen, rec_len, NULL);
5074 
5075 read_next_log_undo_action:
5076 	/*
5077 	 * Keep reading and looping back until we have read the
5078 	 * last record for this transaction.
5079 	 */
5080 	err = read_next_log_rec(log, lcb, &rec_lsn);
5081 	if (err)
5082 		goto out;
5083 
5084 	if (rec_lsn)
5085 		goto undo_action_next;
5086 
5087 	lcb_put(lcb);
5088 	lcb = NULL;
5089 
5090 commit_undo:
5091 	free_rsttbl_idx(trtbl, log->transaction_id);
5092 
5093 	log->transaction_id = 0;
5094 
5095 	goto transaction_table_next;
5096 
5097 undo_action_done:
5098 
5099 	ntfs_update_mftmirr(sbi, 0);
5100 
5101 	sbi->flags &= ~NTFS_FLAGS_NEED_REPLAY;
5102 
5103 end_reply:
5104 
5105 	err = 0;
5106 	if (is_ro)
5107 		goto out;
5108 
5109 	rh = kzalloc(log->page_size, GFP_NOFS);
5110 	if (!rh) {
5111 		err = -ENOMEM;
5112 		goto out;
5113 	}
5114 
5115 	rh->rhdr.sign = NTFS_RSTR_SIGNATURE;
5116 	rh->rhdr.fix_off = cpu_to_le16(offsetof(struct RESTART_HDR, fixups));
5117 	t16 = (log->page_size >> SECTOR_SHIFT) + 1;
5118 	rh->rhdr.fix_num = cpu_to_le16(t16);
5119 	rh->sys_page_size = cpu_to_le32(log->page_size);
5120 	rh->page_size = cpu_to_le32(log->page_size);
5121 
5122 	t16 = ALIGN(offsetof(struct RESTART_HDR, fixups) + sizeof(short) * t16,
5123 		    8);
5124 	rh->ra_off = cpu_to_le16(t16);
5125 	rh->minor_ver = cpu_to_le16(1); // 0x1A:
5126 	rh->major_ver = cpu_to_le16(1); // 0x1C:
5127 
5128 	ra2 = Add2Ptr(rh, t16);
5129 	memcpy(ra2, ra, sizeof(struct RESTART_AREA));
5130 
5131 	ra2->client_idx[0] = 0;
5132 	ra2->client_idx[1] = LFS_NO_CLIENT_LE;
5133 	ra2->flags = cpu_to_le16(2);
5134 
5135 	le32_add_cpu(&ra2->open_log_count, 1);
5136 
5137 	ntfs_fix_pre_write(&rh->rhdr, log->page_size);
5138 
5139 	err = ntfs_sb_write_run(sbi, &ni->file.run, 0, rh, log->page_size, 0);
5140 	if (!err)
5141 		err = ntfs_sb_write_run(sbi, &log->ni->file.run, log->page_size,
5142 					rh, log->page_size, 0);
5143 
5144 	kfree(rh);
5145 	if (err)
5146 		goto out;
5147 
5148 out:
5149 	kfree(rst);
5150 	if (lcb)
5151 		lcb_put(lcb);
5152 
5153 	/*
5154 	 * Scan the Open Attribute Table to close all of
5155 	 * the open attributes.
5156 	 */
5157 	oe = NULL;
5158 	while ((oe = enum_rstbl(oatbl, oe))) {
5159 		rno = ino_get(&oe->ref);
5160 
5161 		if (oe->is_attr_name == 1) {
5162 			kfree(oe->ptr);
5163 			oe->ptr = NULL;
5164 			continue;
5165 		}
5166 
5167 		if (oe->is_attr_name)
5168 			continue;
5169 
5170 		oa = oe->ptr;
5171 		if (!oa)
5172 			continue;
5173 
5174 		run_close(&oa->run0);
5175 		kfree(oa->attr);
5176 		if (oa->ni)
5177 			iput(&oa->ni->vfs_inode);
5178 		kfree(oa);
5179 	}
5180 
5181 	kfree(trtbl);
5182 	kfree(oatbl);
5183 	kfree(dptbl);
5184 	kfree(attr_names);
5185 	kfree(rst_info.r_page);
5186 
5187 	kfree(ra);
5188 	kfree(log->one_page_buf);
5189 
5190 	if (err)
5191 		sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
5192 
5193 	if (err == -EROFS)
5194 		err = 0;
5195 	else if (log->set_dirty)
5196 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
5197 
5198 	kfree(log);
5199 
5200 	return err;
5201 }
5202