xref: /openbmc/linux/fs/ntfs3/fslog.c (revision a9d85efb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *
4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5  *
6  */
7 
8 #include <linux/blkdev.h>
9 #include <linux/buffer_head.h>
10 #include <linux/fs.h>
11 #include <linux/hash.h>
12 #include <linux/nls.h>
13 #include <linux/random.h>
14 #include <linux/ratelimit.h>
15 #include <linux/slab.h>
16 
17 #include "debug.h"
18 #include "ntfs.h"
19 #include "ntfs_fs.h"
20 
21 /*
22  * LOG FILE structs
23  */
24 
25 // clang-format off
26 
27 #define MaxLogFileSize     0x100000000ull
28 #define DefaultLogPageSize 4096
29 #define MinLogRecordPages  0x30
30 
31 struct RESTART_HDR {
32 	struct NTFS_RECORD_HEADER rhdr; // 'RSTR'
33 	__le32 sys_page_size; // 0x10: Page size of the system which initialized the log.
34 	__le32 page_size;     // 0x14: Log page size used for this log file.
35 	__le16 ra_off;        // 0x18:
36 	__le16 minor_ver;     // 0x1A:
37 	__le16 major_ver;     // 0x1C:
38 	__le16 fixups[];
39 };
40 
41 #define LFS_NO_CLIENT 0xffff
42 #define LFS_NO_CLIENT_LE cpu_to_le16(0xffff)
43 
44 struct CLIENT_REC {
45 	__le64 oldest_lsn;
46 	__le64 restart_lsn; // 0x08:
47 	__le16 prev_client; // 0x10:
48 	__le16 next_client; // 0x12:
49 	__le16 seq_num;     // 0x14:
50 	u8 align[6];        // 0x16:
51 	__le32 name_bytes;  // 0x1C: In bytes.
52 	__le16 name[32];    // 0x20: Name of client.
53 };
54 
55 static_assert(sizeof(struct CLIENT_REC) == 0x60);
56 
57 /* Two copies of these will exist at the beginning of the log file */
58 struct RESTART_AREA {
59 	__le64 current_lsn;    // 0x00: Current logical end of log file.
60 	__le16 log_clients;    // 0x08: Maximum number of clients.
61 	__le16 client_idx[2];  // 0x0A: Free/use index into the client record arrays.
62 	__le16 flags;          // 0x0E: See RESTART_SINGLE_PAGE_IO.
63 	__le32 seq_num_bits;   // 0x10: The number of bits in sequence number.
64 	__le16 ra_len;         // 0x14:
65 	__le16 client_off;     // 0x16:
66 	__le64 l_size;         // 0x18: Usable log file size.
67 	__le32 last_lsn_data_len; // 0x20:
68 	__le16 rec_hdr_len;    // 0x24: Log page data offset.
69 	__le16 data_off;       // 0x26: Log page data length.
70 	__le32 open_log_count; // 0x28:
71 	__le32 align[5];       // 0x2C:
72 	struct CLIENT_REC clients[]; // 0x40:
73 };
74 
75 struct LOG_REC_HDR {
76 	__le16 redo_op;      // 0x00:  NTFS_LOG_OPERATION
77 	__le16 undo_op;      // 0x02:  NTFS_LOG_OPERATION
78 	__le16 redo_off;     // 0x04:  Offset to Redo record.
79 	__le16 redo_len;     // 0x06:  Redo length.
80 	__le16 undo_off;     // 0x08:  Offset to Undo record.
81 	__le16 undo_len;     // 0x0A:  Undo length.
82 	__le16 target_attr;  // 0x0C:
83 	__le16 lcns_follow;  // 0x0E:
84 	__le16 record_off;   // 0x10:
85 	__le16 attr_off;     // 0x12:
86 	__le16 cluster_off;  // 0x14:
87 	__le16 reserved;     // 0x16:
88 	__le64 target_vcn;   // 0x18:
89 	__le64 page_lcns[];  // 0x20:
90 };
91 
92 static_assert(sizeof(struct LOG_REC_HDR) == 0x20);
93 
94 #define RESTART_ENTRY_ALLOCATED    0xFFFFFFFF
95 #define RESTART_ENTRY_ALLOCATED_LE cpu_to_le32(0xFFFFFFFF)
96 
97 struct RESTART_TABLE {
98 	__le16 size;       // 0x00: In bytes
99 	__le16 used;       // 0x02: Entries
100 	__le16 total;      // 0x04: Entries
101 	__le16 res[3];     // 0x06:
102 	__le32 free_goal;  // 0x0C:
103 	__le32 first_free; // 0x10:
104 	__le32 last_free;  // 0x14:
105 
106 };
107 
108 static_assert(sizeof(struct RESTART_TABLE) == 0x18);
109 
110 struct ATTR_NAME_ENTRY {
111 	__le16 off; // Offset in the Open attribute Table.
112 	__le16 name_bytes;
113 	__le16 name[];
114 };
115 
116 struct OPEN_ATTR_ENRTY {
117 	__le32 next;            // 0x00: RESTART_ENTRY_ALLOCATED if allocated
118 	__le32 bytes_per_index; // 0x04:
119 	enum ATTR_TYPE type;    // 0x08:
120 	u8 is_dirty_pages;      // 0x0C:
121 	u8 is_attr_name;        // 0x0B: Faked field to manage 'ptr'
122 	u8 name_len;            // 0x0C: Faked field to manage 'ptr'
123 	u8 res;
124 	struct MFT_REF ref;     // 0x10: File Reference of file containing attribute
125 	__le64 open_record_lsn; // 0x18:
126 	void *ptr;              // 0x20:
127 };
128 
129 /* 32 bit version of 'struct OPEN_ATTR_ENRTY' */
130 struct OPEN_ATTR_ENRTY_32 {
131 	__le32 next;            // 0x00: RESTART_ENTRY_ALLOCATED if allocated
132 	__le32 ptr;             // 0x04:
133 	struct MFT_REF ref;     // 0x08:
134 	__le64 open_record_lsn; // 0x10:
135 	u8 is_dirty_pages;      // 0x18:
136 	u8 is_attr_name;        // 0x19:
137 	u8 res1[2];
138 	enum ATTR_TYPE type;    // 0x1C:
139 	u8 name_len;            // 0x20: In wchar
140 	u8 res2[3];
141 	__le32 AttributeName;   // 0x24:
142 	__le32 bytes_per_index; // 0x28:
143 };
144 
145 #define SIZEOF_OPENATTRIBUTEENTRY0 0x2c
146 // static_assert( 0x2C == sizeof(struct OPEN_ATTR_ENRTY_32) );
147 static_assert(sizeof(struct OPEN_ATTR_ENRTY) < SIZEOF_OPENATTRIBUTEENTRY0);
148 
149 /*
150  * One entry exists in the Dirty Pages Table for each page which is dirty at
151  * the time the Restart Area is written.
152  */
153 struct DIR_PAGE_ENTRY {
154 	__le32 next;         // 0x00: RESTART_ENTRY_ALLOCATED if allocated
155 	__le32 target_attr;  // 0x04: Index into the Open attribute Table
156 	__le32 transfer_len; // 0x08:
157 	__le32 lcns_follow;  // 0x0C:
158 	__le64 vcn;          // 0x10: Vcn of dirty page
159 	__le64 oldest_lsn;   // 0x18:
160 	__le64 page_lcns[];  // 0x20:
161 };
162 
163 static_assert(sizeof(struct DIR_PAGE_ENTRY) == 0x20);
164 
165 /* 32 bit version of 'struct DIR_PAGE_ENTRY' */
166 struct DIR_PAGE_ENTRY_32 {
167 	__le32 next;		// 0x00: RESTART_ENTRY_ALLOCATED if allocated
168 	__le32 target_attr;	// 0x04: Index into the Open attribute Table
169 	__le32 transfer_len;	// 0x08:
170 	__le32 lcns_follow;	// 0x0C:
171 	__le32 reserved;	// 0x10:
172 	__le32 vcn_low;		// 0x14: Vcn of dirty page
173 	__le32 vcn_hi;		// 0x18: Vcn of dirty page
174 	__le32 oldest_lsn_low;	// 0x1C:
175 	__le32 oldest_lsn_hi;	// 0x1C:
176 	__le32 page_lcns_low;	// 0x24:
177 	__le32 page_lcns_hi;	// 0x24:
178 };
179 
180 static_assert(offsetof(struct DIR_PAGE_ENTRY_32, vcn_low) == 0x14);
181 static_assert(sizeof(struct DIR_PAGE_ENTRY_32) == 0x2c);
182 
183 enum transact_state {
184 	TransactionUninitialized = 0,
185 	TransactionActive,
186 	TransactionPrepared,
187 	TransactionCommitted
188 };
189 
190 struct TRANSACTION_ENTRY {
191 	__le32 next;          // 0x00: RESTART_ENTRY_ALLOCATED if allocated
192 	u8 transact_state;    // 0x04:
193 	u8 reserved[3];       // 0x05:
194 	__le64 first_lsn;     // 0x08:
195 	__le64 prev_lsn;      // 0x10:
196 	__le64 undo_next_lsn; // 0x18:
197 	__le32 undo_records;  // 0x20: Number of undo log records pending abort
198 	__le32 undo_len;      // 0x24: Total undo size
199 };
200 
201 static_assert(sizeof(struct TRANSACTION_ENTRY) == 0x28);
202 
203 struct NTFS_RESTART {
204 	__le32 major_ver;             // 0x00:
205 	__le32 minor_ver;             // 0x04:
206 	__le64 check_point_start;     // 0x08:
207 	__le64 open_attr_table_lsn;   // 0x10:
208 	__le64 attr_names_lsn;        // 0x18:
209 	__le64 dirty_pages_table_lsn; // 0x20:
210 	__le64 transact_table_lsn;    // 0x28:
211 	__le32 open_attr_len;         // 0x30: In bytes
212 	__le32 attr_names_len;        // 0x34: In bytes
213 	__le32 dirty_pages_len;       // 0x38: In bytes
214 	__le32 transact_table_len;    // 0x3C: In bytes
215 };
216 
217 static_assert(sizeof(struct NTFS_RESTART) == 0x40);
218 
219 struct NEW_ATTRIBUTE_SIZES {
220 	__le64 alloc_size;
221 	__le64 valid_size;
222 	__le64 data_size;
223 	__le64 total_size;
224 };
225 
226 struct BITMAP_RANGE {
227 	__le32 bitmap_off;
228 	__le32 bits;
229 };
230 
231 struct LCN_RANGE {
232 	__le64 lcn;
233 	__le64 len;
234 };
235 
236 /* The following type defines the different log record types. */
237 #define LfsClientRecord  cpu_to_le32(1)
238 #define LfsClientRestart cpu_to_le32(2)
239 
240 /* This is used to uniquely identify a client for a particular log file. */
241 struct CLIENT_ID {
242 	__le16 seq_num;
243 	__le16 client_idx;
244 };
245 
246 /* This is the header that begins every Log Record in the log file. */
247 struct LFS_RECORD_HDR {
248 	__le64 this_lsn;		// 0x00:
249 	__le64 client_prev_lsn;		// 0x08:
250 	__le64 client_undo_next_lsn;	// 0x10:
251 	__le32 client_data_len;		// 0x18:
252 	struct CLIENT_ID client;	// 0x1C: Owner of this log record.
253 	__le32 record_type;		// 0x20: LfsClientRecord or LfsClientRestart.
254 	__le32 transact_id;		// 0x24:
255 	__le16 flags;			// 0x28: LOG_RECORD_MULTI_PAGE
256 	u8 align[6];			// 0x2A:
257 };
258 
259 #define LOG_RECORD_MULTI_PAGE cpu_to_le16(1)
260 
261 static_assert(sizeof(struct LFS_RECORD_HDR) == 0x30);
262 
263 struct LFS_RECORD {
264 	__le16 next_record_off;	// 0x00: Offset of the free space in the page,
265 	u8 align[6];		// 0x02:
266 	__le64 last_end_lsn;	// 0x08: lsn for the last log record which ends on the page,
267 };
268 
269 static_assert(sizeof(struct LFS_RECORD) == 0x10);
270 
271 struct RECORD_PAGE_HDR {
272 	struct NTFS_RECORD_HEADER rhdr;	// 'RCRD'
273 	__le32 rflags;			// 0x10: See LOG_PAGE_LOG_RECORD_END
274 	__le16 page_count;		// 0x14:
275 	__le16 page_pos;		// 0x16:
276 	struct LFS_RECORD record_hdr;	// 0x18:
277 	__le16 fixups[10];		// 0x28:
278 	__le32 file_off;		// 0x3c: Used when major version >= 2
279 };
280 
281 // clang-format on
282 
283 // Page contains the end of a log record.
284 #define LOG_PAGE_LOG_RECORD_END cpu_to_le32(0x00000001)
285 
286 static inline bool is_log_record_end(const struct RECORD_PAGE_HDR *hdr)
287 {
288 	return hdr->rflags & LOG_PAGE_LOG_RECORD_END;
289 }
290 
291 static_assert(offsetof(struct RECORD_PAGE_HDR, file_off) == 0x3c);
292 
293 /*
294  * END of NTFS LOG structures
295  */
296 
297 /* Define some tuning parameters to keep the restart tables a reasonable size. */
298 #define INITIAL_NUMBER_TRANSACTIONS 5
299 
300 enum NTFS_LOG_OPERATION {
301 
302 	Noop = 0x00,
303 	CompensationLogRecord = 0x01,
304 	InitializeFileRecordSegment = 0x02,
305 	DeallocateFileRecordSegment = 0x03,
306 	WriteEndOfFileRecordSegment = 0x04,
307 	CreateAttribute = 0x05,
308 	DeleteAttribute = 0x06,
309 	UpdateResidentValue = 0x07,
310 	UpdateNonresidentValue = 0x08,
311 	UpdateMappingPairs = 0x09,
312 	DeleteDirtyClusters = 0x0A,
313 	SetNewAttributeSizes = 0x0B,
314 	AddIndexEntryRoot = 0x0C,
315 	DeleteIndexEntryRoot = 0x0D,
316 	AddIndexEntryAllocation = 0x0E,
317 	DeleteIndexEntryAllocation = 0x0F,
318 	WriteEndOfIndexBuffer = 0x10,
319 	SetIndexEntryVcnRoot = 0x11,
320 	SetIndexEntryVcnAllocation = 0x12,
321 	UpdateFileNameRoot = 0x13,
322 	UpdateFileNameAllocation = 0x14,
323 	SetBitsInNonresidentBitMap = 0x15,
324 	ClearBitsInNonresidentBitMap = 0x16,
325 	HotFix = 0x17,
326 	EndTopLevelAction = 0x18,
327 	PrepareTransaction = 0x19,
328 	CommitTransaction = 0x1A,
329 	ForgetTransaction = 0x1B,
330 	OpenNonresidentAttribute = 0x1C,
331 	OpenAttributeTableDump = 0x1D,
332 	AttributeNamesDump = 0x1E,
333 	DirtyPageTableDump = 0x1F,
334 	TransactionTableDump = 0x20,
335 	UpdateRecordDataRoot = 0x21,
336 	UpdateRecordDataAllocation = 0x22,
337 
338 	UpdateRelativeDataInIndex =
339 		0x23, // NtOfsRestartUpdateRelativeDataInIndex
340 	UpdateRelativeDataInIndex2 = 0x24,
341 	ZeroEndOfFileRecord = 0x25,
342 };
343 
344 /*
345  * Array for log records which require a target attribute.
346  * A true indicates that the corresponding restart operation
347  * requires a target attribute.
348  */
349 static const u8 AttributeRequired[] = {
350 	0xFC, 0xFB, 0xFF, 0x10, 0x06,
351 };
352 
353 static inline bool is_target_required(u16 op)
354 {
355 	bool ret = op <= UpdateRecordDataAllocation &&
356 		   (AttributeRequired[op >> 3] >> (op & 7) & 1);
357 	return ret;
358 }
359 
360 static inline bool can_skip_action(enum NTFS_LOG_OPERATION op)
361 {
362 	switch (op) {
363 	case Noop:
364 	case DeleteDirtyClusters:
365 	case HotFix:
366 	case EndTopLevelAction:
367 	case PrepareTransaction:
368 	case CommitTransaction:
369 	case ForgetTransaction:
370 	case CompensationLogRecord:
371 	case OpenNonresidentAttribute:
372 	case OpenAttributeTableDump:
373 	case AttributeNamesDump:
374 	case DirtyPageTableDump:
375 	case TransactionTableDump:
376 		return true;
377 	default:
378 		return false;
379 	}
380 }
381 
382 enum { lcb_ctx_undo_next, lcb_ctx_prev, lcb_ctx_next };
383 
384 /* Bytes per restart table. */
385 static inline u32 bytes_per_rt(const struct RESTART_TABLE *rt)
386 {
387 	return le16_to_cpu(rt->used) * le16_to_cpu(rt->size) +
388 	       sizeof(struct RESTART_TABLE);
389 }
390 
391 /* Log record length. */
392 static inline u32 lrh_length(const struct LOG_REC_HDR *lr)
393 {
394 	u16 t16 = le16_to_cpu(lr->lcns_follow);
395 
396 	return struct_size(lr, page_lcns, max_t(u16, 1, t16));
397 }
398 
399 struct lcb {
400 	struct LFS_RECORD_HDR *lrh; // Log record header of the current lsn.
401 	struct LOG_REC_HDR *log_rec;
402 	u32 ctx_mode; // lcb_ctx_undo_next/lcb_ctx_prev/lcb_ctx_next
403 	struct CLIENT_ID client;
404 	bool alloc; // If true the we should deallocate 'log_rec'.
405 };
406 
407 static void lcb_put(struct lcb *lcb)
408 {
409 	if (lcb->alloc)
410 		kfree(lcb->log_rec);
411 	kfree(lcb->lrh);
412 	kfree(lcb);
413 }
414 
415 /* Find the oldest lsn from active clients. */
416 static inline void oldest_client_lsn(const struct CLIENT_REC *ca,
417 				     __le16 next_client, u64 *oldest_lsn)
418 {
419 	while (next_client != LFS_NO_CLIENT_LE) {
420 		const struct CLIENT_REC *cr = ca + le16_to_cpu(next_client);
421 		u64 lsn = le64_to_cpu(cr->oldest_lsn);
422 
423 		/* Ignore this block if it's oldest lsn is 0. */
424 		if (lsn && lsn < *oldest_lsn)
425 			*oldest_lsn = lsn;
426 
427 		next_client = cr->next_client;
428 	}
429 }
430 
431 static inline bool is_rst_page_hdr_valid(u32 file_off,
432 					 const struct RESTART_HDR *rhdr)
433 {
434 	u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
435 	u32 page_size = le32_to_cpu(rhdr->page_size);
436 	u32 end_usa;
437 	u16 ro;
438 
439 	if (sys_page < SECTOR_SIZE || page_size < SECTOR_SIZE ||
440 	    sys_page & (sys_page - 1) || page_size & (page_size - 1)) {
441 		return false;
442 	}
443 
444 	/* Check that if the file offset isn't 0, it is the system page size. */
445 	if (file_off && file_off != sys_page)
446 		return false;
447 
448 	/* Check support version 1.1+. */
449 	if (le16_to_cpu(rhdr->major_ver) <= 1 && !rhdr->minor_ver)
450 		return false;
451 
452 	if (le16_to_cpu(rhdr->major_ver) > 2)
453 		return false;
454 
455 	ro = le16_to_cpu(rhdr->ra_off);
456 	if (!IS_ALIGNED(ro, 8) || ro > sys_page)
457 		return false;
458 
459 	end_usa = ((sys_page >> SECTOR_SHIFT) + 1) * sizeof(short);
460 	end_usa += le16_to_cpu(rhdr->rhdr.fix_off);
461 
462 	if (ro < end_usa)
463 		return false;
464 
465 	return true;
466 }
467 
468 static inline bool is_rst_area_valid(const struct RESTART_HDR *rhdr)
469 {
470 	const struct RESTART_AREA *ra;
471 	u16 cl, fl, ul;
472 	u32 off, l_size, file_dat_bits, file_size_round;
473 	u16 ro = le16_to_cpu(rhdr->ra_off);
474 	u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
475 
476 	if (ro + offsetof(struct RESTART_AREA, l_size) >
477 	    SECTOR_SIZE - sizeof(short))
478 		return false;
479 
480 	ra = Add2Ptr(rhdr, ro);
481 	cl = le16_to_cpu(ra->log_clients);
482 
483 	if (cl > 1)
484 		return false;
485 
486 	off = le16_to_cpu(ra->client_off);
487 
488 	if (!IS_ALIGNED(off, 8) || ro + off > SECTOR_SIZE - sizeof(short))
489 		return false;
490 
491 	off += cl * sizeof(struct CLIENT_REC);
492 
493 	if (off > sys_page)
494 		return false;
495 
496 	/*
497 	 * Check the restart length field and whether the entire
498 	 * restart area is contained that length.
499 	 */
500 	if (le16_to_cpu(rhdr->ra_off) + le16_to_cpu(ra->ra_len) > sys_page ||
501 	    off > le16_to_cpu(ra->ra_len)) {
502 		return false;
503 	}
504 
505 	/*
506 	 * As a final check make sure that the use list and the free list
507 	 * are either empty or point to a valid client.
508 	 */
509 	fl = le16_to_cpu(ra->client_idx[0]);
510 	ul = le16_to_cpu(ra->client_idx[1]);
511 	if ((fl != LFS_NO_CLIENT && fl >= cl) ||
512 	    (ul != LFS_NO_CLIENT && ul >= cl))
513 		return false;
514 
515 	/* Make sure the sequence number bits match the log file size. */
516 	l_size = le64_to_cpu(ra->l_size);
517 
518 	file_dat_bits = sizeof(u64) * 8 - le32_to_cpu(ra->seq_num_bits);
519 	file_size_round = 1u << (file_dat_bits + 3);
520 	if (file_size_round != l_size &&
521 	    (file_size_round < l_size || (file_size_round / 2) > l_size)) {
522 		return false;
523 	}
524 
525 	/* The log page data offset and record header length must be quad-aligned. */
526 	if (!IS_ALIGNED(le16_to_cpu(ra->data_off), 8) ||
527 	    !IS_ALIGNED(le16_to_cpu(ra->rec_hdr_len), 8))
528 		return false;
529 
530 	return true;
531 }
532 
533 static inline bool is_client_area_valid(const struct RESTART_HDR *rhdr,
534 					bool usa_error)
535 {
536 	u16 ro = le16_to_cpu(rhdr->ra_off);
537 	const struct RESTART_AREA *ra = Add2Ptr(rhdr, ro);
538 	u16 ra_len = le16_to_cpu(ra->ra_len);
539 	const struct CLIENT_REC *ca;
540 	u32 i;
541 
542 	if (usa_error && ra_len + ro > SECTOR_SIZE - sizeof(short))
543 		return false;
544 
545 	/* Find the start of the client array. */
546 	ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
547 
548 	/*
549 	 * Start with the free list.
550 	 * Check that all the clients are valid and that there isn't a cycle.
551 	 * Do the in-use list on the second pass.
552 	 */
553 	for (i = 0; i < 2; i++) {
554 		u16 client_idx = le16_to_cpu(ra->client_idx[i]);
555 		bool first_client = true;
556 		u16 clients = le16_to_cpu(ra->log_clients);
557 
558 		while (client_idx != LFS_NO_CLIENT) {
559 			const struct CLIENT_REC *cr;
560 
561 			if (!clients ||
562 			    client_idx >= le16_to_cpu(ra->log_clients))
563 				return false;
564 
565 			clients -= 1;
566 			cr = ca + client_idx;
567 
568 			client_idx = le16_to_cpu(cr->next_client);
569 
570 			if (first_client) {
571 				first_client = false;
572 				if (cr->prev_client != LFS_NO_CLIENT_LE)
573 					return false;
574 			}
575 		}
576 	}
577 
578 	return true;
579 }
580 
581 /*
582  * remove_client
583  *
584  * Remove a client record from a client record list an restart area.
585  */
586 static inline void remove_client(struct CLIENT_REC *ca,
587 				 const struct CLIENT_REC *cr, __le16 *head)
588 {
589 	if (cr->prev_client == LFS_NO_CLIENT_LE)
590 		*head = cr->next_client;
591 	else
592 		ca[le16_to_cpu(cr->prev_client)].next_client = cr->next_client;
593 
594 	if (cr->next_client != LFS_NO_CLIENT_LE)
595 		ca[le16_to_cpu(cr->next_client)].prev_client = cr->prev_client;
596 }
597 
598 /*
599  * add_client - Add a client record to the start of a list.
600  */
601 static inline void add_client(struct CLIENT_REC *ca, u16 index, __le16 *head)
602 {
603 	struct CLIENT_REC *cr = ca + index;
604 
605 	cr->prev_client = LFS_NO_CLIENT_LE;
606 	cr->next_client = *head;
607 
608 	if (*head != LFS_NO_CLIENT_LE)
609 		ca[le16_to_cpu(*head)].prev_client = cpu_to_le16(index);
610 
611 	*head = cpu_to_le16(index);
612 }
613 
614 static inline void *enum_rstbl(struct RESTART_TABLE *t, void *c)
615 {
616 	__le32 *e;
617 	u32 bprt;
618 	u16 rsize = t ? le16_to_cpu(t->size) : 0;
619 
620 	if (!c) {
621 		if (!t || !t->total)
622 			return NULL;
623 		e = Add2Ptr(t, sizeof(struct RESTART_TABLE));
624 	} else {
625 		e = Add2Ptr(c, rsize);
626 	}
627 
628 	/* Loop until we hit the first one allocated, or the end of the list. */
629 	for (bprt = bytes_per_rt(t); PtrOffset(t, e) < bprt;
630 	     e = Add2Ptr(e, rsize)) {
631 		if (*e == RESTART_ENTRY_ALLOCATED_LE)
632 			return e;
633 	}
634 	return NULL;
635 }
636 
637 /*
638  * find_dp - Search for a @vcn in Dirty Page Table.
639  */
640 static inline struct DIR_PAGE_ENTRY *find_dp(struct RESTART_TABLE *dptbl,
641 					     u32 target_attr, u64 vcn)
642 {
643 	__le32 ta = cpu_to_le32(target_attr);
644 	struct DIR_PAGE_ENTRY *dp = NULL;
645 
646 	while ((dp = enum_rstbl(dptbl, dp))) {
647 		u64 dp_vcn = le64_to_cpu(dp->vcn);
648 
649 		if (dp->target_attr == ta && vcn >= dp_vcn &&
650 		    vcn < dp_vcn + le32_to_cpu(dp->lcns_follow)) {
651 			return dp;
652 		}
653 	}
654 	return NULL;
655 }
656 
657 static inline u32 norm_file_page(u32 page_size, u32 *l_size, bool use_default)
658 {
659 	if (use_default)
660 		page_size = DefaultLogPageSize;
661 
662 	/* Round the file size down to a system page boundary. */
663 	*l_size &= ~(page_size - 1);
664 
665 	/* File should contain at least 2 restart pages and MinLogRecordPages pages. */
666 	if (*l_size < (MinLogRecordPages + 2) * page_size)
667 		return 0;
668 
669 	return page_size;
670 }
671 
672 static bool check_log_rec(const struct LOG_REC_HDR *lr, u32 bytes, u32 tr,
673 			  u32 bytes_per_attr_entry)
674 {
675 	u16 t16;
676 
677 	if (bytes < sizeof(struct LOG_REC_HDR))
678 		return false;
679 	if (!tr)
680 		return false;
681 
682 	if ((tr - sizeof(struct RESTART_TABLE)) %
683 	    sizeof(struct TRANSACTION_ENTRY))
684 		return false;
685 
686 	if (le16_to_cpu(lr->redo_off) & 7)
687 		return false;
688 
689 	if (le16_to_cpu(lr->undo_off) & 7)
690 		return false;
691 
692 	if (lr->target_attr)
693 		goto check_lcns;
694 
695 	if (is_target_required(le16_to_cpu(lr->redo_op)))
696 		return false;
697 
698 	if (is_target_required(le16_to_cpu(lr->undo_op)))
699 		return false;
700 
701 check_lcns:
702 	if (!lr->lcns_follow)
703 		goto check_length;
704 
705 	t16 = le16_to_cpu(lr->target_attr);
706 	if ((t16 - sizeof(struct RESTART_TABLE)) % bytes_per_attr_entry)
707 		return false;
708 
709 check_length:
710 	if (bytes < lrh_length(lr))
711 		return false;
712 
713 	return true;
714 }
715 
716 static bool check_rstbl(const struct RESTART_TABLE *rt, size_t bytes)
717 {
718 	u32 ts;
719 	u32 i, off;
720 	u16 rsize = le16_to_cpu(rt->size);
721 	u16 ne = le16_to_cpu(rt->used);
722 	u32 ff = le32_to_cpu(rt->first_free);
723 	u32 lf = le32_to_cpu(rt->last_free);
724 
725 	ts = rsize * ne + sizeof(struct RESTART_TABLE);
726 
727 	if (!rsize || rsize > bytes ||
728 	    rsize + sizeof(struct RESTART_TABLE) > bytes || bytes < ts ||
729 	    le16_to_cpu(rt->total) > ne || ff > ts || lf > ts ||
730 	    (ff && ff < sizeof(struct RESTART_TABLE)) ||
731 	    (lf && lf < sizeof(struct RESTART_TABLE))) {
732 		return false;
733 	}
734 
735 	/*
736 	 * Verify each entry is either allocated or points
737 	 * to a valid offset the table.
738 	 */
739 	for (i = 0; i < ne; i++) {
740 		off = le32_to_cpu(*(__le32 *)Add2Ptr(
741 			rt, i * rsize + sizeof(struct RESTART_TABLE)));
742 
743 		if (off != RESTART_ENTRY_ALLOCATED && off &&
744 		    (off < sizeof(struct RESTART_TABLE) ||
745 		     ((off - sizeof(struct RESTART_TABLE)) % rsize))) {
746 			return false;
747 		}
748 	}
749 
750 	/*
751 	 * Walk through the list headed by the first entry to make
752 	 * sure none of the entries are currently being used.
753 	 */
754 	for (off = ff; off;) {
755 		if (off == RESTART_ENTRY_ALLOCATED)
756 			return false;
757 
758 		off = le32_to_cpu(*(__le32 *)Add2Ptr(rt, off));
759 	}
760 
761 	return true;
762 }
763 
764 /*
765  * free_rsttbl_idx - Free a previously allocated index a Restart Table.
766  */
767 static inline void free_rsttbl_idx(struct RESTART_TABLE *rt, u32 off)
768 {
769 	__le32 *e;
770 	u32 lf = le32_to_cpu(rt->last_free);
771 	__le32 off_le = cpu_to_le32(off);
772 
773 	e = Add2Ptr(rt, off);
774 
775 	if (off < le32_to_cpu(rt->free_goal)) {
776 		*e = rt->first_free;
777 		rt->first_free = off_le;
778 		if (!lf)
779 			rt->last_free = off_le;
780 	} else {
781 		if (lf)
782 			*(__le32 *)Add2Ptr(rt, lf) = off_le;
783 		else
784 			rt->first_free = off_le;
785 
786 		rt->last_free = off_le;
787 		*e = 0;
788 	}
789 
790 	le16_sub_cpu(&rt->total, 1);
791 }
792 
793 static inline struct RESTART_TABLE *init_rsttbl(u16 esize, u16 used)
794 {
795 	__le32 *e, *last_free;
796 	u32 off;
797 	u32 bytes = esize * used + sizeof(struct RESTART_TABLE);
798 	u32 lf = sizeof(struct RESTART_TABLE) + (used - 1) * esize;
799 	struct RESTART_TABLE *t = kzalloc(bytes, GFP_NOFS);
800 
801 	if (!t)
802 		return NULL;
803 
804 	t->size = cpu_to_le16(esize);
805 	t->used = cpu_to_le16(used);
806 	t->free_goal = cpu_to_le32(~0u);
807 	t->first_free = cpu_to_le32(sizeof(struct RESTART_TABLE));
808 	t->last_free = cpu_to_le32(lf);
809 
810 	e = (__le32 *)(t + 1);
811 	last_free = Add2Ptr(t, lf);
812 
813 	for (off = sizeof(struct RESTART_TABLE) + esize; e < last_free;
814 	     e = Add2Ptr(e, esize), off += esize) {
815 		*e = cpu_to_le32(off);
816 	}
817 	return t;
818 }
819 
820 static inline struct RESTART_TABLE *extend_rsttbl(struct RESTART_TABLE *tbl,
821 						  u32 add, u32 free_goal)
822 {
823 	u16 esize = le16_to_cpu(tbl->size);
824 	__le32 osize = cpu_to_le32(bytes_per_rt(tbl));
825 	u32 used = le16_to_cpu(tbl->used);
826 	struct RESTART_TABLE *rt;
827 
828 	rt = init_rsttbl(esize, used + add);
829 	if (!rt)
830 		return NULL;
831 
832 	memcpy(rt + 1, tbl + 1, esize * used);
833 
834 	rt->free_goal = free_goal == ~0u
835 				? cpu_to_le32(~0u)
836 				: cpu_to_le32(sizeof(struct RESTART_TABLE) +
837 					      free_goal * esize);
838 
839 	if (tbl->first_free) {
840 		rt->first_free = tbl->first_free;
841 		*(__le32 *)Add2Ptr(rt, le32_to_cpu(tbl->last_free)) = osize;
842 	} else {
843 		rt->first_free = osize;
844 	}
845 
846 	rt->total = tbl->total;
847 
848 	kfree(tbl);
849 	return rt;
850 }
851 
852 /*
853  * alloc_rsttbl_idx
854  *
855  * Allocate an index from within a previously initialized Restart Table.
856  */
857 static inline void *alloc_rsttbl_idx(struct RESTART_TABLE **tbl)
858 {
859 	u32 off;
860 	__le32 *e;
861 	struct RESTART_TABLE *t = *tbl;
862 
863 	if (!t->first_free) {
864 		*tbl = t = extend_rsttbl(t, 16, ~0u);
865 		if (!t)
866 			return NULL;
867 	}
868 
869 	off = le32_to_cpu(t->first_free);
870 
871 	/* Dequeue this entry and zero it. */
872 	e = Add2Ptr(t, off);
873 
874 	t->first_free = *e;
875 
876 	memset(e, 0, le16_to_cpu(t->size));
877 
878 	*e = RESTART_ENTRY_ALLOCATED_LE;
879 
880 	/* If list is going empty, then we fix the last_free as well. */
881 	if (!t->first_free)
882 		t->last_free = 0;
883 
884 	le16_add_cpu(&t->total, 1);
885 
886 	return Add2Ptr(t, off);
887 }
888 
889 /*
890  * alloc_rsttbl_from_idx
891  *
892  * Allocate a specific index from within a previously initialized Restart Table.
893  */
894 static inline void *alloc_rsttbl_from_idx(struct RESTART_TABLE **tbl, u32 vbo)
895 {
896 	u32 off;
897 	__le32 *e;
898 	struct RESTART_TABLE *rt = *tbl;
899 	u32 bytes = bytes_per_rt(rt);
900 	u16 esize = le16_to_cpu(rt->size);
901 
902 	/* If the entry is not the table, we will have to extend the table. */
903 	if (vbo >= bytes) {
904 		/*
905 		 * Extend the size by computing the number of entries between
906 		 * the existing size and the desired index and adding 1 to that.
907 		 */
908 		u32 bytes2idx = vbo - bytes;
909 
910 		/*
911 		 * There should always be an integral number of entries
912 		 * being added. Now extend the table.
913 		 */
914 		*tbl = rt = extend_rsttbl(rt, bytes2idx / esize + 1, bytes);
915 		if (!rt)
916 			return NULL;
917 	}
918 
919 	/* See if the entry is already allocated, and just return if it is. */
920 	e = Add2Ptr(rt, vbo);
921 
922 	if (*e == RESTART_ENTRY_ALLOCATED_LE)
923 		return e;
924 
925 	/*
926 	 * Walk through the table, looking for the entry we're
927 	 * interested and the previous entry.
928 	 */
929 	off = le32_to_cpu(rt->first_free);
930 	e = Add2Ptr(rt, off);
931 
932 	if (off == vbo) {
933 		/* this is a match */
934 		rt->first_free = *e;
935 		goto skip_looking;
936 	}
937 
938 	/*
939 	 * Need to walk through the list looking for the predecessor
940 	 * of our entry.
941 	 */
942 	for (;;) {
943 		/* Remember the entry just found */
944 		u32 last_off = off;
945 		__le32 *last_e = e;
946 
947 		/* Should never run of entries. */
948 
949 		/* Lookup up the next entry the list. */
950 		off = le32_to_cpu(*last_e);
951 		e = Add2Ptr(rt, off);
952 
953 		/* If this is our match we are done. */
954 		if (off == vbo) {
955 			*last_e = *e;
956 
957 			/*
958 			 * If this was the last entry, we update that
959 			 * table as well.
960 			 */
961 			if (le32_to_cpu(rt->last_free) == off)
962 				rt->last_free = cpu_to_le32(last_off);
963 			break;
964 		}
965 	}
966 
967 skip_looking:
968 	/* If the list is now empty, we fix the last_free as well. */
969 	if (!rt->first_free)
970 		rt->last_free = 0;
971 
972 	/* Zero this entry. */
973 	memset(e, 0, esize);
974 	*e = RESTART_ENTRY_ALLOCATED_LE;
975 
976 	le16_add_cpu(&rt->total, 1);
977 
978 	return e;
979 }
980 
981 #define RESTART_SINGLE_PAGE_IO cpu_to_le16(0x0001)
982 
983 #define NTFSLOG_WRAPPED 0x00000001
984 #define NTFSLOG_MULTIPLE_PAGE_IO 0x00000002
985 #define NTFSLOG_NO_LAST_LSN 0x00000004
986 #define NTFSLOG_REUSE_TAIL 0x00000010
987 #define NTFSLOG_NO_OLDEST_LSN 0x00000020
988 
989 /* Helper struct to work with NTFS $LogFile. */
990 struct ntfs_log {
991 	struct ntfs_inode *ni;
992 
993 	u32 l_size;
994 	u32 sys_page_size;
995 	u32 sys_page_mask;
996 	u32 page_size;
997 	u32 page_mask; // page_size - 1
998 	u8 page_bits;
999 	struct RECORD_PAGE_HDR *one_page_buf;
1000 
1001 	struct RESTART_TABLE *open_attr_tbl;
1002 	u32 transaction_id;
1003 	u32 clst_per_page;
1004 
1005 	u32 first_page;
1006 	u32 next_page;
1007 	u32 ra_off;
1008 	u32 data_off;
1009 	u32 restart_size;
1010 	u32 data_size;
1011 	u16 record_header_len;
1012 	u64 seq_num;
1013 	u32 seq_num_bits;
1014 	u32 file_data_bits;
1015 	u32 seq_num_mask; /* (1 << file_data_bits) - 1 */
1016 
1017 	struct RESTART_AREA *ra; /* In-memory image of the next restart area. */
1018 	u32 ra_size; /* The usable size of the restart area. */
1019 
1020 	/*
1021 	 * If true, then the in-memory restart area is to be written
1022 	 * to the first position on the disk.
1023 	 */
1024 	bool init_ra;
1025 	bool set_dirty; /* True if we need to set dirty flag. */
1026 
1027 	u64 oldest_lsn;
1028 
1029 	u32 oldest_lsn_off;
1030 	u64 last_lsn;
1031 
1032 	u32 total_avail;
1033 	u32 total_avail_pages;
1034 	u32 total_undo_commit;
1035 	u32 max_current_avail;
1036 	u32 current_avail;
1037 	u32 reserved;
1038 
1039 	short major_ver;
1040 	short minor_ver;
1041 
1042 	u32 l_flags; /* See NTFSLOG_XXX */
1043 	u32 current_openlog_count; /* On-disk value for open_log_count. */
1044 
1045 	struct CLIENT_ID client_id;
1046 	u32 client_undo_commit;
1047 };
1048 
1049 static inline u32 lsn_to_vbo(struct ntfs_log *log, const u64 lsn)
1050 {
1051 	u32 vbo = (lsn << log->seq_num_bits) >> (log->seq_num_bits - 3);
1052 
1053 	return vbo;
1054 }
1055 
1056 /* Compute the offset in the log file of the next log page. */
1057 static inline u32 next_page_off(struct ntfs_log *log, u32 off)
1058 {
1059 	off = (off & ~log->sys_page_mask) + log->page_size;
1060 	return off >= log->l_size ? log->first_page : off;
1061 }
1062 
1063 static inline u32 lsn_to_page_off(struct ntfs_log *log, u64 lsn)
1064 {
1065 	return (((u32)lsn) << 3) & log->page_mask;
1066 }
1067 
1068 static inline u64 vbo_to_lsn(struct ntfs_log *log, u32 off, u64 Seq)
1069 {
1070 	return (off >> 3) + (Seq << log->file_data_bits);
1071 }
1072 
1073 static inline bool is_lsn_in_file(struct ntfs_log *log, u64 lsn)
1074 {
1075 	return lsn >= log->oldest_lsn &&
1076 	       lsn <= le64_to_cpu(log->ra->current_lsn);
1077 }
1078 
1079 static inline u32 hdr_file_off(struct ntfs_log *log,
1080 			       struct RECORD_PAGE_HDR *hdr)
1081 {
1082 	if (log->major_ver < 2)
1083 		return le64_to_cpu(hdr->rhdr.lsn);
1084 
1085 	return le32_to_cpu(hdr->file_off);
1086 }
1087 
1088 static inline u64 base_lsn(struct ntfs_log *log,
1089 			   const struct RECORD_PAGE_HDR *hdr, u64 lsn)
1090 {
1091 	u64 h_lsn = le64_to_cpu(hdr->rhdr.lsn);
1092 	u64 ret = (((h_lsn >> log->file_data_bits) +
1093 		    (lsn < (lsn_to_vbo(log, h_lsn) & ~log->page_mask) ? 1 : 0))
1094 		   << log->file_data_bits) +
1095 		  ((((is_log_record_end(hdr) &&
1096 		      h_lsn <= le64_to_cpu(hdr->record_hdr.last_end_lsn))
1097 			     ? le16_to_cpu(hdr->record_hdr.next_record_off)
1098 			     : log->page_size) +
1099 		    lsn) >>
1100 		   3);
1101 
1102 	return ret;
1103 }
1104 
1105 static inline bool verify_client_lsn(struct ntfs_log *log,
1106 				     const struct CLIENT_REC *client, u64 lsn)
1107 {
1108 	return lsn >= le64_to_cpu(client->oldest_lsn) &&
1109 	       lsn <= le64_to_cpu(log->ra->current_lsn) && lsn;
1110 }
1111 
1112 struct restart_info {
1113 	u64 last_lsn;
1114 	struct RESTART_HDR *r_page;
1115 	u32 vbo;
1116 	bool chkdsk_was_run;
1117 	bool valid_page;
1118 	bool initialized;
1119 	bool restart;
1120 };
1121 
1122 static int read_log_page(struct ntfs_log *log, u32 vbo,
1123 			 struct RECORD_PAGE_HDR **buffer, bool *usa_error)
1124 {
1125 	int err = 0;
1126 	u32 page_idx = vbo >> log->page_bits;
1127 	u32 page_off = vbo & log->page_mask;
1128 	u32 bytes = log->page_size - page_off;
1129 	void *to_free = NULL;
1130 	u32 page_vbo = page_idx << log->page_bits;
1131 	struct RECORD_PAGE_HDR *page_buf;
1132 	struct ntfs_inode *ni = log->ni;
1133 	bool bBAAD;
1134 
1135 	if (vbo >= log->l_size)
1136 		return -EINVAL;
1137 
1138 	if (!*buffer) {
1139 		to_free = kmalloc(bytes, GFP_NOFS);
1140 		if (!to_free)
1141 			return -ENOMEM;
1142 		*buffer = to_free;
1143 	}
1144 
1145 	page_buf = page_off ? log->one_page_buf : *buffer;
1146 
1147 	err = ntfs_read_run_nb(ni->mi.sbi, &ni->file.run, page_vbo, page_buf,
1148 			       log->page_size, NULL);
1149 	if (err)
1150 		goto out;
1151 
1152 	if (page_buf->rhdr.sign != NTFS_FFFF_SIGNATURE)
1153 		ntfs_fix_post_read(&page_buf->rhdr, PAGE_SIZE, false);
1154 
1155 	if (page_buf != *buffer)
1156 		memcpy(*buffer, Add2Ptr(page_buf, page_off), bytes);
1157 
1158 	bBAAD = page_buf->rhdr.sign == NTFS_BAAD_SIGNATURE;
1159 
1160 	if (usa_error)
1161 		*usa_error = bBAAD;
1162 	/* Check that the update sequence array for this page is valid */
1163 	/* If we don't allow errors, raise an error status */
1164 	else if (bBAAD)
1165 		err = -EINVAL;
1166 
1167 out:
1168 	if (err && to_free) {
1169 		kfree(to_free);
1170 		*buffer = NULL;
1171 	}
1172 
1173 	return err;
1174 }
1175 
1176 /*
1177  * log_read_rst
1178  *
1179  * It walks through 512 blocks of the file looking for a valid
1180  * restart page header. It will stop the first time we find a
1181  * valid page header.
1182  */
1183 static int log_read_rst(struct ntfs_log *log, u32 l_size, bool first,
1184 			struct restart_info *info)
1185 {
1186 	u32 skip, vbo;
1187 	struct RESTART_HDR *r_page = kmalloc(DefaultLogPageSize, GFP_NOFS);
1188 
1189 	if (!r_page)
1190 		return -ENOMEM;
1191 
1192 	memset(info, 0, sizeof(struct restart_info));
1193 
1194 	/* Determine which restart area we are looking for. */
1195 	if (first) {
1196 		vbo = 0;
1197 		skip = 512;
1198 	} else {
1199 		vbo = 512;
1200 		skip = 0;
1201 	}
1202 
1203 	/* Loop continuously until we succeed. */
1204 	for (; vbo < l_size; vbo = 2 * vbo + skip, skip = 0) {
1205 		bool usa_error;
1206 		u32 sys_page_size;
1207 		bool brst, bchk;
1208 		struct RESTART_AREA *ra;
1209 
1210 		/* Read a page header at the current offset. */
1211 		if (read_log_page(log, vbo, (struct RECORD_PAGE_HDR **)&r_page,
1212 				  &usa_error)) {
1213 			/* Ignore any errors. */
1214 			continue;
1215 		}
1216 
1217 		/* Exit if the signature is a log record page. */
1218 		if (r_page->rhdr.sign == NTFS_RCRD_SIGNATURE) {
1219 			info->initialized = true;
1220 			break;
1221 		}
1222 
1223 		brst = r_page->rhdr.sign == NTFS_RSTR_SIGNATURE;
1224 		bchk = r_page->rhdr.sign == NTFS_CHKD_SIGNATURE;
1225 
1226 		if (!bchk && !brst) {
1227 			if (r_page->rhdr.sign != NTFS_FFFF_SIGNATURE) {
1228 				/*
1229 				 * Remember if the signature does not
1230 				 * indicate uninitialized file.
1231 				 */
1232 				info->initialized = true;
1233 			}
1234 			continue;
1235 		}
1236 
1237 		ra = NULL;
1238 		info->valid_page = false;
1239 		info->initialized = true;
1240 		info->vbo = vbo;
1241 
1242 		/* Let's check the restart area if this is a valid page. */
1243 		if (!is_rst_page_hdr_valid(vbo, r_page))
1244 			goto check_result;
1245 		ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1246 
1247 		if (!is_rst_area_valid(r_page))
1248 			goto check_result;
1249 
1250 		/*
1251 		 * We have a valid restart page header and restart area.
1252 		 * If chkdsk was run or we have no clients then we have
1253 		 * no more checking to do.
1254 		 */
1255 		if (bchk || ra->client_idx[1] == LFS_NO_CLIENT_LE) {
1256 			info->valid_page = true;
1257 			goto check_result;
1258 		}
1259 
1260 		/* Read the entire restart area. */
1261 		sys_page_size = le32_to_cpu(r_page->sys_page_size);
1262 		if (DefaultLogPageSize != sys_page_size) {
1263 			kfree(r_page);
1264 			r_page = kzalloc(sys_page_size, GFP_NOFS);
1265 			if (!r_page)
1266 				return -ENOMEM;
1267 
1268 			if (read_log_page(log, vbo,
1269 					  (struct RECORD_PAGE_HDR **)&r_page,
1270 					  &usa_error)) {
1271 				/* Ignore any errors. */
1272 				kfree(r_page);
1273 				r_page = NULL;
1274 				continue;
1275 			}
1276 		}
1277 
1278 		if (is_client_area_valid(r_page, usa_error)) {
1279 			info->valid_page = true;
1280 			ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1281 		}
1282 
1283 check_result:
1284 		/*
1285 		 * If chkdsk was run then update the caller's
1286 		 * values and return.
1287 		 */
1288 		if (r_page->rhdr.sign == NTFS_CHKD_SIGNATURE) {
1289 			info->chkdsk_was_run = true;
1290 			info->last_lsn = le64_to_cpu(r_page->rhdr.lsn);
1291 			info->restart = true;
1292 			info->r_page = r_page;
1293 			return 0;
1294 		}
1295 
1296 		/*
1297 		 * If we have a valid page then copy the values
1298 		 * we need from it.
1299 		 */
1300 		if (info->valid_page) {
1301 			info->last_lsn = le64_to_cpu(ra->current_lsn);
1302 			info->restart = true;
1303 			info->r_page = r_page;
1304 			return 0;
1305 		}
1306 	}
1307 
1308 	kfree(r_page);
1309 
1310 	return 0;
1311 }
1312 
1313 /*
1314  * Ilog_init_pg_hdr - Init @log from restart page header.
1315  */
1316 static void log_init_pg_hdr(struct ntfs_log *log, u32 sys_page_size,
1317 			    u32 page_size, u16 major_ver, u16 minor_ver)
1318 {
1319 	log->sys_page_size = sys_page_size;
1320 	log->sys_page_mask = sys_page_size - 1;
1321 	log->page_size = page_size;
1322 	log->page_mask = page_size - 1;
1323 	log->page_bits = blksize_bits(page_size);
1324 
1325 	log->clst_per_page = log->page_size >> log->ni->mi.sbi->cluster_bits;
1326 	if (!log->clst_per_page)
1327 		log->clst_per_page = 1;
1328 
1329 	log->first_page = major_ver >= 2
1330 				  ? 0x22 * page_size
1331 				  : ((sys_page_size << 1) + (page_size << 1));
1332 	log->major_ver = major_ver;
1333 	log->minor_ver = minor_ver;
1334 }
1335 
1336 /*
1337  * log_create - Init @log in cases when we don't have a restart area to use.
1338  */
1339 static void log_create(struct ntfs_log *log, u32 l_size, const u64 last_lsn,
1340 		       u32 open_log_count, bool wrapped, bool use_multi_page)
1341 {
1342 	log->l_size = l_size;
1343 	/* All file offsets must be quadword aligned. */
1344 	log->file_data_bits = blksize_bits(l_size) - 3;
1345 	log->seq_num_mask = (8 << log->file_data_bits) - 1;
1346 	log->seq_num_bits = sizeof(u64) * 8 - log->file_data_bits;
1347 	log->seq_num = (last_lsn >> log->file_data_bits) + 2;
1348 	log->next_page = log->first_page;
1349 	log->oldest_lsn = log->seq_num << log->file_data_bits;
1350 	log->oldest_lsn_off = 0;
1351 	log->last_lsn = log->oldest_lsn;
1352 
1353 	log->l_flags |= NTFSLOG_NO_LAST_LSN | NTFSLOG_NO_OLDEST_LSN;
1354 
1355 	/* Set the correct flags for the I/O and indicate if we have wrapped. */
1356 	if (wrapped)
1357 		log->l_flags |= NTFSLOG_WRAPPED;
1358 
1359 	if (use_multi_page)
1360 		log->l_flags |= NTFSLOG_MULTIPLE_PAGE_IO;
1361 
1362 	/* Compute the log page values. */
1363 	log->data_off = ALIGN(
1364 		offsetof(struct RECORD_PAGE_HDR, fixups) +
1365 			sizeof(short) * ((log->page_size >> SECTOR_SHIFT) + 1),
1366 		8);
1367 	log->data_size = log->page_size - log->data_off;
1368 	log->record_header_len = sizeof(struct LFS_RECORD_HDR);
1369 
1370 	/* Remember the different page sizes for reservation. */
1371 	log->reserved = log->data_size - log->record_header_len;
1372 
1373 	/* Compute the restart page values. */
1374 	log->ra_off = ALIGN(
1375 		offsetof(struct RESTART_HDR, fixups) +
1376 			sizeof(short) *
1377 				((log->sys_page_size >> SECTOR_SHIFT) + 1),
1378 		8);
1379 	log->restart_size = log->sys_page_size - log->ra_off;
1380 	log->ra_size = struct_size(log->ra, clients, 1);
1381 	log->current_openlog_count = open_log_count;
1382 
1383 	/*
1384 	 * The total available log file space is the number of
1385 	 * log file pages times the space available on each page.
1386 	 */
1387 	log->total_avail_pages = log->l_size - log->first_page;
1388 	log->total_avail = log->total_avail_pages >> log->page_bits;
1389 
1390 	/*
1391 	 * We assume that we can't use the end of the page less than
1392 	 * the file record size.
1393 	 * Then we won't need to reserve more than the caller asks for.
1394 	 */
1395 	log->max_current_avail = log->total_avail * log->reserved;
1396 	log->total_avail = log->total_avail * log->data_size;
1397 	log->current_avail = log->max_current_avail;
1398 }
1399 
1400 /*
1401  * log_create_ra - Fill a restart area from the values stored in @log.
1402  */
1403 static struct RESTART_AREA *log_create_ra(struct ntfs_log *log)
1404 {
1405 	struct CLIENT_REC *cr;
1406 	struct RESTART_AREA *ra = kzalloc(log->restart_size, GFP_NOFS);
1407 
1408 	if (!ra)
1409 		return NULL;
1410 
1411 	ra->current_lsn = cpu_to_le64(log->last_lsn);
1412 	ra->log_clients = cpu_to_le16(1);
1413 	ra->client_idx[1] = LFS_NO_CLIENT_LE;
1414 	if (log->l_flags & NTFSLOG_MULTIPLE_PAGE_IO)
1415 		ra->flags = RESTART_SINGLE_PAGE_IO;
1416 	ra->seq_num_bits = cpu_to_le32(log->seq_num_bits);
1417 	ra->ra_len = cpu_to_le16(log->ra_size);
1418 	ra->client_off = cpu_to_le16(offsetof(struct RESTART_AREA, clients));
1419 	ra->l_size = cpu_to_le64(log->l_size);
1420 	ra->rec_hdr_len = cpu_to_le16(log->record_header_len);
1421 	ra->data_off = cpu_to_le16(log->data_off);
1422 	ra->open_log_count = cpu_to_le32(log->current_openlog_count + 1);
1423 
1424 	cr = ra->clients;
1425 
1426 	cr->prev_client = LFS_NO_CLIENT_LE;
1427 	cr->next_client = LFS_NO_CLIENT_LE;
1428 
1429 	return ra;
1430 }
1431 
1432 static u32 final_log_off(struct ntfs_log *log, u64 lsn, u32 data_len)
1433 {
1434 	u32 base_vbo = lsn << 3;
1435 	u32 final_log_off = (base_vbo & log->seq_num_mask) & ~log->page_mask;
1436 	u32 page_off = base_vbo & log->page_mask;
1437 	u32 tail = log->page_size - page_off;
1438 
1439 	page_off -= 1;
1440 
1441 	/* Add the length of the header. */
1442 	data_len += log->record_header_len;
1443 
1444 	/*
1445 	 * If this lsn is contained this log page we are done.
1446 	 * Otherwise we need to walk through several log pages.
1447 	 */
1448 	if (data_len > tail) {
1449 		data_len -= tail;
1450 		tail = log->data_size;
1451 		page_off = log->data_off - 1;
1452 
1453 		for (;;) {
1454 			final_log_off = next_page_off(log, final_log_off);
1455 
1456 			/*
1457 			 * We are done if the remaining bytes
1458 			 * fit on this page.
1459 			 */
1460 			if (data_len <= tail)
1461 				break;
1462 			data_len -= tail;
1463 		}
1464 	}
1465 
1466 	/*
1467 	 * We add the remaining bytes to our starting position on this page
1468 	 * and then add that value to the file offset of this log page.
1469 	 */
1470 	return final_log_off + data_len + page_off;
1471 }
1472 
1473 static int next_log_lsn(struct ntfs_log *log, const struct LFS_RECORD_HDR *rh,
1474 			u64 *lsn)
1475 {
1476 	int err;
1477 	u64 this_lsn = le64_to_cpu(rh->this_lsn);
1478 	u32 vbo = lsn_to_vbo(log, this_lsn);
1479 	u32 end =
1480 		final_log_off(log, this_lsn, le32_to_cpu(rh->client_data_len));
1481 	u32 hdr_off = end & ~log->sys_page_mask;
1482 	u64 seq = this_lsn >> log->file_data_bits;
1483 	struct RECORD_PAGE_HDR *page = NULL;
1484 
1485 	/* Remember if we wrapped. */
1486 	if (end <= vbo)
1487 		seq += 1;
1488 
1489 	/* Log page header for this page. */
1490 	err = read_log_page(log, hdr_off, &page, NULL);
1491 	if (err)
1492 		return err;
1493 
1494 	/*
1495 	 * If the lsn we were given was not the last lsn on this page,
1496 	 * then the starting offset for the next lsn is on a quad word
1497 	 * boundary following the last file offset for the current lsn.
1498 	 * Otherwise the file offset is the start of the data on the next page.
1499 	 */
1500 	if (this_lsn == le64_to_cpu(page->rhdr.lsn)) {
1501 		/* If we wrapped, we need to increment the sequence number. */
1502 		hdr_off = next_page_off(log, hdr_off);
1503 		if (hdr_off == log->first_page)
1504 			seq += 1;
1505 
1506 		vbo = hdr_off + log->data_off;
1507 	} else {
1508 		vbo = ALIGN(end, 8);
1509 	}
1510 
1511 	/* Compute the lsn based on the file offset and the sequence count. */
1512 	*lsn = vbo_to_lsn(log, vbo, seq);
1513 
1514 	/*
1515 	 * If this lsn is within the legal range for the file, we return true.
1516 	 * Otherwise false indicates that there are no more lsn's.
1517 	 */
1518 	if (!is_lsn_in_file(log, *lsn))
1519 		*lsn = 0;
1520 
1521 	kfree(page);
1522 
1523 	return 0;
1524 }
1525 
1526 /*
1527  * current_log_avail - Calculate the number of bytes available for log records.
1528  */
1529 static u32 current_log_avail(struct ntfs_log *log)
1530 {
1531 	u32 oldest_off, next_free_off, free_bytes;
1532 
1533 	if (log->l_flags & NTFSLOG_NO_LAST_LSN) {
1534 		/* The entire file is available. */
1535 		return log->max_current_avail;
1536 	}
1537 
1538 	/*
1539 	 * If there is a last lsn the restart area then we know that we will
1540 	 * have to compute the free range.
1541 	 * If there is no oldest lsn then start at the first page of the file.
1542 	 */
1543 	oldest_off = (log->l_flags & NTFSLOG_NO_OLDEST_LSN)
1544 			     ? log->first_page
1545 			     : (log->oldest_lsn_off & ~log->sys_page_mask);
1546 
1547 	/*
1548 	 * We will use the next log page offset to compute the next free page.
1549 	 * If we are going to reuse this page go to the next page.
1550 	 * If we are at the first page then use the end of the file.
1551 	 */
1552 	next_free_off = (log->l_flags & NTFSLOG_REUSE_TAIL)
1553 				? log->next_page + log->page_size
1554 				: log->next_page == log->first_page
1555 					  ? log->l_size
1556 					  : log->next_page;
1557 
1558 	/* If the two offsets are the same then there is no available space. */
1559 	if (oldest_off == next_free_off)
1560 		return 0;
1561 	/*
1562 	 * If the free offset follows the oldest offset then subtract
1563 	 * this range from the total available pages.
1564 	 */
1565 	free_bytes =
1566 		oldest_off < next_free_off
1567 			? log->total_avail_pages - (next_free_off - oldest_off)
1568 			: oldest_off - next_free_off;
1569 
1570 	free_bytes >>= log->page_bits;
1571 	return free_bytes * log->reserved;
1572 }
1573 
1574 static bool check_subseq_log_page(struct ntfs_log *log,
1575 				  const struct RECORD_PAGE_HDR *rp, u32 vbo,
1576 				  u64 seq)
1577 {
1578 	u64 lsn_seq;
1579 	const struct NTFS_RECORD_HEADER *rhdr = &rp->rhdr;
1580 	u64 lsn = le64_to_cpu(rhdr->lsn);
1581 
1582 	if (rhdr->sign == NTFS_FFFF_SIGNATURE || !rhdr->sign)
1583 		return false;
1584 
1585 	/*
1586 	 * If the last lsn on the page occurs was written after the page
1587 	 * that caused the original error then we have a fatal error.
1588 	 */
1589 	lsn_seq = lsn >> log->file_data_bits;
1590 
1591 	/*
1592 	 * If the sequence number for the lsn the page is equal or greater
1593 	 * than lsn we expect, then this is a subsequent write.
1594 	 */
1595 	return lsn_seq >= seq ||
1596 	       (lsn_seq == seq - 1 && log->first_page == vbo &&
1597 		vbo != (lsn_to_vbo(log, lsn) & ~log->page_mask));
1598 }
1599 
1600 /*
1601  * last_log_lsn
1602  *
1603  * Walks through the log pages for a file, searching for the
1604  * last log page written to the file.
1605  */
1606 static int last_log_lsn(struct ntfs_log *log)
1607 {
1608 	int err;
1609 	bool usa_error = false;
1610 	bool replace_page = false;
1611 	bool reuse_page = log->l_flags & NTFSLOG_REUSE_TAIL;
1612 	bool wrapped_file, wrapped;
1613 
1614 	u32 page_cnt = 1, page_pos = 1;
1615 	u32 page_off = 0, page_off1 = 0, saved_off = 0;
1616 	u32 final_off, second_off, final_off_prev = 0, second_off_prev = 0;
1617 	u32 first_file_off = 0, second_file_off = 0;
1618 	u32 part_io_count = 0;
1619 	u32 tails = 0;
1620 	u32 this_off, curpage_off, nextpage_off, remain_pages;
1621 
1622 	u64 expected_seq, seq_base = 0, lsn_base = 0;
1623 	u64 best_lsn, best_lsn1, best_lsn2;
1624 	u64 lsn_cur, lsn1, lsn2;
1625 	u64 last_ok_lsn = reuse_page ? log->last_lsn : 0;
1626 
1627 	u16 cur_pos, best_page_pos;
1628 
1629 	struct RECORD_PAGE_HDR *page = NULL;
1630 	struct RECORD_PAGE_HDR *tst_page = NULL;
1631 	struct RECORD_PAGE_HDR *first_tail = NULL;
1632 	struct RECORD_PAGE_HDR *second_tail = NULL;
1633 	struct RECORD_PAGE_HDR *tail_page = NULL;
1634 	struct RECORD_PAGE_HDR *second_tail_prev = NULL;
1635 	struct RECORD_PAGE_HDR *first_tail_prev = NULL;
1636 	struct RECORD_PAGE_HDR *page_bufs = NULL;
1637 	struct RECORD_PAGE_HDR *best_page;
1638 
1639 	if (log->major_ver >= 2) {
1640 		final_off = 0x02 * log->page_size;
1641 		second_off = 0x12 * log->page_size;
1642 
1643 		// 0x10 == 0x12 - 0x2
1644 		page_bufs = kmalloc(log->page_size * 0x10, GFP_NOFS);
1645 		if (!page_bufs)
1646 			return -ENOMEM;
1647 	} else {
1648 		second_off = log->first_page - log->page_size;
1649 		final_off = second_off - log->page_size;
1650 	}
1651 
1652 next_tail:
1653 	/* Read second tail page (at pos 3/0x12000). */
1654 	if (read_log_page(log, second_off, &second_tail, &usa_error) ||
1655 	    usa_error || second_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
1656 		kfree(second_tail);
1657 		second_tail = NULL;
1658 		second_file_off = 0;
1659 		lsn2 = 0;
1660 	} else {
1661 		second_file_off = hdr_file_off(log, second_tail);
1662 		lsn2 = le64_to_cpu(second_tail->record_hdr.last_end_lsn);
1663 	}
1664 
1665 	/* Read first tail page (at pos 2/0x2000). */
1666 	if (read_log_page(log, final_off, &first_tail, &usa_error) ||
1667 	    usa_error || first_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
1668 		kfree(first_tail);
1669 		first_tail = NULL;
1670 		first_file_off = 0;
1671 		lsn1 = 0;
1672 	} else {
1673 		first_file_off = hdr_file_off(log, first_tail);
1674 		lsn1 = le64_to_cpu(first_tail->record_hdr.last_end_lsn);
1675 	}
1676 
1677 	if (log->major_ver < 2) {
1678 		int best_page;
1679 
1680 		first_tail_prev = first_tail;
1681 		final_off_prev = first_file_off;
1682 		second_tail_prev = second_tail;
1683 		second_off_prev = second_file_off;
1684 		tails = 1;
1685 
1686 		if (!first_tail && !second_tail)
1687 			goto tail_read;
1688 
1689 		if (first_tail && second_tail)
1690 			best_page = lsn1 < lsn2 ? 1 : 0;
1691 		else if (first_tail)
1692 			best_page = 0;
1693 		else
1694 			best_page = 1;
1695 
1696 		page_off = best_page ? second_file_off : first_file_off;
1697 		seq_base = (best_page ? lsn2 : lsn1) >> log->file_data_bits;
1698 		goto tail_read;
1699 	}
1700 
1701 	best_lsn1 = first_tail ? base_lsn(log, first_tail, first_file_off) : 0;
1702 	best_lsn2 =
1703 		second_tail ? base_lsn(log, second_tail, second_file_off) : 0;
1704 
1705 	if (first_tail && second_tail) {
1706 		if (best_lsn1 > best_lsn2) {
1707 			best_lsn = best_lsn1;
1708 			best_page = first_tail;
1709 			this_off = first_file_off;
1710 		} else {
1711 			best_lsn = best_lsn2;
1712 			best_page = second_tail;
1713 			this_off = second_file_off;
1714 		}
1715 	} else if (first_tail) {
1716 		best_lsn = best_lsn1;
1717 		best_page = first_tail;
1718 		this_off = first_file_off;
1719 	} else if (second_tail) {
1720 		best_lsn = best_lsn2;
1721 		best_page = second_tail;
1722 		this_off = second_file_off;
1723 	} else {
1724 		goto tail_read;
1725 	}
1726 
1727 	best_page_pos = le16_to_cpu(best_page->page_pos);
1728 
1729 	if (!tails) {
1730 		if (best_page_pos == page_pos) {
1731 			seq_base = best_lsn >> log->file_data_bits;
1732 			saved_off = page_off = le32_to_cpu(best_page->file_off);
1733 			lsn_base = best_lsn;
1734 
1735 			memmove(page_bufs, best_page, log->page_size);
1736 
1737 			page_cnt = le16_to_cpu(best_page->page_count);
1738 			if (page_cnt > 1)
1739 				page_pos += 1;
1740 
1741 			tails = 1;
1742 		}
1743 	} else if (seq_base == (best_lsn >> log->file_data_bits) &&
1744 		   saved_off + log->page_size == this_off &&
1745 		   lsn_base < best_lsn &&
1746 		   (page_pos != page_cnt || best_page_pos == page_pos ||
1747 		    best_page_pos == 1) &&
1748 		   (page_pos >= page_cnt || best_page_pos == page_pos)) {
1749 		u16 bppc = le16_to_cpu(best_page->page_count);
1750 
1751 		saved_off += log->page_size;
1752 		lsn_base = best_lsn;
1753 
1754 		memmove(Add2Ptr(page_bufs, tails * log->page_size), best_page,
1755 			log->page_size);
1756 
1757 		tails += 1;
1758 
1759 		if (best_page_pos != bppc) {
1760 			page_cnt = bppc;
1761 			page_pos = best_page_pos;
1762 
1763 			if (page_cnt > 1)
1764 				page_pos += 1;
1765 		} else {
1766 			page_pos = page_cnt = 1;
1767 		}
1768 	} else {
1769 		kfree(first_tail);
1770 		kfree(second_tail);
1771 		goto tail_read;
1772 	}
1773 
1774 	kfree(first_tail_prev);
1775 	first_tail_prev = first_tail;
1776 	final_off_prev = first_file_off;
1777 	first_tail = NULL;
1778 
1779 	kfree(second_tail_prev);
1780 	second_tail_prev = second_tail;
1781 	second_off_prev = second_file_off;
1782 	second_tail = NULL;
1783 
1784 	final_off += log->page_size;
1785 	second_off += log->page_size;
1786 
1787 	if (tails < 0x10)
1788 		goto next_tail;
1789 tail_read:
1790 	first_tail = first_tail_prev;
1791 	final_off = final_off_prev;
1792 
1793 	second_tail = second_tail_prev;
1794 	second_off = second_off_prev;
1795 
1796 	page_cnt = page_pos = 1;
1797 
1798 	curpage_off = seq_base == log->seq_num ? min(log->next_page, page_off)
1799 					       : log->next_page;
1800 
1801 	wrapped_file =
1802 		curpage_off == log->first_page &&
1803 		!(log->l_flags & (NTFSLOG_NO_LAST_LSN | NTFSLOG_REUSE_TAIL));
1804 
1805 	expected_seq = wrapped_file ? (log->seq_num + 1) : log->seq_num;
1806 
1807 	nextpage_off = curpage_off;
1808 
1809 next_page:
1810 	tail_page = NULL;
1811 	/* Read the next log page. */
1812 	err = read_log_page(log, curpage_off, &page, &usa_error);
1813 
1814 	/* Compute the next log page offset the file. */
1815 	nextpage_off = next_page_off(log, curpage_off);
1816 	wrapped = nextpage_off == log->first_page;
1817 
1818 	if (tails > 1) {
1819 		struct RECORD_PAGE_HDR *cur_page =
1820 			Add2Ptr(page_bufs, curpage_off - page_off);
1821 
1822 		if (curpage_off == saved_off) {
1823 			tail_page = cur_page;
1824 			goto use_tail_page;
1825 		}
1826 
1827 		if (page_off > curpage_off || curpage_off >= saved_off)
1828 			goto use_tail_page;
1829 
1830 		if (page_off1)
1831 			goto use_cur_page;
1832 
1833 		if (!err && !usa_error &&
1834 		    page->rhdr.sign == NTFS_RCRD_SIGNATURE &&
1835 		    cur_page->rhdr.lsn == page->rhdr.lsn &&
1836 		    cur_page->record_hdr.next_record_off ==
1837 			    page->record_hdr.next_record_off &&
1838 		    ((page_pos == page_cnt &&
1839 		      le16_to_cpu(page->page_pos) == 1) ||
1840 		     (page_pos != page_cnt &&
1841 		      le16_to_cpu(page->page_pos) == page_pos + 1 &&
1842 		      le16_to_cpu(page->page_count) == page_cnt))) {
1843 			cur_page = NULL;
1844 			goto use_tail_page;
1845 		}
1846 
1847 		page_off1 = page_off;
1848 
1849 use_cur_page:
1850 
1851 		lsn_cur = le64_to_cpu(cur_page->rhdr.lsn);
1852 
1853 		if (last_ok_lsn !=
1854 			    le64_to_cpu(cur_page->record_hdr.last_end_lsn) &&
1855 		    ((lsn_cur >> log->file_data_bits) +
1856 		     ((curpage_off <
1857 		       (lsn_to_vbo(log, lsn_cur) & ~log->page_mask))
1858 			      ? 1
1859 			      : 0)) != expected_seq) {
1860 			goto check_tail;
1861 		}
1862 
1863 		if (!is_log_record_end(cur_page)) {
1864 			tail_page = NULL;
1865 			last_ok_lsn = lsn_cur;
1866 			goto next_page_1;
1867 		}
1868 
1869 		log->seq_num = expected_seq;
1870 		log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
1871 		log->last_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1872 		log->ra->current_lsn = cur_page->record_hdr.last_end_lsn;
1873 
1874 		if (log->record_header_len <=
1875 		    log->page_size -
1876 			    le16_to_cpu(cur_page->record_hdr.next_record_off)) {
1877 			log->l_flags |= NTFSLOG_REUSE_TAIL;
1878 			log->next_page = curpage_off;
1879 		} else {
1880 			log->l_flags &= ~NTFSLOG_REUSE_TAIL;
1881 			log->next_page = nextpage_off;
1882 		}
1883 
1884 		if (wrapped_file)
1885 			log->l_flags |= NTFSLOG_WRAPPED;
1886 
1887 		last_ok_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1888 		goto next_page_1;
1889 	}
1890 
1891 	/*
1892 	 * If we are at the expected first page of a transfer check to see
1893 	 * if either tail copy is at this offset.
1894 	 * If this page is the last page of a transfer, check if we wrote
1895 	 * a subsequent tail copy.
1896 	 */
1897 	if (page_cnt == page_pos || page_cnt == page_pos + 1) {
1898 		/*
1899 		 * Check if the offset matches either the first or second
1900 		 * tail copy. It is possible it will match both.
1901 		 */
1902 		if (curpage_off == final_off)
1903 			tail_page = first_tail;
1904 
1905 		/*
1906 		 * If we already matched on the first page then
1907 		 * check the ending lsn's.
1908 		 */
1909 		if (curpage_off == second_off) {
1910 			if (!tail_page ||
1911 			    (second_tail &&
1912 			     le64_to_cpu(second_tail->record_hdr.last_end_lsn) >
1913 				     le64_to_cpu(first_tail->record_hdr
1914 							 .last_end_lsn))) {
1915 				tail_page = second_tail;
1916 			}
1917 		}
1918 	}
1919 
1920 use_tail_page:
1921 	if (tail_page) {
1922 		/* We have a candidate for a tail copy. */
1923 		lsn_cur = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
1924 
1925 		if (last_ok_lsn < lsn_cur) {
1926 			/*
1927 			 * If the sequence number is not expected,
1928 			 * then don't use the tail copy.
1929 			 */
1930 			if (expected_seq != (lsn_cur >> log->file_data_bits))
1931 				tail_page = NULL;
1932 		} else if (last_ok_lsn > lsn_cur) {
1933 			/*
1934 			 * If the last lsn is greater than the one on
1935 			 * this page then forget this tail.
1936 			 */
1937 			tail_page = NULL;
1938 		}
1939 	}
1940 
1941 	/*
1942 	 *If we have an error on the current page,
1943 	 * we will break of this loop.
1944 	 */
1945 	if (err || usa_error)
1946 		goto check_tail;
1947 
1948 	/*
1949 	 * Done if the last lsn on this page doesn't match the previous known
1950 	 * last lsn or the sequence number is not expected.
1951 	 */
1952 	lsn_cur = le64_to_cpu(page->rhdr.lsn);
1953 	if (last_ok_lsn != lsn_cur &&
1954 	    expected_seq != (lsn_cur >> log->file_data_bits)) {
1955 		goto check_tail;
1956 	}
1957 
1958 	/*
1959 	 * Check that the page position and page count values are correct.
1960 	 * If this is the first page of a transfer the position must be 1
1961 	 * and the count will be unknown.
1962 	 */
1963 	if (page_cnt == page_pos) {
1964 		if (page->page_pos != cpu_to_le16(1) &&
1965 		    (!reuse_page || page->page_pos != page->page_count)) {
1966 			/*
1967 			 * If the current page is the first page we are
1968 			 * looking at and we are reusing this page then
1969 			 * it can be either the first or last page of a
1970 			 * transfer. Otherwise it can only be the first.
1971 			 */
1972 			goto check_tail;
1973 		}
1974 	} else if (le16_to_cpu(page->page_count) != page_cnt ||
1975 		   le16_to_cpu(page->page_pos) != page_pos + 1) {
1976 		/*
1977 		 * The page position better be 1 more than the last page
1978 		 * position and the page count better match.
1979 		 */
1980 		goto check_tail;
1981 	}
1982 
1983 	/*
1984 	 * We have a valid page the file and may have a valid page
1985 	 * the tail copy area.
1986 	 * If the tail page was written after the page the file then
1987 	 * break of the loop.
1988 	 */
1989 	if (tail_page &&
1990 	    le64_to_cpu(tail_page->record_hdr.last_end_lsn) > lsn_cur) {
1991 		/* Remember if we will replace the page. */
1992 		replace_page = true;
1993 		goto check_tail;
1994 	}
1995 
1996 	tail_page = NULL;
1997 
1998 	if (is_log_record_end(page)) {
1999 		/*
2000 		 * Since we have read this page we know the sequence number
2001 		 * is the same as our expected value.
2002 		 */
2003 		log->seq_num = expected_seq;
2004 		log->last_lsn = le64_to_cpu(page->record_hdr.last_end_lsn);
2005 		log->ra->current_lsn = page->record_hdr.last_end_lsn;
2006 		log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
2007 
2008 		/*
2009 		 * If there is room on this page for another header then
2010 		 * remember we want to reuse the page.
2011 		 */
2012 		if (log->record_header_len <=
2013 		    log->page_size -
2014 			    le16_to_cpu(page->record_hdr.next_record_off)) {
2015 			log->l_flags |= NTFSLOG_REUSE_TAIL;
2016 			log->next_page = curpage_off;
2017 		} else {
2018 			log->l_flags &= ~NTFSLOG_REUSE_TAIL;
2019 			log->next_page = nextpage_off;
2020 		}
2021 
2022 		/* Remember if we wrapped the log file. */
2023 		if (wrapped_file)
2024 			log->l_flags |= NTFSLOG_WRAPPED;
2025 	}
2026 
2027 	/*
2028 	 * Remember the last page count and position.
2029 	 * Also remember the last known lsn.
2030 	 */
2031 	page_cnt = le16_to_cpu(page->page_count);
2032 	page_pos = le16_to_cpu(page->page_pos);
2033 	last_ok_lsn = le64_to_cpu(page->rhdr.lsn);
2034 
2035 next_page_1:
2036 
2037 	if (wrapped) {
2038 		expected_seq += 1;
2039 		wrapped_file = 1;
2040 	}
2041 
2042 	curpage_off = nextpage_off;
2043 	kfree(page);
2044 	page = NULL;
2045 	reuse_page = 0;
2046 	goto next_page;
2047 
2048 check_tail:
2049 	if (tail_page) {
2050 		log->seq_num = expected_seq;
2051 		log->last_lsn = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
2052 		log->ra->current_lsn = tail_page->record_hdr.last_end_lsn;
2053 		log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
2054 
2055 		if (log->page_size -
2056 			    le16_to_cpu(
2057 				    tail_page->record_hdr.next_record_off) >=
2058 		    log->record_header_len) {
2059 			log->l_flags |= NTFSLOG_REUSE_TAIL;
2060 			log->next_page = curpage_off;
2061 		} else {
2062 			log->l_flags &= ~NTFSLOG_REUSE_TAIL;
2063 			log->next_page = nextpage_off;
2064 		}
2065 
2066 		if (wrapped)
2067 			log->l_flags |= NTFSLOG_WRAPPED;
2068 	}
2069 
2070 	/* Remember that the partial IO will start at the next page. */
2071 	second_off = nextpage_off;
2072 
2073 	/*
2074 	 * If the next page is the first page of the file then update
2075 	 * the sequence number for log records which begon the next page.
2076 	 */
2077 	if (wrapped)
2078 		expected_seq += 1;
2079 
2080 	/*
2081 	 * If we have a tail copy or are performing single page I/O we can
2082 	 * immediately look at the next page.
2083 	 */
2084 	if (replace_page || (log->ra->flags & RESTART_SINGLE_PAGE_IO)) {
2085 		page_cnt = 2;
2086 		page_pos = 1;
2087 		goto check_valid;
2088 	}
2089 
2090 	if (page_pos != page_cnt)
2091 		goto check_valid;
2092 	/*
2093 	 * If the next page causes us to wrap to the beginning of the log
2094 	 * file then we know which page to check next.
2095 	 */
2096 	if (wrapped) {
2097 		page_cnt = 2;
2098 		page_pos = 1;
2099 		goto check_valid;
2100 	}
2101 
2102 	cur_pos = 2;
2103 
2104 next_test_page:
2105 	kfree(tst_page);
2106 	tst_page = NULL;
2107 
2108 	/* Walk through the file, reading log pages. */
2109 	err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
2110 
2111 	/*
2112 	 * If we get a USA error then assume that we correctly found
2113 	 * the end of the original transfer.
2114 	 */
2115 	if (usa_error)
2116 		goto file_is_valid;
2117 
2118 	/*
2119 	 * If we were able to read the page, we examine it to see if it
2120 	 * is the same or different Io block.
2121 	 */
2122 	if (err)
2123 		goto next_test_page_1;
2124 
2125 	if (le16_to_cpu(tst_page->page_pos) == cur_pos &&
2126 	    check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
2127 		page_cnt = le16_to_cpu(tst_page->page_count) + 1;
2128 		page_pos = le16_to_cpu(tst_page->page_pos);
2129 		goto check_valid;
2130 	} else {
2131 		goto file_is_valid;
2132 	}
2133 
2134 next_test_page_1:
2135 
2136 	nextpage_off = next_page_off(log, curpage_off);
2137 	wrapped = nextpage_off == log->first_page;
2138 
2139 	if (wrapped) {
2140 		expected_seq += 1;
2141 		page_cnt = 2;
2142 		page_pos = 1;
2143 	}
2144 
2145 	cur_pos += 1;
2146 	part_io_count += 1;
2147 	if (!wrapped)
2148 		goto next_test_page;
2149 
2150 check_valid:
2151 	/* Skip over the remaining pages this transfer. */
2152 	remain_pages = page_cnt - page_pos - 1;
2153 	part_io_count += remain_pages;
2154 
2155 	while (remain_pages--) {
2156 		nextpage_off = next_page_off(log, curpage_off);
2157 		wrapped = nextpage_off == log->first_page;
2158 
2159 		if (wrapped)
2160 			expected_seq += 1;
2161 	}
2162 
2163 	/* Call our routine to check this log page. */
2164 	kfree(tst_page);
2165 	tst_page = NULL;
2166 
2167 	err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
2168 	if (!err && !usa_error &&
2169 	    check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
2170 		err = -EINVAL;
2171 		goto out;
2172 	}
2173 
2174 file_is_valid:
2175 
2176 	/* We have a valid file. */
2177 	if (page_off1 || tail_page) {
2178 		struct RECORD_PAGE_HDR *tmp_page;
2179 
2180 		if (sb_rdonly(log->ni->mi.sbi->sb)) {
2181 			err = -EROFS;
2182 			goto out;
2183 		}
2184 
2185 		if (page_off1) {
2186 			tmp_page = Add2Ptr(page_bufs, page_off1 - page_off);
2187 			tails -= (page_off1 - page_off) / log->page_size;
2188 			if (!tail_page)
2189 				tails -= 1;
2190 		} else {
2191 			tmp_page = tail_page;
2192 			tails = 1;
2193 		}
2194 
2195 		while (tails--) {
2196 			u64 off = hdr_file_off(log, tmp_page);
2197 
2198 			if (!page) {
2199 				page = kmalloc(log->page_size, GFP_NOFS);
2200 				if (!page)
2201 					return -ENOMEM;
2202 			}
2203 
2204 			/*
2205 			 * Correct page and copy the data from this page
2206 			 * into it and flush it to disk.
2207 			 */
2208 			memcpy(page, tmp_page, log->page_size);
2209 
2210 			/* Fill last flushed lsn value flush the page. */
2211 			if (log->major_ver < 2)
2212 				page->rhdr.lsn = page->record_hdr.last_end_lsn;
2213 			else
2214 				page->file_off = 0;
2215 
2216 			page->page_pos = page->page_count = cpu_to_le16(1);
2217 
2218 			ntfs_fix_pre_write(&page->rhdr, log->page_size);
2219 
2220 			err = ntfs_sb_write_run(log->ni->mi.sbi,
2221 						&log->ni->file.run, off, page,
2222 						log->page_size);
2223 
2224 			if (err)
2225 				goto out;
2226 
2227 			if (part_io_count && second_off == off) {
2228 				second_off += log->page_size;
2229 				part_io_count -= 1;
2230 			}
2231 
2232 			tmp_page = Add2Ptr(tmp_page, log->page_size);
2233 		}
2234 	}
2235 
2236 	if (part_io_count) {
2237 		if (sb_rdonly(log->ni->mi.sbi->sb)) {
2238 			err = -EROFS;
2239 			goto out;
2240 		}
2241 	}
2242 
2243 out:
2244 	kfree(second_tail);
2245 	kfree(first_tail);
2246 	kfree(page);
2247 	kfree(tst_page);
2248 	kfree(page_bufs);
2249 
2250 	return err;
2251 }
2252 
2253 /*
2254  * read_log_rec_buf - Copy a log record from the file to a buffer.
2255  *
2256  * The log record may span several log pages and may even wrap the file.
2257  */
2258 static int read_log_rec_buf(struct ntfs_log *log,
2259 			    const struct LFS_RECORD_HDR *rh, void *buffer)
2260 {
2261 	int err;
2262 	struct RECORD_PAGE_HDR *ph = NULL;
2263 	u64 lsn = le64_to_cpu(rh->this_lsn);
2264 	u32 vbo = lsn_to_vbo(log, lsn) & ~log->page_mask;
2265 	u32 off = lsn_to_page_off(log, lsn) + log->record_header_len;
2266 	u32 data_len = le32_to_cpu(rh->client_data_len);
2267 
2268 	/*
2269 	 * While there are more bytes to transfer,
2270 	 * we continue to attempt to perform the read.
2271 	 */
2272 	for (;;) {
2273 		bool usa_error;
2274 		u32 tail = log->page_size - off;
2275 
2276 		if (tail >= data_len)
2277 			tail = data_len;
2278 
2279 		data_len -= tail;
2280 
2281 		err = read_log_page(log, vbo, &ph, &usa_error);
2282 		if (err)
2283 			goto out;
2284 
2285 		/*
2286 		 * The last lsn on this page better be greater or equal
2287 		 * to the lsn we are copying.
2288 		 */
2289 		if (lsn > le64_to_cpu(ph->rhdr.lsn)) {
2290 			err = -EINVAL;
2291 			goto out;
2292 		}
2293 
2294 		memcpy(buffer, Add2Ptr(ph, off), tail);
2295 
2296 		/* If there are no more bytes to transfer, we exit the loop. */
2297 		if (!data_len) {
2298 			if (!is_log_record_end(ph) ||
2299 			    lsn > le64_to_cpu(ph->record_hdr.last_end_lsn)) {
2300 				err = -EINVAL;
2301 				goto out;
2302 			}
2303 			break;
2304 		}
2305 
2306 		if (ph->rhdr.lsn == ph->record_hdr.last_end_lsn ||
2307 		    lsn > le64_to_cpu(ph->rhdr.lsn)) {
2308 			err = -EINVAL;
2309 			goto out;
2310 		}
2311 
2312 		vbo = next_page_off(log, vbo);
2313 		off = log->data_off;
2314 
2315 		/*
2316 		 * Adjust our pointer the user's buffer to transfer
2317 		 * the next block to.
2318 		 */
2319 		buffer = Add2Ptr(buffer, tail);
2320 	}
2321 
2322 out:
2323 	kfree(ph);
2324 	return err;
2325 }
2326 
2327 static int read_rst_area(struct ntfs_log *log, struct NTFS_RESTART **rst_,
2328 			 u64 *lsn)
2329 {
2330 	int err;
2331 	struct LFS_RECORD_HDR *rh = NULL;
2332 	const struct CLIENT_REC *cr =
2333 		Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2334 	u64 lsnr, lsnc = le64_to_cpu(cr->restart_lsn);
2335 	u32 len;
2336 	struct NTFS_RESTART *rst;
2337 
2338 	*lsn = 0;
2339 	*rst_ = NULL;
2340 
2341 	/* If the client doesn't have a restart area, go ahead and exit now. */
2342 	if (!lsnc)
2343 		return 0;
2344 
2345 	err = read_log_page(log, lsn_to_vbo(log, lsnc),
2346 			    (struct RECORD_PAGE_HDR **)&rh, NULL);
2347 	if (err)
2348 		return err;
2349 
2350 	rst = NULL;
2351 	lsnr = le64_to_cpu(rh->this_lsn);
2352 
2353 	if (lsnc != lsnr) {
2354 		/* If the lsn values don't match, then the disk is corrupt. */
2355 		err = -EINVAL;
2356 		goto out;
2357 	}
2358 
2359 	*lsn = lsnr;
2360 	len = le32_to_cpu(rh->client_data_len);
2361 
2362 	if (!len) {
2363 		err = 0;
2364 		goto out;
2365 	}
2366 
2367 	if (len < sizeof(struct NTFS_RESTART)) {
2368 		err = -EINVAL;
2369 		goto out;
2370 	}
2371 
2372 	rst = kmalloc(len, GFP_NOFS);
2373 	if (!rst) {
2374 		err = -ENOMEM;
2375 		goto out;
2376 	}
2377 
2378 	/* Copy the data into the 'rst' buffer. */
2379 	err = read_log_rec_buf(log, rh, rst);
2380 	if (err)
2381 		goto out;
2382 
2383 	*rst_ = rst;
2384 	rst = NULL;
2385 
2386 out:
2387 	kfree(rh);
2388 	kfree(rst);
2389 
2390 	return err;
2391 }
2392 
2393 static int find_log_rec(struct ntfs_log *log, u64 lsn, struct lcb *lcb)
2394 {
2395 	int err;
2396 	struct LFS_RECORD_HDR *rh = lcb->lrh;
2397 	u32 rec_len, len;
2398 
2399 	/* Read the record header for this lsn. */
2400 	if (!rh) {
2401 		err = read_log_page(log, lsn_to_vbo(log, lsn),
2402 				    (struct RECORD_PAGE_HDR **)&rh, NULL);
2403 
2404 		lcb->lrh = rh;
2405 		if (err)
2406 			return err;
2407 	}
2408 
2409 	/*
2410 	 * If the lsn the log record doesn't match the desired
2411 	 * lsn then the disk is corrupt.
2412 	 */
2413 	if (lsn != le64_to_cpu(rh->this_lsn))
2414 		return -EINVAL;
2415 
2416 	len = le32_to_cpu(rh->client_data_len);
2417 
2418 	/*
2419 	 * Check that the length field isn't greater than the total
2420 	 * available space the log file.
2421 	 */
2422 	rec_len = len + log->record_header_len;
2423 	if (rec_len >= log->total_avail)
2424 		return -EINVAL;
2425 
2426 	/*
2427 	 * If the entire log record is on this log page,
2428 	 * put a pointer to the log record the context block.
2429 	 */
2430 	if (rh->flags & LOG_RECORD_MULTI_PAGE) {
2431 		void *lr = kmalloc(len, GFP_NOFS);
2432 
2433 		if (!lr)
2434 			return -ENOMEM;
2435 
2436 		lcb->log_rec = lr;
2437 		lcb->alloc = true;
2438 
2439 		/* Copy the data into the buffer returned. */
2440 		err = read_log_rec_buf(log, rh, lr);
2441 		if (err)
2442 			return err;
2443 	} else {
2444 		/* If beyond the end of the current page -> an error. */
2445 		u32 page_off = lsn_to_page_off(log, lsn);
2446 
2447 		if (page_off + len + log->record_header_len > log->page_size)
2448 			return -EINVAL;
2449 
2450 		lcb->log_rec = Add2Ptr(rh, sizeof(struct LFS_RECORD_HDR));
2451 		lcb->alloc = false;
2452 	}
2453 
2454 	return 0;
2455 }
2456 
2457 /*
2458  * read_log_rec_lcb - Init the query operation.
2459  */
2460 static int read_log_rec_lcb(struct ntfs_log *log, u64 lsn, u32 ctx_mode,
2461 			    struct lcb **lcb_)
2462 {
2463 	int err;
2464 	const struct CLIENT_REC *cr;
2465 	struct lcb *lcb;
2466 
2467 	switch (ctx_mode) {
2468 	case lcb_ctx_undo_next:
2469 	case lcb_ctx_prev:
2470 	case lcb_ctx_next:
2471 		break;
2472 	default:
2473 		return -EINVAL;
2474 	}
2475 
2476 	/* Check that the given lsn is the legal range for this client. */
2477 	cr = Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2478 
2479 	if (!verify_client_lsn(log, cr, lsn))
2480 		return -EINVAL;
2481 
2482 	lcb = kzalloc(sizeof(struct lcb), GFP_NOFS);
2483 	if (!lcb)
2484 		return -ENOMEM;
2485 	lcb->client = log->client_id;
2486 	lcb->ctx_mode = ctx_mode;
2487 
2488 	/* Find the log record indicated by the given lsn. */
2489 	err = find_log_rec(log, lsn, lcb);
2490 	if (err)
2491 		goto out;
2492 
2493 	*lcb_ = lcb;
2494 	return 0;
2495 
2496 out:
2497 	lcb_put(lcb);
2498 	*lcb_ = NULL;
2499 	return err;
2500 }
2501 
2502 /*
2503  * find_client_next_lsn
2504  *
2505  * Attempt to find the next lsn to return to a client based on the context mode.
2506  */
2507 static int find_client_next_lsn(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2508 {
2509 	int err;
2510 	u64 next_lsn;
2511 	struct LFS_RECORD_HDR *hdr;
2512 
2513 	hdr = lcb->lrh;
2514 	*lsn = 0;
2515 
2516 	if (lcb_ctx_next != lcb->ctx_mode)
2517 		goto check_undo_next;
2518 
2519 	/* Loop as long as another lsn can be found. */
2520 	for (;;) {
2521 		u64 current_lsn;
2522 
2523 		err = next_log_lsn(log, hdr, &current_lsn);
2524 		if (err)
2525 			goto out;
2526 
2527 		if (!current_lsn)
2528 			break;
2529 
2530 		if (hdr != lcb->lrh)
2531 			kfree(hdr);
2532 
2533 		hdr = NULL;
2534 		err = read_log_page(log, lsn_to_vbo(log, current_lsn),
2535 				    (struct RECORD_PAGE_HDR **)&hdr, NULL);
2536 		if (err)
2537 			goto out;
2538 
2539 		if (memcmp(&hdr->client, &lcb->client,
2540 			   sizeof(struct CLIENT_ID))) {
2541 			/*err = -EINVAL; */
2542 		} else if (LfsClientRecord == hdr->record_type) {
2543 			kfree(lcb->lrh);
2544 			lcb->lrh = hdr;
2545 			*lsn = current_lsn;
2546 			return 0;
2547 		}
2548 	}
2549 
2550 out:
2551 	if (hdr != lcb->lrh)
2552 		kfree(hdr);
2553 	return err;
2554 
2555 check_undo_next:
2556 	if (lcb_ctx_undo_next == lcb->ctx_mode)
2557 		next_lsn = le64_to_cpu(hdr->client_undo_next_lsn);
2558 	else if (lcb_ctx_prev == lcb->ctx_mode)
2559 		next_lsn = le64_to_cpu(hdr->client_prev_lsn);
2560 	else
2561 		return 0;
2562 
2563 	if (!next_lsn)
2564 		return 0;
2565 
2566 	if (!verify_client_lsn(
2567 		    log, Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)),
2568 		    next_lsn))
2569 		return 0;
2570 
2571 	hdr = NULL;
2572 	err = read_log_page(log, lsn_to_vbo(log, next_lsn),
2573 			    (struct RECORD_PAGE_HDR **)&hdr, NULL);
2574 	if (err)
2575 		return err;
2576 	kfree(lcb->lrh);
2577 	lcb->lrh = hdr;
2578 
2579 	*lsn = next_lsn;
2580 
2581 	return 0;
2582 }
2583 
2584 static int read_next_log_rec(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2585 {
2586 	int err;
2587 
2588 	err = find_client_next_lsn(log, lcb, lsn);
2589 	if (err)
2590 		return err;
2591 
2592 	if (!*lsn)
2593 		return 0;
2594 
2595 	if (lcb->alloc)
2596 		kfree(lcb->log_rec);
2597 
2598 	lcb->log_rec = NULL;
2599 	lcb->alloc = false;
2600 	kfree(lcb->lrh);
2601 	lcb->lrh = NULL;
2602 
2603 	return find_log_rec(log, *lsn, lcb);
2604 }
2605 
2606 static inline bool check_index_header(const struct INDEX_HDR *hdr, size_t bytes)
2607 {
2608 	__le16 mask;
2609 	u32 min_de, de_off, used, total;
2610 	const struct NTFS_DE *e;
2611 
2612 	if (hdr_has_subnode(hdr)) {
2613 		min_de = sizeof(struct NTFS_DE) + sizeof(u64);
2614 		mask = NTFS_IE_HAS_SUBNODES;
2615 	} else {
2616 		min_de = sizeof(struct NTFS_DE);
2617 		mask = 0;
2618 	}
2619 
2620 	de_off = le32_to_cpu(hdr->de_off);
2621 	used = le32_to_cpu(hdr->used);
2622 	total = le32_to_cpu(hdr->total);
2623 
2624 	if (de_off > bytes - min_de || used > bytes || total > bytes ||
2625 	    de_off + min_de > used || used > total) {
2626 		return false;
2627 	}
2628 
2629 	e = Add2Ptr(hdr, de_off);
2630 	for (;;) {
2631 		u16 esize = le16_to_cpu(e->size);
2632 		struct NTFS_DE *next = Add2Ptr(e, esize);
2633 
2634 		if (esize < min_de || PtrOffset(hdr, next) > used ||
2635 		    (e->flags & NTFS_IE_HAS_SUBNODES) != mask) {
2636 			return false;
2637 		}
2638 
2639 		if (de_is_last(e))
2640 			break;
2641 
2642 		e = next;
2643 	}
2644 
2645 	return true;
2646 }
2647 
2648 static inline bool check_index_buffer(const struct INDEX_BUFFER *ib, u32 bytes)
2649 {
2650 	u16 fo;
2651 	const struct NTFS_RECORD_HEADER *r = &ib->rhdr;
2652 
2653 	if (r->sign != NTFS_INDX_SIGNATURE)
2654 		return false;
2655 
2656 	fo = (SECTOR_SIZE - ((bytes >> SECTOR_SHIFT) + 1) * sizeof(short));
2657 
2658 	if (le16_to_cpu(r->fix_off) > fo)
2659 		return false;
2660 
2661 	if ((le16_to_cpu(r->fix_num) - 1) * SECTOR_SIZE != bytes)
2662 		return false;
2663 
2664 	return check_index_header(&ib->ihdr,
2665 				  bytes - offsetof(struct INDEX_BUFFER, ihdr));
2666 }
2667 
2668 static inline bool check_index_root(const struct ATTRIB *attr,
2669 				    struct ntfs_sb_info *sbi)
2670 {
2671 	bool ret;
2672 	const struct INDEX_ROOT *root = resident_data(attr);
2673 	u8 index_bits = le32_to_cpu(root->index_block_size) >= sbi->cluster_size
2674 				? sbi->cluster_bits
2675 				: SECTOR_SHIFT;
2676 	u8 block_clst = root->index_block_clst;
2677 
2678 	if (le32_to_cpu(attr->res.data_size) < sizeof(struct INDEX_ROOT) ||
2679 	    (root->type != ATTR_NAME && root->type != ATTR_ZERO) ||
2680 	    (root->type == ATTR_NAME &&
2681 	     root->rule != NTFS_COLLATION_TYPE_FILENAME) ||
2682 	    (le32_to_cpu(root->index_block_size) !=
2683 	     (block_clst << index_bits)) ||
2684 	    (block_clst != 1 && block_clst != 2 && block_clst != 4 &&
2685 	     block_clst != 8 && block_clst != 0x10 && block_clst != 0x20 &&
2686 	     block_clst != 0x40 && block_clst != 0x80)) {
2687 		return false;
2688 	}
2689 
2690 	ret = check_index_header(&root->ihdr,
2691 				 le32_to_cpu(attr->res.data_size) -
2692 					 offsetof(struct INDEX_ROOT, ihdr));
2693 	return ret;
2694 }
2695 
2696 static inline bool check_attr(const struct MFT_REC *rec,
2697 			      const struct ATTRIB *attr,
2698 			      struct ntfs_sb_info *sbi)
2699 {
2700 	u32 asize = le32_to_cpu(attr->size);
2701 	u32 rsize = 0;
2702 	u64 dsize, svcn, evcn;
2703 	u16 run_off;
2704 
2705 	/* Check the fixed part of the attribute record header. */
2706 	if (asize >= sbi->record_size ||
2707 	    asize + PtrOffset(rec, attr) >= sbi->record_size ||
2708 	    (attr->name_len &&
2709 	     le16_to_cpu(attr->name_off) + attr->name_len * sizeof(short) >
2710 		     asize)) {
2711 		return false;
2712 	}
2713 
2714 	/* Check the attribute fields. */
2715 	switch (attr->non_res) {
2716 	case 0:
2717 		rsize = le32_to_cpu(attr->res.data_size);
2718 		if (rsize >= asize ||
2719 		    le16_to_cpu(attr->res.data_off) + rsize > asize) {
2720 			return false;
2721 		}
2722 		break;
2723 
2724 	case 1:
2725 		dsize = le64_to_cpu(attr->nres.data_size);
2726 		svcn = le64_to_cpu(attr->nres.svcn);
2727 		evcn = le64_to_cpu(attr->nres.evcn);
2728 		run_off = le16_to_cpu(attr->nres.run_off);
2729 
2730 		if (svcn > evcn + 1 || run_off >= asize ||
2731 		    le64_to_cpu(attr->nres.valid_size) > dsize ||
2732 		    dsize > le64_to_cpu(attr->nres.alloc_size)) {
2733 			return false;
2734 		}
2735 
2736 		if (run_unpack(NULL, sbi, 0, svcn, evcn, svcn,
2737 			       Add2Ptr(attr, run_off), asize - run_off) < 0) {
2738 			return false;
2739 		}
2740 
2741 		return true;
2742 
2743 	default:
2744 		return false;
2745 	}
2746 
2747 	switch (attr->type) {
2748 	case ATTR_NAME:
2749 		if (fname_full_size(Add2Ptr(
2750 			    attr, le16_to_cpu(attr->res.data_off))) > asize) {
2751 			return false;
2752 		}
2753 		break;
2754 
2755 	case ATTR_ROOT:
2756 		return check_index_root(attr, sbi);
2757 
2758 	case ATTR_STD:
2759 		if (rsize < sizeof(struct ATTR_STD_INFO5) &&
2760 		    rsize != sizeof(struct ATTR_STD_INFO)) {
2761 			return false;
2762 		}
2763 		break;
2764 
2765 	case ATTR_LIST:
2766 	case ATTR_ID:
2767 	case ATTR_SECURE:
2768 	case ATTR_LABEL:
2769 	case ATTR_VOL_INFO:
2770 	case ATTR_DATA:
2771 	case ATTR_ALLOC:
2772 	case ATTR_BITMAP:
2773 	case ATTR_REPARSE:
2774 	case ATTR_EA_INFO:
2775 	case ATTR_EA:
2776 	case ATTR_PROPERTYSET:
2777 	case ATTR_LOGGED_UTILITY_STREAM:
2778 		break;
2779 
2780 	default:
2781 		return false;
2782 	}
2783 
2784 	return true;
2785 }
2786 
2787 static inline bool check_file_record(const struct MFT_REC *rec,
2788 				     const struct MFT_REC *rec2,
2789 				     struct ntfs_sb_info *sbi)
2790 {
2791 	const struct ATTRIB *attr;
2792 	u16 fo = le16_to_cpu(rec->rhdr.fix_off);
2793 	u16 fn = le16_to_cpu(rec->rhdr.fix_num);
2794 	u16 ao = le16_to_cpu(rec->attr_off);
2795 	u32 rs = sbi->record_size;
2796 
2797 	/* Check the file record header for consistency. */
2798 	if (rec->rhdr.sign != NTFS_FILE_SIGNATURE ||
2799 	    fo > (SECTOR_SIZE - ((rs >> SECTOR_SHIFT) + 1) * sizeof(short)) ||
2800 	    (fn - 1) * SECTOR_SIZE != rs || ao < MFTRECORD_FIXUP_OFFSET_1 ||
2801 	    ao > sbi->record_size - SIZEOF_RESIDENT || !is_rec_inuse(rec) ||
2802 	    le32_to_cpu(rec->total) != rs) {
2803 		return false;
2804 	}
2805 
2806 	/* Loop to check all of the attributes. */
2807 	for (attr = Add2Ptr(rec, ao); attr->type != ATTR_END;
2808 	     attr = Add2Ptr(attr, le32_to_cpu(attr->size))) {
2809 		if (check_attr(rec, attr, sbi))
2810 			continue;
2811 		return false;
2812 	}
2813 
2814 	return true;
2815 }
2816 
2817 static inline int check_lsn(const struct NTFS_RECORD_HEADER *hdr,
2818 			    const u64 *rlsn)
2819 {
2820 	u64 lsn;
2821 
2822 	if (!rlsn)
2823 		return true;
2824 
2825 	lsn = le64_to_cpu(hdr->lsn);
2826 
2827 	if (hdr->sign == NTFS_HOLE_SIGNATURE)
2828 		return false;
2829 
2830 	if (*rlsn > lsn)
2831 		return true;
2832 
2833 	return false;
2834 }
2835 
2836 static inline bool check_if_attr(const struct MFT_REC *rec,
2837 				 const struct LOG_REC_HDR *lrh)
2838 {
2839 	u16 ro = le16_to_cpu(lrh->record_off);
2840 	u16 o = le16_to_cpu(rec->attr_off);
2841 	const struct ATTRIB *attr = Add2Ptr(rec, o);
2842 
2843 	while (o < ro) {
2844 		u32 asize;
2845 
2846 		if (attr->type == ATTR_END)
2847 			break;
2848 
2849 		asize = le32_to_cpu(attr->size);
2850 		if (!asize)
2851 			break;
2852 
2853 		o += asize;
2854 		attr = Add2Ptr(attr, asize);
2855 	}
2856 
2857 	return o == ro;
2858 }
2859 
2860 static inline bool check_if_index_root(const struct MFT_REC *rec,
2861 				       const struct LOG_REC_HDR *lrh)
2862 {
2863 	u16 ro = le16_to_cpu(lrh->record_off);
2864 	u16 o = le16_to_cpu(rec->attr_off);
2865 	const struct ATTRIB *attr = Add2Ptr(rec, o);
2866 
2867 	while (o < ro) {
2868 		u32 asize;
2869 
2870 		if (attr->type == ATTR_END)
2871 			break;
2872 
2873 		asize = le32_to_cpu(attr->size);
2874 		if (!asize)
2875 			break;
2876 
2877 		o += asize;
2878 		attr = Add2Ptr(attr, asize);
2879 	}
2880 
2881 	return o == ro && attr->type == ATTR_ROOT;
2882 }
2883 
2884 static inline bool check_if_root_index(const struct ATTRIB *attr,
2885 				       const struct INDEX_HDR *hdr,
2886 				       const struct LOG_REC_HDR *lrh)
2887 {
2888 	u16 ao = le16_to_cpu(lrh->attr_off);
2889 	u32 de_off = le32_to_cpu(hdr->de_off);
2890 	u32 o = PtrOffset(attr, hdr) + de_off;
2891 	const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2892 	u32 asize = le32_to_cpu(attr->size);
2893 
2894 	while (o < ao) {
2895 		u16 esize;
2896 
2897 		if (o >= asize)
2898 			break;
2899 
2900 		esize = le16_to_cpu(e->size);
2901 		if (!esize)
2902 			break;
2903 
2904 		o += esize;
2905 		e = Add2Ptr(e, esize);
2906 	}
2907 
2908 	return o == ao;
2909 }
2910 
2911 static inline bool check_if_alloc_index(const struct INDEX_HDR *hdr,
2912 					u32 attr_off)
2913 {
2914 	u32 de_off = le32_to_cpu(hdr->de_off);
2915 	u32 o = offsetof(struct INDEX_BUFFER, ihdr) + de_off;
2916 	const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2917 	u32 used = le32_to_cpu(hdr->used);
2918 
2919 	while (o < attr_off) {
2920 		u16 esize;
2921 
2922 		if (de_off >= used)
2923 			break;
2924 
2925 		esize = le16_to_cpu(e->size);
2926 		if (!esize)
2927 			break;
2928 
2929 		o += esize;
2930 		de_off += esize;
2931 		e = Add2Ptr(e, esize);
2932 	}
2933 
2934 	return o == attr_off;
2935 }
2936 
2937 static inline void change_attr_size(struct MFT_REC *rec, struct ATTRIB *attr,
2938 				    u32 nsize)
2939 {
2940 	u32 asize = le32_to_cpu(attr->size);
2941 	int dsize = nsize - asize;
2942 	u8 *next = Add2Ptr(attr, asize);
2943 	u32 used = le32_to_cpu(rec->used);
2944 
2945 	memmove(Add2Ptr(attr, nsize), next, used - PtrOffset(rec, next));
2946 
2947 	rec->used = cpu_to_le32(used + dsize);
2948 	attr->size = cpu_to_le32(nsize);
2949 }
2950 
2951 struct OpenAttr {
2952 	struct ATTRIB *attr;
2953 	struct runs_tree *run1;
2954 	struct runs_tree run0;
2955 	struct ntfs_inode *ni;
2956 	// CLST rno;
2957 };
2958 
2959 /*
2960  * cmp_type_and_name
2961  *
2962  * Return: 0 if 'attr' has the same type and name.
2963  */
2964 static inline int cmp_type_and_name(const struct ATTRIB *a1,
2965 				    const struct ATTRIB *a2)
2966 {
2967 	return a1->type != a2->type || a1->name_len != a2->name_len ||
2968 	       (a1->name_len && memcmp(attr_name(a1), attr_name(a2),
2969 				       a1->name_len * sizeof(short)));
2970 }
2971 
2972 static struct OpenAttr *find_loaded_attr(struct ntfs_log *log,
2973 					 const struct ATTRIB *attr, CLST rno)
2974 {
2975 	struct OPEN_ATTR_ENRTY *oe = NULL;
2976 
2977 	while ((oe = enum_rstbl(log->open_attr_tbl, oe))) {
2978 		struct OpenAttr *op_attr;
2979 
2980 		if (ino_get(&oe->ref) != rno)
2981 			continue;
2982 
2983 		op_attr = (struct OpenAttr *)oe->ptr;
2984 		if (!cmp_type_and_name(op_attr->attr, attr))
2985 			return op_attr;
2986 	}
2987 	return NULL;
2988 }
2989 
2990 static struct ATTRIB *attr_create_nonres_log(struct ntfs_sb_info *sbi,
2991 					     enum ATTR_TYPE type, u64 size,
2992 					     const u16 *name, size_t name_len,
2993 					     __le16 flags)
2994 {
2995 	struct ATTRIB *attr;
2996 	u32 name_size = ALIGN(name_len * sizeof(short), 8);
2997 	bool is_ext = flags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED);
2998 	u32 asize = name_size +
2999 		    (is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT);
3000 
3001 	attr = kzalloc(asize, GFP_NOFS);
3002 	if (!attr)
3003 		return NULL;
3004 
3005 	attr->type = type;
3006 	attr->size = cpu_to_le32(asize);
3007 	attr->flags = flags;
3008 	attr->non_res = 1;
3009 	attr->name_len = name_len;
3010 
3011 	attr->nres.evcn = cpu_to_le64((u64)bytes_to_cluster(sbi, size) - 1);
3012 	attr->nres.alloc_size = cpu_to_le64(ntfs_up_cluster(sbi, size));
3013 	attr->nres.data_size = cpu_to_le64(size);
3014 	attr->nres.valid_size = attr->nres.data_size;
3015 	if (is_ext) {
3016 		attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
3017 		if (is_attr_compressed(attr))
3018 			attr->nres.c_unit = COMPRESSION_UNIT;
3019 
3020 		attr->nres.run_off =
3021 			cpu_to_le16(SIZEOF_NONRESIDENT_EX + name_size);
3022 		memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT_EX), name,
3023 		       name_len * sizeof(short));
3024 	} else {
3025 		attr->name_off = SIZEOF_NONRESIDENT_LE;
3026 		attr->nres.run_off =
3027 			cpu_to_le16(SIZEOF_NONRESIDENT + name_size);
3028 		memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT), name,
3029 		       name_len * sizeof(short));
3030 	}
3031 
3032 	return attr;
3033 }
3034 
3035 /*
3036  * do_action - Common routine for the Redo and Undo Passes.
3037  * @rlsn: If it is NULL then undo.
3038  */
3039 static int do_action(struct ntfs_log *log, struct OPEN_ATTR_ENRTY *oe,
3040 		     const struct LOG_REC_HDR *lrh, u32 op, void *data,
3041 		     u32 dlen, u32 rec_len, const u64 *rlsn)
3042 {
3043 	int err = 0;
3044 	struct ntfs_sb_info *sbi = log->ni->mi.sbi;
3045 	struct inode *inode = NULL, *inode_parent;
3046 	struct mft_inode *mi = NULL, *mi2_child = NULL;
3047 	CLST rno = 0, rno_base = 0;
3048 	struct INDEX_BUFFER *ib = NULL;
3049 	struct MFT_REC *rec = NULL;
3050 	struct ATTRIB *attr = NULL, *attr2;
3051 	struct INDEX_HDR *hdr;
3052 	struct INDEX_ROOT *root;
3053 	struct NTFS_DE *e, *e1, *e2;
3054 	struct NEW_ATTRIBUTE_SIZES *new_sz;
3055 	struct ATTR_FILE_NAME *fname;
3056 	struct OpenAttr *oa, *oa2;
3057 	u32 nsize, t32, asize, used, esize, bmp_off, bmp_bits;
3058 	u16 id, id2;
3059 	u32 record_size = sbi->record_size;
3060 	u64 t64;
3061 	u16 roff = le16_to_cpu(lrh->record_off);
3062 	u16 aoff = le16_to_cpu(lrh->attr_off);
3063 	u64 lco = 0;
3064 	u64 cbo = (u64)le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
3065 	u64 tvo = le64_to_cpu(lrh->target_vcn) << sbi->cluster_bits;
3066 	u64 vbo = cbo + tvo;
3067 	void *buffer_le = NULL;
3068 	u32 bytes = 0;
3069 	bool a_dirty = false;
3070 	u16 data_off;
3071 
3072 	oa = oe->ptr;
3073 
3074 	/* Big switch to prepare. */
3075 	switch (op) {
3076 	/* ============================================================
3077 	 * Process MFT records, as described by the current log record.
3078 	 * ============================================================
3079 	 */
3080 	case InitializeFileRecordSegment:
3081 	case DeallocateFileRecordSegment:
3082 	case WriteEndOfFileRecordSegment:
3083 	case CreateAttribute:
3084 	case DeleteAttribute:
3085 	case UpdateResidentValue:
3086 	case UpdateMappingPairs:
3087 	case SetNewAttributeSizes:
3088 	case AddIndexEntryRoot:
3089 	case DeleteIndexEntryRoot:
3090 	case SetIndexEntryVcnRoot:
3091 	case UpdateFileNameRoot:
3092 	case UpdateRecordDataRoot:
3093 	case ZeroEndOfFileRecord:
3094 		rno = vbo >> sbi->record_bits;
3095 		inode = ilookup(sbi->sb, rno);
3096 		if (inode) {
3097 			mi = &ntfs_i(inode)->mi;
3098 		} else if (op == InitializeFileRecordSegment) {
3099 			mi = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
3100 			if (!mi)
3101 				return -ENOMEM;
3102 			err = mi_format_new(mi, sbi, rno, 0, false);
3103 			if (err)
3104 				goto out;
3105 		} else {
3106 			/* Read from disk. */
3107 			err = mi_get(sbi, rno, &mi);
3108 			if (err)
3109 				return err;
3110 		}
3111 		rec = mi->mrec;
3112 
3113 		if (op == DeallocateFileRecordSegment)
3114 			goto skip_load_parent;
3115 
3116 		if (InitializeFileRecordSegment != op) {
3117 			if (rec->rhdr.sign == NTFS_BAAD_SIGNATURE)
3118 				goto dirty_vol;
3119 			if (!check_lsn(&rec->rhdr, rlsn))
3120 				goto out;
3121 			if (!check_file_record(rec, NULL, sbi))
3122 				goto dirty_vol;
3123 			attr = Add2Ptr(rec, roff);
3124 		}
3125 
3126 		if (is_rec_base(rec) || InitializeFileRecordSegment == op) {
3127 			rno_base = rno;
3128 			goto skip_load_parent;
3129 		}
3130 
3131 		rno_base = ino_get(&rec->parent_ref);
3132 		inode_parent = ntfs_iget5(sbi->sb, &rec->parent_ref, NULL);
3133 		if (IS_ERR(inode_parent))
3134 			goto skip_load_parent;
3135 
3136 		if (is_bad_inode(inode_parent)) {
3137 			iput(inode_parent);
3138 			goto skip_load_parent;
3139 		}
3140 
3141 		if (ni_load_mi_ex(ntfs_i(inode_parent), rno, &mi2_child)) {
3142 			iput(inode_parent);
3143 		} else {
3144 			if (mi2_child->mrec != mi->mrec)
3145 				memcpy(mi2_child->mrec, mi->mrec,
3146 				       sbi->record_size);
3147 
3148 			if (inode)
3149 				iput(inode);
3150 			else if (mi)
3151 				mi_put(mi);
3152 
3153 			inode = inode_parent;
3154 			mi = mi2_child;
3155 			rec = mi2_child->mrec;
3156 			attr = Add2Ptr(rec, roff);
3157 		}
3158 
3159 skip_load_parent:
3160 		inode_parent = NULL;
3161 		break;
3162 
3163 	/*
3164 	 * Process attributes, as described by the current log record.
3165 	 */
3166 	case UpdateNonresidentValue:
3167 	case AddIndexEntryAllocation:
3168 	case DeleteIndexEntryAllocation:
3169 	case WriteEndOfIndexBuffer:
3170 	case SetIndexEntryVcnAllocation:
3171 	case UpdateFileNameAllocation:
3172 	case SetBitsInNonresidentBitMap:
3173 	case ClearBitsInNonresidentBitMap:
3174 	case UpdateRecordDataAllocation:
3175 		attr = oa->attr;
3176 		bytes = UpdateNonresidentValue == op ? dlen : 0;
3177 		lco = (u64)le16_to_cpu(lrh->lcns_follow) << sbi->cluster_bits;
3178 
3179 		if (attr->type == ATTR_ALLOC) {
3180 			t32 = le32_to_cpu(oe->bytes_per_index);
3181 			if (bytes < t32)
3182 				bytes = t32;
3183 		}
3184 
3185 		if (!bytes)
3186 			bytes = lco - cbo;
3187 
3188 		bytes += roff;
3189 		if (attr->type == ATTR_ALLOC)
3190 			bytes = (bytes + 511) & ~511; // align
3191 
3192 		buffer_le = kmalloc(bytes, GFP_NOFS);
3193 		if (!buffer_le)
3194 			return -ENOMEM;
3195 
3196 		err = ntfs_read_run_nb(sbi, oa->run1, vbo, buffer_le, bytes,
3197 				       NULL);
3198 		if (err)
3199 			goto out;
3200 
3201 		if (attr->type == ATTR_ALLOC && *(int *)buffer_le)
3202 			ntfs_fix_post_read(buffer_le, bytes, false);
3203 		break;
3204 
3205 	default:
3206 		WARN_ON(1);
3207 	}
3208 
3209 	/* Big switch to do operation. */
3210 	switch (op) {
3211 	case InitializeFileRecordSegment:
3212 		if (roff + dlen > record_size)
3213 			goto dirty_vol;
3214 
3215 		memcpy(Add2Ptr(rec, roff), data, dlen);
3216 		mi->dirty = true;
3217 		break;
3218 
3219 	case DeallocateFileRecordSegment:
3220 		clear_rec_inuse(rec);
3221 		le16_add_cpu(&rec->seq, 1);
3222 		mi->dirty = true;
3223 		break;
3224 
3225 	case WriteEndOfFileRecordSegment:
3226 		attr2 = (struct ATTRIB *)data;
3227 		if (!check_if_attr(rec, lrh) || roff + dlen > record_size)
3228 			goto dirty_vol;
3229 
3230 		memmove(attr, attr2, dlen);
3231 		rec->used = cpu_to_le32(ALIGN(roff + dlen, 8));
3232 
3233 		mi->dirty = true;
3234 		break;
3235 
3236 	case CreateAttribute:
3237 		attr2 = (struct ATTRIB *)data;
3238 		asize = le32_to_cpu(attr2->size);
3239 		used = le32_to_cpu(rec->used);
3240 
3241 		if (!check_if_attr(rec, lrh) || dlen < SIZEOF_RESIDENT ||
3242 		    !IS_ALIGNED(asize, 8) ||
3243 		    Add2Ptr(attr2, asize) > Add2Ptr(lrh, rec_len) ||
3244 		    dlen > record_size - used) {
3245 			goto dirty_vol;
3246 		}
3247 
3248 		memmove(Add2Ptr(attr, asize), attr, used - roff);
3249 		memcpy(attr, attr2, asize);
3250 
3251 		rec->used = cpu_to_le32(used + asize);
3252 		id = le16_to_cpu(rec->next_attr_id);
3253 		id2 = le16_to_cpu(attr2->id);
3254 		if (id <= id2)
3255 			rec->next_attr_id = cpu_to_le16(id2 + 1);
3256 		if (is_attr_indexed(attr))
3257 			le16_add_cpu(&rec->hard_links, 1);
3258 
3259 		oa2 = find_loaded_attr(log, attr, rno_base);
3260 		if (oa2) {
3261 			void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3262 					   GFP_NOFS);
3263 			if (p2) {
3264 				// run_close(oa2->run1);
3265 				kfree(oa2->attr);
3266 				oa2->attr = p2;
3267 			}
3268 		}
3269 
3270 		mi->dirty = true;
3271 		break;
3272 
3273 	case DeleteAttribute:
3274 		asize = le32_to_cpu(attr->size);
3275 		used = le32_to_cpu(rec->used);
3276 
3277 		if (!check_if_attr(rec, lrh))
3278 			goto dirty_vol;
3279 
3280 		rec->used = cpu_to_le32(used - asize);
3281 		if (is_attr_indexed(attr))
3282 			le16_add_cpu(&rec->hard_links, -1);
3283 
3284 		memmove(attr, Add2Ptr(attr, asize), used - asize - roff);
3285 
3286 		mi->dirty = true;
3287 		break;
3288 
3289 	case UpdateResidentValue:
3290 		nsize = aoff + dlen;
3291 
3292 		if (!check_if_attr(rec, lrh))
3293 			goto dirty_vol;
3294 
3295 		asize = le32_to_cpu(attr->size);
3296 		used = le32_to_cpu(rec->used);
3297 
3298 		if (lrh->redo_len == lrh->undo_len) {
3299 			if (nsize > asize)
3300 				goto dirty_vol;
3301 			goto move_data;
3302 		}
3303 
3304 		if (nsize > asize && nsize - asize > record_size - used)
3305 			goto dirty_vol;
3306 
3307 		nsize = ALIGN(nsize, 8);
3308 		data_off = le16_to_cpu(attr->res.data_off);
3309 
3310 		if (nsize < asize) {
3311 			memmove(Add2Ptr(attr, aoff), data, dlen);
3312 			data = NULL; // To skip below memmove().
3313 		}
3314 
3315 		memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3316 			used - le16_to_cpu(lrh->record_off) - asize);
3317 
3318 		rec->used = cpu_to_le32(used + nsize - asize);
3319 		attr->size = cpu_to_le32(nsize);
3320 		attr->res.data_size = cpu_to_le32(aoff + dlen - data_off);
3321 
3322 move_data:
3323 		if (data)
3324 			memmove(Add2Ptr(attr, aoff), data, dlen);
3325 
3326 		oa2 = find_loaded_attr(log, attr, rno_base);
3327 		if (oa2) {
3328 			void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3329 					   GFP_NOFS);
3330 			if (p2) {
3331 				// run_close(&oa2->run0);
3332 				oa2->run1 = &oa2->run0;
3333 				kfree(oa2->attr);
3334 				oa2->attr = p2;
3335 			}
3336 		}
3337 
3338 		mi->dirty = true;
3339 		break;
3340 
3341 	case UpdateMappingPairs:
3342 		nsize = aoff + dlen;
3343 		asize = le32_to_cpu(attr->size);
3344 		used = le32_to_cpu(rec->used);
3345 
3346 		if (!check_if_attr(rec, lrh) || !attr->non_res ||
3347 		    aoff < le16_to_cpu(attr->nres.run_off) || aoff > asize ||
3348 		    (nsize > asize && nsize - asize > record_size - used)) {
3349 			goto dirty_vol;
3350 		}
3351 
3352 		nsize = ALIGN(nsize, 8);
3353 
3354 		memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3355 			used - le16_to_cpu(lrh->record_off) - asize);
3356 		rec->used = cpu_to_le32(used + nsize - asize);
3357 		attr->size = cpu_to_le32(nsize);
3358 		memmove(Add2Ptr(attr, aoff), data, dlen);
3359 
3360 		if (run_get_highest_vcn(le64_to_cpu(attr->nres.svcn),
3361 					attr_run(attr), &t64)) {
3362 			goto dirty_vol;
3363 		}
3364 
3365 		attr->nres.evcn = cpu_to_le64(t64);
3366 		oa2 = find_loaded_attr(log, attr, rno_base);
3367 		if (oa2 && oa2->attr->non_res)
3368 			oa2->attr->nres.evcn = attr->nres.evcn;
3369 
3370 		mi->dirty = true;
3371 		break;
3372 
3373 	case SetNewAttributeSizes:
3374 		new_sz = data;
3375 		if (!check_if_attr(rec, lrh) || !attr->non_res)
3376 			goto dirty_vol;
3377 
3378 		attr->nres.alloc_size = new_sz->alloc_size;
3379 		attr->nres.data_size = new_sz->data_size;
3380 		attr->nres.valid_size = new_sz->valid_size;
3381 
3382 		if (dlen >= sizeof(struct NEW_ATTRIBUTE_SIZES))
3383 			attr->nres.total_size = new_sz->total_size;
3384 
3385 		oa2 = find_loaded_attr(log, attr, rno_base);
3386 		if (oa2) {
3387 			void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3388 					   GFP_NOFS);
3389 			if (p2) {
3390 				kfree(oa2->attr);
3391 				oa2->attr = p2;
3392 			}
3393 		}
3394 		mi->dirty = true;
3395 		break;
3396 
3397 	case AddIndexEntryRoot:
3398 		e = (struct NTFS_DE *)data;
3399 		esize = le16_to_cpu(e->size);
3400 		root = resident_data(attr);
3401 		hdr = &root->ihdr;
3402 		used = le32_to_cpu(hdr->used);
3403 
3404 		if (!check_if_index_root(rec, lrh) ||
3405 		    !check_if_root_index(attr, hdr, lrh) ||
3406 		    Add2Ptr(data, esize) > Add2Ptr(lrh, rec_len) ||
3407 		    esize > le32_to_cpu(rec->total) - le32_to_cpu(rec->used)) {
3408 			goto dirty_vol;
3409 		}
3410 
3411 		e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3412 
3413 		change_attr_size(rec, attr, le32_to_cpu(attr->size) + esize);
3414 
3415 		memmove(Add2Ptr(e1, esize), e1,
3416 			PtrOffset(e1, Add2Ptr(hdr, used)));
3417 		memmove(e1, e, esize);
3418 
3419 		le32_add_cpu(&attr->res.data_size, esize);
3420 		hdr->used = cpu_to_le32(used + esize);
3421 		le32_add_cpu(&hdr->total, esize);
3422 
3423 		mi->dirty = true;
3424 		break;
3425 
3426 	case DeleteIndexEntryRoot:
3427 		root = resident_data(attr);
3428 		hdr = &root->ihdr;
3429 		used = le32_to_cpu(hdr->used);
3430 
3431 		if (!check_if_index_root(rec, lrh) ||
3432 		    !check_if_root_index(attr, hdr, lrh)) {
3433 			goto dirty_vol;
3434 		}
3435 
3436 		e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3437 		esize = le16_to_cpu(e1->size);
3438 		e2 = Add2Ptr(e1, esize);
3439 
3440 		memmove(e1, e2, PtrOffset(e2, Add2Ptr(hdr, used)));
3441 
3442 		le32_sub_cpu(&attr->res.data_size, esize);
3443 		hdr->used = cpu_to_le32(used - esize);
3444 		le32_sub_cpu(&hdr->total, esize);
3445 
3446 		change_attr_size(rec, attr, le32_to_cpu(attr->size) - esize);
3447 
3448 		mi->dirty = true;
3449 		break;
3450 
3451 	case SetIndexEntryVcnRoot:
3452 		root = resident_data(attr);
3453 		hdr = &root->ihdr;
3454 
3455 		if (!check_if_index_root(rec, lrh) ||
3456 		    !check_if_root_index(attr, hdr, lrh)) {
3457 			goto dirty_vol;
3458 		}
3459 
3460 		e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3461 
3462 		de_set_vbn_le(e, *(__le64 *)data);
3463 		mi->dirty = true;
3464 		break;
3465 
3466 	case UpdateFileNameRoot:
3467 		root = resident_data(attr);
3468 		hdr = &root->ihdr;
3469 
3470 		if (!check_if_index_root(rec, lrh) ||
3471 		    !check_if_root_index(attr, hdr, lrh)) {
3472 			goto dirty_vol;
3473 		}
3474 
3475 		e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3476 		fname = (struct ATTR_FILE_NAME *)(e + 1);
3477 		memmove(&fname->dup, data, sizeof(fname->dup)); //
3478 		mi->dirty = true;
3479 		break;
3480 
3481 	case UpdateRecordDataRoot:
3482 		root = resident_data(attr);
3483 		hdr = &root->ihdr;
3484 
3485 		if (!check_if_index_root(rec, lrh) ||
3486 		    !check_if_root_index(attr, hdr, lrh)) {
3487 			goto dirty_vol;
3488 		}
3489 
3490 		e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3491 
3492 		memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3493 
3494 		mi->dirty = true;
3495 		break;
3496 
3497 	case ZeroEndOfFileRecord:
3498 		if (roff + dlen > record_size)
3499 			goto dirty_vol;
3500 
3501 		memset(attr, 0, dlen);
3502 		mi->dirty = true;
3503 		break;
3504 
3505 	case UpdateNonresidentValue:
3506 		if (lco < cbo + roff + dlen)
3507 			goto dirty_vol;
3508 
3509 		memcpy(Add2Ptr(buffer_le, roff), data, dlen);
3510 
3511 		a_dirty = true;
3512 		if (attr->type == ATTR_ALLOC)
3513 			ntfs_fix_pre_write(buffer_le, bytes);
3514 		break;
3515 
3516 	case AddIndexEntryAllocation:
3517 		ib = Add2Ptr(buffer_le, roff);
3518 		hdr = &ib->ihdr;
3519 		e = data;
3520 		esize = le16_to_cpu(e->size);
3521 		e1 = Add2Ptr(ib, aoff);
3522 
3523 		if (is_baad(&ib->rhdr))
3524 			goto dirty_vol;
3525 		if (!check_lsn(&ib->rhdr, rlsn))
3526 			goto out;
3527 
3528 		used = le32_to_cpu(hdr->used);
3529 
3530 		if (!check_index_buffer(ib, bytes) ||
3531 		    !check_if_alloc_index(hdr, aoff) ||
3532 		    Add2Ptr(e, esize) > Add2Ptr(lrh, rec_len) ||
3533 		    used + esize > le32_to_cpu(hdr->total)) {
3534 			goto dirty_vol;
3535 		}
3536 
3537 		memmove(Add2Ptr(e1, esize), e1,
3538 			PtrOffset(e1, Add2Ptr(hdr, used)));
3539 		memcpy(e1, e, esize);
3540 
3541 		hdr->used = cpu_to_le32(used + esize);
3542 
3543 		a_dirty = true;
3544 
3545 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3546 		break;
3547 
3548 	case DeleteIndexEntryAllocation:
3549 		ib = Add2Ptr(buffer_le, roff);
3550 		hdr = &ib->ihdr;
3551 		e = Add2Ptr(ib, aoff);
3552 		esize = le16_to_cpu(e->size);
3553 
3554 		if (is_baad(&ib->rhdr))
3555 			goto dirty_vol;
3556 		if (!check_lsn(&ib->rhdr, rlsn))
3557 			goto out;
3558 
3559 		if (!check_index_buffer(ib, bytes) ||
3560 		    !check_if_alloc_index(hdr, aoff)) {
3561 			goto dirty_vol;
3562 		}
3563 
3564 		e1 = Add2Ptr(e, esize);
3565 		nsize = esize;
3566 		used = le32_to_cpu(hdr->used);
3567 
3568 		memmove(e, e1, PtrOffset(e1, Add2Ptr(hdr, used)));
3569 
3570 		hdr->used = cpu_to_le32(used - nsize);
3571 
3572 		a_dirty = true;
3573 
3574 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3575 		break;
3576 
3577 	case WriteEndOfIndexBuffer:
3578 		ib = Add2Ptr(buffer_le, roff);
3579 		hdr = &ib->ihdr;
3580 		e = Add2Ptr(ib, aoff);
3581 
3582 		if (is_baad(&ib->rhdr))
3583 			goto dirty_vol;
3584 		if (!check_lsn(&ib->rhdr, rlsn))
3585 			goto out;
3586 		if (!check_index_buffer(ib, bytes) ||
3587 		    !check_if_alloc_index(hdr, aoff) ||
3588 		    aoff + dlen > offsetof(struct INDEX_BUFFER, ihdr) +
3589 					  le32_to_cpu(hdr->total)) {
3590 			goto dirty_vol;
3591 		}
3592 
3593 		hdr->used = cpu_to_le32(dlen + PtrOffset(hdr, e));
3594 		memmove(e, data, dlen);
3595 
3596 		a_dirty = true;
3597 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3598 		break;
3599 
3600 	case SetIndexEntryVcnAllocation:
3601 		ib = Add2Ptr(buffer_le, roff);
3602 		hdr = &ib->ihdr;
3603 		e = Add2Ptr(ib, aoff);
3604 
3605 		if (is_baad(&ib->rhdr))
3606 			goto dirty_vol;
3607 
3608 		if (!check_lsn(&ib->rhdr, rlsn))
3609 			goto out;
3610 		if (!check_index_buffer(ib, bytes) ||
3611 		    !check_if_alloc_index(hdr, aoff)) {
3612 			goto dirty_vol;
3613 		}
3614 
3615 		de_set_vbn_le(e, *(__le64 *)data);
3616 
3617 		a_dirty = true;
3618 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3619 		break;
3620 
3621 	case UpdateFileNameAllocation:
3622 		ib = Add2Ptr(buffer_le, roff);
3623 		hdr = &ib->ihdr;
3624 		e = Add2Ptr(ib, aoff);
3625 
3626 		if (is_baad(&ib->rhdr))
3627 			goto dirty_vol;
3628 
3629 		if (!check_lsn(&ib->rhdr, rlsn))
3630 			goto out;
3631 		if (!check_index_buffer(ib, bytes) ||
3632 		    !check_if_alloc_index(hdr, aoff)) {
3633 			goto dirty_vol;
3634 		}
3635 
3636 		fname = (struct ATTR_FILE_NAME *)(e + 1);
3637 		memmove(&fname->dup, data, sizeof(fname->dup));
3638 
3639 		a_dirty = true;
3640 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3641 		break;
3642 
3643 	case SetBitsInNonresidentBitMap:
3644 		bmp_off =
3645 			le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3646 		bmp_bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
3647 
3648 		if (cbo + (bmp_off + 7) / 8 > lco ||
3649 		    cbo + ((bmp_off + bmp_bits + 7) / 8) > lco) {
3650 			goto dirty_vol;
3651 		}
3652 
3653 		__bitmap_set(Add2Ptr(buffer_le, roff), bmp_off, bmp_bits);
3654 		a_dirty = true;
3655 		break;
3656 
3657 	case ClearBitsInNonresidentBitMap:
3658 		bmp_off =
3659 			le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3660 		bmp_bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
3661 
3662 		if (cbo + (bmp_off + 7) / 8 > lco ||
3663 		    cbo + ((bmp_off + bmp_bits + 7) / 8) > lco) {
3664 			goto dirty_vol;
3665 		}
3666 
3667 		__bitmap_clear(Add2Ptr(buffer_le, roff), bmp_off, bmp_bits);
3668 		a_dirty = true;
3669 		break;
3670 
3671 	case UpdateRecordDataAllocation:
3672 		ib = Add2Ptr(buffer_le, roff);
3673 		hdr = &ib->ihdr;
3674 		e = Add2Ptr(ib, aoff);
3675 
3676 		if (is_baad(&ib->rhdr))
3677 			goto dirty_vol;
3678 
3679 		if (!check_lsn(&ib->rhdr, rlsn))
3680 			goto out;
3681 		if (!check_index_buffer(ib, bytes) ||
3682 		    !check_if_alloc_index(hdr, aoff)) {
3683 			goto dirty_vol;
3684 		}
3685 
3686 		memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3687 
3688 		a_dirty = true;
3689 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3690 		break;
3691 
3692 	default:
3693 		WARN_ON(1);
3694 	}
3695 
3696 	if (rlsn) {
3697 		__le64 t64 = cpu_to_le64(*rlsn);
3698 
3699 		if (rec)
3700 			rec->rhdr.lsn = t64;
3701 		if (ib)
3702 			ib->rhdr.lsn = t64;
3703 	}
3704 
3705 	if (mi && mi->dirty) {
3706 		err = mi_write(mi, 0);
3707 		if (err)
3708 			goto out;
3709 	}
3710 
3711 	if (a_dirty) {
3712 		attr = oa->attr;
3713 		err = ntfs_sb_write_run(sbi, oa->run1, vbo, buffer_le, bytes);
3714 		if (err)
3715 			goto out;
3716 	}
3717 
3718 out:
3719 
3720 	if (inode)
3721 		iput(inode);
3722 	else if (mi != mi2_child)
3723 		mi_put(mi);
3724 
3725 	kfree(buffer_le);
3726 
3727 	return err;
3728 
3729 dirty_vol:
3730 	log->set_dirty = true;
3731 	goto out;
3732 }
3733 
3734 /*
3735  * log_replay - Replays log and empties it.
3736  *
3737  * This function is called during mount operation.
3738  * It replays log and empties it.
3739  * Initialized is set false if logfile contains '-1'.
3740  */
3741 int log_replay(struct ntfs_inode *ni, bool *initialized)
3742 {
3743 	int err;
3744 	struct ntfs_sb_info *sbi = ni->mi.sbi;
3745 	struct ntfs_log *log;
3746 
3747 	struct restart_info rst_info, rst_info2;
3748 	u64 rec_lsn, ra_lsn, checkpt_lsn = 0, rlsn = 0;
3749 	struct ATTR_NAME_ENTRY *attr_names = NULL;
3750 	struct ATTR_NAME_ENTRY *ane;
3751 	struct RESTART_TABLE *dptbl = NULL;
3752 	struct RESTART_TABLE *trtbl = NULL;
3753 	const struct RESTART_TABLE *rt;
3754 	struct RESTART_TABLE *oatbl = NULL;
3755 	struct inode *inode;
3756 	struct OpenAttr *oa;
3757 	struct ntfs_inode *ni_oe;
3758 	struct ATTRIB *attr = NULL;
3759 	u64 size, vcn, undo_next_lsn;
3760 	CLST rno, lcn, lcn0, len0, clen;
3761 	void *data;
3762 	struct NTFS_RESTART *rst = NULL;
3763 	struct lcb *lcb = NULL;
3764 	struct OPEN_ATTR_ENRTY *oe;
3765 	struct TRANSACTION_ENTRY *tr;
3766 	struct DIR_PAGE_ENTRY *dp;
3767 	u32 i, bytes_per_attr_entry;
3768 	u32 l_size = ni->vfs_inode.i_size;
3769 	u32 orig_file_size = l_size;
3770 	u32 page_size, vbo, tail, off, dlen;
3771 	u32 saved_len, rec_len, transact_id;
3772 	bool use_second_page;
3773 	struct RESTART_AREA *ra2, *ra = NULL;
3774 	struct CLIENT_REC *ca, *cr;
3775 	__le16 client;
3776 	struct RESTART_HDR *rh;
3777 	const struct LFS_RECORD_HDR *frh;
3778 	const struct LOG_REC_HDR *lrh;
3779 	bool is_mapped;
3780 	bool is_ro = sb_rdonly(sbi->sb);
3781 	u64 t64;
3782 	u16 t16;
3783 	u32 t32;
3784 
3785 	/* Get the size of page. NOTE: To replay we can use default page. */
3786 #if PAGE_SIZE >= DefaultLogPageSize && PAGE_SIZE <= DefaultLogPageSize * 2
3787 	page_size = norm_file_page(PAGE_SIZE, &l_size, true);
3788 #else
3789 	page_size = norm_file_page(PAGE_SIZE, &l_size, false);
3790 #endif
3791 	if (!page_size)
3792 		return -EINVAL;
3793 
3794 	log = kzalloc(sizeof(struct ntfs_log), GFP_NOFS);
3795 	if (!log)
3796 		return -ENOMEM;
3797 
3798 	log->ni = ni;
3799 	log->l_size = l_size;
3800 	log->one_page_buf = kmalloc(page_size, GFP_NOFS);
3801 
3802 	if (!log->one_page_buf) {
3803 		err = -ENOMEM;
3804 		goto out;
3805 	}
3806 
3807 	log->page_size = page_size;
3808 	log->page_mask = page_size - 1;
3809 	log->page_bits = blksize_bits(page_size);
3810 
3811 	/* Look for a restart area on the disk. */
3812 	err = log_read_rst(log, l_size, true, &rst_info);
3813 	if (err)
3814 		goto out;
3815 
3816 	/* remember 'initialized' */
3817 	*initialized = rst_info.initialized;
3818 
3819 	if (!rst_info.restart) {
3820 		if (rst_info.initialized) {
3821 			/* No restart area but the file is not initialized. */
3822 			err = -EINVAL;
3823 			goto out;
3824 		}
3825 
3826 		log_init_pg_hdr(log, page_size, page_size, 1, 1);
3827 		log_create(log, l_size, 0, get_random_int(), false, false);
3828 
3829 		log->ra = ra;
3830 
3831 		ra = log_create_ra(log);
3832 		if (!ra) {
3833 			err = -ENOMEM;
3834 			goto out;
3835 		}
3836 		log->ra = ra;
3837 		log->init_ra = true;
3838 
3839 		goto process_log;
3840 	}
3841 
3842 	/*
3843 	 * If the restart offset above wasn't zero then we won't
3844 	 * look for a second restart.
3845 	 */
3846 	if (rst_info.vbo)
3847 		goto check_restart_area;
3848 
3849 	err = log_read_rst(log, l_size, false, &rst_info2);
3850 
3851 	/* Determine which restart area to use. */
3852 	if (!rst_info2.restart || rst_info2.last_lsn <= rst_info.last_lsn)
3853 		goto use_first_page;
3854 
3855 	use_second_page = true;
3856 
3857 	if (rst_info.chkdsk_was_run && page_size != rst_info.vbo) {
3858 		struct RECORD_PAGE_HDR *sp = NULL;
3859 		bool usa_error;
3860 
3861 		if (!read_log_page(log, page_size, &sp, &usa_error) &&
3862 		    sp->rhdr.sign == NTFS_CHKD_SIGNATURE) {
3863 			use_second_page = false;
3864 		}
3865 		kfree(sp);
3866 	}
3867 
3868 	if (use_second_page) {
3869 		kfree(rst_info.r_page);
3870 		memcpy(&rst_info, &rst_info2, sizeof(struct restart_info));
3871 		rst_info2.r_page = NULL;
3872 	}
3873 
3874 use_first_page:
3875 	kfree(rst_info2.r_page);
3876 
3877 check_restart_area:
3878 	/*
3879 	 * If the restart area is at offset 0, we want
3880 	 * to write the second restart area first.
3881 	 */
3882 	log->init_ra = !!rst_info.vbo;
3883 
3884 	/* If we have a valid page then grab a pointer to the restart area. */
3885 	ra2 = rst_info.valid_page
3886 		      ? Add2Ptr(rst_info.r_page,
3887 				le16_to_cpu(rst_info.r_page->ra_off))
3888 		      : NULL;
3889 
3890 	if (rst_info.chkdsk_was_run ||
3891 	    (ra2 && ra2->client_idx[1] == LFS_NO_CLIENT_LE)) {
3892 		bool wrapped = false;
3893 		bool use_multi_page = false;
3894 		u32 open_log_count;
3895 
3896 		/* Do some checks based on whether we have a valid log page. */
3897 		if (!rst_info.valid_page) {
3898 			open_log_count = get_random_int();
3899 			goto init_log_instance;
3900 		}
3901 		open_log_count = le32_to_cpu(ra2->open_log_count);
3902 
3903 		/*
3904 		 * If the restart page size isn't changing then we want to
3905 		 * check how much work we need to do.
3906 		 */
3907 		if (page_size != le32_to_cpu(rst_info.r_page->sys_page_size))
3908 			goto init_log_instance;
3909 
3910 init_log_instance:
3911 		log_init_pg_hdr(log, page_size, page_size, 1, 1);
3912 
3913 		log_create(log, l_size, rst_info.last_lsn, open_log_count,
3914 			   wrapped, use_multi_page);
3915 
3916 		ra = log_create_ra(log);
3917 		if (!ra) {
3918 			err = -ENOMEM;
3919 			goto out;
3920 		}
3921 		log->ra = ra;
3922 
3923 		/* Put the restart areas and initialize
3924 		 * the log file as required.
3925 		 */
3926 		goto process_log;
3927 	}
3928 
3929 	if (!ra2) {
3930 		err = -EINVAL;
3931 		goto out;
3932 	}
3933 
3934 	/*
3935 	 * If the log page or the system page sizes have changed, we can't
3936 	 * use the log file. We must use the system page size instead of the
3937 	 * default size if there is not a clean shutdown.
3938 	 */
3939 	t32 = le32_to_cpu(rst_info.r_page->sys_page_size);
3940 	if (page_size != t32) {
3941 		l_size = orig_file_size;
3942 		page_size =
3943 			norm_file_page(t32, &l_size, t32 == DefaultLogPageSize);
3944 	}
3945 
3946 	if (page_size != t32 ||
3947 	    page_size != le32_to_cpu(rst_info.r_page->page_size)) {
3948 		err = -EINVAL;
3949 		goto out;
3950 	}
3951 
3952 	/* If the file size has shrunk then we won't mount it. */
3953 	if (l_size < le64_to_cpu(ra2->l_size)) {
3954 		err = -EINVAL;
3955 		goto out;
3956 	}
3957 
3958 	log_init_pg_hdr(log, page_size, page_size,
3959 			le16_to_cpu(rst_info.r_page->major_ver),
3960 			le16_to_cpu(rst_info.r_page->minor_ver));
3961 
3962 	log->l_size = le64_to_cpu(ra2->l_size);
3963 	log->seq_num_bits = le32_to_cpu(ra2->seq_num_bits);
3964 	log->file_data_bits = sizeof(u64) * 8 - log->seq_num_bits;
3965 	log->seq_num_mask = (8 << log->file_data_bits) - 1;
3966 	log->last_lsn = le64_to_cpu(ra2->current_lsn);
3967 	log->seq_num = log->last_lsn >> log->file_data_bits;
3968 	log->ra_off = le16_to_cpu(rst_info.r_page->ra_off);
3969 	log->restart_size = log->sys_page_size - log->ra_off;
3970 	log->record_header_len = le16_to_cpu(ra2->rec_hdr_len);
3971 	log->ra_size = le16_to_cpu(ra2->ra_len);
3972 	log->data_off = le16_to_cpu(ra2->data_off);
3973 	log->data_size = log->page_size - log->data_off;
3974 	log->reserved = log->data_size - log->record_header_len;
3975 
3976 	vbo = lsn_to_vbo(log, log->last_lsn);
3977 
3978 	if (vbo < log->first_page) {
3979 		/* This is a pseudo lsn. */
3980 		log->l_flags |= NTFSLOG_NO_LAST_LSN;
3981 		log->next_page = log->first_page;
3982 		goto find_oldest;
3983 	}
3984 
3985 	/* Find the end of this log record. */
3986 	off = final_log_off(log, log->last_lsn,
3987 			    le32_to_cpu(ra2->last_lsn_data_len));
3988 
3989 	/* If we wrapped the file then increment the sequence number. */
3990 	if (off <= vbo) {
3991 		log->seq_num += 1;
3992 		log->l_flags |= NTFSLOG_WRAPPED;
3993 	}
3994 
3995 	/* Now compute the next log page to use. */
3996 	vbo &= ~log->sys_page_mask;
3997 	tail = log->page_size - (off & log->page_mask) - 1;
3998 
3999 	/*
4000 	 *If we can fit another log record on the page,
4001 	 * move back a page the log file.
4002 	 */
4003 	if (tail >= log->record_header_len) {
4004 		log->l_flags |= NTFSLOG_REUSE_TAIL;
4005 		log->next_page = vbo;
4006 	} else {
4007 		log->next_page = next_page_off(log, vbo);
4008 	}
4009 
4010 find_oldest:
4011 	/*
4012 	 * Find the oldest client lsn. Use the last
4013 	 * flushed lsn as a starting point.
4014 	 */
4015 	log->oldest_lsn = log->last_lsn;
4016 	oldest_client_lsn(Add2Ptr(ra2, le16_to_cpu(ra2->client_off)),
4017 			  ra2->client_idx[1], &log->oldest_lsn);
4018 	log->oldest_lsn_off = lsn_to_vbo(log, log->oldest_lsn);
4019 
4020 	if (log->oldest_lsn_off < log->first_page)
4021 		log->l_flags |= NTFSLOG_NO_OLDEST_LSN;
4022 
4023 	if (!(ra2->flags & RESTART_SINGLE_PAGE_IO))
4024 		log->l_flags |= NTFSLOG_WRAPPED | NTFSLOG_MULTIPLE_PAGE_IO;
4025 
4026 	log->current_openlog_count = le32_to_cpu(ra2->open_log_count);
4027 	log->total_avail_pages = log->l_size - log->first_page;
4028 	log->total_avail = log->total_avail_pages >> log->page_bits;
4029 	log->max_current_avail = log->total_avail * log->reserved;
4030 	log->total_avail = log->total_avail * log->data_size;
4031 
4032 	log->current_avail = current_log_avail(log);
4033 
4034 	ra = kzalloc(log->restart_size, GFP_NOFS);
4035 	if (!ra) {
4036 		err = -ENOMEM;
4037 		goto out;
4038 	}
4039 	log->ra = ra;
4040 
4041 	t16 = le16_to_cpu(ra2->client_off);
4042 	if (t16 == offsetof(struct RESTART_AREA, clients)) {
4043 		memcpy(ra, ra2, log->ra_size);
4044 	} else {
4045 		memcpy(ra, ra2, offsetof(struct RESTART_AREA, clients));
4046 		memcpy(ra->clients, Add2Ptr(ra2, t16),
4047 		       le16_to_cpu(ra2->ra_len) - t16);
4048 
4049 		log->current_openlog_count = get_random_int();
4050 		ra->open_log_count = cpu_to_le32(log->current_openlog_count);
4051 		log->ra_size = offsetof(struct RESTART_AREA, clients) +
4052 			       sizeof(struct CLIENT_REC);
4053 		ra->client_off =
4054 			cpu_to_le16(offsetof(struct RESTART_AREA, clients));
4055 		ra->ra_len = cpu_to_le16(log->ra_size);
4056 	}
4057 
4058 	le32_add_cpu(&ra->open_log_count, 1);
4059 
4060 	/* Now we need to walk through looking for the last lsn. */
4061 	err = last_log_lsn(log);
4062 	if (err)
4063 		goto out;
4064 
4065 	log->current_avail = current_log_avail(log);
4066 
4067 	/* Remember which restart area to write first. */
4068 	log->init_ra = rst_info.vbo;
4069 
4070 process_log:
4071 	/* 1.0, 1.1, 2.0 log->major_ver/minor_ver - short values. */
4072 	switch ((log->major_ver << 16) + log->minor_ver) {
4073 	case 0x10000:
4074 	case 0x10001:
4075 	case 0x20000:
4076 		break;
4077 	default:
4078 		ntfs_warn(sbi->sb, "\x24LogFile version %d.%d is not supported",
4079 			  log->major_ver, log->minor_ver);
4080 		err = -EOPNOTSUPP;
4081 		log->set_dirty = true;
4082 		goto out;
4083 	}
4084 
4085 	/* One client "NTFS" per logfile. */
4086 	ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
4087 
4088 	for (client = ra->client_idx[1];; client = cr->next_client) {
4089 		if (client == LFS_NO_CLIENT_LE) {
4090 			/* Insert "NTFS" client LogFile. */
4091 			client = ra->client_idx[0];
4092 			if (client == LFS_NO_CLIENT_LE)
4093 				return -EINVAL;
4094 
4095 			t16 = le16_to_cpu(client);
4096 			cr = ca + t16;
4097 
4098 			remove_client(ca, cr, &ra->client_idx[0]);
4099 
4100 			cr->restart_lsn = 0;
4101 			cr->oldest_lsn = cpu_to_le64(log->oldest_lsn);
4102 			cr->name_bytes = cpu_to_le32(8);
4103 			cr->name[0] = cpu_to_le16('N');
4104 			cr->name[1] = cpu_to_le16('T');
4105 			cr->name[2] = cpu_to_le16('F');
4106 			cr->name[3] = cpu_to_le16('S');
4107 
4108 			add_client(ca, t16, &ra->client_idx[1]);
4109 			break;
4110 		}
4111 
4112 		cr = ca + le16_to_cpu(client);
4113 
4114 		if (cpu_to_le32(8) == cr->name_bytes &&
4115 		    cpu_to_le16('N') == cr->name[0] &&
4116 		    cpu_to_le16('T') == cr->name[1] &&
4117 		    cpu_to_le16('F') == cr->name[2] &&
4118 		    cpu_to_le16('S') == cr->name[3])
4119 			break;
4120 	}
4121 
4122 	/* Update the client handle with the client block information. */
4123 	log->client_id.seq_num = cr->seq_num;
4124 	log->client_id.client_idx = client;
4125 
4126 	err = read_rst_area(log, &rst, &ra_lsn);
4127 	if (err)
4128 		goto out;
4129 
4130 	if (!rst)
4131 		goto out;
4132 
4133 	bytes_per_attr_entry = !rst->major_ver ? 0x2C : 0x28;
4134 
4135 	checkpt_lsn = le64_to_cpu(rst->check_point_start);
4136 	if (!checkpt_lsn)
4137 		checkpt_lsn = ra_lsn;
4138 
4139 	/* Allocate and Read the Transaction Table. */
4140 	if (!rst->transact_table_len)
4141 		goto check_dirty_page_table;
4142 
4143 	t64 = le64_to_cpu(rst->transact_table_lsn);
4144 	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4145 	if (err)
4146 		goto out;
4147 
4148 	lrh = lcb->log_rec;
4149 	frh = lcb->lrh;
4150 	rec_len = le32_to_cpu(frh->client_data_len);
4151 
4152 	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4153 			   bytes_per_attr_entry)) {
4154 		err = -EINVAL;
4155 		goto out;
4156 	}
4157 
4158 	t16 = le16_to_cpu(lrh->redo_off);
4159 
4160 	rt = Add2Ptr(lrh, t16);
4161 	t32 = rec_len - t16;
4162 
4163 	/* Now check that this is a valid restart table. */
4164 	if (!check_rstbl(rt, t32)) {
4165 		err = -EINVAL;
4166 		goto out;
4167 	}
4168 
4169 	trtbl = kmemdup(rt, t32, GFP_NOFS);
4170 	if (!trtbl) {
4171 		err = -ENOMEM;
4172 		goto out;
4173 	}
4174 
4175 	lcb_put(lcb);
4176 	lcb = NULL;
4177 
4178 check_dirty_page_table:
4179 	/* The next record back should be the Dirty Pages Table. */
4180 	if (!rst->dirty_pages_len)
4181 		goto check_attribute_names;
4182 
4183 	t64 = le64_to_cpu(rst->dirty_pages_table_lsn);
4184 	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4185 	if (err)
4186 		goto out;
4187 
4188 	lrh = lcb->log_rec;
4189 	frh = lcb->lrh;
4190 	rec_len = le32_to_cpu(frh->client_data_len);
4191 
4192 	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4193 			   bytes_per_attr_entry)) {
4194 		err = -EINVAL;
4195 		goto out;
4196 	}
4197 
4198 	t16 = le16_to_cpu(lrh->redo_off);
4199 
4200 	rt = Add2Ptr(lrh, t16);
4201 	t32 = rec_len - t16;
4202 
4203 	/* Now check that this is a valid restart table. */
4204 	if (!check_rstbl(rt, t32)) {
4205 		err = -EINVAL;
4206 		goto out;
4207 	}
4208 
4209 	dptbl = kmemdup(rt, t32, GFP_NOFS);
4210 	if (!dptbl) {
4211 		err = -ENOMEM;
4212 		goto out;
4213 	}
4214 
4215 	/* Convert Ra version '0' into version '1'. */
4216 	if (rst->major_ver)
4217 		goto end_conv_1;
4218 
4219 	dp = NULL;
4220 	while ((dp = enum_rstbl(dptbl, dp))) {
4221 		struct DIR_PAGE_ENTRY_32 *dp0 = (struct DIR_PAGE_ENTRY_32 *)dp;
4222 		// NOTE: Danger. Check for of boundary.
4223 		memmove(&dp->vcn, &dp0->vcn_low,
4224 			2 * sizeof(u64) +
4225 				le32_to_cpu(dp->lcns_follow) * sizeof(u64));
4226 	}
4227 
4228 end_conv_1:
4229 	lcb_put(lcb);
4230 	lcb = NULL;
4231 
4232 	/*
4233 	 * Go through the table and remove the duplicates,
4234 	 * remembering the oldest lsn values.
4235 	 */
4236 	if (sbi->cluster_size <= log->page_size)
4237 		goto trace_dp_table;
4238 
4239 	dp = NULL;
4240 	while ((dp = enum_rstbl(dptbl, dp))) {
4241 		struct DIR_PAGE_ENTRY *next = dp;
4242 
4243 		while ((next = enum_rstbl(dptbl, next))) {
4244 			if (next->target_attr == dp->target_attr &&
4245 			    next->vcn == dp->vcn) {
4246 				if (le64_to_cpu(next->oldest_lsn) <
4247 				    le64_to_cpu(dp->oldest_lsn)) {
4248 					dp->oldest_lsn = next->oldest_lsn;
4249 				}
4250 
4251 				free_rsttbl_idx(dptbl, PtrOffset(dptbl, next));
4252 			}
4253 		}
4254 	}
4255 trace_dp_table:
4256 check_attribute_names:
4257 	/* The next record should be the Attribute Names. */
4258 	if (!rst->attr_names_len)
4259 		goto check_attr_table;
4260 
4261 	t64 = le64_to_cpu(rst->attr_names_lsn);
4262 	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4263 	if (err)
4264 		goto out;
4265 
4266 	lrh = lcb->log_rec;
4267 	frh = lcb->lrh;
4268 	rec_len = le32_to_cpu(frh->client_data_len);
4269 
4270 	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4271 			   bytes_per_attr_entry)) {
4272 		err = -EINVAL;
4273 		goto out;
4274 	}
4275 
4276 	t32 = lrh_length(lrh);
4277 	rec_len -= t32;
4278 
4279 	attr_names = kmemdup(Add2Ptr(lrh, t32), rec_len, GFP_NOFS);
4280 
4281 	lcb_put(lcb);
4282 	lcb = NULL;
4283 
4284 check_attr_table:
4285 	/* The next record should be the attribute Table. */
4286 	if (!rst->open_attr_len)
4287 		goto check_attribute_names2;
4288 
4289 	t64 = le64_to_cpu(rst->open_attr_table_lsn);
4290 	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4291 	if (err)
4292 		goto out;
4293 
4294 	lrh = lcb->log_rec;
4295 	frh = lcb->lrh;
4296 	rec_len = le32_to_cpu(frh->client_data_len);
4297 
4298 	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4299 			   bytes_per_attr_entry)) {
4300 		err = -EINVAL;
4301 		goto out;
4302 	}
4303 
4304 	t16 = le16_to_cpu(lrh->redo_off);
4305 
4306 	rt = Add2Ptr(lrh, t16);
4307 	t32 = rec_len - t16;
4308 
4309 	if (!check_rstbl(rt, t32)) {
4310 		err = -EINVAL;
4311 		goto out;
4312 	}
4313 
4314 	oatbl = kmemdup(rt, t32, GFP_NOFS);
4315 	if (!oatbl) {
4316 		err = -ENOMEM;
4317 		goto out;
4318 	}
4319 
4320 	log->open_attr_tbl = oatbl;
4321 
4322 	/* Clear all of the Attr pointers. */
4323 	oe = NULL;
4324 	while ((oe = enum_rstbl(oatbl, oe))) {
4325 		if (!rst->major_ver) {
4326 			struct OPEN_ATTR_ENRTY_32 oe0;
4327 
4328 			/* Really 'oe' points to OPEN_ATTR_ENRTY_32. */
4329 			memcpy(&oe0, oe, SIZEOF_OPENATTRIBUTEENTRY0);
4330 
4331 			oe->bytes_per_index = oe0.bytes_per_index;
4332 			oe->type = oe0.type;
4333 			oe->is_dirty_pages = oe0.is_dirty_pages;
4334 			oe->name_len = 0;
4335 			oe->ref = oe0.ref;
4336 			oe->open_record_lsn = oe0.open_record_lsn;
4337 		}
4338 
4339 		oe->is_attr_name = 0;
4340 		oe->ptr = NULL;
4341 	}
4342 
4343 	lcb_put(lcb);
4344 	lcb = NULL;
4345 
4346 check_attribute_names2:
4347 	if (!rst->attr_names_len)
4348 		goto trace_attribute_table;
4349 
4350 	ane = attr_names;
4351 	if (!oatbl)
4352 		goto trace_attribute_table;
4353 	while (ane->off) {
4354 		/* TODO: Clear table on exit! */
4355 		oe = Add2Ptr(oatbl, le16_to_cpu(ane->off));
4356 		t16 = le16_to_cpu(ane->name_bytes);
4357 		oe->name_len = t16 / sizeof(short);
4358 		oe->ptr = ane->name;
4359 		oe->is_attr_name = 2;
4360 		ane = Add2Ptr(ane, sizeof(struct ATTR_NAME_ENTRY) + t16);
4361 	}
4362 
4363 trace_attribute_table:
4364 	/*
4365 	 * If the checkpt_lsn is zero, then this is a freshly
4366 	 * formatted disk and we have no work to do.
4367 	 */
4368 	if (!checkpt_lsn) {
4369 		err = 0;
4370 		goto out;
4371 	}
4372 
4373 	if (!oatbl) {
4374 		oatbl = init_rsttbl(bytes_per_attr_entry, 8);
4375 		if (!oatbl) {
4376 			err = -ENOMEM;
4377 			goto out;
4378 		}
4379 	}
4380 
4381 	log->open_attr_tbl = oatbl;
4382 
4383 	/* Start the analysis pass from the Checkpoint lsn. */
4384 	rec_lsn = checkpt_lsn;
4385 
4386 	/* Read the first lsn. */
4387 	err = read_log_rec_lcb(log, checkpt_lsn, lcb_ctx_next, &lcb);
4388 	if (err)
4389 		goto out;
4390 
4391 	/* Loop to read all subsequent records to the end of the log file. */
4392 next_log_record_analyze:
4393 	err = read_next_log_rec(log, lcb, &rec_lsn);
4394 	if (err)
4395 		goto out;
4396 
4397 	if (!rec_lsn)
4398 		goto end_log_records_enumerate;
4399 
4400 	frh = lcb->lrh;
4401 	transact_id = le32_to_cpu(frh->transact_id);
4402 	rec_len = le32_to_cpu(frh->client_data_len);
4403 	lrh = lcb->log_rec;
4404 
4405 	if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
4406 		err = -EINVAL;
4407 		goto out;
4408 	}
4409 
4410 	/*
4411 	 * The first lsn after the previous lsn remembered
4412 	 * the checkpoint is the first candidate for the rlsn.
4413 	 */
4414 	if (!rlsn)
4415 		rlsn = rec_lsn;
4416 
4417 	if (LfsClientRecord != frh->record_type)
4418 		goto next_log_record_analyze;
4419 
4420 	/*
4421 	 * Now update the Transaction Table for this transaction. If there
4422 	 * is no entry present or it is unallocated we allocate the entry.
4423 	 */
4424 	if (!trtbl) {
4425 		trtbl = init_rsttbl(sizeof(struct TRANSACTION_ENTRY),
4426 				    INITIAL_NUMBER_TRANSACTIONS);
4427 		if (!trtbl) {
4428 			err = -ENOMEM;
4429 			goto out;
4430 		}
4431 	}
4432 
4433 	tr = Add2Ptr(trtbl, transact_id);
4434 
4435 	if (transact_id >= bytes_per_rt(trtbl) ||
4436 	    tr->next != RESTART_ENTRY_ALLOCATED_LE) {
4437 		tr = alloc_rsttbl_from_idx(&trtbl, transact_id);
4438 		if (!tr) {
4439 			err = -ENOMEM;
4440 			goto out;
4441 		}
4442 		tr->transact_state = TransactionActive;
4443 		tr->first_lsn = cpu_to_le64(rec_lsn);
4444 	}
4445 
4446 	tr->prev_lsn = tr->undo_next_lsn = cpu_to_le64(rec_lsn);
4447 
4448 	/*
4449 	 * If this is a compensation log record, then change
4450 	 * the undo_next_lsn to be the undo_next_lsn of this record.
4451 	 */
4452 	if (lrh->undo_op == cpu_to_le16(CompensationLogRecord))
4453 		tr->undo_next_lsn = frh->client_undo_next_lsn;
4454 
4455 	/* Dispatch to handle log record depending on type. */
4456 	switch (le16_to_cpu(lrh->redo_op)) {
4457 	case InitializeFileRecordSegment:
4458 	case DeallocateFileRecordSegment:
4459 	case WriteEndOfFileRecordSegment:
4460 	case CreateAttribute:
4461 	case DeleteAttribute:
4462 	case UpdateResidentValue:
4463 	case UpdateNonresidentValue:
4464 	case UpdateMappingPairs:
4465 	case SetNewAttributeSizes:
4466 	case AddIndexEntryRoot:
4467 	case DeleteIndexEntryRoot:
4468 	case AddIndexEntryAllocation:
4469 	case DeleteIndexEntryAllocation:
4470 	case WriteEndOfIndexBuffer:
4471 	case SetIndexEntryVcnRoot:
4472 	case SetIndexEntryVcnAllocation:
4473 	case UpdateFileNameRoot:
4474 	case UpdateFileNameAllocation:
4475 	case SetBitsInNonresidentBitMap:
4476 	case ClearBitsInNonresidentBitMap:
4477 	case UpdateRecordDataRoot:
4478 	case UpdateRecordDataAllocation:
4479 	case ZeroEndOfFileRecord:
4480 		t16 = le16_to_cpu(lrh->target_attr);
4481 		t64 = le64_to_cpu(lrh->target_vcn);
4482 		dp = find_dp(dptbl, t16, t64);
4483 
4484 		if (dp)
4485 			goto copy_lcns;
4486 
4487 		/*
4488 		 * Calculate the number of clusters per page the system
4489 		 * which wrote the checkpoint, possibly creating the table.
4490 		 */
4491 		if (dptbl) {
4492 			t32 = (le16_to_cpu(dptbl->size) -
4493 			       sizeof(struct DIR_PAGE_ENTRY)) /
4494 			      sizeof(u64);
4495 		} else {
4496 			t32 = log->clst_per_page;
4497 			kfree(dptbl);
4498 			dptbl = init_rsttbl(struct_size(dp, page_lcns, t32),
4499 					    32);
4500 			if (!dptbl) {
4501 				err = -ENOMEM;
4502 				goto out;
4503 			}
4504 		}
4505 
4506 		dp = alloc_rsttbl_idx(&dptbl);
4507 		if (!dp) {
4508 			err = -ENOMEM;
4509 			goto out;
4510 		}
4511 		dp->target_attr = cpu_to_le32(t16);
4512 		dp->transfer_len = cpu_to_le32(t32 << sbi->cluster_bits);
4513 		dp->lcns_follow = cpu_to_le32(t32);
4514 		dp->vcn = cpu_to_le64(t64 & ~((u64)t32 - 1));
4515 		dp->oldest_lsn = cpu_to_le64(rec_lsn);
4516 
4517 copy_lcns:
4518 		/*
4519 		 * Copy the Lcns from the log record into the Dirty Page Entry.
4520 		 * TODO: For different page size support, must somehow make
4521 		 * whole routine a loop, case Lcns do not fit below.
4522 		 */
4523 		t16 = le16_to_cpu(lrh->lcns_follow);
4524 		for (i = 0; i < t16; i++) {
4525 			size_t j = (size_t)(le64_to_cpu(lrh->target_vcn) -
4526 					    le64_to_cpu(dp->vcn));
4527 			dp->page_lcns[j + i] = lrh->page_lcns[i];
4528 		}
4529 
4530 		goto next_log_record_analyze;
4531 
4532 	case DeleteDirtyClusters: {
4533 		u32 range_count =
4534 			le16_to_cpu(lrh->redo_len) / sizeof(struct LCN_RANGE);
4535 		const struct LCN_RANGE *r =
4536 			Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4537 
4538 		/* Loop through all of the Lcn ranges this log record. */
4539 		for (i = 0; i < range_count; i++, r++) {
4540 			u64 lcn0 = le64_to_cpu(r->lcn);
4541 			u64 lcn_e = lcn0 + le64_to_cpu(r->len) - 1;
4542 
4543 			dp = NULL;
4544 			while ((dp = enum_rstbl(dptbl, dp))) {
4545 				u32 j;
4546 
4547 				t32 = le32_to_cpu(dp->lcns_follow);
4548 				for (j = 0; j < t32; j++) {
4549 					t64 = le64_to_cpu(dp->page_lcns[j]);
4550 					if (t64 >= lcn0 && t64 <= lcn_e)
4551 						dp->page_lcns[j] = 0;
4552 				}
4553 			}
4554 		}
4555 		goto next_log_record_analyze;
4556 		;
4557 	}
4558 
4559 	case OpenNonresidentAttribute:
4560 		t16 = le16_to_cpu(lrh->target_attr);
4561 		if (t16 >= bytes_per_rt(oatbl)) {
4562 			/*
4563 			 * Compute how big the table needs to be.
4564 			 * Add 10 extra entries for some cushion.
4565 			 */
4566 			u32 new_e = t16 / le16_to_cpu(oatbl->size);
4567 
4568 			new_e += 10 - le16_to_cpu(oatbl->used);
4569 
4570 			oatbl = extend_rsttbl(oatbl, new_e, ~0u);
4571 			log->open_attr_tbl = oatbl;
4572 			if (!oatbl) {
4573 				err = -ENOMEM;
4574 				goto out;
4575 			}
4576 		}
4577 
4578 		/* Point to the entry being opened. */
4579 		oe = alloc_rsttbl_from_idx(&oatbl, t16);
4580 		log->open_attr_tbl = oatbl;
4581 		if (!oe) {
4582 			err = -ENOMEM;
4583 			goto out;
4584 		}
4585 
4586 		/* Initialize this entry from the log record. */
4587 		t16 = le16_to_cpu(lrh->redo_off);
4588 		if (!rst->major_ver) {
4589 			/* Convert version '0' into version '1'. */
4590 			struct OPEN_ATTR_ENRTY_32 *oe0 = Add2Ptr(lrh, t16);
4591 
4592 			oe->bytes_per_index = oe0->bytes_per_index;
4593 			oe->type = oe0->type;
4594 			oe->is_dirty_pages = oe0->is_dirty_pages;
4595 			oe->name_len = 0; //oe0.name_len;
4596 			oe->ref = oe0->ref;
4597 			oe->open_record_lsn = oe0->open_record_lsn;
4598 		} else {
4599 			memcpy(oe, Add2Ptr(lrh, t16), bytes_per_attr_entry);
4600 		}
4601 
4602 		t16 = le16_to_cpu(lrh->undo_len);
4603 		if (t16) {
4604 			oe->ptr = kmalloc(t16, GFP_NOFS);
4605 			if (!oe->ptr) {
4606 				err = -ENOMEM;
4607 				goto out;
4608 			}
4609 			oe->name_len = t16 / sizeof(short);
4610 			memcpy(oe->ptr,
4611 			       Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)), t16);
4612 			oe->is_attr_name = 1;
4613 		} else {
4614 			oe->ptr = NULL;
4615 			oe->is_attr_name = 0;
4616 		}
4617 
4618 		goto next_log_record_analyze;
4619 
4620 	case HotFix:
4621 		t16 = le16_to_cpu(lrh->target_attr);
4622 		t64 = le64_to_cpu(lrh->target_vcn);
4623 		dp = find_dp(dptbl, t16, t64);
4624 		if (dp) {
4625 			size_t j = le64_to_cpu(lrh->target_vcn) -
4626 				   le64_to_cpu(dp->vcn);
4627 			if (dp->page_lcns[j])
4628 				dp->page_lcns[j] = lrh->page_lcns[0];
4629 		}
4630 		goto next_log_record_analyze;
4631 
4632 	case EndTopLevelAction:
4633 		tr = Add2Ptr(trtbl, transact_id);
4634 		tr->prev_lsn = cpu_to_le64(rec_lsn);
4635 		tr->undo_next_lsn = frh->client_undo_next_lsn;
4636 		goto next_log_record_analyze;
4637 
4638 	case PrepareTransaction:
4639 		tr = Add2Ptr(trtbl, transact_id);
4640 		tr->transact_state = TransactionPrepared;
4641 		goto next_log_record_analyze;
4642 
4643 	case CommitTransaction:
4644 		tr = Add2Ptr(trtbl, transact_id);
4645 		tr->transact_state = TransactionCommitted;
4646 		goto next_log_record_analyze;
4647 
4648 	case ForgetTransaction:
4649 		free_rsttbl_idx(trtbl, transact_id);
4650 		goto next_log_record_analyze;
4651 
4652 	case Noop:
4653 	case OpenAttributeTableDump:
4654 	case AttributeNamesDump:
4655 	case DirtyPageTableDump:
4656 	case TransactionTableDump:
4657 		/* The following cases require no action the Analysis Pass. */
4658 		goto next_log_record_analyze;
4659 
4660 	default:
4661 		/*
4662 		 * All codes will be explicitly handled.
4663 		 * If we see a code we do not expect, then we are trouble.
4664 		 */
4665 		goto next_log_record_analyze;
4666 	}
4667 
4668 end_log_records_enumerate:
4669 	lcb_put(lcb);
4670 	lcb = NULL;
4671 
4672 	/*
4673 	 * Scan the Dirty Page Table and Transaction Table for
4674 	 * the lowest lsn, and return it as the Redo lsn.
4675 	 */
4676 	dp = NULL;
4677 	while ((dp = enum_rstbl(dptbl, dp))) {
4678 		t64 = le64_to_cpu(dp->oldest_lsn);
4679 		if (t64 && t64 < rlsn)
4680 			rlsn = t64;
4681 	}
4682 
4683 	tr = NULL;
4684 	while ((tr = enum_rstbl(trtbl, tr))) {
4685 		t64 = le64_to_cpu(tr->first_lsn);
4686 		if (t64 && t64 < rlsn)
4687 			rlsn = t64;
4688 	}
4689 
4690 	/*
4691 	 * Only proceed if the Dirty Page Table or Transaction
4692 	 * table are not empty.
4693 	 */
4694 	if ((!dptbl || !dptbl->total) && (!trtbl || !trtbl->total))
4695 		goto end_reply;
4696 
4697 	sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
4698 	if (is_ro)
4699 		goto out;
4700 
4701 	/* Reopen all of the attributes with dirty pages. */
4702 	oe = NULL;
4703 next_open_attribute:
4704 
4705 	oe = enum_rstbl(oatbl, oe);
4706 	if (!oe) {
4707 		err = 0;
4708 		dp = NULL;
4709 		goto next_dirty_page;
4710 	}
4711 
4712 	oa = kzalloc(sizeof(struct OpenAttr), GFP_NOFS);
4713 	if (!oa) {
4714 		err = -ENOMEM;
4715 		goto out;
4716 	}
4717 
4718 	inode = ntfs_iget5(sbi->sb, &oe->ref, NULL);
4719 	if (IS_ERR(inode))
4720 		goto fake_attr;
4721 
4722 	if (is_bad_inode(inode)) {
4723 		iput(inode);
4724 fake_attr:
4725 		if (oa->ni) {
4726 			iput(&oa->ni->vfs_inode);
4727 			oa->ni = NULL;
4728 		}
4729 
4730 		attr = attr_create_nonres_log(sbi, oe->type, 0, oe->ptr,
4731 					      oe->name_len, 0);
4732 		if (!attr) {
4733 			kfree(oa);
4734 			err = -ENOMEM;
4735 			goto out;
4736 		}
4737 		oa->attr = attr;
4738 		oa->run1 = &oa->run0;
4739 		goto final_oe;
4740 	}
4741 
4742 	ni_oe = ntfs_i(inode);
4743 	oa->ni = ni_oe;
4744 
4745 	attr = ni_find_attr(ni_oe, NULL, NULL, oe->type, oe->ptr, oe->name_len,
4746 			    NULL, NULL);
4747 
4748 	if (!attr)
4749 		goto fake_attr;
4750 
4751 	t32 = le32_to_cpu(attr->size);
4752 	oa->attr = kmemdup(attr, t32, GFP_NOFS);
4753 	if (!oa->attr)
4754 		goto fake_attr;
4755 
4756 	if (!S_ISDIR(inode->i_mode)) {
4757 		if (attr->type == ATTR_DATA && !attr->name_len) {
4758 			oa->run1 = &ni_oe->file.run;
4759 			goto final_oe;
4760 		}
4761 	} else {
4762 		if (attr->type == ATTR_ALLOC &&
4763 		    attr->name_len == ARRAY_SIZE(I30_NAME) &&
4764 		    !memcmp(attr_name(attr), I30_NAME, sizeof(I30_NAME))) {
4765 			oa->run1 = &ni_oe->dir.alloc_run;
4766 			goto final_oe;
4767 		}
4768 	}
4769 
4770 	if (attr->non_res) {
4771 		u16 roff = le16_to_cpu(attr->nres.run_off);
4772 		CLST svcn = le64_to_cpu(attr->nres.svcn);
4773 
4774 		err = run_unpack(&oa->run0, sbi, inode->i_ino, svcn,
4775 				 le64_to_cpu(attr->nres.evcn), svcn,
4776 				 Add2Ptr(attr, roff), t32 - roff);
4777 		if (err < 0) {
4778 			kfree(oa->attr);
4779 			oa->attr = NULL;
4780 			goto fake_attr;
4781 		}
4782 		err = 0;
4783 	}
4784 	oa->run1 = &oa->run0;
4785 	attr = oa->attr;
4786 
4787 final_oe:
4788 	if (oe->is_attr_name == 1)
4789 		kfree(oe->ptr);
4790 	oe->is_attr_name = 0;
4791 	oe->ptr = oa;
4792 	oe->name_len = attr->name_len;
4793 
4794 	goto next_open_attribute;
4795 
4796 	/*
4797 	 * Now loop through the dirty page table to extract all of the Vcn/Lcn.
4798 	 * Mapping that we have, and insert it into the appropriate run.
4799 	 */
4800 next_dirty_page:
4801 	dp = enum_rstbl(dptbl, dp);
4802 	if (!dp)
4803 		goto do_redo_1;
4804 
4805 	oe = Add2Ptr(oatbl, le32_to_cpu(dp->target_attr));
4806 
4807 	if (oe->next != RESTART_ENTRY_ALLOCATED_LE)
4808 		goto next_dirty_page;
4809 
4810 	oa = oe->ptr;
4811 	if (!oa)
4812 		goto next_dirty_page;
4813 
4814 	i = -1;
4815 next_dirty_page_vcn:
4816 	i += 1;
4817 	if (i >= le32_to_cpu(dp->lcns_follow))
4818 		goto next_dirty_page;
4819 
4820 	vcn = le64_to_cpu(dp->vcn) + i;
4821 	size = (vcn + 1) << sbi->cluster_bits;
4822 
4823 	if (!dp->page_lcns[i])
4824 		goto next_dirty_page_vcn;
4825 
4826 	rno = ino_get(&oe->ref);
4827 	if (rno <= MFT_REC_MIRR &&
4828 	    size < (MFT_REC_VOL + 1) * sbi->record_size &&
4829 	    oe->type == ATTR_DATA) {
4830 		goto next_dirty_page_vcn;
4831 	}
4832 
4833 	lcn = le64_to_cpu(dp->page_lcns[i]);
4834 
4835 	if ((!run_lookup_entry(oa->run1, vcn, &lcn0, &len0, NULL) ||
4836 	     lcn0 != lcn) &&
4837 	    !run_add_entry(oa->run1, vcn, lcn, 1, false)) {
4838 		err = -ENOMEM;
4839 		goto out;
4840 	}
4841 	attr = oa->attr;
4842 	t64 = le64_to_cpu(attr->nres.alloc_size);
4843 	if (size > t64) {
4844 		attr->nres.valid_size = attr->nres.data_size =
4845 			attr->nres.alloc_size = cpu_to_le64(size);
4846 	}
4847 	goto next_dirty_page_vcn;
4848 
4849 do_redo_1:
4850 	/*
4851 	 * Perform the Redo Pass, to restore all of the dirty pages to the same
4852 	 * contents that they had immediately before the crash. If the dirty
4853 	 * page table is empty, then we can skip the entire Redo Pass.
4854 	 */
4855 	if (!dptbl || !dptbl->total)
4856 		goto do_undo_action;
4857 
4858 	rec_lsn = rlsn;
4859 
4860 	/*
4861 	 * Read the record at the Redo lsn, before falling
4862 	 * into common code to handle each record.
4863 	 */
4864 	err = read_log_rec_lcb(log, rlsn, lcb_ctx_next, &lcb);
4865 	if (err)
4866 		goto out;
4867 
4868 	/*
4869 	 * Now loop to read all of our log records forwards, until
4870 	 * we hit the end of the file, cleaning up at the end.
4871 	 */
4872 do_action_next:
4873 	frh = lcb->lrh;
4874 
4875 	if (LfsClientRecord != frh->record_type)
4876 		goto read_next_log_do_action;
4877 
4878 	transact_id = le32_to_cpu(frh->transact_id);
4879 	rec_len = le32_to_cpu(frh->client_data_len);
4880 	lrh = lcb->log_rec;
4881 
4882 	if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
4883 		err = -EINVAL;
4884 		goto out;
4885 	}
4886 
4887 	/* Ignore log records that do not update pages. */
4888 	if (lrh->lcns_follow)
4889 		goto find_dirty_page;
4890 
4891 	goto read_next_log_do_action;
4892 
4893 find_dirty_page:
4894 	t16 = le16_to_cpu(lrh->target_attr);
4895 	t64 = le64_to_cpu(lrh->target_vcn);
4896 	dp = find_dp(dptbl, t16, t64);
4897 
4898 	if (!dp)
4899 		goto read_next_log_do_action;
4900 
4901 	if (rec_lsn < le64_to_cpu(dp->oldest_lsn))
4902 		goto read_next_log_do_action;
4903 
4904 	t16 = le16_to_cpu(lrh->target_attr);
4905 	if (t16 >= bytes_per_rt(oatbl)) {
4906 		err = -EINVAL;
4907 		goto out;
4908 	}
4909 
4910 	oe = Add2Ptr(oatbl, t16);
4911 
4912 	if (oe->next != RESTART_ENTRY_ALLOCATED_LE) {
4913 		err = -EINVAL;
4914 		goto out;
4915 	}
4916 
4917 	oa = oe->ptr;
4918 
4919 	if (!oa) {
4920 		err = -EINVAL;
4921 		goto out;
4922 	}
4923 	attr = oa->attr;
4924 
4925 	vcn = le64_to_cpu(lrh->target_vcn);
4926 
4927 	if (!run_lookup_entry(oa->run1, vcn, &lcn, NULL, NULL) ||
4928 	    lcn == SPARSE_LCN) {
4929 		goto read_next_log_do_action;
4930 	}
4931 
4932 	/* Point to the Redo data and get its length. */
4933 	data = Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4934 	dlen = le16_to_cpu(lrh->redo_len);
4935 
4936 	/* Shorten length by any Lcns which were deleted. */
4937 	saved_len = dlen;
4938 
4939 	for (i = le16_to_cpu(lrh->lcns_follow); i; i--) {
4940 		size_t j;
4941 		u32 alen, voff;
4942 
4943 		voff = le16_to_cpu(lrh->record_off) +
4944 		       le16_to_cpu(lrh->attr_off);
4945 		voff += le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
4946 
4947 		/* If the Vcn question is allocated, we can just get out. */
4948 		j = le64_to_cpu(lrh->target_vcn) - le64_to_cpu(dp->vcn);
4949 		if (dp->page_lcns[j + i - 1])
4950 			break;
4951 
4952 		if (!saved_len)
4953 			saved_len = 1;
4954 
4955 		/*
4956 		 * Calculate the allocated space left relative to the
4957 		 * log record Vcn, after removing this unallocated Vcn.
4958 		 */
4959 		alen = (i - 1) << sbi->cluster_bits;
4960 
4961 		/*
4962 		 * If the update described this log record goes beyond
4963 		 * the allocated space, then we will have to reduce the length.
4964 		 */
4965 		if (voff >= alen)
4966 			dlen = 0;
4967 		else if (voff + dlen > alen)
4968 			dlen = alen - voff;
4969 	}
4970 
4971 	/*
4972 	 * If the resulting dlen from above is now zero,
4973 	 * we can skip this log record.
4974 	 */
4975 	if (!dlen && saved_len)
4976 		goto read_next_log_do_action;
4977 
4978 	t16 = le16_to_cpu(lrh->redo_op);
4979 	if (can_skip_action(t16))
4980 		goto read_next_log_do_action;
4981 
4982 	/* Apply the Redo operation a common routine. */
4983 	err = do_action(log, oe, lrh, t16, data, dlen, rec_len, &rec_lsn);
4984 	if (err)
4985 		goto out;
4986 
4987 	/* Keep reading and looping back until end of file. */
4988 read_next_log_do_action:
4989 	err = read_next_log_rec(log, lcb, &rec_lsn);
4990 	if (!err && rec_lsn)
4991 		goto do_action_next;
4992 
4993 	lcb_put(lcb);
4994 	lcb = NULL;
4995 
4996 do_undo_action:
4997 	/* Scan Transaction Table. */
4998 	tr = NULL;
4999 transaction_table_next:
5000 	tr = enum_rstbl(trtbl, tr);
5001 	if (!tr)
5002 		goto undo_action_done;
5003 
5004 	if (TransactionActive != tr->transact_state || !tr->undo_next_lsn) {
5005 		free_rsttbl_idx(trtbl, PtrOffset(trtbl, tr));
5006 		goto transaction_table_next;
5007 	}
5008 
5009 	log->transaction_id = PtrOffset(trtbl, tr);
5010 	undo_next_lsn = le64_to_cpu(tr->undo_next_lsn);
5011 
5012 	/*
5013 	 * We only have to do anything if the transaction has
5014 	 * something its undo_next_lsn field.
5015 	 */
5016 	if (!undo_next_lsn)
5017 		goto commit_undo;
5018 
5019 	/* Read the first record to be undone by this transaction. */
5020 	err = read_log_rec_lcb(log, undo_next_lsn, lcb_ctx_undo_next, &lcb);
5021 	if (err)
5022 		goto out;
5023 
5024 	/*
5025 	 * Now loop to read all of our log records forwards,
5026 	 * until we hit the end of the file, cleaning up at the end.
5027 	 */
5028 undo_action_next:
5029 
5030 	lrh = lcb->log_rec;
5031 	frh = lcb->lrh;
5032 	transact_id = le32_to_cpu(frh->transact_id);
5033 	rec_len = le32_to_cpu(frh->client_data_len);
5034 
5035 	if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
5036 		err = -EINVAL;
5037 		goto out;
5038 	}
5039 
5040 	if (lrh->undo_op == cpu_to_le16(Noop))
5041 		goto read_next_log_undo_action;
5042 
5043 	oe = Add2Ptr(oatbl, le16_to_cpu(lrh->target_attr));
5044 	oa = oe->ptr;
5045 
5046 	t16 = le16_to_cpu(lrh->lcns_follow);
5047 	if (!t16)
5048 		goto add_allocated_vcns;
5049 
5050 	is_mapped = run_lookup_entry(oa->run1, le64_to_cpu(lrh->target_vcn),
5051 				     &lcn, &clen, NULL);
5052 
5053 	/*
5054 	 * If the mapping isn't already the table or the  mapping
5055 	 * corresponds to a hole the mapping, we need to make sure
5056 	 * there is no partial page already memory.
5057 	 */
5058 	if (is_mapped && lcn != SPARSE_LCN && clen >= t16)
5059 		goto add_allocated_vcns;
5060 
5061 	vcn = le64_to_cpu(lrh->target_vcn);
5062 	vcn &= ~(log->clst_per_page - 1);
5063 
5064 add_allocated_vcns:
5065 	for (i = 0, vcn = le64_to_cpu(lrh->target_vcn),
5066 	    size = (vcn + 1) << sbi->cluster_bits;
5067 	     i < t16; i++, vcn += 1, size += sbi->cluster_size) {
5068 		attr = oa->attr;
5069 		if (!attr->non_res) {
5070 			if (size > le32_to_cpu(attr->res.data_size))
5071 				attr->res.data_size = cpu_to_le32(size);
5072 		} else {
5073 			if (size > le64_to_cpu(attr->nres.data_size))
5074 				attr->nres.valid_size = attr->nres.data_size =
5075 					attr->nres.alloc_size =
5076 						cpu_to_le64(size);
5077 		}
5078 	}
5079 
5080 	t16 = le16_to_cpu(lrh->undo_op);
5081 	if (can_skip_action(t16))
5082 		goto read_next_log_undo_action;
5083 
5084 	/* Point to the Redo data and get its length. */
5085 	data = Add2Ptr(lrh, le16_to_cpu(lrh->undo_off));
5086 	dlen = le16_to_cpu(lrh->undo_len);
5087 
5088 	/* It is time to apply the undo action. */
5089 	err = do_action(log, oe, lrh, t16, data, dlen, rec_len, NULL);
5090 
5091 read_next_log_undo_action:
5092 	/*
5093 	 * Keep reading and looping back until we have read the
5094 	 * last record for this transaction.
5095 	 */
5096 	err = read_next_log_rec(log, lcb, &rec_lsn);
5097 	if (err)
5098 		goto out;
5099 
5100 	if (rec_lsn)
5101 		goto undo_action_next;
5102 
5103 	lcb_put(lcb);
5104 	lcb = NULL;
5105 
5106 commit_undo:
5107 	free_rsttbl_idx(trtbl, log->transaction_id);
5108 
5109 	log->transaction_id = 0;
5110 
5111 	goto transaction_table_next;
5112 
5113 undo_action_done:
5114 
5115 	ntfs_update_mftmirr(sbi, 0);
5116 
5117 	sbi->flags &= ~NTFS_FLAGS_NEED_REPLAY;
5118 
5119 end_reply:
5120 
5121 	err = 0;
5122 	if (is_ro)
5123 		goto out;
5124 
5125 	rh = kzalloc(log->page_size, GFP_NOFS);
5126 	if (!rh) {
5127 		err = -ENOMEM;
5128 		goto out;
5129 	}
5130 
5131 	rh->rhdr.sign = NTFS_RSTR_SIGNATURE;
5132 	rh->rhdr.fix_off = cpu_to_le16(offsetof(struct RESTART_HDR, fixups));
5133 	t16 = (log->page_size >> SECTOR_SHIFT) + 1;
5134 	rh->rhdr.fix_num = cpu_to_le16(t16);
5135 	rh->sys_page_size = cpu_to_le32(log->page_size);
5136 	rh->page_size = cpu_to_le32(log->page_size);
5137 
5138 	t16 = ALIGN(offsetof(struct RESTART_HDR, fixups) + sizeof(short) * t16,
5139 		    8);
5140 	rh->ra_off = cpu_to_le16(t16);
5141 	rh->minor_ver = cpu_to_le16(1); // 0x1A:
5142 	rh->major_ver = cpu_to_le16(1); // 0x1C:
5143 
5144 	ra2 = Add2Ptr(rh, t16);
5145 	memcpy(ra2, ra, sizeof(struct RESTART_AREA));
5146 
5147 	ra2->client_idx[0] = 0;
5148 	ra2->client_idx[1] = LFS_NO_CLIENT_LE;
5149 	ra2->flags = cpu_to_le16(2);
5150 
5151 	le32_add_cpu(&ra2->open_log_count, 1);
5152 
5153 	ntfs_fix_pre_write(&rh->rhdr, log->page_size);
5154 
5155 	err = ntfs_sb_write_run(sbi, &ni->file.run, 0, rh, log->page_size);
5156 	if (!err)
5157 		err = ntfs_sb_write_run(sbi, &log->ni->file.run, log->page_size,
5158 					rh, log->page_size);
5159 
5160 	kfree(rh);
5161 	if (err)
5162 		goto out;
5163 
5164 out:
5165 	kfree(rst);
5166 	if (lcb)
5167 		lcb_put(lcb);
5168 
5169 	/*
5170 	 * Scan the Open Attribute Table to close all of
5171 	 * the open attributes.
5172 	 */
5173 	oe = NULL;
5174 	while ((oe = enum_rstbl(oatbl, oe))) {
5175 		rno = ino_get(&oe->ref);
5176 
5177 		if (oe->is_attr_name == 1) {
5178 			kfree(oe->ptr);
5179 			oe->ptr = NULL;
5180 			continue;
5181 		}
5182 
5183 		if (oe->is_attr_name)
5184 			continue;
5185 
5186 		oa = oe->ptr;
5187 		if (!oa)
5188 			continue;
5189 
5190 		run_close(&oa->run0);
5191 		kfree(oa->attr);
5192 		if (oa->ni)
5193 			iput(&oa->ni->vfs_inode);
5194 		kfree(oa);
5195 	}
5196 
5197 	kfree(trtbl);
5198 	kfree(oatbl);
5199 	kfree(dptbl);
5200 	kfree(attr_names);
5201 	kfree(rst_info.r_page);
5202 
5203 	kfree(ra);
5204 	kfree(log->one_page_buf);
5205 
5206 	if (err)
5207 		sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
5208 
5209 	if (err == -EROFS)
5210 		err = 0;
5211 	else if (log->set_dirty)
5212 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
5213 
5214 	kfree(log);
5215 
5216 	return err;
5217 }
5218