1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * 4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. 5 * 6 */ 7 8 #include <linux/blkdev.h> 9 #include <linux/buffer_head.h> 10 #include <linux/fs.h> 11 #include <linux/hash.h> 12 #include <linux/nls.h> 13 #include <linux/random.h> 14 #include <linux/ratelimit.h> 15 #include <linux/slab.h> 16 17 #include "debug.h" 18 #include "ntfs.h" 19 #include "ntfs_fs.h" 20 21 /* 22 * LOG FILE structs 23 */ 24 25 // clang-format off 26 27 #define MaxLogFileSize 0x100000000ull 28 #define DefaultLogPageSize 4096 29 #define MinLogRecordPages 0x30 30 31 struct RESTART_HDR { 32 struct NTFS_RECORD_HEADER rhdr; // 'RSTR' 33 __le32 sys_page_size; // 0x10: Page size of the system which initialized the log. 34 __le32 page_size; // 0x14: Log page size used for this log file. 35 __le16 ra_off; // 0x18: 36 __le16 minor_ver; // 0x1A: 37 __le16 major_ver; // 0x1C: 38 __le16 fixups[]; 39 }; 40 41 #define LFS_NO_CLIENT 0xffff 42 #define LFS_NO_CLIENT_LE cpu_to_le16(0xffff) 43 44 struct CLIENT_REC { 45 __le64 oldest_lsn; 46 __le64 restart_lsn; // 0x08: 47 __le16 prev_client; // 0x10: 48 __le16 next_client; // 0x12: 49 __le16 seq_num; // 0x14: 50 u8 align[6]; // 0x16: 51 __le32 name_bytes; // 0x1C: In bytes. 52 __le16 name[32]; // 0x20: Name of client. 53 }; 54 55 static_assert(sizeof(struct CLIENT_REC) == 0x60); 56 57 /* Two copies of these will exist at the beginning of the log file */ 58 struct RESTART_AREA { 59 __le64 current_lsn; // 0x00: Current logical end of log file. 60 __le16 log_clients; // 0x08: Maximum number of clients. 61 __le16 client_idx[2]; // 0x0A: Free/use index into the client record arrays. 62 __le16 flags; // 0x0E: See RESTART_SINGLE_PAGE_IO. 63 __le32 seq_num_bits; // 0x10: The number of bits in sequence number. 64 __le16 ra_len; // 0x14: 65 __le16 client_off; // 0x16: 66 __le64 l_size; // 0x18: Usable log file size. 67 __le32 last_lsn_data_len; // 0x20: 68 __le16 rec_hdr_len; // 0x24: Log page data offset. 69 __le16 data_off; // 0x26: Log page data length. 70 __le32 open_log_count; // 0x28: 71 __le32 align[5]; // 0x2C: 72 struct CLIENT_REC clients[]; // 0x40: 73 }; 74 75 struct LOG_REC_HDR { 76 __le16 redo_op; // 0x00: NTFS_LOG_OPERATION 77 __le16 undo_op; // 0x02: NTFS_LOG_OPERATION 78 __le16 redo_off; // 0x04: Offset to Redo record. 79 __le16 redo_len; // 0x06: Redo length. 80 __le16 undo_off; // 0x08: Offset to Undo record. 81 __le16 undo_len; // 0x0A: Undo length. 82 __le16 target_attr; // 0x0C: 83 __le16 lcns_follow; // 0x0E: 84 __le16 record_off; // 0x10: 85 __le16 attr_off; // 0x12: 86 __le16 cluster_off; // 0x14: 87 __le16 reserved; // 0x16: 88 __le64 target_vcn; // 0x18: 89 __le64 page_lcns[]; // 0x20: 90 }; 91 92 static_assert(sizeof(struct LOG_REC_HDR) == 0x20); 93 94 #define RESTART_ENTRY_ALLOCATED 0xFFFFFFFF 95 #define RESTART_ENTRY_ALLOCATED_LE cpu_to_le32(0xFFFFFFFF) 96 97 struct RESTART_TABLE { 98 __le16 size; // 0x00: In bytes 99 __le16 used; // 0x02: Entries 100 __le16 total; // 0x04: Entries 101 __le16 res[3]; // 0x06: 102 __le32 free_goal; // 0x0C: 103 __le32 first_free; // 0x10: 104 __le32 last_free; // 0x14: 105 106 }; 107 108 static_assert(sizeof(struct RESTART_TABLE) == 0x18); 109 110 struct ATTR_NAME_ENTRY { 111 __le16 off; // Offset in the Open attribute Table. 112 __le16 name_bytes; 113 __le16 name[]; 114 }; 115 116 struct OPEN_ATTR_ENRTY { 117 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 118 __le32 bytes_per_index; // 0x04: 119 enum ATTR_TYPE type; // 0x08: 120 u8 is_dirty_pages; // 0x0C: 121 u8 is_attr_name; // 0x0B: Faked field to manage 'ptr' 122 u8 name_len; // 0x0C: Faked field to manage 'ptr' 123 u8 res; 124 struct MFT_REF ref; // 0x10: File Reference of file containing attribute 125 __le64 open_record_lsn; // 0x18: 126 void *ptr; // 0x20: 127 }; 128 129 /* 32 bit version of 'struct OPEN_ATTR_ENRTY' */ 130 struct OPEN_ATTR_ENRTY_32 { 131 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 132 __le32 ptr; // 0x04: 133 struct MFT_REF ref; // 0x08: 134 __le64 open_record_lsn; // 0x10: 135 u8 is_dirty_pages; // 0x18: 136 u8 is_attr_name; // 0x19: 137 u8 res1[2]; 138 enum ATTR_TYPE type; // 0x1C: 139 u8 name_len; // 0x20: In wchar 140 u8 res2[3]; 141 __le32 AttributeName; // 0x24: 142 __le32 bytes_per_index; // 0x28: 143 }; 144 145 #define SIZEOF_OPENATTRIBUTEENTRY0 0x2c 146 // static_assert( 0x2C == sizeof(struct OPEN_ATTR_ENRTY_32) ); 147 static_assert(sizeof(struct OPEN_ATTR_ENRTY) < SIZEOF_OPENATTRIBUTEENTRY0); 148 149 /* 150 * One entry exists in the Dirty Pages Table for each page which is dirty at 151 * the time the Restart Area is written. 152 */ 153 struct DIR_PAGE_ENTRY { 154 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 155 __le32 target_attr; // 0x04: Index into the Open attribute Table 156 __le32 transfer_len; // 0x08: 157 __le32 lcns_follow; // 0x0C: 158 __le64 vcn; // 0x10: Vcn of dirty page 159 __le64 oldest_lsn; // 0x18: 160 __le64 page_lcns[]; // 0x20: 161 }; 162 163 static_assert(sizeof(struct DIR_PAGE_ENTRY) == 0x20); 164 165 /* 32 bit version of 'struct DIR_PAGE_ENTRY' */ 166 struct DIR_PAGE_ENTRY_32 { 167 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 168 __le32 target_attr; // 0x04: Index into the Open attribute Table 169 __le32 transfer_len; // 0x08: 170 __le32 lcns_follow; // 0x0C: 171 __le32 reserved; // 0x10: 172 __le32 vcn_low; // 0x14: Vcn of dirty page 173 __le32 vcn_hi; // 0x18: Vcn of dirty page 174 __le32 oldest_lsn_low; // 0x1C: 175 __le32 oldest_lsn_hi; // 0x1C: 176 __le32 page_lcns_low; // 0x24: 177 __le32 page_lcns_hi; // 0x24: 178 }; 179 180 static_assert(offsetof(struct DIR_PAGE_ENTRY_32, vcn_low) == 0x14); 181 static_assert(sizeof(struct DIR_PAGE_ENTRY_32) == 0x2c); 182 183 enum transact_state { 184 TransactionUninitialized = 0, 185 TransactionActive, 186 TransactionPrepared, 187 TransactionCommitted 188 }; 189 190 struct TRANSACTION_ENTRY { 191 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 192 u8 transact_state; // 0x04: 193 u8 reserved[3]; // 0x05: 194 __le64 first_lsn; // 0x08: 195 __le64 prev_lsn; // 0x10: 196 __le64 undo_next_lsn; // 0x18: 197 __le32 undo_records; // 0x20: Number of undo log records pending abort 198 __le32 undo_len; // 0x24: Total undo size 199 }; 200 201 static_assert(sizeof(struct TRANSACTION_ENTRY) == 0x28); 202 203 struct NTFS_RESTART { 204 __le32 major_ver; // 0x00: 205 __le32 minor_ver; // 0x04: 206 __le64 check_point_start; // 0x08: 207 __le64 open_attr_table_lsn; // 0x10: 208 __le64 attr_names_lsn; // 0x18: 209 __le64 dirty_pages_table_lsn; // 0x20: 210 __le64 transact_table_lsn; // 0x28: 211 __le32 open_attr_len; // 0x30: In bytes 212 __le32 attr_names_len; // 0x34: In bytes 213 __le32 dirty_pages_len; // 0x38: In bytes 214 __le32 transact_table_len; // 0x3C: In bytes 215 }; 216 217 static_assert(sizeof(struct NTFS_RESTART) == 0x40); 218 219 struct NEW_ATTRIBUTE_SIZES { 220 __le64 alloc_size; 221 __le64 valid_size; 222 __le64 data_size; 223 __le64 total_size; 224 }; 225 226 struct BITMAP_RANGE { 227 __le32 bitmap_off; 228 __le32 bits; 229 }; 230 231 struct LCN_RANGE { 232 __le64 lcn; 233 __le64 len; 234 }; 235 236 /* The following type defines the different log record types. */ 237 #define LfsClientRecord cpu_to_le32(1) 238 #define LfsClientRestart cpu_to_le32(2) 239 240 /* This is used to uniquely identify a client for a particular log file. */ 241 struct CLIENT_ID { 242 __le16 seq_num; 243 __le16 client_idx; 244 }; 245 246 /* This is the header that begins every Log Record in the log file. */ 247 struct LFS_RECORD_HDR { 248 __le64 this_lsn; // 0x00: 249 __le64 client_prev_lsn; // 0x08: 250 __le64 client_undo_next_lsn; // 0x10: 251 __le32 client_data_len; // 0x18: 252 struct CLIENT_ID client; // 0x1C: Owner of this log record. 253 __le32 record_type; // 0x20: LfsClientRecord or LfsClientRestart. 254 __le32 transact_id; // 0x24: 255 __le16 flags; // 0x28: LOG_RECORD_MULTI_PAGE 256 u8 align[6]; // 0x2A: 257 }; 258 259 #define LOG_RECORD_MULTI_PAGE cpu_to_le16(1) 260 261 static_assert(sizeof(struct LFS_RECORD_HDR) == 0x30); 262 263 struct LFS_RECORD { 264 __le16 next_record_off; // 0x00: Offset of the free space in the page, 265 u8 align[6]; // 0x02: 266 __le64 last_end_lsn; // 0x08: lsn for the last log record which ends on the page, 267 }; 268 269 static_assert(sizeof(struct LFS_RECORD) == 0x10); 270 271 struct RECORD_PAGE_HDR { 272 struct NTFS_RECORD_HEADER rhdr; // 'RCRD' 273 __le32 rflags; // 0x10: See LOG_PAGE_LOG_RECORD_END 274 __le16 page_count; // 0x14: 275 __le16 page_pos; // 0x16: 276 struct LFS_RECORD record_hdr; // 0x18: 277 __le16 fixups[10]; // 0x28: 278 __le32 file_off; // 0x3c: Used when major version >= 2 279 }; 280 281 // clang-format on 282 283 // Page contains the end of a log record. 284 #define LOG_PAGE_LOG_RECORD_END cpu_to_le32(0x00000001) 285 286 static inline bool is_log_record_end(const struct RECORD_PAGE_HDR *hdr) 287 { 288 return hdr->rflags & LOG_PAGE_LOG_RECORD_END; 289 } 290 291 static_assert(offsetof(struct RECORD_PAGE_HDR, file_off) == 0x3c); 292 293 /* 294 * END of NTFS LOG structures 295 */ 296 297 /* Define some tuning parameters to keep the restart tables a reasonable size. */ 298 #define INITIAL_NUMBER_TRANSACTIONS 5 299 300 enum NTFS_LOG_OPERATION { 301 302 Noop = 0x00, 303 CompensationLogRecord = 0x01, 304 InitializeFileRecordSegment = 0x02, 305 DeallocateFileRecordSegment = 0x03, 306 WriteEndOfFileRecordSegment = 0x04, 307 CreateAttribute = 0x05, 308 DeleteAttribute = 0x06, 309 UpdateResidentValue = 0x07, 310 UpdateNonresidentValue = 0x08, 311 UpdateMappingPairs = 0x09, 312 DeleteDirtyClusters = 0x0A, 313 SetNewAttributeSizes = 0x0B, 314 AddIndexEntryRoot = 0x0C, 315 DeleteIndexEntryRoot = 0x0D, 316 AddIndexEntryAllocation = 0x0E, 317 DeleteIndexEntryAllocation = 0x0F, 318 WriteEndOfIndexBuffer = 0x10, 319 SetIndexEntryVcnRoot = 0x11, 320 SetIndexEntryVcnAllocation = 0x12, 321 UpdateFileNameRoot = 0x13, 322 UpdateFileNameAllocation = 0x14, 323 SetBitsInNonresidentBitMap = 0x15, 324 ClearBitsInNonresidentBitMap = 0x16, 325 HotFix = 0x17, 326 EndTopLevelAction = 0x18, 327 PrepareTransaction = 0x19, 328 CommitTransaction = 0x1A, 329 ForgetTransaction = 0x1B, 330 OpenNonresidentAttribute = 0x1C, 331 OpenAttributeTableDump = 0x1D, 332 AttributeNamesDump = 0x1E, 333 DirtyPageTableDump = 0x1F, 334 TransactionTableDump = 0x20, 335 UpdateRecordDataRoot = 0x21, 336 UpdateRecordDataAllocation = 0x22, 337 338 UpdateRelativeDataInIndex = 339 0x23, // NtOfsRestartUpdateRelativeDataInIndex 340 UpdateRelativeDataInIndex2 = 0x24, 341 ZeroEndOfFileRecord = 0x25, 342 }; 343 344 /* 345 * Array for log records which require a target attribute. 346 * A true indicates that the corresponding restart operation 347 * requires a target attribute. 348 */ 349 static const u8 AttributeRequired[] = { 350 0xFC, 0xFB, 0xFF, 0x10, 0x06, 351 }; 352 353 static inline bool is_target_required(u16 op) 354 { 355 bool ret = op <= UpdateRecordDataAllocation && 356 (AttributeRequired[op >> 3] >> (op & 7) & 1); 357 return ret; 358 } 359 360 static inline bool can_skip_action(enum NTFS_LOG_OPERATION op) 361 { 362 switch (op) { 363 case Noop: 364 case DeleteDirtyClusters: 365 case HotFix: 366 case EndTopLevelAction: 367 case PrepareTransaction: 368 case CommitTransaction: 369 case ForgetTransaction: 370 case CompensationLogRecord: 371 case OpenNonresidentAttribute: 372 case OpenAttributeTableDump: 373 case AttributeNamesDump: 374 case DirtyPageTableDump: 375 case TransactionTableDump: 376 return true; 377 default: 378 return false; 379 } 380 } 381 382 enum { lcb_ctx_undo_next, lcb_ctx_prev, lcb_ctx_next }; 383 384 /* Bytes per restart table. */ 385 static inline u32 bytes_per_rt(const struct RESTART_TABLE *rt) 386 { 387 return le16_to_cpu(rt->used) * le16_to_cpu(rt->size) + 388 sizeof(struct RESTART_TABLE); 389 } 390 391 /* Log record length. */ 392 static inline u32 lrh_length(const struct LOG_REC_HDR *lr) 393 { 394 u16 t16 = le16_to_cpu(lr->lcns_follow); 395 396 return struct_size(lr, page_lcns, max_t(u16, 1, t16)); 397 } 398 399 struct lcb { 400 struct LFS_RECORD_HDR *lrh; // Log record header of the current lsn. 401 struct LOG_REC_HDR *log_rec; 402 u32 ctx_mode; // lcb_ctx_undo_next/lcb_ctx_prev/lcb_ctx_next 403 struct CLIENT_ID client; 404 bool alloc; // If true the we should deallocate 'log_rec'. 405 }; 406 407 static void lcb_put(struct lcb *lcb) 408 { 409 if (lcb->alloc) 410 kfree(lcb->log_rec); 411 kfree(lcb->lrh); 412 kfree(lcb); 413 } 414 415 /* Find the oldest lsn from active clients. */ 416 static inline void oldest_client_lsn(const struct CLIENT_REC *ca, 417 __le16 next_client, u64 *oldest_lsn) 418 { 419 while (next_client != LFS_NO_CLIENT_LE) { 420 const struct CLIENT_REC *cr = ca + le16_to_cpu(next_client); 421 u64 lsn = le64_to_cpu(cr->oldest_lsn); 422 423 /* Ignore this block if it's oldest lsn is 0. */ 424 if (lsn && lsn < *oldest_lsn) 425 *oldest_lsn = lsn; 426 427 next_client = cr->next_client; 428 } 429 } 430 431 static inline bool is_rst_page_hdr_valid(u32 file_off, 432 const struct RESTART_HDR *rhdr) 433 { 434 u32 sys_page = le32_to_cpu(rhdr->sys_page_size); 435 u32 page_size = le32_to_cpu(rhdr->page_size); 436 u32 end_usa; 437 u16 ro; 438 439 if (sys_page < SECTOR_SIZE || page_size < SECTOR_SIZE || 440 sys_page & (sys_page - 1) || page_size & (page_size - 1)) { 441 return false; 442 } 443 444 /* Check that if the file offset isn't 0, it is the system page size. */ 445 if (file_off && file_off != sys_page) 446 return false; 447 448 /* Check support version 1.1+. */ 449 if (le16_to_cpu(rhdr->major_ver) <= 1 && !rhdr->minor_ver) 450 return false; 451 452 if (le16_to_cpu(rhdr->major_ver) > 2) 453 return false; 454 455 ro = le16_to_cpu(rhdr->ra_off); 456 if (!IS_ALIGNED(ro, 8) || ro > sys_page) 457 return false; 458 459 end_usa = ((sys_page >> SECTOR_SHIFT) + 1) * sizeof(short); 460 end_usa += le16_to_cpu(rhdr->rhdr.fix_off); 461 462 if (ro < end_usa) 463 return false; 464 465 return true; 466 } 467 468 static inline bool is_rst_area_valid(const struct RESTART_HDR *rhdr) 469 { 470 const struct RESTART_AREA *ra; 471 u16 cl, fl, ul; 472 u32 off, l_size, file_dat_bits, file_size_round; 473 u16 ro = le16_to_cpu(rhdr->ra_off); 474 u32 sys_page = le32_to_cpu(rhdr->sys_page_size); 475 476 if (ro + offsetof(struct RESTART_AREA, l_size) > 477 SECTOR_SIZE - sizeof(short)) 478 return false; 479 480 ra = Add2Ptr(rhdr, ro); 481 cl = le16_to_cpu(ra->log_clients); 482 483 if (cl > 1) 484 return false; 485 486 off = le16_to_cpu(ra->client_off); 487 488 if (!IS_ALIGNED(off, 8) || ro + off > SECTOR_SIZE - sizeof(short)) 489 return false; 490 491 off += cl * sizeof(struct CLIENT_REC); 492 493 if (off > sys_page) 494 return false; 495 496 /* 497 * Check the restart length field and whether the entire 498 * restart area is contained that length. 499 */ 500 if (le16_to_cpu(rhdr->ra_off) + le16_to_cpu(ra->ra_len) > sys_page || 501 off > le16_to_cpu(ra->ra_len)) { 502 return false; 503 } 504 505 /* 506 * As a final check make sure that the use list and the free list 507 * are either empty or point to a valid client. 508 */ 509 fl = le16_to_cpu(ra->client_idx[0]); 510 ul = le16_to_cpu(ra->client_idx[1]); 511 if ((fl != LFS_NO_CLIENT && fl >= cl) || 512 (ul != LFS_NO_CLIENT && ul >= cl)) 513 return false; 514 515 /* Make sure the sequence number bits match the log file size. */ 516 l_size = le64_to_cpu(ra->l_size); 517 518 file_dat_bits = sizeof(u64) * 8 - le32_to_cpu(ra->seq_num_bits); 519 file_size_round = 1u << (file_dat_bits + 3); 520 if (file_size_round != l_size && 521 (file_size_round < l_size || (file_size_round / 2) > l_size)) { 522 return false; 523 } 524 525 /* The log page data offset and record header length must be quad-aligned. */ 526 if (!IS_ALIGNED(le16_to_cpu(ra->data_off), 8) || 527 !IS_ALIGNED(le16_to_cpu(ra->rec_hdr_len), 8)) 528 return false; 529 530 return true; 531 } 532 533 static inline bool is_client_area_valid(const struct RESTART_HDR *rhdr, 534 bool usa_error) 535 { 536 u16 ro = le16_to_cpu(rhdr->ra_off); 537 const struct RESTART_AREA *ra = Add2Ptr(rhdr, ro); 538 u16 ra_len = le16_to_cpu(ra->ra_len); 539 const struct CLIENT_REC *ca; 540 u32 i; 541 542 if (usa_error && ra_len + ro > SECTOR_SIZE - sizeof(short)) 543 return false; 544 545 /* Find the start of the client array. */ 546 ca = Add2Ptr(ra, le16_to_cpu(ra->client_off)); 547 548 /* 549 * Start with the free list. 550 * Check that all the clients are valid and that there isn't a cycle. 551 * Do the in-use list on the second pass. 552 */ 553 for (i = 0; i < 2; i++) { 554 u16 client_idx = le16_to_cpu(ra->client_idx[i]); 555 bool first_client = true; 556 u16 clients = le16_to_cpu(ra->log_clients); 557 558 while (client_idx != LFS_NO_CLIENT) { 559 const struct CLIENT_REC *cr; 560 561 if (!clients || 562 client_idx >= le16_to_cpu(ra->log_clients)) 563 return false; 564 565 clients -= 1; 566 cr = ca + client_idx; 567 568 client_idx = le16_to_cpu(cr->next_client); 569 570 if (first_client) { 571 first_client = false; 572 if (cr->prev_client != LFS_NO_CLIENT_LE) 573 return false; 574 } 575 } 576 } 577 578 return true; 579 } 580 581 /* 582 * remove_client 583 * 584 * Remove a client record from a client record list an restart area. 585 */ 586 static inline void remove_client(struct CLIENT_REC *ca, 587 const struct CLIENT_REC *cr, __le16 *head) 588 { 589 if (cr->prev_client == LFS_NO_CLIENT_LE) 590 *head = cr->next_client; 591 else 592 ca[le16_to_cpu(cr->prev_client)].next_client = cr->next_client; 593 594 if (cr->next_client != LFS_NO_CLIENT_LE) 595 ca[le16_to_cpu(cr->next_client)].prev_client = cr->prev_client; 596 } 597 598 /* 599 * add_client - Add a client record to the start of a list. 600 */ 601 static inline void add_client(struct CLIENT_REC *ca, u16 index, __le16 *head) 602 { 603 struct CLIENT_REC *cr = ca + index; 604 605 cr->prev_client = LFS_NO_CLIENT_LE; 606 cr->next_client = *head; 607 608 if (*head != LFS_NO_CLIENT_LE) 609 ca[le16_to_cpu(*head)].prev_client = cpu_to_le16(index); 610 611 *head = cpu_to_le16(index); 612 } 613 614 static inline void *enum_rstbl(struct RESTART_TABLE *t, void *c) 615 { 616 __le32 *e; 617 u32 bprt; 618 u16 rsize = t ? le16_to_cpu(t->size) : 0; 619 620 if (!c) { 621 if (!t || !t->total) 622 return NULL; 623 e = Add2Ptr(t, sizeof(struct RESTART_TABLE)); 624 } else { 625 e = Add2Ptr(c, rsize); 626 } 627 628 /* Loop until we hit the first one allocated, or the end of the list. */ 629 for (bprt = bytes_per_rt(t); PtrOffset(t, e) < bprt; 630 e = Add2Ptr(e, rsize)) { 631 if (*e == RESTART_ENTRY_ALLOCATED_LE) 632 return e; 633 } 634 return NULL; 635 } 636 637 /* 638 * find_dp - Search for a @vcn in Dirty Page Table. 639 */ 640 static inline struct DIR_PAGE_ENTRY *find_dp(struct RESTART_TABLE *dptbl, 641 u32 target_attr, u64 vcn) 642 { 643 __le32 ta = cpu_to_le32(target_attr); 644 struct DIR_PAGE_ENTRY *dp = NULL; 645 646 while ((dp = enum_rstbl(dptbl, dp))) { 647 u64 dp_vcn = le64_to_cpu(dp->vcn); 648 649 if (dp->target_attr == ta && vcn >= dp_vcn && 650 vcn < dp_vcn + le32_to_cpu(dp->lcns_follow)) { 651 return dp; 652 } 653 } 654 return NULL; 655 } 656 657 static inline u32 norm_file_page(u32 page_size, u32 *l_size, bool use_default) 658 { 659 if (use_default) 660 page_size = DefaultLogPageSize; 661 662 /* Round the file size down to a system page boundary. */ 663 *l_size &= ~(page_size - 1); 664 665 /* File should contain at least 2 restart pages and MinLogRecordPages pages. */ 666 if (*l_size < (MinLogRecordPages + 2) * page_size) 667 return 0; 668 669 return page_size; 670 } 671 672 static bool check_log_rec(const struct LOG_REC_HDR *lr, u32 bytes, u32 tr, 673 u32 bytes_per_attr_entry) 674 { 675 u16 t16; 676 677 if (bytes < sizeof(struct LOG_REC_HDR)) 678 return false; 679 if (!tr) 680 return false; 681 682 if ((tr - sizeof(struct RESTART_TABLE)) % 683 sizeof(struct TRANSACTION_ENTRY)) 684 return false; 685 686 if (le16_to_cpu(lr->redo_off) & 7) 687 return false; 688 689 if (le16_to_cpu(lr->undo_off) & 7) 690 return false; 691 692 if (lr->target_attr) 693 goto check_lcns; 694 695 if (is_target_required(le16_to_cpu(lr->redo_op))) 696 return false; 697 698 if (is_target_required(le16_to_cpu(lr->undo_op))) 699 return false; 700 701 check_lcns: 702 if (!lr->lcns_follow) 703 goto check_length; 704 705 t16 = le16_to_cpu(lr->target_attr); 706 if ((t16 - sizeof(struct RESTART_TABLE)) % bytes_per_attr_entry) 707 return false; 708 709 check_length: 710 if (bytes < lrh_length(lr)) 711 return false; 712 713 return true; 714 } 715 716 static bool check_rstbl(const struct RESTART_TABLE *rt, size_t bytes) 717 { 718 u32 ts; 719 u32 i, off; 720 u16 rsize = le16_to_cpu(rt->size); 721 u16 ne = le16_to_cpu(rt->used); 722 u32 ff = le32_to_cpu(rt->first_free); 723 u32 lf = le32_to_cpu(rt->last_free); 724 725 ts = rsize * ne + sizeof(struct RESTART_TABLE); 726 727 if (!rsize || rsize > bytes || 728 rsize + sizeof(struct RESTART_TABLE) > bytes || bytes < ts || 729 le16_to_cpu(rt->total) > ne || ff > ts || lf > ts || 730 (ff && ff < sizeof(struct RESTART_TABLE)) || 731 (lf && lf < sizeof(struct RESTART_TABLE))) { 732 return false; 733 } 734 735 /* 736 * Verify each entry is either allocated or points 737 * to a valid offset the table. 738 */ 739 for (i = 0; i < ne; i++) { 740 off = le32_to_cpu(*(__le32 *)Add2Ptr( 741 rt, i * rsize + sizeof(struct RESTART_TABLE))); 742 743 if (off != RESTART_ENTRY_ALLOCATED && off && 744 (off < sizeof(struct RESTART_TABLE) || 745 ((off - sizeof(struct RESTART_TABLE)) % rsize))) { 746 return false; 747 } 748 } 749 750 /* 751 * Walk through the list headed by the first entry to make 752 * sure none of the entries are currently being used. 753 */ 754 for (off = ff; off;) { 755 if (off == RESTART_ENTRY_ALLOCATED) 756 return false; 757 758 off = le32_to_cpu(*(__le32 *)Add2Ptr(rt, off)); 759 } 760 761 return true; 762 } 763 764 /* 765 * free_rsttbl_idx - Free a previously allocated index a Restart Table. 766 */ 767 static inline void free_rsttbl_idx(struct RESTART_TABLE *rt, u32 off) 768 { 769 __le32 *e; 770 u32 lf = le32_to_cpu(rt->last_free); 771 __le32 off_le = cpu_to_le32(off); 772 773 e = Add2Ptr(rt, off); 774 775 if (off < le32_to_cpu(rt->free_goal)) { 776 *e = rt->first_free; 777 rt->first_free = off_le; 778 if (!lf) 779 rt->last_free = off_le; 780 } else { 781 if (lf) 782 *(__le32 *)Add2Ptr(rt, lf) = off_le; 783 else 784 rt->first_free = off_le; 785 786 rt->last_free = off_le; 787 *e = 0; 788 } 789 790 le16_sub_cpu(&rt->total, 1); 791 } 792 793 static inline struct RESTART_TABLE *init_rsttbl(u16 esize, u16 used) 794 { 795 __le32 *e, *last_free; 796 u32 off; 797 u32 bytes = esize * used + sizeof(struct RESTART_TABLE); 798 u32 lf = sizeof(struct RESTART_TABLE) + (used - 1) * esize; 799 struct RESTART_TABLE *t = kzalloc(bytes, GFP_NOFS); 800 801 if (!t) 802 return NULL; 803 804 t->size = cpu_to_le16(esize); 805 t->used = cpu_to_le16(used); 806 t->free_goal = cpu_to_le32(~0u); 807 t->first_free = cpu_to_le32(sizeof(struct RESTART_TABLE)); 808 t->last_free = cpu_to_le32(lf); 809 810 e = (__le32 *)(t + 1); 811 last_free = Add2Ptr(t, lf); 812 813 for (off = sizeof(struct RESTART_TABLE) + esize; e < last_free; 814 e = Add2Ptr(e, esize), off += esize) { 815 *e = cpu_to_le32(off); 816 } 817 return t; 818 } 819 820 static inline struct RESTART_TABLE *extend_rsttbl(struct RESTART_TABLE *tbl, 821 u32 add, u32 free_goal) 822 { 823 u16 esize = le16_to_cpu(tbl->size); 824 __le32 osize = cpu_to_le32(bytes_per_rt(tbl)); 825 u32 used = le16_to_cpu(tbl->used); 826 struct RESTART_TABLE *rt; 827 828 rt = init_rsttbl(esize, used + add); 829 if (!rt) 830 return NULL; 831 832 memcpy(rt + 1, tbl + 1, esize * used); 833 834 rt->free_goal = free_goal == ~0u 835 ? cpu_to_le32(~0u) 836 : cpu_to_le32(sizeof(struct RESTART_TABLE) + 837 free_goal * esize); 838 839 if (tbl->first_free) { 840 rt->first_free = tbl->first_free; 841 *(__le32 *)Add2Ptr(rt, le32_to_cpu(tbl->last_free)) = osize; 842 } else { 843 rt->first_free = osize; 844 } 845 846 rt->total = tbl->total; 847 848 kfree(tbl); 849 return rt; 850 } 851 852 /* 853 * alloc_rsttbl_idx 854 * 855 * Allocate an index from within a previously initialized Restart Table. 856 */ 857 static inline void *alloc_rsttbl_idx(struct RESTART_TABLE **tbl) 858 { 859 u32 off; 860 __le32 *e; 861 struct RESTART_TABLE *t = *tbl; 862 863 if (!t->first_free) { 864 *tbl = t = extend_rsttbl(t, 16, ~0u); 865 if (!t) 866 return NULL; 867 } 868 869 off = le32_to_cpu(t->first_free); 870 871 /* Dequeue this entry and zero it. */ 872 e = Add2Ptr(t, off); 873 874 t->first_free = *e; 875 876 memset(e, 0, le16_to_cpu(t->size)); 877 878 *e = RESTART_ENTRY_ALLOCATED_LE; 879 880 /* If list is going empty, then we fix the last_free as well. */ 881 if (!t->first_free) 882 t->last_free = 0; 883 884 le16_add_cpu(&t->total, 1); 885 886 return Add2Ptr(t, off); 887 } 888 889 /* 890 * alloc_rsttbl_from_idx 891 * 892 * Allocate a specific index from within a previously initialized Restart Table. 893 */ 894 static inline void *alloc_rsttbl_from_idx(struct RESTART_TABLE **tbl, u32 vbo) 895 { 896 u32 off; 897 __le32 *e; 898 struct RESTART_TABLE *rt = *tbl; 899 u32 bytes = bytes_per_rt(rt); 900 u16 esize = le16_to_cpu(rt->size); 901 902 /* If the entry is not the table, we will have to extend the table. */ 903 if (vbo >= bytes) { 904 /* 905 * Extend the size by computing the number of entries between 906 * the existing size and the desired index and adding 1 to that. 907 */ 908 u32 bytes2idx = vbo - bytes; 909 910 /* 911 * There should always be an integral number of entries 912 * being added. Now extend the table. 913 */ 914 *tbl = rt = extend_rsttbl(rt, bytes2idx / esize + 1, bytes); 915 if (!rt) 916 return NULL; 917 } 918 919 /* See if the entry is already allocated, and just return if it is. */ 920 e = Add2Ptr(rt, vbo); 921 922 if (*e == RESTART_ENTRY_ALLOCATED_LE) 923 return e; 924 925 /* 926 * Walk through the table, looking for the entry we're 927 * interested and the previous entry. 928 */ 929 off = le32_to_cpu(rt->first_free); 930 e = Add2Ptr(rt, off); 931 932 if (off == vbo) { 933 /* this is a match */ 934 rt->first_free = *e; 935 goto skip_looking; 936 } 937 938 /* 939 * Need to walk through the list looking for the predecessor 940 * of our entry. 941 */ 942 for (;;) { 943 /* Remember the entry just found */ 944 u32 last_off = off; 945 __le32 *last_e = e; 946 947 /* Should never run of entries. */ 948 949 /* Lookup up the next entry the list. */ 950 off = le32_to_cpu(*last_e); 951 e = Add2Ptr(rt, off); 952 953 /* If this is our match we are done. */ 954 if (off == vbo) { 955 *last_e = *e; 956 957 /* 958 * If this was the last entry, we update that 959 * table as well. 960 */ 961 if (le32_to_cpu(rt->last_free) == off) 962 rt->last_free = cpu_to_le32(last_off); 963 break; 964 } 965 } 966 967 skip_looking: 968 /* If the list is now empty, we fix the last_free as well. */ 969 if (!rt->first_free) 970 rt->last_free = 0; 971 972 /* Zero this entry. */ 973 memset(e, 0, esize); 974 *e = RESTART_ENTRY_ALLOCATED_LE; 975 976 le16_add_cpu(&rt->total, 1); 977 978 return e; 979 } 980 981 #define RESTART_SINGLE_PAGE_IO cpu_to_le16(0x0001) 982 983 #define NTFSLOG_WRAPPED 0x00000001 984 #define NTFSLOG_MULTIPLE_PAGE_IO 0x00000002 985 #define NTFSLOG_NO_LAST_LSN 0x00000004 986 #define NTFSLOG_REUSE_TAIL 0x00000010 987 #define NTFSLOG_NO_OLDEST_LSN 0x00000020 988 989 /* Helper struct to work with NTFS $LogFile. */ 990 struct ntfs_log { 991 struct ntfs_inode *ni; 992 993 u32 l_size; 994 u32 sys_page_size; 995 u32 sys_page_mask; 996 u32 page_size; 997 u32 page_mask; // page_size - 1 998 u8 page_bits; 999 struct RECORD_PAGE_HDR *one_page_buf; 1000 1001 struct RESTART_TABLE *open_attr_tbl; 1002 u32 transaction_id; 1003 u32 clst_per_page; 1004 1005 u32 first_page; 1006 u32 next_page; 1007 u32 ra_off; 1008 u32 data_off; 1009 u32 restart_size; 1010 u32 data_size; 1011 u16 record_header_len; 1012 u64 seq_num; 1013 u32 seq_num_bits; 1014 u32 file_data_bits; 1015 u32 seq_num_mask; /* (1 << file_data_bits) - 1 */ 1016 1017 struct RESTART_AREA *ra; /* In-memory image of the next restart area. */ 1018 u32 ra_size; /* The usable size of the restart area. */ 1019 1020 /* 1021 * If true, then the in-memory restart area is to be written 1022 * to the first position on the disk. 1023 */ 1024 bool init_ra; 1025 bool set_dirty; /* True if we need to set dirty flag. */ 1026 1027 u64 oldest_lsn; 1028 1029 u32 oldest_lsn_off; 1030 u64 last_lsn; 1031 1032 u32 total_avail; 1033 u32 total_avail_pages; 1034 u32 total_undo_commit; 1035 u32 max_current_avail; 1036 u32 current_avail; 1037 u32 reserved; 1038 1039 short major_ver; 1040 short minor_ver; 1041 1042 u32 l_flags; /* See NTFSLOG_XXX */ 1043 u32 current_openlog_count; /* On-disk value for open_log_count. */ 1044 1045 struct CLIENT_ID client_id; 1046 u32 client_undo_commit; 1047 }; 1048 1049 static inline u32 lsn_to_vbo(struct ntfs_log *log, const u64 lsn) 1050 { 1051 u32 vbo = (lsn << log->seq_num_bits) >> (log->seq_num_bits - 3); 1052 1053 return vbo; 1054 } 1055 1056 /* Compute the offset in the log file of the next log page. */ 1057 static inline u32 next_page_off(struct ntfs_log *log, u32 off) 1058 { 1059 off = (off & ~log->sys_page_mask) + log->page_size; 1060 return off >= log->l_size ? log->first_page : off; 1061 } 1062 1063 static inline u32 lsn_to_page_off(struct ntfs_log *log, u64 lsn) 1064 { 1065 return (((u32)lsn) << 3) & log->page_mask; 1066 } 1067 1068 static inline u64 vbo_to_lsn(struct ntfs_log *log, u32 off, u64 Seq) 1069 { 1070 return (off >> 3) + (Seq << log->file_data_bits); 1071 } 1072 1073 static inline bool is_lsn_in_file(struct ntfs_log *log, u64 lsn) 1074 { 1075 return lsn >= log->oldest_lsn && 1076 lsn <= le64_to_cpu(log->ra->current_lsn); 1077 } 1078 1079 static inline u32 hdr_file_off(struct ntfs_log *log, 1080 struct RECORD_PAGE_HDR *hdr) 1081 { 1082 if (log->major_ver < 2) 1083 return le64_to_cpu(hdr->rhdr.lsn); 1084 1085 return le32_to_cpu(hdr->file_off); 1086 } 1087 1088 static inline u64 base_lsn(struct ntfs_log *log, 1089 const struct RECORD_PAGE_HDR *hdr, u64 lsn) 1090 { 1091 u64 h_lsn = le64_to_cpu(hdr->rhdr.lsn); 1092 u64 ret = (((h_lsn >> log->file_data_bits) + 1093 (lsn < (lsn_to_vbo(log, h_lsn) & ~log->page_mask) ? 1 : 0)) 1094 << log->file_data_bits) + 1095 ((((is_log_record_end(hdr) && 1096 h_lsn <= le64_to_cpu(hdr->record_hdr.last_end_lsn)) 1097 ? le16_to_cpu(hdr->record_hdr.next_record_off) 1098 : log->page_size) + 1099 lsn) >> 1100 3); 1101 1102 return ret; 1103 } 1104 1105 static inline bool verify_client_lsn(struct ntfs_log *log, 1106 const struct CLIENT_REC *client, u64 lsn) 1107 { 1108 return lsn >= le64_to_cpu(client->oldest_lsn) && 1109 lsn <= le64_to_cpu(log->ra->current_lsn) && lsn; 1110 } 1111 1112 struct restart_info { 1113 u64 last_lsn; 1114 struct RESTART_HDR *r_page; 1115 u32 vbo; 1116 bool chkdsk_was_run; 1117 bool valid_page; 1118 bool initialized; 1119 bool restart; 1120 }; 1121 1122 static int read_log_page(struct ntfs_log *log, u32 vbo, 1123 struct RECORD_PAGE_HDR **buffer, bool *usa_error) 1124 { 1125 int err = 0; 1126 u32 page_idx = vbo >> log->page_bits; 1127 u32 page_off = vbo & log->page_mask; 1128 u32 bytes = log->page_size - page_off; 1129 void *to_free = NULL; 1130 u32 page_vbo = page_idx << log->page_bits; 1131 struct RECORD_PAGE_HDR *page_buf; 1132 struct ntfs_inode *ni = log->ni; 1133 bool bBAAD; 1134 1135 if (vbo >= log->l_size) 1136 return -EINVAL; 1137 1138 if (!*buffer) { 1139 to_free = kmalloc(bytes, GFP_NOFS); 1140 if (!to_free) 1141 return -ENOMEM; 1142 *buffer = to_free; 1143 } 1144 1145 page_buf = page_off ? log->one_page_buf : *buffer; 1146 1147 err = ntfs_read_run_nb(ni->mi.sbi, &ni->file.run, page_vbo, page_buf, 1148 log->page_size, NULL); 1149 if (err) 1150 goto out; 1151 1152 if (page_buf->rhdr.sign != NTFS_FFFF_SIGNATURE) 1153 ntfs_fix_post_read(&page_buf->rhdr, PAGE_SIZE, false); 1154 1155 if (page_buf != *buffer) 1156 memcpy(*buffer, Add2Ptr(page_buf, page_off), bytes); 1157 1158 bBAAD = page_buf->rhdr.sign == NTFS_BAAD_SIGNATURE; 1159 1160 if (usa_error) 1161 *usa_error = bBAAD; 1162 /* Check that the update sequence array for this page is valid */ 1163 /* If we don't allow errors, raise an error status */ 1164 else if (bBAAD) 1165 err = -EINVAL; 1166 1167 out: 1168 if (err && to_free) { 1169 kfree(to_free); 1170 *buffer = NULL; 1171 } 1172 1173 return err; 1174 } 1175 1176 /* 1177 * log_read_rst 1178 * 1179 * It walks through 512 blocks of the file looking for a valid 1180 * restart page header. It will stop the first time we find a 1181 * valid page header. 1182 */ 1183 static int log_read_rst(struct ntfs_log *log, u32 l_size, bool first, 1184 struct restart_info *info) 1185 { 1186 u32 skip, vbo; 1187 struct RESTART_HDR *r_page = kmalloc(DefaultLogPageSize, GFP_NOFS); 1188 1189 if (!r_page) 1190 return -ENOMEM; 1191 1192 memset(info, 0, sizeof(struct restart_info)); 1193 1194 /* Determine which restart area we are looking for. */ 1195 if (first) { 1196 vbo = 0; 1197 skip = 512; 1198 } else { 1199 vbo = 512; 1200 skip = 0; 1201 } 1202 1203 /* Loop continuously until we succeed. */ 1204 for (; vbo < l_size; vbo = 2 * vbo + skip, skip = 0) { 1205 bool usa_error; 1206 u32 sys_page_size; 1207 bool brst, bchk; 1208 struct RESTART_AREA *ra; 1209 1210 /* Read a page header at the current offset. */ 1211 if (read_log_page(log, vbo, (struct RECORD_PAGE_HDR **)&r_page, 1212 &usa_error)) { 1213 /* Ignore any errors. */ 1214 continue; 1215 } 1216 1217 /* Exit if the signature is a log record page. */ 1218 if (r_page->rhdr.sign == NTFS_RCRD_SIGNATURE) { 1219 info->initialized = true; 1220 break; 1221 } 1222 1223 brst = r_page->rhdr.sign == NTFS_RSTR_SIGNATURE; 1224 bchk = r_page->rhdr.sign == NTFS_CHKD_SIGNATURE; 1225 1226 if (!bchk && !brst) { 1227 if (r_page->rhdr.sign != NTFS_FFFF_SIGNATURE) { 1228 /* 1229 * Remember if the signature does not 1230 * indicate uninitialized file. 1231 */ 1232 info->initialized = true; 1233 } 1234 continue; 1235 } 1236 1237 ra = NULL; 1238 info->valid_page = false; 1239 info->initialized = true; 1240 info->vbo = vbo; 1241 1242 /* Let's check the restart area if this is a valid page. */ 1243 if (!is_rst_page_hdr_valid(vbo, r_page)) 1244 goto check_result; 1245 ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off)); 1246 1247 if (!is_rst_area_valid(r_page)) 1248 goto check_result; 1249 1250 /* 1251 * We have a valid restart page header and restart area. 1252 * If chkdsk was run or we have no clients then we have 1253 * no more checking to do. 1254 */ 1255 if (bchk || ra->client_idx[1] == LFS_NO_CLIENT_LE) { 1256 info->valid_page = true; 1257 goto check_result; 1258 } 1259 1260 /* Read the entire restart area. */ 1261 sys_page_size = le32_to_cpu(r_page->sys_page_size); 1262 if (DefaultLogPageSize != sys_page_size) { 1263 kfree(r_page); 1264 r_page = kzalloc(sys_page_size, GFP_NOFS); 1265 if (!r_page) 1266 return -ENOMEM; 1267 1268 if (read_log_page(log, vbo, 1269 (struct RECORD_PAGE_HDR **)&r_page, 1270 &usa_error)) { 1271 /* Ignore any errors. */ 1272 kfree(r_page); 1273 r_page = NULL; 1274 continue; 1275 } 1276 } 1277 1278 if (is_client_area_valid(r_page, usa_error)) { 1279 info->valid_page = true; 1280 ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off)); 1281 } 1282 1283 check_result: 1284 /* 1285 * If chkdsk was run then update the caller's 1286 * values and return. 1287 */ 1288 if (r_page->rhdr.sign == NTFS_CHKD_SIGNATURE) { 1289 info->chkdsk_was_run = true; 1290 info->last_lsn = le64_to_cpu(r_page->rhdr.lsn); 1291 info->restart = true; 1292 info->r_page = r_page; 1293 return 0; 1294 } 1295 1296 /* 1297 * If we have a valid page then copy the values 1298 * we need from it. 1299 */ 1300 if (info->valid_page) { 1301 info->last_lsn = le64_to_cpu(ra->current_lsn); 1302 info->restart = true; 1303 info->r_page = r_page; 1304 return 0; 1305 } 1306 } 1307 1308 kfree(r_page); 1309 1310 return 0; 1311 } 1312 1313 /* 1314 * Ilog_init_pg_hdr - Init @log from restart page header. 1315 */ 1316 static void log_init_pg_hdr(struct ntfs_log *log, u32 sys_page_size, 1317 u32 page_size, u16 major_ver, u16 minor_ver) 1318 { 1319 log->sys_page_size = sys_page_size; 1320 log->sys_page_mask = sys_page_size - 1; 1321 log->page_size = page_size; 1322 log->page_mask = page_size - 1; 1323 log->page_bits = blksize_bits(page_size); 1324 1325 log->clst_per_page = log->page_size >> log->ni->mi.sbi->cluster_bits; 1326 if (!log->clst_per_page) 1327 log->clst_per_page = 1; 1328 1329 log->first_page = major_ver >= 2 1330 ? 0x22 * page_size 1331 : ((sys_page_size << 1) + (page_size << 1)); 1332 log->major_ver = major_ver; 1333 log->minor_ver = minor_ver; 1334 } 1335 1336 /* 1337 * log_create - Init @log in cases when we don't have a restart area to use. 1338 */ 1339 static void log_create(struct ntfs_log *log, u32 l_size, const u64 last_lsn, 1340 u32 open_log_count, bool wrapped, bool use_multi_page) 1341 { 1342 log->l_size = l_size; 1343 /* All file offsets must be quadword aligned. */ 1344 log->file_data_bits = blksize_bits(l_size) - 3; 1345 log->seq_num_mask = (8 << log->file_data_bits) - 1; 1346 log->seq_num_bits = sizeof(u64) * 8 - log->file_data_bits; 1347 log->seq_num = (last_lsn >> log->file_data_bits) + 2; 1348 log->next_page = log->first_page; 1349 log->oldest_lsn = log->seq_num << log->file_data_bits; 1350 log->oldest_lsn_off = 0; 1351 log->last_lsn = log->oldest_lsn; 1352 1353 log->l_flags |= NTFSLOG_NO_LAST_LSN | NTFSLOG_NO_OLDEST_LSN; 1354 1355 /* Set the correct flags for the I/O and indicate if we have wrapped. */ 1356 if (wrapped) 1357 log->l_flags |= NTFSLOG_WRAPPED; 1358 1359 if (use_multi_page) 1360 log->l_flags |= NTFSLOG_MULTIPLE_PAGE_IO; 1361 1362 /* Compute the log page values. */ 1363 log->data_off = ALIGN( 1364 offsetof(struct RECORD_PAGE_HDR, fixups) + 1365 sizeof(short) * ((log->page_size >> SECTOR_SHIFT) + 1), 1366 8); 1367 log->data_size = log->page_size - log->data_off; 1368 log->record_header_len = sizeof(struct LFS_RECORD_HDR); 1369 1370 /* Remember the different page sizes for reservation. */ 1371 log->reserved = log->data_size - log->record_header_len; 1372 1373 /* Compute the restart page values. */ 1374 log->ra_off = ALIGN( 1375 offsetof(struct RESTART_HDR, fixups) + 1376 sizeof(short) * 1377 ((log->sys_page_size >> SECTOR_SHIFT) + 1), 1378 8); 1379 log->restart_size = log->sys_page_size - log->ra_off; 1380 log->ra_size = struct_size(log->ra, clients, 1); 1381 log->current_openlog_count = open_log_count; 1382 1383 /* 1384 * The total available log file space is the number of 1385 * log file pages times the space available on each page. 1386 */ 1387 log->total_avail_pages = log->l_size - log->first_page; 1388 log->total_avail = log->total_avail_pages >> log->page_bits; 1389 1390 /* 1391 * We assume that we can't use the end of the page less than 1392 * the file record size. 1393 * Then we won't need to reserve more than the caller asks for. 1394 */ 1395 log->max_current_avail = log->total_avail * log->reserved; 1396 log->total_avail = log->total_avail * log->data_size; 1397 log->current_avail = log->max_current_avail; 1398 } 1399 1400 /* 1401 * log_create_ra - Fill a restart area from the values stored in @log. 1402 */ 1403 static struct RESTART_AREA *log_create_ra(struct ntfs_log *log) 1404 { 1405 struct CLIENT_REC *cr; 1406 struct RESTART_AREA *ra = kzalloc(log->restart_size, GFP_NOFS); 1407 1408 if (!ra) 1409 return NULL; 1410 1411 ra->current_lsn = cpu_to_le64(log->last_lsn); 1412 ra->log_clients = cpu_to_le16(1); 1413 ra->client_idx[1] = LFS_NO_CLIENT_LE; 1414 if (log->l_flags & NTFSLOG_MULTIPLE_PAGE_IO) 1415 ra->flags = RESTART_SINGLE_PAGE_IO; 1416 ra->seq_num_bits = cpu_to_le32(log->seq_num_bits); 1417 ra->ra_len = cpu_to_le16(log->ra_size); 1418 ra->client_off = cpu_to_le16(offsetof(struct RESTART_AREA, clients)); 1419 ra->l_size = cpu_to_le64(log->l_size); 1420 ra->rec_hdr_len = cpu_to_le16(log->record_header_len); 1421 ra->data_off = cpu_to_le16(log->data_off); 1422 ra->open_log_count = cpu_to_le32(log->current_openlog_count + 1); 1423 1424 cr = ra->clients; 1425 1426 cr->prev_client = LFS_NO_CLIENT_LE; 1427 cr->next_client = LFS_NO_CLIENT_LE; 1428 1429 return ra; 1430 } 1431 1432 static u32 final_log_off(struct ntfs_log *log, u64 lsn, u32 data_len) 1433 { 1434 u32 base_vbo = lsn << 3; 1435 u32 final_log_off = (base_vbo & log->seq_num_mask) & ~log->page_mask; 1436 u32 page_off = base_vbo & log->page_mask; 1437 u32 tail = log->page_size - page_off; 1438 1439 page_off -= 1; 1440 1441 /* Add the length of the header. */ 1442 data_len += log->record_header_len; 1443 1444 /* 1445 * If this lsn is contained this log page we are done. 1446 * Otherwise we need to walk through several log pages. 1447 */ 1448 if (data_len > tail) { 1449 data_len -= tail; 1450 tail = log->data_size; 1451 page_off = log->data_off - 1; 1452 1453 for (;;) { 1454 final_log_off = next_page_off(log, final_log_off); 1455 1456 /* 1457 * We are done if the remaining bytes 1458 * fit on this page. 1459 */ 1460 if (data_len <= tail) 1461 break; 1462 data_len -= tail; 1463 } 1464 } 1465 1466 /* 1467 * We add the remaining bytes to our starting position on this page 1468 * and then add that value to the file offset of this log page. 1469 */ 1470 return final_log_off + data_len + page_off; 1471 } 1472 1473 static int next_log_lsn(struct ntfs_log *log, const struct LFS_RECORD_HDR *rh, 1474 u64 *lsn) 1475 { 1476 int err; 1477 u64 this_lsn = le64_to_cpu(rh->this_lsn); 1478 u32 vbo = lsn_to_vbo(log, this_lsn); 1479 u32 end = 1480 final_log_off(log, this_lsn, le32_to_cpu(rh->client_data_len)); 1481 u32 hdr_off = end & ~log->sys_page_mask; 1482 u64 seq = this_lsn >> log->file_data_bits; 1483 struct RECORD_PAGE_HDR *page = NULL; 1484 1485 /* Remember if we wrapped. */ 1486 if (end <= vbo) 1487 seq += 1; 1488 1489 /* Log page header for this page. */ 1490 err = read_log_page(log, hdr_off, &page, NULL); 1491 if (err) 1492 return err; 1493 1494 /* 1495 * If the lsn we were given was not the last lsn on this page, 1496 * then the starting offset for the next lsn is on a quad word 1497 * boundary following the last file offset for the current lsn. 1498 * Otherwise the file offset is the start of the data on the next page. 1499 */ 1500 if (this_lsn == le64_to_cpu(page->rhdr.lsn)) { 1501 /* If we wrapped, we need to increment the sequence number. */ 1502 hdr_off = next_page_off(log, hdr_off); 1503 if (hdr_off == log->first_page) 1504 seq += 1; 1505 1506 vbo = hdr_off + log->data_off; 1507 } else { 1508 vbo = ALIGN(end, 8); 1509 } 1510 1511 /* Compute the lsn based on the file offset and the sequence count. */ 1512 *lsn = vbo_to_lsn(log, vbo, seq); 1513 1514 /* 1515 * If this lsn is within the legal range for the file, we return true. 1516 * Otherwise false indicates that there are no more lsn's. 1517 */ 1518 if (!is_lsn_in_file(log, *lsn)) 1519 *lsn = 0; 1520 1521 kfree(page); 1522 1523 return 0; 1524 } 1525 1526 /* 1527 * current_log_avail - Calculate the number of bytes available for log records. 1528 */ 1529 static u32 current_log_avail(struct ntfs_log *log) 1530 { 1531 u32 oldest_off, next_free_off, free_bytes; 1532 1533 if (log->l_flags & NTFSLOG_NO_LAST_LSN) { 1534 /* The entire file is available. */ 1535 return log->max_current_avail; 1536 } 1537 1538 /* 1539 * If there is a last lsn the restart area then we know that we will 1540 * have to compute the free range. 1541 * If there is no oldest lsn then start at the first page of the file. 1542 */ 1543 oldest_off = (log->l_flags & NTFSLOG_NO_OLDEST_LSN) 1544 ? log->first_page 1545 : (log->oldest_lsn_off & ~log->sys_page_mask); 1546 1547 /* 1548 * We will use the next log page offset to compute the next free page. 1549 * If we are going to reuse this page go to the next page. 1550 * If we are at the first page then use the end of the file. 1551 */ 1552 next_free_off = (log->l_flags & NTFSLOG_REUSE_TAIL) 1553 ? log->next_page + log->page_size 1554 : log->next_page == log->first_page 1555 ? log->l_size 1556 : log->next_page; 1557 1558 /* If the two offsets are the same then there is no available space. */ 1559 if (oldest_off == next_free_off) 1560 return 0; 1561 /* 1562 * If the free offset follows the oldest offset then subtract 1563 * this range from the total available pages. 1564 */ 1565 free_bytes = 1566 oldest_off < next_free_off 1567 ? log->total_avail_pages - (next_free_off - oldest_off) 1568 : oldest_off - next_free_off; 1569 1570 free_bytes >>= log->page_bits; 1571 return free_bytes * log->reserved; 1572 } 1573 1574 static bool check_subseq_log_page(struct ntfs_log *log, 1575 const struct RECORD_PAGE_HDR *rp, u32 vbo, 1576 u64 seq) 1577 { 1578 u64 lsn_seq; 1579 const struct NTFS_RECORD_HEADER *rhdr = &rp->rhdr; 1580 u64 lsn = le64_to_cpu(rhdr->lsn); 1581 1582 if (rhdr->sign == NTFS_FFFF_SIGNATURE || !rhdr->sign) 1583 return false; 1584 1585 /* 1586 * If the last lsn on the page occurs was written after the page 1587 * that caused the original error then we have a fatal error. 1588 */ 1589 lsn_seq = lsn >> log->file_data_bits; 1590 1591 /* 1592 * If the sequence number for the lsn the page is equal or greater 1593 * than lsn we expect, then this is a subsequent write. 1594 */ 1595 return lsn_seq >= seq || 1596 (lsn_seq == seq - 1 && log->first_page == vbo && 1597 vbo != (lsn_to_vbo(log, lsn) & ~log->page_mask)); 1598 } 1599 1600 /* 1601 * last_log_lsn 1602 * 1603 * Walks through the log pages for a file, searching for the 1604 * last log page written to the file. 1605 */ 1606 static int last_log_lsn(struct ntfs_log *log) 1607 { 1608 int err; 1609 bool usa_error = false; 1610 bool replace_page = false; 1611 bool reuse_page = log->l_flags & NTFSLOG_REUSE_TAIL; 1612 bool wrapped_file, wrapped; 1613 1614 u32 page_cnt = 1, page_pos = 1; 1615 u32 page_off = 0, page_off1 = 0, saved_off = 0; 1616 u32 final_off, second_off, final_off_prev = 0, second_off_prev = 0; 1617 u32 first_file_off = 0, second_file_off = 0; 1618 u32 part_io_count = 0; 1619 u32 tails = 0; 1620 u32 this_off, curpage_off, nextpage_off, remain_pages; 1621 1622 u64 expected_seq, seq_base = 0, lsn_base = 0; 1623 u64 best_lsn, best_lsn1, best_lsn2; 1624 u64 lsn_cur, lsn1, lsn2; 1625 u64 last_ok_lsn = reuse_page ? log->last_lsn : 0; 1626 1627 u16 cur_pos, best_page_pos; 1628 1629 struct RECORD_PAGE_HDR *page = NULL; 1630 struct RECORD_PAGE_HDR *tst_page = NULL; 1631 struct RECORD_PAGE_HDR *first_tail = NULL; 1632 struct RECORD_PAGE_HDR *second_tail = NULL; 1633 struct RECORD_PAGE_HDR *tail_page = NULL; 1634 struct RECORD_PAGE_HDR *second_tail_prev = NULL; 1635 struct RECORD_PAGE_HDR *first_tail_prev = NULL; 1636 struct RECORD_PAGE_HDR *page_bufs = NULL; 1637 struct RECORD_PAGE_HDR *best_page; 1638 1639 if (log->major_ver >= 2) { 1640 final_off = 0x02 * log->page_size; 1641 second_off = 0x12 * log->page_size; 1642 1643 // 0x10 == 0x12 - 0x2 1644 page_bufs = kmalloc(log->page_size * 0x10, GFP_NOFS); 1645 if (!page_bufs) 1646 return -ENOMEM; 1647 } else { 1648 second_off = log->first_page - log->page_size; 1649 final_off = second_off - log->page_size; 1650 } 1651 1652 next_tail: 1653 /* Read second tail page (at pos 3/0x12000). */ 1654 if (read_log_page(log, second_off, &second_tail, &usa_error) || 1655 usa_error || second_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) { 1656 kfree(second_tail); 1657 second_tail = NULL; 1658 second_file_off = 0; 1659 lsn2 = 0; 1660 } else { 1661 second_file_off = hdr_file_off(log, second_tail); 1662 lsn2 = le64_to_cpu(second_tail->record_hdr.last_end_lsn); 1663 } 1664 1665 /* Read first tail page (at pos 2/0x2000). */ 1666 if (read_log_page(log, final_off, &first_tail, &usa_error) || 1667 usa_error || first_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) { 1668 kfree(first_tail); 1669 first_tail = NULL; 1670 first_file_off = 0; 1671 lsn1 = 0; 1672 } else { 1673 first_file_off = hdr_file_off(log, first_tail); 1674 lsn1 = le64_to_cpu(first_tail->record_hdr.last_end_lsn); 1675 } 1676 1677 if (log->major_ver < 2) { 1678 int best_page; 1679 1680 first_tail_prev = first_tail; 1681 final_off_prev = first_file_off; 1682 second_tail_prev = second_tail; 1683 second_off_prev = second_file_off; 1684 tails = 1; 1685 1686 if (!first_tail && !second_tail) 1687 goto tail_read; 1688 1689 if (first_tail && second_tail) 1690 best_page = lsn1 < lsn2 ? 1 : 0; 1691 else if (first_tail) 1692 best_page = 0; 1693 else 1694 best_page = 1; 1695 1696 page_off = best_page ? second_file_off : first_file_off; 1697 seq_base = (best_page ? lsn2 : lsn1) >> log->file_data_bits; 1698 goto tail_read; 1699 } 1700 1701 best_lsn1 = first_tail ? base_lsn(log, first_tail, first_file_off) : 0; 1702 best_lsn2 = 1703 second_tail ? base_lsn(log, second_tail, second_file_off) : 0; 1704 1705 if (first_tail && second_tail) { 1706 if (best_lsn1 > best_lsn2) { 1707 best_lsn = best_lsn1; 1708 best_page = first_tail; 1709 this_off = first_file_off; 1710 } else { 1711 best_lsn = best_lsn2; 1712 best_page = second_tail; 1713 this_off = second_file_off; 1714 } 1715 } else if (first_tail) { 1716 best_lsn = best_lsn1; 1717 best_page = first_tail; 1718 this_off = first_file_off; 1719 } else if (second_tail) { 1720 best_lsn = best_lsn2; 1721 best_page = second_tail; 1722 this_off = second_file_off; 1723 } else { 1724 goto tail_read; 1725 } 1726 1727 best_page_pos = le16_to_cpu(best_page->page_pos); 1728 1729 if (!tails) { 1730 if (best_page_pos == page_pos) { 1731 seq_base = best_lsn >> log->file_data_bits; 1732 saved_off = page_off = le32_to_cpu(best_page->file_off); 1733 lsn_base = best_lsn; 1734 1735 memmove(page_bufs, best_page, log->page_size); 1736 1737 page_cnt = le16_to_cpu(best_page->page_count); 1738 if (page_cnt > 1) 1739 page_pos += 1; 1740 1741 tails = 1; 1742 } 1743 } else if (seq_base == (best_lsn >> log->file_data_bits) && 1744 saved_off + log->page_size == this_off && 1745 lsn_base < best_lsn && 1746 (page_pos != page_cnt || best_page_pos == page_pos || 1747 best_page_pos == 1) && 1748 (page_pos >= page_cnt || best_page_pos == page_pos)) { 1749 u16 bppc = le16_to_cpu(best_page->page_count); 1750 1751 saved_off += log->page_size; 1752 lsn_base = best_lsn; 1753 1754 memmove(Add2Ptr(page_bufs, tails * log->page_size), best_page, 1755 log->page_size); 1756 1757 tails += 1; 1758 1759 if (best_page_pos != bppc) { 1760 page_cnt = bppc; 1761 page_pos = best_page_pos; 1762 1763 if (page_cnt > 1) 1764 page_pos += 1; 1765 } else { 1766 page_pos = page_cnt = 1; 1767 } 1768 } else { 1769 kfree(first_tail); 1770 kfree(second_tail); 1771 goto tail_read; 1772 } 1773 1774 kfree(first_tail_prev); 1775 first_tail_prev = first_tail; 1776 final_off_prev = first_file_off; 1777 first_tail = NULL; 1778 1779 kfree(second_tail_prev); 1780 second_tail_prev = second_tail; 1781 second_off_prev = second_file_off; 1782 second_tail = NULL; 1783 1784 final_off += log->page_size; 1785 second_off += log->page_size; 1786 1787 if (tails < 0x10) 1788 goto next_tail; 1789 tail_read: 1790 first_tail = first_tail_prev; 1791 final_off = final_off_prev; 1792 1793 second_tail = second_tail_prev; 1794 second_off = second_off_prev; 1795 1796 page_cnt = page_pos = 1; 1797 1798 curpage_off = seq_base == log->seq_num ? min(log->next_page, page_off) 1799 : log->next_page; 1800 1801 wrapped_file = 1802 curpage_off == log->first_page && 1803 !(log->l_flags & (NTFSLOG_NO_LAST_LSN | NTFSLOG_REUSE_TAIL)); 1804 1805 expected_seq = wrapped_file ? (log->seq_num + 1) : log->seq_num; 1806 1807 nextpage_off = curpage_off; 1808 1809 next_page: 1810 tail_page = NULL; 1811 /* Read the next log page. */ 1812 err = read_log_page(log, curpage_off, &page, &usa_error); 1813 1814 /* Compute the next log page offset the file. */ 1815 nextpage_off = next_page_off(log, curpage_off); 1816 wrapped = nextpage_off == log->first_page; 1817 1818 if (tails > 1) { 1819 struct RECORD_PAGE_HDR *cur_page = 1820 Add2Ptr(page_bufs, curpage_off - page_off); 1821 1822 if (curpage_off == saved_off) { 1823 tail_page = cur_page; 1824 goto use_tail_page; 1825 } 1826 1827 if (page_off > curpage_off || curpage_off >= saved_off) 1828 goto use_tail_page; 1829 1830 if (page_off1) 1831 goto use_cur_page; 1832 1833 if (!err && !usa_error && 1834 page->rhdr.sign == NTFS_RCRD_SIGNATURE && 1835 cur_page->rhdr.lsn == page->rhdr.lsn && 1836 cur_page->record_hdr.next_record_off == 1837 page->record_hdr.next_record_off && 1838 ((page_pos == page_cnt && 1839 le16_to_cpu(page->page_pos) == 1) || 1840 (page_pos != page_cnt && 1841 le16_to_cpu(page->page_pos) == page_pos + 1 && 1842 le16_to_cpu(page->page_count) == page_cnt))) { 1843 cur_page = NULL; 1844 goto use_tail_page; 1845 } 1846 1847 page_off1 = page_off; 1848 1849 use_cur_page: 1850 1851 lsn_cur = le64_to_cpu(cur_page->rhdr.lsn); 1852 1853 if (last_ok_lsn != 1854 le64_to_cpu(cur_page->record_hdr.last_end_lsn) && 1855 ((lsn_cur >> log->file_data_bits) + 1856 ((curpage_off < 1857 (lsn_to_vbo(log, lsn_cur) & ~log->page_mask)) 1858 ? 1 1859 : 0)) != expected_seq) { 1860 goto check_tail; 1861 } 1862 1863 if (!is_log_record_end(cur_page)) { 1864 tail_page = NULL; 1865 last_ok_lsn = lsn_cur; 1866 goto next_page_1; 1867 } 1868 1869 log->seq_num = expected_seq; 1870 log->l_flags &= ~NTFSLOG_NO_LAST_LSN; 1871 log->last_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn); 1872 log->ra->current_lsn = cur_page->record_hdr.last_end_lsn; 1873 1874 if (log->record_header_len <= 1875 log->page_size - 1876 le16_to_cpu(cur_page->record_hdr.next_record_off)) { 1877 log->l_flags |= NTFSLOG_REUSE_TAIL; 1878 log->next_page = curpage_off; 1879 } else { 1880 log->l_flags &= ~NTFSLOG_REUSE_TAIL; 1881 log->next_page = nextpage_off; 1882 } 1883 1884 if (wrapped_file) 1885 log->l_flags |= NTFSLOG_WRAPPED; 1886 1887 last_ok_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn); 1888 goto next_page_1; 1889 } 1890 1891 /* 1892 * If we are at the expected first page of a transfer check to see 1893 * if either tail copy is at this offset. 1894 * If this page is the last page of a transfer, check if we wrote 1895 * a subsequent tail copy. 1896 */ 1897 if (page_cnt == page_pos || page_cnt == page_pos + 1) { 1898 /* 1899 * Check if the offset matches either the first or second 1900 * tail copy. It is possible it will match both. 1901 */ 1902 if (curpage_off == final_off) 1903 tail_page = first_tail; 1904 1905 /* 1906 * If we already matched on the first page then 1907 * check the ending lsn's. 1908 */ 1909 if (curpage_off == second_off) { 1910 if (!tail_page || 1911 (second_tail && 1912 le64_to_cpu(second_tail->record_hdr.last_end_lsn) > 1913 le64_to_cpu(first_tail->record_hdr 1914 .last_end_lsn))) { 1915 tail_page = second_tail; 1916 } 1917 } 1918 } 1919 1920 use_tail_page: 1921 if (tail_page) { 1922 /* We have a candidate for a tail copy. */ 1923 lsn_cur = le64_to_cpu(tail_page->record_hdr.last_end_lsn); 1924 1925 if (last_ok_lsn < lsn_cur) { 1926 /* 1927 * If the sequence number is not expected, 1928 * then don't use the tail copy. 1929 */ 1930 if (expected_seq != (lsn_cur >> log->file_data_bits)) 1931 tail_page = NULL; 1932 } else if (last_ok_lsn > lsn_cur) { 1933 /* 1934 * If the last lsn is greater than the one on 1935 * this page then forget this tail. 1936 */ 1937 tail_page = NULL; 1938 } 1939 } 1940 1941 /* 1942 *If we have an error on the current page, 1943 * we will break of this loop. 1944 */ 1945 if (err || usa_error) 1946 goto check_tail; 1947 1948 /* 1949 * Done if the last lsn on this page doesn't match the previous known 1950 * last lsn or the sequence number is not expected. 1951 */ 1952 lsn_cur = le64_to_cpu(page->rhdr.lsn); 1953 if (last_ok_lsn != lsn_cur && 1954 expected_seq != (lsn_cur >> log->file_data_bits)) { 1955 goto check_tail; 1956 } 1957 1958 /* 1959 * Check that the page position and page count values are correct. 1960 * If this is the first page of a transfer the position must be 1 1961 * and the count will be unknown. 1962 */ 1963 if (page_cnt == page_pos) { 1964 if (page->page_pos != cpu_to_le16(1) && 1965 (!reuse_page || page->page_pos != page->page_count)) { 1966 /* 1967 * If the current page is the first page we are 1968 * looking at and we are reusing this page then 1969 * it can be either the first or last page of a 1970 * transfer. Otherwise it can only be the first. 1971 */ 1972 goto check_tail; 1973 } 1974 } else if (le16_to_cpu(page->page_count) != page_cnt || 1975 le16_to_cpu(page->page_pos) != page_pos + 1) { 1976 /* 1977 * The page position better be 1 more than the last page 1978 * position and the page count better match. 1979 */ 1980 goto check_tail; 1981 } 1982 1983 /* 1984 * We have a valid page the file and may have a valid page 1985 * the tail copy area. 1986 * If the tail page was written after the page the file then 1987 * break of the loop. 1988 */ 1989 if (tail_page && 1990 le64_to_cpu(tail_page->record_hdr.last_end_lsn) > lsn_cur) { 1991 /* Remember if we will replace the page. */ 1992 replace_page = true; 1993 goto check_tail; 1994 } 1995 1996 tail_page = NULL; 1997 1998 if (is_log_record_end(page)) { 1999 /* 2000 * Since we have read this page we know the sequence number 2001 * is the same as our expected value. 2002 */ 2003 log->seq_num = expected_seq; 2004 log->last_lsn = le64_to_cpu(page->record_hdr.last_end_lsn); 2005 log->ra->current_lsn = page->record_hdr.last_end_lsn; 2006 log->l_flags &= ~NTFSLOG_NO_LAST_LSN; 2007 2008 /* 2009 * If there is room on this page for another header then 2010 * remember we want to reuse the page. 2011 */ 2012 if (log->record_header_len <= 2013 log->page_size - 2014 le16_to_cpu(page->record_hdr.next_record_off)) { 2015 log->l_flags |= NTFSLOG_REUSE_TAIL; 2016 log->next_page = curpage_off; 2017 } else { 2018 log->l_flags &= ~NTFSLOG_REUSE_TAIL; 2019 log->next_page = nextpage_off; 2020 } 2021 2022 /* Remember if we wrapped the log file. */ 2023 if (wrapped_file) 2024 log->l_flags |= NTFSLOG_WRAPPED; 2025 } 2026 2027 /* 2028 * Remember the last page count and position. 2029 * Also remember the last known lsn. 2030 */ 2031 page_cnt = le16_to_cpu(page->page_count); 2032 page_pos = le16_to_cpu(page->page_pos); 2033 last_ok_lsn = le64_to_cpu(page->rhdr.lsn); 2034 2035 next_page_1: 2036 2037 if (wrapped) { 2038 expected_seq += 1; 2039 wrapped_file = 1; 2040 } 2041 2042 curpage_off = nextpage_off; 2043 kfree(page); 2044 page = NULL; 2045 reuse_page = 0; 2046 goto next_page; 2047 2048 check_tail: 2049 if (tail_page) { 2050 log->seq_num = expected_seq; 2051 log->last_lsn = le64_to_cpu(tail_page->record_hdr.last_end_lsn); 2052 log->ra->current_lsn = tail_page->record_hdr.last_end_lsn; 2053 log->l_flags &= ~NTFSLOG_NO_LAST_LSN; 2054 2055 if (log->page_size - 2056 le16_to_cpu( 2057 tail_page->record_hdr.next_record_off) >= 2058 log->record_header_len) { 2059 log->l_flags |= NTFSLOG_REUSE_TAIL; 2060 log->next_page = curpage_off; 2061 } else { 2062 log->l_flags &= ~NTFSLOG_REUSE_TAIL; 2063 log->next_page = nextpage_off; 2064 } 2065 2066 if (wrapped) 2067 log->l_flags |= NTFSLOG_WRAPPED; 2068 } 2069 2070 /* Remember that the partial IO will start at the next page. */ 2071 second_off = nextpage_off; 2072 2073 /* 2074 * If the next page is the first page of the file then update 2075 * the sequence number for log records which begon the next page. 2076 */ 2077 if (wrapped) 2078 expected_seq += 1; 2079 2080 /* 2081 * If we have a tail copy or are performing single page I/O we can 2082 * immediately look at the next page. 2083 */ 2084 if (replace_page || (log->ra->flags & RESTART_SINGLE_PAGE_IO)) { 2085 page_cnt = 2; 2086 page_pos = 1; 2087 goto check_valid; 2088 } 2089 2090 if (page_pos != page_cnt) 2091 goto check_valid; 2092 /* 2093 * If the next page causes us to wrap to the beginning of the log 2094 * file then we know which page to check next. 2095 */ 2096 if (wrapped) { 2097 page_cnt = 2; 2098 page_pos = 1; 2099 goto check_valid; 2100 } 2101 2102 cur_pos = 2; 2103 2104 next_test_page: 2105 kfree(tst_page); 2106 tst_page = NULL; 2107 2108 /* Walk through the file, reading log pages. */ 2109 err = read_log_page(log, nextpage_off, &tst_page, &usa_error); 2110 2111 /* 2112 * If we get a USA error then assume that we correctly found 2113 * the end of the original transfer. 2114 */ 2115 if (usa_error) 2116 goto file_is_valid; 2117 2118 /* 2119 * If we were able to read the page, we examine it to see if it 2120 * is the same or different Io block. 2121 */ 2122 if (err) 2123 goto next_test_page_1; 2124 2125 if (le16_to_cpu(tst_page->page_pos) == cur_pos && 2126 check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) { 2127 page_cnt = le16_to_cpu(tst_page->page_count) + 1; 2128 page_pos = le16_to_cpu(tst_page->page_pos); 2129 goto check_valid; 2130 } else { 2131 goto file_is_valid; 2132 } 2133 2134 next_test_page_1: 2135 2136 nextpage_off = next_page_off(log, curpage_off); 2137 wrapped = nextpage_off == log->first_page; 2138 2139 if (wrapped) { 2140 expected_seq += 1; 2141 page_cnt = 2; 2142 page_pos = 1; 2143 } 2144 2145 cur_pos += 1; 2146 part_io_count += 1; 2147 if (!wrapped) 2148 goto next_test_page; 2149 2150 check_valid: 2151 /* Skip over the remaining pages this transfer. */ 2152 remain_pages = page_cnt - page_pos - 1; 2153 part_io_count += remain_pages; 2154 2155 while (remain_pages--) { 2156 nextpage_off = next_page_off(log, curpage_off); 2157 wrapped = nextpage_off == log->first_page; 2158 2159 if (wrapped) 2160 expected_seq += 1; 2161 } 2162 2163 /* Call our routine to check this log page. */ 2164 kfree(tst_page); 2165 tst_page = NULL; 2166 2167 err = read_log_page(log, nextpage_off, &tst_page, &usa_error); 2168 if (!err && !usa_error && 2169 check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) { 2170 err = -EINVAL; 2171 goto out; 2172 } 2173 2174 file_is_valid: 2175 2176 /* We have a valid file. */ 2177 if (page_off1 || tail_page) { 2178 struct RECORD_PAGE_HDR *tmp_page; 2179 2180 if (sb_rdonly(log->ni->mi.sbi->sb)) { 2181 err = -EROFS; 2182 goto out; 2183 } 2184 2185 if (page_off1) { 2186 tmp_page = Add2Ptr(page_bufs, page_off1 - page_off); 2187 tails -= (page_off1 - page_off) / log->page_size; 2188 if (!tail_page) 2189 tails -= 1; 2190 } else { 2191 tmp_page = tail_page; 2192 tails = 1; 2193 } 2194 2195 while (tails--) { 2196 u64 off = hdr_file_off(log, tmp_page); 2197 2198 if (!page) { 2199 page = kmalloc(log->page_size, GFP_NOFS); 2200 if (!page) 2201 return -ENOMEM; 2202 } 2203 2204 /* 2205 * Correct page and copy the data from this page 2206 * into it and flush it to disk. 2207 */ 2208 memcpy(page, tmp_page, log->page_size); 2209 2210 /* Fill last flushed lsn value flush the page. */ 2211 if (log->major_ver < 2) 2212 page->rhdr.lsn = page->record_hdr.last_end_lsn; 2213 else 2214 page->file_off = 0; 2215 2216 page->page_pos = page->page_count = cpu_to_le16(1); 2217 2218 ntfs_fix_pre_write(&page->rhdr, log->page_size); 2219 2220 err = ntfs_sb_write_run(log->ni->mi.sbi, 2221 &log->ni->file.run, off, page, 2222 log->page_size); 2223 2224 if (err) 2225 goto out; 2226 2227 if (part_io_count && second_off == off) { 2228 second_off += log->page_size; 2229 part_io_count -= 1; 2230 } 2231 2232 tmp_page = Add2Ptr(tmp_page, log->page_size); 2233 } 2234 } 2235 2236 if (part_io_count) { 2237 if (sb_rdonly(log->ni->mi.sbi->sb)) { 2238 err = -EROFS; 2239 goto out; 2240 } 2241 } 2242 2243 out: 2244 kfree(second_tail); 2245 kfree(first_tail); 2246 kfree(page); 2247 kfree(tst_page); 2248 kfree(page_bufs); 2249 2250 return err; 2251 } 2252 2253 /* 2254 * read_log_rec_buf - Copy a log record from the file to a buffer. 2255 * 2256 * The log record may span several log pages and may even wrap the file. 2257 */ 2258 static int read_log_rec_buf(struct ntfs_log *log, 2259 const struct LFS_RECORD_HDR *rh, void *buffer) 2260 { 2261 int err; 2262 struct RECORD_PAGE_HDR *ph = NULL; 2263 u64 lsn = le64_to_cpu(rh->this_lsn); 2264 u32 vbo = lsn_to_vbo(log, lsn) & ~log->page_mask; 2265 u32 off = lsn_to_page_off(log, lsn) + log->record_header_len; 2266 u32 data_len = le32_to_cpu(rh->client_data_len); 2267 2268 /* 2269 * While there are more bytes to transfer, 2270 * we continue to attempt to perform the read. 2271 */ 2272 for (;;) { 2273 bool usa_error; 2274 u32 tail = log->page_size - off; 2275 2276 if (tail >= data_len) 2277 tail = data_len; 2278 2279 data_len -= tail; 2280 2281 err = read_log_page(log, vbo, &ph, &usa_error); 2282 if (err) 2283 goto out; 2284 2285 /* 2286 * The last lsn on this page better be greater or equal 2287 * to the lsn we are copying. 2288 */ 2289 if (lsn > le64_to_cpu(ph->rhdr.lsn)) { 2290 err = -EINVAL; 2291 goto out; 2292 } 2293 2294 memcpy(buffer, Add2Ptr(ph, off), tail); 2295 2296 /* If there are no more bytes to transfer, we exit the loop. */ 2297 if (!data_len) { 2298 if (!is_log_record_end(ph) || 2299 lsn > le64_to_cpu(ph->record_hdr.last_end_lsn)) { 2300 err = -EINVAL; 2301 goto out; 2302 } 2303 break; 2304 } 2305 2306 if (ph->rhdr.lsn == ph->record_hdr.last_end_lsn || 2307 lsn > le64_to_cpu(ph->rhdr.lsn)) { 2308 err = -EINVAL; 2309 goto out; 2310 } 2311 2312 vbo = next_page_off(log, vbo); 2313 off = log->data_off; 2314 2315 /* 2316 * Adjust our pointer the user's buffer to transfer 2317 * the next block to. 2318 */ 2319 buffer = Add2Ptr(buffer, tail); 2320 } 2321 2322 out: 2323 kfree(ph); 2324 return err; 2325 } 2326 2327 static int read_rst_area(struct ntfs_log *log, struct NTFS_RESTART **rst_, 2328 u64 *lsn) 2329 { 2330 int err; 2331 struct LFS_RECORD_HDR *rh = NULL; 2332 const struct CLIENT_REC *cr = 2333 Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)); 2334 u64 lsnr, lsnc = le64_to_cpu(cr->restart_lsn); 2335 u32 len; 2336 struct NTFS_RESTART *rst; 2337 2338 *lsn = 0; 2339 *rst_ = NULL; 2340 2341 /* If the client doesn't have a restart area, go ahead and exit now. */ 2342 if (!lsnc) 2343 return 0; 2344 2345 err = read_log_page(log, lsn_to_vbo(log, lsnc), 2346 (struct RECORD_PAGE_HDR **)&rh, NULL); 2347 if (err) 2348 return err; 2349 2350 rst = NULL; 2351 lsnr = le64_to_cpu(rh->this_lsn); 2352 2353 if (lsnc != lsnr) { 2354 /* If the lsn values don't match, then the disk is corrupt. */ 2355 err = -EINVAL; 2356 goto out; 2357 } 2358 2359 *lsn = lsnr; 2360 len = le32_to_cpu(rh->client_data_len); 2361 2362 if (!len) { 2363 err = 0; 2364 goto out; 2365 } 2366 2367 if (len < sizeof(struct NTFS_RESTART)) { 2368 err = -EINVAL; 2369 goto out; 2370 } 2371 2372 rst = kmalloc(len, GFP_NOFS); 2373 if (!rst) { 2374 err = -ENOMEM; 2375 goto out; 2376 } 2377 2378 /* Copy the data into the 'rst' buffer. */ 2379 err = read_log_rec_buf(log, rh, rst); 2380 if (err) 2381 goto out; 2382 2383 *rst_ = rst; 2384 rst = NULL; 2385 2386 out: 2387 kfree(rh); 2388 kfree(rst); 2389 2390 return err; 2391 } 2392 2393 static int find_log_rec(struct ntfs_log *log, u64 lsn, struct lcb *lcb) 2394 { 2395 int err; 2396 struct LFS_RECORD_HDR *rh = lcb->lrh; 2397 u32 rec_len, len; 2398 2399 /* Read the record header for this lsn. */ 2400 if (!rh) { 2401 err = read_log_page(log, lsn_to_vbo(log, lsn), 2402 (struct RECORD_PAGE_HDR **)&rh, NULL); 2403 2404 lcb->lrh = rh; 2405 if (err) 2406 return err; 2407 } 2408 2409 /* 2410 * If the lsn the log record doesn't match the desired 2411 * lsn then the disk is corrupt. 2412 */ 2413 if (lsn != le64_to_cpu(rh->this_lsn)) 2414 return -EINVAL; 2415 2416 len = le32_to_cpu(rh->client_data_len); 2417 2418 /* 2419 * Check that the length field isn't greater than the total 2420 * available space the log file. 2421 */ 2422 rec_len = len + log->record_header_len; 2423 if (rec_len >= log->total_avail) 2424 return -EINVAL; 2425 2426 /* 2427 * If the entire log record is on this log page, 2428 * put a pointer to the log record the context block. 2429 */ 2430 if (rh->flags & LOG_RECORD_MULTI_PAGE) { 2431 void *lr = kmalloc(len, GFP_NOFS); 2432 2433 if (!lr) 2434 return -ENOMEM; 2435 2436 lcb->log_rec = lr; 2437 lcb->alloc = true; 2438 2439 /* Copy the data into the buffer returned. */ 2440 err = read_log_rec_buf(log, rh, lr); 2441 if (err) 2442 return err; 2443 } else { 2444 /* If beyond the end of the current page -> an error. */ 2445 u32 page_off = lsn_to_page_off(log, lsn); 2446 2447 if (page_off + len + log->record_header_len > log->page_size) 2448 return -EINVAL; 2449 2450 lcb->log_rec = Add2Ptr(rh, sizeof(struct LFS_RECORD_HDR)); 2451 lcb->alloc = false; 2452 } 2453 2454 return 0; 2455 } 2456 2457 /* 2458 * read_log_rec_lcb - Init the query operation. 2459 */ 2460 static int read_log_rec_lcb(struct ntfs_log *log, u64 lsn, u32 ctx_mode, 2461 struct lcb **lcb_) 2462 { 2463 int err; 2464 const struct CLIENT_REC *cr; 2465 struct lcb *lcb; 2466 2467 switch (ctx_mode) { 2468 case lcb_ctx_undo_next: 2469 case lcb_ctx_prev: 2470 case lcb_ctx_next: 2471 break; 2472 default: 2473 return -EINVAL; 2474 } 2475 2476 /* Check that the given lsn is the legal range for this client. */ 2477 cr = Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)); 2478 2479 if (!verify_client_lsn(log, cr, lsn)) 2480 return -EINVAL; 2481 2482 lcb = kzalloc(sizeof(struct lcb), GFP_NOFS); 2483 if (!lcb) 2484 return -ENOMEM; 2485 lcb->client = log->client_id; 2486 lcb->ctx_mode = ctx_mode; 2487 2488 /* Find the log record indicated by the given lsn. */ 2489 err = find_log_rec(log, lsn, lcb); 2490 if (err) 2491 goto out; 2492 2493 *lcb_ = lcb; 2494 return 0; 2495 2496 out: 2497 lcb_put(lcb); 2498 *lcb_ = NULL; 2499 return err; 2500 } 2501 2502 /* 2503 * find_client_next_lsn 2504 * 2505 * Attempt to find the next lsn to return to a client based on the context mode. 2506 */ 2507 static int find_client_next_lsn(struct ntfs_log *log, struct lcb *lcb, u64 *lsn) 2508 { 2509 int err; 2510 u64 next_lsn; 2511 struct LFS_RECORD_HDR *hdr; 2512 2513 hdr = lcb->lrh; 2514 *lsn = 0; 2515 2516 if (lcb_ctx_next != lcb->ctx_mode) 2517 goto check_undo_next; 2518 2519 /* Loop as long as another lsn can be found. */ 2520 for (;;) { 2521 u64 current_lsn; 2522 2523 err = next_log_lsn(log, hdr, ¤t_lsn); 2524 if (err) 2525 goto out; 2526 2527 if (!current_lsn) 2528 break; 2529 2530 if (hdr != lcb->lrh) 2531 kfree(hdr); 2532 2533 hdr = NULL; 2534 err = read_log_page(log, lsn_to_vbo(log, current_lsn), 2535 (struct RECORD_PAGE_HDR **)&hdr, NULL); 2536 if (err) 2537 goto out; 2538 2539 if (memcmp(&hdr->client, &lcb->client, 2540 sizeof(struct CLIENT_ID))) { 2541 /*err = -EINVAL; */ 2542 } else if (LfsClientRecord == hdr->record_type) { 2543 kfree(lcb->lrh); 2544 lcb->lrh = hdr; 2545 *lsn = current_lsn; 2546 return 0; 2547 } 2548 } 2549 2550 out: 2551 if (hdr != lcb->lrh) 2552 kfree(hdr); 2553 return err; 2554 2555 check_undo_next: 2556 if (lcb_ctx_undo_next == lcb->ctx_mode) 2557 next_lsn = le64_to_cpu(hdr->client_undo_next_lsn); 2558 else if (lcb_ctx_prev == lcb->ctx_mode) 2559 next_lsn = le64_to_cpu(hdr->client_prev_lsn); 2560 else 2561 return 0; 2562 2563 if (!next_lsn) 2564 return 0; 2565 2566 if (!verify_client_lsn( 2567 log, Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)), 2568 next_lsn)) 2569 return 0; 2570 2571 hdr = NULL; 2572 err = read_log_page(log, lsn_to_vbo(log, next_lsn), 2573 (struct RECORD_PAGE_HDR **)&hdr, NULL); 2574 if (err) 2575 return err; 2576 kfree(lcb->lrh); 2577 lcb->lrh = hdr; 2578 2579 *lsn = next_lsn; 2580 2581 return 0; 2582 } 2583 2584 static int read_next_log_rec(struct ntfs_log *log, struct lcb *lcb, u64 *lsn) 2585 { 2586 int err; 2587 2588 err = find_client_next_lsn(log, lcb, lsn); 2589 if (err) 2590 return err; 2591 2592 if (!*lsn) 2593 return 0; 2594 2595 if (lcb->alloc) 2596 kfree(lcb->log_rec); 2597 2598 lcb->log_rec = NULL; 2599 lcb->alloc = false; 2600 kfree(lcb->lrh); 2601 lcb->lrh = NULL; 2602 2603 return find_log_rec(log, *lsn, lcb); 2604 } 2605 2606 static inline bool check_index_header(const struct INDEX_HDR *hdr, size_t bytes) 2607 { 2608 __le16 mask; 2609 u32 min_de, de_off, used, total; 2610 const struct NTFS_DE *e; 2611 2612 if (hdr_has_subnode(hdr)) { 2613 min_de = sizeof(struct NTFS_DE) + sizeof(u64); 2614 mask = NTFS_IE_HAS_SUBNODES; 2615 } else { 2616 min_de = sizeof(struct NTFS_DE); 2617 mask = 0; 2618 } 2619 2620 de_off = le32_to_cpu(hdr->de_off); 2621 used = le32_to_cpu(hdr->used); 2622 total = le32_to_cpu(hdr->total); 2623 2624 if (de_off > bytes - min_de || used > bytes || total > bytes || 2625 de_off + min_de > used || used > total) { 2626 return false; 2627 } 2628 2629 e = Add2Ptr(hdr, de_off); 2630 for (;;) { 2631 u16 esize = le16_to_cpu(e->size); 2632 struct NTFS_DE *next = Add2Ptr(e, esize); 2633 2634 if (esize < min_de || PtrOffset(hdr, next) > used || 2635 (e->flags & NTFS_IE_HAS_SUBNODES) != mask) { 2636 return false; 2637 } 2638 2639 if (de_is_last(e)) 2640 break; 2641 2642 e = next; 2643 } 2644 2645 return true; 2646 } 2647 2648 static inline bool check_index_buffer(const struct INDEX_BUFFER *ib, u32 bytes) 2649 { 2650 u16 fo; 2651 const struct NTFS_RECORD_HEADER *r = &ib->rhdr; 2652 2653 if (r->sign != NTFS_INDX_SIGNATURE) 2654 return false; 2655 2656 fo = (SECTOR_SIZE - ((bytes >> SECTOR_SHIFT) + 1) * sizeof(short)); 2657 2658 if (le16_to_cpu(r->fix_off) > fo) 2659 return false; 2660 2661 if ((le16_to_cpu(r->fix_num) - 1) * SECTOR_SIZE != bytes) 2662 return false; 2663 2664 return check_index_header(&ib->ihdr, 2665 bytes - offsetof(struct INDEX_BUFFER, ihdr)); 2666 } 2667 2668 static inline bool check_index_root(const struct ATTRIB *attr, 2669 struct ntfs_sb_info *sbi) 2670 { 2671 bool ret; 2672 const struct INDEX_ROOT *root = resident_data(attr); 2673 u8 index_bits = le32_to_cpu(root->index_block_size) >= sbi->cluster_size 2674 ? sbi->cluster_bits 2675 : SECTOR_SHIFT; 2676 u8 block_clst = root->index_block_clst; 2677 2678 if (le32_to_cpu(attr->res.data_size) < sizeof(struct INDEX_ROOT) || 2679 (root->type != ATTR_NAME && root->type != ATTR_ZERO) || 2680 (root->type == ATTR_NAME && 2681 root->rule != NTFS_COLLATION_TYPE_FILENAME) || 2682 (le32_to_cpu(root->index_block_size) != 2683 (block_clst << index_bits)) || 2684 (block_clst != 1 && block_clst != 2 && block_clst != 4 && 2685 block_clst != 8 && block_clst != 0x10 && block_clst != 0x20 && 2686 block_clst != 0x40 && block_clst != 0x80)) { 2687 return false; 2688 } 2689 2690 ret = check_index_header(&root->ihdr, 2691 le32_to_cpu(attr->res.data_size) - 2692 offsetof(struct INDEX_ROOT, ihdr)); 2693 return ret; 2694 } 2695 2696 static inline bool check_attr(const struct MFT_REC *rec, 2697 const struct ATTRIB *attr, 2698 struct ntfs_sb_info *sbi) 2699 { 2700 u32 asize = le32_to_cpu(attr->size); 2701 u32 rsize = 0; 2702 u64 dsize, svcn, evcn; 2703 u16 run_off; 2704 2705 /* Check the fixed part of the attribute record header. */ 2706 if (asize >= sbi->record_size || 2707 asize + PtrOffset(rec, attr) >= sbi->record_size || 2708 (attr->name_len && 2709 le16_to_cpu(attr->name_off) + attr->name_len * sizeof(short) > 2710 asize)) { 2711 return false; 2712 } 2713 2714 /* Check the attribute fields. */ 2715 switch (attr->non_res) { 2716 case 0: 2717 rsize = le32_to_cpu(attr->res.data_size); 2718 if (rsize >= asize || 2719 le16_to_cpu(attr->res.data_off) + rsize > asize) { 2720 return false; 2721 } 2722 break; 2723 2724 case 1: 2725 dsize = le64_to_cpu(attr->nres.data_size); 2726 svcn = le64_to_cpu(attr->nres.svcn); 2727 evcn = le64_to_cpu(attr->nres.evcn); 2728 run_off = le16_to_cpu(attr->nres.run_off); 2729 2730 if (svcn > evcn + 1 || run_off >= asize || 2731 le64_to_cpu(attr->nres.valid_size) > dsize || 2732 dsize > le64_to_cpu(attr->nres.alloc_size)) { 2733 return false; 2734 } 2735 2736 if (run_unpack(NULL, sbi, 0, svcn, evcn, svcn, 2737 Add2Ptr(attr, run_off), asize - run_off) < 0) { 2738 return false; 2739 } 2740 2741 return true; 2742 2743 default: 2744 return false; 2745 } 2746 2747 switch (attr->type) { 2748 case ATTR_NAME: 2749 if (fname_full_size(Add2Ptr( 2750 attr, le16_to_cpu(attr->res.data_off))) > asize) { 2751 return false; 2752 } 2753 break; 2754 2755 case ATTR_ROOT: 2756 return check_index_root(attr, sbi); 2757 2758 case ATTR_STD: 2759 if (rsize < sizeof(struct ATTR_STD_INFO5) && 2760 rsize != sizeof(struct ATTR_STD_INFO)) { 2761 return false; 2762 } 2763 break; 2764 2765 case ATTR_LIST: 2766 case ATTR_ID: 2767 case ATTR_SECURE: 2768 case ATTR_LABEL: 2769 case ATTR_VOL_INFO: 2770 case ATTR_DATA: 2771 case ATTR_ALLOC: 2772 case ATTR_BITMAP: 2773 case ATTR_REPARSE: 2774 case ATTR_EA_INFO: 2775 case ATTR_EA: 2776 case ATTR_PROPERTYSET: 2777 case ATTR_LOGGED_UTILITY_STREAM: 2778 break; 2779 2780 default: 2781 return false; 2782 } 2783 2784 return true; 2785 } 2786 2787 static inline bool check_file_record(const struct MFT_REC *rec, 2788 const struct MFT_REC *rec2, 2789 struct ntfs_sb_info *sbi) 2790 { 2791 const struct ATTRIB *attr; 2792 u16 fo = le16_to_cpu(rec->rhdr.fix_off); 2793 u16 fn = le16_to_cpu(rec->rhdr.fix_num); 2794 u16 ao = le16_to_cpu(rec->attr_off); 2795 u32 rs = sbi->record_size; 2796 2797 /* Check the file record header for consistency. */ 2798 if (rec->rhdr.sign != NTFS_FILE_SIGNATURE || 2799 fo > (SECTOR_SIZE - ((rs >> SECTOR_SHIFT) + 1) * sizeof(short)) || 2800 (fn - 1) * SECTOR_SIZE != rs || ao < MFTRECORD_FIXUP_OFFSET_1 || 2801 ao > sbi->record_size - SIZEOF_RESIDENT || !is_rec_inuse(rec) || 2802 le32_to_cpu(rec->total) != rs) { 2803 return false; 2804 } 2805 2806 /* Loop to check all of the attributes. */ 2807 for (attr = Add2Ptr(rec, ao); attr->type != ATTR_END; 2808 attr = Add2Ptr(attr, le32_to_cpu(attr->size))) { 2809 if (check_attr(rec, attr, sbi)) 2810 continue; 2811 return false; 2812 } 2813 2814 return true; 2815 } 2816 2817 static inline int check_lsn(const struct NTFS_RECORD_HEADER *hdr, 2818 const u64 *rlsn) 2819 { 2820 u64 lsn; 2821 2822 if (!rlsn) 2823 return true; 2824 2825 lsn = le64_to_cpu(hdr->lsn); 2826 2827 if (hdr->sign == NTFS_HOLE_SIGNATURE) 2828 return false; 2829 2830 if (*rlsn > lsn) 2831 return true; 2832 2833 return false; 2834 } 2835 2836 static inline bool check_if_attr(const struct MFT_REC *rec, 2837 const struct LOG_REC_HDR *lrh) 2838 { 2839 u16 ro = le16_to_cpu(lrh->record_off); 2840 u16 o = le16_to_cpu(rec->attr_off); 2841 const struct ATTRIB *attr = Add2Ptr(rec, o); 2842 2843 while (o < ro) { 2844 u32 asize; 2845 2846 if (attr->type == ATTR_END) 2847 break; 2848 2849 asize = le32_to_cpu(attr->size); 2850 if (!asize) 2851 break; 2852 2853 o += asize; 2854 attr = Add2Ptr(attr, asize); 2855 } 2856 2857 return o == ro; 2858 } 2859 2860 static inline bool check_if_index_root(const struct MFT_REC *rec, 2861 const struct LOG_REC_HDR *lrh) 2862 { 2863 u16 ro = le16_to_cpu(lrh->record_off); 2864 u16 o = le16_to_cpu(rec->attr_off); 2865 const struct ATTRIB *attr = Add2Ptr(rec, o); 2866 2867 while (o < ro) { 2868 u32 asize; 2869 2870 if (attr->type == ATTR_END) 2871 break; 2872 2873 asize = le32_to_cpu(attr->size); 2874 if (!asize) 2875 break; 2876 2877 o += asize; 2878 attr = Add2Ptr(attr, asize); 2879 } 2880 2881 return o == ro && attr->type == ATTR_ROOT; 2882 } 2883 2884 static inline bool check_if_root_index(const struct ATTRIB *attr, 2885 const struct INDEX_HDR *hdr, 2886 const struct LOG_REC_HDR *lrh) 2887 { 2888 u16 ao = le16_to_cpu(lrh->attr_off); 2889 u32 de_off = le32_to_cpu(hdr->de_off); 2890 u32 o = PtrOffset(attr, hdr) + de_off; 2891 const struct NTFS_DE *e = Add2Ptr(hdr, de_off); 2892 u32 asize = le32_to_cpu(attr->size); 2893 2894 while (o < ao) { 2895 u16 esize; 2896 2897 if (o >= asize) 2898 break; 2899 2900 esize = le16_to_cpu(e->size); 2901 if (!esize) 2902 break; 2903 2904 o += esize; 2905 e = Add2Ptr(e, esize); 2906 } 2907 2908 return o == ao; 2909 } 2910 2911 static inline bool check_if_alloc_index(const struct INDEX_HDR *hdr, 2912 u32 attr_off) 2913 { 2914 u32 de_off = le32_to_cpu(hdr->de_off); 2915 u32 o = offsetof(struct INDEX_BUFFER, ihdr) + de_off; 2916 const struct NTFS_DE *e = Add2Ptr(hdr, de_off); 2917 u32 used = le32_to_cpu(hdr->used); 2918 2919 while (o < attr_off) { 2920 u16 esize; 2921 2922 if (de_off >= used) 2923 break; 2924 2925 esize = le16_to_cpu(e->size); 2926 if (!esize) 2927 break; 2928 2929 o += esize; 2930 de_off += esize; 2931 e = Add2Ptr(e, esize); 2932 } 2933 2934 return o == attr_off; 2935 } 2936 2937 static inline void change_attr_size(struct MFT_REC *rec, struct ATTRIB *attr, 2938 u32 nsize) 2939 { 2940 u32 asize = le32_to_cpu(attr->size); 2941 int dsize = nsize - asize; 2942 u8 *next = Add2Ptr(attr, asize); 2943 u32 used = le32_to_cpu(rec->used); 2944 2945 memmove(Add2Ptr(attr, nsize), next, used - PtrOffset(rec, next)); 2946 2947 rec->used = cpu_to_le32(used + dsize); 2948 attr->size = cpu_to_le32(nsize); 2949 } 2950 2951 struct OpenAttr { 2952 struct ATTRIB *attr; 2953 struct runs_tree *run1; 2954 struct runs_tree run0; 2955 struct ntfs_inode *ni; 2956 // CLST rno; 2957 }; 2958 2959 /* 2960 * cmp_type_and_name 2961 * 2962 * Return: 0 if 'attr' has the same type and name. 2963 */ 2964 static inline int cmp_type_and_name(const struct ATTRIB *a1, 2965 const struct ATTRIB *a2) 2966 { 2967 return a1->type != a2->type || a1->name_len != a2->name_len || 2968 (a1->name_len && memcmp(attr_name(a1), attr_name(a2), 2969 a1->name_len * sizeof(short))); 2970 } 2971 2972 static struct OpenAttr *find_loaded_attr(struct ntfs_log *log, 2973 const struct ATTRIB *attr, CLST rno) 2974 { 2975 struct OPEN_ATTR_ENRTY *oe = NULL; 2976 2977 while ((oe = enum_rstbl(log->open_attr_tbl, oe))) { 2978 struct OpenAttr *op_attr; 2979 2980 if (ino_get(&oe->ref) != rno) 2981 continue; 2982 2983 op_attr = (struct OpenAttr *)oe->ptr; 2984 if (!cmp_type_and_name(op_attr->attr, attr)) 2985 return op_attr; 2986 } 2987 return NULL; 2988 } 2989 2990 static struct ATTRIB *attr_create_nonres_log(struct ntfs_sb_info *sbi, 2991 enum ATTR_TYPE type, u64 size, 2992 const u16 *name, size_t name_len, 2993 __le16 flags) 2994 { 2995 struct ATTRIB *attr; 2996 u32 name_size = ALIGN(name_len * sizeof(short), 8); 2997 bool is_ext = flags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED); 2998 u32 asize = name_size + 2999 (is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT); 3000 3001 attr = kzalloc(asize, GFP_NOFS); 3002 if (!attr) 3003 return NULL; 3004 3005 attr->type = type; 3006 attr->size = cpu_to_le32(asize); 3007 attr->flags = flags; 3008 attr->non_res = 1; 3009 attr->name_len = name_len; 3010 3011 attr->nres.evcn = cpu_to_le64((u64)bytes_to_cluster(sbi, size) - 1); 3012 attr->nres.alloc_size = cpu_to_le64(ntfs_up_cluster(sbi, size)); 3013 attr->nres.data_size = cpu_to_le64(size); 3014 attr->nres.valid_size = attr->nres.data_size; 3015 if (is_ext) { 3016 attr->name_off = SIZEOF_NONRESIDENT_EX_LE; 3017 if (is_attr_compressed(attr)) 3018 attr->nres.c_unit = COMPRESSION_UNIT; 3019 3020 attr->nres.run_off = 3021 cpu_to_le16(SIZEOF_NONRESIDENT_EX + name_size); 3022 memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT_EX), name, 3023 name_len * sizeof(short)); 3024 } else { 3025 attr->name_off = SIZEOF_NONRESIDENT_LE; 3026 attr->nres.run_off = 3027 cpu_to_le16(SIZEOF_NONRESIDENT + name_size); 3028 memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT), name, 3029 name_len * sizeof(short)); 3030 } 3031 3032 return attr; 3033 } 3034 3035 /* 3036 * do_action - Common routine for the Redo and Undo Passes. 3037 * @rlsn: If it is NULL then undo. 3038 */ 3039 static int do_action(struct ntfs_log *log, struct OPEN_ATTR_ENRTY *oe, 3040 const struct LOG_REC_HDR *lrh, u32 op, void *data, 3041 u32 dlen, u32 rec_len, const u64 *rlsn) 3042 { 3043 int err = 0; 3044 struct ntfs_sb_info *sbi = log->ni->mi.sbi; 3045 struct inode *inode = NULL, *inode_parent; 3046 struct mft_inode *mi = NULL, *mi2_child = NULL; 3047 CLST rno = 0, rno_base = 0; 3048 struct INDEX_BUFFER *ib = NULL; 3049 struct MFT_REC *rec = NULL; 3050 struct ATTRIB *attr = NULL, *attr2; 3051 struct INDEX_HDR *hdr; 3052 struct INDEX_ROOT *root; 3053 struct NTFS_DE *e, *e1, *e2; 3054 struct NEW_ATTRIBUTE_SIZES *new_sz; 3055 struct ATTR_FILE_NAME *fname; 3056 struct OpenAttr *oa, *oa2; 3057 u32 nsize, t32, asize, used, esize, bmp_off, bmp_bits; 3058 u16 id, id2; 3059 u32 record_size = sbi->record_size; 3060 u64 t64; 3061 u16 roff = le16_to_cpu(lrh->record_off); 3062 u16 aoff = le16_to_cpu(lrh->attr_off); 3063 u64 lco = 0; 3064 u64 cbo = (u64)le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT; 3065 u64 tvo = le64_to_cpu(lrh->target_vcn) << sbi->cluster_bits; 3066 u64 vbo = cbo + tvo; 3067 void *buffer_le = NULL; 3068 u32 bytes = 0; 3069 bool a_dirty = false; 3070 u16 data_off; 3071 3072 oa = oe->ptr; 3073 3074 /* Big switch to prepare. */ 3075 switch (op) { 3076 /* ============================================================ 3077 * Process MFT records, as described by the current log record. 3078 * ============================================================ 3079 */ 3080 case InitializeFileRecordSegment: 3081 case DeallocateFileRecordSegment: 3082 case WriteEndOfFileRecordSegment: 3083 case CreateAttribute: 3084 case DeleteAttribute: 3085 case UpdateResidentValue: 3086 case UpdateMappingPairs: 3087 case SetNewAttributeSizes: 3088 case AddIndexEntryRoot: 3089 case DeleteIndexEntryRoot: 3090 case SetIndexEntryVcnRoot: 3091 case UpdateFileNameRoot: 3092 case UpdateRecordDataRoot: 3093 case ZeroEndOfFileRecord: 3094 rno = vbo >> sbi->record_bits; 3095 inode = ilookup(sbi->sb, rno); 3096 if (inode) { 3097 mi = &ntfs_i(inode)->mi; 3098 } else if (op == InitializeFileRecordSegment) { 3099 mi = kzalloc(sizeof(struct mft_inode), GFP_NOFS); 3100 if (!mi) 3101 return -ENOMEM; 3102 err = mi_format_new(mi, sbi, rno, 0, false); 3103 if (err) 3104 goto out; 3105 } else { 3106 /* Read from disk. */ 3107 err = mi_get(sbi, rno, &mi); 3108 if (err) 3109 return err; 3110 } 3111 rec = mi->mrec; 3112 3113 if (op == DeallocateFileRecordSegment) 3114 goto skip_load_parent; 3115 3116 if (InitializeFileRecordSegment != op) { 3117 if (rec->rhdr.sign == NTFS_BAAD_SIGNATURE) 3118 goto dirty_vol; 3119 if (!check_lsn(&rec->rhdr, rlsn)) 3120 goto out; 3121 if (!check_file_record(rec, NULL, sbi)) 3122 goto dirty_vol; 3123 attr = Add2Ptr(rec, roff); 3124 } 3125 3126 if (is_rec_base(rec) || InitializeFileRecordSegment == op) { 3127 rno_base = rno; 3128 goto skip_load_parent; 3129 } 3130 3131 rno_base = ino_get(&rec->parent_ref); 3132 inode_parent = ntfs_iget5(sbi->sb, &rec->parent_ref, NULL); 3133 if (IS_ERR(inode_parent)) 3134 goto skip_load_parent; 3135 3136 if (is_bad_inode(inode_parent)) { 3137 iput(inode_parent); 3138 goto skip_load_parent; 3139 } 3140 3141 if (ni_load_mi_ex(ntfs_i(inode_parent), rno, &mi2_child)) { 3142 iput(inode_parent); 3143 } else { 3144 if (mi2_child->mrec != mi->mrec) 3145 memcpy(mi2_child->mrec, mi->mrec, 3146 sbi->record_size); 3147 3148 if (inode) 3149 iput(inode); 3150 else if (mi) 3151 mi_put(mi); 3152 3153 inode = inode_parent; 3154 mi = mi2_child; 3155 rec = mi2_child->mrec; 3156 attr = Add2Ptr(rec, roff); 3157 } 3158 3159 skip_load_parent: 3160 inode_parent = NULL; 3161 break; 3162 3163 /* 3164 * Process attributes, as described by the current log record. 3165 */ 3166 case UpdateNonresidentValue: 3167 case AddIndexEntryAllocation: 3168 case DeleteIndexEntryAllocation: 3169 case WriteEndOfIndexBuffer: 3170 case SetIndexEntryVcnAllocation: 3171 case UpdateFileNameAllocation: 3172 case SetBitsInNonresidentBitMap: 3173 case ClearBitsInNonresidentBitMap: 3174 case UpdateRecordDataAllocation: 3175 attr = oa->attr; 3176 bytes = UpdateNonresidentValue == op ? dlen : 0; 3177 lco = (u64)le16_to_cpu(lrh->lcns_follow) << sbi->cluster_bits; 3178 3179 if (attr->type == ATTR_ALLOC) { 3180 t32 = le32_to_cpu(oe->bytes_per_index); 3181 if (bytes < t32) 3182 bytes = t32; 3183 } 3184 3185 if (!bytes) 3186 bytes = lco - cbo; 3187 3188 bytes += roff; 3189 if (attr->type == ATTR_ALLOC) 3190 bytes = (bytes + 511) & ~511; // align 3191 3192 buffer_le = kmalloc(bytes, GFP_NOFS); 3193 if (!buffer_le) 3194 return -ENOMEM; 3195 3196 err = ntfs_read_run_nb(sbi, oa->run1, vbo, buffer_le, bytes, 3197 NULL); 3198 if (err) 3199 goto out; 3200 3201 if (attr->type == ATTR_ALLOC && *(int *)buffer_le) 3202 ntfs_fix_post_read(buffer_le, bytes, false); 3203 break; 3204 3205 default: 3206 WARN_ON(1); 3207 } 3208 3209 /* Big switch to do operation. */ 3210 switch (op) { 3211 case InitializeFileRecordSegment: 3212 if (roff + dlen > record_size) 3213 goto dirty_vol; 3214 3215 memcpy(Add2Ptr(rec, roff), data, dlen); 3216 mi->dirty = true; 3217 break; 3218 3219 case DeallocateFileRecordSegment: 3220 clear_rec_inuse(rec); 3221 le16_add_cpu(&rec->seq, 1); 3222 mi->dirty = true; 3223 break; 3224 3225 case WriteEndOfFileRecordSegment: 3226 attr2 = (struct ATTRIB *)data; 3227 if (!check_if_attr(rec, lrh) || roff + dlen > record_size) 3228 goto dirty_vol; 3229 3230 memmove(attr, attr2, dlen); 3231 rec->used = cpu_to_le32(ALIGN(roff + dlen, 8)); 3232 3233 mi->dirty = true; 3234 break; 3235 3236 case CreateAttribute: 3237 attr2 = (struct ATTRIB *)data; 3238 asize = le32_to_cpu(attr2->size); 3239 used = le32_to_cpu(rec->used); 3240 3241 if (!check_if_attr(rec, lrh) || dlen < SIZEOF_RESIDENT || 3242 !IS_ALIGNED(asize, 8) || 3243 Add2Ptr(attr2, asize) > Add2Ptr(lrh, rec_len) || 3244 dlen > record_size - used) { 3245 goto dirty_vol; 3246 } 3247 3248 memmove(Add2Ptr(attr, asize), attr, used - roff); 3249 memcpy(attr, attr2, asize); 3250 3251 rec->used = cpu_to_le32(used + asize); 3252 id = le16_to_cpu(rec->next_attr_id); 3253 id2 = le16_to_cpu(attr2->id); 3254 if (id <= id2) 3255 rec->next_attr_id = cpu_to_le16(id2 + 1); 3256 if (is_attr_indexed(attr)) 3257 le16_add_cpu(&rec->hard_links, 1); 3258 3259 oa2 = find_loaded_attr(log, attr, rno_base); 3260 if (oa2) { 3261 void *p2 = kmemdup(attr, le32_to_cpu(attr->size), 3262 GFP_NOFS); 3263 if (p2) { 3264 // run_close(oa2->run1); 3265 kfree(oa2->attr); 3266 oa2->attr = p2; 3267 } 3268 } 3269 3270 mi->dirty = true; 3271 break; 3272 3273 case DeleteAttribute: 3274 asize = le32_to_cpu(attr->size); 3275 used = le32_to_cpu(rec->used); 3276 3277 if (!check_if_attr(rec, lrh)) 3278 goto dirty_vol; 3279 3280 rec->used = cpu_to_le32(used - asize); 3281 if (is_attr_indexed(attr)) 3282 le16_add_cpu(&rec->hard_links, -1); 3283 3284 memmove(attr, Add2Ptr(attr, asize), used - asize - roff); 3285 3286 mi->dirty = true; 3287 break; 3288 3289 case UpdateResidentValue: 3290 nsize = aoff + dlen; 3291 3292 if (!check_if_attr(rec, lrh)) 3293 goto dirty_vol; 3294 3295 asize = le32_to_cpu(attr->size); 3296 used = le32_to_cpu(rec->used); 3297 3298 if (lrh->redo_len == lrh->undo_len) { 3299 if (nsize > asize) 3300 goto dirty_vol; 3301 goto move_data; 3302 } 3303 3304 if (nsize > asize && nsize - asize > record_size - used) 3305 goto dirty_vol; 3306 3307 nsize = ALIGN(nsize, 8); 3308 data_off = le16_to_cpu(attr->res.data_off); 3309 3310 if (nsize < asize) { 3311 memmove(Add2Ptr(attr, aoff), data, dlen); 3312 data = NULL; // To skip below memmove(). 3313 } 3314 3315 memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize), 3316 used - le16_to_cpu(lrh->record_off) - asize); 3317 3318 rec->used = cpu_to_le32(used + nsize - asize); 3319 attr->size = cpu_to_le32(nsize); 3320 attr->res.data_size = cpu_to_le32(aoff + dlen - data_off); 3321 3322 move_data: 3323 if (data) 3324 memmove(Add2Ptr(attr, aoff), data, dlen); 3325 3326 oa2 = find_loaded_attr(log, attr, rno_base); 3327 if (oa2) { 3328 void *p2 = kmemdup(attr, le32_to_cpu(attr->size), 3329 GFP_NOFS); 3330 if (p2) { 3331 // run_close(&oa2->run0); 3332 oa2->run1 = &oa2->run0; 3333 kfree(oa2->attr); 3334 oa2->attr = p2; 3335 } 3336 } 3337 3338 mi->dirty = true; 3339 break; 3340 3341 case UpdateMappingPairs: 3342 nsize = aoff + dlen; 3343 asize = le32_to_cpu(attr->size); 3344 used = le32_to_cpu(rec->used); 3345 3346 if (!check_if_attr(rec, lrh) || !attr->non_res || 3347 aoff < le16_to_cpu(attr->nres.run_off) || aoff > asize || 3348 (nsize > asize && nsize - asize > record_size - used)) { 3349 goto dirty_vol; 3350 } 3351 3352 nsize = ALIGN(nsize, 8); 3353 3354 memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize), 3355 used - le16_to_cpu(lrh->record_off) - asize); 3356 rec->used = cpu_to_le32(used + nsize - asize); 3357 attr->size = cpu_to_le32(nsize); 3358 memmove(Add2Ptr(attr, aoff), data, dlen); 3359 3360 if (run_get_highest_vcn(le64_to_cpu(attr->nres.svcn), 3361 attr_run(attr), &t64)) { 3362 goto dirty_vol; 3363 } 3364 3365 attr->nres.evcn = cpu_to_le64(t64); 3366 oa2 = find_loaded_attr(log, attr, rno_base); 3367 if (oa2 && oa2->attr->non_res) 3368 oa2->attr->nres.evcn = attr->nres.evcn; 3369 3370 mi->dirty = true; 3371 break; 3372 3373 case SetNewAttributeSizes: 3374 new_sz = data; 3375 if (!check_if_attr(rec, lrh) || !attr->non_res) 3376 goto dirty_vol; 3377 3378 attr->nres.alloc_size = new_sz->alloc_size; 3379 attr->nres.data_size = new_sz->data_size; 3380 attr->nres.valid_size = new_sz->valid_size; 3381 3382 if (dlen >= sizeof(struct NEW_ATTRIBUTE_SIZES)) 3383 attr->nres.total_size = new_sz->total_size; 3384 3385 oa2 = find_loaded_attr(log, attr, rno_base); 3386 if (oa2) { 3387 void *p2 = kmemdup(attr, le32_to_cpu(attr->size), 3388 GFP_NOFS); 3389 if (p2) { 3390 kfree(oa2->attr); 3391 oa2->attr = p2; 3392 } 3393 } 3394 mi->dirty = true; 3395 break; 3396 3397 case AddIndexEntryRoot: 3398 e = (struct NTFS_DE *)data; 3399 esize = le16_to_cpu(e->size); 3400 root = resident_data(attr); 3401 hdr = &root->ihdr; 3402 used = le32_to_cpu(hdr->used); 3403 3404 if (!check_if_index_root(rec, lrh) || 3405 !check_if_root_index(attr, hdr, lrh) || 3406 Add2Ptr(data, esize) > Add2Ptr(lrh, rec_len) || 3407 esize > le32_to_cpu(rec->total) - le32_to_cpu(rec->used)) { 3408 goto dirty_vol; 3409 } 3410 3411 e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3412 3413 change_attr_size(rec, attr, le32_to_cpu(attr->size) + esize); 3414 3415 memmove(Add2Ptr(e1, esize), e1, 3416 PtrOffset(e1, Add2Ptr(hdr, used))); 3417 memmove(e1, e, esize); 3418 3419 le32_add_cpu(&attr->res.data_size, esize); 3420 hdr->used = cpu_to_le32(used + esize); 3421 le32_add_cpu(&hdr->total, esize); 3422 3423 mi->dirty = true; 3424 break; 3425 3426 case DeleteIndexEntryRoot: 3427 root = resident_data(attr); 3428 hdr = &root->ihdr; 3429 used = le32_to_cpu(hdr->used); 3430 3431 if (!check_if_index_root(rec, lrh) || 3432 !check_if_root_index(attr, hdr, lrh)) { 3433 goto dirty_vol; 3434 } 3435 3436 e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3437 esize = le16_to_cpu(e1->size); 3438 e2 = Add2Ptr(e1, esize); 3439 3440 memmove(e1, e2, PtrOffset(e2, Add2Ptr(hdr, used))); 3441 3442 le32_sub_cpu(&attr->res.data_size, esize); 3443 hdr->used = cpu_to_le32(used - esize); 3444 le32_sub_cpu(&hdr->total, esize); 3445 3446 change_attr_size(rec, attr, le32_to_cpu(attr->size) - esize); 3447 3448 mi->dirty = true; 3449 break; 3450 3451 case SetIndexEntryVcnRoot: 3452 root = resident_data(attr); 3453 hdr = &root->ihdr; 3454 3455 if (!check_if_index_root(rec, lrh) || 3456 !check_if_root_index(attr, hdr, lrh)) { 3457 goto dirty_vol; 3458 } 3459 3460 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3461 3462 de_set_vbn_le(e, *(__le64 *)data); 3463 mi->dirty = true; 3464 break; 3465 3466 case UpdateFileNameRoot: 3467 root = resident_data(attr); 3468 hdr = &root->ihdr; 3469 3470 if (!check_if_index_root(rec, lrh) || 3471 !check_if_root_index(attr, hdr, lrh)) { 3472 goto dirty_vol; 3473 } 3474 3475 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3476 fname = (struct ATTR_FILE_NAME *)(e + 1); 3477 memmove(&fname->dup, data, sizeof(fname->dup)); // 3478 mi->dirty = true; 3479 break; 3480 3481 case UpdateRecordDataRoot: 3482 root = resident_data(attr); 3483 hdr = &root->ihdr; 3484 3485 if (!check_if_index_root(rec, lrh) || 3486 !check_if_root_index(attr, hdr, lrh)) { 3487 goto dirty_vol; 3488 } 3489 3490 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3491 3492 memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen); 3493 3494 mi->dirty = true; 3495 break; 3496 3497 case ZeroEndOfFileRecord: 3498 if (roff + dlen > record_size) 3499 goto dirty_vol; 3500 3501 memset(attr, 0, dlen); 3502 mi->dirty = true; 3503 break; 3504 3505 case UpdateNonresidentValue: 3506 if (lco < cbo + roff + dlen) 3507 goto dirty_vol; 3508 3509 memcpy(Add2Ptr(buffer_le, roff), data, dlen); 3510 3511 a_dirty = true; 3512 if (attr->type == ATTR_ALLOC) 3513 ntfs_fix_pre_write(buffer_le, bytes); 3514 break; 3515 3516 case AddIndexEntryAllocation: 3517 ib = Add2Ptr(buffer_le, roff); 3518 hdr = &ib->ihdr; 3519 e = data; 3520 esize = le16_to_cpu(e->size); 3521 e1 = Add2Ptr(ib, aoff); 3522 3523 if (is_baad(&ib->rhdr)) 3524 goto dirty_vol; 3525 if (!check_lsn(&ib->rhdr, rlsn)) 3526 goto out; 3527 3528 used = le32_to_cpu(hdr->used); 3529 3530 if (!check_index_buffer(ib, bytes) || 3531 !check_if_alloc_index(hdr, aoff) || 3532 Add2Ptr(e, esize) > Add2Ptr(lrh, rec_len) || 3533 used + esize > le32_to_cpu(hdr->total)) { 3534 goto dirty_vol; 3535 } 3536 3537 memmove(Add2Ptr(e1, esize), e1, 3538 PtrOffset(e1, Add2Ptr(hdr, used))); 3539 memcpy(e1, e, esize); 3540 3541 hdr->used = cpu_to_le32(used + esize); 3542 3543 a_dirty = true; 3544 3545 ntfs_fix_pre_write(&ib->rhdr, bytes); 3546 break; 3547 3548 case DeleteIndexEntryAllocation: 3549 ib = Add2Ptr(buffer_le, roff); 3550 hdr = &ib->ihdr; 3551 e = Add2Ptr(ib, aoff); 3552 esize = le16_to_cpu(e->size); 3553 3554 if (is_baad(&ib->rhdr)) 3555 goto dirty_vol; 3556 if (!check_lsn(&ib->rhdr, rlsn)) 3557 goto out; 3558 3559 if (!check_index_buffer(ib, bytes) || 3560 !check_if_alloc_index(hdr, aoff)) { 3561 goto dirty_vol; 3562 } 3563 3564 e1 = Add2Ptr(e, esize); 3565 nsize = esize; 3566 used = le32_to_cpu(hdr->used); 3567 3568 memmove(e, e1, PtrOffset(e1, Add2Ptr(hdr, used))); 3569 3570 hdr->used = cpu_to_le32(used - nsize); 3571 3572 a_dirty = true; 3573 3574 ntfs_fix_pre_write(&ib->rhdr, bytes); 3575 break; 3576 3577 case WriteEndOfIndexBuffer: 3578 ib = Add2Ptr(buffer_le, roff); 3579 hdr = &ib->ihdr; 3580 e = Add2Ptr(ib, aoff); 3581 3582 if (is_baad(&ib->rhdr)) 3583 goto dirty_vol; 3584 if (!check_lsn(&ib->rhdr, rlsn)) 3585 goto out; 3586 if (!check_index_buffer(ib, bytes) || 3587 !check_if_alloc_index(hdr, aoff) || 3588 aoff + dlen > offsetof(struct INDEX_BUFFER, ihdr) + 3589 le32_to_cpu(hdr->total)) { 3590 goto dirty_vol; 3591 } 3592 3593 hdr->used = cpu_to_le32(dlen + PtrOffset(hdr, e)); 3594 memmove(e, data, dlen); 3595 3596 a_dirty = true; 3597 ntfs_fix_pre_write(&ib->rhdr, bytes); 3598 break; 3599 3600 case SetIndexEntryVcnAllocation: 3601 ib = Add2Ptr(buffer_le, roff); 3602 hdr = &ib->ihdr; 3603 e = Add2Ptr(ib, aoff); 3604 3605 if (is_baad(&ib->rhdr)) 3606 goto dirty_vol; 3607 3608 if (!check_lsn(&ib->rhdr, rlsn)) 3609 goto out; 3610 if (!check_index_buffer(ib, bytes) || 3611 !check_if_alloc_index(hdr, aoff)) { 3612 goto dirty_vol; 3613 } 3614 3615 de_set_vbn_le(e, *(__le64 *)data); 3616 3617 a_dirty = true; 3618 ntfs_fix_pre_write(&ib->rhdr, bytes); 3619 break; 3620 3621 case UpdateFileNameAllocation: 3622 ib = Add2Ptr(buffer_le, roff); 3623 hdr = &ib->ihdr; 3624 e = Add2Ptr(ib, aoff); 3625 3626 if (is_baad(&ib->rhdr)) 3627 goto dirty_vol; 3628 3629 if (!check_lsn(&ib->rhdr, rlsn)) 3630 goto out; 3631 if (!check_index_buffer(ib, bytes) || 3632 !check_if_alloc_index(hdr, aoff)) { 3633 goto dirty_vol; 3634 } 3635 3636 fname = (struct ATTR_FILE_NAME *)(e + 1); 3637 memmove(&fname->dup, data, sizeof(fname->dup)); 3638 3639 a_dirty = true; 3640 ntfs_fix_pre_write(&ib->rhdr, bytes); 3641 break; 3642 3643 case SetBitsInNonresidentBitMap: 3644 bmp_off = 3645 le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off); 3646 bmp_bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits); 3647 3648 if (cbo + (bmp_off + 7) / 8 > lco || 3649 cbo + ((bmp_off + bmp_bits + 7) / 8) > lco) { 3650 goto dirty_vol; 3651 } 3652 3653 __bitmap_set(Add2Ptr(buffer_le, roff), bmp_off, bmp_bits); 3654 a_dirty = true; 3655 break; 3656 3657 case ClearBitsInNonresidentBitMap: 3658 bmp_off = 3659 le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off); 3660 bmp_bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits); 3661 3662 if (cbo + (bmp_off + 7) / 8 > lco || 3663 cbo + ((bmp_off + bmp_bits + 7) / 8) > lco) { 3664 goto dirty_vol; 3665 } 3666 3667 __bitmap_clear(Add2Ptr(buffer_le, roff), bmp_off, bmp_bits); 3668 a_dirty = true; 3669 break; 3670 3671 case UpdateRecordDataAllocation: 3672 ib = Add2Ptr(buffer_le, roff); 3673 hdr = &ib->ihdr; 3674 e = Add2Ptr(ib, aoff); 3675 3676 if (is_baad(&ib->rhdr)) 3677 goto dirty_vol; 3678 3679 if (!check_lsn(&ib->rhdr, rlsn)) 3680 goto out; 3681 if (!check_index_buffer(ib, bytes) || 3682 !check_if_alloc_index(hdr, aoff)) { 3683 goto dirty_vol; 3684 } 3685 3686 memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen); 3687 3688 a_dirty = true; 3689 ntfs_fix_pre_write(&ib->rhdr, bytes); 3690 break; 3691 3692 default: 3693 WARN_ON(1); 3694 } 3695 3696 if (rlsn) { 3697 __le64 t64 = cpu_to_le64(*rlsn); 3698 3699 if (rec) 3700 rec->rhdr.lsn = t64; 3701 if (ib) 3702 ib->rhdr.lsn = t64; 3703 } 3704 3705 if (mi && mi->dirty) { 3706 err = mi_write(mi, 0); 3707 if (err) 3708 goto out; 3709 } 3710 3711 if (a_dirty) { 3712 attr = oa->attr; 3713 err = ntfs_sb_write_run(sbi, oa->run1, vbo, buffer_le, bytes); 3714 if (err) 3715 goto out; 3716 } 3717 3718 out: 3719 3720 if (inode) 3721 iput(inode); 3722 else if (mi != mi2_child) 3723 mi_put(mi); 3724 3725 kfree(buffer_le); 3726 3727 return err; 3728 3729 dirty_vol: 3730 log->set_dirty = true; 3731 goto out; 3732 } 3733 3734 /* 3735 * log_replay - Replays log and empties it. 3736 * 3737 * This function is called during mount operation. 3738 * It replays log and empties it. 3739 * Initialized is set false if logfile contains '-1'. 3740 */ 3741 int log_replay(struct ntfs_inode *ni, bool *initialized) 3742 { 3743 int err; 3744 struct ntfs_sb_info *sbi = ni->mi.sbi; 3745 struct ntfs_log *log; 3746 3747 struct restart_info rst_info, rst_info2; 3748 u64 rec_lsn, ra_lsn, checkpt_lsn = 0, rlsn = 0; 3749 struct ATTR_NAME_ENTRY *attr_names = NULL; 3750 struct ATTR_NAME_ENTRY *ane; 3751 struct RESTART_TABLE *dptbl = NULL; 3752 struct RESTART_TABLE *trtbl = NULL; 3753 const struct RESTART_TABLE *rt; 3754 struct RESTART_TABLE *oatbl = NULL; 3755 struct inode *inode; 3756 struct OpenAttr *oa; 3757 struct ntfs_inode *ni_oe; 3758 struct ATTRIB *attr = NULL; 3759 u64 size, vcn, undo_next_lsn; 3760 CLST rno, lcn, lcn0, len0, clen; 3761 void *data; 3762 struct NTFS_RESTART *rst = NULL; 3763 struct lcb *lcb = NULL; 3764 struct OPEN_ATTR_ENRTY *oe; 3765 struct TRANSACTION_ENTRY *tr; 3766 struct DIR_PAGE_ENTRY *dp; 3767 u32 i, bytes_per_attr_entry; 3768 u32 l_size = ni->vfs_inode.i_size; 3769 u32 orig_file_size = l_size; 3770 u32 page_size, vbo, tail, off, dlen; 3771 u32 saved_len, rec_len, transact_id; 3772 bool use_second_page; 3773 struct RESTART_AREA *ra2, *ra = NULL; 3774 struct CLIENT_REC *ca, *cr; 3775 __le16 client; 3776 struct RESTART_HDR *rh; 3777 const struct LFS_RECORD_HDR *frh; 3778 const struct LOG_REC_HDR *lrh; 3779 bool is_mapped; 3780 bool is_ro = sb_rdonly(sbi->sb); 3781 u64 t64; 3782 u16 t16; 3783 u32 t32; 3784 3785 /* Get the size of page. NOTE: To replay we can use default page. */ 3786 #if PAGE_SIZE >= DefaultLogPageSize && PAGE_SIZE <= DefaultLogPageSize * 2 3787 page_size = norm_file_page(PAGE_SIZE, &l_size, true); 3788 #else 3789 page_size = norm_file_page(PAGE_SIZE, &l_size, false); 3790 #endif 3791 if (!page_size) 3792 return -EINVAL; 3793 3794 log = kzalloc(sizeof(struct ntfs_log), GFP_NOFS); 3795 if (!log) 3796 return -ENOMEM; 3797 3798 log->ni = ni; 3799 log->l_size = l_size; 3800 log->one_page_buf = kmalloc(page_size, GFP_NOFS); 3801 3802 if (!log->one_page_buf) { 3803 err = -ENOMEM; 3804 goto out; 3805 } 3806 3807 log->page_size = page_size; 3808 log->page_mask = page_size - 1; 3809 log->page_bits = blksize_bits(page_size); 3810 3811 /* Look for a restart area on the disk. */ 3812 err = log_read_rst(log, l_size, true, &rst_info); 3813 if (err) 3814 goto out; 3815 3816 /* remember 'initialized' */ 3817 *initialized = rst_info.initialized; 3818 3819 if (!rst_info.restart) { 3820 if (rst_info.initialized) { 3821 /* No restart area but the file is not initialized. */ 3822 err = -EINVAL; 3823 goto out; 3824 } 3825 3826 log_init_pg_hdr(log, page_size, page_size, 1, 1); 3827 log_create(log, l_size, 0, get_random_int(), false, false); 3828 3829 log->ra = ra; 3830 3831 ra = log_create_ra(log); 3832 if (!ra) { 3833 err = -ENOMEM; 3834 goto out; 3835 } 3836 log->ra = ra; 3837 log->init_ra = true; 3838 3839 goto process_log; 3840 } 3841 3842 /* 3843 * If the restart offset above wasn't zero then we won't 3844 * look for a second restart. 3845 */ 3846 if (rst_info.vbo) 3847 goto check_restart_area; 3848 3849 err = log_read_rst(log, l_size, false, &rst_info2); 3850 3851 /* Determine which restart area to use. */ 3852 if (!rst_info2.restart || rst_info2.last_lsn <= rst_info.last_lsn) 3853 goto use_first_page; 3854 3855 use_second_page = true; 3856 3857 if (rst_info.chkdsk_was_run && page_size != rst_info.vbo) { 3858 struct RECORD_PAGE_HDR *sp = NULL; 3859 bool usa_error; 3860 3861 if (!read_log_page(log, page_size, &sp, &usa_error) && 3862 sp->rhdr.sign == NTFS_CHKD_SIGNATURE) { 3863 use_second_page = false; 3864 } 3865 kfree(sp); 3866 } 3867 3868 if (use_second_page) { 3869 kfree(rst_info.r_page); 3870 memcpy(&rst_info, &rst_info2, sizeof(struct restart_info)); 3871 rst_info2.r_page = NULL; 3872 } 3873 3874 use_first_page: 3875 kfree(rst_info2.r_page); 3876 3877 check_restart_area: 3878 /* 3879 * If the restart area is at offset 0, we want 3880 * to write the second restart area first. 3881 */ 3882 log->init_ra = !!rst_info.vbo; 3883 3884 /* If we have a valid page then grab a pointer to the restart area. */ 3885 ra2 = rst_info.valid_page 3886 ? Add2Ptr(rst_info.r_page, 3887 le16_to_cpu(rst_info.r_page->ra_off)) 3888 : NULL; 3889 3890 if (rst_info.chkdsk_was_run || 3891 (ra2 && ra2->client_idx[1] == LFS_NO_CLIENT_LE)) { 3892 bool wrapped = false; 3893 bool use_multi_page = false; 3894 u32 open_log_count; 3895 3896 /* Do some checks based on whether we have a valid log page. */ 3897 if (!rst_info.valid_page) { 3898 open_log_count = get_random_int(); 3899 goto init_log_instance; 3900 } 3901 open_log_count = le32_to_cpu(ra2->open_log_count); 3902 3903 /* 3904 * If the restart page size isn't changing then we want to 3905 * check how much work we need to do. 3906 */ 3907 if (page_size != le32_to_cpu(rst_info.r_page->sys_page_size)) 3908 goto init_log_instance; 3909 3910 init_log_instance: 3911 log_init_pg_hdr(log, page_size, page_size, 1, 1); 3912 3913 log_create(log, l_size, rst_info.last_lsn, open_log_count, 3914 wrapped, use_multi_page); 3915 3916 ra = log_create_ra(log); 3917 if (!ra) { 3918 err = -ENOMEM; 3919 goto out; 3920 } 3921 log->ra = ra; 3922 3923 /* Put the restart areas and initialize 3924 * the log file as required. 3925 */ 3926 goto process_log; 3927 } 3928 3929 if (!ra2) { 3930 err = -EINVAL; 3931 goto out; 3932 } 3933 3934 /* 3935 * If the log page or the system page sizes have changed, we can't 3936 * use the log file. We must use the system page size instead of the 3937 * default size if there is not a clean shutdown. 3938 */ 3939 t32 = le32_to_cpu(rst_info.r_page->sys_page_size); 3940 if (page_size != t32) { 3941 l_size = orig_file_size; 3942 page_size = 3943 norm_file_page(t32, &l_size, t32 == DefaultLogPageSize); 3944 } 3945 3946 if (page_size != t32 || 3947 page_size != le32_to_cpu(rst_info.r_page->page_size)) { 3948 err = -EINVAL; 3949 goto out; 3950 } 3951 3952 /* If the file size has shrunk then we won't mount it. */ 3953 if (l_size < le64_to_cpu(ra2->l_size)) { 3954 err = -EINVAL; 3955 goto out; 3956 } 3957 3958 log_init_pg_hdr(log, page_size, page_size, 3959 le16_to_cpu(rst_info.r_page->major_ver), 3960 le16_to_cpu(rst_info.r_page->minor_ver)); 3961 3962 log->l_size = le64_to_cpu(ra2->l_size); 3963 log->seq_num_bits = le32_to_cpu(ra2->seq_num_bits); 3964 log->file_data_bits = sizeof(u64) * 8 - log->seq_num_bits; 3965 log->seq_num_mask = (8 << log->file_data_bits) - 1; 3966 log->last_lsn = le64_to_cpu(ra2->current_lsn); 3967 log->seq_num = log->last_lsn >> log->file_data_bits; 3968 log->ra_off = le16_to_cpu(rst_info.r_page->ra_off); 3969 log->restart_size = log->sys_page_size - log->ra_off; 3970 log->record_header_len = le16_to_cpu(ra2->rec_hdr_len); 3971 log->ra_size = le16_to_cpu(ra2->ra_len); 3972 log->data_off = le16_to_cpu(ra2->data_off); 3973 log->data_size = log->page_size - log->data_off; 3974 log->reserved = log->data_size - log->record_header_len; 3975 3976 vbo = lsn_to_vbo(log, log->last_lsn); 3977 3978 if (vbo < log->first_page) { 3979 /* This is a pseudo lsn. */ 3980 log->l_flags |= NTFSLOG_NO_LAST_LSN; 3981 log->next_page = log->first_page; 3982 goto find_oldest; 3983 } 3984 3985 /* Find the end of this log record. */ 3986 off = final_log_off(log, log->last_lsn, 3987 le32_to_cpu(ra2->last_lsn_data_len)); 3988 3989 /* If we wrapped the file then increment the sequence number. */ 3990 if (off <= vbo) { 3991 log->seq_num += 1; 3992 log->l_flags |= NTFSLOG_WRAPPED; 3993 } 3994 3995 /* Now compute the next log page to use. */ 3996 vbo &= ~log->sys_page_mask; 3997 tail = log->page_size - (off & log->page_mask) - 1; 3998 3999 /* 4000 *If we can fit another log record on the page, 4001 * move back a page the log file. 4002 */ 4003 if (tail >= log->record_header_len) { 4004 log->l_flags |= NTFSLOG_REUSE_TAIL; 4005 log->next_page = vbo; 4006 } else { 4007 log->next_page = next_page_off(log, vbo); 4008 } 4009 4010 find_oldest: 4011 /* 4012 * Find the oldest client lsn. Use the last 4013 * flushed lsn as a starting point. 4014 */ 4015 log->oldest_lsn = log->last_lsn; 4016 oldest_client_lsn(Add2Ptr(ra2, le16_to_cpu(ra2->client_off)), 4017 ra2->client_idx[1], &log->oldest_lsn); 4018 log->oldest_lsn_off = lsn_to_vbo(log, log->oldest_lsn); 4019 4020 if (log->oldest_lsn_off < log->first_page) 4021 log->l_flags |= NTFSLOG_NO_OLDEST_LSN; 4022 4023 if (!(ra2->flags & RESTART_SINGLE_PAGE_IO)) 4024 log->l_flags |= NTFSLOG_WRAPPED | NTFSLOG_MULTIPLE_PAGE_IO; 4025 4026 log->current_openlog_count = le32_to_cpu(ra2->open_log_count); 4027 log->total_avail_pages = log->l_size - log->first_page; 4028 log->total_avail = log->total_avail_pages >> log->page_bits; 4029 log->max_current_avail = log->total_avail * log->reserved; 4030 log->total_avail = log->total_avail * log->data_size; 4031 4032 log->current_avail = current_log_avail(log); 4033 4034 ra = kzalloc(log->restart_size, GFP_NOFS); 4035 if (!ra) { 4036 err = -ENOMEM; 4037 goto out; 4038 } 4039 log->ra = ra; 4040 4041 t16 = le16_to_cpu(ra2->client_off); 4042 if (t16 == offsetof(struct RESTART_AREA, clients)) { 4043 memcpy(ra, ra2, log->ra_size); 4044 } else { 4045 memcpy(ra, ra2, offsetof(struct RESTART_AREA, clients)); 4046 memcpy(ra->clients, Add2Ptr(ra2, t16), 4047 le16_to_cpu(ra2->ra_len) - t16); 4048 4049 log->current_openlog_count = get_random_int(); 4050 ra->open_log_count = cpu_to_le32(log->current_openlog_count); 4051 log->ra_size = offsetof(struct RESTART_AREA, clients) + 4052 sizeof(struct CLIENT_REC); 4053 ra->client_off = 4054 cpu_to_le16(offsetof(struct RESTART_AREA, clients)); 4055 ra->ra_len = cpu_to_le16(log->ra_size); 4056 } 4057 4058 le32_add_cpu(&ra->open_log_count, 1); 4059 4060 /* Now we need to walk through looking for the last lsn. */ 4061 err = last_log_lsn(log); 4062 if (err) 4063 goto out; 4064 4065 log->current_avail = current_log_avail(log); 4066 4067 /* Remember which restart area to write first. */ 4068 log->init_ra = rst_info.vbo; 4069 4070 process_log: 4071 /* 1.0, 1.1, 2.0 log->major_ver/minor_ver - short values. */ 4072 switch ((log->major_ver << 16) + log->minor_ver) { 4073 case 0x10000: 4074 case 0x10001: 4075 case 0x20000: 4076 break; 4077 default: 4078 ntfs_warn(sbi->sb, "\x24LogFile version %d.%d is not supported", 4079 log->major_ver, log->minor_ver); 4080 err = -EOPNOTSUPP; 4081 log->set_dirty = true; 4082 goto out; 4083 } 4084 4085 /* One client "NTFS" per logfile. */ 4086 ca = Add2Ptr(ra, le16_to_cpu(ra->client_off)); 4087 4088 for (client = ra->client_idx[1];; client = cr->next_client) { 4089 if (client == LFS_NO_CLIENT_LE) { 4090 /* Insert "NTFS" client LogFile. */ 4091 client = ra->client_idx[0]; 4092 if (client == LFS_NO_CLIENT_LE) 4093 return -EINVAL; 4094 4095 t16 = le16_to_cpu(client); 4096 cr = ca + t16; 4097 4098 remove_client(ca, cr, &ra->client_idx[0]); 4099 4100 cr->restart_lsn = 0; 4101 cr->oldest_lsn = cpu_to_le64(log->oldest_lsn); 4102 cr->name_bytes = cpu_to_le32(8); 4103 cr->name[0] = cpu_to_le16('N'); 4104 cr->name[1] = cpu_to_le16('T'); 4105 cr->name[2] = cpu_to_le16('F'); 4106 cr->name[3] = cpu_to_le16('S'); 4107 4108 add_client(ca, t16, &ra->client_idx[1]); 4109 break; 4110 } 4111 4112 cr = ca + le16_to_cpu(client); 4113 4114 if (cpu_to_le32(8) == cr->name_bytes && 4115 cpu_to_le16('N') == cr->name[0] && 4116 cpu_to_le16('T') == cr->name[1] && 4117 cpu_to_le16('F') == cr->name[2] && 4118 cpu_to_le16('S') == cr->name[3]) 4119 break; 4120 } 4121 4122 /* Update the client handle with the client block information. */ 4123 log->client_id.seq_num = cr->seq_num; 4124 log->client_id.client_idx = client; 4125 4126 err = read_rst_area(log, &rst, &ra_lsn); 4127 if (err) 4128 goto out; 4129 4130 if (!rst) 4131 goto out; 4132 4133 bytes_per_attr_entry = !rst->major_ver ? 0x2C : 0x28; 4134 4135 checkpt_lsn = le64_to_cpu(rst->check_point_start); 4136 if (!checkpt_lsn) 4137 checkpt_lsn = ra_lsn; 4138 4139 /* Allocate and Read the Transaction Table. */ 4140 if (!rst->transact_table_len) 4141 goto check_dirty_page_table; 4142 4143 t64 = le64_to_cpu(rst->transact_table_lsn); 4144 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); 4145 if (err) 4146 goto out; 4147 4148 lrh = lcb->log_rec; 4149 frh = lcb->lrh; 4150 rec_len = le32_to_cpu(frh->client_data_len); 4151 4152 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), 4153 bytes_per_attr_entry)) { 4154 err = -EINVAL; 4155 goto out; 4156 } 4157 4158 t16 = le16_to_cpu(lrh->redo_off); 4159 4160 rt = Add2Ptr(lrh, t16); 4161 t32 = rec_len - t16; 4162 4163 /* Now check that this is a valid restart table. */ 4164 if (!check_rstbl(rt, t32)) { 4165 err = -EINVAL; 4166 goto out; 4167 } 4168 4169 trtbl = kmemdup(rt, t32, GFP_NOFS); 4170 if (!trtbl) { 4171 err = -ENOMEM; 4172 goto out; 4173 } 4174 4175 lcb_put(lcb); 4176 lcb = NULL; 4177 4178 check_dirty_page_table: 4179 /* The next record back should be the Dirty Pages Table. */ 4180 if (!rst->dirty_pages_len) 4181 goto check_attribute_names; 4182 4183 t64 = le64_to_cpu(rst->dirty_pages_table_lsn); 4184 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); 4185 if (err) 4186 goto out; 4187 4188 lrh = lcb->log_rec; 4189 frh = lcb->lrh; 4190 rec_len = le32_to_cpu(frh->client_data_len); 4191 4192 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), 4193 bytes_per_attr_entry)) { 4194 err = -EINVAL; 4195 goto out; 4196 } 4197 4198 t16 = le16_to_cpu(lrh->redo_off); 4199 4200 rt = Add2Ptr(lrh, t16); 4201 t32 = rec_len - t16; 4202 4203 /* Now check that this is a valid restart table. */ 4204 if (!check_rstbl(rt, t32)) { 4205 err = -EINVAL; 4206 goto out; 4207 } 4208 4209 dptbl = kmemdup(rt, t32, GFP_NOFS); 4210 if (!dptbl) { 4211 err = -ENOMEM; 4212 goto out; 4213 } 4214 4215 /* Convert Ra version '0' into version '1'. */ 4216 if (rst->major_ver) 4217 goto end_conv_1; 4218 4219 dp = NULL; 4220 while ((dp = enum_rstbl(dptbl, dp))) { 4221 struct DIR_PAGE_ENTRY_32 *dp0 = (struct DIR_PAGE_ENTRY_32 *)dp; 4222 // NOTE: Danger. Check for of boundary. 4223 memmove(&dp->vcn, &dp0->vcn_low, 4224 2 * sizeof(u64) + 4225 le32_to_cpu(dp->lcns_follow) * sizeof(u64)); 4226 } 4227 4228 end_conv_1: 4229 lcb_put(lcb); 4230 lcb = NULL; 4231 4232 /* 4233 * Go through the table and remove the duplicates, 4234 * remembering the oldest lsn values. 4235 */ 4236 if (sbi->cluster_size <= log->page_size) 4237 goto trace_dp_table; 4238 4239 dp = NULL; 4240 while ((dp = enum_rstbl(dptbl, dp))) { 4241 struct DIR_PAGE_ENTRY *next = dp; 4242 4243 while ((next = enum_rstbl(dptbl, next))) { 4244 if (next->target_attr == dp->target_attr && 4245 next->vcn == dp->vcn) { 4246 if (le64_to_cpu(next->oldest_lsn) < 4247 le64_to_cpu(dp->oldest_lsn)) { 4248 dp->oldest_lsn = next->oldest_lsn; 4249 } 4250 4251 free_rsttbl_idx(dptbl, PtrOffset(dptbl, next)); 4252 } 4253 } 4254 } 4255 trace_dp_table: 4256 check_attribute_names: 4257 /* The next record should be the Attribute Names. */ 4258 if (!rst->attr_names_len) 4259 goto check_attr_table; 4260 4261 t64 = le64_to_cpu(rst->attr_names_lsn); 4262 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); 4263 if (err) 4264 goto out; 4265 4266 lrh = lcb->log_rec; 4267 frh = lcb->lrh; 4268 rec_len = le32_to_cpu(frh->client_data_len); 4269 4270 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), 4271 bytes_per_attr_entry)) { 4272 err = -EINVAL; 4273 goto out; 4274 } 4275 4276 t32 = lrh_length(lrh); 4277 rec_len -= t32; 4278 4279 attr_names = kmemdup(Add2Ptr(lrh, t32), rec_len, GFP_NOFS); 4280 4281 lcb_put(lcb); 4282 lcb = NULL; 4283 4284 check_attr_table: 4285 /* The next record should be the attribute Table. */ 4286 if (!rst->open_attr_len) 4287 goto check_attribute_names2; 4288 4289 t64 = le64_to_cpu(rst->open_attr_table_lsn); 4290 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); 4291 if (err) 4292 goto out; 4293 4294 lrh = lcb->log_rec; 4295 frh = lcb->lrh; 4296 rec_len = le32_to_cpu(frh->client_data_len); 4297 4298 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), 4299 bytes_per_attr_entry)) { 4300 err = -EINVAL; 4301 goto out; 4302 } 4303 4304 t16 = le16_to_cpu(lrh->redo_off); 4305 4306 rt = Add2Ptr(lrh, t16); 4307 t32 = rec_len - t16; 4308 4309 if (!check_rstbl(rt, t32)) { 4310 err = -EINVAL; 4311 goto out; 4312 } 4313 4314 oatbl = kmemdup(rt, t32, GFP_NOFS); 4315 if (!oatbl) { 4316 err = -ENOMEM; 4317 goto out; 4318 } 4319 4320 log->open_attr_tbl = oatbl; 4321 4322 /* Clear all of the Attr pointers. */ 4323 oe = NULL; 4324 while ((oe = enum_rstbl(oatbl, oe))) { 4325 if (!rst->major_ver) { 4326 struct OPEN_ATTR_ENRTY_32 oe0; 4327 4328 /* Really 'oe' points to OPEN_ATTR_ENRTY_32. */ 4329 memcpy(&oe0, oe, SIZEOF_OPENATTRIBUTEENTRY0); 4330 4331 oe->bytes_per_index = oe0.bytes_per_index; 4332 oe->type = oe0.type; 4333 oe->is_dirty_pages = oe0.is_dirty_pages; 4334 oe->name_len = 0; 4335 oe->ref = oe0.ref; 4336 oe->open_record_lsn = oe0.open_record_lsn; 4337 } 4338 4339 oe->is_attr_name = 0; 4340 oe->ptr = NULL; 4341 } 4342 4343 lcb_put(lcb); 4344 lcb = NULL; 4345 4346 check_attribute_names2: 4347 if (!rst->attr_names_len) 4348 goto trace_attribute_table; 4349 4350 ane = attr_names; 4351 if (!oatbl) 4352 goto trace_attribute_table; 4353 while (ane->off) { 4354 /* TODO: Clear table on exit! */ 4355 oe = Add2Ptr(oatbl, le16_to_cpu(ane->off)); 4356 t16 = le16_to_cpu(ane->name_bytes); 4357 oe->name_len = t16 / sizeof(short); 4358 oe->ptr = ane->name; 4359 oe->is_attr_name = 2; 4360 ane = Add2Ptr(ane, sizeof(struct ATTR_NAME_ENTRY) + t16); 4361 } 4362 4363 trace_attribute_table: 4364 /* 4365 * If the checkpt_lsn is zero, then this is a freshly 4366 * formatted disk and we have no work to do. 4367 */ 4368 if (!checkpt_lsn) { 4369 err = 0; 4370 goto out; 4371 } 4372 4373 if (!oatbl) { 4374 oatbl = init_rsttbl(bytes_per_attr_entry, 8); 4375 if (!oatbl) { 4376 err = -ENOMEM; 4377 goto out; 4378 } 4379 } 4380 4381 log->open_attr_tbl = oatbl; 4382 4383 /* Start the analysis pass from the Checkpoint lsn. */ 4384 rec_lsn = checkpt_lsn; 4385 4386 /* Read the first lsn. */ 4387 err = read_log_rec_lcb(log, checkpt_lsn, lcb_ctx_next, &lcb); 4388 if (err) 4389 goto out; 4390 4391 /* Loop to read all subsequent records to the end of the log file. */ 4392 next_log_record_analyze: 4393 err = read_next_log_rec(log, lcb, &rec_lsn); 4394 if (err) 4395 goto out; 4396 4397 if (!rec_lsn) 4398 goto end_log_records_enumerate; 4399 4400 frh = lcb->lrh; 4401 transact_id = le32_to_cpu(frh->transact_id); 4402 rec_len = le32_to_cpu(frh->client_data_len); 4403 lrh = lcb->log_rec; 4404 4405 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) { 4406 err = -EINVAL; 4407 goto out; 4408 } 4409 4410 /* 4411 * The first lsn after the previous lsn remembered 4412 * the checkpoint is the first candidate for the rlsn. 4413 */ 4414 if (!rlsn) 4415 rlsn = rec_lsn; 4416 4417 if (LfsClientRecord != frh->record_type) 4418 goto next_log_record_analyze; 4419 4420 /* 4421 * Now update the Transaction Table for this transaction. If there 4422 * is no entry present or it is unallocated we allocate the entry. 4423 */ 4424 if (!trtbl) { 4425 trtbl = init_rsttbl(sizeof(struct TRANSACTION_ENTRY), 4426 INITIAL_NUMBER_TRANSACTIONS); 4427 if (!trtbl) { 4428 err = -ENOMEM; 4429 goto out; 4430 } 4431 } 4432 4433 tr = Add2Ptr(trtbl, transact_id); 4434 4435 if (transact_id >= bytes_per_rt(trtbl) || 4436 tr->next != RESTART_ENTRY_ALLOCATED_LE) { 4437 tr = alloc_rsttbl_from_idx(&trtbl, transact_id); 4438 if (!tr) { 4439 err = -ENOMEM; 4440 goto out; 4441 } 4442 tr->transact_state = TransactionActive; 4443 tr->first_lsn = cpu_to_le64(rec_lsn); 4444 } 4445 4446 tr->prev_lsn = tr->undo_next_lsn = cpu_to_le64(rec_lsn); 4447 4448 /* 4449 * If this is a compensation log record, then change 4450 * the undo_next_lsn to be the undo_next_lsn of this record. 4451 */ 4452 if (lrh->undo_op == cpu_to_le16(CompensationLogRecord)) 4453 tr->undo_next_lsn = frh->client_undo_next_lsn; 4454 4455 /* Dispatch to handle log record depending on type. */ 4456 switch (le16_to_cpu(lrh->redo_op)) { 4457 case InitializeFileRecordSegment: 4458 case DeallocateFileRecordSegment: 4459 case WriteEndOfFileRecordSegment: 4460 case CreateAttribute: 4461 case DeleteAttribute: 4462 case UpdateResidentValue: 4463 case UpdateNonresidentValue: 4464 case UpdateMappingPairs: 4465 case SetNewAttributeSizes: 4466 case AddIndexEntryRoot: 4467 case DeleteIndexEntryRoot: 4468 case AddIndexEntryAllocation: 4469 case DeleteIndexEntryAllocation: 4470 case WriteEndOfIndexBuffer: 4471 case SetIndexEntryVcnRoot: 4472 case SetIndexEntryVcnAllocation: 4473 case UpdateFileNameRoot: 4474 case UpdateFileNameAllocation: 4475 case SetBitsInNonresidentBitMap: 4476 case ClearBitsInNonresidentBitMap: 4477 case UpdateRecordDataRoot: 4478 case UpdateRecordDataAllocation: 4479 case ZeroEndOfFileRecord: 4480 t16 = le16_to_cpu(lrh->target_attr); 4481 t64 = le64_to_cpu(lrh->target_vcn); 4482 dp = find_dp(dptbl, t16, t64); 4483 4484 if (dp) 4485 goto copy_lcns; 4486 4487 /* 4488 * Calculate the number of clusters per page the system 4489 * which wrote the checkpoint, possibly creating the table. 4490 */ 4491 if (dptbl) { 4492 t32 = (le16_to_cpu(dptbl->size) - 4493 sizeof(struct DIR_PAGE_ENTRY)) / 4494 sizeof(u64); 4495 } else { 4496 t32 = log->clst_per_page; 4497 kfree(dptbl); 4498 dptbl = init_rsttbl(struct_size(dp, page_lcns, t32), 4499 32); 4500 if (!dptbl) { 4501 err = -ENOMEM; 4502 goto out; 4503 } 4504 } 4505 4506 dp = alloc_rsttbl_idx(&dptbl); 4507 if (!dp) { 4508 err = -ENOMEM; 4509 goto out; 4510 } 4511 dp->target_attr = cpu_to_le32(t16); 4512 dp->transfer_len = cpu_to_le32(t32 << sbi->cluster_bits); 4513 dp->lcns_follow = cpu_to_le32(t32); 4514 dp->vcn = cpu_to_le64(t64 & ~((u64)t32 - 1)); 4515 dp->oldest_lsn = cpu_to_le64(rec_lsn); 4516 4517 copy_lcns: 4518 /* 4519 * Copy the Lcns from the log record into the Dirty Page Entry. 4520 * TODO: For different page size support, must somehow make 4521 * whole routine a loop, case Lcns do not fit below. 4522 */ 4523 t16 = le16_to_cpu(lrh->lcns_follow); 4524 for (i = 0; i < t16; i++) { 4525 size_t j = (size_t)(le64_to_cpu(lrh->target_vcn) - 4526 le64_to_cpu(dp->vcn)); 4527 dp->page_lcns[j + i] = lrh->page_lcns[i]; 4528 } 4529 4530 goto next_log_record_analyze; 4531 4532 case DeleteDirtyClusters: { 4533 u32 range_count = 4534 le16_to_cpu(lrh->redo_len) / sizeof(struct LCN_RANGE); 4535 const struct LCN_RANGE *r = 4536 Add2Ptr(lrh, le16_to_cpu(lrh->redo_off)); 4537 4538 /* Loop through all of the Lcn ranges this log record. */ 4539 for (i = 0; i < range_count; i++, r++) { 4540 u64 lcn0 = le64_to_cpu(r->lcn); 4541 u64 lcn_e = lcn0 + le64_to_cpu(r->len) - 1; 4542 4543 dp = NULL; 4544 while ((dp = enum_rstbl(dptbl, dp))) { 4545 u32 j; 4546 4547 t32 = le32_to_cpu(dp->lcns_follow); 4548 for (j = 0; j < t32; j++) { 4549 t64 = le64_to_cpu(dp->page_lcns[j]); 4550 if (t64 >= lcn0 && t64 <= lcn_e) 4551 dp->page_lcns[j] = 0; 4552 } 4553 } 4554 } 4555 goto next_log_record_analyze; 4556 ; 4557 } 4558 4559 case OpenNonresidentAttribute: 4560 t16 = le16_to_cpu(lrh->target_attr); 4561 if (t16 >= bytes_per_rt(oatbl)) { 4562 /* 4563 * Compute how big the table needs to be. 4564 * Add 10 extra entries for some cushion. 4565 */ 4566 u32 new_e = t16 / le16_to_cpu(oatbl->size); 4567 4568 new_e += 10 - le16_to_cpu(oatbl->used); 4569 4570 oatbl = extend_rsttbl(oatbl, new_e, ~0u); 4571 log->open_attr_tbl = oatbl; 4572 if (!oatbl) { 4573 err = -ENOMEM; 4574 goto out; 4575 } 4576 } 4577 4578 /* Point to the entry being opened. */ 4579 oe = alloc_rsttbl_from_idx(&oatbl, t16); 4580 log->open_attr_tbl = oatbl; 4581 if (!oe) { 4582 err = -ENOMEM; 4583 goto out; 4584 } 4585 4586 /* Initialize this entry from the log record. */ 4587 t16 = le16_to_cpu(lrh->redo_off); 4588 if (!rst->major_ver) { 4589 /* Convert version '0' into version '1'. */ 4590 struct OPEN_ATTR_ENRTY_32 *oe0 = Add2Ptr(lrh, t16); 4591 4592 oe->bytes_per_index = oe0->bytes_per_index; 4593 oe->type = oe0->type; 4594 oe->is_dirty_pages = oe0->is_dirty_pages; 4595 oe->name_len = 0; //oe0.name_len; 4596 oe->ref = oe0->ref; 4597 oe->open_record_lsn = oe0->open_record_lsn; 4598 } else { 4599 memcpy(oe, Add2Ptr(lrh, t16), bytes_per_attr_entry); 4600 } 4601 4602 t16 = le16_to_cpu(lrh->undo_len); 4603 if (t16) { 4604 oe->ptr = kmalloc(t16, GFP_NOFS); 4605 if (!oe->ptr) { 4606 err = -ENOMEM; 4607 goto out; 4608 } 4609 oe->name_len = t16 / sizeof(short); 4610 memcpy(oe->ptr, 4611 Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)), t16); 4612 oe->is_attr_name = 1; 4613 } else { 4614 oe->ptr = NULL; 4615 oe->is_attr_name = 0; 4616 } 4617 4618 goto next_log_record_analyze; 4619 4620 case HotFix: 4621 t16 = le16_to_cpu(lrh->target_attr); 4622 t64 = le64_to_cpu(lrh->target_vcn); 4623 dp = find_dp(dptbl, t16, t64); 4624 if (dp) { 4625 size_t j = le64_to_cpu(lrh->target_vcn) - 4626 le64_to_cpu(dp->vcn); 4627 if (dp->page_lcns[j]) 4628 dp->page_lcns[j] = lrh->page_lcns[0]; 4629 } 4630 goto next_log_record_analyze; 4631 4632 case EndTopLevelAction: 4633 tr = Add2Ptr(trtbl, transact_id); 4634 tr->prev_lsn = cpu_to_le64(rec_lsn); 4635 tr->undo_next_lsn = frh->client_undo_next_lsn; 4636 goto next_log_record_analyze; 4637 4638 case PrepareTransaction: 4639 tr = Add2Ptr(trtbl, transact_id); 4640 tr->transact_state = TransactionPrepared; 4641 goto next_log_record_analyze; 4642 4643 case CommitTransaction: 4644 tr = Add2Ptr(trtbl, transact_id); 4645 tr->transact_state = TransactionCommitted; 4646 goto next_log_record_analyze; 4647 4648 case ForgetTransaction: 4649 free_rsttbl_idx(trtbl, transact_id); 4650 goto next_log_record_analyze; 4651 4652 case Noop: 4653 case OpenAttributeTableDump: 4654 case AttributeNamesDump: 4655 case DirtyPageTableDump: 4656 case TransactionTableDump: 4657 /* The following cases require no action the Analysis Pass. */ 4658 goto next_log_record_analyze; 4659 4660 default: 4661 /* 4662 * All codes will be explicitly handled. 4663 * If we see a code we do not expect, then we are trouble. 4664 */ 4665 goto next_log_record_analyze; 4666 } 4667 4668 end_log_records_enumerate: 4669 lcb_put(lcb); 4670 lcb = NULL; 4671 4672 /* 4673 * Scan the Dirty Page Table and Transaction Table for 4674 * the lowest lsn, and return it as the Redo lsn. 4675 */ 4676 dp = NULL; 4677 while ((dp = enum_rstbl(dptbl, dp))) { 4678 t64 = le64_to_cpu(dp->oldest_lsn); 4679 if (t64 && t64 < rlsn) 4680 rlsn = t64; 4681 } 4682 4683 tr = NULL; 4684 while ((tr = enum_rstbl(trtbl, tr))) { 4685 t64 = le64_to_cpu(tr->first_lsn); 4686 if (t64 && t64 < rlsn) 4687 rlsn = t64; 4688 } 4689 4690 /* 4691 * Only proceed if the Dirty Page Table or Transaction 4692 * table are not empty. 4693 */ 4694 if ((!dptbl || !dptbl->total) && (!trtbl || !trtbl->total)) 4695 goto end_reply; 4696 4697 sbi->flags |= NTFS_FLAGS_NEED_REPLAY; 4698 if (is_ro) 4699 goto out; 4700 4701 /* Reopen all of the attributes with dirty pages. */ 4702 oe = NULL; 4703 next_open_attribute: 4704 4705 oe = enum_rstbl(oatbl, oe); 4706 if (!oe) { 4707 err = 0; 4708 dp = NULL; 4709 goto next_dirty_page; 4710 } 4711 4712 oa = kzalloc(sizeof(struct OpenAttr), GFP_NOFS); 4713 if (!oa) { 4714 err = -ENOMEM; 4715 goto out; 4716 } 4717 4718 inode = ntfs_iget5(sbi->sb, &oe->ref, NULL); 4719 if (IS_ERR(inode)) 4720 goto fake_attr; 4721 4722 if (is_bad_inode(inode)) { 4723 iput(inode); 4724 fake_attr: 4725 if (oa->ni) { 4726 iput(&oa->ni->vfs_inode); 4727 oa->ni = NULL; 4728 } 4729 4730 attr = attr_create_nonres_log(sbi, oe->type, 0, oe->ptr, 4731 oe->name_len, 0); 4732 if (!attr) { 4733 kfree(oa); 4734 err = -ENOMEM; 4735 goto out; 4736 } 4737 oa->attr = attr; 4738 oa->run1 = &oa->run0; 4739 goto final_oe; 4740 } 4741 4742 ni_oe = ntfs_i(inode); 4743 oa->ni = ni_oe; 4744 4745 attr = ni_find_attr(ni_oe, NULL, NULL, oe->type, oe->ptr, oe->name_len, 4746 NULL, NULL); 4747 4748 if (!attr) 4749 goto fake_attr; 4750 4751 t32 = le32_to_cpu(attr->size); 4752 oa->attr = kmemdup(attr, t32, GFP_NOFS); 4753 if (!oa->attr) 4754 goto fake_attr; 4755 4756 if (!S_ISDIR(inode->i_mode)) { 4757 if (attr->type == ATTR_DATA && !attr->name_len) { 4758 oa->run1 = &ni_oe->file.run; 4759 goto final_oe; 4760 } 4761 } else { 4762 if (attr->type == ATTR_ALLOC && 4763 attr->name_len == ARRAY_SIZE(I30_NAME) && 4764 !memcmp(attr_name(attr), I30_NAME, sizeof(I30_NAME))) { 4765 oa->run1 = &ni_oe->dir.alloc_run; 4766 goto final_oe; 4767 } 4768 } 4769 4770 if (attr->non_res) { 4771 u16 roff = le16_to_cpu(attr->nres.run_off); 4772 CLST svcn = le64_to_cpu(attr->nres.svcn); 4773 4774 err = run_unpack(&oa->run0, sbi, inode->i_ino, svcn, 4775 le64_to_cpu(attr->nres.evcn), svcn, 4776 Add2Ptr(attr, roff), t32 - roff); 4777 if (err < 0) { 4778 kfree(oa->attr); 4779 oa->attr = NULL; 4780 goto fake_attr; 4781 } 4782 err = 0; 4783 } 4784 oa->run1 = &oa->run0; 4785 attr = oa->attr; 4786 4787 final_oe: 4788 if (oe->is_attr_name == 1) 4789 kfree(oe->ptr); 4790 oe->is_attr_name = 0; 4791 oe->ptr = oa; 4792 oe->name_len = attr->name_len; 4793 4794 goto next_open_attribute; 4795 4796 /* 4797 * Now loop through the dirty page table to extract all of the Vcn/Lcn. 4798 * Mapping that we have, and insert it into the appropriate run. 4799 */ 4800 next_dirty_page: 4801 dp = enum_rstbl(dptbl, dp); 4802 if (!dp) 4803 goto do_redo_1; 4804 4805 oe = Add2Ptr(oatbl, le32_to_cpu(dp->target_attr)); 4806 4807 if (oe->next != RESTART_ENTRY_ALLOCATED_LE) 4808 goto next_dirty_page; 4809 4810 oa = oe->ptr; 4811 if (!oa) 4812 goto next_dirty_page; 4813 4814 i = -1; 4815 next_dirty_page_vcn: 4816 i += 1; 4817 if (i >= le32_to_cpu(dp->lcns_follow)) 4818 goto next_dirty_page; 4819 4820 vcn = le64_to_cpu(dp->vcn) + i; 4821 size = (vcn + 1) << sbi->cluster_bits; 4822 4823 if (!dp->page_lcns[i]) 4824 goto next_dirty_page_vcn; 4825 4826 rno = ino_get(&oe->ref); 4827 if (rno <= MFT_REC_MIRR && 4828 size < (MFT_REC_VOL + 1) * sbi->record_size && 4829 oe->type == ATTR_DATA) { 4830 goto next_dirty_page_vcn; 4831 } 4832 4833 lcn = le64_to_cpu(dp->page_lcns[i]); 4834 4835 if ((!run_lookup_entry(oa->run1, vcn, &lcn0, &len0, NULL) || 4836 lcn0 != lcn) && 4837 !run_add_entry(oa->run1, vcn, lcn, 1, false)) { 4838 err = -ENOMEM; 4839 goto out; 4840 } 4841 attr = oa->attr; 4842 t64 = le64_to_cpu(attr->nres.alloc_size); 4843 if (size > t64) { 4844 attr->nres.valid_size = attr->nres.data_size = 4845 attr->nres.alloc_size = cpu_to_le64(size); 4846 } 4847 goto next_dirty_page_vcn; 4848 4849 do_redo_1: 4850 /* 4851 * Perform the Redo Pass, to restore all of the dirty pages to the same 4852 * contents that they had immediately before the crash. If the dirty 4853 * page table is empty, then we can skip the entire Redo Pass. 4854 */ 4855 if (!dptbl || !dptbl->total) 4856 goto do_undo_action; 4857 4858 rec_lsn = rlsn; 4859 4860 /* 4861 * Read the record at the Redo lsn, before falling 4862 * into common code to handle each record. 4863 */ 4864 err = read_log_rec_lcb(log, rlsn, lcb_ctx_next, &lcb); 4865 if (err) 4866 goto out; 4867 4868 /* 4869 * Now loop to read all of our log records forwards, until 4870 * we hit the end of the file, cleaning up at the end. 4871 */ 4872 do_action_next: 4873 frh = lcb->lrh; 4874 4875 if (LfsClientRecord != frh->record_type) 4876 goto read_next_log_do_action; 4877 4878 transact_id = le32_to_cpu(frh->transact_id); 4879 rec_len = le32_to_cpu(frh->client_data_len); 4880 lrh = lcb->log_rec; 4881 4882 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) { 4883 err = -EINVAL; 4884 goto out; 4885 } 4886 4887 /* Ignore log records that do not update pages. */ 4888 if (lrh->lcns_follow) 4889 goto find_dirty_page; 4890 4891 goto read_next_log_do_action; 4892 4893 find_dirty_page: 4894 t16 = le16_to_cpu(lrh->target_attr); 4895 t64 = le64_to_cpu(lrh->target_vcn); 4896 dp = find_dp(dptbl, t16, t64); 4897 4898 if (!dp) 4899 goto read_next_log_do_action; 4900 4901 if (rec_lsn < le64_to_cpu(dp->oldest_lsn)) 4902 goto read_next_log_do_action; 4903 4904 t16 = le16_to_cpu(lrh->target_attr); 4905 if (t16 >= bytes_per_rt(oatbl)) { 4906 err = -EINVAL; 4907 goto out; 4908 } 4909 4910 oe = Add2Ptr(oatbl, t16); 4911 4912 if (oe->next != RESTART_ENTRY_ALLOCATED_LE) { 4913 err = -EINVAL; 4914 goto out; 4915 } 4916 4917 oa = oe->ptr; 4918 4919 if (!oa) { 4920 err = -EINVAL; 4921 goto out; 4922 } 4923 attr = oa->attr; 4924 4925 vcn = le64_to_cpu(lrh->target_vcn); 4926 4927 if (!run_lookup_entry(oa->run1, vcn, &lcn, NULL, NULL) || 4928 lcn == SPARSE_LCN) { 4929 goto read_next_log_do_action; 4930 } 4931 4932 /* Point to the Redo data and get its length. */ 4933 data = Add2Ptr(lrh, le16_to_cpu(lrh->redo_off)); 4934 dlen = le16_to_cpu(lrh->redo_len); 4935 4936 /* Shorten length by any Lcns which were deleted. */ 4937 saved_len = dlen; 4938 4939 for (i = le16_to_cpu(lrh->lcns_follow); i; i--) { 4940 size_t j; 4941 u32 alen, voff; 4942 4943 voff = le16_to_cpu(lrh->record_off) + 4944 le16_to_cpu(lrh->attr_off); 4945 voff += le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT; 4946 4947 /* If the Vcn question is allocated, we can just get out. */ 4948 j = le64_to_cpu(lrh->target_vcn) - le64_to_cpu(dp->vcn); 4949 if (dp->page_lcns[j + i - 1]) 4950 break; 4951 4952 if (!saved_len) 4953 saved_len = 1; 4954 4955 /* 4956 * Calculate the allocated space left relative to the 4957 * log record Vcn, after removing this unallocated Vcn. 4958 */ 4959 alen = (i - 1) << sbi->cluster_bits; 4960 4961 /* 4962 * If the update described this log record goes beyond 4963 * the allocated space, then we will have to reduce the length. 4964 */ 4965 if (voff >= alen) 4966 dlen = 0; 4967 else if (voff + dlen > alen) 4968 dlen = alen - voff; 4969 } 4970 4971 /* 4972 * If the resulting dlen from above is now zero, 4973 * we can skip this log record. 4974 */ 4975 if (!dlen && saved_len) 4976 goto read_next_log_do_action; 4977 4978 t16 = le16_to_cpu(lrh->redo_op); 4979 if (can_skip_action(t16)) 4980 goto read_next_log_do_action; 4981 4982 /* Apply the Redo operation a common routine. */ 4983 err = do_action(log, oe, lrh, t16, data, dlen, rec_len, &rec_lsn); 4984 if (err) 4985 goto out; 4986 4987 /* Keep reading and looping back until end of file. */ 4988 read_next_log_do_action: 4989 err = read_next_log_rec(log, lcb, &rec_lsn); 4990 if (!err && rec_lsn) 4991 goto do_action_next; 4992 4993 lcb_put(lcb); 4994 lcb = NULL; 4995 4996 do_undo_action: 4997 /* Scan Transaction Table. */ 4998 tr = NULL; 4999 transaction_table_next: 5000 tr = enum_rstbl(trtbl, tr); 5001 if (!tr) 5002 goto undo_action_done; 5003 5004 if (TransactionActive != tr->transact_state || !tr->undo_next_lsn) { 5005 free_rsttbl_idx(trtbl, PtrOffset(trtbl, tr)); 5006 goto transaction_table_next; 5007 } 5008 5009 log->transaction_id = PtrOffset(trtbl, tr); 5010 undo_next_lsn = le64_to_cpu(tr->undo_next_lsn); 5011 5012 /* 5013 * We only have to do anything if the transaction has 5014 * something its undo_next_lsn field. 5015 */ 5016 if (!undo_next_lsn) 5017 goto commit_undo; 5018 5019 /* Read the first record to be undone by this transaction. */ 5020 err = read_log_rec_lcb(log, undo_next_lsn, lcb_ctx_undo_next, &lcb); 5021 if (err) 5022 goto out; 5023 5024 /* 5025 * Now loop to read all of our log records forwards, 5026 * until we hit the end of the file, cleaning up at the end. 5027 */ 5028 undo_action_next: 5029 5030 lrh = lcb->log_rec; 5031 frh = lcb->lrh; 5032 transact_id = le32_to_cpu(frh->transact_id); 5033 rec_len = le32_to_cpu(frh->client_data_len); 5034 5035 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) { 5036 err = -EINVAL; 5037 goto out; 5038 } 5039 5040 if (lrh->undo_op == cpu_to_le16(Noop)) 5041 goto read_next_log_undo_action; 5042 5043 oe = Add2Ptr(oatbl, le16_to_cpu(lrh->target_attr)); 5044 oa = oe->ptr; 5045 5046 t16 = le16_to_cpu(lrh->lcns_follow); 5047 if (!t16) 5048 goto add_allocated_vcns; 5049 5050 is_mapped = run_lookup_entry(oa->run1, le64_to_cpu(lrh->target_vcn), 5051 &lcn, &clen, NULL); 5052 5053 /* 5054 * If the mapping isn't already the table or the mapping 5055 * corresponds to a hole the mapping, we need to make sure 5056 * there is no partial page already memory. 5057 */ 5058 if (is_mapped && lcn != SPARSE_LCN && clen >= t16) 5059 goto add_allocated_vcns; 5060 5061 vcn = le64_to_cpu(lrh->target_vcn); 5062 vcn &= ~(log->clst_per_page - 1); 5063 5064 add_allocated_vcns: 5065 for (i = 0, vcn = le64_to_cpu(lrh->target_vcn), 5066 size = (vcn + 1) << sbi->cluster_bits; 5067 i < t16; i++, vcn += 1, size += sbi->cluster_size) { 5068 attr = oa->attr; 5069 if (!attr->non_res) { 5070 if (size > le32_to_cpu(attr->res.data_size)) 5071 attr->res.data_size = cpu_to_le32(size); 5072 } else { 5073 if (size > le64_to_cpu(attr->nres.data_size)) 5074 attr->nres.valid_size = attr->nres.data_size = 5075 attr->nres.alloc_size = 5076 cpu_to_le64(size); 5077 } 5078 } 5079 5080 t16 = le16_to_cpu(lrh->undo_op); 5081 if (can_skip_action(t16)) 5082 goto read_next_log_undo_action; 5083 5084 /* Point to the Redo data and get its length. */ 5085 data = Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)); 5086 dlen = le16_to_cpu(lrh->undo_len); 5087 5088 /* It is time to apply the undo action. */ 5089 err = do_action(log, oe, lrh, t16, data, dlen, rec_len, NULL); 5090 5091 read_next_log_undo_action: 5092 /* 5093 * Keep reading and looping back until we have read the 5094 * last record for this transaction. 5095 */ 5096 err = read_next_log_rec(log, lcb, &rec_lsn); 5097 if (err) 5098 goto out; 5099 5100 if (rec_lsn) 5101 goto undo_action_next; 5102 5103 lcb_put(lcb); 5104 lcb = NULL; 5105 5106 commit_undo: 5107 free_rsttbl_idx(trtbl, log->transaction_id); 5108 5109 log->transaction_id = 0; 5110 5111 goto transaction_table_next; 5112 5113 undo_action_done: 5114 5115 ntfs_update_mftmirr(sbi, 0); 5116 5117 sbi->flags &= ~NTFS_FLAGS_NEED_REPLAY; 5118 5119 end_reply: 5120 5121 err = 0; 5122 if (is_ro) 5123 goto out; 5124 5125 rh = kzalloc(log->page_size, GFP_NOFS); 5126 if (!rh) { 5127 err = -ENOMEM; 5128 goto out; 5129 } 5130 5131 rh->rhdr.sign = NTFS_RSTR_SIGNATURE; 5132 rh->rhdr.fix_off = cpu_to_le16(offsetof(struct RESTART_HDR, fixups)); 5133 t16 = (log->page_size >> SECTOR_SHIFT) + 1; 5134 rh->rhdr.fix_num = cpu_to_le16(t16); 5135 rh->sys_page_size = cpu_to_le32(log->page_size); 5136 rh->page_size = cpu_to_le32(log->page_size); 5137 5138 t16 = ALIGN(offsetof(struct RESTART_HDR, fixups) + sizeof(short) * t16, 5139 8); 5140 rh->ra_off = cpu_to_le16(t16); 5141 rh->minor_ver = cpu_to_le16(1); // 0x1A: 5142 rh->major_ver = cpu_to_le16(1); // 0x1C: 5143 5144 ra2 = Add2Ptr(rh, t16); 5145 memcpy(ra2, ra, sizeof(struct RESTART_AREA)); 5146 5147 ra2->client_idx[0] = 0; 5148 ra2->client_idx[1] = LFS_NO_CLIENT_LE; 5149 ra2->flags = cpu_to_le16(2); 5150 5151 le32_add_cpu(&ra2->open_log_count, 1); 5152 5153 ntfs_fix_pre_write(&rh->rhdr, log->page_size); 5154 5155 err = ntfs_sb_write_run(sbi, &ni->file.run, 0, rh, log->page_size); 5156 if (!err) 5157 err = ntfs_sb_write_run(sbi, &log->ni->file.run, log->page_size, 5158 rh, log->page_size); 5159 5160 kfree(rh); 5161 if (err) 5162 goto out; 5163 5164 out: 5165 kfree(rst); 5166 if (lcb) 5167 lcb_put(lcb); 5168 5169 /* 5170 * Scan the Open Attribute Table to close all of 5171 * the open attributes. 5172 */ 5173 oe = NULL; 5174 while ((oe = enum_rstbl(oatbl, oe))) { 5175 rno = ino_get(&oe->ref); 5176 5177 if (oe->is_attr_name == 1) { 5178 kfree(oe->ptr); 5179 oe->ptr = NULL; 5180 continue; 5181 } 5182 5183 if (oe->is_attr_name) 5184 continue; 5185 5186 oa = oe->ptr; 5187 if (!oa) 5188 continue; 5189 5190 run_close(&oa->run0); 5191 kfree(oa->attr); 5192 if (oa->ni) 5193 iput(&oa->ni->vfs_inode); 5194 kfree(oa); 5195 } 5196 5197 kfree(trtbl); 5198 kfree(oatbl); 5199 kfree(dptbl); 5200 kfree(attr_names); 5201 kfree(rst_info.r_page); 5202 5203 kfree(ra); 5204 kfree(log->one_page_buf); 5205 5206 if (err) 5207 sbi->flags |= NTFS_FLAGS_NEED_REPLAY; 5208 5209 if (err == -EROFS) 5210 err = 0; 5211 else if (log->set_dirty) 5212 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 5213 5214 kfree(log); 5215 5216 return err; 5217 } 5218