1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * 4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. 5 * 6 */ 7 8 #include <linux/fiemap.h> 9 #include <linux/fs.h> 10 #include <linux/vmalloc.h> 11 12 #include "debug.h" 13 #include "ntfs.h" 14 #include "ntfs_fs.h" 15 #ifdef CONFIG_NTFS3_LZX_XPRESS 16 #include "lib/lib.h" 17 #endif 18 19 static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree, 20 CLST ino, struct rb_node *ins) 21 { 22 struct rb_node **p = &tree->rb_node; 23 struct rb_node *pr = NULL; 24 25 while (*p) { 26 struct mft_inode *mi; 27 28 pr = *p; 29 mi = rb_entry(pr, struct mft_inode, node); 30 if (mi->rno > ino) 31 p = &pr->rb_left; 32 else if (mi->rno < ino) 33 p = &pr->rb_right; 34 else 35 return mi; 36 } 37 38 if (!ins) 39 return NULL; 40 41 rb_link_node(ins, pr, p); 42 rb_insert_color(ins, tree); 43 return rb_entry(ins, struct mft_inode, node); 44 } 45 46 /* 47 * ni_find_mi - Find mft_inode by record number. 48 */ 49 static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno) 50 { 51 return ni_ins_mi(ni, &ni->mi_tree, rno, NULL); 52 } 53 54 /* 55 * ni_add_mi - Add new mft_inode into ntfs_inode. 56 */ 57 static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi) 58 { 59 ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node); 60 } 61 62 /* 63 * ni_remove_mi - Remove mft_inode from ntfs_inode. 64 */ 65 void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi) 66 { 67 rb_erase(&mi->node, &ni->mi_tree); 68 } 69 70 /* 71 * ni_std - Return: Pointer into std_info from primary record. 72 */ 73 struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni) 74 { 75 const struct ATTRIB *attr; 76 77 attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL); 78 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO)) 79 : NULL; 80 } 81 82 /* 83 * ni_std5 84 * 85 * Return: Pointer into std_info from primary record. 86 */ 87 struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni) 88 { 89 const struct ATTRIB *attr; 90 91 attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL); 92 93 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5)) 94 : NULL; 95 } 96 97 /* 98 * ni_clear - Clear resources allocated by ntfs_inode. 99 */ 100 void ni_clear(struct ntfs_inode *ni) 101 { 102 struct rb_node *node; 103 104 if (!ni->vfs_inode.i_nlink && is_rec_inuse(ni->mi.mrec)) 105 ni_delete_all(ni); 106 107 al_destroy(ni); 108 109 for (node = rb_first(&ni->mi_tree); node;) { 110 struct rb_node *next = rb_next(node); 111 struct mft_inode *mi = rb_entry(node, struct mft_inode, node); 112 113 rb_erase(node, &ni->mi_tree); 114 mi_put(mi); 115 node = next; 116 } 117 118 /* Bad inode always has mode == S_IFREG. */ 119 if (ni->ni_flags & NI_FLAG_DIR) 120 indx_clear(&ni->dir); 121 else { 122 run_close(&ni->file.run); 123 #ifdef CONFIG_NTFS3_LZX_XPRESS 124 if (ni->file.offs_page) { 125 /* On-demand allocated page for offsets. */ 126 put_page(ni->file.offs_page); 127 ni->file.offs_page = NULL; 128 } 129 #endif 130 } 131 132 mi_clear(&ni->mi); 133 } 134 135 /* 136 * ni_load_mi_ex - Find mft_inode by record number. 137 */ 138 int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi) 139 { 140 int err; 141 struct mft_inode *r; 142 143 r = ni_find_mi(ni, rno); 144 if (r) 145 goto out; 146 147 err = mi_get(ni->mi.sbi, rno, &r); 148 if (err) 149 return err; 150 151 ni_add_mi(ni, r); 152 153 out: 154 if (mi) 155 *mi = r; 156 return 0; 157 } 158 159 /* 160 * ni_load_mi - Load mft_inode corresponded list_entry. 161 */ 162 int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le, 163 struct mft_inode **mi) 164 { 165 CLST rno; 166 167 if (!le) { 168 *mi = &ni->mi; 169 return 0; 170 } 171 172 rno = ino_get(&le->ref); 173 if (rno == ni->mi.rno) { 174 *mi = &ni->mi; 175 return 0; 176 } 177 return ni_load_mi_ex(ni, rno, mi); 178 } 179 180 /* 181 * ni_find_attr 182 * 183 * Return: Attribute and record this attribute belongs to. 184 */ 185 struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr, 186 struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type, 187 const __le16 *name, u8 name_len, const CLST *vcn, 188 struct mft_inode **mi) 189 { 190 struct ATTR_LIST_ENTRY *le; 191 struct mft_inode *m; 192 193 if (!ni->attr_list.size || 194 (!name_len && (type == ATTR_LIST || type == ATTR_STD))) { 195 if (le_o) 196 *le_o = NULL; 197 if (mi) 198 *mi = &ni->mi; 199 200 /* Look for required attribute in primary record. */ 201 return mi_find_attr(&ni->mi, attr, type, name, name_len, NULL); 202 } 203 204 /* First look for list entry of required type. */ 205 le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn); 206 if (!le) 207 return NULL; 208 209 if (le_o) 210 *le_o = le; 211 212 /* Load record that contains this attribute. */ 213 if (ni_load_mi(ni, le, &m)) 214 return NULL; 215 216 /* Look for required attribute. */ 217 attr = mi_find_attr(m, NULL, type, name, name_len, &le->id); 218 219 if (!attr) 220 goto out; 221 222 if (!attr->non_res) { 223 if (vcn && *vcn) 224 goto out; 225 } else if (!vcn) { 226 if (attr->nres.svcn) 227 goto out; 228 } else if (le64_to_cpu(attr->nres.svcn) > *vcn || 229 *vcn > le64_to_cpu(attr->nres.evcn)) { 230 goto out; 231 } 232 233 if (mi) 234 *mi = m; 235 return attr; 236 237 out: 238 ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR); 239 return NULL; 240 } 241 242 /* 243 * ni_enum_attr_ex - Enumerates attributes in ntfs_inode. 244 */ 245 struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr, 246 struct ATTR_LIST_ENTRY **le, 247 struct mft_inode **mi) 248 { 249 struct mft_inode *mi2; 250 struct ATTR_LIST_ENTRY *le2; 251 252 /* Do we have an attribute list? */ 253 if (!ni->attr_list.size) { 254 *le = NULL; 255 if (mi) 256 *mi = &ni->mi; 257 /* Enum attributes in primary record. */ 258 return mi_enum_attr(&ni->mi, attr); 259 } 260 261 /* Get next list entry. */ 262 le2 = *le = al_enumerate(ni, attr ? *le : NULL); 263 if (!le2) 264 return NULL; 265 266 /* Load record that contains the required attribute. */ 267 if (ni_load_mi(ni, le2, &mi2)) 268 return NULL; 269 270 if (mi) 271 *mi = mi2; 272 273 /* Find attribute in loaded record. */ 274 return rec_find_attr_le(mi2, le2); 275 } 276 277 /* 278 * ni_load_attr - Load attribute that contains given VCN. 279 */ 280 struct ATTRIB *ni_load_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, 281 const __le16 *name, u8 name_len, CLST vcn, 282 struct mft_inode **pmi) 283 { 284 struct ATTR_LIST_ENTRY *le; 285 struct ATTRIB *attr; 286 struct mft_inode *mi; 287 struct ATTR_LIST_ENTRY *next; 288 289 if (!ni->attr_list.size) { 290 if (pmi) 291 *pmi = &ni->mi; 292 return mi_find_attr(&ni->mi, NULL, type, name, name_len, NULL); 293 } 294 295 le = al_find_ex(ni, NULL, type, name, name_len, NULL); 296 if (!le) 297 return NULL; 298 299 /* 300 * Unfortunately ATTR_LIST_ENTRY contains only start VCN. 301 * So to find the ATTRIB segment that contains 'vcn' we should 302 * enumerate some entries. 303 */ 304 if (vcn) { 305 for (;; le = next) { 306 next = al_find_ex(ni, le, type, name, name_len, NULL); 307 if (!next || le64_to_cpu(next->vcn) > vcn) 308 break; 309 } 310 } 311 312 if (ni_load_mi(ni, le, &mi)) 313 return NULL; 314 315 if (pmi) 316 *pmi = mi; 317 318 attr = mi_find_attr(mi, NULL, type, name, name_len, &le->id); 319 if (!attr) 320 return NULL; 321 322 if (!attr->non_res) 323 return attr; 324 325 if (le64_to_cpu(attr->nres.svcn) <= vcn && 326 vcn <= le64_to_cpu(attr->nres.evcn)) 327 return attr; 328 329 return NULL; 330 } 331 332 /* 333 * ni_load_all_mi - Load all subrecords. 334 */ 335 int ni_load_all_mi(struct ntfs_inode *ni) 336 { 337 int err; 338 struct ATTR_LIST_ENTRY *le; 339 340 if (!ni->attr_list.size) 341 return 0; 342 343 le = NULL; 344 345 while ((le = al_enumerate(ni, le))) { 346 CLST rno = ino_get(&le->ref); 347 348 if (rno == ni->mi.rno) 349 continue; 350 351 err = ni_load_mi_ex(ni, rno, NULL); 352 if (err) 353 return err; 354 } 355 356 return 0; 357 } 358 359 /* 360 * ni_add_subrecord - Allocate + format + attach a new subrecord. 361 */ 362 bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi) 363 { 364 struct mft_inode *m; 365 366 m = kzalloc(sizeof(struct mft_inode), GFP_NOFS); 367 if (!m) 368 return false; 369 370 if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) { 371 mi_put(m); 372 return false; 373 } 374 375 mi_get_ref(&ni->mi, &m->mrec->parent_ref); 376 377 ni_add_mi(ni, m); 378 *mi = m; 379 return true; 380 } 381 382 /* 383 * ni_remove_attr - Remove all attributes for the given type/name/id. 384 */ 385 int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, 386 const __le16 *name, size_t name_len, bool base_only, 387 const __le16 *id) 388 { 389 int err; 390 struct ATTRIB *attr; 391 struct ATTR_LIST_ENTRY *le; 392 struct mft_inode *mi; 393 u32 type_in; 394 int diff; 395 396 if (base_only || type == ATTR_LIST || !ni->attr_list.size) { 397 attr = mi_find_attr(&ni->mi, NULL, type, name, name_len, id); 398 if (!attr) 399 return -ENOENT; 400 401 mi_remove_attr(ni, &ni->mi, attr); 402 return 0; 403 } 404 405 type_in = le32_to_cpu(type); 406 le = NULL; 407 408 for (;;) { 409 le = al_enumerate(ni, le); 410 if (!le) 411 return 0; 412 413 next_le2: 414 diff = le32_to_cpu(le->type) - type_in; 415 if (diff < 0) 416 continue; 417 418 if (diff > 0) 419 return 0; 420 421 if (le->name_len != name_len) 422 continue; 423 424 if (name_len && 425 memcmp(le_name(le), name, name_len * sizeof(short))) 426 continue; 427 428 if (id && le->id != *id) 429 continue; 430 err = ni_load_mi(ni, le, &mi); 431 if (err) 432 return err; 433 434 al_remove_le(ni, le); 435 436 attr = mi_find_attr(mi, NULL, type, name, name_len, id); 437 if (!attr) 438 return -ENOENT; 439 440 mi_remove_attr(ni, mi, attr); 441 442 if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size) 443 return 0; 444 goto next_le2; 445 } 446 } 447 448 /* 449 * ni_ins_new_attr - Insert the attribute into record. 450 * 451 * Return: Not full constructed attribute or NULL if not possible to create. 452 */ 453 static struct ATTRIB * 454 ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi, 455 struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type, 456 const __le16 *name, u8 name_len, u32 asize, u16 name_off, 457 CLST svcn, struct ATTR_LIST_ENTRY **ins_le) 458 { 459 int err; 460 struct ATTRIB *attr; 461 bool le_added = false; 462 struct MFT_REF ref; 463 464 mi_get_ref(mi, &ref); 465 466 if (type != ATTR_LIST && !le && ni->attr_list.size) { 467 err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1), 468 &ref, &le); 469 if (err) { 470 /* No memory or no space. */ 471 return NULL; 472 } 473 le_added = true; 474 475 /* 476 * al_add_le -> attr_set_size (list) -> ni_expand_list 477 * which moves some attributes out of primary record 478 * this means that name may point into moved memory 479 * reinit 'name' from le. 480 */ 481 name = le->name; 482 } 483 484 attr = mi_insert_attr(mi, type, name, name_len, asize, name_off); 485 if (!attr) { 486 if (le_added) 487 al_remove_le(ni, le); 488 return NULL; 489 } 490 491 if (type == ATTR_LIST) { 492 /* Attr list is not in list entry array. */ 493 goto out; 494 } 495 496 if (!le) 497 goto out; 498 499 /* Update ATTRIB Id and record reference. */ 500 le->id = attr->id; 501 ni->attr_list.dirty = true; 502 le->ref = ref; 503 504 out: 505 if (ins_le) 506 *ins_le = le; 507 return attr; 508 } 509 510 /* 511 * ni_repack 512 * 513 * Random write access to sparsed or compressed file may result to 514 * not optimized packed runs. 515 * Here is the place to optimize it. 516 */ 517 static int ni_repack(struct ntfs_inode *ni) 518 { 519 int err = 0; 520 struct ntfs_sb_info *sbi = ni->mi.sbi; 521 struct mft_inode *mi, *mi_p = NULL; 522 struct ATTRIB *attr = NULL, *attr_p; 523 struct ATTR_LIST_ENTRY *le = NULL, *le_p; 524 CLST alloc = 0; 525 u8 cluster_bits = sbi->cluster_bits; 526 CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn; 527 u32 roff, rs = sbi->record_size; 528 struct runs_tree run; 529 530 run_init(&run); 531 532 while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) { 533 if (!attr->non_res) 534 continue; 535 536 svcn = le64_to_cpu(attr->nres.svcn); 537 if (svcn != le64_to_cpu(le->vcn)) { 538 err = -EINVAL; 539 break; 540 } 541 542 if (!svcn) { 543 alloc = le64_to_cpu(attr->nres.alloc_size) >> 544 cluster_bits; 545 mi_p = NULL; 546 } else if (svcn != evcn + 1) { 547 err = -EINVAL; 548 break; 549 } 550 551 evcn = le64_to_cpu(attr->nres.evcn); 552 553 if (svcn > evcn + 1) { 554 err = -EINVAL; 555 break; 556 } 557 558 if (!mi_p) { 559 /* Do not try if not enogh free space. */ 560 if (le32_to_cpu(mi->mrec->used) + 8 >= rs) 561 continue; 562 563 /* Do not try if last attribute segment. */ 564 if (evcn + 1 == alloc) 565 continue; 566 run_close(&run); 567 } 568 569 roff = le16_to_cpu(attr->nres.run_off); 570 err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn, 571 Add2Ptr(attr, roff), 572 le32_to_cpu(attr->size) - roff); 573 if (err < 0) 574 break; 575 576 if (!mi_p) { 577 mi_p = mi; 578 attr_p = attr; 579 svcn_p = svcn; 580 evcn_p = evcn; 581 le_p = le; 582 err = 0; 583 continue; 584 } 585 586 /* 587 * Run contains data from two records: mi_p and mi 588 * Try to pack in one. 589 */ 590 err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p); 591 if (err) 592 break; 593 594 next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1; 595 596 if (next_svcn >= evcn + 1) { 597 /* We can remove this attribute segment. */ 598 al_remove_le(ni, le); 599 mi_remove_attr(NULL, mi, attr); 600 le = le_p; 601 continue; 602 } 603 604 attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn); 605 mi->dirty = true; 606 ni->attr_list.dirty = true; 607 608 if (evcn + 1 == alloc) { 609 err = mi_pack_runs(mi, attr, &run, 610 evcn + 1 - next_svcn); 611 if (err) 612 break; 613 mi_p = NULL; 614 } else { 615 mi_p = mi; 616 attr_p = attr; 617 svcn_p = next_svcn; 618 evcn_p = evcn; 619 le_p = le; 620 run_truncate_head(&run, next_svcn); 621 } 622 } 623 624 if (err) { 625 ntfs_inode_warn(&ni->vfs_inode, "repack problem"); 626 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 627 628 /* Pack loaded but not packed runs. */ 629 if (mi_p) 630 mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p); 631 } 632 633 run_close(&run); 634 return err; 635 } 636 637 /* 638 * ni_try_remove_attr_list 639 * 640 * Can we remove attribute list? 641 * Check the case when primary record contains enough space for all attributes. 642 */ 643 static int ni_try_remove_attr_list(struct ntfs_inode *ni) 644 { 645 int err = 0; 646 struct ntfs_sb_info *sbi = ni->mi.sbi; 647 struct ATTRIB *attr, *attr_list, *attr_ins; 648 struct ATTR_LIST_ENTRY *le; 649 struct mft_inode *mi; 650 u32 asize, free; 651 struct MFT_REF ref; 652 __le16 id; 653 654 if (!ni->attr_list.dirty) 655 return 0; 656 657 err = ni_repack(ni); 658 if (err) 659 return err; 660 661 attr_list = mi_find_attr(&ni->mi, NULL, ATTR_LIST, NULL, 0, NULL); 662 if (!attr_list) 663 return 0; 664 665 asize = le32_to_cpu(attr_list->size); 666 667 /* Free space in primary record without attribute list. */ 668 free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize; 669 mi_get_ref(&ni->mi, &ref); 670 671 le = NULL; 672 while ((le = al_enumerate(ni, le))) { 673 if (!memcmp(&le->ref, &ref, sizeof(ref))) 674 continue; 675 676 if (le->vcn) 677 return 0; 678 679 mi = ni_find_mi(ni, ino_get(&le->ref)); 680 if (!mi) 681 return 0; 682 683 attr = mi_find_attr(mi, NULL, le->type, le_name(le), 684 le->name_len, &le->id); 685 if (!attr) 686 return 0; 687 688 asize = le32_to_cpu(attr->size); 689 if (asize > free) 690 return 0; 691 692 free -= asize; 693 } 694 695 /* It seems that attribute list can be removed from primary record. */ 696 mi_remove_attr(NULL, &ni->mi, attr_list); 697 698 /* 699 * Repeat the cycle above and move all attributes to primary record. 700 * It should be success! 701 */ 702 le = NULL; 703 while ((le = al_enumerate(ni, le))) { 704 if (!memcmp(&le->ref, &ref, sizeof(ref))) 705 continue; 706 707 mi = ni_find_mi(ni, ino_get(&le->ref)); 708 if (!mi) { 709 /* Should never happened, 'cause already checked. */ 710 goto bad; 711 } 712 713 attr = mi_find_attr(mi, NULL, le->type, le_name(le), 714 le->name_len, &le->id); 715 if (!attr) { 716 /* Should never happened, 'cause already checked. */ 717 goto bad; 718 } 719 asize = le32_to_cpu(attr->size); 720 721 /* Insert into primary record. */ 722 attr_ins = mi_insert_attr(&ni->mi, le->type, le_name(le), 723 le->name_len, asize, 724 le16_to_cpu(attr->name_off)); 725 if (!attr_ins) { 726 /* 727 * Internal error. 728 * Either no space in primary record (already checked). 729 * Either tried to insert another 730 * non indexed attribute (logic error). 731 */ 732 goto bad; 733 } 734 735 /* Copy all except id. */ 736 id = attr_ins->id; 737 memcpy(attr_ins, attr, asize); 738 attr_ins->id = id; 739 740 /* Remove from original record. */ 741 mi_remove_attr(NULL, mi, attr); 742 } 743 744 run_deallocate(sbi, &ni->attr_list.run, true); 745 run_close(&ni->attr_list.run); 746 ni->attr_list.size = 0; 747 kfree(ni->attr_list.le); 748 ni->attr_list.le = NULL; 749 ni->attr_list.dirty = false; 750 751 return 0; 752 bad: 753 ntfs_inode_err(&ni->vfs_inode, "Internal error"); 754 make_bad_inode(&ni->vfs_inode); 755 return -EINVAL; 756 } 757 758 /* 759 * ni_create_attr_list - Generates an attribute list for this primary record. 760 */ 761 int ni_create_attr_list(struct ntfs_inode *ni) 762 { 763 struct ntfs_sb_info *sbi = ni->mi.sbi; 764 int err; 765 u32 lsize; 766 struct ATTRIB *attr; 767 struct ATTRIB *arr_move[7]; 768 struct ATTR_LIST_ENTRY *le, *le_b[7]; 769 struct MFT_REC *rec; 770 bool is_mft; 771 CLST rno = 0; 772 struct mft_inode *mi; 773 u32 free_b, nb, to_free, rs; 774 u16 sz; 775 776 is_mft = ni->mi.rno == MFT_REC_MFT; 777 rec = ni->mi.mrec; 778 rs = sbi->record_size; 779 780 /* 781 * Skip estimating exact memory requirement. 782 * Looks like one record_size is always enough. 783 */ 784 le = kmalloc(al_aligned(rs), GFP_NOFS); 785 if (!le) { 786 err = -ENOMEM; 787 goto out; 788 } 789 790 mi_get_ref(&ni->mi, &le->ref); 791 ni->attr_list.le = le; 792 793 attr = NULL; 794 nb = 0; 795 free_b = 0; 796 attr = NULL; 797 798 for (; (attr = mi_enum_attr(&ni->mi, attr)); le = Add2Ptr(le, sz)) { 799 sz = le_size(attr->name_len); 800 le->type = attr->type; 801 le->size = cpu_to_le16(sz); 802 le->name_len = attr->name_len; 803 le->name_off = offsetof(struct ATTR_LIST_ENTRY, name); 804 le->vcn = 0; 805 if (le != ni->attr_list.le) 806 le->ref = ni->attr_list.le->ref; 807 le->id = attr->id; 808 809 if (attr->name_len) 810 memcpy(le->name, attr_name(attr), 811 sizeof(short) * attr->name_len); 812 else if (attr->type == ATTR_STD) 813 continue; 814 else if (attr->type == ATTR_LIST) 815 continue; 816 else if (is_mft && attr->type == ATTR_DATA) 817 continue; 818 819 if (!nb || nb < ARRAY_SIZE(arr_move)) { 820 le_b[nb] = le; 821 arr_move[nb++] = attr; 822 free_b += le32_to_cpu(attr->size); 823 } 824 } 825 826 lsize = PtrOffset(ni->attr_list.le, le); 827 ni->attr_list.size = lsize; 828 829 to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT; 830 if (to_free <= rs) { 831 to_free = 0; 832 } else { 833 to_free -= rs; 834 835 if (to_free > free_b) { 836 err = -EINVAL; 837 goto out1; 838 } 839 } 840 841 /* Allocate child MFT. */ 842 err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi); 843 if (err) 844 goto out1; 845 846 /* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */ 847 while (to_free > 0) { 848 struct ATTRIB *b = arr_move[--nb]; 849 u32 asize = le32_to_cpu(b->size); 850 u16 name_off = le16_to_cpu(b->name_off); 851 852 attr = mi_insert_attr(mi, b->type, Add2Ptr(b, name_off), 853 b->name_len, asize, name_off); 854 WARN_ON(!attr); 855 856 mi_get_ref(mi, &le_b[nb]->ref); 857 le_b[nb]->id = attr->id; 858 859 /* Copy all except id. */ 860 memcpy(attr, b, asize); 861 attr->id = le_b[nb]->id; 862 863 /* Remove from primary record. */ 864 WARN_ON(!mi_remove_attr(NULL, &ni->mi, b)); 865 866 if (to_free <= asize) 867 break; 868 to_free -= asize; 869 WARN_ON(!nb); 870 } 871 872 attr = mi_insert_attr(&ni->mi, ATTR_LIST, NULL, 0, 873 lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT); 874 WARN_ON(!attr); 875 876 attr->non_res = 0; 877 attr->flags = 0; 878 attr->res.data_size = cpu_to_le32(lsize); 879 attr->res.data_off = SIZEOF_RESIDENT_LE; 880 attr->res.flags = 0; 881 attr->res.res = 0; 882 883 memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize); 884 885 ni->attr_list.dirty = false; 886 887 mark_inode_dirty(&ni->vfs_inode); 888 goto out; 889 890 out1: 891 kfree(ni->attr_list.le); 892 ni->attr_list.le = NULL; 893 ni->attr_list.size = 0; 894 895 out: 896 return err; 897 } 898 899 /* 900 * ni_ins_attr_ext - Add an external attribute to the ntfs_inode. 901 */ 902 static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le, 903 enum ATTR_TYPE type, const __le16 *name, u8 name_len, 904 u32 asize, CLST svcn, u16 name_off, bool force_ext, 905 struct ATTRIB **ins_attr, struct mft_inode **ins_mi, 906 struct ATTR_LIST_ENTRY **ins_le) 907 { 908 struct ATTRIB *attr; 909 struct mft_inode *mi; 910 CLST rno; 911 u64 vbo; 912 struct rb_node *node; 913 int err; 914 bool is_mft, is_mft_data; 915 struct ntfs_sb_info *sbi = ni->mi.sbi; 916 917 is_mft = ni->mi.rno == MFT_REC_MFT; 918 is_mft_data = is_mft && type == ATTR_DATA && !name_len; 919 920 if (asize > sbi->max_bytes_per_attr) { 921 err = -EINVAL; 922 goto out; 923 } 924 925 /* 926 * Standard information and attr_list cannot be made external. 927 * The Log File cannot have any external attributes. 928 */ 929 if (type == ATTR_STD || type == ATTR_LIST || 930 ni->mi.rno == MFT_REC_LOG) { 931 err = -EINVAL; 932 goto out; 933 } 934 935 /* Create attribute list if it is not already existed. */ 936 if (!ni->attr_list.size) { 937 err = ni_create_attr_list(ni); 938 if (err) 939 goto out; 940 } 941 942 vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0; 943 944 if (force_ext) 945 goto insert_ext; 946 947 /* Load all subrecords into memory. */ 948 err = ni_load_all_mi(ni); 949 if (err) 950 goto out; 951 952 /* Check each of loaded subrecord. */ 953 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { 954 mi = rb_entry(node, struct mft_inode, node); 955 956 if (is_mft_data && 957 (mi_enum_attr(mi, NULL) || 958 vbo <= ((u64)mi->rno << sbi->record_bits))) { 959 /* We can't accept this record 'cause MFT's bootstrapping. */ 960 continue; 961 } 962 if (is_mft && 963 mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0, NULL)) { 964 /* 965 * This child record already has a ATTR_DATA. 966 * So it can't accept any other records. 967 */ 968 continue; 969 } 970 971 if ((type != ATTR_NAME || name_len) && 972 mi_find_attr(mi, NULL, type, name, name_len, NULL)) { 973 /* Only indexed attributes can share same record. */ 974 continue; 975 } 976 977 /* 978 * Do not try to insert this attribute 979 * if there is no room in record. 980 */ 981 if (le32_to_cpu(mi->mrec->used) + asize > sbi->record_size) 982 continue; 983 984 /* Try to insert attribute into this subrecord. */ 985 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize, 986 name_off, svcn, ins_le); 987 if (!attr) 988 continue; 989 990 if (ins_attr) 991 *ins_attr = attr; 992 if (ins_mi) 993 *ins_mi = mi; 994 return 0; 995 } 996 997 insert_ext: 998 /* We have to allocate a new child subrecord. */ 999 err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi); 1000 if (err) 1001 goto out; 1002 1003 if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) { 1004 err = -EINVAL; 1005 goto out1; 1006 } 1007 1008 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize, 1009 name_off, svcn, ins_le); 1010 if (!attr) 1011 goto out2; 1012 1013 if (ins_attr) 1014 *ins_attr = attr; 1015 if (ins_mi) 1016 *ins_mi = mi; 1017 1018 return 0; 1019 1020 out2: 1021 ni_remove_mi(ni, mi); 1022 mi_put(mi); 1023 err = -EINVAL; 1024 1025 out1: 1026 ntfs_mark_rec_free(sbi, rno); 1027 1028 out: 1029 return err; 1030 } 1031 1032 /* 1033 * ni_insert_attr - Insert an attribute into the file. 1034 * 1035 * If the primary record has room, it will just insert the attribute. 1036 * If not, it may make the attribute external. 1037 * For $MFT::Data it may make room for the attribute by 1038 * making other attributes external. 1039 * 1040 * NOTE: 1041 * The ATTR_LIST and ATTR_STD cannot be made external. 1042 * This function does not fill new attribute full. 1043 * It only fills 'size'/'type'/'id'/'name_len' fields. 1044 */ 1045 static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, 1046 const __le16 *name, u8 name_len, u32 asize, 1047 u16 name_off, CLST svcn, struct ATTRIB **ins_attr, 1048 struct mft_inode **ins_mi, 1049 struct ATTR_LIST_ENTRY **ins_le) 1050 { 1051 struct ntfs_sb_info *sbi = ni->mi.sbi; 1052 int err; 1053 struct ATTRIB *attr, *eattr; 1054 struct MFT_REC *rec; 1055 bool is_mft; 1056 struct ATTR_LIST_ENTRY *le; 1057 u32 list_reserve, max_free, free, used, t32; 1058 __le16 id; 1059 u16 t16; 1060 1061 is_mft = ni->mi.rno == MFT_REC_MFT; 1062 rec = ni->mi.mrec; 1063 1064 list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32)); 1065 used = le32_to_cpu(rec->used); 1066 free = sbi->record_size - used; 1067 1068 if (is_mft && type != ATTR_LIST) { 1069 /* Reserve space for the ATTRIB list. */ 1070 if (free < list_reserve) 1071 free = 0; 1072 else 1073 free -= list_reserve; 1074 } 1075 1076 if (asize <= free) { 1077 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, 1078 asize, name_off, svcn, ins_le); 1079 if (attr) { 1080 if (ins_attr) 1081 *ins_attr = attr; 1082 if (ins_mi) 1083 *ins_mi = &ni->mi; 1084 err = 0; 1085 goto out; 1086 } 1087 } 1088 1089 if (!is_mft || type != ATTR_DATA || svcn) { 1090 /* This ATTRIB will be external. */ 1091 err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize, 1092 svcn, name_off, false, ins_attr, ins_mi, 1093 ins_le); 1094 goto out; 1095 } 1096 1097 /* 1098 * Here we have: "is_mft && type == ATTR_DATA && !svcn" 1099 * 1100 * The first chunk of the $MFT::Data ATTRIB must be the base record. 1101 * Evict as many other attributes as possible. 1102 */ 1103 max_free = free; 1104 1105 /* Estimate the result of moving all possible attributes away. */ 1106 attr = NULL; 1107 1108 while ((attr = mi_enum_attr(&ni->mi, attr))) { 1109 if (attr->type == ATTR_STD) 1110 continue; 1111 if (attr->type == ATTR_LIST) 1112 continue; 1113 max_free += le32_to_cpu(attr->size); 1114 } 1115 1116 if (max_free < asize + list_reserve) { 1117 /* Impossible to insert this attribute into primary record. */ 1118 err = -EINVAL; 1119 goto out; 1120 } 1121 1122 /* Start real attribute moving. */ 1123 attr = NULL; 1124 1125 for (;;) { 1126 attr = mi_enum_attr(&ni->mi, attr); 1127 if (!attr) { 1128 /* We should never be here 'cause we have already check this case. */ 1129 err = -EINVAL; 1130 goto out; 1131 } 1132 1133 /* Skip attributes that MUST be primary record. */ 1134 if (attr->type == ATTR_STD || attr->type == ATTR_LIST) 1135 continue; 1136 1137 le = NULL; 1138 if (ni->attr_list.size) { 1139 le = al_find_le(ni, NULL, attr); 1140 if (!le) { 1141 /* Really this is a serious bug. */ 1142 err = -EINVAL; 1143 goto out; 1144 } 1145 } 1146 1147 t32 = le32_to_cpu(attr->size); 1148 t16 = le16_to_cpu(attr->name_off); 1149 err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16), 1150 attr->name_len, t32, attr_svcn(attr), t16, 1151 false, &eattr, NULL, NULL); 1152 if (err) 1153 return err; 1154 1155 id = eattr->id; 1156 memcpy(eattr, attr, t32); 1157 eattr->id = id; 1158 1159 /* Remove from primary record. */ 1160 mi_remove_attr(NULL, &ni->mi, attr); 1161 1162 /* attr now points to next attribute. */ 1163 if (attr->type == ATTR_END) 1164 goto out; 1165 } 1166 while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used)) 1167 ; 1168 1169 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize, 1170 name_off, svcn, ins_le); 1171 if (!attr) { 1172 err = -EINVAL; 1173 goto out; 1174 } 1175 1176 if (ins_attr) 1177 *ins_attr = attr; 1178 if (ins_mi) 1179 *ins_mi = &ni->mi; 1180 1181 out: 1182 return err; 1183 } 1184 1185 /* ni_expand_mft_list - Split ATTR_DATA of $MFT. */ 1186 static int ni_expand_mft_list(struct ntfs_inode *ni) 1187 { 1188 int err = 0; 1189 struct runs_tree *run = &ni->file.run; 1190 u32 asize, run_size, done = 0; 1191 struct ATTRIB *attr; 1192 struct rb_node *node; 1193 CLST mft_min, mft_new, svcn, evcn, plen; 1194 struct mft_inode *mi, *mi_min, *mi_new; 1195 struct ntfs_sb_info *sbi = ni->mi.sbi; 1196 1197 /* Find the nearest MFT. */ 1198 mft_min = 0; 1199 mft_new = 0; 1200 mi_min = NULL; 1201 1202 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { 1203 mi = rb_entry(node, struct mft_inode, node); 1204 1205 attr = mi_enum_attr(mi, NULL); 1206 1207 if (!attr) { 1208 mft_min = mi->rno; 1209 mi_min = mi; 1210 break; 1211 } 1212 } 1213 1214 if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) { 1215 mft_new = 0; 1216 /* Really this is not critical. */ 1217 } else if (mft_min > mft_new) { 1218 mft_min = mft_new; 1219 mi_min = mi_new; 1220 } else { 1221 ntfs_mark_rec_free(sbi, mft_new); 1222 mft_new = 0; 1223 ni_remove_mi(ni, mi_new); 1224 } 1225 1226 attr = mi_find_attr(&ni->mi, NULL, ATTR_DATA, NULL, 0, NULL); 1227 if (!attr) { 1228 err = -EINVAL; 1229 goto out; 1230 } 1231 1232 asize = le32_to_cpu(attr->size); 1233 1234 evcn = le64_to_cpu(attr->nres.evcn); 1235 svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits); 1236 if (evcn + 1 >= svcn) { 1237 err = -EINVAL; 1238 goto out; 1239 } 1240 1241 /* 1242 * Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn]. 1243 * 1244 * Update first part of ATTR_DATA in 'primary MFT. 1245 */ 1246 err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT), 1247 asize - SIZEOF_NONRESIDENT, &plen); 1248 if (err < 0) 1249 goto out; 1250 1251 run_size = ALIGN(err, 8); 1252 err = 0; 1253 1254 if (plen < svcn) { 1255 err = -EINVAL; 1256 goto out; 1257 } 1258 1259 attr->nres.evcn = cpu_to_le64(svcn - 1); 1260 attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT); 1261 /* 'done' - How many bytes of primary MFT becomes free. */ 1262 done = asize - run_size - SIZEOF_NONRESIDENT; 1263 le32_sub_cpu(&ni->mi.mrec->used, done); 1264 1265 /* Estimate the size of second part: run_buf=NULL. */ 1266 err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size, 1267 &plen); 1268 if (err < 0) 1269 goto out; 1270 1271 run_size = ALIGN(err, 8); 1272 err = 0; 1273 1274 if (plen < evcn + 1 - svcn) { 1275 err = -EINVAL; 1276 goto out; 1277 } 1278 1279 /* 1280 * This function may implicitly call expand attr_list. 1281 * Insert second part of ATTR_DATA in 'mi_min'. 1282 */ 1283 attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0, 1284 SIZEOF_NONRESIDENT + run_size, 1285 SIZEOF_NONRESIDENT, svcn, NULL); 1286 if (!attr) { 1287 err = -EINVAL; 1288 goto out; 1289 } 1290 1291 attr->non_res = 1; 1292 attr->name_off = SIZEOF_NONRESIDENT_LE; 1293 attr->flags = 0; 1294 1295 run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT), 1296 run_size, &plen); 1297 1298 attr->nres.svcn = cpu_to_le64(svcn); 1299 attr->nres.evcn = cpu_to_le64(evcn); 1300 attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT); 1301 1302 out: 1303 if (mft_new) { 1304 ntfs_mark_rec_free(sbi, mft_new); 1305 ni_remove_mi(ni, mi_new); 1306 } 1307 1308 return !err && !done ? -EOPNOTSUPP : err; 1309 } 1310 1311 /* 1312 * ni_expand_list - Move all possible attributes out of primary record. 1313 */ 1314 int ni_expand_list(struct ntfs_inode *ni) 1315 { 1316 int err = 0; 1317 u32 asize, done = 0; 1318 struct ATTRIB *attr, *ins_attr; 1319 struct ATTR_LIST_ENTRY *le; 1320 bool is_mft = ni->mi.rno == MFT_REC_MFT; 1321 struct MFT_REF ref; 1322 1323 mi_get_ref(&ni->mi, &ref); 1324 le = NULL; 1325 1326 while ((le = al_enumerate(ni, le))) { 1327 if (le->type == ATTR_STD) 1328 continue; 1329 1330 if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF))) 1331 continue; 1332 1333 if (is_mft && le->type == ATTR_DATA) 1334 continue; 1335 1336 /* Find attribute in primary record. */ 1337 attr = rec_find_attr_le(&ni->mi, le); 1338 if (!attr) { 1339 err = -EINVAL; 1340 goto out; 1341 } 1342 1343 asize = le32_to_cpu(attr->size); 1344 1345 /* Always insert into new record to avoid collisions (deep recursive). */ 1346 err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr), 1347 attr->name_len, asize, attr_svcn(attr), 1348 le16_to_cpu(attr->name_off), true, 1349 &ins_attr, NULL, NULL); 1350 1351 if (err) 1352 goto out; 1353 1354 memcpy(ins_attr, attr, asize); 1355 ins_attr->id = le->id; 1356 /* Remove from primary record. */ 1357 mi_remove_attr(NULL, &ni->mi, attr); 1358 1359 done += asize; 1360 goto out; 1361 } 1362 1363 if (!is_mft) { 1364 err = -EFBIG; /* Attr list is too big(?) */ 1365 goto out; 1366 } 1367 1368 /* Split MFT data as much as possible. */ 1369 err = ni_expand_mft_list(ni); 1370 if (err) 1371 goto out; 1372 1373 out: 1374 return !err && !done ? -EOPNOTSUPP : err; 1375 } 1376 1377 /* 1378 * ni_insert_nonresident - Insert new nonresident attribute. 1379 */ 1380 int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type, 1381 const __le16 *name, u8 name_len, 1382 const struct runs_tree *run, CLST svcn, CLST len, 1383 __le16 flags, struct ATTRIB **new_attr, 1384 struct mft_inode **mi) 1385 { 1386 int err; 1387 CLST plen; 1388 struct ATTRIB *attr; 1389 bool is_ext = 1390 (flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) && !svcn; 1391 u32 name_size = ALIGN(name_len * sizeof(short), 8); 1392 u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT; 1393 u32 run_off = name_off + name_size; 1394 u32 run_size, asize; 1395 struct ntfs_sb_info *sbi = ni->mi.sbi; 1396 1397 err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off, 1398 &plen); 1399 if (err < 0) 1400 goto out; 1401 1402 run_size = ALIGN(err, 8); 1403 1404 if (plen < len) { 1405 err = -EINVAL; 1406 goto out; 1407 } 1408 1409 asize = run_off + run_size; 1410 1411 if (asize > sbi->max_bytes_per_attr) { 1412 err = -EINVAL; 1413 goto out; 1414 } 1415 1416 err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn, 1417 &attr, mi, NULL); 1418 1419 if (err) 1420 goto out; 1421 1422 attr->non_res = 1; 1423 attr->name_off = cpu_to_le16(name_off); 1424 attr->flags = flags; 1425 1426 run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen); 1427 1428 attr->nres.svcn = cpu_to_le64(svcn); 1429 attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1); 1430 1431 err = 0; 1432 if (new_attr) 1433 *new_attr = attr; 1434 1435 *(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off); 1436 1437 attr->nres.alloc_size = 1438 svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits); 1439 attr->nres.data_size = attr->nres.alloc_size; 1440 attr->nres.valid_size = attr->nres.alloc_size; 1441 1442 if (is_ext) { 1443 if (flags & ATTR_FLAG_COMPRESSED) 1444 attr->nres.c_unit = COMPRESSION_UNIT; 1445 attr->nres.total_size = attr->nres.alloc_size; 1446 } 1447 1448 out: 1449 return err; 1450 } 1451 1452 /* 1453 * ni_insert_resident - Inserts new resident attribute. 1454 */ 1455 int ni_insert_resident(struct ntfs_inode *ni, u32 data_size, 1456 enum ATTR_TYPE type, const __le16 *name, u8 name_len, 1457 struct ATTRIB **new_attr, struct mft_inode **mi, 1458 struct ATTR_LIST_ENTRY **le) 1459 { 1460 int err; 1461 u32 name_size = ALIGN(name_len * sizeof(short), 8); 1462 u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8); 1463 struct ATTRIB *attr; 1464 1465 err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT, 1466 0, &attr, mi, le); 1467 if (err) 1468 return err; 1469 1470 attr->non_res = 0; 1471 attr->flags = 0; 1472 1473 attr->res.data_size = cpu_to_le32(data_size); 1474 attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size); 1475 if (type == ATTR_NAME) { 1476 attr->res.flags = RESIDENT_FLAG_INDEXED; 1477 1478 /* is_attr_indexed(attr)) == true */ 1479 le16_add_cpu(&ni->mi.mrec->hard_links, 1); 1480 ni->mi.dirty = true; 1481 } 1482 attr->res.res = 0; 1483 1484 if (new_attr) 1485 *new_attr = attr; 1486 1487 return 0; 1488 } 1489 1490 /* 1491 * ni_remove_attr_le - Remove attribute from record. 1492 */ 1493 void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr, 1494 struct mft_inode *mi, struct ATTR_LIST_ENTRY *le) 1495 { 1496 mi_remove_attr(ni, mi, attr); 1497 1498 if (le) 1499 al_remove_le(ni, le); 1500 } 1501 1502 /* 1503 * ni_delete_all - Remove all attributes and frees allocates space. 1504 * 1505 * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links). 1506 */ 1507 int ni_delete_all(struct ntfs_inode *ni) 1508 { 1509 int err; 1510 struct ATTR_LIST_ENTRY *le = NULL; 1511 struct ATTRIB *attr = NULL; 1512 struct rb_node *node; 1513 u16 roff; 1514 u32 asize; 1515 CLST svcn, evcn; 1516 struct ntfs_sb_info *sbi = ni->mi.sbi; 1517 bool nt3 = is_ntfs3(sbi); 1518 struct MFT_REF ref; 1519 1520 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) { 1521 if (!nt3 || attr->name_len) { 1522 ; 1523 } else if (attr->type == ATTR_REPARSE) { 1524 mi_get_ref(&ni->mi, &ref); 1525 ntfs_remove_reparse(sbi, 0, &ref); 1526 } else if (attr->type == ATTR_ID && !attr->non_res && 1527 le32_to_cpu(attr->res.data_size) >= 1528 sizeof(struct GUID)) { 1529 ntfs_objid_remove(sbi, resident_data(attr)); 1530 } 1531 1532 if (!attr->non_res) 1533 continue; 1534 1535 svcn = le64_to_cpu(attr->nres.svcn); 1536 evcn = le64_to_cpu(attr->nres.evcn); 1537 1538 if (evcn + 1 <= svcn) 1539 continue; 1540 1541 asize = le32_to_cpu(attr->size); 1542 roff = le16_to_cpu(attr->nres.run_off); 1543 1544 /* run==1 means unpack and deallocate. */ 1545 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn, 1546 Add2Ptr(attr, roff), asize - roff); 1547 } 1548 1549 if (ni->attr_list.size) { 1550 run_deallocate(ni->mi.sbi, &ni->attr_list.run, true); 1551 al_destroy(ni); 1552 } 1553 1554 /* Free all subrecords. */ 1555 for (node = rb_first(&ni->mi_tree); node;) { 1556 struct rb_node *next = rb_next(node); 1557 struct mft_inode *mi = rb_entry(node, struct mft_inode, node); 1558 1559 clear_rec_inuse(mi->mrec); 1560 mi->dirty = true; 1561 mi_write(mi, 0); 1562 1563 ntfs_mark_rec_free(sbi, mi->rno); 1564 ni_remove_mi(ni, mi); 1565 mi_put(mi); 1566 node = next; 1567 } 1568 1569 /* Free base record. */ 1570 clear_rec_inuse(ni->mi.mrec); 1571 ni->mi.dirty = true; 1572 err = mi_write(&ni->mi, 0); 1573 1574 ntfs_mark_rec_free(sbi, ni->mi.rno); 1575 1576 return err; 1577 } 1578 1579 /* ni_fname_name 1580 * 1581 * Return: File name attribute by its value. 1582 */ 1583 struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni, 1584 const struct cpu_str *uni, 1585 const struct MFT_REF *home_dir, 1586 struct mft_inode **mi, 1587 struct ATTR_LIST_ENTRY **le) 1588 { 1589 struct ATTRIB *attr = NULL; 1590 struct ATTR_FILE_NAME *fname; 1591 1592 *le = NULL; 1593 1594 /* Enumerate all names. */ 1595 next: 1596 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi); 1597 if (!attr) 1598 return NULL; 1599 1600 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); 1601 if (!fname) 1602 goto next; 1603 1604 if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir))) 1605 goto next; 1606 1607 if (!uni) 1608 goto next; 1609 1610 if (uni->len != fname->name_len) 1611 goto next; 1612 1613 if (ntfs_cmp_names_cpu(uni, (struct le_str *)&fname->name_len, NULL, 1614 false)) 1615 goto next; 1616 1617 return fname; 1618 } 1619 1620 /* 1621 * ni_fname_type 1622 * 1623 * Return: File name attribute with given type. 1624 */ 1625 struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type, 1626 struct mft_inode **mi, 1627 struct ATTR_LIST_ENTRY **le) 1628 { 1629 struct ATTRIB *attr = NULL; 1630 struct ATTR_FILE_NAME *fname; 1631 1632 *le = NULL; 1633 1634 if (name_type == FILE_NAME_POSIX) 1635 return NULL; 1636 1637 /* Enumerate all names. */ 1638 for (;;) { 1639 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi); 1640 if (!attr) 1641 return NULL; 1642 1643 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); 1644 if (fname && name_type == fname->type) 1645 return fname; 1646 } 1647 } 1648 1649 /* 1650 * ni_new_attr_flags 1651 * 1652 * Process compressed/sparsed in special way. 1653 * NOTE: You need to set ni->std_fa = new_fa 1654 * after this function to keep internal structures in consistency. 1655 */ 1656 int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa) 1657 { 1658 struct ATTRIB *attr; 1659 struct mft_inode *mi; 1660 __le16 new_aflags; 1661 u32 new_asize; 1662 1663 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi); 1664 if (!attr) 1665 return -EINVAL; 1666 1667 new_aflags = attr->flags; 1668 1669 if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE) 1670 new_aflags |= ATTR_FLAG_SPARSED; 1671 else 1672 new_aflags &= ~ATTR_FLAG_SPARSED; 1673 1674 if (new_fa & FILE_ATTRIBUTE_COMPRESSED) 1675 new_aflags |= ATTR_FLAG_COMPRESSED; 1676 else 1677 new_aflags &= ~ATTR_FLAG_COMPRESSED; 1678 1679 if (new_aflags == attr->flags) 1680 return 0; 1681 1682 if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) == 1683 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) { 1684 ntfs_inode_warn(&ni->vfs_inode, 1685 "file can't be sparsed and compressed"); 1686 return -EOPNOTSUPP; 1687 } 1688 1689 if (!attr->non_res) 1690 goto out; 1691 1692 if (attr->nres.data_size) { 1693 ntfs_inode_warn( 1694 &ni->vfs_inode, 1695 "one can change sparsed/compressed only for empty files"); 1696 return -EOPNOTSUPP; 1697 } 1698 1699 /* Resize nonresident empty attribute in-place only. */ 1700 new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) 1701 ? (SIZEOF_NONRESIDENT_EX + 8) 1702 : (SIZEOF_NONRESIDENT + 8); 1703 1704 if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size))) 1705 return -EOPNOTSUPP; 1706 1707 if (new_aflags & ATTR_FLAG_SPARSED) { 1708 attr->name_off = SIZEOF_NONRESIDENT_EX_LE; 1709 /* Windows uses 16 clusters per frame but supports one cluster per frame too. */ 1710 attr->nres.c_unit = 0; 1711 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops; 1712 } else if (new_aflags & ATTR_FLAG_COMPRESSED) { 1713 attr->name_off = SIZEOF_NONRESIDENT_EX_LE; 1714 /* The only allowed: 16 clusters per frame. */ 1715 attr->nres.c_unit = NTFS_LZNT_CUNIT; 1716 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr; 1717 } else { 1718 attr->name_off = SIZEOF_NONRESIDENT_LE; 1719 /* Normal files. */ 1720 attr->nres.c_unit = 0; 1721 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops; 1722 } 1723 attr->nres.run_off = attr->name_off; 1724 out: 1725 attr->flags = new_aflags; 1726 mi->dirty = true; 1727 1728 return 0; 1729 } 1730 1731 /* 1732 * ni_parse_reparse 1733 * 1734 * buffer - memory for reparse buffer header 1735 */ 1736 enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr, 1737 struct REPARSE_DATA_BUFFER *buffer) 1738 { 1739 const struct REPARSE_DATA_BUFFER *rp = NULL; 1740 u8 bits; 1741 u16 len; 1742 typeof(rp->CompressReparseBuffer) *cmpr; 1743 1744 /* Try to estimate reparse point. */ 1745 if (!attr->non_res) { 1746 rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER)); 1747 } else if (le64_to_cpu(attr->nres.data_size) >= 1748 sizeof(struct REPARSE_DATA_BUFFER)) { 1749 struct runs_tree run; 1750 1751 run_init(&run); 1752 1753 if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) && 1754 !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer, 1755 sizeof(struct REPARSE_DATA_BUFFER), 1756 NULL)) { 1757 rp = buffer; 1758 } 1759 1760 run_close(&run); 1761 } 1762 1763 if (!rp) 1764 return REPARSE_NONE; 1765 1766 len = le16_to_cpu(rp->ReparseDataLength); 1767 switch (rp->ReparseTag) { 1768 case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK): 1769 break; /* Symbolic link. */ 1770 case IO_REPARSE_TAG_MOUNT_POINT: 1771 break; /* Mount points and junctions. */ 1772 case IO_REPARSE_TAG_SYMLINK: 1773 break; 1774 case IO_REPARSE_TAG_COMPRESS: 1775 /* 1776 * WOF - Windows Overlay Filter - Used to compress files with 1777 * LZX/Xpress. 1778 * 1779 * Unlike native NTFS file compression, the Windows 1780 * Overlay Filter supports only read operations. This means 1781 * that it doesn't need to sector-align each compressed chunk, 1782 * so the compressed data can be packed more tightly together. 1783 * If you open the file for writing, the WOF just decompresses 1784 * the entire file, turning it back into a plain file. 1785 * 1786 * Ntfs3 driver decompresses the entire file only on write or 1787 * change size requests. 1788 */ 1789 1790 cmpr = &rp->CompressReparseBuffer; 1791 if (len < sizeof(*cmpr) || 1792 cmpr->WofVersion != WOF_CURRENT_VERSION || 1793 cmpr->WofProvider != WOF_PROVIDER_SYSTEM || 1794 cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) { 1795 return REPARSE_NONE; 1796 } 1797 1798 switch (cmpr->CompressionFormat) { 1799 case WOF_COMPRESSION_XPRESS4K: 1800 bits = 0xc; // 4k 1801 break; 1802 case WOF_COMPRESSION_XPRESS8K: 1803 bits = 0xd; // 8k 1804 break; 1805 case WOF_COMPRESSION_XPRESS16K: 1806 bits = 0xe; // 16k 1807 break; 1808 case WOF_COMPRESSION_LZX32K: 1809 bits = 0xf; // 32k 1810 break; 1811 default: 1812 bits = 0x10; // 64k 1813 break; 1814 } 1815 ni_set_ext_compress_bits(ni, bits); 1816 return REPARSE_COMPRESSED; 1817 1818 case IO_REPARSE_TAG_DEDUP: 1819 ni->ni_flags |= NI_FLAG_DEDUPLICATED; 1820 return REPARSE_DEDUPLICATED; 1821 1822 default: 1823 if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE) 1824 break; 1825 1826 return REPARSE_NONE; 1827 } 1828 1829 if (buffer != rp) 1830 memcpy(buffer, rp, sizeof(struct REPARSE_DATA_BUFFER)); 1831 1832 /* Looks like normal symlink. */ 1833 return REPARSE_LINK; 1834 } 1835 1836 /* 1837 * ni_fiemap - Helper for file_fiemap(). 1838 * 1839 * Assumed ni_lock. 1840 * TODO: Less aggressive locks. 1841 */ 1842 int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo, 1843 __u64 vbo, __u64 len) 1844 { 1845 int err = 0; 1846 struct ntfs_sb_info *sbi = ni->mi.sbi; 1847 u8 cluster_bits = sbi->cluster_bits; 1848 struct runs_tree *run; 1849 struct rw_semaphore *run_lock; 1850 struct ATTRIB *attr; 1851 CLST vcn = vbo >> cluster_bits; 1852 CLST lcn, clen; 1853 u64 valid = ni->i_valid; 1854 u64 lbo, bytes; 1855 u64 end, alloc_size; 1856 size_t idx = -1; 1857 u32 flags; 1858 bool ok; 1859 1860 if (S_ISDIR(ni->vfs_inode.i_mode)) { 1861 run = &ni->dir.alloc_run; 1862 attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME, 1863 ARRAY_SIZE(I30_NAME), NULL, NULL); 1864 run_lock = &ni->dir.run_lock; 1865 } else { 1866 run = &ni->file.run; 1867 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, 1868 NULL); 1869 if (!attr) { 1870 err = -EINVAL; 1871 goto out; 1872 } 1873 if (is_attr_compressed(attr)) { 1874 /* Unfortunately cp -r incorrectly treats compressed clusters. */ 1875 err = -EOPNOTSUPP; 1876 ntfs_inode_warn( 1877 &ni->vfs_inode, 1878 "fiemap is not supported for compressed file (cp -r)"); 1879 goto out; 1880 } 1881 run_lock = &ni->file.run_lock; 1882 } 1883 1884 if (!attr || !attr->non_res) { 1885 err = fiemap_fill_next_extent( 1886 fieinfo, 0, 0, 1887 attr ? le32_to_cpu(attr->res.data_size) : 0, 1888 FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST | 1889 FIEMAP_EXTENT_MERGED); 1890 goto out; 1891 } 1892 1893 end = vbo + len; 1894 alloc_size = le64_to_cpu(attr->nres.alloc_size); 1895 if (end > alloc_size) 1896 end = alloc_size; 1897 1898 down_read(run_lock); 1899 1900 while (vbo < end) { 1901 if (idx == -1) { 1902 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx); 1903 } else { 1904 CLST vcn_next = vcn; 1905 1906 ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && 1907 vcn == vcn_next; 1908 if (!ok) 1909 vcn = vcn_next; 1910 } 1911 1912 if (!ok) { 1913 up_read(run_lock); 1914 down_write(run_lock); 1915 1916 err = attr_load_runs_vcn(ni, attr->type, 1917 attr_name(attr), 1918 attr->name_len, run, vcn); 1919 1920 up_write(run_lock); 1921 down_read(run_lock); 1922 1923 if (err) 1924 break; 1925 1926 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx); 1927 1928 if (!ok) { 1929 err = -EINVAL; 1930 break; 1931 } 1932 } 1933 1934 if (!clen) { 1935 err = -EINVAL; // ? 1936 break; 1937 } 1938 1939 if (lcn == SPARSE_LCN) { 1940 vcn += clen; 1941 vbo = (u64)vcn << cluster_bits; 1942 continue; 1943 } 1944 1945 flags = FIEMAP_EXTENT_MERGED; 1946 if (S_ISDIR(ni->vfs_inode.i_mode)) { 1947 ; 1948 } else if (is_attr_compressed(attr)) { 1949 CLST clst_data; 1950 1951 err = attr_is_frame_compressed( 1952 ni, attr, vcn >> attr->nres.c_unit, &clst_data); 1953 if (err) 1954 break; 1955 if (clst_data < NTFS_LZNT_CLUSTERS) 1956 flags |= FIEMAP_EXTENT_ENCODED; 1957 } else if (is_attr_encrypted(attr)) { 1958 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1959 } 1960 1961 vbo = (u64)vcn << cluster_bits; 1962 bytes = (u64)clen << cluster_bits; 1963 lbo = (u64)lcn << cluster_bits; 1964 1965 vcn += clen; 1966 1967 if (vbo + bytes >= end) { 1968 bytes = end - vbo; 1969 flags |= FIEMAP_EXTENT_LAST; 1970 } 1971 1972 if (vbo + bytes <= valid) { 1973 ; 1974 } else if (vbo >= valid) { 1975 flags |= FIEMAP_EXTENT_UNWRITTEN; 1976 } else { 1977 /* vbo < valid && valid < vbo + bytes */ 1978 u64 dlen = valid - vbo; 1979 1980 err = fiemap_fill_next_extent(fieinfo, vbo, lbo, dlen, 1981 flags); 1982 if (err < 0) 1983 break; 1984 if (err == 1) { 1985 err = 0; 1986 break; 1987 } 1988 1989 vbo = valid; 1990 bytes -= dlen; 1991 if (!bytes) 1992 continue; 1993 1994 lbo += dlen; 1995 flags |= FIEMAP_EXTENT_UNWRITTEN; 1996 } 1997 1998 err = fiemap_fill_next_extent(fieinfo, vbo, lbo, bytes, flags); 1999 if (err < 0) 2000 break; 2001 if (err == 1) { 2002 err = 0; 2003 break; 2004 } 2005 2006 vbo += bytes; 2007 } 2008 2009 up_read(run_lock); 2010 2011 out: 2012 return err; 2013 } 2014 2015 /* 2016 * ni_readpage_cmpr 2017 * 2018 * When decompressing, we typically obtain more than one page per reference. 2019 * We inject the additional pages into the page cache. 2020 */ 2021 int ni_readpage_cmpr(struct ntfs_inode *ni, struct page *page) 2022 { 2023 int err; 2024 struct ntfs_sb_info *sbi = ni->mi.sbi; 2025 struct address_space *mapping = page->mapping; 2026 pgoff_t index = page->index; 2027 u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT; 2028 struct page **pages = NULL; /* Array of at most 16 pages. stack? */ 2029 u8 frame_bits; 2030 CLST frame; 2031 u32 i, idx, frame_size, pages_per_frame; 2032 gfp_t gfp_mask; 2033 struct page *pg; 2034 2035 if (vbo >= ni->vfs_inode.i_size) { 2036 SetPageUptodate(page); 2037 err = 0; 2038 goto out; 2039 } 2040 2041 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) { 2042 /* Xpress or LZX. */ 2043 frame_bits = ni_ext_compress_bits(ni); 2044 } else { 2045 /* LZNT compression. */ 2046 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits; 2047 } 2048 frame_size = 1u << frame_bits; 2049 frame = vbo >> frame_bits; 2050 frame_vbo = (u64)frame << frame_bits; 2051 idx = (vbo - frame_vbo) >> PAGE_SHIFT; 2052 2053 pages_per_frame = frame_size >> PAGE_SHIFT; 2054 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); 2055 if (!pages) { 2056 err = -ENOMEM; 2057 goto out; 2058 } 2059 2060 pages[idx] = page; 2061 index = frame_vbo >> PAGE_SHIFT; 2062 gfp_mask = mapping_gfp_mask(mapping); 2063 2064 for (i = 0; i < pages_per_frame; i++, index++) { 2065 if (i == idx) 2066 continue; 2067 2068 pg = find_or_create_page(mapping, index, gfp_mask); 2069 if (!pg) { 2070 err = -ENOMEM; 2071 goto out1; 2072 } 2073 pages[i] = pg; 2074 } 2075 2076 err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame); 2077 2078 out1: 2079 if (err) 2080 SetPageError(page); 2081 2082 for (i = 0; i < pages_per_frame; i++) { 2083 pg = pages[i]; 2084 if (i == idx) 2085 continue; 2086 unlock_page(pg); 2087 put_page(pg); 2088 } 2089 2090 out: 2091 /* At this point, err contains 0 or -EIO depending on the "critical" page. */ 2092 kfree(pages); 2093 unlock_page(page); 2094 2095 return err; 2096 } 2097 2098 #ifdef CONFIG_NTFS3_LZX_XPRESS 2099 /* 2100 * ni_decompress_file - Decompress LZX/Xpress compressed file. 2101 * 2102 * Remove ATTR_DATA::WofCompressedData. 2103 * Remove ATTR_REPARSE. 2104 */ 2105 int ni_decompress_file(struct ntfs_inode *ni) 2106 { 2107 struct ntfs_sb_info *sbi = ni->mi.sbi; 2108 struct inode *inode = &ni->vfs_inode; 2109 loff_t i_size = inode->i_size; 2110 struct address_space *mapping = inode->i_mapping; 2111 gfp_t gfp_mask = mapping_gfp_mask(mapping); 2112 struct page **pages = NULL; 2113 struct ATTR_LIST_ENTRY *le; 2114 struct ATTRIB *attr; 2115 CLST vcn, cend, lcn, clen, end; 2116 pgoff_t index; 2117 u64 vbo; 2118 u8 frame_bits; 2119 u32 i, frame_size, pages_per_frame, bytes; 2120 struct mft_inode *mi; 2121 int err; 2122 2123 /* Clusters for decompressed data. */ 2124 cend = bytes_to_cluster(sbi, i_size); 2125 2126 if (!i_size) 2127 goto remove_wof; 2128 2129 /* Check in advance. */ 2130 if (cend > wnd_zeroes(&sbi->used.bitmap)) { 2131 err = -ENOSPC; 2132 goto out; 2133 } 2134 2135 frame_bits = ni_ext_compress_bits(ni); 2136 frame_size = 1u << frame_bits; 2137 pages_per_frame = frame_size >> PAGE_SHIFT; 2138 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); 2139 if (!pages) { 2140 err = -ENOMEM; 2141 goto out; 2142 } 2143 2144 /* 2145 * Step 1: Decompress data and copy to new allocated clusters. 2146 */ 2147 index = 0; 2148 for (vbo = 0; vbo < i_size; vbo += bytes) { 2149 u32 nr_pages; 2150 bool new; 2151 2152 if (vbo + frame_size > i_size) { 2153 bytes = i_size - vbo; 2154 nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT; 2155 } else { 2156 nr_pages = pages_per_frame; 2157 bytes = frame_size; 2158 } 2159 2160 end = bytes_to_cluster(sbi, vbo + bytes); 2161 2162 for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) { 2163 err = attr_data_get_block(ni, vcn, cend - vcn, &lcn, 2164 &clen, &new); 2165 if (err) 2166 goto out; 2167 } 2168 2169 for (i = 0; i < pages_per_frame; i++, index++) { 2170 struct page *pg; 2171 2172 pg = find_or_create_page(mapping, index, gfp_mask); 2173 if (!pg) { 2174 while (i--) { 2175 unlock_page(pages[i]); 2176 put_page(pages[i]); 2177 } 2178 err = -ENOMEM; 2179 goto out; 2180 } 2181 pages[i] = pg; 2182 } 2183 2184 err = ni_read_frame(ni, vbo, pages, pages_per_frame); 2185 2186 if (!err) { 2187 down_read(&ni->file.run_lock); 2188 err = ntfs_bio_pages(sbi, &ni->file.run, pages, 2189 nr_pages, vbo, bytes, 2190 REQ_OP_WRITE); 2191 up_read(&ni->file.run_lock); 2192 } 2193 2194 for (i = 0; i < pages_per_frame; i++) { 2195 unlock_page(pages[i]); 2196 put_page(pages[i]); 2197 } 2198 2199 if (err) 2200 goto out; 2201 2202 cond_resched(); 2203 } 2204 2205 remove_wof: 2206 /* 2207 * Step 2: Deallocate attributes ATTR_DATA::WofCompressedData 2208 * and ATTR_REPARSE. 2209 */ 2210 attr = NULL; 2211 le = NULL; 2212 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) { 2213 CLST svcn, evcn; 2214 u32 asize, roff; 2215 2216 if (attr->type == ATTR_REPARSE) { 2217 struct MFT_REF ref; 2218 2219 mi_get_ref(&ni->mi, &ref); 2220 ntfs_remove_reparse(sbi, 0, &ref); 2221 } 2222 2223 if (!attr->non_res) 2224 continue; 2225 2226 if (attr->type != ATTR_REPARSE && 2227 (attr->type != ATTR_DATA || 2228 attr->name_len != ARRAY_SIZE(WOF_NAME) || 2229 memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME)))) 2230 continue; 2231 2232 svcn = le64_to_cpu(attr->nres.svcn); 2233 evcn = le64_to_cpu(attr->nres.evcn); 2234 2235 if (evcn + 1 <= svcn) 2236 continue; 2237 2238 asize = le32_to_cpu(attr->size); 2239 roff = le16_to_cpu(attr->nres.run_off); 2240 2241 /*run==1 Means unpack and deallocate. */ 2242 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn, 2243 Add2Ptr(attr, roff), asize - roff); 2244 } 2245 2246 /* 2247 * Step 3: Remove attribute ATTR_DATA::WofCompressedData. 2248 */ 2249 err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME), 2250 false, NULL); 2251 if (err) 2252 goto out; 2253 2254 /* 2255 * Step 4: Remove ATTR_REPARSE. 2256 */ 2257 err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL); 2258 if (err) 2259 goto out; 2260 2261 /* 2262 * Step 5: Remove sparse flag from data attribute. 2263 */ 2264 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi); 2265 if (!attr) { 2266 err = -EINVAL; 2267 goto out; 2268 } 2269 2270 if (attr->non_res && is_attr_sparsed(attr)) { 2271 /* Sparsed attribute header is 8 bytes bigger than normal. */ 2272 struct MFT_REC *rec = mi->mrec; 2273 u32 used = le32_to_cpu(rec->used); 2274 u32 asize = le32_to_cpu(attr->size); 2275 u16 roff = le16_to_cpu(attr->nres.run_off); 2276 char *rbuf = Add2Ptr(attr, roff); 2277 2278 memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf)); 2279 attr->size = cpu_to_le32(asize - 8); 2280 attr->flags &= ~ATTR_FLAG_SPARSED; 2281 attr->nres.run_off = cpu_to_le16(roff - 8); 2282 attr->nres.c_unit = 0; 2283 rec->used = cpu_to_le32(used - 8); 2284 mi->dirty = true; 2285 ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE | 2286 FILE_ATTRIBUTE_REPARSE_POINT); 2287 2288 mark_inode_dirty(inode); 2289 } 2290 2291 /* Clear cached flag. */ 2292 ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK; 2293 if (ni->file.offs_page) { 2294 put_page(ni->file.offs_page); 2295 ni->file.offs_page = NULL; 2296 } 2297 mapping->a_ops = &ntfs_aops; 2298 2299 out: 2300 kfree(pages); 2301 if (err) { 2302 make_bad_inode(inode); 2303 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 2304 } 2305 2306 return err; 2307 } 2308 2309 /* 2310 * decompress_lzx_xpress - External compression LZX/Xpress. 2311 */ 2312 static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr, 2313 size_t cmpr_size, void *unc, size_t unc_size, 2314 u32 frame_size) 2315 { 2316 int err; 2317 void *ctx; 2318 2319 if (cmpr_size == unc_size) { 2320 /* Frame not compressed. */ 2321 memcpy(unc, cmpr, unc_size); 2322 return 0; 2323 } 2324 2325 err = 0; 2326 if (frame_size == 0x8000) { 2327 mutex_lock(&sbi->compress.mtx_lzx); 2328 /* LZX: Frame compressed. */ 2329 ctx = sbi->compress.lzx; 2330 if (!ctx) { 2331 /* Lazy initialize LZX decompress context. */ 2332 ctx = lzx_allocate_decompressor(); 2333 if (!ctx) { 2334 err = -ENOMEM; 2335 goto out1; 2336 } 2337 2338 sbi->compress.lzx = ctx; 2339 } 2340 2341 if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) { 2342 /* Treat all errors as "invalid argument". */ 2343 err = -EINVAL; 2344 } 2345 out1: 2346 mutex_unlock(&sbi->compress.mtx_lzx); 2347 } else { 2348 /* XPRESS: Frame compressed. */ 2349 mutex_lock(&sbi->compress.mtx_xpress); 2350 ctx = sbi->compress.xpress; 2351 if (!ctx) { 2352 /* Lazy initialize Xpress decompress context. */ 2353 ctx = xpress_allocate_decompressor(); 2354 if (!ctx) { 2355 err = -ENOMEM; 2356 goto out2; 2357 } 2358 2359 sbi->compress.xpress = ctx; 2360 } 2361 2362 if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) { 2363 /* Treat all errors as "invalid argument". */ 2364 err = -EINVAL; 2365 } 2366 out2: 2367 mutex_unlock(&sbi->compress.mtx_xpress); 2368 } 2369 return err; 2370 } 2371 #endif 2372 2373 /* 2374 * ni_read_frame 2375 * 2376 * Pages - Array of locked pages. 2377 */ 2378 int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages, 2379 u32 pages_per_frame) 2380 { 2381 int err; 2382 struct ntfs_sb_info *sbi = ni->mi.sbi; 2383 u8 cluster_bits = sbi->cluster_bits; 2384 char *frame_ondisk = NULL; 2385 char *frame_mem = NULL; 2386 struct page **pages_disk = NULL; 2387 struct ATTR_LIST_ENTRY *le = NULL; 2388 struct runs_tree *run = &ni->file.run; 2389 u64 valid_size = ni->i_valid; 2390 u64 vbo_disk; 2391 size_t unc_size; 2392 u32 frame_size, i, npages_disk, ondisk_size; 2393 struct page *pg; 2394 struct ATTRIB *attr; 2395 CLST frame, clst_data; 2396 2397 /* 2398 * To simplify decompress algorithm do vmap for source 2399 * and target pages. 2400 */ 2401 for (i = 0; i < pages_per_frame; i++) 2402 kmap(pages[i]); 2403 2404 frame_size = pages_per_frame << PAGE_SHIFT; 2405 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL); 2406 if (!frame_mem) { 2407 err = -ENOMEM; 2408 goto out; 2409 } 2410 2411 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL); 2412 if (!attr) { 2413 err = -ENOENT; 2414 goto out1; 2415 } 2416 2417 if (!attr->non_res) { 2418 u32 data_size = le32_to_cpu(attr->res.data_size); 2419 2420 memset(frame_mem, 0, frame_size); 2421 if (frame_vbo < data_size) { 2422 ondisk_size = data_size - frame_vbo; 2423 memcpy(frame_mem, resident_data(attr) + frame_vbo, 2424 min(ondisk_size, frame_size)); 2425 } 2426 err = 0; 2427 goto out1; 2428 } 2429 2430 if (frame_vbo >= valid_size) { 2431 memset(frame_mem, 0, frame_size); 2432 err = 0; 2433 goto out1; 2434 } 2435 2436 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) { 2437 #ifndef CONFIG_NTFS3_LZX_XPRESS 2438 err = -EOPNOTSUPP; 2439 goto out1; 2440 #else 2441 u32 frame_bits = ni_ext_compress_bits(ni); 2442 u64 frame64 = frame_vbo >> frame_bits; 2443 u64 frames, vbo_data; 2444 2445 if (frame_size != (1u << frame_bits)) { 2446 err = -EINVAL; 2447 goto out1; 2448 } 2449 switch (frame_size) { 2450 case 0x1000: 2451 case 0x2000: 2452 case 0x4000: 2453 case 0x8000: 2454 break; 2455 default: 2456 /* Unknown compression. */ 2457 err = -EOPNOTSUPP; 2458 goto out1; 2459 } 2460 2461 attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME, 2462 ARRAY_SIZE(WOF_NAME), NULL, NULL); 2463 if (!attr) { 2464 ntfs_inode_err( 2465 &ni->vfs_inode, 2466 "external compressed file should contains data attribute \"WofCompressedData\""); 2467 err = -EINVAL; 2468 goto out1; 2469 } 2470 2471 if (!attr->non_res) { 2472 run = NULL; 2473 } else { 2474 run = run_alloc(); 2475 if (!run) { 2476 err = -ENOMEM; 2477 goto out1; 2478 } 2479 } 2480 2481 frames = (ni->vfs_inode.i_size - 1) >> frame_bits; 2482 2483 err = attr_wof_frame_info(ni, attr, run, frame64, frames, 2484 frame_bits, &ondisk_size, &vbo_data); 2485 if (err) 2486 goto out2; 2487 2488 if (frame64 == frames) { 2489 unc_size = 1 + ((ni->vfs_inode.i_size - 1) & 2490 (frame_size - 1)); 2491 ondisk_size = attr_size(attr) - vbo_data; 2492 } else { 2493 unc_size = frame_size; 2494 } 2495 2496 if (ondisk_size > frame_size) { 2497 err = -EINVAL; 2498 goto out2; 2499 } 2500 2501 if (!attr->non_res) { 2502 if (vbo_data + ondisk_size > 2503 le32_to_cpu(attr->res.data_size)) { 2504 err = -EINVAL; 2505 goto out1; 2506 } 2507 2508 err = decompress_lzx_xpress( 2509 sbi, Add2Ptr(resident_data(attr), vbo_data), 2510 ondisk_size, frame_mem, unc_size, frame_size); 2511 goto out1; 2512 } 2513 vbo_disk = vbo_data; 2514 /* Load all runs to read [vbo_disk-vbo_to). */ 2515 err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME, 2516 ARRAY_SIZE(WOF_NAME), run, vbo_disk, 2517 vbo_data + ondisk_size); 2518 if (err) 2519 goto out2; 2520 npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) + 2521 PAGE_SIZE - 1) >> 2522 PAGE_SHIFT; 2523 #endif 2524 } else if (is_attr_compressed(attr)) { 2525 /* LZNT compression. */ 2526 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) { 2527 err = -EOPNOTSUPP; 2528 goto out1; 2529 } 2530 2531 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) { 2532 err = -EOPNOTSUPP; 2533 goto out1; 2534 } 2535 2536 down_write(&ni->file.run_lock); 2537 run_truncate_around(run, le64_to_cpu(attr->nres.svcn)); 2538 frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT); 2539 err = attr_is_frame_compressed(ni, attr, frame, &clst_data); 2540 up_write(&ni->file.run_lock); 2541 if (err) 2542 goto out1; 2543 2544 if (!clst_data) { 2545 memset(frame_mem, 0, frame_size); 2546 goto out1; 2547 } 2548 2549 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT; 2550 ondisk_size = clst_data << cluster_bits; 2551 2552 if (clst_data >= NTFS_LZNT_CLUSTERS) { 2553 /* Frame is not compressed. */ 2554 down_read(&ni->file.run_lock); 2555 err = ntfs_bio_pages(sbi, run, pages, pages_per_frame, 2556 frame_vbo, ondisk_size, 2557 REQ_OP_READ); 2558 up_read(&ni->file.run_lock); 2559 goto out1; 2560 } 2561 vbo_disk = frame_vbo; 2562 npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2563 } else { 2564 __builtin_unreachable(); 2565 err = -EINVAL; 2566 goto out1; 2567 } 2568 2569 pages_disk = kzalloc(npages_disk * sizeof(struct page *), GFP_NOFS); 2570 if (!pages_disk) { 2571 err = -ENOMEM; 2572 goto out2; 2573 } 2574 2575 for (i = 0; i < npages_disk; i++) { 2576 pg = alloc_page(GFP_KERNEL); 2577 if (!pg) { 2578 err = -ENOMEM; 2579 goto out3; 2580 } 2581 pages_disk[i] = pg; 2582 lock_page(pg); 2583 kmap(pg); 2584 } 2585 2586 /* Read 'ondisk_size' bytes from disk. */ 2587 down_read(&ni->file.run_lock); 2588 err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk, 2589 ondisk_size, REQ_OP_READ); 2590 up_read(&ni->file.run_lock); 2591 if (err) 2592 goto out3; 2593 2594 /* 2595 * To simplify decompress algorithm do vmap for source and target pages. 2596 */ 2597 frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO); 2598 if (!frame_ondisk) { 2599 err = -ENOMEM; 2600 goto out3; 2601 } 2602 2603 /* Decompress: Frame_ondisk -> frame_mem. */ 2604 #ifdef CONFIG_NTFS3_LZX_XPRESS 2605 if (run != &ni->file.run) { 2606 /* LZX or XPRESS */ 2607 err = decompress_lzx_xpress( 2608 sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)), 2609 ondisk_size, frame_mem, unc_size, frame_size); 2610 } else 2611 #endif 2612 { 2613 /* LZNT - Native NTFS compression. */ 2614 unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem, 2615 frame_size); 2616 if ((ssize_t)unc_size < 0) 2617 err = unc_size; 2618 else if (!unc_size || unc_size > frame_size) 2619 err = -EINVAL; 2620 } 2621 if (!err && valid_size < frame_vbo + frame_size) { 2622 size_t ok = valid_size - frame_vbo; 2623 2624 memset(frame_mem + ok, 0, frame_size - ok); 2625 } 2626 2627 vunmap(frame_ondisk); 2628 2629 out3: 2630 for (i = 0; i < npages_disk; i++) { 2631 pg = pages_disk[i]; 2632 if (pg) { 2633 kunmap(pg); 2634 unlock_page(pg); 2635 put_page(pg); 2636 } 2637 } 2638 kfree(pages_disk); 2639 2640 out2: 2641 #ifdef CONFIG_NTFS3_LZX_XPRESS 2642 if (run != &ni->file.run) 2643 run_free(run); 2644 #endif 2645 out1: 2646 vunmap(frame_mem); 2647 out: 2648 for (i = 0; i < pages_per_frame; i++) { 2649 pg = pages[i]; 2650 kunmap(pg); 2651 ClearPageError(pg); 2652 SetPageUptodate(pg); 2653 } 2654 2655 return err; 2656 } 2657 2658 /* 2659 * ni_write_frame 2660 * 2661 * Pages - Array of locked pages. 2662 */ 2663 int ni_write_frame(struct ntfs_inode *ni, struct page **pages, 2664 u32 pages_per_frame) 2665 { 2666 int err; 2667 struct ntfs_sb_info *sbi = ni->mi.sbi; 2668 u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits; 2669 u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT; 2670 u64 frame_vbo = (u64)pages[0]->index << PAGE_SHIFT; 2671 CLST frame = frame_vbo >> frame_bits; 2672 char *frame_ondisk = NULL; 2673 struct page **pages_disk = NULL; 2674 struct ATTR_LIST_ENTRY *le = NULL; 2675 char *frame_mem; 2676 struct ATTRIB *attr; 2677 struct mft_inode *mi; 2678 u32 i; 2679 struct page *pg; 2680 size_t compr_size, ondisk_size; 2681 struct lznt *lznt; 2682 2683 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi); 2684 if (!attr) { 2685 err = -ENOENT; 2686 goto out; 2687 } 2688 2689 if (WARN_ON(!is_attr_compressed(attr))) { 2690 err = -EINVAL; 2691 goto out; 2692 } 2693 2694 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) { 2695 err = -EOPNOTSUPP; 2696 goto out; 2697 } 2698 2699 if (!attr->non_res) { 2700 down_write(&ni->file.run_lock); 2701 err = attr_make_nonresident(ni, attr, le, mi, 2702 le32_to_cpu(attr->res.data_size), 2703 &ni->file.run, &attr, pages[0]); 2704 up_write(&ni->file.run_lock); 2705 if (err) 2706 goto out; 2707 } 2708 2709 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) { 2710 err = -EOPNOTSUPP; 2711 goto out; 2712 } 2713 2714 pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); 2715 if (!pages_disk) { 2716 err = -ENOMEM; 2717 goto out; 2718 } 2719 2720 for (i = 0; i < pages_per_frame; i++) { 2721 pg = alloc_page(GFP_KERNEL); 2722 if (!pg) { 2723 err = -ENOMEM; 2724 goto out1; 2725 } 2726 pages_disk[i] = pg; 2727 lock_page(pg); 2728 kmap(pg); 2729 } 2730 2731 /* To simplify compress algorithm do vmap for source and target pages. */ 2732 frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL); 2733 if (!frame_ondisk) { 2734 err = -ENOMEM; 2735 goto out1; 2736 } 2737 2738 for (i = 0; i < pages_per_frame; i++) 2739 kmap(pages[i]); 2740 2741 /* Map in-memory frame for read-only. */ 2742 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO); 2743 if (!frame_mem) { 2744 err = -ENOMEM; 2745 goto out2; 2746 } 2747 2748 mutex_lock(&sbi->compress.mtx_lznt); 2749 lznt = NULL; 2750 if (!sbi->compress.lznt) { 2751 /* 2752 * LZNT implements two levels of compression: 2753 * 0 - Standard compression 2754 * 1 - Best compression, requires a lot of cpu 2755 * use mount option? 2756 */ 2757 lznt = get_lznt_ctx(0); 2758 if (!lznt) { 2759 mutex_unlock(&sbi->compress.mtx_lznt); 2760 err = -ENOMEM; 2761 goto out3; 2762 } 2763 2764 sbi->compress.lznt = lznt; 2765 lznt = NULL; 2766 } 2767 2768 /* Compress: frame_mem -> frame_ondisk */ 2769 compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk, 2770 frame_size, sbi->compress.lznt); 2771 mutex_unlock(&sbi->compress.mtx_lznt); 2772 kfree(lznt); 2773 2774 if (compr_size + sbi->cluster_size > frame_size) { 2775 /* Frame is not compressed. */ 2776 compr_size = frame_size; 2777 ondisk_size = frame_size; 2778 } else if (compr_size) { 2779 /* Frame is compressed. */ 2780 ondisk_size = ntfs_up_cluster(sbi, compr_size); 2781 memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size); 2782 } else { 2783 /* Frame is sparsed. */ 2784 ondisk_size = 0; 2785 } 2786 2787 down_write(&ni->file.run_lock); 2788 run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn)); 2789 err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid); 2790 up_write(&ni->file.run_lock); 2791 if (err) 2792 goto out2; 2793 2794 if (!ondisk_size) 2795 goto out2; 2796 2797 down_read(&ni->file.run_lock); 2798 err = ntfs_bio_pages(sbi, &ni->file.run, 2799 ondisk_size < frame_size ? pages_disk : pages, 2800 pages_per_frame, frame_vbo, ondisk_size, 2801 REQ_OP_WRITE); 2802 up_read(&ni->file.run_lock); 2803 2804 out3: 2805 vunmap(frame_mem); 2806 2807 out2: 2808 for (i = 0; i < pages_per_frame; i++) 2809 kunmap(pages[i]); 2810 2811 vunmap(frame_ondisk); 2812 out1: 2813 for (i = 0; i < pages_per_frame; i++) { 2814 pg = pages_disk[i]; 2815 if (pg) { 2816 kunmap(pg); 2817 unlock_page(pg); 2818 put_page(pg); 2819 } 2820 } 2821 kfree(pages_disk); 2822 out: 2823 return err; 2824 } 2825 2826 /* 2827 * ni_remove_name - Removes name 'de' from MFT and from directory. 2828 * 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs. 2829 */ 2830 int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, 2831 struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step) 2832 { 2833 int err; 2834 struct ntfs_sb_info *sbi = ni->mi.sbi; 2835 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1); 2836 struct ATTR_FILE_NAME *fname; 2837 struct ATTR_LIST_ENTRY *le; 2838 struct mft_inode *mi; 2839 u16 de_key_size = le16_to_cpu(de->key_size); 2840 u8 name_type; 2841 2842 *undo_step = 0; 2843 2844 /* Find name in record. */ 2845 mi_get_ref(&dir_ni->mi, &de_name->home); 2846 2847 fname = ni_fname_name(ni, (struct cpu_str *)&de_name->name_len, 2848 &de_name->home, &mi, &le); 2849 if (!fname) 2850 return -ENOENT; 2851 2852 memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO)); 2853 name_type = paired_name(fname->type); 2854 2855 /* Mark ntfs as dirty. It will be cleared at umount. */ 2856 ntfs_set_state(sbi, NTFS_DIRTY_DIRTY); 2857 2858 /* Step 1: Remove name from directory. */ 2859 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi); 2860 if (err) 2861 return err; 2862 2863 /* Step 2: Remove name from MFT. */ 2864 ni_remove_attr_le(ni, attr_from_name(fname), mi, le); 2865 2866 *undo_step = 2; 2867 2868 /* Get paired name. */ 2869 fname = ni_fname_type(ni, name_type, &mi, &le); 2870 if (fname) { 2871 u16 de2_key_size = fname_full_size(fname); 2872 2873 *de2 = Add2Ptr(de, 1024); 2874 (*de2)->key_size = cpu_to_le16(de2_key_size); 2875 2876 memcpy(*de2 + 1, fname, de2_key_size); 2877 2878 /* Step 3: Remove paired name from directory. */ 2879 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, 2880 de2_key_size, sbi); 2881 if (err) 2882 return err; 2883 2884 /* Step 4: Remove paired name from MFT. */ 2885 ni_remove_attr_le(ni, attr_from_name(fname), mi, le); 2886 2887 *undo_step = 4; 2888 } 2889 return 0; 2890 } 2891 2892 /* 2893 * ni_remove_name_undo - Paired function for ni_remove_name. 2894 * 2895 * Return: True if ok 2896 */ 2897 bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, 2898 struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step) 2899 { 2900 struct ntfs_sb_info *sbi = ni->mi.sbi; 2901 struct ATTRIB *attr; 2902 u16 de_key_size = de2 ? le16_to_cpu(de2->key_size) : 0; 2903 2904 switch (undo_step) { 2905 case 4: 2906 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, 2907 &attr, NULL, NULL)) { 2908 return false; 2909 } 2910 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size); 2911 2912 mi_get_ref(&ni->mi, &de2->ref); 2913 de2->size = cpu_to_le16(ALIGN(de_key_size, 8) + 2914 sizeof(struct NTFS_DE)); 2915 de2->flags = 0; 2916 de2->res = 0; 2917 2918 if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL, 2919 1)) { 2920 return false; 2921 } 2922 fallthrough; 2923 2924 case 2: 2925 de_key_size = le16_to_cpu(de->key_size); 2926 2927 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, 2928 &attr, NULL, NULL)) { 2929 return false; 2930 } 2931 2932 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size); 2933 mi_get_ref(&ni->mi, &de->ref); 2934 2935 if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1)) 2936 return false; 2937 } 2938 2939 return true; 2940 } 2941 2942 /* 2943 * ni_add_name - Add new name in MFT and in directory. 2944 */ 2945 int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, 2946 struct NTFS_DE *de) 2947 { 2948 int err; 2949 struct ATTRIB *attr; 2950 struct ATTR_LIST_ENTRY *le; 2951 struct mft_inode *mi; 2952 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1); 2953 u16 de_key_size = le16_to_cpu(de->key_size); 2954 2955 mi_get_ref(&ni->mi, &de->ref); 2956 mi_get_ref(&dir_ni->mi, &de_name->home); 2957 2958 /* Insert new name in MFT. */ 2959 err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr, 2960 &mi, &le); 2961 if (err) 2962 return err; 2963 2964 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size); 2965 2966 /* Insert new name in directory. */ 2967 err = indx_insert_entry(&dir_ni->dir, dir_ni, de, ni->mi.sbi, NULL, 0); 2968 if (err) 2969 ni_remove_attr_le(ni, attr, mi, le); 2970 2971 return err; 2972 } 2973 2974 /* 2975 * ni_rename - Remove one name and insert new name. 2976 */ 2977 int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni, 2978 struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de, 2979 bool *is_bad) 2980 { 2981 int err; 2982 struct NTFS_DE *de2 = NULL; 2983 int undo = 0; 2984 2985 /* 2986 * There are two possible ways to rename: 2987 * 1) Add new name and remove old name. 2988 * 2) Remove old name and add new name. 2989 * 2990 * In most cases (not all!) adding new name in MFT and in directory can 2991 * allocate additional cluster(s). 2992 * Second way may result to bad inode if we can't add new name 2993 * and then can't restore (add) old name. 2994 */ 2995 2996 /* 2997 * Way 1 - Add new + remove old. 2998 */ 2999 err = ni_add_name(new_dir_ni, ni, new_de); 3000 if (!err) { 3001 err = ni_remove_name(dir_ni, ni, de, &de2, &undo); 3002 if (err && ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo)) 3003 *is_bad = true; 3004 } 3005 3006 /* 3007 * Way 2 - Remove old + add new. 3008 */ 3009 /* 3010 * err = ni_remove_name(dir_ni, ni, de, &de2, &undo); 3011 * if (!err) { 3012 * err = ni_add_name(new_dir_ni, ni, new_de); 3013 * if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo)) 3014 * *is_bad = true; 3015 * } 3016 */ 3017 3018 return err; 3019 } 3020 3021 /* 3022 * ni_is_dirty - Return: True if 'ni' requires ni_write_inode. 3023 */ 3024 bool ni_is_dirty(struct inode *inode) 3025 { 3026 struct ntfs_inode *ni = ntfs_i(inode); 3027 struct rb_node *node; 3028 3029 if (ni->mi.dirty || ni->attr_list.dirty || 3030 (ni->ni_flags & NI_FLAG_UPDATE_PARENT)) 3031 return true; 3032 3033 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { 3034 if (rb_entry(node, struct mft_inode, node)->dirty) 3035 return true; 3036 } 3037 3038 return false; 3039 } 3040 3041 /* 3042 * ni_update_parent 3043 * 3044 * Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories. 3045 */ 3046 static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup, 3047 int sync) 3048 { 3049 struct ATTRIB *attr; 3050 struct mft_inode *mi; 3051 struct ATTR_LIST_ENTRY *le = NULL; 3052 struct ntfs_sb_info *sbi = ni->mi.sbi; 3053 struct super_block *sb = sbi->sb; 3054 bool re_dirty = false; 3055 3056 if (ni->mi.mrec->flags & RECORD_FLAG_DIR) { 3057 dup->fa |= FILE_ATTRIBUTE_DIRECTORY; 3058 attr = NULL; 3059 dup->alloc_size = 0; 3060 dup->data_size = 0; 3061 } else { 3062 dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY; 3063 3064 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, 3065 &mi); 3066 if (!attr) { 3067 dup->alloc_size = dup->data_size = 0; 3068 } else if (!attr->non_res) { 3069 u32 data_size = le32_to_cpu(attr->res.data_size); 3070 3071 dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8)); 3072 dup->data_size = cpu_to_le64(data_size); 3073 } else { 3074 u64 new_valid = ni->i_valid; 3075 u64 data_size = le64_to_cpu(attr->nres.data_size); 3076 __le64 valid_le; 3077 3078 dup->alloc_size = is_attr_ext(attr) 3079 ? attr->nres.total_size 3080 : attr->nres.alloc_size; 3081 dup->data_size = attr->nres.data_size; 3082 3083 if (new_valid > data_size) 3084 new_valid = data_size; 3085 3086 valid_le = cpu_to_le64(new_valid); 3087 if (valid_le != attr->nres.valid_size) { 3088 attr->nres.valid_size = valid_le; 3089 mi->dirty = true; 3090 } 3091 } 3092 } 3093 3094 /* TODO: Fill reparse info. */ 3095 dup->reparse = 0; 3096 dup->ea_size = 0; 3097 3098 if (ni->ni_flags & NI_FLAG_EA) { 3099 attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL, 3100 NULL); 3101 if (attr) { 3102 const struct EA_INFO *info; 3103 3104 info = resident_data_ex(attr, sizeof(struct EA_INFO)); 3105 /* If ATTR_EA_INFO exists 'info' can't be NULL. */ 3106 if (info) 3107 dup->ea_size = info->size_pack; 3108 } 3109 } 3110 3111 attr = NULL; 3112 le = NULL; 3113 3114 while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL, 3115 &mi))) { 3116 struct inode *dir; 3117 struct ATTR_FILE_NAME *fname; 3118 3119 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); 3120 if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup))) 3121 continue; 3122 3123 /* ntfs_iget5 may sleep. */ 3124 dir = ntfs_iget5(sb, &fname->home, NULL); 3125 if (IS_ERR(dir)) { 3126 ntfs_inode_warn( 3127 &ni->vfs_inode, 3128 "failed to open parent directory r=%lx to update", 3129 (long)ino_get(&fname->home)); 3130 continue; 3131 } 3132 3133 if (!is_bad_inode(dir)) { 3134 struct ntfs_inode *dir_ni = ntfs_i(dir); 3135 3136 if (!ni_trylock(dir_ni)) { 3137 re_dirty = true; 3138 } else { 3139 indx_update_dup(dir_ni, sbi, fname, dup, sync); 3140 ni_unlock(dir_ni); 3141 memcpy(&fname->dup, dup, sizeof(fname->dup)); 3142 mi->dirty = true; 3143 } 3144 } 3145 iput(dir); 3146 } 3147 3148 return re_dirty; 3149 } 3150 3151 /* 3152 * ni_write_inode - Write MFT base record and all subrecords to disk. 3153 */ 3154 int ni_write_inode(struct inode *inode, int sync, const char *hint) 3155 { 3156 int err = 0, err2; 3157 struct ntfs_inode *ni = ntfs_i(inode); 3158 struct super_block *sb = inode->i_sb; 3159 struct ntfs_sb_info *sbi = sb->s_fs_info; 3160 bool re_dirty = false; 3161 struct ATTR_STD_INFO *std; 3162 struct rb_node *node, *next; 3163 struct NTFS_DUP_INFO dup; 3164 3165 if (is_bad_inode(inode) || sb_rdonly(sb)) 3166 return 0; 3167 3168 if (!ni_trylock(ni)) { 3169 /* 'ni' is under modification, skip for now. */ 3170 mark_inode_dirty_sync(inode); 3171 return 0; 3172 } 3173 3174 if (is_rec_inuse(ni->mi.mrec) && 3175 !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) { 3176 bool modified = false; 3177 3178 /* Update times in standard attribute. */ 3179 std = ni_std(ni); 3180 if (!std) { 3181 err = -EINVAL; 3182 goto out; 3183 } 3184 3185 /* Update the access times if they have changed. */ 3186 dup.m_time = kernel2nt(&inode->i_mtime); 3187 if (std->m_time != dup.m_time) { 3188 std->m_time = dup.m_time; 3189 modified = true; 3190 } 3191 3192 dup.c_time = kernel2nt(&inode->i_ctime); 3193 if (std->c_time != dup.c_time) { 3194 std->c_time = dup.c_time; 3195 modified = true; 3196 } 3197 3198 dup.a_time = kernel2nt(&inode->i_atime); 3199 if (std->a_time != dup.a_time) { 3200 std->a_time = dup.a_time; 3201 modified = true; 3202 } 3203 3204 dup.fa = ni->std_fa; 3205 if (std->fa != dup.fa) { 3206 std->fa = dup.fa; 3207 modified = true; 3208 } 3209 3210 if (modified) 3211 ni->mi.dirty = true; 3212 3213 if (!ntfs_is_meta_file(sbi, inode->i_ino) && 3214 (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT)) 3215 /* Avoid __wait_on_freeing_inode(inode). */ 3216 && (sb->s_flags & SB_ACTIVE)) { 3217 dup.cr_time = std->cr_time; 3218 /* Not critical if this function fail. */ 3219 re_dirty = ni_update_parent(ni, &dup, sync); 3220 3221 if (re_dirty) 3222 ni->ni_flags |= NI_FLAG_UPDATE_PARENT; 3223 else 3224 ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT; 3225 } 3226 3227 /* Update attribute list. */ 3228 if (ni->attr_list.size && ni->attr_list.dirty) { 3229 if (inode->i_ino != MFT_REC_MFT || sync) { 3230 err = ni_try_remove_attr_list(ni); 3231 if (err) 3232 goto out; 3233 } 3234 3235 err = al_update(ni, sync); 3236 if (err) 3237 goto out; 3238 } 3239 } 3240 3241 for (node = rb_first(&ni->mi_tree); node; node = next) { 3242 struct mft_inode *mi = rb_entry(node, struct mft_inode, node); 3243 bool is_empty; 3244 3245 next = rb_next(node); 3246 3247 if (!mi->dirty) 3248 continue; 3249 3250 is_empty = !mi_enum_attr(mi, NULL); 3251 3252 if (is_empty) 3253 clear_rec_inuse(mi->mrec); 3254 3255 err2 = mi_write(mi, sync); 3256 if (!err && err2) 3257 err = err2; 3258 3259 if (is_empty) { 3260 ntfs_mark_rec_free(sbi, mi->rno); 3261 rb_erase(node, &ni->mi_tree); 3262 mi_put(mi); 3263 } 3264 } 3265 3266 if (ni->mi.dirty) { 3267 err2 = mi_write(&ni->mi, sync); 3268 if (!err && err2) 3269 err = err2; 3270 } 3271 out: 3272 ni_unlock(ni); 3273 3274 if (err) { 3275 ntfs_err(sb, "%s r=%lx failed, %d.", hint, inode->i_ino, err); 3276 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 3277 return err; 3278 } 3279 3280 if (re_dirty) 3281 mark_inode_dirty_sync(inode); 3282 3283 return 0; 3284 } 3285