1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * 4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. 5 * 6 */ 7 8 #include <linux/blkdev.h> 9 #include <linux/fs.h> 10 #include <linux/random.h> 11 #include <linux/slab.h> 12 13 #include "debug.h" 14 #include "ntfs.h" 15 #include "ntfs_fs.h" 16 17 /* 18 * LOG FILE structs 19 */ 20 21 // clang-format off 22 23 #define MaxLogFileSize 0x100000000ull 24 #define DefaultLogPageSize 4096 25 #define MinLogRecordPages 0x30 26 27 struct RESTART_HDR { 28 struct NTFS_RECORD_HEADER rhdr; // 'RSTR' 29 __le32 sys_page_size; // 0x10: Page size of the system which initialized the log. 30 __le32 page_size; // 0x14: Log page size used for this log file. 31 __le16 ra_off; // 0x18: 32 __le16 minor_ver; // 0x1A: 33 __le16 major_ver; // 0x1C: 34 __le16 fixups[]; 35 }; 36 37 #define LFS_NO_CLIENT 0xffff 38 #define LFS_NO_CLIENT_LE cpu_to_le16(0xffff) 39 40 struct CLIENT_REC { 41 __le64 oldest_lsn; 42 __le64 restart_lsn; // 0x08: 43 __le16 prev_client; // 0x10: 44 __le16 next_client; // 0x12: 45 __le16 seq_num; // 0x14: 46 u8 align[6]; // 0x16: 47 __le32 name_bytes; // 0x1C: In bytes. 48 __le16 name[32]; // 0x20: Name of client. 49 }; 50 51 static_assert(sizeof(struct CLIENT_REC) == 0x60); 52 53 /* Two copies of these will exist at the beginning of the log file */ 54 struct RESTART_AREA { 55 __le64 current_lsn; // 0x00: Current logical end of log file. 56 __le16 log_clients; // 0x08: Maximum number of clients. 57 __le16 client_idx[2]; // 0x0A: Free/use index into the client record arrays. 58 __le16 flags; // 0x0E: See RESTART_SINGLE_PAGE_IO. 59 __le32 seq_num_bits; // 0x10: The number of bits in sequence number. 60 __le16 ra_len; // 0x14: 61 __le16 client_off; // 0x16: 62 __le64 l_size; // 0x18: Usable log file size. 63 __le32 last_lsn_data_len; // 0x20: 64 __le16 rec_hdr_len; // 0x24: Log page data offset. 65 __le16 data_off; // 0x26: Log page data length. 66 __le32 open_log_count; // 0x28: 67 __le32 align[5]; // 0x2C: 68 struct CLIENT_REC clients[]; // 0x40: 69 }; 70 71 struct LOG_REC_HDR { 72 __le16 redo_op; // 0x00: NTFS_LOG_OPERATION 73 __le16 undo_op; // 0x02: NTFS_LOG_OPERATION 74 __le16 redo_off; // 0x04: Offset to Redo record. 75 __le16 redo_len; // 0x06: Redo length. 76 __le16 undo_off; // 0x08: Offset to Undo record. 77 __le16 undo_len; // 0x0A: Undo length. 78 __le16 target_attr; // 0x0C: 79 __le16 lcns_follow; // 0x0E: 80 __le16 record_off; // 0x10: 81 __le16 attr_off; // 0x12: 82 __le16 cluster_off; // 0x14: 83 __le16 reserved; // 0x16: 84 __le64 target_vcn; // 0x18: 85 __le64 page_lcns[]; // 0x20: 86 }; 87 88 static_assert(sizeof(struct LOG_REC_HDR) == 0x20); 89 90 #define RESTART_ENTRY_ALLOCATED 0xFFFFFFFF 91 #define RESTART_ENTRY_ALLOCATED_LE cpu_to_le32(0xFFFFFFFF) 92 93 struct RESTART_TABLE { 94 __le16 size; // 0x00: In bytes 95 __le16 used; // 0x02: Entries 96 __le16 total; // 0x04: Entries 97 __le16 res[3]; // 0x06: 98 __le32 free_goal; // 0x0C: 99 __le32 first_free; // 0x10: 100 __le32 last_free; // 0x14: 101 102 }; 103 104 static_assert(sizeof(struct RESTART_TABLE) == 0x18); 105 106 struct ATTR_NAME_ENTRY { 107 __le16 off; // Offset in the Open attribute Table. 108 __le16 name_bytes; 109 __le16 name[]; 110 }; 111 112 struct OPEN_ATTR_ENRTY { 113 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 114 __le32 bytes_per_index; // 0x04: 115 enum ATTR_TYPE type; // 0x08: 116 u8 is_dirty_pages; // 0x0C: 117 u8 is_attr_name; // 0x0B: Faked field to manage 'ptr' 118 u8 name_len; // 0x0C: Faked field to manage 'ptr' 119 u8 res; 120 struct MFT_REF ref; // 0x10: File Reference of file containing attribute 121 __le64 open_record_lsn; // 0x18: 122 void *ptr; // 0x20: 123 }; 124 125 /* 32 bit version of 'struct OPEN_ATTR_ENRTY' */ 126 struct OPEN_ATTR_ENRTY_32 { 127 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 128 __le32 ptr; // 0x04: 129 struct MFT_REF ref; // 0x08: 130 __le64 open_record_lsn; // 0x10: 131 u8 is_dirty_pages; // 0x18: 132 u8 is_attr_name; // 0x19: 133 u8 res1[2]; 134 enum ATTR_TYPE type; // 0x1C: 135 u8 name_len; // 0x20: In wchar 136 u8 res2[3]; 137 __le32 AttributeName; // 0x24: 138 __le32 bytes_per_index; // 0x28: 139 }; 140 141 #define SIZEOF_OPENATTRIBUTEENTRY0 0x2c 142 // static_assert( 0x2C == sizeof(struct OPEN_ATTR_ENRTY_32) ); 143 static_assert(sizeof(struct OPEN_ATTR_ENRTY) < SIZEOF_OPENATTRIBUTEENTRY0); 144 145 /* 146 * One entry exists in the Dirty Pages Table for each page which is dirty at 147 * the time the Restart Area is written. 148 */ 149 struct DIR_PAGE_ENTRY { 150 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 151 __le32 target_attr; // 0x04: Index into the Open attribute Table 152 __le32 transfer_len; // 0x08: 153 __le32 lcns_follow; // 0x0C: 154 __le64 vcn; // 0x10: Vcn of dirty page 155 __le64 oldest_lsn; // 0x18: 156 __le64 page_lcns[]; // 0x20: 157 }; 158 159 static_assert(sizeof(struct DIR_PAGE_ENTRY) == 0x20); 160 161 /* 32 bit version of 'struct DIR_PAGE_ENTRY' */ 162 struct DIR_PAGE_ENTRY_32 { 163 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 164 __le32 target_attr; // 0x04: Index into the Open attribute Table 165 __le32 transfer_len; // 0x08: 166 __le32 lcns_follow; // 0x0C: 167 __le32 reserved; // 0x10: 168 __le32 vcn_low; // 0x14: Vcn of dirty page 169 __le32 vcn_hi; // 0x18: Vcn of dirty page 170 __le32 oldest_lsn_low; // 0x1C: 171 __le32 oldest_lsn_hi; // 0x1C: 172 __le32 page_lcns_low; // 0x24: 173 __le32 page_lcns_hi; // 0x24: 174 }; 175 176 static_assert(offsetof(struct DIR_PAGE_ENTRY_32, vcn_low) == 0x14); 177 static_assert(sizeof(struct DIR_PAGE_ENTRY_32) == 0x2c); 178 179 enum transact_state { 180 TransactionUninitialized = 0, 181 TransactionActive, 182 TransactionPrepared, 183 TransactionCommitted 184 }; 185 186 struct TRANSACTION_ENTRY { 187 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 188 u8 transact_state; // 0x04: 189 u8 reserved[3]; // 0x05: 190 __le64 first_lsn; // 0x08: 191 __le64 prev_lsn; // 0x10: 192 __le64 undo_next_lsn; // 0x18: 193 __le32 undo_records; // 0x20: Number of undo log records pending abort 194 __le32 undo_len; // 0x24: Total undo size 195 }; 196 197 static_assert(sizeof(struct TRANSACTION_ENTRY) == 0x28); 198 199 struct NTFS_RESTART { 200 __le32 major_ver; // 0x00: 201 __le32 minor_ver; // 0x04: 202 __le64 check_point_start; // 0x08: 203 __le64 open_attr_table_lsn; // 0x10: 204 __le64 attr_names_lsn; // 0x18: 205 __le64 dirty_pages_table_lsn; // 0x20: 206 __le64 transact_table_lsn; // 0x28: 207 __le32 open_attr_len; // 0x30: In bytes 208 __le32 attr_names_len; // 0x34: In bytes 209 __le32 dirty_pages_len; // 0x38: In bytes 210 __le32 transact_table_len; // 0x3C: In bytes 211 }; 212 213 static_assert(sizeof(struct NTFS_RESTART) == 0x40); 214 215 struct NEW_ATTRIBUTE_SIZES { 216 __le64 alloc_size; 217 __le64 valid_size; 218 __le64 data_size; 219 __le64 total_size; 220 }; 221 222 struct BITMAP_RANGE { 223 __le32 bitmap_off; 224 __le32 bits; 225 }; 226 227 struct LCN_RANGE { 228 __le64 lcn; 229 __le64 len; 230 }; 231 232 /* The following type defines the different log record types. */ 233 #define LfsClientRecord cpu_to_le32(1) 234 #define LfsClientRestart cpu_to_le32(2) 235 236 /* This is used to uniquely identify a client for a particular log file. */ 237 struct CLIENT_ID { 238 __le16 seq_num; 239 __le16 client_idx; 240 }; 241 242 /* This is the header that begins every Log Record in the log file. */ 243 struct LFS_RECORD_HDR { 244 __le64 this_lsn; // 0x00: 245 __le64 client_prev_lsn; // 0x08: 246 __le64 client_undo_next_lsn; // 0x10: 247 __le32 client_data_len; // 0x18: 248 struct CLIENT_ID client; // 0x1C: Owner of this log record. 249 __le32 record_type; // 0x20: LfsClientRecord or LfsClientRestart. 250 __le32 transact_id; // 0x24: 251 __le16 flags; // 0x28: LOG_RECORD_MULTI_PAGE 252 u8 align[6]; // 0x2A: 253 }; 254 255 #define LOG_RECORD_MULTI_PAGE cpu_to_le16(1) 256 257 static_assert(sizeof(struct LFS_RECORD_HDR) == 0x30); 258 259 struct LFS_RECORD { 260 __le16 next_record_off; // 0x00: Offset of the free space in the page, 261 u8 align[6]; // 0x02: 262 __le64 last_end_lsn; // 0x08: lsn for the last log record which ends on the page, 263 }; 264 265 static_assert(sizeof(struct LFS_RECORD) == 0x10); 266 267 struct RECORD_PAGE_HDR { 268 struct NTFS_RECORD_HEADER rhdr; // 'RCRD' 269 __le32 rflags; // 0x10: See LOG_PAGE_LOG_RECORD_END 270 __le16 page_count; // 0x14: 271 __le16 page_pos; // 0x16: 272 struct LFS_RECORD record_hdr; // 0x18: 273 __le16 fixups[10]; // 0x28: 274 __le32 file_off; // 0x3c: Used when major version >= 2 275 }; 276 277 // clang-format on 278 279 // Page contains the end of a log record. 280 #define LOG_PAGE_LOG_RECORD_END cpu_to_le32(0x00000001) 281 282 static inline bool is_log_record_end(const struct RECORD_PAGE_HDR *hdr) 283 { 284 return hdr->rflags & LOG_PAGE_LOG_RECORD_END; 285 } 286 287 static_assert(offsetof(struct RECORD_PAGE_HDR, file_off) == 0x3c); 288 289 /* 290 * END of NTFS LOG structures 291 */ 292 293 /* Define some tuning parameters to keep the restart tables a reasonable size. */ 294 #define INITIAL_NUMBER_TRANSACTIONS 5 295 296 enum NTFS_LOG_OPERATION { 297 298 Noop = 0x00, 299 CompensationLogRecord = 0x01, 300 InitializeFileRecordSegment = 0x02, 301 DeallocateFileRecordSegment = 0x03, 302 WriteEndOfFileRecordSegment = 0x04, 303 CreateAttribute = 0x05, 304 DeleteAttribute = 0x06, 305 UpdateResidentValue = 0x07, 306 UpdateNonresidentValue = 0x08, 307 UpdateMappingPairs = 0x09, 308 DeleteDirtyClusters = 0x0A, 309 SetNewAttributeSizes = 0x0B, 310 AddIndexEntryRoot = 0x0C, 311 DeleteIndexEntryRoot = 0x0D, 312 AddIndexEntryAllocation = 0x0E, 313 DeleteIndexEntryAllocation = 0x0F, 314 WriteEndOfIndexBuffer = 0x10, 315 SetIndexEntryVcnRoot = 0x11, 316 SetIndexEntryVcnAllocation = 0x12, 317 UpdateFileNameRoot = 0x13, 318 UpdateFileNameAllocation = 0x14, 319 SetBitsInNonresidentBitMap = 0x15, 320 ClearBitsInNonresidentBitMap = 0x16, 321 HotFix = 0x17, 322 EndTopLevelAction = 0x18, 323 PrepareTransaction = 0x19, 324 CommitTransaction = 0x1A, 325 ForgetTransaction = 0x1B, 326 OpenNonresidentAttribute = 0x1C, 327 OpenAttributeTableDump = 0x1D, 328 AttributeNamesDump = 0x1E, 329 DirtyPageTableDump = 0x1F, 330 TransactionTableDump = 0x20, 331 UpdateRecordDataRoot = 0x21, 332 UpdateRecordDataAllocation = 0x22, 333 334 UpdateRelativeDataInIndex = 335 0x23, // NtOfsRestartUpdateRelativeDataInIndex 336 UpdateRelativeDataInIndex2 = 0x24, 337 ZeroEndOfFileRecord = 0x25, 338 }; 339 340 /* 341 * Array for log records which require a target attribute. 342 * A true indicates that the corresponding restart operation 343 * requires a target attribute. 344 */ 345 static const u8 AttributeRequired[] = { 346 0xFC, 0xFB, 0xFF, 0x10, 0x06, 347 }; 348 349 static inline bool is_target_required(u16 op) 350 { 351 bool ret = op <= UpdateRecordDataAllocation && 352 (AttributeRequired[op >> 3] >> (op & 7) & 1); 353 return ret; 354 } 355 356 static inline bool can_skip_action(enum NTFS_LOG_OPERATION op) 357 { 358 switch (op) { 359 case Noop: 360 case DeleteDirtyClusters: 361 case HotFix: 362 case EndTopLevelAction: 363 case PrepareTransaction: 364 case CommitTransaction: 365 case ForgetTransaction: 366 case CompensationLogRecord: 367 case OpenNonresidentAttribute: 368 case OpenAttributeTableDump: 369 case AttributeNamesDump: 370 case DirtyPageTableDump: 371 case TransactionTableDump: 372 return true; 373 default: 374 return false; 375 } 376 } 377 378 enum { lcb_ctx_undo_next, lcb_ctx_prev, lcb_ctx_next }; 379 380 /* Bytes per restart table. */ 381 static inline u32 bytes_per_rt(const struct RESTART_TABLE *rt) 382 { 383 return le16_to_cpu(rt->used) * le16_to_cpu(rt->size) + 384 sizeof(struct RESTART_TABLE); 385 } 386 387 /* Log record length. */ 388 static inline u32 lrh_length(const struct LOG_REC_HDR *lr) 389 { 390 u16 t16 = le16_to_cpu(lr->lcns_follow); 391 392 return struct_size(lr, page_lcns, max_t(u16, 1, t16)); 393 } 394 395 struct lcb { 396 struct LFS_RECORD_HDR *lrh; // Log record header of the current lsn. 397 struct LOG_REC_HDR *log_rec; 398 u32 ctx_mode; // lcb_ctx_undo_next/lcb_ctx_prev/lcb_ctx_next 399 struct CLIENT_ID client; 400 bool alloc; // If true the we should deallocate 'log_rec'. 401 }; 402 403 static void lcb_put(struct lcb *lcb) 404 { 405 if (lcb->alloc) 406 kfree(lcb->log_rec); 407 kfree(lcb->lrh); 408 kfree(lcb); 409 } 410 411 /* Find the oldest lsn from active clients. */ 412 static inline void oldest_client_lsn(const struct CLIENT_REC *ca, 413 __le16 next_client, u64 *oldest_lsn) 414 { 415 while (next_client != LFS_NO_CLIENT_LE) { 416 const struct CLIENT_REC *cr = ca + le16_to_cpu(next_client); 417 u64 lsn = le64_to_cpu(cr->oldest_lsn); 418 419 /* Ignore this block if it's oldest lsn is 0. */ 420 if (lsn && lsn < *oldest_lsn) 421 *oldest_lsn = lsn; 422 423 next_client = cr->next_client; 424 } 425 } 426 427 static inline bool is_rst_page_hdr_valid(u32 file_off, 428 const struct RESTART_HDR *rhdr) 429 { 430 u32 sys_page = le32_to_cpu(rhdr->sys_page_size); 431 u32 page_size = le32_to_cpu(rhdr->page_size); 432 u32 end_usa; 433 u16 ro; 434 435 if (sys_page < SECTOR_SIZE || page_size < SECTOR_SIZE || 436 sys_page & (sys_page - 1) || page_size & (page_size - 1)) { 437 return false; 438 } 439 440 /* Check that if the file offset isn't 0, it is the system page size. */ 441 if (file_off && file_off != sys_page) 442 return false; 443 444 /* Check support version 1.1+. */ 445 if (le16_to_cpu(rhdr->major_ver) <= 1 && !rhdr->minor_ver) 446 return false; 447 448 if (le16_to_cpu(rhdr->major_ver) > 2) 449 return false; 450 451 ro = le16_to_cpu(rhdr->ra_off); 452 if (!IS_ALIGNED(ro, 8) || ro > sys_page) 453 return false; 454 455 end_usa = ((sys_page >> SECTOR_SHIFT) + 1) * sizeof(short); 456 end_usa += le16_to_cpu(rhdr->rhdr.fix_off); 457 458 if (ro < end_usa) 459 return false; 460 461 return true; 462 } 463 464 static inline bool is_rst_area_valid(const struct RESTART_HDR *rhdr) 465 { 466 const struct RESTART_AREA *ra; 467 u16 cl, fl, ul; 468 u32 off, l_size, file_dat_bits, file_size_round; 469 u16 ro = le16_to_cpu(rhdr->ra_off); 470 u32 sys_page = le32_to_cpu(rhdr->sys_page_size); 471 472 if (ro + offsetof(struct RESTART_AREA, l_size) > 473 SECTOR_SIZE - sizeof(short)) 474 return false; 475 476 ra = Add2Ptr(rhdr, ro); 477 cl = le16_to_cpu(ra->log_clients); 478 479 if (cl > 1) 480 return false; 481 482 off = le16_to_cpu(ra->client_off); 483 484 if (!IS_ALIGNED(off, 8) || ro + off > SECTOR_SIZE - sizeof(short)) 485 return false; 486 487 off += cl * sizeof(struct CLIENT_REC); 488 489 if (off > sys_page) 490 return false; 491 492 /* 493 * Check the restart length field and whether the entire 494 * restart area is contained that length. 495 */ 496 if (le16_to_cpu(rhdr->ra_off) + le16_to_cpu(ra->ra_len) > sys_page || 497 off > le16_to_cpu(ra->ra_len)) { 498 return false; 499 } 500 501 /* 502 * As a final check make sure that the use list and the free list 503 * are either empty or point to a valid client. 504 */ 505 fl = le16_to_cpu(ra->client_idx[0]); 506 ul = le16_to_cpu(ra->client_idx[1]); 507 if ((fl != LFS_NO_CLIENT && fl >= cl) || 508 (ul != LFS_NO_CLIENT && ul >= cl)) 509 return false; 510 511 /* Make sure the sequence number bits match the log file size. */ 512 l_size = le64_to_cpu(ra->l_size); 513 514 file_dat_bits = sizeof(u64) * 8 - le32_to_cpu(ra->seq_num_bits); 515 file_size_round = 1u << (file_dat_bits + 3); 516 if (file_size_round != l_size && 517 (file_size_round < l_size || (file_size_round / 2) > l_size)) { 518 return false; 519 } 520 521 /* The log page data offset and record header length must be quad-aligned. */ 522 if (!IS_ALIGNED(le16_to_cpu(ra->data_off), 8) || 523 !IS_ALIGNED(le16_to_cpu(ra->rec_hdr_len), 8)) 524 return false; 525 526 return true; 527 } 528 529 static inline bool is_client_area_valid(const struct RESTART_HDR *rhdr, 530 bool usa_error) 531 { 532 u16 ro = le16_to_cpu(rhdr->ra_off); 533 const struct RESTART_AREA *ra = Add2Ptr(rhdr, ro); 534 u16 ra_len = le16_to_cpu(ra->ra_len); 535 const struct CLIENT_REC *ca; 536 u32 i; 537 538 if (usa_error && ra_len + ro > SECTOR_SIZE - sizeof(short)) 539 return false; 540 541 /* Find the start of the client array. */ 542 ca = Add2Ptr(ra, le16_to_cpu(ra->client_off)); 543 544 /* 545 * Start with the free list. 546 * Check that all the clients are valid and that there isn't a cycle. 547 * Do the in-use list on the second pass. 548 */ 549 for (i = 0; i < 2; i++) { 550 u16 client_idx = le16_to_cpu(ra->client_idx[i]); 551 bool first_client = true; 552 u16 clients = le16_to_cpu(ra->log_clients); 553 554 while (client_idx != LFS_NO_CLIENT) { 555 const struct CLIENT_REC *cr; 556 557 if (!clients || 558 client_idx >= le16_to_cpu(ra->log_clients)) 559 return false; 560 561 clients -= 1; 562 cr = ca + client_idx; 563 564 client_idx = le16_to_cpu(cr->next_client); 565 566 if (first_client) { 567 first_client = false; 568 if (cr->prev_client != LFS_NO_CLIENT_LE) 569 return false; 570 } 571 } 572 } 573 574 return true; 575 } 576 577 /* 578 * remove_client 579 * 580 * Remove a client record from a client record list an restart area. 581 */ 582 static inline void remove_client(struct CLIENT_REC *ca, 583 const struct CLIENT_REC *cr, __le16 *head) 584 { 585 if (cr->prev_client == LFS_NO_CLIENT_LE) 586 *head = cr->next_client; 587 else 588 ca[le16_to_cpu(cr->prev_client)].next_client = cr->next_client; 589 590 if (cr->next_client != LFS_NO_CLIENT_LE) 591 ca[le16_to_cpu(cr->next_client)].prev_client = cr->prev_client; 592 } 593 594 /* 595 * add_client - Add a client record to the start of a list. 596 */ 597 static inline void add_client(struct CLIENT_REC *ca, u16 index, __le16 *head) 598 { 599 struct CLIENT_REC *cr = ca + index; 600 601 cr->prev_client = LFS_NO_CLIENT_LE; 602 cr->next_client = *head; 603 604 if (*head != LFS_NO_CLIENT_LE) 605 ca[le16_to_cpu(*head)].prev_client = cpu_to_le16(index); 606 607 *head = cpu_to_le16(index); 608 } 609 610 static inline void *enum_rstbl(struct RESTART_TABLE *t, void *c) 611 { 612 __le32 *e; 613 u32 bprt; 614 u16 rsize = t ? le16_to_cpu(t->size) : 0; 615 616 if (!c) { 617 if (!t || !t->total) 618 return NULL; 619 e = Add2Ptr(t, sizeof(struct RESTART_TABLE)); 620 } else { 621 e = Add2Ptr(c, rsize); 622 } 623 624 /* Loop until we hit the first one allocated, or the end of the list. */ 625 for (bprt = bytes_per_rt(t); PtrOffset(t, e) < bprt; 626 e = Add2Ptr(e, rsize)) { 627 if (*e == RESTART_ENTRY_ALLOCATED_LE) 628 return e; 629 } 630 return NULL; 631 } 632 633 /* 634 * find_dp - Search for a @vcn in Dirty Page Table. 635 */ 636 static inline struct DIR_PAGE_ENTRY *find_dp(struct RESTART_TABLE *dptbl, 637 u32 target_attr, u64 vcn) 638 { 639 __le32 ta = cpu_to_le32(target_attr); 640 struct DIR_PAGE_ENTRY *dp = NULL; 641 642 while ((dp = enum_rstbl(dptbl, dp))) { 643 u64 dp_vcn = le64_to_cpu(dp->vcn); 644 645 if (dp->target_attr == ta && vcn >= dp_vcn && 646 vcn < dp_vcn + le32_to_cpu(dp->lcns_follow)) { 647 return dp; 648 } 649 } 650 return NULL; 651 } 652 653 static inline u32 norm_file_page(u32 page_size, u32 *l_size, bool use_default) 654 { 655 if (use_default) 656 page_size = DefaultLogPageSize; 657 658 /* Round the file size down to a system page boundary. */ 659 *l_size &= ~(page_size - 1); 660 661 /* File should contain at least 2 restart pages and MinLogRecordPages pages. */ 662 if (*l_size < (MinLogRecordPages + 2) * page_size) 663 return 0; 664 665 return page_size; 666 } 667 668 static bool check_log_rec(const struct LOG_REC_HDR *lr, u32 bytes, u32 tr, 669 u32 bytes_per_attr_entry) 670 { 671 u16 t16; 672 673 if (bytes < sizeof(struct LOG_REC_HDR)) 674 return false; 675 if (!tr) 676 return false; 677 678 if ((tr - sizeof(struct RESTART_TABLE)) % 679 sizeof(struct TRANSACTION_ENTRY)) 680 return false; 681 682 if (le16_to_cpu(lr->redo_off) & 7) 683 return false; 684 685 if (le16_to_cpu(lr->undo_off) & 7) 686 return false; 687 688 if (lr->target_attr) 689 goto check_lcns; 690 691 if (is_target_required(le16_to_cpu(lr->redo_op))) 692 return false; 693 694 if (is_target_required(le16_to_cpu(lr->undo_op))) 695 return false; 696 697 check_lcns: 698 if (!lr->lcns_follow) 699 goto check_length; 700 701 t16 = le16_to_cpu(lr->target_attr); 702 if ((t16 - sizeof(struct RESTART_TABLE)) % bytes_per_attr_entry) 703 return false; 704 705 check_length: 706 if (bytes < lrh_length(lr)) 707 return false; 708 709 return true; 710 } 711 712 static bool check_rstbl(const struct RESTART_TABLE *rt, size_t bytes) 713 { 714 u32 ts; 715 u32 i, off; 716 u16 rsize = le16_to_cpu(rt->size); 717 u16 ne = le16_to_cpu(rt->used); 718 u32 ff = le32_to_cpu(rt->first_free); 719 u32 lf = le32_to_cpu(rt->last_free); 720 721 ts = rsize * ne + sizeof(struct RESTART_TABLE); 722 723 if (!rsize || rsize > bytes || 724 rsize + sizeof(struct RESTART_TABLE) > bytes || bytes < ts || 725 le16_to_cpu(rt->total) > ne || ff > ts || lf > ts || 726 (ff && ff < sizeof(struct RESTART_TABLE)) || 727 (lf && lf < sizeof(struct RESTART_TABLE))) { 728 return false; 729 } 730 731 /* 732 * Verify each entry is either allocated or points 733 * to a valid offset the table. 734 */ 735 for (i = 0; i < ne; i++) { 736 off = le32_to_cpu(*(__le32 *)Add2Ptr( 737 rt, i * rsize + sizeof(struct RESTART_TABLE))); 738 739 if (off != RESTART_ENTRY_ALLOCATED && off && 740 (off < sizeof(struct RESTART_TABLE) || 741 ((off - sizeof(struct RESTART_TABLE)) % rsize))) { 742 return false; 743 } 744 } 745 746 /* 747 * Walk through the list headed by the first entry to make 748 * sure none of the entries are currently being used. 749 */ 750 for (off = ff; off;) { 751 if (off == RESTART_ENTRY_ALLOCATED) 752 return false; 753 754 off = le32_to_cpu(*(__le32 *)Add2Ptr(rt, off)); 755 } 756 757 return true; 758 } 759 760 /* 761 * free_rsttbl_idx - Free a previously allocated index a Restart Table. 762 */ 763 static inline void free_rsttbl_idx(struct RESTART_TABLE *rt, u32 off) 764 { 765 __le32 *e; 766 u32 lf = le32_to_cpu(rt->last_free); 767 __le32 off_le = cpu_to_le32(off); 768 769 e = Add2Ptr(rt, off); 770 771 if (off < le32_to_cpu(rt->free_goal)) { 772 *e = rt->first_free; 773 rt->first_free = off_le; 774 if (!lf) 775 rt->last_free = off_le; 776 } else { 777 if (lf) 778 *(__le32 *)Add2Ptr(rt, lf) = off_le; 779 else 780 rt->first_free = off_le; 781 782 rt->last_free = off_le; 783 *e = 0; 784 } 785 786 le16_sub_cpu(&rt->total, 1); 787 } 788 789 static inline struct RESTART_TABLE *init_rsttbl(u16 esize, u16 used) 790 { 791 __le32 *e, *last_free; 792 u32 off; 793 u32 bytes = esize * used + sizeof(struct RESTART_TABLE); 794 u32 lf = sizeof(struct RESTART_TABLE) + (used - 1) * esize; 795 struct RESTART_TABLE *t = kzalloc(bytes, GFP_NOFS); 796 797 if (!t) 798 return NULL; 799 800 t->size = cpu_to_le16(esize); 801 t->used = cpu_to_le16(used); 802 t->free_goal = cpu_to_le32(~0u); 803 t->first_free = cpu_to_le32(sizeof(struct RESTART_TABLE)); 804 t->last_free = cpu_to_le32(lf); 805 806 e = (__le32 *)(t + 1); 807 last_free = Add2Ptr(t, lf); 808 809 for (off = sizeof(struct RESTART_TABLE) + esize; e < last_free; 810 e = Add2Ptr(e, esize), off += esize) { 811 *e = cpu_to_le32(off); 812 } 813 return t; 814 } 815 816 static inline struct RESTART_TABLE *extend_rsttbl(struct RESTART_TABLE *tbl, 817 u32 add, u32 free_goal) 818 { 819 u16 esize = le16_to_cpu(tbl->size); 820 __le32 osize = cpu_to_le32(bytes_per_rt(tbl)); 821 u32 used = le16_to_cpu(tbl->used); 822 struct RESTART_TABLE *rt; 823 824 rt = init_rsttbl(esize, used + add); 825 if (!rt) 826 return NULL; 827 828 memcpy(rt + 1, tbl + 1, esize * used); 829 830 rt->free_goal = free_goal == ~0u ? 831 cpu_to_le32(~0u) : 832 cpu_to_le32(sizeof(struct RESTART_TABLE) + 833 free_goal * esize); 834 835 if (tbl->first_free) { 836 rt->first_free = tbl->first_free; 837 *(__le32 *)Add2Ptr(rt, le32_to_cpu(tbl->last_free)) = osize; 838 } else { 839 rt->first_free = osize; 840 } 841 842 rt->total = tbl->total; 843 844 kfree(tbl); 845 return rt; 846 } 847 848 /* 849 * alloc_rsttbl_idx 850 * 851 * Allocate an index from within a previously initialized Restart Table. 852 */ 853 static inline void *alloc_rsttbl_idx(struct RESTART_TABLE **tbl) 854 { 855 u32 off; 856 __le32 *e; 857 struct RESTART_TABLE *t = *tbl; 858 859 if (!t->first_free) { 860 *tbl = t = extend_rsttbl(t, 16, ~0u); 861 if (!t) 862 return NULL; 863 } 864 865 off = le32_to_cpu(t->first_free); 866 867 /* Dequeue this entry and zero it. */ 868 e = Add2Ptr(t, off); 869 870 t->first_free = *e; 871 872 memset(e, 0, le16_to_cpu(t->size)); 873 874 *e = RESTART_ENTRY_ALLOCATED_LE; 875 876 /* If list is going empty, then we fix the last_free as well. */ 877 if (!t->first_free) 878 t->last_free = 0; 879 880 le16_add_cpu(&t->total, 1); 881 882 return Add2Ptr(t, off); 883 } 884 885 /* 886 * alloc_rsttbl_from_idx 887 * 888 * Allocate a specific index from within a previously initialized Restart Table. 889 */ 890 static inline void *alloc_rsttbl_from_idx(struct RESTART_TABLE **tbl, u32 vbo) 891 { 892 u32 off; 893 __le32 *e; 894 struct RESTART_TABLE *rt = *tbl; 895 u32 bytes = bytes_per_rt(rt); 896 u16 esize = le16_to_cpu(rt->size); 897 898 /* If the entry is not the table, we will have to extend the table. */ 899 if (vbo >= bytes) { 900 /* 901 * Extend the size by computing the number of entries between 902 * the existing size and the desired index and adding 1 to that. 903 */ 904 u32 bytes2idx = vbo - bytes; 905 906 /* 907 * There should always be an integral number of entries 908 * being added. Now extend the table. 909 */ 910 *tbl = rt = extend_rsttbl(rt, bytes2idx / esize + 1, bytes); 911 if (!rt) 912 return NULL; 913 } 914 915 /* See if the entry is already allocated, and just return if it is. */ 916 e = Add2Ptr(rt, vbo); 917 918 if (*e == RESTART_ENTRY_ALLOCATED_LE) 919 return e; 920 921 /* 922 * Walk through the table, looking for the entry we're 923 * interested and the previous entry. 924 */ 925 off = le32_to_cpu(rt->first_free); 926 e = Add2Ptr(rt, off); 927 928 if (off == vbo) { 929 /* this is a match */ 930 rt->first_free = *e; 931 goto skip_looking; 932 } 933 934 /* 935 * Need to walk through the list looking for the predecessor 936 * of our entry. 937 */ 938 for (;;) { 939 /* Remember the entry just found */ 940 u32 last_off = off; 941 __le32 *last_e = e; 942 943 /* Should never run of entries. */ 944 945 /* Lookup up the next entry the list. */ 946 off = le32_to_cpu(*last_e); 947 e = Add2Ptr(rt, off); 948 949 /* If this is our match we are done. */ 950 if (off == vbo) { 951 *last_e = *e; 952 953 /* 954 * If this was the last entry, we update that 955 * table as well. 956 */ 957 if (le32_to_cpu(rt->last_free) == off) 958 rt->last_free = cpu_to_le32(last_off); 959 break; 960 } 961 } 962 963 skip_looking: 964 /* If the list is now empty, we fix the last_free as well. */ 965 if (!rt->first_free) 966 rt->last_free = 0; 967 968 /* Zero this entry. */ 969 memset(e, 0, esize); 970 *e = RESTART_ENTRY_ALLOCATED_LE; 971 972 le16_add_cpu(&rt->total, 1); 973 974 return e; 975 } 976 977 #define RESTART_SINGLE_PAGE_IO cpu_to_le16(0x0001) 978 979 #define NTFSLOG_WRAPPED 0x00000001 980 #define NTFSLOG_MULTIPLE_PAGE_IO 0x00000002 981 #define NTFSLOG_NO_LAST_LSN 0x00000004 982 #define NTFSLOG_REUSE_TAIL 0x00000010 983 #define NTFSLOG_NO_OLDEST_LSN 0x00000020 984 985 /* Helper struct to work with NTFS $LogFile. */ 986 struct ntfs_log { 987 struct ntfs_inode *ni; 988 989 u32 l_size; 990 u32 sys_page_size; 991 u32 sys_page_mask; 992 u32 page_size; 993 u32 page_mask; // page_size - 1 994 u8 page_bits; 995 struct RECORD_PAGE_HDR *one_page_buf; 996 997 struct RESTART_TABLE *open_attr_tbl; 998 u32 transaction_id; 999 u32 clst_per_page; 1000 1001 u32 first_page; 1002 u32 next_page; 1003 u32 ra_off; 1004 u32 data_off; 1005 u32 restart_size; 1006 u32 data_size; 1007 u16 record_header_len; 1008 u64 seq_num; 1009 u32 seq_num_bits; 1010 u32 file_data_bits; 1011 u32 seq_num_mask; /* (1 << file_data_bits) - 1 */ 1012 1013 struct RESTART_AREA *ra; /* In-memory image of the next restart area. */ 1014 u32 ra_size; /* The usable size of the restart area. */ 1015 1016 /* 1017 * If true, then the in-memory restart area is to be written 1018 * to the first position on the disk. 1019 */ 1020 bool init_ra; 1021 bool set_dirty; /* True if we need to set dirty flag. */ 1022 1023 u64 oldest_lsn; 1024 1025 u32 oldest_lsn_off; 1026 u64 last_lsn; 1027 1028 u32 total_avail; 1029 u32 total_avail_pages; 1030 u32 total_undo_commit; 1031 u32 max_current_avail; 1032 u32 current_avail; 1033 u32 reserved; 1034 1035 short major_ver; 1036 short minor_ver; 1037 1038 u32 l_flags; /* See NTFSLOG_XXX */ 1039 u32 current_openlog_count; /* On-disk value for open_log_count. */ 1040 1041 struct CLIENT_ID client_id; 1042 u32 client_undo_commit; 1043 }; 1044 1045 static inline u32 lsn_to_vbo(struct ntfs_log *log, const u64 lsn) 1046 { 1047 u32 vbo = (lsn << log->seq_num_bits) >> (log->seq_num_bits - 3); 1048 1049 return vbo; 1050 } 1051 1052 /* Compute the offset in the log file of the next log page. */ 1053 static inline u32 next_page_off(struct ntfs_log *log, u32 off) 1054 { 1055 off = (off & ~log->sys_page_mask) + log->page_size; 1056 return off >= log->l_size ? log->first_page : off; 1057 } 1058 1059 static inline u32 lsn_to_page_off(struct ntfs_log *log, u64 lsn) 1060 { 1061 return (((u32)lsn) << 3) & log->page_mask; 1062 } 1063 1064 static inline u64 vbo_to_lsn(struct ntfs_log *log, u32 off, u64 Seq) 1065 { 1066 return (off >> 3) + (Seq << log->file_data_bits); 1067 } 1068 1069 static inline bool is_lsn_in_file(struct ntfs_log *log, u64 lsn) 1070 { 1071 return lsn >= log->oldest_lsn && 1072 lsn <= le64_to_cpu(log->ra->current_lsn); 1073 } 1074 1075 static inline u32 hdr_file_off(struct ntfs_log *log, 1076 struct RECORD_PAGE_HDR *hdr) 1077 { 1078 if (log->major_ver < 2) 1079 return le64_to_cpu(hdr->rhdr.lsn); 1080 1081 return le32_to_cpu(hdr->file_off); 1082 } 1083 1084 static inline u64 base_lsn(struct ntfs_log *log, 1085 const struct RECORD_PAGE_HDR *hdr, u64 lsn) 1086 { 1087 u64 h_lsn = le64_to_cpu(hdr->rhdr.lsn); 1088 u64 ret = (((h_lsn >> log->file_data_bits) + 1089 (lsn < (lsn_to_vbo(log, h_lsn) & ~log->page_mask) ? 1 : 0)) 1090 << log->file_data_bits) + 1091 ((((is_log_record_end(hdr) && 1092 h_lsn <= le64_to_cpu(hdr->record_hdr.last_end_lsn)) ? 1093 le16_to_cpu(hdr->record_hdr.next_record_off) : 1094 log->page_size) + 1095 lsn) >> 1096 3); 1097 1098 return ret; 1099 } 1100 1101 static inline bool verify_client_lsn(struct ntfs_log *log, 1102 const struct CLIENT_REC *client, u64 lsn) 1103 { 1104 return lsn >= le64_to_cpu(client->oldest_lsn) && 1105 lsn <= le64_to_cpu(log->ra->current_lsn) && lsn; 1106 } 1107 1108 struct restart_info { 1109 u64 last_lsn; 1110 struct RESTART_HDR *r_page; 1111 u32 vbo; 1112 bool chkdsk_was_run; 1113 bool valid_page; 1114 bool initialized; 1115 bool restart; 1116 }; 1117 1118 static int read_log_page(struct ntfs_log *log, u32 vbo, 1119 struct RECORD_PAGE_HDR **buffer, bool *usa_error) 1120 { 1121 int err = 0; 1122 u32 page_idx = vbo >> log->page_bits; 1123 u32 page_off = vbo & log->page_mask; 1124 u32 bytes = log->page_size - page_off; 1125 void *to_free = NULL; 1126 u32 page_vbo = page_idx << log->page_bits; 1127 struct RECORD_PAGE_HDR *page_buf; 1128 struct ntfs_inode *ni = log->ni; 1129 bool bBAAD; 1130 1131 if (vbo >= log->l_size) 1132 return -EINVAL; 1133 1134 if (!*buffer) { 1135 to_free = kmalloc(log->page_size, GFP_NOFS); 1136 if (!to_free) 1137 return -ENOMEM; 1138 *buffer = to_free; 1139 } 1140 1141 page_buf = page_off ? log->one_page_buf : *buffer; 1142 1143 err = ntfs_read_run_nb(ni->mi.sbi, &ni->file.run, page_vbo, page_buf, 1144 log->page_size, NULL); 1145 if (err) 1146 goto out; 1147 1148 if (page_buf->rhdr.sign != NTFS_FFFF_SIGNATURE) 1149 ntfs_fix_post_read(&page_buf->rhdr, PAGE_SIZE, false); 1150 1151 if (page_buf != *buffer) 1152 memcpy(*buffer, Add2Ptr(page_buf, page_off), bytes); 1153 1154 bBAAD = page_buf->rhdr.sign == NTFS_BAAD_SIGNATURE; 1155 1156 if (usa_error) 1157 *usa_error = bBAAD; 1158 /* Check that the update sequence array for this page is valid */ 1159 /* If we don't allow errors, raise an error status */ 1160 else if (bBAAD) 1161 err = -EINVAL; 1162 1163 out: 1164 if (err && to_free) { 1165 kfree(to_free); 1166 *buffer = NULL; 1167 } 1168 1169 return err; 1170 } 1171 1172 /* 1173 * log_read_rst 1174 * 1175 * It walks through 512 blocks of the file looking for a valid 1176 * restart page header. It will stop the first time we find a 1177 * valid page header. 1178 */ 1179 static int log_read_rst(struct ntfs_log *log, u32 l_size, bool first, 1180 struct restart_info *info) 1181 { 1182 u32 skip, vbo; 1183 struct RESTART_HDR *r_page = NULL; 1184 1185 /* Determine which restart area we are looking for. */ 1186 if (first) { 1187 vbo = 0; 1188 skip = 512; 1189 } else { 1190 vbo = 512; 1191 skip = 0; 1192 } 1193 1194 /* Loop continuously until we succeed. */ 1195 for (; vbo < l_size; vbo = 2 * vbo + skip, skip = 0) { 1196 bool usa_error; 1197 bool brst, bchk; 1198 struct RESTART_AREA *ra; 1199 1200 /* Read a page header at the current offset. */ 1201 if (read_log_page(log, vbo, (struct RECORD_PAGE_HDR **)&r_page, 1202 &usa_error)) { 1203 /* Ignore any errors. */ 1204 continue; 1205 } 1206 1207 /* Exit if the signature is a log record page. */ 1208 if (r_page->rhdr.sign == NTFS_RCRD_SIGNATURE) { 1209 info->initialized = true; 1210 break; 1211 } 1212 1213 brst = r_page->rhdr.sign == NTFS_RSTR_SIGNATURE; 1214 bchk = r_page->rhdr.sign == NTFS_CHKD_SIGNATURE; 1215 1216 if (!bchk && !brst) { 1217 if (r_page->rhdr.sign != NTFS_FFFF_SIGNATURE) { 1218 /* 1219 * Remember if the signature does not 1220 * indicate uninitialized file. 1221 */ 1222 info->initialized = true; 1223 } 1224 continue; 1225 } 1226 1227 ra = NULL; 1228 info->valid_page = false; 1229 info->initialized = true; 1230 info->vbo = vbo; 1231 1232 /* Let's check the restart area if this is a valid page. */ 1233 if (!is_rst_page_hdr_valid(vbo, r_page)) 1234 goto check_result; 1235 ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off)); 1236 1237 if (!is_rst_area_valid(r_page)) 1238 goto check_result; 1239 1240 /* 1241 * We have a valid restart page header and restart area. 1242 * If chkdsk was run or we have no clients then we have 1243 * no more checking to do. 1244 */ 1245 if (bchk || ra->client_idx[1] == LFS_NO_CLIENT_LE) { 1246 info->valid_page = true; 1247 goto check_result; 1248 } 1249 1250 if (is_client_area_valid(r_page, usa_error)) { 1251 info->valid_page = true; 1252 ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off)); 1253 } 1254 1255 check_result: 1256 /* 1257 * If chkdsk was run then update the caller's 1258 * values and return. 1259 */ 1260 if (r_page->rhdr.sign == NTFS_CHKD_SIGNATURE) { 1261 info->chkdsk_was_run = true; 1262 info->last_lsn = le64_to_cpu(r_page->rhdr.lsn); 1263 info->restart = true; 1264 info->r_page = r_page; 1265 return 0; 1266 } 1267 1268 /* 1269 * If we have a valid page then copy the values 1270 * we need from it. 1271 */ 1272 if (info->valid_page) { 1273 info->last_lsn = le64_to_cpu(ra->current_lsn); 1274 info->restart = true; 1275 info->r_page = r_page; 1276 return 0; 1277 } 1278 } 1279 1280 kfree(r_page); 1281 1282 return 0; 1283 } 1284 1285 /* 1286 * Ilog_init_pg_hdr - Init @log from restart page header. 1287 */ 1288 static void log_init_pg_hdr(struct ntfs_log *log, u32 sys_page_size, 1289 u32 page_size, u16 major_ver, u16 minor_ver) 1290 { 1291 log->sys_page_size = sys_page_size; 1292 log->sys_page_mask = sys_page_size - 1; 1293 log->page_size = page_size; 1294 log->page_mask = page_size - 1; 1295 log->page_bits = blksize_bits(page_size); 1296 1297 log->clst_per_page = log->page_size >> log->ni->mi.sbi->cluster_bits; 1298 if (!log->clst_per_page) 1299 log->clst_per_page = 1; 1300 1301 log->first_page = major_ver >= 2 ? 1302 0x22 * page_size : 1303 ((sys_page_size << 1) + (page_size << 1)); 1304 log->major_ver = major_ver; 1305 log->minor_ver = minor_ver; 1306 } 1307 1308 /* 1309 * log_create - Init @log in cases when we don't have a restart area to use. 1310 */ 1311 static void log_create(struct ntfs_log *log, u32 l_size, const u64 last_lsn, 1312 u32 open_log_count, bool wrapped, bool use_multi_page) 1313 { 1314 log->l_size = l_size; 1315 /* All file offsets must be quadword aligned. */ 1316 log->file_data_bits = blksize_bits(l_size) - 3; 1317 log->seq_num_mask = (8 << log->file_data_bits) - 1; 1318 log->seq_num_bits = sizeof(u64) * 8 - log->file_data_bits; 1319 log->seq_num = (last_lsn >> log->file_data_bits) + 2; 1320 log->next_page = log->first_page; 1321 log->oldest_lsn = log->seq_num << log->file_data_bits; 1322 log->oldest_lsn_off = 0; 1323 log->last_lsn = log->oldest_lsn; 1324 1325 log->l_flags |= NTFSLOG_NO_LAST_LSN | NTFSLOG_NO_OLDEST_LSN; 1326 1327 /* Set the correct flags for the I/O and indicate if we have wrapped. */ 1328 if (wrapped) 1329 log->l_flags |= NTFSLOG_WRAPPED; 1330 1331 if (use_multi_page) 1332 log->l_flags |= NTFSLOG_MULTIPLE_PAGE_IO; 1333 1334 /* Compute the log page values. */ 1335 log->data_off = ALIGN( 1336 offsetof(struct RECORD_PAGE_HDR, fixups) + 1337 sizeof(short) * ((log->page_size >> SECTOR_SHIFT) + 1), 1338 8); 1339 log->data_size = log->page_size - log->data_off; 1340 log->record_header_len = sizeof(struct LFS_RECORD_HDR); 1341 1342 /* Remember the different page sizes for reservation. */ 1343 log->reserved = log->data_size - log->record_header_len; 1344 1345 /* Compute the restart page values. */ 1346 log->ra_off = ALIGN( 1347 offsetof(struct RESTART_HDR, fixups) + 1348 sizeof(short) * 1349 ((log->sys_page_size >> SECTOR_SHIFT) + 1), 1350 8); 1351 log->restart_size = log->sys_page_size - log->ra_off; 1352 log->ra_size = struct_size(log->ra, clients, 1); 1353 log->current_openlog_count = open_log_count; 1354 1355 /* 1356 * The total available log file space is the number of 1357 * log file pages times the space available on each page. 1358 */ 1359 log->total_avail_pages = log->l_size - log->first_page; 1360 log->total_avail = log->total_avail_pages >> log->page_bits; 1361 1362 /* 1363 * We assume that we can't use the end of the page less than 1364 * the file record size. 1365 * Then we won't need to reserve more than the caller asks for. 1366 */ 1367 log->max_current_avail = log->total_avail * log->reserved; 1368 log->total_avail = log->total_avail * log->data_size; 1369 log->current_avail = log->max_current_avail; 1370 } 1371 1372 /* 1373 * log_create_ra - Fill a restart area from the values stored in @log. 1374 */ 1375 static struct RESTART_AREA *log_create_ra(struct ntfs_log *log) 1376 { 1377 struct CLIENT_REC *cr; 1378 struct RESTART_AREA *ra = kzalloc(log->restart_size, GFP_NOFS); 1379 1380 if (!ra) 1381 return NULL; 1382 1383 ra->current_lsn = cpu_to_le64(log->last_lsn); 1384 ra->log_clients = cpu_to_le16(1); 1385 ra->client_idx[1] = LFS_NO_CLIENT_LE; 1386 if (log->l_flags & NTFSLOG_MULTIPLE_PAGE_IO) 1387 ra->flags = RESTART_SINGLE_PAGE_IO; 1388 ra->seq_num_bits = cpu_to_le32(log->seq_num_bits); 1389 ra->ra_len = cpu_to_le16(log->ra_size); 1390 ra->client_off = cpu_to_le16(offsetof(struct RESTART_AREA, clients)); 1391 ra->l_size = cpu_to_le64(log->l_size); 1392 ra->rec_hdr_len = cpu_to_le16(log->record_header_len); 1393 ra->data_off = cpu_to_le16(log->data_off); 1394 ra->open_log_count = cpu_to_le32(log->current_openlog_count + 1); 1395 1396 cr = ra->clients; 1397 1398 cr->prev_client = LFS_NO_CLIENT_LE; 1399 cr->next_client = LFS_NO_CLIENT_LE; 1400 1401 return ra; 1402 } 1403 1404 static u32 final_log_off(struct ntfs_log *log, u64 lsn, u32 data_len) 1405 { 1406 u32 base_vbo = lsn << 3; 1407 u32 final_log_off = (base_vbo & log->seq_num_mask) & ~log->page_mask; 1408 u32 page_off = base_vbo & log->page_mask; 1409 u32 tail = log->page_size - page_off; 1410 1411 page_off -= 1; 1412 1413 /* Add the length of the header. */ 1414 data_len += log->record_header_len; 1415 1416 /* 1417 * If this lsn is contained this log page we are done. 1418 * Otherwise we need to walk through several log pages. 1419 */ 1420 if (data_len > tail) { 1421 data_len -= tail; 1422 tail = log->data_size; 1423 page_off = log->data_off - 1; 1424 1425 for (;;) { 1426 final_log_off = next_page_off(log, final_log_off); 1427 1428 /* 1429 * We are done if the remaining bytes 1430 * fit on this page. 1431 */ 1432 if (data_len <= tail) 1433 break; 1434 data_len -= tail; 1435 } 1436 } 1437 1438 /* 1439 * We add the remaining bytes to our starting position on this page 1440 * and then add that value to the file offset of this log page. 1441 */ 1442 return final_log_off + data_len + page_off; 1443 } 1444 1445 static int next_log_lsn(struct ntfs_log *log, const struct LFS_RECORD_HDR *rh, 1446 u64 *lsn) 1447 { 1448 int err; 1449 u64 this_lsn = le64_to_cpu(rh->this_lsn); 1450 u32 vbo = lsn_to_vbo(log, this_lsn); 1451 u32 end = 1452 final_log_off(log, this_lsn, le32_to_cpu(rh->client_data_len)); 1453 u32 hdr_off = end & ~log->sys_page_mask; 1454 u64 seq = this_lsn >> log->file_data_bits; 1455 struct RECORD_PAGE_HDR *page = NULL; 1456 1457 /* Remember if we wrapped. */ 1458 if (end <= vbo) 1459 seq += 1; 1460 1461 /* Log page header for this page. */ 1462 err = read_log_page(log, hdr_off, &page, NULL); 1463 if (err) 1464 return err; 1465 1466 /* 1467 * If the lsn we were given was not the last lsn on this page, 1468 * then the starting offset for the next lsn is on a quad word 1469 * boundary following the last file offset for the current lsn. 1470 * Otherwise the file offset is the start of the data on the next page. 1471 */ 1472 if (this_lsn == le64_to_cpu(page->rhdr.lsn)) { 1473 /* If we wrapped, we need to increment the sequence number. */ 1474 hdr_off = next_page_off(log, hdr_off); 1475 if (hdr_off == log->first_page) 1476 seq += 1; 1477 1478 vbo = hdr_off + log->data_off; 1479 } else { 1480 vbo = ALIGN(end, 8); 1481 } 1482 1483 /* Compute the lsn based on the file offset and the sequence count. */ 1484 *lsn = vbo_to_lsn(log, vbo, seq); 1485 1486 /* 1487 * If this lsn is within the legal range for the file, we return true. 1488 * Otherwise false indicates that there are no more lsn's. 1489 */ 1490 if (!is_lsn_in_file(log, *lsn)) 1491 *lsn = 0; 1492 1493 kfree(page); 1494 1495 return 0; 1496 } 1497 1498 /* 1499 * current_log_avail - Calculate the number of bytes available for log records. 1500 */ 1501 static u32 current_log_avail(struct ntfs_log *log) 1502 { 1503 u32 oldest_off, next_free_off, free_bytes; 1504 1505 if (log->l_flags & NTFSLOG_NO_LAST_LSN) { 1506 /* The entire file is available. */ 1507 return log->max_current_avail; 1508 } 1509 1510 /* 1511 * If there is a last lsn the restart area then we know that we will 1512 * have to compute the free range. 1513 * If there is no oldest lsn then start at the first page of the file. 1514 */ 1515 oldest_off = (log->l_flags & NTFSLOG_NO_OLDEST_LSN) ? 1516 log->first_page : 1517 (log->oldest_lsn_off & ~log->sys_page_mask); 1518 1519 /* 1520 * We will use the next log page offset to compute the next free page. 1521 * If we are going to reuse this page go to the next page. 1522 * If we are at the first page then use the end of the file. 1523 */ 1524 next_free_off = (log->l_flags & NTFSLOG_REUSE_TAIL) ? 1525 log->next_page + log->page_size : 1526 log->next_page == log->first_page ? log->l_size : 1527 log->next_page; 1528 1529 /* If the two offsets are the same then there is no available space. */ 1530 if (oldest_off == next_free_off) 1531 return 0; 1532 /* 1533 * If the free offset follows the oldest offset then subtract 1534 * this range from the total available pages. 1535 */ 1536 free_bytes = 1537 oldest_off < next_free_off ? 1538 log->total_avail_pages - (next_free_off - oldest_off) : 1539 oldest_off - next_free_off; 1540 1541 free_bytes >>= log->page_bits; 1542 return free_bytes * log->reserved; 1543 } 1544 1545 static bool check_subseq_log_page(struct ntfs_log *log, 1546 const struct RECORD_PAGE_HDR *rp, u32 vbo, 1547 u64 seq) 1548 { 1549 u64 lsn_seq; 1550 const struct NTFS_RECORD_HEADER *rhdr = &rp->rhdr; 1551 u64 lsn = le64_to_cpu(rhdr->lsn); 1552 1553 if (rhdr->sign == NTFS_FFFF_SIGNATURE || !rhdr->sign) 1554 return false; 1555 1556 /* 1557 * If the last lsn on the page occurs was written after the page 1558 * that caused the original error then we have a fatal error. 1559 */ 1560 lsn_seq = lsn >> log->file_data_bits; 1561 1562 /* 1563 * If the sequence number for the lsn the page is equal or greater 1564 * than lsn we expect, then this is a subsequent write. 1565 */ 1566 return lsn_seq >= seq || 1567 (lsn_seq == seq - 1 && log->first_page == vbo && 1568 vbo != (lsn_to_vbo(log, lsn) & ~log->page_mask)); 1569 } 1570 1571 /* 1572 * last_log_lsn 1573 * 1574 * Walks through the log pages for a file, searching for the 1575 * last log page written to the file. 1576 */ 1577 static int last_log_lsn(struct ntfs_log *log) 1578 { 1579 int err; 1580 bool usa_error = false; 1581 bool replace_page = false; 1582 bool reuse_page = log->l_flags & NTFSLOG_REUSE_TAIL; 1583 bool wrapped_file, wrapped; 1584 1585 u32 page_cnt = 1, page_pos = 1; 1586 u32 page_off = 0, page_off1 = 0, saved_off = 0; 1587 u32 final_off, second_off, final_off_prev = 0, second_off_prev = 0; 1588 u32 first_file_off = 0, second_file_off = 0; 1589 u32 part_io_count = 0; 1590 u32 tails = 0; 1591 u32 this_off, curpage_off, nextpage_off, remain_pages; 1592 1593 u64 expected_seq, seq_base = 0, lsn_base = 0; 1594 u64 best_lsn, best_lsn1, best_lsn2; 1595 u64 lsn_cur, lsn1, lsn2; 1596 u64 last_ok_lsn = reuse_page ? log->last_lsn : 0; 1597 1598 u16 cur_pos, best_page_pos; 1599 1600 struct RECORD_PAGE_HDR *page = NULL; 1601 struct RECORD_PAGE_HDR *tst_page = NULL; 1602 struct RECORD_PAGE_HDR *first_tail = NULL; 1603 struct RECORD_PAGE_HDR *second_tail = NULL; 1604 struct RECORD_PAGE_HDR *tail_page = NULL; 1605 struct RECORD_PAGE_HDR *second_tail_prev = NULL; 1606 struct RECORD_PAGE_HDR *first_tail_prev = NULL; 1607 struct RECORD_PAGE_HDR *page_bufs = NULL; 1608 struct RECORD_PAGE_HDR *best_page; 1609 1610 if (log->major_ver >= 2) { 1611 final_off = 0x02 * log->page_size; 1612 second_off = 0x12 * log->page_size; 1613 1614 // 0x10 == 0x12 - 0x2 1615 page_bufs = kmalloc(log->page_size * 0x10, GFP_NOFS); 1616 if (!page_bufs) 1617 return -ENOMEM; 1618 } else { 1619 second_off = log->first_page - log->page_size; 1620 final_off = second_off - log->page_size; 1621 } 1622 1623 next_tail: 1624 /* Read second tail page (at pos 3/0x12000). */ 1625 if (read_log_page(log, second_off, &second_tail, &usa_error) || 1626 usa_error || second_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) { 1627 kfree(second_tail); 1628 second_tail = NULL; 1629 second_file_off = 0; 1630 lsn2 = 0; 1631 } else { 1632 second_file_off = hdr_file_off(log, second_tail); 1633 lsn2 = le64_to_cpu(second_tail->record_hdr.last_end_lsn); 1634 } 1635 1636 /* Read first tail page (at pos 2/0x2000). */ 1637 if (read_log_page(log, final_off, &first_tail, &usa_error) || 1638 usa_error || first_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) { 1639 kfree(first_tail); 1640 first_tail = NULL; 1641 first_file_off = 0; 1642 lsn1 = 0; 1643 } else { 1644 first_file_off = hdr_file_off(log, first_tail); 1645 lsn1 = le64_to_cpu(first_tail->record_hdr.last_end_lsn); 1646 } 1647 1648 if (log->major_ver < 2) { 1649 int best_page; 1650 1651 first_tail_prev = first_tail; 1652 final_off_prev = first_file_off; 1653 second_tail_prev = second_tail; 1654 second_off_prev = second_file_off; 1655 tails = 1; 1656 1657 if (!first_tail && !second_tail) 1658 goto tail_read; 1659 1660 if (first_tail && second_tail) 1661 best_page = lsn1 < lsn2 ? 1 : 0; 1662 else if (first_tail) 1663 best_page = 0; 1664 else 1665 best_page = 1; 1666 1667 page_off = best_page ? second_file_off : first_file_off; 1668 seq_base = (best_page ? lsn2 : lsn1) >> log->file_data_bits; 1669 goto tail_read; 1670 } 1671 1672 best_lsn1 = first_tail ? base_lsn(log, first_tail, first_file_off) : 0; 1673 best_lsn2 = second_tail ? base_lsn(log, second_tail, second_file_off) : 1674 0; 1675 1676 if (first_tail && second_tail) { 1677 if (best_lsn1 > best_lsn2) { 1678 best_lsn = best_lsn1; 1679 best_page = first_tail; 1680 this_off = first_file_off; 1681 } else { 1682 best_lsn = best_lsn2; 1683 best_page = second_tail; 1684 this_off = second_file_off; 1685 } 1686 } else if (first_tail) { 1687 best_lsn = best_lsn1; 1688 best_page = first_tail; 1689 this_off = first_file_off; 1690 } else if (second_tail) { 1691 best_lsn = best_lsn2; 1692 best_page = second_tail; 1693 this_off = second_file_off; 1694 } else { 1695 goto tail_read; 1696 } 1697 1698 best_page_pos = le16_to_cpu(best_page->page_pos); 1699 1700 if (!tails) { 1701 if (best_page_pos == page_pos) { 1702 seq_base = best_lsn >> log->file_data_bits; 1703 saved_off = page_off = le32_to_cpu(best_page->file_off); 1704 lsn_base = best_lsn; 1705 1706 memmove(page_bufs, best_page, log->page_size); 1707 1708 page_cnt = le16_to_cpu(best_page->page_count); 1709 if (page_cnt > 1) 1710 page_pos += 1; 1711 1712 tails = 1; 1713 } 1714 } else if (seq_base == (best_lsn >> log->file_data_bits) && 1715 saved_off + log->page_size == this_off && 1716 lsn_base < best_lsn && 1717 (page_pos != page_cnt || best_page_pos == page_pos || 1718 best_page_pos == 1) && 1719 (page_pos >= page_cnt || best_page_pos == page_pos)) { 1720 u16 bppc = le16_to_cpu(best_page->page_count); 1721 1722 saved_off += log->page_size; 1723 lsn_base = best_lsn; 1724 1725 memmove(Add2Ptr(page_bufs, tails * log->page_size), best_page, 1726 log->page_size); 1727 1728 tails += 1; 1729 1730 if (best_page_pos != bppc) { 1731 page_cnt = bppc; 1732 page_pos = best_page_pos; 1733 1734 if (page_cnt > 1) 1735 page_pos += 1; 1736 } else { 1737 page_pos = page_cnt = 1; 1738 } 1739 } else { 1740 kfree(first_tail); 1741 kfree(second_tail); 1742 goto tail_read; 1743 } 1744 1745 kfree(first_tail_prev); 1746 first_tail_prev = first_tail; 1747 final_off_prev = first_file_off; 1748 first_tail = NULL; 1749 1750 kfree(second_tail_prev); 1751 second_tail_prev = second_tail; 1752 second_off_prev = second_file_off; 1753 second_tail = NULL; 1754 1755 final_off += log->page_size; 1756 second_off += log->page_size; 1757 1758 if (tails < 0x10) 1759 goto next_tail; 1760 tail_read: 1761 first_tail = first_tail_prev; 1762 final_off = final_off_prev; 1763 1764 second_tail = second_tail_prev; 1765 second_off = second_off_prev; 1766 1767 page_cnt = page_pos = 1; 1768 1769 curpage_off = seq_base == log->seq_num ? min(log->next_page, page_off) : 1770 log->next_page; 1771 1772 wrapped_file = 1773 curpage_off == log->first_page && 1774 !(log->l_flags & (NTFSLOG_NO_LAST_LSN | NTFSLOG_REUSE_TAIL)); 1775 1776 expected_seq = wrapped_file ? (log->seq_num + 1) : log->seq_num; 1777 1778 nextpage_off = curpage_off; 1779 1780 next_page: 1781 tail_page = NULL; 1782 /* Read the next log page. */ 1783 err = read_log_page(log, curpage_off, &page, &usa_error); 1784 1785 /* Compute the next log page offset the file. */ 1786 nextpage_off = next_page_off(log, curpage_off); 1787 wrapped = nextpage_off == log->first_page; 1788 1789 if (tails > 1) { 1790 struct RECORD_PAGE_HDR *cur_page = 1791 Add2Ptr(page_bufs, curpage_off - page_off); 1792 1793 if (curpage_off == saved_off) { 1794 tail_page = cur_page; 1795 goto use_tail_page; 1796 } 1797 1798 if (page_off > curpage_off || curpage_off >= saved_off) 1799 goto use_tail_page; 1800 1801 if (page_off1) 1802 goto use_cur_page; 1803 1804 if (!err && !usa_error && 1805 page->rhdr.sign == NTFS_RCRD_SIGNATURE && 1806 cur_page->rhdr.lsn == page->rhdr.lsn && 1807 cur_page->record_hdr.next_record_off == 1808 page->record_hdr.next_record_off && 1809 ((page_pos == page_cnt && 1810 le16_to_cpu(page->page_pos) == 1) || 1811 (page_pos != page_cnt && 1812 le16_to_cpu(page->page_pos) == page_pos + 1 && 1813 le16_to_cpu(page->page_count) == page_cnt))) { 1814 cur_page = NULL; 1815 goto use_tail_page; 1816 } 1817 1818 page_off1 = page_off; 1819 1820 use_cur_page: 1821 1822 lsn_cur = le64_to_cpu(cur_page->rhdr.lsn); 1823 1824 if (last_ok_lsn != 1825 le64_to_cpu(cur_page->record_hdr.last_end_lsn) && 1826 ((lsn_cur >> log->file_data_bits) + 1827 ((curpage_off < 1828 (lsn_to_vbo(log, lsn_cur) & ~log->page_mask)) ? 1829 1 : 1830 0)) != expected_seq) { 1831 goto check_tail; 1832 } 1833 1834 if (!is_log_record_end(cur_page)) { 1835 tail_page = NULL; 1836 last_ok_lsn = lsn_cur; 1837 goto next_page_1; 1838 } 1839 1840 log->seq_num = expected_seq; 1841 log->l_flags &= ~NTFSLOG_NO_LAST_LSN; 1842 log->last_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn); 1843 log->ra->current_lsn = cur_page->record_hdr.last_end_lsn; 1844 1845 if (log->record_header_len <= 1846 log->page_size - 1847 le16_to_cpu(cur_page->record_hdr.next_record_off)) { 1848 log->l_flags |= NTFSLOG_REUSE_TAIL; 1849 log->next_page = curpage_off; 1850 } else { 1851 log->l_flags &= ~NTFSLOG_REUSE_TAIL; 1852 log->next_page = nextpage_off; 1853 } 1854 1855 if (wrapped_file) 1856 log->l_flags |= NTFSLOG_WRAPPED; 1857 1858 last_ok_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn); 1859 goto next_page_1; 1860 } 1861 1862 /* 1863 * If we are at the expected first page of a transfer check to see 1864 * if either tail copy is at this offset. 1865 * If this page is the last page of a transfer, check if we wrote 1866 * a subsequent tail copy. 1867 */ 1868 if (page_cnt == page_pos || page_cnt == page_pos + 1) { 1869 /* 1870 * Check if the offset matches either the first or second 1871 * tail copy. It is possible it will match both. 1872 */ 1873 if (curpage_off == final_off) 1874 tail_page = first_tail; 1875 1876 /* 1877 * If we already matched on the first page then 1878 * check the ending lsn's. 1879 */ 1880 if (curpage_off == second_off) { 1881 if (!tail_page || 1882 (second_tail && 1883 le64_to_cpu(second_tail->record_hdr.last_end_lsn) > 1884 le64_to_cpu(first_tail->record_hdr 1885 .last_end_lsn))) { 1886 tail_page = second_tail; 1887 } 1888 } 1889 } 1890 1891 use_tail_page: 1892 if (tail_page) { 1893 /* We have a candidate for a tail copy. */ 1894 lsn_cur = le64_to_cpu(tail_page->record_hdr.last_end_lsn); 1895 1896 if (last_ok_lsn < lsn_cur) { 1897 /* 1898 * If the sequence number is not expected, 1899 * then don't use the tail copy. 1900 */ 1901 if (expected_seq != (lsn_cur >> log->file_data_bits)) 1902 tail_page = NULL; 1903 } else if (last_ok_lsn > lsn_cur) { 1904 /* 1905 * If the last lsn is greater than the one on 1906 * this page then forget this tail. 1907 */ 1908 tail_page = NULL; 1909 } 1910 } 1911 1912 /* 1913 *If we have an error on the current page, 1914 * we will break of this loop. 1915 */ 1916 if (err || usa_error) 1917 goto check_tail; 1918 1919 /* 1920 * Done if the last lsn on this page doesn't match the previous known 1921 * last lsn or the sequence number is not expected. 1922 */ 1923 lsn_cur = le64_to_cpu(page->rhdr.lsn); 1924 if (last_ok_lsn != lsn_cur && 1925 expected_seq != (lsn_cur >> log->file_data_bits)) { 1926 goto check_tail; 1927 } 1928 1929 /* 1930 * Check that the page position and page count values are correct. 1931 * If this is the first page of a transfer the position must be 1 1932 * and the count will be unknown. 1933 */ 1934 if (page_cnt == page_pos) { 1935 if (page->page_pos != cpu_to_le16(1) && 1936 (!reuse_page || page->page_pos != page->page_count)) { 1937 /* 1938 * If the current page is the first page we are 1939 * looking at and we are reusing this page then 1940 * it can be either the first or last page of a 1941 * transfer. Otherwise it can only be the first. 1942 */ 1943 goto check_tail; 1944 } 1945 } else if (le16_to_cpu(page->page_count) != page_cnt || 1946 le16_to_cpu(page->page_pos) != page_pos + 1) { 1947 /* 1948 * The page position better be 1 more than the last page 1949 * position and the page count better match. 1950 */ 1951 goto check_tail; 1952 } 1953 1954 /* 1955 * We have a valid page the file and may have a valid page 1956 * the tail copy area. 1957 * If the tail page was written after the page the file then 1958 * break of the loop. 1959 */ 1960 if (tail_page && 1961 le64_to_cpu(tail_page->record_hdr.last_end_lsn) > lsn_cur) { 1962 /* Remember if we will replace the page. */ 1963 replace_page = true; 1964 goto check_tail; 1965 } 1966 1967 tail_page = NULL; 1968 1969 if (is_log_record_end(page)) { 1970 /* 1971 * Since we have read this page we know the sequence number 1972 * is the same as our expected value. 1973 */ 1974 log->seq_num = expected_seq; 1975 log->last_lsn = le64_to_cpu(page->record_hdr.last_end_lsn); 1976 log->ra->current_lsn = page->record_hdr.last_end_lsn; 1977 log->l_flags &= ~NTFSLOG_NO_LAST_LSN; 1978 1979 /* 1980 * If there is room on this page for another header then 1981 * remember we want to reuse the page. 1982 */ 1983 if (log->record_header_len <= 1984 log->page_size - 1985 le16_to_cpu(page->record_hdr.next_record_off)) { 1986 log->l_flags |= NTFSLOG_REUSE_TAIL; 1987 log->next_page = curpage_off; 1988 } else { 1989 log->l_flags &= ~NTFSLOG_REUSE_TAIL; 1990 log->next_page = nextpage_off; 1991 } 1992 1993 /* Remember if we wrapped the log file. */ 1994 if (wrapped_file) 1995 log->l_flags |= NTFSLOG_WRAPPED; 1996 } 1997 1998 /* 1999 * Remember the last page count and position. 2000 * Also remember the last known lsn. 2001 */ 2002 page_cnt = le16_to_cpu(page->page_count); 2003 page_pos = le16_to_cpu(page->page_pos); 2004 last_ok_lsn = le64_to_cpu(page->rhdr.lsn); 2005 2006 next_page_1: 2007 2008 if (wrapped) { 2009 expected_seq += 1; 2010 wrapped_file = 1; 2011 } 2012 2013 curpage_off = nextpage_off; 2014 kfree(page); 2015 page = NULL; 2016 reuse_page = 0; 2017 goto next_page; 2018 2019 check_tail: 2020 if (tail_page) { 2021 log->seq_num = expected_seq; 2022 log->last_lsn = le64_to_cpu(tail_page->record_hdr.last_end_lsn); 2023 log->ra->current_lsn = tail_page->record_hdr.last_end_lsn; 2024 log->l_flags &= ~NTFSLOG_NO_LAST_LSN; 2025 2026 if (log->page_size - 2027 le16_to_cpu( 2028 tail_page->record_hdr.next_record_off) >= 2029 log->record_header_len) { 2030 log->l_flags |= NTFSLOG_REUSE_TAIL; 2031 log->next_page = curpage_off; 2032 } else { 2033 log->l_flags &= ~NTFSLOG_REUSE_TAIL; 2034 log->next_page = nextpage_off; 2035 } 2036 2037 if (wrapped) 2038 log->l_flags |= NTFSLOG_WRAPPED; 2039 } 2040 2041 /* Remember that the partial IO will start at the next page. */ 2042 second_off = nextpage_off; 2043 2044 /* 2045 * If the next page is the first page of the file then update 2046 * the sequence number for log records which begon the next page. 2047 */ 2048 if (wrapped) 2049 expected_seq += 1; 2050 2051 /* 2052 * If we have a tail copy or are performing single page I/O we can 2053 * immediately look at the next page. 2054 */ 2055 if (replace_page || (log->ra->flags & RESTART_SINGLE_PAGE_IO)) { 2056 page_cnt = 2; 2057 page_pos = 1; 2058 goto check_valid; 2059 } 2060 2061 if (page_pos != page_cnt) 2062 goto check_valid; 2063 /* 2064 * If the next page causes us to wrap to the beginning of the log 2065 * file then we know which page to check next. 2066 */ 2067 if (wrapped) { 2068 page_cnt = 2; 2069 page_pos = 1; 2070 goto check_valid; 2071 } 2072 2073 cur_pos = 2; 2074 2075 next_test_page: 2076 kfree(tst_page); 2077 tst_page = NULL; 2078 2079 /* Walk through the file, reading log pages. */ 2080 err = read_log_page(log, nextpage_off, &tst_page, &usa_error); 2081 2082 /* 2083 * If we get a USA error then assume that we correctly found 2084 * the end of the original transfer. 2085 */ 2086 if (usa_error) 2087 goto file_is_valid; 2088 2089 /* 2090 * If we were able to read the page, we examine it to see if it 2091 * is the same or different Io block. 2092 */ 2093 if (err) 2094 goto next_test_page_1; 2095 2096 if (le16_to_cpu(tst_page->page_pos) == cur_pos && 2097 check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) { 2098 page_cnt = le16_to_cpu(tst_page->page_count) + 1; 2099 page_pos = le16_to_cpu(tst_page->page_pos); 2100 goto check_valid; 2101 } else { 2102 goto file_is_valid; 2103 } 2104 2105 next_test_page_1: 2106 2107 nextpage_off = next_page_off(log, curpage_off); 2108 wrapped = nextpage_off == log->first_page; 2109 2110 if (wrapped) { 2111 expected_seq += 1; 2112 page_cnt = 2; 2113 page_pos = 1; 2114 } 2115 2116 cur_pos += 1; 2117 part_io_count += 1; 2118 if (!wrapped) 2119 goto next_test_page; 2120 2121 check_valid: 2122 /* Skip over the remaining pages this transfer. */ 2123 remain_pages = page_cnt - page_pos - 1; 2124 part_io_count += remain_pages; 2125 2126 while (remain_pages--) { 2127 nextpage_off = next_page_off(log, curpage_off); 2128 wrapped = nextpage_off == log->first_page; 2129 2130 if (wrapped) 2131 expected_seq += 1; 2132 } 2133 2134 /* Call our routine to check this log page. */ 2135 kfree(tst_page); 2136 tst_page = NULL; 2137 2138 err = read_log_page(log, nextpage_off, &tst_page, &usa_error); 2139 if (!err && !usa_error && 2140 check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) { 2141 err = -EINVAL; 2142 goto out; 2143 } 2144 2145 file_is_valid: 2146 2147 /* We have a valid file. */ 2148 if (page_off1 || tail_page) { 2149 struct RECORD_PAGE_HDR *tmp_page; 2150 2151 if (sb_rdonly(log->ni->mi.sbi->sb)) { 2152 err = -EROFS; 2153 goto out; 2154 } 2155 2156 if (page_off1) { 2157 tmp_page = Add2Ptr(page_bufs, page_off1 - page_off); 2158 tails -= (page_off1 - page_off) / log->page_size; 2159 if (!tail_page) 2160 tails -= 1; 2161 } else { 2162 tmp_page = tail_page; 2163 tails = 1; 2164 } 2165 2166 while (tails--) { 2167 u64 off = hdr_file_off(log, tmp_page); 2168 2169 if (!page) { 2170 page = kmalloc(log->page_size, GFP_NOFS); 2171 if (!page) 2172 return -ENOMEM; 2173 } 2174 2175 /* 2176 * Correct page and copy the data from this page 2177 * into it and flush it to disk. 2178 */ 2179 memcpy(page, tmp_page, log->page_size); 2180 2181 /* Fill last flushed lsn value flush the page. */ 2182 if (log->major_ver < 2) 2183 page->rhdr.lsn = page->record_hdr.last_end_lsn; 2184 else 2185 page->file_off = 0; 2186 2187 page->page_pos = page->page_count = cpu_to_le16(1); 2188 2189 ntfs_fix_pre_write(&page->rhdr, log->page_size); 2190 2191 err = ntfs_sb_write_run(log->ni->mi.sbi, 2192 &log->ni->file.run, off, page, 2193 log->page_size, 0); 2194 2195 if (err) 2196 goto out; 2197 2198 if (part_io_count && second_off == off) { 2199 second_off += log->page_size; 2200 part_io_count -= 1; 2201 } 2202 2203 tmp_page = Add2Ptr(tmp_page, log->page_size); 2204 } 2205 } 2206 2207 if (part_io_count) { 2208 if (sb_rdonly(log->ni->mi.sbi->sb)) { 2209 err = -EROFS; 2210 goto out; 2211 } 2212 } 2213 2214 out: 2215 kfree(second_tail); 2216 kfree(first_tail); 2217 kfree(page); 2218 kfree(tst_page); 2219 kfree(page_bufs); 2220 2221 return err; 2222 } 2223 2224 /* 2225 * read_log_rec_buf - Copy a log record from the file to a buffer. 2226 * 2227 * The log record may span several log pages and may even wrap the file. 2228 */ 2229 static int read_log_rec_buf(struct ntfs_log *log, 2230 const struct LFS_RECORD_HDR *rh, void *buffer) 2231 { 2232 int err; 2233 struct RECORD_PAGE_HDR *ph = NULL; 2234 u64 lsn = le64_to_cpu(rh->this_lsn); 2235 u32 vbo = lsn_to_vbo(log, lsn) & ~log->page_mask; 2236 u32 off = lsn_to_page_off(log, lsn) + log->record_header_len; 2237 u32 data_len = le32_to_cpu(rh->client_data_len); 2238 2239 /* 2240 * While there are more bytes to transfer, 2241 * we continue to attempt to perform the read. 2242 */ 2243 for (;;) { 2244 bool usa_error; 2245 u32 tail = log->page_size - off; 2246 2247 if (tail >= data_len) 2248 tail = data_len; 2249 2250 data_len -= tail; 2251 2252 err = read_log_page(log, vbo, &ph, &usa_error); 2253 if (err) 2254 goto out; 2255 2256 /* 2257 * The last lsn on this page better be greater or equal 2258 * to the lsn we are copying. 2259 */ 2260 if (lsn > le64_to_cpu(ph->rhdr.lsn)) { 2261 err = -EINVAL; 2262 goto out; 2263 } 2264 2265 memcpy(buffer, Add2Ptr(ph, off), tail); 2266 2267 /* If there are no more bytes to transfer, we exit the loop. */ 2268 if (!data_len) { 2269 if (!is_log_record_end(ph) || 2270 lsn > le64_to_cpu(ph->record_hdr.last_end_lsn)) { 2271 err = -EINVAL; 2272 goto out; 2273 } 2274 break; 2275 } 2276 2277 if (ph->rhdr.lsn == ph->record_hdr.last_end_lsn || 2278 lsn > le64_to_cpu(ph->rhdr.lsn)) { 2279 err = -EINVAL; 2280 goto out; 2281 } 2282 2283 vbo = next_page_off(log, vbo); 2284 off = log->data_off; 2285 2286 /* 2287 * Adjust our pointer the user's buffer to transfer 2288 * the next block to. 2289 */ 2290 buffer = Add2Ptr(buffer, tail); 2291 } 2292 2293 out: 2294 kfree(ph); 2295 return err; 2296 } 2297 2298 static int read_rst_area(struct ntfs_log *log, struct NTFS_RESTART **rst_, 2299 u64 *lsn) 2300 { 2301 int err; 2302 struct LFS_RECORD_HDR *rh = NULL; 2303 const struct CLIENT_REC *cr = 2304 Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)); 2305 u64 lsnr, lsnc = le64_to_cpu(cr->restart_lsn); 2306 u32 len; 2307 struct NTFS_RESTART *rst; 2308 2309 *lsn = 0; 2310 *rst_ = NULL; 2311 2312 /* If the client doesn't have a restart area, go ahead and exit now. */ 2313 if (!lsnc) 2314 return 0; 2315 2316 err = read_log_page(log, lsn_to_vbo(log, lsnc), 2317 (struct RECORD_PAGE_HDR **)&rh, NULL); 2318 if (err) 2319 return err; 2320 2321 rst = NULL; 2322 lsnr = le64_to_cpu(rh->this_lsn); 2323 2324 if (lsnc != lsnr) { 2325 /* If the lsn values don't match, then the disk is corrupt. */ 2326 err = -EINVAL; 2327 goto out; 2328 } 2329 2330 *lsn = lsnr; 2331 len = le32_to_cpu(rh->client_data_len); 2332 2333 if (!len) { 2334 err = 0; 2335 goto out; 2336 } 2337 2338 if (len < sizeof(struct NTFS_RESTART)) { 2339 err = -EINVAL; 2340 goto out; 2341 } 2342 2343 rst = kmalloc(len, GFP_NOFS); 2344 if (!rst) { 2345 err = -ENOMEM; 2346 goto out; 2347 } 2348 2349 /* Copy the data into the 'rst' buffer. */ 2350 err = read_log_rec_buf(log, rh, rst); 2351 if (err) 2352 goto out; 2353 2354 *rst_ = rst; 2355 rst = NULL; 2356 2357 out: 2358 kfree(rh); 2359 kfree(rst); 2360 2361 return err; 2362 } 2363 2364 static int find_log_rec(struct ntfs_log *log, u64 lsn, struct lcb *lcb) 2365 { 2366 int err; 2367 struct LFS_RECORD_HDR *rh = lcb->lrh; 2368 u32 rec_len, len; 2369 2370 /* Read the record header for this lsn. */ 2371 if (!rh) { 2372 err = read_log_page(log, lsn_to_vbo(log, lsn), 2373 (struct RECORD_PAGE_HDR **)&rh, NULL); 2374 2375 lcb->lrh = rh; 2376 if (err) 2377 return err; 2378 } 2379 2380 /* 2381 * If the lsn the log record doesn't match the desired 2382 * lsn then the disk is corrupt. 2383 */ 2384 if (lsn != le64_to_cpu(rh->this_lsn)) 2385 return -EINVAL; 2386 2387 len = le32_to_cpu(rh->client_data_len); 2388 2389 /* 2390 * Check that the length field isn't greater than the total 2391 * available space the log file. 2392 */ 2393 rec_len = len + log->record_header_len; 2394 if (rec_len >= log->total_avail) 2395 return -EINVAL; 2396 2397 /* 2398 * If the entire log record is on this log page, 2399 * put a pointer to the log record the context block. 2400 */ 2401 if (rh->flags & LOG_RECORD_MULTI_PAGE) { 2402 void *lr = kmalloc(len, GFP_NOFS); 2403 2404 if (!lr) 2405 return -ENOMEM; 2406 2407 lcb->log_rec = lr; 2408 lcb->alloc = true; 2409 2410 /* Copy the data into the buffer returned. */ 2411 err = read_log_rec_buf(log, rh, lr); 2412 if (err) 2413 return err; 2414 } else { 2415 /* If beyond the end of the current page -> an error. */ 2416 u32 page_off = lsn_to_page_off(log, lsn); 2417 2418 if (page_off + len + log->record_header_len > log->page_size) 2419 return -EINVAL; 2420 2421 lcb->log_rec = Add2Ptr(rh, sizeof(struct LFS_RECORD_HDR)); 2422 lcb->alloc = false; 2423 } 2424 2425 return 0; 2426 } 2427 2428 /* 2429 * read_log_rec_lcb - Init the query operation. 2430 */ 2431 static int read_log_rec_lcb(struct ntfs_log *log, u64 lsn, u32 ctx_mode, 2432 struct lcb **lcb_) 2433 { 2434 int err; 2435 const struct CLIENT_REC *cr; 2436 struct lcb *lcb; 2437 2438 switch (ctx_mode) { 2439 case lcb_ctx_undo_next: 2440 case lcb_ctx_prev: 2441 case lcb_ctx_next: 2442 break; 2443 default: 2444 return -EINVAL; 2445 } 2446 2447 /* Check that the given lsn is the legal range for this client. */ 2448 cr = Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)); 2449 2450 if (!verify_client_lsn(log, cr, lsn)) 2451 return -EINVAL; 2452 2453 lcb = kzalloc(sizeof(struct lcb), GFP_NOFS); 2454 if (!lcb) 2455 return -ENOMEM; 2456 lcb->client = log->client_id; 2457 lcb->ctx_mode = ctx_mode; 2458 2459 /* Find the log record indicated by the given lsn. */ 2460 err = find_log_rec(log, lsn, lcb); 2461 if (err) 2462 goto out; 2463 2464 *lcb_ = lcb; 2465 return 0; 2466 2467 out: 2468 lcb_put(lcb); 2469 *lcb_ = NULL; 2470 return err; 2471 } 2472 2473 /* 2474 * find_client_next_lsn 2475 * 2476 * Attempt to find the next lsn to return to a client based on the context mode. 2477 */ 2478 static int find_client_next_lsn(struct ntfs_log *log, struct lcb *lcb, u64 *lsn) 2479 { 2480 int err; 2481 u64 next_lsn; 2482 struct LFS_RECORD_HDR *hdr; 2483 2484 hdr = lcb->lrh; 2485 *lsn = 0; 2486 2487 if (lcb_ctx_next != lcb->ctx_mode) 2488 goto check_undo_next; 2489 2490 /* Loop as long as another lsn can be found. */ 2491 for (;;) { 2492 u64 current_lsn; 2493 2494 err = next_log_lsn(log, hdr, ¤t_lsn); 2495 if (err) 2496 goto out; 2497 2498 if (!current_lsn) 2499 break; 2500 2501 if (hdr != lcb->lrh) 2502 kfree(hdr); 2503 2504 hdr = NULL; 2505 err = read_log_page(log, lsn_to_vbo(log, current_lsn), 2506 (struct RECORD_PAGE_HDR **)&hdr, NULL); 2507 if (err) 2508 goto out; 2509 2510 if (memcmp(&hdr->client, &lcb->client, 2511 sizeof(struct CLIENT_ID))) { 2512 /*err = -EINVAL; */ 2513 } else if (LfsClientRecord == hdr->record_type) { 2514 kfree(lcb->lrh); 2515 lcb->lrh = hdr; 2516 *lsn = current_lsn; 2517 return 0; 2518 } 2519 } 2520 2521 out: 2522 if (hdr != lcb->lrh) 2523 kfree(hdr); 2524 return err; 2525 2526 check_undo_next: 2527 if (lcb_ctx_undo_next == lcb->ctx_mode) 2528 next_lsn = le64_to_cpu(hdr->client_undo_next_lsn); 2529 else if (lcb_ctx_prev == lcb->ctx_mode) 2530 next_lsn = le64_to_cpu(hdr->client_prev_lsn); 2531 else 2532 return 0; 2533 2534 if (!next_lsn) 2535 return 0; 2536 2537 if (!verify_client_lsn( 2538 log, Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)), 2539 next_lsn)) 2540 return 0; 2541 2542 hdr = NULL; 2543 err = read_log_page(log, lsn_to_vbo(log, next_lsn), 2544 (struct RECORD_PAGE_HDR **)&hdr, NULL); 2545 if (err) 2546 return err; 2547 kfree(lcb->lrh); 2548 lcb->lrh = hdr; 2549 2550 *lsn = next_lsn; 2551 2552 return 0; 2553 } 2554 2555 static int read_next_log_rec(struct ntfs_log *log, struct lcb *lcb, u64 *lsn) 2556 { 2557 int err; 2558 2559 err = find_client_next_lsn(log, lcb, lsn); 2560 if (err) 2561 return err; 2562 2563 if (!*lsn) 2564 return 0; 2565 2566 if (lcb->alloc) 2567 kfree(lcb->log_rec); 2568 2569 lcb->log_rec = NULL; 2570 lcb->alloc = false; 2571 kfree(lcb->lrh); 2572 lcb->lrh = NULL; 2573 2574 return find_log_rec(log, *lsn, lcb); 2575 } 2576 2577 bool check_index_header(const struct INDEX_HDR *hdr, size_t bytes) 2578 { 2579 __le16 mask; 2580 u32 min_de, de_off, used, total; 2581 const struct NTFS_DE *e; 2582 2583 if (hdr_has_subnode(hdr)) { 2584 min_de = sizeof(struct NTFS_DE) + sizeof(u64); 2585 mask = NTFS_IE_HAS_SUBNODES; 2586 } else { 2587 min_de = sizeof(struct NTFS_DE); 2588 mask = 0; 2589 } 2590 2591 de_off = le32_to_cpu(hdr->de_off); 2592 used = le32_to_cpu(hdr->used); 2593 total = le32_to_cpu(hdr->total); 2594 2595 if (de_off > bytes - min_de || used > bytes || total > bytes || 2596 de_off + min_de > used || used > total) { 2597 return false; 2598 } 2599 2600 e = Add2Ptr(hdr, de_off); 2601 for (;;) { 2602 u16 esize = le16_to_cpu(e->size); 2603 struct NTFS_DE *next = Add2Ptr(e, esize); 2604 2605 if (esize < min_de || PtrOffset(hdr, next) > used || 2606 (e->flags & NTFS_IE_HAS_SUBNODES) != mask) { 2607 return false; 2608 } 2609 2610 if (de_is_last(e)) 2611 break; 2612 2613 e = next; 2614 } 2615 2616 return true; 2617 } 2618 2619 static inline bool check_index_buffer(const struct INDEX_BUFFER *ib, u32 bytes) 2620 { 2621 u16 fo; 2622 const struct NTFS_RECORD_HEADER *r = &ib->rhdr; 2623 2624 if (r->sign != NTFS_INDX_SIGNATURE) 2625 return false; 2626 2627 fo = (SECTOR_SIZE - ((bytes >> SECTOR_SHIFT) + 1) * sizeof(short)); 2628 2629 if (le16_to_cpu(r->fix_off) > fo) 2630 return false; 2631 2632 if ((le16_to_cpu(r->fix_num) - 1) * SECTOR_SIZE != bytes) 2633 return false; 2634 2635 return check_index_header(&ib->ihdr, 2636 bytes - offsetof(struct INDEX_BUFFER, ihdr)); 2637 } 2638 2639 static inline bool check_index_root(const struct ATTRIB *attr, 2640 struct ntfs_sb_info *sbi) 2641 { 2642 bool ret; 2643 const struct INDEX_ROOT *root = resident_data(attr); 2644 u8 index_bits = le32_to_cpu(root->index_block_size) >= 2645 sbi->cluster_size ? 2646 sbi->cluster_bits : 2647 SECTOR_SHIFT; 2648 u8 block_clst = root->index_block_clst; 2649 2650 if (le32_to_cpu(attr->res.data_size) < sizeof(struct INDEX_ROOT) || 2651 (root->type != ATTR_NAME && root->type != ATTR_ZERO) || 2652 (root->type == ATTR_NAME && 2653 root->rule != NTFS_COLLATION_TYPE_FILENAME) || 2654 (le32_to_cpu(root->index_block_size) != 2655 (block_clst << index_bits)) || 2656 (block_clst != 1 && block_clst != 2 && block_clst != 4 && 2657 block_clst != 8 && block_clst != 0x10 && block_clst != 0x20 && 2658 block_clst != 0x40 && block_clst != 0x80)) { 2659 return false; 2660 } 2661 2662 ret = check_index_header(&root->ihdr, 2663 le32_to_cpu(attr->res.data_size) - 2664 offsetof(struct INDEX_ROOT, ihdr)); 2665 return ret; 2666 } 2667 2668 static inline bool check_attr(const struct MFT_REC *rec, 2669 const struct ATTRIB *attr, 2670 struct ntfs_sb_info *sbi) 2671 { 2672 u32 asize = le32_to_cpu(attr->size); 2673 u32 rsize = 0; 2674 u64 dsize, svcn, evcn; 2675 u16 run_off; 2676 2677 /* Check the fixed part of the attribute record header. */ 2678 if (asize >= sbi->record_size || 2679 asize + PtrOffset(rec, attr) >= sbi->record_size || 2680 (attr->name_len && 2681 le16_to_cpu(attr->name_off) + attr->name_len * sizeof(short) > 2682 asize)) { 2683 return false; 2684 } 2685 2686 /* Check the attribute fields. */ 2687 switch (attr->non_res) { 2688 case 0: 2689 rsize = le32_to_cpu(attr->res.data_size); 2690 if (rsize >= asize || 2691 le16_to_cpu(attr->res.data_off) + rsize > asize) { 2692 return false; 2693 } 2694 break; 2695 2696 case 1: 2697 dsize = le64_to_cpu(attr->nres.data_size); 2698 svcn = le64_to_cpu(attr->nres.svcn); 2699 evcn = le64_to_cpu(attr->nres.evcn); 2700 run_off = le16_to_cpu(attr->nres.run_off); 2701 2702 if (svcn > evcn + 1 || run_off >= asize || 2703 le64_to_cpu(attr->nres.valid_size) > dsize || 2704 dsize > le64_to_cpu(attr->nres.alloc_size)) { 2705 return false; 2706 } 2707 2708 if (run_off > asize) 2709 return false; 2710 2711 if (run_unpack(NULL, sbi, 0, svcn, evcn, svcn, 2712 Add2Ptr(attr, run_off), asize - run_off) < 0) { 2713 return false; 2714 } 2715 2716 return true; 2717 2718 default: 2719 return false; 2720 } 2721 2722 switch (attr->type) { 2723 case ATTR_NAME: 2724 if (fname_full_size(Add2Ptr( 2725 attr, le16_to_cpu(attr->res.data_off))) > asize) { 2726 return false; 2727 } 2728 break; 2729 2730 case ATTR_ROOT: 2731 return check_index_root(attr, sbi); 2732 2733 case ATTR_STD: 2734 if (rsize < sizeof(struct ATTR_STD_INFO5) && 2735 rsize != sizeof(struct ATTR_STD_INFO)) { 2736 return false; 2737 } 2738 break; 2739 2740 case ATTR_LIST: 2741 case ATTR_ID: 2742 case ATTR_SECURE: 2743 case ATTR_LABEL: 2744 case ATTR_VOL_INFO: 2745 case ATTR_DATA: 2746 case ATTR_ALLOC: 2747 case ATTR_BITMAP: 2748 case ATTR_REPARSE: 2749 case ATTR_EA_INFO: 2750 case ATTR_EA: 2751 case ATTR_PROPERTYSET: 2752 case ATTR_LOGGED_UTILITY_STREAM: 2753 break; 2754 2755 default: 2756 return false; 2757 } 2758 2759 return true; 2760 } 2761 2762 static inline bool check_file_record(const struct MFT_REC *rec, 2763 const struct MFT_REC *rec2, 2764 struct ntfs_sb_info *sbi) 2765 { 2766 const struct ATTRIB *attr; 2767 u16 fo = le16_to_cpu(rec->rhdr.fix_off); 2768 u16 fn = le16_to_cpu(rec->rhdr.fix_num); 2769 u16 ao = le16_to_cpu(rec->attr_off); 2770 u32 rs = sbi->record_size; 2771 2772 /* Check the file record header for consistency. */ 2773 if (rec->rhdr.sign != NTFS_FILE_SIGNATURE || 2774 fo > (SECTOR_SIZE - ((rs >> SECTOR_SHIFT) + 1) * sizeof(short)) || 2775 (fn - 1) * SECTOR_SIZE != rs || ao < MFTRECORD_FIXUP_OFFSET_1 || 2776 ao > sbi->record_size - SIZEOF_RESIDENT || !is_rec_inuse(rec) || 2777 le32_to_cpu(rec->total) != rs) { 2778 return false; 2779 } 2780 2781 /* Loop to check all of the attributes. */ 2782 for (attr = Add2Ptr(rec, ao); attr->type != ATTR_END; 2783 attr = Add2Ptr(attr, le32_to_cpu(attr->size))) { 2784 if (check_attr(rec, attr, sbi)) 2785 continue; 2786 return false; 2787 } 2788 2789 return true; 2790 } 2791 2792 static inline int check_lsn(const struct NTFS_RECORD_HEADER *hdr, 2793 const u64 *rlsn) 2794 { 2795 u64 lsn; 2796 2797 if (!rlsn) 2798 return true; 2799 2800 lsn = le64_to_cpu(hdr->lsn); 2801 2802 if (hdr->sign == NTFS_HOLE_SIGNATURE) 2803 return false; 2804 2805 if (*rlsn > lsn) 2806 return true; 2807 2808 return false; 2809 } 2810 2811 static inline bool check_if_attr(const struct MFT_REC *rec, 2812 const struct LOG_REC_HDR *lrh) 2813 { 2814 u16 ro = le16_to_cpu(lrh->record_off); 2815 u16 o = le16_to_cpu(rec->attr_off); 2816 const struct ATTRIB *attr = Add2Ptr(rec, o); 2817 2818 while (o < ro) { 2819 u32 asize; 2820 2821 if (attr->type == ATTR_END) 2822 break; 2823 2824 asize = le32_to_cpu(attr->size); 2825 if (!asize) 2826 break; 2827 2828 o += asize; 2829 attr = Add2Ptr(attr, asize); 2830 } 2831 2832 return o == ro; 2833 } 2834 2835 static inline bool check_if_index_root(const struct MFT_REC *rec, 2836 const struct LOG_REC_HDR *lrh) 2837 { 2838 u16 ro = le16_to_cpu(lrh->record_off); 2839 u16 o = le16_to_cpu(rec->attr_off); 2840 const struct ATTRIB *attr = Add2Ptr(rec, o); 2841 2842 while (o < ro) { 2843 u32 asize; 2844 2845 if (attr->type == ATTR_END) 2846 break; 2847 2848 asize = le32_to_cpu(attr->size); 2849 if (!asize) 2850 break; 2851 2852 o += asize; 2853 attr = Add2Ptr(attr, asize); 2854 } 2855 2856 return o == ro && attr->type == ATTR_ROOT; 2857 } 2858 2859 static inline bool check_if_root_index(const struct ATTRIB *attr, 2860 const struct INDEX_HDR *hdr, 2861 const struct LOG_REC_HDR *lrh) 2862 { 2863 u16 ao = le16_to_cpu(lrh->attr_off); 2864 u32 de_off = le32_to_cpu(hdr->de_off); 2865 u32 o = PtrOffset(attr, hdr) + de_off; 2866 const struct NTFS_DE *e = Add2Ptr(hdr, de_off); 2867 u32 asize = le32_to_cpu(attr->size); 2868 2869 while (o < ao) { 2870 u16 esize; 2871 2872 if (o >= asize) 2873 break; 2874 2875 esize = le16_to_cpu(e->size); 2876 if (!esize) 2877 break; 2878 2879 o += esize; 2880 e = Add2Ptr(e, esize); 2881 } 2882 2883 return o == ao; 2884 } 2885 2886 static inline bool check_if_alloc_index(const struct INDEX_HDR *hdr, 2887 u32 attr_off) 2888 { 2889 u32 de_off = le32_to_cpu(hdr->de_off); 2890 u32 o = offsetof(struct INDEX_BUFFER, ihdr) + de_off; 2891 const struct NTFS_DE *e = Add2Ptr(hdr, de_off); 2892 u32 used = le32_to_cpu(hdr->used); 2893 2894 while (o < attr_off) { 2895 u16 esize; 2896 2897 if (de_off >= used) 2898 break; 2899 2900 esize = le16_to_cpu(e->size); 2901 if (!esize) 2902 break; 2903 2904 o += esize; 2905 de_off += esize; 2906 e = Add2Ptr(e, esize); 2907 } 2908 2909 return o == attr_off; 2910 } 2911 2912 static inline void change_attr_size(struct MFT_REC *rec, struct ATTRIB *attr, 2913 u32 nsize) 2914 { 2915 u32 asize = le32_to_cpu(attr->size); 2916 int dsize = nsize - asize; 2917 u8 *next = Add2Ptr(attr, asize); 2918 u32 used = le32_to_cpu(rec->used); 2919 2920 memmove(Add2Ptr(attr, nsize), next, used - PtrOffset(rec, next)); 2921 2922 rec->used = cpu_to_le32(used + dsize); 2923 attr->size = cpu_to_le32(nsize); 2924 } 2925 2926 struct OpenAttr { 2927 struct ATTRIB *attr; 2928 struct runs_tree *run1; 2929 struct runs_tree run0; 2930 struct ntfs_inode *ni; 2931 // CLST rno; 2932 }; 2933 2934 /* 2935 * cmp_type_and_name 2936 * 2937 * Return: 0 if 'attr' has the same type and name. 2938 */ 2939 static inline int cmp_type_and_name(const struct ATTRIB *a1, 2940 const struct ATTRIB *a2) 2941 { 2942 return a1->type != a2->type || a1->name_len != a2->name_len || 2943 (a1->name_len && memcmp(attr_name(a1), attr_name(a2), 2944 a1->name_len * sizeof(short))); 2945 } 2946 2947 static struct OpenAttr *find_loaded_attr(struct ntfs_log *log, 2948 const struct ATTRIB *attr, CLST rno) 2949 { 2950 struct OPEN_ATTR_ENRTY *oe = NULL; 2951 2952 while ((oe = enum_rstbl(log->open_attr_tbl, oe))) { 2953 struct OpenAttr *op_attr; 2954 2955 if (ino_get(&oe->ref) != rno) 2956 continue; 2957 2958 op_attr = (struct OpenAttr *)oe->ptr; 2959 if (!cmp_type_and_name(op_attr->attr, attr)) 2960 return op_attr; 2961 } 2962 return NULL; 2963 } 2964 2965 static struct ATTRIB *attr_create_nonres_log(struct ntfs_sb_info *sbi, 2966 enum ATTR_TYPE type, u64 size, 2967 const u16 *name, size_t name_len, 2968 __le16 flags) 2969 { 2970 struct ATTRIB *attr; 2971 u32 name_size = ALIGN(name_len * sizeof(short), 8); 2972 bool is_ext = flags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED); 2973 u32 asize = name_size + 2974 (is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT); 2975 2976 attr = kzalloc(asize, GFP_NOFS); 2977 if (!attr) 2978 return NULL; 2979 2980 attr->type = type; 2981 attr->size = cpu_to_le32(asize); 2982 attr->flags = flags; 2983 attr->non_res = 1; 2984 attr->name_len = name_len; 2985 2986 attr->nres.evcn = cpu_to_le64((u64)bytes_to_cluster(sbi, size) - 1); 2987 attr->nres.alloc_size = cpu_to_le64(ntfs_up_cluster(sbi, size)); 2988 attr->nres.data_size = cpu_to_le64(size); 2989 attr->nres.valid_size = attr->nres.data_size; 2990 if (is_ext) { 2991 attr->name_off = SIZEOF_NONRESIDENT_EX_LE; 2992 if (is_attr_compressed(attr)) 2993 attr->nres.c_unit = COMPRESSION_UNIT; 2994 2995 attr->nres.run_off = 2996 cpu_to_le16(SIZEOF_NONRESIDENT_EX + name_size); 2997 memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT_EX), name, 2998 name_len * sizeof(short)); 2999 } else { 3000 attr->name_off = SIZEOF_NONRESIDENT_LE; 3001 attr->nres.run_off = 3002 cpu_to_le16(SIZEOF_NONRESIDENT + name_size); 3003 memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT), name, 3004 name_len * sizeof(short)); 3005 } 3006 3007 return attr; 3008 } 3009 3010 /* 3011 * do_action - Common routine for the Redo and Undo Passes. 3012 * @rlsn: If it is NULL then undo. 3013 */ 3014 static int do_action(struct ntfs_log *log, struct OPEN_ATTR_ENRTY *oe, 3015 const struct LOG_REC_HDR *lrh, u32 op, void *data, 3016 u32 dlen, u32 rec_len, const u64 *rlsn) 3017 { 3018 int err = 0; 3019 struct ntfs_sb_info *sbi = log->ni->mi.sbi; 3020 struct inode *inode = NULL, *inode_parent; 3021 struct mft_inode *mi = NULL, *mi2_child = NULL; 3022 CLST rno = 0, rno_base = 0; 3023 struct INDEX_BUFFER *ib = NULL; 3024 struct MFT_REC *rec = NULL; 3025 struct ATTRIB *attr = NULL, *attr2; 3026 struct INDEX_HDR *hdr; 3027 struct INDEX_ROOT *root; 3028 struct NTFS_DE *e, *e1, *e2; 3029 struct NEW_ATTRIBUTE_SIZES *new_sz; 3030 struct ATTR_FILE_NAME *fname; 3031 struct OpenAttr *oa, *oa2; 3032 u32 nsize, t32, asize, used, esize, off, bits; 3033 u16 id, id2; 3034 u32 record_size = sbi->record_size; 3035 u64 t64; 3036 u16 roff = le16_to_cpu(lrh->record_off); 3037 u16 aoff = le16_to_cpu(lrh->attr_off); 3038 u64 lco = 0; 3039 u64 cbo = (u64)le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT; 3040 u64 tvo = le64_to_cpu(lrh->target_vcn) << sbi->cluster_bits; 3041 u64 vbo = cbo + tvo; 3042 void *buffer_le = NULL; 3043 u32 bytes = 0; 3044 bool a_dirty = false; 3045 u16 data_off; 3046 3047 oa = oe->ptr; 3048 3049 /* Big switch to prepare. */ 3050 switch (op) { 3051 /* ============================================================ 3052 * Process MFT records, as described by the current log record. 3053 * ============================================================ 3054 */ 3055 case InitializeFileRecordSegment: 3056 case DeallocateFileRecordSegment: 3057 case WriteEndOfFileRecordSegment: 3058 case CreateAttribute: 3059 case DeleteAttribute: 3060 case UpdateResidentValue: 3061 case UpdateMappingPairs: 3062 case SetNewAttributeSizes: 3063 case AddIndexEntryRoot: 3064 case DeleteIndexEntryRoot: 3065 case SetIndexEntryVcnRoot: 3066 case UpdateFileNameRoot: 3067 case UpdateRecordDataRoot: 3068 case ZeroEndOfFileRecord: 3069 rno = vbo >> sbi->record_bits; 3070 inode = ilookup(sbi->sb, rno); 3071 if (inode) { 3072 mi = &ntfs_i(inode)->mi; 3073 } else if (op == InitializeFileRecordSegment) { 3074 mi = kzalloc(sizeof(struct mft_inode), GFP_NOFS); 3075 if (!mi) 3076 return -ENOMEM; 3077 err = mi_format_new(mi, sbi, rno, 0, false); 3078 if (err) 3079 goto out; 3080 } else { 3081 /* Read from disk. */ 3082 err = mi_get(sbi, rno, &mi); 3083 if (err) 3084 return err; 3085 } 3086 rec = mi->mrec; 3087 3088 if (op == DeallocateFileRecordSegment) 3089 goto skip_load_parent; 3090 3091 if (InitializeFileRecordSegment != op) { 3092 if (rec->rhdr.sign == NTFS_BAAD_SIGNATURE) 3093 goto dirty_vol; 3094 if (!check_lsn(&rec->rhdr, rlsn)) 3095 goto out; 3096 if (!check_file_record(rec, NULL, sbi)) 3097 goto dirty_vol; 3098 attr = Add2Ptr(rec, roff); 3099 } 3100 3101 if (is_rec_base(rec) || InitializeFileRecordSegment == op) { 3102 rno_base = rno; 3103 goto skip_load_parent; 3104 } 3105 3106 rno_base = ino_get(&rec->parent_ref); 3107 inode_parent = ntfs_iget5(sbi->sb, &rec->parent_ref, NULL); 3108 if (IS_ERR(inode_parent)) 3109 goto skip_load_parent; 3110 3111 if (is_bad_inode(inode_parent)) { 3112 iput(inode_parent); 3113 goto skip_load_parent; 3114 } 3115 3116 if (ni_load_mi_ex(ntfs_i(inode_parent), rno, &mi2_child)) { 3117 iput(inode_parent); 3118 } else { 3119 if (mi2_child->mrec != mi->mrec) 3120 memcpy(mi2_child->mrec, mi->mrec, 3121 sbi->record_size); 3122 3123 if (inode) 3124 iput(inode); 3125 else if (mi) 3126 mi_put(mi); 3127 3128 inode = inode_parent; 3129 mi = mi2_child; 3130 rec = mi2_child->mrec; 3131 attr = Add2Ptr(rec, roff); 3132 } 3133 3134 skip_load_parent: 3135 inode_parent = NULL; 3136 break; 3137 3138 /* 3139 * Process attributes, as described by the current log record. 3140 */ 3141 case UpdateNonresidentValue: 3142 case AddIndexEntryAllocation: 3143 case DeleteIndexEntryAllocation: 3144 case WriteEndOfIndexBuffer: 3145 case SetIndexEntryVcnAllocation: 3146 case UpdateFileNameAllocation: 3147 case SetBitsInNonresidentBitMap: 3148 case ClearBitsInNonresidentBitMap: 3149 case UpdateRecordDataAllocation: 3150 attr = oa->attr; 3151 bytes = UpdateNonresidentValue == op ? dlen : 0; 3152 lco = (u64)le16_to_cpu(lrh->lcns_follow) << sbi->cluster_bits; 3153 3154 if (attr->type == ATTR_ALLOC) { 3155 t32 = le32_to_cpu(oe->bytes_per_index); 3156 if (bytes < t32) 3157 bytes = t32; 3158 } 3159 3160 if (!bytes) 3161 bytes = lco - cbo; 3162 3163 bytes += roff; 3164 if (attr->type == ATTR_ALLOC) 3165 bytes = (bytes + 511) & ~511; // align 3166 3167 buffer_le = kmalloc(bytes, GFP_NOFS); 3168 if (!buffer_le) 3169 return -ENOMEM; 3170 3171 err = ntfs_read_run_nb(sbi, oa->run1, vbo, buffer_le, bytes, 3172 NULL); 3173 if (err) 3174 goto out; 3175 3176 if (attr->type == ATTR_ALLOC && *(int *)buffer_le) 3177 ntfs_fix_post_read(buffer_le, bytes, false); 3178 break; 3179 3180 default: 3181 WARN_ON(1); 3182 } 3183 3184 /* Big switch to do operation. */ 3185 switch (op) { 3186 case InitializeFileRecordSegment: 3187 if (roff + dlen > record_size) 3188 goto dirty_vol; 3189 3190 memcpy(Add2Ptr(rec, roff), data, dlen); 3191 mi->dirty = true; 3192 break; 3193 3194 case DeallocateFileRecordSegment: 3195 clear_rec_inuse(rec); 3196 le16_add_cpu(&rec->seq, 1); 3197 mi->dirty = true; 3198 break; 3199 3200 case WriteEndOfFileRecordSegment: 3201 attr2 = (struct ATTRIB *)data; 3202 if (!check_if_attr(rec, lrh) || roff + dlen > record_size) 3203 goto dirty_vol; 3204 3205 memmove(attr, attr2, dlen); 3206 rec->used = cpu_to_le32(ALIGN(roff + dlen, 8)); 3207 3208 mi->dirty = true; 3209 break; 3210 3211 case CreateAttribute: 3212 attr2 = (struct ATTRIB *)data; 3213 asize = le32_to_cpu(attr2->size); 3214 used = le32_to_cpu(rec->used); 3215 3216 if (!check_if_attr(rec, lrh) || dlen < SIZEOF_RESIDENT || 3217 !IS_ALIGNED(asize, 8) || 3218 Add2Ptr(attr2, asize) > Add2Ptr(lrh, rec_len) || 3219 dlen > record_size - used) { 3220 goto dirty_vol; 3221 } 3222 3223 memmove(Add2Ptr(attr, asize), attr, used - roff); 3224 memcpy(attr, attr2, asize); 3225 3226 rec->used = cpu_to_le32(used + asize); 3227 id = le16_to_cpu(rec->next_attr_id); 3228 id2 = le16_to_cpu(attr2->id); 3229 if (id <= id2) 3230 rec->next_attr_id = cpu_to_le16(id2 + 1); 3231 if (is_attr_indexed(attr)) 3232 le16_add_cpu(&rec->hard_links, 1); 3233 3234 oa2 = find_loaded_attr(log, attr, rno_base); 3235 if (oa2) { 3236 void *p2 = kmemdup(attr, le32_to_cpu(attr->size), 3237 GFP_NOFS); 3238 if (p2) { 3239 // run_close(oa2->run1); 3240 kfree(oa2->attr); 3241 oa2->attr = p2; 3242 } 3243 } 3244 3245 mi->dirty = true; 3246 break; 3247 3248 case DeleteAttribute: 3249 asize = le32_to_cpu(attr->size); 3250 used = le32_to_cpu(rec->used); 3251 3252 if (!check_if_attr(rec, lrh)) 3253 goto dirty_vol; 3254 3255 rec->used = cpu_to_le32(used - asize); 3256 if (is_attr_indexed(attr)) 3257 le16_add_cpu(&rec->hard_links, -1); 3258 3259 memmove(attr, Add2Ptr(attr, asize), used - asize - roff); 3260 3261 mi->dirty = true; 3262 break; 3263 3264 case UpdateResidentValue: 3265 nsize = aoff + dlen; 3266 3267 if (!check_if_attr(rec, lrh)) 3268 goto dirty_vol; 3269 3270 asize = le32_to_cpu(attr->size); 3271 used = le32_to_cpu(rec->used); 3272 3273 if (lrh->redo_len == lrh->undo_len) { 3274 if (nsize > asize) 3275 goto dirty_vol; 3276 goto move_data; 3277 } 3278 3279 if (nsize > asize && nsize - asize > record_size - used) 3280 goto dirty_vol; 3281 3282 nsize = ALIGN(nsize, 8); 3283 data_off = le16_to_cpu(attr->res.data_off); 3284 3285 if (nsize < asize) { 3286 memmove(Add2Ptr(attr, aoff), data, dlen); 3287 data = NULL; // To skip below memmove(). 3288 } 3289 3290 memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize), 3291 used - le16_to_cpu(lrh->record_off) - asize); 3292 3293 rec->used = cpu_to_le32(used + nsize - asize); 3294 attr->size = cpu_to_le32(nsize); 3295 attr->res.data_size = cpu_to_le32(aoff + dlen - data_off); 3296 3297 move_data: 3298 if (data) 3299 memmove(Add2Ptr(attr, aoff), data, dlen); 3300 3301 oa2 = find_loaded_attr(log, attr, rno_base); 3302 if (oa2) { 3303 void *p2 = kmemdup(attr, le32_to_cpu(attr->size), 3304 GFP_NOFS); 3305 if (p2) { 3306 // run_close(&oa2->run0); 3307 oa2->run1 = &oa2->run0; 3308 kfree(oa2->attr); 3309 oa2->attr = p2; 3310 } 3311 } 3312 3313 mi->dirty = true; 3314 break; 3315 3316 case UpdateMappingPairs: 3317 nsize = aoff + dlen; 3318 asize = le32_to_cpu(attr->size); 3319 used = le32_to_cpu(rec->used); 3320 3321 if (!check_if_attr(rec, lrh) || !attr->non_res || 3322 aoff < le16_to_cpu(attr->nres.run_off) || aoff > asize || 3323 (nsize > asize && nsize - asize > record_size - used)) { 3324 goto dirty_vol; 3325 } 3326 3327 nsize = ALIGN(nsize, 8); 3328 3329 memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize), 3330 used - le16_to_cpu(lrh->record_off) - asize); 3331 rec->used = cpu_to_le32(used + nsize - asize); 3332 attr->size = cpu_to_le32(nsize); 3333 memmove(Add2Ptr(attr, aoff), data, dlen); 3334 3335 if (run_get_highest_vcn(le64_to_cpu(attr->nres.svcn), 3336 attr_run(attr), &t64)) { 3337 goto dirty_vol; 3338 } 3339 3340 attr->nres.evcn = cpu_to_le64(t64); 3341 oa2 = find_loaded_attr(log, attr, rno_base); 3342 if (oa2 && oa2->attr->non_res) 3343 oa2->attr->nres.evcn = attr->nres.evcn; 3344 3345 mi->dirty = true; 3346 break; 3347 3348 case SetNewAttributeSizes: 3349 new_sz = data; 3350 if (!check_if_attr(rec, lrh) || !attr->non_res) 3351 goto dirty_vol; 3352 3353 attr->nres.alloc_size = new_sz->alloc_size; 3354 attr->nres.data_size = new_sz->data_size; 3355 attr->nres.valid_size = new_sz->valid_size; 3356 3357 if (dlen >= sizeof(struct NEW_ATTRIBUTE_SIZES)) 3358 attr->nres.total_size = new_sz->total_size; 3359 3360 oa2 = find_loaded_attr(log, attr, rno_base); 3361 if (oa2) { 3362 void *p2 = kmemdup(attr, le32_to_cpu(attr->size), 3363 GFP_NOFS); 3364 if (p2) { 3365 kfree(oa2->attr); 3366 oa2->attr = p2; 3367 } 3368 } 3369 mi->dirty = true; 3370 break; 3371 3372 case AddIndexEntryRoot: 3373 e = (struct NTFS_DE *)data; 3374 esize = le16_to_cpu(e->size); 3375 root = resident_data(attr); 3376 hdr = &root->ihdr; 3377 used = le32_to_cpu(hdr->used); 3378 3379 if (!check_if_index_root(rec, lrh) || 3380 !check_if_root_index(attr, hdr, lrh) || 3381 Add2Ptr(data, esize) > Add2Ptr(lrh, rec_len) || 3382 esize > le32_to_cpu(rec->total) - le32_to_cpu(rec->used)) { 3383 goto dirty_vol; 3384 } 3385 3386 e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3387 3388 change_attr_size(rec, attr, le32_to_cpu(attr->size) + esize); 3389 3390 memmove(Add2Ptr(e1, esize), e1, 3391 PtrOffset(e1, Add2Ptr(hdr, used))); 3392 memmove(e1, e, esize); 3393 3394 le32_add_cpu(&attr->res.data_size, esize); 3395 hdr->used = cpu_to_le32(used + esize); 3396 le32_add_cpu(&hdr->total, esize); 3397 3398 mi->dirty = true; 3399 break; 3400 3401 case DeleteIndexEntryRoot: 3402 root = resident_data(attr); 3403 hdr = &root->ihdr; 3404 used = le32_to_cpu(hdr->used); 3405 3406 if (!check_if_index_root(rec, lrh) || 3407 !check_if_root_index(attr, hdr, lrh)) { 3408 goto dirty_vol; 3409 } 3410 3411 e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3412 esize = le16_to_cpu(e1->size); 3413 e2 = Add2Ptr(e1, esize); 3414 3415 memmove(e1, e2, PtrOffset(e2, Add2Ptr(hdr, used))); 3416 3417 le32_sub_cpu(&attr->res.data_size, esize); 3418 hdr->used = cpu_to_le32(used - esize); 3419 le32_sub_cpu(&hdr->total, esize); 3420 3421 change_attr_size(rec, attr, le32_to_cpu(attr->size) - esize); 3422 3423 mi->dirty = true; 3424 break; 3425 3426 case SetIndexEntryVcnRoot: 3427 root = resident_data(attr); 3428 hdr = &root->ihdr; 3429 3430 if (!check_if_index_root(rec, lrh) || 3431 !check_if_root_index(attr, hdr, lrh)) { 3432 goto dirty_vol; 3433 } 3434 3435 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3436 3437 de_set_vbn_le(e, *(__le64 *)data); 3438 mi->dirty = true; 3439 break; 3440 3441 case UpdateFileNameRoot: 3442 root = resident_data(attr); 3443 hdr = &root->ihdr; 3444 3445 if (!check_if_index_root(rec, lrh) || 3446 !check_if_root_index(attr, hdr, lrh)) { 3447 goto dirty_vol; 3448 } 3449 3450 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3451 fname = (struct ATTR_FILE_NAME *)(e + 1); 3452 memmove(&fname->dup, data, sizeof(fname->dup)); // 3453 mi->dirty = true; 3454 break; 3455 3456 case UpdateRecordDataRoot: 3457 root = resident_data(attr); 3458 hdr = &root->ihdr; 3459 3460 if (!check_if_index_root(rec, lrh) || 3461 !check_if_root_index(attr, hdr, lrh)) { 3462 goto dirty_vol; 3463 } 3464 3465 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3466 3467 memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen); 3468 3469 mi->dirty = true; 3470 break; 3471 3472 case ZeroEndOfFileRecord: 3473 if (roff + dlen > record_size) 3474 goto dirty_vol; 3475 3476 memset(attr, 0, dlen); 3477 mi->dirty = true; 3478 break; 3479 3480 case UpdateNonresidentValue: 3481 if (lco < cbo + roff + dlen) 3482 goto dirty_vol; 3483 3484 memcpy(Add2Ptr(buffer_le, roff), data, dlen); 3485 3486 a_dirty = true; 3487 if (attr->type == ATTR_ALLOC) 3488 ntfs_fix_pre_write(buffer_le, bytes); 3489 break; 3490 3491 case AddIndexEntryAllocation: 3492 ib = Add2Ptr(buffer_le, roff); 3493 hdr = &ib->ihdr; 3494 e = data; 3495 esize = le16_to_cpu(e->size); 3496 e1 = Add2Ptr(ib, aoff); 3497 3498 if (is_baad(&ib->rhdr)) 3499 goto dirty_vol; 3500 if (!check_lsn(&ib->rhdr, rlsn)) 3501 goto out; 3502 3503 used = le32_to_cpu(hdr->used); 3504 3505 if (!check_index_buffer(ib, bytes) || 3506 !check_if_alloc_index(hdr, aoff) || 3507 Add2Ptr(e, esize) > Add2Ptr(lrh, rec_len) || 3508 used + esize > le32_to_cpu(hdr->total)) { 3509 goto dirty_vol; 3510 } 3511 3512 memmove(Add2Ptr(e1, esize), e1, 3513 PtrOffset(e1, Add2Ptr(hdr, used))); 3514 memcpy(e1, e, esize); 3515 3516 hdr->used = cpu_to_le32(used + esize); 3517 3518 a_dirty = true; 3519 3520 ntfs_fix_pre_write(&ib->rhdr, bytes); 3521 break; 3522 3523 case DeleteIndexEntryAllocation: 3524 ib = Add2Ptr(buffer_le, roff); 3525 hdr = &ib->ihdr; 3526 e = Add2Ptr(ib, aoff); 3527 esize = le16_to_cpu(e->size); 3528 3529 if (is_baad(&ib->rhdr)) 3530 goto dirty_vol; 3531 if (!check_lsn(&ib->rhdr, rlsn)) 3532 goto out; 3533 3534 if (!check_index_buffer(ib, bytes) || 3535 !check_if_alloc_index(hdr, aoff)) { 3536 goto dirty_vol; 3537 } 3538 3539 e1 = Add2Ptr(e, esize); 3540 nsize = esize; 3541 used = le32_to_cpu(hdr->used); 3542 3543 memmove(e, e1, PtrOffset(e1, Add2Ptr(hdr, used))); 3544 3545 hdr->used = cpu_to_le32(used - nsize); 3546 3547 a_dirty = true; 3548 3549 ntfs_fix_pre_write(&ib->rhdr, bytes); 3550 break; 3551 3552 case WriteEndOfIndexBuffer: 3553 ib = Add2Ptr(buffer_le, roff); 3554 hdr = &ib->ihdr; 3555 e = Add2Ptr(ib, aoff); 3556 3557 if (is_baad(&ib->rhdr)) 3558 goto dirty_vol; 3559 if (!check_lsn(&ib->rhdr, rlsn)) 3560 goto out; 3561 if (!check_index_buffer(ib, bytes) || 3562 !check_if_alloc_index(hdr, aoff) || 3563 aoff + dlen > offsetof(struct INDEX_BUFFER, ihdr) + 3564 le32_to_cpu(hdr->total)) { 3565 goto dirty_vol; 3566 } 3567 3568 hdr->used = cpu_to_le32(dlen + PtrOffset(hdr, e)); 3569 memmove(e, data, dlen); 3570 3571 a_dirty = true; 3572 ntfs_fix_pre_write(&ib->rhdr, bytes); 3573 break; 3574 3575 case SetIndexEntryVcnAllocation: 3576 ib = Add2Ptr(buffer_le, roff); 3577 hdr = &ib->ihdr; 3578 e = Add2Ptr(ib, aoff); 3579 3580 if (is_baad(&ib->rhdr)) 3581 goto dirty_vol; 3582 3583 if (!check_lsn(&ib->rhdr, rlsn)) 3584 goto out; 3585 if (!check_index_buffer(ib, bytes) || 3586 !check_if_alloc_index(hdr, aoff)) { 3587 goto dirty_vol; 3588 } 3589 3590 de_set_vbn_le(e, *(__le64 *)data); 3591 3592 a_dirty = true; 3593 ntfs_fix_pre_write(&ib->rhdr, bytes); 3594 break; 3595 3596 case UpdateFileNameAllocation: 3597 ib = Add2Ptr(buffer_le, roff); 3598 hdr = &ib->ihdr; 3599 e = Add2Ptr(ib, aoff); 3600 3601 if (is_baad(&ib->rhdr)) 3602 goto dirty_vol; 3603 3604 if (!check_lsn(&ib->rhdr, rlsn)) 3605 goto out; 3606 if (!check_index_buffer(ib, bytes) || 3607 !check_if_alloc_index(hdr, aoff)) { 3608 goto dirty_vol; 3609 } 3610 3611 fname = (struct ATTR_FILE_NAME *)(e + 1); 3612 memmove(&fname->dup, data, sizeof(fname->dup)); 3613 3614 a_dirty = true; 3615 ntfs_fix_pre_write(&ib->rhdr, bytes); 3616 break; 3617 3618 case SetBitsInNonresidentBitMap: 3619 off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off); 3620 bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits); 3621 3622 if (cbo + (off + 7) / 8 > lco || 3623 cbo + ((off + bits + 7) / 8) > lco) { 3624 goto dirty_vol; 3625 } 3626 3627 ntfs_bitmap_set_le(Add2Ptr(buffer_le, roff), off, bits); 3628 a_dirty = true; 3629 break; 3630 3631 case ClearBitsInNonresidentBitMap: 3632 off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off); 3633 bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits); 3634 3635 if (cbo + (off + 7) / 8 > lco || 3636 cbo + ((off + bits + 7) / 8) > lco) { 3637 goto dirty_vol; 3638 } 3639 3640 ntfs_bitmap_clear_le(Add2Ptr(buffer_le, roff), off, bits); 3641 a_dirty = true; 3642 break; 3643 3644 case UpdateRecordDataAllocation: 3645 ib = Add2Ptr(buffer_le, roff); 3646 hdr = &ib->ihdr; 3647 e = Add2Ptr(ib, aoff); 3648 3649 if (is_baad(&ib->rhdr)) 3650 goto dirty_vol; 3651 3652 if (!check_lsn(&ib->rhdr, rlsn)) 3653 goto out; 3654 if (!check_index_buffer(ib, bytes) || 3655 !check_if_alloc_index(hdr, aoff)) { 3656 goto dirty_vol; 3657 } 3658 3659 memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen); 3660 3661 a_dirty = true; 3662 ntfs_fix_pre_write(&ib->rhdr, bytes); 3663 break; 3664 3665 default: 3666 WARN_ON(1); 3667 } 3668 3669 if (rlsn) { 3670 __le64 t64 = cpu_to_le64(*rlsn); 3671 3672 if (rec) 3673 rec->rhdr.lsn = t64; 3674 if (ib) 3675 ib->rhdr.lsn = t64; 3676 } 3677 3678 if (mi && mi->dirty) { 3679 err = mi_write(mi, 0); 3680 if (err) 3681 goto out; 3682 } 3683 3684 if (a_dirty) { 3685 attr = oa->attr; 3686 err = ntfs_sb_write_run(sbi, oa->run1, vbo, buffer_le, bytes, 3687 0); 3688 if (err) 3689 goto out; 3690 } 3691 3692 out: 3693 3694 if (inode) 3695 iput(inode); 3696 else if (mi != mi2_child) 3697 mi_put(mi); 3698 3699 kfree(buffer_le); 3700 3701 return err; 3702 3703 dirty_vol: 3704 log->set_dirty = true; 3705 goto out; 3706 } 3707 3708 /* 3709 * log_replay - Replays log and empties it. 3710 * 3711 * This function is called during mount operation. 3712 * It replays log and empties it. 3713 * Initialized is set false if logfile contains '-1'. 3714 */ 3715 int log_replay(struct ntfs_inode *ni, bool *initialized) 3716 { 3717 int err; 3718 struct ntfs_sb_info *sbi = ni->mi.sbi; 3719 struct ntfs_log *log; 3720 3721 struct restart_info rst_info, rst_info2; 3722 u64 rec_lsn, ra_lsn, checkpt_lsn = 0, rlsn = 0; 3723 struct ATTR_NAME_ENTRY *attr_names = NULL; 3724 struct ATTR_NAME_ENTRY *ane; 3725 struct RESTART_TABLE *dptbl = NULL; 3726 struct RESTART_TABLE *trtbl = NULL; 3727 const struct RESTART_TABLE *rt; 3728 struct RESTART_TABLE *oatbl = NULL; 3729 struct inode *inode; 3730 struct OpenAttr *oa; 3731 struct ntfs_inode *ni_oe; 3732 struct ATTRIB *attr = NULL; 3733 u64 size, vcn, undo_next_lsn; 3734 CLST rno, lcn, lcn0, len0, clen; 3735 void *data; 3736 struct NTFS_RESTART *rst = NULL; 3737 struct lcb *lcb = NULL; 3738 struct OPEN_ATTR_ENRTY *oe; 3739 struct TRANSACTION_ENTRY *tr; 3740 struct DIR_PAGE_ENTRY *dp; 3741 u32 i, bytes_per_attr_entry; 3742 u32 l_size = ni->vfs_inode.i_size; 3743 u32 orig_file_size = l_size; 3744 u32 page_size, vbo, tail, off, dlen; 3745 u32 saved_len, rec_len, transact_id; 3746 bool use_second_page; 3747 struct RESTART_AREA *ra2, *ra = NULL; 3748 struct CLIENT_REC *ca, *cr; 3749 __le16 client; 3750 struct RESTART_HDR *rh; 3751 const struct LFS_RECORD_HDR *frh; 3752 const struct LOG_REC_HDR *lrh; 3753 bool is_mapped; 3754 bool is_ro = sb_rdonly(sbi->sb); 3755 u64 t64; 3756 u16 t16; 3757 u32 t32; 3758 3759 /* Get the size of page. NOTE: To replay we can use default page. */ 3760 #if PAGE_SIZE >= DefaultLogPageSize && PAGE_SIZE <= DefaultLogPageSize * 2 3761 page_size = norm_file_page(PAGE_SIZE, &l_size, true); 3762 #else 3763 page_size = norm_file_page(PAGE_SIZE, &l_size, false); 3764 #endif 3765 if (!page_size) 3766 return -EINVAL; 3767 3768 log = kzalloc(sizeof(struct ntfs_log), GFP_NOFS); 3769 if (!log) 3770 return -ENOMEM; 3771 3772 log->ni = ni; 3773 log->l_size = l_size; 3774 log->one_page_buf = kmalloc(page_size, GFP_NOFS); 3775 3776 if (!log->one_page_buf) { 3777 err = -ENOMEM; 3778 goto out; 3779 } 3780 3781 log->page_size = page_size; 3782 log->page_mask = page_size - 1; 3783 log->page_bits = blksize_bits(page_size); 3784 3785 /* Look for a restart area on the disk. */ 3786 memset(&rst_info, 0, sizeof(struct restart_info)); 3787 err = log_read_rst(log, l_size, true, &rst_info); 3788 if (err) 3789 goto out; 3790 3791 /* remember 'initialized' */ 3792 *initialized = rst_info.initialized; 3793 3794 if (!rst_info.restart) { 3795 if (rst_info.initialized) { 3796 /* No restart area but the file is not initialized. */ 3797 err = -EINVAL; 3798 goto out; 3799 } 3800 3801 log_init_pg_hdr(log, page_size, page_size, 1, 1); 3802 log_create(log, l_size, 0, get_random_u32(), false, false); 3803 3804 log->ra = ra; 3805 3806 ra = log_create_ra(log); 3807 if (!ra) { 3808 err = -ENOMEM; 3809 goto out; 3810 } 3811 log->ra = ra; 3812 log->init_ra = true; 3813 3814 goto process_log; 3815 } 3816 3817 /* 3818 * If the restart offset above wasn't zero then we won't 3819 * look for a second restart. 3820 */ 3821 if (rst_info.vbo) 3822 goto check_restart_area; 3823 3824 memset(&rst_info2, 0, sizeof(struct restart_info)); 3825 err = log_read_rst(log, l_size, false, &rst_info2); 3826 if (err) 3827 goto out; 3828 3829 /* Determine which restart area to use. */ 3830 if (!rst_info2.restart || rst_info2.last_lsn <= rst_info.last_lsn) 3831 goto use_first_page; 3832 3833 use_second_page = true; 3834 3835 if (rst_info.chkdsk_was_run && page_size != rst_info.vbo) { 3836 struct RECORD_PAGE_HDR *sp = NULL; 3837 bool usa_error; 3838 3839 if (!read_log_page(log, page_size, &sp, &usa_error) && 3840 sp->rhdr.sign == NTFS_CHKD_SIGNATURE) { 3841 use_second_page = false; 3842 } 3843 kfree(sp); 3844 } 3845 3846 if (use_second_page) { 3847 kfree(rst_info.r_page); 3848 memcpy(&rst_info, &rst_info2, sizeof(struct restart_info)); 3849 rst_info2.r_page = NULL; 3850 } 3851 3852 use_first_page: 3853 kfree(rst_info2.r_page); 3854 3855 check_restart_area: 3856 /* 3857 * If the restart area is at offset 0, we want 3858 * to write the second restart area first. 3859 */ 3860 log->init_ra = !!rst_info.vbo; 3861 3862 /* If we have a valid page then grab a pointer to the restart area. */ 3863 ra2 = rst_info.valid_page ? 3864 Add2Ptr(rst_info.r_page, 3865 le16_to_cpu(rst_info.r_page->ra_off)) : 3866 NULL; 3867 3868 if (rst_info.chkdsk_was_run || 3869 (ra2 && ra2->client_idx[1] == LFS_NO_CLIENT_LE)) { 3870 bool wrapped = false; 3871 bool use_multi_page = false; 3872 u32 open_log_count; 3873 3874 /* Do some checks based on whether we have a valid log page. */ 3875 if (!rst_info.valid_page) { 3876 open_log_count = get_random_u32(); 3877 goto init_log_instance; 3878 } 3879 open_log_count = le32_to_cpu(ra2->open_log_count); 3880 3881 /* 3882 * If the restart page size isn't changing then we want to 3883 * check how much work we need to do. 3884 */ 3885 if (page_size != le32_to_cpu(rst_info.r_page->sys_page_size)) 3886 goto init_log_instance; 3887 3888 init_log_instance: 3889 log_init_pg_hdr(log, page_size, page_size, 1, 1); 3890 3891 log_create(log, l_size, rst_info.last_lsn, open_log_count, 3892 wrapped, use_multi_page); 3893 3894 ra = log_create_ra(log); 3895 if (!ra) { 3896 err = -ENOMEM; 3897 goto out; 3898 } 3899 log->ra = ra; 3900 3901 /* Put the restart areas and initialize 3902 * the log file as required. 3903 */ 3904 goto process_log; 3905 } 3906 3907 if (!ra2) { 3908 err = -EINVAL; 3909 goto out; 3910 } 3911 3912 /* 3913 * If the log page or the system page sizes have changed, we can't 3914 * use the log file. We must use the system page size instead of the 3915 * default size if there is not a clean shutdown. 3916 */ 3917 t32 = le32_to_cpu(rst_info.r_page->sys_page_size); 3918 if (page_size != t32) { 3919 l_size = orig_file_size; 3920 page_size = 3921 norm_file_page(t32, &l_size, t32 == DefaultLogPageSize); 3922 } 3923 3924 if (page_size != t32 || 3925 page_size != le32_to_cpu(rst_info.r_page->page_size)) { 3926 err = -EINVAL; 3927 goto out; 3928 } 3929 3930 /* If the file size has shrunk then we won't mount it. */ 3931 if (l_size < le64_to_cpu(ra2->l_size)) { 3932 err = -EINVAL; 3933 goto out; 3934 } 3935 3936 log_init_pg_hdr(log, page_size, page_size, 3937 le16_to_cpu(rst_info.r_page->major_ver), 3938 le16_to_cpu(rst_info.r_page->minor_ver)); 3939 3940 log->l_size = le64_to_cpu(ra2->l_size); 3941 log->seq_num_bits = le32_to_cpu(ra2->seq_num_bits); 3942 log->file_data_bits = sizeof(u64) * 8 - log->seq_num_bits; 3943 log->seq_num_mask = (8 << log->file_data_bits) - 1; 3944 log->last_lsn = le64_to_cpu(ra2->current_lsn); 3945 log->seq_num = log->last_lsn >> log->file_data_bits; 3946 log->ra_off = le16_to_cpu(rst_info.r_page->ra_off); 3947 log->restart_size = log->sys_page_size - log->ra_off; 3948 log->record_header_len = le16_to_cpu(ra2->rec_hdr_len); 3949 log->ra_size = le16_to_cpu(ra2->ra_len); 3950 log->data_off = le16_to_cpu(ra2->data_off); 3951 log->data_size = log->page_size - log->data_off; 3952 log->reserved = log->data_size - log->record_header_len; 3953 3954 vbo = lsn_to_vbo(log, log->last_lsn); 3955 3956 if (vbo < log->first_page) { 3957 /* This is a pseudo lsn. */ 3958 log->l_flags |= NTFSLOG_NO_LAST_LSN; 3959 log->next_page = log->first_page; 3960 goto find_oldest; 3961 } 3962 3963 /* Find the end of this log record. */ 3964 off = final_log_off(log, log->last_lsn, 3965 le32_to_cpu(ra2->last_lsn_data_len)); 3966 3967 /* If we wrapped the file then increment the sequence number. */ 3968 if (off <= vbo) { 3969 log->seq_num += 1; 3970 log->l_flags |= NTFSLOG_WRAPPED; 3971 } 3972 3973 /* Now compute the next log page to use. */ 3974 vbo &= ~log->sys_page_mask; 3975 tail = log->page_size - (off & log->page_mask) - 1; 3976 3977 /* 3978 *If we can fit another log record on the page, 3979 * move back a page the log file. 3980 */ 3981 if (tail >= log->record_header_len) { 3982 log->l_flags |= NTFSLOG_REUSE_TAIL; 3983 log->next_page = vbo; 3984 } else { 3985 log->next_page = next_page_off(log, vbo); 3986 } 3987 3988 find_oldest: 3989 /* 3990 * Find the oldest client lsn. Use the last 3991 * flushed lsn as a starting point. 3992 */ 3993 log->oldest_lsn = log->last_lsn; 3994 oldest_client_lsn(Add2Ptr(ra2, le16_to_cpu(ra2->client_off)), 3995 ra2->client_idx[1], &log->oldest_lsn); 3996 log->oldest_lsn_off = lsn_to_vbo(log, log->oldest_lsn); 3997 3998 if (log->oldest_lsn_off < log->first_page) 3999 log->l_flags |= NTFSLOG_NO_OLDEST_LSN; 4000 4001 if (!(ra2->flags & RESTART_SINGLE_PAGE_IO)) 4002 log->l_flags |= NTFSLOG_WRAPPED | NTFSLOG_MULTIPLE_PAGE_IO; 4003 4004 log->current_openlog_count = le32_to_cpu(ra2->open_log_count); 4005 log->total_avail_pages = log->l_size - log->first_page; 4006 log->total_avail = log->total_avail_pages >> log->page_bits; 4007 log->max_current_avail = log->total_avail * log->reserved; 4008 log->total_avail = log->total_avail * log->data_size; 4009 4010 log->current_avail = current_log_avail(log); 4011 4012 ra = kzalloc(log->restart_size, GFP_NOFS); 4013 if (!ra) { 4014 err = -ENOMEM; 4015 goto out; 4016 } 4017 log->ra = ra; 4018 4019 t16 = le16_to_cpu(ra2->client_off); 4020 if (t16 == offsetof(struct RESTART_AREA, clients)) { 4021 memcpy(ra, ra2, log->ra_size); 4022 } else { 4023 memcpy(ra, ra2, offsetof(struct RESTART_AREA, clients)); 4024 memcpy(ra->clients, Add2Ptr(ra2, t16), 4025 le16_to_cpu(ra2->ra_len) - t16); 4026 4027 log->current_openlog_count = get_random_u32(); 4028 ra->open_log_count = cpu_to_le32(log->current_openlog_count); 4029 log->ra_size = offsetof(struct RESTART_AREA, clients) + 4030 sizeof(struct CLIENT_REC); 4031 ra->client_off = 4032 cpu_to_le16(offsetof(struct RESTART_AREA, clients)); 4033 ra->ra_len = cpu_to_le16(log->ra_size); 4034 } 4035 4036 le32_add_cpu(&ra->open_log_count, 1); 4037 4038 /* Now we need to walk through looking for the last lsn. */ 4039 err = last_log_lsn(log); 4040 if (err) 4041 goto out; 4042 4043 log->current_avail = current_log_avail(log); 4044 4045 /* Remember which restart area to write first. */ 4046 log->init_ra = rst_info.vbo; 4047 4048 process_log: 4049 /* 1.0, 1.1, 2.0 log->major_ver/minor_ver - short values. */ 4050 switch ((log->major_ver << 16) + log->minor_ver) { 4051 case 0x10000: 4052 case 0x10001: 4053 case 0x20000: 4054 break; 4055 default: 4056 ntfs_warn(sbi->sb, "\x24LogFile version %d.%d is not supported", 4057 log->major_ver, log->minor_ver); 4058 err = -EOPNOTSUPP; 4059 log->set_dirty = true; 4060 goto out; 4061 } 4062 4063 /* One client "NTFS" per logfile. */ 4064 ca = Add2Ptr(ra, le16_to_cpu(ra->client_off)); 4065 4066 for (client = ra->client_idx[1];; client = cr->next_client) { 4067 if (client == LFS_NO_CLIENT_LE) { 4068 /* Insert "NTFS" client LogFile. */ 4069 client = ra->client_idx[0]; 4070 if (client == LFS_NO_CLIENT_LE) { 4071 err = -EINVAL; 4072 goto out; 4073 } 4074 4075 t16 = le16_to_cpu(client); 4076 cr = ca + t16; 4077 4078 remove_client(ca, cr, &ra->client_idx[0]); 4079 4080 cr->restart_lsn = 0; 4081 cr->oldest_lsn = cpu_to_le64(log->oldest_lsn); 4082 cr->name_bytes = cpu_to_le32(8); 4083 cr->name[0] = cpu_to_le16('N'); 4084 cr->name[1] = cpu_to_le16('T'); 4085 cr->name[2] = cpu_to_le16('F'); 4086 cr->name[3] = cpu_to_le16('S'); 4087 4088 add_client(ca, t16, &ra->client_idx[1]); 4089 break; 4090 } 4091 4092 cr = ca + le16_to_cpu(client); 4093 4094 if (cpu_to_le32(8) == cr->name_bytes && 4095 cpu_to_le16('N') == cr->name[0] && 4096 cpu_to_le16('T') == cr->name[1] && 4097 cpu_to_le16('F') == cr->name[2] && 4098 cpu_to_le16('S') == cr->name[3]) 4099 break; 4100 } 4101 4102 /* Update the client handle with the client block information. */ 4103 log->client_id.seq_num = cr->seq_num; 4104 log->client_id.client_idx = client; 4105 4106 err = read_rst_area(log, &rst, &ra_lsn); 4107 if (err) 4108 goto out; 4109 4110 if (!rst) 4111 goto out; 4112 4113 bytes_per_attr_entry = !rst->major_ver ? 0x2C : 0x28; 4114 4115 checkpt_lsn = le64_to_cpu(rst->check_point_start); 4116 if (!checkpt_lsn) 4117 checkpt_lsn = ra_lsn; 4118 4119 /* Allocate and Read the Transaction Table. */ 4120 if (!rst->transact_table_len) 4121 goto check_dirty_page_table; 4122 4123 t64 = le64_to_cpu(rst->transact_table_lsn); 4124 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); 4125 if (err) 4126 goto out; 4127 4128 lrh = lcb->log_rec; 4129 frh = lcb->lrh; 4130 rec_len = le32_to_cpu(frh->client_data_len); 4131 4132 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), 4133 bytes_per_attr_entry)) { 4134 err = -EINVAL; 4135 goto out; 4136 } 4137 4138 t16 = le16_to_cpu(lrh->redo_off); 4139 4140 rt = Add2Ptr(lrh, t16); 4141 t32 = rec_len - t16; 4142 4143 /* Now check that this is a valid restart table. */ 4144 if (!check_rstbl(rt, t32)) { 4145 err = -EINVAL; 4146 goto out; 4147 } 4148 4149 trtbl = kmemdup(rt, t32, GFP_NOFS); 4150 if (!trtbl) { 4151 err = -ENOMEM; 4152 goto out; 4153 } 4154 4155 lcb_put(lcb); 4156 lcb = NULL; 4157 4158 check_dirty_page_table: 4159 /* The next record back should be the Dirty Pages Table. */ 4160 if (!rst->dirty_pages_len) 4161 goto check_attribute_names; 4162 4163 t64 = le64_to_cpu(rst->dirty_pages_table_lsn); 4164 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); 4165 if (err) 4166 goto out; 4167 4168 lrh = lcb->log_rec; 4169 frh = lcb->lrh; 4170 rec_len = le32_to_cpu(frh->client_data_len); 4171 4172 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), 4173 bytes_per_attr_entry)) { 4174 err = -EINVAL; 4175 goto out; 4176 } 4177 4178 t16 = le16_to_cpu(lrh->redo_off); 4179 4180 rt = Add2Ptr(lrh, t16); 4181 t32 = rec_len - t16; 4182 4183 /* Now check that this is a valid restart table. */ 4184 if (!check_rstbl(rt, t32)) { 4185 err = -EINVAL; 4186 goto out; 4187 } 4188 4189 dptbl = kmemdup(rt, t32, GFP_NOFS); 4190 if (!dptbl) { 4191 err = -ENOMEM; 4192 goto out; 4193 } 4194 4195 /* Convert Ra version '0' into version '1'. */ 4196 if (rst->major_ver) 4197 goto end_conv_1; 4198 4199 dp = NULL; 4200 while ((dp = enum_rstbl(dptbl, dp))) { 4201 struct DIR_PAGE_ENTRY_32 *dp0 = (struct DIR_PAGE_ENTRY_32 *)dp; 4202 // NOTE: Danger. Check for of boundary. 4203 memmove(&dp->vcn, &dp0->vcn_low, 4204 2 * sizeof(u64) + 4205 le32_to_cpu(dp->lcns_follow) * sizeof(u64)); 4206 } 4207 4208 end_conv_1: 4209 lcb_put(lcb); 4210 lcb = NULL; 4211 4212 /* 4213 * Go through the table and remove the duplicates, 4214 * remembering the oldest lsn values. 4215 */ 4216 if (sbi->cluster_size <= log->page_size) 4217 goto trace_dp_table; 4218 4219 dp = NULL; 4220 while ((dp = enum_rstbl(dptbl, dp))) { 4221 struct DIR_PAGE_ENTRY *next = dp; 4222 4223 while ((next = enum_rstbl(dptbl, next))) { 4224 if (next->target_attr == dp->target_attr && 4225 next->vcn == dp->vcn) { 4226 if (le64_to_cpu(next->oldest_lsn) < 4227 le64_to_cpu(dp->oldest_lsn)) { 4228 dp->oldest_lsn = next->oldest_lsn; 4229 } 4230 4231 free_rsttbl_idx(dptbl, PtrOffset(dptbl, next)); 4232 } 4233 } 4234 } 4235 trace_dp_table: 4236 check_attribute_names: 4237 /* The next record should be the Attribute Names. */ 4238 if (!rst->attr_names_len) 4239 goto check_attr_table; 4240 4241 t64 = le64_to_cpu(rst->attr_names_lsn); 4242 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); 4243 if (err) 4244 goto out; 4245 4246 lrh = lcb->log_rec; 4247 frh = lcb->lrh; 4248 rec_len = le32_to_cpu(frh->client_data_len); 4249 4250 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), 4251 bytes_per_attr_entry)) { 4252 err = -EINVAL; 4253 goto out; 4254 } 4255 4256 t32 = lrh_length(lrh); 4257 rec_len -= t32; 4258 4259 attr_names = kmemdup(Add2Ptr(lrh, t32), rec_len, GFP_NOFS); 4260 if (!attr_names) { 4261 err = -ENOMEM; 4262 goto out; 4263 } 4264 4265 lcb_put(lcb); 4266 lcb = NULL; 4267 4268 check_attr_table: 4269 /* The next record should be the attribute Table. */ 4270 if (!rst->open_attr_len) 4271 goto check_attribute_names2; 4272 4273 t64 = le64_to_cpu(rst->open_attr_table_lsn); 4274 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); 4275 if (err) 4276 goto out; 4277 4278 lrh = lcb->log_rec; 4279 frh = lcb->lrh; 4280 rec_len = le32_to_cpu(frh->client_data_len); 4281 4282 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), 4283 bytes_per_attr_entry)) { 4284 err = -EINVAL; 4285 goto out; 4286 } 4287 4288 t16 = le16_to_cpu(lrh->redo_off); 4289 4290 rt = Add2Ptr(lrh, t16); 4291 t32 = rec_len - t16; 4292 4293 if (!check_rstbl(rt, t32)) { 4294 err = -EINVAL; 4295 goto out; 4296 } 4297 4298 oatbl = kmemdup(rt, t32, GFP_NOFS); 4299 if (!oatbl) { 4300 err = -ENOMEM; 4301 goto out; 4302 } 4303 4304 log->open_attr_tbl = oatbl; 4305 4306 /* Clear all of the Attr pointers. */ 4307 oe = NULL; 4308 while ((oe = enum_rstbl(oatbl, oe))) { 4309 if (!rst->major_ver) { 4310 struct OPEN_ATTR_ENRTY_32 oe0; 4311 4312 /* Really 'oe' points to OPEN_ATTR_ENRTY_32. */ 4313 memcpy(&oe0, oe, SIZEOF_OPENATTRIBUTEENTRY0); 4314 4315 oe->bytes_per_index = oe0.bytes_per_index; 4316 oe->type = oe0.type; 4317 oe->is_dirty_pages = oe0.is_dirty_pages; 4318 oe->name_len = 0; 4319 oe->ref = oe0.ref; 4320 oe->open_record_lsn = oe0.open_record_lsn; 4321 } 4322 4323 oe->is_attr_name = 0; 4324 oe->ptr = NULL; 4325 } 4326 4327 lcb_put(lcb); 4328 lcb = NULL; 4329 4330 check_attribute_names2: 4331 if (!rst->attr_names_len) 4332 goto trace_attribute_table; 4333 4334 ane = attr_names; 4335 if (!oatbl) 4336 goto trace_attribute_table; 4337 while (ane->off) { 4338 /* TODO: Clear table on exit! */ 4339 oe = Add2Ptr(oatbl, le16_to_cpu(ane->off)); 4340 t16 = le16_to_cpu(ane->name_bytes); 4341 oe->name_len = t16 / sizeof(short); 4342 oe->ptr = ane->name; 4343 oe->is_attr_name = 2; 4344 ane = Add2Ptr(ane, sizeof(struct ATTR_NAME_ENTRY) + t16); 4345 } 4346 4347 trace_attribute_table: 4348 /* 4349 * If the checkpt_lsn is zero, then this is a freshly 4350 * formatted disk and we have no work to do. 4351 */ 4352 if (!checkpt_lsn) { 4353 err = 0; 4354 goto out; 4355 } 4356 4357 if (!oatbl) { 4358 oatbl = init_rsttbl(bytes_per_attr_entry, 8); 4359 if (!oatbl) { 4360 err = -ENOMEM; 4361 goto out; 4362 } 4363 } 4364 4365 log->open_attr_tbl = oatbl; 4366 4367 /* Start the analysis pass from the Checkpoint lsn. */ 4368 rec_lsn = checkpt_lsn; 4369 4370 /* Read the first lsn. */ 4371 err = read_log_rec_lcb(log, checkpt_lsn, lcb_ctx_next, &lcb); 4372 if (err) 4373 goto out; 4374 4375 /* Loop to read all subsequent records to the end of the log file. */ 4376 next_log_record_analyze: 4377 err = read_next_log_rec(log, lcb, &rec_lsn); 4378 if (err) 4379 goto out; 4380 4381 if (!rec_lsn) 4382 goto end_log_records_enumerate; 4383 4384 frh = lcb->lrh; 4385 transact_id = le32_to_cpu(frh->transact_id); 4386 rec_len = le32_to_cpu(frh->client_data_len); 4387 lrh = lcb->log_rec; 4388 4389 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) { 4390 err = -EINVAL; 4391 goto out; 4392 } 4393 4394 /* 4395 * The first lsn after the previous lsn remembered 4396 * the checkpoint is the first candidate for the rlsn. 4397 */ 4398 if (!rlsn) 4399 rlsn = rec_lsn; 4400 4401 if (LfsClientRecord != frh->record_type) 4402 goto next_log_record_analyze; 4403 4404 /* 4405 * Now update the Transaction Table for this transaction. If there 4406 * is no entry present or it is unallocated we allocate the entry. 4407 */ 4408 if (!trtbl) { 4409 trtbl = init_rsttbl(sizeof(struct TRANSACTION_ENTRY), 4410 INITIAL_NUMBER_TRANSACTIONS); 4411 if (!trtbl) { 4412 err = -ENOMEM; 4413 goto out; 4414 } 4415 } 4416 4417 tr = Add2Ptr(trtbl, transact_id); 4418 4419 if (transact_id >= bytes_per_rt(trtbl) || 4420 tr->next != RESTART_ENTRY_ALLOCATED_LE) { 4421 tr = alloc_rsttbl_from_idx(&trtbl, transact_id); 4422 if (!tr) { 4423 err = -ENOMEM; 4424 goto out; 4425 } 4426 tr->transact_state = TransactionActive; 4427 tr->first_lsn = cpu_to_le64(rec_lsn); 4428 } 4429 4430 tr->prev_lsn = tr->undo_next_lsn = cpu_to_le64(rec_lsn); 4431 4432 /* 4433 * If this is a compensation log record, then change 4434 * the undo_next_lsn to be the undo_next_lsn of this record. 4435 */ 4436 if (lrh->undo_op == cpu_to_le16(CompensationLogRecord)) 4437 tr->undo_next_lsn = frh->client_undo_next_lsn; 4438 4439 /* Dispatch to handle log record depending on type. */ 4440 switch (le16_to_cpu(lrh->redo_op)) { 4441 case InitializeFileRecordSegment: 4442 case DeallocateFileRecordSegment: 4443 case WriteEndOfFileRecordSegment: 4444 case CreateAttribute: 4445 case DeleteAttribute: 4446 case UpdateResidentValue: 4447 case UpdateNonresidentValue: 4448 case UpdateMappingPairs: 4449 case SetNewAttributeSizes: 4450 case AddIndexEntryRoot: 4451 case DeleteIndexEntryRoot: 4452 case AddIndexEntryAllocation: 4453 case DeleteIndexEntryAllocation: 4454 case WriteEndOfIndexBuffer: 4455 case SetIndexEntryVcnRoot: 4456 case SetIndexEntryVcnAllocation: 4457 case UpdateFileNameRoot: 4458 case UpdateFileNameAllocation: 4459 case SetBitsInNonresidentBitMap: 4460 case ClearBitsInNonresidentBitMap: 4461 case UpdateRecordDataRoot: 4462 case UpdateRecordDataAllocation: 4463 case ZeroEndOfFileRecord: 4464 t16 = le16_to_cpu(lrh->target_attr); 4465 t64 = le64_to_cpu(lrh->target_vcn); 4466 dp = find_dp(dptbl, t16, t64); 4467 4468 if (dp) 4469 goto copy_lcns; 4470 4471 /* 4472 * Calculate the number of clusters per page the system 4473 * which wrote the checkpoint, possibly creating the table. 4474 */ 4475 if (dptbl) { 4476 t32 = (le16_to_cpu(dptbl->size) - 4477 sizeof(struct DIR_PAGE_ENTRY)) / 4478 sizeof(u64); 4479 } else { 4480 t32 = log->clst_per_page; 4481 kfree(dptbl); 4482 dptbl = init_rsttbl(struct_size(dp, page_lcns, t32), 4483 32); 4484 if (!dptbl) { 4485 err = -ENOMEM; 4486 goto out; 4487 } 4488 } 4489 4490 dp = alloc_rsttbl_idx(&dptbl); 4491 if (!dp) { 4492 err = -ENOMEM; 4493 goto out; 4494 } 4495 dp->target_attr = cpu_to_le32(t16); 4496 dp->transfer_len = cpu_to_le32(t32 << sbi->cluster_bits); 4497 dp->lcns_follow = cpu_to_le32(t32); 4498 dp->vcn = cpu_to_le64(t64 & ~((u64)t32 - 1)); 4499 dp->oldest_lsn = cpu_to_le64(rec_lsn); 4500 4501 copy_lcns: 4502 /* 4503 * Copy the Lcns from the log record into the Dirty Page Entry. 4504 * TODO: For different page size support, must somehow make 4505 * whole routine a loop, case Lcns do not fit below. 4506 */ 4507 t16 = le16_to_cpu(lrh->lcns_follow); 4508 for (i = 0; i < t16; i++) { 4509 size_t j = (size_t)(le64_to_cpu(lrh->target_vcn) - 4510 le64_to_cpu(dp->vcn)); 4511 dp->page_lcns[j + i] = lrh->page_lcns[i]; 4512 } 4513 4514 goto next_log_record_analyze; 4515 4516 case DeleteDirtyClusters: { 4517 u32 range_count = 4518 le16_to_cpu(lrh->redo_len) / sizeof(struct LCN_RANGE); 4519 const struct LCN_RANGE *r = 4520 Add2Ptr(lrh, le16_to_cpu(lrh->redo_off)); 4521 4522 /* Loop through all of the Lcn ranges this log record. */ 4523 for (i = 0; i < range_count; i++, r++) { 4524 u64 lcn0 = le64_to_cpu(r->lcn); 4525 u64 lcn_e = lcn0 + le64_to_cpu(r->len) - 1; 4526 4527 dp = NULL; 4528 while ((dp = enum_rstbl(dptbl, dp))) { 4529 u32 j; 4530 4531 t32 = le32_to_cpu(dp->lcns_follow); 4532 for (j = 0; j < t32; j++) { 4533 t64 = le64_to_cpu(dp->page_lcns[j]); 4534 if (t64 >= lcn0 && t64 <= lcn_e) 4535 dp->page_lcns[j] = 0; 4536 } 4537 } 4538 } 4539 goto next_log_record_analyze; 4540 ; 4541 } 4542 4543 case OpenNonresidentAttribute: 4544 t16 = le16_to_cpu(lrh->target_attr); 4545 if (t16 >= bytes_per_rt(oatbl)) { 4546 /* 4547 * Compute how big the table needs to be. 4548 * Add 10 extra entries for some cushion. 4549 */ 4550 u32 new_e = t16 / le16_to_cpu(oatbl->size); 4551 4552 new_e += 10 - le16_to_cpu(oatbl->used); 4553 4554 oatbl = extend_rsttbl(oatbl, new_e, ~0u); 4555 log->open_attr_tbl = oatbl; 4556 if (!oatbl) { 4557 err = -ENOMEM; 4558 goto out; 4559 } 4560 } 4561 4562 /* Point to the entry being opened. */ 4563 oe = alloc_rsttbl_from_idx(&oatbl, t16); 4564 log->open_attr_tbl = oatbl; 4565 if (!oe) { 4566 err = -ENOMEM; 4567 goto out; 4568 } 4569 4570 /* Initialize this entry from the log record. */ 4571 t16 = le16_to_cpu(lrh->redo_off); 4572 if (!rst->major_ver) { 4573 /* Convert version '0' into version '1'. */ 4574 struct OPEN_ATTR_ENRTY_32 *oe0 = Add2Ptr(lrh, t16); 4575 4576 oe->bytes_per_index = oe0->bytes_per_index; 4577 oe->type = oe0->type; 4578 oe->is_dirty_pages = oe0->is_dirty_pages; 4579 oe->name_len = 0; //oe0.name_len; 4580 oe->ref = oe0->ref; 4581 oe->open_record_lsn = oe0->open_record_lsn; 4582 } else { 4583 memcpy(oe, Add2Ptr(lrh, t16), bytes_per_attr_entry); 4584 } 4585 4586 t16 = le16_to_cpu(lrh->undo_len); 4587 if (t16) { 4588 oe->ptr = kmalloc(t16, GFP_NOFS); 4589 if (!oe->ptr) { 4590 err = -ENOMEM; 4591 goto out; 4592 } 4593 oe->name_len = t16 / sizeof(short); 4594 memcpy(oe->ptr, 4595 Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)), t16); 4596 oe->is_attr_name = 1; 4597 } else { 4598 oe->ptr = NULL; 4599 oe->is_attr_name = 0; 4600 } 4601 4602 goto next_log_record_analyze; 4603 4604 case HotFix: 4605 t16 = le16_to_cpu(lrh->target_attr); 4606 t64 = le64_to_cpu(lrh->target_vcn); 4607 dp = find_dp(dptbl, t16, t64); 4608 if (dp) { 4609 size_t j = le64_to_cpu(lrh->target_vcn) - 4610 le64_to_cpu(dp->vcn); 4611 if (dp->page_lcns[j]) 4612 dp->page_lcns[j] = lrh->page_lcns[0]; 4613 } 4614 goto next_log_record_analyze; 4615 4616 case EndTopLevelAction: 4617 tr = Add2Ptr(trtbl, transact_id); 4618 tr->prev_lsn = cpu_to_le64(rec_lsn); 4619 tr->undo_next_lsn = frh->client_undo_next_lsn; 4620 goto next_log_record_analyze; 4621 4622 case PrepareTransaction: 4623 tr = Add2Ptr(trtbl, transact_id); 4624 tr->transact_state = TransactionPrepared; 4625 goto next_log_record_analyze; 4626 4627 case CommitTransaction: 4628 tr = Add2Ptr(trtbl, transact_id); 4629 tr->transact_state = TransactionCommitted; 4630 goto next_log_record_analyze; 4631 4632 case ForgetTransaction: 4633 free_rsttbl_idx(trtbl, transact_id); 4634 goto next_log_record_analyze; 4635 4636 case Noop: 4637 case OpenAttributeTableDump: 4638 case AttributeNamesDump: 4639 case DirtyPageTableDump: 4640 case TransactionTableDump: 4641 /* The following cases require no action the Analysis Pass. */ 4642 goto next_log_record_analyze; 4643 4644 default: 4645 /* 4646 * All codes will be explicitly handled. 4647 * If we see a code we do not expect, then we are trouble. 4648 */ 4649 goto next_log_record_analyze; 4650 } 4651 4652 end_log_records_enumerate: 4653 lcb_put(lcb); 4654 lcb = NULL; 4655 4656 /* 4657 * Scan the Dirty Page Table and Transaction Table for 4658 * the lowest lsn, and return it as the Redo lsn. 4659 */ 4660 dp = NULL; 4661 while ((dp = enum_rstbl(dptbl, dp))) { 4662 t64 = le64_to_cpu(dp->oldest_lsn); 4663 if (t64 && t64 < rlsn) 4664 rlsn = t64; 4665 } 4666 4667 tr = NULL; 4668 while ((tr = enum_rstbl(trtbl, tr))) { 4669 t64 = le64_to_cpu(tr->first_lsn); 4670 if (t64 && t64 < rlsn) 4671 rlsn = t64; 4672 } 4673 4674 /* 4675 * Only proceed if the Dirty Page Table or Transaction 4676 * table are not empty. 4677 */ 4678 if ((!dptbl || !dptbl->total) && (!trtbl || !trtbl->total)) 4679 goto end_reply; 4680 4681 sbi->flags |= NTFS_FLAGS_NEED_REPLAY; 4682 if (is_ro) 4683 goto out; 4684 4685 /* Reopen all of the attributes with dirty pages. */ 4686 oe = NULL; 4687 next_open_attribute: 4688 4689 oe = enum_rstbl(oatbl, oe); 4690 if (!oe) { 4691 err = 0; 4692 dp = NULL; 4693 goto next_dirty_page; 4694 } 4695 4696 oa = kzalloc(sizeof(struct OpenAttr), GFP_NOFS); 4697 if (!oa) { 4698 err = -ENOMEM; 4699 goto out; 4700 } 4701 4702 inode = ntfs_iget5(sbi->sb, &oe->ref, NULL); 4703 if (IS_ERR(inode)) 4704 goto fake_attr; 4705 4706 if (is_bad_inode(inode)) { 4707 iput(inode); 4708 fake_attr: 4709 if (oa->ni) { 4710 iput(&oa->ni->vfs_inode); 4711 oa->ni = NULL; 4712 } 4713 4714 attr = attr_create_nonres_log(sbi, oe->type, 0, oe->ptr, 4715 oe->name_len, 0); 4716 if (!attr) { 4717 kfree(oa); 4718 err = -ENOMEM; 4719 goto out; 4720 } 4721 oa->attr = attr; 4722 oa->run1 = &oa->run0; 4723 goto final_oe; 4724 } 4725 4726 ni_oe = ntfs_i(inode); 4727 oa->ni = ni_oe; 4728 4729 attr = ni_find_attr(ni_oe, NULL, NULL, oe->type, oe->ptr, oe->name_len, 4730 NULL, NULL); 4731 4732 if (!attr) 4733 goto fake_attr; 4734 4735 t32 = le32_to_cpu(attr->size); 4736 oa->attr = kmemdup(attr, t32, GFP_NOFS); 4737 if (!oa->attr) 4738 goto fake_attr; 4739 4740 if (!S_ISDIR(inode->i_mode)) { 4741 if (attr->type == ATTR_DATA && !attr->name_len) { 4742 oa->run1 = &ni_oe->file.run; 4743 goto final_oe; 4744 } 4745 } else { 4746 if (attr->type == ATTR_ALLOC && 4747 attr->name_len == ARRAY_SIZE(I30_NAME) && 4748 !memcmp(attr_name(attr), I30_NAME, sizeof(I30_NAME))) { 4749 oa->run1 = &ni_oe->dir.alloc_run; 4750 goto final_oe; 4751 } 4752 } 4753 4754 if (attr->non_res) { 4755 u16 roff = le16_to_cpu(attr->nres.run_off); 4756 CLST svcn = le64_to_cpu(attr->nres.svcn); 4757 4758 if (roff > t32) { 4759 kfree(oa->attr); 4760 oa->attr = NULL; 4761 goto fake_attr; 4762 } 4763 4764 err = run_unpack(&oa->run0, sbi, inode->i_ino, svcn, 4765 le64_to_cpu(attr->nres.evcn), svcn, 4766 Add2Ptr(attr, roff), t32 - roff); 4767 if (err < 0) { 4768 kfree(oa->attr); 4769 oa->attr = NULL; 4770 goto fake_attr; 4771 } 4772 err = 0; 4773 } 4774 oa->run1 = &oa->run0; 4775 attr = oa->attr; 4776 4777 final_oe: 4778 if (oe->is_attr_name == 1) 4779 kfree(oe->ptr); 4780 oe->is_attr_name = 0; 4781 oe->ptr = oa; 4782 oe->name_len = attr->name_len; 4783 4784 goto next_open_attribute; 4785 4786 /* 4787 * Now loop through the dirty page table to extract all of the Vcn/Lcn. 4788 * Mapping that we have, and insert it into the appropriate run. 4789 */ 4790 next_dirty_page: 4791 dp = enum_rstbl(dptbl, dp); 4792 if (!dp) 4793 goto do_redo_1; 4794 4795 oe = Add2Ptr(oatbl, le32_to_cpu(dp->target_attr)); 4796 4797 if (oe->next != RESTART_ENTRY_ALLOCATED_LE) 4798 goto next_dirty_page; 4799 4800 oa = oe->ptr; 4801 if (!oa) 4802 goto next_dirty_page; 4803 4804 i = -1; 4805 next_dirty_page_vcn: 4806 i += 1; 4807 if (i >= le32_to_cpu(dp->lcns_follow)) 4808 goto next_dirty_page; 4809 4810 vcn = le64_to_cpu(dp->vcn) + i; 4811 size = (vcn + 1) << sbi->cluster_bits; 4812 4813 if (!dp->page_lcns[i]) 4814 goto next_dirty_page_vcn; 4815 4816 rno = ino_get(&oe->ref); 4817 if (rno <= MFT_REC_MIRR && 4818 size < (MFT_REC_VOL + 1) * sbi->record_size && 4819 oe->type == ATTR_DATA) { 4820 goto next_dirty_page_vcn; 4821 } 4822 4823 lcn = le64_to_cpu(dp->page_lcns[i]); 4824 4825 if ((!run_lookup_entry(oa->run1, vcn, &lcn0, &len0, NULL) || 4826 lcn0 != lcn) && 4827 !run_add_entry(oa->run1, vcn, lcn, 1, false)) { 4828 err = -ENOMEM; 4829 goto out; 4830 } 4831 attr = oa->attr; 4832 if (size > le64_to_cpu(attr->nres.alloc_size)) { 4833 attr->nres.valid_size = attr->nres.data_size = 4834 attr->nres.alloc_size = cpu_to_le64(size); 4835 } 4836 goto next_dirty_page_vcn; 4837 4838 do_redo_1: 4839 /* 4840 * Perform the Redo Pass, to restore all of the dirty pages to the same 4841 * contents that they had immediately before the crash. If the dirty 4842 * page table is empty, then we can skip the entire Redo Pass. 4843 */ 4844 if (!dptbl || !dptbl->total) 4845 goto do_undo_action; 4846 4847 rec_lsn = rlsn; 4848 4849 /* 4850 * Read the record at the Redo lsn, before falling 4851 * into common code to handle each record. 4852 */ 4853 err = read_log_rec_lcb(log, rlsn, lcb_ctx_next, &lcb); 4854 if (err) 4855 goto out; 4856 4857 /* 4858 * Now loop to read all of our log records forwards, until 4859 * we hit the end of the file, cleaning up at the end. 4860 */ 4861 do_action_next: 4862 frh = lcb->lrh; 4863 4864 if (LfsClientRecord != frh->record_type) 4865 goto read_next_log_do_action; 4866 4867 transact_id = le32_to_cpu(frh->transact_id); 4868 rec_len = le32_to_cpu(frh->client_data_len); 4869 lrh = lcb->log_rec; 4870 4871 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) { 4872 err = -EINVAL; 4873 goto out; 4874 } 4875 4876 /* Ignore log records that do not update pages. */ 4877 if (lrh->lcns_follow) 4878 goto find_dirty_page; 4879 4880 goto read_next_log_do_action; 4881 4882 find_dirty_page: 4883 t16 = le16_to_cpu(lrh->target_attr); 4884 t64 = le64_to_cpu(lrh->target_vcn); 4885 dp = find_dp(dptbl, t16, t64); 4886 4887 if (!dp) 4888 goto read_next_log_do_action; 4889 4890 if (rec_lsn < le64_to_cpu(dp->oldest_lsn)) 4891 goto read_next_log_do_action; 4892 4893 t16 = le16_to_cpu(lrh->target_attr); 4894 if (t16 >= bytes_per_rt(oatbl)) { 4895 err = -EINVAL; 4896 goto out; 4897 } 4898 4899 oe = Add2Ptr(oatbl, t16); 4900 4901 if (oe->next != RESTART_ENTRY_ALLOCATED_LE) { 4902 err = -EINVAL; 4903 goto out; 4904 } 4905 4906 oa = oe->ptr; 4907 4908 if (!oa) { 4909 err = -EINVAL; 4910 goto out; 4911 } 4912 attr = oa->attr; 4913 4914 vcn = le64_to_cpu(lrh->target_vcn); 4915 4916 if (!run_lookup_entry(oa->run1, vcn, &lcn, NULL, NULL) || 4917 lcn == SPARSE_LCN) { 4918 goto read_next_log_do_action; 4919 } 4920 4921 /* Point to the Redo data and get its length. */ 4922 data = Add2Ptr(lrh, le16_to_cpu(lrh->redo_off)); 4923 dlen = le16_to_cpu(lrh->redo_len); 4924 4925 /* Shorten length by any Lcns which were deleted. */ 4926 saved_len = dlen; 4927 4928 for (i = le16_to_cpu(lrh->lcns_follow); i; i--) { 4929 size_t j; 4930 u32 alen, voff; 4931 4932 voff = le16_to_cpu(lrh->record_off) + 4933 le16_to_cpu(lrh->attr_off); 4934 voff += le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT; 4935 4936 /* If the Vcn question is allocated, we can just get out. */ 4937 j = le64_to_cpu(lrh->target_vcn) - le64_to_cpu(dp->vcn); 4938 if (dp->page_lcns[j + i - 1]) 4939 break; 4940 4941 if (!saved_len) 4942 saved_len = 1; 4943 4944 /* 4945 * Calculate the allocated space left relative to the 4946 * log record Vcn, after removing this unallocated Vcn. 4947 */ 4948 alen = (i - 1) << sbi->cluster_bits; 4949 4950 /* 4951 * If the update described this log record goes beyond 4952 * the allocated space, then we will have to reduce the length. 4953 */ 4954 if (voff >= alen) 4955 dlen = 0; 4956 else if (voff + dlen > alen) 4957 dlen = alen - voff; 4958 } 4959 4960 /* 4961 * If the resulting dlen from above is now zero, 4962 * we can skip this log record. 4963 */ 4964 if (!dlen && saved_len) 4965 goto read_next_log_do_action; 4966 4967 t16 = le16_to_cpu(lrh->redo_op); 4968 if (can_skip_action(t16)) 4969 goto read_next_log_do_action; 4970 4971 /* Apply the Redo operation a common routine. */ 4972 err = do_action(log, oe, lrh, t16, data, dlen, rec_len, &rec_lsn); 4973 if (err) 4974 goto out; 4975 4976 /* Keep reading and looping back until end of file. */ 4977 read_next_log_do_action: 4978 err = read_next_log_rec(log, lcb, &rec_lsn); 4979 if (!err && rec_lsn) 4980 goto do_action_next; 4981 4982 lcb_put(lcb); 4983 lcb = NULL; 4984 4985 do_undo_action: 4986 /* Scan Transaction Table. */ 4987 tr = NULL; 4988 transaction_table_next: 4989 tr = enum_rstbl(trtbl, tr); 4990 if (!tr) 4991 goto undo_action_done; 4992 4993 if (TransactionActive != tr->transact_state || !tr->undo_next_lsn) { 4994 free_rsttbl_idx(trtbl, PtrOffset(trtbl, tr)); 4995 goto transaction_table_next; 4996 } 4997 4998 log->transaction_id = PtrOffset(trtbl, tr); 4999 undo_next_lsn = le64_to_cpu(tr->undo_next_lsn); 5000 5001 /* 5002 * We only have to do anything if the transaction has 5003 * something its undo_next_lsn field. 5004 */ 5005 if (!undo_next_lsn) 5006 goto commit_undo; 5007 5008 /* Read the first record to be undone by this transaction. */ 5009 err = read_log_rec_lcb(log, undo_next_lsn, lcb_ctx_undo_next, &lcb); 5010 if (err) 5011 goto out; 5012 5013 /* 5014 * Now loop to read all of our log records forwards, 5015 * until we hit the end of the file, cleaning up at the end. 5016 */ 5017 undo_action_next: 5018 5019 lrh = lcb->log_rec; 5020 frh = lcb->lrh; 5021 transact_id = le32_to_cpu(frh->transact_id); 5022 rec_len = le32_to_cpu(frh->client_data_len); 5023 5024 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) { 5025 err = -EINVAL; 5026 goto out; 5027 } 5028 5029 if (lrh->undo_op == cpu_to_le16(Noop)) 5030 goto read_next_log_undo_action; 5031 5032 oe = Add2Ptr(oatbl, le16_to_cpu(lrh->target_attr)); 5033 oa = oe->ptr; 5034 5035 t16 = le16_to_cpu(lrh->lcns_follow); 5036 if (!t16) 5037 goto add_allocated_vcns; 5038 5039 is_mapped = run_lookup_entry(oa->run1, le64_to_cpu(lrh->target_vcn), 5040 &lcn, &clen, NULL); 5041 5042 /* 5043 * If the mapping isn't already the table or the mapping 5044 * corresponds to a hole the mapping, we need to make sure 5045 * there is no partial page already memory. 5046 */ 5047 if (is_mapped && lcn != SPARSE_LCN && clen >= t16) 5048 goto add_allocated_vcns; 5049 5050 vcn = le64_to_cpu(lrh->target_vcn); 5051 vcn &= ~(u64)(log->clst_per_page - 1); 5052 5053 add_allocated_vcns: 5054 for (i = 0, vcn = le64_to_cpu(lrh->target_vcn), 5055 size = (vcn + 1) << sbi->cluster_bits; 5056 i < t16; i++, vcn += 1, size += sbi->cluster_size) { 5057 attr = oa->attr; 5058 if (!attr->non_res) { 5059 if (size > le32_to_cpu(attr->res.data_size)) 5060 attr->res.data_size = cpu_to_le32(size); 5061 } else { 5062 if (size > le64_to_cpu(attr->nres.data_size)) 5063 attr->nres.valid_size = attr->nres.data_size = 5064 attr->nres.alloc_size = 5065 cpu_to_le64(size); 5066 } 5067 } 5068 5069 t16 = le16_to_cpu(lrh->undo_op); 5070 if (can_skip_action(t16)) 5071 goto read_next_log_undo_action; 5072 5073 /* Point to the Redo data and get its length. */ 5074 data = Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)); 5075 dlen = le16_to_cpu(lrh->undo_len); 5076 5077 /* It is time to apply the undo action. */ 5078 err = do_action(log, oe, lrh, t16, data, dlen, rec_len, NULL); 5079 5080 read_next_log_undo_action: 5081 /* 5082 * Keep reading and looping back until we have read the 5083 * last record for this transaction. 5084 */ 5085 err = read_next_log_rec(log, lcb, &rec_lsn); 5086 if (err) 5087 goto out; 5088 5089 if (rec_lsn) 5090 goto undo_action_next; 5091 5092 lcb_put(lcb); 5093 lcb = NULL; 5094 5095 commit_undo: 5096 free_rsttbl_idx(trtbl, log->transaction_id); 5097 5098 log->transaction_id = 0; 5099 5100 goto transaction_table_next; 5101 5102 undo_action_done: 5103 5104 ntfs_update_mftmirr(sbi, 0); 5105 5106 sbi->flags &= ~NTFS_FLAGS_NEED_REPLAY; 5107 5108 end_reply: 5109 5110 err = 0; 5111 if (is_ro) 5112 goto out; 5113 5114 rh = kzalloc(log->page_size, GFP_NOFS); 5115 if (!rh) { 5116 err = -ENOMEM; 5117 goto out; 5118 } 5119 5120 rh->rhdr.sign = NTFS_RSTR_SIGNATURE; 5121 rh->rhdr.fix_off = cpu_to_le16(offsetof(struct RESTART_HDR, fixups)); 5122 t16 = (log->page_size >> SECTOR_SHIFT) + 1; 5123 rh->rhdr.fix_num = cpu_to_le16(t16); 5124 rh->sys_page_size = cpu_to_le32(log->page_size); 5125 rh->page_size = cpu_to_le32(log->page_size); 5126 5127 t16 = ALIGN(offsetof(struct RESTART_HDR, fixups) + sizeof(short) * t16, 5128 8); 5129 rh->ra_off = cpu_to_le16(t16); 5130 rh->minor_ver = cpu_to_le16(1); // 0x1A: 5131 rh->major_ver = cpu_to_le16(1); // 0x1C: 5132 5133 ra2 = Add2Ptr(rh, t16); 5134 memcpy(ra2, ra, sizeof(struct RESTART_AREA)); 5135 5136 ra2->client_idx[0] = 0; 5137 ra2->client_idx[1] = LFS_NO_CLIENT_LE; 5138 ra2->flags = cpu_to_le16(2); 5139 5140 le32_add_cpu(&ra2->open_log_count, 1); 5141 5142 ntfs_fix_pre_write(&rh->rhdr, log->page_size); 5143 5144 err = ntfs_sb_write_run(sbi, &ni->file.run, 0, rh, log->page_size, 0); 5145 if (!err) 5146 err = ntfs_sb_write_run(sbi, &log->ni->file.run, log->page_size, 5147 rh, log->page_size, 0); 5148 5149 kfree(rh); 5150 if (err) 5151 goto out; 5152 5153 out: 5154 kfree(rst); 5155 if (lcb) 5156 lcb_put(lcb); 5157 5158 /* 5159 * Scan the Open Attribute Table to close all of 5160 * the open attributes. 5161 */ 5162 oe = NULL; 5163 while ((oe = enum_rstbl(oatbl, oe))) { 5164 rno = ino_get(&oe->ref); 5165 5166 if (oe->is_attr_name == 1) { 5167 kfree(oe->ptr); 5168 oe->ptr = NULL; 5169 continue; 5170 } 5171 5172 if (oe->is_attr_name) 5173 continue; 5174 5175 oa = oe->ptr; 5176 if (!oa) 5177 continue; 5178 5179 run_close(&oa->run0); 5180 kfree(oa->attr); 5181 if (oa->ni) 5182 iput(&oa->ni->vfs_inode); 5183 kfree(oa); 5184 } 5185 5186 kfree(trtbl); 5187 kfree(oatbl); 5188 kfree(dptbl); 5189 kfree(attr_names); 5190 kfree(rst_info.r_page); 5191 5192 kfree(ra); 5193 kfree(log->one_page_buf); 5194 5195 if (err) 5196 sbi->flags |= NTFS_FLAGS_NEED_REPLAY; 5197 5198 if (err == -EROFS) 5199 err = 0; 5200 else if (log->set_dirty) 5201 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 5202 5203 kfree(log); 5204 5205 return err; 5206 } 5207