xref: /openbmc/linux/fs/ntfs3/fslog.c (revision 83b975b5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *
4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5  *
6  */
7 
8 #include <linux/blkdev.h>
9 #include <linux/fs.h>
10 #include <linux/random.h>
11 #include <linux/slab.h>
12 
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16 
17 /*
18  * LOG FILE structs
19  */
20 
21 // clang-format off
22 
23 #define MaxLogFileSize     0x100000000ull
24 #define DefaultLogPageSize 4096
25 #define MinLogRecordPages  0x30
26 
27 struct RESTART_HDR {
28 	struct NTFS_RECORD_HEADER rhdr; // 'RSTR'
29 	__le32 sys_page_size; // 0x10: Page size of the system which initialized the log.
30 	__le32 page_size;     // 0x14: Log page size used for this log file.
31 	__le16 ra_off;        // 0x18:
32 	__le16 minor_ver;     // 0x1A:
33 	__le16 major_ver;     // 0x1C:
34 	__le16 fixups[];
35 };
36 
37 #define LFS_NO_CLIENT 0xffff
38 #define LFS_NO_CLIENT_LE cpu_to_le16(0xffff)
39 
40 struct CLIENT_REC {
41 	__le64 oldest_lsn;
42 	__le64 restart_lsn; // 0x08:
43 	__le16 prev_client; // 0x10:
44 	__le16 next_client; // 0x12:
45 	__le16 seq_num;     // 0x14:
46 	u8 align[6];        // 0x16:
47 	__le32 name_bytes;  // 0x1C: In bytes.
48 	__le16 name[32];    // 0x20: Name of client.
49 };
50 
51 static_assert(sizeof(struct CLIENT_REC) == 0x60);
52 
53 /* Two copies of these will exist at the beginning of the log file */
54 struct RESTART_AREA {
55 	__le64 current_lsn;    // 0x00: Current logical end of log file.
56 	__le16 log_clients;    // 0x08: Maximum number of clients.
57 	__le16 client_idx[2];  // 0x0A: Free/use index into the client record arrays.
58 	__le16 flags;          // 0x0E: See RESTART_SINGLE_PAGE_IO.
59 	__le32 seq_num_bits;   // 0x10: The number of bits in sequence number.
60 	__le16 ra_len;         // 0x14:
61 	__le16 client_off;     // 0x16:
62 	__le64 l_size;         // 0x18: Usable log file size.
63 	__le32 last_lsn_data_len; // 0x20:
64 	__le16 rec_hdr_len;    // 0x24: Log page data offset.
65 	__le16 data_off;       // 0x26: Log page data length.
66 	__le32 open_log_count; // 0x28:
67 	__le32 align[5];       // 0x2C:
68 	struct CLIENT_REC clients[]; // 0x40:
69 };
70 
71 struct LOG_REC_HDR {
72 	__le16 redo_op;      // 0x00:  NTFS_LOG_OPERATION
73 	__le16 undo_op;      // 0x02:  NTFS_LOG_OPERATION
74 	__le16 redo_off;     // 0x04:  Offset to Redo record.
75 	__le16 redo_len;     // 0x06:  Redo length.
76 	__le16 undo_off;     // 0x08:  Offset to Undo record.
77 	__le16 undo_len;     // 0x0A:  Undo length.
78 	__le16 target_attr;  // 0x0C:
79 	__le16 lcns_follow;  // 0x0E:
80 	__le16 record_off;   // 0x10:
81 	__le16 attr_off;     // 0x12:
82 	__le16 cluster_off;  // 0x14:
83 	__le16 reserved;     // 0x16:
84 	__le64 target_vcn;   // 0x18:
85 	__le64 page_lcns[];  // 0x20:
86 };
87 
88 static_assert(sizeof(struct LOG_REC_HDR) == 0x20);
89 
90 #define RESTART_ENTRY_ALLOCATED    0xFFFFFFFF
91 #define RESTART_ENTRY_ALLOCATED_LE cpu_to_le32(0xFFFFFFFF)
92 
93 struct RESTART_TABLE {
94 	__le16 size;       // 0x00: In bytes
95 	__le16 used;       // 0x02: Entries
96 	__le16 total;      // 0x04: Entries
97 	__le16 res[3];     // 0x06:
98 	__le32 free_goal;  // 0x0C:
99 	__le32 first_free; // 0x10:
100 	__le32 last_free;  // 0x14:
101 
102 };
103 
104 static_assert(sizeof(struct RESTART_TABLE) == 0x18);
105 
106 struct ATTR_NAME_ENTRY {
107 	__le16 off; // Offset in the Open attribute Table.
108 	__le16 name_bytes;
109 	__le16 name[];
110 };
111 
112 struct OPEN_ATTR_ENRTY {
113 	__le32 next;            // 0x00: RESTART_ENTRY_ALLOCATED if allocated
114 	__le32 bytes_per_index; // 0x04:
115 	enum ATTR_TYPE type;    // 0x08:
116 	u8 is_dirty_pages;      // 0x0C:
117 	u8 is_attr_name;        // 0x0B: Faked field to manage 'ptr'
118 	u8 name_len;            // 0x0C: Faked field to manage 'ptr'
119 	u8 res;
120 	struct MFT_REF ref;     // 0x10: File Reference of file containing attribute
121 	__le64 open_record_lsn; // 0x18:
122 	void *ptr;              // 0x20:
123 };
124 
125 /* 32 bit version of 'struct OPEN_ATTR_ENRTY' */
126 struct OPEN_ATTR_ENRTY_32 {
127 	__le32 next;            // 0x00: RESTART_ENTRY_ALLOCATED if allocated
128 	__le32 ptr;             // 0x04:
129 	struct MFT_REF ref;     // 0x08:
130 	__le64 open_record_lsn; // 0x10:
131 	u8 is_dirty_pages;      // 0x18:
132 	u8 is_attr_name;        // 0x19:
133 	u8 res1[2];
134 	enum ATTR_TYPE type;    // 0x1C:
135 	u8 name_len;            // 0x20: In wchar
136 	u8 res2[3];
137 	__le32 AttributeName;   // 0x24:
138 	__le32 bytes_per_index; // 0x28:
139 };
140 
141 #define SIZEOF_OPENATTRIBUTEENTRY0 0x2c
142 // static_assert( 0x2C == sizeof(struct OPEN_ATTR_ENRTY_32) );
143 static_assert(sizeof(struct OPEN_ATTR_ENRTY) < SIZEOF_OPENATTRIBUTEENTRY0);
144 
145 /*
146  * One entry exists in the Dirty Pages Table for each page which is dirty at
147  * the time the Restart Area is written.
148  */
149 struct DIR_PAGE_ENTRY {
150 	__le32 next;         // 0x00: RESTART_ENTRY_ALLOCATED if allocated
151 	__le32 target_attr;  // 0x04: Index into the Open attribute Table
152 	__le32 transfer_len; // 0x08:
153 	__le32 lcns_follow;  // 0x0C:
154 	__le64 vcn;          // 0x10: Vcn of dirty page
155 	__le64 oldest_lsn;   // 0x18:
156 	__le64 page_lcns[];  // 0x20:
157 };
158 
159 static_assert(sizeof(struct DIR_PAGE_ENTRY) == 0x20);
160 
161 /* 32 bit version of 'struct DIR_PAGE_ENTRY' */
162 struct DIR_PAGE_ENTRY_32 {
163 	__le32 next;		// 0x00: RESTART_ENTRY_ALLOCATED if allocated
164 	__le32 target_attr;	// 0x04: Index into the Open attribute Table
165 	__le32 transfer_len;	// 0x08:
166 	__le32 lcns_follow;	// 0x0C:
167 	__le32 reserved;	// 0x10:
168 	__le32 vcn_low;		// 0x14: Vcn of dirty page
169 	__le32 vcn_hi;		// 0x18: Vcn of dirty page
170 	__le32 oldest_lsn_low;	// 0x1C:
171 	__le32 oldest_lsn_hi;	// 0x1C:
172 	__le32 page_lcns_low;	// 0x24:
173 	__le32 page_lcns_hi;	// 0x24:
174 };
175 
176 static_assert(offsetof(struct DIR_PAGE_ENTRY_32, vcn_low) == 0x14);
177 static_assert(sizeof(struct DIR_PAGE_ENTRY_32) == 0x2c);
178 
179 enum transact_state {
180 	TransactionUninitialized = 0,
181 	TransactionActive,
182 	TransactionPrepared,
183 	TransactionCommitted
184 };
185 
186 struct TRANSACTION_ENTRY {
187 	__le32 next;          // 0x00: RESTART_ENTRY_ALLOCATED if allocated
188 	u8 transact_state;    // 0x04:
189 	u8 reserved[3];       // 0x05:
190 	__le64 first_lsn;     // 0x08:
191 	__le64 prev_lsn;      // 0x10:
192 	__le64 undo_next_lsn; // 0x18:
193 	__le32 undo_records;  // 0x20: Number of undo log records pending abort
194 	__le32 undo_len;      // 0x24: Total undo size
195 };
196 
197 static_assert(sizeof(struct TRANSACTION_ENTRY) == 0x28);
198 
199 struct NTFS_RESTART {
200 	__le32 major_ver;             // 0x00:
201 	__le32 minor_ver;             // 0x04:
202 	__le64 check_point_start;     // 0x08:
203 	__le64 open_attr_table_lsn;   // 0x10:
204 	__le64 attr_names_lsn;        // 0x18:
205 	__le64 dirty_pages_table_lsn; // 0x20:
206 	__le64 transact_table_lsn;    // 0x28:
207 	__le32 open_attr_len;         // 0x30: In bytes
208 	__le32 attr_names_len;        // 0x34: In bytes
209 	__le32 dirty_pages_len;       // 0x38: In bytes
210 	__le32 transact_table_len;    // 0x3C: In bytes
211 };
212 
213 static_assert(sizeof(struct NTFS_RESTART) == 0x40);
214 
215 struct NEW_ATTRIBUTE_SIZES {
216 	__le64 alloc_size;
217 	__le64 valid_size;
218 	__le64 data_size;
219 	__le64 total_size;
220 };
221 
222 struct BITMAP_RANGE {
223 	__le32 bitmap_off;
224 	__le32 bits;
225 };
226 
227 struct LCN_RANGE {
228 	__le64 lcn;
229 	__le64 len;
230 };
231 
232 /* The following type defines the different log record types. */
233 #define LfsClientRecord  cpu_to_le32(1)
234 #define LfsClientRestart cpu_to_le32(2)
235 
236 /* This is used to uniquely identify a client for a particular log file. */
237 struct CLIENT_ID {
238 	__le16 seq_num;
239 	__le16 client_idx;
240 };
241 
242 /* This is the header that begins every Log Record in the log file. */
243 struct LFS_RECORD_HDR {
244 	__le64 this_lsn;		// 0x00:
245 	__le64 client_prev_lsn;		// 0x08:
246 	__le64 client_undo_next_lsn;	// 0x10:
247 	__le32 client_data_len;		// 0x18:
248 	struct CLIENT_ID client;	// 0x1C: Owner of this log record.
249 	__le32 record_type;		// 0x20: LfsClientRecord or LfsClientRestart.
250 	__le32 transact_id;		// 0x24:
251 	__le16 flags;			// 0x28: LOG_RECORD_MULTI_PAGE
252 	u8 align[6];			// 0x2A:
253 };
254 
255 #define LOG_RECORD_MULTI_PAGE cpu_to_le16(1)
256 
257 static_assert(sizeof(struct LFS_RECORD_HDR) == 0x30);
258 
259 struct LFS_RECORD {
260 	__le16 next_record_off;	// 0x00: Offset of the free space in the page,
261 	u8 align[6];		// 0x02:
262 	__le64 last_end_lsn;	// 0x08: lsn for the last log record which ends on the page,
263 };
264 
265 static_assert(sizeof(struct LFS_RECORD) == 0x10);
266 
267 struct RECORD_PAGE_HDR {
268 	struct NTFS_RECORD_HEADER rhdr;	// 'RCRD'
269 	__le32 rflags;			// 0x10: See LOG_PAGE_LOG_RECORD_END
270 	__le16 page_count;		// 0x14:
271 	__le16 page_pos;		// 0x16:
272 	struct LFS_RECORD record_hdr;	// 0x18:
273 	__le16 fixups[10];		// 0x28:
274 	__le32 file_off;		// 0x3c: Used when major version >= 2
275 };
276 
277 // clang-format on
278 
279 // Page contains the end of a log record.
280 #define LOG_PAGE_LOG_RECORD_END cpu_to_le32(0x00000001)
281 
282 static inline bool is_log_record_end(const struct RECORD_PAGE_HDR *hdr)
283 {
284 	return hdr->rflags & LOG_PAGE_LOG_RECORD_END;
285 }
286 
287 static_assert(offsetof(struct RECORD_PAGE_HDR, file_off) == 0x3c);
288 
289 /*
290  * END of NTFS LOG structures
291  */
292 
293 /* Define some tuning parameters to keep the restart tables a reasonable size. */
294 #define INITIAL_NUMBER_TRANSACTIONS 5
295 
296 enum NTFS_LOG_OPERATION {
297 
298 	Noop = 0x00,
299 	CompensationLogRecord = 0x01,
300 	InitializeFileRecordSegment = 0x02,
301 	DeallocateFileRecordSegment = 0x03,
302 	WriteEndOfFileRecordSegment = 0x04,
303 	CreateAttribute = 0x05,
304 	DeleteAttribute = 0x06,
305 	UpdateResidentValue = 0x07,
306 	UpdateNonresidentValue = 0x08,
307 	UpdateMappingPairs = 0x09,
308 	DeleteDirtyClusters = 0x0A,
309 	SetNewAttributeSizes = 0x0B,
310 	AddIndexEntryRoot = 0x0C,
311 	DeleteIndexEntryRoot = 0x0D,
312 	AddIndexEntryAllocation = 0x0E,
313 	DeleteIndexEntryAllocation = 0x0F,
314 	WriteEndOfIndexBuffer = 0x10,
315 	SetIndexEntryVcnRoot = 0x11,
316 	SetIndexEntryVcnAllocation = 0x12,
317 	UpdateFileNameRoot = 0x13,
318 	UpdateFileNameAllocation = 0x14,
319 	SetBitsInNonresidentBitMap = 0x15,
320 	ClearBitsInNonresidentBitMap = 0x16,
321 	HotFix = 0x17,
322 	EndTopLevelAction = 0x18,
323 	PrepareTransaction = 0x19,
324 	CommitTransaction = 0x1A,
325 	ForgetTransaction = 0x1B,
326 	OpenNonresidentAttribute = 0x1C,
327 	OpenAttributeTableDump = 0x1D,
328 	AttributeNamesDump = 0x1E,
329 	DirtyPageTableDump = 0x1F,
330 	TransactionTableDump = 0x20,
331 	UpdateRecordDataRoot = 0x21,
332 	UpdateRecordDataAllocation = 0x22,
333 
334 	UpdateRelativeDataInIndex =
335 		0x23, // NtOfsRestartUpdateRelativeDataInIndex
336 	UpdateRelativeDataInIndex2 = 0x24,
337 	ZeroEndOfFileRecord = 0x25,
338 };
339 
340 /*
341  * Array for log records which require a target attribute.
342  * A true indicates that the corresponding restart operation
343  * requires a target attribute.
344  */
345 static const u8 AttributeRequired[] = {
346 	0xFC, 0xFB, 0xFF, 0x10, 0x06,
347 };
348 
349 static inline bool is_target_required(u16 op)
350 {
351 	bool ret = op <= UpdateRecordDataAllocation &&
352 		   (AttributeRequired[op >> 3] >> (op & 7) & 1);
353 	return ret;
354 }
355 
356 static inline bool can_skip_action(enum NTFS_LOG_OPERATION op)
357 {
358 	switch (op) {
359 	case Noop:
360 	case DeleteDirtyClusters:
361 	case HotFix:
362 	case EndTopLevelAction:
363 	case PrepareTransaction:
364 	case CommitTransaction:
365 	case ForgetTransaction:
366 	case CompensationLogRecord:
367 	case OpenNonresidentAttribute:
368 	case OpenAttributeTableDump:
369 	case AttributeNamesDump:
370 	case DirtyPageTableDump:
371 	case TransactionTableDump:
372 		return true;
373 	default:
374 		return false;
375 	}
376 }
377 
378 enum { lcb_ctx_undo_next, lcb_ctx_prev, lcb_ctx_next };
379 
380 /* Bytes per restart table. */
381 static inline u32 bytes_per_rt(const struct RESTART_TABLE *rt)
382 {
383 	return le16_to_cpu(rt->used) * le16_to_cpu(rt->size) +
384 	       sizeof(struct RESTART_TABLE);
385 }
386 
387 /* Log record length. */
388 static inline u32 lrh_length(const struct LOG_REC_HDR *lr)
389 {
390 	u16 t16 = le16_to_cpu(lr->lcns_follow);
391 
392 	return struct_size(lr, page_lcns, max_t(u16, 1, t16));
393 }
394 
395 struct lcb {
396 	struct LFS_RECORD_HDR *lrh; // Log record header of the current lsn.
397 	struct LOG_REC_HDR *log_rec;
398 	u32 ctx_mode; // lcb_ctx_undo_next/lcb_ctx_prev/lcb_ctx_next
399 	struct CLIENT_ID client;
400 	bool alloc; // If true the we should deallocate 'log_rec'.
401 };
402 
403 static void lcb_put(struct lcb *lcb)
404 {
405 	if (lcb->alloc)
406 		kfree(lcb->log_rec);
407 	kfree(lcb->lrh);
408 	kfree(lcb);
409 }
410 
411 /* Find the oldest lsn from active clients. */
412 static inline void oldest_client_lsn(const struct CLIENT_REC *ca,
413 				     __le16 next_client, u64 *oldest_lsn)
414 {
415 	while (next_client != LFS_NO_CLIENT_LE) {
416 		const struct CLIENT_REC *cr = ca + le16_to_cpu(next_client);
417 		u64 lsn = le64_to_cpu(cr->oldest_lsn);
418 
419 		/* Ignore this block if it's oldest lsn is 0. */
420 		if (lsn && lsn < *oldest_lsn)
421 			*oldest_lsn = lsn;
422 
423 		next_client = cr->next_client;
424 	}
425 }
426 
427 static inline bool is_rst_page_hdr_valid(u32 file_off,
428 					 const struct RESTART_HDR *rhdr)
429 {
430 	u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
431 	u32 page_size = le32_to_cpu(rhdr->page_size);
432 	u32 end_usa;
433 	u16 ro;
434 
435 	if (sys_page < SECTOR_SIZE || page_size < SECTOR_SIZE ||
436 	    sys_page & (sys_page - 1) || page_size & (page_size - 1)) {
437 		return false;
438 	}
439 
440 	/* Check that if the file offset isn't 0, it is the system page size. */
441 	if (file_off && file_off != sys_page)
442 		return false;
443 
444 	/* Check support version 1.1+. */
445 	if (le16_to_cpu(rhdr->major_ver) <= 1 && !rhdr->minor_ver)
446 		return false;
447 
448 	if (le16_to_cpu(rhdr->major_ver) > 2)
449 		return false;
450 
451 	ro = le16_to_cpu(rhdr->ra_off);
452 	if (!IS_ALIGNED(ro, 8) || ro > sys_page)
453 		return false;
454 
455 	end_usa = ((sys_page >> SECTOR_SHIFT) + 1) * sizeof(short);
456 	end_usa += le16_to_cpu(rhdr->rhdr.fix_off);
457 
458 	if (ro < end_usa)
459 		return false;
460 
461 	return true;
462 }
463 
464 static inline bool is_rst_area_valid(const struct RESTART_HDR *rhdr)
465 {
466 	const struct RESTART_AREA *ra;
467 	u16 cl, fl, ul;
468 	u32 off, l_size, file_dat_bits, file_size_round;
469 	u16 ro = le16_to_cpu(rhdr->ra_off);
470 	u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
471 
472 	if (ro + offsetof(struct RESTART_AREA, l_size) >
473 	    SECTOR_SIZE - sizeof(short))
474 		return false;
475 
476 	ra = Add2Ptr(rhdr, ro);
477 	cl = le16_to_cpu(ra->log_clients);
478 
479 	if (cl > 1)
480 		return false;
481 
482 	off = le16_to_cpu(ra->client_off);
483 
484 	if (!IS_ALIGNED(off, 8) || ro + off > SECTOR_SIZE - sizeof(short))
485 		return false;
486 
487 	off += cl * sizeof(struct CLIENT_REC);
488 
489 	if (off > sys_page)
490 		return false;
491 
492 	/*
493 	 * Check the restart length field and whether the entire
494 	 * restart area is contained that length.
495 	 */
496 	if (le16_to_cpu(rhdr->ra_off) + le16_to_cpu(ra->ra_len) > sys_page ||
497 	    off > le16_to_cpu(ra->ra_len)) {
498 		return false;
499 	}
500 
501 	/*
502 	 * As a final check make sure that the use list and the free list
503 	 * are either empty or point to a valid client.
504 	 */
505 	fl = le16_to_cpu(ra->client_idx[0]);
506 	ul = le16_to_cpu(ra->client_idx[1]);
507 	if ((fl != LFS_NO_CLIENT && fl >= cl) ||
508 	    (ul != LFS_NO_CLIENT && ul >= cl))
509 		return false;
510 
511 	/* Make sure the sequence number bits match the log file size. */
512 	l_size = le64_to_cpu(ra->l_size);
513 
514 	file_dat_bits = sizeof(u64) * 8 - le32_to_cpu(ra->seq_num_bits);
515 	file_size_round = 1u << (file_dat_bits + 3);
516 	if (file_size_round != l_size &&
517 	    (file_size_round < l_size || (file_size_round / 2) > l_size)) {
518 		return false;
519 	}
520 
521 	/* The log page data offset and record header length must be quad-aligned. */
522 	if (!IS_ALIGNED(le16_to_cpu(ra->data_off), 8) ||
523 	    !IS_ALIGNED(le16_to_cpu(ra->rec_hdr_len), 8))
524 		return false;
525 
526 	return true;
527 }
528 
529 static inline bool is_client_area_valid(const struct RESTART_HDR *rhdr,
530 					bool usa_error)
531 {
532 	u16 ro = le16_to_cpu(rhdr->ra_off);
533 	const struct RESTART_AREA *ra = Add2Ptr(rhdr, ro);
534 	u16 ra_len = le16_to_cpu(ra->ra_len);
535 	const struct CLIENT_REC *ca;
536 	u32 i;
537 
538 	if (usa_error && ra_len + ro > SECTOR_SIZE - sizeof(short))
539 		return false;
540 
541 	/* Find the start of the client array. */
542 	ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
543 
544 	/*
545 	 * Start with the free list.
546 	 * Check that all the clients are valid and that there isn't a cycle.
547 	 * Do the in-use list on the second pass.
548 	 */
549 	for (i = 0; i < 2; i++) {
550 		u16 client_idx = le16_to_cpu(ra->client_idx[i]);
551 		bool first_client = true;
552 		u16 clients = le16_to_cpu(ra->log_clients);
553 
554 		while (client_idx != LFS_NO_CLIENT) {
555 			const struct CLIENT_REC *cr;
556 
557 			if (!clients ||
558 			    client_idx >= le16_to_cpu(ra->log_clients))
559 				return false;
560 
561 			clients -= 1;
562 			cr = ca + client_idx;
563 
564 			client_idx = le16_to_cpu(cr->next_client);
565 
566 			if (first_client) {
567 				first_client = false;
568 				if (cr->prev_client != LFS_NO_CLIENT_LE)
569 					return false;
570 			}
571 		}
572 	}
573 
574 	return true;
575 }
576 
577 /*
578  * remove_client
579  *
580  * Remove a client record from a client record list an restart area.
581  */
582 static inline void remove_client(struct CLIENT_REC *ca,
583 				 const struct CLIENT_REC *cr, __le16 *head)
584 {
585 	if (cr->prev_client == LFS_NO_CLIENT_LE)
586 		*head = cr->next_client;
587 	else
588 		ca[le16_to_cpu(cr->prev_client)].next_client = cr->next_client;
589 
590 	if (cr->next_client != LFS_NO_CLIENT_LE)
591 		ca[le16_to_cpu(cr->next_client)].prev_client = cr->prev_client;
592 }
593 
594 /*
595  * add_client - Add a client record to the start of a list.
596  */
597 static inline void add_client(struct CLIENT_REC *ca, u16 index, __le16 *head)
598 {
599 	struct CLIENT_REC *cr = ca + index;
600 
601 	cr->prev_client = LFS_NO_CLIENT_LE;
602 	cr->next_client = *head;
603 
604 	if (*head != LFS_NO_CLIENT_LE)
605 		ca[le16_to_cpu(*head)].prev_client = cpu_to_le16(index);
606 
607 	*head = cpu_to_le16(index);
608 }
609 
610 static inline void *enum_rstbl(struct RESTART_TABLE *t, void *c)
611 {
612 	__le32 *e;
613 	u32 bprt;
614 	u16 rsize = t ? le16_to_cpu(t->size) : 0;
615 
616 	if (!c) {
617 		if (!t || !t->total)
618 			return NULL;
619 		e = Add2Ptr(t, sizeof(struct RESTART_TABLE));
620 	} else {
621 		e = Add2Ptr(c, rsize);
622 	}
623 
624 	/* Loop until we hit the first one allocated, or the end of the list. */
625 	for (bprt = bytes_per_rt(t); PtrOffset(t, e) < bprt;
626 	     e = Add2Ptr(e, rsize)) {
627 		if (*e == RESTART_ENTRY_ALLOCATED_LE)
628 			return e;
629 	}
630 	return NULL;
631 }
632 
633 /*
634  * find_dp - Search for a @vcn in Dirty Page Table.
635  */
636 static inline struct DIR_PAGE_ENTRY *find_dp(struct RESTART_TABLE *dptbl,
637 					     u32 target_attr, u64 vcn)
638 {
639 	__le32 ta = cpu_to_le32(target_attr);
640 	struct DIR_PAGE_ENTRY *dp = NULL;
641 
642 	while ((dp = enum_rstbl(dptbl, dp))) {
643 		u64 dp_vcn = le64_to_cpu(dp->vcn);
644 
645 		if (dp->target_attr == ta && vcn >= dp_vcn &&
646 		    vcn < dp_vcn + le32_to_cpu(dp->lcns_follow)) {
647 			return dp;
648 		}
649 	}
650 	return NULL;
651 }
652 
653 static inline u32 norm_file_page(u32 page_size, u32 *l_size, bool use_default)
654 {
655 	if (use_default)
656 		page_size = DefaultLogPageSize;
657 
658 	/* Round the file size down to a system page boundary. */
659 	*l_size &= ~(page_size - 1);
660 
661 	/* File should contain at least 2 restart pages and MinLogRecordPages pages. */
662 	if (*l_size < (MinLogRecordPages + 2) * page_size)
663 		return 0;
664 
665 	return page_size;
666 }
667 
668 static bool check_log_rec(const struct LOG_REC_HDR *lr, u32 bytes, u32 tr,
669 			  u32 bytes_per_attr_entry)
670 {
671 	u16 t16;
672 
673 	if (bytes < sizeof(struct LOG_REC_HDR))
674 		return false;
675 	if (!tr)
676 		return false;
677 
678 	if ((tr - sizeof(struct RESTART_TABLE)) %
679 	    sizeof(struct TRANSACTION_ENTRY))
680 		return false;
681 
682 	if (le16_to_cpu(lr->redo_off) & 7)
683 		return false;
684 
685 	if (le16_to_cpu(lr->undo_off) & 7)
686 		return false;
687 
688 	if (lr->target_attr)
689 		goto check_lcns;
690 
691 	if (is_target_required(le16_to_cpu(lr->redo_op)))
692 		return false;
693 
694 	if (is_target_required(le16_to_cpu(lr->undo_op)))
695 		return false;
696 
697 check_lcns:
698 	if (!lr->lcns_follow)
699 		goto check_length;
700 
701 	t16 = le16_to_cpu(lr->target_attr);
702 	if ((t16 - sizeof(struct RESTART_TABLE)) % bytes_per_attr_entry)
703 		return false;
704 
705 check_length:
706 	if (bytes < lrh_length(lr))
707 		return false;
708 
709 	return true;
710 }
711 
712 static bool check_rstbl(const struct RESTART_TABLE *rt, size_t bytes)
713 {
714 	u32 ts;
715 	u32 i, off;
716 	u16 rsize = le16_to_cpu(rt->size);
717 	u16 ne = le16_to_cpu(rt->used);
718 	u32 ff = le32_to_cpu(rt->first_free);
719 	u32 lf = le32_to_cpu(rt->last_free);
720 
721 	ts = rsize * ne + sizeof(struct RESTART_TABLE);
722 
723 	if (!rsize || rsize > bytes ||
724 	    rsize + sizeof(struct RESTART_TABLE) > bytes || bytes < ts ||
725 	    le16_to_cpu(rt->total) > ne || ff > ts || lf > ts ||
726 	    (ff && ff < sizeof(struct RESTART_TABLE)) ||
727 	    (lf && lf < sizeof(struct RESTART_TABLE))) {
728 		return false;
729 	}
730 
731 	/*
732 	 * Verify each entry is either allocated or points
733 	 * to a valid offset the table.
734 	 */
735 	for (i = 0; i < ne; i++) {
736 		off = le32_to_cpu(*(__le32 *)Add2Ptr(
737 			rt, i * rsize + sizeof(struct RESTART_TABLE)));
738 
739 		if (off != RESTART_ENTRY_ALLOCATED && off &&
740 		    (off < sizeof(struct RESTART_TABLE) ||
741 		     ((off - sizeof(struct RESTART_TABLE)) % rsize))) {
742 			return false;
743 		}
744 	}
745 
746 	/*
747 	 * Walk through the list headed by the first entry to make
748 	 * sure none of the entries are currently being used.
749 	 */
750 	for (off = ff; off;) {
751 		if (off == RESTART_ENTRY_ALLOCATED)
752 			return false;
753 
754 		off = le32_to_cpu(*(__le32 *)Add2Ptr(rt, off));
755 	}
756 
757 	return true;
758 }
759 
760 /*
761  * free_rsttbl_idx - Free a previously allocated index a Restart Table.
762  */
763 static inline void free_rsttbl_idx(struct RESTART_TABLE *rt, u32 off)
764 {
765 	__le32 *e;
766 	u32 lf = le32_to_cpu(rt->last_free);
767 	__le32 off_le = cpu_to_le32(off);
768 
769 	e = Add2Ptr(rt, off);
770 
771 	if (off < le32_to_cpu(rt->free_goal)) {
772 		*e = rt->first_free;
773 		rt->first_free = off_le;
774 		if (!lf)
775 			rt->last_free = off_le;
776 	} else {
777 		if (lf)
778 			*(__le32 *)Add2Ptr(rt, lf) = off_le;
779 		else
780 			rt->first_free = off_le;
781 
782 		rt->last_free = off_le;
783 		*e = 0;
784 	}
785 
786 	le16_sub_cpu(&rt->total, 1);
787 }
788 
789 static inline struct RESTART_TABLE *init_rsttbl(u16 esize, u16 used)
790 {
791 	__le32 *e, *last_free;
792 	u32 off;
793 	u32 bytes = esize * used + sizeof(struct RESTART_TABLE);
794 	u32 lf = sizeof(struct RESTART_TABLE) + (used - 1) * esize;
795 	struct RESTART_TABLE *t = kzalloc(bytes, GFP_NOFS);
796 
797 	if (!t)
798 		return NULL;
799 
800 	t->size = cpu_to_le16(esize);
801 	t->used = cpu_to_le16(used);
802 	t->free_goal = cpu_to_le32(~0u);
803 	t->first_free = cpu_to_le32(sizeof(struct RESTART_TABLE));
804 	t->last_free = cpu_to_le32(lf);
805 
806 	e = (__le32 *)(t + 1);
807 	last_free = Add2Ptr(t, lf);
808 
809 	for (off = sizeof(struct RESTART_TABLE) + esize; e < last_free;
810 	     e = Add2Ptr(e, esize), off += esize) {
811 		*e = cpu_to_le32(off);
812 	}
813 	return t;
814 }
815 
816 static inline struct RESTART_TABLE *extend_rsttbl(struct RESTART_TABLE *tbl,
817 						  u32 add, u32 free_goal)
818 {
819 	u16 esize = le16_to_cpu(tbl->size);
820 	__le32 osize = cpu_to_le32(bytes_per_rt(tbl));
821 	u32 used = le16_to_cpu(tbl->used);
822 	struct RESTART_TABLE *rt;
823 
824 	rt = init_rsttbl(esize, used + add);
825 	if (!rt)
826 		return NULL;
827 
828 	memcpy(rt + 1, tbl + 1, esize * used);
829 
830 	rt->free_goal = free_goal == ~0u
831 				? cpu_to_le32(~0u)
832 				: cpu_to_le32(sizeof(struct RESTART_TABLE) +
833 					      free_goal * esize);
834 
835 	if (tbl->first_free) {
836 		rt->first_free = tbl->first_free;
837 		*(__le32 *)Add2Ptr(rt, le32_to_cpu(tbl->last_free)) = osize;
838 	} else {
839 		rt->first_free = osize;
840 	}
841 
842 	rt->total = tbl->total;
843 
844 	kfree(tbl);
845 	return rt;
846 }
847 
848 /*
849  * alloc_rsttbl_idx
850  *
851  * Allocate an index from within a previously initialized Restart Table.
852  */
853 static inline void *alloc_rsttbl_idx(struct RESTART_TABLE **tbl)
854 {
855 	u32 off;
856 	__le32 *e;
857 	struct RESTART_TABLE *t = *tbl;
858 
859 	if (!t->first_free) {
860 		*tbl = t = extend_rsttbl(t, 16, ~0u);
861 		if (!t)
862 			return NULL;
863 	}
864 
865 	off = le32_to_cpu(t->first_free);
866 
867 	/* Dequeue this entry and zero it. */
868 	e = Add2Ptr(t, off);
869 
870 	t->first_free = *e;
871 
872 	memset(e, 0, le16_to_cpu(t->size));
873 
874 	*e = RESTART_ENTRY_ALLOCATED_LE;
875 
876 	/* If list is going empty, then we fix the last_free as well. */
877 	if (!t->first_free)
878 		t->last_free = 0;
879 
880 	le16_add_cpu(&t->total, 1);
881 
882 	return Add2Ptr(t, off);
883 }
884 
885 /*
886  * alloc_rsttbl_from_idx
887  *
888  * Allocate a specific index from within a previously initialized Restart Table.
889  */
890 static inline void *alloc_rsttbl_from_idx(struct RESTART_TABLE **tbl, u32 vbo)
891 {
892 	u32 off;
893 	__le32 *e;
894 	struct RESTART_TABLE *rt = *tbl;
895 	u32 bytes = bytes_per_rt(rt);
896 	u16 esize = le16_to_cpu(rt->size);
897 
898 	/* If the entry is not the table, we will have to extend the table. */
899 	if (vbo >= bytes) {
900 		/*
901 		 * Extend the size by computing the number of entries between
902 		 * the existing size and the desired index and adding 1 to that.
903 		 */
904 		u32 bytes2idx = vbo - bytes;
905 
906 		/*
907 		 * There should always be an integral number of entries
908 		 * being added. Now extend the table.
909 		 */
910 		*tbl = rt = extend_rsttbl(rt, bytes2idx / esize + 1, bytes);
911 		if (!rt)
912 			return NULL;
913 	}
914 
915 	/* See if the entry is already allocated, and just return if it is. */
916 	e = Add2Ptr(rt, vbo);
917 
918 	if (*e == RESTART_ENTRY_ALLOCATED_LE)
919 		return e;
920 
921 	/*
922 	 * Walk through the table, looking for the entry we're
923 	 * interested and the previous entry.
924 	 */
925 	off = le32_to_cpu(rt->first_free);
926 	e = Add2Ptr(rt, off);
927 
928 	if (off == vbo) {
929 		/* this is a match */
930 		rt->first_free = *e;
931 		goto skip_looking;
932 	}
933 
934 	/*
935 	 * Need to walk through the list looking for the predecessor
936 	 * of our entry.
937 	 */
938 	for (;;) {
939 		/* Remember the entry just found */
940 		u32 last_off = off;
941 		__le32 *last_e = e;
942 
943 		/* Should never run of entries. */
944 
945 		/* Lookup up the next entry the list. */
946 		off = le32_to_cpu(*last_e);
947 		e = Add2Ptr(rt, off);
948 
949 		/* If this is our match we are done. */
950 		if (off == vbo) {
951 			*last_e = *e;
952 
953 			/*
954 			 * If this was the last entry, we update that
955 			 * table as well.
956 			 */
957 			if (le32_to_cpu(rt->last_free) == off)
958 				rt->last_free = cpu_to_le32(last_off);
959 			break;
960 		}
961 	}
962 
963 skip_looking:
964 	/* If the list is now empty, we fix the last_free as well. */
965 	if (!rt->first_free)
966 		rt->last_free = 0;
967 
968 	/* Zero this entry. */
969 	memset(e, 0, esize);
970 	*e = RESTART_ENTRY_ALLOCATED_LE;
971 
972 	le16_add_cpu(&rt->total, 1);
973 
974 	return e;
975 }
976 
977 #define RESTART_SINGLE_PAGE_IO cpu_to_le16(0x0001)
978 
979 #define NTFSLOG_WRAPPED 0x00000001
980 #define NTFSLOG_MULTIPLE_PAGE_IO 0x00000002
981 #define NTFSLOG_NO_LAST_LSN 0x00000004
982 #define NTFSLOG_REUSE_TAIL 0x00000010
983 #define NTFSLOG_NO_OLDEST_LSN 0x00000020
984 
985 /* Helper struct to work with NTFS $LogFile. */
986 struct ntfs_log {
987 	struct ntfs_inode *ni;
988 
989 	u32 l_size;
990 	u32 sys_page_size;
991 	u32 sys_page_mask;
992 	u32 page_size;
993 	u32 page_mask; // page_size - 1
994 	u8 page_bits;
995 	struct RECORD_PAGE_HDR *one_page_buf;
996 
997 	struct RESTART_TABLE *open_attr_tbl;
998 	u32 transaction_id;
999 	u32 clst_per_page;
1000 
1001 	u32 first_page;
1002 	u32 next_page;
1003 	u32 ra_off;
1004 	u32 data_off;
1005 	u32 restart_size;
1006 	u32 data_size;
1007 	u16 record_header_len;
1008 	u64 seq_num;
1009 	u32 seq_num_bits;
1010 	u32 file_data_bits;
1011 	u32 seq_num_mask; /* (1 << file_data_bits) - 1 */
1012 
1013 	struct RESTART_AREA *ra; /* In-memory image of the next restart area. */
1014 	u32 ra_size; /* The usable size of the restart area. */
1015 
1016 	/*
1017 	 * If true, then the in-memory restart area is to be written
1018 	 * to the first position on the disk.
1019 	 */
1020 	bool init_ra;
1021 	bool set_dirty; /* True if we need to set dirty flag. */
1022 
1023 	u64 oldest_lsn;
1024 
1025 	u32 oldest_lsn_off;
1026 	u64 last_lsn;
1027 
1028 	u32 total_avail;
1029 	u32 total_avail_pages;
1030 	u32 total_undo_commit;
1031 	u32 max_current_avail;
1032 	u32 current_avail;
1033 	u32 reserved;
1034 
1035 	short major_ver;
1036 	short minor_ver;
1037 
1038 	u32 l_flags; /* See NTFSLOG_XXX */
1039 	u32 current_openlog_count; /* On-disk value for open_log_count. */
1040 
1041 	struct CLIENT_ID client_id;
1042 	u32 client_undo_commit;
1043 };
1044 
1045 static inline u32 lsn_to_vbo(struct ntfs_log *log, const u64 lsn)
1046 {
1047 	u32 vbo = (lsn << log->seq_num_bits) >> (log->seq_num_bits - 3);
1048 
1049 	return vbo;
1050 }
1051 
1052 /* Compute the offset in the log file of the next log page. */
1053 static inline u32 next_page_off(struct ntfs_log *log, u32 off)
1054 {
1055 	off = (off & ~log->sys_page_mask) + log->page_size;
1056 	return off >= log->l_size ? log->first_page : off;
1057 }
1058 
1059 static inline u32 lsn_to_page_off(struct ntfs_log *log, u64 lsn)
1060 {
1061 	return (((u32)lsn) << 3) & log->page_mask;
1062 }
1063 
1064 static inline u64 vbo_to_lsn(struct ntfs_log *log, u32 off, u64 Seq)
1065 {
1066 	return (off >> 3) + (Seq << log->file_data_bits);
1067 }
1068 
1069 static inline bool is_lsn_in_file(struct ntfs_log *log, u64 lsn)
1070 {
1071 	return lsn >= log->oldest_lsn &&
1072 	       lsn <= le64_to_cpu(log->ra->current_lsn);
1073 }
1074 
1075 static inline u32 hdr_file_off(struct ntfs_log *log,
1076 			       struct RECORD_PAGE_HDR *hdr)
1077 {
1078 	if (log->major_ver < 2)
1079 		return le64_to_cpu(hdr->rhdr.lsn);
1080 
1081 	return le32_to_cpu(hdr->file_off);
1082 }
1083 
1084 static inline u64 base_lsn(struct ntfs_log *log,
1085 			   const struct RECORD_PAGE_HDR *hdr, u64 lsn)
1086 {
1087 	u64 h_lsn = le64_to_cpu(hdr->rhdr.lsn);
1088 	u64 ret = (((h_lsn >> log->file_data_bits) +
1089 		    (lsn < (lsn_to_vbo(log, h_lsn) & ~log->page_mask) ? 1 : 0))
1090 		   << log->file_data_bits) +
1091 		  ((((is_log_record_end(hdr) &&
1092 		      h_lsn <= le64_to_cpu(hdr->record_hdr.last_end_lsn))
1093 			     ? le16_to_cpu(hdr->record_hdr.next_record_off)
1094 			     : log->page_size) +
1095 		    lsn) >>
1096 		   3);
1097 
1098 	return ret;
1099 }
1100 
1101 static inline bool verify_client_lsn(struct ntfs_log *log,
1102 				     const struct CLIENT_REC *client, u64 lsn)
1103 {
1104 	return lsn >= le64_to_cpu(client->oldest_lsn) &&
1105 	       lsn <= le64_to_cpu(log->ra->current_lsn) && lsn;
1106 }
1107 
1108 struct restart_info {
1109 	u64 last_lsn;
1110 	struct RESTART_HDR *r_page;
1111 	u32 vbo;
1112 	bool chkdsk_was_run;
1113 	bool valid_page;
1114 	bool initialized;
1115 	bool restart;
1116 };
1117 
1118 static int read_log_page(struct ntfs_log *log, u32 vbo,
1119 			 struct RECORD_PAGE_HDR **buffer, bool *usa_error)
1120 {
1121 	int err = 0;
1122 	u32 page_idx = vbo >> log->page_bits;
1123 	u32 page_off = vbo & log->page_mask;
1124 	u32 bytes = log->page_size - page_off;
1125 	void *to_free = NULL;
1126 	u32 page_vbo = page_idx << log->page_bits;
1127 	struct RECORD_PAGE_HDR *page_buf;
1128 	struct ntfs_inode *ni = log->ni;
1129 	bool bBAAD;
1130 
1131 	if (vbo >= log->l_size)
1132 		return -EINVAL;
1133 
1134 	if (!*buffer) {
1135 		to_free = kmalloc(bytes, GFP_NOFS);
1136 		if (!to_free)
1137 			return -ENOMEM;
1138 		*buffer = to_free;
1139 	}
1140 
1141 	page_buf = page_off ? log->one_page_buf : *buffer;
1142 
1143 	err = ntfs_read_run_nb(ni->mi.sbi, &ni->file.run, page_vbo, page_buf,
1144 			       log->page_size, NULL);
1145 	if (err)
1146 		goto out;
1147 
1148 	if (page_buf->rhdr.sign != NTFS_FFFF_SIGNATURE)
1149 		ntfs_fix_post_read(&page_buf->rhdr, PAGE_SIZE, false);
1150 
1151 	if (page_buf != *buffer)
1152 		memcpy(*buffer, Add2Ptr(page_buf, page_off), bytes);
1153 
1154 	bBAAD = page_buf->rhdr.sign == NTFS_BAAD_SIGNATURE;
1155 
1156 	if (usa_error)
1157 		*usa_error = bBAAD;
1158 	/* Check that the update sequence array for this page is valid */
1159 	/* If we don't allow errors, raise an error status */
1160 	else if (bBAAD)
1161 		err = -EINVAL;
1162 
1163 out:
1164 	if (err && to_free) {
1165 		kfree(to_free);
1166 		*buffer = NULL;
1167 	}
1168 
1169 	return err;
1170 }
1171 
1172 /*
1173  * log_read_rst
1174  *
1175  * It walks through 512 blocks of the file looking for a valid
1176  * restart page header. It will stop the first time we find a
1177  * valid page header.
1178  */
1179 static int log_read_rst(struct ntfs_log *log, u32 l_size, bool first,
1180 			struct restart_info *info)
1181 {
1182 	u32 skip, vbo;
1183 	struct RESTART_HDR *r_page = kmalloc(DefaultLogPageSize, GFP_NOFS);
1184 
1185 	if (!r_page)
1186 		return -ENOMEM;
1187 
1188 	/* Determine which restart area we are looking for. */
1189 	if (first) {
1190 		vbo = 0;
1191 		skip = 512;
1192 	} else {
1193 		vbo = 512;
1194 		skip = 0;
1195 	}
1196 
1197 	/* Loop continuously until we succeed. */
1198 	for (; vbo < l_size; vbo = 2 * vbo + skip, skip = 0) {
1199 		bool usa_error;
1200 		u32 sys_page_size;
1201 		bool brst, bchk;
1202 		struct RESTART_AREA *ra;
1203 
1204 		/* Read a page header at the current offset. */
1205 		if (read_log_page(log, vbo, (struct RECORD_PAGE_HDR **)&r_page,
1206 				  &usa_error)) {
1207 			/* Ignore any errors. */
1208 			continue;
1209 		}
1210 
1211 		/* Exit if the signature is a log record page. */
1212 		if (r_page->rhdr.sign == NTFS_RCRD_SIGNATURE) {
1213 			info->initialized = true;
1214 			break;
1215 		}
1216 
1217 		brst = r_page->rhdr.sign == NTFS_RSTR_SIGNATURE;
1218 		bchk = r_page->rhdr.sign == NTFS_CHKD_SIGNATURE;
1219 
1220 		if (!bchk && !brst) {
1221 			if (r_page->rhdr.sign != NTFS_FFFF_SIGNATURE) {
1222 				/*
1223 				 * Remember if the signature does not
1224 				 * indicate uninitialized file.
1225 				 */
1226 				info->initialized = true;
1227 			}
1228 			continue;
1229 		}
1230 
1231 		ra = NULL;
1232 		info->valid_page = false;
1233 		info->initialized = true;
1234 		info->vbo = vbo;
1235 
1236 		/* Let's check the restart area if this is a valid page. */
1237 		if (!is_rst_page_hdr_valid(vbo, r_page))
1238 			goto check_result;
1239 		ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1240 
1241 		if (!is_rst_area_valid(r_page))
1242 			goto check_result;
1243 
1244 		/*
1245 		 * We have a valid restart page header and restart area.
1246 		 * If chkdsk was run or we have no clients then we have
1247 		 * no more checking to do.
1248 		 */
1249 		if (bchk || ra->client_idx[1] == LFS_NO_CLIENT_LE) {
1250 			info->valid_page = true;
1251 			goto check_result;
1252 		}
1253 
1254 		/* Read the entire restart area. */
1255 		sys_page_size = le32_to_cpu(r_page->sys_page_size);
1256 		if (DefaultLogPageSize != sys_page_size) {
1257 			kfree(r_page);
1258 			r_page = kzalloc(sys_page_size, GFP_NOFS);
1259 			if (!r_page)
1260 				return -ENOMEM;
1261 
1262 			if (read_log_page(log, vbo,
1263 					  (struct RECORD_PAGE_HDR **)&r_page,
1264 					  &usa_error)) {
1265 				/* Ignore any errors. */
1266 				kfree(r_page);
1267 				r_page = NULL;
1268 				continue;
1269 			}
1270 		}
1271 
1272 		if (is_client_area_valid(r_page, usa_error)) {
1273 			info->valid_page = true;
1274 			ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1275 		}
1276 
1277 check_result:
1278 		/*
1279 		 * If chkdsk was run then update the caller's
1280 		 * values and return.
1281 		 */
1282 		if (r_page->rhdr.sign == NTFS_CHKD_SIGNATURE) {
1283 			info->chkdsk_was_run = true;
1284 			info->last_lsn = le64_to_cpu(r_page->rhdr.lsn);
1285 			info->restart = true;
1286 			info->r_page = r_page;
1287 			return 0;
1288 		}
1289 
1290 		/*
1291 		 * If we have a valid page then copy the values
1292 		 * we need from it.
1293 		 */
1294 		if (info->valid_page) {
1295 			info->last_lsn = le64_to_cpu(ra->current_lsn);
1296 			info->restart = true;
1297 			info->r_page = r_page;
1298 			return 0;
1299 		}
1300 	}
1301 
1302 	kfree(r_page);
1303 
1304 	return 0;
1305 }
1306 
1307 /*
1308  * Ilog_init_pg_hdr - Init @log from restart page header.
1309  */
1310 static void log_init_pg_hdr(struct ntfs_log *log, u32 sys_page_size,
1311 			    u32 page_size, u16 major_ver, u16 minor_ver)
1312 {
1313 	log->sys_page_size = sys_page_size;
1314 	log->sys_page_mask = sys_page_size - 1;
1315 	log->page_size = page_size;
1316 	log->page_mask = page_size - 1;
1317 	log->page_bits = blksize_bits(page_size);
1318 
1319 	log->clst_per_page = log->page_size >> log->ni->mi.sbi->cluster_bits;
1320 	if (!log->clst_per_page)
1321 		log->clst_per_page = 1;
1322 
1323 	log->first_page = major_ver >= 2
1324 				  ? 0x22 * page_size
1325 				  : ((sys_page_size << 1) + (page_size << 1));
1326 	log->major_ver = major_ver;
1327 	log->minor_ver = minor_ver;
1328 }
1329 
1330 /*
1331  * log_create - Init @log in cases when we don't have a restart area to use.
1332  */
1333 static void log_create(struct ntfs_log *log, u32 l_size, const u64 last_lsn,
1334 		       u32 open_log_count, bool wrapped, bool use_multi_page)
1335 {
1336 	log->l_size = l_size;
1337 	/* All file offsets must be quadword aligned. */
1338 	log->file_data_bits = blksize_bits(l_size) - 3;
1339 	log->seq_num_mask = (8 << log->file_data_bits) - 1;
1340 	log->seq_num_bits = sizeof(u64) * 8 - log->file_data_bits;
1341 	log->seq_num = (last_lsn >> log->file_data_bits) + 2;
1342 	log->next_page = log->first_page;
1343 	log->oldest_lsn = log->seq_num << log->file_data_bits;
1344 	log->oldest_lsn_off = 0;
1345 	log->last_lsn = log->oldest_lsn;
1346 
1347 	log->l_flags |= NTFSLOG_NO_LAST_LSN | NTFSLOG_NO_OLDEST_LSN;
1348 
1349 	/* Set the correct flags for the I/O and indicate if we have wrapped. */
1350 	if (wrapped)
1351 		log->l_flags |= NTFSLOG_WRAPPED;
1352 
1353 	if (use_multi_page)
1354 		log->l_flags |= NTFSLOG_MULTIPLE_PAGE_IO;
1355 
1356 	/* Compute the log page values. */
1357 	log->data_off = ALIGN(
1358 		offsetof(struct RECORD_PAGE_HDR, fixups) +
1359 			sizeof(short) * ((log->page_size >> SECTOR_SHIFT) + 1),
1360 		8);
1361 	log->data_size = log->page_size - log->data_off;
1362 	log->record_header_len = sizeof(struct LFS_RECORD_HDR);
1363 
1364 	/* Remember the different page sizes for reservation. */
1365 	log->reserved = log->data_size - log->record_header_len;
1366 
1367 	/* Compute the restart page values. */
1368 	log->ra_off = ALIGN(
1369 		offsetof(struct RESTART_HDR, fixups) +
1370 			sizeof(short) *
1371 				((log->sys_page_size >> SECTOR_SHIFT) + 1),
1372 		8);
1373 	log->restart_size = log->sys_page_size - log->ra_off;
1374 	log->ra_size = struct_size(log->ra, clients, 1);
1375 	log->current_openlog_count = open_log_count;
1376 
1377 	/*
1378 	 * The total available log file space is the number of
1379 	 * log file pages times the space available on each page.
1380 	 */
1381 	log->total_avail_pages = log->l_size - log->first_page;
1382 	log->total_avail = log->total_avail_pages >> log->page_bits;
1383 
1384 	/*
1385 	 * We assume that we can't use the end of the page less than
1386 	 * the file record size.
1387 	 * Then we won't need to reserve more than the caller asks for.
1388 	 */
1389 	log->max_current_avail = log->total_avail * log->reserved;
1390 	log->total_avail = log->total_avail * log->data_size;
1391 	log->current_avail = log->max_current_avail;
1392 }
1393 
1394 /*
1395  * log_create_ra - Fill a restart area from the values stored in @log.
1396  */
1397 static struct RESTART_AREA *log_create_ra(struct ntfs_log *log)
1398 {
1399 	struct CLIENT_REC *cr;
1400 	struct RESTART_AREA *ra = kzalloc(log->restart_size, GFP_NOFS);
1401 
1402 	if (!ra)
1403 		return NULL;
1404 
1405 	ra->current_lsn = cpu_to_le64(log->last_lsn);
1406 	ra->log_clients = cpu_to_le16(1);
1407 	ra->client_idx[1] = LFS_NO_CLIENT_LE;
1408 	if (log->l_flags & NTFSLOG_MULTIPLE_PAGE_IO)
1409 		ra->flags = RESTART_SINGLE_PAGE_IO;
1410 	ra->seq_num_bits = cpu_to_le32(log->seq_num_bits);
1411 	ra->ra_len = cpu_to_le16(log->ra_size);
1412 	ra->client_off = cpu_to_le16(offsetof(struct RESTART_AREA, clients));
1413 	ra->l_size = cpu_to_le64(log->l_size);
1414 	ra->rec_hdr_len = cpu_to_le16(log->record_header_len);
1415 	ra->data_off = cpu_to_le16(log->data_off);
1416 	ra->open_log_count = cpu_to_le32(log->current_openlog_count + 1);
1417 
1418 	cr = ra->clients;
1419 
1420 	cr->prev_client = LFS_NO_CLIENT_LE;
1421 	cr->next_client = LFS_NO_CLIENT_LE;
1422 
1423 	return ra;
1424 }
1425 
1426 static u32 final_log_off(struct ntfs_log *log, u64 lsn, u32 data_len)
1427 {
1428 	u32 base_vbo = lsn << 3;
1429 	u32 final_log_off = (base_vbo & log->seq_num_mask) & ~log->page_mask;
1430 	u32 page_off = base_vbo & log->page_mask;
1431 	u32 tail = log->page_size - page_off;
1432 
1433 	page_off -= 1;
1434 
1435 	/* Add the length of the header. */
1436 	data_len += log->record_header_len;
1437 
1438 	/*
1439 	 * If this lsn is contained this log page we are done.
1440 	 * Otherwise we need to walk through several log pages.
1441 	 */
1442 	if (data_len > tail) {
1443 		data_len -= tail;
1444 		tail = log->data_size;
1445 		page_off = log->data_off - 1;
1446 
1447 		for (;;) {
1448 			final_log_off = next_page_off(log, final_log_off);
1449 
1450 			/*
1451 			 * We are done if the remaining bytes
1452 			 * fit on this page.
1453 			 */
1454 			if (data_len <= tail)
1455 				break;
1456 			data_len -= tail;
1457 		}
1458 	}
1459 
1460 	/*
1461 	 * We add the remaining bytes to our starting position on this page
1462 	 * and then add that value to the file offset of this log page.
1463 	 */
1464 	return final_log_off + data_len + page_off;
1465 }
1466 
1467 static int next_log_lsn(struct ntfs_log *log, const struct LFS_RECORD_HDR *rh,
1468 			u64 *lsn)
1469 {
1470 	int err;
1471 	u64 this_lsn = le64_to_cpu(rh->this_lsn);
1472 	u32 vbo = lsn_to_vbo(log, this_lsn);
1473 	u32 end =
1474 		final_log_off(log, this_lsn, le32_to_cpu(rh->client_data_len));
1475 	u32 hdr_off = end & ~log->sys_page_mask;
1476 	u64 seq = this_lsn >> log->file_data_bits;
1477 	struct RECORD_PAGE_HDR *page = NULL;
1478 
1479 	/* Remember if we wrapped. */
1480 	if (end <= vbo)
1481 		seq += 1;
1482 
1483 	/* Log page header for this page. */
1484 	err = read_log_page(log, hdr_off, &page, NULL);
1485 	if (err)
1486 		return err;
1487 
1488 	/*
1489 	 * If the lsn we were given was not the last lsn on this page,
1490 	 * then the starting offset for the next lsn is on a quad word
1491 	 * boundary following the last file offset for the current lsn.
1492 	 * Otherwise the file offset is the start of the data on the next page.
1493 	 */
1494 	if (this_lsn == le64_to_cpu(page->rhdr.lsn)) {
1495 		/* If we wrapped, we need to increment the sequence number. */
1496 		hdr_off = next_page_off(log, hdr_off);
1497 		if (hdr_off == log->first_page)
1498 			seq += 1;
1499 
1500 		vbo = hdr_off + log->data_off;
1501 	} else {
1502 		vbo = ALIGN(end, 8);
1503 	}
1504 
1505 	/* Compute the lsn based on the file offset and the sequence count. */
1506 	*lsn = vbo_to_lsn(log, vbo, seq);
1507 
1508 	/*
1509 	 * If this lsn is within the legal range for the file, we return true.
1510 	 * Otherwise false indicates that there are no more lsn's.
1511 	 */
1512 	if (!is_lsn_in_file(log, *lsn))
1513 		*lsn = 0;
1514 
1515 	kfree(page);
1516 
1517 	return 0;
1518 }
1519 
1520 /*
1521  * current_log_avail - Calculate the number of bytes available for log records.
1522  */
1523 static u32 current_log_avail(struct ntfs_log *log)
1524 {
1525 	u32 oldest_off, next_free_off, free_bytes;
1526 
1527 	if (log->l_flags & NTFSLOG_NO_LAST_LSN) {
1528 		/* The entire file is available. */
1529 		return log->max_current_avail;
1530 	}
1531 
1532 	/*
1533 	 * If there is a last lsn the restart area then we know that we will
1534 	 * have to compute the free range.
1535 	 * If there is no oldest lsn then start at the first page of the file.
1536 	 */
1537 	oldest_off = (log->l_flags & NTFSLOG_NO_OLDEST_LSN)
1538 			     ? log->first_page
1539 			     : (log->oldest_lsn_off & ~log->sys_page_mask);
1540 
1541 	/*
1542 	 * We will use the next log page offset to compute the next free page.
1543 	 * If we are going to reuse this page go to the next page.
1544 	 * If we are at the first page then use the end of the file.
1545 	 */
1546 	next_free_off = (log->l_flags & NTFSLOG_REUSE_TAIL)
1547 				? log->next_page + log->page_size
1548 				: log->next_page == log->first_page
1549 					  ? log->l_size
1550 					  : log->next_page;
1551 
1552 	/* If the two offsets are the same then there is no available space. */
1553 	if (oldest_off == next_free_off)
1554 		return 0;
1555 	/*
1556 	 * If the free offset follows the oldest offset then subtract
1557 	 * this range from the total available pages.
1558 	 */
1559 	free_bytes =
1560 		oldest_off < next_free_off
1561 			? log->total_avail_pages - (next_free_off - oldest_off)
1562 			: oldest_off - next_free_off;
1563 
1564 	free_bytes >>= log->page_bits;
1565 	return free_bytes * log->reserved;
1566 }
1567 
1568 static bool check_subseq_log_page(struct ntfs_log *log,
1569 				  const struct RECORD_PAGE_HDR *rp, u32 vbo,
1570 				  u64 seq)
1571 {
1572 	u64 lsn_seq;
1573 	const struct NTFS_RECORD_HEADER *rhdr = &rp->rhdr;
1574 	u64 lsn = le64_to_cpu(rhdr->lsn);
1575 
1576 	if (rhdr->sign == NTFS_FFFF_SIGNATURE || !rhdr->sign)
1577 		return false;
1578 
1579 	/*
1580 	 * If the last lsn on the page occurs was written after the page
1581 	 * that caused the original error then we have a fatal error.
1582 	 */
1583 	lsn_seq = lsn >> log->file_data_bits;
1584 
1585 	/*
1586 	 * If the sequence number for the lsn the page is equal or greater
1587 	 * than lsn we expect, then this is a subsequent write.
1588 	 */
1589 	return lsn_seq >= seq ||
1590 	       (lsn_seq == seq - 1 && log->first_page == vbo &&
1591 		vbo != (lsn_to_vbo(log, lsn) & ~log->page_mask));
1592 }
1593 
1594 /*
1595  * last_log_lsn
1596  *
1597  * Walks through the log pages for a file, searching for the
1598  * last log page written to the file.
1599  */
1600 static int last_log_lsn(struct ntfs_log *log)
1601 {
1602 	int err;
1603 	bool usa_error = false;
1604 	bool replace_page = false;
1605 	bool reuse_page = log->l_flags & NTFSLOG_REUSE_TAIL;
1606 	bool wrapped_file, wrapped;
1607 
1608 	u32 page_cnt = 1, page_pos = 1;
1609 	u32 page_off = 0, page_off1 = 0, saved_off = 0;
1610 	u32 final_off, second_off, final_off_prev = 0, second_off_prev = 0;
1611 	u32 first_file_off = 0, second_file_off = 0;
1612 	u32 part_io_count = 0;
1613 	u32 tails = 0;
1614 	u32 this_off, curpage_off, nextpage_off, remain_pages;
1615 
1616 	u64 expected_seq, seq_base = 0, lsn_base = 0;
1617 	u64 best_lsn, best_lsn1, best_lsn2;
1618 	u64 lsn_cur, lsn1, lsn2;
1619 	u64 last_ok_lsn = reuse_page ? log->last_lsn : 0;
1620 
1621 	u16 cur_pos, best_page_pos;
1622 
1623 	struct RECORD_PAGE_HDR *page = NULL;
1624 	struct RECORD_PAGE_HDR *tst_page = NULL;
1625 	struct RECORD_PAGE_HDR *first_tail = NULL;
1626 	struct RECORD_PAGE_HDR *second_tail = NULL;
1627 	struct RECORD_PAGE_HDR *tail_page = NULL;
1628 	struct RECORD_PAGE_HDR *second_tail_prev = NULL;
1629 	struct RECORD_PAGE_HDR *first_tail_prev = NULL;
1630 	struct RECORD_PAGE_HDR *page_bufs = NULL;
1631 	struct RECORD_PAGE_HDR *best_page;
1632 
1633 	if (log->major_ver >= 2) {
1634 		final_off = 0x02 * log->page_size;
1635 		second_off = 0x12 * log->page_size;
1636 
1637 		// 0x10 == 0x12 - 0x2
1638 		page_bufs = kmalloc(log->page_size * 0x10, GFP_NOFS);
1639 		if (!page_bufs)
1640 			return -ENOMEM;
1641 	} else {
1642 		second_off = log->first_page - log->page_size;
1643 		final_off = second_off - log->page_size;
1644 	}
1645 
1646 next_tail:
1647 	/* Read second tail page (at pos 3/0x12000). */
1648 	if (read_log_page(log, second_off, &second_tail, &usa_error) ||
1649 	    usa_error || second_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
1650 		kfree(second_tail);
1651 		second_tail = NULL;
1652 		second_file_off = 0;
1653 		lsn2 = 0;
1654 	} else {
1655 		second_file_off = hdr_file_off(log, second_tail);
1656 		lsn2 = le64_to_cpu(second_tail->record_hdr.last_end_lsn);
1657 	}
1658 
1659 	/* Read first tail page (at pos 2/0x2000). */
1660 	if (read_log_page(log, final_off, &first_tail, &usa_error) ||
1661 	    usa_error || first_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
1662 		kfree(first_tail);
1663 		first_tail = NULL;
1664 		first_file_off = 0;
1665 		lsn1 = 0;
1666 	} else {
1667 		first_file_off = hdr_file_off(log, first_tail);
1668 		lsn1 = le64_to_cpu(first_tail->record_hdr.last_end_lsn);
1669 	}
1670 
1671 	if (log->major_ver < 2) {
1672 		int best_page;
1673 
1674 		first_tail_prev = first_tail;
1675 		final_off_prev = first_file_off;
1676 		second_tail_prev = second_tail;
1677 		second_off_prev = second_file_off;
1678 		tails = 1;
1679 
1680 		if (!first_tail && !second_tail)
1681 			goto tail_read;
1682 
1683 		if (first_tail && second_tail)
1684 			best_page = lsn1 < lsn2 ? 1 : 0;
1685 		else if (first_tail)
1686 			best_page = 0;
1687 		else
1688 			best_page = 1;
1689 
1690 		page_off = best_page ? second_file_off : first_file_off;
1691 		seq_base = (best_page ? lsn2 : lsn1) >> log->file_data_bits;
1692 		goto tail_read;
1693 	}
1694 
1695 	best_lsn1 = first_tail ? base_lsn(log, first_tail, first_file_off) : 0;
1696 	best_lsn2 =
1697 		second_tail ? base_lsn(log, second_tail, second_file_off) : 0;
1698 
1699 	if (first_tail && second_tail) {
1700 		if (best_lsn1 > best_lsn2) {
1701 			best_lsn = best_lsn1;
1702 			best_page = first_tail;
1703 			this_off = first_file_off;
1704 		} else {
1705 			best_lsn = best_lsn2;
1706 			best_page = second_tail;
1707 			this_off = second_file_off;
1708 		}
1709 	} else if (first_tail) {
1710 		best_lsn = best_lsn1;
1711 		best_page = first_tail;
1712 		this_off = first_file_off;
1713 	} else if (second_tail) {
1714 		best_lsn = best_lsn2;
1715 		best_page = second_tail;
1716 		this_off = second_file_off;
1717 	} else {
1718 		goto tail_read;
1719 	}
1720 
1721 	best_page_pos = le16_to_cpu(best_page->page_pos);
1722 
1723 	if (!tails) {
1724 		if (best_page_pos == page_pos) {
1725 			seq_base = best_lsn >> log->file_data_bits;
1726 			saved_off = page_off = le32_to_cpu(best_page->file_off);
1727 			lsn_base = best_lsn;
1728 
1729 			memmove(page_bufs, best_page, log->page_size);
1730 
1731 			page_cnt = le16_to_cpu(best_page->page_count);
1732 			if (page_cnt > 1)
1733 				page_pos += 1;
1734 
1735 			tails = 1;
1736 		}
1737 	} else if (seq_base == (best_lsn >> log->file_data_bits) &&
1738 		   saved_off + log->page_size == this_off &&
1739 		   lsn_base < best_lsn &&
1740 		   (page_pos != page_cnt || best_page_pos == page_pos ||
1741 		    best_page_pos == 1) &&
1742 		   (page_pos >= page_cnt || best_page_pos == page_pos)) {
1743 		u16 bppc = le16_to_cpu(best_page->page_count);
1744 
1745 		saved_off += log->page_size;
1746 		lsn_base = best_lsn;
1747 
1748 		memmove(Add2Ptr(page_bufs, tails * log->page_size), best_page,
1749 			log->page_size);
1750 
1751 		tails += 1;
1752 
1753 		if (best_page_pos != bppc) {
1754 			page_cnt = bppc;
1755 			page_pos = best_page_pos;
1756 
1757 			if (page_cnt > 1)
1758 				page_pos += 1;
1759 		} else {
1760 			page_pos = page_cnt = 1;
1761 		}
1762 	} else {
1763 		kfree(first_tail);
1764 		kfree(second_tail);
1765 		goto tail_read;
1766 	}
1767 
1768 	kfree(first_tail_prev);
1769 	first_tail_prev = first_tail;
1770 	final_off_prev = first_file_off;
1771 	first_tail = NULL;
1772 
1773 	kfree(second_tail_prev);
1774 	second_tail_prev = second_tail;
1775 	second_off_prev = second_file_off;
1776 	second_tail = NULL;
1777 
1778 	final_off += log->page_size;
1779 	second_off += log->page_size;
1780 
1781 	if (tails < 0x10)
1782 		goto next_tail;
1783 tail_read:
1784 	first_tail = first_tail_prev;
1785 	final_off = final_off_prev;
1786 
1787 	second_tail = second_tail_prev;
1788 	second_off = second_off_prev;
1789 
1790 	page_cnt = page_pos = 1;
1791 
1792 	curpage_off = seq_base == log->seq_num ? min(log->next_page, page_off)
1793 					       : log->next_page;
1794 
1795 	wrapped_file =
1796 		curpage_off == log->first_page &&
1797 		!(log->l_flags & (NTFSLOG_NO_LAST_LSN | NTFSLOG_REUSE_TAIL));
1798 
1799 	expected_seq = wrapped_file ? (log->seq_num + 1) : log->seq_num;
1800 
1801 	nextpage_off = curpage_off;
1802 
1803 next_page:
1804 	tail_page = NULL;
1805 	/* Read the next log page. */
1806 	err = read_log_page(log, curpage_off, &page, &usa_error);
1807 
1808 	/* Compute the next log page offset the file. */
1809 	nextpage_off = next_page_off(log, curpage_off);
1810 	wrapped = nextpage_off == log->first_page;
1811 
1812 	if (tails > 1) {
1813 		struct RECORD_PAGE_HDR *cur_page =
1814 			Add2Ptr(page_bufs, curpage_off - page_off);
1815 
1816 		if (curpage_off == saved_off) {
1817 			tail_page = cur_page;
1818 			goto use_tail_page;
1819 		}
1820 
1821 		if (page_off > curpage_off || curpage_off >= saved_off)
1822 			goto use_tail_page;
1823 
1824 		if (page_off1)
1825 			goto use_cur_page;
1826 
1827 		if (!err && !usa_error &&
1828 		    page->rhdr.sign == NTFS_RCRD_SIGNATURE &&
1829 		    cur_page->rhdr.lsn == page->rhdr.lsn &&
1830 		    cur_page->record_hdr.next_record_off ==
1831 			    page->record_hdr.next_record_off &&
1832 		    ((page_pos == page_cnt &&
1833 		      le16_to_cpu(page->page_pos) == 1) ||
1834 		     (page_pos != page_cnt &&
1835 		      le16_to_cpu(page->page_pos) == page_pos + 1 &&
1836 		      le16_to_cpu(page->page_count) == page_cnt))) {
1837 			cur_page = NULL;
1838 			goto use_tail_page;
1839 		}
1840 
1841 		page_off1 = page_off;
1842 
1843 use_cur_page:
1844 
1845 		lsn_cur = le64_to_cpu(cur_page->rhdr.lsn);
1846 
1847 		if (last_ok_lsn !=
1848 			    le64_to_cpu(cur_page->record_hdr.last_end_lsn) &&
1849 		    ((lsn_cur >> log->file_data_bits) +
1850 		     ((curpage_off <
1851 		       (lsn_to_vbo(log, lsn_cur) & ~log->page_mask))
1852 			      ? 1
1853 			      : 0)) != expected_seq) {
1854 			goto check_tail;
1855 		}
1856 
1857 		if (!is_log_record_end(cur_page)) {
1858 			tail_page = NULL;
1859 			last_ok_lsn = lsn_cur;
1860 			goto next_page_1;
1861 		}
1862 
1863 		log->seq_num = expected_seq;
1864 		log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
1865 		log->last_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1866 		log->ra->current_lsn = cur_page->record_hdr.last_end_lsn;
1867 
1868 		if (log->record_header_len <=
1869 		    log->page_size -
1870 			    le16_to_cpu(cur_page->record_hdr.next_record_off)) {
1871 			log->l_flags |= NTFSLOG_REUSE_TAIL;
1872 			log->next_page = curpage_off;
1873 		} else {
1874 			log->l_flags &= ~NTFSLOG_REUSE_TAIL;
1875 			log->next_page = nextpage_off;
1876 		}
1877 
1878 		if (wrapped_file)
1879 			log->l_flags |= NTFSLOG_WRAPPED;
1880 
1881 		last_ok_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1882 		goto next_page_1;
1883 	}
1884 
1885 	/*
1886 	 * If we are at the expected first page of a transfer check to see
1887 	 * if either tail copy is at this offset.
1888 	 * If this page is the last page of a transfer, check if we wrote
1889 	 * a subsequent tail copy.
1890 	 */
1891 	if (page_cnt == page_pos || page_cnt == page_pos + 1) {
1892 		/*
1893 		 * Check if the offset matches either the first or second
1894 		 * tail copy. It is possible it will match both.
1895 		 */
1896 		if (curpage_off == final_off)
1897 			tail_page = first_tail;
1898 
1899 		/*
1900 		 * If we already matched on the first page then
1901 		 * check the ending lsn's.
1902 		 */
1903 		if (curpage_off == second_off) {
1904 			if (!tail_page ||
1905 			    (second_tail &&
1906 			     le64_to_cpu(second_tail->record_hdr.last_end_lsn) >
1907 				     le64_to_cpu(first_tail->record_hdr
1908 							 .last_end_lsn))) {
1909 				tail_page = second_tail;
1910 			}
1911 		}
1912 	}
1913 
1914 use_tail_page:
1915 	if (tail_page) {
1916 		/* We have a candidate for a tail copy. */
1917 		lsn_cur = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
1918 
1919 		if (last_ok_lsn < lsn_cur) {
1920 			/*
1921 			 * If the sequence number is not expected,
1922 			 * then don't use the tail copy.
1923 			 */
1924 			if (expected_seq != (lsn_cur >> log->file_data_bits))
1925 				tail_page = NULL;
1926 		} else if (last_ok_lsn > lsn_cur) {
1927 			/*
1928 			 * If the last lsn is greater than the one on
1929 			 * this page then forget this tail.
1930 			 */
1931 			tail_page = NULL;
1932 		}
1933 	}
1934 
1935 	/*
1936 	 *If we have an error on the current page,
1937 	 * we will break of this loop.
1938 	 */
1939 	if (err || usa_error)
1940 		goto check_tail;
1941 
1942 	/*
1943 	 * Done if the last lsn on this page doesn't match the previous known
1944 	 * last lsn or the sequence number is not expected.
1945 	 */
1946 	lsn_cur = le64_to_cpu(page->rhdr.lsn);
1947 	if (last_ok_lsn != lsn_cur &&
1948 	    expected_seq != (lsn_cur >> log->file_data_bits)) {
1949 		goto check_tail;
1950 	}
1951 
1952 	/*
1953 	 * Check that the page position and page count values are correct.
1954 	 * If this is the first page of a transfer the position must be 1
1955 	 * and the count will be unknown.
1956 	 */
1957 	if (page_cnt == page_pos) {
1958 		if (page->page_pos != cpu_to_le16(1) &&
1959 		    (!reuse_page || page->page_pos != page->page_count)) {
1960 			/*
1961 			 * If the current page is the first page we are
1962 			 * looking at and we are reusing this page then
1963 			 * it can be either the first or last page of a
1964 			 * transfer. Otherwise it can only be the first.
1965 			 */
1966 			goto check_tail;
1967 		}
1968 	} else if (le16_to_cpu(page->page_count) != page_cnt ||
1969 		   le16_to_cpu(page->page_pos) != page_pos + 1) {
1970 		/*
1971 		 * The page position better be 1 more than the last page
1972 		 * position and the page count better match.
1973 		 */
1974 		goto check_tail;
1975 	}
1976 
1977 	/*
1978 	 * We have a valid page the file and may have a valid page
1979 	 * the tail copy area.
1980 	 * If the tail page was written after the page the file then
1981 	 * break of the loop.
1982 	 */
1983 	if (tail_page &&
1984 	    le64_to_cpu(tail_page->record_hdr.last_end_lsn) > lsn_cur) {
1985 		/* Remember if we will replace the page. */
1986 		replace_page = true;
1987 		goto check_tail;
1988 	}
1989 
1990 	tail_page = NULL;
1991 
1992 	if (is_log_record_end(page)) {
1993 		/*
1994 		 * Since we have read this page we know the sequence number
1995 		 * is the same as our expected value.
1996 		 */
1997 		log->seq_num = expected_seq;
1998 		log->last_lsn = le64_to_cpu(page->record_hdr.last_end_lsn);
1999 		log->ra->current_lsn = page->record_hdr.last_end_lsn;
2000 		log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
2001 
2002 		/*
2003 		 * If there is room on this page for another header then
2004 		 * remember we want to reuse the page.
2005 		 */
2006 		if (log->record_header_len <=
2007 		    log->page_size -
2008 			    le16_to_cpu(page->record_hdr.next_record_off)) {
2009 			log->l_flags |= NTFSLOG_REUSE_TAIL;
2010 			log->next_page = curpage_off;
2011 		} else {
2012 			log->l_flags &= ~NTFSLOG_REUSE_TAIL;
2013 			log->next_page = nextpage_off;
2014 		}
2015 
2016 		/* Remember if we wrapped the log file. */
2017 		if (wrapped_file)
2018 			log->l_flags |= NTFSLOG_WRAPPED;
2019 	}
2020 
2021 	/*
2022 	 * Remember the last page count and position.
2023 	 * Also remember the last known lsn.
2024 	 */
2025 	page_cnt = le16_to_cpu(page->page_count);
2026 	page_pos = le16_to_cpu(page->page_pos);
2027 	last_ok_lsn = le64_to_cpu(page->rhdr.lsn);
2028 
2029 next_page_1:
2030 
2031 	if (wrapped) {
2032 		expected_seq += 1;
2033 		wrapped_file = 1;
2034 	}
2035 
2036 	curpage_off = nextpage_off;
2037 	kfree(page);
2038 	page = NULL;
2039 	reuse_page = 0;
2040 	goto next_page;
2041 
2042 check_tail:
2043 	if (tail_page) {
2044 		log->seq_num = expected_seq;
2045 		log->last_lsn = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
2046 		log->ra->current_lsn = tail_page->record_hdr.last_end_lsn;
2047 		log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
2048 
2049 		if (log->page_size -
2050 			    le16_to_cpu(
2051 				    tail_page->record_hdr.next_record_off) >=
2052 		    log->record_header_len) {
2053 			log->l_flags |= NTFSLOG_REUSE_TAIL;
2054 			log->next_page = curpage_off;
2055 		} else {
2056 			log->l_flags &= ~NTFSLOG_REUSE_TAIL;
2057 			log->next_page = nextpage_off;
2058 		}
2059 
2060 		if (wrapped)
2061 			log->l_flags |= NTFSLOG_WRAPPED;
2062 	}
2063 
2064 	/* Remember that the partial IO will start at the next page. */
2065 	second_off = nextpage_off;
2066 
2067 	/*
2068 	 * If the next page is the first page of the file then update
2069 	 * the sequence number for log records which begon the next page.
2070 	 */
2071 	if (wrapped)
2072 		expected_seq += 1;
2073 
2074 	/*
2075 	 * If we have a tail copy or are performing single page I/O we can
2076 	 * immediately look at the next page.
2077 	 */
2078 	if (replace_page || (log->ra->flags & RESTART_SINGLE_PAGE_IO)) {
2079 		page_cnt = 2;
2080 		page_pos = 1;
2081 		goto check_valid;
2082 	}
2083 
2084 	if (page_pos != page_cnt)
2085 		goto check_valid;
2086 	/*
2087 	 * If the next page causes us to wrap to the beginning of the log
2088 	 * file then we know which page to check next.
2089 	 */
2090 	if (wrapped) {
2091 		page_cnt = 2;
2092 		page_pos = 1;
2093 		goto check_valid;
2094 	}
2095 
2096 	cur_pos = 2;
2097 
2098 next_test_page:
2099 	kfree(tst_page);
2100 	tst_page = NULL;
2101 
2102 	/* Walk through the file, reading log pages. */
2103 	err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
2104 
2105 	/*
2106 	 * If we get a USA error then assume that we correctly found
2107 	 * the end of the original transfer.
2108 	 */
2109 	if (usa_error)
2110 		goto file_is_valid;
2111 
2112 	/*
2113 	 * If we were able to read the page, we examine it to see if it
2114 	 * is the same or different Io block.
2115 	 */
2116 	if (err)
2117 		goto next_test_page_1;
2118 
2119 	if (le16_to_cpu(tst_page->page_pos) == cur_pos &&
2120 	    check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
2121 		page_cnt = le16_to_cpu(tst_page->page_count) + 1;
2122 		page_pos = le16_to_cpu(tst_page->page_pos);
2123 		goto check_valid;
2124 	} else {
2125 		goto file_is_valid;
2126 	}
2127 
2128 next_test_page_1:
2129 
2130 	nextpage_off = next_page_off(log, curpage_off);
2131 	wrapped = nextpage_off == log->first_page;
2132 
2133 	if (wrapped) {
2134 		expected_seq += 1;
2135 		page_cnt = 2;
2136 		page_pos = 1;
2137 	}
2138 
2139 	cur_pos += 1;
2140 	part_io_count += 1;
2141 	if (!wrapped)
2142 		goto next_test_page;
2143 
2144 check_valid:
2145 	/* Skip over the remaining pages this transfer. */
2146 	remain_pages = page_cnt - page_pos - 1;
2147 	part_io_count += remain_pages;
2148 
2149 	while (remain_pages--) {
2150 		nextpage_off = next_page_off(log, curpage_off);
2151 		wrapped = nextpage_off == log->first_page;
2152 
2153 		if (wrapped)
2154 			expected_seq += 1;
2155 	}
2156 
2157 	/* Call our routine to check this log page. */
2158 	kfree(tst_page);
2159 	tst_page = NULL;
2160 
2161 	err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
2162 	if (!err && !usa_error &&
2163 	    check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
2164 		err = -EINVAL;
2165 		goto out;
2166 	}
2167 
2168 file_is_valid:
2169 
2170 	/* We have a valid file. */
2171 	if (page_off1 || tail_page) {
2172 		struct RECORD_PAGE_HDR *tmp_page;
2173 
2174 		if (sb_rdonly(log->ni->mi.sbi->sb)) {
2175 			err = -EROFS;
2176 			goto out;
2177 		}
2178 
2179 		if (page_off1) {
2180 			tmp_page = Add2Ptr(page_bufs, page_off1 - page_off);
2181 			tails -= (page_off1 - page_off) / log->page_size;
2182 			if (!tail_page)
2183 				tails -= 1;
2184 		} else {
2185 			tmp_page = tail_page;
2186 			tails = 1;
2187 		}
2188 
2189 		while (tails--) {
2190 			u64 off = hdr_file_off(log, tmp_page);
2191 
2192 			if (!page) {
2193 				page = kmalloc(log->page_size, GFP_NOFS);
2194 				if (!page)
2195 					return -ENOMEM;
2196 			}
2197 
2198 			/*
2199 			 * Correct page and copy the data from this page
2200 			 * into it and flush it to disk.
2201 			 */
2202 			memcpy(page, tmp_page, log->page_size);
2203 
2204 			/* Fill last flushed lsn value flush the page. */
2205 			if (log->major_ver < 2)
2206 				page->rhdr.lsn = page->record_hdr.last_end_lsn;
2207 			else
2208 				page->file_off = 0;
2209 
2210 			page->page_pos = page->page_count = cpu_to_le16(1);
2211 
2212 			ntfs_fix_pre_write(&page->rhdr, log->page_size);
2213 
2214 			err = ntfs_sb_write_run(log->ni->mi.sbi,
2215 						&log->ni->file.run, off, page,
2216 						log->page_size, 0);
2217 
2218 			if (err)
2219 				goto out;
2220 
2221 			if (part_io_count && second_off == off) {
2222 				second_off += log->page_size;
2223 				part_io_count -= 1;
2224 			}
2225 
2226 			tmp_page = Add2Ptr(tmp_page, log->page_size);
2227 		}
2228 	}
2229 
2230 	if (part_io_count) {
2231 		if (sb_rdonly(log->ni->mi.sbi->sb)) {
2232 			err = -EROFS;
2233 			goto out;
2234 		}
2235 	}
2236 
2237 out:
2238 	kfree(second_tail);
2239 	kfree(first_tail);
2240 	kfree(page);
2241 	kfree(tst_page);
2242 	kfree(page_bufs);
2243 
2244 	return err;
2245 }
2246 
2247 /*
2248  * read_log_rec_buf - Copy a log record from the file to a buffer.
2249  *
2250  * The log record may span several log pages and may even wrap the file.
2251  */
2252 static int read_log_rec_buf(struct ntfs_log *log,
2253 			    const struct LFS_RECORD_HDR *rh, void *buffer)
2254 {
2255 	int err;
2256 	struct RECORD_PAGE_HDR *ph = NULL;
2257 	u64 lsn = le64_to_cpu(rh->this_lsn);
2258 	u32 vbo = lsn_to_vbo(log, lsn) & ~log->page_mask;
2259 	u32 off = lsn_to_page_off(log, lsn) + log->record_header_len;
2260 	u32 data_len = le32_to_cpu(rh->client_data_len);
2261 
2262 	/*
2263 	 * While there are more bytes to transfer,
2264 	 * we continue to attempt to perform the read.
2265 	 */
2266 	for (;;) {
2267 		bool usa_error;
2268 		u32 tail = log->page_size - off;
2269 
2270 		if (tail >= data_len)
2271 			tail = data_len;
2272 
2273 		data_len -= tail;
2274 
2275 		err = read_log_page(log, vbo, &ph, &usa_error);
2276 		if (err)
2277 			goto out;
2278 
2279 		/*
2280 		 * The last lsn on this page better be greater or equal
2281 		 * to the lsn we are copying.
2282 		 */
2283 		if (lsn > le64_to_cpu(ph->rhdr.lsn)) {
2284 			err = -EINVAL;
2285 			goto out;
2286 		}
2287 
2288 		memcpy(buffer, Add2Ptr(ph, off), tail);
2289 
2290 		/* If there are no more bytes to transfer, we exit the loop. */
2291 		if (!data_len) {
2292 			if (!is_log_record_end(ph) ||
2293 			    lsn > le64_to_cpu(ph->record_hdr.last_end_lsn)) {
2294 				err = -EINVAL;
2295 				goto out;
2296 			}
2297 			break;
2298 		}
2299 
2300 		if (ph->rhdr.lsn == ph->record_hdr.last_end_lsn ||
2301 		    lsn > le64_to_cpu(ph->rhdr.lsn)) {
2302 			err = -EINVAL;
2303 			goto out;
2304 		}
2305 
2306 		vbo = next_page_off(log, vbo);
2307 		off = log->data_off;
2308 
2309 		/*
2310 		 * Adjust our pointer the user's buffer to transfer
2311 		 * the next block to.
2312 		 */
2313 		buffer = Add2Ptr(buffer, tail);
2314 	}
2315 
2316 out:
2317 	kfree(ph);
2318 	return err;
2319 }
2320 
2321 static int read_rst_area(struct ntfs_log *log, struct NTFS_RESTART **rst_,
2322 			 u64 *lsn)
2323 {
2324 	int err;
2325 	struct LFS_RECORD_HDR *rh = NULL;
2326 	const struct CLIENT_REC *cr =
2327 		Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2328 	u64 lsnr, lsnc = le64_to_cpu(cr->restart_lsn);
2329 	u32 len;
2330 	struct NTFS_RESTART *rst;
2331 
2332 	*lsn = 0;
2333 	*rst_ = NULL;
2334 
2335 	/* If the client doesn't have a restart area, go ahead and exit now. */
2336 	if (!lsnc)
2337 		return 0;
2338 
2339 	err = read_log_page(log, lsn_to_vbo(log, lsnc),
2340 			    (struct RECORD_PAGE_HDR **)&rh, NULL);
2341 	if (err)
2342 		return err;
2343 
2344 	rst = NULL;
2345 	lsnr = le64_to_cpu(rh->this_lsn);
2346 
2347 	if (lsnc != lsnr) {
2348 		/* If the lsn values don't match, then the disk is corrupt. */
2349 		err = -EINVAL;
2350 		goto out;
2351 	}
2352 
2353 	*lsn = lsnr;
2354 	len = le32_to_cpu(rh->client_data_len);
2355 
2356 	if (!len) {
2357 		err = 0;
2358 		goto out;
2359 	}
2360 
2361 	if (len < sizeof(struct NTFS_RESTART)) {
2362 		err = -EINVAL;
2363 		goto out;
2364 	}
2365 
2366 	rst = kmalloc(len, GFP_NOFS);
2367 	if (!rst) {
2368 		err = -ENOMEM;
2369 		goto out;
2370 	}
2371 
2372 	/* Copy the data into the 'rst' buffer. */
2373 	err = read_log_rec_buf(log, rh, rst);
2374 	if (err)
2375 		goto out;
2376 
2377 	*rst_ = rst;
2378 	rst = NULL;
2379 
2380 out:
2381 	kfree(rh);
2382 	kfree(rst);
2383 
2384 	return err;
2385 }
2386 
2387 static int find_log_rec(struct ntfs_log *log, u64 lsn, struct lcb *lcb)
2388 {
2389 	int err;
2390 	struct LFS_RECORD_HDR *rh = lcb->lrh;
2391 	u32 rec_len, len;
2392 
2393 	/* Read the record header for this lsn. */
2394 	if (!rh) {
2395 		err = read_log_page(log, lsn_to_vbo(log, lsn),
2396 				    (struct RECORD_PAGE_HDR **)&rh, NULL);
2397 
2398 		lcb->lrh = rh;
2399 		if (err)
2400 			return err;
2401 	}
2402 
2403 	/*
2404 	 * If the lsn the log record doesn't match the desired
2405 	 * lsn then the disk is corrupt.
2406 	 */
2407 	if (lsn != le64_to_cpu(rh->this_lsn))
2408 		return -EINVAL;
2409 
2410 	len = le32_to_cpu(rh->client_data_len);
2411 
2412 	/*
2413 	 * Check that the length field isn't greater than the total
2414 	 * available space the log file.
2415 	 */
2416 	rec_len = len + log->record_header_len;
2417 	if (rec_len >= log->total_avail)
2418 		return -EINVAL;
2419 
2420 	/*
2421 	 * If the entire log record is on this log page,
2422 	 * put a pointer to the log record the context block.
2423 	 */
2424 	if (rh->flags & LOG_RECORD_MULTI_PAGE) {
2425 		void *lr = kmalloc(len, GFP_NOFS);
2426 
2427 		if (!lr)
2428 			return -ENOMEM;
2429 
2430 		lcb->log_rec = lr;
2431 		lcb->alloc = true;
2432 
2433 		/* Copy the data into the buffer returned. */
2434 		err = read_log_rec_buf(log, rh, lr);
2435 		if (err)
2436 			return err;
2437 	} else {
2438 		/* If beyond the end of the current page -> an error. */
2439 		u32 page_off = lsn_to_page_off(log, lsn);
2440 
2441 		if (page_off + len + log->record_header_len > log->page_size)
2442 			return -EINVAL;
2443 
2444 		lcb->log_rec = Add2Ptr(rh, sizeof(struct LFS_RECORD_HDR));
2445 		lcb->alloc = false;
2446 	}
2447 
2448 	return 0;
2449 }
2450 
2451 /*
2452  * read_log_rec_lcb - Init the query operation.
2453  */
2454 static int read_log_rec_lcb(struct ntfs_log *log, u64 lsn, u32 ctx_mode,
2455 			    struct lcb **lcb_)
2456 {
2457 	int err;
2458 	const struct CLIENT_REC *cr;
2459 	struct lcb *lcb;
2460 
2461 	switch (ctx_mode) {
2462 	case lcb_ctx_undo_next:
2463 	case lcb_ctx_prev:
2464 	case lcb_ctx_next:
2465 		break;
2466 	default:
2467 		return -EINVAL;
2468 	}
2469 
2470 	/* Check that the given lsn is the legal range for this client. */
2471 	cr = Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2472 
2473 	if (!verify_client_lsn(log, cr, lsn))
2474 		return -EINVAL;
2475 
2476 	lcb = kzalloc(sizeof(struct lcb), GFP_NOFS);
2477 	if (!lcb)
2478 		return -ENOMEM;
2479 	lcb->client = log->client_id;
2480 	lcb->ctx_mode = ctx_mode;
2481 
2482 	/* Find the log record indicated by the given lsn. */
2483 	err = find_log_rec(log, lsn, lcb);
2484 	if (err)
2485 		goto out;
2486 
2487 	*lcb_ = lcb;
2488 	return 0;
2489 
2490 out:
2491 	lcb_put(lcb);
2492 	*lcb_ = NULL;
2493 	return err;
2494 }
2495 
2496 /*
2497  * find_client_next_lsn
2498  *
2499  * Attempt to find the next lsn to return to a client based on the context mode.
2500  */
2501 static int find_client_next_lsn(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2502 {
2503 	int err;
2504 	u64 next_lsn;
2505 	struct LFS_RECORD_HDR *hdr;
2506 
2507 	hdr = lcb->lrh;
2508 	*lsn = 0;
2509 
2510 	if (lcb_ctx_next != lcb->ctx_mode)
2511 		goto check_undo_next;
2512 
2513 	/* Loop as long as another lsn can be found. */
2514 	for (;;) {
2515 		u64 current_lsn;
2516 
2517 		err = next_log_lsn(log, hdr, &current_lsn);
2518 		if (err)
2519 			goto out;
2520 
2521 		if (!current_lsn)
2522 			break;
2523 
2524 		if (hdr != lcb->lrh)
2525 			kfree(hdr);
2526 
2527 		hdr = NULL;
2528 		err = read_log_page(log, lsn_to_vbo(log, current_lsn),
2529 				    (struct RECORD_PAGE_HDR **)&hdr, NULL);
2530 		if (err)
2531 			goto out;
2532 
2533 		if (memcmp(&hdr->client, &lcb->client,
2534 			   sizeof(struct CLIENT_ID))) {
2535 			/*err = -EINVAL; */
2536 		} else if (LfsClientRecord == hdr->record_type) {
2537 			kfree(lcb->lrh);
2538 			lcb->lrh = hdr;
2539 			*lsn = current_lsn;
2540 			return 0;
2541 		}
2542 	}
2543 
2544 out:
2545 	if (hdr != lcb->lrh)
2546 		kfree(hdr);
2547 	return err;
2548 
2549 check_undo_next:
2550 	if (lcb_ctx_undo_next == lcb->ctx_mode)
2551 		next_lsn = le64_to_cpu(hdr->client_undo_next_lsn);
2552 	else if (lcb_ctx_prev == lcb->ctx_mode)
2553 		next_lsn = le64_to_cpu(hdr->client_prev_lsn);
2554 	else
2555 		return 0;
2556 
2557 	if (!next_lsn)
2558 		return 0;
2559 
2560 	if (!verify_client_lsn(
2561 		    log, Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)),
2562 		    next_lsn))
2563 		return 0;
2564 
2565 	hdr = NULL;
2566 	err = read_log_page(log, lsn_to_vbo(log, next_lsn),
2567 			    (struct RECORD_PAGE_HDR **)&hdr, NULL);
2568 	if (err)
2569 		return err;
2570 	kfree(lcb->lrh);
2571 	lcb->lrh = hdr;
2572 
2573 	*lsn = next_lsn;
2574 
2575 	return 0;
2576 }
2577 
2578 static int read_next_log_rec(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2579 {
2580 	int err;
2581 
2582 	err = find_client_next_lsn(log, lcb, lsn);
2583 	if (err)
2584 		return err;
2585 
2586 	if (!*lsn)
2587 		return 0;
2588 
2589 	if (lcb->alloc)
2590 		kfree(lcb->log_rec);
2591 
2592 	lcb->log_rec = NULL;
2593 	lcb->alloc = false;
2594 	kfree(lcb->lrh);
2595 	lcb->lrh = NULL;
2596 
2597 	return find_log_rec(log, *lsn, lcb);
2598 }
2599 
2600 static inline bool check_index_header(const struct INDEX_HDR *hdr, size_t bytes)
2601 {
2602 	__le16 mask;
2603 	u32 min_de, de_off, used, total;
2604 	const struct NTFS_DE *e;
2605 
2606 	if (hdr_has_subnode(hdr)) {
2607 		min_de = sizeof(struct NTFS_DE) + sizeof(u64);
2608 		mask = NTFS_IE_HAS_SUBNODES;
2609 	} else {
2610 		min_de = sizeof(struct NTFS_DE);
2611 		mask = 0;
2612 	}
2613 
2614 	de_off = le32_to_cpu(hdr->de_off);
2615 	used = le32_to_cpu(hdr->used);
2616 	total = le32_to_cpu(hdr->total);
2617 
2618 	if (de_off > bytes - min_de || used > bytes || total > bytes ||
2619 	    de_off + min_de > used || used > total) {
2620 		return false;
2621 	}
2622 
2623 	e = Add2Ptr(hdr, de_off);
2624 	for (;;) {
2625 		u16 esize = le16_to_cpu(e->size);
2626 		struct NTFS_DE *next = Add2Ptr(e, esize);
2627 
2628 		if (esize < min_de || PtrOffset(hdr, next) > used ||
2629 		    (e->flags & NTFS_IE_HAS_SUBNODES) != mask) {
2630 			return false;
2631 		}
2632 
2633 		if (de_is_last(e))
2634 			break;
2635 
2636 		e = next;
2637 	}
2638 
2639 	return true;
2640 }
2641 
2642 static inline bool check_index_buffer(const struct INDEX_BUFFER *ib, u32 bytes)
2643 {
2644 	u16 fo;
2645 	const struct NTFS_RECORD_HEADER *r = &ib->rhdr;
2646 
2647 	if (r->sign != NTFS_INDX_SIGNATURE)
2648 		return false;
2649 
2650 	fo = (SECTOR_SIZE - ((bytes >> SECTOR_SHIFT) + 1) * sizeof(short));
2651 
2652 	if (le16_to_cpu(r->fix_off) > fo)
2653 		return false;
2654 
2655 	if ((le16_to_cpu(r->fix_num) - 1) * SECTOR_SIZE != bytes)
2656 		return false;
2657 
2658 	return check_index_header(&ib->ihdr,
2659 				  bytes - offsetof(struct INDEX_BUFFER, ihdr));
2660 }
2661 
2662 static inline bool check_index_root(const struct ATTRIB *attr,
2663 				    struct ntfs_sb_info *sbi)
2664 {
2665 	bool ret;
2666 	const struct INDEX_ROOT *root = resident_data(attr);
2667 	u8 index_bits = le32_to_cpu(root->index_block_size) >= sbi->cluster_size
2668 				? sbi->cluster_bits
2669 				: SECTOR_SHIFT;
2670 	u8 block_clst = root->index_block_clst;
2671 
2672 	if (le32_to_cpu(attr->res.data_size) < sizeof(struct INDEX_ROOT) ||
2673 	    (root->type != ATTR_NAME && root->type != ATTR_ZERO) ||
2674 	    (root->type == ATTR_NAME &&
2675 	     root->rule != NTFS_COLLATION_TYPE_FILENAME) ||
2676 	    (le32_to_cpu(root->index_block_size) !=
2677 	     (block_clst << index_bits)) ||
2678 	    (block_clst != 1 && block_clst != 2 && block_clst != 4 &&
2679 	     block_clst != 8 && block_clst != 0x10 && block_clst != 0x20 &&
2680 	     block_clst != 0x40 && block_clst != 0x80)) {
2681 		return false;
2682 	}
2683 
2684 	ret = check_index_header(&root->ihdr,
2685 				 le32_to_cpu(attr->res.data_size) -
2686 					 offsetof(struct INDEX_ROOT, ihdr));
2687 	return ret;
2688 }
2689 
2690 static inline bool check_attr(const struct MFT_REC *rec,
2691 			      const struct ATTRIB *attr,
2692 			      struct ntfs_sb_info *sbi)
2693 {
2694 	u32 asize = le32_to_cpu(attr->size);
2695 	u32 rsize = 0;
2696 	u64 dsize, svcn, evcn;
2697 	u16 run_off;
2698 
2699 	/* Check the fixed part of the attribute record header. */
2700 	if (asize >= sbi->record_size ||
2701 	    asize + PtrOffset(rec, attr) >= sbi->record_size ||
2702 	    (attr->name_len &&
2703 	     le16_to_cpu(attr->name_off) + attr->name_len * sizeof(short) >
2704 		     asize)) {
2705 		return false;
2706 	}
2707 
2708 	/* Check the attribute fields. */
2709 	switch (attr->non_res) {
2710 	case 0:
2711 		rsize = le32_to_cpu(attr->res.data_size);
2712 		if (rsize >= asize ||
2713 		    le16_to_cpu(attr->res.data_off) + rsize > asize) {
2714 			return false;
2715 		}
2716 		break;
2717 
2718 	case 1:
2719 		dsize = le64_to_cpu(attr->nres.data_size);
2720 		svcn = le64_to_cpu(attr->nres.svcn);
2721 		evcn = le64_to_cpu(attr->nres.evcn);
2722 		run_off = le16_to_cpu(attr->nres.run_off);
2723 
2724 		if (svcn > evcn + 1 || run_off >= asize ||
2725 		    le64_to_cpu(attr->nres.valid_size) > dsize ||
2726 		    dsize > le64_to_cpu(attr->nres.alloc_size)) {
2727 			return false;
2728 		}
2729 
2730 		if (run_unpack(NULL, sbi, 0, svcn, evcn, svcn,
2731 			       Add2Ptr(attr, run_off), asize - run_off) < 0) {
2732 			return false;
2733 		}
2734 
2735 		return true;
2736 
2737 	default:
2738 		return false;
2739 	}
2740 
2741 	switch (attr->type) {
2742 	case ATTR_NAME:
2743 		if (fname_full_size(Add2Ptr(
2744 			    attr, le16_to_cpu(attr->res.data_off))) > asize) {
2745 			return false;
2746 		}
2747 		break;
2748 
2749 	case ATTR_ROOT:
2750 		return check_index_root(attr, sbi);
2751 
2752 	case ATTR_STD:
2753 		if (rsize < sizeof(struct ATTR_STD_INFO5) &&
2754 		    rsize != sizeof(struct ATTR_STD_INFO)) {
2755 			return false;
2756 		}
2757 		break;
2758 
2759 	case ATTR_LIST:
2760 	case ATTR_ID:
2761 	case ATTR_SECURE:
2762 	case ATTR_LABEL:
2763 	case ATTR_VOL_INFO:
2764 	case ATTR_DATA:
2765 	case ATTR_ALLOC:
2766 	case ATTR_BITMAP:
2767 	case ATTR_REPARSE:
2768 	case ATTR_EA_INFO:
2769 	case ATTR_EA:
2770 	case ATTR_PROPERTYSET:
2771 	case ATTR_LOGGED_UTILITY_STREAM:
2772 		break;
2773 
2774 	default:
2775 		return false;
2776 	}
2777 
2778 	return true;
2779 }
2780 
2781 static inline bool check_file_record(const struct MFT_REC *rec,
2782 				     const struct MFT_REC *rec2,
2783 				     struct ntfs_sb_info *sbi)
2784 {
2785 	const struct ATTRIB *attr;
2786 	u16 fo = le16_to_cpu(rec->rhdr.fix_off);
2787 	u16 fn = le16_to_cpu(rec->rhdr.fix_num);
2788 	u16 ao = le16_to_cpu(rec->attr_off);
2789 	u32 rs = sbi->record_size;
2790 
2791 	/* Check the file record header for consistency. */
2792 	if (rec->rhdr.sign != NTFS_FILE_SIGNATURE ||
2793 	    fo > (SECTOR_SIZE - ((rs >> SECTOR_SHIFT) + 1) * sizeof(short)) ||
2794 	    (fn - 1) * SECTOR_SIZE != rs || ao < MFTRECORD_FIXUP_OFFSET_1 ||
2795 	    ao > sbi->record_size - SIZEOF_RESIDENT || !is_rec_inuse(rec) ||
2796 	    le32_to_cpu(rec->total) != rs) {
2797 		return false;
2798 	}
2799 
2800 	/* Loop to check all of the attributes. */
2801 	for (attr = Add2Ptr(rec, ao); attr->type != ATTR_END;
2802 	     attr = Add2Ptr(attr, le32_to_cpu(attr->size))) {
2803 		if (check_attr(rec, attr, sbi))
2804 			continue;
2805 		return false;
2806 	}
2807 
2808 	return true;
2809 }
2810 
2811 static inline int check_lsn(const struct NTFS_RECORD_HEADER *hdr,
2812 			    const u64 *rlsn)
2813 {
2814 	u64 lsn;
2815 
2816 	if (!rlsn)
2817 		return true;
2818 
2819 	lsn = le64_to_cpu(hdr->lsn);
2820 
2821 	if (hdr->sign == NTFS_HOLE_SIGNATURE)
2822 		return false;
2823 
2824 	if (*rlsn > lsn)
2825 		return true;
2826 
2827 	return false;
2828 }
2829 
2830 static inline bool check_if_attr(const struct MFT_REC *rec,
2831 				 const struct LOG_REC_HDR *lrh)
2832 {
2833 	u16 ro = le16_to_cpu(lrh->record_off);
2834 	u16 o = le16_to_cpu(rec->attr_off);
2835 	const struct ATTRIB *attr = Add2Ptr(rec, o);
2836 
2837 	while (o < ro) {
2838 		u32 asize;
2839 
2840 		if (attr->type == ATTR_END)
2841 			break;
2842 
2843 		asize = le32_to_cpu(attr->size);
2844 		if (!asize)
2845 			break;
2846 
2847 		o += asize;
2848 		attr = Add2Ptr(attr, asize);
2849 	}
2850 
2851 	return o == ro;
2852 }
2853 
2854 static inline bool check_if_index_root(const struct MFT_REC *rec,
2855 				       const struct LOG_REC_HDR *lrh)
2856 {
2857 	u16 ro = le16_to_cpu(lrh->record_off);
2858 	u16 o = le16_to_cpu(rec->attr_off);
2859 	const struct ATTRIB *attr = Add2Ptr(rec, o);
2860 
2861 	while (o < ro) {
2862 		u32 asize;
2863 
2864 		if (attr->type == ATTR_END)
2865 			break;
2866 
2867 		asize = le32_to_cpu(attr->size);
2868 		if (!asize)
2869 			break;
2870 
2871 		o += asize;
2872 		attr = Add2Ptr(attr, asize);
2873 	}
2874 
2875 	return o == ro && attr->type == ATTR_ROOT;
2876 }
2877 
2878 static inline bool check_if_root_index(const struct ATTRIB *attr,
2879 				       const struct INDEX_HDR *hdr,
2880 				       const struct LOG_REC_HDR *lrh)
2881 {
2882 	u16 ao = le16_to_cpu(lrh->attr_off);
2883 	u32 de_off = le32_to_cpu(hdr->de_off);
2884 	u32 o = PtrOffset(attr, hdr) + de_off;
2885 	const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2886 	u32 asize = le32_to_cpu(attr->size);
2887 
2888 	while (o < ao) {
2889 		u16 esize;
2890 
2891 		if (o >= asize)
2892 			break;
2893 
2894 		esize = le16_to_cpu(e->size);
2895 		if (!esize)
2896 			break;
2897 
2898 		o += esize;
2899 		e = Add2Ptr(e, esize);
2900 	}
2901 
2902 	return o == ao;
2903 }
2904 
2905 static inline bool check_if_alloc_index(const struct INDEX_HDR *hdr,
2906 					u32 attr_off)
2907 {
2908 	u32 de_off = le32_to_cpu(hdr->de_off);
2909 	u32 o = offsetof(struct INDEX_BUFFER, ihdr) + de_off;
2910 	const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2911 	u32 used = le32_to_cpu(hdr->used);
2912 
2913 	while (o < attr_off) {
2914 		u16 esize;
2915 
2916 		if (de_off >= used)
2917 			break;
2918 
2919 		esize = le16_to_cpu(e->size);
2920 		if (!esize)
2921 			break;
2922 
2923 		o += esize;
2924 		de_off += esize;
2925 		e = Add2Ptr(e, esize);
2926 	}
2927 
2928 	return o == attr_off;
2929 }
2930 
2931 static inline void change_attr_size(struct MFT_REC *rec, struct ATTRIB *attr,
2932 				    u32 nsize)
2933 {
2934 	u32 asize = le32_to_cpu(attr->size);
2935 	int dsize = nsize - asize;
2936 	u8 *next = Add2Ptr(attr, asize);
2937 	u32 used = le32_to_cpu(rec->used);
2938 
2939 	memmove(Add2Ptr(attr, nsize), next, used - PtrOffset(rec, next));
2940 
2941 	rec->used = cpu_to_le32(used + dsize);
2942 	attr->size = cpu_to_le32(nsize);
2943 }
2944 
2945 struct OpenAttr {
2946 	struct ATTRIB *attr;
2947 	struct runs_tree *run1;
2948 	struct runs_tree run0;
2949 	struct ntfs_inode *ni;
2950 	// CLST rno;
2951 };
2952 
2953 /*
2954  * cmp_type_and_name
2955  *
2956  * Return: 0 if 'attr' has the same type and name.
2957  */
2958 static inline int cmp_type_and_name(const struct ATTRIB *a1,
2959 				    const struct ATTRIB *a2)
2960 {
2961 	return a1->type != a2->type || a1->name_len != a2->name_len ||
2962 	       (a1->name_len && memcmp(attr_name(a1), attr_name(a2),
2963 				       a1->name_len * sizeof(short)));
2964 }
2965 
2966 static struct OpenAttr *find_loaded_attr(struct ntfs_log *log,
2967 					 const struct ATTRIB *attr, CLST rno)
2968 {
2969 	struct OPEN_ATTR_ENRTY *oe = NULL;
2970 
2971 	while ((oe = enum_rstbl(log->open_attr_tbl, oe))) {
2972 		struct OpenAttr *op_attr;
2973 
2974 		if (ino_get(&oe->ref) != rno)
2975 			continue;
2976 
2977 		op_attr = (struct OpenAttr *)oe->ptr;
2978 		if (!cmp_type_and_name(op_attr->attr, attr))
2979 			return op_attr;
2980 	}
2981 	return NULL;
2982 }
2983 
2984 static struct ATTRIB *attr_create_nonres_log(struct ntfs_sb_info *sbi,
2985 					     enum ATTR_TYPE type, u64 size,
2986 					     const u16 *name, size_t name_len,
2987 					     __le16 flags)
2988 {
2989 	struct ATTRIB *attr;
2990 	u32 name_size = ALIGN(name_len * sizeof(short), 8);
2991 	bool is_ext = flags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED);
2992 	u32 asize = name_size +
2993 		    (is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT);
2994 
2995 	attr = kzalloc(asize, GFP_NOFS);
2996 	if (!attr)
2997 		return NULL;
2998 
2999 	attr->type = type;
3000 	attr->size = cpu_to_le32(asize);
3001 	attr->flags = flags;
3002 	attr->non_res = 1;
3003 	attr->name_len = name_len;
3004 
3005 	attr->nres.evcn = cpu_to_le64((u64)bytes_to_cluster(sbi, size) - 1);
3006 	attr->nres.alloc_size = cpu_to_le64(ntfs_up_cluster(sbi, size));
3007 	attr->nres.data_size = cpu_to_le64(size);
3008 	attr->nres.valid_size = attr->nres.data_size;
3009 	if (is_ext) {
3010 		attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
3011 		if (is_attr_compressed(attr))
3012 			attr->nres.c_unit = COMPRESSION_UNIT;
3013 
3014 		attr->nres.run_off =
3015 			cpu_to_le16(SIZEOF_NONRESIDENT_EX + name_size);
3016 		memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT_EX), name,
3017 		       name_len * sizeof(short));
3018 	} else {
3019 		attr->name_off = SIZEOF_NONRESIDENT_LE;
3020 		attr->nres.run_off =
3021 			cpu_to_le16(SIZEOF_NONRESIDENT + name_size);
3022 		memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT), name,
3023 		       name_len * sizeof(short));
3024 	}
3025 
3026 	return attr;
3027 }
3028 
3029 /*
3030  * do_action - Common routine for the Redo and Undo Passes.
3031  * @rlsn: If it is NULL then undo.
3032  */
3033 static int do_action(struct ntfs_log *log, struct OPEN_ATTR_ENRTY *oe,
3034 		     const struct LOG_REC_HDR *lrh, u32 op, void *data,
3035 		     u32 dlen, u32 rec_len, const u64 *rlsn)
3036 {
3037 	int err = 0;
3038 	struct ntfs_sb_info *sbi = log->ni->mi.sbi;
3039 	struct inode *inode = NULL, *inode_parent;
3040 	struct mft_inode *mi = NULL, *mi2_child = NULL;
3041 	CLST rno = 0, rno_base = 0;
3042 	struct INDEX_BUFFER *ib = NULL;
3043 	struct MFT_REC *rec = NULL;
3044 	struct ATTRIB *attr = NULL, *attr2;
3045 	struct INDEX_HDR *hdr;
3046 	struct INDEX_ROOT *root;
3047 	struct NTFS_DE *e, *e1, *e2;
3048 	struct NEW_ATTRIBUTE_SIZES *new_sz;
3049 	struct ATTR_FILE_NAME *fname;
3050 	struct OpenAttr *oa, *oa2;
3051 	u32 nsize, t32, asize, used, esize, bmp_off, bmp_bits;
3052 	u16 id, id2;
3053 	u32 record_size = sbi->record_size;
3054 	u64 t64;
3055 	u16 roff = le16_to_cpu(lrh->record_off);
3056 	u16 aoff = le16_to_cpu(lrh->attr_off);
3057 	u64 lco = 0;
3058 	u64 cbo = (u64)le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
3059 	u64 tvo = le64_to_cpu(lrh->target_vcn) << sbi->cluster_bits;
3060 	u64 vbo = cbo + tvo;
3061 	void *buffer_le = NULL;
3062 	u32 bytes = 0;
3063 	bool a_dirty = false;
3064 	u16 data_off;
3065 
3066 	oa = oe->ptr;
3067 
3068 	/* Big switch to prepare. */
3069 	switch (op) {
3070 	/* ============================================================
3071 	 * Process MFT records, as described by the current log record.
3072 	 * ============================================================
3073 	 */
3074 	case InitializeFileRecordSegment:
3075 	case DeallocateFileRecordSegment:
3076 	case WriteEndOfFileRecordSegment:
3077 	case CreateAttribute:
3078 	case DeleteAttribute:
3079 	case UpdateResidentValue:
3080 	case UpdateMappingPairs:
3081 	case SetNewAttributeSizes:
3082 	case AddIndexEntryRoot:
3083 	case DeleteIndexEntryRoot:
3084 	case SetIndexEntryVcnRoot:
3085 	case UpdateFileNameRoot:
3086 	case UpdateRecordDataRoot:
3087 	case ZeroEndOfFileRecord:
3088 		rno = vbo >> sbi->record_bits;
3089 		inode = ilookup(sbi->sb, rno);
3090 		if (inode) {
3091 			mi = &ntfs_i(inode)->mi;
3092 		} else if (op == InitializeFileRecordSegment) {
3093 			mi = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
3094 			if (!mi)
3095 				return -ENOMEM;
3096 			err = mi_format_new(mi, sbi, rno, 0, false);
3097 			if (err)
3098 				goto out;
3099 		} else {
3100 			/* Read from disk. */
3101 			err = mi_get(sbi, rno, &mi);
3102 			if (err)
3103 				return err;
3104 		}
3105 		rec = mi->mrec;
3106 
3107 		if (op == DeallocateFileRecordSegment)
3108 			goto skip_load_parent;
3109 
3110 		if (InitializeFileRecordSegment != op) {
3111 			if (rec->rhdr.sign == NTFS_BAAD_SIGNATURE)
3112 				goto dirty_vol;
3113 			if (!check_lsn(&rec->rhdr, rlsn))
3114 				goto out;
3115 			if (!check_file_record(rec, NULL, sbi))
3116 				goto dirty_vol;
3117 			attr = Add2Ptr(rec, roff);
3118 		}
3119 
3120 		if (is_rec_base(rec) || InitializeFileRecordSegment == op) {
3121 			rno_base = rno;
3122 			goto skip_load_parent;
3123 		}
3124 
3125 		rno_base = ino_get(&rec->parent_ref);
3126 		inode_parent = ntfs_iget5(sbi->sb, &rec->parent_ref, NULL);
3127 		if (IS_ERR(inode_parent))
3128 			goto skip_load_parent;
3129 
3130 		if (is_bad_inode(inode_parent)) {
3131 			iput(inode_parent);
3132 			goto skip_load_parent;
3133 		}
3134 
3135 		if (ni_load_mi_ex(ntfs_i(inode_parent), rno, &mi2_child)) {
3136 			iput(inode_parent);
3137 		} else {
3138 			if (mi2_child->mrec != mi->mrec)
3139 				memcpy(mi2_child->mrec, mi->mrec,
3140 				       sbi->record_size);
3141 
3142 			if (inode)
3143 				iput(inode);
3144 			else if (mi)
3145 				mi_put(mi);
3146 
3147 			inode = inode_parent;
3148 			mi = mi2_child;
3149 			rec = mi2_child->mrec;
3150 			attr = Add2Ptr(rec, roff);
3151 		}
3152 
3153 skip_load_parent:
3154 		inode_parent = NULL;
3155 		break;
3156 
3157 	/*
3158 	 * Process attributes, as described by the current log record.
3159 	 */
3160 	case UpdateNonresidentValue:
3161 	case AddIndexEntryAllocation:
3162 	case DeleteIndexEntryAllocation:
3163 	case WriteEndOfIndexBuffer:
3164 	case SetIndexEntryVcnAllocation:
3165 	case UpdateFileNameAllocation:
3166 	case SetBitsInNonresidentBitMap:
3167 	case ClearBitsInNonresidentBitMap:
3168 	case UpdateRecordDataAllocation:
3169 		attr = oa->attr;
3170 		bytes = UpdateNonresidentValue == op ? dlen : 0;
3171 		lco = (u64)le16_to_cpu(lrh->lcns_follow) << sbi->cluster_bits;
3172 
3173 		if (attr->type == ATTR_ALLOC) {
3174 			t32 = le32_to_cpu(oe->bytes_per_index);
3175 			if (bytes < t32)
3176 				bytes = t32;
3177 		}
3178 
3179 		if (!bytes)
3180 			bytes = lco - cbo;
3181 
3182 		bytes += roff;
3183 		if (attr->type == ATTR_ALLOC)
3184 			bytes = (bytes + 511) & ~511; // align
3185 
3186 		buffer_le = kmalloc(bytes, GFP_NOFS);
3187 		if (!buffer_le)
3188 			return -ENOMEM;
3189 
3190 		err = ntfs_read_run_nb(sbi, oa->run1, vbo, buffer_le, bytes,
3191 				       NULL);
3192 		if (err)
3193 			goto out;
3194 
3195 		if (attr->type == ATTR_ALLOC && *(int *)buffer_le)
3196 			ntfs_fix_post_read(buffer_le, bytes, false);
3197 		break;
3198 
3199 	default:
3200 		WARN_ON(1);
3201 	}
3202 
3203 	/* Big switch to do operation. */
3204 	switch (op) {
3205 	case InitializeFileRecordSegment:
3206 		if (roff + dlen > record_size)
3207 			goto dirty_vol;
3208 
3209 		memcpy(Add2Ptr(rec, roff), data, dlen);
3210 		mi->dirty = true;
3211 		break;
3212 
3213 	case DeallocateFileRecordSegment:
3214 		clear_rec_inuse(rec);
3215 		le16_add_cpu(&rec->seq, 1);
3216 		mi->dirty = true;
3217 		break;
3218 
3219 	case WriteEndOfFileRecordSegment:
3220 		attr2 = (struct ATTRIB *)data;
3221 		if (!check_if_attr(rec, lrh) || roff + dlen > record_size)
3222 			goto dirty_vol;
3223 
3224 		memmove(attr, attr2, dlen);
3225 		rec->used = cpu_to_le32(ALIGN(roff + dlen, 8));
3226 
3227 		mi->dirty = true;
3228 		break;
3229 
3230 	case CreateAttribute:
3231 		attr2 = (struct ATTRIB *)data;
3232 		asize = le32_to_cpu(attr2->size);
3233 		used = le32_to_cpu(rec->used);
3234 
3235 		if (!check_if_attr(rec, lrh) || dlen < SIZEOF_RESIDENT ||
3236 		    !IS_ALIGNED(asize, 8) ||
3237 		    Add2Ptr(attr2, asize) > Add2Ptr(lrh, rec_len) ||
3238 		    dlen > record_size - used) {
3239 			goto dirty_vol;
3240 		}
3241 
3242 		memmove(Add2Ptr(attr, asize), attr, used - roff);
3243 		memcpy(attr, attr2, asize);
3244 
3245 		rec->used = cpu_to_le32(used + asize);
3246 		id = le16_to_cpu(rec->next_attr_id);
3247 		id2 = le16_to_cpu(attr2->id);
3248 		if (id <= id2)
3249 			rec->next_attr_id = cpu_to_le16(id2 + 1);
3250 		if (is_attr_indexed(attr))
3251 			le16_add_cpu(&rec->hard_links, 1);
3252 
3253 		oa2 = find_loaded_attr(log, attr, rno_base);
3254 		if (oa2) {
3255 			void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3256 					   GFP_NOFS);
3257 			if (p2) {
3258 				// run_close(oa2->run1);
3259 				kfree(oa2->attr);
3260 				oa2->attr = p2;
3261 			}
3262 		}
3263 
3264 		mi->dirty = true;
3265 		break;
3266 
3267 	case DeleteAttribute:
3268 		asize = le32_to_cpu(attr->size);
3269 		used = le32_to_cpu(rec->used);
3270 
3271 		if (!check_if_attr(rec, lrh))
3272 			goto dirty_vol;
3273 
3274 		rec->used = cpu_to_le32(used - asize);
3275 		if (is_attr_indexed(attr))
3276 			le16_add_cpu(&rec->hard_links, -1);
3277 
3278 		memmove(attr, Add2Ptr(attr, asize), used - asize - roff);
3279 
3280 		mi->dirty = true;
3281 		break;
3282 
3283 	case UpdateResidentValue:
3284 		nsize = aoff + dlen;
3285 
3286 		if (!check_if_attr(rec, lrh))
3287 			goto dirty_vol;
3288 
3289 		asize = le32_to_cpu(attr->size);
3290 		used = le32_to_cpu(rec->used);
3291 
3292 		if (lrh->redo_len == lrh->undo_len) {
3293 			if (nsize > asize)
3294 				goto dirty_vol;
3295 			goto move_data;
3296 		}
3297 
3298 		if (nsize > asize && nsize - asize > record_size - used)
3299 			goto dirty_vol;
3300 
3301 		nsize = ALIGN(nsize, 8);
3302 		data_off = le16_to_cpu(attr->res.data_off);
3303 
3304 		if (nsize < asize) {
3305 			memmove(Add2Ptr(attr, aoff), data, dlen);
3306 			data = NULL; // To skip below memmove().
3307 		}
3308 
3309 		memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3310 			used - le16_to_cpu(lrh->record_off) - asize);
3311 
3312 		rec->used = cpu_to_le32(used + nsize - asize);
3313 		attr->size = cpu_to_le32(nsize);
3314 		attr->res.data_size = cpu_to_le32(aoff + dlen - data_off);
3315 
3316 move_data:
3317 		if (data)
3318 			memmove(Add2Ptr(attr, aoff), data, dlen);
3319 
3320 		oa2 = find_loaded_attr(log, attr, rno_base);
3321 		if (oa2) {
3322 			void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3323 					   GFP_NOFS);
3324 			if (p2) {
3325 				// run_close(&oa2->run0);
3326 				oa2->run1 = &oa2->run0;
3327 				kfree(oa2->attr);
3328 				oa2->attr = p2;
3329 			}
3330 		}
3331 
3332 		mi->dirty = true;
3333 		break;
3334 
3335 	case UpdateMappingPairs:
3336 		nsize = aoff + dlen;
3337 		asize = le32_to_cpu(attr->size);
3338 		used = le32_to_cpu(rec->used);
3339 
3340 		if (!check_if_attr(rec, lrh) || !attr->non_res ||
3341 		    aoff < le16_to_cpu(attr->nres.run_off) || aoff > asize ||
3342 		    (nsize > asize && nsize - asize > record_size - used)) {
3343 			goto dirty_vol;
3344 		}
3345 
3346 		nsize = ALIGN(nsize, 8);
3347 
3348 		memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3349 			used - le16_to_cpu(lrh->record_off) - asize);
3350 		rec->used = cpu_to_le32(used + nsize - asize);
3351 		attr->size = cpu_to_le32(nsize);
3352 		memmove(Add2Ptr(attr, aoff), data, dlen);
3353 
3354 		if (run_get_highest_vcn(le64_to_cpu(attr->nres.svcn),
3355 					attr_run(attr), &t64)) {
3356 			goto dirty_vol;
3357 		}
3358 
3359 		attr->nres.evcn = cpu_to_le64(t64);
3360 		oa2 = find_loaded_attr(log, attr, rno_base);
3361 		if (oa2 && oa2->attr->non_res)
3362 			oa2->attr->nres.evcn = attr->nres.evcn;
3363 
3364 		mi->dirty = true;
3365 		break;
3366 
3367 	case SetNewAttributeSizes:
3368 		new_sz = data;
3369 		if (!check_if_attr(rec, lrh) || !attr->non_res)
3370 			goto dirty_vol;
3371 
3372 		attr->nres.alloc_size = new_sz->alloc_size;
3373 		attr->nres.data_size = new_sz->data_size;
3374 		attr->nres.valid_size = new_sz->valid_size;
3375 
3376 		if (dlen >= sizeof(struct NEW_ATTRIBUTE_SIZES))
3377 			attr->nres.total_size = new_sz->total_size;
3378 
3379 		oa2 = find_loaded_attr(log, attr, rno_base);
3380 		if (oa2) {
3381 			void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3382 					   GFP_NOFS);
3383 			if (p2) {
3384 				kfree(oa2->attr);
3385 				oa2->attr = p2;
3386 			}
3387 		}
3388 		mi->dirty = true;
3389 		break;
3390 
3391 	case AddIndexEntryRoot:
3392 		e = (struct NTFS_DE *)data;
3393 		esize = le16_to_cpu(e->size);
3394 		root = resident_data(attr);
3395 		hdr = &root->ihdr;
3396 		used = le32_to_cpu(hdr->used);
3397 
3398 		if (!check_if_index_root(rec, lrh) ||
3399 		    !check_if_root_index(attr, hdr, lrh) ||
3400 		    Add2Ptr(data, esize) > Add2Ptr(lrh, rec_len) ||
3401 		    esize > le32_to_cpu(rec->total) - le32_to_cpu(rec->used)) {
3402 			goto dirty_vol;
3403 		}
3404 
3405 		e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3406 
3407 		change_attr_size(rec, attr, le32_to_cpu(attr->size) + esize);
3408 
3409 		memmove(Add2Ptr(e1, esize), e1,
3410 			PtrOffset(e1, Add2Ptr(hdr, used)));
3411 		memmove(e1, e, esize);
3412 
3413 		le32_add_cpu(&attr->res.data_size, esize);
3414 		hdr->used = cpu_to_le32(used + esize);
3415 		le32_add_cpu(&hdr->total, esize);
3416 
3417 		mi->dirty = true;
3418 		break;
3419 
3420 	case DeleteIndexEntryRoot:
3421 		root = resident_data(attr);
3422 		hdr = &root->ihdr;
3423 		used = le32_to_cpu(hdr->used);
3424 
3425 		if (!check_if_index_root(rec, lrh) ||
3426 		    !check_if_root_index(attr, hdr, lrh)) {
3427 			goto dirty_vol;
3428 		}
3429 
3430 		e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3431 		esize = le16_to_cpu(e1->size);
3432 		e2 = Add2Ptr(e1, esize);
3433 
3434 		memmove(e1, e2, PtrOffset(e2, Add2Ptr(hdr, used)));
3435 
3436 		le32_sub_cpu(&attr->res.data_size, esize);
3437 		hdr->used = cpu_to_le32(used - esize);
3438 		le32_sub_cpu(&hdr->total, esize);
3439 
3440 		change_attr_size(rec, attr, le32_to_cpu(attr->size) - esize);
3441 
3442 		mi->dirty = true;
3443 		break;
3444 
3445 	case SetIndexEntryVcnRoot:
3446 		root = resident_data(attr);
3447 		hdr = &root->ihdr;
3448 
3449 		if (!check_if_index_root(rec, lrh) ||
3450 		    !check_if_root_index(attr, hdr, lrh)) {
3451 			goto dirty_vol;
3452 		}
3453 
3454 		e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3455 
3456 		de_set_vbn_le(e, *(__le64 *)data);
3457 		mi->dirty = true;
3458 		break;
3459 
3460 	case UpdateFileNameRoot:
3461 		root = resident_data(attr);
3462 		hdr = &root->ihdr;
3463 
3464 		if (!check_if_index_root(rec, lrh) ||
3465 		    !check_if_root_index(attr, hdr, lrh)) {
3466 			goto dirty_vol;
3467 		}
3468 
3469 		e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3470 		fname = (struct ATTR_FILE_NAME *)(e + 1);
3471 		memmove(&fname->dup, data, sizeof(fname->dup)); //
3472 		mi->dirty = true;
3473 		break;
3474 
3475 	case UpdateRecordDataRoot:
3476 		root = resident_data(attr);
3477 		hdr = &root->ihdr;
3478 
3479 		if (!check_if_index_root(rec, lrh) ||
3480 		    !check_if_root_index(attr, hdr, lrh)) {
3481 			goto dirty_vol;
3482 		}
3483 
3484 		e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3485 
3486 		memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3487 
3488 		mi->dirty = true;
3489 		break;
3490 
3491 	case ZeroEndOfFileRecord:
3492 		if (roff + dlen > record_size)
3493 			goto dirty_vol;
3494 
3495 		memset(attr, 0, dlen);
3496 		mi->dirty = true;
3497 		break;
3498 
3499 	case UpdateNonresidentValue:
3500 		if (lco < cbo + roff + dlen)
3501 			goto dirty_vol;
3502 
3503 		memcpy(Add2Ptr(buffer_le, roff), data, dlen);
3504 
3505 		a_dirty = true;
3506 		if (attr->type == ATTR_ALLOC)
3507 			ntfs_fix_pre_write(buffer_le, bytes);
3508 		break;
3509 
3510 	case AddIndexEntryAllocation:
3511 		ib = Add2Ptr(buffer_le, roff);
3512 		hdr = &ib->ihdr;
3513 		e = data;
3514 		esize = le16_to_cpu(e->size);
3515 		e1 = Add2Ptr(ib, aoff);
3516 
3517 		if (is_baad(&ib->rhdr))
3518 			goto dirty_vol;
3519 		if (!check_lsn(&ib->rhdr, rlsn))
3520 			goto out;
3521 
3522 		used = le32_to_cpu(hdr->used);
3523 
3524 		if (!check_index_buffer(ib, bytes) ||
3525 		    !check_if_alloc_index(hdr, aoff) ||
3526 		    Add2Ptr(e, esize) > Add2Ptr(lrh, rec_len) ||
3527 		    used + esize > le32_to_cpu(hdr->total)) {
3528 			goto dirty_vol;
3529 		}
3530 
3531 		memmove(Add2Ptr(e1, esize), e1,
3532 			PtrOffset(e1, Add2Ptr(hdr, used)));
3533 		memcpy(e1, e, esize);
3534 
3535 		hdr->used = cpu_to_le32(used + esize);
3536 
3537 		a_dirty = true;
3538 
3539 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3540 		break;
3541 
3542 	case DeleteIndexEntryAllocation:
3543 		ib = Add2Ptr(buffer_le, roff);
3544 		hdr = &ib->ihdr;
3545 		e = Add2Ptr(ib, aoff);
3546 		esize = le16_to_cpu(e->size);
3547 
3548 		if (is_baad(&ib->rhdr))
3549 			goto dirty_vol;
3550 		if (!check_lsn(&ib->rhdr, rlsn))
3551 			goto out;
3552 
3553 		if (!check_index_buffer(ib, bytes) ||
3554 		    !check_if_alloc_index(hdr, aoff)) {
3555 			goto dirty_vol;
3556 		}
3557 
3558 		e1 = Add2Ptr(e, esize);
3559 		nsize = esize;
3560 		used = le32_to_cpu(hdr->used);
3561 
3562 		memmove(e, e1, PtrOffset(e1, Add2Ptr(hdr, used)));
3563 
3564 		hdr->used = cpu_to_le32(used - nsize);
3565 
3566 		a_dirty = true;
3567 
3568 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3569 		break;
3570 
3571 	case WriteEndOfIndexBuffer:
3572 		ib = Add2Ptr(buffer_le, roff);
3573 		hdr = &ib->ihdr;
3574 		e = Add2Ptr(ib, aoff);
3575 
3576 		if (is_baad(&ib->rhdr))
3577 			goto dirty_vol;
3578 		if (!check_lsn(&ib->rhdr, rlsn))
3579 			goto out;
3580 		if (!check_index_buffer(ib, bytes) ||
3581 		    !check_if_alloc_index(hdr, aoff) ||
3582 		    aoff + dlen > offsetof(struct INDEX_BUFFER, ihdr) +
3583 					  le32_to_cpu(hdr->total)) {
3584 			goto dirty_vol;
3585 		}
3586 
3587 		hdr->used = cpu_to_le32(dlen + PtrOffset(hdr, e));
3588 		memmove(e, data, dlen);
3589 
3590 		a_dirty = true;
3591 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3592 		break;
3593 
3594 	case SetIndexEntryVcnAllocation:
3595 		ib = Add2Ptr(buffer_le, roff);
3596 		hdr = &ib->ihdr;
3597 		e = Add2Ptr(ib, aoff);
3598 
3599 		if (is_baad(&ib->rhdr))
3600 			goto dirty_vol;
3601 
3602 		if (!check_lsn(&ib->rhdr, rlsn))
3603 			goto out;
3604 		if (!check_index_buffer(ib, bytes) ||
3605 		    !check_if_alloc_index(hdr, aoff)) {
3606 			goto dirty_vol;
3607 		}
3608 
3609 		de_set_vbn_le(e, *(__le64 *)data);
3610 
3611 		a_dirty = true;
3612 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3613 		break;
3614 
3615 	case UpdateFileNameAllocation:
3616 		ib = Add2Ptr(buffer_le, roff);
3617 		hdr = &ib->ihdr;
3618 		e = Add2Ptr(ib, aoff);
3619 
3620 		if (is_baad(&ib->rhdr))
3621 			goto dirty_vol;
3622 
3623 		if (!check_lsn(&ib->rhdr, rlsn))
3624 			goto out;
3625 		if (!check_index_buffer(ib, bytes) ||
3626 		    !check_if_alloc_index(hdr, aoff)) {
3627 			goto dirty_vol;
3628 		}
3629 
3630 		fname = (struct ATTR_FILE_NAME *)(e + 1);
3631 		memmove(&fname->dup, data, sizeof(fname->dup));
3632 
3633 		a_dirty = true;
3634 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3635 		break;
3636 
3637 	case SetBitsInNonresidentBitMap:
3638 		bmp_off =
3639 			le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3640 		bmp_bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
3641 
3642 		if (cbo + (bmp_off + 7) / 8 > lco ||
3643 		    cbo + ((bmp_off + bmp_bits + 7) / 8) > lco) {
3644 			goto dirty_vol;
3645 		}
3646 
3647 		__bitmap_set(Add2Ptr(buffer_le, roff), bmp_off, bmp_bits);
3648 		a_dirty = true;
3649 		break;
3650 
3651 	case ClearBitsInNonresidentBitMap:
3652 		bmp_off =
3653 			le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3654 		bmp_bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
3655 
3656 		if (cbo + (bmp_off + 7) / 8 > lco ||
3657 		    cbo + ((bmp_off + bmp_bits + 7) / 8) > lco) {
3658 			goto dirty_vol;
3659 		}
3660 
3661 		__bitmap_clear(Add2Ptr(buffer_le, roff), bmp_off, bmp_bits);
3662 		a_dirty = true;
3663 		break;
3664 
3665 	case UpdateRecordDataAllocation:
3666 		ib = Add2Ptr(buffer_le, roff);
3667 		hdr = &ib->ihdr;
3668 		e = Add2Ptr(ib, aoff);
3669 
3670 		if (is_baad(&ib->rhdr))
3671 			goto dirty_vol;
3672 
3673 		if (!check_lsn(&ib->rhdr, rlsn))
3674 			goto out;
3675 		if (!check_index_buffer(ib, bytes) ||
3676 		    !check_if_alloc_index(hdr, aoff)) {
3677 			goto dirty_vol;
3678 		}
3679 
3680 		memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3681 
3682 		a_dirty = true;
3683 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3684 		break;
3685 
3686 	default:
3687 		WARN_ON(1);
3688 	}
3689 
3690 	if (rlsn) {
3691 		__le64 t64 = cpu_to_le64(*rlsn);
3692 
3693 		if (rec)
3694 			rec->rhdr.lsn = t64;
3695 		if (ib)
3696 			ib->rhdr.lsn = t64;
3697 	}
3698 
3699 	if (mi && mi->dirty) {
3700 		err = mi_write(mi, 0);
3701 		if (err)
3702 			goto out;
3703 	}
3704 
3705 	if (a_dirty) {
3706 		attr = oa->attr;
3707 		err = ntfs_sb_write_run(sbi, oa->run1, vbo, buffer_le, bytes, 0);
3708 		if (err)
3709 			goto out;
3710 	}
3711 
3712 out:
3713 
3714 	if (inode)
3715 		iput(inode);
3716 	else if (mi != mi2_child)
3717 		mi_put(mi);
3718 
3719 	kfree(buffer_le);
3720 
3721 	return err;
3722 
3723 dirty_vol:
3724 	log->set_dirty = true;
3725 	goto out;
3726 }
3727 
3728 /*
3729  * log_replay - Replays log and empties it.
3730  *
3731  * This function is called during mount operation.
3732  * It replays log and empties it.
3733  * Initialized is set false if logfile contains '-1'.
3734  */
3735 int log_replay(struct ntfs_inode *ni, bool *initialized)
3736 {
3737 	int err;
3738 	struct ntfs_sb_info *sbi = ni->mi.sbi;
3739 	struct ntfs_log *log;
3740 
3741 	struct restart_info rst_info, rst_info2;
3742 	u64 rec_lsn, ra_lsn, checkpt_lsn = 0, rlsn = 0;
3743 	struct ATTR_NAME_ENTRY *attr_names = NULL;
3744 	struct ATTR_NAME_ENTRY *ane;
3745 	struct RESTART_TABLE *dptbl = NULL;
3746 	struct RESTART_TABLE *trtbl = NULL;
3747 	const struct RESTART_TABLE *rt;
3748 	struct RESTART_TABLE *oatbl = NULL;
3749 	struct inode *inode;
3750 	struct OpenAttr *oa;
3751 	struct ntfs_inode *ni_oe;
3752 	struct ATTRIB *attr = NULL;
3753 	u64 size, vcn, undo_next_lsn;
3754 	CLST rno, lcn, lcn0, len0, clen;
3755 	void *data;
3756 	struct NTFS_RESTART *rst = NULL;
3757 	struct lcb *lcb = NULL;
3758 	struct OPEN_ATTR_ENRTY *oe;
3759 	struct TRANSACTION_ENTRY *tr;
3760 	struct DIR_PAGE_ENTRY *dp;
3761 	u32 i, bytes_per_attr_entry;
3762 	u32 l_size = ni->vfs_inode.i_size;
3763 	u32 orig_file_size = l_size;
3764 	u32 page_size, vbo, tail, off, dlen;
3765 	u32 saved_len, rec_len, transact_id;
3766 	bool use_second_page;
3767 	struct RESTART_AREA *ra2, *ra = NULL;
3768 	struct CLIENT_REC *ca, *cr;
3769 	__le16 client;
3770 	struct RESTART_HDR *rh;
3771 	const struct LFS_RECORD_HDR *frh;
3772 	const struct LOG_REC_HDR *lrh;
3773 	bool is_mapped;
3774 	bool is_ro = sb_rdonly(sbi->sb);
3775 	u64 t64;
3776 	u16 t16;
3777 	u32 t32;
3778 
3779 	/* Get the size of page. NOTE: To replay we can use default page. */
3780 #if PAGE_SIZE >= DefaultLogPageSize && PAGE_SIZE <= DefaultLogPageSize * 2
3781 	page_size = norm_file_page(PAGE_SIZE, &l_size, true);
3782 #else
3783 	page_size = norm_file_page(PAGE_SIZE, &l_size, false);
3784 #endif
3785 	if (!page_size)
3786 		return -EINVAL;
3787 
3788 	log = kzalloc(sizeof(struct ntfs_log), GFP_NOFS);
3789 	if (!log)
3790 		return -ENOMEM;
3791 
3792 	memset(&rst_info, 0, sizeof(struct restart_info));
3793 
3794 	log->ni = ni;
3795 	log->l_size = l_size;
3796 	log->one_page_buf = kmalloc(page_size, GFP_NOFS);
3797 	if (!log->one_page_buf) {
3798 		err = -ENOMEM;
3799 		goto out;
3800 	}
3801 
3802 	log->page_size = page_size;
3803 	log->page_mask = page_size - 1;
3804 	log->page_bits = blksize_bits(page_size);
3805 
3806 	/* Look for a restart area on the disk. */
3807 	err = log_read_rst(log, l_size, true, &rst_info);
3808 	if (err)
3809 		goto out;
3810 
3811 	/* remember 'initialized' */
3812 	*initialized = rst_info.initialized;
3813 
3814 	if (!rst_info.restart) {
3815 		if (rst_info.initialized) {
3816 			/* No restart area but the file is not initialized. */
3817 			err = -EINVAL;
3818 			goto out;
3819 		}
3820 
3821 		log_init_pg_hdr(log, page_size, page_size, 1, 1);
3822 		log_create(log, l_size, 0, get_random_u32(), false, false);
3823 
3824 		log->ra = ra;
3825 
3826 		ra = log_create_ra(log);
3827 		if (!ra) {
3828 			err = -ENOMEM;
3829 			goto out;
3830 		}
3831 		log->ra = ra;
3832 		log->init_ra = true;
3833 
3834 		goto process_log;
3835 	}
3836 
3837 	/*
3838 	 * If the restart offset above wasn't zero then we won't
3839 	 * look for a second restart.
3840 	 */
3841 	if (rst_info.vbo)
3842 		goto check_restart_area;
3843 
3844 	memset(&rst_info2, 0, sizeof(struct restart_info));
3845 	err = log_read_rst(log, l_size, false, &rst_info2);
3846 	if (err)
3847 		goto out;
3848 
3849 	/* Determine which restart area to use. */
3850 	if (!rst_info2.restart || rst_info2.last_lsn <= rst_info.last_lsn)
3851 		goto use_first_page;
3852 
3853 	use_second_page = true;
3854 
3855 	if (rst_info.chkdsk_was_run && page_size != rst_info.vbo) {
3856 		struct RECORD_PAGE_HDR *sp = NULL;
3857 		bool usa_error;
3858 
3859 		if (!read_log_page(log, page_size, &sp, &usa_error) &&
3860 		    sp->rhdr.sign == NTFS_CHKD_SIGNATURE) {
3861 			use_second_page = false;
3862 		}
3863 		kfree(sp);
3864 	}
3865 
3866 	if (use_second_page) {
3867 		kfree(rst_info.r_page);
3868 		memcpy(&rst_info, &rst_info2, sizeof(struct restart_info));
3869 		rst_info2.r_page = NULL;
3870 	}
3871 
3872 use_first_page:
3873 	kfree(rst_info2.r_page);
3874 
3875 check_restart_area:
3876 	/*
3877 	 * If the restart area is at offset 0, we want
3878 	 * to write the second restart area first.
3879 	 */
3880 	log->init_ra = !!rst_info.vbo;
3881 
3882 	/* If we have a valid page then grab a pointer to the restart area. */
3883 	ra2 = rst_info.valid_page
3884 		      ? Add2Ptr(rst_info.r_page,
3885 				le16_to_cpu(rst_info.r_page->ra_off))
3886 		      : NULL;
3887 
3888 	if (rst_info.chkdsk_was_run ||
3889 	    (ra2 && ra2->client_idx[1] == LFS_NO_CLIENT_LE)) {
3890 		bool wrapped = false;
3891 		bool use_multi_page = false;
3892 		u32 open_log_count;
3893 
3894 		/* Do some checks based on whether we have a valid log page. */
3895 		if (!rst_info.valid_page) {
3896 			open_log_count = get_random_u32();
3897 			goto init_log_instance;
3898 		}
3899 		open_log_count = le32_to_cpu(ra2->open_log_count);
3900 
3901 		/*
3902 		 * If the restart page size isn't changing then we want to
3903 		 * check how much work we need to do.
3904 		 */
3905 		if (page_size != le32_to_cpu(rst_info.r_page->sys_page_size))
3906 			goto init_log_instance;
3907 
3908 init_log_instance:
3909 		log_init_pg_hdr(log, page_size, page_size, 1, 1);
3910 
3911 		log_create(log, l_size, rst_info.last_lsn, open_log_count,
3912 			   wrapped, use_multi_page);
3913 
3914 		ra = log_create_ra(log);
3915 		if (!ra) {
3916 			err = -ENOMEM;
3917 			goto out;
3918 		}
3919 		log->ra = ra;
3920 
3921 		/* Put the restart areas and initialize
3922 		 * the log file as required.
3923 		 */
3924 		goto process_log;
3925 	}
3926 
3927 	if (!ra2) {
3928 		err = -EINVAL;
3929 		goto out;
3930 	}
3931 
3932 	/*
3933 	 * If the log page or the system page sizes have changed, we can't
3934 	 * use the log file. We must use the system page size instead of the
3935 	 * default size if there is not a clean shutdown.
3936 	 */
3937 	t32 = le32_to_cpu(rst_info.r_page->sys_page_size);
3938 	if (page_size != t32) {
3939 		l_size = orig_file_size;
3940 		page_size =
3941 			norm_file_page(t32, &l_size, t32 == DefaultLogPageSize);
3942 	}
3943 
3944 	if (page_size != t32 ||
3945 	    page_size != le32_to_cpu(rst_info.r_page->page_size)) {
3946 		err = -EINVAL;
3947 		goto out;
3948 	}
3949 
3950 	/* If the file size has shrunk then we won't mount it. */
3951 	if (l_size < le64_to_cpu(ra2->l_size)) {
3952 		err = -EINVAL;
3953 		goto out;
3954 	}
3955 
3956 	log_init_pg_hdr(log, page_size, page_size,
3957 			le16_to_cpu(rst_info.r_page->major_ver),
3958 			le16_to_cpu(rst_info.r_page->minor_ver));
3959 
3960 	log->l_size = le64_to_cpu(ra2->l_size);
3961 	log->seq_num_bits = le32_to_cpu(ra2->seq_num_bits);
3962 	log->file_data_bits = sizeof(u64) * 8 - log->seq_num_bits;
3963 	log->seq_num_mask = (8 << log->file_data_bits) - 1;
3964 	log->last_lsn = le64_to_cpu(ra2->current_lsn);
3965 	log->seq_num = log->last_lsn >> log->file_data_bits;
3966 	log->ra_off = le16_to_cpu(rst_info.r_page->ra_off);
3967 	log->restart_size = log->sys_page_size - log->ra_off;
3968 	log->record_header_len = le16_to_cpu(ra2->rec_hdr_len);
3969 	log->ra_size = le16_to_cpu(ra2->ra_len);
3970 	log->data_off = le16_to_cpu(ra2->data_off);
3971 	log->data_size = log->page_size - log->data_off;
3972 	log->reserved = log->data_size - log->record_header_len;
3973 
3974 	vbo = lsn_to_vbo(log, log->last_lsn);
3975 
3976 	if (vbo < log->first_page) {
3977 		/* This is a pseudo lsn. */
3978 		log->l_flags |= NTFSLOG_NO_LAST_LSN;
3979 		log->next_page = log->first_page;
3980 		goto find_oldest;
3981 	}
3982 
3983 	/* Find the end of this log record. */
3984 	off = final_log_off(log, log->last_lsn,
3985 			    le32_to_cpu(ra2->last_lsn_data_len));
3986 
3987 	/* If we wrapped the file then increment the sequence number. */
3988 	if (off <= vbo) {
3989 		log->seq_num += 1;
3990 		log->l_flags |= NTFSLOG_WRAPPED;
3991 	}
3992 
3993 	/* Now compute the next log page to use. */
3994 	vbo &= ~log->sys_page_mask;
3995 	tail = log->page_size - (off & log->page_mask) - 1;
3996 
3997 	/*
3998 	 *If we can fit another log record on the page,
3999 	 * move back a page the log file.
4000 	 */
4001 	if (tail >= log->record_header_len) {
4002 		log->l_flags |= NTFSLOG_REUSE_TAIL;
4003 		log->next_page = vbo;
4004 	} else {
4005 		log->next_page = next_page_off(log, vbo);
4006 	}
4007 
4008 find_oldest:
4009 	/*
4010 	 * Find the oldest client lsn. Use the last
4011 	 * flushed lsn as a starting point.
4012 	 */
4013 	log->oldest_lsn = log->last_lsn;
4014 	oldest_client_lsn(Add2Ptr(ra2, le16_to_cpu(ra2->client_off)),
4015 			  ra2->client_idx[1], &log->oldest_lsn);
4016 	log->oldest_lsn_off = lsn_to_vbo(log, log->oldest_lsn);
4017 
4018 	if (log->oldest_lsn_off < log->first_page)
4019 		log->l_flags |= NTFSLOG_NO_OLDEST_LSN;
4020 
4021 	if (!(ra2->flags & RESTART_SINGLE_PAGE_IO))
4022 		log->l_flags |= NTFSLOG_WRAPPED | NTFSLOG_MULTIPLE_PAGE_IO;
4023 
4024 	log->current_openlog_count = le32_to_cpu(ra2->open_log_count);
4025 	log->total_avail_pages = log->l_size - log->first_page;
4026 	log->total_avail = log->total_avail_pages >> log->page_bits;
4027 	log->max_current_avail = log->total_avail * log->reserved;
4028 	log->total_avail = log->total_avail * log->data_size;
4029 
4030 	log->current_avail = current_log_avail(log);
4031 
4032 	ra = kzalloc(log->restart_size, GFP_NOFS);
4033 	if (!ra) {
4034 		err = -ENOMEM;
4035 		goto out;
4036 	}
4037 	log->ra = ra;
4038 
4039 	t16 = le16_to_cpu(ra2->client_off);
4040 	if (t16 == offsetof(struct RESTART_AREA, clients)) {
4041 		memcpy(ra, ra2, log->ra_size);
4042 	} else {
4043 		memcpy(ra, ra2, offsetof(struct RESTART_AREA, clients));
4044 		memcpy(ra->clients, Add2Ptr(ra2, t16),
4045 		       le16_to_cpu(ra2->ra_len) - t16);
4046 
4047 		log->current_openlog_count = get_random_u32();
4048 		ra->open_log_count = cpu_to_le32(log->current_openlog_count);
4049 		log->ra_size = offsetof(struct RESTART_AREA, clients) +
4050 			       sizeof(struct CLIENT_REC);
4051 		ra->client_off =
4052 			cpu_to_le16(offsetof(struct RESTART_AREA, clients));
4053 		ra->ra_len = cpu_to_le16(log->ra_size);
4054 	}
4055 
4056 	le32_add_cpu(&ra->open_log_count, 1);
4057 
4058 	/* Now we need to walk through looking for the last lsn. */
4059 	err = last_log_lsn(log);
4060 	if (err)
4061 		goto out;
4062 
4063 	log->current_avail = current_log_avail(log);
4064 
4065 	/* Remember which restart area to write first. */
4066 	log->init_ra = rst_info.vbo;
4067 
4068 process_log:
4069 	/* 1.0, 1.1, 2.0 log->major_ver/minor_ver - short values. */
4070 	switch ((log->major_ver << 16) + log->minor_ver) {
4071 	case 0x10000:
4072 	case 0x10001:
4073 	case 0x20000:
4074 		break;
4075 	default:
4076 		ntfs_warn(sbi->sb, "\x24LogFile version %d.%d is not supported",
4077 			  log->major_ver, log->minor_ver);
4078 		err = -EOPNOTSUPP;
4079 		log->set_dirty = true;
4080 		goto out;
4081 	}
4082 
4083 	/* One client "NTFS" per logfile. */
4084 	ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
4085 
4086 	for (client = ra->client_idx[1];; client = cr->next_client) {
4087 		if (client == LFS_NO_CLIENT_LE) {
4088 			/* Insert "NTFS" client LogFile. */
4089 			client = ra->client_idx[0];
4090 			if (client == LFS_NO_CLIENT_LE) {
4091 				err = -EINVAL;
4092 				goto out;
4093 			}
4094 
4095 			t16 = le16_to_cpu(client);
4096 			cr = ca + t16;
4097 
4098 			remove_client(ca, cr, &ra->client_idx[0]);
4099 
4100 			cr->restart_lsn = 0;
4101 			cr->oldest_lsn = cpu_to_le64(log->oldest_lsn);
4102 			cr->name_bytes = cpu_to_le32(8);
4103 			cr->name[0] = cpu_to_le16('N');
4104 			cr->name[1] = cpu_to_le16('T');
4105 			cr->name[2] = cpu_to_le16('F');
4106 			cr->name[3] = cpu_to_le16('S');
4107 
4108 			add_client(ca, t16, &ra->client_idx[1]);
4109 			break;
4110 		}
4111 
4112 		cr = ca + le16_to_cpu(client);
4113 
4114 		if (cpu_to_le32(8) == cr->name_bytes &&
4115 		    cpu_to_le16('N') == cr->name[0] &&
4116 		    cpu_to_le16('T') == cr->name[1] &&
4117 		    cpu_to_le16('F') == cr->name[2] &&
4118 		    cpu_to_le16('S') == cr->name[3])
4119 			break;
4120 	}
4121 
4122 	/* Update the client handle with the client block information. */
4123 	log->client_id.seq_num = cr->seq_num;
4124 	log->client_id.client_idx = client;
4125 
4126 	err = read_rst_area(log, &rst, &ra_lsn);
4127 	if (err)
4128 		goto out;
4129 
4130 	if (!rst)
4131 		goto out;
4132 
4133 	bytes_per_attr_entry = !rst->major_ver ? 0x2C : 0x28;
4134 
4135 	checkpt_lsn = le64_to_cpu(rst->check_point_start);
4136 	if (!checkpt_lsn)
4137 		checkpt_lsn = ra_lsn;
4138 
4139 	/* Allocate and Read the Transaction Table. */
4140 	if (!rst->transact_table_len)
4141 		goto check_dirty_page_table;
4142 
4143 	t64 = le64_to_cpu(rst->transact_table_lsn);
4144 	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4145 	if (err)
4146 		goto out;
4147 
4148 	lrh = lcb->log_rec;
4149 	frh = lcb->lrh;
4150 	rec_len = le32_to_cpu(frh->client_data_len);
4151 
4152 	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4153 			   bytes_per_attr_entry)) {
4154 		err = -EINVAL;
4155 		goto out;
4156 	}
4157 
4158 	t16 = le16_to_cpu(lrh->redo_off);
4159 
4160 	rt = Add2Ptr(lrh, t16);
4161 	t32 = rec_len - t16;
4162 
4163 	/* Now check that this is a valid restart table. */
4164 	if (!check_rstbl(rt, t32)) {
4165 		err = -EINVAL;
4166 		goto out;
4167 	}
4168 
4169 	trtbl = kmemdup(rt, t32, GFP_NOFS);
4170 	if (!trtbl) {
4171 		err = -ENOMEM;
4172 		goto out;
4173 	}
4174 
4175 	lcb_put(lcb);
4176 	lcb = NULL;
4177 
4178 check_dirty_page_table:
4179 	/* The next record back should be the Dirty Pages Table. */
4180 	if (!rst->dirty_pages_len)
4181 		goto check_attribute_names;
4182 
4183 	t64 = le64_to_cpu(rst->dirty_pages_table_lsn);
4184 	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4185 	if (err)
4186 		goto out;
4187 
4188 	lrh = lcb->log_rec;
4189 	frh = lcb->lrh;
4190 	rec_len = le32_to_cpu(frh->client_data_len);
4191 
4192 	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4193 			   bytes_per_attr_entry)) {
4194 		err = -EINVAL;
4195 		goto out;
4196 	}
4197 
4198 	t16 = le16_to_cpu(lrh->redo_off);
4199 
4200 	rt = Add2Ptr(lrh, t16);
4201 	t32 = rec_len - t16;
4202 
4203 	/* Now check that this is a valid restart table. */
4204 	if (!check_rstbl(rt, t32)) {
4205 		err = -EINVAL;
4206 		goto out;
4207 	}
4208 
4209 	dptbl = kmemdup(rt, t32, GFP_NOFS);
4210 	if (!dptbl) {
4211 		err = -ENOMEM;
4212 		goto out;
4213 	}
4214 
4215 	/* Convert Ra version '0' into version '1'. */
4216 	if (rst->major_ver)
4217 		goto end_conv_1;
4218 
4219 	dp = NULL;
4220 	while ((dp = enum_rstbl(dptbl, dp))) {
4221 		struct DIR_PAGE_ENTRY_32 *dp0 = (struct DIR_PAGE_ENTRY_32 *)dp;
4222 		// NOTE: Danger. Check for of boundary.
4223 		memmove(&dp->vcn, &dp0->vcn_low,
4224 			2 * sizeof(u64) +
4225 				le32_to_cpu(dp->lcns_follow) * sizeof(u64));
4226 	}
4227 
4228 end_conv_1:
4229 	lcb_put(lcb);
4230 	lcb = NULL;
4231 
4232 	/*
4233 	 * Go through the table and remove the duplicates,
4234 	 * remembering the oldest lsn values.
4235 	 */
4236 	if (sbi->cluster_size <= log->page_size)
4237 		goto trace_dp_table;
4238 
4239 	dp = NULL;
4240 	while ((dp = enum_rstbl(dptbl, dp))) {
4241 		struct DIR_PAGE_ENTRY *next = dp;
4242 
4243 		while ((next = enum_rstbl(dptbl, next))) {
4244 			if (next->target_attr == dp->target_attr &&
4245 			    next->vcn == dp->vcn) {
4246 				if (le64_to_cpu(next->oldest_lsn) <
4247 				    le64_to_cpu(dp->oldest_lsn)) {
4248 					dp->oldest_lsn = next->oldest_lsn;
4249 				}
4250 
4251 				free_rsttbl_idx(dptbl, PtrOffset(dptbl, next));
4252 			}
4253 		}
4254 	}
4255 trace_dp_table:
4256 check_attribute_names:
4257 	/* The next record should be the Attribute Names. */
4258 	if (!rst->attr_names_len)
4259 		goto check_attr_table;
4260 
4261 	t64 = le64_to_cpu(rst->attr_names_lsn);
4262 	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4263 	if (err)
4264 		goto out;
4265 
4266 	lrh = lcb->log_rec;
4267 	frh = lcb->lrh;
4268 	rec_len = le32_to_cpu(frh->client_data_len);
4269 
4270 	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4271 			   bytes_per_attr_entry)) {
4272 		err = -EINVAL;
4273 		goto out;
4274 	}
4275 
4276 	t32 = lrh_length(lrh);
4277 	rec_len -= t32;
4278 
4279 	attr_names = kmemdup(Add2Ptr(lrh, t32), rec_len, GFP_NOFS);
4280 
4281 	lcb_put(lcb);
4282 	lcb = NULL;
4283 
4284 check_attr_table:
4285 	/* The next record should be the attribute Table. */
4286 	if (!rst->open_attr_len)
4287 		goto check_attribute_names2;
4288 
4289 	t64 = le64_to_cpu(rst->open_attr_table_lsn);
4290 	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4291 	if (err)
4292 		goto out;
4293 
4294 	lrh = lcb->log_rec;
4295 	frh = lcb->lrh;
4296 	rec_len = le32_to_cpu(frh->client_data_len);
4297 
4298 	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4299 			   bytes_per_attr_entry)) {
4300 		err = -EINVAL;
4301 		goto out;
4302 	}
4303 
4304 	t16 = le16_to_cpu(lrh->redo_off);
4305 
4306 	rt = Add2Ptr(lrh, t16);
4307 	t32 = rec_len - t16;
4308 
4309 	if (!check_rstbl(rt, t32)) {
4310 		err = -EINVAL;
4311 		goto out;
4312 	}
4313 
4314 	oatbl = kmemdup(rt, t32, GFP_NOFS);
4315 	if (!oatbl) {
4316 		err = -ENOMEM;
4317 		goto out;
4318 	}
4319 
4320 	log->open_attr_tbl = oatbl;
4321 
4322 	/* Clear all of the Attr pointers. */
4323 	oe = NULL;
4324 	while ((oe = enum_rstbl(oatbl, oe))) {
4325 		if (!rst->major_ver) {
4326 			struct OPEN_ATTR_ENRTY_32 oe0;
4327 
4328 			/* Really 'oe' points to OPEN_ATTR_ENRTY_32. */
4329 			memcpy(&oe0, oe, SIZEOF_OPENATTRIBUTEENTRY0);
4330 
4331 			oe->bytes_per_index = oe0.bytes_per_index;
4332 			oe->type = oe0.type;
4333 			oe->is_dirty_pages = oe0.is_dirty_pages;
4334 			oe->name_len = 0;
4335 			oe->ref = oe0.ref;
4336 			oe->open_record_lsn = oe0.open_record_lsn;
4337 		}
4338 
4339 		oe->is_attr_name = 0;
4340 		oe->ptr = NULL;
4341 	}
4342 
4343 	lcb_put(lcb);
4344 	lcb = NULL;
4345 
4346 check_attribute_names2:
4347 	if (!rst->attr_names_len)
4348 		goto trace_attribute_table;
4349 
4350 	ane = attr_names;
4351 	if (!oatbl)
4352 		goto trace_attribute_table;
4353 	while (ane->off) {
4354 		/* TODO: Clear table on exit! */
4355 		oe = Add2Ptr(oatbl, le16_to_cpu(ane->off));
4356 		t16 = le16_to_cpu(ane->name_bytes);
4357 		oe->name_len = t16 / sizeof(short);
4358 		oe->ptr = ane->name;
4359 		oe->is_attr_name = 2;
4360 		ane = Add2Ptr(ane, sizeof(struct ATTR_NAME_ENTRY) + t16);
4361 	}
4362 
4363 trace_attribute_table:
4364 	/*
4365 	 * If the checkpt_lsn is zero, then this is a freshly
4366 	 * formatted disk and we have no work to do.
4367 	 */
4368 	if (!checkpt_lsn) {
4369 		err = 0;
4370 		goto out;
4371 	}
4372 
4373 	if (!oatbl) {
4374 		oatbl = init_rsttbl(bytes_per_attr_entry, 8);
4375 		if (!oatbl) {
4376 			err = -ENOMEM;
4377 			goto out;
4378 		}
4379 	}
4380 
4381 	log->open_attr_tbl = oatbl;
4382 
4383 	/* Start the analysis pass from the Checkpoint lsn. */
4384 	rec_lsn = checkpt_lsn;
4385 
4386 	/* Read the first lsn. */
4387 	err = read_log_rec_lcb(log, checkpt_lsn, lcb_ctx_next, &lcb);
4388 	if (err)
4389 		goto out;
4390 
4391 	/* Loop to read all subsequent records to the end of the log file. */
4392 next_log_record_analyze:
4393 	err = read_next_log_rec(log, lcb, &rec_lsn);
4394 	if (err)
4395 		goto out;
4396 
4397 	if (!rec_lsn)
4398 		goto end_log_records_enumerate;
4399 
4400 	frh = lcb->lrh;
4401 	transact_id = le32_to_cpu(frh->transact_id);
4402 	rec_len = le32_to_cpu(frh->client_data_len);
4403 	lrh = lcb->log_rec;
4404 
4405 	if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
4406 		err = -EINVAL;
4407 		goto out;
4408 	}
4409 
4410 	/*
4411 	 * The first lsn after the previous lsn remembered
4412 	 * the checkpoint is the first candidate for the rlsn.
4413 	 */
4414 	if (!rlsn)
4415 		rlsn = rec_lsn;
4416 
4417 	if (LfsClientRecord != frh->record_type)
4418 		goto next_log_record_analyze;
4419 
4420 	/*
4421 	 * Now update the Transaction Table for this transaction. If there
4422 	 * is no entry present or it is unallocated we allocate the entry.
4423 	 */
4424 	if (!trtbl) {
4425 		trtbl = init_rsttbl(sizeof(struct TRANSACTION_ENTRY),
4426 				    INITIAL_NUMBER_TRANSACTIONS);
4427 		if (!trtbl) {
4428 			err = -ENOMEM;
4429 			goto out;
4430 		}
4431 	}
4432 
4433 	tr = Add2Ptr(trtbl, transact_id);
4434 
4435 	if (transact_id >= bytes_per_rt(trtbl) ||
4436 	    tr->next != RESTART_ENTRY_ALLOCATED_LE) {
4437 		tr = alloc_rsttbl_from_idx(&trtbl, transact_id);
4438 		if (!tr) {
4439 			err = -ENOMEM;
4440 			goto out;
4441 		}
4442 		tr->transact_state = TransactionActive;
4443 		tr->first_lsn = cpu_to_le64(rec_lsn);
4444 	}
4445 
4446 	tr->prev_lsn = tr->undo_next_lsn = cpu_to_le64(rec_lsn);
4447 
4448 	/*
4449 	 * If this is a compensation log record, then change
4450 	 * the undo_next_lsn to be the undo_next_lsn of this record.
4451 	 */
4452 	if (lrh->undo_op == cpu_to_le16(CompensationLogRecord))
4453 		tr->undo_next_lsn = frh->client_undo_next_lsn;
4454 
4455 	/* Dispatch to handle log record depending on type. */
4456 	switch (le16_to_cpu(lrh->redo_op)) {
4457 	case InitializeFileRecordSegment:
4458 	case DeallocateFileRecordSegment:
4459 	case WriteEndOfFileRecordSegment:
4460 	case CreateAttribute:
4461 	case DeleteAttribute:
4462 	case UpdateResidentValue:
4463 	case UpdateNonresidentValue:
4464 	case UpdateMappingPairs:
4465 	case SetNewAttributeSizes:
4466 	case AddIndexEntryRoot:
4467 	case DeleteIndexEntryRoot:
4468 	case AddIndexEntryAllocation:
4469 	case DeleteIndexEntryAllocation:
4470 	case WriteEndOfIndexBuffer:
4471 	case SetIndexEntryVcnRoot:
4472 	case SetIndexEntryVcnAllocation:
4473 	case UpdateFileNameRoot:
4474 	case UpdateFileNameAllocation:
4475 	case SetBitsInNonresidentBitMap:
4476 	case ClearBitsInNonresidentBitMap:
4477 	case UpdateRecordDataRoot:
4478 	case UpdateRecordDataAllocation:
4479 	case ZeroEndOfFileRecord:
4480 		t16 = le16_to_cpu(lrh->target_attr);
4481 		t64 = le64_to_cpu(lrh->target_vcn);
4482 		dp = find_dp(dptbl, t16, t64);
4483 
4484 		if (dp)
4485 			goto copy_lcns;
4486 
4487 		/*
4488 		 * Calculate the number of clusters per page the system
4489 		 * which wrote the checkpoint, possibly creating the table.
4490 		 */
4491 		if (dptbl) {
4492 			t32 = (le16_to_cpu(dptbl->size) -
4493 			       sizeof(struct DIR_PAGE_ENTRY)) /
4494 			      sizeof(u64);
4495 		} else {
4496 			t32 = log->clst_per_page;
4497 			kfree(dptbl);
4498 			dptbl = init_rsttbl(struct_size(dp, page_lcns, t32),
4499 					    32);
4500 			if (!dptbl) {
4501 				err = -ENOMEM;
4502 				goto out;
4503 			}
4504 		}
4505 
4506 		dp = alloc_rsttbl_idx(&dptbl);
4507 		if (!dp) {
4508 			err = -ENOMEM;
4509 			goto out;
4510 		}
4511 		dp->target_attr = cpu_to_le32(t16);
4512 		dp->transfer_len = cpu_to_le32(t32 << sbi->cluster_bits);
4513 		dp->lcns_follow = cpu_to_le32(t32);
4514 		dp->vcn = cpu_to_le64(t64 & ~((u64)t32 - 1));
4515 		dp->oldest_lsn = cpu_to_le64(rec_lsn);
4516 
4517 copy_lcns:
4518 		/*
4519 		 * Copy the Lcns from the log record into the Dirty Page Entry.
4520 		 * TODO: For different page size support, must somehow make
4521 		 * whole routine a loop, case Lcns do not fit below.
4522 		 */
4523 		t16 = le16_to_cpu(lrh->lcns_follow);
4524 		for (i = 0; i < t16; i++) {
4525 			size_t j = (size_t)(le64_to_cpu(lrh->target_vcn) -
4526 					    le64_to_cpu(dp->vcn));
4527 			dp->page_lcns[j + i] = lrh->page_lcns[i];
4528 		}
4529 
4530 		goto next_log_record_analyze;
4531 
4532 	case DeleteDirtyClusters: {
4533 		u32 range_count =
4534 			le16_to_cpu(lrh->redo_len) / sizeof(struct LCN_RANGE);
4535 		const struct LCN_RANGE *r =
4536 			Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4537 
4538 		/* Loop through all of the Lcn ranges this log record. */
4539 		for (i = 0; i < range_count; i++, r++) {
4540 			u64 lcn0 = le64_to_cpu(r->lcn);
4541 			u64 lcn_e = lcn0 + le64_to_cpu(r->len) - 1;
4542 
4543 			dp = NULL;
4544 			while ((dp = enum_rstbl(dptbl, dp))) {
4545 				u32 j;
4546 
4547 				t32 = le32_to_cpu(dp->lcns_follow);
4548 				for (j = 0; j < t32; j++) {
4549 					t64 = le64_to_cpu(dp->page_lcns[j]);
4550 					if (t64 >= lcn0 && t64 <= lcn_e)
4551 						dp->page_lcns[j] = 0;
4552 				}
4553 			}
4554 		}
4555 		goto next_log_record_analyze;
4556 		;
4557 	}
4558 
4559 	case OpenNonresidentAttribute:
4560 		t16 = le16_to_cpu(lrh->target_attr);
4561 		if (t16 >= bytes_per_rt(oatbl)) {
4562 			/*
4563 			 * Compute how big the table needs to be.
4564 			 * Add 10 extra entries for some cushion.
4565 			 */
4566 			u32 new_e = t16 / le16_to_cpu(oatbl->size);
4567 
4568 			new_e += 10 - le16_to_cpu(oatbl->used);
4569 
4570 			oatbl = extend_rsttbl(oatbl, new_e, ~0u);
4571 			log->open_attr_tbl = oatbl;
4572 			if (!oatbl) {
4573 				err = -ENOMEM;
4574 				goto out;
4575 			}
4576 		}
4577 
4578 		/* Point to the entry being opened. */
4579 		oe = alloc_rsttbl_from_idx(&oatbl, t16);
4580 		log->open_attr_tbl = oatbl;
4581 		if (!oe) {
4582 			err = -ENOMEM;
4583 			goto out;
4584 		}
4585 
4586 		/* Initialize this entry from the log record. */
4587 		t16 = le16_to_cpu(lrh->redo_off);
4588 		if (!rst->major_ver) {
4589 			/* Convert version '0' into version '1'. */
4590 			struct OPEN_ATTR_ENRTY_32 *oe0 = Add2Ptr(lrh, t16);
4591 
4592 			oe->bytes_per_index = oe0->bytes_per_index;
4593 			oe->type = oe0->type;
4594 			oe->is_dirty_pages = oe0->is_dirty_pages;
4595 			oe->name_len = 0; //oe0.name_len;
4596 			oe->ref = oe0->ref;
4597 			oe->open_record_lsn = oe0->open_record_lsn;
4598 		} else {
4599 			memcpy(oe, Add2Ptr(lrh, t16), bytes_per_attr_entry);
4600 		}
4601 
4602 		t16 = le16_to_cpu(lrh->undo_len);
4603 		if (t16) {
4604 			oe->ptr = kmalloc(t16, GFP_NOFS);
4605 			if (!oe->ptr) {
4606 				err = -ENOMEM;
4607 				goto out;
4608 			}
4609 			oe->name_len = t16 / sizeof(short);
4610 			memcpy(oe->ptr,
4611 			       Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)), t16);
4612 			oe->is_attr_name = 1;
4613 		} else {
4614 			oe->ptr = NULL;
4615 			oe->is_attr_name = 0;
4616 		}
4617 
4618 		goto next_log_record_analyze;
4619 
4620 	case HotFix:
4621 		t16 = le16_to_cpu(lrh->target_attr);
4622 		t64 = le64_to_cpu(lrh->target_vcn);
4623 		dp = find_dp(dptbl, t16, t64);
4624 		if (dp) {
4625 			size_t j = le64_to_cpu(lrh->target_vcn) -
4626 				   le64_to_cpu(dp->vcn);
4627 			if (dp->page_lcns[j])
4628 				dp->page_lcns[j] = lrh->page_lcns[0];
4629 		}
4630 		goto next_log_record_analyze;
4631 
4632 	case EndTopLevelAction:
4633 		tr = Add2Ptr(trtbl, transact_id);
4634 		tr->prev_lsn = cpu_to_le64(rec_lsn);
4635 		tr->undo_next_lsn = frh->client_undo_next_lsn;
4636 		goto next_log_record_analyze;
4637 
4638 	case PrepareTransaction:
4639 		tr = Add2Ptr(trtbl, transact_id);
4640 		tr->transact_state = TransactionPrepared;
4641 		goto next_log_record_analyze;
4642 
4643 	case CommitTransaction:
4644 		tr = Add2Ptr(trtbl, transact_id);
4645 		tr->transact_state = TransactionCommitted;
4646 		goto next_log_record_analyze;
4647 
4648 	case ForgetTransaction:
4649 		free_rsttbl_idx(trtbl, transact_id);
4650 		goto next_log_record_analyze;
4651 
4652 	case Noop:
4653 	case OpenAttributeTableDump:
4654 	case AttributeNamesDump:
4655 	case DirtyPageTableDump:
4656 	case TransactionTableDump:
4657 		/* The following cases require no action the Analysis Pass. */
4658 		goto next_log_record_analyze;
4659 
4660 	default:
4661 		/*
4662 		 * All codes will be explicitly handled.
4663 		 * If we see a code we do not expect, then we are trouble.
4664 		 */
4665 		goto next_log_record_analyze;
4666 	}
4667 
4668 end_log_records_enumerate:
4669 	lcb_put(lcb);
4670 	lcb = NULL;
4671 
4672 	/*
4673 	 * Scan the Dirty Page Table and Transaction Table for
4674 	 * the lowest lsn, and return it as the Redo lsn.
4675 	 */
4676 	dp = NULL;
4677 	while ((dp = enum_rstbl(dptbl, dp))) {
4678 		t64 = le64_to_cpu(dp->oldest_lsn);
4679 		if (t64 && t64 < rlsn)
4680 			rlsn = t64;
4681 	}
4682 
4683 	tr = NULL;
4684 	while ((tr = enum_rstbl(trtbl, tr))) {
4685 		t64 = le64_to_cpu(tr->first_lsn);
4686 		if (t64 && t64 < rlsn)
4687 			rlsn = t64;
4688 	}
4689 
4690 	/*
4691 	 * Only proceed if the Dirty Page Table or Transaction
4692 	 * table are not empty.
4693 	 */
4694 	if ((!dptbl || !dptbl->total) && (!trtbl || !trtbl->total))
4695 		goto end_reply;
4696 
4697 	sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
4698 	if (is_ro)
4699 		goto out;
4700 
4701 	/* Reopen all of the attributes with dirty pages. */
4702 	oe = NULL;
4703 next_open_attribute:
4704 
4705 	oe = enum_rstbl(oatbl, oe);
4706 	if (!oe) {
4707 		err = 0;
4708 		dp = NULL;
4709 		goto next_dirty_page;
4710 	}
4711 
4712 	oa = kzalloc(sizeof(struct OpenAttr), GFP_NOFS);
4713 	if (!oa) {
4714 		err = -ENOMEM;
4715 		goto out;
4716 	}
4717 
4718 	inode = ntfs_iget5(sbi->sb, &oe->ref, NULL);
4719 	if (IS_ERR(inode))
4720 		goto fake_attr;
4721 
4722 	if (is_bad_inode(inode)) {
4723 		iput(inode);
4724 fake_attr:
4725 		if (oa->ni) {
4726 			iput(&oa->ni->vfs_inode);
4727 			oa->ni = NULL;
4728 		}
4729 
4730 		attr = attr_create_nonres_log(sbi, oe->type, 0, oe->ptr,
4731 					      oe->name_len, 0);
4732 		if (!attr) {
4733 			kfree(oa);
4734 			err = -ENOMEM;
4735 			goto out;
4736 		}
4737 		oa->attr = attr;
4738 		oa->run1 = &oa->run0;
4739 		goto final_oe;
4740 	}
4741 
4742 	ni_oe = ntfs_i(inode);
4743 	oa->ni = ni_oe;
4744 
4745 	attr = ni_find_attr(ni_oe, NULL, NULL, oe->type, oe->ptr, oe->name_len,
4746 			    NULL, NULL);
4747 
4748 	if (!attr)
4749 		goto fake_attr;
4750 
4751 	t32 = le32_to_cpu(attr->size);
4752 	oa->attr = kmemdup(attr, t32, GFP_NOFS);
4753 	if (!oa->attr)
4754 		goto fake_attr;
4755 
4756 	if (!S_ISDIR(inode->i_mode)) {
4757 		if (attr->type == ATTR_DATA && !attr->name_len) {
4758 			oa->run1 = &ni_oe->file.run;
4759 			goto final_oe;
4760 		}
4761 	} else {
4762 		if (attr->type == ATTR_ALLOC &&
4763 		    attr->name_len == ARRAY_SIZE(I30_NAME) &&
4764 		    !memcmp(attr_name(attr), I30_NAME, sizeof(I30_NAME))) {
4765 			oa->run1 = &ni_oe->dir.alloc_run;
4766 			goto final_oe;
4767 		}
4768 	}
4769 
4770 	if (attr->non_res) {
4771 		u16 roff = le16_to_cpu(attr->nres.run_off);
4772 		CLST svcn = le64_to_cpu(attr->nres.svcn);
4773 
4774 		err = run_unpack(&oa->run0, sbi, inode->i_ino, svcn,
4775 				 le64_to_cpu(attr->nres.evcn), svcn,
4776 				 Add2Ptr(attr, roff), t32 - roff);
4777 		if (err < 0) {
4778 			kfree(oa->attr);
4779 			oa->attr = NULL;
4780 			goto fake_attr;
4781 		}
4782 		err = 0;
4783 	}
4784 	oa->run1 = &oa->run0;
4785 	attr = oa->attr;
4786 
4787 final_oe:
4788 	if (oe->is_attr_name == 1)
4789 		kfree(oe->ptr);
4790 	oe->is_attr_name = 0;
4791 	oe->ptr = oa;
4792 	oe->name_len = attr->name_len;
4793 
4794 	goto next_open_attribute;
4795 
4796 	/*
4797 	 * Now loop through the dirty page table to extract all of the Vcn/Lcn.
4798 	 * Mapping that we have, and insert it into the appropriate run.
4799 	 */
4800 next_dirty_page:
4801 	dp = enum_rstbl(dptbl, dp);
4802 	if (!dp)
4803 		goto do_redo_1;
4804 
4805 	oe = Add2Ptr(oatbl, le32_to_cpu(dp->target_attr));
4806 
4807 	if (oe->next != RESTART_ENTRY_ALLOCATED_LE)
4808 		goto next_dirty_page;
4809 
4810 	oa = oe->ptr;
4811 	if (!oa)
4812 		goto next_dirty_page;
4813 
4814 	i = -1;
4815 next_dirty_page_vcn:
4816 	i += 1;
4817 	if (i >= le32_to_cpu(dp->lcns_follow))
4818 		goto next_dirty_page;
4819 
4820 	vcn = le64_to_cpu(dp->vcn) + i;
4821 	size = (vcn + 1) << sbi->cluster_bits;
4822 
4823 	if (!dp->page_lcns[i])
4824 		goto next_dirty_page_vcn;
4825 
4826 	rno = ino_get(&oe->ref);
4827 	if (rno <= MFT_REC_MIRR &&
4828 	    size < (MFT_REC_VOL + 1) * sbi->record_size &&
4829 	    oe->type == ATTR_DATA) {
4830 		goto next_dirty_page_vcn;
4831 	}
4832 
4833 	lcn = le64_to_cpu(dp->page_lcns[i]);
4834 
4835 	if ((!run_lookup_entry(oa->run1, vcn, &lcn0, &len0, NULL) ||
4836 	     lcn0 != lcn) &&
4837 	    !run_add_entry(oa->run1, vcn, lcn, 1, false)) {
4838 		err = -ENOMEM;
4839 		goto out;
4840 	}
4841 	attr = oa->attr;
4842 	t64 = le64_to_cpu(attr->nres.alloc_size);
4843 	if (size > t64) {
4844 		attr->nres.valid_size = attr->nres.data_size =
4845 			attr->nres.alloc_size = cpu_to_le64(size);
4846 	}
4847 	goto next_dirty_page_vcn;
4848 
4849 do_redo_1:
4850 	/*
4851 	 * Perform the Redo Pass, to restore all of the dirty pages to the same
4852 	 * contents that they had immediately before the crash. If the dirty
4853 	 * page table is empty, then we can skip the entire Redo Pass.
4854 	 */
4855 	if (!dptbl || !dptbl->total)
4856 		goto do_undo_action;
4857 
4858 	rec_lsn = rlsn;
4859 
4860 	/*
4861 	 * Read the record at the Redo lsn, before falling
4862 	 * into common code to handle each record.
4863 	 */
4864 	err = read_log_rec_lcb(log, rlsn, lcb_ctx_next, &lcb);
4865 	if (err)
4866 		goto out;
4867 
4868 	/*
4869 	 * Now loop to read all of our log records forwards, until
4870 	 * we hit the end of the file, cleaning up at the end.
4871 	 */
4872 do_action_next:
4873 	frh = lcb->lrh;
4874 
4875 	if (LfsClientRecord != frh->record_type)
4876 		goto read_next_log_do_action;
4877 
4878 	transact_id = le32_to_cpu(frh->transact_id);
4879 	rec_len = le32_to_cpu(frh->client_data_len);
4880 	lrh = lcb->log_rec;
4881 
4882 	if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
4883 		err = -EINVAL;
4884 		goto out;
4885 	}
4886 
4887 	/* Ignore log records that do not update pages. */
4888 	if (lrh->lcns_follow)
4889 		goto find_dirty_page;
4890 
4891 	goto read_next_log_do_action;
4892 
4893 find_dirty_page:
4894 	t16 = le16_to_cpu(lrh->target_attr);
4895 	t64 = le64_to_cpu(lrh->target_vcn);
4896 	dp = find_dp(dptbl, t16, t64);
4897 
4898 	if (!dp)
4899 		goto read_next_log_do_action;
4900 
4901 	if (rec_lsn < le64_to_cpu(dp->oldest_lsn))
4902 		goto read_next_log_do_action;
4903 
4904 	t16 = le16_to_cpu(lrh->target_attr);
4905 	if (t16 >= bytes_per_rt(oatbl)) {
4906 		err = -EINVAL;
4907 		goto out;
4908 	}
4909 
4910 	oe = Add2Ptr(oatbl, t16);
4911 
4912 	if (oe->next != RESTART_ENTRY_ALLOCATED_LE) {
4913 		err = -EINVAL;
4914 		goto out;
4915 	}
4916 
4917 	oa = oe->ptr;
4918 
4919 	if (!oa) {
4920 		err = -EINVAL;
4921 		goto out;
4922 	}
4923 	attr = oa->attr;
4924 
4925 	vcn = le64_to_cpu(lrh->target_vcn);
4926 
4927 	if (!run_lookup_entry(oa->run1, vcn, &lcn, NULL, NULL) ||
4928 	    lcn == SPARSE_LCN) {
4929 		goto read_next_log_do_action;
4930 	}
4931 
4932 	/* Point to the Redo data and get its length. */
4933 	data = Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4934 	dlen = le16_to_cpu(lrh->redo_len);
4935 
4936 	/* Shorten length by any Lcns which were deleted. */
4937 	saved_len = dlen;
4938 
4939 	for (i = le16_to_cpu(lrh->lcns_follow); i; i--) {
4940 		size_t j;
4941 		u32 alen, voff;
4942 
4943 		voff = le16_to_cpu(lrh->record_off) +
4944 		       le16_to_cpu(lrh->attr_off);
4945 		voff += le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
4946 
4947 		/* If the Vcn question is allocated, we can just get out. */
4948 		j = le64_to_cpu(lrh->target_vcn) - le64_to_cpu(dp->vcn);
4949 		if (dp->page_lcns[j + i - 1])
4950 			break;
4951 
4952 		if (!saved_len)
4953 			saved_len = 1;
4954 
4955 		/*
4956 		 * Calculate the allocated space left relative to the
4957 		 * log record Vcn, after removing this unallocated Vcn.
4958 		 */
4959 		alen = (i - 1) << sbi->cluster_bits;
4960 
4961 		/*
4962 		 * If the update described this log record goes beyond
4963 		 * the allocated space, then we will have to reduce the length.
4964 		 */
4965 		if (voff >= alen)
4966 			dlen = 0;
4967 		else if (voff + dlen > alen)
4968 			dlen = alen - voff;
4969 	}
4970 
4971 	/*
4972 	 * If the resulting dlen from above is now zero,
4973 	 * we can skip this log record.
4974 	 */
4975 	if (!dlen && saved_len)
4976 		goto read_next_log_do_action;
4977 
4978 	t16 = le16_to_cpu(lrh->redo_op);
4979 	if (can_skip_action(t16))
4980 		goto read_next_log_do_action;
4981 
4982 	/* Apply the Redo operation a common routine. */
4983 	err = do_action(log, oe, lrh, t16, data, dlen, rec_len, &rec_lsn);
4984 	if (err)
4985 		goto out;
4986 
4987 	/* Keep reading and looping back until end of file. */
4988 read_next_log_do_action:
4989 	err = read_next_log_rec(log, lcb, &rec_lsn);
4990 	if (!err && rec_lsn)
4991 		goto do_action_next;
4992 
4993 	lcb_put(lcb);
4994 	lcb = NULL;
4995 
4996 do_undo_action:
4997 	/* Scan Transaction Table. */
4998 	tr = NULL;
4999 transaction_table_next:
5000 	tr = enum_rstbl(trtbl, tr);
5001 	if (!tr)
5002 		goto undo_action_done;
5003 
5004 	if (TransactionActive != tr->transact_state || !tr->undo_next_lsn) {
5005 		free_rsttbl_idx(trtbl, PtrOffset(trtbl, tr));
5006 		goto transaction_table_next;
5007 	}
5008 
5009 	log->transaction_id = PtrOffset(trtbl, tr);
5010 	undo_next_lsn = le64_to_cpu(tr->undo_next_lsn);
5011 
5012 	/*
5013 	 * We only have to do anything if the transaction has
5014 	 * something its undo_next_lsn field.
5015 	 */
5016 	if (!undo_next_lsn)
5017 		goto commit_undo;
5018 
5019 	/* Read the first record to be undone by this transaction. */
5020 	err = read_log_rec_lcb(log, undo_next_lsn, lcb_ctx_undo_next, &lcb);
5021 	if (err)
5022 		goto out;
5023 
5024 	/*
5025 	 * Now loop to read all of our log records forwards,
5026 	 * until we hit the end of the file, cleaning up at the end.
5027 	 */
5028 undo_action_next:
5029 
5030 	lrh = lcb->log_rec;
5031 	frh = lcb->lrh;
5032 	transact_id = le32_to_cpu(frh->transact_id);
5033 	rec_len = le32_to_cpu(frh->client_data_len);
5034 
5035 	if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
5036 		err = -EINVAL;
5037 		goto out;
5038 	}
5039 
5040 	if (lrh->undo_op == cpu_to_le16(Noop))
5041 		goto read_next_log_undo_action;
5042 
5043 	oe = Add2Ptr(oatbl, le16_to_cpu(lrh->target_attr));
5044 	oa = oe->ptr;
5045 
5046 	t16 = le16_to_cpu(lrh->lcns_follow);
5047 	if (!t16)
5048 		goto add_allocated_vcns;
5049 
5050 	is_mapped = run_lookup_entry(oa->run1, le64_to_cpu(lrh->target_vcn),
5051 				     &lcn, &clen, NULL);
5052 
5053 	/*
5054 	 * If the mapping isn't already the table or the  mapping
5055 	 * corresponds to a hole the mapping, we need to make sure
5056 	 * there is no partial page already memory.
5057 	 */
5058 	if (is_mapped && lcn != SPARSE_LCN && clen >= t16)
5059 		goto add_allocated_vcns;
5060 
5061 	vcn = le64_to_cpu(lrh->target_vcn);
5062 	vcn &= ~(u64)(log->clst_per_page - 1);
5063 
5064 add_allocated_vcns:
5065 	for (i = 0, vcn = le64_to_cpu(lrh->target_vcn),
5066 	    size = (vcn + 1) << sbi->cluster_bits;
5067 	     i < t16; i++, vcn += 1, size += sbi->cluster_size) {
5068 		attr = oa->attr;
5069 		if (!attr->non_res) {
5070 			if (size > le32_to_cpu(attr->res.data_size))
5071 				attr->res.data_size = cpu_to_le32(size);
5072 		} else {
5073 			if (size > le64_to_cpu(attr->nres.data_size))
5074 				attr->nres.valid_size = attr->nres.data_size =
5075 					attr->nres.alloc_size =
5076 						cpu_to_le64(size);
5077 		}
5078 	}
5079 
5080 	t16 = le16_to_cpu(lrh->undo_op);
5081 	if (can_skip_action(t16))
5082 		goto read_next_log_undo_action;
5083 
5084 	/* Point to the Redo data and get its length. */
5085 	data = Add2Ptr(lrh, le16_to_cpu(lrh->undo_off));
5086 	dlen = le16_to_cpu(lrh->undo_len);
5087 
5088 	/* It is time to apply the undo action. */
5089 	err = do_action(log, oe, lrh, t16, data, dlen, rec_len, NULL);
5090 
5091 read_next_log_undo_action:
5092 	/*
5093 	 * Keep reading and looping back until we have read the
5094 	 * last record for this transaction.
5095 	 */
5096 	err = read_next_log_rec(log, lcb, &rec_lsn);
5097 	if (err)
5098 		goto out;
5099 
5100 	if (rec_lsn)
5101 		goto undo_action_next;
5102 
5103 	lcb_put(lcb);
5104 	lcb = NULL;
5105 
5106 commit_undo:
5107 	free_rsttbl_idx(trtbl, log->transaction_id);
5108 
5109 	log->transaction_id = 0;
5110 
5111 	goto transaction_table_next;
5112 
5113 undo_action_done:
5114 
5115 	ntfs_update_mftmirr(sbi, 0);
5116 
5117 	sbi->flags &= ~NTFS_FLAGS_NEED_REPLAY;
5118 
5119 end_reply:
5120 
5121 	err = 0;
5122 	if (is_ro)
5123 		goto out;
5124 
5125 	rh = kzalloc(log->page_size, GFP_NOFS);
5126 	if (!rh) {
5127 		err = -ENOMEM;
5128 		goto out;
5129 	}
5130 
5131 	rh->rhdr.sign = NTFS_RSTR_SIGNATURE;
5132 	rh->rhdr.fix_off = cpu_to_le16(offsetof(struct RESTART_HDR, fixups));
5133 	t16 = (log->page_size >> SECTOR_SHIFT) + 1;
5134 	rh->rhdr.fix_num = cpu_to_le16(t16);
5135 	rh->sys_page_size = cpu_to_le32(log->page_size);
5136 	rh->page_size = cpu_to_le32(log->page_size);
5137 
5138 	t16 = ALIGN(offsetof(struct RESTART_HDR, fixups) + sizeof(short) * t16,
5139 		    8);
5140 	rh->ra_off = cpu_to_le16(t16);
5141 	rh->minor_ver = cpu_to_le16(1); // 0x1A:
5142 	rh->major_ver = cpu_to_le16(1); // 0x1C:
5143 
5144 	ra2 = Add2Ptr(rh, t16);
5145 	memcpy(ra2, ra, sizeof(struct RESTART_AREA));
5146 
5147 	ra2->client_idx[0] = 0;
5148 	ra2->client_idx[1] = LFS_NO_CLIENT_LE;
5149 	ra2->flags = cpu_to_le16(2);
5150 
5151 	le32_add_cpu(&ra2->open_log_count, 1);
5152 
5153 	ntfs_fix_pre_write(&rh->rhdr, log->page_size);
5154 
5155 	err = ntfs_sb_write_run(sbi, &ni->file.run, 0, rh, log->page_size, 0);
5156 	if (!err)
5157 		err = ntfs_sb_write_run(sbi, &log->ni->file.run, log->page_size,
5158 					rh, log->page_size, 0);
5159 
5160 	kfree(rh);
5161 	if (err)
5162 		goto out;
5163 
5164 out:
5165 	kfree(rst);
5166 	if (lcb)
5167 		lcb_put(lcb);
5168 
5169 	/*
5170 	 * Scan the Open Attribute Table to close all of
5171 	 * the open attributes.
5172 	 */
5173 	oe = NULL;
5174 	while ((oe = enum_rstbl(oatbl, oe))) {
5175 		rno = ino_get(&oe->ref);
5176 
5177 		if (oe->is_attr_name == 1) {
5178 			kfree(oe->ptr);
5179 			oe->ptr = NULL;
5180 			continue;
5181 		}
5182 
5183 		if (oe->is_attr_name)
5184 			continue;
5185 
5186 		oa = oe->ptr;
5187 		if (!oa)
5188 			continue;
5189 
5190 		run_close(&oa->run0);
5191 		kfree(oa->attr);
5192 		if (oa->ni)
5193 			iput(&oa->ni->vfs_inode);
5194 		kfree(oa);
5195 	}
5196 
5197 	kfree(trtbl);
5198 	kfree(oatbl);
5199 	kfree(dptbl);
5200 	kfree(attr_names);
5201 	kfree(rst_info.r_page);
5202 
5203 	kfree(ra);
5204 	kfree(log->one_page_buf);
5205 
5206 	if (err)
5207 		sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
5208 
5209 	if (err == -EROFS)
5210 		err = 0;
5211 	else if (log->set_dirty)
5212 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
5213 
5214 	kfree(log);
5215 
5216 	return err;
5217 }
5218