1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * 4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. 5 * 6 */ 7 8 #include <linux/fiemap.h> 9 #include <linux/fs.h> 10 #include <linux/minmax.h> 11 #include <linux/vmalloc.h> 12 13 #include "debug.h" 14 #include "ntfs.h" 15 #include "ntfs_fs.h" 16 #ifdef CONFIG_NTFS3_LZX_XPRESS 17 #include "lib/lib.h" 18 #endif 19 20 static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree, 21 CLST ino, struct rb_node *ins) 22 { 23 struct rb_node **p = &tree->rb_node; 24 struct rb_node *pr = NULL; 25 26 while (*p) { 27 struct mft_inode *mi; 28 29 pr = *p; 30 mi = rb_entry(pr, struct mft_inode, node); 31 if (mi->rno > ino) 32 p = &pr->rb_left; 33 else if (mi->rno < ino) 34 p = &pr->rb_right; 35 else 36 return mi; 37 } 38 39 if (!ins) 40 return NULL; 41 42 rb_link_node(ins, pr, p); 43 rb_insert_color(ins, tree); 44 return rb_entry(ins, struct mft_inode, node); 45 } 46 47 /* 48 * ni_find_mi - Find mft_inode by record number. 49 */ 50 static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno) 51 { 52 return ni_ins_mi(ni, &ni->mi_tree, rno, NULL); 53 } 54 55 /* 56 * ni_add_mi - Add new mft_inode into ntfs_inode. 57 */ 58 static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi) 59 { 60 ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node); 61 } 62 63 /* 64 * ni_remove_mi - Remove mft_inode from ntfs_inode. 65 */ 66 void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi) 67 { 68 rb_erase(&mi->node, &ni->mi_tree); 69 } 70 71 /* 72 * ni_std - Return: Pointer into std_info from primary record. 73 */ 74 struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni) 75 { 76 const struct ATTRIB *attr; 77 78 attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL); 79 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO)) : 80 NULL; 81 } 82 83 /* 84 * ni_std5 85 * 86 * Return: Pointer into std_info from primary record. 87 */ 88 struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni) 89 { 90 const struct ATTRIB *attr; 91 92 attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL); 93 94 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5)) : 95 NULL; 96 } 97 98 /* 99 * ni_clear - Clear resources allocated by ntfs_inode. 100 */ 101 void ni_clear(struct ntfs_inode *ni) 102 { 103 struct rb_node *node; 104 105 if (!ni->vfs_inode.i_nlink && ni->mi.mrec && is_rec_inuse(ni->mi.mrec)) 106 ni_delete_all(ni); 107 108 al_destroy(ni); 109 110 for (node = rb_first(&ni->mi_tree); node;) { 111 struct rb_node *next = rb_next(node); 112 struct mft_inode *mi = rb_entry(node, struct mft_inode, node); 113 114 rb_erase(node, &ni->mi_tree); 115 mi_put(mi); 116 node = next; 117 } 118 119 /* Bad inode always has mode == S_IFREG. */ 120 if (ni->ni_flags & NI_FLAG_DIR) 121 indx_clear(&ni->dir); 122 else { 123 run_close(&ni->file.run); 124 #ifdef CONFIG_NTFS3_LZX_XPRESS 125 if (ni->file.offs_page) { 126 /* On-demand allocated page for offsets. */ 127 put_page(ni->file.offs_page); 128 ni->file.offs_page = NULL; 129 } 130 #endif 131 } 132 133 mi_clear(&ni->mi); 134 } 135 136 /* 137 * ni_load_mi_ex - Find mft_inode by record number. 138 */ 139 int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi) 140 { 141 int err; 142 struct mft_inode *r; 143 144 r = ni_find_mi(ni, rno); 145 if (r) 146 goto out; 147 148 err = mi_get(ni->mi.sbi, rno, &r); 149 if (err) 150 return err; 151 152 ni_add_mi(ni, r); 153 154 out: 155 if (mi) 156 *mi = r; 157 return 0; 158 } 159 160 /* 161 * ni_load_mi - Load mft_inode corresponded list_entry. 162 */ 163 int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le, 164 struct mft_inode **mi) 165 { 166 CLST rno; 167 168 if (!le) { 169 *mi = &ni->mi; 170 return 0; 171 } 172 173 rno = ino_get(&le->ref); 174 if (rno == ni->mi.rno) { 175 *mi = &ni->mi; 176 return 0; 177 } 178 return ni_load_mi_ex(ni, rno, mi); 179 } 180 181 /* 182 * ni_find_attr 183 * 184 * Return: Attribute and record this attribute belongs to. 185 */ 186 struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr, 187 struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type, 188 const __le16 *name, u8 name_len, const CLST *vcn, 189 struct mft_inode **mi) 190 { 191 struct ATTR_LIST_ENTRY *le; 192 struct mft_inode *m; 193 194 if (!ni->attr_list.size || 195 (!name_len && (type == ATTR_LIST || type == ATTR_STD))) { 196 if (le_o) 197 *le_o = NULL; 198 if (mi) 199 *mi = &ni->mi; 200 201 /* Look for required attribute in primary record. */ 202 return mi_find_attr(&ni->mi, attr, type, name, name_len, NULL); 203 } 204 205 /* First look for list entry of required type. */ 206 le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn); 207 if (!le) 208 return NULL; 209 210 if (le_o) 211 *le_o = le; 212 213 /* Load record that contains this attribute. */ 214 if (ni_load_mi(ni, le, &m)) 215 return NULL; 216 217 /* Look for required attribute. */ 218 attr = mi_find_attr(m, NULL, type, name, name_len, &le->id); 219 220 if (!attr) 221 goto out; 222 223 if (!attr->non_res) { 224 if (vcn && *vcn) 225 goto out; 226 } else if (!vcn) { 227 if (attr->nres.svcn) 228 goto out; 229 } else if (le64_to_cpu(attr->nres.svcn) > *vcn || 230 *vcn > le64_to_cpu(attr->nres.evcn)) { 231 goto out; 232 } 233 234 if (mi) 235 *mi = m; 236 return attr; 237 238 out: 239 ntfs_inode_err(&ni->vfs_inode, "failed to parse mft record"); 240 ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR); 241 return NULL; 242 } 243 244 /* 245 * ni_enum_attr_ex - Enumerates attributes in ntfs_inode. 246 */ 247 struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr, 248 struct ATTR_LIST_ENTRY **le, 249 struct mft_inode **mi) 250 { 251 struct mft_inode *mi2; 252 struct ATTR_LIST_ENTRY *le2; 253 254 /* Do we have an attribute list? */ 255 if (!ni->attr_list.size) { 256 *le = NULL; 257 if (mi) 258 *mi = &ni->mi; 259 /* Enum attributes in primary record. */ 260 return mi_enum_attr(&ni->mi, attr); 261 } 262 263 /* Get next list entry. */ 264 le2 = *le = al_enumerate(ni, attr ? *le : NULL); 265 if (!le2) 266 return NULL; 267 268 /* Load record that contains the required attribute. */ 269 if (ni_load_mi(ni, le2, &mi2)) 270 return NULL; 271 272 if (mi) 273 *mi = mi2; 274 275 /* Find attribute in loaded record. */ 276 return rec_find_attr_le(mi2, le2); 277 } 278 279 /* 280 * ni_load_attr - Load attribute that contains given VCN. 281 */ 282 struct ATTRIB *ni_load_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, 283 const __le16 *name, u8 name_len, CLST vcn, 284 struct mft_inode **pmi) 285 { 286 struct ATTR_LIST_ENTRY *le; 287 struct ATTRIB *attr; 288 struct mft_inode *mi; 289 struct ATTR_LIST_ENTRY *next; 290 291 if (!ni->attr_list.size) { 292 if (pmi) 293 *pmi = &ni->mi; 294 return mi_find_attr(&ni->mi, NULL, type, name, name_len, NULL); 295 } 296 297 le = al_find_ex(ni, NULL, type, name, name_len, NULL); 298 if (!le) 299 return NULL; 300 301 /* 302 * Unfortunately ATTR_LIST_ENTRY contains only start VCN. 303 * So to find the ATTRIB segment that contains 'vcn' we should 304 * enumerate some entries. 305 */ 306 if (vcn) { 307 for (;; le = next) { 308 next = al_find_ex(ni, le, type, name, name_len, NULL); 309 if (!next || le64_to_cpu(next->vcn) > vcn) 310 break; 311 } 312 } 313 314 if (ni_load_mi(ni, le, &mi)) 315 return NULL; 316 317 if (pmi) 318 *pmi = mi; 319 320 attr = mi_find_attr(mi, NULL, type, name, name_len, &le->id); 321 if (!attr) 322 return NULL; 323 324 if (!attr->non_res) 325 return attr; 326 327 if (le64_to_cpu(attr->nres.svcn) <= vcn && 328 vcn <= le64_to_cpu(attr->nres.evcn)) 329 return attr; 330 331 return NULL; 332 } 333 334 /* 335 * ni_load_all_mi - Load all subrecords. 336 */ 337 int ni_load_all_mi(struct ntfs_inode *ni) 338 { 339 int err; 340 struct ATTR_LIST_ENTRY *le; 341 342 if (!ni->attr_list.size) 343 return 0; 344 345 le = NULL; 346 347 while ((le = al_enumerate(ni, le))) { 348 CLST rno = ino_get(&le->ref); 349 350 if (rno == ni->mi.rno) 351 continue; 352 353 err = ni_load_mi_ex(ni, rno, NULL); 354 if (err) 355 return err; 356 } 357 358 return 0; 359 } 360 361 /* 362 * ni_add_subrecord - Allocate + format + attach a new subrecord. 363 */ 364 bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi) 365 { 366 struct mft_inode *m; 367 368 m = kzalloc(sizeof(struct mft_inode), GFP_NOFS); 369 if (!m) 370 return false; 371 372 if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) { 373 mi_put(m); 374 return false; 375 } 376 377 mi_get_ref(&ni->mi, &m->mrec->parent_ref); 378 379 ni_add_mi(ni, m); 380 *mi = m; 381 return true; 382 } 383 384 /* 385 * ni_remove_attr - Remove all attributes for the given type/name/id. 386 */ 387 int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, 388 const __le16 *name, u8 name_len, bool base_only, 389 const __le16 *id) 390 { 391 int err; 392 struct ATTRIB *attr; 393 struct ATTR_LIST_ENTRY *le; 394 struct mft_inode *mi; 395 u32 type_in; 396 int diff; 397 398 if (base_only || type == ATTR_LIST || !ni->attr_list.size) { 399 attr = mi_find_attr(&ni->mi, NULL, type, name, name_len, id); 400 if (!attr) 401 return -ENOENT; 402 403 mi_remove_attr(ni, &ni->mi, attr); 404 return 0; 405 } 406 407 type_in = le32_to_cpu(type); 408 le = NULL; 409 410 for (;;) { 411 le = al_enumerate(ni, le); 412 if (!le) 413 return 0; 414 415 next_le2: 416 diff = le32_to_cpu(le->type) - type_in; 417 if (diff < 0) 418 continue; 419 420 if (diff > 0) 421 return 0; 422 423 if (le->name_len != name_len) 424 continue; 425 426 if (name_len && 427 memcmp(le_name(le), name, name_len * sizeof(short))) 428 continue; 429 430 if (id && le->id != *id) 431 continue; 432 err = ni_load_mi(ni, le, &mi); 433 if (err) 434 return err; 435 436 al_remove_le(ni, le); 437 438 attr = mi_find_attr(mi, NULL, type, name, name_len, id); 439 if (!attr) 440 return -ENOENT; 441 442 mi_remove_attr(ni, mi, attr); 443 444 if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size) 445 return 0; 446 goto next_le2; 447 } 448 } 449 450 /* 451 * ni_ins_new_attr - Insert the attribute into record. 452 * 453 * Return: Not full constructed attribute or NULL if not possible to create. 454 */ 455 static struct ATTRIB * 456 ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi, 457 struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type, 458 const __le16 *name, u8 name_len, u32 asize, u16 name_off, 459 CLST svcn, struct ATTR_LIST_ENTRY **ins_le) 460 { 461 int err; 462 struct ATTRIB *attr; 463 bool le_added = false; 464 struct MFT_REF ref; 465 466 mi_get_ref(mi, &ref); 467 468 if (type != ATTR_LIST && !le && ni->attr_list.size) { 469 err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1), 470 &ref, &le); 471 if (err) { 472 /* No memory or no space. */ 473 return ERR_PTR(err); 474 } 475 le_added = true; 476 477 /* 478 * al_add_le -> attr_set_size (list) -> ni_expand_list 479 * which moves some attributes out of primary record 480 * this means that name may point into moved memory 481 * reinit 'name' from le. 482 */ 483 name = le->name; 484 } 485 486 attr = mi_insert_attr(mi, type, name, name_len, asize, name_off); 487 if (!attr) { 488 if (le_added) 489 al_remove_le(ni, le); 490 return NULL; 491 } 492 493 if (type == ATTR_LIST) { 494 /* Attr list is not in list entry array. */ 495 goto out; 496 } 497 498 if (!le) 499 goto out; 500 501 /* Update ATTRIB Id and record reference. */ 502 le->id = attr->id; 503 ni->attr_list.dirty = true; 504 le->ref = ref; 505 506 out: 507 if (ins_le) 508 *ins_le = le; 509 return attr; 510 } 511 512 /* 513 * ni_repack 514 * 515 * Random write access to sparsed or compressed file may result to 516 * not optimized packed runs. 517 * Here is the place to optimize it. 518 */ 519 static int ni_repack(struct ntfs_inode *ni) 520 { 521 #if 1 522 return 0; 523 #else 524 int err = 0; 525 struct ntfs_sb_info *sbi = ni->mi.sbi; 526 struct mft_inode *mi, *mi_p = NULL; 527 struct ATTRIB *attr = NULL, *attr_p; 528 struct ATTR_LIST_ENTRY *le = NULL, *le_p; 529 CLST alloc = 0; 530 u8 cluster_bits = sbi->cluster_bits; 531 CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn; 532 u32 roff, rs = sbi->record_size; 533 struct runs_tree run; 534 535 run_init(&run); 536 537 while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) { 538 if (!attr->non_res) 539 continue; 540 541 svcn = le64_to_cpu(attr->nres.svcn); 542 if (svcn != le64_to_cpu(le->vcn)) { 543 err = -EINVAL; 544 break; 545 } 546 547 if (!svcn) { 548 alloc = le64_to_cpu(attr->nres.alloc_size) >> 549 cluster_bits; 550 mi_p = NULL; 551 } else if (svcn != evcn + 1) { 552 err = -EINVAL; 553 break; 554 } 555 556 evcn = le64_to_cpu(attr->nres.evcn); 557 558 if (svcn > evcn + 1) { 559 err = -EINVAL; 560 break; 561 } 562 563 if (!mi_p) { 564 /* Do not try if not enough free space. */ 565 if (le32_to_cpu(mi->mrec->used) + 8 >= rs) 566 continue; 567 568 /* Do not try if last attribute segment. */ 569 if (evcn + 1 == alloc) 570 continue; 571 run_close(&run); 572 } 573 574 roff = le16_to_cpu(attr->nres.run_off); 575 576 if (roff > le32_to_cpu(attr->size)) { 577 err = -EINVAL; 578 break; 579 } 580 581 err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn, 582 Add2Ptr(attr, roff), 583 le32_to_cpu(attr->size) - roff); 584 if (err < 0) 585 break; 586 587 if (!mi_p) { 588 mi_p = mi; 589 attr_p = attr; 590 svcn_p = svcn; 591 evcn_p = evcn; 592 le_p = le; 593 err = 0; 594 continue; 595 } 596 597 /* 598 * Run contains data from two records: mi_p and mi 599 * Try to pack in one. 600 */ 601 err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p); 602 if (err) 603 break; 604 605 next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1; 606 607 if (next_svcn >= evcn + 1) { 608 /* We can remove this attribute segment. */ 609 al_remove_le(ni, le); 610 mi_remove_attr(NULL, mi, attr); 611 le = le_p; 612 continue; 613 } 614 615 attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn); 616 mi->dirty = true; 617 ni->attr_list.dirty = true; 618 619 if (evcn + 1 == alloc) { 620 err = mi_pack_runs(mi, attr, &run, 621 evcn + 1 - next_svcn); 622 if (err) 623 break; 624 mi_p = NULL; 625 } else { 626 mi_p = mi; 627 attr_p = attr; 628 svcn_p = next_svcn; 629 evcn_p = evcn; 630 le_p = le; 631 run_truncate_head(&run, next_svcn); 632 } 633 } 634 635 if (err) { 636 ntfs_inode_warn(&ni->vfs_inode, "repack problem"); 637 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 638 639 /* Pack loaded but not packed runs. */ 640 if (mi_p) 641 mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p); 642 } 643 644 run_close(&run); 645 return err; 646 #endif 647 } 648 649 /* 650 * ni_try_remove_attr_list 651 * 652 * Can we remove attribute list? 653 * Check the case when primary record contains enough space for all attributes. 654 */ 655 static int ni_try_remove_attr_list(struct ntfs_inode *ni) 656 { 657 int err = 0; 658 struct ntfs_sb_info *sbi = ni->mi.sbi; 659 struct ATTRIB *attr, *attr_list, *attr_ins; 660 struct ATTR_LIST_ENTRY *le; 661 struct mft_inode *mi; 662 u32 asize, free; 663 struct MFT_REF ref; 664 struct MFT_REC *mrec; 665 __le16 id; 666 667 if (!ni->attr_list.dirty) 668 return 0; 669 670 err = ni_repack(ni); 671 if (err) 672 return err; 673 674 attr_list = mi_find_attr(&ni->mi, NULL, ATTR_LIST, NULL, 0, NULL); 675 if (!attr_list) 676 return 0; 677 678 asize = le32_to_cpu(attr_list->size); 679 680 /* Free space in primary record without attribute list. */ 681 free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize; 682 mi_get_ref(&ni->mi, &ref); 683 684 le = NULL; 685 while ((le = al_enumerate(ni, le))) { 686 if (!memcmp(&le->ref, &ref, sizeof(ref))) 687 continue; 688 689 if (le->vcn) 690 return 0; 691 692 mi = ni_find_mi(ni, ino_get(&le->ref)); 693 if (!mi) 694 return 0; 695 696 attr = mi_find_attr(mi, NULL, le->type, le_name(le), 697 le->name_len, &le->id); 698 if (!attr) 699 return 0; 700 701 asize = le32_to_cpu(attr->size); 702 if (asize > free) 703 return 0; 704 705 free -= asize; 706 } 707 708 /* Make a copy of primary record to restore if error. */ 709 mrec = kmemdup(ni->mi.mrec, sbi->record_size, GFP_NOFS); 710 if (!mrec) 711 return 0; /* Not critical. */ 712 713 /* It seems that attribute list can be removed from primary record. */ 714 mi_remove_attr(NULL, &ni->mi, attr_list); 715 716 /* 717 * Repeat the cycle above and copy all attributes to primary record. 718 * Do not remove original attributes from subrecords! 719 * It should be success! 720 */ 721 le = NULL; 722 while ((le = al_enumerate(ni, le))) { 723 if (!memcmp(&le->ref, &ref, sizeof(ref))) 724 continue; 725 726 mi = ni_find_mi(ni, ino_get(&le->ref)); 727 if (!mi) { 728 /* Should never happened, 'cause already checked. */ 729 goto out; 730 } 731 732 attr = mi_find_attr(mi, NULL, le->type, le_name(le), 733 le->name_len, &le->id); 734 if (!attr) { 735 /* Should never happened, 'cause already checked. */ 736 goto out; 737 } 738 asize = le32_to_cpu(attr->size); 739 740 /* Insert into primary record. */ 741 attr_ins = mi_insert_attr(&ni->mi, le->type, le_name(le), 742 le->name_len, asize, 743 le16_to_cpu(attr->name_off)); 744 if (!attr_ins) { 745 /* 746 * No space in primary record (already checked). 747 */ 748 goto out; 749 } 750 751 /* Copy all except id. */ 752 id = attr_ins->id; 753 memcpy(attr_ins, attr, asize); 754 attr_ins->id = id; 755 } 756 757 /* 758 * Repeat the cycle above and remove all attributes from subrecords. 759 */ 760 le = NULL; 761 while ((le = al_enumerate(ni, le))) { 762 if (!memcmp(&le->ref, &ref, sizeof(ref))) 763 continue; 764 765 mi = ni_find_mi(ni, ino_get(&le->ref)); 766 if (!mi) 767 continue; 768 769 attr = mi_find_attr(mi, NULL, le->type, le_name(le), 770 le->name_len, &le->id); 771 if (!attr) 772 continue; 773 774 /* Remove from original record. */ 775 mi_remove_attr(NULL, mi, attr); 776 } 777 778 run_deallocate(sbi, &ni->attr_list.run, true); 779 run_close(&ni->attr_list.run); 780 ni->attr_list.size = 0; 781 kvfree(ni->attr_list.le); 782 ni->attr_list.le = NULL; 783 ni->attr_list.dirty = false; 784 785 kfree(mrec); 786 return 0; 787 out: 788 /* Restore primary record. */ 789 swap(mrec, ni->mi.mrec); 790 kfree(mrec); 791 return 0; 792 } 793 794 /* 795 * ni_create_attr_list - Generates an attribute list for this primary record. 796 */ 797 int ni_create_attr_list(struct ntfs_inode *ni) 798 { 799 struct ntfs_sb_info *sbi = ni->mi.sbi; 800 int err; 801 u32 lsize; 802 struct ATTRIB *attr; 803 struct ATTRIB *arr_move[7]; 804 struct ATTR_LIST_ENTRY *le, *le_b[7]; 805 struct MFT_REC *rec; 806 bool is_mft; 807 CLST rno = 0; 808 struct mft_inode *mi; 809 u32 free_b, nb, to_free, rs; 810 u16 sz; 811 812 is_mft = ni->mi.rno == MFT_REC_MFT; 813 rec = ni->mi.mrec; 814 rs = sbi->record_size; 815 816 /* 817 * Skip estimating exact memory requirement. 818 * Looks like one record_size is always enough. 819 */ 820 le = kmalloc(al_aligned(rs), GFP_NOFS); 821 if (!le) 822 return -ENOMEM; 823 824 mi_get_ref(&ni->mi, &le->ref); 825 ni->attr_list.le = le; 826 827 attr = NULL; 828 nb = 0; 829 free_b = 0; 830 attr = NULL; 831 832 for (; (attr = mi_enum_attr(&ni->mi, attr)); le = Add2Ptr(le, sz)) { 833 sz = le_size(attr->name_len); 834 le->type = attr->type; 835 le->size = cpu_to_le16(sz); 836 le->name_len = attr->name_len; 837 le->name_off = offsetof(struct ATTR_LIST_ENTRY, name); 838 le->vcn = 0; 839 if (le != ni->attr_list.le) 840 le->ref = ni->attr_list.le->ref; 841 le->id = attr->id; 842 843 if (attr->name_len) 844 memcpy(le->name, attr_name(attr), 845 sizeof(short) * attr->name_len); 846 else if (attr->type == ATTR_STD) 847 continue; 848 else if (attr->type == ATTR_LIST) 849 continue; 850 else if (is_mft && attr->type == ATTR_DATA) 851 continue; 852 853 if (!nb || nb < ARRAY_SIZE(arr_move)) { 854 le_b[nb] = le; 855 arr_move[nb++] = attr; 856 free_b += le32_to_cpu(attr->size); 857 } 858 } 859 860 lsize = PtrOffset(ni->attr_list.le, le); 861 ni->attr_list.size = lsize; 862 863 to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT; 864 if (to_free <= rs) { 865 to_free = 0; 866 } else { 867 to_free -= rs; 868 869 if (to_free > free_b) { 870 err = -EINVAL; 871 goto out; 872 } 873 } 874 875 /* Allocate child MFT. */ 876 err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi); 877 if (err) 878 goto out; 879 880 err = -EINVAL; 881 /* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */ 882 while (to_free > 0) { 883 struct ATTRIB *b = arr_move[--nb]; 884 u32 asize = le32_to_cpu(b->size); 885 u16 name_off = le16_to_cpu(b->name_off); 886 887 attr = mi_insert_attr(mi, b->type, Add2Ptr(b, name_off), 888 b->name_len, asize, name_off); 889 if (!attr) 890 goto out; 891 892 mi_get_ref(mi, &le_b[nb]->ref); 893 le_b[nb]->id = attr->id; 894 895 /* Copy all except id. */ 896 memcpy(attr, b, asize); 897 attr->id = le_b[nb]->id; 898 899 /* Remove from primary record. */ 900 if (!mi_remove_attr(NULL, &ni->mi, b)) 901 goto out; 902 903 if (to_free <= asize) 904 break; 905 to_free -= asize; 906 if (!nb) 907 goto out; 908 } 909 910 attr = mi_insert_attr(&ni->mi, ATTR_LIST, NULL, 0, 911 lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT); 912 if (!attr) 913 goto out; 914 915 attr->non_res = 0; 916 attr->flags = 0; 917 attr->res.data_size = cpu_to_le32(lsize); 918 attr->res.data_off = SIZEOF_RESIDENT_LE; 919 attr->res.flags = 0; 920 attr->res.res = 0; 921 922 memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize); 923 924 ni->attr_list.dirty = false; 925 926 mark_inode_dirty(&ni->vfs_inode); 927 return 0; 928 929 out: 930 kvfree(ni->attr_list.le); 931 ni->attr_list.le = NULL; 932 ni->attr_list.size = 0; 933 return err; 934 } 935 936 /* 937 * ni_ins_attr_ext - Add an external attribute to the ntfs_inode. 938 */ 939 static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le, 940 enum ATTR_TYPE type, const __le16 *name, u8 name_len, 941 u32 asize, CLST svcn, u16 name_off, bool force_ext, 942 struct ATTRIB **ins_attr, struct mft_inode **ins_mi, 943 struct ATTR_LIST_ENTRY **ins_le) 944 { 945 struct ATTRIB *attr; 946 struct mft_inode *mi; 947 CLST rno; 948 u64 vbo; 949 struct rb_node *node; 950 int err; 951 bool is_mft, is_mft_data; 952 struct ntfs_sb_info *sbi = ni->mi.sbi; 953 954 is_mft = ni->mi.rno == MFT_REC_MFT; 955 is_mft_data = is_mft && type == ATTR_DATA && !name_len; 956 957 if (asize > sbi->max_bytes_per_attr) { 958 err = -EINVAL; 959 goto out; 960 } 961 962 /* 963 * Standard information and attr_list cannot be made external. 964 * The Log File cannot have any external attributes. 965 */ 966 if (type == ATTR_STD || type == ATTR_LIST || 967 ni->mi.rno == MFT_REC_LOG) { 968 err = -EINVAL; 969 goto out; 970 } 971 972 /* Create attribute list if it is not already existed. */ 973 if (!ni->attr_list.size) { 974 err = ni_create_attr_list(ni); 975 if (err) 976 goto out; 977 } 978 979 vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0; 980 981 if (force_ext) 982 goto insert_ext; 983 984 /* Load all subrecords into memory. */ 985 err = ni_load_all_mi(ni); 986 if (err) 987 goto out; 988 989 /* Check each of loaded subrecord. */ 990 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { 991 mi = rb_entry(node, struct mft_inode, node); 992 993 if (is_mft_data && 994 (mi_enum_attr(mi, NULL) || 995 vbo <= ((u64)mi->rno << sbi->record_bits))) { 996 /* We can't accept this record 'cause MFT's bootstrapping. */ 997 continue; 998 } 999 if (is_mft && 1000 mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0, NULL)) { 1001 /* 1002 * This child record already has a ATTR_DATA. 1003 * So it can't accept any other records. 1004 */ 1005 continue; 1006 } 1007 1008 if ((type != ATTR_NAME || name_len) && 1009 mi_find_attr(mi, NULL, type, name, name_len, NULL)) { 1010 /* Only indexed attributes can share same record. */ 1011 continue; 1012 } 1013 1014 /* 1015 * Do not try to insert this attribute 1016 * if there is no room in record. 1017 */ 1018 if (le32_to_cpu(mi->mrec->used) + asize > sbi->record_size) 1019 continue; 1020 1021 /* Try to insert attribute into this subrecord. */ 1022 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize, 1023 name_off, svcn, ins_le); 1024 if (!attr) 1025 continue; 1026 if (IS_ERR(attr)) 1027 return PTR_ERR(attr); 1028 1029 if (ins_attr) 1030 *ins_attr = attr; 1031 if (ins_mi) 1032 *ins_mi = mi; 1033 return 0; 1034 } 1035 1036 insert_ext: 1037 /* We have to allocate a new child subrecord. */ 1038 err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi); 1039 if (err) 1040 goto out; 1041 1042 if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) { 1043 err = -EINVAL; 1044 goto out1; 1045 } 1046 1047 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize, 1048 name_off, svcn, ins_le); 1049 if (!attr) { 1050 err = -EINVAL; 1051 goto out2; 1052 } 1053 1054 if (IS_ERR(attr)) { 1055 err = PTR_ERR(attr); 1056 goto out2; 1057 } 1058 1059 if (ins_attr) 1060 *ins_attr = attr; 1061 if (ins_mi) 1062 *ins_mi = mi; 1063 1064 return 0; 1065 1066 out2: 1067 ni_remove_mi(ni, mi); 1068 mi_put(mi); 1069 1070 out1: 1071 ntfs_mark_rec_free(sbi, rno, is_mft); 1072 1073 out: 1074 return err; 1075 } 1076 1077 /* 1078 * ni_insert_attr - Insert an attribute into the file. 1079 * 1080 * If the primary record has room, it will just insert the attribute. 1081 * If not, it may make the attribute external. 1082 * For $MFT::Data it may make room for the attribute by 1083 * making other attributes external. 1084 * 1085 * NOTE: 1086 * The ATTR_LIST and ATTR_STD cannot be made external. 1087 * This function does not fill new attribute full. 1088 * It only fills 'size'/'type'/'id'/'name_len' fields. 1089 */ 1090 static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, 1091 const __le16 *name, u8 name_len, u32 asize, 1092 u16 name_off, CLST svcn, struct ATTRIB **ins_attr, 1093 struct mft_inode **ins_mi, 1094 struct ATTR_LIST_ENTRY **ins_le) 1095 { 1096 struct ntfs_sb_info *sbi = ni->mi.sbi; 1097 int err; 1098 struct ATTRIB *attr, *eattr; 1099 struct MFT_REC *rec; 1100 bool is_mft; 1101 struct ATTR_LIST_ENTRY *le; 1102 u32 list_reserve, max_free, free, used, t32; 1103 __le16 id; 1104 u16 t16; 1105 1106 is_mft = ni->mi.rno == MFT_REC_MFT; 1107 rec = ni->mi.mrec; 1108 1109 list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32)); 1110 used = le32_to_cpu(rec->used); 1111 free = sbi->record_size - used; 1112 1113 if (is_mft && type != ATTR_LIST) { 1114 /* Reserve space for the ATTRIB list. */ 1115 if (free < list_reserve) 1116 free = 0; 1117 else 1118 free -= list_reserve; 1119 } 1120 1121 if (asize <= free) { 1122 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, 1123 asize, name_off, svcn, ins_le); 1124 if (IS_ERR(attr)) { 1125 err = PTR_ERR(attr); 1126 goto out; 1127 } 1128 1129 if (attr) { 1130 if (ins_attr) 1131 *ins_attr = attr; 1132 if (ins_mi) 1133 *ins_mi = &ni->mi; 1134 err = 0; 1135 goto out; 1136 } 1137 } 1138 1139 if (!is_mft || type != ATTR_DATA || svcn) { 1140 /* This ATTRIB will be external. */ 1141 err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize, 1142 svcn, name_off, false, ins_attr, ins_mi, 1143 ins_le); 1144 goto out; 1145 } 1146 1147 /* 1148 * Here we have: "is_mft && type == ATTR_DATA && !svcn" 1149 * 1150 * The first chunk of the $MFT::Data ATTRIB must be the base record. 1151 * Evict as many other attributes as possible. 1152 */ 1153 max_free = free; 1154 1155 /* Estimate the result of moving all possible attributes away. */ 1156 attr = NULL; 1157 1158 while ((attr = mi_enum_attr(&ni->mi, attr))) { 1159 if (attr->type == ATTR_STD) 1160 continue; 1161 if (attr->type == ATTR_LIST) 1162 continue; 1163 max_free += le32_to_cpu(attr->size); 1164 } 1165 1166 if (max_free < asize + list_reserve) { 1167 /* Impossible to insert this attribute into primary record. */ 1168 err = -EINVAL; 1169 goto out; 1170 } 1171 1172 /* Start real attribute moving. */ 1173 attr = NULL; 1174 1175 for (;;) { 1176 attr = mi_enum_attr(&ni->mi, attr); 1177 if (!attr) { 1178 /* We should never be here 'cause we have already check this case. */ 1179 err = -EINVAL; 1180 goto out; 1181 } 1182 1183 /* Skip attributes that MUST be primary record. */ 1184 if (attr->type == ATTR_STD || attr->type == ATTR_LIST) 1185 continue; 1186 1187 le = NULL; 1188 if (ni->attr_list.size) { 1189 le = al_find_le(ni, NULL, attr); 1190 if (!le) { 1191 /* Really this is a serious bug. */ 1192 err = -EINVAL; 1193 goto out; 1194 } 1195 } 1196 1197 t32 = le32_to_cpu(attr->size); 1198 t16 = le16_to_cpu(attr->name_off); 1199 err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16), 1200 attr->name_len, t32, attr_svcn(attr), t16, 1201 false, &eattr, NULL, NULL); 1202 if (err) 1203 return err; 1204 1205 id = eattr->id; 1206 memcpy(eattr, attr, t32); 1207 eattr->id = id; 1208 1209 /* Remove from primary record. */ 1210 mi_remove_attr(NULL, &ni->mi, attr); 1211 1212 /* attr now points to next attribute. */ 1213 if (attr->type == ATTR_END) 1214 goto out; 1215 } 1216 while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used)) 1217 ; 1218 1219 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize, 1220 name_off, svcn, ins_le); 1221 if (!attr) { 1222 err = -EINVAL; 1223 goto out; 1224 } 1225 1226 if (IS_ERR(attr)) { 1227 err = PTR_ERR(attr); 1228 goto out; 1229 } 1230 1231 if (ins_attr) 1232 *ins_attr = attr; 1233 if (ins_mi) 1234 *ins_mi = &ni->mi; 1235 1236 out: 1237 return err; 1238 } 1239 1240 /* ni_expand_mft_list - Split ATTR_DATA of $MFT. */ 1241 static int ni_expand_mft_list(struct ntfs_inode *ni) 1242 { 1243 int err = 0; 1244 struct runs_tree *run = &ni->file.run; 1245 u32 asize, run_size, done = 0; 1246 struct ATTRIB *attr; 1247 struct rb_node *node; 1248 CLST mft_min, mft_new, svcn, evcn, plen; 1249 struct mft_inode *mi, *mi_min, *mi_new; 1250 struct ntfs_sb_info *sbi = ni->mi.sbi; 1251 1252 /* Find the nearest MFT. */ 1253 mft_min = 0; 1254 mft_new = 0; 1255 mi_min = NULL; 1256 1257 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { 1258 mi = rb_entry(node, struct mft_inode, node); 1259 1260 attr = mi_enum_attr(mi, NULL); 1261 1262 if (!attr) { 1263 mft_min = mi->rno; 1264 mi_min = mi; 1265 break; 1266 } 1267 } 1268 1269 if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) { 1270 mft_new = 0; 1271 /* Really this is not critical. */ 1272 } else if (mft_min > mft_new) { 1273 mft_min = mft_new; 1274 mi_min = mi_new; 1275 } else { 1276 ntfs_mark_rec_free(sbi, mft_new, true); 1277 mft_new = 0; 1278 ni_remove_mi(ni, mi_new); 1279 } 1280 1281 attr = mi_find_attr(&ni->mi, NULL, ATTR_DATA, NULL, 0, NULL); 1282 if (!attr) { 1283 err = -EINVAL; 1284 goto out; 1285 } 1286 1287 asize = le32_to_cpu(attr->size); 1288 1289 evcn = le64_to_cpu(attr->nres.evcn); 1290 svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits); 1291 if (evcn + 1 >= svcn) { 1292 err = -EINVAL; 1293 goto out; 1294 } 1295 1296 /* 1297 * Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn]. 1298 * 1299 * Update first part of ATTR_DATA in 'primary MFT. 1300 */ 1301 err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT), 1302 asize - SIZEOF_NONRESIDENT, &plen); 1303 if (err < 0) 1304 goto out; 1305 1306 run_size = ALIGN(err, 8); 1307 err = 0; 1308 1309 if (plen < svcn) { 1310 err = -EINVAL; 1311 goto out; 1312 } 1313 1314 attr->nres.evcn = cpu_to_le64(svcn - 1); 1315 attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT); 1316 /* 'done' - How many bytes of primary MFT becomes free. */ 1317 done = asize - run_size - SIZEOF_NONRESIDENT; 1318 le32_sub_cpu(&ni->mi.mrec->used, done); 1319 1320 /* Estimate packed size (run_buf=NULL). */ 1321 err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size, 1322 &plen); 1323 if (err < 0) 1324 goto out; 1325 1326 run_size = ALIGN(err, 8); 1327 err = 0; 1328 1329 if (plen < evcn + 1 - svcn) { 1330 err = -EINVAL; 1331 goto out; 1332 } 1333 1334 /* 1335 * This function may implicitly call expand attr_list. 1336 * Insert second part of ATTR_DATA in 'mi_min'. 1337 */ 1338 attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0, 1339 SIZEOF_NONRESIDENT + run_size, 1340 SIZEOF_NONRESIDENT, svcn, NULL); 1341 if (!attr) { 1342 err = -EINVAL; 1343 goto out; 1344 } 1345 1346 if (IS_ERR(attr)) { 1347 err = PTR_ERR(attr); 1348 goto out; 1349 } 1350 1351 attr->non_res = 1; 1352 attr->name_off = SIZEOF_NONRESIDENT_LE; 1353 attr->flags = 0; 1354 1355 /* This function can't fail - cause already checked above. */ 1356 run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT), 1357 run_size, &plen); 1358 1359 attr->nres.svcn = cpu_to_le64(svcn); 1360 attr->nres.evcn = cpu_to_le64(evcn); 1361 attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT); 1362 1363 out: 1364 if (mft_new) { 1365 ntfs_mark_rec_free(sbi, mft_new, true); 1366 ni_remove_mi(ni, mi_new); 1367 } 1368 1369 return !err && !done ? -EOPNOTSUPP : err; 1370 } 1371 1372 /* 1373 * ni_expand_list - Move all possible attributes out of primary record. 1374 */ 1375 int ni_expand_list(struct ntfs_inode *ni) 1376 { 1377 int err = 0; 1378 u32 asize, done = 0; 1379 struct ATTRIB *attr, *ins_attr; 1380 struct ATTR_LIST_ENTRY *le; 1381 bool is_mft = ni->mi.rno == MFT_REC_MFT; 1382 struct MFT_REF ref; 1383 1384 mi_get_ref(&ni->mi, &ref); 1385 le = NULL; 1386 1387 while ((le = al_enumerate(ni, le))) { 1388 if (le->type == ATTR_STD) 1389 continue; 1390 1391 if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF))) 1392 continue; 1393 1394 if (is_mft && le->type == ATTR_DATA) 1395 continue; 1396 1397 /* Find attribute in primary record. */ 1398 attr = rec_find_attr_le(&ni->mi, le); 1399 if (!attr) { 1400 err = -EINVAL; 1401 goto out; 1402 } 1403 1404 asize = le32_to_cpu(attr->size); 1405 1406 /* Always insert into new record to avoid collisions (deep recursive). */ 1407 err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr), 1408 attr->name_len, asize, attr_svcn(attr), 1409 le16_to_cpu(attr->name_off), true, 1410 &ins_attr, NULL, NULL); 1411 1412 if (err) 1413 goto out; 1414 1415 memcpy(ins_attr, attr, asize); 1416 ins_attr->id = le->id; 1417 /* Remove from primary record. */ 1418 mi_remove_attr(NULL, &ni->mi, attr); 1419 1420 done += asize; 1421 goto out; 1422 } 1423 1424 if (!is_mft) { 1425 err = -EFBIG; /* Attr list is too big(?) */ 1426 goto out; 1427 } 1428 1429 /* Split MFT data as much as possible. */ 1430 err = ni_expand_mft_list(ni); 1431 1432 out: 1433 return !err && !done ? -EOPNOTSUPP : err; 1434 } 1435 1436 /* 1437 * ni_insert_nonresident - Insert new nonresident attribute. 1438 */ 1439 int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type, 1440 const __le16 *name, u8 name_len, 1441 const struct runs_tree *run, CLST svcn, CLST len, 1442 __le16 flags, struct ATTRIB **new_attr, 1443 struct mft_inode **mi, struct ATTR_LIST_ENTRY **le) 1444 { 1445 int err; 1446 CLST plen; 1447 struct ATTRIB *attr; 1448 bool is_ext = (flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) && 1449 !svcn; 1450 u32 name_size = ALIGN(name_len * sizeof(short), 8); 1451 u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT; 1452 u32 run_off = name_off + name_size; 1453 u32 run_size, asize; 1454 struct ntfs_sb_info *sbi = ni->mi.sbi; 1455 1456 /* Estimate packed size (run_buf=NULL). */ 1457 err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off, 1458 &plen); 1459 if (err < 0) 1460 goto out; 1461 1462 run_size = ALIGN(err, 8); 1463 1464 if (plen < len) { 1465 err = -EINVAL; 1466 goto out; 1467 } 1468 1469 asize = run_off + run_size; 1470 1471 if (asize > sbi->max_bytes_per_attr) { 1472 err = -EINVAL; 1473 goto out; 1474 } 1475 1476 err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn, 1477 &attr, mi, le); 1478 1479 if (err) 1480 goto out; 1481 1482 attr->non_res = 1; 1483 attr->name_off = cpu_to_le16(name_off); 1484 attr->flags = flags; 1485 1486 /* This function can't fail - cause already checked above. */ 1487 run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen); 1488 1489 attr->nres.svcn = cpu_to_le64(svcn); 1490 attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1); 1491 1492 if (new_attr) 1493 *new_attr = attr; 1494 1495 *(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off); 1496 1497 attr->nres.alloc_size = 1498 svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits); 1499 attr->nres.data_size = attr->nres.alloc_size; 1500 attr->nres.valid_size = attr->nres.alloc_size; 1501 1502 if (is_ext) { 1503 if (flags & ATTR_FLAG_COMPRESSED) 1504 attr->nres.c_unit = NTFS_LZNT_CUNIT; 1505 attr->nres.total_size = attr->nres.alloc_size; 1506 } 1507 1508 out: 1509 return err; 1510 } 1511 1512 /* 1513 * ni_insert_resident - Inserts new resident attribute. 1514 */ 1515 int ni_insert_resident(struct ntfs_inode *ni, u32 data_size, 1516 enum ATTR_TYPE type, const __le16 *name, u8 name_len, 1517 struct ATTRIB **new_attr, struct mft_inode **mi, 1518 struct ATTR_LIST_ENTRY **le) 1519 { 1520 int err; 1521 u32 name_size = ALIGN(name_len * sizeof(short), 8); 1522 u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8); 1523 struct ATTRIB *attr; 1524 1525 err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT, 1526 0, &attr, mi, le); 1527 if (err) 1528 return err; 1529 1530 attr->non_res = 0; 1531 attr->flags = 0; 1532 1533 attr->res.data_size = cpu_to_le32(data_size); 1534 attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size); 1535 if (type == ATTR_NAME) { 1536 attr->res.flags = RESIDENT_FLAG_INDEXED; 1537 1538 /* is_attr_indexed(attr)) == true */ 1539 le16_add_cpu(&ni->mi.mrec->hard_links, 1); 1540 ni->mi.dirty = true; 1541 } 1542 attr->res.res = 0; 1543 1544 if (new_attr) 1545 *new_attr = attr; 1546 1547 return 0; 1548 } 1549 1550 /* 1551 * ni_remove_attr_le - Remove attribute from record. 1552 */ 1553 void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr, 1554 struct mft_inode *mi, struct ATTR_LIST_ENTRY *le) 1555 { 1556 mi_remove_attr(ni, mi, attr); 1557 1558 if (le) 1559 al_remove_le(ni, le); 1560 } 1561 1562 /* 1563 * ni_delete_all - Remove all attributes and frees allocates space. 1564 * 1565 * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links). 1566 */ 1567 int ni_delete_all(struct ntfs_inode *ni) 1568 { 1569 int err; 1570 struct ATTR_LIST_ENTRY *le = NULL; 1571 struct ATTRIB *attr = NULL; 1572 struct rb_node *node; 1573 u16 roff; 1574 u32 asize; 1575 CLST svcn, evcn; 1576 struct ntfs_sb_info *sbi = ni->mi.sbi; 1577 bool nt3 = is_ntfs3(sbi); 1578 struct MFT_REF ref; 1579 1580 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) { 1581 if (!nt3 || attr->name_len) { 1582 ; 1583 } else if (attr->type == ATTR_REPARSE) { 1584 mi_get_ref(&ni->mi, &ref); 1585 ntfs_remove_reparse(sbi, 0, &ref); 1586 } else if (attr->type == ATTR_ID && !attr->non_res && 1587 le32_to_cpu(attr->res.data_size) >= 1588 sizeof(struct GUID)) { 1589 ntfs_objid_remove(sbi, resident_data(attr)); 1590 } 1591 1592 if (!attr->non_res) 1593 continue; 1594 1595 svcn = le64_to_cpu(attr->nres.svcn); 1596 evcn = le64_to_cpu(attr->nres.evcn); 1597 1598 if (evcn + 1 <= svcn) 1599 continue; 1600 1601 asize = le32_to_cpu(attr->size); 1602 roff = le16_to_cpu(attr->nres.run_off); 1603 1604 if (roff > asize) 1605 return -EINVAL; 1606 1607 /* run==1 means unpack and deallocate. */ 1608 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn, 1609 Add2Ptr(attr, roff), asize - roff); 1610 } 1611 1612 if (ni->attr_list.size) { 1613 run_deallocate(ni->mi.sbi, &ni->attr_list.run, true); 1614 al_destroy(ni); 1615 } 1616 1617 /* Free all subrecords. */ 1618 for (node = rb_first(&ni->mi_tree); node;) { 1619 struct rb_node *next = rb_next(node); 1620 struct mft_inode *mi = rb_entry(node, struct mft_inode, node); 1621 1622 clear_rec_inuse(mi->mrec); 1623 mi->dirty = true; 1624 mi_write(mi, 0); 1625 1626 ntfs_mark_rec_free(sbi, mi->rno, false); 1627 ni_remove_mi(ni, mi); 1628 mi_put(mi); 1629 node = next; 1630 } 1631 1632 /* Free base record. */ 1633 clear_rec_inuse(ni->mi.mrec); 1634 ni->mi.dirty = true; 1635 err = mi_write(&ni->mi, 0); 1636 1637 ntfs_mark_rec_free(sbi, ni->mi.rno, false); 1638 1639 return err; 1640 } 1641 1642 /* ni_fname_name 1643 * 1644 * Return: File name attribute by its value. 1645 */ 1646 struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni, 1647 const struct le_str *uni, 1648 const struct MFT_REF *home_dir, 1649 struct mft_inode **mi, 1650 struct ATTR_LIST_ENTRY **le) 1651 { 1652 struct ATTRIB *attr = NULL; 1653 struct ATTR_FILE_NAME *fname; 1654 1655 if (le) 1656 *le = NULL; 1657 1658 /* Enumerate all names. */ 1659 next: 1660 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi); 1661 if (!attr) 1662 return NULL; 1663 1664 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); 1665 if (!fname) 1666 goto next; 1667 1668 if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir))) 1669 goto next; 1670 1671 if (!uni) 1672 return fname; 1673 1674 if (uni->len != fname->name_len) 1675 goto next; 1676 1677 if (ntfs_cmp_names(uni->name, uni->len, fname->name, uni->len, NULL, 1678 false)) 1679 goto next; 1680 return fname; 1681 } 1682 1683 /* 1684 * ni_fname_type 1685 * 1686 * Return: File name attribute with given type. 1687 */ 1688 struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type, 1689 struct mft_inode **mi, 1690 struct ATTR_LIST_ENTRY **le) 1691 { 1692 struct ATTRIB *attr = NULL; 1693 struct ATTR_FILE_NAME *fname; 1694 1695 *le = NULL; 1696 1697 if (name_type == FILE_NAME_POSIX) 1698 return NULL; 1699 1700 /* Enumerate all names. */ 1701 for (;;) { 1702 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi); 1703 if (!attr) 1704 return NULL; 1705 1706 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); 1707 if (fname && name_type == fname->type) 1708 return fname; 1709 } 1710 } 1711 1712 /* 1713 * ni_new_attr_flags 1714 * 1715 * Process compressed/sparsed in special way. 1716 * NOTE: You need to set ni->std_fa = new_fa 1717 * after this function to keep internal structures in consistency. 1718 */ 1719 int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa) 1720 { 1721 struct ATTRIB *attr; 1722 struct mft_inode *mi; 1723 __le16 new_aflags; 1724 u32 new_asize; 1725 1726 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi); 1727 if (!attr) 1728 return -EINVAL; 1729 1730 new_aflags = attr->flags; 1731 1732 if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE) 1733 new_aflags |= ATTR_FLAG_SPARSED; 1734 else 1735 new_aflags &= ~ATTR_FLAG_SPARSED; 1736 1737 if (new_fa & FILE_ATTRIBUTE_COMPRESSED) 1738 new_aflags |= ATTR_FLAG_COMPRESSED; 1739 else 1740 new_aflags &= ~ATTR_FLAG_COMPRESSED; 1741 1742 if (new_aflags == attr->flags) 1743 return 0; 1744 1745 if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) == 1746 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) { 1747 ntfs_inode_warn(&ni->vfs_inode, 1748 "file can't be sparsed and compressed"); 1749 return -EOPNOTSUPP; 1750 } 1751 1752 if (!attr->non_res) 1753 goto out; 1754 1755 if (attr->nres.data_size) { 1756 ntfs_inode_warn( 1757 &ni->vfs_inode, 1758 "one can change sparsed/compressed only for empty files"); 1759 return -EOPNOTSUPP; 1760 } 1761 1762 /* Resize nonresident empty attribute in-place only. */ 1763 new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ? 1764 (SIZEOF_NONRESIDENT_EX + 8) : 1765 (SIZEOF_NONRESIDENT + 8); 1766 1767 if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size))) 1768 return -EOPNOTSUPP; 1769 1770 if (new_aflags & ATTR_FLAG_SPARSED) { 1771 attr->name_off = SIZEOF_NONRESIDENT_EX_LE; 1772 /* Windows uses 16 clusters per frame but supports one cluster per frame too. */ 1773 attr->nres.c_unit = 0; 1774 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops; 1775 } else if (new_aflags & ATTR_FLAG_COMPRESSED) { 1776 attr->name_off = SIZEOF_NONRESIDENT_EX_LE; 1777 /* The only allowed: 16 clusters per frame. */ 1778 attr->nres.c_unit = NTFS_LZNT_CUNIT; 1779 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr; 1780 } else { 1781 attr->name_off = SIZEOF_NONRESIDENT_LE; 1782 /* Normal files. */ 1783 attr->nres.c_unit = 0; 1784 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops; 1785 } 1786 attr->nres.run_off = attr->name_off; 1787 out: 1788 attr->flags = new_aflags; 1789 mi->dirty = true; 1790 1791 return 0; 1792 } 1793 1794 /* 1795 * ni_parse_reparse 1796 * 1797 * buffer - memory for reparse buffer header 1798 */ 1799 enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr, 1800 struct REPARSE_DATA_BUFFER *buffer) 1801 { 1802 const struct REPARSE_DATA_BUFFER *rp = NULL; 1803 u8 bits; 1804 u16 len; 1805 typeof(rp->CompressReparseBuffer) *cmpr; 1806 1807 /* Try to estimate reparse point. */ 1808 if (!attr->non_res) { 1809 rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER)); 1810 } else if (le64_to_cpu(attr->nres.data_size) >= 1811 sizeof(struct REPARSE_DATA_BUFFER)) { 1812 struct runs_tree run; 1813 1814 run_init(&run); 1815 1816 if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) && 1817 !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer, 1818 sizeof(struct REPARSE_DATA_BUFFER), 1819 NULL)) { 1820 rp = buffer; 1821 } 1822 1823 run_close(&run); 1824 } 1825 1826 if (!rp) 1827 return REPARSE_NONE; 1828 1829 len = le16_to_cpu(rp->ReparseDataLength); 1830 switch (rp->ReparseTag) { 1831 case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK): 1832 break; /* Symbolic link. */ 1833 case IO_REPARSE_TAG_MOUNT_POINT: 1834 break; /* Mount points and junctions. */ 1835 case IO_REPARSE_TAG_SYMLINK: 1836 break; 1837 case IO_REPARSE_TAG_COMPRESS: 1838 /* 1839 * WOF - Windows Overlay Filter - Used to compress files with 1840 * LZX/Xpress. 1841 * 1842 * Unlike native NTFS file compression, the Windows 1843 * Overlay Filter supports only read operations. This means 1844 * that it doesn't need to sector-align each compressed chunk, 1845 * so the compressed data can be packed more tightly together. 1846 * If you open the file for writing, the WOF just decompresses 1847 * the entire file, turning it back into a plain file. 1848 * 1849 * Ntfs3 driver decompresses the entire file only on write or 1850 * change size requests. 1851 */ 1852 1853 cmpr = &rp->CompressReparseBuffer; 1854 if (len < sizeof(*cmpr) || 1855 cmpr->WofVersion != WOF_CURRENT_VERSION || 1856 cmpr->WofProvider != WOF_PROVIDER_SYSTEM || 1857 cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) { 1858 return REPARSE_NONE; 1859 } 1860 1861 switch (cmpr->CompressionFormat) { 1862 case WOF_COMPRESSION_XPRESS4K: 1863 bits = 0xc; // 4k 1864 break; 1865 case WOF_COMPRESSION_XPRESS8K: 1866 bits = 0xd; // 8k 1867 break; 1868 case WOF_COMPRESSION_XPRESS16K: 1869 bits = 0xe; // 16k 1870 break; 1871 case WOF_COMPRESSION_LZX32K: 1872 bits = 0xf; // 32k 1873 break; 1874 default: 1875 bits = 0x10; // 64k 1876 break; 1877 } 1878 ni_set_ext_compress_bits(ni, bits); 1879 return REPARSE_COMPRESSED; 1880 1881 case IO_REPARSE_TAG_DEDUP: 1882 ni->ni_flags |= NI_FLAG_DEDUPLICATED; 1883 return REPARSE_DEDUPLICATED; 1884 1885 default: 1886 if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE) 1887 break; 1888 1889 return REPARSE_NONE; 1890 } 1891 1892 if (buffer != rp) 1893 memcpy(buffer, rp, sizeof(struct REPARSE_DATA_BUFFER)); 1894 1895 /* Looks like normal symlink. */ 1896 return REPARSE_LINK; 1897 } 1898 1899 /* 1900 * fiemap_fill_next_extent_k - a copy of fiemap_fill_next_extent 1901 * but it accepts kernel address for fi_extents_start 1902 */ 1903 static int fiemap_fill_next_extent_k(struct fiemap_extent_info *fieinfo, 1904 u64 logical, u64 phys, u64 len, u32 flags) 1905 { 1906 struct fiemap_extent extent; 1907 struct fiemap_extent __user *dest = fieinfo->fi_extents_start; 1908 1909 /* only count the extents */ 1910 if (fieinfo->fi_extents_max == 0) { 1911 fieinfo->fi_extents_mapped++; 1912 return (flags & FIEMAP_EXTENT_LAST) ? 1 : 0; 1913 } 1914 1915 if (fieinfo->fi_extents_mapped >= fieinfo->fi_extents_max) 1916 return 1; 1917 1918 if (flags & FIEMAP_EXTENT_DELALLOC) 1919 flags |= FIEMAP_EXTENT_UNKNOWN; 1920 if (flags & FIEMAP_EXTENT_DATA_ENCRYPTED) 1921 flags |= FIEMAP_EXTENT_ENCODED; 1922 if (flags & (FIEMAP_EXTENT_DATA_TAIL | FIEMAP_EXTENT_DATA_INLINE)) 1923 flags |= FIEMAP_EXTENT_NOT_ALIGNED; 1924 1925 memset(&extent, 0, sizeof(extent)); 1926 extent.fe_logical = logical; 1927 extent.fe_physical = phys; 1928 extent.fe_length = len; 1929 extent.fe_flags = flags; 1930 1931 dest += fieinfo->fi_extents_mapped; 1932 memcpy(dest, &extent, sizeof(extent)); 1933 1934 fieinfo->fi_extents_mapped++; 1935 if (fieinfo->fi_extents_mapped == fieinfo->fi_extents_max) 1936 return 1; 1937 return (flags & FIEMAP_EXTENT_LAST) ? 1 : 0; 1938 } 1939 1940 /* 1941 * ni_fiemap - Helper for file_fiemap(). 1942 * 1943 * Assumed ni_lock. 1944 * TODO: Less aggressive locks. 1945 */ 1946 int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo, 1947 __u64 vbo, __u64 len) 1948 { 1949 int err = 0; 1950 struct fiemap_extent __user *fe_u = fieinfo->fi_extents_start; 1951 struct fiemap_extent *fe_k = NULL; 1952 struct ntfs_sb_info *sbi = ni->mi.sbi; 1953 u8 cluster_bits = sbi->cluster_bits; 1954 struct runs_tree *run; 1955 struct rw_semaphore *run_lock; 1956 struct ATTRIB *attr; 1957 CLST vcn = vbo >> cluster_bits; 1958 CLST lcn, clen; 1959 u64 valid = ni->i_valid; 1960 u64 lbo, bytes; 1961 u64 end, alloc_size; 1962 size_t idx = -1; 1963 u32 flags; 1964 bool ok; 1965 1966 if (S_ISDIR(ni->vfs_inode.i_mode)) { 1967 run = &ni->dir.alloc_run; 1968 attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME, 1969 ARRAY_SIZE(I30_NAME), NULL, NULL); 1970 run_lock = &ni->dir.run_lock; 1971 } else { 1972 run = &ni->file.run; 1973 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, 1974 NULL); 1975 if (!attr) { 1976 err = -EINVAL; 1977 goto out; 1978 } 1979 if (is_attr_compressed(attr)) { 1980 /* Unfortunately cp -r incorrectly treats compressed clusters. */ 1981 err = -EOPNOTSUPP; 1982 ntfs_inode_warn( 1983 &ni->vfs_inode, 1984 "fiemap is not supported for compressed file (cp -r)"); 1985 goto out; 1986 } 1987 run_lock = &ni->file.run_lock; 1988 } 1989 1990 if (!attr || !attr->non_res) { 1991 err = fiemap_fill_next_extent( 1992 fieinfo, 0, 0, 1993 attr ? le32_to_cpu(attr->res.data_size) : 0, 1994 FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST | 1995 FIEMAP_EXTENT_MERGED); 1996 goto out; 1997 } 1998 1999 /* 2000 * To avoid lock problems replace pointer to user memory by pointer to kernel memory. 2001 */ 2002 fe_k = kmalloc_array(fieinfo->fi_extents_max, 2003 sizeof(struct fiemap_extent), 2004 GFP_NOFS | __GFP_ZERO); 2005 if (!fe_k) { 2006 err = -ENOMEM; 2007 goto out; 2008 } 2009 fieinfo->fi_extents_start = fe_k; 2010 2011 end = vbo + len; 2012 alloc_size = le64_to_cpu(attr->nres.alloc_size); 2013 if (end > alloc_size) 2014 end = alloc_size; 2015 2016 down_read(run_lock); 2017 2018 while (vbo < end) { 2019 if (idx == -1) { 2020 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx); 2021 } else { 2022 CLST vcn_next = vcn; 2023 2024 ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && 2025 vcn == vcn_next; 2026 if (!ok) 2027 vcn = vcn_next; 2028 } 2029 2030 if (!ok) { 2031 up_read(run_lock); 2032 down_write(run_lock); 2033 2034 err = attr_load_runs_vcn(ni, attr->type, 2035 attr_name(attr), 2036 attr->name_len, run, vcn); 2037 2038 up_write(run_lock); 2039 down_read(run_lock); 2040 2041 if (err) 2042 break; 2043 2044 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx); 2045 2046 if (!ok) { 2047 err = -EINVAL; 2048 break; 2049 } 2050 } 2051 2052 if (!clen) { 2053 err = -EINVAL; // ? 2054 break; 2055 } 2056 2057 if (lcn == SPARSE_LCN) { 2058 vcn += clen; 2059 vbo = (u64)vcn << cluster_bits; 2060 continue; 2061 } 2062 2063 flags = FIEMAP_EXTENT_MERGED; 2064 if (S_ISDIR(ni->vfs_inode.i_mode)) { 2065 ; 2066 } else if (is_attr_compressed(attr)) { 2067 CLST clst_data; 2068 2069 err = attr_is_frame_compressed( 2070 ni, attr, vcn >> attr->nres.c_unit, &clst_data); 2071 if (err) 2072 break; 2073 if (clst_data < NTFS_LZNT_CLUSTERS) 2074 flags |= FIEMAP_EXTENT_ENCODED; 2075 } else if (is_attr_encrypted(attr)) { 2076 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 2077 } 2078 2079 vbo = (u64)vcn << cluster_bits; 2080 bytes = (u64)clen << cluster_bits; 2081 lbo = (u64)lcn << cluster_bits; 2082 2083 vcn += clen; 2084 2085 if (vbo + bytes >= end) 2086 bytes = end - vbo; 2087 2088 if (vbo + bytes <= valid) { 2089 ; 2090 } else if (vbo >= valid) { 2091 flags |= FIEMAP_EXTENT_UNWRITTEN; 2092 } else { 2093 /* vbo < valid && valid < vbo + bytes */ 2094 u64 dlen = valid - vbo; 2095 2096 if (vbo + dlen >= end) 2097 flags |= FIEMAP_EXTENT_LAST; 2098 2099 err = fiemap_fill_next_extent_k(fieinfo, vbo, lbo, dlen, 2100 flags); 2101 2102 if (err < 0) 2103 break; 2104 if (err == 1) { 2105 err = 0; 2106 break; 2107 } 2108 2109 vbo = valid; 2110 bytes -= dlen; 2111 if (!bytes) 2112 continue; 2113 2114 lbo += dlen; 2115 flags |= FIEMAP_EXTENT_UNWRITTEN; 2116 } 2117 2118 if (vbo + bytes >= end) 2119 flags |= FIEMAP_EXTENT_LAST; 2120 2121 err = fiemap_fill_next_extent_k(fieinfo, vbo, lbo, bytes, 2122 flags); 2123 if (err < 0) 2124 break; 2125 if (err == 1) { 2126 err = 0; 2127 break; 2128 } 2129 2130 vbo += bytes; 2131 } 2132 2133 up_read(run_lock); 2134 2135 /* 2136 * Copy to user memory out of lock 2137 */ 2138 if (copy_to_user(fe_u, fe_k, 2139 fieinfo->fi_extents_max * 2140 sizeof(struct fiemap_extent))) { 2141 err = -EFAULT; 2142 } 2143 2144 out: 2145 /* Restore original pointer. */ 2146 fieinfo->fi_extents_start = fe_u; 2147 kfree(fe_k); 2148 return err; 2149 } 2150 2151 /* 2152 * ni_readpage_cmpr 2153 * 2154 * When decompressing, we typically obtain more than one page per reference. 2155 * We inject the additional pages into the page cache. 2156 */ 2157 int ni_readpage_cmpr(struct ntfs_inode *ni, struct page *page) 2158 { 2159 int err; 2160 struct ntfs_sb_info *sbi = ni->mi.sbi; 2161 struct address_space *mapping = page->mapping; 2162 pgoff_t index = page->index; 2163 u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT; 2164 struct page **pages = NULL; /* Array of at most 16 pages. stack? */ 2165 u8 frame_bits; 2166 CLST frame; 2167 u32 i, idx, frame_size, pages_per_frame; 2168 gfp_t gfp_mask; 2169 struct page *pg; 2170 2171 if (vbo >= i_size_read(&ni->vfs_inode)) { 2172 SetPageUptodate(page); 2173 err = 0; 2174 goto out; 2175 } 2176 2177 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) { 2178 /* Xpress or LZX. */ 2179 frame_bits = ni_ext_compress_bits(ni); 2180 } else { 2181 /* LZNT compression. */ 2182 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits; 2183 } 2184 frame_size = 1u << frame_bits; 2185 frame = vbo >> frame_bits; 2186 frame_vbo = (u64)frame << frame_bits; 2187 idx = (vbo - frame_vbo) >> PAGE_SHIFT; 2188 2189 pages_per_frame = frame_size >> PAGE_SHIFT; 2190 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); 2191 if (!pages) { 2192 err = -ENOMEM; 2193 goto out; 2194 } 2195 2196 pages[idx] = page; 2197 index = frame_vbo >> PAGE_SHIFT; 2198 gfp_mask = mapping_gfp_mask(mapping); 2199 2200 for (i = 0; i < pages_per_frame; i++, index++) { 2201 if (i == idx) 2202 continue; 2203 2204 pg = find_or_create_page(mapping, index, gfp_mask); 2205 if (!pg) { 2206 err = -ENOMEM; 2207 goto out1; 2208 } 2209 pages[i] = pg; 2210 } 2211 2212 err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame); 2213 2214 out1: 2215 if (err) 2216 SetPageError(page); 2217 2218 for (i = 0; i < pages_per_frame; i++) { 2219 pg = pages[i]; 2220 if (i == idx || !pg) 2221 continue; 2222 unlock_page(pg); 2223 put_page(pg); 2224 } 2225 2226 out: 2227 /* At this point, err contains 0 or -EIO depending on the "critical" page. */ 2228 kfree(pages); 2229 unlock_page(page); 2230 2231 return err; 2232 } 2233 2234 #ifdef CONFIG_NTFS3_LZX_XPRESS 2235 /* 2236 * ni_decompress_file - Decompress LZX/Xpress compressed file. 2237 * 2238 * Remove ATTR_DATA::WofCompressedData. 2239 * Remove ATTR_REPARSE. 2240 */ 2241 int ni_decompress_file(struct ntfs_inode *ni) 2242 { 2243 struct ntfs_sb_info *sbi = ni->mi.sbi; 2244 struct inode *inode = &ni->vfs_inode; 2245 loff_t i_size = i_size_read(inode); 2246 struct address_space *mapping = inode->i_mapping; 2247 gfp_t gfp_mask = mapping_gfp_mask(mapping); 2248 struct page **pages = NULL; 2249 struct ATTR_LIST_ENTRY *le; 2250 struct ATTRIB *attr; 2251 CLST vcn, cend, lcn, clen, end; 2252 pgoff_t index; 2253 u64 vbo; 2254 u8 frame_bits; 2255 u32 i, frame_size, pages_per_frame, bytes; 2256 struct mft_inode *mi; 2257 int err; 2258 2259 /* Clusters for decompressed data. */ 2260 cend = bytes_to_cluster(sbi, i_size); 2261 2262 if (!i_size) 2263 goto remove_wof; 2264 2265 /* Check in advance. */ 2266 if (cend > wnd_zeroes(&sbi->used.bitmap)) { 2267 err = -ENOSPC; 2268 goto out; 2269 } 2270 2271 frame_bits = ni_ext_compress_bits(ni); 2272 frame_size = 1u << frame_bits; 2273 pages_per_frame = frame_size >> PAGE_SHIFT; 2274 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); 2275 if (!pages) { 2276 err = -ENOMEM; 2277 goto out; 2278 } 2279 2280 /* 2281 * Step 1: Decompress data and copy to new allocated clusters. 2282 */ 2283 index = 0; 2284 for (vbo = 0; vbo < i_size; vbo += bytes) { 2285 u32 nr_pages; 2286 bool new; 2287 2288 if (vbo + frame_size > i_size) { 2289 bytes = i_size - vbo; 2290 nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT; 2291 } else { 2292 nr_pages = pages_per_frame; 2293 bytes = frame_size; 2294 } 2295 2296 end = bytes_to_cluster(sbi, vbo + bytes); 2297 2298 for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) { 2299 err = attr_data_get_block(ni, vcn, cend - vcn, &lcn, 2300 &clen, &new, false); 2301 if (err) 2302 goto out; 2303 } 2304 2305 for (i = 0; i < pages_per_frame; i++, index++) { 2306 struct page *pg; 2307 2308 pg = find_or_create_page(mapping, index, gfp_mask); 2309 if (!pg) { 2310 while (i--) { 2311 unlock_page(pages[i]); 2312 put_page(pages[i]); 2313 } 2314 err = -ENOMEM; 2315 goto out; 2316 } 2317 pages[i] = pg; 2318 } 2319 2320 err = ni_read_frame(ni, vbo, pages, pages_per_frame); 2321 2322 if (!err) { 2323 down_read(&ni->file.run_lock); 2324 err = ntfs_bio_pages(sbi, &ni->file.run, pages, 2325 nr_pages, vbo, bytes, 2326 REQ_OP_WRITE); 2327 up_read(&ni->file.run_lock); 2328 } 2329 2330 for (i = 0; i < pages_per_frame; i++) { 2331 unlock_page(pages[i]); 2332 put_page(pages[i]); 2333 } 2334 2335 if (err) 2336 goto out; 2337 2338 cond_resched(); 2339 } 2340 2341 remove_wof: 2342 /* 2343 * Step 2: Deallocate attributes ATTR_DATA::WofCompressedData 2344 * and ATTR_REPARSE. 2345 */ 2346 attr = NULL; 2347 le = NULL; 2348 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) { 2349 CLST svcn, evcn; 2350 u32 asize, roff; 2351 2352 if (attr->type == ATTR_REPARSE) { 2353 struct MFT_REF ref; 2354 2355 mi_get_ref(&ni->mi, &ref); 2356 ntfs_remove_reparse(sbi, 0, &ref); 2357 } 2358 2359 if (!attr->non_res) 2360 continue; 2361 2362 if (attr->type != ATTR_REPARSE && 2363 (attr->type != ATTR_DATA || 2364 attr->name_len != ARRAY_SIZE(WOF_NAME) || 2365 memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME)))) 2366 continue; 2367 2368 svcn = le64_to_cpu(attr->nres.svcn); 2369 evcn = le64_to_cpu(attr->nres.evcn); 2370 2371 if (evcn + 1 <= svcn) 2372 continue; 2373 2374 asize = le32_to_cpu(attr->size); 2375 roff = le16_to_cpu(attr->nres.run_off); 2376 2377 if (roff > asize) { 2378 err = -EINVAL; 2379 goto out; 2380 } 2381 2382 /*run==1 Means unpack and deallocate. */ 2383 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn, 2384 Add2Ptr(attr, roff), asize - roff); 2385 } 2386 2387 /* 2388 * Step 3: Remove attribute ATTR_DATA::WofCompressedData. 2389 */ 2390 err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME), 2391 false, NULL); 2392 if (err) 2393 goto out; 2394 2395 /* 2396 * Step 4: Remove ATTR_REPARSE. 2397 */ 2398 err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL); 2399 if (err) 2400 goto out; 2401 2402 /* 2403 * Step 5: Remove sparse flag from data attribute. 2404 */ 2405 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi); 2406 if (!attr) { 2407 err = -EINVAL; 2408 goto out; 2409 } 2410 2411 if (attr->non_res && is_attr_sparsed(attr)) { 2412 /* Sparsed attribute header is 8 bytes bigger than normal. */ 2413 struct MFT_REC *rec = mi->mrec; 2414 u32 used = le32_to_cpu(rec->used); 2415 u32 asize = le32_to_cpu(attr->size); 2416 u16 roff = le16_to_cpu(attr->nres.run_off); 2417 char *rbuf = Add2Ptr(attr, roff); 2418 2419 memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf)); 2420 attr->size = cpu_to_le32(asize - 8); 2421 attr->flags &= ~ATTR_FLAG_SPARSED; 2422 attr->nres.run_off = cpu_to_le16(roff - 8); 2423 attr->nres.c_unit = 0; 2424 rec->used = cpu_to_le32(used - 8); 2425 mi->dirty = true; 2426 ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE | 2427 FILE_ATTRIBUTE_REPARSE_POINT); 2428 2429 mark_inode_dirty(inode); 2430 } 2431 2432 /* Clear cached flag. */ 2433 ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK; 2434 if (ni->file.offs_page) { 2435 put_page(ni->file.offs_page); 2436 ni->file.offs_page = NULL; 2437 } 2438 mapping->a_ops = &ntfs_aops; 2439 2440 out: 2441 kfree(pages); 2442 if (err) 2443 _ntfs_bad_inode(inode); 2444 2445 return err; 2446 } 2447 2448 /* 2449 * decompress_lzx_xpress - External compression LZX/Xpress. 2450 */ 2451 static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr, 2452 size_t cmpr_size, void *unc, size_t unc_size, 2453 u32 frame_size) 2454 { 2455 int err; 2456 void *ctx; 2457 2458 if (cmpr_size == unc_size) { 2459 /* Frame not compressed. */ 2460 memcpy(unc, cmpr, unc_size); 2461 return 0; 2462 } 2463 2464 err = 0; 2465 if (frame_size == 0x8000) { 2466 mutex_lock(&sbi->compress.mtx_lzx); 2467 /* LZX: Frame compressed. */ 2468 ctx = sbi->compress.lzx; 2469 if (!ctx) { 2470 /* Lazy initialize LZX decompress context. */ 2471 ctx = lzx_allocate_decompressor(); 2472 if (!ctx) { 2473 err = -ENOMEM; 2474 goto out1; 2475 } 2476 2477 sbi->compress.lzx = ctx; 2478 } 2479 2480 if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) { 2481 /* Treat all errors as "invalid argument". */ 2482 err = -EINVAL; 2483 } 2484 out1: 2485 mutex_unlock(&sbi->compress.mtx_lzx); 2486 } else { 2487 /* XPRESS: Frame compressed. */ 2488 mutex_lock(&sbi->compress.mtx_xpress); 2489 ctx = sbi->compress.xpress; 2490 if (!ctx) { 2491 /* Lazy initialize Xpress decompress context. */ 2492 ctx = xpress_allocate_decompressor(); 2493 if (!ctx) { 2494 err = -ENOMEM; 2495 goto out2; 2496 } 2497 2498 sbi->compress.xpress = ctx; 2499 } 2500 2501 if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) { 2502 /* Treat all errors as "invalid argument". */ 2503 err = -EINVAL; 2504 } 2505 out2: 2506 mutex_unlock(&sbi->compress.mtx_xpress); 2507 } 2508 return err; 2509 } 2510 #endif 2511 2512 /* 2513 * ni_read_frame 2514 * 2515 * Pages - Array of locked pages. 2516 */ 2517 int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages, 2518 u32 pages_per_frame) 2519 { 2520 int err; 2521 struct ntfs_sb_info *sbi = ni->mi.sbi; 2522 u8 cluster_bits = sbi->cluster_bits; 2523 char *frame_ondisk = NULL; 2524 char *frame_mem = NULL; 2525 struct page **pages_disk = NULL; 2526 struct ATTR_LIST_ENTRY *le = NULL; 2527 struct runs_tree *run = &ni->file.run; 2528 u64 valid_size = ni->i_valid; 2529 u64 vbo_disk; 2530 size_t unc_size; 2531 u32 frame_size, i, npages_disk, ondisk_size; 2532 struct page *pg; 2533 struct ATTRIB *attr; 2534 CLST frame, clst_data; 2535 2536 /* 2537 * To simplify decompress algorithm do vmap for source 2538 * and target pages. 2539 */ 2540 for (i = 0; i < pages_per_frame; i++) 2541 kmap(pages[i]); 2542 2543 frame_size = pages_per_frame << PAGE_SHIFT; 2544 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL); 2545 if (!frame_mem) { 2546 err = -ENOMEM; 2547 goto out; 2548 } 2549 2550 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL); 2551 if (!attr) { 2552 err = -ENOENT; 2553 goto out1; 2554 } 2555 2556 if (!attr->non_res) { 2557 u32 data_size = le32_to_cpu(attr->res.data_size); 2558 2559 memset(frame_mem, 0, frame_size); 2560 if (frame_vbo < data_size) { 2561 ondisk_size = data_size - frame_vbo; 2562 memcpy(frame_mem, resident_data(attr) + frame_vbo, 2563 min(ondisk_size, frame_size)); 2564 } 2565 err = 0; 2566 goto out1; 2567 } 2568 2569 if (frame_vbo >= valid_size) { 2570 memset(frame_mem, 0, frame_size); 2571 err = 0; 2572 goto out1; 2573 } 2574 2575 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) { 2576 #ifndef CONFIG_NTFS3_LZX_XPRESS 2577 err = -EOPNOTSUPP; 2578 goto out1; 2579 #else 2580 loff_t i_size = i_size_read(&ni->vfs_inode); 2581 u32 frame_bits = ni_ext_compress_bits(ni); 2582 u64 frame64 = frame_vbo >> frame_bits; 2583 u64 frames, vbo_data; 2584 2585 if (frame_size != (1u << frame_bits)) { 2586 err = -EINVAL; 2587 goto out1; 2588 } 2589 switch (frame_size) { 2590 case 0x1000: 2591 case 0x2000: 2592 case 0x4000: 2593 case 0x8000: 2594 break; 2595 default: 2596 /* Unknown compression. */ 2597 err = -EOPNOTSUPP; 2598 goto out1; 2599 } 2600 2601 attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME, 2602 ARRAY_SIZE(WOF_NAME), NULL, NULL); 2603 if (!attr) { 2604 ntfs_inode_err( 2605 &ni->vfs_inode, 2606 "external compressed file should contains data attribute \"WofCompressedData\""); 2607 err = -EINVAL; 2608 goto out1; 2609 } 2610 2611 if (!attr->non_res) { 2612 run = NULL; 2613 } else { 2614 run = run_alloc(); 2615 if (!run) { 2616 err = -ENOMEM; 2617 goto out1; 2618 } 2619 } 2620 2621 frames = (i_size - 1) >> frame_bits; 2622 2623 err = attr_wof_frame_info(ni, attr, run, frame64, frames, 2624 frame_bits, &ondisk_size, &vbo_data); 2625 if (err) 2626 goto out2; 2627 2628 if (frame64 == frames) { 2629 unc_size = 1 + ((i_size - 1) & (frame_size - 1)); 2630 ondisk_size = attr_size(attr) - vbo_data; 2631 } else { 2632 unc_size = frame_size; 2633 } 2634 2635 if (ondisk_size > frame_size) { 2636 err = -EINVAL; 2637 goto out2; 2638 } 2639 2640 if (!attr->non_res) { 2641 if (vbo_data + ondisk_size > 2642 le32_to_cpu(attr->res.data_size)) { 2643 err = -EINVAL; 2644 goto out1; 2645 } 2646 2647 err = decompress_lzx_xpress( 2648 sbi, Add2Ptr(resident_data(attr), vbo_data), 2649 ondisk_size, frame_mem, unc_size, frame_size); 2650 goto out1; 2651 } 2652 vbo_disk = vbo_data; 2653 /* Load all runs to read [vbo_disk-vbo_to). */ 2654 err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME, 2655 ARRAY_SIZE(WOF_NAME), run, vbo_disk, 2656 vbo_data + ondisk_size); 2657 if (err) 2658 goto out2; 2659 npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) + 2660 PAGE_SIZE - 1) >> 2661 PAGE_SHIFT; 2662 #endif 2663 } else if (is_attr_compressed(attr)) { 2664 /* LZNT compression. */ 2665 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) { 2666 err = -EOPNOTSUPP; 2667 goto out1; 2668 } 2669 2670 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) { 2671 err = -EOPNOTSUPP; 2672 goto out1; 2673 } 2674 2675 down_write(&ni->file.run_lock); 2676 run_truncate_around(run, le64_to_cpu(attr->nres.svcn)); 2677 frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT); 2678 err = attr_is_frame_compressed(ni, attr, frame, &clst_data); 2679 up_write(&ni->file.run_lock); 2680 if (err) 2681 goto out1; 2682 2683 if (!clst_data) { 2684 memset(frame_mem, 0, frame_size); 2685 goto out1; 2686 } 2687 2688 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT; 2689 ondisk_size = clst_data << cluster_bits; 2690 2691 if (clst_data >= NTFS_LZNT_CLUSTERS) { 2692 /* Frame is not compressed. */ 2693 down_read(&ni->file.run_lock); 2694 err = ntfs_bio_pages(sbi, run, pages, pages_per_frame, 2695 frame_vbo, ondisk_size, 2696 REQ_OP_READ); 2697 up_read(&ni->file.run_lock); 2698 goto out1; 2699 } 2700 vbo_disk = frame_vbo; 2701 npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2702 } else { 2703 __builtin_unreachable(); 2704 err = -EINVAL; 2705 goto out1; 2706 } 2707 2708 pages_disk = kzalloc(npages_disk * sizeof(struct page *), GFP_NOFS); 2709 if (!pages_disk) { 2710 err = -ENOMEM; 2711 goto out2; 2712 } 2713 2714 for (i = 0; i < npages_disk; i++) { 2715 pg = alloc_page(GFP_KERNEL); 2716 if (!pg) { 2717 err = -ENOMEM; 2718 goto out3; 2719 } 2720 pages_disk[i] = pg; 2721 lock_page(pg); 2722 kmap(pg); 2723 } 2724 2725 /* Read 'ondisk_size' bytes from disk. */ 2726 down_read(&ni->file.run_lock); 2727 err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk, 2728 ondisk_size, REQ_OP_READ); 2729 up_read(&ni->file.run_lock); 2730 if (err) 2731 goto out3; 2732 2733 /* 2734 * To simplify decompress algorithm do vmap for source and target pages. 2735 */ 2736 frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO); 2737 if (!frame_ondisk) { 2738 err = -ENOMEM; 2739 goto out3; 2740 } 2741 2742 /* Decompress: Frame_ondisk -> frame_mem. */ 2743 #ifdef CONFIG_NTFS3_LZX_XPRESS 2744 if (run != &ni->file.run) { 2745 /* LZX or XPRESS */ 2746 err = decompress_lzx_xpress( 2747 sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)), 2748 ondisk_size, frame_mem, unc_size, frame_size); 2749 } else 2750 #endif 2751 { 2752 /* LZNT - Native NTFS compression. */ 2753 unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem, 2754 frame_size); 2755 if ((ssize_t)unc_size < 0) 2756 err = unc_size; 2757 else if (!unc_size || unc_size > frame_size) 2758 err = -EINVAL; 2759 } 2760 if (!err && valid_size < frame_vbo + frame_size) { 2761 size_t ok = valid_size - frame_vbo; 2762 2763 memset(frame_mem + ok, 0, frame_size - ok); 2764 } 2765 2766 vunmap(frame_ondisk); 2767 2768 out3: 2769 for (i = 0; i < npages_disk; i++) { 2770 pg = pages_disk[i]; 2771 if (pg) { 2772 kunmap(pg); 2773 unlock_page(pg); 2774 put_page(pg); 2775 } 2776 } 2777 kfree(pages_disk); 2778 2779 out2: 2780 #ifdef CONFIG_NTFS3_LZX_XPRESS 2781 if (run != &ni->file.run) 2782 run_free(run); 2783 #endif 2784 out1: 2785 vunmap(frame_mem); 2786 out: 2787 for (i = 0; i < pages_per_frame; i++) { 2788 pg = pages[i]; 2789 kunmap(pg); 2790 ClearPageError(pg); 2791 SetPageUptodate(pg); 2792 } 2793 2794 return err; 2795 } 2796 2797 /* 2798 * ni_write_frame 2799 * 2800 * Pages - Array of locked pages. 2801 */ 2802 int ni_write_frame(struct ntfs_inode *ni, struct page **pages, 2803 u32 pages_per_frame) 2804 { 2805 int err; 2806 struct ntfs_sb_info *sbi = ni->mi.sbi; 2807 u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits; 2808 u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT; 2809 u64 frame_vbo = (u64)pages[0]->index << PAGE_SHIFT; 2810 CLST frame = frame_vbo >> frame_bits; 2811 char *frame_ondisk = NULL; 2812 struct page **pages_disk = NULL; 2813 struct ATTR_LIST_ENTRY *le = NULL; 2814 char *frame_mem; 2815 struct ATTRIB *attr; 2816 struct mft_inode *mi; 2817 u32 i; 2818 struct page *pg; 2819 size_t compr_size, ondisk_size; 2820 struct lznt *lznt; 2821 2822 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi); 2823 if (!attr) { 2824 err = -ENOENT; 2825 goto out; 2826 } 2827 2828 if (WARN_ON(!is_attr_compressed(attr))) { 2829 err = -EINVAL; 2830 goto out; 2831 } 2832 2833 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) { 2834 err = -EOPNOTSUPP; 2835 goto out; 2836 } 2837 2838 if (!attr->non_res) { 2839 down_write(&ni->file.run_lock); 2840 err = attr_make_nonresident(ni, attr, le, mi, 2841 le32_to_cpu(attr->res.data_size), 2842 &ni->file.run, &attr, pages[0]); 2843 up_write(&ni->file.run_lock); 2844 if (err) 2845 goto out; 2846 } 2847 2848 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) { 2849 err = -EOPNOTSUPP; 2850 goto out; 2851 } 2852 2853 pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); 2854 if (!pages_disk) { 2855 err = -ENOMEM; 2856 goto out; 2857 } 2858 2859 for (i = 0; i < pages_per_frame; i++) { 2860 pg = alloc_page(GFP_KERNEL); 2861 if (!pg) { 2862 err = -ENOMEM; 2863 goto out1; 2864 } 2865 pages_disk[i] = pg; 2866 lock_page(pg); 2867 kmap(pg); 2868 } 2869 2870 /* To simplify compress algorithm do vmap for source and target pages. */ 2871 frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL); 2872 if (!frame_ondisk) { 2873 err = -ENOMEM; 2874 goto out1; 2875 } 2876 2877 for (i = 0; i < pages_per_frame; i++) 2878 kmap(pages[i]); 2879 2880 /* Map in-memory frame for read-only. */ 2881 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO); 2882 if (!frame_mem) { 2883 err = -ENOMEM; 2884 goto out2; 2885 } 2886 2887 mutex_lock(&sbi->compress.mtx_lznt); 2888 lznt = NULL; 2889 if (!sbi->compress.lznt) { 2890 /* 2891 * LZNT implements two levels of compression: 2892 * 0 - Standard compression 2893 * 1 - Best compression, requires a lot of cpu 2894 * use mount option? 2895 */ 2896 lznt = get_lznt_ctx(0); 2897 if (!lznt) { 2898 mutex_unlock(&sbi->compress.mtx_lznt); 2899 err = -ENOMEM; 2900 goto out3; 2901 } 2902 2903 sbi->compress.lznt = lznt; 2904 lznt = NULL; 2905 } 2906 2907 /* Compress: frame_mem -> frame_ondisk */ 2908 compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk, 2909 frame_size, sbi->compress.lznt); 2910 mutex_unlock(&sbi->compress.mtx_lznt); 2911 kfree(lznt); 2912 2913 if (compr_size + sbi->cluster_size > frame_size) { 2914 /* Frame is not compressed. */ 2915 compr_size = frame_size; 2916 ondisk_size = frame_size; 2917 } else if (compr_size) { 2918 /* Frame is compressed. */ 2919 ondisk_size = ntfs_up_cluster(sbi, compr_size); 2920 memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size); 2921 } else { 2922 /* Frame is sparsed. */ 2923 ondisk_size = 0; 2924 } 2925 2926 down_write(&ni->file.run_lock); 2927 run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn)); 2928 err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid); 2929 up_write(&ni->file.run_lock); 2930 if (err) 2931 goto out2; 2932 2933 if (!ondisk_size) 2934 goto out2; 2935 2936 down_read(&ni->file.run_lock); 2937 err = ntfs_bio_pages(sbi, &ni->file.run, 2938 ondisk_size < frame_size ? pages_disk : pages, 2939 pages_per_frame, frame_vbo, ondisk_size, 2940 REQ_OP_WRITE); 2941 up_read(&ni->file.run_lock); 2942 2943 out3: 2944 vunmap(frame_mem); 2945 2946 out2: 2947 for (i = 0; i < pages_per_frame; i++) 2948 kunmap(pages[i]); 2949 2950 vunmap(frame_ondisk); 2951 out1: 2952 for (i = 0; i < pages_per_frame; i++) { 2953 pg = pages_disk[i]; 2954 if (pg) { 2955 kunmap(pg); 2956 unlock_page(pg); 2957 put_page(pg); 2958 } 2959 } 2960 kfree(pages_disk); 2961 out: 2962 return err; 2963 } 2964 2965 /* 2966 * ni_remove_name - Removes name 'de' from MFT and from directory. 2967 * 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs. 2968 */ 2969 int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, 2970 struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step) 2971 { 2972 int err; 2973 struct ntfs_sb_info *sbi = ni->mi.sbi; 2974 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1); 2975 struct ATTR_FILE_NAME *fname; 2976 struct ATTR_LIST_ENTRY *le; 2977 struct mft_inode *mi; 2978 u16 de_key_size = le16_to_cpu(de->key_size); 2979 u8 name_type; 2980 2981 *undo_step = 0; 2982 2983 /* Find name in record. */ 2984 mi_get_ref(&dir_ni->mi, &de_name->home); 2985 2986 fname = ni_fname_name(ni, (struct le_str *)&de_name->name_len, 2987 &de_name->home, &mi, &le); 2988 if (!fname) 2989 return -ENOENT; 2990 2991 memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO)); 2992 name_type = paired_name(fname->type); 2993 2994 /* Mark ntfs as dirty. It will be cleared at umount. */ 2995 ntfs_set_state(sbi, NTFS_DIRTY_DIRTY); 2996 2997 /* Step 1: Remove name from directory. */ 2998 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi); 2999 if (err) 3000 return err; 3001 3002 /* Step 2: Remove name from MFT. */ 3003 ni_remove_attr_le(ni, attr_from_name(fname), mi, le); 3004 3005 *undo_step = 2; 3006 3007 /* Get paired name. */ 3008 fname = ni_fname_type(ni, name_type, &mi, &le); 3009 if (fname) { 3010 u16 de2_key_size = fname_full_size(fname); 3011 3012 *de2 = Add2Ptr(de, 1024); 3013 (*de2)->key_size = cpu_to_le16(de2_key_size); 3014 3015 memcpy(*de2 + 1, fname, de2_key_size); 3016 3017 /* Step 3: Remove paired name from directory. */ 3018 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, 3019 de2_key_size, sbi); 3020 if (err) 3021 return err; 3022 3023 /* Step 4: Remove paired name from MFT. */ 3024 ni_remove_attr_le(ni, attr_from_name(fname), mi, le); 3025 3026 *undo_step = 4; 3027 } 3028 return 0; 3029 } 3030 3031 /* 3032 * ni_remove_name_undo - Paired function for ni_remove_name. 3033 * 3034 * Return: True if ok 3035 */ 3036 bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, 3037 struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step) 3038 { 3039 struct ntfs_sb_info *sbi = ni->mi.sbi; 3040 struct ATTRIB *attr; 3041 u16 de_key_size; 3042 3043 switch (undo_step) { 3044 case 4: 3045 de_key_size = le16_to_cpu(de2->key_size); 3046 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, 3047 &attr, NULL, NULL)) 3048 return false; 3049 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size); 3050 3051 mi_get_ref(&ni->mi, &de2->ref); 3052 de2->size = cpu_to_le16(ALIGN(de_key_size, 8) + 3053 sizeof(struct NTFS_DE)); 3054 de2->flags = 0; 3055 de2->res = 0; 3056 3057 if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL, 1)) 3058 return false; 3059 fallthrough; 3060 3061 case 2: 3062 de_key_size = le16_to_cpu(de->key_size); 3063 3064 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, 3065 &attr, NULL, NULL)) 3066 return false; 3067 3068 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size); 3069 mi_get_ref(&ni->mi, &de->ref); 3070 3071 if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1)) 3072 return false; 3073 } 3074 3075 return true; 3076 } 3077 3078 /* 3079 * ni_add_name - Add new name into MFT and into directory. 3080 */ 3081 int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, 3082 struct NTFS_DE *de) 3083 { 3084 int err; 3085 struct ntfs_sb_info *sbi = ni->mi.sbi; 3086 struct ATTRIB *attr; 3087 struct ATTR_LIST_ENTRY *le; 3088 struct mft_inode *mi; 3089 struct ATTR_FILE_NAME *fname; 3090 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1); 3091 u16 de_key_size = le16_to_cpu(de->key_size); 3092 3093 if (sbi->options->windows_names && 3094 !valid_windows_name(sbi, (struct le_str *)&de_name->name_len)) 3095 return -EINVAL; 3096 3097 /* If option "hide_dot_files" then set hidden attribute for dot files. */ 3098 if (ni->mi.sbi->options->hide_dot_files) { 3099 if (de_name->name_len > 0 && 3100 le16_to_cpu(de_name->name[0]) == '.') 3101 ni->std_fa |= FILE_ATTRIBUTE_HIDDEN; 3102 else 3103 ni->std_fa &= ~FILE_ATTRIBUTE_HIDDEN; 3104 } 3105 3106 mi_get_ref(&ni->mi, &de->ref); 3107 mi_get_ref(&dir_ni->mi, &de_name->home); 3108 3109 /* Fill duplicate from any ATTR_NAME. */ 3110 fname = ni_fname_name(ni, NULL, NULL, NULL, NULL); 3111 if (fname) 3112 memcpy(&de_name->dup, &fname->dup, sizeof(fname->dup)); 3113 de_name->dup.fa = ni->std_fa; 3114 3115 /* Insert new name into MFT. */ 3116 err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr, 3117 &mi, &le); 3118 if (err) 3119 return err; 3120 3121 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size); 3122 3123 /* Insert new name into directory. */ 3124 err = indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 0); 3125 if (err) 3126 ni_remove_attr_le(ni, attr, mi, le); 3127 3128 return err; 3129 } 3130 3131 /* 3132 * ni_rename - Remove one name and insert new name. 3133 */ 3134 int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni, 3135 struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de, 3136 bool *is_bad) 3137 { 3138 int err; 3139 struct NTFS_DE *de2 = NULL; 3140 int undo = 0; 3141 3142 /* 3143 * There are two possible ways to rename: 3144 * 1) Add new name and remove old name. 3145 * 2) Remove old name and add new name. 3146 * 3147 * In most cases (not all!) adding new name into MFT and into directory can 3148 * allocate additional cluster(s). 3149 * Second way may result to bad inode if we can't add new name 3150 * and then can't restore (add) old name. 3151 */ 3152 3153 /* 3154 * Way 1 - Add new + remove old. 3155 */ 3156 err = ni_add_name(new_dir_ni, ni, new_de); 3157 if (!err) { 3158 err = ni_remove_name(dir_ni, ni, de, &de2, &undo); 3159 if (err && ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo)) 3160 *is_bad = true; 3161 } 3162 3163 /* 3164 * Way 2 - Remove old + add new. 3165 */ 3166 /* 3167 * err = ni_remove_name(dir_ni, ni, de, &de2, &undo); 3168 * if (!err) { 3169 * err = ni_add_name(new_dir_ni, ni, new_de); 3170 * if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo)) 3171 * *is_bad = true; 3172 * } 3173 */ 3174 3175 return err; 3176 } 3177 3178 /* 3179 * ni_is_dirty - Return: True if 'ni' requires ni_write_inode. 3180 */ 3181 bool ni_is_dirty(struct inode *inode) 3182 { 3183 struct ntfs_inode *ni = ntfs_i(inode); 3184 struct rb_node *node; 3185 3186 if (ni->mi.dirty || ni->attr_list.dirty || 3187 (ni->ni_flags & NI_FLAG_UPDATE_PARENT)) 3188 return true; 3189 3190 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { 3191 if (rb_entry(node, struct mft_inode, node)->dirty) 3192 return true; 3193 } 3194 3195 return false; 3196 } 3197 3198 /* 3199 * ni_update_parent 3200 * 3201 * Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories. 3202 */ 3203 static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup, 3204 int sync) 3205 { 3206 struct ATTRIB *attr; 3207 struct mft_inode *mi; 3208 struct ATTR_LIST_ENTRY *le = NULL; 3209 struct ntfs_sb_info *sbi = ni->mi.sbi; 3210 struct super_block *sb = sbi->sb; 3211 bool re_dirty = false; 3212 3213 if (ni->mi.mrec->flags & RECORD_FLAG_DIR) { 3214 dup->fa |= FILE_ATTRIBUTE_DIRECTORY; 3215 attr = NULL; 3216 dup->alloc_size = 0; 3217 dup->data_size = 0; 3218 } else { 3219 dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY; 3220 3221 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, 3222 &mi); 3223 if (!attr) { 3224 dup->alloc_size = dup->data_size = 0; 3225 } else if (!attr->non_res) { 3226 u32 data_size = le32_to_cpu(attr->res.data_size); 3227 3228 dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8)); 3229 dup->data_size = cpu_to_le64(data_size); 3230 } else { 3231 u64 new_valid = ni->i_valid; 3232 u64 data_size = le64_to_cpu(attr->nres.data_size); 3233 __le64 valid_le; 3234 3235 dup->alloc_size = is_attr_ext(attr) ? 3236 attr->nres.total_size : 3237 attr->nres.alloc_size; 3238 dup->data_size = attr->nres.data_size; 3239 3240 if (new_valid > data_size) 3241 new_valid = data_size; 3242 3243 valid_le = cpu_to_le64(new_valid); 3244 if (valid_le != attr->nres.valid_size) { 3245 attr->nres.valid_size = valid_le; 3246 mi->dirty = true; 3247 } 3248 } 3249 } 3250 3251 /* TODO: Fill reparse info. */ 3252 dup->reparse = 0; 3253 dup->ea_size = 0; 3254 3255 if (ni->ni_flags & NI_FLAG_EA) { 3256 attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL, 3257 NULL); 3258 if (attr) { 3259 const struct EA_INFO *info; 3260 3261 info = resident_data_ex(attr, sizeof(struct EA_INFO)); 3262 /* If ATTR_EA_INFO exists 'info' can't be NULL. */ 3263 if (info) 3264 dup->ea_size = info->size_pack; 3265 } 3266 } 3267 3268 attr = NULL; 3269 le = NULL; 3270 3271 while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL, 3272 &mi))) { 3273 struct inode *dir; 3274 struct ATTR_FILE_NAME *fname; 3275 3276 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); 3277 if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup))) 3278 continue; 3279 3280 /* Check simple case when parent inode equals current inode. */ 3281 if (ino_get(&fname->home) == ni->vfs_inode.i_ino) { 3282 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 3283 continue; 3284 } 3285 3286 /* ntfs_iget5 may sleep. */ 3287 dir = ntfs_iget5(sb, &fname->home, NULL); 3288 if (IS_ERR(dir)) { 3289 ntfs_inode_warn( 3290 &ni->vfs_inode, 3291 "failed to open parent directory r=%lx to update", 3292 (long)ino_get(&fname->home)); 3293 continue; 3294 } 3295 3296 if (!is_bad_inode(dir)) { 3297 struct ntfs_inode *dir_ni = ntfs_i(dir); 3298 3299 if (!ni_trylock(dir_ni)) { 3300 re_dirty = true; 3301 } else { 3302 indx_update_dup(dir_ni, sbi, fname, dup, sync); 3303 ni_unlock(dir_ni); 3304 memcpy(&fname->dup, dup, sizeof(fname->dup)); 3305 mi->dirty = true; 3306 } 3307 } 3308 iput(dir); 3309 } 3310 3311 return re_dirty; 3312 } 3313 3314 /* 3315 * ni_write_inode - Write MFT base record and all subrecords to disk. 3316 */ 3317 int ni_write_inode(struct inode *inode, int sync, const char *hint) 3318 { 3319 int err = 0, err2; 3320 struct ntfs_inode *ni = ntfs_i(inode); 3321 struct super_block *sb = inode->i_sb; 3322 struct ntfs_sb_info *sbi = sb->s_fs_info; 3323 bool re_dirty = false; 3324 struct ATTR_STD_INFO *std; 3325 struct rb_node *node, *next; 3326 struct NTFS_DUP_INFO dup; 3327 3328 if (is_bad_inode(inode) || sb_rdonly(sb)) 3329 return 0; 3330 3331 if (unlikely(ntfs3_forced_shutdown(sb))) 3332 return -EIO; 3333 3334 if (!ni_trylock(ni)) { 3335 /* 'ni' is under modification, skip for now. */ 3336 mark_inode_dirty_sync(inode); 3337 return 0; 3338 } 3339 3340 if (!ni->mi.mrec) 3341 goto out; 3342 3343 if (is_rec_inuse(ni->mi.mrec) && 3344 !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) { 3345 bool modified = false; 3346 struct timespec64 ctime = inode_get_ctime(inode); 3347 3348 /* Update times in standard attribute. */ 3349 std = ni_std(ni); 3350 if (!std) { 3351 err = -EINVAL; 3352 goto out; 3353 } 3354 3355 /* Update the access times if they have changed. */ 3356 dup.m_time = kernel2nt(&inode->i_mtime); 3357 if (std->m_time != dup.m_time) { 3358 std->m_time = dup.m_time; 3359 modified = true; 3360 } 3361 3362 dup.c_time = kernel2nt(&ctime); 3363 if (std->c_time != dup.c_time) { 3364 std->c_time = dup.c_time; 3365 modified = true; 3366 } 3367 3368 dup.a_time = kernel2nt(&inode->i_atime); 3369 if (std->a_time != dup.a_time) { 3370 std->a_time = dup.a_time; 3371 modified = true; 3372 } 3373 3374 dup.fa = ni->std_fa; 3375 if (std->fa != dup.fa) { 3376 std->fa = dup.fa; 3377 modified = true; 3378 } 3379 3380 /* std attribute is always in primary MFT record. */ 3381 if (modified) 3382 ni->mi.dirty = true; 3383 3384 if (!ntfs_is_meta_file(sbi, inode->i_ino) && 3385 (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT)) 3386 /* Avoid __wait_on_freeing_inode(inode). */ 3387 && (sb->s_flags & SB_ACTIVE)) { 3388 dup.cr_time = std->cr_time; 3389 /* Not critical if this function fail. */ 3390 re_dirty = ni_update_parent(ni, &dup, sync); 3391 3392 if (re_dirty) 3393 ni->ni_flags |= NI_FLAG_UPDATE_PARENT; 3394 else 3395 ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT; 3396 } 3397 3398 /* Update attribute list. */ 3399 if (ni->attr_list.size && ni->attr_list.dirty) { 3400 if (inode->i_ino != MFT_REC_MFT || sync) { 3401 err = ni_try_remove_attr_list(ni); 3402 if (err) 3403 goto out; 3404 } 3405 3406 err = al_update(ni, sync); 3407 if (err) 3408 goto out; 3409 } 3410 } 3411 3412 for (node = rb_first(&ni->mi_tree); node; node = next) { 3413 struct mft_inode *mi = rb_entry(node, struct mft_inode, node); 3414 bool is_empty; 3415 3416 next = rb_next(node); 3417 3418 if (!mi->dirty) 3419 continue; 3420 3421 is_empty = !mi_enum_attr(mi, NULL); 3422 3423 if (is_empty) 3424 clear_rec_inuse(mi->mrec); 3425 3426 err2 = mi_write(mi, sync); 3427 if (!err && err2) 3428 err = err2; 3429 3430 if (is_empty) { 3431 ntfs_mark_rec_free(sbi, mi->rno, false); 3432 rb_erase(node, &ni->mi_tree); 3433 mi_put(mi); 3434 } 3435 } 3436 3437 if (ni->mi.dirty) { 3438 err2 = mi_write(&ni->mi, sync); 3439 if (!err && err2) 3440 err = err2; 3441 } 3442 out: 3443 ni_unlock(ni); 3444 3445 if (err) { 3446 ntfs_inode_err(inode, "%s failed, %d.", hint, err); 3447 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 3448 return err; 3449 } 3450 3451 if (re_dirty) 3452 mark_inode_dirty_sync(inode); 3453 3454 return 0; 3455 } 3456