1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * 4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. 5 * 6 */ 7 8 #include <linux/blkdev.h> 9 #include <linux/fs.h> 10 #include <linux/random.h> 11 #include <linux/slab.h> 12 13 #include "debug.h" 14 #include "ntfs.h" 15 #include "ntfs_fs.h" 16 17 /* 18 * LOG FILE structs 19 */ 20 21 // clang-format off 22 23 #define MaxLogFileSize 0x100000000ull 24 #define DefaultLogPageSize 4096 25 #define MinLogRecordPages 0x30 26 27 struct RESTART_HDR { 28 struct NTFS_RECORD_HEADER rhdr; // 'RSTR' 29 __le32 sys_page_size; // 0x10: Page size of the system which initialized the log. 30 __le32 page_size; // 0x14: Log page size used for this log file. 31 __le16 ra_off; // 0x18: 32 __le16 minor_ver; // 0x1A: 33 __le16 major_ver; // 0x1C: 34 __le16 fixups[]; 35 }; 36 37 #define LFS_NO_CLIENT 0xffff 38 #define LFS_NO_CLIENT_LE cpu_to_le16(0xffff) 39 40 struct CLIENT_REC { 41 __le64 oldest_lsn; 42 __le64 restart_lsn; // 0x08: 43 __le16 prev_client; // 0x10: 44 __le16 next_client; // 0x12: 45 __le16 seq_num; // 0x14: 46 u8 align[6]; // 0x16: 47 __le32 name_bytes; // 0x1C: In bytes. 48 __le16 name[32]; // 0x20: Name of client. 49 }; 50 51 static_assert(sizeof(struct CLIENT_REC) == 0x60); 52 53 /* Two copies of these will exist at the beginning of the log file */ 54 struct RESTART_AREA { 55 __le64 current_lsn; // 0x00: Current logical end of log file. 56 __le16 log_clients; // 0x08: Maximum number of clients. 57 __le16 client_idx[2]; // 0x0A: Free/use index into the client record arrays. 58 __le16 flags; // 0x0E: See RESTART_SINGLE_PAGE_IO. 59 __le32 seq_num_bits; // 0x10: The number of bits in sequence number. 60 __le16 ra_len; // 0x14: 61 __le16 client_off; // 0x16: 62 __le64 l_size; // 0x18: Usable log file size. 63 __le32 last_lsn_data_len; // 0x20: 64 __le16 rec_hdr_len; // 0x24: Log page data offset. 65 __le16 data_off; // 0x26: Log page data length. 66 __le32 open_log_count; // 0x28: 67 __le32 align[5]; // 0x2C: 68 struct CLIENT_REC clients[]; // 0x40: 69 }; 70 71 struct LOG_REC_HDR { 72 __le16 redo_op; // 0x00: NTFS_LOG_OPERATION 73 __le16 undo_op; // 0x02: NTFS_LOG_OPERATION 74 __le16 redo_off; // 0x04: Offset to Redo record. 75 __le16 redo_len; // 0x06: Redo length. 76 __le16 undo_off; // 0x08: Offset to Undo record. 77 __le16 undo_len; // 0x0A: Undo length. 78 __le16 target_attr; // 0x0C: 79 __le16 lcns_follow; // 0x0E: 80 __le16 record_off; // 0x10: 81 __le16 attr_off; // 0x12: 82 __le16 cluster_off; // 0x14: 83 __le16 reserved; // 0x16: 84 __le64 target_vcn; // 0x18: 85 __le64 page_lcns[]; // 0x20: 86 }; 87 88 static_assert(sizeof(struct LOG_REC_HDR) == 0x20); 89 90 #define RESTART_ENTRY_ALLOCATED 0xFFFFFFFF 91 #define RESTART_ENTRY_ALLOCATED_LE cpu_to_le32(0xFFFFFFFF) 92 93 struct RESTART_TABLE { 94 __le16 size; // 0x00: In bytes 95 __le16 used; // 0x02: Entries 96 __le16 total; // 0x04: Entries 97 __le16 res[3]; // 0x06: 98 __le32 free_goal; // 0x0C: 99 __le32 first_free; // 0x10: 100 __le32 last_free; // 0x14: 101 102 }; 103 104 static_assert(sizeof(struct RESTART_TABLE) == 0x18); 105 106 struct ATTR_NAME_ENTRY { 107 __le16 off; // Offset in the Open attribute Table. 108 __le16 name_bytes; 109 __le16 name[]; 110 }; 111 112 struct OPEN_ATTR_ENRTY { 113 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 114 __le32 bytes_per_index; // 0x04: 115 enum ATTR_TYPE type; // 0x08: 116 u8 is_dirty_pages; // 0x0C: 117 u8 is_attr_name; // 0x0B: Faked field to manage 'ptr' 118 u8 name_len; // 0x0C: Faked field to manage 'ptr' 119 u8 res; 120 struct MFT_REF ref; // 0x10: File Reference of file containing attribute 121 __le64 open_record_lsn; // 0x18: 122 void *ptr; // 0x20: 123 }; 124 125 /* 32 bit version of 'struct OPEN_ATTR_ENRTY' */ 126 struct OPEN_ATTR_ENRTY_32 { 127 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 128 __le32 ptr; // 0x04: 129 struct MFT_REF ref; // 0x08: 130 __le64 open_record_lsn; // 0x10: 131 u8 is_dirty_pages; // 0x18: 132 u8 is_attr_name; // 0x19: 133 u8 res1[2]; 134 enum ATTR_TYPE type; // 0x1C: 135 u8 name_len; // 0x20: In wchar 136 u8 res2[3]; 137 __le32 AttributeName; // 0x24: 138 __le32 bytes_per_index; // 0x28: 139 }; 140 141 #define SIZEOF_OPENATTRIBUTEENTRY0 0x2c 142 // static_assert( 0x2C == sizeof(struct OPEN_ATTR_ENRTY_32) ); 143 static_assert(sizeof(struct OPEN_ATTR_ENRTY) < SIZEOF_OPENATTRIBUTEENTRY0); 144 145 /* 146 * One entry exists in the Dirty Pages Table for each page which is dirty at 147 * the time the Restart Area is written. 148 */ 149 struct DIR_PAGE_ENTRY { 150 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 151 __le32 target_attr; // 0x04: Index into the Open attribute Table 152 __le32 transfer_len; // 0x08: 153 __le32 lcns_follow; // 0x0C: 154 __le64 vcn; // 0x10: Vcn of dirty page 155 __le64 oldest_lsn; // 0x18: 156 __le64 page_lcns[]; // 0x20: 157 }; 158 159 static_assert(sizeof(struct DIR_PAGE_ENTRY) == 0x20); 160 161 /* 32 bit version of 'struct DIR_PAGE_ENTRY' */ 162 struct DIR_PAGE_ENTRY_32 { 163 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 164 __le32 target_attr; // 0x04: Index into the Open attribute Table 165 __le32 transfer_len; // 0x08: 166 __le32 lcns_follow; // 0x0C: 167 __le32 reserved; // 0x10: 168 __le32 vcn_low; // 0x14: Vcn of dirty page 169 __le32 vcn_hi; // 0x18: Vcn of dirty page 170 __le32 oldest_lsn_low; // 0x1C: 171 __le32 oldest_lsn_hi; // 0x1C: 172 __le32 page_lcns_low; // 0x24: 173 __le32 page_lcns_hi; // 0x24: 174 }; 175 176 static_assert(offsetof(struct DIR_PAGE_ENTRY_32, vcn_low) == 0x14); 177 static_assert(sizeof(struct DIR_PAGE_ENTRY_32) == 0x2c); 178 179 enum transact_state { 180 TransactionUninitialized = 0, 181 TransactionActive, 182 TransactionPrepared, 183 TransactionCommitted 184 }; 185 186 struct TRANSACTION_ENTRY { 187 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 188 u8 transact_state; // 0x04: 189 u8 reserved[3]; // 0x05: 190 __le64 first_lsn; // 0x08: 191 __le64 prev_lsn; // 0x10: 192 __le64 undo_next_lsn; // 0x18: 193 __le32 undo_records; // 0x20: Number of undo log records pending abort 194 __le32 undo_len; // 0x24: Total undo size 195 }; 196 197 static_assert(sizeof(struct TRANSACTION_ENTRY) == 0x28); 198 199 struct NTFS_RESTART { 200 __le32 major_ver; // 0x00: 201 __le32 minor_ver; // 0x04: 202 __le64 check_point_start; // 0x08: 203 __le64 open_attr_table_lsn; // 0x10: 204 __le64 attr_names_lsn; // 0x18: 205 __le64 dirty_pages_table_lsn; // 0x20: 206 __le64 transact_table_lsn; // 0x28: 207 __le32 open_attr_len; // 0x30: In bytes 208 __le32 attr_names_len; // 0x34: In bytes 209 __le32 dirty_pages_len; // 0x38: In bytes 210 __le32 transact_table_len; // 0x3C: In bytes 211 }; 212 213 static_assert(sizeof(struct NTFS_RESTART) == 0x40); 214 215 struct NEW_ATTRIBUTE_SIZES { 216 __le64 alloc_size; 217 __le64 valid_size; 218 __le64 data_size; 219 __le64 total_size; 220 }; 221 222 struct BITMAP_RANGE { 223 __le32 bitmap_off; 224 __le32 bits; 225 }; 226 227 struct LCN_RANGE { 228 __le64 lcn; 229 __le64 len; 230 }; 231 232 /* The following type defines the different log record types. */ 233 #define LfsClientRecord cpu_to_le32(1) 234 #define LfsClientRestart cpu_to_le32(2) 235 236 /* This is used to uniquely identify a client for a particular log file. */ 237 struct CLIENT_ID { 238 __le16 seq_num; 239 __le16 client_idx; 240 }; 241 242 /* This is the header that begins every Log Record in the log file. */ 243 struct LFS_RECORD_HDR { 244 __le64 this_lsn; // 0x00: 245 __le64 client_prev_lsn; // 0x08: 246 __le64 client_undo_next_lsn; // 0x10: 247 __le32 client_data_len; // 0x18: 248 struct CLIENT_ID client; // 0x1C: Owner of this log record. 249 __le32 record_type; // 0x20: LfsClientRecord or LfsClientRestart. 250 __le32 transact_id; // 0x24: 251 __le16 flags; // 0x28: LOG_RECORD_MULTI_PAGE 252 u8 align[6]; // 0x2A: 253 }; 254 255 #define LOG_RECORD_MULTI_PAGE cpu_to_le16(1) 256 257 static_assert(sizeof(struct LFS_RECORD_HDR) == 0x30); 258 259 struct LFS_RECORD { 260 __le16 next_record_off; // 0x00: Offset of the free space in the page, 261 u8 align[6]; // 0x02: 262 __le64 last_end_lsn; // 0x08: lsn for the last log record which ends on the page, 263 }; 264 265 static_assert(sizeof(struct LFS_RECORD) == 0x10); 266 267 struct RECORD_PAGE_HDR { 268 struct NTFS_RECORD_HEADER rhdr; // 'RCRD' 269 __le32 rflags; // 0x10: See LOG_PAGE_LOG_RECORD_END 270 __le16 page_count; // 0x14: 271 __le16 page_pos; // 0x16: 272 struct LFS_RECORD record_hdr; // 0x18: 273 __le16 fixups[10]; // 0x28: 274 __le32 file_off; // 0x3c: Used when major version >= 2 275 }; 276 277 // clang-format on 278 279 // Page contains the end of a log record. 280 #define LOG_PAGE_LOG_RECORD_END cpu_to_le32(0x00000001) 281 282 static inline bool is_log_record_end(const struct RECORD_PAGE_HDR *hdr) 283 { 284 return hdr->rflags & LOG_PAGE_LOG_RECORD_END; 285 } 286 287 static_assert(offsetof(struct RECORD_PAGE_HDR, file_off) == 0x3c); 288 289 /* 290 * END of NTFS LOG structures 291 */ 292 293 /* Define some tuning parameters to keep the restart tables a reasonable size. */ 294 #define INITIAL_NUMBER_TRANSACTIONS 5 295 296 enum NTFS_LOG_OPERATION { 297 298 Noop = 0x00, 299 CompensationLogRecord = 0x01, 300 InitializeFileRecordSegment = 0x02, 301 DeallocateFileRecordSegment = 0x03, 302 WriteEndOfFileRecordSegment = 0x04, 303 CreateAttribute = 0x05, 304 DeleteAttribute = 0x06, 305 UpdateResidentValue = 0x07, 306 UpdateNonresidentValue = 0x08, 307 UpdateMappingPairs = 0x09, 308 DeleteDirtyClusters = 0x0A, 309 SetNewAttributeSizes = 0x0B, 310 AddIndexEntryRoot = 0x0C, 311 DeleteIndexEntryRoot = 0x0D, 312 AddIndexEntryAllocation = 0x0E, 313 DeleteIndexEntryAllocation = 0x0F, 314 WriteEndOfIndexBuffer = 0x10, 315 SetIndexEntryVcnRoot = 0x11, 316 SetIndexEntryVcnAllocation = 0x12, 317 UpdateFileNameRoot = 0x13, 318 UpdateFileNameAllocation = 0x14, 319 SetBitsInNonresidentBitMap = 0x15, 320 ClearBitsInNonresidentBitMap = 0x16, 321 HotFix = 0x17, 322 EndTopLevelAction = 0x18, 323 PrepareTransaction = 0x19, 324 CommitTransaction = 0x1A, 325 ForgetTransaction = 0x1B, 326 OpenNonresidentAttribute = 0x1C, 327 OpenAttributeTableDump = 0x1D, 328 AttributeNamesDump = 0x1E, 329 DirtyPageTableDump = 0x1F, 330 TransactionTableDump = 0x20, 331 UpdateRecordDataRoot = 0x21, 332 UpdateRecordDataAllocation = 0x22, 333 334 UpdateRelativeDataInIndex = 335 0x23, // NtOfsRestartUpdateRelativeDataInIndex 336 UpdateRelativeDataInIndex2 = 0x24, 337 ZeroEndOfFileRecord = 0x25, 338 }; 339 340 /* 341 * Array for log records which require a target attribute. 342 * A true indicates that the corresponding restart operation 343 * requires a target attribute. 344 */ 345 static const u8 AttributeRequired[] = { 346 0xFC, 0xFB, 0xFF, 0x10, 0x06, 347 }; 348 349 static inline bool is_target_required(u16 op) 350 { 351 bool ret = op <= UpdateRecordDataAllocation && 352 (AttributeRequired[op >> 3] >> (op & 7) & 1); 353 return ret; 354 } 355 356 static inline bool can_skip_action(enum NTFS_LOG_OPERATION op) 357 { 358 switch (op) { 359 case Noop: 360 case DeleteDirtyClusters: 361 case HotFix: 362 case EndTopLevelAction: 363 case PrepareTransaction: 364 case CommitTransaction: 365 case ForgetTransaction: 366 case CompensationLogRecord: 367 case OpenNonresidentAttribute: 368 case OpenAttributeTableDump: 369 case AttributeNamesDump: 370 case DirtyPageTableDump: 371 case TransactionTableDump: 372 return true; 373 default: 374 return false; 375 } 376 } 377 378 enum { lcb_ctx_undo_next, lcb_ctx_prev, lcb_ctx_next }; 379 380 /* Bytes per restart table. */ 381 static inline u32 bytes_per_rt(const struct RESTART_TABLE *rt) 382 { 383 return le16_to_cpu(rt->used) * le16_to_cpu(rt->size) + 384 sizeof(struct RESTART_TABLE); 385 } 386 387 /* Log record length. */ 388 static inline u32 lrh_length(const struct LOG_REC_HDR *lr) 389 { 390 u16 t16 = le16_to_cpu(lr->lcns_follow); 391 392 return struct_size(lr, page_lcns, max_t(u16, 1, t16)); 393 } 394 395 struct lcb { 396 struct LFS_RECORD_HDR *lrh; // Log record header of the current lsn. 397 struct LOG_REC_HDR *log_rec; 398 u32 ctx_mode; // lcb_ctx_undo_next/lcb_ctx_prev/lcb_ctx_next 399 struct CLIENT_ID client; 400 bool alloc; // If true the we should deallocate 'log_rec'. 401 }; 402 403 static void lcb_put(struct lcb *lcb) 404 { 405 if (lcb->alloc) 406 kfree(lcb->log_rec); 407 kfree(lcb->lrh); 408 kfree(lcb); 409 } 410 411 /* Find the oldest lsn from active clients. */ 412 static inline void oldest_client_lsn(const struct CLIENT_REC *ca, 413 __le16 next_client, u64 *oldest_lsn) 414 { 415 while (next_client != LFS_NO_CLIENT_LE) { 416 const struct CLIENT_REC *cr = ca + le16_to_cpu(next_client); 417 u64 lsn = le64_to_cpu(cr->oldest_lsn); 418 419 /* Ignore this block if it's oldest lsn is 0. */ 420 if (lsn && lsn < *oldest_lsn) 421 *oldest_lsn = lsn; 422 423 next_client = cr->next_client; 424 } 425 } 426 427 static inline bool is_rst_page_hdr_valid(u32 file_off, 428 const struct RESTART_HDR *rhdr) 429 { 430 u32 sys_page = le32_to_cpu(rhdr->sys_page_size); 431 u32 page_size = le32_to_cpu(rhdr->page_size); 432 u32 end_usa; 433 u16 ro; 434 435 if (sys_page < SECTOR_SIZE || page_size < SECTOR_SIZE || 436 sys_page & (sys_page - 1) || page_size & (page_size - 1)) { 437 return false; 438 } 439 440 /* Check that if the file offset isn't 0, it is the system page size. */ 441 if (file_off && file_off != sys_page) 442 return false; 443 444 /* Check support version 1.1+. */ 445 if (le16_to_cpu(rhdr->major_ver) <= 1 && !rhdr->minor_ver) 446 return false; 447 448 if (le16_to_cpu(rhdr->major_ver) > 2) 449 return false; 450 451 ro = le16_to_cpu(rhdr->ra_off); 452 if (!IS_ALIGNED(ro, 8) || ro > sys_page) 453 return false; 454 455 end_usa = ((sys_page >> SECTOR_SHIFT) + 1) * sizeof(short); 456 end_usa += le16_to_cpu(rhdr->rhdr.fix_off); 457 458 if (ro < end_usa) 459 return false; 460 461 return true; 462 } 463 464 static inline bool is_rst_area_valid(const struct RESTART_HDR *rhdr) 465 { 466 const struct RESTART_AREA *ra; 467 u16 cl, fl, ul; 468 u32 off, l_size, file_dat_bits, file_size_round; 469 u16 ro = le16_to_cpu(rhdr->ra_off); 470 u32 sys_page = le32_to_cpu(rhdr->sys_page_size); 471 472 if (ro + offsetof(struct RESTART_AREA, l_size) > 473 SECTOR_SIZE - sizeof(short)) 474 return false; 475 476 ra = Add2Ptr(rhdr, ro); 477 cl = le16_to_cpu(ra->log_clients); 478 479 if (cl > 1) 480 return false; 481 482 off = le16_to_cpu(ra->client_off); 483 484 if (!IS_ALIGNED(off, 8) || ro + off > SECTOR_SIZE - sizeof(short)) 485 return false; 486 487 off += cl * sizeof(struct CLIENT_REC); 488 489 if (off > sys_page) 490 return false; 491 492 /* 493 * Check the restart length field and whether the entire 494 * restart area is contained that length. 495 */ 496 if (le16_to_cpu(rhdr->ra_off) + le16_to_cpu(ra->ra_len) > sys_page || 497 off > le16_to_cpu(ra->ra_len)) { 498 return false; 499 } 500 501 /* 502 * As a final check make sure that the use list and the free list 503 * are either empty or point to a valid client. 504 */ 505 fl = le16_to_cpu(ra->client_idx[0]); 506 ul = le16_to_cpu(ra->client_idx[1]); 507 if ((fl != LFS_NO_CLIENT && fl >= cl) || 508 (ul != LFS_NO_CLIENT && ul >= cl)) 509 return false; 510 511 /* Make sure the sequence number bits match the log file size. */ 512 l_size = le64_to_cpu(ra->l_size); 513 514 file_dat_bits = sizeof(u64) * 8 - le32_to_cpu(ra->seq_num_bits); 515 file_size_round = 1u << (file_dat_bits + 3); 516 if (file_size_round != l_size && 517 (file_size_round < l_size || (file_size_round / 2) > l_size)) { 518 return false; 519 } 520 521 /* The log page data offset and record header length must be quad-aligned. */ 522 if (!IS_ALIGNED(le16_to_cpu(ra->data_off), 8) || 523 !IS_ALIGNED(le16_to_cpu(ra->rec_hdr_len), 8)) 524 return false; 525 526 return true; 527 } 528 529 static inline bool is_client_area_valid(const struct RESTART_HDR *rhdr, 530 bool usa_error) 531 { 532 u16 ro = le16_to_cpu(rhdr->ra_off); 533 const struct RESTART_AREA *ra = Add2Ptr(rhdr, ro); 534 u16 ra_len = le16_to_cpu(ra->ra_len); 535 const struct CLIENT_REC *ca; 536 u32 i; 537 538 if (usa_error && ra_len + ro > SECTOR_SIZE - sizeof(short)) 539 return false; 540 541 /* Find the start of the client array. */ 542 ca = Add2Ptr(ra, le16_to_cpu(ra->client_off)); 543 544 /* 545 * Start with the free list. 546 * Check that all the clients are valid and that there isn't a cycle. 547 * Do the in-use list on the second pass. 548 */ 549 for (i = 0; i < 2; i++) { 550 u16 client_idx = le16_to_cpu(ra->client_idx[i]); 551 bool first_client = true; 552 u16 clients = le16_to_cpu(ra->log_clients); 553 554 while (client_idx != LFS_NO_CLIENT) { 555 const struct CLIENT_REC *cr; 556 557 if (!clients || 558 client_idx >= le16_to_cpu(ra->log_clients)) 559 return false; 560 561 clients -= 1; 562 cr = ca + client_idx; 563 564 client_idx = le16_to_cpu(cr->next_client); 565 566 if (first_client) { 567 first_client = false; 568 if (cr->prev_client != LFS_NO_CLIENT_LE) 569 return false; 570 } 571 } 572 } 573 574 return true; 575 } 576 577 /* 578 * remove_client 579 * 580 * Remove a client record from a client record list an restart area. 581 */ 582 static inline void remove_client(struct CLIENT_REC *ca, 583 const struct CLIENT_REC *cr, __le16 *head) 584 { 585 if (cr->prev_client == LFS_NO_CLIENT_LE) 586 *head = cr->next_client; 587 else 588 ca[le16_to_cpu(cr->prev_client)].next_client = cr->next_client; 589 590 if (cr->next_client != LFS_NO_CLIENT_LE) 591 ca[le16_to_cpu(cr->next_client)].prev_client = cr->prev_client; 592 } 593 594 /* 595 * add_client - Add a client record to the start of a list. 596 */ 597 static inline void add_client(struct CLIENT_REC *ca, u16 index, __le16 *head) 598 { 599 struct CLIENT_REC *cr = ca + index; 600 601 cr->prev_client = LFS_NO_CLIENT_LE; 602 cr->next_client = *head; 603 604 if (*head != LFS_NO_CLIENT_LE) 605 ca[le16_to_cpu(*head)].prev_client = cpu_to_le16(index); 606 607 *head = cpu_to_le16(index); 608 } 609 610 static inline void *enum_rstbl(struct RESTART_TABLE *t, void *c) 611 { 612 __le32 *e; 613 u32 bprt; 614 u16 rsize = t ? le16_to_cpu(t->size) : 0; 615 616 if (!c) { 617 if (!t || !t->total) 618 return NULL; 619 e = Add2Ptr(t, sizeof(struct RESTART_TABLE)); 620 } else { 621 e = Add2Ptr(c, rsize); 622 } 623 624 /* Loop until we hit the first one allocated, or the end of the list. */ 625 for (bprt = bytes_per_rt(t); PtrOffset(t, e) < bprt; 626 e = Add2Ptr(e, rsize)) { 627 if (*e == RESTART_ENTRY_ALLOCATED_LE) 628 return e; 629 } 630 return NULL; 631 } 632 633 /* 634 * find_dp - Search for a @vcn in Dirty Page Table. 635 */ 636 static inline struct DIR_PAGE_ENTRY *find_dp(struct RESTART_TABLE *dptbl, 637 u32 target_attr, u64 vcn) 638 { 639 __le32 ta = cpu_to_le32(target_attr); 640 struct DIR_PAGE_ENTRY *dp = NULL; 641 642 while ((dp = enum_rstbl(dptbl, dp))) { 643 u64 dp_vcn = le64_to_cpu(dp->vcn); 644 645 if (dp->target_attr == ta && vcn >= dp_vcn && 646 vcn < dp_vcn + le32_to_cpu(dp->lcns_follow)) { 647 return dp; 648 } 649 } 650 return NULL; 651 } 652 653 static inline u32 norm_file_page(u32 page_size, u32 *l_size, bool use_default) 654 { 655 if (use_default) 656 page_size = DefaultLogPageSize; 657 658 /* Round the file size down to a system page boundary. */ 659 *l_size &= ~(page_size - 1); 660 661 /* File should contain at least 2 restart pages and MinLogRecordPages pages. */ 662 if (*l_size < (MinLogRecordPages + 2) * page_size) 663 return 0; 664 665 return page_size; 666 } 667 668 static bool check_log_rec(const struct LOG_REC_HDR *lr, u32 bytes, u32 tr, 669 u32 bytes_per_attr_entry) 670 { 671 u16 t16; 672 673 if (bytes < sizeof(struct LOG_REC_HDR)) 674 return false; 675 if (!tr) 676 return false; 677 678 if ((tr - sizeof(struct RESTART_TABLE)) % 679 sizeof(struct TRANSACTION_ENTRY)) 680 return false; 681 682 if (le16_to_cpu(lr->redo_off) & 7) 683 return false; 684 685 if (le16_to_cpu(lr->undo_off) & 7) 686 return false; 687 688 if (lr->target_attr) 689 goto check_lcns; 690 691 if (is_target_required(le16_to_cpu(lr->redo_op))) 692 return false; 693 694 if (is_target_required(le16_to_cpu(lr->undo_op))) 695 return false; 696 697 check_lcns: 698 if (!lr->lcns_follow) 699 goto check_length; 700 701 t16 = le16_to_cpu(lr->target_attr); 702 if ((t16 - sizeof(struct RESTART_TABLE)) % bytes_per_attr_entry) 703 return false; 704 705 check_length: 706 if (bytes < lrh_length(lr)) 707 return false; 708 709 return true; 710 } 711 712 static bool check_rstbl(const struct RESTART_TABLE *rt, size_t bytes) 713 { 714 u32 ts; 715 u32 i, off; 716 u16 rsize = le16_to_cpu(rt->size); 717 u16 ne = le16_to_cpu(rt->used); 718 u32 ff = le32_to_cpu(rt->first_free); 719 u32 lf = le32_to_cpu(rt->last_free); 720 721 ts = rsize * ne + sizeof(struct RESTART_TABLE); 722 723 if (!rsize || rsize > bytes || 724 rsize + sizeof(struct RESTART_TABLE) > bytes || bytes < ts || 725 le16_to_cpu(rt->total) > ne || ff > ts || lf > ts || 726 (ff && ff < sizeof(struct RESTART_TABLE)) || 727 (lf && lf < sizeof(struct RESTART_TABLE))) { 728 return false; 729 } 730 731 /* 732 * Verify each entry is either allocated or points 733 * to a valid offset the table. 734 */ 735 for (i = 0; i < ne; i++) { 736 off = le32_to_cpu(*(__le32 *)Add2Ptr( 737 rt, i * rsize + sizeof(struct RESTART_TABLE))); 738 739 if (off != RESTART_ENTRY_ALLOCATED && off && 740 (off < sizeof(struct RESTART_TABLE) || 741 ((off - sizeof(struct RESTART_TABLE)) % rsize))) { 742 return false; 743 } 744 } 745 746 /* 747 * Walk through the list headed by the first entry to make 748 * sure none of the entries are currently being used. 749 */ 750 for (off = ff; off;) { 751 if (off == RESTART_ENTRY_ALLOCATED) 752 return false; 753 754 off = le32_to_cpu(*(__le32 *)Add2Ptr(rt, off)); 755 } 756 757 return true; 758 } 759 760 /* 761 * free_rsttbl_idx - Free a previously allocated index a Restart Table. 762 */ 763 static inline void free_rsttbl_idx(struct RESTART_TABLE *rt, u32 off) 764 { 765 __le32 *e; 766 u32 lf = le32_to_cpu(rt->last_free); 767 __le32 off_le = cpu_to_le32(off); 768 769 e = Add2Ptr(rt, off); 770 771 if (off < le32_to_cpu(rt->free_goal)) { 772 *e = rt->first_free; 773 rt->first_free = off_le; 774 if (!lf) 775 rt->last_free = off_le; 776 } else { 777 if (lf) 778 *(__le32 *)Add2Ptr(rt, lf) = off_le; 779 else 780 rt->first_free = off_le; 781 782 rt->last_free = off_le; 783 *e = 0; 784 } 785 786 le16_sub_cpu(&rt->total, 1); 787 } 788 789 static inline struct RESTART_TABLE *init_rsttbl(u16 esize, u16 used) 790 { 791 __le32 *e, *last_free; 792 u32 off; 793 u32 bytes = esize * used + sizeof(struct RESTART_TABLE); 794 u32 lf = sizeof(struct RESTART_TABLE) + (used - 1) * esize; 795 struct RESTART_TABLE *t = kzalloc(bytes, GFP_NOFS); 796 797 if (!t) 798 return NULL; 799 800 t->size = cpu_to_le16(esize); 801 t->used = cpu_to_le16(used); 802 t->free_goal = cpu_to_le32(~0u); 803 t->first_free = cpu_to_le32(sizeof(struct RESTART_TABLE)); 804 t->last_free = cpu_to_le32(lf); 805 806 e = (__le32 *)(t + 1); 807 last_free = Add2Ptr(t, lf); 808 809 for (off = sizeof(struct RESTART_TABLE) + esize; e < last_free; 810 e = Add2Ptr(e, esize), off += esize) { 811 *e = cpu_to_le32(off); 812 } 813 return t; 814 } 815 816 static inline struct RESTART_TABLE *extend_rsttbl(struct RESTART_TABLE *tbl, 817 u32 add, u32 free_goal) 818 { 819 u16 esize = le16_to_cpu(tbl->size); 820 __le32 osize = cpu_to_le32(bytes_per_rt(tbl)); 821 u32 used = le16_to_cpu(tbl->used); 822 struct RESTART_TABLE *rt; 823 824 rt = init_rsttbl(esize, used + add); 825 if (!rt) 826 return NULL; 827 828 memcpy(rt + 1, tbl + 1, esize * used); 829 830 rt->free_goal = free_goal == ~0u 831 ? cpu_to_le32(~0u) 832 : cpu_to_le32(sizeof(struct RESTART_TABLE) + 833 free_goal * esize); 834 835 if (tbl->first_free) { 836 rt->first_free = tbl->first_free; 837 *(__le32 *)Add2Ptr(rt, le32_to_cpu(tbl->last_free)) = osize; 838 } else { 839 rt->first_free = osize; 840 } 841 842 rt->total = tbl->total; 843 844 kfree(tbl); 845 return rt; 846 } 847 848 /* 849 * alloc_rsttbl_idx 850 * 851 * Allocate an index from within a previously initialized Restart Table. 852 */ 853 static inline void *alloc_rsttbl_idx(struct RESTART_TABLE **tbl) 854 { 855 u32 off; 856 __le32 *e; 857 struct RESTART_TABLE *t = *tbl; 858 859 if (!t->first_free) { 860 *tbl = t = extend_rsttbl(t, 16, ~0u); 861 if (!t) 862 return NULL; 863 } 864 865 off = le32_to_cpu(t->first_free); 866 867 /* Dequeue this entry and zero it. */ 868 e = Add2Ptr(t, off); 869 870 t->first_free = *e; 871 872 memset(e, 0, le16_to_cpu(t->size)); 873 874 *e = RESTART_ENTRY_ALLOCATED_LE; 875 876 /* If list is going empty, then we fix the last_free as well. */ 877 if (!t->first_free) 878 t->last_free = 0; 879 880 le16_add_cpu(&t->total, 1); 881 882 return Add2Ptr(t, off); 883 } 884 885 /* 886 * alloc_rsttbl_from_idx 887 * 888 * Allocate a specific index from within a previously initialized Restart Table. 889 */ 890 static inline void *alloc_rsttbl_from_idx(struct RESTART_TABLE **tbl, u32 vbo) 891 { 892 u32 off; 893 __le32 *e; 894 struct RESTART_TABLE *rt = *tbl; 895 u32 bytes = bytes_per_rt(rt); 896 u16 esize = le16_to_cpu(rt->size); 897 898 /* If the entry is not the table, we will have to extend the table. */ 899 if (vbo >= bytes) { 900 /* 901 * Extend the size by computing the number of entries between 902 * the existing size and the desired index and adding 1 to that. 903 */ 904 u32 bytes2idx = vbo - bytes; 905 906 /* 907 * There should always be an integral number of entries 908 * being added. Now extend the table. 909 */ 910 *tbl = rt = extend_rsttbl(rt, bytes2idx / esize + 1, bytes); 911 if (!rt) 912 return NULL; 913 } 914 915 /* See if the entry is already allocated, and just return if it is. */ 916 e = Add2Ptr(rt, vbo); 917 918 if (*e == RESTART_ENTRY_ALLOCATED_LE) 919 return e; 920 921 /* 922 * Walk through the table, looking for the entry we're 923 * interested and the previous entry. 924 */ 925 off = le32_to_cpu(rt->first_free); 926 e = Add2Ptr(rt, off); 927 928 if (off == vbo) { 929 /* this is a match */ 930 rt->first_free = *e; 931 goto skip_looking; 932 } 933 934 /* 935 * Need to walk through the list looking for the predecessor 936 * of our entry. 937 */ 938 for (;;) { 939 /* Remember the entry just found */ 940 u32 last_off = off; 941 __le32 *last_e = e; 942 943 /* Should never run of entries. */ 944 945 /* Lookup up the next entry the list. */ 946 off = le32_to_cpu(*last_e); 947 e = Add2Ptr(rt, off); 948 949 /* If this is our match we are done. */ 950 if (off == vbo) { 951 *last_e = *e; 952 953 /* 954 * If this was the last entry, we update that 955 * table as well. 956 */ 957 if (le32_to_cpu(rt->last_free) == off) 958 rt->last_free = cpu_to_le32(last_off); 959 break; 960 } 961 } 962 963 skip_looking: 964 /* If the list is now empty, we fix the last_free as well. */ 965 if (!rt->first_free) 966 rt->last_free = 0; 967 968 /* Zero this entry. */ 969 memset(e, 0, esize); 970 *e = RESTART_ENTRY_ALLOCATED_LE; 971 972 le16_add_cpu(&rt->total, 1); 973 974 return e; 975 } 976 977 #define RESTART_SINGLE_PAGE_IO cpu_to_le16(0x0001) 978 979 #define NTFSLOG_WRAPPED 0x00000001 980 #define NTFSLOG_MULTIPLE_PAGE_IO 0x00000002 981 #define NTFSLOG_NO_LAST_LSN 0x00000004 982 #define NTFSLOG_REUSE_TAIL 0x00000010 983 #define NTFSLOG_NO_OLDEST_LSN 0x00000020 984 985 /* Helper struct to work with NTFS $LogFile. */ 986 struct ntfs_log { 987 struct ntfs_inode *ni; 988 989 u32 l_size; 990 u32 sys_page_size; 991 u32 sys_page_mask; 992 u32 page_size; 993 u32 page_mask; // page_size - 1 994 u8 page_bits; 995 struct RECORD_PAGE_HDR *one_page_buf; 996 997 struct RESTART_TABLE *open_attr_tbl; 998 u32 transaction_id; 999 u32 clst_per_page; 1000 1001 u32 first_page; 1002 u32 next_page; 1003 u32 ra_off; 1004 u32 data_off; 1005 u32 restart_size; 1006 u32 data_size; 1007 u16 record_header_len; 1008 u64 seq_num; 1009 u32 seq_num_bits; 1010 u32 file_data_bits; 1011 u32 seq_num_mask; /* (1 << file_data_bits) - 1 */ 1012 1013 struct RESTART_AREA *ra; /* In-memory image of the next restart area. */ 1014 u32 ra_size; /* The usable size of the restart area. */ 1015 1016 /* 1017 * If true, then the in-memory restart area is to be written 1018 * to the first position on the disk. 1019 */ 1020 bool init_ra; 1021 bool set_dirty; /* True if we need to set dirty flag. */ 1022 1023 u64 oldest_lsn; 1024 1025 u32 oldest_lsn_off; 1026 u64 last_lsn; 1027 1028 u32 total_avail; 1029 u32 total_avail_pages; 1030 u32 total_undo_commit; 1031 u32 max_current_avail; 1032 u32 current_avail; 1033 u32 reserved; 1034 1035 short major_ver; 1036 short minor_ver; 1037 1038 u32 l_flags; /* See NTFSLOG_XXX */ 1039 u32 current_openlog_count; /* On-disk value for open_log_count. */ 1040 1041 struct CLIENT_ID client_id; 1042 u32 client_undo_commit; 1043 }; 1044 1045 static inline u32 lsn_to_vbo(struct ntfs_log *log, const u64 lsn) 1046 { 1047 u32 vbo = (lsn << log->seq_num_bits) >> (log->seq_num_bits - 3); 1048 1049 return vbo; 1050 } 1051 1052 /* Compute the offset in the log file of the next log page. */ 1053 static inline u32 next_page_off(struct ntfs_log *log, u32 off) 1054 { 1055 off = (off & ~log->sys_page_mask) + log->page_size; 1056 return off >= log->l_size ? log->first_page : off; 1057 } 1058 1059 static inline u32 lsn_to_page_off(struct ntfs_log *log, u64 lsn) 1060 { 1061 return (((u32)lsn) << 3) & log->page_mask; 1062 } 1063 1064 static inline u64 vbo_to_lsn(struct ntfs_log *log, u32 off, u64 Seq) 1065 { 1066 return (off >> 3) + (Seq << log->file_data_bits); 1067 } 1068 1069 static inline bool is_lsn_in_file(struct ntfs_log *log, u64 lsn) 1070 { 1071 return lsn >= log->oldest_lsn && 1072 lsn <= le64_to_cpu(log->ra->current_lsn); 1073 } 1074 1075 static inline u32 hdr_file_off(struct ntfs_log *log, 1076 struct RECORD_PAGE_HDR *hdr) 1077 { 1078 if (log->major_ver < 2) 1079 return le64_to_cpu(hdr->rhdr.lsn); 1080 1081 return le32_to_cpu(hdr->file_off); 1082 } 1083 1084 static inline u64 base_lsn(struct ntfs_log *log, 1085 const struct RECORD_PAGE_HDR *hdr, u64 lsn) 1086 { 1087 u64 h_lsn = le64_to_cpu(hdr->rhdr.lsn); 1088 u64 ret = (((h_lsn >> log->file_data_bits) + 1089 (lsn < (lsn_to_vbo(log, h_lsn) & ~log->page_mask) ? 1 : 0)) 1090 << log->file_data_bits) + 1091 ((((is_log_record_end(hdr) && 1092 h_lsn <= le64_to_cpu(hdr->record_hdr.last_end_lsn)) 1093 ? le16_to_cpu(hdr->record_hdr.next_record_off) 1094 : log->page_size) + 1095 lsn) >> 1096 3); 1097 1098 return ret; 1099 } 1100 1101 static inline bool verify_client_lsn(struct ntfs_log *log, 1102 const struct CLIENT_REC *client, u64 lsn) 1103 { 1104 return lsn >= le64_to_cpu(client->oldest_lsn) && 1105 lsn <= le64_to_cpu(log->ra->current_lsn) && lsn; 1106 } 1107 1108 struct restart_info { 1109 u64 last_lsn; 1110 struct RESTART_HDR *r_page; 1111 u32 vbo; 1112 bool chkdsk_was_run; 1113 bool valid_page; 1114 bool initialized; 1115 bool restart; 1116 }; 1117 1118 static int read_log_page(struct ntfs_log *log, u32 vbo, 1119 struct RECORD_PAGE_HDR **buffer, bool *usa_error) 1120 { 1121 int err = 0; 1122 u32 page_idx = vbo >> log->page_bits; 1123 u32 page_off = vbo & log->page_mask; 1124 u32 bytes = log->page_size - page_off; 1125 void *to_free = NULL; 1126 u32 page_vbo = page_idx << log->page_bits; 1127 struct RECORD_PAGE_HDR *page_buf; 1128 struct ntfs_inode *ni = log->ni; 1129 bool bBAAD; 1130 1131 if (vbo >= log->l_size) 1132 return -EINVAL; 1133 1134 if (!*buffer) { 1135 to_free = kmalloc(log->page_size, GFP_NOFS); 1136 if (!to_free) 1137 return -ENOMEM; 1138 *buffer = to_free; 1139 } 1140 1141 page_buf = page_off ? log->one_page_buf : *buffer; 1142 1143 err = ntfs_read_run_nb(ni->mi.sbi, &ni->file.run, page_vbo, page_buf, 1144 log->page_size, NULL); 1145 if (err) 1146 goto out; 1147 1148 if (page_buf->rhdr.sign != NTFS_FFFF_SIGNATURE) 1149 ntfs_fix_post_read(&page_buf->rhdr, PAGE_SIZE, false); 1150 1151 if (page_buf != *buffer) 1152 memcpy(*buffer, Add2Ptr(page_buf, page_off), bytes); 1153 1154 bBAAD = page_buf->rhdr.sign == NTFS_BAAD_SIGNATURE; 1155 1156 if (usa_error) 1157 *usa_error = bBAAD; 1158 /* Check that the update sequence array for this page is valid */ 1159 /* If we don't allow errors, raise an error status */ 1160 else if (bBAAD) 1161 err = -EINVAL; 1162 1163 out: 1164 if (err && to_free) { 1165 kfree(to_free); 1166 *buffer = NULL; 1167 } 1168 1169 return err; 1170 } 1171 1172 /* 1173 * log_read_rst 1174 * 1175 * It walks through 512 blocks of the file looking for a valid 1176 * restart page header. It will stop the first time we find a 1177 * valid page header. 1178 */ 1179 static int log_read_rst(struct ntfs_log *log, u32 l_size, bool first, 1180 struct restart_info *info) 1181 { 1182 u32 skip, vbo; 1183 struct RESTART_HDR *r_page = NULL; 1184 1185 /* Determine which restart area we are looking for. */ 1186 if (first) { 1187 vbo = 0; 1188 skip = 512; 1189 } else { 1190 vbo = 512; 1191 skip = 0; 1192 } 1193 1194 /* Loop continuously until we succeed. */ 1195 for (; vbo < l_size; vbo = 2 * vbo + skip, skip = 0) { 1196 bool usa_error; 1197 bool brst, bchk; 1198 struct RESTART_AREA *ra; 1199 1200 /* Read a page header at the current offset. */ 1201 if (read_log_page(log, vbo, (struct RECORD_PAGE_HDR **)&r_page, 1202 &usa_error)) { 1203 /* Ignore any errors. */ 1204 continue; 1205 } 1206 1207 /* Exit if the signature is a log record page. */ 1208 if (r_page->rhdr.sign == NTFS_RCRD_SIGNATURE) { 1209 info->initialized = true; 1210 break; 1211 } 1212 1213 brst = r_page->rhdr.sign == NTFS_RSTR_SIGNATURE; 1214 bchk = r_page->rhdr.sign == NTFS_CHKD_SIGNATURE; 1215 1216 if (!bchk && !brst) { 1217 if (r_page->rhdr.sign != NTFS_FFFF_SIGNATURE) { 1218 /* 1219 * Remember if the signature does not 1220 * indicate uninitialized file. 1221 */ 1222 info->initialized = true; 1223 } 1224 continue; 1225 } 1226 1227 ra = NULL; 1228 info->valid_page = false; 1229 info->initialized = true; 1230 info->vbo = vbo; 1231 1232 /* Let's check the restart area if this is a valid page. */ 1233 if (!is_rst_page_hdr_valid(vbo, r_page)) 1234 goto check_result; 1235 ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off)); 1236 1237 if (!is_rst_area_valid(r_page)) 1238 goto check_result; 1239 1240 /* 1241 * We have a valid restart page header and restart area. 1242 * If chkdsk was run or we have no clients then we have 1243 * no more checking to do. 1244 */ 1245 if (bchk || ra->client_idx[1] == LFS_NO_CLIENT_LE) { 1246 info->valid_page = true; 1247 goto check_result; 1248 } 1249 1250 if (is_client_area_valid(r_page, usa_error)) { 1251 info->valid_page = true; 1252 ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off)); 1253 } 1254 1255 check_result: 1256 /* 1257 * If chkdsk was run then update the caller's 1258 * values and return. 1259 */ 1260 if (r_page->rhdr.sign == NTFS_CHKD_SIGNATURE) { 1261 info->chkdsk_was_run = true; 1262 info->last_lsn = le64_to_cpu(r_page->rhdr.lsn); 1263 info->restart = true; 1264 info->r_page = r_page; 1265 return 0; 1266 } 1267 1268 /* 1269 * If we have a valid page then copy the values 1270 * we need from it. 1271 */ 1272 if (info->valid_page) { 1273 info->last_lsn = le64_to_cpu(ra->current_lsn); 1274 info->restart = true; 1275 info->r_page = r_page; 1276 return 0; 1277 } 1278 } 1279 1280 kfree(r_page); 1281 1282 return 0; 1283 } 1284 1285 /* 1286 * Ilog_init_pg_hdr - Init @log from restart page header. 1287 */ 1288 static void log_init_pg_hdr(struct ntfs_log *log, u32 sys_page_size, 1289 u32 page_size, u16 major_ver, u16 minor_ver) 1290 { 1291 log->sys_page_size = sys_page_size; 1292 log->sys_page_mask = sys_page_size - 1; 1293 log->page_size = page_size; 1294 log->page_mask = page_size - 1; 1295 log->page_bits = blksize_bits(page_size); 1296 1297 log->clst_per_page = log->page_size >> log->ni->mi.sbi->cluster_bits; 1298 if (!log->clst_per_page) 1299 log->clst_per_page = 1; 1300 1301 log->first_page = major_ver >= 2 1302 ? 0x22 * page_size 1303 : ((sys_page_size << 1) + (page_size << 1)); 1304 log->major_ver = major_ver; 1305 log->minor_ver = minor_ver; 1306 } 1307 1308 /* 1309 * log_create - Init @log in cases when we don't have a restart area to use. 1310 */ 1311 static void log_create(struct ntfs_log *log, u32 l_size, const u64 last_lsn, 1312 u32 open_log_count, bool wrapped, bool use_multi_page) 1313 { 1314 log->l_size = l_size; 1315 /* All file offsets must be quadword aligned. */ 1316 log->file_data_bits = blksize_bits(l_size) - 3; 1317 log->seq_num_mask = (8 << log->file_data_bits) - 1; 1318 log->seq_num_bits = sizeof(u64) * 8 - log->file_data_bits; 1319 log->seq_num = (last_lsn >> log->file_data_bits) + 2; 1320 log->next_page = log->first_page; 1321 log->oldest_lsn = log->seq_num << log->file_data_bits; 1322 log->oldest_lsn_off = 0; 1323 log->last_lsn = log->oldest_lsn; 1324 1325 log->l_flags |= NTFSLOG_NO_LAST_LSN | NTFSLOG_NO_OLDEST_LSN; 1326 1327 /* Set the correct flags for the I/O and indicate if we have wrapped. */ 1328 if (wrapped) 1329 log->l_flags |= NTFSLOG_WRAPPED; 1330 1331 if (use_multi_page) 1332 log->l_flags |= NTFSLOG_MULTIPLE_PAGE_IO; 1333 1334 /* Compute the log page values. */ 1335 log->data_off = ALIGN( 1336 offsetof(struct RECORD_PAGE_HDR, fixups) + 1337 sizeof(short) * ((log->page_size >> SECTOR_SHIFT) + 1), 1338 8); 1339 log->data_size = log->page_size - log->data_off; 1340 log->record_header_len = sizeof(struct LFS_RECORD_HDR); 1341 1342 /* Remember the different page sizes for reservation. */ 1343 log->reserved = log->data_size - log->record_header_len; 1344 1345 /* Compute the restart page values. */ 1346 log->ra_off = ALIGN( 1347 offsetof(struct RESTART_HDR, fixups) + 1348 sizeof(short) * 1349 ((log->sys_page_size >> SECTOR_SHIFT) + 1), 1350 8); 1351 log->restart_size = log->sys_page_size - log->ra_off; 1352 log->ra_size = struct_size(log->ra, clients, 1); 1353 log->current_openlog_count = open_log_count; 1354 1355 /* 1356 * The total available log file space is the number of 1357 * log file pages times the space available on each page. 1358 */ 1359 log->total_avail_pages = log->l_size - log->first_page; 1360 log->total_avail = log->total_avail_pages >> log->page_bits; 1361 1362 /* 1363 * We assume that we can't use the end of the page less than 1364 * the file record size. 1365 * Then we won't need to reserve more than the caller asks for. 1366 */ 1367 log->max_current_avail = log->total_avail * log->reserved; 1368 log->total_avail = log->total_avail * log->data_size; 1369 log->current_avail = log->max_current_avail; 1370 } 1371 1372 /* 1373 * log_create_ra - Fill a restart area from the values stored in @log. 1374 */ 1375 static struct RESTART_AREA *log_create_ra(struct ntfs_log *log) 1376 { 1377 struct CLIENT_REC *cr; 1378 struct RESTART_AREA *ra = kzalloc(log->restart_size, GFP_NOFS); 1379 1380 if (!ra) 1381 return NULL; 1382 1383 ra->current_lsn = cpu_to_le64(log->last_lsn); 1384 ra->log_clients = cpu_to_le16(1); 1385 ra->client_idx[1] = LFS_NO_CLIENT_LE; 1386 if (log->l_flags & NTFSLOG_MULTIPLE_PAGE_IO) 1387 ra->flags = RESTART_SINGLE_PAGE_IO; 1388 ra->seq_num_bits = cpu_to_le32(log->seq_num_bits); 1389 ra->ra_len = cpu_to_le16(log->ra_size); 1390 ra->client_off = cpu_to_le16(offsetof(struct RESTART_AREA, clients)); 1391 ra->l_size = cpu_to_le64(log->l_size); 1392 ra->rec_hdr_len = cpu_to_le16(log->record_header_len); 1393 ra->data_off = cpu_to_le16(log->data_off); 1394 ra->open_log_count = cpu_to_le32(log->current_openlog_count + 1); 1395 1396 cr = ra->clients; 1397 1398 cr->prev_client = LFS_NO_CLIENT_LE; 1399 cr->next_client = LFS_NO_CLIENT_LE; 1400 1401 return ra; 1402 } 1403 1404 static u32 final_log_off(struct ntfs_log *log, u64 lsn, u32 data_len) 1405 { 1406 u32 base_vbo = lsn << 3; 1407 u32 final_log_off = (base_vbo & log->seq_num_mask) & ~log->page_mask; 1408 u32 page_off = base_vbo & log->page_mask; 1409 u32 tail = log->page_size - page_off; 1410 1411 page_off -= 1; 1412 1413 /* Add the length of the header. */ 1414 data_len += log->record_header_len; 1415 1416 /* 1417 * If this lsn is contained this log page we are done. 1418 * Otherwise we need to walk through several log pages. 1419 */ 1420 if (data_len > tail) { 1421 data_len -= tail; 1422 tail = log->data_size; 1423 page_off = log->data_off - 1; 1424 1425 for (;;) { 1426 final_log_off = next_page_off(log, final_log_off); 1427 1428 /* 1429 * We are done if the remaining bytes 1430 * fit on this page. 1431 */ 1432 if (data_len <= tail) 1433 break; 1434 data_len -= tail; 1435 } 1436 } 1437 1438 /* 1439 * We add the remaining bytes to our starting position on this page 1440 * and then add that value to the file offset of this log page. 1441 */ 1442 return final_log_off + data_len + page_off; 1443 } 1444 1445 static int next_log_lsn(struct ntfs_log *log, const struct LFS_RECORD_HDR *rh, 1446 u64 *lsn) 1447 { 1448 int err; 1449 u64 this_lsn = le64_to_cpu(rh->this_lsn); 1450 u32 vbo = lsn_to_vbo(log, this_lsn); 1451 u32 end = 1452 final_log_off(log, this_lsn, le32_to_cpu(rh->client_data_len)); 1453 u32 hdr_off = end & ~log->sys_page_mask; 1454 u64 seq = this_lsn >> log->file_data_bits; 1455 struct RECORD_PAGE_HDR *page = NULL; 1456 1457 /* Remember if we wrapped. */ 1458 if (end <= vbo) 1459 seq += 1; 1460 1461 /* Log page header for this page. */ 1462 err = read_log_page(log, hdr_off, &page, NULL); 1463 if (err) 1464 return err; 1465 1466 /* 1467 * If the lsn we were given was not the last lsn on this page, 1468 * then the starting offset for the next lsn is on a quad word 1469 * boundary following the last file offset for the current lsn. 1470 * Otherwise the file offset is the start of the data on the next page. 1471 */ 1472 if (this_lsn == le64_to_cpu(page->rhdr.lsn)) { 1473 /* If we wrapped, we need to increment the sequence number. */ 1474 hdr_off = next_page_off(log, hdr_off); 1475 if (hdr_off == log->first_page) 1476 seq += 1; 1477 1478 vbo = hdr_off + log->data_off; 1479 } else { 1480 vbo = ALIGN(end, 8); 1481 } 1482 1483 /* Compute the lsn based on the file offset and the sequence count. */ 1484 *lsn = vbo_to_lsn(log, vbo, seq); 1485 1486 /* 1487 * If this lsn is within the legal range for the file, we return true. 1488 * Otherwise false indicates that there are no more lsn's. 1489 */ 1490 if (!is_lsn_in_file(log, *lsn)) 1491 *lsn = 0; 1492 1493 kfree(page); 1494 1495 return 0; 1496 } 1497 1498 /* 1499 * current_log_avail - Calculate the number of bytes available for log records. 1500 */ 1501 static u32 current_log_avail(struct ntfs_log *log) 1502 { 1503 u32 oldest_off, next_free_off, free_bytes; 1504 1505 if (log->l_flags & NTFSLOG_NO_LAST_LSN) { 1506 /* The entire file is available. */ 1507 return log->max_current_avail; 1508 } 1509 1510 /* 1511 * If there is a last lsn the restart area then we know that we will 1512 * have to compute the free range. 1513 * If there is no oldest lsn then start at the first page of the file. 1514 */ 1515 oldest_off = (log->l_flags & NTFSLOG_NO_OLDEST_LSN) 1516 ? log->first_page 1517 : (log->oldest_lsn_off & ~log->sys_page_mask); 1518 1519 /* 1520 * We will use the next log page offset to compute the next free page. 1521 * If we are going to reuse this page go to the next page. 1522 * If we are at the first page then use the end of the file. 1523 */ 1524 next_free_off = (log->l_flags & NTFSLOG_REUSE_TAIL) 1525 ? log->next_page + log->page_size 1526 : log->next_page == log->first_page 1527 ? log->l_size 1528 : log->next_page; 1529 1530 /* If the two offsets are the same then there is no available space. */ 1531 if (oldest_off == next_free_off) 1532 return 0; 1533 /* 1534 * If the free offset follows the oldest offset then subtract 1535 * this range from the total available pages. 1536 */ 1537 free_bytes = 1538 oldest_off < next_free_off 1539 ? log->total_avail_pages - (next_free_off - oldest_off) 1540 : oldest_off - next_free_off; 1541 1542 free_bytes >>= log->page_bits; 1543 return free_bytes * log->reserved; 1544 } 1545 1546 static bool check_subseq_log_page(struct ntfs_log *log, 1547 const struct RECORD_PAGE_HDR *rp, u32 vbo, 1548 u64 seq) 1549 { 1550 u64 lsn_seq; 1551 const struct NTFS_RECORD_HEADER *rhdr = &rp->rhdr; 1552 u64 lsn = le64_to_cpu(rhdr->lsn); 1553 1554 if (rhdr->sign == NTFS_FFFF_SIGNATURE || !rhdr->sign) 1555 return false; 1556 1557 /* 1558 * If the last lsn on the page occurs was written after the page 1559 * that caused the original error then we have a fatal error. 1560 */ 1561 lsn_seq = lsn >> log->file_data_bits; 1562 1563 /* 1564 * If the sequence number for the lsn the page is equal or greater 1565 * than lsn we expect, then this is a subsequent write. 1566 */ 1567 return lsn_seq >= seq || 1568 (lsn_seq == seq - 1 && log->first_page == vbo && 1569 vbo != (lsn_to_vbo(log, lsn) & ~log->page_mask)); 1570 } 1571 1572 /* 1573 * last_log_lsn 1574 * 1575 * Walks through the log pages for a file, searching for the 1576 * last log page written to the file. 1577 */ 1578 static int last_log_lsn(struct ntfs_log *log) 1579 { 1580 int err; 1581 bool usa_error = false; 1582 bool replace_page = false; 1583 bool reuse_page = log->l_flags & NTFSLOG_REUSE_TAIL; 1584 bool wrapped_file, wrapped; 1585 1586 u32 page_cnt = 1, page_pos = 1; 1587 u32 page_off = 0, page_off1 = 0, saved_off = 0; 1588 u32 final_off, second_off, final_off_prev = 0, second_off_prev = 0; 1589 u32 first_file_off = 0, second_file_off = 0; 1590 u32 part_io_count = 0; 1591 u32 tails = 0; 1592 u32 this_off, curpage_off, nextpage_off, remain_pages; 1593 1594 u64 expected_seq, seq_base = 0, lsn_base = 0; 1595 u64 best_lsn, best_lsn1, best_lsn2; 1596 u64 lsn_cur, lsn1, lsn2; 1597 u64 last_ok_lsn = reuse_page ? log->last_lsn : 0; 1598 1599 u16 cur_pos, best_page_pos; 1600 1601 struct RECORD_PAGE_HDR *page = NULL; 1602 struct RECORD_PAGE_HDR *tst_page = NULL; 1603 struct RECORD_PAGE_HDR *first_tail = NULL; 1604 struct RECORD_PAGE_HDR *second_tail = NULL; 1605 struct RECORD_PAGE_HDR *tail_page = NULL; 1606 struct RECORD_PAGE_HDR *second_tail_prev = NULL; 1607 struct RECORD_PAGE_HDR *first_tail_prev = NULL; 1608 struct RECORD_PAGE_HDR *page_bufs = NULL; 1609 struct RECORD_PAGE_HDR *best_page; 1610 1611 if (log->major_ver >= 2) { 1612 final_off = 0x02 * log->page_size; 1613 second_off = 0x12 * log->page_size; 1614 1615 // 0x10 == 0x12 - 0x2 1616 page_bufs = kmalloc(log->page_size * 0x10, GFP_NOFS); 1617 if (!page_bufs) 1618 return -ENOMEM; 1619 } else { 1620 second_off = log->first_page - log->page_size; 1621 final_off = second_off - log->page_size; 1622 } 1623 1624 next_tail: 1625 /* Read second tail page (at pos 3/0x12000). */ 1626 if (read_log_page(log, second_off, &second_tail, &usa_error) || 1627 usa_error || second_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) { 1628 kfree(second_tail); 1629 second_tail = NULL; 1630 second_file_off = 0; 1631 lsn2 = 0; 1632 } else { 1633 second_file_off = hdr_file_off(log, second_tail); 1634 lsn2 = le64_to_cpu(second_tail->record_hdr.last_end_lsn); 1635 } 1636 1637 /* Read first tail page (at pos 2/0x2000). */ 1638 if (read_log_page(log, final_off, &first_tail, &usa_error) || 1639 usa_error || first_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) { 1640 kfree(first_tail); 1641 first_tail = NULL; 1642 first_file_off = 0; 1643 lsn1 = 0; 1644 } else { 1645 first_file_off = hdr_file_off(log, first_tail); 1646 lsn1 = le64_to_cpu(first_tail->record_hdr.last_end_lsn); 1647 } 1648 1649 if (log->major_ver < 2) { 1650 int best_page; 1651 1652 first_tail_prev = first_tail; 1653 final_off_prev = first_file_off; 1654 second_tail_prev = second_tail; 1655 second_off_prev = second_file_off; 1656 tails = 1; 1657 1658 if (!first_tail && !second_tail) 1659 goto tail_read; 1660 1661 if (first_tail && second_tail) 1662 best_page = lsn1 < lsn2 ? 1 : 0; 1663 else if (first_tail) 1664 best_page = 0; 1665 else 1666 best_page = 1; 1667 1668 page_off = best_page ? second_file_off : first_file_off; 1669 seq_base = (best_page ? lsn2 : lsn1) >> log->file_data_bits; 1670 goto tail_read; 1671 } 1672 1673 best_lsn1 = first_tail ? base_lsn(log, first_tail, first_file_off) : 0; 1674 best_lsn2 = 1675 second_tail ? base_lsn(log, second_tail, second_file_off) : 0; 1676 1677 if (first_tail && second_tail) { 1678 if (best_lsn1 > best_lsn2) { 1679 best_lsn = best_lsn1; 1680 best_page = first_tail; 1681 this_off = first_file_off; 1682 } else { 1683 best_lsn = best_lsn2; 1684 best_page = second_tail; 1685 this_off = second_file_off; 1686 } 1687 } else if (first_tail) { 1688 best_lsn = best_lsn1; 1689 best_page = first_tail; 1690 this_off = first_file_off; 1691 } else if (second_tail) { 1692 best_lsn = best_lsn2; 1693 best_page = second_tail; 1694 this_off = second_file_off; 1695 } else { 1696 goto tail_read; 1697 } 1698 1699 best_page_pos = le16_to_cpu(best_page->page_pos); 1700 1701 if (!tails) { 1702 if (best_page_pos == page_pos) { 1703 seq_base = best_lsn >> log->file_data_bits; 1704 saved_off = page_off = le32_to_cpu(best_page->file_off); 1705 lsn_base = best_lsn; 1706 1707 memmove(page_bufs, best_page, log->page_size); 1708 1709 page_cnt = le16_to_cpu(best_page->page_count); 1710 if (page_cnt > 1) 1711 page_pos += 1; 1712 1713 tails = 1; 1714 } 1715 } else if (seq_base == (best_lsn >> log->file_data_bits) && 1716 saved_off + log->page_size == this_off && 1717 lsn_base < best_lsn && 1718 (page_pos != page_cnt || best_page_pos == page_pos || 1719 best_page_pos == 1) && 1720 (page_pos >= page_cnt || best_page_pos == page_pos)) { 1721 u16 bppc = le16_to_cpu(best_page->page_count); 1722 1723 saved_off += log->page_size; 1724 lsn_base = best_lsn; 1725 1726 memmove(Add2Ptr(page_bufs, tails * log->page_size), best_page, 1727 log->page_size); 1728 1729 tails += 1; 1730 1731 if (best_page_pos != bppc) { 1732 page_cnt = bppc; 1733 page_pos = best_page_pos; 1734 1735 if (page_cnt > 1) 1736 page_pos += 1; 1737 } else { 1738 page_pos = page_cnt = 1; 1739 } 1740 } else { 1741 kfree(first_tail); 1742 kfree(second_tail); 1743 goto tail_read; 1744 } 1745 1746 kfree(first_tail_prev); 1747 first_tail_prev = first_tail; 1748 final_off_prev = first_file_off; 1749 first_tail = NULL; 1750 1751 kfree(second_tail_prev); 1752 second_tail_prev = second_tail; 1753 second_off_prev = second_file_off; 1754 second_tail = NULL; 1755 1756 final_off += log->page_size; 1757 second_off += log->page_size; 1758 1759 if (tails < 0x10) 1760 goto next_tail; 1761 tail_read: 1762 first_tail = first_tail_prev; 1763 final_off = final_off_prev; 1764 1765 second_tail = second_tail_prev; 1766 second_off = second_off_prev; 1767 1768 page_cnt = page_pos = 1; 1769 1770 curpage_off = seq_base == log->seq_num ? min(log->next_page, page_off) 1771 : log->next_page; 1772 1773 wrapped_file = 1774 curpage_off == log->first_page && 1775 !(log->l_flags & (NTFSLOG_NO_LAST_LSN | NTFSLOG_REUSE_TAIL)); 1776 1777 expected_seq = wrapped_file ? (log->seq_num + 1) : log->seq_num; 1778 1779 nextpage_off = curpage_off; 1780 1781 next_page: 1782 tail_page = NULL; 1783 /* Read the next log page. */ 1784 err = read_log_page(log, curpage_off, &page, &usa_error); 1785 1786 /* Compute the next log page offset the file. */ 1787 nextpage_off = next_page_off(log, curpage_off); 1788 wrapped = nextpage_off == log->first_page; 1789 1790 if (tails > 1) { 1791 struct RECORD_PAGE_HDR *cur_page = 1792 Add2Ptr(page_bufs, curpage_off - page_off); 1793 1794 if (curpage_off == saved_off) { 1795 tail_page = cur_page; 1796 goto use_tail_page; 1797 } 1798 1799 if (page_off > curpage_off || curpage_off >= saved_off) 1800 goto use_tail_page; 1801 1802 if (page_off1) 1803 goto use_cur_page; 1804 1805 if (!err && !usa_error && 1806 page->rhdr.sign == NTFS_RCRD_SIGNATURE && 1807 cur_page->rhdr.lsn == page->rhdr.lsn && 1808 cur_page->record_hdr.next_record_off == 1809 page->record_hdr.next_record_off && 1810 ((page_pos == page_cnt && 1811 le16_to_cpu(page->page_pos) == 1) || 1812 (page_pos != page_cnt && 1813 le16_to_cpu(page->page_pos) == page_pos + 1 && 1814 le16_to_cpu(page->page_count) == page_cnt))) { 1815 cur_page = NULL; 1816 goto use_tail_page; 1817 } 1818 1819 page_off1 = page_off; 1820 1821 use_cur_page: 1822 1823 lsn_cur = le64_to_cpu(cur_page->rhdr.lsn); 1824 1825 if (last_ok_lsn != 1826 le64_to_cpu(cur_page->record_hdr.last_end_lsn) && 1827 ((lsn_cur >> log->file_data_bits) + 1828 ((curpage_off < 1829 (lsn_to_vbo(log, lsn_cur) & ~log->page_mask)) 1830 ? 1 1831 : 0)) != expected_seq) { 1832 goto check_tail; 1833 } 1834 1835 if (!is_log_record_end(cur_page)) { 1836 tail_page = NULL; 1837 last_ok_lsn = lsn_cur; 1838 goto next_page_1; 1839 } 1840 1841 log->seq_num = expected_seq; 1842 log->l_flags &= ~NTFSLOG_NO_LAST_LSN; 1843 log->last_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn); 1844 log->ra->current_lsn = cur_page->record_hdr.last_end_lsn; 1845 1846 if (log->record_header_len <= 1847 log->page_size - 1848 le16_to_cpu(cur_page->record_hdr.next_record_off)) { 1849 log->l_flags |= NTFSLOG_REUSE_TAIL; 1850 log->next_page = curpage_off; 1851 } else { 1852 log->l_flags &= ~NTFSLOG_REUSE_TAIL; 1853 log->next_page = nextpage_off; 1854 } 1855 1856 if (wrapped_file) 1857 log->l_flags |= NTFSLOG_WRAPPED; 1858 1859 last_ok_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn); 1860 goto next_page_1; 1861 } 1862 1863 /* 1864 * If we are at the expected first page of a transfer check to see 1865 * if either tail copy is at this offset. 1866 * If this page is the last page of a transfer, check if we wrote 1867 * a subsequent tail copy. 1868 */ 1869 if (page_cnt == page_pos || page_cnt == page_pos + 1) { 1870 /* 1871 * Check if the offset matches either the first or second 1872 * tail copy. It is possible it will match both. 1873 */ 1874 if (curpage_off == final_off) 1875 tail_page = first_tail; 1876 1877 /* 1878 * If we already matched on the first page then 1879 * check the ending lsn's. 1880 */ 1881 if (curpage_off == second_off) { 1882 if (!tail_page || 1883 (second_tail && 1884 le64_to_cpu(second_tail->record_hdr.last_end_lsn) > 1885 le64_to_cpu(first_tail->record_hdr 1886 .last_end_lsn))) { 1887 tail_page = second_tail; 1888 } 1889 } 1890 } 1891 1892 use_tail_page: 1893 if (tail_page) { 1894 /* We have a candidate for a tail copy. */ 1895 lsn_cur = le64_to_cpu(tail_page->record_hdr.last_end_lsn); 1896 1897 if (last_ok_lsn < lsn_cur) { 1898 /* 1899 * If the sequence number is not expected, 1900 * then don't use the tail copy. 1901 */ 1902 if (expected_seq != (lsn_cur >> log->file_data_bits)) 1903 tail_page = NULL; 1904 } else if (last_ok_lsn > lsn_cur) { 1905 /* 1906 * If the last lsn is greater than the one on 1907 * this page then forget this tail. 1908 */ 1909 tail_page = NULL; 1910 } 1911 } 1912 1913 /* 1914 *If we have an error on the current page, 1915 * we will break of this loop. 1916 */ 1917 if (err || usa_error) 1918 goto check_tail; 1919 1920 /* 1921 * Done if the last lsn on this page doesn't match the previous known 1922 * last lsn or the sequence number is not expected. 1923 */ 1924 lsn_cur = le64_to_cpu(page->rhdr.lsn); 1925 if (last_ok_lsn != lsn_cur && 1926 expected_seq != (lsn_cur >> log->file_data_bits)) { 1927 goto check_tail; 1928 } 1929 1930 /* 1931 * Check that the page position and page count values are correct. 1932 * If this is the first page of a transfer the position must be 1 1933 * and the count will be unknown. 1934 */ 1935 if (page_cnt == page_pos) { 1936 if (page->page_pos != cpu_to_le16(1) && 1937 (!reuse_page || page->page_pos != page->page_count)) { 1938 /* 1939 * If the current page is the first page we are 1940 * looking at and we are reusing this page then 1941 * it can be either the first or last page of a 1942 * transfer. Otherwise it can only be the first. 1943 */ 1944 goto check_tail; 1945 } 1946 } else if (le16_to_cpu(page->page_count) != page_cnt || 1947 le16_to_cpu(page->page_pos) != page_pos + 1) { 1948 /* 1949 * The page position better be 1 more than the last page 1950 * position and the page count better match. 1951 */ 1952 goto check_tail; 1953 } 1954 1955 /* 1956 * We have a valid page the file and may have a valid page 1957 * the tail copy area. 1958 * If the tail page was written after the page the file then 1959 * break of the loop. 1960 */ 1961 if (tail_page && 1962 le64_to_cpu(tail_page->record_hdr.last_end_lsn) > lsn_cur) { 1963 /* Remember if we will replace the page. */ 1964 replace_page = true; 1965 goto check_tail; 1966 } 1967 1968 tail_page = NULL; 1969 1970 if (is_log_record_end(page)) { 1971 /* 1972 * Since we have read this page we know the sequence number 1973 * is the same as our expected value. 1974 */ 1975 log->seq_num = expected_seq; 1976 log->last_lsn = le64_to_cpu(page->record_hdr.last_end_lsn); 1977 log->ra->current_lsn = page->record_hdr.last_end_lsn; 1978 log->l_flags &= ~NTFSLOG_NO_LAST_LSN; 1979 1980 /* 1981 * If there is room on this page for another header then 1982 * remember we want to reuse the page. 1983 */ 1984 if (log->record_header_len <= 1985 log->page_size - 1986 le16_to_cpu(page->record_hdr.next_record_off)) { 1987 log->l_flags |= NTFSLOG_REUSE_TAIL; 1988 log->next_page = curpage_off; 1989 } else { 1990 log->l_flags &= ~NTFSLOG_REUSE_TAIL; 1991 log->next_page = nextpage_off; 1992 } 1993 1994 /* Remember if we wrapped the log file. */ 1995 if (wrapped_file) 1996 log->l_flags |= NTFSLOG_WRAPPED; 1997 } 1998 1999 /* 2000 * Remember the last page count and position. 2001 * Also remember the last known lsn. 2002 */ 2003 page_cnt = le16_to_cpu(page->page_count); 2004 page_pos = le16_to_cpu(page->page_pos); 2005 last_ok_lsn = le64_to_cpu(page->rhdr.lsn); 2006 2007 next_page_1: 2008 2009 if (wrapped) { 2010 expected_seq += 1; 2011 wrapped_file = 1; 2012 } 2013 2014 curpage_off = nextpage_off; 2015 kfree(page); 2016 page = NULL; 2017 reuse_page = 0; 2018 goto next_page; 2019 2020 check_tail: 2021 if (tail_page) { 2022 log->seq_num = expected_seq; 2023 log->last_lsn = le64_to_cpu(tail_page->record_hdr.last_end_lsn); 2024 log->ra->current_lsn = tail_page->record_hdr.last_end_lsn; 2025 log->l_flags &= ~NTFSLOG_NO_LAST_LSN; 2026 2027 if (log->page_size - 2028 le16_to_cpu( 2029 tail_page->record_hdr.next_record_off) >= 2030 log->record_header_len) { 2031 log->l_flags |= NTFSLOG_REUSE_TAIL; 2032 log->next_page = curpage_off; 2033 } else { 2034 log->l_flags &= ~NTFSLOG_REUSE_TAIL; 2035 log->next_page = nextpage_off; 2036 } 2037 2038 if (wrapped) 2039 log->l_flags |= NTFSLOG_WRAPPED; 2040 } 2041 2042 /* Remember that the partial IO will start at the next page. */ 2043 second_off = nextpage_off; 2044 2045 /* 2046 * If the next page is the first page of the file then update 2047 * the sequence number for log records which begon the next page. 2048 */ 2049 if (wrapped) 2050 expected_seq += 1; 2051 2052 /* 2053 * If we have a tail copy or are performing single page I/O we can 2054 * immediately look at the next page. 2055 */ 2056 if (replace_page || (log->ra->flags & RESTART_SINGLE_PAGE_IO)) { 2057 page_cnt = 2; 2058 page_pos = 1; 2059 goto check_valid; 2060 } 2061 2062 if (page_pos != page_cnt) 2063 goto check_valid; 2064 /* 2065 * If the next page causes us to wrap to the beginning of the log 2066 * file then we know which page to check next. 2067 */ 2068 if (wrapped) { 2069 page_cnt = 2; 2070 page_pos = 1; 2071 goto check_valid; 2072 } 2073 2074 cur_pos = 2; 2075 2076 next_test_page: 2077 kfree(tst_page); 2078 tst_page = NULL; 2079 2080 /* Walk through the file, reading log pages. */ 2081 err = read_log_page(log, nextpage_off, &tst_page, &usa_error); 2082 2083 /* 2084 * If we get a USA error then assume that we correctly found 2085 * the end of the original transfer. 2086 */ 2087 if (usa_error) 2088 goto file_is_valid; 2089 2090 /* 2091 * If we were able to read the page, we examine it to see if it 2092 * is the same or different Io block. 2093 */ 2094 if (err) 2095 goto next_test_page_1; 2096 2097 if (le16_to_cpu(tst_page->page_pos) == cur_pos && 2098 check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) { 2099 page_cnt = le16_to_cpu(tst_page->page_count) + 1; 2100 page_pos = le16_to_cpu(tst_page->page_pos); 2101 goto check_valid; 2102 } else { 2103 goto file_is_valid; 2104 } 2105 2106 next_test_page_1: 2107 2108 nextpage_off = next_page_off(log, curpage_off); 2109 wrapped = nextpage_off == log->first_page; 2110 2111 if (wrapped) { 2112 expected_seq += 1; 2113 page_cnt = 2; 2114 page_pos = 1; 2115 } 2116 2117 cur_pos += 1; 2118 part_io_count += 1; 2119 if (!wrapped) 2120 goto next_test_page; 2121 2122 check_valid: 2123 /* Skip over the remaining pages this transfer. */ 2124 remain_pages = page_cnt - page_pos - 1; 2125 part_io_count += remain_pages; 2126 2127 while (remain_pages--) { 2128 nextpage_off = next_page_off(log, curpage_off); 2129 wrapped = nextpage_off == log->first_page; 2130 2131 if (wrapped) 2132 expected_seq += 1; 2133 } 2134 2135 /* Call our routine to check this log page. */ 2136 kfree(tst_page); 2137 tst_page = NULL; 2138 2139 err = read_log_page(log, nextpage_off, &tst_page, &usa_error); 2140 if (!err && !usa_error && 2141 check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) { 2142 err = -EINVAL; 2143 goto out; 2144 } 2145 2146 file_is_valid: 2147 2148 /* We have a valid file. */ 2149 if (page_off1 || tail_page) { 2150 struct RECORD_PAGE_HDR *tmp_page; 2151 2152 if (sb_rdonly(log->ni->mi.sbi->sb)) { 2153 err = -EROFS; 2154 goto out; 2155 } 2156 2157 if (page_off1) { 2158 tmp_page = Add2Ptr(page_bufs, page_off1 - page_off); 2159 tails -= (page_off1 - page_off) / log->page_size; 2160 if (!tail_page) 2161 tails -= 1; 2162 } else { 2163 tmp_page = tail_page; 2164 tails = 1; 2165 } 2166 2167 while (tails--) { 2168 u64 off = hdr_file_off(log, tmp_page); 2169 2170 if (!page) { 2171 page = kmalloc(log->page_size, GFP_NOFS); 2172 if (!page) 2173 return -ENOMEM; 2174 } 2175 2176 /* 2177 * Correct page and copy the data from this page 2178 * into it and flush it to disk. 2179 */ 2180 memcpy(page, tmp_page, log->page_size); 2181 2182 /* Fill last flushed lsn value flush the page. */ 2183 if (log->major_ver < 2) 2184 page->rhdr.lsn = page->record_hdr.last_end_lsn; 2185 else 2186 page->file_off = 0; 2187 2188 page->page_pos = page->page_count = cpu_to_le16(1); 2189 2190 ntfs_fix_pre_write(&page->rhdr, log->page_size); 2191 2192 err = ntfs_sb_write_run(log->ni->mi.sbi, 2193 &log->ni->file.run, off, page, 2194 log->page_size, 0); 2195 2196 if (err) 2197 goto out; 2198 2199 if (part_io_count && second_off == off) { 2200 second_off += log->page_size; 2201 part_io_count -= 1; 2202 } 2203 2204 tmp_page = Add2Ptr(tmp_page, log->page_size); 2205 } 2206 } 2207 2208 if (part_io_count) { 2209 if (sb_rdonly(log->ni->mi.sbi->sb)) { 2210 err = -EROFS; 2211 goto out; 2212 } 2213 } 2214 2215 out: 2216 kfree(second_tail); 2217 kfree(first_tail); 2218 kfree(page); 2219 kfree(tst_page); 2220 kfree(page_bufs); 2221 2222 return err; 2223 } 2224 2225 /* 2226 * read_log_rec_buf - Copy a log record from the file to a buffer. 2227 * 2228 * The log record may span several log pages and may even wrap the file. 2229 */ 2230 static int read_log_rec_buf(struct ntfs_log *log, 2231 const struct LFS_RECORD_HDR *rh, void *buffer) 2232 { 2233 int err; 2234 struct RECORD_PAGE_HDR *ph = NULL; 2235 u64 lsn = le64_to_cpu(rh->this_lsn); 2236 u32 vbo = lsn_to_vbo(log, lsn) & ~log->page_mask; 2237 u32 off = lsn_to_page_off(log, lsn) + log->record_header_len; 2238 u32 data_len = le32_to_cpu(rh->client_data_len); 2239 2240 /* 2241 * While there are more bytes to transfer, 2242 * we continue to attempt to perform the read. 2243 */ 2244 for (;;) { 2245 bool usa_error; 2246 u32 tail = log->page_size - off; 2247 2248 if (tail >= data_len) 2249 tail = data_len; 2250 2251 data_len -= tail; 2252 2253 err = read_log_page(log, vbo, &ph, &usa_error); 2254 if (err) 2255 goto out; 2256 2257 /* 2258 * The last lsn on this page better be greater or equal 2259 * to the lsn we are copying. 2260 */ 2261 if (lsn > le64_to_cpu(ph->rhdr.lsn)) { 2262 err = -EINVAL; 2263 goto out; 2264 } 2265 2266 memcpy(buffer, Add2Ptr(ph, off), tail); 2267 2268 /* If there are no more bytes to transfer, we exit the loop. */ 2269 if (!data_len) { 2270 if (!is_log_record_end(ph) || 2271 lsn > le64_to_cpu(ph->record_hdr.last_end_lsn)) { 2272 err = -EINVAL; 2273 goto out; 2274 } 2275 break; 2276 } 2277 2278 if (ph->rhdr.lsn == ph->record_hdr.last_end_lsn || 2279 lsn > le64_to_cpu(ph->rhdr.lsn)) { 2280 err = -EINVAL; 2281 goto out; 2282 } 2283 2284 vbo = next_page_off(log, vbo); 2285 off = log->data_off; 2286 2287 /* 2288 * Adjust our pointer the user's buffer to transfer 2289 * the next block to. 2290 */ 2291 buffer = Add2Ptr(buffer, tail); 2292 } 2293 2294 out: 2295 kfree(ph); 2296 return err; 2297 } 2298 2299 static int read_rst_area(struct ntfs_log *log, struct NTFS_RESTART **rst_, 2300 u64 *lsn) 2301 { 2302 int err; 2303 struct LFS_RECORD_HDR *rh = NULL; 2304 const struct CLIENT_REC *cr = 2305 Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)); 2306 u64 lsnr, lsnc = le64_to_cpu(cr->restart_lsn); 2307 u32 len; 2308 struct NTFS_RESTART *rst; 2309 2310 *lsn = 0; 2311 *rst_ = NULL; 2312 2313 /* If the client doesn't have a restart area, go ahead and exit now. */ 2314 if (!lsnc) 2315 return 0; 2316 2317 err = read_log_page(log, lsn_to_vbo(log, lsnc), 2318 (struct RECORD_PAGE_HDR **)&rh, NULL); 2319 if (err) 2320 return err; 2321 2322 rst = NULL; 2323 lsnr = le64_to_cpu(rh->this_lsn); 2324 2325 if (lsnc != lsnr) { 2326 /* If the lsn values don't match, then the disk is corrupt. */ 2327 err = -EINVAL; 2328 goto out; 2329 } 2330 2331 *lsn = lsnr; 2332 len = le32_to_cpu(rh->client_data_len); 2333 2334 if (!len) { 2335 err = 0; 2336 goto out; 2337 } 2338 2339 if (len < sizeof(struct NTFS_RESTART)) { 2340 err = -EINVAL; 2341 goto out; 2342 } 2343 2344 rst = kmalloc(len, GFP_NOFS); 2345 if (!rst) { 2346 err = -ENOMEM; 2347 goto out; 2348 } 2349 2350 /* Copy the data into the 'rst' buffer. */ 2351 err = read_log_rec_buf(log, rh, rst); 2352 if (err) 2353 goto out; 2354 2355 *rst_ = rst; 2356 rst = NULL; 2357 2358 out: 2359 kfree(rh); 2360 kfree(rst); 2361 2362 return err; 2363 } 2364 2365 static int find_log_rec(struct ntfs_log *log, u64 lsn, struct lcb *lcb) 2366 { 2367 int err; 2368 struct LFS_RECORD_HDR *rh = lcb->lrh; 2369 u32 rec_len, len; 2370 2371 /* Read the record header for this lsn. */ 2372 if (!rh) { 2373 err = read_log_page(log, lsn_to_vbo(log, lsn), 2374 (struct RECORD_PAGE_HDR **)&rh, NULL); 2375 2376 lcb->lrh = rh; 2377 if (err) 2378 return err; 2379 } 2380 2381 /* 2382 * If the lsn the log record doesn't match the desired 2383 * lsn then the disk is corrupt. 2384 */ 2385 if (lsn != le64_to_cpu(rh->this_lsn)) 2386 return -EINVAL; 2387 2388 len = le32_to_cpu(rh->client_data_len); 2389 2390 /* 2391 * Check that the length field isn't greater than the total 2392 * available space the log file. 2393 */ 2394 rec_len = len + log->record_header_len; 2395 if (rec_len >= log->total_avail) 2396 return -EINVAL; 2397 2398 /* 2399 * If the entire log record is on this log page, 2400 * put a pointer to the log record the context block. 2401 */ 2402 if (rh->flags & LOG_RECORD_MULTI_PAGE) { 2403 void *lr = kmalloc(len, GFP_NOFS); 2404 2405 if (!lr) 2406 return -ENOMEM; 2407 2408 lcb->log_rec = lr; 2409 lcb->alloc = true; 2410 2411 /* Copy the data into the buffer returned. */ 2412 err = read_log_rec_buf(log, rh, lr); 2413 if (err) 2414 return err; 2415 } else { 2416 /* If beyond the end of the current page -> an error. */ 2417 u32 page_off = lsn_to_page_off(log, lsn); 2418 2419 if (page_off + len + log->record_header_len > log->page_size) 2420 return -EINVAL; 2421 2422 lcb->log_rec = Add2Ptr(rh, sizeof(struct LFS_RECORD_HDR)); 2423 lcb->alloc = false; 2424 } 2425 2426 return 0; 2427 } 2428 2429 /* 2430 * read_log_rec_lcb - Init the query operation. 2431 */ 2432 static int read_log_rec_lcb(struct ntfs_log *log, u64 lsn, u32 ctx_mode, 2433 struct lcb **lcb_) 2434 { 2435 int err; 2436 const struct CLIENT_REC *cr; 2437 struct lcb *lcb; 2438 2439 switch (ctx_mode) { 2440 case lcb_ctx_undo_next: 2441 case lcb_ctx_prev: 2442 case lcb_ctx_next: 2443 break; 2444 default: 2445 return -EINVAL; 2446 } 2447 2448 /* Check that the given lsn is the legal range for this client. */ 2449 cr = Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)); 2450 2451 if (!verify_client_lsn(log, cr, lsn)) 2452 return -EINVAL; 2453 2454 lcb = kzalloc(sizeof(struct lcb), GFP_NOFS); 2455 if (!lcb) 2456 return -ENOMEM; 2457 lcb->client = log->client_id; 2458 lcb->ctx_mode = ctx_mode; 2459 2460 /* Find the log record indicated by the given lsn. */ 2461 err = find_log_rec(log, lsn, lcb); 2462 if (err) 2463 goto out; 2464 2465 *lcb_ = lcb; 2466 return 0; 2467 2468 out: 2469 lcb_put(lcb); 2470 *lcb_ = NULL; 2471 return err; 2472 } 2473 2474 /* 2475 * find_client_next_lsn 2476 * 2477 * Attempt to find the next lsn to return to a client based on the context mode. 2478 */ 2479 static int find_client_next_lsn(struct ntfs_log *log, struct lcb *lcb, u64 *lsn) 2480 { 2481 int err; 2482 u64 next_lsn; 2483 struct LFS_RECORD_HDR *hdr; 2484 2485 hdr = lcb->lrh; 2486 *lsn = 0; 2487 2488 if (lcb_ctx_next != lcb->ctx_mode) 2489 goto check_undo_next; 2490 2491 /* Loop as long as another lsn can be found. */ 2492 for (;;) { 2493 u64 current_lsn; 2494 2495 err = next_log_lsn(log, hdr, ¤t_lsn); 2496 if (err) 2497 goto out; 2498 2499 if (!current_lsn) 2500 break; 2501 2502 if (hdr != lcb->lrh) 2503 kfree(hdr); 2504 2505 hdr = NULL; 2506 err = read_log_page(log, lsn_to_vbo(log, current_lsn), 2507 (struct RECORD_PAGE_HDR **)&hdr, NULL); 2508 if (err) 2509 goto out; 2510 2511 if (memcmp(&hdr->client, &lcb->client, 2512 sizeof(struct CLIENT_ID))) { 2513 /*err = -EINVAL; */ 2514 } else if (LfsClientRecord == hdr->record_type) { 2515 kfree(lcb->lrh); 2516 lcb->lrh = hdr; 2517 *lsn = current_lsn; 2518 return 0; 2519 } 2520 } 2521 2522 out: 2523 if (hdr != lcb->lrh) 2524 kfree(hdr); 2525 return err; 2526 2527 check_undo_next: 2528 if (lcb_ctx_undo_next == lcb->ctx_mode) 2529 next_lsn = le64_to_cpu(hdr->client_undo_next_lsn); 2530 else if (lcb_ctx_prev == lcb->ctx_mode) 2531 next_lsn = le64_to_cpu(hdr->client_prev_lsn); 2532 else 2533 return 0; 2534 2535 if (!next_lsn) 2536 return 0; 2537 2538 if (!verify_client_lsn( 2539 log, Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)), 2540 next_lsn)) 2541 return 0; 2542 2543 hdr = NULL; 2544 err = read_log_page(log, lsn_to_vbo(log, next_lsn), 2545 (struct RECORD_PAGE_HDR **)&hdr, NULL); 2546 if (err) 2547 return err; 2548 kfree(lcb->lrh); 2549 lcb->lrh = hdr; 2550 2551 *lsn = next_lsn; 2552 2553 return 0; 2554 } 2555 2556 static int read_next_log_rec(struct ntfs_log *log, struct lcb *lcb, u64 *lsn) 2557 { 2558 int err; 2559 2560 err = find_client_next_lsn(log, lcb, lsn); 2561 if (err) 2562 return err; 2563 2564 if (!*lsn) 2565 return 0; 2566 2567 if (lcb->alloc) 2568 kfree(lcb->log_rec); 2569 2570 lcb->log_rec = NULL; 2571 lcb->alloc = false; 2572 kfree(lcb->lrh); 2573 lcb->lrh = NULL; 2574 2575 return find_log_rec(log, *lsn, lcb); 2576 } 2577 2578 static inline bool check_index_header(const struct INDEX_HDR *hdr, size_t bytes) 2579 { 2580 __le16 mask; 2581 u32 min_de, de_off, used, total; 2582 const struct NTFS_DE *e; 2583 2584 if (hdr_has_subnode(hdr)) { 2585 min_de = sizeof(struct NTFS_DE) + sizeof(u64); 2586 mask = NTFS_IE_HAS_SUBNODES; 2587 } else { 2588 min_de = sizeof(struct NTFS_DE); 2589 mask = 0; 2590 } 2591 2592 de_off = le32_to_cpu(hdr->de_off); 2593 used = le32_to_cpu(hdr->used); 2594 total = le32_to_cpu(hdr->total); 2595 2596 if (de_off > bytes - min_de || used > bytes || total > bytes || 2597 de_off + min_de > used || used > total) { 2598 return false; 2599 } 2600 2601 e = Add2Ptr(hdr, de_off); 2602 for (;;) { 2603 u16 esize = le16_to_cpu(e->size); 2604 struct NTFS_DE *next = Add2Ptr(e, esize); 2605 2606 if (esize < min_de || PtrOffset(hdr, next) > used || 2607 (e->flags & NTFS_IE_HAS_SUBNODES) != mask) { 2608 return false; 2609 } 2610 2611 if (de_is_last(e)) 2612 break; 2613 2614 e = next; 2615 } 2616 2617 return true; 2618 } 2619 2620 static inline bool check_index_buffer(const struct INDEX_BUFFER *ib, u32 bytes) 2621 { 2622 u16 fo; 2623 const struct NTFS_RECORD_HEADER *r = &ib->rhdr; 2624 2625 if (r->sign != NTFS_INDX_SIGNATURE) 2626 return false; 2627 2628 fo = (SECTOR_SIZE - ((bytes >> SECTOR_SHIFT) + 1) * sizeof(short)); 2629 2630 if (le16_to_cpu(r->fix_off) > fo) 2631 return false; 2632 2633 if ((le16_to_cpu(r->fix_num) - 1) * SECTOR_SIZE != bytes) 2634 return false; 2635 2636 return check_index_header(&ib->ihdr, 2637 bytes - offsetof(struct INDEX_BUFFER, ihdr)); 2638 } 2639 2640 static inline bool check_index_root(const struct ATTRIB *attr, 2641 struct ntfs_sb_info *sbi) 2642 { 2643 bool ret; 2644 const struct INDEX_ROOT *root = resident_data(attr); 2645 u8 index_bits = le32_to_cpu(root->index_block_size) >= sbi->cluster_size 2646 ? sbi->cluster_bits 2647 : SECTOR_SHIFT; 2648 u8 block_clst = root->index_block_clst; 2649 2650 if (le32_to_cpu(attr->res.data_size) < sizeof(struct INDEX_ROOT) || 2651 (root->type != ATTR_NAME && root->type != ATTR_ZERO) || 2652 (root->type == ATTR_NAME && 2653 root->rule != NTFS_COLLATION_TYPE_FILENAME) || 2654 (le32_to_cpu(root->index_block_size) != 2655 (block_clst << index_bits)) || 2656 (block_clst != 1 && block_clst != 2 && block_clst != 4 && 2657 block_clst != 8 && block_clst != 0x10 && block_clst != 0x20 && 2658 block_clst != 0x40 && block_clst != 0x80)) { 2659 return false; 2660 } 2661 2662 ret = check_index_header(&root->ihdr, 2663 le32_to_cpu(attr->res.data_size) - 2664 offsetof(struct INDEX_ROOT, ihdr)); 2665 return ret; 2666 } 2667 2668 static inline bool check_attr(const struct MFT_REC *rec, 2669 const struct ATTRIB *attr, 2670 struct ntfs_sb_info *sbi) 2671 { 2672 u32 asize = le32_to_cpu(attr->size); 2673 u32 rsize = 0; 2674 u64 dsize, svcn, evcn; 2675 u16 run_off; 2676 2677 /* Check the fixed part of the attribute record header. */ 2678 if (asize >= sbi->record_size || 2679 asize + PtrOffset(rec, attr) >= sbi->record_size || 2680 (attr->name_len && 2681 le16_to_cpu(attr->name_off) + attr->name_len * sizeof(short) > 2682 asize)) { 2683 return false; 2684 } 2685 2686 /* Check the attribute fields. */ 2687 switch (attr->non_res) { 2688 case 0: 2689 rsize = le32_to_cpu(attr->res.data_size); 2690 if (rsize >= asize || 2691 le16_to_cpu(attr->res.data_off) + rsize > asize) { 2692 return false; 2693 } 2694 break; 2695 2696 case 1: 2697 dsize = le64_to_cpu(attr->nres.data_size); 2698 svcn = le64_to_cpu(attr->nres.svcn); 2699 evcn = le64_to_cpu(attr->nres.evcn); 2700 run_off = le16_to_cpu(attr->nres.run_off); 2701 2702 if (svcn > evcn + 1 || run_off >= asize || 2703 le64_to_cpu(attr->nres.valid_size) > dsize || 2704 dsize > le64_to_cpu(attr->nres.alloc_size)) { 2705 return false; 2706 } 2707 2708 if (run_off > asize) 2709 return false; 2710 2711 if (run_unpack(NULL, sbi, 0, svcn, evcn, svcn, 2712 Add2Ptr(attr, run_off), asize - run_off) < 0) { 2713 return false; 2714 } 2715 2716 return true; 2717 2718 default: 2719 return false; 2720 } 2721 2722 switch (attr->type) { 2723 case ATTR_NAME: 2724 if (fname_full_size(Add2Ptr( 2725 attr, le16_to_cpu(attr->res.data_off))) > asize) { 2726 return false; 2727 } 2728 break; 2729 2730 case ATTR_ROOT: 2731 return check_index_root(attr, sbi); 2732 2733 case ATTR_STD: 2734 if (rsize < sizeof(struct ATTR_STD_INFO5) && 2735 rsize != sizeof(struct ATTR_STD_INFO)) { 2736 return false; 2737 } 2738 break; 2739 2740 case ATTR_LIST: 2741 case ATTR_ID: 2742 case ATTR_SECURE: 2743 case ATTR_LABEL: 2744 case ATTR_VOL_INFO: 2745 case ATTR_DATA: 2746 case ATTR_ALLOC: 2747 case ATTR_BITMAP: 2748 case ATTR_REPARSE: 2749 case ATTR_EA_INFO: 2750 case ATTR_EA: 2751 case ATTR_PROPERTYSET: 2752 case ATTR_LOGGED_UTILITY_STREAM: 2753 break; 2754 2755 default: 2756 return false; 2757 } 2758 2759 return true; 2760 } 2761 2762 static inline bool check_file_record(const struct MFT_REC *rec, 2763 const struct MFT_REC *rec2, 2764 struct ntfs_sb_info *sbi) 2765 { 2766 const struct ATTRIB *attr; 2767 u16 fo = le16_to_cpu(rec->rhdr.fix_off); 2768 u16 fn = le16_to_cpu(rec->rhdr.fix_num); 2769 u16 ao = le16_to_cpu(rec->attr_off); 2770 u32 rs = sbi->record_size; 2771 2772 /* Check the file record header for consistency. */ 2773 if (rec->rhdr.sign != NTFS_FILE_SIGNATURE || 2774 fo > (SECTOR_SIZE - ((rs >> SECTOR_SHIFT) + 1) * sizeof(short)) || 2775 (fn - 1) * SECTOR_SIZE != rs || ao < MFTRECORD_FIXUP_OFFSET_1 || 2776 ao > sbi->record_size - SIZEOF_RESIDENT || !is_rec_inuse(rec) || 2777 le32_to_cpu(rec->total) != rs) { 2778 return false; 2779 } 2780 2781 /* Loop to check all of the attributes. */ 2782 for (attr = Add2Ptr(rec, ao); attr->type != ATTR_END; 2783 attr = Add2Ptr(attr, le32_to_cpu(attr->size))) { 2784 if (check_attr(rec, attr, sbi)) 2785 continue; 2786 return false; 2787 } 2788 2789 return true; 2790 } 2791 2792 static inline int check_lsn(const struct NTFS_RECORD_HEADER *hdr, 2793 const u64 *rlsn) 2794 { 2795 u64 lsn; 2796 2797 if (!rlsn) 2798 return true; 2799 2800 lsn = le64_to_cpu(hdr->lsn); 2801 2802 if (hdr->sign == NTFS_HOLE_SIGNATURE) 2803 return false; 2804 2805 if (*rlsn > lsn) 2806 return true; 2807 2808 return false; 2809 } 2810 2811 static inline bool check_if_attr(const struct MFT_REC *rec, 2812 const struct LOG_REC_HDR *lrh) 2813 { 2814 u16 ro = le16_to_cpu(lrh->record_off); 2815 u16 o = le16_to_cpu(rec->attr_off); 2816 const struct ATTRIB *attr = Add2Ptr(rec, o); 2817 2818 while (o < ro) { 2819 u32 asize; 2820 2821 if (attr->type == ATTR_END) 2822 break; 2823 2824 asize = le32_to_cpu(attr->size); 2825 if (!asize) 2826 break; 2827 2828 o += asize; 2829 attr = Add2Ptr(attr, asize); 2830 } 2831 2832 return o == ro; 2833 } 2834 2835 static inline bool check_if_index_root(const struct MFT_REC *rec, 2836 const struct LOG_REC_HDR *lrh) 2837 { 2838 u16 ro = le16_to_cpu(lrh->record_off); 2839 u16 o = le16_to_cpu(rec->attr_off); 2840 const struct ATTRIB *attr = Add2Ptr(rec, o); 2841 2842 while (o < ro) { 2843 u32 asize; 2844 2845 if (attr->type == ATTR_END) 2846 break; 2847 2848 asize = le32_to_cpu(attr->size); 2849 if (!asize) 2850 break; 2851 2852 o += asize; 2853 attr = Add2Ptr(attr, asize); 2854 } 2855 2856 return o == ro && attr->type == ATTR_ROOT; 2857 } 2858 2859 static inline bool check_if_root_index(const struct ATTRIB *attr, 2860 const struct INDEX_HDR *hdr, 2861 const struct LOG_REC_HDR *lrh) 2862 { 2863 u16 ao = le16_to_cpu(lrh->attr_off); 2864 u32 de_off = le32_to_cpu(hdr->de_off); 2865 u32 o = PtrOffset(attr, hdr) + de_off; 2866 const struct NTFS_DE *e = Add2Ptr(hdr, de_off); 2867 u32 asize = le32_to_cpu(attr->size); 2868 2869 while (o < ao) { 2870 u16 esize; 2871 2872 if (o >= asize) 2873 break; 2874 2875 esize = le16_to_cpu(e->size); 2876 if (!esize) 2877 break; 2878 2879 o += esize; 2880 e = Add2Ptr(e, esize); 2881 } 2882 2883 return o == ao; 2884 } 2885 2886 static inline bool check_if_alloc_index(const struct INDEX_HDR *hdr, 2887 u32 attr_off) 2888 { 2889 u32 de_off = le32_to_cpu(hdr->de_off); 2890 u32 o = offsetof(struct INDEX_BUFFER, ihdr) + de_off; 2891 const struct NTFS_DE *e = Add2Ptr(hdr, de_off); 2892 u32 used = le32_to_cpu(hdr->used); 2893 2894 while (o < attr_off) { 2895 u16 esize; 2896 2897 if (de_off >= used) 2898 break; 2899 2900 esize = le16_to_cpu(e->size); 2901 if (!esize) 2902 break; 2903 2904 o += esize; 2905 de_off += esize; 2906 e = Add2Ptr(e, esize); 2907 } 2908 2909 return o == attr_off; 2910 } 2911 2912 static inline void change_attr_size(struct MFT_REC *rec, struct ATTRIB *attr, 2913 u32 nsize) 2914 { 2915 u32 asize = le32_to_cpu(attr->size); 2916 int dsize = nsize - asize; 2917 u8 *next = Add2Ptr(attr, asize); 2918 u32 used = le32_to_cpu(rec->used); 2919 2920 memmove(Add2Ptr(attr, nsize), next, used - PtrOffset(rec, next)); 2921 2922 rec->used = cpu_to_le32(used + dsize); 2923 attr->size = cpu_to_le32(nsize); 2924 } 2925 2926 struct OpenAttr { 2927 struct ATTRIB *attr; 2928 struct runs_tree *run1; 2929 struct runs_tree run0; 2930 struct ntfs_inode *ni; 2931 // CLST rno; 2932 }; 2933 2934 /* 2935 * cmp_type_and_name 2936 * 2937 * Return: 0 if 'attr' has the same type and name. 2938 */ 2939 static inline int cmp_type_and_name(const struct ATTRIB *a1, 2940 const struct ATTRIB *a2) 2941 { 2942 return a1->type != a2->type || a1->name_len != a2->name_len || 2943 (a1->name_len && memcmp(attr_name(a1), attr_name(a2), 2944 a1->name_len * sizeof(short))); 2945 } 2946 2947 static struct OpenAttr *find_loaded_attr(struct ntfs_log *log, 2948 const struct ATTRIB *attr, CLST rno) 2949 { 2950 struct OPEN_ATTR_ENRTY *oe = NULL; 2951 2952 while ((oe = enum_rstbl(log->open_attr_tbl, oe))) { 2953 struct OpenAttr *op_attr; 2954 2955 if (ino_get(&oe->ref) != rno) 2956 continue; 2957 2958 op_attr = (struct OpenAttr *)oe->ptr; 2959 if (!cmp_type_and_name(op_attr->attr, attr)) 2960 return op_attr; 2961 } 2962 return NULL; 2963 } 2964 2965 static struct ATTRIB *attr_create_nonres_log(struct ntfs_sb_info *sbi, 2966 enum ATTR_TYPE type, u64 size, 2967 const u16 *name, size_t name_len, 2968 __le16 flags) 2969 { 2970 struct ATTRIB *attr; 2971 u32 name_size = ALIGN(name_len * sizeof(short), 8); 2972 bool is_ext = flags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED); 2973 u32 asize = name_size + 2974 (is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT); 2975 2976 attr = kzalloc(asize, GFP_NOFS); 2977 if (!attr) 2978 return NULL; 2979 2980 attr->type = type; 2981 attr->size = cpu_to_le32(asize); 2982 attr->flags = flags; 2983 attr->non_res = 1; 2984 attr->name_len = name_len; 2985 2986 attr->nres.evcn = cpu_to_le64((u64)bytes_to_cluster(sbi, size) - 1); 2987 attr->nres.alloc_size = cpu_to_le64(ntfs_up_cluster(sbi, size)); 2988 attr->nres.data_size = cpu_to_le64(size); 2989 attr->nres.valid_size = attr->nres.data_size; 2990 if (is_ext) { 2991 attr->name_off = SIZEOF_NONRESIDENT_EX_LE; 2992 if (is_attr_compressed(attr)) 2993 attr->nres.c_unit = COMPRESSION_UNIT; 2994 2995 attr->nres.run_off = 2996 cpu_to_le16(SIZEOF_NONRESIDENT_EX + name_size); 2997 memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT_EX), name, 2998 name_len * sizeof(short)); 2999 } else { 3000 attr->name_off = SIZEOF_NONRESIDENT_LE; 3001 attr->nres.run_off = 3002 cpu_to_le16(SIZEOF_NONRESIDENT + name_size); 3003 memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT), name, 3004 name_len * sizeof(short)); 3005 } 3006 3007 return attr; 3008 } 3009 3010 /* 3011 * do_action - Common routine for the Redo and Undo Passes. 3012 * @rlsn: If it is NULL then undo. 3013 */ 3014 static int do_action(struct ntfs_log *log, struct OPEN_ATTR_ENRTY *oe, 3015 const struct LOG_REC_HDR *lrh, u32 op, void *data, 3016 u32 dlen, u32 rec_len, const u64 *rlsn) 3017 { 3018 int err = 0; 3019 struct ntfs_sb_info *sbi = log->ni->mi.sbi; 3020 struct inode *inode = NULL, *inode_parent; 3021 struct mft_inode *mi = NULL, *mi2_child = NULL; 3022 CLST rno = 0, rno_base = 0; 3023 struct INDEX_BUFFER *ib = NULL; 3024 struct MFT_REC *rec = NULL; 3025 struct ATTRIB *attr = NULL, *attr2; 3026 struct INDEX_HDR *hdr; 3027 struct INDEX_ROOT *root; 3028 struct NTFS_DE *e, *e1, *e2; 3029 struct NEW_ATTRIBUTE_SIZES *new_sz; 3030 struct ATTR_FILE_NAME *fname; 3031 struct OpenAttr *oa, *oa2; 3032 u32 nsize, t32, asize, used, esize, off, bits; 3033 u16 id, id2; 3034 u32 record_size = sbi->record_size; 3035 u64 t64; 3036 u16 roff = le16_to_cpu(lrh->record_off); 3037 u16 aoff = le16_to_cpu(lrh->attr_off); 3038 u64 lco = 0; 3039 u64 cbo = (u64)le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT; 3040 u64 tvo = le64_to_cpu(lrh->target_vcn) << sbi->cluster_bits; 3041 u64 vbo = cbo + tvo; 3042 void *buffer_le = NULL; 3043 u32 bytes = 0; 3044 bool a_dirty = false; 3045 u16 data_off; 3046 3047 oa = oe->ptr; 3048 3049 /* Big switch to prepare. */ 3050 switch (op) { 3051 /* ============================================================ 3052 * Process MFT records, as described by the current log record. 3053 * ============================================================ 3054 */ 3055 case InitializeFileRecordSegment: 3056 case DeallocateFileRecordSegment: 3057 case WriteEndOfFileRecordSegment: 3058 case CreateAttribute: 3059 case DeleteAttribute: 3060 case UpdateResidentValue: 3061 case UpdateMappingPairs: 3062 case SetNewAttributeSizes: 3063 case AddIndexEntryRoot: 3064 case DeleteIndexEntryRoot: 3065 case SetIndexEntryVcnRoot: 3066 case UpdateFileNameRoot: 3067 case UpdateRecordDataRoot: 3068 case ZeroEndOfFileRecord: 3069 rno = vbo >> sbi->record_bits; 3070 inode = ilookup(sbi->sb, rno); 3071 if (inode) { 3072 mi = &ntfs_i(inode)->mi; 3073 } else if (op == InitializeFileRecordSegment) { 3074 mi = kzalloc(sizeof(struct mft_inode), GFP_NOFS); 3075 if (!mi) 3076 return -ENOMEM; 3077 err = mi_format_new(mi, sbi, rno, 0, false); 3078 if (err) 3079 goto out; 3080 } else { 3081 /* Read from disk. */ 3082 err = mi_get(sbi, rno, &mi); 3083 if (err) 3084 return err; 3085 } 3086 rec = mi->mrec; 3087 3088 if (op == DeallocateFileRecordSegment) 3089 goto skip_load_parent; 3090 3091 if (InitializeFileRecordSegment != op) { 3092 if (rec->rhdr.sign == NTFS_BAAD_SIGNATURE) 3093 goto dirty_vol; 3094 if (!check_lsn(&rec->rhdr, rlsn)) 3095 goto out; 3096 if (!check_file_record(rec, NULL, sbi)) 3097 goto dirty_vol; 3098 attr = Add2Ptr(rec, roff); 3099 } 3100 3101 if (is_rec_base(rec) || InitializeFileRecordSegment == op) { 3102 rno_base = rno; 3103 goto skip_load_parent; 3104 } 3105 3106 rno_base = ino_get(&rec->parent_ref); 3107 inode_parent = ntfs_iget5(sbi->sb, &rec->parent_ref, NULL); 3108 if (IS_ERR(inode_parent)) 3109 goto skip_load_parent; 3110 3111 if (is_bad_inode(inode_parent)) { 3112 iput(inode_parent); 3113 goto skip_load_parent; 3114 } 3115 3116 if (ni_load_mi_ex(ntfs_i(inode_parent), rno, &mi2_child)) { 3117 iput(inode_parent); 3118 } else { 3119 if (mi2_child->mrec != mi->mrec) 3120 memcpy(mi2_child->mrec, mi->mrec, 3121 sbi->record_size); 3122 3123 if (inode) 3124 iput(inode); 3125 else if (mi) 3126 mi_put(mi); 3127 3128 inode = inode_parent; 3129 mi = mi2_child; 3130 rec = mi2_child->mrec; 3131 attr = Add2Ptr(rec, roff); 3132 } 3133 3134 skip_load_parent: 3135 inode_parent = NULL; 3136 break; 3137 3138 /* 3139 * Process attributes, as described by the current log record. 3140 */ 3141 case UpdateNonresidentValue: 3142 case AddIndexEntryAllocation: 3143 case DeleteIndexEntryAllocation: 3144 case WriteEndOfIndexBuffer: 3145 case SetIndexEntryVcnAllocation: 3146 case UpdateFileNameAllocation: 3147 case SetBitsInNonresidentBitMap: 3148 case ClearBitsInNonresidentBitMap: 3149 case UpdateRecordDataAllocation: 3150 attr = oa->attr; 3151 bytes = UpdateNonresidentValue == op ? dlen : 0; 3152 lco = (u64)le16_to_cpu(lrh->lcns_follow) << sbi->cluster_bits; 3153 3154 if (attr->type == ATTR_ALLOC) { 3155 t32 = le32_to_cpu(oe->bytes_per_index); 3156 if (bytes < t32) 3157 bytes = t32; 3158 } 3159 3160 if (!bytes) 3161 bytes = lco - cbo; 3162 3163 bytes += roff; 3164 if (attr->type == ATTR_ALLOC) 3165 bytes = (bytes + 511) & ~511; // align 3166 3167 buffer_le = kmalloc(bytes, GFP_NOFS); 3168 if (!buffer_le) 3169 return -ENOMEM; 3170 3171 err = ntfs_read_run_nb(sbi, oa->run1, vbo, buffer_le, bytes, 3172 NULL); 3173 if (err) 3174 goto out; 3175 3176 if (attr->type == ATTR_ALLOC && *(int *)buffer_le) 3177 ntfs_fix_post_read(buffer_le, bytes, false); 3178 break; 3179 3180 default: 3181 WARN_ON(1); 3182 } 3183 3184 /* Big switch to do operation. */ 3185 switch (op) { 3186 case InitializeFileRecordSegment: 3187 if (roff + dlen > record_size) 3188 goto dirty_vol; 3189 3190 memcpy(Add2Ptr(rec, roff), data, dlen); 3191 mi->dirty = true; 3192 break; 3193 3194 case DeallocateFileRecordSegment: 3195 clear_rec_inuse(rec); 3196 le16_add_cpu(&rec->seq, 1); 3197 mi->dirty = true; 3198 break; 3199 3200 case WriteEndOfFileRecordSegment: 3201 attr2 = (struct ATTRIB *)data; 3202 if (!check_if_attr(rec, lrh) || roff + dlen > record_size) 3203 goto dirty_vol; 3204 3205 memmove(attr, attr2, dlen); 3206 rec->used = cpu_to_le32(ALIGN(roff + dlen, 8)); 3207 3208 mi->dirty = true; 3209 break; 3210 3211 case CreateAttribute: 3212 attr2 = (struct ATTRIB *)data; 3213 asize = le32_to_cpu(attr2->size); 3214 used = le32_to_cpu(rec->used); 3215 3216 if (!check_if_attr(rec, lrh) || dlen < SIZEOF_RESIDENT || 3217 !IS_ALIGNED(asize, 8) || 3218 Add2Ptr(attr2, asize) > Add2Ptr(lrh, rec_len) || 3219 dlen > record_size - used) { 3220 goto dirty_vol; 3221 } 3222 3223 memmove(Add2Ptr(attr, asize), attr, used - roff); 3224 memcpy(attr, attr2, asize); 3225 3226 rec->used = cpu_to_le32(used + asize); 3227 id = le16_to_cpu(rec->next_attr_id); 3228 id2 = le16_to_cpu(attr2->id); 3229 if (id <= id2) 3230 rec->next_attr_id = cpu_to_le16(id2 + 1); 3231 if (is_attr_indexed(attr)) 3232 le16_add_cpu(&rec->hard_links, 1); 3233 3234 oa2 = find_loaded_attr(log, attr, rno_base); 3235 if (oa2) { 3236 void *p2 = kmemdup(attr, le32_to_cpu(attr->size), 3237 GFP_NOFS); 3238 if (p2) { 3239 // run_close(oa2->run1); 3240 kfree(oa2->attr); 3241 oa2->attr = p2; 3242 } 3243 } 3244 3245 mi->dirty = true; 3246 break; 3247 3248 case DeleteAttribute: 3249 asize = le32_to_cpu(attr->size); 3250 used = le32_to_cpu(rec->used); 3251 3252 if (!check_if_attr(rec, lrh)) 3253 goto dirty_vol; 3254 3255 rec->used = cpu_to_le32(used - asize); 3256 if (is_attr_indexed(attr)) 3257 le16_add_cpu(&rec->hard_links, -1); 3258 3259 memmove(attr, Add2Ptr(attr, asize), used - asize - roff); 3260 3261 mi->dirty = true; 3262 break; 3263 3264 case UpdateResidentValue: 3265 nsize = aoff + dlen; 3266 3267 if (!check_if_attr(rec, lrh)) 3268 goto dirty_vol; 3269 3270 asize = le32_to_cpu(attr->size); 3271 used = le32_to_cpu(rec->used); 3272 3273 if (lrh->redo_len == lrh->undo_len) { 3274 if (nsize > asize) 3275 goto dirty_vol; 3276 goto move_data; 3277 } 3278 3279 if (nsize > asize && nsize - asize > record_size - used) 3280 goto dirty_vol; 3281 3282 nsize = ALIGN(nsize, 8); 3283 data_off = le16_to_cpu(attr->res.data_off); 3284 3285 if (nsize < asize) { 3286 memmove(Add2Ptr(attr, aoff), data, dlen); 3287 data = NULL; // To skip below memmove(). 3288 } 3289 3290 memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize), 3291 used - le16_to_cpu(lrh->record_off) - asize); 3292 3293 rec->used = cpu_to_le32(used + nsize - asize); 3294 attr->size = cpu_to_le32(nsize); 3295 attr->res.data_size = cpu_to_le32(aoff + dlen - data_off); 3296 3297 move_data: 3298 if (data) 3299 memmove(Add2Ptr(attr, aoff), data, dlen); 3300 3301 oa2 = find_loaded_attr(log, attr, rno_base); 3302 if (oa2) { 3303 void *p2 = kmemdup(attr, le32_to_cpu(attr->size), 3304 GFP_NOFS); 3305 if (p2) { 3306 // run_close(&oa2->run0); 3307 oa2->run1 = &oa2->run0; 3308 kfree(oa2->attr); 3309 oa2->attr = p2; 3310 } 3311 } 3312 3313 mi->dirty = true; 3314 break; 3315 3316 case UpdateMappingPairs: 3317 nsize = aoff + dlen; 3318 asize = le32_to_cpu(attr->size); 3319 used = le32_to_cpu(rec->used); 3320 3321 if (!check_if_attr(rec, lrh) || !attr->non_res || 3322 aoff < le16_to_cpu(attr->nres.run_off) || aoff > asize || 3323 (nsize > asize && nsize - asize > record_size - used)) { 3324 goto dirty_vol; 3325 } 3326 3327 nsize = ALIGN(nsize, 8); 3328 3329 memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize), 3330 used - le16_to_cpu(lrh->record_off) - asize); 3331 rec->used = cpu_to_le32(used + nsize - asize); 3332 attr->size = cpu_to_le32(nsize); 3333 memmove(Add2Ptr(attr, aoff), data, dlen); 3334 3335 if (run_get_highest_vcn(le64_to_cpu(attr->nres.svcn), 3336 attr_run(attr), &t64)) { 3337 goto dirty_vol; 3338 } 3339 3340 attr->nres.evcn = cpu_to_le64(t64); 3341 oa2 = find_loaded_attr(log, attr, rno_base); 3342 if (oa2 && oa2->attr->non_res) 3343 oa2->attr->nres.evcn = attr->nres.evcn; 3344 3345 mi->dirty = true; 3346 break; 3347 3348 case SetNewAttributeSizes: 3349 new_sz = data; 3350 if (!check_if_attr(rec, lrh) || !attr->non_res) 3351 goto dirty_vol; 3352 3353 attr->nres.alloc_size = new_sz->alloc_size; 3354 attr->nres.data_size = new_sz->data_size; 3355 attr->nres.valid_size = new_sz->valid_size; 3356 3357 if (dlen >= sizeof(struct NEW_ATTRIBUTE_SIZES)) 3358 attr->nres.total_size = new_sz->total_size; 3359 3360 oa2 = find_loaded_attr(log, attr, rno_base); 3361 if (oa2) { 3362 void *p2 = kmemdup(attr, le32_to_cpu(attr->size), 3363 GFP_NOFS); 3364 if (p2) { 3365 kfree(oa2->attr); 3366 oa2->attr = p2; 3367 } 3368 } 3369 mi->dirty = true; 3370 break; 3371 3372 case AddIndexEntryRoot: 3373 e = (struct NTFS_DE *)data; 3374 esize = le16_to_cpu(e->size); 3375 root = resident_data(attr); 3376 hdr = &root->ihdr; 3377 used = le32_to_cpu(hdr->used); 3378 3379 if (!check_if_index_root(rec, lrh) || 3380 !check_if_root_index(attr, hdr, lrh) || 3381 Add2Ptr(data, esize) > Add2Ptr(lrh, rec_len) || 3382 esize > le32_to_cpu(rec->total) - le32_to_cpu(rec->used)) { 3383 goto dirty_vol; 3384 } 3385 3386 e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3387 3388 change_attr_size(rec, attr, le32_to_cpu(attr->size) + esize); 3389 3390 memmove(Add2Ptr(e1, esize), e1, 3391 PtrOffset(e1, Add2Ptr(hdr, used))); 3392 memmove(e1, e, esize); 3393 3394 le32_add_cpu(&attr->res.data_size, esize); 3395 hdr->used = cpu_to_le32(used + esize); 3396 le32_add_cpu(&hdr->total, esize); 3397 3398 mi->dirty = true; 3399 break; 3400 3401 case DeleteIndexEntryRoot: 3402 root = resident_data(attr); 3403 hdr = &root->ihdr; 3404 used = le32_to_cpu(hdr->used); 3405 3406 if (!check_if_index_root(rec, lrh) || 3407 !check_if_root_index(attr, hdr, lrh)) { 3408 goto dirty_vol; 3409 } 3410 3411 e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3412 esize = le16_to_cpu(e1->size); 3413 e2 = Add2Ptr(e1, esize); 3414 3415 memmove(e1, e2, PtrOffset(e2, Add2Ptr(hdr, used))); 3416 3417 le32_sub_cpu(&attr->res.data_size, esize); 3418 hdr->used = cpu_to_le32(used - esize); 3419 le32_sub_cpu(&hdr->total, esize); 3420 3421 change_attr_size(rec, attr, le32_to_cpu(attr->size) - esize); 3422 3423 mi->dirty = true; 3424 break; 3425 3426 case SetIndexEntryVcnRoot: 3427 root = resident_data(attr); 3428 hdr = &root->ihdr; 3429 3430 if (!check_if_index_root(rec, lrh) || 3431 !check_if_root_index(attr, hdr, lrh)) { 3432 goto dirty_vol; 3433 } 3434 3435 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3436 3437 de_set_vbn_le(e, *(__le64 *)data); 3438 mi->dirty = true; 3439 break; 3440 3441 case UpdateFileNameRoot: 3442 root = resident_data(attr); 3443 hdr = &root->ihdr; 3444 3445 if (!check_if_index_root(rec, lrh) || 3446 !check_if_root_index(attr, hdr, lrh)) { 3447 goto dirty_vol; 3448 } 3449 3450 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3451 fname = (struct ATTR_FILE_NAME *)(e + 1); 3452 memmove(&fname->dup, data, sizeof(fname->dup)); // 3453 mi->dirty = true; 3454 break; 3455 3456 case UpdateRecordDataRoot: 3457 root = resident_data(attr); 3458 hdr = &root->ihdr; 3459 3460 if (!check_if_index_root(rec, lrh) || 3461 !check_if_root_index(attr, hdr, lrh)) { 3462 goto dirty_vol; 3463 } 3464 3465 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3466 3467 memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen); 3468 3469 mi->dirty = true; 3470 break; 3471 3472 case ZeroEndOfFileRecord: 3473 if (roff + dlen > record_size) 3474 goto dirty_vol; 3475 3476 memset(attr, 0, dlen); 3477 mi->dirty = true; 3478 break; 3479 3480 case UpdateNonresidentValue: 3481 if (lco < cbo + roff + dlen) 3482 goto dirty_vol; 3483 3484 memcpy(Add2Ptr(buffer_le, roff), data, dlen); 3485 3486 a_dirty = true; 3487 if (attr->type == ATTR_ALLOC) 3488 ntfs_fix_pre_write(buffer_le, bytes); 3489 break; 3490 3491 case AddIndexEntryAllocation: 3492 ib = Add2Ptr(buffer_le, roff); 3493 hdr = &ib->ihdr; 3494 e = data; 3495 esize = le16_to_cpu(e->size); 3496 e1 = Add2Ptr(ib, aoff); 3497 3498 if (is_baad(&ib->rhdr)) 3499 goto dirty_vol; 3500 if (!check_lsn(&ib->rhdr, rlsn)) 3501 goto out; 3502 3503 used = le32_to_cpu(hdr->used); 3504 3505 if (!check_index_buffer(ib, bytes) || 3506 !check_if_alloc_index(hdr, aoff) || 3507 Add2Ptr(e, esize) > Add2Ptr(lrh, rec_len) || 3508 used + esize > le32_to_cpu(hdr->total)) { 3509 goto dirty_vol; 3510 } 3511 3512 memmove(Add2Ptr(e1, esize), e1, 3513 PtrOffset(e1, Add2Ptr(hdr, used))); 3514 memcpy(e1, e, esize); 3515 3516 hdr->used = cpu_to_le32(used + esize); 3517 3518 a_dirty = true; 3519 3520 ntfs_fix_pre_write(&ib->rhdr, bytes); 3521 break; 3522 3523 case DeleteIndexEntryAllocation: 3524 ib = Add2Ptr(buffer_le, roff); 3525 hdr = &ib->ihdr; 3526 e = Add2Ptr(ib, aoff); 3527 esize = le16_to_cpu(e->size); 3528 3529 if (is_baad(&ib->rhdr)) 3530 goto dirty_vol; 3531 if (!check_lsn(&ib->rhdr, rlsn)) 3532 goto out; 3533 3534 if (!check_index_buffer(ib, bytes) || 3535 !check_if_alloc_index(hdr, aoff)) { 3536 goto dirty_vol; 3537 } 3538 3539 e1 = Add2Ptr(e, esize); 3540 nsize = esize; 3541 used = le32_to_cpu(hdr->used); 3542 3543 memmove(e, e1, PtrOffset(e1, Add2Ptr(hdr, used))); 3544 3545 hdr->used = cpu_to_le32(used - nsize); 3546 3547 a_dirty = true; 3548 3549 ntfs_fix_pre_write(&ib->rhdr, bytes); 3550 break; 3551 3552 case WriteEndOfIndexBuffer: 3553 ib = Add2Ptr(buffer_le, roff); 3554 hdr = &ib->ihdr; 3555 e = Add2Ptr(ib, aoff); 3556 3557 if (is_baad(&ib->rhdr)) 3558 goto dirty_vol; 3559 if (!check_lsn(&ib->rhdr, rlsn)) 3560 goto out; 3561 if (!check_index_buffer(ib, bytes) || 3562 !check_if_alloc_index(hdr, aoff) || 3563 aoff + dlen > offsetof(struct INDEX_BUFFER, ihdr) + 3564 le32_to_cpu(hdr->total)) { 3565 goto dirty_vol; 3566 } 3567 3568 hdr->used = cpu_to_le32(dlen + PtrOffset(hdr, e)); 3569 memmove(e, data, dlen); 3570 3571 a_dirty = true; 3572 ntfs_fix_pre_write(&ib->rhdr, bytes); 3573 break; 3574 3575 case SetIndexEntryVcnAllocation: 3576 ib = Add2Ptr(buffer_le, roff); 3577 hdr = &ib->ihdr; 3578 e = Add2Ptr(ib, aoff); 3579 3580 if (is_baad(&ib->rhdr)) 3581 goto dirty_vol; 3582 3583 if (!check_lsn(&ib->rhdr, rlsn)) 3584 goto out; 3585 if (!check_index_buffer(ib, bytes) || 3586 !check_if_alloc_index(hdr, aoff)) { 3587 goto dirty_vol; 3588 } 3589 3590 de_set_vbn_le(e, *(__le64 *)data); 3591 3592 a_dirty = true; 3593 ntfs_fix_pre_write(&ib->rhdr, bytes); 3594 break; 3595 3596 case UpdateFileNameAllocation: 3597 ib = Add2Ptr(buffer_le, roff); 3598 hdr = &ib->ihdr; 3599 e = Add2Ptr(ib, aoff); 3600 3601 if (is_baad(&ib->rhdr)) 3602 goto dirty_vol; 3603 3604 if (!check_lsn(&ib->rhdr, rlsn)) 3605 goto out; 3606 if (!check_index_buffer(ib, bytes) || 3607 !check_if_alloc_index(hdr, aoff)) { 3608 goto dirty_vol; 3609 } 3610 3611 fname = (struct ATTR_FILE_NAME *)(e + 1); 3612 memmove(&fname->dup, data, sizeof(fname->dup)); 3613 3614 a_dirty = true; 3615 ntfs_fix_pre_write(&ib->rhdr, bytes); 3616 break; 3617 3618 case SetBitsInNonresidentBitMap: 3619 off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off); 3620 bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits); 3621 3622 if (cbo + (off + 7) / 8 > lco || 3623 cbo + ((off + bits + 7) / 8) > lco) { 3624 goto dirty_vol; 3625 } 3626 3627 ntfs_bitmap_set_le(Add2Ptr(buffer_le, roff), off, bits); 3628 a_dirty = true; 3629 break; 3630 3631 case ClearBitsInNonresidentBitMap: 3632 off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off); 3633 bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits); 3634 3635 if (cbo + (off + 7) / 8 > lco || 3636 cbo + ((off + bits + 7) / 8) > lco) { 3637 goto dirty_vol; 3638 } 3639 3640 ntfs_bitmap_clear_le(Add2Ptr(buffer_le, roff), off, bits); 3641 a_dirty = true; 3642 break; 3643 3644 case UpdateRecordDataAllocation: 3645 ib = Add2Ptr(buffer_le, roff); 3646 hdr = &ib->ihdr; 3647 e = Add2Ptr(ib, aoff); 3648 3649 if (is_baad(&ib->rhdr)) 3650 goto dirty_vol; 3651 3652 if (!check_lsn(&ib->rhdr, rlsn)) 3653 goto out; 3654 if (!check_index_buffer(ib, bytes) || 3655 !check_if_alloc_index(hdr, aoff)) { 3656 goto dirty_vol; 3657 } 3658 3659 memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen); 3660 3661 a_dirty = true; 3662 ntfs_fix_pre_write(&ib->rhdr, bytes); 3663 break; 3664 3665 default: 3666 WARN_ON(1); 3667 } 3668 3669 if (rlsn) { 3670 __le64 t64 = cpu_to_le64(*rlsn); 3671 3672 if (rec) 3673 rec->rhdr.lsn = t64; 3674 if (ib) 3675 ib->rhdr.lsn = t64; 3676 } 3677 3678 if (mi && mi->dirty) { 3679 err = mi_write(mi, 0); 3680 if (err) 3681 goto out; 3682 } 3683 3684 if (a_dirty) { 3685 attr = oa->attr; 3686 err = ntfs_sb_write_run(sbi, oa->run1, vbo, buffer_le, bytes, 0); 3687 if (err) 3688 goto out; 3689 } 3690 3691 out: 3692 3693 if (inode) 3694 iput(inode); 3695 else if (mi != mi2_child) 3696 mi_put(mi); 3697 3698 kfree(buffer_le); 3699 3700 return err; 3701 3702 dirty_vol: 3703 log->set_dirty = true; 3704 goto out; 3705 } 3706 3707 /* 3708 * log_replay - Replays log and empties it. 3709 * 3710 * This function is called during mount operation. 3711 * It replays log and empties it. 3712 * Initialized is set false if logfile contains '-1'. 3713 */ 3714 int log_replay(struct ntfs_inode *ni, bool *initialized) 3715 { 3716 int err; 3717 struct ntfs_sb_info *sbi = ni->mi.sbi; 3718 struct ntfs_log *log; 3719 3720 struct restart_info rst_info, rst_info2; 3721 u64 rec_lsn, ra_lsn, checkpt_lsn = 0, rlsn = 0; 3722 struct ATTR_NAME_ENTRY *attr_names = NULL; 3723 struct ATTR_NAME_ENTRY *ane; 3724 struct RESTART_TABLE *dptbl = NULL; 3725 struct RESTART_TABLE *trtbl = NULL; 3726 const struct RESTART_TABLE *rt; 3727 struct RESTART_TABLE *oatbl = NULL; 3728 struct inode *inode; 3729 struct OpenAttr *oa; 3730 struct ntfs_inode *ni_oe; 3731 struct ATTRIB *attr = NULL; 3732 u64 size, vcn, undo_next_lsn; 3733 CLST rno, lcn, lcn0, len0, clen; 3734 void *data; 3735 struct NTFS_RESTART *rst = NULL; 3736 struct lcb *lcb = NULL; 3737 struct OPEN_ATTR_ENRTY *oe; 3738 struct TRANSACTION_ENTRY *tr; 3739 struct DIR_PAGE_ENTRY *dp; 3740 u32 i, bytes_per_attr_entry; 3741 u32 l_size = ni->vfs_inode.i_size; 3742 u32 orig_file_size = l_size; 3743 u32 page_size, vbo, tail, off, dlen; 3744 u32 saved_len, rec_len, transact_id; 3745 bool use_second_page; 3746 struct RESTART_AREA *ra2, *ra = NULL; 3747 struct CLIENT_REC *ca, *cr; 3748 __le16 client; 3749 struct RESTART_HDR *rh; 3750 const struct LFS_RECORD_HDR *frh; 3751 const struct LOG_REC_HDR *lrh; 3752 bool is_mapped; 3753 bool is_ro = sb_rdonly(sbi->sb); 3754 u64 t64; 3755 u16 t16; 3756 u32 t32; 3757 3758 /* Get the size of page. NOTE: To replay we can use default page. */ 3759 #if PAGE_SIZE >= DefaultLogPageSize && PAGE_SIZE <= DefaultLogPageSize * 2 3760 page_size = norm_file_page(PAGE_SIZE, &l_size, true); 3761 #else 3762 page_size = norm_file_page(PAGE_SIZE, &l_size, false); 3763 #endif 3764 if (!page_size) 3765 return -EINVAL; 3766 3767 log = kzalloc(sizeof(struct ntfs_log), GFP_NOFS); 3768 if (!log) 3769 return -ENOMEM; 3770 3771 memset(&rst_info, 0, sizeof(struct restart_info)); 3772 3773 log->ni = ni; 3774 log->l_size = l_size; 3775 log->one_page_buf = kmalloc(page_size, GFP_NOFS); 3776 if (!log->one_page_buf) { 3777 err = -ENOMEM; 3778 goto out; 3779 } 3780 3781 log->page_size = page_size; 3782 log->page_mask = page_size - 1; 3783 log->page_bits = blksize_bits(page_size); 3784 3785 /* Look for a restart area on the disk. */ 3786 err = log_read_rst(log, l_size, true, &rst_info); 3787 if (err) 3788 goto out; 3789 3790 /* remember 'initialized' */ 3791 *initialized = rst_info.initialized; 3792 3793 if (!rst_info.restart) { 3794 if (rst_info.initialized) { 3795 /* No restart area but the file is not initialized. */ 3796 err = -EINVAL; 3797 goto out; 3798 } 3799 3800 log_init_pg_hdr(log, page_size, page_size, 1, 1); 3801 log_create(log, l_size, 0, get_random_u32(), false, false); 3802 3803 log->ra = ra; 3804 3805 ra = log_create_ra(log); 3806 if (!ra) { 3807 err = -ENOMEM; 3808 goto out; 3809 } 3810 log->ra = ra; 3811 log->init_ra = true; 3812 3813 goto process_log; 3814 } 3815 3816 /* 3817 * If the restart offset above wasn't zero then we won't 3818 * look for a second restart. 3819 */ 3820 if (rst_info.vbo) 3821 goto check_restart_area; 3822 3823 memset(&rst_info2, 0, sizeof(struct restart_info)); 3824 err = log_read_rst(log, l_size, false, &rst_info2); 3825 if (err) 3826 goto out; 3827 3828 /* Determine which restart area to use. */ 3829 if (!rst_info2.restart || rst_info2.last_lsn <= rst_info.last_lsn) 3830 goto use_first_page; 3831 3832 use_second_page = true; 3833 3834 if (rst_info.chkdsk_was_run && page_size != rst_info.vbo) { 3835 struct RECORD_PAGE_HDR *sp = NULL; 3836 bool usa_error; 3837 3838 if (!read_log_page(log, page_size, &sp, &usa_error) && 3839 sp->rhdr.sign == NTFS_CHKD_SIGNATURE) { 3840 use_second_page = false; 3841 } 3842 kfree(sp); 3843 } 3844 3845 if (use_second_page) { 3846 kfree(rst_info.r_page); 3847 memcpy(&rst_info, &rst_info2, sizeof(struct restart_info)); 3848 rst_info2.r_page = NULL; 3849 } 3850 3851 use_first_page: 3852 kfree(rst_info2.r_page); 3853 3854 check_restart_area: 3855 /* 3856 * If the restart area is at offset 0, we want 3857 * to write the second restart area first. 3858 */ 3859 log->init_ra = !!rst_info.vbo; 3860 3861 /* If we have a valid page then grab a pointer to the restart area. */ 3862 ra2 = rst_info.valid_page 3863 ? Add2Ptr(rst_info.r_page, 3864 le16_to_cpu(rst_info.r_page->ra_off)) 3865 : NULL; 3866 3867 if (rst_info.chkdsk_was_run || 3868 (ra2 && ra2->client_idx[1] == LFS_NO_CLIENT_LE)) { 3869 bool wrapped = false; 3870 bool use_multi_page = false; 3871 u32 open_log_count; 3872 3873 /* Do some checks based on whether we have a valid log page. */ 3874 if (!rst_info.valid_page) { 3875 open_log_count = get_random_u32(); 3876 goto init_log_instance; 3877 } 3878 open_log_count = le32_to_cpu(ra2->open_log_count); 3879 3880 /* 3881 * If the restart page size isn't changing then we want to 3882 * check how much work we need to do. 3883 */ 3884 if (page_size != le32_to_cpu(rst_info.r_page->sys_page_size)) 3885 goto init_log_instance; 3886 3887 init_log_instance: 3888 log_init_pg_hdr(log, page_size, page_size, 1, 1); 3889 3890 log_create(log, l_size, rst_info.last_lsn, open_log_count, 3891 wrapped, use_multi_page); 3892 3893 ra = log_create_ra(log); 3894 if (!ra) { 3895 err = -ENOMEM; 3896 goto out; 3897 } 3898 log->ra = ra; 3899 3900 /* Put the restart areas and initialize 3901 * the log file as required. 3902 */ 3903 goto process_log; 3904 } 3905 3906 if (!ra2) { 3907 err = -EINVAL; 3908 goto out; 3909 } 3910 3911 /* 3912 * If the log page or the system page sizes have changed, we can't 3913 * use the log file. We must use the system page size instead of the 3914 * default size if there is not a clean shutdown. 3915 */ 3916 t32 = le32_to_cpu(rst_info.r_page->sys_page_size); 3917 if (page_size != t32) { 3918 l_size = orig_file_size; 3919 page_size = 3920 norm_file_page(t32, &l_size, t32 == DefaultLogPageSize); 3921 } 3922 3923 if (page_size != t32 || 3924 page_size != le32_to_cpu(rst_info.r_page->page_size)) { 3925 err = -EINVAL; 3926 goto out; 3927 } 3928 3929 /* If the file size has shrunk then we won't mount it. */ 3930 if (l_size < le64_to_cpu(ra2->l_size)) { 3931 err = -EINVAL; 3932 goto out; 3933 } 3934 3935 log_init_pg_hdr(log, page_size, page_size, 3936 le16_to_cpu(rst_info.r_page->major_ver), 3937 le16_to_cpu(rst_info.r_page->minor_ver)); 3938 3939 log->l_size = le64_to_cpu(ra2->l_size); 3940 log->seq_num_bits = le32_to_cpu(ra2->seq_num_bits); 3941 log->file_data_bits = sizeof(u64) * 8 - log->seq_num_bits; 3942 log->seq_num_mask = (8 << log->file_data_bits) - 1; 3943 log->last_lsn = le64_to_cpu(ra2->current_lsn); 3944 log->seq_num = log->last_lsn >> log->file_data_bits; 3945 log->ra_off = le16_to_cpu(rst_info.r_page->ra_off); 3946 log->restart_size = log->sys_page_size - log->ra_off; 3947 log->record_header_len = le16_to_cpu(ra2->rec_hdr_len); 3948 log->ra_size = le16_to_cpu(ra2->ra_len); 3949 log->data_off = le16_to_cpu(ra2->data_off); 3950 log->data_size = log->page_size - log->data_off; 3951 log->reserved = log->data_size - log->record_header_len; 3952 3953 vbo = lsn_to_vbo(log, log->last_lsn); 3954 3955 if (vbo < log->first_page) { 3956 /* This is a pseudo lsn. */ 3957 log->l_flags |= NTFSLOG_NO_LAST_LSN; 3958 log->next_page = log->first_page; 3959 goto find_oldest; 3960 } 3961 3962 /* Find the end of this log record. */ 3963 off = final_log_off(log, log->last_lsn, 3964 le32_to_cpu(ra2->last_lsn_data_len)); 3965 3966 /* If we wrapped the file then increment the sequence number. */ 3967 if (off <= vbo) { 3968 log->seq_num += 1; 3969 log->l_flags |= NTFSLOG_WRAPPED; 3970 } 3971 3972 /* Now compute the next log page to use. */ 3973 vbo &= ~log->sys_page_mask; 3974 tail = log->page_size - (off & log->page_mask) - 1; 3975 3976 /* 3977 *If we can fit another log record on the page, 3978 * move back a page the log file. 3979 */ 3980 if (tail >= log->record_header_len) { 3981 log->l_flags |= NTFSLOG_REUSE_TAIL; 3982 log->next_page = vbo; 3983 } else { 3984 log->next_page = next_page_off(log, vbo); 3985 } 3986 3987 find_oldest: 3988 /* 3989 * Find the oldest client lsn. Use the last 3990 * flushed lsn as a starting point. 3991 */ 3992 log->oldest_lsn = log->last_lsn; 3993 oldest_client_lsn(Add2Ptr(ra2, le16_to_cpu(ra2->client_off)), 3994 ra2->client_idx[1], &log->oldest_lsn); 3995 log->oldest_lsn_off = lsn_to_vbo(log, log->oldest_lsn); 3996 3997 if (log->oldest_lsn_off < log->first_page) 3998 log->l_flags |= NTFSLOG_NO_OLDEST_LSN; 3999 4000 if (!(ra2->flags & RESTART_SINGLE_PAGE_IO)) 4001 log->l_flags |= NTFSLOG_WRAPPED | NTFSLOG_MULTIPLE_PAGE_IO; 4002 4003 log->current_openlog_count = le32_to_cpu(ra2->open_log_count); 4004 log->total_avail_pages = log->l_size - log->first_page; 4005 log->total_avail = log->total_avail_pages >> log->page_bits; 4006 log->max_current_avail = log->total_avail * log->reserved; 4007 log->total_avail = log->total_avail * log->data_size; 4008 4009 log->current_avail = current_log_avail(log); 4010 4011 ra = kzalloc(log->restart_size, GFP_NOFS); 4012 if (!ra) { 4013 err = -ENOMEM; 4014 goto out; 4015 } 4016 log->ra = ra; 4017 4018 t16 = le16_to_cpu(ra2->client_off); 4019 if (t16 == offsetof(struct RESTART_AREA, clients)) { 4020 memcpy(ra, ra2, log->ra_size); 4021 } else { 4022 memcpy(ra, ra2, offsetof(struct RESTART_AREA, clients)); 4023 memcpy(ra->clients, Add2Ptr(ra2, t16), 4024 le16_to_cpu(ra2->ra_len) - t16); 4025 4026 log->current_openlog_count = get_random_u32(); 4027 ra->open_log_count = cpu_to_le32(log->current_openlog_count); 4028 log->ra_size = offsetof(struct RESTART_AREA, clients) + 4029 sizeof(struct CLIENT_REC); 4030 ra->client_off = 4031 cpu_to_le16(offsetof(struct RESTART_AREA, clients)); 4032 ra->ra_len = cpu_to_le16(log->ra_size); 4033 } 4034 4035 le32_add_cpu(&ra->open_log_count, 1); 4036 4037 /* Now we need to walk through looking for the last lsn. */ 4038 err = last_log_lsn(log); 4039 if (err) 4040 goto out; 4041 4042 log->current_avail = current_log_avail(log); 4043 4044 /* Remember which restart area to write first. */ 4045 log->init_ra = rst_info.vbo; 4046 4047 process_log: 4048 /* 1.0, 1.1, 2.0 log->major_ver/minor_ver - short values. */ 4049 switch ((log->major_ver << 16) + log->minor_ver) { 4050 case 0x10000: 4051 case 0x10001: 4052 case 0x20000: 4053 break; 4054 default: 4055 ntfs_warn(sbi->sb, "\x24LogFile version %d.%d is not supported", 4056 log->major_ver, log->minor_ver); 4057 err = -EOPNOTSUPP; 4058 log->set_dirty = true; 4059 goto out; 4060 } 4061 4062 /* One client "NTFS" per logfile. */ 4063 ca = Add2Ptr(ra, le16_to_cpu(ra->client_off)); 4064 4065 for (client = ra->client_idx[1];; client = cr->next_client) { 4066 if (client == LFS_NO_CLIENT_LE) { 4067 /* Insert "NTFS" client LogFile. */ 4068 client = ra->client_idx[0]; 4069 if (client == LFS_NO_CLIENT_LE) { 4070 err = -EINVAL; 4071 goto out; 4072 } 4073 4074 t16 = le16_to_cpu(client); 4075 cr = ca + t16; 4076 4077 remove_client(ca, cr, &ra->client_idx[0]); 4078 4079 cr->restart_lsn = 0; 4080 cr->oldest_lsn = cpu_to_le64(log->oldest_lsn); 4081 cr->name_bytes = cpu_to_le32(8); 4082 cr->name[0] = cpu_to_le16('N'); 4083 cr->name[1] = cpu_to_le16('T'); 4084 cr->name[2] = cpu_to_le16('F'); 4085 cr->name[3] = cpu_to_le16('S'); 4086 4087 add_client(ca, t16, &ra->client_idx[1]); 4088 break; 4089 } 4090 4091 cr = ca + le16_to_cpu(client); 4092 4093 if (cpu_to_le32(8) == cr->name_bytes && 4094 cpu_to_le16('N') == cr->name[0] && 4095 cpu_to_le16('T') == cr->name[1] && 4096 cpu_to_le16('F') == cr->name[2] && 4097 cpu_to_le16('S') == cr->name[3]) 4098 break; 4099 } 4100 4101 /* Update the client handle with the client block information. */ 4102 log->client_id.seq_num = cr->seq_num; 4103 log->client_id.client_idx = client; 4104 4105 err = read_rst_area(log, &rst, &ra_lsn); 4106 if (err) 4107 goto out; 4108 4109 if (!rst) 4110 goto out; 4111 4112 bytes_per_attr_entry = !rst->major_ver ? 0x2C : 0x28; 4113 4114 checkpt_lsn = le64_to_cpu(rst->check_point_start); 4115 if (!checkpt_lsn) 4116 checkpt_lsn = ra_lsn; 4117 4118 /* Allocate and Read the Transaction Table. */ 4119 if (!rst->transact_table_len) 4120 goto check_dirty_page_table; 4121 4122 t64 = le64_to_cpu(rst->transact_table_lsn); 4123 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); 4124 if (err) 4125 goto out; 4126 4127 lrh = lcb->log_rec; 4128 frh = lcb->lrh; 4129 rec_len = le32_to_cpu(frh->client_data_len); 4130 4131 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), 4132 bytes_per_attr_entry)) { 4133 err = -EINVAL; 4134 goto out; 4135 } 4136 4137 t16 = le16_to_cpu(lrh->redo_off); 4138 4139 rt = Add2Ptr(lrh, t16); 4140 t32 = rec_len - t16; 4141 4142 /* Now check that this is a valid restart table. */ 4143 if (!check_rstbl(rt, t32)) { 4144 err = -EINVAL; 4145 goto out; 4146 } 4147 4148 trtbl = kmemdup(rt, t32, GFP_NOFS); 4149 if (!trtbl) { 4150 err = -ENOMEM; 4151 goto out; 4152 } 4153 4154 lcb_put(lcb); 4155 lcb = NULL; 4156 4157 check_dirty_page_table: 4158 /* The next record back should be the Dirty Pages Table. */ 4159 if (!rst->dirty_pages_len) 4160 goto check_attribute_names; 4161 4162 t64 = le64_to_cpu(rst->dirty_pages_table_lsn); 4163 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); 4164 if (err) 4165 goto out; 4166 4167 lrh = lcb->log_rec; 4168 frh = lcb->lrh; 4169 rec_len = le32_to_cpu(frh->client_data_len); 4170 4171 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), 4172 bytes_per_attr_entry)) { 4173 err = -EINVAL; 4174 goto out; 4175 } 4176 4177 t16 = le16_to_cpu(lrh->redo_off); 4178 4179 rt = Add2Ptr(lrh, t16); 4180 t32 = rec_len - t16; 4181 4182 /* Now check that this is a valid restart table. */ 4183 if (!check_rstbl(rt, t32)) { 4184 err = -EINVAL; 4185 goto out; 4186 } 4187 4188 dptbl = kmemdup(rt, t32, GFP_NOFS); 4189 if (!dptbl) { 4190 err = -ENOMEM; 4191 goto out; 4192 } 4193 4194 /* Convert Ra version '0' into version '1'. */ 4195 if (rst->major_ver) 4196 goto end_conv_1; 4197 4198 dp = NULL; 4199 while ((dp = enum_rstbl(dptbl, dp))) { 4200 struct DIR_PAGE_ENTRY_32 *dp0 = (struct DIR_PAGE_ENTRY_32 *)dp; 4201 // NOTE: Danger. Check for of boundary. 4202 memmove(&dp->vcn, &dp0->vcn_low, 4203 2 * sizeof(u64) + 4204 le32_to_cpu(dp->lcns_follow) * sizeof(u64)); 4205 } 4206 4207 end_conv_1: 4208 lcb_put(lcb); 4209 lcb = NULL; 4210 4211 /* 4212 * Go through the table and remove the duplicates, 4213 * remembering the oldest lsn values. 4214 */ 4215 if (sbi->cluster_size <= log->page_size) 4216 goto trace_dp_table; 4217 4218 dp = NULL; 4219 while ((dp = enum_rstbl(dptbl, dp))) { 4220 struct DIR_PAGE_ENTRY *next = dp; 4221 4222 while ((next = enum_rstbl(dptbl, next))) { 4223 if (next->target_attr == dp->target_attr && 4224 next->vcn == dp->vcn) { 4225 if (le64_to_cpu(next->oldest_lsn) < 4226 le64_to_cpu(dp->oldest_lsn)) { 4227 dp->oldest_lsn = next->oldest_lsn; 4228 } 4229 4230 free_rsttbl_idx(dptbl, PtrOffset(dptbl, next)); 4231 } 4232 } 4233 } 4234 trace_dp_table: 4235 check_attribute_names: 4236 /* The next record should be the Attribute Names. */ 4237 if (!rst->attr_names_len) 4238 goto check_attr_table; 4239 4240 t64 = le64_to_cpu(rst->attr_names_lsn); 4241 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); 4242 if (err) 4243 goto out; 4244 4245 lrh = lcb->log_rec; 4246 frh = lcb->lrh; 4247 rec_len = le32_to_cpu(frh->client_data_len); 4248 4249 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), 4250 bytes_per_attr_entry)) { 4251 err = -EINVAL; 4252 goto out; 4253 } 4254 4255 t32 = lrh_length(lrh); 4256 rec_len -= t32; 4257 4258 attr_names = kmemdup(Add2Ptr(lrh, t32), rec_len, GFP_NOFS); 4259 4260 lcb_put(lcb); 4261 lcb = NULL; 4262 4263 check_attr_table: 4264 /* The next record should be the attribute Table. */ 4265 if (!rst->open_attr_len) 4266 goto check_attribute_names2; 4267 4268 t64 = le64_to_cpu(rst->open_attr_table_lsn); 4269 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); 4270 if (err) 4271 goto out; 4272 4273 lrh = lcb->log_rec; 4274 frh = lcb->lrh; 4275 rec_len = le32_to_cpu(frh->client_data_len); 4276 4277 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), 4278 bytes_per_attr_entry)) { 4279 err = -EINVAL; 4280 goto out; 4281 } 4282 4283 t16 = le16_to_cpu(lrh->redo_off); 4284 4285 rt = Add2Ptr(lrh, t16); 4286 t32 = rec_len - t16; 4287 4288 if (!check_rstbl(rt, t32)) { 4289 err = -EINVAL; 4290 goto out; 4291 } 4292 4293 oatbl = kmemdup(rt, t32, GFP_NOFS); 4294 if (!oatbl) { 4295 err = -ENOMEM; 4296 goto out; 4297 } 4298 4299 log->open_attr_tbl = oatbl; 4300 4301 /* Clear all of the Attr pointers. */ 4302 oe = NULL; 4303 while ((oe = enum_rstbl(oatbl, oe))) { 4304 if (!rst->major_ver) { 4305 struct OPEN_ATTR_ENRTY_32 oe0; 4306 4307 /* Really 'oe' points to OPEN_ATTR_ENRTY_32. */ 4308 memcpy(&oe0, oe, SIZEOF_OPENATTRIBUTEENTRY0); 4309 4310 oe->bytes_per_index = oe0.bytes_per_index; 4311 oe->type = oe0.type; 4312 oe->is_dirty_pages = oe0.is_dirty_pages; 4313 oe->name_len = 0; 4314 oe->ref = oe0.ref; 4315 oe->open_record_lsn = oe0.open_record_lsn; 4316 } 4317 4318 oe->is_attr_name = 0; 4319 oe->ptr = NULL; 4320 } 4321 4322 lcb_put(lcb); 4323 lcb = NULL; 4324 4325 check_attribute_names2: 4326 if (!rst->attr_names_len) 4327 goto trace_attribute_table; 4328 4329 ane = attr_names; 4330 if (!oatbl) 4331 goto trace_attribute_table; 4332 while (ane->off) { 4333 /* TODO: Clear table on exit! */ 4334 oe = Add2Ptr(oatbl, le16_to_cpu(ane->off)); 4335 t16 = le16_to_cpu(ane->name_bytes); 4336 oe->name_len = t16 / sizeof(short); 4337 oe->ptr = ane->name; 4338 oe->is_attr_name = 2; 4339 ane = Add2Ptr(ane, sizeof(struct ATTR_NAME_ENTRY) + t16); 4340 } 4341 4342 trace_attribute_table: 4343 /* 4344 * If the checkpt_lsn is zero, then this is a freshly 4345 * formatted disk and we have no work to do. 4346 */ 4347 if (!checkpt_lsn) { 4348 err = 0; 4349 goto out; 4350 } 4351 4352 if (!oatbl) { 4353 oatbl = init_rsttbl(bytes_per_attr_entry, 8); 4354 if (!oatbl) { 4355 err = -ENOMEM; 4356 goto out; 4357 } 4358 } 4359 4360 log->open_attr_tbl = oatbl; 4361 4362 /* Start the analysis pass from the Checkpoint lsn. */ 4363 rec_lsn = checkpt_lsn; 4364 4365 /* Read the first lsn. */ 4366 err = read_log_rec_lcb(log, checkpt_lsn, lcb_ctx_next, &lcb); 4367 if (err) 4368 goto out; 4369 4370 /* Loop to read all subsequent records to the end of the log file. */ 4371 next_log_record_analyze: 4372 err = read_next_log_rec(log, lcb, &rec_lsn); 4373 if (err) 4374 goto out; 4375 4376 if (!rec_lsn) 4377 goto end_log_records_enumerate; 4378 4379 frh = lcb->lrh; 4380 transact_id = le32_to_cpu(frh->transact_id); 4381 rec_len = le32_to_cpu(frh->client_data_len); 4382 lrh = lcb->log_rec; 4383 4384 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) { 4385 err = -EINVAL; 4386 goto out; 4387 } 4388 4389 /* 4390 * The first lsn after the previous lsn remembered 4391 * the checkpoint is the first candidate for the rlsn. 4392 */ 4393 if (!rlsn) 4394 rlsn = rec_lsn; 4395 4396 if (LfsClientRecord != frh->record_type) 4397 goto next_log_record_analyze; 4398 4399 /* 4400 * Now update the Transaction Table for this transaction. If there 4401 * is no entry present or it is unallocated we allocate the entry. 4402 */ 4403 if (!trtbl) { 4404 trtbl = init_rsttbl(sizeof(struct TRANSACTION_ENTRY), 4405 INITIAL_NUMBER_TRANSACTIONS); 4406 if (!trtbl) { 4407 err = -ENOMEM; 4408 goto out; 4409 } 4410 } 4411 4412 tr = Add2Ptr(trtbl, transact_id); 4413 4414 if (transact_id >= bytes_per_rt(trtbl) || 4415 tr->next != RESTART_ENTRY_ALLOCATED_LE) { 4416 tr = alloc_rsttbl_from_idx(&trtbl, transact_id); 4417 if (!tr) { 4418 err = -ENOMEM; 4419 goto out; 4420 } 4421 tr->transact_state = TransactionActive; 4422 tr->first_lsn = cpu_to_le64(rec_lsn); 4423 } 4424 4425 tr->prev_lsn = tr->undo_next_lsn = cpu_to_le64(rec_lsn); 4426 4427 /* 4428 * If this is a compensation log record, then change 4429 * the undo_next_lsn to be the undo_next_lsn of this record. 4430 */ 4431 if (lrh->undo_op == cpu_to_le16(CompensationLogRecord)) 4432 tr->undo_next_lsn = frh->client_undo_next_lsn; 4433 4434 /* Dispatch to handle log record depending on type. */ 4435 switch (le16_to_cpu(lrh->redo_op)) { 4436 case InitializeFileRecordSegment: 4437 case DeallocateFileRecordSegment: 4438 case WriteEndOfFileRecordSegment: 4439 case CreateAttribute: 4440 case DeleteAttribute: 4441 case UpdateResidentValue: 4442 case UpdateNonresidentValue: 4443 case UpdateMappingPairs: 4444 case SetNewAttributeSizes: 4445 case AddIndexEntryRoot: 4446 case DeleteIndexEntryRoot: 4447 case AddIndexEntryAllocation: 4448 case DeleteIndexEntryAllocation: 4449 case WriteEndOfIndexBuffer: 4450 case SetIndexEntryVcnRoot: 4451 case SetIndexEntryVcnAllocation: 4452 case UpdateFileNameRoot: 4453 case UpdateFileNameAllocation: 4454 case SetBitsInNonresidentBitMap: 4455 case ClearBitsInNonresidentBitMap: 4456 case UpdateRecordDataRoot: 4457 case UpdateRecordDataAllocation: 4458 case ZeroEndOfFileRecord: 4459 t16 = le16_to_cpu(lrh->target_attr); 4460 t64 = le64_to_cpu(lrh->target_vcn); 4461 dp = find_dp(dptbl, t16, t64); 4462 4463 if (dp) 4464 goto copy_lcns; 4465 4466 /* 4467 * Calculate the number of clusters per page the system 4468 * which wrote the checkpoint, possibly creating the table. 4469 */ 4470 if (dptbl) { 4471 t32 = (le16_to_cpu(dptbl->size) - 4472 sizeof(struct DIR_PAGE_ENTRY)) / 4473 sizeof(u64); 4474 } else { 4475 t32 = log->clst_per_page; 4476 kfree(dptbl); 4477 dptbl = init_rsttbl(struct_size(dp, page_lcns, t32), 4478 32); 4479 if (!dptbl) { 4480 err = -ENOMEM; 4481 goto out; 4482 } 4483 } 4484 4485 dp = alloc_rsttbl_idx(&dptbl); 4486 if (!dp) { 4487 err = -ENOMEM; 4488 goto out; 4489 } 4490 dp->target_attr = cpu_to_le32(t16); 4491 dp->transfer_len = cpu_to_le32(t32 << sbi->cluster_bits); 4492 dp->lcns_follow = cpu_to_le32(t32); 4493 dp->vcn = cpu_to_le64(t64 & ~((u64)t32 - 1)); 4494 dp->oldest_lsn = cpu_to_le64(rec_lsn); 4495 4496 copy_lcns: 4497 /* 4498 * Copy the Lcns from the log record into the Dirty Page Entry. 4499 * TODO: For different page size support, must somehow make 4500 * whole routine a loop, case Lcns do not fit below. 4501 */ 4502 t16 = le16_to_cpu(lrh->lcns_follow); 4503 for (i = 0; i < t16; i++) { 4504 size_t j = (size_t)(le64_to_cpu(lrh->target_vcn) - 4505 le64_to_cpu(dp->vcn)); 4506 dp->page_lcns[j + i] = lrh->page_lcns[i]; 4507 } 4508 4509 goto next_log_record_analyze; 4510 4511 case DeleteDirtyClusters: { 4512 u32 range_count = 4513 le16_to_cpu(lrh->redo_len) / sizeof(struct LCN_RANGE); 4514 const struct LCN_RANGE *r = 4515 Add2Ptr(lrh, le16_to_cpu(lrh->redo_off)); 4516 4517 /* Loop through all of the Lcn ranges this log record. */ 4518 for (i = 0; i < range_count; i++, r++) { 4519 u64 lcn0 = le64_to_cpu(r->lcn); 4520 u64 lcn_e = lcn0 + le64_to_cpu(r->len) - 1; 4521 4522 dp = NULL; 4523 while ((dp = enum_rstbl(dptbl, dp))) { 4524 u32 j; 4525 4526 t32 = le32_to_cpu(dp->lcns_follow); 4527 for (j = 0; j < t32; j++) { 4528 t64 = le64_to_cpu(dp->page_lcns[j]); 4529 if (t64 >= lcn0 && t64 <= lcn_e) 4530 dp->page_lcns[j] = 0; 4531 } 4532 } 4533 } 4534 goto next_log_record_analyze; 4535 ; 4536 } 4537 4538 case OpenNonresidentAttribute: 4539 t16 = le16_to_cpu(lrh->target_attr); 4540 if (t16 >= bytes_per_rt(oatbl)) { 4541 /* 4542 * Compute how big the table needs to be. 4543 * Add 10 extra entries for some cushion. 4544 */ 4545 u32 new_e = t16 / le16_to_cpu(oatbl->size); 4546 4547 new_e += 10 - le16_to_cpu(oatbl->used); 4548 4549 oatbl = extend_rsttbl(oatbl, new_e, ~0u); 4550 log->open_attr_tbl = oatbl; 4551 if (!oatbl) { 4552 err = -ENOMEM; 4553 goto out; 4554 } 4555 } 4556 4557 /* Point to the entry being opened. */ 4558 oe = alloc_rsttbl_from_idx(&oatbl, t16); 4559 log->open_attr_tbl = oatbl; 4560 if (!oe) { 4561 err = -ENOMEM; 4562 goto out; 4563 } 4564 4565 /* Initialize this entry from the log record. */ 4566 t16 = le16_to_cpu(lrh->redo_off); 4567 if (!rst->major_ver) { 4568 /* Convert version '0' into version '1'. */ 4569 struct OPEN_ATTR_ENRTY_32 *oe0 = Add2Ptr(lrh, t16); 4570 4571 oe->bytes_per_index = oe0->bytes_per_index; 4572 oe->type = oe0->type; 4573 oe->is_dirty_pages = oe0->is_dirty_pages; 4574 oe->name_len = 0; //oe0.name_len; 4575 oe->ref = oe0->ref; 4576 oe->open_record_lsn = oe0->open_record_lsn; 4577 } else { 4578 memcpy(oe, Add2Ptr(lrh, t16), bytes_per_attr_entry); 4579 } 4580 4581 t16 = le16_to_cpu(lrh->undo_len); 4582 if (t16) { 4583 oe->ptr = kmalloc(t16, GFP_NOFS); 4584 if (!oe->ptr) { 4585 err = -ENOMEM; 4586 goto out; 4587 } 4588 oe->name_len = t16 / sizeof(short); 4589 memcpy(oe->ptr, 4590 Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)), t16); 4591 oe->is_attr_name = 1; 4592 } else { 4593 oe->ptr = NULL; 4594 oe->is_attr_name = 0; 4595 } 4596 4597 goto next_log_record_analyze; 4598 4599 case HotFix: 4600 t16 = le16_to_cpu(lrh->target_attr); 4601 t64 = le64_to_cpu(lrh->target_vcn); 4602 dp = find_dp(dptbl, t16, t64); 4603 if (dp) { 4604 size_t j = le64_to_cpu(lrh->target_vcn) - 4605 le64_to_cpu(dp->vcn); 4606 if (dp->page_lcns[j]) 4607 dp->page_lcns[j] = lrh->page_lcns[0]; 4608 } 4609 goto next_log_record_analyze; 4610 4611 case EndTopLevelAction: 4612 tr = Add2Ptr(trtbl, transact_id); 4613 tr->prev_lsn = cpu_to_le64(rec_lsn); 4614 tr->undo_next_lsn = frh->client_undo_next_lsn; 4615 goto next_log_record_analyze; 4616 4617 case PrepareTransaction: 4618 tr = Add2Ptr(trtbl, transact_id); 4619 tr->transact_state = TransactionPrepared; 4620 goto next_log_record_analyze; 4621 4622 case CommitTransaction: 4623 tr = Add2Ptr(trtbl, transact_id); 4624 tr->transact_state = TransactionCommitted; 4625 goto next_log_record_analyze; 4626 4627 case ForgetTransaction: 4628 free_rsttbl_idx(trtbl, transact_id); 4629 goto next_log_record_analyze; 4630 4631 case Noop: 4632 case OpenAttributeTableDump: 4633 case AttributeNamesDump: 4634 case DirtyPageTableDump: 4635 case TransactionTableDump: 4636 /* The following cases require no action the Analysis Pass. */ 4637 goto next_log_record_analyze; 4638 4639 default: 4640 /* 4641 * All codes will be explicitly handled. 4642 * If we see a code we do not expect, then we are trouble. 4643 */ 4644 goto next_log_record_analyze; 4645 } 4646 4647 end_log_records_enumerate: 4648 lcb_put(lcb); 4649 lcb = NULL; 4650 4651 /* 4652 * Scan the Dirty Page Table and Transaction Table for 4653 * the lowest lsn, and return it as the Redo lsn. 4654 */ 4655 dp = NULL; 4656 while ((dp = enum_rstbl(dptbl, dp))) { 4657 t64 = le64_to_cpu(dp->oldest_lsn); 4658 if (t64 && t64 < rlsn) 4659 rlsn = t64; 4660 } 4661 4662 tr = NULL; 4663 while ((tr = enum_rstbl(trtbl, tr))) { 4664 t64 = le64_to_cpu(tr->first_lsn); 4665 if (t64 && t64 < rlsn) 4666 rlsn = t64; 4667 } 4668 4669 /* 4670 * Only proceed if the Dirty Page Table or Transaction 4671 * table are not empty. 4672 */ 4673 if ((!dptbl || !dptbl->total) && (!trtbl || !trtbl->total)) 4674 goto end_reply; 4675 4676 sbi->flags |= NTFS_FLAGS_NEED_REPLAY; 4677 if (is_ro) 4678 goto out; 4679 4680 /* Reopen all of the attributes with dirty pages. */ 4681 oe = NULL; 4682 next_open_attribute: 4683 4684 oe = enum_rstbl(oatbl, oe); 4685 if (!oe) { 4686 err = 0; 4687 dp = NULL; 4688 goto next_dirty_page; 4689 } 4690 4691 oa = kzalloc(sizeof(struct OpenAttr), GFP_NOFS); 4692 if (!oa) { 4693 err = -ENOMEM; 4694 goto out; 4695 } 4696 4697 inode = ntfs_iget5(sbi->sb, &oe->ref, NULL); 4698 if (IS_ERR(inode)) 4699 goto fake_attr; 4700 4701 if (is_bad_inode(inode)) { 4702 iput(inode); 4703 fake_attr: 4704 if (oa->ni) { 4705 iput(&oa->ni->vfs_inode); 4706 oa->ni = NULL; 4707 } 4708 4709 attr = attr_create_nonres_log(sbi, oe->type, 0, oe->ptr, 4710 oe->name_len, 0); 4711 if (!attr) { 4712 kfree(oa); 4713 err = -ENOMEM; 4714 goto out; 4715 } 4716 oa->attr = attr; 4717 oa->run1 = &oa->run0; 4718 goto final_oe; 4719 } 4720 4721 ni_oe = ntfs_i(inode); 4722 oa->ni = ni_oe; 4723 4724 attr = ni_find_attr(ni_oe, NULL, NULL, oe->type, oe->ptr, oe->name_len, 4725 NULL, NULL); 4726 4727 if (!attr) 4728 goto fake_attr; 4729 4730 t32 = le32_to_cpu(attr->size); 4731 oa->attr = kmemdup(attr, t32, GFP_NOFS); 4732 if (!oa->attr) 4733 goto fake_attr; 4734 4735 if (!S_ISDIR(inode->i_mode)) { 4736 if (attr->type == ATTR_DATA && !attr->name_len) { 4737 oa->run1 = &ni_oe->file.run; 4738 goto final_oe; 4739 } 4740 } else { 4741 if (attr->type == ATTR_ALLOC && 4742 attr->name_len == ARRAY_SIZE(I30_NAME) && 4743 !memcmp(attr_name(attr), I30_NAME, sizeof(I30_NAME))) { 4744 oa->run1 = &ni_oe->dir.alloc_run; 4745 goto final_oe; 4746 } 4747 } 4748 4749 if (attr->non_res) { 4750 u16 roff = le16_to_cpu(attr->nres.run_off); 4751 CLST svcn = le64_to_cpu(attr->nres.svcn); 4752 4753 if (roff > t32) { 4754 kfree(oa->attr); 4755 oa->attr = NULL; 4756 goto fake_attr; 4757 } 4758 4759 err = run_unpack(&oa->run0, sbi, inode->i_ino, svcn, 4760 le64_to_cpu(attr->nres.evcn), svcn, 4761 Add2Ptr(attr, roff), t32 - roff); 4762 if (err < 0) { 4763 kfree(oa->attr); 4764 oa->attr = NULL; 4765 goto fake_attr; 4766 } 4767 err = 0; 4768 } 4769 oa->run1 = &oa->run0; 4770 attr = oa->attr; 4771 4772 final_oe: 4773 if (oe->is_attr_name == 1) 4774 kfree(oe->ptr); 4775 oe->is_attr_name = 0; 4776 oe->ptr = oa; 4777 oe->name_len = attr->name_len; 4778 4779 goto next_open_attribute; 4780 4781 /* 4782 * Now loop through the dirty page table to extract all of the Vcn/Lcn. 4783 * Mapping that we have, and insert it into the appropriate run. 4784 */ 4785 next_dirty_page: 4786 dp = enum_rstbl(dptbl, dp); 4787 if (!dp) 4788 goto do_redo_1; 4789 4790 oe = Add2Ptr(oatbl, le32_to_cpu(dp->target_attr)); 4791 4792 if (oe->next != RESTART_ENTRY_ALLOCATED_LE) 4793 goto next_dirty_page; 4794 4795 oa = oe->ptr; 4796 if (!oa) 4797 goto next_dirty_page; 4798 4799 i = -1; 4800 next_dirty_page_vcn: 4801 i += 1; 4802 if (i >= le32_to_cpu(dp->lcns_follow)) 4803 goto next_dirty_page; 4804 4805 vcn = le64_to_cpu(dp->vcn) + i; 4806 size = (vcn + 1) << sbi->cluster_bits; 4807 4808 if (!dp->page_lcns[i]) 4809 goto next_dirty_page_vcn; 4810 4811 rno = ino_get(&oe->ref); 4812 if (rno <= MFT_REC_MIRR && 4813 size < (MFT_REC_VOL + 1) * sbi->record_size && 4814 oe->type == ATTR_DATA) { 4815 goto next_dirty_page_vcn; 4816 } 4817 4818 lcn = le64_to_cpu(dp->page_lcns[i]); 4819 4820 if ((!run_lookup_entry(oa->run1, vcn, &lcn0, &len0, NULL) || 4821 lcn0 != lcn) && 4822 !run_add_entry(oa->run1, vcn, lcn, 1, false)) { 4823 err = -ENOMEM; 4824 goto out; 4825 } 4826 attr = oa->attr; 4827 if (size > le64_to_cpu(attr->nres.alloc_size)) { 4828 attr->nres.valid_size = attr->nres.data_size = 4829 attr->nres.alloc_size = cpu_to_le64(size); 4830 } 4831 goto next_dirty_page_vcn; 4832 4833 do_redo_1: 4834 /* 4835 * Perform the Redo Pass, to restore all of the dirty pages to the same 4836 * contents that they had immediately before the crash. If the dirty 4837 * page table is empty, then we can skip the entire Redo Pass. 4838 */ 4839 if (!dptbl || !dptbl->total) 4840 goto do_undo_action; 4841 4842 rec_lsn = rlsn; 4843 4844 /* 4845 * Read the record at the Redo lsn, before falling 4846 * into common code to handle each record. 4847 */ 4848 err = read_log_rec_lcb(log, rlsn, lcb_ctx_next, &lcb); 4849 if (err) 4850 goto out; 4851 4852 /* 4853 * Now loop to read all of our log records forwards, until 4854 * we hit the end of the file, cleaning up at the end. 4855 */ 4856 do_action_next: 4857 frh = lcb->lrh; 4858 4859 if (LfsClientRecord != frh->record_type) 4860 goto read_next_log_do_action; 4861 4862 transact_id = le32_to_cpu(frh->transact_id); 4863 rec_len = le32_to_cpu(frh->client_data_len); 4864 lrh = lcb->log_rec; 4865 4866 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) { 4867 err = -EINVAL; 4868 goto out; 4869 } 4870 4871 /* Ignore log records that do not update pages. */ 4872 if (lrh->lcns_follow) 4873 goto find_dirty_page; 4874 4875 goto read_next_log_do_action; 4876 4877 find_dirty_page: 4878 t16 = le16_to_cpu(lrh->target_attr); 4879 t64 = le64_to_cpu(lrh->target_vcn); 4880 dp = find_dp(dptbl, t16, t64); 4881 4882 if (!dp) 4883 goto read_next_log_do_action; 4884 4885 if (rec_lsn < le64_to_cpu(dp->oldest_lsn)) 4886 goto read_next_log_do_action; 4887 4888 t16 = le16_to_cpu(lrh->target_attr); 4889 if (t16 >= bytes_per_rt(oatbl)) { 4890 err = -EINVAL; 4891 goto out; 4892 } 4893 4894 oe = Add2Ptr(oatbl, t16); 4895 4896 if (oe->next != RESTART_ENTRY_ALLOCATED_LE) { 4897 err = -EINVAL; 4898 goto out; 4899 } 4900 4901 oa = oe->ptr; 4902 4903 if (!oa) { 4904 err = -EINVAL; 4905 goto out; 4906 } 4907 attr = oa->attr; 4908 4909 vcn = le64_to_cpu(lrh->target_vcn); 4910 4911 if (!run_lookup_entry(oa->run1, vcn, &lcn, NULL, NULL) || 4912 lcn == SPARSE_LCN) { 4913 goto read_next_log_do_action; 4914 } 4915 4916 /* Point to the Redo data and get its length. */ 4917 data = Add2Ptr(lrh, le16_to_cpu(lrh->redo_off)); 4918 dlen = le16_to_cpu(lrh->redo_len); 4919 4920 /* Shorten length by any Lcns which were deleted. */ 4921 saved_len = dlen; 4922 4923 for (i = le16_to_cpu(lrh->lcns_follow); i; i--) { 4924 size_t j; 4925 u32 alen, voff; 4926 4927 voff = le16_to_cpu(lrh->record_off) + 4928 le16_to_cpu(lrh->attr_off); 4929 voff += le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT; 4930 4931 /* If the Vcn question is allocated, we can just get out. */ 4932 j = le64_to_cpu(lrh->target_vcn) - le64_to_cpu(dp->vcn); 4933 if (dp->page_lcns[j + i - 1]) 4934 break; 4935 4936 if (!saved_len) 4937 saved_len = 1; 4938 4939 /* 4940 * Calculate the allocated space left relative to the 4941 * log record Vcn, after removing this unallocated Vcn. 4942 */ 4943 alen = (i - 1) << sbi->cluster_bits; 4944 4945 /* 4946 * If the update described this log record goes beyond 4947 * the allocated space, then we will have to reduce the length. 4948 */ 4949 if (voff >= alen) 4950 dlen = 0; 4951 else if (voff + dlen > alen) 4952 dlen = alen - voff; 4953 } 4954 4955 /* 4956 * If the resulting dlen from above is now zero, 4957 * we can skip this log record. 4958 */ 4959 if (!dlen && saved_len) 4960 goto read_next_log_do_action; 4961 4962 t16 = le16_to_cpu(lrh->redo_op); 4963 if (can_skip_action(t16)) 4964 goto read_next_log_do_action; 4965 4966 /* Apply the Redo operation a common routine. */ 4967 err = do_action(log, oe, lrh, t16, data, dlen, rec_len, &rec_lsn); 4968 if (err) 4969 goto out; 4970 4971 /* Keep reading and looping back until end of file. */ 4972 read_next_log_do_action: 4973 err = read_next_log_rec(log, lcb, &rec_lsn); 4974 if (!err && rec_lsn) 4975 goto do_action_next; 4976 4977 lcb_put(lcb); 4978 lcb = NULL; 4979 4980 do_undo_action: 4981 /* Scan Transaction Table. */ 4982 tr = NULL; 4983 transaction_table_next: 4984 tr = enum_rstbl(trtbl, tr); 4985 if (!tr) 4986 goto undo_action_done; 4987 4988 if (TransactionActive != tr->transact_state || !tr->undo_next_lsn) { 4989 free_rsttbl_idx(trtbl, PtrOffset(trtbl, tr)); 4990 goto transaction_table_next; 4991 } 4992 4993 log->transaction_id = PtrOffset(trtbl, tr); 4994 undo_next_lsn = le64_to_cpu(tr->undo_next_lsn); 4995 4996 /* 4997 * We only have to do anything if the transaction has 4998 * something its undo_next_lsn field. 4999 */ 5000 if (!undo_next_lsn) 5001 goto commit_undo; 5002 5003 /* Read the first record to be undone by this transaction. */ 5004 err = read_log_rec_lcb(log, undo_next_lsn, lcb_ctx_undo_next, &lcb); 5005 if (err) 5006 goto out; 5007 5008 /* 5009 * Now loop to read all of our log records forwards, 5010 * until we hit the end of the file, cleaning up at the end. 5011 */ 5012 undo_action_next: 5013 5014 lrh = lcb->log_rec; 5015 frh = lcb->lrh; 5016 transact_id = le32_to_cpu(frh->transact_id); 5017 rec_len = le32_to_cpu(frh->client_data_len); 5018 5019 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) { 5020 err = -EINVAL; 5021 goto out; 5022 } 5023 5024 if (lrh->undo_op == cpu_to_le16(Noop)) 5025 goto read_next_log_undo_action; 5026 5027 oe = Add2Ptr(oatbl, le16_to_cpu(lrh->target_attr)); 5028 oa = oe->ptr; 5029 5030 t16 = le16_to_cpu(lrh->lcns_follow); 5031 if (!t16) 5032 goto add_allocated_vcns; 5033 5034 is_mapped = run_lookup_entry(oa->run1, le64_to_cpu(lrh->target_vcn), 5035 &lcn, &clen, NULL); 5036 5037 /* 5038 * If the mapping isn't already the table or the mapping 5039 * corresponds to a hole the mapping, we need to make sure 5040 * there is no partial page already memory. 5041 */ 5042 if (is_mapped && lcn != SPARSE_LCN && clen >= t16) 5043 goto add_allocated_vcns; 5044 5045 vcn = le64_to_cpu(lrh->target_vcn); 5046 vcn &= ~(u64)(log->clst_per_page - 1); 5047 5048 add_allocated_vcns: 5049 for (i = 0, vcn = le64_to_cpu(lrh->target_vcn), 5050 size = (vcn + 1) << sbi->cluster_bits; 5051 i < t16; i++, vcn += 1, size += sbi->cluster_size) { 5052 attr = oa->attr; 5053 if (!attr->non_res) { 5054 if (size > le32_to_cpu(attr->res.data_size)) 5055 attr->res.data_size = cpu_to_le32(size); 5056 } else { 5057 if (size > le64_to_cpu(attr->nres.data_size)) 5058 attr->nres.valid_size = attr->nres.data_size = 5059 attr->nres.alloc_size = 5060 cpu_to_le64(size); 5061 } 5062 } 5063 5064 t16 = le16_to_cpu(lrh->undo_op); 5065 if (can_skip_action(t16)) 5066 goto read_next_log_undo_action; 5067 5068 /* Point to the Redo data and get its length. */ 5069 data = Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)); 5070 dlen = le16_to_cpu(lrh->undo_len); 5071 5072 /* It is time to apply the undo action. */ 5073 err = do_action(log, oe, lrh, t16, data, dlen, rec_len, NULL); 5074 5075 read_next_log_undo_action: 5076 /* 5077 * Keep reading and looping back until we have read the 5078 * last record for this transaction. 5079 */ 5080 err = read_next_log_rec(log, lcb, &rec_lsn); 5081 if (err) 5082 goto out; 5083 5084 if (rec_lsn) 5085 goto undo_action_next; 5086 5087 lcb_put(lcb); 5088 lcb = NULL; 5089 5090 commit_undo: 5091 free_rsttbl_idx(trtbl, log->transaction_id); 5092 5093 log->transaction_id = 0; 5094 5095 goto transaction_table_next; 5096 5097 undo_action_done: 5098 5099 ntfs_update_mftmirr(sbi, 0); 5100 5101 sbi->flags &= ~NTFS_FLAGS_NEED_REPLAY; 5102 5103 end_reply: 5104 5105 err = 0; 5106 if (is_ro) 5107 goto out; 5108 5109 rh = kzalloc(log->page_size, GFP_NOFS); 5110 if (!rh) { 5111 err = -ENOMEM; 5112 goto out; 5113 } 5114 5115 rh->rhdr.sign = NTFS_RSTR_SIGNATURE; 5116 rh->rhdr.fix_off = cpu_to_le16(offsetof(struct RESTART_HDR, fixups)); 5117 t16 = (log->page_size >> SECTOR_SHIFT) + 1; 5118 rh->rhdr.fix_num = cpu_to_le16(t16); 5119 rh->sys_page_size = cpu_to_le32(log->page_size); 5120 rh->page_size = cpu_to_le32(log->page_size); 5121 5122 t16 = ALIGN(offsetof(struct RESTART_HDR, fixups) + sizeof(short) * t16, 5123 8); 5124 rh->ra_off = cpu_to_le16(t16); 5125 rh->minor_ver = cpu_to_le16(1); // 0x1A: 5126 rh->major_ver = cpu_to_le16(1); // 0x1C: 5127 5128 ra2 = Add2Ptr(rh, t16); 5129 memcpy(ra2, ra, sizeof(struct RESTART_AREA)); 5130 5131 ra2->client_idx[0] = 0; 5132 ra2->client_idx[1] = LFS_NO_CLIENT_LE; 5133 ra2->flags = cpu_to_le16(2); 5134 5135 le32_add_cpu(&ra2->open_log_count, 1); 5136 5137 ntfs_fix_pre_write(&rh->rhdr, log->page_size); 5138 5139 err = ntfs_sb_write_run(sbi, &ni->file.run, 0, rh, log->page_size, 0); 5140 if (!err) 5141 err = ntfs_sb_write_run(sbi, &log->ni->file.run, log->page_size, 5142 rh, log->page_size, 0); 5143 5144 kfree(rh); 5145 if (err) 5146 goto out; 5147 5148 out: 5149 kfree(rst); 5150 if (lcb) 5151 lcb_put(lcb); 5152 5153 /* 5154 * Scan the Open Attribute Table to close all of 5155 * the open attributes. 5156 */ 5157 oe = NULL; 5158 while ((oe = enum_rstbl(oatbl, oe))) { 5159 rno = ino_get(&oe->ref); 5160 5161 if (oe->is_attr_name == 1) { 5162 kfree(oe->ptr); 5163 oe->ptr = NULL; 5164 continue; 5165 } 5166 5167 if (oe->is_attr_name) 5168 continue; 5169 5170 oa = oe->ptr; 5171 if (!oa) 5172 continue; 5173 5174 run_close(&oa->run0); 5175 kfree(oa->attr); 5176 if (oa->ni) 5177 iput(&oa->ni->vfs_inode); 5178 kfree(oa); 5179 } 5180 5181 kfree(trtbl); 5182 kfree(oatbl); 5183 kfree(dptbl); 5184 kfree(attr_names); 5185 kfree(rst_info.r_page); 5186 5187 kfree(ra); 5188 kfree(log->one_page_buf); 5189 5190 if (err) 5191 sbi->flags |= NTFS_FLAGS_NEED_REPLAY; 5192 5193 if (err == -EROFS) 5194 err = 0; 5195 else if (log->set_dirty) 5196 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 5197 5198 kfree(log); 5199 5200 return err; 5201 } 5202