1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * 4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. 5 * 6 */ 7 8 #include <linux/blkdev.h> 9 #include <linux/fs.h> 10 #include <linux/random.h> 11 #include <linux/slab.h> 12 13 #include "debug.h" 14 #include "ntfs.h" 15 #include "ntfs_fs.h" 16 17 /* 18 * LOG FILE structs 19 */ 20 21 // clang-format off 22 23 #define MaxLogFileSize 0x100000000ull 24 #define DefaultLogPageSize 4096 25 #define MinLogRecordPages 0x30 26 27 struct RESTART_HDR { 28 struct NTFS_RECORD_HEADER rhdr; // 'RSTR' 29 __le32 sys_page_size; // 0x10: Page size of the system which initialized the log. 30 __le32 page_size; // 0x14: Log page size used for this log file. 31 __le16 ra_off; // 0x18: 32 __le16 minor_ver; // 0x1A: 33 __le16 major_ver; // 0x1C: 34 __le16 fixups[]; 35 }; 36 37 #define LFS_NO_CLIENT 0xffff 38 #define LFS_NO_CLIENT_LE cpu_to_le16(0xffff) 39 40 struct CLIENT_REC { 41 __le64 oldest_lsn; 42 __le64 restart_lsn; // 0x08: 43 __le16 prev_client; // 0x10: 44 __le16 next_client; // 0x12: 45 __le16 seq_num; // 0x14: 46 u8 align[6]; // 0x16: 47 __le32 name_bytes; // 0x1C: In bytes. 48 __le16 name[32]; // 0x20: Name of client. 49 }; 50 51 static_assert(sizeof(struct CLIENT_REC) == 0x60); 52 53 /* Two copies of these will exist at the beginning of the log file */ 54 struct RESTART_AREA { 55 __le64 current_lsn; // 0x00: Current logical end of log file. 56 __le16 log_clients; // 0x08: Maximum number of clients. 57 __le16 client_idx[2]; // 0x0A: Free/use index into the client record arrays. 58 __le16 flags; // 0x0E: See RESTART_SINGLE_PAGE_IO. 59 __le32 seq_num_bits; // 0x10: The number of bits in sequence number. 60 __le16 ra_len; // 0x14: 61 __le16 client_off; // 0x16: 62 __le64 l_size; // 0x18: Usable log file size. 63 __le32 last_lsn_data_len; // 0x20: 64 __le16 rec_hdr_len; // 0x24: Log page data offset. 65 __le16 data_off; // 0x26: Log page data length. 66 __le32 open_log_count; // 0x28: 67 __le32 align[5]; // 0x2C: 68 struct CLIENT_REC clients[]; // 0x40: 69 }; 70 71 struct LOG_REC_HDR { 72 __le16 redo_op; // 0x00: NTFS_LOG_OPERATION 73 __le16 undo_op; // 0x02: NTFS_LOG_OPERATION 74 __le16 redo_off; // 0x04: Offset to Redo record. 75 __le16 redo_len; // 0x06: Redo length. 76 __le16 undo_off; // 0x08: Offset to Undo record. 77 __le16 undo_len; // 0x0A: Undo length. 78 __le16 target_attr; // 0x0C: 79 __le16 lcns_follow; // 0x0E: 80 __le16 record_off; // 0x10: 81 __le16 attr_off; // 0x12: 82 __le16 cluster_off; // 0x14: 83 __le16 reserved; // 0x16: 84 __le64 target_vcn; // 0x18: 85 __le64 page_lcns[]; // 0x20: 86 }; 87 88 static_assert(sizeof(struct LOG_REC_HDR) == 0x20); 89 90 #define RESTART_ENTRY_ALLOCATED 0xFFFFFFFF 91 #define RESTART_ENTRY_ALLOCATED_LE cpu_to_le32(0xFFFFFFFF) 92 93 struct RESTART_TABLE { 94 __le16 size; // 0x00: In bytes 95 __le16 used; // 0x02: Entries 96 __le16 total; // 0x04: Entries 97 __le16 res[3]; // 0x06: 98 __le32 free_goal; // 0x0C: 99 __le32 first_free; // 0x10: 100 __le32 last_free; // 0x14: 101 102 }; 103 104 static_assert(sizeof(struct RESTART_TABLE) == 0x18); 105 106 struct ATTR_NAME_ENTRY { 107 __le16 off; // Offset in the Open attribute Table. 108 __le16 name_bytes; 109 __le16 name[]; 110 }; 111 112 struct OPEN_ATTR_ENRTY { 113 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 114 __le32 bytes_per_index; // 0x04: 115 enum ATTR_TYPE type; // 0x08: 116 u8 is_dirty_pages; // 0x0C: 117 u8 is_attr_name; // 0x0B: Faked field to manage 'ptr' 118 u8 name_len; // 0x0C: Faked field to manage 'ptr' 119 u8 res; 120 struct MFT_REF ref; // 0x10: File Reference of file containing attribute 121 __le64 open_record_lsn; // 0x18: 122 void *ptr; // 0x20: 123 }; 124 125 /* 32 bit version of 'struct OPEN_ATTR_ENRTY' */ 126 struct OPEN_ATTR_ENRTY_32 { 127 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 128 __le32 ptr; // 0x04: 129 struct MFT_REF ref; // 0x08: 130 __le64 open_record_lsn; // 0x10: 131 u8 is_dirty_pages; // 0x18: 132 u8 is_attr_name; // 0x19: 133 u8 res1[2]; 134 enum ATTR_TYPE type; // 0x1C: 135 u8 name_len; // 0x20: In wchar 136 u8 res2[3]; 137 __le32 AttributeName; // 0x24: 138 __le32 bytes_per_index; // 0x28: 139 }; 140 141 #define SIZEOF_OPENATTRIBUTEENTRY0 0x2c 142 // static_assert( 0x2C == sizeof(struct OPEN_ATTR_ENRTY_32) ); 143 static_assert(sizeof(struct OPEN_ATTR_ENRTY) < SIZEOF_OPENATTRIBUTEENTRY0); 144 145 /* 146 * One entry exists in the Dirty Pages Table for each page which is dirty at 147 * the time the Restart Area is written. 148 */ 149 struct DIR_PAGE_ENTRY { 150 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 151 __le32 target_attr; // 0x04: Index into the Open attribute Table 152 __le32 transfer_len; // 0x08: 153 __le32 lcns_follow; // 0x0C: 154 __le64 vcn; // 0x10: Vcn of dirty page 155 __le64 oldest_lsn; // 0x18: 156 __le64 page_lcns[]; // 0x20: 157 }; 158 159 static_assert(sizeof(struct DIR_PAGE_ENTRY) == 0x20); 160 161 /* 32 bit version of 'struct DIR_PAGE_ENTRY' */ 162 struct DIR_PAGE_ENTRY_32 { 163 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 164 __le32 target_attr; // 0x04: Index into the Open attribute Table 165 __le32 transfer_len; // 0x08: 166 __le32 lcns_follow; // 0x0C: 167 __le32 reserved; // 0x10: 168 __le32 vcn_low; // 0x14: Vcn of dirty page 169 __le32 vcn_hi; // 0x18: Vcn of dirty page 170 __le32 oldest_lsn_low; // 0x1C: 171 __le32 oldest_lsn_hi; // 0x1C: 172 __le32 page_lcns_low; // 0x24: 173 __le32 page_lcns_hi; // 0x24: 174 }; 175 176 static_assert(offsetof(struct DIR_PAGE_ENTRY_32, vcn_low) == 0x14); 177 static_assert(sizeof(struct DIR_PAGE_ENTRY_32) == 0x2c); 178 179 enum transact_state { 180 TransactionUninitialized = 0, 181 TransactionActive, 182 TransactionPrepared, 183 TransactionCommitted 184 }; 185 186 struct TRANSACTION_ENTRY { 187 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 188 u8 transact_state; // 0x04: 189 u8 reserved[3]; // 0x05: 190 __le64 first_lsn; // 0x08: 191 __le64 prev_lsn; // 0x10: 192 __le64 undo_next_lsn; // 0x18: 193 __le32 undo_records; // 0x20: Number of undo log records pending abort 194 __le32 undo_len; // 0x24: Total undo size 195 }; 196 197 static_assert(sizeof(struct TRANSACTION_ENTRY) == 0x28); 198 199 struct NTFS_RESTART { 200 __le32 major_ver; // 0x00: 201 __le32 minor_ver; // 0x04: 202 __le64 check_point_start; // 0x08: 203 __le64 open_attr_table_lsn; // 0x10: 204 __le64 attr_names_lsn; // 0x18: 205 __le64 dirty_pages_table_lsn; // 0x20: 206 __le64 transact_table_lsn; // 0x28: 207 __le32 open_attr_len; // 0x30: In bytes 208 __le32 attr_names_len; // 0x34: In bytes 209 __le32 dirty_pages_len; // 0x38: In bytes 210 __le32 transact_table_len; // 0x3C: In bytes 211 }; 212 213 static_assert(sizeof(struct NTFS_RESTART) == 0x40); 214 215 struct NEW_ATTRIBUTE_SIZES { 216 __le64 alloc_size; 217 __le64 valid_size; 218 __le64 data_size; 219 __le64 total_size; 220 }; 221 222 struct BITMAP_RANGE { 223 __le32 bitmap_off; 224 __le32 bits; 225 }; 226 227 struct LCN_RANGE { 228 __le64 lcn; 229 __le64 len; 230 }; 231 232 /* The following type defines the different log record types. */ 233 #define LfsClientRecord cpu_to_le32(1) 234 #define LfsClientRestart cpu_to_le32(2) 235 236 /* This is used to uniquely identify a client for a particular log file. */ 237 struct CLIENT_ID { 238 __le16 seq_num; 239 __le16 client_idx; 240 }; 241 242 /* This is the header that begins every Log Record in the log file. */ 243 struct LFS_RECORD_HDR { 244 __le64 this_lsn; // 0x00: 245 __le64 client_prev_lsn; // 0x08: 246 __le64 client_undo_next_lsn; // 0x10: 247 __le32 client_data_len; // 0x18: 248 struct CLIENT_ID client; // 0x1C: Owner of this log record. 249 __le32 record_type; // 0x20: LfsClientRecord or LfsClientRestart. 250 __le32 transact_id; // 0x24: 251 __le16 flags; // 0x28: LOG_RECORD_MULTI_PAGE 252 u8 align[6]; // 0x2A: 253 }; 254 255 #define LOG_RECORD_MULTI_PAGE cpu_to_le16(1) 256 257 static_assert(sizeof(struct LFS_RECORD_HDR) == 0x30); 258 259 struct LFS_RECORD { 260 __le16 next_record_off; // 0x00: Offset of the free space in the page, 261 u8 align[6]; // 0x02: 262 __le64 last_end_lsn; // 0x08: lsn for the last log record which ends on the page, 263 }; 264 265 static_assert(sizeof(struct LFS_RECORD) == 0x10); 266 267 struct RECORD_PAGE_HDR { 268 struct NTFS_RECORD_HEADER rhdr; // 'RCRD' 269 __le32 rflags; // 0x10: See LOG_PAGE_LOG_RECORD_END 270 __le16 page_count; // 0x14: 271 __le16 page_pos; // 0x16: 272 struct LFS_RECORD record_hdr; // 0x18: 273 __le16 fixups[10]; // 0x28: 274 __le32 file_off; // 0x3c: Used when major version >= 2 275 }; 276 277 // clang-format on 278 279 // Page contains the end of a log record. 280 #define LOG_PAGE_LOG_RECORD_END cpu_to_le32(0x00000001) 281 282 static inline bool is_log_record_end(const struct RECORD_PAGE_HDR *hdr) 283 { 284 return hdr->rflags & LOG_PAGE_LOG_RECORD_END; 285 } 286 287 static_assert(offsetof(struct RECORD_PAGE_HDR, file_off) == 0x3c); 288 289 /* 290 * END of NTFS LOG structures 291 */ 292 293 /* Define some tuning parameters to keep the restart tables a reasonable size. */ 294 #define INITIAL_NUMBER_TRANSACTIONS 5 295 296 enum NTFS_LOG_OPERATION { 297 298 Noop = 0x00, 299 CompensationLogRecord = 0x01, 300 InitializeFileRecordSegment = 0x02, 301 DeallocateFileRecordSegment = 0x03, 302 WriteEndOfFileRecordSegment = 0x04, 303 CreateAttribute = 0x05, 304 DeleteAttribute = 0x06, 305 UpdateResidentValue = 0x07, 306 UpdateNonresidentValue = 0x08, 307 UpdateMappingPairs = 0x09, 308 DeleteDirtyClusters = 0x0A, 309 SetNewAttributeSizes = 0x0B, 310 AddIndexEntryRoot = 0x0C, 311 DeleteIndexEntryRoot = 0x0D, 312 AddIndexEntryAllocation = 0x0E, 313 DeleteIndexEntryAllocation = 0x0F, 314 WriteEndOfIndexBuffer = 0x10, 315 SetIndexEntryVcnRoot = 0x11, 316 SetIndexEntryVcnAllocation = 0x12, 317 UpdateFileNameRoot = 0x13, 318 UpdateFileNameAllocation = 0x14, 319 SetBitsInNonresidentBitMap = 0x15, 320 ClearBitsInNonresidentBitMap = 0x16, 321 HotFix = 0x17, 322 EndTopLevelAction = 0x18, 323 PrepareTransaction = 0x19, 324 CommitTransaction = 0x1A, 325 ForgetTransaction = 0x1B, 326 OpenNonresidentAttribute = 0x1C, 327 OpenAttributeTableDump = 0x1D, 328 AttributeNamesDump = 0x1E, 329 DirtyPageTableDump = 0x1F, 330 TransactionTableDump = 0x20, 331 UpdateRecordDataRoot = 0x21, 332 UpdateRecordDataAllocation = 0x22, 333 334 UpdateRelativeDataInIndex = 335 0x23, // NtOfsRestartUpdateRelativeDataInIndex 336 UpdateRelativeDataInIndex2 = 0x24, 337 ZeroEndOfFileRecord = 0x25, 338 }; 339 340 /* 341 * Array for log records which require a target attribute. 342 * A true indicates that the corresponding restart operation 343 * requires a target attribute. 344 */ 345 static const u8 AttributeRequired[] = { 346 0xFC, 0xFB, 0xFF, 0x10, 0x06, 347 }; 348 349 static inline bool is_target_required(u16 op) 350 { 351 bool ret = op <= UpdateRecordDataAllocation && 352 (AttributeRequired[op >> 3] >> (op & 7) & 1); 353 return ret; 354 } 355 356 static inline bool can_skip_action(enum NTFS_LOG_OPERATION op) 357 { 358 switch (op) { 359 case Noop: 360 case DeleteDirtyClusters: 361 case HotFix: 362 case EndTopLevelAction: 363 case PrepareTransaction: 364 case CommitTransaction: 365 case ForgetTransaction: 366 case CompensationLogRecord: 367 case OpenNonresidentAttribute: 368 case OpenAttributeTableDump: 369 case AttributeNamesDump: 370 case DirtyPageTableDump: 371 case TransactionTableDump: 372 return true; 373 default: 374 return false; 375 } 376 } 377 378 enum { lcb_ctx_undo_next, lcb_ctx_prev, lcb_ctx_next }; 379 380 /* Bytes per restart table. */ 381 static inline u32 bytes_per_rt(const struct RESTART_TABLE *rt) 382 { 383 return le16_to_cpu(rt->used) * le16_to_cpu(rt->size) + 384 sizeof(struct RESTART_TABLE); 385 } 386 387 /* Log record length. */ 388 static inline u32 lrh_length(const struct LOG_REC_HDR *lr) 389 { 390 u16 t16 = le16_to_cpu(lr->lcns_follow); 391 392 return struct_size(lr, page_lcns, max_t(u16, 1, t16)); 393 } 394 395 struct lcb { 396 struct LFS_RECORD_HDR *lrh; // Log record header of the current lsn. 397 struct LOG_REC_HDR *log_rec; 398 u32 ctx_mode; // lcb_ctx_undo_next/lcb_ctx_prev/lcb_ctx_next 399 struct CLIENT_ID client; 400 bool alloc; // If true the we should deallocate 'log_rec'. 401 }; 402 403 static void lcb_put(struct lcb *lcb) 404 { 405 if (lcb->alloc) 406 kfree(lcb->log_rec); 407 kfree(lcb->lrh); 408 kfree(lcb); 409 } 410 411 /* Find the oldest lsn from active clients. */ 412 static inline void oldest_client_lsn(const struct CLIENT_REC *ca, 413 __le16 next_client, u64 *oldest_lsn) 414 { 415 while (next_client != LFS_NO_CLIENT_LE) { 416 const struct CLIENT_REC *cr = ca + le16_to_cpu(next_client); 417 u64 lsn = le64_to_cpu(cr->oldest_lsn); 418 419 /* Ignore this block if it's oldest lsn is 0. */ 420 if (lsn && lsn < *oldest_lsn) 421 *oldest_lsn = lsn; 422 423 next_client = cr->next_client; 424 } 425 } 426 427 static inline bool is_rst_page_hdr_valid(u32 file_off, 428 const struct RESTART_HDR *rhdr) 429 { 430 u32 sys_page = le32_to_cpu(rhdr->sys_page_size); 431 u32 page_size = le32_to_cpu(rhdr->page_size); 432 u32 end_usa; 433 u16 ro; 434 435 if (sys_page < SECTOR_SIZE || page_size < SECTOR_SIZE || 436 sys_page & (sys_page - 1) || page_size & (page_size - 1)) { 437 return false; 438 } 439 440 /* Check that if the file offset isn't 0, it is the system page size. */ 441 if (file_off && file_off != sys_page) 442 return false; 443 444 /* Check support version 1.1+. */ 445 if (le16_to_cpu(rhdr->major_ver) <= 1 && !rhdr->minor_ver) 446 return false; 447 448 if (le16_to_cpu(rhdr->major_ver) > 2) 449 return false; 450 451 ro = le16_to_cpu(rhdr->ra_off); 452 if (!IS_ALIGNED(ro, 8) || ro > sys_page) 453 return false; 454 455 end_usa = ((sys_page >> SECTOR_SHIFT) + 1) * sizeof(short); 456 end_usa += le16_to_cpu(rhdr->rhdr.fix_off); 457 458 if (ro < end_usa) 459 return false; 460 461 return true; 462 } 463 464 static inline bool is_rst_area_valid(const struct RESTART_HDR *rhdr) 465 { 466 const struct RESTART_AREA *ra; 467 u16 cl, fl, ul; 468 u32 off, l_size, seq_bits; 469 u16 ro = le16_to_cpu(rhdr->ra_off); 470 u32 sys_page = le32_to_cpu(rhdr->sys_page_size); 471 472 if (ro + offsetof(struct RESTART_AREA, l_size) > 473 SECTOR_SIZE - sizeof(short)) 474 return false; 475 476 ra = Add2Ptr(rhdr, ro); 477 cl = le16_to_cpu(ra->log_clients); 478 479 if (cl > 1) 480 return false; 481 482 off = le16_to_cpu(ra->client_off); 483 484 if (!IS_ALIGNED(off, 8) || ro + off > SECTOR_SIZE - sizeof(short)) 485 return false; 486 487 off += cl * sizeof(struct CLIENT_REC); 488 489 if (off > sys_page) 490 return false; 491 492 /* 493 * Check the restart length field and whether the entire 494 * restart area is contained that length. 495 */ 496 if (le16_to_cpu(rhdr->ra_off) + le16_to_cpu(ra->ra_len) > sys_page || 497 off > le16_to_cpu(ra->ra_len)) { 498 return false; 499 } 500 501 /* 502 * As a final check make sure that the use list and the free list 503 * are either empty or point to a valid client. 504 */ 505 fl = le16_to_cpu(ra->client_idx[0]); 506 ul = le16_to_cpu(ra->client_idx[1]); 507 if ((fl != LFS_NO_CLIENT && fl >= cl) || 508 (ul != LFS_NO_CLIENT && ul >= cl)) 509 return false; 510 511 /* Make sure the sequence number bits match the log file size. */ 512 l_size = le64_to_cpu(ra->l_size); 513 514 seq_bits = sizeof(u64) * 8 + 3; 515 while (l_size) { 516 l_size >>= 1; 517 seq_bits -= 1; 518 } 519 520 if (seq_bits != ra->seq_num_bits) 521 return false; 522 523 /* The log page data offset and record header length must be quad-aligned. */ 524 if (!IS_ALIGNED(le16_to_cpu(ra->data_off), 8) || 525 !IS_ALIGNED(le16_to_cpu(ra->rec_hdr_len), 8)) 526 return false; 527 528 return true; 529 } 530 531 static inline bool is_client_area_valid(const struct RESTART_HDR *rhdr, 532 bool usa_error) 533 { 534 u16 ro = le16_to_cpu(rhdr->ra_off); 535 const struct RESTART_AREA *ra = Add2Ptr(rhdr, ro); 536 u16 ra_len = le16_to_cpu(ra->ra_len); 537 const struct CLIENT_REC *ca; 538 u32 i; 539 540 if (usa_error && ra_len + ro > SECTOR_SIZE - sizeof(short)) 541 return false; 542 543 /* Find the start of the client array. */ 544 ca = Add2Ptr(ra, le16_to_cpu(ra->client_off)); 545 546 /* 547 * Start with the free list. 548 * Check that all the clients are valid and that there isn't a cycle. 549 * Do the in-use list on the second pass. 550 */ 551 for (i = 0; i < 2; i++) { 552 u16 client_idx = le16_to_cpu(ra->client_idx[i]); 553 bool first_client = true; 554 u16 clients = le16_to_cpu(ra->log_clients); 555 556 while (client_idx != LFS_NO_CLIENT) { 557 const struct CLIENT_REC *cr; 558 559 if (!clients || 560 client_idx >= le16_to_cpu(ra->log_clients)) 561 return false; 562 563 clients -= 1; 564 cr = ca + client_idx; 565 566 client_idx = le16_to_cpu(cr->next_client); 567 568 if (first_client) { 569 first_client = false; 570 if (cr->prev_client != LFS_NO_CLIENT_LE) 571 return false; 572 } 573 } 574 } 575 576 return true; 577 } 578 579 /* 580 * remove_client 581 * 582 * Remove a client record from a client record list an restart area. 583 */ 584 static inline void remove_client(struct CLIENT_REC *ca, 585 const struct CLIENT_REC *cr, __le16 *head) 586 { 587 if (cr->prev_client == LFS_NO_CLIENT_LE) 588 *head = cr->next_client; 589 else 590 ca[le16_to_cpu(cr->prev_client)].next_client = cr->next_client; 591 592 if (cr->next_client != LFS_NO_CLIENT_LE) 593 ca[le16_to_cpu(cr->next_client)].prev_client = cr->prev_client; 594 } 595 596 /* 597 * add_client - Add a client record to the start of a list. 598 */ 599 static inline void add_client(struct CLIENT_REC *ca, u16 index, __le16 *head) 600 { 601 struct CLIENT_REC *cr = ca + index; 602 603 cr->prev_client = LFS_NO_CLIENT_LE; 604 cr->next_client = *head; 605 606 if (*head != LFS_NO_CLIENT_LE) 607 ca[le16_to_cpu(*head)].prev_client = cpu_to_le16(index); 608 609 *head = cpu_to_le16(index); 610 } 611 612 /* 613 * Enumerate restart table. 614 * 615 * @t - table to enumerate. 616 * @c - current enumerated element. 617 * 618 * enumeration starts with @c == NULL 619 * returns next element or NULL 620 */ 621 static inline void *enum_rstbl(struct RESTART_TABLE *t, void *c) 622 { 623 __le32 *e; 624 u32 bprt; 625 u16 rsize; 626 627 if (!t) 628 return NULL; 629 630 rsize = le16_to_cpu(t->size); 631 632 if (!c) { 633 /* start enumeration. */ 634 if (!t->total) 635 return NULL; 636 e = Add2Ptr(t, sizeof(struct RESTART_TABLE)); 637 } else { 638 e = Add2Ptr(c, rsize); 639 } 640 641 /* Loop until we hit the first one allocated, or the end of the list. */ 642 for (bprt = bytes_per_rt(t); PtrOffset(t, e) < bprt; 643 e = Add2Ptr(e, rsize)) { 644 if (*e == RESTART_ENTRY_ALLOCATED_LE) 645 return e; 646 } 647 return NULL; 648 } 649 650 /* 651 * find_dp - Search for a @vcn in Dirty Page Table. 652 */ 653 static inline struct DIR_PAGE_ENTRY *find_dp(struct RESTART_TABLE *dptbl, 654 u32 target_attr, u64 vcn) 655 { 656 __le32 ta = cpu_to_le32(target_attr); 657 struct DIR_PAGE_ENTRY *dp = NULL; 658 659 while ((dp = enum_rstbl(dptbl, dp))) { 660 u64 dp_vcn = le64_to_cpu(dp->vcn); 661 662 if (dp->target_attr == ta && vcn >= dp_vcn && 663 vcn < dp_vcn + le32_to_cpu(dp->lcns_follow)) { 664 return dp; 665 } 666 } 667 return NULL; 668 } 669 670 static inline u32 norm_file_page(u32 page_size, u32 *l_size, bool use_default) 671 { 672 if (use_default) 673 page_size = DefaultLogPageSize; 674 675 /* Round the file size down to a system page boundary. */ 676 *l_size &= ~(page_size - 1); 677 678 /* File should contain at least 2 restart pages and MinLogRecordPages pages. */ 679 if (*l_size < (MinLogRecordPages + 2) * page_size) 680 return 0; 681 682 return page_size; 683 } 684 685 static bool check_log_rec(const struct LOG_REC_HDR *lr, u32 bytes, u32 tr, 686 u32 bytes_per_attr_entry) 687 { 688 u16 t16; 689 690 if (bytes < sizeof(struct LOG_REC_HDR)) 691 return false; 692 if (!tr) 693 return false; 694 695 if ((tr - sizeof(struct RESTART_TABLE)) % 696 sizeof(struct TRANSACTION_ENTRY)) 697 return false; 698 699 if (le16_to_cpu(lr->redo_off) & 7) 700 return false; 701 702 if (le16_to_cpu(lr->undo_off) & 7) 703 return false; 704 705 if (lr->target_attr) 706 goto check_lcns; 707 708 if (is_target_required(le16_to_cpu(lr->redo_op))) 709 return false; 710 711 if (is_target_required(le16_to_cpu(lr->undo_op))) 712 return false; 713 714 check_lcns: 715 if (!lr->lcns_follow) 716 goto check_length; 717 718 t16 = le16_to_cpu(lr->target_attr); 719 if ((t16 - sizeof(struct RESTART_TABLE)) % bytes_per_attr_entry) 720 return false; 721 722 check_length: 723 if (bytes < lrh_length(lr)) 724 return false; 725 726 return true; 727 } 728 729 static bool check_rstbl(const struct RESTART_TABLE *rt, size_t bytes) 730 { 731 u32 ts; 732 u32 i, off; 733 u16 rsize = le16_to_cpu(rt->size); 734 u16 ne = le16_to_cpu(rt->used); 735 u32 ff = le32_to_cpu(rt->first_free); 736 u32 lf = le32_to_cpu(rt->last_free); 737 738 ts = rsize * ne + sizeof(struct RESTART_TABLE); 739 740 if (!rsize || rsize > bytes || 741 rsize + sizeof(struct RESTART_TABLE) > bytes || bytes < ts || 742 le16_to_cpu(rt->total) > ne || 743 ff > ts - sizeof(__le32) || lf > ts - sizeof(__le32) || 744 (ff && ff < sizeof(struct RESTART_TABLE)) || 745 (lf && lf < sizeof(struct RESTART_TABLE))) { 746 return false; 747 } 748 749 /* 750 * Verify each entry is either allocated or points 751 * to a valid offset the table. 752 */ 753 for (i = 0; i < ne; i++) { 754 off = le32_to_cpu(*(__le32 *)Add2Ptr( 755 rt, i * rsize + sizeof(struct RESTART_TABLE))); 756 757 if (off != RESTART_ENTRY_ALLOCATED && off && 758 (off < sizeof(struct RESTART_TABLE) || 759 ((off - sizeof(struct RESTART_TABLE)) % rsize))) { 760 return false; 761 } 762 } 763 764 /* 765 * Walk through the list headed by the first entry to make 766 * sure none of the entries are currently being used. 767 */ 768 for (off = ff; off;) { 769 if (off == RESTART_ENTRY_ALLOCATED) 770 return false; 771 772 off = le32_to_cpu(*(__le32 *)Add2Ptr(rt, off)); 773 774 if (off > ts - sizeof(__le32)) 775 return false; 776 } 777 778 return true; 779 } 780 781 /* 782 * free_rsttbl_idx - Free a previously allocated index a Restart Table. 783 */ 784 static inline void free_rsttbl_idx(struct RESTART_TABLE *rt, u32 off) 785 { 786 __le32 *e; 787 u32 lf = le32_to_cpu(rt->last_free); 788 __le32 off_le = cpu_to_le32(off); 789 790 e = Add2Ptr(rt, off); 791 792 if (off < le32_to_cpu(rt->free_goal)) { 793 *e = rt->first_free; 794 rt->first_free = off_le; 795 if (!lf) 796 rt->last_free = off_le; 797 } else { 798 if (lf) 799 *(__le32 *)Add2Ptr(rt, lf) = off_le; 800 else 801 rt->first_free = off_le; 802 803 rt->last_free = off_le; 804 *e = 0; 805 } 806 807 le16_sub_cpu(&rt->total, 1); 808 } 809 810 static inline struct RESTART_TABLE *init_rsttbl(u16 esize, u16 used) 811 { 812 __le32 *e, *last_free; 813 u32 off; 814 u32 bytes = esize * used + sizeof(struct RESTART_TABLE); 815 u32 lf = sizeof(struct RESTART_TABLE) + (used - 1) * esize; 816 struct RESTART_TABLE *t = kzalloc(bytes, GFP_NOFS); 817 818 if (!t) 819 return NULL; 820 821 t->size = cpu_to_le16(esize); 822 t->used = cpu_to_le16(used); 823 t->free_goal = cpu_to_le32(~0u); 824 t->first_free = cpu_to_le32(sizeof(struct RESTART_TABLE)); 825 t->last_free = cpu_to_le32(lf); 826 827 e = (__le32 *)(t + 1); 828 last_free = Add2Ptr(t, lf); 829 830 for (off = sizeof(struct RESTART_TABLE) + esize; e < last_free; 831 e = Add2Ptr(e, esize), off += esize) { 832 *e = cpu_to_le32(off); 833 } 834 return t; 835 } 836 837 static inline struct RESTART_TABLE *extend_rsttbl(struct RESTART_TABLE *tbl, 838 u32 add, u32 free_goal) 839 { 840 u16 esize = le16_to_cpu(tbl->size); 841 __le32 osize = cpu_to_le32(bytes_per_rt(tbl)); 842 u32 used = le16_to_cpu(tbl->used); 843 struct RESTART_TABLE *rt; 844 845 rt = init_rsttbl(esize, used + add); 846 if (!rt) 847 return NULL; 848 849 memcpy(rt + 1, tbl + 1, esize * used); 850 851 rt->free_goal = free_goal == ~0u ? 852 cpu_to_le32(~0u) : 853 cpu_to_le32(sizeof(struct RESTART_TABLE) + 854 free_goal * esize); 855 856 if (tbl->first_free) { 857 rt->first_free = tbl->first_free; 858 *(__le32 *)Add2Ptr(rt, le32_to_cpu(tbl->last_free)) = osize; 859 } else { 860 rt->first_free = osize; 861 } 862 863 rt->total = tbl->total; 864 865 kfree(tbl); 866 return rt; 867 } 868 869 /* 870 * alloc_rsttbl_idx 871 * 872 * Allocate an index from within a previously initialized Restart Table. 873 */ 874 static inline void *alloc_rsttbl_idx(struct RESTART_TABLE **tbl) 875 { 876 u32 off; 877 __le32 *e; 878 struct RESTART_TABLE *t = *tbl; 879 880 if (!t->first_free) { 881 *tbl = t = extend_rsttbl(t, 16, ~0u); 882 if (!t) 883 return NULL; 884 } 885 886 off = le32_to_cpu(t->first_free); 887 888 /* Dequeue this entry and zero it. */ 889 e = Add2Ptr(t, off); 890 891 t->first_free = *e; 892 893 memset(e, 0, le16_to_cpu(t->size)); 894 895 *e = RESTART_ENTRY_ALLOCATED_LE; 896 897 /* If list is going empty, then we fix the last_free as well. */ 898 if (!t->first_free) 899 t->last_free = 0; 900 901 le16_add_cpu(&t->total, 1); 902 903 return Add2Ptr(t, off); 904 } 905 906 /* 907 * alloc_rsttbl_from_idx 908 * 909 * Allocate a specific index from within a previously initialized Restart Table. 910 */ 911 static inline void *alloc_rsttbl_from_idx(struct RESTART_TABLE **tbl, u32 vbo) 912 { 913 u32 off; 914 __le32 *e; 915 struct RESTART_TABLE *rt = *tbl; 916 u32 bytes = bytes_per_rt(rt); 917 u16 esize = le16_to_cpu(rt->size); 918 919 /* If the entry is not the table, we will have to extend the table. */ 920 if (vbo >= bytes) { 921 /* 922 * Extend the size by computing the number of entries between 923 * the existing size and the desired index and adding 1 to that. 924 */ 925 u32 bytes2idx = vbo - bytes; 926 927 /* 928 * There should always be an integral number of entries 929 * being added. Now extend the table. 930 */ 931 *tbl = rt = extend_rsttbl(rt, bytes2idx / esize + 1, bytes); 932 if (!rt) 933 return NULL; 934 } 935 936 /* See if the entry is already allocated, and just return if it is. */ 937 e = Add2Ptr(rt, vbo); 938 939 if (*e == RESTART_ENTRY_ALLOCATED_LE) 940 return e; 941 942 /* 943 * Walk through the table, looking for the entry we're 944 * interested and the previous entry. 945 */ 946 off = le32_to_cpu(rt->first_free); 947 e = Add2Ptr(rt, off); 948 949 if (off == vbo) { 950 /* this is a match */ 951 rt->first_free = *e; 952 goto skip_looking; 953 } 954 955 /* 956 * Need to walk through the list looking for the predecessor 957 * of our entry. 958 */ 959 for (;;) { 960 /* Remember the entry just found */ 961 u32 last_off = off; 962 __le32 *last_e = e; 963 964 /* Should never run of entries. */ 965 966 /* Lookup up the next entry the list. */ 967 off = le32_to_cpu(*last_e); 968 e = Add2Ptr(rt, off); 969 970 /* If this is our match we are done. */ 971 if (off == vbo) { 972 *last_e = *e; 973 974 /* 975 * If this was the last entry, we update that 976 * table as well. 977 */ 978 if (le32_to_cpu(rt->last_free) == off) 979 rt->last_free = cpu_to_le32(last_off); 980 break; 981 } 982 } 983 984 skip_looking: 985 /* If the list is now empty, we fix the last_free as well. */ 986 if (!rt->first_free) 987 rt->last_free = 0; 988 989 /* Zero this entry. */ 990 memset(e, 0, esize); 991 *e = RESTART_ENTRY_ALLOCATED_LE; 992 993 le16_add_cpu(&rt->total, 1); 994 995 return e; 996 } 997 998 struct restart_info { 999 u64 last_lsn; 1000 struct RESTART_HDR *r_page; 1001 u32 vbo; 1002 bool chkdsk_was_run; 1003 bool valid_page; 1004 bool initialized; 1005 bool restart; 1006 }; 1007 1008 #define RESTART_SINGLE_PAGE_IO cpu_to_le16(0x0001) 1009 1010 #define NTFSLOG_WRAPPED 0x00000001 1011 #define NTFSLOG_MULTIPLE_PAGE_IO 0x00000002 1012 #define NTFSLOG_NO_LAST_LSN 0x00000004 1013 #define NTFSLOG_REUSE_TAIL 0x00000010 1014 #define NTFSLOG_NO_OLDEST_LSN 0x00000020 1015 1016 /* Helper struct to work with NTFS $LogFile. */ 1017 struct ntfs_log { 1018 struct ntfs_inode *ni; 1019 1020 u32 l_size; 1021 u32 orig_file_size; 1022 u32 sys_page_size; 1023 u32 sys_page_mask; 1024 u32 page_size; 1025 u32 page_mask; // page_size - 1 1026 u8 page_bits; 1027 struct RECORD_PAGE_HDR *one_page_buf; 1028 1029 struct RESTART_TABLE *open_attr_tbl; 1030 u32 transaction_id; 1031 u32 clst_per_page; 1032 1033 u32 first_page; 1034 u32 next_page; 1035 u32 ra_off; 1036 u32 data_off; 1037 u32 restart_size; 1038 u32 data_size; 1039 u16 record_header_len; 1040 u64 seq_num; 1041 u32 seq_num_bits; 1042 u32 file_data_bits; 1043 u32 seq_num_mask; /* (1 << file_data_bits) - 1 */ 1044 1045 struct RESTART_AREA *ra; /* In-memory image of the next restart area. */ 1046 u32 ra_size; /* The usable size of the restart area. */ 1047 1048 /* 1049 * If true, then the in-memory restart area is to be written 1050 * to the first position on the disk. 1051 */ 1052 bool init_ra; 1053 bool set_dirty; /* True if we need to set dirty flag. */ 1054 1055 u64 oldest_lsn; 1056 1057 u32 oldest_lsn_off; 1058 u64 last_lsn; 1059 1060 u32 total_avail; 1061 u32 total_avail_pages; 1062 u32 total_undo_commit; 1063 u32 max_current_avail; 1064 u32 current_avail; 1065 u32 reserved; 1066 1067 short major_ver; 1068 short minor_ver; 1069 1070 u32 l_flags; /* See NTFSLOG_XXX */ 1071 u32 current_openlog_count; /* On-disk value for open_log_count. */ 1072 1073 struct CLIENT_ID client_id; 1074 u32 client_undo_commit; 1075 1076 struct restart_info rst_info, rst_info2; 1077 }; 1078 1079 static inline u32 lsn_to_vbo(struct ntfs_log *log, const u64 lsn) 1080 { 1081 u32 vbo = (lsn << log->seq_num_bits) >> (log->seq_num_bits - 3); 1082 1083 return vbo; 1084 } 1085 1086 /* Compute the offset in the log file of the next log page. */ 1087 static inline u32 next_page_off(struct ntfs_log *log, u32 off) 1088 { 1089 off = (off & ~log->sys_page_mask) + log->page_size; 1090 return off >= log->l_size ? log->first_page : off; 1091 } 1092 1093 static inline u32 lsn_to_page_off(struct ntfs_log *log, u64 lsn) 1094 { 1095 return (((u32)lsn) << 3) & log->page_mask; 1096 } 1097 1098 static inline u64 vbo_to_lsn(struct ntfs_log *log, u32 off, u64 Seq) 1099 { 1100 return (off >> 3) + (Seq << log->file_data_bits); 1101 } 1102 1103 static inline bool is_lsn_in_file(struct ntfs_log *log, u64 lsn) 1104 { 1105 return lsn >= log->oldest_lsn && 1106 lsn <= le64_to_cpu(log->ra->current_lsn); 1107 } 1108 1109 static inline u32 hdr_file_off(struct ntfs_log *log, 1110 struct RECORD_PAGE_HDR *hdr) 1111 { 1112 if (log->major_ver < 2) 1113 return le64_to_cpu(hdr->rhdr.lsn); 1114 1115 return le32_to_cpu(hdr->file_off); 1116 } 1117 1118 static inline u64 base_lsn(struct ntfs_log *log, 1119 const struct RECORD_PAGE_HDR *hdr, u64 lsn) 1120 { 1121 u64 h_lsn = le64_to_cpu(hdr->rhdr.lsn); 1122 u64 ret = (((h_lsn >> log->file_data_bits) + 1123 (lsn < (lsn_to_vbo(log, h_lsn) & ~log->page_mask) ? 1 : 0)) 1124 << log->file_data_bits) + 1125 ((((is_log_record_end(hdr) && 1126 h_lsn <= le64_to_cpu(hdr->record_hdr.last_end_lsn)) ? 1127 le16_to_cpu(hdr->record_hdr.next_record_off) : 1128 log->page_size) + 1129 lsn) >> 1130 3); 1131 1132 return ret; 1133 } 1134 1135 static inline bool verify_client_lsn(struct ntfs_log *log, 1136 const struct CLIENT_REC *client, u64 lsn) 1137 { 1138 return lsn >= le64_to_cpu(client->oldest_lsn) && 1139 lsn <= le64_to_cpu(log->ra->current_lsn) && lsn; 1140 } 1141 1142 static int read_log_page(struct ntfs_log *log, u32 vbo, 1143 struct RECORD_PAGE_HDR **buffer, bool *usa_error) 1144 { 1145 int err = 0; 1146 u32 page_idx = vbo >> log->page_bits; 1147 u32 page_off = vbo & log->page_mask; 1148 u32 bytes = log->page_size - page_off; 1149 void *to_free = NULL; 1150 u32 page_vbo = page_idx << log->page_bits; 1151 struct RECORD_PAGE_HDR *page_buf; 1152 struct ntfs_inode *ni = log->ni; 1153 bool bBAAD; 1154 1155 if (vbo >= log->l_size) 1156 return -EINVAL; 1157 1158 if (!*buffer) { 1159 to_free = kmalloc(log->page_size, GFP_NOFS); 1160 if (!to_free) 1161 return -ENOMEM; 1162 *buffer = to_free; 1163 } 1164 1165 page_buf = page_off ? log->one_page_buf : *buffer; 1166 1167 err = ntfs_read_run_nb(ni->mi.sbi, &ni->file.run, page_vbo, page_buf, 1168 log->page_size, NULL); 1169 if (err) 1170 goto out; 1171 1172 if (page_buf->rhdr.sign != NTFS_FFFF_SIGNATURE) 1173 ntfs_fix_post_read(&page_buf->rhdr, PAGE_SIZE, false); 1174 1175 if (page_buf != *buffer) 1176 memcpy(*buffer, Add2Ptr(page_buf, page_off), bytes); 1177 1178 bBAAD = page_buf->rhdr.sign == NTFS_BAAD_SIGNATURE; 1179 1180 if (usa_error) 1181 *usa_error = bBAAD; 1182 /* Check that the update sequence array for this page is valid */ 1183 /* If we don't allow errors, raise an error status */ 1184 else if (bBAAD) 1185 err = -EINVAL; 1186 1187 out: 1188 if (err && to_free) { 1189 kfree(to_free); 1190 *buffer = NULL; 1191 } 1192 1193 return err; 1194 } 1195 1196 /* 1197 * log_read_rst 1198 * 1199 * It walks through 512 blocks of the file looking for a valid 1200 * restart page header. It will stop the first time we find a 1201 * valid page header. 1202 */ 1203 static int log_read_rst(struct ntfs_log *log, bool first, 1204 struct restart_info *info) 1205 { 1206 u32 skip; 1207 u64 vbo; 1208 struct RESTART_HDR *r_page = NULL; 1209 1210 /* Determine which restart area we are looking for. */ 1211 if (first) { 1212 vbo = 0; 1213 skip = 512; 1214 } else { 1215 vbo = 512; 1216 skip = 0; 1217 } 1218 1219 /* Loop continuously until we succeed. */ 1220 for (; vbo < log->l_size; vbo = 2 * vbo + skip, skip = 0) { 1221 bool usa_error; 1222 bool brst, bchk; 1223 struct RESTART_AREA *ra; 1224 1225 /* Read a page header at the current offset. */ 1226 if (read_log_page(log, vbo, (struct RECORD_PAGE_HDR **)&r_page, 1227 &usa_error)) { 1228 /* Ignore any errors. */ 1229 continue; 1230 } 1231 1232 /* Exit if the signature is a log record page. */ 1233 if (r_page->rhdr.sign == NTFS_RCRD_SIGNATURE) { 1234 info->initialized = true; 1235 break; 1236 } 1237 1238 brst = r_page->rhdr.sign == NTFS_RSTR_SIGNATURE; 1239 bchk = r_page->rhdr.sign == NTFS_CHKD_SIGNATURE; 1240 1241 if (!bchk && !brst) { 1242 if (r_page->rhdr.sign != NTFS_FFFF_SIGNATURE) { 1243 /* 1244 * Remember if the signature does not 1245 * indicate uninitialized file. 1246 */ 1247 info->initialized = true; 1248 } 1249 continue; 1250 } 1251 1252 ra = NULL; 1253 info->valid_page = false; 1254 info->initialized = true; 1255 info->vbo = vbo; 1256 1257 /* Let's check the restart area if this is a valid page. */ 1258 if (!is_rst_page_hdr_valid(vbo, r_page)) 1259 goto check_result; 1260 ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off)); 1261 1262 if (!is_rst_area_valid(r_page)) 1263 goto check_result; 1264 1265 /* 1266 * We have a valid restart page header and restart area. 1267 * If chkdsk was run or we have no clients then we have 1268 * no more checking to do. 1269 */ 1270 if (bchk || ra->client_idx[1] == LFS_NO_CLIENT_LE) { 1271 info->valid_page = true; 1272 goto check_result; 1273 } 1274 1275 if (is_client_area_valid(r_page, usa_error)) { 1276 info->valid_page = true; 1277 ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off)); 1278 } 1279 1280 check_result: 1281 /* 1282 * If chkdsk was run then update the caller's 1283 * values and return. 1284 */ 1285 if (r_page->rhdr.sign == NTFS_CHKD_SIGNATURE) { 1286 info->chkdsk_was_run = true; 1287 info->last_lsn = le64_to_cpu(r_page->rhdr.lsn); 1288 info->restart = true; 1289 info->r_page = r_page; 1290 return 0; 1291 } 1292 1293 /* 1294 * If we have a valid page then copy the values 1295 * we need from it. 1296 */ 1297 if (info->valid_page) { 1298 info->last_lsn = le64_to_cpu(ra->current_lsn); 1299 info->restart = true; 1300 info->r_page = r_page; 1301 return 0; 1302 } 1303 } 1304 1305 kfree(r_page); 1306 1307 return 0; 1308 } 1309 1310 /* 1311 * Ilog_init_pg_hdr - Init @log from restart page header. 1312 */ 1313 static void log_init_pg_hdr(struct ntfs_log *log, u16 major_ver, u16 minor_ver) 1314 { 1315 log->sys_page_size = log->page_size; 1316 log->sys_page_mask = log->page_mask; 1317 1318 log->clst_per_page = log->page_size >> log->ni->mi.sbi->cluster_bits; 1319 if (!log->clst_per_page) 1320 log->clst_per_page = 1; 1321 1322 log->first_page = major_ver >= 2 ? 0x22 * log->page_size : 1323 4 * log->page_size; 1324 log->major_ver = major_ver; 1325 log->minor_ver = minor_ver; 1326 } 1327 1328 /* 1329 * log_create - Init @log in cases when we don't have a restart area to use. 1330 */ 1331 static void log_create(struct ntfs_log *log, const u64 last_lsn, 1332 u32 open_log_count, bool wrapped, bool use_multi_page) 1333 { 1334 /* All file offsets must be quadword aligned. */ 1335 log->file_data_bits = blksize_bits(log->l_size) - 3; 1336 log->seq_num_mask = (8 << log->file_data_bits) - 1; 1337 log->seq_num_bits = sizeof(u64) * 8 - log->file_data_bits; 1338 log->seq_num = (last_lsn >> log->file_data_bits) + 2; 1339 log->next_page = log->first_page; 1340 log->oldest_lsn = log->seq_num << log->file_data_bits; 1341 log->oldest_lsn_off = 0; 1342 log->last_lsn = log->oldest_lsn; 1343 1344 log->l_flags |= NTFSLOG_NO_LAST_LSN | NTFSLOG_NO_OLDEST_LSN; 1345 1346 /* Set the correct flags for the I/O and indicate if we have wrapped. */ 1347 if (wrapped) 1348 log->l_flags |= NTFSLOG_WRAPPED; 1349 1350 if (use_multi_page) 1351 log->l_flags |= NTFSLOG_MULTIPLE_PAGE_IO; 1352 1353 /* Compute the log page values. */ 1354 log->data_off = ALIGN( 1355 offsetof(struct RECORD_PAGE_HDR, fixups) + 1356 sizeof(short) * ((log->page_size >> SECTOR_SHIFT) + 1), 1357 8); 1358 log->data_size = log->page_size - log->data_off; 1359 log->record_header_len = sizeof(struct LFS_RECORD_HDR); 1360 1361 /* Remember the different page sizes for reservation. */ 1362 log->reserved = log->data_size - log->record_header_len; 1363 1364 /* Compute the restart page values. */ 1365 log->ra_off = ALIGN( 1366 offsetof(struct RESTART_HDR, fixups) + 1367 sizeof(short) * 1368 ((log->sys_page_size >> SECTOR_SHIFT) + 1), 1369 8); 1370 log->restart_size = log->sys_page_size - log->ra_off; 1371 log->ra_size = struct_size(log->ra, clients, 1); 1372 log->current_openlog_count = open_log_count; 1373 1374 /* 1375 * The total available log file space is the number of 1376 * log file pages times the space available on each page. 1377 */ 1378 log->total_avail_pages = log->l_size - log->first_page; 1379 log->total_avail = log->total_avail_pages >> log->page_bits; 1380 1381 /* 1382 * We assume that we can't use the end of the page less than 1383 * the file record size. 1384 * Then we won't need to reserve more than the caller asks for. 1385 */ 1386 log->max_current_avail = log->total_avail * log->reserved; 1387 log->total_avail = log->total_avail * log->data_size; 1388 log->current_avail = log->max_current_avail; 1389 } 1390 1391 /* 1392 * log_create_ra - Fill a restart area from the values stored in @log. 1393 */ 1394 static struct RESTART_AREA *log_create_ra(struct ntfs_log *log) 1395 { 1396 struct CLIENT_REC *cr; 1397 struct RESTART_AREA *ra = kzalloc(log->restart_size, GFP_NOFS); 1398 1399 if (!ra) 1400 return NULL; 1401 1402 ra->current_lsn = cpu_to_le64(log->last_lsn); 1403 ra->log_clients = cpu_to_le16(1); 1404 ra->client_idx[1] = LFS_NO_CLIENT_LE; 1405 if (log->l_flags & NTFSLOG_MULTIPLE_PAGE_IO) 1406 ra->flags = RESTART_SINGLE_PAGE_IO; 1407 ra->seq_num_bits = cpu_to_le32(log->seq_num_bits); 1408 ra->ra_len = cpu_to_le16(log->ra_size); 1409 ra->client_off = cpu_to_le16(offsetof(struct RESTART_AREA, clients)); 1410 ra->l_size = cpu_to_le64(log->l_size); 1411 ra->rec_hdr_len = cpu_to_le16(log->record_header_len); 1412 ra->data_off = cpu_to_le16(log->data_off); 1413 ra->open_log_count = cpu_to_le32(log->current_openlog_count + 1); 1414 1415 cr = ra->clients; 1416 1417 cr->prev_client = LFS_NO_CLIENT_LE; 1418 cr->next_client = LFS_NO_CLIENT_LE; 1419 1420 return ra; 1421 } 1422 1423 static u32 final_log_off(struct ntfs_log *log, u64 lsn, u32 data_len) 1424 { 1425 u32 base_vbo = lsn << 3; 1426 u32 final_log_off = (base_vbo & log->seq_num_mask) & ~log->page_mask; 1427 u32 page_off = base_vbo & log->page_mask; 1428 u32 tail = log->page_size - page_off; 1429 1430 page_off -= 1; 1431 1432 /* Add the length of the header. */ 1433 data_len += log->record_header_len; 1434 1435 /* 1436 * If this lsn is contained this log page we are done. 1437 * Otherwise we need to walk through several log pages. 1438 */ 1439 if (data_len > tail) { 1440 data_len -= tail; 1441 tail = log->data_size; 1442 page_off = log->data_off - 1; 1443 1444 for (;;) { 1445 final_log_off = next_page_off(log, final_log_off); 1446 1447 /* 1448 * We are done if the remaining bytes 1449 * fit on this page. 1450 */ 1451 if (data_len <= tail) 1452 break; 1453 data_len -= tail; 1454 } 1455 } 1456 1457 /* 1458 * We add the remaining bytes to our starting position on this page 1459 * and then add that value to the file offset of this log page. 1460 */ 1461 return final_log_off + data_len + page_off; 1462 } 1463 1464 static int next_log_lsn(struct ntfs_log *log, const struct LFS_RECORD_HDR *rh, 1465 u64 *lsn) 1466 { 1467 int err; 1468 u64 this_lsn = le64_to_cpu(rh->this_lsn); 1469 u32 vbo = lsn_to_vbo(log, this_lsn); 1470 u32 end = 1471 final_log_off(log, this_lsn, le32_to_cpu(rh->client_data_len)); 1472 u32 hdr_off = end & ~log->sys_page_mask; 1473 u64 seq = this_lsn >> log->file_data_bits; 1474 struct RECORD_PAGE_HDR *page = NULL; 1475 1476 /* Remember if we wrapped. */ 1477 if (end <= vbo) 1478 seq += 1; 1479 1480 /* Log page header for this page. */ 1481 err = read_log_page(log, hdr_off, &page, NULL); 1482 if (err) 1483 return err; 1484 1485 /* 1486 * If the lsn we were given was not the last lsn on this page, 1487 * then the starting offset for the next lsn is on a quad word 1488 * boundary following the last file offset for the current lsn. 1489 * Otherwise the file offset is the start of the data on the next page. 1490 */ 1491 if (this_lsn == le64_to_cpu(page->rhdr.lsn)) { 1492 /* If we wrapped, we need to increment the sequence number. */ 1493 hdr_off = next_page_off(log, hdr_off); 1494 if (hdr_off == log->first_page) 1495 seq += 1; 1496 1497 vbo = hdr_off + log->data_off; 1498 } else { 1499 vbo = ALIGN(end, 8); 1500 } 1501 1502 /* Compute the lsn based on the file offset and the sequence count. */ 1503 *lsn = vbo_to_lsn(log, vbo, seq); 1504 1505 /* 1506 * If this lsn is within the legal range for the file, we return true. 1507 * Otherwise false indicates that there are no more lsn's. 1508 */ 1509 if (!is_lsn_in_file(log, *lsn)) 1510 *lsn = 0; 1511 1512 kfree(page); 1513 1514 return 0; 1515 } 1516 1517 /* 1518 * current_log_avail - Calculate the number of bytes available for log records. 1519 */ 1520 static u32 current_log_avail(struct ntfs_log *log) 1521 { 1522 u32 oldest_off, next_free_off, free_bytes; 1523 1524 if (log->l_flags & NTFSLOG_NO_LAST_LSN) { 1525 /* The entire file is available. */ 1526 return log->max_current_avail; 1527 } 1528 1529 /* 1530 * If there is a last lsn the restart area then we know that we will 1531 * have to compute the free range. 1532 * If there is no oldest lsn then start at the first page of the file. 1533 */ 1534 oldest_off = (log->l_flags & NTFSLOG_NO_OLDEST_LSN) ? 1535 log->first_page : 1536 (log->oldest_lsn_off & ~log->sys_page_mask); 1537 1538 /* 1539 * We will use the next log page offset to compute the next free page. 1540 * If we are going to reuse this page go to the next page. 1541 * If we are at the first page then use the end of the file. 1542 */ 1543 next_free_off = (log->l_flags & NTFSLOG_REUSE_TAIL) ? 1544 log->next_page + log->page_size : 1545 log->next_page == log->first_page ? log->l_size : 1546 log->next_page; 1547 1548 /* If the two offsets are the same then there is no available space. */ 1549 if (oldest_off == next_free_off) 1550 return 0; 1551 /* 1552 * If the free offset follows the oldest offset then subtract 1553 * this range from the total available pages. 1554 */ 1555 free_bytes = 1556 oldest_off < next_free_off ? 1557 log->total_avail_pages - (next_free_off - oldest_off) : 1558 oldest_off - next_free_off; 1559 1560 free_bytes >>= log->page_bits; 1561 return free_bytes * log->reserved; 1562 } 1563 1564 static bool check_subseq_log_page(struct ntfs_log *log, 1565 const struct RECORD_PAGE_HDR *rp, u32 vbo, 1566 u64 seq) 1567 { 1568 u64 lsn_seq; 1569 const struct NTFS_RECORD_HEADER *rhdr = &rp->rhdr; 1570 u64 lsn = le64_to_cpu(rhdr->lsn); 1571 1572 if (rhdr->sign == NTFS_FFFF_SIGNATURE || !rhdr->sign) 1573 return false; 1574 1575 /* 1576 * If the last lsn on the page occurs was written after the page 1577 * that caused the original error then we have a fatal error. 1578 */ 1579 lsn_seq = lsn >> log->file_data_bits; 1580 1581 /* 1582 * If the sequence number for the lsn the page is equal or greater 1583 * than lsn we expect, then this is a subsequent write. 1584 */ 1585 return lsn_seq >= seq || 1586 (lsn_seq == seq - 1 && log->first_page == vbo && 1587 vbo != (lsn_to_vbo(log, lsn) & ~log->page_mask)); 1588 } 1589 1590 /* 1591 * last_log_lsn 1592 * 1593 * Walks through the log pages for a file, searching for the 1594 * last log page written to the file. 1595 */ 1596 static int last_log_lsn(struct ntfs_log *log) 1597 { 1598 int err; 1599 bool usa_error = false; 1600 bool replace_page = false; 1601 bool reuse_page = log->l_flags & NTFSLOG_REUSE_TAIL; 1602 bool wrapped_file, wrapped; 1603 1604 u32 page_cnt = 1, page_pos = 1; 1605 u32 page_off = 0, page_off1 = 0, saved_off = 0; 1606 u32 final_off, second_off, final_off_prev = 0, second_off_prev = 0; 1607 u32 first_file_off = 0, second_file_off = 0; 1608 u32 part_io_count = 0; 1609 u32 tails = 0; 1610 u32 this_off, curpage_off, nextpage_off, remain_pages; 1611 1612 u64 expected_seq, seq_base = 0, lsn_base = 0; 1613 u64 best_lsn, best_lsn1, best_lsn2; 1614 u64 lsn_cur, lsn1, lsn2; 1615 u64 last_ok_lsn = reuse_page ? log->last_lsn : 0; 1616 1617 u16 cur_pos, best_page_pos; 1618 1619 struct RECORD_PAGE_HDR *page = NULL; 1620 struct RECORD_PAGE_HDR *tst_page = NULL; 1621 struct RECORD_PAGE_HDR *first_tail = NULL; 1622 struct RECORD_PAGE_HDR *second_tail = NULL; 1623 struct RECORD_PAGE_HDR *tail_page = NULL; 1624 struct RECORD_PAGE_HDR *second_tail_prev = NULL; 1625 struct RECORD_PAGE_HDR *first_tail_prev = NULL; 1626 struct RECORD_PAGE_HDR *page_bufs = NULL; 1627 struct RECORD_PAGE_HDR *best_page; 1628 1629 if (log->major_ver >= 2) { 1630 final_off = 0x02 * log->page_size; 1631 second_off = 0x12 * log->page_size; 1632 1633 // 0x10 == 0x12 - 0x2 1634 page_bufs = kmalloc(log->page_size * 0x10, GFP_NOFS); 1635 if (!page_bufs) 1636 return -ENOMEM; 1637 } else { 1638 second_off = log->first_page - log->page_size; 1639 final_off = second_off - log->page_size; 1640 } 1641 1642 next_tail: 1643 /* Read second tail page (at pos 3/0x12000). */ 1644 if (read_log_page(log, second_off, &second_tail, &usa_error) || 1645 usa_error || second_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) { 1646 kfree(second_tail); 1647 second_tail = NULL; 1648 second_file_off = 0; 1649 lsn2 = 0; 1650 } else { 1651 second_file_off = hdr_file_off(log, second_tail); 1652 lsn2 = le64_to_cpu(second_tail->record_hdr.last_end_lsn); 1653 } 1654 1655 /* Read first tail page (at pos 2/0x2000). */ 1656 if (read_log_page(log, final_off, &first_tail, &usa_error) || 1657 usa_error || first_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) { 1658 kfree(first_tail); 1659 first_tail = NULL; 1660 first_file_off = 0; 1661 lsn1 = 0; 1662 } else { 1663 first_file_off = hdr_file_off(log, first_tail); 1664 lsn1 = le64_to_cpu(first_tail->record_hdr.last_end_lsn); 1665 } 1666 1667 if (log->major_ver < 2) { 1668 int best_page; 1669 1670 first_tail_prev = first_tail; 1671 final_off_prev = first_file_off; 1672 second_tail_prev = second_tail; 1673 second_off_prev = second_file_off; 1674 tails = 1; 1675 1676 if (!first_tail && !second_tail) 1677 goto tail_read; 1678 1679 if (first_tail && second_tail) 1680 best_page = lsn1 < lsn2 ? 1 : 0; 1681 else if (first_tail) 1682 best_page = 0; 1683 else 1684 best_page = 1; 1685 1686 page_off = best_page ? second_file_off : first_file_off; 1687 seq_base = (best_page ? lsn2 : lsn1) >> log->file_data_bits; 1688 goto tail_read; 1689 } 1690 1691 best_lsn1 = first_tail ? base_lsn(log, first_tail, first_file_off) : 0; 1692 best_lsn2 = second_tail ? base_lsn(log, second_tail, second_file_off) : 1693 0; 1694 1695 if (first_tail && second_tail) { 1696 if (best_lsn1 > best_lsn2) { 1697 best_lsn = best_lsn1; 1698 best_page = first_tail; 1699 this_off = first_file_off; 1700 } else { 1701 best_lsn = best_lsn2; 1702 best_page = second_tail; 1703 this_off = second_file_off; 1704 } 1705 } else if (first_tail) { 1706 best_lsn = best_lsn1; 1707 best_page = first_tail; 1708 this_off = first_file_off; 1709 } else if (second_tail) { 1710 best_lsn = best_lsn2; 1711 best_page = second_tail; 1712 this_off = second_file_off; 1713 } else { 1714 goto tail_read; 1715 } 1716 1717 best_page_pos = le16_to_cpu(best_page->page_pos); 1718 1719 if (!tails) { 1720 if (best_page_pos == page_pos) { 1721 seq_base = best_lsn >> log->file_data_bits; 1722 saved_off = page_off = le32_to_cpu(best_page->file_off); 1723 lsn_base = best_lsn; 1724 1725 memmove(page_bufs, best_page, log->page_size); 1726 1727 page_cnt = le16_to_cpu(best_page->page_count); 1728 if (page_cnt > 1) 1729 page_pos += 1; 1730 1731 tails = 1; 1732 } 1733 } else if (seq_base == (best_lsn >> log->file_data_bits) && 1734 saved_off + log->page_size == this_off && 1735 lsn_base < best_lsn && 1736 (page_pos != page_cnt || best_page_pos == page_pos || 1737 best_page_pos == 1) && 1738 (page_pos >= page_cnt || best_page_pos == page_pos)) { 1739 u16 bppc = le16_to_cpu(best_page->page_count); 1740 1741 saved_off += log->page_size; 1742 lsn_base = best_lsn; 1743 1744 memmove(Add2Ptr(page_bufs, tails * log->page_size), best_page, 1745 log->page_size); 1746 1747 tails += 1; 1748 1749 if (best_page_pos != bppc) { 1750 page_cnt = bppc; 1751 page_pos = best_page_pos; 1752 1753 if (page_cnt > 1) 1754 page_pos += 1; 1755 } else { 1756 page_pos = page_cnt = 1; 1757 } 1758 } else { 1759 kfree(first_tail); 1760 kfree(second_tail); 1761 goto tail_read; 1762 } 1763 1764 kfree(first_tail_prev); 1765 first_tail_prev = first_tail; 1766 final_off_prev = first_file_off; 1767 first_tail = NULL; 1768 1769 kfree(second_tail_prev); 1770 second_tail_prev = second_tail; 1771 second_off_prev = second_file_off; 1772 second_tail = NULL; 1773 1774 final_off += log->page_size; 1775 second_off += log->page_size; 1776 1777 if (tails < 0x10) 1778 goto next_tail; 1779 tail_read: 1780 first_tail = first_tail_prev; 1781 final_off = final_off_prev; 1782 1783 second_tail = second_tail_prev; 1784 second_off = second_off_prev; 1785 1786 page_cnt = page_pos = 1; 1787 1788 curpage_off = seq_base == log->seq_num ? min(log->next_page, page_off) : 1789 log->next_page; 1790 1791 wrapped_file = 1792 curpage_off == log->first_page && 1793 !(log->l_flags & (NTFSLOG_NO_LAST_LSN | NTFSLOG_REUSE_TAIL)); 1794 1795 expected_seq = wrapped_file ? (log->seq_num + 1) : log->seq_num; 1796 1797 nextpage_off = curpage_off; 1798 1799 next_page: 1800 tail_page = NULL; 1801 /* Read the next log page. */ 1802 err = read_log_page(log, curpage_off, &page, &usa_error); 1803 1804 /* Compute the next log page offset the file. */ 1805 nextpage_off = next_page_off(log, curpage_off); 1806 wrapped = nextpage_off == log->first_page; 1807 1808 if (tails > 1) { 1809 struct RECORD_PAGE_HDR *cur_page = 1810 Add2Ptr(page_bufs, curpage_off - page_off); 1811 1812 if (curpage_off == saved_off) { 1813 tail_page = cur_page; 1814 goto use_tail_page; 1815 } 1816 1817 if (page_off > curpage_off || curpage_off >= saved_off) 1818 goto use_tail_page; 1819 1820 if (page_off1) 1821 goto use_cur_page; 1822 1823 if (!err && !usa_error && 1824 page->rhdr.sign == NTFS_RCRD_SIGNATURE && 1825 cur_page->rhdr.lsn == page->rhdr.lsn && 1826 cur_page->record_hdr.next_record_off == 1827 page->record_hdr.next_record_off && 1828 ((page_pos == page_cnt && 1829 le16_to_cpu(page->page_pos) == 1) || 1830 (page_pos != page_cnt && 1831 le16_to_cpu(page->page_pos) == page_pos + 1 && 1832 le16_to_cpu(page->page_count) == page_cnt))) { 1833 cur_page = NULL; 1834 goto use_tail_page; 1835 } 1836 1837 page_off1 = page_off; 1838 1839 use_cur_page: 1840 1841 lsn_cur = le64_to_cpu(cur_page->rhdr.lsn); 1842 1843 if (last_ok_lsn != 1844 le64_to_cpu(cur_page->record_hdr.last_end_lsn) && 1845 ((lsn_cur >> log->file_data_bits) + 1846 ((curpage_off < 1847 (lsn_to_vbo(log, lsn_cur) & ~log->page_mask)) ? 1848 1 : 1849 0)) != expected_seq) { 1850 goto check_tail; 1851 } 1852 1853 if (!is_log_record_end(cur_page)) { 1854 tail_page = NULL; 1855 last_ok_lsn = lsn_cur; 1856 goto next_page_1; 1857 } 1858 1859 log->seq_num = expected_seq; 1860 log->l_flags &= ~NTFSLOG_NO_LAST_LSN; 1861 log->last_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn); 1862 log->ra->current_lsn = cur_page->record_hdr.last_end_lsn; 1863 1864 if (log->record_header_len <= 1865 log->page_size - 1866 le16_to_cpu(cur_page->record_hdr.next_record_off)) { 1867 log->l_flags |= NTFSLOG_REUSE_TAIL; 1868 log->next_page = curpage_off; 1869 } else { 1870 log->l_flags &= ~NTFSLOG_REUSE_TAIL; 1871 log->next_page = nextpage_off; 1872 } 1873 1874 if (wrapped_file) 1875 log->l_flags |= NTFSLOG_WRAPPED; 1876 1877 last_ok_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn); 1878 goto next_page_1; 1879 } 1880 1881 /* 1882 * If we are at the expected first page of a transfer check to see 1883 * if either tail copy is at this offset. 1884 * If this page is the last page of a transfer, check if we wrote 1885 * a subsequent tail copy. 1886 */ 1887 if (page_cnt == page_pos || page_cnt == page_pos + 1) { 1888 /* 1889 * Check if the offset matches either the first or second 1890 * tail copy. It is possible it will match both. 1891 */ 1892 if (curpage_off == final_off) 1893 tail_page = first_tail; 1894 1895 /* 1896 * If we already matched on the first page then 1897 * check the ending lsn's. 1898 */ 1899 if (curpage_off == second_off) { 1900 if (!tail_page || 1901 (second_tail && 1902 le64_to_cpu(second_tail->record_hdr.last_end_lsn) > 1903 le64_to_cpu(first_tail->record_hdr 1904 .last_end_lsn))) { 1905 tail_page = second_tail; 1906 } 1907 } 1908 } 1909 1910 use_tail_page: 1911 if (tail_page) { 1912 /* We have a candidate for a tail copy. */ 1913 lsn_cur = le64_to_cpu(tail_page->record_hdr.last_end_lsn); 1914 1915 if (last_ok_lsn < lsn_cur) { 1916 /* 1917 * If the sequence number is not expected, 1918 * then don't use the tail copy. 1919 */ 1920 if (expected_seq != (lsn_cur >> log->file_data_bits)) 1921 tail_page = NULL; 1922 } else if (last_ok_lsn > lsn_cur) { 1923 /* 1924 * If the last lsn is greater than the one on 1925 * this page then forget this tail. 1926 */ 1927 tail_page = NULL; 1928 } 1929 } 1930 1931 /* 1932 *If we have an error on the current page, 1933 * we will break of this loop. 1934 */ 1935 if (err || usa_error) 1936 goto check_tail; 1937 1938 /* 1939 * Done if the last lsn on this page doesn't match the previous known 1940 * last lsn or the sequence number is not expected. 1941 */ 1942 lsn_cur = le64_to_cpu(page->rhdr.lsn); 1943 if (last_ok_lsn != lsn_cur && 1944 expected_seq != (lsn_cur >> log->file_data_bits)) { 1945 goto check_tail; 1946 } 1947 1948 /* 1949 * Check that the page position and page count values are correct. 1950 * If this is the first page of a transfer the position must be 1 1951 * and the count will be unknown. 1952 */ 1953 if (page_cnt == page_pos) { 1954 if (page->page_pos != cpu_to_le16(1) && 1955 (!reuse_page || page->page_pos != page->page_count)) { 1956 /* 1957 * If the current page is the first page we are 1958 * looking at and we are reusing this page then 1959 * it can be either the first or last page of a 1960 * transfer. Otherwise it can only be the first. 1961 */ 1962 goto check_tail; 1963 } 1964 } else if (le16_to_cpu(page->page_count) != page_cnt || 1965 le16_to_cpu(page->page_pos) != page_pos + 1) { 1966 /* 1967 * The page position better be 1 more than the last page 1968 * position and the page count better match. 1969 */ 1970 goto check_tail; 1971 } 1972 1973 /* 1974 * We have a valid page the file and may have a valid page 1975 * the tail copy area. 1976 * If the tail page was written after the page the file then 1977 * break of the loop. 1978 */ 1979 if (tail_page && 1980 le64_to_cpu(tail_page->record_hdr.last_end_lsn) > lsn_cur) { 1981 /* Remember if we will replace the page. */ 1982 replace_page = true; 1983 goto check_tail; 1984 } 1985 1986 tail_page = NULL; 1987 1988 if (is_log_record_end(page)) { 1989 /* 1990 * Since we have read this page we know the sequence number 1991 * is the same as our expected value. 1992 */ 1993 log->seq_num = expected_seq; 1994 log->last_lsn = le64_to_cpu(page->record_hdr.last_end_lsn); 1995 log->ra->current_lsn = page->record_hdr.last_end_lsn; 1996 log->l_flags &= ~NTFSLOG_NO_LAST_LSN; 1997 1998 /* 1999 * If there is room on this page for another header then 2000 * remember we want to reuse the page. 2001 */ 2002 if (log->record_header_len <= 2003 log->page_size - 2004 le16_to_cpu(page->record_hdr.next_record_off)) { 2005 log->l_flags |= NTFSLOG_REUSE_TAIL; 2006 log->next_page = curpage_off; 2007 } else { 2008 log->l_flags &= ~NTFSLOG_REUSE_TAIL; 2009 log->next_page = nextpage_off; 2010 } 2011 2012 /* Remember if we wrapped the log file. */ 2013 if (wrapped_file) 2014 log->l_flags |= NTFSLOG_WRAPPED; 2015 } 2016 2017 /* 2018 * Remember the last page count and position. 2019 * Also remember the last known lsn. 2020 */ 2021 page_cnt = le16_to_cpu(page->page_count); 2022 page_pos = le16_to_cpu(page->page_pos); 2023 last_ok_lsn = le64_to_cpu(page->rhdr.lsn); 2024 2025 next_page_1: 2026 2027 if (wrapped) { 2028 expected_seq += 1; 2029 wrapped_file = 1; 2030 } 2031 2032 curpage_off = nextpage_off; 2033 kfree(page); 2034 page = NULL; 2035 reuse_page = 0; 2036 goto next_page; 2037 2038 check_tail: 2039 if (tail_page) { 2040 log->seq_num = expected_seq; 2041 log->last_lsn = le64_to_cpu(tail_page->record_hdr.last_end_lsn); 2042 log->ra->current_lsn = tail_page->record_hdr.last_end_lsn; 2043 log->l_flags &= ~NTFSLOG_NO_LAST_LSN; 2044 2045 if (log->page_size - 2046 le16_to_cpu( 2047 tail_page->record_hdr.next_record_off) >= 2048 log->record_header_len) { 2049 log->l_flags |= NTFSLOG_REUSE_TAIL; 2050 log->next_page = curpage_off; 2051 } else { 2052 log->l_flags &= ~NTFSLOG_REUSE_TAIL; 2053 log->next_page = nextpage_off; 2054 } 2055 2056 if (wrapped) 2057 log->l_flags |= NTFSLOG_WRAPPED; 2058 } 2059 2060 /* Remember that the partial IO will start at the next page. */ 2061 second_off = nextpage_off; 2062 2063 /* 2064 * If the next page is the first page of the file then update 2065 * the sequence number for log records which begon the next page. 2066 */ 2067 if (wrapped) 2068 expected_seq += 1; 2069 2070 /* 2071 * If we have a tail copy or are performing single page I/O we can 2072 * immediately look at the next page. 2073 */ 2074 if (replace_page || (log->ra->flags & RESTART_SINGLE_PAGE_IO)) { 2075 page_cnt = 2; 2076 page_pos = 1; 2077 goto check_valid; 2078 } 2079 2080 if (page_pos != page_cnt) 2081 goto check_valid; 2082 /* 2083 * If the next page causes us to wrap to the beginning of the log 2084 * file then we know which page to check next. 2085 */ 2086 if (wrapped) { 2087 page_cnt = 2; 2088 page_pos = 1; 2089 goto check_valid; 2090 } 2091 2092 cur_pos = 2; 2093 2094 next_test_page: 2095 kfree(tst_page); 2096 tst_page = NULL; 2097 2098 /* Walk through the file, reading log pages. */ 2099 err = read_log_page(log, nextpage_off, &tst_page, &usa_error); 2100 2101 /* 2102 * If we get a USA error then assume that we correctly found 2103 * the end of the original transfer. 2104 */ 2105 if (usa_error) 2106 goto file_is_valid; 2107 2108 /* 2109 * If we were able to read the page, we examine it to see if it 2110 * is the same or different Io block. 2111 */ 2112 if (err) 2113 goto next_test_page_1; 2114 2115 if (le16_to_cpu(tst_page->page_pos) == cur_pos && 2116 check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) { 2117 page_cnt = le16_to_cpu(tst_page->page_count) + 1; 2118 page_pos = le16_to_cpu(tst_page->page_pos); 2119 goto check_valid; 2120 } else { 2121 goto file_is_valid; 2122 } 2123 2124 next_test_page_1: 2125 2126 nextpage_off = next_page_off(log, curpage_off); 2127 wrapped = nextpage_off == log->first_page; 2128 2129 if (wrapped) { 2130 expected_seq += 1; 2131 page_cnt = 2; 2132 page_pos = 1; 2133 } 2134 2135 cur_pos += 1; 2136 part_io_count += 1; 2137 if (!wrapped) 2138 goto next_test_page; 2139 2140 check_valid: 2141 /* Skip over the remaining pages this transfer. */ 2142 remain_pages = page_cnt - page_pos - 1; 2143 part_io_count += remain_pages; 2144 2145 while (remain_pages--) { 2146 nextpage_off = next_page_off(log, curpage_off); 2147 wrapped = nextpage_off == log->first_page; 2148 2149 if (wrapped) 2150 expected_seq += 1; 2151 } 2152 2153 /* Call our routine to check this log page. */ 2154 kfree(tst_page); 2155 tst_page = NULL; 2156 2157 err = read_log_page(log, nextpage_off, &tst_page, &usa_error); 2158 if (!err && !usa_error && 2159 check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) { 2160 err = -EINVAL; 2161 goto out; 2162 } 2163 2164 file_is_valid: 2165 2166 /* We have a valid file. */ 2167 if (page_off1 || tail_page) { 2168 struct RECORD_PAGE_HDR *tmp_page; 2169 2170 if (sb_rdonly(log->ni->mi.sbi->sb)) { 2171 err = -EROFS; 2172 goto out; 2173 } 2174 2175 if (page_off1) { 2176 tmp_page = Add2Ptr(page_bufs, page_off1 - page_off); 2177 tails -= (page_off1 - page_off) / log->page_size; 2178 if (!tail_page) 2179 tails -= 1; 2180 } else { 2181 tmp_page = tail_page; 2182 tails = 1; 2183 } 2184 2185 while (tails--) { 2186 u64 off = hdr_file_off(log, tmp_page); 2187 2188 if (!page) { 2189 page = kmalloc(log->page_size, GFP_NOFS); 2190 if (!page) { 2191 err = -ENOMEM; 2192 goto out; 2193 } 2194 } 2195 2196 /* 2197 * Correct page and copy the data from this page 2198 * into it and flush it to disk. 2199 */ 2200 memcpy(page, tmp_page, log->page_size); 2201 2202 /* Fill last flushed lsn value flush the page. */ 2203 if (log->major_ver < 2) 2204 page->rhdr.lsn = page->record_hdr.last_end_lsn; 2205 else 2206 page->file_off = 0; 2207 2208 page->page_pos = page->page_count = cpu_to_le16(1); 2209 2210 ntfs_fix_pre_write(&page->rhdr, log->page_size); 2211 2212 err = ntfs_sb_write_run(log->ni->mi.sbi, 2213 &log->ni->file.run, off, page, 2214 log->page_size, 0); 2215 2216 if (err) 2217 goto out; 2218 2219 if (part_io_count && second_off == off) { 2220 second_off += log->page_size; 2221 part_io_count -= 1; 2222 } 2223 2224 tmp_page = Add2Ptr(tmp_page, log->page_size); 2225 } 2226 } 2227 2228 if (part_io_count) { 2229 if (sb_rdonly(log->ni->mi.sbi->sb)) { 2230 err = -EROFS; 2231 goto out; 2232 } 2233 } 2234 2235 out: 2236 kfree(second_tail); 2237 kfree(first_tail); 2238 kfree(page); 2239 kfree(tst_page); 2240 kfree(page_bufs); 2241 2242 return err; 2243 } 2244 2245 /* 2246 * read_log_rec_buf - Copy a log record from the file to a buffer. 2247 * 2248 * The log record may span several log pages and may even wrap the file. 2249 */ 2250 static int read_log_rec_buf(struct ntfs_log *log, 2251 const struct LFS_RECORD_HDR *rh, void *buffer) 2252 { 2253 int err; 2254 struct RECORD_PAGE_HDR *ph = NULL; 2255 u64 lsn = le64_to_cpu(rh->this_lsn); 2256 u32 vbo = lsn_to_vbo(log, lsn) & ~log->page_mask; 2257 u32 off = lsn_to_page_off(log, lsn) + log->record_header_len; 2258 u32 data_len = le32_to_cpu(rh->client_data_len); 2259 2260 /* 2261 * While there are more bytes to transfer, 2262 * we continue to attempt to perform the read. 2263 */ 2264 for (;;) { 2265 bool usa_error; 2266 u32 tail = log->page_size - off; 2267 2268 if (tail >= data_len) 2269 tail = data_len; 2270 2271 data_len -= tail; 2272 2273 err = read_log_page(log, vbo, &ph, &usa_error); 2274 if (err) 2275 goto out; 2276 2277 /* 2278 * The last lsn on this page better be greater or equal 2279 * to the lsn we are copying. 2280 */ 2281 if (lsn > le64_to_cpu(ph->rhdr.lsn)) { 2282 err = -EINVAL; 2283 goto out; 2284 } 2285 2286 memcpy(buffer, Add2Ptr(ph, off), tail); 2287 2288 /* If there are no more bytes to transfer, we exit the loop. */ 2289 if (!data_len) { 2290 if (!is_log_record_end(ph) || 2291 lsn > le64_to_cpu(ph->record_hdr.last_end_lsn)) { 2292 err = -EINVAL; 2293 goto out; 2294 } 2295 break; 2296 } 2297 2298 if (ph->rhdr.lsn == ph->record_hdr.last_end_lsn || 2299 lsn > le64_to_cpu(ph->rhdr.lsn)) { 2300 err = -EINVAL; 2301 goto out; 2302 } 2303 2304 vbo = next_page_off(log, vbo); 2305 off = log->data_off; 2306 2307 /* 2308 * Adjust our pointer the user's buffer to transfer 2309 * the next block to. 2310 */ 2311 buffer = Add2Ptr(buffer, tail); 2312 } 2313 2314 out: 2315 kfree(ph); 2316 return err; 2317 } 2318 2319 static int read_rst_area(struct ntfs_log *log, struct NTFS_RESTART **rst_, 2320 u64 *lsn) 2321 { 2322 int err; 2323 struct LFS_RECORD_HDR *rh = NULL; 2324 const struct CLIENT_REC *cr = 2325 Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)); 2326 u64 lsnr, lsnc = le64_to_cpu(cr->restart_lsn); 2327 u32 len; 2328 struct NTFS_RESTART *rst; 2329 2330 *lsn = 0; 2331 *rst_ = NULL; 2332 2333 /* If the client doesn't have a restart area, go ahead and exit now. */ 2334 if (!lsnc) 2335 return 0; 2336 2337 err = read_log_page(log, lsn_to_vbo(log, lsnc), 2338 (struct RECORD_PAGE_HDR **)&rh, NULL); 2339 if (err) 2340 return err; 2341 2342 rst = NULL; 2343 lsnr = le64_to_cpu(rh->this_lsn); 2344 2345 if (lsnc != lsnr) { 2346 /* If the lsn values don't match, then the disk is corrupt. */ 2347 err = -EINVAL; 2348 goto out; 2349 } 2350 2351 *lsn = lsnr; 2352 len = le32_to_cpu(rh->client_data_len); 2353 2354 if (!len) { 2355 err = 0; 2356 goto out; 2357 } 2358 2359 if (len < sizeof(struct NTFS_RESTART)) { 2360 err = -EINVAL; 2361 goto out; 2362 } 2363 2364 rst = kmalloc(len, GFP_NOFS); 2365 if (!rst) { 2366 err = -ENOMEM; 2367 goto out; 2368 } 2369 2370 /* Copy the data into the 'rst' buffer. */ 2371 err = read_log_rec_buf(log, rh, rst); 2372 if (err) 2373 goto out; 2374 2375 *rst_ = rst; 2376 rst = NULL; 2377 2378 out: 2379 kfree(rh); 2380 kfree(rst); 2381 2382 return err; 2383 } 2384 2385 static int find_log_rec(struct ntfs_log *log, u64 lsn, struct lcb *lcb) 2386 { 2387 int err; 2388 struct LFS_RECORD_HDR *rh = lcb->lrh; 2389 u32 rec_len, len; 2390 2391 /* Read the record header for this lsn. */ 2392 if (!rh) { 2393 err = read_log_page(log, lsn_to_vbo(log, lsn), 2394 (struct RECORD_PAGE_HDR **)&rh, NULL); 2395 2396 lcb->lrh = rh; 2397 if (err) 2398 return err; 2399 } 2400 2401 /* 2402 * If the lsn the log record doesn't match the desired 2403 * lsn then the disk is corrupt. 2404 */ 2405 if (lsn != le64_to_cpu(rh->this_lsn)) 2406 return -EINVAL; 2407 2408 len = le32_to_cpu(rh->client_data_len); 2409 2410 /* 2411 * Check that the length field isn't greater than the total 2412 * available space the log file. 2413 */ 2414 rec_len = len + log->record_header_len; 2415 if (rec_len >= log->total_avail) 2416 return -EINVAL; 2417 2418 /* 2419 * If the entire log record is on this log page, 2420 * put a pointer to the log record the context block. 2421 */ 2422 if (rh->flags & LOG_RECORD_MULTI_PAGE) { 2423 void *lr = kmalloc(len, GFP_NOFS); 2424 2425 if (!lr) 2426 return -ENOMEM; 2427 2428 lcb->log_rec = lr; 2429 lcb->alloc = true; 2430 2431 /* Copy the data into the buffer returned. */ 2432 err = read_log_rec_buf(log, rh, lr); 2433 if (err) 2434 return err; 2435 } else { 2436 /* If beyond the end of the current page -> an error. */ 2437 u32 page_off = lsn_to_page_off(log, lsn); 2438 2439 if (page_off + len + log->record_header_len > log->page_size) 2440 return -EINVAL; 2441 2442 lcb->log_rec = Add2Ptr(rh, sizeof(struct LFS_RECORD_HDR)); 2443 lcb->alloc = false; 2444 } 2445 2446 return 0; 2447 } 2448 2449 /* 2450 * read_log_rec_lcb - Init the query operation. 2451 */ 2452 static int read_log_rec_lcb(struct ntfs_log *log, u64 lsn, u32 ctx_mode, 2453 struct lcb **lcb_) 2454 { 2455 int err; 2456 const struct CLIENT_REC *cr; 2457 struct lcb *lcb; 2458 2459 switch (ctx_mode) { 2460 case lcb_ctx_undo_next: 2461 case lcb_ctx_prev: 2462 case lcb_ctx_next: 2463 break; 2464 default: 2465 return -EINVAL; 2466 } 2467 2468 /* Check that the given lsn is the legal range for this client. */ 2469 cr = Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)); 2470 2471 if (!verify_client_lsn(log, cr, lsn)) 2472 return -EINVAL; 2473 2474 lcb = kzalloc(sizeof(struct lcb), GFP_NOFS); 2475 if (!lcb) 2476 return -ENOMEM; 2477 lcb->client = log->client_id; 2478 lcb->ctx_mode = ctx_mode; 2479 2480 /* Find the log record indicated by the given lsn. */ 2481 err = find_log_rec(log, lsn, lcb); 2482 if (err) 2483 goto out; 2484 2485 *lcb_ = lcb; 2486 return 0; 2487 2488 out: 2489 lcb_put(lcb); 2490 *lcb_ = NULL; 2491 return err; 2492 } 2493 2494 /* 2495 * find_client_next_lsn 2496 * 2497 * Attempt to find the next lsn to return to a client based on the context mode. 2498 */ 2499 static int find_client_next_lsn(struct ntfs_log *log, struct lcb *lcb, u64 *lsn) 2500 { 2501 int err; 2502 u64 next_lsn; 2503 struct LFS_RECORD_HDR *hdr; 2504 2505 hdr = lcb->lrh; 2506 *lsn = 0; 2507 2508 if (lcb_ctx_next != lcb->ctx_mode) 2509 goto check_undo_next; 2510 2511 /* Loop as long as another lsn can be found. */ 2512 for (;;) { 2513 u64 current_lsn; 2514 2515 err = next_log_lsn(log, hdr, ¤t_lsn); 2516 if (err) 2517 goto out; 2518 2519 if (!current_lsn) 2520 break; 2521 2522 if (hdr != lcb->lrh) 2523 kfree(hdr); 2524 2525 hdr = NULL; 2526 err = read_log_page(log, lsn_to_vbo(log, current_lsn), 2527 (struct RECORD_PAGE_HDR **)&hdr, NULL); 2528 if (err) 2529 goto out; 2530 2531 if (memcmp(&hdr->client, &lcb->client, 2532 sizeof(struct CLIENT_ID))) { 2533 /*err = -EINVAL; */ 2534 } else if (LfsClientRecord == hdr->record_type) { 2535 kfree(lcb->lrh); 2536 lcb->lrh = hdr; 2537 *lsn = current_lsn; 2538 return 0; 2539 } 2540 } 2541 2542 out: 2543 if (hdr != lcb->lrh) 2544 kfree(hdr); 2545 return err; 2546 2547 check_undo_next: 2548 if (lcb_ctx_undo_next == lcb->ctx_mode) 2549 next_lsn = le64_to_cpu(hdr->client_undo_next_lsn); 2550 else if (lcb_ctx_prev == lcb->ctx_mode) 2551 next_lsn = le64_to_cpu(hdr->client_prev_lsn); 2552 else 2553 return 0; 2554 2555 if (!next_lsn) 2556 return 0; 2557 2558 if (!verify_client_lsn( 2559 log, Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)), 2560 next_lsn)) 2561 return 0; 2562 2563 hdr = NULL; 2564 err = read_log_page(log, lsn_to_vbo(log, next_lsn), 2565 (struct RECORD_PAGE_HDR **)&hdr, NULL); 2566 if (err) 2567 return err; 2568 kfree(lcb->lrh); 2569 lcb->lrh = hdr; 2570 2571 *lsn = next_lsn; 2572 2573 return 0; 2574 } 2575 2576 static int read_next_log_rec(struct ntfs_log *log, struct lcb *lcb, u64 *lsn) 2577 { 2578 int err; 2579 2580 err = find_client_next_lsn(log, lcb, lsn); 2581 if (err) 2582 return err; 2583 2584 if (!*lsn) 2585 return 0; 2586 2587 if (lcb->alloc) 2588 kfree(lcb->log_rec); 2589 2590 lcb->log_rec = NULL; 2591 lcb->alloc = false; 2592 kfree(lcb->lrh); 2593 lcb->lrh = NULL; 2594 2595 return find_log_rec(log, *lsn, lcb); 2596 } 2597 2598 bool check_index_header(const struct INDEX_HDR *hdr, size_t bytes) 2599 { 2600 __le16 mask; 2601 u32 min_de, de_off, used, total; 2602 const struct NTFS_DE *e; 2603 2604 if (hdr_has_subnode(hdr)) { 2605 min_de = sizeof(struct NTFS_DE) + sizeof(u64); 2606 mask = NTFS_IE_HAS_SUBNODES; 2607 } else { 2608 min_de = sizeof(struct NTFS_DE); 2609 mask = 0; 2610 } 2611 2612 de_off = le32_to_cpu(hdr->de_off); 2613 used = le32_to_cpu(hdr->used); 2614 total = le32_to_cpu(hdr->total); 2615 2616 if (de_off > bytes - min_de || used > bytes || total > bytes || 2617 de_off + min_de > used || used > total) { 2618 return false; 2619 } 2620 2621 e = Add2Ptr(hdr, de_off); 2622 for (;;) { 2623 u16 esize = le16_to_cpu(e->size); 2624 struct NTFS_DE *next = Add2Ptr(e, esize); 2625 2626 if (esize < min_de || PtrOffset(hdr, next) > used || 2627 (e->flags & NTFS_IE_HAS_SUBNODES) != mask) { 2628 return false; 2629 } 2630 2631 if (de_is_last(e)) 2632 break; 2633 2634 e = next; 2635 } 2636 2637 return true; 2638 } 2639 2640 static inline bool check_index_buffer(const struct INDEX_BUFFER *ib, u32 bytes) 2641 { 2642 u16 fo; 2643 const struct NTFS_RECORD_HEADER *r = &ib->rhdr; 2644 2645 if (r->sign != NTFS_INDX_SIGNATURE) 2646 return false; 2647 2648 fo = (SECTOR_SIZE - ((bytes >> SECTOR_SHIFT) + 1) * sizeof(short)); 2649 2650 if (le16_to_cpu(r->fix_off) > fo) 2651 return false; 2652 2653 if ((le16_to_cpu(r->fix_num) - 1) * SECTOR_SIZE != bytes) 2654 return false; 2655 2656 return check_index_header(&ib->ihdr, 2657 bytes - offsetof(struct INDEX_BUFFER, ihdr)); 2658 } 2659 2660 static inline bool check_index_root(const struct ATTRIB *attr, 2661 struct ntfs_sb_info *sbi) 2662 { 2663 bool ret; 2664 const struct INDEX_ROOT *root = resident_data(attr); 2665 u8 index_bits = le32_to_cpu(root->index_block_size) >= 2666 sbi->cluster_size ? 2667 sbi->cluster_bits : 2668 SECTOR_SHIFT; 2669 u8 block_clst = root->index_block_clst; 2670 2671 if (le32_to_cpu(attr->res.data_size) < sizeof(struct INDEX_ROOT) || 2672 (root->type != ATTR_NAME && root->type != ATTR_ZERO) || 2673 (root->type == ATTR_NAME && 2674 root->rule != NTFS_COLLATION_TYPE_FILENAME) || 2675 (le32_to_cpu(root->index_block_size) != 2676 (block_clst << index_bits)) || 2677 (block_clst != 1 && block_clst != 2 && block_clst != 4 && 2678 block_clst != 8 && block_clst != 0x10 && block_clst != 0x20 && 2679 block_clst != 0x40 && block_clst != 0x80)) { 2680 return false; 2681 } 2682 2683 ret = check_index_header(&root->ihdr, 2684 le32_to_cpu(attr->res.data_size) - 2685 offsetof(struct INDEX_ROOT, ihdr)); 2686 return ret; 2687 } 2688 2689 static inline bool check_attr(const struct MFT_REC *rec, 2690 const struct ATTRIB *attr, 2691 struct ntfs_sb_info *sbi) 2692 { 2693 u32 asize = le32_to_cpu(attr->size); 2694 u32 rsize = 0; 2695 u64 dsize, svcn, evcn; 2696 u16 run_off; 2697 2698 /* Check the fixed part of the attribute record header. */ 2699 if (asize >= sbi->record_size || 2700 asize + PtrOffset(rec, attr) >= sbi->record_size || 2701 (attr->name_len && 2702 le16_to_cpu(attr->name_off) + attr->name_len * sizeof(short) > 2703 asize)) { 2704 return false; 2705 } 2706 2707 /* Check the attribute fields. */ 2708 switch (attr->non_res) { 2709 case 0: 2710 rsize = le32_to_cpu(attr->res.data_size); 2711 if (rsize >= asize || 2712 le16_to_cpu(attr->res.data_off) + rsize > asize) { 2713 return false; 2714 } 2715 break; 2716 2717 case 1: 2718 dsize = le64_to_cpu(attr->nres.data_size); 2719 svcn = le64_to_cpu(attr->nres.svcn); 2720 evcn = le64_to_cpu(attr->nres.evcn); 2721 run_off = le16_to_cpu(attr->nres.run_off); 2722 2723 if (svcn > evcn + 1 || run_off >= asize || 2724 le64_to_cpu(attr->nres.valid_size) > dsize || 2725 dsize > le64_to_cpu(attr->nres.alloc_size)) { 2726 return false; 2727 } 2728 2729 if (run_off > asize) 2730 return false; 2731 2732 if (run_unpack(NULL, sbi, 0, svcn, evcn, svcn, 2733 Add2Ptr(attr, run_off), asize - run_off) < 0) { 2734 return false; 2735 } 2736 2737 return true; 2738 2739 default: 2740 return false; 2741 } 2742 2743 switch (attr->type) { 2744 case ATTR_NAME: 2745 if (fname_full_size(Add2Ptr( 2746 attr, le16_to_cpu(attr->res.data_off))) > asize) { 2747 return false; 2748 } 2749 break; 2750 2751 case ATTR_ROOT: 2752 return check_index_root(attr, sbi); 2753 2754 case ATTR_STD: 2755 if (rsize < sizeof(struct ATTR_STD_INFO5) && 2756 rsize != sizeof(struct ATTR_STD_INFO)) { 2757 return false; 2758 } 2759 break; 2760 2761 case ATTR_LIST: 2762 case ATTR_ID: 2763 case ATTR_SECURE: 2764 case ATTR_LABEL: 2765 case ATTR_VOL_INFO: 2766 case ATTR_DATA: 2767 case ATTR_ALLOC: 2768 case ATTR_BITMAP: 2769 case ATTR_REPARSE: 2770 case ATTR_EA_INFO: 2771 case ATTR_EA: 2772 case ATTR_PROPERTYSET: 2773 case ATTR_LOGGED_UTILITY_STREAM: 2774 break; 2775 2776 default: 2777 return false; 2778 } 2779 2780 return true; 2781 } 2782 2783 static inline bool check_file_record(const struct MFT_REC *rec, 2784 const struct MFT_REC *rec2, 2785 struct ntfs_sb_info *sbi) 2786 { 2787 const struct ATTRIB *attr; 2788 u16 fo = le16_to_cpu(rec->rhdr.fix_off); 2789 u16 fn = le16_to_cpu(rec->rhdr.fix_num); 2790 u16 ao = le16_to_cpu(rec->attr_off); 2791 u32 rs = sbi->record_size; 2792 2793 /* Check the file record header for consistency. */ 2794 if (rec->rhdr.sign != NTFS_FILE_SIGNATURE || 2795 fo > (SECTOR_SIZE - ((rs >> SECTOR_SHIFT) + 1) * sizeof(short)) || 2796 (fn - 1) * SECTOR_SIZE != rs || ao < MFTRECORD_FIXUP_OFFSET_1 || 2797 ao > sbi->record_size - SIZEOF_RESIDENT || !is_rec_inuse(rec) || 2798 le32_to_cpu(rec->total) != rs) { 2799 return false; 2800 } 2801 2802 /* Loop to check all of the attributes. */ 2803 for (attr = Add2Ptr(rec, ao); attr->type != ATTR_END; 2804 attr = Add2Ptr(attr, le32_to_cpu(attr->size))) { 2805 if (check_attr(rec, attr, sbi)) 2806 continue; 2807 return false; 2808 } 2809 2810 return true; 2811 } 2812 2813 static inline int check_lsn(const struct NTFS_RECORD_HEADER *hdr, 2814 const u64 *rlsn) 2815 { 2816 u64 lsn; 2817 2818 if (!rlsn) 2819 return true; 2820 2821 lsn = le64_to_cpu(hdr->lsn); 2822 2823 if (hdr->sign == NTFS_HOLE_SIGNATURE) 2824 return false; 2825 2826 if (*rlsn > lsn) 2827 return true; 2828 2829 return false; 2830 } 2831 2832 static inline bool check_if_attr(const struct MFT_REC *rec, 2833 const struct LOG_REC_HDR *lrh) 2834 { 2835 u16 ro = le16_to_cpu(lrh->record_off); 2836 u16 o = le16_to_cpu(rec->attr_off); 2837 const struct ATTRIB *attr = Add2Ptr(rec, o); 2838 2839 while (o < ro) { 2840 u32 asize; 2841 2842 if (attr->type == ATTR_END) 2843 break; 2844 2845 asize = le32_to_cpu(attr->size); 2846 if (!asize) 2847 break; 2848 2849 o += asize; 2850 attr = Add2Ptr(attr, asize); 2851 } 2852 2853 return o == ro; 2854 } 2855 2856 static inline bool check_if_index_root(const struct MFT_REC *rec, 2857 const struct LOG_REC_HDR *lrh) 2858 { 2859 u16 ro = le16_to_cpu(lrh->record_off); 2860 u16 o = le16_to_cpu(rec->attr_off); 2861 const struct ATTRIB *attr = Add2Ptr(rec, o); 2862 2863 while (o < ro) { 2864 u32 asize; 2865 2866 if (attr->type == ATTR_END) 2867 break; 2868 2869 asize = le32_to_cpu(attr->size); 2870 if (!asize) 2871 break; 2872 2873 o += asize; 2874 attr = Add2Ptr(attr, asize); 2875 } 2876 2877 return o == ro && attr->type == ATTR_ROOT; 2878 } 2879 2880 static inline bool check_if_root_index(const struct ATTRIB *attr, 2881 const struct INDEX_HDR *hdr, 2882 const struct LOG_REC_HDR *lrh) 2883 { 2884 u16 ao = le16_to_cpu(lrh->attr_off); 2885 u32 de_off = le32_to_cpu(hdr->de_off); 2886 u32 o = PtrOffset(attr, hdr) + de_off; 2887 const struct NTFS_DE *e = Add2Ptr(hdr, de_off); 2888 u32 asize = le32_to_cpu(attr->size); 2889 2890 while (o < ao) { 2891 u16 esize; 2892 2893 if (o >= asize) 2894 break; 2895 2896 esize = le16_to_cpu(e->size); 2897 if (!esize) 2898 break; 2899 2900 o += esize; 2901 e = Add2Ptr(e, esize); 2902 } 2903 2904 return o == ao; 2905 } 2906 2907 static inline bool check_if_alloc_index(const struct INDEX_HDR *hdr, 2908 u32 attr_off) 2909 { 2910 u32 de_off = le32_to_cpu(hdr->de_off); 2911 u32 o = offsetof(struct INDEX_BUFFER, ihdr) + de_off; 2912 const struct NTFS_DE *e = Add2Ptr(hdr, de_off); 2913 u32 used = le32_to_cpu(hdr->used); 2914 2915 while (o < attr_off) { 2916 u16 esize; 2917 2918 if (de_off >= used) 2919 break; 2920 2921 esize = le16_to_cpu(e->size); 2922 if (!esize) 2923 break; 2924 2925 o += esize; 2926 de_off += esize; 2927 e = Add2Ptr(e, esize); 2928 } 2929 2930 return o == attr_off; 2931 } 2932 2933 static inline void change_attr_size(struct MFT_REC *rec, struct ATTRIB *attr, 2934 u32 nsize) 2935 { 2936 u32 asize = le32_to_cpu(attr->size); 2937 int dsize = nsize - asize; 2938 u8 *next = Add2Ptr(attr, asize); 2939 u32 used = le32_to_cpu(rec->used); 2940 2941 memmove(Add2Ptr(attr, nsize), next, used - PtrOffset(rec, next)); 2942 2943 rec->used = cpu_to_le32(used + dsize); 2944 attr->size = cpu_to_le32(nsize); 2945 } 2946 2947 struct OpenAttr { 2948 struct ATTRIB *attr; 2949 struct runs_tree *run1; 2950 struct runs_tree run0; 2951 struct ntfs_inode *ni; 2952 // CLST rno; 2953 }; 2954 2955 /* 2956 * cmp_type_and_name 2957 * 2958 * Return: 0 if 'attr' has the same type and name. 2959 */ 2960 static inline int cmp_type_and_name(const struct ATTRIB *a1, 2961 const struct ATTRIB *a2) 2962 { 2963 return a1->type != a2->type || a1->name_len != a2->name_len || 2964 (a1->name_len && memcmp(attr_name(a1), attr_name(a2), 2965 a1->name_len * sizeof(short))); 2966 } 2967 2968 static struct OpenAttr *find_loaded_attr(struct ntfs_log *log, 2969 const struct ATTRIB *attr, CLST rno) 2970 { 2971 struct OPEN_ATTR_ENRTY *oe = NULL; 2972 2973 while ((oe = enum_rstbl(log->open_attr_tbl, oe))) { 2974 struct OpenAttr *op_attr; 2975 2976 if (ino_get(&oe->ref) != rno) 2977 continue; 2978 2979 op_attr = (struct OpenAttr *)oe->ptr; 2980 if (!cmp_type_and_name(op_attr->attr, attr)) 2981 return op_attr; 2982 } 2983 return NULL; 2984 } 2985 2986 static struct ATTRIB *attr_create_nonres_log(struct ntfs_sb_info *sbi, 2987 enum ATTR_TYPE type, u64 size, 2988 const u16 *name, size_t name_len, 2989 __le16 flags) 2990 { 2991 struct ATTRIB *attr; 2992 u32 name_size = ALIGN(name_len * sizeof(short), 8); 2993 bool is_ext = flags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED); 2994 u32 asize = name_size + 2995 (is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT); 2996 2997 attr = kzalloc(asize, GFP_NOFS); 2998 if (!attr) 2999 return NULL; 3000 3001 attr->type = type; 3002 attr->size = cpu_to_le32(asize); 3003 attr->flags = flags; 3004 attr->non_res = 1; 3005 attr->name_len = name_len; 3006 3007 attr->nres.evcn = cpu_to_le64((u64)bytes_to_cluster(sbi, size) - 1); 3008 attr->nres.alloc_size = cpu_to_le64(ntfs_up_cluster(sbi, size)); 3009 attr->nres.data_size = cpu_to_le64(size); 3010 attr->nres.valid_size = attr->nres.data_size; 3011 if (is_ext) { 3012 attr->name_off = SIZEOF_NONRESIDENT_EX_LE; 3013 if (is_attr_compressed(attr)) 3014 attr->nres.c_unit = NTFS_LZNT_CUNIT; 3015 3016 attr->nres.run_off = 3017 cpu_to_le16(SIZEOF_NONRESIDENT_EX + name_size); 3018 memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT_EX), name, 3019 name_len * sizeof(short)); 3020 } else { 3021 attr->name_off = SIZEOF_NONRESIDENT_LE; 3022 attr->nres.run_off = 3023 cpu_to_le16(SIZEOF_NONRESIDENT + name_size); 3024 memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT), name, 3025 name_len * sizeof(short)); 3026 } 3027 3028 return attr; 3029 } 3030 3031 /* 3032 * do_action - Common routine for the Redo and Undo Passes. 3033 * @rlsn: If it is NULL then undo. 3034 */ 3035 static int do_action(struct ntfs_log *log, struct OPEN_ATTR_ENRTY *oe, 3036 const struct LOG_REC_HDR *lrh, u32 op, void *data, 3037 u32 dlen, u32 rec_len, const u64 *rlsn) 3038 { 3039 int err = 0; 3040 struct ntfs_sb_info *sbi = log->ni->mi.sbi; 3041 struct inode *inode = NULL, *inode_parent; 3042 struct mft_inode *mi = NULL, *mi2_child = NULL; 3043 CLST rno = 0, rno_base = 0; 3044 struct INDEX_BUFFER *ib = NULL; 3045 struct MFT_REC *rec = NULL; 3046 struct ATTRIB *attr = NULL, *attr2; 3047 struct INDEX_HDR *hdr; 3048 struct INDEX_ROOT *root; 3049 struct NTFS_DE *e, *e1, *e2; 3050 struct NEW_ATTRIBUTE_SIZES *new_sz; 3051 struct ATTR_FILE_NAME *fname; 3052 struct OpenAttr *oa, *oa2; 3053 u32 nsize, t32, asize, used, esize, off, bits; 3054 u16 id, id2; 3055 u32 record_size = sbi->record_size; 3056 u64 t64; 3057 u16 roff = le16_to_cpu(lrh->record_off); 3058 u16 aoff = le16_to_cpu(lrh->attr_off); 3059 u64 lco = 0; 3060 u64 cbo = (u64)le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT; 3061 u64 tvo = le64_to_cpu(lrh->target_vcn) << sbi->cluster_bits; 3062 u64 vbo = cbo + tvo; 3063 void *buffer_le = NULL; 3064 u32 bytes = 0; 3065 bool a_dirty = false; 3066 u16 data_off; 3067 3068 oa = oe->ptr; 3069 3070 /* Big switch to prepare. */ 3071 switch (op) { 3072 /* ============================================================ 3073 * Process MFT records, as described by the current log record. 3074 * ============================================================ 3075 */ 3076 case InitializeFileRecordSegment: 3077 case DeallocateFileRecordSegment: 3078 case WriteEndOfFileRecordSegment: 3079 case CreateAttribute: 3080 case DeleteAttribute: 3081 case UpdateResidentValue: 3082 case UpdateMappingPairs: 3083 case SetNewAttributeSizes: 3084 case AddIndexEntryRoot: 3085 case DeleteIndexEntryRoot: 3086 case SetIndexEntryVcnRoot: 3087 case UpdateFileNameRoot: 3088 case UpdateRecordDataRoot: 3089 case ZeroEndOfFileRecord: 3090 rno = vbo >> sbi->record_bits; 3091 inode = ilookup(sbi->sb, rno); 3092 if (inode) { 3093 mi = &ntfs_i(inode)->mi; 3094 } else if (op == InitializeFileRecordSegment) { 3095 mi = kzalloc(sizeof(struct mft_inode), GFP_NOFS); 3096 if (!mi) 3097 return -ENOMEM; 3098 err = mi_format_new(mi, sbi, rno, 0, false); 3099 if (err) 3100 goto out; 3101 } else { 3102 /* Read from disk. */ 3103 err = mi_get(sbi, rno, &mi); 3104 if (err) 3105 return err; 3106 } 3107 rec = mi->mrec; 3108 3109 if (op == DeallocateFileRecordSegment) 3110 goto skip_load_parent; 3111 3112 if (InitializeFileRecordSegment != op) { 3113 if (rec->rhdr.sign == NTFS_BAAD_SIGNATURE) 3114 goto dirty_vol; 3115 if (!check_lsn(&rec->rhdr, rlsn)) 3116 goto out; 3117 if (!check_file_record(rec, NULL, sbi)) 3118 goto dirty_vol; 3119 attr = Add2Ptr(rec, roff); 3120 } 3121 3122 if (is_rec_base(rec) || InitializeFileRecordSegment == op) { 3123 rno_base = rno; 3124 goto skip_load_parent; 3125 } 3126 3127 rno_base = ino_get(&rec->parent_ref); 3128 inode_parent = ntfs_iget5(sbi->sb, &rec->parent_ref, NULL); 3129 if (IS_ERR(inode_parent)) 3130 goto skip_load_parent; 3131 3132 if (is_bad_inode(inode_parent)) { 3133 iput(inode_parent); 3134 goto skip_load_parent; 3135 } 3136 3137 if (ni_load_mi_ex(ntfs_i(inode_parent), rno, &mi2_child)) { 3138 iput(inode_parent); 3139 } else { 3140 if (mi2_child->mrec != mi->mrec) 3141 memcpy(mi2_child->mrec, mi->mrec, 3142 sbi->record_size); 3143 3144 if (inode) 3145 iput(inode); 3146 else if (mi) 3147 mi_put(mi); 3148 3149 inode = inode_parent; 3150 mi = mi2_child; 3151 rec = mi2_child->mrec; 3152 attr = Add2Ptr(rec, roff); 3153 } 3154 3155 skip_load_parent: 3156 inode_parent = NULL; 3157 break; 3158 3159 /* 3160 * Process attributes, as described by the current log record. 3161 */ 3162 case UpdateNonresidentValue: 3163 case AddIndexEntryAllocation: 3164 case DeleteIndexEntryAllocation: 3165 case WriteEndOfIndexBuffer: 3166 case SetIndexEntryVcnAllocation: 3167 case UpdateFileNameAllocation: 3168 case SetBitsInNonresidentBitMap: 3169 case ClearBitsInNonresidentBitMap: 3170 case UpdateRecordDataAllocation: 3171 attr = oa->attr; 3172 bytes = UpdateNonresidentValue == op ? dlen : 0; 3173 lco = (u64)le16_to_cpu(lrh->lcns_follow) << sbi->cluster_bits; 3174 3175 if (attr->type == ATTR_ALLOC) { 3176 t32 = le32_to_cpu(oe->bytes_per_index); 3177 if (bytes < t32) 3178 bytes = t32; 3179 } 3180 3181 if (!bytes) 3182 bytes = lco - cbo; 3183 3184 bytes += roff; 3185 if (attr->type == ATTR_ALLOC) 3186 bytes = (bytes + 511) & ~511; // align 3187 3188 buffer_le = kmalloc(bytes, GFP_NOFS); 3189 if (!buffer_le) 3190 return -ENOMEM; 3191 3192 err = ntfs_read_run_nb(sbi, oa->run1, vbo, buffer_le, bytes, 3193 NULL); 3194 if (err) 3195 goto out; 3196 3197 if (attr->type == ATTR_ALLOC && *(int *)buffer_le) 3198 ntfs_fix_post_read(buffer_le, bytes, false); 3199 break; 3200 3201 default: 3202 WARN_ON(1); 3203 } 3204 3205 /* Big switch to do operation. */ 3206 switch (op) { 3207 case InitializeFileRecordSegment: 3208 if (roff + dlen > record_size) 3209 goto dirty_vol; 3210 3211 memcpy(Add2Ptr(rec, roff), data, dlen); 3212 mi->dirty = true; 3213 break; 3214 3215 case DeallocateFileRecordSegment: 3216 clear_rec_inuse(rec); 3217 le16_add_cpu(&rec->seq, 1); 3218 mi->dirty = true; 3219 break; 3220 3221 case WriteEndOfFileRecordSegment: 3222 attr2 = (struct ATTRIB *)data; 3223 if (!check_if_attr(rec, lrh) || roff + dlen > record_size) 3224 goto dirty_vol; 3225 3226 memmove(attr, attr2, dlen); 3227 rec->used = cpu_to_le32(ALIGN(roff + dlen, 8)); 3228 3229 mi->dirty = true; 3230 break; 3231 3232 case CreateAttribute: 3233 attr2 = (struct ATTRIB *)data; 3234 asize = le32_to_cpu(attr2->size); 3235 used = le32_to_cpu(rec->used); 3236 3237 if (!check_if_attr(rec, lrh) || dlen < SIZEOF_RESIDENT || 3238 !IS_ALIGNED(asize, 8) || 3239 Add2Ptr(attr2, asize) > Add2Ptr(lrh, rec_len) || 3240 dlen > record_size - used) { 3241 goto dirty_vol; 3242 } 3243 3244 memmove(Add2Ptr(attr, asize), attr, used - roff); 3245 memcpy(attr, attr2, asize); 3246 3247 rec->used = cpu_to_le32(used + asize); 3248 id = le16_to_cpu(rec->next_attr_id); 3249 id2 = le16_to_cpu(attr2->id); 3250 if (id <= id2) 3251 rec->next_attr_id = cpu_to_le16(id2 + 1); 3252 if (is_attr_indexed(attr)) 3253 le16_add_cpu(&rec->hard_links, 1); 3254 3255 oa2 = find_loaded_attr(log, attr, rno_base); 3256 if (oa2) { 3257 void *p2 = kmemdup(attr, le32_to_cpu(attr->size), 3258 GFP_NOFS); 3259 if (p2) { 3260 // run_close(oa2->run1); 3261 kfree(oa2->attr); 3262 oa2->attr = p2; 3263 } 3264 } 3265 3266 mi->dirty = true; 3267 break; 3268 3269 case DeleteAttribute: 3270 asize = le32_to_cpu(attr->size); 3271 used = le32_to_cpu(rec->used); 3272 3273 if (!check_if_attr(rec, lrh)) 3274 goto dirty_vol; 3275 3276 rec->used = cpu_to_le32(used - asize); 3277 if (is_attr_indexed(attr)) 3278 le16_add_cpu(&rec->hard_links, -1); 3279 3280 memmove(attr, Add2Ptr(attr, asize), used - asize - roff); 3281 3282 mi->dirty = true; 3283 break; 3284 3285 case UpdateResidentValue: 3286 nsize = aoff + dlen; 3287 3288 if (!check_if_attr(rec, lrh)) 3289 goto dirty_vol; 3290 3291 asize = le32_to_cpu(attr->size); 3292 used = le32_to_cpu(rec->used); 3293 3294 if (lrh->redo_len == lrh->undo_len) { 3295 if (nsize > asize) 3296 goto dirty_vol; 3297 goto move_data; 3298 } 3299 3300 if (nsize > asize && nsize - asize > record_size - used) 3301 goto dirty_vol; 3302 3303 nsize = ALIGN(nsize, 8); 3304 data_off = le16_to_cpu(attr->res.data_off); 3305 3306 if (nsize < asize) { 3307 memmove(Add2Ptr(attr, aoff), data, dlen); 3308 data = NULL; // To skip below memmove(). 3309 } 3310 3311 memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize), 3312 used - le16_to_cpu(lrh->record_off) - asize); 3313 3314 rec->used = cpu_to_le32(used + nsize - asize); 3315 attr->size = cpu_to_le32(nsize); 3316 attr->res.data_size = cpu_to_le32(aoff + dlen - data_off); 3317 3318 move_data: 3319 if (data) 3320 memmove(Add2Ptr(attr, aoff), data, dlen); 3321 3322 oa2 = find_loaded_attr(log, attr, rno_base); 3323 if (oa2) { 3324 void *p2 = kmemdup(attr, le32_to_cpu(attr->size), 3325 GFP_NOFS); 3326 if (p2) { 3327 // run_close(&oa2->run0); 3328 oa2->run1 = &oa2->run0; 3329 kfree(oa2->attr); 3330 oa2->attr = p2; 3331 } 3332 } 3333 3334 mi->dirty = true; 3335 break; 3336 3337 case UpdateMappingPairs: 3338 nsize = aoff + dlen; 3339 asize = le32_to_cpu(attr->size); 3340 used = le32_to_cpu(rec->used); 3341 3342 if (!check_if_attr(rec, lrh) || !attr->non_res || 3343 aoff < le16_to_cpu(attr->nres.run_off) || aoff > asize || 3344 (nsize > asize && nsize - asize > record_size - used)) { 3345 goto dirty_vol; 3346 } 3347 3348 nsize = ALIGN(nsize, 8); 3349 3350 memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize), 3351 used - le16_to_cpu(lrh->record_off) - asize); 3352 rec->used = cpu_to_le32(used + nsize - asize); 3353 attr->size = cpu_to_le32(nsize); 3354 memmove(Add2Ptr(attr, aoff), data, dlen); 3355 3356 if (run_get_highest_vcn(le64_to_cpu(attr->nres.svcn), 3357 attr_run(attr), &t64)) { 3358 goto dirty_vol; 3359 } 3360 3361 attr->nres.evcn = cpu_to_le64(t64); 3362 oa2 = find_loaded_attr(log, attr, rno_base); 3363 if (oa2 && oa2->attr->non_res) 3364 oa2->attr->nres.evcn = attr->nres.evcn; 3365 3366 mi->dirty = true; 3367 break; 3368 3369 case SetNewAttributeSizes: 3370 new_sz = data; 3371 if (!check_if_attr(rec, lrh) || !attr->non_res) 3372 goto dirty_vol; 3373 3374 attr->nres.alloc_size = new_sz->alloc_size; 3375 attr->nres.data_size = new_sz->data_size; 3376 attr->nres.valid_size = new_sz->valid_size; 3377 3378 if (dlen >= sizeof(struct NEW_ATTRIBUTE_SIZES)) 3379 attr->nres.total_size = new_sz->total_size; 3380 3381 oa2 = find_loaded_attr(log, attr, rno_base); 3382 if (oa2) { 3383 void *p2 = kmemdup(attr, le32_to_cpu(attr->size), 3384 GFP_NOFS); 3385 if (p2) { 3386 kfree(oa2->attr); 3387 oa2->attr = p2; 3388 } 3389 } 3390 mi->dirty = true; 3391 break; 3392 3393 case AddIndexEntryRoot: 3394 e = (struct NTFS_DE *)data; 3395 esize = le16_to_cpu(e->size); 3396 root = resident_data(attr); 3397 hdr = &root->ihdr; 3398 used = le32_to_cpu(hdr->used); 3399 3400 if (!check_if_index_root(rec, lrh) || 3401 !check_if_root_index(attr, hdr, lrh) || 3402 Add2Ptr(data, esize) > Add2Ptr(lrh, rec_len) || 3403 esize > le32_to_cpu(rec->total) - le32_to_cpu(rec->used)) { 3404 goto dirty_vol; 3405 } 3406 3407 e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3408 3409 change_attr_size(rec, attr, le32_to_cpu(attr->size) + esize); 3410 3411 memmove(Add2Ptr(e1, esize), e1, 3412 PtrOffset(e1, Add2Ptr(hdr, used))); 3413 memmove(e1, e, esize); 3414 3415 le32_add_cpu(&attr->res.data_size, esize); 3416 hdr->used = cpu_to_le32(used + esize); 3417 le32_add_cpu(&hdr->total, esize); 3418 3419 mi->dirty = true; 3420 break; 3421 3422 case DeleteIndexEntryRoot: 3423 root = resident_data(attr); 3424 hdr = &root->ihdr; 3425 used = le32_to_cpu(hdr->used); 3426 3427 if (!check_if_index_root(rec, lrh) || 3428 !check_if_root_index(attr, hdr, lrh)) { 3429 goto dirty_vol; 3430 } 3431 3432 e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3433 esize = le16_to_cpu(e1->size); 3434 e2 = Add2Ptr(e1, esize); 3435 3436 memmove(e1, e2, PtrOffset(e2, Add2Ptr(hdr, used))); 3437 3438 le32_sub_cpu(&attr->res.data_size, esize); 3439 hdr->used = cpu_to_le32(used - esize); 3440 le32_sub_cpu(&hdr->total, esize); 3441 3442 change_attr_size(rec, attr, le32_to_cpu(attr->size) - esize); 3443 3444 mi->dirty = true; 3445 break; 3446 3447 case SetIndexEntryVcnRoot: 3448 root = resident_data(attr); 3449 hdr = &root->ihdr; 3450 3451 if (!check_if_index_root(rec, lrh) || 3452 !check_if_root_index(attr, hdr, lrh)) { 3453 goto dirty_vol; 3454 } 3455 3456 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3457 3458 de_set_vbn_le(e, *(__le64 *)data); 3459 mi->dirty = true; 3460 break; 3461 3462 case UpdateFileNameRoot: 3463 root = resident_data(attr); 3464 hdr = &root->ihdr; 3465 3466 if (!check_if_index_root(rec, lrh) || 3467 !check_if_root_index(attr, hdr, lrh)) { 3468 goto dirty_vol; 3469 } 3470 3471 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3472 fname = (struct ATTR_FILE_NAME *)(e + 1); 3473 memmove(&fname->dup, data, sizeof(fname->dup)); // 3474 mi->dirty = true; 3475 break; 3476 3477 case UpdateRecordDataRoot: 3478 root = resident_data(attr); 3479 hdr = &root->ihdr; 3480 3481 if (!check_if_index_root(rec, lrh) || 3482 !check_if_root_index(attr, hdr, lrh)) { 3483 goto dirty_vol; 3484 } 3485 3486 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3487 3488 memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen); 3489 3490 mi->dirty = true; 3491 break; 3492 3493 case ZeroEndOfFileRecord: 3494 if (roff + dlen > record_size) 3495 goto dirty_vol; 3496 3497 memset(attr, 0, dlen); 3498 mi->dirty = true; 3499 break; 3500 3501 case UpdateNonresidentValue: 3502 if (lco < cbo + roff + dlen) 3503 goto dirty_vol; 3504 3505 memcpy(Add2Ptr(buffer_le, roff), data, dlen); 3506 3507 a_dirty = true; 3508 if (attr->type == ATTR_ALLOC) 3509 ntfs_fix_pre_write(buffer_le, bytes); 3510 break; 3511 3512 case AddIndexEntryAllocation: 3513 ib = Add2Ptr(buffer_le, roff); 3514 hdr = &ib->ihdr; 3515 e = data; 3516 esize = le16_to_cpu(e->size); 3517 e1 = Add2Ptr(ib, aoff); 3518 3519 if (is_baad(&ib->rhdr)) 3520 goto dirty_vol; 3521 if (!check_lsn(&ib->rhdr, rlsn)) 3522 goto out; 3523 3524 used = le32_to_cpu(hdr->used); 3525 3526 if (!check_index_buffer(ib, bytes) || 3527 !check_if_alloc_index(hdr, aoff) || 3528 Add2Ptr(e, esize) > Add2Ptr(lrh, rec_len) || 3529 used + esize > le32_to_cpu(hdr->total)) { 3530 goto dirty_vol; 3531 } 3532 3533 memmove(Add2Ptr(e1, esize), e1, 3534 PtrOffset(e1, Add2Ptr(hdr, used))); 3535 memcpy(e1, e, esize); 3536 3537 hdr->used = cpu_to_le32(used + esize); 3538 3539 a_dirty = true; 3540 3541 ntfs_fix_pre_write(&ib->rhdr, bytes); 3542 break; 3543 3544 case DeleteIndexEntryAllocation: 3545 ib = Add2Ptr(buffer_le, roff); 3546 hdr = &ib->ihdr; 3547 e = Add2Ptr(ib, aoff); 3548 esize = le16_to_cpu(e->size); 3549 3550 if (is_baad(&ib->rhdr)) 3551 goto dirty_vol; 3552 if (!check_lsn(&ib->rhdr, rlsn)) 3553 goto out; 3554 3555 if (!check_index_buffer(ib, bytes) || 3556 !check_if_alloc_index(hdr, aoff)) { 3557 goto dirty_vol; 3558 } 3559 3560 e1 = Add2Ptr(e, esize); 3561 nsize = esize; 3562 used = le32_to_cpu(hdr->used); 3563 3564 memmove(e, e1, PtrOffset(e1, Add2Ptr(hdr, used))); 3565 3566 hdr->used = cpu_to_le32(used - nsize); 3567 3568 a_dirty = true; 3569 3570 ntfs_fix_pre_write(&ib->rhdr, bytes); 3571 break; 3572 3573 case WriteEndOfIndexBuffer: 3574 ib = Add2Ptr(buffer_le, roff); 3575 hdr = &ib->ihdr; 3576 e = Add2Ptr(ib, aoff); 3577 3578 if (is_baad(&ib->rhdr)) 3579 goto dirty_vol; 3580 if (!check_lsn(&ib->rhdr, rlsn)) 3581 goto out; 3582 if (!check_index_buffer(ib, bytes) || 3583 !check_if_alloc_index(hdr, aoff) || 3584 aoff + dlen > offsetof(struct INDEX_BUFFER, ihdr) + 3585 le32_to_cpu(hdr->total)) { 3586 goto dirty_vol; 3587 } 3588 3589 hdr->used = cpu_to_le32(dlen + PtrOffset(hdr, e)); 3590 memmove(e, data, dlen); 3591 3592 a_dirty = true; 3593 ntfs_fix_pre_write(&ib->rhdr, bytes); 3594 break; 3595 3596 case SetIndexEntryVcnAllocation: 3597 ib = Add2Ptr(buffer_le, roff); 3598 hdr = &ib->ihdr; 3599 e = Add2Ptr(ib, aoff); 3600 3601 if (is_baad(&ib->rhdr)) 3602 goto dirty_vol; 3603 3604 if (!check_lsn(&ib->rhdr, rlsn)) 3605 goto out; 3606 if (!check_index_buffer(ib, bytes) || 3607 !check_if_alloc_index(hdr, aoff)) { 3608 goto dirty_vol; 3609 } 3610 3611 de_set_vbn_le(e, *(__le64 *)data); 3612 3613 a_dirty = true; 3614 ntfs_fix_pre_write(&ib->rhdr, bytes); 3615 break; 3616 3617 case UpdateFileNameAllocation: 3618 ib = Add2Ptr(buffer_le, roff); 3619 hdr = &ib->ihdr; 3620 e = Add2Ptr(ib, aoff); 3621 3622 if (is_baad(&ib->rhdr)) 3623 goto dirty_vol; 3624 3625 if (!check_lsn(&ib->rhdr, rlsn)) 3626 goto out; 3627 if (!check_index_buffer(ib, bytes) || 3628 !check_if_alloc_index(hdr, aoff)) { 3629 goto dirty_vol; 3630 } 3631 3632 fname = (struct ATTR_FILE_NAME *)(e + 1); 3633 memmove(&fname->dup, data, sizeof(fname->dup)); 3634 3635 a_dirty = true; 3636 ntfs_fix_pre_write(&ib->rhdr, bytes); 3637 break; 3638 3639 case SetBitsInNonresidentBitMap: 3640 off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off); 3641 bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits); 3642 3643 if (cbo + (off + 7) / 8 > lco || 3644 cbo + ((off + bits + 7) / 8) > lco) { 3645 goto dirty_vol; 3646 } 3647 3648 ntfs_bitmap_set_le(Add2Ptr(buffer_le, roff), off, bits); 3649 a_dirty = true; 3650 break; 3651 3652 case ClearBitsInNonresidentBitMap: 3653 off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off); 3654 bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits); 3655 3656 if (cbo + (off + 7) / 8 > lco || 3657 cbo + ((off + bits + 7) / 8) > lco) { 3658 goto dirty_vol; 3659 } 3660 3661 ntfs_bitmap_clear_le(Add2Ptr(buffer_le, roff), off, bits); 3662 a_dirty = true; 3663 break; 3664 3665 case UpdateRecordDataAllocation: 3666 ib = Add2Ptr(buffer_le, roff); 3667 hdr = &ib->ihdr; 3668 e = Add2Ptr(ib, aoff); 3669 3670 if (is_baad(&ib->rhdr)) 3671 goto dirty_vol; 3672 3673 if (!check_lsn(&ib->rhdr, rlsn)) 3674 goto out; 3675 if (!check_index_buffer(ib, bytes) || 3676 !check_if_alloc_index(hdr, aoff)) { 3677 goto dirty_vol; 3678 } 3679 3680 memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen); 3681 3682 a_dirty = true; 3683 ntfs_fix_pre_write(&ib->rhdr, bytes); 3684 break; 3685 3686 default: 3687 WARN_ON(1); 3688 } 3689 3690 if (rlsn) { 3691 __le64 t64 = cpu_to_le64(*rlsn); 3692 3693 if (rec) 3694 rec->rhdr.lsn = t64; 3695 if (ib) 3696 ib->rhdr.lsn = t64; 3697 } 3698 3699 if (mi && mi->dirty) { 3700 err = mi_write(mi, 0); 3701 if (err) 3702 goto out; 3703 } 3704 3705 if (a_dirty) { 3706 attr = oa->attr; 3707 err = ntfs_sb_write_run(sbi, oa->run1, vbo, buffer_le, bytes, 3708 0); 3709 if (err) 3710 goto out; 3711 } 3712 3713 out: 3714 3715 if (inode) 3716 iput(inode); 3717 else if (mi != mi2_child) 3718 mi_put(mi); 3719 3720 kfree(buffer_le); 3721 3722 return err; 3723 3724 dirty_vol: 3725 log->set_dirty = true; 3726 goto out; 3727 } 3728 3729 /* 3730 * log_replay - Replays log and empties it. 3731 * 3732 * This function is called during mount operation. 3733 * It replays log and empties it. 3734 * Initialized is set false if logfile contains '-1'. 3735 */ 3736 int log_replay(struct ntfs_inode *ni, bool *initialized) 3737 { 3738 int err; 3739 struct ntfs_sb_info *sbi = ni->mi.sbi; 3740 struct ntfs_log *log; 3741 3742 u64 rec_lsn, checkpt_lsn = 0, rlsn = 0; 3743 struct ATTR_NAME_ENTRY *attr_names = NULL; 3744 u32 attr_names_bytes = 0; 3745 u32 oatbl_bytes = 0; 3746 struct RESTART_TABLE *dptbl = NULL; 3747 struct RESTART_TABLE *trtbl = NULL; 3748 const struct RESTART_TABLE *rt; 3749 struct RESTART_TABLE *oatbl = NULL; 3750 struct inode *inode; 3751 struct OpenAttr *oa; 3752 struct ntfs_inode *ni_oe; 3753 struct ATTRIB *attr = NULL; 3754 u64 size, vcn, undo_next_lsn; 3755 CLST rno, lcn, lcn0, len0, clen; 3756 void *data; 3757 struct NTFS_RESTART *rst = NULL; 3758 struct lcb *lcb = NULL; 3759 struct OPEN_ATTR_ENRTY *oe; 3760 struct ATTR_NAME_ENTRY *ane; 3761 struct TRANSACTION_ENTRY *tr; 3762 struct DIR_PAGE_ENTRY *dp; 3763 u32 i, bytes_per_attr_entry; 3764 u32 vbo, tail, off, dlen; 3765 u32 saved_len, rec_len, transact_id; 3766 bool use_second_page; 3767 struct RESTART_AREA *ra2, *ra = NULL; 3768 struct CLIENT_REC *ca, *cr; 3769 __le16 client; 3770 struct RESTART_HDR *rh; 3771 const struct LFS_RECORD_HDR *frh; 3772 const struct LOG_REC_HDR *lrh; 3773 bool is_mapped; 3774 bool is_ro = sb_rdonly(sbi->sb); 3775 u64 t64; 3776 u16 t16; 3777 u32 t32; 3778 3779 log = kzalloc(sizeof(struct ntfs_log), GFP_NOFS); 3780 if (!log) 3781 return -ENOMEM; 3782 3783 log->ni = ni; 3784 log->l_size = log->orig_file_size = ni->vfs_inode.i_size; 3785 3786 /* Get the size of page. NOTE: To replay we can use default page. */ 3787 #if PAGE_SIZE >= DefaultLogPageSize && PAGE_SIZE <= DefaultLogPageSize * 2 3788 log->page_size = norm_file_page(PAGE_SIZE, &log->l_size, true); 3789 #else 3790 log->page_size = norm_file_page(PAGE_SIZE, &log->l_size, false); 3791 #endif 3792 if (!log->page_size) { 3793 err = -EINVAL; 3794 goto out; 3795 } 3796 3797 log->one_page_buf = kmalloc(log->page_size, GFP_NOFS); 3798 if (!log->one_page_buf) { 3799 err = -ENOMEM; 3800 goto out; 3801 } 3802 3803 log->page_mask = log->page_size - 1; 3804 log->page_bits = blksize_bits(log->page_size); 3805 3806 /* Look for a restart area on the disk. */ 3807 err = log_read_rst(log, true, &log->rst_info); 3808 if (err) 3809 goto out; 3810 3811 /* remember 'initialized' */ 3812 *initialized = log->rst_info.initialized; 3813 3814 if (!log->rst_info.restart) { 3815 if (log->rst_info.initialized) { 3816 /* No restart area but the file is not initialized. */ 3817 err = -EINVAL; 3818 goto out; 3819 } 3820 3821 log_init_pg_hdr(log, 1, 1); 3822 log_create(log, 0, get_random_u32(), false, false); 3823 3824 ra = log_create_ra(log); 3825 if (!ra) { 3826 err = -ENOMEM; 3827 goto out; 3828 } 3829 log->ra = ra; 3830 log->init_ra = true; 3831 3832 goto process_log; 3833 } 3834 3835 /* 3836 * If the restart offset above wasn't zero then we won't 3837 * look for a second restart. 3838 */ 3839 if (log->rst_info.vbo) 3840 goto check_restart_area; 3841 3842 err = log_read_rst(log, false, &log->rst_info2); 3843 if (err) 3844 goto out; 3845 3846 /* Determine which restart area to use. */ 3847 if (!log->rst_info2.restart || 3848 log->rst_info2.last_lsn <= log->rst_info.last_lsn) 3849 goto use_first_page; 3850 3851 use_second_page = true; 3852 3853 if (log->rst_info.chkdsk_was_run && 3854 log->page_size != log->rst_info.vbo) { 3855 struct RECORD_PAGE_HDR *sp = NULL; 3856 bool usa_error; 3857 3858 if (!read_log_page(log, log->page_size, &sp, &usa_error) && 3859 sp->rhdr.sign == NTFS_CHKD_SIGNATURE) { 3860 use_second_page = false; 3861 } 3862 kfree(sp); 3863 } 3864 3865 if (use_second_page) { 3866 kfree(log->rst_info.r_page); 3867 memcpy(&log->rst_info, &log->rst_info2, 3868 sizeof(struct restart_info)); 3869 log->rst_info2.r_page = NULL; 3870 } 3871 3872 use_first_page: 3873 kfree(log->rst_info2.r_page); 3874 3875 check_restart_area: 3876 /* 3877 * If the restart area is at offset 0, we want 3878 * to write the second restart area first. 3879 */ 3880 log->init_ra = !!log->rst_info.vbo; 3881 3882 /* If we have a valid page then grab a pointer to the restart area. */ 3883 ra2 = log->rst_info.valid_page ? 3884 Add2Ptr(log->rst_info.r_page, 3885 le16_to_cpu(log->rst_info.r_page->ra_off)) : 3886 NULL; 3887 3888 if (log->rst_info.chkdsk_was_run || 3889 (ra2 && ra2->client_idx[1] == LFS_NO_CLIENT_LE)) { 3890 bool wrapped = false; 3891 bool use_multi_page = false; 3892 u32 open_log_count; 3893 3894 /* Do some checks based on whether we have a valid log page. */ 3895 open_log_count = log->rst_info.valid_page ? 3896 le32_to_cpu(ra2->open_log_count) : 3897 get_random_u32(); 3898 3899 log_init_pg_hdr(log, 1, 1); 3900 3901 log_create(log, log->rst_info.last_lsn, open_log_count, wrapped, 3902 use_multi_page); 3903 3904 ra = log_create_ra(log); 3905 if (!ra) { 3906 err = -ENOMEM; 3907 goto out; 3908 } 3909 log->ra = ra; 3910 3911 /* Put the restart areas and initialize 3912 * the log file as required. 3913 */ 3914 goto process_log; 3915 } 3916 3917 if (!ra2) { 3918 err = -EINVAL; 3919 goto out; 3920 } 3921 3922 /* 3923 * If the log page or the system page sizes have changed, we can't 3924 * use the log file. We must use the system page size instead of the 3925 * default size if there is not a clean shutdown. 3926 */ 3927 t32 = le32_to_cpu(log->rst_info.r_page->sys_page_size); 3928 if (log->page_size != t32) { 3929 log->l_size = log->orig_file_size; 3930 log->page_size = norm_file_page(t32, &log->l_size, 3931 t32 == DefaultLogPageSize); 3932 } 3933 3934 if (log->page_size != t32 || 3935 log->page_size != le32_to_cpu(log->rst_info.r_page->page_size)) { 3936 err = -EINVAL; 3937 goto out; 3938 } 3939 3940 log->page_mask = log->page_size - 1; 3941 log->page_bits = blksize_bits(log->page_size); 3942 3943 /* If the file size has shrunk then we won't mount it. */ 3944 if (log->l_size < le64_to_cpu(ra2->l_size)) { 3945 err = -EINVAL; 3946 goto out; 3947 } 3948 3949 log_init_pg_hdr(log, le16_to_cpu(log->rst_info.r_page->major_ver), 3950 le16_to_cpu(log->rst_info.r_page->minor_ver)); 3951 3952 log->l_size = le64_to_cpu(ra2->l_size); 3953 log->seq_num_bits = le32_to_cpu(ra2->seq_num_bits); 3954 log->file_data_bits = sizeof(u64) * 8 - log->seq_num_bits; 3955 log->seq_num_mask = (8 << log->file_data_bits) - 1; 3956 log->last_lsn = le64_to_cpu(ra2->current_lsn); 3957 log->seq_num = log->last_lsn >> log->file_data_bits; 3958 log->ra_off = le16_to_cpu(log->rst_info.r_page->ra_off); 3959 log->restart_size = log->sys_page_size - log->ra_off; 3960 log->record_header_len = le16_to_cpu(ra2->rec_hdr_len); 3961 log->ra_size = le16_to_cpu(ra2->ra_len); 3962 log->data_off = le16_to_cpu(ra2->data_off); 3963 log->data_size = log->page_size - log->data_off; 3964 log->reserved = log->data_size - log->record_header_len; 3965 3966 vbo = lsn_to_vbo(log, log->last_lsn); 3967 3968 if (vbo < log->first_page) { 3969 /* This is a pseudo lsn. */ 3970 log->l_flags |= NTFSLOG_NO_LAST_LSN; 3971 log->next_page = log->first_page; 3972 goto find_oldest; 3973 } 3974 3975 /* Find the end of this log record. */ 3976 off = final_log_off(log, log->last_lsn, 3977 le32_to_cpu(ra2->last_lsn_data_len)); 3978 3979 /* If we wrapped the file then increment the sequence number. */ 3980 if (off <= vbo) { 3981 log->seq_num += 1; 3982 log->l_flags |= NTFSLOG_WRAPPED; 3983 } 3984 3985 /* Now compute the next log page to use. */ 3986 vbo &= ~log->sys_page_mask; 3987 tail = log->page_size - (off & log->page_mask) - 1; 3988 3989 /* 3990 *If we can fit another log record on the page, 3991 * move back a page the log file. 3992 */ 3993 if (tail >= log->record_header_len) { 3994 log->l_flags |= NTFSLOG_REUSE_TAIL; 3995 log->next_page = vbo; 3996 } else { 3997 log->next_page = next_page_off(log, vbo); 3998 } 3999 4000 find_oldest: 4001 /* 4002 * Find the oldest client lsn. Use the last 4003 * flushed lsn as a starting point. 4004 */ 4005 log->oldest_lsn = log->last_lsn; 4006 oldest_client_lsn(Add2Ptr(ra2, le16_to_cpu(ra2->client_off)), 4007 ra2->client_idx[1], &log->oldest_lsn); 4008 log->oldest_lsn_off = lsn_to_vbo(log, log->oldest_lsn); 4009 4010 if (log->oldest_lsn_off < log->first_page) 4011 log->l_flags |= NTFSLOG_NO_OLDEST_LSN; 4012 4013 if (!(ra2->flags & RESTART_SINGLE_PAGE_IO)) 4014 log->l_flags |= NTFSLOG_WRAPPED | NTFSLOG_MULTIPLE_PAGE_IO; 4015 4016 log->current_openlog_count = le32_to_cpu(ra2->open_log_count); 4017 log->total_avail_pages = log->l_size - log->first_page; 4018 log->total_avail = log->total_avail_pages >> log->page_bits; 4019 log->max_current_avail = log->total_avail * log->reserved; 4020 log->total_avail = log->total_avail * log->data_size; 4021 4022 log->current_avail = current_log_avail(log); 4023 4024 ra = kzalloc(log->restart_size, GFP_NOFS); 4025 if (!ra) { 4026 err = -ENOMEM; 4027 goto out; 4028 } 4029 log->ra = ra; 4030 4031 t16 = le16_to_cpu(ra2->client_off); 4032 if (t16 == offsetof(struct RESTART_AREA, clients)) { 4033 memcpy(ra, ra2, log->ra_size); 4034 } else { 4035 memcpy(ra, ra2, offsetof(struct RESTART_AREA, clients)); 4036 memcpy(ra->clients, Add2Ptr(ra2, t16), 4037 le16_to_cpu(ra2->ra_len) - t16); 4038 4039 log->current_openlog_count = get_random_u32(); 4040 ra->open_log_count = cpu_to_le32(log->current_openlog_count); 4041 log->ra_size = offsetof(struct RESTART_AREA, clients) + 4042 sizeof(struct CLIENT_REC); 4043 ra->client_off = 4044 cpu_to_le16(offsetof(struct RESTART_AREA, clients)); 4045 ra->ra_len = cpu_to_le16(log->ra_size); 4046 } 4047 4048 le32_add_cpu(&ra->open_log_count, 1); 4049 4050 /* Now we need to walk through looking for the last lsn. */ 4051 err = last_log_lsn(log); 4052 if (err) 4053 goto out; 4054 4055 log->current_avail = current_log_avail(log); 4056 4057 /* Remember which restart area to write first. */ 4058 log->init_ra = log->rst_info.vbo; 4059 4060 process_log: 4061 /* 1.0, 1.1, 2.0 log->major_ver/minor_ver - short values. */ 4062 switch ((log->major_ver << 16) + log->minor_ver) { 4063 case 0x10000: 4064 case 0x10001: 4065 case 0x20000: 4066 break; 4067 default: 4068 ntfs_warn(sbi->sb, "\x24LogFile version %d.%d is not supported", 4069 log->major_ver, log->minor_ver); 4070 err = -EOPNOTSUPP; 4071 log->set_dirty = true; 4072 goto out; 4073 } 4074 4075 /* One client "NTFS" per logfile. */ 4076 ca = Add2Ptr(ra, le16_to_cpu(ra->client_off)); 4077 4078 for (client = ra->client_idx[1];; client = cr->next_client) { 4079 if (client == LFS_NO_CLIENT_LE) { 4080 /* Insert "NTFS" client LogFile. */ 4081 client = ra->client_idx[0]; 4082 if (client == LFS_NO_CLIENT_LE) { 4083 err = -EINVAL; 4084 goto out; 4085 } 4086 4087 t16 = le16_to_cpu(client); 4088 cr = ca + t16; 4089 4090 remove_client(ca, cr, &ra->client_idx[0]); 4091 4092 cr->restart_lsn = 0; 4093 cr->oldest_lsn = cpu_to_le64(log->oldest_lsn); 4094 cr->name_bytes = cpu_to_le32(8); 4095 cr->name[0] = cpu_to_le16('N'); 4096 cr->name[1] = cpu_to_le16('T'); 4097 cr->name[2] = cpu_to_le16('F'); 4098 cr->name[3] = cpu_to_le16('S'); 4099 4100 add_client(ca, t16, &ra->client_idx[1]); 4101 break; 4102 } 4103 4104 cr = ca + le16_to_cpu(client); 4105 4106 if (cpu_to_le32(8) == cr->name_bytes && 4107 cpu_to_le16('N') == cr->name[0] && 4108 cpu_to_le16('T') == cr->name[1] && 4109 cpu_to_le16('F') == cr->name[2] && 4110 cpu_to_le16('S') == cr->name[3]) 4111 break; 4112 } 4113 4114 /* Update the client handle with the client block information. */ 4115 log->client_id.seq_num = cr->seq_num; 4116 log->client_id.client_idx = client; 4117 4118 err = read_rst_area(log, &rst, &checkpt_lsn); 4119 if (err) 4120 goto out; 4121 4122 if (!rst) 4123 goto out; 4124 4125 bytes_per_attr_entry = !rst->major_ver ? 0x2C : 0x28; 4126 4127 if (rst->check_point_start) 4128 checkpt_lsn = le64_to_cpu(rst->check_point_start); 4129 4130 /* Allocate and Read the Transaction Table. */ 4131 if (!rst->transact_table_len) 4132 goto check_dirty_page_table; 4133 4134 t64 = le64_to_cpu(rst->transact_table_lsn); 4135 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); 4136 if (err) 4137 goto out; 4138 4139 lrh = lcb->log_rec; 4140 frh = lcb->lrh; 4141 rec_len = le32_to_cpu(frh->client_data_len); 4142 4143 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), 4144 bytes_per_attr_entry)) { 4145 err = -EINVAL; 4146 goto out; 4147 } 4148 4149 t16 = le16_to_cpu(lrh->redo_off); 4150 4151 rt = Add2Ptr(lrh, t16); 4152 t32 = rec_len - t16; 4153 4154 /* Now check that this is a valid restart table. */ 4155 if (!check_rstbl(rt, t32)) { 4156 err = -EINVAL; 4157 goto out; 4158 } 4159 4160 trtbl = kmemdup(rt, t32, GFP_NOFS); 4161 if (!trtbl) { 4162 err = -ENOMEM; 4163 goto out; 4164 } 4165 4166 lcb_put(lcb); 4167 lcb = NULL; 4168 4169 check_dirty_page_table: 4170 /* The next record back should be the Dirty Pages Table. */ 4171 if (!rst->dirty_pages_len) 4172 goto check_attribute_names; 4173 4174 t64 = le64_to_cpu(rst->dirty_pages_table_lsn); 4175 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); 4176 if (err) 4177 goto out; 4178 4179 lrh = lcb->log_rec; 4180 frh = lcb->lrh; 4181 rec_len = le32_to_cpu(frh->client_data_len); 4182 4183 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), 4184 bytes_per_attr_entry)) { 4185 err = -EINVAL; 4186 goto out; 4187 } 4188 4189 t16 = le16_to_cpu(lrh->redo_off); 4190 4191 rt = Add2Ptr(lrh, t16); 4192 t32 = rec_len - t16; 4193 4194 /* Now check that this is a valid restart table. */ 4195 if (!check_rstbl(rt, t32)) { 4196 err = -EINVAL; 4197 goto out; 4198 } 4199 4200 dptbl = kmemdup(rt, t32, GFP_NOFS); 4201 if (!dptbl) { 4202 err = -ENOMEM; 4203 goto out; 4204 } 4205 4206 /* Convert Ra version '0' into version '1'. */ 4207 if (rst->major_ver) 4208 goto end_conv_1; 4209 4210 dp = NULL; 4211 while ((dp = enum_rstbl(dptbl, dp))) { 4212 struct DIR_PAGE_ENTRY_32 *dp0 = (struct DIR_PAGE_ENTRY_32 *)dp; 4213 // NOTE: Danger. Check for of boundary. 4214 memmove(&dp->vcn, &dp0->vcn_low, 4215 2 * sizeof(u64) + 4216 le32_to_cpu(dp->lcns_follow) * sizeof(u64)); 4217 } 4218 4219 end_conv_1: 4220 lcb_put(lcb); 4221 lcb = NULL; 4222 4223 /* 4224 * Go through the table and remove the duplicates, 4225 * remembering the oldest lsn values. 4226 */ 4227 if (sbi->cluster_size <= log->page_size) 4228 goto trace_dp_table; 4229 4230 dp = NULL; 4231 while ((dp = enum_rstbl(dptbl, dp))) { 4232 struct DIR_PAGE_ENTRY *next = dp; 4233 4234 while ((next = enum_rstbl(dptbl, next))) { 4235 if (next->target_attr == dp->target_attr && 4236 next->vcn == dp->vcn) { 4237 if (le64_to_cpu(next->oldest_lsn) < 4238 le64_to_cpu(dp->oldest_lsn)) { 4239 dp->oldest_lsn = next->oldest_lsn; 4240 } 4241 4242 free_rsttbl_idx(dptbl, PtrOffset(dptbl, next)); 4243 } 4244 } 4245 } 4246 trace_dp_table: 4247 check_attribute_names: 4248 /* The next record should be the Attribute Names. */ 4249 if (!rst->attr_names_len) 4250 goto check_attr_table; 4251 4252 t64 = le64_to_cpu(rst->attr_names_lsn); 4253 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); 4254 if (err) 4255 goto out; 4256 4257 lrh = lcb->log_rec; 4258 frh = lcb->lrh; 4259 rec_len = le32_to_cpu(frh->client_data_len); 4260 4261 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), 4262 bytes_per_attr_entry)) { 4263 err = -EINVAL; 4264 goto out; 4265 } 4266 4267 t32 = lrh_length(lrh); 4268 rec_len -= t32; 4269 4270 attr_names = kmemdup(Add2Ptr(lrh, t32), rec_len, GFP_NOFS); 4271 if (!attr_names) { 4272 err = -ENOMEM; 4273 goto out; 4274 } 4275 4276 lcb_put(lcb); 4277 lcb = NULL; 4278 4279 check_attr_table: 4280 /* The next record should be the attribute Table. */ 4281 if (!rst->open_attr_len) 4282 goto check_attribute_names2; 4283 4284 t64 = le64_to_cpu(rst->open_attr_table_lsn); 4285 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); 4286 if (err) 4287 goto out; 4288 4289 lrh = lcb->log_rec; 4290 frh = lcb->lrh; 4291 rec_len = le32_to_cpu(frh->client_data_len); 4292 4293 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), 4294 bytes_per_attr_entry)) { 4295 err = -EINVAL; 4296 goto out; 4297 } 4298 4299 t16 = le16_to_cpu(lrh->redo_off); 4300 4301 rt = Add2Ptr(lrh, t16); 4302 t32 = rec_len - t16; 4303 4304 if (!check_rstbl(rt, t32)) { 4305 err = -EINVAL; 4306 goto out; 4307 } 4308 4309 oatbl = kmemdup(rt, t32, GFP_NOFS); 4310 if (!oatbl) { 4311 err = -ENOMEM; 4312 goto out; 4313 } 4314 4315 log->open_attr_tbl = oatbl; 4316 4317 /* Clear all of the Attr pointers. */ 4318 oe = NULL; 4319 while ((oe = enum_rstbl(oatbl, oe))) { 4320 if (!rst->major_ver) { 4321 struct OPEN_ATTR_ENRTY_32 oe0; 4322 4323 /* Really 'oe' points to OPEN_ATTR_ENRTY_32. */ 4324 memcpy(&oe0, oe, SIZEOF_OPENATTRIBUTEENTRY0); 4325 4326 oe->bytes_per_index = oe0.bytes_per_index; 4327 oe->type = oe0.type; 4328 oe->is_dirty_pages = oe0.is_dirty_pages; 4329 oe->name_len = 0; 4330 oe->ref = oe0.ref; 4331 oe->open_record_lsn = oe0.open_record_lsn; 4332 } 4333 4334 oe->is_attr_name = 0; 4335 oe->ptr = NULL; 4336 } 4337 4338 lcb_put(lcb); 4339 lcb = NULL; 4340 4341 check_attribute_names2: 4342 if (attr_names && oatbl) { 4343 off = 0; 4344 for (;;) { 4345 /* Check we can use attribute name entry 'ane'. */ 4346 static_assert(sizeof(*ane) == 4); 4347 if (off + sizeof(*ane) > attr_names_bytes) { 4348 /* just ignore the rest. */ 4349 break; 4350 } 4351 4352 ane = Add2Ptr(attr_names, off); 4353 t16 = le16_to_cpu(ane->off); 4354 if (!t16) { 4355 /* this is the only valid exit. */ 4356 break; 4357 } 4358 4359 /* Check we can use open attribute entry 'oe'. */ 4360 if (t16 + sizeof(*oe) > oatbl_bytes) { 4361 /* just ignore the rest. */ 4362 break; 4363 } 4364 4365 /* TODO: Clear table on exit! */ 4366 oe = Add2Ptr(oatbl, t16); 4367 t16 = le16_to_cpu(ane->name_bytes); 4368 off += t16 + sizeof(*ane); 4369 if (off > attr_names_bytes) { 4370 /* just ignore the rest. */ 4371 break; 4372 } 4373 oe->name_len = t16 / sizeof(short); 4374 oe->ptr = ane->name; 4375 oe->is_attr_name = 2; 4376 } 4377 } 4378 4379 /* 4380 * If the checkpt_lsn is zero, then this is a freshly 4381 * formatted disk and we have no work to do. 4382 */ 4383 if (!checkpt_lsn) { 4384 err = 0; 4385 goto out; 4386 } 4387 4388 if (!oatbl) { 4389 oatbl = init_rsttbl(bytes_per_attr_entry, 8); 4390 if (!oatbl) { 4391 err = -ENOMEM; 4392 goto out; 4393 } 4394 } 4395 4396 log->open_attr_tbl = oatbl; 4397 4398 /* Start the analysis pass from the Checkpoint lsn. */ 4399 rec_lsn = checkpt_lsn; 4400 4401 /* Read the first lsn. */ 4402 err = read_log_rec_lcb(log, checkpt_lsn, lcb_ctx_next, &lcb); 4403 if (err) 4404 goto out; 4405 4406 /* Loop to read all subsequent records to the end of the log file. */ 4407 next_log_record_analyze: 4408 err = read_next_log_rec(log, lcb, &rec_lsn); 4409 if (err) 4410 goto out; 4411 4412 if (!rec_lsn) 4413 goto end_log_records_enumerate; 4414 4415 frh = lcb->lrh; 4416 transact_id = le32_to_cpu(frh->transact_id); 4417 rec_len = le32_to_cpu(frh->client_data_len); 4418 lrh = lcb->log_rec; 4419 4420 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) { 4421 err = -EINVAL; 4422 goto out; 4423 } 4424 4425 /* 4426 * The first lsn after the previous lsn remembered 4427 * the checkpoint is the first candidate for the rlsn. 4428 */ 4429 if (!rlsn) 4430 rlsn = rec_lsn; 4431 4432 if (LfsClientRecord != frh->record_type) 4433 goto next_log_record_analyze; 4434 4435 /* 4436 * Now update the Transaction Table for this transaction. If there 4437 * is no entry present or it is unallocated we allocate the entry. 4438 */ 4439 if (!trtbl) { 4440 trtbl = init_rsttbl(sizeof(struct TRANSACTION_ENTRY), 4441 INITIAL_NUMBER_TRANSACTIONS); 4442 if (!trtbl) { 4443 err = -ENOMEM; 4444 goto out; 4445 } 4446 } 4447 4448 tr = Add2Ptr(trtbl, transact_id); 4449 4450 if (transact_id >= bytes_per_rt(trtbl) || 4451 tr->next != RESTART_ENTRY_ALLOCATED_LE) { 4452 tr = alloc_rsttbl_from_idx(&trtbl, transact_id); 4453 if (!tr) { 4454 err = -ENOMEM; 4455 goto out; 4456 } 4457 tr->transact_state = TransactionActive; 4458 tr->first_lsn = cpu_to_le64(rec_lsn); 4459 } 4460 4461 tr->prev_lsn = tr->undo_next_lsn = cpu_to_le64(rec_lsn); 4462 4463 /* 4464 * If this is a compensation log record, then change 4465 * the undo_next_lsn to be the undo_next_lsn of this record. 4466 */ 4467 if (lrh->undo_op == cpu_to_le16(CompensationLogRecord)) 4468 tr->undo_next_lsn = frh->client_undo_next_lsn; 4469 4470 /* Dispatch to handle log record depending on type. */ 4471 switch (le16_to_cpu(lrh->redo_op)) { 4472 case InitializeFileRecordSegment: 4473 case DeallocateFileRecordSegment: 4474 case WriteEndOfFileRecordSegment: 4475 case CreateAttribute: 4476 case DeleteAttribute: 4477 case UpdateResidentValue: 4478 case UpdateNonresidentValue: 4479 case UpdateMappingPairs: 4480 case SetNewAttributeSizes: 4481 case AddIndexEntryRoot: 4482 case DeleteIndexEntryRoot: 4483 case AddIndexEntryAllocation: 4484 case DeleteIndexEntryAllocation: 4485 case WriteEndOfIndexBuffer: 4486 case SetIndexEntryVcnRoot: 4487 case SetIndexEntryVcnAllocation: 4488 case UpdateFileNameRoot: 4489 case UpdateFileNameAllocation: 4490 case SetBitsInNonresidentBitMap: 4491 case ClearBitsInNonresidentBitMap: 4492 case UpdateRecordDataRoot: 4493 case UpdateRecordDataAllocation: 4494 case ZeroEndOfFileRecord: 4495 t16 = le16_to_cpu(lrh->target_attr); 4496 t64 = le64_to_cpu(lrh->target_vcn); 4497 dp = find_dp(dptbl, t16, t64); 4498 4499 if (dp) 4500 goto copy_lcns; 4501 4502 /* 4503 * Calculate the number of clusters per page the system 4504 * which wrote the checkpoint, possibly creating the table. 4505 */ 4506 if (dptbl) { 4507 t32 = (le16_to_cpu(dptbl->size) - 4508 sizeof(struct DIR_PAGE_ENTRY)) / 4509 sizeof(u64); 4510 } else { 4511 t32 = log->clst_per_page; 4512 kfree(dptbl); 4513 dptbl = init_rsttbl(struct_size(dp, page_lcns, t32), 4514 32); 4515 if (!dptbl) { 4516 err = -ENOMEM; 4517 goto out; 4518 } 4519 } 4520 4521 dp = alloc_rsttbl_idx(&dptbl); 4522 if (!dp) { 4523 err = -ENOMEM; 4524 goto out; 4525 } 4526 dp->target_attr = cpu_to_le32(t16); 4527 dp->transfer_len = cpu_to_le32(t32 << sbi->cluster_bits); 4528 dp->lcns_follow = cpu_to_le32(t32); 4529 dp->vcn = cpu_to_le64(t64 & ~((u64)t32 - 1)); 4530 dp->oldest_lsn = cpu_to_le64(rec_lsn); 4531 4532 copy_lcns: 4533 /* 4534 * Copy the Lcns from the log record into the Dirty Page Entry. 4535 * TODO: For different page size support, must somehow make 4536 * whole routine a loop, case Lcns do not fit below. 4537 */ 4538 t16 = le16_to_cpu(lrh->lcns_follow); 4539 for (i = 0; i < t16; i++) { 4540 size_t j = (size_t)(le64_to_cpu(lrh->target_vcn) - 4541 le64_to_cpu(dp->vcn)); 4542 dp->page_lcns[j + i] = lrh->page_lcns[i]; 4543 } 4544 4545 goto next_log_record_analyze; 4546 4547 case DeleteDirtyClusters: { 4548 u32 range_count = 4549 le16_to_cpu(lrh->redo_len) / sizeof(struct LCN_RANGE); 4550 const struct LCN_RANGE *r = 4551 Add2Ptr(lrh, le16_to_cpu(lrh->redo_off)); 4552 4553 /* Loop through all of the Lcn ranges this log record. */ 4554 for (i = 0; i < range_count; i++, r++) { 4555 u64 lcn0 = le64_to_cpu(r->lcn); 4556 u64 lcn_e = lcn0 + le64_to_cpu(r->len) - 1; 4557 4558 dp = NULL; 4559 while ((dp = enum_rstbl(dptbl, dp))) { 4560 u32 j; 4561 4562 t32 = le32_to_cpu(dp->lcns_follow); 4563 for (j = 0; j < t32; j++) { 4564 t64 = le64_to_cpu(dp->page_lcns[j]); 4565 if (t64 >= lcn0 && t64 <= lcn_e) 4566 dp->page_lcns[j] = 0; 4567 } 4568 } 4569 } 4570 goto next_log_record_analyze; 4571 ; 4572 } 4573 4574 case OpenNonresidentAttribute: 4575 t16 = le16_to_cpu(lrh->target_attr); 4576 if (t16 >= bytes_per_rt(oatbl)) { 4577 /* 4578 * Compute how big the table needs to be. 4579 * Add 10 extra entries for some cushion. 4580 */ 4581 u32 new_e = t16 / le16_to_cpu(oatbl->size); 4582 4583 new_e += 10 - le16_to_cpu(oatbl->used); 4584 4585 oatbl = extend_rsttbl(oatbl, new_e, ~0u); 4586 log->open_attr_tbl = oatbl; 4587 if (!oatbl) { 4588 err = -ENOMEM; 4589 goto out; 4590 } 4591 } 4592 4593 /* Point to the entry being opened. */ 4594 oe = alloc_rsttbl_from_idx(&oatbl, t16); 4595 log->open_attr_tbl = oatbl; 4596 if (!oe) { 4597 err = -ENOMEM; 4598 goto out; 4599 } 4600 4601 /* Initialize this entry from the log record. */ 4602 t16 = le16_to_cpu(lrh->redo_off); 4603 if (!rst->major_ver) { 4604 /* Convert version '0' into version '1'. */ 4605 struct OPEN_ATTR_ENRTY_32 *oe0 = Add2Ptr(lrh, t16); 4606 4607 oe->bytes_per_index = oe0->bytes_per_index; 4608 oe->type = oe0->type; 4609 oe->is_dirty_pages = oe0->is_dirty_pages; 4610 oe->name_len = 0; //oe0.name_len; 4611 oe->ref = oe0->ref; 4612 oe->open_record_lsn = oe0->open_record_lsn; 4613 } else { 4614 memcpy(oe, Add2Ptr(lrh, t16), bytes_per_attr_entry); 4615 } 4616 4617 t16 = le16_to_cpu(lrh->undo_len); 4618 if (t16) { 4619 oe->ptr = kmalloc(t16, GFP_NOFS); 4620 if (!oe->ptr) { 4621 err = -ENOMEM; 4622 goto out; 4623 } 4624 oe->name_len = t16 / sizeof(short); 4625 memcpy(oe->ptr, 4626 Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)), t16); 4627 oe->is_attr_name = 1; 4628 } else { 4629 oe->ptr = NULL; 4630 oe->is_attr_name = 0; 4631 } 4632 4633 goto next_log_record_analyze; 4634 4635 case HotFix: 4636 t16 = le16_to_cpu(lrh->target_attr); 4637 t64 = le64_to_cpu(lrh->target_vcn); 4638 dp = find_dp(dptbl, t16, t64); 4639 if (dp) { 4640 size_t j = le64_to_cpu(lrh->target_vcn) - 4641 le64_to_cpu(dp->vcn); 4642 if (dp->page_lcns[j]) 4643 dp->page_lcns[j] = lrh->page_lcns[0]; 4644 } 4645 goto next_log_record_analyze; 4646 4647 case EndTopLevelAction: 4648 tr = Add2Ptr(trtbl, transact_id); 4649 tr->prev_lsn = cpu_to_le64(rec_lsn); 4650 tr->undo_next_lsn = frh->client_undo_next_lsn; 4651 goto next_log_record_analyze; 4652 4653 case PrepareTransaction: 4654 tr = Add2Ptr(trtbl, transact_id); 4655 tr->transact_state = TransactionPrepared; 4656 goto next_log_record_analyze; 4657 4658 case CommitTransaction: 4659 tr = Add2Ptr(trtbl, transact_id); 4660 tr->transact_state = TransactionCommitted; 4661 goto next_log_record_analyze; 4662 4663 case ForgetTransaction: 4664 free_rsttbl_idx(trtbl, transact_id); 4665 goto next_log_record_analyze; 4666 4667 case Noop: 4668 case OpenAttributeTableDump: 4669 case AttributeNamesDump: 4670 case DirtyPageTableDump: 4671 case TransactionTableDump: 4672 /* The following cases require no action the Analysis Pass. */ 4673 goto next_log_record_analyze; 4674 4675 default: 4676 /* 4677 * All codes will be explicitly handled. 4678 * If we see a code we do not expect, then we are trouble. 4679 */ 4680 goto next_log_record_analyze; 4681 } 4682 4683 end_log_records_enumerate: 4684 lcb_put(lcb); 4685 lcb = NULL; 4686 4687 /* 4688 * Scan the Dirty Page Table and Transaction Table for 4689 * the lowest lsn, and return it as the Redo lsn. 4690 */ 4691 dp = NULL; 4692 while ((dp = enum_rstbl(dptbl, dp))) { 4693 t64 = le64_to_cpu(dp->oldest_lsn); 4694 if (t64 && t64 < rlsn) 4695 rlsn = t64; 4696 } 4697 4698 tr = NULL; 4699 while ((tr = enum_rstbl(trtbl, tr))) { 4700 t64 = le64_to_cpu(tr->first_lsn); 4701 if (t64 && t64 < rlsn) 4702 rlsn = t64; 4703 } 4704 4705 /* 4706 * Only proceed if the Dirty Page Table or Transaction 4707 * table are not empty. 4708 */ 4709 if ((!dptbl || !dptbl->total) && (!trtbl || !trtbl->total)) 4710 goto end_reply; 4711 4712 sbi->flags |= NTFS_FLAGS_NEED_REPLAY; 4713 if (is_ro) 4714 goto out; 4715 4716 /* Reopen all of the attributes with dirty pages. */ 4717 oe = NULL; 4718 next_open_attribute: 4719 4720 oe = enum_rstbl(oatbl, oe); 4721 if (!oe) { 4722 err = 0; 4723 dp = NULL; 4724 goto next_dirty_page; 4725 } 4726 4727 oa = kzalloc(sizeof(struct OpenAttr), GFP_NOFS); 4728 if (!oa) { 4729 err = -ENOMEM; 4730 goto out; 4731 } 4732 4733 inode = ntfs_iget5(sbi->sb, &oe->ref, NULL); 4734 if (IS_ERR(inode)) 4735 goto fake_attr; 4736 4737 if (is_bad_inode(inode)) { 4738 iput(inode); 4739 fake_attr: 4740 if (oa->ni) { 4741 iput(&oa->ni->vfs_inode); 4742 oa->ni = NULL; 4743 } 4744 4745 attr = attr_create_nonres_log(sbi, oe->type, 0, oe->ptr, 4746 oe->name_len, 0); 4747 if (!attr) { 4748 kfree(oa); 4749 err = -ENOMEM; 4750 goto out; 4751 } 4752 oa->attr = attr; 4753 oa->run1 = &oa->run0; 4754 goto final_oe; 4755 } 4756 4757 ni_oe = ntfs_i(inode); 4758 oa->ni = ni_oe; 4759 4760 attr = ni_find_attr(ni_oe, NULL, NULL, oe->type, oe->ptr, oe->name_len, 4761 NULL, NULL); 4762 4763 if (!attr) 4764 goto fake_attr; 4765 4766 t32 = le32_to_cpu(attr->size); 4767 oa->attr = kmemdup(attr, t32, GFP_NOFS); 4768 if (!oa->attr) 4769 goto fake_attr; 4770 4771 if (!S_ISDIR(inode->i_mode)) { 4772 if (attr->type == ATTR_DATA && !attr->name_len) { 4773 oa->run1 = &ni_oe->file.run; 4774 goto final_oe; 4775 } 4776 } else { 4777 if (attr->type == ATTR_ALLOC && 4778 attr->name_len == ARRAY_SIZE(I30_NAME) && 4779 !memcmp(attr_name(attr), I30_NAME, sizeof(I30_NAME))) { 4780 oa->run1 = &ni_oe->dir.alloc_run; 4781 goto final_oe; 4782 } 4783 } 4784 4785 if (attr->non_res) { 4786 u16 roff = le16_to_cpu(attr->nres.run_off); 4787 CLST svcn = le64_to_cpu(attr->nres.svcn); 4788 4789 if (roff > t32) { 4790 kfree(oa->attr); 4791 oa->attr = NULL; 4792 goto fake_attr; 4793 } 4794 4795 err = run_unpack(&oa->run0, sbi, inode->i_ino, svcn, 4796 le64_to_cpu(attr->nres.evcn), svcn, 4797 Add2Ptr(attr, roff), t32 - roff); 4798 if (err < 0) { 4799 kfree(oa->attr); 4800 oa->attr = NULL; 4801 goto fake_attr; 4802 } 4803 err = 0; 4804 } 4805 oa->run1 = &oa->run0; 4806 attr = oa->attr; 4807 4808 final_oe: 4809 if (oe->is_attr_name == 1) 4810 kfree(oe->ptr); 4811 oe->is_attr_name = 0; 4812 oe->ptr = oa; 4813 oe->name_len = attr->name_len; 4814 4815 goto next_open_attribute; 4816 4817 /* 4818 * Now loop through the dirty page table to extract all of the Vcn/Lcn. 4819 * Mapping that we have, and insert it into the appropriate run. 4820 */ 4821 next_dirty_page: 4822 dp = enum_rstbl(dptbl, dp); 4823 if (!dp) 4824 goto do_redo_1; 4825 4826 oe = Add2Ptr(oatbl, le32_to_cpu(dp->target_attr)); 4827 4828 if (oe->next != RESTART_ENTRY_ALLOCATED_LE) 4829 goto next_dirty_page; 4830 4831 oa = oe->ptr; 4832 if (!oa) 4833 goto next_dirty_page; 4834 4835 i = -1; 4836 next_dirty_page_vcn: 4837 i += 1; 4838 if (i >= le32_to_cpu(dp->lcns_follow)) 4839 goto next_dirty_page; 4840 4841 vcn = le64_to_cpu(dp->vcn) + i; 4842 size = (vcn + 1) << sbi->cluster_bits; 4843 4844 if (!dp->page_lcns[i]) 4845 goto next_dirty_page_vcn; 4846 4847 rno = ino_get(&oe->ref); 4848 if (rno <= MFT_REC_MIRR && 4849 size < (MFT_REC_VOL + 1) * sbi->record_size && 4850 oe->type == ATTR_DATA) { 4851 goto next_dirty_page_vcn; 4852 } 4853 4854 lcn = le64_to_cpu(dp->page_lcns[i]); 4855 4856 if ((!run_lookup_entry(oa->run1, vcn, &lcn0, &len0, NULL) || 4857 lcn0 != lcn) && 4858 !run_add_entry(oa->run1, vcn, lcn, 1, false)) { 4859 err = -ENOMEM; 4860 goto out; 4861 } 4862 attr = oa->attr; 4863 if (size > le64_to_cpu(attr->nres.alloc_size)) { 4864 attr->nres.valid_size = attr->nres.data_size = 4865 attr->nres.alloc_size = cpu_to_le64(size); 4866 } 4867 goto next_dirty_page_vcn; 4868 4869 do_redo_1: 4870 /* 4871 * Perform the Redo Pass, to restore all of the dirty pages to the same 4872 * contents that they had immediately before the crash. If the dirty 4873 * page table is empty, then we can skip the entire Redo Pass. 4874 */ 4875 if (!dptbl || !dptbl->total) 4876 goto do_undo_action; 4877 4878 rec_lsn = rlsn; 4879 4880 /* 4881 * Read the record at the Redo lsn, before falling 4882 * into common code to handle each record. 4883 */ 4884 err = read_log_rec_lcb(log, rlsn, lcb_ctx_next, &lcb); 4885 if (err) 4886 goto out; 4887 4888 /* 4889 * Now loop to read all of our log records forwards, until 4890 * we hit the end of the file, cleaning up at the end. 4891 */ 4892 do_action_next: 4893 frh = lcb->lrh; 4894 4895 if (LfsClientRecord != frh->record_type) 4896 goto read_next_log_do_action; 4897 4898 transact_id = le32_to_cpu(frh->transact_id); 4899 rec_len = le32_to_cpu(frh->client_data_len); 4900 lrh = lcb->log_rec; 4901 4902 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) { 4903 err = -EINVAL; 4904 goto out; 4905 } 4906 4907 /* Ignore log records that do not update pages. */ 4908 if (lrh->lcns_follow) 4909 goto find_dirty_page; 4910 4911 goto read_next_log_do_action; 4912 4913 find_dirty_page: 4914 t16 = le16_to_cpu(lrh->target_attr); 4915 t64 = le64_to_cpu(lrh->target_vcn); 4916 dp = find_dp(dptbl, t16, t64); 4917 4918 if (!dp) 4919 goto read_next_log_do_action; 4920 4921 if (rec_lsn < le64_to_cpu(dp->oldest_lsn)) 4922 goto read_next_log_do_action; 4923 4924 t16 = le16_to_cpu(lrh->target_attr); 4925 if (t16 >= bytes_per_rt(oatbl)) { 4926 err = -EINVAL; 4927 goto out; 4928 } 4929 4930 oe = Add2Ptr(oatbl, t16); 4931 4932 if (oe->next != RESTART_ENTRY_ALLOCATED_LE) { 4933 err = -EINVAL; 4934 goto out; 4935 } 4936 4937 oa = oe->ptr; 4938 4939 if (!oa) { 4940 err = -EINVAL; 4941 goto out; 4942 } 4943 attr = oa->attr; 4944 4945 vcn = le64_to_cpu(lrh->target_vcn); 4946 4947 if (!run_lookup_entry(oa->run1, vcn, &lcn, NULL, NULL) || 4948 lcn == SPARSE_LCN) { 4949 goto read_next_log_do_action; 4950 } 4951 4952 /* Point to the Redo data and get its length. */ 4953 data = Add2Ptr(lrh, le16_to_cpu(lrh->redo_off)); 4954 dlen = le16_to_cpu(lrh->redo_len); 4955 4956 /* Shorten length by any Lcns which were deleted. */ 4957 saved_len = dlen; 4958 4959 for (i = le16_to_cpu(lrh->lcns_follow); i; i--) { 4960 size_t j; 4961 u32 alen, voff; 4962 4963 voff = le16_to_cpu(lrh->record_off) + 4964 le16_to_cpu(lrh->attr_off); 4965 voff += le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT; 4966 4967 /* If the Vcn question is allocated, we can just get out. */ 4968 j = le64_to_cpu(lrh->target_vcn) - le64_to_cpu(dp->vcn); 4969 if (dp->page_lcns[j + i - 1]) 4970 break; 4971 4972 if (!saved_len) 4973 saved_len = 1; 4974 4975 /* 4976 * Calculate the allocated space left relative to the 4977 * log record Vcn, after removing this unallocated Vcn. 4978 */ 4979 alen = (i - 1) << sbi->cluster_bits; 4980 4981 /* 4982 * If the update described this log record goes beyond 4983 * the allocated space, then we will have to reduce the length. 4984 */ 4985 if (voff >= alen) 4986 dlen = 0; 4987 else if (voff + dlen > alen) 4988 dlen = alen - voff; 4989 } 4990 4991 /* 4992 * If the resulting dlen from above is now zero, 4993 * we can skip this log record. 4994 */ 4995 if (!dlen && saved_len) 4996 goto read_next_log_do_action; 4997 4998 t16 = le16_to_cpu(lrh->redo_op); 4999 if (can_skip_action(t16)) 5000 goto read_next_log_do_action; 5001 5002 /* Apply the Redo operation a common routine. */ 5003 err = do_action(log, oe, lrh, t16, data, dlen, rec_len, &rec_lsn); 5004 if (err) 5005 goto out; 5006 5007 /* Keep reading and looping back until end of file. */ 5008 read_next_log_do_action: 5009 err = read_next_log_rec(log, lcb, &rec_lsn); 5010 if (!err && rec_lsn) 5011 goto do_action_next; 5012 5013 lcb_put(lcb); 5014 lcb = NULL; 5015 5016 do_undo_action: 5017 /* Scan Transaction Table. */ 5018 tr = NULL; 5019 transaction_table_next: 5020 tr = enum_rstbl(trtbl, tr); 5021 if (!tr) 5022 goto undo_action_done; 5023 5024 if (TransactionActive != tr->transact_state || !tr->undo_next_lsn) { 5025 free_rsttbl_idx(trtbl, PtrOffset(trtbl, tr)); 5026 goto transaction_table_next; 5027 } 5028 5029 log->transaction_id = PtrOffset(trtbl, tr); 5030 undo_next_lsn = le64_to_cpu(tr->undo_next_lsn); 5031 5032 /* 5033 * We only have to do anything if the transaction has 5034 * something its undo_next_lsn field. 5035 */ 5036 if (!undo_next_lsn) 5037 goto commit_undo; 5038 5039 /* Read the first record to be undone by this transaction. */ 5040 err = read_log_rec_lcb(log, undo_next_lsn, lcb_ctx_undo_next, &lcb); 5041 if (err) 5042 goto out; 5043 5044 /* 5045 * Now loop to read all of our log records forwards, 5046 * until we hit the end of the file, cleaning up at the end. 5047 */ 5048 undo_action_next: 5049 5050 lrh = lcb->log_rec; 5051 frh = lcb->lrh; 5052 transact_id = le32_to_cpu(frh->transact_id); 5053 rec_len = le32_to_cpu(frh->client_data_len); 5054 5055 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) { 5056 err = -EINVAL; 5057 goto out; 5058 } 5059 5060 if (lrh->undo_op == cpu_to_le16(Noop)) 5061 goto read_next_log_undo_action; 5062 5063 oe = Add2Ptr(oatbl, le16_to_cpu(lrh->target_attr)); 5064 oa = oe->ptr; 5065 5066 t16 = le16_to_cpu(lrh->lcns_follow); 5067 if (!t16) 5068 goto add_allocated_vcns; 5069 5070 is_mapped = run_lookup_entry(oa->run1, le64_to_cpu(lrh->target_vcn), 5071 &lcn, &clen, NULL); 5072 5073 /* 5074 * If the mapping isn't already the table or the mapping 5075 * corresponds to a hole the mapping, we need to make sure 5076 * there is no partial page already memory. 5077 */ 5078 if (is_mapped && lcn != SPARSE_LCN && clen >= t16) 5079 goto add_allocated_vcns; 5080 5081 vcn = le64_to_cpu(lrh->target_vcn); 5082 vcn &= ~(u64)(log->clst_per_page - 1); 5083 5084 add_allocated_vcns: 5085 for (i = 0, vcn = le64_to_cpu(lrh->target_vcn), 5086 size = (vcn + 1) << sbi->cluster_bits; 5087 i < t16; i++, vcn += 1, size += sbi->cluster_size) { 5088 attr = oa->attr; 5089 if (!attr->non_res) { 5090 if (size > le32_to_cpu(attr->res.data_size)) 5091 attr->res.data_size = cpu_to_le32(size); 5092 } else { 5093 if (size > le64_to_cpu(attr->nres.data_size)) 5094 attr->nres.valid_size = attr->nres.data_size = 5095 attr->nres.alloc_size = 5096 cpu_to_le64(size); 5097 } 5098 } 5099 5100 t16 = le16_to_cpu(lrh->undo_op); 5101 if (can_skip_action(t16)) 5102 goto read_next_log_undo_action; 5103 5104 /* Point to the Redo data and get its length. */ 5105 data = Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)); 5106 dlen = le16_to_cpu(lrh->undo_len); 5107 5108 /* It is time to apply the undo action. */ 5109 err = do_action(log, oe, lrh, t16, data, dlen, rec_len, NULL); 5110 5111 read_next_log_undo_action: 5112 /* 5113 * Keep reading and looping back until we have read the 5114 * last record for this transaction. 5115 */ 5116 err = read_next_log_rec(log, lcb, &rec_lsn); 5117 if (err) 5118 goto out; 5119 5120 if (rec_lsn) 5121 goto undo_action_next; 5122 5123 lcb_put(lcb); 5124 lcb = NULL; 5125 5126 commit_undo: 5127 free_rsttbl_idx(trtbl, log->transaction_id); 5128 5129 log->transaction_id = 0; 5130 5131 goto transaction_table_next; 5132 5133 undo_action_done: 5134 5135 ntfs_update_mftmirr(sbi, 0); 5136 5137 sbi->flags &= ~NTFS_FLAGS_NEED_REPLAY; 5138 5139 end_reply: 5140 5141 err = 0; 5142 if (is_ro) 5143 goto out; 5144 5145 rh = kzalloc(log->page_size, GFP_NOFS); 5146 if (!rh) { 5147 err = -ENOMEM; 5148 goto out; 5149 } 5150 5151 rh->rhdr.sign = NTFS_RSTR_SIGNATURE; 5152 rh->rhdr.fix_off = cpu_to_le16(offsetof(struct RESTART_HDR, fixups)); 5153 t16 = (log->page_size >> SECTOR_SHIFT) + 1; 5154 rh->rhdr.fix_num = cpu_to_le16(t16); 5155 rh->sys_page_size = cpu_to_le32(log->page_size); 5156 rh->page_size = cpu_to_le32(log->page_size); 5157 5158 t16 = ALIGN(offsetof(struct RESTART_HDR, fixups) + sizeof(short) * t16, 5159 8); 5160 rh->ra_off = cpu_to_le16(t16); 5161 rh->minor_ver = cpu_to_le16(1); // 0x1A: 5162 rh->major_ver = cpu_to_le16(1); // 0x1C: 5163 5164 ra2 = Add2Ptr(rh, t16); 5165 memcpy(ra2, ra, sizeof(struct RESTART_AREA)); 5166 5167 ra2->client_idx[0] = 0; 5168 ra2->client_idx[1] = LFS_NO_CLIENT_LE; 5169 ra2->flags = cpu_to_le16(2); 5170 5171 le32_add_cpu(&ra2->open_log_count, 1); 5172 5173 ntfs_fix_pre_write(&rh->rhdr, log->page_size); 5174 5175 err = ntfs_sb_write_run(sbi, &ni->file.run, 0, rh, log->page_size, 0); 5176 if (!err) 5177 err = ntfs_sb_write_run(sbi, &log->ni->file.run, log->page_size, 5178 rh, log->page_size, 0); 5179 5180 kfree(rh); 5181 if (err) 5182 goto out; 5183 5184 out: 5185 kfree(rst); 5186 if (lcb) 5187 lcb_put(lcb); 5188 5189 /* 5190 * Scan the Open Attribute Table to close all of 5191 * the open attributes. 5192 */ 5193 oe = NULL; 5194 while ((oe = enum_rstbl(oatbl, oe))) { 5195 rno = ino_get(&oe->ref); 5196 5197 if (oe->is_attr_name == 1) { 5198 kfree(oe->ptr); 5199 oe->ptr = NULL; 5200 continue; 5201 } 5202 5203 if (oe->is_attr_name) 5204 continue; 5205 5206 oa = oe->ptr; 5207 if (!oa) 5208 continue; 5209 5210 run_close(&oa->run0); 5211 kfree(oa->attr); 5212 if (oa->ni) 5213 iput(&oa->ni->vfs_inode); 5214 kfree(oa); 5215 } 5216 5217 kfree(trtbl); 5218 kfree(oatbl); 5219 kfree(dptbl); 5220 kfree(attr_names); 5221 kfree(log->rst_info.r_page); 5222 5223 kfree(ra); 5224 kfree(log->one_page_buf); 5225 5226 if (err) 5227 sbi->flags |= NTFS_FLAGS_NEED_REPLAY; 5228 5229 if (err == -EROFS) 5230 err = 0; 5231 else if (log->set_dirty) 5232 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 5233 5234 kfree(log); 5235 5236 return err; 5237 } 5238